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The Challenges of Doing a PCI Design in FPGAs

Nupur Shah

What are the challenges of doing PCI in FPGAs? This paper covers the issues
Xilinx has discovered in doing PCI in FPGAs, how they have been surmounted
and what the designer needs to think about when doing such a design.
Successful PCI in FPGAs requires more than a device that is PCI compliant; a
usable core and good design methodology are equally important. Timing has
been and continues to be a major issue as the industry begins moving into 64-
bit/66 MHz PCI. Design methodology is critical to assuring a successful design.

1.0   Introduction

The Peripheral Component Interconnect (PCI)
local bus specification is an interface protocol
that is ideal for high bandwidth/high performance
applications. The PCI interface also offers the
advantages of processor independence, low
power, low pin count and auto configuration. It is
because of these advantages and its high
performance that PCI has gained wide
acceptance in the computer industry by computer
and peripheral component manufactures, as well
as communication and industrial applications.

When designing PCI applications, engineers
have the responsibility of developing the
application as well as understanding and
developing a PCI interface. In addition to those
responsibilities, there are the added restrictions
of shorter design cycle times, reducing costs and
reducing risks.

A designer has the option to implement the PCI
interface using an external "off the shelf" device.
However, manufacturers will opt for an integrated
solution in order to reduce production costs. They
have the option to implement the application in
an Application Specific Integrated Circuit (ASIC)
or in a Field Programmable Gate Array (FPGA).

For applications that require a short design cycle
time, ASICs are often an unrealizable solution.
Applications that are implemented in ASICs are
considered a high-risk solution. Any minor
changes required to the application can take
several months before a new ASIC is available
for testing.   An ASIC can also prove to be a
costly solution because of the high NRE fees.
These issues, combined with possible changes to
the PCI local bus specification, can make it
difficult to deliver a product that is PCI compliant
and has a short time-to-market. In order to meet

all the above requirements, implementing a PCI
interface in an FPGA is the best option.

Some FPGA vendors provide pre-defined PCI
interface cores. These cores are delivered as a
mix of source code and technology-dependent
netlists. These pre-defined cores can be
customized as per the requirements of the design
and still have predictable timing.

What are the benefits of using a pre-defined PCI
core instead of developing one from scratch? It is
hard to assess the value of a pre-defined core
without understanding the design process that is
used to develop one.

2.0   PCI FPGA Challenges

The PCI Local Bus Specification outlines the
electrical, timing and protocol guidelines in order
to be 100% PCI compliant. Implementing PCI,
without using a pre-defined core can prove to be
a very difficult task. When designing from
scratch, a designer must understand in-depth the
limitations imposed by both the PCI Local Bus
Specification and the architecture of the FPGA.
The challenge is trying to design logic that
implements the PCI protocol, implements the
application and meets timing in an electrically
compliant device. Using a pre-defined core will
greatly simplify this challenge but some
understanding of the requirements as described
in this paper, will help toward successful
implementation of a PCI compliant design.

2.1 The Component Electrical
and Timing Specifications

This section will explore the component electrical
and timing specifications. It will give the designer
an overview of requirements presented by the
PCI Special Interest Group. Please refer to
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Chapter 4,"Electrical Specification", of the PCI
Local Bus Specification Rev. 2.1 for a more
detailed explanation.

2.1.1 Electrical Specification

The PCI specification outlines a set of electrical
requirements that determine PCI compliance.
These include specifications for signaling
environment and I/O buffers. Before a designer
can consider developing a PCI interface, an
appropriate FPGA device must be chosen based
on these specifications.

The PCI bus can operate in two signaling
environments, 5 V and 3.3 V. Today, the most
commonly found signaling environment is 5 V,
but the 3.3 V signaling environment is gaining
popularity and can be found in some embedded
systems.

It is important to determine what signaling
environment the device will be operating in. For
3.3 V systems, only 3.3 V devices may be used.
However for a 5 V signaling environment, it is
possible to use a 5 V or a 3.3 V1 device.

One of the advantages of the PCI bus interface is
that it is a low power interface. The PCI bus is
synchronous and takes advantage of reflective-
wave switching. Reflective wave switching allows
drivers to raise the voltage on a signal only half

                                                       

1 3.3 V devices can be used in a 5 V signaling environment
provided they have I/O buffers that are 5V tolerant.  Please
refer to Chapter 4 of the PCI Local Bus Specification 2.1 for
more details

way. The signal propagates down the bus,
reflects and raises the voltage to the required
level. By the PCI specification, the signal has 10
ns to reflect and propagate back. It is important
that the output buffers of the device be able to
switch the bus in the required time with one
single reflection.

The specification outlines a set of V/I curves that
define the operating regions of the PCI output
buffers. There are two curves, pull up and pull
down, for each signaling environment, 5 V and
3.3 V. Figure 1 and Figure 2 show the pull up and
pull down curves for a 5 V signaling environment.
On each curve there are three points of interest,
the DC drive point, the AC drive point, and the
test point. It is necessary that the output buffers
of the device are able to drive the signal within
the shaded region in order to switch the bus with
a single reflection.   A similar set of curves are
available for a 3.3 V signaling environment.
Please refer to Chapter 4 of the PCI Local Bus
Specification Rev. 2.1 for further information.

In addition to the requirements on the component
output buffers, the input buffers must use clamp
diodes. For both signaling environments, buffers
must be clamped to ground. However, for a 3.3 V
device, buffers must also be clamped to 5 V or
3.3 V depending on the signaling environment.

The PCI Local bus specification also outlines a
set of DC specifications for the I/O buffers. These
DC specifications depend on the signaling
environment.

The above AC and DC limitations on the I/O
buffers, combined with board and pin

Figure 1. Pull Up V/I Curve for 5 V
Signaling Environment

Figure 2. Pull Down V/I Curve for 5 V
Signaling Environment
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specifications, will determine which FPGA vendor
has devices that are PCI compliant.

2.1.2 Timing Specification

In addition to being electrically compliant, an
FPGA must also meet all the timing specification
for the PCI protocol. These timing specifications
are measured from package pin to package pin.
The PCI specification allows for PCI components
to operate at any frequency up to 33 MHz (66
MHz is covered later in this paper). The PCI clock
may run at any frequency from 0 to 33 MHz and
may be changed at any time.   Therefore, the
minimum allowable clock cycle time is 30 ns.
During a 30 ns clock cycle, the specification
allows 10 ns for wave propagation. In addition to
this, the specification also allows for 2 ns of clock
skew from one PCI component to another PCI
component. This means that 40% of the cycle
time is lost to signal and clock distribution.

Figure 3 illustrates the elements of the 33 MHz
timing specification. The remaining 18 ns are
divided into two specifications, clock-to-out and
setup. The value Tckq represents the clock-to-out
timing specification of 11 ns. Valid data must be
available on the output pad of the FPGA device
at a maximum of 11 ns after it has been clocked.
The value Tsu represents the setup timing
specification of 7 ns. Valid data must be present
at least 7 ns before the clock edge.

There are several additional timing specifications
not illustrated in Figure 3. For example, the PCI
specification requires the components to have a
hold time, th, of 0 ns. The device must not require
the data to remain valid for any period of time
after a qualifying clock edge. In addition to this,
outputs have a maximum active-to-float delay, toff,
of 28 ns and a minimum float-to-active delay, ton,

of 2 ns. When a signal is tristated, the device
must disable the I/O buffer within 28 ns. When a
signal is enabled, the device must not enable the
I/O buffer for a minimum of 2 ns from a qualifying
clock edge. The specification also outlines further
limitations on the reset timing of the component2.

How do these timing specifications affect the
design of the application? Each specification
restricts how the design is logically and physically
implemented and structured.

3.0   PCI Interface and
Application Design

Before designing the PCI interface and the
application, it is important to determine the
physical structure of the design. We have found
that dividing the design into blocks can help the
designer isolate timing issues. This in turn
shortens the design process by reducing the
number of iterations of the design cycle.

Figure 4 illustrates a recommended layout for a
PCI design in an FPGA. Here the design is
divided into the PCI interface, the Application
Logic and the Local Interface block between the
two. This allows the designer to isolate the PCI-
interface-related issues from the application-
design-related issues. This layout also takes
advantages of the FPGA technology by utilizing
such features as long lines and dedicated carry
chains.

                                                       

2 These parameters are not discussed in this paper. Refer to
Section 4.3.2 of the PCI Local Bus Specification Rev. 2.1 for
further clarification.

Tckq Tprop + Tskew
Tsu

Tckq = 11 ns Tprop = 10 ns Tskew
= 2 ns

Tsu = 7 ns

30 ns Cycle Time

PCI BUSD    Q D    Q

Figure 3. 33 MHz Timing Specification
Figure 4. Recommended Layout
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After determining the structure of the design, it is
important to consider the timing requirements for
each part of the design. The following sections
will discuss how to meet timing in the PCI
interface and the application design. It will give
an overview of which PCI timing specifications
are the most challenging to meet and what
design techniques can be utilized to meet each
requirement.

3.1 Timing in the PCI Interface

Once a designer has chosen a device, which is
electrically compliant with PCI, it is important to
understand the implications of the PCI timing
specification.   Implementation of the logic,
whether it is entered in HDL or schematic, is
greatly influenced by the timing parameters. The
designer needs to minimize the number of logic
levels on the critical paths and utilize techniques
such as pipelining to ensure the design runs at
the required frequency.

The most critical timing parameters for the PCI
interface in an FPGA are the setup, hold and
clock-to-out timing. These timing requirements
will constrain the allowable logic levels, and
therefore must be understood before
implementation can begin. In the following
sections, each timing specification is explained in
greater detail and appropriate design techniques
to meet these specifications are suggested.

3.1.1 Setup Timing

Setup time is limited to 7 ns, specified with
respect to the input clock.  However, in an FPGA,
an input clock signal is delayed before it arrives
at a flip-flop, and therefore the clock signal delay
can be subtracted from the delay a data signal
requires to reach the flip-flop, thus making it
easier to meet the setup time requirement at the
flip-flop.  Subtracting the clock delay from the
data delay is equivalent to adding the clock delay
to the PCI setup time requirement.

In order to determine how much extra time can
be added to the 7 ns PCI setup specification, the
minimum clock delay any flip-flop in the FPGA
must be determined. This will give the designer
the exact timing specification required for the PCI
input signals to propagate from the input pad
through some combinational logic and setup for
the flip-flop. Paths that are immediately clocked
at the input buffer will most likely be able to meet
the setup timing requirements. These paths do
not have any combinational logic delay. Only an
FPGA where setup timing for these paths is
significantly less than 7 ns should be chosen.
The designer needs to be most concerned with
paths that require additional combinational logic

before they arrive at an internal (outside the input
pad) flip-flop.

Consider an example with the parity circuitry. In a
PCI implementation, the PCI protocol requires
that the PCI agent drive the parity error signal,
PERR#, two clock cycles after the address/data
and command/byte enable buses are valid and
one clock cycle after the parity signal, PAR, is
valid.  The address/data bus, AD[31:0], and the
command/byte enable bus, C/BE#[3:0], can be
immediately clocked at the pad in this particular
instance and have no difficulty meeting setup
timing. However, in the following clock, the PAR
signal needs to propagate through some
combinational logic in order to determine if there
was a parity error. This all needs to be done in
7 ns plus the minimum clock delay before it can
be clocked out as the PERR# signal.

Floorplanning is the first technique that a
designer can use to help meet timing.   Placing
the combinational logic near the input pin will
reduce routing delay. Compacting the
combinational logic into as few combinational
blocks as possible and placing them next to each
other will also reduce routing delay. The delay
through combinational blocks can not be avoided.
This delay is a predefined value given by most
FPGA vendors. However, a majority of the delay
occurs in the routing and that is where the
designer has the ability to reduce the delay and
meet timing.

Pin locking can also be a technique to reduce the
setup time. It is beneficial to place pins that need
to propagate through the same combinational
logic close to each other in order to avoid routing
delay.

D        QLogic Delay

Clock Delay

Tlogic

Tclk

Tlogic  +  FFsetup 7 ns  +  Tclk

Figure 5. Setup Timing
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In addition to floorplanning and pin locking,
critical path placement and routing can be used
to guarantee that the critical paths will always
meet timing regardless of the design. Critical
paths are different for different designs.  Critical
path placement and routing are usually
determined once a designer has successfully
routed a design. The design is then stripped of all
non-critical path routing. The critical path
placement and routing information is saved in a
file. This file is then used to convey the locked
placement and routing of the critical paths in the
next iteration of the design. However, when using
this technique, a designer must make sure that
the critical logic does not change from one design
iteration to the next. In order to guarantee that a
place and route tool will use the locked
placement and routing information, the designer
must guarantee that the logic and the design
hierarchy remain the same.

3.1.2 Hold Timing

The PCI specification requires 0 ns hold timing.
This is applicable to both 33 MHz and 66 MHz.
This specification is relative to the input clock. As
with the setup timing, we need to consider the
added delay to the input clock before it arrives at
any flip-flop. Unfortunately, this added delay
increases the difficulty in meeting a 0 ns hold
time specification.

Figure 6 illustrates the restrictions for hold timing.
Here the minimum data delay plus the flip-flop
hold time requirement must exceed the maximum
clock delay to guarantee 0 ns hold time.

We can see from Figure 5 and Figure 6 that
setup and hold time create a race condition
between the data and the clock, and setup and
hold requirements can often conflict with each
other. In order to meet both specifications, the
internal clock delay must be large enough to help
the slowest input paths meet timing and must be
small enough to ensure the fastest input paths
still don’t beat the clock. It is important to choose
a vendor that can guarantee a very fast clock
network. This will ensure that the design will
always meet the 0 ns hold time specification,
while the above mentioned design techniques
can be used to meet the setup timing
specification.

Furthermore, if a designer is having difficulty
meeting hold time requirements on some of the
critical paths, one method to meet the
specification is to introduce delay in those paths.
Most likely, these paths have no combinational
logic for data to propagate through before arriving
at the flip-flop. These flip-flops can be placed
away from the input pad so as to introduce some

routing delay. This allows combinational blocks
that are directly adjacent to the pads to be
utilized for those paths that have difficulty
meeting the setup timing specification. Using this
design methodology along with critical path
constraints can guarantee that the designer will
consistently meet the setup and hold time
requirements.

3.1.3 Clock-to-Out Timing

Clock-to-out timing is limited to 11 ns. As
opposed to the minimum clock delay that was
used in the setup and hold time, clock-to-out
uses the maximum clock delay.

Figure 7 illustrates the clock-to-out timing
specification. The figure demonstrates that not
only does the data have to meet this timing
specification but so does the control logic for any
of the tristate buffers. This specification is relative
to the input clock and must include the clock
delay introduced by the clock network. Therefore,
the clock-to-out timing is constrained by not only
the data and control delay but also the maximum
clock delay. Again, choosing an FPGA vendor
that has a fast clock network can help the design
meet this timing specification.

A majority of the delay that is found in a data or
control path is the routing delay. Placing the flip-
flops near the output pad can help to reduce this
routing delay. Pipelining can also be used to help
meet the clock-to-out timing specification, but it is
important to note that pipelining can increase the
clock delay because it loads the clock network
with additional flip-flops. However, this additional
delay to the clock network should not be greater
than the logic delay that was eliminated from the
clock-to-out path.

D        QLogic Delay

Clock Delay

Tlogic

Tclk

Tlogic  +  FFhold 0 ns  +  Tclk

Figure 6. Hold Timing
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Using these techniques in the PCI bus interface
may not be enough to guarantee that the design
meets timing. Additional consideration should be
given to the application design and the local
interface to that application design. The designer
has to guarantee that the application can also
operate at any frequency up to 33 MHz.

3.2 Interfacing Between the PCI
Interface and the Application
Design

Before designing the application, the specifics of
how the PCI interface will deliver and receive
data to and from the application design need to
be determined. The designer needs to determine
the primary types of transactions that the
application will be performing on the PCI bus.
Whether the transactions are of short burst length
or long burst lengths is also important.

A well-designed local interface is one that
delivers signals to the application design that can
be used to quickly deliver data. Applying bus
signals through combinational logic gates directly
to the application is impractical and will violate
the timing specifications of the PCI bus. Bus
signals are heavily loaded and should only be
used in the PCI interface to determine the local
signals to the application. These local signals
should be pipelined in the PCI interface and the
application design in order to isolate the timing of
the PCI interface from the application design.

There is a certain set of signals that must be
handled only in the PCI interface. These signals

need to respond immediately to what is
presented on the PCI bus. These include but are
not limited to DEVSEL#, PAR, PERR#, SERR#
signals. In order to meet timing on these signals,
the logic to drive these signals should be
included in the PCI interface. Signals from the
application design through the local interface can
not be used. These signals actually require the
use of other bus signals from the PCI bus in
order to respond appropriately. For these signals,
the techniques mentioned above will need to be
utilized.

For other instances such as target termination
sequences and initiating a transaction, the bus
signals do not need to be used. The PCI interface
can be designed to input and output intermediate
signals through the local interface to and from the
application design. These intermediate signals
will be pipelined and will drive the appropriate
values onto the bus, but without the difficulty of
meeting timing. The trade-off to this is that the
transaction could suffer a one to two cycle
latency from when the application wants to start
or stop a transfer to when it actually stops or
starts a transfer on the PCI bus.    However, it
can easily be accommodated in the application
design by allowing the data to be "backed up" or
registered. This will avoid data inconsistency. In
addition, for those applications that transfer large
burst lengths, this latency is minimal and does
not affect the overall bandwidth.   Isolating the
bus signals from the PCI bus in the PCI interface
will also assist in meeting timing in the application
design.

3.3 Designing a PCI Application

Once the PCI interface has been developed, the
designer needs to consider the restrictions that
are going to be imposed on the application
design. How is the application design going to
handle the data coming from the PCI interface
and how will the application design deliver data to
the PCI interface? This is where the designer
needs to determine the capabilities of the
application design and how it will drive the
behavior of the PCI interface on the bus.

The paths that have the most difficulty meeting
timing are those that must send data between the
PCI interface and the application design. If the
application is intending to send or receive bursts
of data, these paths will need to be heavily
constrained and the logic will need to be placed.
If, however, the application intends to send or
receive data as single transfers, these critical
paths can be pipelined and can possibly avoid
placement and timing constraints.

Clock Delay

Logic
Delay

Tcontrol

Tdata

Tclk

max( Tclk ) + Tdata  =  Tckq

max( Tclk ) + Tcontrol  =  Tckq

Tckq 11 ns

D    Q

D    Q

Figure 7.  Clock–to-Out Timing
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Assuming that the application needs to be able to
send and receive data in large burst sizes, we
need to constraint the critical paths that traverse
from one part of the design to the other. The
following sections will discuss some techniques
that can be utilized to meet timing on such paths.

3.3.1 Route Budget Analysis

One of the most critical paths in an application
design is one that originates in the PCI interlace,
propagates through combinational logic in the
application design and outputs back to the PCI
interface to be clocked as illustrated in Figure 8.
This is a flip-flop to flip-flop timing specification.
Depending on the operating frequency, this can
be as little as 30 ns.

How can a designer ensure that this path will
meet timing? The first step is to analyze the
design and determine the maximum allowable
delay for any critical path. This is called route
budget analysis. The recommended design flow
to perform route budget analysis is to implement
the design at least once without any application
design constraints and then survey the static
timing analysis report to determine how much
time has been allotted to these critical paths and
by what margin the path is failing.

Based on the results of this analysis, the
designer can then use pipelining, timing
constraints or placement constraints to make the
design meet timing. For example, a critical path
can have a long routing delay and/or a large logic
delay. If routing is where a majority of the delay is
occurring, then the designer should consider
using placement constraints on the application

design. Placement constraints will help to reduce
the routing delay by placing the critical logic
adjacent to the output flip-flops of the PCI
interface. If logic delay is where a majority of the
delay is occurring, then the designer should
consider using pipelining. Pipelining will reduce
the levels of logic between flip-flops for a critical
signal.

Figure 8 also illustrates a flip to flop path that
originates in the PCI interface propagates
through some combinational logic in the PCI
interface and/or the application design and
terminates at a flip-flop in the application design.
Route budget analysis can also be applied to this
path. If it is difficult to change the placement and
the levels of logic in the PCI interface consider
reducing the levels of logic and decreasing the
routing delay using placement constraints and
pipelining in the application design.

3.3.2 Using the Advantages of
FPGAs and PCI

Use the resources that are provided by the FPGA
technology.   Floorplan the design such that data
flows horizontally so as to make use of the
available long lines. When possible, floorplan the
design such that the data paths are aligned with
the data registers of the PCI interface. Using long
lines will introduce less routing delay and can
help to improve timing. In addition to this,
floorplan structured data objects such as
counters, registers and adders so that they can
make use of the vertical long lines and carry
chain capabilities. This can assist in eliminating
routing/logic delay in the application design. This
is illustrated in Figure 4.

The application design will also have several data
paths that interface to other (non PCI) I/O pads,
and these too will have timing specifications that
are determined by the application. If possible,
use pipelining along the long lines to reduce the
load on the data paths.

In addition to this, knowledge of the PCI protocol
can help the designer increase the performance
of the design. For example, when writing data, do
not attempt to request the PCI bus until the data
is ready to be delivered, and when another agent
requests to read data, retry the transaction until
the data is ready to be transmitted. Use delayed
transactions. Knowledge of the protocol will allow
the designer to setup the PCI interface signals
appropriately and realistically.

D    Q

D    Q

Q    D

D    QLogic Delay

Logic
Delay

Data Path Delay

Data Path Delay

PCI Interface Application Design

Figure 8. FFs to FFs Paths
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3.4 Defining a Design
Methodology

Once a designer has in-depth knowledge and
understanding of the PCI timing specification and
protocol, it is important to develop a design
methodology that will ensure that the
implemented design complies with PCI
requirements. A well-defined design methodology
will also assist in shortening a design cycle. In
any design process, the good design
methodology needs to fulfill three requirements. It
must:

• Address technology/software related issues.

• Offer the designer flexibility to accommodate
design variations and changes.

• Provide the designer predictability by
reducing the technical issues in subsequent
stages of the design cycle.

Successfully implementing PCI in an FPGA
requires the designer to follow this methodology
in order to develop a product that will fulfill the

project objectives and have a short time to
market.

In every design cycle there are three fundamental
stages: design entry, design implementation, and
design verification. Figure 9 illustrates the
recommended design methodology for FPGA
based designs. Each stage is composed of
various design tasks. A good design
methodology will assist the designer in
overcoming the challenges discussed in Sections
3.1 through 3.3.

3.4.1 Design Entry

The first stage of a design cycle is design entry.
In this stage designer develops a design that can
then be synthesized or translated. This initial
stage is the most critical to the design cycle
because a majority of the design work focuses on
reducing the technical issues that would arise
later in the design cycle.

When developing a PCI design in an FPGA, the
designer would develop the design using the
techniques mentioned in Sections 3.1 through
3.3. The design should be pipelined and the PCI

Figure 9. Design Methodology for FPGA based designs
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interface and application should be isolated so as
to facilitate implementation. The placement and
timing constraints for the design should be
determined as well. These initial timing and
placement constraints can be based on the
FPGA technology, desired performance, desired
structure and route budget analysis. In order to
perform route budget analysis, it is recommended
to execute the design flow once without any
application constraints. An estimate of the
required application constraints can be
determined after executing static timing analysis
on this first iteration of the design flow. These
PCI interface and application constraints will then
facilitate the implementation tools to guide the
design even closer to the desired performance
parameters.

In addition to the development of the design and
determination of the constraints, the designer
should also perform functional simulation before
continuing on to later stages. Although functional
simulation is traditionally considered to be a part
of the design verification stage, it is usually
performed in this step to avoid unnecessary
iterations of the design cycle. Functional
verification will be discussed further in
Section 3.4.3.

Once a design has been synthesized or
translated, a logical netlist is produced. This
logical netlist, along with the placement and
timing constraints, will be used in the design
implementation stage.

3.4.2 Design Implementation

The next stage in the design cycle is the design
implementation stage. In this stage, the FPGA
tools will translate the logical netlist into a
physical netlist. During this stage, the design
constraints will be applied to the design and the
tools will determine if the design can meet timing
or not.

After performing this step, it may be necessary to
edit the design constraints or add additional
constraints in order to make the design meet
timing. Many FPGA vendors will have a design
editor tool that will allow the designer to view the
routed design. Using this tool, the designer can
see if any additional floorplanning is needed. This
tool may also be used to determine specific nets
that may not be meeting timing specifications, so
that a tighter constraint can then be applied those
nets.

The tool can also be used to create files that lock
critical path placement and routing. Some FPGA
vendors allow the use of these files to facilitate
the routing of a design. If a particular placement

of a design produces a physical netlist that meets
timing, this netlist contains information about the
routing and placement of critical paths. The
netlist can be stripped of non-critical logic,
placement and routing. The implementation tools
can then use the remaining file to route the
critical paths exactly as they are routed in the file.
This will guarantee that the design will always
meet timing in the critical parts of the design.
Often, this critical path placement and routing file
is created from a physical netlist that does not
meet all of the constraints. Using a placement
and routing file can sometimes help the tool focus
on routing the parts of the design that do not
meet the constraints.

If design constraints can not be met, it is useful to
perform static timing analysis on the design to
determine where in the design the constraints are
not being met. This will require the engineer to go
back and rethink the design. This may include
redesigning parts of the logic in order to facilitate
the tools to map the design in a fewer levels of
logic. However, if the design was originally
developed with the capabilities of the FPGA
technology in mind, this step is usually not
necessary.

3.4.3 Design Verification

The final stage in the design flow is design
verification. Design verification consists of two
steps: functional verification and timing
verification.

3.4.3.1 Functional Verification

In order to pass functional verification on a PCI
design, the PCI design must be PCI complaint.
To test for PCI compliance, the PCI Special
Interest Group (SIG) Test Scenarios for
Compliance Testing will need to be implemented.
These are a set of test scenarios that test the
very basic transactions between two agents on a
PCI bus, one agent being the device under test
(DUT) and the other being a behavioral model of
a PCI Initiator. These tests verify if the DUT is
PCI compliant or not. However, it is important to
realize that these test scenarios do not cover
every possible bus condition.

The designer has the option to purchase a
testbench from a third party vendor that will allow
him/her to set up conditions on the bus to test the
DUT. However, learning these testbenches can
prove to be just as difficult as developing one
internally.

If the designer chooses to develop a testbench
internally, there are two types of testing that must
be performed in order to verify if the design is
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functional: system level testing and PCI bus
protocol testing. System level testing sets up
modules in a system to transfer data back and
forth. This type of testing checks to see if the
data was actually sent and whether the data
arrived at the destination or not. It also checks
the validity of the data. However, whether the
modules transferred the data using the correct
operating procedure or not, is not checked
system level testing.

PCI bus protocol testing is used to determine if
the modules in a system operated within the rules
of the protocol. Besides verifying the data,
protocol testing verifies that the agents are PCI
compliant. PCI protocol tests should include the
very basic functional testing that is outlined in the
PCI test scenarios. However, these test
scenarios do not test every bus situation. Beyond
them, there are several other conditions that
have a high probability of occurring and are
recommended for implementation.

Some of the recommended exercises that should
be implemented are:

• Target termination sequences: sequences
where the target issues a termination when
the master inserts wait states before, during
and after the termination.

• Parity checking: Sequences where the
incorrect address and data parity are
generated to check the ability of the DUT to
report errors.

• Protocol checker: checks to see if all the
operating rules are obeyed.

Developing an extensive testbench will help the
designer in determining the correctness of the
design before continuing on to the
implementation stage of the design cycle. After
implementation, the testbench can then be used
for back-annotated timing simulation.

3.4.3.2 Timing Verification

Timing verification occurs once the design has
been implemented. There are two stages to
timing verification: static timing analysis and back
annotated timing simulation.

Static timing analysis is used to determine if the
design meets all the PCI timing specifications
such as setup/hold time and clock-to-out timing.
Static timing analyzers are provided by the FPGA
vendor and will determine if 100% of the design
met the timing specifications. The designer has
the responsibility of specifying these timing

parameters to the tool and determining what
parts of the design should be attached to the
each parameter.   If the design does not meet
timing, the static timing analyzer can be used to
probe the design and determine where the
design is failing. Based on this investigation, the
designer has the option to go back and re-
implement the design using a stricter set of timing
specifications or redesign parts of the design to
contain fewer levels of logic.

Once the design passes the static timing
analysis, it is beneficial to run the physical netlist
with the timing information through the functional
testbench. This will allow the designer to
determine if, in fact, the design meets timing
using the actual physical delays and not the unit
delays that are applied during functional
simulation. Once the design has been verified it
is ready to be downloaded to a part and used in a
physical system.

4.0   Additional 64-bit/66 MHz
PCI FPGA Challenges

What if a designer wants to implement 64-bit/66
MHz PCI in an FPGA? Are there any additional
challenges? PCI 64-bit/66 MHz does introduce a
new set of timing and electrical specifications that
the designer must consider.

The PCI specification allows for four types of
systems: 32-bit/33 MHz, 64-bit/33 MHz, and 32-
bit/66 MHz and 64-bit/66 MHz systems. The
difficulty of implementing these different systems
in a FPGA is greater when designing a 66 MHz
system. Protocol handshaking requires some
additional pins beyond the 64-address/data pins
of a 64-bit system. These additional pins are 4
additional C/BE# lines, a PAR64, a REQ64# and
an ACK64#. With the increased width of the of
address/data path, 64-bit systems are harder to
implement in FPGAs. However, implementing a
64-bit system requires the same techniques
mentioned in Section 3.1 to meet timing
requirements.

What the designer needs to consider is the logic
implementation of a 64-bit system. Since 64-bit
systems operate in the same environment as 32-
bit systems, there will be transfers that are not
always 64-bits wide. For these situations the logic
needs to be able to multiplex the data to avoid
data inconsistency. The system also needs to
drive the control signals based on whether a 64-
bit transfer is requested or transmitted. The extra
logic for accommodating 32 and 64-bit systems
increases the difficulty of meeting setup and
clock-to-out timing. This is the most significant
challenge of doing a 64-bit system.
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The PCI 66 MHz specification is electrically
compatible to the 33 MHz system. However, the
66 MHz system can only operate in a 3.3 V
signaling environment. The 66 MHz specification
has the same AC and DC characteristics as the
33 MHz 3.3 V signaling environment. The
66 MHz requires the addition of one pin, M66EN
that is designated as a ground pin in the 33 MHz
system.   Thus any FPGA device that is 33 MHz
and 3.3 V electrically compliant is also 66 MHz
compliant.

The timing specifications for a 66 MHz system
are significantly more difficult to meet. Figure 10
illustrates the differences between 33 MHz timing
and 66 MHz timing. The clock-to-out timing
specification is reduced to 6 ns. The wave
propagation and clock distribution only have 6 ns
as well, and the setup timing is reduced to 3 ns,
less than half of the setup timing for 33 MHz.
However, the hold time specification still remains
at 0 ns.

Meeting these timing specifications in an FPGA is
very difficult. There are very few devices, if any,
that can support these performance
requirements. However, as technology advances
and 66 MHz systems gain popularity, more and
more FPGA vendors will provide a solution that
will fulfill such requirements.

5.0   Being Successful Using
FPGAs in PCI

Successfully implementing a PCI design in an
FPGA is much easier when the designer uses a
pre-defined PCI interface core. Pre-defined cores
eliminate the need for in-depth knowledge of the
technology and the PCI protocol specification.
The PCI protocol specification outlines strict
timing and electrical specifications that are
difficult to implement. In a pre-defined core, the
design has already been constrained to meet
these specifications. As a result, a designer
doesn’t even have to be familiar with the FPGA
architecture and tools in order complete a
successful implementation. If a pre-defined core
is not used the design of the PCI interface itself
can take several months. For most projects, the
required engineering effort is prohibitive. Many of
the advantages of using an FPGA for a PCI
application design, such as short time to market,
are lost in the process of learning the protocol
and meeting the strict electrical and timing
requirements.

Due to the difficulty and increased complexity of
PCI 64-bit/66 MHz, some FPGA vendors will also
provide a PCI 64-bit core solution.

To always meet the PCI specification for 33 MHz
or 66 MHz, the pre-defined core solution should

Figure 10. 66 MHz Timing vs. 33 MHz Timing

D    Q D    QPCI BUS

Tprop  +  TskewTckq Tsu

Tckq  =  11 ns Tsu  =  7 nsTprop  =  10 ns
Tskew  =

2 ns

Tckq = 6 ns Tsu= 3 nsTprop= 5 ns
Tskew
=1 ns

15 ns Cycle Time

30 ns Cycle Time



The Challenges of Doing a PCI Design in FPGAs April 28, 1998 12

be in the form of a heavily constrained black box
module that is configured to match the design
requirements. Using pre-defined cores allows the
designer to focus on other aspects of the
application design.

Furthermore, constrained pre-defined cores have
the added advantage of guaranteed timing.
These cores are specifically designed for a
particular architecture and the constraints that
are applied to them guarantee that the designer
will meet all of the PCI timing specifications
regardless of the type of application design.  In
addition to this, a good FPGA vendor will only
recommend those devices that are electrically
compliant with the PCI specification.

The pre-testing by the vendor also eliminates
many of the verification tasks. A good FPGA
vendor will provide a test environment that will
allow the designer to perform functional and
timing verification on the design. Pre-defined
cores must be supported for various design tools
and design flows and often the FPGA vendor will
provide the support that is necessary to integrate
these cores with the application created by the
designer. This support should be in the form of
reference design examples, in-house expertise,
hotline support, and thorough documentation that
outlines the functionality of the pre-defined PCI
core and the integration steps necessary to
achieve a successful PCI design.

The designer must take care in selecting a core
provider that will be able to fulfill all of these
needs. PCI is a very complex design and
requires the FPGA vendor to have to have a
strong support structure to assist the designer in
integrating the application with the pre-defined
PCI core. Some pre-defined core providers will
out-source the pre-defined PCI core design to a
third party and will not provide all of the
necessary documentation and support. Often, a
designer will spend an equivalent amount of time
integrating these types of cores, as he/she would
have spent designing one. Selection of a pre-
defined PCI core provider should be done based
on the vendor's complete PCI design solution and
past performance record. Using an FPGA for PCI
is beneficial only if done correctly.
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