
XEPLD
SCHEMATIC

 ™

DESIGN GUIDE

FOR WINDOWS

ONLINER

0401391

TABLE OF CONTENTS

INDEX

GO TO OTHER BOOKS

Contents

Copyright 1995 Xilinx Inc. All Rights Reserved.
Chapter 1 Getting Started with Schematic Design
An Overview of Schematic Design Methods................................ 1-1
Using the Unified Library.. 1-2
Behavioral Modules and PAL Conversion 1-3
Schematic Design Flow Example .. 1-4

Viewlogic Procedure ... 1-5
Step 1 — Enter PROflow and Configure ProCapture........ 1-5
Step 2 — Select the Device Family 1-6
Step 3 — Draw the Design .. 1-7
Step 4 — Perform Functional Simulation (Optional).......... 1-7
Step 5 — Fit the Design and Create a Programming File . 1-8
Step 6 — Examine the Reports ... 1-9
Step 7 — Timing Simulation .. 1-10

OrCAD Procedure... 1-10
Step 1 — Enter and Configure OrCAD.............................. 1-10
Step 2 — Enter Draft and Draw the Design....................... 1-11
Step 3 — Add Simulation Information 1-11
Step 4 — Prepare Simulation Vectors (Optional) 1-12
Step 5 — Create Functional Simulation Model.................. 1-12
Step 6 — Perform Functional Simulation (Optional).......... 1-13
Step 7 — Fit the Design and Create a Programming File . 1-14
Step 8 — Examine the Reports ... 1-14
Step 9 — Timing Simulation .. 1-15

Chapter 2 Device-Independent Design
Choosing Components .. 2-1

When to Use EPLD-Specific Components 2-2
When to Use Common Components 2-2

Attributes and Device Independence ... 2-3
General Conversion Procedure: FPGA to EPLD 2-3

Viewlogic Procedure ... 2-3
OrCAD Procedure... 2-5
Converting Behavioral Modules.. 2-6

FPGA to EPLD Conversion Example: CALC Design................... 2-6
XEPLD Schematic Design Guide — 0401391 01 i

XEPLD Schematic Design Guide
Procedure for Viewlogic Users.. 2-7
Reconfiguring the Libraries and Schematic Symbols 2-7
Editing the Schematic .. 2-7
Performing Timing Simulation.. 2-9

Procedure for OrCAD Users ... 2-10
Reconfiguring the Libraries and Schematic Symbols 2-10
Editing the Schematic .. 2-11
Running the Fitter Commands... 2-12
Performing Timing Simulation.. 2-12

Converting a Xilinx-ABEL Module (Optional) 2-13

Chapter 3 EPLD Architecture and Design Trade-offs
EPLD Architecture.. 3-1

Input Pad Structures ... 3-3
Output Pad Structures .. 3-3
High-Density Function Blocks ... 3-4
Fast Function Blocks... 3-4
The Universal Interconnect Matrix (UIM) 3-4

Designing for Speed... 3-4
Using XACT Performance... 3-5
Timing Definitions ... 3-5
The TIMESPEC Primitive.. 3-8
Defining Timing Path End Points .. 3-8

Using Predefined Groups .. 3-9
Specifying Time Delay Units ... 3-9
CST Files .. 3-10
Enabling Timing Specifications ... 3-11
Using EPLD-Specific Arithmetic Functions 3-12
Cascading Counters ... 3-13
Reducing Levels of Logic.. 3-14
Timing Analysis... 3-15

Timing Analysis Procedure .. 3-16
Opening the EPLD Timing Analyzer 3-16
EPLD Timing Analysis Window Features 3-17
Generating Reports ... 3-17

Designing for Density ... 3-18
Maximally Encoding State Machines 3-18
Using Global Nets ... 3-18
Master Reset Pin Trade-offs ... 3-18

Designing to Preserve the Pinout... 3-19
Resource Reservation .. 3-19
ii Xilinx Development System

Contents
Using Pinouts from an Earlier Design Iteration....................... 3-21
Manual Pin Assignment .. 3-22
Manual Pin Assignment Precautions 3-22
The LOC Attribute... 3-23

Controlling Power Consumption .. 3-23
Controlling Preload Values .. 3-24

Attributes for Controlling Preload Values................................ 3-25
Preload Values for Functional and Timing Simulation 3-25

Chapter 4 Design Applications
Reset and Preload Control in XC7000 FFB and Input
Pad Registers .. 4-1
Read-Back Registers ... 4-2
Bidirectional Signals and Buses... 4-3
Bidirectional Signals in PLDs ... 4-3
Multiplexing 3-State Signals... 4-4
Optimizing XC7000 Registered Arithmetic Performance 4-6
Combinational Feedback Loops .. 4-8
Hierarchical Design.. 4-9

Schematic Custom Component Example 4-11

Chapter 5 Using Behavioral Modules in Schematics
Preparing a Component... 5-1
Behavioral Module Example .. 5-2
Using Xilinx ABEL .. 5-3
Using SymGen to Create Custom Symbols................................. 5-4

Viewlogic Symbols.. 5-4
OrCAD Symbols ... 5-4

Storing Custom Components... 5-5
Viewlogic Components ... 5-5
OrCAD Components... 5-5

Chapter 6 Design Verification
Simulating Designs .. 6-1

Making a Device Functional Simulation Model in
ProSim or VST.. 6-1
Making a Device Timing Simulation Model in
ViewSim or VST.. 6-2

Viewlogic Procedure.. 6-2
OrCAD Procedure ... 6-2

Preload Values in Functional and Timing Simulation 6-3
XEPLD Schematic Design Guide iii

XEPLD Schematic Design Guide
Verifying Designs ... 6-3
Verifying Design Fit... 6-4

Appendix A Common Questions and Answers
Drawing the Design.. A-1

Why Do I See White Boxes Instead of Components? A-1
Why Are Some of My Components Missing? A-2

Fitting the Design ... A-2
What Does “Unrecognized Symbol” Mean?............................ A-2

Simulating the Design .. A-3
Why Are My Registers Stuck at the Preload Value?............... A-3
Why Are My Internal Nodes Not Visible During
Timing Simulation? ... A-3
Why Do Functional and Timing Simulation Yield
Different Results? ... A-4

Appendix B Attributes
Component Attributes ... B-2

Viewlogic Procedure .. B-2
OrCAD Procedure.. B-2

Implementation Template (for Global Attributes) B-3
Target Device Selection — The PART Attribute B-7

Viewlogic Procedure .. B-7
OrCAD Procedure.. B-8

Behavioral Module File Name — The FILE Attribute B-8
Pin Assignment — The LOC Attribute B-8
Power Setting — The LOWPWR Attribute.............................. B-9
Logic Optimization Attributes .. B-9

OPT=OFF .. B-9
OPT=MERGE .. B-10

INIT ... B-10
FAST... B-11
MINIM ... B-11
TIMESPEC Attribute Syntax ... B-11

Index ... i

Trademark Information
iv Xilinx Development System

Chapter 1
XEPLD Schematic Design Guide — 0401391 01 1-1

Getting Started with Schematic Design

This chapter will help you quickly understand how to develop a
schematic design using XEPLD. Brief schematic design examples are
included, illustrating the device-independent schematic library and
the automatic PAL conversion process.

An Overview of Schematic Design Methods
A schematic design defines the functionality of a logic circuit using
one or more schematic files, each of which contains components
whose functions are already defined (74xx TTL or similar functions)
and components for which you define the function using behavioral
modules. Figure 1-1 summarizes the design flow.

Figure 1-1 Basic Schematic Design Flow

XEPLD
Fitter

Programming File
Schematic File

HDL Synthesis

00001000100011000
10001000010001001
01001001001100010
00110011000100010
10010000100111000
00100010100010010
00100100010010010

ABEL Equation File

Simulation File

Reports

equations
[q1, q0, abort] =
[q1, q0, abort] =
state _diagram
state a

Module source2
Options '-trace
Declarations
in1, in2, clk pin;
all, none, other
out = [all, none]

X4834a

XEPLD Schematic Design Guide
The Viewlogic, OrCAD, Mentor, and Cadence software packages are
supported directly by Xilinx for design entry and simulation. Other
compatible interfaces are available from their manufacturers.

The following sections provide an overview of methods for creating
schematics and behavioral modules for schematic designs.

Using the Unified Library
The Unified Library allows you to create a device-independent
design to test how the design works in different devices, or to create a
device-specific design to take full advantage of a device’s unique
architectural features.

The Unified Library contains all the component symbols for all the
available device families. As illustrated in Figure 1-3, most of the
symbols can be used in designs targeted for any Xilinx device, but
some of the symbols are specific to one or more device families.

Figure 1-2 Device Families and the Unified Library

The common symbols are automatically mapped to the chosen target
device. The same common symbol may be mapped differently to
target devices with different architectures.

The “Device-Independent Design” chapter describes the library
components and how to retarget an existing FPGA design to an EPLD

X4837

XC2000
Family
Only Common

Library

XC3000
Family
Only

XC7000
Family
Only

XC5000
Family
Only

XC4000
Family
Only

Xilinx Unified Library
1-2 Xilinx Development System

Getting Started with Schematic Design
device.For more information about the Unified Library, refer to the
Libraries Guide and Libraries Supplement Guide.

Behavioral Modules and PAL Conversion
You can include a behavioral module in a schematic design. You may
want to include behavioral designs because:

● They are a more convenient method to describe state machines.

● They may already exist as PAL equations or HDL.

To create a custom component from a behavioral module, use the
Symbol Generation Utility found in the XACTstep icon group.
This utiltity creates a custom symbol from behavioral design files.
The symbol can then be placed in a schematic.

The original design file can be a new file created using XABEL The
method of including an XABEL design in a schematic design is
described in the chapter entitled “Using Behavioral Modules in
Schematics.”

Figure 1-3 shows the design flow for including a behavioral module.

Figure 1-3 Schematic PAL Conversion Flow

Behavioral
Module

.PLD
FIle

XDM
Translation
Command:
ABL2PLD,
JED2PLD

XEPLD
Fitter

Programming File

Schematic File
with PLD or
Custom Symbol

00001000100011000
10001000010001001
01001001001100010
00110011000100010
10010000100111000
00100010100010010
00100100010010010

X4836

XABEL
XEPLD Schematic Design Guide 1-3

XEPLD Schematic Design Guide
Schematic Design Flow Example
This section runs through the entire schematic design process, from
creating a design to programming and simulating the design. The
following device-independent design, a 4-bit Johnson counter, is used
as an example:

Figure 1-4 Example 4-Bit Johnson Counter Design

Simulation results for this design are shown in Figure 1-5.

This design contains no behavioral modules. For an example of a
design that includes a behavioral module, see “Using Behavioral
Modules in Schematics.”

The steps are summarized for Viewlogic ProSeries and OrCAD.

Q

CLR

DQ3B FDCE

C

CE
OBUF

INV

IBUF

IBUF

IBUF

Q0
OPAD

X4863

Q

CLR

D FDCE

C

CE
OBUF

Q1
OPAD

Q

CLR

D FDCE

C

CE
OBUF

Q2
OPAD

IPAD

Q

CLR

D FDCE

C

CECE

IPAD
C

IPAD
CLR

OBUF

Q3
OPAD
1-4 Xilinx Development System

Getting Started with Schematic Design
Figure 1-5 Example Viewlogic Functional Simulation Results

Viewlogic Procedure

Step 1 — Enter PROflow and Configure ProCapture

Create a directory for your design. If you are using PROflow, your
Xilinx libraries will be configured for you automatically whenever
you create a new project. Otherwise, use the Project Manager
utility found in Design Entry.

If you use the Project Manager, the Xilinx library required for this
example is installed under the path unified\xc7000 . It is in
megafile format. The required viewdraw.ini alias is xc7000 . If you
plan to simulate, you should also include the Viewlogic built-in
library.

Enter PROflow by selecting the PROflow icon. From PROflow:

Select Design Entry , then select the Project Manager button.

To create a directory for your project, press the Create button and
select a directory for your project.

CLK

CE

CLR

Q

900

1

1

0

C\H

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 ns

0 1 3 7 F E C 8 0 1 3 0 1 3
XEPLD Schematic Design Guide 1-5

XEPLD Schematic Design Guide
Figure 1-6 Xilinx PROflow

Step 2 — Select the Device Family

From Design Entry , click on Select Family .

Select XC7000, then select OK.

Under Design Type , select Schematic .

In the Design Name line, type JCOUNT.1

Select OK. PROcapture will be invoked and a design entry window
will appear.
1-6 Xilinx Development System

Getting Started with Schematic Design
Step 3 — Draw the Design

Draw the design as shown in Figure 1-4. For more information about
using PROcapture, see the Viewlogic Interface Guide and Viewlogic
Tutorials manual.

If you do not wish to draw the design, you can copy the jcount.1
schematic file in the \xact\example\vwlogic\jcount\sch
directory.

It is important that you label the nets between the IPADs and IBUFs
and between the OPADs and OBUFs, because these names will
appear in reports and on simulation traces.

Save your design using the File ➝ Save As command.

Step 4 — Perform Functional Simulation (Optional)

From Design Entry, link the design to the simulator.

Select PROsim from the PROflow menu.

Figure 1-7 ProSim Icon

Click on Select Part . A menu for selecting parts and packages
appears. Select a part and a package from the lists and press OK.

Place a check in the Command File box and select Browse . Go to
the JCOUNT directory. The file JCOUNT.CMD should appear in the
files display. Select JCOUNT.CMD and press OK.

Make sure the Execute Netlister box is checked, then press OK.

The design is simulated using the following command file:

restart
vector Q Q[3:0]
wave jcount.wfm CLK CE CLR Q
clock c 1 0
step 50ns
h prld
XEPLD Schematic Design Guide 1-7

XEPLD Schematic Design Guide
h CE
l CLR
cycle
l prld
cycle 5
l CE
cycle 2
h CE
cycle 5
h CLR
cycle 2
l CLR
cycle 3

To view the waveform file, go to PROflow and select PROwave.

Step 5 — Fit the Design and Create a Programming File

In steps 1 and 2 you specified the XC7000 family. You now need a
specific part number for which to fit the design. To select XC7300:

Select Xilinx Implementation from PROflow. Next, create a
new project.

File ➝ New Project

The New Project dialog box will appear. Click on the Input
Design line and click on Browse . Select JCOUNT.1 from the list. Set
the Target Family to XC7000. Select a directory to work in, then
click on Translate . The program creates a new Xilinx project.

Figure 1-8 New Project Window

XC7000
1-8 Xilinx Development System

Getting Started with Schematic Design
To translate the design to a specific device, select Design ➝
Translate . Click on Select Part . Under Family , select XC7300.
Select a specific Device and Package from the lists given.

Set the speed to -5 . Select OK, then wait for the message that the
translation has successfully completed. Select OK again. You should
now be back in the Xilinx Design Manager.

Note: If you select ALL under Device , Package , and/or Speed , the
program will automatically select an economical solution to meet the
needs and constraints of your design. In general, it will select the
smallest part (starting with the XC7318 pc44) and work its way up
until it has the part that will satisfy the design. You may place ALL in
any combination of these boxes (ALL is default for all three).

Select Tools ➝ Flow Engine . Set Stop After to Bitstream and
select RUN. The program optimizes the design, fits the design, creates
timing file and programming files all in one step. The interface keeps
you updated on the progress of processing.

Step 6 — Examine the Reports

Examine the reports to verify that the design was implemented as
you expected. To examine reports from the Xilinx Design Manager
select Utilities ➝ Report Browser, or select the report
browser icon. The following reports are most useful for schematic
designs:

Figure 1-9 Report Browser

● Translation Report — The translation report informs you of how
the translation went and lists any errors or problems that occured
during translation.
XEPLD Schematic Design Guide 1-9

XEPLD Schematic Design Guide
● Fitting Report — This fitting report shows the allocation of
Function Block resources.

● Resource Report — The resource report lists the device resources
used by the design and the resources remaining.

● Pinout Report — The pinlist report shows how the external nets in
your design were mapped to the device pins.

● Mapping Report — The mapping report tells you how the logic in
the design was mapped to the device.

● Timing Report — Shows the calculated worst-case timing for the
logic paths in your design.

● Timespec Report — The timespec report tells you if you have
made any errors in assigning TSPEC attributes in your design and
list the TSPECS that the fitter used.

Step 7 — Timing Simulation

From PROflow select the PROsim icon from the Timing Simulation
block. Put a check in the Command File box and select Browse .

Select the JCOUNT.CMD file and press OK. Make sure Execute
Netlister is selected, then press OK. The simulation runs and
generates a report.

Note: Xilinx has a separate Timing Analyzer for further analysis of
timing. See the “EPLD Architecture and Design Trade-offs” chapter
for information on the Timing Analyzer, or go to the XEPLD Reference
Guide.

OrCAD Procedure

Step 1 — Enter and Configure OrCAD

Enter OrCAD. If you have a Windows version of OrCAD, simply
double-click the OrCAD icon. If you have a DOS version of OrCAD,
exit Windows first, then type at the DOS prompt:

orcad

Note: Double-clicking on an MS-DOS icon does not exit you from
Windows; it merely opens a DOS window. You must exit Windows
completely using File ➝ Exit Windows .
1-10 Xilinx Development System

Getting Started with Schematic Design
Double click on Design Management Tools . Click on Create
Design .

In the prompt box that appears, type jcount ↵, then click on OK.

The JCOUNT design appears, highlighted, in the list. Click on
Suspend to System . Type the following at the DOS prompt:

xdraft 7

(wait for the command to complete)

exit

You are back in the Design Management Tools window. Click on OK
to exit.

Step 2 — Enter Draft and Draw the Design

Double click on Schematic Design Tools . Double Click on
Draft . A blank schematic window appears.

Draw the design as shown in Figure 1-4. For more information about
using Draft, see the OrCAD Interface/Tutorial Guide.

If you do not wish to draw the design, you can copy the jcount.sch
schematic file in the \xact\tutorial\orcad\jcount directory.

Note: It is important that you label the nets between the IPADs and
IBUFs and between the OPADs and OBUFs, because these names will
appear in reports and on simulation traces.

Step 3 — Add Simulation Information

To add trace information, follow these steps for each net that is
between an IPAD and an IBUF or between an OBUF and an OPAD:

1. Place the mouse cursor over the net and select the Place ➝
Trace Name command.

2. In response to the Trace Name? prompt, type the name of the
net, for example CE.

3. Double click to place the trace marker, then click with the right
button to exit the command.

To add stimulus information, follow these steps for each net that is
between an IPAD and an IBUF.
XEPLD Schematic Design Guide 1-11

XEPLD Schematic Design Guide
1. Place the mouse cursor over the net and select the Place ➝
Stimulus command.

2. In response to the Stimulus? prompt, type the following:

For CE:

0:1 6000:0 8000:1

For CLK:

0:0 500:T 1000:G:500

For CLR:

0:0 13000:1 15000:0

3. Double click to place the stimulus marker, then click with the right
button to exit the command.

Save your design using the Quit ➝ Update File command. Exit
Draft using Quit ➝ Abandon Edits .

Step 4 — Prepare Simulation Vectors (Optional)

While still in OrCAD select Digital Simulation Tools . A menu
will appear. From the menu select Local Configuration . A
configuration menu will appear. Select Configure ASCTOVST .

A dialog box will appear. Check Source is a Stimulus File ,
and make sure the file adjacent to it reads jcount.ast . If it does not
read jcount.ast , highlight the entry and type jcount.ast .

Select Digital Simulation Tools again. From the menu select
Local Configuration . Select Configure ASCTOVST .

Check Source is a Trace File , and make sure the file adjacent
to it reads jcount.atr . If it does not read jcount.atr , highlight
the entry and type jcount.atr .

Step 5 — Create Functional Simulation Model

If you have OrCAD for Windows:

1. Open the Xilinx Tools Window.

2. Click on the Simulation Utility icon.

3. Select jcount.sch
1-12 Xilinx Development System

Getting Started with Schematic Design
4. Select OrCAD

5. Select Functional Simulation

If you have a DOS version of OrCAD:

1. Exit Windows (or suspend) and go to DOS.

2. Type at the DOS prompt: xsimmake -f oef6 jcount

3. Press return. After processing has completed, exit back to OrCAD.

Step 6 — Perform Functional Simulation (Optional)

Double click on Design Management Tools , select JCOUNT from
the list, and click on OK.

Double Click on Digital Simulation Tools .

Click once on Simulate . Select Local Configuration and then
Configure Simulate . Change jcount.inf to jcount.vst , then
select OK.

Double click on Simulate . A blank simulation waveform window
appears with the R, Q3, Q2, Q1, Q0, CE, and CLK nets listed.

Select Edit Stimulus ➝ Yes . The Stimulus Editor window
appears.

Select Add. Press the down arrow key to highlight the Signal Name
field, then select Browse . Type a P to scroll down to the net names
beginning with P. Press the down arrow key to highlight PRLD, then
press ↵.

Press the down arrow key to highlight the Initial Value field.
Type 1.

Press the down arrow key again. Select Add. In response to Time of
Function? type 10 , then press ↵ to accept a 0 (zero) value.

Select Return to return to the main stimulus editor, select
Write ➝ Yes to add PRLD to the stimulus file, and select Use to
return to the waveform window.

Select Trace ➝ Change View and enter 150 . Select Run
Simulation and enter 18000 . The simulation waveforms appear.

Exit Simulate using Quit ➝ Abandon Simulation .
XEPLD Schematic Design Guide 1-13

XEPLD Schematic Design Guide
If you are in OrCAD for Windows, open the Xilinx Tools icon and
start the Design Manager .

To exit the DOS version of OrCAD, double click on To Main , then on
Exit ESP . You are now back in DOS; start Windows, open the
Xilinx Tools icon, and start the Design Manager .

Step 7 — Fit the Design and Create a Programming File

From the Design Manager create a new project.

File ➝ New Project

The new project dialog box appears. Browse on Input Design to
select jcount.sch . Select XC7000 as the Target Family. Use the
Work Directory and Browse key to find a directory to place the
output in. Then select Translate .

Select Tools ➝ Flow Engine . Set Stop After to Bitstream and
select RUN. The program optimizes the design, fits the design, creates
timing file and programming files all in one step. The interface keeps
you updated on the progress of processing.

Step 8 — Examine the Reports

Examine the reports to verify that the design was implemented as
you expected. To examine reports from the Xilinx Design Manager
select Utilities ➝ Report Browser, or select the report browser
icon. The following reports are most useful for schematic designs:

Figure 1-10 Report Browser

● Translation Report — The translation report informs you of how
the translation went and lists any errors or problems that occured
during translation.
1-14 Xilinx Development System

Getting Started with Schematic Design
● Fitting Report — This fitting report shows the allocation of
Function Block resources.

● Resource Report — The resource report lists the device resources
used by the design and the resources remaining.

● Pinout Report — The pinlist report shows how the external nets in
your design were mapped to the device pins.

● Mapping Report — The mapping report tells you how the logic in
the design was mapped to the device.

● Timing Report — The timing report shows the calculated worst-
case timing for the logic paths in your design.

● Timespec Report — The timespec report tells you if you have
made any errors in assigning TSPEC attributes in your design and
list the TSPECS that the fitter used.

Step 9 — Timing Simulation

If you skipped functional simulation, follow the instructions for
functional simulation found in this procedure. If you did perform
functional simulation, continue with the following instructions.

Create Timing Simulation Model

To run a timing simulation on the design:

1. Open Xilinx Tools

2. Select the Simulation Utility icon

3. Select jcount.sch

4. Select OrCAD

5. Select Timing Simulation

If you are running OrCAD from DOS:

1. Exit Windows. Start OrCAD, then double click on Design
Management Tools , select JCOUNT from the list, and click on
OK.

2. Double Click on Digital Simulation Tools . Double click on
Simulate . A blank simulation waveform window appears with
the R, Q3, Q2, Q1, Q0, CE, and CLK nets listed.
XEPLD Schematic Design Guide 1-15

XEPLD Schematic Design Guide
3. Select Trace ➝ Change View and enter 125 . Select Run
Simulation and enter 15000 . The simulation waveforms
appear.

4. Exit Simulate using Quit ➝ Abandon Simulation .
1-16 Xilinx Development System

Chapter 2
XEPLD Schematic Design Guide — 0401391 01 2-1

Device-Independent Design

This chapter discusses how and why to create a device-independent
or device-specific design. It also explains how to take an existing
FPGA design and retarget it to an EPLD device.

Choosing Components
The Unified Library contains all Xilinx component symbols, some of
which are specific to one device family, some of which are common to
two or more families, and some of which are common to all families.

Figure 2-1 Common Symbols in the Unified Library

When a component of the same name is present in multiple families’
libraries, it has the same functionality and graphic symbol body, and
similarly named pins. However, the component’s implementation,

X4837

XC2000
Family
Only Common

Library

XC3000
Family
Only

XC7000
Family
Only

XC5000
Family
Only

XC4000
Family
Only

Xilinx Unified Library

XEPLD Schematic Design Guide
including whether the symbol is a primitive or macro (with
underlying schematic), may vary between families.

When to Use EPLD-Specific Components
In general, common library components work well for EPLD designs.
You should use XC7000-specific components only under these special
conditions:

● If you are cascading arithmetic components, you should use
EPLD-specific arithmetic components, because the carry lines that
go between components are mapped to the carry chain.

● If you are cascading up/down counters, you should use EPLD-
specific counters, because the separate up and down terminal
counts can be placed in the UIM for greater speed and density.

For example, suppose you were working on a design that needed an
8-bit full adder. In most designs, you could use a device-independent
adder, such as ADD8. If this component is used in an EPLD design,
the internal logic is mapped onto the special EPLD arithmetic carry
lines; if used in an FPGA design, the logic is mapped in the way that
is most efficient for the FPGA’s architecture.

However, if you needed to cascade two 8-bit adders, it would be most
efficient to use EPLD-specific adders, because the carry lines that go
between components would be mapped to the carry chain.

When to Use Common Components
To make your design device-independent, use only the symbols
common to all device families. The XACTstep software automatically
maps the symbols in your design onto the chosen target device.
Creating a device-independent design allows you to easily test your
design with different Xilinx devices.

For a complete list of Unified Library components and their
compatibility with the different Xilinx device families, refer to the
Libraries Guide.
2-2 Xilinx Development System

Device-Independent Design
Attributes and Device Independence
If you want your design to be completely device-independent, do not
use schematic attributes. There are a few attributes common to FPGA
and EPLD devices:

● PART=device_name (or PARTTYPE in OrCAD)

● INIT=R|S

● Timing specifications for TIMESPEC and TIMEGRP symbols

● LOC=device_pin

● FAST

For the PART and LOC attributes you must change the values when
you change devices. All other EPLD-compatible attributes are EPLD-
specific. For more information about these attributes, refer to the
“Attributes” appendix. These attributes are also described in the
context of how they are used in the “EPLD Architecture and Design
Tradeoffs” and “Design Applications” chapters of this manual.

General Conversion Procedure: FPGA to EPLD
The basic steps for retargeting an FPGA design to an EPLD device are
as follows. Examples in this section assume you are converting from
the XC3000 family.

Viewlogic Procedure
1. Enter your CAE tool and open your design.

2. Use the conversion program to make the symbols in your
schematic reference the reconfigured libraries.

a) Select the Design Entry button.

b) Click on Select Family . A list of families will appear. Select
XC7000 and click on OK. The Altran menu will appear.

c) Select XC3000 under Current Technology Aliases .

d) Select XC7000 under Target Technology Aliases , then
select OK. The conversion program will execute.

3. Create a new Xilinx project for the converted schematic design.
XEPLD Schematic Design Guide 2-3

XEPLD Schematic Design Guide
From the Design Manager click on the File menu and select New
Project .

Change the name of the project so that you can recognize the
project as XC7000 (to a name such as CALC7K).

From the Target Family select XC7000.

4. Find all the library components in the schematic that are not
EPLD-compatible, and use the XACT Libraries Guide to find EPLD-
compatible equivalents.

● If you have already run Xaltran (in the previous steps),
incompatible components appear as white squares in the
schematic.

5. If necessary, use EPLD-specific components to obtain a more
efficient design. In most cases, device-independent components
are mapped onto the EPLD architecture efficiently, but there are
exceptions, which are described in the “When to Use EPLD-
Specific Components” section earlier in this chapter.

6. Remove all attributes except INIT, FAST, and timing
specifications. Make sure timespec syntax is up to date because
EPLD software does not accept old timespec syntax (use syntax as
described in this manual). Change the values of PART and LOC as
needed, or remove them.

7. Enter the Flow Engine and press RUN.

From the Design manager click the Tools menu and select Flow
Engine . The flow engine window will appear.

Set the Stop After selection is to Fit , Timing or Bitstream ,
depending on where you want processing to stop.

8. When you perform either functional or timing simulation, you
must set the MRESET signal Low then High instead of setting GSR
(global reset).

9. If you wish to perform timing simulation, you may have to change
the internal nodes you drive and monitor. The EPLD fitter
optimizes the logic, which makes many of the internal nodes in
the design disappear. However, all external signals are always
visible.
2-4 Xilinx Development System

Device-Independent Design
Note: If your FPGA design has RAM, ROM, or other elements that
do not have EPLD equivalents, you cannot retarget your design
unless you redesign those parts.

OrCAD Procedure
1. Change (cd) to your working directory and reconfigure the

libraries in your CAE tool for the XC7000 family.

● Type the following at the DOS prompt while in your working
directory:

xdraft 7

2. Enter your CAE tool and open your design.

3. Find all the library components in the schematic that are not
EPLD-compatible, and use the XACT Libraries Guide to find EPLD-
compatible equivalents.

● If you have run XDraft 7 on an OrCAD schematic, the
incompatible components generate error messages in OrCAD
and do not appear in the schematic.

4. If necessary, use EPLD-specific components to obtain a more
efficient design. In most cases, device-independent components
are mapped onto the EPLD architecture efficiently, but there are
exceptions, which are described in the “When to Use EPLD-
Specific Components” section earlier in this chapter.

5. Remove all attributes except INIT, FAST, and timing
specifications. Change the values of PART and LOC as needed, or
remove them.

6. Enter the Flow Engine and press RUN. Make sure the Stop
After selection is set to Fit , Timing or Bitstream ,
depending on where you want processing to stop.

7. When you perform either functional or timing simulation, you
must set the MRESET signal Low then High instead of setting
GSR (global reset).

8. If you wish to perform timing simulation, you may have to
change the internal nodes you drive and monitor. The EPLD fitter
optimizes the logic, which makes many of the internal nodes in
XEPLD Schematic Design Guide 2-5

XEPLD Schematic Design Guide
the design disappear. However, all external signals are always
visible.

Note: If your FPGA design has RAM, ROM, or other elements that do
not have EPLD equivalents, you cannot retarget your design unless
you redesign those parts.

Converting Behavioral Modules
If your design contains Xilinx-ABEL or XBLOX modules, you must
perform these additional steps before your normal schematic flow:

1. Change the encoding of state machine modules. You do not have
to rewrite the logic, just the state assignment. For FPGAs, which
are rich in registers, one-hot encoding (a symbolic state machine)
is most efficient. For EPLDs, which are rich in product terms,
maximal encoding (an encoded state machine) is most efficient.
Conversion may be unnecessary for very simple state machines.

For more information about symbolic and encoded state
machines, see the “Simulating an ABEL-HDL Design” and
“Converting Encoded State Machine to Symbolic State Machine”
sections in the “Design Examples” chapter of the Xilinx ABEL User
Guide. You should follow the steps of the latter section in reverse.

2. Rerun XABEL specifying Xilinx EPLD as the target architecture.
XABEL will create an equation file with extension .pld. In your
schematic, continue to use the existing Xilinx-ABEL symbols, but
change the DEF=XABEL attributes to DEF=PLD and
FILE=filename. To ensure that the software does not process old
files, delete the file_name.xnf files in the xnf directory.

3. Convert the XBLOX modules. There is no straightforward
conversion—you can rewrite the logic using a behavioral entry
tool (Xilinx-ABEL) or create an EPLD-compatible lower-level
schematic.

FPGA to EPLD Conversion Example: CALC Design
The CALC design is extensively documented in the tutorial chapters
of the Xilinx Interface Guide for your CAE tool. It is used as an
example of an FPGA design. This section describes the steps
necessary to convert the XC3000 version of this design to an EPLD
design.
2-6 Xilinx Development System

Device-Independent Design
The steps are different for each CAE tool. The procedure for
Viewlogic users is described first, followed by OrCAD.

Procedure for Viewlogic Users

Reconfiguring the Libraries and Schematic Symbols

To reconfigure the libraries for the XC7000 family and update all the
symbols so their properties are compatible with XC7000 devices,
follow these steps:

1. Copy the CALC tutorial files to a directory under your home
directory as described in the Viewlogic Interface Guide and Viewlogic
Tutorials manual. Change (cd) to the calc\soln_3k directory.

2. Use the conversion program to make the symbols in your
schematic reference the reconfigured libraries.

a) Select the Design Entry button.

b) Click on Select Family . A list of families will appear. Select
XC7000 and click on OK. The Altran menu will appear.

c) Select XC3000 under Current Technology Aliases .

d) Select XC7000 under Target Technology Aliases , then
select OK. The conversion program will execute.

Editing the Schematic

To edit the schematic so all its symbols are compatible with XC7000
devices, follow these steps:

1. Start up Design Manager. Start up PROFlow and select the
PROCapture button from the menu.

2. Open the CALC schematic and select the OSC_3K file.

Select the Files menu and click on Open Project .

Find the CALC directory and select OSC_3K.
XEPLD Schematic Design Guide 2-7

XEPLD Schematic Design Guide
3. Edit the schematic so it looks like Figure 2-2:

Figure 2-2 New Viewlogic Oscillator Schematic for EPLD CALC

4. Be sure to label the new IOPAD net “XCLK”.

5. Select the File menu and select Save. Select the View ➝ Pop
command. (If you wish, you can use the File ➝ Save As
command to save this schematic as OSC_7K. If you save this
schematic to a new name, be sure to save the corresponding
symbol file to the same name. In addition, make sure the new
symbol is added to and saved in the top-level CALC schematic.)

6. Search the top-level schematic and every sub-schematic for
attributes, including LOC= pin assignments. Delete all except the
PART= attribute. Attributes are displayed in yellow to distinguish
them from labels, which are white. Save each schematic that you
change using the File ➝ Save command.

7. Use the Change ➝ Text command to change the part name as
follows:

PART=7372-10PC68

8. Save the top-level schematic using the File ➝ Save command.

Entering Xilinx Design Manager Environment

To map the design onto a target XC7000 device, follow these steps:

1. Make sure the calc.1 project is the active project on the Design
Manager.

X4862

CB4CE

CQ

R

Q3 DIVQ

OBUF BUFG

XCLK

CLK
Q2
Q1
Q0

CE CEO

TC

OR2

NRESET

QB

NSET

INV

AND2B1

OBUFT

OBUFT

IBUF

IBUF

T

T

CQ

CQL

IOPAD

IOPAD

IOPAD
2-8 Xilinx Development System

Device-Independent Design
2. Enter the Flow Engine:

Select Tools ➝ Flow Engine.

The Flow Engine menu appears.

3. To run optimization, the fitter, timing and bitstream:

Select the down arrow beside Stop After and select
BITSTREAM.

Select the RUN softkey.

The optimization will take some time. The Flow Engine lets you
know what it is working on.

Performing Timing Simulation

To perform timing simulation, follow these steps:

1. Go to Viewlogic PROflow and select the PROsim button (adjacent
to Timing Simulation). Place a check in the Command File box
and click on Browse .

Select the calc.vsm file from the list and select OK.

2. Run timing simulation as described in the PROseries tutorial in
the Viewlogic Interface Guide, except change the lines in the Vector
Definition, Simulation Output Definition, Clock Definition, and
Global Reset & Initial Input Values to those shown in the
following file. The ... indicates comments that have been removed.

You must make these changes because the EPLD fitter optimizes
the logic, removing many internal nodes. This makes the design
more efficient, but harder to simulate.

|--------------------VECTOR DEFINITION-------------------
...
vector SW sw7\sw6_p sw7\sw5_p sw7\sw4_p sw7\sw3_p +
sw7\sw2_p sw7\sw1_p sw7\sw0_p
| You can also use bus syntax when defining vectors
vector ALU alu[3:0]
vector LED_P led\led[3:0]_p
| Set radices for vectors
| The default radix is binary for input, hex for output
radix hex SW ALU
radix bin LED_P
|---------------SIMULATION OUTPUT DEFINITION--------------
...
XEPLD Schematic Design Guide 2-9

XEPLD Schematic Design Guide
wave calc_7k.wfm osc_7k\xclk SW exc_p ALU LED_P we rst
| Save simulation values for these nodes
watch osc_7k\xclk SW exc_p ALU LED_P we rst
| Output the values of all watched signals each time
| "xclk" goes high. Create tabular output.
break osc_7k\xclk 1 do (print > calc_7k.tab)
| Output node and vector transitions and simulation time
| whenever any of the nodes or vectors changes state
trace osc_7k\xclk SW exc_p ALU LED_P we rst > calc_7k.trc
|-------------------CLOCK DEFINITION----------------------
clock osc_7k\xclk 1 0
| Use a clock period of 100ns. Set stepsize=50ns
step 50ns
|------------GLOBAL RESET & INITIAL INPUT VALUES----------
| Set initial values for all inputs using the "H" and "L"
| commands for nets and "assign" for vectors
h exc_p
assign SW 00\h
| Initialize all flip-flops (preload- is active high
| for 7k designs, you can abbreviate to prld)
h prld
| Viewsim uses units of 0.1 ns, so this statement
| simulates for 100 ns.
cycle
l prld
cycle

Procedure for OrCAD Users

Reconfiguring the Libraries and Schematic Symbols

To reconfigure the libraries for the XC7000 family and update all the
symbols so their properties are compatible with XC7000 devices,
follow these steps:

1. Copy the CALC tutorial files to a directory under your home
directory as described in the OrCAD Interface/Tutorial Guide.
Change (cd) to the calc\soln_3k directory.

2. While in your working directory, type the following at the DOS
prompt:

xdraft 7
2-10 Xilinx Development System

Device-Independent Design
Editing the Schematic

To edit the schematic so all its symbols are compatible with XC7000
devices, follow these steps:

1. Invoke OrCAD from Windows or from DOS.

2. Double click on the Design Management Tools button. Select
CALC from the list on the left, then select the OK button.

3. Enter Schematic Design Tools and then Draft . The top-
level schematic of the CALC design appears. If you see a message
about an X being deleted, do not worry; this is an FPGA-specific
property that you would have to delete anyway.

4. Change the PART= text to 7372-10PC68 .

5. Enter the OSC_3K sheet symbol using the Quit ➝ Enter Sheet
➝ Enter command.

The OSC_3K schematic is displayed. There may be messages
telling you that two components, ACLK and GCLK, are
unavailable. The spaces where these two components were on the
original schematic are left open, with unconnected nets.

6. Edit the schematic so it looks like Figure 2-3. The part of the
schematic that is not visible is unchanged except for LOC=
properties being removed.

Figure 2-3 New OrCAD Oscillator Schematic for EPLD CALC
XEPLD Schematic Design Guide 2-11

XEPLD Schematic Design Guide
7. Be sure to label the new IOPAD net “XCLK”.

8. Be sure to delete the LOC=... properties from the two IOPADs at
the left end of the schematic. (Use the Edit ➝ Edit ➝ 1st Part
Field ➝ Name command.)

9. Select Quit ➝ Update File ➝ Leave Sheet .

10. Use the Quit ➝ Enter Sheet , Edit ➝ Edit ➝ 1st Part
Field ➝ Name, and Quit ➝ Update File ➝ Leave Sheet
commands to delete all the LOC= and FAST statements in the
CALC schematic and all its sub-schematics.

11. When you are finished editing all the schematics, select Quit ➝
Update File ➝ Abandon Edits from the top-level schematic,
double click on the To Main button, double click on the Exit
ESP button, and press any key to return to Design Manager.

Running the Fitter Commands

From the Design Manager create a new project.

File ➝ New Project

The new project dialog box appears. Browse on Input Design to
select jcount.sch . Select XC7000 as the Target Family. Use the
Work Directory and Browse key to find a directory to place the
output in. Then select Translate .

Select Tools ➝ Flow Engine . Set Stop After to Bitstream and
select RUN. The program optimizes the design, fits the design, creates
timing file and programming files all in one step. The interface keeps
you updated on the progress of processing.

Performing Timing Simulation

To perform timing simulation, follow the instructions in the “VST
Tutorial” chapter of the OrCAD Interface/Tutorial Guide, with the
exceptions in the following steps.

1. Place stimulus and trace information on the XCLK signal in the
OSC_3K schematic instead of on the CLK signal, and on the
LED_P signals in the LED schematic instead of on the STACK
signals.
2-12 Xilinx Development System

Device-Independent Design
2. In addition, you will have to move the stimulus information in the
SW7 schematic from the SW signals to the SW_P signals and
subtract one clock cycle. Follow these steps:

a) Place the mouse cursor on the stimulus symbol on the SW4
signal and select the Inquire command. The following line is
displayed in the top left corner of the screen:

Stimulus: 0:0 6000:1

b) Subtract 500 time units, which is equal to one clock cycle, from
the times at which the signal changes value. Replace all time
values less than or equal to 500 with 0. In this case, 0 remains 0
and 6000 becomes 5500.

c) Use the Place ➝ Stimulus command to add the following
stimulus to the SW4_P signal:

0:0 5500:1

d) Delete the stimulus indicator on the SW4 signal.

e) Repeat steps a through d to delete all stimulus information
from each SW signal and add it to each SW_P signal.

f) Use Quit ➝ Update File to save your edits.

The EPLD fitter software optimizes away many internal nodes
such as the CLK, STACK, and SW7 signals, but cannot optimize
external signals such as the XCLK, LED_P, and SW_P signals.

3. Substitute “EPLD” wherever the VST Tutorial says “FPGA”. For
example, select Orcad_Epld_Timing as the XSIMMAKE flow
name instead of Orcad_Fpga_Timing.

4. Instead of adding a GR or GSR stimulus (p. 12-21), add a PRLD
stimulus. Like GSR, the PRLD stimulus has an initial value of 1
and is brought down to 0 at 1 nanosecond.

Converting a Xilinx-ABEL Module (Optional)
You can use a Xilinx-ABEL module instead of the STATMACH
schematic in the CALC design. The stat_abl.abl file specifies the logic.
Substituting this Xilinx-ABEL module is described in the Interface
User Guide for your CAE tool.

1. Use Xilinx-ABEL to create a stat_abl.pld file.
XEPLD Schematic Design Guide 2-13

XEPLD Schematic Design Guide
2. Start up your CAE tool.

3. Open the schematic named CONTROL. Remove the DEF=XABEL
attribute from the STATMACH symbol, which referenced the
Xilinx-ABEL module, and change to FILE=stat_abl and DEF=PLD.
For specific instructions on changing attributes, see the
“Attributes” appendix.

Note: If you wish, you can convert the stat_abl.abl file from symbolic
(one-hot) encoding to maximal encoding. It is not really necessary,
however, because this state machine has only three states, and
therefore the conversion spares only one register.

Note: The Xilinx initial state property is not supported for XC7000
designs. To initialize this one-hot encoded state machine, use XEPLD
register preload statements as shown below.

xepld property ‘sother.prld=ucc’;

xepld property ‘swe.prld=gnd’;

xepld property ‘spush.prld=gnd’;
2-14 Xilinx Development System

Chapter 3
XEPLD Schematic Design Guide — 0401391 01 3-1

EPLD Architecture and Design Trade-offs

This chapter discusses EPLD architecture and trade-offs in fitting
your design to the EPLD architecture: designing for speed, density, or
pinout preservation; controlling power consumption; and controlling
preload values.

The tips and techniques in this chapter are guidelines only. They are
general principles that work in most cases. They may or may not be
applicable to a particular design.

EPLD Architecture
EPLD devices have special architectural features that can make your
design faster and more efficient. The XEPLD fitter software
automatically analyzes your design, optimizes the logic, and maps
functions into the appropriate device resources. However, an
understanding of the EPLD architecture can help you exercise
complete control of design optimization.

For more detailed information about EPLD architecture, refer to the
EPLD device data sheets.

XEPLD Schematic Design Guide
Figure 3-1 is a simplified diagram of the XC7354 device that shows
the main architectural features of EPLD devices.

Figure 3-1 EPLD Device Structure

The five basic architectural features in an XC7300 family EPLD device
are as follows:

● Input Pads

● Output Pads

● High Density Function Blocks (HDFBs)

● Fast Function Blocks (FFBs)

● The Universal Interconnection Matrix (UIM)

This section describes these features and how designs are mapped
onto them for best results.

Note: For a complete explanation of the XC7000 architectural
features, see the EPLD device data sheets.

Input

Output FFB

I/O
Block

FB

FB

UIM

FB

FB

I/O
Block

FFB Output

X3204
3-2 Xilinx Development System

EPLD Architecture and Design Trade-offs
Input Pad Structures
The XC7000 devices have two types of input pads: Fast Inputs and
standard inputs.

Fast Input pins have two paths through the device. One path drives
directly into the Fast Function Blocks, bypassing the UIM, and is used
for signals that require the fastest propagation delays and shortest
macrocell register setup times.The second path drives all function
blocks (both FFBs and HDFBs) through the UIM.

Standard inputs and UIM paths of Fast Inputs can be configured as
follows:

● Registered

● Registered with clock enable

● Latched

● Combinatorial

Registering and/or latching signals at the input pad shortens register
setup times and is used most often to pipeline data on-chip or
synchronize asynchronous inputs. The input pad registers can also
store data, making more macrocells available for implementing logic.

Output Pad Structures
The XC7000 devices have two types of output pads: those driven by
HDFBs, which have standard drive capability; and those driven by
FFBs, which have higher drive capability. These outputs can be
configured as follows:

● 3-state with individual p-term control (HDFB only)

● 3-state with FOE control

● Direct (always on)

Each output pad driven by a HDFB can be 3-stated by its own
macrocell product term for maximum flexibility. The global FOE net
offers maximum speed.

Bidirectional pins have both input pad structures and output pad
structures. See your device data sheet for details.
XEPLD Schematic Design Guide 3-3

XEPLD Schematic Design Guide
High-Density Function Blocks
High Density Function Blocks provide the maximum amount of logic
resources for use in your design. They are well-suited for arithmetic
functions, counters, and other kinds of complex logic.

High Density Function Blocks contain special fast carry lines for
arithmetic logic. These lines extend between High-Density Function
Blocks, allowing fast carry for very large arithmetic functions.

Fast Function Blocks
The XC7300-series devices have a combination of High Density
Function Blocks and Fast Function Blocks; this is called “Dual Block
Architecture.”

Logic placed in Fast Function Blocks performs faster than logic in
High Density Function Blocks. Fast Function Blocks are well-suited
for critical decoding and ultra-fast state machine applications.

The Universal Interconnect Matrix (UIM)
The Universal Interconnect Matrix, or UIM™, provides a 100%
interconnection matrix allowing any function block output to drive
any function block input in the device; routing is never blocked. All
function block inputs (except for the Fast Inputs) come from the UIM.

The UIM can perform wired-AND functions, which the software uses
automatically when possible to improve resource utilization.

Designing for Speed
To optimize for speed (faster pin-to-pin and register setup times),
follow these guidelines:

● Use General Timing Optimization

● Use XACT Performance (Timespecs)

● Use EPLD-specific arithmetic functions when cascading.

● Use EPLD-specific bidirectional counters when cascading.

● Reduce levels of logic.

● Use active-High clock inputs and active-High output-enable
control inputs.
3-4 Xilinx Development System

EPLD Architecture and Design Trade-offs
If you want to use General Timing Optimization without specifying
any Timing Specifications, you can simply go to the XC7000
Implementation Template and turn on the Timing
Optimization button. General Timing Optimization will shorten
your critical paths as much as it can. In general, density optimization
is the default for the fitter.

Figure 3-2 Optimization Template

Using XACT Performance
You can use Timing Specifications (T-Specs) to specify the maximum
allowable delay between groups of components in your design. The
software then optimizes and maps your design to achieve the timing
defined by these specifications. This Xilinx EPLD timing-driven
optimization is called XACT-Performance.

T-Specs can be applied directly to a schematic design or they can be
specified in a constraints file for behavioral and VHDL designs. Do
not attempt to edit a constraints file (.CST) when using schematic
design. Always change the timing specifications within the
schematic.

Timing Definitions
Delays and times are calculated as defined by the path types in this
section.
XEPLD Schematic Design Guide 3-5

XEPLD Schematic Design Guide
The path types are defined as follows:

● Clock to Setup — Register to register cycle time, including clock to
output and setup delay.

Figure 3-3 Clock to Setup Path

● Pad to Pad — Combinational pad to pad delay.

Figure 3-4 Pad to Pad Path

● Clock to Pad — Delay from the register clock input to the output
pad.

Figure 3-5 Clock to Pad Path

● Pad to Setup — Data path delay from the pad to the register data
input. Includes the register setup time.

Figure 3-6 Pad to Setup Path

● Setup to Clock at the Pad — Setup time of data at the pad to clock
at the pad. This path type includes only global clocks and product

C

D Q

FD

C

D Q

FD

COMB.
LOGICtCO

tSU

OBUF
OPADIPAD

IBUF
COMB.
LOGIC

C

D Q

FD

OBUF
OPADCOMB.

LOGICtCO

IPAD
IBUF

C

D Q

FD

COMB.
LOGIC

tSU
3-6 Xilinx Development System

EPLD Architecture and Design Trade-offs
term clocks driven directly from input pads. If the data input is
signal A and the clock input is signal CLK, the timing calculation
for this type of path is as follows:

Max(A to D) – Min(CLK to C)

Max and Min are maximum and minimum propagation delays
through the combinational logic.

Figure 3-7 Setup to Clock at the Pad Path

● Clock Pad to Output Pad — Clock pad to output pad propagation
delay. The clock can be a global or product term clock.

Figure 3-8 Clock Pad to Output Pad Path

● Paths Ending at Clock Pins of Flip-Flops — Delay from clock pad
to register clock input. The clock can be a global or product term
clock.

Figure 3-9 Path Ending at the Clock Pin of a Flip-Flop

IBUF
IPAD

IPAD
BUFG

C

D Q

FDCOMB.
LOGIC

COMB.
LOGIC

A

CLK

BUFG
IPAD

OBUF
OPAD

C

D Q

FD

COMB.
LOGIC

COMB.
LOGIC tCO

C

D Q

FD

BUFG
IPAD

COMB.
LOGIC
XEPLD Schematic Design Guide 3-7

XEPLD Schematic Design Guide
The TIMESPEC Primitive
Timing specifications are placed on your schematic using a
TIMESPEC primitive that contains the TIMESPEC Attribute
Definitions which control the timing for paths between defined
groups of components.

The TIMESPEC primitive, as illustrated in Figure 3-10, is 30
characters wide and contains TS attribute definitions. Each
TIMESPEC primitive can hold up to eight TS attribute definitions. If
you want to include more than eight TS attribute definitions, you can
use multiple TIMESPEC primitives in your schematic.

Note: Though the TIMESPEC primitive is only 30 characters wide,
you can create TS attribute definitions of any length by continuing on
the next line.

Figure 3-10 TIMESPEC Primitive

How you add a TIMESPEC primitive to your schematic depends on
your specific schematic-entry software. Refer to the appropriate
Xilinx Interface User Guide for step-by-step instructions.

Defining Timing Path End Points
Specify the start and end points of your timing paths using one of the
following methods:

● Refer to a predefined group by specifying one of the
corresponding keywords — FFS, PADS, LATCHES.

● Create arbitrary groups within a predefined group by tagging
symbols with TNM (pronounced tee-name) attributes.

X4332

TIMESPEC
TS01=FROM:FFS:TO:PADS=25
3-8 Xilinx Development System

EPLD Architecture and Design Trade-offs
● Create groups that are combinations of existing groups by using
TIMEGRP symbols.

● Create groups by pattern matching on signal names.

Using Predefined Groups

You can refer to a group of flip-flops, input latches, or I/O pads, by
using the corresponding keywords:

Table 3-1 Predefined Groups

These predefined groups represent all symbols of that type. For
example the following TS Attribute means that the delay between
any two flip-flops must be no greater than 30 ns.

TS01=FROM:FFS:TO:FFS=30

And the following TS attribute means that the delay between any I/
O pad and any flip-flop must be no greater than 25ns.

TS_OTHER=FROM:PADS:TO:FFS=25

For more information on using TNM attributes and Time GRP, please
refer to the XEPLD Reference Guide.

Specifying Time Delay Units
Nanoseconds are the default units for specifying delay times in TS
attributes. However, after specifying the maximum delay or
minimum frequency numerically, you can enter the unit of measure
by specifying the following:

● NS for nanoseconds

● MHZ for megahertz

● US for microseconds

Keyword Group

FFS Macrocell or IOB flip-flops
LATCHES input latches only; not latches built from macrocell

registers
PADS input/output pads
XEPLD Schematic Design Guide 3-9

XEPLD Schematic Design Guide
● KHZ for kilohertz

The software converts all units to nanoseconds and rounds them to
0.1 ns accuracy.

CST Files
You can create a constraints file for use in a VHDL or behavioral
design by using an ASCII editor. Save the file as file_name.CST in your
project directory. The constraints file can be used in processing your
design if you specify it from the Design Implementation
Dialog box as shown in Figure 3-12. See the XEPLD Reference Guide
for more information. An example constraints file is shown below.

Figure 3-11 Sample Contraints File

Figure 3-12 Design Implementation Options

TIMESPEC=”TS02=FROM:FF_1:TO:FF_4=20”;
TIMESPEC=”TS08=FROM:FFS:TO:PADS=TS05*10”;
TIMESPEC=”TS59=FROM:G_1A:TO:G_8C=15”;
TIMESPEC=”TS62=FROM:LATCHES:TO:PADS=25”;
TIMESPEC=”TS65=FROM:PADS:TO:PADS=18”;
TIMESPEC=”TS73=FROM:FFS(a*):TO:FFS(b*)=20”
;
TIMEGRP=”many_ffs=ffs1:ffs2”;
TIMEGRP=”group1=ffs(ctr*)”;
TIMEGRP=”group2=group1:except:ffs(ctr0)”;
TIMEGRP=”ff1=FFS(a*)”;
3-10 Xilinx Development System

EPLD Architecture and Design Trade-offs
Note: For VHDL design and behavioral design, .cst files are the only
mechanism to enter your timing specifications. For schematic designs
you have attributes and T-specs.

Enabling Timing Specifications
To enable global timing-driven optimization (XACT-Performance),
do the following:

1. Open the DESIGN MANAGER window.

2. Select Design from the tool bar.

3. Select Implement from the Implementation menu, which brings
up the XC7300 Design Implementation Dialog Window, as
follows:

Figure 3-13 XC7300 Design Implementation Dialog Window

4. Select Edit Template which brings up the XC7300 Implementation
Template Window for Fitting, as follows:
XEPLD Schematic Design Guide 3-11

XEPLD Schematic Design Guide
Figure 3-14 XC7300 Implementation Template — Fitting

5. If you place an X on Use XACT Performance the software will
use your T-Spec information (if it exists) when fitting your design.
If you do not select this option, the software will ignore all T-Spec
information.

Using EPLD-Specific Arithmetic Functions
The schematic entry libraries supporting XC7000 EPLDs contain two
types of arithmetic components, generic symbols shared in common
with their Xilinx family libraries, and EPLD-specific symbols.

XC7000-specific arithmetic components use the fast carry chain for
their CI and CO pins. This allows you to build up an arithmetic
function of any desired size by cascading these library symbols and
achieving the maximum possible speed supported by the EPLD.

Equivalent common components do not use the fast carry chain for
their CI and CO pins and therefore are slower and use more device
resources when cascaded. If you are not cascading, however, the
common arithmetic components work just as well.

Note: If you use EPLD specific arithmetic components, you might
have to make changes before moving to other families.
3-12 Xilinx Development System

EPLD Architecture and Design Trade-offs
Cascading Counters
Likewise, the library contains both common and EPLD-specific
versions of up/down counter components. If you are cascading
bidirectional or down counters, you should use XC7000-specific
counters. These counters have separate up and down terminal counts
(CEOU and CEOD) that can be cascaded in the UIM. The up terminal
count is generated by ANDing all of the counter output bits. The
down terminal count lookahead is generated in a macrocell. These
terminal counts are then ANDed with the count enable inputs (CEU
and CED) to produce the component’s up and down terminal count
outputs as shown in Figure 3-15.

Figure 3-15 Cascading EPLD-Specific Up/Down Counters

X4846

CB4CE

CLK

CED

CEU

Q6

Q2
Q1
Q0

L TCD
CEOD

CEOU

UIM Nodes

CB8X1

Q7

CLR

Q5
Q4
Q3

D6

D2
D1
D0

D7

D5
D4
D3

CB4CE

CLK

CED

CEU

Q6

Q2
Q1
Q0

L TCD
CEOD

CEOU

UIM Nodes

CB8X1

Q7

CLR

Q5
Q4
Q3

D6

D2
D1
D0

D7

D5
D4
D3
XEPLD Schematic Design Guide 3-13

XEPLD Schematic Design Guide
Because the XEPLD optimization software collapses the cascaded
AND-gate logic into a single level of logic, the speed of the cascaded
counter is constant, no matter how many bits it has. Very large
counters can still be implemented at maximum speed because the
software can implement large AND-gate functions in the UIM array
as needed.

However, in common library bidirectional counters, the up and down
terminal counts are combined into a single terminal count. This
terminal count uses both the true and the complement of the counter
bits, which makes the terminal count impossible to place in the UIM.

Reducing Levels of Logic
Each EPLD macrocell has several levels of logic followed by a
register. If you put the logic first, the XEPLD fitter software maps the
logic and register into the same macrocell. If you put logic after the
registers, however, the XEPLD fitter software is generally forced to
use additional macrocells for the logic that follows the registers,
decreasing both the speed and density of your design. Figure 3-16
shows two equivalent circuits, one that is efficient and one that is
inefficient.
3-14 Xilinx Development System

EPLD Architecture and Design Trade-offs
Figure 3-16 Reducing Levels of Logic

Timing Analysis
After you have fitted your design, you can use the timing analyzer to
find and report the timing of paths through the device. You can select
specific paths or general types of paths to examine, and you can
choose from several report formats.

If you included time specification attributes in your design (also
called TimeSpecs or T-Specs), you can use the Timing Analyzer to
determine whether the XEPLD fitter was able to meet these
specifications.

OBUF

M2_1

XOR2

XOR2

IBUF

CLK

SEL

BUFG

D0
O

D1

S0

D QFD

CINV

D QFD

C

0
1

OPAD

IPAD

IPAD

INEFFICIENT
(3 Macrocells)

OBUF

IBUF
CLK

SEL

BUFG

X4861

D QFD

CINV

D QFD

C

M2_1
D0

O
D1

S0

0
1

OPAD

INV

IPAD

IPAD

EFFICIENT
(2 Macrocells)
XEPLD Schematic Design Guide 3-15

XEPLD Schematic Design Guide
Timing Analysis Procedure

The typical procedure for using the EPLD timing analyzer is as
follows:

1. Make sure the design you want to analyze is the current design in
the Design Manager, then open the EPLD timing analyzer.

2. Choose the kind of report you want from the Analyze menu.

3. Use the report window commands to view the report in more
detail, save the report, and print the report.

4. (Optional) If having all the paths in your design reported is more
information than you need, select filters from the Path Filters
menu to determine which types of paths will be analyzed and
reported. You can “filter out” paths you are not interested in. Then
repeat step 2.

5. (Optional) Select options from the Options menu to fine-tune the
analysis even more. Then repeat step 2.

These steps are described in more detail in the following sections.

Opening the EPLD Timing Analyzer

Open the EPLD timing analyzer by double clicking on the Timing
Analysis icon in the Tools subwindow of the main Design Manager
window. Figure 3-17 shows the icon.

Figure 3-17 Timing Analyzer Icon

The EPLD Timing Analysis window appears. The design that is
loaded into the timing analyzer is the current design established in
the Design Manager. To load a different design into the timing
analyzer, return to the Design Manager’s main menu and open
another project.
3-16 Xilinx Development System

EPLD Architecture and Design Trade-offs
EPLD Timing Analysis Window Features

The EPLD Timing Analysis window looks like this:

Figure 3-18 EPLD Timing Analysis Window

The Toolbar and Statusbar are optional; you can display or hide them
using the Toolbar and Statusbar commands on the View menu. The
Statusbar is displayed by default; the Toolbar is not.

The Window menu controls the display of report windows generated
by commands on the Analyze menu. Because the report windows can
be moved and sized independently of the main timing analyzer
window, the Cascade and Tile commands arrange report windows
below and to the right of the main window rather than within it.

However, when you collapse report windows, their icons appear in
the main timing analyzer window, and you can use the Arrange Icons
command to arrange the icons and line them up.

The Help menu is standard for Microsoft Windows.

Generating Reports

Selecting one of the commands on the Analyze menu is all you need
to do to generate a report.

Each of these commands generates a different timing report. If you
have previously chosen path filters or other options, the report
reflects these choices. After a report is generated, it appears in a
separate window, from which you can save and plot the report.
XEPLD Schematic Design Guide 3-17

XEPLD Schematic Design Guide
Designing for Density
The XEPLD software optimizes for density by default, but there are a
few things you can do to improve density optimization:

● Maximally encode all state machines.

● Use global nets.

● Use the Master Reset pin if your design requires device
reinitialization, or use this pin as a regular input if your design
requires an additional I/O pin.

Maximally Encoding State Machines
If your design contains behavioral modules written as state machines,
be sure that the functions are maximally encoded. This works best for
EPLDs, which are rich in product terms. (For FPGAs, it is best to use
one-hot encoding, because FPGAs are rich in registers.)

Using Global Nets
Clock and output enable signals mapped to global nets do not
consume function block resources. Optimization software
automatically maps the most used rising edge clock inputs to the
FastCLK nets and the active-High output enable inputs to the FOE
nets. Consider using active-high output enables and clock signals,
and inverting the signals off-chip.

Master Reset Pin Trade-offs
This discussion describes trade-offs of using the XC7000 MR pin as a
3-state control. Consult your device data sheet for specific
requirements of the MR pin during power-up.

The XC7000 devices feature a master reset pin that can be used to
reinitialize the device. When the device is reinitialized, all device pins
are 3-stated and registers are preloaded. When initialization is
complete, the register preload is released and the outputs become
operational.

The master reset pin can completely 3-state the device during board
testing. The advantage is that no product terms or Function Block
inputs are required for 3-state the device pins.
3-18 Xilinx Development System

EPLD Architecture and Design Trade-offs
On the 7354, 7336, and 7318 devices, the master reset pin can also be
programmed as a logic pin by assigning the MRINPUT=ON global
attribute to a TBLOCK symbol. If this attribute is specified, the device
is initialized only on power-up.

Designing to Preserve the Pinout
In the XC7000 devices, logic capacity and device pinout are
determined only by the resources available in the Function Blocks;
the logic mapped into the Function Blocks is always guaranteed to
route in the UIM. The factors that determine the logic capacity of the
Function Block are as follows:

● Number of Function Block inputs

● Number of product terms available to each macrocell in the
Function Block

● Number of macrocells in the Function Block

● Number of device pins driven by the Function Block

Resource Reservation
Xilinx EPLDs are 100% routable due to the unique structure of the
Universal Interconnection Matrix. This means that you can use all of
the macrocells in a device. However, this section shows you how to
reserve macrocells for design iteration, without changing your
pinout.

To access the Resources options, do the following:

1. Open the Design Manager and select your design.

2. Next, you need to change the implementation of your design.
Select Implementation Template by the following method:

a) Select Utilities ➝ Template Manager.
XEPLD Schematic Design Guide 3-19

XEPLD Schematic Design Guide
Figure 3-19 XC7300 Design Implementation Dialog Window

b) Select your design from the list and press Edit.

c) Click on Resources to get the pin and macrocell reservation
template.

3. Change the values as needed.

Figure 3-20 Resources Dialog Window

From here you can control the amount of device resources that will be
left unused in each device. If your design uses more than one device,
3-20 Xilinx Development System

EPLD Architecture and Design Trade-offs
these resource reservations are applied to each device; the resource
reservations are not divided among the total number of devices used.
The resource reservation options are:

● Reserved Input Pins represents the total number of Input pins
including Fast Input pins that are reserved in each device.

● Reserved Output Pins represents the total number of output pins
reserved in each device including those connected to Fast
Function Blocks and those connected to High Density Function
Blocks. The macrocell that drives the output pin is also reserved.

● Reserved Bidirectional Pins represents the total number of I/O pins
reserved in each device including those connected to Fast
Function Blocks and those connected to High Density Function
Blocks. The macrocell that drives the output pin is also reserved.

● Reserved Macrocells represents the total number of macrocells
reserved in each device including those macrocells set aside for
reserved pins, those contained in Fast Function Blocks and those
connected to High Density Function Blocks.

Using Pinouts from an Earlier Design Iteration
Pinouts from an iteration (version) of a design are saved
automatically during processing. As long as the iteration is not
deleted from the directory, a guide file containing pinouts from the
design will exist. If you want to use the pinout of a earlier version to
process a current revision, it can be selected before processing.

1. From the Design Manager, enter the Flow Engine. Tools ➝
Flow Engine .

2. Select the down arrow adjacent to Guide Design . This will
display a list of versions and revisions associated with the design.

3. Select the version and revision you want pinouts from and select
OK. This will return you to the Flow Engine. When you RUN the
design through, the pinouts from the selected revision will be
used.
XEPLD Schematic Design Guide 3-21

XEPLD Schematic Design Guide
Manual Pin Assignment
Note: Manual pin assignment can restrict the layout capability of the
software. It is usually best to allow XEPLD to automatically assign
pins based on the most efficient placement of logic in the device.

XEPLD automatically assigns device pins for you, based on the most
efficient usage of device resources. This is usually the best method for
pin assignment if you do not have specific pinout requirements.
Automatic pin assignment is performed only for those pins that have
not been assigned through some other method.

If you have specific pinout requirements you can use the
LOC=pin_number attribute to assign the signal to a specific pin.

Note: LOC attributes override the pin assignments in the guide file.
This allows you to make changes to your fixed pin specifications.
However, if you override the guide file with LOC attributes, the
software will issue a warning. Also, trying to use LOC attributes to
preserve a previously achieved pinout does not provide the software
with sufficient history information (as does the guide file) to allow
the software to successfully fit the design.

Manual Pin Assignment Precautions
When you manually assign output and I/O pins, you force the
software to place logic functions into specific function blocks. If the
logic does not exceed the function block resources (macrocells,
product terms, and UIM inputs) and the function block has the
correct external pin resources to meet the logic I/O requirements, the
logic is mapped into the function block and the design will route in
the UIM.

Try to place product term intensive logic onto pins that are driven by
High Density Function Blocks. Be sure that the Function Block’s
shared product term resources and UIM inputs will not be exhausted.
You may also wish to leave additional room in the Function Block for
design iterations.

Assign your external rising-edge clocks and active-High output
enable signals to the FastCLK and FOE pins on the device.

Evaluate the requirements of your logic assigned to pins that are
driven by the Fast Function Blocks. Functions mapped to an FFB can
3-22 Xilinx Development System

EPLD Architecture and Design Trade-offs
be clocked only by global clocks, 3-stated only by FOEs, and, for the
7354, 7372, and 73108 devices, only asynchronously set. Plan ahead
for design iterations which may create functions that require the
exported product terms from an adjacent macrocell.

The LOC Attribute
Use the LOC=pin_name attribute on a PAD symbol to assign the
signal to a specific pin. The pin name is Pnn for PC and PQ packages;
the nn is a pin number. The pin name is rc (rowcolumn) for PG and
BGA packages. Examples are LOC=P24 and LOC=G2.

You can apply the LOC attribute to as many PADs in your design as
you like. However, each pin assignment further constrains the
software as it automatically allocates logic and I/O resources to
internal nodes and I/O pins with no LOC attributes.

Note: Pin assignment using the LOC attribute is not supported for
bus components such as OBUF8.

Controlling Power Consumption
You control power consumption for specific macrocell outputs using
the LOWPWR=ON attribute. This attribute is valid only for XC7300
designs. This attribute is either a global or component attribute.

The default is LOWPWR=OFF (high speed) for all macrocells used in
the design unless otherwise specified in the Design Manager.

To make low power the global default power setting, set Low Power
Mode to On in the Fitting menu of the Implementation
Template in the Design Manager.

To set the template to use low power mode as set by attributes in the
design, set the template to In Design .
XEPLD Schematic Design Guide 3-23

XEPLD Schematic Design Guide
Figure 3-21 Low Power Mode Set to In Design

To control the power setting of the macrocells used by an individual
symbol, use LOWPWR=ON or LOWPWR=OFF (unless global Low
Power Mode was selected). This attribute is ignored if assigned to a
symbol that uses no macrocells, such as an inverter.

Note: Low-power macrocells are slower than standard-power
outputs. If you have a mixture of low- and standard-power
macrocells, pay close attention to simulation results or the timing
report to see how the power settings affect timing interactions.

Controlling Preload Values
The preload values used in the implementation of your design
depend on these factors:

● INIT = R/S. The INIT attribute specifies the initialization value to
be preloaded into a register upon power-up or Master Reset.
INIT=R specifies a preload value of 0 (reset) and INIT=S specifies
a preload value of 1 (set). This attribute can be applied to flip-flops
or any component containing a register.

● Whether preload optimization is on. By default, the XEPLD fitter
performs preload optimization, ignoring the library defaults, but
honoring INIT attributes, to produce the most efficient mapping
of components to available device resources. You can control
3-24 Xilinx Development System

EPLD Architecture and Design Trade-offs
preload optimization by turning off Pre Load in the
Optimization menu of the Edit Template in the Design
Manager. To do this

● From the Design Manager, Tools ➝ Flow Engine

● From the Flow Manager, Setup ➝ Options

● Select Edit Template

● Select the Optimization template

● Place a check in the off circle next to Pre Load

Attributes for Controlling Preload Values
If your design is not sensitive to preload values, it is best to allow
preload optimization, because this produces efficient results.
However, if you want to control register preload states, you can
prevent preload optimization as follows:

● Use the INIT=S (preload=1) and INIT=R (preload=0) attributes to
specify the preload values of individual registers. The INIT
attributes are always obeyed by the fitter, regardless of whether
preload optimization is disabled.

Note: You cannot change the preload value of an input register to 0
using the INIT=R attribute because input registers physically do not
support preload to the 0 state.

Preload Values for Functional and Timing Simulation
The only differences expected between functional and timing
simulation involve the initial states of registers and latches in the
design. Functional simulation assumes that preload values are
undefined (X). Timing simulation uses the actual preload values
implemented by the fitter.

For example, if an FDR component is mapped to a Fast Function
Block, the FDR will appear to preload to X during functional
simulation, because the value is undefined. However, during timing
simulation, this FDR may preload to 1, because that is physical
preload state of an FFB macrocell register where the FD component
was mapped.
XEPLD Schematic Design Guide 3-25

XEPLD Schematic Design Guide
3-26 Xilinx Development System

Chapter 4
XEPLD Schematic Design Guide — 0401391 01 4-1

Design Applications

This chapter describes some of the most useful techniques for making
your EPLD design more efficient. These examples are suggestions
and guidelines only, and may not apply to your particular design.

Reset and Preload Control in XC7000 FFB and Input
Pad Registers

Use the following reset emulation technique to do these things:

● To allow logic to fit into a Fast Function Block register (for speed
or because its an unused resource), emulate reset or clear.

● To spare macrocell registers when using input pad registers,
emulate reset or clear.

● To change preload values in input pad or FFB registers to 0 (the
preload value for these registers is normally 1).

Figure 4-1 shows how to set up reset emulation. An additional
macrocell register from a High-Density Function Block provides the
reset input. You AND the output of this HDFB register with the
outputs of the FFB or input pad registers. These AND gates end up in
the UIM, so there is no additional delay.

The XEPLD software automatically tries to map FD-type registers
into input pad registers or FFB macrocell registers before it maps to
HDFB macrocell registers. However, if you want to explicitly specify
input pad registers, use IFD-type registers. To explicitly specify FFB
registers, use the F attribute on the register outputs (see the
“Attributes” appendix for more about the F attribute).

Note: If you are changing preload values, you do not need an HDFB
macrocell register with a reset; a simple FD will work.

XEPLD Schematic Design Guide
Figure 4-1 Reset and Clear Emulation for FFB or Input Registers

Read-Back Registers
Figure 4-2 shows a simple read-back register. Data is written from the
IOPAD to the register on the rising edge of the clock if
READ_ENABLE is inactive and WRITE_ENABLE is active. Data is
read from the IOPAD when READ_ENABLE is active.

Figure 4-2 Read-Back Register Example

Q

X4856

D FD or IFD

FFBs or Input Pads

HDFB Macrocell

VCC
+5

UIM

C
AND2

QD FD or IFD

C
AND2

QD FD or IFD

C
AND2

QD FDR or FDC

CCLK

RESET or CLEAR

R or C

Q

X4849

D FDCE

C

CE

CLR

WRITE_ENABLE

CLOCK

READ_ENABLE GND

OBUFE

IOPAD

IBUF
4-2 Xilinx Development System

Design Applications
Bidirectional Signals and Buses
Figure 4-2A shows how to specify a bidirectional pin. Figure 4-2B
shows that you can have a bidirectional signal passing through the
chip. To make a bidirectional bus, use bus components as shown in
Figure 4-2C.

Figure 4-3 Bidirectional Signals and Buses

Bidirectional Signals in PLDs
If you want to use a PLD output with a TRST equation to control a
bidirectional I/O pin of the EPLD, connect the OBUF output to an
IOPAD and IBUF (or IFD/ILD). If the same PLD symbol that gener-
ates the output is also to receive the I/O pin input, you must use a
separate pin of the PLD symbol to receive the signal from the IBUF.
Do not tie the signal received from an IBUF to the net driving the
OBUF of the same IOPAD as shown in Figure 4-3A; these input and
output nets must remain separate as shown in Figure 4-3B.

Rules for connecting PLD symbols also apply to any custom symbols
defined by equation files or macro schematics.

X4851

OBUFE

E
IBUF

A LOGIC
IOPAD

OBUFE

E
IBUF

B LOGIC
IOPAD

OBUFE

E

IBUF

IOPAD

OBUFE8 E

E

A_OUT[7:0]

A_IN[7:0]
A[7:0] B[7:0]

IBUF8

C LOGIC
IO[7:0]

IOPAD8

IBUF8

B_IN[7:0]

B_OUT[7:0]

OBUFE8

IO[7:0]

IOPAD8
XEPLD Schematic Design Guide 4-3

XEPLD Schematic Design Guide
Figure 4-4 How to Control a Bidirectional PLD Pin

Multiplexing 3-State Signals
Three methods of multiplexing 3-state signals are shown in Figure
4-5 on the next page. Which method you choose depends on your
application, resources, and speed requirements, although method C,
which uses a multiplexer, is usually best for EPLD designs.

Method A, shown in Figure 4-5A, uses 3-state buffers instead of a
multiplexer. The advantage of method A over method C is that
method A uses only one Function Block input in the macrocell that
sends the signal off-chip. The disadvantage of method A is that
macrocell feedback is lost because the outputs are 3-stated; therefore
counters will not work with Method A, but will work with Method C.

PL22V10

PLD=

PIN1 PIN23
OBUF

IBUF

Q = ... ; Q IS PIN 22
Q.TRST = READ_EN
...
R = Q;

Q
PIN2 PIN22

PIN3 PIN21

PIN4 PIN20

PIN5 PIN19

PIN6 PIN18

PIN7 PIN17

PIN8 PIN16

PIN9 PIN15

PIN10 PIN14

X4850

PIN11 PIN13

IOPAD

PL22V10

PLD=

PIN1 PIN23

OBUF

IBUF

Q_IN

Q = ... ; Q IS PIN 22
Q.TRST = READ_EN
...
R = Q_IN; Q_IN IS PIN 19

Q

PIN2 PIN22

PIN3 PIN21

PIN4 PIN20

PIN5 PIN19

PIN6 PIN18

PIN7 PIN17

PIN8 PIN16

PIN9 PIN15

PIN10 PIN14

PIN11 PIN13

IOPAD

A

B

Incorrect

Correct
4-4 Xilinx Development System

Design Applications
Method B, shown in Figure 4-5B, requires that you tie the signals
together off-chip. This method results in a short clock-to-out delay
and uses fewer macrocells than methods A and C. However, it uses
more pins than method A or C.

Method C, shown in Figure 4-5C, uses a multiplexer instead of
3-state buffers. This method results in a longer clock-to-out delay
than method B, although you can shorten this delay to that of method
B by registering the output of the multiplexer and asserting the select
signals one clock cycle in advance. This method uses more macrocells
than method B, but uses fewer pins.

Figure 4-5 Methods of Multiplexing 3-State Signals

QD FD

C

BUF OBUF
or OBUFE

(Tied Together
Off-Chip)

BUFE

OPAD

OPAD

OPAD

X4848

QD FD

C
BUFE

QD FD

C OBUFE

QD FD

C

OPAD

OBUFE

OBUF
or OBUFE

M2_1

QD FD

C

QD FD

C

D0

D1

S0

O

A

B

C

XEPLD Schematic Design Guide 4-5

XEPLD Schematic Design Guide
Optimizing XC7000 Registered Arithmetic
Performance

The XEPLD software optimizes adders and subtracters into FD, FDC,
and FDP registers. If your arithmetic component drives any other
register type, the arithmetic and register functions are implemented
in separate macrocells, impacting both speed and density.

The example in Figure 4-6 shows an adder/subtracter driving a
register with clock enable and synchronous clear. When the logic in
these components is broken down, each bitslice is represented as
shown in Figure 4-7.

Figure 4-6 Using ADSU4X1 and FD4RE Library Components

Figure 4-7 ADSU4X1 and FD4RE Equivalent Logic

In XC7000 High-Density Function Blocks, the arithmetic logic
physically occurs just before the register, as shown in Figure 4-8. This
means that, because of the reset and clock enable on the register, the

X4844

A2
A1

A3

B0
B1
B2
B3
ADD

CE

C

R

S2
S1
S0

S3
D2
D1
D0

D3

CO

A0

FD4RE

ADSU4X1

C
R

Q3
Q2
Q1
Q0

CE

Qi

X4845

D QFD
A0

(first bit)
ADD

Ai

Bi

CE

R

C

B0
C

CO

CI
S0

0
1

0
1

4-6 Xilinx Development System

Design Applications
ADSU4X1 and FD4RE are implemented as two levels of logic in an
XC7000 device.

Figure 4-8 EPLD High-Density Function Block Architecture

Because the logic in the adder must be performed in the ALU block of
the macrocell, the fitter cannot collapse the logic in Figure 4-7 into the
same macrocell. As a result, the logic formation requires two
macrocells and two macrocell delays.

You can achieve more efficient results by placing the register’s reset
and clock enable logic in front of the arithmetic logic as shown in
Figure 4-9. Whenever you connect combinational logic to the inputs

Figure 4-9 ADSUR4 Custom Symbol Logic Implementation

Q

X4842

D FD

CI

ALU

D1

D2

Pterms

C

Qi

X4843

D QFD
A0

(first bit)
ADD

Ai

Bi

CE

R

C

B0
CCO

CI
S0

0
1

0
1

OPT=MERGE

OPT=MERGE

OPT=MERGE

OPT=MERGE

OPT=MERGE
OPT=MERGE
XEPLD Schematic Design Guide 4-7

XEPLD Schematic Design Guide
of an arithmetic component, you must place the OPT=MERGE
attribute on each of the logic gates that you want implemented in the
same macrocell as the arithmetic. Otherwise, the software will not
automatically combine the combinational and the arithmetic
functions because of the special mapping requirements of the EPLD
arithmetic carry chain. Specifying OPT=MERGE forces the software
to combine the logic. If you try to include more logic than can be fit
into the macrocells, the software will issue an error.

Note: This is the only situation that requires the use of the
OPT=MERGE attribute.

Combinational Feedback Loops
The simple expression of a D-type latch contains inherent logic
hazards which could result in unpredictable results when run
through the fitter.

Figure 4-10 Simple Mux and Cross-Coupled-NAND Latches

A timing malfunction can occur if the logic is divided between two
separate macrocells by the fitter. Figure 4-11 illustrates what can
happen.

D

G

S

H

Q

Q

H

SD

G

X6558
4-8 Xilinx Development System

Design Applications
Figure 4-11 Malfunction of Physical Implementation

If you implement the D-type latches with proper redundant logic, the
problem will not occur. Figure 4-12 shows two solutions for
schematic implementation of D-type latches.

Figure 4-12 D-type Latch Solutions

When you create redundant logic in a schematic, remember to specify
the MINUM=OFF attribute on the final output gate to prevent the
software’s Boolean minimization routine from removing the
redundant logic.

Hierarchical Design
You can create symbols with schematics under them and place these
symbols in your top-level schematic. This can make your design
more modular and easier to understand.

User-created symbols are termed custom components. Custom
components with schematics under them are termed macros, as
opposed to behavioral modules, which are custom components with

D
G

H

S
Q

D

G

S

H

QMacrocell 2

Macrocell 1

collapsed but
reverted

broken loop

Typical actual waveform
X6557

D

G

S

H
Q

Q

H
R

SD

G

R

X6556
XEPLD Schematic Design Guide 4-9

XEPLD Schematic Design Guide
equations under them. For information about creating behavioral
modules, see “Using Behavioral Modules in Schematics.”

The procedure for creating a symbol with an underlying schematic is
the same for EPLD and FPGA except for the library you use (XC7000
instead of XC3000 or XC4000):

1. Create a lower-level schematic using XC7000 library symbols. To
make a device-independent custom macro, use only device-
independent symbols.

2. Create a symbol for the schematic.

3. Add attributes that the symbol needs to work in your CAE tool.

Notes for Viewlogic users:

● Label the nets in your lower-level schematic with the same names
as the pins on the symbol.

● The block type of the symbol must be Composite (not Module).
Use the Change ➝ Symbol Type ➝ Composite command to
change this.

● If you copy a Xilinx-supplied library symbol to use as the basis for
your custom macro, make sure you delete the invisible symbol
attribute LEVEL=XILINX, as this marks the symbol as a primitive.

Use Change ➝ Object Attribute ➝ Dialog to view and
delete this attribute. If necessary, scroll through the window to
find the LEVEL=XILINX attribute. Then mark the attribute with
the mouse and then click on Delete .

Notes for OrCAD users:

● Label the module ports in your lower-level schematic with the
same names as the pins on the symbol.

● Use the Edit Library (or LIBEDIT) utility to create your symbol.

Note: For information about storing custom components, see the
“Using Behavioral Modules in Schematics” chapter. Custom
components with underlying schematics are stored in the same way
as custom components with underlying behavioral modules.
4-10 Xilinx Development System

Design Applications
Schematic Custom Component Example
This next example shows you how to create a custom symbol with an
underlying schematic. The steps for Viewlogic users are shown, with
notes at the end for OrCAD users. Follow these steps:

1. Create the schematic using common symbols from the XC7000
library. It should look something like this:

Figure 4-13 The REGXOR Schematic

2. Create a symbol with pin names that match the inputs and
outputs of the schematic.

Figure 4-14 The REGXOR Symbol

3. Use the Change ➝ Symbol Type ➝ Composite command to
change the symbol’s block type to composite.

Notes for OrCAD users:

● Label the module ports in your lower-level schematic with the
same names as the pins on the symbol.

● Use the Edit Library (or LIBEDIT) utility to create your symbol.

X4839

DI0
XOR2

I1

CLK

FD

C

Q

X4864

REGXOR

CLK

I1

I0 Q
XEPLD Schematic Design Guide 4-11

XEPLD Schematic Design Guide
4-12 Xilinx Development System

Chapter 5
XEPLD Schematic Design Guide — 0401391 01 5-1

Using Behavioral Modules in Schematics

This chapter discusses how to include behavioral (equation-based)
modules in schematic designs. There are three reasons why you may
want to use behavioral modules in your schematic:

● If portions of your design are already implemented using
conventional programmable logic devices (PLDs), you can re-use
your existing PLD equations without having to redraw the same
logic schematically.

● Easier to express combinational functions and FSMs.

● You may wish to create a “custom primitive” symbol using
equations (instead of a schematic-based “macro” symbol) because
of the efficient sum-of-products logic equations. You can often
achieve better logic density and performance for custom logic
functions in an EPLD by using equation-based modules due to the
inherent sum-of-products logic structures comprising the EPLD
Function Block architecture. Custom primitives are easy to create,
and can be used just like regular library components.

This chapter shows you how to use PLD symbols, create new
components, edit library components, store custom components, and
adapt behavioral logic to schematic designs.

This chapter includes design examples that use PAL devices in a
schematic.

Preparing a Component
To prepare a PLD or custom primitive for use in a schematic design,
follow these steps. After you have prepared your component, you
can use it in a design just as you can any library component.

XEPLD Schematic Design Guide
1. Create an ABEL or XABEL equation file. Name the file
symbolname.abl.

The MODULE statement in this file must specify the symbol
name:

MODULEsymbolname

2. Compile the XABEL equation file to create a .xsf file, and a .pld
file. From XABEL 5.2, the procedure is:

Compile ➝ Xili nx EPLD Netlist

Note: XABEL-CPLD 6.0 is for behavioral designs only, and will not
generate a schematic module.

3. Use the Symbol Generation Utility to create a symbol from the .xsf
file. On the PC, go to your XACTstep program group and select the
Symbol Generation Utility icon (if you are working from a
workstation you can select DesignEntry ➝ SYMGEN). From a
PC:

a) Select the Symbol Generation Utility icon.

b) Use Browse to find and display the .xsf file on the Input line.

c) Select Orcad or Viewlogic from Symbol Type .

d) Select OK.

4. Add attributes that the symbol needs to work in your CAE tool.

For Viewlogic symbols, SymGen automatically adds the
LEVEL=XILINX symbol attribute to mark the symbol as a
primitive.

When you use the symbol in a schematic, add the DEF=PLD and
FILE=symbolname attributes to the symbol instance (do not add
them using the symbol editor).

Behavioral Module Example
This first simple example shows you how to create a custom symbol
with an underlying equation file. The steps for Viewlogic and OrCAD
users are shown. Follow these steps:

1. Create the XABEL file, regxor.abl.

MODULE regxor
5-2 Xilinx Development System

Using Behavioral Modules in Schematics
TITLE ‘Registered XOR gate’
regxor device;
IO pin;
I1 pin;
CLK pin;
Q pin istype ‘reg’;
EQUATIONS
Q := IO $ I1;
Q.C = CLK;
end

2. Compile the file to create the .xsf and .pld files.

Compile ➝ Xili nx EPLD Netlist

3. Run SymGen by selecting the Symbol Generation Utility
icon from the XACTstep program group. Create the symbol below.

Figure 5-1 The REGXOR Symbol Created by SymGen

If you are an OrCAD user, you must perform additional steps to
prepare your symbol. See “Using SymGen to Create Custom
Symbols” later in this chapter for details.

4. You can turn off the display of the LEVEL=XILINX attribute and
other attributes using the Change ➝ Object Attributes ➝
Visibility ➝ All Attrs Off command (for Viewlogic).

5. Add the DEF=PLD and FILE=regxor attributes to the symbol
instance when you use the symbol in a schematic.

Using Xilinx ABEL
Use Xilinx ABEL 5.2 (or 5.1) for creating behavior modules for use in
schematic design. The example used earlier in this chapter illustrates
the process of using Xilinx ABEL to create a schematic symbol that
can be placed in a Viewlogic or OrCAD schematic.

X4864

REGXOR

CLK

I1

I0 Q
XEPLD Schematic Design Guide 5-3

XEPLD Schematic Design Guide
Xilinx ABEL is useful for developing behavioral modules if you want
to take advantage of its high-level language capability but do not
need to access device-specific features such as the high-speed carry
path.

The SymGen Utility (Symbol Generation Utility) reads a Xilinx
ABEL-generated or user-created .xsf file containing the symbol name
and input and output names, then creates a macro file for OrCAD
and a symbol file for Viewlogic. The OrCAD Draft schematic editor
reads this macro file and creates a functional block that references a
Xilinx ABEL-created .xnf file. Viewlogic Viewdraw reads the symbol
and incorporates it into the schematic. For more information see the
Xilinx ABEL User Guide.

Using SymGen to Create Custom Symbols
Behavioral modules use the Symbol Generation Utility (Symgen) to
create a custom symbol. SymGen processes an .XSF:

SymGen is executed by selecting the Symbol Generation
Utility icon from the XACTstep program group.

SymGen also produces a report, design_name.SMR, which explains
how the symbol was created and displays a diagram of the pinout.
The Symbol Generation Utility menu allows you to specify
generation of a .smr file.

Viewlogic Symbols
If you are a Viewlogic user, SymGen creates the symbol and places it
in the sym directory below your design directory. You can add it to
any schematic in your design just as you would any other symbol. No
special conversion steps are necessary.

OrCAD Symbols
If you use the Symbol Generation Utility with OrCAD selected as the
Symbol Type , SymGen creates a .CMD file and places it in your
design directory. To convert the .CMD file into a symbol, you must
perform these additional steps:

1. Enter the OrCAD Edit Library utility.

File ➝ New ➝ Library
5-4 Xilinx Development System

Using Behavioral Modules in Schematics
2. In response to the Read Library? prompt, type the following:

.\userlib.lib ↵
This creates a library called userlib in your design directory.

3. The Library Edit screen appears. Select the Import command and
type file_name.cmd ↵ to invoke the command file.

4. The symbol appears. Select Library ➝ Update Current to
save the symbol to memory.

5. Select Quit ➝ Update File to save the library to disk.

6. Select Abandon Edits to exit the library editor.

You can now add this symbol to any schematic in your design just as
you would any other symbol.

Storing Custom Components
After you create your custom component, you should store it in each
design directory where you need to access it.

If you have defined the underlying logic differently for targeting two
or more different device families, you should store the component in
two or more different project directories or library directories. Each
directory would contain the underlying logic for one device family.

Viewlogic Components
You should store your custom library files in your project directory.
You cannot add custom symbols to the XC7000 library directory or
modify any of the Xilinx-supplied symbols or macros. However, you
can copy Xilinx-supplied symbols or macros to your directory,
rename them, and edit them.

OrCAD Components
You can store your library file and your macro schematics under the
\XACT\XC7000 library directory. Do not add to or modify the
xc7000.lib file or any of the library macro schematics supplied by
Xilinx. Store equation files for custom primitives in each design
directory for which you want to use the component.
XEPLD Schematic Design Guide 5-5

XEPLD Schematic Design Guide
5-6 Xilinx Development System

Chapter 6
XEPLD Schematic Design Guide — 0401391 01 6-1

Design Verification

This chapter describes the simulation methods, and reports available
to help you analyze and verify your design.

Simulating Designs
XEPLD supports a variety of third-party simulators, allowing you to
perform functional or timing simulation of your finished design.

To perform simulation on a design, you must first translate it into a
netlist consisting of XC7000 library models. XEPLD automatically
creates simulation files in the XNF netlist format, which can be
exported to the Viewlogic ViewSim simulator (.WIR), or the OrCAD
simulator (.VST) using the Xilinx-supplied CAE tool interfaces and
libraries. You can also use .XNF files with other simulators that
support Xilinx.

Note: When XEPLD processes your design, some of your original
nodes may be removed due to circuit optimization. These nodes
cannot be viewed or stimulated. All of the external I/O signals are
always maintained.

Making a Device Functional Simulation Model in
ProSim or VST

To create a Viewlogic functional simulation model, select the Xilinx
PROflow icon and select the ProSim button adjacent to
Functional Simulation . This will run XSIMMAKE and generate
a report in the notepad. When you exit the notepad, PROsim appears.
If you want to view waveforms, select the ProWave button. You may
also run a function simulation by selecting the Simulation
Utility from the XACTstep icon group.

XEPLD Schematic Design Guide
To create an OrCAD functional simulation model, select the
Simulation Utility from the XACTstep icon group. The
simulation menu appears. Use the Browse button to locate and
select your schematic file (design.sch). Select the XC7000 family.
Under Output Data , select Produce Functional Simulation
File . Under Format , select OrCAD. Press the Run button to generate
a report file.

See the OrCAD Interface/Tutorial Guide, Viewlogic Interface Guide and
Viewlogic Tutorials for more information on simulation.

Making a Device Timing Simulation Model in
ViewSim or VST

You must successfully fit your design to an EPLD using the Design
Manager before proceeding with timing simulation

Viewlogic Procedure

To create a Viewlogic timing simulation model, follow these steps; for
all commands, use the default options:‘

1. Select the Xilinx PROflow icon from the XACTstep icon group.

2. Select the ProSim button adjacent to Timing Simulation.

3. Place a check in the Command File box and click on Browse .
Find the command file for your design and click on OK. Timing
simulation will run and display a report.

See the Viewlogic Interface Guide and Viewlogic Tutorials for more
information on simulation.

OrCAD Procedure

To create an OrCAD timing simulation model, follow these steps; for
all commands, use the default options:

1. Select the Simulation Utility from the XACTstep icon
group.

2. Use the Browse button to locate and select your schematic file
(design.sch). Select the XC7000 family.

3. Under Output Data , select Produce Timing Simulation
File .
6-2 Xilinx Development System

Design Verification
4. Under Format , select OrCAD.

5. Select your file name from the list of .sch files that are displayed.
Select the Run button.

XEPLD creates a design_name.VST file.

See the OrCAD Interface/Tutorial Guide for more information.

Preload Values in Functional and Timing Simulation
The only functional differences expected between functional and
timing simulation involve the initial states of registers and latches in
the design. Functional simulation assumes that preload values are
undefined unless specified by an INIT attribute; timing simulation
uses the actual preload values implemented by the fitter.

For example, an FDR component will appear to preload to X during
functional simulation. However, during timing simulation, this FDR
may preload to 1 because that is the physical preload state of an FFB
macrocell register where the FD component was mapped.

See the “EPLD Architecture and Design Tradeoffs” chapter and the
PRELOAD_OPT and INIT attribute descriptions in the “Attributes”
appendix for more information about preload values.

Verifying Designs
After you have compiled your design using the Flow Engine, XEPLD
generates reports that tell you how your design fits in the target
device and how fast the design will run.

● The Resource Report, design_name.RES, gives you a summary of
the logic utilization of the device, your I/O usage, and the
resources that were left unused.

● The Pinlist Report design_name.PIN shows the final XC7000 device
pinout of your design.

● The Timing Report design_name.TIM shows the calculated worst-
case timing based on the physical implementation of your design.
XEPLD Schematic Design Guide 6-3

XEPLD Schematic Design Guide
Verifying Design Fit
When XEPLD has successfully compiled your design, you will see the
following message on your screen:

Design Successfully Mapped. Examine the following
report files:

Examine the Resource Report to determine the amount of chip
resources used to implement your design and how much remain. An
example Resource Report is shown on the next page. The schematic
for this report is the Johnson counter example in “Getting Started
with Schematic Design.” This design was targeted for the XC7318-
5PC44.

The Logic Resources section of the Resource Report shows that 4
macrocells were used in the design and 14 remain available for
additional logic. The Pin Resources section shows the types of signals
required by the design, the types of device pins used to satisfy the
signal requirements, and the remaining device pins that can be used
for additional signals.

This report shows that the 2 input signals were placed on input pins,
3 of the 4 output signals were placed on I/O pins and the remaining
output was placed on an FOE pin. A FastCLK pin was also used. A
total of 28 pins (14 input and 14 I/O) remain available for additional
input signals.
6-4 Xilinx Development System

Design Verification
XEPLD, Version 6.0.0 Xilinx Inc.
 Resource Report
 Circuit name: JCOUNT
Target Device: XC7318-5PC44 Integrated: 8- 9-95, 11:38AM

LOGIC RESOURCES

 Required Used Remaining
Function Blocks 1 1 1
Macrocells 4 4 14

PIN RESOURCES:

Type Req --------Used-------------- --------Remaining------
 I O I/O Fclk Foe Cen Tot I O I/O Fclk Foe CenTot
Inputs 2 2 0 2 14 14 28
Outputs 4 0 3 0 1 0 4 0 14 0 0 0 14
I/Os 0 0 0 14 14
Fclks 1 1 1 1 1
Foes 0 0 0 1 1
Cens 0 0 0 0 0
 --- --- -- --- --- --- --- ---
 7 2 0 3 1 1 0 7

Note:The design requires 0 pins with Fast Input capability.
 This device has 11 pins with Fast Input capability.

 End of Resource Report
XEPLD Schematic Design Guide 6-5

XEPLD Schematic Design Guide
6-6 Xilinx Development System

Appendix A
XEPLD Schematic Design Guide — 0401391 01 A-1

Common Questions and Answers

This appendix lists frequently asked questions about EPLD software
and its CAE tool interfaces, and gives explanations and solutions.

Drawing the Design
This section lists problems you may encounter because your CAE
tool drawing package is not properly configured for XEPLD
software.

Why Do I See White Boxes Instead of Components?
If you are a Viewlogic user and your schematic contains symbols
from a device family library (such as XC7000) that is not included in
your viewdraw.ini file, you see white boxes when you view your
schematic.

A likely cause of this problem is forgetting to run the Altran program
when converting from one device family to another; see the “Device-
Independent Design” chapter for details. Even after you run Altran,
components from the old library that are not in the new library
appear as white boxes — you should find equivalent components
that are compatible with the new library.

Another likely cause is not configuring viewdraw.ini properly, with
correct pathnames and library aliases. The example in the “Getting
Started with Schematic Design” chapter includes information about
how to configure Viewlogic software for the XC7000 device family.

XEPLD Schematic Design Guide
Why Are Some of My Components Missing?
If you are an OrCAD user and your schematic contains symbols from
a device family library (such as XC7000) for which OrCAD is not con-
figured, you see missing components when you view your schematic.

You probably were converting this design to a new device family and
forgot to do one of the following:

● Configure OrCAD using the XDraft command.

● Substitute symbols compatible with the new library for symbols
compatible with the old library.

The example in the “Getting Started with Schematic Design” chapter
includes information about how to configure OrCAD software for the
XC7000 device family.

Fitting the Design
This section lists problems you may encounter when you fit the
design.

What Does “Unrecognized Symbol” Mean?
If you get this error message:

xr55: [Warning]‘ADECODE is an unrecognized symbol
for the EPLD family. If this symbol is a
behavioral module, make sure you have added
FILE=module and DEF=PLD attributes to the symbol.
If the symbol is a custom schematic component,
check that a schematic exists for it. If the
symbol is a standard library component, make sure
the target EPLD family supports it. If you are
using a synthesis tool, resynthesize th logic
targeting an EPLD family.

it means one of the following occurred:

● You did not properly link a behavioral design to a schematic
symbol. You need to add attributes FILE=filename and DEF=PLD
to the schematic symbol.
A-2 Xilinx Development System

Common Questions and Answers
● If the symbol is a user macro, check that a schematic exists for it
and that an .XNF file was generated.

● If the symbol is a Xilinx library component, make sure the target
EPLD family supports it.

● If you are using a synthesis tool, recompile the logic targeting an
EPLD family.

Simulating the Design
This section lists problems you may encounter during functional or
timing simulation.

Why Are My Registers Stuck at the Preload Value?
At the beginning of a simulation, you must either pulse the MRESET
signal Low then High, or pulse the PRLD signal, which is MRESET
inverted, High then Low.

The assertion of the pulse forces all registers to a known state. The
deassertion allows the registers to change states. If you do not
deassert MRESET (or PRLD), your registers cannot change state.

Why Are My Internal Nodes Not Visible During
Timing Simulation?

The EPLD fitter optimizes your design for efficiency, eliminating
many internal combinatorial nodes. (If you are a Viewlogic user and
you view your back-annotated schematic during timing simulation,
these nodes appear with a “?”.)

Nets between IPADs and IBUFs are observable, as are nets between
OBUFs and OPADs. However, the outputs of IBUFs and the inputs of
OBUFs may not be observable. Other nets may or may not be
observable, depending on the results of optimization.
XEPLD Schematic Design Guide A-3

XEPLD Schematic Design Guide
Why Do Functional and Timing Simulation Yield
Different Results?

The only differences expected between functional and timing
simulation involve the initial states of registers and latches in the
design. Functional simulation assumes that preload values are
undefined (X) unless specified using an INIT attribute. Timing
simulation uses the actual preload values implemented by the fitter.

See the “EPLD Architecture and Design Tradeoffs” chapter and the
PRELOAD_OPT and INIT attribute descriptions in the “Attributes”
appendix for more information about preload values.
A-4 Xilinx Development System

Appendix B
XEPLD Schematic Design Guide — 0401391 01 B-1

Attributes
There are several methods of controlling the software using
attributes. There are Global Attributes which enable you to control
the implementation process from a global level, and there are
Component Attributes which allow you to control implementation at
a detailed level. Global Attributes can be defined either on the sche-
matic or from the Design Manager.

Attributes, which you place in your schematic, allow you to control
the following aspects of how the software processes your design:

● Target device
● Linking of behavioral module symbols and their behavioral

description files
● Register initial state
● Pinout and internal logic placement
● Power consumption

● Output pin slew-rate

● Timing constraints

Attributes are used to express information specific to each design, as
opposed to run-time options entered through the Design Manager
interface. There are two ways that attributes are placed in the
schematic:

● Component attributes, such as FILE, OPT, and LOC, affect only
the component instances on which they are placed.

● Global attributes set from the Implementation Template of the
Design Manager.

XEPLD Schematic Design Guide
Component Attributes
The component attributes specific to EPLD designs are as follows:

● DEF=PLD

● FAST
● FILE=file_name

● INIT={R | S}
● LOC=pin_name

● LOWPWR={ON | OFF}

● MINIM
● OPT={MERGE | OFF | UIM}

Viewlogic Procedure

Use the Add ➝ Object Att ribute command to assign a compo-
nent attribute by using the following procedure:

1. Select the schematic component by placing the mouse arrow on
the component and clicking the left mouse button.

2. Select Add ➝ Object Att ribute.

3. Type the attribute string, for example LOWPWR=OFF. Press Enter.

4. Move the arrow to where you would like the text and click the left
mouse button.

5. If you are assigning more than one attribute to the same
component, repeat steps 2 through 4 for each attribute.

OrCAD Procedure

Use the OrCAD Edit command to assign a component attribute by
using the following procedure:

1. Position the cursor over the schematic symbol.

2. Select Edit .

3. Select Edit (again).

4. Select nth Part Field , where n is any part field you choose
from 1st to 8th.
B-2 Xilinx Development System

Attributes
5. In the Name field enter:

attribute_name=value

Implementation Template (for Global Attributes)
The Design Manager has an Implementation Template
containing options for global attributes. Global attributes have the
following selection options:

● On: The attribute is applied throughout the whole design.

● Off: The attribute is turned off.

● In Design: This is provided only for backward compatibility to
earlier versions of the fitter in which global attributes were
specified in the schematic itself.

Note: Attributes specified in the Design Manager’s
Implementation Template override any old-style global
attributes placed in the schematic designs unless the In Design
option is selected.

Figure B-1 Implementation Template

To get to the Implementation Template from the Design Manager:

Utilities ➝ Template Manager
XEPLD Schematic Design Guide B-3

XEPLD Schematic Design Guide
Click on the name of the an implementation template and select:

Edit

From the Fitting template you can control the fitting options which
are set as follows:

● Use XACT-Performance: This indicates that you want to use timing
driven optimization which causes the software to optimize your
design to meet your specified timing constraints. For this option to
be useful, you must have previously created a timing constraints
file or you must have placed T-Spec information on your
schematic. See Chapter 4 for information on using T-Specs.

Note: Processing time will potentially be longer.

If this option is turned off, any timing specification attributes in
the schematic are ignored.

● Ignore Pin Assignments: This indicates that you do not want to use
any pinout information that may be in the design file or in a guide
(.gyd) file. This allows the fitter to place pins anywhere.

If this option is turned on, any LOC attributes in the schematic are
ignored.

● Drive Unused I/O Pads On Chip: This indicates that you want all
unused I/O pads to be actively driven by on chip circuitry.
Because all unused I/O pads must be driven to a valid logic level,
this option alleviates the need for external drivers or pullup
resistors. This option should not be used with the XC7318 and
XC7336 devices.

● Low Power Mode: Specifies the default power consumption mode
for the whole design. The default can be overridden using the
LOWPWR=ON or LOWPWR=OFF component attributes in the
schematic:

● On — Set Low Power mode as the default for the entire design.

● Off — Set high performance (high power mode) as the default
for the entire design.

● In Design — Default power may be defined by the old-style
LOWPWR=ALL global attribute in the schematic.

● Use MR As Input: Controls the use of the MR Input pin on the
XC7318, XC7336, and XC7354:
B-4 Xilinx Development System

Attributes
● On — Allow the MR pin to be used as an input pin.

● Off — Use the MR pin as a Master Reset input pin.

● In Design — Allow the pin use to be determined by the old-
style MRINPUT=ON global attribute in the schematic.

Click OK to accept the template, click Cancel to return to the previous
menu, click Default to set the default options, or click Help to open
the on-line help system.

Click Optimization and you will see the optimization template as
shown in Figure B-2.

Figure B-2 Optimization Template

From the Optimization template you can control the optimization
options which are set as follows:

● On — The option is activated for the whole design.

● Off — The option is turned off for the whole design.

● In Design — The option is provided for backward compatibility to
earlier versions of the fitter in which global attributes were
specified in the schematic itself.

The options are:

● Timing— Optimizes all logic paths for speed to achieve the
fastest possible timing.
XEPLD Schematic Design Guide B-5

XEPLD Schematic Design Guide
● Input Register — Determines if simple registers in your design
can be implemented using IOB registers of the EPLD.

● Fast Output Enable — Determines if output enable signals can
use the global high speed FOE nets.

● Fast Clock — Determines if clocks can use the global FastClock
nets.

● UIM — Determines if the UIM can be used to implement basic
boolean logic functions.

● Pre Load — Determines if the fitter can optimize registers that
have no assigned preload values. This optimization allows the
software to choose preload values that simplify fitting.

Click OK to accept the template, click Cancel to return to the previous
menu, click Default to set the default options, or click Help to open
the on-line help system.

Click Resources and you see the Resource Reservation template as
shown in Figure B-3.

Figure B-3 Resources Template

From the Resources template you can control the amount of device
resources reserved for future use as follows:

● Reserved Input Pins — Specifies the number of input pins to leave
unused.
B-6 Xilinx Development System

Attributes
● Reserved I/O Pins — Specifies the number of I/O pins to leave
unused.

● Reserved Output Pins — Specifies the number of Output pins to
leave unused.

● Reserved Macro Cells — Specifies the number of Macro Cells to
leave unused.

Click OK to accept the template, click Cancel to return to the previous
menu, click Default to set the default options, or click Help to open
the on-line help system.

Target Device Selection — The PART Attribute
You can place the global PART attribute in your schematic to select
the target EPLD device for your design. Refer to the Release Notes or
the Design Manager Part menu for a list of EPLD device names
supported by the software.

Note: This attribute is called PARTTYPE in OrCAD.

Selecting a part type in the Design Manger menu other than InDesign
before invoking the Fitter overrides any PART attribute in your
schematic.

Note: The Design Manager will automatically select a part for you,
choosing, in general, the smallest part that will satisfy the needs and
constraints of your design.

The format of the PART value is as follows:

PART=dddd- sspppp

dddd is the device number, for example 7354

ss is the speed grade, for example 12

pppp is the package type and pin count, for example PC68

Viewlogic Procedure

Apply the PART attribute as an unattached schematic attribute.
Follow these steps:

1. Deselect all components by clicking on a blank area of your
schematic.
XEPLD Schematic Design Guide B-7

XEPLD Schematic Design Guide
2. Select the Add ➝ Object Att ribute command.

3. Type the PART attribute string and press enter.

4. Position the attribute anywhere in the schematic and click with
the left mouse button.

OrCAD Procedure

Unlike other global attributes used for EPLD designs, the PARTTYPE
attribute is a stand-alone text string and should not be placed beneath
the |GLOBAL keyword in the schematic. Simply place the text

|PARTTYPE=dddd- sspppp

anywhere in your schematic other than the GLOBAL attribute list.

Behavioral Module File Name — The FILE Attribute
The FILE=file_name and DEF=PLD attributes on a PLD symbol
specify the name of the file with the logic equations for that PLD.

Specify the directory path if necessary. Do not specify the file
extension in the FILE=file_name attribute.

Pin Assignment — The LOC Attribute
Use the LOC=pin_name attribute on a PAD symbol to assign the
signal to a specific pin. The PAD symbols are IPAD, OPAD, IOPAD,
and UPAD. The pin name is Pnn for PC packages; the nn is a pin
number. The pin name is rc (rowcolumn) for PG packages. Examples
are LOC=P24 and LOC=G2.

Pin assignments are unconditional in that the software will not
attempt to relocate a pin if it cannot achieve the specified assignment.
You can apply the LOC attribute to as many PADs in your design as
you like. However, each pin assignment further constrains the
software as it automatically allocates logic and I/O resources to
internal nodes and I/O pins with no LOC attributes.

To assign logic to a specific macrocell of a specific function block, use
the LOC=FBx_y attribute, where x is the function block and y is the
macrocell. For instance, LOC=FB3_4 places the signal from the logic
to which it is attached into macrocell 4 of function block 3.
B-8 Xilinx Development System

Attributes
All pin assignments for a revision are save in a .gyd file (guide file). If
you want to create a new revision of a design and use the pin
assignments from a previous version, go to the Implementation
Menu and use the Guide Design option to pick up the guide file
from the earlier version.

Note: Pin assignment using the LOC attribute is not supported for
bus components such as OBUF8.

Power Setting — The LOWPWR Attribute
This attribute is valid for XC7300 designs, and is not valid for XC7200
designs. You can use this attribute to override the default power
setting in the Design Manager Implementation Window.
Normally the low power default is set to OFF.

To make low power the global default power setting, go to the
Implementation Template (in the Design Manager), select the
Fitting menu, and select On next to Low Power Mode .

To set the power of macrocells used by an individual symbol, use the
LOWPWR=ON or LOWPWR=OFF component attribute. This
attribute is ignored if assigned to a symbol that uses no macrocells,
such as an inverter or an I/O buffer.

Logic Optimization Attributes
Use the logic optimization attributes to control optimization at
specific points in your design. Logic optimization attributes are
normally not required to process EPLD designs.

OPT=OFF

The OPT=OFF component attribute inhibits logic optimization of all
macrocells used by a symbol.

The logic optimizer collapses the levels of logic to remove
intermediate nodes. Components are optimized forward into
components connected to their outputs.

If you build combinational logic using low-level gates and
multiplexers, the software attempts to pack all logic bounded
between device I/O pins and registers into a single macrocell.
XEPLD Schematic Design Guide B-9

XEPLD Schematic Design Guide
The logic optimizer first removes all internal logic that is not used by
any other logic or output buffer.

The logic optimizer moves logic forward by collapsing combinational
expressions into their fanouts. If collapsing an expression into all
fanouts succeeds, the original macrocell logic becomes unused and is
removed.

The logic optimizer does not collapse an expression into its fanouts if
the resulting expression uses too many product terms or inputs. Also,
logic is not automatically collapsed forward into any arithmetic
components (see the OPT=MERGE attribute).

The logic optimizer also moves forward any logic, whether
combinational or sequential, that is buffered by a tri-state buffer.
However, logic that itself contains a tri-state control is not moved
forward.

The OPT attribute has no effect on any symbol that contains no
macrocell logic, such as an I/O buffer.

The OPT=OFF attribute can be used to prevent optimization if it
appears that the software is collapsing logic in a way that prevents a
successful fit.

OPT=MERGE

Whenever you connect combinational logic to the inputs of an
arithmetic component, you must place the OPT=MERGE attribute on
each of the logic gates that you want implemented in the same
macrocell as the arithmetic. Specifying OPT=MERGE forces the
software to combine the logic. Otherwise, because of the special
mapping requirements of the EPLD arithmetic carry chain, the
software will not automatically combine the combinational and the
arithmetic functions . If you try to include more logic that can be fit
into the macrocells, the software will issue an error.

INIT
The INIT attribute specifies the intialization value to be preloaded
into a register upon power-up or Master Reset. INIT=R specifies a
preload value of 0 (Reset) and INIT=S specifies a preload value of 1
(Set). This attribute can be applied to flip-flops or any component
B-10 Xilinx Development System

Attributes
containing a register. However, INIT=R cannot be specified for an
IOB register, or latch symbols such as IFD.

FAST
In devices that support output slew-rate control, the FAST attribute
can be placed on an OPAD (output pad) or IOPAD symbol (primitive
or macro) to select the fast slew-rate operation of the corresponding
EPLD output-pin driver. The default is reduced (slower) slew-rate,
which reduces output switching surges in the device.

MINIM
The MINIM=OFF attribute tells the fitter to disable Boolean logic
minimization for the attached component. You need to use the
MINIM=OFF attribute if you want to specify redundant logic in a
portion of your design to avoid a potential race condition; for
example, you would use MINIM=OFF when designing
combinational feedback loops and latches.

TIMESPEC Attribute Syntax
The TIMESPEC attribute definitions specify the maximum delay
between groups of components. They begin with the letters ‘‘TS” and
a unique identifier that can consist of letters, numbers, or the
underscore character (_). The value of the TIMESPEC attribute
consists of a FROM-TO expression specifying the timing
requirements between specific end points. The full syntax is shown as
follows:

TSidentifier=FROM:group1:TO: group2=delay

The parameters group1 and group2 can be any of the following:

● Predefined groups consisting of FFS, LATCHES, or PADS which
are discussed in the ‘‘Using Predefined Groups” section.

● Previously created TNM identifiers which are introduced in the
‘‘Creating Arbitrary Groups Using TNMs” section.

● Groups defined in TIMEGRP symbols which are introduced in the
‘‘Creating New Groups from Existing Groups” section.
XEPLD Schematic Design Guide B-11

XEPLD Schematic Design Guide
The delay parameter defines the maximum delay for the attribute,
using nanoseconds as the default unit of measurement. Other units of
measurement such as MHZ may also be used.

Note: Keywords, such as FROM and TO, appear in this document
in upper case; however, you can enter them in the TIMESPEC
primitive in either upper or lower case.

The following examples show typical TIMESPEC attribute
definitions:

TS01=FROM:FFS:TO:FFS=30
TS_OTHER=FROM:PADS:TO:FFS=25
TS_THAT=FROM:PADS:TO:LATCHES=35

Note: Latches refer to input latches only.

OrCAD Users — The TIMESPEC primitive does not exist in the Xilinx
OrCAD library. For details on how to use Time Specs in an OrCad
design, refer to the OrCAD Interface/Tutorial Guide.

Mentor Graphics Users — The term attribute in this chapter is
equivalent to property as used in the Mentor Graphics environment.
B-12 Xilinx Development System

Index
Symbols
.cfg files, B-4

Numerics
3-state

vs. multiplexing, 4-4

A
adder/subtractor, registered, 4-6
altran, 2-3, 2-7
Altran command, A-1
Answers to common questions, A-1
applications, 4-1
architecture of EPLDs, 3-1
arithmetic symbols, cascading, 2-2, 3-12
attributes, B-1

and device-independence, 2-3
component, B-2
INIT, 3-25, B-10
LOC, 3-23, B-8
LOWPWR, 3-23, B-9
OPT, B-9
PART, B-7
PLD, B-8

B
behavioral modules

fitting, 1-3
bidirectional counters, cascading, 2-2, 3-13
bidirectional signals, 4-3

in PLDs, 4-3
boxes in Viewlogic schematics, A-1
buses, bidirectional, 4-3

C
CALC design, 2-6
CHIP statement, 5-2
clock enable

and density optimization, 3-18
common library, 1-2
common problems, how to solve, A-1
common symbols, 2-2
component not found message, A-2
components

attributes for, B-2
common, 2-2
custom, 5-1

example of, 4-11, 5-2
EPLD-specific, 2-2
missing, A-2
non-EPLD, finding, 2-4, 2-5, A-1

counters, up/down, cascading, 2-2, 3-13
custom component

examples, 4-11, 5-2
custom symbols, 5-4

D
design

applications and techniques, 4-1
device-independent, 2-1

and attributes, 2-3
example, 1-4
fitting, 1-8, 1-14
FPGA to EPLD conversion, 2-3

example, 2-6
hierarchical, 4-9
preserving pinout of, 3-19
XEPLD Schematic Design Guide — 0401391 01 i

XEPLD Schematic Design Guide
procedure, 1-4
speed optimization, 3-4
tradeoffs, 3-1
verification, 6-3

device
basic structures, 3-1
selecting, B-7
selection, 1-9

device-independent design, 2-1
and attributes, 2-3

Draft (OrCAD), 1-11

E
EPLD architecture, 3-1
EPLD design

converting from FPGA, 2-3
example, 2-6

EPLD-specific symbols, 2-2
errors

component not found, A-2
example design, 1-4

F
Fast Clock optimazation, B-6
Fast Function Block (FFB), 3-2

using, 3-4
Fast Inputs, 3-3
Fast Output Enable optimization, B-6
FFB (Fast Function Block), 3-2
files

.cfg, B-4
fitter

running, 2-12
fitter reports, 1-9, 1-14
fitting

OrCAD, 1-14
problems and solutions, 3-1, A-2
Viewlogic, 1-8

flow engine, 2-12
FOE (Fast Output Enable)

and density optimization, 3-18
FPGA design

converting to EPLD, 2-3
example, 2-6

functional simulation
differences from timing, A-4
OrCAD, 1-12
Viewlogic, 1-7

H
HDFB (High Density Function Block), 3-2
hierarchical design, 4-9
High Density Function Block (HDFB), 3-2

using, 3-4

I
I/O pads, driving, B-4
INIT attribute, 3-25, B-10
Input pad registers

optimization, B-6
inputs, 3-2

fast, 3-3
latches on, 3-3
registers on, 3-3
using, 3-3

internal nodes and timing simulation, 6-1,
A-3

L
latches on input pads, 3-3
library

schematic, 1-2, 2-1
unified, 1-2, 2-1

LOC attribute, 3-23, B-8
logic

optimization, B-9
reducing levels of, 3-14

Low Power Mode, B-4
LOWPWR attribute, 3-23, B-9

M
macro component

creating custom, 4-9
manual pin assignment, 3-19, 3-22
Master Reset, B-5
ii Xilinx Development System

Index
master reset, 3-18
Mentor Graphics

using TIMESPECS, B-12
messages

component not found, A-2
missing components, A-2
MR Input, B-4
multiplexing vs. 3-state signal, 4-4

N
nodes, internal, and timing simulation, A-3

O
OPT attribute, B-9
optimization, B-9

effects on internal nodes, 6-1
Fast Clock, B-6
Fast Output Enable, B-6
for speed, 3-4
input register, B-6
Preload, B-6
timing driven, B-4
UIM, B-6

Optimization Template, B-5
OrCAD

basic design procedure, 1-10
configuration, 1-10
functional simulation, 1-12
timing simulation, 1-15
VST, 6-1, 6-2

OrCad
using TIMESPECS, B-12

outputs, 3-2
using, 3-3

P
package

selection, 1-9
PAL

bidirectional signals in, 4-3
conversion, 1-3

part
selection, 1-9

PART attribute, B-7
pin assignment, 3-19, B-4, B-8

MR Input, B-4
precautions, 3-22

Pinlist report, 6-3
pinout

maintaining, 3-19
PinSave file, 3-22
PLD

attribute, B-8
bidirectional signals in, 4-3
file, 5-1
linking symbol with with PLUSASM
file, B-8

PLUSASM file
in primitive components, 5-2
linking with PLD symbol, B-8

power control, B-4
power, controlling, 3-23, B-9
predefined groups, T-Spec, 3-9
Preload optimization, B-6
PRLD (preload) signal, 2-4, 2-5

control of, B-10
predicting and controlling, 3-24, 4-1
registers stuck at preload value, A-3

problems, common, how to solve, A-1
PROcapture, 1-7
procedure for basic design, 1-4
product-terms

exported, 3-23
programming (device)

OrCAD, 1-14
Viewlogic, 1-8

PROsim, 1-7

Q
Questions commonly asked, A-1

R
read-back registers, 4-2
registered adder/subtractor, 4-6
registers
XEPLD Schematic Design Guide iii

XEPLD Schematic Design Guide
on input pads, 3-3
read-back, 4-2
stuck at preload values, A-3

reports
from fitter, 1-9, 1-14
Pinlist report, 6-3
Resource report, 6-3
Timing report, 6-3

reset
emulation in FFBs, 4-1

Reset, Master, B-5
Resource report, 6-3
resource report, 1-10
Resources Template, B-6

S
schematic

design, getting started, 1-1
library, 1-2, 2-1

simulation, 6-1
functional

OrCAD, 1-12
Viewlogic, 1-7

functional vs. timing differences, A-4
problems and solutions, A-3
timing

and internal nodes, A-3
OrCAD, 1-15
Viewlogic, 1-10

speed
setting, 1-9

speed optimization, 3-4
state machines

and density optimization, 3-18
FPGA to EPLD conversion, 2-6

symbols
common, 2-2
custom, 5-4
EPLD-specific, 2-2
non-EPLD, finding, 2-4, 2-5, A-1

SymGen command, 5-4

T
target device, selecting, B-7
Templates

Fitting, 3-12, B-3
Optimization, B-5
Resources, B-6

TIMEGRP
symbols, 3-9

TIMESPEC primitive, 3-8
basic groups, 3-8
FROM-TO statement, B-11
syntax, B-11

Timing Analyzer
procedure, 3-16
reports, 3-17

timing driven optimization, B-4
Timing report, 6-3
timing simulation

and internal nodes, A-3
differences from functional, A-4
OrCAD, 1-15
Viewlogic, 1-10

TNM attribute, 3-8
tradeoffs, in fitting a design, 3-1
TS attribute, 3-8

length, 3-8
time delay units, 3-9

T-Specs, 3-5, 3-15, B-4

U
UIM

optimization, B-6
UIM (Universal Interconnect Matrix), 3-2

AND functions, 3-4
using, 3-4

unified library, 1-2, 2-1

V
verification, 6-3
Verify menu command, 6-2
ViewDraw

configuration, 1-5
iv Xilinx Development System

Index
Viewlogic
basic design procedure, 1-5
functional simulation, 1-7
timing simulation, 1-10

ViewSim, 6-1, 6-2
.VST file, 6-1

W
white boxes, in Viewlogic schematics, A-1
.WIR file, 6-1

X
XACT–Performance, 3-5, B-4

predefined groups, 3-9
TIMESPEC primitive, 3-8
TS attribute, 3-8

Xaltran, 2-3, 2-7
XDraft command, 1-11, 2-5
.XNF file, 6-1
XOR, registered, 4-11, 5-2
.XSF file, 5-4
XSimMake command, 6-2
XEPLD Schematic Design Guide v

XEPLD Schematic Design Guide
vi Xilinx Development System

Trademark Information
XEPLD Schematic Design Guide — 0401391 01

, XACT, XC2064, XC3090, XC4005, and XC-DS501 are registered trademarks of
Xilinx. All XC-prefix product designations, XACT-Floorplanner, XACT-Performance,
XAPP, XAM, X-BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, XPP, XSI, BITA,
Configurable Logic Cell, CLC, Dual Block, FastCLK, HardWire, LCA, Logic Cell,
LogicProfessor, MicroVia, PLUSASM, SMARTswitch, UIM, VectorMaze, VersaBlock,
VersaRing, and ZERO+ are trademarks of Xilinx. The Programmable Logic Company and
The Programmable Gate Array Company are service marks of Xilinx.

IBM is a registered trademark and PC/AT, PC/XT, PS/2 and Micro Channel are
trademarks of International Business Machines Corporation. DASH, Data I/O and
FutureNet are registered trademarks and ABEL, ABEL-HDL and ABEL-PLA are
trademarks of Data I/O Corporation. SimuCad and Silos are registered trademarks and P-
Silos and P/C-Silos are trademarks of SimuCad Corporation. Microsoft is a registered
trademark and MS-DOS is a trademark of Microsoft Corporation. Centronics is a
registered trademark of Centronics Data Computer Corporation. PAL and PALASM are
registered trademarks of Advanced Micro Devices, Inc. UNIX is a trademark of AT&T
Technologies, Inc. CUPL, PROLINK, and MAKEPRG are trademarks of Logical Devices,
Inc. Apollo and AEGIS are registered trademarks of Hewlett-Packard Corporation.
Mentor and IDEA are registered trademarks and NETED, Design Architect, QuickSim,
QuickSim II, and EXPAND are trademarks of Mentor Graphics, Inc. Sun is a registered
trademark of Sun Microsystems, Inc. SCHEMA II+ and SCHEMA III are trademarks of
Omation Corporation. OrCAD is a registered trademark of OrCAD Systems Corporation.
Viewlogic, Viewsim, and Viewdraw are registered trademarks of Viewlogic Systems, Inc.
CASE Technology is a trademark of CASE Technology, a division of the Teradyne
Electronic Design Automation Group. DECstation is a trademark of Digital Equipment
Corporation. Synopsys is a registered trademark of Synopsys, Inc. Verilog is a registered
trademark of Cadence Design Systems, Inc.

Xilinx does not assume any liability arising out of the application or use of any product
described or shown herein; nor does it convey any license under its patents, copyrights, or
maskwork rights or any rights of others. Xilinx reserves the right to make changes, at any
time, in order to improve reliability, function or design and to supply the best product
possible. Xilinx will not assume responsibility for the use of any circuitry described herein
other than circuitry entirely embodied in its products. Xilinx devices and products are
protected under one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216;
4,713,557; 4,746,822; 4,750,155; 4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,853,626;

R

Trademark Information
4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135; 5,023,606; 5,028,821;
5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704;
5,329,174; 5,329,181; 5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248;
5,349,249; 5,349,250; 5,349,691; 5,357,153; 5,360,747; 5,361,229; 5,362,999; 5,365,125;
5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189; 5,410,194; 5,414,377; RE
34,363, RE 34,444, and RE 34,808. Other U.S. and foreign patents pending. Xilinx, Inc. does
not represent that devices shown or products described herein are free from patent
infringement or from any other third party right. Xilinx assumes no obligation to correct
any errors contained herein or to advise any user of this text of any correction if such be
made. Xilinx will not assume any liability for the accuracy or correctness of any
engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems.
Use of a Xilinx product in such applications without the written consent of the
appropriate Xilinx officer is prohibited.
Xilinx Development System

	COVER PAGE
	TRADEMARK INFORMATION
	BOOK CONVENTIONS
	TABLE OF CONTENTS
	INDEX
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	GO TO OTHER BOOKS
	Chapter 1 Getting Started with Schematic Design
	An Overview of Schematic Design Methods
	Using the Unified Library
	Behavioral Modules and PAL Conversion
	Schematic Design Flow Example
	Viewlogic Procedure
	Step 1 — Enter PROflow and Configure ProCapture
	Step 2 — Select the Device Family
	Step 3 — Draw the Design
	Step 4 — Perform Functional Simulation (Optional)
	Step 5 — Fit the Design and Create a Programming File
	Step 6 — Examine the Reports
	Step 7 — Timing Simulation

	OrCAD Procedure
	Step 1 — Enter and Configure OrCAD
	Step 2 — Enter Draft and Draw the Design
	Step 3 — Add Simulation Information
	Step 4 — Prepare Simulation Vectors (Optional)
	Step 5 — Create Functional Simulation Model
	Step 6 — Perform Functional Simulation (Optional)
	Step 7 — Fit the Design and Create a Programming File
	Step 8 — Examine the Reports
	Step 9 — Timing Simulation

	Chapter 2 Device-Independent Design
	Choosing Components
	When to Use EPLD-Specific Components
	When to Use Common Components

	Attributes and Device Independence
	General Conversion Procedure: FPGA to EPLD
	Viewlogic Procedure
	OrCAD Procedure
	Converting Behavioral Modules

	FPGA to EPLD Conversion Example: CALC Design
	Procedure for Viewlogic Users
	Reconfiguring the Libraries and Schematic Symbols
	Editing the Schematic
	Performing Timing Simulation

	Procedure for OrCAD Users
	Reconfiguring the Libraries and Schematic Symbols
	Editing the Schematic
	Running the Fitter Commands
	Performing Timing Simulation

	Converting a Xilinx-ABEL Module (Optional)

	Chapter 3 EPLD Architecture and Design Trade-offs
	EPLD Architecture
	Input Pad Structures
	Output Pad Structures
	High-Density Function Blocks
	Fast Function Blocks
	The Universal Interconnect Matrix (UIM)

	Designing for Speed
	Using XACT Performance
	Timing Definitions
	The TIMESPEC Primitive
	Defining Timing Path End Points
	Using Predefined Groups

	Specifying Time Delay Units
	CST Files
	Enabling Timing Specifications
	Using EPLD-Specific Arithmetic Functions
	Cascading Counters
	Reducing Levels of Logic
	Timing Analysis
	Timing Analysis Procedure
	Opening the EPLD Timing Analyzer
	EPLD Timing Analysis Window Features
	Generating Reports

	Designing for Density
	Maximally Encoding State Machines
	Using Global Nets
	Master Reset Pin Trade-offs

	Designing to Preserve the Pinout
	Resource Reservation
	Using Pinouts from an Earlier Design Iteration
	Manual Pin Assignment
	Manual Pin Assignment Precautions
	The LOC Attribute

	Controlling Power Consumption
	Controlling Preload Values
	Attributes for Controlling Preload Values
	Preload Values for Functional and Timing Simulation

	Chapter 4 Design Applications
	Reset and Preload Control in XC7000 FFB and Input Pad Registers
	Read-Back Registers
	Bidirectional Signals and Buses
	Bidirectional Signals in PLDs
	Multiplexing 3-State Signals
	Optimizing XC7000 Registered Arithmetic Performance
	Combinational Feedback Loops
	Hierarchical Design
	Schematic Custom Component Example

	Chapter 5 Using Behavioral Modules in Schematics
	Preparing a Component
	Behavioral Module Example
	Using Xilinx ABEL
	Using SymGen to Create Custom Symbols
	Viewlogic Symbols
	OrCAD Symbols

	Storing Custom Components
	Viewlogic Components
	OrCAD Components

	Chapter 6 Design Verification
	Simulating Designs
	Making a Device Functional Simulation Model in ProSim or VST
	Making a Device Timing Simulation Model in ViewSim or VST
	Viewlogic Procedure
	OrCAD Procedure

	Preload Values in Functional and Timing Simulation

	Verifying Designs
	Verifying Design Fit

	Appendix A Common Questions and Answers
	Drawing the Design
	Why Do I See White Boxes Instead of Components?
	Why Are Some of My Components Missing?

	Fitting the Design
	What Does “Unrecognized Symbol” Mean?

	Simulating the Design
	Why Are My Registers Stuck at the Preload Value?
	Why Are My Internal Nodes Not Visible During Timing Simulation?
	Why Do Functional and Timing Simulation Yield Different Results?

	Appendix B Attributes
	Component Attributes
	Viewlogic Procedure
	OrCAD Procedure

	Implementation Template (for Global Attributes)
	Target Device Selection — The PART Attribute
	Viewlogic Procedure
	OrCAD Procedure

	Behavioral Module File Name — The FILE Attribute
	Pin Assignment — The LOC Attribute
	Power Setting — The LOWPWR Attribute
	Logic Optimization Attributes
	OPT=OFF
	OPT=MERGE

	INIT
	FAST
	MINIM
	TIMESPEC Attribute Syntax

