Introduction
Getting Started

FPGA Compiler
Tutorial

Design Compiler
Tutorial

Xilinx g the FPGA
Synopsys Using the Design
Interface Compiler
FPGA Usel’ Simulating Your
Guide FPGA Design

Files, Programs,
and Libraries

Xilinx Synopsys Interface FPGA User Guide — December, 1994 (0401291 01) Printed in U.S.A.

Conventions

The following conventions are used in this manual’s syntactical

statements.

Courier font System messages or program files appear

regular in regular Courier font.

Courier font Literal commands that you must enter in

bold syntax statements are in bold Courier font.

italic font Variables that you replace in syntax
statements are in italic font.

[1 Square brackets denote optional items or
parameters.

{} Braces enclose a list of items from which
you must choose one or more.
A vertical ellipsis indicates material that has
been omitted.
A horizontal ellipsis indicates that the
preceding can be repeated one or more
times.

| A vertical bar separates items in a list of
choices.

0 This symbol denotes a carriage return.

Xilinx Synopsys Interface FPGA User Guide — December, 1994 (0401291 01) iii

Xilinx Synopsys Interface FPGA User Guide

iv XACT Development System

Contents

Chapter 1 Introduction to the Xilinx Synopsys Interface

WRAL IS XSI? oot 1-1
Design Compiler Versus FPGA Compiler......cccccceeeeeiiiiiiiinvvennenn. 1-1
Xilinx Documentation Set........ccccceeviiiiiieeiiiiiee e 1-2
XSI DOCUMENEALIONvviiieiiiiiiee et 1-2
XACT DOCUMENLALION ...oeeiiiiiiee ettt 1-3
Chapter 2 Getting Started

Software Configurationcccccceeeeer i 2-1
Verifying Software Installation.............cccccceeeeiniiiiiiiiiiiiieeceeeeeen 2-1
Modifying the Default Synopsys Startup Fileccoecvvivnneenn. 2-3
Using the FPGA Compilerccccoviieeiiiiiec e 2-4
Generic FPGA Compiler Startup File Contents.................. 2-4
Modifying the Search Paths..............cccooiiii s 2-6
Modifying the DesignWare Library Search Path................ 2-7
Using Synlibs with the FPGA Compilerccccccveeeiiiiiinnns 2-7
Using the Design Compiler for XC4000 Designs..........c......... 2-8
Generic Design Compiler Startup File Contents................ 2-9

Modifying the Search Pathcccov s 2-11

Modifying the DesignWare Library Search Path................ 2-11

Using Synlibs with the Design Compiler............cccccoeevnnns 2-11

Using the Design Compiler for XC3000 Designs.................... 2-12

Generic Design Compiler Startup File Contents................ 2-13

Modifying the Search Pathcccovi s 2-14

Using Synlibs for XC3000 DEeVICES.......ccccvvvreeeeereeeeieiiininns 2-15

Chapter 3 FPGA Compiler Tutorial for XC4000 Designs

Before YOU BeQIN.......ccccuiiiiiiiiiecee e 3-1
Required FileS........uuviiiiiiieiii e 3-1
EXiting the Tutorialcccooo i 3-2
DESIGN FIOW e 3-3
Count8 Design DeSCrPLioNceevieeeeiiiiiiiiieeee e 3-4
Invoking the Design ANalyzercccovvveeeeeee e 3-6
Reading the Design File........eeiiiieiiiiiiiceeeeeee e 3-8

Xilinx Synopsys Interface FPGA User Guide — December, 1994 (0401291 01)

Xilinx Synopsys Interface FPGA User Guide

Analyzing the Design Fileccccciiiiiiiiiee e 3-8
Creating the Design Fileovvviiiiiieee s 3-10
Inserting 1/O BUFfersoooociiiiieee e 3-13
Defining Input Ports as Padscccccvvvieieeieee e 3-14
Defining the Output Portas a Padccccceevvveeeiiivciiiiieee, 3-16
Using the Insert Pads Command............ccccceveveeevieicciinieeennn. 3-17
Estimating Pre-Layout TimiNgueeevereeeeiiiiiiiiiiieeeeeeee e e 3-18
Selecting the Operating Conditioncccccviveeiveeee i, 3-18
Setting the Wire-Load ModelS...........cccooovvviiiiiiiinieee e 3-19
Optimizing fOr SPEEA.......cevviiee e 3-19
Compiling the DESIGNvveiiiiieee e 3-21
Evaluating the RESUILScooooiiiiiieece e 3-22
Viewing the Estimated Area ReSUItS............ccoevvcvvviieeeeneeennn, 3-24
Viewing the Estimated Timing Results..............cccccvvvvevereeennn. 3-26
Saving the Area and Timing Resultsto a File..............cceens 3-27
SaVvING the DESIGNuuviiiiiiieii e 3-28
WIriting the DB Filevvviieeieee e 3-29
Replacing CLBs and IOBs with Gatesccccceeevvevicvvvvvnennnn. 3-29
Setting the Design Part TYPEeuvevvevveeiii i 3-29
Removing BLKNM Attributescoccvviiiiieeieee e, 3-29
Saving the Design File as an SXNF File........ccccccceveeeiiiiiinnns 3-30
Exiting the Design ANAIYZEruuevvveieeeeiiiiiiceeee e 3-31
Executing the Commands from a Script File..........ccccccceeeiviinnns 3-31
Placing and Routing Your Design Using XMake.............ccccceeuenns 3-34
If XSl Is on Same Network as XACT Softwareccccoeueee. 3-35
If XSl Is on Different Network Than XACT Software............... 3-35
RUNNING SYN2XNF ...ooiiiiiiic e 3-35
RUNNING XIMAKEvveeiiiieee e e e 3-36
Examining XMake Output Files.........cccccvivveiiieeee e, 3-37
Reviewing the XMake OUT File......cccccceeeviviiciiiieiieeeeeee, 3-37
Checking for Warnings and Errors in the PRP File............ 3-37
Checking the RPT Fil€...ccovvvieiiiiiieeee e, 3-38
Comparing Actual Versus Estimated Area Results 3-44
USING XDEIAYuvvviieiiiiiie e e e 3-45
INVOKING XDEIAYcvvviiiiiiiiee e e e 3-46
Comparing Actual Versus Estimated Timing Results 3-46
Verifying Your Design Using XChecCKerccccccvvveeeeiiiiiiinvnnennn, 3-47

Chapter 4 Design Compiler Tutorial for XC3000A Designs
Before YOU BeQIN ...uuuviiiieeei ettt 4-1
Required FileS........cooo i 4-1

Vi XACT Development System

Contents

EXiting the Tutorialcccoov i 4-2
[T o T 01 P 4-3
Count8 Design DeSCHPLONuvivieeeeiiicsiiiieeee e 4-4
Invoking the Design ANalyzercccvvveeiveiee e 4-5
Reading the Design File.........cevviieeeiiiiiiceeeee e 4-7

Analyzing the Design File ..., 4-7

Creating the Design File ... 4-9
Inserting 1/O BUFfEISueeviiie e 4-12

Defining Input Ports as Padsccccccvvveeeeii i 4-13

Defining the Output Portas a Padccoooeevviviieeneeneeennn, 4-15

Using the Insert Pads Command..........ccccccoovevviviiiieineeneeennn, 4-16
Estimating Pre-Layout TimMiNg.......ccccoevvciiiiieeineeee e 4-16

Selecting the Operating Conditioncccccceovvviciiviiiieeeneeeenn, 4-17

Setting the Wire-Load Modelsccccccvveeeiiiniiciiiiieeeceeeen 4-17
Optimizing for SPEEA ... 4-17
Compiling the DEeSIGN ... 4-19
Evaluating the RESUIScuveiiiiieeiiiicee e 4-20

Viewing the Estimated Area ReSUlts..........ccccccveeevviiiciiiinnnnen. 4-22

Viewing the Estimated Timing ReSUltSccccccevvvvvivviinnnnen. 4-25

Saving the Report Resultsto a Fileccovvveeeiiiiicciiiiiiceneee, 4-25
SaviNg the DeSIGN ...cccooi i 4-28

WIriting the DB File.....ccoooiiiiiiieeeeee e 4-28

Setting the Design Part TYPe.....ccccveiveiiiiee e 4-28

Saving the Design File as an SEDIF File..........ccccccovvvveveeennn. 4-28
Exiting the Design ANAlYZErcccovviiivcciiiieieeeeee e 4-29
Executing the Commands from a Script File...............cccccvvvvnneenn. 4-30
Placing and Routing Your Design Using XMake..............cccvveeee.. 4-33

If XSl Is on Same Network as XACT Softwareccccceeenee 4-34

If XSl Is on Different Network Than XACT Software 4-34

RUNNING SYN2XNF ... 4-34
RUNNING XMAKE ... e e 4-35
Examining XMake Output Filescccccveeeviiiiiiiiiiiiececeeeeeen 4-35
Reviewing the XMake OUT Fileccccvviiiieiieeee e, 4-36
Checking for Warnings and Errors in the PRP File 4-36
Checking the RPT File.....ccvviiiiiiiee e 4-37
Comparing Actual Versus Estimated Area Results 4-42

USING XDEIAY ..cooveeeeiieicieeee et 4-43

INVOKING XDEIAYcceeeeiiiicieiiiieeie e e e 4-44

Comparing Actual Versus Estimated Timing Results 4-45
Verifying Your Design Using XCheckerccccovveeeieieeeeiiiieinnns 4-45

Xilinx Synopsys Interface FPGA User Guide vii

Xilinx Synopsys Interface FPGA User Guide

Chapter 5 Using the FPGA Compiler

Before YOU BeQIN ...uuuviiiieeei ettt 5-2
FPGA Compiler Design FIOWceuvvvveeeiiiiiiiiieeeeee e 5-2
XSl on Same Platform as XACT Software.........ccccceevvcvveeeennns 5-2
XSl on Different Platform than XACT Softwarecc.cc....... 5-3
Setting the Wire-Load Model............ccccvveeviiiieiiiiicieeeceeeeeen 5-5
Wire-Load Models for Xilinx FPGASccccovcvivieiiiiiene e, 5-5
Changing the Wire-Load Modelcoovcviviieeviieee s 5-6
How Wire-Load Models Are Determinedccccovvvveeennnen. 5-7
Operating CoNAItiONScoeviieeieiiiiiire e 5-7
Configuring TOBSuiiiiieiieec e 5-7
XCA000/A/D TOBS ...ttt ettt 5-8
1] 0 R 5-8
L 1110 | £ 5-9
XCA4000/D SIEW RALE.......evveeeeiiiiiieee et 5-9
XCA000A SIEW RALEcoiveeieeiiiieiee et 5-10
XCAO000H IOBS ...eeviieiiiiiiiee ettt 5-11
1] 0 R 5-12
L 1110 | £ 5-13
XCA000H SIeW RALE......ccuvveeeeiiiiiiee et 5-14
Assigning and Prohibiting Pad Locations............cccccccvvveveeeenn. 5-15
Implementing 3-State Registered Output...........ccccccvvvevereeeenn. 5-15
Not Directly Driving the 3-State Signalccccccevveeeeenn. 5-15
Directly Driving the 3-State Signalccocccvvvveieeeeeennn. 5-17
Inserting Bidirectional 1/OScccccvviiiiiieeee e 5-19
Instantiating a Registered Bidirectional I/O........................ 5-20
Compiling Bidirectional 1/Occccciieiiiieee e, 5-21
Using Unbonded 10Bs (XC4000/A ONly)cccvvveeeeieviciiiinennnn, 5-25
Adding Pull-Up and Pull-Down ResSIStors...........cccccvvvvvvereeeenn. 5-25
Removing the Default Input Delaycccccvvveveeeiiiiccciiiieee, 5-26
Initializing the 10B Flip-Flop to Preset..........cccoccccvvvvvveeeeeennn. 5-26
Inserting Clock BUfersccuvvviviieeiii e 5-26
Controlling Clock Buffer Insertioncccccvvvveeiiinee i, 5-27
Determining the Number of Clock Bufferscccoeecvvvvnnenn. 5-30
Preventing the Insertion of Clock Buffers............ccccoeecvvvvnnenn. 5-30
USING MEMIOIY ...ttt e et a e s e e e e e e e e e e 5-31
XCA000 RAMS ...ttt 5-31
XCA000 ROMS....oeiiiiiiiiiiee ettt e 5-32
USING MEMGEN ...t 5-34
Performing Boundary SCancccceveveieeeiiiiiiciiiieeeeeeee e 5-37

viii XACT Development System

Contents

Using the Global Set/Reset Net..........cccccvviiieiviiie e, 5-38
SEArtUP SEALE . 5-38
Preset Versus Direct Clearcccovvvveieiiiiiiiie e 5-39

Changing StateScoviviviieiieeieeee e 5-40
Increasing Performance with the GSR Net.......ccccccceeeiiiiinnnns 5-40

Using the X-BLOX DesignWare Library........ccccccceeeeeviiiiccinvnennnnn. 5-47
HDL Operators Using X-BLOX Modules..........cccccvvvvvvvvereeennn. 5-47
Improving the Timing of X-BLOX Modulesccccccceevvviiinnnnns 5-48

Creating Timing Specificationscooeccvvivieiiieee e, 5-50
Setting Timing CoNSraiNtS.........cccccvvviiiveeeee e 5-50

Create Specifications for Input Ports and Clock Net 5-50
Create Specifications for Input and Output Ports 5-51
Create Tighter Constraints on Output POrts 5-51
Create Tighter Constraints on Input POrtsccoceeuees 5-51
Prevent Specifications on Indicated Paths 5-52
Create Clocks on All Input POrts..........cccccvviveeveiee i, 5-52
Controlling How Timing Specifications Are Written 5-52
Control the Number of Constraints Written........................ 5-52
Create Default Timing Constraintscccccceeveeeeeeiiicnnnns 5-53

Compiling the DEeSIGN ... 5-53

Optimizing Logic Across Hierarchical Boundaries.................. 5-54
Flattening the Design..........cceevveeeeeiiiiiccieeieeeee e 5-54
Compiling the Design with Hierarchy..........cccccccveeiviiiinnns 5-56
Compiling the Design Without Hierarchy...........c..ccccoeeuees 5-56

Creating Unique Names for Multiple Instancesccccco....... 5-57

Compiling a Design That Contains Feedthroughs.................. 5-57

Compiling a Design with Instantiated 1/0 Cells........cccccccee...... 5-57

Compiling XC4000 DESIgNS.......ccccuvrrrrrerieeeeeeieiiiinineereeeeeeeeens 5-57

Compiling XC4000H DESIgNScccuvvvririiieeeeeeieiiiinrineeeeeaeeeenn 5-60

Creating the Area REPOIuvviiiieeeeeiiiiiieer e 5-64

Evaluating Timing DeIayscuuvveeeiiiiiiiiiiiieeie e 5-65

Generating Reports for Debuggingccccoveveeeeee i, 5-66
Generating a Configuration RepOrt........ccccccovvvvcvivviiiieeneeeennn, 5-66
Generating a Hierarchical Schematicccccccvvvvvveneeennn. 5-69

Creating a Level for Each CLB and IOB.........ccccccceevvinnes 5-70
Creating a Level for Each Function Generator 5-70

Writing and Saving the Design..........cccccvvvveeeee e 5-71
Saving the DB Fileuvviviiieeeii e 5-71
Replacing CLBs and I0OBs with Gates............cccccvvvvveeeeeeeennn. 5-72

Invoking the Replace FPGA Command..............ccccvvveeeeen. 5-72
If Your Design Contains Hierarchycccccccceevvviccvnvinnnnnn. 5-72

Xilinx Synopsys Interface FPGA User Guide

Xilinx Synopsys Interface FPGA User Guide

Removing the Synopsys Mappingccccccveeereeeeeeieinccinineeenen. 5-73
Removing FMAP and HMAP Symbolscccccccveeeeennn. 5-73
Removing BLKNM Attributesccevvveeeeiviiiiiiiieeeeeeeeeen 5-73

Setting the Design Part TYPeuvvvveveeeiii i 5-74

Saving the SXNF File.......cccciiiiiiiieeeee e 5-74

Translating SXNF Files to XNF Files Using Syn2XNF................. 5-74

)Y 1] = 3 O PUPUSS 5-75

T o 10 1= 5-75

(@ 111 o 10 1= 5-75

(0])10 1 1R 5-76
T e 5-76
I G e 5-76
—NEID e 5-76
e T PP PPP R 5-76
LS| S PP 5-77
—PAITEYPE e 5-77

Using the XACT Development Systemcccccvvveeeeeeeeeeieiiiinnns 5-77

If XSl Is on Same Platform as XACT Software...........cc..ocu.... 5-78

If XSl Is on Different Platform Than XACT Software 5-78

Chapter 6 Using the Design Compiler

Before YOU BeQIN ...uuuuiiiieeei ettt 6-1
Design Compiler Design FIOWcuuvviveeeiiiiiciiiiiieeeeeee e 6-1
If XSI Is on Same Platform as XACT Softwareccccceeeee... 6-2
If XSI Is on Different Platform Than XACT Software 6-2
Setting the Wire-Load Model............ccccveeveeiieiiiiiieeeceeeeeen 6-3
Wire-Load Models for XilinX FPGAScccoeeevvviiiiiiiiiieeeeeeeen 6-4
Changing the Wire-Load Modelcoovcviiiieeiiieee s 6-5
How Wire-Load Models Are Determinedccoeecvvvvvvnnnn. 6-6
Operating CoNAItiONScoevveeeieiiiiir e 6-6
Configuring the IOBS.......cviiiieee e 6-6
XCA000/A/D TOBS ...ttt 6-7
1]0] R 6-7
L 11 1 0 | 6-8
XC4000/D SIEW RALEeevvveeeeeeiiiciiiiiee e 6-8
XC4000A SIEW RALEevvveieeeeeei et e e 6-9
XCAO000H IOBS ...veviieiiiiiiee ettt 6-10
1]0] R 6-10
L 11 1 0 | 6-11
XC4000H SIEW RALE....cceviieeeeeeiiiciiiee e 6-12
XC3000/A/L and XC3100/A IOBSceviiiiiieieiiiiieee et 6-13

X XACT Development System

Contents

1] 0 6-14

L 11 1 0] | £ 6-14
XC3000/A/L and XC3100/A Slew Rateccccoevveveennnnnn. 6-14
Assigning and Prohibiting Pad Locationscccccvvvvvneen. 6-15
Implementing 3-State OUIPUL..........cceeeiviiiiiiiieiieeeree e 6-15
Not Directly Driving the 3-State Signalcccccceeeiviinnnes 6-15
Directly Driving the 3-State Signal...........ccccccvvvveeeiiiiicnns 6-17
Inserting Bidirectional 1/OS.........ccuvviieeiiiiiiiiiiieeeee e 6-19
Instantiating a Registered Bidirectional 1/O 6-19
Compiling Bidirectional 1/Occcooviviiiiiiiiiiiieiee s 6-21

Using UnNbonded IOBScocccvviiiiiiiieee e 6-25
Adding Pull-Up and Pull-Down ReSIStOrScccoeveevvvvnnnnnn. 6-25
Removing the Default Input Delay (XC4000 Only) 6-26
Initializing the 10B Flip-Flop to Preset (XC4000 Only)............ 6-26
Inserting CIOCK BUFfErS........ovceeiiiiiceeee e 6-26
XC4000/A/D/H Clock BUFferS........eeveiiiiiiiieiiiiieee e 6-27
XC3000/A/L and XC3100/A Clock Buffers.........ccccoecveveeennnen. 6-27
Controlling Clock Buffer INSertioncccccccevvvvvccviieeeneneeennn, 6-28
Determining the Number of Clock Buffers..........ccccccvvvveveeennn. 6-31
Preventing the Insertion of Clock Bufferscccccocevveveeennn. 6-31
USING MEMOIY ..ceeiie ittt e e e e e e e e e e e e 6-32
XCA000 RAMS ..ottt 6-32
ROMS ...ttt e s e e s abbe e e 6-33
USING MEMGENuviiiiiiieee ettt e e e e e e e e e 6-35
Performing Boundary Scan for XC4000 Devices............ccccvvveeeen. 6-38
Using the Global Set/Reset Net..........cccccvvviieieiiie e, 6-39
XCA000 DEVICESuevveeeeeiiiiiee ettt 6-39
Startup State......oooviiieeeeeee e 6-39
Preset Versus Direct Clear.........ocueeveviiiiieieiiiiiiees i, 6-40
Changing StateSc.covvecciviiiieei e 6-41
Increasing Performance with the GSR Net........................ 6-42
XC3000 and XC3100 DEVICESuuvreiririireeiiiiieeeseiiieeeeenneeees 6-48
Using the X-BLOX DesignWare Library........ccccccceeeeeviiiiccinvnnnnnnn. 6-54
HDL Operators Using X-BLOX Modules..........ccccccvvevvrereeennn. 6-54
Improving the Timing of X-BLOX Modulesccccccceevivviinnnns 6-55
Compiling the DEeSIGN ... 6-57
Compiling a Design That Contains Feedthroughs.................. 6-58
Compiling XC3000 and XC4000 DesSignsS.........cccccuvvverrereeeennn. 6-58
Compiling a XC4000H DeSIgNcuvvveriiieeeeeeieiiiniieeeeeeaeeeen 6-61
Creating the Area REPOIueuiviiieeeeiiiirieee e 6-65
Evaluating Timing DeIayscuvvveeeeiiiiiiiiiiieeie e 6-66

Xilinx Synopsys Interface FPGA User Guide xi

Xilinx Synopsys Interface FPGA User Guide

Writing and Saving the Design..........ccoovcviviieeeiece e 6-67
Saving the DB Fileccoooiiiieeeee e 6-67
Setting the Design Part TYPeuvvvveveeeiii i 6-68
Saving the SEDIF File.......cccvvviiiiiieeee e 6-68

Translating SEDIF Files to XNF Files Using Syn2XNF................ 6-68
)Y 1] = 3 O PUPUSS 6-69
T o 10 1= 6-69
(@ 111 o 10| 1= 6-70
(0])10 1 1R 6-70

T e 6-70
I G e 6-70
—NEID e 6-70
e [T USSR 6-70
e L1 o P 6-71
e 01U | ST PP PPPPPPPPPPRPPTPP 6-71
e S L2111/ 1= 6-71
—SUD Lttt 6-71

Using the XACT Development Systemcccccvveeeeereeeeieiiinnnns 6-72
If XSl Is on Same Platform as XACT Software...........cc..ocu.... 6-72
If XSl Is on Different Platform Than XACT Software 6-72

Chapter 7 Simulating Your FPGA Design

Recommended FPGA Simulation Strategy........ccccccevveeeeeiniiinnnns 7-1

Editing the VSS Setup File ..., 7-2

Check Your SoUrce File ... 7-3

Controlling Initial States of RegiSterscccccccvevivvicciiiiieiieeeeeen, 7-3
Simulating Global Set/ReSEt.........ccceeeeviiiiiiciiiiiiiieee s 7-3

Preparing for Timing Simulationcccooeccviveeeeneeeenn. 7-4
Preparing for Functional Simulation..............ccccccvveveveeeenn. 7-5

Creating a Test Bench File............ccccoviiiiviie e 7-6
INitializing REQISEIS ...vvviviiiee e 7-6
Configuration Declarationccccccveeeviiiiiciiiiiieeeeee e 7-8

Functional Simulation.............occeeiiiiiee e 7-9

Design Implementationccccvveeeireiee e 7-12

Preparing the Timing Model ... 7-14

TimINg SIMUIAtION........coceeeeecce e 7-14

Chapter 8 Files, Programs, and Libraries

Directory Structure for XSlocccoiiiiiiiiee e 8-1

File DESCHPLIONS. .. .uuiieiiiee e et e e e e e e e e e e e e enenees 8-4

Program DesCriPtiONS.........ccooviciviiiiiieeie e cessieeeee e e e e e e eneees 8-5

xii XACT Development System

Contents

Library DeSCHPONSc.eeiiiiieieiiie e
Supported Part Types and Speed Grades..........ccccccvvvereeeennn.
xprim_family—s.db and xprim_parttype—s.dbc..........
Xio_4kparttype—s.dbcoooiiiiii e
xfpga family—s.db........cooviiii
xdc_family—S.db......cooveveeiiiii
Unsupported Part Types and Speed Grades..........ccccceeeeennnn.

Appendix A XC3000/A/L and XC3100/A Primitives

XC3000 PrIMILIVES ...cevvvviriiiiiiiiiiiiiieieieieeeeeeeeeeeeeeeeeeeeereassssaarenanane
BASIC GALESeevvvveiiiiiiiiiiiiceee et e e e e e e e e e e e e e e e e,
Flip-Flops and LatChesccccciiiiiiiiiiee e
(01 [0 Tox (SO
(O 1Yol =1 0] £ S
/O PrIMITIVES ...t e e e e e e eeeeevaraaaraans
Special FUNCLIONSuvviiiiiieci e

Appendix B XC4000/A/D/H Primitives and Hard Macros

XCA000 PrIMILIVES ..ceevvvvrriiiiiiiiiiiiieieieieeeeeeeeeeeeeeeeeeeeeeesesseasreraaane
BASIC GALESeevvvveiiiiiiiiiiiiei ettt e e e e e e e e e ee e e e e e e,
Flip-Flops and LatChesccccciviiieiiieee e
(01 [0 Tox (OO
/O PrIMITIVES ..ottt e e e e e e e e eeeeevaraaaraaes
Special FUNCLIONSuviiiiiiiec e

X-BLOX MOAUIESceevveiiretiiiicieiee ettt

XC4000 Hard MACIOSuvuvuuuiiiiiiieieieieeeeeeeeeeeeeeeeeeeeeveaeavaeararaaae

Appendix C Selection Guide

XC3000/A/L and XC3100/A PrimitivVesS.......ccoeeeeevieeveeeeeeeeeeiieeeeeens
XC4000/A/D/H PriMItIVES ..cvvveieieiieeee e e e

Xilinx Synopsys Interface FPGA User Guide

Xiii

Xilinx Synopsys Interface FPGA User Guide

Xiv XACT Development System

Introduction

Xilinx
Synopsys
Interface
FPGA User
Gulide

Xilinx Synopsys Interface FPGA User Guide — December, 1994 (0401291 01) Printed in U.S.A.

Xilinx Synopsys Interface FPGA User Guide

XACT Development System

Chapter 1

Introduction to the Xilinx Synopsys Interface

This chapter introduces XSI, discusses the two compiler options,
FPGA Compiler and Design Compiler, and describes the XSI
documentation set.

What Is XSI?

The XSI design tool kit allows you to implement Xilinx Field
Programmable Gate Array (FPGA) designs using either the Synopsys
FPGA Compiler or Design Compiler synthesis tool. These Synopsys
High-Level Design Automation (HLDA\) tools create and optimize
circuit designs from hardware descriptions written in VHSIC
Hardware Description Language (VHDL) or Verilog HDL.

Library support for the XC4000 family also includes a DesignWare"
library that maps adder/subtracter, comparator, and incrementer/
decrementer functions to appropriate X-BLOX”modules. X-BLOX
implements these functions using features in the XC4000 family such
as fast carry logic. X-BLOX is included in all standard software
packages.

Before starting a Xilinx design with Synopsys, read the next chapter,
“Getting Started.”

Design Compiler Versus FPGA Compiler

XSl contains libraries for the XC3000/A/L, XC3100/A, and XC4000/
A/D/H families. You can use either the FPGA Compiler or Design
Compiler to synthesize a design for all Xilinx devices.

The Design Compiler (V3.1x or later) provides the following features.

Xilinx Synopsys Interface FPGA User Guide — December, 1994 (0401291 01) 1-1

Xilinx Synopsys Interface FPGA User Guide

Optimizes flip-flops and latches in the input/output block (IOB)
Optimizes 3-state buffers in the I0OB
Encodes one-hot state machines

Uses the configurable logic block (CLB) Clock Enable pin
automatically

In addition to the features provided in the Design Compiler, the
FPGA Compiler delivers more efficient results and more accurate
timing and area reporting as follows.

Optimizes logic to the XC4000 family CLB and IOB architectures

Reports area and timing by device architecture, for example, CLB,
IOB, and 3-state buffer

Passes timing constraints to the XACT-Performance" utility

Reads XNF (Xilinx Netlist Format) reader files for design reuse
and back-annotation of post-route results

Note: This manual assumes that you are using the FPGA Compiler
synthesis tools for XC4000 devices. If you do not have the FPGA
Compiler, XSI provides XC4000 libraries that you can use with the
Design Compiler. You can use the FPGA Compiler for XC3000 and
XC3100 devices; however, the libraries for these devices use the
Design Compiler synthesis features.

Xilinx Documentation Set

The Xilinx documentation set consists of a series of books that help
you use the XACT® Development System with your Synopsys tools.

1-2

XSI Documentation

The XSI documentation set includes the following manuals.

XSI Release Notes provide detailed instructions on installing the
XSI software and additional platform-specific information, as well
as known issues and workarounds.

Xilinx Synopsys Interface FPGA User Guide, this guide, contains
information on how to use your Synopsys tools with the XACT
Development System to create FPGA designs. The “Preface”
describes the contents of each chapter.

XACT Development System

Introduction to the Xilinx Synopsys Interface

« Xilinx Synopsys Interface EPLD User Guide contains information on
how to use your Synopsys tools with the XACT Development
System to create EPLD designs.

XACT Documentation

The XACT documentation set includes the following manuals.

« XACT User Guide contains an overview of the XACT Development
software, including general design implementation flows and
configuration hints.

« XACT Reference Guide provides detailed information on the
programs that XMake invokes during the design implementation
and design verification stages.

o X-BLOX User Guide describes the X-BLOX synthesis tool, which
consists of a library of modules you can use to describe high-level
functions.

« XACT Libraries Guide presents information about the various
Xilinx-provided primitives and macros.

Xilinx Synopsys Interface FPGA User Guide 1-3

Xilinx Synopsys Interface FPGA User Guide

1-4 XACT Development System

Getting Started

Xilinx
Synopsys
Interface
FPGA User
Gulide

Xilinx Synopsys Interface FPGA User Guide — December, 1994 (0401291 01) Printed in U.S.A.

Xilinx Synopsys Interface FPGA User Guide

XACT Development System

Chapter 2

Getting Started

This chapter enables you to verify that the Xilinx and XSl software is
installed. This chapter also describes how to do the following.

« Modify your Synopsys startup file, .synopsys_dc.setup

« Use the Synlibs program to determine the correct XSl libraries for
the FPGA Compiler or Design Compiler

Note: Read this chapter before you begin the FPGA Compiler tutorial
or Design Compiler tutorial.

Software Configuration

Your XSl software (DS-401) must be installed on the same platform as
the Synopsys software. However, the XACT software (DS-502) can be
installed on the same network or on a different network (platform);
for example, your XACT software might reside on a PC while your
XSl and Synopsys tools reside on a UNIX-based workstation. For
more information, consult the installation section of the release notes
or your system administrator.

Verifying Software Installation

This section enables you to verify that XACT, X-BLOX, and XSl are
installed on your system and that your .cshrc and .login files include
the required environmental variables and search paths.

1. Go to the platform where the XACT software is installed.

2. To verify that your system has the XACT Development System
software (DS-502), type which ppr O atthe system prompt.

Xilinx Synopsys Interface FPGA User Guide — December, 1994 (0401291 01) 2-1

Xilinx Synopsys Interface FPGA User Guide

2-2

The full path for PPR appears onscreen. If the system cannot find
PPR, refer to the installation instructions in the release notes or see
your system administrator.

3. To verify that X-BLOX (DS-380) has been installed, type which
xblox [Jat the system prompt.

The full path for X-BLOX appears onscreen. If the system cannot
find X-BLOX, refer to the installation instructions in the release
notes.

4. To verify that XSI (DS-401) has been installed, type which
syn2xnf [at the system prompt.

Note: If XSl is installed on a different platform, go to that platform
before executing the Syn2XNF command.

The full path for XSI appears onscreen. If the system cannot find
Syn2XNF, refer to the installation instructions in the release notes
or see your system administrator.

5. Change to the following directory.
cd DS401-directory/synopsysl/libraries/dw/lib/fpga
DS401-Directory is the directory where XSl is installed.

6. List the contents of this directory to verify that the source X-BLOX
DesignWare files were placed in this directory during installation.

This directory should contain the object file for the X-BLOX
DesignWare symbol modules (xblox_dw_module.syn) and the
simulation modules (xblox_dw_module.sim).

Note: The variable xblox_dw_module refers to the X-BLOX
DesignWare primitive name.

If you do not find the SYN and SIM files in this directory, refer to
the release notes or see your system administrator. The README
file contains installation instructions and is located in the DS401-
Directory/synopsys/libraries/dw/src/fpga directory. Refer to the
installation notes for instructions on how to analyze the X-BLOX
DesignWare modules.

XACT Development System

Getting Started

Modifying the Default Synopsys Startup File

The .synopsys_dc.setup file is the startup file for the Synopsys
synthesis tools. This file contains the search path for the XSI libraries,
Synopsys libraries, and user libraries. XSI provides a default
Synopsys startup file.

This section describes how to modify this default setup file to include
the path to the Xilinx link and target libraries for the FPGA Compiler
and Design Compiler as well as the other required libraries.

XSI provides a default Synopsys startup file in the following
directory.

DS401-directory/synopsys

DS401-Directory is the directory where XSl is installed. If you do not
know the location of this directory, type the following at the system
prompt.

echo $XACT

The system displays the paths set for the XACT environment variable
and lists the path for XSI first.

If you already have a .synopsys_dc.setup file, you must modify your
file to include the commands found in the Xilinx-supplied default
startup file.

If you do not already have a Synopsys startup file, copy the
appropriate Xilinx-supplied startup file to your home or working
directory and rename it as follows.

cp DS401-Directory/synopsys/ — tech.synopsys_dc.setup \
.synopsys_dc.setup

Substitute tech with one of the following options.
. fcdk if you are using the FPGA Compiler
. dcdk if you are using the Design Compiler with XC4000 devices

. dc3k if you are using the Design Compiler with XC3000/A/L or
XC3100/A devices

The following sections describe how to modify your setup file for the
selected compiler.

Xilinx Synopsys Interface FPGA User Guide 2-3

Xilinx Synopsys Interface FPGA User Guide

Using the FPGA Compiler

The FPGA Compiler requires five libraries for synthesis to Xilinx
devices. The libraries are separated to reduce disk space.

This section describes how to modify the search path, modify the
DesignWare library search path, and use Synlibs to display the
appropriate target and link libraries.

Figure 2-1 is an example of the default startup file provided with the
XSI software — fcdk.synopsys_dc.setup. Refer to your Synopsys
documentation for more information about the Synopsys startup file.

% EXAMPLE FPGA COMPILER STARTUP FILE - .synopsys_dc.setup ®/
A% FOR HC4000/A/H/D PARTYPES *f

search_path = § . b
<DS401-RACT-Directory:fsynopsys/libraries/asyn
<SYMOPSYS_Directory>/T1ibraries/syn?

link_library = {zprim_4005-5.db =prim_4000-5.db xgen_4000.db %
%10_4000-5.db =fpga_4000-5.db}

target_library = fxprim_4005-5.db ®prim_4000-5.dbh xgen_4000.db %
%i0_4000-5.db xfpga_4000-5. db}

symbol_Tibrary = xc4000.sdhb
define_design_11b WORK -path . /WORK

define_design_Tib =blox_4000 -path %
<DS401-KACT-D1 rectory:/synopsys/Tibraries/dw/1ib/fpga

synthetic_library = fxhlox_4000.s1db standard.sldh?
compile_fiw_multiple_port_nets = true
wlnu_hier_blknm = 1

snfout_library_version = "2.0.0"

bus_naming_style = "%z<&ds"

bus_dimension_separator_style = "»<"
bus_inference_style = "%s<ikd:"

Figure 2-1 Synopsys Startup File

Generic FPGA Compiler Startup File Contents

This section describes the sample .synopsys_dc.setup file illustrated
in Figure 2-1.

2-4 XACT Development System

Getting Started

e« search_path={.\
<DS401-XACT-Directory>/synopsys/libraries/syn \
<SYNOPSYS-Directory>/libraries/syn}

This line sets the search path for Xilinx and Synopsys-supplied
library files.

e link_library = {xprim_4005-5.db xprim_4000-5.db xgen_4000.db
xio_4000-5.db xfpga_4000-5.db}

target_library = {xprim_4005-5.db xprim_4000-5.db \
xgen_4000.db xio_4000-5.db xfpga_4000-5.db}

These lines specify the default target and link libraries that indicate
which compiler is used. The sample libraries are for an XC4005-5
device. You can use these libraries for the FPGA Compiler tutorial.

The Synlibs program determines the correct libraries for the
different device types and speed grades. Refer to the “Using
Synlibs with the FPGA Compiler” section that follows for more
information on how to use Synlibs to change the link and target
libraries to a different part type and speed grade.

The target and link libraries are device-specific. Therefore, you
might not want to specify target and link libraries in a generic
startup file.

e symbol_library = xc4000.sdb
This line specifies the symbol libraries.
o define_design_lib WORK —path ./WORK

This line creates a directory to store intermediate files created by
the Analyze command for VSS users.

« define_design_lib xblox_4000 —path
<DS401-XACT-Directory>/synopsys/libraries/dw/lib/fpga

This line specifies the directory where the X-BLOX DesignWare
components reside.

o synthetic_library = {xblox_4000.sldb standard.sldb}

This line specifies the synthetic library.

Xilinx Synopsys Interface FPGA User Guide 2-5

Xilinx Synopsys Interface FPGA User Guide

2-6

o compile_fix_multiple_port_nets = true

This line allows the Synopsys optimization algorithm to insert
extra logic into the design to ensure that there are no feedthroughs
and that no two output ports are connected to the same net.

o XInx_hier_blknm =1

This line creates unique names for each instance of the sub-
module for hierarchical design that have more than one instance
of the same module.

« xnfout_library_version = “2.0.0"

This line allows Synopsys to write a version 5 XNF file. By default,
Synopsys writes a version 4 XNF file. You must specify this
command if you are using XSI V3.1 or later libraries and XACT
V5.0 or later software.

e bus_naming_style = "%s<%d>"
bus_dimension_separator_style = "><"
bus_inference_style = "%s<%d>"

These lines set the READ parameters for the Xilinx netlist formats.
All bus indexing is of the form “bus<index>.”

Modifying the Search Paths

Modify the search path line in the default .synopsys_dc.setup file to
include the path to the XSI and Synopsys installation directories as
follows.

1. To determine the Synopsys installation path, enter the following at
the command line.

echo $SYNOPSYS

2. Open the setup file in a text editor and replace DS401-Directory
with the full path of the directory where the XSl software is
installed (the $XACT environment variable contains this path).

3. Replace SYNOPSYS-Directory with the path where your Synopsys
software is installed (usually stored in the environment variable
$SYNOPSYS).

XACT Development System

Getting Started

Modifying the DesignWare Library Search Path

The X-BLOX DesignWare library contains descriptions of adders,
subtracters, comparators, incrementers, and decrementers that map
to X-BLOX modules. X-BLOX also generates Xilinx-optimized
implementations of common functions. If you have the X-BLOX
package, follow this procedure.

Modify the following line in your .synopsys_dc.setup file to use the
X-BLOX DesignWare library.

define_design_lib xblox_4000 —path \
<DS401-XACT-Directory>/synopsys/libraries/dw \
/lib/fpga

The DS401-XACT-Directory is the full path of the directory where the
XSl software is installed (the $XACT environment variable contains
this path).

If you do not use X-BLOX, comment out or remove the following lines
in the Synopsys startup file. Enclose your comments with a /* (slash,
asterisk) and an */ (asterisk, slash), as illustrated by the following
example.

/* define_design_lib xblox_4000 —path \
<DS401-XACT-Directory>/synopsys/libraries/dw \
/lib/fpga */

* synthetic_library = {xblox_4000.sldb \
standard.sldb} */
Using Synlibs with the FPGA Compiler

Synlibs displays the link and target libraries for the specified part
type and speed grade. You can run Synlibs from any directory as
follows.

synlibs parttype—speedgrade

For example, to list the link and target libraries for the XC4005-5
device, you would enter the following.

synlibs 4005-5

The system displays the output onscreen, as illustrated in Figure 2-2.

Xilinx Synopsys Interface FPGA User Guide 2-7

Xilinx Synopsys Interface FPGA User Guide

link_library = {xprim_4005-5.db xprim_4000-5.db \
xgen_4000.db xio_4000-5.db xfpga_4000-5.db}

target_library = {xprim_4005-5.db xprim_4000-5.db \
xgen_4000.db xio_4000-5.db xfpga_4000-5.db}

Figure 2-2 Synlibs Output for Use with FPGA Compiler
Note: Use the target and link libraries in the default startup file if you

plan to perform the FPGA Compiler tutorial.

You must copy the output from Synlibs into your Synopsys startup
file. You can use the UNIX Append (>>) command to redirect the
output of Synlibs to your .synopsys_dc.setup file as follows.

synlibs parttype—speedgrade >> .synopsys_dc.setup

After you redirect the output, use a text editor to delete the default
target and link libraries.

Warning: You must list the libraries in your setup file in the order
that they appear in the Synlibs output.

Using the Design Compiler for XC4000 Designs

The Design Compiler requires five libraries for synthesis to Xilinx
XC4000 devices. The libraries are separated to reduce disk space.

This section describes how to modify the search path, modify the
DesignWare Library search path, and use Synlibs to display the
appropriate target and link libraries.

Figure 2-3 is an example of the generic startup file for an XC4000
design, dc4k.synopsys_dc.setup, using the Design Compiler.

2-8 XACT Development System

Getting Started

% EXAMPLE DESICH COMPILER STARTUP FILE - .synopsys_dc.setup */f
A% FOR HC4000/H/8/D PARTYPES *f

search_path = { . %,
05401 -HACT-Directory:/synopsys/Tibraries/syn
<SYNOPSYS-Directory/1ibraries/syn

Tink_library = fxprim_4005-5.db ®prim_4000-5.db xgen_<4000.db
wdc_4000-5.db %io_4000-5.dh}

target_library = fxprim_24005-5.db =prim_4000-5.db xgen_4000.db %
wdc_4000-5.db xio_4000-5.db3

symbol_library = #c4000.sdb
define_design_Tib WORK -path ./WORK

define_design_Tib xblox_4000 -path
05401 -HACT-Directory:fsynopsys/1ibraries/dw/1ib/fpga

synthetic_Tibrary = {=zblox_4000.51db standard.s1db}
compile_fix_multiple_port_nets = true
bus_naming_style = "%s<%d:"
bus_dimension_separator_style = "»<"
bus_inference_style = "%s<%d:"
edifout_netlist_only = true

edifout_power_and_ground_representation = cell
edifout_write_properties_list = "instance_number port_location part"

Figure 2-3 Generic XC4000 Design Compiler Startup File

Generic Design Compiler Startup File Contents

This section describes the sample .synopsys_dc.setup file illustrated
in Figure 2-3.

e search_path ={.\
<DS401-XACT-Directory>/synopsys\libraries/syn \
<SYNOPSYS-Directory>/libraries/syn}

This line sets the search path for Xilinx and Synopsys-supplied
library files.

o link_library = {xprim_4005-5.db xprim_4000-5.db \
xgen_4000.db xdc_4000-5.db xio_4000-5.db}

target_library = {xprim_4005-5.db xprim_4000-5.db \
xgen_4000.db xdc_4000-5.db xio_4000-5.db}

These lines specify the default target and link libraries, which are
for an XC4005-5 device.

Xilinx Synopsys Interface FPGA User Guide 2-9

Xilinx Synopsys Interface FPGA User Guide

2-10

The Synlibs program determines the correct libraries for the
different device types and speed grades. Refer to the “Using
Synlibs with the Design Compiler” section that follows for more
information on how to use Synlibs to change the link and target
libraries to a different part type and speed grade.

The target and link libraries are device-specific. Therefore, you
might not want to specify target and link libraries in your generic
startup file.

symbol_library = xc4000.sdb
This line specifies the symbol libraries.
define_design_lib WORK —path ./WORK

This line creates a directory to store intermediate files created by
the Analyze command for VSS users.

define_design_lib xblox_4000 —path \
<DS401-XACT-Directory>/synopsys/libraries/dw/lib/fpga

This line specifies the directory where the X-BLOX DesignWare
components reside.

synthetic_library = {xblox_4000.sldb standard.sldb}
This line specifies the synthetic library.
compile_fix_multiple_port_nets = true

This line allows the Synopsys optimization algorithm to insert
extra logic into the design to ensure that there are no feedthroughs
and that no two output ports are connected to the same net.

bus_naming_style = "%s<%d>"
bus_dimension_separator_style = "><"
bus_inference_style = "%s<%d>"

These lines set the READ parameters for the Xilinx netlist formats.
All bus indexing is of the form “bus<index>.”"’

edifout_netlist_only = true

edifout_power_and_ground_representation = cell

edifout_write_properties_list = “instance_number
port_location part”

These lines set the EDIF parameters for Xilinx devices.

XACT Development System

Getting Started

Modifying the Search Path

Modify the search path line in the default .synopsys_dc.setup file to
include the path to the XSI and Synopsys installation directories as
follows.

1. To determine the Synopsys installation path, enter the following
at the command line.

echo $SYNOPSYS

2. Open the setup file in a text editor and replace DS401-Directory
with the full path of the directory where the XSI software is
installed (the $XACT environment variable contains this path).

3. Replace SYNOPSYS-Directory with the path where your Synopsys
software is installed (usually stored in the environment variable
$SYNOPSYS).

Modifying the DesignWare Library Search Path

The X-BLOX DesignWare library contains descriptions of adders,
subtracters, comparators, incrementers, and decrementers that map
to X-BLOX modules. X-BLOX also generates Xilinx-optimized
implementations of common functions. If you have the X-BLOX
package, add the following line to your .synopsys file to use the
X-BLOX DesignWare library.

define_design_lib xblox_4000 —path \
<DS401-XACT-Directory>\synopsys\libraries/dw/ \
/lib/fpga

Verify that your .synopsys_dc.setup file contains the following
statement.

synthetic_library = {xblox_4000.sldb \
standard.sldb}
Using Synlibs with the Design Compiler

Synlibs displays the link and target libraries for the specified part
type and speed grade. You can run Synlibs from any directory as
follows.

synlibs —dc parttype—speedgrade

Xilinx Synopsys Interface FPGA User Guide 2-11

Xilinx Synopsys Interface FPGA User Guide

2-12

You must specify the —dc option to list the link and target libraries for
use with the Design Compiler.

For example, to list the link and target libraries for an XC4005-5
device for use with the Design Compiler, you would enter the
following.

synlibs —dc 4005-5
The system displays the output onscreen as illustrated by Figure 2-4.

link_library = {xprim_4005-5.db xprim_4000-5.db \
xgen_4000.db xdc_4000-5.db xio_4000-5.db}

target_library = {xprim_4005-5.db xprim_4000-5.db \
xgen_4000.db xdc_4000-5.db xio_4000-5.db}

Figure 2-4 Synlibs Output for Use with Design Compiler
(XC4000)

You must copy the output from Synlibs into your Synopsys startup
file. You can use the UNIX Append (>>) command to redirect the
output of Synlibs to your .synopsys_dc.setup file as follows.

synlibs —dc parttype—speedgrade >> .synopsys_dc.setup
After you redirect the output, use a text editor to delete the default
target and link libraries.

Warning: You must list the libraries in your setup file in the order
that they appear in the Synlibs output.

Using the Design Compiler for XC3000 Designs

The Design Compiler requires four libraries for synthesis to Xilinx
XC3000/A/L and XC3100/A devices. The libraries are separated to
reduce disk space.

This section describes how to modify the search path and use Synlibs
to display the appropriate target and link libraries.

Figure 2-5 is a example of the generic startup file,
dc3k.synopsys_dc.setup, for an XC3000A design using the Design
Compiler.

XACT Development System

Getting Started

/% EXAMPLE DESIGN COMPILER STARTUP FILE - .synopsys_dc.setup */
% For XC3000/AFL and ¥C3100/8/L PARTYPES wy

search_path = {. i1
<DS401-¥ACT-Directory »/synopsys/libraries/svn %
<SYNOPSYS-DirectoryflibrariesSsyn}

Tink_Tibrary = fxprim_3020a-6.db #prim_3000a-6.db %
wgqen_3000.db xdec_3000a-6.db3

target_library = {xprim_3020a-6.db xprim_3000a-6.db *
=gen_3000.db xdc_3000a-6.db}

symbol_Tibrary = xc3000.sdb
define_design_Tib WORK -path ./WORK
conpile_fisz_multiple_port_nets = true
bus_naming_style = "%s<%d:"
bus_dimension_separator_style = "»<"
bus_inference_style = "%s<%d:"
edifout_netlist_only = true

edifout_power_and_ground_representation = cell
edifout_write_properties_list = "instance_number port_location part”

Figure 2-5 Generic XC3000A Design Compiler Startup File

Generic Design Compiler Startup File Contents

This section describes the sample .synopsys_dc.setup file illustrated
in Figure 2-5.
e« search_path={.\

<DS401-XACT-Directory>/synopsys/libraries/syn \
<SYNOPSYS-Directory>/libraries/syn}

This line sets the search path for Xilinx and Synopsys-supplied
library files.

e link_library = {xprim_3020a—-6.db xprim_3000a-6.db \
xgen_3000.db xdc_3000a-6.db}

target_library = {xprim_3020a—6.db xprim_3000a-6.db \
xgen_3000.db xdc_3000a-6.db}

These lines specify the default target and link libraries that indicate
which compiler Synopsys uses. The link and target libraries are
for an XC3020A-6 device. You can use these libraries for the
Design Compiler tutorial for XC3000A devices.

Xilinx Synopsys Interface FPGA User Guide 2-13

Xilinx Synopsys Interface FPGA User Guide

The Synlibs program determines the correct libraries for the
different device types and speed grades. Refer to the “Using
Synlibs for XC3000 Devices” section that follows for more
information on how to use Synlibs to change the link and target
libraries to a different part type and speed grade.

The target and link libraries are device-specific. Therefore, you
might not want to specify target and link libraries in your generic
startup file.

o symbol_library = xc3000.sdb
This line specifies the symbol libraries.
« define_design_lib WORK —path ./WORK

This line creates a directory to store intermediate files created by
the Analyze command for VSS users.

« compile_fix_multiple_port_nets = true

This line allows the Synopsys optimization algorithm to insert
extra logic into the design to ensure that there are no feedthroughs
and that no two output ports are connected to the same net.

e bus_naming_style = "%s<%d>"
bus_dimension_separator_style = "><"
bus_inference_style = "%s<%d>"

These lines set the READ parameters for the Xilinx netlist formats.
All bus indexing is of the form “bus<index>.”

« edifout_netlist_only = true
edifout_power_and_ground_representation = cell
edifout_write_properties_list = “instance_number \

port_location part”

These lines set the EDIF parameters for Xilinx devices.

Modifying the Search Path

Modify the search path line in the default .synopsys_dc.setup file to
include the path to the XSI and Synopsys installation directories as
follows.

1. To determine the Synopsys installation path, enter the following at
the command line.

echo $SYNOPSYS

2-14 XACT Development System

Getting Started

2. Open the setup file in a text editor and replace DS401-Directory
with the full path of the directory where the XSI software is
installed (the $XACT environment variable contains this path).

3. Replace SYNOPSYS-Directory with the path where your Synopsys
software is installed (usually stored in the environment variable
$SYNOPSYS).

Using Synlibs for XC3000 Devices

Synlibs displays the link and target libraries for the specified part
type and speed grade. You can run Synlibs from any directory as
follows.

synlibs parttype—speedgrade

For example, to list the target and link libraries for an XC3020A-6
device, enter the following.

synlibs 3020a—6
The system displays the output onscreen as illustrated by Figure 2-6.

link_library = {xprim_3020a—6.db xprim_3000a—6 \
xgen_3000.db xdc_3000a-6.db}

target_library = {xprim_3020a—6.db xprim_3000a—6 \
xgen_3000.db xdc_3000a—6.db}

Figure 2-6 Synlibs Output for Use with Design Compiler
(XC3000)

Note: Use the target and link libraries in the default setup file if you
plan to perform the Design Compiler tutorial for XC3000A devices.

You must copy the output from Synlibs into your Synopsys startup
file. You can use the UNIX Append (>>) command to redirect the
output of Synlibs to your .synopsys_dc.setup file as follows.

synlibs parttype—speedgrade >> .synopsys_dc.setup

After you redirect the output, use a text editor to delete the default
target and link libraries.

Warning: You must list the libraries in your setup file in the order
that they appear in the Synlibs output.

Xilinx Synopsys Interface FPGA User Guide 2-15

Xilinx Synopsys Interface FPGA User Guide

2-16 XACT Development System

FPGA Compiler
Tutorial

Xilinx
Synopsys
Interface
FPGA User
Gulide

Xilinx Synopsys Interface FPGA User Guide — December, 1994 (0401291 01) Printed in U.S.A.

Xilinx Synopsys Interface FPGA User Guide

XACT Development System

Chapter 3

FPGA Compiler Tutorial for XC4000 Designs

XSI provides an interface between Synopsys synthesis tools and the
Xilinx XACT Development System. This interface enables you to use
an HDL description to create your design and the XACT tools to
map, place, and route the design.

This tutorial provides step-by-step information on how to run the
FPGA Compiler for XC4000 designs and takes approximately one
hour to complete. The FPGA Compiler understands the XC4000
architecture and maps to XC4000 CLBs.

Note: For XC3000/A/L or XC3100/A designs, the FPGA Compiler
and Design Compiler results are the same. Refer to the “Design
Compiler Tutorial for XC3000A Designs” chapter.

Before You Begin

Before starting this tutorial, make sure that the Xilinx Synopsys
Interface (DS-401), XACT Development System (DS-502), X-BLOX
(DS-380), and Synopsys FPGA Compiler are installed.

Note: X-BLOX must be installed if you plan to use the DesignWare
library.

To verify the correct installation of these tools, refer to the “Getting
Started” section at the beginning of this user guide, which describes
how to modify the default Synopsys startup file to include the
appropriate libraries and search path.

Required Files

To access the files you need to perform this tutorial, follow these
steps. Replace DS401-Directory with the directory where the XSI
software is installed.

Xilinx Synopsys Interface FPGA User Guide — December, 1994 (0401291 01) 3-1

Xilinx Synopsys Interface FPGA User Guide

The files you need are in one of the following directories.

VHDL users DS401-Directory/tutorial/synopsys/fpga \
/x4000/vhd

Verilog users DS401-Directory/tutorial/synopsys/fpga \
/x4000/verilog

In this tutorial, you use a design called count8, which is a modulo 256
(8-bit) counter. The vhd directory contains the VHDL version,
count8.vhd, and the verilog directory contains the Verilog HDL
version, count8.v.

1. Change to your working directory.
2. Create a directory called count8 and change to that directory.

mkdir count8
cd count8

3. Copy the files from either the VHDL or Verilog tutorial directory
into the count8 directory.

To use the VHDL count8 design, enter the following on the
command line.

cp-r DS401-Directory/tutorial/synopsys/fpga/x4000 \
/vhd .

To use the Verilog HDL count8 design, enter the following on the
command line.

cp-r DS401-Directory/tutorial/synopsys/fpga/x4000 \
/verilog .

Note: The backslash (\) is a continuation character; do not enter it on
the command line.

If you do not know the location of the DS401-Directory, type the
following, which displays the paths set for the XACT environment
variable. The XSI path appears first.

echo $XACT

Exiting the Tutorial

You can exit or stop the tutorial at any time. For best results, complete
all steps in a section before quitting. If you must exit the Design

3-2 XACT Development System

FPGA Compiler Tutorial for XC4000 Designs

Analyzer before completing the tutorial, you must re-run the tutorial
from the beginning.

Design Flow

This section illustrates the Xilinx implementation flow for the count8
tutorial design. Generally, the design process starts with an HDL
description of the desired circuit functions and ends with a BIT file, a
binary file that contains the configuration data for your design, and
an LCA file, which you can use for back-annotation and simulation.

Figure 3-1 illustrates the Xilinx XC4000 implementation flow for
synthesis. Use it as a checklist as you proceed with your XC4000
design.

Xilinx Synopsys Interface FPGA User Guide 3-3

Xilinx Synopsys Interface FPGA User Guide

XMake count8

Syn2XNF

syn2xnf.log

(count&xf‘f) G:ount&xnf)

XNFPrep
count8.xtg

Functional Simulation
No X-BLOX Modules

xnfprep.log

xnfprep.log XNFPrep

count8.xtf

count8.lca

XDelay

MakeBits

(counts.bit) (count8.lca)

Functional Simulation
With X-BLOX Modules

Timing
Simulation

X4825

Figure 3-1 Xilinx XC4000 Implementation Flow for Synthesis

Note: For the XSI design flow, which precedes running XMake, see
the beginning of the “Using the FPGA Compiler” chapter.

Count8 Design Description

This section contains a description of the count8 design used in this
tutorial. Figure 3-2 shows the VHDL code and Figure 3-3 shows the
Verilog HDL code.

3-4 XACT Development System

FPGA Compiler Tutorial for XC4000 Designs

The count8 design counts up to 255, then starts again at zero. It can
count only when Enable is High and Clear is Low. If Clear is High,
the counter resets synchronously. If Enable is Low, the counter is
disabled. The output signal is COUT.

-- Count® - Behavioral Model
-- 8-bit Counter with Enable and Clear
-- K5I w3.2

Library IEEE;
use IEEE.STD_LOGIC_1164.a11;
use IEEE.STD_LOGIC_IUNSIGMNED.all:

entity counts is
port (CLOCK, CLEAR, EMABLE: in STD_LOGIC;
COUT: out STDO_LOGIC_WECTOR (7 downto 0305
end countl;

architecture BEHAVIORAL of countd is
Eigna] QOUT: STD_LOGIC_VECTOR (7 downto 03
eqin
process (CLEAR, CLOCK, EMABLED
hegin
if (CLE&R = “17) then
QOUT <= "00000000";
elsif C(CLOCK event and CLOCK="1"] then
if (ENAELE = “1°) then
QOUT <= QOUT + "00000001";
end if;
end if;
end process;
COUT <= QOUT;
end BEHAVIORAL;

Figure 3-2 VHDL Code for Count8

Xilinx Synopsys Interface FPGA User Guide 3-5

Xilinx Synopsys Interface FPGA User Guide

f*
#*
#* Count8 - Behavioral Model
#*
Model originally developed by Seva Technologies, Inc.
#*
R s
#*
wf
module countB8{clock, clear, enable, cout) ;
input clock;
input clear;
input gnable;

u
output [7:0] cout;
reg [7:0] cout;

alwavs @(posedge cClear or posedge clock)
hegin
if (clear == 17hH1)
cout = 87ho0 ;
glse if (enable == 17h1)
cout = cout + 17b1
end

endnodule

Figure 3-3 Verilog HDL Code for Count8

Invoking the Design Analyzer

In this section you learn how to invoke the Design Analyzer and
verify that the Synopsys startup file (.synopsys_dc.setup) has been
properly installed and modified as described in the release notes and
the “Getting Started” chapter of this user guide.

Perform the following steps.

1. From the count8 directory, run the Synopsys Design Analyzer in
the background by entering the following command.

design_analyzer &

If the .synopsys_dc.setup file generates any errors or warnings,
the system displays them onscreen. If you receive any error or
warning messages, refer to the “Getting Started” chapter.

Note: The command.log file in your working directory lists the
variable settings for the Design Analyzer. To verify that Synopsys

XACT Development System

FPGA Compiler Tutorial for XC4000 Designs

read the correct .synopsys_dc.setup file, you can view the
command.log file.

2. \ferify that your Synopsys options were set correctly.
Setup 0O Defaults...
The system displays the following dialog box.

Defaults

Designer:l

Eompanu:l

Search Pathi |sys/11braries/syn products/synopsyssver3_lassund/libraries/syn

Link Library: |b xprim_4000-5,db xprim_4005-5,db xio_4000-5,db xfpga_4000-5,db

Target Librarys: |b *prim_4000-5,db xprim_4005-5,db xio_4000-5,db xfpga_4000-5,db

Symbol Library: |xc4000‘sdb

Schematic Optionz: |—size infinite

Src-to-Gates Modes of f P

Figure 3-4 Defaults Dialog Box

3. Verify that your settings match the following.

search_path = DS401-Directory/synopsys/libraries
/syn
SYNOPSYS-Directory/libraries
/syn

link_library = xprim_4005-5.db xprim_4000-5.db

xgen_4000.db xio_4000-5.db
xfpga_4000-5.db

target_library = xprim_4005-5.db xprim_4000-5.db
xgen_4000.db xio_4000-5.db
xfpga_4000-5.db

symbol_library = xc4000.sdb

The fields in the dialog box are not long enough to show all the
default information. To view hidden information, position your

Xilinx Synopsys Interface FPGA User Guide 3-7

Xilinx Synopsys Interface FPGA User Guide

cursor in a specific field and use the left arrow key or enlarge the
width of the Defaults window.

Note: DS401-Directory is the directory where the Xilinx Synopsys
Interface software is installed, and the SYNOPSYS-Directory is where
the Synopsys FPGA Compiler is installed.

4. Select Cancel to close the window.

Reading the Design File

In this section you learn how to use the Design Analyzer to analyze
and create the design file.

Analyzing the Design File

The Analyze command checks the syntax and logic, and converts the
HDL file to an intermediate format for use during simulation. To
analyze the design file, perform the following steps.

1. SelectFile 0O Analyze... from the Design Analyzer menu.

The system displays the Analyze File dialog box as shown in
Figure 3-5.

3-8 XACT Development System

FPGA Compiler Tutorial for XC4000 Designs

Analyze File

File Mame{s}: | countd,vhd

Directory: Ahomesfairfield/emily/xsi_ex/vhd/countd

5 +of tMove up one directory?
hold/

scriptsd

WORK

countd, vhd

v

L [3

File Format: WHIL &5

Library: |NDRK

1 Create Mew Library if it Doesn’t Exist

Figure 3-5 Analyze File Dialog Box
2. Use the left mouse button to click once on count8.vhd for
VHDL users, or count8.v for Verilog HDL users.

The system displays count8.vhd or count8.v in the File Name(s)
field.

3. Click OK

The Analyze window displays informational, error, and warning
messages. The system also displays processing messages in the
Command Window. (To display the Command window, select
Setup O Command Window ... from the Design Analyzer
menu.)

Figure 3-6 illustrates the Analyze window output.

Xilinx Synopsys Interface FPGA User Guide 3-9

Xilinx Synopsys Interface FPGA User Guide

Analyze

Bl

dezign_analyzer> 1

dezign_analyzer> Loading db file “/products/synopsyssver3_las/zund/libraries/syn/=tandard,sldb”
Loading db file “/build/interfaceprodsxsisproddinstall/d=401/synopays/libraries/=yn/xblox_4000, =
Loading db file “/productsssynopsys/ver3_lassund/libraries/synigtech,db”

Reading in the Synopays vhdl primitives,

fexport/homesfairfieldd/eni lyfxei_ex/vhd/count8/count8, vhd:

1

dezign_analyzer

Figure 3-6 Analyze Window

4. Click Cancel to close the Analyze window.
Creating the Design File

To create the design file, perform the following steps.

1. Use the Elaborate command.

File O Elaborate...

The Elaborate Design dialog box appears as follows.

3-10 XACT Development System

FPGA Compiler Tutorial for XC4000 Designs

Elaborate Design

Library:

LEFAULT
Dot
Tz

L [3

Deszign:

L [3

Parameters:

M Re—fnalyze Out-0f-Date Libraries

Figure 3-7 Elaborate Design Dialog Box

2. Scroll the library list and click on WORK
3. Click once on count3(BEHAVIORAL) .

The system displays count8(BEHAVIORAL) in the Design field.
4. Click OK

The system displays informational messages in the Elaborate
window as illustrated by Figure 3-8.

Xilinx Synopsys Interface FPGA User Guide 3-11

Xilinx Synopsys Interface FPGA User Guide

Elaborate

Inferred memory devices in process
in routine count® line 13 in file
*fexportshomesFairfieldseni lyfxai_exdvhd/count8/count8, vhd ",

| Register MName I Type | Width | Bus | AR | AS | SR | 55 | 5T

| 00U _reg | Flip=flop I 8 I ¥ I'Y IN IN IN IHN

Loading db file “/build/interfaceprods/xsisprod/install/d=401/synopays/libraries/ =yn/xgen_4000, d
Loading db file “/build/interfaceprod/xsisprod/install/d=401/ synopays, libraries synxprim_4000-"
Loading db file “/build/interfaceprod/xsisprod/install/d=401/ synopays/libraries/syn/xprim_4005-"
Loading db file “/builddinterfaceprodsxsisprod/install/d=401/zynopays/libraries/syn/xio_4000-5,
Loading db file “/build/interfaceprodsxsisprod/install/d=401/synopays,libraries/syn/xfpga_4000-
Current. design iz now “countd8”

1

dezign_analyzer> Loading db file “/products/synopsyz/ver3_la/zund/libraries/=zyn/generic,sdb”
Loading db file “/builddinterfaceprodsxsisprod/install/d=401/2ynopays/libraries/syn/xcd 000, =db”
Loading db file “/productsdsynopsys/verd_lassund/1ibraries syn/l_20, font.”

1

dezign_analyzer

Figure 3-8 Elaborate Window

5. Click Cancel to close the Elaborate window.

A symbol that represents the count8 design appears in the Design
Analyzer main screen as follows.

3-12 XACT Development System

FPGA Compiler Tutorial for XC4000 Designs

(=] Synopsys Design Analyzer

Setup File Edit View Attributes Analyziz Tools Help

ég [

Dezignz Yiew

Elaborated count3{BEHAYIORAL} from library WORK

Figure 3-9 Top-Level Symbol for Count8 Design

Inserting I/O Buffers

In this section you define the ports of the top-level design as inputs,
outputs, clock ports, or bidirectional ports. Also, you use the Insert
Pads commands to add the necessary |70 buffers to the top-level
design. Defining a port as a pad causes the Insert Pads command to
attach a buffer to that port, which the Xilinx tools can then recognize.

Note: Count8 is a one-level design.

The FPGA Compiler can optimize registers and 3-state functions into
I0Bs. Refer to the “Using the FPGA Compiler” chapter in this user
guide for more information.

The following procedures describe how to define the input ports,
CLEAR and ENABLE; the input clock, CLOCK; and the output bus,
COUT <7:0>. The actual buffers are not added to the design until the
pads are inserted.

Xilinx Synopsys Interface FPGA User Guide 3-13

Xilinx Synopsys Interface FPGA User Guide

Note: The procedures in this section only apply to inserting IBUFs,
ILDs, IFDs, OBUFs, IOBUFs, OFDS, and OFDTs. For any other IOB
configurations, you must instantiate the buffers into a design. See the
*“XC3000/A7L and XC3100/A Primitives” and “XC4000/A/D/H
Primitives and Hard Macros” appendixes for information on other
available buffers.

Defining Input Ports as Pads
To define the input ports as pads, perform the following steps.

1. Click the left mouse button on the count8 icon as illustrated by
Figure 3-9.

The system changes the solid line to a dotted line to indicate that
the icon is selected.

2. Click on the down arrow icon to display the design in Symbol
View.

The system displays the count8 design in Symbol View as
illustrated by Figure 3-10.

3-14 XACT Development System

FPGA Compiler Tutorial for XC4000 Designs

(=) Synopsys Design Analyzer

Setup File Edit View Attributes Analyziz Tools Help

countd

ég [

Current Dlesigni countd Symbol Yiew
Left Button: Select - Middle Button: Add/Modify Select - Right Button: Meru
1]

Figure 3-10 Symbol View

3. Select the CLEAR, CLOCK, and ENABLE input ports by clicking
on one with the left mouse button, and the other two with the
middle mouse button.

The middle mouse button extends the selection. A dotted
rectangle indicates that the ports are selected.

Note: To deselect an input port, click on it again with the middle
mouse button.

4. Select Attributes O Optimization Directives O
Input Port... from the Design Analyzer menu.

The Input Port Attributes dialog box appears as shown in
Figure 3-11.

Xilinx Synopsys Interface FPGA User Guide 3-15

Xilinx Synopsys Interface FPGA User Guide

Input Port Attributes N

Port. Mame:

MaXimum FanDUt: m
Haximum Transitiony m

2 Port is Pad Port Pad Attributes,,. |

Connected to; £ Logic 0 £ Logic 1

Set Equal... | Set Dpposite... |

Figure 3-11 Input Port Attributes Dialog Box

5. Click on the box next to Port is Pad
6. Select Apply .

The system sets the attributes for the CLEAR, CLOCK, and
ENABLE ports.

7. Click on Cancel to close the dialog box.

Defining the Output Port as a Pad

To define the output port as a pad, perform the following steps.

1. Select the COUT [7:0] bus by clicking on it with the left mouse
button.

A dotted rectangle indicates that the output port is selected.

2. Select Attributes O Optimization Directives O
Output Port... from the Design Analyzer menu.

The Output Port Attributes window appears first, then the Bus
Selector dialog box appears over it as illustrated by Figure 3-12.

3-16 XACT Development System

FPGA Compiler Tutorial for XC4000 Designs

Output Port Eus Selector

Port Mame: |CUUT<?:0> Port Bus Mame:
—————————————— cout
Maximum Tranzition: E —

2 Port is Pad i Par

21 Unconnected

Signal Tupe: More]

Figure 3-12 Bus Selector and Output Port Attributes Dialog
Boxes
3. In the Bus Selector window, select Cancel .

The Bus Selector dialog box disappears.

4. In the Output Port Attributes dialog box, click on the box labeled
Port is Pad

5. Select Apply .
6. Select Cancel to close the dialog box.

Note: You can also define the inputs, outputs, and clock buffers using
the Set Port Is Pad command at the Synopsys DC-shell prompt or in
the Design Analyzer command window as follows. This command
sets all the ports as pads in one simple step.

set_port_is_pad “*"

Using the Insert Pads Command

After the ports are defined as pads, you can insert the 1/0 buffers
using the following procedure.

1. If the Command window is not open, select Setup [0 Command
Window... from the Design Analyzer menu.

The Command window appears.

2. Atthe Design analyzer prompt in the Command window, type
insert_pads [

Xilinx Synopsys Interface FPGA User Guide 3-17

Xilinx Synopsys Interface FPGA User Guide

The Command window displays informational messages. You
may want to move the Command window to a place on your
desktop where it does not obscure the Design Analyzer main
window.

Figure 3-13 illustrates the Command window output after
running the Insert Pads command.

Command Window

dezign_analyzer> insert_pads
Infarmation: Checking out the license “xblox-x=i-37, (SEC-104)

Loading target library “xgen_4000°

Loading target library “xprim_4000-5"

Loading target library “xprim_4005-5"

Loading target library “xio_4000-57

Loading target library “xfpga_4000-5"

Loading design “count8”

Inzerting I0 Padz in Design “count8”

E Transferring Design "count8” to database “count.db”
L | Current design is "count”,

E | design_analyzer? current_design = "Jexport/homesfairfield/enilysxsiscountd, dbicountd”
Current design iz “countB”,

"fexport/homesfairfield/emi lyfxsiscounts, dbtcount8"

dezign_analyzer> create_schematic -zize infinite -—zchematic_view -symbol_view -hier_view

Warning: Dezign “count8” i=n’t mapped, {(UIS-3)

Generating =chematic for design: countd

The schematic for design “count8” haz 1 pageis},

dezign_analyzer |

Figure 3-13 Command Window Output for Insert Pads Command

Estimating Pre-Layout Timing

The XSl libraries contain operating conditions and wire-load models
that are used to provide a pre-layout timing estimate of your design.

Selecting the Operating Condition

XSI offers a set of operating condition parameters called worst-case
commercial (WCCOM). The operating conditions are selected
automatically if you used Synlibs to generate the link and target
libraries. For more information on the Synlibs command, refer to the
“Getting Started” chapter at the beginning of this user guide.

3-18 XACT Development System

FPGA Compiler Tutorial for XC4000 Designs

Setting the Wire-Load Models

The XSl libraries offer worst-case and average wire-load models.
Wire loads are the estimated net delays for a design that has been
partitioned into CLBs and 10Bs. Refer to the “Using the FPGA
Compiler” chapter in this user guide for more information.

Synopsys uses these estimates as guidelines to optimize your design
for an FPGA. The actual wire loads cannot be determined until after
the design has been placed and routed.

The models are device and speed-grade dependent, with an average
wire-load model (parttype—speedgrade_avg) and a worst-case wire-
load model (parttype—speedgrade_wc) for each. The average wire-load
model is the mean of the test suite and the worst-case is the average
plus one standard deviation. Therefore, the worst-case model is more
conservative.

The average wire-load model is selected automatically if you used
Synlibs to generate the link and target libraries.

Optimizing for Speed

Before compiling a design, you can set area and speed constraints to
improve results. In this section you set a timing constraint. For the
most effective results from the FPGA Compiler, the constraints must
be accurate and achievable. For example, if a timing goal of 0 ns is set
on all ports, the FPGA Compiler adds buffers to critical paths or
duplicates logic on heavily loaded nets, attempting to achieve this
goal. An unrealistic goal might cause significant and unwarranted
area increases. Refer to the Synopsys Design Compiler Reference Manual
for details on optimization techniques.

Path timing includes both logic and net delays. All gate, CLB, and
I0B timing delays are worst-case commercial estimates and are
specified in nanoseconds. The wire-load delays are either average
estimates or worst-case estimates. Actual delays are determined only
after you use PPR.

Additional timing information about primitives is included in the
“XC4000/A/D/H Primitives and Hard Macros” appendix in this
user guide and The Programmable Logic Data Book.

Xilinx Synopsys Interface FPGA User Guide 3-19

Xilinx Synopsys Interface FPGA User Guide

To set a clock constraint, follow these steps.

1. Select the CLOCK pin by placing the cursor on the CLOCK port
and pressing the left mouse button.

2. Select the following menu options from the Attributes menu.
Attributes O Clocks O Specify...

The system displays the Specify Clock dialog box as follows. The
default clock period is 50.

i Specify Clock

Clock Name: § cLOCK

Port. Mame: | CLOCK E

21 Dant Touch Metwork 21 Fix Hald

Figure 3-14 Specify Clock Dialog Box

3. Select Apply O Cancel

A waveform appears above the CLOCK pin to indicate the setting
of a timing constraint.

3-20 XACT Development System

FPGA Compiler Tutorial for XC4000 Designs

Compiling the Design

In this section you learn how to compile a design with the
recommended options.

The optimization process is part of the Compile command.
Optimization is a complex series of transformations guided by
constraints that you specify. One of the optimization steps is
technology mapping, which transforms the Boolean logic network
representation of your design into interconnected gates that are
selected from the target technology library. You can set the mapping
as Low, Medium, or High. Refer to the Synopsys Design Compiler
Reference Manual for more details about mapping and other
optimization techniques.

To compile the count8 design, do the following.

1. SelectTools [FPGA Compiler... from the Design Analyzer
menu.

The FPGA Compiler dialog box appears as follows.

FPGA Compiler

Insert Pads,..

Optimization, .. I

Report,.. I

FPGA Cells to Gates | Cells to Gates Options,,. |

Save Az... I

Figure 3-15 FPGA Compiler Dialog Box

2. Click on Optimization...

The Design Optimization dialog box appears as follows.

Xilinx Synopsys Interface FPGA User Guide 3-21

Xilinx Synopsys Interface FPGA User Guide

Design Optimization

M Hap Design

Map Effort: <rLow 4 Medium < High

More Map Optionz,..

21 Verify Design

T S

1 Allow Boundary Optimization

Execute in: 4 Foreground < Background

Figure 3-16 Design Optimization Dialog Box

3.

6.

Make sure the Map Design box is shaded and the Map Effort is
Medium.

Click OK

The system displays any informational messages and compilation
errors in the Compile Log window and the Command window.

Once the design is compiled, click Cancel to close the Compile
Log window.

Select Cancel to close the FPGA Compiler window.

Evaluating the Results

The design is now optimized for the XC4000 architecture and
mapped into CLBs and IOBs.

3-22

The XSl libraries contain both area and timing information. In this
section you view an area report on the estimated CLB and |OB
utilization and a timing report on the estimated delays. You also learn
how to redirect the report output from the screen to a file.

1.

View a schematic of the design by selecting the gate picture icon
on the left side of the Synopsys Design Analyzer window.

XACT Development System

FPGA Compiler Tutorial for XC4000 Designs

The system displays a schematic view of the count8 design.

(=] Synopsys Design Analyzer

Setup File Edit View Attributes Analyziz Tools

T T

5

E

16

ég [

Schematic View

Current Dlesigni countd
Port: CLOCK
~

Figure 3-17 Schematic View

2. When you finish viewing the schematic, click on the up arrow
icon to switch to the Designs View as illustrated by Figure 3-18.

Xilinx Synopsys Interface FPGA User Guide 3-23

Xilinx Synopsys Interface FPGA User Guide

(=) Synopsys Design Analyzer

Setup File Edit View Attributes Analyziz Tools

cauntB_inc

ég [

Dezignz Yiew

Dlesign: countd {countd,db?

My
Figure 3-18 Designs View
Viewing the Estimated Area Results
To evaluate the estimated area results, perform the following steps.
1. Click on the count8 icon.
2. Select Tools O FPGA Compiler... from the Design Analyzer

menu.
The FPGA Compiler window appears.
3. Select Report...

The Report dialog box appears as follows.

3-24 XACT Development System

FPGA Compiler Tutorial for XC4000 Designs

Report

Attribute Reportsz

21 A1l Attributes 21 FSH
1 Bussing 1 Net
1 Cell 1 Path Groups
21 Clacks 21 Part
1 Compile Options 1 Resource
1 Design
Analyziz Reports
21 Area

21 Clack Skew

21 Clack Tree

£ Constraints

£l Cross Ref.

£1 FPGA Resources
1 Hierarchy

1 Point Timing
£ o

£ Reference

21 Selected

1 Timing

1 Timing Requirements

i

Send Output To: 4 Window <pFile
Fyies | report, out

Figure 3-19 Report Dialog Box

4.

7.

In the Analysis Reports section, select the boxes next to FPGA
Resources and Timing.

Select Apply .

The Report Output window appears.

Use the scroll bar in the Report Output window to view the
design statistics.

Select Cancel to close the Report Output window.

Note: Do not close the Report dialog box.

Figure 3-20 illustrates an example of a report file. This report shows
area utilization (CLBs used) for the count8 design.

Xilinx Synopsys Interface FPGA User Guide 3-25

Xilinx Synopsys Interface FPGA User Guide

Information: Updating design information... (UID-85)

b e o e b sl e o sl e e e e e e o e e e o e o o e e o o e e e e e e e e e ol

Report : fpoga

Design : countd

Yersion: v3.1b-20502

Date Dosun Oct 2 16:35:19 1334

e s e sl e e e e e e e s e s e ol ol sl ol ol e ol e e e e ol e e ol e sl e ol el e e e e

#i1inx FPGA Design Statistics

FG Function Generators:
H Function Generators:
Mumber of CLB cells:
Mumber of Hard Macros and
Other Cells:
Mumber of CLBs in
Other Cells:
Total Mumber of (LBs:

-
=00 O = = L= Y - SN I Y

Number of Ports:
Mumber of Clock Pads:
Mumber of ICBs: 1

Humber of Flip Flops:
Mumber of 3-State Buffers:

Total Mumber of Cells: 16

Figure 3-20 Area Utilization Report

Note: Clock pads are IOBs, yet they are listed separately in this
report.

Viewing the Estimated Timing Results
To evaluate the timing results, perform the following steps.

1. Inthe Analysis Reports section of the Report dialog box, click on
the box to the left of Timing with the left mouse button.

2. Deselect the FPGA Resources box.
3. Select Apply .

The Report Output window opens. The results reported are worst-
case timing delay estimates. The final results cannot be
determined until after you run PPR.

3-26 XACT Development System

FPGA Compiler Tutorial for XC4000 Designs

4. When you are finished reviewing the Report Output window,
select Cancel .

Note: Do not close the Report dialog box.

Saving the Area and Timing Results to a File

To save the estimated area and timing results to a report file, perform
the following steps.

1. Locate the Send Output To field at the bottom of the Report dialog
box.

2. Select File

3. Place your cursor in the File field.

4. Double-click to highlight the default report file name.
5. Type count8.timing

6. Select Apply 0O Cancel

Note: Do not close the FPGA Compiler window.

The Xilinx libraries use worst-case delays. Synopsys timing delay
estimates include wire-load delays in addition to gate delays. In most
cases, actual results are better than the pre-placement and routing
Synopsys estimates.

Figure 3-21 is a complete timing report for the count8 design, which
is called count8.timing.

Xilinx Synopsys Interface FPGA User Guide 3-27

Xilinx Synopsys Interface FPGA User Guide

ik ek el e e sk e e e e e e e o e o e e e e sl o el e e e e e sl e e
Report = timing
-path full
-delay max
-max_paths 1
Design : counts
Version: w3.1h-20502
Date DoSun oct 2 16:35:19 1954

e b e o e b sl o ol o ol e o o e e e o e e o o e e o o e e e e e e e e e e e e e e

Cperating Conditions: WCCOM Library: =prim_4005-5
Wire Loading Model Mode: top

Design Wre Loading Model Library

counts 4005-5_avg Aprim_4005-5

Startpoint: U83 (rising edge-triggered flip-flop clocked by CLOCK)
Endpoint: U89 (rising edge-triggered flip-flop ¢locked by CLOCKD
Path Group: CLOCK

Path Type: max

Point Incr Path
clock CLOCK (rise edgel 0.oa 0.o0
clock network delay (ideall 0.00 0.00
U83/K (<lb_4000) 0.0o o.oo r
U83/4q (clb_40000 5.48 5.48 r
add_25/pTus/LEFT_UNSIGNED_ARGC_799/A8_1 (count8_inc_dec_ub_38_00

0.00 5.48 r
add_25/pTus/LEFT_UNSIGNED_ARGC_799/uB/ FUNC<E> (IMC_DEC_LBIN_8)

16.29 21.77 r
add_25/pTus/LEFT_UNSIGNED_ARGC_799/5_6 (count8_inc_dec_ub_38_0)

0.00 21.77 r
sa/c1 (clb_4000) 0.0o 21.97 r
data arrival time 21.77
clock CLOCK (rise edgel 50.00 50.00
clock network delay (ideal) 0.oa 50.00
1189/K (clb_4000) 0.00 50.00 r
Tibrary setup time -4.50 45.50
data required time 45,50
data required time 45,50
data arrival time -21.77
slack (MET) 23.73

Figure 3-21 Timing Report (count8.timing)

Saving the Design

In this section you learn how to save your design as a DB (Synopsys
Database file) file, replace CLBs and I0Bs with gates, set the design
part type and speed grade, and save the design into an SXNF file.

3-28 XACT Development System

FPGA Compiler Tutorial for XC4000 Designs

Writing the DB File

To save the design to a DB file, do the following.
1. Select the count8 icon with the left mouse button.
2. SelectFile [Save from the Design Analyzer menu.

The system saves the file as count8.db.

Replacing CLBs and I0Bs with Gates

After a design is compiled, it contains CLB and 10B elements. To
create an SXNF file, the FPFGA Compiler must convert these CLBs and
10Bs to gates. Perform the following steps.

1. Inthe FPGA Compiler window, select FPGA Cells to Gates
The system displays the FPGA Log window.

Note: The mapping of logic into CLBs is written to the SXNF file and
is retained by PPR. Refer to the “Using the FPGA Compiler” chapter
in this user guide for information about how to remove the mapping
information.

2. Select Cancel to close the FPGA Log window.

3. Select Cancel to close the FPGA Compiler window.

Setting the Design Part Type

To select a particular part for the count8 design, type the following
command at the Design Analyzer prompt in the Command window.

Note: The \ (backslash) is a line continuation marker. Do not type it
on the command line.

set_attribute count8 "part” —type \
string "4005pc84-5" O

Removing BLKNM Attributes

To allow the XACT software more freedom during placement and
routing, Xilinx recommends not writing the block names to the SXNF

Xilinx Synopsys Interface FPGA User Guide 3-29

Xilinx Synopsys Interface FPGA User Guide

file. To prohibit the writing of block names, enter the following
command at the Design Analyzer prompt in the Command window.

set_attribute find(design, ") \
"xnfout_use_blknames" —type boolean false O
Saving the Design File as an SXNF File
The next step is to save the design file as an SXNF file as follows.
1. Select the following menu options.
File 0O Save As...
The Save File dialog box appears as illustrated by Figure 3-22.

Save File

File Mame: |count8‘db

Directory: ort/homesfairfield/emily/xsi_ex/vhd/countd

5 +of tMove up one directory?
hold/

scriptsd

WORK

countd,db

countd, vhd

countd, xnf
countB_inc_dec_tb_8_0,xnf
countB_inc_dec_tc_8_0,db

a countB_inc_dec_tc_8_0,xnf

L [3

File Format: IE o

M Save ALl Designs in Hierarchy

Figure 3-22 Save File Dialog Box

2. Click in the field next to File Name.
3. Change the .db extension to .sxnf.

Place your cursor to the right of count8.db , backspace to delete
db, then replace it with sxnf .

4. Click on the bar next to File Format.

The system displays a list of formats.

3-30 XACT Development System

FPGA Compiler Tutorial for XC4000 Designs

5. Select XNFE
6. Make sure the Save All Designs in Hierarchy box is shaded.
7. Select OK

Exiting the Design Analyzer

You are now done with the Synopsys FPGA Compiler and are ready
to use the XACT Development System. To exit the Design Analyzer,
do the following.

1. SelectFile 0O Quit from the Design Analyzer main menu.
The Quit Design Analyzer? window appears.
2. Click OKto exit.

The following section is a reference section that describes running a
script that invokes the Synopsys tools.

To continue with the tutorial, skip to the “Placing and Routing Your
Design Using XMake” section.

Executing the Commands from a Script File

Warning: Do not execute the commands in this section. Use this
section as a reference for how to execute a script file. You have
already executed these commands through the Design Analyzer
menus.

You can use a script file to compile your design instead of using pull-
down menus. The commands illustrated in this tutorial are all listed
in a script file, count8.script.

You can execute this script either from the Design Analyzer or DC-
Shell. Each command is annotated in the script file. Comments start
and end with /* and */. Each command corresponds to a command
already executed in this tutorial.

The procedures to execute the count8.script file from the Design
Analyzer are the following.

1. Invoke the Synopsys Design Analyzer in the background.

design_analyzer &

Xilinx Synopsys Interface FPGA User Guide 3-31

Xilinx Synopsys Interface FPGA User Guide

3-32

2. Open the Command window to view the script as it executes.

3.

Setup 0O Command Window...
Execute the count8.script file.

Setup 0O Execute Script...

The Execute File dialog box appears as shown in Figure 3-23.

Execute File

File Name:l

Directory: ort/homesfairfield/emily/xsi_ex/vhd/countd

+of tMove up one directory?
hold/

scriptsd

WORK

countd, script

¥
| 4 [3
Figure 3-23 Execute File Dialog Box
4. Select count8.script
The system displays count8.script in the File Name field.
5. Select OK
6. Exit the Design Analyzer.

Figure 3-24 and Figure 3-25 illustrate the actual text for the
count8.script file for VHDL and Verilog HDL, respectively.

XACT Development System

FPGA Compiler Tutorial for XC4000 Designs

f* ===@c‘j

f* Script for Synopsys to ¥ilink FPGA Compiler w3.1 =/

Countd WHDL Tutorial *

f* ==========s===ss==sss==s=s=======s=s==ssss=sss=sssss=sf)
TOP = cCounts

PART = "4005pc34-5"
designer = "XSI Team"
company = "¥ilinz, Inc"

analyze -format vhdl TOP + ", vhd"
glaborate TOP

current_design TOP

set_port_is_pad "*"

set_pad_type -slewrate HIGH all_outputs()
insert_pads

remove_constraint -all
create_clock "CLOCK" -period 50

compile

report_fpga » TOP + ".fpga"
report_timing > TOP + "_timing"

write -format db -hierarchy -output TOP + ".db"
replace_fpoga
set_attribute TOP "part™ -type string PART

set_attribute find{design,"*") "wnfout_use_blknames" %
-type bhoolean FALSE

write -format xnf -hierarchy -output TOP + ".sxnf”

exit

Figure 3-24 VHDL Script File for Count8

Xilinx Synopsys Interface FPGA User Guide 3-33

Xilinx Synopsys Interface FPGA User Guide

f# =======ssssssssssssssssssssssssssmsmsmsmmmmmmmmmesd
f* Script for Synopsys to ¥iline FPCA Compiler w3.1 */
j Counts Verilog Tutorial #
f* ==*,"

TOF = countd

PART = "4005pcg4-5"

designer = "¥SI Team"

campany = "#ilinx, Inc"

analyze -format wverilog TOP + ".y"
glaborate TOP

current_design TOP

set_port_is_pad "="

set_pad_type -slewrate HIGH all_outputsi)
insert_pads

remove_constraint -all
create_clock "clock” -period 50

compile

report_fpga > TOP + ".fpga”
report_timing > TORP + “.timing"

write -format db -hierarchy -output TORP + ".db"
replace_fpga
sef_attribute TOP "part" -type string PART

set_attribute find(design,"*") "wnfout_use_blknames" %
-type boolean FALSE

write -format =nf -hierarchy -output TOP + ".s=nf"

gxit

Figure 3-25 Verilog HDL Script File for Count8

Placing and Routing Your Design Using XMake

XMake automates the translation portion of the Xilinx design flow,
which makes processing a complex design as simple as running one

program.

Given the name of the top-level SXNF file, XMake finds and processes
all lower-level drawings. It produces an LCA file that is placed and
routed, as well as a BIT file ready for downloading to an FPGA. You
can invoke XMake from within the XACT Design Manager (XDM) or

from a shell tool window.

3-34 XACT Development System

FPGA Compiler Tutorial for XC4000 Designs

In this section you translate the count8 design using XMake from the
shell tool window. Refer to the XACT Reference Guide for details about
each program that XMake runs or about running XMake from XDM.

The procedure for translating the count8 design is slightly different if
XSl is installed on a different platform or network than that of the
XACT Development System. Follow the procedures that apply to
your specific configuration.

If XSI Is on Same Network as XACT Software

Follow the procedures in this section if the XSI software is installed
on the same network or platform as the XACT Development System
software. You can find the command-line options that XMake used in
the XMake output file, count8.out.

To run XMake from a shell tool window, type the following.
xmake count8.sxnf

Refer to Figure 3-1 for a flow diagram that illustrates the Xilinx
implementation flow for synthesis.

If XSI Is on Different Network Than XACT Software

Follow the procedures in this section if the XSI software is installed
on a different network or platform than the XACT Development
System software.

If XSl is installed on a machine that does not have access to both the
XSl and XACT Development System executable files, you must run
Syn2XNF first and then copy the output XNF and XFF files to the
platform where the XACT executable files reside.

Refer to Figure 3-1 for a flow diagram that illustrates the Xilinx
implementation flow for synthesis.

The following sections describe how to run the Syn2XNF and XMake
programs.

Running Syn2XNF

Because the XSI software is installed on a different platform than the
XACT software, you must first run Syn2XNF to translate your design
into an XFF file, as follows.

Xilinx Synopsys Interface FPGA User Guide 3-35

Xilinx Synopsys Interface FPGA User Guide

3-36

1.

Change to the directory where the count8.sxnf file is located and
execute the following command.

syn2xnf count8.sxnf

The SYN2XNF software might display the following message,
which prompts you to overwrite any existing XFF file that has the
same design name.

WARNING: The file count8.xff already exists.
Do you want to overwrite it? (yes or no)

If the system displays the previous message, enter y [l

Syn2XNF creates the following output files: count8.xff, count8.xnf
and syn2xnf.log.

Copy the count8.xff and count8.xnf files to the platform or
network where the XACT software is installed.

Note: Use the —p option with the Copy command to preserve the
files’ time stamp.

Running XMake

Perform the following steps to translate the count8 design using
XMake.

1.
2.
3.

Go to the platform where the XACT Software is installed.
Open a shell tool window.

Enter the following on the command line.

xmake —x count8

The —x option causes XMake to start with the XNF file and skip the
translation process. The XMake program processes all the
necessary design files, displaying its progress on the screen. If the
translation is successful, XMake issues this message.

‘count8.bit’ has been made, check output in
‘count8.out’

Be sure to examine the count8.out, count8.prp, and count8.rpt files
for warnings and errors, as described in the “Examining XMake
Output Files” section in this manual.

XACT Development System

FPGA Compiler Tutorial for XC4000 Designs

Examining XMake Output Files

In addition to the routed LCA file and the bitstream BIT file, XMake
generates three very useful output files. In this section you open each
file and familiarize yourself with its contents.

« The OUT file, count8.out, contains all the output from the
programs that XMake invokes. This information is also displayed
onscreen during processing.

o The PRP file, count8.prp, is the DRC (Design Rules Checker)
report file generated by XNFPrep.

« The RPT file, count8.rpt, contains the PPR placement and routing
results. This report also contains a listing of any unrouted pins or
nets.

Reviewing the XMake OUT File

When you run XMake, the output of the XMake program appears on
the screen. The OUT file shows every program run by XMake, the
command options selected, and the output of each individual
program.

Any warnings or errors produced by the programs run by XMake
appear in the OUT file. You should always review the OUT file after
running XMake, even if you did not see any warnings or error
messages during design processing. If any warnings or errors do
occur, you can save yourself some time by catching the problem now
instead of later in the design process.

Examine the count8.out file for the count8 design as follows.
1. Open ashell tool window.
2. Change to the project directory.

3. Use atext editor to view count8.out.

Checking for Warnings and Errors in the PRP File

If XNFPrep finds any errors or warnings, the OUT file directs you to
examine the PRP file. The PRP file also contains a detailed list of all
logic trimmed by XNFPrep and why it was unnecessary. This file can
be a useful debugging tool.

Xilinx Synopsys Interface FPGA User Guide 3-37

Xilinx Synopsys Interface FPGA User Guide

3-38

You should expect to see some warning messages in the count8.prp
files but no errors.

Examine the count8.prp file for the count8 design.

The following headers correspond to the table of contents found in
the count8.prp.

« XNFPrep Errors — lists all errors found in the design. Errors are
problems with the design that cause XMake to terminate. You
must fix any reported errors.

« XNFPrep Warnings — lists all warnings found in the design.
Warnings notify you of any unusual aspects in your design. You
should correct all warnings; however, it is not mandatory.

« Clock Signals Report — contains a summary of all the clock
signals and/or global buffers to assist you in determining the best
use of the global buffers. This section also contains a list of
guidelines to consider when assigning signals to a global buffer.

. Timing Specification Summary — contains a list of the XACT-
Performance timing specifications used in the design.

« Logic Trimming — shows the logic removed from your design
due to sourceless or loadless signals and V¢ or ground
connection. You should review this section to verify that logic
required in your design has not been removed due to design error.

Checking the RPT File

After XMake runs PPR, PPR generates a report file with an .rpt
extension, which contains important information in the following
categories.

. Partition, Place, and Route Summary — includes the number of
occupied CLBs that approximately corresponds to the total area
provided in the Synopsys Report.

« Chip Pinout Description — contains a list of the pins used in the
design and any pin locations specified in the constraints file.

. Critical Nets — indicates any nets that were assigned a constraint.

. Feedthrough Split Nets — indicates any nets with names that
were modified so the net could be re-powered. Re-powering or

XACT Development System

FPGA Compiler Tutorial for XC4000 Designs

signal regeneration is accomplished by the net using a special
function in a CLB.

. Deletion Traceback — enables you to check for any nets or cells
that were removed that should remain. The Synopsys Check
Design tool detects any unconnected pins or unused cells.

Examine the count8.rpt file to make sure there are no unrouted pins
or nets. Use a text editor to view this file. Figure 3-26 illustrates each
page of the RPT file.

Xilinx Synopsys Interface FPGA User Guide 3-39

Xilinx Synopsys Interface FPGA User Guide

FPR RESULTS FOR DESIGH COUNTS Page 1

Design Statistics and Device Utilization

Mo. Used Max Available % Used

Occupied CLBs g 196 3%
Packed CLBs 4 196 2%
Bonded I/0 Pins: 1 £1 18%
F and @ Function Generators: 8 392 2%
H Function Cenerators:] 136 0%
CLB Flip Flops:] 39z 2%
IOB Input Flip Flops:] 112 0%
I0B Output Flip Flops: 0 112 0%
Memory Write Controls:] 196 0%
3-5tate Buffers: 0 448 0%
3-State Half Longlines:] 56 0%
Edge Decode Inputs: 0 168 0%
Edge Decode Half Longlines:] 32 0%

Routing Summary

Mumber of unrouted connections: 0

PPR Parameters

Design = countd. xtf
Parttype = 4005PC34-5
Guide_cell =

Seed = 731116564
Estimate = FALSE
Conplete = TRUE
Placer_effort = 2
Router_effort = 2
Path_timing = TRUE
Stop_on_miss = FALSE

DCz2s = nane

DP2s = none

DCzp = nane

Dpzp = none
Cuide_onTy = FALSE
Ignore_maps = FALSE
Ignore_rlocs = FALSE

outfile <design name:

3-40 XACT Development System

FPGA Compiler Tutorial for XC4000 Designs

PPR RESULTS FCR DESIGH COUNTS Page 2
CPU Times

Partition: 00:00:00

Placement: 00:00:38

Routing: go:a0:10

Total: 00:00:55
PPR RESULTS FOR DESICGH COUNTS Page 3

#act Performance Summary

50.0ns 24.8ns TS0=cTock to setup:
<autor* 11.Bns <defaults pad to setup
a0.0ns 10.1ns TS7=pad to setup:EMABLE
a0.0ns 10.1ns TSGE=pad to setup:ENABLE
a0.0ns 10.1ns TSS=pad to setup:EMNABLE
a0.0ns 10.1ns TS4=pad to setup:ENABLE
a0.0ns 10.1ns TS3=pad to setup:EMNABLE
a0.0ns 10.1ns TS2=pad to setup:ENABLE
a0.0ns 10.1ns TS1=pad to setup:EMNABLE
a0.0ns 10.1ns TS8=pad to setup:ENABLE
<autor 16.5ns DEFAULT_FROM_FFS_TO_PADS=FROM: ff=:TO: pads

(*) MNote: the actual path delays computed by PPR indicate that all
timing specifications you provided have been met. Please use the
-FailedSpec andfor -TSMaxpaths options of the Xdelay-TimeSpec
command, accessible through the X0E or XDelay program, as a final
confirmation of the performance of your design.

*#®% PPR: WARWING w028:
The design has flip-flops with asynchronous set/reset controls
(PRE/SD or CLR/RD pins). ‘When PPR analvzes design timing, it does
not trace paths through the asynchronous set/reset input and on
through the Q output.

If you want PPR to control the delay on paths through asynchronous
setfreset pins, you must split the delay requirement into two
segments: one ending at the set/reset input, and the other beginning
at the flip-flop output. If you want PPR not to analyze paths that
lead to asynchronous set/reset pins, attach an ICNORE specification
to the pin{s) or signalis).

By default, ¥Delay reports all paths through asynchronous setfreset

pins. To prevent XDelay from showing these paths, use FlagBlk
CLB_Disable_SR_0Q on the appropriate flip-flops.

Xilinx Synopsys Interface FPGA User Guide 3-41

Xilinx Synopsys Interface FPGA User Guide

3-42

FPR RESULTS FOR DESIGH COUNTSE

Chip Pinout Description

Page 4

This chapter describes where vour design’s pins were placed in terms

of the package pins.

This first 1ist 15 sorted by package pin

lTocation. The second list presents the same data sorted by your

design’s pin names.

Package Pin Location

P13
P16
P17
P18
P15
P20
P25

Pin Mame
D COUT<?
: CLEAR

: ENABLE
o COUT <4 >
D COUT<E>
» COUT<S>
D COUT<2>
o COUT<3>
oCouT<0x
o COUT<1 >
1 CLock

This T1ist describes where your design’s pins are in terms of the
package pins; 1t is sorted by your design’s pin name. The 1ist
presented above has the same data sorted by package pin Tocation.

Package Pin Location
Pa
P29
P15
P20
P17y
P18
p¥
P16
P15
P4
PE

Pin Mame

LoCoUT<E
¢ COUT<3>
P COUT<4>
¢ COUT<S>
D COUT<E>
o COUT<7 >
: ENABLE

XACT Development System

FPGA Compiler Tutorial for XC4000 Designs

PPR RESULTS FCR DESIGH COUNTS Page 3
Split Hets

The Tist below identifies those signals which were routed through
CLBs or other blocks. In XDE and #Delay reports, these signals will
have two or more segments. An underscore (U0 and a number will be
added to the end of the original signal name to identify the
different segments. To analyze all segments of a signal in XDelay or
QueryMet reports, append the original name with "_*" when prompted
for a signal name.

PPR may route signals through CLEs or other blocks in any of the
following situations:

The delay on a signal might be reduced by routing it through a CLE,
given the extra flexibility in routing resources and the reduced
capacitive loading on the signal. PPR takes this into consideration.

The delay on a signal might be reduced by sourcing it from two
block outputs instead of ane, which is possible in some block
configurations. PPR will do this where possihle.

& gjgnal on a global buffer may not be able to connect directly to
a load pin, given the placement of that Toad pin and the other global
resources which are used. PPR will pass the signal through another
CLB and route the Toad pin using general-purpose interconnect.

* In an AC4000 design, & BUFCP can be sourced only from an IOB. If
the design indicates that a BUFGP is driven from an internal source,
PPR will route the signal through the output path of the IOB in order
to access the BUFGP input.

Segments Original Signal Mame

Xilinx Synopsys Interface FPGA User Guide 3-43

Xilinx Synopsys Interface FPGA User Guide

PPR RESULTS FOR DESIGH COUNTS Page &

Information in Other Reports

Since not all pertinent design information is Tisted in this PPR
report file, this section describes where additional information can

he found.
Information Report File Created By
Connection of signals between levels of design.mrg XMFMERGE

design hierarchy

Resolution of relative Tocation (RLOC) design.mrg XMFMERGE
constraints through design hierarchy

#-BLOY designs: design rule check for design.prx XMFPREP
pre-exzpanded design

¥-BLOK designs: results of optimization design.bls KBLOX
and module expansion in X-BLO¥

Design rule check for invalid and/or design.prp XMFPREP
inefficient use of LCA architecture

Unused or disabled Togic removed from design.prp XMFPREP
design, due to sourceless or Toadless
signals and VCC or ground connections

XC300047L designs: Mapping of design design.crf XKNFMAP
Togic into each CLE or IOB

KC30004/L designs: Summary of gquided design.crf XMFMAP
partitioning results

Figure 3-26 RPT File

Comparing Actual Versus Estimated Area Results

The RPT file contains a partition, place, and route summary that
includes the number of occupied CLBs that approximately
corresponds to the total area number provided in the Synopsys
Report.

In this section you compare how accurate the FPGA Compiler pre-
place and route estimates were to the actual results.

Figure 3-20 shows the estimated area results from the FPGA
Compiler, and Figure 3-26 shows the actual area results from PPR.
The following table summarizes the area utilization results.

3-44 XACT Development System

FPGA Compiler Tutorial for XC4000 Designs

Table 3-1 Area Utilization Summary

Partitioned Design Utilization Using Part 4005PC84-5
Actual No. Estimated
Used No. Used
Occupied CLBs 6 8
Packed CLBs 4 N/A
Bonded 1/0 Pins 11 11
F and G Function Generators 8 4*
H Function Generators 0 0
CLB Flip-flops 8 8
Clock Pads 1 1

* The reported number of CLBs in other cells was 4.

The actual area utilization is accurate because the FPGA Compiler
mapped the design and passed this information to PPR.

Note: Your actual area numbers may vary from the area utilization
reported in the FPGA Compiler since PPR adds additional CLBs as
feedthrough split nets. Refer to page 5 of the RPT file, illustrated by
Figure 3-26, for more information on split nets for the count8 design.

Using XDelay

The XDelay command allows you to obtain detailed post-placement
and post-routing timing information about your design.

The XDelay results summarize the worst paths for the design, not
necessarily the paths that concern you. XDelay also has an interactive
mode, which enables you to extract information about specific paths
in the design, for example, to generate a timing report for a subset of
the design. You can choose specific paths by selecting individual
starting and ending points or by indicating a specific path type. For
more information about XDelay and its options, refer to the XACT
Reference Guide.

In this section you use XDelay to report the worst-case paths and the
maximum clock frequency of the design. You also compare the
output of XDelay to the estimated timing reported by the FPGA
Compiler.

Xilinx Synopsys Interface FPGA User Guide 3-45

Xilinx Synopsys Interface FPGA User Guide

Invoking XDelay

Enter the following command at the command line to run XDelay,
which creates a short report, count8.dly.

xdelay count8

XDelay produces the following output as shown in Figure 3-27.

“Delay Report File:

Design: countd.lca (4005PCE4-5]
Program: =delay 5.0.0
Speedsfile: File 4005.spd, Version 4000.1, Rewision 4005.8

“delay timing analysis options:

From all.

To all.

Worst case Pad to Pad path delay : 28.6ns {1 block levell
Pad "CLEAR" {P5) to Pad "COUT<7>" (P4.0)

Clock net "M10?7" path delays:
Pad to Setup : 37.0ns (5 block levels)
{Includes an external input margin of 0.0ns.)
Pad "CLEA&R" (PS5} to FF Setup (D) at "N1E63.C4"
Target FFY drives output net "M163"
Clock to Pad : 16.5ns [0 block lewvels)
{Includes an external output margin of 0.0ns.)
Clock to @, net "MW163" to Pad "COUT<?:" (P4.0)
Clock to Setup (same edge) : 24.9ns (4 block Tevels)
Clock to @, net "M163" to FF Setup (D) at "M163.C4"
Target FFY drives output net "M163"
Minimum Clock Period : 37.0ns

Estimated Maximum Clock Speed : 27.0Mhz

Figure 3-27 XDelay Short Report

Comparing Actual Versus Estimated Timing Results

You can often get better timing estimates by looking at the number of
block levels that the critical or longest path must traverse rather than
using the estimated delays listed in the count8.timing report,
illustrated in Figure 3-21.

Block levels are the number of CLBs and 10Bs. The longest path
reported in the FPGA Compiler was a clock-to-clock delay from a

3-46 XACT Development System

FPGA Compiler Tutorial for XC4000 Designs

register through the incrementer. This delay was reported as 26.27 ns
in the count8.timing report and included the clock-to-output delay,
the delay though the X-BLOX incrementer, the clock-to-setup delay,
the average wire load, and the flip-flop setup time.

The XDelay report, illustrated in Figure 3-27, reports the longest
clock-to-setup delay as 24.9 ns with four block levels. The wire-load
models and the mapping of the X-BLOX modules account for the
difference in delay from that of the timing report.

Note: The FPGA Compiler does not provide estimated block levels
for X-BLOX components, and X-BLOX timing assumes the modules
fit in a single column of CLBs.

Verifying Your Design Using XChecker

This section describes the function of the XChecker Download/
Readback cable. You do not actually download the count8 design in
this tutorial.

To verify that your design works in your system, you can use the
XChecker Download/Readback cable and associated software. With
XChecker, you can load a configuration bitstream generated by the
MakeBits program. The MakeBits file defines the internal logic
functions and interconnections of the target FPGA. For more
information on the XChecker cable or the MakeBits program, refer to
the XACT Hardware and Peripherals Guide or the XACT Reference Guide,
Volume 2, respectively.

You can store the BIT file in your system memory or in a PROM.
Refer to the XPP section of the XACT Hardware and Peripherals Guide
for more information about storing BIT files in PROMs.

Xilinx Synopsys Interface FPGA User Guide 3-47

Xilinx Synopsys Interface FPGA User Guide

3-48 XACT Development System

Design Compiler
Tutorial

Xilinx
Synopsys
Interface

FPGA User
Gulde

Xilinx Synopsys Interface FPGA User Guide — December, 1994 (0401291 01) Printed in U.S.A.

Xilinx Synopsys Interface FPGA User Guide

XACT Development System

Chapter 4

Design Compiler Tutorial for XC3000A Designs

XSI provides an interface between Synopsys synthesis tools and the
Xilinx XACT Development System. This interface enables you to use
an HDL description to create your design and the XACT tools to
map, place, and route the design.

This tutorial provides step-by-step information on how to run the
Design Compiler for XC3000A designs and takes approximately one
hour to complete.

Note: You can also perform this tutorial with XC4000 designs, yet
you need to specify different libraries in your .synopsys_dc.setup file.
Refer to the “Using the Design Compiler for XC4000 Designs” in the
“Getting Started” chapter for more information, including how to
access the X-BLOX DesignWare library.

Before You Begin

Before starting this tutorial, make sure that the Xilinx Synopsys
Interface (DS-401), XACT Development System (DS-502), and
Synopsys Design Compiler are installed.

To verify the correct installation of these tools, refer to the “Getting
Started” section at the beginning of this user guide, which describes
how to modify the default Synopsys start-up file to include the
appropriate libraries and search path.

Required Files

To access the files you need to perform this tutorial, follow these
steps. Replace DS401-Directory with the directory where the XSI
software is installed.

Xilinx Synopsys Interface FPGA User Guide — December, 1994 (0401291 01) 4-1

Xilinx Synopsys Interface FPGA User Guide

The files you need are in one of the following directories.

VHDL users DS401-Directory/tutorial/synopsys/dc \
/x3000a/vhd

Verilog users DS401-Directory/tutorial/synopsys/dc \
/x3000a/verilog

In this tutorial, you use a design called count8, which is a modulo 256
(8-bit) counter. The vhd directory contains the VHDL version,
count8.vhd, and the verilog directory contains the Verilog HDL
version, count8.v.

1. Change to your working directory.
2. Create a directory called count8 and change to that directory.

mkdir count8
cd count8

3. Copy the files from either the VHDL or Verilog tutorial directory
into the count8 directory.

To use the VHDL count8 design, enter the following on the
command line.

cp-r DS401-Directory/tutorial/synopsys/dc/x3000a \
/vhd .

To use the Verilog HDL count8 design, enter the following on the
command line.

cp-r DS401-Directory/tutorial/synopsys/dc/x3000a \
/verilog .

Note: The backslash (\) is a continuation character; do not enter it on
the command line.

If you do not know the location of the DS401-Directory, type the
following, which displays the paths set for the XACT environment
variable. The XSI path appears first.

echo $XACT

Exiting the Tutorial

You can exit or stop the tutorial at any time. For best results, complete
all steps in a section before quitting. If you must exit the Design

4-2 XACT Development System

Design Compiler Tutorial for XC3000A Designs

Analyzer before completing the tutorial, you must re-run the tutorial
from the beginning.

Design Flow

This section illustrates the Xilinx implementation flow for the count8
tutorial design. Generally, the design process starts with an HDL
description of the desired circuit functions and ends with a BIT file, a
binary file that contains the configuration data for your design, and
an LCA file, which you can use for back-annotation and simulation.

Figure 4-1 illustrates the Xilinx XC3000A implementation flow for
synthesis. Use it as a checklist as you proceed with your XC3000A
design.

XMake count8

Syn2XNF

XNFPrep
count8.xtf

syn2xnf.log

Functional Simulation

xnfprep.log

XDelay

Timing
Simulation
MakeBits
(counts.bit) (counts.lca) X4897

Figure 4-1 XC3000A Implementation Flow for Synthesis

Note: For the XSI design flow, which precedes running XMake, see
the beginning of the “Using the Design Compiler” chapter.

Xilinx Synopsys Interface FPGA User Guide 4-3

Xilinx Synopsys Interface FPGA User Guide

Count8 Design Description

This section describes the count8 design used in this tutorial. Figure
4-2 shows the VHDL code and Figure 4-3 shows the Verilog HDL
code for count8.

The count8 design counts up to 255, then starts again at zero. It can
count only when Enable is High and Clear is Low. If Clear is High,
the counter resets synchronously. If Enable is Low, the counter is
disabled. The output signal is COUT.

-- Countd - Behavioral Model
-- 8-bhit Counter with Enable and Clear
-- K5I w3.2

Library IEEE;
use IEEE.STD_LOGIC_1164.al11;
use IEEE.STD_LOGIC_UNSIGMED.a11;

entity countd is
port CCLOCK, CLEAR. EMABLE: in STD_LOGIC;
COUT: out STO_LOGIC_WECTOR (7 downto 003;
end counts;

architecture BEHAVICRAL of countd is
Eigqa1 QOUT: STO_LOGIC_VECTOR (7 downto 03;
eqgin
process (CLEAR, CLOCK, EMABLED
begin
if (CLEAR = “1°) then
QOUT <= "00000000";
glsif (CLOCK event and CLOCK="1") then
if (EM&ELE = “17°) then
QOUT <= QOUT + "00000001";
end if;
gnd 1f;
end process;
COUT <= QouT;
end BEHAWIORAL;

Figure 4-2 VHDL Code for Count8

4-4 XACT Development System

Design Compiler Tutorial for XC3000A Designs

f*
W
* Countg - Behavioral Model
W
* Model originally developed by Seva Technologies, Inc.
W
* {0 BO%
W
*f
module count8l{clock, <lear, enable, coutd ;
input clock;
input clear;
input enable;

output [7:0] cout;
reg [7:01 cout:
always @(posedge <lear or posedge clock)
hegin
if Cclear == 17b13
cout = 8°h00 ;
glse if C(enable == 17b1]
cout = cout + 17h1 ;
and

endmnodul e

Figure 4-3 Verilog HDL Code for Count8

Invoking the Design Analyzer

In this section you learn the following.
. How to invoke the Design Analyzer.

. How to verify that the Synopsys start-up file (.synopsys_dc.setup)
has been properly installed and modified as described in the
release notes and the “Getting Started” chapter at the beginning of
this user guide.

Perform the following steps.

1. From the count8 directory, run the Synopsys Design Analyzer in
the background by entering the following command.

design_analyzer &

If the .synopsys_dc.setup file generates any errors or warnings,
the system displays them onscreen. If you receive any error or
warning messages, refer to the “Getting Started” chapter.

Xilinx Synopsys Interface FPGA User Guide 4-5

Xilinx Synopsys Interface FPGA User Guide

Note: The command.log file in your working directory lists the
variable settings for the Design Analyzer, which you can view to
verify that the Synopsys tools read the correct .synopsys_dc.setup
file.

2. Verify that your Synopsys options were set correctly.
Setup 0O Defaults...
The system displays the following dialog box.

Defaults

Dezigner: |

Company? |

Search Path: | fd=d0l/zynopsys/ librariesdsyn /products/sunopsys/verd_1/libraries/syn/

Link Libraryz | xprim_3020a-6,db xprim_30005-6,db xgen_3000,db xdc_3000a-6.db

Target Library: | ®prim_3020a-6,db xprim_30005-6,db xgen_3000,db xdc_3000a-6,db

Sunbol Libraryt [c3000.sdb

Schematic Optionz: | -zize infinite

Sro-to-Gates Mode: of F oy |

Figure 4-4 Defaults Dialog Box

3. Verify that your settings match the following.

search_path = DS401-Directory/synopsys/libraries
/syn
SYNOPSYS-Directory/libraries
/syn

link_library = xprim_3020a-6.db xprim_3000a-6.db
xgen_3000.db xdc_3000a-6.db

target_library = xprim_3020a-6.db xprim_3000a-6.db
xgen_3000.db xdc_3000a-6.db

symbol_library = xc3000.sdb

The fields in the dialog box are not long enough to show all the
default information. To view hidden information, position your

4-6 XACT Development System

Design Compiler Tutorial for XC3000A Designs

cursor in a specific field and use the left arrow key or enlarge the
width of the Defaults window.

Note: DS401-Directory is the directory where the Xilinx Synopsys
Interface software is installed, and the SYNOPSYS-Directory is where
the Synopsys Design Compiler is installed.

4. Select Cancel to close the window.

Reading the Design File

In this section you learn how to use the Design Analyzer to analyze
and create the design file.

Analyzing the Design File

The Analyze command checks the syntax and logic, and converts the
HDL file to an intermediate format for use during simulation. To
analyze the design file, perform the following steps.

1. SelectFile 0O Analyze... from the Design Analyzer menu.

The system displays the Analyze File dialog box as shown in
Figure 4-5.

Xilinx Synopsys Interface FPGA User Guide 4-7

Xilinx Synopsys Interface FPGA User Guide

Analyze File

File Mame{s?:

Directorys Aexport/homes/fairfield emily/xsi_do_tut

5 +of tHove up one directoryl
WORKS
count8,vhd

v

EBE d
File Format:

Librarys: | WORK

DEFALLT
LORK

-4 5

] Create Mew Library if it Doesn't Exist

Figure 4-5 Analyze File Dialog Box

2. Use the left mouse button to click once on count8.vhd for VHDL

users, or count8.v for Verilog HDL users.

The system displays count8.vhd or count8.v in the File Name(s)
field.

. Click OK

The Analyze window displays informational, error, and warning
messages. The system also displays processing messages in the
Command window. (To display the Command window, select
Setup O Command Window ... from the Design Analyzer
menu.)

XACT Development System

Design Compiler Tutorial for XC3000A Designs

Figure 4-6 illustrates the Analyze window output.

Analyze

; Loading db file “/productadsunopsys/ver3_l/1libraries/syn/standard,=1db” E
Loading db file “/products/synopsys/ver3_1/1libraries/syn/dwidl,=1db”
Loading db file “/producta/synopsys/ver3_l/1libraries/synigtech,db”
Reading in the Synopays vhdl primitives,

Jexport/homesFairfieldd/eni lyfxei_do_tut/count8,vhd:

1

dezign_analyzer

jl

Figure 4-6 Analyze Window
4. Click Cancel to close the Analyze window.

Creating the Design File
To create the design file, perform the following steps.
1. Use the Elaborate command.
File O Elaborate...

The Elaborate Design dialog box appears as follows.

Xilinx Synopsys Interface FPGA User Guide 4-9

Xilinx Synopsys Interface FPGA User Guide

Elaborate Design

Library:

LEFAULT
Dot
Tz

Deszign:

L [3

Parameters:l

M Re—fnalyze Out-0f-Date Libraries

Figure 4-7 Elaborate Design Dialog Box

2. Scroll the library list and click on WORK
3. Click on count8(BEHAVIORAL) .

The system displays count8(BEHAVIORAL) in the Design field.
4. Click OK

The system displays informational messages in the Elaborate
window as illustrated by Figure 4-8.

4-10 XACT Development System

Design Compiler Tutorial for XC3000A Designs

Elaborate

4]

Inferred memory devices in process

in routine countd line 19 in file
“fexportshomesfairfieldseni ly/xsi_do_tut/count8,vhd”,

Register Mame I Type | Width | Bus | AR | AS | SR | 55 | 5T |

00UT _reg | Flip=flep I & I ¥ 1Y IH TN IN IN.I

Loading db file "/build/interfaceproddxsi/prod/install/ds401l/ synopayss/libraries/syn/xprin_3020a-6,db”
Loading db file "/build/interfaceproddxsi/proddinstall/ds401/synopays/libraries syn/xprin_3000a-6,db"
Loading db file "/build/interfaceproddxsisprodsinstall/ded0l synopayzslibrariessynsxgen_3000, db”
Loading db file "/build/interfaceprodsxsi/prod/install/ds401l/synopays/libraries/syn/xdc_3000a-6,db"
Current dezign iz now “countd”

1

design_analyzer® Loading db file "/products/synopsysdver3_1/libraries/suyn/generic,sdb”
Loading db file "/build/interfaceprodsxsisprodsinstall/ded0l synopayzslibrariessyn/xc3000, 2db”
Loading db file "/products/synopsyssveri_1/librariesdsyn/1_25,font”

1

dezign_analyzer:

Figure 4-8 Elaborate Window

5. Click Cancel to close the Elaborate window.

A symbol that represents the count8 design appears in the Design
Analyzer main screen as follows.

Xilinx Synopsys Interface FPGA User Guide 4-11

Xilinx Synopsys Interface FPGA User Guide

(=] Synopsys Design Analyzer

Setup File Edit View Attributes Analyziz Tools Help

ég [

Dezignz Yiew
Elaborated count3{BEHAYIORAL} from library WORK

Figure 4-9 Top-Level Symbol for Count8 Design

Inserting I/O Buffers

4-12

In this section you define the ports of the top-level design as inputs,
outputs, clock ports, or bidirectional ports. Also, you use the Insert
Pads commands to add the necessary 1/0 buffers to the top-level
design. Defining a port as a pad causes the Insert Pads command to
attach a buffer to that port, which the Xilinx tools can then recognize.

Note: Count8 is a one-level design.

The Design Compiler can optimize registers and 3-state functions
into 10Bs. Refer to the “Using the Design Compiler” chapter in this
user guide for more information.

The following procedures describe how to define the input ports,
CLEAR and ENABLE; the input clock, CLOCK; and the output bus,
COUT <7:0>. The actual buffers are not added to the design until the
pads are inserted.

XACT Development System

Design Compiler Tutorial for XC3000A Designs

Note: The procedures in this section only apply to inserting IBUFs,
OBUFs, IOBUFs, IFDs, OFDs, and ILDs. For any other 10B
configurations, you must instantiate the buffers into a design. See the
“XC3000/A/L and XC3100/A Primitives” appendix for information
on other available buffers.

Defining Input Ports as Pads
To define the input ports as pads, perform the following steps.

1. Click the left mouse button on the count8 icon illustrated by
Figure 4-9.

The system changes the solid line to a dotted line to indicate the
icon is selected.

2. Click on the down arrow icon to display the design in Symbol
View.

The system displays the count8 design in Symbol View as
illustrated by Figure 4-10.

(=) Synopsys Design Analyzer

Setup File Edit View Attributes Analyziz Tools Help

countd

ég [

Current Dlesigni countd Symbol Yiew
Left Button: Select - Middle Button: Add/Modify Select - Right Button: Meru
1

Figure 4-10 Symbol View

Xilinx Synopsys Interface FPGA User Guide 4-13

Xilinx Synopsys Interface FPGA User Guide

4-14

3. Select the CLEAR, CLOCK, and ENABLE input ports by clicking

on one with the left mouse button, and the other two with the
middle mouse button.

The middle mouse button extends the selection. A dotted
rectangle indicates that the ports are selected.

Note: To deselect an input port, click on it again with the middle
mouse button.

4. Select Attributes O Optimization Directives O

Input Port... from the Design Analyzer menu.

The Input Port Attributes dialog box appears as shown in
Figure 4-11.

Input Port Attributes

Port. Mame: |

MaXimum FanDUt: m
Haximum Transitiony m

2 Port is Pad Port Pad Attributes,,. |

Connected to; £ Logic 0 £ Logic 1

Set Equal... | Set Dpposite... |

Figure 4-11 Input Port Attributes Dialog Box

. Click on the box next to Port is Pad

. Select Apply .

The system sets the attributes for the CLEAR, CLOCK, and
ENABLE ports.

. Click on Cancel to close the dialog box.

XACT Development System

Design Compiler Tutorial for XC3000A Designs

Defining the Output Port as a Pad

To define the output port as a pad, perform the following steps.

1. Selectthe COUT [7:0] bus by clicking on it with the left mouse
button.

A dotted rectangle indicates that the output port is selected.

2. Select Attributes 0 Optimization Directives O
Output Port... from the Design Analyzer menu.

The Output Port Attributes window appears first, then the Bus
Selector dialog box appears over it as illustrated by Figure 4-12.

Output Port Eus Selector

Port Mame: |CUUT<?:0> Port Bus Mame:
—————————————— cout
Maximum Tranzition: E

2 Port is Pad i Par

21 Unconnected

Signal Type: @

Figure 4-12 Bus Selector and Output Port Attributes Dialog
Boxes
3. Inthe Bus Selector window, select Cancel .

The Bus Selector dialog box disappears.

4. In the Output Port Attributes dialog box, click on the box labeled
Port is Pad

5. Select Apply 0O Cancel

Note: You can also define the inputs, outputs, and clock buffers using
the Set Port Is Pad command at the Synopsys DC-shell prompt or in
the Design Analyzer command window as follows. This command
sets all the ports as pads in one simple step.

set_port_is_pad “*”

Xilinx Synopsys Interface FPGA User Guide 4-15

Xilinx Synopsys Interface FPGA User Guide

Using the Insert Pads Command

After the ports are defined as pads, you can insert the 1/0 buffers
using the following procedure.

1. If the Command window is not open, select Setup O Command
Window... from the Design Analyzer menu.

The Command window appears.

2. At the Design Analyzer prompt in the Command window, type
insert_pads [

The Command window displays informational messages. You
may want to move the Command window to a place on your
desktop where it does not obscure the Design Analyzer main
window.

Figure 4-13 illustrates the Command window output after
running the Insert Pads command.

Command Window

dezign_analyzer> inzert_pads

Loading target library “xprim_3020a-67

Loading target library “xprim_3000a-6"

Loading target library “xgen_3000°

Loading target library “xdc_3000a-67

Loading dezign “count8”

Inzerting I0 Pads in Design “count8”

Transferring Design “count8” to database “count,db”
Current design is “count8”,
1

design_analyzer’> current_design = "/export/homes/fairfield/emilysxsi_dc_tut/countd,dbscount8"
Current design is “count8”,

"fexportshomes/FairfieldsenilySxei_do_tut/countS, dbcount8”

dezign_analyzer’ create_schematic -zize infinite -schematic_view -symbol_view -hier_wview
Warning: Design “count8” isn’t mapped, (UIS-3)

Generating schematic for design: countd

The schematic for design “count8” has 1 pageis),

1
dazign_analyzer>

design_analyzer> g
L !

Figure 4-13 Command Window Output for Insert Pads Command

Estimating Pre-Layout Timing

The XSl libraries contain operating conditions and wire-load models
that are used to provide a pre-layout timing estimate of your design.

4-16 XACT Development System

Design Compiler Tutorial for XC3000A Designs

Selecting the Operating Condition

XSI offers a set of operating condition parameters called worst-case
commercial (WCCOM). The operating conditions are selected
automatically if you used Synlibs to generate the link and target
libraries. For more information on the Synlibs command, refer to the
“Getting Started” chapter at the beginning of this user guide.

Setting the Wire-Load Models

The XSl libraries offer worst-case and average wire-load models.
Wire loads are the estimated net delays for a design that has been
partitioned into CLBs and IOBs. Refer to the “Using the Design
Compiler” chapter in this user guide for more information.

Synopsys uses these estimates as guidelines to optimize your design
for an FPGA. The actual wire loads cannot be determined until after
the design has been placed and routed.

The models are device and speed-grade dependent, with an average
wire-load model (parttype-speedgrade_avg) and a worst-case wire-load
model (parttype-speedgrade_wc) for each. The average wire-load
model is the mean of the test suite and the worst-case is the average
plus one standard deviation. Therefore, the worst-case model is more
conservative.

The average wire-load model is selected automatically if you used
Synlibs to generate the link and target libraries.

Optimizing for Speed

Before compiling a design, you can set area and speed constraints to
improve results. In this section you set a timing constraint. For the
most effective results from the Design Compiler, the constraints must
be accurate and achievable. For example, if a timing goal of 0 ns is set
on all ports, the Design Compiler adds buffers to critical paths or
duplicates logic on heavily loaded nets, attempting to achieve this
goal. An unrealistic goal might cause significant and unwarranted
area increases. Refer to the Synopsys Design Compiler Reference Manual
for details on optimization techniques.

Path timing includes both logic and net delays. All gate timing delays
are worst-case commercial estimates and are specified in

Xilinx Synopsys Interface FPGA User Guide 4-17

Xilinx Synopsys Interface FPGA User Guide

4-18

nanoseconds. The wire-load delays are either average estimates or
worst-case estimates. Actual delays are determined only after you use
PPR.

Additional timing information about primitives is included in the
*“XC3000/A/L and XC3100/A Primitives” appendix in this user
guide and The Programmable Logic Data Book.

To set a clock constraint, follow these steps.

1. Select the CLOCK pin by placing the cursor on the CLOCK port
and pressing the left mouse button.

2. Select the following menu options from the Attributes menu.
Attributes O Clocks O Specify...

The system displays the Specify Clock dialog box as follows. The
default clock period is 50.

Specify Clock

Clock Name: § cLOCK

Port. Mame: | CLOCK E

0,0 26,0 50,0

21 Dant Touch Metwork 21 Fix Hald

Figure 4-14 Specify Clock Dialog Box

XACT Development System

Design Compiler Tutorial for XC3000A Designs

3. Select Apply .

A waveform appears above the CLOCK pin to indicate the setting
of a timing constraint.

4. Select Cancel to close the dialog box.

Compiling the Design

In this section you learn how to compile a design with the
recommended options.

The optimization process is part of the Compile command.
Optimization is a complex series of transformations guided by
constraints that you specify. One of the optimization steps is
technology mapping, which transforms the Boolean logic network
representation of your design into interconnected gates that are
selected from the target technology library. You can set the mapping
as Low, Medium, or High. Refer to the Synopsys Design Compiler
Reference Manual for more details about mapping and other
optimization techniques.

To compile the count8 design, do the following.

1. Select Tools [Design Optimization... from the Design
Analyzer menu.

Xilinx Synopsys Interface FPGA User Guide 4-19

Xilinx Synopsys Interface FPGA User Guide

The Design Optimization dialog box appears as follows.

Design Optimization

M Hap Design

Map Effort: <r Low 4 Medium $r High

2 Verify Design

1 Allow Boundary Optimization

Execute in: 4 Foreground < Background

Figure 4-15 Design Optimization Dialog Box

2. Make sure the Map Design box is shaded and the Map Effort is
Medium.

3. Click OK

The system displays any informational messages and compilation
errors in the Compile Log window and the Command window.

4. Scroll through the Compile Log window to view the compilation
messages.

5. Once the design is compiled, click Cancel to close the Compile
Log window.

Evaluating the Results

4-20

The design is now optimized for the XC3000A architecture and
mapped into primitive gates and registers.

The XSI libraries contain both area and timing information. In this
section you view an area report on the estimated CLB and I0OB
utilization and a timing report on the estimated delays. You also learn
how to redirect the report output from the screen to a file.

XACT Development System

Design Compiler Tutorial for XC3000A Designs

1. View a schematic of the design by selecting the gate picture icon
on the left side of the Synopsys Design Analyzer window.

The system displays a schematic view of the count8 design.

(=) Synopsys Design Analyzer

W Attributes Analyziz Tools Help

[

Current Dlesigni countd Schematic View
Port: CLOCK

Figure 4-16 Schematic View

Xilinx Synopsys Interface FPGA User Guide 4-21

Xilinx Synopsys Interface FPGA User Guide

4-22

2. When you finish viewing the schematic, click on the up arrow icon
to switch to the Designs View as illustrated by Figure 4-17.

(=) Synopsys Design Analyzer

Setup File Edit View Attributes Analyziz Tools Help

cauntd_DWB1_inc_3_H@

ég [

Dezignz Yiew
Left Button: Select - Middle Button: Add/Modify Select - Right Button: Meru

Figure 4-17 Designs View

Viewing the Estimated Area Results

To evaluate the estimated area results, perform the following steps.

1. Click on the count8 icon.

2. Select the following commands from the Design Analyzer menu.
Analysis [Report...

The Report dialog box appears as follows.

XACT Development System

Design Compiler Tutorial for XC3000A Designs

Report 1

Attribute Reports

21 ALl Attributes £ FSH

21 Bussing 21 Net

2 Cell 1 Path Groups
£ Clocks £ Port,

1 Compile Options 1 Resource

1 Design

Analysiz Reports

1 Area 1 Point Timing

21 Clock Skew £ Soager

21 Clock Tree £l Reference

2 Constraints 21 Selected

21 Crozs Ref, 21 Timing

21 FPGA Resources 2 Timing Requirements

£l Hierarchy

: Clear Choices

Send Output To: 4 Window s File

Fyiet | report,out

L

Figure 4-18 Report Dialog Box

3. Inthe Analysis Reports section, select the box next to Area.
4. Select Apply .
The Report Output window appears as illustrated by Figure 4-19.

Xilinx Synopsys Interface FPGA User Guide 4-23

Xilinx Synopsys Interface FPGA User Guide

4-24

Report Output

4]

design_analyzer> Information; Updating design information,,. (UID-85)

Report : area

Design § count®

Yersiony w3,1b-20502

Date ¢ Fri Oct 7 17:44:44 1994

Library{=? Used:
#prim_3000a-6 (File: /build/interfaceprod/xsisprod/install/dsd01l/synopsysslibraries/syn/xprin_3000a-6,db
wxdo_3000a-6 (File: /build/interfaceproddxsifprod/install/d=401/synopaysslibraries/sunxde_3000a-6,db’
xprim_3020a-6 (File: /build/interfaceprod/xzisprod/instal l/d=d0l/synopsysslibraries synsxprin_3020a-6,db

Humber of ports: 11

Humber of nets: 30

Number of cellst 20

Humber of references: 5

Combinational area: 5, 500000

Honcombinational areai 4, 000000

Net Interconnect areat 0,000000 {Wire load has zero net areal

Total area: 9, BO0000

1

design_analyzer>

Figure 4-19 Report Output Window (Area)

5. Use the scroll bar in the Report Output window to view the design
statistics.

6. Select Cancel to close the Report Output window.
Note: Do not close the Report dialog box.

Synopsys reports area in three parts — combinatorial area, non-
combinatorial area, and total area. The area reported is in terms of the
number of Xilinx CLBs used. Each CLB contains two 4-input function
generators and two flip-flops. The flip-flops and 2-, 3-, and 4-input
Boolean functions are weighted for area at 0.5 CLB. The 5-input
primitives are weighted for area at 1 CLB.

If your design is register-intensive, the number of CLBs required is
roughly equal to the non-combinatorial area reported. If the design is
heavily combinatorial, the number of CLBs required is roughly equal

XACT Development System

Design Compiler Tutorial for XC3000A Designs

to the combinatorial area reported. However, the CLBs actually used
are usually less than what Synopsys reports.

As a rule of thumb with Xilinx mapped libraries (Syn2XNF —-map
option) the minimum CLBs required is the larger of the
combinatorial and non-combinatorial areas reported. The maximum
number of CLBs required is the total number reported for both. The
number of CLBs actually required is usually less than the total area,
because the function generators and flip-flops often share the same
CLB.

The rule of thumb with Xilinx unmapped libraries (Syn2XNF without
options) is similar. The main difference is that the minimum number
of CLBs required could be less than the combinatorial area reported,
depending if PPR performs any local optimization.

Only PPR can accurately compute the actual number of required
CLBs.

Viewing the Estimated Timing Results

To evaluate the timing results, perform the following steps.

1. Inthe Analysis Reports section of the Report dialog box, click on
the box to the left of Timing with the left mouse button.

2. Deselect the Area box.
3. Select Apply .

The Report Output window opens. The results reported are
worst-case timing delay estimates. The final results cannot be
determined until after you run PPR.

4. When you are finished reviewing the Report Output window,
select Cancel .

Note: Do not close the Report dialog box.

Saving the Report Results to a File

To save the estimated timing results to a report file, perform the
following steps.

1. Make sure only the Timing box is selected in the Analysis Reports
section of the Report dialog box.

Xilinx Synopsys Interface FPGA User Guide 4-25

Xilinx Synopsys Interface FPGA User Guide

4-26

Locate the Send Output To field at the bottom of the Report dialog
box and select File

3. Place your cursor in the File field.
4.
5
6

Double-click to highlight the default report file name.

. Type count8.timing
. Select Apply 0O Cancel

Worst-case delays are used in Xilinx libraries, which assume that
function generators and flip-flops are not in the same CLB. Synopsys
timing delay estimates include wire-load delays in addition to gate
delays. In most cases, actual results are better than the pre-placement
and routing Synopsys estimates.

Figure 4-20 is the complete timing report for the count8 design,
count8.timing.

XACT Development System

Design Compiler Tutorial for XC3000A Designs

ik ek el e e sk e e e e e e e o e o e e e e sl o el e e e e e sl e e
Report = timing
-path full
-delay max
-max_paths 1
Design : counts
Version: w3.1h-20502
Date : Thu Oct B 18:26:05 1994

e b e o e b sl o ol o ol e o o e e e o e e o o e e o o e e e e e e e e e e e e e e

Cperating Conditions: WCCOM Library: =prim_3020a-6
Wire Loading Model Mode: top

Design Wre Loading Model Library

Counts 0NZ0a-6_avg Aprim_3020a-6

Startpoint: QOUT_reg<0:
{rizing edge-triggered flip-flop clocked by CLOCK)
Endpoint: QOUT_reg<f>
{rizing edge-triggered flip-flop clocked by CLOCK)
Path Group: CLOCK
Path Type: max

Point Incr Path
clock CLOCK (rise edgel 0.oa 0.o0
clock network delay (ideall 0.00 0.00
QOUT_reg«<0>/C (FDCED 0.o0 o.oo r
QOUT_reg<0x/Q (FDCE) 9.75 9.75 r
add_25/pTus/LEFT_UNSIGMED_ARG_799,/8_0 Ccount8_DW01_inc_8_0

0.00 9.75 r
add_25/pTus/LEFT_UNSIGHED_ARG_739/U4 /0 (AND3D .14 16.89 r
add_25/pTus/ LEFT_UMSIGNED_ARG_739/U5/0 (ANDZD 7.14 24.03 r
add_25/pTus/LEFT_UNSIGHED_ARG_739/UE/ 0 (ANDZD .14 3T r
add_25/pTus/ LEFT_UNSIGNED_ARG_739/U7 /0 (ANDZD 7.14 |3 or
add_25/pTus/LEFT_UNSIGHED_ARG_739/U3/0 (XORZD E.24 44 .55 r
add_25/pTus/ LEFT_UNSIGMED_ARG_739,/SUM_E {count3_DW01_inc_8_03

0.0o 44 .55 r
QOUT_reg<6>/D (FDCE) 0.00 44,55 r
data arrival tine 44,55
clock CLOCK (rise edgel 50.00 50.00
clock network delay (ideall 0.00 50.00
QOUT_reg<g>/C (FDCED 0.o0 50.00 r
Tibrary setup time 0.00 50.00
data reguired time 50.00
data reguired time 50.00
data arrival tinme -44,55
slack (MET) 5.45

Figure 4-20 Timing Report (count8.timing)

Xilinx Synopsys Interface FPGA User Guide 4-27

Xilinx Synopsys Interface FPGA User Guide

Saving the Design

In this section you learn how to save your design as a DB (Synopsys
Database file) file, set the design part type and speed grade, and save
the design into an SEDIF file.

Writing the DB File

To save the design to a DB file, do the following.
1. Select the count8 icon with the left mouse button.
2. SelectFile [Save from the Design Analyzer menu.

The system saves the file as count8.db.

Setting the Design Part Type

To select a particular part for the count8 design, type the following
command at the Design Analyzer prompt in the Command window.

Note: The \ (backslash) is a line continuation marker. Do not type it
on the command line.

set_attribute count8 "part" -type \
string "3020apc84-6" O
Saving the Design File as an SEDIF File
Next, save the design file as an SEDIF file as follows.
1. Select the following menu options.
File 0O Save As...

The Save File dialog box appears as follows.

4-28 XACT Development System

Design Compiler Tutorial for XC3000A Designs

Save File

File Mame: |count8‘db

Directory: Aexport/home/fairfield/emilysxsi_do_tut

5 +of tMove up one directory?
WORKS

countd,db

countd, vhd

countd, xnf
count8_IW01_inc_8_0,db

L [3

File Format: IE o

M Save ALl Designs in Hierarchy

Figure 4-21 Save File Dialog Box

2. Click in the field next to File Name.
3. Change the .db extension to .sedif.

Place your cursor to the right of count8.db , backspace to delete
db, then type sedif

4. Click on the bar next to File Format.
The system displays a list of formats.
5. Select EDIF.
6. Make sure the Save All Designs in Hierarchy box is shaded.
7. Select OK

Exiting the Design Analyzer

You are now done with the Synopsys Design Compiler and are ready
to use the XACT Development System. To exit the Design Analyzer,
do the following.

1. SelectFile [Quit from the Design Analyzer main menu.

The Quit Design Analyzer? dialog box appears.

Xilinx Synopsys Interface FPGA User Guide 4-29

Xilinx Synopsys Interface FPGA User Guide

2. Click OKto exit.

The following section is a reference section that describes running a
script that invokes the Synopsys tools.

To continue with the tutorial, skip to the “Placing and Routing Your
Design Using XMake” section.

Executing the Commands from a Script File

Warning: Do not execute the commands in this section. Use this
section as a reference for how to execute a script file. You have
already executed these commands through the Design Analyzer
menus.

You can use a script file to compile your design instead of using pull-
down menus. The commands illustrated in this tutorial are all listed
in a script file, count8.script.

You can execute this script either from the Design Analyzer or DC
Shell. Each command is annotated in the script file. Comments start
and end with /* and */. Each command corresponds to a command
already executed in this tutorial.

The procedures to execute the count8.script file from the Design
Analyzer are the following.

1. Invoke the Synopsys Design Analyzer in the background.
design_analyzer &

2. Open the Command window to view the script as it executes.
Setup 0O Command Window...

3. Execute the count8.script file.
Setup 0O Execute Script...

The Execute File dialog box appears as shown in Figure 4-22.

4-30 XACT Development System

Design Compiler Tutorial for XC3000A Designs

Execute File

File Name:l

Directory: ort/homesfairfield/emily/xsi_ex/vhd/countd

5 +of tMove up one directory?
hold/

scriptsd

WORK

countd, script

Figure 4-22 Execute File Dialog Box

4. Select count8.script

The system displays count8.script in the File Name field.
5. Select OK
6. Exit the Design Analyzer.

Figure 4-23 and Figure 4-24 illustrate the actual text for the
count8.script file for VHDL and Verilog HDL, respectively.

Xilinx Synopsys Interface FPGA User Guide 4-31

Xilinx Synopsys Interface FPGA User Guide

Ed ==$‘f
J* Script for Synopsys to Hiling Design Compiler wf
£ Count8 WHDL Tutorial *f
f:@c ===@:f

ToP = countd

PART = "3020apcgd-g"
designer = "XSI Team"
company = "#ilinx, Inc"

analyze -format vhdl TOP + ".vhd"
elahorate TOP

current_design TOP

set_port_is_pad "*"

set_pad_type -slewrate HICH all_outputsid
insert_pads

remove_constraint -all
create_clock "CLOCK" -period 50

compile
report_area > TOP + ", area”
report_timing > TOP + ".timing"

set_attribute TOP "part" -type string PART
write -format db -hierarchy -output TOP + ".db"
write -format edif -hierarchy -output TOP + " sedif"”

exit

Figure 4-23 VHDL Script File for Count8

4-32 XACT Development System

Design Compiler Tutorial for XC3000A Designs

—Z—== £

J* Script for Synopsys to Hiling Design Compiler wf
Fs Counts Werilog Tutorial w f
f* ===@:f

ToP = countd

PART = "3020apcgd-g"

designer = "XSI Team"

company = "#ilinx, Inc"

analyze -format verilog TOP + "."
elahorate TOP

current_design TOP

set_port_is_pad "*"
set_pad_type -slewrate HICH all_outputsid
insert_pads

remove_constraint -all
create_clock "CLOCK" -period 50

compile

report_area > TOP + ", area”
report_timing > TOP + ".timing"

set_attribute TOP "part" -type string PART
write -format db -hierarchy -output TOP + ".db"
write -format edif -hierarchy -output TOP + " sedif"”

exit

Figure 4-24 Verilog HDL Script File for Count8

Placing and Routing Your Design Using XMake

XMake automates the translation portion of the Xilinx design flow,
which makes processing a complex design as simple as running one
program.

Given the name of the top-level SEDIF file, XMake finds and
processes all lower-level designs. It produces an LCA file that is
placed and routed, as well as a BIT file ready for downloading to an
FPGA. You can invoke XMake from within the XACT Design
Manager (XDM) or from a shell tool window.

In this section you translate the count8 design using XMake from the
shell tool window. Refer to the XACT Reference Guide for details about
each program that XMake runs or about running XMake from XDM.

The procedure for translating the count8 design is slightly different if
XSl is installed on a different platform or network than that of the

Xilinx Synopsys Interface FPGA User Guide 4-33

Xilinx Synopsys Interface FPGA User Guide

4-34

XACT Development System. Follow the procedures that apply to
your specific configuration.

If XSI Is on Same Network as XACT Software

Follow the procedures in this section if the XSI software is installed
on the same network or platform as the XACT Development System
software. You can find the command-line options that XMake used in
the XMake output file, count8.out.

To run XMake from a shell tool window, type the following.
xmake count8.sxnf

Refer to Figure 4-1 for a flow diagram that illustrates the Xilinx
XC3000A implementation flow for synthesis.

If XSI Is on Different Network Than XACT Software

Follow the procedures in this section if the XSI software is installed
on a different network or platform than the XACT Development
System software.

If XSl is installed on a machine that does not have access to both the
XSl and XACT Development System executable files, you must run
Syn2XNF first and then copy the output XNF and XFF files to the
platform where the XACT executable files reside.

Refer to Figure 4-1 for a flow diagram that illustrates the Xilinx
XC3000A implementation flow for synthesis.

The following sections describe how to run the Syn2XNF and XMake
programs.
Running Syn2XNF

Because the XSI software is installed on a different platform than the
XACT software, you must first run Syn2XNF to translate your design
into an XFF file, as follows.

1. Change to the directory where the count8.sedif file is located and
execute the following command.

syn2xnf count8

XACT Development System

Design Compiler Tutorial for XC3000A Designs

The SYN2XNF software might display the following message that
prompts you to overwrite any existing XFF file that has the same
design name.

WARNING: The file count8.xff already exists.
Do you want to overwrite it? (yes or no)

If the system displays the previous message, entery [.

Syn2XNF creates the following output files: count8.xff, count8.xnf
and syn2xnf.log.

2. Copy the count8.xff and count8.xnf files to the platform or
network where the XACT software is installed.

Note: Use the Copy command with the —p option to preserve the
time stamp information.

Running XMake

Perform the following steps to translate the count8 design using
XMake.

1. Go to the platform where the XACT Software is installed.
2. Open a shell tool window.
3. Enter the following on the command line.

xmake -x count8

The —x option causes XMake to start with the XNF file and skip
the translation process. The XMake program processes all the
necessary design files, displaying its progress on the screen. If the
translation is successful, XMake issues this message.

‘count8.bit’ has been made, check output in
‘count8.out’

4. Be sure to examine the count8.out, count8.prp, and count8.rpt
files for warnings and errors, as described in the “Examining
XMake Output Files” section in this manual.

Examining XMake Output Files

In addition to the routed LCA file and the bitstream BIT file, XMake
generates three very useful output files. In this section you open each
file and familiarize yourself with its contents.

Xilinx Synopsys Interface FPGA User Guide 4-35

Xilinx Synopsys Interface FPGA User Guide

4-36

. The OUT file, count8.out, contains all the output from the
programs that XMake invokes. This information is also displayed
onscreen during processing.

« The PRP file, count8.prp, is the DRC (Design Rules Checker)
report file generated by XNFPrep.

. The RPT file, count8.rpt, contains the PPR placement and routing
results. This report also contains a listing of any unrouted pins or
nets.

Reviewing the XMake OUT File

When you run XMake, the output of the XMake program appears on
the screen. The OUT file shows every program run by XMake, the
command options selected, and the output of each individual
program.

Any warnings or errors produced by the programs run by XMake
appear in the OUT file. You should always review the OUT file after
running XMake, even if you did not see any warnings or error
messages during design processing. If any warnings or errors do
occur, you can save yourself some time by catching the problem now
instead of later in the design process.

Examine the count8.out file for the count8 design as follows.
1. Open a shell tool window.
2. Change to the project directory.

3. Use a text editor to view count8.out.

Checking for Warnings and Errors in the PRP File

If XNFPrep finds any errors or warnings, the OUT file directs you to
examine the PRP file. The PRP file also contains a detailed list of all
logic trimmed by XNFPrep and why it was unnecessary. This file can
be a useful debugging tool.

You should expect to see some warning messages in the count8.prp
files but no errors.

Examine the count8.prp file for the count8 design.

The following headers correspond to the table of contents found in
the count8.prp.

XACT Development System

Design Compiler Tutorial for XC3000A Designs

XNFPrep Errors — lists all errors found in the design. Errors are
problems with the design that cause XMake to terminate. You
must fix any reported errors.

XNPPrep Warnings — lists all warnings found in the design.
Warnings notify you of any unusual aspects in your design. You
should correct all warnings; however, it is not mandatory.

Clock Signals Report — contains a summary of all the clock
signals and/or global buffers to assist you in determining the best
use of the global buffers. This section also contains a list of
guidelines to consider when assigning signals to a global buffer.

Timing Specification Summary — contains a list of the XACT-
Performance timing specifications used in the design.

Logic Trimming — shows the logic removed from your design
due to sourceless or loadless signals and V¢ or ground
connection. You should review this section to verify that logic
required in your design has not been removed due to design error.

Checking the RPT File

After XMake runs PPR, PPR generates a report file with an .rpt
extension. This file contains important information in the following
categories.

Partition, Place, and Route Summary — includes the number of
occupied CLBs that approximately corresponds to the total area
provided in the Synopsys Report.

Chip Pinout Description — contains a list of the pins used in the
design and any pin locations specified in the constraints file.

Critical Nets — indicates any nets that were assigned a constraint.

Feedthrough Split Nets — indicates any nets with names that
were modified so the net could be re-powered. Re-powering or
signal regeneration is accomplished by the net using a special
function in a CLB.

Deletion Traceback — enables you to check for any nets or cells
that were removed that should remain. The Synopsys Check
Design tool detects any unconnected pins or unused cells.

Xilinx Synopsys Interface FPGA User Guide 4-37

Xilinx Synopsys Interface FPGA User Guide

4-38

Examine the count8.rpt file to make sure there are no unrouted pins
or nets. Use a text editor to view this file, which contains five pages.
Figure 4-25 illustrates each page of the RPT file.

FPR RESULTS FOR DESIGH COUNTSE

Design Statistics and Device Ut1]

Bonded I/0 Pins:

CLB Function Generators: (*)
CLB Flip Flops:

I0B Input Flip Flops:

IOB Qutput Flip Flops:
3-5tate Buffers:

3-State Longlines:

ization

Page 1
Max fAvailable % Used
B4 12%
B4 1%
128 9%
128 B
B4 0%
B4 0%
144 0%
16 0%

(*) Each base F or FCM function counts as two

Routing Summary

Mumber of unrouted connections:

PPR Parameters

0

Design = countd.map
Parttype = 3020APCE4-6
Guide_cell =

Seed = 731468140
Estimate = FALSE
Conplete = TRUE
Placer_effort = 2
Router_effort = 2
Path_timing = TRUE
Stop_on_miss = FALSE

DCz2s = nane

DP2s = none

DCzp = nane

Dpzp = none
Cuide_onTy = FALSE
Ignore_maps = FALSE
Ignore_rlocs = FALSE

outfile

CPU Times

Partition:
Placement:
Routing:
Total:

<design name:

0o:00:00
oo:oo:11
0o:00:07
0o0:00:25

XACT Development System

Design Compiler Tutorial for XC3000A Designs

PPR RESULTS FOR DESIGH COUNTS Page 2

¥act Performance Summary

Deadline Actual(*) Specification
<autor 29.2ns DEFAULT_FROM_FFS_TO_FFS=FROM: ffs:TO: ffs
Zauto: 12.3ns DEFAULT_FROM_PADS_TO_FFS=FROM: pads:TO: ffs
<autox 11.3ns DEFAULT_FROM_FFS_TO_PADS=FROM: ff=:TO: pads

*) Mote: please use the -FailedSpec andfor -TSMazpaths options of
the Hdelay-TimeSpec command, accessible through the XDE or XDelay
program, to confirm the actual path delays computed by PPR.

#*% PPR: WARHWIMGC 7028:
The design has flip-flops with asynchronous set/reset controls
(PRESSD or CLR/RD pins). When PPR analyzes design timing, it does
not trace paths through the asynchronous setfreset input and on
through the Q output.

If you want PPR to control the delay on paths through asynchronous
set/reset pins, you must split the delay requirement into two
seqments: one ending at the set/reset input. and the other beginning
at the flip-flop output. If vou want PPR not to analyze paths that
lead to asvnchronous set/reset pins, attach an ICHORE specification
to the pin{s) or signalis).

By default, ¥Delay reports all paths through asynchronous set/reset

pins. To prevent XDelay from showing these paths, use FlagBTk
CLB_Disable_SR_Q on the appropriate flip-flops.

Xilinx Synopsys Interface FPGA User Guide 4-39

Xilinx Synopsys Interface FPGA User Guide

4-40

FPR RESULTS FOR DESIGH COUNTS

Chip Pinout Description

Page 3

This chapter describes where vour design’s pins were placed in terms

of the package pins.

This first 1ist is sorted by package pin

Tocation. The second Tist presents the same data sorted by your

design’s pin names.

Package Pin Location
P13
p3as
P42
P4
P45
P4E
P47
P45
P5E
pay
P53

Pin Mame

: ENABLE
o CoUTA
D CouT<0>
¢ COUT<3>
: CLEAR

o CoUT<E
t COUT<5>
o COUT<E>
POCOUT<? >
o COUT<4 >

This Tist describes where your design’s pins are in terms of the
package pins; it is sorted by wour design’s pin name. The Tist
presented above has the same data sorted by package pin Tocation.

Package Pin Location
P4E
P13
P44
paz
P47
P45
P53
P45
P5E
pay
P339

Pin Mame

tCLocK

¢ CouT<0>
CoUT< >
o CoUT<E
D COUT<3>
o CoUT<4 >
t COUT<5>
o COUT<E>
POCOUT<? >
: ENABLE

XACT Development System

Design Compiler Tutorial for XC3000A Designs

PPR RESULTS FCR DESIGH COUNTS Page 4
Split Hets

The Tist below identifies those signals which were routed through
CLBs or other blocks. In XDE and #Delay reports, these signals will
have two or more segments. An underscore (U0 and a number will be
added to the end of the original signal name to identify the
different segments. To analyze all segments of a signal in XDelay or
QueryMet reports, append the original name with "_*" when prompted
for a signal name.

PPR may route signals through CLEs or other blocks in any of the
following situations:

The delay on a signal might be reduced by routing it through a CLE,
given the extra flexibility in routing resources and the reduced
capacitive loading on the signal. PPR takes this into consideration.

The delay on a signal might be reduced by sourcing it from two
block outputs instead of ane, which is possible in some block
configurations. PPR will do this where possihle.

& gjgnal on a global buffer may not be able to connect directly to
a load pin, given the placement of that Toad pin and the other global
resources which are used. PPR will pass the signal through another
CLB and route the Toad pin using general-purpose interconnect.

* In an AC4000 design, & BUFCP can be sourced only from an IOB. If
the design indicates that a BUFGP is driven from an internal source,
PPR will route the signal through the output path of the IOB in order
to access the BUFGP input.

Segments Original Signal Mame

Xilinx Synopsys Interface FPGA User Guide 4-41

Xilinx Synopsys Interface FPGA User Guide

PPR RESULTS FOR DESICGH COUNTS Page 9
Information in Other Reports

Since not all pertinent design information is listed in this PPR
repart file, this section describes where additional information can

be found.
Information Report File Created By
Connection of signals between levels of design.mrg HMFMERCE

design hierarchy

Resolution of relative location (RLOCD design.mrg HMFMERGE
constraints through design hierarchy

#-BLOX designs: design rule check far design.pre HMFPREP
pre-expanded design

#-BLOY designs: results of optimization design.ble HBLOX
and module expansion in ¥-BLOY

Design rule check for invalid and/for design.prp HMFPREP
inefficient use of LCA architecture

Unused or disabled logic removed from design.prp HMFPREP
design, due to sourceless or loadless
signals and WCC or ground connections

#C30008SL designs: Mapping of design design.crf HNFMAP
Togic into each CLE or IOB

AC30004/L designs: Summary of guided design.crf HEMFMAP
partitioning results

Figure 4-25 RPT File

Comparing Actual Versus Estimated Area Results

The RPT file contains a partition, place, and route summary that
includes the number of occupied CLBs that approximately
corresponds to the total area number provided in the Synopsys
Report.

In this section you compare how accurate the Design Compiler pre-
placement and pre-routing estimates were to the actual results.

4-42 XACT Development System

Design Compiler Tutorial for XC3000A Designs

Figure 4-19 shows the estimated area results from the Design
Compiler and Figure 4-25 shows the actual area results. The
following table summarizes the area utilization results.

Table 4-1 Area Utilization Summary

Partitioned Design Utilization Using Part 3020APC84-6
Actual No. Estimated
Used No. Used
Occupied CLBs 8 9.5
Packed CLBs N/ZA N/A
Bonded 1/0 Pins 11 11
CLB Function Generators 12 N/A
CLB Flip-Flops 8 8
Clock Pads 1 1

The actual area utilization and timing may vary from the results
reported by the Design Compiler because PPR performs the actual
logic mapping.

Note: Your actual area numbers also may vary from the area
utilization reported in the Design Compiler because PPR adds
additional CLBs as feedthrough split nets. Refer to page 4 of the RPT
file, illustrated by Figure 4-25, for more information on split nets for
the count8 design.

Using XDelay

The XDelay command allows you to obtain detailed post-placement
and post-routing timing information about your design.

The XDelay results summarize the worst paths for the design, not
necessarily the paths that concern you. XDelay also has an interactive
mode, which enables you to extract information about specific paths
in the design, for example, to generate a timing report for a subset of
the design. You can choose specific paths by selecting individual
starting and ending points or by indicating a specific path type. For
more information about XDelay and its options, refer to the XACT
Reference Guide.

Xilinx Synopsys Interface FPGA User Guide 4-43

Xilinx Synopsys Interface FPGA User Guide

In this section you use XDelay to report the worst-case paths and the
maximum clock frequency of the design. You also compare the
output of XDelay to the estimated timing reported by the Design
Compiler.

Invoking XDelay

Enter the following command at the command line to run XDelay,
which creates a short report, count8.dly.

xdelay count8

XDelay produces the following output as shown in Figure 4-26.

“Delay Report File:

Design: countd.lca (3020APC84-E)
Program: =delay 5.0.0
Speadsfile: File 3020a.spd, Wersion 30004.1, Rewision 30204.5

“delay timing analysis options:

From all.

To all.
Worst case Pad to Pad path delay : 27.3ns (1 block lewell
Pad "CLEAR" (P76} to Pad "COUT<3:" (PE7.0)

Clock net "M111" path delays:

Pad to Setup : 38.5ns (5 block levels)
{Includes an external input margin of 0.0ns.)
Pad "CLE&R" (PYE) to FF Setup (D) at "M12E6.4"
Target FFY drives output net "M1Z26"
Target FFY drives output net "N125"
Target FFY drives its own D input
Target FFX drives D input to FFY driving net "M125"

Clock to Pad : 19.2ns (0 block levels)
{Includes an external output margin of 0.0ns.)
Clock to @, net "N129" to Pad "COUT<3:" (PE?.O)

Clock to Setup Csame edgel : 30.4ns (4 block levels)
Clock to @, net "MW132" to FF Setup (D) at "M126.A&"
Target FFX drives output net "N126"
Target FFY drives output net "M125"
Target FFX drives 1ts own D input
Target FFY drives D input to FFY driving net "M125"
Minimum Clock Period : 38.5ns

Estimated Maximum Clock Speed : 26.0Mhz

Figure 4-26 XDelay Short Report

4-44 XACT Development System

Design Compiler Tutorial for XC3000A Designs

Comparing Actual Versus Estimated Timing Results

You can often get better timing estimates by looking at the number of
block levels that the critical or longest path must traverse rather than
using the estimated delays listed in the count8.timing report,
illustrated in Figure 4-20.

Block levels are the number of CLBs and 10Bs. The longest path
reported in the Design Compiler was a clock-to-clock delay from a
register through the incrementer. This delay was reported as 44.55 ns
in the count8.timing report and included the clock-to-output delay,
the clock-to-setup delay, and the average wire load.

The XDelay report, illustrated in Figure 4-26, reports the longest
clock-to-setup delay as 30.4 ns with four block levels. However, the
short report does not include the delays from the clock pad to the
clock net. To view a detailed timing report, refer to the XDelay
chapter in the XACT Reference Guide, Volume3.

Verifying Your Design Using XChecker

This section describes the function of the XChecker Download/
Readback cable. You do not actually download the count8 design in
this tutorial.

To verify that your design works in your system, you can use the
XChecker Download/Readback cable and associated software. With
XChecker, you can load a configuration bitstream generated by the
MakeBits program. The MakeBits file defines the internal logic
functions and interconnections of the target FPGA. For more
information on the XChecker cable or the MakeBits program, refer to
the XACT Hardware and Peripherals Guide or the XACT Reference Guide,
Volume 2, respectively.

You can store the BIT file in your system memory or in a PROM.
Refer to the XPP section of the XACT Hardware and Peripherals Guide
for more information about storing BIT files in PROMs.

Xilinx Synopsys Interface FPGA User Guide 4-45

Xilinx Synopsys Interface FPGA User Guide

4-46 XACT Development System

Xilinx i o FRGA
Synopsys

Interface

FPGA User

Guide

Xilinx Synopsys Interface FPGA User Guide — December, 1994 (0401291 01) Printed in U.S.A.

Xilinx Synopsys Interface FPGA User Guide

XACT Development System

Chapter 5

Using the FPGA Compiler

The FPGA Compiler enables you to synthesize and implement your
HDL design for Xilinx FPGA devices. The FPGA Compiler offers
high-performance features that deliver efficient results and accurate
timing and area reporting, as well as the following features.

. Logic optimization for the XC4000 family configurable logic block
(CLB) and input/output block (IOB) architectures

. Timing and area constraints evaluations in terms of actual CLB
and IOB utilization

. Area reports that list device usage, for example, CLBs, IOBs, and
3-state buffers

. Timing constraints passed to the XACT-Performance utility

« XNF (Xilinx Netlist Format) file reader for design reuse and back-
annotation of post-route results

. DesignWare library that maps to X-BLOX modules, which
generate optimized implementations of arithmetic functions

In addition, the FPGA Compiler optimizes flip-flops and latches into
the 170 block, optimizes 3-state buffers into the 1/0 block, encodes
for one-hot state machines, and uses the CLB Clock Enable pin
automatically.

For best results, use the FPGA Compiler for XC4000/A/D/H
devices. You can use the FPGA Compiler for XC3000 and XC3100
devices; however, the libraries for these devices use the Design
Compiler synthesis tools so the results are the same.

Xilinx Synopsys Interface FPGA User Guide — December, 1994 (0401291 01) 5-1

Xilinx Synopsys Interface FPGA User Guide

Before You Begin

Before beginning a Xilinx design using the Synopsys tools, read the
“Getting Started” chapter at the beginning of this manual, which
describes how to do the following.

« \erify that the XSl and XACT Development System software is
installed on your system

. Modify the Xilinx-provided default Synopsys startup file, if
applicable

FPGA Compiler Design Flow

5-2

This section describes the FPGA Compiler design flow, which varies
slightly depending on whether XSl is installed on the same platform
or on a different platform than the XACT Development System
software.

Proceed to the following section that applies to your system
configuration.

XSl on Same Platform as XACT Software

Figure 5-1 shows the design flow for the FPGA Compiler based on a
Xilinx XC4000 device and the FPGA Compiler-specific libraries when
XSI software is installed on the same platform or network as the
XACT Development System software.

XACT Development System

Using the FPGA Compiler

(design.v or design.vhd) Csynopsysfdc.setup) (design.script)
r 1

xblox_4000.sldb
xc3000.sdb DC-shell or
Design Analyzer
xc4000.sdb

xprim_3000/*.xnf
xprim_4000/*.xnf

[xprim_4000-5.db [xmake

LCA File
X4824

*Append the Synlibs output to the .synopsys_dc.setup file. Refer
to the "Getting Started" chapter for more information.

Figure 5-1 Design Flow with XSI Installed on the Same Platform

XSI on Different Platform than XACT Software

If XSl is installed on a machine that does not have access to both the
XSl and XACT Development System executable files, you must copy
or move the Syn2XNF output files, XFF and XNF, to the platform
where the XACT executable files reside, as illustrated by Figure 5-2.

Xilinx Synopsys Interface FPGA User Guide 5-3

Xilinx Synopsys Interface FPGA User Guide

5-4

(design.v or design.vhd) (.synopsysfdc.setup) (design.script)
. 1

xblox_4000.sldb
xc3000.sdb
xc4000.sdb

DC-shell or
Design Analyzer

Syn2XNF
Platform A

EEEEEEEEEEEEE -(design,xnf)- --(design_xﬁ)-------------

Platform B
LCA File

*Append the Synlibs output to the .synopsys_dc.setup file. Refer
to the "Getting Started" chapter for more information.
**Run XMake with the -x option. X4829

xprim_3000/*.xnf
. xprim_4000/*.xnf
xprim_4000-5.db

Figure 5-2 Design Flow with XSI Installed on a Different Platform

The basic flow for the different devices is the same. XMake
automatically runs the appropriate mapping, placement, and routing
tools. The FPGA Compiler-specific libraries, such as
xfpga_4000-5.db, allow the FPGA Compiler to map directly to CLBs
and 10Bs. This direct mapping allows the most compatibility
between the area and timing analysis created within the Synopsys
environment for the final implementation in an FPGA.

See the “Files, Programs, and Libraries” chapter for additional library
information.

Note: Although you can use the FPGA Compiler for XC3000A/L or
XC3100/ A designs, many of the commands in this section are
specifically for XC4000 devices and are not available for the
XC3000A/L and XC3100/A devices.

XACT Development System

Using the FPGA Compiler

Setting the Wire-Load Model

Each primitive library contains estimated pre-layout and routing
wire-load models that are device and speed-grade specific. The
Synopsys tools can use these estimates when optimizing your design
for an FPGA. XSI provides two wire-load models per device-speed
grade combination — an average model and a worst-case model,
designated by “_avg” and “_wec,” respectively. The default wire load
is average.

Wire-Load Models for Xilinx FPGAs

The following tables list the wire-load models for each Xilinx device.
Substitute “_avg” or “_wc” for a/w, for example, 4003-4_wc.

Table 5-1 XC4000/A/D/H Wire-Load Models

—4 Speed -5 Speed —6 Speed —10 Speed
Grade Grade Grade Grade
4002-5_a/w 4002-6_a/w
4003-4_a/w 4003-5_a/w 4003-6_a/w
4004-5_a/w 4004-6_a/w
4005-4_a/w 4005-5_a/w 4005-6_a/w 4005-10_a/w
4006-4_a/w 4006-5_a/w 4006-6_a/w
4008-4_a/w 4008-5_a/w 4008-6_a/w
4010-4_a/w 4010-5_a/w 4010-6_a/w 4010-10_a/w
4013-4_a/w 4013-5_a/w 4013-6_a/w
Table 5-2 XC3000 Wire-Load Models
-50 Speed —70 Speed —100 Speed —125 Speed
Grade Grade Grade Grade
3020-50_a/w 3020-70_a/w 3020-100_a/w | 3020-125_a/w
3030-50_a/w 3030-70_a/w 3030-100_a/w | 3030-125_a/w
3042-50_a/w 3042-70_a/w 3042-100_a/w | 3042-125 a/w
3064-50_a/w 3064-70_a/w 3064-100_a/w | 3064-125_a/w
3090-50_a/w 3090-70_a/w 3090-100_a/w | 3090-125_a/w
Xilinx Synopsys Interface FPGA User Guide 5-5

Xilinx Synopsys Interface FPGA User Guide

Table 5-3 XC3000A/L Wire-Load Models

—6 Speed Grade —7 Speed Grade —8 Speed Grade
3020a—6_a/w 3020a-7_alw 30201-8_a/w
3030a—6_a/w 3030a-7_a/w 30301-8_a/w
3042a-6_a/w 3042a-7_alw 30421-8_alw
3064a—6_a/w 3064a—7_alw 30641-8_a/w
3090a-6_a/w 3090a-7_a/w 30901-8_a/w

Table 5-4 XC3100/A Wire-Load Models

—3 Speed Grade —4 Speed Grade -5 Speed Grade
3120-3_a/w 3120-4_alw 3120-5_a/w
3120a-3_a/w 3120a-4_a/w 3120a-5_a/w
3130-3_a/w 3130-4_a/w 3130-5_a/w
3130a-3_a/w 3130a-4_a/w 3130a-5_a/w
3142-3_alw 3142-4 _alw 3142-5_alw
3142a-3 alw 3142a-4 _alw 3142a-5 alw
3164-3_alw 3164-4_alw 3164-5_a/w
3164a-3 a/w 3164a-4_alw 3164a-5 a/w
3190-3_a/w 3190-4_a/w 3190-5_a/w
3190a-3_a/w 3190a-4_a/w 3190a-5_a/w
3195-3_a/w 3195-4_alw 3195-5_a/w
3195a-3 a/w 3195a-4 a/w 3195a-5 a/w

Changing the Wire-Load Model

To change the wire load from average to worst case, use the Set Wire
Load command as follows.

set_wire_load “ parttype-s_wc”

The speed grade for the wire-load model must match the speed grade
of the primitive library as listed in the previous wire-load model
tables as illustrated by this example.

set_wire_load “4005-5_wc”

5-6 XACT Development System

Using the FPGA Compiler

If you want to evaluate the block delays of the design without the
wire load, set the wire load to None by using the Set Wire Load
command as follows.

set_wire_load none

How Wire-Load Models Are Determined

Average and worst-case models are derived from over 6000 designs
that were placed and routed on the different Xilinx parts for each of
the different speed grades.

The average wire-load model for a given part and speed grade is
calculated by collecting all signal nets of a given fanout for all designs
using the part type and speed grade. For a given fanout, 50 percent of
the nets from the test suite are slower and 50 percent of the nets are
faster than the delay number in the average wire-load model.

The worst-case wire-load models add one standard deviation to each
average fanout value. For a given fanout, 68 percent of the nets from
the test suite are faster and 22 percent are slower than the delay
number in the worst-case wire-load model; therefore, the worst-case
wire-load models are more conservative than the average wire-load
models. You can determine the actual wire-load delays after placing
and routing the design.

In all cases, the wire-load delays increase as the die size and fanout of
the net increase. The delays decrease with faster device speed grades.

The Report Timing command combines the wire-load delay with the
block delay. For more information on the Report Timing command,
refer to the “Evaluating Timing Delays” section at the end of this
chapter.

Operating Conditions

Only one set of operating condition parameters is available — worst-
case commercial (WCCOM) — which is the default in the Xilinx
libraries.

Configuring IOBs

The following section describes how to configure XC4000/A/D/H
I0Bs. The FPGA Compiler performs some optimization

Xilinx Synopsys Interface FPGA User Guide 5-7

Xilinx Synopsys Interface FPGA User Guide

5-8

automatically; however, you must implement some features
manually. The FPGA Compiler performs the following functions
automatically.

« Inserts input (IBUF) and output buffers (OBUF)

« Inserts input and 3-state output buffers for bidirectional 1/0
(IBUF, OBUFT, or IOBUF)

« Optimizes a flip-flop (IFD) or latch (ILD_1) attached to input
buffers into the IOB

. Optimizes a flip-flop attached to output buffers into the IOB
(OFD)

. Inserts a clock buffer for signals driving clock pins (BUFG)

First, you must enter these commands at either the DC shell or the
Command window prompt to set the ports on the top-level design as
pads and to insert the pads.

set_port_is_pad "*"
insert_pads

The Insert Pads command adds the correct buffers to the ports
declared as pads with the Set Port Is Pad command.

The following sections provide a general description of XC4000/A/
D/H devices and describes how to implement additional 1/0
features manually.

XC4000/A/D 10Bs

This section describes how to configure the input and output signals,
as well as how to set the output slew rate. You can configure
XC4000/A/D IOBs as input, output, or bidirectional signals with or
without a pull-up or pull-down resistor, independent of the pin
usage.

Inputs

You can configure the buffered input signal that drives the data input
of a storage element as either a flip-flop or a latch. You can use the
buffered signal in conjunction with the input flip-flop or latch.

A delay buffer added to the signal feeding the data input of the input
flip-flop/latch avoids a possible hold time violation. Instantiating a

XACT Development System

Using the FPGA Compiler

flip-flop or latch, such as an IFD_F or ILD_1F, removes this delay
because these cells include a NODELAY attribute. Refer to the
“XC4000/A/H Primitives and Hard Macros” appendix for a
complete list of primitives that include NODELAY attributes.

The FPGA Compiler optimizes any flip-flops connected to an input
port into the 10B if the flip-flop or latch does not use the Clock
Enable, Direct Clear, or Preset pin.

Outputs

The output signals, which can drive the programmable 3-state output
buffer, can be registered or direct. The register is a positive-edge
triggered flip-flop, and the clock polarity can be inverted inside the
I0OB. (PPR automatically optimizes any inverters in the 10B.)

The FPGA Compiler has the ability to optimize flip-flops attached to
output pad in the IOB. However, the FPGA Compiler cannot
optimize flip-flops in an 10B configured as a bidirectional pad.
XC4000 output buffers can sink 12 mA and XC4000A output buffers
can sink 24 mA.

XC4000/D Slew Rate

The XC4000 output buffers have a default slow slew rate that
alleviates ground-bounce problems and the option of a fast slew rate
that reduces the output delay. The SLOW option increases the
transition time and reduces the noise level. The FAST option
decreases the transition time and increases the noise level.

Warning: Synopsys and Xilinx define slew rate using opposite terms.
Synopsys uses slew control, whereas Xilinx uses slew rate. For
example, the Synopsys HIGH slew control is equivalent to the Xilinx
SLOW slew rate.

There are two types of output buffers in the XSI libraries. The default
output buffer has a FAST attribute assigned to it, that is, OBUF_F
(output buffer) and OBUFT _F (3-state output buffer). However, to
avoid a possible ground-bounce problem, Xilinx recommends that
you select SLOW as the default slew rate. Assign a FAST slew rate
only to output buffers that require additional speed.

Xilinx Synopsys Interface FPGA User Guide 5-9

Xilinx Synopsys Interface FPGA User Guide

The FPGA Compiler V3.1 or later automatically infers a FAST output
slew rate. To set the default slew rate to SLOW (high control), use the
following command.

set_pad_type —slewrate HIGH all_outputs()
Set this command before implementing the Insert Pads commands.

To change any output port to a FAST slew rate after changing the
default to SLOW, use the following command. Replace port with the
name of the output port.

set_pad_type —slewrate NONE { port}

Table 5-5 XC4000 Slew Rate Settings

Xilinx Slew
Rate

Synopsys Slew

Control Attribute FPGA Compiler Command

SLOW

HIGH set_pad_type —slewrate HIGH { port}

FAST

NONE set_pad_type —slewrate NONE { port}

5-10

XC4000A Slew Rate

The XC4000A family offers more output slew-rate control options for
each individual output drive: fast, medium fast, medium slow, and
slow. Slew control can alleviate ground-bounce problems when
multiple outputs switch simultaneously. It can also reduce or
eliminate cross-talk and transmission-line effects on printed circuit
boards.

Warning: Synopsys and Xilinx define slew rate using opposite terms.
Synopsys uses slew control, whereas Xilinx uses slew rate. For example,
the Synopsys HIGH slew control is equivalent to the Xilinx SLOW
slew rate.

The FPGA Compiler V3.1 or later automatically infers a FAST output
slew rate. To set the default slew rate to SLOW (high control), use the
following command.

set_pad_type —slewrate HIGH all_outputs()

Set this command before using the Insert Pads command.

XACT Development System

Using the FPGA Compiler

To change an output to a FAST, MEDFAST or MEDSLOW slew rate
after setting the default to SLOW, use the slew rate options found in
the following table. Replace port with the name of the output port.

Table 5-6 XC4000A Slew Rate Settings

Xilinx Slewrate

Synopsys Slew
Control Attribute

FPGA Compiler Command

SLOW HIGH set_pad_type —slewrate HIGH { port}
MEDSLOW MEDIUM set_pad_type —slewrate MEDIUM { port}
MEDFAST LOW set_pad_type —slewrate LOW { port}
FAST NONE set_pad_type —slewrate NONE { port}

The buffers have an _F suffix for FAST slew rate, an _MF suffix for
MEDFAST, and an _MS suffix for MEDSLOW. Refer to the “XC4000/
A/D/H Primitives and Hard Macros” appendix at the end of this
user guide for a full listing of all cells that you can instantiate into a
design.

Warning: The reported 10B timing delays reflect the delays for an
XC4000 device, not an XC4000A device. XC4000A delays vary
slightly from XC4000 delays. You can find the actual 10B delay
numbers for the XC4000A devices in The Programmable Logic Data
Book. You can use the Report Timing command to generate a timing
report after invoking the Replace FPGA command to get accurate 1/
O cell delays. However, the delays for the internal gates are not
accurate because no mapping information exists.

XC4000H 10Bs

Because the XC4000H family almost doubles the number of input/
output pins of XC4000 devices, the output drivers are more powerful
and flexible. You can configure the XC4000H IOBs as input, output,
or bidirectional signals. You can configure each I/0 pad with or
without a pull-up or pull-down resistor, independent of the pin
usage.

Xilinx Synopsys Interface FPGA User Guide 5-11

Xilinx Synopsys Interface FPGA User Guide

5-12

Inputs

XC4000H devices contain no input flip-flops. You can configure each
input individually with TTL or CMOS input thresholds. You must set
the threshold level for each input. The buffers have a _CMOS suffix
for the CMOS input threshold and a _TTL suffix for the TTL-input
threshold. To set the input threshold, you must instantiate an input
buffer with a CMOS or TTL threshold, or use the Set Pad Type
command with the —exact option. Refer to the Synopsys
documentation for more information on the Set Pad Type command.

Refer to the “XC4000/A/D/H Primitives and Hard Macros”
appendix at the end of this user guide for a full listing of all cells.

Warning: If you do not specify the threshold, Synopsys assigns each
input a random input threshold.

Use the following commands to set all inputs to CMOS or TTL.

« For the CMOS threshold, enter the following on the command
line.

set_pad_type —vih 3.33 —vil 1.05 all_inputs()
« For the TTL threshold, enter the following on the command line.
set_pad_type —vih 2.0 —vil 0.8 all_inputs()

Note: You can use the All Inputs command to specify the names of all
input ports; refer to your Synopsys documentation for more
information.

You must set the input threshold after you compile the design. The
following is an example set of commands you can use to compile, set
the input threshold, set the output threshold, insert the pads, and
then replace the CLBs and 10Bs with gates.

compile

set_pad_type —vih 3.33 —vil 1.05 all_inputs()
set_pad_type —voh 4.75 —voh 0.6 all_outputs()
set_port_is_pad

insert_pads

replace_fpga

Figure 5-3 Example Compilation Flow for Setting Input and
Output Thresholds

XACT Development System

Using the FPGA Compiler

Outputs

XC4000H devices contain no output flip-flops. You can individually
configure the outputs as either TTL- or CMOS-compatible. TTL-level
outputs are the best choice for systems that use TTL-level input
thresholds. CMOS-level outputs are ideal for systems that use CMOS
input thresholds. The default output threshold is CMOS. To change
the output threshold, you must instantiate an output or bidirectional
buffer with a TTL or CMOS threshold, or use the Set PadType
command with the —exact option. Refer to the Synopsys
documentation for more information on the Set Pad Type command.
The output and bidirectional cells are listed in the “XC4000/A/D/H
Primitives and Hard Macros” appendix.

You must set the threshold level for each output. If you do not specify
the threshold, Synopsys assigns each output a random output
threshold. Use the following commands to set the output threshold.

. For the CMOS threshold, enter the following on the command
line.

set_pad_type —voh 4.75 —vol 0.6 all_outputs()

. For the TTL threshold, enter the following on the command line.
set_pad_type —voh 2.4 —vol 0.5 all_outputs()

Note: Use the All Outputs command to specify all output ports.

You must set the output threshold after you compile the design.
Figure 5-3 is an example set of commands used to compile, set the
input threshold, set the output threshold, insert the pads, and then
replace the CLBs and 10Bs with gates.

Warning: XC4000H devices do not have flip-flops in the IOBs. To
prevent the FPGA Compiler from pulling any flip-flops into the 10Bs,
insert the pads after compiling the design.

Note: The IOB timing delays reported for XC4000H devices are not
included. Execute the Report Timing command after running the
Replace FPGA command to report accurate 170 cell delays.
However, the reported internal gate delays are not accurate.

Xilinx Synopsys Interface FPGA User Guide 5-13

Xilinx Synopsys Interface FPGA User Guide

XC4000H Slew Rate

The XC4000H family offers a choice of CMOS- or TTL-level output
and input thresholds that you can select per pin. XC4000H devices
have a capacitive and a resistive slew rate. The XC4000H outputs sink
24 mA.

You can configure each output for either of two slew-rate options,
which affect only the pull-down operation — resistive or capacitive.

The resistive load (RES) has a pull-down transistor that is driven
hard, resulting in a practically constant on-resistance of about

10 ohms. Selecting the resistive load results in the fastest
High-to-Low transition and the capability to sink 24 mA with a
voltage of 500 mV. Many outputs switch High to Low simultaneously,
especially when they are discharging a capacitive load, which might
result in excessive ground bounce.

When the output is configured for a capacitive load (CAP) or soft
edge, the High-to-Low transition starts as described previously, but
the drive to the pull-down transistor is reduced as soon as the output
voltage reaches a value around 1V. Selecting a capacitive load results
in a higher resistance in the pull-down transistor, slowing down of
the falling edge, and significantly reduced ground bounce. Refer to
The Programmable Logic Data Book for more details.

To change any of the output ports to a capacitive slew rate, use the Set
Pad Type command. Replace port with the name of the output port.

set_pad_type —slewrate HIGH { port}

Table 5-7 XC4000H Slew Rates

Xilinx Slew Synopsys Slew .
Rates Control Attribute FPGA Compiler Command

CAP HIGH set_pad_type —slewrate HIGH { port}

RES NONE set_pad_type —slewrate NONE { port}
Note: Set this command after specifying the Set Port Is Pad command
and before using the Insert Pads command.

For bidirectional cells, the input threshold is listed before the output
threshold and slew rate. Refer to the “XC4000/A/D/H Primitives
5-14 XACT Development System

Using the FPGA Compiler

and Hard Macros” appendix for a complete listing of all cells that you
can instantiate into a design.

Assigning and Prohibiting Pad Locations

You can specify pad locations by either using the PPR constraints file
(CST) or typing the following in the Command window.

set_attribute pad “pad_location” —type string \
“ pin number”

Refer to The Programmable Logic Data Book for the locations and name
of the pins.

Note: Pin names do not always start with a P.

For more information about the PPR constraints file, refer to the
XACT Reference Guide, Volume 2 or the XACT Libraries Guide.

Implementing 3-State Registered Output

For the FPGA Compiler to infer the use of 3-state output flip-flops,
such as OFDT, two conditions must be met: the flip-flop must directly
drive the 3-state signal and the HDL code of the flip-flop must be in
the same process as the 3-state HDL code. The following sections
illustrate a flip-flop that does not directly drive the 3-state signal and
one that does directly drive the 3-state signal.

Not Directly Driving the 3-State Signal

The flip-flop must directly drive the 3-state signal. If any logic exists
between the flip-flop and the 3-state signal connected to the output
flip-flop, the FPGA Compiler does not infer a 3-state output flip-flop.
Figure 5-4 and Figure 5-5 illustrate a flip-flop that is not directly
driving a 3-state output flip-flop. Figure 5-6 is a schematic
representation.

Xilinx Synopsys Interface FPGA User Guide 5-15

Xilinx Synopsys Interface FPGA User Guide

5-16

Tibrary IEEE;
use IEEE.std_logic_1164.al1;
use IEEE.std_logic_unsigned.all;

entity three_ex1 is
port (BUS_IM, EM, CLK: in STD_LOGIC;
BUS_OUT: out STO_LOGICY;
end three_ex1;

architecture BEHAVICRAL of three_exl is
signal BUS_IN_REG, BUS_OUT_REG: STD_LOGCIC;

begin
Sync: process (CLKD
hegin
if (CLK event and CLK="1") then
BUS_IN_REGC <= BUS_IMN;
BUS_OUT_REG <= BUS_IN_REG;
end if;
end process;

BUS_OUT <= BUS_OUT_REG when ([EN="0") else "Z7;

end BEHAWIORAL;

Figure 5-4 Register Not Directly Driving 3-State (VHDL)

XACT Development System

Using the FPGA Compiler

three_ex1 - Behavioral HModel
Example of 3-state assignment NOT in <lock process
HSI w3.2

af#ithree_exl.v 1.2 8/4/94

¥ OE ¥ OB ¥ ¥

nodule three_ex1(BUS_IN, EN, CLK, BUS_OUT) ;
input BUS_IM ;

input EN ;

input CLE ;

output BUS_OUT ;

req BUS_OUT_REG, BUS_TW_REGC, BUS_OUT;

ffassign BUS_QUT = (EN == 17b0} ? BUS_OUT_REG : 17bz :

always @Cposedge CLKD

begin
BUS_OUT_REG = BUS_IN_REG ;
BUS_IN_REG = BUS_IN ;

end
always @(EN or BUS_OUT_REG)
begin
if (1EMD
BUS_OUT = BUS_OUT_REG;
else
BUS_OUT = 17hz;
end
endnodule

Figure 5-5 Register Not Directly Driving 3-State (Verilog HDL)

BUS_OUT
IFD] BUSIN.REG p|[FDC o

BUS_IN > b

CLOCK c c OBUFT_F
BUFG_F
X4888

Figure 5-6 No Output Register Inferred

Directly Driving the 3-State Signal

The HDL code for the flip-flop must be in the same process as the
3-state HDL code and must directly drive the 3-state output, as
shown in the “sync” process in Figure 5-7 and Figure 5-8. Having the
flip-flop and the 3-state signal in separate processes causes the
insertion of additional logic between the flip-flop and the 3-state

Xilinx Synopsys Interface FPGA User Guide 5-17

Xilinx Synopsys Interface FPGA User Guide

5-18

signal. If these two conditions are met, the FPGA Compiler infers a
registered 3-state output, as illustrated by Figure 5-9.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned,all:

gntity three_egx? is
port (BUS_IN,EM,CLK: in STD_LOGIC;
BUS_OUT: out STO_LOGICY;
end three_ex2;

architecture BEHAVIORAL of three_ex2 is
signal BUS_IN_REG: STD_LOGIC;

begin
syhc: process CCLK, END
hegin
if (CLK event and CLk="1") then
BUS_IN_REG <= BUS_INM:
if (EN="0"2 then
BUS_OUT <= BUS_IN_REG;
else
BUS_OUT <= "Z7;
end if;
end 1f;
end process;

end BEHAWIORAL;

Figure 5-7 Register and 3-State Output in the Same Process

(VHDL)

XACT Development System

Using the FPGA Compiler

8/19/94

f*

* three_ex2 - Behavioral Model
»

#* ¥S{ w32

Ai#ithree_gx2. v

wf

nodule three_ex2({BUS_IMN, EM, CLK, BUS_OUT) ;

input BUS_IM ;
input EN
input CLE ;
output BUS_OUT :

req BUS_0UT ;

reg BUS_IM_0Q, BUS_IM_REG :

always @{posedge CLKD
bheqin

BUS_TM_REG = BUS_TM_0 ;
BUS_IN_0Q = BUS_INM ;

if CIENY BUS_QUT ='EUS_IN_REG:
glse BUS_OUT = 17hz;

end

endmodule

Example of 3-state assignment in the the <lock process

Figure 5-8 Register and 3-State Output in the Same Process

(Verilog HDL)

EN I: D IFD Q BUS_OUT_TRI_ENABLE
_C
OFDT_F
IFD BUS_IN_REG FDC Bus_out
BUS N [> ° e ——3P > >
cLOCK [:::>f44{>> c c
BUFG
X4891

Figure 5-9 Output Register Inferred

Inserting Bidirectional I/Os

The FPGA Compiler has the ability to insert non-registered
bidirectional ports. The 3-state signal that drives the output buffer

must be described in the same hierarchy level as the input signal, as
shown in Figure 5-10 and Figure 5-11.

Xilinx Synopsys Interface FPGA User Guide

5-19

Xilinx Synopsys Interface FPGA User Guide

Instantiating a Registered Bidirectional 1/0

The VHDL design, bidi_reg.vhd, and the Verilog HDL design,
bidi_reg.v, are examples of a top-level design that instantiates a core
design, reg4. In this example, two clock buffers, CLOCK1 and
CLOCK?2, automatically infer a BUFG buffer. The reset and load
signals, RST and LOADA, automatically infer an IBUF when you run
the Set Port Is Pad, Set Pad Type, and Insert Pads commands.
However, the FPGA Compiler cannot automatically infer the
OFDT _F (3-state registered output buffers with a FAST slew rate)
cells in bidirectional 1/0s. Therefore, these cells and the IBUF are

instantiated into the top-level design.

entity bidi_reg is

port (SIGA: inout BIT_WECTOR (3 downto 0);
LoaDA, CLOCKY, CLOCKZ, RST: in BIT):

end bidi_reg;

architecture BEHRY of bidi_reg is
component reg4

port (IMK: in BIT_WECTOR (3 downto 03;

LO&D, CLOCK, RESET: in BIT;

OUTH: buffer BIT_WECTOR (3 downto 0J);

end component;

component OFDT_F
port {0: in BIT;
C: in BIT:
T: in BIT;
0: out BIT);
end component;

component IBUF
port {I: in BIT:
0: out BIT);
end component;
signal INA, OUTaA: BIT_WECTOR (3 downto 03;
hegin

: OFDT_F port map COUTACD), CLOCKZ,
U1: OFDT_F port map {OUTAC1D), CLOCKZ,
: OFDT_F port map (OUTACZ), CLOCKZ,
: OFDT_F port map (OUTAC3), CLOCKZ,
: IBUF port map (SICACOY, INACODD;
: IBUF port map (STGAC1Y, INAC1DD;
: IBUF port map (SIGACZ2), INAC2DD;
: IBUF port map (SIGAL3), INAC3DD;
end BEHAY;

Figure 5-10 Bidi_reg.vhd

5-20

: regd port map CIN&, LOADA, CLOCKID,

RST, OUTAD:

LOADA, SIGALD)
LOADA, SIGACT)
LOADA, SIGALZ)
LOADA, SIGAC3)

»
»

»

e

»

XACT Development System

Using the FPGA Compiler

bidi_reg - Structural Hodel
Register Bidirectional I/0 Example
ST w32

@{#ibidi_reg.v 8713794

* E ¥ E ¥ ¥

module hidi_reg (SICA, LOADA, CLOCK], CLOCKZ, RST) :
inout [3:0] SIGA ;

input LOADA ;
input CLOCKT
input CLOCKZ ;
input RST:

wire [3:0] INMA, OUTA ;
4 Netlist

regd US (INA, LOADA, CLOCK1, RST, OUTAY ;

OFDT_F U0 {.DCoUTALO]D, .C{CLOCK2), .TOLOADAY, .0(SIGA[0]D)
OFDT_F M1 (. DCOUTA[]], .C{CLOCKZ), .TOLOADAY, .O(SIGA[1]11] :
OFDT_F U2 {.DCoUTALZ2]), .C{CLOCK2), .TOLOADAY, .O(SIGA[2])) :
OFDT_F U3 (.o(ouTalall, .C{CLOCK2), .TOLOADA), .OCSIGA[3]DD ;
IBUF U4 (LICSTGAL0]), .OCIMALOD]DY)

IBUF Ue (LICSIGA[M]), .OCIMA[IID)

IBUF Uy (LICSIGALZ]), .OCIMAL2]1D)

IBUF Ug (LI(SIGAL3]D, .OCINAL31DD

endmodu’le

Figure 5-11 Bidi_reg.v

Compiling Bidirectional 1/0

Do not use the Set Port Is Pad command for the instantiated 1/0 cells.
For example, in the bidi_reg.vhd example, you would use the
following commands to insert the 1/0s for the LOADA, RST,
CLOCK]1, and CLOCK?2 signals only.

set_port_is_pad {LOADA RST CLOCK1 CLOCK?2}
insert_pads

Before compiling the design, you must place a Don’t Touch attribute
on any instantiated 170 cells as follows, so that the 1/0 cells are not
altered.

dont_touch {U0 U1 U2 U3 U5 U6 U7 U8}

The script files used to compile bidi_reg.vhd and bidi_reg.v are
shown in Figure 5-12 and Figure 5-13, respectively.

Xilinx Synopsys Interface FPGA User Guide 5-21

Xilinx Synopsys Interface FPGA User Guide

5-22

fhk

f*

f*

==============s=========s====s====ss===ss=szsssaastk)

Sample Script for Synopsys to $ilinw Using *f
the FPCA Compiler i

Bidirectional Register Example. w

==========s==s=====s=s=s=o=s=mss=sss=smmsmmmmsssoomsmssst)

B B S L)
Read in the design i

Fht bbbt b bt bbb bbb bbb bbb bbb bbb bbb bbb bbb F S

Set the top-Tevel modules name for the design i

TOP = bidi_reg

SUB = regd

Set the Designer and Company name for

documentation. f

designer = "¥SI Team"

company = "¥ilinx, Inc"

fnalyze and Elaborate the design file and specify
the design file format *f
analyze -format verilog SUB + "."

analyze -format verilog TOP + ".w"

elaborate SUB

glaborate TOP

Set the current design to the top Tevel w
current_design TOP

add pads to the design. Make sure the current
design is the top-Tevel module. #

set_port_is_pad {LOADA RST CLOCK! CLOCK2:

insert_pads
dont_touch U0 U1 U2 U3 U4 UG U7 U8}

B B S LY)

Canpile the design *f
B R L A e L e e
Set the synthesis design constraints. w

remove_constraint -all
Syhthesize and optimize the desiagn i f

compile -map_effort med

XACT Development System

Using the FPGA Compiler

R R R R e e S)

I Save the design *f
I P e
F#* Write the design report file w

report_fpga » TOP + ".fpga"
report_timing > TOP + ".timing"

F* Write out the design to a DB file w
write -format db -hierarchy -output TOP + ".db"

/% Replace CLBs and IOBs with gates i f
replace_fpaa

/* Set the part tvpe *f
set_attribute TOP "part" -type string "4005pcag-5"

/* Save design in ¥NF format as <design>.s=nf w

write -format =nf -hierarchy -output TOP + ".sunf"

J* Ewit the Compiler. w

gxit

Figure 5-12 Bidi_reg.script (VHDL)

Xilinx Synopsys Interface FPGA User Guide 5-23

Xilinx Synopsys Interface FPGA User Guide

/* ==*f
S# Sample Script for Synopsys to Xilinw Using w
i the FPGA Compiler *f
a Bidirectional Register Example. *f
J# ===============s===================================%/]
i i Bt I S e e L
i Read in the design *f
B A L L A P L L
/* Set the top-level modules name for the design #

TOP = bidi_reg
SUB = regd

/* Set the Designer and Company name for
documentation. #f

designer = "#5I Team”
company = "¥iling, Inc"

/* fdnalvze and Elaborate the design file and specify
the design file format wi
analvze -format verilog SUB + ".v"
analvze -format wverilog TOP + ", 4"
elaborate SUB
elaborate TOP

f* Set the current design to the top level #
current_design TOP

f* fdd pads to the design. Make sure the current
design is the top-Tevel module. w [

set_port_is_pad {LOADA RST CLOCKT CLOCKZ}

insert_pads
dont_touch £U0 U1 U2 U3 U4 UG U7 U3}

I i St S S S

£ Canpile the design =/
I S Y R R R e
/* Set the synthesis design constraints. #

remove_constraint -all
/* Synthesize and optimize the design *f

conpile -map_effort med

5-24 XACT Development System

Using the FPGA Compiler

P R R PR T R PR R R T

i Save the design wy
I e s LN
f* Write the design report file #f

report_fpga » TOP + "_fpga"
report_timing > TOP + ".timing"

f* Write out the design to a DB file #f
write -format db -hierarchy -output TOP + “.dhb"

/* Replace CLBs and IOBs with gates *f
replace_fpga

f* Set the part type w
set_attribute TOP "part" -type string "4005pcag4-5"

/% Save design in #NF format as <design:.sunf wf

write -format wnf -hierarchy -output TOP + ", sxnf"

/% Exit the Compiler. wf

exit
Figure 5-13 Bidi_reg.script (Verilog HDL)

Using Unbonded IOBs (XC4000/A Only)

In some package/device pairs, not all pads are bonded to a package
pin. You can use these unbonded 10Bs and the flip-flops inside them
in your design by instantiating them in the HDL code. Synopsys
cannot infer unbonded primitives.

Unbonded primitives are indicated by a U suffix. Refer to the
“XC4000/A/D/H Primitives and Hard Macros” appendix for a
complete listing of all unbonded cells.

Adding Pull-Up and Pull-Down Resistors

XC3000 and XC3100 devices have pull-up resistors that you can use
to pull up an unconnected IOB. By default, all unused IOBs are
configured as an input with a pull-up resistor. Refer to the
“XC3000/A/L and XC3100/A Primitives” appendix for a listing of
all cells and their pin names for instantiation.

The XC4000 family has high impedance pull-up and pull-down
resistors that you can connect to an input or output buffer. You can

Xilinx Synopsys Interface FPGA User Guide 5-25

Xilinx Synopsys Interface FPGA User Guide

instantiate these cells, PULLUP and PULLDOWN, into your HDL
design. Refer to the “XC4000/A/D/H Primitives and Hard Macros”
appendix for a listing of all cells and their pin names for instantiation.

Removing the Default Input Delay

The XC4000 input flip-flops and latches have a default delay
preceding the data to the input flip-flop or latch. This delay prevents
any possible hold-time violations if you have a clock signal that is
also coming into the device and clocking the input flip-flop or latch.

You can remove this delay by instantiating a cell that includes the
NODELAY attribute if you need additional input speed and have no
possibility of a hold-time violation. The “XC4000/A/D/H Primitives
and Hard Macros” appendix lists all cells that include a NODELAY
attribute. Input flip-flops or latches with an _F suffix have a
NODELAY attribute assigned to the cell.

Initializing the 10B Flip-Flop to Preset

You can initialize XC4000 10B flip-flops to either Clear or Preset. The
default is Clear. To initialize an 170 flip-flop or latch to Preset, use the
following command to attach an INIT=S attribute to the flip-flop.

set_attribute “ register_name” xnf_init \

“S” type string
Replace register_name with the name of the 170 flip-flop.
You can instantiate 1/0 cells with the INIT=S attribute already
assigned to them. Refer to the “XC4000/A/D/H Primitives and Hard

Macros” appendix for a list of all cells and their pin names for
instantiation.

Inserting Clock Buffers

5-26

Xilinx recommends that your design contain global clock buffers to
take advantage of the low-skew, high-drive capabilities of the
primary clock buffer, BUFGP, and the secondary clock buffer, BUFGS.
When you use the Insert Pads command, the FPGA Compiler
automatically inserts a BUFG generic clock buffer whenever an input
signal drives a clock signal. XNFPrep selects a BUFGS cell. If you
want to use a BUFGP, you must instantiate it.

XACT Development System

Using the FPGA Compiler

However, you can instantiate a BUFGS or BUFGP if you understand
the architecture and want to specify how the resources should be
used. Each XC4000 device contains four primary and four secondary
global buffers that share the same routing resources. Xilinx
recommends that you use the generic global buffer, BUFG, for up to
four low-skew, high-fanout clock signals. Both the primary and
secondary clock buffers can be driven by signals sourced from inside
the device; however, the difference is that the primary global buffer
always uses the dedicated 1/0 pad.

You can use secondary global buffers to buffer high-fanout, low-skew
signals that are sourced from inside the FPGA. To access the
secondary global clock buffer for an internal signal, instantiate the
BUFGS_F cell. The timing in the BUFGS does not include the pad
delay.

Controlling Clock Buffer Insertion

Because the FPGA Compiler assigns a BUFG to any input signal that
drives a clock signal, your design may contain too many clock
buffers. The following examples illustrate how to control clock buffer
insertion.

Figure 5-14 and Figure 5-15 illustrate a gated clock example using
VHDL and Verilog HDL, respectively. By default, Synopsys assigns
the signals IN1, IN2, IN3, IN4, and CLK to a BUFG since they are
connected to a clock pin.

Xilinx Synopsys Interface FPGA User Guide 5-27

Xilinx Synopsys Interface FPGA User Guide

entity gate_clock is
port CIM1,IN2,IN3,IN4,INS,CLK, LOAD: in BIT:
OUT1: buffer BIT);
end gate_clock;

architecture BEHAVIORAL of gate_clock is
signal GATECLK: BIT;
begin

GATECLK <= not({{(IN1 and INZ) and IN3) and IN4) and CLK);

process (GATECLK, INS,LOAD)

in
if (GATECLK event and GATECLK="1") then
if (LOAD="1"3 then
QUT1 <= INS:
glse
QUT1 <= 0UT1;
end if;
end 1f;
end process;
end BEHAVICORAL;

Figure 5-14 Gated Clock (VHDL)

* Gateclk - Behavioral Model
#* Gated Clock Example
#* K5I 3.2

w @l#igate_clock. v 1.2 2/4/34

module gate_clock(IN1, IN2, IN3, IM4, INS, CLK, LOAD, OUT1D :

input INT ;
input INZ2 ;
input IN3 ;
input IN4
input INS ;
input CLK ;

input LOAD ;
output oOUT1;

reg ouTt;

wire GATECLK ;

assign GATECLK = ~(IN1 & INZ2 & IN3 & INd & CLKD
always @(posedge GATECLK]

hegin
i (LoaD == 17h1)
QUT1 = INS ;
end
endmodule

Figure 5-15 Gated Clock (Verilog HDL)

XACT Development System

Using the FPGA Compiler

In Figure 5-16, the FPGA Compiler should not insert a clock buffer on
the signals IN1 through IN4 and CLK because they do not directly
drive the clock pin (C); for example, the clock is gated.

IN5
LOAD o | FDcE
[>oum

IN1
CE
IN2
c
IN3
e NANDS X4890
CLK

Figure 5-16 Gated Clock Schematic

Note: The FPGA Compiler identifies clock ports by tracing back from
the clock pins on the flip-flops. If the clock signal is gated as
illustrated in Figure 5-16, the gated signals are also assigned a clock

buffer.
In Figure 5-17, the inputs to the 5-input NAND gate all have a BUFG
inserted.

INS [:::>k47E%EUF
LOAD [>— - p| FDCE OUTL

CE Q
IN2
BUFG_F C OBUF_S

NAND4 NV

X4889

Figure 5-17 Gated Clock After Pad Insertion
If the design contains gated clocks or has more than four input pins

that drive the clock pin in the design, you must disable the input pins
from having a BUFG inserted.

Xilinx Synopsys Interface FPGA User Guide 5-29

Xilinx Synopsys Interface FPGA User Guide

Determining the Number of Clock Buffers

To determine how many clock buffers the FPGA Compiler will insert
in the design, use the Report FPGA command as follows.

report_fpga

Figure 5-18 illustrates the report output of the Report FPGA
command on the previous gated clock example.

e e e A e 3 e e e e e e e e e sl e e e s ol e e e e e e e e e ol ol e e e e e e e
Report : fpaga

Design @ gate_clock

Version: v3.1b-20502

Date : Thu Sep 8 09:22:21 1934

e e e e e 2 e e o e o e e o e e o e o e e o e o e e o ol ol e ol e ol e e e e e e e

¥ilins FPOA Design Statistics

FG Function Generators: 1
H Function Generators: 1
Number of CLBE cells: 1
Humber of Hard Macros and

Other Cells: 0
Mumber of CLBS in

Other Cells: 0
Total Number of CLBs: 1
Humber of Ports: 8
Mumber of Clock Pads: 5
Mumber of I0Bs: 3
Humber of Flip Flops: 1
Humber of 3-State Buffers: 0
Total MNumber of Cells: k]

Figure 5-18 Report FPGA for Gated Clock Example

Note: Clock pads are IOBs, yet they are listed separately in this
report.
Preventing the Insertion of Clock Buffers

To prevent the FPGA Compiler from inserting the BUFG primitive,
specify the Set Pad Type command with the following options before
inserting the pads.

set_pad_type —no_clock { clock_ports}

5-30 XACT Development System

Using the FPGA Compiler

Replace clock_ports with the name of the input pins on which you do
not want a clock buffer inserted. For the gated clock example in
Figure 5-14 and Figure 5-15, you would enter the following.

set_pad_type —no_clock {IN1, IN2, IN3, IN4, CLK}

Then follow the normal procedures to set the ports as pads and insert
the pads as follows.

set_port_is_pad “*”

insert_pads

Using Memory

You can use on-chip RAM for status registers, index registers, counter
storage, distributed shift registers, LIFO stacks, and FIFO buffers.

The XC4000 family can efficiently implement RAM and ROM using
the CLB function generators. You can implement a ROM by
describing it behaviorally as shown in Figure 5-19. The XSI XC4000
libraries contain 16 x 1 (16 deep x 1 wide) RAM and 32 x 1 (32 deep x
1 wide) RAM primitives, and 16 x 1 and 32 x 1 ROM primitives that
you can instantiate.

You can also implement memory using the MemGen program, which
is included in the XACT Development System. MemGen can create
RAM and ROM between 1 to 32 bits wide and 2 to 256 bits deep. This
section includes an example of using MemGen with XSI. Refer to the
XACT Reference Guide, Volume 1 for more information about using
MemGen.

XC4000 RAMs

You can implement RAMSs in your HDL by the following methods.

« You can instantiate 16 x 1 and 32 x 1 RAMs from the XSI primitive
libraries.

« You can implement any other RAM size using MemGen.

Warning: Do not behaviorally describe RAMSs in VHDL because
compiling creates combinatorial loops.

Xilinx Synopsys Interface FPGA User Guide 5-31

Xilinx Synopsys Interface FPGA User Guide

5-32

XC4000 ROMs

You can implement ROMs in your HDL by the following methods.
« You can describe ROMs behaviorally.

« You can instantiate 16 x 1 and 32 x 1 ROMSs primitives.

« You can implement other ROMs using MemGen.

To instantiate the ROM primitives ROM16X1 and ROM32X1 into
your HDL design, use the Set Attribute command to define the ROM
value.

set_attribute “ instance_name” xnf_init rom_value”
type string

For example, if you gave the 16 x 1 ROM an instance name of “U1”
and the value of the ROM is F5A3, you can use this command to set
the ROM value as follows.

set_attribute “U1” xnf_init “F5A3” type string

For a 32 x 1 ROM, specify an 8-digit hexadecimal (hex) value in place
of the 4-digit hex value as shown in the previous example.

Note: Instantiating ROM or RAM does not allow you to functionally
simulate the design or easily migrate between FPGA families.

Figure 5-19 and Figure 5-20 illustrate how to define a ROM in VHDL
and Verilog HDL, respectively. The FPGA Compiler creates ROMs
from random logic gates that are implemented using function
generators.

XACT Development System

Using the FPGA Compiler

-- Behawioral 16x4 ROM Exanple --
-- romlEx4_4k. vhd --

gntity romiGxd_dgk is
port { ADDR: in IWNTEGER range 0 to 15;
DaTS: out BIT_WECTOR (3 downto 03);
end romiGxg_dk;

architecture BEHAY of romiBxd_4k is

subtype ROM_WORD s BIT_WECTOR (3 downto 03;
type ROM_TABLE 1= array (0 to 157 of ROM_WORD;
constant ROM: ROM_TABLE := ROM_TABLE"(

hegin ’
DATA <= ROMCADDR); -- Read from the ROM
end BEHAY;

Figure 5-19 Behavioral VHDL for 16 x 4 ROM

Xilinx Synopsys Interface FPGA User Guide

5-33

Xilinx Synopsys Interface FPGA User Guide

5-34

‘f*

H

#

#*
#*

rom1Ex4_gk - Behavioral Model

Behavioral Example of 16x4 ROM

#5I w3.2

BCHIrom Bxd_dk. v

=

module romlGxd4_4k(ADDR, DATA) ;

input [3:0] ADDR ;
output [3:0] D&TA ;

reg [3:0] DATA ;

1

.2

8/4/94

£7 & memory s not created because Synopsws will not synthesize it

always @(ADDR)
hegin

case (ADDR)
4°b0ooo
4 hooot
4 hoo1o
4°hoo11
4°b0100

endmodule

DATA
DATA
DATA
DATA
DATA

o DATA
o DATA
o DATA
o DATA
o DATA
o DATA
o DATA
o DATA
o DATA
o DATA
o DATA

4”h0o0o0o
4" hooo1
4°h0010
4°h0100
47b1000
4"b1000
471100
4°b1010
4 h1001
4"b10M
4701010
471100
4 h1001
4 h1001
47110
471111

P R I R R R I R R T T TS

Figure 5-20 Behavioral Verilog HDL for 16 x 4 ROM

Using MemGen

Alternatively, you can implement ROMs using MemGen as follows.

1. Create the memory description file, for example, promdata.mem.

You can use any file name. See Figure 5-21 for a sample memory
description file.

Run MemGen on the memory description file to create the

promdata.xnf file as follows.

memgen promdata

Instantiate the memory submodule into the HDL design, as
shown in Figure 5-22 or Figure 5-23.

XACT Development System

Using the FPGA Compiler

The name of the address lines must be called A0 — A3 and the
output data lines O0 — O3. When the design is compiled in the
FPGA Compiler, the following warning occurs.

Warning: Unable to resolve reference ‘promdata’
in ‘ROM_INT’ (LINK-5)

You can ignore this warning message.
4. Save the design to an SXNF file, for example, rom_memgen.sxnf.

5. Translate the output file, rom_memgen.sxnf, into an XNF file
using Syn2XNF.

The translator, Syn2XNF, automatically merges in the XNF file for
the memory, for example, promdata.xnf. Refer to the “Translating
SXNF Files to XNF Files Using Syn2XNF” section at the end of this
chapter for more information.

The following figure illustrates a memory description file,
promdata.mem.

WIDTH 4
DEPTH 16
DEFAULT 0 ; <== default walue here
DATA
2H0000%,
2H0001#,
2800104,
2801 00%,
281 000%,
2810004,
2811004,
2810104,
2810014,
2H1001#,
2810104,
2811004,
2H1001#,
2810014,
2H1101#,
2#11114; <== END of ROM data

Figure 5-21 Memory Description File

Xilinx Synopsys Interface FPGA User Guide 5-35

Xilinx Synopsys Interface FPGA User Guide

Figure 5-22 and Figure 5-23 illustrate instantiating a ROM submodule
using VHDL and Verilog HDL, respectively.

-- Example of Instantiating a MemGen -
-- Created Memory File -
- rom_memgen. vhd -

entity rom_memgen is
port { ADDR: in BIT_WECTOR (3 downto 0J;
DATA: out BIT_VECTOR (3 downto 033;
end rom_memgen;

architecture BEHAY of rom_memgen is

component promdata
port (A3,A2,81,80: in BIT;
03,02,01,00: out BIT);
end component;

begin
ul: promdata port map (A3=>ADDRC3D,A2=:A0DR(2D,A1=>A0DRC1D,AD=>ADDRCOD,
03=:DATAC3),02=>DATALZ) , 01 =>DATAC1) ,00=:DATACOD] ;

end BEH&Y;

Figure 5-22 Instantiating 16 x 4 ROM Submodule (VHDL)

orom_memgen - Structural Model
Ewample of Using MEMCEN to create a ROM
* HST 3.2
*f BCH) rom_memgen. v 1.2 3,/9/94
"
module rom_memgen (ADDR,
DATAY ;
input [3:0] ADDR ;
output [3:0] DATA ;

promdata ul (L AI(ADDRL3]), .A2CADDR[2]), .A1CADDRI1]), .ADCADDRLO]D,
LO3CDATALR]D, L02(DATALZ]D, O1(DATA[1]), .o0(DATALD]DD)

endmodule

module promdata(az, &2, A1, a0, 03, 02, O1, 00);
input A3, &2, &1, A0

output €3, 02, 01, 00;

endmodule

Figure 5-23 Instantiating 16 x 4 ROM Submodule (Verilog)

5-36 XACT Development System

Using the FPGA Compiler

Performing Boundary Scan

The XC4000 FPGA devices contain boundary-scan facilities that are
compatible with IEEE Standard 1149.1. Refer to the XACT User Guide
for a detailed description of the XC4000 boundary scan capabilities.

Xilinx parts support external (1/0 and interconnect) testing and have
limited support for internal self-test.

Full access to the built-in boundary-scan logic is always available
between power-up and the start of configuration. Optionally, the
built-in logic is available after configuration if you specified
boundary scan in the design. During configuration, you can use the
Sample/Preload and Bypass instructions only.

In a configured FPGA device, the boundary-scan logic might not be
active depending on the configuration data loaded into the part.
Activation of the boundary-scan logic, if desired, is part of the design
process. For HDL designs, you must instantiate the boundary-scan
symbol, BSCAN, and the boundary scan 1/0 pins, TDI, TMS, TCK,
and TDO to access the boundary scan logic after configuration. After
configuring the device, you cannot activate or deactivate boundary
scan without changing the configuration.

Warning: Do not use these FPGA Compiler boundary scan
commands: Set JTAG Implementation, Set JTAG Instruction, and Set
JTAG Port because they do not work with FPGA devices.

Figure 5-24 illustrates the BSCAN symbol instantiated into an HDL

design.
Optional N To User
L~ Logic
IBUF
BSCAN
[TDI I DO TDO
T™S ™S DRCK [—
TCK TCK IDLE —
To User
From — TDO1 SEL1 [— Logic
User Logic —1po2 SEL2 —
X2675

Figure 5-24 Boundary Scan Symbol

Xilinx Synopsys Interface FPGA User Guide 5-37

Xilinx Synopsys Interface FPGA User Guide

Using the Global Set/Reset Net

The Xilinx XC4000 devices have a dedicated Global Set/Reset (GSR)
net that initializes all CLBs and 10Bs. The function of the Global Set/
Reset net is separate from the individual Preset (PRE) and Direct
Clear (CLR) pin.

If the design has a Preset or Direct Clear signal, using the Global Set/
Reset net increases the design’s performance by reducing the overall
routing congestion. You can remove the Preset or Direct Clear signal
from the synthesized design and implement it using the dedicated
Global Set/Reset net.

Startup State

The STARTUP symbol’s Global Set/Reset pin drives the Set/Reset
net and connects to each flip-flop’s Preset and Direct Clear pin. When
you connect a signal from a pad to the STARTUP symbol’s GSR pin,
the Global Set/Reset net is activated.

The Global Set/Reset net does not appear in the pre-placed and
routed XNF file. When the GSR signal is asserted High (the default),
every flip-flop and latch is set to the same state it had at the end of
configuration as illustrated by Table 5-8. For XC3000 devices, all flip-
flops and latches reset to 0 after configuration. When you simulate
the routed design, the gate simulator’s translation program correctly
models the GSR function.

Table 5-8 Initialization State After Configuration (XC4000 Only)

Initializes to 0 Initializes to 1
FDC OFD_MF FDP OFDI_MF
FDCE OFD_MS FDPE OFDI_MS
IFD OFD_S IFDI OFDI_S
IFD_F OFD_U IFDI_F OFDI_U
IFD_U OFDT IFDI_U OFDTI
ILD_1 OFDT_F IFDI_1 OFDTI_F
ILD_1F OFDT_MF IFDI_1F OFDTI_MF
ILD_1U OFDT_MS IFDI_1U OFDTI_MS

5-38 XACT Development System

Using the FPGA Compiler

Initializes to 0 Initializes to 1
OFD OFDT_S OFDI OFDTI_S
OFD_F OFDT_U OFDI_F OFDTI_U
OFD_FU

Note: PPR implements inverters in the XC4000 devices without using
additional CLB resources. You can connect any signal to drive the
STARTUP symbol GSR pin.

Preset Versus Direct Clear

You can program each flip-flop and latch to be Preset or Direct Clear
but not both. The flip-flops and latches can be Preset or Direct Clear
upon completion of configuration by asserting the Global Set/Reset
net and the individual Preset (PRE) and Direct Clear (CLR) pins of
the flip-flop or latch. The value of the flip-flop (Preset or Direct Clear)
is the same for all cases. The value of the flip-flop is determined by
whether you used the PRE or CLR pin.

If the CLR or PRE pin on a non-1/0 flip-flop cell is tied to an active
signal, the state of that signal controls the startup state of those flip-
flop cells; for example, if you use the PRE pin, the flip-flop starts up
in Preset state. If you do not use the CLR and PRE pin, the default is
to startup in a Clear state.

The following section describes how to change states. You must issue
the commands to the FPGA Compiler after reading in the design but
before writing the SXNF file.

You can use the Report Cell command to determine the instance
names and the type of flip-flop used as follows.

. FDPE or FDP — Preset upon power-up
. FDCE or FDC — Direct Clear upon power-up

The COUT registers are implemented using FDCE. Upon power-up,
these registers are cleared. For more information on the Report Cell
output, refer to the “Generating Reports for Debugging” section at
the end of this chapter.

Xilinx Synopsys Interface FPGA User Guide 5-39

Xilinx Synopsys Interface FPGA User Guide

5-40

Changing States

If you are not using the clear pin of a FDCE or FDC cell (grounded),
you can override the initial state by issuing the Set Attribute
command.

set_attribute “ cell” fpga_xilinx_init_state \
—type string "S"

For 10Bs, the default is to start up in a Direct Clear state. You can
instantiate an 170 flip-flop and a latch with an INIT=S parameter to
have the flip-flop start up in a Preset state.

The following illustrates using the Set Attribute command to change
a flip-flop with the cell name of OUTX_reg<0> from a Reset-upon-
powerup to a Set-upon-powerup as follows.

Warning: You can use the following command to change the initial
state only if you are inferring a flip-flop without Clear and Preset
pins. You cannot change the initialization state of instantiated flip-
flops.

set_attribute “OUTX_reg<0>"\
fpga_xilinx_init_state —type string "S"

Refer to the Synopsys documentation on the FPGA Compiler for
more information.

Increasing Performance with the GSR Net

Many designs have a net that initializes the majority of the design’s
flip-flops. If this signal can initialize all the flip-flops, you can use the
Global Set/Reset net.

To have your HDL simulation match that of the resulting design, you
should modify the HDL code so that every flip-flop and latch is
preset or cleared when the Global Set/Reset signal is asserted.
However, you must disconnect this signal with the Disconnect Net
command after compiling the design and before saving it.

The FPGA Compiler cannot infer the usage of the Global Set/Reset
net from the HDL code.

Note: The Xilinx optimizer, X-BLOX, has the ability to use the Global
Set/Reset net automatically if every flip-flop and latch in the design
has a common signal driving the Set Direct or Reset Direct pin, that is,

XACT Development System

Using the FPGA Compiler

the CLR or PRE pin. You can run X-BLOX on any XNF, XTG, or XTF
file.

Figure 5-25 and Figure 5-26 are examples of a design that can use the
Global Set/Reset net for VHDL and Verilog HDL, respectively. The
design contains two flip-flops. One flip-flop is reset and one is set
when the signal “RST” is High.

Tibrary IEEE;
use IEEE.std_logic_1164.al11;
use IEEE.std_logic_unsigned.all;

entity gsr_ex is
port { CLK.RST : in STD_LOGIC;
ST: buffer std_logic_vector {1 downto 0J3;
and gsr_ex;

architecture EXaMPLE of gsr_ex is

hegin
process (CLk, RST)
bhegin
if RST= "1 then
ST <= "01";
elsif (CLK event and CLK="17) then
ST <= ST + "01";
gnd 1f;
end process;

end EXAMPLE:

Figure 5-25 Before Using the GSR Net (VHDL)

f*

gsr_px - Behavioral Model

MC4000 Global Set/Reset Example

* K5I w32

*/ ai{#igsr_ex.v 1.2 B/22/94
»

nodule gsr_ex (CLK, RST, 5T) ;
input CLk ;
input RST ;
output [1:0] 5T ;

req [1:01 ST :

alwavs @(posedge CLK or posedge RST)
bheqin
if (RST == 17b1J
ST = 27hb01 ;
else
ST = ST + 1°h1 ;
end

endmodule

Figure 5-26 Before Using the GSR Net (Verilog HDL)

Xilinx Synopsys Interface FPGA User Guide 5-41

Xilinx Synopsys Interface FPGA User Guide

To utilize the Global Set/Reset net, create a level of hierarchy that
instantiates the STARTUP symbol and the core design as illustrated in
Figure 5-27 and Figure 5-28 for VHDL and Verilog HDL, respectively.
Use another signal name, such as “GSR” in the following design
example, and route it to the STARTUP symbol GSR pin.

Tibrary IEEE;
use IEEE.std_logic_1164.al11;
use IEEE.std_logic_unsigned.all;

entity top_gsr is
port(CLK,GSR,RST: im STO_LOGIC;
ST : buffer STO_LOGIC_VECTOR {1 downto 033;
end top_gsr;

architecture EXAMPLE of top_gsr is
compaonent STARTUPR
port { GSR: in STO_LOGICY:
end component;

component gsr_ex
port CLK,RST: in STD_LOGIC;
ST : buffer STO_LOGIC_VECTOR {1 downto 03);
end component;

hegin
1 : STARTUP port map {GSR=>0SRJ;

U2 : gsr_ex port map (CLK=»CLK,RST=*RST,ST=:5T):
end EXAMPLE:

Figure 5-27 Top_gsr.vhd

/:9:
* top_gsr - Structural Model
Fuample of using the Clobal Set/Reset net

® ST 3.2
*f eC#itop_gsr.y 1.2 8/4/94
Ed
module top_gsr (CLK, GSR, RST. ST ;
input CLE ;
input GSR
input RST

U
output [1:0] ST ;

STARTUP U1 C.GSRCCSRID
gsr_ex U2 (LCLKCCLKD, .RST(RSTY, .STEST)Y
endmodule

Figure 5-28 Top_gsr.v

5-42 XACT Development System

Using the FPGA Compiler

Figure 5-29 and Figure 5-30 contain the procedures for executing the
top_gsr.vhd and top_gsr.v designs, respectively.

fhk

f*

f*

f*

fhk

=========s===============s=====s=====s=====s=s====s=s====%/

Sample Script for Synopsys to ¥iliny Using i
the FPCA Compiler w

==========s==s=s=s=ss=s=sms=s=mossossommmmsmsossomsmssst)

B B S L)
Read in the design i

Fht bbbt b bt bbb bbb bbb bbb bbb bbb bbb bbb bbb F S

Set the top-Tevel modules name for the design i

TOP = top_gsr

SIUBT= gsr_gx

Set the Designer and Company name for

documentation. f

designer = "¥SI Team"

company = "¥ilinx, Inc"

fnalyze and Elaborate the design file and specify
the design file format *f

analyze -format vhdl ToP + ".vhd"
analyze -format vhdl SUB1 + “.vhd"
elaborate TOP
glaborate SUB1

Set the current design to the top Tevel w
current_design TOP

Since the STARTUP hlock does not have any outputs

that are heing used in this example, use the dont_
touch command so that the compiler does not remove
the STARTUP block. *

dont_touch "U1”

fdd pads to all ports except RST. Make sure the
current design is the top-level module.

Change the default slew rate to SLOW (HIGH slew
controll.

set_port_is_pad {CLK GSR ST
set_pad_type -<lewrate HIGH all_outputs()
insert_pads

Fht bbbt b bt bbb bbb bbb bbb bbb bbb bbb bbb bbb F S

Compile the design i
B B e
Set the synthesis design constraints. *f

remove_constraint -all
Synthesize and optimize the design w

conpile -map_effort med

Xilinx Synopsys Interface FPGA User Guide

5-43

Xilinx Synopsys Interface FPGA User Guide

B T R R R e

i Save the design wy
A e et S b & SRR e)
f* write the design report file i

report_fpga > TOP + ".fpga”

report_timing > TOP + ".timing"
/% Write out the design to a DB file i
write -format db -hierarchy -output TOP + ".dh"
#/* Replace CLBs and I0Bs with gates *f
replace_fpga
J* Set the part type wy
set_attribute TOP "part" -type string "4005pcag-5"
/* Remove the RST signal w
disconnect_net RST -all
/% Save design in ¥NF format as <design».sznf #

write -format =nf -hierarchy -output TOP + ".sxnf"”

/% Exit the Compiler. #

exit

Figure 5-29 Top_gsr Script File (VHDL)

5-44 XACT Development System

Using the FPGA Compiler

},’:6:

f#

},’#

f#

},’:6:

===========sssssssssssssssss==ssssssssssssssssssssk

Sample Script for Synopsys to ¥iling Using *f
the FPGA Campiler wf

======s=ss=s=ssssssss=ssossssssssssssssssssssssssas#

R PR R R R R T
Read in the design #f

e AT

Set the top-Tevel modules name for the design wf

TOP = top_gsr

SUB1= gsr_ex

Set the Designer and Company name for

documentatiaon. *f

designer = "HSI Tean”

company = "¥ilinx, Inc"

gnalyze and Elaborate the design file and specify

the design file format b

analyze -format vhdl TOP + ".vhd"

analyze -format vhdl SUB1 + ", whd"

elaborate TOP

glaborate SUB1

Set the current design to the top Tevel wf

current_design TOP

Since the STARTUP block does not have any outputs

that are being used in this example, use the dont_
touch command so that the compiler does not remove
the STARTUP block. #

dont_touch "U1"

#dd pads to all ports except RST. Make sure the
current design is the top-level module.

Change the default slew rate to SLOW CHIGH slew
cantroll.

set_port_is_pad {CLK GSR ST}
set_pad_type -slewrate HIGH all_outputs()
insert_pads

B S e R R L
Compile the design w

Rt R R

Set the synthesis design constraints. *f

remove_constraint -all

Synthesize and optimize the desian #f

compile -map_effort med

Xilinx Synopsys Interface FPGA User Guide

5-45

Xilinx Synopsys Interface FPGA User Guide

et e e L

£ Save the design w
I et i o ST)
F* wWrite the design report file w [

report_fpga » TOP + ".fpga”
report_timing » TOP + ".timing"

F* Write out the design to a DB file w [
write -format db -hierarchy -output TOP + ".db"

/% Replace CLBs and I0Bs with gates *f

replace_fpga

/# Set the part type w
set_attribute TOP "part" -type string "4005pca4-5"

/% Remove the RST signal wf
disconnect_net RST -all

£* Save design in XNF format as <design>.sunf wf

write -format xnf -hierarchy -output TOP + ".sznf"

F#* Exit the Compiler. wf

exit
Figure 5-30 Top_gsr Script File (Verilog HDL)

Read the top level (top_gsr) and the core design (gsr_ex) into the
FPGA Compiler. Since the STARTUP block does not use any outputs,
the design compiler removes the STARTUP block unless you specify
the Don’t Touch attribute for U1. You must issue this command
before inserting the 1/0 pads. The FPGA Compiler then optimizes
the design once you use the Replace FPGA command.

Before saving the design to an SXNF file, you must remove the RST
signal from the design using the Disconnect Net command. PPR
removes any unconnected gates from the design.

When the RST net is disconnected from the circuit, the PRE and CLR
pin is no longer used. The flip-flop ST<0> is mapped to an FDPE that
initializes to a Preset state (INIT=S), and the flip-flop ST<1> is
mapped to an FDCE that initializes to a Direct Clear state (INIT=R).

5-46 XACT Development System

Using the FPGA Compiler

Using the X-BLOX DesignWare Library

The XC4000 family DesignWare library describes adders, subtracters,
comparators, incrementers, and decrementers that map to X-BLOX
modules. Refer to “Getting Started” at the beginning of this user
guide to ensure that you have X-BLOX installed on your system.

HDL Operators Using X-BLOX Modules

For XC4000 designs using the VHDL or Verilog arithmetic operators,
Xilinx highly recommends that you use X-BLOX to take advantage of
the X-BLOX DesignWare library. This DesignWare library contains
the arithmetic functions that utilize the XC4000 dedicated carry logic
to improve both the area and speed of the design.

The following is a list of the VHDL and Verilog arithmetic operators
and the X-BLOX modaules to which they map.

Table 5-9 Arithmetic Operators for X-BLOX Modules

Operators X-BLOX Module
+ ADD SUB
- ADD_SUB
<, <=, >, >= COMPARE
+1 INC_DEC
-1 INC_DEC

X-BLOX is run on the output from the Synopsys-to-Xilinx translator,
Syn2XNF. X-BLOX synthesizes these modules into XNF primitives
and performs the necessary optimization and implementation.

The X-BLOX DesignWare library contains twos complement and
unsigned binary modules of width 6, 8, 10, 12, 14, 16, 20, 24, 28, 32,
and 48. Sixty-four-bit widths are available for the COMPARE module
only. Operands falling between bit ranges are mapped to the next
higher bit-width module. X-BLOX removes any unused logic if
implementing a smaller bit width. X-BLOX removes any unused
logic if adding, subtracting, or comparing with a constant value.

The X-BLOX DesignWare modules contain path timing. The timing of
the module depends on how many columns the module uses — the

Xilinx Synopsys Interface FPGA User Guide 5-47

Xilinx Synopsys Interface FPGA User Guide

larger the device, the more CLBs per column. The fastest
implementation of an X-BLOX module is implemented in the fewest
columns. If the XACT tools can implement the X-BLOX modules in
one column and align the flip-flops and multiplexers, PPR can reduce
routing congestion and improve overall design performance.

Table 5-10 shows the maximum bits that can be implemented in one
column per device size.

Improving the Timing of X-BLOX Modules

To improve the timing of the X-BLOX module, choose a device type
that requires the fewest columns. For example, if you wanted the
fastest implementation of a 33-bit twos complement adder (without
carry out), you should select a XC4008 or larger part type. Since the
XC4008 can implement a 34-bit twos complement adder in one
column, using a XC4008 or larger device would give you the fastest
implementation since the adder would not have to wrap into the next
column.

Note: The timing between device types does not vary because the

X-BLOX modules do not contain routing delays.

In Table 5-10, replace _# with the number of bits, for example,
add_sub_co_two_comp_14.

Table 5-10 Maximum Size of X-BLOX Module Before Wrapping

Device Type 4002 | 4003 | 4005 |4006 | 4008 |4010 | 4013
CLB Array Size 8x8 |10x10 [12x12 [16x16 [18x18 20x20 24x24
Add_Sub
Twos Complement 14 18 22 30 34 38 46
add_sub_two_comp_#
Unsigned Binary 14 18 22 30 34 38 46
add_sub_ubin_#
Compare
Greater Than or Equal To, 11 14 21 28 30 34 38
Twos Complement
comp_ge_two_comp_#

5-48

XACT Development System

Using the FPGA Compiler

Device Type 4002 | 4003 | 4005 |4006 | 4008 |4010 | 4013
CLB Array Size 8x8 |10x10 [12x12 [16x16 [(18x18 20x20 24x24
Compare (Cont'd)
Greater Than or Equal To, 13 17 21 29 33 37 45
Unsigned Binary
comp_ge_ubin_#
Greater Than, Twos 11 14 21 28 30 34 38
Complement
comp_gt_two_comp_#
Greater Than, Unsigned 13 17 21 29 33 37 45
Binary
comp_gt_ubin_#
Less Than or Equal To, 11 14 21 28 30 34 38
Twos Complement
comp_le two_comp_#
Less Than or Equal To, 13 17 21 29 33 37 45
Unsigned Binary
comp_le_ubin_#
Less Than, Twos 11 14 21 28 30 34 38
Complement
comp_lIt_two_comp_#
Less Than, Unsigned Binary | 13 17 21 29 33 37 45
comp_lIt ubin_#
Not Equal, Twos 32 38 48 64 N/A | N/A | N/A
Complement
comp_ne_two_comp_#
Not Equal, Unsigned Binary | 32 38 48 64 N/A | N/A | N/A
comp_ne_ubin_#
Inc_Dec
Twos Complement 16 20 24 32 36 38 46
inc_dec_two_comp_#
Unsigned Binary 16 20 24 32 36 38 46
inc_dec_ubin_#
Xilinx Synopsys Interface FPGA User Guide 5-49

Xilinx Synopsys Interface FPGA User Guide

Creating Timing Specifications

5-50

The Synopsys FPGA Compiler generates timing specifications that
PPR analyzes. You can enter timing constraints in the Design
Analyzer, Command window, or a script file. FPGA Compiler uses
these timing constraints to determine the values and types of timing
specifications it generates, which are based on the following path
types.

Pad-to-pad (P2P) Input port to an output port
Pad-to-setup (P2S) Input port to the data pin of a flip-flop

Clock-to-setup (C2S) Output pin of a flip-flop to the data pin of a
flip-flop

Clock-to-pad (C2P) Output pin of a flip-flop to an output port

Note: You can set or overwrite Synopsys-created timing

specifications using PPR command-line options or the constraints

(CST) file. Refer to the XACT Libraries Guide for more information on
the constraints file.

Setting Timing Constraints

This section lists the Synopsys commands that enable you to create
timing specifications for your Xilinx designs. Examples are provided
to demonstrate how implemented Synopsys commands are passed to
the XACT tools. For a complete listing of all options and arguments
for each command, refer to the Synopsys online help pages.

Create Specifications for Input Ports and Clock Net

You can use the following commands to place a timing specification
on all input ports and a specified clock net.

« Create Clock — This command creates a P2S specification on each
input port, and a C2S specification on the specified clock net as
follows.

create_clock { CIk} —period 50

Clk is the name of the clock net and “50” is the delay in
nanoseconds.

XACT Development System

Using the FPGA Compiler

« Max Period — This command creates a P2S specification on each
input port, and a C2S specification on the specified clock net as
follows.

max_period 50{ CIk}

The “50” indicates the net delay in nanoseconds, and CIk is the
name of the clock net.

Create Specifications for Input and Output Ports

The Set Max Delay command creates a P2P specification on each
input and output port. You can also use this command to affect P2S,
C2S, and C2P timing specifications if you list the flip-flop cell names
with either the —from or —to options.

set_max_delay delay—from{ input_port}—to{ output_port}

Create Tighter Constraints on Output Ports

The Set Output Delay command creates C2P specifications using the
values from the Create Clock or Max Period constraints and creates
tighter constraints for the output ports as follows.

set_output_delay 10 —clock { CIk}{ output_port}

This command also changes the values of the P2P specifications
created by the Set Max Delay command.

Create Tighter Constraints on Input Ports

The Set Input Delay command changes the values of the P2S
specifications created by the Create Clock or Set Max Delay
commands and creates tighter constraints on all input ports as
follows.

set_input_delay 10 —clock { Clk}{ input_port}

This command also changes the values of the P2P specifications
created by the Set Max Delay command.

Xilinx Synopsys Interface FPGA User Guide 5-51

Xilinx Synopsys Interface FPGA User Guide

5-52

Prevent Specifications on Indicated Paths

The Set False Path command prevents the FPGA Compiler from
generating timing specifications for specified paths as follows.

set_false_path —from { input_port}

Depending on the desired result, you can use this command in one of
two ways.

. If you do not want the FPGA Compiler to generate timing
specifications for the specified paths, invoke this command before
running the Compile command.

. Ifyou would like FPGA Compiler to optimize the path but not
pass the timing specifications to PPR, invoke this command after
running the Compile command but before running the Replace
FPGA command.

Create Clocks on All Input Ports

The Derive Clocks command creates clocks on all input ports that
source clock pins on flip-flops. If performing timing optimization, set
constraints on all clocks in your design. You can run the Derive
Clocks command to make sure that you have not missed any clocks in
your design as follows.

derive_clocks

Controlling How Timing Specifications Are Written

Two variables control the way the FPGA Compiler writes timing
specifications to the SXNF file.

Control the Number of Constraints Written

The XNFout Constraints Per Endpoint variable controls the number
of constraints written per end point, for example, the number of
timing specifications written per flip-flop. The default is

50 constraints.

Setting this variable to a lower number may over-constrain the
design, whereas setting this variable to a higher number may under-
constrain the design.

XACT Development System

Using the FPGA Compiler

To prevent the FPGA Compiler from writing timing specifications to
the SXNF file, set the following variable at the DC shell or Design
Analyzer prompt as follows.

Setting this variable to 0 is useful if you want to create timing
specifications using PPR constraints.

xnfout_constraints_per_endpoint = 0

Create Default Timing Constraints

The XNFout Default Time Constraints variable controls the
constraints that exceed 50 or the specified number indicated using
the XNFout Constraints Per Endpoint variable as follows. The default
is True.

xnfout_default_time_constraints = [truelfalse]

The tightest constraint that was not written to the SXNF file becomes
the default timing constraint. If the XNFout Constraints Per Endpoint
variable is set to a low number, the design might be over-constrained.

If you set this variable to False, Synopsys does not write any default
timing specifications to the SXNF file. The FPGA Compiler ignores
the constraints that exceed the number specified with the XNFout
Constraints Per Endpoint command. If the XNFout Constraints Per
Endpoint variable is set to a low number, the design might be under-
constrained.

Compiling the Design

Once you insert the 1/0 pads, you can optimize the design for area
and/or speed. To get the most effective results from the FPGA
Compiler, the constraints applied must be accurate and achievable.
For example, if you set a timing goal of 0 ns on all ports, the FPGA
Compiler attempts to meet this goal by duplicating logic to reduce
critical paths, which can result in a significant and possibly
unwarranted increase in CLB usage.

This following sections describe the commands you use to compile
and optimize your HDL design.

Xilinx Synopsys Interface FPGA User Guide 5-53

Xilinx Synopsys Interface FPGA User Guide

5-54

Optimizing Logic Across Hierarchical Boundaries

CLBs contain both Boolean logic implemented in function generators
and flip-flops. When you compile a hierarchical design or a design
that uses a DesignWare module, the logic is not optimized across the
hierarchical boundary. Therefore, some of the combinatorial logic has
unused flip-flops, and the CLBs that implement the flip-flops have
unused function generators. Also the Boolean logic from one
hierarchy to another is not optimized to reduce the CLB area or logic
levels.

The choice of hierarchical boundaries can have a significant impact
on the quality — area or speed — of the synthesized design. Using
the FPGA Compiler, you can optimize a design while preserving
these hierarchical boundaries.

By default, the FPGA Compiler does not flatten a design. You must
use the Compile command with the Ungroup All option to flatten the
design; however, FPGA Compiler only partially optimizes logic
across hierarchical modules. Full optimization is possible across those
parts of the design hierarchy that are ungrouped in the FPGA
Compiler. Follow the guidelines for controlling flattening in the
online Synopsys Design Compiler Reference Manual.

Flattening the Design

Flattening can eliminate all the existing logic structure. In general,
you can flatten random control logic because automatic structuring
usually improves upon manual structuring. For FPGA designs, Xilinx
recommends that you flatten designs when the number of CLBs
needed to implement a Boolean function seems too high or there are
too many logic levels. However, you should probably not flatten
regular or highly structured designs, such as adders and ALUs that
are designed with an explicit structure.

Flattening is especially useful for the FPGA CLB structure. The FPGA
Compiler has a built-in optimizer for Boolean logic. For this
algorithm to work efficiently, the structure must be sufficiently
decomposed so that the Boolean logic can be mapped into the CLB
function generators.

The TOP design, illustrated in Figure 5-31, references two sub-blocks:
one that is completely combinatorial (blockl) and one that is
completely sequential (block?2).

XACT Development System

Using the FPGA Compiler

TOP

BLOCK1 BLOCK 2

IN1
D FDC Q
o }:’) = >oun

X4887

Figure 5-31 Sequential and Combinatorial Design

The FPGA Compiler cannot move logic across levels of hierarchy. If
the hierarchy is maintained, two CLBs are required to implement the
TOP design. The FPGA Compiler uses one CLB to implement the OR
gate and another to implement the FDC flip-flop.

However, if the FPGA Compiler merges two subdesigns into a single
level of hierarchy, only one CLB is required to implement the TOP
design because the FPGA Compiler can merge the combinatorial and
sequential logic into one CLB.

TOP

IN1
D FDC Q

OR2 c

cLock D—r

Figure 5-32 Merging into a Single Level of Hierarchy

X4894

To check if the FPGA Compiler can combine the combinatorial and
sequential logic across hierarchical boundaries, optimize the design
with and without hierarchy, and then compare the results as
described in the following sections.

Xilinx Synopsys Interface FPGA User Guide 5-55

Xilinx Synopsys Interface FPGA User Guide

5-56

Compiling the Design with Hierarchy

To compile the design and maintain its hierarchy, enter the following
command.

compile —map_effort [low|med|high] \
—boundary_optimization

This command enables some logic optimization across hierarchical
boundaries. For more information on this option, refer to the Synopsys
Design Compiler Family Reference Manual.

Even though your original design is flat, the design might end up
containing hierarchical blocks after compiling. These hierarchical
blocks contain either Synopsys DesignWare modules or X-BLOX

DesignWare modules that were mapped during the optimization
process.

Compiling the Design Without Hierarchy

To compile the design without hierarchy, enter the following
command.

compile —map_effort [low|med|high] —ungroup_all
This command creates a flattened design and then optimizes it.

If your design contains Synopsys Design\Ware modules (after the first
compile), it is recommend that you re-compile the design using the
Ungroup All option. Using this command does not optimize
X-BLOX DesignWare modules; however, Synopsys DesignWare
modules can be optimized because Synopsys DesignWare modules
are entirely combinatorial. The CLBs that implement these
DesignWare parts have unused flip-flops.

Warning: Using the Ungroup command with the All Flatten option
and then compiling is not the same as invoking the Compile
command with the Ungroup All option. If you run the Ungroup
command before the using the Compile command, DesignWare
components inferred during compilation retain their hierarchy and
might cause the usage of unnecessary CLBs. See your Synopsys
documentation for more information on the Ungroup command.

XACT Development System

Using the FPGA Compiler

Creating Unique Names for Multiple Instances

For hierarchical designs that have more than one instance of the same
module, the following command creates unique names for each
instance of the submodule.

xInx_hier_blknm=1

Compiling a Design That Contains Feedthroughs

You must set Compile Fix Multiple Port Nets to True before you
compile to prevent PPR from deleting logic if the design contains
feedthroughs, or if the same net is connected to more than one port.

compile_fix_multiple_port_nets = true

Compiling a Design with Instantiated 1/O Cells

This section describes the design flow if your design contains
instantiated 170 cells. If all 1/0 buffers are instantiated (the FPGA
Compiler does not need to automatically insert 1/0 buffers), do not
use the Set Port Is Pad and Insert Pads commands. Place a Don’t
Touch attribute on all instantiated 1/0 buffers.

If your design contains some instantiated 1/0 buffers and you want
the FPGA Complier to automatically insert the rest of the 1/0 buffers,
do the following.

« Use the Set Port Is Pad command only on the I/0s that you want
the FPGA Compiler to insert.

« Place a Don’t Touch attribute on all instantiated 1/0 buffers before
the design is compiled.

See Figure 5-10 or Figure 5-11 for example designs that contain both
instantiated 1/0s and 1/0s that are inserted using the FPGA

Compiler. Figure 5-12 is an example script file illustrating the correct
design flow.

Compiling XC4000 Designs

Figure 5-33 illustrates a sample script file that demonstrates how to
compile your XC4000 design using the FPGA Compiler.

Xilinx Synopsys Interface FPGA User Guide 5-57

Xilinx Synopsys Interface FPGA User Guide

/% =====sss=sss===s==s=s=ssss=sssssss=sssssssssssss=st
/* Sample Script for Synopsys to ¥ilins Using wf
Fs the FPGA Compiler w f
f:@c ===ﬂc‘f
/% Define the set-up variables either in the script */
Fs or in the .synopsys_dc.setup file w f
/#* Set the search path in your script or in your w f
/% _synopsys_dc.setup file wf
/% Replace <DS401-HACT-Dir> with the directory f

f* path where the DS5-401 was installed and replace */
F# BSYNOPSYS with the Synopsys installation directory®/

search_path = £. %

0S40 -HACT-Dirxfeynopsys/1ibraries/syn %
/ FSYNOPSYS/Tibraries/syn
W

/#* Set the link, target and synthetic library variable
gither in the script or in the .synopsys_dc.setup
Use synlibs to determine the Tink and target
libraries *f

Tink_library = {xprim_4005-5.db sprim_4000-5.db %
«gen_4000.db xio_4000-5.db xfpga_4000-5.db3

target_library = fxprim_24005-5.db =prim_4000-5.db %
wgqen_4000.db xio_4000-5.db xfpga_4000-5.db3

symbol_library = #c4000.sdb
define_design_Tib WORK -path ./WORK
/% Set the X-BLOX synthetic library path. Replace
05401 -HACT-Dir: with the directory path where
the D5401 was installed *f
f:@c
define_design_1ib xhlox_4000 -path %
; <S40 -HACT-Dir>/synopsys/Tibraries/dw/Tib/fpga
W
synthetic_Tibrary = {=zblox_4000.51db standard.s1db}

5-58 XACT Development System

Using the FPGA Compiler

f:@c

f:ﬂc

f:ﬂc

f:ﬂc

f:ﬂc

f:ﬂc

f:ﬂc

f:@c

&
I
wf
I

B i B B S I SR SR e

Read in the design
Bk i o S A o

Set the top-level modules name for
TOP = <design_name>

Set the Designer and Company name
documentation.

"¥SI Team"
"Hilinw, Inc"

designer
company

analyze and Elaborate the design
the design file format

analyze -format vhdl TOP + ".vhd"
elahorate TOP

Set the current design to the top
current_design TOP

add pads to the design. Make sure
design is the top-level module.

set_port_is_pad "*"
insert_pads

B O kI T e e e

Compile the design
B Rl o il o il bl bRl R S
Set the synthesis design constrain
remove_constraint -all
If setting timing constraints, do
For example:

create_clock <clock_pad_name> -per

Synthesize and optimize the design

compile -map_effort med

Xilinx Synopsys Interface FPGA User Guide

T L T T

wy
T L T T
the design w f
for

*f

file and specify
#*

Tevel w

the current
*f

B A L

*
+H+++H+ AR *f
ts. *f
it here.

wy
iod 50

wy

5-59

Xilinx Synopsys Interface FPGA User Guide

F I A LA s ST TR TN e

i Save the design wf
F I A LAt T TR TN e
/* Write the design report file wf

.fpga”
".timing"

report_fpga > TOP +
report_timing » TOP +

J* Write out the design to a DB file w f
write -format db -hierarchy -output ToOP + ".db"

/* Replace CLBs and ICBs with gates w f
replace_fpga

/% Set the part type w
set_attribute TOP "part" -type string "4005pc84-5"

J#* Optional attribute to remove the FPCA Compilers

mapping to CLBs and ICOBs from all levels wf
f:@c

set_attribute find{design,"*")} "wnfout_write_map_swmbols" %
; -type bhoolean FALSE
W

/# Remove hlock names from all Tewels to allow more flexible routing =/

set_attribute find(design,"*") "wnfout_use_blknames" %
-type bhoolean FALSE

/% Save design in #NF format as <design».ssnf wf

write -format xnf -hierarchy -output TOP + ".sxnf”
A R R L PR

IE Inplement the Design wy

LA R R R PR

£#* Run wmake to process the design through the XacT =/
f* tools. wf
f:@c
sh =make TOP
*f
/* Ewit the Compiler. wf
exit

Figure 5-33 Sample Script File for Compiling XC4000 Designs

Compiling XC4000H Designs

Figure 5-34 and Figure 5-35 illustrate a script file that demonstrates
how to compile an XC4000H design for VHDL and Verilog designs,
respectively.

5-60 XACT Development System

Using the FPGA Compiler

The design is compiled before pads are inserted to avoid pulling the
flip-flops into the IOB. When compiling an XC4000H design, you
must specify the input and output voltage levels. Refer to the
“XC4000H 10Bs™ section for more information.

f* Sample Script for Synopsys to ¥iling Using #f
i the FPGA Compiler #f
f* ==*/
I e R e e e L)
i Read in the design #f
P R R R T PR R R T
/% Set the top-level modules name for the design wf

TOP = three_ex2

/* Set the Designer and Company name for
documentation. #f

designer = "HSI Tean"
company = "¥iliny, Inc"

/% #nalyze and Elaborate the design file and specify
the design file format *

analyze -format vhdl TOP + "_vhd"
glaborate TOP

f* Set the current design to the top level w
current_design TOP

F I R e e

[Compile the design w
I e I T e S]
/% Set the synthesis design constraints. #f

remove_constraint -all

/% Synthesize and optimize the design #f

compile -map_effort med

F I o I e

i Insert Pads wf

FF bbbttt bbb bbb bbb bbbt bbb bbb bbb bbb bbb bbb S

/* fdd pads to the design. Make sure the current
design is the top-Tevel module.
Change the default slew rate to CAP (HICH slew
control; "CAP” applicable only to XC4000H devicesd. #*/f

set_port_is_pad "*"

set_pad_type -slewrate HIGH all_outputs()
insert_pads

Xilinx Synopsys Interface FPGA User Guide 5-61

Xilinx Synopsys Interface FPGA User Guide

F I e)

I Save the design *f
F L A e A S e L)
f* Write the design report file #f
report_fpga » TOP + "_fpga"
report_timing > TOP + ".timing"
f* Write out the design to a DB file #f

write -format db -hierarchy -output TOP + ".db"

/% Replace CLEs and IOBs with gates #f
replace_fpga

f* Set the part type *f
set_attribute TOP "part" -type string "4005hpg240-5"

/% Save design in HNF format as <design».swnf *f
write -format xnf -hierarchy -output TOP + ".sxnf"
f* Ewit the Compiler. *f

exit

Figure 5-34 Sample Script File for Compiling XC4000H Design
(VHDL)

5-62 XACT Development System

Using the FPGA Compiler

},’:6:

f’*

f#
x*
f’ncc

==========s==s===ss=ssss=sssssssssssssssssssssssss#
Sample Script for Synopsys to ¥ilins Using wy

the FPGA Compiler w
======s====s==s=s=s====s==ss===s=ss=s==s=s=s==ss=s==s=s====%/
R PR R R R R T

Read in the design wy
R el
Set the top-Tevel modules name for the design *f

TOP = three_ex2

Set the Designer and Company name for

documentation. *f
designer = "XSI Team"
company = "#ilinx, Inc"

#nalyze and Elaborate the design file and specify
the design file format ®

analyze -format verilog TOP + ".w
elaborate TOP

Set the current design to the top Tevel #f

current_desiagn TOP

B S e R R)

Conpile the design #f
R e PR R R R R T
Set the synthesis desian constraints. wf

remove_constraint -all

Syhnthesize and optimize the desian wf
compile -map_effort med

R P PR R TR R R R

Insert Pads i

B B s I I A P S

add pads to the design. Make sure the current

design is the top-Tevel module.

Change the default slew rate to CAP (HICH slew
control; "CAP” applicable only to XC4000H devicesy. */

set_port_is_pad "*"
set_pad_type -slewrate HIGH all_outputs()
insert_pads

Xilinx Synopsys Interface FPGA User Guide

5-63

Xilinx Synopsys Interface FPGA User Guide

x*

f’*

f#

f#

f#

B L T T S TR L)

Save the design #f
B S L
Write the design report file w

report_fpga » TOP + ".fpga"
report_timing > TOP + ".timing"

Write out the design to a DB file w
write -format db -hierarchy -output TOP + ".db"
Replace CLBs and IOBs with gates wf
replace_fpga

Set the part type #f
set_attribute TOP "part" -type string "4005hpg240-5"

Save design in ¥NF format as <design>.sxnf #f

write -format =nf -hierarchy -output TOP + ".sxnf"

Exit the Compiler. #f

exit

Figure 5-35 Sample Script File for Compiling XC4000H Design
(Verilog HDL)

Creating the Area Report

The FPGA Compiler reports area with the Report FPGA command as
follows.

5-64

report_fpga

The statistics reported by this command include the number of the
following elements used in your design.

F, G, and H function generators
X-BLOX cells

Instantiated cells

3-state buffers

Flip-flops

IOBs

XACT Development System

Using the FPGA Compiler

This command also reports the number of CLBs used for the design
on the basis of the mapping performed by the FPGA compiler.

Run this command after the design has been compiled because the
Compile command maps the logic into CLBs and 10Bs. Run this
command before replacing the CLB and IOBs with gates, that is,
before running the Replace FPGA command.

Figure 5-36 illustrates the Report FPGA output for the bidi_reg
design. The report shows the number of CLBs used.

e s o e e e o o o e oo e o e o e o e e e o e e e el e e e e e e e e e e e ot e
Report @ fpga

Design @ bidi_reg

Wersion: w3.1b-20502

Date : Thu Sep 8 07:48:36 1994

e e s b e e e sl e e e e sl e e e e sl ot e e e sl e e e sl ot e e e sl e e e sl e e

¥11inx FPGA Design Statistics

FG Function Generators:

H Function Generators:

Humber of CLE cells:

Humber of Hard Macros and
Other Calls: 4

Humber of CLEsS in
Other Cells:

Total Number of CLBs:

o

rao

Humber of Ports:
Humber of Clock Pads:
Number of IOBs:

FC N ra o 0o

Humber of Flip Flops:
Humber of 3-State Buffers:

Total MNumber of Cells: 14

Figure 5-36 Area Utilization Report

Evaluating Timing Delays

The Synopsys tools report all delays in nanoseconds. The delays
reported are pre-placement and routing estimates. You can use either
average or worst-case wire-load models. The FPGA Compiler cannot
determine the actual wire-load delays until after the design is placed
and routed.

To evaluate the timing results, use the Report Timing command.

report_timing

Xilinx Synopsys Interface FPGA User Guide 5-65

Xilinx Synopsys Interface FPGA User Guide

Refer to the online Synopsys Command Reference Manual for
information on other report options.

Run the Report Timing command after compiling the design since the
Compile command maps the logic into CLBs and 10Bs, and before
running the Replace FPGA command, which replaces the CLBs and
I0Bs with gates.

If you specify no wire-load value, Synopsys assigns a default of None
to all wire loads in the design. Refer to “Setting the Wire-Load
Model” at the beginning of this chapter for more information.

Warning: Tpickd, the input flip-flop and latch setup time from pad to
clock (IK) with delay, and Tikpid, the hold time from pad to clock (IK)
with delay, for the XC4000 and XC4000A —4 speed grades might be
inaccurate. The Tpickd and Tikpid timing parameters apply to the
input 0B flip-flops that do not have the NODELAY parameter, which
is the default configuration for the input flip-flops and latches. The
—4 speed grade timing parameters vary with the size of the die. The
delays reported are the maximum delays. The actual delay might be
10 percent less. For example, in the XC4000 libraries, the Tpickd and
Tikpid delays are for the XC4013 devices; for XC4000A devices,
XC4005A delays are used.

Generating Reports for Debugging

To assist you in debugging, XSI provides additional commands that
furnish CLB and IOB information for debugging purposes.

Warning: Use the following commands before replacing the CLBs
and 10Bs with gates using the Replace FPGA command.

Generating a Configuration Report

You can generate a report that gives you CLB and I0OB configuration
information similar to the reports generated in the XACT
Development System. This report contains information on how each
cell is configured and the logic function it implements.

To generate a CLB and IOB configuration report, first generate a
symbol or schematic view for the design using either of the following
methods.

5-66 XACT Development System

Using the FPGA Compiler

. From Design Analyzer Menu, select Tools [0 FPGA Compiler
O Report 0O Cell O Apply .

« From the DC shell prompt, enter report_cell 0.

The system displays the following output in the Command window.

Xilinx Synopsys Interface FPGA User Guide 5-67

Xilinx Synopsys Interface FPGA User Guide

5-68

e e e e e whe e e s e e e ol e sl vl ol el e e e e e e e ol ol sl e ol el e e e e e e e

Report = cell
Des1gn ;oCountd
Version: w3.1h-20502

Date o Mon oct 17 18:37:46 1954

e b e o e b sl o ol o ol e o o e e e o e e o o e e o o e e e e e e e e e e e e e e

Attributes:

h - black box Cunknown)
- reference allows boundary optimization

h - hierarchical

n - noncombinational

r - removable

u - contains unmapped logic
Cell Reference Library Ares
g2 ioh_4000 wfpga_4000-5 1.00
LE4 iob_4000 #fFpga_4000-5 1.00
lIGE ioh_4000 wfpga_4000-5 1.00
lea iob_4000 #fFpga_4000-5 1.00
uzo ioh_4000 wfpga_4000-5 1.00
urz iob_4000 #fFpga_4000-5 1.00
74 ioh_4000 wfpga_4000-5 1.00
Uve iob_4000 #fFpga_4000-5 1.00
uza ioh_4000 wfpga_4000-5 1.00
uan iob_4000 #fFpga_4000-5 1.00
ugz BUFG_F “prim_4005-5 0.00
a3 c1h_4000 #fFpga_4000-5 1.00
1gs clh_4000 wfpga_4000-5 1.00
US? c1h_4000 #fFpga_4000-5 1.00

c1h_4000 wfpga_4000-5 1.00
add _21/pTus/ LEFT_UNSICHED_ARG_7349
countB_inc_dec_ub_8_0 4.00

Total 16 cells 18.00

Detailed FPCA Configuration Information:

Cell MWame: Us2 TYPE: IOB

ouT: 0

Pab: FAST I1: I2: TRI:
Cell MWame: Us4 TYPE: IOB

ouT: 0

Pab: FAST I1: I2: TRI:
Cell MWame: UBE TYPE: IOB

ouT: 0

Pab: FAST I1: I2: TRI:
Cell MWame: Us3 TYPE: IOB

ouT: 0

Pab: FAST I1: I2: TRI:
Cell MWame: U?0 TYPE: IOB

ouT: 0

Pab: FAST I1: I2: TRI:
Cell MWame: U?2 TYPE: IOB

ouT: 0

Pab: FAST I1: I2: TRI:

attributes

XACT Development System

Using the FPGA Compiler

Cell MWame: UP4 TYPE: IOB

ouT: 0

Pab: FAST I1:
Cell MWame: UYE TYPE: IOB

ouT: 0

Pab: FAST I1:
Cell MWame: U?3 TYPE: IOB

ouT: 0

Pab: FAST I1:PAD
Cell MWame: US0 TYPE: IOB

ouT: 0

Pab: FAST I1:PAD
Cell MWame: US3 TYPE: CLE

He i

H1: DIN: 1

D#:DIN Dy¥:G

EQUATE G = {G13

FFY_MNAME: QOUT_reg<1>
Cell MWame: U85 TYPE: CLE

He i

H1: DIN: 1

D#:DIN Dy¥:G

EQUATE G = {G13

FFRY_NAME: QOUT_reg<3:
Cell MWame: US? TYPE: CLE

He i

H1: DIN: 1

D#:DIN Dy¥:G

EQUATE G = {G13

FF¥_MNAME: QOUT_reg<5>
Cell MWame: U89 TYPE: CLE

He i

H1: DIN: 1

D#:DIN Dy¥:G

EQUATE G = {G13

FRX_MAME: QOUT_reg<?>

IZ:

IZ:

IZ:

IZ:

K QH
SR:C2

FR¥:EC:

FFY_MAME:

K QH
SR:C2

FR¥:EC:

FFY_MAME:

K QH
SR:C2

FR¥:EC:

FFY_MAME:

K QH
SR:C2

FR¥:EC:

FFY_MAME:

TRI:
TRI:
TRI:
TRI:
FvH
EC:C3
RESET: K
FFY¥:EC
QoUT_reqg<0zx
FvH
EC:C3
RESET: K
FFY¥:EC
oUT_reg<2»
FvH
EC:C3
RESET: K
FFY¥:EC
oUT_reg<dx
FvH
EC:C3
RESET: K
FFY¥:EC

oUT_reqg<gx

Figure 5-37 Report Cell Output

tRESET: K

tRESET: K

tRESET: K

tRESET: K

Generating a Hierarchical Schematic

As an alternative to interpreting the Report Cell output listing, you
can direct the FPGA Compiler to replace all CLB and I0B cells with
an equivalent set of logic from the target libraries. You can use the

Xilinx Synopsys Interface FPGA User Guide

5-69

Xilinx Synopsys Interface FPGA User Guide

5-70

generated schematic to determine what logic was used to implement
the CLBs and IOBs.

To generate a hierarchical CLB and IOB schematic, perform the
following steps.

1. Saveyour original design as a DB file because the commands used
to generate the hierarchical CLB and IOB schematic change the
original design.

2. SelectTools 0O FPGA Compiler O FPGA Cellsto Gates
Options from the Design Analyzer menu.

Create a hierarchy level for each CLB and IOB or a hierarchy level for
each function generator as described in the following sections.

Warning: Once you select these options, the resulting logic does not
accurately reflect the timing of the actual CLB and 10B
implementation. Any timing or area reports will not be accurate.

3. After you finish viewing the hierarchical schematic, read in the
original DB file.

Creating a Level for Each CLB and IOB

This section describes how to generate hierarchical schematics that
contain CLBs and 10Bs and the underlying logic that comprises them.
Viewing hierarchical schematics can assist you in locating logic or
signals for debugging purposes.

To create a level of hierarchy for each CLB and IOB, do one of the
following.

o SelectTools 0O FPGA Compiler [FPGA Cellsto Gates
Options [0 Create a Level of Hierarchy for each
CLB and IOB from the Design Analyzer menu.

. Enter the following at the DC shell prompt.

replace_fpga —group_cells

Creating a Level for Each Function Generator

This section describes how to generate hierarchical schematics that
show the logic in each function generator it implements. This process
replaces each CLB by an F, G, or H function generator, along with the

XACT Development System

Using the FPGA Compiler

flip-flops, if they are being used. The function generators are an
additional level of hierarchy.

To create a level of hierarchy for each function generator, do one of
the following.

« SelectTools [0 FPGA Compiler 0O FPGA Cellsto Gates
Options [0 Create a Level of Hierarchy for each
“Table-lookup” from the Design Analyzer menu.

. Enter the following at the DC shell prompt.
replace_fpga —group_tlus

You can now view the implementation of the function generators.

Writing and Saving the Design

Once the design meets your timing and area requirements, you can
save the design as a DB file; replace the CLBs and IOBs with gates;
remove the Synopsys mapping; set the design part type; and write
and save the design.

Before saving the design, set all desired variables to control how the
design is optimized using the Synopsys timing options. Refer to the
“Creating Timing Specifications”section for more information.

Before saving the design, set the appropriate variables to define the
1/0 pad locations, slew rates, and so on. Refer to the “Configuring
10Bs” section for more information.

Saving the DB File

Save the Synopsys database file before replacing the design with
gates by running the Replace FPGA command. If you are using the
Replace FPGA command options for debugging, such as Group
TLUS and Group Cell, Xilinx also recommends that you save the DB
file before running these debugging options.

To save the DB file, you can choose one of the following methods.
. Enter the following from the Design Analyzer menu.

File 0O Save As
File name: design_name.db
File Format: db

Xilinx Synopsys Interface FPGA User Guide 5-71

Xilinx Synopsys Interface FPGA User Guide

5-72

Save all Designs in Hierarchy: on
OK

. Type the following at the command line. (Make sure the top level
of the design is selected.)

write —format db —hierarchy —output design_name.db

Replacing CLBs and IOBs with Gates

After compiling, a design contains CLB and IOB elements that the
FPGA Compiler uses to determine the best implementation of a
design for a given set of constraints. Before creating the SXNF file,
you must convert these CLBs and IOBs into gates that can be
recognized by the XACT Development System. The mapping
information is passed to the SXNF file using the FMAP, HMAP, and
BLKNM parameters, so PPR can map the design.

Invoking the Replace FPGA Command

Enter the following command at the command line at the top level of
your design.

replace_fpga

If Your Design Contains Hierarchy

Xilinx does not recommend running the Replace FPGA command
with either the Group Cells or the Group TLUS option, and then
writing the SXNF file. These option generate SXNF files for each level
of hierarchy in the design. If you use the Group Cells option, each
CLB is transformed into a level of hierarchy, and an SXNF file is
created for each CLB. Similarly, if you use the Group TLUS option,
each function generator is transformed into a level of hierarchy.

If you used these options, perform the following steps.
1. Delete the design from memory.
2. Read in the saved DB file.

3. Run the Replace FPGA command without any options.

XACT Development System

Using the FPGA Compiler

Removing the Synopsys Mapping

By default, the FPGA Compiler XNF Writer contains information on
how it should map the logic into the CLB and 10Bs. The FPGA
Compiler uses the FMAP and HMAP symbols to map Boolean logic
into F and H function generators, and the BLKNM attribute to group
flip-flops and function generators into a CLB.

When the XNF Writer performs the mapping, the estimated timing
information is more accurate.

Mapping information from the FPGA Compiler is usually efficient;
therefore, Xilinx recommends that you leave the mapping on. Block
names, however, can restrict placement and routing. For this reason,
Xilinx recommends removing BLKNM attributes.

Note: Using the FPGA Compiler to perform the mapping decreases
PPR processing time.

The following section describes how to remove FMAP, HMAP, and
BLKNM attributes.
Removing FMAP and HMAP Symbols

To remove the FMAP and HMAP mapping, enter the following at the
command line.

set_attribute find(design,"") \
"xnfout_write_map_symbols" —type boolean FALSE
Removing BLKNM Attributes

To remove the setting of BLKNM attributes, enter the following at the
command line.

Note: Xilinx recommends that you set this command.

set_attribute find(design,"*") \
"xnfout_use_blknames" —type boolean FALSE

Xilinx Synopsys Interface FPGA User Guide 5-73

Xilinx Synopsys Interface FPGA User Guide

Setting the Design Part Type

Type the following command at the command line to select a specific
part for the design. The following example uses a 4005pc84-5 device.

set_attribute design "part" —type string
"4005pc84-5"

Note: You can also specify the part type when running Syn2XNF or
XMake.

Saving the SXNF File

After replacing the design with gates, save the design to an SXNF file.
The output file extension is .sxnf to distinguish this file from the
output of the translator Syn2XNF, which is an XNF file. In the FPGA
Compiler, the file format is XNF; however, the file produced requires
some translation to make it a conform to the XNF format.

You can save the design as an SXNF file by either of the following
methods.

« Select the design and then select the following from the Design
Analyzer menu.

File 0O Save As

File name: design_name.sxnf
File Format: xnf

Save all Designs in Hierarchy: on
OK

. Enter the following at the command line. (Make sure the top level
of the design is selected.)

write —format xnf —hierarchy —output \
design_name.sxnf

Translating SXNF Files to XNF Files Using Syn2XNF

5-74

The Syn2XNF translator takes a Synopsys SXNF file written by the
FPGA Compiler and translates it to an XNF file.

How you run Syn2XNF is determined by your system configuration.
Refer to the “FPGA Compiler Design Flow”section at the beginning
of this chapter.

XACT Development System

Using the FPGA Compiler

Syntax

To use Syn2XNF, enter the following on the command line.
Specifying the file name extension is optional.

syn2xnf [options] [design.sxnf.| design.sedif.|
design.xnf]

By default Syn2XNF searches for a design file with an .sxnf or .sedif
extension. If both exist, Syn2XNF uses the file with the latest time
stamp.

You can run Syn2XNF from the UNIX prompt or from the FPGA
Compiler by using the shell command as follows.

sh syn2xnf design

In addition, you can run Syn2XNF automatically from XMake;
however, you must have the XACT Development System installed on
the same network as the XSI software. Refer to the “Before You
Begin” section at the beginning of this chapter for more information.

Input Files

Syn2XNF accepts the following file types as input when using the
FPGA Compiler.

design.sxnf This file is the synthesized design generated by the
Synopsys synthesis tools.

design.xnf This file represents the flattened, synthesized design
in the Xilinx Netlist Format.

design.sedif This file is the synthesized design generated by the
Synopsys synthesis tools using the EDIF syntax.

Syn2XNF is not case sensitive — you can enter the file name
extension in upper- or lower-case letters. However, Xilinx
recommends indicating the file name extension to distinguish the
FPGA Compiler output from the Syn2XNF output.

Output Files

Syn2XNF creates three output files as follows.

design.xnf This file represents the flattened, synthesized design
in Xilinx Netlist Format.

Xilinx Synopsys Interface FPGA User Guide 5-75

Xilinx Synopsys Interface FPGA User Guide

5-76

design.xff This file represents the flattened, synthesized design
in Xilinx Netlist Format.

syn2xnf.log This file contains error and warning messages that
are also displayed onscreen.

Options

This section describes the Syn2XNF options. You can abbreviate all
options using the first letter of the option; for example, you can
indicate —parttype as —p.

Note: You cannot use the —sub and -map options with the FPGA
Compiler XC4000 design flow. You cannot use the —sub option with
the FPGA Compiler because the FPGA Compiler writes EXT records
in the SXNF file automatically if Insert Pads is executed.

—dir

The —dir option causes Syn2XNF to search directory_name for data
files as well as the DS401_dir/data/synopsys directories and the
current working directory.

syn2xnf —d directory_name

—force

The —force option forces Syn2XNF to overwrite an XNF file if one
already exists.

syn2xnf —f

—help
The —help option displays onscreen the Syn2XNF help text.
syn2xnf —help

-
The -1 option lists onscreen all valid part types.

syn2xnf —|

XACT Development System

Using the FPGA Compiler

—out
The —out option specifies the output file name.
syn2xnf -0 new_name design

By default Syn2XNF creates an XNF and XFF file with the same name
as the input design file name. If you use this option, as illustrated by
the following example, Syn2XNF reads the file design and outputs
newdesign.xff and newdesign.xnf.

syn2xnf —o newdesign design

—parttype

The —parttype option specifies the Xilinx part and speed grade as
follows.

syn2xnf —p part—speedgrade design

If you specify no part type, Syn2XNF reads the part type from the
SXNF file. If no part type is specified in the SXNF file, Syn2XNF uses
the default part type, 4003APC84.

The following example illustrates how to specify the part type for an
XC4005-5 device.

syn2xnf —p 4005apc84-5 design

To ensure that the XACT tools process your design properly, specify a
part and speed grade.

Using the XACT Development System

To translate the design to LCA and BIT files so the XACT tools can
program the XC4000 device, use the XMake program.

How you run XMake differs slightly depending on your system
configuration. If the XACT Development System is installed on the
same network as the Xilinx Synopsys Interface, XMake runs
Syn2XNF. If XSl is installed on a machine that cannot access the
XACT Development System, run Syn2XNF on the machine with the
XSl software and copy the appropriate design files to the machine
with the XACT Development System. Refer to the “FPGA Compiler
Design Flow” chapter at the beginning of this user guide for more
information.

Xilinx Synopsys Interface FPGA User Guide 5-77

Xilinx Synopsys Interface FPGA User Guide

XMake automatically translates X-BLOX modules into gates by
running X-BLOX, and maps, places, and routes the design using PPR.

If XSI Is on Same Platform as XACT Software

If XSl is installed on the same platform as the XACT software, invoke
XMake.

xmake design
XMake runs Syn2XNF and the XACT software tools.

If XSI Is on Different Platform Than XACT Software

If XSl is installed on a different platform than the XACT software, do
the following to run the XACT tools.

1. Copy the XNF and XFF files to the platform where the XACT tools
reside.

Note: Use the Copy command with the —p option to preserve the
files’ time stamp.

2. Run XMake with the following option.
xmake —x design

The —x option causes XMake to search for an XNF file and any other
files not already merged.

For more information on XMake or any of the programs it invokes,
refer to the XACT Reference Guide.

5-78 XACT Development System

Xilinx

Synopsys Using the Design
Interface Compiler
FPGA User

Guide

Xilinx Synopsys Interface FPGA User Guide — December, 1994 (0401291 01) Printed in U.S.A.

Xilinx Synopsys Interface FPGA User Guide

XACT Development System

Chapter 6

Using the Design Compiler

The Design Compiler enables you to synthesize and implement your
HDL design for Xilinx FPGA devices. The Design Compiler provides
the following features.

« Optimization of flip-flops and latches into the 1/0 block
. Optimization of 3-state buffers into the 1/0 block
« Encoding for one-hot state machines

« Automatic usage of CLB Clock Enable pin

Before You Begin

Before beginning a Xilinx design using the Synopsys tools, read the
“Getting Started” chapter at the beginning of this manual, which
describes how to do the following.

« \erify that the XSl and XACT Development System software
exists on your system

. Modify the XSI default Synopsys startup file, if applicable

Design Compiler Design Flow

This section describes the Design Compiler design flow, which varies
slightly depending on whether XSl is installed on the same platform
or on a different platform than the XACT Development System
software.

The difference between the design flow for XC4000 and XC3000/
XC3100 devices is that the X-BLOX DesignWare library is only
available for XC4000 designs. However, you can run X-BLOX on
XC3000A/L and XC3100/A devices to perform global optimization.

Xilinx Synopsys Interface FPGA User Guide — December, 1994 (0401291 01) 6-1

Xilinx Synopsys Interface FPGA User Guide

Refer to the XACT X-BLOX User Guide for more information on global
optimization.

Proceed to the following section that applies to your system
configuration.

If XSI Is on Same Platform as XACT Software

Figure 6-1 shows the design flow for the Design Compiler when the
XSI software is installed on the same platform or network as the
XACT Development System.

(design.v or design.vhd) (.synopsysfdc.setup) (design.script)
r 1

xblox_4000.sldb
xprim_4000/*.xnf

xc3000.sdb I‘ xprim_3000/*.xnf
xmap_4000/*.xnf or

xc4000.sdb xumap_4000/*.xnf
. xmap_3000/*.xnf or
xprim_4000-5.db

DC-shell or
Design Analyzer

xumap_3000/*.xnf

*Append the Synlibs output to the .synopsys_dc.setup file. Refer

to the "Getting Started" chapter for more information. X4827

Figure 6-1 Design Flow with XSI Installed on Same Platform

If XSI Is on Different Platform Than XACT Software

If XSl is installed on a machine that does not have access to both the
XSl and XACT executable files, you must copy or move the Syn2XNF
output XNF and XFF files to the platform where the XACT executable
files reside, as illustrated by Figure 6-2.

The basic flow for the different devices are the same. XMake
automatically runs the appropriate mapping, placement, and routing
tools depending on the specified device.

When running Syn2XNF, you have a choice of using the mapped or the
unmapped cells for the Boolean functions, which allow the XACT
Development system to map the Boolean functions.

6-2 XACT Development System

Using the Design Compiler

« The mapped libraries retain compatibility between the timing
analysis created within the Synopsys environment and the final
implementation in the FPGA.

« The unmapped libraries for the same Boolean functions do not
guarantee timing compatibility between the Synopsys analysis
and the actual FPGA devices.

See the “Translating SEDIF Files to XNF Files Using Syn2XNF”’
section at the end of this chapter for additional information.

Refer to the “Files, Programs, and Libraries” chapter in this user
guide for additional library information.

(design.v or design.vhd) Csynopsys_dc.setup) (design.script)

xblox_4000.sldb

xprim_4000/*.xnf
Design Analyzer xmap_4000/* xnf or
xumap_4000/*.xnf
. xmap_3000/*.xnf or

xumap_3000/*.xnf

| xprim_4000-5.db | synaxnF

J’—l \—L Platform A

EEsEsEsmEEEEE -(design_xnf)- --(design,xﬁ)-- sEsssmEmEEn
Platform B
LCA File

*Append the Synlibs output to the .synopsys_dc.setup file. Refer to
the "Getting Started" chapter for more information.
**Run XMake with the -x option.

X4828

Figure 6-2 Design Flow with XSI Installed on Different Platform

Setting the Wire-Load Model

Each primitive library contains pre-layout and routing-estimated
wire-load models that are device and speed-grade specific. The
Synopsys tools can use these estimates when optimizing your design
for an FPGA. XSI provides two wire-load models per device-speed
grade combination — an average model and a worst-case model,

Xilinx Synopsys Interface FPGA User Guide 6-3

Xilinx Synopsys Interface FPGA User Guide

designated by “_avg” and “_wec,” respectively. The default wire load

is average.

Wire-Load Models for Xilinx FPGAs

The following tables list the wire-load models for each Xilinx device.

Substitute “_avg” or “_wc” for a/w, for example, 4003-4_wc.

Table 6-1 XC4000/A/D/H Wire-Load Models

—4 Speed -5 Speed —6 Speed —-10 Speed
Grade Grade Grade Grade
4002-5_a/w 4002-6_a/w
4003-4_a/w 4003-5_a/w 4003-6_a/w
4004-5_alw 4004-6_a/w
4005-4_a/w 4005-5_a/w 4005-6_a/w 4005-10_a/w
4006-4_a/w 4006-5_a/w 4006-6_a/w
4008-4_a/w 4008-5_a/w 4008-6_a/w
4010-4_a/w 4010-5_a/w 4010-6_a/w 4010-10_a/w
4013-4_a/w 4013-5_a/w 4013-6_a/w
Table 6-2 XC3000 Wire-Load Models
-50 Speed —70 Speed —100 Speed —125 Speed
Grade Grade Grade Grade
3020-50_a/w 3020-70_a/w 3020-100_a/w | 3020-125 a/w
3030-50_a/w 3030-70_a/w 3030-100_a/w | 3030-125_a/w
3042-50_a/w 3042-70_a/w 3042-100_a/w | 3042-125 a/w
3064-50_a/w 3064-70_a/w 3064-100_a/w | 3064-125 a/w
3090-50_a/w 3090-70_a/w 3090-100_a/w | 3090-125 a/w

Table 6-3 XC3000A/L Wire-Load Models

—6 Speed Grade

—7 Speed Grade

—8 Speed Grade

3020a-6_a/w

3020a-7_a/w

30201-8_a/w

3030a-6_a/w

3030a—7_a/w

30301-8_a/w

XACT Development System

Using the Design Compiler

—6 Speed Grade

—7 Speed Grade

—8 Speed Grade

3042a-6_a/w 3042a-7_alw 30421-8_a/w
3064a-6_a/w 3064a—7_a/w 30641-8_a/w
3090a-6_a/w 3090a-7_a/w 30901-8_a/w

Table 6-4 XC3100/A Wire-Load Models

—3 Speed Grade —4 Speed Grade -5 Speed Grade
3120-3_alw 3120-4_alw 3120-5_a/w
3120a-3_a/w 3120a-4_al/w 3120a-5_a/w
3130-3_a/w 3130-4_alw 3130-5_a/w
3130a-3_a/w 3130a-4_al/w 3130a-5_a/w
3142-3 alw 3142-4_alw 3142-5_alw
3142a-3 alw 3142a-4 alw 3142a-5 al/w
3164-3_alw 3164-4_alw 3164-5_a/w
3164a-3 a/w 3164a-4 alw 3164a-5 a/w
3190-3_a/w 3190-4_alw 3190-5_a/w
3190a-3_a/w 3190a-4 a/w 3190a-5_a/w
3195-3_alw 3195-4_alw 3195-5_a/w
3195a-3 a/w 3195a-4 a/w 3195a-5 a/w

Changing the Wire-Load Model

To change the wire load from average to worst case, use the Set Wire

Load command as illustrated by the following example.
set_wire_load “ parttype-s_wc”

The speed grade for the wire-load model must match the speed grade
of the primitive library as listed in the previous wire-load model
tables as illustrated by this example.

set_wire_load “4005-5_wc”

If you want to evaluate the block delays of the design without the
wire load, set the wire load to None by using the Set Wire Load
command as follows.

set_wire_load none

Xilinx Synopsys Interface FPGA User Guide 6-5

Xilinx Synopsys Interface FPGA User Guide

How Wire-Load Models Are Determined

Average and worst-case models are derived from over 6000 designs
that were placed and routed on the different Xilinx parts for each of
the different speed grades.

The average wire-load model for a given part and speed grade is
calculated by collecting all signal nets of a given fanout for all designs
using the part type and speed grade. For a given fanout, 50 percent of
the nets from the test suite are slower and 50 percent of the nets are
faster than the delay number in the average wire-load model.

The worst-case wire-load models add one standard deviation to each
average fanout value. For a given fanout, 68 percent of the nets from
the test suite are faster and 22 percent are slower than the delay
number in the worst-case wire-load model; therefore, the worst-case
wire-load models are more conservative than the average wire-load
models. You can determine the actual wire-load delays after placing
and routing the design.

In all cases, the wire-load delays increase as the die size and fanout of
the net increase. The delays decrease with faster device speed grades.

The Report Timing command combines the wire-load delay with the
block delay. For more information on the Report Timing command,
refer to the “Evaluating Timing Delays” section at the end of this
chapter.

Operating Conditions

Only one set of operating condition parameters is available — worst-
case commercial (WCCOM) — which is the default in the Xilinx
libraries.

Configuring the IOBs

The following sections describe how to configure XC4000/A/D/H,
XC3000/A/L, and XC3100/A 10Bs. The Design Compiler can infer
automatically the following I0OB configurations.

« Input buffers, for example, IBUF
« Output buffers, for example, OBUF

6-6 XACT Development System

Using the Design Compiler

. Bidirectional buffers, for example, an input buffer, IBUF, and a
3-state output buffer, OBUFT

« Input flip-flops, for example, IFD
. Latches, for example, ILD_1

« Output flip-flops and 3-state output flip-flops, for example, OFD
and OFDT

« Clock buffers, for example, BUFG_F

Use the Set Port Is Pad command to define the specified ports as
1/0 pads. You can set the Set Port Is Pad command to insert the
default pads on all the 170 ports as follows.

set_port_is_pad “*”

To insert the pads in the design, use the Insert Pads command as
follows.

insert_pads

You can specify directly which 170 cells you want to use by
instantiating the 170 cells in your HDL. You need to place a Don’t
Touch attribute on the 1/0 cells that are instantiated to avoid
compiling errors. See the Synopsys documentation for more
information on placing Don’t Touch attributes.

The following sections provide a general description of the
XC4000/A/D/H, XC3100/A, and XC3000/A/L devices and
describes how to implement additional 1/0 features manually.

XC4000/A/D 10Bs

This section describes how to configure the input and output signal,
as well as how to set the output slew rate. You can configure
XC4000/A/D IOBs as inputs, outputs, or bidirectional signals with
or without a pull-up resistor or pull-down resistor, independent of
the pin usage.

Inputs

The Design Compiler utilizes registered 1/0s if the flip-flop or latch
does not use the Clock Enable, Clear Direct, or Preset pin.

Xilinx Synopsys Interface FPGA User Guide 6-7

Xilinx Synopsys Interface FPGA User Guide

6-8

The buffered input signal drives the data input of a storage element,
which you can configure as a flip-flop or a latch. You can use the
buffered signal in conjunction with the input flip-flop or latch.

By default, a delay buffer added to the signal feeding the data input
of the input flip-flop or latch avoids a possible hold time violation.
Instantiating a flip-flop or latch, such asan IFD_F or ILD_1F, removes
this delay because these cells include a NODELAY attribute. Refer to
the “XC4000/A/H Primitives and Hard Macros” appendix for a
complete list of primitives that include NODELAY attributes.

Outputs

The output signals, which can drive the programmable 3-state output
buffer, can be registered or direct. The register is a positive-edge-
triggered flip-flop, and the clock polarity can be inverted inside the
IOB. (PPR automatically optimizes any inverters into the 10B.) The
XC4000 output buffers can sink 12 mA, and XC4000A output buffers
can sink 24 mA.

XC4000/D Slew Rate

The XC4000 output buffers have a default slow slew rate that
alleviates ground-bounce problems or a fast slew rate that reduces
the output delay. The SLOW option increases the transition time and
reduces the noise level. The FAST option decreases the transition time
and increases the noise level.

Warning: Synopsys and Xilinx define slew rate using opposite terms.
Synopsys uses slew control, whereas Xilinx uses slew rate. For example,
the Synopsys HIGH slew control is equivalent to the Xilinx SLOW
slew rate.

There are two types of output buffers in the XSl libraries. The default
output buffer has a FAST attribute assigned to it, that is, OBUF_F
(output buffer) and OBUFT _F (3-state output buffer). However, to
avoid a possible ground-bounce problem, Xilinx recommends that
you select SLOW as the default slew rate. Assign a FAST slew rate
only to output buffers that require additional speed.

XACT Development System

Using the Design Compiler

The Design Compiler V3.1 or later automatically infers a FAST
output slew rate. To set the default slew rate to SLOW (high control),
use the Set Pad Type command.

set_pad_type —slewrate HIGH all_outputs()
Set this command before implementing the Insert Pads command.

To change any output port to a FAST slew rate after changing the
default to SLOW, use the following command. Replace port with the
name of the output port.

set_pad_type —slewrate NONE { port}

Table 6-5 XC4000 Slew Rate Settings

Xilinx Slewrate

Synopsys Slew

Control Attribute Design Compiler Command

SLOW

HIGH set_pad_type —slewrate HIGH { port}

FAST

NONE set_pad_type —slewrate NONE { port}

XC4000A Slew Rate

The XC4000A family offers more output slew-rate control options for
each individual output drive: fast, medium fast, medium slow, and
slow. Slew control can alleviate ground-bounce problems when
multiple outputs switch simultaneously. It can also reduce or
eliminate cross-talk and transmission-line effects on printed circuit
boards.

Warning: Synopsys and Xilinx define slew rate using opposite terms.
Synopsys uses slew control, whereas Xilinx uses slew rate. For
example, the Synopsys HIGH slew control is equivalent to the Xilinx
SLOW slew rate.

The Design Compiler V3.1 or later automatically infers a FAST
output slew rate. To set the default slew rate to SLOW, use the Set
Pad Type command.

set_pad_type —slewrate HIGH all_outputs()

Set this command before using the Insert Pads command.

Xilinx Synopsys Interface FPGA User Guide 6-9

Xilinx Synopsys Interface FPGA User Guide

To change an output to a FAST, MEDFAST or MEDSLOW slew rate
after setting the default to SLOW, use the slew rate options found in
the following table. Replace port with the name of the output port.

Table 6-6 XC4000A Slew Rate Settings

Synopsys Slew

Xilinx Slewrate Control Attribute

Design Compiler Command

SLOW HIGH set_pad_type —slewrate HIGH { port}
MEDSLOW MEDIUM set_pad_type —slewrate MEDIUM { port}
MEDFAST LOW set_pad_type —slewrate LOW { port}
FAST NONE set_pad_type —slewrate NONE { port}

The buffers have an _F suffix for FAST slew rate, an _S suffix for a
SLOW slew rate, an _MF suffix for MEDFAST, and an _MS suffix for
MEDSLOW. Refer to the “XC4000/A/D/H Primitives and Hard
Macros” appendix at the end of this user guide for a full listing of all
cells that XSI can instantiate into a design.

Warning: The reported 10B timing delays reflect the delays for an
XC4000 device, not an XC4000A device. XC4000A delays vary
slightly from XC4000 delays. You can find the actual 10B delay
numbers for the XC4000A devices in The Programmable Logic Data
Book. You can use the Report Timing command to generate a timing
report after invoking the Insert Pads command to get accurate 1/0
cell delays. However, the delays for the internal gates are not accurate
because no mapping information exists.

XC4000H 10Bs

Because the XC4000H family almost doubles the number of input/
output pins of XC4000 devices, the output drivers are more powerful
and flexible. You can configure the XC4000H I0Bs as input, output, or
bidirectional signals. You can configure each 1/0 pad with or without
a pull-up or pull-down resistor, independent of the pin usage.

Inputs

XC4000H devices contain no input flip-flops or latches. You can
configure each input individually with TTL or CMOS input

6-10 XACT Development System

Using the Design Compiler

thresholds. You must set the threshold level for each input. The
buffers have a _CMOS suffix for the CMOS input threshold and a
_TTL suffix for the TTL-input threshold. To set the input threshold,
you must instantiate an input buffer with a CMOS or TTL threshold,
or use the Set Pad Type command with the Exact option. Refer to the
Synopsys documentation for more information on the Set Pad Type
command.

Refer to the “XC4000/A/D/H Primitives and Hard Macros”
appendix at the end of this user guide for a full listing of all cells.

If you do not specify the threshold, Synopsys assigns each input a
random input threshold. Use the following commands to set all
inputs to CMOS or TTL.

« For the CMOS threshold, enter the following on the command
line.

set_pad_type —vih 3.33 —vil 1.05 all_inputs()
« Forthe TTL threshold, enter the following on the command line.
set_pad_type —vih 2.0 —vil 0.8 all_inputs()

Note: You can use the All Inputs command to specify the names of all
input ports; refer to your Synopsys documentation for more
information.

You must set the input threshold after you compile the design. The
following is an example set of commands you can use to compile, set
the input threshold, set the output threshold, and insert the pads.

compile

set_pad_type —vih 3.33 —vil 1.05 all_inputs()
set_pad_type —voh 4.75 —voh 0.6 all_outputs()
set_port_is_pad

insert_pads

Figure 6-3 Example Compilation Flow for Setting Input and
Output Thresholds
Outputs

XC4000H devices contain no output flip-flops. You can individually
configure the outputs as either TTL- or CMOS-compatible. TTL-level
outputs are the best choice for systems that use TTL-level input

Xilinx Synopsys Interface FPGA User Guide 6-11

Xilinx Synopsys Interface FPGA User Guide

6-12

thresholds. CMOS-level outputs are ideal for systems that use CMOS
input thresholds. To change the output threshold, you must
instantiate an output or bidirectional buffer with a TTL or CMOS
threshold, or use the Set Pad Type command with the Exact option.
Refer to the Synopsys documentation for more information on the Set
Pad Type command. The output and bidirectional cells are listed in
the “XC4000/A/D/H Primitives and Hard Macros” appendix at the
end of this user guide.

You must set the threshold level for each output. If you do not specify
the threshold, Synopsys assigns each output a random output
threshold. Use the following commands to set the output threshold.

« For the CMOS threshold, enter the following on the command
line.

set_pad_type —voh 4.75 —vol 0.6 all_outputs()

« Forthe TTL threshold, enter the following on the command line.
set_pad_type —voh 2.4 —vol 0.5 all_outputs()

Note: Use the All Outputs command to specify all output ports.

You must set the output threshold after you compile the design.
Figure 6-3 is an example set of commands used to compile, set the
input threshold, set the output threshold, and insert the pads.

Warning: XC4000H devices do not have flip-flops in the 10Bs. To
prevent the Design Compiler from pulling any flip-flops into the
IOBs, insert the pads after compiling the design.

Note: The IOB timing delays reported for XC4000H devices are not
included. Execute the Report Timing command after running the
Insert Pads command to report accurate 1/0 cell delays. However,
the reported internal gate delays are not accurate.

XC4000H Slew Rate

The XC4000H family offers a choice of CMOS- or TTL-level output
and input thresholds that you can select per pin. XC4000H devices
have a capacitive and a resistive slew rate. The XC4000H outputs sink
24 mA.

You can configure each output for either of two slew-rate options,
which affect only the pull-down operation — resistive or capacitive.

XACT Development System

Using the Design Compiler

The resistive load (RES) has a pull-down transistor that is driven
hard, resulting in a practically constant on-resistance of about

10 ohms. Selecting the resistive load results in the fastest
High-to-Low transition and the capability to sink 24 mA with a
voltage of 500 mV. Many outputs switch High to Low
simultaneously, especially when they are discharging a capacitive
load, which might result in excessive ground bounce.

When the output is configured for a capacitive load (CAP) or soft
edge, the High-to-Low transition starts as described previously, but
the drive to the pull-down transistor is reduced as soon as the output
voltage reaches a value around 1 V. Selecting a capacitive load results
in a higher resistance in the pull-down transistor, slowing down of
the falling edge, and significantly reduced ground bounce. Refer to
The Programmable Logic Data Book for more details.

To change any of the output ports to a capacitive slew rate, use the
Set Pad Type command. Replace port with the name of the output
port.

set_pad_type —slewrate HIGH { port}

Table 6-7 XC4000H Slew Rates

Xilinx Slew Synopsys Slew : .
Rates Control Attribute Design Compiler Command
CAP HIGH set_pad_type —slewrate HIGH { port}
RES NONE set_pad_type —slewrate NONE { port}

Note: Set this command after specifying the Set Port Is Pad
command and before using the Insert Pads command.

For bidirectional cells, the input threshold is listed before the output
threshold and slew rate. Refer to the “XC4000/A/D/H Primitives
and Hard Macros” appendix for a complete listing of all cells that XSI
can instantiate into a design.

XC3000/A/L and XC3100/A 10Bs

You can configure the XC3000/A/L and XC3100/A 10Bs as inputs,
outputs, or bidirectional signals.

Xilinx Synopsys Interface FPGA User Guide 6-13

Xilinx Synopsys Interface FPGA User Guide

6-14

Inputs

XC3000/A/L and XC3100/A 10Bs can have a registered, latched, or
direct input.

Outputs

The outputs have registered or direct outputs with 3-state capability.
A registered or direct output signal can drive the programmable
3-state output buffer. The register uses a positive-edge-triggered or
negative-edge-triggered flip-flop.

You can assign several parameters to the IOBs, which are listed in the
following sections.

XC3000/A/L and XC3100/A Slew Rate

The XC3000/A/L and XC3100/ A output buffers with a slow slew
rate alleviate ground-bounce problems, and those with a fast slew
rate reduce the output delay. The SLOW option increases the
transition time and reduces the noise level. The FAST option
decreases the transition time and increases the noise level.

Warning: Synopsys and Xilinx define slew rate using opposite terms.
Synopsys uses slew control, whereas Xilinx uses slew rate. For example,
the Synopsys HIGH slew control is equivalent to the Xilinx SLOW
slew rate.

There are two types of output buffers in the XSI libraries. The default
output buffer has a FAST attribute assigned to it, that is, OBUF_F
(output buffer) and OBUFT _F (3-state output buffer). However, to
avoid a possible ground-bounce problem, Xilinx recommends that
you select SLOW as the default slew rate. Assign a FAST slew rate
only to output buffers that require additional speed.

The Design Compiler V3.1 or later automatically infers a FAST output
slew rate. To set the default slew rate to SLOW (high control) use the
Set Pad Type command.

set_pad_type —slewrate HIGH all_outputs()

Note: Set this command before implementing the Insert Pads
commands.

XACT Development System

Using the Design Compiler

To change any output port to a FAST slew rate after changing the
default to SLOW, use the following command. Replace p with the
name of the output port.

set_pad_type —slewrate NONE { port}

Table 6-8 XC3000/A/L and XC3100/A Slew Rate Settings

Xilinx Slew Synopsys Slew : .
Rate Control Attribute Design Compiler Command
SLOW HIGH set_pad_type —slewrate HIGH { port}
FAST NONE set_pad_type —slewrate NONE { port}

Assigning and Prohibiting Pad Locations

You can specify pad locations by typing the following in the
Command window.

set_attribute pad “pad_location” —type string \
“ pin number”

Refer to The Programmable Logic Data Book for the locations and name
of the pins.

Note: Pin names do not always start with a P.

You can also specify pads locations using a constraints (CST) file. For
more information about the constraints file, refer to the XACT
Libraries Guide.

Implementing 3-State Output

For the Design Compiler to infer the use of 3-state output flip-flops,
such as OFDT, two conditions must be met: the flip-flop must directly
drive the 3-state signal, and the HDL code of the flip-flop must be in
the same process as the 3-state HDL code. The following sections
illustrate a flip-flop that does not directly drive the 3-state signal and
one that does directly drive the 3-state signal.

Not Directly Driving the 3-State Signal

The flip-flop must directly drive the 3-state signal. If any logic exists
between the flip-flop and the 3-state signal connected to the output

Xilinx Synopsys Interface FPGA User Guide 6-15

Xilinx Synopsys Interface FPGA User Guide

6-16

flip-flop, the FPGA Compiler does not infer a 3-state output flip-flop,
as illustrated by Figure 6-4 and Figure 6-5. Figure 6-6 is a schematic
representation.

Tibrary IEEE;
use IEEE.std_logic_1164.al1;
use IEEE.std_logic_unsigned.all;

entity three_ex1 is
port (BUS_IM, EM, CLK: in STD_LOGIC;
BUS_OUT: out STO_LOGICY;
end three_ex1;

architecture BEHAVICRAL of three_exl is
signal BUS_IN_REG, BUS_OUT_REG: STD_LOGCIC;
begin
Sync: process (CLKD
hegin
if (CLK event and CLK="1") then
BUS_IN_REGC <= BUS_IMN;
BUS_OUT_REG <= BUS_IN_REG;
end if;
end process;
BUS_OUT <= BUS_OUT_REG when (EN="0") else “Z7;

end BEHAWIORAL;

Figure 6-4 Register Not Directly Driving 3-State (VHDL)

XACT Development System

Using the Design Compiler

,:\k
* three_gx1 - Behavioral Model
Example of 3-state assignment NOT in clock process

* RS w32
*f @{#ithree_exl.v 1.2 874794
E3

module three_ex1{BUS_IM, EM, CLK, BUS_OUT) ;
input BUS_IM ;

input EN ;

input CLEK ;

output BUS_OUT ;

reg BU5S_QUT_REG, BUS_IN_REG, BUS_OQUT:

ffassign BUS_OUT = (EN == 1°b0) ? BUS_OUT_REG : 17bz ;

always @(posedge CLKD

begin
BUS_QUT_REGC = BUS_IN_REG :
BUS_IMN_REG = BUS_IN ;

end

always @(EN or BUS_OUT_REG)

hegin
if (1EN)
BUS_OUT = BUS_OUT_REG;
else
BUS_OUT = 17bz;
gnd
endmodule

Figure 6-5 Register Not Directly Driving 3-State (Verilog HDL)

BUS_OUT
IFD] BUSIN.REG p|[FDC o

CLOCK c c OBUFT_F
BUFG_F
X4888

Figure 6-6 No Output Register Inferred

Directly Driving the 3-State Signal

Figure 6-7 and Figure 6-8 illustrate how to behaviorally implement a
3-state output register for VHDL and Verilog HDL, respectively.

Xilinx Synopsys Interface FPGA User Guide 6-17

Xilinx Synopsys Interface FPGA User Guide

Tibrary IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity three_ex? is
port (BUS_IN,EM,CLE: in STD_LOGIC;
BUS_OUT: out STO_LOGICY;
end thres_gx2;

architecture BEHAYIORAL of three_ex2 is
signal BUS_IN_REG: STD_LOGIC:

begin
sync: process (CLK, EMJ
begin
if (CLK event and CLk="1") then
BUS_IM_REGC <= BUS_IN;
if {EN="0") then
BUS_OUT <= BUS_IN_REC;
else
BUS_QUT <= “Z27;
gnd if;
end 1f;
end process:

end BEHAWIORAL:

Figure 6-7 Register and 3-State in the Same Process (VHDL)

three_ex2 - Behavioral HModel
Example of 3-state assignment in the the clock process
XS w3.2

af#ithree_ex2.v 8/19/94

E

*f

nodule three_ex2(BUS_IN, EN, CLK, BUS_OUT) ;
input BUS_IM ;

input EN ;

input CLE ;

output BUS_OUT ;

reg BUS_OUT ;

reg BUS_IMN_0, BUS_IM_REG ;

alwaws @(posedge CLK)

hegin
BUS_IM_REGC = BUS_IN_Q :
BUS_IN_i3 = BUS_IN ;
if (PEMD BUS_OUT = BUS_IN_RECG:
else BUS_OUT = 17bz;

end

endmodule

Figure 6-8 Register and 3-State in the Same Process
(Verilog HDL)

XACT Development System

Using the Design Compiler

Figure 6-9 is the schematic representation of a flip-flop driving a
3-state output flip-flop.

EN [o[IFD Jo BUS_OUT_TRI_ENABLE
_c|
OFDT_F
IFD BUS_IN_REG FDC BUS_ouT
BUS_IN > o) Q N D Q D D
CLOCK D—D c c
BUFG
X4891

Figure 6-9 Output Register Inferred

Inserting Bidirectional I/Os

The Design Compiler has the ability to insert non-registered
bidirectional ports. The 3-state signal that drives the output buffer
must be described in the same hierarchy level as the input signal, as
shown in Figure 6-7 and Figure 6-8.

Instantiating a Registered Bidirectional I/0

The VHDL design, bidi_reg.vhd, and the Verilog HDL design,
bidi_reg.v, are examples of a top-level design that instantiates a core
design, reg4. In this example, two clock buffers, CLOCK1 and
CLOCK?2, automatically infer a BUFG buffer. The reset and load
signals, RST and LOADA, automatically infer an IBUF when you run
the Set Port Is Pad, Set Pad Type, and Insert Pads commands.
However, the Design Compiler cannot automatically infer the
OFDT _F (3-state output buffers with a FAST slew rate) cells in
bidirectional 1/0s. Therefore, these cells and the IBUF are
instantiated into the top-level design.

Xilinx Synopsys Interface FPGA User Guide 6-19

Xilinx Synopsys Interface FPGA User Guide

entity bidi_reg is
port (5ICA: inout BIT_WECTOR {3 downto 03;
LOADA, CLOCKT, CLOCKZ, RST: in BIT):

end bidi_reqg;

architecture BEHAY of hidi_req is

camponent reg4
port (IM¥: in BIT_VECTOR (3 downto 03;
LOAD,

end component;

CLOCk, RESET: in BIT:

OUTH: buffer BIT_VECTOR (3 downto 03);

component OFDT_F

end component;

component IBUF
port (I: in BIT;

end component;

port (0: in BIT;

C: in BIT;
T: in BIT;
0: out BIT);

0: out BIT);

signal INA, OUTA: BIT_VECTOR (3 downto 03;

hegin

end BEH&Y;

map (SIGALD), INALDDD;
map (SIGA(1), INAC1ID):
map (SIGAC2), INACZ));
map (SIGAC3), INAC3DD;

Figure 6-10 Bidi_reg.vhd

6-20

: regd port map (INA, LOADA, CLOCKT, RST, OUTA);
: OFDT_F port map COUTACOD, CLOCKZ,
: OFDT_F port map COUTAC1D), CLOCKZ,
: OFDT_F port map COUTAC2), CLOCKZ,
1 OFDT_F port map (OUTAC3D, CLOCKZ,
: IBUF port
: IBUF port
: IBUF port
: IBUF paort

LOADA, SIGALODD
LOADA, SIGALC1D)
LOADA, SIGALZ))
LOADA, SIGALZ))

XACT Development System

Using the Design Compiler

bidi_regq - Structural Model
Register Bidirectional I 0 Example
¥ST w32

@C#bidi_reg.v 8/19/94

#FOE ¥ OF O ¥
e

module h'li:d'i_:rl’Eg (S5IGA, LOADA, CLOCKT, CLOCKZ, RST)
3:0 H

inout SIGA
input LOADA
input CLOCKT
input CLOCKZ ;
input RST;

wire [3:0] IMA, OUTA ;
£F Netlist

regd U3 (INA, LOADA, CLOCK?1, RST, OUTAY

OFDT_F U0 C.DCOUTAL0]D, .COCLOCKZ), .T{LOADAD, .0(SIGA[0]))
OFDT_F U1 C.DCOUTAL1]1D, COCLOCK2), .T{LOADA), .O(SIGA[1]13) :
OFDT_F U2 C.DCOUTAL[2]), COCLOCK2), TOLOADA), .O(SIGA[2]13) :
OFDT_F U3 C.DCOUTA[3]), .COCLOCKZY, .TOLOADAD, .0O(SIGA[3]1)) ;
IBUF U4 C.ICSIGA[0]Y, .OCINALD]D)

IBUF UE C.ICSIGA[1]), .OCINAL1]D)

IBUF U7 C.ICSIGALZ]), .OCINAL2]D)

IBUF g C.ICSIGAL3]), .OCINAL3]D)

endmnodule

Figure 6-11 Bidi_reg.v

Compiling Bidirectional 1/0

Do not use the Set Port Is Pad command for the instantiated 1/0 cells.
For example, in the bidi_reg.vhd example, you would only use the
following commands to insert the 1/0s for the LOADA, RST,
CLOCK]1, and CLOCK?2 signals only.

set_port_is_pad {LOADA RST CLOCK1 CLOCK?2}
insert_pads

Before compiling the design, you must place a Don’t Touch attribute
on any instantiated 170 cells as follows, so that the 1/0 cells are not
altered.

dont_touch {U0 U1 U2 U3 U5 U6 U7 U8}

The script files used to compile bidi_reg.vhd and bidi_reg.v are
shown in Figure 6-12 and Figure 6-13, respectively.

Xilinx Synopsys Interface FPGA User Guide 6-21

Xilinx Synopsys Interface FPGA User Guide

R
F* Sample Script for Synopsys to Xilink Using i
I the Design Compiler w
f* ==*j
I I nn E S R ey)
A Read in the design i
FAE T LR T L T
J/* Set the top-level modules name for the design i

TOP = bidi_reg

SUB1= regd
J/* Set the Designer and Company name for

documentation. f

designer = "¥SI Team"

company = "¥ilinx, Inc"

J/* #nalyze and Elaborate the design file and specify
the design file format *f

analyze -format vhdl SUB1 + ".vhd"
analyze -format vhdl TOP + ".whd"
elaborate SUB1
glaborate TOP
/* Set the current design to the top level w
current_design TOP

/% add pads to the design. Make sure the current
design is the top-Tevel module. #

set_port_is_pad {L0ADA RST CLOCK! CLOCKZ2:
insert_pads
dont_touch U0 U1 U2 U3 U4 UG U7 U8}

R Sy

I Compile the design wy
I R)
/% set the synthesis design constraints. i f

remove_constraint -all
/* Synthesize and optimize the design *f

conpile -map_effort med

6-22 XACT Development System

Using the Design Compiler

I et B I e e S 7

Fad Save the design w [
FAE T R R L PR R P R P P T T
/% Write the design report file wf
report_area > TOP + ".area”
report_timing > TOP + ".tining"
/% set the part type wf

set_attribute TOP "part” -type string "3020apci4-6"
£ Write out the design to a DB file wf
write -format db -hierarchy -output TOP + ".db"
£ Save design in EDIF format as <design:.sedif wf

write -format edif -hierarchy -output TOP + ",sedif"”

F* Exit the Compiler. w [

exit

Figure 6-12 Bidi_reg.script (VHDL)

Xilinx Synopsys Interface FPGA User Guide 6-23

Xilinx Synopsys Interface FPGA User Guide

f* ==*j
J* Sample Script for Synopsys to Hiling Using wy
I the Design Compiler *f
f* ==*f
R Sy
I Read in the design wy
I et S R Ry)
/% Set the top-level modules name for the design i f

TOP = bidi_reg

SUE1= reg4
/% set the Designer and Company name for

documentation. i

designer = "¥SI Team"

company = "¥ilinw, Inc"

/* analyze and Elaborate the design file and specify
the design file format w
analyze -format verilog SUBT + ".v"
analyze -format verilog TOP + ","
elaborate SUB1

elaborate TOP
/* Set the current design to the top Tevel =i
current_design TOP

/% add pads to the design. Make sure the current
design is the top-Tlevel module. *f

set_port_is_pad {LOADA RST CLOCK! CLOCKZ}
insert_pads
dont_touch U0 U1 U2 U3 U4 UG U7 Ug}

A e

I Compile the design w
R n s R e A
/* Set the synthesis design constraints. w

remove_constraint -all
/* synthesize and optimize the design i

conpile -map_effort med

6-24 XACT Development System

Using the Design Compiler

I et B I e e S 7

Fad Save the design w [
FAE T R R L PR R P R P P T T
/% Write the design report file wf

report_area > TOP + ".area”
report_timing > TOP + ".tining"

/% set the part type wf
set_attribute TOP "part” -type string "3020apci4-6"

£ Write out the design to a DB file wf
write -format db -hierarchy -output TOP + ".db"

£ Save design in EDIF format as <design:.sedif wf

write -format edif -hierarchy -output TOP + ",sedif"”

F* Exit the Compiler. w [

exit
Figure 6-13 Bidi_reg.script (Verilog HDL)

Using Unbonded IOBs

Note: This section does not apply to XC4000H devices because they
do not have flip-flops in the 10B.

In some package/device pairs, not all pads of the device are bonded
to a package pin. You can use these unbonded 10Bs and the flip-flops
inside them in your design by instantiating unbonded primitives,
which are indicated by a _U suffix. Refer to the “XC3000A/L and
XC3100/A Primitives” and “XC4000/A/D/H Primitives and Hard
Macros” appendixes for a complete listing of all unbonded cells.

Adding Pull-Up and Pull-Down Resistors

XC3000 and XC3100 devices have pull-up resistors that you can use
to pull up an unconnected 10B. By default, all unused IOBs are
configured as an input with a pull-up resistor. Refer to the
“XC3000/A/L and XC3100/A Primitives” appendix for a listing of
all cells and their pin names for instantiation.

The XC4000 family has high impedance pull-up and pull-down
resistors that you can connect to an input or output buffer. You can
instantiate these cells, PULLUP and PULLDOWN, into your HDL

Xilinx Synopsys Interface FPGA User Guide 6-25

Xilinx Synopsys Interface FPGA User Guide

design. Refer to the “XC4000/A/D/H Primitives and Hard Macros”
appendix for a listing of all cells and their pin names for instantiation.

Removing the Default Input Delay (XC4000 Only)

The XC4000 input flip-flops and latches have a default delay
preceding the data to the input flip-flop or latch. This delay prevents
any possible hold-time violations if you have a clock signal that is
also coming into the device and clocking the input flip-flop or latch.

You can remove this delay by instantiating a cell that includes the
NODELAY attribute if you need additional input speed and have no
possibility of a hold-time violation. The “XC4000/A/D/H Primitives
and Hard Macros” appendix lists all cells that include a NODELAY
attribute. The input flip-flops or latches with an _F suffix have a
NODELAY attribute assigned to the cell.

Initializing the 10B Flip-Flop to Preset (XC4000 Only)

You can initialize XC4000 10B flip-flops to either Clear or Preset. The
default is Clear. To initialize an 170 flip-flop or latch to Preset, use the
following command to attach an INIT=S attribute to the flip-flop.

set_attribute “ register_name” xnf_init \

“S” type string
Replace register_name with the name of the 170 flip-flop.
You can instantiate 1/0 cells with the INIT=S attribute already
assigned to them. Refer to the “XC4000/A/D/H Primitives and Hard

Macros” appendix for a list of all cells and their pin names for
instantiation.

Inserting Clock Buffers

6-26

Xilinx recommends that your design contain global clock buffers to
take advantage of the low-skew, high-drive capabilities of the generic
clock buffer, BUFG, which is assigned to a specific clock buffer by
PPR or APR. The Design Compiler automatically inserts a BUFG_F
generic clock buffer whenever an input signal drives a clock signal
when you invoke the Insert Pads command.

XACT Development System

Using the Design Compiler

XC4000/A/D/H Clock Buffers

Each XC4000 device contains four primary and four secondary global
buffers that share the same routing resources. Xilinx recommends
that you use the generic global buffer, BUFG, for up to four low-skew,
high-fanout clock signals. Both the primary and secondary clock
buffers can be driven by signals sourced from inside the device;
however, the primary global buffer always uses the dedicated 1/0
pad. You can use the secondary global clock buffer to buffer a high-
fanout, low-skew clock signal that is sourced from inside the FPGA.

The Design Compiler assigns a BUFG to any input signals driving a
clock pin. XNFPrep converts the generic clock buffers to BUFGS.

You can instantiate clock buffers into the HDL or use the Set Pad
Type command with the Exact option to specify exactly which clock
buffer should be used. Refer to the Synopsys documentation for more
information on the Set Pad Type command.

You can also use a secondary clock buffer to drive a net that is not a
clock net or is not sourced from an input pin. Refer to the
“XC4000/A/D/H Primitives and Hard Macros” appendix for a list
of clock buffer cells.

Note: The _F suffix appended to the clock buffer name indicates that
the clock buffer uses the dedicated input pad. This implementation is
faster than using a non-dedicated input pad.

Warning: The Design Compiler may assign more clock buffers than
are available in the device. Refer to the “Controlling Clock Buffer
Insertion” section later in this chapter for more information on how
to avoid having clock buffers assigned to input pins that do not
directly drive clock pins, and to avoid having more that four generic
clock buffers used per design.

XC3000/A/L and XC3100/A Clock Buffers

Each XC3000 and XC3100 device contains one global clock buffer,
GCLK, and one alternate clock buffer, ACLK. The Design Compiler
automatically assigns a generic clock buffer, BUFG, to any input
signal driving a clock pin. APR or PPR assigns a GCLK to the highest
fanout clock buffer and a ACLK to the second-highest clock buffer.

Xilinx Synopsys Interface FPGA User Guide 6-27

Xilinx Synopsys Interface FPGA User Guide

6-28

You can instantiate clock buffers into the HDL or use the Set Pad Type
command with the Exact option to specify exactly which clock buffer.
Refer to the “XC3000/A/L and XC3100/A Primitives” or “XC4000/
A/D/H Primitives and Hard Macros” appendix in this user guide for
a list of clock buffer cells. Refer to the Synopsys documentation for
more information on the Set Pad Type command.

Note: The _F suffix appended to the clock buffer name indicates that
the clock buffer uses the dedicated input pad. This implementation is
faster than using a non-dedicated input pad.

Warning: The Design Compiler may assign more than two clock
buffers. (Only two clock buffers are available in the device). To avoid
assigning additional clock buffers, refer to the “Controlling Clock
Buffer Insertion” section, which follows.

Controlling Clock Buffer Insertion

The Design Compiler assigns a BUFG_F to any input signal that
drives a clock signal; however, XC4000 devices have four global
buffers and four secondary buffers. XC3000 and XC3100 devices have
only two global clock buffers. Xilinx recommends that you use only
four generic buffers, BUFG, per XC4000 designs and only two for
XC3000 and XC3100 designs.

You should assign the global clock buffer to the top four high-fanout,
low-skew clock signals for XC4000 designs and the top two high-
fanout, low-skew clock signals for XC3000 and XC3100 designs.

Figure 6-14 and Figure 6-15 illustrate a design with a gated clock
using VHDL or Verilog HDL, respectively. By default, the Design
Compiler assigns clock buffers to the signals IN1, IN2, IN3, IN4, and
CLK because they are considered to be driving a clock pin. However,
only use clock buffers for input signals directly driving high-fanout
clock nets.

XACT Development System

Using the Design Compiler

entity gate_clock s
port (IW1,IN2,IN3,IN4,INS,CLK,LOAD: in BIT:
oUT1: buffer BIT.;
end gate_clock;

architecture BEHAVIORAL of gate_clock is

signal GATECLK: BIT:

hegin

GATECLE <= not{C{(IN1 and IN2) and IN3) and IM4) and CLK);
process (GATECLK, INS,LOAD)

gin
if (CATECLK event and GATECLK="1") then
if {LOAD="1") then
QUT1 <= INS;
else
QUTT <= QUT1;
gnd 1f;
gnd 1f;
end process;
end BEHAWIORAL;

Figure 6-14 Gated Clock (VHDL)

Gateclk - Behawioral Model
Gated Clock Example
HST w3.2
B{H)gate_clock.y 1.2 3/4/94

R ¥ ¥ OE ¥

module gate_clock(IM1, IN2, IN3, IN4, INS, CLK, LOAD, OUT1D

input IN1
input INZ ;
input IN3 ;
input INg
input INS ;
input CLEK ;

input LOAD ;
output OUT1;

reg QT ;

wire GATECLE ;

assign GATECLK = ~(IN1 & IN2 & IN3 & IN4 & CLK) :
always @{posedge GATECLKD

hegin
if (LOAD == 17h1)
QUT1 = INS ;:
end
gndmodule

Figure 6-15 Gated Clock (Verilog HDL)

Xilinx Synopsys Interface FPGA User Guide 6-29

Xilinx Synopsys Interface FPGA User Guide

6-30

In Figure 6-16, a clock buffer should not be inserted on the signals
IN1 - IN4 and CLK because they are not high-fanout, low-skew clock
signals. The Design Compiler inserts global clock buffers for signals
IN2 through IN4 and the CLK signal.

L [>— FDCE
> & >oun

IN1

CE
IN2

C

IN3
IN4
CLK

NAND5 X4890

Figure 6-16 Gated Clock Schematic

Warning: The Design Compiler identifies clock ports by tracing back
from the clock pins on the flip-flops. If the clock signal is gated, the
gated signals also are assigned a clock buffer.

Figure 6-17 shows the gates inserted after executing the Insert Pads
and Compile commands.

IN5 >RA—E>»4444444444444444
IBUF
FDCE
LOAD [> - D ouT1
Q
CE
IN2
BUFG_F c OBUF_S
IN3

BUFG_F

'N4[::::>“E>F444'NAND4 INV
BUFG_F

BUFG_F

X4889

BUFG_F

Figure 6-17 Gated Clock After Pad Insertion

If the design contains gated clocks or has more than four input pins
that drive the clock pin for XC4000 designs and more than two input
pins for XC3000 and XC3100 designs, you must prevent the input
pins from having a BUFG inserted.

XACT Development System

Using the Design Compiler

Determining the Number of Clock Buffers

To determine how many clock buffers the Design Compiler will
insert in the design, use the Report Cell command.

report_cell

Figure 6-18 illustrates the report output for the gated clock example.

o e e sl e e e ol e e o e e el o e e e o e e o e e el e e e e e

Report @ cell

Design @ gate_clock

Version: v3.1hb-20502

Date : Fri Sep 9 15:15:58 1994

o e e sl e e e ol e e o e e el o e e e o e e o e e el e e e e e

Attributes:
b - black box Cunknown)
h - hierarchical

n - noncombinational

r - removable

U - contains unmapped Togic
Cell Reference Library Area Attributes
QUT1_reg FDPEI “prim_3000a-6 0.50 n
24 QBUF “prim_3000a-6 Q.00
Uz2a IBUF “prim_3000a-6 0.00
Uze BUFG_F “prim_3020a-§ 0.00
U2z IBUF “prin_3000a-§ 0.00
uza BUFC_F “prim_3020a-6 Q.00
uzg BUFG_F “prim_3020a-6 Q.00
u3n BUFG_F “prim_3020a-6 0.00
31 BUFG_F “prim_3020a-§ 0.00
3z GHD ®gen_3000 0.00
[1cK] HANDS “prim_3000a-6 1.00
Total 11 cells 1.50

Figure 6-18 Clock Buffer Report for Gated Clock Example

Preventing the Insertion of Clock Buffers

To prevent the Design Compiler from inserting the BUFG, specify the
Set Pad Type command with the following options after reading the
design and before inserting the pads.

set_pad_type —no_clock { clock_ports}

Replace clock_ports with the name of the input pins on which you do
not want a clock buffer inserted. For the gated clock example, you
would enter the following.

set_pad_type —no_clock {IN1, IN2, IN3, IN4, CLK}

Xilinx Synopsys Interface FPGA User Guide 6-31

Xilinx Synopsys Interface FPGA User Guide

Follow the normal procedures for setting the ports as pads and
inserting the pads as follows.

set_port_is_pad “*”

insert_pads

Using Memory

You can use on-chip RAM for status registers, index registers, counter
storage, distributed shift registers, LIFO stacks, and FIFO buffers.

XC3000/A/L, XC3100/A, and XC4000/A/D/H devices include on-
chip static memory resources. The XC3000 and XC3100 families can
efficiently implement ROM using the CLB function generators. The
XC4000 family can efficiently implement RAM and ROM using the
CLB function generators.

You can implement a ROM by describing it behaviorally as shown in
Figure 6-19 and Figure 6-20 for VHDL and Verilog HDL, respectively.
The XSI XC4000 libraries contain 16 x 1 (16 deep x 1 wide) RAM and
32 x1 (32 deep x 1 wide) RAM primitives, and 16 x 1 and 32 x 1 ROM
primitives that can be instantiated.

You can also implement memory using the MemGen program, which
is included in the XACT Development System. MemGen can create
RAM and ROM between 1 to 32 bits wide and 2 to 256 bits deep. This
section includes an example of using MemGen with XSI. Refer to the
XACT Reference Guide, Volume 1 for more information about using
MemGen.

XC4000 RAMs

You can implement RAMs in your HDL by the following methods.

« You can instantiate 16 x 1 and 32 x 1 RAMSs from the XSI primitive
libraries.

« You can implement any other RAM size using MemGen.

Warning: Do not behaviorally describe RAMs in VHDL because
compiling creates combinatorial loops.

6-32 XACT Development System

Using the Design Compiler

ROMs

You can implement ROMs for XC4000 devices in your HDL by the
following methods.

« You can describe ROMs behaviorally.
« You can instantiate 16 x 1 and 32 x 1 ROM primitives.
« You can implement other ROMs using MemGen.

To instantiate the ROM primitives, ROM16X1 and ROM32X1, into
your HDL design, use the Set Attribute command to define the ROM
value.

set_attribute “ instance_name” xnf_init “ rom_value”
type string

For example, if you gave the ROM16X1 an instance name of “U1”
and the value of the ROM is F5A3, you can use this command to set
the ROM value as follows.

set_attribute “U1” xnf_init “F5A3” type string

For a 32x1 ROM, specify an 8-digit hexadecimal (hex) value in place
of the 4-digit hex value as shown in the previous example.

Note: Instantiating ROM or RAM does not allow you to functionally
simulate the design or easily migrate between FPGA families.

Figure 6-19 and Figure 6-20 illustrate how you can define a ROM in
VHDL and Verilog HDL, respectively. The Design Compiler creates
ROM from random logic gates that are implemented using function
generators.

Xilinx Synopsys Interface FPGA User Guide 6-33

Xilinx Synopsys Interface FPGA User Guide

6-34

-- Behavioral 16x4 ROM Example -
-- romGxd_gk. vhd --

entity romiGxd_dk is
port (ADDR: in INTECER range 0 to 15;
DATA: out BIT_WECTOR (3 downto
end rom1Bxd_ak;

architecture BEHAY of romiGx4_4k is

03;

subtype ROM_WORD is BIT_WECTOR (3 downto 0);
type ROM_TABLE is array (0 to 15) of ROM_WORD;

constant ROM: ROM_TABLE := ROM_TABLE"(
ROM_WORD "¢ 0000")
ROM_WORD "¢ 0001")
ROM_WORD("0010")
ROM_WORD (" 0100")
ROM_WORD £ 1000")
ROM_WORD 1000)
ROM_WORD " ¢"1100")
ROM_WORD " ("1010")
ROM_WORD " 1001")
ROM_WORD £ 1001")
ROM_WORD 1010)
ROM_WORD " J
ROM_WORD * J
ROM_WORD ” J
ROM_WORD " 3
ROM_WORD " 3

1
1
1
1
1
1
1

hegin

DATS <= ROMCADDR); -- Read from the ROM

end BEHAY;

Figure 6-19 Behavioral VHDL for 16 x 4 ROM

XACT Development System

Using the Design Compiler

KSI w32

* OE ¥ OE ¥ ¥

nodule romlExd_4k(ADDR, DATAY

input [3:0] ADDR ;
output [3:0] DATS ;

reg [3:0] DATA ;

ACHIroml Bxd_dk. v

romlGxd_4k - Behawioral Model
Behavioral Example of 16x4 ROM

1

.2

8/4/94

Ff A memory is not created because Synopsys will not synthesize it

always @lADDR)
hegin
case [ADDR)
4“h0ooa
47 b0o01
4 b0o10
47 hod11
4 h0100 :
4“h0101
47b0110
47 b0111
4 h1000 :
4 h1001
4’h1010 :
4 b1011
4 b1100
4 h1101
4 h1110
4" h1111
endcase
end

endmodule

DATA

: DATA

DATA

: DATA

DATA

o DATA

DATA

: DATA

DATA

o DATA

DATA

: DATA

DATA

: DATA

DATA

o DATA

4"b0o000

Figure 6-20 Behavioral Verilog HDL for 16 x 4 ROM

Alternatively, you can implement ROMs using MemGen as shown in
Figure 6-21 and Figure 6-22.

Using MemGen

The following steps illustrate how to use MemGen.

1. Create the memory description file, for example, promdata.mem.

You can use any file name. See Figure 6-21 for a sample memory
description file.

Xilinx Synopsys Interface FPGA User Guide

6-35

Xilinx Synopsys Interface FPGA User Guide

6-36

2. Run MemGen on the memory description file to create the

promdata.xnf file as follows.
memgen promdata

Instantiate the memory submodule into the HDL design, as

shown in Figure 6-22 or Figure 6-23.

The name of the address lines must be called A0 — A3 and the
output data lines O0 — O3. When the design is compiled in the
Design Compiler, the following warning occurs.

Warning: Unable to resolve reference ‘promdata’
in ‘ROM_INT’ (LINK-5)

You can ignore this warning message.

. Save the design to an SEDIF file, for example, rom_memgen.sedif.

. Translate the output file, rom_memgen.sedif, into an XNF file

using Syn2XNF.

The translator, Syn2XNF, automatically merges in the XNF file for
the memory, for example, promdata.xnf. Refer to the “Translating
SEDIF Files to XNF Files Using Syn2XNF” section at the end of
this chapter for more information.

The following figure illustrates a memory description file,
promdata.mem.

XACT Development System

Using the Design Compiler

WIDTH 4
DEPTH 16
DEFAULT 0 ; <== default value here
DATA
2800004,
2H0001#,
2H0010%,
2H0100%,
2810004,
2810004,
2811004,
2810104,
2H10014,
2H10014,
2810104,
2811004,
2H1001#,
2H10014,
2H11014,
2#1111#; <== END of ROM data

Figure 6-21 Memory Description File

Figure 6-22 and Figure 6-23 illustrate instantiating a ROM submodule
using VHDL and Verilog HDL, respectively.

-- Example of Instantiating a MemGen -
-- Created Memory File -
- rom_memndaen, vhd -

entity rom_memgen is
port { ADDR: in BIT_WECTOR (3 downto 03;
DATA: out BIT_WECTOR (3 downto 0)3;
end rom_memgen;

architecture BEHAV of rom_memgen is
component promdata
port (A3, A2,41.A40: in BIT:
03,02,01,00: out BIT):
end component;
hegin
ul: prondata port map (A3=>ADDRCI),AZ=>ADDRC2).A1=>A0DR (1) ,A0=>ADDRCOD,
03=>DATACI) ,02=>DATAL2) , 01=:DATAC1), 00=>DATAC0D;

end BEHAY;

Figure 6-22 Instantiating 16 x 4 ROM Submodule (VHDL)

Xilinx Synopsys Interface FPGA User Guide 6-37

Xilinx Synopsys Interface FPGA User Guide

orom_memgen - Structural Model
Ewample of Using MEMCEN to create a ROM
* HST 3.2
*f BCH) rom_memgen. v 1.2 3,/9/94
"
module rom_memgen (ADDR,
DATAY ;
input [3:0] ADDR ;
output [3:0] DATA ;

promdata ul (L AI(ADDRL3]), .A2CADDR[2]), .A1CADDRI1]), .ADCADDRLO]D,
LO3CDATALR]D, L02(DATALZ]D, O1(DATA[1]), .o0(DATALD]DD)

endmodule

module promdata(az, &2, A1, a0, 03, 02, O1, 00);
input A3, &2, &1, A0

output €3, 02, 01, 00;

endmodule

Figure 6-23 Instantiating 16 x 4 ROM Submodule (Verilog HDL)

Performing Boundary Scan for XC4000 Devices

6-38

The XC4000 FPGA devices contain boundary-scan facilities that are
compatible with IEEE Standard 1149.1. Refer to the XACT User Guide
for a detailed description of the XC4000 boundary scan capabilities.

Xilinx parts support external (/0 and interconnect) testing and have
limited support for internal self-test.

Full access to the built-in boundary-scan logic is always available
between power-up and the start of configuration. During
configuration, you can use the Sample/Preload and Bypass
instructions only. Optionally, the built-in logic is fully available after
configuration if you specified boundary scan in the design.

In a configured FPGA device, the boundary-scan logic might not be
active depending on the configuration data loaded into the part.
Activation of the boundary-scan logic, if desired, is part of the design
process. For HDL designs, you must instantiate the boundary-scan
symbol, BSCAN, and the boundary scan 1/0 pins, TDI, TMS, TCK,
and TDO to access the boundary scan logic after configuration. After
configuration, you cannot activate or deactivate boundary scan
without changing the entire chip configuration.

XACT Development System

Using the Design Compiler

Warning: Do not use these boundary scan commands: Set JTAG
Implementation, Set JTAG Instruction, and Set JTAG Port because
they do not work with FPGA devices.

Figure 6-24 illustrates the BSCAN symbol instantiated into an HDL

design.
Optional N To User
| Logic
IBUF
BSCAN
[TDI DI TDO TDO
T™S ™S DRCK
TCK TCK IDLE |—
To User
From { — Tpo1 SEL1 Logic
Userlogic | —tpoz sEL2
X2675

Figure 6-24 Boundary Scan Symbol

Using the Global Set/Reset Net

XC4000, XC3000, and XC3100 devices have a dedicated Global Set/
Reset (GSR) net that initializes all CLBs and 10Bs. The function of the
Global Set/Reset net is separate from the individual Preset (PRE) and
Direct Clear (CLR) pin.

How you use the GSR net depends on which Xilinx device you use.
Refer to the appropriate subsection.

XC4000 Devices

If the design has a Preset or Direct Clear signal, using the Global Set/
Reset net increases the design’s performance by reducing the overall
routing congestion. You can remove the Preset or Direct Clear signal
from the synthesized design and implement it using the dedicated
Global Set/Reset net.

Startup State

The STARTUP symbol’s Global Set/Reset pin drives the Set/Reset
net and connects to each flip-flop’s Preset and Direct Clear pin. When

Xilinx Synopsys Interface FPGA User Guide 6-39

Xilinx Synopsys Interface FPGA User Guide

6-40

you connect a signal to the STARTUP symbol’s GSR pin, the Global
Set/Reset net is activated.

The Global Set/Reset net does not appear in the pre-placed and pre-
routed XNF file. When the GSR signal is asserted High (the default),
every flip-flop and latch is set to the same state it had at the end of
configuration as illustrated by Table 6-9. For XC3000 devices, all flip-
flops and latches reset to 0 after configuration. When you simulate
the routed design, the gate simulator’s translation program correctly
models the GSR function.

Table 6-9 Initialization State After Configuration (XC4000 Only)

Initializes to O Initializes to 1
FDC OFD_MF FDP OFDI_MF
FDCE OFD_MS FDPE OFDI_MS
IFD OFD_S IFDI OFDI_S
IFD_F OFD_U IFDI_F OFDI_U
IFD_U OFDT IFDI_U OFDTI
ILD_1 OFDT_F IFDI_1 OFDTI_F
ILD_1F OFDT_MF IFDI_1F OFDTI_MF
ILD_1U OFDT_MS IFDI_1U OFDTI_MS
OFD OFDT_S OFDI OFDTIL_S
OFD_F OFDT_U OFDI_F OFDTI_U
OFD_FU

Note: PPR implements inverters in the XC4000 devices without using
additional CLB resources. You can connect any signal to drive the
STARTUP symbol GSR pin.

Preset Versus Direct Clear

You can program each flip-flop and latch to be Preset or Direct Clear
but not both. The flip-flops and latches can be Preset or Direct Clear
upon completion of configuration by asserting the Global Set/Reset
net and the individual Preset (PRE) and Direct Clear (CLR) pins of the
flip-flop or latch. The value of the flip-flop (Preset or Direct Clear) is

XACT Development System

Using the Design Compiler

the same for all cases. The value of the flip-flop is determined by
whether you used the PRE or CLR pin.

If the CLR or PRE pin on a non-1/0 flip-flop cell is tied to an active
signal, the state of that signal controls the startup state of those flip-
flop cells; for example, if you use the PRE pin, the flip-flop starts up
in Preset state. If you do not use the CLR and PRE pin, the default is
to startup in a Clear state.

You can use the Report Cell command to determine the instance
names and the type of flip-flop used as follows.

« FDPE or FDP — Preset upon power-up
. FDCE or FDC — Direct Clear upon power-up

Changing States

If you are not using the Clear pin of a FDCE or FDC cell (grounded),
you can override the initial state by issuing the Set Attribute
command.

set_attribute “ cell” fpga_xilinx_init_state \
—type string "S"

For I0Bs, the default is to start up in a Direct Clear state. You can
instantiate an 170 flip-flop and a latch with an INIT=S parameter to
have the flip-flop start up in a Preset state.

The following illustrates using the Set Attribute command to change
a flip-flop with the cell name of OUTX_reg<0> from a Reset-upon-
powerup to a Set-upon-powerup as follows.

Warning: You can use the following command to change the initial
state only if you are inferring a flip-flop without Clear and Preset
pins. You cannot change the initialization state of instantiated flip-
flops.

set_attribute “OUTX_reg<0>"\
fpga_xilinx_init_state —type string "S"

Refer to the Synopsys documentation on the Design Compiler for
more information.

Xilinx Synopsys Interface FPGA User Guide 6-41

Xilinx Synopsys Interface FPGA User Guide

Increasing Performance with the GSR Net

Many designs have a net that initializes the majority of the design’s
flip-flops. If this signal can initialize all the flip-flops, you can use the
Global Set/Reset net.

To have your HDL simulation match that of the resulting design, you
should modify the HDL code so that every flip-flop and latch is
Preset or Clear when the Global Set/Reset signal is asserted.
However, you must disconnect this signal with the Disconnect Net
command after compiling the design and before saving it.

The Design Compiler cannot infer the usage of the Global Set/Reset
net from the HDL code.

Note: X-BLOX has the ability to use the Global Set/Reset net
automatically if every flip-flop and latch in the design has a common
signal driving the Set Direct or Reset Direct pin, that is, the CLR or
PRE pin. You can run X-BLOX on any XNF, XTG, or XTF file.

Figure 6-25 and Figure 6-26 are examples of a design that can use the
Global Set/Reset net for VHDL and Verilog HDL, respectively. The
design contains two flip-flops. One flip-flop is reset and one is set
when the signal “RST” is High.

Tibrary IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity gsr_ex is
port CLK,RST : in STD_LOGIC;
ST: buffer std_logic_wector (1 downto 02);
end gsr_gx;

architecture EXAMPLE of gsr_ex is

hegin
process (CLk, RST
hegin
if RST= "1° then
ST <= "01";
glsif (CLK event and CLk="1"3 then
ST <= 8T + "01";
end if;
end process;

end EXAMPLE:

Figure 6-25 Before Using the GSR Net (VHDL)

6-42 XACT Development System

Using the Design Compiler

{,’#

* gsr_ex - Behavioral Model

¥C4000 Global Set/Reset Example

H5I w3.2

*f B{HIgSr_ex. v 1.2 8/22/94
#

module gsr_ex CCLK, RST, ST ;
input CLk ;
input RST :
output [1:0] ST ;

req [1:01 ST :

always @(posedge CLK or posedge RST)
hegin
if (RST == 17hb1)
ST = 27b01 ;
else
ST = ST + 17h1 ;
end

endmodule
Figure 6-26 Before Using the GSR Net (Verilog HDL)

To utilize the Global Set/Reset net, create a level of hierarchy that
instantiates the STARTUP symbols and the core design as illustrated
in Figure 6-27 and Figure 6-28 for VHDL and Verilog HDL,
respectively. Use another signal name, such as GSR in the following
design example, and route this signal to the STARTUP symbol’s GSR

pin.

Xilinx Synopsys Interface FPGA User Guide 6-43

Xilinx Synopsys Interface FPGA User Guide

Tihrary IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_Togic_unsigned.all;

entity top_gsr is
port CLK,GSR,RST: in STD_LOGIC;
ST : buffer STO_LOGIC_WECTOR {1 downto 03);
end top_gsr;

architecture EXAMPLE of top_gsr is
camponent STARTUPR
port { GSR: in STD_LOGICY;
end component;

colponent gsr_ex
port CLE,RST: in STO_LOGIC;
ST : buffer STO_LOGIC_VECTOR {1 downto 033;
end component;

hegin

1 : STARTUP port map (GSR=>CSRI;

U2 : gsr_ex port map (CLK=»CLK,RST=*RST,ST=35TJ;
end EXAMPLE;

Figure 6-27 Top_gsr.vhd

* top_gsr - Structural Model

#* Example of using the Global Set/Reset net
H5I w3.2

" @l#itop_gsr.v 1.2 g/4/94

module top_gsr {CLK, GSR, RST, ST) :
input CLE :
input G5R
input RST
output [1:0] ST ;

STARTUP W1 (.GSRCGSRID
gsr_ex U2 (LCLK(CLKD, .RST(RST}, .STCSTI)
endnodule

Figure 6-28 Top_gsr.v

6-44 XACT Development System

Using the Design Compiler

Figure 6-29 and Figure 6-30 contain the procedures for executing the

top_gsr.vhd and top_gsr.v designs, respectively.

‘f* B R T T e L L e e
s% Sample Script for Synopsys fo Hilinx Using

i the Design Compiler

‘f* ==
A i 5 s I A e S
£ Read in the design

I e R S T e

F* set the top-level modules name for the design
TOP = top_gsr
SUB1 = gsr_ex

f* set the Designer and Company name for

documentation.
designer = "SI Tean"
company = "¥iling, Inc"

*f

F* analvze and Elaborate the design file and specify
*f

the desian file format

analyze -format vhdl TOP + "_vhd"
analyze -format vhdl SUB1 + ".vhd"
elaborate TOP
elaborate SUB1

/% Set the current design to the top Tevel
current_design TOP

/% Since the STARTUP block does not have any outputs
that are heng used in this example, use the dont_
touch command so the compiler does not remove the
STARTUP block.

dont_touch "U1"

F# add pads to all ports except RST. Make sure the
current design is the top-level module.
Change the default sTew rate to SLOW (HIGH slew
contrall.

set_port_is_pad {CLK GOSR ST}
set_pad_type -slewrate HIGH all_outputs()
insert_pads
f* B kb ko T L A o R e
A Conpile the design
i e 5 I A S
J/* Set the synthesis design constraints.
remove_constraint -all
F* Synthesize and optimize the design

compile -map_effort med

Xilinx Synopsys Interface FPGA User Guide

*f

*f

*f
*f
*f
*f

*f

6-45

Xilinx Synopsys Interface FPGA User Guide

I e R e e e L)

i Save the design #f
P R P R PR R R T
/% Write the design report file wf

report_area > TOP + "_area"
report_timing » TOP + ".timing"

/% Set the part type wf
set_attribute TOP "part" -type string "4005pca4-5"

/% Remove the RST signal #f
disconnect_net RST -all

f* Write out the design to a DB file #f
write -format db -hierarchy -output TOP + “.dhb"

/% Save design in EDIF format as <design:.sedif *f

write -format edif -hierarchy -output TOP + ".sedif"

f* Ewit the Compiler. *f

exit

Figure 6-29 Top_gsr Script File (VHDL)

6-46 XACT Development System

Using the Design Compiler

x*

f’ncc

====s=======s====s===s==s==ss=s==s=s==s=s==s=s=s==s=s====%/

Sample Script for Synopsys to ¥iling Using #f
the Design Compiler #f

==========s=ss==s=s=fssss=ms=sssoosmsmsossomsmmmsmooesk)

B S e R R)
Read in the design #f

R PR T PR R R T T

Set the top-Tevel modules name for the design wf

TOP = top_gsr

SUB1 = gsr_ax

Set the Designer and Company name for

documentation. wf

designer = "HSI Tean”

company = "Xilinx, Inc"

#nalyze and Elaborate the design file and specify
the design file format *f
analyze -format verilog TOP + ", ¢"

analyze -format verilog SUBT + ".&"

elaborate TOP

glaborate SUB1

Set the current design to the top Tevel #f
current_design TOP

Since the STARTUP block does not have any outputs
that are beng used in this example, use the dont_
touch command so the compiler does not remove the
STARTUP block. w

dont_touch "u1"

#dd pads to all ports except RST. Make sure the
current design is the top-level module.

Change the default slew rate to SLOW CHIGH slew
controll.

set_port_is_pad {CLK G5R 5T}
set_pad_type -slewrate HIGH all_outputs()
insert_pads

B e e R R L

Compile the design w
B Rt R R)
Set the synthesis design constraints. #f

remove_constraint -all
Synthesize and optimize the desiagn *f

compile -map_effort med

Xilinx Synopsys Interface FPGA User Guide

6-47

Xilinx Synopsys Interface FPGA User Guide

6-48

I s e L

s Save the design #
FEE T R R R L R PR L P P P T
/® Write the design report file wf

report_area > TOP + ".area”
report_timing » TOP + ".timing"

/® set the part type wf
set_attribute TOP "part" -type string "4005pca4-5"

/% Remove the RST signal #
disconnect_net RST -all

f* Write out the design to a DB file #
write -format db -hierarchy -output TOP + ".db"

f* Save design in EDIF format as <designr.sedif *f

write -format edif -hierarchy -output TOP + ".sedif"”

f* Ewit the Compiler. *f

exit
Figure 6-30 Top_gsr Script File (Verilog HDL)

Read the top level (top_gsr) and the core design (gsr_ex) into the
Design Compiler. Since the STARTUP block does not use any outputs,
the Design Compiler removes the STARTUP block unless you specify
the Don’t Touch attribute for U1. You must issue this command
before inserting the 1/0 pads.

Before saving the design to an SEDIF file, you must remove the RST
signal from the design using the Disconnect Net command. PPR
removes any unconnected gates from the design.

When the RST net is disconnected from the circuit, the PRE and CLR
pin is no longer used. The flip-flop ST<0> is mapped to an FDPE that
initializes to a Preset state (INIT=S), and the flip-flop ST<1> is
mapped to an FDCE that initializes to a Direct Clear state (INIT=R).

XC3000 and XC3100 Devices

Xilinx XC3000 and XC3100 devices have a dedicated Global Reset
input package pin called RESET. You can find the RESET pin’s
location in The Programmable Logic Data Book. This active Low pin has
three functions as follows.

XACT Development System

Using the Design Compiler

. Prior to the start of configuration, a Low input delays the start of
the configuration process. An internal circuit senses the
application of power and begins a minimal time-out cycle. When
the time-out and RESET are completed, the levels of the mode
pins (MO, M1, and M2) are sampled and configuration begins.

. IfRESET is asserted during a configuration, the FPGA device is
reinitialized and restarts the configuration at the termination of
RESET.

. If RESET is asserted after configuration is complete, it provides a
global asynchronous reset of all IOB and CLB storage elements of
the FPGA device.

When the RESET pin is asserted Low, all flip-flops and 170 latches
are asynchronously reset. To use the Global Reset pin, the design’s
Reset net must be sourced by an input signal and must tolerate
having all flip-flops and 170 latches asynchronously reset when
asserted. To have your HDL simulation match that of the resulting
design, you should modify the HDL code so that every flip-flop and
latch is asynchronously reset when the Reset signal is asserted.

You should keep the Reset signal in the HDL code so that your HDL
simulation results match the placed and routed simulation results.
However, you must disconnect this net using the Disconnect Net
command after compiling but before saving the design.

To implement the Global Reset net, connect the Reset net to the
RESET package pin. The Reset signal does not appear in your design
since it is part of your board layout.

Figure 6-31 and Figure 6-32 illustrate how to implement the Global
Reset package pin in VHDL and Verilog HDL, respectively. This
example contains two flip-flops. When the input signal “RST” is Low,
both flip-flops are asynchronously reset.

Xilinx Synopsys Interface FPGA User Guide 6-49

Xilinx Synopsys Interface FPGA User Guide

Tibrary IEEE:
use TEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGMED.al11;

entity greset is
port C cTk,rst @ din std_logic:
st: buffer std_logic_wector {0 to 1233;
end greset;

architecture example of greset is

begin
process (clk, rst
hegin
if rst= “0° then
=t <= "00";
elsif (clk7event and <1k="1") then
sto<= st o+ "01";
end if;

end process;

end exanple;

Figure 6-31 Implementing Global Reset Pin (VHDL)

f:@c

greset - Behawvioral Model

Fwample of Design with a global reset
* ST w32

#* B{HIgreset.v 1.2 8/4/94

Ed

module greset(CLK, RST, ST) ;
input CLE
input RST
output [1:0] ST ;
reg [1:01 5T ;
always @({posedge CLK or negedge RST)
hegin
if (RST == 17b0)
ST = 27b00 ;
else
ST = ST + 17k1 ;
and

endmnodule

Figure 6-32 Implementing Global Reset Pin (Verilog HDL)

Figure 6-33 and Figure 6-34 are script files that contain the procedures
for executing the greset.vhd and greset.v designs, respectively.

6-50 XACT Development System

Using the Design Compiler

get_license {Designware-Basic}

f(ak
/:oc
‘f*

‘f*

’(*

‘f*

‘f*

==========s=ss==ss=sosmsossmsmsmossoosssssomsommsmsoosok

Sanple Script for Synopsys to ¥iling Using w
the Design Compiler *f

==========s========ss=s==sssssssssssssssssssssssss#

R
Read in the design w

S

Set the top-Tevel modules name for the desiagn #

TOP = greset

Set the Designer and Company name for

documentation. *f

designer = "#51 Team"

company = "#ilinx, Inc"

fAnalvze and Elaborate the design file and specify
the design file format w [

analyze -format whdl TOP + "_vhd"
elaborate TOP

Set the current design to the top Tewel #
current_design TOP

Aadd pads to the design. Make sure the current

design is the top-Tevel module.

Insert pads on all ports except “rst”.

set_port_is_pad fclk, st}
insert_pads

R

Compile the design w
R R)
Set the svnthesis design constraints. #

remove_constraint -all

Synthesize and optimize the design *f

compile -map_effort med

Xilinx Synopsys Interface FPGA User Guide

#

6-51

Xilinx Synopsys Interface FPGA User Guide

i i Bt I S e e L

i Save the design *f

B T R L P P L L

/® Disconnect the RST signal wf
disconnect_net rst -all

S Write the design report file #

report_area > TOP + ".area”
report_timing » TOP + ".timing"

/* Set the part type wf
set_attribute TOP "part" -type string "3020apc84-6"

f* Write out the design to a DB file #
write -format db -hierarchy -output TOP + ".db"

f* Save design in EDIF format as <designr.sedif *f

write -format edif -hierarchy -output TOP + ".sedif"”

f* Ewit the Compiler. *f

exit

Figure 6-33 Global Reset Pin Script File (VHDL)

6-52 XACT Development System

Using the Design Compiler

,s\k
‘f*
‘f*

‘f*

======s====s==c=ss==sss==s=s==ssssssss=ssssssssssshf

Sample Script for Synopsys to Xilink Using *f
the Design Compiler w [

==========s===s====Ssssssss=sssssssssssssssssssssss#

B)
Read in the desian *f

B kb ko T L A o R e *f

Set the top-Tevel modules name for the design wf

TOP = greset

Set the Designer and Company name for

documentation. wf

designer = "SI Tean"

company = "¥iling, Inc"

Analyze and Elaborate the design file and specify
the desian file format #

analyze -format verilog TOP + ".w
elaborate TOP

Set the current desian to the top level wf
current_design TOP

Add pads to the design. Make sure the current

design 15 the top-Tevel module.

Insert pads on all ports except “rst’. w

set_port_is_pad £CLK, ST}
insert_pads

B)
Conpile the design *f
B TR T P PP

Set the synthesis design constraints. wf

remove_constraint -all

Synthesize and optimize the design wf

compile -map_effort med

Xilinx Synopsys Interface FPGA User Guide

6-53

Xilinx Synopsys Interface FPGA User Guide

B T R R R e

i Save the design wy

A e et S b & SRR e)

/* Disconnect the RST signal #
disconnect_net RST -all

f* write the design report file i

report_area > TOP + ".area”
report_timing > TOP + ".timing"

#* Set the part type *f
set_attribute TOP "part" -tvpe string "3020apcd4-6"

J* Write out the design to a DB file wy
write -format db -hierarchy -output TOP + ".dh"

/* Save design in EDIF format as <design».sedif w

write -format edif -hierarchy -output TOP + ", sedif"”

/* Exit the Compiler. w

gxit

Figure 6-34 Global Reset Pin Script File (Verilog HDL)

Using the X-BLOX DesignWare Library

6-54

The XC4000 family DesignWare library describes adders, subtracters,
comparators, incrementers, and decrementers that map to X-BLOX
modules. Refer to “Getting Started” at the beginning of this user
guide to ensure that you have X-BLOX installed on your system.

Warning: You can only use the X-BLOX DesignWare library with the
version of the Synopsys compiler for which it was analyzed. See your
system administrator or refer to the release notes for more
information.

HDL Operators Using X-BLOX Modules

For XC4000 designs using the VHDL or Verilog arithmetic operators,
Xilinx highly recommends that you use X-BLOX to take advantage of
the X-BLOX DesignWare library. This DesignWare library contains
the arithmetic functions that utilize the XC4000 dedicated carry logic
to improve both the area and speed of the design.

XACT Development System

Using the Design Compiler

The following is a list of the VHDL and Verilog arithmetic operators
and the X-BLOX modaules to which they map.

Table 6-10 Arithmetic Operators for X-BLOX Modules

Operators X-BLOX Module
+ ADD_SUB
- ADD_SUB
<, <=, >, >= COMPARE
+1 INC_DEC
-1 INC_DEC

X-BLOX is run on the output from the Synopsys-to-Xilinx translator,
Syn2XNF. X-BLOX translates these modules into XNF primitives and
performs the necessary optimization and implementation.

The X-BLOX DesignWare library contains twos complement and
unsigned binary modules of width 6, 8, 10, 12, 14, 16, 20, 24, 28, 32,
and 48. Sixty-four-bits are available for the COMPARE module only.
For operands falling between bit ranges, Synopsys maps them to the
next higher bit-width module. X-BLOX removes any unused logic if
implementing a smaller bit width. X-BLOX removes any unused
logic if adding, subtracting, or comparing with a constant value.

Improving the Timing of X-BLOX Modules

The X-BLOX DesignWare modules contain path timing. The timing of
the module depends on how many columns the module uses: the
larger the device, the more CLBs per column. The fastest implemen-
tation of an X-BLOX module is implemented in the fewest columns.
Table 6-11 shows the maximum bits that can be implemented in one
column per device size.

To improve the timing of the X-BLOX module, choose a device type
that requires the fewest columns. For example, if you wanted the
fastest implementation of a 33-bit twos complement adder (without
carry out), you should select a XC4008 or larger part type. Since the
XC4008 can implement a 34-bit twos complement adder in one
column, using a XC4008 or larger device gives you the fastest

Xilinx Synopsys Interface FPGA User Guide 6-55

Xilinx Synopsys Interface FPGA User Guide

implementation since the adder does not have to wrap into the next

column.

In Table 6-11, replace _# with the number of bits, for example,
add_sub_co_two_comp_14.

Table 6-11 Maximum Size of X-BLOX Module Before Wrapping

Device Type 4002 | 4003 | 4005 |4006 | 4008 |4010 | 4013
CLB Array Size 8x8 |10x10 [12x12 [16x16 [(18x18 20x20 24x24
Add_Sub
Twos Complement 14 18 22 30 34 38 46
add_sub_two_comp_#
Unsigned Binary 14 18 22 30 34 38 46
add_sub_ubin_#
Compare

Greater Than or Equal To, 11 14 21 28 30 34 38
Twos Complement
comp_ge_two_comp_#
Greater Than or Equal To, 13 17 21 29 33 37 45
Unsigned Binary
comp_ge_ubin_#
Greater Than, Twos 11 14 21 28 30 34 38
Complement
comp_gt two_comp_#
Greater Than, Unsigned 13 17 21 29 33 37 45
Binary
comp_gt_ubin_#
Less Than or Equal To, 11 14 21 28 30 34 38
Twos Complement
comp_le two_comp_#
Less Than or Equal To, 13 17 21 29 33 37 45
Unsigned Binary
comp_le_ubin_#

6-56

XACT Development System

Using the Design Compiler

Device Type 4002 | 4003 | 4005 |4006 | 4008 |4010 | 4013
CLB Array Size 8x8 |10x10 [12x12 [16x16 [(18x18 20x20 24x24
Compare (Cont'd)
Less Than, Twos 1 14 21 28 30 34 38
Complement
comp_It two_comp_#
Less Than, Unsigned Binary | 13 17 21 29 33 37 45
comp_It_ubin_#
Not Equal, Twos 32 38 48 64 N/A | N/A | N/A
Complement
comp_ne_two_comp_#
Not Equal, Unsigned Binary | 32 38 48 64 N/A | N/A | N/A
comp_ne_ubin_#
Inc_Dec

Twos Complement 16 20 24 32 36 38 46
inc_dec_two_comp_#
Unsigned Binary 16 20 24 32 36 38 46
inc_dec_ubin_#

Compiling the Design

Once you insert the 1/0 pads, you can optimize the design for area
and/or speed. To get the most effective results from the Design
Compiler, the constraints applied must be accurate and achievable.
For example, if you set a timing goal of 0 ns on all ports, the Design
Compiler attempts to meet this goal by duplicating logic to reduce
critical paths, which can result in a significant and possibly
unwarranted increase in CLB usage.

This following sections describe the commands you use to compile
and optimize your HDL design using the Synopsys Compile
command. Refer to the Synopsys documentation for more
information on the Compile command.

Xilinx Synopsys Interface FPGA User Guide 6-57

Xilinx Synopsys Interface FPGA User Guide

Compiling a Design That Contains Feedthroughs

You must set the Compile Fix Mulltiple Port Nets command to True
before you compile to prevent PPR from deleting logic if the design
contains feedthroughs, or if the same net is connected to more than
one port as follows.

compile_fix_multiple_port_nets = true

Compiling XC3000 and XC4000 Designs

Figure 6-35 illustrates a script file that demonstrates how to compile
an XC3000 design.

6-58 XACT Development System

Using the Design Compiler

f*

f*

========sss=sss==s=s==ss==ssss=ssss=ssssssssssssssss#)
Sanple Script for Synopsys to ¥ilinx Using *y
the Design Compiler #
==*f
Define the set-up variables either in the script =/
or in the .synopsys_dc.setup file # [

Set the search path in your script or in your #
Lsyhopsys_dc.setup file *y
Replace <DS401-%ACT-Dir: with the directory w
path where the DS-401 was installed and replace */

$SYNOPSYS with the Synopsys installation directory®f
search_path = £. %
<DS401-K¥ACT-Dir>/synopsyss1ibrariesssyn
FSYNOPSYS/Tibrariesssyn} w f
Set the link, target and synthetic Tibrary variahble
gither in the script or in the .synopsys_dc.setup
Use synlibs to determine the Tink and target
libraries *f

Tink_library = {=zprim_3020a-6.db xprim_3000a-6.db *
®gen_3000.db =dc_3000a-6.db}

target_library = fxprim_3020a-6.db #prim_3000a-6.db %
®gen_3000.db wdec_3000a-6.db3

symbol_Tibrary = xc3000.:sdb
define_design_1ib WORK -path . /WORK

B R A S

Read in the design #
B A e S
Set the top-Tevel modules name for the design # [

TOP = <design_name:

Set the Designer and Company name for

documentation. *f
designer = "#5I Team"
company = "¥ilinx, Inc"

analyze and Elaborate the design file and specify
the design file format *

analyze -format vhdl TOP + " whd"
glaborate TOP

Set the current design to the top level # [
current_design TOP

add pads to the design. Make sure the current
design is the top-Tevel module. wf

set_port_is_pad "*"
insert_pads

Xilinx Synopsys Interface FPGA User Guide

6-59

Xilinx Synopsys Interface FPGA User Guide

G T R R R R R R P TR PR T T T

j Canpile the design #
G T R R R R R P T TR R T T
/# set the synthesis design constraints. # [

renove_constraint -all

J# If setting timing constraints, do it here.

Far example: *
f*

create_clock <clock_pad_name: -period 50
*f
J/* Synthesize and optimize the design *

conpile -map_effort med

G T R R R R R R P TR PR T T T

j Save the design #
G T R R R R P R R P T T
J* Write the design report file # [

report_area > TGP + ".area"
report_timing » TOP + "_timing"

Jf* Set the part type *
seft_attribute TOP "part" -type string "3020apc8d-g"

J* Write out the design to a DB file *
write -format db -hierarchy -output TOP + ".db"

J* Save design in EDIF format as <designr.sedif *
write -format edif -hierarchy -output TOP + "_sedif”

T T]

£ Implement the Design #

A T R N R R R R P P TR R N T T)

/% Run =make to process the design through the HACT #f

JS* tools. wof
f*
sh wmake TOP
*f
f* Exit the Compiler. *
exit

Figure 6-35 Sample Script File for Compiling XC3000 Design

6-60 XACT Development System

Using the Design Compiler

Compiling a XC4000H Design

Figure 6-36 and Figure 6-37 illustrate a script file that demonstrates
how to compile an XC4000H design for VHDL and Verilog HDL,
respectively.

The design is compiled before the pads are inserted to avoid pulling
the flip-flops into the IOB. When compiling an XC4000H design, you
must specify the input and output voltage levels. Refer to the
“XC4000H 10Bs” section for more information.

Xilinx Synopsys Interface FPGA User Guide 6-61

Xilinx Synopsys Interface FPGA User Guide

S —
£ Sample Script for Synopsys to Xilinw Using w [
P the Design Compiler wi
/% ===s=s===ss=s=ss==s====s=ss====s==sss=s==sss=ssss=ssssd)
f* B kb ko T L A o R e *f
A Read in the design w [
e t R R S
/% Set the top-Tevel modules name for the design w

TOP = three_gx2

F# Set the Designer and Company name for

documentation. wf
designer = "SI Tean"
company = "¥ilingz, Inc"

/% f@nalyze and Elaborate the design file and specify
the design file format *j

analyze -format vhdl TOP + "_vhd"
elaborate TOP

/% Set the current design to the top Tevel *f
current_design TOP

A e e

i Compile the design *f
B L T R L e
/* Set the synthesis design constraints. wf

remove_constraint -all
£ synthesize and optimize the design w [
compile -map_effort med

A% #dd the pads to the design. Make sure the current
design is the top-Tevel module. Change the default
slewrate to CAP (HIGH slew controll.

The pads are inserted &FTER the design is compiled
for KC4000H devices to prevent the registers from
being implemented in the IO0Bs. *f

set_port_is_pad "#"
set_pad_type -slewrate HIGH all_outputs()

/% FOR CMOS levels: *f
set_pad_tvpe -vih 3.33 -vil 1.09 all_inputs()
/% FOR TTL levels: S

set_pad_type -voh 2.4 -vil 0.5 all_outputs()

insert_pads

6-62 XACT Development System

Using the Design Compiler

f*

fhk

f*

f*

Figure 6-36 Sample Script File for Compiling XC4000H Designs

B R L e L e

Save the design w
B B e
Write the design report file w

report_area > TOP + ".area"
report_timing > TOP + ".timing"

Set the part type w
set_attribute TOP "part™ -type string "400Shpg240-5"
Write out the design to a DB file i
write -format db -hierarchy -output TOP + ".dh"

Save design in EDIF format as <design:.sedif i

write -format edif -hierarchy -output TOP + ".sedif"

Exit the Compiler. w

exit

(VHDL)

Xilinx Synopsys Interface FPGA User Guide

6-63

Xilinx Synopsys Interface FPGA User Guide

/% =============================s=sss=sssssssssssssssk
/% Sample Script for Synopsys fo Xilinx Using *f
Fad the Design Compiler w [
/% ==z%/]
A e e
i Read in the design *f
I L TR L e T
f* Set the top-level modules name for the design wf

TOP = three_ex2

f* set the Designer and Company name for
documentation. wf

designer = "SI Tean"
company = "¥iling, Inc"

F* analvze and Elaborate the design file and specify
the desiagn file format i

analyze -format verilog TOP + ".w
elaborate TOP

/% set the current design to the top Tevel wf
current_design TOP

FAE T R R L PR R R P P P T T

Fas Compile the design wf
R e e)
/% Set the synthesis design constraints. *f

remove_constraint -all

/% Synthesize and optimize the design w
compile -map_effort med

F#* ddd the pads to the design. Make sure the current
design is the top-Tevel module. Change the default
slewrate to C8P (HIGH slew controll.
The pads are inserted AFTER the design is compiled
for ¥C4000H devices to prevent the registers from
being implemented in the IO0Bs. wf

set_port_is_pad "*"
set_pad_tvpe -slewrate HIGH all_outputs()

/% FOR CMOS levels: S
set_pad_type -wih 3.33 -wil 1.05 all_inputs()

£ FOR TTL Tevels: i
set_pad_tvpe -voh 2.4 -vil 0.5 all_outputs()

insert_pads

6-64 XACT Development System

Using the Design Compiler

AT T T R R L R R P TS Y

j Save the design

#f

I B A S)

/* Write the design report file

report_area > TOP + "_area"
report_timing »> TOP + ".timing"

#/* Set the part type

*/

*/

set_attribute TOP "part" -type string "4005hpg240-5"

J* Write out the design to a DB file

write -format db -hierarchy -output TOP + ".dh"

/* Save design in EDIF format as <design».sedif

w7

#

write -format edif -hierarchy -output TOP + ", sedif"”

/* Exit the Compiler.

gxit

Figure 6-37 Sample Script File for Compiling XC4000H Designs

(Verilog HDL)

Creating the Area Report

#

The Design Compiler reports area with the Report Area command.

report_area

The Design Compiler reports area in three parts: combinatorial, non-
combinatorial, and total. Synopsys reports the area as the number of

CLBs used.

Each XC4000 CLB contains two 4-input function generators, one
3-input function generator, and two flip-flops. Each XC3000 and

XC3100 CLB contains one 5-input function generator and two flip-
flops. You can also configure the 5-input function generator as two
4-input function generators whose input pins are shared between the

two function generators.

The reported combinatorial area is the maximum number of function

generators required. The reported non-combinatorial area is the

maximum number of flip-flops required. The total area reported is

the sum of the combinatorial and non-combinatorial area. The

number of CLBs required is usually less than the total area reported

Xilinx Synopsys Interface FPGA User Guide

6-65

Xilinx Synopsys Interface FPGA User Guide

because function generators and flip-flops can often share the same
CLB:s.

Generally, for the Xilinx mapped libraries, the minimum number of
CLBs required is the larger of the combinatorial and non-
combinatorial areas reported. The maximum number of CLBs
required is the total area reported.

When running Syn2XNF, you can choose to map the combinatorial
logic into function generators or leave the design unmapped, which
allows the Xilinx placement and routing tools to perform the
mapping as follows.

. Selecting the mapped option (-map) in Syn2XNF forces the
combinatorial logic combinations to be retained, which makes the
area report more accurate.

« Using the unmapped option in Syn2XNF, which is the default,
allows PPR or APR to determine the mapping. This method is
preferred because PPR and APR provide the most efficient
mapping, placement, and routing for each design/device
combination. Only PPR or APR can compute accurately the
number of CLBs actually required.

Refer to the XACT Reference Guide, Volume 2 for more information on
PPR or APR.

Evaluating Timing Delays

6-66

The Synopsys tools report all delays in nanoseconds. The delays
reported are pre-placement and routing estimates. You can obtain
accurate timing only after running PPR. You can use either average or
worst-case wire-load models. The Design Compiler cannot determine
the actual wire-load delays until after the design is placed and routed.

To evaluate the timing results, use the Report Timing command as
follows.

report_timing

Refer to the online Synopsys Command Reference Manual for informa-
tion on other report options.

In most cases, flip-flops and combinatorial logic are combined into
one CLB. In these cases, the Design Compiler adds an extra wire-load
delay that you must delete manually from the delay path, as

XACT Development System

Using the Design Compiler

illustrated by Figure 6-38. For an approximate estimate of the wire
load, you can subtract the block delay from the path delay.

In some cases, multiple primitive functions may be combined into a
single CLB, which causes the post-fanout timing results to be one or
more block delays faster than the timing reported by the Design
Compiler.

Extra Wire Load Delay

CLB

DioFDQi

C

AND4

X4893

Figure 6-38 Combinatorial Logic Mapped with a Flip-Flop

Writing and Saving the Design

Once the designh meets your timing and area requirements, you can
save the design as a DB file, set the design part type, and save the file
as an SEDIF file.

Before saving the design, set the appropriate variables to define the
170 pad locations, slew rates, and so on. Refer to the “Configuring
the I0Bs” section at the beginning of this chapter for more
information.

Saving the DB File

To save the DB file, you can choose one of the following methods.
. Enter the following from the Design Analyzer menu.

File 0O Save As

File name: design_name.db
File Format: db

Save all Designs in Hierarchy: on
OK

Xilinx Synopsys Interface FPGA User Guide 6-67

Xilinx Synopsys Interface FPGA User Guide

. Type the following at the command line. (Make sure the top level
of the design is selected.)

write —format db —hierarchy —output design_name.db

Setting the Design Part Type

Enter the Set Attribute command at the command line to select a
specific part for the design. The following example uses a 4005pc84-5

device.

set_attribute design "part" —type string

"4005pc84-5"
Note: You can also specify the part type when running Syn2XNF or
XMake.

Saving the SEDIF File

After compiling the design, save the design file as an SEDIF file, so
you can translate it to an XNF format for use with the Xilinx tools.

You can save the design as an SEDIF file by either of the following
methods.

« Select the design and then select the following from the Design
Analyzer menu.

File 0O Save As

File name: design_name.sedif
File Format: edif

Save all Designs in Hierarchy: on
OK

. Enter the following at the command line. (Make sure the top level
of the design is selected.)

write —format edif —hierarchy —output \
design_name.sedif

Translating SEDIF Files to XNF Files Using Syn2XNF

The Syn2XNF translator takes a Synopsys SEDIF file written by the
Design Compiler and translates it to an XNF file.

6-68 XACT Development System

Using the Design Compiler

How you run Syn2XNF is determined by your system configuration.
Refer to the “Design Compiler Design Flow”section at the beginning
of this chapter.

Syntax
To use Syn2XNF, enter the following on the command line.
syn2xnf [options] [design.sxnf.| design.sedif.|
design.xnf]

Specifying the file name extension is optional. By default Syn2XNF
searches for a design file with an .sxnf or .sedif extension. If both
exist, Syn2XNF uses the file with the latest time stamp.

You can run Syn2XNF from the UNIX prompt or from the Command
window by using the shell command as follows.

sh syn2xnf design

In addition, you can run Syn2XNF automatically from XMake;
however, you must have the XACT Development System installed on
the same network as the XSI software. Refer to the “Before You
Begin” section at the beginning of this chapter for more information.

Input Files
Syn2XNF accepts the following file types as input.

design.sxnf This file is the synthesized design generated by the
Synopsys synthesis tools.

design.xnf This file represents the flattened, synthesized design
in Xilinx Netlist Format.

design.sedif This file is the synthesized design generated by the
Synopsys synthesis tools using the EDIF syntax.

Syn2XNF is not case sensitive — you can enter the file name
extension in upper- or lower-case letters. However, Xilinx
recommends indicating the file name extension to distinguish the
Design Compiler output from the Syn2XNF output.

Xilinx Synopsys Interface FPGA User Guide 6-69

Xilinx Synopsys Interface FPGA User Guide

6-70

Output Files

Syn2XNF creates three output files as follows.

design.xnf This file represents the flattened, synthesized design
in Xilinx Netlist Format.

design.xff This file represents the flattened, synthesized design
in Xilinx Netlist Format.

syn2xnf.log This file contains error and warning messages that
are also displayed onscreen.

Options

This section describes the Syn2XNF options. You can abbreviate all
options using the first letter of the option; for example, you can
indicate —parttype as —p.

—dir

The —dir option causes Syn2XNF to search directory_name for data
files as well as the DS401_dir/data/synopsys directories and the
current working directory.

syn2xnf—d directory_name

—force

The —force option forces Syn2XNF to overwrite an XNF file if one
already exists.

syn2xnf —f

—help

The —help option displays onscreen the Syn2XNF help text.
syn2xnf —help

-

The -1 option lists onscreen all valid part types.

syn2xnf —|

XACT Development System

Using the Design Compiler

—map

The —map option causes the Boolean functions, for example, fxx cells,
from the xdc_family—speedgrade.db libraries to be mapped into
function generators, allowing the number of cells reported in the
Design Compiler to be more accurate.

syn2xnf —map design
If you do not specify this option, the Boolean functions are
unmapped, which allows PPR or APR to map the design.
—out
The —out option specifies the output file name.

syn2xnf -0 new_name design

By default Syn2XNF creates an XNF and XFF file with the same name
as the input design file name. If you use this option, as illustrated by
the following example, Syn2XNF reads the file design and outputs
newdesign.xff and newdesign.xnf.

syn2xnf —o newdesign design

—parttype
The —parttype option specifies the Xilinx part and speed grade.
syn2xnf —p part—speedgrade design

If you specify no part type, Syn2XNF reads the part type from the
SEDIF file. If no part type is specified in the SEDIF file, Syn2XNF uses
the default part type, 4003APC84.

The following example illustrates how to specify the part type for an
XC4005-5 device.

syn2xnf —p 4005apc84-5 design
To ensure that the XACT tools process your design properly, specify a
part and speed grade.
—sub
The —sub option saves a hierarchical design as a separate XNF file.

syn2xnf —sub design

Xilinx Synopsys Interface FPGA User Guide 6-71

Xilinx Synopsys Interface FPGA User Guide

You must use this option on all subdesign SEDIF files, which causes
Syn2XNF to create XNF files without I/0 pads (EXT records) for each
subdesign.

Running Syn2XNF on the top level automatically merges the
submodule XNF files. The XSI tools do not have to create the
submodaules; for example, XNF files from MemGen can be merged in.
You can merge any valid XNF file into the design. The XNF file must
have the same name and 1/0s as the “black box” or “instantiated
component” that represents it in the Synopsys tools.

Using the XACT Development System

To translate the design to LCA and BIT files so the XACT tools can
program the FPGA device, use the XMake program.

How you run XMake differs slightly depending on your system
configuration. If the XACT Development System is installed on the
same network as the Xilinx Synopsys Interface, XMake runs
Syn2XNF. If XSl is installed on a machine that cannot access the
XACT Development System, run Syn2XNF on the machine with the
XSl software and copy the appropriate design files to the machine
with the XACT Development System. Refer to the“Design Compiler
Design Flow” chapter at the beginning of this user guide for more
information.

XMake automatically translates the X-BLOX modules into gates by
running X-BLOX, and maps, places, and routes the design using PPR.

If XSI Is on Same Platform as XACT Software

If XSl is installed on the same platform as the XACT software, invoke
XMake.

xmake design
XMake runs Syn2XNF and the XACT software tools.

If XSI Is on Different Platform Than XACT Software

If XSl is installed on a different platform than the XACT software, do
the following to run the XACT tools.

6-72 XACT Development System

Using the Design Compiler

1. Copy hoth the XNF and XFF files to the platform where the XACT
tools reside.

Note: Use the Copy command with the —p option to preserve the
files’ time stamp.

2. Run XMake with the following option.
xmake —x design

The —x option causes XMake to search for an XNF file and any other
files not already merged. (XMake reruns the XNFMerge program.)

For more information on XMake or any of the programs it invokes,
refer to the XACT Reference Guide.

Xilinx Synopsys Interface FPGA User Guide 6-73

Xilinx Synopsys Interface FPGA User Guide

6-74 XACT Development System

Xilinx

Synopsys

Interface

FPGA Usel’ Simulating Your
Guide FPGA Design

Xilinx Synopsys Interface FPGA User Guide — December, 1994 (0401291 01) Printed in U.S.A.

Xilinx Synopsys Interface FPGA User Guide

XACT Development System

Chapter 7

Simulating Your FPGA Design

XSI supports both functional and timing simulation. This chapter
shows you how to prepare XC3000 and XC4000 FPGA designs for
simulation and how to use a test bench.

Recommended FPGA Simulation Strategy

Because of the flexibility of the simulation environment, you can
verify your design using various methods. The following steps,
which are explained in subsequent sections, show you one
recommended flow for FPGA simulation.

Edit your .synopsys_vss.setup file — Before you can begin
simulation, you must edit your simulation setup file.

Check the source file — If you use the same test bench file for both
functional and timing simulation, you need library definitions for
the appropriate Xilinx FTGS models in your original top-level
VHDL source file.

Specify the initial states of your registers — If you use attributes to
control the initial states of the registers in the actual design
implementation, you must also specify those initial states in your
source design file for functional simulation.

Create a test bench file — By following the guidelines described in
this section, you can use the same test bench for both functional
and timing simulation.

Perform functional simulation — This step allows you to debug
the logic in your source design before implementing an FPGA.

Implement the design in an FPGA — This step provides the
necessary physical resource information necessary for timing
simulation.

Xilinx Synopsys Interface FPGA User Guide — December, 1994 (0401291 01) 7-1

Xilinx Synopsys Interface FPGA User Guide

« Prepare the timing model — The XNF2VSS program prepares the
timing model of your design for simulation and provides a static
timing report.

« Perform timing simulation — By reusing the functional
simulation test bench file, you can easily compare results and
prevent errors caused by accidental differences between separate
test bench files.

Editing the VSS Setup File

7-2

To properly analyze and simulate Xilinx XC3000 and XC4000 designs
using VSS, you must edit your Synopsys VSS setup file,
.Synopsys_vss.setup.

You can either use the standard VSS setup file that is included with
the Synopsys software, or you can create one for yourself. In either
case, the following items must be included.

« Timebase and resolution factors — You must set the simulator
timebase to nanoseconds and the timebase resolution to 0.1 ns.
Use the following two commands.

TIMEBASE = NS
TIME_RES_FACTOR =0.1

« Hazard messages — Because FPGAs contain signal paths with
varying delays, outputs may switch through several states before
settling. To avoid generating hazard warnings on each short
output transition, turn hazard messages off with the following
command. The system still reports setup, hold, and pulse-width
violations.

NO_HAZARD_MESG = TRUE

« Library paths to FTGS models — For VSS to find the Xilinx FTGS
models, create the following library path definitions.

XC4000 : $DS401/synopsys/libraries/vss/lib/xc4000
XC3000 : $DS401/synopsys/libraries/vss/lib/xc3000
XC7000 : $DS401/synopsys/libraries/dw/lib/epld

« Work library definition — You must select a working library for
the VHDL analyzer (vhdlan). The standard Synopsys VSS setup
file maps the WORK library to the current directory. In the Xilinx

XACT Development System

Simulating Your FPGA Design

tutorial example design, count8, the WORK library is mapped to
the subdirectory ./WORK.

Check Your Source File

If you use the same test bench file for both functional and timing
simulation, you need library definitions for the appropriate Xilinx
FTGS models in your original top-level VHDL source file. For
example, for a XC4000 design, you would use the following.

library XC4000;
use XC4000.components.all;

These statements allow the VHDL analyzer to link the timing
architecture you produce later to your original entity definition. If
these definitions are not included, the system generates several error
messages, including those regarding unbound components.

Controlling Initial States of Registers

This section shows you how to declare the initial states of registers in
your design for simulation. If your design does not depend on the
initial states of any registers, you can skip this section and go to the
“Creating a Test Bench File” section.

The initial state attributes specified in DC Shell during compilation or
the default initial states specified for each registered cell in the Xilinx
component library determines the registers’ actual initial states.

The timing simulation model produced by the Xilinx software reflects
the actual register initial states that are implemented in the device,
regardless of whether they are explicitly specified or automatically
assigned by the XACT software.

Simulating Global Set/Reset

Xilinx FPGAs have a Global Set/Reset (GSR) function that initializes
the device registers either when power is applied or when the GSR
input pin is pulsed; however, the GSR Reset signal is not available to
connect to any other logic in the device. You must pulse the GSR
Reset signal at the beginning of timing simulation for proper register
initialization.

Xilinx Synopsys Interface FPGA User Guide 7-3

Xilinx Synopsys Interface FPGA User Guide

The following sections show you how to simulate the GSR function
for both functional and timing simulation.

Preparing for Timing Simulation

When you generate your timing simulation model, XNF2VSS
automatically creates a new input port named GSR. When
simulating, you must first pulse GSR High prior to exercising the
logic to get all the registers into their initial states. If you use a test
bench to simulate your design, include the GSR signal as one of the
input ports of the FPGA in the test bench as described in the
“Creating a Test Bench File” section.

You can use the GSR signal for timing simulation only; you cannot
use it for functional simulation or in your design. However, if you
include it in your functional simulation test bench, you can use that
test bench later for timing simulation without modification.

If you are using the same test bench file for both functional and
timing simulation, you must include the GSR port declaration in your
source design file as follows.

port (... GSR : in std_logic ...);

Because the GSR signal is not used anywhere else in your design, you
receive warning messages about the unconnected GSR port during
the Compile and Insert Pads operations, which do not cause any
problems during synthesis. The XACT software ignores the
unconnected GSR port during implementation.

See the source file listing in Figure 7-1 for an example of how the GSR
input port is declared in a VHDL design.

7-4 XACT Development System

Simulating Your FPGA Design

Library IEEE:

use IEEE.STD_LOGIC_1164.al11;

use IEEE.STD_LOGIC_UMSIGMED.all:
Tibrary XC4000;

use ¥C4000. components.all;

entity count® is
port (GSR : in std_logic:
CLOCK, CLEAR, EMNABLE: in std_logic;
COUT: out std_Togic_vectar {7 downto 03 J;
end counts;

architecture BEHAVIORAL of countd is
Eigna] QOUT: std_Togic_vector (7 downto 03 := "00000000";
egin
process (CLEAR, CLOCK, ENABLE}
beqin
if (CLEAR = "17) then
QOUT <= "00000000";
elsif (CLOCK event and CLOCK="1") then
if (EMABLE = “1°) then
QOUT <= QOUT + "00000001";
end if;
end if;
end process;
COUT <= QOUT;
end BEHAVIORAL;

configuration conf_cntd of countd s
for BEHAVIORAL

end for;

end conf_cnts;

Figure 7-1 Count8 Example VHDL Source File

Preparing for Functional Simulation

Simulate register initialization (GSR) by defining the initial values for
registered signals in your source design file. Use signal declarations
such as the following.

port signal_name: port_direction signal_type := initial_value;
signal signal_name: signal_type := initial_value;
variable signal_name: signal_type := initial_value;

For example, you could enter the following.

port Nreg5 out std_logic :='0";
signal Qreg6: std_logic :='0";
variable Qreg: std_logic_vector := "00000001";

Use these initial values for functional simulation only, not during
synthesis. The synthesizer sends a warning that these values are

Xilinx Synopsys Interface FPGA User Guide 7-5

Xilinx Synopsys Interface FPGA User Guide

being ignored. Also, the XACT software does not use these initial
values for device implementation.

Note: You should assign initial states for simulation based on your
behavioral coding. The synthesis tools select either Preset or Reset
flip-flops based on your behavioral code, not on the initial state
definitions. See the “Using the FPGA Compiler” or “Using the Design
Compiler” chapter for detailed information on Preset and Direct
Clear.

Creating a Test Bench File

This section shows you how to create a test bench file that you can
use for both functional and timing simulation. The example test
bench consists of a VHDL file containing one instance of an FPGA
design being tested and a procedure that applies simulation input
waveforms to the FPGA.

Initializing Registers

For functional simulation, all registers are initialized before the first
simulation cycle (at time zero) by the initial values declared in your
source design file.

For timing simulation in the test bench, include the GSR input portin
the FPGA component declaration and in its instance port map as
shown in Figure 7-2. At the beginning of the simulation sequence,
applying an active-High pulse to GSR initializes the registers. The
VSS simulator ignores the pulse during functional simulation because
the GSR signal is not used anywhere in the source design.

7-6 XACT Development System

Simulating Your FPGA Design

-- YHDL Model Created from count®.xnf -- Mon May 9 15:59:34 1394

Tibrary IEEE;
Tihrary Synopsys;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_misc.all;
use IEEE.std_logic_arith.all;
use TEEE.std_Togic_components.all;
use syhopsys.attributes.all;
use STD.Textio.all;

entity countd_tb is
ghd countd_th;

architecture TEST of counta_th is

component countd
Parti

G5R 1 in std_logic;

CLOCKE, : dn std_logic;

CLEAR : dn std_Togic;

EMAEBLE : in std_logic:

COUT @ out std_logic_wector (7 downto 003
end compohent;

signal GSR, EMABLE, CLOCK, CLEAR : std_logic:
signal COUT @ std_logic_vector (7 downto 03
signal CHECK_COUNT : std_logic_vector (7 downto 03

hegin

UUT : countsd
Port Map (GSR, CLOCK, CLEAR. ENABLE, COUT);

DRIVER: process
hegin
CHECK_COUNT <= "00000000";

GSR <= "07;
CLEAR <= "07;
ENBBLE <= "17;
CLOCK <= "07;
wait for 50 ns;
GSR <= "17;

wait for 100 ns;
GSR <= “07;

wait for 100 ns;

CLEAR <= "17;
wait for 100 ns;
CLESR <= "07;
wait for 50 ns;

CLOCK <= "17;
CHECK_COUNT <= CHECK_COUNT + conv_std_Togic_wector{1,83;
wait for 50 ns;
assert COUT = CHECK_COUNT
report "Counter output does not match” severity error;

Xilinx Synopsys Interface FPGA User Guide 7-7

Xilinx Synopsys Interface FPGA User Guide

7-8

for I in 1 to 20 Toop
CLOCK <= "07;
wait for 50 ns;
CLOCK <= "17;

CHECK_COUNT = CHECK_COUNT + "00000001";

wait for 50 ns;
assert COUT = CHECK_COUNT

report "Counter output does not match” severity error;

end loop;

EMAELE <= “07;
CLOCK <= "07;
wait for 50 ns;
CLOCK <= "17;
wait for 50 ns;

assert COUT = CHECK_COUNT

report "Counter output does not match” severity error;

CLOCK <= “07;
CLEAR <= 717;

CHECK_COUNT <= "00000000%;

wait for 50 ns;

assert COUT = CHECK_COUNT

report "Counter output does not match®” severity error;
‘07

CLEAR <= H
wait for 100 ns;

wait;
end process;

end TEST;

configuration CFG_countd_tb of countd_tb is

for TEST
end for;
end CFG_countd_th;

Figure 7-2 Count8_tb.vhd

XNF2VSS automatically generates the GSR port in the timing
simulation model. During timing simulation when the test bench
applies the GSR pulse, the timing simulation model initializes all
registers as they are actually implemented in the FPGA.

Configuration Declaration

For any design or test bench you wish to simulate, you must declare a
configuration that identifies the specific architecture you are applying
to a design. When you invoke the VSS simulator, you must select the
name of a configuration that has been previously analyzed.

Figure 7-2 shows a typical configuration declaration in a test bench
file. If you always use the test bench to simulate the design source file,
it does not need its own configuration declaration.

XACT Development System

Simulating Your FPGA Design

After you have created a test bench file, you are ready to begin using
the VSS simulator for functional simulation.

Functional Simulation

Functional simulation is used to debug your logic before fitting your
design into an FPGA.

To prepare a test bench configuration for simulation, you must
analyze each design and test bench source file in the proper bottom-
up sequence.

The following procedure uses the stand-alone Synopsys VHDL
Analyzer (Vhdlan) and the Synopsys VHDL Debugger (Vhdldbx).

Note: Use the second syntax option in the following steps if you are
using the count8 design to practice functional simulation.

1. Analyze your source FPGA design file.
vhdlan design_name.vhd
If using the count8 design, enter the following.
vhdlan count8.vhd

2. Analyze the test bench file.
vhdlan test_bench_name.vhd
If using the count8 design, enter the following.
vhdlan count8_tb.vhd

3. Invoke the VHDL debugger as follows.
vhdldbx

The system prompts you for a configuration name. The Vhdldbx
selector window appears as shown in Figure 7-3.

Xilinx Synopsys Interface FPGA User Guide 7-9

Xilinx Synopsys Interface FPGA User Guide

] Vhdldbx — Select Simulator Arguments

Library De=ign
i AFFC_COUNTE_TE
COMF_CHTS
COUMTA_TE__TEST
COUMTE__BEHAYIORAL
COUMTA__TIMING

| xc7o00
 |vMopsys
| 1EeE
L7
EEE_ASIC

BE 3

Dezign | DEFAULT,CFG_COUNTS_TE

Time Units NS &

Arguments |

Eancel

Figure 7-3 Vhdldbx Select Simulator Arguments Window

4. Select the name of the configuration declared in the
test_bench_name.vhd file. For the count8 design, select the
following.

CFG_COUNTS_TB
5. Click OK

The Vhdldbx user interface window appears as shown in
Figure 7-4.

7-10 XACT Development System

Simulating Your FPGA Design

=

Synopsys VHDL Debugger {vhdldb:)

Execute Breakpoints Monitors Traces Ouery Stimulus Hisc

[l e i p Ly B I S

-— VHIL Model Created from count8,xnf —— Mon May 9 15:59:34 1934

library IEEE:
library Synopsys:

uze
use
use
use
use
uze
use

entity

[EEE,std_logic_11F4,all:
[EEE.ztd_logic_unzigned.all:
[EEE.=td_logic_misc,all:
[EEE,=td_logic_arith,all:
IEEE,std_logic_components,all:
synopseys, attributes,all:
STD,Textio,alls

count8_th is

end countS_tb:

Parchitecture TEST of countB_th is

Time $ O NS

CWR ¢ COUNTS_TE

File:

Line}

count8_th,whd

1

el

Stop atl El_ear‘l Tr‘agel Event. kat.l Eval_.l Stegl ﬂextl I_ntr‘.l

[

=

Figure 7-4 Vhdldbx User Interface Window

Xilinx Synopsys Interface FPGA User Guide

7-11

Xilinx Synopsys Interface FPGA User Guide

6. To run your simulation, declare the signals you want to display in
a trace window. For example, to display all signals appearing on
the FPGA pins, you can enter the following Vhdldbx command.

trace *'signal

7. To run all the simulation vectors in your test bench, select the Run
button in the VHDL Debugger dialog box or enter run at the
command-line prompt.

The system displays the functional simulation waveforms in the
Dynamic Waveform Viewer as illustrated in Figure 7-5.

=] Dynamic Waveform Viewer (Waves)

File Edit Jump Yiew Misc Help

4000 6000 8000
T T T Y TV Y Y A A B R A A A

/COUNTB_TB/GSR
/(COUNTE_TB/ENABLE
COUNTS_TBICLOCIK mil i il
COUNTB_TBICLEAR| [|
ICOUNTB_TB/COUTT 0 oo 01 02 03 04 05

y oo 01 02 03 04 05

Zoomln - Pick Center Point

Figure 7-5 Functional Simulation Waveforms for Count8 Design

8. After functional simulation is successful, you can exit the VHDL
Debugger window.

You are now ready to implement your design and create the physical
layout information required for timing simulation as described in the
“Design Implementation” section, which follows.

Design Implementation

7-12

After you have debugged your design using functional simulation,
you can compile it using synthesis and implement it in an FPGA
using the Xilinx XACT software. Design implementation is a
prerequisite for performing timing simulation.

XACT Development System

Simulating Your FPGA Design

You can use DC shell commands as described in the “Using the
FPGA Compiler” or “Using the Design Compiler” chapter, or the
Synopsys graphical interface (Design Analyzer) to create the XNF or
EDIF netlist file required by the XACT software. This gate-level
netlist file contains cells from the XC3000 or XC4000 library but not
timing information. The XACT software processes the netlist file and
places the logical design into the physical architecture of a target
FPGA.

After the design is implemented by the XACT software, the actual
target device timing information is available for timing simulation.

Using the count8 design as an example, the following steps show you
an overview of the FPGA implementation procedure described in the
“Using the FPGA Compiler” or “Using the Design Compiler”
chapter.

1. Compile the design, targeting the appropriate libraries, and create
an XNF or EDIF netlist by executing the following command at
the command line.

dc_shell —f count8.script

During processing, the system displays informational messages
onscreen.

Note: The results of the Vhdlan command cannot be used for
synthesis.

2. Run the XACT software, using the XMake command to process
the netlist.

xmake count8

3. Create a post-layout XNF file with timing information using the
LCA2XNF command.

lca2xnf —w count8

The —w option suppresses a warning from LCA2XNF that
indicates it is overwriting the XNF file produced by Syn2XNF. The
original synthesis XNF file still exists with an .xff extension.

You can now prepare a gate-level VHDL model for timing
simulation.

Xilinx Synopsys Interface FPGA User Guide 7-13

Xilinx Synopsys Interface FPGA User Guide

Preparing the Timing Model

When you synthesize your design and create an XNF or EDIF netlist
file for the XACT software, all buses (such as those declared as
std_logic_vector) are decomposed into individual nets. The original
definition of your bus ports in the design entity are not retained
through the place and route process.

The XNF2VSS software cannot regenerate a timing model complete
with your original bus port declarations, but it does provide two
options for preparing the timing model.

Using XNF2VSS without any options generates the timing model
as an architecture only, without the entity.

xnf2vss design_name
If using the count8 design, enter the following.
xnf2vss count8

The external signals appearing in the design that were originally
defined as bus ports are represented within the model architecture
using subscript notation compatible with bus port declarations.
By reusing the entity from your source design with the
architecture of the timing model, you can perform timing
simulation using the same test bench and chip interface as used
for functional simulation.

Using XNF2VSS with the —t option generates the timing model as
a complete VHDL design and a test bench template.

xnf2vss —t design_name

This optional mode produces a test bench template and a new

gate-level VHDL file that contains both entity and architecture
definitions, although it does not preserve original bus notation.
You determine the stimulus input for the test bench.

When the static timing results are satisfactory, as reported by the
XDelay program, you can proceed to timing simulation.

Timing Simulation

Perform timing simulation after implementing your design, creating
the timing model, and reviewing the static timing report.

7-14

XACT Development System

Simulating Your FPGA Design

Once you prepare your test bench and run XNF2VSS, you can use the
same test bench for timing simulation as used for functional
simulation. By using the same test bench, you can easily verify that
the functionality of the device after mapping matches the
functionality of your source design. You also eliminate any risk of
errors from accidental differences between the test bench files.

1. Analyze your source design file to reuse the port declarations in
its entity as follows.

vhdlan design_name.vhd
vhdlan count8

2. Replace the architecture of your source design with the timing
architecture produced by XNF2VSS.

vhdlan design_name_vss.vhd
vhdlan count8_vss.vhd

The architecture is replaced in the Synopsys database by
analyzing the timing model file; you do not need to modify your
design source file.

3. Analyze the test bench file name as used for functional simulation
as follows.

vhdlan test_bench_name.vhd
vhdlan count8_tb.vhd

The simulation database now contains the test bench design that
interfaces to the chip through your source design entity read in
step 1 but it contains the timing model architecture read in step 2.

4. Invoke the Synopsys VSS Simulator.
vhdldbx

5. Indicate the configuration named in the test_bench_name.vhd file.
For example, for the count8 design, select the following.

CFG_COUNT8_TB

Warning: Before clicking OK you must specify the timing back-
annotation file information in the Vhdldbx — Select Simulator
Arguments dialog box.

Xilinx Synopsys Interface FPGA User Guide 7-15

Xilinx Synopsys Interface FPGA User Guide

7-16

All back-annotated timing in the standard delay format (SDF) file
is applied to various instances within the design_name_vss.vhd
file. However, if you are simulating with a test bench, you must
specify to the simulator the FPGA design instance to which you
want to apply the back-annotated timing. The simulator can then
find all the referenced instances.

In the Arguments field, indicate the file name of the SDF back-
annotation timing file.

—sdf design_name_vss.sdf
For the count8 example, enter the following.

—sdf count8_vss.sdf

. Specify the sdf_top instance in the test bench configuration to

which the back-annotated timing is applied.
—sdf _top chip_instance_name

For the count8 example, enter the following.
—sdf_top /count8_tb/UUT

All back-annotated timing parameters in the SDF file are applied
to the selected chip instance. Figure 7-6 illustrates the Select
Simulator Arguments dialog box with the back-annotation timing
parameters specified in the Arguments field.

XACT Development System

Simulating Your FPGA Design

r E Vhdldbx — Select Simulator Arguments i

Library Dezign

i | 4 3FFC COUNTE_TE
HC4000 CONF_CNTE

KC2000 COUNTE_TE__TEST

E | HC7000 COUNTE__EEHAVIORAL
[SvHOPSYS COUNTE__TIMING

| 1EEE

E | HyL_7
IEEE_ASIC

-4 i

Design | DEFAULT,CFG_COUMTS_TE

Time Units

Hrgumentsg —zdf countB_vss,sdf —sdf_top Joountf_thAUUT

Figure 7-6 Vhdldbx Selector Window with Timing Back-
Annotation Parameters

8. Click OK

Note: You can also enter the back-annotation parameters on the
command line as follows.

vhdldbx —sdf design_name_vss.sdf —sdf top \
/ design_tb.vhd/ chip_instance_name configuration_name

For the count8 design example, you should enter the following.

vhdldbx —sdf count8_vss.sdf —sdf top \
/count8_tb/UUT CFG_COUNTS8_TB

For convenience, you can put all parameters into a script file. The
command line for the count8 design is provided in the dbx_count8
script file in the VSS examples directory.

Now you can run the same simulation vectors for timing simulation
as you ran for functional simulation. However, in timing simulation,
the registers are set to their initial states in response to the active-
High pulse on the GSR input.

Xilinx Synopsys Interface FPGA User Guide 7-17

Xilinx Synopsys Interface FPGA User Guide

To set up a trace window for all FPGA ports and run the simulator,
use the Trace and Run commands, as illustrated in the “Functional
Simulation” section. After executing these commands, you can view
the waveforms, as illustrated by Figure 7-7.

=] Dynamic Waveform Viewer (Waves)
File Edit Jump Yiew Misc Help
1} 2000 4000 6000 é
TN T T T N A T N T TN T AT T T T T
ICOUNTB_TB/GSR
ICOUNTB_TB/ENAELE
/COUNTE_TB/CLOCK LT LT 1.1 &
COUNTE_TB/CLEAR
icounTe_teicouT:oy K K 00 01 ¥ oz 03 :
: 00 01 02 a2 04

Zoomln - Pick Center Point

Figure 7-7 Timing Simulation Waveforms for the COUNT8 Design

7-18 XACT Development System

Xilinx
Synopsys
Interface
FPGA User
Gulide

Files, Programs,
and Libraries

Xilinx Synopsys Interface FPGA User Guide — December, 1994 (0401291 01) Printed in U.S.A.

Xilinx Synopsys Interface FPGA User Guide

XACT Development System

Chapter 8

Files, Programs, and Libraries

This chapter describes the files, programs, and Xilinx-supplied
libraries you need to translate your HDL design using the Synopsys
FPGA Compiler or Design Compiler.

Directory Structure for XSl

This section describes the XSI directory tree, so you can easily find
XSl files, programs, and libraries.

Figure 8-1 illustrates the XSl directory tree. The directory tree
contains the following variables.

DS401_dir The directory where XSl is installed.

platform The platform can be one of the following: sparc,
apollo, hppa, or rs6000.

family The family refers to the family of Xilinx devices, for
example, 4000, 3000, 3000a, 3000I, 3100, or 3100a.

parttype The parttype is the specific Xilinx device, for example,
4003, 4005, or 3020.

Xilinx Synopsys Interface FPGA User Guide — December, 1994 (0401291 01) 8-1

Xilinx Synopsys Interface FPGA User Guide

DS401_dif
bin/ platform /|
synlibs
syn2xnf
sedif2xnf
speedcheck
xnfmerge
data/synopsys/
parttype
partlist.xct
text.spd
xmap_3000/ <~250 .xnf files>
xmap_4000/ <~250 .xnf files>
xprim_3000/ <~60 .xnf files>
xprim_4000/ <~160 .xnf files>
xunmap_3000/ <~250 .xnf files>
xunmap_4000/ <~250 .xnf files>
synopsys/
libraries/dw/lib/fpga
<xblox_dw_modules>.o
<xblox_dw_modules>.syn
<xblox_dw_modules>.sim
<xblox_dw_modules>.mra
libraries/dw/src/fpga
README
install_dw.dc

<xblox_dw_modules>.vhd.e

.spd <~44 .spd files>

<xblox_dw_modules>.vhd.e.update

libraries/syn/
xgen_ family .db
xfpga_ family-speedgrade

xprim_ parttype-speedgrade

xprim_ family-speedgrade
xio_ parttype
xdc_ family-speedgrade
xc3000.sdb
xc4000.sdb
xblox_4000.sldb
libraries/sim/src/
xc4000
README
install_xc4000.dc
xc4000_FTGS.vhd.e
xc4000_FTGS.vhd
xc3000
README
install_xc3000.dc
xc3000_FTGS.vhd.e
xc3000_FTGS.vhd

.db
.db
.db

-speedgrade.db

.db

XACT Development System

Files, Programs, and Libraries

libraries/sim/lib/
xc4000
<vss4k_FTGS>.syn
<vss4k_FTGS>.sim
<vssdk_FTGS>.mra
xc3000
<vss3k_FTGS>.syn
<vss3k_FTGS>.sim
<vss3k_FTGS>.mra
tutorial/synopsys/
fpga/x4000/
vhd
verilog
dc/x3000a/
vhd
verilog
vss/xc4000
examples/synopsys/
fcdk.synopsys_dc.setup
dc4k.synopsys_dc.setup
dc3k.synopsys_dc.setup
fpga.script
dc.script
fpga/
xc4000/
vhd/<design-directory>
verilog/<design-directory>
xc4000a/
vhd/<design-directory>
verilog/<design-directory>
xc4000h/
vhd/<design-directory>
verilog/<design-directory>
dc/
xc3000/
vhd/<design-directory>
verilog/<design-directory>
xc4000/
vhd/<design-directory>
verilog/<design-directory>
xc4000a/
vhd/<design-directory>
verilog/<design-directory>
xc4000h/
vhd/<design-directory>
verilog/<design-directory>

Figure 8-1 XSI Directory Tree Structure

Xilinx Synopsys Interface FPGA User Guide

Xilinx Synopsys Interface FPGA User Guide

File Descriptions

This section describes the files you need to translate, map, place, and
route your design using the XSI and Synopsys tools.

Table 8-1 File Descriptions

File

Description

FPGA Compiler
or Design
Compiler

design.script

The design.script file is user-created and
contains the commands for the Synopsys
FPGA Compiler or Design Compiler. These
commands specify the operating conditions,
the name and format of the design file, and
synthesis directives.

Note: Script files can have extensions other
than .script.

Both

design.v

The .v extension indicates the Verilog HDL
format.

Both

design.vhd

The .vhd extension indicates the VHDL
format.

Both

.synopsys_dc.setup

The .synopsys_dc.setup file is the startup file
for the Synopsys synthesis tools. It must be
located in your home directory or working
directory.

Both

XC4000.sdb

The XC4000.sdb file contains XC4000
schematic symbols for Synopsys.

Both

XC3000.sdb

The XC3000.sdb file contains XC3000/A/L
and XC3100/A schematic symbols for
Synopsys.

Both

design.sxnf

The design.sxnf file is the synthesized design
generated by the Synopsys synthesis tools,
which becomes the input to the Syn2XNF
program.

FPGA Compiler

8-4

XACT Development System

Files, Programs, and Libraries

File

Description

FPGA Compiler
or Design
Compiler

design.sedif

The design.sedif file is the synthesized design
generated by the Synopsys synthesis tools
using the EDIF syntax. This file is the input to
the Syn2XNF program.

Design Compiler

design.xff

The design.xff file, generated by the Syn2XNF
program, represents the flattened,
synthesized design in Xilinx Netlist Format
(XNF).

Both

design.xnf

The design.xnf file, generated by the
Syn2XNF program, represents the flattened,
synthesized design in Xilinx Netlist Format
(XNF).

Both

design.lca

The LCA file, generated by PPR, is used to
configure the specified FPGA.

Both

syn

SYN files define synthetic library elements for
the Synopsys DesignWare software. These
files only support XC4000 devices.

Both

.sim

SIM files are used for VSS simulation.

Both

.mra

MRA files are used for VSS simulation.

Both

design_vss.vhd

This file is the VHDL timing simulation
model created by the VMH2VSS program.

Both

design_vss.sdf

This file is the timing back-annotation file
created by the VMH2VSS program.

Both

Program Descriptions

This section describes the programs you use when translating,
mapping, placing, and routing your design using the XSI and
Synopsys tools. You can use the following programs with both the

Design Compiler and FPGA Compiler.

Xilinx Synopsys Interface FPGA User Guide

8-5

Xilinx Synopsys Interface FPGA User Guide

Table 8-2 Program Descriptions

Program

Description

Design Analyzer

The Design Analyzer is the Synopsys graphic interface to the
Synopsys synthesis tools.

DC Shell

The DC Shell is the Synopsys UNIX command-line interface for
entering commands, arguments, and options to the Synopsys
synthesis tools.

Synlibs

This program displays onscreen the target and link libraries for
the specified part type and speed grade. You can append the
output of the Synlibs command to the .synopsys_dc.setup file.

Warning: You must list the libraries in your setup file in the
order that they appear in the Synlibs output.

SYN2XNF

This program translates a Synopsys SXNF or SEDIF file into
XNF and XFF files.

XMake

XMake supports the automatic translation of design files.
XMake invokes the necessary tools to flatten the XNF file and
map, place, and route the design for the specified Xilinx FPGA
device.

Vhdlan

The Vhdlan program analyzes a VHD source file for simulation.

Vhdldbx

The Vhdldbx program is the VHDL Debugger, a graphical
interface to the VHDL simulator. Through its dialog box, you
can issue simulator commands, view command output, and
view source code.

XNF2VSS

The XNF2VSS program creates a timing model for timing
simulation.

Library Descriptions

8-6

This section describes the Xilinx-supplied libraries and supported
part types and speed grades. Table 8-3 contains the following
variables.

family The family refers to the family of Xilinx devices, for
example, 4000, 3000, 3000a, 3000I, 3100, or 3100a.

parttype The parttype is the specific Xilinx device, for example,
4003, 4005, or 3020.

XACT Development System

Files, Programs, and Libraries

4kparttype

The 4kparttype is the specific Xilinx XC4000 device,
for example, 4003, 4005, or 4000a.

The —s indicates the part type’s speed grade, for
example, 5. Not all speed grades are available for all
part types. Run Synlibs with the —h option to get a
listing of all available part type/speed grade

combinations.

Table 8-3 Library Descriptions

Library

Description

FPGA Compiler
or Design
Compiler

xgen_4000.db

The xgen_4000.db library describes the
XC4000 cells that do not contain timing
information, for example, FMAP, PULLUP,
and VCC.

Both

xgen_3000.db

The xgen_3000.db library describes the
XC3000 and XC3100 cells that do not contain
timing information, for example, CLBMAP,
PULLUP, net flags, and VCC.

Both

xprim_family-s.db

The xprim_family-s.db libraries describe the
Xilinx XC4000/XC3100/XC3000 gates, flip-
flops, input/output buffers, and other simple
circuit elements whose delays do not vary
with the density of the part. These files
contain worst-case commercial (WCCOM)
timing information.

Both

xprim_parttype-s.db

The xprim_parttype—s.db libraries describe the
Xilinx XC4000/XC3100/XC3000 3-state
buffers, clock buffers, 1/0 decoders, and
other simple circuit elements whose delays
vary with the density of the part. These files
contain WCCOM timing information.

Both

Xilinx Synopsys Interface FPGA User Guide

8-7

Xilinx Synopsys Interface FPGA User Guide

FPGA Compiler
Library Description or Design
Compiler

xio_4kparttype-s.db | The xio_4kparttype—s.db libraries describe the |Both
Xilinx XC4000/A/H input/output buffers
whose delays vary with the device type.
XC4000D devices use the XC4000 library.
These files contain WCCOM timing
information.

xfpga_family-s.db | The xfpga_family-s.db libraries describe the | FPGA Compiler
Xilinx XC4000 CLB and IOB primitives,
which allow the FPGA Compiler to directly
map to CLBs and IOBs. These files contain
WCCOM timing information.

xdc_family—sdb The xdc_family—sdb libraries contain Boolean | Design Compiler
functions to which the Synopsys tools map.
xblox_4000.sldb The xblox_4000.sldb library contains the Both

DesignWare macros that allow adders,
subtracters, incrementers, decrementers, and
comparators to map directly to X-BLOX
modules.

xprim_family/*xnf | The xprim_family/ directory contains the Both
XNF files for the following Xilinx primitives:
xgen_family-s.db, xprim_family-s.db, and
xprim_device.db.

xmap_family/*xnf | The xmap_family/ directory contains the XNF | Design Compiler
files for the xdc_family-s.db Boolean functions
that are already mapped to CLB function
generators.

xunmap_family/ The xunmap_family/ directory contains the Design Compiler
* xnf XNF files for the xdc_family-s.db Boolean
functions that are not mapped into CLB
function generators until APR or PPR is run.

8-8 XACT Development System

Files, Programs, and Libraries

Supported Part Types and Speed Grades

This section describes the supported part types and speed grades for

the Xilinx-supplied libraries described in Table 8-3. The following

table lists the speed grades available for each Xilinx family.

Table 8-4 Available Speed Grades

Family Available Speed Grades
XC4000 -4,-5,-6, or -10
XC3000 -50, =70, -100, or -125
XC3000A -6 or -7
XC3000L -8
XC3100 -3,-4,0r-5

xprim_ family —s.db and xprim_ parttype—s .db

These libraries contain cells specific to Xilinx FPGAs, including flip-
flops, 3-state buffers, and other performance-improving features. The

following tables summarize the Xilinx-specific primitive libraries.

Table 8-5 XC4000 Primitive Libraries

—4 Speed Grade -5 Speed Grade —6 Speed Grade —10 Speed Grade

Xprim_4000-4 xprim_4000-5 Xprim_4000-6 xprim_4000-10
xprim_4002-5 Xprim_4002-6

Xprim_4003-4 xprim_4003-5 Xprim_4003-6

Xprim_4004-4 xprim_4004-5 Xprim_4004-6

Xprim_4005-4 xprim_4005-5 Xprim_4005-6 xprim_4005-10

Xprim_4006-4 xprim_4006-5 Xprim_4006-6

Xprim_4008-4 xprim_4008-5 Xprim_4008-6

Xprim_4010-4 xprim_4010-5 Xprim_4010-6 xprim_4010-10

xXprim_4013-4 xprim_4013-5 xXprim_4013-6

Xilinx Synopsys Interface FPGA User Guide

Xilinx Synopsys Interface FPGA User Guide

Table 8-6 XC3000 Primitive Libraries

—50 Speed Grade

—70 Speed Grade

—100 Speed Grade

125 Speed Grade

xprim_3000-50

Xprim_3000-70

xprim_3000-100

Xprim_3000-125

xprim_3020-50

xprim_3020-70

xprim_3020-100

xprim_3020-125

xprim_3030-50

Xprim_3030-70

xprim_3030-100

Xprim_3030-125

xprim_3042-50

Xprim_3042-70

xprim_3042-100

Xprim_3042-125

xprim_3064-50

xprim_3064-70

xprim_3064-100

xprim_3064-125

xprim_3000-50

Xprim_3000-70

xprim_3000-100

Xprim_3000-125

8-10

Table 8-7 XC3000A/L Primitive Libraries

—6 Speed Grade

—7 Speed Grade

—8 Speed Grade

xprim_3000a—6 xprim_3000a—7 xprim_30001-8
xprim_3020a—6 xprim_3020a—-7 xprim_30201-8
xprim_3030a—-6 xprim_3030a—7 xprim_30301-8
xprim_3042a—6 xprim_3042a—7 xprim_30421-8
xprim_3064a—6 xprim_3064a—7 xprim_30641-8
xprim_3090a—-6 xprim_3090a—7 xprim_3090I1-8

Table 8-8 XC3100/A Primitive Libraries

—3 Speed Grade

—4 Speed Grade

-5 Speed Grade

Xprim_3100-3 Xprim_3100-4 Xprim_3100-5
xprim_3100a-3 xprim_3100a—4 xprim_3100a-5
Xprim_3120-3 Xprim_3120-4 Xprim_3120-5
xprim_3120a-3 Xprim_3120a—4 xprim_3120a-5
Xprim_3130-3 Xprim_3130-4 Xprim_3130-5
xprim_3130a-3 xprim_3130a—4 xprim_3130a-5
Xprim_3142-3 Xprim_3142-4 Xprim_3142-5
xXprim_3142a-3 Xprim_3142a-4 Xprim_3142a-5
Xprim_3164-3 Xprim_3164-4 Xprim_3164-5

xXprim_3164a-3

Xprim_3164a—4

Xprim_3164a-5

XACT Development System

Files,

Programs, and Libraries

—3 Speed Grade

—4 Speed Grade

-5 Speed Grade

Xprim_3190-3 Xprim_3190-4 Xprim_3190-5
Xprim_3190a-3 Xprim_3190a—-4 Xprim_3190a-5
Xprim_3195-3 Xprim_3195-4 Xprim_3195-5

xprim_3195a-3

xprim_3195a-4

xprim_3195a-5

xio_ 4kparttype—s .db

These libraries contain the 1/0 cells specific to the XC4000 Xilinx
devices. Synopsys Release V3.1 or later cannot automatically
synthesize some cells in the 170 libraries. You must instantiate these
cells in your HDL description. The following table summarizes the
Xilinx-specific 170 libraries. Refer to the “Configuring IOBs” section
in the “Using the FPGA Compiler” chapter.

Table 8-9 XC4000 I/O Libraries

—4 Speed -5 Speed —6 Speed —10 Speed
Grade Grade Grade Grade
xio_4000-4 xio_4000-5 xio_4000-6 xio_4000-10
xio_4000a-5 xio_4000a-6
xio_4000h-5 xio_4000h-6

xfpga_ family —s.db

The FPGA Compiler-specific libraries contain CLBs and 10Bs, so that
the FPGA Compiler maps directly into CLBs and IOBs. The cells in
these libraries are synthesized automatically from the equations or
circuitry in your design. You never have to instantiate any of these
cells in your design. The following table summarizes the FPGA
Compiler-specific libraries.

Table 8-10 XC4000 FPGA Compiler-Specific Libraries

—4 and —6 Speed Grades
xfpga_4000-4
xfpga_4000-6

-5 and —10 Speed Grades
xfpga_4000-5
xfpga_4000-10

Xilinx Synopsys Interface FPGA User Guide 8-11

Xilinx Synopsys Interface FPGA User Guide

xdc_ family —s.db

The cells in the Design Compiler-specific libraries are also
synthesized automatically from the equations or circuitry in your
design. These cells are 2- to 4-input combinatorial functions. You
never have to instantiate any of these cells in your design. The
following table summarizes the Design Compiler-specific libraries.

Table 8-11 Design Compiler-Specific Libraries

XC4000 XC3000 XC3000A XC3000L XC3100
xdc_4000-4 xdc_3000-50 xdc_3000a-6 xdc_30001-8 xdc_3100-3
xdc_4000-5 xdc_3000-70 xdc_3000a—7 xdc_3100-4
xdc_4000-6 xdc_3000-100 xdc_3100-5
xdc_4000-10 xdc_3000-124

Unsupported Part Types and Speed Grades

If you are designing for a part type and/or speed grade for which no
libraries are available, use the libraries for the closest part type or
speed grade in the same family, and indicate the part type or speed
grade you are actually using when you run APR or PPR.

Note: For more information on specifying the part type, refer to the
XACT Reference Guide.

8-12 XACT Development System

XC3000/A/L and
XC3100/A Primitives

Xilinx
Synopsys
Interface
FPGA User
Gulide

Xilinx Synopsys Interface FPGA User Guide — December, 1994 (0401291 01) Printed in U.S.A.

Xilinx Synopsys Interface FPGA User Guide

XACT Development System

Appendix A

XC3000/A/L and XC3100/A Primitives

All primitives and macros available are located in the XSI-supplied
libraries and can be instantiated in a VHDL or Verilog HDL file. Use
the Synlibs program to list the appropriate libraries for the specific
part type. Refer to the “Getting Started” chapter for information on
how to use Synlibs. In the following listings, the primitive names are
followed by the names of the inputs and outputs and timing
notations where appropriate.

The name of a primitive or macro is used to instantiate it, and you
must identify the signals connected to the input and output pins
when instantiating a primitive or macro. You can connect signals to
the primitives and macros in two ways.

« You must connect signals to all the pins and list them in the order
given in the following tables.

Note: If using this first method to connect signals, be sure to follow
exactly the order of input and output pins given in the primitive
tables.

« You must connect signals to explicitly named pins.

In general, pins are organized with data pins before control pins.
When several pins are part of a bus, they are listed with the MSB first.
Buses of four or more bits follow bus notation, for example, A<7:0>.
Buses with fewer bits are kept as separate signals.

The following table lists the cell name suffixes and their
corresponding descriptions.

Xilinx Synopsys Interface FPGA User Guide — December, 1994 (0401291 01) A-1

Xilinx Synopsys Interface FPGA User Guide

Table A-1 Cell Name Suffixes

Suffix Description
I Inverted global reset (INIT=S)
_F Fast slew rate or fast implementation of clock
buffer (using dedicated input clock pad)
S Slow slew rate
U Unbonded pad
_FLAG Net/pin constraints
N No meaning; used as a placeholder

Although Synopsys cannot synthesize some primitives (primitives
with Don’t Touch attribute), you can instantiate them into your HDL.
An asterisk (*) next to the primitive name indicates that you can
instantiate it. Refer to the Synopsys documentation for more
information on the Don’t Touch attribute.

All cells in the libraries contain timing parameters. The column
labeled “Notes” includes specific timing details on Xilinx primitives
as well as additional functional information. See The Programmable
Logic Data Book and the XACT Libraries Guide for additional timing

information.

XC3000 Primitives

This section lists the XC3000 primitives, which include basic gates,
flip-flops, latches, clock buffers, special input and output pads, 1/0
primitives, and special functions.

A-2

XACT Development System

XC3000/A/L and XC3100/A Primitives

Basic Gates

This section lists the basic gates, which include AND/OR gates,

inverters, buffers, 3-state buffers, and pull-up resistors.

Table A-2 AND/OR Gates

Name Outputs Inputs
AND2 0] 11, 10
AND3 0] 12,11, 10
AND4 0] 13,12, 11, 10
AND5 0] 14,13, 12,11, 10
NAND2 0] 11,10
NAND3 0] 12,11, 10
NAND4 0] 13,12, 11, 10
NAND5 0] 14,13, 12,11, 10
OR2 0] 11,10
OR3 0] 12,11, 10
OR4 0] 13,12, 11, 10
OR5 0] 14,13, 12,11, 10
NOR2 0] 11,10
NOR3 0] 12,11, 10
NOR4 0] 13,12, 11, 10
NORS5 0] 14,13, 12,11, 10
XOR2 0] 11,10
XOR3 0] 12,11, 10
XOR4 0] 13,12, 11, 10
XOR5 0] 14,13, 12,11, 10
XNOR2 0] 11,10
XNOR3 0] 12,11, 10
XNOR4 0] 13,12, 11, 10
XNOR5 0] 14,13, 12,11, 10

Xilinx Synopsys Interface FPGA User Guide

A-3

Xilinx Synopsys Interface FPGA User Guide

A-4

Table A-3 Inverter

Name Outputs Inputs Notes
INV (0] I No delay
Table A-4 Buffer
Name Outputs Inputs Notes
BUF (0] | No delay
Table A-5 3-State Buffer
Name Outputs Inputs Notes
BUFT (0] I, T Delay value with

one pull-up resistor

Synopsys tools synthesize an internal 3-state condition using BUFTS.
A high-impedance state is floating unless you instantiate a pull-up

resistor.

Table A-6 Pull-Up Resistorto V. ¢

Name

Outputs

Inputs

Notes

PULLUP

O

No delay; used for
I0Bs or BUFTs

XACT Development System

XC3000/A/L and XC3100/A Primitives

Flip-Flops and Latches

This section lists flip-flop and latches, which include D flip-flops and

1-bit transparent-High latches.

Table A-7 D Flip-Flops

Name Outputs Inputs Notes
FDC Q D, C,CLR | With Clear Direct;
initial startup
value is 0
FDCE Q D, C, CE, Clock Enable with
CLR Clear Direct; initial
startup value is 0
FDPI Q D, C,PRE | With Preset Direct;
initial startup
valueis 1
FDPEI Q D, C, CE, Clock Enable with
PRE Preset Direct;
initial startup
valueis 1
Table A-8 1-Bit Transparent-High Latches
Name Outputs Inputs Notes
LD Q D, G
LDC Q D, G, CLR | With Clear Reset
LDP Q D, G, PRE With Preset Direct

These cells are not recommended since they are built from gates. The
delay depends on how the cell is routed. Use D flip-flops instead.

This section lists the input and output pins for the clock buffer

primitives.

Xilinx Synopsys Interface FPGA User Guide

A-5

Xilinx Synopsys Interface FPGA User Guide

Table A-9 Clock Buffers

Name Outputs Inputs Notes

GCLK* (0] | Global

GCLK_F O | Global; using
dedicated pad

BUFG* (0] | Generic

BUFG_F O | Generic; using
dedicated pad

ACLK* (0] | Alternate

ACLK F O | Alternate; using
dedicated pad

* Indicates that you must instantiate this primitive.

Oscillators

This section lists the input and output pins for the oscillator
primitives.

Table A-10 Oscillators

Name Outputs Inputs Notes
oscC* O No delay
GXTL* 6] Crystal; no delay

* Indicates that you must instantiate this primitive.

A-6 XACT Development System

XC3000/A/L and XC3100/A Primitives

I/O Primitives

This section lists the 1/0 primitives, which include single input
buffers, input buffers with D flip-flop, input buffers with D latch,
output buffers, output buffers with D flip-flop, 3-state output buffers,
and bidirectional buffers.

Table A-11 Single Input Buffers

Name Outputs Inputs Notes
IBUF O |
IBUF_U* O | Unbonded pad

* Indicates that you must instantiate this primitive.

Table A-12 Input Buffers with D Flip-Flop

Name Outputs Inputs Notes
IFD Q D,C
IFD_U* Q D,C Unbonded pad

* Indicates that you must instantiate this primitive.

Table A-13 Input Buffer with D Latch from One Input Pad

Name Outputs Inputs Notes
ILD Q D, G
Table A-14 Output Buffers
Name Outputs Inputs Notes
OBUF O | Slow slew rate
OBUF_F O | Fast slew rate
OBUF_U* 0] | Unbonded pad

* Indicates that you must instantiate this primitive.

Xilinx Synopsys Interface FPGA User Guide

A-7

Xilinx Synopsys Interface FPGA User Guide

A-8

Table A-15 Output Buffers with D Flip-Flop

Name Outputs Inputs Notes
OFD Q D,C Slow slew rate
OFD_F Q D,C Fast slew rate
OFD_FU* Q D, C Fast slew rate and
unbonded pad
OFD_U* Q D,C Unbonded pad

* Indicates that you must instantiate this primitive.

Table A-16 Output Buffers with D Flip-Flop and 3-State

Name Outputs Inputs Notes
OFDT (0] D,CT Slow slew rate
OFDT _F (0] D,CT Fast slew rate

Table A-17 3-State Output Buffers

Name Outputs Inputs Notes
OBUFT (0] T Slow slew rate
OBUFT_F O I, T Fast slew rate

Table A-18 Bidirectional Buffers

Inputs/

Name Outputs | Inputs Outputs Notes
IOBUF 0 I, T 10 Slow slew rate
IOBUF N F | O I, T 10 Fast output

slew rate
IOBUF NS | O I, T 10 Slow output
slew rate

XACT Development System

XC3000/A/L and XC3100/A Primitives

Special Functions

This section lists the special function primitives, which include
CLBMAPs, flag cells, power, and ground.

Table A-19 CLBMAPSs

Name Inputs Notes
CLBMAP_PUC* | A,B,C,D,E, | Pinsunlocked from signals;
K, EC, DI, function generator closed to
RD, X, Y additional logic
CLBMAP_PLC* A, B,C,D, E, | Pinslocked to external
K, EC, DI, signals; function generator
RD, X, Y closed to additional logic
CLBMAP_PUO* | A,B,C,D,E, | Pinsunlocked from signals;
K, EC, DI, function generator open to
RD, X, Y additional logic
CLBMAP_PLO* | A,B,C,D,E, | Pinslocked to external
K, EC, DI, signals; function generator
RD, X, Y open to additional logic

* Indicates that you must instantiate this primitive.

Table A-20 Flag Cells

Cell Inputs Description

C_FLAG* | Signal is on a critical path.

L FLAG* | Signal should be routed along
a longline.

N_FLAG* | Signal timing is not critical.

S FLAG* | Save signal; treat it as
external connection.

X_FLAG* | Signal is an explicit LCA net.

* Indicates that you must instantiate this primitive.

Xilinx Synopsys Interface FPGA User Guide A-9

Xilinx Synopsys Interface FPGA User Guide

Table A-21 Power/Ground

Name Outputs

VCC VCC
GND GROUND

A-10 XACT Development System

XC4000/A/D/H
Primitives and Macros

Xilinx
Synopsys
Interface
FPGA User
Gulide

Xilinx Synopsys Interface FPGA User Guide — December, 1994 (0401291 01) Printed in U.S.A.

Xilinx Synopsys Interface FPGA User Guide

XACT Development System

Appendix B

XC4000/A/D/H Primitives and Hard
Macros

All primitives and macros available are located in the XSI-supplied
libraries and can be instantiated in a VHDL or Verilog HDL file. Use
the Synlibs program to list the appropriate libraries for the specific
part type. Refer to the “Getting Started” chapter for information on
how to use Synlibs. In the following listings, the primitive names are
followed by the names of the inputs and outputs and timing
notations where appropriate.

Hard macros are obsolete; however, new relationally placed module
(RPM) versions of the hard macros are supported in XSl V3.1 or later
and XACT V5.0 or later to help you make the design transition to
RPMs. Xilinx-supplied hard macros have been converted to RPMs
and are located in the $XACT/data/hmlib directory.

If you have Xilinx-supplied hard macros in an existing design, you
must copy the appropriate XNF file from the $XACT/data/hmlib
directory to your design directory. You must convert user-generated
hard macros to RPMs with the HM2RPM program. Refer to the
XACT Reference Guide, Volume 1 for detailed information on hard
macro conversion.

The name of a primitive or macro is used to instantiate it, and you
must identify the signals connected to the input and output pins
when instantiating a primitive or macro. You can connect signals to
the primitives and macros in two ways.

« You must connect signals to all the pins and list them in the order
given in the following tables.

Xilinx Synopsys Interface FPGA User Guide — December, 1994 (0401291 01) B-1

Xilinx Synopsys Interface FPGA User Guide

B-2

Note: If using this first method to connect signals, be sure to follow
exactly the order of input and output pins given in the primitive
tables.

« You must connect signals to explicitly named pins.

In general, pins are organized with data pins before control pins.
When several pins are part of a bus, they are listed with the MSB first.
Buses of four or more bits follow bus notation, for example, A<7:0>.
Buses with fewer bits are kept as separate signals.

The following table lists the cell name suffixes and their corre-
sponding descriptions.

Table B-1 Cell Name Suffixes

Suffix Description

I Inverted global reset (INIT=S)

F Fast slew rate or fast implementation of clock
buffer (using dedicated input clock pad) for
output buffers; NODELAY attribute added for
input registers

S Slow slew rate

_MF Medium-fast slew rate (XC4000A only)
_MS Medium-slow slew rate (XC4000A only)
U Unbonded pad

1 Inverted clock or gate on flip-flop or latch
_FLAG Net/pin constraints

_TTL TTL-compatible level (XC4000H only)
_CMOS CMOS-compatible level (XC4000H only)
CAP Capacitive slew rate (XC4000H only)

RES Resistive slew rate (XC4000H only)

N No meaning; used as a placeholder

Although Synopsys cannot synthesize some primitives (primitives
with Don’t Touch attribute) and macros, they can be instantiated. An
asterisk (*) next to the primitive name indicates that you can instan-
tiate it. Refer to the Synopsys documentation for more information on
the Don’t Touch attribute.

XACT Development System

XC4000/A/D/H Primitives and Hard Macros

All cells in the libraries contain timing parameters. The column
labeled “Notes” includes specific timing details on Xilinx primitives
as well as additional functional information. See The Programmable
Logic Data Book and the XACT Libraries Guide for additional timing
information.

XC4000 Primitives

This section lists the XC4000 primitives, which include basic gates,
flip-flops, latches, clock buffers, special input and output pads, 1/0
primitives, and special functions.

Basic Gates

This section lists the basic gates, which include AND/OR gates,
inverters, buffers, 3-state buffers, wired-AND, wired OR-AND, wide
1/0 decoders, pull-up resistors, pull-down resistors,and RAM/ROM
primitives.

Table B-2 AND/OR Gates

Name Outputs Inputs
AND2 0] 11,10
AND3 0] 12,11, 10
AND4 0] 13,12, 11, 10
AND5 0] 14,13, 12,11, 10
NAND2 0] 11,10
NAND3 0] 12,11, 10
NAND4 0] 13,12, 11, 10
NAND5 0] 14,13, 12,11, 10
OR2 0] 11,10
OR3 0] 12,11, 10
OR4 0] 13,12, 11, 10
OR5 0] 14,13, 12,11, 10
NOR2 0] 11,10
NOR3 0] 12,11, 10
NOR4 0] 13,12, 11, 10

Xilinx Synopsys Interface FPGA User Guide B-3

Xilinx Synopsys Interface FPGA User Guide

Name Outputs Inputs
NOR5 0 14,13, 12,11, 10
XOR2 O 11,10
XOR3 0 12,11, 10
XOR4 O 13,12, 11, 10
XOR5 O 14,13, 12,11, 10
XNOR2 O 11,10
XNOR3 O 12,11, 10
XNOR4 O 13,12, 11, 10
XNOR5 O 14,13, 12,11, 10

Table B-3 Inverter

Name Outputs Inputs Notes
INV 0] | No delay

Table B-4 Buffer

Name Outputs Inputs Notes
BUF (0] | No delay

Table B-5 3-State Buffer

Name Outputs Inputs Notes

BUFT O I, T Synopsys tools
synthesize an
internal 3-state
condition using
BUFTs. A high-
impedance state is
floating unless a
pull-up resistor is
instantiated.

B-4 XACT Development System

XC4000/A/D/H Primitives and Hard Macros

Table B-6 Wired-AND

Name Outputs Inputs Notes
WAND1* 0 | No pull-up resistor

* Indicates that you must instantiate this primitive.

Table B-7 Wired OR-AND

Name Outputs Inputs Notes
WOR2AND* @] 11,10 No pull-up resistor

* Indicates that you must instantiate this primitive.

Table B-8 Wide I/O Decoders

Name Outputs Inputs Notes

DECODEL_I0* O | 1-bit 1/0 edge
decoder; no pull-up
resistor

DECODE4* 0 A<3:.0> 4-bit 1/0 edge
decoder; no pull-up
resistor

DECODES8* O A<7:.0> 8-bit 170 edge
decoder; no pull-up
resistor

DECODEL16* 0 A<15:0> 16-bit 170 edge
decoder; no pull-up
resistor

DECODEL_INT* | O | 1-bit edge decoder;
no pull-up resistor;
input from internal
logic

* Indicates that you must instantiate this primitive.

Xilinx Synopsys Interface FPGA User Guide B-5

Xilinx Synopsys Interface FPGA User Guide

Table B-9 Resistorto V ¢ for Inputs, Open-Drain and 3-State

Outputs
Name Outputs Inputs Notes
PULLUP* O No delay; used for
I0Bs or BUFTs

* Indicates that you must instantiate this primitive.

Table B-10 Resistor to Ground for Inputs

Name Outputs Inputs Notes
PULLDOWN* (0] No delay; used for
10B or BUFTs
* Indicates that you must instantiate this primitive.
Table B-11 RAM/ROM Primitives
Name Outputs Inputs Notes
RAM16X1 0] D, A3, A2,
Al, A0,
WE
RAM32X1 @) D, A4, A3,
A2, AL,
A0, WE
ROM16X1 0] A3, A2, Must add ROM
Al, A0 value*
ROM32X1 @) A4, A3, Must add ROM
A2, Al, A0 | value

* Refer to the “Using the Design Compiler” or the “Using the FPGA Compiler” chapter.

Flip-Flops and Latches

This section lists flip-flops and latches, which include D flip-flops and

1-bit transparent-High latches.

B-6 XACT Development System

XC4000/A/D/H Primitives and Hard Macros

Table B-12 D Flip-Flops

Name Outputs Inputs Notes
FDC Q D, C,CLR With Clear Direct;
initial startup
value is 0
FDCE Q D, C, CE, Clock Enable with
CLR Clear Direct; initial
startup value is 0
FDP Q D, C, PRE With Preset Direct;
initial startup
valueis 1
FDPE Q D, C, CE, Clock Enable with
PRE Preset Direct;
initial startup
valueis 1
Table B-13 1-bit Transparent-High Latches
Name Outputs Inputs Notes
LD _1* Q D, G
LDC 1 Q D, G, CLR | With Clear Reset
LDP 1" Q D, G, PRE | With Preset Direct

*These cells are not recommended because they are built from gates. The delay depends
on how the cell is routed. Use D flip-flops instead.

Xilinx Synopsys Interface FPGA User Guide

B-7

Xilinx Synopsys Interface FPGA User Guide

B-8

Clocks

This section lists the clock buffer primitives.

Table B-14 Clock Buffers

Names

Outputs

Inputs

Notes

BUFG*

o

No pad delay
included

BUFG_F

O

Fast
implementation of
clock; using
dedicated pad

BUFGP_F

Fast
implementation of
clock; using
dedicated pad

BUFGS*

No pad delay
included

BUFGS_F

Fast
implementation of
clock; using
dedicated pad

* Indicates that you must instantiate this primitive.

/O Primitives

This section lists the 1/0 primitives, which include input buffers,
input buffers with D flip-flop, input buffers with inverted latch,
output buffers, 3-state output buffers, 3-state output buffers with

D flip-flop, output buffers with D flip-flop, and bidirectional buffers.

Note: 1/0 buffers with flip-flops or latches are not available for the

XC4000H libraries.

XACT Development System

XC4000/A/D/H Primitives and Hard Macros

Table B-15 Input Buffers

Name Outputs Inputs Notes
IBUF o I
IBUF_U* O I Unbonded pad

* Indicates that you must instantiate this primitive.

Table B-16 Input Buffers — XC4000H Only

Name Outputs Inputs Notes
IBUF_CMOS O CMOS-compatible
level
IBUF_TTL @] TTL-compatible
level

Table B-17 Input Buffers and D Flip-Flop

Name Outputs Inputs Notes

IFD Q D,C

IFD_F Q D, C Includes
NODELAY
attribute

IFD_U* Q D,C Unbonded pad

IFDI* Q D,C INIT=S; inverted
Global Reset

IFDI_F* Q D,C Includes
NODELAY
attribute; INIT=S;
inverted Global
Reset

IFDI_U* Q D,C Unbonded pad;
INIT=S; inverted
Global Reset

* Indicates that you must instantiate this primitive.

Xilinx Synopsys Interface FPGA User Guide

B-9

Xilinx Synopsys Interface FPGA User Guide

Table B-18 Input Buffers and D Latch with Inverted Latch

Name Outputs Inputs Notes

ILD_1 Q D, G

ILD_1F Q D, G NODELAY
attribute added

ILD_1U* Q D, G Unbonded pad

ILDI_1 Q D, G Inverted Global
Reset

ILDI_1F Q D, G NODELAY
attribute added;
inverted Global
Reset

ILDI_1U* Q D, G Unbonded pad;
inverted Global
Reset

* Indicates that you must instantiate this primitive.
Table B-19 Output Buffers
Name Outputs Inputs Notes

OBUF (0] |

OBUF_F (0] | Fast slew rate

OBUF_S (0] | Slow slew rate

OBUF_U* (0] | Unbonded pad

* Indicates that you must instantiate this primitive.

Table B-20 Output Buffers — XC4000A Only

Name Outputs Inputs Notes
OBUF_MF O | Medium-fast slew
rate
OBUF_MS O | Medium-slow
slew rate

B-10

XACT Development System

XC4000/A/D/H Primitives and Hard Macros

Table B-21 Output Buffers — XC4000H Only

Name Outputs Inputs Notes

OBUF_CMOSCAP o | CMOS-
compatible,
capacitive slew
rate

OBUF_CMOSRES o] | CMOSs-
compatible,
resistive slew
rate

OBUF_TTLCAP @] | TTL-compatible,
capacitive slew
rate

OBUF_TTLRES @] | TTL-compatible,
resistive slew
rate

Table B-22 3-State Output Buffers
Name Outputs Inputs Notes

OBUFT O LT

OBUFT_F @] I, T Fast slew rate

OBUFT_S @) I, T Slow slew rate

OBUFT_U* @] I, T Unbonded pad

* Indicates that you must instantiate this primitive.

Table B-23 3-State Output Buffers — XC4000A Only

Name Outputs Inputs Notes
OBUFT_MF @] I, T Medium-fast
slew rate
OBUFT_MS @] I, T Medium-slow
slew rate

Xilinx Synopsys Interface FPGA User Guide B-11

Xilinx Synopsys Interface FPGA User Guide

B-12

Table B-24 3-State Output Buffers — XC4000H Only

Name

Outputs

Inputs

Notes

OBUFT_CMOSCAP

o

I, T

CMOS-
compatible,
capacitive slew
rate

OBUFT_CMOSRES

CMOS-
compatible,
resistive slew
rate

OBUFT_TTLCAP

TTL-compatible,
capacitive slew
rate

OBUFT_TTLRES

TTL-compatible,
resistive slew
rate

Table B-25 3-State Output Buffers with D Flip-Flop

Name Outputs Inputs Notes
OFDT @) D,CT
OFDT_F O D,CT Fast slew rate
OFDT_S O D,CT Slow slew rate
OFDT_U* 0] D,CT Unbonded pad

* Indicates that you must instantiate this primitive.

Table B-26 3-State Output Buffers with D Flip-Flop — XC4000A

Only
Name Outputs Inputs Notes
OFDT_MF O D,CT Medium-fast slew
rate
OFDT_MS O D,CT Medium-slow slew
rate

XACT Development System

XC4000/A/D/H Primitives and Hard Macros

Table B-27 3-State Output Buffers with D Flip-Flop and Inverted

Global Reset
Name Outputs Inputs Notes
OFDTI* O D,CT
OFDTI_F* O D,CT Fast slew rate
OFDTI_S* (0] D,CT Slow slew rate
OFDTI_U* (0] D,CT Unbonded pad

* Indicates that you must instantiate this primitive.

Table B-28 3-State Output Buffers with D Flip-Flop and Inverted

Global Reset — XC4000A Only

Name Outputs Inputs Notes
OFDTI_MF* (@] D,CT Medium-fast slew
rate
OFDTI_MS* (0] D,CT Medium-slow slew
rate

* Indicates that you must instantiate this primitive.

Table B-29 Output Buffers with D Flip-Flop

Name Outputs Inputs Notes
OFD Q D, C
OFD_F Q D, C Fast slew rate
OFD_FU* Q D,C Fast slew rate;
unbonded pad
OFD_S Q D, C Slow slew rate
OFD_U* Q D,C Unbonded pad

* Indicates that you must instantiate this primitive.

Xilinx Synopsys Interface FPGA User Guide

B-13

Xilinx Synopsys Interface FPGA User Guide

Table B-30 Output Buffers with D Flip-Flop — XC4000A Only

Name Outputs Inputs Notes
OFD_MF Q D,C Medium-fast slew
rate
OFD_MS Q D,C Medium-slow slew

rate

Table B-31 Output Buffers with D Flip-Flop and Inverted Global

Reset

Name Outputs Inputs Notes
OFDI* Q D,C
OFDI_F* Q D, C Fast slew rate
OFDI_S* Q D, C Slow slew rate
OFDI_U* Q D, C Unbonded pad

* Indicates that you must instantiate this primitive.

Table B-32 Output Buffers with D Flip-Flop and Inverted Global
Reset — XC4000A Only

Name Outputs Inputs Notes
OFDI_MF* Q D, C Medium-fast slew
rate
OFDI_MS* Q D, C Medium-slow slew
rate

* Indicates that you must instantiate this primitive.

Table B-33 Bidirectional Buffers

Inputs/
Name Outputs Outputs Inputs Notes
IOBUF O 10 I, T Slow slew
rate

XACT Development System

XC4000/A/D/H Primitives and Hard Macros

Inputs/
Name Outputs Outputs Inputs Notes
IOBUF_N_F @] 10 I, T Fast output
slew rate
IOBUF_N_S 0] 10 T Slow output
slew rate
Table B-34 Bidirectional Buffers — XC4000A Only
Inputs/
Name Outputs Outputs Inputs Notes
IOBUF_N_MF @) 10 I, T Medium-fast
output slew
rate
IOBUF_N_MS o] 10 LT Medium-
slow output
slew rate
Table B-35 Bidirectional Buffers — XC4000H Only
Inputs/
Name Outputs Outputs Inputs Notes
IOBUF_CMOS_CMOSCAP |O 10 LT CMOS input threshold;
CMOS output level,
capacitive slew rate
IOBUF_CMOS CMOSRES |O 10 LT CMOS input threshold;
CMOS output level;
resistive slew rate
IOBUF_TTL_CMOSCAP o] 10 I, T TTL input threshold;
CMOS output level,
capacitive slew rate
IOBUF_TTL_CMOSRES (0] 10 LT TTL input threshold;
CMOS output level,
resistive slew rate

Xilinx Synopsys Interface FPGA User Guide

B-15

Xilinx Synopsys Interface FPGA User Guide

Inputs/
Name Outputs Outputs Inputs Notes
IOBUF_TTL_TTLCAP O 10 I, T TTL input threshold;
TTL output level;
capacitive slew rate
IOBUF_TTL_TTLRES 0 10 I, T TTL input threshold;
TTL output level;
resistive slew rate

Special Functions

This section lists special functions, which include the boundary scan,
readback, startup, mapping, flag cells, power, and ground primitives.

Table B-36 Boundary-Scan Logic Controller

Name Outputs Inputs Notes
BSCAN TDO, TDI, TMS, |No delay
DRCK, TCK,
IDLE, TDO1,
SEL1, TDO?2,
SEL2,
MD1 O Output pad for
BSCAN
TDO O Output pad for
BSCAN
MDO | Input pad for
BSCAN
MD2 | Input pad for
BSCAN
TCK | Input pad for
BSCAN
TDI | Input pad for
BSCAN
TMS | Input pad for
BSCAN

B-16

XACT Development System

XC4000/A/D/H Primitives and Hard Macros

Note: Do not connect an IBUF to the TCK, TDI, or TMS input pads.

Similarly, do not connect an OBUF to the TDO output. You must
connect MDO0 and MD2 to an IBUF symbol. Similarly, you must

connect an MD1 pad to an OBUF symbol.

Table B-37 LCA Bitstream Readback Boundary-Scan Logic
Controller (for Readback Function)

Name Outputs Inputs Notes
RDBK DATA, TRIG No delay
RIP

Table B-38 Readback Controller (for Readback Function)

Name Outputs Inputs Notes
RDCLK | No delay
Table B-39 Readback Function
Name Outputs Inputs Notes
READBACK DATA, CLK, TRIG | No delay
RIP
Table B-40 Startup and Configuration Controller
Name Outputs Inputs
STARTUP Q2, Q3, Q1Q4, GSR, GTS, CLK
DONEIN

Table B-41 Internal 5-Frequency Clock Signal Generator

Name

Outputs

Notes

0OSC4
F490, F15

F8M, F500K, F16K,

No delay

Xilinx Synopsys Interface FPGA User Guide

B-17

Xilinx Synopsys Interface FPGA User Guide

Table B-42 Mapping Primitives

Name Inputs Notes
FMAP_PUC 14,13, 12, 11, Pins unlocked from signals;
0] function generator closed to
additional logic
FMAP_PLC 14,13, 12, 11, Pins locked to external
O signals; function generator
closed to additional logic
FMAP_PUO 14,13, 12, 11, Pins unlocked from signals;
0] function generator open to
additional logic
FMAP_PLO 14,13, 12, 11, Pins locked to external
O signals; function generator
open to additional logic
HMAP_PUC 13,12,11, 0 Pins unlocked from signals;
function generator closed to
additional logic

Table B-43 Flag Cells

Cell Inputs Description
C_FLAG | Signal is on a critical path.
N_FLAG | Signal timing is not critical.
S_FLAG | Save signal; treat it as an
external connection.
X FLAG | Signal is an explicit LCA net.

Table B-44 Power/Ground

Name Outputs

VCC VCC
GND GROUND

B-18 XACT Development System

XC4000/A/D/H Primitives and Hard Macros

X-BLOX Modules

The DesignWare module naming conventions are illustrated in
Figure B-44. The example provided is for a comparator module and
contains the four possible components used in naming the modules.
Other module names may not contain all four components. Refer to
Table B-45 for a description of each component.

Module Type
Magnitude and Equality

Data Type

Bus Width

COMP_LE_UBIN_#

__T_

Figure B-44 DesignWare Module Naming Conventions

Table B-45 DesignWare Module Naming Conventions

ADD_SUB Adder/Subtracter
Module COMP Comparator
Type
INC_DEC Incrementer/Decrementer
GE Greater than or equal to
Magnl':jude GT Greater than
an
Equality LE Less than or equal to
LT Less than
Data TWO_COMP | Twos complement
Type UBIN Unsigned binary
Bus width can be 6, 8, 10, 12, 14, 16,
20, 24, 28, 32, or 48 (and 64 for COMP
BUS only).

Width Use <(#-1):0> to translate bus width
to bus notation. For example, if Bus A
has a bus width of 6, then the correct
bus notation is A<(6-1):0> or A<5:0>.

Xilinx Synopsys Interface FPGA User Guide

B-19

Xilinx Synopsys Interface FPGA User Guide

Table B-46 maps DesignWare modules to X-BLOX Modules and
provides inputs and outputs.

Table B-46 DesignWare Modules

X-BLOX

DesignWare Module Module

Inputs

Outputs

ADD_SUB_TWO_COMP_# | ADD_SUB

ADD_SUB_UBIN_#

C_IN, ADD_SUB,
B<(#-1):0>, A<(#-1):0>

FUNC<(#-1):0>

C_IN, ADD_SUB,
B<(#-1):0>, A<(#-1):0>

FUNC<(#-1):0>

COMP_GE_TWO_COMP_#
COMP_GE_UBIN_#
COMP_GT_TWO_COMP_#
COMP_GT_UBIN_# COMPARE
COMP_LE_TWO_COMP_#
COMP_LE_UBIN_#
COMP_LT_TWO_COMP_#
COMP_LT_UBIN_#

B<(#-1):0>, A<(#-1):0>

B<(#-1):0>, A<(#-1):0>

B<(#-1):0>, A<(#-1):0>

B<(#-1):0>, A<(#-1):0>

B<(#-1):0>, A<(#-1):0>

B<(#-1):0>, A<(#-1):0>

B<(#-1):0>, A<(#-1):0>

B<(#-1):0>, A<(#-1):0>

NIN|NINININININ

INC_DEC_TWO_COMP_# |INC_DEC
INC_DEC_UBIN_#

INC_DEC, A<(#-1):0>

FUNC<(#-1):0>

INC_DEC, A<(#-1):0>

FUNC<(#-1):0>

XC4000 Hard Macros

Synopsys cannot synthesize the following hard macros. You must
instantiate them into your HDL code. However, hard macros are
obsolete. Refer to the introductory material at the beginning of this
chapter for more information on converting hard macros to RPMs,
which are supported by XACT V5.0 or later.

Table B-47 8-Bit Accumulator with Overflow

Name

Inputs Outputs

CLB Usage

ACC8H* A<7.0>,R,C

Q<7:0>, OFL | 6

* Indicates that you must instantiate this primitive.

B-20

XACT Development System

XC4000/A/D/H Primitives and Hard Macros

Table B-48 16-Bit Accumulator with Overflow

Name Inputs Outputs CLB Usage
ACC16H* A<15.0>, R, Q<15:0>, 10
C OFL
Table B-49 8-Bit Adder/Subtracter with Overflow
Name Inputs Outputs CLB Usage
ADSU8H* A<T.0>, S<7:0>, OFL 6
B<7:0>, ADD
Table B-50 16-Bit Adder/Subtracter with Overflow
Name Inputs Outputs CLB Usage
ADSU16H* A<15:0>, S<15:0>, 10
B<15:0>, OFL
ADD
Table B-51 8-Bit Identity Comparator
Name Inputs Outputs CLB Usage
COMP8H* A<7:.0>, EQ 2
B<7:0>
Table B-52 16-Bit Identity Comparator
Name Inputs Outputs CLB Usage
COMP16H* A<15:0>, EQ 5
B<15:0>
* Indicates that you must instantiate this primitive.
B-21

Xilinx Synopsys Interface FPGA User Guide

Xilinx Synopsys Interface FPGA User Guide

B-22

Table B-53 8-Bit Magnitude Comparator

Name Inputs Outputs CLB Usage
COMPM8H* A<T7.0>, GE, LT 5
B<7:0>
Table B-54 16-Bit Magnitude Comparator
Name Inputs Outputs CLB Usage
COMPM16H* A<15:0>, GE, LT 9
B<15:0>
Table B-55 8-Bit Parallel Up Counter
Name Inputs Outputs CLB Usage
CUP8H* D<7:0>, PE, Q<7:.0>, TC 5
CE,RD, C
Table B-56 16-Bit Parallel Up Counter
Name Inputs Outputs CLB Usage
CUP16H* D<15:0>, PE, | Q<15:.0>,TC | 9
CE,RD, C
Table B-57 Hex-to-7-Segment Decoder
Name Inputs Outputs CLB Usage
D7SEGH* A3, A2, Al, A,B,C,DE, |6
A0, RBI F, G, RBO

* Indicates that you must instantiate this primitive.

XACT Development System

XC4000/A/D/H Primitives and Hard Macros

Table B-58 Hex-to-7-Segment Decoder Military

Name Inputs Outputs CLB Usage
D7SEGMH* A3, A2, Al, A /B C,D,E, |6
A0, RBI F, G, RBO
Table B-59 2-to-4 Decoder with Enable
Name Inputs Outputs CLB Usage
DEC2_4EH* Al, A0, EN 03,02, 01, 2
00
Table B-60 3-t0-8 Decoder with Enable
Name Inputs Outputs CLB Usage
DEC3_8EH* A2, Al, A0, O<7:.0> 4
EN
Table B-61 8-to-3 Priority Encoder
Name Inputs Outputs CLB Usage
ENCPR8H* I<7:.0>, El A2, Al, A0, 4
EO
Table B-62 4-to-1 Multiplexer
Name Inputs Outputs CLB Usage
MUX4_1H* D3, D2, D1, (0] 1
DO, S1, SO
* Indicates that you must instantiate this primitive.
B-23

Xilinx Synopsys Interface FPGA User Guide

Xilinx Synopsys Interface FPGA User Guide

Table B-63 8-to-1 Multiplexer

Name Inputs Outputs CLB Usage
MUX8_1H* D<7:0>, S2, 0] 3
S1, S0
Table B-64 16-to-1 Multiplexer
Name Inputs Outputs CLB Usage
MUX16_1H* D<15:0>,S3, | O 5
S2, 51, S0
Table B-65 9-Bit Even Parity Generator
Name Inputs Outputs CLB Usage
PARE9H* 1<9:1> EVE 1
Table B-66 9-Bit Odd Parity Generator
Name Inputs Outputs CLB Usage
PARO9H* 1<9:1> OoDD 1
Table B-67 Divide by 8/9 Prescaler
Name Inputs Outputs CLB Usage
PRSC8 9H* DIV9, CKI CKO 2

Table B-68 8-Bit Register with Clock Enable and Reset Direct

Name Inputs Outputs CLB Usage
RD8H* D<7:0>, CE, Q<7:0> 4
RD, C

* Indicates that you must instantiate this primitive.

XACT Development System

XC4000/A/D/H Primitives and Hard Macros

Table B-69 16-Bit Register with Clock Enable and Reset Direct

Name Inputs Outputs CLB Usage
RD16H* D<15:0>, Q 8
CE,RD, C
Table B-70 16 x 2 RAM (16 deep x 2 wide)
Name Inputs Outputs CLB Usage
RM16X2H* D1, DO, A3, 01, 00 1
A2, A1, A0,
WE
Table B-71 16 x 4 RAM (16 deep x 4 wide)
Name Inputs Outputs CLB Usage
RM16X4H* D3, D2, D1, 03,02, 01, 2
DO, A3, A2, 00
Al, A0, WE
Table B-72 16 x 8 RAM (16 deep x 8 wide)
Name Inputs Outputs CLB Usage
RM16X8H* D<7:0>, A3, O<7.0> 4
A2, Al, A0,
WE
Table B-73 32 x 4 RAM (32 deep x 4 wide)
Name Inputs Outputs CLB Usage
RM32X4H* D3, D2, D1, 03,02, 01, 4
DO, A4, A3, 00
A2, A1, A0,
WE
* Indicates that you must instantiate this primitive.
B-25

Xilinx Synopsys Interface FPGA User Guide

Xilinx Synopsys Interface FPGA User Guide

B-26

Table B-74 32 x 8 RAM (32 deep x 8 wide)

Name Inputs Outputs CLB Usage
RM32X8H* D<7:0>, A4, O<7:0> 8
A3, A2, Al,
A0, WE
Table B-75 64 x 4 RAM (64 deep x 4 wide)
Name Inputs Outputs CLB Usage
RM64X4H* D3, D2, D1, 03,02, 01, 11
DO, A5, A4, 00
A3, A2, Al
A0, WE
Table B-76 64 x 8 RAM (64 deep x 8 wide)
Name Inputs Outputs CLB Usage
RM64X8H* D<7:0>, A5, O<7:0> 21
A4, A3, A2,
Al, A0, WE
Table B-77 128 x 4 RAM (128 deep x 4 wide)
Name Inputs Outputs CLB Usage
RM128X4H* D3, D2, D1, 03,02, 01, 22
DO, A6, A5, 00
A4, A3, A2,
Al, A0, WE

* Indicates that you must instantiate this primitive.

XACT Development System

XC4000/A/D/H Primitives and Hard Macros

Table B-78 128 x 8 RAM (128 deep x 8 wide)

Name Inputs Outputs CLB Usage
RM128X8H* D<7:0>, A6, O<7:.0> 42
A5, A4, A3,
A2, Al, A0,
WE

Table B-79 8-Bit Parallel Loadable Serial Shift Register

Name Inputs Outputs CLB Usage
RS8PH* D<7:0>, Q<7:.0> 5
SERIN, PE,
CE,RD, C

Table B-80 16-Bit Parallel Loadable Serial Shift Register

Name Inputs Outputs CLB Usage
RS16PH* D<15:0>, Q 9
SERIN, PE,
CE,RD, C

* Indicates that you must instantiate this primitive.

Xilinx Synopsys Interface FPGA User Guide B-27

Xilinx Synopsys Interface FPGA User Guide

B-28 XACT Development System

Selection Guide

Xilinx
Synopsys
Interface
FPGA User
Gulide

Xilinx Synopsys Interface FPGA User Guide — December, 1994 (0401291 01) Printed in U.S.A.

Xilinx Synopsys Interface FPGA User Guide

XACT Development System

Appendix C

Selection Guide

Use the tables in this section to determine if the primitives and
macros used to create pre-XACT 5.0 designs have changed or become
obsolete. The following tables list the exact or closest Unified
Libraries replacement primitive where applicable. Additionally, the
tables indicate if the primitive is obsolete and if the pin description
has changed. A complete pin description for each primitive is
provided in either Appendix A, “XC3000/A/L and XC3100/A
Primitives, or Appendix B, “XC4000/A/D/H Primitives and Hard
Macros.”

XC3000/A/L and XC3100/A Primitives

This section lists XC3000/A/L and XC3100/A primitives.

Note: The footnote explanations appear at the end of Table C-1.

Table C-1 XC3000/XC3100 Primitives/Macros

Exact Unified Closest Pin
XC3000 Primitive Name Unified Obsolete 1
Replacement Change
Replacement
ACLK ACLK_F No
ACLK_NP ACLK No
AND2 Yes
AND3 Yes
AND4 Yes
AND5 Yes
BUF No
C_FLAG No

Xilinx Synopsys Interface FPGA User Guide — December, 1994 (0401291 01) C-1

Xilinx Synopsys Interface FPGA User Guide

o Exact Unified Clo_s_est Pin
XC3000 Primitive Name Replacement Unified Obsolete Change!
Replacement
CLBMAP_PLC No
CLBMAP_PLO No
CLBMAP_PUC No
CLBMAP_PUO No
DFF FDC Yes
FDC FDCE Yes
FDCRD FDCE Yes
FDRD FDC Yes
GCLK GCLK_F No
GCLK_NP GCLK No
GND Yes
GXTL No
IBUF No
IBUF42 IBUF Yes
IBUF82 IBUF Yes
IBUF16° IBUF Yes
IBUF322 IBUF Yes
INFF IFD Yes
INFF42 IFD Yes
INFF82 IFD Yes
INFF162 IFD Yes
INFF322 IFD Yes
INFF_U IFD_U Yes
INLAT ILD Yes
INLAT4? ILD Yes
INLATS? ILD Yes
INLAT16? ILD Yes
INLAT322 ILD Yes
INV No
LD Yes
LDRD LDC Yes
LDSD LDP Yes
C-2 XACT Development System

Selection Guide

L Exact Unified Clo_s_est Pin
XC3000 Primitive Name Replacement Unified Obsolete Change 1
Replacement
L_FLAG No
NAND?2 Yes
NAND3 Yes
NAND4 Yes
NAND5 Yes
NDFF FDCE Yes
NOR2 Yes
NOR3 Yes
NOR4 Yes
NOR5 Yes
N_FLAG No
OBUF No
OBUF_F No
OBUF4_F2 OBUF_F Yes
OBUF8_F? OBUF_F Yes
OBUF16_F2 OBUF_F Yes
OBUF32_F2 OBUF_F Yes
OBUFT No
OBUFT_F No
OBUFT4_F OBUFT_F Yes
OBUFT8_F2 OBUFT_F Yes
OBUFT16_F? OBUFT_F Yes
OBUFT32_F? OBUFT_F Yes
OR2 Yes
OR3 Yes
OR4 Yes
OR5 Yes
osc No
OUTFF OFD No
OUTFF4_F? OFD_F Obsolete | No
OUTFF8_F? OFD_F No
OUTFF16_F2 OFD_F No
Xilinx Synopsys Interface FPGA User Guide C-3

Xilinx Synopsys Interface FPGA User Guide

_— Exact Unified CIo_s_est Pin
XC3000 Primitive Name Replacement Unified Obsolete Change 1
Replacement
OUTFF32_F? OFD_F No
OUTFFT OFDT No
OUTFFT4_F? OFDT_F No
OUTFFT8_F2 OFDT_F No
OUTFFT16_F? OFDT F No
OUTFFT32_F? OFDT_F No
OUTFFT_F OFDT_F No
OUTFF_F OFD_F No
OUTFF_U OFD_U No
OUTFF_UF OFD_FU No
PULLUP For 170, use PULLUP; for others, use BUS PULLUP
PWR VCC Yes
S_FLAG No
TBUF BUFT No
TBUF_F BUFT Obsolete No
TBUF_P BUFT No
XNOR?2 Yes
XNOR3 Yes
XNOR4 Yes
XNOR5 Yes
XOR2 Yes
XOR3 Yes
XOR4 Yes
XOR5 Yes
X_FLAG No

1. A pin change is a pin name change and/or a pin order change. Refer to Appendix A
for the pin description.

2. These primitives were provided for instantiation in the previous release of Synopsys;
in the current version, Synopsys can automatically infer these primitives. The bused
versions of 1/0 primitives have been removed from the libraries because manual
instantiation is not recommended. For more information, see the “Configuring the
10Bs” section in the “Using the Design Compiler” chapter or the “Using the FPGA
Compiler” chapter.

C-4 XACT Development System

Selection Guide

XC4000/A/D/H Primitives

This section lists XC4000/A/D/H primitives.

Note: The footnote explanations appear at the end of Table C-2.

Table C-2 XC4000 Primitives/Macros

o E)fa}ct CIo.s.est Pin
XC4000 Primitive Name Unified Unified Obsolete Change !
Replacement Replacement
ACC8H No
ACC16H No
ADD_SUB_CO _TWO_COMP_#2 Obsolete
ADD_SUB_CO_UBIN_#? Obsolete
ADD_SUB_TWO_COMP_#? Obsolete
ADD_SUB_UBIN_#2 Obsolete
ADSUSH No
ADSU16H No
AND?2 Yes
AND3 Yes
AND4 Yes
AND5 Yes
BSCAN No
BUF Obsolete
BUFGP BUFGP_F No
BUFGS BUFGS_F No
BUFGS_NP BUFGS No
COMP8H No
COMP16H No
COMPMS8H No
COMPM16H No
COMP_GE_TWO_COMP_#3 Obsolete
COMP_GE_UBIN_#? Obsolete
COMP_GT_TWO_COMP_#3 Obsolete
COMP_GT_UBIN_#® Obsolete
COMP_LE_TWO_COMP_#3 Obsolete

Xilinx Synopsys Interface FPGA User Guide C-5

Xilinx Synopsys Interface FPGA User Guide

o E)fe_lct Clo_s_est Pin
XC4000 Primitive Name Unified Unified Obsolete 1
Replacement Replacement Change

COMP_LE_UBIN_#3 Obsolete
COMP_LT_TWO_COMP_#° Obsolete
COMP_LT_UBIN_#3 Obsolete

CUP8H No
CUP16H No
C_FLAG No
D7SEGH No
D7SEGMH No
DEC2_4EH No
DEC3_8EH No
ENCPR8H No
FDRD FDCE Yes
FDRDE FDC Yes
FDSD FDPE Yes
FDSDE FDP Yes
FMAP_PLC No
FMAP_PLO No
FMAP_PUC No
FMAP_PUO No
GND Yes
HMAP_PUC No
IBUF No
IBUF4* IBUF Yes
IBUF8* IBUF Obsolete

IBUF16* IBUF

IBUF32* IBUF

IBUFT4_F* Obsolete
IBUFT8_F* Obsolete
IBUFT16_F* Obsolete
IBUFT32_F* Obsolete

INFF IFD Yes
INFF4* IFD Yes

C-6 XACT Development System

Selection Guide

o E)fe_\ct Clo_s_est Pin
XC4000 Primitive Name Unified Unified Obsolete 1
Replacement Replacement Change

INFF8* IFD Yes
INFF16* IFD Yes
INFF32* IFD Yes
INFF_F IFD_F Yes
INFF_FS IFDI_F Yes
INFF_S IFDI Yes
INFF_U IFD_U Yes
INLAT ILD_1 Yes
INLAT4* ILD_1

INLAT8* ILD_1

INLAT16% ILD_1

INLAT32* ILD_1

INLAT_F ILD_1F Yes
INLAT_FS ILDI_1F Yes
INLAT_S ILDI_1 Yes
INREG Obsolete

INREG4 Obsolete

INREGS8 Obsolete

INREG16 Obsolete

INREG32 Obsolete

INREG_F Obsolete
INREG_FS Obsolete

INREG_S Obsolete

INV No
LD® LD_1 Yes
LDE® LD 1

LDRD® LDC_1 Yes
LDSD® LDP_1 Yes
MDO No
MD1 No
MD2 No
MUX4_1H No

Xilinx Synopsys Interface FPGA User Guide C-7

Xilinx Synopsys Interface FPGA User Guide

o Ega_lct Clo_s_est Pin
XC4000 Primitive Name Unified Unified Obsolete Change 1
Replacement Replacement
MUX8_1H No
MUX16_1H No
NAND?2 Yes
NAND3 Yes
NAND4 Yes
NANDS5 Yes
NOR2 Yes
NOR3 Yes
NOR4 Yes
NOR5 Yes
N_FLAG No
OBUF No
OBUFg* OBUF
OBUF16* OBUF
OBUF32* OBUF
OBUF_F No
OBUFT No
OBUFT_F No
OR2 Yes
OR3 Yes
OR4 Yes
OR5 Yes
0sc4 No
OUTFF OFD No
OUTFF_F OFD_F No
OUTFF4_F* OFD F
OUTFF8_F* OFD_F
OUTFF16_F* OFD_F
OUTFF32_F*
OUTFF_S OFDI No
OUTFF_U OFD_U No
OUTFF_FS OFDI_F No

C-8 XACT Development System

Selection Guide

o E)fa_lct Clons_est Pin
XC4000 Primitive Name Unified Unified Obsolete Change X
Replacement Replacement

OUTFF_UF OFD_FU No
OUTFFT OFDT No
OUTFFT_F OFDT_F No
OUTFFT4_F* OFDT_F

OUTFFT8_F* OFDT F

OUTFFTlG_F4 OFDT_F

OUTFFT32_F4 OFDT_F

OUTFFT_S OFDTI No
OUTFFT_FS OFDTIL_F No
PARESH No
PARO9H No
PRSC8_9H No
PULLDOWN Yes
PULLUP Yes
PWR VCC Yes
RAM16X1 No
RAM32X1 No
RD8H No
RD16H No
RDBK No
RDCLK No
READBACK No
RM16X2H No
RM16X4H No
RM16X8H No
RM32X4H No
RM32X8H No
RM64X4H No
RM64X8H No
RM128X4H No
RM128X8H No
RS8PH No

Xilinx Synopsys Interface FPGA User Guide C-9

Xilinx Synopsys Interface FPGA User Guide

o E)fa_lct CIo_s_est Pin
XC4000 Primitive Name Unified Unified Obsolete Change 1
Replacement Replacement
RS16PH No
STARTUP No
S_FLAG No
TBUF BUFT No
TBUF_F BUFT Obsolete
TBUF_P BUFT
TCK No
TDI No
TDO No
TMS No
WAND1 No
WAND1 D Obsolete
WAND1 F Obsolete
WAND1 FD Obsolete
WAND1_P Obsolete
WAND1 PD Obsolete
WOR2AND No
WOR2AND_F Obsolete
WOR2AND_P Obsolete
XNOR2 Yes
XNOR3 Yes
XNOR4 Yes
XNOR5 Yes
XOR2 Yes
XOR3 Yes
XOR4 Yes
XOR5 Yes
X_FLAG No
1. A pin change is a pin name change and/or a pin order change. Refer to Appendix B
for the pin description.
2. The # symbol represents a bus width equal to 9, 15, 17, 21, 25, 29, 33, 37, 45, 49, 57, or
g.All'he # symbol represents a bus width equal to 9, 15, 17, 21, 25, 29, 33, 37, 45, 49, or 57.
C-10 XACT Development System

Selection Guide

4. These primitives were provided for instantiation in the previous release of Synopsys;
in the current version, Synopsys can automatically infer these primitives. The bused
versions of 170 primitives have been removed from the libraries because manual
instantiation is not recommended. For more information, see the “Configuring the
10Bs” section in the “Using the Design Compiler” chapter or the “Using the FPGA
Compiler” chapter.

5. The XC4000 libraries contain transparent low latches (LD_1, LDC_1, and LDP_1).
Synopsys requires that the CLB latch match the transparent low IOB latch to support
pad mapping. To obtain a transparent high latch, invert the G pin.

Xilinx Synopsys Interface FPGA User Guide C-11

Xilinx Synopsys Interface FPGA User Guide

C-12 XACT Development System

Index

Xilinx
Synopsys
Interface
FPGA User
Gulide

Xilinx Synopsys Interface FPGA User Guide — December, 1994 (0401291 01) Printed in U.S.A.

Xilinx Synopsys Interface FPGA User Guide

XACT Development System

Index

Symbols
.synopsys_dc.setup file see startup file
.Synopsys_vss.setup, 7-2

Numerics
3-state buffers
XC3000 devices, A-4
XC4000 devices, B-4
3-state output
Design Compiler, 6-15
FPGA Compiler, 5-15
3-state output buffers
XC4000 devices, B-11
XC4000A devices, B-11
XC4000H devices, B-12

A
ADD_SUB, 5-47, 6-55
All Inputs command, 5-12, 6-11
All Outputs command, 5-13, 6-12
Analyze File dialog box, 3-9, 4-8
Analyze window, 3-10, 4-9
AND gates

XC3000 devices, A-3

XC4000 devices, B-3
APR see XACT Reference Guide
area utilization report, 5-65

creating, 3-24, 4-22

output, 3-26, 4-24

B

bidi_reg.script
Verilog, 5-25, 6-25
VHDL, 5-23, 6-23

bidi_reg.v, 5-21, 6-21

bidi_reg.vhd, 5-20, 6-20
bidirectional buffers
XC3000 devices, A-8
XC4000 devices, B-14
XC4000A devices, B-15
XC4000H devices, B-15
bidirectional 1/0s, inserting, 5-19, 6-19
BLKNM attributes
purpose, 5-73
removing, 5-73
boundary scan
Design Compiler, 6-38
FPGA Compiler, 5-37
BSCAN primitive, B-16
BSCAN symbol, 5-37, 6-39
buffers
3-state
XC3000 devices, A-8
XC4000 devices, B-11
XC4000A devices, B-11
XC4000H devices, B-12
bidirectional
XC3000 devices, A-8
XC4000 devices, B-14
XC4000A devices, B-15
XC4000H devices, B-15
generic see also clock buffers, A-4, B-4
input
with D flip-flop, B-9
with inverted latch, B-10
XC3000 devices, A-7
XC4000 devices, B-9
XC4000H devices, B-9

Xilinx Synopsys Interface FPGA User Guide — December, 1994 (0401291 01)

Xilinx Synopsys Interface FPGA User Guide

output
XC3000 devices, A-7
XC4000 devices, B-10, B-13
XC4000A devices, B-10, B-14
XC4000H devices, B-11

Bus Selector dialog box, 3-17, 4-15

C

capacitive load, 5-14, 6-13

cells see primitives

CLBMAP primitives, A-9

CLBs
area report, 6-65
configuration report, 5-66
designs without hierarchy, 5-56
flattening the design, 5-54
generating schematic, 5-69
hierarchical designs, 5-55
implementing memory, 5-31, 6-32
mapped, 6-66
optimizing, 5-54, 6-55
removing mapping, 5-73
replacing with gates, 5-72
reset, global

using GSR net, 5-38, 6-39
using RESET pin, 6-48

timing report, 5-65, 6-66
unmapped, 6-66
utilization report, 5-64

clock buffers
alternate, A-6
controlling insertion, 5-27, 6-28
description, 5-26
determining how many, 5-30, 6-31
disabling insertion, 5-30, 6-31
global, A-6, B-8
instantiating, 5-27
primitives for instantiation, A-5, B-8
report, 6-31
XC3000/A/L devices, 6-27
XC3100/A devices, 6-27
XC4000/A/D/H devices, 6-27

clock constraint, setting, 3-20, 4-18
CLR pin, 5-39, 6-41
CMOS thresholds
setting input, 5-12, 6-10
setting output, 5-13, 6-12
Command window, 3-18, 4-16
command.log file, 3-6
COMPARE, 5-47, 6-55
Compile command, 5-54, 6-57
designs with hierarchy, 5-56
designs without hierarchy, 5-56
compiling a design, 5-53, 6-57
converting to gates, 3-29
evaluating the results, 3-22, 4-20
using Design Compiler, 4-19
using FPGA Compiler, 3-21
with
feedthroughs, 5-57, 6-58
hierarchy, 5-56
instantiated 170 cells, 5-57
without hierarchy, 5-56
XC3000 devices, 6-58
XC4000 devices, 5-57, 6-58
XC4000H devices, 5-60, 6-61
configuration, software, 2-1
constraints file see XACT Libraries Guide
count8.dly, 3-46, 4-44
count8.rpt, 3-39, 3-44, 4-42
count8.script
Verilog HDL, 3-34, 4-33
VHDL, 3-33, 4-32
count8.timing, 3-28, 4-27
count8.v, 3-6, 4-5
count8.vhd, 3-5, 4-4, 7-5
count8_tb.vhd, 7-8
Create Clock command, 5-50
CST file see XACT Libraries Guide

D

D flip-flops
XC3000 devices, A-5
XC4000 devices, B-7

XACT Development System

Index

DB file, 5-71, 6-67 primitives inferred automatically,
DC Shell, 8-6 6-6
dc.script, 6-60 XC4000H, 6-10
dc3k.synopsys_dc.setup, 2-12 libraries, 6-2, 8-12
dc4dk.synopsys_dc.setup, 2-8 part types, setting, 6-68
debugging, 5-66 READ parameters, 2-10, 2-14
decoders, B-5 reports
Defaults dialog box, 3-7, 4-6 area, 6-65
delays timing delays, 6-66
removing default, 5-26, 6-26 saving design
timing, 5-65, 6-66 as DB file, 6-67
Derive Clocks command, 5-52 as SEDIF file, 6-68
Design Analyzer search path, 2-9, 2-13
description, 8-6 slew rate
Designs view, 3-24, 4-22 XC3000/A/L devices, 6-14
executing script file, 3-31, 4-30 XC3100/ A devices, 6-14
exiting, 3-31, 4-29 XC4000/D devices, 6-8
invoking, 3-6, 4-5 XC4000A devices, 6-9
Schematic view, 3-23, 4-21 XC4000H devices, 6-12
Symbol view, 3-15, 4-13 startup file (.synopsys_dc.setup), 2-8,
Design Compiler 2-12
before you begin, 6-1 symbol libraries, 2-10, 2-14
clock buffer insertion, 6-26 Syn2XNF, running, 6-69
compiling a design, 6-57 synthetic library, 2-10
with feedthroughs, 6-58 tutorial, 4-1
XC3000 devices, 6-58 use with
XC4000 devices, 6-58 XACT software, 6-72
XC4000H devices, 6-61 XC3000 designs, 2-12
design flow XC4000 designs, 2-8
on different platforms, 6-2 XMake, 6-72
on same platform, 6-2 wire-load models
DesignWare directory, 2-10 changing, 6-5
DesignWare library, 6-54 setting, 6-4
EDIF parameters, 2-10, 2-14 writing the design, 6-67
features, 1-1 design flow
Global Set/Reset (GSR) net, 6-39 Design Compiler, 4-3, 6-1
intermediate files for VSS, 2-10, 2-14 FPGA Compiler, 3-4, 5-2
introduction, 6-1 design implementation for VSS, 7-12
I0B configuration, 6-6 design optimization, 5-53
3-state output, 6-15 Design Optimization dialog box, 3-22, 4-20

bidirectional 1/0s, 6-19

Xilinx Synopsys Interface FPGA User Guide iii

Xilinx Synopsys Interface FPGA User Guide

designs E
analyzing EDIF parameters, 2-10, 2-14
using Design Compiler, 4-7 Elaborate Design dialog box, 3-11, 4-10
using FPGA Compiler, 3-8 Elaborate window, 3-12, 4-11
compiling examples
using Design Compiler, 6-57 area utilization report, 5-65
using FPGA Compiler, 5-53 bidi_reg.script
elaborating Verilog, 5-25, 6-25
using Design Compiler, 4-9 VHDL, 5-23, 6-23
using FPGA Compiler, 3-10 bidi_reg.v, 5-21, 6-21
flattening, 5-54 bidi_reg.vhd, 5-20, 6-20
optimizing bidirectional I/0 insertion
using Design Compiler, 4-17 Verilog HDL, 5-25, 6-25
using FPGA Compiler, 3-19 VHDL, 5-23, 6-23
saving boundary scan symbol, 5-37, 6-39
as DB file, 5-71, 6-67 combinatorial design, 5-55
as SEDIF file, 6-68 count8.dly, 3-46, 4-44
as SXNF file, 5-74 count8.rpt, 3-39, 3-44, 4-42
setting part type, 5-74, 6-68 count8.script
simulation, 7-1 Verilog HDL, 3-34, 4-33
translating VHDL, 3-33, 4-32
using Syn2XNF, 5-74, 6-68 count8.timing, 3-28, 4-27
using XMake, 5-77, 6-72 count8.v, 3-6, 4-5
writing, 5-71 count8.vhd, 3-5, 4-4, 7-5
DesignWare library count8_th.vhd, 7-8
HDL operators, 5-47, 6-54 dc.script, 6-60
installation, 2-2 fpga.script, 5-60
search path, 2-7, 2-11 gate_clock
use with Verilog, 5-28, 6-29
Design Compiler, 6-54 VHDL, 5-28, 6-29
FPGA Compiler, 5-47 gated clock
directory tree, 8-1 after pad insertion, 5-29, 6-30
Disconnect Net command, 5-46, 6-48 schematic, 5-29, 6-30
documentation Verilog, 5-28, 6-29
XACT Development System, 1-3 VHDL, 5-28, 6-29
XSl, 1-2 greset
Don’t Touch attribute Verilog, 6-50
on instantiated 1/0 buffers, 5-57 VHDL, 6-50
on instantiated 1/0 cells, 5-21, 6-21 gsr_ex
use with Synopsys, B-2 Verilog, 5-41, 6-43
Dynamic Waveform Viewer, 7-12, 7-18 VHDL, 5-41, 6-42

iv XACT Development System

Index

hierarchy, merging, 5-55
implementation flow
XC3000A, 4-3
XC4000, 3-4
implementing Global Reset
Verilog, 6-50, 6-54
VHDL, 6-50, 6-52
memory description file, 5-35, 6-37
no output register inferred, 5-17, 6-17
output register inferred, 5-19, 6-19
PPR report file, 3-44, 4-42
register not driving 3-state
Verilog, 5-17, 6-17
VHDL, 5-16, 6-16
Report Cell output, 5-69
ROM
behavioral Verilog, 5-34, 6-35
behavioral VHDL, 5-33, 6-34
rom_memgen.v, 5-36, 6-38
rom_memgen.vhd, 5-36, 6-37
rom16x4_4k
Verilog, 5-34, 6-35
VHDL, 5-33, 6-34
sample script file
XC3000A design, 6-60
XC4000 design, 5-60
XC4000H design (Verilog), 5-64,
6-65
XC4000H design (VHDL), 5-62,
6-63
sequential design, 5-55
test bench file, 7-8
three_ex1
Verilog, 5-17, 6-17
VHDL, 5-16, 6-16
three_ex2
Verilog, 5-19, 6-18
VHDL, 5-18, 6-18
three_ex2.script
Verilog, 5-64
VHDL, 5-62

Xilinx Synopsys Interface FPGA User Guide

thresholds, setting, 5-12
timing report, 3-46, 4-44
top_gsr script file
Verilog, 5-46, 6-48
VHDL, 5-44, 6-46
top_gsr.v, 5-42, 6-44
top_gsr.vhd, 5-42, 6-44
XDelay report, 3-46, 4-44
Execute File dialog box, 3-32, 4-31
exiting
Design Analyzer, 3-31, 4-29
Design Compiler tutorial, 4-2
FPGA Compiler tutorial, 3-2

F
fcdk.synopsys_dc.setup, 2-4
feedthroughs, 5-57, 6-58
file descriptions

ca, 8-5

.mra, 8-5

.script, 8-4

.sedif, 8-5

.sim, 8-5

.sxnf, 8-4

.syn, 8-5

v, 8-4

.vhd, 8-4

Xff, 8-5

xnf, 8-5

directory structure, 8-1

XC3000.sdb, 8-4

XC4000.sdb, 8-4
flag cells

XC3000 devices, A-9

XC4000 devices, B-18
flip-flops

XC3000 devices, A-5

XC4000 devices, B-7
FMAP primitives, B-18
FMAP symbols, removing, 5-73
FPGA Compiler

before you begin, 5-2

Xilinx Synopsys Interface FPGA User Guide

clock buffer insertion, 5-26
compiling a design
purpose, 5-53
with feedthroughs, 5-57
with instantiated 170 cells, 5-57
XC4000 devices, 5-57
XC4000H devices, 5-60
design flow
on different platforms, 5-3
on same platform, 5-2
DesignWare directory, 2-5
DesignWare library
purpose, 5-47
search path, 2-11
features, 1-2
Global Set/Reset (GSR) net, 5-38
hierarchical schematic, 5-69
intermediate files for VSS, 2-5
introduction, 5-1
invoking, 3-21
I0B configuration, 5-8
3-state output, 5-15
bidirectional 1/0s, 5-19
XC4000/A/D, 5-8
XC4000H, 5-11
libraries, 8-11
mapping, 5-73
operating conditions, 5-7
part types, setting, 5-74
READ parameters, 2-6
reports
area, 5-64
configuration, 5-66
debugging, 5-66
timing delays, 5-65
saving design
as DB file, 5-71
as SXNF file, 5-74
search path, 2-5
slew rate
XC4000/D devices, 5-10

Vi

XC4000A devices, 5-10
XC4000H devices, 5-14
startup file, 2-4
symbol libraries, 2-5
Syn2XNF, running, 5-74
synthetic library, 2-5
timing delays, 5-65
timing specifications, 5-50
tutorial, 3-1
use with
XACT software, 5-77
XC3000 devices, 5-4
XMake, 5-77
wire-load models
changing, 5-6
setting, 5-5
writing the design, 5-71
XNF Writer, 5-73
FPGA Compiler dialog box, 3-21
fpga.script, 5-60
functional simulation
analyzing files, 7-9
declaring
configuration, 7-10
signals, 7-12
displaying waveforms, 7-12
invoking VHDL debugger, 7-9
preparing for, 7-5

G
gate_clock
Verilog, 5-28, 6-29
VHDL, 5-28, 6-29
gated clock
after pad insertion, 5-29, 6-30
example, 5-27
report, 5-30, 6-31
schematic, 5-29, 6-30
gates
3-state buffers, A-4, B-4
AND/OR, A-3, B-3
buffers, A-4, B-4

XACT Development System

Index

inverters, A-4, B-4 initial state after configuration,
pull-down resistor, B-6 5-38
pull-up resistors, A-4, B-6 Preset vs. Direct Clear, 5-39
wide 170 decoders, B-5 startup state, 5-38
wired OR-AND, B-5 functional simulation, use in, 7-5
wired-AND, B-5 timing simulation, use in, 7-3
global clock buffers see clock buffers GSR pin, 5-42, 6-43
Global Reset script file gsr_ex
Verilog, 6-54 Verilog, 5-41, 6-43
VHDL, 6-52 VHDL, 5-41, 6-42
Global Set/Reset net see GSR net H
GND primitive

hard macros
accumulators, B-20
adders/subtracters, B-21

XC3000 devices, A-10
XC4000 devices, B-18

grei;:e(;cr”o 6-50 comparators, B-21
VHDLg’6_50 converting to RPMs, B-1
i counters, B-22
greiz;cg::glpte_m decoders, B-22
VHDLg’6-52 encoders, B-23
ground see GND primitive multiplexers, B-23
GSR net parity generators, B-24

prescalers, B-24

RAM, B-25

registers, B-24

shift registers, B-27
hazard warnings, turning off for VSS, 7-2
HDL operators, 5-47, 6-54
hierarchical designs

Design Compiler
changing states, 6-41
function, 6-39
GSR pin, 6-43
increasing performance, 6-42
initial state after configuration,
6-40

Preset vs. Direct Clear, 6-40 g?ema'fi): lngh?-ig instance names, 2-6
RESET pin, using, 6-48 Breg 0N o

startup state, 6-39
XC3000 devices, 6-48
XC3100 devices, 6-48
XC4000 devices, 6-39

FPGA Compiler
changing states, 5-40
function, 5-38
GSR pin, 5-42
increasing performance, 5-40

flattening, 5-54
generating a schematic, 5-69
for CLBs and 10Bs, 5-70
for function generators, 5-70
merging into single level, 5-55
optimizing logic, 5-54
saving and writing, 5-72
HMAP primitives, B-18
HMAP symbols, removing, 5-73

Xilinx Synopsys Interface FPGA User Guide vii

Xilinx Synopsys Interface FPGA User Guide

I
170 buffers
defining input ports as pads, 3-14, 4-13
defining output ports as pads, 3-16,
4-15
inserting, 3-13, 4-12
using Insert Pads, 3-17, 4-16
170 primitives
for instantiation, A-7, B-8
libraries, 8-11
implementation flow
Design Compiler, 4-3
FPGA Compiler, 3-4
INC_DEC, 5-47, 6-55
initialization state
after configuration, 5-39, 6-40
changing, 5-40, 6-41
input buffers
with D flip-flop, B-9
with inverted latch, B-10
XC3000 devices, A-7
XC4000 devices, B-9
XC4000H devices, B-9
Input Port Attributes dialog box, 3-16, 4-14
Insert Pads command
to insert clock buffers, 5-26
to insert 1/0 buffers, 3-17, 4-16, 5-8, 6-7
installation
DesignWare library, 2-2
verifying, 2-1
XACT software, 2-1
X-BLOX, 2-2
XSI see also release notes, 2-2
inverters
XC3000 devices, A-4
XC4000 devices, B-4
10Bs
3-state output, 5-15, 6-15
bidirectional, 5-19, 6-19
configuring, 5-7, 6-6
initializing flip-flop to Preset, 5-26, 6-26

viii

pad locations, 5-15, 6-15
removing default delay, 5-26, 6-26
unbonded, 5-25, 6-25
XC3000/A/L

description, 6-13

inputs, 6-14

outputs, 6-14
XC3100/7A

description, 6-13

inputs, 6-14

outputs, 6-14
XC4000/A/D

description, 5-8, 6-7

inputs, 5-8, 6-7

outputs, 5-9, 6-8
XC4000H

description, 5-11, 6-10

inputs, 5-12, 6-10

outputs, 5-13, 6-11

L
latches
XC3000 devices, A-5
XC4000 devices, B-7
LCA file, 8-5
libraries
descriptions
xblox_4000.sldb, 8-8
xdc_family-s.db, 8-8
xfpga_family-s.db, 8-8
xgen_3000.db, 8-7
xgen_4000.db, 8-7
xio_4kparttype-s.db, 8-8
xprim_family-s.db, 8-7
Xprim_parttype-s.db, 8-7
170 primitives, 8-11
mapped, 6-3, 6-66
unmapped, 6-3, 6-66
xdc, 8-12
xfpga, 8-11
xprim, 8-9
library paths to FTGS models, 7-2

XACT Development System

Index

link libraries, default, 2-5, 2-9, 2-13
M
mapping
by XNF Writer, 5-73
obsolete primitives to new, C-1
removing
BLKNM attributes, 5-73
FMAP and HMAP symbols, 5-73
Max Period command, 5-51
MemGen
implementing memory, 5-31
instantiating ROM submodule, 5-34,
6-35
memory description file, 5-35, 6-36
memory
functional simulation, 5-32, 6-33
migrating between FPGAs, 5-32, 6-33
RAMs, 5-31, 6-32
ROMs, 6-33
implementing, 5-32
instantiating, 6-33
Verilog HDL example, 5-34, 6-35
VHDL example, 5-33, 6-34
using, 5-31, 6-32
memory description file, 5-35, 6-36
MRA file, 8-5

N
NODELAY attribute, 5-9, 5-26, 6-8, 6-26

O
operating conditions, 5-7, 6-6
optimizing the design, 5-53, 6-57
using Design Compiler, 4-17
using FPGA Compiler, 3-19
OR gates
XC3000 devices, A-3
XC4000 devices, B-3
oscillator primitives, A-6
OUT file, 3-37, 4-36
output buffers
3-state

Xilinx Synopsys Interface FPGA User Guide

XC3000 devices, A-8
XC4000 devices, B-11
XC4000A devices, B-11
XC4000H devices, B-12
XC3000 devices, A-7
XC4000 devices, B-10, B-13
XC4000A devices, B-10, B-14
XC4000H devices, B-11
Output Port Attributes dialog box, 3-17,
4-15

P
pad locations, 5-15, 6-15
part types
changing, 5-77
displaying, 5-76
setting, 5-74, 6-68
supported, 8-9
unsupported, 8-12
pin order
XC3000 primitives, A-3
power see VCC primitive
PPR see XACT Reference Guide

PPR constraints file see XACT Libraries

Guide
PRE pin, 5-39, 6-41
pre-layout timing, estimating, 3-18, 4-16
primary clock buffer see clock buffers
primitive libraries, 8-9
primitives
basic gates
3-state buffer, A-4, B-4
AND/OR, A-3, B-3
buffers, A-4, B-4
inverters, A-4, B-4
pull-down resistor, B-6
pull-up resistors, A-4, B-6
wide 1/0 decoders, B-5
wired OR-AND, B-5
wired-AND, B-5
bidirectional buffers
XC3000 devices, A-8

Xilinx Synopsys Interface FPGA User Guide

XC4000 devices, B-14

XC4000A devices, B-15

XC4000H devices, B-15
boundary scan (BSCAN), B-16
cell name suffixes, A-2, B-2
CLBMAPs, A-9
clock buffers

XC3000 devices, A-5

XC4000 devices, B-8
DesignWare modules, B-19
flag cells

XC3000 devices, A-9

XC4000 devices, B-18
flip-flops

XC3000 devices, A-5

XC4000 devices, B-7
FMAP and HMAP, B-18
ground

XC3000 devices, A-10

XC4000 devices, B-18
input/output, A-7, B-8
instantiation, A-1, B-1
latches

XC3000 devices, A-5

XC4000 devices, B-7
mapping to Unified Libraries, C-1
naming conventions

XC3000 devices, A-2

XC4000 devices, B-2
obsolete, C-1
oscillators, A-6
power

XC3000 devices, A-10

XC4000 devices, B-18
RAM/ROM, B-6

readback
RDBK, B-17
RDCLK, B-17

READBACK, B-17
registers see flip-flops or latches
special functions, A-9, B-16

startup, B-17

unbonded, 5-25
program descriptions

DC shell, 8-6

Design Analyzer, 8-6

Syn2XNF, 8-6

Synlibs, 8-6

Vhdlan, 8-6

Vhdldbx, 8-6

XMake, 8-6

XNF2VSS, 8-6
PRP file, 3-37, 4-36
pull-down resistors, 5-25, 6-25, B-6
pull-up resistors, 5-25, 6-25

XC3000 primitive, A-4

XC4000 primitive, B-6

R
RAM primitives, B-6
RAM see memory
READ parameters
Design Compiler, 2-10, 2-14
FPGA Compiler, 2-6
readback primitive, B-17
README file, 2-2
registers, initial states see also flip-flops or
latches, 7-3
Replace FPGA command
hierarchy level
for CLBs and 10Bs, 5-70
for function generators, 5-71
replacing CLBs and 10Bs with gates,
5-72
Report Area command, 6-65
Report Cell command
for determining
clock buffers, 6-31
types of flip-flops, 5-39
generating configuration report, 5-67
Report dialog box, 3-25, 4-23
Report FPGA command
area report, 5-64

XACT Development System

Index

determining clock buffers, 5-30
Report Timing command, 5-65, 6-66
reports

area, 5-64, 6-65

configuration, 5-66

debugging, 5-66

saving, 3-27, 4-25

timing, 5-65, 6-66
RESET pin, 6-48
resistive load, 5-14, 6-13
ROM primitives, B-6
ROM see memory
rom_memgen.v, 5-36, 6-38
rom_memgen.vhd, 5-36, 6-37
rom16x4_4k

Verilog, 5-34, 6-35

VHDL, 5-33, 6-34
RPT file, 3-39, 4-37
RST net, 5-46

S
Save File dialog box, 3-30, 4-29
saving your design
as DB file, 3-29, 4-28
as SEDIF file, 4-28
as SXNF file, 3-30
SCRIPT file, 8-4
script files, executing, 3-31, 4-30
search paths
Design Compiler, 2-11, 2-14
FPGA Compiler, 2-6
secondary clock buffer see clock buffers
SEDIF file, 6-68, 8-5
Set Attribute command
changing initial states, 5-40, 6-41
instantiating ROM primitives, 5-32,
6-33
removing FMAP and HMAP symbols,
5-73
setting part type, 5-74, 6-68
specifying pad locations, 5-15, 6-15
Set False Path command, 5-52

Xilinx Synopsys Interface FPGA User Guide

Set Input Delay command, 5-51
Set Max Delay command, 5-51
Set Output Delay command, 5-51
Set Pad Type command
disabling clock buffers, 5-30, 6-31
setting slew rate
XC3000/A/L devices, 6-14
XC3100/ A devices, 6-14
XC4000/D devices, 5-10, 6-9
XC4000A devices, 5-10, 6-9
XC4000H devices, 5-14, 6-13
specifying clock buffers, 6-28
threshold settings
input, 5-12, 6-11
output, 5-13, 6-12
Set Port Is Pad command, 5-8
defining ports as pads, 6-7
use on instantiated 1/0s, 5-21, 6-21
Set Wire Load command, 5-6, 6-5
setup file see startup file
SIM files
description, 8-5
locating, 2-2
simulation, 7-1
.Synopsys_vss.setup, 7-2
compiling the design, 7-13
design implementation, 7-12
functional, 7-9
Global Set/Reset (GSR) function, 7-3
functional simulation, 7-5
timing simulation, 7-4
hazard warnings, turning off, 7-2
initial states of registers, 7-3
introduction, 7-1
library path to FTGS models, 7-2
post-layout XNF file, creating, 7-13
preparing timing model, 7-14
recommended strategy, 7-1
setting timebase and resolution factors,
7-2
source file considerations, 7-3

Xi

Xilinx Synopsys Interface FPGA User Guide

test bench file, creating, 7-6
timing, 7-14
Vhdlan command, 7-9
Vhdldbx command, 7-9
VSS setup file, 7-2
warnings, turning off, 7-2
WORK library, 7-3
Xilinx netlist, creating, 7-13
XNF2VSS command, 7-14
slew rate
XC3000/A/L
attributes, 6-15
setting, 6-14
XC3100/A
attributes, 6-15
setting, 6-14
XC4000/D
attributes, 5-10, 6-9
setting, 5-9, 6-9
XC4000A
attributes, 5-11, 6-10
setting, 5-10, 6-9
XC4000H
attributes, 5-14, 6-13
setting, 5-14, 6-12
software configuration, 2-1
Specify Clock dialog box, 3-20, 4-18
speed grades
supported, 8-9
unsupported, 8-12
startup file
defaults
Design Compiler, 2-3
FPGA Compiler, 2-3
renaming, 2-3
description, 8-4
Design Compiler
contents, 2-9, 2-13
DesignWare directory, 2-10
DesignWare library search path,
2-11

Xii

EDIF parameters, 2-10, 2-14
examples, 2-8, 2-12
intermediate files for VSS, 2-10,
2-14
READ parameters, 2-10, 2-14
search path, 2-9, 2-11, 2-13, 2-14
symbol libraries, 2-10, 2-14
synthetic library, 2-10
FPGA Compiler
contents, 2-4
default libraries, 2-13
DesignWare directory, 2-5
DesignWare library search path,
2-7
examples, 2-4
intermediate files for VSS, 2-5
READ parameters, 2-6
search path, 2-5, 2-6
symbol libraries, 2-5
synthetic library, 2-5
unique instance names, 2-6
STARTUP primitive, B-17
startup state, 5-38
STARTUP symbol, 5-38, 5-42, 6-39, 6-43
suffixes, primitive names, A-2, B-2
SXNF file, 5-74, 8-4
symbol libraries
Design Compiler, 2-10, 2-14
FPGA Compiler, 2-5
SYN files
description, 8-5
locating, 2-2
Syn2XNF
help, 5-76, 6-70
input files, 5-75, 6-69
invoking
by XMake, 5-78, 6-72
via command line, 5-75, 6-69
mapped libraries, using, 6-71
options
abbreviations, 5-76, 6-70

XACT Development System

Index

—dir, 5-76, 6-70
—force, 5-76, 6-70
—help, 5-76, 6-70
-I, 5-76, 6-70
—-map, 6-71
—out, 5-77, 6-71
—parttype, 5-77, 6-71
—sub, 6-71
output file name, specifying, 5-77, 6-71
output files, 5-75, 6-70
overwrite existing XNF file, 5-76, 6-70
part types
changing, 5-77, 6-71
displaying valid, 5-76, 6-70
purpose, 5-74, 6-68
syntax, 5-75, 6-69
Synlibs
description, 8-6
Design Compiler
output, 2-15
syntax, 2-11, 2-15
target and link libraries, 2-10, 2-14
use with startup file, 2-12, 2-15
FPGA Compiler
output, 2-7
syntax, 2-7
target and link libraries, 2-5
use with startup file, 2-8
Synopsys startup file see startup file
synopsys_dc.setup file see startup file
synthetic library
Design Compiler, 2-10
FPGA Compiler, 2-5
system configuration, 2-1

T
target libraries, default, 2-5, 2-9, 2-13
test bench file

configuration declaration, 7-8

initializing registers, 7-6

purpose, 7-6

Xilinx Synopsys Interface FPGA User Guide

three_ex1
Verilog, 5-17, 6-17
VHDL, 5-16, 6-16
three_ex2
Verilog, 5-19, 6-18
VHDL, 5-18, 6-18
three_ex2.script
Verilog, 5-64
VHDL, 5-62
Tikpid, 5-66
timebase, setting for VSS, 7-2
timing constraints see timing specifications
timing delays, 5-65, 6-66
creating report, 3-26, 4-25
estimating, 3-18, 4-16
report output, 3-28, 4-27
timing model, 7-14
timing simulation, 7-14
back-annotation, 7-15
invoking VSS simulator, 7-15
preparing for, 7-4
source file analysis, 7-15
test bench analysis, 7-15
viewing waveforms, 7-18
timing specifications
clock constraint, 3-19
controlling how written, 5-52
Create Clock command, 5-50
creating defaults, 5-53
Derive Clocks command, 5-52
Max Period command, 5-51
overwriting using CST file, 5-50
path types, 5-50
purpose, 5-50
reporting timing delays, 5-65
Set False Path command, 5-52
Set Input Delay command, 5-51
Set Max Delay command, 5-51
Set Output Delay command, 5-51
setting, 5-50
XNFout Constraints Per Endpoint, 5-52

Xiii

Xilinx Synopsys Interface FPGA User Guide

XNFout Default Time Constraints, 5-53
top_gsr script file
Verilog, 5-46, 6-48
VHDL, 5-44, 6-46
top_gsr.v, 5-42, 6-44
top_gsr.vhd, 5-42, 6-44
Tpickd, 5-66
tri-state buffers see 3-state buffers
tri-state output buffers See 3-state output
buffers
tri-state output see 3-state output
TTL thresholds
setting input, 5-12, 6-10
setting output, 5-13, 6-12
tutorials
Design Compiler, 4-1
FPGA Compiler, 3-1

U
unbonded I0Bs, 5-25, 6-25
Ungroup command, 5-56

\/
V file, 8-4
VCC primitive
XC3000 devices, A-10
XC4000 devices, B-18
VHD file, 8-4
Vhdlan program
description, 8-6
how to use, 7-9
Vhdldbx program
description, 8-6
how to use, 7-9
voltage levels
setting input, 5-12, 6-11
setting output, 5-13, 6-12
VSS see simulation
VSS setup file, 7-2

W
wide 170 decoders, B-5
wired OR-AND primitive, B-5

Xiv

wired-AND primitive, B-5
wire-load models
changing, 5-6, 6-5
default, 5-5, 6-3
description, 5-7, 6-6
determining block delay, 5-7, 6-6
setting, 5-5, 6-3
XC3000 devices, 5-5, 6-4
XC3000A/L devices, 5-6, 6-4
XC3100/A devices, 5-6, 6-5
XC4000/A/H devices, 5-5, 6-4
work library for VSS, 7-2
Write command, 5-72, 6-68

X
XACT software
use with
Design Compiler, 6-72
FPGA Compiler, 5-77
verifying installation, 2-1
XACT-Performance see timing specifica-
tions
X-BLOX, 1-1
DesignWare library
search path, 2-7
using, 5-47, 6-54
disabling, 2-7
GSR net, use with, 5-40
installation, verifying, 2-2
X-BLOX modules
compiling, 5-56
HDL operators, 5-47, 6-54
implementation, 5-48
maximum size before wrapping, 5-48,
6-56
naming conventions, B-19
timing, 5-48, 6-55
xblox_4000.sldb library, 8-8
XChecker, 3-47, 4-45
xdc libraries, 8-12
xdc_family-s.db libraries, 8-8
XDelay

XACT Development System

Index

invoking, 3-46, 4-44
purpose, 3-45, 4-43
report file, 3-46, 4-44
XFF file, 8-5
xfpga libraries, 8-11
xfpga_family-s.db libraries, 8-8
xgen_3000.db library, 8-7
xgen_4000.db library, 8-7
xio libraries, 8-11
xio_4kparttype-s.db libraries, 8-8
xInx_hier_blknm=1, 5-57
XMake
description, 8-6
output files, 3-37, 4-35
report file, 3-39, 4-37
using
on different platforms, 5-78, 6-72
on same platform, 5-78, 6-72

Xilinx Synopsys Interface FPGA User Guide

XNF file, 8-5
XNF Writer, 5-73
XNF2VSss, 7-8, 7-14
XNF2VSS program
description, 8-6
how to use, 7-14
XNFout Constraints Per Endpoint, 5-52
XNFout Default Time Constraints, 5-53
xprim libraries, 8-9
xprim_family-s.db libraries, 8-7
xprim_parttype-s.db libraries, 8-7
XSl
installation, verifying see also release
notes, 2-2
introduction, 1-1

XV

Xilinx Synopsys Interface FPGA User Guide

XVi XACT Development System

	Conventions
	Contents
	Chapter 1
	Introduction to the Xilinx Synopsys Interface
	What Is XSI?
	Design Compiler Versus FPGA Compiler
	Xilinx Documentation Set
	XSI Documentation
	XACT Documentation

	Chapter 2
	Getting Started
	Software Configuration
	Verifying Software Installation
	Modifying the Default Synopsys Startup File
	Using the FPGA Compiler
	Generic FPGA Compiler Startup File Contents
	Modifying the Search Paths
	Modifying the DesignWare Library Search Path
	Using Synlibs with the FPGA Compiler

	Using the Design Compiler for XC4000 Designs
	Generic Design Compiler Startup File Contents
	Modifying the Search Path
	Modifying the DesignWare Library Search Path
	Using Synlibs with the Design Compiler

	Using the Design Compiler for XC3000 Designs
	Generic Design Compiler Startup File Contents
	Modifying the Search Path
	Using Synlibs for XC3000 Devices

	Chapter 3
	FPGA Compiler Tutorial for XC4000 Designs
	Before You Begin
	Required Files
	Exiting the Tutorial

	Design Flow
	Count8 Design Description
	Invoking the Design Analyzer
	Reading the Design File
	Analyzing the Design File
	Creating the Design File

	Inserting I/O Buffers
	Defining Input Ports as Pads
	Defining the Output Port as a Pad
	Using the Insert Pads Command

	Estimating Pre-Layout Timing
	Selecting the Operating Condition
	Setting the Wire-Load Models

	Optimizing for Speed
	Compiling the Design
	Evaluating the Results
	Viewing the Estimated Area Results
	Viewing the Estimated Timing Results
	Saving the Area and Timing Results to a File

	Saving the Design
	Writing the DB File
	Replacing CLBs and IOBs with Gates
	Setting the Design Part Type
	Removing BLKNM Attributes
	Saving the Design File as an SXNF File

	Exiting the Design Analyzer
	Executing the Commands from a Script File
	Placing and Routing Your Design Using XMake
	If XSI Is on Same Network as XACT Software
	If XSI Is on Different Network Than XACT Software
	Running Syn2XNF
	Running XMake

	Examining XMake Output Files
	Reviewing the XMake OUT File
	Checking for Warnings and Errors in the PRP File
	Checking the RPT File
	Comparing Actual Versus Estimated Area Results

	Using XDelay
	Invoking XDelay
	Comparing Actual Versus Estimated Timing Results

	Verifying Your Design Using XChecker

	Chapter 4
	Design Compiler Tutorial for XC3000A Designs
	Before You Begin
	Required Files
	Exiting the Tutorial

	Design Flow
	Count8 Design Description
	Invoking the Design Analyzer
	Reading the Design File
	Analyzing the Design File
	Creating the Design File

	Inserting I/O Buffers
	Defining Input Ports as Pads
	Defining the Output Port as a Pad
	Using the Insert Pads Command

	Estimating Pre-Layout Timing
	Selecting the Operating Condition
	Setting the Wire-Load Models

	Optimizing for Speed
	Compiling the Design
	Evaluating the Results
	Viewing the Estimated Area Results
	Viewing the Estimated Timing Results
	Saving the Report Results to a File

	Saving the Design
	Writing the DB File
	Setting the Design Part Type
	Saving the Design File as an SEDIF File

	Exiting the Design Analyzer
	Executing the Commands from a Script File
	Placing and Routing Your Design Using XMake
	If XSI Is on Same Network as XACT Software
	If XSI Is on Different Network Than XACT Software
	Running Syn2XNF
	Running XMake

	Examining XMake Output Files
	Reviewing the XMake OUT File
	Checking for Warnings and Errors in the PRP File
	Checking the RPT File
	Comparing Actual Versus Estimated Area Results

	Using XDelay
	Invoking XDelay
	Comparing Actual Versus Estimated Timing Results

	Verifying Your Design Using XChecker

	Chapter 5
	Using the FPGA Compiler
	Before You Begin
	FPGA Compiler Design Flow
	XSI on Same Platform as XACT Software
	XSI on Different Platform than XACT Software

	Setting the Wire-Load Model
	Wire-Load Models for Xilinx FPGAs
	Changing the Wire-Load Model
	How Wire-Load Models Are Determined

	Operating Conditions
	Configuring IOBs
	XC4000/A/D IOBs
	Inputs
	Outputs
	XC4000/D Slew Rate
	XC4000A Slew Rate

	XC4000H IOBs
	Inputs
	Outputs
	XC4000H Slew Rate

	Assigning and Prohibiting Pad Locations
	Implementing 3-State Registered Output
	Not Directly Driving the 3-State Signal
	Directly Driving the 3-State Signal

	Inserting Bidirectional I/Os
	Instantiating a Registered Bidirectional I/O
	Compiling Bidirectional I/O

	Using Unbonded IOBs (XC4000/A Only)
	Adding Pull-Up and Pull-Down Resistors
	Removing the Default Input Delay
	Initializing the IOB Flip-Flop to Preset

	Inserting Clock Buffers
	Controlling Clock Buffer Insertion
	Determining the Number of Clock Buffers
	Preventing the Insertion of Clock Buffers

	Using Memory
	XC4000 RAMs
	XC4000 ROMs
	Using MemGen

	Performing Boundary Scan
	Using the Global Set/Reset Net
	Startup State
	Preset Versus Direct Clear
	Changing States

	Increasing Performance with the GSR Net

	Using the X-BLOX DesignWare Library
	HDL Operators Using X-BLOX Modules
	Improving the Timing of X-BLOX Modules

	Creating Timing Specifications
	Setting Timing Constraints
	Create Specifications for Input Ports and Clock Net
	Create Specifications for Input and Output Ports
	Create Tighter Constraints on Output Ports
	Create Tighter Constraints on Input Ports
	Prevent Specifications on Indicated Paths
	Create Clocks on All Input Ports

	Controlling How Timing Specifications Are Written
	Control the Number of Constraints Written
	Create Default Timing Constraints

	Compiling the Design
	Optimizing Logic Across Hierarchical Boundaries
	Flattening the Design
	Compiling the Design with Hierarchy
	Compiling the Design Without Hierarchy

	Creating Unique Names for Multiple Instances
	Compiling a Design That Contains Feedthroughs
	Compiling a Design with Instantiated I/O Cells
	Compiling XC4000 Designs
	Compiling XC4000H Designs

	Creating the Area Report
	Evaluating Timing Delays
	Generating Reports for Debugging
	Generating a Configuration Report
	Generating a Hierarchical Schematic
	Creating a Level for Each CLB and IOB
	Creating a Level for Each Function Generator

	Writing and Saving the Design
	Saving the DB File
	Replacing CLBs and IOBs with Gates
	Invoking the Replace FPGA Command
	If Your Design Contains Hierarchy

	Removing the Synopsys Mapping
	Removing FMAP and HMAP Symbols
	Removing BLKNM Attributes

	Setting the Design Part Type
	Saving the SXNF File

	Translating SXNF Files to XNF Files Using Syn2XNF
	Syntax
	Input Files
	Output Files
	Options
	–dir
	–force
	–help
	–l
	–out
	–parttype

	Using the XACT Development System
	If XSI Is on Same Platform as XACT Software
	If XSI Is on Different Platform Than XACT Software

	Chapter 6
	Using the Design Compiler
	Before You Begin
	Design Compiler Design Flow
	If XSI Is on Same Platform as XACT Software
	If XSI Is on Different Platform Than XACT Software

	Setting the Wire-Load Model
	Wire-Load Models for Xilinx FPGAs
	Changing the Wire-Load Model
	How Wire-Load Models Are Determined

	Operating Conditions
	Configuring the IOBs
	XC4000/A/D IOBs
	Inputs
	Outputs
	XC4000/D Slew Rate
	XC4000A Slew Rate

	XC4000H IOBs
	Inputs
	Outputs
	XC4000H Slew Rate

	XC3000/A/L and XC3100/A IOBs
	Inputs
	Outputs
	XC3000/A/L and XC3100/A Slew Rate

	Assigning and Prohibiting Pad Locations
	Implementing 3-State Output
	Not Directly Driving the 3-State Signal
	Directly Driving the 3-State Signal

	Inserting Bidirectional I/Os
	Instantiating a Registered Bidirectional I/O
	Compiling Bidirectional I/O

	Using Unbonded IOBs
	Adding Pull-Up and Pull-Down Resistors
	Removing the Default Input Delay (XC4000 Only)
	Initializing the IOB Flip-Flop to Preset (XC4000 Only)

	Inserting Clock Buffers
	XC4000/A/D/H Clock Buffers
	XC3000/A/L and XC3100/A Clock Buffers
	Controlling Clock Buffer Insertion
	Determining the Number of Clock Buffers
	Preventing the Insertion of Clock Buffers

	Using Memory
	XC4000 RAMs
	ROMs
	Using MemGen

	Performing Boundary Scan for XC4000 Devices
	Using the Global Set/Reset Net
	XC4000 Devices
	Startup State
	Preset Versus Direct Clear
	Changing States
	Increasing Performance with the GSR Net

	XC3000 and XC3100 Devices

	Using the X-BLOX DesignWare Library
	HDL Operators Using X-BLOX Modules
	Improving the Timing of X-BLOX Modules

	Compiling the Design
	Compiling a Design That Contains Feedthroughs
	Compiling XC3000 and XC4000 Designs
	Compiling a XC4000H Design

	Creating the Area Report
	Evaluating Timing Delays
	Writing and Saving the Design
	Saving the DB File
	Setting the Design Part Type
	Saving the SEDIF File

	Translating SEDIF Files to XNF Files Using Syn2XNF
	Syntax
	Input Files
	Output Files
	Untitled
	Options
	–dir
	–force
	–help
	–l
	–map
	–out
	–parttype
	–sub

	Using the XACT Development System
	If XSI Is on Same Platform as XACT Software
	If XSI Is on Different Platform Than XACT Software

	Chapter 7
	Simulating Your FPGA Design
	Recommended FPGA Simulation Strategy
	Editing the VSS Setup File
	Check Your Source File
	Controlling Initial States of Registers
	Simulating Global Set/Reset
	Preparing for Timing Simulation
	Preparing for Functional Simulation

	Creating a Test Bench File
	Initializing Registers
	Configuration Declaration

	Functional Simulation
	Design Implementation
	Preparing the Timing Model
	Timing Simulation

	Chapter 8
	Files, Programs, and Libraries
	Directory Structure for XSI
	File Descriptions
	Program Descriptions
	Library Descriptions
	Supported Part Types and Speed Grades
	xprim_ family–s.db and xprim_ parttype–s.db
	xio_ 4kparttype–s.db
	xfpga_ family–s.db
	xdc_ family–s.db

	Unsupported Part Types and Speed Grades

	Appendix A
	XC3000/A/L and XC3100/A Primitives
	XC3000 Primitives
	Basic Gates
	Flip-Flops and Latches
	Clocks
	Oscillators
	I/O Primitives
	Special Functions

	Appendix B
	XC4000/A/D/H Primitives and Hard Macros
	XC4000 Primitives
	Basic Gates
	Flip-Flops and Latches
	Clocks
	I/O Primitives
	Special Functions

	X-BLOX Modules
	XC4000 Hard Macros

	Appendix C
	Selection Guide
	XC3000/A/L and XC3100/A Primitives
	XC4000/A/D/H Primitives

	Index

