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Introduction
Embedded systems such as network and communication equipment, printer engines and server I/O
controllers need high performance. A poorly performing PCI agent can seriously degrade the overall PCI
bus performance. Some of the PCI performance measures include efficiency, bus utilization, latency, wait-
states and bus transfer rate. A PCI efficiency of 1 is defined as a transfer which passes 4 bytes of data on
every clock cycle during which the bus is occupied. This results in a theoretical maximum of 132
Mbytes/sec for 32-bit PCI with 33 MHz clock.  PCI bus utilization provides information on percentage of
time the bus is occupied. When a PCI master causes additional clock cycles between FRAME# and IRDY#
assertion, this is called initial latency. Latency may also occur between individual double word (Dword)
transfers when a target deasserts its ready line, leading to subsequent latency. Bus transfer rate presents
how much data is transferred over the bus in Mbytes/s and is limited due to initiator and target wait states.

PCI agents typically achieve a transfer rate of less than 60-70 Mbytes/sec. Since every PCI cycle requires
at least one address cycle and reads require additional turn-around cycles, the maximum throughput can
not be reached. Minimizing the latencies, using longer bursts, implementing advanced PCI commands, fast
back-to-back transfers and following PCI rules are methods to improve PCI bus performance.

We will first investigate some factors that limit the efficiency, followed by advance PCI developments
circumventing some of these issues. In the end, we will elaborate on how the Xilinx PCI core addresses
some of the key performance issues such as latencies, wait states, longer bursts, PCI timing and
compliance, while providing a system-on-chip solution and flexibility.

1. Limiting Factors Affecting PCI Theoretical Maximum

1.1  Address and control cycles
The idle cycles between transactions, turn-around cycle(s) in read transactions and the address cycle
are some obvious bandwidth consumers. Idle cycles are defined to be those which do not have either
of FRAME#, IRDY# or TRDY# asserted (See Fig. 1). Additional bandwidth is wasted while the target
decodes the address before responding (Fig. 2). Likewise, the PCI bus must be tri-stated for least one
cycle (turn-around) after writing the address for data reads.

Fig. 1 Idle cycles between two transactions Fig. 2 Delay to first and subsequent data
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1.2 Bus congestion
In a system with a large number of agents sharing the PCI bus, the arbiter limits the maximum tenure
(burst size) of each agent for fairness. The limited tenure takes away the performance advantage of
large bursts. Arbitration latency, which is proportional to bus congestion, results in wasted cycles
when the agent waits for GNT# after issuing REQ# prior to starting the cycle by asserting FRAME#.
Arbiter design is very important to reduce arbitration latency. In case there is no resource conflict, an
agent must keep REQ# asserted to conserve bandwidth so that the arbiter continues issuing GNT# and
long bursts are feasible. An agent receiving GNT# despite non-asserted REQ# (bus parking) must
drive the bus to a known state to keep the bus at valid logic levels.

1.3  Limited PCI command Usage
Some of the more popular PCI agents implement only MR and MW (Memory Read/Write). This often
limits them to short burst lengths, creating poor performance. When data is read in small blocks as
may be the case with the MR command, the chipset may either need to insert wait states between
successive Dwords transferred or be unable to sustain longer bursts. The MR command should be used
for reading data that fits within one cache line. On Pentium Processors (Pro), a cache line is 32 bytes
(8 Dwords). Excessive usage of I/O commands degrades performance by increasing CPU utilization
and forcing initiator wait states. Usually, I/O commands are single data phase transactions only.

1.4  Incompatible bus width of target and initiator
When the target is shorter than the Dword width (1, 2 or 3 bytes), while initiator is 32-bit, the initiator
wastes some PCI cycles in transferring less than one Dword of data in each PCI clock by selectively
enabling CBE lines and hence performs sub-optimally. In 64-bit PCI, if the target cannot perform a
64-bit data transfer to the addressed location, the master is required to complete the transaction as a
32-bit master and not as a 64-bit master, losing the bandwidth advantage expected with 64-bit PCI.

1.5   Short burst sizes
Each time an agent initiates a transfer of X Dwords, it must wait for LI clock cycles for the transfer to
begin. Once the transfer begins, it can occur at the rate of one Dword per PCI clock cycle in case of an
“always ready” target. For a slow peripheral which introduces subsequent latency (LS),

                                            Efficiency = X / (X + LI + LS)                                                                    (1)

A PCI agent cannot completely control LI, LS. If it does not maximize the burst size X, the efficiency is
low. Fig. 2 shows some of the causes for delay in initial and subsequent data phases represented by LI

and LS. Fig. 3 assumes no LS and shows that to achieve maximum transfer rate on a PCI bus, write
burst size should be at least 16 Dwords while read burst size should be at least 32 Dwords.

Fig. 3 Effect of burst size on PCI bandwidth
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1.6  Initiator/ target wait states
Both initiator and target wait states lead to an increase in either LI or LS, as per equation (1), reducing
PCI efficiency. Long initial delay (max. allowed 8 clocks) between FRAME# and IRDY# assertion
increases LI. Slower than FAST target address decode affects both read and write cycles and results in
initial latency on TRDY#. A slow CPU or peripheral may not be ready to transfer data at each PCI
cycle to sustain a burst and may introduce wait states to synchronize. Late target select (FRAME# ->
DEVSEL#), late target response (FRAME# -> TRDY#) are other implementation overheads which
lead to LI. These latencies are described in Fig 4.

1.7  Frequent target terminations
A slow access (> 12-14 PCI clocks) forces target to retry transfer starting with address of data which
was next to be transferred. Normally in the time it takes to re-establish data bursts due to re-arbitration,
the target should have data available, but this affects performance.
When a target does not disconnect when no data is available to transfer and holds the bus with wait
states, it introduces latency and PCI efficiency is reduced. It is a good practice to disconnect when a
burst can not be maintained. However, the master should automatically re-establish the same transfer
immediately to complete burst transfer.   

2.0 Recent Developments which Improve Performance

2.1  Split-transaction (Write-Only buses)
The PCI read cycles require a turn-around cycle and are therefore relatively less efficient than write
cycles. Furthermore, posted writes are deterministic and easy to handle at full bandwidth using FIFOs.
We could make a “request to be written back to” for reads. Using this philosophy, read could be split
into two components: a request and a reply. A split-transaction protocol prevents the access time
during a read, from being seen to the communication channel. With a write-only bus, during reads, an
initiator could write a request to the target and get off the bus. When the data is ready, the original
target becomes the initiator and then satisfies the request by writing to the original initiator. During
writes, the initiator could write a request followed by actual data.

2.2 Fast back-to-back transactions
The bus access latency is dependent upon arbitration and initiator waiting time for the bus to be idle
after receiving a bus grant as shown below.

                 Bus access latency = Arbitration time + Bus busy + Idle cycle(s)                                       (2)

Fig. 4 Various types of latencies in a PCI system
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Fast back-to-back transactions eliminate the idle cycle following a write and thereby reduce initial
latency of the next transaction. Either target or initiator could be fast back-to-back capable provided no
contention occurs on TRDY# and DEVSEL#. The target must be capable of following a bus transition
from final data transfer directly to an address phase while the initiator must perform the next transfer
to the previous target and understand address boundaries. PCI specs recommend this feature on all
new targets to utilize bandwidth more effectively.

2.3   I2O
Until now, designers have been forced to implement proprietary backplane protocols between a host
CPU and intelligent I/O subsystems. This required the designer to define commands, status,
mailboxes, doorbells, interrupts, messages, errors and buffers. I2O stands for intelligent I/O and is a
well-defined industry standard software message passing protocol, which divides I/O software
functionally between host operating system and I/O subsystem with a layered architecture and defines
these things. It is useful for high performance PCI systems with one or more intelligent I/O
subsystems and high speed I/O devices, and makes efficient PCI bus utilization.  I2O defines efficient
use of DMA, bus mastering, burst modes and interrupts.  I2O also defines various command sets for
LAN (WAN), IDE, SCSI, tape storage and floppy classes besides message types for initialization,
configuration, private and user defined messages.

2.4  PCI-to-PCI bridges
PCI-to-PCI bridges allow addition of more PCI slots and devices to the system and isolate the bus
traffic by isolating the transaction bandwidth between devices on one bus from devices on the other
busses (Fig 5b). Further, bridges allow communication between two PCI busses as shown in Fig 5a.
Theoretically, by using PCI-to-PCI bridges, 7 secondary PCI busses could be connected to one
Primary bus, each consisting of 4 slots (Fig. 6). However, it is not recommended to cascade them
because there is huge latency for single cycle transactions while no gain with burst transfers. Further,
the clock skew may increase with increasing depth in bus hierarchy.  Individual arbiters are required
on each bus.

    Fig. 5  PCI-to-PCI Bridge allows transaction a) between PCI busses b) concurrent operation
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2.5 Extended PCI commands
Using the right advanced command while performing PCI master memory reads may significantly
increase performance. Commands control the block size of data read from target. Table 1 shows
recommended command usage recognizing the fact that once a single double-word has been read,
reading to the end of the cache line is extremely inexpensive.
Use of Memory Write and Invalidate (MWI) is also important for achieving high performance. MWI
should be used for transferring data more than one cache line in size which begin and end on cache line
boundaries (cache line aligned). A PCI device optimized for MWI should disconnect MW only on a
cache line boundary, providing a convenient place for MWI to begin.  MWI eliminates system cache
snoop overhead and enables performing another cache line even upon losing the bus grant on the last
cache line boundary as per PCI specs.

       Table 1: Recommended PCI commands usage based on block size
S. No. PCI command Read block size

(in cache lines)
Pre-fetch

   1 Memory Read (MR)         1     No
   2 Memory Read Line (MRL)         2     Yes
   3 Memory Read Multiple (MRM)      > 2     Yes

2.6 Memory bandwidth improvement
Memory bandwidth is a fixed resource, often less than the system demand, shared among bus masters
and arbitrated by a memory controller. Larger caches reduce processor-memory bandwidth
requirements and result in more cache-snoop hits on PCI transactions. Using faster memory chips,
better, increased and large FIFOs keep a full cache line ahead and handle PCI requestors individually.
More memory controllers resolve PCI-CPU contention. When DMA engine, FIFOs and memory
controllers are used together, they reduce delay to first data and provide 0-wait state subsequent data.
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Fig. 6 Slot expansion with PCI-to-PCI bridges
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2.7 64-bit PCI
64-bit PCI provides performance improvement on memory commands. A 64-bit agent could transfer
up to a double DWORD per data phase instead of a single Dword available with 32-bit PCI; however,
the target must also be 64-bit. A 64-bit bus provides additional data bandwidth for agents that require
it, however, wait states take away the advantage, as shown in Fig. 7.

3.0 Xilinx PCI Core in High Performance PCI Designs
Combining a custom user-interface with a pre-verified Xilinx 32-bit, 33 MHz PCI core produces a
single-chip PCI design. The PCI LogiCORE module enables fast implementation of an FPGA-based
prototype application. It is fully timing and PCI protocol compliant with PCI specs 2.1. The pin-out
and CLB placement is controlled by mapping, pin-locking and LOC constraints, while routing of most
critical paths is controlled by guide files and PCI timing specs. The result is predictable performance
and functionality.
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Fig. 7 Performance advantage with 64-bit PCI



3.1 Core Functional Description
       The LogiCORE is partitioned into six major blocks as shown in Fig. 8.

  3.1.1  PCI I/O Interface
This handles physical connection to the PCI bus including all signaling, I/O synchronization,
output three-state controls and request-grant handshaking for the bus master.

  3.1.2    Parity Generator/ Checker
The Parity Generator and Checker block generates and checks even parity across the AD bus,
CBE (Command/Byte Enable) lines and PAR. Data parity errors are reported on PERR- while
address parity errors are reported on SERR-. As a data source, PAR generation is fully
compliant with PCI specs. 2.1.

   3.1.3    Target State Machine
The target state machine manages control over the PCI interface for target functions. The
states implemented are a subset of equations defined in “Appendix B” of the PCI specs. The
controller is a high performance state machine using one-hot encoding and is capable of
continuous bursting (zero wait states).

   3.1.4    Initiator State Machine
The initiator state machine manages control over the PCI interface for initiator functions. The
states implemented are a subset of equations defined in “Appendix B” of the PCI specs. This
also uses one-hot encoding for maximum performance and is capable of continuous bursting
(zero wait states).

    3.1.5   PCI Configuration Space
The PCI configuration block provides the first 64-bytes of Type 0, version 2.1 Configuration
Space Header (CSH) to support software driven plug-n-play initialization and configuration
using combination of CLB flip flops and look-up tables for read-write and read-only registers.

   3.1.6  User Customizable configuration
The user customization configuration block allows user to customize the core for back-end
application by choosing number and configuration of Base Address Registers (BARs), latency
timer, device/vendor-id, external subsystem vendor-id, zero/ one-wait states, medium/slow
decode and other CSH parameters.
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3.2   PCI Performance features

3.2.1 Wait states and PCI transfer rates
PCI LogiCORE is switch selectable between zero and one-wait states while sourcing data
to the PCI bus. Transactions where the core is the recipient (Initiator burst reads and target
burst writes) are always zero wait states.  No additional wait states are added in response to
wait state from another agent on the bus. The ideal transaction assumes that both the
initiator and the target operate with zero wait states and the target responds with fast
decode speed. Initial latency on the LogiCORE target is two clock cycles more than the
ideal transaction, due to slow decode speed (Frame# to Devsel# latency). However,
LogiCore allows the user to reach the theoretical maximum on subsequent data through
zero wait states. This is shown in table 2.

Table 2: LogiCORE PCI Bus Transfer Rates
S. No. PCI transaction type PCI transfer rate
  1 Ideal PCI Write     3-1-1-1
  2 Ideal PCI Read      4-1-1-1
  3 Initiator Write (PCI <- Logicore)      3-1-1-2
  4 Initiator Read  (PCI -> Logicore)      4-1-1-2
  5 Target Write  (PCI -> Logicore)      5-1-1-1
  6 Target Read   (PCI <- Logicore)      6-1-1-1

3.2.2 Long bursting capability
The performance of any PCI application depends largely on the burst transfer capability of
the interface chip. Although Logicore PCI requires additional clocks to access the PCI bus,
the actual bandwidth is determined by the burst transfer size. A FIFO to support burst
transfers can be efficiently implemented using the Xilinx on-chip Select RAM feature.
Each CLB in 4KE/ 4KXL architecture supports a 16 bit dual ported RAM with
simultaneous read-write capability, which means a synchronous 16x32 dual port FIFO
which supports data transfer in excess of 33 MHz could be implemented with
approximately 40 CLBs (including control logic).  Implementing FIFOs with depths
between 16 and 32 Dwords consumes double the RAM CLBs, and adds no delay.  The user
may put a FIFO deeper than 64 Dwords off-chip. The best structure for most applications is
a dual-FIFO design with separate read and write FIFOs.

3.2.3 Unlimited bursting capability
For a user initiator function that requires sustained high aggregate bandwidth and is the
only agent on the bus with GNT# always asserted, initiator bursting is limited only by the
depth of the  FIFO. Some Xilinx PCI LogiCORE customers have achieved PCI bandwidth
of 124 MB/s limited only by their own system constraints, with 64Kb external FIFO and
burst sizes in equivalent range.

3.2.4 Robust User Interface

               3.2.4.1   De-multiplexed address
LogiCore PCI provides a simple general-purpose interface with a 32-bit data path
ADIO[31:0] and a latched address for de-multiplexing the PCI address/ data.

                          3.2.4.2    Efficient burst transfer handling
Depending upon the largest block size of the target devices mapped onto multiple
BARs, user target address counter size could be selected so that the target issues
a Disconnect only when LogiCORETM initiator attempts to cross this boundary.
Higher address bits are derived from the latched address. Likewise, depending
upon the size of the largest burst transfer intended by a user initiator function, the
address counter size could be fixed. User interface signals M_DATA_VLD and
M_SRC_EN are used to increment enable during initiator writes and reads



respectively. The LogiCORETM initiator uses the interface signal COMPLETE to
deassert IRDY# at the end of transaction.

3.2.4.3 Modular construction
Since Target-Only and Target/Initiator options require fixed CLB resources for the
PCI interface, there is flexible choice of free space available for the user design
depending upon the Xilinx device selected.

3.3 Scope of performance related enhancements

3.3.1 Full medium decode speed
With faster architectures and new speed grades, the LogiCORE PCI interface can be
changed to support true “medium decode”, thereby decreasing the initial latency during
PCI target transactions by one clock.

3.3.2 Memory Write and Invalidate
The LogiCORE target interface can receive and process a Memory Write and Invalidate
(MWI) PCI command. However, the initiator interface does not support MWI because the
interface does not track the cache line size.

3.3.3 Auto wait states removal during initiator last data phase
Faster FPGA technology will also permit a design change to eliminate the subsequent
latency of one clock during last data phase of initiator operations.

           3.3.4       Fast back-to-back transactions
            The LogiCORE interface supports back-to-back transactions, as shown in Fig. 1 and can be
            changed  to   perform  fast  back-to-back  transfers  by  modifying   the  target  and initiator
            state  machines to remove the idle state.

Conclusion
PCI bus efficiency is enhanced by following the advancements described and carefully examining the
limitations in your respective PCI systems. The key to sustained high bandwidth is long bursting without
terminations and wait states. The Xilinx PCI interface helps achieve this performance by using a large
FIFO interface, while providing a time-to-market advantage and plug-n-play operation.  The FPGA-based
PCI solution allows a designer to integrate a PCI interface with value-added custom logic in a single-chip.
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