

XF-RSENC Reed Solomon Encoder

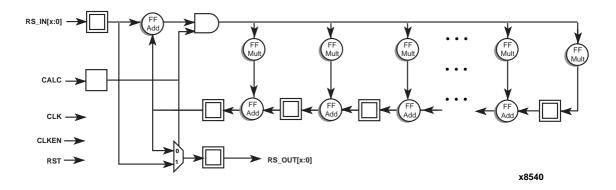
March 23, 1998

Product Specification

Memec Design Services

Maria Aguilar, Project Coordinator 1819 S. Dobson Rd., Suite 203 Mesa, AZ 85202 Phone: +1 888-360-9044 (USA) +1 602-491-4311 (outside the USA) Fax: +1 602-491-4907 E-mail: info@memecdesign.com URL: www.memecdesign.com

Features


- High Speed Reed-Solomon Encoder Core
- Core design can be customized for any encoder using the following parameters:
 - Primitive polynomial
 - Generator polynomial
 - Symbol size
 - Number of parity symbols
- Message block length configured by end user
- · Cores can be concatenated to build extended codes
- Supports symbol rates greater than 60MHz
- All registers clock by single clock
- All registers enabled by single clock enable allowing ease of interface to larger system

Applications

- DTV/HDTV broadcast
- Data communication channels
- Data storage systems (i.e. CD-ROM or hard disk)

AllianceCORE™ Facts			
Core Specifics ¹			
Device Family	XC4000E		
CLBs Used			
IOBs Used	See Table 1		
System Clock fmax			
Device Features	ROMs		
Used			
Supported Dev	rices/Resources Remaining ¹		
	See Table 1		
Pro	ovided with Core		
Documentation	Core Documentation		
Design File Formats	XNF netlist		
	VHDL or Verilog RTL		
Constraint Files	VHDL or Verilog Testbench		
Verification Tool	None		
Schematic Symbols	None		
Evaluation Model	None		
Reference designs &	Example Implementation in VHDL		
application notes	or Verilog		
Additional Items	Warranty by MDS		
Desigr	Tool Requirements		
Xilinx Core Tools	XACTstep 5.2.1/6.0.1		
	or Alliance 1.2		
Entry/Verification	VHDL or Verilog		
Tool			
	Support		
	es warrants that the design deliv-		
ered by Memec Design	n Services will conform to the design		

ered by Memec Design Services will conform to the design specification. This warranty expires 3 months from the date of delivery of the design database. Contact Memec Design Services for the Design License Agreement with complete Terms and Conditions of Sale.

Figure 1: Reed Solomon Encoder Functional Block Diagram

General Description

The XF-RSENC is a Reed-Solomon Encoder for use in communication or data storage systems requiring forward error correction capabilities. The core is optimized to the Xilinx XC4000 family of FPGAs for speed and area. Table 1 shows implementation statistics of example cores.

The XF-RSENC core is delivered as an XNF netlist, or as VHDL or Verilog RTL code. Each core is customized to the needs of the user's application.

	Example #1	Example #2
Parity Symbols	16	8
Bits/Symbol	8	8
Device	XC4003E-1	XC4003E-1
CLBs	84	45
CLBs Remaining	16	55
IOBs	19	19
IOBs Remaining	42	42
CLKIOBs	1	1
Max Symbol Rate	60MHz	63MHz

Table 1: Example Implementations

Functional Description

The functional block diagram of the XF-RSENC is shown in Figure 1. The design is modular in structure and can be configured to implement any number of parity symbols.

All registers are driven by common clock, clock enable and reset (async.) signals. This provides ultimate flexibility for larger systems. The registers are clocked on the rising edge.

A single input controls whether the core is calculating the parity (high) or shifting out the calculated parity (low). Logic external to the core is required to generate this control signal. This allows the user to vary the message block length as required. Examples of the external logic are provided with the core.

FFADD Block

This block performs the Finite Field modulo addition over the appropriate Galois Field.

FFMULT Block

This block performs the Finite Field Multiplication, over the appropriate Galois Field, of a constant and the input symbol value. The constant corresponds to a coefficient determined from the Generator and Primitive Polynomials.

Core Modifications

Memec Design Services will customize a deliver a Xilinx netlist version of this core that meets your requirements. To do so, fax or email the following information to MDS directly:

- Your name, company name, address, phone number and email ID
- Primitive Polynomial (e.g. $x^8 + x^4 + x^3 + x^2 + 1$)
- Generator Polynomial (e.g. (x+a¹) (x+a²)...)
- Number of errors corrected

Pinout

The pinout of the XF-RSENC core has not been fixed to specific FPGA I/O, allowing flexibility with a user's application. The signal names are provided in Figure 1 and Table 2.

Table 2: Core Signal Pinout

Signal	Signal Direction	Description
RS_IN[<i>x</i> :0]	Input	Input data symbol
CALC	Input	Parity calculate/shift
CLK	Input	System clock
CLKEN	Input	Clock enable; active high
RST	Input	System Reset; active high
RS_OUT[<i>x</i> :0]	Output	Output data symbol

Verification Methods

Basic functional simulation has been performed on the XF-RSENC using Verilog or VHDL. (Simulation vectors used for verification are provided with the core).

Recommended Design Experience

A basic understanding of Reed-Solomon encoding will help in using this core. Users should be familiar with Verilog or VHDL synthesis and simulation as well as Xilinx design flows.

Ordering Information

The XF-RSENC Core is customized for your application (see Core Modifications). The core is provided under license from Memec Design Services for use in Xilinx programmable logic devices and Xilinx HardWire[™] gate arrays. To purchase or make further inquiries about this or other Memec Design Services' products, contact MDS directly.

Information furnished by Memec Design Services is believed to be accurate and reliable. Memec Design Services reserves the right to change specifications detailed in this data sheet at any time without notice, in order to improve reliability, function or design, and assumes no responsibility for any errors within this document. Memec Design Services does not make any commitment to update this information.

Memec Design Services assumes no obligation to correct any errors contained herein or to advise any user of this text of any correction, if such be made, nor does the Company assume responsibility for the functioning of undescribed features or parameters. Memec Design Services will not assume any liability for the accuracy or correctness of any support or assistance provided to a user.

Memec Design Services does not represent that products described herein are free from patent infringement or from any other third-party right. No license is granted by implication or otherwise under any patent or patent rights of Memec Design Services.

Memec Design Services products are not intended for use in life support appliances, devices, or systems. Use of a Memec Design Services product in such application without the written consent of the appropriate Memec Design Services officer is prohibited.

All trademarks, registered trademarks, or servicemarks are property of their respective owners.

Related Information

Xilinx Programmable Logic

For information on Xilinx programmable logic or development system software, contact your local Xilinx sales office, or:

Xilinx, Inc. 2100 Logic Drive San Jose, CA 95124 Phone: +1 408-559-7778 Fax: +1 408-559-7114 URL: www.xilinx.com

For general Xilinx literature, contact:

Phone: +1 800-231-3386 (inside the US) +1 408-879-5017 (outside the US) E-mail: literature@xilinx.com

For AllianceCORE[™] specific information, contact:

Phone:	+1 408-879-5381
E-mail:	alliancecore@xilinx.com
URL:	www.xilinx.com/products/logicore/alliance/
	tblpart.htm