
XEPLD

 ™

REFERENCE GUIDE

ONLINER

0401416

TABLE OF CONTENTS

INDEX

GO TO OTHER BOOKS

Contents

Chapter 1 XEPLD Functional Description

Copyright 1994-1995 Xilinx Inc. All Rights Reserved.
Product Description.. 1-1
The XACT Design Manager (XDM) ... 1-2
Design Methodology .. 1-5

Designing with Schematic Capture Tools 1-7
Designing with Behavioral Entry Tools 1-9
Converting Existing PAL Designs ... 1-10

Chapter 2 XACT Design Manager Menus
Using XDM... 2-1

The Program List File ... 2-1
Using XDM on a PC.. 2-2
Using XDM on a Workstation.. 2-4

About X-Windows and Graphic Interfaces......................... 2-4
Mouse Configuration ... 2-5
Window Operations ... 2-5
Window Buttons... 2-5
Window Shortcuts.. 2-6
Active Window ... 2-6
Starting XDM ... 2-6

Entering Commands ... 2-8
The Graphic Interface.. 2-9
The Command Line Interface .. 2-9

Task-Based Command Flows.. 2-10
Schematic Design to Programming File 2-10
About the XEMAKE Command... 2-11
Behavioral Design to Programming File 2-12
JEDEC PAL File to PLUSASM PAL File................................. 2-13
Workview Simulation .. 2-13

Functional Simulation .. 2-13
XEPLD Reference Guide — 0401203 01 i

XEPLD Reference Guide
Timing Simulation .. 2-14
Timing Simulation for a Behavioral Design........................ 2-14

OrCAD Simulation... 2-14
Functional Simulation .. 2-14
Timing Simulation .. 2-15
Timing Simulation for a Behavioral Design........................ 2-16

About the XSIMMAKE Command ... 2-16
Menu Tour.. 2-16

The Settings Fields ... 2-17
The Design Entry Menu .. 2-18
The Translate Menu.. 2-18

XEMAKE (EPLD Automatic Implementation Tool) 2-18
ABL2PLD (Create EPLD from Xilinx ABEL Design) 2-20
ANNOTATE (Annotate SCH — PC Only).......................... 2-20
CLEANUP (Cleanup SCH — PC Only) 2-20
INET (Compile SCH — PC Only) 2-20
SDT2XNF (Create Orcad Netlist — PC Only) 2-21
WIR2XNF (Create Workview Netlist) 2-21
JED2PLD (Import & Assemble PLD JEDEC) 2-22
PLUSASM (Assemble PLD Equations) 2-22
PINSAVE (Save EPLD Pinout) .. 2-23
XNFMERGE (Merge Multiple XNF Files)........................... 2-23

The Fitter Menu... 2-24
FITEQN (Integrate EPLD Behavioral Design) 2-24
FITNET (Integrate EPLD Schematic Design) 2-25
PALCONVT (Convert PAL-based Design) 2-26

The Verify Menu.. 2-28
XSIMMAKE (Create Simulation File) 2-28
ASCTOVST (OrCAD/VST Utility — PC Only).................... 2-29
ORCAD (OrCAD VST — PC Only).................................... 2-29
XNF2VST (Create Orcad Sim Files — PC Only) 2-29
VSM (Viewsim Wirelister) .. 2-30
XNF2WIR (Create Viewlogic Sim Files) 2-31
MAKEJED (Make JEDEC Programming Files).................. 2-31
MAKEPRG (Make Hex Programming Files) 2-32
VMH2XNF (Make XNF for Timing Simulation) 2-32
PROLINK (Program EPLD Device — PC Only) 2-33

The Utilities Menu ... 2-33
Browse... 2-34
DirClean... 2-34
Directory .. 2-34
ii Xilinx Development System

Contents
DOS (PC only).. 2-35
Edit .. 2-35
Execute.. 2-36
Help ... 2-36
Report.. 2-37
ScanDisk ... 2-37
Version .. 2-37

The Profile Menu .. 2-38
Cursor.. 2-38
Family .. 2-38
KeyCursor.. 2-38
Keydef ... 2-38
Menucolors .. 2-39
Mouse.. 2-39
Options .. 2-39
Palette ... 2-40
Part .. 2-40
Printer .. 2-40
Readprofile .. 2-40
Saveprofile... 2-40
Settings.. 2-40
Speed .. 2-40

Chapter 3 Report Formats
Viewing Reports... 3-1
The Resource Report... 3-2

Logic Resources ... 3-2
Required Pin Resources... 3-2
Used Pin Resources ... 3-2
Remaining Pin Resources .. 3-2
Fast Inputs and Outputs ... 3-2

The Mapping Report .. 3-4
Function Name ... 3-4
Macrocell Location.. 3-4
Pkg Pin ... 3-4
Pin Use ... 3-5
Power Estimation (7300 Family Only) 3-5

The Pinlist Report .. 3-7
Pkg Pin ... 3-7
Pin Type.. 3-7
Pin Use ... 3-7
XEPLD Reference Guide iii

XEPLD Reference Guide
Pin Name .. 3-7
Pin Use Legend .. 3-7

The Partitioner Report.. 3-9
Summary... 3-9

Part Name.. 3-9
Number of Outputs .. 3-9
Number of Input Lines Used .. 3-9
Signal Inputs (Complete Design Only)............................... 3-10
Number of Shared Pt ... 3-10
O/IO Used (Complete Design Only) 3-10
O/IO Avail (Complete Design Only) 3-10
Size Factor... 3-10
Inputs Used by Each Partition ... 3-10

Partition Listing ... 3-10
Signals Used.. 3-10
Anded UIM Inputs Used (Complete Design Only) 3-11
Inputs Used by Each Output Table.................................... 3-11
MC No.. 3-11
Output Name ... 3-11
Pin Req (Complete Design Only)....................................... 3-11
Pin Avl (Complete Design Only) .. 3-11
Sh Pt .. 3-11

Input Listing... 3-11
The Logic Optimizer Report ... 3-16

Summary... 3-16
Device Specific Optimization .. 3-17
Outputs that Were Collapsed.. 3-17
Outputs Removed from the Network....................................... 3-17

The PLUSASM Assembler Log Report .. 3-22
Product Term Allocation (PLFB9/PLFFB9 Format)................. 3-22

Pin.. 3-22
Name ... 3-22
Type... 3-23
Local P-terms Available ... 3-23
Local P-terms Used ... 3-23
Shared D1 P-terms Used and Shared D2 P-terms Used .. 3-23
Total P-terms Used.. 3-23

Partitioner Log Report (Standard PAL Format)....................... 3-23
The PAL Interconnect Report... 3-29

PAL Pin ... 3-29
Signal Name ... 3-29
iv Xilinx Development System

Contents
PAL Use.. 3-29
Chip Use ... 3-29
Connectivity .. 3-29
Unconnected Pins... 3-30
Summary .. 3-30

The EQN File ... 3-33

Chapter 4 PLUSASM Command Reference
Introduction .. 4-1
PLUSASM Overview.. 4-1

PLUSASM File Structure .. 4-2
The Header Section ... 4-4

Header Statements... 4-4
The Declarations Section... 4-5

CEPIN... 4-6
CHIP ... 4-7

file_name ... 4-7
device_name ... 4-7
signal_list ... 4-8

FASTCLOCK .. 4-10
FASTINPUT.. 4-12
FOEPIN .. 4-13
INCLUDE_EQN .. 4-15
INPUTPIN ... 4-16

RCLK = fastclock_name.. 4-16
CE = ce_name... 4-16
LE = fastclock_name ... 4-16
FI ... 4-16

IOPIN .. 4-18
RCLK = fastclock_name.. 4-18
CE = ce_name... 4-18
LE = fastclock_name ... 4-18
PINFBK.. 4-18
FOE = foe_name ... 4-19
NODETRST... 4-19

LOGIC_OPT ... 4-21
MINIMIZE.. 4-23
MRINPUT ... 4-24
NODE ... 4-25
OPTIONS.. 4-27
XEPLD Reference Guide v

XEPLD Reference Guide
OUTPUTPIN ... 4-30
FOE = foe_name ... 4-30
NODETRST ... 4-30

PARTITION... 4-32
Physical PARTITION Statements 4-32
Logical PARTITION Statements .. 4-33
Linked Equations ... 4-34

General Rules for PARTITION Statements 4-35
Logical Partitions Using Less Than 9 Macrocells 4-36
Logical Partitions Using More Than 9 Macrocells.............. 4-36
Physical Partitions Using Less Than 9 Macrocells 4-36
Physical Partitions Specifying Starting Macrocells 4-37

PWR.. 4-38
STRING .. 4-39

The Equation Section... 4-40
Combinatorial and Registered Equations 4-40
Control Equations ... 4-43
.ADD (Arithmetic Carry Enable) .. 4-44
.ADDMODE (Arithmetic Carry Enable) 4-46
.CLKF (Register Clock Source)... 4-48
.D1 and .D2 (ALU Inputs).. 4-50

Using the ALU.. 4-50
.EXPORT (FFB Product Term Assignment) 4-52
.FBK (Local Feedback) ... 4-54
.FBKINVERT (Invert Macrocell Feedback) 4-55
.FI (FastInput Source) ... 4-56
.PIN (PIN Input Source) .. 4-57
.PRLD (Preload State) .. 4-58
.RSTF (Asynchronous Reset) ... 4-59
.SETF (Asynchronous Set) ... 4-60
.SHIFT (Local Shift) .. 4-61
.T (Toggle Flip-Flop Specification) .. 4-64
.TRST (3-State Control) .. 4-65

Defining Signal Polarity in Equations ... 4-66
Output Signal Polarity ... 4-66
Input Signal Polarity .. 4-67

PLUSASM Syntax .. 4-68
Notation... 4-68
Delimiters .. 4-68
Operators and Special Characters.. 4-68
Comments... 4-69
vi Xilinx Development System

Contents
Reserved Characters.. 4-69
Names .. 4-69
Reserved Words ... 4-70
Unsupported PALASM Syntax.. 4-70

Parenthesis.. 4-70
State Machine Syntax.. 4-71
The Latched Output Equation Operator 4-71
Simulation Control Statements .. 4-71
Device Specific Syntax .. 4-71

PLUSASM Command Syntax Quick Reference 4-72
Declaration Statements Used in Schematic PLDs and
Include Files.. 4-73
Declaration Statements Used in Top-Level Files.................... 4-74
Equation Statements Used in High Density Function Blocks . 4-75
Equation Statements Used in Fast Function Blocks............... 4-76

Chapter 5 XEPLD Fitter Modules and Files
XEPLD Fitter Modules ... 5-1

The Netlist Reader (Schematic Only) 5-3
The Muncher (Schematic Only) .. 5-3
The Logic Optimizer.. 5-4
PLUSASM, the Partitioner, and the Minimizer........................ 5-5
The Chip Builder ... 5-7
The Design Rule Checker... 5-7

General Design Rule Violations... 5-7
Pad Component Design Rule Violations 5-8
FastCLK, Clock Enable, and Fast Output Enable
Violations ... 5-8

The Gate Optimizer .. 5-9
The Mapper .. 5-9
The Interconnector.. 5-9

XEPLD Files and Directories ... 5-10
The Netlist File... 5-15
The PLUSASM Equation Files .. 5-15
JEDEC Source Files.. 5-15
Design Database File .. 5-15
The Report Files .. 5-15
The Log Files... 5-16
The Error/Warning Files .. 5-16
The Programming Bit-map File.. 5-16
XEPLD Reference Guide vii

XEPLD Reference Guide
Appendix A Typical Component Equations
Basic Gates.. A-1
4-Bit Counter (CB4X2) ... A-2
4-Bit Accumulator (ACC4X1) ... A-3
4-Bit Adder (ADD4X1).. A-4
Flip-Flop (FDSRE).. A-5
Latch (LD) .. A-6
Multiplexer (M4_1E) ... A-7
Comparator (COMP4) .. A-8
Magnitude Comparator (COMPM4) ... A-9
Shifter (SR4RLED)... A-10
T Flip-Flop (FTC).. A-11
Decoder.. A-12

Appendix B PAL Devices Supported
Specific and Generic PAL Symbols for Schematics..................... B-1
PAL Equation File Syntax .. B-2
22V10 and 20V8 Support.. B-3

Default Clock... B-3
Default 20V8 3-State Control .. B-3
Global 22V10 Set/Reset ... B-3
Automatic Inversion of Set and Reset..................................... B-4

Generic PAL Support ... B-4
PLFB9 and PLFFB9 Support ... B-5

Clocks ... B-5
PLFB9 Arithmetic Carry-In and Carry-Out Pins B-5
Defining PLFFB9 Fast Inputs.. B-5

PALs Supported through Generic PAL Components B-6

Appendix C Equation Entry Application Note
Introduction .. C-1

How to Follow this Tutorial.. C-1
The Tutorial Design... C-2
Overview of the Sessions ... C-3
The Example Files .. C-4

Session 1: Using the XEPLD Software .. C-4
Step 1: Prepare the System.. C-4

Setting Up the PC .. C-5
Setting Up the Workstation .. C-5

Step 2: Start XDM ... C-6
viii Xilinx Development System

Contents
Step 3: Select Menu Items.. C-7
Step 4: Configure the XEPLD Environment............................ C-9

Configuring the PC .. C-9
Configuring the Workstation .. C-10

Session 2: Design Entry... C-11
Step 1: Segment the Design... C-11
Step 2: Create Boolean Equations ... C-12
Step 3: Consolidate the Design .. C-16
Step 4: Assign Signals to Specific EPLD Pins........................ C-19

Session 3: Fitting the Design ... C-20
Step 1: Invoke the Fitter.. C-20
Step 2: View the Reports .. C-21
Step 3: Save Pin Assignments ... C-22
Step 4: Create the Programming File C-22
Step 5: Create a Simulation Model ... C-23

Appendix D Glossary ... D-1

Index .. Index-1

Trademark Information
XEPLD Reference Guide ix

XEPLD Reference Guide
x Xilinx Development System

Chapter 1
XEPLD Reference Guide — 0401203 01 1–1

XEPLD Functional Description

Product Description
The XEPLD Design System from Xilinx allows you to create designs
for Xilinx EPLD devices. No other tools are required. However, you
can also use third-party schematic capture tools and/or PLD
compilers to enter and verify your design.

You can use schematics, behavioral descriptions, or a mixture of both
to represent your design. XEPLD software translates and maps the
design quickly and automatically onto the Xilinx EPLD device you
choose, creates a programming file for the device programmer, and
provides reports and simulation files for design analysis and verifica-
tion.

To support schematic entry, Xilinx provides a component symbol
library for each of the supported schematic capture tools. In addition
to TTL-like components, this library contains industry-standard PAL
symbols (for example, 22V10 and 20V8) to simplify direct PAL-based
design conversions. XEPLD software produces models of the
completed design for each of the supported simulators.

You can enter designs behaviorally using third-party PLD compilers,
then export the designs to XEPLD in the form of equation files. Alter-
natively, you can enter equations directly using a text editor.

XEPLD Reference Guide
The rest of this chapter describes the parts of the XEPLD Design
System and how they work together. It is divided into four sections:

● The XACT Design Manager (XDM) — A brief description of the
XEPLD software’s user interface.

● Design Methodology — The basic steps for creating a schematic or
behavioral design and an explanation of how XEPLD software
supports PAL conversion.

● XEPLD Fitter Modules — A description of each of the modules
within the XEPLD software.

● XEPLD Files and Directories — A description of the files and
directories that comprise the XEPLD software.

The XACT Design Manager (XDM)
The XACT Design Manager (XDM) is a set of menus with commands
that you use to program an EPLD. Via the XDM interface, you can
access all the functions of the XEPLD software, your CAE tools, text
editors, netlist and behavioral translators, and programmer control
software. Figure 1-1 shows the relationships between XDM and the
various parts of the XEPLD software system.

The XDM main menu (Figure 1-2) and submenus display all the oper-
ational choices available to you. You can use either the mouse or the
command line to select commands. XDM provides a convenient
structure for organizing all the files associated with your designs: all
the files associated with a particular design have the same name, but
different extensions. For more about XDM, see the “XACT Design
Manager Menus” chapter of this manual.
1–2 Xilinx Development System

XEPLD Functional Description
Figure 1-1 XDM Interfaces with Third-Party Tools

OrCAD VST

Component
Library

Design Entry Design Implementation Design Verification & Programming

Xilinx
Programmer

Viewlogic
Viewdraw
(Available

from Xilinx)

OrCAD SDT

Schematic Entry

Text Editor

Behavioral Entry

User
Supplied

Xilinx
Development

System

Simulation

Viewlogic
Viewsim

(Available
from Xilinx)

Industry-
Standard

Programmer

PLUSASM
Equation

Assembler

XEPLD
Integrator

Report
Generator

XACT Design Manager

PLD Compiler
(ABEL,XABEL,CUPL,

PALASM, etc.)

X3603
XEPLD Reference Guide 1–3

XEPLD Reference Guide
Figure 1-2 The XACT Design Manager Menu
1–4 Xilinx Development System

XEPLD Functional Description
Some third-party design tools have their own design manager, as
shown in the following figure:

Figure 1-3 Third-Party Design Tools that Bypass XDM

Design Methodology
Designing circuits using XEPLD is much like designing with TTL
devices or programmable logic devices (PLDs). You can express your
designs as schematics (Figure 1-4) or in behavioral form (Figure 1-5).

Mentor Graphics
QuickSim

Component
Library

Design Entry Design Implementation Design Verification & Programming

CADENCE
Composer/

Concept

Mentor Graphics
Design Architect

Schematic Entry

Text Editor

Behavioral Entry

User
Supplied

Xilinx
Development

System

Simulation

CADENCE
RapidSim/

Verilog

Industry-
Standard

Programmer

PLUSASM
Equation

Assembler

XEPLD
Integrator

Report
Generator

CAE Tool Design Manager

(Mentor Graphics, CADENCE)
PLD Compiler

(ABEL,XABEL,CUPL,
PALASM, etc.)

X4402
XEPLD Reference Guide 1–5

XEPLD Reference Guide
Figure 1-4 Designing with Schematic Capture Tools

Figure 1-5 Designing with Behavioral Entry Tools

Programming
Bit-Map

Device
Programmer

Reports
(Resource,

Pinlist,
Mapping)

Simulation
Model

Simulator
(Viewlogic, OrCAD,
Mentor Graphics,

CADENCE)

Equation File
or

JEDEC File for
PLD Components

(Optional)

XNF
Netlist

File

XEPLD Translator

XEMake

PLUSASM Assembler

FITNET (Integrator)

Model Generator

MAKEPRG (Programmer)

Behavioral
Compiler

(ABEL, XABEL,
CUPL...) or
Text Editor
(Optional)

Schematic
Editor

(Viewlogic, OrCAD,
Mentor Graphics,

CADENCE)

XEPLD
Component

(Symbol)
Library

Design Entry Design Implementation Design Verification & Programming

X3602

XNF
File

Logic Modeling
Device Model

Programming
Bit-Map

Device
Programmer

Reports
(Resource,

Pinlist,
Mapping)

Equation File(s)
(Whole Designs)

XEPLD Translator

FITEQN (Integrator)

Model Generator

MAKEPRG (Programmer)

Behavioral
Compiler

(ABEL, XABEL,
CUPL...) or
Text Editor
(Optional)

Design Entry Design Implementation Design Verification & Programming

X3601

Simulation
Model

Simulator
(Viewlogic,

OrCAD)
1–6 Xilinx Development System

XEPLD Functional Description
Designing with Schematic Capture Tools
To express a design in schematic form, follow this basic procedure:

1. Select the XC7200 or XC7300 Library. Make sure you are using
the XEPLD component library created for your schematic design
entry package. The XC2000, XC3000, and XC4000 libraries are for
FPGAs.

Most of the symbols in the XC7200 and XC7300 libraries are
generic; they are present in all Xilinx libraries, allowing easy port-
ing of designs from one device family to another. Some of the
symbols are EPLD-specific, allowing you to take advantage of
special features of the EPLD architecture.

2. Select components. Develop the design by selecting the appropri-
ate components from the XEPLD library. For custom functions
that are not available in the library, use PLD library components
such as 22V10, or create your own symbol and draw a lower-level
schematic under it.

The XEPLD software supports conventional ASIC gate level
design. You can enter a complete design with no boolean equation
input.

3. Enter your design. Use a Xilinx-supported third-party schematic
capture tool to enter your design. You can use attributes to control
logic optimization and take advantage of EPLD architectural fea-
tures.

4. Specify pin preferences. You can specify your pin assignment
preferences for I/O signals in the schematic. For better fitting, you
can let the fitter assign the pins for you.

5. Define custom logic functions. You can do so in one of two ways:

● You can define a lower-level schematic for a custom macro
symbol.

● You can use a commercial PLD compiler or supply PLUSASM
Boolean equations. If you use a commercial PLD compiler, you
need to export PALASM, PLUSASM, or JEDEC files to XEPLD.
You can use a library PLD symbol or create a custom primitive
symbol to refer to this equation file.

6. Perform functional simulation. You can perform functional sim-
ulation only if your design is purely schematic, that is, it has no
XEPLD Reference Guide 1–7

XEPLD Reference Guide
PLD equation files. After verifying the functionality of your
design, you can return to your schematic files to fix the logic of
your design. For more information, see the Interface User Guide for
your CAE tool.

7. Export the netlist and fit the design. The XEPLD software reads
the schematic netlist (and the PLUSASM equation files or JEDEC
maps if you have included them), translates them, maps your
design, and generates a programming map for the target device.
The entire processing is performed by the XEPLD Fitter, which is a
collection of many software modules each with a specific function.
For more information on these modules, refer to the “XEPLD Fit-
ter Modules and Files” chapter.

8. Examine the reports. XEPLD generates reports about actual
resource utilization and I/O pin mapping. You can return to your
schematic or equation files to add or remove resources and refit
your design.

9. Perform timing simulation. If you are happy with the reports,
you can proceed with timing simulation to verify the functionality
and timing of your design. After simulation, you can return to
your schematic or equation files to fix the logic of your design and
rerun the Fitter.

10. Perform logic modeling. The XNF file produced in the fitting pro-
cess can be used with third-party logic modeling software.

11. Program the device. When the design is correct and is success-
fully mapped, you can download the programming map on a sup-
ported device programmer and program the target EPLD device.

12. Freeze the pinout. After prototyping, you can "freeze" the pinout
of your existing design before making some adjustments to your
logic design. By freezing the pinout, you may be able to avoid or
minimize PC board changes.

For more information on the design entry techniques for schematic-
based design, see the Interface User Guide for your CAE tool.
1–8 Xilinx Development System

XEPLD Functional Description
Designing with Behavioral Entry Tools
If you do not wish to use schematic capture tools, you can express
your design in behavioral form.

1. Enter your design. You have the following choices:

● You can read designs expressed in the PLUSASM-compatible
format from third-party behavioral design tools, including
PLD compilers (such as ABEL, Xilinx ABEL, CUPL, PALASM,
LOG/iC, etc.).

● You can enter the design directly in the PLUSASM language.

The PLUSASM equation file syntax is the interface language
XEPLD uses for all behavioral design. PLUSASM is a superset of
the boolean logic language used by the industry-standard
PALASM assembler. PLUSASM provides you with access to the
advanced architectural features of the Xilinx EPLD devices. PLUS-
ASM also allows you to control the mapping process, including
partitioning and minimization.

Here are some examples of the flexibility you have in expressing
your design:

● You can express a design as either a single, large behavioral
description or you can break it down into smaller, manageable
blocks the size of PLD-like functions.

● You can enter your entire design in high-level language or
state machine formats using commercial PLD compilers, or
directly in PLUSASM equation syntax using a text editor. If
you use commercial PLD compilers, you can use their func-
tional simulation capability to test the logic of your design
before mapping.

● You can use PLUSASM language constructs to explicitly con-
trol the mapping of any or all of your logic into the device or to
specify a preferred pinout.

2. Fit your design. The XEPLD software reads equation files and
maps the design to the Xilinx EPLD device. The XEPLD software
has logic optimization, device optimization, automatic partition-
ing, and Boolean minimization routines to handle large equation
files and to utilize logic resources most efficiently.
XEPLD Reference Guide 1–9

XEPLD Reference Guide
3. Examine the reports. After the fitting process, you can look at the
reports XEPLD generates to find out how the equations were min-
imized, partitioned, and mapped onto the target architecture. You
can also find out the actual resource utilization and I/O pin map-
ping.

4. Simulate your design. If you also have a supported simulator,
you can simulate your design after mapping, with full timing
accuracy, using a model generated by XEPLD.

5. Program the device. When the design is successfully mapped, you
can download the programming bitmap file to a supported device
programmer and program the target EPLD device.

6. Freeze the pinout. After prototyping, you can "freeze" the pinout
of your existing design before making some adjustments to your
logic design. By freezing the pinout, you may be able to avoid or
minimize PC board changes.

For more information on the design entry techniques for behavioral
designs, refer to the “PLUSASM Command Reference” chapter of this
manual and the XEPLD Design Guide.

Converting Existing PAL Designs
The Xilinx EPLD architecture and the XEPLD software allow you to
easily incorporate existing multiple PAL-based designs into an EPLD
to reduce power, reduce costs, increase reliability, and simplify PC
board layout. The Xilinx XC7000-series EPLD devices contain PAL-
like function blocks (FBs) that are linked by a 100% routable intercon-
nection matrix. This EPLD architecture, like PALs, has fixed, predict-
able delays. Each FB can be thought of as a 24V9 component (a 24
input AND-OR array with 9 outputs). This architecture allows you to
combine existing PAL-based designs into an EPLD device, with little
or no modification, and achieve predictable performance results.

You can use your PLD compiler (such as ABEL) to export each of
your PAL designs in a PALASM- or PLUSASM-compatible equation
file format. You can then use the PALCONVT command to create a
simple PLUSASM file that links all your PALs and defines the EPLD
device I/O interface. The XEPLD software can read these files
directly.

You can also convert a PAL-based design using schematic entry. The
1–10 Xilinx Development System

XEPLD Functional Description
XEPLD component library contains symbols for standard PALs, such
as 20V8 and 22V10, and generic PLD symbols to represent other
PALs. You define the logic for these PAL components just as you do
for behavioral entry. Your schematic is drawn the way the PAL device
would be interconnected on the board.

The XEPLD software automatically combines your original PAL
equation files into one comprehensive body of equations that is mini-
mized and partitioned to make the most efficient use of device
resources. This allows you to concentrate on your logic design
without concern for physical design partitioning or placement in the
EPLD device.

For more information and examples of PAL design conversion, see
the “Equation Entry Application Note” appendix of this manual and
the XEPLD Design Guide.
XEPLD Reference Guide 1–11

XEPLD Reference Guide
1–12 Xilinx Development System

Chapter 2
XEPLD Reference Guide — 0401203 01 2–1

XACT Design Manager Menus

XDM, the XACT Design Manager, serves as a menu-driven shell for
executing all XACT development operations, including the XEPLD
Fitter and related interfaces.

The following sections explain the features of XDM:

● Using XDM — This section illustrates how to invoke and operate
the XDM menu system.

● Menu Tour — This section provides a tour to assist you in using
the menus.

Using XDM
This section tells you about the file XDM uses to build its menus, how
to start up and use XDM, and how to enter commands.

 Invoking the XACT Design Manager is different for PC-type systems
and workstations. Please read the sections that relate to your system.

When used in a workstation environment, XDM requires that X-
Windows, Openlook/Motif, or the HP Design Manager be running.

The Program List File
XDM maintains a program list file (proglist.xdm) to minimize the
time required for start up. This file contains a list of XDM-supported
programs (executable files) installed on your system.

When generating proglist.xdm, XDM attempts to write it in the
following order:

1. To the directory specified by the XACTUSER environment vari-
able.

XEPLD Reference Guide
2. To the “data” subdirectory in the directory specified by the XACT
environment variable.

3. To the current working directory.

When reading proglist.xdm, XDM searches for it in the following
order:

1. In the current working directory.

2. In the directory specified by the XACTUSER environment vari-
able.

3. In the “data” subdirectory in the directory specified by the XACT
environment variable.

Using XDM on a PC
The XDM executable is located in the XACT software directory
(default C:\XACT), which should be included in the PATH specified
in your autoexec.bat file.

To invoke XDM, enter the following command at your operating
system command prompt.

XDM

Once the XDM command is entered, the Design Manager software
loads into memory and reads the proglist.xdm file to set up your
menus. While this is being done, a message similar to the following
will be displayed.

Reading c:\xact\data\proglist.xdm...

If proglist.xdm is missing, as in the very first invocation of XDM, it
will be automatically generated by XDM. See the ScanDisk entry in
“The Utilities Menu” in the “Menu Tour” section in this chapter.

After a short while, another message similar to the following is
displayed.

Reading c:\xact\data\xdm.pro...

This indicates that it is configuring itself by reading the profile infor-
mation. This configures the Design Manager software as well as the
graphics, I/O ports, and any other configurable system parameters.
Custom configuration of the xdm.pro file is allowed and is discussed
in the Profile menu section.
2–2 Xilnx Development System

XACT Design Manager Menus
When XDM has completed loading, your monitor displays the XDM
menu screen as shown in Figure 2-1. The menu screen consists of a
menu bar at the top, a command line at the bottom, a status area
above the command line, a mouse cursor, and a logo with software
version information in the center.

Figure 2-1 XACT Design Manager Opening Screen (PC)

To quit XDM and return to DOS, select Quit on the menu bar at the
top of the screen or type quit on the command line at the bottom of
the XDM screen.

 This returns you to your system command prompt.

You can temporarily return to DOS without quitting XDM by using
the DOS command in the Utilities menu or typing dos at the
XEPLD Reference Guide 2–3

XEPLD Reference Guide
command line. Use of this and other utility commands is described
later in this chapter.

Caution: If your menus do not display all of the commands included
with your Xilinx software product, check your autoexec.bat file to
verify that your PATH is properly set to include the executable direc-
tory path(s) specified during installation. For example:

PATH ...; drive:\XACT;...

If it is not present, modify your autoexec.bat file to include it, then
reboot your system. The proglist.xdm file may also need to be
updated. Do this by invoking XDM and selecting the ScanDisk
command from the Utilities menu.

Using XDM on a Workstation
When using XDM on a workstation, X-Windows must first be
running. This section acquaints you with the X-Windows environ-
ment and then the process of invoking the XACT Design Manager.

About X-Windows and Graphic Interfaces

Xilinx software requires X-Windows to operate on a workstation. The
recommended graphic interface is Motif, although Xilinx software is
also compatible with Display Manager on HP and Openwindows on
Sun-4. It is not compatible with Sunview.

X-Windows is an industry-standard windowing environment devel-
oped by the Massachusetts Institute of Technology (MIT). The
appearance of the windows, mechanisms used to manipulate
windows, and the mouse definition are part of the graphic interface
(for example, Motif). X-Windows and Motif are available on HP and
Sun-4.

Both X-Windows and the graphic interface are configurable. Mouse
operation, menu contents, screen display, and window appearance
are controlled by configuration files. The X-Windows environment is
controlled by the .Xdefaults file and the Motif window manager is
controlled by the .mwmrc file. These files should be located in your
home directory.

There are some basic operations that are applicable to most configura-
tions. These items are described in the following paragraphs.
2–4 Xilnx Development System

XACT Design Manager Menus
Mouse Configuration

The mouse buttons may be programmed to invoke menus, select
objects, and select text. The modes of the mouse button may vary
depending upon the location of the cursor. Buttons will operate
differently if the cursor is located in an X-terminal window, X-
terminal banner or edge, or outside an X-terminal window. Specific
operation is dependent upon your configuration.

Window Operations

The size and location of windows are easily modified within the X-
Windows environment. Window operations are easily invoked
through menus or by the use of accelerators. The basic window oper-
ations are described as follows.

● Move — This allows you to move the window to a different loca-
tion on the screen.

● Size — This allows you to alter the size of the window by clicking
an edge or corner of the window and dragging the cursor.

● Iconize/Minimize — This transforms the window into an icon. Dou-
ble clicking on the icon will restore the window to its original size.

● Front — This brings the window to the front of the display, over-
lapping any other open windows.

● Back — This sends the window to the back of the display, allowing
all other open windows to overlap it.

● Pop — This toggles the window between the front and back of the
display. When you initially select Pop, the window comes to the
front, and then it toggles the window from front to back and from
back to front.

● Close — This closes the window and removes it from the active
display.

Window Buttons

Many window configurations are defined with three buttons in the
banner of the window. These buttons are menu select, iconize, and
maximize. The menu select is located in the top left corner and the
window iconize and maximize are located in the top right corner.
XEPLD Reference Guide 2–5

XEPLD Reference Guide
Window Shortcuts

You can use window shortcuts to resize, move, and front windows.
At the command line, simultaneously press the alt key and a function
key. On Sun platforms the alt key is actually the meta 〈◊) key, located
on either side of the space bar. To resize a window using the mouse,
click and drag the window edge or corner. To move a window, click
and drag on the window banner. To bring a window to the front,
click on the banner.

Active Window

The active window is usually highlighted to allow easy identification.
The default Xilinx method of choosing the active window is to move
the cursor into the window. Other configurations may have other
methods. For example, you might have to click in the window to acti-
vate it for input.

For more information about your graphic interface, refer to the refer-
ence manuals that came with your system.

Starting XDM

To invoke XDM, enter the following command at your operating
system command prompt using capital letters.

XDM

Once the XDM command is entered, the Design Manager software
loads into memory and reads the proglist.xdm file to set up your
menus. While this is being done, a message similar to the following is
displayed.

Reading proglist.xdm...

If proglist.xdm is missing, as in the very first invocation of XDM, it is
automatically generated by XDM. See the ScanDisk entry in “The
Utilities Menu” section in this chapter.

After a short while, another message similar to the following is
displayed.

Reading xdm.pro...

This indicates that XDM is configuring itself by reading the profile
information. This configures the Design Manager software as well as
2–6 Xilnx Development System

XACT Design Manager Menus
the graphics, I/O ports, and any other configurable system parame-
ters. To configure the xdm.pro file, use the Saveprofile command,
which is discussed in the Profile Menu section.

When XDM has completed loading, the XDM window appears as
shown in Figure 2-2 and consists of four areas.

Figure 2-2 XDM Opening Screen (Workstation)

● Status Window — Starting at the top, there is a status window dis-
playing responses to the commands entered in the command box.
Scroll bars allow you to see all of the display.

● Command Window — Below the status window is the command
window, which contains two areas. The top area displays a history

/home/joe/xtutorial
XEPLD Reference Guide 2–7

XEPLD Reference Guide
of previous commands entered at the command line. Keyboard
arrow keys or scroll bars can be used to cycle through the com-
mands. Clicking on the command in the history area brings the
command down to the command line. The lower area contains the
Cmd: prompt, where commands are entered. Commands cannot
be entered unless the cursor is blinking on the command line. If
the cursor does not appear, click on the command line with the
mouse. Commands on the command line can be edited using the
backspace and arrow keys.

● Menu Bar — Below the command window is the menu bar. Click-
ing on the menu bars bring up the various menu options.

● Main Screen — Below the menu bar is the main screen that con-
tains the version number as well as information on the Xilinx
device family selected, the current directory, the part type speci-
fied, and the mouse type used.

To quit the XACT Design Manager, select Quit on the menu bar at the
top of the screen or enter a quit command on the command line.
This returns you to your system command prompt.

When running your Xilinx software in X-Windows, you can return to
a system command prompt by simply opening another window.

Caution: On workstations, if your menus do not display all of the
commands included with your Xilinx software product, verify that
your path and your environment variables are set correctly. The pro-
glist.xdm file may also need to be updated. Do this by invoking XDM
and selecting ScanDisk from the Utilities menu.

Entering Commands
There are two methods for executing each of the commands available
in the XDM menu. One method is to use the mouse pointer to open
the menu and click on the command you want (the graphic interface).
The second method is to enter the command and any specified
options from the command line.

Regardless of the method you use to execute commands, messages
from commands appear in the window from which you invoked
XDM. While a command is executing, the cursor is a clock. When a
command finishes executing, a beep sounds, and the cursor changes
back to an arrow (or whatever it is set to; see the Cursor command
description under “The Profile Menu” section).
2–8 Xilnx Development System

XACT Design Manager Menus
The Graphic Interface

Using the graphic interface to execute commands or programs
requires that you first know where that command resides in the XDM
menu structure.

You also need to know which operations the mouse buttons are set to
perform. The usage descriptions provided here assume the mouse is
set to the default button configuration. The default is Select, Menu,
and Done for B1 (the left mouse button), B2 (the middle mouse
button) and B3 (the right mouse button), respectively.

To open a menu, simply position the cursor on the menu you want to
open and click the left mouse button. You can also recall the last
command selected by pointing anywhere except the menu titles and
pressing the middle button.

The Command Line Interface

The command line is used for entering commands listed in the
menus from the keyboard and is displayed at the bottom or top or
bottom of your screen as follows.

If a command is displayed in a menu with two or more capital letters,
the capital letters represent a shortcut command entry.

For example, the Utilities menu displays a command called DirClean.
In this case, you can type three different entries on the command line:
DirClean, DirC, or DC, followed by a return to execute the command.

When a command line shortcut is used to execute a command, the
case of the characters is not significant. In the preceding example,
entering a dc, Dc, or dC would provide the same result as entering
DC.

On PC systems, when you open either the Utilities or Profile menu,
notice that the commands are displayed with some or all of the char-
acters highlighted. The highlighted characters represent an addi-
tional shortcut for entering the command on the command line.

Cmd:
XEPLD Reference Guide 2–9

XEPLD Reference Guide
Task-Based Command Flows
The XDM menu contains all the commands you need to turn your
schematic or behavioral design files into device programming files
and simulation files. Although there are standard sequences of
commands for common tasks, such as creating a design database or
preparing for timing simulation, the commands are displayed sepa-
rately to allow for maximum flexibility. This section shows standard
command sequences you need to use to accomplish the most
common tasks.

The options for these commands are not needed for the commands to
work. When prompted for an option, you can select Done to bypass
all options.

For more details on each command, see the “Menu Tour” section.

Schematic Design to Programming File
To create an Intelhex programming file from a schematic design,
follow these steps:

1. Use the Workview or OrCAD command on the DesignEntry
menu (you can also develop Mentor Graphics or CADENCE
designs under their respective interfaces). Create the schematic
using XC7000 library components. See the Interface User Guide for
your CAE tool for more details.

2. Create any PLUSASM equation files needed to describe logic
under PAL symbols. You can translate source files from other PLD
compiler tools or from PAL JEDEC files. See the Interface User
Guide for your CAE tool for more details.

3. Use the XEMAKE command on the Translate menu.

4. Select the Make Intelhex Bitmap option of XEMAKE.

To create a JEDEC programming file from a schematic design, follow
these steps:

1. Use the Workview or OrCAD command on the DesignEntry
menu. Create the schematic using XC7000 library components. See
the Interface User Guide for your CAE tool for more details.

2. Create any PLUSASM equation files needed to describe logic
under PAL symbols. See the Interface User Guide for your CAE tool.
2–10 Xilnx Development System

XACT Design Manager Menus
3. Use the XEMAKE command on the Translate menu.

4. Select the Make Design Database option of XEMAKE.

5. Use the MAKEJED command on the Verify menu.

About the XEMAKE Command
The XEMAKE command runs several other commands, which you
can run separately if you wish.

XEMAKE examines the dates of all the files in your design (.pld equa-
tion files, lower-level schematics, and so on) and attempts to process
only the files that have changed since you last ran XEMAKE on your
design.

If you select a schematic file as the input file, the XEMAKE command
flow is as follows:

1. Checks the schematic (Viewlogic only).

2. Runs WIR2XNF or SDT2XNF (Translate menu) on the schematic
file.

3. Runs PLUSASM (Translate menu) on the PLUSASM equation
file(s).

4. Runs XNFMERGE* (Translate menu) to merge the design files.

5. Runs FITNET** (Fitter menu) to fit the design and map it to an
EPLD device.

6. Runs MAKEPRG (Verify menu) to create an Intelhex program-
ming file.

* You have the option of starting the XEMAKE flow just before
XNFMERGE, using .xnf files as input. Do this to save time if none of
your schematics have changed. To do this, use the -X option.

** You have the option of stopping the XEMAKE flow just after
FITNET, which produces a .vmh (or .vmd) file you can use to create
either an Intelhex (with MAKEPRG) or JEDEC (with MAKEJED)
programming file. To do this, choose “Make Design Database” as the
target.

If you select a behavioral design file (.pld or .pds) as the input file, the
XEMAKE command flow is as follows:
XEPLD Reference Guide 2–11

XEPLD Reference Guide
1. Runs FITEQN** (Fitter menu) to fit the design and map it to an
EPLD device.

2. Runs MAKEPRG (Verify menu) to create an Intelhex program-
ming file.

** You have the option of stopping the XEMAKE flow just after
FITEQN, which produces a design database (.vmh) file you can use to
create either an Intelhex (with MAKEPRG) or JEDEC (with
MAKEJED) programming file. To do this, choose “Make Design Data-
base” as the target.

Behavioral Design to Programming File
To create a programming file from a design that is a set of separate
PAL equation files, follow these steps:

1. Create the PAL equation files.

2. Use the PALCONVT command on the Fitter menu.

3. Select the Create New PLD and PAL Interconnect Report option
of PALCONVT.

4. Check the top-level design_name.pld file to make sure that the
input and output signals were correctly classified as INPUTPIN,
OUTPUTPIN, or NODE. If the signals were incorrectly classified,
edit the design_name.pld file.

5. Use the XEMAKE command on the Translate menu or the
FITEQN command on the Fitter menu.

6. Select the Make Intelhex Bitmap option of XEMAKE or use the
MAKEPRG (for an Intelhex file) or MAKEJED (for a JEDEC file)
command on the Verify menu.

If you are modifying an existing design and you are sure the input
and output signals will be correctly classified, follow these steps:

1. Modify the PAL equation files.

2. Use the PALCONVT command on the Fitter menu.

3. Select the Integrate New PLD Using FITEQN option of
PALCONVT.

4. Use the MAKEPRG (for an Intelhex file) or MAKEJED (for a
JEDEC file) command on the Verify menu.
2–12 Xilnx Development System

XACT Design Manager Menus
To create a programming file from a design that is all in a single file or
that uses INCLUDE_EQN statements to link files, follow these steps:

1. Create the equation files.

2. Use the XEMAKE command on the Translate menu or the
FITEQN command on the Fitter menu.

3. Select the Make Intelhex Bitmap option of XEMAKE or use the
MAKEPRG (for an Intelhex file) or MAKEJED (for a JEDEC file)
command on the Verify menu.

JEDEC PAL File to PLUSASM PAL File
If you have a JEDEC file that maps a design for a 20V8 or 22V10 PAL,
you can convert it to a PLUSASM file using the JED2PLD command
on the Translate menu. Then use XEMAKE or FITEQN (if the PAL is
part of a purely behavioral design) or FITNET (if part of a schematic
design) to fit the design.

Workview Simulation
This section describes the steps necessary to perform functional or
timing simulation in Viewlogic. You can also perform timing simula-
tion in Viewlogic if you have a behavioral design.

Functional Simulation

To perform functional simulation in Viewlogic, follow the steps
below. Perform all steps within the Viewlogic environment.

1. Create your design in Viewdraw using XC7000 library compo-
nents.

2. Select the Export ➝ Wirelist ➝ Viewsim command or type vsm at
the command line.

3. Perform simulation in Viewsim using the standard procedure. For
more information, refer to the Viewlogic Interface User Guide.

Note: You can perform functional simulation only if your design con-
sists entirely of schematic library components and contains no equa-
tion files.
XEPLD Reference Guide 2–13

XEPLD Reference Guide
Timing Simulation

To perform timing simulation in Viewlogic, follow the steps below.

1. Create your design in Viewdraw using XC7000 library compo-
nents.

2. Exit Viewlogic and enter or return to XDM.

3. Use the Translate ➝ XEMAKE command or the equivalent set of
commands to fit your design.

4. Select the Verify ➝ XSIMMAKE command.

5. Choose Viewlogic_Epld_Timing as the target.

6. Exit XDM and enter or return to Viewlogic.

7. Perform simulation in Viewsim using the standard procedure. For
more information, refer to the Viewlogic Interface User Guide.

Timing Simulation for a Behavioral Design

To perform timing simulation in Viewlogic for a behavioral design,
follow the steps below.

1. Create your design.

2. Use the Translate ➝ PALCONVT or Translate ➝ FITEQN com-
mand to fit your design.

3. Select the Verify ➝ XSIMMAKE command.

4. Choose Viewlogic_Epld_Timing as the target.

5. Enter Viewlogic.

6. Perform simulation in Viewsim using the standard procedure. For
more information, refer to the Viewlogic Interface User Guide.

OrCAD Simulation
This section describes the steps necessary to perform functional or
timing simulation in OrCAD. You can also perform timing simulation
in OrCAD if you have a behavioral design.

Functional Simulation

To perform functional simulation in OrCAD, follow the steps below.
2–14 Xilnx Development System

XACT Design Manager Menus
1. Create your design in Draft using XC7000 library components.

2. Exit OrCAD and enter or return to XDM.

3. Select the Translate ➝ ANNOTATE command.

4. It is recommended that you select the Translate ➝ CLEANUP
command to detect any schematic drawing errors.

5. Select the Translate ➝ INET command to generate an OrCAD
INF-formatted netlist.

6. Select the Verify ➝ XSIMMAKE command.

7. Choose OrCAD_Epld_Func as the target.

8. Exit XDM and enter or return to OrCAD.

9. Perform simulation using the OrCAD simulation tool (VST). The
netlist file created by XSIMMAKE is design_name.vst. For more
information, refer to the OrCAD Interface User Guide.

Note: You can perform functional simulation only if your design con-
sists entirely of schematic library components and contains no equa-
tion files.

Timing Simulation

To perform timing simulation in OrCAD, follow the steps below.

1. Create your design in Draft using XC7000 library components.

2. Exit OrCAD and enter or return to XDM.

3. Use the Translate ➝ XEMAKE command or the equivalent set of
commands to fit your design.

4. Select the Verify ➝ XSIMMAKE command.

5. Choose OrCAD_Epld_Timing as the target.

6. Exit XDM and enter or return to OrCAD.

7. Perform simulation using the OrCAD simulation tool (VST). The
netlist file created by XSIMMAKE is design_name.vst. For more
information, refer to the OrCAD Interface User Guide.
XEPLD Reference Guide 2–15

XEPLD Reference Guide
Timing Simulation for a Behavioral Design

To perform timing simulation in OrCAD for a behavioral design,
follow the steps below.

1. Create your design.

2. Use the Translate ➝ PALCONVT or Translate ➝ FITEQN com-
mand to fit your design.

3. Select the Verify ➝ XSIMMAKE command.

4. Choose OrCAD_Epld_Timing as the target.

5. Enter OrCAD.

6. Perform simulation using the OrCAD simulation tool (VST). The
netlist file created by XSIMMAKE is design_name.vst. For more
information, refer to the OrCAD Interface User Guide.

About the XSIMMAKE Command
The XSIMMAKE command runs several other commands, which you
can run separately if you wish. The XSIMMAKE command flow is
different for each target.

● For the Viewlogic_Epld_Timing target, XSIMMAKE runs
VMH2XNF (Verify menu) on the .vmh file, XNF2WIR (Verify
menu) on the .xnf file, then VSM (Verify menu) on the WIR file.

● For the OrCAD_Epld_Func target, XSIMMAKE runs SDT2XNF
and XNFMERGE on the .inf file from INET, then runs XNF2VST
(Verify menu) on the .xnf file.

● For the OrCAD_Epld_Timing target, XSIMMAKE runs
VMH2XNF (Verify menu) on the .vmh file, then runs XNF2VST
(Verify menu) on the .xnf file.

Menu Tour
You can get acquainted with XDM by taking a tour of the menus and
the functions they perform. This section includes general information
concerning the menus that may be displayed by XDM for XEPLD
software.

First, the Settings Fields are described. You determine the most
2–16 Xilnx Development System

XACT Design Manager Menus
important aspects of your design environment using these fields.

The menu commands described in this chapter are visible only after
you have selected XC7200 or XC7300 as the Family. Depending on
which Xilinx software you have installed, your system may actually
display more or fewer items than those listed and described here. For
example, some commands only appear if you have installed DS35,
the Xilinx OrCAD interface, or DS391, the Viewlogic interface.

After each menu description, the commands on that menu are
described. For the commands that have a DOS or UNIX equivalent,
the DOS or UNIX command syntax is also described. The command
syntax for DOS and UNIX is identical except where noted.

After a general description of each of the possible menus, more
detailed information is provided for the menus specifically supplied
by XDM software. These are the Utilities and Profile menus.

To open a menu, place your mouse pointer on the menu you want to
open and click the left mouse button. In each of the menus you will
find a list of commands that are available.

The Settings Fields
Four fields in the lower left corner of the XDM screen determine
some of the most important settings for your design environment:

● Family — Specifies the family of Xilinx devices that are the target
for your design. To choose EPLD devices, select XC7200 or
XC7300.

This field determines many of the menu options that are available.
For example, the PLUSASM command appears on the Translate
menu only if you choose XC7200 or XC7300.

● Directory — Specifies the directory in which you are working.
This is the same as the Directory command on the Utilities menu.

● Part — Specifies the part that is the target of your design, for
example, XC7236-30PC44. You can also specify “InDesign” as the
part type; this tells the software to look for a PART= attribute in a
schematic design or at the CHIP statement in a behavioral design.

If you are typing a command on the command line and do not
supply a part type, the default is the fastest part available, the
XC73108-10PC84.
XEPLD Reference Guide 2–17

XEPLD Reference Guide
If you supply an abbreviated part type on the command line, the
default is the largest and fastest chip of that type, as follows:

73108 XC73108-10PC84
7372 XC7372-10PC84
7354 XC7354-10PC68
7336 XC7336-5PC44
7318 XC7318-5PC44
7272 XC7272-25PC84
7272A XC7272A-16PC84
7236 XC7236-25PC44
7236A XC7236A-16PC44

● Mouse — Specifies mouse mode (or connection port on the PC).

Note: To save a customized profile, including family and part set-
tings, mouse type, and so on, use the Saveprofile command in the
Profile menu. This allows you to use the same settings automatically
each time you start up XDM.

The Design Entry Menu
This menu contains a listing of the design entry software packages
installed in your system. When you select any of the commands listed
in this menu, XDM starts up the design entry software and you can
create your design.

The Translate Menu
This menu contains all programs required for producing a netlist. The
following bullet items are brief descriptions of the various translate
programs.

XEMAKE (EPLD Automatic Implementation Tool)

Follow these steps to use the XEMAKE command:

1. Select an option if you wish:

● -G — Creates a makefile and stops. You can run this makefile
later to complete the command. Running the makefile is faster
than selecting the schematic, because the makefile stores infor-
mation that the software otherwise has to compute (such as the
names and locations of PLD files) if you select the schematic.
2–18 Xilnx Development System

XACT Design Manager Menus
● -R — Forces execution of all design files regardless of file dates,
and displays makefiles in the input file list along with the sche-
matic and behavioral design files.

● -X — Prompts for an XNF file instead of a schematic or behav-
ioral design file. Looks in the xnf directory before the current
directory. This is useful if you want to fit a design in an XNF
file from a third-party tool to an EPLD device.

You can select one of these options or none. If you select no
options, this command prompts for a schematic or behavioral
design file, does not stop after makefile creation, and looks at file
dates to determine which files were modified since you last ran
XEMAKE on your design. After you have selected any options
you want (or no options), select the Done button.

2. Next, select the top-level schematic file, makefile (.mak), or behav-
ioral design file (.pld or .pds). If you have used XEMAKE before,
you will see one or more makefiles listed. Select the file you want
followed by the Done button.

3. Select the target from these alternatives:

● Make Intelhex bitmap

● Make design data base

You can also create a bitmap file later using the MAKEPRG or
MAKEJED command if you choose “Make design data base”.

4. If you chose to create an Intelhex bitmap, type a signature in
response to the Enter signature: prompt. A signature is a
series of letters or numbers, up to 8 characters long with a “.A”
extension, that indicates the revision of the design. The device
programmer can read the signature, and the person running the
device programmer can verify that the version is correct.

Use this command to fit a design using a single command. For a sche-
matic design, this command runs WIR2XNF or SDT2XNF, runs
XNFMERGE, processes any PAL files using PLUSASM, runs FITNET,
and optionally runs MAKEPRG. The PAL files must have .pld or .pds
extensions. For a behavioral design, this command runs FITEQN and
optionally runs MAKEPRG.

Unless you use the -R option, the XEMAKE command regenerates
the netlist only if the schematic has changed since the design was last
XEPLD Reference Guide 2–19

XEPLD Reference Guide
fitted. This command reassembles the PAL files only if they have
changed since the design was last fitted.

The XEMAKE command does not run JED2PLD, ABL2PLD,
PALCONVT, PINSAVE, or MAKEJED.

DOS or UNIX command equivalent:

xemake -g -r -x -p part_type design.ext target.prg

The -g, -r, and -x options are described above.

The -p option allows you to specify an XC7000 device. If you omit the
-p option, the software looks for a PART= attribute in a schematic
design or at the CHIP statement in a behavioral design file. If the soft-
ware finds no part type, the default is the fastest and largest part, the
XC73108-10PC84.

If you want to create an Intel HEX file, specify a target file name with
a .prg extension.

You can then run XEMAKE again to execute the makefile:

xemake -r design_name.mak

ABL2PLD (Create EPLD from Xilinx ABEL Design)

Translates a .abl file into a PLUSASM (.pld) file. If the file represents a
PAL in a schematic design, ABL2PLD runs the PLUSASM command
on the .pld file. If the file is a stand-alone behavioral design or the
top-level file of a stand-alone design, ABL2PLD runs the FITEQN
command. You indicate that the file represents a stand-alone design
by using the -R option.

ANNOTATE (Annotate SCH — PC Only)

Updates reference designators in OrCAD schematics. This is the first
step in preparing an OrCAD schematic for functional simulation.

CLEANUP (Cleanup SCH — PC Only)

Cleans up overlapping objects in OrCAD schematics.

INET (Compile SCH — PC Only)

Creates a .inf file as the second step in preparing an OrCAD sche-
matic for functional simulation.
2–20 Xilnx Development System

XACT Design Manager Menus
SDT2XNF (Create Orcad Netlist — PC Only)

Use this command to generate a netlist from an OrCAD SDT sche-
matic file. Follow these steps to use the SDT2XNF command:

1. Select a .inf file from the displayed list.

2. Select an output .xnf file from the displayed list, or select New File
to create a new output file.

3. Select an option if you wish:

● -D directory — Writes output files to the specified directory.

● -S path — Specifies a search path for Xilinx-defined .inf files.

● -U path — Specifies a search path for user-defined .inf files.

You can select one of these options or none. If you select no
options, the output files are written to the xnf directory below the
current directory. After you have selected the options you want,
select the Done button.

 After using this command, use the XNFMERGE command, which
creates a .xff file for input to the XEPLD Fitter.

Do not use SDT2XNF to prepare an OrCAD schematic for functional
simulation. You must use XSIMMAKE to do this.

DOS or UNIX command equivalent:

sdt2xnf design_name

WIR2XNF (Create Workview Netlist)

Use this command to generate a netlist from a Viewlogic schematic.
Follow these steps to use the WIR2XNF command:

1. Select an option if you wish:

● -B — Switches off status lines.

● -C — Checks pin-to-pin and pin-to-block connections.

● -F — Flattens the design hierarchy into one file. The default is
to create one .xnf file for each level of the hierarchy.

● -OD directory — Writes output files to the specified directory.

● -X — Maintains the hierarchy except for Xilinx macros. If you
XEPLD Reference Guide 2–21

XEPLD Reference Guide
use this option, you must use the -F option as well.

You can select one of these options or none. If you select no
options, status lines are on and the output files are written to the
current directory. After you have selected the options you want,
select the Done button.

2. Select a top-level schematic file from the displayed list.

3. Select an output .xnf file from the displayed list, or select New File
to create a new output file.

After using this command, use the XNFMERGE command, which
creates a .xff file for input to the XEPLD Fitter.

DOS or UNIX command equivalent:

wir2xnf design_name

JED2PLD (Import & Assemble PLD JEDEC)

Imports a JEDEC file to define the functional behavior of a PLD
component in a schematic. JED2PLD first translates the file specified
by JEDEC File to a PLUSASM equation file (with a .pld extension),
then subsequently invokes the PLUSASM assembler, which assem-
bles the equation file into a bitmap.

You can view and edit the PLUSASM equation file. If you edit the
PLUSASM file, you must use the PLUSASM command to recompile
the PLUSASM file. XEMAKE invokes PLUSASM automatically.

DOS or UNIX command equivalent:

jed2pld -e equation_file -p part_type -j jedec_file
 -t pld_type

The equation_file is the name of the .pld file you are creating; the
jedec_file is the JEDEC file you are reading. The pld_type is one of the
supported PLD types (PL20V8 or PL22V10).

PLUSASM (Assemble PLD Equations)

Assembles a PLUSASM equation file that describes a PLD used in a
schematic design. PLUSASM assembles the source file you select and
generates a component bit-map file and a report. Component bit-map
files are used by the XEPLD Fitter commands on the Fitter menu.
2–22 Xilnx Development System

XACT Design Manager Menus
DOS or UNIX command equivalent:

plusasm -e equation_file -p part_type

If you omit the -p option, the software looks at the CHIP statement in
the equation file. If the software finds no part type, the default is the
fastest and largest part, the XC73108-10PC84.

PINSAVE (Save EPLD Pinout)

Use this command after a successful fitting of your design to save the
pin allocation information into a Pin-save file with extension .vmf. If
you set the Pinfreeze option of the FITEQN or FITNET command to
On, the Fitter will, on subsequent iterations of your design, assign the
pins to the same locations indicated in this file.

DOS or UNIX command equivalent:

pinsave -n design_name

If your design is targeted at an XC7272 device, you must specify the
.vmd extension after the design name.

XNFMERGE (Merge Multiple XNF Files)

This command merges XNF files generated by the SDT2XNF or
WIR2XNF command. Follow these steps to use the XNFMERGE
command:

1. Select an option if you wish:

● -A — Abbreviates the file-reading report.

● -D directory — Adds the specified directory to the .xnf file
search path.

Note: If you specified -D for SDT2XNF or -OD for WIR2XNF,
be sure to specify -D for XNFMERGE.

● -I — Ignores RLOC related information (FPGA only).

● -O file — Sends the merge report to the specified file. If you do
not use this option, the default merge report name is
design_name.mrg.

● -P — Changes the package specification for the part.

● -Q — Suppresses messages about unresolvable symbols. This
XEPLD Reference Guide 2–23

XEPLD Reference Guide
option is always used automatically for XC7000 designs.

You can select one of these options. Normally you do not need to
specify any options for EPLD designs. After you have selected the
options you want, select the Done button.

2. Select a .xnf file from the displayed list. If there is an xnf directory
below the current directory, XDM looks there for files to put in this
list.

3. Select an output .xff file from the displayed list, or select New File
to create a new output file.

DOS or UNIX command equivalent:

xnfmerge design_name

The Fitter Menu
Commands on this menu execute the XEPLD design implementation
algorithms that map the design onto the target EPLD device.

FITEQN (Integrate EPLD Behavioral Design)

Use this command to fit a behavioral design. Follow these steps to use
the FITEQN command:

1. Select the top-level equation file from the list of .pld and .pds files.
For information about creating a hierarchy of design files, see the
XEPLD Design Guide.

2. Select an option if you wish:

● -i — Ignores the pin assignments in the equation file.

● -u — Drives unused I/O pads, clock signals, FOE signals, and
CE pins to GND.

3. If you have previously saved pin allocation information in a .vmf
file (using the PINSAVE command), the FITEQN command pre-
sents the -f (Pin-freezing on) option, which allows you to assign
pins to the same positions with each iteration of your design. The -
f option is always off by default. Selecting the -f option repeatedly
before you select Done toggles the -f option on and off. The on or
off setting of this option is displayed in a status line at the top or
bottom of the XDM screen just above the command line.
2–24 Xilnx Development System

XACT Design Manager Menus
The -i and -f options are mutually exclusive. For more information,
see Table 2-1.

The main equation file you specify must follow the required
PLUSASM file structure. The equation file is processed by several
XEPLD modules to produce a database. From this database, a
programming file can be produced to program the device.

This command produces the Resource (.res), Mapping (.map), Pinlist
(.pin), Partitioner (.par) and Logic Optimizer (.lgc) reports. It also
produces a log file (.log) and a behavioral design file (.eqn) that
shows the optimized and placed design in PLUSASM format. For
more details about reports, refer to the “Report Formats” chapter.

If you change the pin assignments in the equation file, these assign-
ments override the assignments in the .vmf file.

DOS or UNIX command equivalent:

fiteqn -e equation_file -p part_name -u -f | -i

If you omit the -p option, the software looks at the CHIP statement in
the top-level behavioral design file. If the software finds no part type,
the default is the fastest and largest part, the XC73108-10PC84.

FITNET (Integrate EPLD Schematic Design)

Use this command to fit a schematic design. Follow these steps to use
the FITNET command:

1. Select the design file from the list of .xff files.

2. Select an option if you wish:

● -i — Ignores the pin assignments in the schematic.

● -u — Drives unused I/O pads, clock signals, FOE signals, and
CE pins to GND.

3. If you have previously saved pin allocation information in a .vmf
file (using the PINSAVE command), the FITNET command pre-
sents the -f (Pin-freezing on) option, which allows you to assign
pins to the same positions with each iteration of your design. The
-f option is always off by default. Selecting the -f option repeat-
edly before you select Done toggles the -f option on and off. The
on or off setting of this option is displayed in a status line at the
top or bottom of the XDM screen just above the command line.
XEPLD Reference Guide 2–25

XEPLD Reference Guide
The -i and -f options are mutually exclusive. For more information,
see Table 2-1.

The input .xff file is processed by several XEPLD modules to produce
a database. From this database, a programming file can be produced
to program the device.

This command produces the Resource (.res), Mapping (.map), Pinlist
(.pin), Partitioner (.par) and Logic Optimizer (.lgc) reports. For more
information about reports, refer to the “Report Formats” chapter.

DOS or UNIX command equivalent:

fitnet -n design_name -p part_name -u -f | -i

If you omit the -p option, the software looks for a PART= attribute in
the schematic file. If the software finds no part type, the default is the
fastest and largest part, the XC73108-10PC84.

Table 2-1 Interaction of -f and -i FITEQN and FITNET Parameters

PALCONVT (Convert PAL-based Design)

This command creates a new design that includes existing PALs in
the form of .pds or .pld files. It is a preliminary step to using FITEQN
that saves you from having to create a top-level file for a design made
up of PAL files. Follow these steps to use the PALCONVT command:

1. Type a name for the new top-level file after the following prompt:

Enter design file name (.pld):

-i off -i on

-f off

PINSAVE file ignored.

Schematic or equation file
pin assignments used.

PINSAVE file ignored.

Schematic or equation file
pin assignments ignored.

-f on

PINSAVE file pin assign-
ments used.

Schematic or equation file
pin assignments override
those in the PINSAVE file
if they are achievable.

The -f and -i options are
mutually exclusive.
2–26 Xilnx Development System

XACT Design Manager Menus
If you enter the name of an existing .pld file, you are asked if you
want to overwrite that file. You may want to overwrite your top-
level file if you are using PALCONVT a second time with the
same set of PAL files.

2. Select the PAL files that make up your design from the displayed
list of .pld and .pds files.

These files are PLUSASM-compatible files (PALASM Boolean
equation files) that you created with a text editor or a PAL com-
piler such as ABEL or CUPL.

3. Select the target from these alternatives:

● Create new PLD and PAL Interconnect Report

● Integrate new PLD using FITEQN

The first alternative lets you stop after creating the top-level file
and then use FITEQN later. This allows you to make changes to
the design (for example, assigning pins or changing pin types) by
editing the top-level file.

The PALCONVT command reads the PAL file equations, resolves any
polarity inversions, resolves any PAL-specific functionality, and auto-
matically determines all external requirements for dangling signals.

The design_name.pld file that PALCONVT creates contains pin decla-
rations, NODE declarations, and INCLUDE_EQN statements for the
design. You can edit this file to specify additional external signals, for
example by redeclaring nodes as output pins.

The PALCONVT command also generates a PAL Interconnect report
named design_name.int, which summarizes the number of equations
found and I/O pins created. You can use this report to help you
choose the best target device.

After using PALCONVT, choose a target device for your converted
design, then use the FITEQN command to fit your design.

DOS or UNIX command equivalent:

palconvt -f -p part_name design_name PAL_file1 PAL_file2..

You do not need to specify the .pld extension on the design_name or
the .pld or .pds extensions on each PAL_file. The -f option runs
FITEQN if PALCONVT ran without errors.
XEPLD Reference Guide 2–27

XEPLD Reference Guide
If you omit the -p option, the software looks at the CHIP statement in
the top-level behavioral design file. If the software finds no part type,
the default is the fastest and largest part, the XC73108-10PC84.

If your design contains so many PAL files that the PALCONVT
command as typed on the command line exceeds 128 characters, you
can type the names of the PAL files in an ASCII file (called a PAL list
file) and use the following variation of the PALCONVT command:

palconvt -f -p part_name design_name @PAL_list_file

The Verify Menu
The Verify menu provides a selection of programs associated with
design simulation and device programming. These selections include
all simulation and verification programs and all utility programs
needed to create the required file formats.

XSIMMAKE (Create Simulation File)

This command performs all the steps necessary to create a simulation
netlist file for functional (OrCAD only) or timing (OrCAD or View-
logic) simulation. (Viewlogic functional simulation is performed
entirely within the Viewlogic environment.) Follow these steps to use
the XSIMMAKE command:

1. Select an option if you wish:

● -O — Specifies the name of the output simulation netlist file,
minus the extension; the default is the input file name. If you
perform functional simulation, you may wish to use a different
name for your timing simulation netlist file.

2. Select the target from these alternatives:

● Viewlogic_Epld_Timing — Prepares a timing simulation netlist
file (VSM format) based on a completed EPLD design (VMH
database); runs VMH2XNF, XNF2WIR, and VSM.

● OrCAD_Epld_Func — Prepares a functional simulation netlist
file (with .vst extension) for an entirely schematic-based design
(no equations); runs SDT2XNF, XNFMERGE, and XNF2VST.

● OrCAD_Epld_Timing — Prepares a timing simulation netlist
file (with .VST extension) based on a completed EPLD design
(VMH database); runs VMH2XNF and XNF2VST.
2–28 Xilnx Development System

XACT Design Manager Menus
3. Select the design file name from the displayed list of .vmh files.

DOS or UNIX command equivalent:

xsimmake -f target -o output_directory

Choosing a target and using the -o option are described above.

ASCTOVST (OrCAD/VST Utility — PC Only)

Converts an OrCAD Stimulus or Trace file from ASCII to binary
format or vice versa. The ASCTOVST utility is described in the
OrCAD Digital Simulation Tools manual.

ORCAD (OrCAD VST — PC Only)

Puts you in the OrCAD/ESP design environment, where the OrCAD
VST simulator is located.

XNF2VST (Create Orcad Sim Files — PC Only)

This command creates a timing simulation model file of a completed
XEPLD design for use with OrCAD’s VST simulator. Follow these
steps to use the XNF2VST command:

1. Select a .xnf file from the displayed list that has been generated by
VMH2XNF. (Do not select a .xnf file generated by SDT2XNF. Such
a file cannot be simulated; you will get warnings about simulation
models that XNF2VST cannot find in the library.)

2. Select a .vst file from the displayed list, or select New File to create
a new .vst output file.

3. Select an option if you wish:

● -O — Specifies the name of the output simulation netlist file,
minus the extension; the default is the input file name. If you
perform functional simulation, you may wish to use a different
name for your timing simulation netlist file.

● -R — Reads the existing .nrf (name reference) file. This file lists
the names and name changes of symbols and nets.

● -U — Specifies that the simulation file will include unit delays
only. Select this option if you are performing functional simu-
lation.
XEPLD Reference Guide 2–29

XEPLD Reference Guide
● -W — Overwrites existing .ast (ASCII stimulus) and .atr (ASCII
trace) files.

● -X path — Specifies the XACT path.

You can select one of these options or none. After you have
selected the options you want, select the Done button.

DOS or UNIX command equivalent:

xnf2vst design_name

Note: Use only XSIMMAKE to make a VST netlist file for OrCAD
functional simulation.

VSM (Viewsim Wirelister)

This command reads the model file produced by XNF2WIR and
creates a Viewsim wirelist file (with a .vsm extension) for timing
simulation. You can also invoke the VSM command from either XDM
or the Viewlogic menu to prepare for functional simulation of your
schematic. Follow these steps to use the VSM command:

1. Select the design file from the displayed list.

2. Select an option if you wish:

● -D file — Creates a delay back-annotation file with a .dtb exten-
sion. (FPGA only)

● -F file — Specifies the name of the wirelist output file. The
default is the same name as the input file (but with a different
extension).

● -H — Creates a hierarchical netlist. This option is on by default.

● -S — Creates a short format netlist.

● -W — Generates a WIR file.

You can select one of these options or none. (Normally you do not
need to select any of these options.) After you have selected the
options you want, select the Done button.

DOS or UNIX command equivalent:

vsm design_name
2–30 Xilnx Development System

XACT Design Manager Menus
XNF2WIR (Create Viewlogic Sim Files)

Creates a timing simulation model (wirelist file) of a completed
XEPLD design for use with Viewlogic’s Viewsim simulator. Follow
these steps to use the XNF2WIR command:

1. Select an option if you wish:

● -A — Specifies the name of the AKA file to use (FPGA only).

● -B — Switches off status lines.

● -L — Tags each symbol in the WIR file with the library alias
that appears in your viewdraw.ini file.

● -M number — Allows you to specify a maximum number of
simulation primitives per output file. The default is 1000. If
XNF2WIR runs out of memory, try running the command
again using a smaller number for this option (try 50% of the
last value used).

● -R — Only creates the necessary command file to initialize
ROMs in the design (FPGA only).

You can select one of these options or none. After you have
selected the options you want, select the Done button.

2. Select a .xnf file from the displayed list that has been generated by
VMH2XNF. (Do not select a .xnf file generated by WIR2XNF or
XNFMERGE; such a file cannot be simulated.)

DOS or UNIX command equivalent:

xnf2wir -m module_limit design_name

The “-m module_limit” field is optional; it conserves memory by spec-
ifying the maximum number of simulation modules per wirelist file.

MAKEJED (Make JEDEC Programming Files)

Creates a file in JEDEC format that you can use to program an XEPLD
device. This command prompts you for a signature, which you must
specify.

DOS or UNIX command equivalent:

makejed -n design_name -s signature

If you do not specify the extension in the file name, this command
XEPLD Reference Guide 2–31

XEPLD Reference Guide
looks for a .vmh file. If the command cannot find a .vmh file, it looks
for a .vmd (XC7272) file. If you have a design that has been mapped
to both an XC7272 device and another device, you must specify the
.vmd extension to use the .vmd file.

The signature is a series of letters or numbers, up to 8 characters long
with a “.A” extension, that indicates the revision of the design. The
device programmer can read the signature, and the person running
the device programmer can verify that the version is correct.

MAKEPRG (Make Hex Programming Files)

Creates a file in Intel Hex format that you can use to program an
XEPLD device. This command prompts you for a signature, which
you must specify.

DOS or UNIX command equivalent:

makeprg -n design_name -s signature

If you do not specify the extension in the file name, this command
looks for a .vmh file. If the command cannot find a .vmh file, it looks
for a .vmd (XC7272) file. If you have a design that has been mapped
to both an XC7272 device and another device, you must specify the
.vmd extension to use the .vmd file.

The signature is a series of letters or numbers, up to 8 characters long
with a “.A” extension, that indicates the revision of the design. The
device programmer can read the signature, and the person running
the device programmer can verify that the version is correct.

VMH2XNF (Make XNF for Timing Simulation)

Creates a .xnf file with timing parameters for use in timing simula-
tion. The input file can be a .vmh or .vmd (from XC7272) file. Follow
these steps to use the VMH2XNF command:

1. Select an option if you wish:

● -L 4 or -L 5— Allows you to choose the 4.0 or 5.0 Xilinx EPLD
library regardless of the library you used to create your design.
The default is the 5.0 library for a new design or the 4.0 library
for a design created with 4.0 components. You may want to use
the -L 4 option if you are using the XNF file with third-party
software that has not yet been upgraded to 5.0, for example
2–32 Xilnx Development System

XACT Design Manager Menus
logic modeling software.

● -O — Changes the name of the output file, minus the exten-
sion. This prevents your timing simulation XNF file from over-
writing the XNF file that contains your design.

2. Select a .vmh or .vmd file from the displayed list.

Note: The XNF file produced by this command is written to the cur-
rent directory by default, not the xnf directory, so it will not overwrite
the XNF file produced by WIR2XNF or SDT2XNF unless you change
directory and output file options.

This XNF file is different from the XNF file produced by WIR2XNF or
SDT2XNF, which is based on the schematic and used for design
capture. The XNF file produced by VMH2XNF contains only simula-
tion primitives with actual timing parameters. It contains an image of
the EPLD device constructed from the bitmap in the .vmh file. It does
not consist of the library symbols used to capture your design and
cannot be used as an input file to the software. The names of signals
connected to device pins and component outputs are preserved
except where component outputs are optimized.

DOS or UNIX command equivalent:

vmh2xnf design_name -l -o

PROLINK (Program EPLD Device — PC Only)

Invokes the PROLINK interface software for controlling and down-
loading Hex programming files (generated by MAKEPRG) to the
Xilinx DS120 device programmer.

The Utilities Menu
The Utilities menu provides several utility commands to let you
change working directories, see which versions of Xilinx–supported
software are installed on your system, view file contents, and use
other file management and system control features. The commands
in the Utilities menu are not related to the development software
loaded in your system. They are the same regardless of your software
configuration and are described in the following paragraphs.
XEPLD Reference Guide 2–33

XEPLD Reference Guide
Browse

This utility allows you to view, as a read–only document, any text file
from within the Xilinx Design Manager. After selecting Browse, you
are prompted for a file name. To browse through a file, select the file
name from the menu or enter it from the command line. Press F1 to
return to the Design Manager.

If you wish to have XDM invoke your own text viewing program
when the Browse command is selected, you may do so by setting an
environment variable in your autoexec.bat or .cshrc file. The variable
BROWSE should be set in the autoexec.bat or .cshrc file to the name
of the text-viewing program. Consider the following examples:

SET BROWSE=LIST (DOS)
setenv BROWSE more (UNIX)

Browsing a file within the Design Manager can be slow and should
only be used if you do not have a text editor on your system. See the
Edit command.

DirClean

This provides a method to help you manage your design directories
by eliminating unwanted files created by the design translation
process. To use DirClean, select the command and then select any
files you want to remove from the current directory; the selected files
then become highlighted. When you have selected all of the files you
want to remove, click on Done or press Enter to execute their
removal.

Directory

The Directory command allows you to move easily through your
directory structure. This command allows you to select the current
directory that XDM reads from and writes to. When selected, a menu
appears displaying the current directory, the parent directory, and all
subdirectories of the current directory. Each time you select a new
current directory, the menu changes to reflect the new parent direc-
tory and subdirectories.

To change disk drives on the PC, enter the following command at the
command line.

dir drivespec
2–34 Xilnx Development System

XACT Design Manager Menus
In this command line entry, drivespec represents the disk drive you
want as your current drive.

DOS (PC only)

This is a gateway to the operating system. It can be used from the
command line either alone or as a prefix to an operating system
command.

To access the operating system environment, simply select the DOS
command with the mouse or enter dos on the command line. To re-
enter the XACT Development System, enter exit at the operating
system command prompt.

If you want to execute a system command without leaving the
Design Manager, enter it in the following manner.

dos command

This executes the command or program and returns you to XDM
after the command or program finishes.

Edit

The Edit command brings up a text editor. To specify the text editing
program that the Edit command uses, you must set an environment
variable in your autoexec.bat or .cshrc file. The variable Editor should
be set equal to the name of your text editing program as per the
following:

SET EDITOR=EDIT (DOS)
setenv EDITOR vi (UNIX)

If this environment variable is not set and you select the Edit
command, you will see an error message and return to XDM.

Browsing a file within the Design Manager can be slow on a PC and
should only be used if you don’t have a text editor on your system.
Use Edit instead if possible.

For example, if you are using a PC system and you want to invoke an
external text editor with the push of a button, program one of the
function keys. If you like the EDIT editor, for example, enter the
following on the command line:

keydef f2 dos edit\
XEPLD Reference Guide 2–35

XEPLD Reference Guide
F2 is now programmed to invoke the EDIT editor.

The backslash (\) causes XDM to prompt you to finish the command
when you press the defined key. You can use the backslash with any
command that takes a variable argument at the end of its syntax. For
example, if you define the F2 key as shown above and then press F2,
you can answer the prompt with a file name as follows:

Cmd: dos edit myfile.txt

On a workstation, this option is not really necessary, because you can
simply open another window in which to edit.

Execute

The execute command allows you to execute command files inside
XDM. If you save a sequence of commands in a text file, you can
execute them by first selecting Execute, then entering the command
file name when prompted. You will return to XDM when the file has
finished executing.

Help

XDM includes on-line help text for each menu, program or command,
and program or command option. For example, you can display Help
information about the XDM Verify menu, the VSM program located
in the Verify menu, or the VSM -f option.

The Help command provides several methods for getting assistance
in dealing with a particular topic. The normal method for using the
help feature is to select the menu item in question and press the F1
function key. On workstations, click in the help window, and while
the cursor is still in the help window press F1.

However, you can also get help by selecting the Help command from
the Utilities menu, which prompts you for a help topic at the bottom
of the screen:

Enter help subject:

An alternative method for displaying help text is to enter the
following at the command line, replacing topic with whichever topic
you need.

help topic option
2–36 Xilnx Development System

XACT Design Manager Menus
For example, to display Help information about the -f option of the
VSM command, enter the following at the command line, with no
spaces between the program name and the option:

help vsm-f

Report

The Report command invokes the Version command, but instead of
displaying the output on your screen, the output is redirected to a
text file called version.rpt. The text file can then be read at any time
using the Browse command.

ScanDisk

This command forces XDM to scan the hard disk drive to determine
which supported software packages are installed on your system.
While scanning, XDM displays the following message.

Checking disk for supported software...

This indicates that XDM is analyzing your system and setting up the
contents of the DesignEntry, Translate, Fitter, and Verify menus, so
they reflect the software that is available.

Then XDM displays a message similar to the one shown here.

Writing c:\xact\data\proglist.xdm... (DOS)
Writing $XACT/data/proglist.xdm... (UNIX)

And after a short while,

Writing c:\xact\data\proglist.xdm... done (DOS)
Writing $XACT/data/proglist.xdm... done (UNIX)

This indicates that a new, updated proglist.xdm has been generated.

Note: Newly installed XDM-supported programs on your system
may not appear in the XDM menus until the ScanDisk command is
issued.

Version

Displays all supported programs currently installed on your system,
showing the location and version numbers for each program. XDM
may not be able to determine the version number of some programs,
such as Xilinx-supported third-party programs.
XEPLD Reference Guide 2–37

XEPLD Reference Guide
The Profile Menu
This menu serves as a tool for customizing XDM. Using the
commands in this menu, you can alter such characteristics as screen
graphics, mouse button settings, PC mouse port connections (if you
are using a serial mouse), and device type and speed. Changes that
you make from the default profile will only be valid for the current
session until you save them.

Note: To save a customized profile, including family and part set-
tings, mouse button settings, PC mouse type, and so on, use the Save-
profile command below. This allows you to use the same settings
automatically each time you start up XDM.

Cursor

The Cursor command allows you to select an arrow, a bug, or a cross
as the cursor.

Family

The Family command tells XDM the family of devices you are using.
For designing with EPLDs, choose XC7200 or XC7300. XDM only
displays valid menu items and command options for the selected
family.

KeyCursor

When this command is enabled, the arrow keys move the cursor
through pull-down menus, and pressing Enter executes the selected
option (you must, however, select one of the menu commands with
the mouse first).

When KeyCursor is off, commands must be entered through the
keyboard or selected from pull-down menus with the mouse. You can
also use the up and down arrow keys in the command line to scroll
through previously entered commands.

Keydef

The Keydef command is used to program your system function keys.
After selecting this command, XDM prompts you for a key name
(e.g., F1, F2, etc.) and then a function. The function can be any XDM
command (for example, BROWSE, DOS, etc.).
2–38 Xilnx Development System

XACT Design Manager Menus
If you are using a PC and want to use the DOS EDIT editor, for
example, enter the following on the XDM command line:

Cmd: keydef f2 dos edit\

F2 is now programmed to invoke EDIT.

The backslash (\) causes XDM to prompt you to finish the command
when you press the defined key. You can use the backslash with any
command that takes a variable argument at the end of its syntax. For
example, if you define the F2 key as shown above and then press F2,
you can answer the prompt with a file name as follows:

Cmd: dos edit uart_eqn.pld

The backslash feature is available for both PCs and workstations.

Menucolors

The Menucolors command allows you to change the color of items
displayed in menus. Help can be used on the individual commands
in this menu for more information on their functionality and usage.

Mouse

The mouse command sets the function of each mouse button. The
available functions are Select, Done, and Menu.

If you are using a PC and the mouse driver loaded is not Microsoft-
compatible, the mouse command also sets the connection port. If a
Microsoft-compatible mouse driver is loaded, the connection port is
automatically determined by XDM. This is indicated by the following
being displayed on the screen:

Mouse: MS Mouse

 If the driver loaded is not Microsoft-compatible, you must select the
connection port through this command. In this case, the selected port
name will be displayed on the screen (for example, “Mouse: COM1”).

Options

This command allows you to select default options for all the Xilinx
software programs. For example, XEMAKE will use the part type and
directory options you selected by reading xdm.pro. Once selected,
they are valid for the current session. Use the SaveProfile command
XEPLD Reference Guide 2–39

XEPLD Reference Guide
to save these options in the xdm.pro file.

Palette

You can choose different color palettes to customize your screen color
by selecting any of the displayed palettes.

Part

The Part command allows you to select a default part type to use
when translating a design.

Printer

The Printer command allows you to select a printer type for output
files. The default type is POSTSCRIPT.

Readprofile

This command allows you to load the profile saved in the xdm.pro
file. This command will first attempt to read a custom profile from the
current directory. If one is not found it will load the default configura-
tion profile in the \XACT\DATA or $XACT/data directory.

Saveprofile

This command allows you to save the current profile (which includes
the family and part type, mouse mode, and so on) into an xdm.pro
file in the current directory. Each time XDM is invoked it will try to
read an xdm.pro file from the current directory. If one is not found it
will load the default configuration profile in the \XACT\DATA or
$XACT/data directory.

Settings

Selecting this command displays the current profile configuration of
your Design Manager software.

Speed

The Speed command allows you to select a speed grade for the device
specified with the Part command.
2–40 Xilnx Development System

Chapter 3
XEPLD Reference Guide — 0401203 01 3–1

Report Formats

The XEPLD software creates a variety of report files in the design
directory that provide you with information about the state of your
design.

The XEPLD Design Guide explains how to use these reports to eval-
uate your design.

The report formats are described in the following sections.

Viewing Reports
Use the XDM Utilities ➝ Edit command or the Utilities ➝ Browse
command to view report files.

The reports described in this chapter are:

● Resource report (design_name.res)

● Mapping report (design_name.map)

● Pinlist report (design_name.pin)

● Partitioner report (design_name.par)

● Logic Optimizer report (design_name.lgc)

● PLUSASM Assembler Log report (pld_name.lga)

● PAL Interconnect report (design_name.int)

● EQN file (design_name.eqn)

Other reports you should be aware of are the Error report
(design_name.err), which records all diagnostic messages displayed
on the screen during the fitting process, and the log file
(design_name.log), which records diagnostic and informational
messages.

XEPLD Reference Guide
The Resource Report
The Resource report (design_name.res), shown in Figure 3-1, is the first
report you should examine to determine the results of the fitting
process. This report lists the used and remaining numbers of Func-
tion Blocks, Macrocells, and pins of each type.

Logic Resources
The Logic Resources section shows the number of used and
remaining Function Blocks and Macrocells.

Required Pin Resources
The Required column of the Pin Resources section shows the number
of input, output (excluding global control/output), I/O, FastClk,
FOE, and CE pins required by the design.

Used Pin Resources
The Used columns show how many of each type of physical device
pin are occupied to satisfy the I/O signals in your design; note that
output-only or input-only signals in your design may occupy I/O
pins on the device.

Remaining Pin Resources
The Remaining columns show how many pins are still available on
the device.

Fast Inputs and Outputs
The Fast Input/Fast Output section lists how many fast inputs and
fast outputs the design requires and how many of each are available
on the device.
3–2 Xilinx Development System

Report Formats
Figure 3-1 Resource Report

XEPLD, Version 5.0 Xilinx Inc.
 Resource Report
 Circuit name: UARTPALC
Target Device: XC7354-10PC68 Integrated: 11-10-93, 1:37PM

LOGIC RESOURCES

 Used Remaining
Function Blocks 4 2
Macrocells 30 24

PIN RESOURCES:

Type Required --------Used-------------- --------Remaining---------
 I O I/O Fclk Foe Cen Tot I O I/O Fclk Foe Cen Tot
Inputs 3 3 0 3 5 34 39
Outputs 12 0 8 0 2 2 12 0 34 2 0 0 36
I/Os 0 0 0 34 34
Fclks 1 1 1 2 2
Foes 0 0 0 0 0
Cens 0 0 0 0 0
 --- --- -- --- --- --- --- ---
 16 3 0 8 1 2 2 16

Note:The design requires 0 pins with Fast Input capability.
 This device has 11 pins with Fast Input capability.
 The design requires 0 pins with Fast Output capability.
 This device has 0 FO and 15 I/FO remaining from original 0 FO and 18 I/FO.

 End of Resource Report
XEPLD Reference Guide 3–3

XEPLD Reference Guide
The Mapping Report
The Mapping report (design_name.map), shown in Figure 3-2, lists the
contents of all the macrocells and Function Blocks in the target
device. For each Function Block in the device, a header area lists the
total number of FastInputs, total inputs, shared product terms, and
macrocells used by the design, and the total number available for the
Function Block. Beneath each header is a list indicating how each
macrocell in the Function Block is used. The list contains the
following columns and sections.

For XC7272 designs only, the Function Block header also has a Carry
value, which can be Low, Pterm, High, or Next FB. The Carry value
indicates that a carry-in to the Function Block exists.

Function Name
This column shows the names of the signals in the design. For a
behavioral design, the function name is the signal name.

For a schematic design, the function name is in the following format:

instance_name: pin_name

The instance name is the internal component name. The pin name is
the name of the net that connects the I/O buffer and the pad symbol.

Macrocell Location
This column shows the Function Block and macrocell addresses
where the component output pins or equation output signals are
placed. The format of this column is: FB function_block – macrocell. For
example, FB4-3 signifies Function Block 4, macrocell 3.

If you have specified low power on some macrocells, an L will appear
on these macrocells in this report.

If a macrocell is using the macrocell carry from the previous macro-
cell, a C will appear on the macrocell in this report.

Pkg Pin
This column shows the pin numbers of the device output or I/O pins
that can be driven by the macrocells. A dot in this column signifies
that the macrocell is buried and cannot drive a device pin.
3–4 Xilinx Development System

Report Formats
Pin Use
This column shows how the corresponding device pins are used by
the design (I, O, I/O, or dot). An “I” indicates that the pin is not used
for macrocell output but is used by an input port in the design to
receive some other type of signal.

Power Estimation (7300 Family Only)
At the end of this report is an estimate of the power consumption for
low power and high power settings.

● The MCHP value is the number of used macrocells in used Func-
tion Blocks not designated as low power.

● The MCLP value is the number of used macrocells designated as
low power plus the number of unused macrocells in used func-
tion blocks.

● Macrocells in unused Function Blocks do not consume power,
therefore they are not counted in the power estimation calcula-
tion.

For more details about the power estimation calculation, see the
Xilinx EPLD data sheets.
XEPLD Reference Guide 3–5

XEPLD Reference Guide
Figure 3-2 Mapping Report (abbreviated)

XEPLD, Version 5.0 Xilinx Inc.
 Mapping Report
 Circuit name: UARTPALC
Target Device: XC7354-10PC68 Integrated: 11- 5-93, 12:23PM

Function Block 1 Fast inputs - 0/12 Shared pterms - 0/0
 Total inputs - 10/24 Macrocells - 3/9

Function Macrocell Pkg Pin
Name Location Pin Use
-------- --------- --- ---
C2 FB1-1 4 .
START FB1-2 12 .
PAR FB1-3 13 .
. FB1-4 15 .
. FB1-5 17 .
. FB1-6 19 .
. FB1-7 21 .
. FB1-8 22 .
. FB1-9 23 .
...
Function Block 6 Fast inputs - 0/3 Shared pterms - 1/12
 UIM inputs - 15/21 Macrocells - 9/9

Function Macrocell Pkg Pin
Name Location Pin Use
-------- --------- --- ---
BITCLK FB6-1 27 .
D4 FB6-2 28 .
D3 FB6-3 8 I
DOUT2 FB6-4 9 O
BYTECLK FB6-5 10 .
D2 FB6-6 29 .
C0 FB6-7 6 .
C1 FB6-8 24 .
C5 FB6-9 26 .

Power estimation parameters: MCLP = 6, MCHP = 30.
MCLP represents macrocells in low power mode and
MCHP represents macrocells in high power mode.
Macrocells in unused function blocks are not considered.
MCLP and MCHP are used to estimate chip power consumption.
Consult the proper data sheets for this calculation.

 End of Mapping Report
3–6 Xilinx Development System

Report Formats
The Pinlist Report
The Pinlist report (design_name.pin), shown in Figure 3-3, lists all pins
on the target device, how they are used, and the names of their asso-
ciated signals.

Pkg Pin
This column shows all the pin numbers of the target EPLD device, in
numerical order, or in alphanumeric order in the case of PGA pack-
ages.

Pin Type
This column shows whether the pin is physically input-only (I),
output-only (O), bidirectional (I/O), power (VCC, VSS), or special-
purpose (MR, CLK, CEN, FOE).

Pin Use
This column shows how the pin is used in your design (I, O, I/O, and
so on; see “Pin Use Legend”). For unused input and I/O pins, this
column lists “tie” to remind you to tie the unused inputs to VCC or
ground on your board. “NC” is shown for unused output-only pins
indicating the pin should be left unconnected. If you select the “drive
unused I/O pins” option of XEMAKE, FITEQN, or FITNET, an (O)
appears in this column whenever an instance is mapped to the
macrocell but the output is not used.

Pin Name
This column shows the name of the external signal mapped to the
pin.

Pin Use Legend
This section lists the codes for the types of pins shown in the Pin Use
column.
XEPLD Reference Guide 3–7

XEPLD Reference Guide
Figure 3-3 Pin-List Report (abbreviated)

XEPLD, Version 5.0 Xilinx Inc.
 Pin-List Report
 Circuit name: UARTPALC
Target Device: XC7354-10PC68 Integrated: 11- 5-93, 12:23PM

Pkg Pin Pin Pin
Pin Type Use Name
--- ---- --- ----
1 MR
2 I tie (unused)
3 I tie (unused)
4 I/O tie (unused)
5 I tie (unused)
6 I/O tie (unused)
7 VSS
8 CLK I X4CLK
9 CLK O DOUT2
10 CLK tie (unused)
...
58 I/O tie (unused)
59 VCC
60 CEN O DOUT1
61 CEN O DOUT0
62 FOE O FRAMING
63 VCC
64 FOE O PARITY
65 I I RD
66 I/O tie (unused)
67 I I CS
68 I tie (unused)

Pin Use Legend:

I - input
O - output
I/O - input/output
I-L - input uses latch
I-R - input uses register
I/O-L - input/output uses latch
I/O-R - input/output uses register
NC - not connected/not available
tie - unused pin must be tied to VCC or GND
(O) - unused pin attached to used macrocell

 End of Pin-List Report
3–8 Xilinx Development System

Report Formats
The Partitioner Report
The Partitioner report (design_name.par), shown in Figure 3-4 and
Figure 3-8, shows the allocation of Function Block resources. This
report helps you to understand how the resources available on the
device were filled by the equations in your design. It can provide
useful information for optimizing or modifying your design.

A separate partitioner report is created if you use XEMAKE, FITEQN,
or FITNET. If you use PLUSASM, JED2PLD, ABL2PLD, or
PALCONVT, a Partitioner report is included in the .log file.

The Partitioner report lists all partitions created to implement the
design, and for each partition lists the outputs and Function Block
resources. It also shows the input signals used by each partition and
each output. Use this report when trying to increase the design
density, or when modifying a design with a frozen pinout.

Summary
The summary contains information that applies to all partitions.

Part Name
This column lists partition names. For an individual PAL component
report, names are the component name followed by a number.

For a report on a complete behavioral design, partition names are
Function Block names. If the number of partitions in the design
exceeds the number of Function Blocks in the device, the extra parti-
tions will be named OVERFLOW_n, starting with OVERFLOW_0.

If you see extra partitions even though your design has fewer parti-
tions than the device, it means some of the partitions in your design
cannot use the available function blocks. For example, a partition that
requires output pins cannot use a Function Block that has no pins.

Number of Outputs
This column shows the number of macrocells used in the partition.

Number of Input Lines Used
This column shows the combined number of pin and UIM inputs
going into the partition. Fast Function Blocks allow up to 24 inputs.
High Density Function Blocks allow up to 21 inputs.
XEPLD Reference Guide 3–9

XEPLD Reference Guide
Signal Inputs (Complete Design Only)

This column shows the number of inputs that would be necessary if
no UIM ANDing were performed.

Number of Shared Pt

This column shows the combined number of shared product terms
used in the partition. High Density Function Blocks have 12 shared
product terms available. Fast Function Blocks have none.

O/IO Used (Complete Design Only)

This column shows output pins and I/O pins used by each partition.

O/IO Avail (Complete Design Only)

This column shows the total number of output pins and I/O pins
available to each partition. The partitioner only counts usable outputs
after considering pin assignment and control pin assignment. If you
use a FastCLK signal as a control input, you cannot use the attached
macrocell for an output pin. If you assign an input signal to an I/O
pin, you cannot use the attached macrocell for an output pin.

Size Factor

This column estimates the Function Block resources used (from 0 to 9)
based on the number of inputs, outputs, and shared product terms.

Inputs Used by Each Partition

This cross-reference table identifies the specific inputs feeding into
each partition. Indexing numbers (top and bottom) for the inputs are
listed at the end of the report. The Xs are inputs entering the function
via an input line; the @s are ANDed UIM inputs.

Partition Listing
There is one partition listing for each partition in the design. Each
listing contains information that applies to one partition only.

Signals Used

This list displays all the pin or UIM inputs to the partition.
3–10 Xilinx Development System

Report Formats
Anded UIM Inputs Used (Complete Design Only)

This list displays all UIM equations that are inputs to the partition.

Inputs Used by Each Output Table

This cross reference table identifies the specific inputs used by each
output macrocell in the equation file. The indexing numbers for
inputs are defined in the input name list at the end of the report.

MC No

This column shows the macrocell number of the Function Block.

Output Name

This column identifies the output signal name mapped to the corre-
sponding macrocell.

Pin Req (Complete Design Only)

This column indicates that the output requires no pin (-), an output
pin (O), or an I/O pin (I/O).

Pin Avl (Complete Design Only)

This column indicates that the pin available to the output is no pin
(-), an output pin (O), an I/O pin (I/O), a FastCLK pin (FCLK), or
a Fast Output Enable pin (FOE).

Sh Pt

This column indicates the combined number of shared D1 and D2
product terms used by each output (whether or not any of the
product terms are actually shared with any other output).

Input Listing
The names of all UIM inputs in the design appear in this list. At the
end are all the UIM equations. The numbers correspond to the
columns of the “Inputs Used” tables.
XEPLD Reference Guide 3–11

XEPLD Reference Guide
Figure 3-4 The Partitioner Report (abbreviated)

XEPLD, Version 5.0 Xilinx Inc.
 Partitioning Report
 Circuit name: UARTPALC
Target Device: XC7354-10PC68 Integrated: 11- 5-93, 12:23PM

Part # of # of Input Signal # of O/IO O/IO Size
Name Outputs Lines Used Inputs Shared Pt Req Avail Factor
FB1 3 10 10 0 0/0 0/9 4
FB2 0 0 0 0 0/0 0/9 0
FB3 9 19 19 0 6/0 4/3 9
FB4 9 15 15 0 5/0 0/6 9
FB5 0 0 0 0 0/0 0/9 0
FB6 9 15 15 1 1/0 2/6 9
 --- --- --- ---
 30 12/0 6/42 31

Part Inputs Used by Each Partition
Name
 |----+----1----+----2----+----3
FB1 X.......X.......XXXXXXXX..
FB2
FB3 X.XXXXXXXXX.....XXXXXXXXX.
FB4 ..XX....X...XXXXXXXXX.X.XX
FB5
FB6 ..XX...XX.XXX...XXXXXXX.X.
 |----+----1----+----2----+----3

+++++++++++++++++++++++++++++++++ FB1 +++++++++++++++++++++++++++++++++
 Signals Used:
 1: SDIN 19: C2 22: C5
 9: BITCLK 20: C3 23: START
 17: C0 21: C4 24: PAR
 18: C1

MC Output Pin Pin Sh
No Name Req Avl Pt
 |----+----1----+----2----+----3
1 C2 - I/O 0 XXX...X...
2 START - I/O 0 X...............XXXXXXX...
3 PAR - I/O 0 X.......X.............XX..
4 Unused I/O
5 Unused I/O
6 Unused I/O
7 Unused I/O
8 Unused I/O
9 Unused I/O
3–12 Xilinx Development System

Report Formats
Figure 3-4 The Partitioner Report (continued)

+++++++++++++++++++++++++++++++++ FB6 +++++++++++++++++++++++++++++++++
 Signals Used:
 3: RD 12: D2 20: C3
 4: CS 13: D3 21: C4
 8: READY 17: C0 22: C5
 9: BITCLK 18: C1 23: START
 11: D1 19: C2 25: BYTECLK

MC Output Pin Pin Sh
No Name Req Avl Pt
 |----+----1----+----2----+----3
1 BITCLK - I/O 0 XX....X...
2 D4 - I/O 0 X...X.............
3 D3 - FCLK 0 X..X..............
4 DOUT2 O FCLK 0 ..XX.......X............X.
5 BYTECLK - FCLK 0 X........XXXXXX....
6 D2 - I/O 0 X.X...............
7 C0 - I/O 0 X.....X...
8 C1 - I/O 0 XX....X...
9 C5 - I/O 1 XXXXXXX...
 |----+----1----+----2----+----3

All outputs placed in a partition.

In Input Name
No

 1 SDIN
 2 X4CLK
 3 RD
 4 CS
 5 FRAMING
 6 PARITY
 7 OVERUN
 8 READY
 9 BITCLK
 10 D0
...
 16 D6
 17 C0
...
 22 C5
 23 START
 24 PAR
 25 BYTECLK
 26 D7
XEPLD Reference Guide 3–13

XEPLD Reference Guide
Figure 3-5 Partitioner Report for a Single Component

Partitioner Listing for File: rcvr Fri Oct 1 14:39:38 1993

 PARTITIONING REPORT

Part # of # of Input # of Size
Name Outputs Lines Used Shared Pt Factor
RCVR 8 17 0 8
 --- ---
 8 8
Size factor may differ during integration because of external pin constraints!

Part Inputs Used by Each Partition
Name
 |----+----1----+----2
RCVR XXXXXXXXXXXXXXXXX
 |----+----1----+----2

+++++++++++++++++++++++++++++++++ RCVR +++++++++++++++++++++++++++++++++
 Signals Used:
 1: X4CLK 7: C5 13: PARITY
 2: C0 8: READ 14: OVERUN
 3: C1 9: SDIN 15: READY
 4: C2 10: D0 16: PAR
 5: C3 11: START 17: BITCLK
 6: C4 12: FRAMING

 Output Sh
 Name Pt
 |----+----1----+----2
 START 0 XXXXXXX.X.X......
 BITCLK 0 XXX.......X......
 BYTECLK 0 XXXXXXX.......X..
 PAR 0 X.......X.X....XX
 FRAMING 0 XXXXXXXXXX.X.....
 PARITY 0 XXXXXXXX....X..X.
 OVERUN 0 XXXXXXXX.....XX..
 READY 0 XXXXXXXX...XXXX..
 Unused
 |----+----1----+----2

All outputs placed in a partition.
3–14 Xilinx Development System

Report Formats
Figure 3-5 Partitioner Report for a Single Component
(continued)

In Input Name
No

 1 X4CLK
 2 C0
 3 C1
 4 C2
 5 C3
 6 C4
 7 C5
 8 READ
 9 SDIN
 10 D0
 11 START
 12 FRAMING
 13 PARITY
 14 OVERUN
 15 READY
 16 PAR
 17 BITCLK
XEPLD Reference Guide 3–15

XEPLD Reference Guide
The Logic Optimizer Report
This report (pld_name.lgc), shown in Figure 3-8, which is also called
the Collapse Module Report, shows you how logic was optimized for
your design.

Logic optimization occurs when an input used by an equation
(component output) is substituted by the logic function that gener-
ated that input. In the Logic Optimizer report, the output function
which survives and absorbs another function into it is called a
“fanout”. The logic function being absorbed is removed from the
network if it is absorbed by all of the fanouts which use it.

In the report, “output” refers to an equation (or component) output
within the design, not an EPLD output pin.

Summary
This section lists the following statistics:

● The number of FastCLKs, FOEs, and input registers used.

● The levels of combinational logic before and after optimization.

The number of levels of logic is calculated as follows:

● The number of macrocells between a registered macrocell and
another registered macrocell, plus 1.

● The number of macrocells between a input pad and a regis-
tered macrocell.

● The number of macrocells between a registered macrocell and
an output pad, plus 1.

● The number of functions optimized into subsequent functions.

● The number of output buffers that copied the signals of their
input. This happens when the logic optimizer moves sequential
logic forward into buffers.

The logic optimizer moves forward any logic, whether combina-
tional or sequential, that is buffered by a 3-state buffer, a clocked
buffer, or a non-controlled buffer. However, logic that itself con-
tains a 3-state or clock equation is not moved forward into a buffer
that contains similar control equations.

● The number of outputs removed from the network.
3–16 Xilinx Development System

Report Formats
Device Specific Optimization
This section lists the signals that were assigned to FastCLKs, FOEs, or
input registers.

Outputs that Were Collapsed
This section contains two tables, which are transpositions of each
other. The first shows which outputs have been optimized by
absorbing the logic of one or more of their inputs; the second shows
which functions have been collapsed into one or more of their
fanouts.

Outputs Removed from the Network
If all the fanouts of a particular function optimize (absorb) the logic of
the function, the function no longer needs to be implemented using a
separate macrocell in the device, and it is removed from the network.
This section is a list of the output functions that have been removed.
XEPLD Reference Guide 3–17

XEPLD Reference Guide
Figure 3-6 Logic Optimizer Report

XEPLD, Version 5.0 Xilinx Inc.
 Collapse Module Report
 Circuit name: HORNM4
Target Device: 73108144 Integrated: 11- 4-93, 1:54PM

Summary:
^^^^^^^^
2 inputs were pad registered.
5 outputs were fast clocked.
2 outputs were fast output enabled.
There were 7 levels of combinational logic before collapsing,
and 2 levels after collapsing.
27 collapses of inputs into their fanouts were tried.
10 primary output buffers copied the signals of their input.
15 outputs were removed from the network.

Device specific optimization:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2 inputs were pad registered. NOTE: that, these
inputs now preload high, which may affect the initial
value of any expression using one or more of these
inputs
5 outputs were fast clocked.
2 outputs were fast output enabled.

Optimized
 logic

X14 pad registered using fclk: CLK3
X13 pad registered using fclk: CLK2
U1[/Y22_0]:/Y22_0 fast clocked using fclk: CLK
U1[/Y22_1]:/Y22_1 fast clocked using fclk: CLK
U47:QC fast clocked using fclk: CLK
U47:QB fast clocked using fclk: CLK
U47:QA fast clocked using fclk: CLK
Y10 fast out enabled using foe: T2
Y9 fast out enabled using foe: T1

3–18 Xilinx Development System

Report Formats
Figure 3-6 Logic Optimizer Report (continued)

Outputs that were collapsed:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
27 outputs were optimized. The following list
shows how each output was optimized.

Original Optimizes the logic
 Output from output

U48:Y U18:Y
U143:Y U48:Y
Y10 U49:W
Y10 U44:Y
U10:Y U2:Y
U10:Y Y5
U1[/Y22_0]:/Y22_0 U8:Y
U1[/Y22_0]:/Y22_0 ‘U1[W125PLD0]:Y22_0
U1[/Y22_1]:/Y22_1 U2:Y
U1[/Y22_1]:/Y22_1 ‘U1[W125PLD0]:Y22_1
Y1 U1[PIN22]:PIN22
Y2 Y1
Y3 U2:Y
Y3 U8:Y
Y3 ‘U1[W125PLD0]:PIN18
Y4 U2:Y
Y4 U8:Y
Y4 Y3
‘U1[W125PLD0]:PIN15 U2:Y
U7:Y U10:Y
U7:Y ‘U1[W125PLD0]:PIN15
U8:Y U7:Y
Y5 U2:Y
Y5 U8:Y
Y6 Y5
Y7 ‘U1[W125PLD0]:PIN15
U49:W U8:Y

XEPLD Reference Guide 3–19

XEPLD Reference Guide
Figure 3-6 Logic Optimizer Report (continued)

The following list transposes the above list and
shows what outputs were used in optimizing some
other output.

Original Optimized
 output into

U48:Y U143:Y
U10:Y U7:Y
Y1 Y2
Y3 Y4
U2:Y U1[/Y22_1]:/Y22_1
U2:Y U10:Y
U2:Y ‘U1[W125PLD0]:PIN15
U2:Y Y5
U2:Y Y4
U2:Y Y3
‘U1[W125PLD0]:PIN15 U7:Y
‘U1[W125PLD0]:PIN15 Y7
U7:Y U8:Y
U8:Y U1[/Y22_0]:/Y22_0
U8:Y Y5
U8:Y Y4
U8:Y Y3
U8:Y U49:W
Y5 Y6
Y5 U10:Y
U49:W Y10
U18:Y U48:Y
U44:Y Y10
‘U1[W125PLD0]:Y22_0 U1[/Y22_0]:/Y22_0
‘U1[W125PLD0]:Y22_1 U1[/Y22_1]:/Y22_1
U1[PIN22]:PIN22 Y1
‘U1[W125PLD0]:PIN18 Y3

3–20 Xilinx Development System

Report Formats
Figure 3-6 Logic Optimizer Report (continued)

Outputs removed from the network:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15 output were removed from the network.

Outputs removed from the network

U18:Y
U48:Y
U44:Y
‘U1[W125PLD0]:Y22_0
‘U1[W125PLD0]:Y22_1
U1[PIN22]:PIN22
‘U1[W125PLD0]:PIN18
U143:Y
U144:Y
U145:Y
U10:Y
U7:Y
U2:Y
U49:W
‘U1[W125PLD0]:PIN15

 End of Collapse Module Report
XEPLD Reference Guide 3–21

XEPLD Reference Guide
The PLUSASM Assembler Log Report
This report (pld_name.lga), shown in Figure 3-8 and Figure 3-8, is
generated when you fit a schematic design that contains PAL
symbols. One PLUSASM assembler report is written for each PAL.

This report is written to a pld_name.lga file when you invoke the
PLUSASM command or any command that calls PLUSASM (such as
XEMAKE). In addition, commands that call FITEQN or FITNET
include a PLUSASM log report in their .log files.

This report has two formats: one for the PLFB9 and PLFFB9 PALs
(Figure 3-8), and one for the remaining PALs, including PL20V8,
PL22V10, and the generic PALs (Figure 3-8).

Both formats show you a listing of your PLD equation file with each
line numbered. Any syntax errors are indicated using an arrow
marker on the line beneath your equation, along with a message.
Additional errors or warnings appear at the end.

The PLFB9/PLFFB9 format begins with the equation file listing,
which is followed by product term information.

The format for the other PALs begins with the partitioner log report
and ends with a listing of the equation file.

Product Term Allocation (PLFB9/PLFFB9 Format)
This section shows how product term resources are allocated for each
equation.

Pin

This column shows the pin numbers on the PLD symbol in a sche-
matic) or an internally generated sequence number for a behavioral
design.

Name

This column shows the names of all the signals in the equation file
corresponding to the assigned pin numbers.
3–22 Xilinx Development System

Report Formats
Type

This column shows how the PLD pins (signals) were used in the
equation file.

Local P-terms Available

This column shows how many of the private product terms of each
corresponding output macrocell are available to the logic function.
When set, reset, clock, or output-enable control equations are used,
the number of private product terms available for logic is reduced.

Local P-terms Used

This column shows the number of private product terms actually
used by each output.

Shared D1 P-terms Used and Shared D2 P-terms Used

These columns show the amount of shared product term resources
used by each output (regardless of whether any of the p-terms are
actually shared by other outputs).

Total P-terms Used

This column is the sum of private and shared product terms used by
each output.

Partitioner Log Report (Standard PAL Format)
This section shows how the PAL file was partitioned. It is an abbrevi-
ated form of the Partitioner report.
XEPLD Reference Guide 3–23

XEPLD Reference Guide
Figure 3-7 PLFB9 PLUSASM Assembler Log Report

Start of PLUSASM ASSEMBLER LOG report

PlusAsm Listing for File: w1pld9.pld Wed Nov 3 13:32:21 1993

LINE # |----+----1----+----2----+----3----+----4----+----5----+----6----+---
 1
 2 TITLE LIMIT CONDITIONS CLFK NO RSTF NO SETF NO TRST NO
REGISTERED
 3
 4 AUTHOR ISAAK V.
 5
 6 COMPANY XILINX
 7
 8 DATE 4/25/93
 9
 10 PATTERN FILE W1PLD9.PLD
 11
 12 CHIP W1PLD9 PLPLD9
 13
 14
 15 ;1 2 3 4 5 6 7 8 9 10
 16
 17 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
 18
 19 ;11 12 13 14 15 16 17 18 19 20
 20
 21 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20
 22
 23
 24 ;21 22 23 24 25 26 27 28 29 30
 25
 26 X21 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9
 27
 28
 29
 30 ; 31 32
 31
 32 CLK NC
...
 41 EQUATIONS
 42
 43 Y1 :=
X1*X2*X3*X4*X5*X6*X7*X8*X9*X10*X11*X12*X13*X14*X15*X16*X17*X18*X19*X20*/X21 +
 44
...
3–24 Xilinx Development System

Report Formats
Figure 3-7 PLFB9 PLUSASM Assembler Log Report (continued)

 288 X1*X2*X3*X4*X5*X6*X7*X8*X9*X10*/
X11*X12*X13*X14*X15*X16*X17*X18*X19*X20*X21 +
 289
 290 X1*X2*X3*X4*X5*X6*X7*X8*X9*/
X10*X11*X12*X13*X14*X15*X16*X17*X18*X19*X20*X21 +
 291
 292 /X9 + /X10+ /X11+ /X12
 293
 294
 295 Y1.CLKF = CLK
 296 Y2.CLKF = CLK
 297 Y3.CLKF = CLK
 298 Y4.CLKF = CLK
 299 Y5.CLKF = CLK
 300 Y6.CLKF = CLK
 301 Y7.CLKF = CLK
 302 Y8.CLKF = CLK
 303 Y9.CLKF = CLK

No errors found in w1pld9.pld.

Pins and Product Term Allocation:

Pin	Name	Type	Local	Local	Shared	Shared	Total
			Pterms	Pterms	D1 Pt.	D2 Pt.	Pterms
			Available	Used	Used	Used	Used

 1 X1 input
 2 X2 input
...
 20 X20 input
 21 X21 input
 22 Y1 output 5 5 4 7 16
 23 Y2 output 5 5 4 7 16
...
 30 Y9 output 5 5 4 7 16
 31 CLK fast clock

Input Pins: 22
Output Pins: 9
XEPLD Reference Guide 3–25

XEPLD Reference Guide
Figure 3-7 PLFB9 PLUSASM Assembler Log Report (continued)

Shared Product Term Mapping

Y1
 Y2
 Y3
 Y4
 Y5
 Y6
 Y7
 Y8
 Y9
012345678 D1 Shared Product Terms
XXXXXXXXX X1 * X2 * X3 * X4 * X5 * X6 * X7 * X8 * X9 * X10 * X11
 * X12 * X13 * X14 * X15 * X16 * X17 * X18 */X19 * X20
 * X21
...
XXXXXXXXX X1 * X2 * X3 * X4 * X5 * X6 * X7 * X8 * X9 */X10 * X11
 * X12 * X13 * X14 * X15 * X16 * X17 * X18 * X19 * X20
 * X21
012345678 D2 Shared Product Terms
XXXXXXXXX X1 * X2 * X3 * X4 * X5 * X6 * X7 * X8 * X9 * X10 * X11
 * X12 * X13 * X14 * X15 * X16 * X17 * X18 * X19 */X20
 * X21
...
XXXXXXXXX X1 * X2 * X3 * X4 * X5 * X6 * X7 * X8 * X9 * X10 */X11
 * X12 * X13 * X14 * X15 * X16 * X17 * X18 * X19 * X20
 * X21

Shared D1 Product Terms: 4
Shared D2 Product Terms: 7
Overflowed Product Terms: 0
Size Factor: 9

End of PLUSASM ASSEMBLER LOG report
3–26 Xilinx Development System

Report Formats
Figure 3-8 Standard PLUSASM Assembler Log Report

Start of PARTITIONER LOG report
Splitting output 'Y' with too many product terms for one cell!
 16 shared pterms needed (after using 5 private) but only 12 available.

Partitioner Listing for File: w100pld Tue Nov 30 16:13:03 1993

 PARTITIONING REPORT

Part # of # of Input # of Size
Name Outputs Lines Used Shared Pt Factor
W100PLD 3 21 8 9
 --- ---
 3 9

Part Inputs Used by Each Partition
Name
 |----+----1----+----2----+----3
W100PLD XXXXXXXXXXXXXXXXXXXXX...
 |----+----1----+----2----+----3

+++++++++++++++++++++++++++++++++ W100PLD +++++++++++++++++++++++++++++++++
 Signals Used:
 1: X1 8: X7 15: X15
 2: X12 9: X8 16: X16
 3: X2 10: X9 17: X17
 4: X3 11: X10 18: X18
 5: X4 12: X11 19: X19
 6: X5 13: X13 20: X20
 7: X6 14: X14 21: X21

 Output Sh
 Name Pt
 |----+----1----+----2----+----3
 Y_0 4 XXXXXXXXXXXXXXXXXXXXX...
 Y_1 4 XXXXXXXXXXXXXXXXXXXXX...
 Y_2 0 XXXXXXXXXXXXXXXXXXXXX...
 Unused
 Unused
 Unused
 Unused
 Unused
 Unused
 |----+----1----+----2----+----3
XEPLD Reference Guide 3–27

XEPLD Reference Guide
Figure 3-8 Standard PLUSASM Assembler Log Report (cont.)

All outputs placed in a partition.

In Input Name
No

 1 X1
 2 X12
 3 X2
 4 X3
 5 X4
 6 X5
 7 X6
 8 X7
 9 X8
 10 X9
 11 X10
 12 X11
 13 X13
 14 X14
 15 X15
 16 X16
 17 X17
 18 X18
 19 X19
 20 X20
 21 X21
 22 Y_0
 23 Y_1
 24 Y_2

 End of Partitioning Report

End of PARTITIONER LOG report
3–28 Xilinx Development System

Report Formats
The PAL Interconnect Report
The PAL Interconnect report (design_name.int), shown in Figure 3-10,
shows the signals used in each PAL file, ordered by pin number. The
report is written to a file named design_name.int when you invoke the
PALCONVT or FITEQN command to fit a behavioral design with
multiple modules.

PAL Pin
This column displays the pin numbers in the PAL file pinlists.

Signal Name
This column displays the name of the signal routed to that pin.

PAL Use
Rows in this column have values of I, O, or O,FBK based on how the
signal is used in equations.

Chip Use
Rows in this column have values of INPUTPIN, OUTPUTPIN,
IOPIN, NODE, or FASTCLOCK based on how the software interprets
the way the signal is used in the EPLD device.

Connectivity
This column contains values such as the following:

From PALA:3 Lists source if the signal is an input to
the PAL.

To PALA:3, PALB:4 Lists input instances for an output
generated by the PAL.

External Only Indicates a signal connecting to or from
a chip pin, but not between PALs.

Internal Only Indicates a signal that connects only
between equations in the same PAL.

CONFLICT with PALA:3 Indicates a signal used as an output
more than once in the same design.
XEPLD Reference Guide 3–29

XEPLD Reference Guide
Unconnected Pins
This column lists the numbers of the pins that were not used in the
design.

Summary
The Summary contains information about outputs, global control
pins, and total number of pins of type input, output, and I/O in the
following format:

Total number of Output Equations specified = 60
Total number of device pins used for Input = 45
Total number of device pins used for Output = 22
Total number of device pins used for I/O = 0
Total number of Global Control pins used = 3
3–30 Xilinx Development System

Report Formats
Figure 3-9 The PAL Interconnect Report

XEPLD, Version 5.0 Xilinx Inc.
 PAL INTERCONNECT REPORT
 Circuit name: UARTPALC
Target Device: 735468 Integrated: 11- 5-93, 12:23PM

PAL File: shifter.pld +++

PAL Signal PAL CHIP
PIN Name Use Use Connectivity
 1 BITCLK I NODE From rcvr.pld:16
 8 SDIN I INPUTPIN External Only
12 D7 O NODE To datareg.pld:9
13 D6 O,FBK NODE To datareg.pld:8
14 D5 O,FBK NODE To datareg.pld:7
15 D4 O,FBK NODE To datareg.pld:6
16 D3 O,FBK NODE To datareg.pld:5
17 D2 O,FBK NODE To datareg.pld:4
18 D1 O,FBK NODE To datareg.pld:3
19 D0 O,FBK NODE To rcvr.pld:10 datareg.pld:2

Unconnected pins: 2 3 4 5 6 7 9 10 11

PAL File: rcvr.pld ++

PAL Signal PAL CHIP
PIN Name Use Use Connectivity
 1 X4CLK I INPUTPIN External Only
 2 C0 I NODE From cntr6.pld:19
 3 C1 I NODE From cntr6.pld:18
 4 C2 I NODE From cntr6.pld:17
 5 C3 I NODE From cntr6.pld:16
 6 C4 I NODE From cntr6.pld:15
 7 C5 I NODE From cntr6.pld:14
 8 READ I NODE From cntr6.pld:13
 9 SDIN I INPUTPIN External Only
10 D0 I NODE From shifter.pld:19
15 START O,FBK NODE To cntr6.pld:2
16 BITCLK O,FBK NODE To shifter.pld:1
17 BYTECLK O NODE To datareg.pld:1
18 PAR O,FBK NODE Internal Only
19 FRAMING O,FBK OUTPUTPIN External Only
20 PARITY O,FBK OUTPUTPIN External Only
21 OVERUN O,FBK OUTPUTPIN External Only
22 READY O,FBK OUTPUTPIN External Only

Unconnected pins: 11 12 13 14
XEPLD Reference Guide 3–31

XEPLD Reference Guide
Figure 3-9 The PAL Interconnect Report (continued)

PAL File: datareg.pld +++

PAL Signal PAL CHIP
PIN Name Use Use Connectivity
 1 BYTECLK I NODE From rcvr.pld:17
 2 D0 I NODE From shifter.pld:19
 3 D1 I NODE From shifter.pld:18
 4 D2 I NODE From shifter.pld:17
 5 D3 I NODE From shifter.pld:16
 6 D4 I NODE From shifter.pld:15
 7 D5 I NODE From shifter.pld:14
 8 D6 I NODE From shifter.pld:13
 9 D7 I NODE From shifter.pld:12
13 READ I NODE From cntr6.pld:13
15 DOUT7 O OUTPUTPIN External Only
16 DOUT6 O OUTPUTPIN External Only
17 DOUT5 O OUTPUTPIN External Only
18 DOUT4 O OUTPUTPIN External Only
19 DOUT3 O OUTPUTPIN External Only
20 DOUT2 O OUTPUTPIN External Only
21 DOUT1 O OUTPUTPIN External Only
22 DOUT0 O OUTPUTPIN External Only

Unconnected pins: 10 11 12 14

PAL File: cntr6.pld +++

PAL Signal PAL CHIP
PIN Name Use Use Connectivity
 1 X4CLK I INPUTPIN External Only
 2 START I NODE From rcvr.pld:15
 4 RD I INPUTPIN External Only
 5 CS I INPUTPIN External Only
13 READ O NODE To rcvr.pld:8 datareg.pld:13
14 C5 O,FBK NODE To rcvr.pld:7
15 C4 O,FBK NODE To rcvr.pld:6
16 C3 O,FBK NODE To rcvr.pld:5
17 C2 O,FBK NODE To rcvr.pld:4
18 C1 O,FBK NODE To rcvr.pld:3
19 C0 O,FBK NODE To rcvr.pld:2

Unconnected pins: 3 6 7 8 9 10 11 12

Total number of Output Equations specified = 31
Total number of device pins used for Input = 4
Total number of device pins used for Output = 12
3–32 Xilinx Development System

Report Formats
The EQN File
The Equation File (design_name.EQN), shown in Figure 3-10, is an
expanded version of the .pld file that describes how your design was
implemented on the EPLD device. The FITEQN and FITNET
commands, and commands that call these commands, produce this
report.

This file shows the following results of fitting the device:

● Where everything is placed in UIM functions

● FastCLK assignment

● FOE assignment

● Input register assignment

● Logic optimization results

● Logic minimizer results

● Equations assigned to a Fast Function Block with active-low
polarity

● Export equations (Fast Function Blocks)

● Split equations

For information about how to use this report, see the XEPLD Design
Guide.
XEPLD Reference Guide 3–33

XEPLD Reference Guide
Figure 3-10 The EQN File

;;;
; This is the .eqn file produced by the partitioner. It shows ;
; how your equations were implemented in order to best utilize the ;
; resources available on the chip. ;
; ;
; This design was compiled for the 735468 ;
;;;

PATTERN UART.eqn

DATE Thu Sep 23 15:31:23 1993

CHIP UART XEPLD

MINIMIZE OFF

PARTITION FB2_1 CONTROLLER:PIN15 CONTROLLER:PIN16 CONTROLLER:PIN18

PARTITION FB3_1 CONTROLLER:PIN17 ‘FREQ_DIVIDER[CB8RE]:Q4 DOUT1 DOUT0
 ‘FREQ_DIVIDER[CB8RE]:Q5 READY PARITY OVERUN
 FRAMING

PARTITION FB4_1 DOUT7 DOUT6 DOUT5 ‘FREQ_DIVIDER[CB8RE]:Q1
 ‘FREQ_DIVIDER[CB8RE]:Q2 ‘FREQ_DIVIDER[CB8RE]:Q3
 DOUT4 DOUT3 DOUT2

PARTITION FB6_1 DESERIALIZER:QA DESERIALIZER:QB DESERIALIZER:QC
 DESERIALIZER:QH ‘FREQ_DIVIDER[CB8RE]:Q0
 DESERIALIZER:QD DESERIALIZER:QE DESERIALIZER:QF
 DESERIALIZER:QG

INPUTPIN SDIN RD CS
OUTPUTPIN (FOE = $1N189) DOUT7 DOUT6 DOUT5 DOUT4 DOUT3 DOUT2 DOUT1
 DOUT0
OUTPUTPIN READY PARITY OVERUN FRAMING

NODE CONTROLLER:PIN15 CONTROLLER:PIN16 CONTROLLER:PIN17
 CONTROLLER:PIN18 DESERIALIZER:QA DESERIALIZER:QB
 DESERIALIZER:QC DESERIALIZER:QD DESERIALIZER:QE
 DESERIALIZER:QF DESERIALIZER:QG DESERIALIZER:QH
 ‘FREQ_DIVIDER[CB8RE]:Q0 ‘FREQ_DIVIDER[CB8RE]:Q1
 ‘FREQ_DIVIDER[CB8RE]:Q2 ‘FREQ_DIVIDER[CB8RE]:Q3
 ‘FREQ_DIVIDER[CB8RE]:Q4 ‘FREQ_DIVIDER[CB8RE]:Q5
FASTCLOCK X4CLK
FOEPIN $1N189
3–34 Xilinx Development System

Report Formats
Figure 3-10 The EQN File (continued)

EQUATIONS
/CONTROLLER:PIN15 := ‘FREQ_DIVIDER[CB8RE]:Q0 */‘FREQ_DIVIDER[CB8RE]:Q1 */
‘FREQ_DIVIDER[CB8RE]:Q2
 * ‘FREQ_DIVIDER[CB8RE]:Q3 */‘FREQ_DIVIDER[CB8RE]:Q4
 * ‘FREQ_DIVIDER[CB8RE]:Q5
 + SDIN */CONTROLLER:PIN15
 CONTROLLER:PIN15.CLKF = X4CLK

/CONTROLLER:PIN16 := /CONTROLLER:PIN15
 + ‘FREQ_DIVIDER[CB8RE]:Q1
 + ‘FREQ_DIVIDER[CB8RE]:Q0
 CONTROLLER:PIN16.CLKF = X4CLK

 CONTROLLER:PIN17 := /‘FREQ_DIVIDER[CB8RE]:Q0 * ‘FREQ_DIVIDER[CB8RE]:Q1 */
‘FREQ_DIVIDER[CB8RE]:Q2
 */‘FREQ_DIVIDER[CB8RE]:Q3 */‘FREQ_DIVIDER[CB8RE]:Q4
 * ‘FREQ_DIVIDER[CB8RE]:Q5 */READY
 CONTROLLER:PIN17.CLKF = X4CLK

/CONTROLLER:PIN18 := SDIN * CONTROLLER:PIN18 * CONTROLLER:PIN16
 + /CONTROLLER:PIN18 */CONTROLLER:PIN16
 + /SDIN */CONTROLLER:PIN18
 + /CONTROLLER:PIN15
 CONTROLLER:PIN18.CLKF = X4CLK

 FRAMING := /‘FREQ_DIVIDER[CB8RE]:Q0 */‘FREQ_DIVIDER[CB8RE]:Q1 */
‘FREQ_DIVIDER[CB8RE]:Q2
 * ‘FREQ_DIVIDER[CB8RE]:Q3 */‘FREQ_DIVIDER[CB8RE]:Q4
 * ‘FREQ_DIVIDER[CB8RE]:Q5 */DESERIALIZER:QA
 + /SDIN */‘FREQ_DIVIDER[CB8RE]:Q0 */‘FREQ_DIVIDER[CB8RE]:Q1
 */‘FREQ_DIVIDER[CB8RE]:Q2 * ‘FREQ_DIVIDER[CB8RE]:Q3
 */‘FREQ_DIVIDER[CB8RE]:Q4 * ‘FREQ_DIVIDER[CB8RE]:Q5
 + CS * FRAMING
 + RD * FRAMING
 FRAMING.CLKF = X4CLK

 PARITY := /‘FREQ_DIVIDER[CB8RE]:Q0 * ‘FREQ_DIVIDER[CB8RE]:Q1 */
‘FREQ_DIVIDER[CB8RE]:Q2
 */‘FREQ_DIVIDER[CB8RE]:Q3 */‘FREQ_DIVIDER[CB8RE]:Q4
 * ‘FREQ_DIVIDER[CB8RE]:Q5 * CONTROLLER:PIN18
 + CS * PARITY
 + RD * PARITY
 PARITY.CLKF = X4CLK

 OVERUN := /‘FREQ_DIVIDER[CB8RE]:Q0 * ‘FREQ_DIVIDER[CB8RE]:Q1 */
...
XEPLD Reference Guide 3–35

XEPLD Reference Guide
3–36 Xilinx Development System

Chapter 4
XEPLD Reference Guide — 0401203 01 4–1

PLUSASM Command Reference

Introduction
This chapter defines the structure and syntax of the PLUSASM
Boolean equation language. PLUSASM is the fundamental language
used for expressing behavioral designs targeted for Xilinx EPLDs.
You can use PLUSASM to define custom logic functions representing
either an entire EPLD design, or just part of a design (such as a PLD
equation file in a schematic). All standard components in the XEPLD
schematic symbol library are defined by PLUSASM equation files.

PLUSASM is compatible with the PALASM equation language,
except where noted. PALASM is commonly used for creating conven-
tional PLD products, and most PALASM Boolean equation files can
be read and processed directly by the XEPLD PLUSASM Assembler.

PLUSASM Overview
Using a text editor, you can create a complete PLUSASM design
within a single Top-Level File, which contains both design control
information and behavioral equations. However, it is often conven-
ient to develop your design as separate Include Files and link them
together within a Top-Level File to form a complete design.

If you are converting existing PAL designs, the XEPLD PALCONVT
command automatically creates a Top-Level File which contains your
PAL equation files as Include Files.

XEPLD Reference Guide
PLUSASM File Structure
The basic structure of PLUSASM files is illustrated in Figure 4-1. This
figure shows a hierarchical design composed of a Top-Level File
containing both embedded equations and three Include Files
referenced by INCLUDE_EQN statements.

Figure 4-1 PLUSASM File Structure

The file structure is identical for both the Top-Level File and the
Include Files. However, the Include Files have a different CHIP state-
ment syntax and they can contain only a limited subset of declaration
statements.

These files have three key sections:

● The Header Section.

● The Declarations Section.

● The Equations Section.

The commands and keywords used in each section are described in
the subsequent sections of this chapter.

A typical PLUSASM design file is illustrated in Figure 4-2.

AUTHOR J. Jones
DATE 11/12/92
REVISION 1.2.1.5

CHIP test_1 XEPLD
INPUTPIN A B C
OUTPUTPIN C D E
NODE A1 A2 A3 X
INCLUDE_EQN ‘file_1.PLD‘
INCLUDE_EQN ‘file_2.PLD‘
INCLUDE_EQN ‘file_n.PLD‘

EQUATIONS
D = B * C
X = Q1 + Q2 + Q3
...

Header
Section

Declarations
Section

Equations
Section

Header
Section

Declarations
Section

Equations
Section

file_1.PLD

file_2.PLD

file_n.PLD

design_name .PLD

Top-Level File
Include Files
4–2 Xilinx Development System

PLUSASM Command Reference
Figure 4-2 A Typical PLUSAM Design File

TITLE TOP-LEVEL DESIGN FILE. THE TEST_1 DESIGN
AUTHOR EPLD APPLICATIONS
COMPANY XILINX
DATE 9/9/93

CHIP TEST_1 XEPLD

INCLUDE_EQN ‘SHIFTER.PDS’
INCLUDE_EQN ‘CNTR6.PLD’

FASTCLOCK CLK
FOEPIN F1
CEPIN CE1

INPUTPIN SI RD CS N0 N1 N2 N3
OUTPUTPIN D0 D1 D2 D3 D4 D5 D6 D7 RRDY ORERR
NODE S0 S1 S2 S3 S4 S5 S6 S7 EN Q0 Q1 Q2

Q4 Q5 DATACLK SHIFTCLK PAR START

LOGIC_OPT ON D0 D1 D2 D3 D4 D5 D6 D7
MINIMIZE OFF D0 D1 D2 D3 D4 D5 D6 D7 P1 P2

PARTITION FB4_1 D0 D1 D2 D3 D4 D5 D6 D7
PARTITION COUNTER Q0 Q1 Q2 Q3 Q4 Q5

PWR LOW

EQUATIONS

RRDY = /RD
D0 = SI*/RD/CS
D1 = SI*/RD*/CS
D2 = SI*/RD*/CS+S0
. . .
ORERR := SI*/RD*CS+N0

Header

Include Files
(optional)

CHIP Statement – mandatory

Pin and Node
Declaration

Special Input Declarations (optional)

Equations Statement – (mandatory)

(mandatory)

(optional)

Equations
(optional)

PLUSASM

Logic Optimization
Control (optional)

Logic Placement

Device Power Control (optional)

Control (optional)
XEPLD Reference Guide 4–3

XEPLD Reference Guide
The Header Section
Header statements are used to annotate your design for tracking and
documentation purposes; they are ignored by XEPLD and have no
effect on your design. All header statements are optional, they must
precede the declarations section, and they may appear in any order.
These statements are applicable to behavioral designs, PLD defini-
tions in a schematic design, and Include Files. Each statement may
contain up to a full line of alphanumeric text.

Header Statements
AUTHORtext
COMPANYtext
DATE text
PATTERNtext
REVISION text
TITLE text

Figure 4-3 Header Statement Syntax Example

TITLE design1 Hyperlink Controller
AUTHOR B. Wilson
COMPANY Little Blue
PATTERN test chip for hyperlink
REVISION 1.0.2.5a.7.21
DATE 7/8/92

CHIP design1 XEPLD; The Declarations section starts here
...
4–4 Xilinx Development System

PLUSASM Command Reference
The Declarations Section
Declaration statements specify device I/O pins and affect how your
behavioral equations are mapped into a specific device. The first
statement (after the Header Section) must be the CHIP statement
immediately followed by the pinlist. All other declaration statements
may be used in any order.

Declaration
Statement

TOP INC Function Overview

CEPIN X Specifies the global Clock Enable input pins.
CHIP X X Specifies the file type, file name, and pin list.
FASTCLOCK X X Specifies the global FastCLK inputs.
FASTINPUT X Declares the signals connected to the FastInput pins.
FOEPIN X Specifies global FAST Output Enable input pins.
INCLUDE_EQN X Specifies names of Include Files.
INPUTPIN X Specifies device input pins.
IOPIN X Specifies device I/O pins.
LOGIC_OPT X Controls logic optimization.
MINIMIZE X X Controls the use of logic minimization.
MRINPUT X Specifies the Master Reset input.
NODE X X Specifies nodes in the design.
OPTIONS X Controls the automatic use of device resources.
OUTPUTPIN X Specifies device output pins.
PARTITION X X Specifies physical locations for groups of equations.
PWR X Controls the device power usage.
STRING X X Specifies a global text string substitution.
TOP = Used in Top-Level Files
INC = Used in Include Files and PLD Files in Schematics
XEPLD Reference Guide 4–5

XEPLD Reference Guide
CEPIN
[CEPIN / ce_name... [PIN pin_number ...]]

Use the CEPIN statement in Top-Level Files only.

The CEPIN statement declares the signals received via the global
Clock Enable (CE) pins of the XC7000 device. You can use signals
defined as CEPINs only in the (CE = ce_name) option of the
INPUTPIN and IOPIN statements. Signals declared as CEPIN must
be active low.

You can also control global clock enable using on-chip logic. To do
this, specify an output equation for a signal named as a CEPIN. The
output function will then drive the device CE pin which in turn
controls selected input pad registers

Note: Do not declare a CEPIN signal again as an OUTPUTPIN or
IOPIN statement.

Figure 4-4 Using the CEPIN Statement

Note: The CEPIN statement must always be accompanied by a
FASTCLOCK declaration.

INPUTPIN (RCLK=CLK CE=ENAB1) X
CEPIN /ENAB1
FASTCLOCK CLK
...
EQUATIONS
ENAB1 = READ_EN * SELECT_1; controls CEPIN from on-chip

D Q To UIM

Input Pad

CE

X

/ENAB1

CLK
4–6 Xilinx Development System

PLUSASM Command Reference
CHIP
CHIP file_name device_name signal_list

Use the CHIP statement in Top-Level Files, Include Files, and PLD
files.

The CHIP statement identifies an equation file with a unique name
and target device type. It also declares all signals used in an Include
File or PLD equation file. It is mandatory in all equation files.

file_name

Use file_name to specify the equation file name (without extension).

For Top-Level Files, file_name is the name of your design.

For schematic-based designs, file_name is the value of the PLD
attribute placed on a PLD or custom symbol, or is the actual name of
a user-defined primitive symbol.

device_name

Use device_name to define the target PLD type, which can be any
name. However, some names have special meaning. The software
recognizes the following:

● Any valid PLD name in the schematic library: PL20V8, PL22V10,
PLFB9, and PLFFB9.

● The keyword XEPLD (used to specify the Top-Level file of behav-
ioral designs only).

● The keyword COMPONENT (used to specify user-defined primi-
tive symbols).

● Any valid device name: XC7236, XC7236A, XC7272, XC7272A,
XC7318, XC7336, XC7354, XC7372, XC73108.

The following aliases are accepted for the PL20V8:

20V8, G20V8, GAL20V8, P20V8, P20V8R, PAL20V8.

The following aliases are accepted for the PL22V10:

22V10, G22V10, GAL22V10, P22V10, PAL22V10.

All other names are unrecognized and are treated as generic equation
files.
XEPLD Reference Guide 4–7

XEPLD Reference Guide
If you specify any PLD type other than PLFB9, PLFFB9, 22V10 or
20V8 (or their aliases) the software will assume the PLD is a generic
device. The equation files for generic PLDs must explicitly define all
functionality; implied features are not recognized.

Note: If you are creating original equation files to be included in a
behavioral or schematic design which is not targeted to a specific PLD
type, you can use the name “GENERIC” as the PLD type.

signal_list

Use signal_list to declare all signal names appearing in the Include
Files or in PLD files used in schematics. Each signal name must be
separated by commas, tabs, spaces, or carriage returns. To indicate
that a signal is active-low, precede the name with a slash (/).

For PLD components in a schematic, the signal list order corresponds
to the order of pins on the PLD symbol, starting with the signal name
corresponding to pin 1 on the component symbol. If a PLD pin posi-
tion is not used, it must be labeled NC (No Connection) as a place-
holder. GND and VCC are reserved words treated the same as NC,
providing compatibility with equation files prepared for pin-compat-
ible industry-standard PLDs. Refer to the pin descriptions in the PLD
library data sheets for allowable positions of inputs, outputs, and
I/Os in the signal list.
4–8 Xilinx Development System

PLUSASM Command Reference
Figure 4-5 Using the CHIP Statement

CHIP design1 22V10
CLK S1 /S2 NC NC Q0 Q1 Q2 Q3 Q4 Q5 GND
Q6 Q7 X1 X2 /X3 X4 X5 /X6 X7 N1 N2 VCC
; Used for PLD and Include files

PIN1
PIN2
PIN3
PIN4
PIN5
PIN6
PIN7
PIN8
PIN9
PIN10
PIN11

PIN23
PIN22
PIN21
PIN20
PIN19
PIN18
PIN17
PIN16
PIN15
PIN14
PIN13

CLK
S1
/S2

Q0
Q1
Q2
Q3
Q4
Q5

N2
N1
X7
/X6
X5
X4
/X3
X2
X1
Q7
Q6

PLD=design1

PL22V10
XEPLD Reference Guide 4–9

XEPLD Reference Guide
FASTCLOCK
[FASTCLOCK fastclock _name ...

[PIN pin_number ...]]

Use the FASTCLOCK statement in Top-Level Files, Include Files, and
PLD files.

The FASTCLOCK statement declares the signals that are received via
the global FastCLK pins of the XC7000 device. FastCLK signals are
used for FB and FFB macrocell register clocks, input pad register
clocks, and input pad latch enable inputs.

The first fastclock_name appearing in the FASTCLOCK statement of a
behavioral design is used as the default clock source for any regis-
tered equations for which no signal_name.CLKF statement has been
specified. The default clock pin for PLD components used in sche-
matics is pin 1 unless otherwise specified in the components’ data
sheets.

Within the EQUATIONS section of any equation file, the
fastclock_name can only be used in the signal_name.CLKF =
fastclock_name equation.

You must use the FASTCLOCK statement to declare the signals used
as clocks for input-pin registers and latches. For INPUTPIN and
IOPIN statements, FASTCLOCK signals can be applied as follows:

● RCLK = fastclock_name (register clock specification). For example:

FASTCLOCK clk_1
INPUTPIN (RCLK=clk_1) sig_1 sig_2 sig_5

● LE = fastclock_name (latch enable specification). For example:

FASTCLOCK ck_inp
IOPIN (LE=ck_inp) Q0 Q1 Q2 Q3

The FASTCLOCK statement may also be used in a PLD component
equation file (except PLFB9 or PLFFB9) to specify a PLD pin which
can only be driven by a FastCLK signal. This informs the PLUSASM
assembler that a Function Block input channel and clock p-term need
to be allocated for that signal.

You can also generate a global FastCLK signal using on-chip logic. To
do this, specify an output equation for a signal defined as a FAST-
CLOCK. The output function will then drive the device FastCLK pin,
which in turn controls selected registers in the design.
4–10 Xilinx Development System

PLUSASM Command Reference
Note: Do not declare a FASTCLOCK signal name again in an
OUTPUTPIN or IOPIN statement.

Note: You may have as many FASTCLOCK statements in your
design as there are FastCLK signals available in the specified XC7000
device.

Figure 4-6 Using the FASTCLOCK Statement

Note: The first signal appearing in the FASTCLOCK statement is the
default clock for all registered equations in the Top-Level File. The
first signal appearing in the pinlist of an include file is the default
clock for all registered equations in the Include File. Default clocks
are overridden by the .CLKF control equation.

INPUTPIN (RCLK=CLK1) X
OUTPUTPIN REG2
FASTCLOCK CLK1
...
EQUATIONS
REG2 := X
REG2.CLKF = CLK1
...
CLK1 = SYSCLK + INHIBIT_1; To control FATCLOCK on-chip

UIM

D Q

Input Pad

D Q

Macrocell

Global Clock

X REG2

CLK1
XEPLD Reference Guide 4–11

XEPLD Reference Guide
FASTINPUT
[FASTINPUT input_name ...]

Use the FASTINPUT statement in Include Files and PLD files only.

The FASTINPUT statement declares the signals that are connected to
the FastInput pins of the EPLD device. It is used only in equation files
for PLFFB9 components in XC7300-series schematic designs.
Declaring an input signal as a FASTINPUT means that the signal will
be taken through the FastInput path, bypassing the UIM.

If both the FastInput path and the UIM input path from the same
device pin are used, two pins of the PLFFB9 must be specified, one of
which is named in a FASTINPUT statement.

Signals declared as FASTINPUT must also be listed in the equation
file pin list and the corresponding PLD component pins must be
connected directly to IBUF symbols in the schematic.

Figure 4-7 Using the FASTINPUT Statement

CHIP PLD3 PLFFB9
X Y Z1

FASTINPUT X
...
EQUATIONS
Z1 = X + Y

UIM

X Bypasses the UIM Using the FastInput Path

Y

X

Macrocell

Z1
4–12 Xilinx Development System

PLUSASM Command Reference
FOEPIN
[FOEPIN foe_name ... [PIN pin_number ...]]

Use the FOEPIN statement in Top-Level Files only.

The FOEPIN statement declares the signals received via the global
FOE pins of the EPLD device. You can use signals defined as
FOEPINs only in the FOE = foe_name pin option of the OUTPUTPIN
and IOPIN statements. FOEPIN is not used with the XC7272.

The Fast Output Enable (FOE) pins of the device allow the 3-state
outputs to be quickly enabled or disabled by external signals.
Because the FOE signals use dedicated signal wiring on the device,
they are faster than the p-term tristate enable signals (.TRST equa-
tions) which use macrocell resources. Using the FOE pins for 3-state
output control can also reduce device resource requirements because
no macrocell resources are required.

To change a 3-state output enable from a p-term enable (expressed as
.TRST) to an FOE enable (controlled by an external pin), do the
following:

1. Add the “FOEPIN signal” statement to the Top-Level File.

2. Add the “FOE = signal_name” declaration to the OUTPUTPIN
statement.

3. Delete the .TRST equations.

For example, using the .TRST equation for 3-state control:

OUTPUTPIN TEST
TEST = X*Y
TEST.TRST = OUT1

The same function, using the FOEPIN declaration:

OUTPUTPIN (FOE=OUT1) TEST
FOEPIN OUT1
TEST = X*Y

Note: You cannot use the FOEPIN signal as a logic input; FOEPIN
affects PIN feedback but not UIM feedback. Only output enable sig-
nals that can be controlled by a single active-high pin may be
assigned to an FOE net. Active-low output enable signals must come
from a product term (macrocell).
XEPLD Reference Guide 4–13

XEPLD Reference Guide
You can also control Fast Output Enable using on-chip logic. To do
this, specify an output function for a signal named as an FOEPIN. The
output function will then drive the device FOE pin, which in turn
controls selected 3-state output drivers.

Figure 4-8 Using the FOEPIN Statement

FOEPIN OE
IOPIN (FOE=OE) IO1
...
EQUATIONS
IO1 = A + B
OE = /READ * /CHIP_SEL; To control FOE on-chip

Macrocell I/O
A

B

OE

IO1

Global Fast Output Enable (FOE)

Pad
4–14 Xilinx Development System

PLUSASM Command Reference
INCLUDE_EQN
[INCLUDE_EQN ' file_name . extension ']

Use the INCLUDE_EQN statement in Top-Level Files only.

The INCLUDE_EQN statement is used to link external equation files
(called Include Files) to the Top-Level File. Signal names used in
Include Files are global; a signal name used in both a Top-Level File
and its Included Files is interpreted as the same signal.

Include Files must have a .PLD or .PDS file name extension.

The PLUSASM Quick Reference section, at the end of this chapter,
shows the PLUSASM commands that can be used within Include
Files.

Figure 4-9 Using the INCLUDE_EQN Statement

AUTHOR J. Jones
DATE 11/12/92
REVISION 1.2.1.5

CHIP test_1 XEPLD
INPUTPIN A B C
OUTPUTPIN C D E
NODE A1 A2 A3 X
INCLUDE_EQN ‘file_1.PLD‘
INCLUDE_EQN ‘file_2.PLD‘
INCLUDE_EQN ‘file_n.PLD‘

EQUATIONS
D = B * C
X = Q1 + Q2 + Q3
...

Header
Section

Declarations
Section

Equations
Section

Header
Section

Declarations
Section

Equations
Section

file_1.PLD

file_2.PLD

file_n.PLD

design_name .PLD

Top-Level File
Include Files
XEPLD Reference Guide 4–15

XEPLD Reference Guide

 can
INPUTPIN
[INPUTPIN [({RCLK = fastclock_name [CE = ce_name]
| LE = fastclock_name | FI})] [/] signal_name ...
[PIN pin_number ...]]

Use the INPUTPIN statement in Top-Level Files only.

The INPUTPIN statement declares the signals received via EPLD
device pins. A physical input-only or I/O pin is allocated to receive
each signal. A design may contain several INPUTPIN statements
specifying various combinations of pin options, including the
following:

RCLK = fastclock_name

Each input is registered and clocked by fastclock_name.

CE = ce_name

Input register loading is enabled byce_name which is an active-low enable
(otherwise input registers are always enabled if CE is not specified). CE
only be used in XC7300-series designs and only if RCLK is specified.

LE = fastclock_name

Each input is latched and the latch is made transparent while
fastclock_name is High. LE is mutually exclusive to RCLK and CE.

FI

Each input is placed on a FastInput pin, and instances of each signal
name refer by default to the FastInput path. (This applies only to
XC7300-series designs.)
4–16 Xilinx Development System

PLUSASM Command Reference
Figure 4-10 Using the INPUTPIN Statement

FASTCLOCK CLK
CEPIN /CLK_EN
INPUTPIN (RCLK=CLK CE=CLK_EN) A15

D Q To UIM

Input Pad

CE

A15

/CLK_EN

CLK
Global Clock

INPUTPIN (FI) MC_EN
INPUTPIN (LE=AS) A15

D Q To UIM

Input Pad

A15

AS
Global Clock

FastInputMC_EN
To Macrocell
XEPLD Reference Guide 4–17

XEPLD Reference Guide

 can
IOPIN
[IOPIN [([RCLK = fastclock_name [CE = ce_name] |
LE = fastclock_name] [PINFBK]
[FOE = foe_name] [NODETRST])] [/] signal_name ...
[PIN pin_number ...]]

Use the IOPIN statement in Top-Level Files only.

The IOPIN statement declares the signals that drive and can be
received from EPLD device I/O pins. A device I/O pin is allocated to
each signal specified in an IOPIN statement.

Instances of I/O signal names can take their inputs from either the I/
O pin or from the macrocell feedback. By default, feedback is taken
internally from the macrocell. Applying the .PIN extension to the
signal indicates that the instance uses input from the I/O pin. Use the
PINFBK option to specify that inputs always come from the device
pin instead of the internal macrocell feedback.

A design may contain several IOPIN statements specifying various
combinations of pin options including the following:

RCLK = fastclock_name

Each input is registered and clocked by fastclock_name.

CE = ce_name

Input register loading is enabled byce_name which is an active-low enable
(otherwise input registers are always enabled if CE is not specified). CE
only be used in XC7300-series designs and only if RCLK is specified.

LE = fastclock_name

Each input is latched and the latch is made transparent while
fastclock_name is High. LE is mutually exclusive to RCLK and CE.

PINFBK

Instances of each signal name, when used as inputs, refer to the I/O
pin input rather than the internal macrocell feedback.
4–18 Xilinx Development System

PLUSASM Command Reference
FOE = foe_name

Each 3-state output is enabled by foe_name. You can use this option in
conjunction with signal_name.TRST equations for the same outputs.
(FOE does not apply to XC7272 designs.)

NODETRST

Any signal_name.TRST equations specified for these outputs affect the
macrocell feedbacks as well as the device pin drivers. (This is the
assumed behavior of XC7272 designs, in which 3-state control always
affects both pin drivers and the macrocell feedbacks.)

Figure 4-11 Using the IOPIN Statement with Pin Feedback

CHIP design1 XEPLD
FASTCLOCK ck1
CEPIN en2
FOEPIN f1
IOPIN (RCLK=ck1 CE=en2 FOE=f1 PINFBK) sig_A sig_B sig_C
IOPIN X1 X2 X3
EQUATIONS

IOPIN (PINFBK) CEO
EQUATIONS
CEO = A + B
CEO.TRST = OE

Macrocell

I/O
A

B

OE

CEO

UIM

Pin Feedback

Pad
XEPLD Reference Guide 4–19

XEPLD Reference Guide
Figure 4-12 Using IOPIN with Latch Enable

IOPIN (LE=AS) CNTR0
EQUATIONS
CNTR0 = A + B

Macrocell
A

B

UIM

Q D

CNTR0

Latched Feedback

Global ClockAS

I/O Pad
4–20 Xilinx Development System

PLUSASM Command Reference
LOGIC_OPT
[LOGIC_OPT {OFF | ON} [signal _name…]]

Use the LOGIC_OPT statement in Top-Level Files only.

Use the LOGIC_OPT statement to inhibit the automatic logic
collapsing function of the XEPLD software. If you omit the output
list, the statement applies to all signals. If you include an output list,
the statement applies to the named signals and the opposite setting
applies to all other signals. Only one LOGIC_OPT statement is
allowed per design. LOGIC_OPT ON is the default.

Logic collapsing produces a more compact and usually faster design
requiring fewer device resources. You will need to verify circuit
timing based on the collapsed version of your circuit as shown in the
design_name.eqn report.

Note: The logic collapsing algorithm attempts to reduce the number
of macrocells. For example:

A := B * C ; requires 1 macrocell
B = D + E ; requires 1 macrocell

These separate equations require two macrocells. However, with
LOGIC_OPT ON, they collapse to a single output equation as
follows:

A := C*D + C*E ; requires 1 macrocell

Specifying LOGIC_OPT OFF for a node ensures that a macrocell
output will be used to generate that node. LOGIC_OPT OFF prevents
the node from being collapsed forward into any succeeding equa-
tions. LOGIC_OPT OFF also prevents a single p-term from being
completely optimized into the UIM; a macrocell will still be used to
produce the function.

One exception is that LOGIC_OPT OFF does not prevent a simple
register from being optimized into an input pad register. In this case
the register node is no longer produced on a macrocell output in the
EPLD. To prevent optimization into an input pad register, use the
global statement OPTIONS OFF REG_OPT or insert a new node with
LOGIC_OPT OFF between the device input and the register.

LOGIC_OPT OFF does not prevent a node from receiving product-
terms collapsed in from preceding nodes. In the previous example,
using LOGIC_OPT OFF A will not prevent equation B from being
XEPLD Reference Guide 4–21

XEPLD Reference Guide
collapsed forward into equation A. LOGIC_OPT OFF B will prevent
equation B from being collapsed into equation A.

Figure 4-13 LOGIC_OPT Syntax Examples

Figure 4-14 Using the LOGIC_OPT Statement

LOGIC_OPT ON Q1 Q13 Q24; Optimize only these equations

LOGIC_OPT OFF; Turn off optimization globally

UIM

D Q

Macrocell 1
D

E

C

B

A

Without Logic Optimization

D Q

UIM
D

C

E

A

With Logic Optimization

Macrocell 1

Macrocell 2
4–22 Xilinx Development System

PLUSASM Command Reference
MINIMIZE
[MINIMIZE {OFF | ON} [signal _name…]]

Use the MINIMIZE statement in Top-Level Files, Include Files, and
PLD files.

The MINIMIZE statement selectively enables or disables Boolean
equation minimization. By default, MINIMIZE is enabled for all sum-
of-products equations. If you omit the signal_name list, the MINI-
MIZE statement applies to all equations. If you include the
signal_name list, the specified MINIMIZE setting applies to the listed
signals and the opposite setting applies to all other signals. Only one
MINIMIZE statement is allowed per equation file.

Minimization can be performed only on signals defined using the
standard sum-of-products equation form; equations using the ALU
format are never minimized. If MINIMIZE is ON the software selec-
tively creates the DeMorgan equivalent of your equations to produce
the least number of product terms.

Equation minimization produces a more compact design requiring
fewer device resources.

Figure 4-15 Using the MINIMIZE Statement

MINIMIZE OFF F

A
B
C

A
B
C
D

/F = /A * /B * /C * /D * /E

E

F
D
E

F

F = A + B + C + D + E

Requires 5 Product Terms Requires 1 Product Term

Without Minimization With Minimization
XEPLD Reference Guide 4–23

XEPLD Reference Guide
MRINPUT
[MRINPUT]

Use the MRINPUT statement in Top-Level Files only.

The MRINPUT statement allows you to use the Master Reset pin of
the XC7354 and XC7336 devices as an additional logic input pin. The
MRINPUT statement indicates that the pin is used for a logic input. If
there is no MRINPUT statement in your design file, the default uses
the pin as the Master Reset input.

Figure 4-16 MRINPUT Syntax Example

MRINPUT; Use the Master Reset input for logic
4–24 Xilinx Development System

PLUSASM Command Reference
NODE
[NODE [({UIM | NODETRST})] [/] signal_name ...]

Use the NODE statement in Top-Level Files, Include Files, and PLD
files.

The NODE statement declares the internal signals that do not appear
on device pins. In PLD equation files, custom component equation
files, or Include Files, you may only use the NODE statement with
the UIM or NODETRST options. Each signal defined as a node must
appear on both the left side of an equation and right side of an equa-
tion in the design.

If you use the UIM option, each signal name specifies a function to be
performed in the UIM. Signals declared as NODE (UIM) should be
assigned one-level combinatorial equations only.

Note: Manually assigning equations to the UIM is not recommended
for most designs.

The NODETRST option allows you to specify a .TRST equation for a
node to disable the macrocell feedback to the UIM. This is used to
emulate 3-state bussing within the EPLD device.
XEPLD Reference Guide 4–25

XEPLD Reference Guide
Figure 4-17 Using the NODE (UIM) Statement

INPUTPIN A B C E F START
OUTPUTPIN Y0
NODE (UIM) D G
NODE Y0
EQUATIONS
D = /A*B*/C; UIM node
G = /E*F; UIM node
Y0 = D+G+START; macrocell node

A
B
C

E

F

UIM Macrocell

START

Y0
D
G

4–26 Xilinx Development System

PLUSASM Command Reference
OPTIONS
[OPTIONS OFF [REG_OPT] [CLOCK_OPT] [UIM_OPT]
[FOE_OPT]]

Use the OPTIONS statement in Top-Level Files only.

Use the OPTIONS statement to inhibit various XEPLD optimization
routines for your design.

● REG_OPT – Normally allows the software to use the input pad
registers wherever possible to reduce the macrocell resource
requirements. (Default ON)

● CLOCK_OPT – Normally allows the software to allocate the dedi-
cated FastCLK nets to the simple clock inputs specified in your
design. (Default ON)

● UIM_OPT – Normally allows the software to use the UIM AND
capability wherever possible to reduce the macrocell resource
requirements. (Default ON)

● FOE_OPT – Normally allows the software to allocate the dedi-
cated Fast Output Enable nets to the simple 3-state control inputs
in your design. (Default ON)

If you omit the OPTIONS statement, all options default to ON and
the software will automatically assign the optional device resources
wherever possible to reduce the macrocell resource requirements.

Note: You can also assign the optional resources manually by using
the appropriate PLUSASM commands.

Figure 4-18 OPTIONS Syntax Example

OPTIONS OFF REG_OPT FOE_OPT; CLOCK_OPT and UIM_OPT
; remain ON
XEPLD Reference Guide 4–27

XEPLD Reference Guide
Figure 4-19 Using the REG_OPT Option

Figure 4-20 Using the UIM_OPT Option

Figure 4-21 Using the CLOCK_OPT Option

D Q

MacrocellUIM

Without Register Optimization With Register Optimization

A

Global Clock

D Q

Input Pad

Global Clock

UIM

A

MacrocellUIM

A

B
Y

UIM

A

B
Y

Without UIM Optimization With UIM Optimization

D Q

MacrocellUIM

Without Clock Optimization With Clock Optimization

A D Q

MacrocellUIM

A

CLK

CLK

Global ClockProduct Term Clock
4–28 Xilinx Development System

PLUSASM Command Reference
Figure 4-22 Using the FOE_OPT Option

UIM Macrocell

A

B

OE

Product Term OE

I/O Pad UIM Macrocell

A

B

OE

I/O Pad

Global FOE

Without FOE Optimization With FOE Optimization
XEPLD Reference Guide 4–29

XEPLD Reference Guide
OUTPUTPIN
[OUTPUTPIN [([FOE = foe_name] [NODETRST])] [/]
signal_name ... [PIN pin_number ...]]

Use the OUTPUTPIN statement in Top-Level Files only.

The OUTPUTPIN statement declares the signals that drive XC7000
device pins. A design may contain several OUTPUTPIN statements,
specifying various combinations of pin options including the
following:

FOE = foe_name

Each 3-state output is enabled by foe_name. You can use this option in
conjunction with signal_name.TRST equations for the same outputs.
(FOE does not apply to XC7272 designs.)

NODETRST

Any signal_name.TRST equations specified for these outputs affect the
macrocell feedbacks as well as the device pin drivers. (This is the
assumed behavior of XC7272 designs, in which 3-state control always
affects both pin drivers and the macrocell feedbacks.)
4–30 Xilinx Development System

PLUSASM Command Reference
Figure 4-23 Using the OUTPUTPIN Statement

OUTPUTPIN (FOE=OE) Q0
FOEPIN OE
EQUATIONS
Q0 = A0 + B0

UIM Macrocell

A0

B0

OE

I/O Pad

Global FOE

Q0

OUTPUTPIN (NODETRST) Q0
EQUATIONS
Q0 = A + B
Q0.TRST = OE

UIM Macrocell

A

B

OE

I/O Pad

Q0.PIN
Q0

P-Term OE
XEPLD Reference Guide 4–31

XEPLD Reference Guide
PARTITION
[PARTITION { partition_name FB n | FB n_m | FFB
| FB} signal_name …]

Use the PARTITION statement in Top-Level Files, Include Files, and
PLD files.

The PARTITION statement explicitly controls the placement of equa-
tions into physical Function Blocks and macrocells. There are two
types: Physical and Logical PARTITION statements.

The PARTITION statement is required only for creating adders
(which require contiguous placement of equations) and for assigning
speed-critical equations to FFBs. Though you can use the PARTITION
statement for pin assignment, it is not recommended; use the PIN
specification option in the PLUSASM I/O pin declaration statements
instead.

Note: In Include Files use only Logical PARTITION statements. In
PAL equation files, use PARTITION statements only for establishing
the relative macrocell order of arithmetic and local shift functions.

Note: Do not use PARTITION statements to establish the order of
.EXPORT functions in equations targeted to the PLFFB9 component;
use the signal list in the CHIP statement to establish the signal order.

Note: Do not use the PARTITION statements to establish the order of
local shift and arithmetic functions in the PLFB9 component; use the
signal list in the CHIP statement to establish the signal order.

Physical PARTITION Statements

Physical PARTITION statements assign equations to specific Function
Blocks or specific macrocells.

Specify FBn as the partition_name to explicitly map the specified
output signal names into the designated Function Block (n). For
example, to place signal X2 into any macrocell of Function Block 3:

PARTITION FB3 X2

Specify FBn_m as the partition_name to explicitly map the specified
output signal names consecutively into the designated Function
Block (n), beginning with macrocell (m). For example, to place signals
X1, Y1, and Z1 into Function Block 3, macrocells 5, 6, and 7 (respec-
tively) use the following:

PARTITION FB3_5 X1 Y1 Z1
4–32 Xilinx Development System

PLUSASM Command Reference
Figure 4-24 Using Physical PARTITION Statements

You can specify any number of signal names in the PARTITION
FBn_m statement. Equations will be mapped into consecutive macro-
cells of consecutive function blocks if necessary.

Logical PARTITION Statements

Logical PARTITION statements are used to keep equations grouped
together in the same function block (to share resources) or to desig-
nate the type of function block to be used without determining a
specific physical location; the software is allowed to choose the most
efficient specific physical placement. Logical partitions are also used
to specify the relative order in which equations are placed into
macrocells when they are linked by arithmetic carry, local macrocell
shift, or FFB product term assignment.

Use the PARTITION FB statement to assign outputs to High Density
Function Blocks (the outputs are not necessarily placed in the same
FB). Use the PARTITION FFB statement to assign outputs to Fast
Function Blocks (the outputs are not necessarily placed in the same
FFB). For Example:

PARTITION FB X Y Z; assign X, Y, Z to any FBs
PARTITION FFB A B C; assign A, B, C to any FFBs

Use the PARTITION partition_name statement to group a list of
outputs into a common Function Block which can be any FB or FFB at
the discretion of the software. When grouping equations you may
specify no more than 9 outputs in the Logical PARTITION statement.
For example, the following statement specifys that F1 through F8 are
to remain together in the same function block:

PARTITION GROUP1 F1 F2 F3 F4 F5 F6 F7 F8

EQN1

. . .

MC9

MC8

MC3

MC2

MC1

FB3
Places EQN1 and EQN2

starting at macrocell 2 of FB3

PARTITION FB3_2 EQN1 EQN2

EQN2
XEPLD Reference Guide 4–33

XEPLD Reference Guide
To specifically assign a group of outputs to either an FB or FFB, and
keep them together in the same Function Block, you must use two
PARTITION statements. One PARTITION statement is used to group
the outputs and another is used to assign the group to a specific type
of Function Block (either FB or FFB). For example, to assign outputs
Q0, Q1, and Q2 to the same Fast Function Block, do the following:

PARTITION QGROUP Q0 Q1 Q2; group the outputs
PARTITION FFB Q0 Q1 Q2; assign the group to a FFB

In this example, the software will choose a single Fast Function Block
in which to place equations Q0, Q1, and Q2.

Figure 4-25 Using Logical PARTITION Statements

Linked Equations

When any of the equations specified in a Logical or Physical PARTI-
TION statement participate in an arithmetic carry chain, a local
macrocell shift chain (signal_name.SHIFT), or an explicit FFB product
term assignment chain (signal_name.EXPORT), the named equations
form a linked list. The equations in a linked list are always mapped in
the order in which they are listed into consecutive macrocell loca-
tions. You may specify any number of signal names in a linked equa-
tion list in any PARTITION statement if the chain can be imple-
mented in the target device architecture. If you specify more than
nine signal names in a linked list, the equations are mapped into
consecutive macrocells of consecutive function blocks.

For example, to define the carry order of a 12-bit adder, you can allow
the software to determine the best starting macrocell location by
using the following Logical Partition statement:

PARTITION ADD12 Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Q11

EQN1
. . .

MC9

MC8

MC3

MC2

MC1

FBn or FFBn

PARTITION TESTGROUP EQN1 EQN2

EQN2

Groups EQN1 and EQN2 together
into any available FB or FFB

(TESTGROUP)
4–34 Xilinx Development System

PLUSASM Command Reference
You could also designate a specific starting macrocell location by
using the following Physical PARTITION statement:

PARTITION FB7_9 Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Q11

Note: The XC7000 architecture does not support FFB p-term assign-
ment across function block boundaries; p-term assignment linked
lists are limited to nine equations.

General Rules for PARTITION Statements
● If two or more equations are linked in a PARTITION statement

then all equations are kept contiguous in order. For example, if
signals Q0, Q1, and Q2 form a 3 bit adder, in the following state-
ment, signals X, Y, and Z will physically remain in the same rela-
tive positions listed:

PARTITION TEST X Y Q0 Q1 Q2 Z

● You can only use one PARTITION FBn statement per function
block.

● If you use a PARTITION FBn statement you cannot use the PAR-
TITION FBn_m statement for the same function block. However,
you may use any number of PARTITION FBn_m statements if the
specified macrocells do not overlap.

● Physical partitions using ten or more non-linked macrocells must
indicate a specific starting macrocell. For example:

PARTITION FB3_5 A1 A2 ... A10

The following physical partition syntax will cause an error
because a specific macrocell is not indicated:

PARTITION FB3 A1 A2 ... A10

● Logical partitions with ten or more equations must contain linked
equations (.add, .shift, .export, .addmode). The following will
cause an error if none of the equations are linked:

PARTITION TEST A1 A2 ... A10

● Any conflicts between pin assignments and PARTITION state-
ments cause errors.

● The range of macrocells specified in physical PARTITION state-
ments must not overlap.
XEPLD Reference Guide 4–35

XEPLD Reference Guide
Logical Partitions Using Less Than 9 Macrocells

Example: PARTITION TEST A B C D E

Note: This method is used primarily for arithmetic functions that
require only a single function block.

● All macrocells are placed into one FB; macrocell assignments
within the function block are determined by the software.

● Non-linked macrocells may be placed anywhere within the FB
and not necessarily in contiguous order, at the discretion of the
software.

● If the macrocells are linked (using either .add, .shift, .export, or
.addmode) the equations are kept contiguous in the listed order;
the starting macrocell is determined by the software.

Logical Partitions Using More Than 9 Macrocells

Example: PARTITION TEST A B C D E F G H I J

Note: This method is used primarily for arithmetic functions that
require multiple function blocks.

● The macrocells must be linked (using .add, .addmode, or .shift
only).

● The equations cannot use FFB product term assignment (.export).

● The equations will always be placed in High Density FBs; not in
FFBs

● The first macrocell may be placed anywhere, at the discretion of
the software.

● This method can be used for relative pin assignment by including
at least one linked equation.

Physical Partitions Using Less Than 9 Macrocells

Example: PARTITION FB4 A B C D E

● All macrocells are placed into the specified FB (FBn). None of the
signals are allowed to flow into an adjacent FB.

● Non-linked macrocells may be placed anywhere within the FB
and not necessarily in contiguous order, at the discretion of the
software.
4–36 Xilinx Development System

PLUSASM Command Reference
● If the macrocells are linked, the equations are kept contiguous in
the listed order; the starting macrocell is determined by the soft-
ware.

● This method can be used for approximate pin assignment.

Physical Partitions Specifying Starting Macrocells

Example: PARTITION FB4_5 A B C D E F G

● The signal chain always starts on the specified macrocell and the
signals are kept contiguous in the listed order for both linked
(.add, .shift, .export, .addmode) and non-linked equation lists.

● If there are more than 9 macrocells, the next macrocell in the chain
is always placed in the same type of function block as the preced-
ing one; high density and Fast Function Blocks are not mixed in
the chain.

● This method can be used for exact pin assignment, but the normal
pin assignment syntax of the I/O pin declaration statements is
recommended.

Figure 4-26 PARTITION Syntax Examples

PARTITION FB sig_A; place sig_A in any High Density FB
PARTITION FFB sig_B ; place sig_B in any Fast FB
PARTITION FB2 sig_C sig_D; place sig_C and sig_D in FB2
PARTITION FB3_5 sig_E; place sig_D in FB3, macrocell 5
PARTITION MUX5 X Y; place X and Y in the same partition

;(labeled MUX5) in either an FB or FFB
...
PARTITION COUNTER Q0 Q1 Q2 Q3; group the counter
PARTITION FB Q0 Q1 Q2 Q3; place the counter in any HDFB
XEPLD Reference Guide 4–37

XEPLD Reference Guide
PWR
[PWR {LOW | STD} [signal_name …]]

Use the PWR statement in Top-Level Files only.

The PWR statement specifies whether macrocells implementing the
specified equations have LOW-power or standard-power (STD) oper-
ation. If you omit the signal_name list, the PWR statement applies to
all macrocells. If you include the signal_name list, the listed signals are
given the specified setting and all other signals are given the opposite
setting.

Figure 4-27 PWR Syntax Example

PWR LOW X1 X2 X3; low power used for the these macrocells
4–38 Xilinx Development System

PLUSASM Command Reference
STRING
[STRING string_name ' string_text ']

Use the STRING statement in Top-Level Files, Include Files, and PLD
files.

The STRING statement allows you to name any text string and then
use the name instead of the string in equations. This can save you
time and make your equations easier to read.

Figure 4-28 STRING Syntax Example

STRING LONG_EQ ‘A+B+C+D+E+F+G*Q+/X+/Y+/Z’
...
EQUATIONS
IN1 = LONG_EQ + D0
IN2 = LONG_EQ + D1
...
IN8 = LONG_EQ + D7
XEPLD Reference Guide 4–39

XEPLD Reference Guide
The Equation Section
The equation section of a PLUSASM file is where you define the func-
tionality of your design. You must begin the equation section with the
EQUATIONS keyword, which must appear after all declarative state-
ments and before any logic equations.

PLUSASM recognizes three types of equations: Combinatorial, Regis-
tered, and Control. The following equation syntax can be used in Top-
Level Files, Include Files, and PLD equation files unless otherwise
specified.

Combinatorial and Registered Equations
Combinatorial equations create immediate outputs from operations
on input signals and are expressed in the following form:

[/] signal_name = expression

where “/” indicates a signal inversion.

Registered equations specify the logic function that drives the D
input of a rising-edge-triggered flip-flop. The format of a registered
equation is identical to combinatorial format except that the “colon
equal” (:=) assignment operator is used, as in:

[/] signal_name := expression

The logic-defining expression for a combinatorial or registered equa-
tion can take one of two forms.

● The standard sum-of-products format. This form is compatible
with PALASM.

[/] signal_name [:]= p_term [+ p_term]...

where p_term is a logic expression in the form of:

[/] input _name [* [/] input _name]...

● The ALU format. This form is specific to PLUSASM and to the
XEPLD High-density Function Block architecture. To define out-
put logic using the ALU format, you specify two sum-of-product
expressions, named D1 and D2, and the ALU operation which
combines them:
4–40 Xilinx Development System

PLUSASM Command Reference
signal_name .D1={ p_term [+ p_term]...| VCC | GND}
signal_name .D2={ p_term [+ p_term]...| VCC | GND}
[/] signal_name [:]= signal_name .D1 alu_op
signal_name .D2

where alu_op is one of the 16 logical operation keywords as shown
below:

Table 4-1 ALU Function Keywords

Note: In PLUSASM Syntax:

● The :+: symbol is the same as XOR.

● The * symbol is the same as AND.

● The + symbol is the same as OR.

The three-line ALU format may be used as an alternative to the stan-
dard PALASM-compatible equation format for any High Density
Function Block output function.

The polarity of an output function expressed in ALU format is deter-
mined by the ALU operation. None of the three equations comprising
the ALU format may be preceded by a slash (“/”).

Refer to the appropriate EPLD device data sheet for the allocation of
D1 and D2 product terms among macrocells and Function Blocks.

Note: As an alternative to the three-line ALU format, XOR equations
can also be specified by using the in-line :+: operator. For example:

D.ADD = VCC
D := A :+: B

Keyword Logical
Operation

Keyword Logical
Operation

XOR F = D1 :+: D2 D1_ONLY F = D1

XNOR /F = D1 :+: D2 D2_ONLY F = D2

AND F = D1 * D2 NOTD1 F = /D1

NAND /F = D1 * D2 NOTD2 F = /D2

OR F = D1 + D2 D1_AND_NOTD2 F = D1 * /D2

NOR /F = D1 + D2 NOTD1_AND_D2 F = /D1 * D2

VCC F = 1 D1_OR_NOTD2 F = D1 + /D2

GND F = 0 NOTD1_OR_D2 F = /D1 + D2
XEPLD Reference Guide 4–41

XEPLD Reference Guide
Figure 4-29 Equation Syntax Example

INPUTPIN A0 A1 SEL CLEAR
OUTPUTPIN S1
FASTCLOCK CLK
EQUATIONS
S1.D1 = A0 * /SEL + A1 * SEL
S1.D2 = S1 * /CLEAR
S1 := S1.D1 XOR S1.D2

UIM

D Q

Macrocell

Sum of Products 1

Sum of Products 2

D1
D2

ALU

Global Clock

Macrocell Feedback

A1

SEL

A0

CLEAR

CLK

S1
4–42 Xilinx Development System

PLUSASM Command Reference
Control Equations
You can use control equations to describe additional control functions
for combinatorial or registered outputs. Control equations begin with
the output name used in the associated logic-defining equation, and
are appended with an extension keyword. For example:

signal_name . extension = expression

The polarity of the control equation itself cannot be inverted (except
for the .T extension); any slash (/) placed before the equation is
ignored. Control equations override any corresponding default.

The control equation extensions are:

● .ADD (Enables arithmetic carry mode — not used with XC7272 or
XC7336.)

● .ADDMODE (Enables arithmetic carry mode — XC7272 only.)

● .CLKF (Specifies clock control source for registered outputs.)

● .D1 and .D2 (Specifies the signal inputs to the ALU — not used
with the XC7336.)

● .EXPORT (Passes p-terms from one macrocell to another — not
used with the XC7272 or XC7236.)

● .FBK (Enables local feedback, ORed with the D2 ALU input — not
used with the XC7272 or XC7336.)

● .FBKINVERT (Inverts the macrocell feedback — used only by the
software, not required by the user.)

● .FI (Specifies the signals taken from the FastInput pins — not used
with the XC7272 or XC7236.)

● .PIN (Specifies the signals taken from device pins instead of mac-
rocell feedback.)

● .PRLD (Specifies the initial preload value of registers — not used
with the XC7336.)

● .RSTF (The asynchronous reset control function.)

● .SETF (The asynchronous set control function.)

● .SHIFT (Enables feedback from the previous HDFB macrocell,
ORed with D2 ALU input — not used with XC7272 or XC7336.)

● .T (The toggle flip-flop function. A preceding “/” is allowed)

● .TRST (The 3-state output enable function.)
XEPLD Reference Guide 4–43

XEPLD Reference Guide
.ADD (Arithmetic Carry Enable)
[signal_name .ADD = VCC]

The .ADD extension enables arithmetic mode (arithmetic carry-in) for
the ALU block of all XC7000 series devices except the XC7272 and
trhe XC7336. When you enable the add mode, the carry produced by
the previous macrocell is XORed with the result from the ALU opera-
tion on the D1 and D2 intermediate sum-of-products, as defined by
the alu_op. You may either use the 3-line ALU equation format or the
more convenient in-line XOR operator (:+:) when using arithmetic
mode. For example:

D.ADD = VCC
D := A :+: B

Note: The .ADD equation enables the carry-in signal into the current
macrocell. For PLFB9 equation files, PLUSASM determines the order
in which to map the outputs from their order in the signal list. For
equation files other then the PLFB9 and for behavioral designs, out-
puts participating in an arithmetic carry chain must be grouped
together with a PARTITION statement; the outputs are mapped in the
order in which they appear in the PARTITION statement. The carry-
in signal for each output originates from the output whose name
immediately precedes it in the signal list.
4–44 Xilinx Development System

PLUSASM Command Reference
Figure 4-30 .ADD Syntax Example

Figure 4-31 Using the .ADD Extension

INPUTPIN A1 B1
OUTPUTPIN S1
EQUATIONS
S1 = A1 :+: B1
S1.ADD = VCC

X2904

ARITHMETIC LOGIC UNIT (ALU)

0

1

Carry Input

D1

D2

Function
Generator To Macrocell

Flip-Flop

D1
Sum-of-Products

D2
Sum-of-Products

Arithmetic
Carry Control

Carry Output

.ADD Controls this Configuration Cell
XEPLD Reference Guide 4–45

XEPLD Reference Guide
.ADDMODE (Arithmetic Carry Enable)
[signal_name .ADDMODE = VCC]

The .ADDMODE extension enables the arithmetic mode (arithmetic
carry-in and carry-out) for the ALU block of the XC7272 only. When
you enable the add mode, the macrocell output value is derived from
the D1 sum-of-products and the carry-in from the previous macrocell,
according to the ALU operation specified. The D2 sum-of-products is
used only to generate the carry-out. You must use the 3-line ALU
equation format when using arithmetic mode as shown in
Figure 4-32.

The .ADDMODE equation enables the carry-in and carry-out signals
of the current output. For PLD equation files, PLUSASM determines
the order in which to map the outputs from their order in the signal
list. For behavioral designs, outputs participating in arithmetic carry
chains must be grouped together with PARTITION statements; the
outputs are mapped in the order in which they appear in the PARTI-
TION statement. The carry-in signal for each output originates from
the output whose name immediately precedes it in the signal list.

Note: The D1 and D2 functions of the XC7272 are not interchange-
able.
4–46 Xilinx Development System

PLUSASM Command Reference
Figure 4-32 Using the .ADDMODE Extension

INPUTPIN A1 B1
OUTPUTPIN S1
EQUATIONS
S1.D1 = A1 * /B1 + /A1 * B1; Half Adder = A1 XOR B1
S1.D2 = B1; Carry out = B1 when S1.D1 is false
S1 := S1.D1 XOR S1.D2; using 1 of 16 local operands
S1.ADDMODE = VCC; Enable the fast carry chain

MUX
1

0

D Q

CLK

D1

F

D2

MUX
0

1

MUX
1

0

Cin

D 1

D 2

ALU

Any
Function

(XNOR for
Adder)

Add
EPROM

Cell

COUT X2982

Macrocell
Register

.ADDMODE Controls this Function

S1
A1

B1
XEPLD Reference Guide 4–47

XEPLD Reference Guide
.CLKF (Register Clock Source)
[signal_name .CLKF= { p_term | fastclock _name
| GND}]

The .CLKF extension specifies the clock control source for a registered
output. If a FastCLK signal is used, its signal name must appear alone
and uninverted in the .CLKF equation. If a product term is specified
(for a High-density Function Block only), the register clock input goes
active whenever the value of the product term expression changes
from false to true. GND specifies that the register changes only in
response to .SETF and .RSTF functions (for a High-density Function
Block only).

The .CLKF equation for a registered output may be omitted only if a
default clock signal has been specified in a FASTCLOCK statement in
a Top-Level File.

Note: If there is no .CLKF statement, the first FASTCLOCK is the
default clock source for the equation.

Note: Default clocks for PLDs can be either FastCLKs or a product-
term clocks.
4–48 Xilinx Development System

PLUSASM Command Reference
Figure 4-33 Using the .CLKF Extension

INPUTPIN D0 D1 CLK0
OUTPUTPIN Y0 Y1
FASTCLOCK CLK1
EQUATIONS
Y0 := D0
Y0.CLKF = CLK0; Input and I/O uses P-Term clock

Y1 := D1; CLK1 is implied (because no .CLKF statement)

UIM

D Q

CLK0

D0 Y0

Macrocell UIM

D QD1 Y1

Macrocell

CLK1

Without Clock Optimization With Clock Optimization

Global FastCLKP-Term Clock
XEPLD Reference Guide 4–49

XEPLD Reference Guide
.D1 and .D2 (ALU Inputs)
[[signal_name .Dl = { p_term [+ p_term]... | VCC |
GND}]
[signal_name .D2 = { p_term [+ p_term]... | VCC |
GND}]
signal_name [:]= signal_name .D1 alu_op
signal_name .D2]

The .D1 and .D2 extensions assign signals to the D1 and D2 inputs of
the ALU. See the device data sheets for details of the D1 and D2 input
architecture.

There are 16 possible ALU operations that can be performed on the
D1 and D2 inputs as shown below:

Table 4-2 ALU Function Keywords

Using the ALU

The ALU can perform both logical and arithmetic operations. A block
diagram of a typical XC7000 family ALU is shown in Figure 4-31.

In logic mode, the ALU performs as a 2-input function generator that
implements any of the functions listed in Table 4-2.

In Arithmetic mode the ALU can generate the sum or difference of
the D1 and D2 inputs. Combined with the carry input from the
previous macrocell, the ALU operates as a 1-bit full adder, generating
a carry output to the next macrocell in the chain. The carry chain
propagates between adjacent macrocells and also crosses the bound-
aries between function blocks. The .ADD equation extension enables
the carry input to the ALU.

Keyword Logical
Operation

Keyword Logical
Operation

XOR F = D1 :+: D2 D1_ONLY F = D1

XNOR /F = D1 :+: D2 D2_ONLY F = D2

AND F = D1 * D2 NOTD1 F = /D1

NAND /F = D1 * D2 NOTD2 F = /D2

OR F = D1 + D2 D1_AND_NOTD2 F = D1 * /D2

NOR /F = D1 + D2 NOTD1_AND_D2 F = /D1 * D2

VCC F = 1 D1_OR_NOTD2 F = D1 + /D2

GND F = 0 NOTD1_OR_D2 F = /D1 + D2
4–50 Xilinx Development System

PLUSASM Command Reference
Note: The XEPLD software automatically uses the logic capability of
the ALU to implement your design. However, you can also manually
specify ALU operations by using the .D1 and .D2 equations.

Figure 4-34 Using the .D1 and .D2 Extensions

INPUTPIN A0 A1 SEL CLEAR
OUTPUTPIN s1
FASTCLOCK CLK
EQUATIONS
S1.D1 = A0 * /SEL + A1 * SEL
S1.D2 = S1 * /CLEAR
S1 := S1.D1 XOR S1.D2

UIM

D Q

Macrocell

Sum of Products 1

Sum of Products 2

D1
D2

ALU

Global Clock

Macrocell Feedback

A1

SEL

A0

CLEAR

CLK

S1
XEPLD Reference Guide 4–51

XEPLD Reference Guide
.EXPORT (FFB Product Term Assignment)
[signal_name .EXPORT = p_term [+ p_term]...]

The .EXPORT extension specifies a sum-of-products expression of up
to four product terms, to be exported and ORed into the next output
function (macrocell) of an XC7300-series Fast Function Block. The
receiving macrocell may in turn export its four product terms
combined with all product terms it received. The donor macrocell
(signal_name) may still be used as a single product term output (regis-
tered or combinatorial) using the equation:

/signal_name [:]= p_term

In PLFFB9 equation files, the order of the output signal names in the
equation file pin list defines the macrocell order. In behavioral
designs, the order of the output signal names in the PARTITION
statement (used to define FFB outputs) defines the macrocell order.

Note: FFB equations must use active-low outputs. If you specify an
active-high output equation, the software will create the necessary
input and output inversions to create an active-low output and main-
tain your logical functionality.
4–52 Xilinx Development System

PLUSASM Command Reference
Figure 4-35 Using the .EXPORT Extension

FASTINPUT A B C E F G; Fast input assignment
OUTPUTPIN Y1
NODE Y0
PARTITION FB1 Y0 Y1; Assigns Y0 and Y1 to the same FFB
EQUATIONS
Y0.EXPORT = A + B + C; enables Y0 P-Term assignment
Y1 = E+F+G

A

B

C

E

F

G

3 Product Terms
Exported to the
Next Macrocell

Y0

Y1

Macrocell

Macrocell
XEPLD Reference Guide 4–53

XEPLD Reference Guide
.FBK (Local Feedback)
[signal_name .FBK = { p_term [+ p_term]... | VCC}]

The .FBK extension enables the local feedback of an output to be
ORed into the D2 sum-of-products of the same macrocell without
pasing through the UIM. When you use .FBK, the local feedback is
ANDed with the sum of up to three D2 product terms as specified in
the .FBK equation. The output of the AND function is then ORed
with the remaining D2 product terms to form the D2 input signal to
the ALU. Refer to the EPLD device data sheet for a detailed descrip-
tion of the local feedback logic in the macrocell.

VCC specifies that the local feedback signal is always enabled and
ORed into the D2 sum-of-products.

Note: The .FBK extension does not apply to XC7272 or XC7336
designs.

Note: The .FBK extension can be used to increase the available device
resources by reducing the number of UIM inputs.

Figure 4-36 Using the .FBK Extension

Logically the D2 product term in this example may be described by
the following equation:

D2 = A+B+C+D+E+F+OUT*(G+H+I)

...
EQUATIONS
OUT.D2 = A+B+C+D+E+F
OUT.FBK = G+H+I

D Q

ALU
A
B
C
D
E
F
G
H
I OUT.FBK

D2

D1

OUT
4–54 Xilinx Development System

PLUSASM Command Reference
.FBKINVERT (Invert Macrocell Feedback)
[signal_name .FBKINVERT = VCC]

The .FBKINVERT extension specifies that the feedback from the
macrocell output is to be inverted. This function is performed auto-
matically by the software, as needed, and is never specified by the
user.

Note: You should never specify .FBKINVERT. However, the software
uses this function when it minimizes your equations and therefore
you will see this extension in the design_name.EQN file.

Figure 4-37 .FBKINVERT Syntax in the .EQN File

Figure 4-38 Using the .FBKINVERT Extension

EQUATIONS
FB1.FBKINVERT = VCC; invert the Feedback signal

Clock
Select

Register
Trasparent

Control

Feedback
Polarity

Local
Feedback

Arithmetic
Carry-Out to Next

Macrocell

Shift-In
m Previous MC

Shift-Out
to Next MC

re
ells

orced high when P-term is not used

RESET
SET
OE*

ALU

D1

D2

C

in

C

out

F

R

S
Q

D

M
U

X

UIM

4

per
ock

P-Terms per
Macrocell

.FBKINVERT controls this inversion
High Density Function Block Schematic
XEPLD Reference Guide 4–55

XEPLD Reference Guide
.FI (FastInput Source)
[input_name .FI]

The .FI extension specifies that an input signal is taken from the
FastInput path of a FastInput pin (for XC7300-series devices only)
rather than from the UIM input path of the same pin. Use this exten-
sion only for signal names defined in INPUTPIN or IOPIN state-
ments.

For example, you can use the following equations to select between
the signal on pin A (A.FI*DIRECT) and the value latched into the
input-pad register which is conditionally loaded from pin A
(A*/DIRECT):

INPUTPIN A
Q := A.FI*DIRECT + A*/DIRECT

Note: The A*/DIRECT signal is available via the UIM path from
input A.

Figure 4-39 Using the .FI Extension

INPUTPIN X Y
OUTPUTPIN Z1
EQUATIONS
Z1 = X.FI + Y

UIM

X Bypasses the UIM Using the FastInput Path

Y

X

Macrocell

Z1
4–56 Xilinx Development System

PLUSASM Command Reference
.PIN (PIN Input Source)
[signal_name .PIN]

The .PIN extension specifies that an input signal is to be taken from a
device I/O pin rather than from internal macrocell feedback. Use this
expression only for signal names defined in IOPIN statements.

 For example, you can use the following equation to conditionally
load a macrocell register from a bidirectional pin named Q:

Q := Q.PIN*LOAD + Q*/LOAD

Figure 4-40 Using the .PIN Extension

INPUTPIN A B LOAD
IOPIN Y0 Y1
FOEPIN OE
EQUATIONS
Y0 := A + B
Y0.TRST = OE
Y1 = Y0.PIN + LOAD

UIM Macrocell
A

B

OE

I/O Pad

Y0D Q

Macrocell

Macrocell Feedback
I/O Pin Feedback

I/O Pad

LOAD
Y1

Y0.PIN

Y0
XEPLD Reference Guide 4–57

XEPLD Reference Guide
.PRLD (Preload State)
[signal_name .PRLD = {VCC | GND}]

The .PRLD extension specifies the initial logic value to be pre-loaded
into an output register during power-up (VCC = 1, GND = 0). The
equation output polarity is adjusted before the register and does not
effect the output level resulting from a .PRLD operation.

If PRLD is not specified, the software is free to determine the optimal
pre-load value for the implementation. The default pre-load value is
low for High Density Function Block outputs but may change due to
optimization into input-pad registers or FFBs, or by optimization of
nearby inverters.

Note: Using the .PRLD extension can prevent the software from
using input registers.

Note: The .PRLD extension is not allowed for the XC7336 or any Fast
Function Block Equations.

Figure 4-41 .PRLD Syntax Example

EQUATIONS
TEST1.PRLD = VCC; preload the TEST1 output with a logic 1
TEST2.PRLD = GND; preload the TEST2 output with a logic 0
4–58 Xilinx Development System

PLUSASM Command Reference
.RSTF (Asynchronous Reset)
[signal_name .RSTF = p_term]

The .RSTF extension specifies the asynchronous reset control function
for a registered output. The register is forced to and held in the 0 state
while the p_term product term is true. The equation output polarity is
adjusted before the register and does not effect the output level
resulting from a .RSTF operation.

Figure 4-42 Using the .RSTF Extension

INPUTPIN A B D0 CLK
OUTPUTPIN Y0
EQUATIONS
Y0 := D0
Y0.CLKF = CLK
Y0.RSTF = A*B; P-Term reset

UIM

D

R

Q

A

B

CLK

D0 Y0

Macrocell
XEPLD Reference Guide 4–59

XEPLD Reference Guide
.SETF (Asynchronous Set)
[signal_name .SETF = p_term]

The .SETF extension specifies the asynchronous set control function
for a registered output. The register is forced to and held in the 1 state
while the p_term product term is true. The equation output polarity is
adjusted before the register and does not effect the output level
resulting from a .SETF operation.

Figure 4-43 Using the .SETF Extension

INPUTPIN A B D0 CLK
OUTPUTPIN U0
EQUATIONS
U0 := D0
U0.CLKF = CLK
U0.SETF = A*B; P-Term set

UIM

D
S Q

A

B

CLK

D0 U0

Macrocell
4–60 Xilinx Development System

PLUSASM Command Reference
.SHIFT (Local Shift)
[signal_name .SHIFT = { p_term [+ p_term]… |
VCC}]

When you use the .SHIFT extension, the output of the previous
macrocell is ANDed with the sum of up to three D2 product terms
you defined in the SHIFT statement. The output from the AND func-
tion is then ORed with the remaining D2 product terms to form the
D2 input signal to the ALU. Figure 4-44 shows a diagram of the
.SHIFT logic in the macrocell.

VCC specifies that the local feedback signal is always enabled and
ORed into the D2 sum-of-products.

Note: The .SHIFT extension does not apply to XC7272 or XC7336
designs.
XEPLD Reference Guide 4–61

XEPLD Reference Guide
Figure 4-44 The .SHIFT Logic Diagram

(s

Clock
Select

Register
Trasparent

Control

Input-Pad
Register/Latch

(optional)

Feedback
Polarity

Local
Feedback

OE Co

Global
Fast OE

Arithmetic
Carry-Out to Next

Macrocell

Shift-In
from Previous MC

Shift-Out
to Next MC

o 8 More
crocells

OE is forced high when P-term is not used

RESET
SET
OE*

CLOCK

5

ALU

D1

D2

C

in

C

out

F

R

S
Q

D

M
U

X

Fast
Clocks

0 1

Arithmetic Carry-In from
Previous Macrocell

1 of 9 Macrocells

Feedback
Enable
Override

ack to UIM
o UIM

4

harable
rms per
ion Block

5 Private
P-Terms per

Macrocell

High Density Function Block Schematic
.SHIFT Controls this multiplexer
4–62 Xilinx Development System

PLUSASM Command Reference
Figure 4-45 Using the .SHIFT Extension

OUTPUTPIN S1 S0
PARTITION FB S0 S1; Assign the macrocells to the same FB
; NOTE: S0 must precede S1
EQUATIONS
S1.SHIFT = P1 + P2 + P3
S1.D1 = P6
S1.D2 = P4 + P5
S1 := S1.D1 XOR S1.D2
...

D Q

ALU

P4

P5

P1
P2
P3

D2

D1P6

.SHIFT Controls this Multiplexer

Macrocell n+1

D Q

Macrocell n

High-Speed Shift Chain

S0

S1
XEPLD Reference Guide 4–63

XEPLD Reference Guide
.T (Toggle Flip-Flop Specification)
[[/] signal_name .T = p_term [+ p_term] ...]

The .T extension specifies a toggle flip-flop. For the XC7336 the equa-
tion is implemented using the Fast Function Block T-flip-flop. For all
other devices the equations are implemented as follows:

X.T = P1 + P2

This is the same as:

X := X.D1 XOR X.D2
X.D1 = P1 + P2
X.D2 = X

Note: The “=” symbol is used to specify a .T flip-flop instead of the
usual “:=” symbol used for other registered equations.

Figure 4-46 Using the .T Extension (XC7336)

INPUTPIN P1 P2
OUTPUTPIN Y0
FASTCLOCK CLK
EQUATIONS
Y0.T = P1 * P2
Y0.CLKF = CLK

UIM

T Q
P1

P2

CLK

Macrocell

Y0

Global FastCLK
4–64 Xilinx Development System

PLUSASM Command Reference
.TRST (3-State Control)
[signal_name .TRST = { p_term | VCC}]

The .TRST extension specifies the output enable condition for a
3-state output signal. The output signal is enabled while the product
term p_term is true. By default, the 3-state control applies only to the
EPLD device pin driver.

Normally, if macrocell feedback is used, and you disable the 3-state
output, the macrocell feedback will not be disabled. However, if a
node name is declared with NODETRST (or you are targeting the
XC7272 which only provides NODETRST behavior), the .TRST equa-
tion affects the macrocell feedback as well. By disabling macrocell
feedback, you can emulate 3-state bussing within the EPLD device.

Figure 4-47 Using the .TRST Extension

INPUTPIN A B D0
OUTPUTPIN Y0
EQUATIONS
Y0 := D0
Y0.CLKF = CLK
Y0.TRST = A*B; P-Term 3-state control

UIM

D Q

A

B

CLK

D0

Macrocell

Y0
XEPLD Reference Guide 4–65

XEPLD Reference Guide
Defining Signal Polarity in Equations
The interpretation of input and output signal polarities in PLUSASM
is identical to standard PALASM syntax.

Output Signal Polarity
You can place a slash,“/”, before an output signal name in the signal
list of a PLD equation file or in a pin declaration statement of a behav-
ioral design to globally define the signal as active-low. You can also
place a slash before an output name in a standard logic equation
which defines the condition under which the signal is de-asserted.

PLUSASM implements the output polarity in the device according to
both the polarity on the left side of the equation, and the polarity of
the corresponding signal name in the signal list (or pin declaration). If
these polarities are alike, then the output level will be high when the
sum-of-products equation is true (satisfied). If the polarities are oppo-
site, then the output will be low when the sum-of-products equation
is true.

Figure 4-48 Using Output Signal Polarity Control

Note: Do not use a slash “/” before the equation name of a control
equation such as .TRST, .SETF, .CLKF, .RSTF and so on.

INPUTPIN A B C D
OUTPUTPIN Y0 Y1
EQUATIONS
Y0 = A + B; Active-HIGH output polarity
/Y1 = C + D; Active-LOW output polarity
Y1.TRST = Y0; Y1 is enabled when Y0 is active
4–66 Xilinx Development System

PLUSASM Command Reference
Input Signal Polarity
You can place a slash before an input name in the signal list (or pin
declaration statement) to globally define the signal as active-low. You
may also place a slash before the input name within the logic expres-
sion of an equation to represent the input signal when it is de-
asserted.

A product term references the high-level version of an input when
the equation polarity matches the polarity in the signal list and refer-
ences the low-level version of the input when the polarities are oppo-
site. This applies to any type of equation and to both High-density
FBs and FFBs.

Figure 4-49 Using Input Polarity Control

INPUTPIN A0 /AS
OUTPUTPIN Y0
EQUATIONS
Y0 = A0 * AS; Polarity inversion occurred in the pinlist
XEPLD Reference Guide 4–67

XEPLD Reference Guide
PLUSASM Syntax
This section describes the basic rules for using PLUSASM.

Notation
The syntax notation conventions used in this chapter are as follows.

[] Square brackets are used to indicate an optional field.

{ } Braces indicate a set of mutually exclusive alternatives.

| Vertical bars are used to separate alternatives enclosed in braces.

… Ellipses indicate one or more occurrences of the preceding field.

italic_type is used to denote a user-specified field.

Square brackets “[]”, braces “{ }”, and vertical bars “|” are not part
of the PLUSASM syntax and are never used in a PLUSASM file; they
are only used for describing the syntax. However, all parenthesis “()”
appearing in PLUSASM syntax should be interpreted literally and are
included in the statement.

Delimiters
Use delimiters to separate adjacent names and key words, or to
improve readability.

Spaces — serve as general-purpose delimiters. Consecutive spaces
act as one delimiter.

Tabs — are interpreted as spaces.

Return — The end-of-line (return) character terminates a comment
field beginning with a single semicolon. You can continue a long
statement to the following line or you can write multiple line state-
ments for clarity.

Operators and Special Characters
Equation operators are specified using the special characters listed in
Table 5-1. The order of precedence is:

1. The NOT operator (/) is processed first.

2. The AND operator (*) is processed next.

3. The OR operator (+) is processed last.
4–68 Xilinx Development System

PLUSASM Command Reference
Table 4-3 Special Characters Used in PLUSASM Syntax

Comments
Start a single line comment at any position on a line with a single
semicolon (;). All characters up to the end of the line are comments.

Start a multi-line comment with double semi-colons (;;). All charac-
ters up to the next double semicolons are comments.

Reserved Characters
The following characters are reserved and should not be used:

` ~ ! @ # $ % ^ { } [] " ? |

Names
Use only the alphanumeric characters (A-Z, 0-9) and the underscore
character (_) in signal names; spaces and tabs are not allowed.

Character Name Function

/ Slash Active low signal or logical NOT

* Asterisk Logical AND

+ Plus sign Logical OR

:+: Colon plus colon Logical XOR

= Equal sign Combinatorial output assignment

:= Colon equal Registered output assignment

, Comma Alternate delimiter in signal list

. Period Equation extension separator

; Semicolon Start of comment (to end-of-line)

;; Double semicolon Start & end of multi-line comment
XEPLD Reference Guide 4–69

XEPLD Reference Guide
Reserved Words
The following keywords are reserved and may not be used as names
in the design:

Unsupported PALASM Syntax
PLUSASM is compatible with most PALASM syntax. The exceptions
are described as follows:

Parenthesis

PLUSASM accepts the following usage of parenthesis:

● Parenthesis that enclose the entire right side of an equation:

c = (a + b * c :+: d)
● Parenthesis on either side of an XOR operator:

c = (a + b * c) :+: (d)
● Parenthesis enclosing the entire right side of an equation that con-

tains parenthesis on either side of the XOR operator (a combina-
tion of the above two methods):

c = ((a + b * c) :+: (d))

AUTHOR INCLUDE_EQN PARTITION

CEPIN INPUTPIN PATTERN

CHIP INTEGER PIN_ATTRIBUTE

COMPANY IOPIN PINTRST

CONDITIONS LOGIC_OPT PWR

DATE MINIMIZE REVISION

EQUATIONS MRINPUT SIMULATION

FASTCLOCK NC STATE

FASTINPUT NODE STRING

FOEPIN NODETRST TITLE

GND OPTIONS VCC

GROUP OUTPUTPIN
4–70 Xilinx Development System

PLUSASM Command Reference
PLUSASM cannot accept the following usage of parenthesis:

● Nested parenthesis:

x = ((a + (b *c)))
● Parenthesis on the left side of an equation:

(b = a + c)
● Parenthesis that do not enclose the entire right side of an equation:

z = (a + b) * c + d

State Machine Syntax

PLUSASM cannot accept state machine syntax such as:

● %(don’t-care operator).

● -> (state transition operator).

● +-> (state transition operator).

The Latched Output Equation Operator

PLUSASM cannot accept the latched output equation operator:

● *=(latched output operator).

Simulation Control Statements

PLUSASM ignores all PALASM simulation control statements (such
as TRACE_ON, PRELOAD, CHECK, and so on).

Device Specific Syntax

PALASM includes the capability to write equation files with special
(non-standard) syntax for some devices. PLUSASM can accept
special syntax only for the 22V10 and 20V8.

For example, the special syntax for the following devices is not recog-
nized by PLUSASM:

● PAL10H20G8.

● PAL32R16.

● PAL32VX10.

If you are converting equation files for these devices you must manu-
ally re-write the equations to explicitly define the special or implied
XEPLD Reference Guide 4–71

XEPLD Reference Guide
functions using standard PLUSASM equation syntax. For a complete
list of supported PALs, see Appendix C.

PLUSASM Command Syntax Quick Reference
The following tables provide a quick reference for PLUSASM
command syntax. Equation syntax is punctuated as follows:

● Brackets enclose optional fields: [optional_field]

● Braces enclose mandatory choices: { choice1 | choice2}

● Vertical bars indicate exclusive options: choice1 | choice2

● Elipses indicate repeatable fields: repeatable_field ...

● Italic type indicates variables: [TITLE text]

● Parenthesis are always taken literally, and are included in the
equation.
4–72 Xilinx Development System

PLUSASM Command Reference
Declaration Statements Used in Schematic PLDs and
Include Files

[TITLE text]

[PATTERN text]

[REVISION text]

[AUTHOR text]

[COMPANYtext]

[DATE text]

CHIP file_name device_name signal_list

[FASTCLOCK fastclock_name ...]

[FASTINPUT input_name ...]

[MINIMIZE {OFF | ON} [signal_name ...]]

[NODE ({UIM | NODETRST}) signal_name ...]

[PARTITION { partition_name | FB | FFB} signal_name ...]

[STRING string_name ' string_text ']

where: signal_list = {[/] signal_name | NC | VCC | GND}...

Note : FASTINPUT - Used only in PLFFB9 equation files

Note : MINIMIZE - Used in PAL files only.

Note : PARTITION - In PAL files is used for arithmetic only; not
applicable to PLFB9 or PLFFB9
XEPLD Reference Guide 4–73

XEPLD Reference Guide
Declaration Statements Used in Top-Level Files

[TITLE text]

[PATTERN text]

[REVISION text]

[AUTHOR text]

[COMPANYtext]

[DATE text]

CHIP file_name XEPLD

[CEPIN /ce_name ...[PIN pin_number ...]]

[FASTCLOCK fastclock_name ...[PIN pin_number ...]]

[FOEPIN foe_name ...[PIN pin_number ...]]

[INCLUDE_EQN ' file_name . extension ']

[INPUTPIN [({RCLK = fastclock_name [CE = ce_name] |
LE = fastclock_name | FI})] [/] signal_name ...
[PIN pin_number ...]]

[IOPIN [([RCLK = fastclock_name [CE = ce_name] |
LE = fastclock_name] [PINFBK] [FOE = foe_name]
[NODETRST])] [/] signal_name ...[PIN pin_number ...]]

[LOGIC_OPT {OFF | ON} [signal_name ...]]

[MINIMIZE {OFF | ON} [signal_name ...]]

[MRINPUT]

[NODE [({UIM | NODETRST})] [/] signal_name ...]

[OPTIONS OFF [REG_OPT] [CLOCK_OPT] [UIM_OPT] [FOE_OPT]]

[OUTPUTPIN [([FOE = foe_name] [NODETRST])]
[/] signal_name ...[PIN pin_number ...]]

[PARTITION { partition_name | FB n | FB n_m | FFB | FB}
signal_name ...]

[PWR {LOW | STD} [signal_name ...]]

[STRING string_name ' string_text ']
4–74 Xilinx Development System

PLUSASM Command Reference
Equation Statements Used in High Density Function
Blocks

EQUATIONS
[[/] signal_name [:]= p_term [+ p_term]...]
[[/] signal_name [:]= p_term [+ p_term]... :+: p_term

[+ p_term]...]
[signal_name [:]= {VCC | GND}]
[[signal_name .Dl = { p_term [+ p_term]... | VCC | GND}]

[signal_name .D2 = { p_term [+ p_term]... | VCC | GND}]
signal_name [:]= signal_name .D1 alu_op signal_name .D2]

[signal_name .{ADD | ADDMODE} = VCC]
[signal_name .CLKF = { p_term | fastclock_name | GND}]
[signal_name .FBK = { p_term [+ p_term]... | VCC}]
[signal_name .PRLD = {VCC | GND}]
[signal_name .RSTF = p_term]
[signal_name .SETF = p_term]
[signal_name .SHIFT = { p_term [+ p_term]... | VCC}]
[[/] signal_name .T = p_term [+ p_term]...]
[signal_name .TRST = { p_term | VCC}]

where:

p_term = [/] signal_name [.PIN] [* [/] signal_name [.PIN]] …
alu_op = {XOR | XNOR | AND | NAND | OR | NOR | VCC | GND |
D1_ONLY | D2_ONLY | NOTD1 | NOTD2 | D1_AND_NOTD2 |
NOTD1_AND_D2| D1_OR_NOTD2 | NOTD1_OR_D2}
XEPLD Reference Guide 4–75

XEPLD Reference Guide
Equation Statements Used in Fast Function Blocks

EQUATIONS
[[/] signal_name [:]= { p_term [+ p_term]... | VCC | GND}]
[[/] signal_name [:]= p_term [+ p_term]... :+: p_term

[+ p_term]...]
[signal_name .RSTF = p_term]
[signal_name .SETF = p_term]
[signal_name .CLKF = fastclock_name]
[signal_name .EXPORT = p_term [+ p_term]...]
[[/] signal_name .T = p_term [+ p_term]...]

where:

p_term = [/] signal_name [.PIN | .FI] [* [/] signal_name
[.PIN | .FI]] …
4–76 Xilinx Development System

Chapter 5
XEPLD Reference Guide — 0401203 01 5–1

XEPLD Fitter Modules and Files

This chapter describes the XEPLD Fitter modules, which convert a
schematic or behavioral design into a file you can use to program an
EPLD device. The intermediate files that the Fitter uses and the
reports that the Fitter generates are also described.

XEPLD Fitter Modules
Fitting the design is the intermediate step between design entry and
device programming. The XEPLD Fitter accepts a schematic or
behavioral design and converts it into a file that specifies how to fit
the design to an XEPLD device. During this process, the Fitter uses
and creates many files, such as the log file, the error file, and reports.

When you fit an XEPLD design, the Fitter command (FITNET for
schematic entry, FITEQN for behavioral entry) invokes several soft-
ware programs, each with its own function. Figure 5-1 shows how the
Fitter modules process your design. This diagram also shows the files
each module produces.

Messages appear on the screen naming each program as it is invoked.
All error or warning messages are written to the design_name.err file.
Status and other information from individual programs is displayed
on the screen and written to the design_name.log file. After fitting, the
error and log files contain the results of the programs.

XEPLD Reference Guide
Figure 5-1 Fitter Flow of Modules and Files

PLUSASM
(Partitioner, Minimizer,

Netlist Reader

Muncher

Optimizer

Mapper

Interconnector

.xff file .pld or .pds file

.vmh file (XC7236 & XC73XX)

FITNET path FITEQN path

Chip Builder

Design Rule Checker

(automatically runs FITEQN)

.vmd file (XC7272)

.log

.err

.log

.err

.par

.lgc

.eqn

.log

.err

.log

.err

.drc

.log

.err

.log

.err

.log

.err

.err

Logic Optimizer)

Report Generator
.res
.map
.pin

.pld file
5–2 Xilinx Development System

XEPLD Fitter Modules and Files
The Netlist Reader (Schematic Only)
The FITNET command, which fits a schematic design, first calls the
XNF netlist reader program to translate a netlist into an XEPLD
design database file. The netlist reader reads the schematic netlist file
and extracts all the XEPLD components and their interconnections
and stores them in the design database. This design database is
subsequently processed by other Fitter modules.

The netlist reader extracts only XEPLD 4.0 or XEPLD-compatible
Unified Library 5.0 components. You cannot mix these two types of
components.

The presence of non-XEPLD components causes errors.

To assign a signal to an EPLD pin, connect it to an input, output, or I/
O buffer, then connect the buffer to a pad component.

The Muncher (Schematic Only)
The Muncher removes unnecessary logic from your design, thereby
freeing up device resources. Sometimes your circuit design only
needs part of a component (for example, only six bits of an eight bit
component). The Muncher removes the unused portions of the
component from your design. If an output of a component is not
used, the Muncher first eliminates the output, then finds out if the
inputs affecting this output affect any other used output. If any of
these inputs does not affect any other used output, the Muncher elim-
inates the input. If an output from another component that was
connected to the eliminated input does not drive another used input,
then it becomes an unused output and is eliminated. The Muncher
continues this process until no unused outputs remain.

If any input of a component is assigned a constant logic level (tied to
VCC or GND in the schematic), the Muncher makes the necessary
changes in the component logic and removes the input. The Resource
report indicates which components have been affected by munching.
If, for example, the load input of a shift register is permanently
disabled, the Muncher eliminates the load control input, the parallel
data inputs, and the load logic inside the shift register component.
XEPLD Reference Guide 5–3

XEPLD Reference Guide
The Logic Optimizer
The logic optimizer collapses the levels of logic to remove interme-
diate nodes. This improves the performance of the design.

The logic optimizer first removes all internal logic that is not used —
that has no path to a primary output and is not explicitly in a PARTI-
TION statement.

The logic optimizer moves logic forward by collapsing combinational
expressions into expressions that reference them. If collapsing an
expression into all referencing expressions succeeds, the expression
becomes unused and is removed.

The logic optimizer does not collapse logic if the resulting logic uses
more than the maximum available number of p-terms (shared +
private) per macrocell, or more than the number of inputs available
per Function Block.

The logic optimizer also moves forward any logic, whether combina-
tional or sequential, that is buffered by a 3-state buffer, a clocked
buffer, or a non-controlled buffer. However, logic that itself contains a
3-state or clock equation is not moved forward into a buffer that
contains similar control equations.

You can prevent logic collapsing. In a behavioral design, use the
LOGIC_OPT OFF statement. Refer to the “PLUSASM Command
Reference” chapter of this manual for more information. In a sche-
matic design, use the LOGIC_OPT=OFF attribute. See the Interface
User Guide for your CAE tool for more information.

The logic optimizer also assigns FastCLK and FOE signals and
performs input register assignment automatically.

FastCLK assignment attempts to move clock signals assigned to
regular input pins to a FastCLK pin. This reduces the number of UIM
inputs and product terms required by each Function Block and
improves the performance of the design. Because the FastCLK pins
do not connect to the UIM or to macrocell inputs, the software will
not assign logic input signals to FastCLK pins. FastCLKs can only
control macrocell and input register clocking.

You can turn off FastCLK optimization. In a behavioral design, use
the OPTIONS OFF CLOCK_OPT statement. Refer to the “PLUSASM
Command Reference” chapter of this manual for more information.
5–4 Xilinx Development System

XEPLD Fitter Modules and Files
In a schematic design, use the CLOCK_OPT=OFF attribute. See the
Interface User Guide for your CAE tool for more information.

Fast output enable (FOE) optimization moves a 3-state (OE) function
assigned to a regular input pin to an FOE pin. Like FastCLK assign-
ment, this reduces the number of UIM inputs and product terms
required by each Function Block. Because the FOE pins do not
connect to the UIM or to macrocell inputs, the software will not
assign logic input signals to FOE pins. An FOE does not affect UIM
feedback, so an output is not assigned to an FOE if it is declared using
NODETRST.

You can turn off FOE optimization. In a behavioral design, use the
OPTIONS OFF FOE_OPT statement. Refer to the “PLUSASM
Command Reference” chapter of this manual for more information.
In a schematic design, use the FOE_OPT=OFF attribute. See the Inter-
face User Guide for your CAE tool for more information.

Input register optimization reduces the number of macrocells in a
design by moving inputs that are registered by a macrocell register
into a pad register, provided that no equation uses the non-registered
version of the input. The clock by which the input register is
controlled must be a FastCLK or an input that can be assigned to a
FastCLK pin.

You can turn off input-pad register optimization. In a behavioral
design, use the OPTIONS OFF REG_OPT statement. Refer to the
“PLUSASM Command Reference” chapter of this manual for more
information. In a schematic design, use the REG_OPT=OFF attribute.
See the Interface User Guide for your CAE tool for more information.

You can turn off FOE, FastCLK, or input register optimization on a
global level. You can turn off logic optimization globally or for indi-
vidual outputs in a beharvioral design or components in a schematic
design. Refer to the “PLUSASM Command Reference” chapter of this
manual or see the Interface User Guide for your CAE tool for more
information.

PLUSASM, the Partitioner, and the Minimizer
Associated with the PLUSASM assembler is the Partitioner/Mini-
mizer module. This module is invoked automatically when you fit a
behavioral design using FITEQN or a schematic design using
XEMAKE. If you are assembling PLDs in a schematic design and
XEPLD Reference Guide 5–5

XEPLD Reference Guide
using FITNET to fit the design, however, you must invoke PLUSASM
as a separate command prior to fitting.

The PLUSASM assembler assembles equation source files. The Parti-
tioner/Minimizer partitions a design with a large number of equa-
tions into groups that can fit into Function Blocks and performs
Boolean minimization on the design equations.

The Partitioner makes all allocation decisions, including which AND
gates go into the UIM. It subdivides equations that require more
resources than are available in one EPLD Function Block. It intelli-
gently distributes the logic functions among one or more Function
Blocks. It places logic in the Fast Function Blocks first, then High-
Density Function Blocks.

When filling each type of Function Block, the Partitioner first places
the most resource intensive equation into the first partition, then tries
to fit equations that share inputs and/or product terms into that first
partition until the partition is full. Then it creates another partition,
places the next largest equation, and repeats the process until all
equations are placed into partitions.

When an equation requires more than the maximum available
number of p-terms (shared + private) per macrocell, or more than the
number of inputs available per Function Block, the Partitioner splits
the equation and distributes intermediate equations among multiple
macrocells. The subfunctions are then combined using the UIM-AND
capability. The Partitioner may use a macrocell to combine split equa-
tions if the equations drive an external pin.

The PLUSASM assembler allocates the resources of each equation to
the resources available in the Function Block of an EPLD. The types of
resources it considers are inputs, private product terms, shared
product terms, and outputs. If an equation has an equal or smaller
number of product terms than the private p-terms available per
macrocell, it automatically allocates them as private p-terms. If an
equation requires more p-terms than the private product terms avail-
able per macrocell, it allocates the product terms according to
frequency of use.

For detailed information about the resources available on each EPLD
device, see the Xilinx EPLD Data Book.

In conjunction with the Partitioner, the Logic Minimizer minimizes
the equations in each partition. The Minimizer takes into consider-
5–6 Xilinx Development System

XEPLD Fitter Modules and Files
ation product term sharing. By default, the Minimizer processes all
equations except the ALU equations. You can optionally use the
MINIMIZE=OFF command in the equation file to turn the Minimizer
off for the entire design or for particular equations.

The Partitioner operation is transparent. PLUSASM invokes the
Partitioner automatically for all PLDs except the PLPLD9 and
PLPLD9F, which are defined in the image of a single High-Density or
Fast Function Block. You can control the Partitioner for pin assign-
ment and pin freezing operations with pin statements and PARTI-
TION statements in the equation file. (In schematic designs, you use
the LOC, F, and H attributes for pin assignment; see the Interface User
Guide for your CAE tool.) The PLUSASM log report includes the
Partitioner report, which shows the resulting partitions, minimiza-
tion, and resource allocation for every partition and every equation.

You can view the final equations in the design_name.eqn file produced
by the FITEQN command.

The Chip Builder
The chip builder loads into the XEPLD design database the architec-
tural description of the selected target EPLD, defining all available
logic and I/O resources. If you selected the -u option of FITEQN or
FITNET, the Chip Builder drives unused I/O pads, clock signals,
FOE signals, and CE pins to GND.

The Design Rule Checker
The architecture of any target EPLD cannot implement all the
possible logic specifications, component configurations, and inter-
connections that may appear in a design. You must conform to some
design rules to design with XEPLD. The Design Rule Checker (DRC)
reads the design from the database and checks to see if any of the
design rules have been violated. The following is a partial list of rules
that are checked.

General Design Rule Violations

The DRC displays an error or warning if:

1. Open (hanging) inputs are found. Unless otherwise specified, all
inputs of a library component must be connected or tied to VCC
XEPLD Reference Guide 5–7

XEPLD Reference Guide
or GND.

2. Some library components can only be used for a particular target
EPLD. The DRC will generate an error if you attempt to use these
components for other EPLDs. Restrictions on the use of compo-
nents can be found in the library data sheets.

Pad Component Design Rule Violations

Pad component correct usage and applications are illustrated in the
Library data sheets. The DRC displays an error if:

1. Two component outputs are connected to the same pad.

2. One component output is connected to two pads.

3. An input pad is connected directly to an output or I/O pad.

4. Pad pins are driven by VCC or GND.

5. Pad clocks are driven by VCC or GND.

6. Multiple input buffers are connected to the same pad (the excep-
tion is when an IBUF is used with an IFD, IFDX1, or ILD to receive
a FastInput signal).

7. A pad is connected to a component other than an I/O buffer, or to
another pad.

8. An IPAD is connected to an OBUF-type component.

9. An OPAD is connected to an input or control-input buffer (such as
IBUF, BUFG, or IFD).

FastCLK, Clock Enable, and Fast Output Enable
Violations

The DRC displays an error if:

1. There are more FastCLK, CE, or FOE pins in the design than the
amount the target EPLD can support.

2. A FastCLK, CE, or FOE signal drives a component pin that is not a
clock, CE, or FOE input.

3. A combination of fast clocks for logic components and I/O pads
cannot be supported by the target EPLD.

4. The clocking requirement of a component is not met. Some com-
5–8 Xilinx Development System

XEPLD Fitter Modules and Files
ponent clock inputs can only be driven by a fast clock and others
only by a logic clock. Component clocking requirements are listed
in the Library data sheets.

The Gate Optimizer
The Gate Optimizer processes UIM functions (AND, NAND, and
inverter) as instructed by the Partitioner. Behavioral designs have
special syntax for specifying AND/NAND functions.

The Mapper
The Mapper module maps the logic of your design onto the architec-
ture of the target EPLD as instructed by the Partitioner.

The Interconnector
The Interconnector connects the mapped components through the
interconnect matrix (UIM). Because the UIM provides one intercon-
nect path between each signal source (device input pin or macrocell
output) and each Function Block input, it can always successfully
interconnect everything that is placed on the EPLD. The Intercon-
nector operation is therefore simple and fast.
XEPLD Reference Guide 5–9

XEPLD Reference Guide
XEPLD Files and Directories
The interrelationships of files in the XEPLD software are shown in
Figure 5-2 and Figure 5-3. This section explains the files and directo-
ries that constitute the XEPLD Design System.

Figure 5-2 Flow of Design Data Files Through FITNET

Programming
Bit-Map File

(design.PRG)

Design Entry Design Implementation Design Verification & Programming

REPORTS

Behavioral Compiler
 • ABEL
 • CUPL
 • PALASM

Schematic Editor
 • Viewdraw
 • OrCAD SDT
 • Design Architect

XEPLD
Component

Library

• Netlist Reader

• DRC

• Optimizer

• Partitioner

• Minimizer

• Mapper

• Interconnector

Simulator
 • Viewsim
 • OrCAD VST
 • Quicksim

XEPLD
Programming

Map Generator

PALASM
Equations

(filename.PLD)

PLD JEDEC Files
(filename.JED)

 • JEDEC Importer
 • Partitioner
 • Minimizer

Symbols

Model Primitives

Logic Bitmaps
(component.VMD

or .VMH)

XEPLD
Design

Database
(design.VMD/VMH)

Logic Bitmaps
(filename.VMD

or .VMH)

Netlist File
(design.XNF)

Circuit
Design

Schematic

PLUSASM Equations for PLDs
(filename.PLD)

Behavioral
Module

Device
Programmer

XEPLD
PLUSASM Assembler

XEPLD
Integrator

X4080

Device Simulation
Model

(FITNET)

Schematic
to XNF

Translator
Resource
(design.RES)

Pinlist
(design.PIN)

Mapping
(design.MAP)

Partitioner
(design.PAR)

PLUSASM
(pldname.LGA)

XNF Simulation
• XNF2VST
• XNF2WIR

Logic Optimization
(design.LGC)
5–10 Xilinx Development System

XEPLD Fitter Modules and Files
Figure 5-3 Flow of Design Data Files Through FITEQN

Programming
Bit-Map File

(design.PRG)

Design Entry Design Implementation Design Verification & Programming

Behavioral Compiler
 • ABEL
 • CUPL
 • PALASM

• PLUSASM

• Partitioner

• Minimizer

• Collapser

• Optimizer

• Mapper

• Interconnector

Simulator
 • Viewsim
 • OrCAD VST
 • Quicksim

XEPLD
Programming

Map Generator

PALASM or
PLUSASM Equations

(filename.PLD)

XEPLD
Design

Database
(design.VMD/VMH)

Circuit
Design

PLUSASM Equations for EPLD Design
(design .PLD)

Behavioral
Description

Device
Programmer

XEPLD
Integrator

X4079

Device Simulation
Model

design.EQN

(FITEQN)

REPORTS

Resource
(design.RES)

Pinlist
(design.PIN)

Mapping
(design.MAP)

Partitioner
(design.PAR)

PLUSASM
(pldname.LGA)

XNF Simulation
• XNF2VST
• XNF2WIR

Logic Optimization
(design.LGC)
XEPLD Reference Guide 5–11

XEPLD Reference Guide
On the PC, the XEPLD software is installed in the directory structure
shown in Table 5-1.

Table 5-1 XEPLD Development Systems File Structure (PC)

On the workstation, the XEPLD software is installed in the directory
structure shown in Table 5-1.

Table 5-2 XEPLD File Structure (Workstation)

DIRECTORY FILES
\XACT\ (or other path specified at installation time)

*.bat, *.exe
DATA\ xepld.cfg
DATA\CLIB\ *.vmd, *.vmh (no user-accessible

files)
TUTORIAL\ design_name.xff

design_name.vmf
*.pld, *.abl, *.pds
(Users may run behavioral demos
under this design directory)

MSG\ *.txt (no user-accessible files)

DIRECTORY FILES
xact/bin/sparc or xact/bin/hppa (or other path specified at installation time)

*.bat, *.exe
data/ xepld.cfg
data/clib/ *.vmd, *.vmh (no user-accessible

files)
tutorial/ design_name.xff

design_name.vmf
*.pld, *.abl, *.pds
(Users may run behavioral demos
underthis design directory)

msg/ *.txt (no user-accessible files)
5–12 Xilinx Development System

XEPLD Fitter Modules and Files
The XACT root directory contains all the executables (.exe) and batch
files (.bat). It also contains several subdirectories.

Subdirectory DATA contains the configuration file for the XEPLD
executable (xepld.cfg)

Subdirectory DATA\CLIB contains the standard library component
bit-maps (.vmd for the XC7272 and .vmh for all others).

The MSG subdirectory contains the XEPLD message files (.txt)

The TUTORIAL subdirectory is a design directory which contains
sample behavioral designs and samples of XEPLD library component
equation files.

The structure of the design directory and the file types it contains is
described in Table 5-3.
XEPLD Reference Guide 5–13

XEPLD Reference Guide

r

Table 5-3 XEPLD User Design Directory File Structure

DIRECTORY FILES DESCRIPTION
design_directory\ design_name.xff Merged and flattened netlist from

XNFMERGE
design_name.xnf Netlist from CAE-tool or timing simulation netlist from

VMH2XNF (XNF format)
design_name.vmf Pin-save file from XEPLD
pld_name.pld Equation source file for PLD component (in schematic) o

for behavioral design (text), or equations derived from a
schematic netlist

design_name.int PAL Interconnect report from XEPLD (text)
pld_name.jed JEDEC map source files defining PLD components
design_name.jed JEDEC formatted programming bit-map file from

MAKEJED
design_name.eqn Shows the equations in your design after fitting

(PLUSASM syntax)
design_name.prg HEX formatted programming bit-map file from

MAKEPRG
design_name.vmd XEPLD design database file from Fitter (binary)
or .vmh
design_name.log Execution log files from XEPLD modules (text)
design_name.lga Partitioner report for PLD equation file from PLUSASM

(text)
design_name.lgc Logic Optimizer report (text)
design_name.err Error-log files from XEPLD modules (text)
design_name.res Resource report file from XEPLD (text)
design_name.pin Pinlist report file from XEPLD (text)
design_name.map Mapping report file from XEPLD (text)
design_name.par Partitioner report for complete behavioral design (text)
design_name.sch OrCAD/SDT source schematic file
design_name.vsm Simulation wirelist file from Workview (only for

Viewsim modeling)
design_name.vst Simulation file for OrCAD VST
design_name.inf Netlist from OrCAD SDT
design_name.als Shows schematic logic functions, listing instance name,

pin, net name, and component type
CLIB\ *.vmd, *.vmh PLD bit-map files from PLUSASM assembler (binary)
SCH\ design_name.1 Workview source schematic file
WIR\ design_name.1 Wirelist file from Workview used as input to WIR2XNF
5–14 Xilinx Development System

XEPLD Fitter Modules and Files
Input source files for XEPLD can be in the form of netlist files, equa-
tion files, JEDEC map files and pin-save files. Output data may take
the form of a bit-map database, log files, report files, programming
bit-map files, and simulation model files.

The Netlist File

The netlist file (design_name.xnf) is produced by SDT2XNF for
OrCAD or WIR2XNF for Workview. Creating a netlist file is the first
step in fitting your design to an EPLD device.

Mentor Graphics and CADENCE software can also produce .xnf files.

The PLUSASM Equation Files

Equation files (pld_name.pld or .pds, or design_name.pld) may be
generated by an ASCII text editor, the JEDEC importer, Xilinx ABEL,
or a commercial PLD compiler. The JEDEC importer translates
JEDEC maps generated by a commercial PLD compiler into
PLUSASM equation files and processes them through the PLUSASM
assembler. The equation files are used to describe the functionality of
a PLD in a schematic or the functionality of an entire behavioral
design.

JEDEC Source Files

JEDEC source files (pld_name.jed) are used to define the functionality
of PLDs in a schematic. These files are generated by commercial PLD
compiler tools like ABEL, CUPL, etc.

Design Database File

This binary file (design_name.vmh or .vmd) is created during fitting
and it contains a complete description of your fitted design. All the
information for reports and export files are extracted from this data-
base. The extension for this file is .vmd for XC7272 or .vmh for
XC7236 and all XC7300-series devices.

The Report Files

Report files are generated automatically during fitting. They are
ASCII files that describe the results of fitting. PLUSASM also gener-
ates a report when it assembles a PLD equation file or converts a PAL
XEPLD Reference Guide 5–15

XEPLD Reference Guide
design. These report files have extensions .pin, .map, .res, .par, .lgc,
.int, .eqn, and .lga for the Pinlist, Mapping, Resource, Partitioner,
Logic Optimizer, PAL Interconnect, Equation, and PLUSASM Assem-
bler reports, respectively.

The Log Files

The log files (design_name.log) are generated during fitting. They
describe actions taken by the modules in terms of information
messages, and error/warning messages.

The Error/Warning Files

Error files (design_name.err) are a subset of the log files and contain
only the error and warning messages. The error and warning
messages are displayed on the screen during the fitting process.

The Programming Bit-map File

This is an Intel-HEX or JEDEC formatted file (design_name.prg or .jed)
that is generated after the fitting process at your request. It is used by
a device programmer to configure a Xilinx EPLD device.
5–16 Xilinx Development System

Appendix A
XEPLD Reference Guide — 0401203 01 A–1

Typical Component Equations

This appendix illustrates the behavioral equations that define the
functionality of a variety of library components. You can use this
information to better understand how to write behavioral equations
or you can copy these equations into your design.

See Chapter 2 of the XEPLD Design Guide for more information on
how to use the Xilinx PLUSASM language to create behavioral
designs.

Basic Gates

/o = i0*i1

o = i0*i1

o = /i0*/i1

/o = /i0*/i1

o = i0*/i1 + /i0*i1

/o = i0*/i1 + /i0*i1

XEPLD Reference Guide
4-Bit Counter (CB4X2)

X4197

CB4X2

C

Q2

Q3

CEU

L

CED

R

TCU

TCD

D3

D0

D2

D1

Q0

Q1

tcu = ceu*q0*q1*q2*q3; UIM-AND
tcd = ced*tcd3; UIM-AND
tcd3 := ceu*/l*q0*q1*q2*q3
 + ced*/ceu*/l*q0*/q1*/q2*/q3
 + l*/d0*/d1*/d2*/d3
 + /ceu*/ced*/l*/q0*/q1*/q2*/q3
 + r
tcd3.clkf= c
q3.d1 = ceu*/l*/r*q0*q1*q2
 + ced*/ceu*/l*/r*/q0*/q1*/q2
q3.d2 = l*/r*d3
q3.fbk = /l*/r
q3 := q3.d1 xor q3.d2
q3.clkf = c
q2.d1 = ceu*/l*/r*q0*q1
 + ced*/ceu*/l*/r*/q0*/q1
q2.d2 = l*/r*d2
q2.fbk = /l*/r
q2 := q2.d1 xor q2.d2
q2.clkf = c
q1.d1 = ceu*/l*/r*q0
 + ced*/ceu*/l*/r*/q0
q1.d2 = l*/r*d1
q1.fbk = /l*/r
q1 := q1.d1 xor q1.d2
q1.clkf = c
q0.d1 = ceu*/l*/r
 + ced*/ceu*/l*/r
q0.d2 = l*/r*d0
q0.fbk = /l*/r
q0 := q0.d1 xor q0.d2
q0.clkf = c
q0.prld = gnd
q1.prld = gnd
q2.prld = gnd
q3.prld = gnd
tcd3.prld= vcc
A–2 Xilinx Development System

Typical Component Equations
4-Bit Accumulator (ACC4X1)

X4244

ACC4X1

C

D3

D2

D1

Q3

C0

L

CE

ADD

D0

B0

B1

B3

B2

Q1

Q2

Q0

R

;cin generates carry into q0 when
;sutracting
cin.D1 = /add*ce*/l*/r
cin.D2 = /add*ce*/l*/r
cin = cin.D1 gnd cin.D2

;cin macrocell output not used
q0.D1 = b0*add*ce*/l*/r
 + /b0*/add*ce*/l*/r
 + d0*l*/r
q0.fbk = /l*/r
q0 := q0.D1 xor q0.D2
q0.add = vcc
q0.clkf = c
q1.D1 = b1*add*ce*/l*/r
 + /b1*/add*ce*/l*/r
 + d1*l*/r
q1.fbk = /l*/r
q1 := q1.D1 xor q1.D2
q1.add = vcc
q1.clkf = c
q2.D1 = b2*add*ce*/l*/r
 + /b2*/add*ce*/l*/r
 + d2*l*/r
q2.fbk = /l*/r
q2 := q2.D1 xor q2.D2
q2.add = vcc
q2.clkf = c
q3.D1 = b3*add*ce*/l*/r
 + /b3*/add*ce*/l*/r
 + d3*l*/r
q3.fbk = /l*/r
q3 := q3.D1 xor q3.D2
q3.add = vcc
q3.clkf = c
XEPLD Reference Guide A–3

XEPLD Reference Guide
4-Bit Adder (ADD4X1)

A2
A1

A3

B0
B1
B2
B3

S2
S1
S0

S3

CO

A0

X4232

;Inputs
a0 a1 a2 a3 b0 b1 b2 b3

; a[3:0] adder A-operand
; b[3:0] adder B-operand

;Outputs
s0 s1 s2 s3

; s[3:0] adder output
; co carry-out from s3 via MC
carry chain
; (co may only connect to ci
input of arith component or PLD)

PARTITION s3_0 s0 s1 s2 s3

EQUATIONS

s0.D1 = b0
s0.D2 = a0
s0 := s0.D1 xor s0.D2

s1.D1 = b1
s1.D2 = a1
s1 := s1.D1 xor s1.D2
s1.add = vcc

s2.D1 = b2
s2.D2 = a2
s2 := s2.D1 xor s2.D2
s2.add = vcc

s3.D1 = b3
s3.D2 = a3
s3 := s3.D1 xor s3.D2
s3.add = vcc
A–4 Xilinx Development System

Typical Component Equations
Flip-Flop (FDSRE)

X3732

FDRSE

C

CE

QD

R

S

;Inputs
c d ce s r

;Outputs
q

EQUATIONS

q.d1 = d*ce*/r + s
q.fbk = /ce*/r
q := q.d1 or q.d2
q.clkf = c
XEPLD Reference Guide A–5

XEPLD Reference Guide
Latch (LD)

Q

X3740

D LD

G

;Inputs
g d

;Outputs
q

EQUATIONS

q.rstf = /d*g
q.setf = d*g
q := gnd
q.clkf = gnd
A–6 Xilinx Development System

Typical Component Equations
Multiplexer (M4_1E)

D0

O

X4030

D1
D2
D3
S0
S1
E

;Inputs
d0 d1 d2 d3 s0 s1 e

;Outputs
o

EQUATIONS

o = d0* /s1*/s0*e
 + d1* /s1* s0*e
 + d2* s1*/s0*e
 + d3* s1* s0*e
XEPLD Reference Guide A–7

XEPLD Reference Guide
Comparator (COMP4)

X4126

COMP4

B1

B2

B3

B0

A3

A2

A1

A0

EQ

;Inputs
a0 a1 a2 a3
b0 b1 b2 b3

; a[3:0] comparator A-operand
; b[3:0] comparator B-operand

;Outputs
eq ;A=B output

EQUATIONS

/eq = a0*/b0 + /a0*b0
 + a1*/b1 + /a1*b1
 + a2*/b2 + /a2*b2
 + a3*/b3 + /a3*b3
A–8 Xilinx Development System

Typical Component Equations
Magnitude Comparator (COMPM4)

X4127

COMPM4

B1

B2

B3

B0

A3

A2

A1

A0

LT

GT

;Inputs
a0 a1 a2 a3 b0 b1 b2 b3

; a[3:0] comparator A-operand
; b[3:0] comparator B-operand

;Nodes
le2_0

; le[2:0] intermediate A<=B terms

;Outputs
gt lt

; gt A>B output
; lt A<B output

PARTITION le2_0 gt lt

EQUATIONS

/le2_0 = a2*/b2
 + /a2*/b2*a1*/b1
 + a2*b2*a1*/b1
 + /a2*/b2*/a1*/b1*a0*/b0
 + /a2*/b2*a1*b1*a0*/b0
 + a2*b2*/a1*/b1*a0*/b0
 + a2*b2*a1*b1*a0*/b0

gt.D1 = /a3 + b3
gt.D2 = /a3*b3
gt.shift = vcc
gt = gt.D1 nand gt.D2
lt.D1 = /a0*b0
 + /a1*b1
 + /a2*b2
 + /a3*b3
lt.shift = vcc
lt = lt.D1 D1_AND_NOTD2 lt.D2
XEPLD Reference Guide A–9

XEPLD Reference Guide
Shifter (SR4RLED)

X4148

C

CE

L

SR4RLED

D3

D2

D1

D0

SLI

Q3

Q2

Q1

Q0

R

SRI

LEFT

;Inputs
d0 d1 d2 d3 sli sri l left ce c r

; d[3:0] parallel-load data
; sli shift-left serial input
; sri shift-right serial input
; l parallel-load enable
; left shift direction: 1=left,
0=right
; ce shift clock enable
; c clock (optional FastCLK)
; r sync reset
;Outputs
q0 q1 q2 q3
; q[3:0] counter output
EQUATIONS

q3 := left*ce*/l*/r*q2
 + /left*ce*/l*/r*sri
 + /ce*/l*/r*q3
 + l*/r*d3
q3.clkf = c

q2 := left*ce*/l*/r*q1
 + /left*ce*/l*/r*q3
 + /ce*/l*/r*q2
 + l*/r*d2
q2.clkf = c
q1 := left*ce*/l*/r*q0
 + /left*ce*/l*/r*q2
 + /ce*/l*/r*q1
 + l*/r*d1
q1.clkf = c

q0 := left*ce*/l*/r*sli
 + /left*ce*/l*/r*q1
 + /ce*/l*/r*q0
 + l*/r*d0
q0.clkf = c
A–10 Xilinx Development System

Typical Component Equations
T Flip-Flop (FTC)

Q

X3761

T

CLR

C

FTC ;Inputs
c t clr

;Outputs
q

EQUATIONS

q.d1 = t
q.fbk = VCC
q := q.d1 XOR q.d2
q.clkf = c
q.rstf = clr
XEPLD Reference Guide A–11

XEPLD Reference Guide
Decoder

X3853

D2_4E

E

A1

D0

D3

D1

D2

A0 ;Inputs
a0 a1 e

;Outputs
d0 d1 d2 d3

EQUATIONS

d0 = /a1*/a0*e
d1 = /a1* a0*e
d2 = a1*/a0*e
d3 = a1* a0*e
A–12 Xilinx Development System

Appendix B
XEPLD Reference Guide — 0401203 01 B–1

PAL Devices Supported

This appendix explains how to include PALs of different types in
Xilinx EPLD designs. It covers the following topics:

● Specific and generic PAL symbols for schematics

● PAL equation file syntax

● 22V10 and 20V8 support

● Generic PAL support

● PLFB9 and PLFFB9 support

● PALs supported through generic PAL components

Specific and Generic PAL Symbols for Schematics
The Xilinx schematic libraries contain these PAL symbols for EPLD
devices:

● PL20V8 — The standard GAL20V8, with all features supported.

● PL22V10 — The standard 22V10 PAL, with all features supported.

● PLFB9 — Represents a XC7000 High-Density Function Block.

● PLFFB9 — Represents a Fast Function Block in an XC7000 device.

● PL20PIN — Generic 20-pin PAL symbol.

● PL24PIN — Generic 24-pin PAL symbol.

● PL48PIN — Generic 48-pin PAL symbol.

The last three PAL components can represent any PAL type (except
20V8 and 22V10) having the same number of pins or fewer. For
example, the PL24PIN can represent PAL types such as 20RP6 or
18P4.

XEPLD Reference Guide
PAL Equation File Syntax
A PLUSASM equation file targeted at a PAL or used as an include file
consists of three sections, as follows:

● Header (optional) — Gives the file a title. May also include infor-
mation such as the author and creation date of the file.

● Declarations — Specifies the target PAL for the file in the CHIP
statement and assigns signals to the PAL’s pins in the pinlist.

● Equations — Defines the functions the PAL performs using bool-
ean logic. Begins with the EQUATIONS keyword.

Here is an example equation file:

TITLE PAL1
CHIP PAL1 P22V10;
;PINLIST (Highest pin number = 24)
 A B C NC NC NC NC NC NC NC NC NC NC NC NC NC
NC NC K J H G F NC
; PALCNVT Design Example PAL1
EQUATIONS
F := (B);
G := (F);
G.TRST = (C);
H := (G);
J := (B * K);
K := (B);
K.TRST = (C);

The CHIP statement has the following syntax:

CHIP filename PALtype

The pinlist follows the CHIP statement in the Declarations section.
Every signal in the file must appear in the pinlist. Each signal corre-
sponds to a PAL pin. The signals appear in order by pin number,
beginning with the signal for pin 1. Pin 1 is the default clock for all
registered equations in this file. For files used by schematic PAL
components, use “NC”, meaning no-connect, for unused pins. You
can omit trailing NCs.

The same syntax applies to files included in behavioral designs and
files that describe the logic of schematic PAL components.

Refer to the “PLUSASM Command Reference” chapter of this manual
for more information about equation file syntax.
B–2 Xilinx Development System

PAL Devices Supported
22V10 and 20V8 Support
PLUSASM provides special support for the features of these common
devices, including the default clock, default 3-state control for regis-
tered outputs, and control of 22V10 synchronous set and asynchro-
nous reset functions. These features are supported if any of the device
types shown below appears in the CHIP statement of the PAL file.

Default Clock
PLUSASM uses the clock signal (pin 1) as the default clock for each
registered equation in a 22V10 or 20V8 equation file (or JEDEC file).

Default 20V8 3-State Control
PLUSASM uses the 3-state control signal (pin 13) as the default
active-low 3-state control for each registered equation in a 20V8 equa-
tion file (or JEDEC file). For example, if pin 13 is "control_tri", the
following 3-state control is implied unless otherwise specified:

registered_output_name.TRST = control_tri.

Global 22V10 Set/Reset
Since the 22V10 only has global set/reset functions, PLUSASM does
not support individual .SETF and .RSTF control equations for the
22V10 equation files. Instead, PLUSASM supports the PALASM
syntax for an implied 25th pin in 22V10 equations. This pin is used as
a token output name for implementing a global synchronous set or
asynchronous reset function. For example, the following control
equations will synchronously set and asynchronously reset all 22V10
outputs:

25th_signal_name.SETF = p_term ; emulate synchronous
set when set p_term is true

Device Device Type in Chip Statement

22V10 PL22V10, PAL22V10, GAL22V10, G22V10, P22V10,
22V10

20V8 PL20V8, PAL20V8, GAL20V8, G20V8, P20V8, P20V8R,
20V8
XEPLD Reference Guide B–3

XEPLD Reference Guide
25th_signal_name.RSTF = p_term ; asynchronously reset
when reset p_term goes true

Automatic Inversion of Set and Reset
In the XEPLD architecture, all signal inversion is performed before
the signal is an input to any register. This allows the set and reset
functions of the register to operate as specified, without modification.
In the 22V10, any signal inversion is performed after the register and
therefore the set and reset functions of the register produce opposite
results at the pin when the output is active low. PLUSASM automati-
cally reverses the set and reset functions of any inverted 22V10
register in order to maintain the correct functionality when imple-
mented in the EPLD.

Generic PAL Support
The generic PALs are the PL20PIN, PL24PIN, and PL48PIN library
components. These require equation files with PLUSASM syntax.
Your logic equations must be device-independent. However, in most
cases, you can use your PALASM2 Boolean equation files generated
by ABEL, CUPL, PALASM, and so on with no modifications.

If the CHIP statement of the PAL equation file contains a device type
other than one of those listed under the “22V10 and 20V8 Support”
section of this appendix, the PAL is considered generic. Tables A-1 to
A-3 at the end of this appendix list the PALs for which the generic
PALs can be substituted.

The XEPLD software doesn’t recognize the special features of any
PALs except 20V8, 22V10, PLFB9, and PLFFB9, so all logic for a
generic PAL must be device independent. There is one exception:
unless otherwise specified, pin 1 is assumed to be the clock pin.

PAL types that have register set/reset capability, such as the 22RX8A,
16RA8, and 20RA10, require special attention if an active low output
is being set/reset and the inversion takes place after the register. If
this is the case, whenever the register is set, the inverted output signal
goes low (and vice versa). In the XC7000 architecture, all inversions
take place before the macrocell register. Whenever the register is set,
the macrocell output always goes high, regardless of polarity. In this
situation, you need to swap the register set and reset equations to
B–4 Xilinx Development System

PAL Devices Supported
maintain the same functionality in the XC7000 device.

For example, if this equation was in a 22RX8A file:

/x := y
x.setf = a
x.rstf = b

The equation would need to be changed to:

/x := y
x.setf = b
y.rstf = a

PLFB9 and PLFFB9 Support
These library components directly represent the XC7000 function
blocks. You can target these library components with equation files
that contain PLFB9 or PLFFB9 in the CHIP statements.

Clocks
The default clock for registered signals in the PLFB9 is pin 31. For the
PLFFB9, it is pin 34. Pin 32 of a PLFB9 or pin 35 of a PLFFB9 can also
be used as a FastCLK if you use the .CLKF dot extension. These pins
are FastCLK only and cannot be used for other logic. For an example
of how to use a FastCLK, refer to Chapter 4 of the XEPLD Design
Guide.

PLFB9 Arithmetic Carry-In and Carry-Out Pins
These pins represent function block carry path connections, not UIM
connections. Use them for arithmetic functions. Refer to Chapter 5 of
the XEPLD Design Guide for examples.

Defining PLFFB9 Fast Inputs
Use the FASTINPUT statement to define which PLFFB9 inputs will
be driven by the XC7000 FFB fast input pins.
XEPLD Reference Guide B–5

XEPLD Reference Guide
PALs Supported through Generic PAL Components
The following tables list the PAL types that the generic PALs can
represent with no modifications to their equation files.

Table B-1 PAL Types Directly Representable as PL20s

Table B-2 PAL Types Directly Representable as PL24s

Table B-3 PAL Types Directly Representable as PL48s

10L8 10H8 10P8 12L6 12H6 12P6

14L4 14H4 14P4 16L2 16H2 16P2

16R8 16RP8 16R6 16RP6 16R4 16RP4

16L8 16H8 16P8 16C1 16X4 18P8

8L14A 6L16A 12L10 14L8 14H8 14P8

16L6 16H6 16P6 18L4 18H4 18P4

20L2 20H2 20P2 20R8 20RP8 20R6

20RP6 20R4 20RP4 20L8 20H8 20P8

20X4 20X8 20X10 20C1 20L10 20S10

20RS10 20RS8 20RS4 20RP10 20XRP4 20XRP6

20XRP8 20XRP10 22P10 22XP10

32R16
B–6 Xilinx Development System

Appendix C
XEPLD Reference Guide — 0401203 01 C–1

Equation Entry Application Note

Introduction
Welcome to the Xilinx EPLD equation entry tutorial. This tutorial will
familiarize you with the behavioral entry methodology of the XEPLD
development system. As a design example, we demonstrate the
conversion of an existing UART receiver circuit, which is expressed
entirely in Boolean equations using a PLD compiler and imple-
mented using discrete PAL devices. The design was originally
created in Xilinx ABEL as four separate PAL devices and was
exported as .pld files (PLUSASM equations).

This tutorial will give you a basic understanding of the XEPLD devel-
opment software and some hands-on experience so you can start
your first behavioral design as quickly as possible. The same behav-
ioral entry techniques apply to original behavioral designs as well as
PAL design conversion.

See the “Converting PAL Designs” chapter in the XEPLD Design
Guide for more information on PAL conversion techniques.

How to Follow this Tutorial
The tutorial consists of three sessions. Each session begins with an
overview and summary of the interactive steps required.

You can finish this tutorial in about an hour. We supply all of the
example equation files used in the design.

When you see an arrow between two commands, “➝”, it indicates
that you select the first command and then select the second
command from a menu that the first command displays. For

XEPLD Reference Guide
example, Fitter ➝ FITEQN means that you select Fitter, then select
FITEQN from the menu that appears.

To end your XEPLD session at any time, select Quit from the XDM
(Xilinx Design Manager) menu.

Figure C-1 UART Receiver Functional Logic Diagram

The Tutorial Design
In this tutorial, you will design the receiver section of a Universal
Asynchronous Receiver Transmitter (UART). This circuit converts a
serial data stream to parallel bytes and provides handshaking and
error detection signals to the host system. Figure C-1 illustrates the
functionality of this design.

The example design functions as follows:

1. A serial to parallel shift register (Deserializer) converts the serial
stream to parallel data, which is latched to a register (Output Reg).

2. A simple state machine (Frame Detector) controls the receiver.
Once the start bit is detected, the counter (Frequency Divider)
begins to count sequentially, clocked by the 4X Baud Rate Clk.

Communication
Interface UART Receiver

System
Interface

Frequency
Divider

Frame
Detector

Start

Error
Detector

Deserializer
Data

Output Reg

4X Baud
Rate Clk

Serial
Input

Stream

Rcvr Output
Bus Enable

Rcvr
Output

Rcvr Error
Flags

Rcvr
Ready

S Q D
Q

Q

X2988

OutIn

OutIn
C–2 Xilinx Development System

Equation Entry Application Note
3. The host is notified with the ready signal (Rcvr Ready) and reads
the data by asserting the Rcvr Output Bus Enable signal.

4. The output of the counter is decoded to generate the control sig-
nals for the shift register, data latch, and error detection circuits.
The following signals are generated:

● Parity Error is generated if a byte parity is odd.

● Framing Error is generated if any of the stop bits are low.

● Overrun Error is generated if new data is ready to be latched
into the output register before the CPU reads the previous
data.

See Figure C-2 for the format of the serial input stream.

Figure C-2 UART Waveforms

Overview of the Sessions
The three sessions cover the following topics:

Session 1: Using the XEPLD Software

Session 2: Design Entry

Session 3: Fitting the Design

4X Baud
Rate Clock

Serial
Input

Stream
Data Bits (MSB) Parity StopStart

Next Data
FrameFrame Data Format

X2989

Start(LSB)
XEPLD Reference Guide C–3

XEPLD Reference Guide
The Example Files
The design used in this tutorial is named UART (you will create the
top-level file, uart.pld, as part of this tutorial). The Master Installer
program installs all the files containing the uart example in a sample
design directory named UART. The default path is “C:\XACT\
TUTORIAL\BEHAVIOR\UART” on the PC and “$XACT/tutorial/
behavior/uart” on the workstation. The file names are listed below.

Table C-1 Tutorial Files

An additional file, uartdemo.pld, is included to show a few edits you
must make to the uart.pld file. During the course of this tutorial, you
will use these sample files as examples of a completed design.

Session 1: Using the XEPLD Software
Session One concentrates on the XEPLD environment. The following
tasks are explained in this session:

 STEP 1: Prepare the System

 STEP 2: Start XDM

 STEP 3: Select Menu Items

 STEP 4: Configure the XEPLD Environment

Step 1: Prepare the System
Before you start XDM, you must make sure that you installed all the
software and that you set up the DOS environment. How you set up
your environment depends on the platform on which you are
running.

ABEL Files PLUSASM Files

rcvr.abl rcvr.pld

cntr6.abl cntr6.pld

shifter.abl shifter.pld

datareg.abl datareg.pld
C–4 Xilinx Development System

Equation Entry Application Note
Setting Up the PC

To configure your PC for use with XDM, follow these steps:

1. Install the XEPLD development system. Refer to the installation
instructions in the Release Notes for installation information.

2. Make sure the XACT software directory (containing XDM) is
included in your PATH.

3. Make sure the XACT variable is set according to XACT installa-
tion requirements in your autoexec.bat file.

4. To specify a text editor to be used under XDM, set the EDITOR
environment variable.

Setting Up the Workstation

To configure your workstation for use with XDM, follow these steps:

1. Install the XEPLD development system. Refer to the installation
instructions in the Release Notes for installation information.

2. Make sure the XACT software directory (containing XDM) is
included in the XACT environment variable in your .cshrc file. (If
the $XACT variable contains only one directory, this also allows
you to reference the XACT directory with $XACT. When $XACT
is shown in italics, it means “substitute the directory pointed to by
the XACT variable.”)

3. Copy the tutorial files from the $XACT path established during
installation to a user directory, for example:

% cd
% mkdir xtutorial
% cd xtutorial
% cp $XACT/tutorial/behavior/uart/*.* .

4. To specify a text editor to be used under XDM, set the EDITOR
environment variable in your .cshrc file.
XEPLD Reference Guide C–5

XEPLD Reference Guide
Step 2: Start XDM
You can access all operations of XEPLD software from the XDM menu
system.

Invoke XDM by entering the following. If you are using a worksta-
tion, you must enter it is capital letters as shown.

> XDM

The XDM menu is displayed (Figure C-4 and Figure C-4).

For detailed information regarding the menu items, refer to the
“XACT Design Manager Menus” chapter of this manual.

Note: To end your XDM session any time, select Quit from the menu.

Figure C-3 The XDM Menu on the PC
C–6 Xilinx Development System

Equation Entry Application Note
Figure C-4 The XDM Menu on the Workstation

Step 3: Select Menu Items
There are two methods for executing each of the commands available
in the XDM menu:

● Use the mouse pointer to open the menu and click on the com-
mand you want. (You can also use the arrow and Enter keys in a
similar manner.)

● Enter the command and any specified options by typing. What
you type appears on the command line, which is the Cmd: prompt
at the bottom of the screen on a PC or the top of the screen on a
workstation.

/home/joe/xtutorial
XEPLD Reference Guide C–7

XEPLD Reference Guide
Throughout this tutorial you will be instructed to select various menu
items. You can use either the mouse or the command line to do so.

Using the graphic interface to execute commands or programs
requires that you first know where that command resides in the XDM
menu structure.

You also need to know which operations the mouse buttons are set to
perform. The usage descriptions provided here assume the mouse is
set to the default button configuration, as follows:

● Select for the left mouse button.

● Done for the middle mouse button.

● Menu for the right mouse button.

To open a menu, simply position the cursor on the menu you want to
open and click the left mouse button.

On the PC, you can also cancel the last command selected by pointing
anywhere except the menu titles and pressing the right button.

Notice that each command has a few letters highlighted (PC) or capi-
talized (workstation). The highlighted or capitalized letters indicate
how you invoke commands at the command line using abbreviations.

Note: If you select a command on the PC and don’t get the expected
result, here are two things you can check:

● Some commands prompt you at the command line for more infor-
mation, so you should always be aware of when the command
line prompt changes. For example, when you select Utilities ➝
Directory, the command line presents the Directory: prompt,
and you must type a directory name if none of the menu choices
are the directory you want.

● Other commands display a submenu with their own set of com-
mands above the submenu. If you select an item on a submenu
and nothing happens, select one of the commands above the
menu, for example, Done.
C–8 Xilinx Development System

Equation Entry Application Note
Step 4: Configure the XEPLD Environment
How you configure your environment depends on which platform
you are using.

Configuring the PC

To configure the PC, follow these steps:

1. First, the Directory (lower left corner) should be set to the tutorial
directory path where the sample design files were installed.

2. Select the Directory field (or select Utilities ➝ Directory) and
enter the complete path to the tutorial directory at the command
prompt, for example:

Directory: c:\xact\tutorial\behavior\uart

Select the Done command to redisplay the standard XDM menus.

When you start up XDM, it always indicates the current directory.

3. Next, select Family to select the Xilinx device you want to use. For
this tutorial, select XC7300 to bring up a menu of the XC7300-
series XEPLD devices. A submenu of parts appears. Select
7354PC68. Next, a submenu of speeds appears. Select 10.

4. You can customize the XDM interface by defining function keys
using the Keydef command. For example, to invoke an external
text editor with the push of a button, program one of the function
keys using the Profile ➝ Keydef command. If you want to use
the DOS EDIT editor, for example, enter the following on the
XDM command line:

Cmd: keydef f2 dos edit\

F2 is now programmed to invoke EDIT.

The backslash (\) causes XDM to prompt you to finish the com-
mand when you press the defined key. You can use the backslash
with any command that takes a variable argument at the end of its
syntax. For example, if you define the F2 key as shown above and
then press F2, you can answer the prompt with a file name as fol-
lows:

Cmd: dos edit uart.pld
XEPLD Reference Guide C–9

XEPLD Reference Guide
You use a text editor with XDM primarily for preparing Boolean
equation (Behavioral entry) files for the PLUSASM equation assem-
bler, and for viewing the reports generated by XEPLD.

Note: PLUSASM requires that text files contain only ASCII charac-
ters. If you use a word processor, it must be able to save files in ASCII
(plain text) format.

Note: Do not change the file extensions that XDM assigns. XDM will
not recognize or process files with incorrect extensions.

Configuring the Workstation

To configure the workstation, follow these steps:

1. First, the Directory (lower left corner) should be set to the tutorial
directory path containing the sample design files.

2. Select the Directory field (or select Utilities ➝ Directory) and
enter the complete path to the tutorial directory at the command
prompt. (You created this directory in the Setting Up the Worksta-
tion section of Session 1.) For example:

Directory: your_home_dir/xtutorial

Select the Done command to redisplay the standard XDM menus.

When you start up XDM, it always indicates the current directory.

3. Next, select Family to select the Xilinx device you want to use. For
this tutorial, select XC7300 to bring up a menu of the XC7300-
series XEPLD devices. A submenu of parts appears. Select
7354PC68. Next, a submenu of speeds appears. Select 10.

4. As an option, you can choose the editor that the Edit command
brings up by setting the EDITOR environment variable in your
.cshrc file, for example:

setenv EDITOR vi

You use a text editor with XDM primarily for preparing Boolean
equation (Behavioral entry) files for the PLUSASM equation
assembler, and for viewing the reports generated by XEPLD.

On a workstation, setting up the Edit command is not really neces-
sary because you can open another window for editing.

Note: PLUSASM requires that text files contain only ASCII charac-
C–10 Xilinx Development System

Equation Entry Application Note
ters. If you use a word processor, it must be able to save files in ASCII
(plain text) format.

Note: Do not change the file extensions that XDM assigns. XDM will
not recognize or process files with incorrect extensions.

Session 2: Design Entry
You can define the functionality of a design, or a portion of a design,
either directly in the PLUSASM Boolean equation language, or
through a third-party PLD compiler (for example, ABEL). The orig-
inal files for this example are in ABEL syntax. These .abl files were
compiled by Xilinx-ABEL to produce the .pld files.

This session demonstrates the development of the four PLD equation
files that make up the uart design. You will learn how to break a
design into smaller, manageable segments, develop each segment
separately, and then consolidate the entire design.

The following tasks are explained in this session:

 STEP 1: Segment the Design

 STEP 2: Create Boolean Equations for each design segment

 STEP 3: Consolidate the Design

 STEP 4: Assign signals to specific EPLD pins (optional)

Step 1: Segment the Design
The first step is to break the design into small, manageable segments.
Starting with a block diagram of the uart design (Figure C-1), you can
easily identify dedicated functions (Table C-2).

Table C-2 Equation Files Used in the UART Design

Name Description

SHIFTER 8-bit shift register, serial in parallel out

CNTR6 6-bit control counter

DATAREG 8-bit data latch with tristate outputs

RCVR Random logic for control and error detection
XEPLD Reference Guide C–11

XEPLD Reference Guide
The uart design is expressed as if it were first implemented using four
discrete PAL devices. The equation files used to define the functional-
ities of these four PALs can be used without modification as input to
XEPLD.

Step 2: Create Boolean Equations
Select Utilities ➝ Browse or Utilities ➝ Edit. A list of all the files in
the design directory is listed. Select rcvr.pld from the list.

The equation file rcvr.pld is displayed in the browser as shown in
Figure C-5.

Figure C-5 The rcvr.pld File Contents

TITLE RCVR

CHIP RCVR P22V10;

;PINLIST (Highest pin number = 24)
 x4clk c0 c1 c2 c3 c4 c5 read sdin d0 NC NC NC NC start bitclk
 byteclk par framing parity overun ready NC NC

;Control Logic and Error Detector for UART Receiver Design
; Xilinx EPLD Applications, Feb. 93

EQUATIONS

/start := (/start * sdin
 + c0 * /c1 * /c2 * c3 * /c4 * c5);

start.CLKF = (x4clk);

bitclk := (start * /c0 * /c1);

bitclk.CLKF = (x4clk);

ready := (c0 * /c1 * /c2 * c3 * /c4 * c5 * /parity * /framing * /overun
 + ready * /read);

ready.CLKF = (x4clk);
C–12 Xilinx Development System

Equation Entry Application Note
Figure C-5 The rcvr.pld File Contents (continued)

The rcvr.pld file represents a portion of the entire uart design. Its
equations are merged with those of the three other PLD files.

The keyword EQUATIONS identifies the beginning of the equation
section, which contains Boolean equations for each output signal
used. Take some time to examine the equations.

Exit from Browse (or Edit). If you wish, examine the remaining equa-
tion files shifter.pld, datareg.pld, and cntr6.pld.

You can also examine the corresponding source .abl files. rcvr.abl is
shown in Figure C-6.

byteclk := (/c0 * c1 * /c2 * /c3 * /c4 * c5 * /ready);

byteclk.CLKF = (x4clk);

overun := (/c0 * c1 * /c2 * /c3 * /c4 * c5 * ready
 + overun * /read);

overun.CLKF = (x4clk);

par := (start * /sdin * par
 + start * sdin * /par * bitclk
 + start * par * /bitclk);

par.CLKF = (x4clk);

parity := (parity * /read
 + /c0 * c1 * /c2 * /c3 * /c4 * c5 * par);

parity.CLKF = (x4clk);

framing := (/sdin * /c0 * /c1 * /c2 * c3 * /c4 * c5
 + framing * /read
 + /c0 * /c1 * /c2 * c3 * /c4 * c5 * /d0);

framing.CLKF = (x4clk);
XEPLD Reference Guide C–13

XEPLD Reference Guide
Figure C-6 The rcvr.abl File Contents

module rcvr
title 'Control Logic and Error Detector for UART Receiver Design
 Xilinx EPLD Applications, Feb. 93'

 rcvr device 'p22v10';

" Inputs
 x4clk pin 1; " External clock (4x baud rate)
 c0,c1,c2,c3,c4,c5 pin 2,3,4,5,6,7; " State counter outputs (from cntr6)
 read pin 8; " Read enable (from cntr6,active-high)
 sdin pin 9; " Serial data input (external)
 d0 pin 10; " Shift register LSB output

" Outputs
 start pin 15 istype 'reg'; " Start bit detector
 bitclk pin 16 istype 'reg'; " Bit clock (to shifter)
 byteclk pin 17 istype 'reg'; " Output data register clock
 par pin 18 istype 'reg'; " Parity accumulator
 framing pin 19 istype 'reg'; " Framing error output (external)
 parity pin 20 istype 'reg'; " Parity error output (external)
 overun pin 21 istype 'reg'; " Overrun error output (external)
 ready pin 22 istype 'reg'; " Receiver ready output (external)

" Variables
 count = [c5..c0]; " c5 is MSB

Equations

!start := !start & sdin " Start goes high when sdin goes low;
 # (count == 41); " start stays high until count=41.
start.clk = x4clk;

bitclk := !c0 & !c1 & start; " Bitclk pulses every 4 cycles.
bitclk.clk = x4clk;

ready := (count == 41) & !parity & !framing & !overun
 # ready & !read; " Ready goes high at count=41 if no errors
ready.clk = x4clk; " and stays high until register read.

byteclk := (count == 34) & !ready; " Strobe data register at count=34
byteclk.clk = x4clk; " only if ready not still active.

overun := (count == 34) & ready " Overrun error at count=34 if ready still on;
 # overun & !read; " overun stays on until register read.
overun.clk = x4clk;
C–14 Xilinx Development System

Equation Entry Application Note
Figure C-6 The rcvr.abl File Contents (continued)

par := (par $ sdin) & bitclk & start
 # par & !bitclk & start; " Accumulate parity of sdin on each bitclk;
par.clk = x4clk; " reset while start=0.

parity := (count == 34) & par " Parity error at count=34 if par odd (1);
 # parity & !read; " parity stays on until register read.
parity.clk = x4clk;

framing := (count == 40) & (!sdin # !d0) " Framing error at count=40 if either
 # framing & !read; " stop bit low;
framing.clk = x4clk; " framing stays on until register read.

end
XEPLD Reference Guide C–15

XEPLD Reference Guide
Step 3: Consolidate the Design
To consolidate all the segments of the design and define the EPLD
device I/O, use the PALCONVT command. This command allows
you to automatically convert a design made up of individual PAL
files.

These PAL files can be PLUSASM files that you created using a text
editor, ABEL-generated PALASM-2 boolean equation files (or files
from some other third-party design entry package), or JEDEC files
converted with the JED2PLD command.

1. Select the Fitter ➝ PALCONVT command.

2. When prompted for a design file, choose a name for the new con-
verted PAL design in response to the command prompt:

Enter design file name (.pld): uart

3. A list appears containing all the .pld and .pds files in the current
directory. Select the following files from the list:

rcvr.pld
cntr6.pld
shifter.pld
datareg.pld

4. Select Done to complete file selection.

5. When prompted for a target, select Create new PLD and PAL
Interconnect Report.

You can use PALCONVT and FITEQN in one step, but it is a good
idea to perform the steps separately the first time you fit a design,
because you may want to edit the top-level file that PALCONVT
creates.

The PALCONVT command reads the PAL file equations, resolves
any polarity inversions, resolves any PAL-specific functionality,
and automatically determines all external requirements for dan-
gling signals.

6. Examine and edit the uart.pld file by selecting Utilities ➝ Edit.

Figure C-8 shows the resulting main equation file.
C–16 Xilinx Development System

Equation Entry Application Note
.

Figure C-7 The uart.pld Main Equation File

The design_name.pld file that PALCONVT creates contains pin
declarations, NODE declarations, and INCLUDE_EQN state-
ments for the design. You can edit this file to specify additional
external signals, for example under the OUTPUTPIN declaration.

It is also important to include .PRLD equations to ensure that all
the registers in the chip are preset properly when the power is first
turned on.

7. Note that the FRAMING, PARITY, OVERUN, and READY signals
are interpreted as NODEs when they are actually OUTPUTPINs.
Edit the uart.pld file to reclassify these signals. Although the BIT-
CLK, BYTECLK, and START signals really are nodes, we recom-
mend moving them to the OUTPUTPIN listing to prevent them
from being optimized; this ensures that they are visible during
timing simulation.

8. Add .PRLD equations for each output in the RCVR part of the
design. You only need to preload these signals because these sig-
nals control the rest of the design.

Figure C-8 shows the edited main equation file. The uartdemo.pld
file also includes these edits.

PATTERN uart.pld - file made by PALCNVT command

CHIP uart XEPLD

INCLUDE_EQN 'shifter.pld'

INCLUDE_EQN 'rcvr.pld'

INCLUDE_EQN 'datareg.pld'

INCLUDE_EQN 'cntr6.pld'

INPUTPIN SDIN X4CLK RD CS

OUTPUTPIN DOUT7 DOUT6 DOUT5 DOUT4 DOUT3 DOUT2 DOUT1 DOUT0

NODE BITCLK D7 D6 D5 D4 D3 D2 D1 D0 C0 C1 C2 C3 C4 C5 READ START

 BYTECLK PAR FRAMING PARITY OVERUN READY

EQUATIONS
XEPLD Reference Guide C–17

XEPLD Reference Guide
.

Figure C-8 The uart.pld Main Equation File after Editing

The declaration section contains design identification information
plus device and pin data. The PLUSASM keywords TITLE,
AUTHOR, COMPANY, and DATE identify the design. The keyword
CHIP identifies the design name (uart) and device type (XEPLD),
which identifies a behavioral design targeted to an EPLD device. The
particular EPLD device is selected in the XDM menu. In this example,
we selected the XC7354-10PC44 as our target device.

The INPUTPIN, FASTCLOCK, OUTPUTPIN, and NODE statements
in the declarations section identify all signal names in the design and
designate them as input, clock, output, and internal node names,
respectively.

PATTERN uart.pld - file made by PALCNVT command

CHIP uart XEPLD

INCLUDE_EQN 'shifter.pld'
INCLUDE_EQN 'rcvr.pld'
INCLUDE_EQN 'datareg.pld'
INCLUDE_EQN 'cntr6.pld'

INPUTPIN SDIN X4CLK RD CS
OUTPUTPIN DOUT7 DOUT6 DOUT5 DOUT4 DOUT3 DOUT2 DOUT1 DOUT0

NODE D7 D6 D5 D4 D3 D2 D1 D0 C0 C1 C2 C3 C4 C5 PAR READ

; declarations added after palconvt:

outputpin start byteclk bitclk framing parity overun ready

EQUATIONS

; equations added after palconvt:

START.PRLD = GND;
BITCLK.PRLD = GND;
READY.PRLD = GND;
BYTECLK.PRLD = GND;
OVERUN.PRLD = GND;
PAR.PRLD = GND;
PARITY.PRLD = GND;
FRAMING.PRLD = GND;
C–18 Xilinx Development System

Equation Entry Application Note
The file contains an INCLUDE_EQN statement for each of the four
constituent equation files. The main file in this example contains no
functional operations.

The PIN statement, which is part of the OUTPUTPIN statement in
the uart.pld file, is used for pin assignment and is described in the
next step.

The .PRLD equations are all listed under the EQUATIONS keyword.
See the “PLUSASM Command Reference” chapter for more informa-
tion about how to use PRLD signals.

The PALCONVT command generates a PAL Interconnect report
named uart.int, which summarizes the number of equations found
and I/O pins created. You can use this report to help you choose the
best target device and to verify that the PALs are connected properly..

View the PAL interconnect report, uart.int. You can use the
Utilities ➝ Browse or Utilities ➝ Edit command.

As an alternative, you could have entered all your equations for the
uart design in the EQUATION section of a single PLUSASM file.

Step 4: Assign Signals to Specific EPLD Pins
As an option, you can assign signals to specific EPLD pins. To do pin
assignment, you must be aware of the architecture of the target EPLD
device so that you do not, for example, assign an output to an input
pin.

By assigning a list of pin numbers to a series of signals in an
INPUTPIN, OUTPUTPIN, or IOPIN statement, those outputs are
automatically assigned to the corresponding set of device pins.

You can add the following PIN statement to the end of the
OUTPUTPIN statement of the main uart equation file:

OUTPUTPIN DOUT7 DOUT6 DOUT5 DOUT4 DOUT3 DOUT2 DOUT1
DOUT0

 FRAMING PARITY OVERUN READY BITCLK BYTECLK START
 PIN 18 19 20 21 22 24 25 26

This statement assigns signals DOUT0 to DOUT7 to specific pins of
the targeted XC7354 EPLD device.

The remaining signals in the equation file are allocated automatically
by the XEPLD software.
XEPLD Reference Guide C–19

XEPLD Reference Guide
Session 3: Fitting the Design
Session 3 concentrates on the XEPLD Fitter. The following tasks are
explained in this session:

STEP 1: Invoke the Fitter

STEP 2: View the Reports

STEP 3: Save Pin Assignments

STEP 4: Create the Programming File

STEP 5: Create a Simulation Model (optional)

Note: It is at this point that the Family, Part, and Speed values you
selected in Session One are used. The XC7354 device was chosen for
this tutorial because the uart design is likely to fit into it.

Review the PAL Interconnect report (uart.int), the Resource report
(uart.res), and if necessary the Partitioner report in the log file
(uart.par) after fitting to determine the actual resource utilization of
your design.

Step 1: Invoke the Fitter
To invoke the Fitter, follow these steps:

1. Select Fitter ➝ FITEQN.

2. When a list of options is displayed, do not choose an option; just
select Done.

3. Select uart.pld from the list of file names displayed.

4. Select New File when prompted for an output file, then type
uart at the command line prompt.

If you have saved pin allocation information from a prior fitting in a
.vmf file (using the PINSAVE command), the FITEQN command
allows you to use this file to preserve your prior pinout; refer to Step
3 below.

The XEPLD Fitter is composed of several sub-modules. As the Fitter
processing proceeds, a message is displayed on the screen indicating
which sub-module is running. The FITEQN modules produce a data-
base file (uart.vmh). From this database, a programming file can be
produced to program the device. Simulation models can also be
produced from this database file.
C–20 Xilinx Development System

Equation Entry Application Note
If the Fitter encounters errors, it displays them on the screen and
stores them in a file (uart.err) for future reference. If errors are
encountered, you can press Ctrl-C at any time to stop the execution
and look at the error and warning logs.

Step 2: View the Reports
The following extensions designate the reports produced by the
FITEQN command:

.res The Resource report

.map The Mapping report

.pin The Pinlist report

.eqn The Equation file

.par The Partitioner report

You can view the reports that the Fitter generates using the Utilities
➝ Browse or Utilities ➝ Edit command.

1. First view the Resource report, uart.res.

The Resource report lists the amount of resources that were used
to implement the design. This report contains the total number of
Function Blocks used and input/output (I/O) pins used on the
target device. These totals are subtracted from the total resources
of the device to give the amount of remaining resources available
to the designer. This report also lists any portions of the design
that were not mapped due to space limitations or design errors.

2. Next, view the Mapping report, uart.map.

The Mapping report lists each Function Block in the device and
details which output signals were mapped to that Function Block
and how they were mapped. The Mapping report is used prima-
rily for design debugging and to assist manual mapping.

3. Next, view the Pinlist report, uart.pin.

The Pinlist report provides the designer with chip pin placement
information. For each pin on the package, the Pinlist report indi-
cates the operation of the pin as used in the design and the signal
from the design appearing on the pin.

4. Next, view the Equation file, uart.eqn.
XEPLD Reference Guide C–21

XEPLD Reference Guide
The Equation file shows how the equations that describe your
design were optimized and mapped onto the EPLD device.

5. Finally, view the Partitioner report, uart.par.

The Partitioner report shows the allocation of Function Block
resources and lists all the equations in the design. This report
helps you identify and correct design errors and provides infor-
mation for optimizing or modifying your design.

Step 3: Save Pin Assignments
Use the Translate ➝ PINSAVE command after a successful fitting of
your design to save the pin allocation information into a Pinsave file,
uart.vmf.

This allows you to preserve the saved pinout in case you need to
make a design change or add more logic.

A message similar to the following is displayed on your screen:

Writing pin allocation in C:\XDM\TUTORIAL\UART.VMF

If you set the -f (Pin-freezing on) option of the FITEQN command to
On, the Fitter assigns the pins to the locations indicated in the Pinsave
file. This allows you to assign pins to the same positions with each
iteration of your design. The -f option is Off by default. Selecting the
-f option repeatedly before you select Done toggles the -f option On
and Off. The On or Off setting of this option is displayed in a status
line at the bottom of the XDM screen above the command line.

Step 4: Create the Programming File
After you have fitted your design, create a programming file by
selecting Verify ➝ MAKEPRG. Type your initials when prompted
for a signature. Select uart.vmh from the list of file names displayed.

If you installed the Xilinx DS120 programmer, PROLINK appears
under the Verify menu. This is the DS120 programmer control and
interface software that would be used to download the uart.prg file to
the programmer. Refer to the DS120 documentation for instructions.

You can also create a JEDEC programming file, required by other
third-party programmers, by using the Verify ➝ MAKEJED
command and selecting uart.vmh.
C–22 Xilinx Development System

Equation Entry Application Note
Step 5: Create a Simulation Model
As an option, you can create a model of the completed design for
OrCAD or Viewlogic timing simulation.

After fitting your design, you can create an OrCAD VST or Viewsim
wirelister file for timing simulation using a single command.

1. Select Verify ➝ XSIMMAKE.

2. Select OrCAD_Epld_Timing or Viewlogic_Epld_Timing as the
target.

3. Select uart.vmh from the list displayed.

XSIMMAKE invokes the following XDM commands, which you can
invoke yourself if you want to see each step in the translation
process. You do not need to select any of the options on any of the
commands.

1. Use the Verify ➝ VMH2XNF command in the XDM menu and
select uart.vmh from the file list. This creates a new .xnf file that
contains an image of the EPLD device and its timing parameters.

2. Use the Verify ➝ XNF2VST or XNF2WIR command in the XDM
menu and select uart.xnf from the file list. This creates a model,
expressed as an OrCAD VST or Workview WIR file, of an EPLD
device containing the UART design.

3. Use the Verify ➝ VSM command (Viewlogic only). Select uart.1
from the list of files. This creates a Viewsim wirelister file
(uart.vsm) for functional and timing simulation.
XEPLD Reference Guide C–23

XEPLD Reference Guide
C–24 Xilinx Development System

Appendix D
XEPLD Reference Guide — 0401203 01 D–1

Glossary

This appendix provides definitions of the words and terms used
throughout the XEPLD Design Guide and the XEPLD Reference Guide.

ABEL — A high-level PLD design compiler, available from DATA
I/O corporation.

Arithmetic Equations — Equations that specify the special arith-
metic capabilities of the Xilinx EPLDs.

Behavioral Design Method — Defines a circuit in terms of a textual
language rather than a schematic of interconnected symbols.

CAE Tool — (Computer Aided Engineering Tool) Usually refers to
Viewlogic (ViewCad), OrCAD (OrCAD PLD), or Mentor.

CUPL — A PLD development tool available from Logical Devices
Inc.

EPLD — Erasable Programmable Logic Device.

Equation Splitting — An automatic process performed by XEPLD to
divide large behavioral equations into smaller functions that will
fit within the available device macrocell resources.

Fast Carry — Arithmetic carry functions using the dedicated fast
carry chain that interconnects macrocells. These signals do not
pass through the UIM.

Fast Function Block (FFB) — Provides fast pin-to-pin logic
throughput for critical decoding and ultra-fast state machine
applications (XC7300 family only). The output pins associated
with Fast Function Blocks have high current drive capability.

Fast Output Enable (FOE) — Tristate control signals that use the
dedicated FOE wiring of the device, and not the UIM wiring.

XEPLD Reference Guide
FastCLK — A clock signal that uses the dedicated FastCLK wiring of
the device, and not the UIM.

FastInput — Inputs to the device that connect directly to the function
block inputs, bypassing the UIM.

Function Block — The High Density Function Blocks of the device,
designed to provide the maximum logic density, containing nine
macrocells. The output pins associated with Function Blocks have
the standard current drive capability.

function block — Either a High Density Function Block or a Fast
Function Block.

Fitter — The software that maps a PLD logic description into the
target device.

Generic PAL — Any PAL device type other than 22V10 or 20V8.

I/O Blocks — The input/output logic of the device containing pin
drivers, registers and latches, and 3-state control functions.

Include File — Equation files that are specified by an
INCLUDE_EQN statement in a Top-Level File.

Input Pad Registers and Latches — D Type registers located in the
I/O pad sections of the device. Input pad registers can be used
instead of macrocell resources.

JEDEC — A file format used for downloading device bitmap infor-
mation to a device programmer.

Linked Equations — Any equation that uses either the .ADD,
.ADDMODE, .EXPORT, or .SHIFT extensions. (These equations
must be physically adjacent in the device.)

LOG/iC — A PLD compiler, available from ISDATA.

Macrocell — The basic unit of logic in the device. A macrocell can
implement both combinational and registered equations. High
Density Function Block macrocells also contain an ALU for
implementing arithmetic functions.

Node — Any signal used only as feedback.

Optimization — The process of reducing your design to the minimal
required device resources. Optimization includes collapsing of
combinational logic nodes into device outputs and registers,
D–2 Xilinx Development System

Glossary
assigning signals to global FASTCLOCK and FOE nets, utiliza-
tion of I/O buffer registers, and the creation of UIM-AND func-
tions.

OrCAD PLD — A PLD compiler, available from OrCAD.

PAL — Programmable Array Logic.

PALASM — A PLD compiler available from Advanced Micro
Devices. The Xilinx PLUSASM language is based on PALASM
and can accept most PALASM files.

Partitioning — The process of placing symbolic logic into the phys-
ical structures of the device. The basic partition is the Function
Block or Fast Function Block.

Pin — The physical XC7000 device pins (external connections).

Pin Feedback — Specifies that the associated signal comes from the
actual device pin and not from the UIM.

PLD — Programmable Logic Device.

PLUSASM — The Xilinx native behavioral design language for EPLD
development.

Product Term Cascading — The process of passing product terms
(in groups of four) from one macrocell to another for the purpose
of increasing the number of usable product terms. (See the
PLUSASM .EXPORT command.)

Top-Level File — The main file of a PLUSASM design. It contains
design control information and either design equations or refer-
ences to Include Files containing design equations.

Universal Interconnection Matrix (UIM) — The primary device
resource used to interconnect macrocells. Propagation delays
through the UIM are constant and independent of the intercon-
nections. AND functions can also be implemented in the UIM.

UIM-AND Function — An AND gate created from the inherent
wired-AND structure of the UIM; requires no macrocell
resources.

UIM Feedback — Specifies that the associated signal comes from the
macrocell and not from the device pin.

Wired-AND Functions — AND gates (and their DeMorgan equiva-
XEPLD Reference Guide D–3

XEPLD Reference Guide
lents) produced by the inherent structure of the UIM.

Xilinx ABEL — The Xilinx ABEL compiler.

XACT — The Xilinx design editor.

XEPLD — Xilinx EPLD development software.

XDM — The Xilinx XACT Design Manager, the user interface to
XEPLD.
D–4 Xilinx Development System

Index

A
ABEL, 5-15

example files, C-11

B
BAT files, 5-13
Behavioral design, C-11
XEPLD Reference Guide — 0401203 01 Index-1

see also PLD compilers
Abel file

translating, 2-20
ABL2PLD command, 2-20
active window

in XDM, 2-6
ADD equation, 4-44
ADDMODE equation, 4-46
AND gates,optimization, 5-9
ANNOTATE command, 2-20
Apollo, 2-4
Architecture

and design constraints, 5-7
mapping design to, 5-9

Arithmetic
carry enable equation

ADD, 4-44
ADDMODE, 4-46

carry-in, 4-44
Arrow keys

activating, 2-38
ASCTOVST command, 2-29
Assembling an equation file, 2-22
Asynchronous reset equation (RSTF), 4-
59
Asynchronous set equation (SETF), 4-60
AUTOEXEC.BAT, PATH statement for
XDM, 2-2, 2-4

integrating, 2-24
overview, 1-9, 1-10

Bit-maps, in library, 5-13
Browse command, 2-34, 3-1
Button settings on mouse, C-8

C
CE

design rules, 5-8
CEPIN statement, 4-5, 4-6
Checker, for design rule violations, 5-7
Chip builder integrator module, 5-7
CLEANUP command, 2-20
CLIB directory, 5-13
CLKF equation, 4-48
Clock Enable see CE
Colors of menu

changing arrangement, 2-39
changing palette, 2-40

Command line interface of XDM, 2-9
Commands

ABL2PLD, 2-20
ANNOTATE, 2-20
ASCTOVST, 2-29
Browse, 2-34, 3-1
CLEANUP, 2-20
Cursor, 2-38
DirClean, 2-34
Directory, 2-34, C-9, C-10
DOS, 2-35
Edit, 2-35, 3-1

XEPLD Reference Guide
entering using keyboard, 2-9
entering using mouse, 2-9
executing with a function key, 2-38
Family, 2-38
FITEQN, 2-24

example, C-20
FITNET, 2-25, 5-3
JED2PLD, 2-22
KeyCursor, 2-38
Keydef, 2-38

example, C-9
MAKEJED, 2-31
MAKEPRG, 2-32

example, C-22
Menucolors, 2-39
Mouse, 2-39
Options, 2-39
PALCONVT, 2-26
Palette, 2-40
Part, 2-40
PINSAVE, 2-18, 2-23, C-20, C-22
PLUSASM, 2-22
Printer, 2-40
PROLINK, 2-33, C-22
Readprofile, 2-40
repeating, 2-9
Saveprofile, 2-40
SDT2NET, 2-21, 5-15
selecting, C-7
Settings, 2-40
Speed, 2-40
using shortcuts, 2-9
Version, 2-37
VMH2VST

example, C-23
VMH2WIR, 2-32

example, C-23
VSM, 2-30

example, C-23
WIR2NET, 2-21, 5-15

XDM, entering, 2-8
XNF2VST, 2-29
XNF2WIR, 2-31
XNFMERGE, 2-23
XSIMMAKE, 2-28

Components
device-specific, 5-7
XEPLD library, in schematics, 5-3

Configuring the XEPLD environment,
C-9
Conversion of PAL-based designs, 2-26
CUPL, 5-15

see also PLD compilers
Cursor command, 2-38

D
DATA directory, 5-13
Database file, 5-15
Default options, selecting, 2-39
Defining a function key, 2-38
Deleting extra files, 2-34
Design

annotation statements, 4-4
behavioral, C-11
choosing target device, 2-17, 2-40
example, C-2

equation files, C-12
overview of procedure, 1-1, 5-1

Design Entry menu, 2-18
Design rule checker integrator module,
5-7
Device

choosing target for design, 2-17, 2-40
determining speed of, 2-40
XC7000, C-9, C-10
XC7200 and XC7300, 2-17

DirClean command, 2-34
Directories, 5-10

CLIB, 5-13
DATA, 5-13
MSG, 5-13
selecting current directory, 2-34
Index-2 Xilinx Development System

Index
structure of in XDM, 5-10
TUTORIAL, 5-13, C-9, C-10
viewing structure, 2-34
XACT root directory, 5-13, C-5

Directory command, 2-34, C-9, C-10
Directory settings field, 2-17, C-9, C-10
Display Manager, 2-4
Divider integrator module, 5-9
DOS command

entering from within XDM, 2-35
Downloading HEX files, 2-33
DS120 programmer, C-22

E
Edit command, 2-35, 3-1
Editing files, 2-35
EDITOR environment variable, C-5
Environment variables

EDITOR, C-5
XACT, C-5

Environment, configuring, C-9
EQN file, 3-33
Equation file

assembling, 2-22
examples, C-12

Equations
ADD, 4-44
ADDMODE, 4-46
ALU format, 4-40, 4-41
CLKF, 4-48
combinatorial and registered, 4-40
control, 4-43
defining signal polarity, 4-66
EXPORT, 4-52
FBK, 4-54
FI, 4-56
for example design, C-12
PIN, 4-57
PRLD, 4-58
RSTF, 4-48, 4-59
SETF, 4-48, 4-60

SHIFT, 4-61
TRST, 4-65

ERR file, 5-1, 5-16
Errors, 5-16
Example design, C-2
Example files, C-4

ABEL, C-11
EXE files, 5-13
Executable files, 5-13
Exiting

temporarily, to DOS, 2-35
XDM, 2-3, C-6

EXPORT equation, 4-52

F
Family command, 2-38
Family settings field, 2-17, C-9, C-10
Fast Output Enable see FOE
FastCLK

design rules, 5-8
pin, 4-10

FASTCLOCK statement, 4-10
FastInput (FI)

pins, 4-12, 4-56
source equation, 4-56

FASTINPUT statement, 4-12
FBK equation, 4-54
FFB product term assignment equation
(EXPORT), 4-52
FI equation, 4-56
Fields

settings, 2-17
Files, 5-10

ABEL examples, C-11
BAT, 5-13
database, 5-15
deleting extra, 2-34
editing, 2-35
equation, assembling, 2-22
ERR, 5-1, 5-16
EXE, 5-13
HEX, 5-16, C-22
XEPLD Reference Guide Index-3

XEPLD Reference Guide
creating, 2-32
downloading, 2-33

JEDEC, 5-15, 5-16
creating, 2-31

LOG, 5-1
log, 5-16
MAP, C-21
netlist, 5-3, 5-15
PAR, C-22
PDS, 5-15
PIN, C-21
PLD, 5-15
PLUSASM equation, 5-15
PRG, 5-16, C-22
PROGLIST.XDM, 2-1
program list, 2-1
programming, 5-16, C-22
RCVR.ABL, C-14
RCVR.PDS, C-12
report, 5-15, C-21
RES, C-21
tutorial example, C-4
TXT, 5-13
UART_EQN.PLD, C-17, C-18
viewing, 2-34, 2-35
VMF, 2-18, 2-23, C-20, C-22
VMH or VMD, 5-15
VST, 2-29, C-23
WIR, C-23
wirelist, 2-30, 2-31, 2-32
XDM.PRO

reading, 2-40
writing, 2-40

XEPLD.CFG, 5-13
FITEQN command, 2-24

example, C-20
FITNET command, 2-25, 5-3
Fitter

invoking, C-20
results (report), 3-2

Fitter menu, 2-24

Flip-flops
optimization, 5-9

FOE
design rules, 5-8
pin option, 4-19, 4-30
pins, 4-13

FOEPIN statement, 4-13
Freezing pins, 2-24, 2-25, C-20, C-22
Function key, defining action of, 2-38

G
Gate optimizer, 5-9
Graphic interface of XDM, 2-9

H
HEX files, 5-16, C-22

creating, 2-32
downloading, 2-33

I
I/O resource report, 3-2
Importing a JEDEC file, 2-22
INCLUDE_EQN statement, 4-15
Input signal polarity, 4-67
INPUTPIN statement, 4-16
Inputs

hanging, 5-7
Integration

freezing pins, 2-24, 2-25
of a behavioral design, 2-24
of a PAL-based design, 2-26
of a schematic netlist, 2-25

Integrator
chip builder module, 5-7
design rule checker, 5-7
divider module, 5-9
interconnector module, 5-9
mapper module, 5-9
minimizer, 5-5
muncher, 5-3
netlist reader module, 5-3
optimizer module, 5-9
Index-4 Xilinx Development System

Index
Partitioner module, 5-5
using on example design, C-20

Interconnector integrator module, 5-9
Interface

command line, 2-9
graphic, 2-9

Inverters, optimization, 5-9
IOPIN statement, 4-18

J
JED2PLD command, 2-22
JEDEC

importer, 5-15
JEDEC file, 5-15, 5-16

creating, 2-31
importing into design, 2-22

K
KeyCursor command, 2-38
Keydef command, 2-38

example, C-9

L
Library

directory contents, 5-13
Local feedback equation (FBK), 4-54
Local shift equation (SHIFT), 4-61
LOG file, 5-1
Log files, 5-16
Logic Optimizer report, 3-16
Logic resource report, 3-2

M
Main menu, C-6, C-7
MAKEJED command, 2-31
MAKEPRG command, 2-32

example, C-22
MAP mapping report file, C-21
Mapper integrator module, 5-9
Mapping report, 3-4, C-21
Menucolors command, 2-39
Menus, 2-16

Design Entry, 2-18

Fitter, 2-24
main, 2-3, C-6, C-7
opening, 2-9, 2-17
Profile, 2-38
Translate, 2-18
Utilities, 2-33
Verify, 2-28

Merging XNF files, 2-23
Messages, 5-16

directory, 5-13
MINIMIZE statement, 4-23
Minimizer integrator module, 5-5

turning off for an equation, 5-7
Mode/connection port, 2-18
Model for simulation, creating, C-23
Motif, 2-4
mouse

configuration in XDM, 2-5
Mouse button

configuration in XDM, 2-9, C-8
functions, changing, 2-39
settings, 2-9, C-8

Mouse command, 2-39
Mouse settings field, 2-18
MSG directory, 5-13
Muncher integrator module, 3-2, 5-3
mwmrc file, 2-4

N
NAND gates

optimization, 5-9
Navigating through directories, 2-34
Netlist

file, 5-3, 5-15
integrating, 2-25
merging multiple files, 2-23
OrCAD, creating, 2-21
reader integrator module, 5-3
reading, 5-3
Workview, creating, 2-21

NODE statement, 4-25
NOT optimization, 5-9
XEPLD Reference Guide Index-5

XEPLD Reference Guide
O
Opening a menu, 2-9, 2-17
Openwindows, 2-4
Optimizer integrator module, 3-2, 5-9
Options command, 2-39
OrCAD

file format conversion, 2-29
netlist, creating, 2-21
VST simulation file, 2-29

Output polarity, 4-66
OUTPUTPIN statement, 4-30
Overlapping objects

cleaning up, 2-20
Overview, 1-1, 5-1

behavioral design entry, 1-9, 1-10
schematic capture, 1-7
XDM, 1-2

P
PAL Interconnect report, 3-29
PALCONVT command, 2-26
Palette command, 2-40
PAR partitioner report file, C-22
Part

determining speed of, 2-40
family, selecting, 2-17, 2-38

Part command, 2-40
Part settings field, 2-17
PARTITION statement, 4-32

example of, C-19
Partitioner

report, C-22
Partitioner integrator module, 5-5
Partitioner Log report, 3-22
Partitioner report, 3-9
PATH

statement for XDM, 2-2, 2-4
PATH, and XACT directory, C-5
PDS files, 5-15
Pin assignment, C-22

example of, C-19

Pin declaration statements
CEPIN, 4-6
FASTCLOCK, 4-10
FOEPIN, 4-13
INPUTPIN, 4-16
IOPIN, 4-18
OUTPUTPIN, 4-30

PIN equation, 4-57
Pin freezing, 2-24, 2-25, C-20, C-22
PIN pinlist report file, C-21
PINFBK pin option, 4-18
Pinlist

report, 3-7, C-21
Pins

FastCLK, 4-10
FastInput, 4-12, 4-56
FOE, 4-13
FOE option, 4-19, 4-30
I/O, defining, 4-18
input source equation (PIN), 4-57
input, defining, 4-16
names,report, 3-7
PINFBK option, 4-18
PINTRST option, 4-30
usage report, 3-5

PINSAVE command, 2-18, 2-23, C-20, C-
22
PINTRST

pin option, 4-19, 4-30
PLD

assembling equations for, 2-22
compilers, 5-15, C-11
files, 5-15
pin position labels, 4-8

PLUSASM
assembler

partitioner and minimizer, 5-5
command, 2-22
declaration section, 4-4
delimiters, 4-68
equation files, 5-15
Index-6 Xilinx Development System

Index
files, equation section, 4-40
operators and special characters, 4-68
reserved characters, 4-69
syntax, 4-72

Polarity
of signals, defining, 4-66

Port components
design rules, 5-8

Power-on reset, 4-58
Preload equation (PRLD), 4-58
PRG files, 5-16, C-22
Printer command, 2-40
PRLD equation, 4-58
Product terms

partitioner and minimizer, 5-4, 5-6
Profile menu, 2-17, 2-38
PROGLIST.XDM, 2-1
proglist.xdm file, 2-6
Program list file, 2-1
Programming files, 5-16, C-22
PROLINK command, 2-33, C-22
PWR statement, 4-38

Q
Quitting XDM, 2-3, C-6

R
RCVR.ABL file, contents, C-14
RCVR.PDS file, contents, C-12
Readprofile command, 2-40
Reference designators, updating, 2-20
Register clock source (CLKF), 4-48
Registers

optimization, 5-9
Removing files, 2-34
Repeating commands, 2-9
Report files, 5-15, C-21
Reports

EQN file, 3-33
Logic Optimizer, 3-16
Mapping, 3-4, C-21

optimized outputs, 3-17
PAL Interconnect, 3-29
Partitioner, 3-9, C-22
Partitioner Log, 3-22
Pinlist, 3-7, C-21
pins and product term allocation, 3-
22, 3-23
Resource, 3-2, C-21
viewing, 3-1

RES resource report file, C-21
Resources

munching unused, 5-3
RSTF equation, 4-48, 4-59
Rules for XEPLD designs, 5-7

device-specific components, 5-7
FastCLK, CE, and FOE, 5-8
hanging inputs, 5-7
port components, 5-8

S
Saveprofile command, 2-40
Saving XDM settings, 2-40
Schematics

integrating designs, 2-25
reading netlists, 5-3
schematic capture overview, 1-7

SDT2NET command, 2-21, 5-15
SETF equation, 4-48, 4-60
Settings

mouse button, C-8
saving, 2-40

Settings command, 2-40
Settings fields, 2-17
Shape of cursor, changing, 2-38
Shell for XEPLD software, 2-1
SHIFT equation, 4-61
Shortcuts for command entry, 2-9
Signals

active low, 4-66
defining polarity, 4-66
XEPLD Reference Guide Index-7

XEPLD Reference Guide
Signature
specifying for programming files, 2-
31, 2-32

Simulation
automatic file creation, 2-28
creating model for, C-23

Size Factor
report, 3-10

Speed command, 2-40
Starting XDM, 2-2, 2-6, C-6
STRING statement, 4-39
Sun 4, 2-4
Supported software, displaying list of, 2-
37

T
Target device, choosing, 2-17, 2-40
Text editor, accessing from XDM, C-10
Translate menu, 2-18
Translator see Integrator
Tri-state

control equation (TRST), 4-65
TRST equation, 4-65
Tutorial

example design, C-2
example files, C-4

TUTORIAL directory, 5-13, C-9, C-10
TXT files, 5-13

U
UART

example design, C-2
UART_EQN.PLD file, C-17, C-18
UIM

and interconnector integrator mod-
ule, 5-9

Unused resources, munching, 5-3
Utilities menu, 2-17, 2-33

V
Variables

EDITOR, C-5

XACT, C-5
Verify menu, 2-28
Version command, 2-37
Viewing files, 2-34, 2-35
Viewsim wirelist file, 2-30, 2-31, 2-32
VMD file, 5-15
VMF file, 2-18, 2-23, C-20, C-22
VMH file, 5-15
VMH2VST command

example, C-23
VMH2WIR command, 2-32

example, C-23
VSM command, 2-30

example, C-23
VST file, 2-29, C-23

W
Warnings, 5-16
window accelerators

in XDM, 2-6
window buttons

in XDM, 2-5
window operations

in XDM, 2-5
WIR file, C-23
WIR2NET command, 2-21, 5-15
Wirelist file, 2-30, 2-31, 2-32
Workview

netlist, creating, 2-21
see also Viewlogic

X
XACT

root directory, 5-13, C-5
software directory, 2-2
variable, C-5

XACT Design Manager, see XDM
XC7000 devices, C-9, C-10
XC7200 and XC7300 devices, 2-17
xdefaults file, 2-4
Index-8 Xilinx Development System

Index
XDM, 2-1
accessing text editor from XDM, C-10
command entry, 2-8
command line interface, 2-9
configuring the environment, C-9
displaying settings of, 2-40
exiting, 2-3
graphic interface, 2-9, C-8
handling unexpected results, C-8
main menu, 2-3, C-6, C-7
menus, 2-16

Design Entry, 2-18
Place Route, 2-24
Profile, 2-17
Translate, 2-18
Utilities, 2-17, 2-33
Verify, 2-28

mouse configuration, 2-9, C-8
obtaining help, 2-36
overview of, 1-2
PATH statement for, 2-2, 2-4
proglist.xdm file, 2-6
quitting, 2-3, C-6
saving settings, 2-40
starting, 2-2, 2-6, C-6
suspending, 2-4
use with X-windows, 2-1
user interface, 2-8, C-7
workstations, 2-4

active window, 2-6
configuring X–Windows, 2-4
mouse configuration, 2-5
obtaining help, 2-36
window accelerators, 2-6
window buttons, 2-5
window operations, 2-5

X–Windows, 2-6
XDM.PRO file, 2-2

displaying contents of, 2-40
reading, 2-40
writing, 2-40

XEPLD
devices, 2-17
overview, 1-1, 5-1

XEPLD.CFG file, 5-13
XNF files

merging, 2-23
XNF2VST command, 2-29
XNF2WIR command, 2-31
XNFMERGE command, 2-23
XSIMMAKE command, 2-28
X–terminal windows, 2-5
X–Windows

in XDM, 2-1, 2-4
XEPLD Reference Guide Index-9

XEPLD Reference Guide
Index-10 Xilinx Development System

Trademark Information
XEPLD Reference Guide — 0401410 01

, XACT, XC2064, XC3090, XC4005, and XC-DS501 are registered trademarks of
Xilinx. All XC-prefix product designations, XACT-Floorplanner, XACT-Performance,
XAPP, XAM, X-BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, XPP, XSI, BITA,
Configurable Logic Cell, CLC, Dual Block, FastCLK, HardWire, LCA, Logic Cell,
LogicProfessor, MicroVia, PLUSASM, SMARTswitch, UIM, VectorMaze, VersaBlock,
VersaRing, and ZERO+ are trademarks of Xilinx. The Programmable Logic Company and
The Programmable Gate Array Company are service marks of Xilinx.

IBM is a registered trademark and PC/AT, PC/XT, PS/2 and Micro Channel are
trademarks of International Business Machines Corporation. DASH, Data I/O and
FutureNet are registered trademarks and ABEL, ABEL-HDL and ABEL-PLA are
trademarks of Data I/O Corporation. SimuCad and Silos are registered trademarks and P-
Silos and P/C-Silos are trademarks of SimuCad Corporation. Microsoft is a registered
trademark and MS-DOS is a trademark of Microsoft Corporation. Centronics is a
registered trademark of Centronics Data Computer Corporation. PAL and PALASM are
registered trademarks of Advanced Micro Devices, Inc. UNIX is a trademark of AT&T
Technologies, Inc. CUPL, PROLINK, and MAKEPRG are trademarks of Logical Devices,
Inc. Apollo and AEGIS are registered trademarks of Hewlett-Packard Corporation.
Mentor and IDEA are registered trademarks and NETED, Design Architect, QuickSim,
QuickSim II, and EXPAND are trademarks of Mentor Graphics, Inc. Sun is a registered
trademark of Sun Microsystems, Inc. SCHEMA II+ and SCHEMA III are trademarks of
Omation Corporation. OrCAD is a registered trademark of OrCAD Systems Corporation.
Viewlogic, Viewsim, and Viewdraw are registered trademarks of Viewlogic Systems, Inc.
CASE Technology is a trademark of CASE Technology, a division of the Teradyne
Electronic Design Automation Group. DECstation is a trademark of Digital Equipment
Corporation. Synopsys is a registered trademark of Synopsys, Inc. Verilog is a registered
trademark of Cadence Design Systems, Inc.

Xilinx does not assume any liability arising out of the application or use of any product
described or shown herein; nor does it convey any license under its patents, copyrights, or
maskwork rights or any rights of others. Xilinx reserves the right to make changes, at any
time, in order to improve reliability, function or design and to supply the best product
possible. Xilinx will not assume responsibility for the use of any circuitry described herein
other than circuitry entirely embodied in its products. Xilinx devices and products are
protected under one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216;
4,713,557; 4,746,822; 4,750,155; 4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,853,626;

R

Trademark Information
4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135; 5,023,606; 5,028,821;
5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704;
5,329,174; 5,329,181; 5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248;
5,349,249; 5,349,250; 5,349,691; 5,357,153; 5,360,747; 5,361,229; 5,362,999; 5,365,125;
5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189; 5,410,194; 5,414,377; RE
34,363, RE 34,444, and RE 34,808. Other U.S. and foreign patents pending. Xilinx, Inc. does
not represent that devices shown or products described herein are free from patent
infringement or from any other third party right. Xilinx assumes no obligation to correct
any errors contained herein or to advise any user of this text of any correction if such be
made. Xilinx will not assume any liability for the accuracy or correctness of any
engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems.
Use of a Xilinx product in such applications without the written consent of the
appropriate Xilinx officer is prohibited.
Xilinx Development System

	COVER PAGE
	TRADEMARK INFORMATION
	BOOK CONVENTIONS
	TABLE OF CONTENTS
	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	GO TO OTHER BOOKS
	Chapter 1 XEPLD Functional Description
	Product Description
	The XACT Design Manager (XDM)
	Design Methodology
	Designing with Schematic Capture Tools
	Designing with Behavioral Entry Tools
	Converting Existing PAL Designs

	Chapter 2 XACT Design Manager Menus
	Using XDM
	The Program List File
	Using XDM on a PC
	Using XDM on a Workstation
	About X-Windows and Graphic Interfaces
	Mouse Configuration
	Window Operations
	Window Buttons
	Window Shortcuts
	Active Window
	Starting XDM

	Entering Commands
	The Graphic Interface
	The Command Line Interface

	Task-Based Command Flows
	Schematic Design to Programming File
	About the XEMAKE Command
	Behavioral Design to Programming File
	JEDEC PAL File to PLUSASM PAL File
	Workview Simulation
	Functional Simulation
	Timing Simulation
	Timing Simulation for a Behavioral Design

	OrCAD Simulation
	Functional Simulation
	Timing Simulation
	Timing Simulation for a Behavioral Design

	About the XSIMMAKE Command

	Menu Tour
	The Settings Fields
	The Design Entry Menu
	The Translate Menu
	XEMAKE (EPLD Automatic Implementation Tool)
	ABL2PLD (Create EPLD from Xilinx ABEL Design)
	ANNOTATE (Annotate SCH — PC Only)
	CLEANUP (Cleanup SCH — PC Only)
	INET (Compile SCH — PC Only)
	SDT2XNF (Create Orcad Netlist — PC Only)
	WIR2XNF (Create Workview Netlist)
	JED2PLD (Import & Assemble PLD JEDEC)
	PLUSASM (Assemble PLD Equations)
	PINSAVE (Save EPLD Pinout)
	XNFMERGE (Merge Multiple XNF Files)

	The Fitter Menu
	FITEQN (Integrate EPLD Behavioral Design)
	FITNET (Integrate EPLD Schematic Design)
	PALCONVT (Convert PAL-based Design)

	The Verify Menu
	XSIMMAKE (Create Simulation File)
	ASCTOVST (OrCAD/VST Utility — PC Only)
	ORCAD (OrCAD VST — PC Only)
	XNF2VST (Create Orcad Sim Files — PC Only)
	VSM (Viewsim Wirelister)
	XNF2WIR (Create Viewlogic Sim Files)
	MAKEJED (Make JEDEC Programming Files)
	MAKEPRG (Make Hex Programming Files)
	VMH2XNF (Make XNF for Timing Simulation)
	PROLINK (Program EPLD Device — PC Only)

	The Utilities Menu
	Browse
	DirClean
	Directory
	DOS (PC only)
	Edit
	Execute
	Help
	Report
	ScanDisk
	Version

	The Profile Menu
	Cursor
	Family
	KeyCursor
	Keydef
	Menucolors
	Mouse
	Options
	Palette
	Part
	Printer
	Readprofile
	Saveprofile
	Settings
	Speed

	Chapter 3 Report Formats
	Viewing Reports
	The Resource Report
	Logic Resources
	Required Pin Resources
	Used Pin Resources
	Remaining Pin Resources
	Fast Inputs and Outputs

	The Mapping Report
	Function Name
	Macrocell Location
	Pkg Pin
	Pin Use
	Power Estimation (7300 Family Only)

	The Pinlist Report
	Pkg Pin
	Pin Type
	Pin Use
	Pin Name
	Pin Use Legend

	The Partitioner Report
	Summary
	Part Name
	Number of Outputs
	Number of Input Lines Used
	Signal Inputs (Complete Design Only)
	Number of Shared Pt
	O/IO Used (Complete Design Only)
	O/IO Avail (Complete Design Only)
	Size Factor
	Inputs Used by Each Partition

	Partition Listing
	Signals Used
	Anded UIM Inputs Used (Complete Design Only)
	Inputs Used by Each Output Table
	MC No
	Output Name
	Pin Req (Complete Design Only)
	Pin Avl (Complete Design Only)
	Sh Pt

	Input Listing

	The Logic Optimizer Report
	Summary
	Device Specific Optimization
	Outputs that Were Collapsed
	Outputs Removed from the Network

	The PLUSASM Assembler Log Report
	Product Term Allocation (PLFB9/PLFFB9 Format)
	Pin
	Name
	Type
	Local P-terms Available
	Local P-terms Used
	Shared D1 P-terms Used and Shared D2 P-terms Used
	Total P-terms Used

	Partitioner Log Report (Standard PAL Format)

	The PAL Interconnect Report
	PAL Pin
	Signal Name
	PAL Use
	Chip Use
	Connectivity
	Unconnected Pins
	Summary

	The EQN File

	Chapter 4 PLUSASM Command Reference
	Introduction
	PLUSASM Overview
	PLUSASM File Structure

	The Header Section
	Header Statements

	The Declarations Section
	CEPIN
	CHIP
	file_name
	device_name
	signal_list

	FASTCLOCK
	FASTINPUT
	FOEPIN
	INCLUDE_EQN
	INPUTPIN
	RCLK = fastclock_name
	CE = ce_name
	LE = fastclock_name
	FI

	IOPIN
	RCLK = fastclock_name
	CE = ce_name
	LE = fastclock_name
	PINFBK
	FOE = foe_name
	NODETRST

	LOGIC_OPT
	MINIMIZE
	MRINPUT
	NODE
	OPTIONS
	OUTPUTPIN
	FOE = foe_name
	NODETRST

	PARTITION
	Physical PARTITION Statements
	Logical PARTITION Statements
	Linked Equations

	General Rules for PARTITION Statements
	Logical Partitions Using Less Than 9 Macrocells
	Logical Partitions Using More Than 9 Macrocells
	Physical Partitions Using Less Than 9 Macrocells
	Physical Partitions Specifying Starting Macrocells

	PWR
	STRING

	The Equation Section
	Combinatorial and Registered Equations
	Control Equations
	.ADD (Arithmetic Carry Enable)
	.ADDMODE (Arithmetic Carry Enable)
	.CLKF (Register Clock Source)
	.D1 and .D2 (ALU Inputs)
	Using the ALU

	.EXPORT (FFB Product Term Assignment)
	.FBK (Local Feedback)
	.FBKINVERT (Invert Macrocell Feedback)
	.FI (FastInput Source)
	.PIN (PIN Input Source)
	.PRLD (Preload State)
	.RSTF (Asynchronous Reset)
	.SETF (Asynchronous Set)
	.SHIFT (Local Shift)
	.T (Toggle Flip-Flop Specification)
	.TRST (3-State Control)

	Defining Signal Polarity in Equations
	Output Signal Polarity
	Input Signal Polarity

	PLUSASM Syntax
	Notation
	Delimiters
	Operators and Special Characters
	Comments
	Reserved Characters
	Names
	Reserved Words
	Unsupported PALASM Syntax
	Parenthesis
	State Machine Syntax
	The Latched Output Equation Operator
	Simulation Control Statements
	Device Specific Syntax

	PLUSASM Command Syntax Quick Reference
	Declaration Statements Used in Schematic PLDs and Include Files
	Declaration Statements Used in Top-Level Files
	Equation Statements Used in High Density Function Blocks
	Equation Statements Used in Fast Function Blocks

	Chapter 5 XEPLD Fitter Modules and Files
	XEPLD Fitter Modules
	The Netlist Reader (Schematic Only)
	The Muncher (Schematic Only)
	The Logic Optimizer
	PLUSASM, the Partitioner, and the Minimizer
	The Chip Builder
	The Design Rule Checker
	General Design Rule Violations
	Pad Component Design Rule Violations
	FastCLK, Clock Enable, and Fast Output Enable Violations

	The Gate Optimizer
	The Mapper
	The Interconnector

	XEPLD Files and Directories
	The Netlist File
	The PLUSASM Equation Files
	JEDEC Source Files
	Design Database File
	The Report Files
	The Log Files
	The Error/Warning Files
	The Programming Bit-map File

	Appendix A Typical Component Equations
	Basic Gates
	4-Bit Counter (CB4X2)
	4-Bit Accumulator (ACC4X1)
	4-Bit Adder (ADD4X1)
	Flip-Flop (FDSRE)
	Latch (LD)
	Multiplexer (M4_1E)
	Comparator (COMP4)
	Magnitude Comparator (COMPM4)
	Shifter (SR4RLED)
	T Flip-Flop (FTC)
	Decoder

	Appendix B PAL Devices Supported
	Specific and Generic PAL Symbols for Schematics
	PAL Equation File Syntax
	22V10 and 20V8 Support
	Default Clock
	Default 20V8 3-State Control
	Global 22V10 Set/Reset
	Automatic Inversion of Set and Reset

	Generic PAL Support
	PLFB9 and PLFFB9 Support
	Clocks
	PLFB9 Arithmetic Carry-In and Carry-Out Pins
	Defining PLFFB9 Fast Inputs

	PALs Supported through Generic PAL Components

	Appendix C Equation Entry Application Note
	Introduction
	How to Follow this Tutorial
	The Tutorial Design
	Overview of the Sessions
	The Example Files

	Session 1: Using the XEPLD Software
	Step 1: Prepare the System
	Setting Up the PC
	Setting Up the Workstation

	Step 2: Start XDM
	Step 3: Select Menu Items
	Step 4: Configure the XEPLD Environment
	Configuring the PC
	Configuring the Workstation

	Session 2: Design Entry
	Step 1: Segment the Design
	Step 2: Create Boolean Equations
	Step 3: Consolidate the Design
	Step 4: Assign Signals to Specific EPLD Pins

	Session 3: Fitting the Design
	Step 1: Invoke the Fitter
	Step 2: View the Reports
	Step 3: Save Pin Assignments
	Step 4: Create the Programming File
	Step 5: Create a Simulation Model

	Appendix D Glossary

