
Design Methodologies for
Core-Based FPGA Designs

Jerry Case, Nupur Gupta, Jayant Mittal and
David Ridgeway

Abstract
The adoption of design re-use has resulted in the availability
of a variety of implementation options. Each option in turn
offers a distinct design methodology that must be adhered to
in order to successfully complete a custom single-chip
design. This tutorial will focus on a system level design meth-
odology for combining the predictability of a PCI interface
core with the flexibility of a custom backend.
Specifically, this tutorial will explore the core-based design
issues facing engineers and present a solution for addressing
these issues during the design entry, design implementation
and design verification stages of the product development
cycle. This will be followed by an application example demon-
strating the core-based design methodology used to integrate
a PCI interface core with custom backend functions.

1 Application Specific Solution
Options For Designers
 A core is a pre-defined, pre-verified complex functional
block that is integrated into the designer’s logic. The rapid
trend towards sub-micron technologies has brought forth
the new concept of System-Level Integration (SLI). This
new approach makes use of the core to save development
time while focusing engineering time and energy on those
parts of the design that add value and differentiation.

Core-based designs have several benefits:

• shorter design-cycle times
• reduced risk
• improved performance through higher levels of integra-

tion

The end result of SLI technology leads to shorter time-to-
market, lower production costs, and improved system profit
margins.

1.1 Types of Cores Available

One parameter for characterizing cores is the “hardness”
of the block, or the degree to which the core has been opti-
mized for a particular fabrication process. Cores can be
classified in three categories: hard, firm and soft. Table 1
provides a summary of the tradeoffs between these cores.

Hard cores are optimized for a specific silicon technology
and cannot be modified by the system designer. These
cores have a pre-defined layout and floorplan that is
included in the architecture of the design. They have the
advantage of fixed timing and can be treated as library ele-
ments during the design cycle. The disadvantage of hard
cores is that the designer can neither customize the func-
tions nor adjust its timing to meet the requirements of the
entire chip.

Firm cores are delivered as a mix of source code and tech-
nology-dependent netlist. In these cores, the source code
is visible to the designer and specific parts of the core can
be customized by the designer. However, a netlist is tech-
nology-specific and the user can not easily switch chip
vendors or use a different technology with the same ven-
dor.

HDL-based soft cores offer full technology independence
and flexibility. The design can be readily modified or resyn-
thesized to multiple technologies in order to switch vendors
or target a new process. The disadvantage with soft cores
is that critical timing is not guaranteed and the core must
be synthesized, floorplanned, and placed-and-routed for
each use.

PCI Local Bus interface cores are available in all three for-
mats and provide a good example of the type of tradeoffs
designers must make when selecting the core. The PCI
core has a number of critical paths that must be controlled
during synthesis to guarantee PCI compliance. At the
same time, the system designer must be able to customize
the core to specify memory and I/O space requirements,
vendor and device specific information, as well as any con-
figuration settings necessary to support Plug-N-Play oper-
ation.

TABLE 1. Tradeoffs of Hard, Firm, and Soft Cores

Hard Cores Firm Cores Soft Cores

Hardness
pre-defined layout mix of source code and tech-

nology-dependent netlist
delivered as behavioral source
code

Modeling

modeled as a library element mix of fixed and synthesizable
blocks

can share resources with other
cores

synthesized with other logic

Flexibility

can not be modified by
designer

several hard cores on one chip
can result in inefficient system
implementation

technology dependent

specific functions customizable

design can be modified

technology independent

Predictability
timing guaranteed critical path timing fixed timing not guaranteed

cannot be fully verified before
released to user
Design Methodologies for Core-Based FPGA Designs April 9, 1997 1

1.2 System Level Integration Description
and Requirements

Cores, complete with a set of common deliverables, are
essential to design re-use and the SLI methodology. One
key aspect is the ability to smoothly fit into a top-down
design flow: concept, architecture, partitioning, logic
design, and physical design/post layout verification.

One of the benefits of the SLI approach to high-volume
design is the coupling of a core with user-defined circuitry
on a single chip, as shown in Figure 1. This approach com-
bines the benefits of a standard product (e.g. common fea-
ture set, fully-tested component, and well-defined
interface) with the benefits of custom circuits (e.g. low pro-
duction costs, small size, and low power consumption).

To guarantee that a core fits within the physical layout of a
device, the core should allow for the use of floorplanning
tools. The option to use floorplanning tools facilitates
achieving an efficient die size while keeping the cores own
logic grouped. For cores that have been previously laid out
such as hard or firm cores, floorplanning and an efficient
place-and-route tool will place logic in the most optimal
manner possible around the core.

The Xilinx PCI LogiCORE module is an example of a firm
core that has been optimized for the XC4000E FPGA
architecture. To increase flexibility and reduce layout prob-
lems, the firm core is based on building blocks allowing the
core to be broken down into functional blocks. In this case,
a small portion of the core is parameterizable, such as the
size of each base address register.

The I/O cells must be placed in predetermined locations on
the die allowing efficient access to the PCI Local Bus. The
performance requirements between the core and the I/O
pads require the core to be placed directly next to the I/O
cells. Because the primary bus routing resources run hori-
zontally across the FPGA, the PCI Interface pins are
placed primarily along the left side of the rectangular core
structure.

A small number of pins, those that communicate with the
user’s application, appear on the right side of the core.
Placing the core on the left edge of the device allows for

maximum “connectability” to the user application and the
remaining chip logic.

Floorplanning of chips with PCI cores is essential because
of the wiring congestion created by these large functions,
the interconnect compatibility issues imposed by the PCI
specification, and the physical design constraints imposed
by the target technology.

In order to realize the productivity gains and industry
growth of sharing and integrating system-level cores, sys-
tem designers are being asked to modify their traditional
ASIC design methodologies to seamlessly integrate differ-
ent types of cores.

2 Methodology for Core-Based
Designs
The development of core technology and higher gate den-
sities in FPGAs has increased the necessity for a design
methodology that defines the integration of SLI cores and
user application designs. This methodology must fulfill
technical requirements and accommodate any design vari-
ations or formats. In addition, it should reduce the range of
technical issues that are encountered during each stage of
a design cycle.

 A designer’s primary focus must be on the development of
a complete SLI solution that successfully complies with the
objectives outlined for the project. However, much of a
designer’s time is spent addressing the technical issues
that arise with the compatibility of the core technology and
the user application design. The goal of this paper is to aid
designers in this process and define a design methodology
that inherently focuses on developing an SLI solution in an
FPGA.

FPGAs are primarily used because of their ability to signifi-
cantly reduce time to market. Should any variations in a
user application design arise, it should be a simple process
to achieve an SLI solution that avoids the burden of rede-
signing the entire chip. A design flow for integrating cores
within FPGA’s offers the balance between predictability
and flexibility.

FIGURE 1. Physical Representation of Single Chip Environment

SOFT/
FIRM
PCI

CORE

USER

I/O
 P

A
D

S

I/O
 P

A
D

S

APPLICATION INTERFACE

APPLICATION
DESIGN

TOP-LEVEL MODULE
Design Methodologies for Core-Based FPGA Designs April 9, 1997 2

A design flow consists of three fundamental stages: design
entry, design implementation, and design verification. This
design flow is shown in Figure 2. The stages are com-
posed of various design tasks. During design entry, the
user application design is developed and synthesized. This
produces a user design netlist. This netlist is translated
along with the firm core netlist during the design imple-
mentation stage. This generates a design that contains the
complete placement, routing and timing information. This
information is then used during the design verification
stage to perform static timing analysis and post route tim-
ing simulation.

Within these stages there are techniques employed to
reduce the number of technical issues encountered in sub-
sequent stages. The following sections will discuss each
stage in greater detail. As a consequence, a design meth-
odology that reduces time to market and increases flexibil-
ity and predictability will be presented.

2.1 Design Entry

Design entry consists of the design and synthesis of the
top-level and user application design and integration with
the firm core. In addition to this, functional simulation,
which is part of design verification, is performed during this
stage. It is covered in “Design Verification” on page 5. Spe-
cifically, this section focuses on:

• HDL representation - preliminary synthesis steps asso-
ciated with the physical integration of the firm core and
user application design

• facilitating design implementation - tasks to facilitate
the design implementation

• facilitating design verification - a method for route bud-
get analysis of the entire integrated design to derive an
estimate of the timing constraints.

2.1.1 HDL Representation

Before synthesizing the user application design, it is nec-
essary to create an HDL model of the top-level design that
instantiates the firm core and the user application design.
The firm core is treated as a black box and will not be a
synthesizable element. For this reason, it is also neces-
sary to create an HDL entity or module declaration of the
firm core to serve as a black box representation when it is
instantiated by the top-level HDL model. In addition, the
designer must ensure that the EDA tools recognize this
black box as a fixed element of the design. For example,
this is commonly done with the “don’t touch” attribute in
Synopsys synthesis tools.

Since firm cores are technology dependent, they may be
delivered with guide files. Guide files ensure the core’s per-
formance by locking the routing of critical paths. This
requires the core’s logic to be consistent with the guide file.
For this reason, the HDL representation of the top-level
model should connect all module I/O or output only signals
of the firm core to the user application design. All signals
are physically mapped from the firm core to the user appli-
cation design and are not trimmed by the FPGA translation
tools. However, all signals do not have to be used internally
within the user application design.

In addition, bus interface cores may impose further con-
straints on the design. For example, for the Xilinx PCI core,
the user application design should derive clock and active
high reset from the firm core. Otherwise the integrated
FPGA netlist will have these coming directly from pads
rather than IBUFs and BUFGs.

FIGURE 2. Core-Based Design Flow

Design Entry

Design Implementation

Design Verification

HDL

HDL

Synthesis

Netlist

Place & Route

Netlist

Static Timing
Analysis

Timing
Simulation

Functional
Simulation

Simulation
Model

Constraints

Firm Core

User
Application

Design

Top-Level

Firm Core

Firm Core

NetlistFrom
Firm Core
Provider
Design Methodologies for Core-Based FPGA Designs April 9, 1997 3

2.1.2 Facilitating Design Implementation During
Design Entry

The user application design must be synthesized sepa-
rately with timing constraints to optimize on logic adjacent
to the firm core. While fixing constraint delay values, only
part of the cumulative path delay should be assigned. Spe-
cifically, these should be paths originating at the output of
the firm core and terminating in the user application or
FPGA output pins. The number of synthesis timing con-
straints, e.g. set_max_delay, set_output_delay, and
set_input_delay in Synopsys, are strictly dependent on the
complexity of the user application. For example, PCI setup
time may not be an issue for a simple interface since all
outputs from the firm core to the user application are
latched. However, for a complicated bridge i.e. PCI-to-PCI,
this will be a consideration. Once the top-level model and
user application design has been synthesized, it is neces-
sary to replace the synthesized generated netlist for the
firm core with the actual netlist supplied by the firm core
provider.

2.1.3 Facilitating Design Verification During
Design Entry

As the complexity of the user application design increases,
the amount of available resources on an FPGA will
decrease. It is strongly recommended to do some prelimi-
nary route budget analysis on the application design.
Often, firm cores are provided with constraint and guide
files thereby indicating the critical timing of the design.
Adding the additional complex logic may cause the overall
system to fail to meet the required performance.

There are many techniques that can be used to ensure
that the overall design meets timing. One commonly-used
practice is to pipeline the user application design. Although
this may increase the latency of the design, the overall
throughput will increase and it is less likely that critical
paths will fail. Floorplanning can also improve perfor-
mance. Placing critical logic into the same or adjacent cells
to optimize the data flow limits the amount of routing
resources used and minimizes routing delays. If the design
permits, these are effective methods to reduce the number
of iterations to successfully route a design and meet tim-
ing.

Another technique is the use of constraints on the applica-
tion design. Similar to the constraints provided for the firm
core, the user application constraints can force a particular
placement of logical blocks and specified interconnects to
adhere to fixed timing specifications. Logic constraints can
be specified in the two different stages of the design flow:
synthesis and translation. Constraints specified during
synthesis can give an estimation of the timing delay in the
internal logic of the user application design and optimize
logic depth. Constraints during translation can provide tim-
ing specifications and placement information for the user
application design. Timing constraints that were used dur-
ing the synthesis of the design can be forwarded in the firm
core constraints file. This will ensure that internal user
application logic adheres to these timing specifications
during the translation stage.

The recommended method of determining the route bud-
get for a design is to do a preliminary translation of the
design without any route budget constraints but using core

provided constraints. Static timing analysis will indicate the
margin of delays allowed to the user application design.
Constraints can then be placed during synthesis of the
application design. This will give some indication as to the
necessity to pipeline the design or further constrain it dur-
ing the design implementation stage.

The syntax for placing constraints on a user application
design during the design entry stage varies depending on
the EDA tool vendor. For example, in Synopsys, timing
constraints for pad-to pad can be set with the use of the
set_max_delay and set_output_delay commands.

2.2 Design Implementation

The second fundamental stage is the design implementa-
tion stage. During this stage, translation tasks are exe-
cuted. Many issues that would have arisen from the
integration of the firm core and user application design are
no longer visible. The translation of the design should be a
simple process that is mainly administered by the transla-
tion tools. The following is a discussion on:

• facilitating design verification - further steps a
designer can take to assist design verification

• translating the design

2.2.1 Facilitating Design Verification During
Design Implementation

 As discussed earlier, timing and placement constraints
can be placed in the provided constraints file. A designer
should time constrain critical paths that may have high fan
out or directly effect the critical paths of the core. In addi-
tion, paths that have a very stringent time specification
should also be constrained.

With the use of the constraints file, timing constraints can
be placed on those paths that are critical to achieve perfor-
mance. This facilitates design verification by allowing the
designer to query a set of specific nets without specifying
or searching for the complete path. This is beneficial with a
design where only certain paths have stringent timing con-
straints, and the design has difficulty meeting timing.

2.2.2 Translating the Design

Once the firm core and application design netlists have
been generated, it is a simple process to translate the
complete design. For example, with the Xilinx tools, the
flattened netlist, will be processed by the Xilinx Netlist For-
mat Preparation (XNFPrep) tool. The designer must
remember to specify any constraints file that may have
accompanied the core. This will create a XTF netlist. XNF-
Prep is used to perform Design-Rule Check and remove
any redundant and unused logic from the design. It is also
used to prepare the delay information for PPR path analy-
sis. Further information can be found in the Xilinx XACT
software documentation.

After running XNFPrep, the complete design is processed
through the Partition, Place-and-Route tools (PPR). During
this step, any constraint and guide files for the design must
be specified. PPR is used to map the design into logic
blocks, find the optimal block placement and route the
interconnect between blocks. Further information can be
found in the Xilinx XACT software documentation. PPR will
produce a physical netlist, an LCA file. Static timing analy-
sis can now be performed.
Design Methodologies for Core-Based FPGA Designs April 9, 1997 4

2.3 Design Verification

The final stage in a design flow is design verification. This
stage consists of two main tasks: verification and simula-
tion. In verification, static timing analysis determines
whether the design meets the required performance. Sim-
ulation verifies system timing and functionality. Design ver-
ification should be thoroughly done, and extensive
research can show the designer where in the design flow
to improve performance.

2.3.1 Static Timing Analysis

Static timing analysis is performed to survey timing critical
paths that are constrained by design performance parame-
ters. For example, in Xilinx tools, static timing analysis of
an FPGA design can be done with the use of TIMESPEC
timing specifications and the XACT XDelay tool.
TIMESPECs are determined earlier on in the design cycle
and are placed in the constraints file. Translation of the
design will place the necessary path delays for the design
in the LCA file. The XACT XDelay tool surveys this infor-
mation from the LCA file to give an accurate static timing
analysis of the path delays for any time specifications that
were placed in the constraints file. Any additional intercon-
nects that may not have been specified by time constraints
can also be surveyed but may not necessarily meet the
time specifications determined by the designer. It is impor-
tant to assign all critical paths to time specifications in
order to allow PPR to determine the most efficient and
optimal placement of the design. Further information on
the XACT XDelay tool can be found in the XACT software
documentation.

2.3.2 Functional Simulation

Simulation is performed at two places in the core-based
design methodology, during design entry to verify function-
ality with unit delays and after place-and-route to verify
functionality and timing with back-annotated timing delays.
During functional simulation, a VHDL or Verilog model of
the core is used. This core has the same I/O interface as
the core netlist used for place-and-route. This enables
functional simulation and place-and-route without modify-
ing the user application design.

3 Application Example
The following design example will demonstrate how to inte-
grate an FPGA firm core with an example user back-end
design. First, the individual components of the design are
described. Second, the complete design flow is detailed.
The components that comprise this design example are
the LogiCORE PCI Master Interface core module, the user
back-end example design, called Ping, and the top-level
module which connects the firm core and the user design
together into a single FPGA.

3.1 LogiCORE PCI

The LogiCORE PCI Master Interface from Xilinx is used as
an application example to demonstrate the core-based
design methodology. LogiCORE PCI is included in Xilinx
complete PCI solutions for designing a customized single-

chip PCI system. LogiCORE PCI is a firm core consisting
of a fixed size and user configurable option.

Completing a single-chip PCI design is a significant chal-
lenge in any IC technology; FPGAs or ASICs. PCI is a sig-
nificantly complex interface with many critical timing
constraints, such as 7 ns setup time and 30 ns clock cycle
times. To meet the rigorous PCI specification, an FPGA
implementation must be carefully optimized for the tar-
geted technology. Furthermore, the PCI design must be
extensively verified in order to claim full PCI compliance of
the end-system. Of course, this is especially important
when designing a generic add-in board used in a wide vari-
ety of computer systems.

The LogiCORE PCI Master/Target core is a 32 bit, 33 MHz
interface optimized for Xilinx XC4000E series FPGAs. The
PCI interface can be integrated with an additional 5K to
30K gates of custom logic into one flexible FPGA and then
automatically converted to a cost-effective HardWire for
volume production. To ensure full PCI 2.1 compliance, Xil-
inx has chosen to pre-implement and lock down all the crit-
ical paths of the design. The pin-out and the partition and
placement of the Configurable Logic Blocks (CLBs) in the
FPGA are controlled by mapping constraints, pin-locking
and Relatively-Placed Macros (RPMs). The routing of the
most critical signals is controlled by guide files and timing
specifications.

The result is that the functionality and performance of the
core is predictable, and consequently, the core can be fully
verified before it is released and used by a designer. Opti-
mization for a specific device architecture has been com-
pleted by Xilinx, hence the users can focus on system-level
design issues.

3.2 PCI Core Functional Description

The Core is partitioned into five major blocks and the user
application, as shown in Figure 3.

3.2.1 PCI I/O Interface Block

The I/O interface block handles the physical connection to
the PCI bus including all signaling, input and output syn-
chronization, output three-state controls, and all request-
grant handshaking for bus mastering.

3.2.2 Parity Generator/Checker

This block generates/checks even parity across the AD
bus, the CBE lines, and the PAR signal. Data parity errors
are reported on the PERR- signal and address parity
errors on the SERR- signal.

3.2.3 Target State Machine

This block manages control over the PCI interface for Tar-
get functions. The states implemented are a subset of
equations defined in “Appendix B” of the PCI Local Bus
Specification. The controller is a high-performance state
machine using state-per-bit (one-hot) encoding for maxi-
mum speed. State-per-bit encoding has narrower and
shallower next-state logic functions that closely match the
Xilinx FPGA architecture.
Design Methodologies for Core-Based FPGA Designs April 9, 1997 5

FIGURE 3. LogiCORE PCI Block Diagram

3.2.4 Initiator State Machine

This block manages control over the PCI interface for Initi-
ator functions. The states implemented are a subset of
equations defined in “Appendix B” of the PCI Local Bus
Specification. The Initiator State Machine also uses state-
per-bit encoding for maximum performance.

3.2.5 PCI Configuration Space

This block provides the first 64 bytes of Type 0, version 2.1,
Configuration Space Header (CSH) to support software-
driven “Plug-and-Play” initialization and configuration.
Using a combination of Configurable Logic Block (CLB)
flip-flops for the read/write registers and CLB look-up
tables for the read-only registers results in optimized pack-
ing density and layout.

3.3 Available device and package options

Table 2 lists the available device and package options and
remaining CLBs for XC4000E.

3.4 PCI Core Generator

For configuration of the LogiCORE PCI interface, a CORE
Generator tool with a Graphical User Interface (GUI) is pro-
vided on the Xilinx home page, see Figure 4. To use the
CORE Generator, a designer logs on to the web with a
Java enabled browser such as Netscape Navigator 3.0 or
greater, Sun Hot Java or Microsoft Internet Explorer 3.0 or
greater. The PCI parameters are entered in the GUI by
clicking on selections in a table. After parameter entry, a
unique design file, including an XNF netlist with pre-
defined placement constraint files to guide PPR, and a
simulation model are downloaded.

The CORE generator is executable on the Xilinx home
page so that a designer will always have instant access to
the latest core enhancements and added features. Addi-
tionally, the tool is platform independent. A CD-ROM ver-
sion will also be provided for users that prefer a local copy
of the tool.

As an alternative to the CORE Generator, a designer can
choose to configure the core using provided Viewlogic
schematics. The Viewlogic schematics are designed to
plug-in to the same HDL wrapper that the Core Generator
uses, so no design modifications are necessary.

The overall flow used to configure the Xilinx PCI module is
shown in Figure 5.

The Xilinx PCI module has two pre-defined areas which
can be configured: PCI features to be enabled, and the
PCI Configuration Space Header.

The top of the applet window shows three radio buttons,
titled Master, Burst Mode, and Enable Interrupts.

The “Master” button enables the device to act as a PCI Bus
Master. The “Master” button de-selected disables Bus
Mastering. (The device would support Target transactions
only.). The “Burst Mode” button enables the device to gen-
erate and receive burst mode transactions.

TABLE 2. Devices and Package Options
Design Methodologies for Core-Based FPGA Designs April 9, 1997 6

FIGURE 4. Web-based CORE Generator for PCI

The “Enable Interrupts” button enables the interrupt line
and interrupt Ping registers in the Configuration Space
Header.

The main window of the Xilinx PCI Core Generator is made
to look identical to “Figure 6-1: Type 00h Configuration
Space Header” in the PCI Local Bus Specification, Revi-
sion 2.1. Six of the fields in the Header must be configured
with user information. These fields are listed below. To
configure any of these fields, press the field with the left
mouse button. (The field is actually a button.)

The Device ID field is used to identify a particular PCI
device. The individual vendor determines the value.

The Vendor ID is used to identify the device manufacturer.
Each vendor is assigned a unique Vendor ID by the PCI-
SIG.

The Class Code is used to determine the device's general
function. (See page 189 of the PCI Specification for more
information.) The Xilinx PCI Core Generator displays the
classes for this register, and allows the user to select from
the list.

The Revision ID is used to identify a particular version of a
PCI device. The individual vendor determines the value.

The Base Address Register is used to determine how to
allocate memory or I/O space to the particular PCI device.
The Xilinx PCI Core Generator displays the various Mem-
ory or I/O space options, and allows the user to select from
the list of options.

FIGURE 5. Core Generator Usage

The Base Address Register 0 is the first Base Address
Register, located at offset 10h. The Base Address Register
1 is the second Base Address Register, located at offset
14h.The fields which are shadowed-out are not user-
selectable. Base Address Registers 2 through 5 are not
supported.

The Xilinx PCI Core Generator configures the XNF netlist
according to user specifications, and shows two hyper-
links. One hyperlink downloads the files in zip format for
PC, the other hyperlink downloads the files in Gnu zip for-
mat for UNIX. The contents of the zip and Gnu zip files are
identical.

Table 3 lists the files are included in the xpci.zip and
xpci.tar.gz files that the PCI Core Generator creates.

3.5 User Application Design

The user back-end design example is called Ping. Ping
provides an easy-to-understand user application example
interface that demonstrates many of the principles and
techniques required to successfully use the PCI Logi-
CORE macro in a real-world application. Ping takes its
name from the TCP/IP utility named ping which allows net-
work users to test that a particular machine is ‘alive’ and
communicating on the network. As such Ping is designed
to provide the same type of functionality for ‘bringing up’
new PCI designs for the first time on a new PCB, as well as
providing a design tutorial based on a simple DMA engine
which illustrates the following key control elements in a
user’s application interface to the Macro:

• Initiator read and write operations - burst transfers
• Initiator response to various Target termination condi-

tions (Retry, Disconnect, Target Abort)
Design Methodologies for Core-Based FPGA Designs April 9, 1997 7

• Initiator responds to mid-burst Target Termination with
another request

• Target read and write operations (single transfer and
burst)

• Target generates various Target termination conditions
(Retry, Disconnect, Target Abort)

• How to interface to memory space
• How to interface multiple devices to a single BAR, as

opposed to a BAR per device
• How to interface to I/O space
• Basic PCI data flow control
• Basic user data flow control

The Ping design accepts data as a Target PCI device, then
uses the data to perform Initiator transactions over the PCI
bus. Ping is implemented in VHDL and intended to function
as a self-contained PCI Master and Slave. No additional
logic is needed on the PCI add-in card beyond the
XC4013E device that contains the PCI core module and
the Ping design.

3.6 User Application Functional
Description

The user application design, PING, is partitioned into six
major blocks. The block diagram for PING is shown in
Figure 6.

3.6.1 Ping Registers

Ping consists of two 32-bit read/write (R/W) registers DATA
and ADDRESS multiplexed to a common user ADIO bus
and interfaced to the user application part of the PCI core.
These provide the data during address/data phases of initi-

ator cycles. They are both memory-mapped to base
address register 0 with offsets 0 and 4 respectively. A 16-
bit WRITE ONLY register namely CONTROL is I/O
mapped on BAR1. This is shown in Figure 7. Table 4 has
also been provided as a summary of the register descrip-
tion.

3.6.2 Command Decoder

This block decodes the PCI_CMD bus coming from the
PCI core to perform memory reads/writes into the DATA
and ADDRESS registers and I/O writes into the CONTROL
register. CMD_DEC bus from this block controls the regis-
ter logic.

3.6.3 Register Select Logic

This block generates the chip select (CS) for Ping registers
upon receiving BASE_HIT on either of the PCI core base
registers. The registers are disabled upon END of address
phase in either of target/initiator cycles. This is indicated by
signals S_ADDR_VLD and M_ADDR_VLD coming from
the PCI core.

3.6.4 Ping Address Generator

This block has a 4-bit counter that increments with each
strobe of DATA_VLD and SRC_EN coming from the PCI
core during BURST WRITE and READ cycles respectively.
The counter output is then added to the address during
ADDRESS PHASE (LAT_ADDR from PCI core) of the PCI
bus transaction to generate subsequent addresses for
burst operation.

TABLE 3. PCI Core Directory Structure

Directory File Comments

xpci/ Top directory containing all subdirectories and files described below

config.txt Contains the user-selected configuration settings used to generate the PCI module

cst_file/ i13p208h.cst Constraint file for 4013EPQ208 Master design

t13p208h.cst Constraint file for 4013EPQ208 Slave design

guide/ i13p208h.lca Guide file for 4013EPQ208 Master design

t13p208h.lca Guide file for 4013EPQ208 Slave design

 verilog/ pci_top.v Example top-level HDL design module

pcim_lc.v Black-box PCI Interface module (Master)

pcis_lc.v Black-box PCI Interface module (Slave)

userapp.v Template for back-end module

synopsys.dc Synopsys synthesis script

vhdl/ pci_top.vhd Example top-level HDL design entity

top_cfg.vhd Example top-level HDL design configuration (for simulation)

pcim_lc.vhd Black-box PCI Interface (Master design)

pcis_lc.vhd Black-box PCI Interface (Slave design)

userapp.vhd Template for back-end entity

synopsys.dc Synopsys synthesis script

wrapper/ pcim_lc.sxnf HDL “wrapper” which is used instead of the pci_lc_i schematic symbol (Master Design)

pcis_lc.sxnf HDL “wrapper” which is used instead of the pci_lc_t schematic symbol (Slave Design)

xnf/ *.xnf Hierarchical XNF netlists for the PCI module; the pcim_lc.sxnf file calls these files for lower
level modules
Design Methodologies for Core-Based FPGA Designs April 9, 1997 8

FIGURE 6. PING Block Diagram

3.6.5 Termination Control

This decodes the relevant bits of the Ping Control register
to set the target termination conditions for RETRY, ABORT,
DISCONNECT and NORMAL operations. It also outputs
READY and TERM inputs to the PCI core to assert PCI
STOP. This has been summarized in Table 5.

3.6.6 Initiator Control State Machine

This is the heart of user application design. It generates all
the inputs to the PCI core for requesting initiator cycle
(REQUEST), ending transaction (COMPLETE), indicating
read/write (M_WRDN) and generating command/byte
enable (M_CBE). These assist the PCI core to achieve
master functionality. Once the CONTROL register is set for

one of the two operational modes, the state machine trig-
gers off by external stimulus either immediately upon writ-
ing into ADDRESS register (auto_ping mode) or waits until
PING_REQUEST (ping_wait_request mode) is asserted.

3.7 Design Flow

The PCI module is designed to be instantiated in the user's
Verilog/VHDL design. A black-box description of the PCI
module is used during synthesis. An XNF netlist of the PCI
module is used during place-and-route to incorporate the
actual PCI design into the user's design. The XNF netlist is
used to maintain the performance and predictability of the
design. The overall HDL design flow is shown in Figure 8.

FIGURE 7. Address, Data and Control Registers

TABLE 4. Register Description

CMD

DECODER

REGISTER
SELECT
LOGIC

TERMINATION
CONTROL

PING
ADDRESS

GENERATOR

CONTROL
REGISTER

LOGIC

DATA
CONTROL

ADDRESS
CONTROL

W/O
CONTROL
REGISTER

R/W
DATA

REGISTER

R/W
ADDRESS
REGISTER

INITIATOR
CONTROL

STATE

DATA[31:0]

ADDRESS[31:0]

BASE_HIT[6:0]

LAT_ADDR[3:0]

PING_ADDR[3:0]

CONTROL

CONTROL
PCI_CMD[14:0]

M_ADDR_VLD

S_ADDR_VLD

RESET_N

SRC_EN

ADIO[31:0]

READY

REQUEST

COMPLETE

M_WRDN

M_CBE

PING_DONE

REGISTER LOGIC

CMD_DEC

CS

P
C

I U
S

E
R

 A
P

P
LI

C
AT

IO
N

 I/
O

 IN
T

E
R

FA
C

E

P
C

I U
S

E
R

 A
P

P
LI

C
AT

IO
N

 I/
O

 IN
T

E
R

FA
C

E

TERM

DATA_VLD

MACHINE

Register Purpose Size Operation Mapping

DATA Holds the data for a single Initiator Write transaction or receives
the data for a single Initiator Read transaction.

32-bits R/W Memory (BAR0)

Offset = 0

ADDRESS Holds the source or destination address for the Initiator trans-
action.

32-bits R/W Memory (BAR0)

Offset = 4

CONTROL Controls the type of operation. 16-bits WO I/O (BAR1)

Offset = 0
Design Methodologies for Core-Based FPGA Designs April 9, 1997 9

TABLE 5. Control Register Commands

.

FIGURE 8. Implementation Flow Diagram

3.7.1 Design Entry Example

The top-level module that connects the PCI Core to Ping is
included in the files generated by the Core Generator. The
Core Generator includes VHDL and Verilog templates for
the top-level module, including instantiation of the PCI
Core and a back-end “userapp” design. The top-level tem-
plates include features needed for the place-and-route
guide file to correctly guide the placement and routing of
the PCI Core. These features are:

1. The PCI Core instance name must be “pci_core”

2. All PCI I/O pins on the PCI Core must be connected to
top-level I/O ports with the exact names used in the
template files.

3. All Core inputs and outputs which are not PCI I/O must
be connected to the back-end “userapp” symbol, with
the names used in the template files. This guarantees
that net names are identical with those in the guide file.

3.7.2 Design Implementation Example

Verilog and VHDL templates are included in the verilog/
and vhdl/ subdirectories. These templates include a top-
level design, called “pci_top”, which has two instantiated
modules inside, called “pcim_lc” and “userapp.” The PCI
module is contained in the module called “pcim_lc.” The
user's design can be substituted for the “userapp” module.
Verilog and VHDL templates for the “userapp” module
have also been included. A sample Synopsys synthesis
script is included in both the verilog/ and vhdl/ subdirecto-
ries, and is called synopsys.dc. In the specific case of
Ping, the ping.vhd file is substituted for the “userapp” mod-
ule in the top-level VHDL file, and specific constraints are
added to the synopsys.dc file.

A black-box description of the pcim_lc PCI module is
included for both VHDL and Verilog. The VHDL file is
called pcim_lc.vhd. The Verilog file is called pcim_lc.v. This
black-box model is read into the synthesis tool, and a
“don’t_touch” attribute is applied to it, prior to synthesizing
the top-level design. In this way, the synthesis tool has a
complete model for the design. With the black-box model,
all components are resolved, even though the synthesis
tool does not know what is “inside” of the PCI Core. With-
out the black-box model, the synthesis tool reports errors
indicating unresolved components in the design.

This is a summary of the design flow (the current working
directory is xpci):

1. Instantiate pcim_lc in top-level HDL design.

2. Read pcim_lc black-box Verilog or VHDL file into Syn-
opsys. For Ping, the pcim_lc.vhd VHDL file is read.

3. Read top-level and back-end Verilog or VHDL files into
Synopsys. For Ping, the pci_top.vhd VHDL file is read,
along with ping.vhd.

4. Add “don’t_touch” attribute to pcim_lc design.

5. Use “set_port_is_pad” on user I/O pads. Do not use
“set_port_is_pad” on any of the PCI Interface I/O ports.
(IBUFs and OBUFs are already included in the PCI
design for the PCI I/O pads.) Insert pads with the
“insert_pads” command. For Ping, the I/O ports

Command Options Position

Transfer Type 0 = Initiator transfers (default)

1 = Target terminations

0

Operation 0 = memory read

1 = memory write

1

Request Source 0 = immediately after Write to ADDRESS register

1 = wait until user REQUEST pin asserted High

2

Target Termination 00 = normal (default). Target access to BAR0 terminates normally.

01 = disconnect. Target access to BAR0 causes Target Disconnect.

10 = retry. Target access to BAR0 causes Target Retry.

11 = target abort. Target access to BAR0 causes Target Abort.

4:3

Reserved 000 15:5
Design Methodologies for Core-Based FPGA Designs April 9, 1997 10

PING_REQUEST and PING_DONE are given the
set_port_is_pad command. Pads are only inserted on
these two back-end I/O ports.

6. Compile top-level design with constraints.

7. For FPGA Compiler, run “replace_fpga”, to replace
CLBs with gate primitives.

8. Save design as an XNF file. Make sure the “Save Hier-
archy” option is used.

9. Synopsys will have written out a file called
“pcim_lc.sxnf”. Copy the correct file “pcim_lc.sxnf”
from the wrapper/ sub-directory to the current working
directory. This file replaces the file that Synopsys cre-
ated.

10. Run the command:

syn2xnf -d xnf pci_top.sxnf

11. Run xnfprep, using i13p208h.cst as the constraint file.

xnfprep pci_top cstfile=i13p208h.cst

12. Run PPR, using i13p208h.cst as the constraint file and
i13p208h.lca as the guide file.

ppr pci_top cstfile=i13p208h.cst guide=i13p208h.lca
placer_effort=4 router_effort=4

13. The PCI design is now placed-and-routed.

3.7.3 Design Verification Example

Static timing analysis is used to determine the perfor-
mance of the overall PCI design. The constraint file down-
loaded from the Core Generator includes timing
specifications that control the static timing analysis pro-
gram, XDelay. XDelay evaluates the design against these
timing constraints. If XDelay verifies that the design meets
all of these timing constraints, then the design meets the
33 MHz PCI performance requirements.

The Ping design is tested with a VHDL testbench that
includes a simple PCI arbiter and a simple PCI Target
device (see Figure 9). The testbench, as initiator, writes
base address registers BAR0 and BAR1 and also sets the

core as master during configuration cycles. It writes into
the data and address registers of Ping in addition to setting
control register bits for read/write and operation mode in
different target cycles. This in turn, triggers Ping state
machine to provide these values to PCI bus during
address and data phases of initiator cycles. The testbench
also sets target termination modes in the PCI target, upon
which the core responds. The core-based approach eases
the system simulation of the overall design because the
PCI section is already extensively tested and verified. To
facilitate simulation, a placed and routed vendor specific
netlist is converted into a structural VHDL timing model.
This is compiled and analyzed together with other system
behavioral VHDL models and the testbench. The wave-
forms are traced and debugged in the VHDL simulator.
This is summarized below:

1. Add the timing data and overwrite PCI design LCA file.

xdelay -d -w pci_top.lca

2. Process the LCA file to create post routed XNF.

 lca2xnf -g pci_top.lca pci_top.xnf

3. Run the model_io Perl script to correct known conser-
vative modeling values for setup/hold and clock-to-out-
put timing of I/O flip flops.

model_io pci_top.xnf pci_top.xnf

4. Generate the required design structural VHDL, SDF
files using xnf2vss. However, just create the architec-
ture but no entity to retain busses.

xnf2vss pci_top.xnf

5. Compile and analyze the support VHDL models, test-
bench and design.

vhdlan pci_top.vhd

vhdlan dumb_target.vhd

vhdlan ping_tb.vhd

6. Simulate and include the design traces.

vhdlsim -t ns -i ping.include cfg_ping_tb

FIGURE 9. System Block Diagram
Design Methodologies for Core-Based FPGA Designs April 9, 1997 11

4 Conclusion

4.1 Strengths of Core-Based
Methodologies

The described core-based design methodology enhances
the key benefits of an FPGA; low design risk and time to
market. By using an EDA tool independent CORE Genera-
tor for generating a customized, pre-defined and fully-veri-
fied core, design time can be cut by 6 months or more. The
user’s engineering time and effort can be focused on sys-
tem-level considerations in favor of hand-tuning, imple-
menting and verifying the PCI core. Because the CORE
Generator is executable on the web, it is platform indepen-
dent and a designer will always have access to the latest
core enhancements and new features.

The FPGA-based PCI solution allows a designer to inte-
grate a PCI interface with added-value custom logic into a
single chip. The solution can automatically be converted to
a HardWire devices for lower cost in volume production.

Acknowledgments
Steve Knapp, Gary Lawman & P. Rissmann, for their origi-
nal work in developing PING. Gary Lawman, Joe Linoff
and Jerry Case for their work in developing the PCI Core
Generator tool.

Patents

The PCI Core GeneratorTM tool is a Xilinx., product and is
subject of multiple worldwide patent applications.
Design Methodologies for Core-Based FPGA Designs April 9, 1997 12

	Design Methodologies for Core-Based FPGA Designs
	Abstract
	1 Application Specific Solution Options For Design...
	1.1 Types of Cores Available
	1.2 System Level Integration Description and Requi...

	2 Methodology for Core-Based Designs
	2.1 Design Entry
	2.1.1 HDL Representation
	2.1.2 Facilitating Design Implementation During De...
	2.1.3 Facilitating Design Verification During Desi...

	2.2 Design Implementation
	2.2.1 Facilitating Design Verification During Desi...
	2.2.2 Translating the Design

	2.3 Design Verification
	2.3.1 Static Timing Analysis
	2.3.2 Functional Simulation

	3 Application Example
	3.1 LogiCORE PCI
	3.2 PCI Core Functional Description
	3.2.1 PCI I/O Interface Block
	3.2.2 Parity Generator/Checker
	3.2.3 Target State Machine
	3.2.4 Initiator State Machine
	3.2.5 PCI Configuration Space

	3.3 Available device and package options
	3.4 PCI Core Generator
	3.5 User Application Design
	3.6 User Application Functional Description
	3.6.1 Ping Registers
	3.6.2 Command Decoder
	3.6.3 Register Select Logic
	3.6.4 Ping Address Generator
	3.6.5 Termination Control
	3.6.6 Initiator Control State Machine

	3.7 Design Flow
	3.7.1 Design Entry Example
	3.7.2 Design Implementation Example
	3.7.3 Design Verification Example

	4 Conclusion
	4.1 Strengths of Core-Based Methodologies

	Acknowledgments
	Patents

