NMavericCcK

~ 4

from

-w CIRRUS LOGIC

9/13/00

Errata: EP/7212 Rev D

EP7212 High-Performance, Low Power System-on-Chip with LCD Controller and DAI
(DS474PP1, FEB ‘00)

1) DRAM refresh

Description: Under some circumstances, the bus can become saturated which will result in stalling
the DRAM refresh signals. This causes datainthe DRAM to becomeinvalid. In order to get arefresh
cycle generated correctly the memory controller state machine hasto beintheidle state for one cycle
after the end of the extended RAS precharge period with no DRAM or ROM requests active.

Workarounds:
A) Set the clock to 36 MHz. No observed refresh faults occur at 36 MHz and below.

B)

C)

Avoid using DRAM for both program and data storage. If codeisrun out of SRAM or ROM,
thiswill tend to keep the DRAM activity from saturating the bus.

Make certain that cache is enabled for DRAM.

D) Allow sometime to free the bus from constant DRAM activity so that arefresh can occur. If

the above guidelines still cause DRAM read and write errors, then set up an fast interrupt that
runs in internal SRAM. For example, the DAI interrupt service routine that is used by the
MP3 player routineis called at an 11 kHz rate. If this routine is placed into internal SRAM,
then on each interrupt, the external bus becomesidle long enough to allow the refresh logic
to function properly.

http://www.cirrus.com

E) Add a software refresh routine. This routine can be called during each OS timer tick (typi-
cally every 10 msec). Thisis probably the best optionif: 1) clock speed is>36 MHz, and 2)
program is running out of DRAM. The following code is one possible means for generating
a software refresh.
#def i ne DRAM START 0x00000000
#defi ne DRAM END 0x01000000
#def i ne DRAM ROW S| ZE 0x00000400
#defi ne DRAM REFRESH (((DRAM_END- DRAM START) / DRAM ROW Sl ZE) +99) / 100
static void
do_DRAM r ef resh(voi d)
{
static int *row ptr;
volatile int val;
int i;
for (i =0; i < DRAMREFRESH, i++) {
val = *row ptr;
row ptr += DRAM ROW SI ZE / sizeof (*row_ptr);
if (rowptr >= (int *)DRAM END) row ptr = (int*)DRAM START;
}
}
Cirrus Logic, Inc.
P.O. Box 17847, Austin, Texas 78760 Copyright O Cirrus Logic, Inc. 2000 ER474A3
(512) 445 7222 FAX: (512) 445 7581 (All Rights Reserved) SEP ‘00

1

NMMaveriCK
~ 4
from

-w CIRRUS LOGIC

|
2) Thumb mode operation

Description: Thumb mode will not function correctly when running code out of DRAM and if the
cacheisdisabled. The error occurs only with cache disabled. The error occurs when entering Thumb
state on an odd address. The CAS and RAS signals are not asserted, and therefore the read of the
instruction will only fetch the higher byte with the lower byte being ignored.

Workaround: Make certain cacheis enabled. With cache enabled, only aligned accesses are issued.

3) LRCLK duty cycle

Description: LRCLK is not a 50% duty cycle clock, the actual duty cycle of LRCLK is 63/128%
low and 65/128% high. Datais aligned with LRCLK.

Workaround: None, Data is aligned with LRCLK, many standard ADC and DACs (CS43L40,
CHA3L42, CHA3L43, and CS53L32) align data with LRCLK. Verify that the CODEC used aligns
with LRCLK and does not require a 50% duty cycle.

4) DAI input timing
Description: When receiving data via the DAI port, the device will capture data one clock prior to
LRCLK falling.
Workaround:

A) Perform asingle bit left shift on the Right Channel Data (when LRCLK is low). The result
will be 15 bits of valid data.

B) If interfacing withaCS53L32 ADC, the CS53L 32 presents a zero followed by valid data after
therising edge of LRCLK. Once the data has been captured, asingle bit |eft shift for both L eft
and Right Channel Datawill provide 15 valid bits of data from the ADC.

5) SSI1 port operation
Description:, The SSI1 port will transmit incorrect dataif bits 4:7 form an even number and bits 0:3
are not equal to OxF. For example 0x12 will cause an error, but the values Ox1F and 0x22 will not
cause an error.

Workaround: The SSI1 port can be used for receiving datawith no errors. If transmitting data, avoid
the condition in the description.. Alternatively, you can use SSI1 in Extended mode.

2 ER474A3

NMMaveriCK
~ 4
from

-w CIRRUS LOGIC
'

6) NURESET operation

Description: If nURESET isasserted before the processor is operating after awakeup from Standby
mode, the system will enter into an unknown state. When this occurs, the only recovery is to assert
the nPOR.

Workarounds:

A) Do not use the nURESET signal. Tie the nURESET to V y.

B) If NURESET must be used, make certain that it cannot be asserted until after the processor is
running. Itisnecessary to gate URESET with arun condition flag, which could bea GPIO pin
that isasserted viasoftware, or aflip-flop that is set from an external chip select such asnCSx.
Under no circumstances should the RUN signal be used. The RUN signal goes high approx-
imately 128 msec after WAKEUP isasserted. Instructions are not fetched from external ROM
(nCS0) until approximately 150 msec to 350 msec after WAKEUP.

7) FASTWAKE operation:

Description: The FASTWAKE feature does not meet the performance described in the data sheet.
When the FASTWAKE bit of SYSCONS is set, the EP7209 runs at 256 Hz for approximately 10
instructions or approximately 39 msec after the processor speed is increased to 36 MHz.

Workaround: Thereis no workaround; therefore, the FASTWAKE feature is being removed from
the data sheet.

For any questions regarding this Errata, please send email to: epdapps@crystal.cirrus.com

ER474A3 3

