

XEPLD
SCHEMATIC

 ™

DESIGN GUIDE

ONLINER

TABLE OF CONTENTS

INDEX

GO TO OTHER BOOKS

XEPLD Schematic Design Guide Printed in U.S.A.

Getting Started with
Schematic Design

Design Entry Techniques

Controlling Design Imple-
mentation

Design Applications

Common Questions and
Answers

Attributes

Library Selection Guide

Design Implementation and
Simulation

XEPLD
Schematic
Design Guide

XEPLD Schematic Design Guide

Xilinx Development System

, XACT, XC2064, XC3090, XC4005, and XC-DS501 are registered trademarks of Xilinx. All XC-prefix
product designations, FastFLASH, FastCONNECT, EZTag, XACT-Floorplanner, XACT-Performance, XAPP,
XAM, X-BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, XPP, XSI, BITA, Configurable Logic Cell, CLC, Dual
Block, FastCLK, HardWire, LCA, Logic Cell, LogicProfessor, MicroVia, PLUSASM, SMARTswitch, UIM,
VectorMaze, VersaBlock, VersaRing, and ZERO+ are trademarks of Xilinx. The Programmable Logic Company
and The Programmable Gate Array Company are service marks of Xilinx.

IBM is a registered trademark and PC/AT, PC/XT, PS/2 and Micro Channel are trademarks of International Business
Machines Corporation. DASH, Data I/O and FutureNet are registered trademarks and ABEL, ABEL-HDL and ABEL-
PLA are trademarks of Data I/O Corporation. SimuCad and Silos are registered trademarks and P-Silos and P/C-
Silos are trademarks of SimuCad Corporation. Microsoft is a registered trademark and MS-DOS is a trademark of
Microsoft Corporation. Centronics is a registered trademark of Centronics Data Computer Corporation. PAL and
PALASM are registered trademarks of Advanced Micro Devices, Inc. UNIX is a trademark of AT&T Technologies,
Inc. CUPL, PROLINK, and MAKEPRG are trademarks of Logical Devices, Inc. Apollo and AEGIS are registered
trademarks of Hewlett-Packard Corporation. Mentor and IDEA are registered trademarks and NETED, Design
Architect, QuickSim, QuickSim II, and EXPAND are trademarks of Mentor Graphics, Inc. Sun is a registered
trademark of Sun Microsystems, Inc. SCHEMA II+ and SCHEMA III are trademarks of Omation Corporation. OrCAD
is a registered trademark of OrCAD Systems Corporation. Viewlogic, Viewsim, and Viewdraw are registered
trademarks of Viewlogic Systems, Inc. CASE Technology is a trademark of CASE Technology, a division of the
Teradyne Electronic Design Automation Group. DECstation is a trademark of Digital Equipment Corporation.
Synopsys is a registered trademark of Synopsys, Inc. Verilog is a registered trademark of Cadence Design Systems,
Inc.

Xilinx does not assume any liability arising out of the application or use of any product described or shown herein;
nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others. Xilinx
reserves the right to make changes, at any time, in order to improve reliability, function or design and to supply
the best product possible. Xilinx will not assume responsibility for the use of any circuitry described herein other
than circuitry entirely embodied in its products. Xilinx devices and products are protected under one or more of
the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155; 4,758,985;
4,820,937; 4,821,233; 4,835,418; 4,853,626; 4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135;
5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704; 5,329,174; 5,329,181;
5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,357,153;
5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189;
5,410,194; 5,414,377; RE 34,363, RE 34,444, and RE 34,808. Other U.S. and foreign patents pending. Xilinx, Inc.
does not represent that devices shown or products described herein are free from patent infringement or from any
other third party right. Xilinx assumes no obligation to correct any errors contained herein or to advise any user of
this text of any correction if such be made. Xilinx will not assume any liability for the accuracy or correctness of
any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

R

XEPLD Schematic Design Guide iii

Preface

About This Manual
This Schematic Design Guide provides information on using the
XEPLD Pre-Release software and supported CAE interfaces to create
designs for Xilinx CPLD devices. It focuses on schematic design
techniques, including making the best use of library components in
schematics. For more detailed information about using XEPLD™
with CAE tool interfaces, refer to the following:

● Libraries Guide

For related information about CPLD design entry, refer also to the
following:

● Synthesis Design Guide

● EZTag User Guide

Manual Contents
This manual covers the following topics:

● Chapter 1, “Getting Started with Schematic Design,” presents an
overview of schematic design for CPLD devices, including a
simple example design.

● Chapter 2, “Device Entry Techniques,” describes the fundamental
techniques for expressing logic in a schematic design for a CPLD
device.

XEPLD Schematic Design Guide

iv Xilinx Development System

● Chapter 3, “Controlling Design Implementation,” discusses
techniques for controlling how various parts of your design are
implemented into a CPLD device.

● Chapter 4, “Design Applications,” describes useful techniques for
expressing efficient CPLD designs.

● Appendix A, “Common Questions and Answers,” lists common
problems in processing CPLD designs and explains their most
likely causes and solutions.

● Appendix B, “Attributes,” lists and describes CPLD schematic
attributes, which allow access to CPLD architectural features.

● Appendix C, “Library Selection Guide,” lists all the symbols that
may be used in CPLD schematic designs.

● Appendix D, “Design Implementation and Simulation,” describes
the xepld used to invoke the fitter, and the xepldsim commands
used to prepare functional and timing simulation models.

XEPLD Schematic Design Guide v

Conventions

The following conventions are used in this manual’s syntactical
statements:

Courier font System messages or program files appear
regular in regular Courier font.

Courier font Literal commands that you must enter in
bold syntax statements are in bold Courier font.

italic font Variables that you replace in syntax
statements are in italic font.

[] Square brackets denote optional items or
parameters. However, in bus specifications,
such as bus [7:0], they are required.

{ } Braces enclose a list of items from which
you must choose one or more.

· A vertical ellipsis indicates material that has
· been omitted.
·

. . . A horizontal ellipsis indicates that the
preceding can be repeated one or more
times.

| A vertical bar separates items in a list of
choices.

↵ This symbol denotes a carriage return.

➝ This symbol denotes hierarchy in menu
commands.

XEPLD Schematic Design Guide vii

Contents

Table of Contents

Preface
About This Manual ... iii
Manual Contents.. iii

Conventions

Chapter 1 Getting Started with Schematic Design
An Overview of Schematic Design Methods................................ 1-1
Schematic Design Flow Example .. 1-3

Step 1 — Configure the Design Entry Tool............................. 1-4
On Workstations .. 1-4
On PCs with Viewlogic PRO Series 1-5
Orcad 386+ Procedure .. 1-6

Step 2— Draw the Design .. 1-7
Step 3— Perform Functional Simulation (Optional) 1-8

On Workstations .. 1-8
On PCs with Viewlogic PRO Series 1-9
On PCs with OrCAD 386+ ... 1-10

Step 4— Implement the Design.. 1-11
On Workstations .. 1-11
On PCs .. 1-12

Step 5 — Examine the Reports .. 1-14
Step 6 — Timing Simulation ... 1-15

On Workstations .. 1-15
On PCs with Viewlogic PRO Series 1-15
On PCs with OrCAD .. 1-16

Step 7 — Device Programming .. 1-16

Chapter 2 Design Entry Techniques
Library Symbols ... 2-1

Specific Components.. 2-2
Primitives, Macros and User-generated Symbols................... 2-2
Power and Ground Signals... 2-3

Input/Output Buffers... 2-4
Inputs, Outputs, and Bidirectionals ... 2-4
Three-State Multiplexing... 2-5
Clock Inputs .. 2-7
Output Enable Signals .. 2-9

viii Xilinx Development System

XEPLD Schematic Design Guide

Asynchronous Clear and Preset ... 2-10
Behavioral Modules.. 2-11

Compiling Behavioral Logic .. 2-12
Behavioral Module Symbols in Schematics 2-13
Behavioral Module Example for Viewlogic.............................. 2-14
Behavioral Modules and Three-State Outputs........................ 2-15
Using SymGen to Create Custom Symbols from
Behavior Modules ... 2-17

Viewlogic Symbols... 2-17
OrCAD Symbols .. 2-17

Storing Custom Components.. 2-18
Viewlogic Components .. 2-18
OrCAD Components.. 2-19

Hierarchical Design .. 2-19
Custom Macro Example for Viewlogic 2-20

Retargeting a Design From a Different Family............................. 2-20
XC7000 to XC9000 Design Migration Issues.......................... 2-21
Schematic Conversion Procedure .. 2-22

Using Viewlogic on Workstations....................................... 2-23
Using Viewlogic PRO Series on PC 2-24
Using OrCAD on PC .. 2-24
Processing a Design After Conversion 2-25

Attribute Compatibility ... 2-25
Converting Behavioral Modules .. 2-26

Chapter 3 Controlling Design Implementation
Target Device Selection ... 3-1

For Workstations... 3-1
For PCs... 3-2

Software Device Selection Criteria 3-3
Controlling Register Initial State... 3-4
Controlling Power Consumption... 3-4

Changing Power Mode for a Specific Component 3-4
Changing Global Power Mode on Workstation 3-5
Changing Global Power Mode on PCs 3-5

Controlling Output Slew Rate... 3-6
Controlling the Pinout... 3-6

Pin Freezing.. 3-7
Freezing Pins on a Workstation... 3-7
Freezing Pins on a PC... 3-7
Guide Files... 3-7

XEPLD Schematic Design Guide ix

Contents

Pin Assignment... 3-8
Ignoring the LOC Attribute on a Workstation..................... 3-9
Ignoring the LOC Attribute on a PC................................... 3-9

Pin Assignment Precautions... 3-9
Controlling Logic Optimization ... 3-10

Collapsing Product Term Limit.. 3-10
Controlling Pterm Limits on a Workstation 3-11
Controlling Pterm Limits on a PC 3-11
If the Path Delay is Not Satisfactory 3-11

Preventing Collapsing of a Logic Node................................... 3-12
Controlling Timing Paths.. 3-13

Timing Optimization .. 3-13
XACT Performance... 3-14

Timing Definitions .. 3-14
The TIMESPEC Symbol .. 3-16
Defining Timing Path End Points....................................... 3-17
Using Predefined Groups .. 3-17
Specifying Time Delay Units.. 3-18
Disabling Timing Specifications... 3-18

Reducing Levels of Logic.. 3-19

Chapter 4 Design Applications
Read-Back Registers ... 4-1
Bidirectional Signals and Buses... 4-2
Multiplexing 3-State Signals... 4-2
Combinational Feedback Loops .. 4-4

Appendix A Common Questions and Answers
Drawing the Design.. A-1

Why Do I See White Boxes Instead of Symbols?................... A-1
Fitting the Design ... A-2

What Does “Unrecognized Symbol” Mean? A-2
Simulating the Design .. A-2

Why Are My Registers Stuck at the Preload Value? A-2
Why Are My Internal Nodes Not Visible During
Timing Simulation? ... A-3

Appendix B Attributes
Target Device Selection Attribute — PART B-1

Viewlogic Procedure.. B-2
Behavioral Module Attributes — FILE and DEF B-2

x Xilinx Development System

XEPLD Schematic Design Guide

Pin Assignment Attribute — LOC.. B-2
Power Setting Attribute — LOWPWR B-3
Logic Optimization Attribute — OPT=OFF.............................. B-3
Register Preload State — INIT ... B-4
Output Slew Rate — FAST ... B-4
Minimization of Redundant Logic — MINIM............................ B-4
Timing Specification Attributes — TSnn and TNM.................. B-4

Appendix C XEPLD Library Selection Guide

Appendix D Design Implementation and Simulation
Running the Fitter... D-1

From a Workstation... D-1
XEPLD Command Parameters.. D-2

From a PC... D-3
Generated Reports ... D-4

Functional and Timing Simulation .. D-5
Simulation on a Workstation ... D-5
Simulation on a PC Under Windows....................................... D-6
Simulation on a PC using DOS... D-7
Simulating Power-On Initialization .. D-7

XEPLD Schematic Design Guide 1-1

Chapter 1

Getting Started with Schematic Design

This chapter will help you quickly understand how to develop a
schematic design using the CPLD design implementation software
(fitter). A brief schematic design example is included, illustrating
device-independent schematic design entry and simulation
processes.

An Overview of Schematic Design Methods
A schematic design defines the functionality of a logic circuit using
one or more schematic files, each of which contains components from
a Xilinx-supplied library, such as gates, flip-flops and building-block
functions similar to 74xx TTL devices. Schematics can also contain
“custom” symbols for which you define the functionality using
behavioral modules (similar to PAL devices). Behavioral modules are
discussed fully in Chapter 2. Figure 1-1 summarizes the design flow.

XEPLD Schematic Design Guide

1-2 Xilinx Development System

Figure 1-1 Basic Schematic Design Flow

Currently, the Viewlogic and OrCAD 386+ software packages are
directly supported by Xilinx CPLD library and interface for CPLD
design entry and simulation. Other compatible interfaces and CPLD
libraries may be available from their manufacturers.

XEPLD
Fitter

Programming File
Schematic File

HDL Synthesis

00001000100011000
10001000010001001
01001001001100010
00110011000100010
10010000100111000
00100010100010010
00100100010010010

ABEL Equation File

Simulation File

Reports

equations
[q1, q0, abort] =
[q1, q0, abort] =
state _diagram
state a

Module source2
Options '-trace
Declarations
in1, in2, clk pin;
all, none, other
out = [all, none]

X4834a

CPLD

Getting Started with Schematic Design

XEPLD Schematic Design Guide 1-3

Schematic Design Flow Example
This section runs through the entire schematic design process, from
creating a design to programming and simulating the design. The
following device-independent design, a 4-bit Johnson counter, is
used as an example:

Figure 1-2 Example 4-Bit Johnson Counter Design

Simulation results for this design are shown in Figure 1-3.

The design entry and simulation steps are summarized for Viewlogic
and OrCAD software. Other supported schematic design software
will have similar procedures; refer to the manufacturer’s
documentation.

Q

CLR

DQ3B FDCE

C

CE
OBUF

INV

IBUF

IBUF

IBUF

Q0
OPAD

X4863

Q

CLR

D FDCE

C

CE
OBUF

Q1
OPAD

Q

CLR

D FDCE

C

CE
OBUF

Q2
OPAD

IPAD

Q

CLR

D FDCE

C

CECE

IPAD
C

IPAD
CLR

OBUF

Q3
OPAD

XEPLD Schematic Design Guide

1-4 Xilinx Development System

Figure 1-3 Example Viewlogic Functional Simulation Results

Step 1 — Configure the Design Entry Tool

On Workstations

Many design entry tools have a project management facility that you
can use to create a working directory for your design. In Viewlogic’s
Powerview, you would use the Project -> Create command.

Next, you will need to configure the design entry tool to access the
CPLD component library for schematics you develop in the project
you just created. In Powerview, you would use the Project ->
Search Order command to open a dialog window listing the
configured libraries. On the first available library line, enter the
directory path where the CPLD Viewlogic library is installed on your
system. For example, enter installation_path/unified/xc9000 (for
XC9000 target devices) or installation_path/unified/xc7000 (for XC7000
target devices), where installation_path is the root directory where the
CPLD software package was installed. Under the “Library” column,
enter XC9000 or XC7000, which is also known as the library alias.
Under the Type column, select Read (read-only format).

If you are not using the Viewlogic project manager, you can make a
copy of the viewdraw.ini file in your project directory (copied from
the Viewlogic standard directory) and add one of the following lines
to the end of the file:

DIR [r] installation_path/unified/xc9000 (xc9000)

CLK

CE

CLR

Q

900

1

1

0

C\H

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 ns

0 1 3 7 F E C 8 0 1 3 0 1 3

Getting Started with Schematic Design

XEPLD Schematic Design Guide 1-5

DIR [r] installation_path/unified/xc7000 (xc7000)

where installation_path is the root directory where the CPLD fitter
package was installed.

If you plan to simulate using Viewsim, you should also include the
Viewlogic “builtin” library in the Search Order window or the
viewdraw.ini file.

On PCs with Viewlogic PRO Series

Create a directory for your design. If you are using PROflow, your
Xilinx CPLD libraries will be configured for you automatically
whenever you create a new project. Otherwise, use the Project
Manager and Library List Editor utilities found in
ProCapture.

If you use the Project Manager, the Xilinx CPLD library required for
this example is installed under the path
installation_path \unified\xc9000 (for XC9000 target
devices) or installation_path \unified\xc7000 (for
XC7000 target devices) . It is in megafile format. The required
viewdraw.ini alias is either xc9000 or xc7000 depending on
the CPLD family you are targeting . If you plan to simulate,
you should also include the Viewlogic “builtin” library.

Enter PROflow by selecting the PROflow icon. From PROflow:

Select Design Entry , then select the Project Manager button.

To create a directory for your project, press the Create button and
select a directory for your project.

XEPLD Schematic Design Guide

1-6 Xilinx Development System

Figure 1-4 Xilinx PROflow

From Design Entry , click on Select Family .

Select XC9000 or XC7000, then select OK.

Under Design Type , select Schematic .

In the Design Name line, type JCOUNT.1

Select OK. PROcapture will be invoked and a design entry window
will appear.

Orcad 386+ Procedure

Enter OrCAD. The OrCAD 386+ software described here is not
Windows compatible. If necessary, exit Windows, then type at the
DOS prompt:

Getting Started with Schematic Design

XEPLD Schematic Design Guide 1-7

orcad

Note: Double-clicking on an MS-DOS icon does not exit you from
Windows; it merely opens a DOS window. You must exit Windows
completely using File ➝ Exit Windows .

Double click on Design Management Tools . Click on Create
Design .

In the prompt box that appears, type jcount ↵, then click on OK.

The JCOUNT design appears, highlighted, in the list. Click on
Suspend to System . To target an XC7000 device, type the
following at the DOS prompt:

xdraft 7

To target and XC9000 device, type

xdraft 9

(wait for the command to complete)

exit

You are back in the Design Management Tools window. Click on OK
to exit.

Step 2— Draw the Design
Invoke the schematic drawing tool and draw the design. If you are
using Powerview, you would invoke the ViewDraw tool. If you are
using Viewlogic PRO Series, you would invoke PROcapture . If you
are using OrCAD 386+, invoke Schematic Design Tools , then
Draft .

If you prefer to use the completed schematic shown in Figure 1-2 as a
sample design, you can copy the jcount schematic file from the
software directory. For Viewlogic, copy all files and subdirectories
under the installation_path \tutorial\vwlogic\jcount
directory into your local directory (the schematic file is jcount.1
under the sch subdirectory). For OrCAD, copy all files under the
installation_path \tutorial\orcad\jcount directory into
your local directory.

When drawing a schematic representing a CPLD device, or any sub-
sheet in a CPLD design, you should not use any symbols from any

XEPLD Schematic Design Guide

1-8 Xilinx Development System

other library than the Xilinx CPLD library. Be careful not to use
symbols from the Viewlogic builtin library. You may, however, create
your own custom symbols representing sub-sheets (hierarchical
schematics) or behavioral modules, as described in Chapter 2.

It is important that you label the nets that represent device input/
output pins in your design. These are the nets connecting between
IPAD and IBUF symbols, and between OBUF and OPAD symbols.
These names will appear in the fitter reports and will be used as
signal names during simulation.

Save your schematic when finished. The Viewdraw Write command
(File ➝ Save As in PROcapture) performs schematic rule checking
and writes a “wire-list” file in the wir directory (wir/jcount.1).
Viewlogic wire-list files and OrCAD schematic files (jcount.sch) are
read directly by the CPLD fitter software. For other schematic entry
tools, the schematic must be translated into an XNF or EDIF 2.0.0
formatted netlist, which can be read by the XEPLD fitter.

Step 3— Perform Functional Simulation (Optional)

On Workstations

On workstation platforms, functional and timing simulation files are
prepared using the xepldsim command provided in the CPLD fitter
package. For Viewlogic functional simulation, xepldsim reads your
schematic (wire-list file), reads any behavioral module equation files
referenced in the design, resolves all attributes affecting functionality
(such as INIT), and produces a jcount.vsm file for Viewsim.

To prepare a functional simulation file, type the following in a UNIX
command window:

xepldsim -vlfunc jcount

Your current working directory must be your project directory before
executing the xepldsim command.

Invoke Viewsim. Use the network command and enter your design
name to read the jcount.vsm file. If you have a simulation command
file, you can enter that filename as well on the Viewsim command
line. For the JCOUNT sample design, a Viewsim command file can be
found in installation_path/tutorial/vwlogic/jcount/jcount.cmd. The
JCOUNT design is simulated using the following Viewsim

Getting Started with Schematic Design

XEPLD Schematic Design Guide 1-9

commands:

vector Q Q[3:0]
wave jcount.wfm CLK CE CLR Q
clock c 1 0
step 50ns
h prld
h CE
l CLR
cycle
l prld
cycle 5
l CE
cycle 2
h CE
cycle 5
h CLR
cycle 2
l CLR
cycle 3

The wave command automatically invokes a ViewTrace window
which displays the input and output simulation waveforms
graphically.

On PCs with Viewlogic PRO Series

Select PROsim from the PROflow menu.

Figure 1-5 ProSim Icon

Click on Select Part . A menu for selecting parts and packages
appears. Select a part and a package from the lists and press OK.

Place a check in the Command File box and select Browse . Go to
the JCOUNT directory. The file JCOUNT.CMD should appear in the
files display. Select JCOUNT.CMD and press OK.

Make sure the Execute Netlister box is checked, then press OK.

XEPLD Schematic Design Guide

1-10 Xilinx Development System

The design is simulated using the following command file:

restart
vector Q Q[3:0]
wave jcount.wfm CLK CE CLR Q
clock c 1 0
step 50ns
h prld
h CE
l CLR
cycle
l prld
cycle 5
l CE
cycle 2
h CE
cycle 5
h CLR
cycle 2
l CLR
cycle 3

To view the waveform file, go to PROflow and select PROwave.

On PCs with OrCAD 386+

To perform functional simulation using the stimulus and trace files
provided in the installation directory, follow these steps:

1. From the OrCAD main menu, double-click Design Management
Tools .

2. Select the jcount design.

3. Select Suspend to System and type at the DOS prompt:

xsimmake -f oef6 jcount

4. When xsimmake completes, type exit to return to OrCAD.

5. Click OK to return to main menu.

6. Double Click on Digital Simulation Tools .

7. Click once on Simulate . Select Local Configuration and
then Configure Simulate .

Getting Started with Schematic Design

XEPLD Schematic Design Guide 1-11

8. In the Connectivity Database box, change jcount.inf to
jcount.vst , then select OK.

9. Double click on Simulate . A blank simulation waveform
window appears with the Q3, Q2, Q1, Q0, CE, CLR and CLK nets
listed.

10. Select Trace ➝ Change View and enter 180 . Select Run
Simulation and enter 18000 . The simulation waveforms
appear.

11. Exit Simulate using Quit ➝ Abandon Simulation .

12. To exit OrCAD, double click on To Main , then on Exit ESP . You
are now back in DOS. To proceed with design implementation,
start Windows, open the Xilinx Tools icon, and start the
Design Manager .

Step 4— Implement the Design

On Workstations

On workstation platforms, CPLD design implementation is
performed using the xepld command. For Viewlogic designs,
xepld reads the schematic (wire-list file), translates it to an XNF
netlist, maps the design to an CPLD device, and produces a
programming bit-map (JEDEC) file, fitter report and static timing
report.

To implement the jcount design using an XC9000 device, type the
following on the UNIX command line:

xepld -p 9 jcount

To implement jcount using an XC7000 device, type the following:

xepld -p 7 jcount

Your current working directory must be your project directory before
executing the xepld command. The CPLD fitter looks in the current
directory for the named Viewlogic schematic (sch/jcount.1 or wir/
jcount.1). If a Viewlogic schematic is not found, it looks for an XNF or
EDIF netlist file. If the design contains behavioral modules, the fitter
reads the associated equation files.

By default, the fitter automatically selects the smallest device in the

XEPLD Schematic Design Guide

1-12 Xilinx Development System

selected family to meet the needs and constraints of your design. In
general, it will select the smallest part and work its way up until it
has the part that will satisfy the design.

There are several xepld command-line parameters you can use to
control the design implementation process. These are described
throughout this Design Guide and summarized in Appendix A.

On PCs

The Windows-based Design Manager is used to fit the design and
create a programming file. If you are using Viewlogic PROflow, select
XACTstep from PROflow. Otherwise, select the Design Manager icon
from the Xilinx program group. Next, create a new project.

File ➝ New Project

The New Project dialog box will appear. On the Input Design
line, click on Browse . For Viewlogic schematics, select the jcount.1
schematic file. For OrCAD schematics, select List Files of Type
➝ OrCAD ; then select the jcount.sch file. Set the Target Family
to XC9500 or XC7000. On the Work Directory line, click on Browse.
Select the project directory you created in Step 1. Then click on
Translate .

Figure 1-6 New Project Window

Remove the checkmark from Read Part from Design . Click on
Select Part . The Part Selector Dialog Box appears. Under Family ,
select XC9500 or XC7000. Select ALL for Device, Speed , and
Package. Then click OK. Click OK again to begin translation.

XC70009500

Getting Started with Schematic Design

XEPLD Schematic Design Guide 1-13

The program will automatically select an economical solution to meet
the needs and constraints of your design. In general, it will select the
smallest part and work its way up until it has the part that will satisfy
the design.

Figure 1-7 Part Selector Dialog Box

Select Tools ➝ Flow Engine . Set Stop After to Bitstream and
select RUN. The program optimizes the design, fits the design, creates
timing file and programming files all in one step. The interface keeps
you updated on the progress of processing.

XEPLD Schematic Design Guide

1-14 Xilinx Development System

Figure 1-8 Flow Engine

Step 5 — Examine the Reports
Examine the reports to verify that the design was implemented as
you expected. The following report files (plain text) are automatically
produced by the xepld command. If you are using a workstation,
display the contents of the report files listed below. If you are using a
PC you may select a report from the report browser as follows:

Utilities ➝ Report Browser

or select the report browser icon. The following reports are most
useful for schematic designs:

Figure 1-9 Report Browser

Getting Started with Schematic Design

XEPLD Schematic Design Guide 1-15

● Fitter Report (jcount.rpt)— The fitter report shows the device
resources used by the design, how the external nets in your design
were mapped to the device pins, and the physical allocation of all
device resources.

● Timing Report (jcount.tim) — A timing summary report shows
the calculated worst-case timing for the logic paths in your
design.

Step 6 — Timing Simulation

On Workstations

The xepld command automatically creates a timing simulation
netlist, jcount_tim.xnf, whenever the design is successfully
implemented. For Viewlogic timing simulation, the xepldsim
command reads the jcount_tim.xnf file and produces a jcount.vsm file
for Viewsim.

To prepare a timing simulation file, type the following in a UNIX
command window:

xepldsim -vltime jcount

Your current working directory must be your project directory before
executing the xepldsim command.

Invoke Viewsim. Use the network command and enter the jcount
design to read the jcount.vsm file. If you have a simulation command
file, you can enter that filename as well. For the JCOUNT sample
design, a Viewsim command file can be found in installation_path/
tutorial/vwlogic/jcount/jcount.cmd.

The xepldsim command can also produce timing simulation files
for Verilog and for the Synopsys VSS simulators. The xepldsim
command is summarized in Appendix A.

On PCs with Viewlogic PRO Series

From PROflow, select the PROsim icon from the Timing Simulation
block. Put a check in the Command File box and select Browse .

Select the JCOUNT.CMD file and press OK. Make sure Execute
Netlister is selected, then press OK. The simulation runs and
generates a waveform which you can view by selecting PROwave.

XEPLD Schematic Design Guide

1-16 Xilinx Development System

The jcount design example is now complete. Select File ➝ Exit to
terminate the PROflow session.

Note: Xilinx has a separate Timing Analyzer for further analysis of
timing. See the “EPLD Architecture and Design Trade-offs” chapter
for information on the Timing Analyzer, or go to the XEPLD Reference
Guide.

On PCs with OrCAD

To run a timing simulation on the design:

1. Exit Windows; at the DOS prompt, type:

xsimmake -f oet6 jcount

2. Start OrCAD, then double click on Design Management Tools ,
select JCOUNT from the list, and click on OK.

3. Double Click on Digital Simulation Tools . Double click on
Simulate . A blank simulation waveform window appears with
the Q3, Q2, Q1, Q0, CE, CLR and CLK nets listed.

4. Select Trace ➝ Change View and enter 125 . Select Run
Simulation and enter 15000 . The simulation waveforms
appear.

5. Exit Simulate using Quit ➝ Abandon Simulation .

Step 7 — Device Programming
The fitter automatically creates a JEDEC programming file, jcount.jed,
whenever a design is successfully implemented. Once you are
satisfied with the results of the fitter (reports and timing simulation),
you can download the programming file to the device using the
techniques described in the EZTAG User Guide.

XEPLD Schematic Design Guide 2-1

Chapter 2

Design Entry Techniques

This chapter discusses the fundamental techniques for expressing
logic in a schematic design for CPLDs. It concentrates mainly on the
symbols you place in your schematic and how you interconnect
them. It also explains how to retarget an existing schematic for an
FPGA design to a CPLD, or between the XC7000 and XC9000
families.

Library Symbols
The Xilinx library contains all component symbols used by Xilinx
XC7000 and XC9000 device families. While most symbols of the
library are common to all families, there are some symbols which are
specific to one or more CPLDs.

Physically, each device family has its own schematic library,
implemented for each of the supported schematic entry tools. For
each tool, there are separate library directories for XC9000 and
XC7000 device families. When a library component is supported by
multiple device families, its symbol appears in each of the
corresponding library directories.

When a component of the same name appears in multiple family
libraries, it has the same functionality and graphic symbol body, and
similarly named pins. However, the component’s implementation,
including whether the symbol is a primitive or macro (with
underlying schematic), may vary between families. Maintaining
consistent functionality and “footprint” facilitates retargeting
existing schematic designs between Xilinx device families. The
Libraries Guide shows the applicability of each library symbol to each
of the Xilinx device families.

When drawing a schematic representing an CPLD device, or any sub-

XEPLD Schematic Design Guide

2-2 Xilinx Development System

sheet in a CPLD design, you should not use any symbols from any
other library than the one for your target device family. For example,
be careful not to use symbols that belong to a CAE tool’s simulation
modelling library.

Specific Components
To make your design device-independent, use only the symbols
common to all Xilinx device families in which you are interested. The
design implementation software automatically maps the symbols in
your design onto the chosen target device. Creating a device-
independent design allows you to easily test your design with
different Xilinx devices.

There are very few library symbols which are specific to only one of
the two CPLD families. For example, the BUFGSR symbol is used to
explicitly assign device inputs to the global set/reset (GSR) pin of
XC9000 devices. These and other special I/O functions are described
later in this chapter. Most symbols in each CPLD family library
appear in the other library, and most of those are also common to the
FPGA families. If you want to create a schematic which can be
migrated to different Xilinx device families without modification, you
should use the generic IBUF symbol instead of device-specific input
buffers (like BUFGSR) and allow the fitter to automatically allocate
global set/reset resources.

Primitives, Macros and User-generated Symbols
The following types of symbols can appear in your schematic:

● Library primitives

● Library macros

● User macros (including hierarchical sheet symbols)

● Behavioral modules

The library contains the first two types of components: primitives and
library macros. Primitives are those symbols recognized directly by
the implementation software such as pads, gates, flip-flops and
buffers. Library macros are symbols functionally defined by macro
schematics contained in the library. Macro schematics contain
primitives and sometimes other macros. Library macros have pre-

Design Entry Techniques

XEPLD Schematic Design Guide 2-3

defined functionality, but often their implementation is subject to the
optimizations performed by the fitter software. Macros are always
flattened during schematic-to-netlist translation before the netlist is
read by the fitter. The fitter does distinguish primitives contained in
macros from those primitives placed in the design schematic.

User macros are custom symbols generated by the user which are
functionally defined by user-generated macro schematics. User
macro symbols and schematics can be stored in your project directory
or in a user library directory that you create. User macro schematics
can consist of any mixture of the four types of symbols listed above.

You can create user macros to represent frequently used logic
functions and instantiate them in one or more designs. It is often
convenient to copy a Xilinx COLD library macro symbol and
schematic to your project directory as a template, then rename the
symbol and schematic, and modify the symbol pins and schematic to
suit your needs. You should not, however, modify any of the Xilinx
CPLD library macros themselves or store new user macros in the
Xilinx CPLD library directory.

You can add hierarchical structure to a large design by partitioning
your logic into multiple schematic sheets. You then create user
symbols to represent the schematic sub-sheets in the same manner as
you would create user macro symbols. Your hierarchical design is
flattened during the schematic-to-netlist translation. Therefore, your
schematic partitioning has no effect on the implementation or
optimization of your design by the fitter.

Behavioral modules are user-generated custom symbols functionally
defined by some logic description other than a schematic. Typically,
logic descriptions defining behavioral modules are expressed in
Boolean equations or HDL, and processed by a PLD compiler (like
XABEL) or a synthesis tool prior to running the fitter. Behavioral
modules are discussed later in this chapter.

Power and Ground Signals
Unused inputs on symbols should not be left unconnected. You
should never assume a default value for any unconnected symbol
input except basic logic gates such as AND or OR. Unconnected
AND-gate and OR-gate inputs are simply discarded, as if the gate
had fewer inputs.

XEPLD Schematic Design Guide

2-4 Xilinx Development System

If a control input to a library macro is left unconnected, the resulting
behavior may be different than what you would expect. In some
cases, the resulting behavior may be different than if the input were
tied either High or Low. If you leave a macro input unconnected, the
fitter is usually able to detect it and issue a warning. Both functional
and timing simulation will exhibit the actual resulting behavior.

Unused inputs should be tied to a constant High or Low logic level in
the schematic. Use the VCC or GND symbol from the library to
source a constant logic High or Low value. In most tools, you can also
specify a constant High or Low value by connecting a dangling net to
the component input pin and then labeling the net as “VCC” or
“GND”, which is recognized by the Xilinx software.

Input/Output Buffers
This section discusses techniques for specifying device I/O pins
using both general-purpose and special-purpose input/output buffer
symbols.

Inputs, Outputs, and Bidirectionals
To represent an ordinary device input, use an IPAD connected to one
IBUF symbol. The IBUF can then connect to any number of on-chip
logic symbols. An I/O pin of the CPLD device will be allocated to
receive the input, and its output driver will be permanently disabled.

To represent an ordinary device output, use an OBUF that is driven
by exactly one on-chip logic source. Connect the output of the OBUF
to an OPAD symbol. To specify a three-state device output, use an
OBUFE or OBUFT instead of the OBUF, and connect its enable/
disable input to any on-chip logic source. An I/O pin will be
allocated to drive the signal, either always active (if OBUF) or
controlled by your enable/disable signal, and the input received by
the device pin will be ignored.

To represent a bidirectional device I/O, use an OBUFE or OBUFT
whose output is connected to both an IOPAD symbol and to the input

Design Entry Techniques

XEPLD Schematic Design Guide 2-5

of an IBUF, as shown in Figure 2-1.

Figure 2-1 Bidirectional I/O Pin

It is important that you label the nets that represent device input/
output pins in your design. These are the nets connecting between
IPAD and IBUF symbols, and between OBUF and OPAD symbols.
These names will appear in the fitter reports and will be used as
signal names during simulation.

Note: Do not use the reserved names “PRLD” or “MRESET” as labels
for any nets or component instances in your design.

You should not draw “feed-throughs” or duplicate outputs in your
design. A feed-through is an IBUF connected directly to an OBUF
with no function being performed. A duplicate output is when two or
more OBUFs are driven by the same logic source. If you need to
express a feed-through or duplicate output, place a BUF symbol in
front of each OBUF.

Three-State Multiplexing
CPLD devices can emulate three-state bussing between on-chip
signal sources by gating the macrocell feedback to the
FastCONNECT structure. (Macrocell feedback signals are never
physically in a high-impedance state.) Multiple feedbacks emulating
3-state signals can be wire-ANDed in the FastCONNECT to emulate
bussing and 3-state multiplexing. When an on-chip 3-state signal is
“disabled”, the macrocell feedback is forced High so that it does not
affect the wire-AND. The signal on the wire-AND will therefore
follow the logic value of the “enabled” feedback.

To represent 3-state multiplexing (bussing) in the schematic, tie
together the outputs of multiple 3-state buffer symbols, like BUFE
and BUFT, as in Figure 2-2. You cannot, however, connect such tied
signals directly to an output buffer; instead you must pass a tied
signal through a logic symbol, like BUF, before driving an output

X4601

IBUF OBUFEIO3
IOPAD

• • •
• • •

• • •

• • •

ƒ

XEPLD Schematic Design Guide

2-6 Xilinx Development System

port.

Figure 2-2 Correct On-Chip Three-State Multiplexing

If your design calls for 3-state bussing of multiple signals driven off-
chip, it may be better to output each signal source on its own 3-state
output pin and tie the pins together off-chip, as shown in Figure 2-3.
You cannot connect more than one signal source to the same OBUF or
OPAD, as shown in Figure 2-4.

Note: On-chip three-state bussing is also supported by some of the
FPGA device families.

Figure 2-3 Correct Off-Chip Three-state Multiplexing of EPLD
Outputs

X4596

BUF OBUF

BUFE

E

OUTPUT2
OPAD

ƒ
ƒ

BUFE

E

ƒ

PIN 20

Q.TRST=SELECT
PL22V10

Q2

MODULE1

Q2.OE=SELECT

X4605

OBUFE

E

OUTPUT2A
OPADƒ

OBUFE

E

ƒ OUTPUT2B

Tie pins
together on board

OPAD

CORRECT

Design Entry Techniques

XEPLD Schematic Design Guide 2-7

Figure 2-4 Incorrect Three-state Multiplexing of EPLD Outputs

Clock Inputs
To use a device input as a clock source, you can simply connect an
IBUF to the clock input of one or more flip-flops in your design. The
fitter automatically uses one of the global clock pins (GCK or FCLK)
of the CPLD whenever possible.

In XC9000 devices, a global clock input signal may pass through an
inverter to perform negative-edge clocking. The same clock input
may even be used both inverted and non-inverted to clock different
flip-flops on opposite edges of the clock signal, as shown in Figure 2-
5. Global clock inputs may also be used as ordinary input signals to
other logic elsewhere in the design.

In XC7000 devices, global clock (FastCLK) signals can only be active-
High and may not be used for any other logic function in the design.

X4604

OBUF

BUFE

E

OUTPUT2
OPAD

ƒ

BUFE

E

ƒ

INCORRECT

XEPLD Schematic Design Guide

2-8 Xilinx Development System

Figure 2-5 Input CLK1 can be Optimized onto a Global Clock Pin
(GCK)

If a device input passes through any logic function (other than an
inverter) before it is used as a clock, the input cannot be routed
directly to the flip-flops using the global clock path. Instead, the flip-
flop’s clock signal will normally be routed through the logic array.

There are a limited number of global clock pins on each CPLD device
(consult the device data sheet). If you need to explicitly control the
use of global clock pins, you can use the BUFG symbol in place of an
IBUF.

The global clock pins provide much shorter clock-to-output delays
than clocks routed through the logic array. Routing a clock through
the logic array also uses up one extra p-term for each flip-flop.

You can prevent the fitter from automatically using the global clock
pins. On workstations, specify the “-nogck” parameter on the xepld
command line as follows:

xepld -nogck design_name

On PCs, go to the Flow Engine and select:

Setup ➝ Options

The Design Implementation Option menu appears. Select:

Edit Template

Then select:

D Q

D Q

f

IBUF

IPAD
CLK1

Design Entry Techniques

XEPLD Schematic Design Guide 2-9

Optimization

Lastly, place a check on the Off box adjacent to Global Clock .

If global clock optimization is disabled, IBUF inputs used as clocks
will always pass through the logic array. You can still use BUFG
symbols to explicitly specify global clock inputs.

Output Enable Signals
To use a device input to control three-state device outputs, you can
simply connect an IBUF to the enable/disable input of one or more
OBUFE symbols in your design. The fitter automatically uses one of
the global three-state control pins (GTS or FOE) of the CPLD
whenever possible.

In XC9000 devices, a global 3-state control input signal may pass
through an inverter or control an OBUFT symbol to perform an
active-low output-enable. The same 3-state control input may even be
used both inverted and non-inverted to enable alternate groups of
device outputs, as shown in Figure 2-6. Global 3-state control inputs
may also be used as ordinary input signals to other logic elsewhere in
the design.

Figure 2-6 Input OE2 can be Optimized onto a Global 3-state
Control Pin (GTS)

In XC7000 devices, global output enable (FOE) signals can only be
active-High and may not be used for any other logic function in the

OPAD

OBUFE

OPAD

OBUFE

OPAD

OBUFT

IPAD
OE2

IBUF

f

XEPLD Schematic Design Guide

2-10 Xilinx Development System

design.

If a device input passes through any logic function (other than an
inverter) before it is used as a 3-state control, the input cannot be
routed directly to the device output drivers using the global 3-state
control path. Instead, the output enable signal will normally be
routed through the logic array.

There are a limited number of global 3-state control pins on each
CPLD device (consult the device data sheet). If you need to explicitly
control the use of global 3-state control pins, you can use the BUFGTS
symbol (for XC9000) or BUFFOE symbol (for XC7000) in place of an
IBUF.

The global 3-state control pins provide much shorter input-to-output-
enable delays than 3-state controls routed through the logic array.
Routing a 3-state control signal through the logic array also uses up
one extra p-term for each output.

You can prevent the fitter from automatically using the global 3-state
control pins. On workstations, specify the “-nogts” parameter on the
xepld command line as follows:

xepld -nogts design_name

On PCs, go to the Flow Engine and select:

Setup ➝ Options

The Design Implementation Option menu appears. Select:

Edit Template

Then select:

Optimization

Lastly, place a check on the Off box adjacent to Global Output
Enable .

If global output enable optimization is disabled, IBUF inputs used for
3-state control will always pass through the logic array. You can still
use BUFGTS or BUFFOE symbols to explicitly specify global 3-state
control inputs.

Asynchronous Clear and Preset
To use a device input as an asynchronous clear or preset source, you

Design Entry Techniques

XEPLD Schematic Design Guide 2-11

can simply connect an IBUF to the CLR or PRE input of one or more
flip-flops in your design. For XC9000 devices, the fitter automatically
uses the global set/reset pin (GSR) of the CPLD whenever possible. A
global set/reset input signal may pass through an inverter to perform
active-low clear or preset. A global set/reset inputs may also be used
as an ordinary input signal to other logic elsewhere in the design.
(Global set/reset is not available on XC7000 devices.)

If a device input passes through any logic function other than an
inverter before it is used as an asynchronous clear or preset, the input
cannot be routed to the flip-flop using the global set/reset path.
Instead, the flip-flop’s clear or preset signal will be routed through
the logic array. Routing a clear or preset through the logic array uses
up one extra p-term for each flip-flop.

There is only one global set/reset pin on each XC9000 device. If you
need to explicitly control the use of the global set/reset pin, you can
use the BUFGSR symbol in place of an IBUF.

Note: If a flip-flop has both a clear and preset input and you assert
both the clear and preset concurrently, its Q-output is unpredictable.
This is because the fitter may arbitrarily invert the logic stored in a
flip-flop to achieve better logic optimization. Individual clear and
preset operations still produce the correct final logic state as dictated
by the user design. Functional simulation does not accurately predict
the ultimate behavior of the chip when clear and preset are asserted
concurrently. Timing simulation, however, is performed after logic
optimization and behaves exactly as the chip will when
programmed.

Behavioral Modules
Behavioral modules are user-generated symbols functionally defined
by some logic description other than a schematic, typically Boolean
equations or HDL. Some reasons why you may want to use
behavioral modules in your schematic are:

● If portions of your design are already implemented using
conventional programmable logic devices (PLDs), you can re-use
your existing PLD equations without having to redraw the same
logic schematically.

● It is often easier to express combinational logic functions and state
machines using Boolean equations or HDL than using schematics.

XEPLD Schematic Design Guide

2-12 Xilinx Development System

● You may wish to express a particular logic function using sum-of-
products equations because they will directly map onto the CPLD
architecture in that form.

The Xilinx CPLD fitter also accepts entirely behavioral designs which
use no schematics. Similar to behavioral modules for schematic
designs, behavioral designs are expressed using Boolean equations or
HDL and compiled using a PLD compiler (like XABEL) or a logic
synthesis tool. Unlike behavioral modules, behavioral designs
contain all the device I/O port information in its behavioral
description.

This manual describes only schematic-based designs and the
behavioral modules which may be contained in them. The procedures
for creating behavioral modules in CPLD schematics is essentially the
same as for all other Xilinx device families.

Compiling Behavioral Logic
The equation or HDL files defining behavioral modules must be
compiled before they can be used by the fitter. There are a variety of
PLD compilers and synthesis tools that support design entry for
CPLD devices.

Behavioral compilers which are compatible with the CPLD fitter
translate their logic descriptions into XNF-formatted netlists or
Plusasm-language equation files. Behavioral descriptions expressed
directly in the Plusasm equation language can be read directly by the
fitter and require no advance compilation. (Plusasm is no longer
recommended as an entry language for new designs; it is intended
only as an interchange language.)

If the behavioral compiler tool supports the development of
completely behavioral designs for Xilinx CPLDs, make sure you
select the appropriate mode of operation or compilation flow for
producing logic modules, not stand-alone designs. The netlist or
equation file produced by the compiler must not contain device I/O
pin information. If any of the terminal nodes (inputs or outputs) of
your behavioral module are to be connected to CPLD device pins,
you must use IBUF and OBUF symbols in your schematic.

If, for example, you are using the XABEL compiler, make sure the
Stand-Alone Design check box is not checked in the Xilinx EPLD
Options dialog box. Then use the Compile ➝ Xili nx EPLD

Design Entry Techniques

XEPLD Schematic Design Guide 2-13

Netlist command to translate your ABEL design into a Plusasm-
language equation file.

If you are using a synthesis tool to prepare a behavioral module,
make sure you target a CPLD technology library.

Your compiled behavioral module file is normally stored in your
project directory. You can also copy it to a user library directory if you
want to use it for more than one project.

Behavioral Module Symbols in Schematics
Using a behavioral module in a schematic design involves creating a
symbol to represent your logic, placing the symbol into your
schematic and applying necessary attributes to identify the logic-
defining file.

1. Use the symbol editing facility of your schematic entry tool to
create a symbol representing your behavioral logic. Generally, the
name of your symbol will be the name of the behavioral module,
although this is not mandatory.

Place a pin on your symbol for each terminal node (input or
output) in your behavioral design that needs to be connected to
other logic or I/O ports in your schematic. “Buried” nodes that
connect only between logic functions within the behavioral
module do not require pins on your symbol.

Some tools have commands or utilities that automatically
generate symbols based on the terminal nodes defined in your
behavioral module.

2. Some schematic entry tools distinguish between two types of
symbols: primitive symbols (sometimes called “module”) and
hierarchical symbols (sometimes called “composite”) that link to
schematics beneath them. When creating a symbol to represent a
behavioral module, create it as a primitive symbol.

When your symbol is complete, store it in your project directory
or in a user library directory if you want to use the symbol in more
than one project.

3. Instantiate the new symbol one or more times in your design
schematic and connected it to other logic and I/O buffers as
needed. As with library symbols, unused input pins on your

XEPLD Schematic Design Guide

2-14 Xilinx Development System

behavioral module symbol should be tied to VCC or GND.

4. Add an attribute to each instance of a behavioral module symbol
in your schematic to identify the compiled behavioral logic file.
The format of the attribute is

FILE= filename

where filename is the name of the file produced by the behavioral
compiler, without extension. If the compiled file is stored in a
different directory (such as a user library), include the complete
directory path qualification in the FILE attribute.

5. If your compiled behavioral logic file is a Plusasm-language
equation file (with extension .pld), you must also apply the
DEF=PLD attribute to each instance of the behavioral module
symbol in your schematic. If your compiled file is an XNF-
formatted netlist file (with extension .xnf), you do not need to add
the DEF attribute.

Behavioral Module Example for Viewlogic
This simple example shows you how to develop a behavioral module
defined by an ABEL-language equation file and represented by a
custom symbol in a Viewlogic schematic.

1. Create the following ABEL file named regxor.abl.

MODULE regxor
TITLE ‘Registered XOR gate’
regxor device;
IO pin;
I1 pin;
CLK pin;
Q pin istype ‘reg’;
EQUATIONS
Q := IO $ I1;
Q.C = CLK;
end

2. Compile the file to create a Plusasm-language equation file named
regxor.pld.

Compile ➝ Xili nx EPLD Netlist

Make sure the Stand-Alone Design check box is turned off before

Design Entry Techniques

XEPLD Schematic Design Guide 2-15

compiling.

3. In Viewdraw, open a symbol window and create a new symbol
named regxor as shown in Figure 2-8. The symbol has three input
pins and one output pin corresponding to the pins defined in the
ABEL equation file.

Figure 2-7 The REGXOR Symbol

4. Use the Change -› Symbol Type -› Module command to indicate
that there is no underlying schematic for the symbol. Then save
the symbol in your project directory.

5. Instantiate the symbol in your Viewdraw schematic and connect
its input and output pins to logic and/or I/O buffers in your
design.

6. Select the regxor component in your schematic and add the
attribute FILE=regxor. Because the ABEL file was compiled into a
Plusasm equation file, also add the DEF=PLD attribute to the
component.

Behavioral Modules and Three-State Outputs
If you use a behavioral module in your schematic and connect one of
its outputs to an output buffer like OBUF, you can enable and disable
the device output pin using a three-state control equation in the
behavioral module, as shown in Figure 2-8.

Note: This design technique is specific to the XC9000 and XC7000
CPLD families, and may not apply to Xilinx FPGA families.

X4864

REGXOR

CLK

I1

I0 Q

XEPLD Schematic Design Guide

2-16 Xilinx Development System

Figure 2-8 Controlling Three-state Output Using a Behavioral
Module

If you want to use a three-state behavioral module output to control a
bidirectional I/O pin of the device, connect the OBUF output to an
IOPAD and IBUF. If the same behavioral module symbol that
generates the output is also to receive the I/O pin input, you must
use a separate pin of the behavioral module’s symbol to receive the
signal from the IBUF. Do not tie the signal received from an IBUF to
the net driving the OBUF, as shown in Figure 2-9; these input and
output nets must remain separate, as shown in Figure 2-10.

Figure 2-9 Incorrect Way to Connect a Bidirectional Pin

X4603

PIN 20

OBUF

Q.TRST=READ_EN
PL22V10

Q
OPADQ2

MODULE1
Q2.OE=READ_EN

X4606

PIN 20 OBUF

Q= ...;Q IS PIN 20
Q.TRST=READ_EN

R=Q ...
...

PL22V10

Q

IBUF

IOPAD

INCORRECT

Q2

Q2:=D
Q2.OE=READ_EN
. . .
R=Q2_IN

MODULE1

Design Entry Techniques

XEPLD Schematic Design Guide 2-17

Figure 2-10 Correct Way to Connect a Bidirectional Pin

Using SymGen to Create Custom Symbols from
Behavior Modules

On the PC, you can use the Symbol Generation Utility (Symgen) to
create a custom symbol for Viewlogic or OrCAD schematics. SymGen
reads an .xsf file generated by some supported behavioral compilers,
including XABEL.

SymGen is invoked by selecting the Symbol Generation
Utility icon from the Xilinx program group.

SymGen also produces a report, design_name.smr, which explains
how the symbol was created and displays a diagram of the pinout.
The Symbol Generation Utility menu allows you to select either
Viewlogic or OrCAD for the type of symbol to generate.

Viewlogic Symbols

If you are a Viewlogic user, SymGen creates the Viewlogic symbol file
(module_name.1) and places it in the sym directory below your design
directory. You can add it to any schematic in your design just as you
would any other symbol. No special conversion steps are necessary.

OrCAD Symbols

If you use the Symbol Generation Utility with OrCAD selected as the
Symbol Type , SymGen creates an OrCAD command file
(module_name.cmd) file and places it in your design directory. To
convert the .cmd file into a symbol, you must perform these

X4607

PIN 20

PIN 14

OBUF

Q= ...;Q IS PIN 20
Q.TRST=READ_EN

R=Q_IN;Q_IN IS PIN 14
...

PL22V10

CORRECT

Q

IBUF

IOPAD

Q2

Q2_IN

MODULE1 Q2:=D
Q2.OE=READ_EN
...
R=Q2_IN

XEPLD Schematic Design Guide

2-18 Xilinx Development System

additional steps:

1. Enter the OrCAD Edit Library utility.

File ➝ New ➝ Library

2. In response to the Read Library? prompt, type the following:

.\ library_name.lib

This creates a library called library_name in your design directory.

3. The Library Edit screen appears. Select the Import command and
type module_name.cmd to invoke the command file.

4. The symbol appears. Select Library ➝ Update Current to
save the symbol to memory.

5. Select Quit ➝ Update File to save the new library file to disk.

6. Select Abandon Edits to exit the library editor.

To use custom symbols from the new user library file in a schematic,
you must add the library name to the schematic tool’s configuration.
In OrCAD, select Schematic Design Tools ➝ Local Configuration.
Then select and add .library_name.lib to the list of libraries. You can
now add this symbol to any schematic in your design just as you
would any other symbol.

Storing Custom Components
After you create your custom component, you should store it in each
design directory where you need to access it.

If you have defined the underlying logic differently for targeting two
or more different device families, you should store the component in
two or more different project directories or library directories. Each
directory would contain the underlying logic for one device family.

Viewlogic Components

You should store your custom library files in your project directory.
You cannot add custom symbols to the XC7000 or XC9000 library
directory or modify any of the Xilinx-supplied symbols or macros.
However, you can copy Xilinx-supplied symbols or macros to your
directory as templates, rename them, and edit them.

Design Entry Techniques

XEPLD Schematic Design Guide 2-19

OrCAD Components

You should normally store a copy of your library file and your macro
schematics in each project directory in which you plan to use them. If
you prefer to centralize your custom library, you could store your
files under the installation_path\XC7000 or installation_path\XC9000
library directory. Do not add to or modify the xc7000.lib file or any of
the library macro schematics supplied by Xilinx.

Hierarchical Design
You can create custom symbols with schematics under them and
place these symbols in your top-level or lower-level schematics to
create a hierarchical design. This can make your design more
modular and easier to understand.

Custom symbols with schematics under them are termed user macros,
as opposed to behavioral modules, which are custom symbols with
equations or HDL under them.

The procedure for creating a symbol with an underlying schematic is
the same for CPLD and FPGA families:

1. Create a lower-level schematic using CPLD library symbols or
other custom symbols. To make a device-independent macro, use
only device-independent symbols common to multiple families. If
required by your CAE tool, identify the terminal nodes of the
macro schematic sheet.

2. Create a symbol for the schematic. The names of pins on your
symbol should match the names of the terminal nodes in the
underlying schematic.

3. Make sure the symbol is defined as a hierarchical symbol
(sometimes called “composite”) as required by your CAE tool.

XEPLD Schematic Design Guide

2-20 Xilinx Development System

Custom Macro Example for Viewlogic
This next example shows you how to create a custom macro symbol
with an underlying schematic. The steps for Viewlogic users are
shown:

1. Create the schematic using common symbols from the CPLD
library. For this example, we create a schematic named regxor ,
which should look something like this:

Figure 2-11 The REGXOR Schematic

2. Create a symbol, also named regxor , with pin names that match
the inputs and outputs of the schematic.

Figure 2-12 The REGXOR Symbol

3. Use the Change ➝ Symbol Type ➝ Composite command to
change the symbol’s block type to composite.

Retargeting a Design From a Different Family
When retargeting an existing schematic designed from a different
Xilinx device family, there are three aspects of design compatibility
which must be considered:

● The symbols in the schematic must be supported by the new
target CPLD library.

● Any attributes used in the design must be supported by the CPLD
fitter; otherwise, non-applicable attributes should be removed.

● Any behavioral modules used in the design may need to be
recompiled to an acceptable file format and using a CPLD

X4839

DI0
XOR2

I1

CLK

FD

C

Q

X4864

REGXOR

CLK

I1

I0 Q

Design Entry Techniques

XEPLD Schematic Design Guide 2-21

technology library (if applicable).

XC7000 to XC9000 Design Migration Issues
The XC7000 implementation software supports several architecture-
specific symbols, attributes and features. This section lists how
XC7000-specific features are handled when designs are retargeted to
XC9000. In most cases, the CPLD software automatically produces
equivalent results.

• In the XC7000 library, IFD symbols are used to target input-pad
registers. In XC9000 designs, all registers are implemented in the
macrocells. If your XC9000 design contains IFD symbols, CPLD
software automatically implements them using macrocell regis-
ters. Also, the obsoleted XC7000 global attribute REG_OPT is
ignored.

• In XC7000 software, the obsoleted “F” and “H” signal attributes
were used to target Fast Function Blocks, High-density Function
Blocks and FastInput pins (“F” attribute on an IBUF signals). In
XC9000 designs, all macrocells, Function Blocks and device
inputs with consistent timing across the device. When targeting
XC9000 devices, the fitter ignores “F” and “H” signal attributes.
Critical speed paths should instead be identified using
Timespecs.

• Like XC7000, INIT=R and INIT=S attributes are used to specify
the initial states of XC9000 registers. In XC7000 devices, registers
are initialized when either the device is powered up or if the
Master Reset pin is pulsed. In XC9000 devices, registers are
initialized only at power-up. If you need to re-initialize XC9000
registers after power-up, you should use the asynchronous clear
(CLR) or preset (PRE) pins on applicable library symbols. If you
connect CLR or PRE pins to an ordinary device input (IBUF), the
software automatically allocates the global set/reset (GSR) pin, if
possible. Otherwise you can use the BUFGSR symbol instead of
IBUF to explicitly use the GSR pin.

• In XC7000, the “preload optimization” feature allows the soft-
ware to alter the initial states of flip-flops to achieve better logic
optimization. In XC9000, initial state selection has no effect on
logic optimization. All registers in XC9000 designs initialize to
zero unless otherwise specified. Preload optimization is not

XEPLD Schematic Design Guide

2-22 Xilinx Development System

performed by CPLD software when targeting XC9500 devices.
The obsoleted XC7000 global attribute PRELOAD_OPT is there-
fore ignored.

• In XC7000 designs, arithmetic logic is implemented using the
built-in hardware carry chain. In the XC9000 schematic library,
the same arithmetic macro symbols are implemented using ordi-
nary combinational logic. The resulting implementation may
require more macrocell resources and have longer delay paths
than in XC7000.

• If you used PLUSASM-language equation files for behavioral
modules (not recommended for new design entry), the XC7000-
style arithmetic carry equations (output.ADD=VCC) are not
supported by XC9000. You will need to redesign your arithmetic
functions using conventional combinational logic.

• XC7000 devices support wire-ANDing of both device inputs and
macrocell feedbacks within its UIM interconnect structure.
XC9000 devices support wire-ANDing among only macrocell
feedbacks in its FastCONNECT. If your design uses the
OPT=UIM attribute on an AND or NAND gate to specify wire-
ANDing, the CPLD software, when tergeting XC9000, obeys the
OPT=UIM attribute only if the gate has no inputs taken directly
from device pins. If one or more of the gate inputs connect to
device inputs (IBUFs), the OPT=UIM attribute is ignored and the
device inputs will be ANDed using macrocell logic; some or all of
the macrocell feedbacks may be wire-ANDed in the FastCON-
NECT at the discretion of the software.

Schematic Conversion Procedure
When you re-target a design from a different Xilinx device family,
you may need to perform a conversion procedure to replace the
symbols in your existing schematic with symbols from the new CPLD
library, depending on your design entry tool. Because of the Xilinx
Unified Library, such conversions are automatic and produce
functionally equivalent results with little or no manual changes
required. The conversion is typically performed so that the macro
symbols in your design schematic link to the underlying macro
schematics in the new CPLD family’s library rather than any other
device library. Also, some primitive symbols being translated from
another device library may be implemented as macro symbols in the

Design Entry Techniques

XEPLD Schematic Design Guide 2-23

new library, and vise-versa.

Before you convert your schematics to use a new CPLD library, you
should remove any symbols that do not exist in the new library,
typically replacing them with similar symbols from the new library.
After you convert your schematic, any unsupported symbols may no
longer be visible in your schematic, and this may make it more
difficult to determine the appropriate replacement logic.

Note: If you are converting an FPGA design containing RAM, ROM,
XBLOX symbols or other elements that do not have CPLD
equivalents, you cannot retarget your design unless you redesign
those portions.

Using Viewlogic on Workstations

In this example, we are converting a Viewlogic schematic originally
implemented using the XC7000 library into a schematic targeting the
XC9000 library.

1. Copy your existing schematic file(s) from the project directory
used for the other device family (XC7000) into the project
directory you want to use for the new target library (XC9000). For
example:

cp proj7000/sch/design1.1 proj9000/sch

2. Use the Viewlogic project management facility (or edit the
viewdraw.ini file) in your XC9000 project directory to list both the
new library (XC9000) and the other family’s library (XC7000) in
the Search Order. For example, if you are converting an XC7000
design to XC9000, your viewdraw.ini file would contain the
following two lines:

DIR [r] installation_path/unified/xc9000 (xc9000)
DIR [r] installation_path/unified/xc7000 (xc7000)

3. Go to a system command window that is properly configured to
run Viewlogic software. (The $path should include Viewlogic
software and the $WDIR variable should be properly set.) Your
current working directory should be your project directory
containing the designs to be converted.

4. Invoke the Viewlogic altran utility to automatically replace all
symbols in your design from the old library (XC7000) with

XEPLD Schematic Design Guide

2-24 Xilinx Development System

corresponding symbols from the new library (XC9000), as follows:

altran -p design_name old_library=new_library

where old_library is the library alias of the device family from
which you are converting and new_library is the alias of your new
target library. For example:

altran -p design1 xc7000=xc9000

Using Viewlogic PRO Series on PC

In this example, we are converting a Viewlogic schematic originally
implemented using the XC7000 library into a schematic targeting the
XC9000 library.

1. Start PROflow. If necessary, use the Project Manager to select
the project you wish to convert. Your Viewlogic project only needs
to be configured to access the Xilinx library from which you are
converting (XC7000).

2. Use the Viewlogic altran conversion program to replace all
symbols in your design from the old library (XC7000) with
corresponding symbols from the new library (XC9000), as follows:

a) Select the Design Entry button.

b) Click on Select Family . A list of families will appear. Select
XC9000 and click on OK. The Altran menu will appear.

c) Under Current Technology Aliases, select XC9000
(the name of the family from which you are converting).

d) Select XC9000 under Target Technology Aliases , then
select OK. The conversion program will execute.

Using OrCAD on PC

To retarget an OrCAD schematic, simply reconfigure OrCAD SDT to
access the new target family’s library. Change (cd) to your working
directory and run xdraft specifying the new target family.

For example, if you are re-targeting a design for XC9000, type the
following at the DOS prompt while in your working directory:

xdraft 9

The schematic itself requires no conversion processing. The next time

Design Entry Techniques

XEPLD Schematic Design Guide 2-25

you open your schematic, you will automatically be accessing the
new target library.

Processing a Design After Conversion

After converting a schematic from a different device family, perform
the following steps, as applicable:

1. Remove all attributes except INIT, FAST, and timing
specifications. Make sure timespec syntax is up to date because
EPLD software does not accept old timespec syntax (use syntax as
described in this manual). Change the values of PART and LOC
attributes as needed, or remove them.

2. On PC when you return to the Design Manager, create a new
Xilinx project for the converted schematic design.

From the Design Manager click on the File menu and select New
Project .

Enter a new project name to use for XC7000 or XC9000
implementation.

From the Target Family select XC7300 or XC9500 .

Before processing the design, open the Implementation Options
menus and select the options available for the new device family.

On workstations, simply run the xepld command using optional
parameters that are appropriate for the new device family.

3. When you perform either functional or timing simulation,
remember to pulse the PRLD signal High then Low. FPGA
families use a GSR or GR signal for initialization.

4. If you wish to perform timing simulation, you may have to
change the internal nodes you drive and monitor. The EPLD fitter
optimizes the logic differently than FPGAs, which makes many of
the internal nodes in the design invisible. However, all external
signals are always visible.

Attribute Compatibility
The only schematic attributes common to FPGA devices and CPLD
devices are:

● INIT=R|S

XEPLD Schematic Design Guide

2-26 Xilinx Development System

● Timing specifications for TIMESPEC and TIMEGRP symbols,
including TNM

● FAST (output slew-rate control)

● FILE=filename for behavioral modules

The PART and LOC attributes are also used in a similar way by other
families, but you must change their values when you change devices.

The following additional attributes are also common between the
XC7000 and XC9000 CPLD families:

● LOWPWR=ON | OFF

● MINIM=ON | OFF

● OPT=OFF

● DEF = PLD

Any attributes contained in the converted design which are not
supported by CPLD should be removed from the schematic before
netlisting. If you converted from an FPGA family, make sure any
timespec attributes are expressed using the FROM:TO syntax
(described in Chapter 3) because CPLD software does not accept the
older path-to-path timespec syntax.

Converting Behavioral Modules
If your design contains behavioral modules, you may need to
perform some of these additional steps before running the fitter:

1. If your behavioral module contains state machine logic, you may
need to change the encoding style of the state machines. You do
not have to rewrite the logic, just the state assignment. For FPGAs,
which are rich in registers, one-hot encoding using symbolic state
representation is most efficient. For CPLDs, which are rich in
product terms, binary encoding (or other encoding that minimizes
state bits) is usually most efficient. Conversion may be
unnecessary for very simple state machines.

2. Recompile your behavioral module specifying XC9000 or XC7000
as the target architecture. If you are using ABEL, specify Xilinx
CPLD Netlist as the target output. ABEL will create a Plusasm-
language equation file with extension .pld. In your schematic,
continue to use the existing custom symbols, but change the

Design Entry Techniques

XEPLD Schematic Design Guide 2-27

DEF=XABEL attributes to DEF=PLD. Also apply FILE=filename
attributes as needed. To ensure that the software does not process
old files, delete any filename.xnf files which may exist in your
project directory.

3. If you are using a synthesis tool, recompile the behavioral module
specifying XC9000 or XC7000 as the target technology library.

XEPLD Schematic Design Guide 3-1

Chapter 3

Controlling Design Implementation

This chapter discusses the techniques for controlling how various
parts of your design get implemented into a CPLD device. It
concentrates mainly on the attributes you place in your schematic
and the parameters you specify on the xepld command line.

This chapter describes how you can control the following aspects of
design implementation:

● Device selection

● Register power-up state

● Macrocell power/speed trade-off

● Output slew rate

● Pin assignment and pin freezing

● Logic collapsing

● Timing specifications and optimization

Target Device Selection
By default, the fitter will automatically select an XC9000 family
device for you, choosing, in general, the smallest part that will satisfy
the needs and constraints of your design.

For Workstations
You can optionally specify a target device on the xepld command line
when you run the fitter. The format of the part-type parameter on the
xepld command line is:

xepld -p ddddd- sspppp design_name

XEPLD Schematic Design Guide

3-2 Xilinx Development System

where

ddddd is the device code, for example 95108

ss is the speed grade, for example 10

pppp is the package type and pin count, for example PC84

You may specify either a unique device code or a range of eligible
devices from which the fitter will automatically choose. To specify a
range of devices, you can use an asterisk (*) as a wildcard character. If
you use an asterisk in the device code field, the string must begin
with the number “9” or “7” (for example “9*-10PC84”). You may also
specify an enumerated list of devices, separated by commas. If you
use the asterisk character or an enumerated list in the xepld
command, you must enclose the parameter string in quotes. For
example, the following are valid part-type parameter specifications:

xepld -p 95108-10PC84 design1
xepld -p “95108-*PC84” design1
xepld -p “95108-10PC84,95108-7PQ*” design1

As an alternative, you can place the PART attribute in your schematic
to select the target CPLD device for your design. Place the PART
attribute on the schematic sheet itself (not on any particular
component), as follows:

PART=ddddd- sspppp

You cannot, however, specify wildcards or lists in the schematic PART
attribute as you can in the xepld command line. If you want the fitter
to use the part specified in the schematic, you must include the
parameter “-p indesign” on your xepld command line. For example:

xepld -p indesign design1

If you specify any part code in the xepld -p parameter (instead of
“indesign”), it will override any PART attribute in your schematic.

Refer to the Release Document for a list of CPLD device codes
supported by the current version of the fitter software.

For PCs
After you have opened a design, select New Device from the
Implementation menu; the device selection menu appears, as shown

Controlling Design Implementation

XEPLD Schematic Design Guide 3-3

in Figure 3-1.

Figure 3-1 Device Selection Menu

From this menu, select either XC9500 or XC7000 as the family. Then
specify the target device parameters that you want for your design.
For example if you choose “All ” for all Filters fields the software is
free to choose any device in either the XC9500 or XC7000 families.

Note: You can also specify a part number in you design source file.
This is described in the following sections.

Software Device Selection Criteria

If you select All for any device Filters field the software tries to fit
your design within the range of possible devices you have selected
by using the following selection criteria:

1. First, the software selects the smallest die.

2. Second, the software selects the smallest package.

3. Third, the software selects the slowest available device that meets
your specified timing constraints.

The software will continue to try fitting your design into one of the
possible range of selected devices until the first usable one is found or
until there are no more devices to try.

XEPLD Schematic Design Guide

3-4 Xilinx Development System

Controlling Register Initial State
All registers in the CPLD device are initialized when the device is
powered up. The initial state (preload value) of each register is
programmable. Unless otherwise specified in your design, each
register in an XC9000 design will initialize to the zero (reset) state at
power-up. You can apply the INIT attribute to a registered
component in your schematic to specify that it should initialize to the
one (set) state as follows:

INIT=S

To specify that a component should preload to the zero (reset) state,
use the INIT=R attribute (the default preload state for XC9000
designs).

The INIT attribute can be applied to flip-flops or any component
containing a register, such as a counter macro.

Controlling Power Consumption
The power consumption of each macrocell in a CPLD device is
programmable. The standard (default) setting consumes more power
and produces shorter propagation delay. The low-power setting
reduces power consumption for less speed-critical paths. By default,
all macrocells in the design will operate in standard power mode.

Changing Power Mode for a Specific Component
You can apply the LOWPWR attribute to specific components in the
schematic. To specify that the macrocell(s) used to implement a logic
function are to operate in low-power mode, apply the following
attribute to the corresponding component in your schematic:

LOWPWR=ON

The LOWPWR attribute can be applied to any logic or flip-flop
component in the schematic, including a component that has
multiple output signals. The LOWPWR attribute affects all macrocells
used to implement the selected component.

If a component such as a logic gate or inverter is collapsed into
another component, the LOWPWR attribute is not carried forward by
the software. You may therefore need to apply the LOWPWR

Controlling Design Implementation

XEPLD Schematic Design Guide 3-5

attribute to several components in a logic path to be sure that all
macrocells used to implement the path are set to low-power mode.

The LOWPWR attribute has no effect on components that are not
implemented using macrocell logic, such as I/O buffers.

Changing Global Power Mode on Workstation
You can change the global power setting to use the low power mode
throughout the design by specifying the “lowpwr” parameter on the
xepld command line as follows:

xepld -lowpwr design_name

Changing Global Power Mode on PCs
To set all macrocells to the Low Power Mode throughout the design,
set Low Power Mode to On in the Fitting menu of the
Implementation Template in the Design Manager.

By setting the Low Power Mode to In Design in the template,
macrocells will operate in standard power mode except where you
specify the lowpwr attributes in the design.

Figure 3-2 Low Power Mode Set to In Design

Note: Low-power macrocells are slower than standard-power

XEPLD Schematic Design Guide

3-6 Xilinx Development System

outputs. If you have a mixture of low- and standard-power
macrocells, pay close attention to simulation results or the timing
report to see how the power settings affect timing interactions.

Controlling Output Slew Rate
Each output of a CPLD device is programmable to operate either at
full speed or with limited slew rate. Limiting the slew rate reduces
output switching surges in the device. Slew rate control becomes
important when your design uses a large number of outputs or you
have transmission lines on your board which are sensitive to fast
edge rates.

By default, all registers in a CPLD design have limited (slow) slew
rate. If you want to disable the slew rate limitation of a device output
to increase its switching speed, use the FAST attribute. Simply apply
the following attribute to the OPAD (or IOPAD) symbol for each
output to operate at full speed:

FAST

Controlling the Pinout
When you first run the fitter before your pinout is committed, the
software automatically selects pin locations for your I/O signals. Pin
locations are selected which will give you the greatest flexibility to
iterate your design without having to move any of the pins. Each time
the fitter successfully implements your design, it creates a guide file
(design_name.gyd), which contains all the resulting pinout informa-
tion. After you commit your pinout, subsequent design iterations
cause the guide file to be read by the fitter and your committed
pinout will be preserved.

We strongly recommend that you allow the software to automatically
generate your initial pinout. Attempting to select your own initial pin
preferences reduces the ability of the fitter to implement your design
successfully the first time. It further reduces the amount of logic
changes you could make after freezing your pinout.

Controlling Design Implementation

XEPLD Schematic Design Guide 3-7

Pin Freezing
If you have successfully fit a design into a CPLD device and you
build a prototype containing the device, you will probably want to
“freeze” the pinout.

Freezing Pins on a Workstation

The next time you iterate that design, you should specify the
pinfreeze option on the xepld command line, as follows:

xepld -pinfreeze design_name

The -pinfreeze parameter tells the fitter to read and obey the
pinout from the guide file that was saved the last time the fitter
completed. The fitter will not move any of the pins contained in the
guide file, even if it prevents the modified design from successfully
mapping.

Freezing Pins on a PC

1. From the Design Manager, enter the Flow Engine. Tools ➝
Flow Engine .

2. Select the down arrow adjacent to Guide Design . This will
display a list of versions and revisions associated with the design.

3. Select the version and revision you want pinouts from and select
OK. This will return you to the Flow Engine. When you RUN the
design through, the pinouts from the selected revision will be
used.

Guide Files

The pin locations stored in the guide file are specified based on the
pad net names in the schematic. The pad nets are the nets that
connect the IPADs to IBUFs and the OBUFs (or OBUFE or OBUFT) to
OPADs (or IOPADs). If you change the label on any of the pad nets in
your schematic, the pin will no longer be constrained to the location
stored in the guide file. Renaming a pad net is a way you can relax
the pinfreezing constraints on a design if your logic changes prevent
the design from successfully fitting with your original pinout.

When you iterate your design while your pins are frozen, you are free
to delete existing pins and/or add new pins to your schematic. The

XEPLD Schematic Design Guide

3-8 Xilinx Development System

fitter will automatically select the best locations for any new pins you
add, after placing all the existing pins constrained by the guide file.

Note: If you iterate your design and your pinout is not yet committed
(you haven’t built a prototype containing the device), you should not
enable the pinfreeze option. Instead, allow the software to redefine
the pinout of your modified design. This will continue to give you the
greatest flexibility to iterate your design again after you commit your
pinout.

Pin Assignment
You can assign explicit locations for pins in your design using the
LOC attribute. To assign a pin location, apply the following attribute
to a pad symbol (IPAD, OPAD or IOPAD) in your schematic:

LOC=pin_name

For PC and PQ type packages, the pin_name takes the form “Pnn”
where nn is a number. For example, for the PC84 package, the valid
range for pin_name is P1 through P84. For grid array type packages
(PG and BG), the pin_name takes the form “rc”, where r is the row
letter and c is the column number.

The LOC attribute cannot be applied to multi-bit pad components
such as OPAD8. You must use individual pad symbols in your
schematic if you want to perform pin assignment.

Whenever your design contains any LOC attributes, you should
specify the target device type either using the xepld command’s -p
parameter or the schematic PART attribute (see Target Device
Selection in this Chapter). LOC attributes are typically not compatible
when retargeting a design between different package types, device
types or device families.

LOC attributes are unconditional in that the software will not attempt
to relocate a pin if it cannot achieve the specified assignment. If you
specify a set of LOC attributes that the fitter cannot satisfy, the fitter
will terminate with an error.

LOC attributes override the pin assignments in the guide file if you
specify the pinfreeze option. This allows you to make explicit changes
to your committed pinout. If you override an assignment in the guide
file using LOC attributes, the software will issue a warning.

Controlling Design Implementation

XEPLD Schematic Design Guide 3-9

If your objective is to preserve a previously created pinout, we
recommend you use the pinfreeze feature instead of back-annotating
the existing pinout into your design schematic. The guide file saved
from the previous design implementation contains additional infor-
mation to help the fitter to successfully fit your modified design.

If your schematic contains LOC attributes but you want to let the
fitter automatically assign all I/O pins, you can set the fitter to ignore
all LOC attributes. This allows you to temporarily ignore all the LOC
attributes in your schematic. This is useful if you want to test how
your design fits a different target device without removing all the
LOC attributes from your schematic.

Ignoring the LOC Attribute on a Workstation

On workstations you can specify the -ignoreloc parameter on the
xepld command line:

xepld -ignoreloc design_name

Ignoring the LOC Attribute on a PC

Go to the Flow Engine and select:

Setup ➝ Options

The Design Implementation Option menu appears. Select:

Edit Template

Then select the menu:

Fitting

Lastly, place a check in the box adjacent to Ignore Pin
Assignments . Then click OK.

Pin Assignment Precautions
You can apply the LOC attribute to as many pad symbols in your
design as you like. However, each pin assignment further constrains
the software making it more difficult for the fitter to automatically
allocate logic and I/O resources for the remaining I/O signals in your
design.

When you manually assign output and I/O pins, you force the

XEPLD Schematic Design Guide

3-10 Xilinx Development System

software to place associated logic functions into specific macrocells
and specific function blocks. If the associated logic does not exceed
the available function block resources (macrocells, product terms, and
FastCONNECT inputs), the logic is mapped into the macrocell and
the design will route in the FastCONNECT.

It is usually best to allow the fitter to automatically assign most or all
of the pins based on the most efficient placement of logic in the
device. The fitter automatically establishes a pinout which best allows
for future design iterations without pin relocation. Any manual pin
assignments you make in your design may not allow as much
tolerance for changes in the logic associated with those pins, and in
the logic physically mapped to nearby locations in the device.

If you are assigning pin locations to signals used as clocks,
asynchronous set/reset, or output enable in your design, you should
assign them to the GCK, GSR and GTS pins on the device if you want
to take advantage of these global resources. The fitter will still
automatically assign other clock, set/reset and output enable inputs
to remaining GCK, GSR and GTS pins if available.

Controlling Logic Optimization
When you build combinational logic functions using simple gates
and inverters, or when you use macros that contain gate-level logic
paths, the software attempts to collapse as much of the logic as
possible into the smallest number of CPLD macrocells. Any
combinational logic function bounded between device I/O pins and
flip-flops is subject to complete or partial collapsing. Collapsing the
logic improves the speed of the logic path and can also reduce the
amount of logic resources (macrocells, p-terms and FastCONNECT
inputs) required to implement the function.

The process of collapsing logic into other logic functions is called
“logic optimization”.

Collapsing Product Term Limit
When a larger combinational logic function consisting of several
levels of AND-OR logic is completely collapsed (flattened), the
number of product terms required to implement the function may
grow considerably. By default, the fitter limits the number of p-terms
used as a result of collapsing to 15 for XC9000 devices, and 17 for

Controlling Design Implementation

XEPLD Schematic Design Guide 3-11

XC7000 devices. If the collapsing of a logic level results in a logic
function consisting of more than the p-term limit (after Boolean
reduction), then the collapsing of that logic level is not performed
and the function will be implemented using two or more levels of
AND-OR logic.

Controlling Pterm Limits on a Workstation

The overall extent to which logic is collapsed throughout the design
can be controlled using the “-pterms” parameter on the xepld
command line:

xepld -pterms nn design_name

where nn is the maximum allowable number of p-terms that can be
used to implement a logic function after collapsing. (The default
nn=15 or 17.)

Controlling Pterm Limits on a PC

On PCs, controlling the Pterm limits is performed as follows:

1. Go to the Flow Engine and select:

Setup ➝ Options

2. The Design Implementation Option menu appears. Select:

Edit Template

3. Then select the menu:

Optimization

4. Lastly, place a value in the box adjacent to Collapsing Pterm
Limit .

If the Path Delay is Not Satisfactory

If you find that the path delay of a larger, multi-level logic function is
not satisfactory, try increasing the p-term limit parameter to allow the
larger functions to be flattened further. For example, you may try
increasing the p-term limit to 25 when rerunning the fitter.

The fitter report (design_name.rpt) indicates the number of p-terms
used for each logic function. You should see these numbers increase
as you raise the pterms limit, until the design is fully flattened. At the

XEPLD Schematic Design Guide

3-12 Xilinx Development System

same time, you’ll see the internal combinational nodes eliminated
until none remain.

Note: Logic entered in equation form (such as through an ABEL
behavioral module) remain at least as flat as originally expressed.
That is, large sum-of-products equations are not broken down into
smaller intermediate expressions to stay within the p-term limit
parameter. Equations expressed using a larger number of p-terms
than the global p-term limit remain intact and are implemented in
one AND-OR logic level. Smaller combinational equations are
collapsed into other equations up to the p-term limit, in the same
manner as for logic gates in the schematic.

Preventing Collapsing of a Logic Node
Flattening typically increases the overall amount of p-term resources
required to implement the design. Some designs which fit the target
device initially may fail to fit if flattened too much. Other designs can
be flattened completely and still fit. If you cannot increase the pterms
parameter enough to sufficiently flatten a critical path and still fit the
target device, you may try applying the logic optimization attribute
to specific nodes in your design.

Applying the following attribute to a logic symbol in the middle of a
logic function prevents collapsing of that symbol forward:

OPT=OFF

You can use OPT=OFF to break logic chains in non-speed-critical
paths and prevent those functions from using too many p-terms. If
you set the p-term limit parameter too high and your design no
longer fits, try using OPT=OFF to reduce the size of selected non-crit-
ical paths.

The OPT=OFF attribute has no effect on any symbol that contains no
macrocell logic, such as an I/O buffer.

When the OPT=OFF attribute is placed on a symbol, it inhibits logic
optimization on all macrocells used to implement the symbol. For
example, if you place OPT=OFF on a decoder symbol (like D2_4E), all
outputs and internal nodes of the decoder will be prevented from
collapsing.

If you want to prevent collapsing on a specific output signal from a
macro symbol, you can place the OPT=OFF attribute on the signal

Controlling Design Implementation

XEPLD Schematic Design Guide 3-13

(net) itself. When you place the OPT=OFF attribute on a signal, the
fitter applies the attribute only to the primitive symbol that drives
that signal.

Controlling Timing Paths
There are two mechanisms that can improve the timing of your
design:

● Global Timing Optimization

● XACT Performance (Timespecs)

Timing Optimization
By default, the fitter performs global timing optimization on logic
paths in your design. Timing optimization will shorten your critical
paths as much as it can. In general, timing optimization optimizes
logic and allocates the fastest available resources for the longest paths
in your design, assuming all paths are equally critical. In some cases,
the fitter trades off density for a speed advantage.

On workstations, if you do not want the fitter to perform timing
optimization, you can specify the “-notiming” parameter on the
xepld command line as follows:

xepld -notiming design_name

On PCs, to turn timing optimization off:

1. Go to the Flow Engine and select:

Setup ➝ Options

2. The Design Implementation Option menu appears. Select:

Edit Template

3. Then select the menu:

Optimization

4. Lastly, place a checkin the Off box adjacent to Timing .

XEPLD Schematic Design Guide

3-14 Xilinx Development System

XACT Performance
You can use Timing Specifications (T-Specs) to specify the maximum
allowable delay between groups of components in your design. The
software then optimizes and maps your design to achieve the timing
defined by these specifications. This Xilinx CPLD timing-driven
optimization is called XACT-Performance.

For schematic designs, T-Specs are specified in the schematic itself.
Do not attempt to create or edit a constraints file (.cst) when using
schematic design; the .cst file is overwritten when the schematic is
read. Make all changes to the timing specifications within the
schematic.

Timing Definitions

Delays and times are calculated as defined by the path types in this
section.

The path types are defined as follows:

● Clock to Setup — Register to register cycle time, including clock to
output and setup delay.

Figure 3-3 Clock to Setup Path

● Pad to Pad — Combinational pad to pad delay.

Figure 3-4 Pad to Pad Path

C

D Q

FD

C

D Q

FD

COMB.
LOGICtCO

tSU

OBUF
OPADIPAD

IBUF
COMB.
LOGIC

Controlling Design Implementation

XEPLD Schematic Design Guide 3-15

● Clock to Pad — Delay from the register clock input to the output
pad.

Figure 3-5 Clock to Pad Path

● Pad to Setup — Data path delay from the pad to the register data
input. Includes the register setup time.

Figure 3-6 Pad to Setup Path

● Setup to Clock at the Pad — Setup time of data at the pad to clock
at the pad. This path type includes only global clocks and product
term clocks driven directly from input pads. If the data input is
signal A and the clock input is signal CLK, the timing calculation
for this type of path is as follows:

Max(A to D) – Min(CLK to C)

Max and Min are maximum and minimum propagation delays
through the combinational logic.

Figure 3-7 Setup to Clock at the Pad Path

● Clock Pad to Output Pad — Clock pad to output pad propagation

C

D Q

FD

OBUF
OPADCOMB.

LOGICtCO

IPAD
IBUF

C

D Q

FD

COMB.
LOGIC

tSU

IBUF
IPAD

IPAD
BUFG

C

D Q

FDCOMB.
LOGIC

COMB.
LOGIC

A

CLK

XEPLD Schematic Design Guide

3-16 Xilinx Development System

delay. The clock can be a global or product term clock.

Figure 3-8 Clock Pad to Output Pad Path

● Paths Ending at Clock Pins of Flip-Flops — Delay from clock pad
to register clock input. The clock can be a global or product term
clock.

Figure 3-9 Path Ending at the Clock Pin of a Flip-Flop

The TIMESPEC Symbol

Timing specifications are placed on your schematic using a
TIMESPEC primitive that contains the TIMESPEC Attribute
Definitions which control the timing for paths between defined
groups of components.

The TIMESPEC primitive, as illustrated in Figure 3-8, is 30 characters
wide and contains TS attribute definitions. Each TIMESPEC primitive
can hold up to eight TS attribute definitions. If you want to include
more than eight TS attribute definitions, you can use multiple
TIMESPEC primitives in your schematic.

Note: Though the TIMESPEC primitive is only 30 characters wide,
you can create TS attribute definitions of any length by continuing on
the next line.

BUFG
IPAD

OBUF
OPAD

C

D Q

FD

COMB.
LOGIC

COMB.
LOGIC tCO

C

D Q

FD

BUFG
IPAD

COMB.
LOGIC

Controlling Design Implementation

XEPLD Schematic Design Guide 3-17

Figure 3-10 TIMESPEC Primitive

Defining Timing Path End Points

Specify the start and end points of your timing paths using one of the
following methods:

● Refer to a predefined group by specifying one of the
corresponding keywords — FFS, PADS.

● Create arbitrary groups within a predefined group by tagging
symbols with TNM (pronounced tee-name) attributes.

● Create groups that are combinations of existing groups by using
TIMEGRP symbols.

● Create groups by pattern matching on signal names.

Using Predefined Groups

You can refer to a group of flip-flops, input latches, or I/O pads, by
using the corresponding keywords:

Table 3-1 Predefined Groups

These predefined groups represent all symbols of that type. For
example the following TS Attribute means that the delay between
any two flip-flops must be no greater than 30 ns.

TS01=FROM:FFS:TO:FFS=30

Keyword Group

FFS Macrocell or IOB flip-flops
PADS input/output pads

X4332

TIMESPEC
TS01=FROM:FFS:TO:PADS=25

XEPLD Schematic Design Guide

3-18 Xilinx Development System

And the following TS attribute means that the delay between any I/O
pad and any flip-flop must be no greater than 25ns.

TS_OTHER=FROM:PADS:TO:FFS=25

Specifying Time Delay Units

Nanoseconds are the default units for specifying delay times in TS
attributes. However, after specifying the maximum delay or
minimum frequency numerically, you can enter the unit of measure
by specifying the following:

● NS for nanoseconds

● MHZ for megahertz

● US for microseconds

● KHZ for kilohertz

The software converts all units to nanoseconds and rounds them to
0.1 ns accuracy.

Disabling Timing Specifications

If you have placed T-specs in your schematic but want to run the
fitter without using your T-specs, you can temporarily disable XACT
Performance. Specify the -ignorets parameter on the xepld
command line as follows:

xepld -ignorets design_name

On a PC, disable timing specifications as follows:

1. Go to the Flow Engine and select:

Setup ➝ Options

2. The Design Implementation Option menu appears. Select:

Edit Template

3. Then select the menu:

Fitting

4. Lastly, remove the checkin the box adjacent to Use XACT-
Performance .

Controlling Design Implementation

XEPLD Schematic Design Guide 3-19

Reducing Levels of Logic
The XC9000 and XC7000 architecture, like most CPLD devices, is
organized as a large, variable-sized combinational logic resource (the
AND-array and XOR gate) followed by a register. If you place
combinational logic before a register in your design, the fitter maps
the logic and register into the same macrocell. The output of the
register is then directly available at an output pin of the device. If,
however, you place logic between the output of a register and the
device output pin, a separate macrocell must used to perform the
logic, decreasing both the speed and density of your design. Figure 3-
11 shows two functionally similar designs, one that is efficient for
CPLD architectures and one that is inefficient.

XEPLD Schematic Design Guide

3-20 Xilinx Development System

Figure 3-11 Reducing Levels of Logic

OBUF

M2_1

XOR2

XOR2

IBUF

CLK

SEL

BUFG

D0
O

D1

S0

D QFD

CINV

D QFD

C

0
1

OPAD

IPAD

IPAD

INEFFICIENT
(3 Macrocells)

OBUF

IBUF
CLK

SEL

BUFG

X4861

D QFD

CINV

D QFD

C

M2_1
D0

O
D1

S0

0
1

OPAD

INV

IPAD

IPAD

EFFICIENT
(2 Macrocells)

XEPLD Schematic Design Guide 4-1

Chapter 4

Design Applications

This chapter describes some of the more useful techniques for
expressing efficient CPLD designs. These examples are suggestions
and guidelines only, and may not apply to your particular design.

Read-Back Registers
Figure 4-1 shows a simple read-back register. Data is written from the
IOPAD to the register on the rising edge of the clock if
READ_ENABLE is inactive and WRITE_ENABLE is active. Data is
read from the IOPAD when READ_ENABLE is active.

Figure 4-1 Read-Back Register Example

Q

X4849

D FDCE

C

CE

CLR

WRITE_ENABLE

CLOCK

READ_ENABLE GND

OBUFE

IOPAD

IBUF

XEPLD Schematic Design Guide

4-2 Xilinx Development System

Bidirectional Signals and Buses
Figure 4-2A shows how to specify a bidirectional pin. Figure 4-2B
shows that you can have a bidirectional signal passing through the
chip. To make a bidirectional bus, use bus components as shown in
Figure 4-2C.

Figure 4-2 Bidirectional Signals and Buses

Multiplexing 3-State Signals
Three methods of multiplexing 3-state signals are shown in Figure
4-3 on the next page. Which method you choose depends on your
application, resources, and speed requirements, although method C,
which uses a multiplexer, is usually best for CPLD designs.

Method A, shown in Figure 4-3A, uses 3-state buffers instead of a
multiplexer. The advantage of method A over method C is that
method A uses only one Function Block input in the macrocell that
sends the signal off-chip. The disadvantage of method A is that
macrocell feedback is lost because the outputs are 3-stated; therefore
counters will not work with Method A, but will work with Method C.

Method B, shown in Figure 4-3B, requires that you tie the signals
together off-chip. This method results in a short clock-to-out delay

X4851

OBUFE

E
IBUF

A LOGIC
IOPAD

OBUFE

E
IBUF

B LOGIC
IOPAD

OBUFE

E

IBUF

IOPAD

OBUFE8 E

E

A_OUT[7:0]

A_IN[7:0]
A[7:0] B[7:0]

IBUF8

C LOGIC
IO[7:0]

IOPAD8

IBUF8

B_IN[7:0]

B_OUT[7:0]

OBUFE8

IO[7:0]

IOPAD8

A

A B

Design Applications

XEPLD Schematic Design Guide 4-3

and uses fewer macrocells than methods A and C. However, it uses
more pins than method A or C.

Method C, shown in Figure 4-3C, uses a multiplexer instead of
3-state buffers. This method results in a longer clock-to-out delay
than method B, although you can shorten this delay to that of method
B by registering the output of the multiplexer and asserting the select
signals one clock cycle in advance. This method uses more macrocells
than method B, but uses fewer pins.

Figure 4-3 Methods of Multiplexing 3-State Signals

QD FD

C

BUF OBUF
or OBUFE

(Tied Together
Off-Chip)

BUFE

OPAD

OPAD

OPAD

X4848

QD FD

C
BUFE

QD FD

C OBUFE

QD FD

C

OPAD

OBUFE

OBUF
or OBUFE

M2_1

QD FD

C

QD FD

C

D0

D1

S0

O

A

B

C

XEPLD Schematic Design Guide

4-4 Xilinx Development System

Combinational Feedback Loops
The simple expression of a D-type latch contains inherent logic
hazards which could result in unpredictable results when run
through the fitter.

Figure 4-4 Simple Mux and Cross-Coupled-NAND Latches

A timing malfunction can occur if the logic is divided between two
separate macrocells by the fitter. Figure 4-5 illustrates what can
happen.

Figure 4-5 Malfunction of Physical Implementation

If you implement the D-type latches with proper redundant logic, the
problem will not occur. Figure 4-6 shows two solutions for schematic

D

G

S

H

Q

Q

H

SD

G

X6558

D
G

H

S
Q

D

G

S

H

QMacrocell 2

Macrocell 1

collapsed but
reverted

broken loop

Typical actual waveform
X6557

=1

S

H

Possible Resulting Waveforms

Design Applications

XEPLD Schematic Design Guide 4-5

implementation of D-type latches.

Figure 4-6 D-type Latch Solutions

When you create redundant logic in a schematic, remember to specify
the MINIM=OFF attribute on the final output gate to prevent the
software’s Boolean minimization routine from removing the
redundant logic

D

G

S

H
Q

Q

H
R

SD

G

R

X6556

MINIM=OFF

MINIM=OFF

XEPLD Schematic Design Guide A-1

Appendix A

Common Questions and Answers

This appendix lists frequently asked questions about EPLD software
and its CAE tool interfaces, and gives explanations and solutions.

Drawing the Design
This section lists problems you may encounter because your CAE
tool drawing package is not properly configured for XEPLD
software.

Why Do I See White Boxes Instead of Symbols?
If you are a Viewlogic user and your schematic contains symbols
from a device family library (such as XC9000) that is not included in
your viewdraw.ini file, you see white boxes when you view your
schematic.

A likely cause of this problem is forgetting to run the Altran program
when converting from one device family to another; see the “Device-
Independent Design” chapter for details. Even after you run Altran,
components from the old library that are not in the new library
appear as white boxes — you should find equivalent components
that are compatible with the new library.

Another likely cause is not configuring viewdraw.ini properly, with
correct path names and library aliases. The example in the “Getting
Started with Schematic Design” chapter includes information about
how to configure Viewlogic software for the XEPLD device families.

XEPLD Schematic Design Guide

A-2 Xilinx Development System

Fitting the Design
This section lists problems you may encounter when you fit the
design.

What Does “Unrecognized Symbol” Mean?
If you get this error message:

xr55: [Warning]‘ADECODE is an unrecognized symbol
for the EPLD family. If this symbol is a
behavioral module, make sure you have added
FILE=module and DEF=PLD attributes to the symbol.
If the symbol is a custom schematic component,
check that a schematic exists for it. If the
symbol is a standard library component, make sure
the target EPLD family supports it. If you are
using a synthesis tool, resynthesize th logic
targeting an EPLD family.

it means one of the following occurred:

● You did not properly link a behavioral design to a schematic
symbol. You need to add attributes FILE=filename and DEF=PLD
to the schematic symbol.

● If the symbol is a user macro, check that a schematic exists for it
and that an .xnf file was generated.

● If the symbol is a Xilinx library component, make sure the target
EPLD family supports it.

● If you are using a synthesis tool, recompile the logic targeting an
EPLD family.

Simulating the Design
This section lists problems you may encounter during functional or
timing simulation.

Why Are My Registers Stuck at the Preload Value?
At the beginning of a simulation, you must pulse the PRLD signal
High then Low.

Common Questions and Answers

XEPLD Schematic Design Guide A-3

The assertion of the pulse forces all registers to a known state. The de-
assertion allows the registers to change states. If you do not de-assert
PRLD, your registers cannot change state.

Why Are My Internal Nodes Not Visible During
Timing Simulation?

The EPLD fitter optimizes your design for efficiency, eliminating
many internal combinatorial nodes. (If you are a Viewlogic user and
you view your back-annotated schematic during timing simulation,
these nodes appear with a “?”.)

Nets between IPADs and IBUFs are observable, as are nets between
OBUFs and OPADs. Other nets may or may not be observable,
depending on the results of optimization.

XEPLD Schematic Design Guide B-1

Appendix B

Attributes
This appendix describes all of the attributes that you can place into
your schematic for a CPLD design. The attributes supported for
CPLD designs are as follows:

● DEF=PLD

● FAST
● FILE=filename

● INIT={R | S}
● LOC=pin_name

● LOWPWR=ON

● MINIM=OFF
● OPT=OFF

● PART=part_type

● TNM=time_group

● TSnn=time_spec

Target Device Selection Attribute — PART
You can place the global PART attribute in your schematic to select
the target device for your design. Refer to the Release Document for a
list of CPLD device names supported by the software.

Selecting a part type other than “indesign” in the -p parameter of the
xepld command line overrides any PART attribute in your schematic.

Note: The fitter will automatically select a part for you, choosing, in
general, the smallest part that will satisfy the needs and constraints of
your design.

XEPLD Schematic Design Guide

B-2 Xilinx Development System

The format of the PART value is as follows:

PART=dddd- sspppp

dddd is the device number, for example 95108

ss is the speed grade, for example 10

pppp is the package type and pin count, for example PC84

Viewlogic Procedure

Apply the PART attribute as an unattached schematic attribute.
Follow these steps:

1. Deselect all components by clicking on a blank area of your
schematic.

2. Use the Add ➝ Attribute command and enter the PART attribute
string and press enter.

3. Position the attribute anywhere in the schematic and click with
the left mouse button.

Behavioral Module Attributes — FILE and DEF
The FILE=file_name attribute on a custom symbol specifies the name
of the file containing the logical definition for that symbol when the
logic is expressed in behavioral form instead of an underlying
schematic. If the logic for your custom symbol is defined by an
underlying schematic (i.e., a user macro), you need no FILE or DEF
attributes.

Specify the directory path if necessary. Do not specify the file
extension in the FILE=file_name attribute.

The DEF=PLD attribute is used in addition to the FILE=file_name
attribute when the file defining the symbol’s logic is in the Plusasm
equation format. Plusasm-formatted files are typically produced by
PLD compiler tools such as ABEL. If file_name is an XNF-formatted
netlist file, you need no DEF attribute. XNF-formatted files are
typically produced by logic synthesis tools such as Synopsys.

Pin Assignment Attribute — LOC
Use the LOC=pin_name attribute on a PAD symbol to assign the

Attributes

XEPLD Schematic Design Guide B-3

signal to a specific device pin. The PAD symbols are IPAD, OPAD,
IOPAD, and UPAD. The pin name is Pnn for PC packages; the nn is a
pin number. The pin name is rc (row, column) for PG packages.
Examples are LOC=P24 and LOC=G2.

Pin assignments are unconditional in that the software will not
attempt to relocate a pin if it cannot achieve the specified assignment.
You can apply the LOC attribute to as many PADs in your design as
you like. However, each pin assignment further constrains the
software as it automatically allocates logic and I/O resources to
internal nodes and I/O pins with no LOC attributes.

Note: Pin assignment using the LOC attribute is not supported for
bus components such as OBUF8.

Power Setting Attribute — LOWPWR
By default, all macrocells operate in the standard power mode,
providing the fastest possible speed. If you specify the “lowpwr”
parameter on the xepld command line, all macrocells operate in low-
power mode.

To specify low-power mode for macrocells used by an individual
symbol, use the LOWPWR=ON attribute in the schematic.

The LOWPWR attribute is ignored if assigned to a symbol that uses
no macrocells, such as an inverter or an I/O buffer.

Logic Optimization Attribute — OPT=OFF
Use the logic optimization attributes to control collapsing at specific
points in your design. Logic optimization attributes are normally not
required to process CPLD designs.

The OPT=OFF component attribute inhibits collapsing of all macro-
cells used by a symbol.

The logic optimizer normally collapses the levels of logic to remove
intermediate nodes. Components are optimized forward into
components connected to their outputs. If you build combinational
logic using low-level gates and macros containing gates, the software
attempts to pack all logic bounded between device I/O pins and
registers into a single macrocell.

The OPT attribute has no effect on any symbol that contains no

XEPLD Schematic Design Guide

B-4 Xilinx Development System

macrocell logic, such as an I/O buffer.

The OPT=OFF attribute can be used to prevent optimization if it
appears that the software is collapsing logic in a way that prevents a
successful fit.

Register Preload State — INIT
The INIT attribute specifies the initialization value to be preloaded
into a register upon power-up. INIT=R specifies a preload value of 0
(Reset) and INIT=S specifies a preload value of 1 (Set). The default for
all registers in a CPLD design is 0 (reset). This attribute can be applied
to flip-flops or any component containing a register.

Output Slew Rate — FAST
The FAST attribute can be placed on an OPAD (output pad) or IOPAD
symbol (primitive or macro) to select the fast slew-rate operation of
the corresponding CPLD output-pin driver. The default is reduced
(slower) slew-rate, which reduces output switching surges in the
device.

Minimization of Redundant Logic — MINIM
The MINIM=OFF attribute tells the fitter to disable Boolean logic
minimization for the attached component. You need to use the
MINIM=OFF attribute if you want to specify redundant logic in a
portion of your design to avoid a potential race condition; for
example, you would use MINIM=OFF on the output gate when
designing combinational feedback loops and latches.

Timing Specification Attributes — TSnn and TNM
The T-spec attribute definitions specify the maximum delay between
groups of components. They begin with the letters “TS” and a unique
identifier that can consist of letters, numbers, or the underscore
character (_). The value of the T-spec attribute consists of a FROM-TO
expression specifying the timing requirements between specific end
points. The full syntax is shown as follows:

TSidentifier=FROM:group1:TO: group2=delay

The parameters group1 and group2 can be any of the following:

Attributes

XEPLD Schematic Design Guide B-5

● Predefined groups consisting of FFS or PADS which are discussed
in the “Using Predefined Groups” section.

● Previously created TNM identifiers which are introduced in the
“Creating Arbitrary Groups Using TNMs” section.

● Groups defined in TIMEGRP symbols which are introduced in the
“Creating New Groups from Existing Groups” section.

The delay parameter defines the maximum delay for the attribute,
using nanoseconds as the default unit of measurement. Other units of
measurement such as MHZ may also be used.

The format of the TNM attribute is:

TNM=group_name

Note: Keywords, such as FROM and TO, appear in this document
in upper case; however, you can enter them in the TIMESPEC
primitive in either upper or lower case.

The following examples show typical TIMESPEC attribute
definitions:

TS01=FROM:FFS:TO:FFS=30
TS_OTHER=FROM:PADS:TO:FFS=25

XEPLD Schematic Design Guide C-1

Appendix C

XEPLD Library Selection Guide

Logic Gates

AND2B1

AND2B2

AND3

AND3B1

AND3B2

AND3B3

AND4

AND4B2

AND4B3

AND4B4

AND5

AND5B1

AND5B2

AND5B3

AND5B5

AND6

AND7

AND8

AND9

AND4B1

AND2

AND5B4

NAND9

NAND4

NAND4B3

NAND4B2

NAND4B1

NAND3B1

NAND3B2

NAND3B3

NAND2

NAND2B1

NAND2B2

NAND5

NAND5B1

NAND5B4

NAND5B3

NAND5B2

NAND4B4

NAND3

NAND6

NAND7

NAND8

NAND5B5

OR4

OR4B3

OR4B2

OR4B1

OR3B1

OR3B2

OR3B3

OR2

OR2B1

OR2B2

OR5

OR5B1

OR5B2

OR5B3

OR5B5

OR5B4

OR4B4

OR3

OR6

OR7

OR9

OR8

NOR5

NOR4B3

NOR4B2

NOR4B1

NOR4

NOR3B1

NOR3B2

NOR3B3

NOR2

NOR2B1

NOR2B2
NOR5B1

NOR5B2

NOR5B5

NOR5B4

NOR5B3

NOR4B4

NOR3

NOR6

NOR7

NOR8

NOR9

XOR2*

XOR3*

XOR4*

XOR5

XOR6

XOR7

XOR8

XOR9

XNOR2*

XNOR3*

XNOR4*

XNOR5

XNOR6
XNOR8

XNOR7

XNOR9

SOP3B3

SOP3B2B

SOP3B2A

SOP3B1B

SOP3B1A

SOP3
SOP4

SOP4B1

SOP4B2A

SOP4B2B

SOP4B3

SOP4B4

ANDs* NANDs*

ORs* NORs*

XORs XNORs Sums of Products

XEPLD Schematic Design Guide

C-2 Xilinx Development System

Component Name Description/Features

Buffers and Inverters
BUF*, BUF4, BUF8, BUF16 Non-inverting buffer
BUFE, BUFE4, BUFE8, BUFE16 Internal 3-state buffer with active-high enable
BUFG* Global clock input buffer
BUFGSR* Global asynchronous set/reset input buffer
BUFGTS* Global 3-state control input buffer
BUFT*, BUFT4, BUFT8, BUFT16 Internal 3-state buffer with active-low enable
INV*, INV4, INV8, INV16 Inverter

Flip-Flops
FD, FD4, FD8, FD16 D flip-flop
FDC D flip-flop with async. clear
FDCE, FD4CE, FD8CE, FD16CE D flip-flop with clock enable, async. clear
FDCP* D flip-flop with async. preset, async. clear
FDCPE D flip-flop with clock enable, async. preset and clear
FDP D flip-flop with async. preset
FDPE D flip-flop with clock enable, async. preset
FDR D flip-flop with sync. reset
FDRE, FD4RE, FD8RE, FD16RE D flip-flop with clock enable, sync. reset
FDRS D flip-flop with sync. reset, sync. set
FDRSE D flip-flop with clock enable, sync. reset and set
FDS D flip-flop with sync. set
FDSE D flip-flop with clock enable, sync. set
FDSR D flip-flop with sync. set and reset
FDSRE D flip-flop with clock enable, sync. set and reset
FJKC J-K flip-flop with async. clear
FJKCE J-K flip-flop with clock enable, async. clear
FJKCP J-K flip-flop with async. clear and preset
FJKCPE J-K flip-flop with clock enable, async. clear and preset
FJKP J-K flip-flop with async. preset
FJKPE J-K flip-flop with clock enable, async. preset
FJKRSE J-K flip-flop with clock enable, sync. reset and set
FJKSRE J-K flip-flop with clock enable, sync. set and reset
FTC Toggle flip-flop with async. clear
FTCE Toggle flip-flop with clock enable, async. clear
FTCLE Loadable toggle flip-flop with clock enable, async. clear
FTCP Toggle flip-flop with async. clear and preset
FTCPE Toggle flip-flop with clock enable, async. clear and preset
FTCPLE Loadable toggle flip-flop w/ clock enable, async. clear & preset
FTP Toggle flip-flop with async. preset
FTPE Toggle flip-flop with clock enable, async. preset
FTPLE Loadable toggle flip-flop with clock enable, async. preset
FTRSE Toggle flip-flop with clock enable, sync. reset and set
FTRSLE Loadable toggle flip-flop with clock enable, sync. reset and set

XC9500 Library Selection Guide

XEPLD Schematic Design Guide C-3

FTSRE Toggle flip-flop with clock enable, sync. set and reset
FTSRLE Loadable toggle flip-flop with clock enable, sync. set and reset
X74_174 6-bit data register with asynchronous clear
X74_273 8-bit data register with asynchronous clear
X74_377 8-bit data register with clock enable

Latches
LD, LD4, LD8, LD16 Transparent data latch

Shifters
BRLSHFT4 4-bit barrel shifter
BRLSHFT8 8-bit barrel shifter
SR4CE, SR8CE, SR16CE Shift register with clock enable, async. clear
SR4CLE, SR8CLE, SR16CLE Loadable shift register with clock enable, async. clear
SR4CLED, SR8CLED, SR16CLED Loadable left/right shift register with clock enable, async. clear
SR4RE, SR8RE, SR16RE Shift register with clock enable, sync. reset
SR4RLE, SR8RLE, SR16RLE Loadable shift register with clock enable, sync. reset
SR4RLED, SR8RLED, SR16RLED Loadable left/right shift register with clock enable, sync. reset
X74_164 8-bit serial-in parallel-out shift register with async. clear
X74_165S 8-bit loadable serial/parallel-in parallel-out shift register with clock

enable
X74_194 4-bit loadable left/right serial/parallel-in parallel-out shift register
X74_195 4-bit loadable serial/parallel-in parallel-out shift register

Counters
CB2CE, CB4CE, CB8CE, CB16CE Cascadable binary counter with clock enable, async. clear
CB2CLE, CB4CLE, CB8CLE, CB16CLE Loadable cascadable binary counter with clock enable, async. clear
CB2CLED, CB4CLED, CB8CLED,
CB16CLED

Loadable up/down binary counter with clock enable, async. clear

CB2RE, CB4RE, CB8RE, CB16RE Cascadable binary counter with clock enable, sync. reset
CB2RLE, CB4RLE, CB8RLE, CB16RLE Loadable cascadable binary counter with clock enable, sync. reset
CB2X1, CB4X1, CB8X1, CB16X1 Loadable cascadable up/down binary counter with async. clear
CB2X2, CB4X2, CB8X2, CB16X2 Loadable cascadable up/down binary counter with sync. reset
CD4CE 4-bit cascadable BCD counter with clock enable, async. clear
CD4CLE 4-bit loadable cascadable BCD counter with clock enable, async.

clear
CD4RE 4-bit cascadable BCD counter with clock enable, sync. reset
CD4RLE 4-bit loadable cascadable BCD counter with clock enable, sync. reset
CJ4CE, CJ5CE, CJ8CE Johnson counter with clock enable, async. clear
CJ4RE, CJ5RE, CJ8RE Johnson counter with clock enable, sync. reset
CR8CE, CR16CE Negative-edge binary ripple counter with clock enable, async. clear
X74_160 4-bit loadable cascadable BCD counter with parallel/trickle enables,

async. clear
X74_161 4-bit loadable cascadable binary counter with parallel/trickle enables,

async. clear
X74_162 4-bit loadable cascadable BCD counter with parallel/trickle enables,

sync. reset

Component Name Description/Features

XEPLD Schematic Design Guide

C-4 Xilinx Development System

X74_163 4-bit loadable cascadable binary counter with parallel/trickle enables,
sync. reset

X74_168 4-bit loadable cascadable up/down BCD counter with parallel/trickle
enables

X74_390 4-bit BCD/bi-quinary ripple counter with negative-edge clocks, async.
clear

Multiplexers
M2_1 2-to-1 multiplexer
M2_1B1 2-to-1 multiplexer with D0 inverted
M2_1B2 2-to-1 multiplexer with D0 and D1 inverted
M2_1E 2-to-1 multiplexer with enable
M4_1E 4-to-1 multiplexer with enable
M8_1E 8-to-1 multiplexer with enable
M16_1E 16-to-1 multiplexer with enable
X74_150 16-to-1 inverting multiplexer with enable
X74_151 8-to-1 multiplexer with enable and complementary outputs
X74_152 8-to-1 inverting multiplexer
X74_153 Dual 4-to-1 multiplexer with enables
X74_157 Quad 2-to-1 multiplexer with enable
X74_158 Quad 2-to-1 inverting multiplexer with enable
X74_298 Quad 2-input multiplexers with storage, negative-edge clock
X74_352 Dual 4-to-1 inverting multiplexer with enables

Decoders
D2_4E 2- to 4-line decoder/demultiplexer with enable
D3_8E 3- to 8-line decoder/demultiplexer with enable
D4_16E 4- to 16-line decoder/demultiplexer with enable
X74_42 4- to 10-line active-low BCD-to-decimal decoder
X74_138 3- to 8-line active-low decoder/demultiplexer with enables
X74_139 2- to 4-line active-low decoder/demultiplexer with enable
X74_154 4- to 16-line active-low decoder/demultiplexer with enables

Encoders
X74_147 10- to 4-line active-low priority encoder
X74_148 8- to 3-line cascadable active-low priority encoder

Comparators
COMP2, COMP4, COMP8, COMP16 Identity comparator
COMPM2, COMPM4, COMPM8, COMPM16 Magnitude comparator
X74_L85 4-bit expandable magnitude comparator
X74_518 8-bit identity comparator with enable
X74_521 8-bit active-low identity comparator with enable

Arithmetic Functions
ACC1, ACC4, ACC8, ACC16 Loadable add/subtract accumulator
ADD1, ADD4, ADD8, ADD16 Adder
ADSU1, ADSU4, ADSU8, ADSU16 Adder/subtracter

Component Name Description/Features

XC9500 Library Selection Guide

XEPLD Schematic Design Guide C-5

X74_280 9-bit odd/even parity checker/generator
X74_283 4-bit full adder with carry-in and carry-out

Input/Output Functions
IBUF*, IBUF4, IBUF8, IBUF16 Input buffer
IOPAD*, IOPAD4, IOPAD8, IOPAD16 Input/output pad
IPAD*, IPAD4, IPAD8, IPAD16 Input pad
OBUF*, OBUF4, OBUF8, OBUF16 Output buffer
OBUFE, OBUFE4, OBUFE8, OBUFE16 3-state output buffer with active-high enable
OBUFT*, OBUFT4, OBUFT8, OBUFT16 3-state output buffer with active-low enable
OPAD*, OPAD4, OPAD8, OPAD16 Output pad
UPAD* Unbonded I/O pad

Miscellaneous
GND* Ground-connection signal tag
VCC* VCC-connection signal tag
TIMEGRP* Timing specification group table
TIMESPEC* Timing requirement specification table
TBLOCK Title block annotation symbol
ASHEETL, ASHEETP, BSHEETL, CSHEETL,
CSHEETP, DSHEETL, ESHEETL, ESHEETP

Sheet border annotation symbol

* XC9000 primitive symbol

Component Name Description/Features

XEPLD Schematic Design Guide D-1

Appendix D

Design Implementation and Simulation

This appendix describes how to invoke the CPLD fitter, and the
commands used to prepare functional and timing simulation models.

Running the Fitter

From a Workstation
The xepld command invokes the CPLD design implementation
software (the fitter). The command is run in a UNIX command
window. Your current working directory must be set to the project
directory which contains your design source files before invoking
xepld. For Viewlogic designs, your project directory is the working
directory containing the sch sub-directory in which your schematic
file (design_name.1) is stored.

The format of the xepld command is:

xepld [options] design_name

Invoking the xepld command with no parameters produces a listing
of all available command-line options.

The design_name is the name of the top-level schematic file, without
path qualifiers, and either with or without extension.

Viewlogic schematic files (sch/design_name.1) are supported and read
directly by the xepld command. Schematics from other tools must
first be translated into either an XNF-formatted netlist
(design_name.xnf) or an EDIF-formatted netlist (design_name.edif).

If design_name is specified without extension, the xepld command
searches for source files in the following order:

1. Viewlogic schematic (sch/design_name.1)

2. EDIF netlist (design_name.edif)

XEPLD Schematic Design Guide

D-2 Xilinx Development System

3. XNF netlist (design_name.xnf)

XEPLD Command Parameters

This section describes parameters that can be entered when using the
xepld command on a workstation. For equivalent implementation
options on a PC, see Design Optimization Control in Chapter 3 of
the XEPLD Reference Guide.

The [options] field of the xepld command represents an optional list of
one or more command-line parameters. Invoking the xepld command
with just the design name and no option parameters runs the fitter
with all default conditions, including automatic device selection.

The following are the xepld command-line parameters that apply to
schematic design entry:

● -detail — produces a detailed path timing report
(design_name.tim) instead of the default summary report.

● -ignoreloc — temporarily ignores all LOC attributes in the
schematic, allowing the fitter to assign the locations of all I/O
pins.

● -ignorets — temporarily ignores all timing specification attributes
in the schematic.

● -lowpwr — uses the low-power mode for all macrocells in the
design (default is standard power except where LOWPWR=ON is
specified in the schematic).

● -mrinput— allows the Master Reset pin to be used as an ordinary
input (XC7000 only)

● -nogck — prevents the fitter from optimizing IBUF inputs used as
clocks onto the device’s global clock input pins (GCK); only BUFG
inputs are mapped to global clock pins.

● -nogts — prevents the fitter from optimizing IBUF inputs used for
3-state output enable control onto the device’s global 3-state
control input pins (GTS or FOE); only BUFGTS or BUFFOE inputs
are mapped to GTS pins.

● -noifd— prevents the fitter from optimizing simple flip-flops (FD)
connected to device inputs (IBUF) onto the device’s input-pad
registers (IFD); only IFD symbols in the schematic will use input-

Design Implementation and Simulation

XEPLD Schematic Design Guide D-3

pad registers (XC7000 only).

● -nota — bypasses the timing analyzer so that no static timing
report is generated.

● -notiming — inhibits the default global timing optimization
performed by the fitter; only paths with T-specs specified in the
schematic are optimized to improve timing.

● -p part_type — specifies the target device type or set of devices
from which to choose (default is automatic device selection);
where part_type can be:

● “ddddd-sspppp” — where ddddd is the device code (such as
95108), ss is the speed grade, pppp is the package code (such as
PQ160), and an asterisk (*) can be used as a wildcard string
(quotes required around part_type when asterisk is used).

● “ddddd-sspppp,ddddd-sspppp ...” — a list of valid part-type
specifications as defined above (quotes required).

● indesign — signifies that the target device is specified by a
PART attribute in the schematic.

● -pinfreeze — uses the guide file (design_name.gyd) from the last
successful invocation of the fitter to reproduce the same pin
locations (default is automatic pin assignment).

● -pterms nn — sets the limit to nn for the number of product terms
allowed as a result of collapsing (default=15 for XC9000 and 17 for
XC7000).

● -s signature — specifies the user signature string to be
programmed into the device for identification purposes (default is
the design name).

From a PC
1. From the Design Manager select the schematic file you want to

process.

File ➝ Open Project

Select a file from the template’s list or use the Browse key to search
your directories for the file you want to process. If the file is listed on
the template, highlight the file and click once on Open.

XEPLD Schematic Design Guide

D-4 Xilinx Development System

2. Go to the Flow Engine and select options:

Tools ➝ Flow Engine

Setup ➝ Options

3. The Design Implementation Option menu appears. Select:

Edit Template

4. Then select from the three templates all the options you want to
use and press OK.

5. To run the fitter, click once on the run key found in the Flow
Engine.

Generated Reports
By default the fitter produces the following significant output files:

● Fitter report (design_name.rpt) — lists summary and detailed
information about the logic and I/O pin resources used by the
design, including the pinout, error and warning messages, and
Boolean equations representing the implemented logic.

● Static timing report (design_name.tim) — shows a summary report
of worst-case timing for all paths in the design; optionally
includes a complete listing of all delays on each individual path in
the design.

● Guide file (design_name.gyd) — contains all resulting pinout
information required to reproduce the current pinout if the
“pinfreeze” option is specified during the next invocation of the
xepld command for the same design name. (The Guide file is
written only upon successful completion of the fitter.)

● Programming file (design_name.jed) — is a JEDEC-formatted
programming file to be down-loaded into the XEPLD device.

● Timing simulation netlist (design_name_tim.xnf) — an XNF-
formatted netlist representing the implemented logic of the
design, including all delays, consisting of XEPLD simulation
model primitives.

Whenever the xepld command is invoked from a workstation, it
copies any existing fitter report file (.rpt), timing report file (.tim),
guide file (.gyd) and programming file (.jed) to the backup directory.

Design Implementation and Simulation

XEPLD Schematic Design Guide D-5

Functional and Timing Simulation
This section describes how to prepare a simulation model file for
functional and timing simulation on the Workstation and PC
environment.

Simulation on a Workstation
The xepldsim command prepares a simulation model file for either
functional or timing simulation for one of the supported simulator
tools. For functional simulation, the xepldsim command reads your
source schematic design, plus any behavioral modules used in your
design, and produces a simulation output file. For timing simulation,
the xepldsim command translates the timing simulation netlist file
(design_name_tim.xnf) produced by the xepld command into the
required simulation output file(s).

The xepldsim command is run in a UNIX command window. Your
current working directory must be set to the project directory which
contains your design source files before invoking xepldsim .

The format of the xepldsim command is:

xepldsim - target design_name

Invoking the xepldsim command with no parameters produces a
listing of all available command-line options.

The design_name is the name of the top-level schematic file, without
path qualifiers and without extension.

The -target parameter specifies the desired type of simulation output
file, and is one of the following:

● -vlfunc — produces a Viewlogic functional simulation file
(design_name.vsm) based on your source schematic.

● -vltime — produces a Viewlogic timing simulation file
(design_name.vsm) based on the design_name_tim.xnf netlist.

● -verilog — produces a structural Verilog HDL file
(design_name_tim.v), an SDF-formatted timing back-annotation
file (design_name_tim.sdf) and a stimulus template file
(design_name_tim.stim), based on the design_name_tim.xnf netlist,
for use with any Verilog-compatible simulator.

XEPLD Schematic Design Guide

D-6 Xilinx Development System

● -vss — produces a structural VHDL file (design_name_vss.vhd)
and an SDF-formatted timing back-annotation file
(design_name_vss.sdf), based on the design_name_tim.xnf netlist,
for use with the Synopsys VSS simulator.

For Viewlogic functional simulation, you can use Viewlogic’s vsm
command on your source schematic to prepare the .vsm file if your
design contains no behavioral modules. However, the initial states of
registers in your simulation will not reflect any INIT attributes you
may have specified in your schematic. If your design contains
behavioral modules or you want to simulate non-zero initial register
states, you should use the xepldsim command to prepare your vsm
file.

To perform timing simulation using any other simulator tool than
those listed above, use the XNF netlist translator provided by the
simulator manufacturer and use the design_name_tim.xnf file as the
input file.

Note: When the fitter processes your design, some of your original
nodes may be removed or replaced due to logic optimization. Such
nodes cannot be viewed or stimulated during timing simulation. All
of the device I/O signals are always maintained.

Simulation on a PC Under Windows
In your Xilinx program group you will find an icon labelled
“Simulation Utility.” Double-click on this icon to enter the Simulation
Utility Control Panel. To prepare a simulation file using the
Simulation Utility, follow these steps:

1. From the Xilinx program group, double-click on the Simulation
Utility icon. The control panel shown in Figure D-1 will appear.

2. If the correct Input Design is not listed on panel, click once on
the Browse key and select the correct design.

3. Make sure the Family is correctly set to XC7000 or XC9000.

4. Select either Functional or Timing under Simulation Type .

5. Select either Viewlogic or OrCAD as the Schematic Type and
click on OK. A simulation report screen will appear and keep you
advised of the progress ot the simulation.

For Viewlogic designs the Simulation Utility produces a Viewsim

Design Implementation and Simulation

XEPLD Schematic Design Guide D-7

network file, design_name.vsm. For OrCAD designs it produces a
VST-formatted file for the OrCAD 386+ simulator, design_name.vst.

Figure D-1. Simulation Utility Control Panel

Simulation on a PC using DOS
The xsimmake command prepares a functional or timing simulation
model for Viewlogic or OrCAD 386+. On the DOS command line,
enter:

xsimmake -f target design_name

The target parameter is one of the following:

● oef6 — produces an OrCAD functional simulation file
(design_name.vst).

● oet6 — produces an OrCAD timing simulation file
(design_name.vst).

● vef6 — produces a Viewlogic functional simulation file
(design_name.vsm).

● vet6 — produces a Viewlogic timing simulation file
(design_name.vsm).

Simulating Power-On Initialization
In both the functional and timing simulation files produced by the
xepldsim command, xsimmake command or Simulation
Utility icon, a global net named PRLD is added to the design to

XEPLD Schematic Design Guide

D-8 Xilinx Development System

represent the device power-on condition. When the PRLD input is
pulsed, all registers in the device are initialized to the states specified
by INIT attributes in your design (default is zero for XC9000).

To simulate the device power-on condition, set the PRLD net input to
the High state at time zero. Set PRLD Low after any positive time
interval. Registers are initialized instantaneously (zero delay from
PRLD to registers) and are held at the initial state as long as PRLD is
High. Registers are allowed to change state in response to user
stimulus any time after PRLD is set Low. Before setting PRLD Low,
you should set all essential device inputs to valid logic levels to
prevent registers from lapsing back into the “unknown” state.

Index

XEPLD Schematic Design Guide i

Numerics
3-state

vs. multiplexing, 4-2

A
altran, 2-24
Altran command, A-1
Answers to common questions, A-1, D-1
applications, 4-1
attributes, B-1, C-1

INIT, B-4
LOC, B-2
LOWPWR, B-3
PART, 3-1, B-1
PLD, B-2

B
behavioral modules, 2-15, 2-16
bidirectional signals, 4-2
bidirectionals, 2-16
boxes in Viewlogic schematics, A-1
BUF, 2-5
BUFE, 2-5
BUFG, 2-8, 2-10, 2-11
BUFTs, 2-5
buses, bidirectional, 4-2

C
clocks

global, 2-7
common problems, how to solve, A-1, D-1
common symbols, 2-2
component not found message, A-2
components

common, 2-2
custom

example of, 2-14, 2-20
non-EPLD, finding, A-1

custom component
examples, 2-14, 2-20

custom symbols, 2-17

D
design

applications and techniques, 4-1
device-independent, 2-1
example, 1-3
fitting, 1-11, 1-12
FPGA to EPLD conversion, 2-20
hierarchical, 2-19
procedure, 1-3
speed optimization, 3-13
tradeoffs, 3-1

device
selecting, 3-1, B-1
selection, 1-12

device selection
automatic selection criteria, 3-3

device-independent design, 2-1

E
EPLD design

converting from FPGA, 2-20
errors

component not found, A-2
example design, 1-3

F
fitter reports, 1-14
fitting

problems and solutions, 3-1, A-2
Viewlogic, 1-11, 1-12

FPGA design
converting to EPLD, 2-20

functional simulation
Viewlogic, 1-8

G
global clock nets, 2-7, 2-9, 2-11
GND, 2-4
ground signals, 2-3

H
hierarchical design, 2-19

XEPLD Schematic Design Guide

ii Xilinx Development System

I
IBUF, 2-16
INIT attribute, B-4
internal nodes and timing simulation, A-3,
D-6
IOPAD symbol, 2-16

L
library

schematic, 2-1
unified, 2-1

LOC attribute, B-2
logic

optimization, B-3, B-4
reducing levels of, 3-19

LOWPWR attribute, B-3

M
macro component

creating custom, 2-19
macrocell feedback, 2-5
messages

component not found, A-2
multiplexing vs. 3-state signal, 4-2

N
nodes, internal, and timing simulation, A-3

O
OBUF, 2-6, 2-16
OPAD, 2-6
optimization, B-3, B-4

effects on internal nodes, D-6
for speed, 3-13

P
package

selection, 1-12
part

selection, 1-12
PART attribute, 3-1, B-1
pin assignment, B-2
PinSave file, 3-8

PLD
attribute, B-2
linking symbol with with PLUSASM
file, B-2

PLUSASM file
linking with PLD symbol, B-2

power signals, 2-3
power, controlling, B-3
predefined groups, T-Spec, 3-17
primitives

definition, 2-2
PRLD (preload) signal

control of, B-4
registers stuck at preload value, A-2

problems, common, how to solve, A-1, D-1
PROcapture, 1-7
procedure for basic design, 1-3
programming (device)

Viewlogic, 1-11, 1-12
PROsim, 1-9

Q
Questions commonly asked, A-1, D-1

R
read-back registers, 4-1
registers

read-back, 4-1
stuck at preload values, A-2

reports
from fitter, 1-14

S
schematic

design, getting started, 1-1
library, 2-1

simulation
functional

Viewlogic, 1-8
problems and solutions, A-2
timing

and internal nodes, A-3

Index

XEPLD Schematic Design Guide iii

Viewlogic, 1-15, 1-16
speed

setting, 1-12
speed optimization, 3-13
state machines

FPGA to EPLD conversion, 2-26
symbols

common, 2-2
custom, 2-17
GND, 2-4
IOPAD, 2-16
non-EPLD, finding, A-1
unused inputs, 2-3
VCC, 2-4

SymGen command, 2-17

T
target device, selecting, 3-1, B-1
TIMEGRP

symbols, 3-17
TIMESPEC primitive

basic groups, 3-17
FROM-TO statement, B-4

timing simulation
and internal nodes, A-3
Viewlogic, 1-15, 1-16

TNM attribute, 3-17
tradeoffs, in fitting a design, 3-1
TS attribute, 3-17

length, 3-16
time delay units, 3-18

T-Specs, 3-14

U
unified library, 2-1

V
VCC, 2-4
ViewDraw

configuration, 1-5
Viewlogic

functional simulation, 1-8

timing simulation, 1-15, 1-16

W
white boxes, in Viewlogic schematics, A-1

X
XACT–Performance, 3-14

predefined groups, 3-17
TS attribute, 3-16

Xaltran, 2-24
XDraft command, 1-7, 2-24
XOR, registered, 2-14, 2-20
.XSF file, 2-17

	Cover Page
	Title Page
	Preface
	Conventions
	CONTENTS
	Getting Started with Schematic Design
	Design Entry Techniques
	Controlling Design Implementation
	Design Applications
	Common Questions and Answers
	Attributes
	XEPLD Library Selection Guide
	Design Implementation and Simulation
	INDEX

