
XEPLD
SCHEMATIC

 ™

DESIGN GUIDE

ONLINER

0401417

TABLE OF CONTENTS

INDEX

GO TO OTHER BOOKS

Contents

Copyright 1994-1995 Xilinx Inc. All Rights Reserved.
Chapter 1 Getting Started with Schematic Design
An Overview of Schematic Design Methods 1-1
Using the Unified Library .. 1-2
Behavioral Modules and PAL Conversion.................................... 1-3
Schematic Design Flow Example... 1-5

Viewlogic Procedure ... 1-6
Step 1 — Configure ViewDraw .. 1-6
Step 2 — Enter XDM and Select the Device 1-6
Step 3 — Enter Workview and Draw the Design 1-7
Step 4 — Perform Functional Simulation (Optional) 1-7
Step 5 — Fit the Design and Create a Programming File.. 1-8
Step 6 — Examine the Reports ... 1-8
Step 7 — Prepare for Timing Simulation 1-8
Step 8 — Perform Timing Simulation................................. 1-9

OrCAD Procedure ... 1-9
Step 1 — Enter XDM and Select the Device 1-9
Step 2 — Enter and Configure OrCAD 1-9
Step 3 — Enter Draft and Draw the Design 1-9
Step 4 — Add Simulation Information................................ 1-10
Step 5 — Prepare for Functional Simulation (Optional)..... 1-11
Step 6 — Perform Functional Simulation (Optional) 1-11
Step 7 — Fit the Design and Create a Programming File.. 1-12
Step 8 — Examine the Reports ... 1-12
Step 9 — Prepare for Timing Simulation 1-13
Step 10 — Perform Timing Simulation............................... 1-13

Chapter 2 Device-Independent Design
Choosing Components... 2-1

When to Use EPLD-Specific Components.............................. 2-2
When to Use Common Components 2-2
XEPLD Schematic Design Guide — 0401265 01 i

XEPLD Schematic Design Guide
Attributes and Device Independence ... 2-3
General Conversion Procedure: FPGA to EPLD 2-3

Converting Behavioral Modules .. 2-5
FPGA to EPLD Conversion Example: CALC Design 2-6

Procedure for Viewlogic Users.. 2-6
Reconfiguring the Libraries and Schematic Symbols 2-6
Editing the Schematic .. 2-7
Performing Functional Simulation...................................... 2-8
Running the Fitter Commands... 2-8
Performing Timing Simulation.. 2-8

Procedure for OrCAD Users ... 2-10
Reconfiguring the Libraries and Schematic Symbols 2-10
Editing the Schematic .. 2-10
Performing Functional Simulation...................................... 2-11
Running the Fitter Commands... 2-13
Performing Timing Simulation.. 2-13

Converting a Xilinx-ABEL Module (Optional) 2-14

Chapter 3 EPLD Architecture and Design Tradeoffs
EPLD Architecture.. 3-1

Input Pad Structures ... 3-3
Output Pad Structures .. 3-3
High-Density Function Blocks ... 3-4
Fast Function Blocks... 3-4
The Universal Interconnect Matrix (UIM) 3-4

Designing for Speed... 3-4
Assigning Logic to Fast Function Blocks 3-5

Logic Requirements for Fast Function Blocks 3-5
Components Not Allowed in Fast Function Blocks 3-6

Using Input Pad Registers .. 3-7
Placing Clock Enable Signals in Input Pad Registers........ 3-8

Using EPLD-Specific Arithmetic Functions 3-9
Cascading Counters ... 3-9
Reducing Levels of Logic.. 3-10

Splitting Wide Functions .. 3-11
Random Logic.. 3-12

Designing for Density ... 3-13
Maximally Encoding State Machines 3-13
Using Global Nets ... 3-14
Moving Logic into the Universal Interconnect Matrix 3-14
Using Input Pad Registers .. 3-15
ii Xilinx Development System

Contents
Macrocell Register vs. I/O Pin Tradeoff 3-15
UIM Versus Fast Input Paths.. 3-16
Controlling Logic Optimization .. 3-16
Master Reset Pin Tradeoffs .. 3-16

Designing to Preserve the Pinout .. 3-17
Manual Pin Assignment .. 3-18
Manual Pin Assignment Precautions 3-19
The LOC Attribute... 3-20

Controlling Power Consumption .. 3-20
Controlling Preload Values .. 3-20

Physical Resources of EPLDs... 3-21
Attributes for Controlling Preload Values........................... 3-22
Preload Values for Functional and Timing Simulation....... 3-22

Chapter 4 Design Applications
Reset and Preload Control in FFB and Input Pad Registers 4-1
Read-Back Registers ... 4-2
Bidirectional Signals and Buses... 4-3
Bidirectional Signals in PLDs ... 4-3
Multiplexing 3-State Signals... 4-4
Optimizing Registered Arithmetic Performance 4-6
Hierarchical Design.. 4-10

Schematic Custom Component Example 4-11

Chapter 5 Using Behavioral Modules in Schematics
Preparing a Component... 5-1
Behavioral Module Example .. 5-2
Choosing the Behavioral Design Method..................................... 5-4

Using PLUSASM .. 5-4
PLUSASM File Structure ... 5-4

Using JEDEC Files ... 5-6
Using Xilinx ABEL... 5-6
Using a PLD Compiler .. 5-7

Choosing the Symbol... 5-7
Using the PL22V10 or PL20V8... 5-8
Using SymGen to Create Custom Symbols............................ 5-8

Viewlogic Symbols... 5-8
OrCAD Symbols .. 5-9

Editing Existing Library Components ... 5-9
Storing Custom Components... 5-10

Viewlogic Components ... 5-10
XEPLD Schematic Design Guide iii

XEPLD Schematic Design Guide
OrCAD Components ... 5-11
Editing Behavioral Modules for Use in Schematics...................... 5-11

Assigning Output Enable Signals to FOE Nets....................... 5-13
Assigning Functions to Fast Function Blocks 5-13
Assigning Bidirectional I/O Signals ... 5-13

Case 1 — Bidirectional Outputs That Go Off-Chip 5-14
Case 2 — Using Both Macrocell and Pin Feedback.......... 5-15

Chapter 6 Design Verification
Simulating Designs .. 6-1

Making a ViewSim or VST Functional Simulation Model 6-1
Making a ViewSim or VST Timing Simulation Model.............. 6-2
Using XNF-Compatible Simulators ... 6-2
Simulating Board-Level Designs in Viewlogic......................... 6-3

Functional Simulation .. 6-3
Timing Simulation .. 6-3

Preload Values in Functional and Timing Simulation.............. 6-4
Verifying Designs ... 6-5

Verifying Design Fit... 6-5

Appendix A Common Questions and Answers
Drawing the Design.. A-1

Why Do I See White Boxes Instead of Components? A-1
Why Are Some of My Components Missing? A-2

Fitting the Design ... A-2
What Does “Component Not Found” Mean? A-2
What Does “Component Not Supported” Mean? A-3
Why Can’t I Make a Direct Pin-To-Pin Path?.......................... A-4
What Does “Has No Logic Connection” Mean? A-4
What Do I Do If I Have “Hanging Inputs”? A-5
Why Are Some of the Outputs Removed?.............................. A-5
What Does “The Tristate Will Affect the Pad” Mean? A-6
What Does “Connects to an External Pad” Mean? A-6
What If My Design Doesn’t Fit? .. A-6

If Your Design is Product Term Constrained A-7
If Your Design is FB Input Constrained A-8
If Your Design has Unused Fast Function Blocks A-9

Simulating the Design .. A-10
Why Can’t I Functionally Simulate a Design with a
Behavioral Module? .. A-10
Why Are My Registers Stuck at the Preload Value?............... A-10
iv Xilinx Development System

Contents
Why Are My Internal Nodes Not Visible During Timing
Simulation? ... A-10
Why Do Functional and Timing Simulation Yield Different
Results?.. A-12

Appendix B Attributes
Component Attributes ... B-1

Viewlogic Procedure.. B-2
OrCAD Procedure ... B-2

Global Attributes ... B-2
Viewlogic Procedure.. B-3
OrCAD Procedure ... B-3

Net or Flag Attributes.. B-3
Net Attributes (Viewlogic) .. B-4
Flag Attributes (OrCAD) .. B-4

Target Device Selection — The PART Attribute..................... B-4
Viewlogic Procedure.. B-5
OrCAD Procedure ... B-5

PLD Equation File Name — The PLD Attribute B-5
Pin Assignment — The LOC Attribute B-7
Power Setting — The LOWPWR Attribute.............................. B-7
F/H .. B-8
MRINPUT ... B-9
Logic Optimization Attributes .. B-9

OPT=OFF and OPT=ON ... B-9
OPT=UIM... B-10
LOGIC_OPT .. B-10
MINIMIZE .. B-10
UIM_OPT... B-10
FOE_OPT.. B-10
CLOCK_OPT... B-11
REG_OPT ... B-11
PRELOAD_OPT .. B-11
INIT.. B-12

Index .. i

Trademark Information
XEPLD Schematic Design Guide v

XEPLD Schematic Design Guide
vi Xilinx Development System

Chapter 1
XEPLD Schematic Design Guide — 0401265 01 1-1

Getting Started with Schematic Design

This chapter will help you quickly understand how to develop a
schematic design using XEPLD. Brief schematic design examples are
included, illustrating the device-independent schematic library and
the automatic PAL conversion process.

An Overview of Schematic Design Methods
A schematic design defines the functionality of a logic circuit using
one or more schematic files, each of which contains components
whose functions are already defined (74xx TTL or similar functions)
and components for which you define the function using behavioral
modules. Figure 1-1 summarizes the design flow.

Figure 1-1 Basic Schematic Design Flow

XEPLD
Fitter

Programming File
Schematic File

00001000100011000
10001000010001001
01001001001100010
00110011000100010
10010000100111000
00100010100010010
00100100010010010

PLD Equation File

Simulation File

Reports

CHIP MYDESIGN 22V10
A B C D
FASTCLOCK D
EQUATIONS
C := (A * B) ;
C.CLKF = D ;

X4834

XEPLD Schematic Design Guide
The Viewlogic, OrCAD, Mentor, and Cadence software packages are
supported.

The following sections provide an overview of methods for creating
schematics and behavioral modules for schematic designs.

Using the Unified Library
The Unified Library allows you to create a device-independent
design to test how the design works in different devices, or to create a
device-specific design to take full advantage of a device’s unique
architectural features.

The Unified Library contains all the component symbols for all the
available device families. As illustrated in Figure 1-2, most of the
symbols can be used in designs targeted for any Xilinx device, but
some of the symbols are specific to one or more device families.

Figure 1-2 Device Families and the Unified Library

The common symbols are automatically mapped to the chosen target
device. The same common symbol may be mapped differently to
target devices with different architectures.

The “Device-Independent Design” chapter describes the library
components and how to retarget an existing FPGA design to an EPLD
device.

X4837

XC2000
Family
Only Common

Library

XC3000
Family
Only

XC7000
Family
Only

XC4000
Family
Only

Xilinx Unified Library
1-2 Xilinx Development System

Getting Started with Schematic Design
For more information about the Unified Library, refer to the XACT
Libraries Guide.

Behavioral Modules and PAL Conversion
There are two ways to include a behavioral module in a schematic
design. Both are described in the chapter entitled “Using Behavioral
Modules in Schematics.”

● Use a PLD symbol from the XC7000 library. This method is best if
you have a module that is already targeted to a standard PAL such
as a 22V10.

● Create a custom component, and use SymGen to create the
custom symbol for it. This method is best if your behavioral
module is not already targeted to a standard PAL, for example if it
is a state machine expressed in a high-level language.

The PLD symbols are a special group of EPLD-specific symbols in the
Unified Library. You define the logic behind these symbols in a
behavioral design file. To create a custom symbol, you create the
behavioral design file, then use SymGen to create a symbol based on
the file.

The original design file can be a new file created using the
PLUSASM™ language or an existing PAL file converted to
PLUSASM. You can convert the following types of files to PLUSASM
files and use them with PLD symbols:

● ABEL

● PALASM

● JEDEC

Figure 1-3 shows the design flow for including a behavioral module.
XEPLD Schematic Design Guide 1-3

XEPLD Schematic Design Guide
Figure 1-3 Schematic PAL Conversion Flow

Behavioral
Module

.PLD
FIle

XDM
Translation
Command:
ABL2PLD,
JED2PLD

XEPLD
Fitter

Programming File

Schematic File
with PLD or
Custom Symbol

00001000100011000
10001000010001001
01001001001100010
00110011000100010
10010000100111000
00100010100010010
00100100010010010

X4836
1-4 Xilinx Development System

Getting Started with Schematic Design
Schematic Design Flow Example
This section runs through the entire schematic design process, from
creating a design to programming and simulating the design. The
following device-independent design, a 4-bit Johnson counter, is
used as an example:

Figure 1-4 Example 4-Bit Johnson Counter Design

Simulation results for this design are shown in Figure 1-5.

This design contains no behavioral modules. For an example of a
design that includes a behavioral module, see the chapter entitled
“Using Behavioral Modules in Schematics.”

The steps are summarized for Viewlogic and OrCAD.

Q

CLR

DQ3B FDCE

C

CE
OBUF

INV

IBUF

IBUF

IBUF

Q0
OPAD

X4863

Q

CLR

D FDCE

C

CE
OBUF

Q1
OPAD

Q

CLR

D FDCE

C

CE
OBUF

Q2
OPAD

IPAD

Q

CLR

D FDCE

C

CECE

IPAD
C

IPAD
CLR

OBUF

Q3
OPAD
XEPLD Schematic Design Guide 1-5

XEPLD Schematic Design Guide
Figure 1-5 Example Viewlogic Functional Simulation Results

Viewlogic Procedure

Step 1 — Configure ViewDraw

Create a directory for your design. Copy the viewdraw.ini file from
your workview\standard directory into that directory, and edit the
end of it to include the following lines:

DIR [pw] . (primary)
DIR [m] \ correct_path\unified\xc7000 (xc7000)
DIR [m] \ correct_path\unified\builtin (builtin)

Note: Use [r] instead of [m] if you are using a UNIX workstation.

You could also use ViewFile to configure your library directory
specifications.

Step 2 — Enter XDM and Select the Device

Enter XDM by typing the following at the operating system prompt:

XDM

Select the device family and part by clicking on the Family and
Part fields in the lower left corner of the screen. For the family, select
“XC7300”. For the part, select “XC7318-PC44”. For the speed grade,
select “–5”.

CLK

CE

CLR

Q

900

1

1

0

C\H

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 ns

0 1 3 7 F E C 8 0 1 3 0 1 3
1-6 Xilinx Development System

Getting Started with Schematic Design
Step 3 — Enter Workview and Draw the Design

Enter Workview by selecting DesignEntry ➝ Workview from the
XDM menu.

When the Workview screen appears, type the following to create a
new schematic:

sch jcount

Draw the design as shown in Figure 1-5. For more information about
using ViewDraw, see the Viewlogic Interface User Guide.

If you do not wish to draw the design, you can copy the jcount.1
schematic file in the \xact\tutorial\vwlogic\jcount\sch directory
($XACT/tutorial/vwlogic/jcount/sch on the workstation).

Note: It is important that you label the nets between the IPADs and
IBUFs and between the OPADs and OBUFs, because these names will
appear in reports and on simulation traces.

Save your design using the File ➝ Write command.

Step 4 — Perform Functional Simulation (Optional)

If you wish to perform functional simulation, first use the Export ➝
Wirelist ➝ ViewSim command to create a simulation file.

Use the Window ➝ Open ➝ ViewSim S/D command to enter
ViewSim. Type ↵ in response to the network file name prompt.

Type jcount to run the following command file, jcount.cmd, which
simulates the design:

restart
vector Q Q[3:0]
wave jcount.wfm CLK CE CLR Q
clock c 1 0
step 50ns
h prld
h CE
l CLR
cycle
l prld
cycle 5
l CE
XEPLD Schematic Design Guide 1-7

XEPLD Schematic Design Guide
cycle 2
h CE
cycle 5
h CLR
cycle 2
l CLR
cycle 3

To view the waveform file, type wv, then type ↵ when prompted for
the file name.

Exit Workview by typing quit . If asked Are you sure? type y. You
are back in XDM.

Step 5 — Fit the Design and Create a Programming File

Select Translate ➝ XEMake. Select Done in response to the options
window. Select the jcount.1 file from the list. Finally, select Make
Intel HEX File as the target. Type jcnt.a as the signature.

The XEMake command creates a netlist, fits the design, and creates a
programming file in one step.

Step 6 — Examine the Reports

Examine the reports to verify that the design was implemented as
you expected. The following reports are most useful for schematic
designs:

● design.ERR — This is the error log. Use it to correct mistakes in
your design.

● design.RES — The resource report lists the device resources used
by the design and the resources remaining.

● design.PIN — The pinlist report shows how the external nets in
your design were mapped to the device pins.

● design.MAP — The mapping report tells you how the logic in the
design was mapped to the device.

Step 7 — Prepare for Timing Simulation

To prepare for timing simulation, select Verify ➝ XSimMake. Select
Viewlogic_EPLD_Timing as the flow name. Select jcount.vmh as
the file name.
1-8 Xilinx Development System

Getting Started with Schematic Design
Step 8 — Perform Timing Simulation

When XSimMake is finished running, enter Workview again and
follow the same instructions as for functional simulation.

OrCAD Procedure

Step 1 — Enter XDM and Select the Device

Enter XDM by typing the following at the operating system prompt:

XDM

Select the device family and part by clicking on the Family and
Part fields in the lower left corner of the screen. For the family, select
“XC7300”. For the part, select “XC7318-PC44”. For the speed grade,
select “–5”.

Step 2 — Enter and Configure OrCAD

Enter OrCAD by selecting DesignEntry ➝ OrCAD from the menu.

Double click on Design Management Tools . Click on Create
Design .

In the prompt box that appears, type jcount ↵, then click on OK.

The JCOUNT design appears, highlighted, in the list. Click on
Suspend to System . Type the following at the DOS prompt:

xdraft 7

(wait for the command to complete)

exit

You are back in the Design Management Tools window. Click on OK
to exit.

Step 3 — Enter Draft and Draw the Design

Double click on Schematic Design Tools . Double Click on
Draft . A blank schematic window appears.

Draw the design as shown in Figure 1-5. For more information about
using Draft, see the OrCAD Interface User Guide.
XEPLD Schematic Design Guide 1-9

XEPLD Schematic Design Guide
If you do not wish to draw the design, you can copy the jcount.sch
schematic file in the xact\tutorial\orcad\jcount directory.

Note: It is important that you label the nets between the IPADs and
IBUFs and between the OPADs and OBUFs, because these names will
appear in reports and on simulation traces.

Step 4 — Add Simulation Information

To add trace information, follow these steps for each net that is
between an IPAD and an IBUF or between an OBUF and an OPAD:

1. Place the mouse cursor over the net and select the Place ➝
Trace Name command.

2. In response to the Trace Name? prompt, type the name of the
net, for example CE.

3. Double click to place the trace marker, then click with the right
button to exit the command.

To add stimulus information, follow these steps for each net that is
between an IPAD and an IBUF:

1. Place the mouse cursor over the net and select the Place ➝
Stimulus command.

2. In response to the Stimulus? prompt, type the following:

For CE:

0:1 6000:0 8000:1

For CLK:

0:0 500:T 1000:G:500

For CLR:

0:0 13000:1 15000:0

3. Double click to place the stimulus marker, then click with the right
button to exit the command.

Save your design using the Quit ➝ Update File command. Exit
Draft using Quit ➝ Abandon Edits .

To exit OrCAD, double click on To Main , then on Exit ESP . You are
back in XDM.
1-10 Xilinx Development System

Getting Started with Schematic Design
Step 5 — Prepare for Functional Simulation (Optional)

To prepare for functional simulation, select Verify ➝ XSimMake.
Select Orcad_EPLD_Func as the flow name. Select jcount.sch as
the file name.

XSimMake produces ASCII versions of OrCAD stimulus and trace
files, which you must convert to binary. The conversion command is
memory-intensive, so it is best to execute it in DOS.

Quit XDM using the Quit command. Type the following at the DOS
prompt:

asctovst jcount.ast

(wait for the command to complete)

asctovst jcount.atr

(wait for the command to complete)

xdm

You are back in XDM.

Step 6 — Perform Functional Simulation (Optional)

Enter OrCAD by selecting DesignEntry ➝ OrCAD from the menu.
Double click on Design Management Tools , select JCOUNT from
the list, and click on OK.

Double Click on Digital Simulation Tools .

Click once on Simulate . Select Local Configuration and then
Configure Simulate . Change jcount.inf to jcount.vst , then
select OK.

Double click on Simulate . A blank simulation waveform window
appears with the R, Q3, Q2, Q1, Q0, CE, and CLK nets listed.

Select Edit Stimulus ➝ Yes . The Stimulus Editor window
appears.

Select Add. Press the down arrow key to highlight the Signal Name
field, then select Browse . Type a P to scroll down to the net names
beginning with P. Press the down arrow key to highlight PRLD, then
press ↵.
XEPLD Schematic Design Guide 1-11

XEPLD Schematic Design Guide
Press the down arrow key to highlight the Initial Value field.
Type 1.

Press the down arrow key again. Select Add. In response to Time of
Function? type 10 , then press ↵ to accept a 0 (zero) value.

Select Return to return to the main stimulus editor, select
Write ➝ Yes to add PRLD to the stimulus file, and select Use to
return to the waveform window.

Select Trace ➝ Change View and enter 150 . Select Run
Simulation and enter 18000 . The simulation waveforms appear.

Exit Simulate using Quit ➝ Abandon Simulation .

To exit OrCAD, double click on To Main , then on Exit ESP . You are
back in XDM.

Step 7 — Fit the Design and Create a Programming File

Select Translate ➝ XEMake. Select Done in response to the options
window. Select the jcount.sch file from the list. Finally, select Make
Intel HEX File as the target. Type jcnt.a as the signature.

The XEMake command creates a netlist, fits the design, and creates a
programming file in one step.

Step 8 — Examine the Reports

Examine the reports to verify that the design was implemented as
you expected. The following reports are most useful for schematic
designs:

● design.ERR — This is the error log. Use it to correct mistakes in
your design.

● design.RES — The resource report lists the device resources used
by the design and the resources remaining.

● design.PIN — The pinlist report shows how the external nets in
your design were mapped to the device pins.

● design.MAP — The mapping report tells you how the logic in the
design was mapped to the device.
1-12 Xilinx Development System

Getting Started with Schematic Design
Step 9 — Prepare for Timing Simulation

To prepare for timing simulation, select Verify ➝ XSimMake. Select
Orcad_EPLD_Timing as the flow name. Select jcount.vmh as the
file name.

Step 10 — Perform Timing Simulation

If you skipped functional simulation, follow the preceding
instructions for functional simulation. If you did perform functional
simulation, follow the instructions in this section.

Enter OrCAD by selecting DesignEntry ➝ OrCAD from the menu.
Double click on Design Management Tools , select JCOUNT from
the list, and click on OK.

Double Click on Digital Simulation Tools . Double click on
Simulate . A blank simulation waveform window appears with the
R, Q3, Q2, Q1, Q0, CE, and CLK nets listed.

Select Trace ➝ Change View and enter 125 . Select Run
Simulation and enter 15000 . The simulation waveforms appear.

Exit Simulate using Quit ➝ Abandon Simulation .

To exit OrCAD, double click on To Main , then on Exit ESP . You are
back in XDM.
XEPLD Schematic Design Guide 1-13

XEPLD Schematic Design Guide
1-14 Xilinx Development System

Chapter 2
XEPLD Schematic Design Guide — 0401265 01 2-1

Device-Independent Design

This chapter discusses how and why to create a device-independent
or device-specific design. It also explains how to take an existing
FPGA design and retarget it to an EPLD device.

Choosing Components
The Unified Library contains all Xilinx component symbols, some of
which are specific to one device family, some of which are common to
two or more families, and some of which are common to all families.

Figure 2-1 Common Symbols in the Unified Library

When a component of the same name is present in multiple families’
libraries, it has the same functionality and graphic symbol body, and
similarly named pins. However, the component’s implementation,
including whether the symbol is a primitive (behavioral module) or
macro (schematic module), may vary between families.

X4837

XC2000
Family
Only Common

Library

XC3000
Family
Only

XC7000
Family
Only

XC4000
Family
Only

Xilinx Unified Library

XEPLD Schematic Design Guide
When to Use EPLD-Specific Components
In general, common library components work well for EPLD designs.
You should use XC7000-specific components only under these special
conditions:

● If you are cascading arithmetic components, you should use
EPLD-specific arithmetic components, because the carry lines that
go between components are mapped to the carry chain.

● If you are cascading up/down counters, you should use EPLD-
specific counters, because the separate up and down terminal
counts can be placed in the UIM for greater speed and density.

● If you need input pad registers with clock enable, you must use an
EPLD-specific component such as IFDX1.

For example, suppose you were working on a design that needed an
8-bit full adder. In most designs, you could use a device-independent
adder, such as ADD8. If this component is used in an EPLD design,
the internal logic is mapped onto the special EPLD arithmetic carry
lines; if used in an FPGA design, the logic is mapped in the way that
is most efficient for the FPGA’s architecture.

However, if you needed to cascade two 8-bit adders, it would be most
efficient to use EPLD-specific adders, because the carry lines that go
between components would be mapped to the carry chain.

When to Use Common Components
To make your design device-independent, use only the symbols
common to all device families — the shaded area in Figure 2-1. The
XACT software automatically maps the symbols in your design onto
the chosen target device. Creating a device-independent design
allows you to easily test your design with different Xilinx devices.

For a complete list of Unified Library components and their
compatibility with the different Xilinx device families, refer to the
XACT Libraries Guide.
2-2 Xilinx Development System

Device-Independent Design
Attributes and Device Independence
If you want your design to be completely device-independent, do not
use schematic attributes. The only attributes common to FPGA and
EPLD devices are as follows:

● PART=device_name (or PARTTYPE in OrCAD)

● LOC=device_pin

Even these attributes are not truly device independent, because you
must change the values when you change devices. All other EPLD-
compatible attributes are EPLD-specific. For more information about
these attributes, refer to the “Attributes” appendix. These attributes
are also described in the context of how they are used in the “EPLD
Architecture and Design Tradeoffs” and “Design Applications”
chapters of this manual.

General Conversion Procedure: FPGA to EPLD
The basic steps for retargeting an FPGA design to an EPLD device are
as follows. Examples in this section assume you are converting from
the XC3000 family.

1. Change (cd) to your working directory and reconfigure the
libraries in your CAE tool for the XC7000 family.

● If you are using Viewlogic software, edit your viewdraw.ini
file so it looks like this:

DIR [pw] . (primary)
DIR [r] / correct_path/unified/xc3000 (xc3000)
DIR [r] / correct_path/unified/xc7000 (xc7000)
DIR [r] / correct_path/unified/xblox (xblox)
DIR [r] / correct_path/unified/builtin (builtin)

Substitute the path to your libraries for correct_path. Leave the
XC3000 library reference in the file, because the Altran
command, which you will use in the next step, requires it.

● If you are an OrCAD user, type the following at the DOS
prompt while in your working directory:

xdraft 7
XEPLD Schematic Design Guide 2-3

XEPLD Schematic Design Guide
2. Use any necessary conversion program to make the symbols in
your schematic reference the reconfigured libraries. If you are
using OrCAD software, skip this step.

● If you are using Viewlogic software, use the Altran command,
where N is 2, 3, or 4:

altran -l primary xc N000=xc7000

3. Enter your CAE tool and open your design.

4. Find all the library components in the schematic that are not
EPLD-compatible, and use the XACT Libraries Guide to find EPLD-
compatible equivalents.

● If you have run Altran on a Viewlogic schematic, incompatible
components appear as white squares in the schematic.

● If you have run XDraft 7 on an OrCAD schematic, the
incompatible components generate error messages in OrCAD
and do not appear in the schematic.

5. If necessary, use EPLD-specific components to obtain a more
efficient design. In most cases, device-independent components
are mapped onto the EPLD architecture efficiently, but there are
exceptions, which are described in the “When to Use EPLD-
Specific Components” section earlier in this chapter.

6. Remove all attributes except PART=device_name and
LOC=pin_name. You can change the device name to the new target
device if you wish. If you wish to reassign pins, see the “EPLD
Architecture and Design Tradeoffs” chapter for information about
EPLD pin assignment. If you do not wish to reassign pins, remove
the LOC=pin_name attributes as well.

7. You may want to look over the list of EPLD attributes, especially
the optimization attributes, and use them to fine-tune your design.
The software optimizes everything it can by default; you may
want to prevent optimization in some cases, for example to ensure
that an internal node is visible during timing simulation.

8. Enter XDM. Run the XEMake command to fit your design. Run
XSimMake if you also want to perform functional or timing
simulation.
2-4 Xilinx Development System

Device-Independent Design
9. When you perform either functional or timing simulation, you
must set the PRLD (preload) signal High then Low instead of
setting GR (global reset) Low then High.

10. If you wish to perform timing simulation, you may have to
change the nodes you drive and monitor. The EPLD fitter
optimizes the logic, which makes many of the internal nodes in
the design disappear. However, all external signals are always
visible.

Note: If your FPGA design has RAM, ROM, or other elements that
do not have EPLD equivalents, you cannot retarget your design
unless you redesign those parts.

Converting Behavioral Modules
If your design contains Xilinx-ABEL or XBLOX modules, you must
perform these additional steps before running XEMAKE:

1. Change the encoding of state machine modules. You do not have
to rewrite the logic, just the state assignment. For FPGAs, which
are rich in registers, one-hot encoding (a symbolic state machine)
is most efficient. For EPLDs, which are rich in product terms,
maximal encoding (an encoded state machine) is most efficient.
Conversion may be unnecessary for very simple state machines.

For more information about symbolic and encoded state
machines, see the “Simulating an ABEL-HDL Design” and
“Converting Encoded State Machine to Symbolic State Machine”
sections in the “Design Examples” chapter of the Xilinx ABEL User
Guide. You should follow the steps of the latter section in reverse.

2. Convert the files behind all Xilinx-ABEL modules to PLUSASM
using the ABL2PLD command. Use the existing Xilinx-ABEL
symbols, but remove the DEF=XABEL and FILE=file_name
attributes, replacing them with PLD=file_name. To ensure that the
software does not process old files, delete the file_name.xnf files in
the xnf directory.

3. Convert the XBLOX modules. There is no straightforward
conversion—you can rewrite the logic using a behavioral entry
tool (PLUSASM, Xilinx-ABEL, ABEL) or create an EPLD-
compatible lower-level schematic.
XEPLD Schematic Design Guide 2-5

XEPLD Schematic Design Guide
FPGA to EPLD Conversion Example: CALC Design
The CALC design is extensively documented in the tutorial chapters
of the Xilinx Interface User Guide for your CAE tool. It is used as an
example of an FPGA design. This section describes the steps
necessary to convert the XC3000 version of this design to an EPLD
design.

The steps are different for each CAE tool. The procedure for
Viewlogic users is described first, followed by OrCAD.

Procedure for Viewlogic Users

Reconfiguring the Libraries and Schematic Symbols

To reconfigure the libraries for the XC7000 family and update all the
symbols so their properties are compatible with XC7000 devices,
follow these steps:

1. Copy the CALC tutorial files to a directory under your home
directory as described in the Xilinx Viewlogic Interface User Guide.
Change (cd) to the calc/soln_3k directory.

2. Edit your viewdraw.ini file so it looks like this:

DIR [pw] . (primary)
DIR [r] / correct_path/unified/xc3000 (xc3000)
DIR [r] / correct_path/unified/xc7000 (xc7000)
DIR [r] / correct_path/unified/xblox (xblox)
DIR [r] / correct_path/unified/builtin (builtin)

Substitute the path to your libraries for correct_path. Leave the
XC3000 library reference in the file, because the Altran command,
which you will use in the next step, requires it.

3. While in your working directory, type this command at the
operating system prompt:

altran -l primary xc3000=xc7000
2-6 Xilinx Development System

Device-Independent Design
Editing the Schematic

To edit the schematic so all its symbols are compatible with XC7000
devices, follow these steps:

1. Start up XDM. Select the Workview command from the Design-
Entry menu.

2. Open the CALC schematic. Select the OSC_3K symbol and select
the Level ➝ Push ➝ Schematic command.

3. Edit the schematic so it looks like Figure 2-2:

Figure 2-2 New Viewlogic Oscillator Schematic for EPLD CALC

4. Be sure to label the new IOPAD net “XCLK”.

5. Select the File ➝ Write command. Select the Level ➝ Pop
command. (If you wish, you can use the File ➝ Write to
command to save this schematic as OSC_7K. If you save this
schematic to a new name, be sure to save the corresponding
symbol file to the same name. In addition, make sure the new
symbol is added to and saved in the top-level CALC schematic.)

6. Search the top-level schematic and every sub-schematic for
attributes, including LOC= pin assignments. Delete all except the
PART= attribute. Attributes are displayed in yellow to distinguish
them from labels, which are white. Save each schematic that you
change using the File ➝ Write command.

X4862

CB4CE

CQ

R

Q3 DIVQ

OBUF BUFG

XCLK

CLK
Q2
Q1
Q0

CE CEO

TC

OR2

NRESET

QB

NSET

INV

AND2B1

OBUFT

OBUFT

IBUF

IBUF

T

T

CQ

CQL

IOPAD

IOPAD

IOPAD
XEPLD Schematic Design Guide 2-7

XEPLD Schematic Design Guide
7. Use the Change ➝ Text command to change the part name as
follows:

PART=7372-10PC68

8. Save the top-level schematic using the File ➝ Write command.

Performing Functional Simulation

To perform functional simulation, follow these steps:

1. Select the Export ➝ Wirelist ➝ ViewSim command.

2. Run simulation as described in the ViewSim tutorial in the
Viewlogic Interface User Guide, except change these lines in the
calc_3k.cmd file (which you can rename calc_7k.cmd if you wish):

l gr
...
h gr

to the following:

h prld
...
l prld

Running the Fitter Commands

To map the design onto a target XC7000 device, follow these steps:

1. Exit Workview by typing the following:

quit

2. Select the XEMake command from the Translate menu in XDM.

3. Select Done to select all the default options.

4. Select the calc.1 file from the list.

5. Select Make design database as the target.

Performing Timing Simulation

To perform timing simulation, follow these steps:

1. Select the XSimMake command and Viewlogic_EPLD_Timing
as the flow name. Select the calc.vmh file from the list.
2-8 Xilinx Development System

Device-Independent Design
2. Run simulation as described in the ViewSim tutorial in the
Viewlogic Interface User Guide, except change the lines in the Vector
Definition, Simulation Output Definition, Clock Definition, and
Global Reset & Initial Input Values to those shown in the
following file. The ... indicates comments that have been removed.

You must make these changes because the EPLD fitter optimizes
the logic, removing many internal nodes. This makes the design
more efficient, but harder to simulate.

|--------------------VECTOR DEFINITION-------------------
...
vector SW sw7\sw6_p sw7\sw5_p sw7\sw4_p sw7\sw3_p +
sw7\sw2_p sw7\sw1_p sw7\sw0_p
| You can also use bus syntax when defining vectors
vector ALU alu[3:0]
vector LED_P led\led[3:0]_p
| Set radices for vectors
| The default radix is binary for input, hex for output
radix hex SW ALU
radix bin LED_P
|---------------SIMULATION OUTPUT DEFINITION--------------
...
wave calc_7k.wfm osc_7k\xclk SW exc_p ALU LED_P we rst
| Save simulation values for these nodes
watch osc_7k\xclk SW exc_p ALU LED_P we rst
| Output the values of all watched signals each time
| "xclk" goes high. Create tabular output.
break osc_7k\xclk 1 do (print > calc_7k.tab)
| Output node and vector transitions and simulation time
| whenever any of the nodes or vectors changes state
trace osc_7k\xclk SW exc_p ALU LED_P we rst > calc_7k.trc
|-------------------CLOCK DEFINITION----------------------
clock osc_7k\xclk 1 0
| Use a clock period of 100ns. Set stepsize=50ns
step 50ns
|------------GLOBAL RESET & INITIAL INPUT VALUES----------
| Set initial values for all inputs using the "H" and "L"
| commands for nets and "assign" for vectors
h exc_p
assign SW 00\h
| Initialize all flip-flops (preload- is active high
| for 7k designs, you can abbreviate to prld)
h prld
| Viewsim uses units of 0.1 ns, so this statement
| simulates for 100 ns.
cycle
l prld
cycle
XEPLD Schematic Design Guide 2-9

XEPLD Schematic Design Guide
Procedure for OrCAD Users

Reconfiguring the Libraries and Schematic Symbols

To reconfigure the libraries for the XC7000 family and update all the
symbols so their properties are compatible with XC7000 devices,
follow these steps:

1. Copy the CALC tutorial files to a directory under your home
directory as described in the OrCAD Interface User Guide. Change
(cd) to the calc\soln_3k directory.

2. While in your working directory, type the following at the DOS
prompt:

xdraft 7

Editing the Schematic

To edit the schematic so all its symbols are compatible with XC7000
devices, follow these steps:

1. Start up XDM. Select the OrCAD command from the
DesignEntry menu.

2. Double click on the Design Management Tools button. Select
CALC from the list on the left, then select the OK button.

3. Enter Schematic Design Tools and then Draft . The top-
level schematic of the CALC design appears. If you see a message
about an X being deleted, do not worry; this is an FPGA-specific
property that you would have to delete anyway.

4. Change the PART= text to 7372-10PC68 .

5. Enter the OSC_3K sheet symbol using the Quit ➝ Enter Sheet
➝ Enter command.

The OSC_3K schematic is displayed. There may be messages
telling you that two components, ACLK and GCLK, are
unavailable. The spaces where these two components were on the
original schematic are left open, with unconnected nets.

6. Edit the schematic so it looks like Figure 2-3. The part of the
schematic that is not visible is unchanged except for LOC=
properties being removed.
2-10 Xilinx Development System

Device-Independent Design
Figure 2-3 New OrCAD Oscillator Schematic for EPLD CALC

7. Be sure to label the new IOPAD net “XCLK”.

8. Be sure to delete the LOC=... properties from the two IOPADs at
the left end of the schematic. (Use the Edit ➝ Edit ➝ 1st Part
Field ➝ Name command.)

9. Select Quit ➝ Update File ➝ Leave Sheet .

10. Use the Quit ➝ Enter Sheet , Edit ➝ Edit ➝ 1st Part
Field ➝ Name, and Quit ➝ Update File ➝ Leave Sheet
commands to delete all the LOC= and FAST statements in the
CALC schematic and all its sub-schematics.

11. When you are finished editing all the schematics, select Quit ➝
Update File ➝ Abandon Edits from the top-level schematic,
double click on the To Main button, double click on the Exit
ESP button, and press any key to return to XDM.

Performing Functional Simulation

To perform functional simulation, follow the instructions in the “VST
Tutorial” chapter of the OrCAD Interface User Guide, with the
exceptions in the following steps.

1. If you plan to perform timing simulation later, place stimulus and
trace information on the XCLK signal in the OSC_3K schematic
XEPLD Schematic Design Guide 2-11

XEPLD Schematic Design Guide
instead of on the CLK signal, and on the LED_P signals in the LED
schematic instead of on the STACK signals (pp. 12-6 to 12-8).

2. In addition, you will have to move the stimulus information in the
SW7 schematic from the SW signals to the SW_P signals and
subtract one clock cycle. Follow these steps:

a) Place the mouse cursor on the stimulus symbol on the SW4
signal and select the Inquire command. The following line is
displayed in the top left corner of the screen:

Stimulus: 0:0 6000:1

b) Subtract 500 time units, which is equal to one clock cycle, from
the times at which the signal changes value. Replace all time
values less than or equal to 500 with 0. In this case, 0 remains 0
and 6000 becomes 5500.

c) Use the Place ➝ Stimulus command to add the following
stimulus to the SW4_P signal:

0:0 5500:1

d) Delete the stimulus indicator on the SW4 signal.

e) Repeat steps a through d to delete all stimulus information
from each SW signal and add it to each SW_P signal.

f) Use Quit ➝ Update File to save your edits.

The EPLD fitter software optimizes away many internal nodes
such as the CLK, STACK, and SW7 signals, but cannot optimize
external signals such as the XCLK, LED_P, and SW_P signals. This
does not affect functional simulation, but it does affect timing
simulation.

3. Substitute “EPLD” wherever the VST Tutorial says “FPGA”. For
example, select Orcad_Epld_Func as the XSIMMAKE flow
name instead of Orcad_Fpga_Func.

4. Instead of adding a GR or GSR stimulus (p. 12-21), add a PRLD
stimulus. Like GSR, the PRLD stimulus has an initial value of 1
and is brought down to 0 at 1 nanosecond.
2-12 Xilinx Development System

Device-Independent Design
Running the Fitter Commands

To map the design onto a target XC7000 device, follow these steps:

1. Select the XEMake command from the Translate menu in XDM.

2. Select Done to select all the default options.

3. Select CALC.SCH from the list of files.

4. Select Make design database as the target.

Performing Timing Simulation

To perform timing simulation, follow the instructions in the “VST
Tutorial” chapter of the OrCAD Interface User Guide, with the
exceptions in the following steps.

1. Place stimulus and trace information on the XCLK signal in the
OSC_3K schematic instead of on the CLK signal, and on the
LED_P signals in the LED schematic instead of on the STACK
signals (pp. 12-6 to 12-8).

2. In addition, you will have to move the stimulus information in the
SW7 schematic from the SW signals to the SW_P signals and
subtract one clock cycle. Follow these steps:

a) Place the mouse cursor on the stimulus symbol on the SW4
signal and select the Inquire command. The following line is
displayed in the top left corner of the screen:

Stimulus: 0:0 6000:1

b) Subtract 500 time units, which is equal to one clock cycle, from
the times at which the signal changes value. Replace all time
values less than or equal to 500 with 0. In this case, 0 remains 0
and 6000 becomes 5500.

c) Use the Place ➝ Stimulus command to add the following
stimulus to the SW4_P signal:

0:0 5500:1

d) Delete the stimulus indicator on the SW4 signal.

e) Repeat steps a through d to delete all stimulus information
from each SW signal and add it to each SW_P signal.

f) Use Quit ➝ Update File to save your edits.
XEPLD Schematic Design Guide 2-13

XEPLD Schematic Design Guide
The EPLD fitter software optimizes away many internal nodes
such as the CLK, STACK, and SW7 signals, but cannot optimize
external signals such as the XCLK, LED_P, and SW_P signals.

3. Substitute “EPLD” wherever the VST Tutorial says “FPGA”. For
example, select Orcad_Epld_Timing as the XSIMMAKE flow
name instead of Orcad_Fpga_Timing.

4. Instead of adding a GR or GSR stimulus (p. 12-21), add a PRLD
stimulus. Like GSR, the PRLD stimulus has an initial value of 1
and is brought down to 0 at 1 nanosecond.

Converting a Xilinx-ABEL Module (Optional)
You can use a Xilinx-ABEL module instead of the STATMACH
schematic in the CALC design. The stat_abl.abl file specifies the logic.
Substituting this Xilinx-ABEL module is described in the Interface
User Guide for your CAE tool. This section describes how to make
this module EPLD-compatible after you have substituted it.

1. Select the ABL2PLD command in the XDM menu. Select the
stat_abl.abl file from the list. The ABL2PLD command creates
a file named stat_abl.pld.

2. Start up your CAE tool.

3. Open the schematic named CONTROL. Delete the DEF=XABEL
attribute from the STATMACH symbol, which referenced the
Xilinx-ABEL module, and change FILE=stat_abl to PLD=stat_abl.
For specific instructions on changing attributes, see the
“Attributes” appendix.

Note: If you wish, you can convert the stat_abl.abl file from symbolic
(one-hot) encoding to maximal encoding. It is not really necessary,
however, because this state machine has only three states, and
therefore the conversion spares only one register.
2-14 Xilinx Development System

Chapter 3
XEPLD Schematic Design Guide — 0401265 01 3-1

EPLD Architecture and Design Tradeoffs

This chapter discusses EPLD architecture and tradeoffs in fitting your
design to the EPLD architecture: designing for speed, density, or
pinout preservation; controlling power consumption; and controlling
preload values.

The tips and techniques in this chapter are guidelines only. They are
general principles that work in most cases. They may or may not be
applicable to a particular design.

EPLD Architecture
EPLD devices have special architectural features that can make your
design faster and more efficient. The XEPLD fitter software
automatically analyzes your design, optimizes the logic, and maps
functions into the appropriate device resources. However, an
understanding of the EPLD architecture can help you exercise
complete control of design optimization.

For more detailed information about EPLD architecture, refer to the
EPLD device data sheets.

XEPLD Schematic Design Guide
Figure 3-1 is a simplified diagram of the XC7354 device that shows
the main architectural features of EPLD devices.

Figure 3-1 EPLD Device Structure

The five basic architectural features in an EPLD device are as follows:

● Input Pads

● Output Pads

● High Density Function Blocks (HDFBs)

● Fast Function Blocks (FFBs)

● The Universal Interconnection Matrix (UIM)

This section describes these features and how designs are mapped
onto them for best results.

Note: For a complete explanation of the XC7000 architectural
features, see the EPLD device data sheets.

Input

Output FFB

I/O
Block

FB

FB

UIM

FB

FB

I/O
Block

FFB Output

X3204
3-2 Xilinx Development System

EPLD Architecture and Design Tradeoffs
Input Pad Structures
The XC7000 devices have two types of input pads: Fast Inputs and
standard inputs.

Fast Input pins have two paths through the device. One path drives
directly into the Fast Function Blocks, bypassing the UIM, and is used
for signals that require the fastest propagation delays and shortest
macrocell register setup times.The second path drives all function
blocks (both FFBs and HDFBs) through the UIM.

Standard inputs and UIM paths of Fast Inputs can be configured as
follows:

● Registered

● Registered with clock enable

● Latched

● Combinatorial

Registering and/or latching signals at the input pad shortens register
setup times and is used most often to pipeline data on-chip or
synchronize asynchronous inputs. The input pad registers can also
store data, making more macrocells available for implementing logic.

Output Pad Structures
The XC7000 devices have two types of output pads: those driven by
HDFBs, which have standard drive capability; and those driven by
FFBs, which have higher drive capability. These outputs can be
configured as follows:

● 3-state with individual p-term control (HDFB only)

● 3-state with FOE and individual p-term control (HDFB only)

● 3-state with FOE control

● Direct (always on)

Each output pad driven by a HDFB can be 3-stated by its own
macrocell product term for maximum flexibility. The global FOE net
offers maximum speed.

Bidirectional pins have both input pad structures and output pad
structures. See your device data sheet for details.
XEPLD Schematic Design Guide 3-3

XEPLD Schematic Design Guide
High-Density Function Blocks
High Density Function Blocks provide the maximum amount of logic
resources for use in your design. They are well-suited for arithmetic
functions, counters, and other kinds of complex logic.

High Density Function Blocks contain special fast carry lines for
arithmetic logic. These lines extend between High-Density Function
Blocks, allowing fast carry for very large arithmetic functions.

Fast Function Blocks
The XC7300-series devices have a combination of High Density
Function Blocks and Fast Function Blocks; this is called “Dual Block
Architecture.”

Logic placed in Fast Function Blocks performs faster than logic in
High Density Function Blocks. Fast Function Blocks are well-suited
for critical decoding and ultra-fast state machine applications.

The Universal Interconnect Matrix (UIM)
The Universal Interconnect Matrix, or UIM™, provides a 100%
interconnection matrix allowing any function block output to drive
any function block input in the device; routing is never blocked. All
function block inputs (except for the FastInputs) come from the UIM.

The UIM can perform wired-AND functions, which the software uses
automatically when possible to improve resource utilization.

Designing for Speed
To optimize for speed (faster pin-to-pin and register setup times),
follow these guidelines:

● Use Fast Function Blocks for the functions in which speed is most
critical.

● Use input pad registers.

● Use EPLD-specific arithmetic functions when cascading.

● Use EPLD-specific bidirectional counters when cascading.

● Reduce levels of logic.
3-4 Xilinx Development System

EPLD Architecture and Design Tradeoffs
Assigning Logic to Fast Function Blocks
Fast Function Blocks (FFBs), which are available in XC7300 devices,
have Fast Inputs and Fast Outputs, which bypass the UIM and thus
do not incur a UIM delay. Their logic is simpler than that of High-
Density Function Blocks (HDFBs), which also means less delay. Use
FFBs for critical signals and functions in which speed is important.

To place logic in an FFB, use the F attribute on the outputs. Use the F
attribute on inputs (the outputs of IBUF components) to make them
Fast Inputs. For more about the F attribute, see the “Attributes”
appendix.

Turning off preload optimization affects whether logic can be moved
into Fast Function Blocks. For more information, see the “Controlling
Preload Values” section in this chapter.

Logic Requirements for Fast Function Blocks

The XEPLD software automatically maps into the Fast Function
Blocks any function that meets these requirements, even if you do not
use the F attribute:

● All clocks use the global FastCLK™ signals, which means that the
global clocks must be available.

● All 3-state controls use the global FOE signals.

● All registers may only be asynchronously set except in 7336 and
7318 devices (unless you use reset emulation, described in the
“Design Applications” chapter).

● All registers may only be preloaded to a logic High state or have
unspecified preload values except in 7336 and 7318 devices
(unless you use reset emulation, described in the “Design
Applications” chapter).

● All logic must use four or less p-terms when implemented as
active-Low except in 7336 and 7318 devices. You can override this
requirement by using the F attribute — the software exports
product terms if the output uses more than four product terms.

● All components used must be allowable in a Fast Function Block.

Use the F attribute in these cases:

● If you want a function to have priority for being placed in an FFB.
XEPLD Schematic Design Guide 3-5

XEPLD Schematic Design Guide
● If you have a function with more than four product terms that you
would like to place in a Fast Function Block.

If your logic output signals must use an internal p-term clock, the
software drives the p-term clock off-chip through a FastCLK pin and
back into the global FastCLK net through the I/O buffer on the
FastCLK pin.

If your registers require asynchronous reset inputs or if the preload
state must be a logic Low, your design will need modification in order
to fit into an FFB. See the “Reset and Preload Control in FFB and
Input Pad Registers” section in the “Design Applications” chapter.

To place component outputs that do not drive anything in FFBs, add
dangling nets to the outputs and apply the F attribute to the dangling
nets as shown in Figure 3-2.

Figure 3-2 Assigning Dangling Outputs to Fast Function Blocks

Note: When placing functions into Fast Function Blocks, it is best to
choose functions that require the least number of product terms.

Components Not Allowed in Fast Function Blocks

The following components are not allowed in a Fast Function Block
because they require special features, such as arithmetic carry lines,
that are not present in Fast Function Blocks.

● PLFB9

● ADD symbols

● ADSU symbols

● ACC symbols

● BUFCE

X4882

D2
D1
D0

D3

CB4RE

C

R

Q3
Q2
Q1

OR2

Q0 F
F
F
F

CE CEO

TC
3-6 Xilinx Development System

EPLD Architecture and Design Tradeoffs
● IFD

● IFDX1

● ILD

● COMPM

● LD

● FDCP, FDCPE (If you use a flip-flop with both CLR and PRE, you
must tie either CLR or PRE to GND)

● OBUFT

● OFDT

● XOR7, XOR8, XOR9 (cascade the smaller XORs instead)

Note: The BUFT and BUFE symbols are allowed for external outputs
only (not nodes) and must allow FOE optimization.

Using Input Pad Registers
Input pad registers and latches offer these advantages:

● Faster setup-to-clock time than macrocell registers

● Additional storage for register-intensive designs

Figure 3-3 shows the components you use to specify a regular
macrocell register, an input pad register, an input pad latch, and an
input pad register with global clock enable.

Note: The XEPLD software automatically maps FDs and FD
variations to input pad registers when possible. You need only use
IFDs and variations for more direct control of the mapping, for
latching (use ILD or a variation), or for global clock enable (use
IFDX1).
XEPLD Schematic Design Guide 3-7

XEPLD Schematic Design Guide
Figure 3-3 Input Pad Registers

Placing Clock Enable Signals in Input Pad Registers

If you want to use the global clock enable net and an input pad
register, but your clock enable signal must be controlled by internal
logic, use the BUFCE and IFDX1 components as shown in Figure 3-4.
The FDCE shown in Figure 3-5 is valid, but it does not use the global
clock enable net or an input register.

Figure 3-4 Can Be Placed in an Input Pad Register

IBUF
IPAD

IBUF
IPAD

Q

X4859

D FD

C

Maps to a Macrocell or Input Pad Register

BUFG
IPAD

IPAD
QD IFD

C

Maps Only to an Input Pad Register or Latch

INPUT PAD
REGISTER

BUFG
IPAD

IPAD
QD ILD

G

INPUT PAD
LATCH

BUFG
IPAD

IPAD Q
D IFDX1

C
IPAD

CE
INPUT PAD

REGISTER WITH
GLOBAL CLOCK

ENABLE BUFCE

Q

X4858

D IFDX1

C

CE

NAND2
BUFCE

IPAD

IBUF
IPAD

IBUF
IPAD

BUFG
IPAD
3-8 Xilinx Development System

EPLD Architecture and Design Tradeoffs
Figure 3-5 Cannot Be Placed in an Input Pad Register

Using EPLD-Specific Arithmetic Functions
XC7000-specific arithmetic components use the fast carry chain for
their CI and CO pins. Equivalent common components do not use the
fast carry chain for their CI and CO pins and therefore slower and use
more device resources when cascaded. If you are not cascading,
however, the common arithmetic components work well.

Cascading Counters
If you are cascading bidirectional or down counters, you should use
XC7000-specific counters. These counters have separate up and down
terminal counts (CEOU and CEOD) that can be cascaded in the UIM.
The up terminal count is generated by ANDing all of the counter bits
in the UIM. The down terminal count lookahead is generated in a
macrocell. These terminal counts are then ANDed with the count
enable inputs (CEU and CED) to produce the component’s up and
down terminal count outputs as shown in Figure 3-6.

Q

X4857

D FDCE

CLR

GND

C

CE

AND2

IBUF
IPAD

IBUF
IPAD

IBUF
IPAD

BUFG
IPAD
XEPLD Schematic Design Guide 3-9

XEPLD Schematic Design Guide
Figure 3-6 Cascading EPLD-Specific Up/Down Counters

Because the XEPLD optimization software collapses the cascaded
UIM nodes into a single level of logic, the speed of the cascaded
counter is constant, no matter how many bits it has. However, in
common library bidirectional counters, the up and down terminal
counts are combined into a single terminal count. This terminal count
uses both the true and the complement of the counter bits, which
makes the terminal count impossible to place in the UIM.

Reducing Levels of Logic
Each EPLD macrocell has several levels of logic followed by a
register. If you put the logic first, the XEPLD fitter software maps the
logic and register into the same macrocell. If you put logic after the
registers, however, the XEPLD fitter software may use additional
macrocells for the logic that follows the registers, decreasing both the
speed and density of your design. Figure 3-7 shows two equivalent
circuits, one that is efficient and one that is inefficient.

Note: There are exceptions to this guideline. For an example, see the
following “Splitting Wide Functions” section.

X4846

CB4CE

CLK

CED

CEU

Q6

Q2
Q1
Q0

L TCD
CEOD

CEOU

UIM Nodes

CB8X1

Q7

CLR

Q5
Q4
Q3

D6

D2
D1
D0

D7

D5
D4
D3

CB4CE

CLK

CED

CEU

Q6

Q2
Q1
Q0

L TCD
CEOD

CEOU

UIM Nodes

CB8X1

Q7

CLR

Q5
Q4
Q3

D6

D2
D1
D0

D7

D5
D4
D3
3-10 Xilinx Development System

EPLD Architecture and Design Tradeoffs
Another way to minimize levels of logic is to make sure you do not
exceed 21 inputs or 17 product terms for a function. This makes it
likely that the function will fit in one HDFB macrocell.

Figure 3-7 Reducing Levels of Logic

Splitting Wide Functions

The XEPLD software can handle a function with up to 17 product
terms and 21 inputs as a single level of logic in a High-Density
Function Block. If the function exceeds these limits, it is implemented
as two levels of logic and an extra delay occurs. This typically
happens with wide compare functions, since two product terms are
required for each pair of bits being compared.

OBUF

M2_1

XOR2

XOR2

IBUF

CLK

SEL

BUFG

D0
O

D1

S0

D QFD

CINV

D QFD

C

0
1

OPAD

IPAD

IPAD

INEFFICIENT
(3 Macrocells)

OBUF

IBUF
CLK

SEL

BUFG

X4861

D QFD

CINV

D QFD

C

M2_1
D0

O
D1

S0

0
1

OPAD

INV

IPAD

IPAD

EFFICIENT
(2 Macrocells)
XEPLD Schematic Design Guide 3-11

XEPLD Schematic Design Guide
You can keep your wide function implemented as a single level of
logic if you manually split the function.

Figure 3-8 shows a design with a wide compare function that is twice
as fast after splitting.

Figure 3-8 Splitting a Wide Function

Random Logic

If your design contains custom gate-level logic, follow these
guidelines to ensure that the logic will optimize well:

● Try not to exceed 21 inputs or 17 product terms for a single output
or registered function. Logic must meet these requirements to fit
within a single High-Density Function Block macrocell.

OBUF

OUT
OPADIBUF

IBUF

IBUF

I[15:0]

IPAD

IPAD

Q

OBUF

OUT
OPAD

Q

D FD

C

QD FD

C

Q[15:0] COUNT[15:0]

COUNT[15:8]

DATA[15:8]

DATA[15:0]

COUNT[7:0]

DATA[7:0]

CB16RE

C

R

CEOCE

TC
EQ

 A[7:0]

 AND2

OR2

COMP8

 B[7:0]

IPAD

EQ

 A[7:0] COMP8

 B[7:0]Q[15:0]D[15:0]

DIN[15:0]

IPAD16

BEFORE SPLITTING

IBUF16

CLOCKA

CLOCKB

FORCE

FD16

C

IBUF

IBUF

IBUF

I[15:0]

IPAD

IPAD X4847

D FD

C

QD FD

C

QD FD

C

Q[15:0] COUNT[15:0]

COUNT[15:8]

DATA[15:8]

DATA[15:0]

COUNT[7:0]

DATA[7:0]

CB16RE

C

R

CEOCE

TC
EQ

 A[7:0]

 AND2

OR2

COMP8

 B[7:0]

IPAD

EQ

 A[7:0] COMP8

 B[7:0]Q[15:0]D[15:0]

DIN[15:0]

IPAD16

AFTER SPLITTING

IBUF16

CLOCKA

CLOCKB

FORCE

FD16

C

3-12 Xilinx Development System

EPLD Architecture and Design Tradeoffs
● For a Fast Function Block macrocell, the limit is 24 inputs. If a
function exceeds 4 product terms, the product terms are exported
from adjacent macrocells, but this means that a wide function uses
up many macrocells.

● In general, use library components instead of gate-level logic
wherever possible.

● If random logic is represented in many layers of combinatorial
logic before it reaches pads or registers, it may be better to use a
behavioral module.

The EPLD software will attempt to reduce the number of inputs to 21
or less so that the logic can be implemented in a single pass through
the UIM. However, this may be more difficult if the design is
implemented with large numbers of random gates.

Designing for Density
The XEPLD software optimizes for density by default, but there are
some additional things you can do to improve density optimization:

● Maximally encode all state machines.

● Specify active-High output enables and rising edge clocks so these
signals can be mapped to global nets.

● Specify UIM nodes for wide input AND functions.

● Use input pad registers whenever possible to make more
macrocells available for logic.

● Use the UIM paths of Fast Inputs.

● Turn off logic optimization on selected combinatorial nodes.

● Use the Master Reset pin if your design requires device
reinitialization, or use this pin as a regular input if your design
requires an additional I/O pin.

Maximally Encoding State Machines
If your design contains behavioral modules written as state
machines, be sure that the functions are maximally encoded. This
works best for EPLDs, which are rich in product terms. (For FPGAs, it
is best to use one-hot encoding, because FPGAs are rich in registers.)
XEPLD Schematic Design Guide 3-13

XEPLD Schematic Design Guide
Using Global Nets
Clock and output enable signals mapped to global nets do not
consume function block resources. Optimization software auto-
matically maps the most used rising edge clock inputs to the FastCLK
nets and the active-High output enable inputs to the FOE nets.

Moving Logic into the Universal Interconnect Matrix
In addition to offering 100% routability, the UIM can function as a
very wide AND gate. The UIM can also implement DeMorgan
equivalent functions. The following figure illustrates this process:

Figure 3-9 Moving Functions into the UIM

Sometimes specifying a UIM node for a wide ANDing function can
result in improved optimization. Moving a node into the UIM can
free up additional function block inputs for use by other logic
functions. This should only be tried after reviewing the results of the
automatic optimization. See the description of the OPT=UIM
attribute in the “Attributes” appendix for more information.

Before UIM Optimization

Macrocells UIM Macrocells

After UIM Optimization

Macrocells UIM Macrocells

X4852
3-14 Xilinx Development System

EPLD Architecture and Design Tradeoffs
Using Input Pad Registers
Registering or latching signals at the input pad shortens register
setup times and is often used to pipeline data on-chip or synchronize
asynchronous inputs. The input pad registers can also store data,
making more macrocells available for implementing logic. You can
even emulate asynchronous set/reset control using a design
technique outlined in the “Reset and Preload Control in Input Pad
and FFB Registers“ section in the “Design Applications” chapter.

Macrocell Register vs. I/O Pin Tradeoff

If your design is register-intensive but requires few I/O pins, you
may be able to trade a few macrocell registers for I/O pins. A register
having only a buffer or inverter in front of its D input can be
converted to an input register. Use the method shown in Figure 3-10.

For clarity, IPAD, IBUF, and BUFG symbols are omitted from the
inputs on the left, and OBUF and OPAD from the output on the right.

Note: Because IFDs preload to 1, you may see 1s propagate through
your design at the beginning of simulation. To prevent this, you can
use the technique described in “Reset and Preload Control in FFB and
Input Pad Registers” in the “Design Applications” chapter.

Figure 3-10 Using a Macrocell vs. Using an I/O Pin

Q

X4855

D FD

C OBUF

Input Register Macrocell Input Register Macrocell

LOGIC LOGIC

IOPAD

D IFD

C

D FD

C

Q QD IFD

C

QDQ

Q

FD

C

Input Register Macrocell Macrocell Macrocell

LOGIC LOGIC

D IFD

C

D FD

C

Q QD FD

C

XEPLD Schematic Design Guide 3-15

XEPLD Schematic Design Guide
UIM Versus Fast Input Paths
A second path into the Fast Function Block in available through the
UIM. If the Fast Function Block becomes input limited, moving a
signal from the direct Fast Input path to the UIM path may allow the
optimization software to free up an extra FB input.

To move a signal from the direct Fast Input path to the UIM path,
remove the F attribute from the input signal. Do not remove the F
attribute from the output signal, however, because this is what places
the logic in a Fast Function Block.

Controlling Logic Optimization
The XEPLD software attempts to reduce the number of logic levels
for all signal paths. This means that the remaining logic functions
have a wider signal fan-in and possibly require more product terms
than if some combinatorial nodes were retained.

By turning off logic optimization on selected nodes, you may free up
additional function block inputs and/or macrocell product terms, at
the expense of the macrocells used to implement the nodes. Try this
only after reviewing the results of the automatic optimization. See the
“Attributes” appendix for details about LOGIC_OPT and OPT.

Master Reset Pin Tradeoffs
This discussion describes tradeoffs of using the XC7000 MR pin as a
global reset and 3-state control. Consult your device data sheet for
specific requirements of the MR pin during power-up. See the
“Controlling Preload Values” section at the end of this chapter for the
default preload values of device registers.

The XC7000 devices feature a master reset pin that can be used to
reinitialize the device. When the device is reinitialized, all device pins
are 3-stated and registers are preloaded. When initialization is
complete, the register preload is released and the outputs become
operational.

The master reset pin can completely 3-state the device during board
testing. It can also force state machines and registers to a known state
if the reinitialization delay is not critical in your design (see the
device datasheet for details). The advantage is that no product terms
or Function Block inputs are required to preload the registers or
3-16 Xilinx Development System

EPLD Architecture and Design Tradeoffs
3-state the device pins. If the reinitialization delay is critical, use a
logic input to force state machines and registers to a known state.

On the 7354, 7336, and 7318 devices, the master reset pin can also be
programmed as a logic pin by assigning the MRINPUT=ON global
attribute to a TBLOCK symbol. If this attribute is specified, the device
is initialized only on power-up.

Designing to Preserve the Pinout
In the XC7000 devices, logic capacity and device pinout are
determined only by the resources available in the Function Blocks;
the logic mapped into the Function Blocks is always guaranteed to
route in the UIM. The factors that determine the logic capacity of the
Function Block are as follows:

● Number of Function Block inputs

● Number of product terms available to each macrocell in the
Function Block

● Number of macrocells in the Function Block

● Number of device pins driven by the Function Block

You can reserve High Density Function Block resources by adding a
“filler” circuit to your design as shown in Figure 3-11. This circuit
consumes two UIM inputs, one shared product term, and one
macrocell for each output used in the design. It can be used to reserve
resources in up to 10 Function Blocks. Each output is assigned to a
specific Function Block by assigning it to a specific device pin with
the LOC attribute. The equation file, filler.pld, is in the
xact\examples\behavior\epld directory.
XEPLD Schematic Design Guide 3-17

XEPLD Schematic Design Guide
Figure 3-11 Filler Circuit

Note: If more than one output is assigned to the same Function Block,
the first output consumes two UIM inputs. Each additional output
consumes one additional UIM input.

You should evaluate the product term requirements of your logic
assigned to pins that are driven by Fast Function Blocks. Check the
design.eqn file to determine how many product terms (including the
implied exported product terms) are required. Plan ahead for design
iterations which may create functions that require the exported
product terms from an adjacent macrocell.

To preserve the pinout from an earlier iteration of the design, use the
Translate ➝ PinSave command to generate the .VMF pin freeze
file. Then use the Profile ➝ Options ➝ FitNet ➝ -f command
to turn pin freezing on for the design. Save the profile with the
Profile ➝ Save Profile command. Now, each time you
recompile the design, the old pinout will be reused.

Manual Pin Assignment
Note: Manual pin assignment can restrict the layout capability of the
software. It is usually best to allow XEPLD to automatically assign
pins based on the most efficient placement of logic in the device.

XEPLD automatically assigns device pins for you, based on the most
efficient usage of device resources. This is usually the best method for
pin assignment if you do not have specific pinout requirements.

PL20PIN

PLD=FILLER

PIN1 PIN20
OBUF

IBUF

LOC=PIN74

PIN2 PIN19

PIN3 PIN18

PIN4 PIN17

PIN5 PIN16

PIN6 PIN15

PIN7 PIN14

PIN8 PIN13

PIN9 PIN12

PIN10 PIN11

X4860

OPADIPAD

OBUF

LOC=PIN43
OPAD

OBUF

LOC=PIN07
OPAD

OBUF

LOC=PIN126
OPAD

OBUF

LOC=PIN102
OPAD

OBUF

LOC=PIN101
OPAD

OBUF

LOC=PIN62
OPAD

OBUF

LOC=PIN37
OPAD

OBUF

LOC=PIN130
OPAD

OBUF

LOC=PIN105
OPAD
3-18 Xilinx Development System

EPLD Architecture and Design Tradeoffs
Automatic pin assignment is performed only for those pins that have
not been assigned through some other method. After a successful
design compilation, you can use the PinSave command to maintain
the pin assignments during design iteration.

If you have specific pinout requirements you can use the
LOC=pin_number attribute to assign the signal to a specific pin.

Note: LOC attributes override the pin assignments in the pin-save
file. This allows you to make changes to your fixed pin specifications.
However, if you override the pin-save file with LOC attributes, the
software will issue a warning.

Manual Pin Assignment Precautions
When you manually assign output and I/O pins, you force the
software to place logic functions into specific function blocks. If the
logic does not exceed the function block resources (macrocells,
product terms, and UIM inputs) and the function block has the
correct external pin resources to meet the logic I/O requirements, the
logic is mapped into the function block and the design will route in
the UIM.

Try to place product term intensive logic onto pins that are driven by
High Density Function Blocks. Be sure that the Function Block’s
shared product term resources and UIM inputs will not be exhausted.
You may also wish to leave additional room in the Function Block for
design iterations.

Assign your external rising-edge clocks and active-High output
enable signals to the FastCLK and FOE pins on the device. To create
global on-chip clocks, assign them to the FastCLK nets. To create
global output enable control signals, assign them to the FOE nets.
These signals will use the I/O buffer on the pin to route the macrocell
output onto the global net.

Evaluate the requirements of your logic assigned to pins that are
driven by the Fast Function Blocks. Functions mapped to an FFB can
be clocked only by global clocks, 3-stated only by FOEs, and, for the
7354, 7372, and 73108 devices, only asynchronously set. Plan ahead
for design iterations which may create functions that require the
exported product terms from an adjacent macrocell.
XEPLD Schematic Design Guide 3-19

XEPLD Schematic Design Guide
The LOC Attribute
Use the LOC=pin_name attribute on a PAD symbol to assign the
signal to a specific pin. The pin name is Pnn for PC packages; the nn is
a pin number. The pin name is rc (rowcolumn) for PG packages.
Examples are LOC=P24 and LOC=G2.

You can apply the LOC attribute to as many PADs in your design as
you like. However, each pin assignment further constrains the
software as it automatically allocates logic and I/O resources to
internal nodes and I/O pins with no LOC attributes.

Note: Pin assignment using the LOC attribute is not supported for
bus components such as OBUF8.

Controlling Power Consumption
You control power consumption for specific macrocell outputs using
the LOWPWR attribute. This attribute is valid only for XC7300
designs. This attribute is either a global or component attribute.

The default is LOWPWR=OFF (high speed) for all macrocells used in
the design unless otherwise specified.

To make low power the global default power setting, place the global
attribute LOWPWR=ALL in the schematic. (See the Global Attributes
section of the “Attributes” appendix for instructions.)

To control the power setting of the macrocells used by an individual
symbol, use LOWPWR=ON or LOWPWR=OFF (if the global
LOWPWR=ALL was used). This attribute is ignored if assigned to a
symbol that uses no macrocells, such as an inverter.

Note: Low-power outputs are slower than regular-power outputs. If
you have a mixture of low- and regular-power outputs, pay close
attention to simulation results or the timing report to see how the
power settings affect timing interactions.

Controlling Preload Values
The preload values used in the implementation of your design
depend on these factors:

● The register resources of the target device
3-20 Xilinx Development System

EPLD Architecture and Design Tradeoffs
● The preload values of the library components used in the design.
Every registered component in the Xilinx library has a default
preload value defined; for most components, it is 0. You can look
up preload values for any component in the XACT Libraries Guide.

● The .PRLD equations in the behavioral modules

● Whether preload optimization is on. By default, the XEPLD fitter
performs preload optimization, ignoring the library defaults and
.PRLD equations, to produce the most efficient mapping of
components to available device resources. You can control preload
optimization using the PRELOAD_OPT and INIT attributes.

Physical Resources of EPLDs

Registers in EPLD devices can physically support the following
initial preload states:

● Input registers and latches in 7272 devices have no predetermined
preload value.

● Input registers and latches in non-7272 devices always have a
preload value of 1.

● Macrocell registers in 7336/7318 Fast Function Blocks have a
preload value that depends on the use of the asynchronous Set/
Reset product term. When this product term is defined as Reset,
the register’s preload value is 0; when Set, the value is 1. If no Set/
Reset product term is specified, the default is 1.

● Macrocell registers in non-7336/7318 Fast Function Blocks always
have a preload value of 1, but if the internal logic in these
macrocells is implemented as negative logic, the apparent preload
value will be 0.

● Macrocell registers in High-Density Function Blocks can support
preload values of 0 or 1. If the preload value is not specified, the
default is 0.
XEPLD Schematic Design Guide 3-21

XEPLD Schematic Design Guide
Attributes for Controlling Preload Values

If your design is not sensitive to preload values, it is best to allow
preload optimization, because this produces efficient results.
However, if you want to control register preload states, you can
prevent preload optimization in these ways:

● Use the PRELOAD_OPT=OFF global attribute. This turns off
preload optimization for all registers in the design. The fitter is
forced to obey all library defaults and .PRLD equations.

● Use the INIT=S (preload=1) and INIT=R (preload=0) attributes to
specify the preload values of individual registers. The INIT=
attributes are always obeyed by the fitter, regardless of the
PRELOAD_OPT attribute, but are ignored in functional
simulation.

Note: You cannot change the preload value of an input register to 0
using the INIT=R attribute because input registers physically do not
support preload to the 0 state. Also, if you specify
PRELOAD_OPT=OFF or INIT=R to control preload values, it
prevents registers from mapping into FFBs, and attempting to force
such a register into an FFB (using the F attribute or through pin
assignment) results in an error.

Preload Values for Functional and Timing Simulation

The only functional differences expected between functional and
timing simulation involve the initial states of registers and latches in
the design. Functional simulation assumes that preload values are as
defined in the library components and the .PRLD equations in
behavioral modules. Timing simulation uses the actual preload
values implemented by the fitter.

When functional and timing simulation yield different results, it is
probably because the XEPLD fitter did not use the library default and
.PRLD equation values due to the preload optimization feature.

For example, if an FDR component is mapped to a Fast Function
Block, the FDR will appear to preload to 0 during functional
simulation, because that is how the library component is defined.
However, during timing simulation, this FDR will actually preload to
1, because that is physical preload state of an FFB macrocell register
where the FD component was mapped.
3-22 Xilinx Development System

Chapter 4
XEPLD Schematic Design Guide — 0401265 01 4-1

Design Applications

This chapter describes some of the most useful techniques for making
your EPLD design more efficient. These examples are suggestions
and guidelines only, and may not apply to your particular design.

Reset and Preload Control in FFB and Input Pad
Registers

Use the following reset emulation technique to do these things:

● Emulate reset or clear when using Fast Function Block registers

● Emulate reset or clear when using input pad registers (sparing
macrocell registers)

● Change preload values in input pad or FFB registers to 0 (the
preload value for these registers is normally 1)

Figure 4-1 shows how to set up reset emulation. An additional
macrocell register from a High-Density Function Block provides the
reset input. You AND the output of this HDFB register with the
outputs of the FFB or input pad registers. These AND gates end up in
the UIM, so there is no additional delay.

The XEPLD software automatically tries to map FD-type registers
into input pad registers or FFB macrocell registers before it maps to
HDFB macrocell registers. However, if you want to explicitly specify
input pad registers, use IFD-type registers. To explicitly specify FFB
registers, use the F attribute on the register outputs (see the
“Attributes” appendix for more about the F attribute).

Note: If you are changing preload values, you do not need an HDFB
macrocell register with a reset; a simple FD will work.

XEPLD Schematic Design Guide
Figure 4-1 Reset and Clear Emulation for FFB or Input Registers

Read-Back Registers
Figure 4-4 shows a simple read-back register. Data is written from the
IOPAD to the register on the rising edge of the clock if
READ_ENABLE is inactive and WRITE_ENABLE is active. Data is
read from the IOPAD when READ_ENABLE is active.

Figure 4-2 Read-Back Register Example

Q

X4856

D FD or IFD

FFBs or Input Pads

HDFB Macrocell

VCC
+5

UIM

C
AND2

QD FD or IFD

C
AND2

QD FD or IFD

C
AND2

QD FDR or FDC

CCLK

RESET or CLEAR

R or C

Q

X4849

D FDCE

C

CE

CLR

WRITE_ENABLE

CLOCK

READ_ENABLE GND

OBUFE

IOPAD

IBUF
4-2 Xilinx Development System

Design Applications
Bidirectional Signals and Buses
Figure 4-2A shows how to specify a bidirectional pin. Figure 4-2B
shows that you can have a bidirectional signal passing through the
chip. To make a bidirectional bus, use bus components as shown in
Figure 4-2C.

Figure 4-3 Bidirectional Signals and Buses

Bidirectional Signals in PLDs
If you want to use a PLD output with a TRST equation to control a
bidirectional I/O pin of the EPLD, connect the OBUF output to an
IOPAD and IBUF (or IFD/ILD). If the same PLD symbol that gener-
ates the output is also to receive the I/O pin input, you must use a
separate pin of the PLD symbol to receive the signal from the IBUF.
Do not tie the signal received from an IBUF to the net driving the
OBUF of the same IOPAD as shown in Figure 4-3A; these input and
output nets must remain separate as shown in Figure 4-3B.

Rules for connecting PLD symbols also apply to any custom symbols
defined by equation files or macro schematics.

X4851

OBUFE

E
IBUF

A LOGIC
IOPAD

OBUFE

E
IBUF

B LOGIC
IOPAD

OBUFE

E

IBUF

IOPAD

OBUFE8 E

E

A_OUT[7:0]

A_IN[7:0]
A[7:0] B[7:0]

IBUF8

C LOGIC
IO[7:0]

IOPAD8

IBUF8

B_IN[7:0]

B_OUT[7:0]

OBUFE8

IO[7:0]

IOPAD8
XEPLD Schematic Design Guide 4-3

XEPLD Schematic Design Guide
Figure 4-4 How to Control a Bidirectional PLD Pin

Multiplexing 3-State Signals
Three methods of multiplexing 3-state signals are shown in Figure
4-5 on the next page. Which method you choose depends on your
application, resources, and speed requirements, although method C,
which uses a multiplexer, is usually best for EPLD designs.

Method A, shown in Figure 4-5A, uses 3-state buffers instead of a
multiplexer. The advantage of method A over method C is that
method A uses only one Function Block input in the macrocell that
sends the signal off-chip. The disadvantage of method A is that
macrocell feedback is lost because the outputs are 3-stated; therefore
counters will not work with Method A, but will work with Method C.

PL22V10

PLD=

PIN1 PIN23
OBUF

IBUF

Q = ... ; Q IS PIN 22
Q.TRST = READ_EN
...
R = Q;

Q
PIN2 PIN22

PIN3 PIN21

PIN4 PIN20

PIN5 PIN19

PIN6 PIN18

PIN7 PIN17

PIN8 PIN16

PIN9 PIN15

PIN10 PIN14

X4850

PIN11 PIN13

IOPAD

PL22V10

PLD=

PIN1 PIN23

OBUF

IBUF

Q_IN

Q = ... ; Q IS PIN 22
Q.TRST = READ_EN
...
R = Q_IN; Q_IN IS PIN 19

Q

PIN2 PIN22

PIN3 PIN21

PIN4 PIN20

PIN5 PIN19

PIN6 PIN18

PIN7 PIN17

PIN8 PIN16

PIN9 PIN15

PIN10 PIN14

PIN11 PIN13

IOPAD

A

B

Incorrect

Correct
4-4 Xilinx Development System

Design Applications
Method B, shown in Figure 4-5B, requires that you tie the signals
together off-chip. This method results in a short clock-to-out delay
and uses fewer macrocells than methods A and C. However, it uses
more pins than method A or C.

Method C, shown in Figure 4-5C, uses a multiplexer instead of
3-state buffers. This method results in a longer clock-to-out delay
than method B, although you can shorten this delay to that of method
B by registering the output of the multiplexer and asserting the select
signals one clock cycle in advance. This method uses more macrocells
than method B, but uses fewer pins.

Figure 4-5 Methods of Multiplexing 3-State Signals

QD FD

C

BUF OBUF
or OBUFE

(Tied Together
Off-Chip)

BUFE

OPAD

OPAD

OPAD

X4848

QD FD

C
BUFE

QD FD

C OBUFE

QD FD

C

OPAD

OBUFE

OBUF
or OBUFE

M2_1

QD FD

C

QD FD

C

D0

D1

S0

O

A

B

C

XEPLD Schematic Design Guide 4-5

XEPLD Schematic Design Guide
Optimizing Registered Arithmetic Performance
The XEPLD software optimizes adders and subtractors into FD, FDC,
and FDP registers. If your arithmetic component drives any other
register type, the arithmetic and register functions are implemented
in separate macrocells, impacting both speed and density.

The example in Figure 4-6 shows an adder/subtractor driving a
register with clock enable and synchronous clear. When the logic in
these components is broken down, each bitslice is represented as
shown in Figure 4-7.

Figure 4-6 Using ADSU4X1 and FD4RE Library Components

Figure 4-7 ADSU4X1 and FD4RE Equivalent Logic

In EPLD High-Density Function Blocks, the arithmetic logic
physically occurs just before the register, as shown in Figure 4-8. This
means that, because of the reset and clock enable on the register, the
ADSU4X1 and FD4RE are implemented as two levels of logic in an
EPLD device.

X4844

A2
A1

A3

B0
B1
B2
B3
ADD

CE

C

R

S2
S1
S0

S3
D2
D1
D0

D3

CO

A0

FD4RE

ADSU4X1

C
R

Q3
Q2
Q1
Q0

CE

Qi

X4845

D QFD
A0

(first bit)
ADD

Ai

Bi

CE

R

C

B0
C

CO

CI
S0

0
1

0
1

4-6 Xilinx Development System

Design Applications
Figure 4-8 EPLD High-Density Function Block Architecture

Because the logic in the adder must be performed in the ALU block of
the macrocell, the fitter cannot collapse the logic in Figure 4-7 into the
same macrocell. As a result, the logic formation requires two
macrocells and two macrocell delays.

You can achieve more efficient results by placing the register’s reset
and clock enable logic in front of the arithmetic logic as shown in
Figure 4-9.

Figure 4-9 ADSUR4 Custom Symbol Logic Implementation

Q

X4842

D FD

CI

ALU

D1

D2

Pterms

C

Qi

X4843

D QFD
A0

(first bit)
ADD

Ai

Bi

CE

R

C

B0
CCO

CI
S0

0
1

0
1

XEPLD Schematic Design Guide 4-7

XEPLD Schematic Design Guide
You can optimize the speed and density of the design in this way by
modifying an existing arithmetic component equation file, then
linking it to a custom symbol in the schematic.

Implement the clock enable circuit using the XC7000 macrocell’s local
feedback path. Recirculating the register output through this path
saves UIM inputs. Use a .FBK equation for each sum bit in the
equation file. Whenever the .FBK equation is TRUE, the register
feedback is ORed into the macrocell’s D2 sum of products. (See the
HDFB macrocell schematic for details.)

To implement the synchronous clear, mask each operand and .FBK
equation with the complement of R. When R is TRUE, all inputs to
the ALU are zeroed and the registers are cleared on the rising edge of
the clock.

To modify the ADSU4X1 equation file, follow these steps:

1. Copy the equation file ADSU4X1.PLD from the xact\examples
\behavior\library directory to your design directory.

2. Rename the file to ADSU4X1R.PLD, and change the symbol name
in the CHIP statement of the file to ADSU4X1R.

3. Add the C, R, and CE signals to the pinlist.

4. Change the equations for the CIN signal:

Original Equations Modified Equations

cin.d1 = /add cin.d1 = /add * ce * /r
cin.d2 = /add cin.d2 = /add * ce * /r
cin = cin.d1 gnd cin.d2 cin = cin.d1 gnd cin.d2

5. Change the equations for each sum bit of the adder:

Original Equations Modified Equations

s0.d1 = b0 * add s0.d1 = b0 * add * ce * /r
+ /b0 * /add + /b0 * /add * ce * /r

s0.d2 = a0 s0.d2 = a0 * ce * /r
s0 = s0.d1 xor s0.d2 s0 := s0.d1 xor s0.d2
s0.add = vcc s0.add = vcc

s0.fbk = /ce * /r
s0.clkf = c

The entire equation file follows. For how to create a custom
component, see the “Using Behavioral Modules in Schematics”
chapter of this manual.
4-8 Xilinx Development System

Design Applications
TITLE Registered Add/sub: 4-bit, clock-enable, synch reset
CHIP ADSU4X1R COMPONENT

;Inputs
a0 a1 a2 a3 ; adder A-operand
b0 b1 b2 b3 ; adder B-operand
add ; function select: 1=add, 0=subtract(A-
B)
c ; clock (rising edge)
ce ; clock enable (1=write, 0=hold)
r ; synch reset

;Nodes
cin ; generates carry-in for subtract

;Outputs
s0 s1 s2 s3 ; adder register outputs

PARTITION s3_0 cin s0 s1 s2 s3

EQUATIONS

cin.D1 = /add*ce*/r ; cin generates carry into s0 when subtr.
cin.D2 = /add*ce*/r
cin = cin.D1 gnd cin.D2 ; cin macrocell output not used

s0.D1 = b0*add*ce*/r ; when adding, use positive B-operand
 + /b0*/add*ce*/r ; when subtracting, use negated B-operand

s0.D2 = a0*ce*/r ; positive A-operand
s0.fbk = /ce*/r ; when ce disabled, recirculate Q-output
s0 := s0.D1 xor s0.D2 ; macrocell output is A xor B xor c_in
s0.add = vcc ; enable carry_in to macrocell
s0.clkf = c

s1.D1 = b1*add*ce*/r
 + /b1*/add*ce*/r

s1.D2 = a1*ce*/r
s1.fbk = /ce*/r
s1 := s1.D1 xor s1.D2
s1.add = vcc
s1.clkf = c

s2.D1 = b2*add*ce*/r
 + /b2*/add*ce*/r

s2.D2 = a2*ce*/r
s2.fbk = /ce*/r
s2 := s2.D1 xor s2.D2
s2.add = vcc
s2.clkf = c

s3.D1 = b3*add*ce*/r
 + /b3*/add*ce*/r

s3.D2 = a3*ce*/r
s3.fbk = /ce*/r
s3 := s3.D1 xor s3.D2
s3.add = vcc
s3.clkf = c

For more information about writing arithmetic equations for XC7000
devices, see “Design Rules for Arithmetic Design” in the “Advanced
Behavioral Design Techniques” chapter of the XEPLD Design Guide.
XEPLD Schematic Design Guide 4-9

XEPLD Schematic Design Guide
Hierarchical Design
You can create symbols with schematics under them and place these
symbols in your top-level schematic. This can make your design more
modular and easier to understand.

User-created symbols are termed custom components. Custom
components with schematics under them are termed macros, as
opposed to primitives, which are custom components with
behavioral modules under them. For information about creating
primitives, see the “Using Behavioral Modules in Schematics”
chapter.

The procedure for creating a symbol with an underlying schematic is
the same for EPLD and FPGA except for the library you use (XC7000
instead of XC3000 or XC4000):

1. Create a lower-level schematic using XC7000 library symbols. To
make a device-independent custom macro, use only device-
independent symbols.

2. Create a symbol for the schematic.

3. Add attributes that the symbol needs to work in your CAE tool.

Notes for Viewlogic users:

● Label the nets in your lower-level schematic with the same names
as the pins on the symbol.

● The block type of the symbol must be Composite (not Module).
Use the Change ➝ Block Type command to change this.

● If you copy a Xilinx-supplied library symbol to use as the basis for
your custom macro, make sure you delete the invisible symbol
attribute LEVEL=XILINX, as this marks the symbol as a primitive.
Use the Change ➝ Attr ➝ Dialog ➝ All command to view and
delete this attribute.

Notes for OrCAD users:

● Label the module ports in your lower-level schematic with the
same names as the pins on the symbol.

● Use the Edit Library (or LIBEDIT) utility to create your symbol.

Note: For information about storing custom components, see the
“Using Behavioral Modules in Schematics” chapter. Custom
4-10 Xilinx Development System

Design Applications
components with underlying schematics are stored in the same way
as custom components with underlying behavioral modules.

Schematic Custom Component Example
This next example shows you how to create a custom symbol with an
underlying schematic. The steps for Viewlogic users are shown, with
notes at the end for OrCAD users. Follow these steps:

1. Create the schematic using common symbols from the XC7000
library. It should look something like this:

Figure 4-10 The REGXOR Schematic

2. Create a symbol with pin names that match the inputs and
outputs of the schematic.

Figure 4-11 The REGXOR Symbol

3. Use the Change ➝ Block Type command to change the
symbol’s block type to composite.

Notes for OrCAD users:

● Label the module ports in your lower-level schematic with the
same names as the pins on the symbol.

● Use the Edit Library (or LIBEDIT) utility to create your symbol.

X4839

DI0
XOR2

I1

CLK

FD

C

Q

X4864

REGXOR

CLK

I1

I0 Q
XEPLD Schematic Design Guide 4-11

XEPLD Schematic Design Guide
4-12 Xilinx Development System

Chapter 5
XEPLD Schematic Design Guide — 0401265 01 5-1

Using Behavioral Modules in Schematics

This chapter discusses how to include behavioral (equation-based)
modules in schematic designs. There are two reasons why you may
want to use behavioral modules in your schematic:

● If portions of your design are already implemented using
conventional programmable logic devices (PLDs), you can re-use
your existing PLD equations without having to redraw the same
logic schematically.

● You may wish to create a “custom primitive” symbol using
equations (instead of a schematic-based “macro” symbol) because
of the efficient sum-of-products logic equations. You can often
achieve better logic density and performance for custom logic
functions in an EPLD by using equation-based modules due to the
inherent sum-of-products logic structures comprising the EPLD
Function Block architecture. Custom primitives are easy to create,
and can be used just like regular library components.

This chapter shows you how to use PLD symbols, create new
components, edit library components, store custom components, and
adapt behavioral logic to schematic designs.

This chapter includes design examples that use PALs in a schematic.

Preparing a Component
To prepare a PLD or custom primitive for use in a schematic design,
follow these steps. After you have prepared your component, you
can use it in a design just as you can any library component.
However, unlike schematic-based macro components, behavioral
components do not support functional simulation.

XEPLD Schematic Design Guide
1. Create a PLUSASM equation file or a file that can be converted to
PLUSASM; see “Choosing a Behavioral Design Method” later in
this chapter for details. Name the file symbolname.pld.

The CHIP statement in this file must specify the symbol name:

CHIP symbolname COMPONENT

For a custom symbol, use the COMPONENT keyword. If you
decide to use the standard PL20V8 or PL22V10 symbol from the
library, use “20V8” or “22V10” as the PLD type instead:

CHIP symbolname 22V10

2. Run TRANSLATE ➝ PLUSASM on the file to perform a syntax
check and create the database file, symbolname.vmh, for the custom
component. This file is automatically placed in the custom library
subdirectory (\clib) of your design directory. If you use XEMAKE
to process your design, PLUSASM is run automatically.

3. Use a PL20V8 or PL22V10 symbol, or use the SymGen automatic
symbol generation utility to create a symbol. See “Choosing a
Symbol” later in this chapter for details.

4. Add attributes that the symbol needs to work in your CAE tool.

For Viewlogic symbols, SymGen automatically adds the
LEVEL=XILINX symbol attribute to mark the symbol as a
primitive.

When you use the symbol in a schematic, add the
PLD=symbolname attribute to the symbol instance (do not add it
using the symbol editor). It ensures that if you use XEMAKE to
process your design, the equation file is automatically assembled
by PLUSASM whenever you modify your equation file. If you do
not use the PLD=symbolname attribute, you must assemble the
equation file as a separate step every time you change it.

Behavioral Module Example
This first simple example shows you how to create a custom symbol
with an underlying equation file. The steps for Viewlogic and OrCAD
users are shown. Follow these steps:

1. Create the PLUSASM file, regxor.pld. The CHIP statement
specifies the symbol name and the COMPONENT keyword.
5-2 Xilinx Development System

Using Behavioral Modules in Schematics
TITLE Registered XOR gate
AUTHOR John Q. Engineer
COMPANY Xilinx
DATE July 29
CHIP regxor COMPONENT

;PINLIST
I0 I1 CLK Q

EQUATIONS

Q:= I0 :+: I1
Q.CLKF = CLK

2. Run TRANSLATE ➝ PLUSASM on the file.

3. Create a symbol by running SymGen from the operating system,
as follows:

symgen regxor -v (for Viewlogic)

or:

symgen regxor -o (for OrCAD)

Figure 5-1 The REGXOR Symbol Created by SymGen

If you are an OrCAD user, you must perform additional steps to
prepare your symbol. See “Choosing a Symbol” later in this
chapter for details.

4. You can turn off the display of the LEVEL=XILINX attribute and
other attributes using the Change ➝ Display ➝ Attrs ➝ Off
command (for Viewlogic).

5. Add the PLD=regxor attribute to the symbol instance when you
use the symbol in a schematic.

X4864

REGXOR

CLK

I1

I0 Q
XEPLD Schematic Design Guide 5-3

XEPLD Schematic Design Guide
Choosing the Behavioral Design Method
The following design methods are available:

● Use a PLUSASM file.

● Convert a JEDEC file to a PLUSASM file.

● Use Xilinx ABEL.

● Use a third-party high-level language and convert to a PLUSASM
file using a PLD compiler.

Using PLUSASM
Use PLUSASM to develop your PLD equation files if you want to
access specific architectural features such as the high speed carry
paths of the device.

PLUSASM is the native language for Xilinx EPLDs, based on the
PALASM2 Boolean equation syntax. In addition, the language
contains constructs that allow you to access the advanced
architectural features of the XC7000 architecture.

You can target any PLD or custom component in the schematic
library by placing PL22V10, PL20V8, or COMPONENT in the
PLUSASM equation file CHIP statement.

PLUSASM File Structure

The basic structure of the PLUSASM file is illustrated in Figure 5-2.
The file structure is identical for both full behavioral designs and
behavioral modules of schematic designs. However, behavioral
modules have a different CHIP statement syntax and pinlist, and they
can contain only a limited subset of declaration statements. For
detailed information on each PLUSASM command, see the “Plusasm
Command Reference” chapter of the XEPLD Reference Guide.
5-4 Xilinx Development System

Using Behavioral Modules in Schematics
Figure 5-2 PLUSASM File Structure

The header section is used for design documentation only; these
commands are ignored by XEPLD and do not affect your design. The
header can contain the following statements in any order:

● TITLE any_text

● AUTHOR any_text

● DATE any_text

● REVISION any_text

● TIME any_text

● COMPANY any_text

Statements in the declarations section specify device I/O pins and
affect how your behavioral equations are mapped into a specific
device. The first statement (after the Header Section) must be the
CHIP statement immediately followed by the pinlist. All other
declaration statements may be used in any order.

AUTHOR J. Jones
DATE 11/12/92
REVISION 1.2.1.5

CHIP my_pal 22V10

A B C nc nc nc nc ...
D E F nc nc nc nc ...

EQUATIONS
D = B * C
X = Q1 + Q2 + Q3
...

Header
Section

Declarations
Section

Equations
Section

module_name .PLD
XEPLD Schematic Design Guide 5-5

XEPLD Schematic Design Guide
Table 5-1 PLUSASM Declaration Statements

Specify your behavioral design equations in the equations section,
which must begin with the EQUATIONS keyword. You may use any
valid PLUSASM equation syntax.

Using JEDEC Files
Translate each JEDEC file into a PLUSASM equation file by using the
XDM Translate ➝ JED2PLD command. Then you can process your
schematic design using the Translate ➝ XEMake command just as
you would any EPLD design.

JEDEC files are useful for easily importing existing files for 22V10 and
20V8 PALs. Always use either the PL22V10 or PL20V8 library
symbols to represent your JEDEC files.

XEPLD supports 24-pin 20V8 JEDEC files compatible with Lattice
format and 24-pin 22V10 JEDEC files compatible with Cypress, AMD,
and TI format.

Using Xilinx ABEL
Use Xilinx ABEL to develop your behavioral modules if you want to
take advantage of its high-level language capability but do not need
to access device-specific features such as the high-speed carry path.

Use the Xilinx ABEL Compile ➝ Xilinx EPLD Netlist
command to generate a PLUSASM .PLD file. Then use the SymGen
command to automatically create a symbol for the file.

Declaration Statement Function Overview

CHIP Specifies the file type, file name, and
pin list.

MINIMIZE Controls the use of Boolean logic mini-
mization.

PARTITION Specifies the relative order of equations
for arithmetic designs.

STRING Specifies a global text string substitu-
tion.
5-6 Xilinx Development System

Using Behavioral Modules in Schematics
Using a PLD Compiler
Use a PLD compiler to develop your PLD files if you want to take
advantage of the compiler‘s high level language capability but do not
need to access device-specific features such as the high speed carry
path. This method is also useful for importing existing PAL files.

The native language for Xilinx EPLDs is PLUSASM, a language based
on the PALASM2 Boolean equation syntax (.PDS). Many popular
PAL compilers such as ABEL, LOG/iC, and PALASM can generate
the PALASM2 boolean equation files required by the XEPLD
software. By using your PAL compiler’s built-in ability to generate
.PDS files (such as the ABEL XFER utility), you can easily generate
PLUSASM-compatible equation files.

These equation files can be targeted to the PL22V10, PL20V8, or
custom schematic symbols. If you are targeting a custom symbol,
change the device type in the CHIP statement to COMPONENT.

Choosing the Symbol
To include a behavioral equation file into your schematic design, you
must use a special PLD library component or create a custom
component. Table 5-2 shows the various ways in which you can
specify that a PLD file is targeted to a schematic symbol.

Table 5-2 Specifying Library Components

* You can also use a custom symbol for these PALs if their logic equations are
expressed in a device-independent manner.

** Any PAL device number other than 22V10 or 20V8.

Original
Implementation

CHIP Statement Library Component

PAL - 22V10* 22V10 PL22V10
PAL - 20V8,
GAL - 20V8*

20V8 PL20V8

Other PALs**,
Original Equations

COMPONENT Custom Symbol
(created by SymGen)
XEPLD Schematic Design Guide 5-7

XEPLD Schematic Design Guide
Using the PL22V10 or PL20V8
XEPLD supports the 22V10 and 20V8 PAL devices through special
PAL library components. Choose these components if you already
have PAL designs targeted for them or if you have experience writing
equation files for them. XEPLD supports all implied features of these
devices and provides automatic partitioning and equation splitting.

Note: If you do not have access to the PALASM source files for these
devices, XEPLD provides automatic JEDEC file conversion.

Using SymGen to Create Custom Symbols
For PALs other than the 22V10 and 20V8 and other behavioral
modules such as those using PLUSASM’s features, use the SymGen
command to create a custom symbol. SymGen processes an .XSF file,
which you can create using any of these commands:

● PLUSASM, which you use to assemble the equation file that
defines the logic of your custom primitive symbol

● FitNet, which you use to process a schematic design to create an
EPLD symbol

● XEMake, which runs the PLUSASM and FitNet commands

Use SymGen on the XDM command line or the operating system
command line, as follows:

symgen design_name - option

The –option specifies the CAE tool. Use –v for Viewlogic, –o for
OrCAD, –m for Mentor Graphics, or –c for CADENCE.

SymGen also produces a report, design_name.SMR, which explains
how the symbol was created and displays a diagram of the pinout.

Viewlogic Symbols

If you are a Viewlogic user, SymGen creates the symbol and places it
in the sym directory below your design directory. You can add it to
any schematic in your design just as you would any other symbol. No
special conversion steps are necessary.
5-8 Xilinx Development System

Using Behavioral Modules in Schematics
OrCAD Symbols

If you use the SymGen command with the –o option, SymGen creates
a .CMD file and places it in your design directory. To convert the
.CMD file into a symbol, you must perform these additional steps:

1. Enter the OrCAD Edit Library utility using one of these methods:

● From XDM, select DesignEntry ➝ OrCAD from the menu,
double click on Design Management Tools , select your
design from the list, and click on OK. Double click on
Schematic Design Tools , then double click on Edit
Library .

● From the operating system, type the following command:

libedit

2. In response to the Read Library? prompt, type the following:

.\userlib.lib ↵
This creates a library called userlib in your design directory.

3. The Library Edit screen appears. Select the Import command and
type file_name.cmd ↵ to invoke the command file.

4. The symbol appears. Select Library ➝ Update Current to
save the symbol to memory.

5. Select Quit ➝ Update File to save the library to disk.

6. Select Abandon Edits to exit the library editor.

You can now add this symbol to any schematic in your design just as
you would any other symbol.

Editing Existing Library Components
Most XC7000 library components are defined as primitives. The
PLUSASM equations defining these components are supplied in the
$XACT/examples/behavior/library (for workstations) or
\XACT\EXAMPLES\BEHAVIOR\LIBRARY (for PCs) directory for
your reference. You may copy and edit these equation files as a
convenient way to implement customized logic components.
XEPLD Schematic Design Guide 5-9

XEPLD Schematic Design Guide
Follow these steps:

1. Copy the equation file to your design directory and rename the
file to the name you wish to call your custom symbol
(symbolname).

2. Change the CHIP statement in the PLUSASM file as follows:

CHIP symbolname COMPONENT

3. If you want to use the existing library symbol as a basis for your
custom symbol, copy the symbol from the XC7000 library into
your design directory and rename the symbol to symbolname.

4. Edit the PLUSASM file to specify the custom behavior you need.

5. If you added, deleted, or changed any pin names in your equation
file, edit the symbol and make the corresponding changes.

The same symbol may have an equation file in the EPLD library and a
schematic in the library for another device family. The Libraries Guide
lists this information for each library component.

If you are modifying an existing library symbol and wish to use it in
designs for more than one device family, you will have to store it in
two or more different design directories. If you wish, you can define
different logic for the same symbol in each directory so your
component is optimized for each device family.

Storing Custom Components
After you create your custom component, you should store it in each
design directory where you need to access it.

If you have defined the underlying logic differently for targeting two
or more different device families, you should store the component in
two or more different project directories or library directories. Each
directory would contain the underlying logic for one device family.

Viewlogic Components
You should store your custom library files in your project directory.
You cannot add custom symbols to the XC7000 library directory or
modify any of the Xilinx-supplied symbols or macros. However, you
can copy Xilinx-supplied symbols or macros to your directory,
rename them, and edit them.
5-10 Xilinx Development System

Using Behavioral Modules in Schematics
OrCAD Components
You can store your library file and your macro schematics under the
\XACT\XC7000 library directory. Do not add to or modify the
xc7000.lib file or any of the library macro schematics supplied by
Xilinx. Store equation files for custom primitives in each design
directory for which you want to use the component.

Editing Behavioral Modules for Use in Schematics
This section presents some information about editing behavioral files
to make them work in schematics. If you are unfamiliar with
PLUSASM, see the XEPLD Reference Guide.

The circuit shown in Figure 5-3 demonstrates how to handle many
common situations when using PALs in schematics. This example
deals with the strategies and procedures for incorporating PALs into
a schematic and is not intended to be a complete tutorial.

Figure 5-3 Example Schematic Using PALs

X4458

PL22V10

PLD=PAL1

1

2

3

4

5

6

7

8

9

10

11

23

22

21

20

19

18

17

16

15

14

13

A

B

C

D

E

BUFG

IBUF

IBUF

IBUF

BUFFOE

OBUF

F

F

VDD

G

E

F

L

H

J

K

OBUF

OBUF

OBUF

OBUF

OBUFEX1

IBUF

IBUF

PL22V10

PLD=PAL2

1

2

3

4

5

6

7

8

9

10

11

23

22

21

20

19

18

17

16

15

14

13
XEPLD Schematic Design Guide 5-11

XEPLD Schematic Design Guide
The original circuit for this design used 22V10 PALs and therefore it is
easy to use the PL22V10 library components. The original PAL1
equation file is shown here:

TITLE PAL1
CHIP PAL1 P22V10;
; PINLIST (Highest pin number = 24)
A B C NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC K J H G F NC
; PALCNVT Design Example PAL1
EQUATIONS
F := (B);
G := (F);
G.TRST = (C);
H := (G);
J := (B * K);
K := (B);
K.TRST = (C);

In most cases, equation files can be targeted to library PAL
components with no modification. However, this example shows you
how to modify the equation files when the PAL has tri-state outputs
or bidirectional signals that go off-chip. The modified equation files
are shown here:

TITLE PAL1
CHIP PAL1 P22V10;
; PINLIST (Highest pin number = 24)
A B C G_PIN NC NC NC NC NC NC NC NC NC NC NC NC NC NC K J H G
F NC
; PALCNVT Design Example PAL1
EQUATIONS
F := (B);
G := (F);
G.TRST = (C);
H := (G_PIN);
J := (B * K);
K := (B);
K.TRST = (C);
5-12 Xilinx Development System

Using Behavioral Modules in Schematics
Assigning Output Enable Signals to FOE Nets
Assigning signals to the global fast output enable (FOE) nets reduces
output enable delays and macrocell resource requirements. The
XEPLD optimization software automatically assigns output enable
signals to the global FOE nets whenever possible, but you can also
explicitly specify FOE nets. To specify signal D as an FOE control
signal for output L, do the following:

1. Permanently enable the PAL outputs by connecting the .TRST
control pin to VDD in the schematic.

2. Connect signal L to an OBUFEX1 output buffer in the schematic.

3. Connect signal D to a BUFFOE input buffer in the schematic.

4. Connect the BUFFOE input buffer to the OBUFEX1 output enable
input in the schematic.

Assigning Functions to Fast Function Blocks
You can assign critical functions to Fast Function Blocks (to take
advantage of their higher speed and increased output drive
capabilities) using the “F” attribute on inputs or outputs. Using the
“F” attribute on inputs assigns signals to Fast Inputs.

To assign signal L to a Fast Function Block and signal E to a fast input
pin, do the following:

1. Add the “F” attribute to the net driven by signal L.

2. Add the “F” attribute to the net that is driving signal E.

For more about using Fast Function Blocks, see the “EPLD
Architecture and Design Tradeoffs” chapter. For more about the F
attribute, see the “Attributes” appendix.

Assigning Bidirectional I/O Signals
Two common uses of bidirectional signals are described in this
section. In Case 1, Signal G is a bidirectional output of PAL1 that goes
off-chip. In Case 2, signal K is an input of PAL2 that can be driven by
PAL1 or by an off-chip signal.
XEPLD Schematic Design Guide 5-13

XEPLD Schematic Design Guide
Case 1 — Bidirectional Outputs That Go Off-Chip

To create a bidirectional signal in a schematic for XC7000 devices that
uses pin feedback, you must use two separate pins on the PLD
symbol (one input and one output) even though the physical
implementation in the XC7000 device requires only one I/O pin.

Because signal G in the example was defined as a bidirectional signal
in the original PAL, it must use pin feedback in the XC7000 device. To
create a bidirectional signal G, do the following:

1. Connect signal G of PAL1 (pin 22) to an OBUF output buffer.

2. Create a new input called G_PIN on PAL1 (pin 4). Connect G_PIN
to an IBUF input buffer.

3. Connect the signal G OBUF output and the signal G_PIN IBUF
input to an I/O pad.

4. In the PAL1 equation file, change NC to G_PIN in position four of
the pinlist. This defines G_PIN as a pin.

5. In the PAL1 equation file, wherever signal G appears on the right
side of an equation, change it to G_PIN.

Figure 5-4 A Bidirectional Signal in a PAL

Note: In an XC7000 device, you have the option to use either the
device pin (pin feedback) or the macrocell feedback. Macrocell
feedback is the default for any signal not explicitly defined as pin
feedback by the use of separate input and output pins.

PL22V10

PLD=PAL1

PIN1 PIN23

OBUF

IBUF

G := (F) ; G IS PIN 22
G.TRST = (C);
...
H := (G_PIN); G_PIN IS PIN4

G
PIN2 PIN22

PIN3 PIN21

PIN4 PIN20

PIN5 PIN19

PIN6 PIN18

PIN7 PIN17

PIN8 PIN16

PIN9 PIN15

PIN10 PIN14

X4838

PIN11 PIN13

IOPAD
5-14 Xilinx Development System

Using Behavioral Modules in Schematics
Case 2 — Using Both Macrocell and Pin Feedback

Within the PAL1 equation file, the internal feedback of signal K is
always used.

Within the PAL2 equation file, you want to use the signal at the
XC7000 device pin.

To change signal K to an XC7000 I/O signal, and to use macrocell
feedback for PAL1 and pin feedback for PAL2, do the following:

1. Connect signal K (PAL1, pin 19) to an OBUF output buffer.

2. Connect signal K (PAL2, pin 3) to an IBUF input buffer.

3. Connect the OBUF output and the IBUF input to an I/O pad.
XEPLD Schematic Design Guide 5-15

XEPLD Schematic Design Guide
5-16 Xilinx Development System

Chapter 6
XEPLD Schematic Design Guide — 0401265 01 6-1

Design Verification

This chapter describes the simulation methods, and reports available
to help you analyze and verify your design.

Simulating Designs
XEPLD supports a variety of third-party simulators, allowing you to
perform functional or timing simulation of your finished design.

Functional simulation is supported by models provided in the
XC7000 library for each of the library symbols included in that
library. If your design contains custom primitives or PLDs defined
behaviorally, no simulation model exists for those symbols, and your
design cannot be functionally simulated.

To perform timing simulation on a design, you must first translate it
into a netlist consisting of XC7000 library models. XEPLD
automatically creates simulation files in the XNF netlist format,
which can be exported to the Viewlogic ViewSim simulator (.WIR),
or the OrCAD simulator (.VST) using the Xilinx-supplied CAE tool
interfaces and libraries. You can also use .XNF files with other
simulators that support Xilinx.

Note: When XEPLD processes your design, some of your original
nodes may be removed due to circuit optimization. These nodes
cannot be viewed or stimulated. All of the external I/O signals are
always maintained.

Making a ViewSim or VST Functional Simulation Model
To create a Viewlogic functional simulation model, either select the
Verify ➝ VSM command, or enter Viewlogic (DesignEntry ➝
Workview), open the top-level schematic, and select Export ➝
Wirelist ➝ ViewSim . This creates a .VSM file for simulation.

XEPLD Schematic Design Guide
To create an OrCAD functional simulation model, select the Verify
➝ XSimMake command from the XDM menu. Select as the program
flow Orcad_Epld_Func . This creates a VST file for simulation.

See the OrCAD Interface User Guide and Viewlogic Interface User Guide
for more information on simulation.

Making a ViewSim or VST Timing Simulation Model
To create a Viewlogic or OrCAD timing simulation model, follow
these steps; for all commands, use the default options:

1. Select the Translate ➝ XEMake command from the XDM menu.
This compiles your design, creating a design_name.VMH file.

2. Select the Verify ➝ XSimMake command from the XDM menu.

On the SUN platform, Viewlogic is the default. On the PC
platform, you are prompted for the type of simulator:

● Select Orcad_Epld_Timing for OrCAD.

● Select Viewlogic_Epld_Timing for Viewlogic.

3. Select your file name from the list of .VMH and .VMD files that are
displayed.

XEPLD creates a design_name.VST file (for OrCAD) or a
design_name.WIR file (for Viewlogic).

See the OrCAD Interface User Guide and Viewlogic Interface User Guide
for more information on simulation.

Using XNF-Compatible Simulators
Many third-party simulators can support .XNF files. These files
contain all necessary timing and wirelist information.

To create an XNF model of your design:

1. Select the Translate ➝ XEMake command from the XDM
menu. This compiles your behavioral design creating a
design_name.VMH file.

2. Select the Verify ➝ VMH2XNF command from the XDM menu.
This displays a list of .VMH files.

3. Select your file name from the list.
6-2 Xilinx Development System

Design Verification
XEPLD creates a design_name.XNF file that can be simulated with
any XNF-compatible simulator that provides an XC7000 library.

Simulating Board-Level Designs in Viewlogic
You can simulate a circuit that contains one or more EPLD devices
and even some non-EPLD devices using Viewlogic software.

You do not use XSimMake to prepare the design for board-based
simulation, because XSimMake can only process chip-level designs,
and you must run VSM on the entire board-level design.

As with chip-level designs, you must pulse the PRLD signal at the
beginning of the simulation to force all registers in the EPLDs to a
known state.

Functional Simulation

To perform functional simulation on a board-level design, follow
these steps:

1. Make sure all symbols in each EPLD design are from the XC7000
library. The XC7000 alias on each symbol allows you to mix
technologies in the board-level simulation.

2. Create a symbol for each EPLD design. A simple way to do this is
to run each design through the EPLD fitter to generate
design_name.XSF files, then run SymGen on each .XSF file.

3. Create a board-level schematic containing the EPLD chip symbols
and any other symbols that are part of the system.

4. Run vsm on the entire board-level design to generate the system
functional model. You are now ready to simulate.

Timing Simulation

To perform timing simulation on a board-level design, follow these
steps:

1. Run each design through the EPLD fitter.

2. If you do not already have chip symbols for your EPLDs, run
SymGen on each design_name.XSF file the fitter produces to create
chip symbols for the board-level schematic.
XEPLD Schematic Design Guide 6-3

XEPLD Schematic Design Guide
3. Run VMH2XNF on each EPLD design.

4. Run XNF2WIR on each EPLD design using the -l option. This
option tags each component within the EPLD model with the
XC7000 alias, allowing you to mix technologies in the board-level
simulation.

5. Create a board-level schematic containing the EPLD design
symbols and any other symbols that are part of the system.

6. Run vsm on the entire board-level design to generate the system
timing model. You are now ready to simulate.

Preload Values in Functional and Timing Simulation
The only differences in the functionality of a design expected between
functional and timing simulation involve the initial states of registers
and latches in the design. Functional simulation assumes that preload
values are as defined in the library components. Timing simulation
uses the actual preload values implemented by the fitter.

When functional and timing simulation yield different results, it is
probably because the XEPLD fitter did not use the library default due
to the preload optimization feature, or you specified INIT attributes,
which are implemented by the fitter and take effect only during
timing simulation.

For example, if an FDR component is mapped to a Fast Function
Block, the FDR will appear to preload to 0 during functional
simulation, because that is how the library component is defined.
However, during timing simulation, this FDR will actually preload to
1, because that is physical preload state of an FFB macrocell register
where the FD component was mapped.

See the “EPLD Architecture and Design Tradeoffs” chapter and the
PRELOAD_OPT and INIT attribute descriptions in the “Attributes”
appendix for more information about preload values.
6-4 Xilinx Development System

Design Verification
Verifying Designs
After you have compiled your design using the Translate ➝
XEMake command, XEPLD generates reports that tell you how your
design fits in the target device and how fast the design will run.

● The Resource Report, design_name.RES, gives you a summary of
the logic utilization of the device, your I/O usage, and the
resources that were left unused.

● The Equation Report, design_name.EQN, is a PLUSASM
behavioral design file created by the XEPLD optimizer that shows
you exactly how all your logic was implemented after XEPLD
performed logic optimization. Optimization includes collapsing
of combinatorial logic nodes into device outputs and registers,
assigning signals to global FastCLK and FOE nets, utilization of
input pad registers, and the creation of UIM-AND functions. This
report contains all declarations and equations produced by the
XEPLD optimizer to implement your design.

● The Pinlist Report design_name.PIN shows the final XC7000 device
pinout of your design.

● The Timing Report design_name.TIM shows the calculated worst-
case timing based on the physical implementation of your design.

Verifying Design Fit
When XEPLD has successfully compiled your design, you will see
the following message on your screen:

Design Successfully Mapped. Examine the following
report files:

Examine the Resource Report to determine the amount of chip
resources used to implement your design and how much remain. An
example Resource Report is shown on the next page. The schematic
for this report is the Johnson counter example in the “Getting Started
with Schematic Design” chapter. This design was targeted for the
XC7318-5PC44.

The Logic Resources section of the Resource Report shows that 4
macrocells were used in the design and 14 remain available for
additional logic. The Pin Resources section shows the types of signals
required by the design, the types of device pins used to satisfy the
XEPLD Schematic Design Guide 6-5

XEPLD Schematic Design Guide
signal requirements, and the remaining device pins that can be used
for additional signals.

This report shows that the 2 input signals were placed on input pins,
3 of the 4 output signals were placed on I/O pins, and the remaining
output was placed on an FOE pin. A FastCLK pin was also used. A
total of 28 pins (14 input and 14 I/O) remain available for additional
input signals.

XEPLD, Version 5.0 Xilinx Inc.
 Resource Report
 Circuit name: JCOUNT
Target Device: XC7318-5PC44 Integrated: 7- 1-94, 11:38AM

LOGIC RESOURCES

 Required Used Remaining
Function Blocks 1 1 1
Macrocells 4 4 14

PIN RESOURCES:

Type Req --------Used-------------- --------Remaining------
 I O I/O Fclk Foe Cen Tot I O I/O Fclk Foe CenTot
Inputs 2 2 0 2 14 14 28
Outputs 4 0 3 0 1 0 4 0 14 0 0 0 14
I/Os 0 0 0 14 14
Fclks 1 1 1 1 1
Foes 0 0 0 1 1
Cens 0 0 0 0 0
 --- --- -- --- --- --- --- ---
 7 2 0 3 1 1 0 7

Note:The design requires 0 pins with Fast Input capability.
 This device has 11 pins with Fast Input capability.

 End of Resource Report
6-6 Xilinx Development System

Appendix A
XEPLD Schematic Design Guide — 0401265 01 A-1

Common Questions and Answers

This appendix lists frequently asked questions about EPLD software
and its CAE tool interfaces, and gives explanations and solutions.

Drawing the Design
This section lists problems you may encounter because your CAE
tool drawing package is not properly configured for XEPLD
software.

Why Do I See White Boxes Instead of Components?
If you are a Viewlogic user and your schematic contains symbols
from a device family library (such as XC7000) that is not included in
your viewdraw.ini file, you see white boxes when you view your
schematic.

A likely cause of this problem is forgetting to run the Altran program
when converting from one device family to another; see the “Device-
Independent Design” chapter for details. Even after you run Altran,
components from the old library that are not in the new library
appear as white boxes — you should find equivalent components
that are compatible with the new library.

Another likely cause is not configuring viewdraw.ini properly, with
correct pathnames and library aliases. The example in the “Getting
Started with Schematic Design” chapter includes information about
how to configure Viewlogic software for the XC7000 device family.

XEPLD Schematic Design Guide
Why Are Some of My Components Missing?
If you are an OrCAD user and your schematic contains symbols from
a device family library (such as XC7000) for which OrCAD is not con-
figured, you see missing components when you view your schematic.

You probably were converting this design to a new device family and
forgot to do one of the following:

● Configure OrCAD using the XDraft command.

● Substitute symbols compatible with the new library for symbols
compatible with the old library.

The example in the “Getting Started with Schematic Design” chapter
includes information about how to configure OrCAD software for the
XC7000 device family.

Fitting the Design
This section lists problems you may encounter when you run fitter
commands such as XEMake or FitNet.

What Does “Component Not Found” Mean?
If you get this error message:

ppi0005:instance: component_name type: component_type:
COMPONENT IS NOT FOUND IN A LIBRARY

it means one of the following occurred:

● You did not assemble the equation file for a custom primitive com-
ponent using the PLUSASM command before you ran FitNet.

● You did not assemble a PAL component using the PLUSASM
command before you ran FitNet. If this was the cause of the error,
you also get this message:

ppi2029:[Error] Cannot find PLD ' pld_file'! Make
sure the component is assembled!

● You targeted the design to an XC7272 device while running all the
commands up to XNFMerge, then targeted another XC7000 device
when you ran FitNet, or vice versa. The library files for XC7272
devices have .VMD extensions, while the library files for all other
A-2 Xilinx Development System

Common Questions and Answers
devices have .VMH extensions. The XEPLD software was looking
for the wrong extension.

● One of the symbols in your design is not XC7000-compatible.

● A common library macro in your design has not been converted
to XC7000 format using Altran (Viewlogic) and a macro
subcomponent is not XC7000-compatible.

● You renamed your library alias in your viewdraw.ini file, and the
XEPLD software cannot find the components within a macro
schematic because they have the original alias.

● Your XACT variable is not properly set, and the XEPLD software
cannot find the CLIB directory.

You can avoid the first three of these situations by using XEMake,
which runs PLUSASM automatically and targets the same device
from beginning to end, to process your design.

What Does “Component Not Supported” Mean?
If your target device is an XC7200 device, which contains only High-
Density Function Blocks, but you used a PLFFB9 component in your
design, which can only map to a Fast Function Block, you will see a
message such as the following:

dr0043:[Error] Component ' component_name' is NOT
supported in the device_name device.

If your target device is an XC7336 or XC7318, which contains only
Fast Function Blocks, but you used a component, such as an adder,
that can only map to a High-Density Function Block, you will see a
message such as the following:

dr0074:[Error] The instance 'component_name'
uses arithmetic mode. This cannot be used with
the XC7336/XC7318 devices which do not support
arithmetic carry-in from previous macrocells.
Choose a new component or use another XC7000
device.

To solve either problem, choose a different XC7000 device or use a
different PLD component.
XEPLD Schematic Design Guide A-3

XEPLD Schematic Design Guide
Why Can’t I Make a Direct Pin-To-Pin Path?
You see the following error message if you have an input pad
connected directly to an output pad with nothing in between:

ppi2047:[Error] Input buffer ' buffer_name' directly
connects to output buffer ' buffer_name'. A BUF
component must be inserted between these buffers
to form a direct pin-to-pin data path.

Adding a BUF component eliminates this message, but it is a good
idea to verify that you did not forget to include part of your design.

A similar error occurs if you try to drive an OBUF directly with VCC
or GND:

ppi2044:[Error] Illegal connection between VCC
and output buffer ' buffer_name'. Insert a BUF
component to generate a constant-driven output
pin.

ppi2045:[Error] Illegal connection between GND
and output buffer ' buffer_name'. Insert a BUF
component to generate a constant-driven output
pin.

Again, a BUF before the OBUF eliminates the problem.

What Does “Has No Logic Connection” Mean?
The following warning message means that the software removed a
hanging input or an input made unnecessary by optimization:

pl0112:Port ' port_name' removed because it has no
logic connection!

Your design will run despite this warning, but if you have hanging
inputs it is a good idea to verify that you did not misspell a net label
or forget to include part of your design. If the input has been
removed by optimization, you do not need to do anything.
A-4 Xilinx Development System

Common Questions and Answers
What Do I Do If I Have “Hanging Inputs”?
The following warning message means that you have one or more
component inputs that are unused and not tied to VCC or GND:

dr0025:Hanging input (component_name: pin_name).

Your design will continue mapping despite this warning, but it is a
good idea to verify that the hanging input has no possible effect on
the functionality of your design.

The result of a hanging input is not always clear and in some cases
may produce incorrect functionality. For example, if the select input
to a 2-to-1 multiplexer (M2_1) is left hanging, the multiplexer’s
output will be the logical OR of its data inputs.

It is a good idea to tie all unused inputs to VCC or GND, because
when you next look at the schematic, you will see what you intend to
do. For example, tieing a CLR signal to GND makes it obvious that
you never intend to clear that register.

You can leave component outputs unconnected. Inputs and outputs
of PLD symbols (such as PL22V10) are an exception: you should
leave all unused inputs and outputs hanging.

Why Are Some of the Outputs Removed?
You may see this message if you left outputs hanging in your design:

pl0111:[Warning] ' component_name' does not drive
anything and it is removed.

This message occurs if all the outputs of a component are unused.
Usually the removed component is a subcomponent of a macro (see
the “Hierarchical Design” section of the “Design Applications”
chapter for information about macros). If this is the case, you can
ignore this message.

If, however, the removed component appears in your schematic, you
should verify that the component outputs are connected properly. A
misspelled net label can sometimes cause this message.
XEPLD Schematic Design Guide A-5

XEPLD Schematic Design Guide
What Does “The Tristate Will Affect the Pad” Mean?
If your design includes a BUFE that drives an OBUF that in turn
drives an IOPAD, the pad’s output enable is controlled by the BUFE.
This is different from FPGA behavior. The XEPLD software will also
display the following message:

Pin '$1I8:O' is tristated and driving an OBUF(E).
The tristate will affect the pad.

What Does “Connects to an External Pad” Mean?
In FPGA designs, a BUF or logic component can drive a BUFG. In
EPLD designs, however, this arrangement produces the following
error message, because global buffers like BUFG can be connected
only to pads:

ppi2038:[Error] Component ' component_name' directly
connects to an External Pad! Only i/o buffer
components may connect to External Pads.

Placing an OPAD and an IOPIN in front of the BUFG eliminates this
message. See “Assigning Logic to Fast Function Blocks” in the “EPLD
Architecture and Design Tradeoffs” chapter for more details.

Note: In Version 5.1, you can drive a BUFG with any logic component
and you will not get an error message.

What If My Design Doesn’t Fit?
If your design requires more macrocells or signal pins than are
available in the target device, you must either reduce your logic
requirements or choose a larger device. The XC7000 family includes a
wide range of device types and packaging options from which to
choose.

However, even if the target device has enough macrocells and signal
pins, your design may still not fit due to the limitations your design
places on the device. If you have only a few remaining unmapped
functions, you can possibly get your design to fit by controlling the
optimization of device resources.

The Resource Summary section of the Partitioning Report
(design_name.PAR) tells you the total amount of logic and pins used
and the amount of remaining resources.
A-6 Xilinx Development System

Common Questions and Answers
There are three reasons why your design may not fit into the
available resources of a target device:

● Your design is product term constrained.

● Your design is function block input constrained.

● Your design cannot access the Fast Function Block resources.

If Your Design is Product Term Constrained

Product term constrained function blocks have only a few used
macrocells (outputs) but most of the shared product terms are used.
The example Partitioning Report shown here illustrates this situation:

Part # of # of Input Signal # of O/IO 0/IO Size
Name Outputs Lines Used Inputs Shared PT Req Avail Factor
FB1 8 24 24 0 0/0 0/8 9
FB2 7 12 12 0 0/0 0/8 7
FB3 2 10 10 12 1/0 2/0 9
FB4 3 12 12 10 0/0 0/3 8
FB5 9 21 32 8 0/0 0/3 9
FB6 1 10 10 6 0/0 0/3 4
OVERFLOW0 1 10 10 7 0/0 */* 5

__ __ __ __ ___ ____ __
31 1/0 2/25 51

The target device in this example was an XC7354 in a 44 pin PLCC
package. This device has six function blocks named FB1 through FB6.

Note: The Part Name “OVERFLOW0” is the name assigned by the
software to the unmapped logic.

You can decrease the usage of shared product terms by controlling
the function splitting parameters contained in the XEPLD.CFG file.
An example of this file is shown here:

(alias power_port VCC)
(alias ground_port GND)
(alias power_net VDD;VCC)
(alias ground net GND)
(alias pl20V8 pal20V8;gal20V8;g20V8;p20V8;p20V8r;20V8)
(alias pl22V10 pal22V10;gal22V10;p22V10;g22V10;22V10)
(alias fpga hiper;hyperpld;xepld)

Enclose the following advanced user switches in parenthesis to enable them
The following control when PLUSASM splits equations with too many product
terms and the size of the split subfunctions it ceates.

(alias max_shared_before_splitting 12)
alias max_shared_after_splitting 1
XEPLD Schematic Design Guide A-7

XEPLD Schematic Design Guide
1. Copy the XEPLD.CFG file from the \XACT\DATA directory into
your design directory. This file contains the following line:

(alias max_shared_before_splitting 12)

This line controls how many shared product terms a function can
use before it will be split.

2. Reduce the variable far enough to cause the product term
intensive functions to split into multiple macrocells. For example:

(alias max_shared_before_splitting 6)

This increases macrocell count but reduces the number of partitions.

In this example, by reducing the max_shared_before_splitting
variable, you can cause the functions mapped into function blocks 3
and 4 to split, allowing the function contained in OVERFLOW0 to be
mapped. When you reduce this variable, only the nodes are affected;
outputs will not split and design performance usually remains
unaffected because the split functions are re-combined in the UIM if
possible, which adds no delay.

If Your Design is FB Input Constrained

Input constrained function blocks have only a few used macrocells
but most of the function block inputs are used. This situation is
illustrated in the example Partitioning Report shown here:

Part # of # of Input Signal # of O/IO 0/IO Size
Name Outputs Lines Used Inputs Shared PT Req Avail Factor
FB1 8 24 24 0 0/0 0/8 9
FB2 7 12 12 0 0/0 0/8 7
FB3 2 21 21 3 1/0 2/0 9
FB4 3 21 22 2 0/0 0/3 9
FB5 9 21 21 0 0/0 0/3 9
FB6 1 10 10 4 0/0 0/3 4
OVERFLOW0 1 21 21 1 0/0 */* 9

__ __ __ __ ___ ____ __
31 1/0 2/25 56

If you have combinatorial nodes in your design, you may benefit
from selectively turning off the XEPLD collapser. This benefits both
product term and fan-in constrained designs. However, design
timing will be affected because the signal path will be lengthened.
Use the LOGIC_OPT and OPT attributes to control logic collapsing.

To turn off logic collapsing for the whole design, use the
A-8 Xilinx Development System

Common Questions and Answers
LOGIC_OPT=OFF attribute on a TBLOCK-type component.

To turn off logic collapsing for all the outputs of a particular
component, use the OPT=OFF attribute:

To turn off logic collapsing only for a specific component output, add
a BUF component on that output and use the OPT attribute on the
output of the BUF component. Figure A-1 summarizes methods of
turning logic collapsing off.

Figure A-1 Methods of Turning Logic Collapsing Off

Note: Manually splitting any registered functions with a large
number of inputs may also help.

If Your Design has Unused Fast Function Blocks

If your design does not fit into an XC7300 device and the Partitioner
report (design_name.PAR) tells you that the Fast Function Blocks have
very little mapped to them, you may be able to make the design fit by
assigning more logic to the Fast Function Blocks. Refer to the section
in the “EPLD Architecture and Design Tradeoffs” chapter entitled
“Assigning Logic to Fast Function Blocks.”

X4869

X74_139

OPT=OFF

LOGIC_OPT=OFF

B

G

A Y0

Y1

Y2

Y3

For all Outputs of One (1) Component

For the Entire Design

X74_139
OPT=OFF

B

G

A Y0

Y1

Y2

Y3

For a Single Output

BUF

Title:

Date: Ver:

Rev:

Comments:
XEPLD Schematic Design Guide A-9

XEPLD Schematic Design Guide
Simulating the Design
This section lists problems you may encounter during functional or
timing simulation.

Why Can’t I Functionally Simulate a Design with a
Behavioral Module?

Functional simulation uses simulation models that are pre-defined
for each library component. Behavioral modules do not have models
in the library. Therefore, you can perform only timing simulation on
designs containing behavioral modules, after running the fitter.

If you try to perform functional simulation on a design with a
behavioral module, you will see some kind of error message from
your CAE tool referring to the behavioral module. For example,
ViewSim displays a message like this:

Error - Could not find WIR file xc7000:pl22v10.1

Why Are My Registers Stuck at the Preload Value?
At the beginning of a simulation, you must pulse the MRESET signal
Low then High, or pulse the PRLD signal, which is MRESET inverted,
High then Low.

The assertion of the pulse forces all registers to a known state. The
deassertion allows the registers to change states. If you do not
deassert MRESET (or PRLD), your registers cannot change state.

Why Are My Internal Nodes Not Visible During
Timing Simulation?

The EPLD fitter optimizes your design for efficiency, eliminating
many internal combinatorial nodes. (If you are a Viewlogic user and
you view your back-annotated schematic during timing simulation,
these nodes appear with a “?”.)

Nets between IPADs and IBUFs are observable, as are nets between
OBUFs and OPADs. However, the outputs of IBUFs and the inputs of
OBUFs are not observable. The outputs of IFDs or registers optimized
into input pad registers are also not observable. Other nets may or
A-10 Xilinx Development System

Common Questions and Answers
may not be observable, depending on the results of optimization. To
see which of these other nets are observable, see the design.LGX file.

If you wish to observe the outputs of registers mapped into
macrocells, and these nets are not listed in the .LGX file, you can view
these nets during simulation using the following method. (You can
also observe the immediate inputs of these registers, although these
are unlikely to be the component inputs.)

1. Label the net connected to the register input or output. (If the
node is not optimized, it will be visible by its original name
during timing simulation.)

2. Label the register component having the output (or input) you
want to view.

3. Fit your design using XEMake.

4. View the mapping report (design.map). Look for the component
label in the Function Name column.

5. When you find the component label, look for the specific output
you want if the component has more than one output (even if you
want the input, look for the output). The output name is separated
from the component name by a colon (:).

Inversions are performed before the register in XC7000 devices. If
the output name of the register has an _INV suffix, the signal you
observe will be inverted from the node in your original design.

6. Look in the Macrocell Location column to find the macrocell
number to which the output has been assigned.The Macrocell
Location name has the following format.

FBfb#-mc#

for example:

FB8-6

7. For the register output, use the following name as the signal name
for timing simulation:

MCQ_fb#_mc#

for example:

MCQ_8_6
XEPLD Schematic Design Guide A-11

XEPLD Schematic Design Guide
8. You can also observe the signal on the D-input to the same register
using the name:

MCD_fb#_mc#

for example:

MCD_8_6

You can also preserve nodes using the OPT=OFF component
attribute. When you apply this attribute to a component, all of that
component’s outputs remain visible. To preserve a single output of a
component with multiple outputs, insert a BUF component on that
signal and apply OPT=OFF to the BUF.

Note: Using OPT=OFF can change the fit and timing of your design,
especially if you insert a buffer and apply OPT=OFF to it.

Keep in mind that timing simulation simulates your design as it is
actually implemented in the chip.

Why Do Functional and Timing Simulation Yield
Different Results?

The only functional differences expected between functional and
timing simulation involve the initial states of registers and latches in
the design. Functional simulation assumes that preload values are as
defined in the library components and the .PRLD equations in
behavioral modules. Timing simulation uses the actual preload
values implemented by the fitter.

When functional and timing simulation yield different results, it is
probably because the XEPLD fitter did not use the library default and
.PRLD equation values due to the preload optimization feature.

See the “EPLD Architecture and Design Tradeoffs” chapter and the
PRELOAD_OPT and INIT attribute descriptions in the “Attributes”
appendix for more information about preload values.
A-12 Xilinx Development System

Appendix B
XEPLD Schematic Design Guide — 0401265 01 B-1

Attributes
Attributes, which you place in your schematic, allow you to control
the following aspects of how the software processes your design:

● Linking of PLD symbols and PLUSASM equation files
● Pin assignment
● Power consumption
● Optimization of logic, registers, and control signals
● Allocation of Fast Function Block resources

Attributes are used to express information specific to each design, as
opposed to run-time options entered through the XDM menu or
command line. There are three ways that attributes are placed in the
schematic:

● Component attributes, such as PLD, OPT, and LOC, affect only
the component instances on which they are placed.

● Global attributes, such as PRELOAD_OPT and LOGIC_OPT,
affect the entire design. In OrCAD software, these are text.

● Net or Flag attributes affect individual component outputs or
inputs and are represented by attributes applied to nets.

Component Attributes
The component attributes specific to EPLD designs are as follows:

● PLD=file_name

● LOC=pin_name

● LOWPWR={ON | OFF}
● OPT={OFF | ON | UIM}

● INIT={R | S}

XEPLD Schematic Design Guide
Viewlogic Procedure

Use the Add ➝ Attr command to assign a component attribute by
using the following procedure:

1. Select the schematic component.

2. Select Add ➝ Attr .

3. Click the middle mouse button.

4. Type the attribute string, for example LOWPWR=OFF.

5. Position the text and click the middle mouse button.

6. If you are assigning more than one attribute to the same
component, repeat steps 3 through 5 for each attribute.

OrCAD Procedure

Use the OrCAD Edit command to assign a component attribute by
using the following procedure:

1. Position the cursor over the schematic symbol.

2. Select Edit .

3. Select Edit (again).

4. Select nth Part Field , where n is any part field you choose
from 1st to 8th.

5. In the Name field enter:

attribute_name=value

Global Attributes
The global attributes specific to EPLD designs are as follows:

● LOWPWR=ALL

● LOGIC_OPT=OFF

● MRINPUT=ON

● MINIMIZE=OFF

● UIM_OPT=OFF

● FOE_OPT=OFF
B-2 Xilinx Development System

Attributes
● CLOCK_OPT=OFF

● REG_OPT=OFF

● PRELOAD_OPT=OFF

The PART attribute is a global attribute used by both EPLD and
FPGA. For Viewlogic and OrCAD software, the procedure for using
the PART attribute is different than the EPLD-specific global
attributes; see the PART attribute description later in this chapter.

Viewlogic Procedure

To use one or more EPLD-specific global attributes, first place one of
the title block symbols from the library into the schematic. The title
block symbols include the various size sheet symbols, such as
ASHEETP and ESHEETL, and the TBLOCK symbol. Then apply the
global attributes to the title block symbol using the Add ➝ Attr
command, just as you would apply component attributes to a regular
component.

OrCAD Procedure

To use one or more EPLD-specific global attributes, you must first
place the keyword text string

|GLOBAL

into your schematic. Each global attribute is then listed beneath the
|GLOBAL keyword. Preceed each attribute string with the pipe
character (|). Align the pipe characters of all attribute strings directly
beneath the pipe character of the |GLOBAL keyword and leave no
blank space between text lines. For example:

|GLOBAL
|LOWPWR=ALL
|PRELOAD_OPT=OFF

Net or Flag Attributes
The F and H attributes are called Net attributes in Viewlogic
software, and Flag attributes in OrCAD software.
XEPLD Schematic Design Guide B-3

XEPLD Schematic Design Guide
Net Attributes (Viewlogic)

Use the Add ➝ Attr command to assign a net attribute by using the
following procedure:

1. Select the net.

2. Select the Add ➝ Attr command. Click with the middle mouse
button to activate the command.

3. Type F or H in response to the prompt, for example:

Attribute text string: F

4. The F or H appears on the screen. Move it where you want it.

5. Click with the middle mouse button to place the attribute.

Flag Attributes (OrCAD)

In the XC7000 library you will find symbols named F and H, which
are used to apply these attributes. To apply a flag attribute to an input
or output pin of a component, place and connect the desired flag
attribute symbol to the wire connecting to the chosen pin as shown in
Figure B-1.

Figure B-1 Applying the F Flag Attribute

Target Device Selection — The PART Attribute
You can place the global PART attribute in your schematic to select
the target EPLD device for your design. Refer to the Release Notes or
the XDM Part menu for a list of EPLD device names supported by the
software.

Note: This attribute is called PARTTYPE in OrCAD.

Q0D0

C

FD4RE

D1

X4870

Q1

Q2

Q3

D2

D3

CE

R

F

B-4 Xilinx Development System

Attributes
Selecting a part type in the XDM menu other than InDesign before
invoking the Fitter overrides any PART attribute in your schematic.

The format of the PART value is as follows:

PART=dddd- sspppp

dddd is the device number, for example 7354

ss is the speed grade, for example 12

pppp is the package type and pin count, for example PC68

Viewlogic Procedure

Apply the PART attribute as an unattached schematic attribute.
Follow these steps:

1. Deselect all components by clicking on a blank area of your
schematic.

2. Select the Add ➝ Attr command.

3. Click with the middle mouse button.

4. Type the PART attribute string.

5. Position the attribute anywhere in the schematic and click with
the middle mouse button.

OrCAD Procedure

Unlike other global attributes used for EPLD designs, the PARTTYPE
attribute is a stand-alone text string and should not be placed beneath
the |GLOBAL keyword in the schematic. Simply place the text

|PARTTYPE=dddd- sspppp

anywhere in your schematic other than the GLOBAL attribute list.

PLD Equation File Name — The PLD Attribute
The PLD=file_name attribute on a PLD symbol specifies the name of
the file with the logic equations for that PLD. This attribute is valid
on custom primitive symbols (target COMPONENT in PLUSASM)
and the following PLDs: PL20V8, PL22V10, PL20PIN, PL24PIN,
PL48PIN, PLFB9, and PLFFB9.
XEPLD Schematic Design Guide B-5

XEPLD Schematic Design Guide
Do not specify the file extension in the PLD=file_name attribute. This
file must be in PLUSASM (.pld) or PALASM (.pds) format, although
you can start with an ABEL file and convert it to PLUSASM or
PALASM.

You must also specify this file_name as the first parameter of the CHIP
statement inside the equation file, as described in the PLUSASM
Language Reference section of the XEPLD Reference Manual. For
example:

CHIP file_name P16V8

Within the .pld file, the pin list must contain the names of all the
signals connected to all the PLD’s pins, in the proper order. For
example, if you have the signals shown in Figure B-2:

Figure B-2 Example PLD Component

you must include the following pin list in the equation file:

TITLE CNTR6

CHIP CNTR6 P16V8;

;PINLIST (Highest pin number = 20)
x4clk start NC rd cs NC NC NC NC NC
NC NC read c5 c4 c3 c2 c1 c0 NC

All PLD components in your schematic design must have the PLD
attribute. Running XEMAKE automatically assembles all equation
files named by all PLD=file_name attributes found in the schematic. If
you do not use XEMAKE then you must assemble each PLD file in
the design using PLUSASM before you run FITNET.

Like PLDs, user-specified (custom) primitives are defined by
PLUSASM equation files. The PLD=file_name attribute is not required
but can be applied as a convenient way to have your equation file

C0

C1

C2

C3

C4

C5

READ

BUFG
PL20PIN

PLD=CNTR6

PIN1 PIN20

PIN2 PIN19

PIN3 PIN18

PIN4 PIN17

PIN5 PIN16

PIN6 PIN15

PIN7 PIN14

PIN8 PIN13

PIN9 PIN12

PIN10 PIN11

X4871

RD

CS
B-6 Xilinx Development System

Attributes
automatically assembled when XEMAKE is invoked. If you omit the
PLD attribute, FITNET will expect to find a bitmap file for the symbol
(symbol_name.VMH) in your local CLIB subdirectory.

If you forget to specify a file name for the PLD attribute, you get this
message:

ppi2033:[Error] There is a ' PAL_name' -component
missing property PLD!

Pin Assignment — The LOC Attribute
Use the LOC=pin_name attribute on a PAD symbol to assign the
signal to a specific pin. The PAD symbols are IPAD, OPAD, IOPAD,
and UPAD. The pin name is Pnn for PC packages; the nn is a pin
number. The pin name is rc (rowcolumn) for PG packages. Examples
are LOC=P24 and LOC=G2.

Pin assignments are unconditional in that the software will not
attempt to relocate a pin if it cannot achieve the specified assignment.
You can apply the LOC attribute to as many PADs in your design as
you like. However, each pin assignment further constrains the
software as it automatically allocates logic and I/O resources to
internal nodes and I/O pins with no LOC attributes.

To save all resulting pin assignments so they are preserved the next
time you modify and re-integrate the design, use the PinSave
command in the XDM Translate menu. This saves the pin
assignments to a design_name.vmf file. You can override individual
pin assignments saved in the .vmf fileby changing or add
LOC=pin_name attributes in the schematic.

Note: Pin assignment using the LOC attribute is not supported for
bus components such as OBUF8.

Power Setting — The LOWPWR Attribute
This attribute is valid only for XC7300 designs. You can use this
attribute as either a global or component attribute.

The default is LOWPWR=OFF (high speed) for all macrocells used in
the design unless otherwise specified.
XEPLD Schematic Design Guide B-7

XEPLD Schematic Design Guide
To make low power the global default power setting, place the global
attribute LOWPWR=ALL in the schematic. (See the “Global
Attributes” section in this chapter for instructions.)

To determine the power setting of the macrocells used by an
individual symbol, use LOWPWR=ON or LOWPWR=OFF (if the
global LOWPWR=ALL was used). This attribute is ignored if
assigned to a symbol that uses no macrocells, such as an inverter,
AND/OR gate (when optimized) input register, and so on.

F/H
Use the F or H net attribute in an XC7300 device to specify whether
macrocell implementing a component output should be placed in a
Fast Function Block (F), or a High-Density Function Block (H). These
attributes are represented in Workview by an attribute applied to the
net and in OrCAD by component symbols.

The F attribute is ignored on outputs of components that require
features only present in High-Density Function Blocks, such as the
following:

● PLFB9

● ADD symbols

● ADSU symbols

● ACC symbols

● BUFCE

● IFD

● IFDX1

● ILD

● COMPM

● LD

● FDCP, FDCPE

● OBUFT

● OFDT

● XOR7, XOR8, XOR9
Note: The BUFT and BUFE symbols are allowed for external outputs
only and must allow FOE optimization.
B-8 Xilinx Development System

Attributes
The H attribute is ignored on outputs of a PLFFB9.

For logic not labeled with F or H attributes, the XEPLD software
attempts to put as much logic as possible in the Fast Function Blocks
first, then starts filling the High-Density Function Blocks.

MRINPUT
Specifying the MRINPUT=ON global attribute in XC7354 or XC7336
designs changes the Master Reset pin to an ordinary input. If this
attribute is used, the EPLD device is initialized only on power-up.

Logic Optimization Attributes
Use the logic optimization attributes to control optimization of part
or all of your design.

OPT=OFF and OPT=ON

The OPT=OFF component attribute inhibits logic optimization of all
macrocells used by a symbol. OPT=ON can override the
LOGIC_OPT=OFF global attribute for individual symbols.

The logic optimizer collapses the levels of logic to remove
intermediate nodes. Components are optimized forward into
components connected to their outputs.

If you build combinational logic using low-level gates and
multiplexers, the software attempts to pack all logic bounded
between device I/O pins and registers into a single macrocell.

The logic optimizer first removes all internal logic that is not used by
any other logic or output buffer and is not explicitly in a PARTITION
statement.

The logic optimizer moves logic forward by collapsing combinational
expressions into their fanouts. If collapsing an expression into all
fanouts succeeds, the original macrocell logic becomes unused and is
removed.

The logic optimizer does not collapse an expression into its fanouts if
the resulting expression uses too many product terms or inputs.

The logic optimizer also moves forward any logic, whether
combinational or sequential, that is buffered by a tri-state buffer.
XEPLD Schematic Design Guide B-9

XEPLD Schematic Design Guide
However, logic that itself contains a tri-state control is not moved
forward.

The OPT attribute has no effect on any symbol that contains no
macrocell logic, such as an I/O buffer.

OPT=UIM

OPT=UIM forces placement of an AND function in the UIM. It is
available in Version 5.1 of the XEPLD software. The software
automatically moves product terms into the UIM, but for some
designs you may want to force product terms into the UIM.

The UIM can function as a very wide AND gate. This means that
single product term functions can be moved into the UIM, leaving
space in the macrocells for more product terms. The UIM can also
implement DeMorgan equivalent functions.

LOGIC_OPT

To have logic optimization inhibited by default for the entire design,
apply the global attribute LOGIC_OPT=OFF. If you do not use this
attribute, the default is LOGIC_OPT=ON. You can override this
setting for individual symbols using the OPT=ON attribute.

MINIMIZE

Use the MINIMIZE=OFF global attribute to inhibit logic
minimization for the whole design. If this attribute is not specified,
any redundant or non-effective logic found in any user-specified
equation files will be eliminated throught Boolean minimization.

UIM_OPT

To inhibit UIM optimization for the entire design, apply the
UIM_OPT=OFF global attribute.

UIM optimization extracts AND expressions and inverters out of
macrocell logic functions and moves them into the UIM, which
reduces the use of Function Block resources.

FOE_OPT

To inhibit FOE (Fast Output Enable) optimization for the entire
design, apply the FOE_OPT=OFF global attribute.
B-10 Xilinx Development System

Attributes
FOE optimization generally applies only to BUFE, OBUFE, or tri-
state PLD outputs driving an OBUF. FOE optimization changes a
product-term tri-state signal to an FOE global control signal. Like
FastCLK assignment, this reduces the number of UIM inputs and
product terms required by each Function Block.

CLOCK_OPT

To inhibit FastCLK optimization for the entire design, apply the
CLOCK_OPT=OFF global attribute.

FastCLK optimization changes a product-term clock to a FastCLK
global signal, which reduces the number of UIM inputs and product
terms required by each Function Block.

REG_OPT

To inhibit input register optimization for the entire design, apply the
REG_OPT=OFF global attribute.

Input register optimization reduces the number of macrocells in a
design by moving simple FD registers connected to IBUFs into a pad
register (provided that the IBUF has no other fanouts). The clock by
which the input register is controlled must be a FastCLK or an input
that can be assigned to a FastCLK pin.

PRELOAD_OPT

Apply the PRELOAD_OPT=OFF global attribute to inhibit the
XEPLD software from changing the preload values in the design to
match the preload values supported by specified device resources
such as FFBs and input registers. The default (PRELOAD_OPT=ON)
allows the XEPLD software to map your design most efficiently,
using the device resources most suited to the elements of your
design.

You can set a High or Low preload for High-Density Function Blocks.
The preload value of Fast Function Blocks depends on the use of set
or reset. Input register preload values are fixed at 1, except for those
on the XC7272, which are undefined.
XEPLD Schematic Design Guide B-11

XEPLD Schematic Design Guide
Note: If you specify PRELOAD_OPT=OFF to control preload values,
it prevents registers from mapping into FFBs, and attempting to force
such a register into an FFB (using the F attribute or through pin
assignment) results in an error.

INIT

To specify the preload value of a registered component, apply INIT=R
(for a 0 value) or INIT=S (for a 1 value) to the component. This
attribute is available in Version 5.1 of the XEPLD software.

The INIT= attributes are always obeyed by the fitter, regardless of the
PRELOAD_OPT attribute, but are ignored in functional simulation.

Note: You cannot change the preload value of an input register to 0
using the INIT=R attribute because input registers physically do not
support preload to the 0 state. Also, if you specify INIT=R to control
preload values, it prevents registers from mapping into FFBs, and
attempting to force such a register into an FFB (using the F attribute
or through pin assignment) results in an error.
B-12 Xilinx Development System

Index

Numerics
20V8, 5-8
22V10, 5-8

OPT, B-9
OPT=UIM, B-10
PART, B-4
XEPLD Schematic Design Guide — 0401265 01 i

3-state, 3-3
message, A-6
vs. multiplexing, 4-4

7272 devices
special considerations, A-2

A
ABEL

Xilinx-ABEL, 5-6
adder/subtractor, registered, 4-6
Altran command, 2-4, A-1, A-3
Answers to common questions, A-1
applications, 4-1
architecture of EPLDs, 3-1
arithmetic symbols, cascading, 2-2, 3-9
ASCTOVST command, 1-11
attributes, B-1

and device-independence, 2-3
CLOCK_OPT, B-11
component, B-1
F, 3-5, 5-13, B-8
FOE_OPT, B-10
global, B-2
H, B-8
INIT, 3-22, B-12
LOC, 3-20, B-7
LOGIC_OPT, B-10
LOWPWR, 3-20, B-7
MINIMIZE, B-10
MRINPUT, B-9
net or flag, B-3

PLD, B-5
PRELOAD_OPT, 3-22, B-11
REG_OPT, B-11
UIM_OPT, B-10

AUTHOR statement, 5-5

B
behavioral design method

choosing, 5-4
behavioral modules

fitting, 1-3
functional simulation of, A-10

bidirectional counters, cascading, 2-2, 3-9
bidirectional signals, 4-3

in PLDs, 4-3, 5-13
boxes in Viewlogic schematics, A-1
BUFFOE component, 5-13
buses, bidirectional, 4-3

C
CALC design, 2-6
CHIP statement, 5-2, 5-4
clock enable, 2-2

and density optimization, 3-14
and input pad registers, 3-8

CLOCK_OPT attribute, B-11
collapser of logic, A-8
common problems, how to solve, A-1
common symbols, 2-2
COMPANY statement, 5-5
compiler of PLDs, 5-7

XEPLD Schematic Design Guide
COMPONENT keyword, 5-2
component not found message, A-2
component not supported message, A-3
components

attributes for, B-1
BUFFOE, 5-13
common, 2-2
custom, 5-1

example of, 4-11, 5-2
EPLD-specific, 2-2
missing, A-2
non-EPLD, finding, 2-4, A-1
OBUFEX1, 5-13
PL20V8, 5-6, 5-8
PL22V10, 5-6, 5-8

connects to external pad message, A-6
counters, up/down, cascading, 2-2, 3-9
custom component

examples, 4-11, 5-2
custom symbols, 5-8

D
DATE statement, 5-5
declarations section of a PLUSASM file, 5-5
density optimization, 3-13
design

applications and techniques, 4-1
choosing behavioral method, 5-4
constrained

input, A-8
product-term, A-7
unused FFBs, A-9

density optimization, 3-13
device-independent, 2-1

and attributes, 2-3
example, 1-5
fitting, 1-8, 1-12
FPGA to EPLD conversion, 2-3

example, 2-6
hierarchical, 4-10
preserving pinout of, 3-17

procedure, 1-5
speed optimization, 3-4
tradeoffs, 3-1
verification, 6-5

device
basic structures, 3-1
selecting, B-4

device-independent design, 2-1
and attributes, 2-3

Draft (OrCAD), 1-9

E
EPLD architecture, 3-1
EPLD design

converting from FPGA, 2-3
example, 2-6

EPLD-specific symbols, 2-2
.EQN file, 6-5
Equation report, 6-5
equations

collapsing, 6-5
section of a PLUSASM file, 5-6

EQUATIONS keyword, 5-6
errors

component not found, A-2
component not supported, A-3
connects to an external pad, A-6
hanging inputs, A-5
missing property PLD, B-7
no logic connection, A-4
tristate will affect the pad, A-6

example design, 1-5

F
F attribute, 3-5, 5-13, B-8
Fast Function Block (FFB), 3-2

assigning behavioral modules to, 5-13
assigning logic to, B-8
components not allowed in, 3-6
moving logic into, 3-5
using, 3-4

Fast Inputs, 3-3
ii Xilinx Development System

Index
fast Inputs
and density optimization, 3-16

Fast Output Enable (FOE), 3-3
FastCLK

nets, 3-6
optimization, B-11

FFB (Fast Function Block), 3-2
fitter reports, 1-8, 1-12
fitting

if design does not fit, A-6
OrCAD, 1-12
problems and solutions, 3-1, A-2
Viewlogic, 1-8

flag attributes, B-3
FOE (Fast Output Enable), 3-3

and density optimization, 3-14
assigning, 5-13
nets, 3-6
optimization, B-10

FOE_OPT attribute, B-10
FPGA design

converting to EPLD, 2-3
example, 2-6

functional simulation
differences from timing, A-12
of behavioral modules, A-10
OrCAD, 1-11
Viewlogic, 1-7

functions, splitting wide, 3-11

G
GENERIC keyword, 5-7
global attributes, B-2
global clock enable, 2-2

H
H attribute, B-8
hanging inputs, A-5
HDFB (High Density Function Block), 3-2
header section

of a PLUSASM file, 5-5
hierarchical design, 4-10

High Density Function Block (HDFB), 3-2
assigning logic to, B-8
using, 3-4

I
I/O pin vs. macrocell register, 3-15
INIT attribute, 3-22, B-12
inputs, 3-2

fast, 3-3
hanging, A-5
latches on, 3-3
optimization of input registers, B-11
registers on, 3-3, 3-7

and density optimization, 3-15
using, 3-3

internal nodes and timing simulation, 6-1,
A-10

J
JED2PLD menu command, 5-6
JEDEC files

conversion, 5-8
using, 5-6

L
latches on input pads, 3-3
.LGX file, A-11
library

schematic, 1-2, 2-1
unified, 1-2, 2-1

LOC attribute, 3-20, B-7
logic

collapser, A-8
minimization of, B-10
moving into FFB, 3-5, A-9
optimization, 3-16, B-9

global, B-10
random, 3-12
reducing levels of, 3-10

LOGIC_OPT attribute, A-8, B-10
LOWPWR attribute, 3-20, B-7
XEPLD Schematic Design Guide iii

XEPLD Schematic Design Guide
M
macro component

creating custom, 4-10
macrocell register vs. I/O pin, 3-15
manual pin assignment, 3-17, 3-19
master reset, 3-16

using as an input, B-9
messages

component not found, A-2
component not supported, A-3
connects to an external pad, A-6
hanging inputs, A-5
missing property PLD, B-7
no logic connection, A-4
tristate will affect the pad, A-6

MINIMIZE attribute, B-10
missing components, A-2
missing property PLD message, B-7
MRINPUT attribute, B-9
multiplexing vs. 3-state signal, 4-4

N
net attributes, B-3
no logic connection message, A-4
nodes, internal, and timing simulation,
A-10

O
OBUFEX1 component, 5-13
OPT attribute, A-8, B-9
OPT=UIM attribute, B-10
optimization, B-9

effects on internal nodes, 6-1
for density, 3-13
for speed, 3-4
global, B-10
of device resources, A-6
shown in equation report, 6-5

OrCAD
basic design procedure, 1-9
configuration, 1-9
functional simulation, 1-11

timing simulation, 1-13
VST, 6-1, 6-2

outputs, 3-2
automatic removal of, A-5
using, 3-3

P
PAL

bidirectional signals in, 4-3
conversion, 1-3
importing files, 5-7
library component, 5-7
using in schematics, 5-11

PART attribute, B-4
Partitioning report, A-6
pin assignment, 3-17, B-7

precautions, 3-19
Pinlist report, 6-5
pinout

maintaining, 3-17
PinSave command, 3-19
PinSave file, 3-19
pin-to-pin path

problems creating, A-4
PLD

attribute, B-5
bidirectional signals in, 4-3
compiler, using, 5-7
file, 5-1
importing files, 5-7
linking symbol with with PLUSASM
file, B-5
using in schematics, 5-11

PLD compilers, using, 5-6
PLUSASM file

declarations section, 5-5
equations section, 5-6
header section, 5-5
in primitive components, 5-2
linking with PLD symbol, B-5
structure, 5-4
using, 5-6
iv Xilinx Development System

Index
power, controlling, 3-20, B-7
PRELOAD_OPT attribute, 3-22, B-11
PRLD (preload) signal, 2-5

control of, B-12
in FFBs, 3-5
optimization of, B-11
predicting and controlling, 3-20, 4-1
registers stuck at preload value, A-10

problems, common, how to solve, A-1
procedure for basic design, 1-5
product-terms

exported, 3-19
shared, A-7

programming (device)
OrCAD, 1-12
Viewlogic, 1-8

Q
Questions commonly asked, A-1

R
random logic, 3-12
read-back registers, 4-2
REG_OPT attribute, B-11
registered adder/subtractor, 4-6
register-intensive designs, 3-15
registers

on input pads, 3-3
optimization of, B-11
read-back, 4-2
stuck at preload values, A-10
vs. I/O pins, 3-15

reports
Equation report, 6-5
from fitter, 1-8, 1-12
Partitioning report, A-6
Pinlist report, 6-5
Resource report, 6-5
Timing report, 6-5

reset
emulation in FFBs, 4-1

Resource report, 6-5

REVISION statement, 5-5

S
schematic

design, getting started, 1-1
library, 1-2, 2-1

simulation, 6-1
board-level designs, 6-2
functional

of behavioral modules, A-10
OrCAD, 1-11
Viewlogic, 1-7

functional vs. timing differences, A-12
problems and solutions, A-10
timing

and internal nodes, A-10
OrCAD, 1-13
Viewlogic, 1-8

speed optimization, 3-4
splitting

equations, variable specification, A-8
wide functions, 3-11

state machines
and density optimization, 3-13
FPGA to EPLD conversion, 2-5

symbol
choosing, 5-7

symbols
common, 2-2
custom, 5-8
EPLD-specific, 2-2
non-EPLD, finding, 2-4, A-1

SymGen command, 5-8

T
target device, selecting, B-4
TIME statement, 5-5
Timing report, 6-5
timing simulation

and internal nodes, A-10
differences from functional, A-12
XEPLD Schematic Design Guide v

XEPLD Schematic Design Guide
OrCAD, 1-13
Viewlogic, 1-8

TITLE statement, 5-5
tradeoffs, in fitting a design, 3-1
Translate menu command, 5-6
tristate will affect the pad message, A-6

U
UIM (Universal Interconnect Matrix), 3-2

AND functions, 3-4, 6-5
and optimization, 3-14
controlling optimization, B-10
moving logic into, B-10
using, 3-4

UIM_OPT attribute, B-10
unified library, 1-2, 2-1

V
verification, 6-5
Verify menu command, 6-2
ViewDraw, 1-7

configuration, 1-6
viewdraw.ini file, 1-6, 2-3
Viewlogic

basic design procedure, 1-6
functional simulation, 1-7
timing simulation, 1-8

ViewSim, 1-7, 6-1, 6-2
.VMD file, 6-2
.VMH file, 6-2
VMH2XNF menu command, 6-2
.VST file, 6-1

W
white boxes, in Viewlogic schematics, A-1
wide functions, splitting, 3-11
.WIR file, 6-1

X
XACT variable, A-3
XC7272 devices

special considerations, A-2
XDraft command, 1-9, 2-3

XEMake command, 1-8, 1-12, 5-6
XEPLD.CFG file, A-8
Xilinx-ABEL, 5-6
.XNF file, 6-1, 6-2, 6-3
XOR, registered, 4-11, 5-2
.XSF file, 5-8
XSimMake command, 2-4, 6-2
vi Xilinx Development System

Trademark Information
XEPLD Schematic Design Guide— 0401265 01

, XACT, XC2064, XC3090, XC4005, and XC-DS501 are registered trademarks of
Xilinx. All XC-prefix product designations, XACT-Floorplanner, XACT-Performance,
XAPP, XAM, X-BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, XPP, XSI, BITA,
Configurable Logic Cell, CLC, Dual Block, FastCLK, HardWire, LCA, Logic Cell,
LogicProfessor, MicroVia, PLUSASM, SMARTswitch, UIM, VectorMaze, VersaBlock,
VersaRing, and ZERO+ are trademarks of Xilinx. The Programmable Logic Company and
The Programmable Gate Array Company are service marks of Xilinx.

IBM is a registered trademark and PC/AT, PC/XT, PS/2 and Micro Channel are
trademarks of International Business Machines Corporation. DASH, Data I/O and
FutureNet are registered trademarks and ABEL, ABEL-HDL and ABEL-PLA are
trademarks of Data I/O Corporation. SimuCad and Silos are registered trademarks and P-
Silos and P/C-Silos are trademarks of SimuCad Corporation. Microsoft is a registered
trademark and MS-DOS is a trademark of Microsoft Corporation. Centronics is a
registered trademark of Centronics Data Computer Corporation. PAL and PALASM are
registered trademarks of Advanced Micro Devices, Inc. UNIX is a trademark of AT&T
Technologies, Inc. CUPL, PROLINK, and MAKEPRG are trademarks of Logical Devices,
Inc. Apollo and AEGIS are registered trademarks of Hewlett-Packard Corporation.
Mentor and IDEA are registered trademarks and NETED, Design Architect, QuickSim,
QuickSim II, and EXPAND are trademarks of Mentor Graphics, Inc. Sun is a registered
trademark of Sun Microsystems, Inc. SCHEMA II+ and SCHEMA III are trademarks of
Omation Corporation. OrCAD is a registered trademark of OrCAD Systems Corporation.
Viewlogic, Viewsim, and Viewdraw are registered trademarks of Viewlogic Systems, Inc.
CASE Technology is a trademark of CASE Technology, a division of the Teradyne
Electronic Design Automation Group. DECstation is a trademark of Digital Equipment
Corporation. Synopsys is a registered trademark of Synopsys, Inc. Verilog is a registered
trademark of Cadence Design Systems, Inc.

Xilinx does not assume any liability arising out of the application or use of any product
described or shown herein; nor does it convey any license under its patents, copyrights, or
maskwork rights or any rights of others. Xilinx reserves the right to make changes, at any
time, in order to improve reliability, function or design and to supply the best product
possible. Xilinx will not assume responsibility for the use of any circuitry described herein
other than circuitry entirely embodied in its products. Xilinx devices and products are
protected under one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216;
4,713,557; 4,746,822; 4,750,155; 4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,853,626;

R

XEPLD Schematic Design Guide
4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135; 5,023,606; 5,028,821;
5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704;
5,329,174; 5,329,181; 5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248;
5,349,249; 5,349,250; 5,349,691; 5,357,153; 5,360,747; 5,361,229; 5,362,999; 5,365,125;
5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189; 5,410,194; 5,414,377; RE
34,363, RE 34,444, and RE 34,808. Other U.S. and foreign patents pending. Xilinx, Inc. does
not represent that devices shown or products described herein are free from patent
infringement or from any other third party right. Xilinx assumes no obligation to correct
any errors contained herein or to advise any user of this text of any correction if such be
made. Xilinx will not assume any liability for the accuracy or correctness of any
engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems.
Use of a Xilinx product in such applications without the written consent of the
appropriate Xilinx officer is prohibited.
Xilinx Development System

	COVER PAGE
	TRADEMARK INFORMATION
	BOOK CONVENTIONS
	TABLE OF CONTENTS
	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	GO TO OTHER BOOKS
	Chapter 1 Getting Started with Schematic Design
	An Overview of Schematic Design Methods
	Using the Unified Library
	Behavioral Modules and PAL Conversion
	Schematic Design Flow Example
	Viewlogic Procedure
	Step 1 — Configure ViewDraw
	Step 2 — Enter XDM and Select the Device
	Step 3 — Enter Workview and Draw the Design
	Step 4 — Perform Functional Simulation (Optional)
	Step 5 — Fit the Design and Create a Programming F...
	Step 6 — Examine the Reports
	Step 7 — Prepare for Timing Simulation
	Step 8 — Perform Timing Simulation

	OrCAD Procedure
	Step 1 — Enter XDM and Select the Device
	Step 2 — Enter and Configure OrCAD
	Step 3 — Enter Draft and Draw the Design
	Step 4 — Add Simulation Information
	Step 5 — Prepare for Functional Simulation (Option...
	Step 6 — Perform Functional Simulation (Optional)
	Step 7 — Fit the Design and Create a Programming F...
	Step 8 — Examine the Reports
	Step 9 — Prepare for Timing Simulation
	Step 10 — Perform Timing Simulation

	Chapter 2 Device-Independent Design
	Choosing Components
	When to Use EPLD-Specific Components
	When to Use Common Components

	Attributes and Device Independence
	General Conversion Procedure: FPGA to EPLD
	Converting Behavioral Modules

	FPGA to EPLD Conversion Example: CALC Design
	Procedure for Viewlogic Users
	Reconfiguring the Libraries and Schematic Symbols
	Editing the Schematic
	Performing Functional Simulation
	Running the Fitter Commands
	Performing Timing Simulation

	Procedure for OrCAD Users
	Reconfiguring the Libraries and Schematic Symbols
	Editing the Schematic
	Performing Functional Simulation
	Running the Fitter Commands
	Performing Timing Simulation

	Converting a Xilinx-ABEL Module (Optional)

	Chapter 3 EPLD Architecture and Design Tradeoffs
	EPLD Architecture
	Input Pad Structures
	Output Pad Structures
	High-Density Function Blocks
	Fast Function Blocks
	The Universal Interconnect Matrix (UIM)

	Designing for Speed
	Assigning Logic to Fast Function Blocks
	Logic Requirements for Fast Function Blocks
	Components Not Allowed in Fast Function Blocks

	Using Input Pad Registers
	Placing Clock Enable Signals in Input Pad Register...

	Using EPLD-Specific Arithmetic Functions
	Cascading Counters
	Reducing Levels of Logic
	Splitting Wide Functions
	Random Logic

	Designing for Density
	Maximally Encoding State Machines
	Using Global Nets
	Moving Logic into the Universal Interconnect Matri...
	Using Input Pad Registers
	Macrocell Register vs. I/O Pin Tradeoff

	UIM Versus Fast Input Paths
	Controlling Logic Optimization
	Master Reset Pin Tradeoffs

	Designing to Preserve the Pinout
	Manual Pin Assignment
	Manual Pin Assignment Precautions
	The LOC Attribute

	Controlling Power Consumption
	Controlling Preload Values
	Physical Resources of EPLDs
	Attributes for Controlling Preload Values
	Preload Values for Functional and Timing Simulatio...

	Chapter 4 Design Applications
	Reset and Preload Control in FFB and Input Pad Reg...
	Read-Back Registers
	Bidirectional Signals and Buses
	Bidirectional Signals in PLDs
	Multiplexing 3-State Signals
	Optimizing Registered Arithmetic Performance
	Hierarchical Design
	Schematic Custom Component Example

	Chapter 5 Using Behavioral Modules in Schematics
	Preparing a Component
	Behavioral Module Example
	Choosing the Behavioral Design Method
	Using PLUSASM
	PLUSASM File Structure

	Using JEDEC Files
	Using Xilinx ABEL
	Using a PLD Compiler

	Choosing the Symbol
	Using the PL22V10 or PL20V8
	Using SymGen to Create Custom Symbols
	Viewlogic Symbols
	OrCAD Symbols

	Editing Existing Library Components
	Storing Custom Components
	Viewlogic Components
	OrCAD Components

	Editing Behavioral Modules for Use in Schematics
	Assigning Output Enable Signals to FOE Nets
	Assigning Functions to Fast Function Blocks
	Assigning Bidirectional I/O Signals
	Case 1 — Bidirectional Outputs That Go Off-Chip
	Case 2 — Using Both Macrocell and Pin Feedback

	Chapter 6 Design Verification
	Simulating Designs
	Making a ViewSim or VST Functional Simulation Mode...
	Making a ViewSim or VST Timing Simulation Model
	Using XNF-Compatible Simulators
	Simulating Board-Level Designs in Viewlogic
	Functional Simulation
	Timing Simulation

	Preload Values in Functional and Timing Simulation...

	Verifying Designs
	Verifying Design Fit

	Appendix A Common Questions and Answers
	Drawing the Design
	Why Do I See White Boxes Instead of Components?
	Why Are Some of My Components Missing?

	Fitting the Design
	What Does “Component Not Found” Mean?
	What Does “Component Not Supported” Mean?
	Why Can’t I Make a Direct Pin-To-Pin Path?
	What Does “Has No Logic Connection” Mean?
	What Do I Do If I Have “Hanging Inputs”?
	Why Are Some of the Outputs Removed?
	What Does “The Tristate Will Affect the Pad” Mean?...
	What Does “Connects to an External Pad” Mean?
	What If My Design Doesn’t Fit?
	If Your Design is Product Term Constrained
	If Your Design is FB Input Constrained
	If Your Design has Unused Fast Function Blocks

	Simulating the Design
	Why Can’t I Functionally Simulate a Design with a ...
	Why Are My Registers Stuck at the Preload Value?
	Why Are My Internal Nodes Not Visible During Timin...
	Why Do Functional and Timing Simulation Yield Diff...

	Appendix B Attributes
	Component Attributes
	Viewlogic Procedure
	OrCAD Procedure

	Global Attributes
	Viewlogic Procedure
	OrCAD Procedure

	Net or Flag Attributes
	Net Attributes (Viewlogic)
	Flag Attributes (OrCAD)

	Target Device Selection — The PART Attribute
	Viewlogic Procedure
	OrCAD Procedure

	PLD Equation File Name — The PLD Attribute
	Pin Assignment — The LOC Attribute
	Power Setting — The LOWPWR Attribute
	F/H
	MRINPUT
	Logic Optimization Attributes
	OPT=OFF and OPT=ON
	OPT=UIM
	LOGIC_OPT
	MINIMIZE
	UIM_OPT
	FOE_OPT
	CLOCK_OPT
	REG_OPT
	PRELOAD_OPT
	INIT

