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OMAP5910 Low-Power System Design
Thanh Tran, Ph.D. and Mike Blaskovich DSP/EEE Catalog, OMAP Applications

ABSTRACT

The OMAP5910 is a true system-on-a-chip device, which consists of ARM925T MPU and
C55X DSP cores. The device has many advanced power management modes that enable
system designers to develop a very low-power, multimedia communication device. This
application note shows low-power design techniques and outlines the steps required to put
the OMAP device in the lowest power consumption mode and to wake it up. Also, system
hardware design, a low-power code example, and experimental results are being
demonstrated.

This application report contains project code that can be downloaded from this link.
http://www−s.ti.com/sc/psheets/spra954A/spra954A.zip.
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1 Introduction

This document is intended to demonstrate a low-power system design utilizing the OMAP5910
dual-core processor and the TPS65010 power and battery management device. This document
is divided into four different parts, where the first part covers the OMAP5910 power
management capabilities, the second part provides an overview of the TPS65010 device and
how it is being interfaced with the OMAP, the third part shows the hardware system design
which includes schematics, and finally, the last part gives a code example to put the OMAP5910
in the lowest power consumption mode and to wake it up. The last part also includes power
measurements for different operating conditions within the OMAP itself, e.g., running an
algorithm on the DSP while doing nothing on the ARM, shutting down the traffic controller, and
so on.

2 Design Description

The OMAP5910 has multiple low-power modes (awake, big sleep and deep sleep); transitions
between these different modes are being handled by the ultra low-power module (ULPD),
internal to the OMAP5910. As shown in Figure 1, the OMAP5910 device architecture consists of
the C55x DSP, ARM925, System DMA, traffic controller, integrated SRAM, and many
peripherals; refer to OMAP5910 Dual-Core Processor Data Manual (literature number
SPRS197) and OMAP5910 Dual-Core Processor Technical Reference Manual (literature
number SPRU602) for more detailed description of these modules. For power management, the
ULPD is the most critical module. It performs the most important task, that is, controlling the
entire device by setting all the power states and clock domains associated with each individual
module.
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Figure 1. OMAP5910 Device Architecture

Figure 2 demonstrates the communication between the OMAP5910 and the power management
device to transition to different power states (Deep Sleep, Big Sleep, or Awake).

As shown in Figure 2, the ULPD drives the LOW_PWR signal to indicate that it is going into
deep sleep. The TPS65010 power device responds by lowering the core voltage to reduce the
power consumption. ULPD de-asserts the LOW_PWR to go back to the awake state.
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Figure 2. UPLD Characteristics

2.1 Low-Power System Architecture

Figure 3 shows the architecture of the design and how the interface between the power
management device TPS65010 and the OMAP5910 is implemented. The low-power system
consists of two main parts: the OMAP5910 processor and the TPS65010 power and battery
management IC. Other components such as system memory, USB, keyboard, mouse, Ethernet
and other peripherals are not included in this application note.

The TPS65010 provides two highly efficient step-down converters targeted at providing the core
voltage (VCC_CORE) and I/O rails (VCC_IO), and two integrated LDOs allowing designers to
create low noise voltage outputs to drive noise-sensitive circuits. One important feature is that
the OMAP can drive the LOW_PWR control pin to lower the core voltage while it is transitioning
to deep sleep mode.
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Figure 3. OMAP Low-Power System Architecture

2.2 OMAP5910 Power Management

As mentioned in the Introduction, the ULPD block of the OMAP design is responsible for the
power management, which includes performing the power on reset, managing system reset,
calibrating the 32-kHz oscillator, managing the low-power mode transitions, performing the
wake-up of the external oscillator, performing the 12-MHz/32-kHz switch, and other control
functions. Refer to OMAP5910 Dual-Core Processor Data Manual (literature number SPRS197)
and OMAP5910 Dual-Core Processor Technical Reference Manual (literature number
SPRU602) for detailed discussion of the configurations.

2.2.1 Power On Reset and Reset Management

The PWRON_RESET# signal is an active-low asynchronous reset input responsible for the
reset of the entire OMAP5910 device. When using an external crystal oscillator for the 32 kHz
clock, the PWRON_RESET# must be asserted low a minimum of two 32-kHz clock cycles
longer than the worst-case start-up time of the oscillator. Internally, the ULPD synchronizes the
RESPWRON input signal and generates two internal functional resets called nreset and
omapnrst. At power on reset, both nreset and omapnrst are low. AWAKE state is achieved after
1024 32-kHz clock cycles. nreset is released first after 20 more clock cycles of the 12-MHz clock
input. After nreset is released, the omapnrst waits for 30 additional 12-MHz clock cycles before
going inactive.

Tmin
� (Tosc�max � 2 � 1�32 kHz) � �(1024 � 1�32 kHz) � (20 � 1�12 MHz)� � (30 � 1�12 MHz)
� Tosc�max � 0.0321 sec

where Tmin is the minimum OMAP wakeup time from the power on reset for 12 MHz input clock
and Tosc−max is the maximum startup time for the external 32 kHz oscillator.
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2.2.2 OMAP5910 Low-Power Modes

• Big sleep (12 MHz and 32 kHz are on and digital phase-locked loop or DPLL1 off), second
lowest power consumption

• Deep sleep (only 32 kHz on, all other components off), lowest power consumption

In the big sleep mode, the 12-MHz and 32-kHz clocks are running. The 12-MHz clock is
distributed only to the 48-MHz DPLL and to one, or both, of the 12-MHz output pins (MCLK
and/or BCLK). The 48-MHz DPLL and the 48-MHz clock may also be distributed on-chip to a
requesting peripheral. The ARM and DSP are in their idle modes.

Deep sleep mode is the lowest power state of the OMAP5910. In this mode, the OMAP5910
processor is operating solely on its 32-kHz input clock. The ULPD has no requests for a 12-MHz
or 48-MHz clock and, therefore, it will shut down the 12-MHz oscillator. In this mode, the ARM
and DSP are in their idle modes and all on-chip PLLs are off. As shown in Figure 1, the ULPD
can signal the entry of deep sleep mode by asserting the LOW_PWR signal (this is an alternate
pin-multiplexing of armio_5) automatically. This indication forces the external voltage regulator,
TPS65010, to go to standby or to lower the core voltage to 1.1V. While in deep sleep mode, the
32-kHz clock provides the necessary on-chip clocking to the peripherals that can wake up the
processor (such as UART2, the keypad, the MPUIOs). Also, there are two external hardware
requests (MCLKREQ and BCLKREQ) that would cause an exit from the deep sleep state, when
one or both of the requests are active. Figure 4 shows a flowchart of the low-power mode
transitions.
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Figure 4. Power Management Mode Transitions

2.3 TPS65010 Power and Battery Management Device

The TPS65010 [5] consists of two high-efficiency, step-down converters and two 200mA LDOs.
The two switchers, Vmain (3.3V) and Vcore (1.6), generate voltage outputs that are higher than
90% and 80% efficient at 100mA level, respectively [5]. The disadvantages of using switchers in
the design are radiated switching noise and higher output ripple, which may interfere with other
noise sensitive circuits, such as audio, video, SDRAM, and phase-locked loop (PLL).

In this application, the LDOs are being utilized to drive SDRAM, FLASH, analog PLL and digital
PLL sections of the OMAP. The switcher outputs are only connected to the core CPU and the
I/O voltages as shown in Figure 2.
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2.3.1 TPS65010 Low-Power Mode

The configuration registers are accessible via I2C bus. To enable the low-power mode, the
enable low-power bit (ENABLE_LP, bit 3 of the VDCDC1 register) must be set and the
LOW_PWR pin must be driven high by the OMAP. Internally, the TPS65010 uses the rising edge
of the internal signal formed by a logical AND of the LOW_PWR and ENBLE_LP signals before
entering the low power mode.

In this mode, the Vmain switching converter remains active but the Vcore converter may be
disabled by setting the LP_COREOFF bit in the VDCDC2 register. If left-enabled, the Vcore
voltage is set to the value predefined by the CORELP0/1 bits in the VDCDC2 register.

For the LDO outputs in low power mode, the LDO1OFF/nSLP and LDO2OFF/nSLP bits in the
VREGS1 register determine whether the LDOs are turned off or put in a reduced power mode,
where the internal transient speed-up circuitry is disabled in order to minimize the quiescent
current.

Refer to [5] for detailed description of all the configuration registers and modes.

2.4 System Design

Figure 5, Figure 6, and Figure 7 show how the OMAP5910 power supply rails are connected to
the power management device. This design only demonstrates the power and power
management capabilities of the OMAP, so it is up to the designers to determine what other
external components are required for implementing a specific application. Table 1 shows the
signals associated with the power management interface.

Table 1. OMAP5910 and TPS65010 Interface

OMAP5910 TPS65010 Schematic Ref. Description

CVDDA, CVDD4 U1300 Low noise supply for DPLL and
APLL circuits

CVDD, CVDD1,
CVDD2, CVDD3

Vcore VCC_CPU High efficient 1.6V core voltage

DVDD1 VLDO1 VCC_I/O Low noise 2.75V I/O voltage

DVDD4, DVDD5 VLDO1 VCC_MEM Low noise 2.75V memory voltage

DVDD2, DVDD3 Vmain VCC_3V3 High efficiency 3.3V I/O voltage

I2C Master I2C Slave OMAP is the I2C master

PWRON_RESET RESPWRON nRESPWRON Active low asynchronous reset

LOW_PWR LOW_PWR LOW_PWR Deep Sleep indication driven by the
OMAP5910
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Figure 5. OMAP5910 Core/PLL Voltages
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Figure 7. TPS65010 Power Management Circuit

2.5 System Software

The OMAP5910 deep sleep and awake software example was developed by Mike Blaskovich [3]
for the Innovator Development Platform [4]. The code example shown in Appendix A requires
the OMAP Code Composer Studio Version 2.1 or later to run. The entire project file is posted on
the website (www.omap.com).
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2.5.1 OMAP5910 Deep Sleep Program Flow

The sleep code example performs the following functions:

1. OMAP5910 start-up code

2. LOW_PWR signal enabling

3. OMAP5910 DSP shutdown

4. Wakeup event setup

5. ARM and traffic controller shutdown

6. Deep sleep entry

7. Wakeup by keypad on innovator

2.5.1.1 OMAP5910 Start-Up Code

The start-up code first places the OMAP5910 into its OMAP5910 pin-configuration mode by
calling the Set5910Mode routine. For simplicity, each pin uses the default pin multiplexing. The
OMAP5910 is then placed into synchronous scaleable mode. The write to the ARM_CKCTL
register controls the clock divisors used by various portions of the OMAP5910. For example, the
DSPMMU will receive the DPLL1 clock divided by 2 (72 MHz), the traffic controller (TC) will also
receive a divided-by-2 clock (72 MHz), the ARM and DSP will receive the full 144 MHz, the LCD
clock is 72 MHz, and the peripheral clock is 36 MHz. The write to ARM_IDLECT2 enables the
distribution of clocks to the DMA, DSP, timers, etc.

 Set5910Mode();         // Setup Configuration Space for 5910 Mode

     ARM_SYSST=0x1000;   // Set Sync-Scaleable Mode

     ARM_CKCTL=0x3506;   // DSPMMU/2,TC/2,ARM/1,DSP/1,LCD/2,PER/4

     DPLL1_CONTROL_REG=0x2610;              // Spin up to 144 MHz

     while (ARM_CKCTL&0x1==0);              // wait for DPLL lock

     ARM_IDLECT2 = 0x6FF;          // Start most clocks (to be disabled later)

     ARM_RSTCT2 = 0x0001;          // Remove Reset from ARM peripherals



SPRA954A

13 OMAP5910 Low-Power System Design

2.5.1.2 LOW_PWR Signal Enabling

This section of code enables the LOW_PWR signal to be output on pin T20. The LOW_PWR
signal is an alternate function of the armio_5 signal. The pin-multiplexing for this pin is controlled
by setting FUNC_MUX_CTRL_7<14:12>=‘001’. In addition to the pin-multiplexing change, the
LOW_PWR signal must be enabled by a write to the ULPD register POWER_CTRL_REG at
offset 0x50 in the ULPD register space.

 ULPD_POWER_CTRL_REG = 0x0001; // Enable low_pwr signal output during Deep Sleep

      stmpval=FUNC_MUX_CTRL_7;               // Read Value from FUNC_MUX_CTRL_7

      stmpval &= 0xFFFF8FFF;                 // clear bit locations 14:12

      stmpval |= 0x00001000;         // <14:12>=’001’ selects low_pwr signal on armio_5

      FUNC_MUX_CTRL_7 = stmpval;

2.5.1.3 OMAP5910 DSP Shutdown

The next segment of code places the OMAP5910’s C55x DSP into idle mode. To stop the DSP, it
is simply placed into reset and the DSP clock disabled. Additionally, the clocks to the DSP
peripherals must all be stopped by setting the DSP_IDLECT2 register to 0x0.

 ARM_RSTCT1 |= 0x2;            // Set DSP_EN=1, remove reset from DSP block

      ARM_RSTCT1 &= ~0x2;       // Set DSP_EN=0, put DSP block back into reset

      ARM_CKCTL  &= ~0x2000;    // Set EN_DSPCK=0, stop DSP block clock

      DSP_IDLECT2 = 0x0;        // Stop any DSP domain clocks

2.5.1.4 Wakeup Event Setup

This segment of code will enable the OMAP5910 to exit deep sleep mode by means of a
wakeup event. The event that is used is the Innovator keypad. A wakeup event is simply an
unmasked interrupt from one of the 32 kHz-enabled peripherals. Because the keypad interrupt is
an edge-triggered event, it can simply be cleared by writing a ‘0’ to the appropriate bit of the ITR
register of the interrupt handler. A keypad press will provide an interrupt to bit-1 of the second
level interrupt handler.

 // Setup a wakeup event. Wake from any keypad press

      INTH2_ITR &= ~0x2;       // Clear any pending keypad interrupt

      INTH1_ITR &= ~0x1;       // Clear pending 2nd level interrupt

      INTH2_MASK=0xFFFFFFFD;          // Enable a keypad interrupt to wakeup device

      INTH1_MASK=0xFFFFFFFE;          // Permit 2nd level interrupt to wakeup device

2.5.1.5 ARM and Traffic Controller Shutdown

The next code segment prepares the ARM and traffic controller to enter deep sleep. If it is
running, the ARM watchdog must be disabled.

 WATCHDOG_TIMER_MODE=0x00F5;       // If running, disable ARM watchdog timer

      WATCHDOG_TIMER_MODE=0x00A0;
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The remainder of the ARM shutdown has been done in an assembly routine named
5910DeepSleep. Rather than describing each line of the assembly code, the following steps
describe the events that are occurring:

1. Clear EMIFS global power-down enable bit (PDE) in EMIFS_CONFIG register

2. Set IMIF power-down bit (PWD_EN) in EMIFS_CONFIG register

3. Set CLK, PWD and SLRF bits of SDRAM controller

4. Set EMIFS global power-down enable bit (PDE) in EMIFS_CONFIG register

5. Put DPLL in Bypass

6. Stop the GPIO (XOR), API, HSAB, LB, and LCD clocks if running

Steps 1−4 are required to shut down the traffic controller. This sequence of operations works
around an errata that requires the PDE bit of the EMIFS_CONFIG register to be set to ‘0’ prior to
beginning the shutdown of the traffic controller (reference OMAP5910 Errata). Setting PDE=1
must be the last step toward idling the traffic controller.

In step 3, setting the CLK bit of the SDRAM_CONFIG register tells OMAP5910 to stop the
SDRAM clock during idle. PWD tells the SDRAM controller it can enter idle mode when the
SDRAM controller is inactive. Setting the SLRF bit places the SDRAM into self-refresh.

Step 5 places DPLL1 into bypass. At this point, all OMAP5910 internal clocks are derived
directly from the 12 MHz oscillator.

Step 6 is a write to the DSP_IDLECT2 register to manually assure that the clocks to the GPIO,
API, high-speed access bus (HSAB), local bus (LB) and LCD. These clocks are not
automatically stopped when the ARM Idle instruction is executed, so they must be stopped by
this manual operation.

2.5.1.6 Deep Sleep Mode Entry

The entry to deep sleep mode is done by writing to the ARM_IDLECT1 register. This register
controls two things: the entry of the ARM into its idle mode (bit 11, SETARM_IDLE); and a
number of bits that cause a number of other clocks to idle in conjunction with the ARM transition
into idle mode. The write to ARM_IDLECT1 with the SETARM_IDLE bit set to ‘1’ is the last
instruction before entry to deep sleep mode. This instruction should be followed by 20 NOPs:
 ; Idle all of the ARM-based clocks and Go to sleep

       ldr    r0, arm_idlect1_reg                // arm_idlect1_reg is 0xFFFECE04

       ldr    r1, arm_idlect1_reg_sleepmask      // arm_idlect1_reg_sleepmask is 0x0EC7

       strhr1,    [r0]                // 16-bit write operation. OMAP enters Deep Sleep

       nop

       nop

       :

       :

2.5.1.7 Wakeup By Keypad on Innovator

Innovator has a black 4-way switch on the front. Touch this switch and the device will wake up.
Code execution will resume in the nop instructions that followed the ARM_IDLECT1 write that
caused entry into deep sleep. In a system with more than one wakeup source, it will be
necessary to check the interrupt status bits to determine the source of the wakeup.
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2.5.2 Running the Code Under Code Composer Studio

After building the code using Code Composer Studio and loading the program, the system is
ready for test. The OMAP5910Sleep program runs in two segments with user intervention
required between the two segments. It follows a flow where it will:

1. Put the OMAP5910 to sleep

2. Wake up the OMAP5910 after a keypad press

When you hit Run, the program will execute until the OMAP5910 is in deep sleep. The output
window will display the following messages:

DSP Idled
(appears immediately after the DSP has been idled as described in section 2.5.1.3)

Processor about to enter Deep Sleep mode
(appears before calling 5910DeepSleep assembly routine described in section 2.5.1.6)

When deep sleep mode is entered, the program will still be running, but will appear to be “stuck”
– it is waiting for a wakeup event. By pressing a button associated with the keypad, it will wake
up and the following message will be displayed:

Processor Awake

To run the code again, simply select ‘Restart’ from the Debug pulldown menu of Code Composer
Studio.

2.5.3 Observing Deep Sleep Entry

Two methods can be easily observed when the OMAP5910 enters deep sleep mode: the
12-MHz oscillator stops toggling AND the LOW_PWR signal is asserted. The 12-MHz oscillator
restarts and the LOW_PWR gets deasserted as soon as the OMAP5910 exits deep sleep mode.
In this deep sleep example code, it will be asserted immediately upon execution of the write to
ARM_IDLECT1 as described in section 2.5.1.6. The LOW_PWR signal will remain asserted until
there is a keypad press.

To observe LOW_PWR on an Innovator, connect a scope probe (or a multimeter) to either the
break-out-board location B28, or observe it at resistor R43. The R43 resistor is located on the
opposite side of the processor module from the OMAP5910. It is unmarked but is easily located
(see Figure 8).

R58

H2H1

Probe here to see
low_pwr signal U

19
U

23

R
43

Figure 8. Innovator Settings for Deep Sleep
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2.6 Experimental Results

The OMAP5910 power consumptions (core plus I/O) were thoroughly measured and the results
are shown in Table 2 [6].

Table 2. OMAP5910 Current Consumption

Module Measured Results
Frequency

MHz
Total
mA Comments

DSP mA/MHz

0.575 150 86.3 DSP runs GSM FR vocoder
from Icache, all DSP domains
active, but with no DMA
activity. Includes DSP MMU.

DSP mA/MHz

0.457 150 68.6 DSP runs GSM FR vocoder
from internal RAM. Includes
DSP MMU.

MPU mA/MHz 0.310 150 46.5 MPU running EPOC

TC mA/MHz 0.191 75 14.3 TC, TIPB, and DMA clocks on
(IDLIF_ARM = 0) and DMA
auto-idle on.

CLKM mA/MHz 0.068 150 10.2 12-MHz oscillator, DPLL1, and
clock circuits

Total with DSP program in external memory: 157.3 mA

Total with DSP program in internal memory: 139.6 mA

3 Conclusions

This application note provided an example for system engineers to design a low-power,
multimedia communication device utilizing the OMAP5910 and the TPS65010 power
management device. This document also provides a code example developed for the Innovator
Development Platform to put the device in deep sleep and to wake it up. Finally, it includes
experimental data, which show the low-power consumption associated with different modules
within the OMAP5910 itself.

This design is only a proof-of-concept (not a complete reference design) to help designers to do
system planning and power budgeting of the OMAP5910 and the power management device.
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Appendix A OMAP5910 Code [3]
// OMAP5910sleep.c

// Mike Blaskovich

// Revision 1.2

//

// History:

//    Rev 1.0  put OMAP5910 to sleep

//    Rev 1.1  added wakeup from keypad

//    Rev 1.2  added additional comments

#include ”sleep1.h”

int main()

{

   unsigned int stmpval;

   void Set5910Mode();

/********************************************************************************************
*/

/* This block of code has nothing to do with putting the processor to sleep. It is
*/

/* starting clocks, putting the device into 5910 mode, removing peripherals from reset
*/

/********************************************************************************************
*/

   Set5910Mode();                   // Setup Configuration Space for 1510 Mode

   ARM_SYSST=0x1000;                // Set Sync−Scaleable Mode

   ARM_CKCTL=0x3506;                // DSPMMU/2,TC/2,ARM/1,DSP/1,LCD/2,PER/4

   DPLL1_CONTROL_REG=0x2610;        // Spin up to 144MHz

   while (ARM_CKCTL&0x1==0);        // wait for DPLL lock

   ARM_IDLECT2 = 0x6FF;             // Start most clocks (to be disabled later)

   ARM_RSTCT2 = 0x0001;             // Remove Reset from ARM peripherals

/********************************************************************************************
*/

/********************************************************************************************
*/

/* Make the low_pwr signal output on the armio_5 pin location
*/

/********************************************************************************************
*/

   ULPD_POWER_CTRL_REG = 0x0001;    // Enable low_pwr signal output during Deep Sleep

                                    // by bit0=1 in ULPD POWER_CTRL_REG (offset 0x50)

   stmpval=FUNC_MUX_CTRL_7;         // Read Value from FUNC_MUX_CTRL_7

   stmpval &= 0xFFFF8FFF;           // clear bit locations 14:12

   stmpval |= 0x00001000;           // <14:12>=’001’ selects low_pwr signal on armio_5

   FUNC_MUX_CTRL_7 = stmpval;

/********************************************************************************************
*/

/********************************************************************************************
*/
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/* IDLE the DSP
*/

/********************************************************************************************
*/

   ARM_RSTCT1 |= 0x2;               // Set DSP_EN=1, remove reset from DSP block

   ARM_RSTCT1 &= ~0x2;              // Set DSP_EN=0, put DSP block back into reset

   ARM_CKCTL  &= ~0x2000;           // Set EN_DSPCK=0, stop DSP block clock

   DSP_IDLECT2 = 0x0;               // Stop any DSP domain clocks

   printf(”DSP Idled\n”);

/********************************************************************************************
*/

/********************************************************************************************
*/

/* Setup a wakeup source. Wakeup only from a keypad press
*/

/********************************************************************************************
*/

   INTH2_ITR &= ~0x2;               // Clear any pending keypad interrupt //

   INTH1_ITR &= ~0x1;               // Clear pending 2nd level interrupt //

   INTH2_MASK=0xFFFFFFFD;           // Enable a keypad interrupt to wakeup device //

   INTH1_MASK=0xFFFFFFFE;           // Permit 2nd level interrupt to wakeup device //

/********************************************************************************************
*/

/* Shut down the ARM and TC domains
*/

/********************************************************************************************
*/

   WATCHDOG_TIMER_MODE=0x00F5;      // If running, disable ARM watchdog timer

   WATCHDOG_TIMER_MODE=0x00A0;

   ULPD_CLOCK_CTRL_REG |= 0x20;     // Make sure USB Client Clock is stopped

   printf(”Processor about to enter Deep Sleep mode\n”);

   OMAPDeepSleep();

 

   /* If wakeup occurs, the next line will be executed */

   printf(”Processor Awake\n”);

}

/********************************************************************************************
*/

/* Put device in OMAP5910 Mode. All pins with default pin muxing.                 */

/********************************************************************************************
*/

void Set5910Mode()

{

  FUNC_MUX_CTRL_0    = 0x00000000;

  FUNC_MUX_CTRL_1    = 0x00000000;

  FUNC_MUX_CTRL_2    = 0x00000000;

  FUNC_MUX_CTRL_3    = 0x00000000;
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  FUNC_MUX_CTRL_4    = 0x00000000;

  FUNC_MUX_CTRL_5    = 0x00000000;

  FUNC_MUX_CTRL_6    = 0x00000000;

  FUNC_MUX_CTRL_7    = 0x00000000;

  FUNC_MUX_CTRL_8    = 0x00000000;

  FUNC_MUX_CTRL_9    = 0x00000000;

  FUNC_MUX_CTRL_A    = 0x00000000;

  FUNC_MUX_CTRL_B    = 0x00000000;

  FUNC_MUX_CTRL_C    = 0x00000000;

  FUNC_MUX_CTRL_D    = 0x00000000;

  PULL_DWN_CTRL_0    = 0xFFFFFFFF;

  PULL_DWN_CTRL_1    = 0xD8FDC000;

  PULL_DWN_CTRL_2    = 0x00280C2B;

  PULL_DWN_CTRL_3    = 0xFFFC00FE;

  GATE_INH_CTRL_0    = 0x00000000;

  VOLTAGE_CTRL_0     = 0x00000007;

  TEST_DBG_CTRL_0    = 0x00000007;

  MOD_CONF_CTRL_0    = 0x0D000000;

  COMP_MODE_CTRL_0   = 0x0000EAEF;

}

A.1 Library
// sleep1.h

// Registers used by OMAP5910sleep.c

typedef unsigned short UInt16;

typedef unsigned int   UInt32;

#define ARM_CKCTL            *((volatile UInt16 *) 0xFFFECE00) /* ARM Clock Control Reg */

#define ARM_IDLECT1          *((volatile UInt16 *) 0xFFFECE04) /* ARM Idle Control Reg 1 */

#define ARM_IDLECT2          *((volatile UInt16 *) 0xFFFECE08) /* ARM Idle Control Reg 2 */

#define ARM_RSTCT1           *((volatile UInt16 *) 0xFFFECE10) /* ARM Reset Control Reg 1 */

#define ARM_RSTCT2           *((volatile UInt16 *) 0xFFFECE14) /* ARM Reset Control Reg 2 */

#define ARM_SYSST            *((volatile UInt16 *) 0xFFFECE18) /* ARM System Status Register
*/

#define DSP_IDLECT2          *((volatile UInt16 *) 0xE1008008) /* DSP Idle Control Reg 2 */

#define ULPD_CLOCK_CTRL_REG  *((volatile UInt16 *) 0xFFFE0830) /* ULPD additional clock
controls */

#define ULPD_POWER_CTRL_REG  *((volatile UInt16 *) 0xFFFE0850) /* ULPD Power Control, low_pwr
enable */

#define EMIFS_CONFIG_REG     *((volatile UInt32 *) 0xFFFECC0C) /* Memory I/F Control Register
*/

#define EMIFF_SDRAM_CONFIG   *((volatile UInt32 *) 0xFFFECC20) /* SDRAM Config Register */

#define WATCHDOG_TIMER_MODE  *((volatile UInt16 *) 0xFFFEC808) /* ARM Watchdog timer mode */

#define DPLL1_CONTROL_REG    *((volatile UInt16 *) 0xFFFECF00) /* DPLL1 Control Reg */

#define INTH1_ITR            *((volatile UInt32 *) 0xFFFECB00) /* 2nd Level Interrupt
register */
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#define INTH1_MASK           *((volatile UInt32 *) 0xFFFECB04) /* 2nd Level Interrupt handler
mask */

#define INTH2_ITR            *((volatile UInt32 *) 0xFFFE0000) /* 2nd Level Interrupt
register */

#define INTH2_MASK           *((volatile UInt32 *) 0xFFFE0004) /* 2nd Level Interrupt handler
mask */

#define FUNC_MUX_CTRL_0      *((volatile UInt32 *) 0xFFFE1000) /* OMAP5910 Configuration
Registers */

#define FUNC_MUX_CTRL_1      *((volatile UInt32 *) 0xFFFE1004)

#define FUNC_MUX_CTRL_2      *((volatile UInt32 *) 0xFFFE1008)

#define COMP_MODE_CTRL_0     *((volatile UInt32 *) 0xFFFE100C)

#define FUNC_MUX_CTRL_3      *((volatile UInt32 *) 0xFFFE1010)

#define FUNC_MUX_CTRL_4      *((volatile UInt32 *) 0xFFFE1014)

#define FUNC_MUX_CTRL_5      *((volatile UInt32 *) 0xFFFE1018)

#define FUNC_MUX_CTRL_6      *((volatile UInt32 *) 0xFFFE101C)

#define FUNC_MUX_CTRL_7      *((volatile UInt32 *) 0xFFFE1020)

#define FUNC_MUX_CTRL_8      *((volatile UInt32 *) 0xFFFE1024)

#define FUNC_MUX_CTRL_9      *((volatile UInt32 *) 0xFFFE1028)

#define FUNC_MUX_CTRL_A      *((volatile UInt32 *) 0xFFFE102C)

#define FUNC_MUX_CTRL_B      *((volatile UInt32 *) 0xFFFE1030)

#define FUNC_MUX_CTRL_C      *((volatile UInt32 *) 0xFFFE1034)

#define FUNC_MUX_CTRL_D      *((volatile UInt32 *) 0xFFFE1038)

#define PULL_DWN_CTRL_0      *((volatile UInt32 *) 0xFFFE1040)

#define PULL_DWN_CTRL_1      *((volatile UInt32 *) 0xFFFE1044)

#define PULL_DWN_CTRL_2      *((volatile UInt32 *) 0xFFFE1048)

#define PULL_DWN_CTRL_3      *((volatile UInt32 *) 0xFFFE104C)

#define GATE_INH_CTRL_0      *((volatile UInt32 *) 0xFFFE1050)

#define VOLTAGE_CTRL_0       *((volatile UInt32 *) 0xFFFE1060)

#define TEST_DBG_CTRL_0      *((volatile UInt32 *) 0xFFFE1070)

#define MOD_CONF_CTRL_0      *((volatile UInt32 *) 0xFFFE1080)

A.2 Assembly Code
.global    _OMAPDeepSleep

 .sect ”.text”

 

_OMAPDeepSleep:

    ; Clear EMIFS global power−down enable bit (PDE) in EMIFS_CONFIG register

    ldr     r0, emifs_config_reg

    ldr     r1, [r0]

    ldr     r2, emifs_config_reg_pde_mask

    and     r1, r1, r2

    str     r1, [r0]

    ; Set IMIF power−down bit (PWD_EN) in EMIFS_CONFIG register

    ldr     r1, [r0]

    orr     r1, r1, #0x00000004
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    str     r1, [r0]

    ; Set CLK, PWD and SLRF bits of SDRAM Controller

    ldr     r0, emiff_sdram_config_reg

    ldr     r1, [r0]

    orr     r1, r1, #0x0C000001

    str     r1, [r0]

    ; Set EMIFS global power−down enable bit (PDE) in EMIFS_CONFIG register

    ldr     r0, emifs_config_reg

    ldr     r1, [r0]

    orr     r1, r1, #0x08

    str     r1, [r0]

    ; Put DPLL in Bypass

    ldr     r0, dpll1_ctl_reg

    ldrh    r1, [r0]

    ldr     r2, dpll1_ctl_reg_mask

    and     r1, r1, r2

    strh    r1, [r0]

    nop

    nop

    nop

    nop

    nop

    nop

    nop

    nop

    nop

    nop

    ; Stop the GPIO (XOR), API, HSAB, LB, and LCD clocks if running

    ldr     r0, arm_idlect2_reg

    ldrh    r1, [r0]

    ldr     r2, arm_idlect2_reg_stopmask

    and     r1, r1, r2

    strh    r1, [r0]

    ; Idle all of the ARM−based clocks and Go to sleep

    ldr     r0, arm_idlect1_reg

    ldr     r1, arm_idlect1_reg_sleepmask

    strh    r1, [r0]

    nop

    nop

    nop

    nop

    nop

    nop
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    nop

    nop

    nop

    nop

    nop

    nop

    nop

    nop

    nop

    nop

    nop

    nop

    nop

    nop

    nop

    nop

    nop

    nop

    nop

    nop

    nop

    nop

 

    mov pc, lr

emifs_config_reg                .word 0xFFFECC0C

emiff_sdram_config_reg          .word 0xFFFECC20

arm_idlect1_reg                 .word 0xFFFECE04

arm_idlect2_reg                 .word 0xFFFECE08

dpll1_ctl_reg                   .word 0xFFFECF00

dpll1_ctl_reg_mask              .word 0xFFFFFFE3

emifs_config_reg_pde_mask       .word 0xFFFFFFF7

arm_idlect1_reg_val             .word 0x000006C7

emiff_sdram_config_reg_wakemask .word 0xF3FFFFFE

arm_idlect2_reg_stopmask        .word 0xFFFFF987

arm_idlect1_reg_sleepmask       .word 0x00000EC7
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