
XEPLD
VIEWSYNTHESIS

 ™

DESIGN GUIDE

ONLINER

0401419

TABLE OF CONTENTS

INDEX

GO TO OTHER BOOKS

Copyright 1994-1995 Xilinx Inc. All Rights Reserved.
Contents

Chapter 1 System Configuration
Software Capabilities ... 1-1

Unsupported Features .. 1-1
System Requirements.. 1-2
Configuring the Viewlogic Library Search Order.......................... 1-2

The viewdraw.ini File .. 1-2
Verifying Your File Structure .. 1-3

Chapter 2 Getting Started With Xilinx EPLDs
Xilinx EPLD Design Flow ... 2-1
Design Example... 2-2

Design Entry ... 2-3
Copying the Tutorial Files ... 2-6
Project Creation .. 2-6
Design Synthesis and Schematic Generation 2-12
Functional Simulation ... 2-13
Design Fitting and Device Programming 2-19
Timing Simulation ... 2-22

Chapter 3 Designing With EPLDs
VHDL Design File General Requirements 3-1

XC7000 Components Package .. 3-1
I/O Buffers.. 3-1

Defining I/Os in the Main Design .. 3-2
Defining I/Os Using a Top-Level File 3-2

Creating a Top-Level Design... 3-2
Special-Purpose I/O Ports .. 3-3
Selecting 3-State Control Sources.. 3-4

Assigning Specific Fast Output Enable Signals................. 3-4
Using Xilinx-Supplied Macros .. 3-5
XEPLD ViewSynthesis Design Guide — 0401345 01 i

XEPLD ViewSynthesis Design Guide
Using Registers And Latches... 3-5
Using Input Pad Registers .. 3-6
Using Macrocell Registers .. 3-6
Using Input Pad Latches... 3-7
Using Macrocell Latches... 3-7

Using Special Logic Functions ... 3-7
Binary Counters .. 3-7
State Machines ... 3-7
Arithmetic Functions ... 3-8
Comparators ... 3-8

Targeting a Specific Device ... 3-9
Controlling Design Performance .. 3-10

Using High-Speed Clocks ... 3-10
Assigning Specific High-Speed Clocks.............................. 3-11

Selecting EPLD Function Block Types 3-11
Specifying High Speed Paths .. 3-11
Specifying High Density Paths... 3-11

Using EPLD FastInputs... 3-11
The Design Rule Checker .. 3-12

General Design Rule Violations .. 3-12
Pad Component Design Rule Violations................................. 3-12
FastCLK, Clock Enable, Fast Output Enable Violations 3-13

Chapter 4 Using PROflow
Fitter Overview ... 4-1
Creating a Project Directory ... 4-2
Compiler Operation .. 4-3
Fitter Operation .. 4-4

Fitting Your Design ... 4-4
Fitter Reports .. 4-6

Design Timing Verification ... 4-7
Creating The Xilinx Static Timing Report 4-7
Performing Timing Simulation... 4-7

Appendix A Using the Command Line
Using a Batch File .. A-1
Using Individual Commands .. A-1

Appendix B EPLD Architecture
Device Selection .. B-2
The Universal Interconnect Matrix ... B-3
 ii Xilinx Development System

Contents
High-Density Function Blocks .. B-4
Shared and Private Product Terms .. B-5
Arithmetic Logic Unit ... B-5
Carry Lookahead (7300 Family Only) B-6
Macrocell Flip-Flop ... B-6

Fast Function Blocks.. B-7
Product Term Expansion .. B-9
XC7336 and XC7318 Fast Function Blocks B-9

Input/Output Blocks.. B-10

Appendix C Library Component Specifications
ACC ... C-3
ADD ... C-4
ADSU ... C-5
ADSUR .. C-6
AND2 — AND8 .. C-7
BUF.. C-8
BUFCE... C-9
BUFE ... C-10
BUFFOE .. C-11
BUFG ... C-12
CBX1.. C-13
CBX2.. C-14
DEC ... C-15
EQ.. C-16
FDCP ... C-17
FDCPE... C-18
FDPC ... C-19
IBUF... C-20
IFD ... C-21
IFDX1... C-22
ILD ... C-23
INC... C-24
INV ... C-25
LD .. C-26
LE_TC, LE_US .. C-27
LT_TC, LT_US... C-28
NE .. C-29
OBUF, OBUF_F, OBUF_S .. C-30
OBUFE, OBUFE_F, OBUFE_S ... C-31
OBUFEX1, OBUFEX1F, OBUFEX1S .. C-32
XEPLD ViewSynthesis Design Guide iii

XEPLD ViewSynthesis Design Guide
OR2 — OR8... C-33
SUBT.. C-34
XOR2 — XOR8.. C-35

Appendix D Attributes
Global Attributes... D-1

LOWPWR ... D-1
MRINPUT.. D-1
NO_FOE ... D-2
NO_FCLK ... D-2
NO_IFD... D-2
PRELOAD... D-3

Signal Attributes ... D-3
F.. D-3
H ... D-3
OPT_OFF ... D-4
OPT_UIM .. D-4

Appendix E Fitter Reports
Resource Report .. E-2
The Static Timing Report ... E-3

Creating the Timing Report... E-3
Combinational Pad-to-Pad Delays.. E-4
Setup-to-Clock Time ... E-5
Clock-to-Output Delays... E-6
Cycle Time .. E-7
Example Timing Report .. E-8

Pin-List Report ... E-11

Index .. i

Trademark Information
 iv Xilinx Development System

Chapter 1
XEPLD ViewSynthesis Design Guide — 0401345 01 1-1

System Configuration

This chapter describes the capabilities of the Xilinx® EPLD Viewlogic
Synthesis Library and Interface and shows you how to configure
your system. For installation instructions, refer to the Release Notes.

Software Capabilities
The Xilinx EPLD Viewlogic Synthesis Interface has the following
features:

● Supports all XC7200 and XC7300 devices.

● Functional simulation of synthesized gate-level designs
(including all XC7000-specific library components).

● Full-timing simulation (after fitting).

● Static Timing Report created by the XEPLD™ Fitter (after fitting).

● Attributes for allocating logic to EPLD Fast Function Blocks and
Fast Inputs.

● Attributes for controlling XEPLD optimization of clocks, input
pad registers, output enable signals, and UIM™-AND functions.

Unsupported Features
The Xilinx EPLD Viewlogic Synthesis Interface currently has the
following limitations:

● No technology-specific optimization (for speed or density) is
performed by the Viewlogic synthesizer; all optimization is
performed by the Xilinx EPLD Translator Core Tool (XEPLD).

● No timing or area information is contained in the XC7000 library.
Therefore, no timing or area estimation is available from

XEPLD ViewSynthesis Design Guide
Viewlogic Synthesis. Timing and resource utilization results are
available from XEPLD after completion of fitting.

● The XEPLD fitter (v5.1) currently does not support timing-
constraint-driven optimization; Viewlogic Synthesis timing
constraints have no effect on EPLD design processing. Instead, use
the "F" attribute to designate EPLD Fast Function Block and Fast
Input resources.

System Requirements
You will need the following software installed on your system to
develop EPLD designs:

● Viewlogic PRO series or Powerview with Viewlogic Synthesis
v2.3.1 or later.

● Xilinx Viewlogic Interface and libraries version 5.1 PRO (all of the
Xilinx Viewlogic system products contain this interface).

● Xilinx EPLD Implementation software (DS550) version 5.1 or later
(all of the Xilinx Viewlogic system products contain this interface).

Configuring the Viewlogic Library Search Order
After you have installed the Xilinx software, you must configure the
viewdraw.ini file (originally in your Viewlogic STANDARD
directory) for accessing the XC7000 library. Each design directory
where XC7000 designs are processed must contain a properly
configured viewdraw.ini file.

The viewdraw.ini File
Copy the viewdraw.ini file from the Viewlogic standard directory
into your project directory, or use the Viewlogic project management
utility to create a project directory containing a copy of viewdraw.ini.
Edit your local viewdraw.ini file so that it contains the following
library directory pointers in the following order:

DIR [p] . (primary)
DIR [m] Xilinx_library_path\unified\xc7000 (xc7000)
DIR [m] Xilinx_library_path\unified\builtin (builtin)
DIR [m] Xilinx_library_path\unified\xbuiltin (xbuiltin)

On the workstation, use [r] instead of [m] in the library paths.
1-2 Xilinx Development System

System Configuration
Verifying Your File Structure
Figure 1-1 shows the relative locations of the essential files included
with the Xilinx Viewlogic Synthesis Interface and Libraries:

Figure 1-1 XEPLD Viewlogic Synthesis Interface (v5.1) Files

X6017

Xilinx Viewlogic Software Directory

standard

tutorial

unified

vwlogic

xc7000

examples

vwlogic

scan

fsm

macro_7k

*.vhd

sch.lib, sch.tbl

sym.lib, sch.tbl

wir.lib, sch.tbl

comp.vhd

vdes

fsm.bat

xc7000.sml

fsm.cmd

fsm.map

fsm.par

fsm.pin

fsm.res

fsm.src

fsm.tim

fsm.vhd

readme

viewdraw.ini

X6017
XEPLD ViewSynthesis Design Guide 1-3

XEPLD ViewSynthesis Design Guide
1-4 Xilinx Development System

Chapter 2
XEPLD ViewSynthesis Design Guide — 0401345 01 2-1

Getting Started With Xilinx EPLDs

This chapter provides an overview of the basic steps for
implementing Xilinx EPLD designs using PROsynthesis. The
remaining chapters in this manual provide additional detailed
information on these steps.

This overview assumes that you have installed and configured the
Xilinx software and libraries. See the System Configuration chapter
for instructions on how to verify your installation.

The examples in this chapter show the PRO series environment on a
PC. You can also process EPLD designs using ViewSynthesis (for
example, under Powerview on a workstation) using a similar
sequence of steps.

Xilinx EPLD Design Flow
The basic steps for creating Xilinx EPLDs using Viewlogic Synthesis
are described as follows:

1. Enter your VHDL design using a text editor.

2. Synthesize your design using PROsynthesis and generate a
schematic for fitting.

3. Perform functional simulation using PROsim (optional).

4. Run the Xilinx fitter on the schematic and create a timing report
and device programming file.

5. Perform timing simulation using PROsim (optional).

Figure 2-1 shows the basic design flow for creating EPLD designs.
Each step is described in the following design example.

XEPLD ViewSynthesis Design Guide
Figure 2-1 Basic EPLD Design Flow

Design Example
The following design example, fsm.vhd, is used to demonstrate the
basic EPLD design flow. The design is implemented in a Xilinx
XC7336-5PC44 device.

This design is a finite state machine that outputs a 1 only when the
bitstream 11100 is present, ignoring all other 5-bit combinations.
Figure 2-2 illustrates how this state machine works, and Figure 2-3 is
a state diagram for the fsm.vhd design.

Figure 2-2 FSM Output vs. Input Relationship

X6048

VHDL Entry

Design Entry

vhdl
synthesis

wire
viewgen

vsm
PROsim

xemake
timerpt

xsimmake
PROsim

Synthesis and
Schematic Conversion

Functional Simulation
(Optional)

Fitting and
Device Programming

Timing Simulation
(Optional)

PROsynthesis

XEPLD

PROsim, PROwave

PROsim, PROwave

design_name.vhd

design_name.vmh

design_name.prg

design_name.tim

X6038

1 1 1 1 1 1 0 0 0 1 1 0 1 1 0 1 1 1 0 0 1 1 0 0

Output (pmatch)

Input (data_in)
2-2 Xilinx Development System

Getting Started With Xilinx EPLDs
Figure 2-3 FSM State Diagram

Design Entry
The VHDL source file for the example design is shown in below. Note
that this file contains IBUF and OBUF instances, which are necessary
to identify all device input and output pins in all EPLD designs.

library synth; -- Used for simulation
use synth.stdsynth.all;
library xc7000; -- Used for EPLD I/O buffer components
-- use xc7000.components.all;

-- Entity: Input and Output Declarations.
--

entity fsm is
 port (
 signal reset, clk, datain : in vlbit;
 signal pmatch : out vlbit
);
end fsm;

X6039

data_in=0
data_in=1

S0

data_in=0
data_in=1

S1

data_in=0
data_in=1

S2

data_in=1
data_in=0

S3

data_in=0
S4

data_in=0 S5

data_in=1

data_in=1
XEPLD ViewSynthesis Design Guide 2-3

XEPLD ViewSynthesis Design Guide
--
-- The architectural body - behavioral description.

architecture first of fsm is

signal reset_in, clk_in, datain_in : vlbit;
signal pmatch_out : vlbit;

constant s0 : vlbit_1d(2 downto 0) := "000";
constant s1 : vlbit_1d(2 downto 0) := "001";
constant s2 : vlbit_1d(2 downto 0) := "010";
constant s3 : vlbit_1d(2 downto 0) := "011";
constant s4 : vlbit_1d(2 downto 0) := "100";
constant s5 : vlbit_1d(2 downto 0) := "101";

signal next_state : vlbit_1d(2 downto 0);
signal state : vlbit_1d(2 downto 0);

begin

 i1: ibuf port map (reset_in, reset);
 i2: ibuf port map (clk_in, clk);
 i3: ibuf port map (datain_in, datain);
 o1: obuf port map (pmatch, pmatch_out);
 cntl: process(datain_in, state)
 begin
 pmatch_out <= '0';
 next_state <= s0;

-- Begin CASE statement

 CASE state(2) IS

WHEN '1' =>
IF state(1) = '1' THEN
next_state <= s0; -- error condition

ELSE
IF state(0) = '0' THEN

IF datain_in = '1' THEN
next_state <= s1; --transition from "100" to "001"

ELSE
next_state <= s5; --transition from "100" to "101"

END IF;
ELSE

pmatch_out <= '1';
IF datain_in = '1' THEN

next_state <= s1; --transition from "101" to "001"
ELSE

next_state <= s0; --transition from "101" to "000"
2-4 Xilinx Development System

Getting Started With Xilinx EPLDs
END IF;
END IF;

END IF;

WHEN '0' =>
IF state(1) = '1' THEN
IF state(0) = '0' THEN

IF datain_in = '1' THEN
next_state <= s3; --transition from "010" to "011"

ELSE
next_state <= s0; --transition from "010" to "000"

END IF;
ELSE

IF datain_in = '1' THEN
next_state <= s3; --transition from "011" to "011"

ELSE
next_state <= s4; --transition from "011" to "100"

END IF;
END IF;

ELSE
IF state(0) = '0' THEN

IF datain_in = '1' THEN
next_state <= s1; --transition from "000" to "001"

ELSE
next_state <= s0; --transition from "000" to "000"

END IF;
ELSE

IF datain_in = '1' THEN
next_state <= s2; --transition from "001" to "010"

ELSE
next_state <= s0; --transition from "001" to "000"

END IF;
END IF;

END IF;

WHEN OTHERS => next_state <= s0; -- error condition

 END CASE;

 end process cntl;

-- Seperate clocked process
-- state<=next_state
XEPLD ViewSynthesis Design Guide 2-5

XEPLD ViewSynthesis Design Guide

 cntl_clk: process
 begin

wait until (prising(clk_in) or (reset_in = '1'));
 if (reset_in = '1') then
 state <= s0;
 else
 state <= next_state;
 end if;
 end process cntl_clk;

end first;

The example file is already created for you and is located in the
directory: tutorial\vwlogic\fsm.

Copying the Tutorial Files
Before you start the tutorial, you should copy the files installed in
tutorial\vwlogic\fsm to your own project directory. You can use DOS
commands or the Windows File Manager to copy the files. In the
examples that follow, the tutorial files are copied into c:\designs\fsm.

This will place the following four files, plus a few report files, into
your new project directory:

● fsm.vhd — VHDL source design file

● fsm.cmd — PROsim simulation command file

● fsm.bat — batch file to automatically run the tutorial from DOS

● fsm.src — VHDLDES command file invoked by fsm.bat

Project Creation
To establish the FSM design as a Viewlogic project, follow these steps:

1. Start Windows by typing win at the DOS prompt.

2. Open the PRO Series window.

3. Open the Xilinx flow manager, PROflow, by double clicking on the
Psfm icon.
2-6 Xilinx Development System

Getting Started With Xilinx EPLDs
The Xilinx PROflow window appears as in Figure 2-5:

Figure 2-4 Xilinx PROflow Window
XEPLD ViewSynthesis Design Guide 2-7

XEPLD ViewSynthesis Design Guide
4. Select the PROcapture button in PROflow. The Design Entry
dialog box appears as in Figure 2-6:

Figure 2-5 Design Entry Dialog Box
2-8 Xilinx Development System

Getting Started With Xilinx EPLDs
5. Click on the Project Manager button. The dialog box shown in
Figure 2-7 appears:

Figure 2-6 Project Manager Dialog Box

6. Select the Create button. This opens the Create Project dialog
box as in Figure 2-8:

Figure 2-7 Create Project Dialog Box
XEPLD ViewSynthesis Design Guide 2-9

XEPLD ViewSynthesis Design Guide
7. In the Create Project dialog box, select or type in the path of the
directory to which you copied the FSM tutorial files, for example:

C:\DESIGNS\FSM

8. Select OK. The second dialog box closes.

9. Select the project you just created if it is not selected already, then
click on the Select button.

10. Select the Exit button to close the Project Manager.

11. After you close the project manager, the dialog box shown in
Figure 2-9 prompts you to select a device family:

Figure 2-8 Select Family Dialog Box

12. Select XC7000, then select OK.

13. In the Design Entry dialog box, select VHDL as the Type of
design.
2-10 Xilinx Development System

Getting Started With Xilinx EPLDs
14. Select the fsm.vhd file from the list. The file name appears in the
Design Name field. Make sure the Start Notepad box is NOT
checked. The Design Entry dialog box should now look like
Figure 2-10:

Figure 2-9 Design Entry Dialog Box After Changes

Note: If this were a multi-file design, for each lower-level file you
would select the file from the list and then select the Compile VHDL
button. You would then select the top-level file and select the OK
button, just as in steps 14 and 15 here.

15. Select the OK button.
XEPLD ViewSynthesis Design Guide 2-11

XEPLD ViewSynthesis Design Guide
Design Synthesis and Schematic Generation
To create a schematic representation of your design, follow these
steps:

1. Select the Xilinx button in PROflow. The Xilinx Implementation
dialog box appears as in Figure 2-11:

Figure 2-10 Xilinx Implementation Dialog Box

2. Check the Run Synthesis Only box. This synthesizes your design
without running the fitter, so you can functionally simulate your
design.
2-12 Xilinx Development System

Getting Started With Xilinx EPLDs
3. Click on the Synthesis Options button. The dialog box shown in
Figure 2-12 appears:

Figure 2-11 Synthesis Options Dialog Box

4. Make sure the Generate Schematic box is checked. This will cause
a schematic representation of the VHDL design to be created.

5. Select OK to close the Synthesis Options dialog box.

6. Select OK to close the Xilinx Implementation dialog box and run
the synthesis. When synthesis is complete, you see the following
message in a prompt box:

Synthesis complete. View report?

7. You can select Yes or No. If you select Yes, you must close the
report window after you have finished reading the report.

Functional Simulation
After you have synthesized your design and created a schematic, you
can perform functional simulation.

1. Select the PROcapture button in PROflow. The Design Entry
dialog box appears.
XEPLD ViewSynthesis Design Guide 2-13

XEPLD ViewSynthesis Design Guide
2. Select Schematic as the Type of design. You should see the fsm.1
file in the Design Name field. Make sure the Start PROcapture box
is NOT checked. The dialog box should look like Figure 2-13 after
these changes:

Figure 2-12 Design Entry Dialog Box After Schematic Changes

3. Select the OK button.
2-14 Xilinx Development System

Getting Started With Xilinx EPLDs
4. Select the PROsim button in PROflow. The Functional Simulation
dialog box appears as in Figure 2-14:

Figure 2-13 Functional Simulation Dialog Box
XEPLD ViewSynthesis Design Guide 2-15

XEPLD ViewSynthesis Design Guide
5. Select the Command File box and the Browse button. The
Command Files browser appears as in Figure 2-15:

Figure 2-14 Command Files Browser

6. Select fsm.cmd from the list, then select OK. The browser closes.

The fsm.cmd file tells PROsim how to simulate the fsm design.The
file’s contents are shown here:

wave fsm.wfm PRLD CLK RESET DATAIN PMATCH
vector fsm PRLD CLK RESET DATAIN PMATCH
watch PRLD CLK RESET DATAIN PMATCH
break fsm ? do (print > fsm.out)

stepsize 250
clock CLK 0 1

wfm PRLD @0=1 +
@0500=0

wfm RESET @0=0 +
@0500=1 +
@1000=0
2-16 Xilinx Development System

Getting Started With Xilinx EPLDs
wfm DATAIN @0=1 +
@4000=0 +
@5500=1 +
@6500=0 +
@7000=1 +
@8000=0 +
@8500=1 +
@10000=0 +
@11000=1

sim 13000

7. Select OK in the Functional Simulation dialog box. After the
simulation netlist is processed, the vsm.log file is displayed. Close
this file window.

8. The PROsim window appears, and the netlist is read. Close the
PROsim window when processing is complete (simulation is
stopped at 1401 ns).

9. Select the PROwave button in PROflow. The PROwave Setup
dialog box appears as in Figure 2-16:

Figure 2-15 PROwave Setup Dialog Box

10. Select OK in the PROwave Setup dialog box.

11. The PROwave window appears, along with the File ➝ Open
browser. Select fsm.wfm from the list and select OK.
XEPLD ViewSynthesis Design Guide 2-17

XEPLD ViewSynthesis Design Guide
The waveforms appear as in Figure 2-17:

Figure 2-16 Simulation Waveforms for the FSM Design

12. When you are finished viewing, close the PROwave window.
2-18 Xilinx Development System

Getting Started With Xilinx EPLDs
Design Fitting and Device Programming
The XEPLD fitter translates the schematic representation of your FSM
design into a physical device layout. To invoke the fitter, follow these
steps:

1. Click on the Xilinx Implementation button in PROflow. The
dialog box shown in Figure 2-18 appears:

Figure 2-17 Xilinx Implementation Dialog Box

2. Select 7336 in the Part field. The default package is PC44, and the
default speed is 5.

3. Make sure the Run Synthesis Only box is NOT checked.
XEPLD ViewSynthesis Design Guide 2-19

XEPLD ViewSynthesis Design Guide
4. Click on the Implementation Options button. The dialog box
shown in Figure 2-19 appears:

Figure 2-18 Implementation Options Dialog Box

5. This dialog box offers the following implementation options. Do
not check any of these first three options.

● Ignore Pin Assignments in Schematics — Does not apply to
PROsynthesis designs.

● Freeze Pins — If checked, tells the fitter to use the pin freeze
file created the last time the fitter was run on the design,
thereby preserving the pinout (default is unchecked).

● Drive Unused I/O — If checked, drives unused I/O pins to
VCC or GND to prevent noise in the chip (default is
unchecked).
2-20 Xilinx Development System

Getting Started With Xilinx EPLDs
6. In addition to creating a design database, fsm.vmh, which the
fitter does automatically, you can also tell the fitter to perform the
following functions. Check all of these last three boxes.

● Produce Static Timing Report — When checked, creates a
report showing the calculated worst case timing for your
design, fsm.tim (default is unchecked).

See the Fitter Reports appendix for more information on how
to interpret the Static Timing Report.

● Produce Pin Freeze File — When checked, creates a file
containing the pin assignments, fsm.vmf (default is
unchecked).

● Produce Device Programming Data — When checked, creates
an Intel HEX file for programming the device, fsm.prg (default
is unchecked). The device programming file contains all
necessary information for programming EPLDs using a device
programmer.

A Signature field also appears when you check this box. Use
the default signature, which is the design name.

7. Select the OK button to close the Implementation Options
window, then select OK to run the fitter.

You will see a series of windows pop up and display messages
from the fitter as your design is processed. Each window stays up
after processing is complete so you can read the final messages.
The window names are as follows: XEMAKE, TIMERPT,
PINSAVE, and MAKEPRG.

8. After each window shows that processing is complete, close the
window so the next process can begin. The Xilinx Implementation
window closes when all processing is complete.
XEPLD ViewSynthesis Design Guide 2-21

XEPLD ViewSynthesis Design Guide
Timing Simulation
1. Select the second PROsim button in PROflow. The Timing

Simulation dialog box appears as in Figure 2-20:

Figure 2-19 Timing Simulation Dialog Box
2-22 Xilinx Development System

Getting Started With Xilinx EPLDs
2. Select the Command File box and the Browse button. The
Command Files browser appears as in Figure 2-21:

Figure 2-20 Command Files Browser

3. Select fsm.cmd from the list, then select OK. The browser closes.
The fsm.cmd file tells PROsim how to simulate the fsm design.

4. Select OK in the Timing Simulation dialog box. After the
simulation netlist is created, the xsimmake.out file is displayed.
Close this file window.

5. The PROsim window appears, and the netlist is read. Close the
PROsim window when processing is complete (simulation is
stopped at 1401 ns).
XEPLD ViewSynthesis Design Guide 2-23

XEPLD ViewSynthesis Design Guide
6. Select the PROwave button in PROflow. The PROwave Setup
dialog box appears as in Figure 2-22:

Figure 2-21 PROwave Setup Dialog Box

7. Select OK in the PROwave Setup dialog box.

8. The PROwave window appears, along with the File ➝ Open
browser. Select fsm.wfm from the list and select OK.
2-24 Xilinx Development System

Getting Started With Xilinx EPLDs
The waveforms appear as in Figure 2-23:

Figure 2-22 Simulation Waveforms for the FSM Design

9. When you are finished viewing, close the PROwave window, then
close the PROflow window.
XEPLD ViewSynthesis Design Guide 2-25

XEPLD ViewSynthesis Design Guide
2-26 Xilinx Development System

Chapter 3
XEPLD ViewSynthesis Design Guide — 0401345 01 3-1

Designing With EPLDs

This chapter discusses how to use design techniques, library
components, and attributes to get the best performance from Xilinx
EPLDs. For more information on library components, see the Library
Component Specifications appendix. For more information on
attributes, see the Attributes appendix.

VHDL Design File General Requirements
Design files for EPLD designs must reference the XC7000 library and
must use IBUF and OBUF input and output buffers.

XC7000 Components Package
If you plan to instantiate any components from the XC7000 library,
you will need to declare the Xilinx XC7000.components package in
your design source file. It is generally a good idea to always declare
this package in all EPLD designs.

To declare the XC7000.components package, insert the following two
lines at the top of your VHDL source file:

library xc7000;
use xc7000.components.all;

I/O Buffers
All input and output ports in your design must pass through IBUF
and OBUF type buffer components. EPLD device pins will only be
applied where IBUF and OBUF type buffers have been specified.

You can specify I/O buffers either in the main design file or in a
separate file, whichever is more convenient.

XEPLD ViewSynthesis Design Guide
Defining I/Os in the Main Design
For each input or output port in your main design, instantiate an
IBUF or OBUF component from the XC7000 library and pass the
signal through it on the way into or out of your design. For bus ports,
you’ll need to pass each signal through an individual IBUF or OBUF
component. For 3-state output ports, you can either instantiate an
OBUFE component and present the output enable signal to it, or
express the 3-state assignment behaviorally and pass the resulting
signal through an OBUF component. For bidirectional I/O ports,
instantiate both an IBUF and either an OBUF or OBUFE, connecting
both to the same inout-type port in your design.

Defining I/Os Using a Top-Level File
Create your basic design using ViewLogic VHDL. In your design
entity, define your input-only ("in") and output-only ("out" or
"buffer") port signals as usual. However, do not define any
bidirectional ("inout") ports in the basic design entity. Instead, define
a separate input port signal ("in") and output port signal ("out") to
represent the signals received from and transmitted to each physical
I/O port. Each pair of input and output signals will later be
connected to a pair of IBUF and OBUF components instantiated in the
top-level design file to implement the desired bidirectional I/O port
on the device.

Three-state output port signals, including those transmitted out to a
bidirectional I/O, can be expressed in the basic design file as usual.
Three-state outputs can be expressed either behaviorally or by
instantiating a BUFE cell.

Creating a Top-Level Design

Your top-level design file defines the actual I/O ports to be
implemented on the target device. The top-level design entity should
define all the I/O port signals of your design as "in", "out" or "inout"
(for bidirectional I/Os). Except for the inout ports, the port
definitions in your top-level file should look similar to the port
definition in your basic design file entity. Output ports defined as
"buffer" in your basic design file can be declared as "out" in your top-
level file because they are not re-used as inputs at this level of the
hierarchy.
3-2 Xilinx Development System

Designing With EPLDs
Within the architecture header of the top-level design file, you must
declare the basic design entity as a component, and a set of
intermediate signals used to connect the design instance to the I/O
cell instances. In the architecture body, instantiate the basic design
and connect the intermediate signals to it.

For each input signal, instantiate an IBUF cell (unless a special EPLD-
specific input buffer is desired instead). For each output signal,
instantiate an OBUF cell (unless a special EPLD-specific output buffer
is desired instead). For each inout signal, instantiate both an IBUF
and OBUF cell, and map their external ports to the same inout port
signal.

The interconnections of port signals in the top-level design is
illustrated in Figure 3-1.

Figure 3-1 Defining Device I/O Cells in the Top-Level Design

Special-Purpose I/O Ports
As a minimum, you must instantiate IBUF and OBUF cells for all top-
level input, output, and I/O ports. However, the Xilinx component
library also includes special-purpose I/O buffer cells that you can use
instead of IBUF and OBUF to allow you to explicitly instantiate
specific I/O functions. You will want to explicitly assign special I/O
buffer cells for the following reasons.

X6015

OBUF

Basic Design

Top-Level Design

In/Out
Signal

3-State
Output
Signal

Input Signal

Output Signal

Input Signal

Output
Signal

Input
Signal

IBUF

OBUF

IBUF
XEPLD ViewSynthesis Design Guide 3-3

XEPLD ViewSynthesis Design Guide
● There are more clocks or OE signals in your design than there are
FastClock or FOE pins available on the device. The Xilinx fitter
automatically assigns the most frequently used clock signals to
FastClock pins and the most frequently used 3-state control inputs
to FOE pins. You can force specific clocks onto the global
FastClock pins by instantiating the BUFG cell. You can force
specific output enable signals onto the global FOE pins by
instantiating the BUFFOE cell.

● You do not want some clocks, output enable signals, or registers to be
optimized automatically. You can globally inhibit optimization of
these resources by instantiating the NO_FCLK, NO_FOE, and
NO_IFD attribute cells. In this case you can manually assign
selected clock or OE inputs to the global FastClock or FOE inputs
by instantiating the BUFG or BUFFOE component. Instantiate the
IFDX1 or ILD components to explicitly implement registers and
latches in input pads.

● You are generating global clock or FOE signals from within your design.
If you want to drive the global FastClock or FOE inputs from
signals within your design, you must first drive those signals onto
the corresponding device I/O pad through an output buffer
(OBUF) and then back into the chip through either the BUFG
component (for FastClocks) or through the BUFFOE component
(for FOE inputs).

Selecting 3-State Control Sources
Xilinx EPLDs have dedicated high-speed routing that can be used for
fast output enable signals (FOE). Any unused FOE routing is
automatically assigned by the fitter to the most used output enable
signals in your design (unless you turn off optimization by using the
NO_FOE attribute).

To be eligible for optimization, an output enable signal must come
directly from an input or I/O port and not be used for any other logic
function.

Assigning Specific Fast Output Enable Signals

If you want to assign a specific output enable signal in your design to
an FOE net, instantiate the BUFFOE input buffer to drive the Enable
input of an OBUFEX1 component. The signal produced by the
3-4 Xilinx Development System

Designing With EPLDs
BUFFOE component cannot be used by any other logic, including the
OE input of ordinary OBUFE components.

Using Xilinx-Supplied Macros
The Xilinx library contains several VHDL macros of variable width
(such as incrementors and comparators) that you can instantiate in
your design.

To use these macros, do the following:

● Copy the macro from the examples\vwlogic\macro_7k library to
your design directory.

● Edit the macro and change the default value of the generic
parameter WIDTH to your required width.

● Edit the macro and change its entity name to a new unique name
(for example, append the width value to the original macro
name). There are three places in the macro definition where this
change needs to be made.

● Declare and instantiate the macro in your basic design.

Using Registers And Latches
The Xilinx EPLD architecture allows you to implement both registers
and latches within function block macrocells and within input pads.
This section shows you how to assign logic to specific registers and
latches, and how to control their initial states after power is applied.

The Xilinx fitter uses input pad registers and latches to implement
functions whenever possible to reduce the device macrocell resource
requirements. Input pad registers also have a shorter setup time
requirement than macrocell registers. Register functions using any
control inputs, such as clear, preset, or clock enable, will only be
implemented in macrocell registers; only simple D-type flip-flops can
be optimized into input pads.

To be eligible for optimization into an input pad, a register’s D and C
inputs must come directly from input or I/O ports. The C (clock)
input signal must be used only for register clocking, and the D (data)
input signal must not be used for any other input.
XEPLD ViewSynthesis Design Guide 3-5

XEPLD ViewSynthesis Design Guide
Note: You can prevent the fitter from automatically assigning any
registered or latched functions to the input pads by using the
NO_IFD global attribute cell in your source design, as described in
the Attributes appendix.

Using Input Pad Registers
If you want to assign a specific register in your design to an input
pad, instantiate the IFDX1 component. The Clock input must be
driven by a BUFG component (global FastClk™), and the Clock
Enable input (if used) must be driven by a BUFCE component (Global
Clock Enable). Except for signals declared as FastInputs, the D input
signal must not be used for any other input.

Using Macrocell Registers
Inferred registered functions will be placed either into macrocells or
input pads at the discretion of the fitter (unless register optimization
is turned off).

The techniques used to infer registers in EPLD designs are no
different than for any other ViewSynthesis design. For example, the
following behavioral VHDL process implements a D-type flip-flop
with asynchronous clear and clock-enable:

process begin
wait until (prising (C) or (clr = '1'));
if (clr = '1') then

Q <= '0';
else

if (CE = '1') then
Q <= D;

end if;
end if;

end process;

You can also instantiate the FDCP, FDPC, or FDCPE register
components. If none of the control inputs are used, the software will
attempt to optimize these registers into input pads, provided
optimization is enabled.
3-6 Xilinx Development System

Designing With EPLDs
Using Input Pad Latches
If you want to assign a specific latch in your design to an input pad,
instantiate the ILD component. The G input must be driven by a
BUFG component (global FastClk). Except for signals declared as
FastInputs, the D input signal must not be used for any other input.

Using Macrocell Latches
The EPLD architecture can implement simple transparent latches
using the clear and preset product terms of macrocell flip-flops.
However, any other logic functions adjacent to such a latch typically
cannot be implemented in the same macrocell.

Using Special Logic Functions
Some types of logic functions can be made faster and more efficient if
they are constructed in a way that takes advantage of EPLD
architectural features.

Binary Counters
You should instantiate all counters, incrementers and decrementers
from the XC7000 library. Do not attempt to express counters larger
than 4 bits behaviorally using the "+1" or "-1" operations. If you do,
the resulting implementation will tend to consume extra resources
and run more slowly.

State Machines
When you initially compile a state machine, use the binary encoding
option (the default). If the logic complexity of a binary encoded state
machine results in poor device resource utilization, you can try less
fully encoded state assignments explicitly in your VHDL design. In
general you can use a few more registers to represent state vectors to
reduce the amount of combinational logic required for each state flip-
flop.

In some cases, one-hot-encoding may produce satisfactory results,
and it is convenient to specify to the synthesizer. Other schemes such
as Gray coding do not help in EPLD designs because the EPLD
architecture is primarily composed of D-type flip-flops.
XEPLD ViewSynthesis Design Guide 3-7

XEPLD ViewSynthesis Design Guide
Arithmetic Functions
All arithmetic components must be instantiated. Do not attempt to
express adders or subtracters behaviorally using the "+" or "-"
operators.

When creating registered arithmetic functions, instantiate the ACC
component (Adder/Subtracter/Accumulator) or the ADSUR
component (Adder/Subtracter with registered output) for best
results. These components are scalable for any width and they are
optimized for the Xilinx EPLD architecture.

Comparators
Magnitude comparators are expressed by instantiating the LT or LE
components. They are implemented essentially the same as a
subtracter, with the carry-out serving as the comparator output. 3-bit
look-ahead logic at the low-order end of the comparator saves about
2 macrocells in the EPLD over the straight subtracter solution. The
EPLD high-speed arithmetic carry chain is used for all magnitude
comparators larger than 4 bits.

Equality comparators are implemented combinationally using XOR
gates for each operand bit. The EPLD HDFB can accommodate up to
an 8-bit equality compare in a single macrocell. You should use the
EQ or NE components from the XC7000 library for all equality
comparators. Comparators larger than 8 bits are implemented using
multiple macrocells, each producing an 8-bit intermediate result. By
using the EQ or NE components, the gate logic combining the
macrocells’ intermediate results is implemented in the UIM if
possible (without extra delay).

Comparator outputs in high-speed applications are often pipelined
before driving other logic or passing off-chip. By breaking larger
comparators into 8-bit slices and pipelining each slice, gate logic
combining the slices can still be implemented in the UIM (for on-chip
logic).

In this example, a pipelined 16-bit comparator (with Boolean-type
output Q) cannot be run at the maximum frequency of the EPLD
because the logic preceding the register cannot fit a single macrocell:

U1: EQ_16 port map (AEQB, A(0 to 15), B(0 to 15));
process begin
3-8 Xilinx Development System

Designing With EPLDs
wait (prising (clock));
Q0 <= AEQB;

end process;

In the following example, the 16-bit comparator is broken into two 8-
bit registered comparators, joined by a UIM-based AND-gate. This
solution can be clocked at the maximum frequency of the EPLD if it
drives on-chip logic.

U1: EQ_8 port map (AEQB_LOW, A(0 to 7), B(0 to 7));
U1: EQ_8 port map (AEQB_HI, A(8 to 15), B(8 to 15));
process begin

wait (prising (clock));
Q_LOW <= AEQB_LOW;
Q_HI <= AEQB_HI;

end process;
Q <= ’1’ when (Q_LOW = ’1’ and Q_HI = ’1’) else ’0’;

Targeting a Specific Device
Before fitting your design you must select a target device. You have
three key questions to consider when selecting an EPLD:

● How many signal pins are required?

● How much Logic resources are required?

● How much performance (speed) is required?

The answers to these questions determine which device you will
choose to contain your design.

Device selection can be an iterative process, as shown in the
following steps:

1. Use the Xilinx EPLD data book to make a preliminary choice. This
choice is usually based on the number of required signal pins
because this is often the easiest question to answer. It is easiest to
begin with the largest device (XC73144); this gives you the best
chance for a successful fit. Otherwise, you can get a very rough
estimate of the number of required macrocells as follows:

[(the number of output ports)
+ (the number of flip-flops not directly driving output ports)]
+ [20%]
XEPLD ViewSynthesis Design Guide 3-9

XEPLD ViewSynthesis Design Guide
2. Run the fitter on your design using the selected device. After
fitting, the Resource Report indicates how much device resources
were required. This will help you determine the best device size. If
your design does not fit you will need to choose a larger device or
partition your design among multiple devices. If you have unused
logic resources, you may want to try a smaller device.

3. Once an optimal device size has been determined, you can create a
Static Timing Report that will indicate the calculated timing of
your design based on the device layout. You can also simulate the
timing of your design using the simulator. This timing
information will help you select the optimal target device speed.

The EPLD Architecture appendix shows you a device selection chart.
The Library Component Specifications appendix shows you which
library components can be used with specific target devices. See the
device data sheets for more information.

Controlling Design Performance
Devices in the Xilinx EPLD family include Fast Function Blocks
(FFBs) and/or High Density Function Blocks (HDFBs). Fast Function
Blocks provide the shortest delay paths while High Density Function
Blocks provide the most logic resources. EPLDs also contain special
high speed routing for clocks, output enable signals, clock enable
signals, and logic inputs to FFBs.

You can control your design performance by using attributes to
assign specific signals in your design to the appropriate physical
EPLD resources.

Using High-Speed Clocks
Xilinx EPLDs have dedicated high-speed (FastCLK) routing that can
be used for global clock signals. Any unused FastCLK routing is
automatically assigned by the fitter to the most used clock signals (if
eligible) in your design (unless you turn off optimization). To be
eligible for FastCLK optimization, an input port signal must be used
only for register clocking using the positive clock edge.

Note: EPLD Fast Function Blocks, input pad registers, and input pad
latches must use FastCLK routing; they cannot use normal signal
routing for clocks.
3-10 Xilinx Development System

Designing With EPLDs
Assigning Specific High-Speed Clocks

If you want to assign a specific clock in your design to a FastCLK net,
instantiate the BUFG buffer cell in your design.

Selecting EPLD Function Block Types
By assigning logic signals to specific EPLD Function Block resources,
you can control the performance of logic paths in your design.

Specifying High Speed Paths

To assign a logical signal to a Fast Function Block (shortest delay
paths), instantiate the F attribute cell in your source design and pass
the intended FFB output signal through it as follows:

U1: F port map (signal_out, signal_in);

This causes the logic function which produces signal_in to be
implemented in a FFB.

Specifying High Density Paths

To assign a logic signal to a High Density Function Block (normal
delay paths), instantiate the H attribute cell in your source design and
pass the intended HDFB output signal through it as follows:

U1: H port map (signal_out, signal_in);

This causes the logic function which produces signal_in to be
implemented in a HDFB.

Using EPLD FastInputs
Some of the inputs to FFBs can be taken directly from input pins
using a high-speed FastInput path which bypasses the Universal
Interconnection Matrix. To assign input port signals to the EPLD
FastInputs, instantiate the F attribute cell in your source design and
pass the intended FastInput signal (from an IBUF buffer) through it
as follows:

U1: F port map (signal_out, signal_in);

where signal_in comes from an IBUF component. This causes any
logic functions using signal_out to take the input signal via the Fast
XEPLD ViewSynthesis Design Guide 3-11

XEPLD ViewSynthesis Design Guide
Input path, provided the function is implemented in a FFB.

Note: An input signal declared as a FastInput (applied to an F
component) can also be used as the D input to an input pad register
or latch (IFDX1 or ILD).

The Design Rule Checker
The Design Rule Checker (DRC) reads the design from the database
and checks to see if any of the design rules have been violated. The
following is a partial list of rules that are checked.

General Design Rule Violations
The DRC displays an error or warning if:

● Open (hanging) inputs to an instantiated XC7000 component are
found. Unless otherwise specified, all unused inputs of a library
component must be connected or tied to VCC or GND.

● Some library components can only be used for a particular target
EPLD. The DRC will generate an error if you attempt to use these
components for other EPLDs. Restrictions on the use of
components can be found in the library data sheets.

Pad Component Design Rule Violations
The DRC displays an error if:

● A signal driving an output port (input to an OBUF) is driven by
more than one source.

● The same signal drives more than one output port (OBUF).

● An input port signal (from an IBUF) is connected directly to an
output port signal (to an OBUF).

● An output port (OBUF) is driven by VCC or GND.

● Multiple input buffers (IBUFs) are connected to the same port (the
exception is when an IBUF and F component are used with an
IFD, IFDX1, or ILD to receive a FastInput signal).
3-12 Xilinx Development System

Designing With EPLDs
FastCLK, Clock Enable, Fast Output Enable Violations
The DRC displays an error if:

● There are more FastCLK (BUFG), CE (BUFCE), or FOE (BUFFOE)
ports in the design than the target EPLD can support.

● A FastCLK, CE, or FOE signal drives a component pin that is not a
clock, CE, or FOE input.
XEPLD ViewSynthesis Design Guide 3-13

XEPLD ViewSynthesis Design Guide
3-14 Xilinx Development System

Chapter 4
XEPLD ViewSynthesis Design Guide— 0401345 01 4-1

Using PROflow

This chapter shows you how to create a project directory, synthesize
your design, fit your design, verify design timing, create a device
programming file, and save your pinouts for later design iterations,
all using the PROflow software.

You must have a complete VHDL design before compiling and
fitting. You can run the compiler and fitter automatically one after the
other, or you can run each separately.

Fitter Overview
XEPLD is the Xilinx EPLD implementation software (fitter). XEPLD
uses the schematic design produced by PROsynthesis (after
compiling) to create a physical layout for a target EPLD. XEPLD
performs the following functions:

● Converts a Viewlogic schematic into netlist form (XNF).

● Reads the netlist file (sch\design_name.1) and reports any rule
violations to the error log file (design_name.err).

● Minimizes the combinational logic of your design so that it
requires the least number of product term resources.

● Optimizes, partitions, and maps your design to fit within the
architecture of the target device.

● Creates a pin-save file (optional) that is used to lock signal names
to device pins, allowing you to keep the device pinouts during
subsequent design iterations.

● Creates a Static Timing Report that shows the calculated worst-
case timing for all signal paths in your design.

XEPLD ViewSynthesis Design Guide
● Creates a timing simulation file that can be used by the PROsim
simulator (design_name.vsm).

● Creates a device programming file (design_name.prg).

● Creates detailed reports that show you information such as the
type and quantity of device resources used and device pinouts.

Creating a Project Directory
To create and configure a project directory, follow these steps:

1. Open the Xilinx flow manager, PROflow, by double clicking on the
Psfm icon. The Xilinx PROflow window appears.

2. Select the PROcapture button in PROflow. The Design Entry
dialog box appears.

3. Click on the Project Manager button. The PRO Series Project
Manager dialog box appears.

4. Select the Create button to open the Create Project dialog box.

5. In the Create Project dialog box, select or type in the path of the
project directory you wish to create. If the directory does not exist,
it is created automatically.

6. Select OK. The Create Project dialog box closes.

7. Select the project you just created if it is not selected already, then
click on the Select button.

8. Select the Exit button to close the Project Manager.

9. After you close the project manager, the Select Family dialog box
prompts you to select a device family. Select XC7000 if it is not
selected already, then select OK.

10. In the Design Entry dialog box, select VHDL as the Type of
design.

11. Select the design file from the list. The file name appears in the
Design Name field.

12. You can perform design entry at this point by checking the Open
Notepad box.

13. Select the OK button to close the Design Entry window.
4-2 Xilinx Development System

Using PROflow
Compiler Operation
To synthesize and create a schematic representation of your design,
follow these steps.

1. Select the PROcapture button in PROflow. The Design Entry
dialog box appears.

2. If your design has multiple files, for each lower-level file select the
file name from the list and then select the Quick Compile button.

3. Select the top-level design file you want to process, then select
OK. This closes the Design Entry window.

Note: If you have a purely behavioral VHDL design, you can
perform functional simulation at this point by selecting the PROsim
button in PROflow. For XC7000 designs, functional simulation is
normally performed after you synthesize your design.

4. Select the Xilinx button in PROflow. The Xilinx Implementation
dialog box appears.

5. Click on the Synthesis Options button. The Synthesis Options
dialog box appears.

6. Make sure the Generate Schematic box is checked. This causes a
schematic representation of the VHDL design to be created.

7. Select OK to close the Synthesis Options dialog box.

8. If you want to functionally simulate your design after synthesis,
check the Run Synthesis Only box. This synthesizes your design
without running the fitter. If you do not check this box, the fitter is
automatically run after synthesis is complete.

If you are running synthesis and the fitter, DO NOT check Run
Synthesis Only, skip the rest of this section, and go on to the next
section, “Fitter Operation.”

9. If you are running synthesis only, select OK to close the Xilinx
Implementation dialog box and run the synthesis. When synthesis
is complete, you see the following message in a prompt box:

Synthesis complete. View report?

You can select Yes or No. If you select Yes, you must close the
report window after you have finished reading the report.
XEPLD ViewSynthesis Design Guide 4-3

XEPLD ViewSynthesis Design Guide
10. You are now ready to perform functional simulation. The steps for
functional simulation are the same as for timing simulation, which
is described later in this chapter; the only exception is step 5, in
which the functional simulation flow displays the vsm.log file
instead of the xsimmake.out file.

11. Click on the Xilinx Implementation button in PROflow to reopen
the Xilinx Implementation dialog box.

Fitter Operation
The following steps show you how to fit your schematic design into a
target device using the Xilinx XEPLD fitter.

Fitting Your Design
The XEPLD fitter translates the schematic representation of your
design into a physical device layout. You can run the fitter
automatically after synthesis or separately from synthesis.

At this point the Xilinx Implementation dialog box should be open.
To invoke the fitter, follow these steps:

1. Select the part, package, and speed grade. The valid Xilinx EPLD
part numbers are listed in the Part field. When you choose a part,
valid packages and speed grades for that part are listed in the
Package and Speed fields, respectively.

2. Make sure the Run Synthesis Only box is NOT checked.

3. Click on the Implementation Options button. The
Implementation Options dialog box appears.

4. This dialog box offers the following implementation options.

● Ignore Pin Assignments in Schematics — Does not apply to
PROsynthesis designs.

● Freeze Pins — If checked, tells the fitter to use the pin freeze
file created the last time the fitter was run on the design,
thereby preserving the pinout (default is unchecked).

● Drive Unused I/O — If checked, drives unused I/O pins to
VCC or GND to prevent noise in the chip (default is
unchecked).
4-4 Xilinx Development System

Using PROflow
5. In addition to creating a design database, design_name.vmh, which
the fitter does automatically, you can also tell the fitter to perform
the following functions.

● Produce Static Timing Report — If checked, creates a report
showing the calculated worst case timing for your design,
design_name.tim (default is unchecked).

See the Fitter Reports appendix for more information on how
to interpret the Static Timing Report.

● Produce Pin Freeze File — If checked, creates a file containing
the pin assignments, design_name.vmf (default is unchecked).
During any subsequent invocation of the fitter, you can select
the Freeze Pins option to restore pinouts saved in the .vmh file.

Making major changes to a fixed-pinout design may prevent
the fitter from achieving a successful mapping if you use the
Freeze Pins option. If the fitter fails, try running without this
option to see if a fit is still possible. To fit a modified design
into the selected device, you may need to delete some of the
pin assignments in the .vmh file, allowing those pins to move
to new locations.

You cannot use a previously saved pinout if you change the
size or package type of the target device. See the EPLD Data
Book to determine which devices in the EPLD family have
compatible pinouts across similar packages.

● Produce Device Programming Data — If checked, creates an
Intel HEX file for programming the device, design_name.prg
(default is unchecked). The device programming file contains
all necessary information for programming EPLDs using a
device programmer.

A Signature field also appears when you check this box. By
default, the design name is used as the signature string. Only
alphanumeric characters are allowed in the signature string;
edit the string if necessary.

EPLD programmers are available from Xilinx and from third-
party developers. See your device programmer documentation
for instructions on how to download the programming file.

6. Select the OK button to close the Implementation Options
window, then select OK to run the fitter.
XEPLD ViewSynthesis Design Guide 4-5

XEPLD ViewSynthesis Design Guide
You will see a series of windows pop up and display messages
from the fitter as your design is processed. Each window stays up
after processing is complete so you can read the final messages.
The window names are as follows: XEMAKE, TIMERPT,
PINSAVE, and MAKEPRG.

7. After each window shows that processing is complete, close the
window so the next process can begin. The Xilinx Implementation
Options window closes when all processing is complete.

Fitter Reports
The fitter produces various reports:

● The Resource Report (design_name.res) indicates how well your
design fits in the target device. This report shows the utilization of
macrocells, Function Blocks and each type of device pin, and
indicates the amount of remaining logic and I/O resources in the
device. The Resource summary is also displayed near the end of
the fitnet process.

● The Pinlist Report (design_name.pin) shows the signals assigned to
each pin of the target device.

● The Partitioner Report (design_name.par) and the Mapping Report
(design_name.map) show the detailed physical layout of your
design within the EPLD.

● The Equation File (design_name.eqn) contains boolean equations
representing the final implementation of your design after
minimization and optimization, and is expressed in Xilinx
PLUSASM syntax.

● The Static Timing Report (design_name.tim) shows the worst-case
timing based on the physical implementation of your design.

Note: See the Fitter Reports appendix or the Xilinx XEPLD Reference
Guide for more information on reports.
4-6 Xilinx Development System

Using PROflow
Design Timing Verification
There are two ways you can verify your design timing:

● The Xilinx Static Timing Report provides the calculated worst-case
timing for all signal paths in your design.

● PROsim provides timing simulation based on the physical layout
of the target device.

Creating The Xilinx Static Timing Report
The Static Timing Report is generated if you checked the Produce
Static Timing Report box in the Implementation Options window.

The Static Timing Report is created and saved as design_name.tim. See
the Fitter Reports appendix for a complete description of the Static
Timing report.

Performing Timing Simulation
To perform timing simulation on the design, follow these steps:

1. Select the PROcapture button in PROflow. The Design Entry
dialog box appears.

2. Select Schematic as the Type of design. You should see the
schematic file in the Design Name field. Make sure the Start
PROcapture box is NOT checked. Select the OK button.

3. Select the second PROsim button in PROflow. The Timing
Simulation dialog box appears.

4. If you are using a simulation command file (.cmd), select the
Command File box and the Browse button. The Command Files
browser appears. Select the .cmd file from the list, then select OK.

5. Select OK in the Timing Simulation dialog box. After the design is
processed, the xsimmake.out file is displayed. Close this window.

6. The PROsim window appears, and the design is processed
further. Close the PROsim window when processing is complete.

7. If your simulation command file created a waveform file, you can
use PROwave to view it. (If you know PROwave commands, you
can create a waveform file after simulation is complete.) Select the
PROwave button in PROflow.
XEPLD ViewSynthesis Design Guide 4-7

XEPLD ViewSynthesis Design Guide
8. The PROwave Setup dialog box appears. Select OK in the
PROwave Setup dialog box.

9. The PROwave window appears, along with the File ➝ Open
browser. Select the waveform file (.wfm) from the list (if you have
one) and select OK.

10. Close the PROwave window.
4-8 Xilinx Development System

Appendix A
XEPLD ViewSynthesis Design Guide — 0401345 01 A-1

Using the Command Line

You can run synthesis and the XEPLD fitter software from the DOS
command line. This appendix shows you how to run the tutorial
design, FSM, from the DOS command line. You can either run all the
commands in a batch file or run each command individually.

Using a Batch File
The files fsm.bat and fsm.src, which are supplied with the EPLD
Viewlogic Synthesis tutorial, run all the DOS commands for the
tutorial automatically and echo each command back to the screen.
The fsm.bat file contains the Xilinx commands, and the fsm.src file
contains the Viewlogic VHDL shell commands. The fsm.bat file
invokes the fsm.src file, so all you need to do is type fsm at the DOS
prompt.

Using Individual Commands
Table A-1 shows, in the proper order, the specific commands needed
to run the FSM design. This table also includes generic command
formats and an explanation of each command.

Table A-1 Commands to Run the Tutorial from DOS

Command to Run Tutorial Generic Format Command Explanation

vhdldes vhdldes Enters the Viewlogic
VHDL design command
shell, where you can
invoke the VHDLDES
commands that follow.

XEPLD ViewSynthesis Design Guide
technology xc7000

(VHDLDES shell)

technology family

(VHDLDES shell)

Specifies the device fam-
ily.

clear_work_library

(VHDLDES shell)

clear_work_library

(VHDLDES shell)

Clears the working
library so that previously
run designs do not inter-
fere with the processing
of this design.

vhdl fsm.vhd

(VHDLDES shell)

vhdl filename

(VHDLDES shell)

Compiles the .vhd
source file(s). If your
design has more than
one file, run this com-
mand on each file, the
lowest-level files first
and the top-level file last.

synthesize

(VHDLDES shell)

synthesize

(VHDLDES shell)

Produces a gate-level
representation of the
design.

wire

(VHDLDES shell)

wire

(VHDLDES shell)

Produces a netlist of the
design in Viewlogic
WIR format.

exit

(VHDLDES shell)

exit

(VHDLDES shell)

Exits the VHDLDES
command shell.

wir2xnf fsm -p
7336-5PC44

wir2xnf design -p device Creates an XNF format-
ted netlist file based on
the WIR file.

xnfmerge fsm xnfmerge design Flattens macros so the
netlist is ready for fitting.

fitnet fsm fitnet design [-p device]
[-f | -i] [-m]

Maps the design to the
device you specified
when using the wir2xnf
command. The -p option
can override the previ-
ous device specification.

timerpt fsm timerpt design Creates a static timing
report (.tim).

Command to Run Tutorial Generic Format Command Explanation
A-2 Xilinx Development System

Using the Command Line
xsimmake -f vet fsm xsimmake -f vet design Creates a Viewsim netlist
(.vsm) file for timing
simulation. The -f vet
parameter stands for
“Viewlogic EPLD Tim-
ing.”

pinsave fsm pinsave design Creates a pin freeze
(.vmf) file, which you
can use to preserve the
pinout in the next itera-
tion of the design (use
the fitnet -f option).

makeprg fsm -s fsm makeprg design -s signature Creates an Intel HEX file,
which you use to pro-
gram the device.

Command to Run Tutorial Generic Format Command Explanation
XEPLD ViewSynthesis Design Guide A-3

XEPLD ViewSynthesis Design Guide
A-4 Xilinx Development System

Appendix B
XEPLD ViewSynthesis Design Guide — 0401345 01 B-1

EPLD Architecture

The Xilinx EPLD family uses a simple PAL-like architecture to
provide both high speed and high density in a variety of packages
and configurations. Through a unique Dual-Block architecture, High
Density Function Blocks (FBs) provide high speed and maximum
logic density for implementing complex functions while Fast
Function Blocks (FFBs) provide even higher speed for critical
decoding and ultra-fast state machine applications. For more
information see The Programmable Logic Data Book.

The EPLD architecture consists of multiple Function Blocks and
I/O blocks interconnected by the UIM as shown in Figure B-1.

Figure B-1 EPLD Architecture Block Diagram

Input

Output FFB

I/O
Block

FB

FB

UIM

FB

FB

I/O
Block

FFB Output

X3204

XEPLD ViewSynthesis Design Guide
Device Selection
Table B-1 shows the Xilinx EPLD family, grouped by user application.
Use this table to select the best target device for your design.

Package options and speed grades are always being updated. Please
check the latest device data sheets for the most up to date
information.

Table B-1 Device Selection Guide

Features

Fast
Functions

Dual Block™ Arch.
Fast and High Density

7318 7336 7354 7372 73108 73144

22VI0 Equiv. 2 4 6 8 12 16
Macrocells 18 36 54 72 108 144
FFBs 2 4 2 2 2 4
FBs 0 0 4 6 10 12
Flip-Flops 18 36 108 126 198 276
Fast Inputs Supported 12 12 12 12 12 12
Fast Clock Inputs 2 2 3 3 3 3
Fast Output Enab. 2 2 2 2 2 2
Fast Clock Enab. 0 0 2 2 2 2
Pin-to-Pin delay (ns.) 5 5 7 7 7 7
Clock Freq. (Mhz) 167 167 100 100 80 100
Signal Pins (max) 38 38 58 74 120 156

Speed Grades

-5
-7

-5
-7
-10
-12
-15

-7
-10
-12
-15

-7
-10
-12
-15

-7
-10
-12
-15

-7
-10
-12
-15
B-2 Xilinx Development System

EPLD Architecture
The Universal Interconnect Matrix
The Universal Interconnect Matrix (UIM) functions as an
unrestricted crossbar switch.It guarantees complete interconnection
of all internal functions and provides constant, short interconnect
delays. It receives inputs from Macrocells, bidirectional I/O pins, and
dedicated input pins and provides 21 outputs to each High-Density
Function Block and 24 outputs to each Fast Function Block. Any UIM
input can drive one or more UIM outputs with the interconnect delay
remaining constant.

When multiple inputs are connected to the same output, this output
produces the logical AND of the input signals. By choosing the
appropriate signal inversions, this AND logic can also implement
wide NAND, OR or NOR functions. This provides an additional level
of logic with no additional delay.

A Macrocell feedback signal that is disabled by the output enable
product term represents a High input to the UIM. Programming
several such Macrocell outputs onto the same UIM output thus
emulates a 3-state bus line. When one of the Macrocell outputs is
enabled, the UIM output assumes its level.

44 Pin PLCC X X X
44 Pin CLCC X X
44 Pin PQFP X X
68 Pin PLCC X X
68 Pin CLCC X X
84 Pin PLCC X X
84 Pin CLCC X X
100 Pin PQFP X
144 Pin PGA X
160 Pin PQFP X X
225 Pin BGA X X

Features

Fast
Functions

Dual Block™ Arch.
Fast and High Density

7318 7336 7354 7372 73108 73144

D
ev

ic
e

P
ac

ka
gi

ng
O

pt
io

ns
XEPLD ViewSynthesis Design Guide B-3

XEPLD ViewSynthesis Design Guide
High-Density Function Blocks
Each High Density Function Block contains nine Macrocells which
can be configured for either registered or combinatorial logic. A
detailed Function Block diagram is shown in Figure 4-2.

Each FB receives 21 signals and their complements from the UIM and
an additional three inputs from the FastInput (FI) pins.

Note: The XC7272A FB architecture, including the ALU, is slightly
different. See the data sheet for details.

Figure B-2 High Density Function Block Schematic

I/O
(see fig.3)

Clock
Select

Register
Trasparent

Control

Input-Pad
Register/Latch

(optional)

Pin

Feedback
Polarity

Local
Feedback

OE Control

Global
Fast OE

Arithmetic
Carry-Out to Next

Macrocell

Shift-In
from Previous MC

Shift-Out
to Next MC

To 8 More
Macrocells

* OE is forced high when P-term is not used

RESET
SET
OE*

CLOCK

5

ALU

D1

D2

Cin

C out

F
R S

QD

M
U

X

Fast
Clocks

0 1

Arithmetic Carry-In from
Previous Macrocell

1 of 9 Macrocells

Feedback
Enable
Override

Feedback to UIM
Input to UIM

8
4

21
Inputs

from
UIM

3
from
Fast

Input
Pins
(FI)

AND Array

12 Sharable
P-Terms per

Function Block

5 Private
P-Terms per

Macrocell

X1829
B-4 Xilinx Development System

EPLD Architecture
Shared and Private Product Terms
Each Macrocell contains five private product terms that can be used
as the primary inputs for combinatorial functions implemented in the
Arithmetic Logic Unit (ALU), or as individual Reset, Set, Output-
Enable, and Clock logic functions for the flip-flop. Each Function
Block also provides an additional 12 shared product terms, which are
uncommitted product terms available for any of the nine Macrocells
within the FB.

Four private product terms can be ORed together with up to four
shared product terms to drive the D1 input to the ALU. The D2 input
is driven by the OR of the fifth private product term and up to eight
of the remaining shared product terms. The shared product terms
add no logic delay and each shared product term can be connected to
one or all nine Macrocells in the Function Block.

Arithmetic Logic Unit
The versatility of each Macrocell is enhanced through additional
gating and control functions available in the ALU. A detailed block
diagram of the XC7300 and XC7236A™ ALU is shown in Figure 4-3.

The ALU has a logic mode and an arithmetic mode. In logic mode,
the ALU functions as a 2-input function generator using a 4-bit look-
up table that can be programmed to generate any Boolean function
from the D1 and D2 inputs.

The function generator can OR its inputs, widening the OR function
to a maximum of 17 inputs. It can AND them, which means that one
sum-of-products can be used to mask the other. It can also XOR them,
toggling the flip-flop or comparing the two sums of products. Either
or both of the sum-of-product inputs to the ALU can be inverted, and
either or both can be ignored. Therefore, the ALU can implement one
additional layer of logic with no speed penalty.

In arithmetic mode, the ALU can generate the arithmetic sum or
difference of the D1 and D2 inputs. Combined with the carry input
from the next lower Macrocell, the ALU operates as a 1-bit full adder
generating a carry output to the next higher Macrocell. The dedicated
carry chain propagates between adjacent Macrocells and crosses the
boundaries between Function Blocks providing very fast arithmetic
operation with no additional resource requirements.
XEPLD ViewSynthesis Design Guide B-5

XEPLD ViewSynthesis Design Guide
Figure B-3 ALU Schematic

Carry Lookahead (7300 Family Only)
Each Function Block provides a carry lookahead generator capable of
anticipating the carry across all nine Macrocells. This reduces the
ripple-carry delay of wide arithmetic functions such as add, subtract,
and magnitude compare to that of the first nine bits, plus the carry
lookahead delay of the higher-order Function Blocks.

Macrocell Flip-Flop
The ALU output drives the input of a programmable D-type flip-flop.
The flip-flop is triggered by the rising edge of the clock input, and it
can be configured as transparent, making the Q output identical to
the D input, independent of the clock.

The Macrocell clock source is programmable and can be one of the
private product terms or one of the global FastCLK™ signals. The
FastCLK signals are distributed to every Macrocell flip-flop with
short delay and minimal skew. The asynchronous Set and Reset
product terms override the clocked operation. If both asynchronous
inputs are active simultaneously, Reset overrides Set.

In addition to driving the chip output buffer, the Macrocell output is
routed back to the UIM. One private product term can be configured
to control the Output Enable of the output buffer and the feedback to
the UIM. If it is configured to control UIM feedback, the Output

X3206Carry Input

D1

D2

Function
Generator To Macrocell

Flip-Flop

D1
Sum-of-

Products

D2
Sum-of-

Products

Arithmetic
Carry Control

Carry Output

0

1

Arithmetic Logic Unit (ALU)
B-6 Xilinx Development System

EPLD Architecture
Enable product term forces the UIM feedback control input High
when the Macrocell output is disabled.

Fast Function Blocks
Each Fast Function Block receives 24 signals and their complements
from the UIM. The 24 inputs can be individually selected from the
UIM, the 12 FastInput pins, or the nine Macrocell feedbacks from the
FFB. The programmable AND array in each FFB generates 45 product
terms to drive the nine Macrocells, which can be configured for
registered or combinatorial logic. The FFB logic is shown in
Figure 4-4.

Five product terms from the programmable AND array are allocated
to each Macrocell. Four of these product terms are ORed together and
drive the input of a programmable D-type flip-flop. The fifth product
term drives the asynchronous active-high Set Input to the Macrocell
flip-flop. The flip-flop can be configured as transparent to produce a
combinatorial output.
XEPLD ViewSynthesis Design Guide B-7

XEPLD ViewSynthesis Design Guide
Figure B-4 Fast Function Block Schematic (for 7354, 7372, 73108,
73144)

The programmable clock source is one of two global FastCLK signals
(FCLK0 or FCLK1) that are distributed with short delay and minimal
skew over the entire chip.

The FFB Macrocells drive chip outputs directly through 3-state
buffers. Each output buffer can be permanently enabled, permanently
disabled, or controlled by one of two dedicated Fast Output Enable
inputs. The Macrocell output is also routed back to the FFB and to the
UIM.The XC7300 family provides a product term expansion feature
that increases product-term flexibility without disabling Macrocell
outputs. Product term expansion transfers product terms in
increments of four product terms from one Macrocell to the next.

Pin

OE Control

Global
Fast OE

Sum-of-Products
to

Succeeding Macrocell

5

QD

Fast
Clocks

0 1
1 of 9 Macrocells

Feedback
to UIM

24
Inputs from

UIM

AND Array

5 Private
P-Terms per

Macrocell

X3307

Sum-of-Products
from

Previous
Macrocell

P-Term
Assignment

Control

12 from
Fast

Input Pins 12

9
9 from FFB

Macrocell
Feedback

S

3

0

1

0 1

Register
Transparent

Control
B-8 Xilinx Development System

EPLD Architecture
Product Term Expansion
Complex logic functions requiring up to 36 product terms can be
implemented using this method. When product terms are assigned to
adjacent Macrocells, the product term normally dedicated to the Set
function becomes the D-input to the Macrocell register. Thus, the
Macrocell is still usable while product terms are transferred to
adjacent Macrocells. Figure B-5 illustrates product term expansion.

Figure B-5 FFB Product Term Expansion

XC7336 and XC7318 Fast Function Blocks
The Fast Function Blocks within the XC7318 and XC7336 are slightly
different from those in the rest of the Xilinx EPLD family as shown in
Figure 4-6.

X3205

From Previous
Macrocell

Single-Product Term Assignment

Eight-Product Term Assignment

4
D Q

S

4

D Q
XEPLD ViewSynthesis Design Guide B-9

XEPLD ViewSynthesis Design Guide
Figure B-6 Fast Function Block Schematic (for 7318, 7336)

Input/Output Blocks
I/O blocks provide 3-state outputs and registered, latched, or direct
inputs. The I/O block registers can also implement logic equations
and therefore decrease macrocell resource requirements.

Macrocells drive chip outputs directly through 3-state output buffers,
each individually controlled by the Output Enable product term. An
additional configuration option allows the output to be disabled
permanently. Two dedicated Fast Output Enable inputs can also be
configured to control any of the chip outputs instead of, or in
conjunction with, the individual Output Enable product term. See
Figure 4-7 for the I/O block schematic diagram.

I/O
Pin

OE Control

Sum-of-Products to
Succeeding Macrocell

5

QD/T

Fast
Clocks

0 1
1 of 9 Macrocells

Feedback
to UIM

24
Inputs from

UIM

AND Array

5 Private
P-Terms per

Macrocell

X5218

Sum-of-Products
from

Previous
Macrocell

P-Term
Assignment

Control

12 from Fast
Input Pins 12

9
9 from FFB

Macrocell
Feedback

S/R

3

0

1

Register
Transparent

Control

Output
Polarity

2 Global
Fast OE

2

Pin Feedback
to UIM

I/O Block
B-10 Xilinx Development System

EPLD Architecture
Each signal input to the chip is connected to a programmable input
structure that can be configured as direct, latched, or registered. The
latch and flip-flop can use the FastCLK signals as latch enable or
clock. Latches are transparent when FastCLK is High, and flip-flops
clock on the rising edge of FastCLK.

The flip-flop includes an active-low clock enable, which when High,
holds the present state of the flip-flop and inhibits response to the
input signal. The clock enable source is one of two global Clock
Enable signals (CKEN0 and CKEN1). An additional configuration
option is polarity inversion for each input signal.

Figure B-7 Input/Output Block Schematic

Feedback
to UIM

Macrocell

OE P-Term

From
Macrocell
Register

Pin

Fast OE0

I/O. FCLK/O, CKEN/O
and FOE/O
Pins Only

Q D

CLK

Q D

EN

FastCLK1

FastCLK2

To UIM

To Function Block
AND-Array (on

Fast Input
Pins Only)

Input and
I/O Pins Only

Input
Polarity

Output
Polarity

Pin
Driver

M
U

X
M

U
X

Global
Select

X2832

FastCLK0

CKEN0

CKEN1

Q D

CLK

EN

Fast OE1
XEPLD ViewSynthesis Design Guide B-11

XEPLD ViewSynthesis Design Guide
The CKEN0 and CKEN1 inputs are only available in XC7300 family
devices. Also, the programmable input polarity feature is not
available in the XC7272A.
B-12 Xilinx Development System

Appendix C
XEPLD ViewSynthesis Design Guide — 0401345 01 C-1

Library Component Specifications

This appendix describes each of the Xilinx library components, which
are summarized in Table C-1.

Table C-1 Library Component Summary

Used with These Devices

Component
Name

Component Description
VHDL
Macro

7272 7236
7318
7336

7354
7372

73108
73144

ACC Adder/Subtracter/Accumulator X X X X
ADD Adder X X X X X
ADSU Adder/Subtracter X X X X X
ADSUR Adder/Subtracter with Registered Outputs X X X X
AND2-AND8 AND Gates X X X X X
BUF Buffer X X X X X
BUFCE Clock Enable Inp. Buff. for Input Pad Reg. X X
BUFE 3-State Buffer X X X X X
BUFFOE Fast Output Enable Input Buffer X X X X
BUFG FastCLK Input Buffer X X X X X
CBX1 Up/Down Counter with Asynchronous Clear X X X X X X
CBX2 Up/Down Counter with Asynchronous Reset X X X X X X
DEC Decrementor X X X X X X
EQ Equal-To Comparator X X X X X X
FDCP Edge-Triggered D-Type Flip-Flop with

Asynchronous Clear and Preset
X X X X X

FDCPE Edge-Triggered D-Type Flip-Flop with
Clock Enable, Async. Clear and Preset

X X X X

FDPC Edge-Triggered D-Type Flip-Flop with
Asynchronous Clear and Preset

X X X X X

IBUF Input Buffer X X X X X
IFD Input Pad Register X X X X
IFDX1 Input Pad Register with Clock Enable X X
ILD Input Pad Latch X X X X
INC Incrementer X X X X X X
INV Inverter X X X X X

XEPLD ViewSynthesis Design Guide
LD D-Type Latch X X X X
LE_TC Less-Than-Or-Equal Comparator, 2’s Comp. X X X X X
LE_US Less-Than-Or-Equal Comparator, Unsigned X X X X X
LT_TC Less-Than Comparator, 2’s Complement X X X X X
LT_US Less-Than Comparator, Unsigned X X X X X
NE Not-Equal Comparator X X X X X X
OBUF Output Buffer (Slow Slew Rate) X X X X X
OBUF_F Output Buffer (Fast Slew Rate) X
OBUF_S Output Buffer (Slow Slew Rate) X
OBUFE 3-State Output Buffer (Slow Slew Rate) X X X X X
OBUFE_F 3-State Output Buffer (Fast Slew Rate) X
OBUFE_S 3-State Output Buffer (Slow Slew Rate) X
OBUFEX1 3-State Output Buffer with FOE Enable

(Slow Slew Rate)
X X X X

OBUFEX1F 3-State Output Buffer with FOE Enable
(Fast Slew Rate)

X

OBUFEX1S 3-State Output Buffer with FOE Enable
(Slow Slew Rate)

X

OR2-OR8 OR Gates X X X X X
SUBT Subtracter X X X X X
XOR2-XOR8 XOR Gates X X X X X

Used with These Devices

Component
Name

Component Description
VHDL
Macro

7272 7236
7318
7336

7354
7372

73108
73144
C-2 Xilinx Development System

Library Component Specifications
ACC
ACC is an adder/subtracter/accumulator macro. The .vhd file for
this macro, located in the ds391_path\examples\vwlogic\macro_7k
directory, can be copied and edited to implement a specific number of
bits by changing the default value of the generic “width” parameter.

Component Instantiation
U1: ACC port map (Q=>output, B=>in_operand,

C=>clock, CE=>clock_en, R=>sync_reset,
L=>load_en, SUB=>add_sub_ctl);

Truth Table and Logic Symbol

* The initial state is “0”.

R L CE C SUB Q*

1 X X X 0

0 0 0 X X Q

0 0 1 0 Q+B

0 0 1 1 Q-B

0 1 X X B

L

R

CE
SUB

B(width-1:0)

C

Q(width-1:0)

Q + B
XEPLD ViewSynthesis Design Guide C-3

XEPLD ViewSynthesis Design Guide
ADD
ADD is an adder macro. The .vhd file for this macro, located in the
ds391_path\examples\vwlogic\macro_7k directory, can be copied
and edited to implement a specific number of bits by changing the
default value of the generic “width” parameter.

Component Instantiation
U1: ADD port map (S=>sum, A=>in1, B=>in2);

Truth Table and Logic Symbol

A B S

A B A+B

S(width-1:0)

A(width-1:0)

B(width-1:0)
A + B
C-4 Xilinx Development System

Library Component Specifications
ADSU
ADSU is an adder/subtracter macro. The .vhd file for this macro,
located in the ds391_path\examples\vwlogic\macro_7k directory,
can be copied and edited to implement a specific number of bits by
changing the default value of the generic “width” parameter.

Component Instantiation
U1: ADSU port map (S=>output, A=>in1, B=>in2,

SUB=>sub_ctl);

Truth Table and Logic Symbol

SUB S

0 A+B

1 A-B

S(width-1:0)

A(width-1:0)

B(width-1:0)

SUB

A + B
XEPLD ViewSynthesis Design Guide C-5

XEPLD ViewSynthesis Design Guide
ADSUR
ADSUR is a registered adder/subtracter macro. The .vhd file for this
macro, located in the ds391_path\examples\vwlogic\macro_7k
directory, can be copied and edited to implement a specific number of
bits by changing the default value of the generic “width” parameter.

Component Instantiation
U1: ADSUR port map (Q=>output, A=>in1, B=>in2,

C=>clock, CE=>clock_en, R=>sync_reset,
SUB=>add_sub_ctl);

Truth Table and Logic Symbol

* The initial state is “0”.

R CE C SUB Q*

1 X X 0

0 0 X X Q

0 1 0 A+B

0 1 1 A-B

R

SUB

C

A(width-1:0)

Q(width-1:0)
B(width-1:0)

A + B

CE
C-6 Xilinx Development System

Library Component Specifications
AND2 — AND8
AND2 through AND8 are AND gates with 2 to 8 inputs.

Component Instantiation
U1: AND2 port map (O=>out,I1=>in2,I0=>in1);

Truth Table and Logic Symbol

I0 I1 O

0 0 0

0 1 0

1 0 0

1 1 1

AND8

AND7

AND6

AND5

AND4

AND3

AND2

I0
I1

I2
I3

I4
I5

I6
I7

I0
I1

I2
I3

I4
I5

I6

I0
I1

I2
I3

I4
I5

I0
I1

I2
I3

I4

I0
I1

I2
I3

I0
I1

I2

I0
I1

O

O

O

O

O

O
O

XEPLD ViewSynthesis Design Guide C-7

XEPLD ViewSynthesis Design Guide
BUF
BUF is a buffer.

Component Instantiation
U1: BUF port map (O=>out_port, I=>in_port);

Truth Table and Logic Symbol

I O

0 0

1 1

I O
C-8 Xilinx Development System

Library Component Specifications
BUFCE
BUFCE is an input buffer used to drive the global CE signal (Chip
Enable) for EPLD input pad registers. BUFCE may only be used to
drive the CE input of IFDX1 components.

Component Instantiation
U1: BUFCE port map (O=>global_ce, I=>in_port);

Truth Table and Logic Symbol

I O

0 0

1 1

I O
XEPLD ViewSynthesis Design Guide C-9

XEPLD ViewSynthesis Design Guide
BUFE
BUFE is a non-inverting 3-state buffer.

Component Instantiation
U1: BUFE port map (O=>ts_out, I=>inp, E=>enable);

Truth Table and Logic Symbol

I E O

X 0 Z

0 1 0

1 1 1

I

E

O

C-10 Xilinx Development System

Library Component Specifications
BUFFOE
BUFFOE is a an input buffer used to drive the global FOE signal (Fast
Output Enable). BUFFOE may only be used to drive the E input of
OBUFEX1 components.

Component Instantiation
U1: BUFFOE port map (O=>global_foe, I=>in_port);

Truth Table and Logic Symbol

I O

0 0

1 1

I O
XEPLD ViewSynthesis Design Guide C-11

XEPLD ViewSynthesis Design Guide
BUFG
BUFG is an input buffer used to drive the Global FastCLK signal.

Note: BUFG can only drive register clock inputs (including IFDX1)
and the G input of ILD components. It cannot drive the LD
component.

Component Instantiation
U1: BUFG port map (O=>global_clk, I=>in_port);

Truth Table and Logic Symbol

I O

0 0

1 1

I O
C-12 Xilinx Development System

Library Component Specifications
CBX1
CBX1 is a loadable up/down counter macro with asynchronous clear.
The .vhd file for this macro, located in the ds391_path\examples\
vwlogic\macro_7k directory, can be copied and edited to implement
a specific number of bits by changing the default value of the generic
“width” parameter.

Component Instantiation
U1: CBX1 port map (Q=>output, TCU => all_ones,

TCD => all_zeros, D=>load_data, C=>clock,
CLR=>async_clr, L=>load_ctl,
CEU=>count_up_ctl, CED=>count_down_ctl);

Truth Table and Logic Symbol

* The initial state is “0”.

CLR L CEU CED C TCU TCD Q*

1 X X X X 0 1 0

0 1 X X D=111... D=000... D

0 0 0 0 X Q=111... Q=000... Q

0 0 1 0 Q=111... Q=000... Q+1

0 0 0 1 Q=111... Q=000... Q-1

0 0 1 1 ILLEGAL CONDITION

D(width-1:0)

C

CEU
CED

L

CLR

Q(width-1:0)
XEPLD ViewSynthesis Design Guide C-13

XEPLD ViewSynthesis Design Guide
CBX2
CBX2 is a loadable up/down counter macro with synchronous reset.
The .vhd file for this macro, located in the ds391_path\examples\
vwlogic\macro_7k directory, can be copied and edited to implement
a specific number of bits by changing the default value of the generic
“width” parameter.

Component Instantiation
U1: CBX2 generic map (WIDTH => wordlength)

port map (Q=>output, TCU => all_ones, TCD =>
all_zeros, D=>load_data, C=>clock,
R=>sync_reset, L=>load_ctl,
CEU=>count_up_ctl, CED=>count_down_ctl);

Truth Table and Logic Symbol

* The initial state is “0”.

R L CEU CED C TCU TCD Q*

1 X X X 0 1 0

0 1 X X D=11... D=00... D

0 0 0 0 X Q=11... Q=00... Q

0 0 1 0 Q=11... Q=00... Q+1

0 0 0 1 Q=11... Q=00... Q-1

0 0 1 1 ILLEGAL CONDITION

D(width-1:0)

C

CEU
CED

L

R

Q(width-1:0)
C-14 Xilinx Development System

Library Component Specifications
DEC
DEC is an decrementor macro. The .vhd file for this macro, located in
the ds391_path\examples\vwlogic\macro_7k directory, can be
copied and edited to implement a specific number of bits by
changing the default value of the generic “width” parameter.

Component Instantiation
U1: DEC port map (S=>sum, A=>in);

Truth Table and Logic Symbol

A S

A A-1

I - 1
A(width-1:0) S(width-1:0)
XEPLD ViewSynthesis Design Guide C-15

XEPLD ViewSynthesis Design Guide
EQ
EQ is an equal-to comparator macro. The .vhd file for this macro,
located in the ds391_path\examples\vwlogic\macro_7k directory,
can be copied and edited to implement a specific number of bits by
changing the default value of the generic “width” parameter.

Component Instantiation
U1: EQ port map (EQ=>comparison, A=>in1, B=>in2);

Truth Table and Logic Symbol

Condition EQ

A<B 0

A=B 1

A>B 0

EQ

A(width-1:0)

B(width-1:0)
A = B
C-16 Xilinx Development System

Library Component Specifications
FDCP
FDPC is an edge-triggered D-type flip-flop with preset and clear.

Component Instantiation
U1: FDCP port map (Q=>out, D=>data, C=>clock,

CLR=>async_clr, PRE=>async_set);

Truth Table and Logic Symbol

* The initial state is “0”.

CLR PRE C Q*

1 X X 0

0 1 X 1

0 0 D

PRE

CLR

C

D Q
XEPLD ViewSynthesis Design Guide C-17

XEPLD ViewSynthesis Design Guide
FDCPE
FDCPE is an edge-triggered D-type flip-flop with preset, clear, and
clock enable.

Component Instantiation
U1: FDCPE port map (Q=>out, D=>in, C=>clock,

CE=>clock_enab, CLR=>async_clr,
PRE=>async_set);

Truth Table and Logic Symbol

* The initial state is “0”.

CLR PRE CE C Q*

1 X X X 0

0 1 X X 1

0 0 0 X Q

0 0 1 D

PRE

CLR

C

D Q
CE
C-18 Xilinx Development System

Library Component Specifications
FDPC
FDPC is an edge-triggered D-type flip-flop with preset and clear.

Component Instantiation
U1: FDPC port map (Q=>out, D=>data, C=>clock,

CLR=>async_clr, PRE=>async_set);

Truth Table and Logic Symbol

* The initial state is “0”.

CLR PRE C Q*

X 1 X 1

1 0 X 0

0 0 D

PRE

CLR

C

D Q
XEPLD ViewSynthesis Design Guide C-19

XEPLD ViewSynthesis Design Guide
IBUF
IBUF is an input buffer.

Component Instantiation
U1: IBUF port map (O=>received_signal,

I=>in_port);

Truth Table and Logic Symbol

I O

0 0

1 1

I O
C-20 Xilinx Development System

Library Component Specifications
IFD
IFD is an edge-triggered D-type flip-flop. The C input must be driven
by a BUFG component. IFD is only available for use in EPLD Input
Blocks.

Component Instantiation
U1: IFD port map (Q=>output, D=>in_port,

C=>global_clock);

Truth Table and Logic Symbol

* The initial state is “0”.

C Q*

X Q

 D

C

D Q
XEPLD ViewSynthesis Design Guide C-21

XEPLD ViewSynthesis Design Guide
IFDX1
IFDX1 is an edge-triggered D-type flip-flop with active-low clock
enable. The C input must be driven by a BUFG component. The CE
input, if used, must be driven by a BUFCE component. IFDX1 is only
available for use in EPLD Input Blocks.

Component Instantiation
U1: IFDX1 port map (Q=>output, D=>in_port,

C=>global_clock, CE=>global_ce);

Truth Table and Logic Symbol

* The initial state is “0”.

CE C Q*

1 X Q

0 D

C

D Q
CE
C-22 Xilinx Development System

Library Component Specifications
ILD
ILD is a D-type flip-flop available in the EPLD Input Block. The G
input must be driven by a BUFG buffer.

Component Instantiation
U1: ILD port map (Q=>output, D=>in_port,

G=>global_clock);

Truth Table and Logic Symbol

* The initial state is “0”.

G Q*

0 Q

1 D

G

D Q
XEPLD ViewSynthesis Design Guide C-23

XEPLD ViewSynthesis Design Guide
INC
INC is an Incrementer macro. The .vhd file for this macro, located in
the ds391_path\examples\vwlogic\macro_7k directory, can be
copied and edited to implement a specific number of bits by changing
the default value of the generic “width” parameter.

Component Instantiation
U1: ILD port map (Q=>output, D=>in_port,

G=>global_clock);

Truth Table and Logic Symbol

A S

A A+1

I + 1
A(width-1:0) S(width-1:0)
C-24 Xilinx Development System

Library Component Specifications
INV
INV is an inverter.

Component Instantiation
U1: INV port map (O=>not_in1, I=>in1);

Truth Table and Logic Symbol

I O

0 1

1 0

I O
XEPLD ViewSynthesis Design Guide C-25

XEPLD ViewSynthesis Design Guide
LD
LD is a D-type latch. The G input of LD cannot be driven by a BUFG
buffer.

Component Instantiation
U1: LD port map (Q=>out, D=>data,

G=>latch_enable);

Truth Table and Logic Symbol

* The initial state is “0”.

G Q*

0 Q

1 D

G

D Q
C-26 Xilinx Development System

Library Component Specifications
LE_TC, LE_US
LE_US is an unsigned binary less-than-or-equal-to comparator
macro. LE_TC is a two’s complement less-than-or-equal-to
comparator macro. The .vhd files for these macros, located in the
ds391_path\examples\vwlogic\macro_7k directory, can be copied
and edited to implement a specific number of bits by changing the
default value of the generic “width” parameter.

Component Instantiation
U1: LE_US port map (LE=>comparison, A=>in1,

B=>in2);

U1: LE_TC port map (LE=>comparison, A=>in1,
B=>in2);

Truth Table and Logic Symbol

Condition LE

A<B 1

A=B 1

A>B 0

LE

A(width-1:0)

B(width-1:0)
A < B
XEPLD ViewSynthesis Design Guide C-27

XEPLD ViewSynthesis Design Guide
LT_TC, LT_US
LT_US is an unsigned binary less-than comparator macro. LT_TC is a
two’s complement less-than comparator macro. The .vhd files for
these macros, located in the ds391_path\examples\vwlogic\
macro_7k directory, can be copied and edited to implement a specific
number of bits by changing the default value of the generic “width”
parameter.

Component Instantiation
U1: LT_US port map (LT=>comparison, A=>in1,

B=>in2);

U1: LT_TC port map (LT=>comparison, A=>in1,
B=>in2);

Truth Table and Logic Symbol

Condition LT

A<B 1

A=B 0

A>B 0

LT

A(width-1:0)

B(width-1:0)
A < B
C-28 Xilinx Development System

Library Component Specifications
NE
NE is an not-equal-to comparator macro. The .vhd file for this macro,
located in the ds391_path\examples\vwlogic\macro_7k directory,
can be copied and edited to implement a specific number of bits by
changing the default value of the generic “width” parameter.

Component Instantiation
U1: NE port map (NE=>comparison, A=>in1, B=>in2);

Truth Table and Logic Symbol

Condition NE

A<B 1

A=B 0

A>B 1

NE

A(width-1:0)

B(width-1:0)
A /= B
XEPLD ViewSynthesis Design Guide C-29

XEPLD ViewSynthesis Design Guide
OBUF, OBUF_F, OBUF_S
OBUF is an output buffer. OBUF and OBUF_S have slow output slew
rate. OBUF_F has fast output slew rate.

Component Instantiation
U1: OBUF port map (O=>out_port,

I=>driving_signal);

Truth Table and Logic Symbol

I O

0 0

1 1

Z Z

I O
C-30 Xilinx Development System

Library Component Specifications
OBUFE, OBUFE_F, OBUFE_S
OBUFE is a 3-state output buffer. OBUFE and OBUFE_S have slow
output slew rate. OBUFE_F has fast output slew rate.

Component Instantiation
U1: OBUF port map (O=>out_port,

I=>driving_signal, E=enable);

Truth Table and Logic Symbol

I E O

X 0 Z

0 1 0

1 1 1

I O

E

XEPLD ViewSynthesis Design Guide C-31

XEPLD ViewSynthesis Design Guide
OBUFEX1, OBUFEX1F, OBUFEX1S
OBUFEX1 is a 3-state output buffer that uses the EPLD FOE enable
signal. The E input must be driven by a BUFFOE buffer. OBUFEX1
and OBUFEX1S have slow output slew rate. OBUFEX1F has fast
output slew rate.

Component Instantiation
U1: OBUFEX1 port map (O=>out_port,

I=>driving_signal, E=>global_foe);

Truth Table and Logic Symbol

I E O

X 0 Z

0 1 0

1 1 1

I

E

O

C-32 Xilinx Development System

Library Component Specifications
OR2 — OR8
OR2 through OR8 are OR gates with 2 to 8 inputs.

Component Instantiation
U1: OR2 port map (O=>out, I1=>in2, I0=>in1);

Truth Table and Logic Symbol

I0 I1 O

0 0 0

0 1 1

1 0 1

1 1 1

I0
I1

I2
I3

I4
I5

I6
I7

I0
I1

I2
I3

I4
I5

I6

I0
I1

I2
I3

I4
I5

I0
I1

I2
I3

I4

I0
I1

I2
I3

I0
I1

I2

I0
I1

OR8

OR7

OR6

OR5

OR4

OR3

OR2

O

O

O
O

O

O

O

XEPLD ViewSynthesis Design Guide C-33

XEPLD ViewSynthesis Design Guide
SUBT
SUBT is a subtracter macro. The .vhd file for this macro, located in the
ds391_path\examples\vwlogic\macro_7k directory, can be copied
and edited to implement a specific number of bits by changing the
default value of the generic “width” parameter.

Component Instantiation
U1: SUBT port map (S=>diff, A=>in1, B=>in2);

Truth Table and Logic Symbol

A B S

A B A-B

S(width-1:0)

A(width-1:0)

B(width-1:0)
A-B
C-34 Xilinx Development System

Library Component Specifications
XOR2 — XOR8
XOR2 through XOR8 are XOR gates with 2 to 8 inputs.

Component Instantiation
U1: XOR2 port map (O=>out, I1=>in2, I0=>in1);

Truth Table and Logic Symbol

I0 I1 O

0 0 0

0 1 1

1 0 1

1 1 0

I0
I1

I2
I3

I4
I5

I6
I7

I0
I1

I2
I3

I4
I5

I6

I0
I1

I2
I3

I4
I5

I0
I1

I2
I3

I4

I0
I1

I2
I3

I0
I1

I2

I0
I1

XOR8

XOR7

XOR6

XOR5

XOR4

XOR3

XOR2

O

O

O
O

O

O

O

XEPLD ViewSynthesis Design Guide C-35

XEPLD ViewSynthesis Design Guide
C-36 Xilinx Development System

Appendix D
XEPLD ViewSynthesis Design Guide — 0401345 01 D-1

Attributes

Attributes are used to control how the software uses the architecture
specific features of the XC7000 EPLDs. See the device data sheets for
more information about these device features.

Global Attributes
To apply a global attribute, place one instance of the desired attribute
cell in your design and pass any internal signal through it.

LOWPWR
This attribute controls the macrocell power usage. If the LOWPWR
attribute is specified it indicates that all macrocells have low power
operation. If LOWPWR is not specified, the macrocells have standard
power operation.

To specify low power operation for all macrocells, instantiate the
LOWPWR component as follows:

U1: LOWPWR port map (signal_out, signal_in);

MRINPUT
This attribute controls the use of the Master Reset pin on the XC7354
and XC7336 devices. If the MRINPUT attribute is specified it
indicates that the pin is used as a logic input. If MRINPUT is not
specified, the pin is used as the Master Reset input. To specify that the
Master Reset pin is used as a logic input, instantiate the MRINPUT
component as follows:

U1: MRINPUT port map (signal_out, signal_in);

XEPLD ViewSynthesis Design Guide
NO_FOE
This attribute controls the automatic use of global Fast Output Enable
inputs. If the NO_FOE attribute is specified, it indicates that the
software will not automatically assign 3-state control inputs to the
global FOE inputs. If NO_FOE is not specified, the software will
assign the
3-state control signals in your design to the global FOE inputs of the
device, if possible.

To specify that no 3-state control signals will automatically be
assigned to the global FOE inputs, instantiate the NO_FOE
component as follows:

U1: NO_FOE port map (signal_out, signal_in);

NO_FCLK
This attribute controls the automatic use of global FastClock inputs. If
the NO_FCLK attribute is specified, the software will not automatic-
ally assign clock signals to the global FastClock inputs. If NO_FCLK
is not specified, the software will assign clock signals in your design
to the dedicated FastCLK inputs of the device, if possible.

To specify that no clock signals will automatically be assigned to the
FastClock nets, instantiate the NO_FCLK component as follows:

U1: NO_FCLK port map (signal_out, signal_in);

Note: Signals driven by the BUFG buffer always use FastCLK routing
independent of the NO_FCLK attribute.

NO_IFD
This attribute controls the automatic usage of input pad registers. If
the NO_IFD attribute is specified, it indicates that the software will
not automatically use the registers in the input pads. If NO_IFD is not
specified, the software will assign registers in your design to the
input pads whenever possible, to reduce macrocell resource
requirements.

To specify that registers will not be automatically placed into the
input pads, instantiate the NO_IFD component as follows:

U1: NO_IFD port map (signal_out, signal_in);
D-2 Xilinx Development System

Attributes
Note: The NO_IFD attribute does not prevent you from instantiating
specific input pad register and latch components.

PRELOAD
This attribute controls the use of default initial state values for
registers in your design. If PRELOAD is specified, the software will
use the default initial states for each register as shown in the library
specifications. If the PRELOAD attribute is not specified, it indicates
that the software may change the initial states of registers (unless
explicitly specified) if the change allows a more efficient
implementation.

To prevent the software from changing the initial state of registers in
your design, instantiate the PRELOAD component as follows:

U1: PRELOAD port map (signal_out, signal_in);

Signal Attributes
Signal attributes are applied by instantiating one of the following
components and passing the affected signal through it.

F
This attribute indicates either a Fast Function Block output signal or a
Fast Input signal. Use this attribute to assign specific functions to
EPLD Fast Function Blocks, which provide the highest performance,
by passing the function’s output signal through the F cell.

Use this attribute to designate a Fast Input by passing an input port
signal (after an IBUF component) through the F cell. For example:

U1: F port map (signal_out, signal_in);

H
This attribute indicates a High Density Function Block output signal.
Use this attribute to assign specific functions to High Density
Function Blocks, which provide the most macrocell resources.

To specify that a signal is driven from a High Density Function Block,
use:

U1: H port map (signal_out, signal_in);
XEPLD ViewSynthesis Design Guide D-3

XEPLD ViewSynthesis Design Guide
OPT_OFF
This attribute inhibits the software from optimizing the cell that
drives the connected signal.

To specify that a signal is to remain as a macrocell output, use:

U1: OPT_OFF port map (signal_out, signal_in);

OPT_UIM
This attribute can only be connected to a signal that originates from
an AND gate. It forces the software to place the AND gate into the
UIM.

To specify that a specific AND gate is to be implemented in the UIM,
instantiate the OPT_UIM component as follows:

U1: UIM_OPT port map (signal_out, signal_in);

Note: The optimization of AND gates into the UIM is done
automatically by the fitter whenever possible.
D-4 Xilinx Development System

Appendix E
XEPLD ViewSynthesis Design Guide — 0401345 01 E-1

Fitter Reports

The primary fitter reports that you will use are:

● design_name.res — Resource Report showing the amount of EPLD
macrocell and pin resources remaining.

● design_name.tim — Static Timing Report showing the calculated
worst-case timing for the logic paths in your design.

● design_name.pin — Pin-List Report showing the final pinout of
your design.

Examples of these three reports are provided in the following
sections.

XEPLD ViewSynthesis Design Guide
Resource Report
Use this report to determine the amount of EPLD resources used by
your design, and the amount of remaining resources.

XEPLD, Version 5.0.0 Xilinx Inc.
 Resource Report
 Circuit name: SCAN_TOP
Target Device: XC7354-10PC44 Integrated: 10-17-94, 12:13PM

LOGIC RESOURCES

 Required Used Remaining
Function Blocks 6 6 0
Macrocells 26 26 28

PIN RESOURCES:

Type Req --------Used-------------- --------Remaining---------
 I O I/O Fclk Foe Cen Tot I O I/O Fclk Foe Cen Tot
Inputs 12 8 4 12 0 15 15
Outputs 9 0 6 1 1 1 9 0 15 0 0 0 15
I/Os 0 0 0 15 15
Fclks 1 1 1 0 0
Foes 0 0 0 0 0
Cens 0 0 0 0 0
 --- --- -- --- --- --- --- ---
 22 8 0 10 2 1 1 22

Note:The design requires 0 pins with Fast Input capability.
 This device has 11 pins with Fast Input capability.
 The design requires 0 pins with Fast Output capability.
 This device has 0 FO and 1 I/FO remaining from original 0 FO and 16
I/FO.

 End of Resource Report
E-2 Xilinx Development System

Fitter Reports
The Static Timing Report
Use this report to verify your design timing. This report shows the
calculated worst-case timing based on the physical implementation
of your design. The types of reported timing parameters are
described in the following sections.

Creating the Timing Report
The timing analyzer uses the .vmh or .vmd file which is created after
a successful fit of your design. The timing report has three options; a
space is required in front of each option, and multiple options can be
listed in any order. The options are as summarized in Table E-1:

Table E-1 Timing Report Options

To create the Timing Report, type this at the DOS or UNIX prompt:

timerpt [options] design_name

For example, to create a 132 column report which includes clock and
data input timing (overwriting the design_name.XNF file), enter:

timerpt -w -f design_name

Option Description

-f Creates additional timing information. This informa-
tion shows the clock and data input timing used to cal-
culate the Setup-To-Clock time. Usually this timing
information is not needed.

-w Creates 132 column reports (default is 80 columns).

-o file_name Creates a file_name.XNF file instead of a
design_name.XNF file. If you do not use this option, the
timing analyzer overwrites any existing
design_name.XNF file.
XEPLD ViewSynthesis Design Guide E-3

XEPLD ViewSynthesis Design Guide
Combinational Pad-to-Pad Delays
A combinational pad-to-pad delay is calculated from an input pad
through any combinational logic to an output pad. Combinational
paths include any asynchronous Set and Reset inputs to registers as
shown in Figure 4-8.

Figure E-1 Combinational Pad-to-Pad Delays

...
Summary of Combinational Pad-to-Pad Delays (In
Best to Worst Order)
From To Delay(nsec)
C D 7.5
A D 15.0
B D 15.0
...

X4865
A

D

Combinatorial
Logic

D QS

R

C

A
B

A
A

E-4 Xilinx Development System

Fitter Reports
Setup-to-Clock Time
The setup time is calculated using the fastest clock path and the
slowest data path. The timing analyzer checks all registers and
reports the worst-case setup time for each pair of clock and data
signals. Figure E-2 shows an example setup-to-clock path.

Figure E-2 Setup-to-Clock Time

...
Summary of Setup-to-Clock at the Pads (In Best to
Worst Order)
Data Clock Delay(nsec)
A C 4.0
B C 8.0
...

X4866

DD Q

Combinatorial
Logic

Combinatorial
Logic

A

D Q

B

A
A

A
C

XEPLD ViewSynthesis Design Guide E-5

XEPLD ViewSynthesis Design Guide
Clock-to-Output Delays
Clock-to-output delays are calculated from the input pad of a clock
signal to the output pad. Figure E-3 shows an example.

Figure E-3 Clock-to-Output Delays

...
Summary of Clock Pad-to-Output Pad Delays (In
Best to Worst Order)
Clock Output Delay(nsec)
A B 5.5
...

X4867

Combinatorial
Logic

A

B

Combinatorial
Logic

D Q

A

E-6 Xilinx Development System

Fitter Reports
Cycle Time
The cycle time is calculated between two registers that share the same
clock. The timing report does not show cycle times for circuits that do
not have a register-to-register path. Figure E-4 shows an example.

Figure E-4 Cycle Time

Note: You should also consider the setup and clock-to-output delays
when determining the maximum device speed in your system.

...
Summary of Cycle Time Delays (In Best to Worst
Order)
(See .map file for signal names)
From To Delay(nsec)
FB3_9 FB3_4 8.0
FB3_6 FB3_7 8.0
...

X4868

D

Cycle Time

Combinatorial
Logic

Q D Q
XEPLD ViewSynthesis Design Guide E-7

XEPLD ViewSynthesis Design Guide
Example Timing Report
The following timing report is for a Black Jack game example. This
report was generated using the -f option and therefore it includes
additional information at the end.

XEPLD, Version 5.0F Xilinx Inc.
 Timing Report
 Circuit name: bjack
Target Device: 7354-10PC68 Report Date: 5-5-94, 22:19:44

Slowest Combinational Pad-to-Pad 22.0 nsec (Worst Case)
Slowest Setup-to-Clock at the pads 13.0 nsec (Worst Case)
Slowest Clock-to-Output(Pad-to-Pad) 22.0 nsec (Worst Case)
Maximum Clock Frequency CLK 76 Mhz (Worst Case)

Summary of Combinational Pad-to-Pad Delays (In Best to Worst Order)
From To Delay(nsec)
ENA SUB10 20.0
ENA Q2 20.0
ENA Q1 20.0
ENA Q0 20.0
ENA ADD10 20.0
ENA ACE 20.0
CLKIN ADDCLK 22.0

Summary of Setup-to-Clock at the Pads (In Best to Worst Order)
Data Clock Delay(nsec)
RESTART CLK 13.0
LT22 CLK 13.0
IS_ACE CLK 13.0
GT16 CLK 13.0
CARDOUT CLK 13.0
CARDIN CLK 13.0

Summary of Clock Pad-to-Output Pad Delays (In Best to Worst Order)
Clock Output Delay(nsec)
CLK SUB10 10.0
CLK Q2 10.0
CLK Q1 10.0
CLK Q0 10.0
CLK ADD10 10.0
CLK ACE 10.0
CLK ADDCLK 22.0
E-8 Xilinx Development System

Fitter Reports
Summary of Cycle Time Delays (In Best to Worst Order)
(See .map file for signal names)
From To Delay(nsec)
FB3_9 FB3_4 13.0
FB3_6 FB3_7 13.0
FB3_8 FB3_4 13.0
FB3_7 FB3_9 13.0
FB3_7 FB3_4 13.0
...
FB3_6 FB3_6 13.0
FB3_8 FB3_9 13.0
FB3_5 FB3_6 13.0
FB3_4 FB3_9 13.0
FB3_8 FB3_7 13.0

 Combinational Pad-to-Pad Delays(nsec)

 \From C E
 \ L N
 \ K A
 \ I
 \ N
 To \------------------

ACE 20.0
ADD10 20.0
ADDCLK 22.0
Q0 20.0
Q1 20.0
Q2 20.0
SUB10 20.0

 Clock Pad-to-Output Pad Delays(nsec)

 \Clock C
 \ L
 \ K
Output\--------------

ACE 10.0
ADD10 10.0
ADDCLK 22.0
Q0 10.0
Q1 10.0
Q2 10.0
SUB10 10.0

XEPLD ViewSynthesis Design Guide E-9

XEPLD ViewSynthesis Design Guide
 Register-to-Register Delays(nsec)

 \From F F F F F F
 \ B B B B B B
 \ 3 3 3 3 3 3
 \ _ _ _ _ _ _
 \ 4 5 6 7 8 9
 To \--

FB3_4 13.0 13.0 13.0 13.0 13.0
FB3_5 13.0 13.0 13.0 13.0
FB3_6 13.0 13.0 13.0 13.0 13.0 13.0
FB3_7 13.0 13.0 13.0 13.0
FB3_8 13.0 13.0 13.0 13.0 13.0 13.0
FB3_9 13.0 13.0 13.0 13.0 13.0 13.0

 Setup Delays(nsec)

 \Clock C
 \ L
 \ K
 Data\--------------

CARDIN 13.0
CARDOUT 13.0
GT16 13.0
IS_ACE 13.0
LT22 13.0
RESTART 13.0

 Dpath Delays(nsec)

 \From C C C G I L R
 \ A A L T S T E
 \ R R K 1 _ 2 S
 \ D D 6 A 2 T
 \ I O C A
 \ N U E R
 \ T T
 To \--

FB3_4 15.5 15.5
FB3_5 15.5 15.5
FB3_6 15.5 15.5 15.5 15.5
FB3_7 15.5 15.5 15.5 15.5
FB3_8 15.5 15.5 15.5 15.5 15.5 15.5
FB3_9 15.5

E-10 Xilinx Development System

Fitter Reports
 ClkPath Delays(nsec)

 \From C
 \ L
 \ K
 To \--------------

FB3_4 2.5
FB3_5 2.5
FB3_6 2.5
FB3_7 2.5
FB3_8 2.5
FB3_9 2.5

 End of Timing Report

Pin-List Report
Use this report to see the final EPLD pin assignments.

XEPLD, Version 5.0.0
Xilinx Inc.
 Pin-List Report
 Circuit name: SCAN_TOP
Target Device: XC7354-10PC44 Integrated:
10-17-94, 12:13PM

Pkg Pin Pin Pin
Pin Type Use Name
--- ---- --- ----
1 MR
2 I I DATA6
3 I I DATA5
4 I I DATA4
5 CLK I CLOCK
6 CLK O COUNT2
7 I I DATA3
8 I/O I DATA2
9 I/O I DATA1
10 VSS
11 I/O I DATA0
12 I/O I CLEAR
13 I/O tie (unused)
14 I/O tie (unused)
15 I/O tie (unused)
16 I/O tie (unused)
17 I/O O COUNT7
XEPLD ViewSynthesis Design Guide E-11

XEPLD ViewSynthesis Design Guide
18 I/O tie (unused)
19 I/O tie (unused)
20 I/O tie (unused)
21 VCC
22 I/O O COUNT6
23 VSS
24 I/O O COUNT4
25 I/O O DONE
26 I/O O COUNT1
27 I/O O COUNT0
28 I I WRITE_START
29 I/O tie (unused)
30 I/O tie (unused)
31 VSS
32 VCC
33 I/O tie (unused)
34 I/O tie (unused)
35 I/O tie (unused)
36 I/O tie (unused)
37 I/O tie (unused)
38 I/O tie (unused)
39 CEN O COUNT5
40 FOE O COUNT3
41 VCC
42 I I WRITE_END
43 I I START
44 I I DATA7

Pin Use Legend:

I - input
O - output
I/O - input/output
I-L - input uses latch
I-R - input uses register
I/O-L - input/output uses latch
I/O-R - input/output uses register
NC - not connected/not available
tie - unused pin must be tied to VCC or GND
(O) - unused pin attached to used macrocell

 End of Pin-List Report
E-12 Xilinx Development System

Index

Symbols
- operator, C-5, C-34
+ operator, C-4, C-5

OPT_UIM, D-4
PRELOAD, D-3
signal, D-3
XEPLD ViewSynthesis Design Guide — 0401345 01 i

+1 operator, C-24

Numerics
-1 operator, C-15
3-state control inputs, 3-4, D-2

A
ACC, component, 3-8, C-3
ADD, component, C-4
adder, component, C-4
adder/accumulator, component, C-3
adder/subtractor, component, C-5, C-6
ADSU, component, C-5
ADSUR, component, 3-8, C-6
ALU, B-5
AND gate

component, C-7
optimization, D-4

AND2-AND8, components, C-7
arithmetic functions, creating, 3-8
asynchronous set and reset, E-4
attributes

F, D-3
global, D-1
H, D-3
LOWPWR, D-1
MRINPUT, D-1
NO_FCLK, 3-4, D-2
NO_FOE, 3-4, D-2
NO_IFD, 3-4, D-2
OPT_OFF, D-4

B
batch file

using, A-1
BUF, component, C-8
BUFCE, component, 3-6, C-9, C-22
BUFE, component, C-10
buffer

component, C-8, C-10
global CE, C-9
global clock, C-12
global FOE, C-11
input, C-12, C-20
output, C-30, C-31

BUFFOE, component, 3-4, 3-5, C-11,
C-32
BUFG, component, 3-4, 3-6, C-12, C-23

C
carry chain, B-5
carry lookahead, B-6
CBX1, component, C-13
CBX2, component, C-14
clock enable, B-12
clock-to-output delay, E-6
command line

using to issue commands, A-1
comparator component, C-16, C-27,
C-28, C-29
comparator, creating, 3-8
components

XEPLD ViewSynthesis Design Guide
ACC, 3-8, C-3
ADD, C-4
ADSU, C-5
ADSUR, 3-8, C-6
AND2-AND8, C-7
BUF, C-8
BUFCE, 3-6, C-9, C-22
BUFE, C-10
BUFFOE, 3-4, 3-5, C-11, C-32
BUFG, 3-4, 3-6, C-12, C-23
CBX1, C-13
CBX2, C-14
DEC, C-15
EQ, 3-8, C-16
FDCP, 3-6, C-17
FDCPE, 3-6, C-18
FDPC, 3-6, C-19
IBUF, 3-3, C-20
IFD, C-21
IFDX1, 3-4, 3-6, C-9, C-22
ILD, 3-4, C-23
INC, C-24
INV, C-25
LD, C-26
LE, 3-8
LE_TC, C-27
LE_US, C-27
LT, 3-8
LT_TC, C-28
LT_US, C-28
NE, 3-8, C-29
OBUF, 3-3, C-30
OBUFE, C-31
OBUFEX1, 3-4, C-11, C-32
OR2-OR8, C-33
SUBT, C-34
XOR2-XOR8, C-35

cycle time, E-7

D
D1, D2 ALU inputs, B-5
DEC, component, C-15

decrementor, component, C-15
delay

clock-to-output, E-6
pad-to-pad, E-4
setup-to-clock, E-5

design
compiling, 4-3
controlling performance, 3-10
entry, example, 2-3
example, 2-2
fitting, example, 2-19
iteration, 4-1
schematic creation, example, 2-12
simulation, example, 2-13, 2-22
synthesis, example, 2-12
top-level, 3-2
using the command line, A-1

design file requirements, 3-1
design flow, EPLD, 2-1
Design Rule Checker, 3-12
device

programming, 4-2, 4-5
programming, example, 2-19
resource estimation, 3-9
selection, 3-9, B-2

D-type flip-flop, C-18, C-19, C-21, C-22,
C-23, C-26

E
EPLD

architecture, B-1
design flow, 2-1
getting started, 2-1
selection, 3-9

EQ component, 3-8, C-16
example design, 2-2

F
F, attribute, D-3
Fast Function Block, B-7

attributes, D-3
FastCLK
ii Xilinx Development System

Index
inputs, D-2
signals, B-6
using, 3-10

FastClock
pins, 3-4

FastInput
pins, B-4
using, 3-11

FDCP, component, 3-6, C-17
FDCPE, component, 3-6, C-18
FDPC, component, 3-6, C-19
files

pinsave, 4-1
verifying structure, 1-3

fitter
operation, 4-4
overview, 4-1

flip-flop, component, B-6, C-18, C-19,
C-21, C-22, C-23, C-26
FOE

input, usage, D-2
pins, 3-4

function blocks, selecting types, 3-11

G
global Chip Enable buffer, C-9
global clock, B-11

buffer, C-12
enable, B-12

global FOE buffer, C-11
global optimization, inhibiting, 3-4

H
H, attribute, D-3
High Density Function Block

attributes, D-3
description, B-4

I
I/O block, B-10
I/O ports, 3-1, 3-2
IBUF, component, 3-3, C-20
IFD, component, C-21

IFDX1, component, 3-4, 3-6, C-9, C-22
ILD, component, 3-4, C-23
INC, component, C-24
incrementor, component, C-24
input buffer, component, C-20
input pad registers, 3-4

usage, D-2
inputs, 3-state control, D-2
installation

requirements, 1-2
INV, component, C-25
inverter, component, C-25

L
latch

input pad, 3-7
macrocell, 3-7
using, 3-5

LD, component, C-26
LE component, 3-8
LE_TC component, C-27
LE_US component, C-27
library

availability chart, C-1
LOWPWR, attribute, D-1
LT component, 3-8
LT_TC component, C-28
LT_US component, C-28

M
macros, using, 3-5
Mapping Report, 4-6
mapping, equations, 4-1
MASTER RESET pin, D-1
minimization, equations, 4-1
MRINPUT, attribute, D-1

N
NE component, 3-8, C-29
NO_FCLK, attribute, 3-4, D-2
NO_FOE, attribute, 3-4, D-2
NO_IFD, attribute, 3-4, D-2
XEPLD ViewSynthesis Design Guide iii

XEPLD ViewSynthesis Design Guide
O
OBUF, component, 3-3, C-30
OBUFE, component, C-31
OBUFEX1, component, 3-4, C-11, C-32
operators

-, C-5, C-34
+, C-4, C-5
+1, C-24
-1, C-15

OPT_OFF, attribute, D-4
OPT_UIM, attribute, D-4
optimization

AND gates, D-4
equations, 4-1
inhibiting, 3-4, D-4

OR gates, C-33
OR2-OR8, components, C-33
output buffer, component, C-30, C-31,
C-32

P
pad-to-pad delay, E-4
Partitioner Report, 4-6
partitioning

equations, 4-1
pinouts, saving, 4-1, 4-5
pins

FastClock, 3-4
FOE, 3-4

pinsave file, 4-1
pin-to-pin path

delay, E-4
power usage, macrocells, D-1
PRELOAD, attribute, D-3
product terms

expansion, B-9
shared, B-5

programming, EPLD, 4-2, 4-5
project directory

creating, 4-2

R
register

initial values, D-3
input pad, 3-4, 3-6
input pad, usage, D-2
macrocell, 3-6
using, 3-5

Reports
Mapping, 4-6
Partitioner, 4-6
Pin-list, E-1

example, E-11
Resource, 3-10, E-1

example, E-2
Static Timing, 3-10, 4-1, 4-7

example, E-3
Timing, E-1

reports
Timing report, E-3

reset
asynchronous, E-4

Resource Report, 3-10, 4-6
ripple carry delay, B-6

S
set, asynchronous, E-4
setup-to-clock delay, E-5
shared product terms, B-5
software

installation, 1-1
supported features, 1-1
unsupported features, 1-1

state machines, creating, 3-7
Static Timing Report, 3-10, 4-1, 4-7
SUBT, component, C-34
subtractor, component, C-34

T
timing

calculated, 4-1
simulated, 4-2
iv Xilinx Development System

Index
Timing report
asynchronous set and reset, E-4
clock-to-output, E-6
creating, E-3
cycle time, E-7
example, E-8
pad-to-pad delays, E-4
setup-to-clock, E-5

timing, verification, 4-7

U
UIM, B-3

AND-gate usage, example, 3-9
attributes, D-4

up/down counter
component, C-13, C-14
creating, 3-7

V
viewdraw.ini file, configuration, 1-2

X
XEPLD, 4-1
XOR gates, C-35
XOR2-XOR8, components, C-35
XEPLD ViewSynthesis Design Guide v

XEPLD ViewSynthesis Design Guide
vi Xilinx Development System

Trademark Information
XEPLD ViewSynthesis Design Guide— 0401345 01

, XACT, XC2064, XC3090, XC4005, and XC-DS501 are registered trademarks of
Xilinx. All XC-prefix product designations, XACT-Floorplanner, XACT-Performance,
XAPP, XAM, X-BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, XPP, XSI, BITA,
Configurable Logic Cell, CLC, Dual Block, FastCLK, HardWire, LCA, Logic Cell,
LogicProfessor, MicroVia, PLUSASM, SMARTswitch, UIM, VectorMaze, VersaBlock,
VersaRing, and ZERO+ are trademarks of Xilinx. The Programmable Logic Company and
The Programmable Gate Array Company are service marks of Xilinx.

IBM is a registered trademark and PC/AT, PC/XT, PS/2 and Micro Channel are
trademarks of International Business Machines Corporation. DASH, Data I/O and
FutureNet are registered trademarks and ABEL, ABEL-HDL and ABEL-PLA are
trademarks of Data I/O Corporation. SimuCad and Silos are registered trademarks and P-
Silos and P/C-Silos are trademarks of SimuCad Corporation. Microsoft is a registered
trademark and MS-DOS is a trademark of Microsoft Corporation. Centronics is a
registered trademark of Centronics Data Computer Corporation. PAL and PALASM are
registered trademarks of Advanced Micro Devices, Inc. UNIX is a trademark of AT&T
Technologies, Inc. CUPL, PROLINK, and MAKEPRG are trademarks of Logical Devices,
Inc. Apollo and AEGIS are registered trademarks of Hewlett-Packard Corporation.
Mentor and IDEA are registered trademarks and NETED, Design Architect, QuickSim,
QuickSim II, and EXPAND are trademarks of Mentor Graphics, Inc. Sun is a registered
trademark of Sun Microsystems, Inc. SCHEMA II+ and SCHEMA III are trademarks of
Omation Corporation. OrCAD is a registered trademark of OrCAD Systems Corporation.
Viewlogic, Viewsim, and Viewdraw are registered trademarks of Viewlogic Systems, Inc.
CASE Technology is a trademark of CASE Technology, a division of the Teradyne
Electronic Design Automation Group. DECstation is a trademark of Digital Equipment
Corporation. Synopsys is a registered trademark of Synopsys, Inc. Verilog is a registered
trademark of Cadence Design Systems, Inc.

Xilinx does not assume any liability arising out of the application or use of any product
described or shown herein; nor does it convey any license under its patents, copyrights, or
maskwork rights or any rights of others. Xilinx reserves the right to make changes, at any
time, in order to improve reliability, function or design and to supply the best product
possible. Xilinx will not assume responsibility for the use of any circuitry described herein
other than circuitry entirely embodied in its products. Xilinx devices and products are
protected under one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216;
4,713,557; 4,746,822; 4,750,155; 4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,853,626;

R

Trademark Information
4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135; 5,023,606; 5,028,821;
5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704;
5,329,174; 5,329,181; 5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248;
5,349,249; 5,349,250; 5,349,691; 5,357,153; 5,360,747; 5,361,229; 5,362,999; 5,365,125;
5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189; 5,410,194; 5,414,377; RE
34,363, RE 34,444, and RE 34,808. Other U.S. and foreign patents pending. Xilinx, Inc. does
not represent that devices shown or products described herein are free from patent
infringement or from any other third party right. Xilinx assumes no obligation to correct
any errors contained herein or to advise any user of this text of any correction if such be
made. Xilinx will not assume any liability for the accuracy or correctness of any
engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems.
Use of a Xilinx product in such applications without the written consent of the
appropriate Xilinx officer is prohibited.
Xilinx Development System

	COVER PAGE
	TRADEMARK INFORMATION
	BOOK CONVENTIONS
	TABLE OF CONTENTS
	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	X

	GO TO OTHER BOOKS
	Chapter 1 System Configuration
	Software Capabilities
	Unsupported Features

	System Requirements
	Configuring the Viewlogic Library Search Order
	The viewdraw.ini File

	Verifying Your File Structure

	Chapter 2 Getting Started With Xilinx EPLDs
	Xilinx EPLD Design Flow
	Design Example
	Design Entry
	Copying the Tutorial Files
	Project Creation
	Design Synthesis and Schematic Generation
	Functional Simulation
	Design Fitting and Device Programming
	Timing Simulation

	Chapter 3 Designing With EPLDs
	VHDL Design File General Requirements
	XC7000 Components Package

	I/O Buffers
	Defining I/Os in the Main Design
	Defining I/Os Using a Top-Level File
	Creating a Top-Level Design

	Special-Purpose I/O Ports
	Selecting 3-State Control Sources
	Assigning Specific Fast Output Enable Signals

	Using Xilinx-Supplied Macros
	Using Registers And Latches
	Using Input Pad Registers
	Using Macrocell Registers
	Using Input Pad Latches
	Using Macrocell Latches

	Using Special Logic Functions
	Binary Counters
	State Machines
	Arithmetic Functions
	Comparators

	Targeting a Specific Device
	Controlling Design Performance
	Using High-Speed Clocks
	Assigning Specific High-Speed Clocks

	Selecting EPLD Function Block Types
	Specifying High Speed Paths
	Specifying High Density Paths

	Using EPLD FastInputs

	The Design Rule Checker
	General Design Rule Violations
	Pad Component Design Rule Violations
	FastCLK, Clock Enable, Fast Output Enable Violatio...

	Chapter 4 Using PROflow
	Fitter Overview
	Creating a Project Directory
	Compiler Operation
	Fitter Operation
	Fitting Your Design
	Fitter Reports
	Creating The Xilinx Static Timing Report
	Performing Timing Simulation

	Appendix A Using the Command Line
	Using a Batch File
	Using Individual Commands

	Appendix B EPLD Architecture
	Device Selection
	The Universal Interconnect Matrix
	High-Density Function Blocks
	Shared and Private Product Terms
	Arithmetic Logic Unit
	Carry Lookahead (7300 Family Only)
	Macrocell Flip-Flop

	Fast Function Blocks
	Product Term Expansion
	XC7336 and XC7318 Fast Function Blocks

	Input/Output Blocks

	Appendix C Library Component Specifications
	ACC
	ADSU
	ADSUR
	AND2 — AND8
	BUF
	BUFCE
	BUFE
	BUFFOE
	BUFG
	CBX1
	CBX2
	DEC
	EQ
	FDCP
	FDCPE
	FDPC
	IBUF
	IFD
	IFDX1
	ILD
	INC
	INV
	LD
	LE_TC, LE_US
	LT_TC, LT_US
	NE
	OBUF, OBUF_F, OBUF_S
	OBUFE, OBUFE_F, OBUFE_S
	OBUFEX1, OBUFEX1F, OBUFEX1S
	OR2 — OR8
	SUBT
	XOR2 — XOR8

	Appendix D Attributes
	Global Attributes
	LOWPWR
	MRINPUT
	NO_FOE
	NO_FCLK
	NO_IFD
	PRELOAD

	Signal Attributes
	F
	H
	OPT_OFF
	OPT_UIM

	Appendix E Fitter Reports
	The Static Timing Report
	Creating the Timing Report
	Combinational Pad-to-Pad Delays
	Setup-to-Clock Time
	Clock-to-Output Delays
	Cycle Time
	Example Timing Report

	Pin-List Report

