
Application Note

Using the Xilinx Interface 4.0 with XACT 5.x

The intent of this application note is to alert users to some of the issues they
will encounter when trying to process their designs using the pre-5.0
Cadence interface (9304, 9401, 9402) with XACT 5.0. Full support of the
new XACT 5.0 features will be available with the 9404 release.

The processing flow has changed

See P2-36 to 2-38 in Vol. II of the XACT Reference Guide
for details.

Purpose

With the release of XACT 5.0 comes support for the Unified Libraries for
Xilinx designs. The purpose of this application note is to describe the flow
required to process a Concept or Composer schematic that is not built from
Unified Library components.

Audience

The Audience for this application is designers using the Cadence/Xilinx
Interface from 9403 or earlier who are using XACT 5.0 for design
implementation.

Use this application note if:

■ You are making changes in an old design drawn with pre-5.0 symbol
bodies.

■ You require XACT 5.0 to implement designs for new FPGA devices
(XC4013, XC4000H, XC3000A and XC3000L).

Xilinx Core Tools enhancements

5/3/96 Using the Xilinx Interface 4.0 with XACT 5.x Preliminary -2

Xilinx Core Tools enhancements

■ Improved performance by PPR 5.0
PPR 5.0 is providing solutions with improved performance in many
designs.

■ Incremental Design for XC4000
A Guide option has been added to PPR to allow you to do incremental
and iterative design of XC4000 parts. Note that only LCA files created
by PPR 5.0 can be used as guides.

■ Better error checking up front via XNFPREP. XNFPREP will catch
many design errors before the routing stage.

■ More Architectures supported by PPR
PPR has been enhanced to support XC4013, XC4000H, XC3000A and
XC3000L devices.

■ RPMs Replace Hard Macros

Hard Macros have been replaced by Relationally Placed Macros
(RPMs) in XACT 5.0. RPMs are an improvement over the Hard
Macros in that you can specify their location in relative terms, instead
of explicit locations. This gives the software more flexibility in the
placement of logic blocks. When translating pre-5.0 designs containing
Xilinx library hard macros, XNFMERGE 5.0 will merge the XNF files
of the corresponding RPMs from $XACT/data/hmlib to create a
flattened XNF file, which can then be placed and routed.

■ Improved Error Messages
Clearer, more informative error messaging has been added to the
Xilinx Core Tools in 5.0.

■ More Architectures supported by X-BLOX
Support for XC3000A, XC3000L, and XC3100A devices has been
added to X-BLOX.

■ Improved error checking in XBLOX
Better error checking has been added to X-BLOX to catch design
errors up front.

-3 Preliminary Using the Xilinx Interface 4.0 with XACT 5.x 5/3/96

Schematic Entry & Netlisting

Schematic Entry & Netlisting

New Properties and
Library Elements

XACT Performance has added new features for better control of timing
constraints during design implementation. You can refer to a predefined
group by specifying one of the corresponding keywords - FFS, PADS,
LATCHES, or RAMS and use these as path endpoints.

■ You can create arbitrary groups of FF, PAD, LATCH or RAM symbols
by tagging them with TNM (pronounced tee-name) attributes.

■ You can create groups that are combinations of existing groups using
TIMEGRP symbols.

GXilinx Since TNM attributes and TIMEGRP symbols are new with this release,
you will need to make some changes to a number of GXilinx property files
in order to make GXilinx aware of these elements before you can process
them correctly in your netlist.

Supporting TNM TNM is a property that attaches to flip-flops latches, pads and RAMs.
GXilinx depends on two files to tell it how to process properties attached
to a design. The file,xilinx.prop, contains a list of legal properties to
be translated into XNF. Thexilinx.format file specifies the format to
be used by GXilinx when translating each property to an XNF file. Both
files are located at<cds_dir>/interface . Editing these Xilinx-
specific property files will allow GXilinx to recognize these
properties when explicitly attached to individual FFS (flip-flops),
LATCHES, PADS, and RAM modules.

Follow these step to include TNM in GXilinx:

1. Edit xilinx.prop

Add the following line to the bottom of the file:
TNM: permit (body);

2. Edit xilinx.format

Add the following line to the bottom of the file:
TNM: TNM=;

3. Strip out the "=" prefix attached to each TNM property in the
XNF file generated by GXilinx.

Schematic Entry & Netlisting

5/3/96 Using the Xilinx Interface 4.0 with XACT 5.x Preliminary -4

This additional step is necessary because the "=" prefix indicates to the
Xilinx tools that the property is a user property, and user properties are
usually ignored.

Supporting TIMEGRP
And TIMESPEC

TIMEGRP and TIMESPEC serves as a placeholder for timing
specifications. To support these features, you need to create a library with
these two primitives. This library can then be included in your global.cmd
file whenever you are designing XC4000 orXC3000A/L devices.

Fortunately the TIMESPEC symbol already exists in the LCA4K library.
This makes the task of creating the library much easier.

To create the new library, you will need to do the following:

1. Login as cds_mgr

Login as cds_mgr and change directory into <cds_install>/lib.

2. Create the library directory

From <cds_install>/lib, create the directory, "tspec"

3. Create timespec.lib

In thetspec directory, create a file calledtspec.lib . This will be the
library map file.

Contents oftspec.lib :
FILE_TYPE = LOGIC_DIR;
"TIMESPEC" 'timespec';
"TIMEGRP" 'timegrp';
END.

4. Copy the TIMESPEC directory from lca4k

Copy the entire TIMESPEC directory from <cds_install>/lib/lca4k to
tspec.

From the new tspec directory, type:

cp -r ../lca4k/timespec .

5. Create the TIMEGRP symbol

Create the timegrp symbol by copying thetimespec directory to the
tspec directory and modifying the timegrp symbol body.

cp -r timespec timegrp

From Concept, modify the timegrp body file and change the name
"TIMESPEC" to "TIMEGRP"

-5 Preliminary Using the Xilinx Interface 4.0 with XACT 5.x 5/3/96

Schematic Entry & Netlisting

6. Update master.lib

Edit <cds_install>/lib/master.lib and include the following entry:
"tspec"’tspec/tspec.lib’;

Schematic Entry & Netlisting

5/3/96 Using the Xilinx Interface 4.0 with XACT 5.x Preliminary -6

Using TIMESPEC or
TNM On Macros

You can also use TIMESPEC and TNM on a macro to control its timing.
To do this, you must use block mode methodology--that is, you must
process the macro schematic separately to create an XNF for your macro,
then use XNFMERGE to merge the XNF with the rest of your design.
When your design is merged, TIMESPEC and TNM properties are
propagated from your top schematic down to the predefined groups in the
macro (FFS, LATCHES, RAMS, or PADS). Note that for TNM
properties, the primitives underlying the macro must all be of the same
type (FFS, LATCHES, RAMS, or PADS. The steps to follow are:

1. Create your macro schematic

Draw the schematic for your macro design and do not include any
TIMESPEC or TNM parameters in your schematic.

2. Run GXilinx to create an XNF for the macro

Be sure to run GXilinx with the -m option so that the schematic is
treated as a macro circuit. Use the following command line:

gxilinx -m <macro_name>

3. Attach the macro property on your macro symbol

To prevent GXilinx from processing the schematic underneath your
macro symbol, attach this property to the macro symbol body:

xilinx=macro \parameter

Now you are ready to use the macro on your schematic.

4. Add the macro to your design and attach TIMESPEC and TNM
attributes to it.

Place the symbol body of your macro onto your schematic and attach
TIMESPEC and TNM properties according to the Xilinx Reference
Manual.

5. Process your entire design through GXilinx

Before running GXilinx to process your complete design, you must
add a directive to your compilier.cmd to tell it where to find expansion
rules for Xilinx netlist processing.

In your compiler.cmd file, add the following line:

exp_rules_file "<cds_dir>/tools/interface/xilinx.exprule"

Note: Be sure to enclose the path in quotes.

-7 Preliminary Using the Xilinx Interface 4.0 with XACT 5.x 5/3/96

FUNCTIONAL SIMULATION

FUNCTIONAL SIMULATION

Designs without X-BLOX
or Carry Logic

Designs that consists entirely of schematics without X-BLOX or memory
modules may be simulated as described in the documentation of the 4.0
design kit. An XNF netlist is generated from the design and is then
translated into a Verilog netlist for unit-delay simulation. Rapidsim users
can go directly into Rapidsim without any translation.

Figure 2-1 Concept Flow

Figure 2-2 Composer Flow

xnf2edif -v

edif2verilog

gxilinx

Verilog-XL

edifout

edif2xnf

xnf2edif -v

edif2verilog

FUNCTIONAL SIMULATION

5/3/96 Using the Xilinx Interface 4.0 with XACT 5.x Preliminary -8

Designs with XBLOX
Modules

Designs with X-BLOX modules require additional processing steps before
simulation. X-BLOX which do not expand out to use carry logic can be
simulated without running PPR. If you use COUNTER, ADD_SUB or
ACCUM modules, PPR must be run to convert the carry logic primitives
into gates.

Figure 2-3 X-BLOX Simulation Flow

xnfmerge

xnfprep

xblox

lca2xnf -v

ppr

xnfprep

placer_effort=1
route=false

xnf2edif -v

edif2verilog

xnfmerge

xnfprep

xblox

xnfcvt -v 4

xnfprep

xnf2edif -v

edif2verilog

X-BLOX Simulation,
With Carry Logic

X-BLOX Simulation,
Without Carry Logic

-9 Preliminary Using the Xilinx Interface 4.0 with XACT 5.x 5/3/96

FUNCTIONAL SIMULATION

Designs with User
Created Hard Macros

Hard Macros have been replaced by Relationally Placed Macros (RPM) in
XACT 5.0. For designs that currently include user-created hard macro files
you must translate the hard macro files into RPM files. A utility called
HM2RPM is provided to convert your hard macros into RPMs.

You must convert any user-created hard macros into RPMs with the
HM2RPM program when you use these macro symbols in a design that
will be processed by XACT 5.0. When you perform this conversion, you
must specify whether your design uses elements from the Unified Libraries
or from previous libraries. By default, HM2RPM outputs an XNF file that
is compatible with schematics generated with pre-5.0, pre-Unified library
elements.

Figure 2-4 Verilog Functional Simulation with User Created Hard Macros

hm2rpm

xnfmerge

lca2xnf -v

ppr

xnfprep

placer_effort=1
route=false

xnf2edif -v

edif2verilog

With Carry Logic

hm2rpm

xnfmerge

xnfcvt -v 4

xnfprep

xnf2edif -v

edif2verilog

Without Carry Logic

FUNCTIONAL SIMULATION

5/3/96 Using the Xilinx Interface 4.0 with XACT 5.x Preliminary -10

Figure 2-5 Rapidsim Functional Simulation with User Created Hard Macros

hm2rpm

xnfmerge

lca2xnf -v

ppr

xnfprep

placer_effort=1
route=false

With Carry Logic

hm2rpm

xnfmerge

xnfcvt -v 4

xnfprep

xnf2ged

Without Carry Logic

xnf2ged

-11 Preliminary Using the Xilinx Interface 4.0 with XACT 5.x 5/3/96

Processing the Design

Processing the Design

Running Xmake Most of the problems interfacing the pre-5.0 interface with XACT 5.0 stem
from the change in the XNF netlist format and the addition of the new CY4
carry logic primitive.

■ When implementing designs from GXilinx you must run XMAKE
with the -l option. This will tell XMAKE to specify use of the old pre-
Unified libraries when it calls X-BLOX, XABEL and MEMGEN.
Failure to specify the -l option in designs with pre-5.0 X-BLOX,
XABEL, or MEMGEN modules will result in error messages about
using mixed libraries.

■ If running MEMGEN manually, specify theold_library option.
For example:

memgen <memory_name> old_library = true

■ DO NOT mix version 4.0 XNF with 5.0 XNF.

Timing Verification

5/3/96 Using the Xilinx Interface 4.0 with XACT 5.x Preliminary -12

Timing Verification

Getting An XNF For
Timing Simulation

There are two programs that need to be run before starting simulation.
They are LCA2XNF and XNFBA.

The LCA2XNF program converts an LCA file to an XNF file, which you
can use for functional or timing simulation. If the LCA input file is placed
and routed,, the resulting XNF file contains all worst-case block and net
delays for use in timing simulation. In XC3000 designs, APR writes the
delay information to the LCA file; in XC3000A and XC4000 designs, you
must run XDelay -dw on the LCA file to annotate the delay information.
You can then use the XNF file created by the LCA2XNF program to
generate a simulation file for timing verification.

By default, LCA2XNF version 5.0 will write out a version 5 XNF netlist.
Be sure to use the -v option in LCA2XNF to write out a version 4 XNF
netlist for timing verification, as only version 4 XNF files can be read by
XNF2GED and XNF2EDIF. Customers using TIMENET for Verilog
simulation must modify the script to include the -v option where
LCA2XNF is invoked.

The XNFBA program combines the pre-route XNF files and the post-route
XNF file into a new file which has the original symbol and signal names
with post-route delays. XNFBA will not annotate carry logic primitives
into a version 4 XNF. Skip XNFBA if carry logic is present in the design.

Note: XNF2GED v4.4-p1 will not warn you about your input being a
version 5.0 XNF netlist if you neglect to use the -v option. However, the
translated netlist will not be correct.

-13 Preliminary Using the Xilinx Interface 4.0 with XACT 5.x 5/3/96

Timing Verification

Figure 2-6 Timing Simulation Flow

lca2xnf

Rapidsim

xnf2edif -v

With Verilog-XL

edif2sdf

edif2verilog

xnfba

With Rapidsim

Skip XNFBA is carry logic is in your design.

xnf2ged

Things to look out for:

5/3/96 Using the Xilinx Interface 4.0 with XACT 5.x Preliminary -14

Things to look out for:

DESIGNS BASED ON
OLD LIBRARIES

■ Run XMAKE with the -l option for back compatibility with the old
libraries. This option will ensure that MEMGEN, and X-BLOX will
write their outputs using old libraries when processing your design.

■ Do not mix XACT 5.0 library elements with pre-5.0 library elements,
as this will lead to problems in backannotation and simulation.

XILINX LIBRARY
HARD MACROS
(Concept)

■ Copy the XNF files for any hard macros in your design to your design
directory from$XACT/data/hmlib

USER-CREATED
HARD MACROS

■ Runhm2rpm macro_name dflt_logic=true on each user
hard macro in your design.

■ Move all CST file constraints which apply to user hard macros onto
your schematic. LOC constraints do not work in XACT 5.0 when
specified from a constraint file.

INVALID
CONDITIONS

As a result of improved error checking by XNFPREP, design errors which
were ignored before will turn up as errors in XACT 5.0. Some of the more
important changes you will need to make are:

■ Remove invalid parameters, such as overly generalized constraints like
LOC=CLB_R*C*.

If you have this connection in your XC4000 design:
ipad-->ibuf-->bufgp,

you must constrain the IBUF, because PPR assumes that if you use an
IBUF between the IPAD and BUFGP, you did not want to use a
dedicated BUFGP input pin. Connect the IPAD directly to BUFGP if
you want PPR to use a dedicated BUFGP input pin.

XC3000A/L &
XC3100A Designs

■ PPR is used to route XC3000A, XC3000L, and XC3100A designs. If
you were using a .CST constraints file in the pre-5.0 software, the
constraints would have been written in a different format from that

-15 Preliminary Using the Xilinx Interface 4.0 with XACT 5.x 5/3/96

Things to look out for:

required by PPR. Run the CSTCVT utility on the CST file to convert
it to the required PPR format.

3000A/3000L/3100A
designs:

In XACT 5.0, PPR is used to route XC3000A, XC3000L, and XC3100A
designs. If you were using a .CST constraints file in the pre-5.0 software,
the constraints would have been written in a different format from that
required by PPR. For XACT 5.0, these constraints must be converted to a
format that PPR 5.0 will understand. Run the CSTCVT utility on the CST
file to convert it to the required PPR format.

