

M8259 Programmable Interrupt Controller

January 12, 1998

Virtual IP Group, Inc.

 1094 E. Duane Ave., Suite 211

 Sunnyvale, CA 94086 USA

 Phone:
 +1 408-733-3344

 Fax:
 +1 408-733-9922

 E-mail:
 sales@virtualipgroup.com

 URL:
 www.virtualipgroup.com

Features

- Eight Level Priority Controller
- · Expandable to 64 Levels
- Programmable Interrupt Mode
- Individual Request Mask capability

Applications

Applications that require Programmable Interrupt Mode of operation for multiple interrupts.

General Description

The M8259 is a programmable interrupt controller core is used in most microcontroller/microprocessor systems to control and prioritize interrupts. It can handle up to 8 interrupt with programmable masking and priority for the interrupts. It can also be cascaded with up to 8 more M8259 blocks to handle more than 8 interrupts without any additional logic circuits. This design is functionally compatible with Intel's 8259 part. **Product Specification**

AllianceCORE™ Facts			
Core Specifics			
Device Family	Spartan	XC4000E	
CLBs Used	191	191	
IOBs Used	26 ¹	26 ¹	
System Clock f _{max}	7.5 MHz	7.5 MHz	
Device Features Used	Global Buffers		
Supported Devices/Resources Remaining			
	I/O	CLBs	
XCS40PQ240-3	167 ¹	593	
XC4020EHQ240-2	167 ¹	593	
Provided with Core			
Documentation	Core Design Document Designer's Application Note EPGA Design Document		
Design File Formats	.ngd, XNF netlist Verilog Source RTL		
Constraint Files	.cst file, xactinit.dat		
Schematic Symbols	None		
Verification Tool	Test Vectors		
Evaluation Model	None		
Reference designs & application notes	FPGA Design Document included		
Additional Items		None	
Design Tool Requirements			
Xilinx Core Tools	Alliance 1.3		
Entry/Verification Tool	Verilog RTL/Verilog XL simulator		
Support			
Support provided by Virtual IP Group, Inc.			

Notes:

1. Assuming all core signals are routed off-chip.

X7970

Figure 1: M8259 Functional Block Diagram

Functional Description

The M8259 core is partitioned into modules as shown in Figure 1 and described below.

Bus Interface Block

This block interfaces the core to the system bus. It also generates the internal read, write signals for the read/write block of the core.

Read/Write Block

The read / write block generates various read and write signals for reading status and writing command words.

Interrupt Mask Register (IMR) Block

This block is used for masking the interrupt inputs and masking the ISR bits in the special mask mode.

Interrupt Request Register (IRR) Block

This block stores all interrupt levels that are requesting service.

Interrupt Service Register (ISR) Block

The main function of this block is to store interrupt levels that are being serviced.

Priority Block

This block resolves the priority of valid interrupt request inputs and generates an encoded interrupt request for the control block of the core.

Control Block

This block controls the entire function of core and generates the external interrupt output signal.

Core Modifications

Multiple cores can be cascaded to build support for more Interrupts.

Pinout

The pinout has not been fixed to specific FPGA I/O allowing flexibility with the users application. However for the evaluation board, a pinout has been fixed. This information is provided in the FPGA Design Documentation. Signal names are provided in the block diagram shown in Figure 1 and Table 1.

Table 1: Core Signal Pinout

	Signal		
Signal	Direction	Description	
Bus Interface Signals			
D[7:0]	In/Out	8 bit bidirectional CPU data	
		bus through which CPU	
		reads from or writes into	
		core	
NCS	Input	Active low chip select signal	
NWR	Input	Active low write signal	
NRD	Input	Active low read signal	
A0	Input	Address signal for selection	
		of internal registers	
Control and Cascade Signals			
NINTA	Input	When active low, interrupt	
		acknowledge signal is	
		asserted, core drives pro-	
		grammed interrupt vector	
		onto data bus	
INT	Output	Interrupt output signal.	
CAS [2:0]	In/Out	Cascade lines used to cas-	
		cade up to 8 Interrupt con-	
		trollers for a total capacity of	
		64 interrupts	
NSPEN	Input	Slave program/enable; indi-	
		cates master/slave mode	
		operation for M8259 in non-	
		buffered mode	
IRR Signals			
IR [7:0]	Input	Input interrupt requests for	
		core	

Verification Methods

The core has been tested with in-house developed test vectors that are provided with the core. It has also been tested in the FPGA using a hardware evaluation board.

Recommended Design Experience

Knowledge of interface in Microprocessor based systems is required. The user must be familiar with HDL design methodology as well as instantiation of Xilinx netlists in a hierarchical design environment. Experience in usage of Alliance or Foundation tools is required.

Available Support Products

FPGA Evaluation Board

The FPGA Design Document included with the core gives directions for constructing a general purpose FPGA evaluation daughter board that can be plugged into a standard part socket on the target system through a flat cable.

Simulation Model

In-house developed test vectors are provided to test complete functionality and interface of the core.

Ordering Information

This product is available from Virtual IP Group, Inc. Please contact them for pricing and additional information.

Related Information

The user should refer to the Specification Document for programming this core for a typical application in a system. The user should also refer to the Designer's application note for integrating this with other cores.

Xilinx Programmable Logic

For information on Xilinx programmable logic or development system software, contact your local Xilinx sales office, or:

Xilinx, Inc. 2100 Logic Drive San Jose, CA 95124 Phone: +1 408-559-7778 Fax: +1 408-559-7114

URL: www.xilinx.com

For general Xilinx literature, contact:

- Phone: +1 800-231-3386 (inside the US) +1 408-879-5017 (outside the US)
- E-mail: literature@xilinx.com

For AllianceCORE™ specific information, contact:

- Phone: +1 408-879-5381 E-mail: alliancecore@xilinx.com
- URL: www.xilinx.com/products/logicore/alliance/ tblpart.htm