

CPLD
XSI

 ™

DESIGN GUIDE

ONLINER

TABLE OF CONTENTS

INDEX

GO TO OTHER BOOKS

Xilinx Inc..
All references to EPLDs in this document apply to Xilinx CPLDs when used with XACTstep 9000.

Synthesis Design Guide Printed in U.S.A.

Synthesis
Design Guide
V1.0 for Workstations

Getting Started with Xilinx
EPLDs

Designing with EPLDs

Compiling and Fitting Your
Designs

Simulating Your Design

Library Component
Specifications

R

Synthesis Design Guide

Xilinx Development System

, XACT, XC2064, XC3090, XC4005, and XC-DS501 are registered trademarks of Xilinx. All XC-prefix
product designations, FastFLASH, FastCONNECT, EZTag, XACT-Floorplanner, XACT-Performance, XAPP,
XAM, X-BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, XPP, XSI, BITA, Configurable Logic Cell, CLC, Dual
Block, FastCLK, HardWire, LCA, Logic Cell, LogicProfessor, MicroVia, PLUSASM, SMARTswitch, UIM,
VectorMaze, VersaBlock, VersaRing, and ZERO+ are trademarks of Xilinx. The Programmable Logic Company
and The Programmable Gate Array Company are service marks of Xilinx.

IBM is a registered trademark and PC/AT, PC/XT, PS/2 and Micro Channel are trademarks of International Business
Machines Corporation. DASH, Data I/O and FutureNet are registered trademarks and ABEL, ABEL-HDL and ABEL-
PLA are trademarks of Data I/O Corporation. SimuCad and Silos are registered trademarks and P-Silos and P/C-
Silos are trademarks of SimuCad Corporation. Microsoft is a registered trademark and MS-DOS is a trademark of
Microsoft Corporation. Centronics is a registered trademark of Centronics Data Computer Corporation. PAL and
PALASM are registered trademarks of Advanced Micro Devices, Inc. UNIX is a trademark of AT&T Technologies,
Inc. CUPL, PROLINK, and MAKEPRG are trademarks of Logical Devices, Inc. Apollo and AEGIS are registered
trademarks of Hewlett-Packard Corporation. Mentor and IDEA are registered trademarks and NETED, Design
Architect, QuickSim, QuickSim II, and EXPAND are trademarks of Mentor Graphics, Inc. Sun is a registered
trademark of Sun Microsystems, Inc. SCHEMA II+ and SCHEMA III are trademarks of Omation Corporation. OrCAD
is a registered trademark of OrCAD Systems Corporation. Viewlogic, Viewsim, and Viewdraw are registered
trademarks of Viewlogic Systems, Inc. CASE Technology is a trademark of CASE Technology, a division of the
Teradyne Electronic Design Automation Group. DECstation is a trademark of Digital Equipment Corporation.
Synopsys is a registered trademark of Synopsys, Inc. Verilog is a registered trademark of Cadence Design Systems,
Inc.

Xilinx does not assume any liability arising out of the application or use of any product described or shown herein;
nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others. Xilinx
reserves the right to make changes, at any time, in order to improve reliability, function or design and to supply
the best product possible. Xilinx will not assume responsibility for the use of any circuitry described herein other
than circuitry entirely embodied in its products. Xilinx devices and products are protected under one or more of
the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155; 4,758,985;
4,820,937; 4,821,233; 4,835,418; 4,853,626; 4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135;
5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704; 5,329,174; 5,329,181;
5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,357,153;
5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189;
5,410,194; 5,414,377; RE 34,363, RE 34,444, and RE 34,808. Other U.S. and foreign patents pending. Xilinx, Inc.
does not represent that devices shown or products described herein are free from patent infringement or from any
other third party right. Xilinx assumes no obligation to correct any errors contained herein or to advise any user of
this text of any correction if such be made. Xilinx will not assume any liability for the accuracy or correctness of
any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

R

Synthesis Design Guide iii

Preface

About This Manual
This manual has been created to provide guidance in use of Synthesis
Design in the workstation environment.

Manual Contents
This manual covers the following topics.

• Chapter 1. This chapter shows you how to prepare your setup
files and verify your installation. It also provides a design walk-
through as an overview of the basic steps for implementing
Xilinx XC7000 or XC9000 EPLD designs using Synopsys.

• Chapter 2. This chapter discusses how to use design techniques,
library cells and xepld command parameters to get the best
performance from Xilinx XC7000 and XC9000 EPLDs.

• Chapter 3. This chapter describes how to compile your design
using the Synopsys Design Compiler shell (DC Shell).

• Chapter 4. The Xilinx EPLD Synopsys Interface supports both
functional and timing simulation of VHDL designs using the VSS
simulator. This chapter shows you how to prepare designs for
simulation and how to use a test bench.

• Appendix A describes each of the Xilinx library components.

Synthesis Design Guide v

Conventions

In this manual the following conventions are used for syntax clarifi-
cation and command line entries.

• Courier font indicates messages, prompts, and program files
that the system displays, as shown in the following example.

speed grade: -100

• Courier bold indicates literal commands that you must enter in
a syntax statement.

rpt_del_net=

• Italic font indicates variables in a syntax statement. See also, other
conventions used on the following page.

xdelay design

• Square brackets “[]” indicate an optional entry or parameter.
However, in bus specifications, such as bus [7:0], they are
required.

xdelay [option] design

• Braces “{ }” enclose a list of items from which you choose one or
more.

xnfprep designname ignore_rlocs={true|false}

• A vertical bar “|” separates items in a list of choices.

symbol editor [bus|pins]

Conventions

vi Xilinx Development System

Other conventions used in this manual include the following.

• Italic font indicates references to manuals, as shown in the
following example.

See the Development System Reference Guide for more information.

• Italic font indicates emphasis in body text.

If a wire is drawn so that it overlaps the pin of a symbol, the two
nets are not connected.

• A vertical ellipsis indicates repetitive material that has been
omitted.

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

• A horizontal ellipsis “. . .” indicates that the preceding can be
repeated one or more times.

allow block blockname loc1 loc2 ... locn ;

Synthesis Design Guide vii

Contents

Table of Contents

Chapter 1 Getting Started with Xilinx EPLDs
Creating Synopsys Setup Files.. 1-1

The Design Compiler Setup File... 1-2
The VSS Simulator Setup File (.synopsys_vss.setup) 1-3

Verifying Your Installation ... 1-3
Verifying Synopsys Software Access 1-4
Verifying Xilinx Software Access .. 1-4
Verifying Your File Structure .. 1-4

Xilinx EPLD Design Flow ... 1-6
Design Example .. 1-6

Design Entry ... 1-10
Step1 — Create a Design Directory 1-10

Functional Simulation ... 1-10
Step 2 — Analyze Your Design ... 1-11
Step 3 — Analyze Your Test Bench 1-11
Step 4 — Invoke the Simulator ... 1-15
Step 5 — Run the Debugger ... 1-15
Step 6 — Trace Signals... 1-16
Step 7 — Run the Simulation ... 1-17
Step 8 — Return to UNIX ... 1-17

Synthesizing Your Design (Compiling) 1-17
Step 9 — Enter the DC Shell Environment 1-17
Step 10 — Analyze Your Source Design 1-18
Step 11 — Elaborate Your Design 1-18
Step 12 — Synthesize Your Design 1-19
Step 13 — Place I/O Buffer Cells 1-19
Step 14 — Specify a Target Device 1-19
Step 15 — Specify Initial Register States 1-19
Step 16 — Output the Netlist .. 1-20
Step 17 — Exit DC Shell .. 1-20

Fitting Your Design .. 1-20
Step 18 — Fit Your Design.. 1-20

Timing Simulation .. 1-21
Step 19 — Prepare A Timing Simulation File 1-21
Step 20 — Analyze Your Original Design.......................... 1-21
Step 21 — Analyze Your Back-Annotated Design 1-22
Step 22 — Analyze Your Test Bench 1-22
Step 23 — Invoke the VSS Simulator 1-22

viii Xilinx Development System

Synthesis Design Guide

Step 24 — Open the Waveform Viewer............................. 1-23
Step 25 — Run the Simulation ... 1-24
Step 26 — Return to UNIX ... 1-24

Chapter 2 Designing with EPLDs
VHDL Design File Requirements .. 2-1
Target Device Selection .. 2-2
EPLD-Specific I/O Ports .. 2-3

Clock Inputs ... 2-3
Output Enable Signals ... 2-5
Asynchronous Clear and Preset .. 2-6

Controlling Register Initial State .. 2-7
Initial State Attribute ... 2-8

Controlling Power Consumption .. 2-8
Controlling Output Slew Rate .. 2-9
Controlling the Pinout .. 2-9

Pin Freezing ... 2-10
Pin Assignment .. 2-11
Pin Assignment Precautions .. 2-12

Controlling Logic Optimization .. 2-12
Collapsing Product Term Limit ... 2-13
Preventing Collapsing of a Logic Node 2-14

Controlling Timing Paths ... 2-15
Timing Optimization ... 2-15
XACT Performance... 2-15

Create Specifications for Input Ports and Clock Net 2-16
Create Specifications for Input and Output Ports 2-16
Create Tighter Constraints on Output Ports 2-16
Create Tighter Constraints on Input Ports 2-17
Prevent Specifications on Indicated Paths 2-17
Create Clocks on All Input Ports 2-17
Disabling Timing Specifications .. 2-17

Reducing Levels of Logic ... 2-18
XC7000 Input Pad Registers ... 2-18

Preventing Register Optimization .. 2-19
Using Input Pad Registers ... 2-19

Chapter 3 Compiling and Fitting Your Design
Compiling a Synopsys EPLD Design .. 3-1

Step 1 — Entering the DC Shell Environment 3-2
Step 2 — Analyzing the Design ... 3-2
Step 3 — Elaborating the Design ... 3-2

Synthesis Design Guide ix

Contents

Step 4 — Compiling Your Design .. 3-3
Step 5 — Specifying Attributes .. 3-3
Step 6 — Defining EPLD I/O Signals 3-4
Step 7 — Writing the Netlist ... 3-4

Fitting Your Design ... 3-6
XEPLD Command Parameters .. 3-7

Compiling Behavioral Modules for Schematics 3-9
Step 1 — Entering the DC Shell Environment 3-9
Step 2 — Analyzing the Module .. 3-9
Step 3 — Elaborating the Module .. 3-10
Step 4 — Compiling Your Module ... 3-10
Step 5 — Specifying Attributes ... 3-11
Step 6 — Writing the Netlist ... 3-11

Chapter 4 Simulating Your Design
Recommended EPLD Simulation Strategy 4-1
Controlling the Initial States of Registers 4-2

Simulating Master Reset .. 4-2
Preparing for Timing Simulation 4-2
Preparing for Functional Simulation 4-3

Creating a Test Bench File ... 4-4
Initializing Registers.. 4-4
Configuration Declaration ... 4-4

Functional Simulation .. 4-5
Design Implementation ... 4-9
Preparing the Timing Model... 4-10
Timing Simulation ... 4-11

Appendix A Library Component Specification
ACC .. A-3
IADSU ... A-5
ADSUR ... A-6
AND2 — AND8 ... A-7
BUF ... A-8
BUFCE .. A-9
BUFE .. A-10
BUFFOE ... A-11
BUFG .. A-12
BUFGSR ... A-13
BUFGTS ... A-14
CBX1 ... A-15
CBX2 ... A-16

x Xilinx Development System

Synthesis Design Guide

COMPEQ .. A-17
COMPLE_TC
COMPLE_US .. A-18
COMPLT_TC
COMPLT_US ... A-19
COMPNE .. A-20
DEC ... A-21
FDCP .. A-22
FDCPE .. A-23
FDPC .. A-24
IBUF .. A-25
IFD .. A-26
IFDX1 ... A-27
ILD ... A-28
INC .. A-29
INV .. A-30
IOBUFE, IOBUFE_F, IOBUFE_S ... A-31
LD .. A-32
OBUF, OBUF_F, OBUF_S .. A-33
OBUFE, OBUFE_F, OBUFE_S .. A-34
OR2 — OR8 .. A-35
SUBT ... A-36
XOR2 — XOR8 ... A-37

Synthesis Design Guide 1-1

Chapter 1

Getting Started with Xilinx EPLDs

This chapter shows you how to prepare your setup files and verify
your installation. It also provides a design walk-through as an
overview of the basic steps for implementing Xilinx XC7000 or
XC9000 EPLD designs using Synopsys. The remaining chapters in
this manual provide additional detailed information on each step.

The design walk-through assumes that you have installed and
configured the Xilinx software and libraries. For installation
instructions, see the Release Document.

Creating Synopsys Setup Files
After you have installed the Xilinx software you must configure the
Synopsys Design Compiler and VSS simulator setup files to access
the XC7000 or XC9000 libraries. This section shows you how to
configure the setup files and verify that your setup is working
properly.

The setup files must be located in each design directory where Xilinx
EPLD designs are processed.

Note: You will find sample setup files in the $DS401/tutorial/
synopsys/scan directory. The sample setup files are configured for
XC9000 designs. However, before using them, you must edit the
.synopsys_dc.setup file contained in the tutorial directory by
typing the actual $DS401 path into the search_path variable. Your
$DS401 variable should point to the XC9500 Pre-release installation
directory.

Note: In UNIX and DC Shell commands shown in this book, where
text is too long to print on one line, the back-slash (\) character at the
end of a line is used to indicate a continuation line. In actual usage,
continuation line breaks are optional and may occur at any legal

Synthesis Design Guide

1-2 Xilinx Development System

point in the command line.

The Design Compiler Setup File
For XC9000 designs, your Design Compiler setup file
(.synopsys_dc.setup) must contain the following lines:

search path = { . \
XACT9500_path/synopsys/libraries/syn \
$Synopsys_path/libraries/syn}

link_library = {xc9000.db}
target_library = {xc9000.db}
symbol_library = {xc9000.sdb}
compile_fix_multiple_port_nets = true
bus_naming_style = "%s<%d>"
bus_dimension_seperator_style = "><"
bus_interface_style = "%s<%d>"
edifout_netlist_only = true
edifout_power_and_ground_representation = cell
edifout_ground_name = GND
edifout_ground_pin_name = GND
edifout_power_name = VCC
edifout_power_pin_name = VCC
xnfout_library_version = "2.0.0"

For XC7000 designs, your Design Compiler setup file
(.synopsys_dc.setup) must contain the following lines:

search path = { . \
XACT9500_path/synopsys/libraries/syn \
$Synopsys_path/libraries/syn}

link_library = {xc7000.db XC7000.sldb}
target_library = {xc7000.db}
symbol_library = {xc7000.sdb}
synthetic_library = {xc7000.sldb}
define_design_lib xc7000 -path \

XACT9500_path/synopsys/libraries/dw/lib/xc7000
compile_fix_multiple_port_nets = true
bus_naming_style = "%s<%d>"
bus_dimension_seperator_style = "><"
bus_interface_style = "%s<%d>"
edifout_netlist_only = true
edifout_power_and_ground_representation = cell

Getting Started with Xilinx EPLDs

Synthesis Design Guide 1-3

edifout_ground_name = GND
edifout_ground_pin_name = GND
edifout_power_name = VCC
edifout_power_pin_name = VCC
xnfout_library_version = "2.0.0"

Where XACT9500_path is the actual directory path where your
XC9500 Pre-release software is installed, and $Synopsys_path is the
actual path where your Synopsys software is installed.

Note: You cannot use environment variables in the
synopsys_dc.setup file.

The VSS Simulator Setup File (.synopsys_vss.setup)
For XC9000 designs, your VSS Simulator setup file,
.synopsys_vss.setup , must contain the following lines:

xc9000: $DS401/synopsys/libraries/sim/lib/xc9000
TIMEBASE = NS
TIME_RES_FACTOR = 0.1

For XC7000 designs, your VSS Simulator setup file,
.synopsys_vss.setup , must contain the following lines:

xc7000: $DS401/synopsys/libraries/sim/lib/xc7000
TIMEBASE = NS
TIME_RES_FACTOR = 0.1

Note: You may use either the $DS401 environment variable or the
actual path specification in the .synopsys_vss.setup file.

As a final verification that your XC9500 Pre-release Synopsys
interface is ready to use, we have provided a complete design
example for you to run, which is described later in this chapter. To
quickly verify VHDL design entry, you can begin at design example
step 9 and run scan.script or scan.dc as described.

Verifying Your Installation
Before attempting to compile and fit a design, it is a good idea to
verify that you have access to the installed software. A simple
verification process is described below.

Synthesis Design Guide

1-4 Xilinx Development System

Verifying Synopsys Software Access
To verify that your system is correctly configured to access the
Synopsys software, enter the following UNIX commands:

which dc_shell
which vhdlan (if you are using the VSS simulator)

If you get a negative response for either command, (such as “no
vhdlan in ...”) this means that either the Synopsys software is not
installed properly or that your system path is not set properly to
include the Synopsys software directories. Refer to the Synopsys
documentation for installation instructions.

Verifying Xilinx Software Access
To verify that your system is correctly configured to access the Xilinx-
supplied software, enter the following UNIX commands:

1. which xepld

If xepld cannot be found, the XC9500 Pre-release software is not
installed or is not in your path.

2. echo $DS401

This variable should point to the XC9500 Pre-release directory
found in Step 1.

3. echo $XACT

This variable should also point to the XC9500 Pre-release directory
found in Step 1.

Verifying Your File Structure
To verify that you have the necessary files for EPLD development,

Getting Started with Xilinx EPLDs

Synthesis Design Guide 1-5

use the file structure diagram in Figure 1-1.

Figure 1-1 File Structure for Synopsys Interface

$DS401
edif2xnf
lib_compile
xnf2vss
tutorial

synopsys
scan

.

synopsys
libraries

syn
xc7000.db
xc7000.sdb
xc7000.sldb
xc9000.db
xc9000.sdb

sim
src

xc7000
install_xc7000.dc
.synopsys_vss.setup
*.vhd

xc9000
install_xc9000.dc
.synopsys_vss.setup
*.vhd

lib
xc7000

*.syn (Generated by running lib_compile)
*.sim (Generated by running lib_compile)
*.mra (Generated by running lib_compile)

xc9000
*.syn (Generated by running lib_compile)
*.sim (Generated by running lib_compile)
*.mra (Generated by running lib_compile)

dw
src

xc7000
lib

xc7000

scan.dc
scan.script
scan.vhd
scan_tb.vhd
synopsys_dc.setup
.synopsys_vss.setup

Synthesis Design Guide

1-6 Xilinx Development System

Xilinx EPLD Design Flow
Figure 1-2 shows the basic design flow for creating XC9500 designs.
Each step is described in the following design example.

Figure 1-2 Basic EPLD Design Flow

Design Example
The following design example is used to demonstrate the basic EPLD
design flow. This design implements a counter with variable start and
stop values which are loaded into registers from a data input bus.
When the START input is asserted, the start value is loaded into the
counter and the counter outputs are enabled. The counter outputs

design_name.vhd

Design Entry

Functional Simulation

Synthesis

Device Programming

Timing Simulation

design_name_vss.vhd

vhdldbx

(optional)

design_name.vm6

Timing Backannotation

design_name_vss.sdf
design_name.tim

Static Timing
 Verification

xepldsim

design_name.sxnf

design_name.sedif
or

dc_shell

vhdldbx

Fittingxepld

design_name.jed or .prg

Getting Started with Xilinx EPLDs

Synthesis Design Guide 1-7

increment on each clock cycle until the counter value matches the
stop value. The counter outputs are disabled on the next clock cycle.
The design can be implemented in a Xilinx XC95108-7PC84 or
XC7354-7PC44 device.

To help you understand the design, an equivalent schematic is shown
in Figure 1-3.

Figure 1-3 Schematic Representation — SCAN Design

The VHDL source file (scan.vhd) for the scan example design is
shown in Figure 1-4.

OE_REG

INIT=R

QD

CLR
C

FDC

COUNT

INIT=R

TC

CEO

Q[7:0]

D[7:0]

L

CLR
C

CE

CB8CLE

AND2B1
OR2

EPLD Tutorial Design

SCAN

PART=7354-10PC44

START

IPAD

GND

GND

IPAD

IPAD

IPAD

I[7:0]

IPAD8

IBUF

IBUF

IBUF

IBUF8

INV

INV

IBUF

OBUFE8
E

B[7:0]

A[7:0]

EQ

COMP8

OBUF

IPAD
IBUF

O[7:0]

OPAD8

OPAD

WRITE_START

WRITE_END

CLOCK

CLEAR

DONE

START_REG

FD8CE

Q[7:0]

D[7:0]

CLR

CE

C

END_REG

FD8CE

Q[7:0]

D[7:0]

CLR

CE

C

DATA[7:0] START[7:0]

END[7:0]

All rights reserved
Copyright (C) Xilinx Corporation, 1994

1234

A

B

C

D

4 3 2 1

D

C

B

A

Rev:

Ver:

Title:

Comments:

Date: 6-21-1994_11:41

DONE_REG

C

D Q

FD

Q[7:0]DATA_IN_[7:0] C_OUT_[7:0]

Synthesis Design Guide

1-8 Xilinx Development System

-- --
-- Xilinx EPLD Synopsys VHDL Tutorial Design --
-- --
-- File: scan.vhd --
-- --
-- Target Device: XC95108-7PC84 --
-- --
-- Author: Xilinx Corporation --
-- Copyright (C) Xilinx Corporation 1995
-- All rights reserved --
-- --
-- Requirements: Xilinx XC9500 Pre-release V1.0
-- Synopsys Design Compiler v3.1 or later
-- --

-- Standard library configuration --
Library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;

entity scan is
 port (CLOCK, CLEAR, START, WRITE_START, WRITE_END: in std_logic;
 DATA_IN: in std_logic_vector (7 downto 0);
 C_OUT: out std_logic_vector (7 downto 0);
 DONE: out std_logic;
 MRESET: in std_logic); -- MRESET used for timing simulation only --
end scan;

architecture behavior of scan is
signal START_REG: std_logic_vector (7 downto 0);
signal END_REG: std_logic_vector (7 downto 0) := "11111111";
signal COUNT: std_logic_vector (7 downto 0) := "00000000";
signal OE_REG, DONE_REG: std_logic := '0'; -- Initial states used by fn'l sim. only --

begin
-- Registers without asynchronous clear --
 process (CLOCK)
 begin
 if (CLOCK'event and CLOCK='1') then
 if (WRITE_START = '0') then
 START_REG <= DATA_IN;
 end if;

Getting Started with Xilinx EPLDs

Synthesis Design Guide 1-9

Figure 1-4 Example Design Source File (scan.vhd)

 if (WRITE_END = '0') then
 END_REG <= DATA_IN;
 end if;

 -- Registered comparator --
 if (COUNT = END_REG) then
 DONE_REG <= '1';
 else
 DONE_REG <= '0';
 end if;
 end if;
 end process;

-- OE_REG register with asynchronous clear --
 process (CLEAR, CLOCK)
 begin
 if (CLEAR = '1') then
 OE_REG <= '0';
 elsif (CLOCK'event and CLOCK='1') then
 if (START = '1') then
 OE_REG <= '1';
 elsif (DONE_REG = '1') then
 OE_REG <= '0';
 end if;
 end if;
 end process;

-- Counter with asynchronous clear and parallel load --
 process (CLEAR, CLOCK)
 begin
 if (CLEAR = '1') then
 COUNT <= "00000000";
 elsif (CLOCK'event and CLOCK='1') then
 if (START = '1') then
 COUNT <= START_REG; -- Counter parallel load --
 elsif (OE_REG = '1') then
 COUNT <= COUNT + 1; -- Counter increment --
 end if;
 end if;
 end process;

-- Three-state counter outputs --
 C_OUT <= COUNT when (OE_REG = '1') else
 "ZZZZZZZZ";
 DONE <= DONE_REG;
end behavior;

Synthesis Design Guide

1-10 Xilinx Development System

Design Entry
Typically you will enter your design in Synopsys VHDL/HDL form
by using a text editor. However, all required source, setup, and test
bench files for this design example have already been entered for you
and are contained in the $DS401/tutorial/synopsys/scan
directory (see Figure 1-1).

Step1 — Create a Design Directory

Create a local copy of the scan tutorial directory as follows:

● Change your current working directory to a local, writable
location in which you will place the scan working directory.

● Copy the entire scan directory tree from the installed tutorial area
into your current directory as follows:

cp -r $DS401/tutorial/synopsys/scan .

● Change your current directory to the scan tutorial directory as
follows:

cd scan

● Verify that the search_path variable in your
.synopsys_dc.setup file, in your current working directory,
points to the directory path where your XC9500 Pre-release library
is installed, which should be the value of your $DS401 variable.

Note: The search_path variable must be explicitly defined;
environment variables are not allowed in the
.synopsys_dc.setup file.

If you need more information on design entry see the Synopsys
Design Compiler manuals.

Functional Simulation
Functional simulation verifies the logic of your design. This will save
you time by catching logic errors early in the development cycle. If
you are not using the VHDL System Simulator (VSS), skip this section
and continue with step 9.

Getting Started with Xilinx EPLDs

Synthesis Design Guide 1-11

You must analyze your source design file before simulation. If you
created a test bench in VHDL/HDL for simulation, you must also
analyze it after analyzing your design.

Step 2 — Analyze Your Design

Analyze the scan design by entering the following Synopsys
command on the UNIX command line:

vhdlan scan.vhd

You will see the analyzer version number and a copyright notice. If
the analysis works properly you will be returned to the UNIX prompt
with no error messages displayed.

Step 3 — Analyze Your Test Bench

For this example a test bench is pr ovided (scan_tb.vhd). At
the end of this file, a configuration named CFG_SCAN_TB is
declar ed. The test bench file is shown in Figur e 1-5.

Analyze the test bench for scan by entering the following Synopsys
command on the UNIX command line:

vhdlan scan_tb.vhd

Again, you will see the analyzer version number and a copyright
notice. If the analysis works properly you will be returned to the
UNIX prompt with no error messages displayed.

Synthesis Design Guide

1-12 Xilinx Development System

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_components.all;
use STD.Textio.all;

entity scan_tb is
end scan_tb;

architecture test of scan_tb is

 component scan
 port (CLOCK, CLEAR, START, WRITE_START, WRITE_END: in std_logic;
 DATA_IN: in std_logic_vector (7 downto 0);
 C_OUT: out std_logic_vector (7 downto 0);
 DONE: out std_logic;
 MRESET: in std_logic);
 end component;

 signal CLOCK, CLEAR, START, WRITE_START, WRITE_END: std_logic;
 signal DATA_IN: std_logic_vector (7 downto 0);
 signal C_OUT: std_logic_vector (7 downto 0);
 signal DONE: std_logic;
 signal MRESET: std_logic;

begin

 UUT: scan
port map (CLOCK, CLEAR, START, WRITE_START, WRITE_END,

 DATA_IN, C_OUT, DONE, MRESET);

Getting Started with Xilinx EPLDs

Synthesis Design Guide 1-13

DRIVER: process
begin

MRESET <= '0';
CLEAR <= '0';
START <= '0';
WRITE_START <= '1';
WRITE_END <= '1';
DATA_IN <= "00000000";
CLOCK <= '0';

wait for 25 ns;
MRESET <= '1';
wait for 25 ns;
CLOCK <= '1';

wait for 25 ns;
CLOCK <= '0';
DATA_IN <= "01111101";
WRITE_START <= '0';
wait for 25 ns;
CLOCK <= '1';

wait for 25 ns;
CLOCK <= '0';
DATA_IN <= "10000001";
WRITE_START <= '1';
WRITE_END <= '0';
wait for 25 ns;
CLOCK <= '1';

wait for 25 ns;
CLOCK <= '0';
WRITE_END <= '1';
START <= '1';
wait for 25 ns;
CLOCK <= '1';

for I in 1 to 6 loop
 wait for 25 ns;
 CLOCK <= '0';
 START <= '0';
 wait for 25 ns;
 CLOCK <= '1';
end loop;

Synthesis Design Guide

1-14 Xilinx Development System

Figure 1-5 Test Bench File (scan_tb.vhd)

wait for 25 ns;
CLOCK <= '0';
START <= '1';
wait for 25 ns;
CLOCK <= '1';

wait for 25 ns;
CLOCK <= '0';
START <= '0';
wait for 25 ns;
CLOCK <= '1';

wait for 25 ns;
CLOCK <= '0';
CLEAR <= '1';
wait for 25 ns;
CLOCK <= '1';

wait for 25 ns;
CLOCK <= '0';
CLEAR <= '0';
wait for 25 ns;
wait;

end process;
end test;

configuration CFG_SCAN_TB of scan_tb is
 for test
 end for;
end CFG_SCAN_TB;

Getting Started with Xilinx EPLDs

Synthesis Design Guide 1-15

Step 4 — Invoke the Simulator

Invoke the simulator by entering the following Synopsys command
on the UNIX command line:

vhdldbx

You will see the following window for selecting the analyzed
configurations:

Figure 1-6 VHDLDBX Window

Step 5 — Run the Debugger

Select CFG_SCAN_TB from the menu. This brings up the Synopsys
VHDL Debugger window as shown in Figure 1-7.

Synthesis Design Guide

1-16 Xilinx Development System

Figure 1-7 Synopsys VHDL Debugger

Step 6 — Trace Signals

Click in the lower section of the Synopsys VHDL Debugger window
and enter the following command:

trace *’signal

This command selects all signals at the test bench level for display
and brings up the Dynamic Waveform Viewer (Waves).

Getting Started with Xilinx EPLDs

Synthesis Design Guide 1-17

Step 7 — Run the Simulation

Click the RUN button in the Debugger window to run the simulation
waveform specified in the test bench. The resulting trace display is
shown in Figure 1-8.

Figure 1-8 Synopsys Dynamic Waveform Viewer (Waves)

Step 8 — Return to UNIX

Return to the UNIX environment by selecting EXECUTE-QUIT from
the VHDL Debugger menu.

If you need more information on functional simulation see the
“Simulating Your Design” chapter.

Synthesizing Your Design (Compiling)
Synthesizing your design converts the VHDL source text into a netlist
that is composed of logic primitives. The netlist is in a form that can
be read by the Xilinx fitter.

Step 9 — Enter the DC Shell Environment

Enter the Synopsys DC Shell environment by entering the following
Synopsys command on the UNIX command line:

dc_shell

Synthesis Design Guide

1-18 Xilinx Development System

You will see the DC Shell license information and command-line
prompt. Verify that the software version is v3.1 or newer.

Note: The commands required to compile the scan design example
are shown in the following steps 10 through 16. These commands are
also contained in compiler script files. If you have FPGA compiler, the
appropriate commands are contained in scan.script , which you
can run by entering the following Synopsys command:

include scan.script

If you have only Design Compiler, the appropriate commands are
contained in scan.dc which you can run by entering the following
Synopsys command:

include scan.dc

If you choose to use these compiler scripts, go to step 17 when
compilation is complete.

Unless otherwise specified, the commands in steps 10-16 are the same
for both FPGA Compiler and Design Compiler.

Step 10 — Analyze Your Source Design

Read and analyze your VHDL source design file by entering the
following Synopsys command:

analyze -format vhdl scan.vhd

The warning messages you see during this step are normal. The
source file contains initial signal values that are used only for
functional simulation and these values are ignored during synthesis.
Actual register initial states are set using attributes as shown in
step 15.

Step 11 — Elaborate Your Design

To build the design based on your analyzed VHDL file, entering the
following Synopsys command:

elaborate scan

This command displays each register and 3-state buffer encountered
in your design.

Getting Started with Xilinx EPLDs

Synthesis Design Guide 1-19

Step 12 — Synthesize Your Design

To synthesize an implementation of your design based on cells in the
XC7000 or XC9000 technology library enter the following Synopsys
command:

compile -map_effort low

The mapping effort is set to LOW to save compilation time because
the synthesizer does not perform any speed or area optimization for
EPLD designs; optimization is performed by the XEPLD fitter.

Note: For this design example, the compiler produces a warning
about a port not connected to any nets; this warning can safely be
ignored. This warning also occurs in step 13.

Step 13 — Place I/O Buffer Cells

To place I/O buffer cells on all top-level ports in the design, enter the
following Synopsys commands:

set_port_is_pad "*"
insert_pads

Step 14 — Specify a Target Device

If you are using FPGA Compiler, you can specify the target EPLD
device using a Synopsys attribute. Otherwise, you can specify the
target device later when you invoke the fitter. Enter the following
Synopsys command to specify a target XC9000 device:

set_attribute scan part -type string 95108-7pc84

Step 15 — Specify Initial Register States

In this design we want the counter and the OE_REG flip-flop to be
initialized to zero. The initial states of the remaining flip-flops are not
critical for this design.

If you have FPGA Compiler, enter the following Synopsys
commands to specify the initial states:

set_attribute find(cell COUNT*)
fpga_xilinx_init_state -type string R

set_attribute find(cell OE_REG*)
fpga_xilinx_init_state -type string R

Synthesis Design Guide

1-20 Xilinx Development System

Step 16 — Output the Netlist

The design database is now complete and ready to be output in
netlist form.

If you have FPGA Compiler, write an XNF-formatted netlist by
entering the following Synopsys command:

write -format xnf -hierarchy -output scan.sxnf

If you have Design Compiler, write an EDIF-formatted netlist by
entering the following Synopsys command:

write -format edif -output scan.edif

Step 17 — Exit DC Shell

Exit DC Shell by entering the following Synopsys command:

exit

You are returned to the UNIX prompt.

If you need more information on compiling your design, see
the “Compiling Your Design” chapter.

The synthesizer creates a gate-level design with no physical device
information; the physical layout of the device is done in the fitter
step. No speed or area estimates are provided by the XC7000 or
XC9000 library. Therefore do not attempt to create a timing report or
perform estimated timing simulation at this time.

Fitting Your Design
The XEPLD fitter translates your logical design file (scan.sxnf or
scan.edif) into a physical device layout.

Step 18 — Fit Your Design

To fit your design into an XC9000 device, enter the following on the
UNIX command line:

xepld -p 9 scan

To fit your design into an XC7000 device, enter the following on the

Getting Started with Xilinx EPLDs

Synthesis Design Guide 1-21

UNIX command line:

xepld -p 7 scan

The fitter displays a series of progress messages and a resource
summary that shows how well your design fits into the target device.
During execution, xepld produces a warning message about an
AND-gate that “does not drive anything and it is removed”; this can
safely be ignored.

When the fitter is finished, and assuming there are no errors, you
need only to examine the fitter report file. For XC9000 designs,
examine scan.rpt. For XC7000 designs, examine scan.res . If you
wish, you can also examine the static timing report file, scan.tim.

If you need more information on fitting, see the “Fitting Your Design”
chapter.

Timing Simulation
Timing simulation uses the actual device delays based on the
physical layout of your design after fitting. If you are not using the
VSS simulator, skip the remainder of this tutorial.

Step 19 — Prepare A Timing Simulation File

The xepld command produces a timing simulation netlist file
(scan_tim.xnf) each time the design is successfully implemented. To
translate the netlist for VSS simulation, enter the following command
at the UNIX prompt:

xepldsim -vss scan

The xepldsim command produces a structural VHDL file
(scan_vss.vhd) and an SDF-formatted timing back-annotation file
(scan_vss.sdf).

Step 20 — Analyze Your Original Design

Analyze the original scan design to reuse the port declarations
contained in the entity by entering the following Synopsys command
on the UNIX command line:

vhdlan scan.vhd

Synthesis Design Guide

1-22 Xilinx Development System

Step 21 — Analyze Your Back-Annotated Design

Analyze the back-annotated design architecture, produced by the
Xilinx xepldsim command, by entering the following Synopsys
command on the UNIX command line:

vhdlan scan_vss.vhd

You will see the analyzer version number and a copyright notice. If
the analysis works properly you will be returned to the UNIX prompt
with no error messages displayed.

Step 22 — Analyze Your Test Bench

Analyze the simulation test bench by entering the following
Synopsys command on the UNIX command line:

vhdlan scan_tb.vhd

Again, you will see the analyzer version number and a copyright
notice. If the analysis works properly you will be returned to the
UNIX prompt with no error messages displayed.

Step 23 — Invoke the VSS Simulator

Invoke the Synopsys VSS simulator by entering the following
Synopsys command on the UNIX command line:

vhdldbx -sdf scan_vss.sdf -sdf_top \
/SCAN_TB/UUT CFG_SCAN_TB &

For your convenience, this command line is contained in a script file,
which you can execute by typing the following on the UNIX
command line:

dbx_scan

This will open the simulator window as shown in Figure 1-9. The
-sdf parameter specifies the timing back-annotation file produced
by xepldsim . The -sdf_top parameter specifies the level in the
test bench hierarchy at which the back annotation information will be
applied, which is the “UUT” instance of the scan design.

Getting Started with Xilinx EPLDs

Synthesis Design Guide 1-23

Figure 1-9 Synopsys VHDL Debugger

Step 24 — Open the Waveform Viewer

Use the TRACE command to specify the same signals used during
functional simulation in step 6. Enter the following command on the
VHDL Debugger command line:

trace *'signal

This opens the Dynamic Waveform Viewer window.

Synthesis Design Guide

1-24 Xilinx Development System

Step 25 — Run the Simulation

Run the simulation by clicking the RUN button in the lower section of
the Synopsys VHDL Debugger window.

This will run the timing simulation test bench and display the
simulation trace of your design as shown below in Figure 1-10.

Figure 1-10 Synopsys Dynamic Waveform Viewer (Waves)

Step 26 — Return to UNIX

Return to the UNIX environment by selecting EXECUTE-QUIT from
the simulator menu.

If you need more information on timing simulation, see the
Simulating Your Design” chapter.

Synthesis Design Guide 2-1

Chapter 2

Designing with EPLDs

This chapter discusses how to use design techniques, library cells and
xepld command parameters to get the best performance from Xilinx
XC7000 and XC9000 EPLDs. For more information on library
components, see the “Library Component Specifications” appendix.
For more information on attributes, see the “Attributes” appendix.

This chapter describes how you can control the following aspects of
design implementation:

● Device selection

● Register clocking and asynchronous set/reset

● Device output enable control

● Register power-up state

● Macrocell power/speed trade-off

● Output slew rate

● Pin assignment and pin freezing

● Logic collapsing

● Timing specifications and optimization

VHDL Design File Requirements
The XC7000 library contains an assortment of scalable arithmetic and
counter components that support efficient logic implementations in
that architecture. If you plan to instantiate any components from the
XC7000 library you will need to declare the Xilinx
XC7000.components package in your design source file. To declare
the XC7000.components package, insert the following two lines at
the top of your VHDL source file:

Synthesis Design Guide

2-2 Xilinx Development System

library xc7000;
use xc7000.components.all;

The XC9000 library does not provide specialized components for
arithmetic or counter functions; synthesized generic logic solutions
are used instead.

Target Device Selection
By default, the fitter will automatically select an XC9500 family
device for you, choosing, in general, the smallest part that will satisfy
the needs and constraints of your design.

You can optionally specify a target device on the xepld command line
when you run the fitter. The format of the part-type parameter on the
xepld command line is:

xepld -p ddddd- sspppp design_name

where

ddddd is the device code, for example 95108

ss is the speed grade, for example 10

pppp is the package type and pin count, for example PC84

You may specify either a unique device code, a range of eligible
devices or an entire EPLD family from which the fitter will
automatically choose. To specify just the EPLD family, use just “7”
(for XC7000) or “9” (for XC9000) as the part-type parameter value.To
specify a range of devices, you can use an asterisk (*) as a wildcard
character. You may also specify an enumerated list of devices,
separated by commas.

If you use the asterisk character or an enumerated list in the xepld
command, you must enclose the parameter string in quotes. If you
use an asterisk in the part code field, your string must begin with a
“7” (for XC7000) or “9” (for XC9000). For example, the following are
valid part-type parameter specifications:

xepld -p 95108-10PC84 design1
xepld -p “95108-*PC84” design1
xepld -p “95108-10PC84,95108-7PQ*” design1
xepld -p 7 design1

Note: You cannot mix device codes from the XC7000 and XC9000

Designing with EPLDs

Synthesis Design Guide 2-3

families in the same xepld command.

As an alternative, if you are using FPGA Compiler, you can set the
“part” attribute in DC Shell, as follows:

set_attribute design_name part -type string part_type

You cannot, however, specify wildcards or lists using the DC Shell
PART attribute as you can in the xepld command line. If you want the
fitter to use the part specified in the DC Shell part attribute, you must
include the parameter “-p indesign” on your xepld command line.
For example:

xepld -p indesign design1

If you specify any part code in the xepld -p parameter (instead of
“indesign”), it will override any PART attribute set in DC Shell.

Refer to the Release Document for a list of EPLD device codes
supported by the current version of the fitter software.

EPLD-Specific I/O Ports
Ordinarily, you need only to declare ports in your top-level entity to
represent I/O pins on the EPLD device. The Synopsys
set_port_is_pad and insert_pads commands automatically infers
IBUF, OBUF, OBUFE and IOBUFE cells from the XC7000 or XC9000
library to represent the I/O ports in the XNF netlist.

The following sections describe special global control pins on EPLD
devices that can be used for register clocking, 3-state control and
register set/reset, instead of ordinary IBUF inputs. Unless otherwise
specified, the fitter automatically allocates these special global pins, if
possible, when input ports in your design are used to perform these
control functions.

Clock Inputs
To use a device input as a clock source, you can simply refer to a top-
level input port as the clock condition in a process. For example:

entity xyz is
 port (CLOCK:in std_logic; ...
...
process (CLOCK)
 begin

Synthesis Design Guide

2-4 Xilinx Development System

 if (CLOCK’event and CLOCK=’1’) then
 ...

The fitter automatically uses one of the global clock pins (GCK for
XC9000 or FCLK for XC7000) whenever possible.

For XC9000 devices, a global clock input signal may perform
negative-edge clocking. For example:

process (CLOCK)
 begin
 if (CLOCK’event and CLOCK=’0’) then
 ...

The same clock input may even be used both as both positive-edged
and negative-edged to clock different processes on opposite edges of
the clock signal. Global clock inputs may also be used as ordinary
input signals to other logic elsewhere in the design.

If an input port signal passes through any logic function (other than
an inverter) before it is used as a clock, the input cannot be routed to
the flip-flops using the global clock path. Instead, the flip-flop’s clock
signal will be routed through the logic array.

For XC7000 devices, input port signals must be used only as positive-
edge clocks and for no other functions in the design in order for the
global clock path (FastClock) to be used.

There are a limited number of global clock pins on each EPLD device
(consult the device data sheet). If you need to explicitly control the
use of global clock pins, you can instantiate the BUFG cell from the
XC7000 or XC9000 library and pass your input port signal through it.
For example:

U1: BUFG port map (O=>GLOBAL_CLOCK, I=>CLOCK);
process (GLOBAL_CLOCK)
 begin
 if (GLOBAL_CLOCK’event and GLOBAL_CLOCK=’0’) then
 ...

The global clock pins provide much shorter clock-to-output delays
than clocks routed through the logic array. Routing a clock through
the logic array also uses up one extra p-term for each flip-flop.

If you want to prevent the fitter from automatically using the global
clock pins, specify the “-nogck” parameter on the xepld command
line as follows:

Designing with EPLDs

Synthesis Design Guide 2-5

xepld -nogck design_name

If -nogck is specified, input ports used as clocks will always pass
through the array. You can still instantiate BUFG cells to explicitly
specify global clock inputs.

Output Enable Signals
To use a device input to control three-state device outputs, you can
simply refer to a top-level input port signal as a 3-state condition in
your design. For example:

entity xyz is
 port (ENABLE:in std_logic; ...
...
Q <= Q_VALUE when (ENABLE=’1’) else ‘Z’;

The fitter automatically uses one of the global three-state control pins
(GTS for XC9000 or FOE for XC7000) whenever possible.

For XC9000 devices, a global 3-state control input signal may perform
an active-low output-enable. For example:

Q <= Q_VALUE when (ENABLE=’0’) else ‘Z’;

The same 3-state control input may even be used both active-high
and active-low to enable alternate groups of device outputs. Global 3-
state control inputs may also be used as ordinary input signals to
other logic elsewhere in the design.

If an input port signal passes through any logic function (other than
an inverter) before it is used as an output enable, the input cannot be
routed to the device output drivers using the global 3-state control
path. Instead, the output enable signal will be routed through the
logic array.

For XC7000 devices, input port signals must be used only as active-
high output enables, and for no other functions in the design, in
order for the global 3-state control path (FOE) to be used.

There are a limited number of global 3-state control pins on each
EPLD device (consult the device data sheet). If you need to explicitly
control the use of global 3-state control pins, you can instantiate the
BUFGTS cell (for XC9000) or BUFFOE cell (for XC7000) and pass your
input port signal through it. For example:

U1: BUFGTS port map (O=>GLOBAL_ENABLE, I=>ENABLE);

Synthesis Design Guide

2-6 Xilinx Development System

Q <= Q_VALUE when (GLOBAL_ENABLE=’1’) else ‘Z’;

The global 3-state control pins provide much shorter input-to-output-
enable delays than 3-state controls routed through the logic array.
Routing a 3-state control signal through the logic array also uses up
one extra p-term for each output.

If you want to prevent the fitter from automatically using the global
3-state control pins, specify the “-nogts” parameter on the xepld
command line as follows:

xepld -nogts design_name

If -nogts is specified, input ports used for 3-state control will always
pass through the array. You can still instantiate BUFGTS or BUFFOE
cells to explicitly specify global 3-state control inputs.

Asynchronous Clear and Preset
To use a device input as an asynchronous clear or preset source, you
can simply refer to a top-level input port as the set or reset condition
in a clocked process. For example:

entity xyz is
 port (CLOCK, RESET : in std_logic; ...
...
process (CLOCK, RESET)
 begin
 if (RESET=’1’) then Q <= ‘0’;
 elsif (CLOCK’event and CLOCK=’1’) then
 ...

For XC9000 designs, the fitter automatically uses the global set/reset
pin (GSR) whenever possible. A global set/reset input signal may
perform active-low clear or preset. For example:

process (CLOCK, PRESET)
 begin
 if (PRESET=’0’) then Q <= ‘1’;
 elsif (CLOCK’event and CLOCK=’1’) then
 ...

A global set/reset inputs may also be used as an ordinary input
signal to other logic elsewhere in the design.

If an input port signal passes through any logic function (other than
an inverter) before it is used as an asynchronous clear or preset, the
input cannot be routed to the flip-flops using the global set/reset

Designing with EPLDs

Synthesis Design Guide 2-7

path. Instead, the flip-flop’s clear/preset signal will be routed
through the logic array. Routing a clear or preset through the logic
array uses up one extra p-term for each flip-flop.

There is only one global set/reset pin on each XC9000 device. If you
need to explicitly control the use of the global set/reset pin, you can
instantiate the BUFGSR cell from the XC9000 library and pass your
input port signal through it. For example:

U1: BUFGSR port map (O=>GLOBAL_RESET, I=>RESET);
process (CLOCK, GLOBAL_RESET)
 begin
 if (GLOBAL_RESET=’1’) then Q <= ‘0’;
 elsif (CLOCK’event and CLOCK=’1’) then
 ...

Note: If a flip-flop has both a clear and preset condition and you
assert both the clear and preset concurrently, its Q-output is
unpredictable. This is because the fitter may arbitrarily invert the
logic stored in a flip-flop to achieve better logic optimization.
Individual clear and preset operations still produce the correct final
logic state as dictated by the user design. Functional simulation does
not accurately predict the ultimate behavior of the chip when clear
and preset are asserted concurrently. Timing simulation, however, is
performed after logic optimization and behaves exactly as the chip
will when programmed.

Controlling Register Initial State
All registers in an EPLD device are initialized when the device is
powered up. XC7000 devices also have a Master Reset pin that re-
initializes the whole device. The initial state (preload value) of each
register is programmable (except for IOB registers in XC7000
devices).

Unless otherwise specified in your design, each register in an XC9000
device will initialize to the zero (reset) state at power-up.

The initial states of registers in XC7000 devices are, by default,
selected by the fitter based on the most efficient use of resources. If
you want all registers in an XC7000 design to preload to zero by
default, you can specify the “-preload” parameter on the xepld
command line, as follows:

xepld -p 7 -preload design_name

Synthesis Design Guide

2-8 Xilinx Development System

The -preload parameter has no effect on XC7000 IOB registers (like
the IFD cell) that you instantiate in your design. You can use the DC
Shell initial state attribute (described below) to override the xepld
preload parameter for selected registers.

Initial State Attribute
You can specify the preload states of selected registers in your design
by setting the DC Shell initial state attribute. If you are using FPGA
Compiler, enter the following in DC Shell:

set_attribute “ instance_name”
fpga_xilinx_init_state -type string state

where:

● instance_name is the name(s) of a cell instance(s) and may be
evaluated by means of the DC Shell “find” function.

● state is either R (reset to 0) or S (set to 1).

For example, to specify an initial state of “1” for the register named
QOUT_reg<2> using FPGA Compiler, enter the following:

set_attribute “QOUT_reg<2>” \
fpga_xilinx_init_state -type string S

or, for all QOUT registers:

set_attribute find (cell QOUT_reg*) \
fpga_xilinx_init_state -type string S

The initial state attribute is ignored if it is applied to any cell in your
design that is not a flip-flop.

Controlling Power Consumption
The power consumption of each macrocell in an EPLD device is
programmable. The standard (default) setting consumes more power
and produces shorter propagation delay. The low-power setting
reduces power consumption for less speed-critical paths.

By default, all macrocells in the design will operate in standard
power mode. You can change the global power setting to use the low
power mode throughout the design by specifying the “lowpwr”
parameter on the xepld command line as follows:

Designing with EPLDs

Synthesis Design Guide 2-9

xepld -lowpwr design_name

Controlling Output Slew Rate
For all XC9000 devices and some XC7000 devices, each output is
programmable to operate either at full speed or with limited slew
rate. (Consult device data sheets for applicability.) Limiting the slew
rate reduces output switching surges in the device. Slew rate control
becomes important when your design uses a large number of outputs
or you have transmission lines on your board which are sensitive to
fast edge rates.

By default, all registers have limited (slow) slew rate. If you want to
disable the slew rate limitation of a device output to increase its
switching speed, use the “set_pad_type” command in DC Shell. For
either FPGA Compiler or Design Compiler, enter the following in DC
Shell:

set_pad_type -slewrate NONE { port_list}

where port_list is a list of output ports that are to operate with fast
output slew rate. The keyword “NONE” signifies that no slew rate
limitation should be applied to the named output ports.

If you need to set the slew rate back to slow for some output ports,
you can enter the following in DC Shell:

set_pad_type -slewrate HIGH { port_list}

The keyword “HIGH” signifies that full slew rate limitation should
be applied to the named output ports, thereby slowing output
transitions.

Note: The set_pad_type command must be invoked before the
insert_pads command in DC Shell.

Controlling the Pinout
When you first run the fitter before your pinout is committed, the
software automatically selects pin locations for your I/O signals. Pin
locations are selected which will give you the greatest flexibility to
iterate your design without having to move any of the pins. Each
time the fitter successfully implements your design, it creates a guide
file (design_name.gyd), which contains all the resulting pinout infor-
mation. After you commit your pinout, subsequent design iterations

Synthesis Design Guide

2-10 Xilinx Development System

cause the guide file to be read by the fitter and your committed
pinout will be preserved.

We strongly recommend that you allow the software to automatically
generate your initial pinout. Attempting to select your own initial pin
preferences reduces the ability of the fitter to implement your design
successfully the first time. It further reduces the amount of logic
changes you could make after freezing your pinout.

Pin Freezing
If you have successfully fit a design into an EPLD device and you
build a prototype containing the device, you will probably want to
“freeze” the pinout. The next time you iterate that design, you should
specify the “pinfreeze” option on the xepld command line, as follows:

xepld -pinfreeze design_name

The -pinfreeze parameter tells the fitter to read and obey the pinout
from the guide file that was saved the last time the fitter completed.
The fitter will not move any of the pins contained in the guide file,
even if it prevents the design from successfully mapping.

The pin locations stored in the guide file are specified based on the
top-level port names in your design. If you change the name of any of
your ports, the corresponding pin will no longer be constrained to the
location stored in the guide file. Renaming a port is a way you can
relax the pinfreezing constraints on a design if your logic changes
prevent the design from successfully fitting with your original
pinout.

When you iterate your design while your pins are frozen, you are free
to delete existing ports and/or add new ports. The fitter will
automatically select the best locations for any new ports you add,
after placing all the existing ports constrained by the guide file.

Note: If you iterate your design and your pinout is not yet committed
(you haven’t built a prototype containing the device), you should not
specify the pinfreeze option. Instead, allow the software to redefine
the pinout of your modified design. This will continue to give you the
greatest flexibility to iterate your design again after you commit your
pinout.

Designing with EPLDs

Synthesis Design Guide 2-11

Pin Assignment
You can assign explicit locations for pins in your design using the DC
Shell pad_location attribute. If you are using FPGA Compiler, enter
the following in DC Shell:

set_attribute port pad_location -type string pin_name

where port is the name of the port being assigned.

For example, to place the “start” signal on pin 23, using FPGA
Compiler:

set_attribute start pad_location -type string P23

For PC and PQ type packages, the pin_name takes the form “Pnn”
where nn is a number. For example, for the PC84 package, the valid
range for pin_name is P1 through P84. For grid array type packages
(PG and BG), the pin_name takes the form “rc”, where r is the row
letter and c is the column number.

When your design contains pad_location attributes, you should
specify the target device type either using the xepld command’s -p
parameter or the DC Shell PART attribute (see Target Device
Selection in this Chapter). The pad_location attributes are typically
not compatible when retargeting a design between different package
types, device types or device families.

The pad_location attributes are unconditional in that the software
will not attempt to relocate a pin if it cannot achieve the specified
assignment. If you specify a set of pad_location attributes that the
fitter cannot satisfy, the fitter will terminate with an error.

The pad_location attributes override the pin assignments in the guide
file if you specify the pinfreeze option. This allows you to make
explicit changes to your committed pinout. If you override the guide
file using pad_location attributes, the software will issue a warning.

If your objective is to preserve a previously created pinout, we
recommend you use the pinfreeze feature instead of creating a set of
pad_location attributes with the existing pin locations. The guide file
saved from the previous design implementation contains additional
information to help the fitter to successfully fit your modified design.

Synthesis Design Guide

2-12 Xilinx Development System

If you used pad_location attributes when compiling your netlist but
you want to let the fitter automatically assign all I/O pins, you can
specify the -ignoreloc parameter on the xepld command line:

xepld -ignoreloc design_name

The ignoreloc option allows you to temporarily ignore all the
pad_location attributes in your netlist. This is useful if you want to
test how your design fits a different target device without re-
compiling your design.

Pin Assignment Precautions
You can apply the pad_location attribute to as many ports in your
design as you like. However, each pin assignment further constrains
the software making it more difficult for the fitter to automatically
allocate logic and I/O resources for the remaining I/O signals in your
design.

When you manually assign output and I/O pins, you force the
software to place associated logic functions into specific macrocells
and specific function blocks. If the associated logic does not exceed
the available function block resources (macrocells, product terms, and
FastCONNECT inputs), the logic is mapped into the macrocell and
the design will route in the FastCONNECT.

It is usually best to allow the fitter to automatically assign most or all
of the pins based on the most efficient placement of logic in the
device. The fitter automatically establishes a pinout which best allows
for future design iterations without pin relocation. Any manual pin
assignments you make in your design may not allow as much
tolerance for changes in the logic associated with those pins, and in
the logic physically mapped to nearby locations in the device.

If you are assigning pin locations to ports used as clocks,
asynchronous set/reset, or output enable in your design, you should
assign them to the GCK, GSR and GTS pins on the device if you want
to take advantage of these global resources. The fitter will still
automatically assign other clock, set/reset and output enable inputs
to remaining GCK, GSR and GTS pins if available.

Controlling Logic Optimization
When you create combinational logic functions, the software

Designing with EPLDs

Synthesis Design Guide 2-13

attempts to collapse as much of the logic as possible into the smallest
number of EPLD macrocells. Any combinational logic function
bounded between device I/O pins and flip-flops is subject to
complete or partial collapsing. Collapsing the logic improves the
speed of the logic path and can also reduce the amount of logic
resources (macrocells, p-terms and FastCONNECT inputs) required
to implement the function.

The process of collapsing logic into other logic functions is called
“logic optimization”.

Collapsing Product Term Limit
When a larger combinational logic function consisting of several
levels of AND-OR logic is completely collapsed (flattened), the
number of product terms required to implement the function may
grow considerably. By default, the fitter limits the number of p-terms
used as a result of collapsing to 15 for XC9000 devices, and 17 for
XC7000 devices. If the collapsing of a logic level results in a logic
function consisting of more than 15 or 17 p-terms (after Boolean
reduction), then the collapsing of that logic level is not performed
and the function will be implemented using two or more levels of
AND-OR logic.

The overall extent to which logic is collapsed throughout the design
can be controlled using the “-pterms” parameter on the xepld
command line:

xepld -pterms nn design_name

where nn is the maximum allowable number of p-terms that can be
used to implement a logic function after collapsing. (The default
nn=15 for XC9000 devices, and 17 for XC7000 devices)

If you find that the path delay of a larger, multi-level logic function is
not satisfactory, try increasing the pterms parameter to allow the
larger functions to be flattened further. For example, you may try
increasing the p-term limit to 25 when rerunning the fitter, as shown:

xepld -pterms 25 design1

For XC9000 designs, the fitter report (design_name.rpt) indicates the
number of p-terms used for each logic function. You should see these
numbers increase as you raise the pterms limit, until the design is

Synthesis Design Guide

2-14 Xilinx Development System

fully flattened. At the same time, you’ll see the internal combinational
nodes eliminated until none remain.

Preventing Collapsing of a Logic Node
Flattening typically increases the overall amount of p-term resources
required to implement the design. Some designs which fit the target
device initially may fail to fit if flattened too much. Other designs can
be flattened completely and still fit. If you cannot increase the xepld
pterms parameter enough to sufficiently flatten a critical path and
still fit the target device, you may try applying logic optimization
control at specific nodes in your design.

A special cell is provided in the XC7000 and XC9000 libraries, named
OPT_OFF, which is used to apply a logic optimization constraint to
any signal connected to it. The OPT_OFF cell has one port, which is
an input named “I”. By instantiating an OPT_OFF cell and connecting
its “I” port to a signal in the middle of a combinational logic function,
you can prevent that signal from being collapsed.That is, you prevent
the cell that drives the signal from being collapsed forward into any
of its fanouts. The OPT_OFF cell is instantiated as follows:

label: OPT_OFF port map (signal_name);

Note: The connected signal does not actually pass through the
OPT_OFF cell. The OPT_OFF cell only applies an attribute to the
signal when the fitter reads the netlist.

In the following example, an OPT_OFF cell is used to prevent the
logic for an address decoder from being collapsed into the select
input of a 16-bit multiplexer:

component OPT_OFF port (I : in std_logic);
end component;
...
DECODE1 <= ‘1’ when (ADDR_BUS = ADDR_1) else ‘0’;
DATA_BUS <= A_BUS(0 to 15) when (DECODE1=’1’) else B_BUS;
U1: OPT_OFF port map (DECODE1);

By preventing logic optimization, the fitter will not duplicate the
logic of the address decoder in each bit of the multiplexer.

You can use OPT_OFF to break logic chains in non-speed-critical
paths and prevent those functions from using too many p-terms. If
you set the pterms parameter too high and your design no longer fits,
try using OPT_OFF to reduce the size of selected non-critical paths.

Designing with EPLDs

Synthesis Design Guide 2-15

Controlling Timing Paths
There are two mechanisms that can improve the timing of your
design:

● Global Timing Optimization

● XACT Performance (timing constraints)

Timing Optimization
By default, the fitter performs global timing optimization on logic
paths in your design. Timing optimization will shorten your critical
paths as much as it can. In general, timing optimization optimizes
logic and allocates the fastest available resources for the longest paths
in your design, assuming all paths are equally critical. In some cases,
the fitter trades off density for a speed advantage.

If you do not want the fitter to perform global timing optimization,
you can specify the “-notiming” parameter on the xepld command
line as follows:

xepld -notiming design_name

XACT Performance
The Synopsys FPGA Compiler generates timing specifications that it
writes into the XNF netlist for the XEPLD fitter. You can enter timing
constraints in the Design Analyzer, the DC Shell command window,
or a DC Shell script file. FPGA Compiler does not use your timing
constraints to optimize your logic or infer library cells during
compilation. All timing optimization is performed by the XEPLD
fitter after reading your timing specifications from the XNF netlist.

The following path types can be specified:

Pad-to-pad delay Input port to an output port

Register setup time Input port to the data pin of a flip-flop

Register-to-register Output pin of a flip-flop to the data pin of a
flip-flop

Clock-to-output delay Output pin of a flip-flop to an output port

Synthesis Design Guide

2-16 Xilinx Development System

This section lists the Synopsys commands that enable you to create
timing specifications for your Xilinx EPLD designs. Examples are
provided to demonstrate how implemented Synopsys commands are
passed to the fitter. For a complete listing of all options and
arguments for each command, refer to the Synopsys documentation.

Create Specifications for Input Ports and Clock Net

You can use the following commands to place a timing specification
on all input ports and a specified clock net.

● Create Clock — This command creates a setup time specification
on each input port, and a cycle time specification on the specified
clock signal as follows:

create_clock { clock} –period delay

where clock is the name of the clock signal and delay is the clock
cycle time in nanoseconds.

● Max Period — This command creates a setup time specification on
each input port, and a cycle time specification on the specified
clock signal as follows:

max_period delay { clock}

where clock is the name of the clock signal and delay is the clock
cycle time in nanoseconds.

Create Specifications for Input and Output Ports

The Set Max Delay command creates a combinational pad-to-pad
delay specification on each input and output port. You can also use
this command to affect register setup times, cycle times, and clock-to-
output delay specifications if you list the flip-flop cell names with
either the –from or –to options.

set_max_delay delay –from { input_port} –to { output_port}

Create Tighter Constraints on Output Ports

The Set Output Delay command creates clock-to-output delay
specifications using the values from the Create Clock or Max Period
constraints and creates tighter constraints for the output ports as
follows:

Designing with EPLDs

Synthesis Design Guide 2-17

set_output_delay delay –clock { clock} { output_port}

This command also changes the values of pad-to-pad delay
specifications created by the Set Max Delay command.

Create Tighter Constraints on Input Ports

The Set Input Delay command changes the values of register setup
time specifications created by the Create Clock or Set Max Delay
commands and creates tighter constraints on all input ports as
follows:

set_input_delay delay –clock { clock} { input_port}

This command also changes the values of pad-to-pad delay
specifications created by the Set Max Delay command.

Prevent Specifications on Indicated Paths

The Set False Path command prevents the FPGA Compiler from
generating timing specifications for specified paths as follows:

set_false_path –from { input_port}

Create Clocks on All Input Ports

The Derive Clocks command automatically creates clocks on all input
ports that source clock pins on flip-flops. If performing timing
optimization, set constraints on all clocks in your design. You can run
the Derive Clocks command to make sure that you have not missed
any clocks in your design as follows:

derive_clocks

Disabling Timing Specifications

If you used timing constraints when compiling your netlist but want
to run the fitter without using your timing specifications, you can
temporarily disable XACT Performance by specifying the “-ignorets”
parameter on the xepld command line as follows:

xepld -ignorets design_name

Synthesis Design Guide

2-18 Xilinx Development System

Reducing Levels of Logic
The XC9500 architecture, like most CPLD devices, is organized as a
large, variable-sized combinational logic resource (the AND-array
and XOR gate) followed by a register. If you place combinational
logic before a register in your design, the fitter maps the logic and
register into the same macrocell. The output of the register is then
directly available at an output pin of the device. If, however, you
place logic between the output of a register and the device output
pin, a separate macrocell must used to perform the logic, decreasing
both the speed and density of your design. The following example
shows two functionally similar styles for designing a selectable
divide-by-2 or divide-by-4 counter. The first design style is inefficient
for CPLD architectures; the second example is more efficient.

-- Inefficient style for CPLDs:
process (CLOCK)
 begin
 if (CLOCK’event and CLOCK=’1’) then
 DIV2 <= not DIV2;
 DIV4 <= DIV4 xor DIV2;
 end if;
end process;
DIV_OUT <= DIV2 when (SELECT=’0’) else DIV4;

-- More efficient style for CPLDs:
process (CLOCK)
 begin
 if (CLOCK’event and CLOCK=’1’) then
 DIV2 <= not DIV2;
 DIV_OUT <= (DIV_OUT xor DIV2) when (SELECT=’1’)
 else (not DIV_OUT);
 end if;
end process;

XC7000 Input Pad Registers
The XC7000 architecture allows you to implement registers within
function block macrocells and within input pads. In XC9000 devices,
all registers are implemented in macrocells. This section shows you
how to assign specific register types in an XC7000 design.

The fitter uses input pad registers to implement flip-flops whenever
possible to reduce the device macrocell resource requirements.
Register functions using any control inputs, such as clear, preset, or
clock enable, will only be implemented in macrocell registers; only

Designing with EPLDs

Synthesis Design Guide 2-19

simple D-type flip-flops can be optimized into input pads.

To be eligible for optimization into an input pad, a register’s data and
clock inputs must come directly from input ports or I/O ports. The
clock input signal must not be used for anything other than register
clocking, and the data input signal must not be used as input to any
other function.

Preventing Register Optimization
To prevent the fitter from automatically assigning any registers to the
input pads, specify the “-noifd” parameter on the xepld command
line, as follows:

xepld -p 7 -noifd design_name

Note: The -noifd parameter does not prevent you from instantiating
explicit input pad register cells (like IFD) in your design.

Using Input Pad Registers
If you want to assign a specific register in your design to an input
pad, instantiate the IFD cell from the XC7000 library. The Clock input
must be driven by a BUFG cell (global FastClk). Except for signals
declared as FastInputs, the D input signal must not be used as input
to any other function in the design.

Synthesis Design Guide 3-1

Chapter 3

Compiling and Fitting Your Design

The Synopsys interface supports both VHDL and Verilog HDL
design synthesis. Either the Synopsys FPGA Compiler or Design
Compiler can be used to compile EPLD designs; there are no
differences between the two compilers with regard to
implementation efficiency. FPGA Compiler does, however, support
certain Xilinx-specific attributes used to control design
implementation, such as timing constraints and register initial states,
that are not supported by Design Compiler. In the following
discussion, the term “compiler” refers to either FPGA Compiler or
Design Compiler.

This chapter describes how to compile your design using the
Synopsys Design Compiler shell (DC Shell). You can also use the
Synopsys graphical user interface, Design Analyzer, to process your
designs.

Before compiling you will need to develop your VHDL or Verilog
HDL source file (design_name.vhd or design_name.v). Usually it is a
good idea to perform a functional simulation of your VHDL source
design using the VSS simulator before trying to synthesize it. See the
“Simulating Your Design” chapter for information on functional
simulation.

Compiling a Synopsys EPLD Design
This section describes the procedure for compiling a complete EPLD
design based on VHDL or HDL. If you are preparing a VHDL/HDL-
based module for inclusion in a schematic-based design, refer to the
section “Compiling Behavioral Modules for Schematics” later in this
chapter.

The Synopsys compiler synthesizes your source design and creates a

Synthesis Design Guide

3-2 Xilinx Development System

netlist file composed of logic primitives that is used by the Xilinx
fitter (XEPLD) to implement your design in an EPLD. All compiler
commands are executed from within the Synopsys DC Shell
environment. Unless otherwise specified, this procedure applies to
both XC7000 and XC9000 designs.

Step 1 — Entering the DC Shell Environment
Enter the Synopsys DC Shell environment by entering the following
Synopsys command on the UNIX command line:

dc_shell

You will see the DC Shell prompt.

Step 2 — Analyzing the Design
To interpret your design and verify that it is free of errors, enter the
following Synopsys command for VHDL designs:

analyze -format vhdl design_name.vhd

or, for Verilog HDL designs:

analyze -format verilog design_name.v

For example, the command used in the scan example in the “Getting
Started with Xilinx EPLDs” chapter:

analyze -format vhdl scan.vhd

If your source file contains initial signal values (which are used only
for functional simulation) they will cause warnings that can be safely
ignored; these initial signal values are not used during synthesis.
Actual register initial states are set using attributes, as described in
Chapter 2.

If the analyze command finds errors, you will need to make the
necessary corrections to your source file and repeat the analyze
command before continuing with synthesis.

Step 3 — Elaborating the Design
To derive a logical design, based on your VHDL/HDL description,
enter the following Synopsys command:

elaborate entity_name

Compiling and Fitting Your Design

Synthesis Design Guide 3-3

where entity_name is the name of your top-level entity in your design.

For example, the command used in the scan example in the “Getting
Started with Xilinx EPLDs” chapter:

elaborate scan

During this step, the compiler displays information about all
registers and 3-state buffers encountered in your design.

You are now ready to compile your design using the XC7000 or
XC9000 target library.

Step 4 — Compiling Your Design
When you compile your design, the Synopsys synthesizer uses the
components in the Xilinx XC7000 or XC9000 technology library to
create an actual implementation of your design. The library used
during compilation is defined by the DC Shell target_library variable,
typically specified in your .synopsys_dc.setup file.

To synthesize your design based on target EPLD technology library,
enter the following Synopsys command:

compile [-map_effort low]

The mapping effort parameter is optional. However, it is
recommended that you set it to LOW to save compilation time. The
synthesizer does not perform any speed or area optimization for
EPLD designs; this optimization is performed after compilation by
the XEPLD fitter.

Step 5 — Specifying Attributes
Attributes are used to control the physical implementation of your
design; all attributes are optional. If you are using FPGA Compiler,
the attributes that you may want to set at this time are:

● Part type (you can also set part type from the xepld command
line).

● Register initial states.

● Pin assignments.

● Output slew rate

Synthesis Design Guide

3-4 Xilinx Development System

● Timing constraints (for XACT Performance)

For example, the attributes used in the scan example in the “Getting
Started with Xilinx EPLDs” chapter:

set_attribute scan part -type string 95108-7pc84
set_attribute find(cell COUNT*)

fpga_xilinx_init_state -type string R
set_attribute find(cell OE_REG*)

fpga_xilinx_init_state -type string R

See the “Attributes” appendix for complete details on all supported
attributes.

Step 6 — Defining EPLD I/O Signals
Now you must define which signals are connected to the physical
I/O pins of the EPLD.

Use the following command to identify all ports in your design for
which the synthesizer needs to infer an I/O buffer:

set_port_is_pad port_name

Do not use this command for any ports for which you instantiated I/
O buffer cells from the library.

To automatically place I/O buffer cells on all top-level ports in the
design, enter the following Synopsys commands:

set_port_is_pad “*”

For the ports that were specified by set_port_is_pad , the
following command infers the appropriate I/O buffer cells into your
design:

insert_pads

Note: If you want to control output slew rate, the DC Shell
set_pad_type command must be invoked before the insert_pads
command.

Step 7 — Writing the Netlist
If you are using FPGA Compiler, write your synthesized design file in
XNF netlist format by entering the following Synopsys command:

Compiling and Fitting Your Design

Synthesis Design Guide 3-5

write -format xnf -hierarchy -output design_name.sxnf

where:

● -format xnf specifies the XNF file format.

● -hierarchy specifies that all levels of the design hierarchy are
to be written.

● -output design_name.sxnf specifies your output file name,
which should be the same as your source file name, with the
extension .sxnf .

For example, the command used in the scan example in the “Getting
Started with Xilinx EPLDs” chapter:

write -format xnf -hierarchy -output scan.sxnf

If you are using Design Compiler, you must write your compiled
design file in EDIF netlist format by entering the following Synopsys
command:

write -format edif -output design_name.sedif

where:

● -format edif specifies the EDIF file format.

● -output design_name.sedif specifies your output file name,
which should be the same as your source file name, with the
extension .sedif .

For example, if you have only Design Compiler, you would write the
scan design from the “Getting Started with Xilinx EPLDs” chapter
using the following command:

write -format edif -output scan.sedif

This is the end of the required processing in DC Shell. Before exiting
you may wish to save the design database in Synopsys db format by
executing the write command. You can exit DC Shell by entering the
following Synopsys command:

exit

Note: None of the Synopsys timing or area analysis reports are useful
at this time because the EPLD technology libraries do not contain
timing or area estimation data. The Xilinx fitter provides a Static
Timing Report which shows the calculated worst case timing for each

Synthesis Design Guide

3-6 Xilinx Development System

logic path in your design.

You are now ready to begin the fitting process as described in
the next section.

Fitting Your Design
The xepld command is used to invoke the Xilinx EPLD fitter
software. XEPLD uses the logical design produced by the Synopsys
compiler to create a physical layout for a target EPLD.

To invoke the fitter, enter the following Xilinx command on the UNIX
command line:

xepld [options] design_name

Invoking the xepld command with no parameters produces a listing
of all available command-line options.

The design_name is the name of the netlist file produced by the
Synopsys compiler, without path qualifiers, and either with or
without extension.

If design_name is specified without extension, the xepld command
automatically searches for and reads netlists with file extensions .sxnf
and .sedif as produced by Synopsys FPGA Compiler and Design
Compiler.

If you do not specify any optional parameters, the fitter assumes you
are running an XC9000 design and automatically selects a device
from the XC9000 family which fits your design (if possible). You can
designate an XC7000 design by simply including the parameter “-p
7” on the xepld command line:

xepld -p 7 design_name

When you specify “-p 7”, the fitter automatically selects a device from
the XC7000 family which fits your design (if possible).

The xepld command performs the following functions:

● Reads the netlist file (design_name.sxnf or design_name.sedif)
produced by the Synopsys compiler.

● Minimizes and collapses the combinational logic of your design so
that it requires the least number of macrocell and product term
resources.

Compiling and Fitting Your Design

Synthesis Design Guide 3-7

● Partitions and maps your design to fit within the architecture of
the EPLD, optionally selecting the target device.

● Creates a device programming file (design_name.prg for XC7000
or design_name.jed for XC9000).

● Creates a fitter report (design_name.rpt for XC9000 or
design_name.res for XC7000) that shows you information such as
the type and quantity of device resources used.

● Creates a Static Timing Report (design_name.tim) that shows the
calculated worst-case timing for all signal paths in your design.

● Creates a guide file (design_name.gyd) that is used to lock signal
names to device pins, allowing you to keep the device pinouts
during design iterations.

● Creates a timing simulation netlist file that can be translated into
structural VHDL for the Synopsys VSS simulator.

Whenever the xepld command is invoked, it copies any existing fitter
report file (.rpt or .res), timing report file (.tim), guide file (.gyd),
pinlist report (.pin) and programming file (.jed or .prg) to the backup
directory.

XEPLD Command Parameters
The [options] field of the xepld command represents an optional list of
one or more command-line parameters. The following are the xepld
command-line parameters that apply to synthesis design entry:

● -detail — produces a detailed path timing report
(design_name.tim) instead of the default summary report.

● -ignoreloc — temporarily ignores all pad_location attributes in
the design, allowing the fitter to assign the locations of all I/O
pins.

● -ignorets — temporarily ignores all timing specification attributes
in the design.

● -lowpwr — uses the low-power mode for all macrocells in the
design (default is standard power).

● -nogck — prevents the fitter from optimizing inputs used as
clocks onto the device’s global clock input pins (GCK or FCLK).

Synthesis Design Guide

3-8 Xilinx Development System

● -nogts — prevents the fitter from optimizing inputs used for 3-
state output enable control onto the device’s global 3-state control
input pins (GTS or FOE).

● -noifd — prevents the fitter from optimizing registers in your
design into input-pad flip-flops in XC7000 devices.

● -nota — bypasses the timing analyzer so that no static timing
report is generated.

● -notiming — inhibits the default global timing optimization
performed by the fitter; only paths with timing specifications are
optimized to improve timing.

● -p part_type — specifies the target EPLD device type or set of
devices from which to choose (default is automatic device
selection from the XC9000 family); where part_type can be:

● “ddddd-sspppp” — where ddddd is the device code (such as
95108), ss is the speed grade, pppp is the package code (such as
PQ160), and an asterisk (*) can be used as a wildcard string
(quotes required around part_type when asterisk is used).

● “ddddd-sspppp,ddddd-sspppp ...” — a list of valid part-type
specifications as defined above (quotes required).

● indesign — signifies that the target device is specified by a
PART attribute in the netlist.

● -pinfreeze — uses the guide file (design_name.gyd) from the last
successful invocation of the fitter to reproduce the same pin
locations (default is automatic pin assignment).

● -preload — inhibits preload optimization in XC7000 designs so
that all registers are initialized to the preload states defined in the
Library appendix (default allows the fitter to change unspecified
register preload states to improve XC7000 mapping efficiency).

● -pterms nn — sets the limit to nn for the number of product terms
allowed as a result of collapsing (default=15 for XC9000 and 17 for
XC7000).

● -s signature — specifies the user signature string to be
programmed into the device for identification purposes (default is
the design name).

Compiling and Fitting Your Design

Synthesis Design Guide 3-9

Compiling Behavioral Modules for Schematics
If you are developing a schematic-based design using some other
schematic entry tool (such as Viewlogic), you can include module
symbols in your schematic that are functionally defined using
Synopsys VHDL or HDL. These are called “behavioral modules”.

This section describes how to prepare a synthesis-based behavioral
module using Synopsys FPGA Compiler. Behavioral modules are
represented by custom symbols in the schematic design. In general,
the names of the pins on your behavioral module symbol should
match the names of the top-level entity ports in your Synopsys source
file. Refer to the XC9500 Schematic Design Guide for information on
how to include the behavioral module symbol in your schematic
design.

The procedure for compiling a behavioral module is similar to the
procedure for compiling a complete EPLD design, as described
earlier in this chapter. For behavioral modules, however, you do not
specify device I/O pads; you would therefore omit the
set_port_is_pad and insert_pads commands. Also, many of the DC
Shell attributes, such as PART and pad_location, are not applicable to
behavioral modules.

Behavioral modules are compiled and written as XNF netlists by
performing the following steps:

Step 1 — Entering the DC Shell Environment
Enter the Synopsys DC Shell environment by entering the following
Synopsys command on the UNIX command line:

dc_shell

You will see the DC Shell prompt.

Step 2 — Analyzing the Module
To interpret your synthesis module and verify that it is free of errors,
enter the following Synopsys command for VHDL modules:

analyze -format vhdl module_name.vhd

or, for Verilog HDL modules:

Synthesis Design Guide

3-10 Xilinx Development System

analyze -format verilog module_name.v

If your source file contains initial signal values (which are used only
for functional simulation) they will cause warnings that can be safely
ignored; these initial signal values are not used during synthesis.
Actual register initial states are set using attributes, as described in
Chapter 2.

If the analyze command finds errors, you will need to make the
necessary corrections to your source file and repeat the analyze
command before continuing with synthesis.

Step 3 — Elaborating the Module
To derive a logical design, based on your VHDL/HDL description,
enter the following Synopsys command:

elaborate entity_name

where entity_name is the name of your top-level entity in your
module.

During this step, the compiler displays information about all registers
and 3-state buffers encountered in your module.

You are now ready to compile your module using the XC7000 or
XC9000 target library.

Step 4 — Compiling Your Module
When you compile your module, the Synopsys synthesizer uses the
components in the Xilinx XC7000 or XC9000 technology library to
create an actual implementation of your module. The library used
during compilation is defined by the DC Shell target_library variable,
typically specified in your .synopsys_dc.setup file.

To synthesize your module based on target EPLD technology library,
enter the following Synopsys command:

compile [-map_effort low]

The mapping effort parameter is optional. However, it is
recommended that you set it to LOW to save compilation time. The
synthesizer does not perform any speed or area optimization for
EPLD designs; this optimization is performed after compilation by
the XEPLD fitter.

Compiling and Fitting Your Design

Synthesis Design Guide 3-11

Step 5 — Specifying Attributes
The only attribute that you may set for behavioral modules is:

● Register initial states.

See the “Attributes” appendix for details.

Step 6 — Writing the Netlist
Write your synthesized module file in XNF netlist format by entering
the following Synopsys command:

write -format xnf -hierarchy -output module_name.xnf

where:

● -format xnf specifies the XNF file format.

● -hierarchy specifies that all levels of the module hierarchy are
to be written.

● -output module_name.xnf specifies your output file name,
which should be the same as your source file name, with the
extension .xnf .

The XNF file produced by FPGA Compiler will be read when the
fitter finds the behavioral module symbol in your schematic design.

Synthesis Design Guide 4-1

Chapter 4

Simulating Your Design

This software supports both functional and timing simulation of
VHDL designs using the VSS simulator. This package also provides a
Verilog library and interface supporting timing simulation using the
Cadence Verilog Simulator. This chapter shows you how to prepare
designs for simulation and how to use a test bench.

Recommended EPLD Simulation Strategy
Because of the flexibility of the simulation environment, there are
many ways in which you can verify your design. The following steps,
which are explained in subsequent sections, show you one
recommended flow for EPLD simulation.

1. Specify the initial states of your registers. If you use attributes to
control the initial states of the registers in your actual design
implementation, you should also re-specify those initial states in
your source design file for functional simulation.

2. Create a test bench file. By following the guidelines described in
this chapter, the same test bench can be used for both functional
and timing simulation.

3. Perform functional simulation. This allows you to debug the
logic in your sour ce design befor e implementing an EPLD.

4. Implement the design in an EPLD. This pr ovides the necessary
physical r esour ce infor mation necessary for timing
simulation.

5. Prepare the timing model. The xepldsim command pr epares
the timing model of your design for simulation.

Synthesis Design Guide

4-2 Xilinx Development System

6. Perform timing simulation. By re-using the functional simulation
test bench file, you can easily compare results and prevent errors
that can be caused by accidental differences between separate test
bench files.

All of these preparation and simulation steps are demonstrated in the
design example shown in the “Getting Started with Xilinx EPLDs”
chapter.

Controlling the Initial States of Registers
This section shows you how to declare the initial states of registers in
your design for simulation. If your design does not depend on the
initial states of any registers, then you can skip this section and go to
the next section, “Creating a Test Bench File”.

The actual initial states of your registers are determined by the initial
state attributes specified in DC Shell during compilation or by the
default initial states which are specified for each registered cell in the
Xilinx library.

The timing simulation model produced by the Xilinx software reflects
the actual register initial states that are implemented in the device,
regardless of whether they are explicitly specified or automatically
assigned by the fitter.

Simulating Master Reset
All registers in Xilinx EPLDs are initialized when power is applied.
XC7000 devices also have a Master Reset pin that re-initializes the
whole device when pulsed. You must perform the necessary steps to
initialize the registers in your design at beginning of timing
simulation for proper simulation results.

The following sections show you how to set up your design to
perform register initialization for both functional and timing
simulation.

Preparing for Timing Simulation

When you generate your timing simulation model, xepldsim
automatically creates a new input port named MRESET. When
simulating, you must first pulse MRESET low, prior to exercising the
logic, to get all the registers into their initial states. If you use a test

Simulating Your Design

Synthesis Design Guide 4-3

bench to stimulate your design, you must include the MRESET signal
as one of the input ports of the EPLD in the test bench as described in
the next section “Creating A Test Bench File”.

The MRESET signal is used for timing simulation only; it is not used
for functional simulation and it cannot be used in your design.
However, if you include it in your functional simulation test bench,
that test bench can also be used later for timing simulation without
modification.

If you include the MRESET signal in your test bench file for
functional and timing simulation, you must also include MRESET in
your port declarations in your source design file as follows:

port (... MRESET : in std_logic ...);

MRESET is not used anywhere else in your design. It will be ignored
during synthesis; you will get warnings about the unconnected
MRESET port (during the Compile and Insert_pads operations).
The Xilinx fitter software will also ignore the unconnected MRESET
port during implementation.

See the scan tutorial source file listing for an example of how the
MRESET input port is declared in a VHDL design.

Preparing for Functional Simulation

Simulate register initialization by defining, in your source design file,
the initial values for registered signals. Use signal declarations such
as the following:

port signal_name: port_direction signal_type := initial_value;
signal signal_name: signal_type := initial_value;
variable signal_name: signal_type := initial_value;

For example:

port Nreg5 out std_logic := '0';
signal Qreg6: std_logic := '0';
variable Qreg: std_logic_vector := "00000001";

These initial values are used only for functional simulation; they are
not used during synthesis and the synthesizer will give you a
warning that these values are being ignored. Also, these initial values
are not used by the Xilinx software for device implementation
because the initial values are not written into the netlist.

Synthesis Design Guide

4-4 Xilinx Development System

Note: For XC7000 designs, the fitter can change the initial states of
registers during optimization (assuming that preload optimization
remains enabled). Therefore, for functional simulation, you should
declare only the initial states that will actually be implemented by the
Xilinx fitter, based on your specifications. These states are specified in
your source design file by using initial state attributes in DC Shell.

You are now ready to create a test bench file.

Creating a Test Bench File
This section shows you how to create a test bench file that can be used
for both functional and timing simulation. The example test bench
presented here consists of a VHDL file containing one instance of an
EPLD design being tested and a procedure that applies simulation
input waveforms to the EPLD.

Initializing Registers
For functional simulation, all registers are initialized before the first
simulation cycle (at time zero) by the initial values declared in your
source design file.

For timing simulation, in the test bench, include the MRESET input
port in the EPLD component declaration and in its instance port map
as shown in Figure 4-1. At the beginning of the simulation sequence,
applying an active-low pulse to MRESET initializes the registers. This
pulse is ignored during functional simulation because the MRESET
signal is not used anywhere in the source design.

During xepldsim (after xepld) the MRESET port is automatically
generated in the timing simulation model. Then, during timing
simulation, when the test bench applies the MRESET pulse, the timing
simulation model will initialize all registers as they are actually
implemented in the EPLD.

Configuration Declaration
For any design or test bench you wish to simulate, you must declare a
configuration which identifies the specific architecture you are
applying to a design. When you invoke the VSS simulator, you must
select the name of a configuration that has been previously analyzed.

Simulating Your Design

Synthesis Design Guide 4-5

Figure 4-1 shows a typical configuration declaration in a test bench
file. If the test bench is always used to simulate the design source file,
the design does not need its own configuration declaration.

Figure 4-1 Simulation Test Bench — SCAN Design

After you have created a test bench file, you are ready to begin using
a VSS simulator (such as vhdldbx) for functional simulation.

Functional Simulation Using VSS
Functional simulation is used to debug your logic before fitting your
design into an EPLD. The Xilinx EPLD Synopsys Interface fully
supports functional simulation using the Synopsys VSS simulator,
including all instantiated cells from the XC7000 and XC9000 libraries.

To prepare a test bench configuration for simulation, you must
analyze each of the design and test bench source files in the proper
bottom-up sequence.

The following procedure uses the stand-alone VHDL Analyzer
(vhdlan) and the VHDL Debugger Simulator (vhdldbx).

entity scan_tb is
end scan_tb; --test bench has no ports--

architecture test of scan_tb is
component scan

port (CLOCK, CLEAR, ... --same as in scan.vhd--
MRESET : in std_logic);

end component;
signal CLOCK, CLEAR, ...MRESET; --same as ports of scan.vhd--

begin
UUT: scan port map (CLOCK, CLEAR, ... MRESET); --connect local signals to ports--
driver: process begin

MRESET <= '0';CLEAR <='0';... --assert initial values on all inp ports
wait for 25ns; --wait, repeat--
MRESET <= '1';... --release MRESET before applying other

input transitions--
wait; --after all inputs, suspend process--

end process;
end test;

configuration CFG_SCAN_TB of scan_tb is
for test
end for;

end CFG_SCAN_TB;

Synthesis Design Guide

4-6 Xilinx Development System

1. Analyze your source EPLD design file. Enter the following UNIX
command:

vhdlan design_name.vhd

For example:

vhdlan scan.vhd

2. Analyze the test bench file. Enter the following UNIX command:

vhdlan test_bench_name.vhd

For example:

vhdlan scan_tb.vhd

3. Invoke the Synopsys VSS Simulator. Enter the following UNIX
command to invoke the VHDL debugger:

vhdldbx

You are then prompted for a configuration name. Select the name
of the configuration declared in the test_bench_name.vhd file. For
example, for the scan design, select the following:

CFG_SCAN_TB

The vhdldbx selector window appears as shown in Figure 4-2.

Simulating Your Design

Synthesis Design Guide 4-7

Figure 4-2 Selector Window (vhdldbx)

After you click OK, the vhdldbx user interface window appears as
shown in Figure 4-3.

Synthesis Design Guide

4-8 Xilinx Development System

Figure 4-3 User Interface Window (vhdldbx)

To run your simulation, typically you first declare the signals you
want to display in a trace window. For example, to display all signals
appearing on the EPLD pins, you can enter the following vhdldbx
command:

trace *’signal.

Simulating Your Design

Synthesis Design Guide 4-9

To run all the simulation vectors in your test bench, select the RUN
command. The resulting trace window will look similar to Figure 4-4

Figure 4-4 Functional Simulation Waveforms — SCAN Design

After functional simulation is successful, you are ready to implement
your design and create the physical layout information required for
timing simulation.

Design Implementation
After you have debugged your design using functional simulation,
you can compile it using synthesis and implement it in an EPLD
using the Xilinx fitter. Design implementation is a prerequisite for
performing timing simulation.

You can use DC Shell or you can use the Synopsys graphic interface
(Design Analyzer) to create the XNF or EDIF netlist file required by
the Xilinx fitter. This gate-level netlist file consists of cells from the
XC7000 or XC9000 library but does not contain timing information.
The Xilinx fitter processes the netlist file and places the logical design
into the physical architecture of a target EPLD.

After the design is implemented by the Xilinx fitter, the actual target
device timing information is available for timing simulation.

The following steps show you an overview of the EPLD
implementation procedure.

Synthesis Design Guide

4-10 Xilinx Development System

1. Analyze the source design file. This must be repeated in the
synthesis environment (DC Shell); the results of vhdlan cannot be
used for synthesis.

2. Compile the design, targeting the XC7000 or XC9000 library, and
create a netlist.

3. Run the Xilinx fitter, using the xepld command to process the
netlist.

Usually, simulation is not repeated until after fitting when all actual
timing results have been applied.

Examine the appropriate fitter report files to verify that the fitter
completed successfully. You may wish to target a smaller device or
add more functions to your design if there are remaining unused
resources.

After design implementation, you are ready to prepare the timing
model for timing simulation.

Preparing the Timing Simulation Model
The xepldsim command prepares timing simulation models file for
the Synopsys VSS simulator and the Cadence Verilog simulator. The
xepldsim command translates the timing simulation netlist file
(design_name_tim.xnf) produced by the xepld command into the
required simulation output file(s).

Invoke the xepldsim command on the UNIX command line as
follows:

xepldsim - target design_name

Invoking the xepldsim command with no parameters produces a
listing of all available command-line options.

The design_name is the name of the design as specified when running
the xepld command, without path qualifiers and without extension.

If you specify -vss as the target parameter, xepldsim produces a
structural VHDL file (design_name_vss.vhd) and an SDF-formatted
timing back-annotation file (design_name_vss.sdf), based on the
design_name_tim.xnf netlist, for use with the Synopsys VSS simulator.
A procedure for using the VSS simulator is described below.

If you specify -verilog as the target parameter, xepldsim

Simulating Your Design

Synthesis Design Guide 4-11

produces a structural Verilog HDL file (design_name_tim.v) and and
SDF-formatted timing back-annotation file (design_name_tim.sdf),
based on the design_name_tim.xnf netlist, for use with the Cadence
Verilog simulator. Consult the Cadence documentation for
information on using the Verilog simulator.

Note: When the fitter processes your design, some of your original
nodes may be removed or replaced due to logic optimization. Such
nodes cannot be viewed or stimulated during timing simulation. All
of the device I/O port signals are always maintained.

When you synthesize your design, and create an XNF or EDIF netlist
file for the Xilinx fitter, all busses (such as those declared as
std_logic_vector) are decomposed into individual nets. The
original definition of your bus ports in the design entity are not
retained through the fitting process.

The xepldsim command cannot regenerate a timing model
complete with your original bus port declarations. Therefore, it
generates the timing model as an architecture only, without the entity.
The external signals appearing in the design, that were originally
defined as bus ports, are represented within the model architecture
using subscript notation compatible with bus port declarations. By
re-using the entity from your source design with the architecture of
the timing model, you can perform timing simulation using the same
test bench and chip interface as used for functional simulation.

Timing Simulation Using VSS
If you prepared your test bench properly, you can use the same test
bench for timing simulation as used for functional simulation. By
using the same test bench you can easily verify that the functionality
of the device after mapping matches the functionality of your source
design. You also eliminate any risk of errors from accidental
differences between the test bench files.

1. Analyze your source design file to re-use the port declarations in
its entity. Enter the following UNIX command:

vhdlan design_name.vhd

For example:

vhdlan scan.vhd

Synthesis Design Guide

4-12 Xilinx Development System

2. Replace the ar chitectur e of your sour ce design with the
timing ar chitectur e pr oduced by xepldsim :

vhdlan design_name_vss.vhd

For example:

vhdlan scan_vss.vhd

The architecture is replaced in the Synopsys data base by
analyzing the timing model file; you do not need to modify your
design source file.

3. Analyze the test bench file name as used for functional simulation.
Enter the following UNIX command:

vhdlan test_bench_name.vhd

For example:

vhdlan scan_tb.vhd

The simulation data base now contains the test bench design
which interfaces to the chip through your source design entity
read in step 1 but it contains the timing model architecture read in
step 2.

4. Invoke the Synopsys VSS Simulator. Enter the following UNIX
command:

vhdldbx

You are then prompted for the configuration named in the
test_bench_name.vhd file. For example, for the scan design, select
the following:

CFG_SCAN_TB

Before clicking “OK” you must specify the timing backannotation
file information in the Arguments box.

All back-annotated timing in the .sdf file is applied to various
instances within the design_name_vss.vhd file. However, if you are
simulating with a test bench, you must specify (to the simulator) the
EPLD design instance to which you want to apply the back-annotated
timing. It can then find all the referenced instances.

If you are using vhdldbx you need to specify two parameters:

● The file name of the .sdf backannotation timing file:

Simulating Your Design

Synthesis Design Guide 4-13

-sdf design_name_vss.sdf

For example:

-sdf scan_vss.sdf

● The sdf_top instance in the test bench configuration to which
the back-annotated timing is applied:

-sdf_top chip_instance_name

For example:

-sdf_top /scan_tb/UUT

All back-annotated timing parameters in the .sdf file are applied
relative to the chip instance.

You can specify these parameters either in the dialog box which
appears after invoking vhdldbx (as shown in Figure 4-5), or on the
UNIX command line as you invoke vhdldbx .

Synthesis Design Guide

4-14 Xilinx Development System

Figure 4-5 Selector Window with Timing Backannotation
Parameters Entered (vhdldbx)

For convenience, you can put all parameters into a command script
file. The command line for the scan design is provided in the
dbx_scan script file in the tutorial directory.

The command line invocation format is:

vhdldbx -sdf design_name_vss.sdf -sdf_top \
chip_instance_name configuration_name

For the scan design example, you should enter the following:

vhdldbx -sdf scan_vss.sdf -sdf_top \
/scan_tb/UUT CFG_SCAN_TB

Now you can run the same simulation vectors for timing simulation

Simulating Your Design

Synthesis Design Guide 4-15

as you ran for functional simulation. However, in timing simulation,
the registers are set to their initial states in response to the active-low
pulse on the MRESET input.

Figure 4-6 Timing Simulation Waveforms — SCAN Design

Synthesis Design Guide A-1

Appendix A

Library Component Specifications

This appendix describes each of the components (cells) in the Xilinx
XC7000 and XC9000 synthesis libraries which are summarized in the
following table.

Devices used with

Component
Name

Component Description Scalable Inferable
7318
7336

7354
7372

73108
73144

9500
(all)

ACC Adder/Subtracter/Accumulator X X
ADD Adder X X X
ADSU Adder/Subtracter X X X
ADSUR Adder/Subtracter with Registered Outputs X X
AND2-AND8 AND Gates X X X X
BUF Buffer X X X
BUFCE Clock Enable Inp. Buff. for Input Pad Reg. X
BUFE 3-State Buffer X X X X
BUFFOE Fast Output Enable Input Buffer X X
BUFGSR Global set/reset input buffer X
BUFGTS Global 3-state control input buffer X
BUFG Global clock (FastCLK) Input Buffer X X X
CBX1 Up/Down Counter with Asynchronous

Clear
X X X

CBX2 Up/Down Counter with Asynchronous
Reset

X X X

COMPEQ Equal-To Comparator X X X
COMPLE_TC Less-Than-Or-Equal Comparator, 2’s Comp. X X X
COMPLE_US Less-Than-Or-Equal Comparator, Unsigned X X X
COMPLT_TC Less-Than Comparator, 2’s Complement X X X
COMPLT_US Less-Than Comparator, Unsigned X X X
COMPNE Not-Equal Comparator X X X
DEC Decrementor X X X X
FDCP Edge-Triggered D-Type Flip-Flop with

Asynchronous Clear and Preset
X X X X

FDCPE Edge-Triggered D-Type Flip-Flop with
Clock Enable, Async. Clear and Preset

X X

Synthesis Design Guide

A-2 Xilinx Development System

Note 1. Consult XC7000 device data sheets for applicability of output slew rate control.

FDPC Edge-Triggered D-Type Flip-Flop with
Asynchronous Clear and Preset

X X X X

IBUF Input Buffer X X X X
IFD Input Pad Register X
IFDX1 Input Pad Register with Clock Enable X
ILD Input Pad Latch X
INC Incrementer X X X X
INV Inverter X X X X
IOBUFE Bi-Directional I/O Buffer X X X X
IOBUFE_F Bidirectional I/O Buffer--fast slew rate X note 1 X
IOBUFE_S Bidirectional I/O Buffer--slow slew rate X note 1 X
LD D-Type Latch X X
OBUF Output Buffer X X X X
OBUF_F Output Buffer--fast slew rate X note 1 X
OBUF_S Output Buffer--slow slew rate X note 1 X
OBUFE 3-State Output Buffer X X X X
OBUFE_F 3-state Output Buffer--fast slew rate X note 1 X
OBUFE_S 3-state Output Buffer--slow slew rate X note 1 X
OR2-OR8 OR Gates X X X X
SUBT Subtracter X X X
XOR2-XOR8 XOR Gates X X X X

Devices used with

Component
Name

Component Description Scalable Inferable
7318
7336

7354
7372

73108
73144

9500
(all)

Library Component Specifications

Synthesis Design Guide A-3

ACC
ACC is an adder/subtracter/accumulator. (XC7000 only)

Inferencing
The synthesizer does not use this component by inference.

Component Instantiation
U1: ACC generic map (WIDTH => wordlength)

port map (Q=>output, B=>in_operand,
C=>clock, CE=>clock_en, R=>sync_reset,
L=>load_en, SUB=>add_sub_ctl);

Truth Table and Logic Symbol

* The initial state is “0”.

R L CE C SUB Q*

1 X X ↑ X 0

0 0 0 X X Q

0 0 1 ↑ 0 Q+B

0 0 1 ↑ 1 Q-B

0 1 X ↑ X B

L

R

CE
SUB

B(width-1:0)

C

Q(width-1:0)

Q + B

Synthesis Design Guide

A-4 Xilinx Development System

ADD
ADD is an adder and is bound to the “+” operator. (XC7000 only)

Inferencing
sum_signed <= in1_signed + in2_signed;

Component Instantiation
U1: ADD generic map (WIDTH => wordlength)

port map (S=>sum, A=>in1, B=>in2);

Truth Table and Logic Symbol

A B S

A B A+B

S(width-1:0)

A(width-1:0)

B(width-1:0)
A + B

Library Component Specifications

Synthesis Design Guide A-5

ADSU
ADSU is an adder/subtracter. ADSU is bound to the “+” and “-”
operators. (XC7000 only)

Inferencing
if (sub_ctl = ’0’) then

sum_signed <= in1_signed + in2_signed;
else

sum_signed <= in1_signed - in2_signed;
end if;

Component Instantiation
U1: ADSU generic map (WIDTH => wordlength)

port map (S=>output, A=>in1, B=>in2,
SUB=>sub_ctl);

Truth Table and Logic Symbol

SUB S

0 A+B

1 A-B

S(width-1:0)

A(width-1:0)

B(width-1:0)

SUB

A + B

Synthesis Design Guide

A-6 Xilinx Development System

ADSUR
ADSUR is a registered adder/subtracter. (XC7000 only)

Inferencing
The synthesizer does not use this component by inference.

Component Instantiation
U1: ADSUR generic map (WIDTH => wordlength)

port map (Q=>output, A=>in1, B=>in2,
C=>clock, CE=>clock_en, R=>sync_reset,
SUB=>add_sub_ctl);

Truth Table and Logic Symbol

* The initial state is “0”.

R CE C SUB Q*

1 X ↑ X 0

0 0 X X Q

0 1 ↑ 0 A+B

0 1 ↑ 1 A-B

R

SUB

C

A(width-1:0)

Q(width-1:0)
B(width-1:0)

A + B

CE

Library Component Specifications

Synthesis Design Guide A-7

AND2 — AND8
AND2 through AND8 are AND gates with 2 to 8 inputs.

Inferencing
The synthesizer uses these components when creating functions that
require AND gates.

Component Instantiation
U1: AND2 port map (O=>out,I1=>in2,I0=>in1);

Truth Table and Logic Symbol

I0 I1 O

0 0 0

0 1 0

1 0 0

1 1 1

AND8

AND7

AND6

AND5

AND4

AND3

AND2

I0
I1

I2
I3

I4
I5

I6
I7

I0
I1

I2
I3

I4
I5

I6

I0
I1

I2
I3

I4
I5

I0
I1

I2
I3

I4

I0
I1

I2
I3

I0
I1

I2

I0
I1

O

O

O

O

O

O
O

Synthesis Design Guide

A-8 Xilinx Development System

BUF
BUFis a non-inverting buffer.

Inferencing
The synthesizer does not use this component by inference.

Component Instantiation
U1: BUF port map (O=>out_port, I=>in_port);

Truth Table and Logic Symbol

I O

0 0

1 1

I O

Library Component Specifications

Synthesis Design Guide A-9

BUFCE
BUFCE is an input buffer used to drive the global CE signal (Chip
Enable) for XC7000 input pad registers. BUFCE may only be used to
drive the CE input of IFDX1 components.

Inferencing
The synthesizer does not use this component by inference.

Component Instantiation
U1: BUFCE port map (O=>global_ce, I=>in_port);

Truth Table and Logic Symbol

I O

0 0

1 1

I O

Synthesis Design Guide

A-10 Xilinx Development System

BUFE
BUFE is a non-inverting 3-state buffer, with active-high enable.

Inferencing
The synthesizer uses these components when creating functions that
require 3-state buffers that drive internal signals.

Component Instantiation
U1: BUFE port map (O=>ts_out, I=>inp, E=>enable);

Truth Table and Logic Symbol

I E O

X 0 Z

0 1 0

1 1 1

I

E

O

Library Component Specifications

Synthesis Design Guide A-11

BUFFOE
BUFFOE is a an input buffer used to drive the global FOE signal (Fast
Output Enable). BUFFOE may only be used to drive the E input of
OBUFE and IOBUFE components

Inferencing
The synthesizer does not use this component by inference.

Component Instantiation
U1: BUFFOE port map (O=>global_foe, I=>in_port);

Truth Table and Logic Symbol

I O

0 0

1 1

I O

Synthesis Design Guide

A-12 Xilinx Development System

BUFG
BUFG is an input buffer used to drive the Global clock signal (GCK or
FastCLK).

In XC7000 designs, BUFG can only drive register clock inputs
(including IFD and the G input of ILD components). It cannot drive
the LD component, or any other logic functions in the design. In
XC9000 designs, BUFG signals may be used active-high or active-low
(inverted), and for any other logic functions in the design.

Inferencing
The synthesizer does not use this component by inference.

Component Instantiation
U1: BUFG port map (O=>global_clk, I=>in_port);

Truth Table and Logic Symbol

I O

0 0

1 1

I O

Library Component Specifications

Synthesis Design Guide A-13

BUFGSR
BUFGSR is an input buffer used to drive the Global set/reset signal in
XC9000 designs. BUFGSR signals can drive the CLR and PRE inputs of
FDCP components (global set/reset), and any other logic functions in
the design.

Inferencing
The synthesizer does not use this component by inference.

Component Instantiation
U1: BUFGSR port map (O=>global_sr, I=>in_port);

Truth Table and Logic Symbol

I O

0 0

1 1

I O

Synthesis Design Guide

A-14 Xilinx Development System

BUFGTS
BUFGTS is a an input buffer used to drive the global 3-state control
signal (GTS) for XC9000. BUFGTS may be used to drive the E input of
OBUFE and IOBUFE components (global 3-state control), and any
other logic functions in the design.

Inferencing
The synthesizer does not use this component by inference.

Component Instantiation
U1: BUFGTS port map (O=>global_oe, I=>in_port);

Truth Table and Logic Symbol

I O

0 0

1 1

I O

Library Component Specifications

Synthesis Design Guide A-15

CBX1
CBX1 is a loadable up/down counter with asynchronous clear.
(XC7000 only)

Inferencing
The synthesizer does not use this component by inference.

Component Instantiation
U1: CBX1 generic map (WIDTH => wordlength)

port map (Q=>output, TCU => all_ones, TCD
=> all_zeros, D=>load_data, C=>clock,

CLR=>async_clr, L=>load_ctl,
CEU=>count_up_ctl, CED=>count_down_ctl);

Truth Table and Logic Symbol

* The initial state is “0”.

CLR L CEU CED C TCU TCD Q*

1 X X X X 0 1 0

0 1 X X ↑ D=111... D=000... D

0 0 0 0 X Q=111... Q=000... Q

0 0 1 0 ↑ Q=111... Q=000... Q+1

0 0 0 1 ↑ Q=111... Q=000... Q-1

0 0 1 1 ↑ ILLEGAL CONDITION

D(width-1:0)

C

CEU
CED

L

CLR

Q(width-1:0)

Synthesis Design Guide

A-16 Xilinx Development System

CBX2
CBX2 is a loadable up/down counter with synchronous reset.
(XC7000 only)

Inferencing
The synthesizer does not use this component by inference.

Component Instantiation
U1: CBX2 generic map (WIDTH => wordlength)

port map (Q=>output, TCU => all_ones, TCD =>
all_zeros, D=>load_data, C=>clock,
R=>sync_reset, L=>load_ctl,
CEU=>count_up_ctl, CED=>count_down_ctl);

Truth Table and Logic Symbol

* The initial state is “0”.

R L CEU CED C TCU TCD Q*

1 X X X ↑ 0 1 0

0 1 X X ↑ D=11... D=00... D

0 0 0 0 X Q=11... Q=00... Q

0 0 1 0 ↑ Q=11... Q=00... Q+1

0 0 0 1 ↑ Q=11... Q=00... Q-1

0 0 1 1 ↑ ILLEGAL CONDITION

D(width-1:0)

C

CEU
CED

L

R

Q(width-1:0)

Library Component Specifications

Synthesis Design Guide A-17

COMPEQ
COMPEQ is an equal-to comparator. (XC7000 only)

Inferencing
The synthesizer does not use this component by inference.

Component Instantiation
U1: COMPEQ generic map (WIDTH => wordlength)

port map (EQ=>comparison, A=>in1, B=>in2);

Truth Table and Logic Symbol

Condition EQ

A<B 0

A=B 1

A>B 0

EQ

A(width-1:0)

B(width-1:0)
A = B

Synthesis Design Guide

A-18 Xilinx Development System

COMPLE_TC
COMPLE_US

COMPLE_US is an unsigned binary less-than-or-equal-to comparator.
COMPLE_TC is a two’s complement less-than-or-equal-to comparator.
These components are bound to the “<=“ and “>=” operators.
(XC7000 only)

Inferencing
comparison <= (in1_signed <= in2_signed);

Component Instantiation
U1: COMPLE_US generic map (WIDTH => wordlength)

port map (LE=>comparison, A=>in1, B=>in2);

U1: COMPLE_TC generic map (WIDTH => wordlength)
port map (LE=>comparison, A=>in1, B=>in2);

Truth Table and Logic Symbol

Condition LE

A<B 1

A=B 1

A>B 0

LE

A(width-1:0)

B(width-1:0)
A < B

Library Component Specifications

Synthesis Design Guide A-19

COMPLT_TC
COMPLT_US

COMPLT_US is an unsigned binary less-than comparator. COMPLT_TC
is a two’s complement less-than comparator. These components are
bound to the “<“ and “>” operators. (XC7000 only)

Inferencing
comparison <= (in1_unsigned < in2_unsigned);

Component Instantiation
U1: COMPLT_US generic map (WIDTH => wordlength)

port map (LT=>comparison, A=>in1, B=>in2);

U1: COMPLT_TC generic map (WIDTH => wordlength)
port map (LT=>comparison, A=>in1, B=>in2);

Truth Table and Logic Symbol

Condition LT

A<B 1

A=B 0

A>B 0

LT

A(width-1:0)

B(width-1:0)
A < B

Synthesis Design Guide

A-20 Xilinx Development System

COMPNE
COMPNEis a not-equal-to comparator. (XC7000 only)

Inferencing
The synthesizer does not use this component by inference.

Component Instantiation
U1: COMPNE generic map (WIDTH => wordlength)

port map (NE=>comparison, A=>in1, B=>in2);

Truth Table and Logic Symbol

Condition NE

A<B 1

A=B 0

A>B 1

NE

A(width-1:0)

B(width-1:0)
A /= B

Library Component Specifications

Synthesis Design Guide A-21

DEC
DEC is an decrementor. It is bound to the “-1” operation. (XC7000
only)

Inferencing
sum_signed <= in_signed - 1;

Component Instantiation
U1: DEC generic map (WIDTH => wordlength)

port map (S=>sum, A=>in);

Truth Table and Logic Symbol

A S

A A-1

I - 1
A(width-1:0) S(width-1:0)

Synthesis Design Guide

A-22 Xilinx Development System

FDCP
FDPC is an edge-triggered D-type flip-flop with preset and clear.

Inferencing
The synthesizer uses this component or FDPC for all functions that
require D-type registers.

Component Instantiation
U1: FDCP port map (Q=>out, D=>data, C=>clock,
CLR=>async_clr, PRE=>async_set);

Truth Table and Logic Symbol

* The initial state is “0”.

CLR PRE C Q*

1 X X 0

0 1 X 1

0 0 ↑ D

PRE

CLR

C

D Q

Library Component Specifications

Synthesis Design Guide A-23

FDCPE
FDCPE is an edge-triggered D-type flip-flop with preset, clear, and
clock enable.

Inferencing
The synthesizer does not use this component by inference.

Component Instantiation
U1: FDCPE port map (Q=>out, D=>in, C=>clock,

CE=>clock_enab, CLR=>async_clr,
PRE=>async_set);

Truth Table and Logic Symbol

* The initial state is “0”.

CLR PRE CE C Q*

1 X X X 0

0 1 X X 1

0 0 0 X Q

0 0 1 ↑ D

PRE

CLR

C

D Q
CE

Synthesis Design Guide

A-24 Xilinx Development System

FDPC
FDPC is an edge-triggered D-type flip-flop with preset and clear.

Inferencing
The synthesizer uses this component or FDCP for all functions that
require D-type registers.

Component Instantiation
U1: FDPC port map (Q=>out, D=>data, C=>clock,
CLR=>async_clr, PRE=>async_set);

Truth Table and Logic Symbol

* The initial state is “0”.

CLR PRE C Q*

X 1 X 1

1 0 X 0

0 0 ↑ D

PRE

CLR

C

D Q

Library Component Specifications

Synthesis Design Guide A-25

IBUF
IBUF is an input buffer.

Inferencing
The synthesizer uses these components to receive inputs from device
pins.

Component Instantiation
U1: IBUF port map (O=>received_signal,

I=>in_port);

Truth Table and Logic Symbol

I O

0 0

1 1

I O

Synthesis Design Guide

A-26 Xilinx Development System

IFD
IFD is an edge-triggered D-type flip-flop. The C input must be driven
by a BUFG component. IFD is only available for use in XC7000 Input
Blocks.

Inferencing
The synthesizer does not use this component by inference.

Component Instantiation
U1: IFD port map (Q=>output, D=>in_port,

C=>global_clock);

Truth Table and Logic Symbol

* The initial state is “1”.

C Q*

X Q

↑ D

C

D Q

Library Component Specifications

Synthesis Design Guide A-27

IFDX1
IFDX1 is an edge-triggered D-type flip-flop with active-low clock
enable. The C input must be driven by a BUFG component. The CE
input, if used, must be driven by a BUFCE component. IFDX1 is only
available for use in XC7000 Input Blocks.

Inferencing
The synthesizer does not use this component by inference.

Component Instantiation
U1: IFDX1 port map (Q=>output, D=>in_port,

C=>global_clock, CE=>global_ce);

Truth Table and Logic Symbol

* The initial state is “1”.

CE C Q*

1 X Q

0 ↑ D

C

D Q
CE

Synthesis Design Guide

A-28 Xilinx Development System

ILD
ILD is a D-type transparent latch available in the XC7000 Input Block.
The G input must be driven by a BUFG buffer.

Inferencing
The synthesizer does not use this component by inference.

Component Instantiation
U1: ILD port map (Q=>output, D=>in_port,

G=>global_clock);

Truth Table and Logic Symbol

* The initial state is “1”.

G Q*

0 Q

1 D

G

D Q

Library Component Specifications

Synthesis Design Guide A-29

INC
INC is an Incrementer. It is bound to the “+1” operator. (XC7000 only)

Inferencing
sum_signed <= in_signed + 1;

Component Instantiation
U1: INC generic map (WIDTH => wordlength)

port map (S=>sum, A=>in);

Truth Table and Logic Symbol

A S

A A+1

I + 1
A(width-1:0) S(width-1:0)

Synthesis Design Guide

A-30 Xilinx Development System

INV
INV is an inverter.

Inferencing
The synthesizer uses this component for signal inversion.

Component Instantiation
U1: INV port map (O=>not_in1, I=>in1);

Truth Table and Logic Symbol

I O

0 1

1 0

I O

Library Component Specifications

Synthesis Design Guide A-31

IOBUFE, IOBUFE_F, IOBUFE_S
IOBUFE is a non-inverting 3-state I/O buffer with active-high enable.
In devices that support programmable output slew rate control, slow
output slew rate is performed.

IOBUFE_F is an I/O buffer with fast output slew rate.

IOBUFE_S is an I/O buffer with slow output slew rate.

Inferencing
The synthesizer uses these components to create bidirectional I/O.

Component Instantiation
U1: IOBUFE port map (O=>received_signal,

IO=>inout_port, I=>driving_signal,
E=>output_enable);

Truth Table and Logic Symbol

I E IO

X 0 Z

0 1 0

1 1 1

I

E

IO

O

Synthesis Design Guide

A-32 Xilinx Development System

LD
LD is a D-type latch.

Note: In XC7000 designs the G input of LD cannot be driven by a
BUFG buffer.

Inferencing
The synthesizer does not use this component by inference. Instead, it
will infer FDCP cells to implement transparent latches

Component Instantiation
U1: LD port map (Q=>out, D=>data,

G=>latch_enable);

Truth Table and Logic Symbol

* The initial state is “0”.

G Q*

0 Q

1 D

G

D Q

Library Component Specifications

Synthesis Design Guide A-33

OBUF, OBUF_F, OBUF_S
OBUF is an output buffer. In devices that support programmable
output slew rate control, slow output slew rate is performed.

OBUF_F is an output buffer with fast output slew rate.

OBUF_S is an output buffer with slow output slew rate.

Inferencing
The synthesizer uses this component when creating external outputs
to device pins.

Component Instantiation
U1: OBUF port map (O=>out_port,

I=>driving_signal);

Truth Table and Logic Symbol

I O

0 0

1 1

Z Z

I O

Synthesis Design Guide

A-34 Xilinx Development System

OBUFE, OBUFE_F, OBUFE_S
OBUFE is a 3-state output buffer with active-high enable. In devices
that support programmable output slew rate control, slow output
slew rate is performed.

OBUFE_F is a 3-state output buffer with fast output slew rate.

OBUFE_S is a 3-state output buffer with slow output slew rate.

Inferencing
The synthesizer uses this component when creating 3-state external
outputs which connect to device pins.

Component Instantiation
U1: OBUF port map (O=>out_port,

I=>driving_signal, E=enable);

Truth Table and Logic Symbol

I E O

X 0 Z

0 1 0

1 1 1

I O

E

Library Component Specifications

Synthesis Design Guide A-35

OR2 — OR8
OR2 through OR8 are OR gates with 2 to 8 inputs.

Inferencing
The synthesizer uses these components when creating functions that
require OR gates.

Component Instantiation
U1: OR2 port map (O=>out, I1=>in2, I0=>in1);

Truth Table and Logic Symbol

I0 I1 O

0 0 0

0 1 1

1 0 1

1 1 1

I0
I1

I2
I3

I4
I5

I6
I7

I0
I1

I2
I3

I4
I5

I6

I0
I1

I2
I3

I4
I5

I0
I1

I2
I3

I4

I0
I1

I2
I3

I0
I1

I2

I0
I1

OR8

OR7

OR6

OR5

OR4

OR3

OR2

O

O

O
O

O

O

O

Synthesis Design Guide

A-36 Xilinx Development System

SUBT
SUBT is a subtracter and is bound to the “-” operator. (XC7000 only)

Inferencing
diff_signed <= in1_signed - in2_signed;

Component Instantiation
U1: SUBT generic map (WIDTH => wordlength)

port map (S=>diff, A=>in1, B=>in2);

Truth Table and Logic Symbol

A B S

A B A-B

S(width-1:0)

A(width-1:0)

B(width-1:0)
A-B

Library Component Specifications

Synthesis Design Guide A-37

XOR2 — XOR8
XOR2 through XOR8 are XOR gates with 2 to 8 inputs.

Inferencing
The synthesizer uses these components when creating functions that
require XOR gates.

Component Instantiation
U1: XOR2 port map (O=>out, I1=>in2, I0=>in1);

Truth Table and Logic Symbol

I0 I1 O

0 0 0

0 1 1

1 0 1

1 1 0

I0
I1

I2
I3

I4
I5

I6
I7

I0
I1

I2
I3

I4
I5

I6

I0
I1

I2
I3

I4
I5

I0
I1

I2
I3

I4

I0
I1

I2
I3

I0
I1

I2

I0
I1

XOR8

XOR7

XOR6

XOR5

XOR4

XOR3

XOR2

O

O

O
O

O

O

O

Index

Synthesis Design Guide i

- operator, A-5, A-36

Symbols
+ operator, A-4, A-5
+1 operator, A-29

Numerics
-1 operator, A-21
3-state I/O buffer, component, A-31

A
ACC, component, A-3
ADD, component, A-4
adder, component, A-4
adder/accumulator, component, A-3
adder/subtractor, component, A-5, A-6
ADSU, component, A-5
ADSUR, component, A-6
analyze

design, 1-11, 1-18, 1-22
test bench, 1-11, 1-22

AND gate
component, A-7

AND2-AND8, components, A-7
attributes

NO_IFD, 2-19
PART, 2-2

B
BUF, component, A-8
BUFCE, component, A-9, A-27
BUFE, component, A-10
buffer

component, A-8, A-10
global CE, A-9
global clock, A-12, A-13
global FOE, A-11, A-14
input, A-12, A-13, A-25
output, A-33, A-34

BUFFOE, component, A-11, A-14
BUFG, 2-4, 2-5, 2-7
BUFG, component, A-12, A-13, A-28

C
CBX1, component, A-15
CBX2, component, A-16
clocks

global, 2-4
comparator component, A-17, A-18, A-19,
A-20
COMPEQ component, A-17
compiling designs, 3-1
COMPLE_TC component, A-18
COMPLE_US component, A-18
COMPLT_UC component, A-19
COMPLT_US component, A-19
COMPNE component, A-20
components

ACC, A-3
ADD, A-4
ADSU, A-5
ADSUR, A-6
AND2-AND8, A-7
BUF, A-8
BUFCE, A-9, A-27
BUFE, A-10
BUFFOE, A-11, A-14
BUFG, A-12, A-13, A-28
CBX1, A-15
CBX2, A-16
COMPEQ, A-17
COMPLE_TC, A-18
COMPLE_US, A-18
COMPLT_UC, A-19
COMPLT_US, A-19
COMPNE, A-20
DEC, A-21
FDCP, A-22
FDCPE, A-23
FDPC, A-24
IBUF, A-25
IFD, A-26
IFDX1, A-9, A-27
ILD, A-28

Synthesis Design Guide

ii Xilinx Development System

INC, A-29
INV, A-30
IOBUFE, A-31
IOBUFEX1, A-11, A-14
LD, A-32
OBUF, A-33
OBUFE, A-34
OBUFEX1, A-11, A-14
OR2-OR8, A-35
SUBT, A-36
XOR2-XOR8, A-37

Create Clock command, 2-16

D
DC Shell, 1-17

using, 3-1
Debugger, VHDL, 1-15
DEC, component, A-21
decrementor, component, A-21
Derive Clocks command, 2-17
design

compilation, 1-17
entry, 1-10
example, 1-6
flow, EPLD, 1-6
implementation, 4-9
speed optimization, 2-15

device
programming, 3-7
selecting, 2-2

D-type flip-flop, A-23, A-24, A-26, A-27,
A-28, A-32

E
elaborate, Synopsys command, 1-18
EPLD

design flow, 1-6
example design, 1-6

F
FDCP, component, A-22
FDCPE, component, A-23
FDPC, component, A-24

fitnet, XSI command, 1-20, 1-21, 3-6
fitting, 1-20
flip-flop, component, A-23, A-24, A-26,
A-27, A-28, A-32
FPGA Compiler

timing specifications, 2-15
functional simulation, 1-10

G
global Chip Enable buffer, A-9
global clock

buffer, A-12, A-13
global clock nets, 2-4, 2-5, 2-6
global FOE buffer, A-11, A-14

I
I/O buffer cells, placing, 1-19
I/O buffer, component, A-31
I/O signals, defining, 3-4
IBUF, component, A-25
IFD, component, A-26
IFDX1, component, A-9, A-27
ILD, component, A-28
INC, component, A-29
include, Synopsys command, 1-18
incrementor, component, A-29
initial state specification, register, 1-19
input buffer, component, A-25
installation, verification, 1-3
internal nodes and timing simulation, 4-10
INV, component, A-30
inverter, component, A-30
IOBUFE, component, A-31
IOBUFEX1, component, A-11, A-14

L
latches

using, 2-18
LD, component, A-32
library

availability chart, A-1
declaration, 2-1

logic

Index

Synthesis Design Guide iii

reducing levels of, 2-18

M
mapping effort, 1-19
mapping, equations, 3-7
Master Reset

simulating, 4-2
Max Period command, 2-16
MRESET input, 4-3, 4-14

N
netlist

outputting, 1-20
NO_IFD, attribute, 2-19

O
OBUF, component, A-33
OBUFE, component, A-34
OBUFEX1, component, A-11, A-14
operators

-, A-5, A-36
+, A-4, A-5
+1, A-29
-1, A-21

optimization
effects on internal nodes, 4-10
equations, 3-7
for speed, 2-15
register/latch, 2-19

OR gates, A-35
OR2-OR8, components, A-35
output buffer, component, A-33, A-34

P
PART attribute, 2-2
partitioning

equations, 3-7
pinouts, saving, 3-7
PinSave file, 2-11
programming, EPLD, 3-7

R
register

initial state, controlling, 4-2

input pad, 2-19
specifying initial states, 1-19
using, 2-18

Reports
Static Timing, 3-7

S
Set False Path command, 2-17
Set Input Delay command, 2-17
Set Max Delay command, 2-16
Set Output Delay command, 2-16
set up files

creating, 1-1
Design Compiler, 1-2
VSS Simulator, 1-3

simulation, 4-1
functional, 1-10, 4-5
Master Reset, 4-2
strategy, 4-1
timing, 4-11

speed optimization, 2-15
Static Timing Report, 3-7
SUBT, component, A-36
subtractor, component, A-36
Synopsys commands

analyze, 1-18, 3-2, 3-9
compile, 1-19, 3-3, 3-10
dc_shell, 1-17, 3-2, 3-9
elaborate, 1-18, 3-2, 3-10
exit, 1-20, 3-5
include, 1-18
insert_pads, 1-19, 3-4
set_attribute, 1-19, 2-8, 3-4
set_port_is_pad, 1-19, 3-4
trace, 1-16, 1-23, 4-8
vhdlan, 1-11, 1-21, 4-6
vhdldbx, 1-15, 1-22, 4-6, 4-12
write, 1-20, 3-4, 3-11

synthesizing, design, 1-19

T
target device, selecting, 2-2

Synthesis Design Guide

iv Xilinx Development System

target device, specifying, 1-19
test bench

configuration declaration, 4-4
creating, 4-4
initializing registers, 4-4

timing
calculated, 3-7
simulated, 3-7
simulation, 1-21

timing model preparation, 4-10
timing specifications

Create Clock command, 2-16
Derive Clocks command, 2-17
Max Period command, 2-16
path types, 2-15
purpose, 2-15
Set False Path command, 2-17
Set Input Delay command, 2-17
Set Max Delay command, 2-16
Set Output Delay command, 2-16
setting, 2-16

U
up/down counter

component, A-15, A-16

V
verification

file structure, 1-4
software installation, 1-3

vmh2vss, XSI command, 4-1
VSS timing simulator, 3-7

W
Waves, Dynamic Waveform Viewer, 1-16

X
XNF netlist, 1-20
XOR gates, A-37
XOR2-XOR8, components, A-37
XSI commands

fitnet, 1-20, 1-21, 3-6
vmh2vss, 4-1

	Cover Page
	Title Page
	Preface
	Conventions
	CONTENTS
	Getting Started with Xilinx EPLDs
	Designing with EPLDs
	Compiling and Fitting Your Design
	Simulating Your Design
	Library Component Specifications
	INDEX

