
Sun Microsystems, Inc.
www.sun.com

Submit comments about this document at: http://www.sun.com/hwdocs/feedback

OpenSPARC™ T2 Processor
Design and Verification

User’s Guide

Part No. 820-2729-10
May 2008, Revision B

Please
Recycle

Copyright 2007 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/patents and one or
more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, AnswerBook2, docs.sun.com, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and in other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and in other
countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION AND REGISTER TRANSFER LEVEL (RTL) ARE PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE
HELD TO BE LEGALLY INVALID.

Copyright 2007 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, Californie 95054, États-Unis. Tous droits réservés.

Sun Microsystems, Inc. possède les droits de propriété intellectuels relatifs à la technologie décrite dans ce document. En particulier, et sans
limitation, ces droits de propriété intellectuels peuvent inclure un ou plusieurs des brevets américains listés sur le site
http://www.sun.com/patents, un ou les plusieurs brevets supplémentaires ainsi que les demandes de brevet en attente aux les États-Unis et
dans d’autres pays.

Ce document et le produit auquel il se rapporte sont protégés par un copyright et distribués sous licences, celles-ci en restreignent l’utilisation,
la copie, la distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a.

Tout logiciel tiers, sa technologie relative aux polices de caractères, comprise, est protégé par un copyright et licencié par des fournisseurs de
Sun.

Des parties de ce produit peuvent dériver des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée
aux États-Unis et dans d’autres pays, licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, AnswerBook2, docs.sun.com, et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc. aux États-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux États-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

L’interface utilisateur graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox dans la recherche et le développement du concept des interfaces utilisateur visuelles ou graphiques
pour l’industrie informatique. Sun détient une license non exclusive de Xerox sur l’interface utilisateur graphique Xerox, cette licence couvrant
également les licenciés de Sun implémentant les interfaces utilisateur graphiques OPEN LOOK et se conforment en outre aux licences écrites de
Sun.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DÉCLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES DANS LA LIMITE DE LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE
GARANTIE IMPLICITE RELATIVE À LA QUALITÉ MARCHANDE, À L’APTITUDE À UNE UTILISATION PARTICULIÈRE OU À
L’ABSENCE DE CONTREFAÇON.

Contents

Preface ix

1. Quick Start 1–1

1.1 System Requirements 1–1

1.2 Running Simulations and Synthesis 1–3

2. OpenSPARC T2 Design Implementation 2–1

2.1 OpenSPARC T2 Design 2–1

2.2 OpenSPARC T2 Components 2–3

2.2.1 SPARC Physical Core 2–4

2.2.2 SPARC System-On Chip (SoC) 2–4

2.3 Module Directory Structure 2–5

2.4 Megacells 2–6

3. OpenSPARC T2 Verification Environment 3–1

3.1 OpenSPARC T2 Verification Environment 3–1

3.2 Running a Regression 3–3

3.2.1 What the sims Command Does 3–4

3.3 PLI Code Used For the Test Bench 3–5

3.4 Verification Test File Locations 3–5
iii

4. OpenSPARC T2 Synthesis 4–1

4.1 Synthesis Flow for the OpenSPARC T2 Processor 4–1

4.2 Synthesis Output 4–3

A. Design and Verification Manual Pages A–1

A.1 sims A–1

A.2 midas help A–22

A.3 regreport A–31
iv OpenSPARC T2 Design Implementation • December 2007

Figures

FIGURE 2-1 OpenSPARC T2 Chip Block Diagram 2–3
v

vi OpenSPARC T2 Design Implementation • December 2007

Tables

TABLE 1-1 Disk Space Requirements 1–1

TABLE 1-2 Contents of the OpenSPARCT2 Directory 1–3

TABLE 1-3 Environment Variables in .cshrc File 1–4

TABLE 2-1 OpenSPARC T2 Top-Level Clusters 2–5

TABLE 3-1 Source Code Types in the Verification Environment 3–2

TABLE 3-2 Details of Regression Groups 3–3

TABLE 3-3 PLI Source Code and Object Libraries 3–5

TABLE 3-4 Verification Test File Directories 3–6

TABLE 4-1 Synthesis Script Details 4–2

TABLE 4-2 Synthesis Output 4–3

TABLE A-1 Enviroment Variables A–19
vii

viii OpenSPARC T2 Design Implementation • December 2007

Preface

The OpenSPARC™ T2 Processor Design and Verification User’s Guide gives an overview
of the design hierarchy on the OpenSPARC T2 processor. It also describes the files,
procedures, and tools needed for running simulations and synthesis on the
OpenSPARC T2 processor.

This book covers the following topics:

■ Design and Verification implementation overview

■ Design and Verification directory and files structure

■ System and Electronic Design Automation (EDA) tools required to run
simulations and synthesis

■ Tools and scripts required to run simulation or complete regressions, including
simulation flow

■ Synthesis flow and scripts

How This Document Is Organized
Chapter 1 describes quick steps to run simulations after you download the design
and verification files from the web site. It also includes system requirements and
EDA tools requirements to run simulations and synthesis.

Chapter 2 gives an overview of the OpenSPARC T2 design hierarchy and directory
structure.

Chapter 3 gives an overview of the OpenSPARC T2 verification environment
implementation and directory structure. The verification environment includes test
benches, tests, scripts, and Verilog Programming Language Interface (PLI).

Chapter 4 describes the synthesis flow and synthesis scripts.
ix

Appendix A has manual pages for regression commands.

Using UNIX Commands
This document might not contain information about basic UNIX® commands and
procedures such as shutting down the system, booting the system, and configuring
devices. Refer to the following for this information:

■ Software documentation that you received with your system

■ Solaris™ Operating System documentation, which is at:

http://docs.sun.com

Shell Prompts

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #
x OpenSPARC T2 Processor Design and Verification User’s Guide • December 2007

http://docs.sun.com

Typographic Conventions

Related Documentation
The documents listed as online or download are available at:

http://www.opensparc.net/

Typeface*

* The settings on your browser might differ from these settings.

Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your.login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized.
Replace command-line variables
with real names or values.

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.
To delete a file, type rm filename.

Application Title Part Number Format Location

Documentation OpenSPARC T2 Core Microarchitecture
Specification

820-2545 PDF Online

Documentation OpenSPARC T2 System-On-Chip (SoC)
Microarchitecture Specification

820-2620 PDF Online

Documentation OpenSPARC T2 Processor Megacell
Specification

820-2728 PDF Online

Documentation OpenSPARC T2 Processor Design and
Verification User’s Guide

820-2729 PDF Online
Preface xi

http://www.opensparc.net/

Documentation, Support, and Training

Third-Party Web Sites
Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites
or resources. Sun will not be responsible or liable for any actual or alleged damage
or loss caused by or in connection with the use of or reliance on any such content,
goods, or services that are available on or through such sites or resources.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. You can submit your comments by going to:

http://www.sun.com/hwdocs/feedback

Please include the title and part number of your document with your feedback:

OpenSPARC T2 Processor Design and Verification User’s Guide,
part number 820-2729-10

Sun Function URL

Documentation http://www.sun.com/documentation/

Support http://www.sun.com/support/

Training http://www.sun.com/training/
xii OpenSPARC T2 Processor Design and Verification User’s Guide • December 2007

http://www.sun.com/training/
http://www.sun.com/support/
http://www.sun.com/hwdocs/feedback
http://www.sun.com/documentation/

CHAPTER 1

Quick Start

This chapter covers the following topics:

■ System Requirements

■ EDA Tool Requirements

■ Running Simulations and Synthesis

Before you start running simulations or synthesis, make sure you meet system
requirements and that you have the required Electronic Design Automation (EDA)
tools. Once you download the OpenSPARC T2 tar file from the
http://www.opensparc.net web site, follow the steps in this chapter to get
started and run your first regression on the OpenSPARC T2 design.

1.1 System Requirements
OpenSPARC T2 regressions are currently supported to run on SPARC systems
running the Solaris 9 or Solaris 10 Operating System and x86_64 systems running
Linux operating system.

Disk space requirements are listed in TABLE 1-1.

TABLE 1-1 Disk Space Requirements

Disk Space required Required for:

3.1 Gbyte Download, unzip or uncompress, and extract from the tar file

0.3 Gbyte Run a mini-regression
1-1

http://www.opensparc.net

EDA Tool Requirements

This section describes the commercial EDA tools required for running simulations
for the OpenSPARC T2 processor and synthesizing OpenSPARC T2 Verilog Register
Transfer Level (RTL) code.

EDA Simulation Tools

The following EDA tools are required to run Verilog simulations: Verilog Simulator,
either VCS or NCVerilog.

■ VCS from Synopsys, version vcsY-2006.06-7 or later OR

■ NCVerilog from Cadence, version ncverilog,v6.11 or later

■ Vera from Synopsys, version vera,vX-2005.12-1 or later

The following EDA tools are optional for running Verilog simulations:

■ Debussy from Novas, version 5.3v19 or later

EDA Synthesis Tools

The following EDA tool is required to perform Verilog RTL synthesis:

■ Design Compiler from Synopsys, version X-2005.09 or later

11.5 Gbyte Run a full regression

1.1 Gbyte Run synthesis

17 Gbyte Total

TABLE 1-1 Disk Space Requirements

Disk Space required Required for:
1-2 OpenSPARC T2 Processor Design and Verification User’s Guide • December 2007

1.2 Running Simulations and Synthesis
This section outlines the steps needed to obtain the simulation tools, set up the
simulation environment, run the simulation, and read its log file.

▼ Get the Simulation Files
1. Download the file.

Download the OpenSPARCT2.tar.bz2 file from the
http://www.opensparc.net web site. For this procedure’s examples, the
destination directory is:

/home/johndoe/OpenSPARCT2

2. Change directories to the directory where you downloaded the file. For
example:

3. Use the bunzip2 command to unzip the file.

4. Extract the tar file using the tar command.

This step creates the files and subdirectories listed in TABLE 1-2 in your current
directory.

% cd /home/johndoe/OpenSPARCT2

% bunzip2 OpenSPARCT2.tar.bz2

% tar -xvf OpenSPARCT2.tar

TABLE 1-2 Contents of the OpenSPARCT2 Directory

Name Type Description

OpenSPARCT2.cshrc File File to set up environment variables and paths for the SPARC/Solaris
platform

OpenSPARCT2.cshrc.
linux

File File to set up environment variables and paths for the x64/Linux
platform

README File Instructions to set up and run simulations

lib Directory Verilog libraries

verif Directory Verification directories and files
Chapter 1 Quick Start 1-3

http://www.opensparc.net

▼ Set Up Environment Variables
Edit the OpenSPARCT2.cshrc file to set the required environment variables as
shown in TABLE 1-3:

Note – For x64/Linux platform, edit OpenSPARCT2.cshrc.linux file to set required
environment variables

design Directory Verilog RTL for OpenSPARC T2 design

tools Directory Tools and scripts needed to run simulations and synthesis

doc Directory Documentation in PDF form for the OpenSPARC T2 processor

TABLE 1-3 Environment Variables in .cshrc File

Environment Variable Usage Example value

DV_ROOT Running simulations
and synthesis

/home/johndoe/OpenSPARCT2

(Directory where you ran the tar command above)

MODEL_DIR Running simulations /home/johndoe/OpenSPARCT2_model

(Directory where you want to run your simulations)

VERA_HOME Running simulations /import/EDAtools/vera/vera,v6.2.10/5.x

(Directory where Vera is installed)

NOVAS_HOME Running simulations /import/EDAtools/debussy/debussy,v5.3v19/5.x

(Directory where Debussy is installed)

VCS_HOME Running VCS
simulations

/import/EDAtools/vcs7.1.1R21

(Directory where VCS is installed)

NCV_HOME Running NCV
simulation

/import/EDAtools/ncverilog/ncverilog,v6.11.s3/5.x

(Directory where NCV is installed)

SYN_HOME Running synthesis /import/EDAtools/synopsys/synopsys.vX-2005.09

(Directory where Synopsys is installed)

CC_BIN Compiling PLI code /import/freetools/local/gcc/3.3.2/bin

(Directory where C++ Compiler binaries are installed)

LM_LICENSE_FILE Running simulations
and synthesis

/import/EDAtools/licenses/synopsys_key:/import/
EDAtools/licenses/ncverilog_key

(EDA tool license files)

TABLE 1-2 Contents of the OpenSPARCT2 Directory (Continued)

Name Type Description
1-4 OpenSPARC T2 Processor Design and Verification User’s Guide • December 2007

Once you set the environment variables from TABLE 1-3, the OpenSPARCT2.cshrc
file sets the following environment variables:

■ TRE_ENTRY

■ TRE_SEARCH

■ PERL_MODULE_BASE

■ PERL_PATH

The OpenSPARCT2.cshrc script also adds the following directories to your PATH
and path variables:

■ $DV_ROOT/tools/bin

■ $VCS_HOME/bin

■ $VERA_HOME/bin

■ $SYN_HOME/sparcOS5/syn/bin

■ $CC_BIN

After completing your OpenSPARCT2.cshrc file edits, source it by using the
source command:

You might want to include the above command in your ~/.cshrc file so that the
above environment variables are set every time you log in.

▼ Run Your First Regression
The OpenSPARC T2 Design/Verification package comes with four test bench
environments: cmp1, cmp8, fc1, and fc8.

The cmp1 environment consists of:

■ One SPARC CPU core

■ Cache

■ Memory

■ Crossbar

The cmp1 environment does not have an I/O subsystem.

The cmp8 environment consists of:

■ Eight SPARC CPU cores

■ Cache

■ Memory

% source /home/johndoe/OpenSPARCT2/OpenSPARCT2.cshrc
Chapter 1 Quick Start 1-5

■ Crossbar

The cmp8 environment does not have an I/O subsystem.

The fc1 environment consists of:

■ A full OpenSPARC T2 chip with one SPARC Core

■ Cache

■ Memory

■ Crossbar

■ I/O subsystem

The fc8 environment consists of:

■ A full OpenSPARC T2 chip, including all eight cores

■ Cache

■ Memory

■ Crossbar

■ I/O subsystem

Each environment can perform either a mini-regression or a full regression.

To run a regression, use the sims command as described in To Run a Regression.
The important parameters for the sims command are:

■ -sys: system type

Set this to cmp1 or cmp8 or fc1 or fc8. For example: -sys=cmp1

■ -group: Regression group name

The choices for -group are: cmp1_mini_T2, cmp1_all_T2, cmp8_mini_T2,
cmp8_all_T2, fc1_mini_T2, and fc1_all_T2, fc8_mini_T2, and fc8_all_T2. For
example: -group=cmp1_mini_T2

■ For help, type “sims -h”

▼ To Run a Regression
1. Create the $MODEL_DIR directory.

% mkdir $MODEL_DIR
1-6 OpenSPARC T2 Processor Design and Verification User’s Guide • December 2007

2. Change directory to $MODEL_DIR.

This is where the simulations are run.

3. Run a mini-regression for the cmp1 environment using the VCS simulator.

This command creates two directories:

■ A directory called cmp1 under $MODEL_DIR. The regression compiles Vera and
Verilog code under the cmp1 directory. This is the Vera and Verilog “build”
directory.

■ A directory named with today’s date and a serial number, such as
2007_01_07_0 (the format is YYYY_MM_DD_ID) under the current directory
where simulations will run. This is the Verilog simulation’s “run” directory.
There is one subdirectory under this directory for each diagnostics test.

By default, the simulations are run with Vera.

% cd $MODEL_DIR

% sims -sys=cmp1 -group=cmp1_mini_T2
Chapter 1 Quick Start 1-7

4. Once simulations are completed, run the regreport command to generate a
regression report.

Where run-directory is the “run” directory created in the above step, such as
2007_08_07_0.

The cmp1_mini_T2 regression has 51 tests. An example of its report.log
output is shown below:

If your report.log file displays a similar status, you have successfully
completed running a mini-regression for the OpenSPARC T2 processor.

▼ Run Your First Synthesis
The command to run a synthesis is rsyn. For example, to run a synthesis for one of
the modules called efu, type:

This command runs a synthesis for the efc block and creates gate level netlists
under the $DV_ROOT/design/sys/iop/efu/synopsys/gate directory.

The synthesis flow and scripts are described in more detail in Chapter 4.

% cd run-directory
% regreport $PWD > report.log

Group Total PASS FAIL Cycles Time C/S

cmp1_st: 2 2 0 127399.00 2405.28 52.97

cmp1_nospec: 5 5 0 349747.50 8391.28 41.68

cmp1_mt: 15 15 0 684702.50 20884.47 32.79

cmp1_mmu: 9 9 0 245845.50 7335.27 33.52

cmp1_lsu: 5 5 0 190447.50 5876.04 32.41

cmp1_fast_idtl
b:

4 4 0 102978.00 2579.26 39.93

cmp1_fast_fgu: 5 5 0 109217.50 2205.12 49.53

cmp1_fast_exu: 6 6 0 140307.00 3639.62 38.55

ALL: 51 51 0 1950644.50 53316.34 36.59

% rsyn efu
1-8 OpenSPARC T2 Processor Design and Verification User’s Guide • December 2007

CHAPTER 2

OpenSPARC T2 Design
Implementation

This chapter gives details on the following topics:

■ OpenSPARC T2 Design

■ OpenSPARC T2 Components

■ Module Directory Structure

■ Megacells

2.1 OpenSPARC T2 Design
OpenSPARC T2 is a single chip multi-threaded (CMT) processor. OpenSPARC T2
contains eight SPARC physical processor cores. Each SPARC physical processor core
has full hardware support for eight strands, two integer execution pipelines, one
floating-point execution pipeline, and one memory pipeline. The floating-point and
memory pipelines are shared by all eight strands. The eight strands are hard-
partitioned into two groups of four, and the four strands within a group share a
single integer pipeline. While all eight strands run simultaneously, at any given time
at most two strands will be active in the physical core, and those two strands will be
issuing either a pair of integer pipeline operations, an integer operation and a
floating-point operation, an integer operation and a memory operation, or a floating-
point operation and a memory operation. Strands are switched on a cycle-by-cycle
basis between the available strands within the hard-partitioned group of four using
a least recently issued priority scheme. When a strand encounters a long-latency
event, such as a cache miss, it is marked unavailable and instructions will not be
issued from that strand until the long-latency event is resolved. Execution of the
remaining available strands will continue while the long-latency event of the first
strand is resolved.
2-1

Each SPARC physical core has a 16 KB, 8-way associative instruction cache (32-byte
lines), 8 Kbytes, 4-way associative data cache (16-byte lines), 64-entry fully-
associative instruction TLB, and 128-entry fully associative data TLB that are shared
by the eight strands. The eight SPARC physical cores are connected through a
crossbar to an on-chip unified 4 Mbyte, 16-way associative L2 cache (64-byte lines).
The L2 cache is banked eight ways to provide sufficient bandwidth for the eight
SPARC physical cores. The L2 cache connects to four on-chip DRAM controllers,
which directly interface to a pair of fully buffered DIMM (FBD) channels. In
addition, an on-chip PCI-EX controller, two 1-Gbit/10-Gbit Ethernet MACs, and
several on-chip I/O-mapped control registers are accessible to the SPARC physical
cores. Traffic from the PCI-EX port coherently interacts with the L2 cache.

Note – OpenSPARC T2 currently does not include PCI-Express design
implementation due to current legal restrictions. Equivalent model may be available
in the subsequent releases of OpenSPARC T2.

A block diagram of the OpenSPARC T2 chip is shown in FIGURE 2-1
2-2 OpenSPARC T2 Processor Design and Verification User’s Guide • December 2007

FIGURE 2-1 OpenSPARC T2 Chip Block Diagram

2.2 OpenSPARC T2 Components
This section describes each component in OpenSPARC T2.

Cache
Crossbar

(CCX)

CCU

SIU

SSI ROM IntfFCRAM Intf

NIU
10 Gb MAC

eFuse

PCI-EX

L2 Bank0

L2 Bank1

MCU 0SPARC Core

10 Gb MAC

OpenSPARCT2

PCI-EX

Fully Buffered
DIMMs (FBD)

TCU

MCU 1

MCU 2

MCU 3

10

14

10

10

10

L2 Bank0

L2 Bank1

L2 Bank0

L2 Bank1

L2 Bank0

L2 Bank1

64

64

128

64

64

128

64

64

128

64

64

128

1.4Ghz1.4Ghz 800Mh 4.8Ghz

DIMMs
Ranks

1
1 or 2 per DIMM

2 3 8

10

10

10

10

Optional dual Channel Mode

10

10

10

DIMMs 1 2 3 8

10

10

10

10

14

14

14

14

14

14

14

SPARC Core

SPARC Core

SPARC Core

SPARC Core

SPARC Core

SPARC Core

SPARC Core
Chapter 2 OpenSPARC T2 Design Implementation 2-3

2.2.1 SPARC Physical Core
Each SPARC physical core has hardware support for eight strands. This support
consists of a full register file (with eight register windows) per strand, with most of
the ASI, ASR, and privileged registers replicated per strand. The eight strands share
the instruction and data caches and TLBs. An auto-demap feature is included with
the TLBs to allow the multiple strands to update the TLB without locking.

There is a single floating-point unit within each SPARC physical core for a total of 8
on a T2 chip. Each floating-point unit is shared by all eight strands and fully
pipelined. The theoretical floating-point bandwidth is 11 Giga Floating Point Ops
(GFlops) per second making the T2 an excellent floating-point processor.

Detailed information on the core processor is provided in OpenSPARC T2 Core
Microarchitecture Specification.

2.2.2 SPARC System-On Chip (SoC)
Each SPARC physical core is supported by system on chip hardware components.

Information on each of the functioning units of the system on chip of OpenSPARC
T2 are provided in the following chapters of OpenSPARC T2 System-On Chip (SoC)
Microarchitecture Specification.
2-4 OpenSPARC T2 Processor Design and Verification User’s Guide • December 2007

2.3 Module Directory Structure
The Verilog RTL for the OpenSPARC T2 processor is in the
$DV_ROOT/design/sys/iop/cpu directory. The top level verilog module for the
OpenSPARC T2 processor is called “cpu”. All the top-level modules that make up
that RTL, and their locations, are listed in TABLE 2-1..

TABLE 2-1 OpenSPARC T2 Top-Level Clusters

Module Name Type
Number of
Instances Instance Names

Directory
Location
under
$DV_ROOT/d
esign/sys/
iop Description

ccu cluster 1 ccu ccu Clock Control Unit

ccx Cluster 1 ccx ccx CPU-Cache Cross
bar

db0 Cluster 1 db0 db0 Debug Unit

db1 Cluster 1 db1 db1 Debug Unit

dmu cluster 1 dmu dmu Data Management
Unit

efu Cluster 1 efu efu e-Fuse Cluster

fsr cluster 1 fsr fsr FBDIMM Serdes
macro

fsr_bottom cluster 1 fsr_bottom fsr_bott
om

FBDIMM Serdes
Macro

fsr_left cluster 1 fsr_left fsr_left FBDIMM Serdes
Macro

fsr_right cluster 1 fsr_right fsr_righ
t

FBDIMM Serdes
Macro

l2b Cluster 8 l2b[0-7] l2b L2$ bank

l2t Cluster 8 l2t[0-7] l2t L2 $ tag

l2d Cluster 8 l2d[0-7] l2d L2 $ data

mcu cluster 4 mcu[0-3] mcu Memory
Controller

mio cluster 1 mio mio Miscellaneous I/O

ncu cluster 1 ncu ncu Non-cacheable
Unit
Chapter 2 OpenSPARC T2 Design Implementation 2-5

2.4 Megacells
The OpenSPARC T2 design contains many megacells, which are custom blocks for
static random access memory (SRAMs), translation lookaside buffer (TLB), TAGs,
Level 2 Cache, and so on. These megacells are instantiated in the top-level clusters.
The detailed descriptions of all megacells, including their function descriptions, I/O
lists, block diagrams, and timing diagrams, are in the OpenSPARC T2 Megacell
Specification.

rst cluster 1 rst rst Reset Unit

sii cluster 1 sii sii System Interface
Unit - Inbound

sio cluster 1 sio sio System Interface
Unit - Outbound

spc Cluster 8 spc[0-7] spc SPARC CPU core

tcu cluster 1 tcu tcu Trap Control Unit

esr cluster 1 esr esr Ethernet SerDes
model

mac cluster 1 mac mac Ethernet MAC

tds cluster 1 tds tds Ethernet Transmit
Data Path

rdp cluster 1 rdp rdp Ethernet Receive
Data Path

rtx cluster 1 rtx rtx Ethernet Receive
and Transmit

TABLE 2-1 OpenSPARC T2 Top-Level Clusters (Continued)

Module Name Type
Number of
Instances Instance Names

Directory
Location
under
$DV_ROOT/d
esign/sys/
iop Description
2-6 OpenSPARC T2 Processor Design and Verification User’s Guide • December 2007

CHAPTER 3

OpenSPARC T2 Verification
Environment

This chapter describes the following topics:

■ OpenSPARC T2 Verification Environment

■ Running a Regression

■ PLI Code Used For the Test Bench

■ Verification Test File Locations

3.1 OpenSPARC T2 Verification
Environment
The OpenSPARC T2 verification environment is a highly automated environment.
With a simple command, you can run the entire regression suite for the OpenSPARC
T2 processor, containing hundreds of tests. With a second command, you can check
the results of the regression.

The OpenSPARC T2 Design and Verification package comes with four test bench
environments: cmp1, cmp8, fc1 and fc8.

The cmp1 environment consists of:

■ One SPARC CPU core

■ Cache

■ Memory

■ Crossbar

The cmp1 environment does not have an I/O subsystem.
3-1

The cmp8 environment consists of:

■ Eight SPARC CPU cores

■ Cache

■ Memory

■ Crossbar

The cmp8 environment does not have an I/O subsystem.

The fc1 environment consists of:

■ A full OpenSPARC T2 chip, with one SPARC Core

■ Cache

■ Memory

■ Crossbar

■ I/O subsystem

The fc8 environment consists of:

■ A full OpenSPARC T2 chip, including all eight cores

■ Cache

■ Memory

■ Crossbar

■ I/O subsystem

The verification environment uses source code in various languages. TABLE 3-1 shows
a summary of the types of source code and their uses.

TABLE 3-1 Source Code Types in the Verification Environment

Source Code Language Used for:

Verilog Chip design, test bench drivers, and monitors.

Vera Test bench drivers, monitors, and coverage objects. Use of Vera is
optional.

PERL Scripts for running simulations and regressions.

C and C++ PLI (Programming Language Interface) for Verilog.

SPARC Assembly Verification tests.
3-2 OpenSPARC T2 Processor Design and Verification User’s Guide • December 2007

3.2 Running a Regression
For each environment, there is a mini-regression and a full regression. TABLE 3-2
describes the regression groups.

▼ To Run a Regression
1. Run the sims command with your chosen parameters.

For instance, to run a mini-regression for the cmp1 environment using the VCS
simulator, set up the sims command as follows:

To run regressions on multiple groups at the same time, specify multiple -
group= parameters at the same time. For a complete list of command-line
options for the sims command, see Appendix A.

2. Run the regreport command to get a summary of the regression.

TABLE 3-2 Details of Regression Groups

Regression Group name Environment No. of Tests

cmp1_mini_T2 cmp1 6

cmp1_all_T2 cmp1 768

cmp8_mini_T2 cmp8 7

cmp8_all_T2 cmp8 648

fc1_mini_T2 fc1 6

fc1_full_T2 fc1 353

fc8_mini_T2 fc8 17

fc8_full_T2 fc8 535

% sims -sys=cmp1 -group=cmp1_mini_T2

% regreport $PWD/2007_08_07_0 > report.log
Chapter 3 OpenSPARC T2 Verification Environment 3-3

3.2.1 What the sims Command Does
When running a simulation, the sims command performs the following steps:

1. Compiles the design into the $MODEL_DIR/cmp1 or $MODEL_DIR/fc8 directory,
depending on which environment is being used.

2. Creates a directory for regression called $PWD/DATE_ID, where $PWD is your
current directory, DATE is in YYYY_MM_DD format, and ID is a serial number
starting with 0. For example, for the first regression on August07, 2007, a
directory called $PWD/2007_08_07_0 is created. For the second regression run
on the same day, the last ID is incremented to become $PWD/2007_08_07_1.

3. Creates a master_diaglist.regression_group file under the above directory.
such as master_diaglist.cmp1_mini_T2 for the cmp1_mini_T2 regression
group. This file is created based on diaglists under the $DV_ROOT/verif/diag
directory.

4. Creates a subdirectory with the test name under the regression directory created
in step 2 above.

5. Creates a sim_command file for the test based on the parameters in the diaglist
file for the group.

6. Executes sim_command to run a Verilog simulation for the test. If the -sas option
is specified for the test, it also runs the SPARC Architecture Simulator (SAS) in
parallel with the Verilog simulator. The results of the Verilog simulation are
compared with the SAS results after each instruction.

The sim_command command creates many files in the test directory. Following
are the sample files in the test directory:

The status.log file has a summary of the status, where the first line contains the
name of the test and its status (PASS/FAIL).

7. Repeats steps 4 to 6 for each test in the regression group.

diag.ev diag.s raw_coverage seeds.log
status.log vcs.log.gz diag.exe.gz midas.log
sas.log.gz sims.log symbol.tbl vcs.perf.log

Rundir: tlu_rand05_ind_03:cmp1_st:cmp1_mini_T2:0 PASS
3-4 OpenSPARC T2 Processor Design and Verification User’s Guide • December 2007

3.3 PLI Code Used For the Test Bench
Verilog’s PLI (Programming Language Interface) is used to drive and monitor the
simulations of the OpenSPARC T2 design. There are eight different directories for
PLI source code. Some PLI code is in C language, and some is in C++ language.
TABLE 3-3 gives the details of PLI code directories and VCS libraries.

VCS object libraries are statically linked libraries (.a files) which are linked when
VCS compiles the Verilog code to generate a simv executable.

Makefile is provided to compile PLI code. There is a makefile file under
$DV_ROOT/tools/pli directory which will compile static executable (.a file) of the
PLI code.

3.4 Verification Test File Locations
The verification or diagnostics tests (diags) for the OpenSPARC T2 processor are
written in SPARC assembly language (the file names have a .s extension). Some
diagnostics test cases in SPARC assembly are automatically generated by Perl
scripts.

TABLE 3-3 PLI Source Code and Object Libraries

PLI name
Source code location under
$DV_ROOT VCS object library name Description

iob verif/env/common/pli/cac
he

libiob.a Cache warming
routines

mem model/infineon libbwmem_pli.a Memory
read/write

socket verif/env/common/pli/soc
ket

libsocket_pli.a Sockets to SAS

utility verif/env/common/pli/uti
lity

libbwutility_pli.a Utility functions

monitor verif/env/common/pli/
monitor/c

libmonitor_pli.a Various

global_chk
r

verif/env/common/pli/glo
bal_chkr/

libglobal_chkr.a Various checkers
Chapter 3 OpenSPARC T2 Verification Environment 3-5

The main diaglist for cmp1 is cmp1.diaglist. The main diaglist for fc8 is
fc8.diaglist. These main diaglists for each environment also include many other
diaglists. The locations of various verification test files are listed in TABLE 3-4.

TABLE 3-4 Verification Test File Directories

Directory Contents

$DV_ROOT/verif/diag All diagnostics, various diagnostic list files with the
extension.diaglist.

$DV_ROOT/verif/diag/a
ssembly

Source code for SPARC assembly diagnostics. More than 1400
assembly test files.

$DV_ROOT/verif/diag/e
fuse

EFuse cluster default memory load files.
3-6 OpenSPARC T2 Processor Design and Verification User’s Guide • December 2007

CHAPTER 4

OpenSPARC T2 Synthesis

This chapter describes the following topics:

■ Synthesis Flow for the OpenSPARC T2 Processor

■ Synthesis Output

The scripts provided in the source code are for the Synopsys Design Compiler.

4.1 Synthesis Flow for the OpenSPARC T2
Processor
There are two types of synthesis scripts:

■ One set to run the Synopsys Design Compiler (rsyn and syn_command)

■ One set used as input for the Design Compiler

The main script used to run Synopsys Design Compiler is called rsyn. This is a
PERL script that calls a second script, syn_command, once for each module you are
synthesizing. The command-line options for the rsyn script are described in
CODE EXAMPLE 4-1.
4-1

Synthesis scripts for most of the modules are provided in the $DV_ROOT/design
sub-directories. There are no synthesis scripts for the following types of modules:

■ Megacell modules (SRAMS, TLB, TAG, Cache, etc.)

■ Top-level hierarchical modules

Synopsys scripts, their locations, and their descriptions are listed in TABLE 4-1.

The top-level Synopsys script, run.scr,calls the module-specific script named
user_cfg.scr. The user_cfg.scr script calls the project_sparc_cfg.scr
script or the project_io_cfg.scr script, depending on whether the module
belongs to sparc or io.

CODE EXAMPLE 4-1 Command-Line Options for rsyn Script

rsyn : Run Synthesis for OpenSPARC T2

-all
to run synthesis for all blocks

-h / -help
to print help

-syn_q_command=’Your job Queue command’
to specify Job queue command. e.g. specify submit command
for LSF or GRID

block_list :
specify list of blocks to synthesize

Examples:

rsyn -all
rsyn efu

TABLE 4-1 Synthesis Script Details

Script name Location Description

run.scr $DV_ROOT/design/sys/synopsys/script Main synthesis script that calls
user_cfg.scr

project_sparc_cfg.scr $DV_ROOT/design/sys/synopsys/script SPARC module-specific
synthesis script

project_io_cfg.scr $DV_ROOT/design/sys/synopsys/script I/O module-specific synthesis
script

target_lib.scr $DV_ROOT/design/sys/synopsys/script Target library-specific script

user_cfg.scr Module directory/synopsys/script Module-specific synthesis
script
4-2 OpenSPARC T2 Processor Design and Verification User’s Guide • December 2007

The list of all modules with synthesis scripts is in the
$DV_ROOT/design/sys/synopsys/block.list file. Each module has:

■ A synopsys directory under the module directory

■ A script directory under each synopsys directory

■ The user_cfg.scr file under the script directory

For example, the efc module-specific synthesis script has the following directory
path:

The target library is set to a generic library called lsi_10k.db in the
target_lib.scr script. Modify this file to set your own target library and its
required variables.

4.2 Synthesis Output
Running synthesis for a module creates files and directories under the
Module name/synopsys directory, described in TABLE 4-2.

$DV_ROOT/design/sys/iop/efu/synopsys/script/user_cfg.scr

TABLE 4-2 Synthesis Output

Name Type Description

dc_shell.log File Log file from running Design Compiler

command.log File Command log from running Design Compiler

log Directory Area report files from Design Compiler

gate Directory Gate netlist generated by Design Compiler

.template Directory Template directory used by Design Compiler
Chapter 4 OpenSPARC T2 Synthesis 4-3

4-4 OpenSPARC T2 Processor Design and Verification User’s Guide • December 2007

APPENDIX A

Design and Verification Manual
Pages

This appendix provides the manual pages for commands used for OpenSPARC T2
design and verification.

A.1 sims
NAME

sims - Verilog rtl simulation environment and regression script

SYNOPSIS

sims [args ...]

Note – Use "=" instead of "space" to separate args and their options.

where args are:

SIMULATION ENV

 -sys=NAME
 sys is a pointer to a specific testbench configuration
 to be built and run. a config file is used to associate
 the sys with a set of default options to build the
 testbench and run diagnostics on it. the arguments
 in the config file are the same as the arguments passed
 on the command line.
A-1

 -group=NAME
 group name identifies a set of diags to run in a
 regression. The presence of this argument indicates
 that this is a regession run. the group must be found
 in the diaglist. multiple groups may be specified to be
 run within the same regression.

Note – If -sys=NAME option is specified then NAME.diaglist is used as root diaglist
instead of the master diaglist.

 -group=NAME -alias=ALIAS
 this combination of options gets the diag run time options
 from the diaglist based on the given group and alias.
 the group must be found in the diaglist. the alias is
 made up of diag_alias:name_tag. only one group should be
 specified when using this command format.

VERILOG COMPILATION RELATED

 -sim_q_command="command"
 defines which job queue manager command to use to launch jobs.
 Defaults to /bin/sh and runs simulation jobs on the local machine.

 -vcs_build/-novcs_build
 builds a vcs model and the vera testbench. defaults to off.

 -vcs_build_args=OPTION
 vcs compile options. multiple options can be specified using
 multiple such arguments.

 -vcs_clean/-novcs_clean
 wipes out the model directory and rebuilds it from scratch.
 defaults to off.

 -vcs_full64
 sets the vcs -full64 compile flag so that the compiler is a
 64 bit executable, and produces a 64 bit executable simv.
 will use the 64 bit version of vera, and link in the 64 bit
 versions of 0in, debussy, and denali tools.

 -vcs_use_2state/-novcs_use_2state
 builds a 2state model instead of the default 4state model.
 this defaults to off.

 -vcs_use_initreg/-novcs_use_initreg
 initialize all registers to a valid state (1/0).
A-2 OpenSPARC T2 Processor Design and Verification User’s Guide • December 2007

 this feature works with -tg_seed to set the seed of the random
 initialization. this defaults to off.

 -vcs_use_fsdb/-novcs_use_fsdb
 use the debussy fsdb pli and include the dump calls in the
 testbench. this defaults to on.

 -vcs_use_vcsd/-novcs_use_vcsd
 use the vcs direct kernel interface to dump out debussy files.
 this defaults to on.

 -vcs_use_vera/-novcs_use_vera
 compile in the vera libraries. if -vcs_use_ntb and -vcs_use_vera are
 used, -vcs_use_ntb wins.
 this defaults to off.

 -vcs_use_ntb/-novcs_use_ntb
 enable the use of NTB when building model (simv) and running simv.
 if -vcs_use_ntb and -vcs_use_vera are used, -vcs_use_ntb wins.
 this defaults to off.

 -vcs_use_rad/-novcs_use_rad
 use the +rad option when building a vcs model (simv).
 defaults to off.

 -vcs_use_sdf/-novcs_use_sdf
 build vcs model (simv) with an sdf file.
 defaults to off.

 -vcs_use_radincr/-novcs_use_radincr
 use incremental +rad when building a vcs model (simv).
 defaults to off.
 this is now permanently disabled as synopsys advises against
 using it.

 -vcs_use_cli/-novcs_use_cli
 use the +cli -line options when building a vcs model (simv).
 defaults to off.

 use this switch, in conjunction with -nosimslog during runtime
 if you need to pass ctrl-c to the vcs/axis model and continue
 with CLI activity.

 Use this with VCS versions before 2006.

 -vcs_use_ucli/-novcs_use_ucli (Unified cli)
 use the -debug_all option when building a vcs model (simv).
 defaults to off.
Appendix A Design and Verification Manual Pages A-3

 use this switch, in conjunction with -nosimslog during runtime
 if you need to pass ctrl-c to the vcs/axis model and continue
 with UCLI activity.

 At runtime, use -vcs_run_arg=-ucli to get the UCLI at time zero,
 or use -vcs_run_arg=-gui to get the UCLI GUI at time zero.
 At runtime, use -vcs_run_arg=-tbug to get NTB debug in the GUI.

 Use this with VCS versions 2006 and up.

 -flist=FLIST
 full path to flist to be appended together to generate the
 final verilog flist. multiple such arguments may be used and
 each flist will be concatenated into the final verilog flist
 used to build the model.

 -graft_flist=GRAFTFILE
 GRAFTFILE is the full path to a file that lists each verilog
 file that will be grafted into the design. the full path to
 the verilog files must also be given in the GRAFTFILE.

 -vfile=FILE
 verilog file to be included into the flist

 -config_rtl=DEFINE
 each such parameter is place as a `define in config.v to
 configure the model being built properly. this allows
 each testbench to select only the rtl code that it needs
 from the top level rtl file (ciop.v in blackwidow).

 -model=NAME
 the name of a model to be built. the full path to a model
 is MODEL_DIR/model/vcs_rel_name.

 -vcs_rel_name=NAME
 specify the release of the model to be built. the full path
 to a model is MODEL_DIR/model/vcs_rel_name.

VERA/NTB COMPILATION RELATED

 VERA and NTB share all of the vera options except a few.
 See NTB RELATED.

 -vera_build/-novera_build
 builds the vera/ntb testbench. default on.

 -vera_clean/-novera_clean
 performs a gmake clean on the vera/ntb testbench before building
 the model. defaults to off.
A-4 OpenSPARC T2 Processor Design and Verification User’s Guide • December 2007

-vera_build_args=OPTION
 vera/NTB testbench compile time options.
 Multiple options can be specified using multiple such
 options. these are passed as arguments to the gmake call
 when building the vera/NTB testbench.
 (Eg: -vera_build_args=VERA_SYS_DEFS="-DSPC_BENCH -DGATESIM")

 For NTB, -vera_build_args=NTB_BUILD_ARGS="+error+10 -ntb_define ABCD"
 can be used to add something directly to the "vcs -ntb_cmp" command.

For the -ntb_lib option, NTB_BUILD_ARGS will affect both the vshell and
 bench+diag builds. See -vera_diag_args to not affect the vshell build.

 -vera_diag_args=OPTION
 vera/ntb diag compile time options.

Multiple options can be specified using multiple such
 options. For Vera, these args are appended to the
 "vera -cmp ..." command for the diag only.
 (Eg: -vera_diag_args="-max_error 10" or

-vera_diag_args=-DNCU_ACK_DLY1=100)

 For NTB, these args are passed as arguments to the gmake
 call as NTB_DIAG_ARGS=" ..." to be part of the NTB
 bench+diag compile. These NTB_DIAG_ARGS are appended to
 the "vcs -ntb_cmp" command when making the libtb.so so
 they better be legal in that context. For NTB, these args
 really affect the entire bench build, not just the diag,
 BUT they they do not affect the vshell build.
 (Eg. -vera_diag_args=+error+10 or

-vera_diag_args="-ntb_define NCU_ACK_DLY1=100")

 -vera_dummy_diag=PATH

 This option is used to give vera/NTB a path to a default
 diag or diag class (or a default program top if using RVM)
 that can be used for building purposes before an actual
 diag is chosen (NTB build of vshell file before regression
 for example).

 Also, some benches may run both asm and vera diags but the
 vera diags are only run sometimes. In this case, you need a
 dummy vera testcase class/program top to fill in when an
 actual vera diag is not being used for that run (aka the
 sometimes diag problem). If your openVera code refers to a
 testcase class, you better have one even if it does nothing
 else you will not be able to build. The dummy lets you
 build. If your diag is implemented as the program top
 (RVM) then the dummy must have #includes for ALL of your
 vera interfaces or your vshell will be broken.
Appendix A Design and Verification Manual Pages A-5

 Whenever the actual vera/NTB diag is specified, the dummy
 is automatically *not* used (at regression time for
 example). The vera_dummy_diag should be specified in the
 bench config file. This option applies to Vera and NTB
 (but NTB only when using the -ntb_lib option).

-vera_pal_diag_args=OPTION
 vera/ntb pal diag expansion options
 (i.e. "pal OPTIONS -o diag.vr diag.vrpal")
 multiple options can be specified using multiple such arguments.

-vera_proj_args=OPTION
 vera proj file generation options. multiple options can be
 specified using multiple such arguments.

 -vera_vcon_file=ARG
 name of the vera vcon file that is used when running the simulation.

 -vera_cov_obj=OBJ
 this argument is passed to the vera Makefile as a OBJ=1 and to
 vera as -DOBJ to enable a given vera coverage object. multiple
 such arguments can be specified for multiple coverage objects.

 -vera_gmake/-novera_gmake
 this argument optionally lets the flow skip running gmake for the
 vera/NTB build, while maintaining other operations within the
 -vera_build flow. default ON (execute gmake)

NTB RELATED

 NTB and VERA share all of the vera options except these:

 -vcs_use_ntb/-novcs_use_ntb
 enable the use of NTB (compiled vera) rather than the
 conventional Vera. if -vcs_use_ntb and -vcs_use_vera are
 used at once, then -vcs_use_ntb wins. defaults to off.

 -ntb_lib/-nontb_lib
 enables the NTB 2 part compile where the openVera files
 get compiled separately into a libtb.so file which is
 dynamically loaded by vcs at runtime. The libtb.so file
 is built by the Vera/NTB Makefile, not sims. Use the
 Makefile to affect the build. If not using -ntb_lib, sims
 will build VCS and the openVera files together in one
 pass (uses Makefile to affect that build as well). default
 is off.

 The ntb_lib method is know as the NTB LIB method. When not
A-6 OpenSPARC T2 Processor Design and Verification User’s Guide • December 2007

 using this ntb_lib method, the ALL IN ONE method is used.

 The NTB LIB method allows the bench to run unique openVera diags
 that are separate from the bench (via a diaglist if desired).

 The NTB ALL IN ONE method does not allow the bench to run
 unique openVera diags that are separate from the bench.
 Use this for benches that do not run openVera diags
 (perhaps the bench only runs asm diags

VERILOG RUNTIME RELATED

 -vera_run/-novera_run
 runs the vcs simulation and loads in the vera proj file
 or the ntb libtb.so file. defaults to on.

 -vcd/-novcd
 signals the bench to dump in VCD format

 -vcdfile=filename
 the name of the vcd dump file. if the file name starts with
 a "/", that is the file dumped to, otherwise, the actual file is
 created under tmp_dir/vcdfile and copied back to the current
 directory when the simulation ends. use "-vcdfile=`pwd`/filename"
 to force the file to be written in the current directory directly
 (not efficient since dumping is done over network instead of to
 a local disk).

 -vcs_run/-novcs_run
 runs the vcs simulation (simv). defaults to off.

 -vcs_run_args=OPTION
 vcs (simv) runtime options. multiple options can be specified
 using multiple such arguments.

 The order of vcs_run_args (plusargs) given to simv is:
 args embedded in diag (using !SIMS+ARGS: ..), if any
 args given in the command line, if any
 args from diaglist : alias definition, if any
 args from diaglist : <runargs>..</runargs>, if any
 args from the config file, if any

 -vcs_finish=TIMESTAMP
 forces vcs to finish and exit at the specified timestamp.

 -fast_boot/-nofast_boot
 speeds up booting when using the ciop model. this passes the
 +fast_boot switch to the simv run and the -sas_run_args=-DFAST_BOOT
 and -midas_args=-DFAST_BOOT to sas and midas. Also sends
Appendix A Design and Verification Manual Pages A-7

 -DFAST_BOOT to the diaglist and config file preprocessors.

 -debussy/-nodebussy
 enable debussy dump. this must be implemented in the testbench
 to work properly. defaults to off.

 -start_dump=START
 start dumping out a waveform after START number of units

 -stop_dump=STOP
 stop dumping out a waveform after STOP number of units

 -fsdb2vcd
runs fsdb2vcd after the simulation has completed to generate a vcd file.

-fsdbfile=filename
the name of the debussy dump file.

If the file name starts with a "/", that is the file dumped to,
otherwise, the actual file is created under tmp_dir/fsdbfile
and copied back to the current directory when the simulation ends.
Use "-fsdbfile=‘pwd‘/filename" to force the file to be
written in the current directory directly (not efficient since
dumping is done over network instead of to a local disk).

 -fsdbDumplimit=SIZE_IN_MB
max size of Debussy dump file. minimum value is 32MB.
 Latest values of signal values making up that size is saved.

 -fsdb_glitch
turn on glitch and sequence dumping in fsdb file. this will collect
glitches and sequence of events within time in the fsdb waveform.
beware that this will cause the fsdb file size to grow significantly.
this is turned off by default. this option effectively does this:
setenv FSDB_ENV_DUMP_SEQ_NUM 1
setenv FSDB_ENV_MAX_GLITCH_NUM 0

 -rerun
 rerun the simulation from an existing regression run directory.

 -overwrite
 overwrite current run dir when doing a -rerun. default is to
 create a rerun_<n> subdir for reruns.

 -post_process_cmd=COMMAND
 post processing command to be run after vcs (simv) run completes

 -pre_process_cmd=COMMAND
 pre processing command to be run before vcs (simv) run starts
A-8 OpenSPARC T2 Processor Design and Verification User’s Guide • December 2007

 -use_denalirc=FILE
 use FILE as the .denalirc in the run area. Default copies
 env_base/.denalirc

SUNV OPTIONS

 -sunv_run/-nosunv_run
 runs the sunv program to convert structural files,
 e.g. <file>.sv to verilog. defaults to off.

 -sunv_args=ARGS
 sunv options. Multiple options can be specified using
 multiple such arguments. In addition, a portion of
 these arguments can be provided in a file using the
 sunv option -optfile=<file>.

 -sunv_use_nonprim/-nosunv_use_nonprim
 use a list to hold primitives that we want to remove from the
 default primitive.list. defaults to off.

 -sunv_nonprim_list=FILE
name of file holding the list of primitives that we want to remove.
this is only used if -sunv_use_nonprim is specified.

VLINT OPTIONS

 -vlint_run/-novlint_run
 runs the vlint program. defaults to off.

 -vlint_args
 vlint options. The <sysName>.config file can contain
 the desired vlint arguments, or they can also be given on
 the command line. Typically the -vlint_compile is given
 on the command line.

 vlint also requires identification of a rules deck.

 -illust_run
 run illust after x2e

 -illust_args
 illust options

-vlint_top
 top level module on which to run vlint

VERIX OPTIONS

 -verix_run/-noverix_run
Appendix A Design and Verification Manual Pages A-9

 runs the verix program. defaults to off.

 -verix_libs
 specify the library files to add to the vlist

 -verix_args
 verix template options. The <sysName>.config file can contain
 these desired verix arguments

 verix also requires <top>.verix.tmplt in the config dir.

 -verix_top
 top level module on which to run verix

THARAS HAMMER RELATED

 -hcs_build
 build a model to be run on the Hammer Hardware Accelerator.

 -hcs_build_args
 build arguments for Hammer Hardware Accelerator

 -hcs_run
 run a model on the Hammer Hardware Accelerator.

 -hcs_run_args
 run arguments for the Hammer Hardware Accelerator.

 -hcs_drm_tokens
 tokens for drmsubmit licenses

AXIS RELATED

 -axis_build
 build a model to be run on the Axis Hardware Accelerator.

 -axis_build_args
 build arguments for Axis Hardware Accelerator

 -axis_run
 run a model on the Axis Hardware Accelerator.

 -axis_run_args
 run arguments for the Axis Hardware Accelerator.

PALLADIUM RELATED

 -palladium_build
A-10 OpenSPARC T2 Processor Design and Verification User’s Guide • December 2007

 build a model to be run on the palladium Hardware Accelerator.

 -palladium_build_args
 build arguments for palladium Hardware Accelerator

 -palladium_run
 run a model on the palladium Hardware Accelerator.

 -palladium_run_args
 run arguments for the palladium Hardware Accelerator.

ZEROIN RELATED

 -zeroIn_checklist
 run 0in checklist

 -zeroIn_build
 build 0In pli for simulation into vcs model

 -zeroInSearch_build
 build 0in search pli for simulation into vcs model

 -zeroIn_build_args
 additional arguments to be passed to the 0in command

 -zeroIn_dbg_args
 additional debug arguments to be passed to the 0in shell

SAS/SIMICS RELATED

 -sas/-nosas
 run architecture-simulator. If vcs_run option is OFF,
 simulation is sas-only. If vcs_run option is ON, sas
 runs in lock-step with rtl. default to off.

 -sas_run_args=DARGS
 Define arguments for sas.

TCL/TAP RELATED

 -tcl_tap/-notcl_tap
 run tcl/expect TAP program. If vcs_run option is OFF,
 simulation is tcl-only. If vcs_run option is ON, tcl
 runs in lock-step with rtl. default to off.
Appendix A Design and Verification Manual Pages A-11

Note – You _must_ compile with -tcl_tap as well, to enable to enable functions that
are needed for running with tcl

 -tcl_tap_diag=diagname
 Define top level tcl/expect diag name.

MIDAS RELATED

midas is the diag assembler

 -midas_args=DARGS
 arguments for midas. midas creates memory image and user-event
 files from the assembly diag.

 -midas_only
 Compile the diag using midas and exit without running it.

 -midas_use_tgseed
 Add -DTG_SEED=tg_seed to midas command line. Use -tg_seed to
 set the value passed to midas or use a random value from /dev/random.

PCI

pci is the tomatillo pci bus functional model

 -pci_args
 arguments to be passed in to pci_cmdgen.pl for generation of a pci
 random diagnostic.

 -pci/-nopci
 generates a random pci diagnostic using the -tg_seed if provided.
 default is off.

 -tomatillo
 generates a random tomatillo diagnostic using the -tg_seed if provided

 -tg_seed
 random generator seed for pci/tomatillo random test generators
 also the value passed to +initreg+ to randomly initialize registers
 when -vcs_use_initreg is used.

SJM RELATED

sjm is the jalapeno jbus bus functional model

 -sjm_args
 arguments to be passed in to sjm_tstgen.pl for generation of an sjm
A-12 OpenSPARC T2 Processor Design and Verification User’s Guide • December 2007

 random diagnostic.

 -sjm/-nosjm
 generates a random sjm diagnostic using the -tg_seed if provided.
 default is off.

 -tomatillo
 generates a random tomatillo diagnostic using the -tg_seed if provided

 -tg_seed
 random generator seed for sjm/tomatillo random test generators
 also the value passed to +initreg+ to randomly initialize registers
 when -vcs_use_initreg is used.

EFCGEN

efcgen.pl is a script to generate efuse.img files (default random),
which is used by the efuse controller after reset.
It is invoked by -efc.

 -efc/-noefc
 generates an efuse image file using the -tg_seed if provided.
 default is off. Random if no -efc_args specified.

 -efc_args
 arguments to be passed in to efcgen.pl for generation of
 an efuse image file.
 Default is random efuse replacement for each block.

 -tg_seed
 random generator seed for efcgen.pl script
 also the value passed to +initreg+ to randomly initialize
 registers when -vcs_use_initreg is used.

VCS COVERMETER

 -vcs_use_cm/-novcs_use_cmd
 passes in the -cm switch to vcs at build time and simv at runtime
 default to off.

 -vcs_cm_args=ARGS
 argument to be given to the -cm switch

 -vcs_cm_cond=ARGS
 argument to be given to the -cm_cond switch.

 -vcs_cm_config=ARGS
 argument to be given to the -cm_hier switch
Appendix A Design and Verification Manual Pages A-13

 -vcs_cm_fsmcfg=ARGS
 argument to be given to the -cm_fsmcfg switch
 specifies an FSM coverage configuration file

 -vcs_cm_name=ARGS
 argument to be given to the -cm_name switch. defaults to cm_data.

DFT

 -dftvert
 modifies the sims flow to accomodate dftvert. this skips compiling
 the vera testbench and modifies the simv command line at runtime.

CDMS

 -cdms_rel_name=CDMSREL
 specify the cdms++ release that must be collected for this
 model.

 -diff_cdms_rel
 performs a diff_release of CDMSREL from -cdms_rel_name and
 records it in a file called diff_rel.log lcoated in the model
 area. This file is copied into each run directory from the
 model area at runtime.

 -diff_cdms_curr
 uses the current (in localdir) release of CDMSREL for the
 diff_release command. Ignored if -cdms_rel_name and -diff_cdms_rel
 are not specified.

MISC

 -regress
 pretend this is a regression and run the job in DRMJOBSCRATCHSPACE
 instead of the launch directory. useful with -indrm and
 -interactive options and single jobs. automatically added for
 regressions.

 -nobuild
 this is a master switch to disable all building options.
 there is no such thing as -build to enable all build options.

 -copyall/-nocopyall
 copy back all files to launch directory after passing regression run.
Normally, only failing runs cause a copy back of files.
Default is off.
A-14 OpenSPARC T2 Processor Design and Verification User’s Guide • December 2007

-copyall/-nocopyall
 copy back all files to launch directory after passing
 regression run. Normally, only failing runs cause a
 copy back of files.
 Default is off.

 -copydump/-nocopydump
 copy back dump file to launch directory after passing
 regression run. Normally, only failing runs cause a copy
 back of non-log files. The file copied back is vcs.fsdb,
 or vcs.vcd if -fsdb2vcd option is set.
 Default is off.

-tarcopy/-notarcopy
 copy back files using 'tar'. This only works in copyall or
 in the case the simulations 'fails' (per sims' determination).
 Default is to use 'cp'.

 -diag_pl_args=ARGS
 If the assembly diag has a Perl portion at the end, it
 is put into diag.pl and is run as a Perl script.
 This allows you to give arguments to that Perl script.
 The arguments accumulate, if the option is used multiple
 times.

 -pal_use_tgseed
 Send '-seed=<tg_seed_value> to pal diags. Adds
 -pal_diag_args=-seed=tg_seed to midas command line, and
 -seed=tg_seed to pal options (vrpal diags). Use -tg_seed to set
 the value passed to midas or use a random value from /dev/random.

 -parallel
 when specifying multiple groups for regressions this switch will
 submit each group to DReAM to be executed as a separate regression.
 this has the effect of speeding up regression submissions.
 NOTE: This switch must not be used with -indrm

 -reg_count=COUNT
 runs the specified group multiple times in regression mode. this
 is useful when we want to run the same diag multiple times using
 a different random generator seed each time or some such.

 -regress_id=ID
 specify the name of the regression

 -report
 This flag is used to produce a report of a an old or running
 regression. With -group options, sims produces the report
 after the regression run. Report for the previous
Appendix A Design and Verification Manual Pages A-15

 regression run can be produced using -regress_id=ID
 option along with this option,

 -finish_mask=MASK
 masks for vcs simulation termination. Simulation terminates
 when it hits 'good_trap' or 'bad_trap'. For multithread
 simulation, simulation terminates when any of the thread
 hits bad_trap, or all the threads specified by the finish_mask
 hits the good_trap.
 example: -finish_mask=0xe
 Simulation will be terminated by good_trap, if thread 1, 2 and
 3 hits the good_trap.

 -stub_mask=MASK
 mask for vcs simulation termination. Simulation ends when the
 stub driving the relevant bit in the mask is asserted. This
 is a hexadecimal value similar to -finish_mask

 -wait_cycle_to_kill=VAL
 passes a +wait_cycle_to_kill to the simv run. a testbench
 may chose to implement this plusarg to delay killing a
 simulation by a number of clock cycles to allow collection
 of some more data before exiting (e.g. waveform).

 -rtl_timeout
 passes a +TIMEOUT to the simv run.
 sets the number of clock cycles after all threads have become
 inactive for the diag to exit with an error. if all threads hit
 good trap on their own the diag exits right away. if any of the
 threads is inactive without hitting good trap/bad trap the
 rtl_timeout will be reached and the diag fails. default is 1000.
 this is only implemented in the cmp based testbenches.

 -max_cycle
 passes a +max_cycle to the simv run.
 sets the maximum number of clock cycle that the diag will take
 to complete. the default is 30000. if max_cycle is hit the diag
 exits with a failure. not all testbenches implement this
 feature.

 -norun_diag_pl
Does not run diag.pl (if it exists) after simv (vcs) run. Use this option

if, for some reason, you want to run anexisting assembly diag without the Perl part
that is in the original diag.

 -nosaslog
 turns off redirection of sas stdout to the sas.log file.
 use this option when doing interactive runs with sas.
A-16 OpenSPARC T2 Processor Design and Verification User’s Guide • December 2007

 -nosimslog
 turns off redirection of stdout and stderr to the sims.log
 file. use this option in conjunction with -vcs_use_cli or
 -vcs_use_ucli to get to the cli prompt when using vcs or to
 see a truncated vcs.log file that exited with an
 error. this must be used if you want control-c to work
 while vcs is running.

 -nogzip
 turns off compression of log files before they are copied over
 during regressions.

 -version
 print version number.

 -help
 prints this

IT SYSTEM RELATED

 -use_iver=FILE
 full path to iver file for frozen tools

 -use_sims_iver/-nouse_sims_iver
 For reruns of regression tests only, use sims.iver to choose
 TRE tool versions saved during original regression run.
 Defaults to true.

 -use_cdms_iver/-nouse_cdms_iver
 Uses the frozen iver file located under DV_ROOT if present.
 This defaults to true. This has no effect if an iver file
 is not found under the cdms tree.

 -dv_root=PATH
 absolute path to design root directory. this overrides DV_ROOT.

 -model_dir=PATH
 absolute path to model root directory. this overrides MODEL_DIR.

 -tmp_dir=PATH
 path where temporary files such as debussy dumps will be created

 -sims_config=FILE
 full path to sims config file

 -sims_env=ENVAR=value
 force sims to set ENVAR variable to specified value.

 -env_base=PATH
Appendix A Design and Verification Manual Pages A-17

 this specifies the root directory for the bench environment.
 it is typically defined in the bench config file. It has no
 default.

 -config_cpp_args=OPTION
 this allows the user to provide CPP arguments (defines/undefines)
 that will be used when the testbench configuration file is
 processed through cpp. Multiple options are concatenated
 together.

 -result_dir=PATH
 this allows the regression run to be launched from a different
 directory than the one sims was launced from. defaults to
 PWD.

 -diaglist=FILE
 full path to diaglist file

 -diaglist_cpp_args=OPTION
 this allows the user to provide CPP arguments (defines/undefines)
 that will be used when the diaglist file is processed through
 cpp. Multiple options are concatenated together.

 -asm_diag_name=NAME
 -tpt_diag_name=NAME
 -tap_diag_name=NAME
 -vera_diag_name=NAME
 -vera_config_name=NAME
 -efuse_image_name=NAME
 -image_diag_name=NAME
 -sjm_diag_name=NAME
 -pci_diag_name=NAME
 name of the diagnostic to be run.

 -asm_diag_root=PATH
 -tpt_diag_root=PATH
 -tap_diag_root=PATH
 -vera_diag_root=PATH
 -vera_config_root=PATH
 -efuse_image_root=PATH
 -image_diag_root=PATH
 -sjm_diag_root=PATH
 -pci_diag_root=PATH
 absolute path to diag root directory. sims will perform a find
 from here to find the specified type of diag. if more than one
 instance of the diag name is found under root sims exits with
 an error. this option can be specified multiple times to allow
 multiple roots to be searched for the diag.
A-18 OpenSPARC T2 Processor Design and Verification User’s Guide • December 2007

 -asm_diag_path=PATH
 -tpt_diag_path=PATH
 -tap_diag_path=PATH
 -vera_diag_path=PATH
 -vera_config_path=PATH
 -efuse_image_path=PATH
 -image_diag_path=PATH
 -sjm_diag_path=PATH
 -pci_diag_path=PATH
 absolute path to diag directory. sims expects the specified
 diag to be in this directory. the last value of this option
 is the one used as the path.

ClearCase

 -clearcase
 assume we are in ClearCase environment for setting DV_ROOT and
 launching DReAM commands. default is off (CDMS++ version control)

 -noclearcase
 force clearcase option off

 -cc_dv_root=PATH
 ClearCase path to design root directory. this overrides CC_DV_ROOT.

ENV VARIABLES

sims sets the following ENV variables that may be used with pre/post
processing scripts, and other internal tools:

TABLE A-1 Enviroment Variables

Environment Variable Description

ASM_DIAG_NAME Contains the assembly diag name.

SIMS_LAUNCH_DIR Path to launch directory where sims is running the job.
Useful when job is run in dream scratch space.

VERA_LIBDIR Dir where Vera/NTB files are compiled or results are
stored.

DV_ROOT -dv_root if specifed

MODEL_DIR -model_dir if specified

TRE_SEARCH Based on -use_iver, -use_cdms_iver -use_sims_iver
Appendix A Design and Verification Manual Pages A-19

PLUSARGS

+args are not implemented in sims. they are passed directly to vcs at
compile time and simv at runtime. the plusargs listed here are for
reference purposes only.

 +STACK_DIMM 32 bits physical address space - default is 31 bits

 +STACK_DIMM +RANK_DIMM 33 bits physical address space - default is 31 bits

 +max_cycle see -max_cycle

 +TIMEOUT see -rtl_timeout

 +vcs+finish see -vcs_finish

 +wait_cycle_to_kill see -wait_cycle_to_kill

DESCRIPTION

sims is the frontend for vcs to run single simulations and regressions

How To Build models

Build a model using DV_ROOT as design root

 sims -sys=cmp -vcs_build

Build the vera testbench only using DV_ROOT as design root

 sims -sys=cmp -vera_build

Build a model from any design root

 sims -sys=cmp -vcs_build -dv_root=/home/regress/2002_06_03

Build a graft model from any design root

 sims -sys=cmp -vcs_build -dv_root=/model/2002_06_03
 -graft_flist=/regress/graftfile

DENALI Based on configsrch

VCS_HOME Based on configsrch

VERA_HOME Based on configsrch

TABLE A-1 Enviroment Variables

Environment Variable Description
A-20 OpenSPARC T2 Processor Design and Verification User’s Guide • December 2007

Build a model and re-build the vera

 sims -sys=cmp -vcs_build -vera_clean

Build a model and turn off incremental compile

 sims -sys=cmp -vcs_build -vcs_clean

Build a model with a given name

 sims -sys=cmp -vcs_build -vcs_rel_name=mymodel

How To Run Models

Run a diag with default model

 sims -sys=cmp -vcs_run diag.s

Run a diag with a specified model

 sims -sys=cmp -vcs_rel_name=mymodel -vcs_run diag.s

Run a diag with debussy dump with default model

 sims -sys=cmp -debussy -vcs_run diag.s <dump scope args>

Run a diag using arguments form specified alias in a diaglist

 sims -vcs_run -sys=spc2 -group isa_mt -alias=isa_mmu_21:isa_mt isa_mmu_21.s

Run regressions

Run a regression using DV_ROOT as design root

 sims -group=mini

Run a regression using DV_ROOT as design root and specify the diaglist

 sims -group=mini -diaglist=/home/user/my_dialist

Run a regression using any design root

 sims -group=mini -dv_root=/afara/design/regress/model/2002_06_03

Run a regression using any design root and a graft model

 sims -group=mini -dv_root=/regress/model/2002_06_03
 -graft_flist=/home/regress/graftfile
Appendix A Design and Verification Manual Pages A-21

Rerun a diag in a regression (in new rerun_x subdir)

 sims -rerun

Rerun a diag, overwriting same directory

 sims -rerun -overwrite

A.2 midas help
NAME
 midas - assembles diags (Midas Is a Diag ASsembler)

SYNOPSIS
 midas [options] <diag_name>

DESCRIPTION
 This program builds assembly diags. It is substantially
 more involved than simply assembling the diag because it
 also has to link the diag, program the MMU, and generate
 several output files.

 The diag specified on the command line will be built.
 Pretty much everything else is configurable.

Options

 The following are the options you need to get started:

 -h Display man page.

 -verbose [level] / -noverbose (abbreviated -v / -nov)
 Sets verbosity level (default=2). -noverbose (or -nov)
 is a synonym for -verbose 0, which means to generate no
 output in the absence of errors. The highest level of
 verbosity currently defined is 3.

 -version
 Return version information and exit.

 -format
 Display help on the diag format and exit.
A-22 OpenSPARC T2 Processor Design and Verification User’s Guide • December 2007

 -config <file>
 Use this file as the config file instead of the one that
 is distributed with Midas.

 -project <project>
 Use this project for project-specific configuration.
 Default is the environment variable $PROJECT. Legal
 values are BW and N2.

 Common Options

 The following are the commonly-used options:

 -diag_root <path>
 Use the specified path as a base for finding standard
 include files. Default is $DV_ROOT.

 -build_dir <path>
 Path (absolute or relative to where command is invoked)
 to directory where temporary files are generated and the
 build is done. Default is ’./build’.

 -dest_dir <path>
 Path (absolute or relative to where command is invoked)
 of where to store output files. Default is ’.’.

 -find_root <dir>
 Interpret the diag on the command-line as the name of a
 diag to search for. It does a breadth-first search
 under the specified directory. The default behavior is
 not to do any search, but to assume that the specified
 diag is a full or relative path to the file.

 -find
 This is a shortcut for "-find_root
 <diag_root>/verif/diag".

 -mmu <mmu_type>
 Generate programming for the specified MMU. Recognized
 options are "ultra2", "niagara", and "niagara2". Default
 is project-specific: "niagara" for Niagara-1 and
 "niagara2" for Niagara-2.

 -ttefmt <tte_format>
 Specifies TTE format for those MMUs that require it.
 May be "sun4u" or "sun4v". Default is project-specific:
 "sun4v" for Niagara-1 and Niagara-2.
Appendix A Design and Verification Manual Pages A-23

 -tsbtagfmt <tsbtagfmt>
 Specifies the format of the TSB tag. Legal values are
 ’tagaccess’ and ’tagtarget’. Default is
 project-specific: ’tagaccess’ for Niagara-1 and
 ’tagtarget’ for Niagara-2.

 -force_build or -f
 Build the diag, even if it looks like we have the same
 input as before and the same args as before.

 -copy_products / -nocopy_products
 By default, the product files generated in the build
 directory are hard-linked to the destination directory.
 The reason they are hard-linked and not copied is for
 speed. If the hard link fails, it will fall back to a
 copy in case the directories are on different physical
 disks. If -copy_products is given, however, it will
 always do a copy, not a hard link. Default is
 project-specific: -nocopy_products for Niagara-1.

 -E Stop after the preprocessing stage.

 -addphdr / -noaddphdr
 If -addphdr is enabled and the project env variable is
 N2, Midas will add PHDR commands into the diag.ld_scr (
 linker script file). This option is currently by
 default disabled. N2 needs this option to optimize the
 size of the diag.exe file.

 -cleanup / -nocleanup
 If -cleanup is enabled, then after a successful build,
 the build directory is erased if and only if the build
 directory was created by this invocation of midas.
 Default is project-specific: -cleanup for Niagara-1.

 -force_cleanup / -noforce_cleanup
 If -cleanup is enabled, but this invocation of midas did
 not create the build directory, -force_cleanup will
 remove the build directory anyway. Default is
 project-specific: -noforce_cleanup for Niagara-1.

 -D<symbol> or -D<symbol>=<value>
 Add a define to the preprocessing line. Option may be
 repeated.

 -stddef / -nostddef
 Include standard preprocessor definitions on
 command-line. -nostddef disables these. Default is
 -stddef, but no standard symbols are currently defined.
A-24 OpenSPARC T2 Processor Design and Verification User’s Guide • December 2007

 -I<dir>
 Add a directory to the include path used by cpp and m4.
 Path should be absolute or relative to the directory
 where midas was invoked. Option may be repeated.

 -stdinc / -nostdinc
 With -stdinc, the standard include paths are used during
 preprocessing (both cpp and m4). -nostdinc disables
 these. Default is -stdinc. The standard include
 directories are the directory where midas was invoked,
 the build directory and
 <diag_root>/verif/diag/assembly/include (keep in mind
 that <diag_root> defaults to $DV_ROOT).

 -include_build / -noinclude_build
 This option is only meaningful with -nostdinc. If
 standard includes are switched off, -include_build will
 add the build directory back to the include path.
 Default is -noinclude_build.

 -include_start / -noinclude_start
 This option is only meaningful with -nostdinc. If
 standard includes are switched off, -include_start will
 add the start directory (the directory where midas was
 invoked) back to the include path. Default is
 -noinclude_start.

 -L<dir>
 Add a directory to the search path when looking for
 object files in a MIDAS_OBJ directive. Option may be
 repeated.

 -C<dir>
 Add a directory to the search path when looking for C
 source files in a MIDAS_CC directive. Option may be
 repeated.

 -pal_diag_args <args>
 If the diag is run through pal, give these arguments to
 the pal diag. Option may be repeated. Note that these
 arguements are given to the diag, not pal itself. For
 instance, "midas -pal_args -abc mydiag.pal
 -pal_diag_args def -pal_diag_args ghi" will run the pal
 command-line "pal -abc mydiag.pal def ghi".

 -build_threads <num_threads>
 When doing work that can be done in parallel (such as
 assembling a bunch of files), use <num_threads> to do
Appendix A Design and Verification Manual Pages A-25

 it. Default is project-specific: 3 for Niagara-1.

 -print_errors / -noprint_errors
 If -noprint_errors is defined, then generation of error
 messages is turned off. When used with -verbose 0,
 midas is completly silent. This is probalby only useful
 for the test harness (which is why the switch is there).

 -copy_products / -nocopy_products
 If this is set, then copy files from the build directory
 to the starting directory. With -nocopy_products, the
 files are hard linked instead. If it tries to create a
 hard link and fails, it will fall back to a copy.
 Default is -nocopy_products.

 -compress_image / -nocompress_image
 If -compress_image is enabled (as it is by default),
 then allow compressed mem.images to be generated. By
 default, all MMU-generated blocks are compressed when
 written to mem.image, meaning that instead of
 initializing unused sections to zero, they are simply
 uninitialized. The -nocompress_image is equivalent to
 explicitly putting a ’compressimage=0’ in all
 attr_text/attr_data blocks.

 -env_zero / -noenv_zero
 When compressing blocks, if -env_zero is enabled the
 blocks will contain ’// zero_image’ directives to the
 environment. These directives are supported only by
 Niagara, and they are used to backdoor initialize large
 tracts of memory to zero. If -noenv_zero is used, then
 compression will simply leave the data uninitialized.

 -default_radix <decimal|hex>
 Radix to assume for all parameters that do not
 explicitly start with ’0x’. Default is ’decimal’.

 -gen_all_tsbs / -nogen_all_tsbs
 If -gen_all_tsbs is given, then all TSBs that are
 defined are written to the memory image. If
 -nogen_all_tsbs, then generate only the TSBs that are
 used. Default is project-specific: -nogen_all_tsbs for
 Niagara-1.

 -allow_tsb_conflicts / -noallow_tsb_conflicts
 If -allow_tsb_conflicts is enabled, then it is legal to
 have mutiple virtual address map to the same entry in a
 TSB. A linked-list will be created to hold all entries.
 With -noallow_tsb_conflicts (which is the default for
A-26 OpenSPARC T2 Processor Design and Verification User’s Guide • December 2007

 N1), collisions in the TSB can only happen with the save
 VA but different contexts. Default is project-specific.

 -allow_empty_sections / -noallow_empty_sections
 If TEXT_VA is specified, then at least one attr_text
 block for the section has to be specified, and the same
 is true for DATA_VA and attr_data blocks. If
 -allow_empty_sections is specified, then midas will
 allow you to specify a TEXT_VA(DATA_VA) for the section,
 even if the section has no attr_text(attr_data) blocks.
 Of course, any text(data) in such a section will be
 ignored. Default is project-specific:
 -noallow_empty_sections for Niagara-1.

 -allow_duplicate_tags / -noallow_duplicate_tags
 When adding to a TSB link list, it is an error to add
 the same tag twice. -allow_duplicate_tags suspends the
 error check. Default is project-specific:
 -noallow_duplicate_tags for Niagara-1.

 -allow_illegal_page_sizes / -noallow_illegal_page_sizes
 If -allow_illegal_page_sizes, then tte_size attributes
 are not checked for valid values, though they are still
 checked against the width of the field. For instance,
 in the Niagara MMU, there are 3 page bits, so values can
 be specified 0-7. However, the only legal values for
 Niagara are 0, 1, 3, and 5, and unless
 -allow_illegal_page_sizes is in effect, setting page
 bits of 2, 4, 6, or 7 will cause an error. The default
 is project-specific: -noallow_illegal_page_sizes for
 Niagara-1.

 -allow_misalgined_tsb_base / -noallow_misaligned_tsb_base
 If -allow_misaligned_tsb_base is set, then a TSB base
 address need not be aligned with the TSB size. Real
 software will never do this, but I want it to be
 possible in diags. If an unalgined address is specified
 as the base and -allow_misaligned_tsb_base is specified,
 then midas will forcibly align the address. Default
 should be -noallow_misaligned_tsb_base for all projects.

 -errcode <error_code>
 Prints a one-line description for the midas error code.
 Then exits with status 0.

 Configuring Commands

 midas runs several commands in the course of its operation.
Appendix A Design and Verification Manual Pages A-27

 Several of these can be configured. The configurable
 commands are: pal, cpp, m4, gcc, as, and ld. Each
 configurable command has 3 associated options:

 -std_<command>_args / -nostd_<command>_args
 When -std_<command>_args is enabled, the standard set of
 arguments for <command> are used. Default is
 -std_<command>_args

 -<command>_args <args>
 Add <args> to the argument list for the specified
 <command>.

 -<command>_cmd <custom_command>
 Use <custom_command> to run the specifed <command>
 instead of the standard version.

Example

 For instance, to add -foo to the link line, use my_cpp to
 preprocess, and not use any standard assembler options, use:

 midas -ld_args -foo -cpp_cmd my_cpp -nostd_as_args mydiag.s

 Configuring Filenames

 There are several generated files, and they all have default
 names. You can configure the names of many of the files
 with the following option.

 -file <tag>=<name>
 Cause midas to name the file whose tag is <tag> to be
 named <name> instead of the default. <name> is treated
 as the name of a file in the build directory.

 The list of valid tags for the -file option are:

 src Local version of the original source code for the diag.
 Default is ’diag.src’.

 s Assembly portion of diag before any preprocessing.
 Default is ’diag.s’.

 pl Perl portion of the diag. Deafult is ’diag.pl’.

 cpp Output of the C preprocessor. Deafult is ’diag.cpp’.

 m4 Output of the m4 preprocessor. Default is ’diag.m4’.
A-28 OpenSPARC T2 Processor Design and Verification User’s Guide • December 2007

 ldscr
 Linker script. Default is ’diag.ls_scr’.

 exe Linked executable. Default is ’diag*.exe’ where * is
 application name.

 image
 Verilog memory image. Default is ’mem.image’.

 events
 Events file. Default is ’diag.ev’.

 symtab
 Symbol table. Default is ’symbol.tbl’.

 goldfinger
 Specification to goldfinger on how to create memory
 image. Default is ’diag.goldfinger’.

 directives
 File to contain midas directives after section
 splitting. Default is ’diag.midas’.

 cmdfile
 File to stash the midas command-line. Default is
 ’.midas_args’.

 oldcmdfile
 File to move old command-line options. Default is
 ’.midas_args.old’.

 oldm4
 File to stash m4 output of previous run. Default is
 ’.midas.diag.m4.old’.

 Running Specific Phases

 The build process is broken into phases: setup, preprocess,
 sectioning, assemble, link, postprocess, copydest, cleanup.
 The default behavior is to run all phases. You can,
 however, restrict operation to a selected set of phases.

 -start_phase <phase_name>
 Start with the named phase and run all subsequent phase.

 -phase <phase_name>
 Run the specified phase. If any -phase or -start_phase
 option exists, then by default all phases are off
Appendix A Design and Verification Manual Pages A-29

 (except for the ones that -phase and -start_phase switch
 on). You can have multiple -phase options.

 -E This option (mentioned above, which runs the
 preprocessor only) is just a shortcut for "-phase setup
 -phase preprocess").

 Keep in mind that running selected phases is caveat emptor.
 There are cases where phases expect data or files from
 previous phases. You may get lucky, but don’t blame me if
 it doesn’t work.

Errors

 When midas is unable to run correctly it will exit with one
 of the folllowing error codes.

 M_NOERROR (#0): No error.
 M_MISC (#1): Miscellaneous error
 M_CODE (#2): Error in midas code.
 M_DIR (#3): Directory error.
 M_FILE (#4): File error.
 M_CMDFAIL (#5): Command failed.
 M_SECSYNTAX (#6): Error in section syntax.
 M_ATTRSYNTAX (#7): Error in attr syntax.
 M_MISSINGPARAM (#8): Missing parameter.
 M_ILLEGALPARAM (#9): Illegal parameter.
 M_OUTOFRANGE (#10): Out of range.
 M_NOTNUM (#11): Not a number.
 M_VACOLLIDE (#12): VA collision.
 M_PACOLLIDE (#13): PA collision.
 M_DIRECTIVESYNTAX (#14): Directive syntax error.
 M_GENFAIL (#15): File generation failed.
 M_ASMFAIL (#16): Assembler failed.
 M_CCFAIL (#17): C compiler failed.
 M_LINKFAIL (#18): Linker failed.
 M_CPPFAIL (#19): CPP failed.
 M_M4FAIL (#20): M4 preprocessor failed.
 M_BADCONFIG (#21): Bad configuration.
 M_EVENTERR (#22): Event parsing error.
 M_ARGERR (#23): Argument error.
 M_NOSEC (#24): Undefined section.
 M_BADTSB (#25): Bad TSB.
 M_BADALIGN (#26): Bad Alignment.
 M_EMPTYSECTION (#27): Empty section.
 M_TSBSYNTAX (#28): Error in tsb syntax.
 M_APPSYNTAX (#29): Error in app syntax.’
 M_MEMORY (#30): Memory error.
 M_GOLDFINGERPARSE (#31): Goldfinger parse error.
A-30 OpenSPARC T2 Processor Design and Verification User’s Guide • December 2007

 M_GOLDFINGERARG (#32): Goldfinger arg error.
 M_ELF (#33): ELF error.
 M_BADLABEL (#34): Bad label.
 M_GOLDFINGERMISC (#35): Uncategorized goldfinger error.
 M_GOLDFINGERVERSION (#36): Bad version of goldfinger
 M_DUPLICATETAG (#37): Duplicate tags in TSB
 M_BLOCKSYNTAX (#38): Error defining goldfinger BLOCK

A.3 regreport
DESCRIPTION

regreport examines all regression *.log files for diags under regression directory
and prints report. It is called by sims for each diag. User typically calls
regreport to generate summary of regression.

Usage: regreport <options> [<directory> [<list>]]

OPTIONS
 -1 [<regress_dir>]:
 print report for the specified or current-directory diag; [regress dir].

 -regress <output_file> <directory>:
 in regression mode, regreport writes summary status for finished
 diags to a file until all diags are finished. NOTE: if
 some diag does not produce status, regreport,1.64.2 will wait forever.

 -ver
 print version number and exit.

 -sas_only
 vcs.log will not bw scanned, sas.log only.

 -[no]cut_name
 cuts the name from a sss:sss:sss:ddd formatted name. Default is to cut.

 -regenerate
 will regenerate the status.log files in the diag directories.

 -clean_pass
 will clean up passing directories.

 -fails_only
 will show details for fails only
Appendix A Design and Verification Manual Pages A-31

 <directory> [<list>]
 print report for all diags under <directory>. <list> is
 0 or more of simulation ’system’ names, such as
 ’spc2’, ’cmp’, ’cmp1’, ’cmp8’, etc. When nothing
 specified, all systems are included.

ENVIRONMENT VARIABLES:

 CLEAN_PASS : Clean passing dirs
 REGRESS_MAIL : Set to comma seperated list. Default is to send user
 email when run in regress mode. When set to "no"
 sends no email at all.
 REGREPORT_FAILS_ONLY : Show details for fails only.
A-32 OpenSPARC T2 Processor Design and Verification User’s Guide • December 2007

	OpenSPARC™ T2 Processor Design and Verification User’s Guide
	Contents
	Figures
	Tables
	Preface
	Quick Start
	1.1 System Requirements
	1.2 Running Simulations and Synthesis
	Get the Simulation Files
	Set Up Environment Variables
	Run Your First Regression
	To Run a Regression
	Run Your First Synthesis

	OpenSPARC T2 Design Implementation
	2.1 OpenSPARC T2 Design
	2.2 OpenSPARC T2 Components
	2.2.1 SPARC Physical Core
	2.2.2 SPARC System-On Chip (SoC)

	2.3 Module Directory Structure
	2.4 Megacells

	OpenSPARC T2 Verification Environment
	3.1 OpenSPARC T2 Verification Environment
	3.2 Running a Regression
	To Run a Regression
	3.2.1 What the sims Command Does

	3.3 PLI Code Used For the Test Bench
	3.4 Verification Test File Locations

	OpenSPARC T2 Synthesis
	4.1 Synthesis Flow for the OpenSPARC T2 Processor
	4.2 Synthesis Output

	Design and Verification Manual Pages
	A.1 sims
	A.2 midas help
	A.3 regreport

