

M16450 Universal Asynchronous Receiver/Transmitter

January 12, 1998

IP Group

Virtual IP Group, Inc.

 1094 E. Duane Ave., Suite 211

 Sunnyvale, CA 94086 USA

 Phone:
 +1 408-733-3344

 Fax:
 +1 408-733-9922

 E-mail:
 sales@virtualipgroup.com

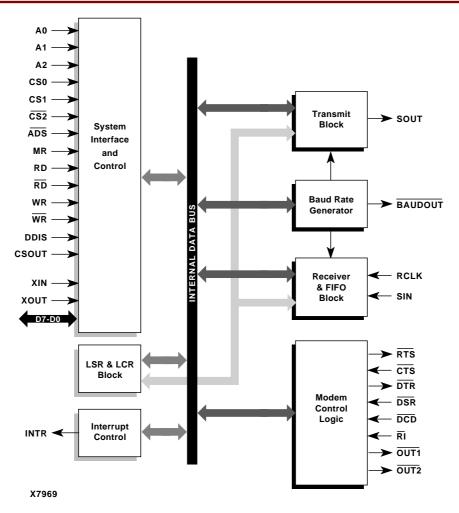
 URL:
 www.virtualipgroup.com

Features

- Functionally compatible to NS16450
- Complete asynchronous communication protocol including:
 - 5, 6, 7 or 8 bit data transmission
 - Even/odd or no parity bit generation and detection
 - Start and stop bit generation and detection
 - Line break detection and generation
 - Receiver overrun and framing errors detection
 - Communications rates of upto 56K baud
- Internal programmable baud rate generator
- Buffered transmit and receive registers
- Exception handling using interrupt/polled modes
- Internal diagnostic capabilities with loopback
- Modem handshake capability using CTS, RTS, DSR, DTR, RI and DCD signals
- · Complete status reporting capabilities
- Line break generation and detection

Applications

- Serial Communication Port
- Modem Interface port


Product Specification

AllianceCORE™ Facts				
Core Specifics				
Device Family	Spartan	XC4000E		
CLBs Used	188	188		
IOBs Used	341	34 ¹		
CLKIOBs Used	4	4		
System Clock fmax	18.4 MHz	18.4 MHz		
Device Features Used	Global Buffers			
Supported Devices/Resources Remaining				
	I/O	CLBs		
XCS40PQ240-3	155 ¹	596		
XC4020EHQ240-2	155 ¹	596		
Prov	ided with Core			
Documentation	Core Design Document			
	Designer	s application note		
Design File Formats		.ngd, XNF netlist		
	Ve	erilog Source RTL		
		available extra		
Constraint Files	.C	st file, xactinit.dat.		
Verification Tool		Test Vectors		
Schematic Symbols		None		
Evaluation Model		None		
Reference designs &	FPGA Design Document			
application notes		•		
Additional Items		rd available extra		
	ool Requireme			
Xilinx Core Tools	Alliance 1.3			
Entry/Verification Tool		rilog XL simulator		
	Support			
Support provided by Vir	tual IP Group, In	С.		

Support provided by Virtual IP Group, Inc.

Note:

1. Assuming all core signals are routed off chip.

General Description

M16C450 interfaces with a microcontroller or microprocessor on one side and serial communications equipment on the other. It provides full modem control through input and output signals for easy handshaking with modems during communication. Internal registers provide full programmability of serial asynchronous communication parameters. This core is functionally compatible to the National Semiconductor NS16450.

Functional Description

The functional Block Diagram is shown in Figure 1. The internal modules are explained below.

System Interface and Control Block

This block supports the Processor interface and generates the internal system level signals for proper functioning.

LSR and LCR Block

This block holds the Line Status and Line Control Registers. These two registers control communication for the core.

Interrupt Control Block

This block handles all interrupt capabilities for the core.

Table 1: Core Signal Pinout

Signal	Signal Direction	Description	
S	ystem Inte	rface Signals	
A0, A1, A2	Input	Address signals to select an internal register for read/ write operations.	
CS0-2	Input	Chip Select. CS0 and CS1 are active high, CS2 is active low.	
ADS	Input	Address Strobe. Chip Select and address signals are latched internally on rising edge of ADS. Pulled low if un- used.	
MR	Input	Master Reset, active high.	
RD	Input	Read Control, active high. Pulled low if unused.	
RD	Input	Read Control, active low. Pulled high if unused.	
WR	Input	Write Control, active high. Pulled low if unused.	
WR	Input	Write Control, active low. Pulled high if unused.	
DDIS	Output	Driver DIS able signal, driven low, when core outputs data. Used to control data flow di- rection in transceiver or, tristate buffers enable con- trol.	
CSOUT	Output	Indicates read/write selec- tion of UART. Active high and remains high when UART is selected through chip select inputs.	
XIN	Input	Master clock input.	
XOUT	Input	Master clock output, inverted from XIN.	
D7 - D0	In/Out	Bidirectional databus carries data to be written to internal registers; also reports status of registers during read cy- cle.	
Modem Interface Signals			
RTS	Output	Active low REQUEST TO SEND indicates UART is ready to exchange data. System controls this pin bit in modem control register.	

Signal	Signal Direction	Description
CTS	Input	Active low C LEAR TO S END indicates modem is ready to exchange data. Present state monitored by reading MSR.
DTR	Output	Active low D ATA T ERMINAL R EADY tells modem that UART is ready to establish communication link. System controls this pin through bit in MSR.r.
DSR	Input	Active low DATA SET READY indicates modem is ready to handshake with core. Present state moni- tored by reading MSR.
DCD	Input	Active low DATA CARRIER DETECT indicates modem has detected carrier on com- munications line. Present state monitored by reading MSR.
RI	Input	Active low RING INDICA - TOR indicates modem has detected ring signal. Present state monitored by reading MSR.
OUT1-2	Output	General purpose outputs. System controls these pins by through bit in MSR.
Transmit/Receiv	e Signals	
SOUT	Output	Serial data output from trans- mitter block.
RCLK	Input	Input receive clock, should be 16 times communications baud rate.
SIN	Input	Serial data input for receiver block.
Other Signals		
INTR	Output	Active high interrupt signal.
BAUDOUT	Output	Baud rate generator output clock. 16 times programmed communication baud rate.

Transmit Block

This block controls serial data transmission as per programmed parameters.

Baud Rate Generator Block

This block generates the Baud Rate Clock for the transmitter section of the core. This clock can also be used by the receiver block connecting BAUDOUT to RCLK.

Receiver Block

This block handles reception for the core. The clock for this block is provided by RCLK. This clock should be 16 times the baud rate.

Modem Control Logic Block

This block handles modem handshaking for the core. These signals can be used for communication or as general purpose signals. The modem control register resides in this block, providing internal diagnostic capability.

Core Modifications

Modifications can be done to remove the internal baud rate generator, or to strip off either transmitter or receiver. These modifications can be performed by Virtual IP Group, Inc. for additional cost.

Pinout

The pinout has not been fixed to a specific FPGA/IO allowing flexibility with the user application. A pinout is suggested for use with a user-constructible evaluation board. Information for this is in the FPGA Design Document included with the core. Signal names are provided in the block diagram shown in Figure 1 and Table 1.

Verification Methods

The core has been tested with in-house developed simulation test vectors that are provided with the core. Assembly level 80x86 programs were used to test the functionality of the FPGA using a hardware evaluation board.

Recommended Design Experience

Knowledge of interface with Microprocessor based systems is required. The user must be familiar with HDL design methodology as well as instantiation of Xilinx netlists in a hierarchical design environment. Usage of Alliance or Foundation tools is required.

Available Support Products

The FPGA Design Document included with the core gives directions of constructing a general purpose FPGA evaluation daughter board that can be plugged in to a standard port socket on the target system through a flat cable.

Ordering Information

This product is available from Virtual IP Group, Inc. Please contact them for pricing and additional information.

Related Information

Refer to Specification Document for programming of this core for a typical application in a system. The user is required to refer to Designer's application note for integrating this core with other cores.

Xilinx Programmable Logic

For information on Xilinx programmable logic or development system software, contact your local Xilinx sales office, or:

Xilinx, Inc		
2100 Logic Drive		
San Jose, CA 95124		
Phone:	+1 408-559-7778	
Fax:	+1 408-559-7114	
URL:	www.xilinx.com	

For general Xilinx literature, contact:

Phone: +1 800-231-3386 (inside the US) +1 408-879-5017 (outside the US) E-mail: literature@xilinx.com

For AllianceCORETM specific information, contact:

Phone:	+1 408-879-5381
E-mail:	alliancecore@xilinx.com
URL:	www.xilinx.com/products/logicore/alliance/
UKL.	1 5
	tblpart.htm