
- 100-mA Low-Dropout Regulator
- Adjustable Output Voltage (0.7 V to 5.5 V)
- Only 23 µA Quiescent Current at 100 mA
- 1 μA Quiescent Current in Standby Mode
- Over Current Limitation
- -40°C to 125°C Operating Junction Temperature Range
- 5-Pin SOT-23 (DBV) Package

description

The TPS76201 low-dropout (LDO) voltage regulator features an adjustable output voltage as low as 0.7 V. It is an ideal regulator for sub 1.2-V DSP core voltage supplies and is equally suited for similar applications with other low-voltage processors and controllers. SOT-23 packaging and the high-efficiency that results from the regulator's ultralow power operation make the TPS76201 especially useful in handheld and portable battery applications. This regulator features low dropout voltages and ultralow quiescent current compared to conventional LDO

regulators. Offered in a 5-terminal small outline integrated-circuit SOT-23 package, the TPS76201 is ideal for micropower operations and where board space is at a premium.

A combination of new circuit design and process innovation has enabled the usual PNP pass transistor to be replaced by a PMOS pass element. Since the PMOS pass element is a voltage-driven device, the quiescent current is ultralow ($30 \,\mu A$ maximum) and is stable over the entire range of output load current ($10 \,\mu A$ to $100 \,m A$). Intended for use in portable systems such as laptops and cellular phones, the ultralow-power operation results in a significant increase in the system battery operating life.

The TPS76201 also features a logic-enabled sleep mode to shut down the regulator, reducing quiescent current to 1 μ A typical at T_J = 25°C. The TPS76201 is offered in an adjustable version (programmable over the range of 0.7 V to 5.5 V).

AVAILABLE OPTIONS [†]								
TJ VOLTAGE PACKAGE PART NUMBER								
-40°C to 125°C	Variable 0.7 V to 5.5 V	SOT-23 (DBV)	TPS76201DBVT‡	TPS76201DBVR§	PFUI			

[†] Contact the factory for availability of fixed output options.

[‡] The DBVT indicates tape and reel of 250 parts.

§ The DBVR indicates tape and reel of 3000 parts.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2001, Texas Instruments Incorporated

SLVS323A - FEBRUARY 2001 - REVISED MAY 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Input voltage range (see Note 1)	–0.3 V to 13.5 V
Voltage range at EN	–0.3 V to V _I + 0.3 V
Voltage on OUT, FB	
Peak output current	Internally limited
ESD rating, HBM	2 kV
Continuous total power dissipation	See Dissipation Rating Table
Operating virtual junction temperature range, T _J	–40°C to 150°C
Storage temperature range, T _{stg}	–65°C to 150°C

⁺ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to network ground terminal.

DISSIPATION RATING TABLE

BOARD	PACKAGE	R_{θ} JC	$R_{\theta JA}$	DERATING FACTOR ABOVE T _A = 25°C	T _A ≤ 25°C POWER RATING	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
Low K‡	DBV	65.8°C/W	259°C/W	3.9 mW/°C	386 mW	212 mW	154 mW
High K§	DBV	65.8°C/W	180°C/W	5.6 mW/°C	555 mW	305 mW	222 mW

[‡] The JEDEC Low K (1s) board design used to derive this data was a 3 inch x 3 inch, two layer board with 2 ounce copper traces on top of the board.
§ The JEDEC High K (2s2p) board design used to derive this data was a 3 inch x 3 inch, multilayer board with 1 ounce internal power and ground planes and 2 ounce copper traces on top and bottom of the board.

recommended operating conditions

	MIN	NOM MAX	UNIT
Input voltage, VI (see Note 2)	2.7	10	V
Output voltage range, V _O	0.7	5.5	V
Continuous output current, I _O (see Note 3)	0.01	100	mA
Operating junction temperature, TJ	-40	125	°C

NOTES: 2. To calculate the minimum input voltage for your maximum output current, use the following formula:

V_{Imin} = V_{Omax} + V_{DO}(max load)

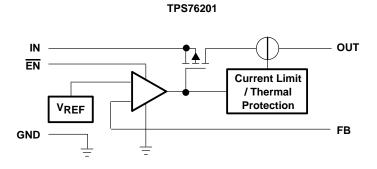
3. Continuous output current and operating junction temperature are limited by internal protection circuitry, but it is not recommended that the device operate under conditions beyond those specified in this table for extended periods of time.

electrical characteristics over recommended operating free-air temperature range, $V_I = V_{O(typ)} + 1 V$, $I_O = 100 \text{ mA}$, EN = 0 V, $C_o = 4.7 \mu F$ (unless otherwise noted)

PARAMETER	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
	$0.7 \text{ V} \le \text{V}_{O} \le 5.5 \text{ V},$	TJ = 25°C		Vo		v
Output voltage (10 μ A to 100 mA load) (see Note 4)	$0.7 \text{ V} \le \text{V}_{O} \le 5.5 \text{ V},$	$T_J = -40^{\circ}C$ to $125^{\circ}C$	0.97V _O		1.03VO	V
Quiescent current (GND current)	EN = 0V, 10 μA < I _O < 100 mA	$T_J = 25^{\circ}C$		23		
(see Notes 4 and 5)	EN = 0 V, 10 μA < I _O < 100 mA	$T_J = -40^{\circ}C$ to $125^{\circ}C$,			30	μA
Load regulation	EN = 0 V, 10 μA < I _O < 100 mA	T _J = 25°C		12		mV
	2.7 V < V _I ≤ 10 V, See Note 4	$T_J = 25^{\circ}C$,		0.04		%/V
Output voltage line regulation ($\Delta V_O/V_O$) (see Note 5)	$2.7 \text{ V} < \text{V}_{I} \le 10 \text{ V},$ T _J = -40°C to 125°C,	See Note 4			0.1	%/V
Output noise voltage	$\begin{array}{l} BW=300 \; Hz \; \mathrm{to} \; 50 \; kH \\ V_{O}=0.7 \; V, \end{array}$	z, C _o = 10 μF, T _J = 25°C		60		^{μV} RMS
Output current limit	V _O = 0 V,	See Note 4		350	750	mA
Standby current	$\overline{EN} = V_{I},$	2.7 < Vj < 10 V		1		μΑ
	$T_J = -40^{\circ}C$ to $125^{\circ}C$				2	μA
FB input current	FB = 0.666 V		-1		1	μA
High level enable input voltage	2.7 V < Vj < 10 V		1.7			V
Low level enable input voltage	2.7 V < Vj < 10 V				0.8	V
Power supply ripple rejection	f = 1 kHz, T _J = 25°C,	C _O = 10 μF, See Note 4		60		dB
Input current (EN)	EN = 0 V		-1	0	1	μΑ
	EN = VI		-1		1	μA

NOTES: 4. Minimum IN operating voltage is 2.7 V or V_{O(typ)} + 1 V, whichever is greater. Maximum IN voltage 10 V, minimum output current 10 μA, maximum output current 100 mA.

5. If $V_0 \le 1.8$ V then $V_{Imin} = 2.7$ V, $V_{Imax} = 10$ V:


Line Reg. (mV) =
$$(\%/V) \times \frac{V_O(V_{Imax} - 2.7 V)}{100} \times 1000$$

If $V_O \ge 2.5$ V then $V_{Imin} = V_O + 1$ V, $V_{Imax} = 10$ V:

Line Reg. (mV) =
$$(\%/V) \times \frac{V_O(V_{Imax} - (V_O + 1 V))}{100} \times 1000$$

functional block diagram

Terminal Functions

TERMI	TERMINAL I/O		DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
GND	2		Ground
EN	3	Ι	Enable input
FB	4	Ι	Feedback voltage
IN	1	Ι	Input supply voltage
OUT	5	0	Regulated output voltage

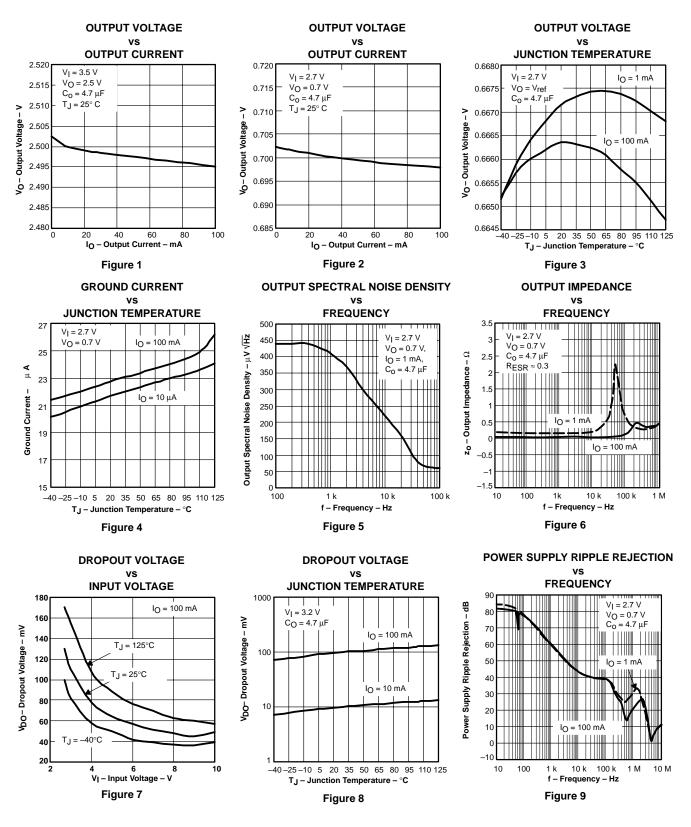
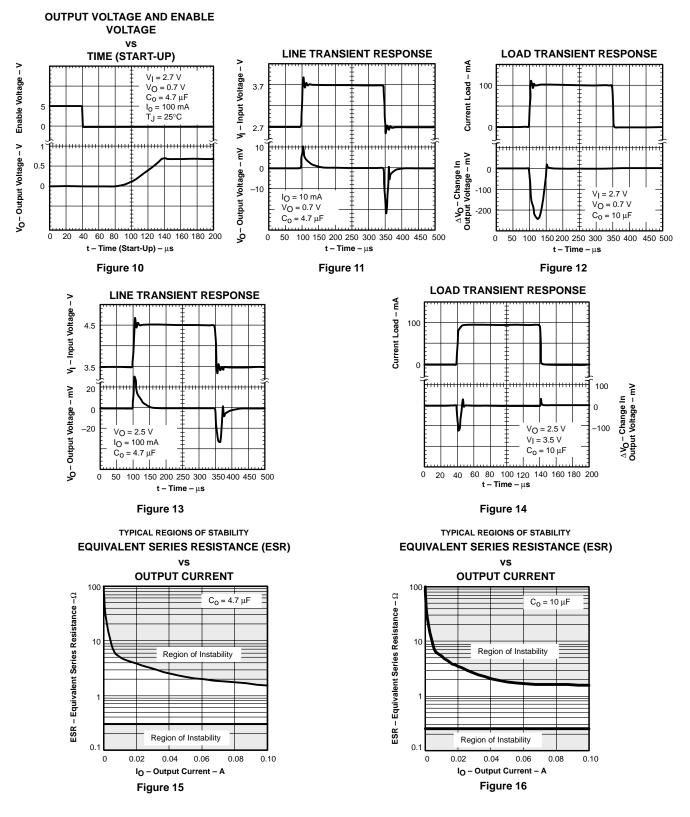

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
	Output veltage	vs Output current	1, 2
Vo	Output voltage	vs Junction temperature	3
	Ground current	vs Junction temperature	4
	Output spectral noise density	vs Frequency	5
z ₀	Output impedance	vs Frequency	6
V _{DO}	Dropout voltage	vs Input voltage	7
	Diopout voltage	vs Junction temperature	8
	Power supply ripple rejection	vs Frequency	9
	Output voltage and enable voltage	vs Time (start-up)	10
	Line transient response		11, 13
	Load transient response		12, 14
	Equivalent series resistance (ESR)	vs Output current	15, 16


TYPICAL CHARACTERISTICS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SLVS323A - FEBRUARY 2001 - REVISED MAY 2001

TYPICAL CHARACTERISTICS

APPLICATION INFORMATION

The TPS76201 low-dropout (LDO) regulator has been optimized for use in battery-operated equipment including, but not limited to, the sub 1.2-V DSP core voltage supplies. It features low quiescent current (23 μ A nominally) and enable inputs to reduce supply currents to 1 μ A when the regulators are turned off.

A typical application circuit is shown in Figure 17.

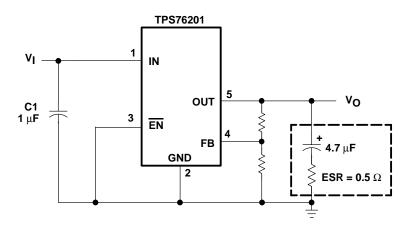


Figure 17. Typical Application Circuit

external capacitor requirements

Although not required, a 0.047-µF or larger ceramic input bypass capacitor, connected between IN and GND and located close to the TPS76201, is recommended to improve transient response and noise rejection. A higher-value electrolytic input capacitor may be necessary if large, fast-rise-time load transients are anticipated and the device is located several inches from the power source.

Like all low dropout regulators, the TPS76201 requires an output capacitor connected between OUT and GND to stabilize the internal control loop. The minimum recommended capacitance is 4.7 μ F. The ESR (equivalent series resistance) of the capacitor should be between 0.3 Ω and 1.5 Ω . to ensure stability. Capacitor values larger than 4.7 μ F are acceptable, and allow the use of smaller ESR values. Capacitances less than 4.7 μ F are not recommended because they require careful selection of ESR to ensure stability. Solid tantalum electrolytic, aluminum electrolytic, and multilayer ceramic capacitors are all suitable, provided they meet the requirements described above. Most of the commercially available 4.7 μ F surface-mount solid tantalum capacitors, including devices from Sprague, Kemet, and Nichico, meet the ESR requirements stated above. Multilayer ceramic capacitors are selected above above. Multilayer ceramic capacitors are selected above. Multilayer ceramic capacitors have the the the enduirements of the commercially available 4.7 μ F surface-mount solid tantalum capacitors, including devices from Sprague, Kemet, and Nichico, meet the ESR requirements stated above. Multilayer ceramic capacitors may have very small equivalent series resistances and may thus require the addition of a low value series resistor to ensure stability.

CAPACITOR SELECTION							
PART NO.	MFR.	VALUE	MAX ESR [†]	SIZE (H \times L \times W) [‡]			
T494B475K016AS	KEMET	4.7 μF	1.5 Ω	$1.9\times3.5\times2.8$			
195D106x0016x2T	SPRAGUE	10 μF	1.5 Ω	$1.3\times7.0\times2.7$			
695D106x003562T	SPRAGUE	10 µF	1.3 Ω	$2.5\times7.6\times2.5$			
TPSC475K035R0600	AVX	4.7 μF	0.6 Ω	$2.6\times6.0\times3.2$			

[†] ESR is maximum resistance in Ohms at 100 kHz and T_A = 25°C. Contact manufacturer for minimum ESR values.
[‡] Size is in mm.

SLVS323A - FEBRUARY 2001 - REVISED MAY 2001

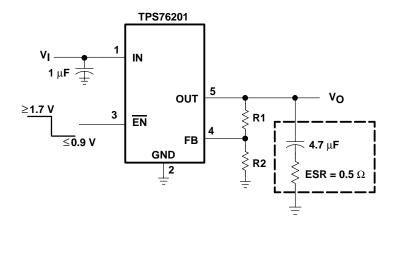
APPLICATION INFORMATION

output voltage programming

The output voltage of the TPS76201 adjustable regulator is programmed using an external resistor divider as shown in Figure 18. The output voltage is calculated using:

$$V_{O} = V_{ref} \times \left(1 + \frac{R1}{R2}\right)$$
(1)

Where:


V_{ref} = 0.6663 V typ (the internal reference voltage)

Resistors R1 and R2 should be chosen for approximately 10-µA divider current. Lower value resistors can be used but offer no inherent advantage and waste more power. Higher values should be avoided as leakage currents at FB increase the output voltage error. The recommended design procedure is to choose R2 = 66.5 k Ω to set the divider current at 10 μ A and then calculate R1 using:

$$R1 = \left(\frac{V_{O}}{V_{ref}} - 1\right) \times R2$$
(2)

OUTPUT VOLTAGE PROGRAMMING GUIDE

OUTPUT VOLTAGE	DIVIDER RESISTANCE (kΩ) [‡]				
(V)	R1	R2			
0.7	3.36	66.5			
0.9	23.2	66.5			
1.2	53.6	66.5			
1.5	83.5	66.5			
1.8	113	66.5			
2.5	182	66.5			
3.3	246	66.5			
3.6	294	66.5			
4	332	66.5			
5	432	66.5			

[‡]1% values shown.

APPLICATION INFORMATION

power dissipation and junction temperature

Specified regulator operation is assured to a junction temperature of 125°C; the maximum junction temperature should be restricted to 125°C under normal operating conditions. This restriction limits the power dissipation the regulator can handle in any given application. To ensure the junction temperature is within acceptable limits, calculate the maximum allowable dissipation, $P_{D(max)}$, and the actual dissipation, P_{D} , which must be less than or equal to $P_{D(max)}$.

The maximum-power-dissipation limit is determined using the following equation:

$$\mathsf{P}_{\mathsf{D}(\mathsf{max})} = \frac{\mathsf{T}_{\mathsf{J}}\mathsf{max} - \mathsf{T}_{\mathsf{A}}}{\mathsf{R}_{\mathsf{\theta}\mathsf{J}\mathsf{A}}}$$

Where:

T_Jmax is the maximum allowable junction temperature.

R_{0JA} is the thermal resistance junction-to-ambient for the package, see the dissipation rating table.

T_A is the ambient temperature.

The regulator dissipation is calculated using:

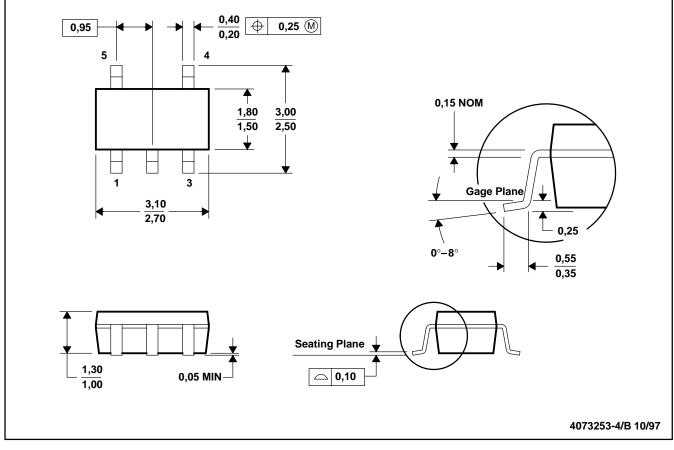
$$\mathsf{P}_{\mathsf{D}} = \left(\mathsf{V}_{\mathsf{I}} - \mathsf{V}_{\mathsf{O}}\right) \times \mathsf{I}_{\mathsf{O}}$$

Power dissipation resulting from quiescent current is negligible. Excessive power dissipation will trigger the thermal protection circuit.

regulator protection

The TPS76201 PMOS-pass transistor has a built-in back diode that conducts reverse current when the input voltage drops below the output voltage (e.g., during power down). Current is conducted from the output to the input and is not internally limited. If extended reverse voltage operation is anticipated, external limiting might be appropriate.

The TPS76201 features internal current limiting and thermal protection. During normal operation, the TPS76201 limits output current to approximately 350 mA. When current limiting engages, the output voltage scales back linearly until the overcurrent condition ends. While current limiting is designed to prevent gross device failure, care should be taken not to exceed the power dissipation ratings of the package. If the temperature of the device exceeds approximately 165°C, thermal-protection circuitry shuts it down. Once the device has cooled down to below approximately 140°C, regulator operation resumes.



SLVS323A - FEBRUARY 2001 - REVISED MAY 2001

DBV (R-PDSO-G5)

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions include mold flash or protrusion.

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TPS76201DBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS76201DBVRG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS76201DBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS76201DBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated