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ABSTRACT 

As cellular phones and other portable electronics become more complex, more power is 
consumed by both active and standby systems. Consequently, power management 
design for portable devices offers new challenges in core voltage, energy management, 
and battery lifetime. 

Hardware designers already have started to use advanced and highly integrated power 
management devices featuring core voltage scaling and various voltage regulators to 
supply other rails (e.g., memory, I/Os, etc.). Nevertheless, these complex solutions do not 
necessarily offer enough flexibility to systems designers. 

This application report describes an innovative way to tackle the dynamic voltage 
management problem based on the TPS62300, TI’s first generation of high-frequency 
step-down converters. 
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1 System Overview 
Most modern processors targeting portable applications have an integrated I2C serial interface to 
control their external power management unit. Figure 1 shows an alternative solution to 
generate an adaptive core power supply. The power consumed by processor cores is 
proportional to the operating frequency and to VCORE

2. 

This two-chip solution based on the TPS62300 (3-MHz synchronous step-down converter) and 
the DAC6571 (10-bit digital-to-analog converter) combines high accuracy and ultra-small voltage 
stepping size.  

Depending on the operating frequency of the processor, the core voltage can be dynamically 
and accurately adapted to its lower limit in order to minimize power consumption. This principle 
can be used not only to reduce power consumption in active mode, but also to extend standby 
time through a reduction of leakage current effects in deep-sleep mode. 
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Figure 1. System Overview Adaptive Voltage Scaling 

2 Step-Down Converter for Core Power Supply  
The TPS62300 is the first product of a new generation of high-frequency step-down converters 
operating at 3-MHz switching frequency. The best-in-class transient response and output 
voltage accuracy meet the tightest voltage specifications required by modern cores. 

The TPS62300 converter can operate with inductors down to 1 µH and output capacitors as low 
as 4.7 µF allowing the use of tiny and low-cost chip inductors. Along with its chip scale 
packaging (2 mm x 1 mm x 0,65 mm), the device fulfills mobile phone manufacturer needs when 
small and low-profile solution size becomes a key factor.  

3 Dynamic Voltage Scaling 
Figure 2 shows a simplified block diagram of TPS62300 converter that illustrates the gain 
architecture and control-loop design of the device. One noticeable departure from conventional 
regulators is the means by which the output voltage is set.  
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Conventionally, a reference voltage is applied to the positive terminal of an error amplifier, and 
the desired output voltage is programmed by sensing the output voltage and dividing it down to 
the reference voltage by means of external resistors. 

The TPS62300 generates its output by amplifying the reference voltage (VREF = 400 mV) up to 
2/3 of the required output voltage by means of an internal low-power, low-offset operational 
amplifier and external resistor programming. This voltage becomes the reference for the power 
train that has a DC closed-loop gain (APT) of 1.5. 

A fixed closed-loop gain in the power amplifier not only gives a constant small-signal transient 
response, irrespective of the programmed output voltage, but also leads to tight regulation 
tolerances and robustness in respect to L/C combinations. 

Figure

VOUT= APT x  VREF x [1 + R1/R2]

VADJ = VREF x [1 + R1/R2]

MOS1
Band-Gap VREF

R2
R1

FB

+

-
Power Train

APT (DC) = 1.5

ADJ

L1

VOUT

INPUT
VOLTAGE

OUTPUT
VOLTAGE

C
4.7 µF

 

Figure 2. TPS62300 Simplified Block Diagram 

Figure 3 details the implementation of the operational amplifier used to amplify the band-gap 
reference voltage. This low-offset operational amplifier can be seen as an ideal amplifier with a 
class-A output stage that has the characteristic to be able to source but not to sink current.  

To act as a linear system with negative feedback, the band-gap buffer amplifier would need to 
be operated with a DAC voltage below VREF (400 mV). Only in this case, current flows out of the 
ADJ pin towards GND via the R1 and R2 resistors. 

Assuming that the DAC voltage is higher than VREF, VREF implies that a current is circulating the 
opposite way through R1 and R2 into the ADJ pin. Because the operational amplifier output stage 
(MOS1) can only source current, it cannot operate in linear mode any longer. In this case, the 
MOS1 transistor used in a voltage follower configuration has high impedance. Actually, to 
override the ADJ voltage, it is simply necessary to keep the FB potential above the internal 
reference voltage (VREF). 
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Figure 3. TPS62300 Reference Voltage Amplifier 

When the ADJ voltage is overridden by the DAC, the external default voltage-setting resistors R1 
and R2 need to be considered with respect to the resistance into the ADJ pin (1 MΩ ±30%). 

In fact, R1 and R2 in series are forming a voltage divider with the resistance into the ADJ pin. To 
achieve 1% DC accuracy over temperature, line, and load variations, it is recommended to 
select R1 + R2 in the 20-kΩ range. 

Table 1 summarizes the operation of the power converter. 

Table 1. Power Converter Operation Summary 
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Note 1. Internal reference voltage VREF typical = 400 mV 
Note 2. DC power train amplification APT typical = 1.5 
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Figure 4 shows TPS62300 output voltage response vs. DAC voltage. For best performance in 
dynamic voltage management applications, operating with a DAC voltage above 450 mV is 
recommended. 

 

Figure 4. Output Voltage vs. DAC Control Voltage 

4 I2C Controlled Adaptive Voltage Scaling: How it Works 
Figure 5 shows circuit implementation based on TPS62300 and DAC6571. The TPS62300 can 
provide up to 500-mA output current and output voltage as low as 0.6 V. 

The 10-bit D/A converter DAC6571 comes in a small 6-pin SOT23 package. This device is part 
of TI’s single-channel D/A converter family DAC7571/6571/5571 providing a 12/10/8-bit 
resolution. These products integrate an I2C interface supporting standard/fast mode (up to 400 
kbps) and high-speed mode (up to 3.4 Mbps). At power up, the integrated power-on-reset 
circuitry sets the output voltage to 0 V. 

0 
0.20 
0.40 
0.60 
0.80 
1.00 
1.20 
1.40 
1.60 
1.80 
2.00 
2.20 
2.40 
2.60 
2.80 
3.00 

0 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 

DAC Control Range for DVS Operation
VOUT  = 1.47 x V DAC

V IN = 3.6 V,
R 1 = 9.5 kΩ ,
R 2 = 8.2 kΩ

- O
ut

pu
t V

ol
ta

ge
 - 

V 
V O

 

VADJ - DAC Voltage - V



SLVA196 

6 Small, Dynamic Voltage Management Solution Based on  
TPS62300 High-Frequency Buck Converter and DAC6571 

 

Figure 5. Application Circuit for Dynamic Management 
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Figure 6. Application PCB 

In this application, the TPS62300 is directly powered from a single-cell, Li-ion battery. The 
DAC6571 is supplied by a regulated voltage, in this case, 2.85 V. This supply voltage can be 
derived from another system rail. The architecture of the D/A converter is based on an R/2R 
resistor string, specified monotonic by design.  

For the core supply voltage, two different operating modes need to be considered: 

• Default output voltage: 

This voltage is valid after power-on-reset of the DAC at start-up. As long as the DAC has 
not been programmed via I2C interface, its output voltage stays at 0 V. During this phase, 
the core voltage is defined by the resistors R1 and R2, according to the formula listed in 
Table 1 (see default output voltage). 

• DAC-controlled output voltage: 
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In this mode, the D/A converter output voltage should be programmed higher than 0.45 V to 
take advantage of the “override” function. In this mode, the core supply voltage can be 
calculated according to the formula listed in Table 1 (MOS1 high impedance). 

The output voltage of the DAC6571 can be determined by Equation 1:  
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

×=

1024
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Where: 

D = Decimal equivalent of the binary code loaded into the DAC register; it can range 
from 0 to 1023. 

And: 

  VDD = DAC supply voltage 

The core voltage VOUT in DAC-controlled mode can therefore be calculated by Equation 2. 
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With DC power train amplification APT typical = 1.5 

Figure 7 illustrates VDAC (DAC output voltage) and VOUT (core voltage) depending on the DAC 
programming value. 
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Figure 7. VDAC and VOUT vs. DAC Value 
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In this application, a default core voltage of 1.3 V has been selected. Therefore, the necessary 
resistor values for R1 and R2 need to be: 

R1: 9.5 kΩ 
R2: 8.2 kΩ 

The default core voltage adjustment during power up is shown in Figure 8. The TPS62300 
powers a resistive load of 3.9 Ω which results in a load current of 330 mA at 1.3-V default output 
voltage. In Figure 8, the enable pin (EN) of the DC/DC converter is driven high together with VIN. 
The core voltage ramps up with a minimum delay. Modern processors, however, are able to 
generate control signals to start up external core supply circuits by themselves. In this case, the 
processor controls the enable pin of TPS62300. 

After the core voltage has ramped up to its default value and the processor is operating, the core 
voltage can be dynamically adjusted. In order to reduce power consumption and to extend 
battery lifetime, the processor clock and core voltage can be adapted to the optimum. 

Figure 9 and Figure 10 show scope snapshots of VOUT during a step-up/down voltage scaling. 
This application executes the transition between a floor level of 1 V and a roof level of 1.5 V in 
less than 20 µs. Furthermore, the advanced regulation of the TPS62300 provides best-in-class 
line transient response, which results in minimized voltage over/undershoots during core voltage 
adaptation. 
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EN DC/DC
VOUT = VCORE (1.3V)

COIL CURRENT

\ 

Figure 8. Default Core Voltage VOUT Set to 1.3 V at Power Up 
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Figure 9. Core Voltage Step From 1.1 V to 1.5 V Figure 10. Core Voltage Step From 1.5 V to 1.1 V 

5 Conclusion 
This solution for dynamic voltage management supports fast and accurate voltage scaling as 
required by today’s and next-generation processor cores. It is controlled via the I2C serial 
interface, which is a common interface for this purpose. The small packages of the TPS62300 
and DAC6571 and the few external components allow a small solution size. The best-in-class 
load and line transient performance of TPS62300 makes this device ideally suited for core 
supplies of modern and next-generation processors. 
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