
Application Report
SPRA954A − March 2004

1

OMAP5910 Low-Power System Design
Thanh Tran, Ph.D. and Mike Blaskovich DSP/EEE Catalog, OMAP Applications

ABSTRACT

The OMAP5910 is a true system-on-a-chip device, which consists of ARM925T MPU and
C55X DSP cores. The device has many advanced power management modes that enable
system designers to develop a very low-power, multimedia communication device. This
application note shows low-power design techniques and outlines the steps required to put
the OMAP device in the lowest power consumption mode and to wake it up. Also, system
hardware design, a low-power code example, and experimental results are being
demonstrated.

This application report contains project code that can be downloaded from this link.
http://www−s.ti.com/sc/psheets/spra954A/spra954A.zip.

Contents

1 Introduction 2 .

2 Design Description 2 .
2.1 Low-Power System Architecture 4 .
2.2 OMAP5910 Power Management 5 .

2.2.1 Power On Reset and Reset Management 5 .
2.2.2 OMAP5910 Low-Power Modes 6 .

2.3 TPS65010 Power and Battery Management Device 7 .
2.3.1 TPS65010 Low-Power Mode 8 .

2.4 System Design 8 .
2.5 System Software 11 .

2.5.1 OMAP5910 Deep Sleep Program Flow 12 .
2.5.2 Running the Code Under Code Composer Studio 15 .
2.5.3 Observing Deep Sleep Entry 15 .

2.6 Experimental Results 16 .

3 Conclusions 16 .

4 References 16 .

Appendix A OMAP5910 Code [3] 18 .
A.1 Library 20 .
A.2 Assembly Code 21 .

List of Figures

Figure 1. OMAP5910 Device Architecture 3 .
Figure 2. UPLD Characteristics 4 .
Figure 3. OMAP Low-Power System Architecture 5 .

Trademarks are the property of their respective owners.

SPRA954A

2 OMAP5910 Low-Power System Design

Figure 4. Power Management Mode Transitions 7 .
Figure 5. OMAP5910 Core/PLL Voltages 9 .
Figure 6. OMAP5910 I/O, Memory and USB Voltages 10 .
Figure 7. TPS65010 Power Management Circuit 11 .
Figure 8. Innovator Settings for Deep Sleep 15 .

List of Tables

Table 1. OMAP5910 and TPS65010 Interface 8 .
Table 2. OMAP5910 Current Consumption 16 .

1 Introduction

This document is intended to demonstrate a low-power system design utilizing the OMAP5910
dual-core processor and the TPS65010 power and battery management device. This document
is divided into four different parts, where the first part covers the OMAP5910 power
management capabilities, the second part provides an overview of the TPS65010 device and
how it is being interfaced with the OMAP, the third part shows the hardware system design
which includes schematics, and finally, the last part gives a code example to put the OMAP5910
in the lowest power consumption mode and to wake it up. The last part also includes power
measurements for different operating conditions within the OMAP itself, e.g., running an
algorithm on the DSP while doing nothing on the ARM, shutting down the traffic controller, and
so on.

2 Design Description

The OMAP5910 has multiple low-power modes (awake, big sleep and deep sleep); transitions
between these different modes are being handled by the ultra low-power module (ULPD),
internal to the OMAP5910. As shown in Figure 1, the OMAP5910 device architecture consists of
the C55x DSP, ARM925, System DMA, traffic controller, integrated SRAM, and many
peripherals; refer to OMAP5910 Dual-Core Processor Data Manual (literature number
SPRS197) and OMAP5910 Dual-Core Processor Technical Reference Manual (literature
number SPRU602) for more detailed description of these modules. For power management, the
ULPD is the most critical module. It performs the most important task, that is, controlling the
entire device by setting all the power states and clock domains associated with each individual
module.

SPRA954A

3 OMAP5910 Low-Power System Design

C55X DSP

DMA

DSP MMU

SRAM

LCD controller EMIFS

Traffic controller

System DMA

LCD channel

EMIFF

ARM925T

Clock
modules

ULPD states:
deep sleep/big sleep/awake Peripherals

I-cache

Figure 1. OMAP5910 Device Architecture

Figure 2 demonstrates the communication between the OMAP5910 and the power management
device to transition to different power states (Deep Sleep, Big Sleep, or Awake).

As shown in Figure 2, the ULPD drives the LOW_PWR signal to indicate that it is going into
deep sleep. The TPS65010 power device responds by lowering the core voltage to reduce the
power consumption. ULPD de-asserts the LOW_PWR to go back to the awake state.

SPRA954A

4 OMAP5910 Low-Power System Design

Awake... big sleep Deep sleep
Analog

wait
timer

Big sleep... awake

1.5 V

1.1 V

LOW_PWR

ULPD state

VDD

ULPD analog wait state timer delays
deep sleep to big sleep transition while
regulator changes from 1.1 V to 1.5 V.

Select

1.5 V ~1.1 V

VDD regulator

TPS65010

ULPD:
If(’deep sleep state’ or

SW low_pwr_reg)
and (SW low_pwr_en)

then
low_pwr=1

else low_pwr=0

OMAP5910

Low_pwr

VDD

Figure 2. UPLD Characteristics

2.1 Low-Power System Architecture

Figure 3 shows the architecture of the design and how the interface between the power
management device TPS65010 and the OMAP5910 is implemented. The low-power system
consists of two main parts: the OMAP5910 processor and the TPS65010 power and battery
management IC. Other components such as system memory, USB, keyboard, mouse, Ethernet
and other peripherals are not included in this application note.

The TPS65010 provides two highly efficient step-down converters targeted at providing the core
voltage (VCC_CORE) and I/O rails (VCC_IO), and two integrated LDOs allowing designers to
create low noise voltage outputs to drive noise-sensitive circuits. One important feature is that
the OMAP can drive the LOW_PWR control pin to lower the core voltage while it is transitioning
to deep sleep mode.

SPRA954A

5 OMAP5910 Low-Power System Design

OMAP5910TPS65010

Vcore
(1.6V)

Vmain
(3.3V)

RESPWRON#

VLDO1
(2.75V)

VLDO2
(2.75V)

I2C

LOW_PWR

TPS76201
LDO

DVDD2, DVDD3

CVDD4, CVDDA

CVDD, CVDD1,
CVDD2, CVDD3

DVDD1

DVDD4, DVDD5

2

LOW_PWR

PWRON_RESET#

I2C

Figure 3. OMAP Low-Power System Architecture

2.2 OMAP5910 Power Management

As mentioned in the Introduction, the ULPD block of the OMAP design is responsible for the
power management, which includes performing the power on reset, managing system reset,
calibrating the 32-kHz oscillator, managing the low-power mode transitions, performing the
wake-up of the external oscillator, performing the 12-MHz/32-kHz switch, and other control
functions. Refer to OMAP5910 Dual-Core Processor Data Manual (literature number SPRS197)
and OMAP5910 Dual-Core Processor Technical Reference Manual (literature number
SPRU602) for detailed discussion of the configurations.

2.2.1 Power On Reset and Reset Management

The PWRON_RESET# signal is an active-low asynchronous reset input responsible for the
reset of the entire OMAP5910 device. When using an external crystal oscillator for the 32 kHz
clock, the PWRON_RESET# must be asserted low a minimum of two 32-kHz clock cycles
longer than the worst-case start-up time of the oscillator. Internally, the ULPD synchronizes the
RESPWRON input signal and generates two internal functional resets called nreset and
omapnrst. At power on reset, both nreset and omapnrst are low. AWAKE state is achieved after
1024 32-kHz clock cycles. nreset is released first after 20 more clock cycles of the 12-MHz clock
input. After nreset is released, the omapnrst waits for 30 additional 12-MHz clock cycles before
going inactive.

Tmin
� (Tosc�max � 2 � 1�32 kHz) � �(1024 � 1�32 kHz) � (20 � 1�12 MHz)� � (30 � 1�12 MHz)
� Tosc�max � 0.0321 sec

where Tmin is the minimum OMAP wakeup time from the power on reset for 12 MHz input clock
and Tosc−max is the maximum startup time for the external 32 kHz oscillator.

SPRA954A

6 OMAP5910 Low-Power System Design

2.2.2 OMAP5910 Low-Power Modes

• Big sleep (12 MHz and 32 kHz are on and digital phase-locked loop or DPLL1 off), second
lowest power consumption

• Deep sleep (only 32 kHz on, all other components off), lowest power consumption

In the big sleep mode, the 12-MHz and 32-kHz clocks are running. The 12-MHz clock is
distributed only to the 48-MHz DPLL and to one, or both, of the 12-MHz output pins (MCLK
and/or BCLK). The 48-MHz DPLL and the 48-MHz clock may also be distributed on-chip to a
requesting peripheral. The ARM and DSP are in their idle modes.

Deep sleep mode is the lowest power state of the OMAP5910. In this mode, the OMAP5910
processor is operating solely on its 32-kHz input clock. The ULPD has no requests for a 12-MHz
or 48-MHz clock and, therefore, it will shut down the 12-MHz oscillator. In this mode, the ARM
and DSP are in their idle modes and all on-chip PLLs are off. As shown in Figure 1, the ULPD
can signal the entry of deep sleep mode by asserting the LOW_PWR signal (this is an alternate
pin-multiplexing of armio_5) automatically. This indication forces the external voltage regulator,
TPS65010, to go to standby or to lower the core voltage to 1.1V. While in deep sleep mode, the
32-kHz clock provides the necessary on-chip clocking to the peripherals that can wake up the
processor (such as UART2, the keypad, the MPUIOs). Also, there are two external hardware
requests (MCLKREQ and BCLKREQ) that would cause an exit from the deep sleep state, when
one or both of the requests are active. Figure 4 shows a flowchart of the low-power mode
transitions.

SPRA954A

7 OMAP5910 Low-Power System Design

Figure 4. Power Management Mode Transitions

2.3 TPS65010 Power and Battery Management Device

The TPS65010 [5] consists of two high-efficiency, step-down converters and two 200mA LDOs.
The two switchers, Vmain (3.3V) and Vcore (1.6), generate voltage outputs that are higher than
90% and 80% efficient at 100mA level, respectively [5]. The disadvantages of using switchers in
the design are radiated switching noise and higher output ripple, which may interfere with other
noise sensitive circuits, such as audio, video, SDRAM, and phase-locked loop (PLL).

In this application, the LDOs are being utilized to drive SDRAM, FLASH, analog PLL and digital
PLL sections of the OMAP. The switcher outputs are only connected to the core CPU and the
I/O voltages as shown in Figure 2.

SPRA954A

8 OMAP5910 Low-Power System Design

2.3.1 TPS65010 Low-Power Mode

The configuration registers are accessible via I2C bus. To enable the low-power mode, the
enable low-power bit (ENABLE_LP, bit 3 of the VDCDC1 register) must be set and the
LOW_PWR pin must be driven high by the OMAP. Internally, the TPS65010 uses the rising edge
of the internal signal formed by a logical AND of the LOW_PWR and ENBLE_LP signals before
entering the low power mode.

In this mode, the Vmain switching converter remains active but the Vcore converter may be
disabled by setting the LP_COREOFF bit in the VDCDC2 register. If left-enabled, the Vcore
voltage is set to the value predefined by the CORELP0/1 bits in the VDCDC2 register.

For the LDO outputs in low power mode, the LDO1OFF/nSLP and LDO2OFF/nSLP bits in the
VREGS1 register determine whether the LDOs are turned off or put in a reduced power mode,
where the internal transient speed-up circuitry is disabled in order to minimize the quiescent
current.

Refer to [5] for detailed description of all the configuration registers and modes.

2.4 System Design

Figure 5, Figure 6, and Figure 7 show how the OMAP5910 power supply rails are connected to
the power management device. This design only demonstrates the power and power
management capabilities of the OMAP, so it is up to the designers to determine what other
external components are required for implementing a specific application. Table 1 shows the
signals associated with the power management interface.

Table 1. OMAP5910 and TPS65010 Interface

OMAP5910 TPS65010 Schematic Ref. Description

CVDDA, CVDD4 U1300 Low noise supply for DPLL and
APLL circuits

CVDD, CVDD1,
CVDD2, CVDD3

Vcore VCC_CPU High efficient 1.6V core voltage

DVDD1 VLDO1 VCC_I/O Low noise 2.75V I/O voltage

DVDD4, DVDD5 VLDO1 VCC_MEM Low noise 2.75V memory voltage

DVDD2, DVDD3 Vmain VCC_3V3 High efficiency 3.3V I/O voltage

I2C Master I2C Slave OMAP is the I2C master

PWRON_RESET RESPWRON nRESPWRON Active low asynchronous reset

LOW_PWR LOW_PWR LOW_PWR Deep Sleep indication driven by the
OMAP5910

SPRA954A

9 OMAP5910 Low-Power System Design

In
Gnd
EN

Out
FB

1
2
3

U1300

TPS72101DBVT

C87
100nF

VCC_I/O

5
4 R348

30.6k
1%

R349
100k
1%

C354
100n

TP144

SH119
1

TP145

1

0402−R−Short

VDD6CVDD4
VDD1CVDD1
VDD3

VDD11
CVDD2

VDD10
VDD7

VDD4
VDD5

CVDD3

VDD8
VDD9

VDD12
VDD2

CVDD

VDD13CVDDA

M2
A3
AA3
Y1

B13
B20
J21
R20

F2
P12
Y20
A9
Y21

OMAP5910 power rails

VSS1
VSS2
VSS3
VSS4
VSS5
VSS6
VSS7
VSS8
VSS9
VSS10
VSS11
VSS12
VSS13
VSS14
VSS15
VSS16
VSS17
VSS18
VSS19
VSS20
VSS21
VSS22
VSS23
VSS24
VSS26
VSS27
VSS28

Unused

B16
A11
A13
A21
AA1

AA21
AA7

B1
B18

B2
B5
B7
E2

F20
G1
J20
K2

K20
N1

R21
U2

U20
V12

V5
W20
Y15

Y3

E5

U11H

C13
10µF
10V

C50
100nF 100nF

C72C45
100nF 100nF

C70

10V
10µF
C300

100nF
C301

R300
10

100nF
C201

10µF
10V

C11

10Ω
R200

C201
100nF

10V

C11
10µF

VCC_CPU

Figure 5. OMAP5910 Core/PLL Voltages

SPRA954A

10 OMAP5910 Low-Power System Design

C53
100nF

10V

C10
10µF

A15
A19
E21

VCC_I/O

VDDSHV_IO_0
VDDSHV_IO_1
VDDSHV_IO_2

Peripherals
DVDD1
2.5V −
2.75V −
3.0V

VDDSHV_IO_2

VCC_3V3

2.5V −
2.75V −
3.0V

DVDD3

VDDSHV_IO_3

Y16

C55
100nF

C53
100nF

3.0V
2.75V −
2.5V −
DVDD1

VDDSHV_IO_4
DVDD1
2.5V −
2.75V −
3.0V

C52
100nF

C9
10µF
10V

VDDSHV6

CLK32K

C51
100nF

VCC_I/O

2.75V −
2.5V −
DVDD1

3.0V

L21

U21

AA11

USB
DVDD2
3.0V
3.3V
3.6V

100nF

VCC_3V3

VDDSHV_USB
AA2

C60

VDDSHV_MEM_0
VDDSHV_MEM_1

VDDSHV_MEM_3
VDDSHV_MEM_2

VDDSHV_MEM_4
VDDSHV_MEM_5
VDDSHV_MEM_6

FLASH
interface

DVDD5
2.5V −
2.75V −
3.0VC2

E1

L1
H2

R1
V2

P3

VCC_MEM

C61
100nFC62

10µF
10V

C68
100nF

C67
100nF

VDDSHV_SDRAM_0
VDDSHV_SDRAM_1
VDDSHV_SDRAM_2
VDDSHV_SDRAM_3
VDDSHV_SDRAM_4

interface
SDRAM

2.75V −
3.0V

DVDD4
2.5V −

B10

A5
A7

A1

VCC_MEM

100nF
C65

10µF
16V

C79
100nF
C66

VDDSHV_COM_0

100nF
10µF
10V

C76
C64

VCC_3V3
interface

Y7

COM 2.5V −

3.0V
2.75V −

DVDD3

B12

OMAP5910
power

U11G

Figure 6. OMAP5910 I/O, Memory and USB Voltages

SPRA954A

11 OMAP5910 Low-Power System Design

C60
22µF

5

6

7

VINCORE

VINMAIN B

VINMAIN A

VCC

L2

VCORE

PGND2

L1_A

L1_B

VMAIN

PGND1_A

PGND1_B

PG

VBAT_A

VBAT_B

TS
38

42

41

11

Switcher

Charger section

AC

USB

ISET

U11

R45
1k

DEFCORE

DEFAMIN

PS_SEQ

IFLSB

SCLK

SDAT

PB_ONOFF

USB_VBUS

40

43

37

1

12

14

28

30

29

47

31

35

VBAT

R665
10kΩ

39

34

2

R664
10kΩ

VCC_3V3

1

2

3

4

S2

SPNO_B3S
Power

Reset

I2C_CLK

I2C_DATA

LEEP_nWAKE

RESET_IN

PWR_INT

S1

SPNO_B3S

2

1

4

3

R51
10kΩ

OW_PWR
36

HOT_RESET

INT

BATT_COVER

PWRFAIL

LED2

LOW_POWER

R50
10kΩ

VIB
27

3

NC

MPU_nRESET

nRESPWRON

32

33
MPU_RESET

RESPWRON

nPG

1µF
C728

R116
100R

SH7
TP31 TP30

0402−R−Short

1 1

VCC_CPU

L2 10µH

R52 0R

L3 6.8 µH

R53 n.m.

6

4

48

46

9

10

13

15

16

C52
10µF

0402−R−Short

VCC_3

TP43
SH8

1VDD_3V3_MAIN 1

C53
22µF

2

TP42

VIN2

VLDO2

C727 1µF

19

VCC_MEM

TP47

0402−R−Short

SH9
1 1

TP46

20 VCC_2V75_MAIN

C726 1µF

22
VIN1

2.2µF
C55

TP49

0402−R−Short
2.2µF

SH10
1 1

TP48

VCC_I/O

C56
VLDO1

24 VDD_2V75_MAIN

0603

R58 820kΩ_1%
23

VFB_LDO1
VFB_LDOI

GPIO4

GPIO3

GPIO2

GPIO1

R60 100kΩ
R61 100kΩ

R63 100kΩ
R62 100kΩ

R59
180kΩ_1%

18

17

25

26

AGND1

AGND2

AGND3

TPS65010

21

44

45

C411
1000µF
6V3/0.07R

C412
1uF
16V

D400
SMCJ6.0A

1

2

DC_IN_FUSED
12

F1 1A quick blow

1

2

3

ve.

J2
DC8

DC_IN

+

Figure 7. TPS65010 Power Management Circuit

2.5 System Software

The OMAP5910 deep sleep and awake software example was developed by Mike Blaskovich [3]
for the Innovator Development Platform [4]. The code example shown in Appendix A requires
the OMAP Code Composer Studio Version 2.1 or later to run. The entire project file is posted on
the website (www.omap.com).

SPRA954A

12 OMAP5910 Low-Power System Design

2.5.1 OMAP5910 Deep Sleep Program Flow

The sleep code example performs the following functions:

1. OMAP5910 start-up code

2. LOW_PWR signal enabling

3. OMAP5910 DSP shutdown

4. Wakeup event setup

5. ARM and traffic controller shutdown

6. Deep sleep entry

7. Wakeup by keypad on innovator

2.5.1.1 OMAP5910 Start-Up Code

The start-up code first places the OMAP5910 into its OMAP5910 pin-configuration mode by
calling the Set5910Mode routine. For simplicity, each pin uses the default pin multiplexing. The
OMAP5910 is then placed into synchronous scaleable mode. The write to the ARM_CKCTL
register controls the clock divisors used by various portions of the OMAP5910. For example, the
DSPMMU will receive the DPLL1 clock divided by 2 (72 MHz), the traffic controller (TC) will also
receive a divided-by-2 clock (72 MHz), the ARM and DSP will receive the full 144 MHz, the LCD
clock is 72 MHz, and the peripheral clock is 36 MHz. The write to ARM_IDLECT2 enables the
distribution of clocks to the DMA, DSP, timers, etc.

 Set5910Mode(); // Setup Configuration Space for 5910 Mode

 ARM_SYSST=0x1000; // Set Sync-Scaleable Mode

 ARM_CKCTL=0x3506; // DSPMMU/2,TC/2,ARM/1,DSP/1,LCD/2,PER/4

 DPLL1_CONTROL_REG=0x2610; // Spin up to 144 MHz

 while (ARM_CKCTL&0x1==0); // wait for DPLL lock

 ARM_IDLECT2 = 0x6FF; // Start most clocks (to be disabled later)

 ARM_RSTCT2 = 0x0001; // Remove Reset from ARM peripherals

SPRA954A

13 OMAP5910 Low-Power System Design

2.5.1.2 LOW_PWR Signal Enabling

This section of code enables the LOW_PWR signal to be output on pin T20. The LOW_PWR
signal is an alternate function of the armio_5 signal. The pin-multiplexing for this pin is controlled
by setting FUNC_MUX_CTRL_7<14:12>=‘001’. In addition to the pin-multiplexing change, the
LOW_PWR signal must be enabled by a write to the ULPD register POWER_CTRL_REG at
offset 0x50 in the ULPD register space.

 ULPD_POWER_CTRL_REG = 0x0001; // Enable low_pwr signal output during Deep Sleep

 stmpval=FUNC_MUX_CTRL_7; // Read Value from FUNC_MUX_CTRL_7

 stmpval &= 0xFFFF8FFF; // clear bit locations 14:12

 stmpval |= 0x00001000; // <14:12>=’001’ selects low_pwr signal on armio_5

 FUNC_MUX_CTRL_7 = stmpval;

2.5.1.3 OMAP5910 DSP Shutdown

The next segment of code places the OMAP5910’s C55x DSP into idle mode. To stop the DSP, it
is simply placed into reset and the DSP clock disabled. Additionally, the clocks to the DSP
peripherals must all be stopped by setting the DSP_IDLECT2 register to 0x0.

 ARM_RSTCT1 |= 0x2; // Set DSP_EN=1, remove reset from DSP block

 ARM_RSTCT1 &= ~0x2; // Set DSP_EN=0, put DSP block back into reset

 ARM_CKCTL &= ~0x2000; // Set EN_DSPCK=0, stop DSP block clock

 DSP_IDLECT2 = 0x0; // Stop any DSP domain clocks

2.5.1.4 Wakeup Event Setup

This segment of code will enable the OMAP5910 to exit deep sleep mode by means of a
wakeup event. The event that is used is the Innovator keypad. A wakeup event is simply an
unmasked interrupt from one of the 32 kHz-enabled peripherals. Because the keypad interrupt is
an edge-triggered event, it can simply be cleared by writing a ‘0’ to the appropriate bit of the ITR
register of the interrupt handler. A keypad press will provide an interrupt to bit-1 of the second
level interrupt handler.

 // Setup a wakeup event. Wake from any keypad press

 INTH2_ITR &= ~0x2; // Clear any pending keypad interrupt

 INTH1_ITR &= ~0x1; // Clear pending 2nd level interrupt

 INTH2_MASK=0xFFFFFFFD; // Enable a keypad interrupt to wakeup device

 INTH1_MASK=0xFFFFFFFE; // Permit 2nd level interrupt to wakeup device

2.5.1.5 ARM and Traffic Controller Shutdown

The next code segment prepares the ARM and traffic controller to enter deep sleep. If it is
running, the ARM watchdog must be disabled.

 WATCHDOG_TIMER_MODE=0x00F5; // If running, disable ARM watchdog timer

 WATCHDOG_TIMER_MODE=0x00A0;

SPRA954A

14 OMAP5910 Low-Power System Design

The remainder of the ARM shutdown has been done in an assembly routine named
5910DeepSleep. Rather than describing each line of the assembly code, the following steps
describe the events that are occurring:

1. Clear EMIFS global power-down enable bit (PDE) in EMIFS_CONFIG register

2. Set IMIF power-down bit (PWD_EN) in EMIFS_CONFIG register

3. Set CLK, PWD and SLRF bits of SDRAM controller

4. Set EMIFS global power-down enable bit (PDE) in EMIFS_CONFIG register

5. Put DPLL in Bypass

6. Stop the GPIO (XOR), API, HSAB, LB, and LCD clocks if running

Steps 1−4 are required to shut down the traffic controller. This sequence of operations works
around an errata that requires the PDE bit of the EMIFS_CONFIG register to be set to ‘0’ prior to
beginning the shutdown of the traffic controller (reference OMAP5910 Errata). Setting PDE=1
must be the last step toward idling the traffic controller.

In step 3, setting the CLK bit of the SDRAM_CONFIG register tells OMAP5910 to stop the
SDRAM clock during idle. PWD tells the SDRAM controller it can enter idle mode when the
SDRAM controller is inactive. Setting the SLRF bit places the SDRAM into self-refresh.

Step 5 places DPLL1 into bypass. At this point, all OMAP5910 internal clocks are derived
directly from the 12 MHz oscillator.

Step 6 is a write to the DSP_IDLECT2 register to manually assure that the clocks to the GPIO,
API, high-speed access bus (HSAB), local bus (LB) and LCD. These clocks are not
automatically stopped when the ARM Idle instruction is executed, so they must be stopped by
this manual operation.

2.5.1.6 Deep Sleep Mode Entry

The entry to deep sleep mode is done by writing to the ARM_IDLECT1 register. This register
controls two things: the entry of the ARM into its idle mode (bit 11, SETARM_IDLE); and a
number of bits that cause a number of other clocks to idle in conjunction with the ARM transition
into idle mode. The write to ARM_IDLECT1 with the SETARM_IDLE bit set to ‘1’ is the last
instruction before entry to deep sleep mode. This instruction should be followed by 20 NOPs:
 ; Idle all of the ARM-based clocks and Go to sleep

 ldr r0, arm_idlect1_reg // arm_idlect1_reg is 0xFFFECE04

 ldr r1, arm_idlect1_reg_sleepmask // arm_idlect1_reg_sleepmask is 0x0EC7

 strhr1, [r0] // 16-bit write operation. OMAP enters Deep Sleep

 nop

 nop

 :

 :

2.5.1.7 Wakeup By Keypad on Innovator

Innovator has a black 4-way switch on the front. Touch this switch and the device will wake up.
Code execution will resume in the nop instructions that followed the ARM_IDLECT1 write that
caused entry into deep sleep. In a system with more than one wakeup source, it will be
necessary to check the interrupt status bits to determine the source of the wakeup.

SPRA954A

15 OMAP5910 Low-Power System Design

2.5.2 Running the Code Under Code Composer Studio

After building the code using Code Composer Studio and loading the program, the system is
ready for test. The OMAP5910Sleep program runs in two segments with user intervention
required between the two segments. It follows a flow where it will:

1. Put the OMAP5910 to sleep

2. Wake up the OMAP5910 after a keypad press

When you hit Run, the program will execute until the OMAP5910 is in deep sleep. The output
window will display the following messages:

DSP Idled
(appears immediately after the DSP has been idled as described in section 2.5.1.3)

Processor about to enter Deep Sleep mode
(appears before calling 5910DeepSleep assembly routine described in section 2.5.1.6)

When deep sleep mode is entered, the program will still be running, but will appear to be “stuck”
– it is waiting for a wakeup event. By pressing a button associated with the keypad, it will wake
up and the following message will be displayed:

Processor Awake

To run the code again, simply select ‘Restart’ from the Debug pulldown menu of Code Composer
Studio.

2.5.3 Observing Deep Sleep Entry

Two methods can be easily observed when the OMAP5910 enters deep sleep mode: the
12-MHz oscillator stops toggling AND the LOW_PWR signal is asserted. The 12-MHz oscillator
restarts and the LOW_PWR gets deasserted as soon as the OMAP5910 exits deep sleep mode.
In this deep sleep example code, it will be asserted immediately upon execution of the write to
ARM_IDLECT1 as described in section 2.5.1.6. The LOW_PWR signal will remain asserted until
there is a keypad press.

To observe LOW_PWR on an Innovator, connect a scope probe (or a multimeter) to either the
break-out-board location B28, or observe it at resistor R43. The R43 resistor is located on the
opposite side of the processor module from the OMAP5910. It is unmarked but is easily located
(see Figure 8).

R58

H2H1

Probe here to see
low_pwr signal U

19
U

23

R
43

Figure 8. Innovator Settings for Deep Sleep

SPRA954A

16 OMAP5910 Low-Power System Design

2.6 Experimental Results

The OMAP5910 power consumptions (core plus I/O) were thoroughly measured and the results
are shown in Table 2 [6].

Table 2. OMAP5910 Current Consumption

Module Measured Results
Frequency

MHz
Total
mA Comments

DSP mA/MHz

0.575 150 86.3 DSP runs GSM FR vocoder
from Icache, all DSP domains
active, but with no DMA
activity. Includes DSP MMU.

DSP mA/MHz

0.457 150 68.6 DSP runs GSM FR vocoder
from internal RAM. Includes
DSP MMU.

MPU mA/MHz 0.310 150 46.5 MPU running EPOC

TC mA/MHz 0.191 75 14.3 TC, TIPB, and DMA clocks on
(IDLIF_ARM = 0) and DMA
auto-idle on.

CLKM mA/MHz 0.068 150 10.2 12-MHz oscillator, DPLL1, and
clock circuits

Total with DSP program in external memory: 157.3 mA

Total with DSP program in internal memory: 139.6 mA

3 Conclusions

This application note provided an example for system engineers to design a low-power,
multimedia communication device utilizing the OMAP5910 and the TPS65010 power
management device. This document also provides a code example developed for the Innovator
Development Platform to put the device in deep sleep and to wake it up. Finally, it includes
experimental data, which show the low-power consumption associated with different modules
within the OMAP5910 itself.

This design is only a proof-of-concept (not a complete reference design) to help designers to do
system planning and power budgeting of the OMAP5910 and the power management device.

4 References
1. OMAP5910 Dual-Core Processor Data Manual (literature number SPRS197)
2. OMAP5910 Dual-Core Processor Technical Reference Manual (literature number SPRU602)
3. Mike Blaskovich, OMAP1510 Deep Sleep Example Version 0.21, Texas Instruments Inc.,

May 2003
4. Productivity Systems, Inc., Innovator Development Kit for the Texas Instruments OMAP

Platform

SPRA954A

17 OMAP5910 Low-Power System Design

5. Texas Instruments Inc., TPS65010 Power and Battery Management IC for Li-ION Powered
Systems

6. Texas Instruments Inc., OMAP5910 Power Consumption Presentation, May 2003

18 OMAP5910 Low-Power System Design

Appendix A OMAP5910 Code [3]
// OMAP5910sleep.c

// Mike Blaskovich

// Revision 1.2

//

// History:

// Rev 1.0 put OMAP5910 to sleep

// Rev 1.1 added wakeup from keypad

// Rev 1.2 added additional comments

#include ”sleep1.h”

int main()

{

 unsigned int stmpval;

 void Set5910Mode();

/**
*/

/* This block of code has nothing to do with putting the processor to sleep. It is
*/

/* starting clocks, putting the device into 5910 mode, removing peripherals from reset
*/

/**
*/

 Set5910Mode(); // Setup Configuration Space for 1510 Mode

 ARM_SYSST=0x1000; // Set Sync−Scaleable Mode

 ARM_CKCTL=0x3506; // DSPMMU/2,TC/2,ARM/1,DSP/1,LCD/2,PER/4

 DPLL1_CONTROL_REG=0x2610; // Spin up to 144MHz

 while (ARM_CKCTL&0x1==0); // wait for DPLL lock

 ARM_IDLECT2 = 0x6FF; // Start most clocks (to be disabled later)

 ARM_RSTCT2 = 0x0001; // Remove Reset from ARM peripherals

/**
*/

/**
*/

/* Make the low_pwr signal output on the armio_5 pin location
*/

/**
*/

 ULPD_POWER_CTRL_REG = 0x0001; // Enable low_pwr signal output during Deep Sleep

 // by bit0=1 in ULPD POWER_CTRL_REG (offset 0x50)

 stmpval=FUNC_MUX_CTRL_7; // Read Value from FUNC_MUX_CTRL_7

 stmpval &= 0xFFFF8FFF; // clear bit locations 14:12

 stmpval |= 0x00001000; // <14:12>=’001’ selects low_pwr signal on armio_5

 FUNC_MUX_CTRL_7 = stmpval;

/**
*/

/**
*/

19 OMAP5910 Low-Power System Design

/* IDLE the DSP
*/

/**
*/

 ARM_RSTCT1 |= 0x2; // Set DSP_EN=1, remove reset from DSP block

 ARM_RSTCT1 &= ~0x2; // Set DSP_EN=0, put DSP block back into reset

 ARM_CKCTL &= ~0x2000; // Set EN_DSPCK=0, stop DSP block clock

 DSP_IDLECT2 = 0x0; // Stop any DSP domain clocks

 printf(”DSP Idled\n”);

/**
*/

/**
*/

/* Setup a wakeup source. Wakeup only from a keypad press
*/

/**
*/

 INTH2_ITR &= ~0x2; // Clear any pending keypad interrupt //

 INTH1_ITR &= ~0x1; // Clear pending 2nd level interrupt //

 INTH2_MASK=0xFFFFFFFD; // Enable a keypad interrupt to wakeup device //

 INTH1_MASK=0xFFFFFFFE; // Permit 2nd level interrupt to wakeup device //

/**
*/

/* Shut down the ARM and TC domains
*/

/**
*/

 WATCHDOG_TIMER_MODE=0x00F5; // If running, disable ARM watchdog timer

 WATCHDOG_TIMER_MODE=0x00A0;

 ULPD_CLOCK_CTRL_REG |= 0x20; // Make sure USB Client Clock is stopped

 printf(”Processor about to enter Deep Sleep mode\n”);

 OMAPDeepSleep();

 /* If wakeup occurs, the next line will be executed */

 printf(”Processor Awake\n”);

}

/**
*/

/* Put device in OMAP5910 Mode. All pins with default pin muxing. */

/**
*/

void Set5910Mode()

{

 FUNC_MUX_CTRL_0 = 0x00000000;

 FUNC_MUX_CTRL_1 = 0x00000000;

 FUNC_MUX_CTRL_2 = 0x00000000;

 FUNC_MUX_CTRL_3 = 0x00000000;

20 OMAP5910 Low-Power System Design

 FUNC_MUX_CTRL_4 = 0x00000000;

 FUNC_MUX_CTRL_5 = 0x00000000;

 FUNC_MUX_CTRL_6 = 0x00000000;

 FUNC_MUX_CTRL_7 = 0x00000000;

 FUNC_MUX_CTRL_8 = 0x00000000;

 FUNC_MUX_CTRL_9 = 0x00000000;

 FUNC_MUX_CTRL_A = 0x00000000;

 FUNC_MUX_CTRL_B = 0x00000000;

 FUNC_MUX_CTRL_C = 0x00000000;

 FUNC_MUX_CTRL_D = 0x00000000;

 PULL_DWN_CTRL_0 = 0xFFFFFFFF;

 PULL_DWN_CTRL_1 = 0xD8FDC000;

 PULL_DWN_CTRL_2 = 0x00280C2B;

 PULL_DWN_CTRL_3 = 0xFFFC00FE;

 GATE_INH_CTRL_0 = 0x00000000;

 VOLTAGE_CTRL_0 = 0x00000007;

 TEST_DBG_CTRL_0 = 0x00000007;

 MOD_CONF_CTRL_0 = 0x0D000000;

 COMP_MODE_CTRL_0 = 0x0000EAEF;

}

A.1 Library
// sleep1.h

// Registers used by OMAP5910sleep.c

typedef unsigned short UInt16;

typedef unsigned int UInt32;

#define ARM_CKCTL *((volatile UInt16 *) 0xFFFECE00) /* ARM Clock Control Reg */

#define ARM_IDLECT1 *((volatile UInt16 *) 0xFFFECE04) /* ARM Idle Control Reg 1 */

#define ARM_IDLECT2 *((volatile UInt16 *) 0xFFFECE08) /* ARM Idle Control Reg 2 */

#define ARM_RSTCT1 *((volatile UInt16 *) 0xFFFECE10) /* ARM Reset Control Reg 1 */

#define ARM_RSTCT2 *((volatile UInt16 *) 0xFFFECE14) /* ARM Reset Control Reg 2 */

#define ARM_SYSST *((volatile UInt16 *) 0xFFFECE18) /* ARM System Status Register
*/

#define DSP_IDLECT2 *((volatile UInt16 *) 0xE1008008) /* DSP Idle Control Reg 2 */

#define ULPD_CLOCK_CTRL_REG *((volatile UInt16 *) 0xFFFE0830) /* ULPD additional clock
controls */

#define ULPD_POWER_CTRL_REG *((volatile UInt16 *) 0xFFFE0850) /* ULPD Power Control, low_pwr
enable */

#define EMIFS_CONFIG_REG *((volatile UInt32 *) 0xFFFECC0C) /* Memory I/F Control Register
*/

#define EMIFF_SDRAM_CONFIG *((volatile UInt32 *) 0xFFFECC20) /* SDRAM Config Register */

#define WATCHDOG_TIMER_MODE *((volatile UInt16 *) 0xFFFEC808) /* ARM Watchdog timer mode */

#define DPLL1_CONTROL_REG *((volatile UInt16 *) 0xFFFECF00) /* DPLL1 Control Reg */

#define INTH1_ITR *((volatile UInt32 *) 0xFFFECB00) /* 2nd Level Interrupt
register */

21 OMAP5910 Low-Power System Design

#define INTH1_MASK *((volatile UInt32 *) 0xFFFECB04) /* 2nd Level Interrupt handler
mask */

#define INTH2_ITR *((volatile UInt32 *) 0xFFFE0000) /* 2nd Level Interrupt
register */

#define INTH2_MASK *((volatile UInt32 *) 0xFFFE0004) /* 2nd Level Interrupt handler
mask */

#define FUNC_MUX_CTRL_0 *((volatile UInt32 *) 0xFFFE1000) /* OMAP5910 Configuration
Registers */

#define FUNC_MUX_CTRL_1 *((volatile UInt32 *) 0xFFFE1004)

#define FUNC_MUX_CTRL_2 *((volatile UInt32 *) 0xFFFE1008)

#define COMP_MODE_CTRL_0 *((volatile UInt32 *) 0xFFFE100C)

#define FUNC_MUX_CTRL_3 *((volatile UInt32 *) 0xFFFE1010)

#define FUNC_MUX_CTRL_4 *((volatile UInt32 *) 0xFFFE1014)

#define FUNC_MUX_CTRL_5 *((volatile UInt32 *) 0xFFFE1018)

#define FUNC_MUX_CTRL_6 *((volatile UInt32 *) 0xFFFE101C)

#define FUNC_MUX_CTRL_7 *((volatile UInt32 *) 0xFFFE1020)

#define FUNC_MUX_CTRL_8 *((volatile UInt32 *) 0xFFFE1024)

#define FUNC_MUX_CTRL_9 *((volatile UInt32 *) 0xFFFE1028)

#define FUNC_MUX_CTRL_A *((volatile UInt32 *) 0xFFFE102C)

#define FUNC_MUX_CTRL_B *((volatile UInt32 *) 0xFFFE1030)

#define FUNC_MUX_CTRL_C *((volatile UInt32 *) 0xFFFE1034)

#define FUNC_MUX_CTRL_D *((volatile UInt32 *) 0xFFFE1038)

#define PULL_DWN_CTRL_0 *((volatile UInt32 *) 0xFFFE1040)

#define PULL_DWN_CTRL_1 *((volatile UInt32 *) 0xFFFE1044)

#define PULL_DWN_CTRL_2 *((volatile UInt32 *) 0xFFFE1048)

#define PULL_DWN_CTRL_3 *((volatile UInt32 *) 0xFFFE104C)

#define GATE_INH_CTRL_0 *((volatile UInt32 *) 0xFFFE1050)

#define VOLTAGE_CTRL_0 *((volatile UInt32 *) 0xFFFE1060)

#define TEST_DBG_CTRL_0 *((volatile UInt32 *) 0xFFFE1070)

#define MOD_CONF_CTRL_0 *((volatile UInt32 *) 0xFFFE1080)

A.2 Assembly Code
.global _OMAPDeepSleep

 .sect ”.text”

_OMAPDeepSleep:

 ; Clear EMIFS global power−down enable bit (PDE) in EMIFS_CONFIG register

 ldr r0, emifs_config_reg

 ldr r1, [r0]

 ldr r2, emifs_config_reg_pde_mask

 and r1, r1, r2

 str r1, [r0]

 ; Set IMIF power−down bit (PWD_EN) in EMIFS_CONFIG register

 ldr r1, [r0]

 orr r1, r1, #0x00000004

22 OMAP5910 Low-Power System Design

 str r1, [r0]

 ; Set CLK, PWD and SLRF bits of SDRAM Controller

 ldr r0, emiff_sdram_config_reg

 ldr r1, [r0]

 orr r1, r1, #0x0C000001

 str r1, [r0]

 ; Set EMIFS global power−down enable bit (PDE) in EMIFS_CONFIG register

 ldr r0, emifs_config_reg

 ldr r1, [r0]

 orr r1, r1, #0x08

 str r1, [r0]

 ; Put DPLL in Bypass

 ldr r0, dpll1_ctl_reg

 ldrh r1, [r0]

 ldr r2, dpll1_ctl_reg_mask

 and r1, r1, r2

 strh r1, [r0]

 nop

 nop

 nop

 nop

 nop

 nop

 nop

 nop

 nop

 nop

 ; Stop the GPIO (XOR), API, HSAB, LB, and LCD clocks if running

 ldr r0, arm_idlect2_reg

 ldrh r1, [r0]

 ldr r2, arm_idlect2_reg_stopmask

 and r1, r1, r2

 strh r1, [r0]

 ; Idle all of the ARM−based clocks and Go to sleep

 ldr r0, arm_idlect1_reg

 ldr r1, arm_idlect1_reg_sleepmask

 strh r1, [r0]

 nop

 nop

 nop

 nop

 nop

 nop

23 OMAP5910 Low-Power System Design

 nop

 nop

 nop

 nop

 nop

 nop

 nop

 nop

 nop

 nop

 nop

 nop

 nop

 nop

 nop

 nop

 nop

 nop

 nop

 nop

 nop

 nop

 mov pc, lr

emifs_config_reg .word 0xFFFECC0C

emiff_sdram_config_reg .word 0xFFFECC20

arm_idlect1_reg .word 0xFFFECE04

arm_idlect2_reg .word 0xFFFECE08

dpll1_ctl_reg .word 0xFFFECF00

dpll1_ctl_reg_mask .word 0xFFFFFFE3

emifs_config_reg_pde_mask .word 0xFFFFFFF7

arm_idlect1_reg_val .word 0x000006C7

emiff_sdram_config_reg_wakemask .word 0xF3FFFFFE

arm_idlect2_reg_stopmask .word 0xFFFFF987

arm_idlect1_reg_sleepmask .word 0x00000EC7

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright  2004, Texas Instruments Incorporated

http:\\amplifier.ti.com
http:\\dataconverter.ti.com
http:\\dsp.ti.com
http:\\interface.ti.com
http:\\logic.ti.com
http:\\power.ti.com
http:\\microcontroller.ti.com
http:\\www.ti.com\audio
http:\\www.ti.com\automotive
http:\\www.ti.com\broadband
http:\\www.ti.com\digitalcontrol
http:\\www.ti.com\military
http:\\www.ti.com\opticalnetwork
http:\\www.ti.com\security
http:\\www.ti.com\telephony
http:\\www.ti.com\video
http:\\www.ti.com\wireless

