
Introduction

Getting Started

Design Techniques

FPGA Design Issues

EPLD Design Issues

Functional Simulation
Preparation

Design Implementation

Timing Simulation
Preparation

Simulation Issues

Manual Translation

Design Architect Tutorial

QuickSim Tutorial

Mentor
Graphics
Interface/
Tutorial
Guide
Mentor Graphics Interface/Tutorial Guide — 0401408 01 Printed in U.S.A.

X-BLOX Tutorial

Xilinx ABEL Tutorial

XACT-Performance and
XDelay Tutorial

XEPLD Tutorial

Error Messages

Mentor
Graphics
Interface/
Tutorial
Guide
Mentor Graphics Interface/Tutorial Guide

Mentor Graphics Interface/Tutorial Guide

Xilinx Development System

, XACT, XC2064, XC3090, XC4005, and XC-DS501 are registered trademarks of Xilinx. All XC-prefix
product designations, XACT-Floorplanner, XACT-Performance, XAPP, XAM, X-BLOX, X-BLOX plus, XChecker,
XDM, XDS, XEPLD, XPP, XSI, BITA, Configurable Logic Cell, CLC, Dual Block, FastCLK, HardWire, LCA, Logic
Cell, LogicProfessor, MicroVia, PLUSASM, SMARTswitch, UIM, VectorMaze, VersaBlock, VersaRing, and ZERO+
are trademarks of Xilinx. The Programmable Logic Company and The Programmable Gate Array Company are
service marks of Xilinx.

IBM is a registered trademark and PC/AT, PC/XT, PS/2 and Micro Channel are trademarks of International Business
Machines Corporation. DASH, Data I/O and FutureNet are registered trademarks and ABEL, ABEL-HDL and ABEL-
PLA are trademarks of Data I/O Corporation. SimuCad and Silos are registered trademarks and P-Silos and P/C-
Silos are trademarks of SimuCad Corporation. Microsoft is a registered trademark and MS-DOS is a trademark of
Microsoft Corporation. Centronics is a registered trademark of Centronics Data Computer Corporation. PAL and
PALASM are registered trademarks of Advanced Micro Devices, Inc. UNIX is a trademark of AT&T Technologies,
Inc. CUPL, PROLINK, and MAKEPRG are trademarks of Logical Devices, Inc. Apollo and AEGIS are registered
trademarks of Hewlett-Packard Corporation. Mentor and IDEA are registered trademarks and NETED, Design
Architect, QuickSim, QuickSim II, and EXPAND are trademarks of Mentor Graphics, Inc. Sun is a registered
trademark of Sun Microsystems, Inc. SCHEMA II+ and SCHEMA III are trademarks of Omation Corporation. OrCAD
is a registered trademark of OrCAD Systems Corporation. Viewlogic, Viewsim, and Viewdraw are registered
trademarks of Viewlogic Systems, Inc. CASE Technology is a trademark of CASE Technology, a division of the
Teradyne Electronic Design Automation Group. DECstation is a trademark of Digital Equipment Corporation.
Synopsys is a registered trademark of Synopsys, Inc. Verilog is a registered trademark of Cadence Design Systems,
Inc.

Xilinx does not assume any liability arising out of the application or use of any product described or shown herein;
nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others. Xilinx
reserves the right to make changes, at any time, in order to improve reliability, function or design and to supply
the best product possible. Xilinx will not assume responsibility for the use of any circuitry described herein other
than circuitry entirely embodied in its products. Xilinx devices and products are protected under one or more of
the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155; 4,758,985;
4,820,937; 4,821,233; 4,835,418; 4,853,626; 4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135;
5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704; 5,329,174; 5,329,181;
5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,357,153;
5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189;
5,410,194; 5,414,377; RE 34,363, RE 34,444, and RE 34,808. Other U.S. and foreign patents pending. Xilinx, Inc.
does not represent that devices shown or products described herein are free from patent infringement or from any
other third party right. Xilinx assumes no obligation to correct any errors contained herein or to advise any user of
this text of any correction if such be made. Xilinx will not assume any liability for the accuracy or correctness of
any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

R

Mentor Graphics Interface/Tutorial Guide
Xilinx Development System

Preface

About This Manual
This manual explains how to use Version 5 of the XACT Mentor
Graphics interface software with Mentor Graphics software Version
8.2_5. Included in this book is information on using the Mentor
Graphics Design Manager interface configured for the design,
simulation, and implementation of Xilinx Programmable Logic
Devices (PLDs). The following Mentor Graphics and Xilinx
applications are represented in the Design Manager window as icons:

● Mentor Graphics Applications

● Design Architect: design application with symbol editor,
schematic editor, and VHDL editor

● QuickSim II: interactive logic simulator

● QuickPath: static analysis application

● Design Viewpoint Editor: interactive application that allows
you to change the rules that configure your design

● Notepad Editor: full-featured, window-based text editor

● Xilinx Applications

● FNCSIM8: prepares your designs for functional simulation

● TIMSIM8: prepares your designs for timing simulation

● Men2XNF8: translates your design into a Xilinx netlist file

● XMake: automatically converts your FPGA designs into LCA
and BIT files

● XEMake: automatically converts your EPLD designs into
Mentor Graphics Interface/Tutorial Guide — 0401408 01 i

Mentor Graphics Interface/Tutorial Guide
design database and Intelhex files

● XACT Design Manager: menu-driven user interface to the
Xilinx core tools

Note: PLDs include FPGA and EPLD devices. When applicable, PLD
will be used in this manual to include both types of devices. FPGA or
EPLD will be used when a distinction is necessary. FPGAs include the
XC2000 device family (XC2000, XC2000L), the XC3000 device family
(XC3000, XC3000A, XC3000L, XC3100, XC3100A) and the XC4000
device family (XC4000,XC4000A, XC4000H). EPLDs include the
XC7000 device family.

The tutorials in this manual provide step-by-step instructions on
creating your PLD designs using Design Architect; simulating your
designs with QuickSim II; and incorporating X-BLOX and Xilinx
ABEL elements into your designs.

This manual assumes that you are familiar with the Mentor Graphics
CAE system, Xilinx core tools, and the UNIX operating system. This
manual is not intended to replace Mentor Graphics or Xilinx manuals
that describe in detail Design Manager, Design Architect, Xilinx
Libraries, and Xilinx core software. Refer to the list of related
publications below for additional documentation that may be useful.

Manual Contents
This manual covers the following topics:

● Chapter 1: Introduction. Introduction to the Mentor Graphics
Design Manager interface, general description of the Xilinx design
flow, and a brief list of new features in the current software
release.

● Chapter 2: Getting Started. Configuring your system for XACT
Mentor Graphics interface software, and invoking and using
Design Manager and Design Architect.

● Chapter 3: Design Techniques. General design techniques for
creating PLD schematics, including adding and modifying Xilinx
attributes.

● Chapter 4: FPGA Design Issues. FPGA- specific design issues,
including a description of Xilinx FPGA attributes.
ii Xilinx Development System

● Chapter 5: EPLD Design Issues. EPLD- specific design issues,
including a description of Xilinx EPLD attributes.

● Chapter 6: Functional Simulation Preparation. Preparing your
designs for functional simulation.

● Chapter 7: Design Implementation. Converting FPGA design
files to LCA or BIT files, and converting EPLD design files to
design database or Intel Hex files.

● Chapter 8: Timing Simulation Preparation. Preparing your
designs for timing simulation.

● Chapter 9: Simulation Issues. Issues you need to take into
consideration when simulating PLDs.

● Chapter 10: Manual Translation. Manually processing your
design from the operating system command line.

● Chapter 11: Design Architect Tutorial. Steps you through a
typical FPGA design procedure from schematic entry to
completing a functioning device using Mentor Graphics Design
Architect configured for Xilinx designs.

● Chapter 12: QuickSim Tutorial. Steps you through both a
functional and a timing simulation of an FPGA design using
Mentor Graphics QuickSim II.

● Chapter 13: X-BLOX Tutorial. Creating designs with X-BLOX
elements as well as simulating them.

● Chapter 14: Xilinx ABEL Tutorial. Creating designs with Xilinx
ABEL elements as well as simulating them.

● Chapter 15: XACT-Performance and XDelay Tutorial. Specifying
timing requirements for your design.

● Chapter 16: XEPLD Tutorial. Steps you through a typical EPLD
design procedure including entering your schematic, defining
PLD equations, fitting your design, and simulating using
QuickSim II.

● Appendix A: Error Messages. The appendix lists error messages
and possible solutions.
Mentor Graphics Interface/Tutorial Guide iii

Mentor Graphics Interface/Tutorial Guide
Related Publications
This section provides a list of publications that contain information
related to the products described in this manual.

Xilinx Publications
XACT User Guide

XACT Reference Guide

X-BLOX User Guide

Xilinx ABEL User Guide

Xilinx Quick Reference Card — Mentor Graphics Design Architect for
FPGA Designs

XEPLD Design Guide

XEPLD Reference Guide

Xilinx Quick Reference Card for EPLD Hardware

Xilinx Quick Reference Card for XEPLD Software

Mentor Graphics Publications
Mentor Graphics System Overview Manual

Design Architect User’s Manual

Design Architect Reference Manual

Design Manager User’s Manual

Design Manager Reference Manual

QuickSim II User’s Manual

QuickPath User’s and Reference Manual

Design Viewpoint Editor User’s and Reference Manual

Notepad User’s and Reference Manual
iv Xilinx Development System

Conventions

The following conventions are used in this manual’s syntactical
statements:

Courier font System messages or program files appear
regular in regular Courier font.

Courier font Literal commands that you must enter in
bold syntax statements are in bold Courier font.

italic font Variables that you replace in syntax
statements are in italic font.

[] Square brackets denote optional items or
parameters. However, in bus specifications,
such as bus [7:0], they are required.

{ } Braces enclose a list of items from which
you must choose one or more.

· A vertical ellipsis indicates material that has
· been omitted.
·

. . . A horizontal ellipsis indicates that the
preceding can be repeated one or more
times.

| A vertical bar separates items in a list of
choices.

↵ This symbol denotes a carriage return.
Mentor Graphics Interface/Tutorial Guide — 0401408 01 v

Mentor Graphics Interface/Tutorial Guide
vi Xilinx Development System

Contents
Chapter 1 Introduction
Defining the Design Flow ... 1-1
Defining the Design Manager Interface 1-3

Tools Window Applications... 1-5
Editor ... 1-5
QuickPath .. 1-5
QuickSim II .. 1-5
PLD_DA... 1-6
PLD_DVE .. 1-6
PLD_FNCSIM8.. 1-6
PLD_Men2XNF8 ... 1-6
PLD_TIMSIM8 ... 1-7
PLD_XDM.. 1-7
PLD_XEMake .. 1-7
PLD_XMake .. 1-7

What is New in this Release .. 1-8

Chapter 2 Getting Started
Configuring Your System ... 2-1

Standard Directory Structure .. 2-2
Converting V7 Designs to V8.x... 2-3

Entering the Design Manager Environment 2-3
Invoking Applications in the Design Manager......................... 2-4

Data-centered Invocation .. 2-5
Tool-centered Invocation ... 2-5

Entering Design Architect .. 2-5
Tool-centered Invocation of Design Architect 2-5
Data-centered Invocation of Design Architect 2-6

Retargeting Your Design to a Different Family 2-6
Retargeting in the Design Manager .. 2-7
Retargeting from the Command Line...................................... 2-8
Mentor Graphics Interface/Tutorial Guide — 0401408 01 vii

Mentor Graphics Interface/Tutorial Guide
Chapter 3 Design Techniques
Naming Conventions.. 3-1

EDIF2XNF... 3-2
Signal Naming Conventions .. 3-3
Symbol Naming Conventions .. 3-3

Xilinx Libraries.. 3-4
Primitives and Macros... 3-4
X-BLOX... 3-4
Using the XACT Libraries ... 3-5
Bus Rippers .. 3-5

Creating a Schematic... 3-6
Entering Xilinx Attributes .. 3-7

Adding Properties ... 3-7
Modifying Properties ... 3-8

Merging Design Files from Other Sources 3-8
Creating a Xilinx ABEL Symbol... 3-9
Adding a Xilinx ABEL Symbol to Your Schematic................... 3-9

Chapter 4 FPGA Design Issues
FPGA Properties .. 4-1

Symbol Properties... 4-1
REF.. 4-1
PINTYPE ... 4-2
INST... 4-2
COMP .. 4-2
FILE ... 4-2
BLKNM .. 4-3
HBLKNM.. 4-4
MAP ... 4-4
DOUBLE .. 4-4
DECODE ... 4-4
INIT .. 4-5
EQN ... 4-5
DEF.. 4-5
CYMODE ... 4-5
SCHNM.. 4-5
LIBVER .. 4-5

Location Properties ... 4-6
LOC ... 4-6
RLOC... 4-7
viii Xilinx Development System

Contents
USE_RLOC ... 4-7
U_SET ... 4-7
HU_SET .. 4-8
RLOC_ORIGIN.. 4-8
RLOC_RANGE.. 4-8

Input/Output Properties... 4-8
INTERNAL... 4-8
NODELAY ... 4-8
FAST or SLOW.. 4-8
MEDFAST or MEDSLOW.. 4-9
RES or CAP... 4-9
CMOS or TTL .. 4-9

CLB/IOB Properties .. 4-9
BASE ... 4-9
CONFIG... 4-10
EQUATE_F AND EQUATE_G .. 4-10
Modifying CLB/IOB Properties... 4-10

Timing Specification Properties .. 4-10
TSidentifier .. 4-11
TNM... 4-11
TS Flag .. 4-11
Adding TIMESPEC/TIMEGRP Properties 4-11
Adding a TS Flag to a Net ... 4-12

Net Properties... 4-13
NET ... 4-13
NETFLAG .. 4-13

Chapter 5 EPLD Design Issues
Components... 5-1

Buffers and Pads .. 5-2
Input and Output Buffer Connections 5-2
Output Buffers and 3-State Buffers 5-3
On-Chip 3-State Multiplexing... 5-7
Input Buffers, Clocks, and Global Control Nets 5-7

EPLD-Specific Components ... 5-8
Counters .. 5-11
Arithmetic Components ... 5-11
PLD Components .. 5-12
Components Not Supported by Specific Devices.............. 5-12

Primitives and Macros.. 5-13
User-Defined Primitives and Macros 5-14
Mentor Graphics Interface/Tutorial Guide ix

Mentor Graphics Interface/Tutorial Guide
Creating a User-defined Primitive...................................... 5-14
Creating a User-defined Macro.. 5-14

Assigning Logical High and Low Values 5-15
Attributes .. 5-15

Using Attributes... 5-16
Global Attributes ... 5-16
PLD Equation File Name: The PLD Attribute.......................... 5-17
Pin Assignment: The LOC Attribute .. 5-18
Power Setting: The LOWPWR Attribute 5-19
Logic Optimization Attributes .. 5-19

OPT ... 5-19
LOGIC_OPT .. 5-20
MINIMIZE... 5-20
UIM_OPT... 5-20
FOE_OPT .. 5-21
CLOCK_OPT ... 5-21
REG_OPT.. 5-21
PRELOAD_OPT .. 5-21

Fast or High-Density Function Blocks: F and H Attributes...... 5-22
MRINPUT.. 5-23

Chapter 6 Functional Simulation Preparation
PLD_Men2XNF8 .. 6-1

Design Object ... 6-3
Part Type .. 6-3
Run MemGen Only ... 6-3
Verbose Output... 6-3
Help... 6-3
OK or Cancel .. 6-3

PLD_FNCSIM8 .. 6-4
Design Object ... 6-5
Schematic ... 6-5

Use Original ... 6-5
Auto Generate ... 6-5

Run QuickSim ... 6-6
Verbose Output... 6-6
Help... 6-6
OK or Cancel .. 6-6

Output Files.. 6-6
QuickSim II... 6-7

Design Pathname ... 6-8
x Xilinx Development System

Contents
Symbol... 6-8
Interface... 6-8

Timing Mode ... 6-8
Simulator Resolution... 6-9
OK, Reset, or Cancel.. 6-9

PLD_DVE... 6-9
Design Object ... 6-10
Create Viewpoint Type ... 6-10

Simulation.. 6-10
XNF Translation... 6-10
Back Annotation .. 6-10

PLD Technology ... 6-10
Use Default Viewpoint Name.. 6-10
Help .. 6-10
OK, Reset, or Cancel.. 6-11

Chapter 7 Design Implementation
PLD_XMake... 7-1

Design Object ... 7-2
Override Part Type ... 7-2
Verbose Output... 7-2
Rerun All Steps... 7-3
Use Guide File .. 7-3
Perform X-BLOX Optimization.. 7-3
Generate MAK File Only... 7-3
Output to Screen... 7-3
Mapping Strategy.. 7-3

Map-Then-Merge... 7-4
Map-FILE=-Then-Merge .. 7-4
Merge-Then-Map... 7-4

Target ... 7-4
Make Bitstream.. 7-4
Make Placed & Routed Design.. 7-4
Stop to Review DRC.. 7-4
File... 7-5

OK or Cancel .. 7-5
PLD_XEMake .. 7-5

Design Object ... 7-6
Override Part Type ... 7-6
Generate MAK File Only... 7-6
Force Execution.. 7-6
Mentor Graphics Interface/Tutorial Guide xi

Mentor Graphics Interface/Tutorial Guide
Target.. 7-6
Signature... 7-7

Output Files.. 7-7
Design File... 7-7
Programming File .. 7-7
MAK File .. 7-8
Report File ... 7-8
Out File .. 7-8
PRP File... 7-8
Men2XNF8.log File .. 7-8

Chapter 8 Timing Simulation Preparation
PLD_TIMSIM8.. 8-1

Design Object ... 8-2
Schematic ... 8-2

Use Original ... 8-3
Auto Generate ... 8-3

Run QuickSim ... 8-3
Verbose Output... 8-3
Help... 8-4
OK or Cancel .. 8-4

Output Files.. 8-4
QuickSim II... 8-4

Design Pathname ... 8-5
Symbol... 8-5
Interface... 8-5

Timing Mode ... 8-5
Simulator Resolution... 8-6
OK, Reset, or Cancel .. 8-6
QuickPath ... 8-6

Chapter 9 Simulation Issues
Simulation Models.. 9-1
Analyzing Nets from the Schematic ... 9-1
FPGA Devices.. 9-2

Global Reset and 3-State Signals... 9-2
XC4000 Simulation Exceptions... 9-3

EPLD Devices .. 9-3
Using PRLD for Initialization ... 9-3
XC7000 Simulation Exceptions... 9-5
xii Xilinx Development System

Contents
Chapter 10 Manual Translation
Functional Simulation... 10-2

FPGA and EPLD Designs with Only Schematic Elements 10-2
FPGA Designs with Schematic and CLB/IOB/EQN
Elements... 10-4
FPGA Designs with Schematic and X-BLOX Elements.......... 10-6
FPGA Designs with Schematic Elements and Elements
with the FILE Property .. 10-8
FPGA Designs with Schematic Elements, Elements
with the FILE Property, and X-BLOX Elements 10-10

Design Implementation .. 10-11
FPGA Designs .. 10-11
EPLD Designs .. 10-13

Timing Simulation .. 10-14
FPGA Designs with Schematic Elements Only 10-14
FPGA Designs with Non-schematic Elements........................ 10-16
EPLD Designs .. 10-18

Program Summary... 10-18
EDIF2XNF .. 10-18

Syntax.. 10-19
Variables.. 10-19
Options .. 10-19

ENWRITE ... 10-22
Syntax.. 10-22
Variables.. 10-22
Options .. 10-22

FNCSIM8 .. 10-22
Syntax.. 10-23
Variables.. 10-23
Options .. 10-23

Gen_Sch8... 10-23
Syntax.. 10-23
Variables.. 10-23
Options .. 10-24

LCA2XNF.. 10-24
Men2XNF8.. 10-24

Syntax.. 10-24
Variables.. 10-24
Options .. 10-25

PLD_DVE ... 10-25
Mentor Graphics Interface/Tutorial Guide xiii

Mentor Graphics Interface/Tutorial Guide
Syntax.. 10-25
Variables.. 10-25
Options .. 10-25

PLD_DVE_BA... 10-26
Syntax.. 10-26
Variables.. 10-26
Options .. 10-26

PLD_DVE_SIM ... 10-26
Syntax.. 10-26
Variables.. 10-26
Options .. 10-27

QUICKSIM II ... 10-27
Syntax.. 10-27
Variables.. 10-27
Options .. 10-27

TIMSIM8 ... 10-27
Syntax.. 10-27
Variables.. 10-28

UNAKAXNF .. 10-28
Syntax.. 10-28
Variables.. 10-28
Options .. 10-28

VMH2XNF... 10-29
X-BLOX... 10-29

Syntax.. 10-29
Variables.. 10-29

XBLXGS.. 10-30
Syntax.. 10-30
Variables.. 10-30
Options .. 10-31

XDelay .. 10-31
XNFBA .. 10-31

Syntax.. 10-31
Variables.. 10-31
Options .. 10-32
Examples ... 10-32

XNFMerge... 10-34
XNFPrep ... 10-35

Chapter 11 Design Architect Tutorial
Required Background Knowledge.. 11-2
xiv Xilinx Development System

Contents
FPGA Design Flow .. 11-2
Software Installation... 11-5

Required Software .. 11-5
Before Beginning the Tutorial ... 11-5

Modifying Mentor Graphics Variables................................ 11-6
Installing the Tutorial... 11-7

Standard Directory Structure ... 11-8
Tutorial Directory and Files.. 11-8

Starting the Design Manager ... 11-11
Tools Window ... 11-12
Navigator Window... 11-13
Command Palette ... 11-13

Copying the Tutorial Files .. 11-13
Targeting the Design for the XC4000 Family............................... 11-14
Starting Design Architect ... 11-15

Using the Mouse in Design Architect...................................... 11-16
Left Mouse Button ... 11-16
Middle Mouse Button (Strokes) ... 11-16
Right Mouse Button ... 11-17

Using the Function Keys... 11-17
Selecting Commands from the Menu Bar............................... 11-18
Selecting Commands from the Palette 11-18
Entering Commands from the Keyboard 11-18
Cancelling Commands.. 11-18
Repeating Menu Commands .. 11-18
Manipulating the Screen ... 11-19

Completing the Calc Design .. 11-19
Design Description.. 11-19
Creating the ANDBLK2 Symbol.. 11-21

Opening a Symbol Window ... 11-21
Creating the Symbol Outline.. 11-21
Adding Pins to the ANDBLK2 Symbol 11-22
Adding Text ... 11-25
Modifying Text Size ... 11-26
Saving the ANDBLK2 Symbol ... 11-27

Creating the ORBLK2 Symbol .. 11-28
Creating Schematics for ANDBLK2 Symbol 11-30

Opening a Schematic Window .. 11-30
Adding the First Component to a Schematic 11-30
Placing Additional Components... 11-32
Copying a Component... 11-33
Mentor Graphics Interface/Tutorial Guide xv

Mentor Graphics Interface/Tutorial Guide
Moving a Component... 11-34
Adding Buses to a Schematic.. 11-35
Adding Nets to a Schematic .. 11-36
Completing the Net Connections 11-38
Labeling Nets and Buses... 11-39
Adding Ports .. 11-42
Labeling Buses .. 11-44
Defining Bus Ripper Rule Properties 11-45
Saving the Schematic .. 11-47

Creating Schematics for ORBLK2 Symbol 11-48
Completing the ALU Schematic .. 11-50
Placing User-Created Components .. 11-51
Placing Library Components... 11-53
Adding Nets, Buses, Ports and Labels 11-54

FD4CE ... 11-54
ANDBLK2 and ORBLK2 .. 11-55

Adding Labels to Components.. 11-56
Saving the ALU Schematic ... 11-58
Exploring Xilinx Library Elements ... 11-58
Viewing a Xilinx Soft Macro Schematic................................... 11-59
Viewing a Xilinx Library Primitive .. 11-60
Viewing a Xilinx RPM (XC4000 Family Only) 11-61
Opening the Calc Schematic .. 11-63
Using the XC3000 Oscillator... 11-64
Using the XC4000 Oscillator... 11-65
Inverting Output Display Signals... 11-67

Controlling FPGA Layout from the Schematic 11-69
Assigning Pin Locations.. 11-69
Designating FAST Pads.. 11-71
Using the I/O Flip-Flops .. 11-72
Saving the Calc Schematic ... 11-73

Optimizing the Design for the XC4000 Family 11-73
Device-Independent Stack Implementation 11-74
RAM Stack Implementation (XC4000 Family Only) 11-75
Device-Independent State Machine.. 11-77
Wide-Edge Decoders (XC4000 Family Only) 11-78

Configuring XMake using XDM .. 11-80
Using a Constraints File.. 11-81
Using .PRO Files .. 11-83

Using PLD_Men2XNF8.. 11-83
Examining PLD_Men2XNF8 Output Files............................... 11-84
xvi Xilinx Development System

Contents
Using PLD_XMake... 11-85
Examining PLD_XMake Output Files 11-87
Checking for Warnings in the OUT and PRP Files 11-88
Checking the RPT File.. 11-91

Examining Routed Designs with XDE.. 11-93
Entering the Design Editor.. 11-93
Finding a Block ... 11-95
Highlighting a Net ... 11-96
Using Command Line Entry.. 11-96
Running the Design Rule Checker ... 11-96

Verifying the Design Using a Demonstration Board..................... 11-97
Connecting the Cable for Download 11-97

XC3000/XC4000 Demonstration Board............................. 11-99
XC4000 Demonstration Board... 11-100
XC3000 Demonstration Board... 11-101

Downloading the Bitstream... 11-101
Testing the Design.. 11-103

Making Incremental Design Changes .. 11-105
Creating the Guide LCA File... 11-106
Making an Incremental Schematic Change 11-106
Translating the Incremental Design .. 11-108
Checking for Errors in the calc.out File................................... 11-109
Verifying the Change in the Demonstration Board 11-109

Leaving XDM ... 11-110
Command Summaries ... 11-111

Basic Translation for XC3000A and XC3000L Designs.......... 11-111
Basic Translation for XC4000 Family Designs 11-111
Basic Translation for XC3000, XC3100, and XC2000
Family Designs ... 11-112
Incremental Translation for XC3000A and XC3000L
Designs... 11-112
Incremental Translation for XC4000 Family Designs 11-112
Incremental Translation for XC3000, XC3100, and
XC2000 Family Designs ... 11-113
Further Reading.. 11-113

Chapter 12 QuickSim Tutorial
Required Background Knowledge ... 12-1
Software Installation... 12-2

Required Software .. 12-2
Before Beginning the Tutorial ... 12-2
Mentor Graphics Interface/Tutorial Guide xvii

Mentor Graphics Interface/Tutorial Guide
Modifying Mentor Graphics Variables................................ 12-3
Installing the Tutorial... 12-4

Starting PLD_DMGR.. 12-5
Making a Working Copy of the CALC design.......................... 12-5

Basic Functional Simulation ... 12-6
Preparing the Calc Schematic for Simulation 12-6

PLD_Men2XNF8.. 12-7
PLD_FNCSIM8 .. 12-7

Viewing the Calc Schematic ... 12-7
Selecting Nets for Simulation.. 12-8
Opening Trace and List Windows ... 12-10
Adding Traces Manually ... 12-12
Assigning Values to the Clock .. 12-13
Asserting Global Reset (XC2000 & XC3000 Families
Only) ... 12-15
Asserting Global Set Reset (XC4000 Family Only) 12-16
Design Description.. 12-17
Simulating the Circuit .. 12-18
Saving the Results .. 12-24

Using the Transcript ... 12-26
Performing a Timing Simulation with PLD_TIMSIM8 12-27

Using PLD_TIMSIM8 to Prepare for Timing Simulation.......... 12-27
Examining the timsim8.log File ... 12-28
Simulating with a Command File in QuickSim 12-28

Timing Simulation Command Summary....................................... 12-29

Chapter 13 X-BLOX Tutorial
Introduction .. 13-1
Before Beginning the Tutorial... 13-1

Required Software .. 13-1
Preparing the Design .. 13-2

Modifying the Calc Design ... 13-2
Adding X-BLOX Module to Calc.. 13-3
Viewing the ALU_BLOX Schematic .. 13-3
Completing the ALU_BLOX Schematic 13-5
Understanding X-BLOX Buses ... 13-5
Using BUS_DEF Symbols to Define Bus Widths.................... 13-6
Completing the Bus Definition... 13-7
X-BLOX Symbols .. 13-8

Functional Simulation... 13-10
Using PLD_Men2XNF8... 13-11
xviii Xilinx Development System

Contents
Men2XNF8 Log File... 13-11
Using PLD_FNCSIM8... 13-13

FNCSIM8 Output ... 13-13
Viewing the Simulation Schematic 13-15
Using QuickSim II .. 13-17

Implementing the Calc Design ... 13-18
PLD_XMake Output Window .. 13-18

Verifying Calc on the Demonstration Board................................. 13-20
Timing Simulation .. 13-21

PLD_TIMSIM8 Output Window... 13-21
Using QuickSim II ... 13-23

Further Reading ... 13-24

Chapter 14 Xilinx ABEL Tutorial
Introduction .. 14-1
Before Beginning the Tutorial .. 14-1

Required Software .. 14-1
Preparing the Design .. 14-2

Copying the Tutorial Files.. 14-3
Modifying the Calc Design ... 14-3

Viewing STAT_ABL.ABL .. 14-3
Xilinx ABEL Output ... 14-7
Verifying STAT_ABL... 14-11

Synthesizing STAT_ABL.ABL.. 14-11
Creating a Symbol for STAT_ABL ... 14-12
Adding STAT_ABL to Calc... 14-13
The STAT_ABL symbol ... 14-14

The FILE Property ... 14-14
Functional Simulation... 14-15

PLD_Men2XNF8... 14-16
PLD_Men2XNF8 Output.. 14-16

PLD_FNCSIM8 ... 14-17
PLD_FNCSIM8 Output .. 14-18

Viewing the Simulation Schematic.. 14-18
QuickSim II ... 14-20

Implementing the Calc Design ... 14-20
PLD_XMake.. 14-21

PLD_XMake Output... 14-22
Verifying Calc on the Demonstration Board................................. 14-23
Timing Simulation .. 14-23

PLD_TIMSIM8 .. 14-23
Mentor Graphics Interface/Tutorial Guide xix

Mentor Graphics Interface/Tutorial Guide
PLD_TIMSIM8 Output ... 14-24
QuickSim II.. 14-25

Further Reading ... 14-25

Chapter 15 XACT-Performance and XDelay Tutorial
Before Beginning the Tutorial... 15-2

Required Software .. 15-2
Preparing the Design .. 15-2

Understanding XACT-Performance ... 15-3
Grouping Symbols with TNM Attributes 15-3

TNMs on Logic Primitives .. 15-3
TNMs on Higher-Level Macro Symbols 15-4
TNMs on Nets to Tag Flip-Flops.. 15-4

Grouping Symbols by Predefined Class 15-5
Simplifying Symbol Grouping.. 15-5
Combining Classes: TIMEGRP Symbol.................................. 15-5

Joining Two or More Classes into One.............................. 15-6
Using the EXCEPT Statement... 15-6
Triggering on RISING or FALLING Clock Edges............... 15-6
Forming Classes by Output Net Name 15-7

Attaching Timing Specifications: TIMESPEC Symbol............. 15-7
Deciding When to Use XACT-Performance 15-8
Setting Default Timing Requirements .. 15-9

Adding a TNM Property .. 15-10
Entering Default Timing Specifications 15-11

Adding Timing Constraints to Specific Paths 15-13
Defining TNM Groups ... 15-14

Defining the INFFS Class .. 15-14
Defining the STACKER Class (XC4000 Family Only) 15-14
Defining the STACKER Class (XC3000A Only) 15-15
Defining the ALUFF Class ... 15-15
Defining the CTLFF Class ... 15-16
Defining the STFF Class.. 15-16

Grouping Classes with TIMEGRP... 15-17
Specifying TIMESPEC Constraints... 15-19
Making a Final Check ... 15-20

Implementing the Calc Design ... 15-22
Creating a Routed Design... 15-23
Examining XMake Output ... 15-23
Examining the PPR Log File ... 15-24

Warnings in the PPR Log File.. 15-26
xx Xilinx Development System

Contents
Timing Analysis Summary ... 15-27
Using XDelay, the Timing Analysis Program 15-27
Analyzing the Calc Design ... 15-29

Invoking XDelay.. 15-29
Using the Flagblk Option .. 15-29

Disabling Paths Through SD/RD Pins of Flip-Flops 15-30
Displaying Current Options.. 15-30

Using Analyze Mode... 15-31
Examining Analyze Mode Output ... 15-31
Using XDelay-TimeSpec Mode... 15-32
Examining XDelay-TimeSpec Mode Output 15-33
Using XDelay Mode .. 15-38

Reporting by Path Type... 15-38
Specifying Source and Destination... 15-40

Further Reading ... 15-42

Chapter 16 XEPLD Tutorial
Software Installation... 16-1

Required Software .. 16-1
Before Beginning the Tutorial ... 16-1

Modifying Mentor Graphics Variables................................ 16-2
How to Follow this Tutorial... 16-3
The Tutorial Design.. 16-5
The Example Files ... 16-6
Mentor XEPLD Demonstration Procedure 16-7
Overview of the Sessions .. 16-9
Session 1: Using the XEPLD Software .. 16-10

Step 1: Prepare the System.. 16-10
Step 2: Start the Mentor Graphics Design Manager............... 16-11
Step 3: Select Menu Items.. 16-11

Session 2: Drawing the Design in Design Architect..................... 16-12
Step 1: Open and View the Existing Design 16-13
Step 2: Create a New Schematic.. 16-15
Step 3: Change Zoom Level ... 16-15
Step 4: Enter and Arrange Symbols 16-16
Step 5: Create a Bus .. 16-18
Step 6: Create Wires .. 16-20
Step 7: Add Names... 16-22
Step 8: Add A Bus Name.. 16-25
Step 9: Assign Xilinx EPLD Attributes 16-28
Step 10: Finish the Drawing.. 16-30
Mentor Graphics Interface/Tutorial Guide xxi

Mentor Graphics Interface/Tutorial Guide
Step 11: Assign Signals to Specific EPLD Pins 16-31
Step 12: Check Your Design... 16-31
Step 13: Save Your Design... 16-32
Step 14: Exit Design Architect .. 16-32

Session 3: Defining the PLD Equations 16-32
Step 1: Define the Declaration Statements............................. 16-33
Step 2: Create the Boolean Equations.................................... 16-33

Session 4: Fitting the Design ... 16-37
Step 1: Invoke the Fitter.. 16-37

Alternative Ways to Process PLDs 16-37
Step 2: View the Reports .. 16-38

Session 5: Simulating the Design .. 16-39
Step 1: Prepare Your Input Vectors .. 16-40
Step 2: Run the Simulation and View the Results 16-42

Session 6: Completely Schematic-Based Designs and
Functional Simulation... 16-45

Step 1: Change the Working Directory 16-45
Step 2: Create a Custom Symbol ... 16-45

Open a Symbol Window .. 16-45
Draw the Rectangle ... 16-46
Add the Pins .. 16-46
Lengthening the Pins ... 16-48
Add the Symbol Name... 16-49
Check the Symbol.. 16-49
Save the Symbol.. 16-49

Step 3: Place the Custom Symbol in the Schematic............... 16-50
Step 4: Create the Lower-Level Schematic 16-52
Step 5: Run the Simulation and View the Results 16-54
Step 6: Quit Mentor Graphics ... 16-55

Appendix A Error Messages
EDIF2XNF.. A-1
Gen_Sch8 .. A-4
Gen_Sym8 ... A-5
PLD_DVE_BA.. A-6
PLD_DVE... A-7
PLD_DVE_SIM .. A-7
UNAKAXNF.. A-7
XBLXGS... A-9
XNFBA ... A-10
xxii Xilinx Development System

IntroductionMentor
Graphics
Interface/
Tutorial
Guide
Mentor Graphics Interface/Tutorial Guide — 0401408 01 Printed in U.S.A.

Mentor Graphics Interface/Tutorial Guide
Xilinx Development System

Chapter 1

Introduction

This chapter provides a general introduction to the Mentor Graphics
Design Manager application configured for Xilinx designs. The
Design Manager is a Motif-compliant, easy-to-use graphic interface
that represents applications and design files as icons. You can use the
Design Manager to run Xilinx and Mentor Graphics applications and
to manage your design files. The Mentor Graphics schematic capture
program, Design Architect, is represented in the Design Manager by
the PLD_DA icon. PLD_DA is the Design Architect program
configured for Xilinx designs. You can use PLD_DA to create your
Programmable Logic Device (PLD) designs.

It is highly recommended that you perform the tutorials provided in
this manual to become familiar with the basic concepts of PLD
design, verification, and implementation.

Defining the Design Flow
The Xilinx design flow is an iterative process of entering,
implementing, and verifying PLD designs until they are correct and
complete. This manual describes each step in the Design Flow and
how to process a design from entering a schematic to generating the
appropriate file for downloading to a Xilinx device. There are two
ways to perform the necessary steps in the PLD design flow. The
easiest and most automatic way is to use the application icons in the
Design Manager window. You can also run the various programs in
the design flow manually from the shell-level environment of the
workstation as described in a subsequent chapter in this manual.

The following is a summary of the steps you need to follow when
designing PLDs:
Mentor Graphics Interface/Tutorial Guide — 0401408 01 1-1

Mentor Graphics Interface/Tutorial Guide
1. Enter your design with the Design Architect schematic editor,
making sure that you observe the Xilinx design requirements
noted in this manual.

2. Test the functionality of your design. Generate a simulation
viewpoint with PLD_FNCSIM8 and then perform simulation with
QuickSim II.

When the functional verification test indicates that your design is
working correctly, proceed to the next step, design
implementation.

3. Implement your PLD design. Generate a Logic Cell Array (LCA)
or VMH/VMD file automatically by invoking PLD_XMake for
FPGAs or PLD_XEMake for EPLDs.

4. Test the timing of your design. Use PLD_TIMSIM8 to back-
annotate timing information to your original design or to create a
new schematic for timing simulation.

5. Download your FPGA design to the appropriate device using the
XChecker or MakePROM program. For EPLD designs, copy the
.prg file generated by XEMake to a PC and use Prolink to
download to the device programmer.

The following diagram provides an overview of this Design Flow
using the Design Manager icons.
1-2 Xilinx Development System

Introduction
Figure 1-1 Xilinx Design Flow

Defining the Design Manager Interface
The Mentor Graphics Design Manager is a Motif-compliant, easy-to-
use interface that represents applications and design files as icons.
You can now perform many tasks in the Design Manager window
that were previously done at the operating system level. The Design
Manager runs in a window on your workstation display and makes it
easy for you to invoke applications and to manage designs, files, and
directories. The Design Manager lets you do these tasks by using
graphical “point-and-click” actions. You can run applications by
selecting an application icon or a design object icon.

X4682

Create/edit/add to your design in
Design Architect

Download your design

1

2

3

4

5

Simulate functionality
using PLD_FNCSIM8

No

Yes

Implement your design
using PLD_XMake or PLD_XEMake

Simulate timing
using PLD_TIMSIM8

Design
functionally

correct?

No

Yes

Design
timing

correct?
Mentor Graphics Interface/Tutorial Guide 1-3

Mentor Graphics Interface/Tutorial Guide
Note: A design object consists of the files and directories that make
up your design.

 The Xilinx script, PLD_DMGR, configures the Design Manager for
the creation, implementation, and simulation of Xilinx designs. This
manual describes only the Xilinx-configured Design Manager; refer
to Mentor Graphics documentation for a more comprehensive
description of the interface.

The Design Manager includes a Tools window, a Navigator window,
and a Palette as shown in the following figure:

Figure 1-2 Design Manager Window
1-4 Xilinx Development System

Introduction
The Tools window contains icons representing all the Mentor
Graphics and Xilinx applications you need to execute the steps in the
design flow. The Navigator window contains design object icons,
including original schematics as well as files created during
translation and simulation. This window makes it easy to access files
in different directories. The Palette provides easy access to the most
commonly used Design Manager menu items. A brief description of
each icon in the Tool window is provided in the following pages.

Tools Window Applications
The Tools Window contains the following applications.

Editor

The Editor icon represents Mentor Graphics Notepad editor. Notepad
is a full-featured, window-based text editor. To invoke Notepad,
double-click on the Editor icon in the Design Manager window. For
more information on Notepad, refer to the Mentor Graphics Notepad
User’s and Reference Manual.

QuickPath

Use the Mentor Graphics QuickPath tool to perform static and slack
timing analysis on designs that have been prepared for timing
simulation. Refer to the “Timing Simulation Preparation”, Simulation
Issues”, and the tutorial chapters in this manual for more information
on QuickPath. For a detailed description of QuickPath, refer to the
Mentor Graphics QuickPath User’s and Reference Manual.

QuickSim II

Use the Mentor Graphics QuickSim II application to perform
functional or timing simulation on designs that have been prepared
for simulation. QuickSim II is an interactive logic simulator that
allows you to verify the functionality of your designs. Refer to the
“Functional Simulation Preparation”, “Timing Simulation
Preparation”, “Simulation Issues”, and the tutorial chapters in this
manual for more information on QuickSim II. For a detailed
description of QuickSim II, refer to the Mentor Graphics QuickSim II
User’s Manual.
Mentor Graphics Interface/Tutorial Guide 1-5

Mentor Graphics Interface/Tutorial Guide
PLD_DA

Use PLD_DA to execute the script that invokes the Mentor Graphics
Design Architect schematic editor configured for Xilinx designs. The
Xilinx library of primitives and macros have been added to Design
Architect. The Xilinx-configured Design Architect is identical to the
Mentor Graphics version except for the addition of these libraries. All
the editing commands will function as specified in the Mentor
Graphics Design Architect documentation. Refer to the “Design
Techniques”, “FPGA Design Issues”, “EPLD Design Issues”, and the
tutorial chapters in this manual for more information on creating
Xilinx designs with Design Architect. For a more detailed description
of Design Architect commands and processes, refer to the Mentor
Graphics Design Architect User’s Manual.

PLD_DVE

Use PLD_DVE to execute the script that invokes the Mentor Graphics
Design Viewpoint Editor(DVE) configured for Xilinx designs. When
you invoke this application, a dialog box will appear and you will be
asked to create either a Simulation, XNF, or Back-Annotation
Viewpoint. Refer to the “Functional Simulation Preparation” chapter
in this manual for more information on PLD_DVE. For detailed
information on DVE, refer to the Mentor Graphics Design Viewpoint
Editor User’s and Reference Manual.

PLD_FNCSIM8

Use PLD_FNCSIM8 to prepare your design for functional simulation.
Refer to the “Functional Simulation Preparation”, “Simulation
Issues”, and the tutorial chapters for more information on
PLD_FNCSIM8.

PLD_Men2XNF8

Use PLD_Men2XNF8 to translate your design to an XNF file. Refer to
the “Functional Simulation Preparation” and the tutorial chapters for
more information on PLD_Men2XNF8.
1-6 Xilinx Development System

Introduction
PLD_TIMSIM8

Use PLD_TIMSIM8 to prepare your design for timing simulation.
Refer to the “Timing Simulation Preparation”, “Simulation Issues”,
and the tutorial chapters for more information on PLD_TIMSIM8.

PLD_XDM

Note: There is no support for Mentor-specific programs in the Xilinx
Design Manager (XDM).

Use PLD_XDM to invoke the Xilinx Design Manager (XDM). This
application provides a menu-driven user interface to the Xilinx core
tools.

XDM gives you the ability to configure the individual programs that
are executed by the implementation tools, XMake and XEMake. This
capability is helpful when you want to debug a design.

You can also access the XACT Design Editor (XDE) within XDM. XDE
allows you to hand-edit a routed design, insert probes while doing
in-circuit verification, and perform static timing analysis. XDE cannot
be used on EPLD designs.

For more information on XDM, refer to the tutorial chapters of this
manual and to the XACT Reference Guide.

PLD_XEMake

Use PLD_XEMake to execute the XEMake program on EPLD designs.
This tool allows you to execute XEMake without having to enter the
Xilinx Design Manager. The XEMake program automatically fits your
design into a selected EPLD device and generates a device program
file. Refer to the “Design Implementation” chapter of this manual
and to the XEPLD Reference Guide for more information.

PLD_XMake

Use PLD_XMake to execute the XMake application on FPGA designs.
This tool allows you to execute XMake without having to enter the
Xilinx Design Manager. The XMake program runs the Xilinx core
tools to create a routed LCA file. Refer to the “Design
Implementation” chapter of this manual and to the XACT Reference
Guide for more information on XMake.
Mentor Graphics Interface/Tutorial Guide 1-7

Mentor Graphics Interface/Tutorial Guide
What is New in this Release
For a detailed description of new features included in this software
release, refer to the Release Notes that came with your Xilinx software
package.

● Added Unified Libraries to the XACT Libraries menu in Design
Architect. The Unified Libraries use the same component names,
with the same footprints (shapes, pin names, and functionality)
between product families allowing you to convert designs from
one product family to another. Pre-Unified Libraries are
categorized as Obsolete and are provided for backward
compatibility.

● Added the capability to create, simulate, and implement EPLD
designs.

● Added Hard Macro Replacement Library to overwrite old hard
macro library. The new library will contain the old hard macro
symbols with Relationally Placed Macro (RPM) schematics.
Unlike the old hard macros, the replacements will simulate
directly.

● Added Mentor Graphics Design Manager support. Xilinx and
Mentor Graphics applications are represented as icons in the
Design Manager window.

● Added guide feature for XC3000A, XC3000L, XC3100A, and
XC4000 designs. The guide feature allows incremental and
iterative design techniques previously not supported.

● Revised PPR to place and route XC3000A, XC3000L, and XC3100A
designs.

● Revised X-BLOX to process XC3000A, XC3000L, and XC3100A
designs.

● Added EPLD information to Mentor Graphics Interface User
Guide.

● IPAD, OPAD, IOPAD,UPAD symbols are now Class P.

● Added Design Architect, QuickSim II, X-BLOX, Xilinx ABEL,
XACT Performance/XDelay, and XEPLD tutorials to the Mentor
Graphics Interface User Guide.
1-8 Xilinx Development System

Getting Started

Mentor
Graphics
Interface/
Tutorial
Guide
Mentor Graphics Interface/Tutorial Guide — 0401408 01 Printed in U.S.A.

Mentor Graphics Interface/Tutorial Guide
Xilinx Development System

Chapter 2

Getting Started

This chapter describes how to configure your system to use the
Mentor Graphics Design Manager for creating and processing Xilinx
designs. A brief description of how to enter the Design Manager and
Design Architect is also provided. A procedure for retargeting your
designs from one device family to another is also included in this
chapter.

Configuring Your System
Install the appropriate software and verify that your system is
properly configured as described in the Release Notes that came with
your software package. When you have finished the installation,
verify that your .cshrc or setup file contains lines similar to the
following:

Note: Directory path names will vary.

setenv LCA /location_of_ds_344:
setenv XACT /location_of_ds_344:
/location_of_ds502 or location_of_ds550
set PATH=($PATH \

$LCA/com/sparc\
$LCA/bin/sparc\

/location_of_ds502 or location_of_ds550 /bin/sparc\
)

In addition to these Xilinx-specific environment variables, the Mentor
Graphics variables MGC_HOME, MGC_GENLIB,
LD_LIBRARY_PATH, MGC_LOCATION_MAP, and MGC_WD
should be set as follows:

● MGC_HOME: this should point to the Mentor Graphics software
tree.
Mentor Graphics Interface/Tutorial Guide — 0401408 01 2-1

Mentor Graphics Interface/Tutorial Guide
● MGC_GENLIB: this should point to the Mentor Graphics gen_lib
library.

● LD_LIBRARY_PATH: This variable is used by the Mentor
Graphics Design DataPort (DDP) routines that are accessed by
some Xilinx programs. If you are using a Sparc station with
OpenWindows installed in /usr, set this variable as follows:

setenv LD_LIBRARY_PATH $MGC_HOME/shared/
lib:$MGC_HOME/lib:/usr/openwin/lib

● MGC_LOCATION_MAP: this variable should point to a valid
location map file. Each component in a design contains a reference
indicating where it resides on the disk. All components in designs
created in the Mentor Graphics V8.2_5 environment reference the
variable $LCA. $LCA must be defined in the file pointed to by
$MGC_LOCATION_MAP. See the Mentor Graphics
documentation for more information on location maps.

● MGC_WD: this variable should point to the working directory.

Note: Problems occur in the Xilinx scripts if MGC_WD is not set
correctly.

Refer to the Release Notes for additional information on paths and
environment variables.

Standard Directory Structure
When you create a design in Design Architect, a directory is created
in the project directory with the same name as the design. This design
directory contains a schematic directory, symbol files, viewpoint files,
and part interfaces. It is identified as a design object by the file
design_name.mgc_component.attr.

For example, if you create a schematic named calc, a directory named
calc will be created, and, at the same level, the file
calc.mgc_component.attr will identify the directory as a design
object. The calc directory will contain all the files that describe the calc
design such as symbol files and schematic files.
2-2 Xilinx Development System

Getting Started
Converting V7 Designs to V8.x
To convert a V7 design to V8.x and for more information about the V8
environment, refer to the Transition Guide for V8.x Design Capture
Products from Mentor Graphics. In V7, all Xilinx components
reference /xact. In V8.2_5, all components reference $LCA. You must
update your references after you convert a design from the V7 to
V8.2_5 environment. To convert a V8 design to V8.2_5, simply open
and save it in V8.2_5 Design Architect.

Entering the Design Manager Environment
To enter the Design Manager from the operating system, type:

> pld_dmgr ↵

The Design Manager window appears as shown in the following
figure:
Mentor Graphics Interface/Tutorial Guide 2-3

Mentor Graphics Interface/Tutorial Guide
Figure 2-1 Design Manager Window

Invoking Applications in the Design Manager
You can invoke an application in the Design Manager by either
performing a data-centered invocation or a tool-centered invocation.
The two methods are described below. Refer to Mentor Graphics
Design Manager User’s Manual for a detailed description of Design
Manager operation.
2-4 Xilinx Development System

Getting Started
Data-centered Invocation

To perform a data-centered invocation, perform the following steps:

1. Select a design object in the Navigator window and press the right
mouse button.

2. Select Open from the Navigator menu.

3. Select the appropriate application from the pop-up menu.

Note: Only the applications that can be executed on the selected
object will be displayed in the pop-up menu.

4. A dialog box appears with option fields or the application is
executed. The dialog box options are described in detail in
subsequent sections of this manual.

Tool-centered Invocation

To perform a tool-centered invocation, perform the following steps:

1. Select the appropriate application in the Tools window.

2. Double-click the left mouse button.

3. A dialog box appears with option fields or the application is
executed. The dialog box options are described in detail in
subsequent sections of this manual.

Entering Design Architect
The Design Architect editing commands should function as specified
in the Mentor Graphics Design Architect User’s Manual. To begin your
schematic, enter Design Architect by using one of the following
methods:

Tool-centered Invocation of Design Architect
1. Select the PLD_DA icon.

2. Double-click the left mouse button.

3. The Design Architect window appears similar to what is shown in
the figure below, but without a schematic displayed. You can use
the Open Sheet icon in the session palette to open a schematic
sheet.
Mentor Graphics Interface/Tutorial Guide 2-5

Mentor Graphics Interface/Tutorial Guide
Data-centered Invocation of Design Architect
1. Select a design in the Navigator window and press the right

mouse button.

2. Select Open from the Navigator menu.

3. Select pld_da .

4. The Design Architect window appears similar to what is shown in
the figure below.

Figure 2-2 Design Architect Window

Retargeting Your Design to a Different Family
The Unified Libraries allow you to retarget your designs from one
device family to another provided both your source and target
designs only include symbols from the Unified Libraries. Since most
2-6 Xilinx Development System

Getting Started
of the symbols in the Unified Libraries have the same footprint and
name from one device family to another, you can easily convert your
designs.

The procedures provided below allow you to change every reference
of every design object in your design directory from the source
design library to the target design library. In your target design, the
symbols that are common to the source and target families maintain
their relative location and pin position in the schematic. Pins on these
symbols retain their connectivity to the nets they were attached to in
the source design.

You must manually replace symbols that are not common to your
source and target families with equivalent logic. For example, if a
GCLK was used in an XC3000 design that is retargeted for use in an
XC4000 device, the GCLK symbol must be manually replaced with a
BUFGP, BUFG, or BUFGS, the XC4000 equivalent of a GCLK.

You can either change references within the Design Manager or from
the UNIX command line. Both procedures are provided below.

Note: In the following procedures, XC3000 is used as the source
design device family and XC4000 is used as the target design device
family. You can also retarget other device families.

Retargeting in the Design Manager
1. Select MGC➝ Location Map ➝ Set Working Directory .

A small dialog box appears at the bottom of the screen.

2. Enter the name of the directory above your source design
directory in the Directory field of the dialog box. Select OK or press
return. This sets the working directory to the directory above your
design directory, and enables you to globally change references in
the design directory.

3. Select your design directory in the navigator window.

4. Select Edit ➝ Change ➝ References .

5. A dialog box appears. In the From field, enter the source design
device family, such as xc3000. In the To field, enter the target
design device family, such as xc4000. Select OK or press the return
key.
Mentor Graphics Interface/Tutorial Guide 2-7

Mentor Graphics Interface/Tutorial Guide
6. Check the changes to the path references to the libraries.

7. Open your design in Design Architect and perform a check sheet
on each schematic sheet. Correct any errors that might have
occurred during the retargeting.

Retargeting from the Command Line
To change the references, perform the following steps at the UNIX
command line:

1. Set the working directory to the directory above your design
directory. This enables you to globally change references in the
design directory.

2. Type listref design directory to look at the path
references to the libraries.

3. Type chref xc3000 xc4000 design directory to change
references from XC3000 library to XC4000 library.

4. Type listref design directory to check the changes to the
path references to the libraries.

5. Open your design in Design Architect and perform a check sheet
on each schematic sheet. Correct any errors that might have
occurred during the retargeting.
2-8 Xilinx Development System

Design Techniques

Mentor
Graphics
Interface/
Tutorial
Guide
Mentor Graphics Interface/Tutorial Guide — 0401408 01 Printed in U.S.A.

Mentor Graphics Interface/Tutorial Guide
Xilinx Development System

Chapter 3

Design Techniques

This chapter provides general information and techniques you
should be familiar with when you create both FPGA and EPLD
designs using Design Architect.

Naming Conventions
It is strongly recommended that you label all nets, symbols, and
buses to make debugging and simulation easier. The following
naming conventions must be used when designing a PLD with
Design Architect. If you use an illegal signal name, you may get
warning messages when the design is processed. If this occurs, return
to the schematic to fix the name. For the naming conventions of
programs not discussed in this section, refer to the XACT Reference
Guide.

● All names given to symbols and signals in a PLD design must be
valid for the XACT Development System. User-defined names can
only contain: A-Z, a-z, 0-9, _, -, <, and >.

● Names must contain at least one non-numeric character.

● Directory names must not begin with numbers.

● Names cannot be more than 1024 characters long.

● You cannot used XACT-reserved names. For example, for FPGA
designs, you cannot use CLB names, such as AA and AB; PIN
names such as P1 and P2; and PAD names such as PAD1 and
PAD2. For EPLD designs, you cannot use “PRLD”, “MRESET”, or
any name beginning with “_N” (underscore N) as a net label.

● Mentor Graphics-reserved names such as “Input,” “Output,” and
“Latch” are invalid.
Mentor Graphics Interface/Tutorial Guide — 0401408 01 3-1

Mentor Graphics Interface/Tutorial Guide
EDIF2XNF
The EDIF2XNF program translates an EDIF file into an XNF file.
Although EDIF2XNF accepts different variations of EDIF files, this
section is limited to EDIF files created with Mentor Graphics
ENWRITE program. EDIF2XNF keeps the full path names for all
signal and symbol names. Do not use # or ~ because EDIF2XNF does
not check for name contention.

The EDIF2XNF program expands bus notation. All bus and symbol
pin names are expanded into individual signal or pin names. For
example, a bus labeled DATA(3:0) is converted into four nets labeled
DATA<3>, DATA<2>, DATA<1>, and DATA<0>.

The following table lists examples of legal bus names.

Table 3-1 Bus Name Examples

Because Design Architect and XNF netlists have different naming
conventions, EDIF2XNF converts characters according to the
following table.

Bus Name Description

Q(0:7) 8-bit bus, signals Q(0) (MSB)
through Q(7) (LSB)

Q(7:0) 8-bit bus, signals Q(7) (MSB)
through Q(0) (LSB)
3-2 Xilinx Development System

Design Techniques
Table 3-2 Symbols Converted By EDIF2XNF

Signal Naming Conventions

The following are EDIF2XNF signal naming conventions:

● Hierarchical signal names are fully specified in the XNF file. For
example, “ABC’’ represents a signal named “ABC’’ in the top level
of a schematic drawing. Another example is “I$23/ABC,’’ which
represents a signal named “ABC’’ under instance “I$23.’’

● Unnamed signals are given default names in the form N$number,
for example, N$12, N$142.

Symbol Naming Conventions

The following are EDIF2XNF symbol naming conventions:

● To name a symbol, add an INST property. Each INST value must
be unique in a schematic. Lower-level symbols have hierarchical
path names appended to their instance names, which ensures the
uniqueness of the symbol names. For example, “mysym’’
represents a symbol with an INST property of “mysym’’ located at
the top level. The notation “/top/mysym’’ represents instance
“mysym’’ located one level below “top.”

● Symbols without an INST property are given default names in the
form I$ number, for example, I$1, I$15.

Design Architect Name XNF Name

 # - (hyphen)

~ - (hyphen)

 (<

) >

 [<

] >
Mentor Graphics Interface/Tutorial Guide 3-3

Mentor Graphics Interface/Tutorial Guide
Xilinx Libraries
In Design Architect, the XACT Libraries menu contains the Unified
Libraries and the Obsolete Libraries. The Unified Libraries are a
collection of libraries that conform to standards set for the
appearance, function, and naming conventions of the library
elements. This standardization allows you to easily convert from one
Xilinx architecture to another. You should use the primitives and the
macros in the Unified Libraries to create new designs.The Obsolete
Libraries contain pre-Unified Libraries primitives and macros and are
provided for backward compatibility. Creating a new design from the
Obsolete Libraries is not recommended since support for this library
will be discontinued in the future. Refer to the XACT Libraries Guide
for detailed information on the Xilinx Libraries.

Primitives and Macros
The XACT Libraries contain three types of components: primitives,
soft macros, and Relationally Placed Macros (RPMs). Primitives are
pads and basic logic elements, such as gates, latches, flip-flops,
buffers, and oscillators. Soft macros are schematics that contain
primitives and other soft macros. Soft macros have pre-defined
functionality, but have flexible mapping, placement, and routing.
RPMs, available for XC4000 devices, are soft macros that contain
placement information and that can contain carry-logic elements.

Note: User-generated hard macros from pre-Unified Libraries
designs must be converted to RPMs with the HM2RPM program.
Refer to the XACT Reference Guide for detailed information on hard
macro conversion.

X-BLOX
Note: The X-BLOX library cannot be used to create EPLD designs.

The X-BLOX library contains module generators that describe a
system using high-level functions instead of gate primitives. The
X-BLOX synthesis tool processes these modules. The X-BLOX library
can be used with XC3000A, XC3000L, XC3100A, and XC4000 FPGA
designs. See the X-BLOX User Guide for more detailed information.
3-4 Xilinx Development System

Design Techniques
Using the XACT Libraries
The following procedure describes selecting a component from the
Unified Libraries and placing it in your schematic. Do not mix
components from different families, and do not mix components
from the Obsolete Libraries with components from the Unified
Libraries.

From within Design Architect, select and place library components as
follows:

1. Select XACT_LIB from the Libraries pull-down menu. The
schematic palette is replaced by the XACT libraries menu palette.

2. Select UNIFIED LIB from the libraries menu. The XACT Unified
libraries menu for different part families appears.

3. Select the correct library for your design. A menu appears and
you can select BY TYPE or ALL PARTS. If you select by type, a list
of the components organized into categories such as buffer,
counter, or flip_flop appears. If you select all parts, all the
components are displayed in alphabetical order. Use the Page Up
and Page Down keys to move up and down the list of
components.

4. Select a component from the library list. A small dialog box
appears on the screen.

5. Move the cursor into the schematic window. An outline of the
selected component appears.

6. Move the outline to the appropriate location and click the left
mouse button to place the component.

Bus Rippers
Bus rippers are Mentor Graphics-supplied special components that
connect nets to specific signals on a bus. You can obtain bus rippers
by selecting the rip component in the Logic submenu in the Unified
Libraries. These components are the same as rip components in the
MGC Digital Libraries gen_lib.

A bus ripper consists of two pins. The narrow end is the wire end and
the wide end is the bundle end. The wire end always connects to a
net or smaller bus, and the bundle end connects to a bus. The bus
Mentor Graphics Interface/Tutorial Guide 3-5

Mentor Graphics Interface/Tutorial Guide
ripper can tap all or a set of signals into a new bus. Refer to the
following figure for an example of a bus ripper.

Figure 3-1 Bus Ripper

The ripper has a RULE property, which defines the bit or bits being
tapped from the bus. By default, the RULE property is set to R, but
you must change the property value to represent the bit or bits you
want tapped from the bus.

To change the property value, perform the following procedure:

1. Select the wire end of the bus ripper part whose RULE property
you want to change.

2. Access the Edit Window pop-up menu and select Properties
➝ Modify .

3. Select the RULE property and enter the desired property value in
the Property Value box. For more information on bus rippers, refer
to the tutorials in this manual and the Design Architect User’s
Manual.

Creating a Schematic
The following steps describe a simplified procedure for creating a
design in Design Architect. For detailed instructions refer to the
Design Architect tutorial in this manual and to Mentor Graphics
Design Architect User’s Manual.

X1599

SIGNALS (3:0)

CLK
0

CLR
1

Q
2

QB
3

STROBES (127:126)

3:2
3-6 Xilinx Development System

Design Techniques
1. Use the Open Sheet icon in the Session Palette to open a new
sheet.

2. Place Unified Libraries components and user-created symbols in
the new sheet. If you create your own symbols, you must also
create the underlying schematics.

3. Add and label nets and buses.

4. Add or modify schematic and symbol attributes as described in
the next section.

5. Check and save your design.

Entering Xilinx Attributes
Although a few differences exist when comparing PLD designs to
other ASIC or board-level designs, PLD schematic design generally
involves the same techniques used when designing other
technologies. Most of these differences involve adding Xilinx PLD-
specific attributes to schematic components. This information is used
by the design implementation software during placement and
routing of your design.

In Design Architect, adding Xilinx attributes is called property
annotation. Property annotation is used to add design information
called “properties” to schematics and symbols. These added
properties describe characteristics of a component that are not
identifiable from the schematic drawing alone. A description of
FPGA-specific attributes is included in the chapter on FPGA design
issues. EPLD-specific attributes are described in the chapter on EPLD
design issues.

The method used to add or modify component attributes is identical
for FPGAs and EPLDs as described below:

Adding Properties
To add a property name and value to a selected object in the
schematic editor window, perform the following procedure.

1. Select object(s), for example: net, pin, or instance.

2. Press the Shift-F5 function key. The Add Property dialog box is
displayed.
Mentor Graphics Interface/Tutorial Guide 3-7

Mentor Graphics Interface/Tutorial Guide
3. Scroll through the list of existing property names and click with
the left mouse button on the property name. To add a new
property name, enter the new name in the Property Name box.

Note: If you want to add a property that is not a Xilinx attribute, you
must include an equal sign before the property name in the property
name box. This ensures that user-defined properties are passed to the
XNF file. For example, to add the user-defined property
“group1=FFS(A*:B*)”, enter “=group1=FFS(A*:B*)”.

4. Type the new property value in the Property Value box.

Note: For some FPGA properties, the property name and the
property value are identical. See the “FPGA Design Issues” chapter
for more information.

5. Fill in the rest of the dialog box and then click the OK button.The
ADD PR prompt bar appears.

6. Move the cursor to where you want to place the property text and
click the left mouse button to place it.

Modifying Properties
To modify the default property value of a selected object in a
schematic editor window, perform the following steps:

1. Use the right mouse button to display the popup menu. Select
Properties ➝ Modify . A dialog box appears listing the
properties of the selected object.

2. Select the property you want to modify and click the OK button.

3. The Modify Property dialog box is displayed. Enter the desired
changes and then click on OK.

Merging Design Files from Other Sources
You can enter part of your design in some form other than
schematics, such as text entry or a RAM or ROM description. You can
also bring in netlist files produced by interface software other than
Mentor Graphics. Whatever the form of entry, the starting point for
inclusion into a Mentor Graphics schematic design must be a netlist
file in XNF format. One exception is that equation-based logic for
EPLD designs is read directly by the XEPLD Fitter in the form of
3-8 Xilinx Development System

Design Techniques
VMH/VMD files rather than being merged into the XNF netlist.XNF
netlist files must be located in the working directory. Without the
XNF file, this portion of the design cannot be included; with it, the
origin of the logic becomes irrelevant. To incorporate the XNF file
into your schematic, you must create a symbol for the file and place it
on your schematic as you would any other component. To
incorporate a MemGen file into your schematic, manually create a
symbol in Design Architect and then add the FILE property to the
symbol to specify the MemGen file.

Creating a Xilinx ABEL Symbol
An XSF file and either an XAS file (FPGA) or a PLD file (EPLD) are
generated by Xilinx ABEL from the file containing the ABEL-HDL
description of the logic. The XSF file is used to create the symbol that
represents the underlying logic description contained in the XAS or
PLD file. The XSF file contains the pinouts for the symbol. The
Gen_Sym8 program automatically creates a symbol based on
information in the XSF file.

Note: The XSF file must be located in your working directory.

To create a symbol from an XSF file, perform the following:

1. At the UNIX system prompt in your project directory, type the
following to confirm that the Xilinx ABEL XSF file is in the project
directory.

ls *.xsf

2. Enter:

gen_sym8 design_ abl.xsf

Gen_Sym8 executes, reads the XSF file, and writes out the symbol
$MGC_WD/design_abl.

Adding a Xilinx ABEL Symbol to Your Schematic
1. Execute PLD_DMGR to enter the Mentor Graphics Design Man-

ager.

2. Select your design in your project directory and open it in Design
Architect.
Mentor Graphics Interface/Tutorial Guide 3-9

Mentor Graphics Interface/Tutorial Guide
3. Select Right Mouse Button ➝ Instance ➝ Symbol by
Path. A dialog box appears.

4. Use the navigator button in the dialog box to select the symbol
created in the above procedure or type the symbol name in the
Component Name field.

5. Select OK or press return.

6. Place the symbol by moving the cursor to the appropriate location
and clicking the left mouse button.

7. For FPGA designs, add the FILE property to the symbol as
described in the “Adding Properties” section of this chapter. Enter
FILE as the property name and design_abl as the property value.
The value of the FILE property specifies the name of the XAS file
containing the logic description. For EPLD designs, see the next
step.

8. For EPLD designs, perform the following:

● Add the FILE property to the symbol as described in the
“Adding Properties” section of this chapter. Enter FILE as the
property name and <design> as the property value. The value
of the FILE property specifies the name of the PLD file
containing the logic description.

Note: The following two steps are optional for EPLD designs.

● Add the PLD=<design> property to the symbol to allow
PLD_XEMake to run PLUSASM automatically.

● Add the DEF=pld property to the symbol to tag it as unsuitable
for functional simulation.

As an alternative to creating a custom symbol, you can use one of
the standard or generic PLD symbols provided in the XC7000
library as a convenient way to represent equation-based logic in
your schematic.
3-10 Xilinx Development System

FPGA Design Issues

Mentor
Graphics
Interface/
Tutorial
Guide
Mentor Graphics Interface/Tutorial Guide — 0401408 01 Printed in U.S.A.

Mentor Graphics Interface/Tutorial Guide
Xilinx Development System

Chapter 4

FPGA Design Issues

This chapter provides FPGA-specific design information and
techniques you should be familiar with when you create your
schematics with Design Architect. For more detailed information on
Xilinx attributes, refer to the XACT Libraries Guide.

FPGA Properties
Add or modify the FPGA properties described in this chapter to
specify Xilinx attributes for the elements in your designs. These
attributes provide information to the implementation tools during
the processing of your schematic design. Instructions for adding or
modifying properties are included in the “Design Techniques”
chapter.

Symbol Properties
Use the following properties to specify symbol attributes.

REF

Note: In V7, the COMP property was used to name a model; in V8,
use the REF property. Do not use COMP, because it indicates that the
model is a library primitive. The ENWRITE netlister stops expansion
at all COMP models and does not merge in your lower-level
schematic.

Use the REF property to name a symbol. You can have multiple
symbols with the same REF property.
Mentor Graphics Interface/Tutorial Guide — 0401408 01 4-1

Mentor Graphics Interface/Tutorial Guide
PINTYPE

Add the PINTYPE property to a pin to identify it as input or output
for PLD_DVE. PLD_DVE uses the PINTYPE property to determine
the pin directionality of all of the symbol’s pins. Any symbol with a
FILE property also requires PINTYPE properties. When adding
PINTYPE properties, select PINTYPE from the list of properties and
type in , out , or io for input, output, or bidirectional, respectively in
the value box.

INST

Use the INST property to uniquely identify a symbol in a design.
Design Architect assigns a default INST property to each symbol
(I$1 , I$2 , and so forth), and the INST value is appended to the
hierarchical path.

COMP

Use the COMP property to indicate that a simulation model exists for
a primitive. All Xilinx primitives have a COMP property.

Warning: Never add a COMP property to a hierarchical block.

In V7, the COMP property named a model. In V8, use the REF
property to name a model; do not use COMP, because it indicates the
model is a library primitive. The ENWRITE netlister stops expansion
at all COMP models, and does not merge in your lower-level
schematic.

FILE

Use the FILE property on a user-created symbol to indicate the name
of the XNF file that represents the underlying logic. When adding the
FILE property, type the name of the XNF file in the Property Value
box; do not include any extensions. The file must exist in the directory
where PPR or XNFMerge is run. The file name and symbol name
must match exactly, including case. For example, if the file name is
“andblk.xnf”, the symbol name must be “andblk”; if the file name is
“ANDBLK.XNF”, the symbol name must be “ANDBLK”. Do not use
the FILE property on primitives.

If you use the FILE property on symbols that are not in the same
directory as the top level design, you must use the Auto Generate
4-2 Xilinx Development System

FPGA Design Issues
option when you run PLD_FNCSIM8 and PLD_TIMSIM8. Refer to
the “Functional Simulation Preparation” and “Timing Simulation
Preparation” chapters for more information on the Auto Generate
option.

The FILE property allows you to perform map-then-merge in non-
schematic portions of the design. Map-then-merge maps each
functional block to its own CLBs. If you want a functional block
mapped separately, or if only an XNF file exists, you must create a
symbol for that functional block with the FILE and PINTYPE
properties.

BLKNM

Add the BLKNM property to symbols to ensure that the symbols are
included in the same CLB, IOB, or BUFT after logic partitioning.

Note: The BLKNM property is not a LOC value. It simply groups
symbols with the same BLKNM into the same CLB or IOB.

Use the same BLKNM value for each symbol you want to group. The
BLKNM value can be any alphanumeric string composed of A-Z, a-z,
0-9, _, -, <, and >. By default, one of the output signals of the CLB is
used for the BLKNM value for that CLB. You can use the BLKNM
property to attach a name to any of the following symbols:

● XC4000 components, flip-flops, and I/Os

● XC3000 flip-flop components (FD, FDC, and FDCE symbols)

● XC2000 flip-flop and latch components (FD, FDC, FDCP, LD,
LDC, LDP, and LDCP symbols)

● I/O block primitives (IOB symbols)

● XC3000 configurable logic blocks (CLB symbols, CLBMAP
symbols)

● XC4000 configurable logic blocks (FMAP and HMAP symbols)

● 3-state buffers (BUFT symbols)
Mentor Graphics Interface/Tutorial Guide 4-3

Mentor Graphics Interface/Tutorial Guide
HBLKNM

Note: Do not use HBLKNM to group BUFTs.

This property is similar to BLKNM. The name value of the BLKNM
property remains unchanged throughout the design process,
however, the name value of the HBLKNM property is hierarchically
qualified during the design-flattening process. The name value for
HBLKNM has each level of the design hierarchy prefixed to the
name, with each level separated by a “/”. If two or more symbols
have the same hierarchically qualified HBLKNM value, the logic
mapping software will attempt to place those symbols in the same
CLB or IOB.

MAP

Use the MAP property to control logic partitioning. Attach this
property to FMAP, HMAP, or CLBMAP symbols to specify that pins
can be swapped during routing and that logic, other than what has
been explicitly specified, can be merged into a CLB or function
generator.

DOUBLE

On the XC3000 and XC4000 family parts, internal bus structures with
programmable pull-up resistors are available for implementing
bidirectional buses or wired-AND functions. Two pull-up resistors
are available on each internal bus line. You may use both resistors for
a fast, high-power signal, or only one for a slow, low-power signal.
Add the DOUBLE property to the PULLUP symbol to specify the fast,
high-power option. The slow, low-power option is used by default.
The DOUBLE property has no effect on PULLUP symbols that are
used to specify a pull-up resistor on an external signal.

When you add the DOUBLE property, enter Double in the name box
as well as in the value box.

DECODE

Attach the DECODE property to the body of XC4000 WAND symbols
to indicate that the wired-AND is implemented in edge decode logic.

When you add the DECODE property, enter Decode in the name box
as well as in the value box.
4-4 Xilinx Development System

FPGA Design Issues
INIT

Note: The INIT property is required for the ROM symbol.

Use the INIT property on the ROM symbol. The value will be 4 or 8
HEX characters. The Partition, Place, and Route (PPR) program reads
in the INIT property on the ROM and translates it into the
appropriate logic gates. Because PPR hard-codes the initial value into
the LCA file, you cannot change the initial value after running it.
Unlike RAMs, ROMs can have pre-programmed data in the Xilinx
part. The RAM primitive cannot be initialized during configuration
and must be written to after the device is configured.

EQN

Use the EQN property only on EQN symbols to specify the function
of the symbol without having to use the equivalent gate level logic.

DEF

Use this property on all X-BLOX symbols to indicate that the symbol
represents special logic.

CYMODE

Use the CYMODE property on the Carry Mode symbol to identify the
mode for the dedicated carry logic in an XC4000 CLB.

SCHNM

Use this property to carry forward the original symbol type name
from the schematic library into the XNF file.

LIBVER

This property is on all Unified Libraries symbols to distinguish
netlists created using the Unified Libraries from those created with
earlier versions of the libraries.
Mentor Graphics Interface/Tutorial Guide 4-5

Mentor Graphics Interface/Tutorial Guide
Location Properties
Use the following properties to specify location attributes.

LOC

You can use the LOC property to specify a location where a symbol
can or cannot be placed. When the LOC property is placed on macros,
the property is passed down to the primitive level. If more than one
LOC property is placed on different levels of hierarchy, the property
placement on the highest hierarchical level is recognized and all
lower-levels are ignored.

You can use the LOC property on the following symbols:

● XC4000 flip-flop soft macros (FD symbols)

● XC3000 flip-flop soft macros (FD symbols)

● XC2000 flip-flop and latch components (FD symbols)

● I/O buffers (IOB symbols)

● I/O block primitives (IOB symbols)

● Configurable logic blocks (CLB symbols, CLBMAP symbols,
FMAPs and HMAPs)

● 3-state buffers (BUFT symbols)

● XC3000/XC4000 horizontal longline pull-up resistors (PULLUP)

For symbols that map to single CLBs or IOBs, the value must be a
valid CLB or IOB name, respectively. In the XACT Reference Guide,
refer to the APR chapter for information on XC3000 legal location
names and the PPR chapter for XC4000 legal location names. The
LOC property can also be used for logic that uses multiple CLBs,
IOBs, pull-up resistors, BUFTs, soft macros, primitives, or other
symbols.

Note: You cannot add the LOC property to a pad, however, you can
add this property to a pad’s external net by selecting the net vertex
and following the procedure below.

Perform the following steps to add the LOC property to symbols in
your design:
4-6 Xilinx Development System

FPGA Design Issues
1. Select the symbol.

2. Display the Edit window pop-up menu and select Properties
➝ Add . A dialog box appears.

3. Type LOC in the Property Name box.

4. Enter the desired value in the Property Value box.

5. Select String in the Property Type box.

6. Click on OK and place the text in the desired location.

Note: The following location properties are used to specify, name,
and manipulate sets of symbols that have relative location
constraints. They can be added to flip-flop primitives, memory, carry
logic, BUFTs, non-DECODE WANDs, WORANDs, mapping
symbols, and macros.

RLOC

Note: The RLOC property can only be added to primitives.

Use the RLOC property to define the desired row and column
relationship between two or more symbols. This property defines the
spatial relationship between two or more symbols, not the absolute
location. RLOC property values are propagated down the design
hierarchy.

USE_RLOC

Use the USE_RLOC property on a macro symbol to tell the merge
program to use or ignore the RLOC information inside the macro
symbol.

U_SET

Use the U_SET property to specify symbols that belong to a unique
set of objects that have a relative location relationship. This
parameter can be attached to primitives that have an RLOC property
as well as to hierarchical symbols that have primitives with the RLOC
property below them in the hierarchy. The name field of the U_SET
property does not change during the design flattening process.
Mentor Graphics Interface/Tutorial Guide 4-7

Mentor Graphics Interface/Tutorial Guide
HU_SET

The HU_SET property is similar to U_SET except it works within the
bounds of the design hierarchy. All of the symbols that belong to each
unique HU_SET must be located within the same branch of hierarchy.
The name field of HU_SET has each level of the design hierarchy
prefixed to the name, with each level separated by a “/”.

RLOC_ORIGIN

The RLOC_ORIGIN property fixes the absolute location origin for a
set of symbols that have a relative location relationship.

RLOC_RANGE

The RLOC_RANGE property specifies the range of FPGA locations
that are allowed for a set of symbols with the RLOC property. Unlike
the RLOC_ORIGIN property that fixes each member of a set at an
absolute location, the RLOC_RANGE property allows the members
of the set to be located anywhere within the range, as long as the
RLOC relationships are maintained.

Input/Output Properties
Input/Output properties are only allowed on I/O symbols or on the
EXT record that corresponds to the external connection of the I/O
symbol.

Note: The TTL and CMOS properties are not allowed on EXT records.

INTERNAL

Use the INTERNAL property to identify unbonded IOBs.

NODELAY

Add the NODELAY property to XC4000 I/O flip-flop or latch
elements, such as IFD and ILD, to remove the delay element and
reduce setup time.

FAST or SLOW

Use the FAST property on XC3000 and XC4000 output symbols or
pads to indicate that the output driver of the corresponding IOB will
4-8 Xilinx Development System

FPGA Design Issues
not be slew-rate limited. The FAST property can be attached to the
net of any OPAD or the body of an OBUF, OBUFT, OFDT, or OFD to
increase the speed of the IOB. The default value is SLOW. The FAST
property decreases the output drive transition time, but increases
noise. When you add the FAST property, enter Fast in the name box
as well as in the value box.

MEDFAST or MEDSLOW

Use the MEDFAST or MEDSLOW property on XC4000A output
symbols to specify the slew rate of the output driver. The MEDFAST
property decreases output drive transition time and increases noise,
but not as much as the FAST property. The MEDSLOW property
decreases output drive transition time and increases noise, but not as
much as the MEDFAST property. When adding these properties,
enter Medfast or Medslow in the name box as well as in the value
box.

RES or CAP

Add the RES or CAP property to the output driver of an XC4000H
IOB to specify resistive mode or softedge capacitive mode,
respectively.

CMOS or TTL

Add the CMOS or TTL property to XC4000H IOB symbols to define
the input sensing and output driving levels as either CMOS-
compatible or TTL-compatible, respectively.

CLB/IOB Properties

BASE

Use this property to specify the block base value of CLB and IOB
symbols. Enter a value, depending on the family, in the Value box
when you set the CLB or IOB primitive properties.
Mentor Graphics Interface/Tutorial Guide 4-9

Mentor Graphics Interface/Tutorial Guide
CONFIG

Use this property to specify the connectivity within the CLB or IOB.
The CONFIG property value is composed of multiple tags that
represent each programmable option.

EQUATE_F AND EQUATE_G

Note: The EQUATE_F and EQUATE_G properties can only be used
with CLBs.

The EQUATE_F and EQUATE_G properties specify a logic equation
that describes the F or G outputs of a CLB. An EQUATE value
consists of a Boolean expression that is composed of CLB pin names
and Boolean symbols.

The EQUATE_F and EQUATE_G properties set the equations for the
function generators and must have an equation as their value. You
can use parentheses in the equation. Use CLB pin names, not net
names, in the EQUATE statement.

Modifying CLB/IOB Properties

To modify the properties of a CLB or IOB symbol, perform the
following procedure:

1. Select the component.

2. Bring up the pop-up menu and select Properties ➝ Modify .
A dialog box appears.

3. In the dialog box, select the properties you want to modify. You
can select more than one property by holding down the Control
key while selecting the property names. After specifying all
properties, click on OK. A dialog box appears for the first property
you selected.

4. Modify the property, then click on OK. A dialog box appears for
the second property you selected. Repeat this process until you
modify all the selected properties.

Timing Specification Properties
Note: You can only specify timing constraints on XC3000A/L,
XC3100A, and XC4000 designs.
4-10 Xilinx Development System

FPGA Design Issues
Specifying timing requirements at the schematic level helps ensure
that a design functions properly after it has been implemented into a
device. The Partition, Place, and Route (PPR) program uses timing-
constraint information when it places and routes a design. PPR uses
the timing specifications from the schematic to calculate which nets
should have the least amount of slack during the place and route
process. PPR uses the slack calculations to place logic functions and
to measure its progress against the timing specifications you supply.
For more information on timing specification, refer to the XACT-
Performance section in the XACT Reference Guide.

TSidentifier

Add the TSidentifier property to TIMESPEC symbols to convey timing
information to the place and route program.The identifier is a name
consisting of any combination of letters, digits, or underscores.

TNM

Note: The TNM property is not allowed on I/O pads from the
Unified Libraries, however, you can attach it to nets connected to I/O
pads.

Use the TNM property to define groups of path endpoints for use in
TIMESPEC specifications. The TNM property is allowed on I/O flip-
flops, CLB flip-flops, I/O latches, CLB RAMs/ROMs, and EXT
records, as well as on macro symbols. When a TNM is specified on a
macro symbol, it will be propagated down to all lower-level symbols
of the appropriate type by the merge program.

TS Flag

Use the TS flag to attach timing information from a non-default TS
property to a net in the schematic.

Adding TIMESPEC/TIMEGRP Properties

Note: In the following steps TIMEGRP can be substituted for
TIMESPEC.

Perform the following steps to add TIMESPEC properties:
Mentor Graphics Interface/Tutorial Guide 4-11

Mentor Graphics Interface/Tutorial Guide
1. Select the TIMESPEC primitive.

2. Select Properties ➝ Add ➝ Add Multiple Properties
from the sub-menu. A dialog box appears.

3. In the Property Name field, enter a TSidentifier. Identifier is an
alphanumeric field. For TIMEGRP symbols, enter a leading equal
sign before the property name.

Note: TSidentifier is not visible in the TIMESPEC primitive when
using Design Architect. To view a list of identifiers and their
corresponding values, select the TIMESPEC primitive, press the right
mouse button, and select Properties ➝ Modify from the pop-up
menu.

4. Enter the TS attribute definition (for example, DP2P:100) in the
Property Value field.

5. Repeat steps 3. and 4. until you define all TS attributes. Use
another TIMESPEC primitive if you have more than eight TS
attributes in your design.

6. Select String in the Property Type field, select On in the Visibility
field, and select Add Property to Vertices in the remaining
field.

7. Click on OK.

8. Place the TS attributes in the fields within the TIMESPEC
primitive.

Adding a TS Flag to a Net

Perform the following steps to attach a TS flag to a net in your
schematic:

1. Select a vertex of the net to which you want to add the TS flag.

2. Bring up the pop-up menu and select Properties ➝ Add
Single Property . A dialog box appears.

3. Enter Netflag in the Property Name field.

4. Enter TSidentifier in the Property Value field, where identifier is an
alphanumeric field.

5. Select String in the Property Type field.
4-12 Xilinx Development System

FPGA Design Issues
6. Select On in the Visibility field.

7. Select Attach to Vertices in the remaining field.

8. Click on OK.

9. Place the TS flag on the schematic.

Net Properties

NET

Use the NET property to connect hierarchical levels or multiple
sheets, in addition to using them during simulation. To add a NET
property, follow the steps provided in the Design Techniques chapter
or use the following method:

1. Select all of the net vertices that you want to name.

2. Select Name Nets from the pop-up menu, name the first net in
the dialog box that appears, then place the property text.

3. Subsequent dialog boxes appear for each net you selected; name
and place the property text for each one.

NETFLAG

Use the NETFLAG property on nets to affect the partitioning,
placement, and/or routing of a design. You can attach only one
NETFLAG property to one vertex per net. If you add the Netflag
property to more than one vertex on a net, XNFMAP or PPR
arbitrarily recognizes only one of them.

In XC4000 designs, you can use the NETFLAG property to identify
the timing requirements of the attached net. Every net carries a
routing priority or net weight from 0 to 100. If you do not specify a
net weight by using the NETFLAG property, the default weight of 1
(one) is assumed.

A NETFLAG property can have any of the following values:

● X - External. The External flag ensures that the selected net is not
partitioned within a CLB. The partitioning routine within
XNFMAP or PPR absorbs nets as it reduces the combinatorial
logic of a design.
Mentor Graphics Interface/Tutorial Guide 4-13

Mentor Graphics Interface/Tutorial Guide
● C - Critical. The Critical flag defines a net as critical (net weight =
10 for APR, 100 for PPR). The Automated Design Implementation
software (ADI) tries to minimize delays on this path by routing
this net first. In an XC4000 design, the critical flag only applies if
the PPR constraint PATH_TIMING is set to false; false is not the
default.

● N - Non-critical. This flags a net as non-critical (net weight = 0).
ADI gives this signal lowest routing priority. In an XC4000 design,
the non-critical flag only applies if the PPR constraint
PATH_TIMING is set to false; false is not the default.

● L - Longline. The Longline flag instructs ADI to use a Longline to
route this net. This Netflag value is useful for nets with high fan-
out that need low skew (XC2000 and XC3000 family only).

● I - This value connects any CLB clocks driven by this net to the C
input (XC2000 family only).

● G - This value connects any CLB clocks driven by this net to the G
function output (XC2000 family only).

● K - This value connects any CLB clocks driven by this net to the K
input (XC2000 family only).

● S - Save. The Save flag prevents XNFMAP from removing
unconnected signals. If you do not have the S value attached to a
net, XNFMAP removes any signal not connected to logic and/or
an I/O primitive and keeps it external to a CLB.

● P - Pinlock. The Pinlock flag (CLBMAP primitives only) ensures
that the Automated Placement and Routing (APR) software does
not move the CLBMAP pin to which the property and signal are
attached; this is useful for aligning CLB inputs with a specific
Longline.

● W=# - Weight. This value assigns a weight to a net, indicating its
routing order. Legal weight values are 1-99, where 99 indicates the
most critical net, the highest in the routing order. This attribute
affects the partitioning algorithm and is also used by the place-
and-route routines (XC4000 only). For XC4000 designs, the weight
flag only applies if the PPR constraint PATH_TIMING is set to
false; false is not the default.

● SC - Skew Critical. This flag indicates that the signal is skew
critical and that the software must minimize the difference
4-14 Xilinx Development System

FPGA Design Issues
between load delays on this net. This value can be used with the
net weight (W=) value (XC4000 only). In an XC4000 design, the
skew-critical flag only applies if the PPR constraint
PATH_TIMING is set to false; false is not the default.

When adding the NETFLAG property, enter the property value: X, C,
N, L, I, G, K, S, W=weight, or SC in the Value box. Valid combinations
of values must be separated by commas. For the Pinlock property,
select the CLBMAP pin and select Properties →Modify from the
Edit Window pop-up menu. Set the value to y (XC2000, XC3000
only).
Mentor Graphics Interface/Tutorial Guide 4-15

Mentor Graphics Interface/Tutorial Guide
4-16 Xilinx Development System

EPLD Design Issues

Mentor
Graphics
Interface/
Tutorial
Guide
Mentor Graphics Interface/Tutorial Guide — 0401408 01 Printed in U.S.A.

Mentor Graphics Interface/Tutorial Guide
Xilinx Development System

Chapter 5

EPLD Design Issues

This chapter explains how to create your schematic design so it can
be fitted to an EPLD device. It covers the following topics:

● Using the schematic library components, and how to take
advantage of EPLD features.

● Using the schematic attributes to control logic optimization and
other fitting options.

Components
All the components that can be used in EPLD designs are contained
in the XC7000 library. Most of the components can be used for either
EPLD or FPGA designs. A few components are specific to EPLD. This
chapter describes how to use the common and EPLD-specific
components.

There are three basic types of components:

● Buffer or Pad — These components define input and output ports
that represent physical pins on the device.

● Standard — These components represent fixed logic functions
such as gates, adders, counters, and so on.

● PLD — These components are user-defined via a PLUSASM
equation file.

Many of the components in the XC7000 library are implemented
using special features that take advantage of EPLD architecture. The
following sections describe some of those features.
Mentor Graphics Interface/Tutorial Guide — 0401408 01 5-1

Mentor Graphics Interface/Tutorial Guide
Buffers and Pads

Input and Output Buffer Connections

To represent an ordinary device input pin, use an IPAD connected to
one IBUF buffer; the IBUF can then connect to any number of on-chip
logic symbol inputs as shown in the figure below. IBUF can drive
clocks and 3-state output enables (except OBUFEX1), but there are
also special-purpose buffer symbols in the library (BUFG and
BUFFOE) that you can use instead for these functions.

Figure 5-1 Input Buffers

To take advantage of the input-pad registers and latches available in
EPLD devices, use one of the IFD, IFDX1, or ILD symbols instead of
the IBUF (do not connect an IBUF to the D-input of an IFD/ILD
symbol). Refer to the XACT Libraries Guide for specific application
rules for the symbols.

To represent an ordinary device output pin, use an OBUF buffer that
is driven by one (and only one) on-chip logic source. Connect the
output of the OBUF to an OPAD symbol. You could also use one of
the 3-state output buffers (OBUFE, OBUFT) instead of OBUF. Drive

IPAD

IBUF

D Q

IPAD

BUFG

IPAD D Q

IFD

f

...

f
...

INPUT1

INPUT2

CLK

OR:
5-2 Xilinx Development System

EPLD Design Issues
the output enable control input (E or T) using any on-chip logic
source or input signal (from IBUF). The EPLD fitter will look for
opportunities to automatically assign the enable signal to one of the
EPLD’s FOE global enable lines.

If you want to take advantage of a FOE global line explicitly, use a
BUFFOE input buffer instead of IBUF, and connect it to an OBUFEX1
output buffer (instead of OBUFE) as shown in the following figure.

Figure 5-2 Assigning an FOE Line

Note: You should always label all the wires connecting between PAD
symbols and input/output buffer symbols. These will be the names
by which the software refers to your device pins in the reports and
during simulation.

To represent a bidirectional I/O pin, use an IOPAD symbol connected
to both the input of an IBUF (or IFD/ILD) and the output of an
OBUFE, OBUFT, OBUFEX1, and so on as shown in the following
figure.

Figure 5-3 Bidirectional Pin

Output Buffers and 3-State Buffers

If a signal going into a common output buffer (OBUF) is generated by
any component containing a 3-state buffer (like BUFE or a PLD), the
3-state control signal is used to enable and disable the device output

OPADf
OBUFEX1

IPAD

BUFFOE

READ_EN

OUTPUT2

IOPAD

f
OBUFE

...

IBUF

...

...

...
IO3
Mentor Graphics Interface/Tutorial Guide 5-3

Mentor Graphics Interface/Tutorial Guide
pin driver. This behavior is unique to EPLDs and is not reproduced in
FPGAs.

Figure 5-4 Output Enable Behavior in EPLDs

Note: Inserting a buffer (BUF) or inverter (INV) between the 3-state
buffer (BUFE) and the output buffer (OBUF) does not prevent the 3-
state buffer from controlling the device pin. The XEPLD fitter
optimizes all simple buffers and inverters unless you place an
OPT=OFF attribute on the 3-state buffer.

If you use a PLD symbol in your schematic and connect one of its
outputs to an output buffer like OBUF, you can control the EPLD
device output pin using a 3-state control equation in the PLD, as
shown in the following figure.

Figure 5-5 Controlling Output Using a PLD Equation

OPADf
OBUFBUFE

E

OPADf
OBUFE

E

is equivalent to:

OPAD

OBUF

PL22V10

PIN 20 Q

Q.TRST = READ_EN
5-4 Xilinx Development System

EPLD Design Issues
If you want to use a PLD output with a TRST equation to control a
bidirectional I/O pin of the EPLD, connect the OBUF output to an
IOPAD and IBUF (or IFD/ILD). If the same PLD symbol that gener-
ates the output is also to receive the I/O pin input, you must use a
separate pin of the PLD symbol to receive the signal from the IBUF.
Do not tie the signal received from an IBUF to the wire driving the
OBUF of the same IOPAD as shown in the following figure.

Figure 5-6 Incorrect Way to Control a Bidirectional Pin

These input and output wires must remain separate as shown in the
figure below.

Figure 5-7 Correct Way to Control a Bidirectional Pin

Rules for connecting PLD symbols also apply to any custom symbols
defined by equation files or macro schematics.

PL22V10

PIN 20 IOPADOBUF

IBUF

INCORRECT:

Q

Q = ... ; Q IS PIN 20
Q.TRST = READ_EN
...
R = Q ...

PL22V10

PIN 20

IOPADOBUF

IBUF

CORRECT:

Q

Q = ... ; Q IS PIN 20
Q.TRST = READ_EN
...
R = Q_IN; Q_IN IS PIN 14

PIN 14
Mentor Graphics Interface/Tutorial Guide 5-5

Mentor Graphics Interface/Tutorial Guide
If your design calls for 3-state multiplexing of multiple output
sources, it is best to output each signal source on its own set of 3-state
output pins and tie the signals together off-chip. You cannot connect
more than one signal source to the same OBUF or OPAD as shown in
the following two figures.

Figure 5-8 Incorrect 3-State Multiplexing

Figure 5-9 Correct Off-Chip 3-State Multiplexing

OPAD

f

OBUF

BUFE

E

INCORRECT:

OUTPUT2

f
BUFE

E

OPADf
OBUFE

E

CORRECT:

OUTPUT2A

f
OBUFE

E

OPAD
OUTPUT2B

Tie pins
together
on board
5-6 Xilinx Development System

EPLD Design Issues
On-Chip 3-State Multiplexing

EPLD components emulate 3-state signals internally by gating the
macrocell feedback to the UIM. (Macrocell feedback signals are never
physically in a high-impedance state.) You can tie together the
outputs of multiple 3-state buffer symbols (like BUFE or BUFT) or 3-
state PLD outputs to multiplex these signals on-chip as in the figure
below. Remember that you may not connect such tied signals to an
output buffer; you would need to pass a tied signal through a logic
symbol (like BUF) before driving an output port.

Figure 5-10 Correct On-Chip 3-State Multiplexing

Input Buffers, Clocks, and Global Control Nets

You can connect the clock pin of any FD component or registered
component to an ordinary logic signal, an IBUF, or a BUFG (FastCLK)
unless otherwise specified in the XACT Libraries Guide.

The input of a BUFG component must connect directly to a pad
representing a clock pin; there can be no other components between
the pin and the BUFG.

IFD and ILD components must have a BUFG clock input.

After assigning any BUFGs to FastCLK pins, the XEPLD software
tries to assign IBUF signals driving clock inputs onto FastCLK pins.

OPAD

f

BUF

BUFE

E

OUTPUT2

f
BUFE

E

OBUF

f

PL22V10

PIN 20

Q.TRST = SELECT
Mentor Graphics Interface/Tutorial Guide 5-7

Mentor Graphics Interface/Tutorial Guide
The XEPLD software also attempts to optimize FD components into
IFDs on the input pads. No other registers are ever optimized into the
input pad.

If your design requires a global clock enable, you must use IFDX1
components. The CE input to these components can only be driven
by a BUFCE, and the clock must be from a BUFG as shown below.

Figure 5-11 Use of the IFDX1 Symbol

Note: You can prevent input register optimization using the
REG_OPT=OFF attribute. You can prevent clock optimization using
the CLOCK_OPT=OFF attribute.

EPLD-Specific Components
In general, it is best to use EPLD-specific components whenever their
features appeal to your application because they are designed to take
advantage of special architectural features. For example, EPLD-
specific adders take advantage of fast carry chains.

If, however, you want your design to be retargetable to either an
EPLD or FPGA device, you should use only the common
components. Most EPLD-specific components have at least one
common counterpart. The following table provides a summary of
Common and EPLD-Specific Symbols.

Note: Each common component functions identically in EPLD and
FPGA devices. However, there may be a significant difference in
efficiency or performance between the families. Whenever you map a
design to a new device, you should do the following:

IPAD

BUFCE

IPAD

BUFG

IPAD

D

CE

Q

IFDX1
5-8 Xilinx Development System

EPLD Design Issues
● Check the reports created during integration carefully to make
sure that the way you expressed your design does not consume
excessive logic resources of the target device.

● Perform timing analysis or simulation to catch any inefficient
parts of the design.

If you need further information on XEPLD software and design
technique, see the XEPLD Design Guide.
Mentor Graphics Interface/Tutorial Guide 5-9

Mentor Graphics Interface/Tutorial Guide
Table 5-1 Common and EPLD-Specific Symbols

Common Symbols EPLD-Specific Symbols

Accumulators
ACC1 ACC1X1 or ACC1X2
ACC4 ACC4X1 or ACC4X2
ACC8 ACC8X1 or ACC8X2
ACC16 ACC16X1 or ACC16X2

Adders
ADD1 ADD1X1 or ADD1X2
ADD4 ADD4X1 or ADD4X2
ADD8 ADD8X1 or ADD8X2
ADD16 ADD16X1 or ADD16X2
ADSU1 ADSU1X1 or ADSU1X2
ADSU4 ADSU4X1 or ADSU4X2
ADSU8 ADSU8X1 or ADSU8X2
ADSU16 ADSU16X1 or ADSU16X2

Counters
CB2CLED CB2X1
CB4CLED4 CB4X1
CB8CLED4 CB8X1
CB16CLED4 CB16X1

Input Registers
IFD IFDX1
IFD4 IFD4X1
IFD8 IFD8X1
IFD16 IFD16X1

Output Buffers
OBUFE OBUFEX1
5-10 Xilinx Development System

EPLD Design Issues
Counters

Up/down counters in the common library, such as CB8CLED, have a
single CEO output, which changes in response to the up/down
direction input. Gating of this CEO function in this manner does not
allow it to be optimized for zero delay. This means that if common
up/down counters are cascaded, they cannot operate at their
maximum original frequency.

The EPLD-specific up/down counters, such as CB8X2 have separate
outputs for the up and down directions, CEOU and CEOD, that are
optimizable. You can cascade these components without impacting
their maximum frequency.

The EPLD-specific counter symbols are CB2X1, CB2X2, CB4X1,
CB4X2, CB8X1, CB8X2, CB16X1, and CB16X2.

Arithmetic Components

The ADD, ADSU, and ACC type common library components use
the EPLD macrocell carry chain between outputs within the same
component, but not for cascading. If you cascade these components,
the carry signals (CI and CO) go through the UIM and incur a delay.
The CI and CO pins may connect to any ordinary logic components
or I/O ports, but not to the CI and CO pins of EPLD-specific
arithmetic components.

The EPLD-specific adders (with names ending in X1 or X2) use the
EPLD macrocell carry chain for cascading without incurring a UIM
delay. Their CI and CO pins can only be connected to the CI and CO
pins of another EPLD-specific arithmetic component (or the PLFB9
symbol).

The EPLD-specific arithmetic symbols are as follows:

Adders: ADD1X1, ADD1X2, ADD4X1, ADD4X2, ADD8X1, ADD8X2,
ADD16X1, ADD16X2, ADSU1X1 ADSU1X2, ADSU4X1, ADSU4X2,
ADSU8X1, ADSU8X2, ADSU16X1, ADSU16X2

Accumulators: ACC1X1, ACC1X2, ACC4X1, ACC4X2, ACC8X1,
ACC8X2, ACC16X1, ACC16X2

Note: The accumulator symbols are not supported by the XC7272
devices.
Mentor Graphics Interface/Tutorial Guide 5-11

Mentor Graphics Interface/Tutorial Guide
PLD Components

The XC7000 library contains symbols representing industry standard
Programmable Logic Devices (PLDs) such as the PL22V10 and the
PL20V8. When using these PLD devices you must link the PLD
component instance in your schematic to the associated PLD
equation file (or the imported JEDEC file). The PLD equation file,
processed by the PLUSASM assembler, defines the functionality of
the PLD component. For instruction on how to link the PLD symbol
and its equation file, see the description of the PLD attribute later in
this chapter.

Because the functionality of a PLD is defined outside the schematic,
designs containing any PLDs cannot be functionally simulated prior
to fitting to a device. After fitting, you can perform timing simulation
on the completed design.

The PLD components are PL20V8, PL22V10, PL20PIN PL24PIN,
PL48PIN, PLFB9, and PLFFB9.

Components Not Supported by Specific Devices

The accumulator components, ACC1X1, ACC1X2, ACC4X1,
ACC4X2, ACC8X1, ACC8X2, ACC16X1, and ACC16X2, are not
supported by the XC7272 devices.

The following components require features only present in High-
Density Function Blocks and are therefore not supported by the
XC7318 or XC7336 devices, which contain only Fast Function Blocks:

● PLFB9

● ADD symbols

● ADSU symbols

● ACC symbols

● BUFCE

● BUFT

● IFD

● IFDX1

● ILD
5-12 Xilinx Development System

EPLD Design Issues
● COMPM

● LD

● FDCP, FDCPE

● OBUFT

● OFDT

● XOR7, XOR8, XOR9

Note: The BUFE components are allowed for external outputs only
and must allow FOE optimization.

Primitives and Macros
Each symbol in the library is either a primitive or a macro. The primi-
tive logic components in the XC7000 library are all implemented
using PLUSASM equation files included in the software. The single
I/O pads, buffers, and input registers are also primitives, but have no
PLUSASM descriptors.

The PLUSASM equations defining most XC7000 library components
are supplied in the $XACT/examples/behavior/library directory for
your reference. You may copy and edit these equation files as a
convenient way to implement customized logic components.

A macro is any symbol defined by a Mentor Graphics schematic
included in the XC7000 library. The macro schematic contains
XC7000 primitives and/or other macro symbols. When the source
schematic is read by the software, the macro symbols are expanded
into their underlying schematics. The components actually processed
and reported by the software are the underlying primitives
(referenced by their hierarchical instance names) after macro
expansion.

The same symbol may be implemented as a primitive in the EPLD
library and a macro in the library for another device family and vice
versa.

The only time that it’s important to know about macros is when you
are interpreting reports, which always break a macro down into the
primitives it contains.
Mentor Graphics Interface/Tutorial Guide 5-13

Mentor Graphics Interface/Tutorial Guide
User-Defined Primitives and Macros
You can create custom macro and primitive symbols, then draw
macro schematics consisting of XC7000 and/or custom library
symbols.

Creating a User-defined Primitive

User-defined primitive symbols are defined very much like PLD
library symbols, except that you create your own custom symbol.

To create a user-defined primitive, follow these steps:

1. Create a behavioral description of the primitive in PLUSASM. The
CHIP statement should specify the symbol name and the keyword
COMPONENT as the target PLD type.

2. Run PLUSASM on the behavioral description to generate a VMH/
VMD file in the clib directory.

3. Run Gen_Sym8 on the XSF file to create the primitive symbol.

4. Add the FILE=<symbolname> property to the primitive symbol to
label the primitive as a user-defined component.

Note: The following two steps are optional.

5. Add the PLD=<symbolname> property to the primitive symbol to
allow PLD_XEMake to run PLUSASM automatically.

6. Add the DEF=PLD property to the primitive symbol to tag the
symbol as unsuitable for functional simulation.

Creating a User-defined Macro

To create a user-defined macro, follow these steps:

1. Create a lower level schematic in Design Architect.

2. Create a user-defined macro symbol in Design Architect.

3. Add the REF=<design> property to the symbol to identify the
underlying schematic.
5-14 Xilinx Development System

EPLD Design Issues
Assigning Logical High and Low Values
Unused inputs or symbols should not be left unconnected; warnings
will be issued by the software. Unused inputs should be tied to a
constant high or low logic level in the schematic.

Specify a constant High logic level by using the VCC symbol from the
XC7000 library. Specify a constant Low logic level by using the
library GND symbol. As an alternative, you can specify a constant
High or Low value by connecting a wire segment to a component pin
and labeling the wire VCC or GND.

One exception is that unused pins of PLD symbols (those marked NC
in the equation file pinlist) should remain unconnected. Another
exception is that unused channels of multi-bit I/O ports and buffers
may be left unconnected, for example if only six inputs of an IPAD8
and IBUF8 are used in the design. Inputs tied high or low, or left
unconnected, will result in the software removing the logic
associated with those inputs.

Attributes
Attributes, which you place in your schematic, allow you to control
the following aspects of how the software processes your design:

● Linking of PLD symbols and PLUSASM equation files.

● Pin assignment.

● Power consumption.

● Optimization of logic, registers, and control signals.

● Allocation of Fast Function Block resources.

When you integrate your schematic design using the PLD_XEMake
tool, the schematic is converted to a PLUSASM equation file. The
PLUSASM statements these attributes produce end up in that
equation file.

Attributes are used to express information specific to each design, as
opposed to run-time options entered through the PLD_XEMake
dialog box. There are two ways that attributes are placed in the
schematic:
Mentor Graphics Interface/Tutorial Guide 5-15

Mentor Graphics Interface/Tutorial Guide
● Component attributes, such as PLD, OPT, and LOC, affect only the
component instances on which they are placed.

● Global attributes, such as PRELOAD_OPT and LOGIC_OPT,
affect the entire design and can be placed on any primitive symbol
in the schematic; typically a TBLOCK.

Using Attributes
Use the Properties ➝ Add command to add attributes to symbols
and nets. Follow these steps:

1. If you are applying an attribute to a symbol, select the symbol. Be
sure nothing else is selected.

If you are applying an attribute to a net, select the joint where the
output of the symbol connects to the net. Be sure you have
selected only that joint — a single star should appear at that
location.

2. Select the Properties ➝ Add command from the pop-up
menu.

3. A dialog box appears. Type the name of the attribute, for example
OPT, in the Property Name box, and the value, for example OFF, in
the Property Value box. For Property Type, select String . Select
OK or press Return .

4. Position the cursor where you want to place the attribute, usually
above the component or net.

5. Click the left button to place the attribute.

Global Attributes
The global attributes specific to EPLD designs are as follows:

● LOWPWR=ALL

● LOGIC_OPT=OFF

● MRINPUT=ON

● MINIMIZE=OFF

● UIM_OPT=OFF

● FOE_OPT=OFF
5-16 Xilinx Development System

EPLD Design Issues
● CLOCK_OPT=OFF

● REG_OPT=OFF

● PRELOAD_OPT=OFF

To avoid confusion with component attributes, you should apply
global attributes to a TBLOCK component (a box containing no logic
in which you can include comments about the design).

PLD Equation File Name: The PLD Attribute
The PLD=file_name attribute on a PLD symbol specifies the name of
the file with the logic equations for that PLD. This attribute is valid
on custom primitive symbols (target COMPONENT in PLUSASM)
and the following PLDs: PL20V8, PL22V10, PL20PIN, PL24PIN,
PL48PIN, PLFB9, and PLFFB9.

Do not specify the file extension in the PLD=file_name attribute. This
file must be in PLUSASM (.pld) or PALASM (.pds) format, although
you can start with an ABEL or CUPL file and convert it to PLUSASM
or PALASM.

You must also specify this file_name as the first parameter of the CHIP
statement inside the equation file, as described in the PLUSASM
Language Reference section of the XEPLD Reference Manual. For
example:

CHIP file_name PL22V10

Within the .pld file, the pin list must contain the names of all the
signals connected to all the PLD’s pins, in the proper order. For
example, if you have the signals shown in the following figure, you
must include the following pin list in the equation file:

TITLE CNTR6

CHIP CNTR6 P16V8;

;PINLIST (Highest pin number = 20)

x4clk start NC rd cs NC NC NC NC NC

NC NC read c5 c4 c3 c2 c1 c0 NC :
Mentor Graphics Interface/Tutorial Guide 5-17

Mentor Graphics Interface/Tutorial Guide
Figure 5-12 Pin List Example

All PLD components in your schematic design must have the PLD
attribute. Running PLD_XEMake automatically assembles all
equation files named by all PLD=file_name attributes found in the
schematic.

Like PLDs, user-specified (custom) primitives are defined by
PLUSASM equation files. The PLD=file_name attribute is not required
but can be applied as a convenient way to have your equation file
automatically assembled when PLD_XEMake is invoked. If you omit
the PLD attribute, PLD_XEMake will expect to find a bitmap file for
the symbol (symbol_name.VMH or symbol_name.VMD) in your local
CLIB subdirectory.

Pin Assignment: The LOC Attribute
Use the LOC=pin_name attribute on a net connected to a PAD symbol
to assign the signal to a specific pin. The PAD symbols are IPAD,
OPAD, IOPAD, and UPAD. The pin name is Pnn for PC packages; the
nn is a pin number. The pin name is rc (rowcolumn) for PG packages.
Examples are LOC=P24 and LOC=G2.

Pin assignments are unconditional in that the software will not
attempt to relocate a pin if it cannot achieve the specified assignment.
You can apply the LOC attribute to as many PADs in your design as
you like. However, each pin assignment further constrains the
software as it automatically allocates logic and I/O resources to
internal nodes and I/O pins with no LOC attributes.

Note: Pin assignment using the LOC attribute is not supported for
pad symbols such as OPAD8.

BUFG
C0
C1
C2
C3
C4
C5

RD
CS

PLD=CNTR6

PL20PIN

PIN13

PIN20
PIN19
PIN18
PIN17
PIN16
PIN15
PIN14

PIN1
PIN2
PIN3
PIN4
PIN5
PIN6

PIN9
PIN10

PIN7
PIN8

PIN12
PIN11

READ
5-18 Xilinx Development System

EPLD Design Issues
Power Setting: The LOWPWR Attribute
This attribute is valid only for XC7300 designs. You can use this
attribute as either a global or component attribute.

The default is LOWPWR=OFF (high speed) for all macrocells used in
the design unless otherwise specified.

To make low power the global default power setting, place the global
attribute LOWPWR=ALL in the schematic. (See the Global Attributes
section above for instructions.)

To determine the power setting of the macrocell(s) used by an
individual symbol, use LOWPWR=ON or LOWPWR=OFF (if the
global LOWPWR=ALL was used). This attribute is ignored if
assigned to a symbol that uses no macrocells, such as an inverter,
AND gate (when optimized), input register, and so on.

Logic Optimization Attributes
Use the logic optimization attributes to control optimization of part
or all of your design.

OPT

The OPT=OFF component attribute inhibits logic optimization of all
macrocells used by a symbol. OPT=ON can override the
LOGIC_OPT=OFF global attribute for individual symbols.

The logic optimizer collapses the levels of logic to remove
intermediate nodes. Components are optimized forward into
components connected to their outputs.

If you build combinational logic using low-level gates and
multiplexers, the software attempts to pack all logic bounded
between device I/O pins and registers into a single macrocell.
Mentor Graphics Interface/Tutorial Guide 5-19

Mentor Graphics Interface/Tutorial Guide
The logic optimizer first removes all internal logic that is not used by
any other logic or output buffer and is not explicitly in a PARTITION
statement.

The logic optimizer moves logic forward by collapsing combinational
expressions into their fanouts. If collapsing an expression into all
fanouts succeeds, the original macrocell logic becomes unused and is
removed.

The logic optimizer does not collapse an expression into its fanouts if
the resulting expression uses too many product terms or inputs.

The logic optimizer also moves forward any logic, whether
combinational or sequential, that is buffered by a 3-state buffer.
However, logic that itself contains a 3-state control is not moved
forward.

The OPT attribute has no effect on any symbol that contains no
macrocell logic, such as an I/O buffer.

LOGIC_OPT

To have logic optimization inhibited by default for the entire design,
apply the global attribute LOGIC_OPT=OFF. If you do not use this
attribute, the default is LOGIC_OPT=ON. You can override the global
LOGIC_OPT=OFF for individual symbols using the OPT=ON
attribute.

MINIMIZE

Use the MINIMIZE=OFF global attribute to inhibit logic
minimization for the whole design. If this attribute is not specified,
any redundant or non-effective logic found in any user-specified
equation files will be eliminated through Boolean minimization.

UIM_OPT

To inhibit UIM optimization for the entire design, apply the
UIM_OPT=OFF global attribute.

UIM optimization extracts AND expressions and inverters out of
macrocell logic functions and moves them into the UIM, which
reduces the use of Function Block resources.
5-20 Xilinx Development System

EPLD Design Issues
FOE_OPT

To inhibit FOE (Fast Output Enable) optimization for the entire
design, apply the FOE_OPT=OFF global attribute.

FOE optimization generally applies only to BUFE, OBUFE, or 3-state
PLD outputs driving an OBUF. FOE optimization changes a product-
term 3-state signal to an FOE global control signal. Like FastCLK
assignment, this reduces the number of UIM inputs and product
terms required by each Function Block.

CLOCK_OPT

To inhibit FastCLK optimization for the entire design, apply the
CLOCK_OPT=OFF global attribute.

FastCLK optimization changes a product-term clock to a FastCLK
global signal, which reduces the number of UIM inputs and product
terms required by each Function Block.

REG_OPT

To inhibit input register optimization for the entire design, apply the
REG_OPT=OFF global attribute.

Input register optimization reduces the number of macrocells in a
design by moving simple FD registers connected to IBUFs into a pad
register (provided that the IBUF has no other fanouts). The clock by
which the input register is controlled must be a FastCLK or an input
that can be assigned to a FastCLK pin.

PRELOAD_OPT

Apply the PRELOAD_OPT=OFF global attribute to prevent the
XEPLD software from changing the preload values of registered
components in the design to match the preload values supported by
specified device resources such as FFBs and input registers. The
default (PRELOAD_OPT=ON) allows the XEPLD software to map
your design most efficiently, using the device resources most suited
to the elements of your design. Unless you specify
PRELOAD_OPT=OFF, the software is free to change the initial
register states of any component, including PLD (custom)
components defined in PLUSASM. Use PRELOAD_OPT=OFF to
preserve the initial states specified in the XACT Libraries Guide for
Mentor Graphics Interface/Tutorial Guide 5-21

Mentor Graphics Interface/Tutorial Guide
library components and in the PRLD equations in your PLUSASM
file for PLD or custom components.

You can set a high or low preload for High-Density Function Blocks.
The preload value of Fast Function Blocks depends on the use of set
or reset. Input register preload values are fixed at 1, except for those
on the XC7272, which are undefined.

Fast or High-Density Function Blocks: F and H
Attributes

Use NETFLAG=F or NETFLAG=H in an XC7300 device to specify
whether a macrocell implementing a component output should be
placed in a Fast Function Block (F), or a High-Density Function Block
(H). Attach these properties to the joints between output pins and
nets.

You can also use the F attribute on the output pin of an IBUF symbol
to indicate a Fast Input signal. Only components implemented in Fast
Function Blocks receive this signal via the Fast Input path. Any other
High-density Function Block components receive the same input via
the UIM. Except for using the F attribute on an IBUF symbol, it is not
valid to use either F or H attributes on signals originating from any
I/O buffer symbol (such as IFD or OBUF).

The F attribute is not valid on outputs of components that require
features only present in High-Density Function Blocks, such as the
following types of symbols:

● PLFB9

● ADD

● ADSU

● ACC

● BUFT

● COMPM

● LD

● FDCP, FDCPE

● XOR7, XOR8, XOR9
5-22 Xilinx Development System

EPLD Design Issues
Note: The BUFE symbol can be assigned to an FFB output only when
driving an OBUF and must allow FOE optimization.

The H attribute is not valid on outputs of a PLFFB9.

For logic not labeled with F or H attributes, the XEPLD software
attempts to put as much logic as possible in the Fast Function Blocks
first, then starts filling the High-Density Function Blocks.

MRINPUT
Specifying the MRINPUT=ON global attribute in an XC7354 or
XC7336 design changes the Master Reset pin to an ordinary input
pin. If this attribute is specified, the EPLD device is initialized only on
power-up.
Mentor Graphics Interface/Tutorial Guide 5-23

Mentor Graphics Interface/Tutorial Guide
5-24 Xilinx Development System

Functional Simulation
Preparation

Mentor
Graphics
Interface/
Tutorial
Guide
Mentor Graphics Interface/Tutorial Guide — 0401408 01 Printed in U.S.A.

Mentor Graphics Interface/Tutorial Guide
Xilinx Development System

Chapter 6

Functional Simulation Preparation

This chapter explains how to use the PLD_FNCSIM8 tool to prepare
your designs for functional simulation. Functional simulation
provides an effective means for identifying logic errors in your
design before it is implemented in a Xilinx device. Since timing
information for the design is not available, the simulator tests the
logic in the design using unit delays. Finding errors before routing
your design saves debugging time later in the design process.

The PLD_FNCSIM8 tool automatically prepares your design for
functional simulation and, optionally, loads it into the QuickSim II
simulator. You need to make a few selections in the functional
simulation dialog box to guide the processing of your design. For
most designs, you must run PLD_Men2XNF8 before running
PLD_FNCSIM8. PLD_Men2XNF8 creates an XNF file from your
design schematic. If you want to manually prepare your design for
functional simulation from the command line, refer to the “Manual
Translation” chapter.

This chapter also provides general information on the QuickSim II,
QuickPath, and PLD_DVE tools. For more information on functional
simulation, refer to the “Simulation Issues” chapter and to the
tutorial chapters.

PLD_Men2XNF8
Note: The PLD_Men2XNF8 tool runs the Men2XNF8 script, which
converts your schematic design to an XNF file. For most designs, you
must run PLD_Men2XNF8 before running PLD_FNCSIM8. You do
not need to run Men2XNF8 first if your design contains only
schematic elements. If your design contains any non-schematic
elements, including CLB/IOB symbols, X-BLOX symbols, or symbols
with an attached FILE property, you must run PLD_Men2XNF8
Mentor Graphics Interface/Tutorial Guide — 0401408 01 6-1

Mentor Graphics Interface/Tutorial Guide
before PLD_FNCSIM8. If you make a change to your design, you
must run PLD_Men2XNF8 again before running PLD_XMake or
PLD_FNCSIM8, so that the schematic change is reflected in the
netlist.

Note: For EPLD designs, functional simulation is supported only for
designs consisting entirely of Xilinx-supplied XC7000 library
symbols. Designs containing PLD symbols or custom primitives
defined using equation files cannot be functionally simulated.
Instead, proceed with design implementation and use the timing
simulation procedure to verify your design.

After you capture your design in Design Architect, check and save it
before you invoke PLD_Men2XNF8. To invoke PLD_Men2XNF8,
perform a data-centered or a tool-centered invocation on the icon.
The PLD XNF Translation dialog box shown in the following figure
appears on the screen.

Figure 6-1 PLD XNF Translation Dialog Box
6-2 Xilinx Development System

Functional Simulation Preparation
Select options from the PLD XNF Translation dialog box as follows:

Design Object
Enter the name of your design object.

Note: This field will not appear if you performed a data-centered
invocation of PLD_Men2XNF8 from the Navigator window.

Part Type
Enter the correct Xilinx part type.

Note: The part type that appears in the window is either the default
part type or the last part type entered.

Run MemGen Only
Select this option to prevent the creation of an XNF file. When you
select this option, Men2XNF8 searches your working directory and
runs the MemGen program on any .mem, RAM, or ROM description
files that are in the directory. See the XACT Reference Guide for more
information on the MemGen program.

Verbose Output
Select this option to run PLD_Men2XNF8 in verbose mode. All
output messages, including the various programs that are executed,
are shown on the screen as well as recorded in the men2xnf8.log file.
If this option is not selected, the output messages are still recorded in
the men2xnf8.log file.

Help
This option displays the PLD_Men2XNF8 help text, which includes a
summary of the program’s syntax and a brief description of the
options.

OK or Cancel
Select OK to start PLD_Men2XNF8 or select Cancel to go back to the
Design Manager window without running PLD_Men2XNF8.
Mentor Graphics Interface/Tutorial Guide 6-3

Mentor Graphics Interface/Tutorial Guide
PLD_FNCSIM8
Note: EPLD designs that contain PLD symbols cannot be functionally
simulated.

The PLD_FNCSIM8 tool runs the FNCSIM8 script. FNCSIM8 reads
your design data base, creates the simulation viewpoint, and,
optionally, executes the Mentor Graphics QuickSim II program. You
can make subsequent edits to the schematic using PLD_DA, and then
immediately execute QuickSim II without invoking PLD_FNCSIM8
again.

After you capture your design in Design Architect, check and save it
before you invoke PLD_FNCSIM8. To invoke PLD_FNCSIM8,
perform a data-centered or a tool-centered invocation on the icon.
The PLD Functional Simulation dialog box shown in the following
figure appears on the screen.

Figure 6-2 PLD Functional Simulation Dialog Box
6-4 Xilinx Development System

Functional Simulation Preparation
Select options from the PLD Functional Simulation dialog box as
follows:

Note: The options described below are identical for FPGA and EPLD
designs.

Design Object
Enter the name of your design object.

Note: This field does not appear if you performed a data-centered
invocation of PLD_FNCSIM8 from the Navigator window.

Schematic
Select either Use Original or Auto Generate as follows:

Use Original

This is the default option. Select this option for all EPLD designs and
for FPGA designs that do not contain CLB, IOB, or EQN primitives.
This option specifies that the original schematic is used for functional
simulation. If your design contains symbols that have an attached
FILE property or if your design contains X-BLOX primitives, the
Gen_Sch8 program is automatically run to create schematics for
simulation. If your design contains Xilinx ABEL symbols, ABL2XNF
and Gen_Sch8 are automatically run to create schematics for
simulation. This option allows you to easily debug and probe your
original schematic in QuickSim II.

Auto Generate

Note: This option only applies to FPGA designs.

Select this option for FPGA designs that contain CLB, IOB, or EQN
primitives. This option automatically creates a new schematic for
functional simulation. CLBs, IOBs, and EQNs are non-schematic
elements without an attached FILE property. Since an XNF file does
not exist for the CLB/IOB/EQN primitives, a quick place and route is
performed on the entire design to create an LCA file. The LCA file is
then converted by LCA2XNF to a flattened XNF file. The Gen_Sch8
program is then run to create a completely new flat schematic.
Finally, a simulation viewpoint is created and functional simulation
can be performed.
Mentor Graphics Interface/Tutorial Guide 6-5

Mentor Graphics Interface/Tutorial Guide
If you have many X-BLOX symbols in your design, you may want to
select this option to decrease processing time. However, it is
important to note that the generated schematic is a single page, flat
schematic that does not resemble your original schematic.

Run QuickSim
Select this option to automatically load your design into the
QuickSim II program for functional simulation. You can specify
simulation options for your design within QuickSim. If you want to
set options before invoking the simulator program, select No and use
the QuickSim II icon to set options. See the QuickSim II section below
for more information.

Verbose Output
Select this option to run PLD_FNCSIM8 in verbose mode. All output
messages including the various programs that are executed are
shown on the screen as well as recorded in the fncsim8.log file. If this
option is not selected, the output messages are still recorded in the
fncsim8.log file.

Help
This option displays the PLD_FNCSIM8 help text, which includes a
summary of the program’s syntax and a brief description of the
options.

OK or Cancel
Select OK to start PLD_FNCSIM8 or select Cancel to go back to the
Design Manager window without running PLD_FNCSIM8.

Output Files
The following output files are generated by PLD_FNCSIM8:

● fncsim8.log: all fncsim8 output messages are displayed on the
screen as well as piped to this file. Check this file for error
messages.

● fncsim8.sh: fncsim8 command file. You can edit this file to add
options or customize the command sequence.
6-6 Xilinx Development System

Functional Simulation Preparation
● men2xnf8.log: all men2xnf output messages are displayed on the
screen as well as piped to this file. Check this file for error
messages.

● men2xnf8.sh: men2xnf command file. You can edit this file to add
options or customize the command sequence.

● default.dvpt: default viewpoint file. This file can be used for both
functional and timing simulation.

QuickSim II
Note: If you selected the Run QuickSim option in the Functional
Simulation dialog box, your design is automatically loaded into the
QuickSimII simulator and the dialog box shown below does not
appear.

Every design must have a simulation viewpoint before it can be used
in QuickSim. The viewpoint defines such things as which simulation
model should be used for a primitive.

After preparing your design for functional simulation, you can
invoke QuickSim II to simulate your design. To invoke, double-click
the left mouse button on the QuickSim II icon. The QuickSim II
dialog box shown in the following figure appears on the screen. For
more detailed information on the dialog box options, refer to the
Mentor Graphics QuickSim II documentation.
Mentor Graphics Interface/Tutorial Guide 6-7

Mentor Graphics Interface/Tutorial Guide
Figure 6-3 QuickSim II Dialog Box

Design Pathname
Enter your design directory.

Symbol

This is an advanced option and can be ignored for most designs.
Refer to Mentor Graphics documentation for more information.

Interface

This is an advanced option and can be ignored for most designs.
Refer to Mentor Graphics documentation for more information.

Timing Mode
Select Unit for functional simulation.

Select Visible to display further options for the Unit Timing Mode.
6-8 Xilinx Development System

Functional Simulation Preparation
Simulator Resolution
The smallest resolution allowed for Xilinx designs is 0.1 ns.

OK, Reset, or Cancel
Select OK to start QuickSim II. Select Reset to reset the dialog box
options to the default values. Select Cancel to go back to the Design
Manager window without running QuickSim II.

PLD_DVE
Use PLD_DVE to execute the script that invokes the Mentor Graphics
Design Viewpoint Editor (DVE) configured for Xilinx designs. DVE is
an interactive application that lets you create Simulation, XNF, or
Back Annotation viewpoints for Xilinx designs. To invoke DVE,
double-click on the PLD_DVE icon. The dialog box shown in the
following figure appears on the screen. For a more detailed
description of DVE, refer to the Mentor Graphics documentation.

Figure 6-4 PLD DVE Dialog Box
Mentor Graphics Interface/Tutorial Guide 6-9

Mentor Graphics Interface/Tutorial Guide
Select options from the PLD DVE dialog box as follows:

Design Object
Note: If you performed a data-centered invocation of PLD_DVE, this
option will not appear.

Enter the name of your design directory.

Create Viewpoint Type

Simulation

Select this option to create a simulation viewpoint.

XNF Translation

Select this option to create an XNF Translation viewpoint.

Back Annotation

Select this option to create a Back Annotation viewpoint. When you
select this option, you are prompted for the Mentor Back Annotation
(MBA) file pathname.

PLD Technology
Select the appropriate technology type.

Note: XC8000 is currently not available.

Use Default Viewpoint Name
The default viewpoint is created by the PLD_DVE_SIM script and is
used during both functional and timing simulation. Select No if you
do not want to use the default viewpoint name. You are prompted for
a new design viewpoint name.

Help
This option displays the PLD_DVE help text, which includes a
summary of the program’s syntax and a brief description of the
options.
6-10 Xilinx Development System

Functional Simulation Preparation
OK, Reset, or Cancel
Select OK to start PLD_DVE. Select Reset to reset the dialog box
options to the default values. Select Cancel to go back to the Design
Manager window without running PLD_DVE.
Mentor Graphics Interface/Tutorial Guide 6-11

Mentor Graphics Interface/Tutorial Guide
6-12 Xilinx Development System

Design Implementation

Mentor
Graphics
Interface/
Tutorial
Guide
Mentor Graphics Interface/Tutorial Guide — 0401408 01 Printed in U.S.A.

Mentor Graphics Interface/Tutorial Guide
Xilinx Development System

Chapter 7

Design Implementation

This chapter provides information on implementing FPGA and
EPLD designs using the Design Manager tools PLD_XMake and
PLD_XEMake, respectively. You must run PLD_Men2XNF8 on all
designs before running PLD_XMake or PLD_XEMake.
PLD_Men2XNF8 translates your designs to Xilinx Netlist Format
(XNF) files. PLD_XMake reads the XNF file and creates logic cell
array (LCA) and BIT files. PLD_XEMake reads the XNF file and
creates VMH/VMD and Intel HEX files. See the “Functional
Simulation Preparation” chapter for information on
PLD_Men2XNF8.

The steps performed automatically by PLD_XMake and
PLD_XEMake can be executed manually from the UNIX command
line. Refer to the “Manual Translation” chapter for more information.
For a detailed explanation of XMake and XEMake options, refer to
the XACT Reference Guide for FPGA designs and to the XEPLD
Reference Guide for EPLD Designs.

PLD_XMake
Note: Only FPGA designs can be processed with PLD_XMake.

To start PLD_XMake, perform a data-centered or a tool-centered
invocation on the icon in the Design Manager window. The Xilinx
XMake Tool dialog box shown in the following figure will appear on
the screen.
Mentor Graphics Interface/Tutorial Guide — 0401408 01 7-1

Mentor Graphics Interface/Tutorial Guide
Figure 7-1 XMake Dialog Box

Select dialog box options as follows:

Design Object
Enter the name of your design object.

Note: This field will not appear if you invoked PLD_XMake from
your design in the Navigator window.

Override Part Type
The part type entered in the PLD_Men2XNF8 dialog box is inserted
into the netlist file that is created by Men2XNF8 and then read by
PLD_XMake. To change this part type, select Yes for this option and
enter a new part type.

Verbose Output
Select this option to run PLD_XMake in verbose mode. All output
messages including the various programs that are executed will be
shown on the screen as well as piped to the design.out file. If this
option is not selected, the output messages will still be piped to the
design.out file.
7-2 Xilinx Development System

Design Implementation
Rerun All Steps
Use this option to ensure that PLD_XMake reprocesses the entire
design, including unchanged submodules from the last time the
design was processed.

Use Guide File
Select this option to use a placed and routed design from a prior
iteration of PLD_XMake to guide the place and route of a subsequent
design iteration after modifications to the design have been made.
Enter your guide file name in the file name field that appears when
you select this option.

Perform X-BLOX Optimization
Note: This option is only applicable to XC3000A, XC3000L,
XC3100A, XC4000, and XC4000A/H designs.

Use this option to force the execution of the X-BLOX program on a
design, even on one that does not use X-BLOX symbols, in order to
take advantage of the optimization X-BLOX performs.

Generate MAK File Only
Use this option to create a MAK file only, without running the
commands in the MAK file to implement the design. Select this
option when you want to create a custom MAK file, forcing XMake to
generate a script that you can edit.

Output to Screen
Use this option to direct all program output to the screen instead of
generating a design.out file.

Mapping Strategy
Note: Supports XC2000, XC2000L, XC3000, XC3100, XC3000A/L,
XC3100A only.

Use this option to control mapping strategy. It is sometimes
preferable to map sections of a design separately before merging the
different sections together.
Mentor Graphics Interface/Tutorial Guide 7-3

Mentor Graphics Interface/Tutorial Guide
Map-Then-Merge

Select this option to use the ‘map-then-merge’ mapping strategy.
XMake automatically selects this option for XNFMAP, regardless
of your settings in the option profile.

Map-FILE=-Then-Merge

Select this option to use the ‘map-FILE=-then-merge’ mapping
strategy.

Merge-Then-Map

Select this option to use the ‘merge-then-map’ mapping strategy.

Target
By default, PLD_XMake processes a design all the way to a
configuration bitstream BIT file, unless you specify a different target.
XMake will stop after creating the specified target file.

Make Bitstream

Select this option to create a bitstream file.

Make Placed & Routed Design

Select this option to create an LCA file. The MakeBits program will
not be run by PLD_XMake.

Stop to Review DRC

This option sets the target to design.xft if you are processing
XC4000 devices. PLD_XMake will not run PPR, XDelay, or
MakeBits during the process. This option sets the target to
design.map if you are processing XC3000A/L devices.
PLD_XMake will not run PPR, XDelay, or MakeBits during the
process. This option sets the target to design.map if you are
processing XC2000, XC3000, or XC3100 devices. PLD_XMake will
not run MAP2LCA, APR, or MakeBits during the process. If you
specify a target in the target field, PLD_XMake ignores this option.
7-4 Xilinx Development System

Design Implementation
File

You will be prompted for a target file name when you select this
option. PLD_XMake stops after creating the named file.

OK or Cancel
Select OK to start PLD_XMake or select Cancel to go back to the
Design Manager window without running PLD_XMake.

PLD_XEMake
Note: Only EPLD designs can be processed with PLD_XEMake.

To start PLD_XEMake, perform a data-centered or a tool-centered
invocation on the icon in the Design Manager window. The Xilinx
XEMake Tool dialog box shown in the following figure appears on
the screen.

Figure 7-2 XEMake Dialog Box

Select dialog box options as follows:
Mentor Graphics Interface/Tutorial Guide 7-5

Mentor Graphics Interface/Tutorial Guide
Design Object
Enter the name of your design object.

Note: This field will not appear if you invoked PLD_XEMake from
your design in the Navigator window.

Override Part Type
The part type entered in the PLD_Men2XNF8 dialog box is inserted
into the netlist file that is created by Men2XNF8 and then read by
PLD_XEMake. To change this part type, select Yes for this option and
enter a new part type.

Generate MAK File Only
This option causes PLD_XEMake to create a MAK file only, without
continuing with the commands in the MAK file to implement the
design. Use this option when you want to create a custom MAK file,
forcing PLD_XEMake to generate an initial script that you can edit.

Force Execution
This option forces execution of all design files regardless of file dates,
and displays makefiles in the input file list along with the schematic
and behavioral design files.

Target
PLD_XEMake will create a VMH file unless you specify a different
target. To specify a target, select File . You will be prompted for a file
name. Type in a file name with one of the following extensions.
PLD_XEMake will stop after creating the specified target file.
7-6 Xilinx Development System

Design Implementation
Table 7-1 Target Specification

Signature
Use this option only if you have specified an Intel Hex file as your
target. You will be prompted for a signature to be used as a chip label.
The signature can be any unique identifier up to 8 characters in
length. A “.a” extension identifies the signature as ASCII.

Output Files
The following output files are generated by PLD_XMake and
PLD_XEMake.

Design File

Design.lca is the name of the design file generated by PLD_XMake.
PLD_XMake creates an LCA file that is partitioned, placed, and
routed by either the APR (XC2000/XC3000 designs) or PPR
(XC3000A/L and XC4000 designs) program.

Design.vmh or design.vmd is the name of the partitioned design file
generated by PLD_XEMake.

Note: Design.vmd is the output file for XC7272 designs only. The
design.vmh file is generated for all other EPLD designs.

Programming File

Design.bit is the name of the bitstream file, generated by PLD_XMake,
that can be downloaded to an FPGA device.

Design.prg is the name of the bitmap file, generated by PLD_XEMake,
that can be programmed into an EPLD device.

File Description File Extension

Standard database file .vmh

Database file for XC7272 part only .vmd

Intel Hex programming file .prg
Mentor Graphics Interface/Tutorial Guide 7-7

Mentor Graphics Interface/Tutorial Guide
MAK File

Both PLD_XMake and PLD_XEMake create a MAK file that
documents how each design submodule is processed, including the
options used by the translation programs. You can examine the MAK
file to determine exactly which programs and options were used to
process your design.

Report File

Design.rpt is the name of the report file generated by PLD_XMake. It
contains the results of the place and route routines. Check this file to
make sure there are no unrouted pins or nets.

PLD_XEMake generates several report files. Refer to the XEPLD
Reference Guide for more information.

Note: The following output files are only generated by PLD_XMake.

Out File

The design.out file contains all the text that is echoed to the screen
during the processing of your design, including all warnings and
error messages as well as the programs run by PLD_XMake. Check
this file after running PLD_XMake to ensure your design is error-free.

PRP File

The design.prp file is the Design Rule Check (DRC) report file
generated by XNFPrep. If XNFPrep finds any errors or warnings, the
design.out file directs you to examine this file. This file contains a
detailed list of all logic trimmed by XNFPrep.

Men2XNF8.log File

This file contains a transcript of the outputs of the programs run by
the schematic translation script,Men2XNF8. Check this file for errors
if PLD_XMake or PLD_XEMake fails before creating an XNF netlist.
7-8 Xilinx Development System

Timing Simulation
Preparation

Mentor
Graphics
Interface/
Tutorial
Guide
Mentor Graphics Interface/Tutorial Guide — 0401408 01 Printed in U.S.A.

Mentor Graphics Interface/Tutorial Guide
Xilinx Development System

Chapter 8

Timing Simulation Preparation

This chapter explains how to use the PLD_TIMSIM8 tool to process
your PLD designs and create the files necessary to perform timing
simulation with the QuickSim II simulator. Timing simulation
verifies design functionality by using delay information from the
LCA file or VMH/VMD file created during design implementation.
This delay information must be back-annotated to a schematic before
it can be used for timing simulation. If your design contains only
schematic elements, back-annotation to the original schematic is
possible. If your design contains non-schematic elements, back-
annotation to the original schematic is not possible, and a new
schematic must be generated before timing simulation is possible.

The PLD_TIMSIM8 tool automatically prepares your design for
timing simulation and, optionally, loads it into the QuickSim II
simulator. You need to make a few selections in the simulation dialog
box to guide the processing of your design. If you want to manually
prepare your design for timing simulation from the command line,
refer to the “Manual Translation” chapter.

For more information on timing simulation, refer to the “Simulation
Issues” chapter and to the tutorial chapters.

PLD_TIMSIM8
The PLD_TIMSIM8 tool runs the TIMSIM8 script. TIMSIM8
automatically prepares your design for timing simulation by reading
the LCA or VMH/VMD file and back-annotating the delay
information to the original schematic or to a newly generated
schematic.
Mentor Graphics Interface/Tutorial Guide — 0401408 01 8-1

Mentor Graphics Interface/Tutorial Guide
To start PLD_TIMSIM8, perform a data-centered or a tool-centered
invocation on the icon. The PLD Timing Simulation dialog box shown
in the following figure appears on the screen:

Figure 8-1 PLD Timing Simulation Dialog Box

Select options from the PLD Timing Simulation dialog box as follows:

Note: The options described below are identical for FPGA and EPLD
designs.

Design Object
Enter the name of your design object.

Note: This field does not appear if you performed a data-centered
invocation of PLD_TIMSIM8 from the Navigator window.

Schematic
Select either Use Original or Auto Generate as follows:
8-2 Xilinx Development System

Timing Simulation Preparation
Use Original

Note: This option is only applicable to FPGA designs.

Select this option for FPGA designs that contain only schematic
elements. This option specifies that the delay information in the LCA
file is back-annotated to the original schematic. If your design
contains any of the symbols listed below for the Auto Generate
option, do not select the Use Original option.

Auto Generate

Select this option for all EPLD designs and for FPGA designs that
contain CLB, IOB, EQN, X-BLOX, Xilinx ABEL, and MemGen
symbols. The delay information in the LCA file or VMH/VMD file
must be back-annotated to a schematic before it can be used for
timing simulation. For the designs listed above, back-annotation to
the original schematic is not possible since there is no direct
correlation between the original schematic and the file created during
implementation. A new schematic must be generated from the
information in the LCA or VMH/VMD file. A simulation viewpoint
is then created from the new schematic and timing simulation can be
performed.

Run QuickSim
Select this option to automatically load your design into the
QuickSim II program for timing simulation. You can specify
simulation options for your design within QuickSim. If you want to
set options before invoking the simulator program, select No and use
the QuickSim II icon to set options. See the QuickSim II section below
for more information.

Verbose Output
Select this option to run PLD_TIMSIM8 in verbose mode. All output
messages, including the various programs that are executed, are
shown on the screen as well as recorded in the timsim8.log file. If this
option is not selected, the output messages are still recorded in the
timsim8.log file.
Mentor Graphics Interface/Tutorial Guide 8-3

Mentor Graphics Interface/Tutorial Guide
Help
This option displays the PLD_TIMSIM8 help text, which includes a
summary of the program’s syntax and a brief description of the
options.

OK or Cancel
Select OK to start PLD_TIMSIM8 or select Cancel to go back to the
Design Manager window without running PLD_TIMSIM8.

Output Files
The following output files are generated by PLD_TIMSIM8:

● timsim8.log: all timsim8 output messages are displayed on the
screen as well as piped to this file. Check this file for error
messages.

● timsim8.sh: timsim8 command file. You can edit this file to add
options or customize the command sequence.

QuickSim II
Note: If you selected the Run QuickSim option in the Timing
Simulation dialog box, your design is automatically loaded into the
QuickSim II simulator and the dialog box shown below does not
appear.

To start QuickSim II, double-click the left mouse button on the
QuickSim II icon. The QuickSim II dialog box shown in the following
figure appears on the screen. For more detailed information on the
dialog box options, refer to the Mentor Graphics documentation.
8-4 Xilinx Development System

Timing Simulation Preparation
Figure 8-2 QuickSim II Dialog Box

Design Pathname
Enter your design directory.

Symbol

This is an advanced option and can be ignored for most designs.
Refer to Mentor Graphics documentation for more information.

Interface

This is an advanced option and can be ignored for most designs.
Refer to the Mentor Graphics documentation for more information.

Timing Mode
Select Delay in the Timing Mode row to specify that actual delays
from the implemented design are used for timing simulation.

Select Visible to display further options for the Delay Timing
Mode.
Mentor Graphics Interface/Tutorial Guide 8-5

Mentor Graphics Interface/Tutorial Guide
Simulator Resolution
The smallest resolution allowed for Xilinx designs is 0.1 ns.

OK, Reset, or Cancel
Select OK to start QuickSim II. Select Reset to reset the dialog box
options to the default values. Select Cancel to go back to the Design
Manager window without running QuickSim II.

QuickPath
Note: Running the QuickPath application on PLD designs is
optional.

Use the Mentor Graphics QuickPath tool to perform static and slack
timing analysis on schematic designs that have been prepared for
timing simulation. This tool enables you to identify critical paths and
evaluate modifications that can improve your circuit’s performance.
Use the timing analysis tool to determine possible changes to a circuit
so that you can optimize its performance. Refer to the Mentor
Graphics documentation for more information.

To start QuickPath, double-click on the QuickPath icon in the Design
Manager window. The dialog box shown in the following figure
appears on the screen. For more information on the dialog box
options, refer to the Mentor Graphics documentation.
8-6 Xilinx Development System

Timing Simulation Preparation
Figure 8-3 QuickPath Dialog Box
Mentor Graphics Interface/Tutorial Guide 8-7

Mentor Graphics Interface/Tutorial Guide
8-8 Xilinx Development System

Simulation Issues

Mentor
Graphics
Interface/
Tutorial
Guide
Mentor Graphics Interface/Tutorial Guide — 0401408 01 Printed in U.S.A.

Mentor Graphics Interface/Tutorial Guide
Xilinx Development System

Chapter 9

Simulation Issues

This chapter provides important information you need to consider
when using the QuickSim II program to simulate your PLD designs.

Simulation Models
Most Xilinx simulation models are built with the Mentor Graphics
QuickPart tables. Flip-flops and memory elements are modeled with
QuickPart tables and behavioral language models, while gates are
modeled with QuickPart tables. All delay information is passed to
Xilinx components via the routed XNF file.

Analyzing Nets from the Schematic
This section describes how to select and analyze nets within the
QuickSim II simulator.

You can probe nets in QuickSim II by opening a schematic sheet and
selecting a net. To trace the selected signal:

1. Select the (schematic view) Add ➝ Traces ➝ Selected
menu path.

A Trace window is created with the selected signals.

2. You can List and Monitor selected nets by selecting the (schematic
view) Add ➝ Lists ➝ Selected and (schematic view) Add
➝ Monitors ➝ Selected menu items.

After you have set up a list of signals, you can save the list in a “do
file” to use in future QuickSim sessions. Refer to the QuickSim II
manuals from Mentor Graphics for detailed information on using the
simulator and creating do files.
Mentor Graphics Interface/Tutorial Guide — 0401408 01 9-1

Mentor Graphics Interface/Tutorial Guide
FPGA Devices

Global Reset and 3-State Signals
Before you simulate a design, you must force the globalresetb
(XC2000 and XC3000 designs) or the globalsetreset (XC4000 designs);
otherwise, the flip-flops and latches do not function correctly.

1. Select your design directory icon in the Navigator window and
select Right Mouse Button ➝ Open ➝ QuickSimII to
enter the QuickSim II simulator.

2. Select the File ➝ Open Sheet menu item to display the
Design Architect schematic.

3. Select the Add Force menu from the QuickSim II Stimulus
palette.

4. Fill in the dialog box with the //globalresetb signal name, 0 for
the first time, and 0 for the first value; <n> for the second time,
and 1 for the second value.

<n> should not be less than the minimum reset width for the
given speed grade of the design specified in the The Programmable
Logic Data Book for the XC2000 and XC3000 families. The reset
width emulates a power–on reset at the beginning of simulation.

Globalresetb is now forced High at <n> ns. If you want to reset the
flip-flops after <n> ns, toggle the globalresetb Low and High for
the necessary pulse width specified in The Programmable Logic Data
Book. Setting the //globalresetb signal in simulation is similar to
toggling the Reset pin on an XC2000 or XC3000 device after
configuration.

The previous procedure is slightly different for XC4000 IOBs and 3-
state I/O pins.

To set XC4000 IOB flip-flops:

1. Set the IOB flip-flops High or Low on power-up by using the INIT
property on the IOB flip-flops.

2. To activate the signal and begin simulation, set globalsetreset by
selecting the Add Force menu item from the QuickSim II
Stimulus palette.
9-2 Xilinx Development System

Simulation Issues
3. Fill in the dialog box with the //globalsetreset signal name, 0 for
the first time and 1 for the first value; <n> for the second time and
0 for the second value.

<n> is the specified minimum reset pulse width for the given
speed grade part of the design, specified in The Programmable Logic
Data Book.

XC4000 parts have a global input state to make all output pins 3-state,
which allows the isolation of the XC4000 part in board test. To
simulate the global 3-state signal, force the signal named //
globalthreestate High using the Add Force command. Forcing the
signal High holds all chip I/Os in a high–Z (3–state) state until //
globalthreestate is forced to zero.

XC4000 Simulation Exceptions
This section describes issues that you need to be aware of when
simulating XC4000 ROMs.

For full-timing simulation, PPR reads in the INIT property on the
ROM and translates it into the appropriate logic gates. Because PPR
hard codes the initial value into the LCA file, you cannot change the
initial value after running it. Unlike RAMs, ROMs can have pre-
programmed data in the Xilinx part.

EPLD Devices

Using PRLD for Initialization
The PRLD (preload) signal is an input to your EPLD design that does
not appear on your schematic; it is included in the models of
registered components and is automatically added to the functional
and timing models by FNCSIM8 and TIMSIM8, respectively. You
must include the PRLD signal in your do file to ensure that the
registers in your design are initialized properly.

Before applying simulation stimuli, you must initialize the device by
pulsing PRLD High for at least 1 time unit (0.1ns). Before
initialization, all registers are in an unknown state (U) which usually
prevents any meaningful simulation results. PRLD simulates the
Master Reset signal (or power-on-reset) of the EPLD device and
forces all registers to a predefined state.
Mentor Graphics Interface/Tutorial Guide 9-3

Mentor Graphics Interface/Tutorial Guide
All input signals to the device should be set to a known logic state
before PRLD is returned Low, otherwise some internal nodes may
become trapped in an unknown state. You must return PRLD to a
Low state before the design will respond properly to input stimulus.

For functional simulation, all registered components initialize to the
state defined in the XACT Libraries Guide. During implementation, the
XEMake program might alter the initial states of register to take
optimal advantage of device resources unless you inhibit Preload
optimization. Timing simulation will exhibit the actual register
preload values implemented by the software. You can control the
preset state of XEPLD registers in PLD components, so they are
forced either High or Low, by using the “output.PRLD” equation in
PLUSASM. See the XEPLD Reference Manual for more information on
the PRLD extension.

You can use the PRELOAD_OPT global attribute to determine
whether the preload value can be changed for parts of the design to
allow logic to fit as efficiently as possible into device resources (ON),
or the logic is mapped to device resources according to the
established preload values (OFF). PRLD equations in your PLD
components are only effective if PRELOAD_OPT is turned OFF. For
more information, see the “EPLD Design Issues” chapter.

Under some conditions, the first simulation cycle after PRLD is
brought Low produces setup and hold violations. This is due to the
asynchronous nature of the PRLD signal. The resulting warnings are
usually not indicative of a circuit problem.

You should analyze your design for any potential initial-state
problems that could result when the device comes out of the power-
on-reset or the external Master Reset (MR). For example, if the device
recovers from its reset cycle and becomes operational coincident with
the rising edge of a free-running clock input, not all registers in the
device might respond to this first clock cycle. As a result, an invalid
internal state might occur. Such situations are not detectable during
simulation.

See the “XEPLD Tutorial” chapter for an example of how to initialize
the device during simulation.
9-4 Xilinx Development System

Simulation Issues
Forcing PRLD

Before you simulate a design, you must force the PRLD, otherwise,
the flip-flops and latches do not function correctly. Perform the
following steps to force the PRLD:

1. Select your design directory icon in the Navigator window and
select Right Mouse Button ➝ Open ➝ QuickSimII to
enter the QuickSim II simulator.

2. Select the File ➝ Open Sheet menu item to display the
Design Architect schematic.

3. Select the Add Force menu from the QuickSim II Stimulus
palette.

4. Fill in the dialog box with the //PRLD signal name, 0 for the first
time, and 1 for the first value; any number greater than 0 for the
second time, and 0 for the second value.

XC7000 Simulation Exceptions
For EPLD designs, functional simulation is supported only for
designs consisting entirely of Xilinx-supplied XC7000 library
symbols. Designs containing PLD symbols or custom primitives
defined using equation files cannot be functionally simulated. Use
the timing simulation procedure to verify your design.
Mentor Graphics Interface/Tutorial Guide 9-5

Mentor Graphics Interface/Tutorial Guide
9-6 Xilinx Development System

Manual Translation

Mentor
Graphics
Interface/
Tutorial
Guide
Mentor Graphics Interface/Tutorial Guide — 0401408 01 Printed in U.S.A.

Mentor Graphics Interface/Tutorial Guide
Xilinx Development System

Chapter 10

Manual Translation

This chapter describes how to prepare your designs for functional
and timing simulation from the UNIX command line. A brief
description of the design implementation flow is also provided.

The first half of the chapter includes the applicable command
sequence for various types of designs. Flow diagrams and command
summaries are provided to guide you through the processing of your
design. The second half of the chapter provides descriptions of the
various programs including syntax, variables, and options.

There are three scripts written in the System V Bourne Shell:

● Men2XNF8

● FNCSIM8

● TIMSIM8

These scripts run the various programs in the command sequences
provided in the first part of the chapter. You can either enter each
program individually at the command line or you can automate the
process by running the appropriate script. These three scripts are
described in the second half of the chapter.

Use commands exactly as they are shown below for each type of
design. The input and output files are given extended names to help
track which files to use for later commands and to avoid overwriting
any important files. Syntax conventions are shown in the following
table:
Mentor Graphics Interface/Tutorial Guide — 0401408 01 10-1

Mentor Graphics Interface/Tutorial Guide
Table 10-1 Syntax Conventions

Functional Simulation

FPGA and EPLD Designs with Only Schematic
Elements

Note: The following functional simulation flow is the only one
applicable to EPLD designs. For EPLD designs, functional simulation
is supported only for designs consisting entirely of Xilinx-supplied
XC7000 library symbols. Designs containing PLD symbols or custom
primitives defined using equation files cannot be functionally
simulated. Use the timing simulation procedure to verify your
design.

Figure 10-1 Schematic Only (Functional Simulation)

italic font Variables that you replace in syntax statements.

[] Denote optional items or
parameters. However, in bus specifications,
such as bus [7:0], they are required.

{ } Enclose a list of items from which
you must choose one or more.

| Separates items in a list of choices.

X4665

PLD_DA

PLD_DVE_SIM

QuickSim II

Design/Schematic
Directory

Default Viewpoint
10-2 Xilinx Development System

Manual Translation
Use the following command sequence on designs that contain only
schematic elements. For FPGA designs, do not use this procedure if
your schematic contains CLB/IOB, X-BLOX, MemGen, or Xilinx
ABEL symbols, or symbols with an attached FILE property. For EPLD
designs, do not use this procedure if your schematic contains PLD
symbols with an attached PLD=filename property. These commands
prepare your design for functional simulation.

pld_dve_sim design tech_type

quicksim design
Mentor Graphics Interface/Tutorial Guide 10-3

Mentor Graphics Interface/Tutorial Guide
FPGA Designs with Schematic and CLB/IOB/EQN
Elements

Figure 10-2 Schematic & CLB/IOB/EQN (Functional Simulation)

X4664

PLD_DA

PLD_DVE

ENWRITE

Design/Schematic
Directory

XNF Viewpoint

Design/Schematic

EDIF2XNF

XMake See XACT Reference Guide

EDIF

LCA2XNF

PLD_DVE_SIM

Default Viewpoint

QuickSim II

LCA

Gen_Sch8

XNF

XNF • • • XNF
10-4 Xilinx Development System

Manual Translation
Use the following command sequence on designs that contain
schematic elements and CLB/IOB/EQN primitives. CLBs, IOBs, and
EQNs are non-schematic elements without an attached FILE
property. Since an XNF file does not exist for the CLB/IOB/EQN
primitives, a quick place and route is performed on the entire design
to create an LCA file. The LCA file is then converted by LCA2XNF to
a flattened XNF file. The Gen_Sch8 program is run to create a
completely new flat schematic. A simulation viewpoint is then
created and functional simulation can be performed.

pld_dve design tech_type

rm design .edif

enwrite design /xnf

-rcf $LCA/data/enwrite.config

-wef design .edif

edif2xnf design .edif -p part_type

xnfmerge design .xnf

At this point, you must create an LCA file by running the appropriate
programs for your design. Refer to the XACT Development System
Reference Guide for the correct procedure. Once you have created an
LCA file, execute the remaining steps as follows:

lca2xnf -g design design _fnc

gen_sch8 design_ fnc.xnf

pld_dve_sim design_ fnc tech_type

quicksim design_ fnc
Mentor Graphics Interface/Tutorial Guide 10-5

Mentor Graphics Interface/Tutorial Guide
FPGA Designs with Schematic and X-BLOX
Elements

Figure 10-3 Schematic and X-BLOX (Functional Simulation)

X4668

PLD_DA

PLD_DVE

ENWRITE

XNF Viewpoint

Design/Schematic

SIMDIR/Design/Schematic

SIMDIR/Design/Default Viewpoint

EDIF2XNF

XNFMerge

EDIF

XNFPrep

XFF

Schematic

Gen_Sch8

Schematic

Gen_Sch8

PLD_DVE_SIM

XBLXGS

QuickSim II

XTF

XNF • • • XNF

XGS • • XNFXNF

X-BLOX
10-6 Xilinx Development System

Manual Translation
Use the following command sequence on designs that contain sche-
matic elements and X-BLOX symbols. X-BLOX symbols are non-sche-
matic elements without an attached FILE property. The X-BLOX
program is run to create the necessary XNF files needed to generate a
new schematic for simulation.

ENWRITE reads the XNF viewpoint created by PLD_DVE and
produces an EDIF file. EDIF2XNF converts the EDIF file to an XNF
file. One XNF file is produced for every block in the schematic.
XNFMerge converts the XNF files produced by EDIF2XNF into a
flattened file with a .XFF extension. XNFPrep checks this file for
errors, trims unused logic, and writes a new file with a .XTF
extension. X-BLOX is then run on the .XTF file. X-BLOX processes the
X-BLOX symbols and generates the appropriate logic. The XNF files
produced by X-BLOX are written to the SIMDIR directory under the
working directory. X-BLOX also produces a file with a .XGS extension
that describes how the simulation schematic should be drawn.
XBLXGS reads the .XGS file and the original schematic and produces
a new top-level schematic in the SIMDIR directory. Gen_Sch8 creates
the simulation schematics from the XNF files produced by X-BLOX.
Finally, PLD_DVE_SIM is run to generate a simulation viewpoint.

pld_dve design tech_type

rm design .edif

enwrite design /xnf

-rcf $LCA/data/enwrite.config

-wef design .edif

edif2xnf design .edif -p part_type

xnfmerge design. xnf

xnfprep design. xff

rm -r simdir

mkdir simdir

xblox design .xtf simdir= simdir sim=xnf

xblxgs design simdir / design. xgs -w -d simdir
Mentor Graphics Interface/Tutorial Guide 10-7

Mentor Graphics Interface/Tutorial Guide
Note: The “#” symbol in the following command is a variable and
represents the number of the bsm file.

gen_sch8 simdir /bsm #.xnf -w

pld_dve_sim simdir / design tech_type

quicksim simdir / design

FPGA Designs with Schematic Elements and
Elements with the FILE Property

Figure 10-4 Schematic and FILE Property (Functional
Simulation)

Use the following command sequence on designs that contain Xilinx
ABEL, MemGen, or other symbols with an attached FILE property.
The FILE property indicates that the symbol’s logic is represented by
an XNF file instead of an underlying schematic. Gen_Sch8 must be
run on the XNF files to create a simulation schematic.

pld_dve design tech_type

rm design .edif

enwrite design /xnf

-rcf $LCA/data/enwrite.config

-wef design .edif

edif2xnf design .edif -p part_type

X4666

PLD_DA

PLD_DVE_SIM
Gen_Sch8

QuickSim II

Design/Schematic
Directory

Default ViewpointSchematic

XNF
10-8 Xilinx Development System

Manual Translation
Note: The subdesign.xnf file in the following command is the lower
level XNF file represented by Xilinx ABEL, MemGen, or other
symbols with an attached FILE property.

gen_sch8 subdesign .xnf

pld_dve_sim design tech_type

quicksim design
Mentor Graphics Interface/Tutorial Guide 10-9

Mentor Graphics Interface/Tutorial Guide
FPGA Designs with Schematic Elements, Elements
with the FILE Property, and X-BLOX Elements

Figure 10-5 Schematic, FILE Property, and X-BLOX (Functional
Simulation)

X4669

PLD_DA

PLD_DVE

ENWRITE

XNF Viewpoint

Design/Schematic

SIMDIR/Design/Schematic

SIMDIR/Design/Default Viewpoint

EDIF2XNF

XNFMerge

EDIF

XNFPrep

XFF

Schematic

Gen_Sch8

Schematic

Gen_Sch8

PLD_DVE_SIM

XBLXGS

QuickSim II

XTF

XNF • • • XNF

XGS • • • XNF

Schematic

Gen_Sch8

XNFXNF

X-BLOX
10-10 Xilinx Development System

Manual Translation
Use the following command sequence on designs that contain
schematic elements, elements with the FILE property, and X-BLOX
elements. Refer to the two previous design flows for a summary of
the commands.

pld_dve design tech_type

rm design .edif

enwrite design /xnf

-rcf $LCA/data/enwrite.config

-wef design .edif

edif2xnf design .edif

xnfmerge design. xnf

xnfprep design. xff

rm -r simdir

mkdir simdir

xblox design .xtf simdir= simdir sim=xnf

xblxgs design simdir / design. xgs -w -d simdir

gen_sch8 simdir /bsm#.xnf -w

Note: The design.xnf file in the following command is the sub-level
XNF file represented by Xilinx ABEL, MemGen, or other symbols
with an attached FILE property.

gen_sch8 design .xnf

pld_dve_sim simdir / design tech_type

quicksim simdir / design

Design Implementation
This section gives you a brief summary of how to generate
implemented FPGA and EPLD designs. For detailed information,
consult the XACT Reference Guide.

FPGA Designs
To translate an XNF file into an LCA file, use the Xilinx
Mentor Graphics Interface/Tutorial Guide 10-11

Mentor Graphics Interface/Tutorial Guide
implementation tools. The following figure illustrates the
implementation design flow. Note that you must implement your
design before you can create a timing simulation file.

Figure 10-6 FPGA Implementation

X4685

Men2XNF8

XNFMerge

PLD_DA

XNF
XNF

XTG

XNF

XFF

XTF

LCA

LCA

Y

N

XNFPrep

XNFPrep

X-BLOX

Design/Schematic Directory

XABEL, MemGen, and other
symbols with FILE=attribute

XNFMAP

APR

X-BLOX

MAP

MAP2LCA

XDelay

PPR

BIT

MakeBits

Y

N

Y

N

4K

3KA/L

XG
10-12 Xilinx Development System

Manual Translation
EPLD Designs
Run FITNET on your schematic to implement your EPLD design. If
you have PLD components or custom primitives in your design, you
must first assemble each equation file using PLUSASM before
running FITNET. You must implement your design before generating
a timing simulation file. To generate a programming file in Intel HEX
format (PRG file), use the MakePRG program. Refer to the XEPLD
Reference Guide for details.

Figure 10-7 EPLD Implementation

X4684

Men2XNF8

XNFMerge

FITNET

MakePRG

• • •

PRG (HEX)

PLD, PDS

VMH/VMD

VMH/VMD

PLD_DA

PLUSASM

Design/Schematic Directory

XNF

XFF

XNF
Mentor Graphics Interface/Tutorial Guide 10-13

Mentor Graphics Interface/Tutorial Guide
Timing Simulation

FPGA Designs with Schematic Elements Only

Figure 10-8 Schematic Only (Timing Simulation)

Use the following command sequence on FPGA designs that contain
only schematic elements. Do not use this procedure if your design
contains CLB/IOB, X-BLOX, MemGen, or Xilinx ABEL symbols, or

X4681

Default Viewpoint

design_tim.xnf

XDelay

LCA2XNF

LCA

LCA

XNF

XFF

MBA

Y

N

XNFBA

UNAKAXNF

PLD_DVE_BA

QuickSim II

design.aka

N

Y

PLD_DVE_SIM

MBAPP

Default
Viewpoint
10-14 Xilinx Development System

Manual Translation
symbols with an attached FILE property. These commands prepare
your design for timing simulation.

Input begins with an LCA file with net delays. XDelay must be run
on XC3000A, XC3000L, XC3100A, and XC4000 designs to add these
delays. LCA2XNF converts your routed design back to an XNF file.
When running LCA2XNF, you must specify an output name that is
different from the original XNF file name to avoid overwriting the
original design.xnf file. UNAKAXNF reads the design.aka file, if it
exists, that was produced by MAP2LCA and restores the net names
that were aliased. XNFBA reads the routed XNF file and the flat pre-
routed file created by XNFMerge. It creates a Mentor Back-
Annotation (MBA) file. MBAPP is then run to prevent back-
annotation ambiguity. The MBA file is read by PLD_DVE_BA to
back-annotate the delays to the original default viewpoint. QuickSim
II then uses the default viewpoint for timing simulation. The original
default viewpoint must exist for back-annotation. You may need to
create a default viewpoint with PLD_DVE_SIM.

The first step in the following command sequence only needs to be
run on XC3000A, XC3000L, XC3100A, and XC4000 designs.

xdelay design .lca -d -w

lca2xnf -g design .lca design _tim.xnf

The next two steps are only necessary if a design.aka file exists.

unakaxnf -o design _timaka design _tim.xnf

mv design _timaka.xnf design _tim.xnf

xnfba design .xff design _tim.xnf -m

nawk -f $LCA/com/{sparc/hppa/apollo}/mbapp.nawk/
mbafile=design_tim.mba > design_tim.mbb

mv -f design_tim.mbb design_tim.mba

pld_dve_ba design_tim .mba

quicksim design _tim -tim typ -consm messages
Mentor Graphics Interface/Tutorial Guide 10-15

Mentor Graphics Interface/Tutorial Guide
FPGA Designs with Non-schematic Elements

Figure 10-9 FPGA Non-schematic (Timing Simulation)

Use the following command sequence on FPGA designs that contain
non-schematic elements. These commands prepare your design for
timing simulation.

Input begins with an LCA file with net delays. XDelay must be run on
XC3000A, XC3000L, XC3100A, and XC4000 designs to add these
delays. LCA2XNF converts your routed design back to an XNF file.
When running LCA2XNF, you must specify an output name that is
different from the original XNF file name to avoid overwriting the

X4748

Default Viewpoint

design_tim.xnf

XDelay XC3000A, XC3000L,
XC3100A, XC4000 Only

LCA2XNF

LCA

LCA

XNF

XNF

XFF/XG

Y

N

Schematic

Gen_Sch8

XNFBA

UNAKAXNF

PLD_DVE_SIM

QuickSim II

design.aka

Y

N

Timing
Problems
10-16 Xilinx Development System

Manual Translation
original design.xnf file. UNAKAXNF reads the design.aka file, if it
exists, that was produced by MAP2LCA and restores the net names
that were aliased. It is not necessary to run XNFBA on the first pass. If
there are no timing problems after the first pass, it is not necessary to
run XNFBA. For the first pass, the output of LCA2XNF should be
processed by Gen_Sch8. Gen_Sch8 creates a simulation schematic
and PLD_DVE_SIM generates a simulation viewpoint.

If XNFBA is run, it creates an XNF file that is read by Gen_Sch8.
PLD_DVE_SIM is run to generate a simulation viewpoint.

The first step in the following command sequence only needs to be
run on XC3000A, XC3000L, XC3100A, and XC4000 designs.

xdelay design .lca -d -w

lca2xnf -g design .lca design _tim.xnf

The next two steps are only necessary if a design.aka file exists.

unakaxnf -o design _timaka

mv design _timaka.xnf design _tim.xnf

Do not run XNFBA on the first pass. If there are no timing problems,
it is not necessary to run XNFBA. XNFBA without the -o option
writes output to xnfba.xnf.

xnfba { design .xff | design .xg} design _tim.xnf -o
design _tim

gen_sch8 design _tim.xnf

pld_dve_sim design_tim

quicksim design _tim -tim typ -consm messages
Mentor Graphics Interface/Tutorial Guide 10-17

Mentor Graphics Interface/Tutorial Guide
EPLD Designs

Figure 10-10 EPLD Designs (Timing Simulation)

Use the following command sequence on EPLD designs. These
commands prepare your design for timing simulation.

vmh2xnf -n design .vmh -o design _tim

gen_sch8 design _tim.xnf

pld_dve_sim design _tim tech_type

quicksim design _tim -tim typ -consm messages

Program Summary
Note: When you enter a part type using the -p option, make sure it
begins with a 2, 3, 4, or a 7.

EDIF2XNF
The EDIF2XNF program translates an EDIF file into one or more XNF
files. Although EDIF2XNF accepts different variations of EDIF files,

X4683

Design/Schematic

VMH2XNF

PLD_DVE_SIM

Default Viewpoint

QuickSim II

VMH/VMD

Gen_Sch8

XNF
10-18 Xilinx Development System

Manual Translation
this section is limited to EDIF files created with the Mentor Graphics
ENWRITE program.

Syntax

The EDIF2XNF command syntax is:

edif2xnf input_file.edif [- options]

The -p option for part type is required.

Variables

input_file.edif is the name of the EDIF input design file that
ENWRITE creates. You must specify the .edif extension. The file is
created by running ENWRITE on the XNF viewpoint for your design.
This viewpoint is created by running PLD_DVE on the EDDM files
containing your schematic data created by PLD_DA.

Options

-f, -w Force Overwrite

When the -f option is specified, EDIF2XNF automatically overwrites
any existing XNF files. The -f option exists for consistency with other
Xilinx programs that use the -w option.

-h Help Text

The -h option displays the EDIF2XNF help text, which includes a
summary of the program’s syntax and a brief description of the
options.

-l library_path Specify EDIF Primitive Library

The -l option defines a search path for the EDIF primitive library,
which overrides the $XACT/data/edif* search path (where * is used
as a wild card), if it is set.

You must have the $XACT environment variable set or use the -l
option to specify the library path.
Mentor Graphics Interface/Tutorial Guide 10-19

Mentor Graphics Interface/Tutorial Guide
-n Do Not Flatten the Design

The -n option causes the design to remain unflattened in the XNF file.
By default, EDIF2XNF flattens the design.

-ni Do Not Inherit Properties

The -ni option prevents properties at higher levels from being passed
to lower levels of the design. When flattening a design, properties are
usually passed down through the design hierarchy and override like
properties on subcell instances.

Note: Do not use this option if there are Xilinx soft macros in your
design.

-noio Do Not Create EXT Records in XNF File

The -noio option suppresses EXT records in the output XNF file if
ports are found in the input EDIF file.

-ns Do Not Skip Unrecognized EDIF Records

EDIF2XNF skips records it does not recognize. The -ns option
prevents EDIF2XNF from skipping such records. This option is
provided as a debugging tool for use with EDIF formats that are not
usually read by EDIF2XNF.

-od output_directory Specify Alternate Output
Directory

This option specifies an alternate directory for the XNF output files to
be placed in that overrides the directory specified when the Xilinx
Design Kit is used.

-of Specify Alternate Output File Name

This option specifies an alternate XNF output file name of the top-
level structure that overrides the name specified in the EDIF file.

-p part_type Specify Part Type

The -p option specifies the Xilinx part type for your design. You can
also use this option to override the Part property attached to the EDIF
design record in the EDIF file; you must specify one or the other. The
10-20 Xilinx Development System

Manual Translation
part type consists of two parts. The first part is the part name and
package type. The second part (optional) is the speed grade. For
example:

4005PG156-6

The default part type for EDIF2XNF is 4005PG156; the default speed
grade is -6. Do not include any spaces between the part type and the
speed grade.

-s Skip Checks

The -s option causes EDIF2XNF to skip the checking of primitives
and their ports. Usually, EDIF2XNF checks all primitives to ensure
they are known and that all ports for those primitives are known.

-x Flatten Xilinx Soft Macros Only

The -x option flattens only Xilinx soft macros. User-defined blocks in
the design are then put into separate XNF files. This option overrides
the -n no-flatten option.

-nt Omit Timing

The -nt option omits $Xilinx_add_delays call in the template stimulus
file.

-m map_file Specify Name of Map File

The -m option specifies the name of a map file that can be used to
map foreign EDIF cell primitives into Xilinx ones. $XACT/data/
edif*/v*.map is used if it exists, where * is used as a wildcard for
2000, 3000, and 4000.

-v verilog_map Generate Verilog Netlist

The -v option generates a Verilog netlist, instead of an XNF file. The
map file specifies port order and only accepts EDIF files from XNF to
EDIF. Map files reside in $XACT/data/verilog*/v*.map, where * is
used as a wildcard for 2000, 3000, and 4000.
Mentor Graphics Interface/Tutorial Guide 10-21

Mentor Graphics Interface/Tutorial Guide
ENWRITE
ENWRITE converts an XNF viewpoint to an EDIF file that is read by
the EDIF2XNF program. Refer to the Mentor Graphics EDIF Netlist
User’s and Reference Manual for detailed information on ENWRITE.

Syntax

enwrite design_name/xnf [-rcf config_file]
[-wef edif_file]

Variables

design_name/xnf specifies the pathname to the component and the
XNF viewpoint to be used in creating the EDIF file.

Refer to the Mentor Graphics EDIF Netlist User’s and Reference Manual
for detailed information on -rcf config_file and -wef edif_file.

Warning: You must specify the XNF viewpoint for the component;
otherwise, ENWRITE uses the generic Mentor Graphics default
viewpoint for the component and produces unexpected results.

Options

-rcf Read Configuration File

This option instructs ENWRITE to read configuration directives from
the specified ASCII configuration file.

-wef edif_fileWrite EDIF File

This option instructs ENWRITE to write an EDIF file of the specified
name. You must specify a file name if you use the -wef option.

Note: ENWRITE fails if an EDIF file of the same name already exists,
so always check for and remove existing EDIF files before running
ENWRITE.

FNCSIM8
FNCSIM8 prepares a Mentor design for QuickSim II functional
simulation. It invokes Gen_Sch8, PLD_DVE_SIM, and QuickSim II as
needed.
10-22 Xilinx Development System

Manual Translation
Syntax

fncsim8 design {-o | -g}

[-q -verbose -help]

Variables

design is the name of your Mentor design directory.

Options

-o Use original schematic for simulation

-g Generate a new schematic for simulation

-q Run QuickSim II

-verbose Run FNCSIM8 in verbose mode

-help Display FNCSIM8 syntax

Gen_Sch8
This program creates a new schematic composed of only schematic
elements that can be used for functional simulation.

Syntax

gen_sch8 [options]
design [.xnf|.xas|.xff|.xtf|.xg]

Variables

design.extension is the input xnf, xas, xff, xtf, or xg file
Mentor Graphics Interface/Tutorial Guide 10-23

Mentor Graphics Interface/Tutorial Guide
Options

-a aka_file[.aka]

-o output_filename

-s starting sheet_number

-w Silent overwrite

LCA2XNF
LCA2XNF converts a routed design to an XNF file that may be used
for functional simulation. Refer to the XACT Reference Guide for
detailed information on LCA2XNF.

Warning: You should always specify a different output file name so
that the original (unplaced, unrouted) XNF file is not overwritten.

Men2XNF8
The Men2XNF8 script translates your design into a Xilinx netlist file
(XNF). Men2XNF8 runs PLD_DVE, ENWRITE, EDIF2XNF, and
MemGen as needed.

Syntax

men2xnf8 design -p part_type

[-m -verbose -help]

Variables

design is the name of your Mentor design directory.
10-24 Xilinx Development System

Manual Translation
Options

-p Xilinx part type

-m Run only MemGen on .mem files

-v Run Men2XNF8 in verbose mode

-h Display Men2XNF8 syntax

PLD_DVE
PLD_DVE creates an XNF viewpoint for a Xilinx design. You only
have to run PLD_DVE once for each design.

Syntax

pld_dve design tech_type[design_viewpoint_name]

Variables

design is the file name of the component declared as root of the design
hierarchy.

tech_type specifies the PLD family, either XC2000, XC3000, XC4000, or
XC7000.

design_viewpoint_name specifies the name of the design viewpoint to
generate. The default name is XNF, which is placed in the design
directory.

Options

 -h Display syntax for PLD_DVE
Mentor Graphics Interface/Tutorial Guide 10-25

Mentor Graphics Interface/Tutorial Guide
PLD_DVE_BA
Note: A default viewpoint must exist before running PLD_DVE_BA.

PLD_DVE_BA reads the Mentor Back Annotation (MBA) file created
by XNFBA and back annotates the original default viewpoint created
during functional simulation. The back annotated viewpoint is then
read by QuickSim II.

Syntax

pld_dve_ba component_name design .mba
[design_viewpoint] [-help]

Variables

design.mba is the Mentor Back Annotation file created by XNFBA.

Options

design_viewpoint Specify different viewpoint other
than default

 -help Display syntax for PLD_DVE_BA

PLD_DVE_SIM
PLD_DVE_SIM reads in your design and creates the default
viewpoint that is used by the Mentor Graphics QuickSim II simulator.
You only have to run PLD_DVE_SIM once for each design. Once the
default viewpoint is created, you can make subsequent edits to the
design and then immediately execute QuickSim II without running
PLD_DVE_SIM.

Syntax

pld_dve_sim design tech_type
[design_viewpoint_name] [-help]

Variables

design is the name of the component declared as root of the design
hierarchy.
10-26 Xilinx Development System

Manual Translation
tech_type specifies the PLD family, either XC2000, XC3000, XC4000, or
XC7000.

design_viewpoint_name specifies the name of the design viewpoint to
generate.

Options

design_viewpoint Specify different viewpoint other
than default

-help Display syntax for PLD_DVE_SIM.

QUICKSIM II
The QuickSim program loads your design into the Mentor Graphics
QuickSim II simulator.

Syntax

quicksim design

Variables

design is the name of the component declared as root of the design
hierarchy.

Options

See Mentor Graphics QuickSim II documentation.

TIMSIM8
TIMSIM8 prepares a Xilinx routed design for QuickSim II timing
simulation. It runs LCA2XNF, VMH2XNF, UNAKAXNF, XNFBA,
PLD_DVE_BA, Gen_Sch8, and PLD_DVE_SIM as needed.

Syntax

timsim8 design {-o | -g}

[-q -verbose -help]
Mentor Graphics Interface/Tutorial Guide 10-27

Mentor Graphics Interface/Tutorial Guide
Variables

design is the name of your Mentor design directory.

Options

-o Use original schematic for simulation

-g Generate schematic for simulation

-q Run QuickSim II

-verbose Run TIMSIM8 in verbose mode

-help Display TIMSIM8 syntax

UNAKAXNF
The UNAKAXNF program restores the net names that were aliased
in the design.aka file, created by MAP2LCA.

Syntax

unakaxnf [- options] xnf _filename[.xnf]

Variables

xnf_filename.xnf is a routed XNF file. It is output by LCA2XNF, and is
used as input by XNFBA.

Options

-a aka_file .aka Specifies the AKA File Name

This option changes the input AKA file name to something different
from the default AKA file name. The default file name is
xnf_filename.aka.

-o output_file .xnf Specifies Alternate Output XNF File
Name
10-28 Xilinx Development System

Manual Translation
This option specifies an alternate output XNF file name that is
different from the default XNF file name. The default file name is
xnf_filename.xnf.

-w Overwrite Output XNF

The -w option automatically overwrites the output XNF file without
asking if you are certain that you want to overwrite it.

VMH2XNF
VMH2XNF creates an XNF file with timing parameters for use in
timing simulation. The input file can be a .vmh or .vmd (for XC7272
designs) file. Refer to the XEPLD Reference Guide for more
information on syntax, variables, and options.

X-BLOX
This program creates an XGS file and one or more XNF files from the
XTF file created by XNFPrep. The XGS file contains a list of all the X-
BLOX primitives used in the original schematic and their associated
XNF simulation models created by X-BLOX.

Syntax

xblox design .xtf simdir= simdir sim =xnf

Variables

design.xtf is created by XNFPrep.

simdir is the directory used for your functional simulation models

sim - If SIM=XNF, X-BLOX outputs an XGS functional simulation
model.

The following figure illustrates the directory structure that is created
when X-BLOX processes your design.
Mentor Graphics Interface/Tutorial Guide 10-29

Mentor Graphics Interface/Tutorial Guide
Figure 10-11 X-BLOX Directory Structure

XBLXGS
This program creates a new schematic that looks like the original one.
In this new schematic, the X-BLOX symbols have been replaced with
symbols that have the same footprint but now have fixed bus pin
widths and simulation models. This new schematic can be simulated
without having to run PPR.

Syntax

xblxgs design xgs _filename [. xgs] [options]

Variables

design is the name of the component declared as root of the design
hierarchy.

xgs_filename is the XGS file created by X-BLOX that describes how the
simulation schematic should be drawn.

X4667

Working Directory

SimDir Directory Design Object Directory

Design Object
Directory

Copy of
Schematic

Files

BSM
XNF
Files

BSM
Files
XGS
10-30 Xilinx Development System

Manual Translation
Options

-w Silent overwrite

-d Output directory name; default is simdir

-o Output design name

XDelay
Note: This program only needs to be run on XC3000A, XC3000L,
XC3100A, and XC4000 designs. APR adds net delays to XC2000,
XC2000L, XC3000, and XC31000 designs.

The XDelay program adds net delays to a routed LCA file. For more
information on XDelay, see the XACT Reference Guide.

XNFBA
The XNFBA program combines the pre-route XNF file and the post-
route XNF file into a new file that has the original symbol and signal
names with post-route delays. This program works with XC2000,
XC3000, and XC4000 families.

Note: If you do not have LCA2XNF version 4.30 or higher, you
cannot use XNFBA.

Syntax

xnfba -a design .xnf -b design _routed.xnf
[- options]

Variables

design.xnf is the pre-routing flat XNF/XG file that is used as input to
APR or PPR.

design_routed.xnf is the post-routing flat XNF file generated by
LCA2XNF with the -g option.
Mentor Graphics Interface/Tutorial Guide 10-31

Mentor Graphics Interface/Tutorial Guide
Options

-a design .xnf Specify Pre-Routing Flat XNF file

The -a option specifies the pre-routing flat XNF/XG file that is
used as input to APR or PPR. If you have hierarchical XNF files,
you can use the XNFMERGE program to flatten the design before
routing. The -a option can alternatively specify the XG file
generated by X-BLOX. The -a option is required and must be
consistent with the file for -b option.

-b design _routed.xnf Specify Post–Routing Flat XNF
file

The -b option specifies the post-routing flat XNF file generated by
LCA2XNF with the -g option. The design should be completely
routed with no DRC errors, before being processed by LCA2XNF.
The -b option is required.

-m Write Mentor Back–Annotation File

The -m option writes a Mentor Graphics Back Annotation File.
The file name is the root name of the -b XNF file with the
extension MBA.

-x Write Back–Annotated XNF file

The -x option writes a back-annotated XNF file. The file name is
the root name of the -b XNF file with an XBF extension. The -x
option is the default.

Examples

To produce an XC2000, XC3000, or XC4000 back-annotated XBF file,
type:

xnfba -a test_pre.xnf -b test_post.xnf -x -m

where test_pre.xnf is the pre-routing flat XNF file and test_post.xnf is
the post-routing flat XNF file. An output file, test_post.xbf, is
produced.
10-32 Xilinx Development System

Manual Translation
To produce an XBF file for an X-BLOX design, type:

xnfba -a test_pre.xg -b test_post.xnf -x -m

where test_pre.xg is the pre–routing flat XNF file and test_post.xnf is
the post–routing flat XNF file. An output file, test_post.xbf, is
produced.

Keep all design files consistent. If you change anything in the
schematic, repeat the entire design flow, starting with Men2XNF8,
before using XNFBA. If you use XDE on the design routed by APR or
PPR, XNFBA might not work properly if you make edits or changes.

If you use the MakeBits program with the -t option to save tied nets
in your LCA file, you must use the -t option with the LCA2XNF
program to remove tied nets from the XNF file.

Verify that the BID file is in the same directory as the LCA file before
you run the LCA2XNF program. The BID file must be generated by
the same run of PPR that generates the LCA file.

You might notice differences in simulation between the original
design that was back annotated using XNFBA with the -m option,
and a new schematic generated by Gen_Sch8 directly from the XNF
file for the design. The differences in simulation results originate in
PPR. One method PPR uses to place and route a design is called logic
replication. A block of logic (usually with a large fanout) is
duplicated, which gives the PPR program two choices when routing
the load pins of the output of the logic block.

For example, start with a single block of logic whose output has 10
load pins, as shown in the figure below.

Figure 10-12 Logic Block with 10 Load Pins

A
B
C
D

E

To 10 Loads

X3605
Mentor Graphics Interface/Tutorial Guide 10-33

Mentor Graphics Interface/Tutorial Guide
PPR can take this block and replicate it, which produces two identical
blocks of logic, each with 5 load pins on the output, as shown in the
figure below (the numbers next to the input pins are delay values).

Figure 10-13 Replicated Logic Blocks

The identical blocks ease routing problems and usually the overall
delay for the output net as a whole.

Although there is only one path to inputs a, b, c, and d, in the original
schematic, there are two delay paths in the back-annotated XNF file
for each of them. XNFBA must now use one of the two values to back
annotate both paths, even though the values are different. The longest
delay values are always chosen, so in this example, a, b, c, and d are
assigned delay values of 15, 10, 10, and 9, respectively.

This limitation in simulation using the original schematic probably
impacts less than one percent of designs, and only in very small parts.
This information is provided so you ensure that your design works in
simulation almost as it does in the actual device. Weigh the
advantages of being able to use your original schematic against the
possibility of a delay value being represented as greater than it
actually is. To solve this problem, simulate the back-annotated design
as much as possible, to ease problems in finding nets and instances, to
compare the simulation output to the schematic, then run simulation
using the output of LCA2XNF directly, instead of XNFBA.

XNFMerge
XNFMerge converts a hierarchical design to a “flattened” design that
contains no references to other XNF files. Refer to the XACT Reference
Guide for detailed information on XNFMerge.

A
B
C
D

E

To 5 Loads

X3606

2
5

10
3

A
B
C
D

E

To 5 Loads
15
10
7
9

10-34 Xilinx Development System

Manual Translation
XNFPrep
XNFPrep performs a design rule check and removes unused and
redundant logic from a flattened XNF file. It also checks the syntax of
the XACT-Performance parameters found in the design and prepares
delay information for PPR path analysis. Refer to XACT Reference
Guide for detailed information on XNFPrep.
Mentor Graphics Interface/Tutorial Guide 10-35

Mentor Graphics Interface/Tutorial Guide
10-36 Xilinx Development System

Design Architect Tutorial

Mentor
Graphics
Interface/
Tutorial
Guide
Mentor Graphics Interface/Tutorial Guide — 0401408 01 Printed in U.S.A.

Mentor Graphics Interface/Tutorial Guide
Xilinx Development System

Chapter 11

Design Architect Tutorial

This chapter steps you through a basic FPGA design procedure from
schematic entry using Design Architect to verification of the design
on a demonstration board. Information on using the Mentor Graphics
Design Manager graphic user interface configured for Xilinx designs
is also included. The simple design example used in this tutorial
demonstrates many system features that you can apply to more
complex FPGA and EPLD designs.

Note: Although this tutorial describes creating and processing FPGA
designs, you can apply most of the steps to EPLD designs. See the
“XEPLD Tutorial” chapter for EPLD-specific information.

This tutorial includes the following:

● Installing the tutorial files

● Using Mentor Graphics Design Manager

● Targeting the tutorial design (Calc) for an XC4000 device

● Using Design Architect

● Completing the ALU block in the Calc design

● Exploring Xilinx library elements

● Exploring XC3000/XC4000 oscillator

● Inverting output display signals

● Controlling FPGA layout from the schematic

● Editing the Calc design for an XC4000 device

● Configuring XMake using Xilinx Design Manager (XDM)

● Converting design to XNF file using PLD_Men2XNF8
Mentor Graphics Interface/Tutorial Guide — 0401408 01 11-1

Mentor Graphics Interface/Tutorial Guide
● Implementing design using PLD_XMake

● Examining routed designs with Xilinx Design Editor (XDE)

● Verifying Calc design on a demonstration board

● Making incremental design changes

● Command Summaries

Required Background Knowledge
This tutorial assumes that you have a basic understanding of the
following:

● UNIX Operating System. None of the command sequences are
given in AEGIS.

● Motif Windows. Mentor Graphics applications conform to the
Motif window style.

Note: When you are instructed to close a window, it is important that
you exit from the window rather than iconize it.

● Some knowledge of Design Manager, Design Architect, and Xilinx
core software. For more information on these applications, refer to
the list of related publications at the beginning of this user guide.

FPGA Design Flow
A general overview of the FPGA design flow is shown in the
following figure.
11-2 Xilinx Development System

Design Architect Tutorial
Figure 11-1 FPGA Design Flow

This process can be executed automatically by using the PLD_DA,
PLD_Men2XNF8, and PLD_XMake icons found in the Xilinx-
configured Design Manager (PLD_DMGR).

The steps in the FPGA design flow are as follows:

1. Create a schematic using Design Architect with symbols from the
Xilinx libraries.

2. Use PLD_Men2XNF8 to translate the Mentor Graphics design file
to a Xilinx netlist (XNF) file. PLD_Men2XNF8 performs the
following:

● Creates a viewpoint that specifies how to generate a .EDIF file

● Uses the Mentor Graphics EDIF netlister ENWRITE, to create
the .EDIF file from the design

● Converts the .EDIF file to hierarchical Xilinx Netlist Format
(XNF) file

3. Use PLD_XMake to read the netlist produced by
PLD_Men2XNF8. PLD_XMake performs the following:

X4541

Design Architect

Design
Components

XNF

Men2XNF8

• • • • • •XNF

XMake

LCA BIT Bitstream

XChecker MakePROM

Download
to Board

Configuration
PROM File

Xilinx ABEL

XNF

MemGen

• • • XNF

Other
3rd Party
Interfaces

Routed
Design
Mentor Graphics Interface/Tutorial Guide 11-3

Mentor Graphics Interface/Tutorial Guide
● Merges the hierarchical XNF files into a single top-level XNF
file

● Trims unused logic

● Performs an electrical rule check on the XNF file

● Partitions the logic into LCA device resources, Configurable
Logic Blocks (CLBs), and input/output blocks (IOBs)

● Places the blocks and routes the connections between them

● Creates a configuration bitstream

4. Download the bitstream into one of the Xilinx demonstration
boards to test the design

An incremental design methodology is described in this tutorial. In
incremental design, the design is processed; a small change is made
to the design; and then the design is processed again. Place and route
information from the previous design processing cycle is used to
constrain subsequent cycles of the same design. When this method is
used, timing information in a design remains relatively stable
through many processing cycles. Also, place and route time is
considerably reduced since much of the processing is done in
previous cycles.

The tutorial design can be targeted for an XC3000A, XC3000,
XC4000A, or XC4000 device. You can use a Xilinx demonstration
board to test the functionality of your design. Make sure your
demonstration board and software support your selected device. To
determine compatibility, refer to the release notes that came with
your software package.

In this tutorial the following conventions are used to refer to the
various device families:

● XC3000 family: includes XC3000, XC3000A, XC3000L, XC3100,
and XC3100A devices

● XC4000 family: includes XC4000, XC4000A, and XC4000H devices

● XC2000 family: includes XC2000 and XC2000L devices
11-4 Xilinx Development System

Design Architect Tutorial
Software Installation

Required Software
The following versions of software are required to perform this
tutorial:

● Mentor Graphics Version 8.2_5 or later

● Xilinx/Mentor Graphics Interface DS344 Version 5 or later

● XACT Design Manager (XDM) Version 5 or later

Before Beginning the Tutorial
Before beginning the tutorial, set up your workstation to use Mentor
Graphics and XACT Development System software as follows:

1. Verify that your system is properly configured. Consult the
release notes that came with your software package for more
information.

2. Install the following sets of software:

● XACT Development System (DS501 or DS502) Version 5.00

● Xilinx DS344 Mentor Graphics Version 5 interface

● Mentor Graphics software Version 8.2_5 or later, including
Design Manager, Design Architect, QuickSim II, QuickPath, as
well as the software needed to produce EDIF netlists from
ENWRITE, which requires special licensing

3. Verify the installation. When you finish the installation, verify that
your .cshrc or setup file contains lines similar to the following:

Note: Path names of directories will vary. For more information on
paths and environment variables, refer to the release notes that came
with your software package.
Mentor Graphics Interface/Tutorial Guide 11-5

Mentor Graphics Interface/Tutorial Guide
setenv LCA /location_of_ds_344:
setenv XACT /location_of_ds_344:
/location_of_ds502
set PATH=($PATH \

$LCA/com/sparc \
$LCA/bin/sparc \
/location_of_ds502 /bin/sparc \
)

Modifying Mentor Graphics Variables

Make sure that the following Mentor Graphics specific variables are
set correctly:

● MGC_HOME

This should point to the Mentor Graphics software tree.

● MGC_GENLIB

This should point to the Mentor Graphics gen_lib library,
normally $MGC_HOME/gen_lib.

● LD_LIBRARY_PATH

This variable is used by the Mentor Graphics Design DataPort
(DDP) routines that are accessed by some Xilinx programs. On a
SPARC station with OpenWindows installed in /usr, this variable
is set as follows:

setenv LD_LIBRARY_PATH $MGC_HOME/shared/
lib:$MGC_HOME/lib:/usr/openwin/lib

● MGC_LOCATION_MAP

This variable should point to a valid location map file.

Every symbol and schematic in your design contains a reference.
A reference indicates where the design object resides on your disk.
The tutorial designs use variables in their reference definitions so
they can be easily relocated. All of the tutorial designs use the
variable, $xilinx_tutorial, to define the path reference.
$xilinx_tutorial must be defined in the file pointed to by
$MGC_LOCATION_MAP. For example, the design object, led_inv
in the install_path/tutorial/mentor/calc_da directory, uses the
path reference $xilinx_tutorial/calc_da/led_inv to define where it
11-6 Xilinx Development System

Design Architect Tutorial
is located in the directory structure. If the tutorial directories were
copied to the path, /home/bclinton/mentor/xtutorial, the
following two lines must be added to the file pointed to by
$MGC_LOCATION_MAP:

$xilinx_tutorial
/home/bclinton/mentor/xtutorial

If a query was made to determine where the design object
‘$xilinx_tutorial/stack’ is located, the Mentor Graphics tools
would use this definition to determine that stack is at /home/
bclinton/mentor/xtutorial/calc_da/stack.

It is also important that the $LCA variable be instantiated, but not
defined, in the file pointed to by $MGC_LOCATION_MAP. To do
this, add the following line to MGC_LOCATION_MAP, followed
by an empty line:

LCA
(empty line)

Refer to the Mentor Graphics documentation for more
information on location maps.

● MGC_WD

This variable should point to the working directory. For the
tutorial, it should point to the directory where the tutorial is
worked on.

● LCA

In addition to instantiating it in the file pointed to by
MGC_LOCATION_MAP, the LCA environment variable should
point to the directory where the DS344 software is installed.

Installing the Tutorial
The tutorial files are optionally installed when you install the DS344
interface software. If you have already installed the software, but are
not sure whether you specified tutorial installation, check for a
tutorial directory under your DS344 directory. The tutorial directory
contains the tutorial files.
Mentor Graphics Interface/Tutorial Guide 11-7

Mentor Graphics Interface/Tutorial Guide
Standard Directory Structure

When a design object is created in Mentor Graphics, a directory is
created in the project directory with the same name as the design
object. This directory contains a schematic directory, symbol files,
viewpoint files, and part interfaces. The directory is identified as a
design object by the file, design_name.mgc_component.attr, that
resides at the same level as the directory which has the name. For
example, if a schematic named calc is created, a calc directory is
created, and at the same level the file, calc.mgc_component.attr, is
created. The calc directory will contain all the files that describe calc.

Note: In this tutorial, file names and directory names are in lower
case and the design example is referred to as Calc.

Tutorial Directory and Files

You will complete the Calc design in this tutorial. During the tutorial
installation, the $LCA/tutorial directory is created; design object
directories are created; and the tutorial files needed to complete the
design are copied to the calc_da directory. Some of the files you need
to complete the tutorial design are not copied, because you will create
these files in the tutorial. However, solutions directories with all
input and output files are provided. They are located in the $LCA/
tutorial/mentor directory and are listed in the following table:

Table 11-1 Tutorial Design Directories

The solutions directories contain the design files for the completed
tutorial, including schematics and the bitstream file. To conserve disk
space, some intermediate files are not provided, except in the calc_3k
directory, which is complete. Different intermediate files are created

Directory Description

calc_da Tutorial Directory

calc_3k Solution Directory for XC3020PC68

calc_3ka Solution Directory for XC3020APC68

calc_4k Solution Directory for XC4003PC84 and
XC4003APC84
11-8 Xilinx Development System

Design Architect Tutorial
for different device families. Do not overwrite any files in the
solutions directories.

The calc_da directory contains the incomplete copy of the tutorial
design. The installation program copies a few intermediate files to the
calc_da tutorial directory, and you will create the remaining files
when you perform the tutorial. As described in a later step, you will
copy the calc_da directory to another area and will perform the
tutorial in this new area. The following table lists and describes the
directories and files in the calc_3k solution directory.

Table 11-2 Tutorial Directories/Files in the calc_3k Directory

Directory or
File Name

Description

calc Top-level design directory

control Design directory for control module

statmach Design directory for state controller module

alu Design directory for ALU module

alu_blox X-BLOX version of ALU design component (see
“X-BLOX Tutorial”)

bloxsoln Design component for ALU module, X-BLOX ver-
sion (see “X-BLOX Tutorial”)

muxblk2 Design component for arithmetic function in ALU

andblk2 Design component for arithmetic function in ALU

orblk2 Design component for arithmetic function in ALU

xorblk2 Design component for arithmetic function in ALU

muxblk5 Design component for multiplexer of arithmetic
outputs in ALU

stack Design component for stack

7seg_dec Design component for seven segment decoder

debounce Design component for debounce circuit
Mentor Graphics Interface/Tutorial Guide 11-9

Mentor Graphics Interface/Tutorial Guide
osc_3k Design component interface to RC circuit on dem-
onstration boards; generates clock

*.xnf Xilinx netlist format files created by Men2XNF8

edif2xnf.log EDIF2XNF log file

men2xnf8.log Men2XNF8 log file

xnfprep.log XNFPrep log file

calc.bit Bitstream for downloading to LCA; generated by
MakeBits

calc.crf Cross-reference file generated by XNFMap

calc.edif EDIF netlist produced by ENWRITE

calc.lca Placed and routed design file; generated by PPR

calc.lcb Placed and routed design file, unoptimized.

calc.mak Script file generated and used by XMake

calc.map Partitioned logic file generated by XNFMap

calc.mbo Bitstream configuration file generated by MakeBits

calc.mrg Merge report file generated by XNFMerge

calc.odf Intermediate version of LCA file generated by PPR

calc.out XMake report file

calc.pgf Partitioning guide file generated by XNFMap,
needed for incremental design process

calc.prp Report file generated by XNFPrep

calc.rpf PPR report file for unoptimized .lcb file

calc.rpt Routing report file generated by PPR

calc.xff Output of XNFMerge, netlist of merged design

calc.xtf Output of XNFPrep, netlist of trimmed design

calc_3k.cst Constraints file that sets pad locations for 3k parts

calc_3k.do QuickSim II command file for 3k, 3ka simulation

stat_abl.abl Xilinx ABEL file for state controller module,
replaces Statmach schematic (see “Xilinx ABEL
Tutorial”)

Directory or
File Name

Description
11-10 Xilinx Development System

Design Architect Tutorial
Note: In addition to the files listed above, there is a
filename.mgc_component.attr file associated with each design
component directory. This file identifies the corresponding directory
as a Mentor Graphics design component.

Starting the Design Manager
To start the Design Manager configured for Xilinx designs, type the
following at the operating system command line:

> pld_dmgr ↵

The following figure appears:

Figure 11-2 Design Manager Window
Mentor Graphics Interface/Tutorial Guide 11-11

Mentor Graphics Interface/Tutorial Guide
There are three sub-windows in the Design Manager window: the
Tools Window, the Navigator Window, and the Command Palette.
Each sub-window is described below.

Mentor Graphics windows conform to Motif standards. You should
know how to move, close, and minimize (or iconize) the Motif
windows. When multiple windows are open, the active window has
a blue border and inactive windows have a grey-brown border. For
more information on Design Manager operation, refer to the Mentor
Graphics documentation.

Tools Window
The Tools Window on the left contains icons representing all the
Mentor Graphics and Xilinx applications you need to execute the
steps in the Xilinx design flow.

The Tools window contains the following Xilinx-specific icons:

● PLD_DA: Design Architect configured for Xilinx designs.

● PLD_DVE: Creates design viewpoints necessary for the creation of
.EDIF files from a design.

● PLD_Men2XNF8: Creates a Xilinx Netlist Format (XNF) file from
your design. You must run PLD_Men2XNF8 on most designs
before running PLD_FNCSIM8. You must run this program at
least once before you run PLD_XMake. Only run PLD_Men2XNF8
on design objects, and not on any other type of file.

Note: Any time a schematic change is made, PLD_Men2XNF8 must
be run again before PLD_XMake or PLD_FNCSIM8 is run, so that the
schematic change is reflected in the netlist.

● PLD_FNCSIM8: Performs all the steps necessary to prepare a
design for functional simulation.

● PLD_XMake: Reads the XNF file created by PLD_Men2XNF8,
creates an LCA file, and creates a BIT file. The BIT file is used to
configure a Xilinx FPGA. Only run PLD_XMake on XNF files,
which are represented in the navigator window as a file icon with
the word “XNF” on it.

● PLD_XEMake: Reads the XNF file created by PLD_Men2XNF8,
automatically fits your design into a selected EPLD device, and
generates a device program file.
11-12 Xilinx Development System

Design Architect Tutorial
● PLD_TIMSIM8: Performs all the steps necessary to prepare a
design for timing simulation. Run after PLD_XMake.

● PLD_XDM: Starts the Xilinx Design Manager (XDM).

Navigator Window
Use the Navigator window to move around the directory hierarchy
and select files, folders, and other types of design objects.

The Navigator has three buttons located at the bottom of the window.
The two buttons on the left have up and down arrows on them. Use
these buttons to move up and down the directory hierarchy. To move
down the hierarchy with the down arrow, you must first select the
desired folder in the Navigator. The right-most button has four
arrows on it, one pointing in each direction. When you select this
button, a dialog box appears and you can type in the path to the
directory you want to display in the navigator window. Using this
button is sometimes quicker and easier than using the up and down
arrows.

Command Palette
Use the Command Palette to access the most commonly used Design
Manager menu items.

Copying the Tutorial Files
Perform the following steps to make a working copy of the tutorial
files:

1. In the navigator window, move to the directory where the tutorial
files were installed.

2. Select the calc_da directory.

3. Choose Right Mouse Button ➝ Edit ➝ Copy: A dialog
box appears.

4. In the dialog box, type the directory path where you want the
working copy of the tutorial files copied. For example, if you want
to copy the files to /home/dum/tutor/mentor, enter /home/
dum/tutor/mentor/calc_da.
Mentor Graphics Interface/Tutorial Guide 11-13

Mentor Graphics Interface/Tutorial Guide
5. Use the navigator to change directories to the location of the
working copy of calc_da.

6. If necessary, modify MGC_LOCATION_MAP so that the
$xilinx_tutorial variable points to the directory where the copy of
calc_da is located.

Targeting the Design for the XC4000 Family
The incomplete calc_da design is configured for a XC3020APC68 part
or a XC3020PC68 part. If you want to target a demonstration board
with one of these devices, go to the next section “Starting Design
Architect.” If you are targeting the tutorial design for a 4003APC84 or
a XC4003PC84 device, you must convert the design to reference the
XC4000 library instead of the XC3000 library.

The procedure provided below allows you to change every reference
of every design object in the $xilinx_tutorial/calc_da directory from
the XC3000 library to the XC4000 library. Since the designs were
created using the Unified Libraries, the parts in the XC3000 and
XC4000 libraries have identical footprints and pinouts. This allows
you to easily retarget designs to a different device family, provided
only library parts common to the two families are used. You must
manually replace any library parts that are not common to both
families. For example, if a gclk is used in an XC3000 design that is
retargeted for use in an XC4000 device, you must manually replace
the gclk with a bufgp or bufgs, which are the XC4000 equivalents of a
gclk.

To change the references, perform the following steps:

1. Select MGC➝ Location Map ➝ Set Working Directory
from the menu bar. A small dialog box appears at the bottom of
the screen.

2. Type $xilinx_tutorial in the Directory field of the dialog box,
then select OK or press return. This sets the working directory to
the directory above the calc_da directory. This allows you to make
changes to the references of all the files in the calc directory.

3. In the navigator window, select the $xilinx_tutorial/calc_da
directory using the left mouse button.

4. Select Right Mouse Button ➝ Edit ➝ Change ➝
References.
11-14 Xilinx Development System

Design Architect Tutorial
5. A dialog box appears. In the “from” box, type xc3000 ; in the “to”
box, type xc4000 . Press return or select OK.

6. Whenever you change references in a design, you should also
check and save it in Design Architect, to verify that the reference
changes were successful. This will be done as part of the tutorial.

Starting Design Architect
To open the Calc design in Design Architect, perform the following
steps:

1. Select MGC➝ Location Map ➝ Set Working Directory
from the menu bar. A small dialog box appears at the bottom of
the screen.

2. Type $xilinx_tutorial/calc_da in the Directory field of
the dialog box, then select OK or press return. This sets the
working directory to the directory where you will work on the
tutorial.

3. Select the $xilinx_tutorial/calc_da/calc design object in the
navigator window.

4. Select Right Mouse Button ➝ Open ➝ PLD_DA. The Design
Architect window appears and displays the Calc design as shown
in the figure below.

5. Resize the Design Architect window to cover the entire screen.
Mentor Graphics Interface/Tutorial Guide 11-15

Mentor Graphics Interface/Tutorial Guide
Figure 11-3 Top-Level Schematic for Calc

Using the Mouse in Design Architect

Left Mouse Button

Use this button to select or de-select objects on a sheet. A selected
object has a white dashed outline. Hold down this button and drag
the mouse to select multiple objects.

Middle Mouse Button (Strokes)

Use the middle mouse button to perform actions known as strokes.
You can use strokes as shortcuts to perform common tasks. Perform a
stroke by pressing and holding the middle mouse button while
moving the mouse to draw a line with a specific shape. The shape
11-16 Xilinx Development System

Design Architect Tutorial
you draw is converted to a number string by Design Architect to
determine which command is executed. The number is determined
based on the figure below:

Figure 11-4 Using Strokes, Example of “Z” stroke (1235789)

For example, a “Z” stroke represents the number 1235789. To
determine the commands that the strokes represent, select Help ➝
On Strokes from the menu bar at the top of the screen. You can also
hold down the middle mouse button and drawing the shape of a
question mark (“?”) to display the stroke help screen. When
applicable, strokes are used in this tutorial.

Right Mouse Button

Use this button to display different menus depending on the object(s)
selected on the schematic sheet. For example, if a net is selected when
the right mouse button is pressed, the net menu appears. Other
menus can be accessed regardless of what is selected by using the
“Other Menus” selection that appears at the top of each of the menus.

Using the Function Keys
You can also use the keyboard function keys to execute various
commands. The boxes at the bottom of the Design Architect window
reference the function keys. Each box contains three commands.The
top command is executed by pressing the associated function key; the
middle command is executed by pressing the function key while
holding down the shift key; and the bottom command is executed by
pressing the function key while holding down the control key.

1 2 3

5 6

7 8 9

4

Mentor Graphics Interface/Tutorial Guide 11-17

Mentor Graphics Interface/Tutorial Guide
Selecting Commands from the Menu Bar
Use the left mouse button to select commands from the menu bar at
the top of the screen.

Selecting Commands from the Palette
Use the left mouse button to select commands from the command
palette at the right side of the screen. The set of red buttons at the top
of the palette change the commands that are available in the palette.
The commands displayed in the palette vary depending on what type
of window is active in Design Architect. For example, if a symbol
editor window is active, commands such as Add Pin, Draw
Rectangle, and other commands associated with creating symbols are
available in the palette. If there are no windows open in Design
Architect, commands such as OPEN SHEET or OPEN SYMBOL are
available.

You may need to scroll the palette to access some of the commands by
moving the cursor into the palette and using the PageUp and
PageDown keys. You can also select Right Mouse Button ➝
Show Scroll Bars to display scroll bars.

Entering Commands from the Keyboard
You can type commands anywhere in the Design Architect window.
A dialog box appears at the cursor location to capture the command
text. For example, a schematic sheet can be opened by typing the
command “open sheet” in the Design Architect window.

Cancelling Commands
When you select a command, it is displayed in either a small
rectangular box in the lower-left area of the screen, or in a larger
dialog box. In either case, you can cancel commands by selecting the
cancel button in the box or by pressing the escape key.

Repeating Menu Commands
You can repeat commands that were executed by either using the
menu bar or the menus accessed through the right mouse button by
holding down the control key, moving the cursor to the appropriate
11-18 Xilinx Development System

Design Architect Tutorial
area, and pressing the right mouse button. For example, if Right
Mouse Button ➝ Properties ➝ Add was the last command
sequence performed, you can repeat this sequence by holding down
the control key and pressing the right mouse button with the cursor
in the window where the command was last executed. To repeat the
command File ➝ Save from the menu bar, move the mouse to the
File selection in the menu bar, hold down the control key, and press
the right mouse button.

Manipulating the Screen
To zoom in on a specific area of the screen, hold down the F8 key and
move the mouse to create a box around the area you want to zoom
on.To view the entire schematic, hold down the shift key and press F8
(you can also perform the commands with the strokes 159 and 951,
respectively). The schematic can also be zoomed in or out with the
menu bar commands View ➝ Zoom In and View ➝ Zoom Out
(or the strokes 357 and 753).

Completing the Calc Design
To complete the tutorial design, you need to add a few design objects
to the Calc schematic using Design Architect.

If you need to stop the tutorial at any time, be sure to save the work
you have done by first selecting Check ➝ Sheet from the menu
bar. A window appears containing the results of the design rule
check. After reviewing the contents of this window, close it and
reselect the schematic window. Then select File ➝ Save from the
menu bar to save the design. It is important to check your design first
before saving it.

Design Description
The top-level schematic of the Calc tutorial design has been created
for you. Each of the blocks in the schematic, such as CONTROL or
ALU, is linked to a second-level module that describes its logic.
Additionally, any second-level module can contain another block that
references a third-level drawing, and so on. This organization is
known as a hierarchical structure.
Mentor Graphics Interface/Tutorial Guide 11-19

Mentor Graphics Interface/Tutorial Guide
In this tutorial, you add three symbols to the ALU block schematic to
complete it. First, you create the ANDBLK2 and ORBLK2 symbols
and their underlying schematics and then add them to the schematic.
Additionally, you copy the FD4CE symbol from the Unified Libraries
to the ALU block.

The Calc design is a four-bit processor with a stack. The processor
performs functions between an internal register and either the top of
the stack or data input from external switches. The results of the
various operations are stored in the register and displayed in
hexadecimal on a seven-segment display. The top value in the stack is
displayed in binary on a bar LED.

The design consists of the following six functional blocks:

● ALU

The arithmetic functions of the processor are performed in this
block.

● CONTROL

The opcodes are decoded into control lines for the stack and ALU
in this module.

● STACK

The stack is a four-nibble storage device. It is implemented using
flip-flops in the device-independent design. You can substitute the
RAM module, STACK_4K, in the XC4000 design to take
advantage of the on-chip RAM capability of the XC4000 family.

● OSC_3K

This module is used in XC3000 family designs. It generates a clock
signal using the RC oscillator circuit on the XC3000/XC4000 and
XC3000 demonstration boards. It is replaced by the OSC_4K
internal oscillator circuit for the XC4000 design.

● DEBOUNCE

This circuit debounces the “execute” switch, providing a one-shot
output.

● 7SEG_DEC

This block decodes the output of the ALU for display on the
seven-segment decoder. This block can be replaced by the
11-20 Xilinx Development System

Design Architect Tutorial
7SEG_DEC_INV component for use on demonstration boards
with inverted sense on their 7 segment display.

● IFD8

The IFD8 is a macro from the Xilinx libraries. It consists of eight
input flip-flops, which are used to latch the switch data.

Before proceeding, close (quit) the Calc schematic window. If a dialog
box appears asking if you want to save any changes, choose NO.

Creating the ANDBLK2 Symbol

Opening a Symbol Window

1. Use the left mouse button to select Open Symbol in the
command palette.

2. Type $xilinx_tutorial/calc_da/andblk2 in the
Component Name box, then select OK. A symbol editor window
appears.

Creating the Symbol Outline

1. Zoom in until the grid space markers, represented by small
crosses, are visible in the symbol window.

2. Select ADD RECTANGLE from the palette.

3. Position the cursor in the upper left corner of the symbol window
and press the left mouse button.

4. While holding down the left mouse button, move the cursor
diagonally to the opposite corner of the symbol window to draw a
rectangle that is six grid squares high by eight grid squares wide.
Be sure to measure using the grid marks, and not the small dots
that define fractions of grid spacing.
Mentor Graphics Interface/Tutorial Guide 11-21

Mentor Graphics Interface/Tutorial Guide
Adding Pins to the ANDBLK2 Symbol

1. Select Add Pin from the palette. The dialog box in the following
figure appears.

2. Fill in the Dialog box exactly as shown and then select OK.

Figure 11-5 Add Pin(s) Dialog Box
11-22 Xilinx Development System

Design Architect Tutorial
3. A small crosshair appears under the cursor, and a rectangular box
appears stating that the first pin, A(3:0), is to be placed. Place it as
shown in the figure below by moving the cursor to the position
where the diamond appears in the figure (one grid space to the
left of the rectangle) and pressing the left mouse button. Small
purple diamonds indicate pins.

If you make a mistake before placing a pin, press the escape key to
cancel the command, then repeat the above steps. If you make a
mistake after placing a pin, press the F2 key to unselect
everything. Select the pin (diamond) and the line next to it and
press and hold CTRL-F2 to execute a move command. Move the
pin to the correct position and release the keys.

4. Place pin B(3:0).

Figure 11-6 Adding Pins A(3:0) and B(3:0)
Mentor Graphics Interface/Tutorial Guide 11-23

Mentor Graphics Interface/Tutorial Guide
5. Select Add Pin from the palette and fill in the dialog box as
shown below, then select OK. Be sure to set the name height to 1.0.

Figure 11-7 Add Pin(s) Dialog Box

6. Place the pin Q(3:0) as shown in the figure below.

7. To adjust the positioning of the pin names, move the mouse over
the text, press and hold the F7 function, and move the mouse to
reposition the text. Release the F7 key to place the text at the new
location.
11-24 Xilinx Development System

Design Architect Tutorial
Figure 11-8 Adding Pin Q(3:0)

Adding Text

You can add comment text to a symbol to make it more easily
identifiable on a schematic, or to annotate it without modifying its
function. To add text to the symbol, perform the following steps:

1. Select the red TEXT button at the top of the palette to display the
text editing icons.

2. Choose ADD TEXT from the palette. A small rectangular dialog
box appears in the lower left portion of the window.

3. Type ANDBLK2 in the Text field of the dialog box, then press return
or select OK.

4. Move the cursor into the symbol editor window and place the text
directly above the symbol body by moving the mouse to the
proper position and pressing the left mouse button.
Mentor Graphics Interface/Tutorial Guide 11-25

Mentor Graphics Interface/Tutorial Guide
If you make a mistake while typing the text and the text has
already been placed, move the mouse over the text and press the
F7 key while holding down the shift key. A small dialog box
appears at the bottom of the screen containing the selected text.
Modify the text in the dialog box. Select OK to change the text on
the symbol. You can use this method to modify any text on the
symbol, such as pin names.

Modifying Text Size

To modify symbol text size, perform the following steps:

1. Press the F2 key to unselect everything.

2. Use the left mouse button to select the text, ANDBLK2, at the top
of the symbol.

3. Select Right Mouse Button ➝ Change Height ➝ 1.5 X
pin spacing .

4. Place the cursor over the text and press and hold the F7 key.

5. While still holding down the F7 key, move the text so that it is
centered above the symbol body, as shown in the following figure.
11-26 Xilinx Development System

Design Architect Tutorial
Figure 11-9 Completed ANDBLK2 Symbol

Saving the ANDBLK2 Symbol

To save the ANDBLK2 symbol, perform the following:

1. From the menu bar, select Check ➝ With Defaults . A text
window appears containing the results of the design rule check.

2. Check to see that the information displayed is the same as that in
the following figure. If you do not have the same output, correct
the symbol to eliminate the differences and then check the symbol
again.

3. Close the text window by selecting Close from the menu that
appears when the left mouse button is pressed in the box in the
upper left hand corner of the text window.

4. Select File ➝ Save Symbol from the menu bar to save the
symbol.
Mentor Graphics Interface/Tutorial Guide 11-27

Mentor Graphics Interface/Tutorial Guide
Figure 11-10 Output from Check

Creating the ORBLK2 Symbol
The next step is to create the symbol for ORBLK2, as shown in the
following figure. Since ORBLK2 is similar to ANDBLK2, use the
ANDBLK2 symbol and modify the text.

1. Move the cursor above the ANDBLK2 text. Press the F7 key while
holding down the shift key to select the Change Text Value
command.

2. In the small dialog box that appears in the lower left corner, type
ORBLK2 in the New Text field, then select OK.
11-28 Xilinx Development System

Design Architect Tutorial
Figure 11-11 Completed ORBLK2 Symbol

3. If necessary, use the cursor and F7 key to move and center the text,
as described earlier.

4. From the menu bar, select Check ➝ With Defaults . A text
window appears containing the results of the design rule check.
Since you are modifying the ANDBLK2 symbol, the text still
refers to ANDBLK2.

5. If any errors are reported in the Check text window, correct them
on the symbol and check the schematic again. Otherwise, close the
text window.

6. To save the symbol as ORBLK2, select File ➝ Save Symbol
AS... . A dialog box appears.

Warning: It is important that you select the Save Symbol As
command instead of Save to prevent overwriting the original
ANDBLK2 file.
Mentor Graphics Interface/Tutorial Guide 11-29

Mentor Graphics Interface/Tutorial Guide
7. Enter $xilinx_tutorial/calc_da/orblk2 in the component
name field and enter orblk2 in the interface name field.

8. Select OK to execute the command. This saves the symbol as
ORBLK2.

9. Close the window containing the symbol.

10. A dialog box appears prompting you to save the changes to
ANDBLK2. Since the symbol for ANDBLK2 was saved prior to
modifying it for the ORBLK2 symbol, it is not necessary to save
changes to the ANDBLK2 symbol. Select No.

Creating Schematics for ANDBLK2 Symbol
You have created symbols for ANDBLK2 and ORBLK2. The next step
is to create schematics for these blocks. The schematics can then be
referenced in a higher-level schematic by placing the symbols.

Opening a Schematic Window

1. To open a schematic window, select OPEN SHEET from the palette.
A dialog box appears.

2. Type $xilinx_tutorial/calc_da/andblk2 in the
Component Name field, then select OK. A blank schematic sheet
appears.

Adding the First Component to a Schematic

1. From the menu bar, select Libraries ➝ XACT LIB . The Xilinx
Libraries menu appears.

2. Use the Unified Libraries for new designs. The Obsolete Library is
provided for backward compatibility. Select Unified Lib from
the menu.

3. Select the correct library for the device you are targeting, either
XC3000 or XC4000. If you select the wrong library, use the PageUp
key to go to the top of the library palette menu and click the left
mouse button on the Back option. This moves the library menu
back up the hierarchy.

4. Choose BY TYPE from the palette. This option organizes the
library parts into categories. The ALL PARTS option displays all
11-30 Xilinx Development System

Design Architect Tutorial
the library parts at once. A menu appears similar to that shown in
the figure below.

Figure 11-12 XC3000 Library BY TYPE Menu

5. To move up and down in the menu, turn on the scroll bars by
moving the cursor into the menu window and selecting Right
Mouse Button ➝ Show Scroll Bars . You can also move up
and down using the PageUp and PageDown keys.

6. Click the left mouse button on the Set As Default option. This
option allows you to return to this area and view of the library
menu by clicking on the Library icon in the Schematic palette.

7. Choose the logic category from the BY TYPE menu.

8. Select and2 .
Mentor Graphics Interface/Tutorial Guide 11-31

Mentor Graphics Interface/Tutorial Guide
9. A small dialog box appears on the screen. Move the cursor into the
schematic window. The outline of a 2-input and gate appears.

10. Move the symbol outline to the location shown in the following
figure and then click the left mouse button to place the object.

Figure 11-13 Placing a Component

Placing Additional Components

After placing the and2, note that a picture of it appears in the small
window in the upper right area of the screen. The last library element
selected will appear in this window. To select another component of
the same type, move the mouse inside this window, and click the left
mouse button. Then move the cursor to the schematic window,
position the component, and release the mouse button to place it on
the sheet. Using this method, select and place a second and2 symbol
as shown in the following figure.
11-32 Xilinx Development System

Design Architect Tutorial
Figure 11-14 Placing a Second Component

Copying a Component

Use the Copy command to add more components by copying a
component that already appears on the schematic.

1. Press the F2 function key to ensure that nothing is selected. It is
important to use the F2 key before selecting objects because
objects selected in previous steps are sometimes not deselected.

2. Move the mouse above and to the left of the two symbols on the
sheet.

3. While holding down the left mouse button, move the mouse
below and to the right of the two symbols. A white box appears
surrounding the two symbols.

4. Release the mouse button to select the objects.
Mentor Graphics Interface/Tutorial Guide 11-33

Mentor Graphics Interface/Tutorial Guide
5. Select Right Mouse Button ➝ Copy. Alternatively, use stroke
3214789, a stroke in the form of a “C”, to select the copy command.
A small dialog box appears at the bottom of the screen.

6. Place the two copied gates above the original two using the left
mouse button. If necessary, use the 753 stroke to zoom out. The
dialog box disappears after you place the gates.

7. Press Shift - F8 to view the entire schematic. The schematic now
looks like the following figure.

Figure 11-15 Component Placements for ANDBLK2

Moving a Component

If you make a mistake when placing a component, you can use the
menu commands to move the component.

1. Use the F2 key to deselect. Select the component by clicking on it
with the left mouse button.The component appears highlighted,
indicating that it has been selected.
11-34 Xilinx Development System

Design Architect Tutorial
2. Select Right Mouse Button ➝ Move , or use the stroke 74159.
A small dialog box appears.

3. Click the left mouse button to correctly place the component. The
dialog box disappears after the component is placed.

Adding Buses to a Schematic

Sometimes it is convenient to draw a set of signals as a bus rather
than as several separate wires. It is not necessary to physically
connect a bus to the nets that make up the bus. There are several
schematics in the Calc design that have short bus segments that are
not connected to anything. This is done so that a bus pin can be used
to represent the bus on the symbol. A bus must exist on the schematic
if a bus pin is to be used for a set of signals.

Add buses to the schematic as follows:

1. After pressing the F2 key, select Right Mouse Button ➝ Bus :
A small dialog box appears, and a white cross appears under the
cursor.

2. Draw a bus by clicking the left mouse button to specify the
starting point, moving the mouse to a new position, and then
clicking the button again to make a bend in the bus or to connect it
to a pin. Terminate the bus is by clicking the mouse button in the
same place twice. Add the three buses shown in the figure below.
You may want to zoom the schematic view out before performing
adding the buses.

If you make a mistake, press the F2 key to deselect everything on
the sheet. Then click on the bus segments you want to delete so
that they appear highlighted. Press the Delete key and then
redraw them correctly.

3. After adding the three buses, press the Escape key to exit the bus
adding mode.
Mentor Graphics Interface/Tutorial Guide 11-35

Mentor Graphics Interface/Tutorial Guide
Figure 11-16 ANDBLK2 Schematic with Buses

Adding Nets to a Schematic

Next, nets must be added to attach the appropriate pins on the gates
to the buses. You may want to enlarge the view of the components to
make it easier to draw the nets.

1. Press the F2 key. Select Right Mouse Button ➝ Wire: from
the ADD menu. A small dialog box appears, and a white cross
appears under the cursor.

Note: If the ADD menu does not appear, it may be that something is
still selected on the screen, resulting in a different menu appearing on
the screen. If this happens, press the F2 key and repeat step one.

2. Move the cursor to the top input pin of the top and2 gate, then
click the left mouse button.

3. Move the cursor to the left to a position directly above top of the
leftmost bus, so that the wire forms a ninety degree angle with the
11-36 Xilinx Development System

Design Architect Tutorial
bus. Click the left mouse button twice to terminate the wire,
which should appear as shown in the figure below.

A bus ripper is inserted automatically between the wire and the
bus. A bus ripper defines which bit of the bus is connected to the
wire. Automatically inserting bus rippers is referred to as
autoripping.

If the bus ripper did not automatically get inserted, make sure
that you clicked on the pin first and then on the bus to attach a net
between the two. If the net is attached to the bus first, autoripping
does not occur. Also, check the Setup menu to make sure that
autoripping is turned on. “Set Autoripping Off” should be
displayed in the menu to indicate that autoripping is turned on. If
“Set Autoripping On” is displayed, select it to turn autoripping
on. Also, the $MGC_GENLIB environment variable must be set
correctly for the autoripping function.

4. Press the Escape key to exit the wire-adding mode.
Mentor Graphics Interface/Tutorial Guide 11-37

Mentor Graphics Interface/Tutorial Guide
Figure 11-17 Connecting a net

Completing the Net Connections

Add the remaining nets to the schematic as follows:

1. Press the F3 key to execute the Add Wire command.

2. Add the remaining nets as shown in the figure below.

Note: When a wire is properly attached to a symbol pin, the small
diamond that specifies the connection point for the pin disappears. If
any of the diamonds are still visible, delete the associated net and
reattach it.
11-38 Xilinx Development System

Design Architect Tutorial
Figure 11-18 ANDBLK2 with all wires and buses connected

Labeling Nets and Buses

The next step is adding labels to the nets and buses. Labeling is the
process of identifying a net or a component by assigning a text string
to it. It is recommended that you label all nets on the schematic, to
simplify debugging and simulation. To specify the bus signals they
are related to, all nets that are attached to buses must have a number
in parentheses at the end of their names. For example, a net that is bit
zero of bus A must be labeled A(0).

1. Press the F2 key to unselect everything on the schematic.

2. Move the mouse above the topmost net and between the symbols
and the buses on the right side of the schematic.

3. Press and hold the left mouse button. Drag the mouse downward
so that the rectangle covers all four output nets, as shown in the
following figure. Release the mouse button. This selects all of the
output nets, which then appear highlighted.
Mentor Graphics Interface/Tutorial Guide 11-39

Mentor Graphics Interface/Tutorial Guide
Figure 11-19 Selecting Nets

4. Select Right Mouse Button ➝ Name Nets . A crosshair
appears next to the topmost selected net, and a small dialog box
appears. This indicates that the text typed in the “Property Value”
field of the dialog box is used as the name for the net. In Mentor
Graphics, a net name is a property with the name “net” and the
value is the name of the net. For example, the topmost net will be
named Q(0), so type “Q(0)” in the Property Value field of the
dialog box and press return.

5. Now, you can place the text on the schematic, although the dialog
box does not disappear. When you move the cursor out of the
dialog box, the text appears next to it, with a white line indicating
the net vertex that is associated with the property, as shown in the
figure below. Move the text to the proper position above the net
and press the left mouse button to place it.
11-40 Xilinx Development System

Design Architect Tutorial
Figure 11-20 Adding Text

6. The white cross moves down to the next net and a new small
dialog box appears.

7. Name the remaining nets. Repeat the appropriate steps to select
and label all eight of the input nets as shown in the following
figure. Once all the nets are labeled, the small dialog box
disappears.
Mentor Graphics Interface/Tutorial Guide 11-41

Mentor Graphics Interface/Tutorial Guide
Figure 11-21 Schematic with all Nets Labeled

8. If you incorrectly label a net or bus, move the mouse above the
text and press the Shift-F7 keys to execute the Text Change
Value command. Edit the text value that appears in the dialog
box and press return.

Adding Ports

Port symbols must be added to nets and buses to define the
connectivity between a schematic and its associated symbol. For the
ANDBLK2 schematic, all three buses need ports. Input signals are
given PORTINs and output signals are given PORTOUTS.

Add ports to the schematic as follows:

1. If the appropriate Unified library is not displayed in the palette,
use the menu bar command Libraries ➝ XACT LIB to select
11-42 Xilinx Development System

Design Architect Tutorial
it. Then, select the Unified Libraries and the appropriate library
for the part being used.

2. If the library is already visible, you may need to choose the BACK
option from the top of the library palette to move up to the
general library categories. Continue selecting BACK until the ALL
PARTS and BY TYPE selections are displayed.

3. Select BY TYPE, and then choose the io category.

4. Select the portin library part from the menu.

5. Place the portin so that the white crosshair is EXACTLY above the
left end of the upper input bus, on the left side of the window.

6. Place another portin at the end of the lower input bus, on the left
side of the window.

7. Next select a portout symbol from the library and place it at the
end of the output bus.

8. Press Shift - F8 to view the entire schematic. The schematic
appears as in the following figure.

Figure 11-22 Adding Ports
Mentor Graphics Interface/Tutorial Guide 11-43

Mentor Graphics Interface/Tutorial Guide
Labeling Buses

Although buses can be labeled using the same method as was used
for nets, the addition of the port symbols to the buses has
automatically assigned a default name of “NET” to each bus. This
simplifies the process since you can modify the existing names rather
than add new ones.

1. Press F2 key to unselect everything on the schematic sheet.

2. Move the cursor so that it sits above the NET label on the output
bus.

3. Press Shift - F7 to choose the Text Change Value command. A
small dialog box appears.

4. In the New Value field, change the text to Q(3:0).

5. Press return or choose OK in the dialog box.

6. Repeat this procedure on the two remaining buses, giving them
names as shown in the following figure.

Figure 11-23 Labeling Buses
11-44 Xilinx Development System

Design Architect Tutorial
Defining Bus Ripper Rule Properties

The schematic is almost complete. Although the names on the nets
define which bit of the attached bus is associated with the net, it is
still necessary to define the bus rippers. Each bus ripper is given a
RULE property with a value equal to the number of the bit to which
the ripper is attached. For example, the bus ripper attached to net
A(0) is given a zero value in order to attach A(0) to bit zero of the bus.
Define the bus ripper values using the following method:

1. Press the F2 key to unselect everything on the schematic sheet.

2. Select Right Mouse Button ➝ Other Menus ➝
Property/Text Menu ➝ Sequence Text . This command
allows the numerical sequencing of the modification of text. Since
the rippers already have a default value of R for the Rule property,
you must change it to the appropriate number.

3. Enter a zero in the Beginning Index Number box, leaving the
Prefix and Suffix field empty, then press return. The Prefix and
Suffix fields are not necessary because you only want to change
the “R”s to 0, 1, 2, and so on. At the bottom of the screen, the
message “Click LMB to indicate a text location. Next text will be
“0”. This indicates that the next text that the left mouse button is
clicked on will be changed to a “0”.

4. Click the left mouse button while positioning the mouse on the
“R” attached to the uppermost bus ripper of the bus A(3:0). The
“R” changes to a zero. A message indicating that “1” will be the
next text appears at the bottom of the screen.

5. Move down the bus A(3:0), clicking on the bus rippers in order.

6. When the fourth bus ripper is reached, click the right mouse
button to cancel text sequencing. The four bus rippers are defined
as shown in the figure below.
Mentor Graphics Interface/Tutorial Guide 11-45

Mentor Graphics Interface/Tutorial Guide
Figure 11-24 Defining Bus Rippers

7. Repeat steps 1-6 for the buses B(3:0) and Q(3:0)

If mistakes are made defining the bus rippers, you can change the
number using the same method (Shift - F7) used to edit net and
bus names. Make sure they are defined with numbers that match
the attached nets. A bus ripper definition problem can be difficult
to resolve.
11-46 Xilinx Development System

Design Architect Tutorial
Saving the Schematic

The schematic is now complete. Check and save the schematic as
follows:

1. Select Check ➝ Sheet. The text window that appears may
contain warnings about unnamed or dangling net vertices. These
warnings can be safely ignored, but if any other warnings or
errors occur, recheck the schematic against the figure below. The
check sheet window is also linked to the schematic window. Any
net, vertex, or instance names can be highlighted in the check
sheet window by clicking the left mouse button on it. The
corresponding net, vertex, or instance on the schematic is
highlighted. This is useful for relating an error message in check
sheet to the schematic.

Figure 11-25 Completed ANDBLK2 Schematic

2. Once all schematic errors have been corrected, check the design
again if necessary, and close the check sheet text window. Select
File ➝ Save Sheet from the menu bar to save the schematic.
Mentor Graphics Interface/Tutorial Guide 11-47

Mentor Graphics Interface/Tutorial Guide
Creating Schematics for ORBLK2 Symbol
The ORBLK2 schematic is similar to the ANDBLK2 schematic. To
create schematics for the ORBLK2 symbol, you can use the
ANDBLK2 schematic and simply replace the four and2 gates with or2
gates.

1. Press F2 key to unselect everything on the ANDBLK2 schematic.

2. Display the BY TYPE library menu. Select the logic category.

3. Press and hold the left mouse button and move the mouse to
create a rectangle to include part of all four and2 gates, as shown
in the following figure. It is not necessary to box the entire gate to
select it. Do not include any part of the attached nets in the
rectangle.

Figure 11-26 Selecting Gates

4. When the rectangle is positioned correctly, release the left mouse
button to select all four and2 gates.
11-48 Xilinx Development System

Design Architect Tutorial
5. Select Right Mouse Button ➝ Replace ➝ From Library
Menu. A message appears at the bottom of the screen requesting
that you select the replacement library part from the menu.

6. Use the PageUp and PageDown keys to scroll the component list.
Select the or2 component.The four and2 gates are replaced with
or2 gates. The ORBLK2 schematic is complete.

7. Select Check ➝ Sheet from the menu bar. The check program
refers to the ANDBLK2 schematic, since this was modified to
create the ORBLK2 schematic.

8. Close the text window containing the results of check sheet.

9. Select File ➝ Save Sheet As... A dialog box appears.

10. Type $xilinx_tutorial/calc_da/orblk2 in the
Component name field. Leave all other fields blank.

11. Press return to save the schematic.

Figure 11-27 Completed ORBLK2 Schematic
Mentor Graphics Interface/Tutorial Guide 11-49

Mentor Graphics Interface/Tutorial Guide
Completing the ALU Schematic
So far you have created symbols for ANDBLK2 and ORBLK2. You
have also created underlying schematics for these symbols. The next
step is to place the symbols in the ALU block schematic.

1. Close the only open window, which is the modified ANDBLK2
schematic, using the button in the upper left corner of the
window. A dialog box appears asking whether to save the changes
to the schematic. Select No, since the ANDBLK2 schematic was
saved earlier, but then modified for use as the ORBLK2 schematic.

2. Choose OPEN SHEET from the session palette.

3. Press the Navigator... button. A navigator window appears. If
necessary, change directories to the $xilinx_tutorial/calc_da
directory using the up arrow to move up one directory level and
double-clicking folders to push into them. Then, select the Calc
design, which is represented by a folder with a “c” on it and with
the name “calc” next to it. The “c” specifies that it is a component,
and not just a directory.

4. Press return or select OK from the navigator window. The
Component Name field of the OPEN SHEET dialog box is
automatically back-filled with “$xilinx_tutorial/calc_da/calc”.

5. Press return or select OK from the OPEN SHEET dialog box. The
top level Calc design appears in a window. Press Shift - F8 to view
the entire schematic, if necessary.

6. Press F2 key to unselect everything on the schematic.

7. Select the ALU symbol.

8. The additions you need to make are all in the ALU schematic, so
choose File ➝ Open Down from the menu bar using the left
mouse button. The dialog box shown in the following figure
appears.

9. You must select whether to modify the symbol or the schematic
for ALU. Select the line, schematic sheet1, with the left mouse
button. It now appears highlighted, as shown in the figure below.

10. Press return or select OK. A second schematic window appears; it
contains the ALU schematic.
11-50 Xilinx Development System

Design Architect Tutorial
Figure 11-28 Open Down Dialog Box

Placing User-Created Components
The ANDBLK2 and ORBLK2 symbols can now be placed on the
schematic as shown in the figure below. The symbols can be placed
using the same procedure used to place the and2 gate from the Xilinx
libraries when you created the ANDBLK2 schematic.

1. Use the F8 key to zoom into the empty area near the center of the
schematic, between the XORBLK2 and ADSU4 symbols.

2. Press the F2 key to ensure that nothing is selected.

3. Choose Right Mouse Button ➝ Instance ➝ Symbol by
Path... A dialog box appears.

4. Use the Navigator button in the dialog box to select the
$xilinx_tutorial/calc_da/andblk2 component, or type the name in
the Component Name field of the Add Instance dialog box.
Mentor Graphics Interface/Tutorial Guide 11-51

Mentor Graphics Interface/Tutorial Guide
5. Press return or select OK to execute the command.

6. Move the cursor to the correct location as shown in the figure
below.

Figure 11-29 Adding ANDBLK2 and ORBLK2 to ALU Schematic

7. Press the left mouse button to place the component.

8. Follow the same procedure to add the ORBLK2 symbol. Refer to
the ALU schematic in the figure above for proper placement. If
you make a mistake when placing a component, select it (after
pressing F2 key) and choosing Right Mouse Button ➝ Move
to reposition it.
11-52 Xilinx Development System

Design Architect Tutorial
Placing Library Components
The next step in the tutorial is to add the fd4ce component to the
ALU schematic. The fd4ce component is available in the Xilinx
Unified Libraries and consists of four flip-flops with a clock enable.

Note: This component is available in both the XC3000 and XC4000
libraries.

1. Use the Shift -F8 to display the entire ALU schematic. Use the F8
key to zoom into the open area in the lower right-hand corner.

2. Select Libraries ➝ XACT LIB from the menu bar.

3. Select the Unified Libraries and the appropriate family library
using the left mouse button.

4. Choose BY TYPE➝ flip_flop ➝ fd4ce from the Library
menu. Move the cursor into the schematic window; an outline of
the fd4ce component appears.

5. Move the component to lower right corner of the schematic,
approximately to the location shown in the figure below.

6. Press the left mouse button to place the component.
Mentor Graphics Interface/Tutorial Guide 11-53

Mentor Graphics Interface/Tutorial Guide
Figure 11-30 Adding fd4ce to ALU Schematic

Adding Nets, Buses, Ports and Labels

FD4CE

Next complete the addition of the fd4ce symbol by adding nets,
buses, and labels as follows:

1. Add the necessary nets and buses to complete connections for
fd4ce as you did for the previous schematic. The figure below
displays the labeled nets and buses for fd4ce.

2. Add ports to the nets and buses attached to the fd4ce, as shown in
the figure below.

3. Change the default “NET” properties to the proper names using
the Shift-F7 key, as shown in the following figure.
11-54 Xilinx Development System

Design Architect Tutorial
4. Modify the bus ripper RULE properties appropriately, as
described in a previous step.

Figure 11-31 Nets, Buses, and Ports for fd4ce

ANDBLK2 and ORBLK2

Next, complete the addition of ANDBLK2 and ORBLK2 to the ALU
schematic.

1. Add the necessary buses to complete connections for ANDBLK2
and ORBLK2. The figure below displays the labeled nets and
buses for ANDBLK2 and ORBLK2.

2. Use the figure below to name the added buses, as described in the
“Labeling Nets” section of this chapter. You only need to label the
output buses of the two components.
Mentor Graphics Interface/Tutorial Guide 11-55

Mentor Graphics Interface/Tutorial Guide
Figure 11-32 Nets, Buses and Labels for ANDBLK2 and ORBLK2

Adding Labels to Components
It is important to add labels to components. Error and warning
messages often reference component labels, and labels also appear in
simulation netlists. Also, net names at lower levels of hierarchy are
referenced using the following format:

...component_label/component_label/net_label

In the ALU schematic, labels have already been added to the
MUXBLK2, XORBLK2, and MUXBLK5 blocks.

To add a label to the ANDBLK2 placement, follow these steps.

1. Press the F2 key to unselect everything.

2. Use the left mouse button to select the ANDBLK2 symbol.

3. Select Right Mouse Button ➝ Properties ➝ Add . A
dialog box appears.

4. In the window labeled “Existing property Name”, choose the
INST property with the left mouse button. It appears highlighted.
11-56 Xilinx Development System

Design Architect Tutorial
5. In the Property Value field, type ANDBLK2, then press return or
choose OK.

6. Move the text to position it as shown in the following figure. Click
the left mouse button to place the text.

7. Label the ORBLK2 symbol the same way using the label,
ORBLK2, as shown in the following figure.

8. Give the fd4ce component the label, ALU_REG.

Figure 11-33 Adding Component Labels to ALU Schematic

9. The completed ALU schematic is shown in the following figure.
Mentor Graphics Interface/Tutorial Guide 11-57

Mentor Graphics Interface/Tutorial Guide
Figure 11-34 Completed ALU Schematic

Saving the ALU Schematic
Check the schematic. If errors occur, resolve them and then check and
save the schematic.

Exploring Xilinx Library Elements
The Xilinx libraries contain three types of elements. Primitives are
basic logic elements such as the and2 and or2 gates that you
previously placed in ANDBLK2 and ORBLK2. Soft macros are
schematics created by combining primitives and other soft macros.
Relationally Placed Macros (RPMs) are soft macros that contain
placement information. RPMs are currently only available in the
XC4000 library.
11-58 Xilinx Development System

Design Architect Tutorial
All three types of library elements are placed on a schematic in
exactly the same way.

Viewing a Xilinx Soft Macro Schematic
Soft macro schematics are schematics such as you might make for
your own designs. In fact, you can load one of these schematics and
use the File Save As command to save it under another name, and
then edit this new schematic to customize it to your needs.

Open the schematic underneath the fd4ce symbol as follows:

1. Press the F2 key to unselect everything.

2. Select fd4ce with the left mouse button.

3. Select File ➝ Open Down from the menu bar. A dialog box
appears. Select the schematic sheet and choose OK. As shown in
the following figure, fd4ce consists of four fdce symbols.

Figure 11-35 fd4ce Schematic from XC3000 Library
Mentor Graphics Interface/Tutorial Guide 11-59

Mentor Graphics Interface/Tutorial Guide
Viewing a Xilinx Library Primitive
The lowest-level elements in the Xilinx libraries are the logic
primitives. Only logic primitives appear in the eventual netlist
produced from the design. For example, the flattened netlist for the
Calc design does not contain a reference to the fd4ce symbol on the
ALU schematic, but does contain the four fdce instances in the fd4ce
schematic. Simulation models, which consists of Mentor Graphics
gen_lib primitives, are found below Xilinx library primitives.

1. Use the left mouse button to select one of the fdce placements.

2. Select File ➝ Open Down from the menu bar. A dialog box
appears. Select the schematic sheet and choose OK. The schematic
shown in the following figure consists of simulation modeling
parts from the gen_lib library. At the lowest level, all soft macros
and RPMs are made up of these. You never need to modify or
copy schematics at this level.

3. Close the fdce schematic and reselect the fd4ce schematic.

Figure 11-36 fdce Schematic
11-60 Xilinx Development System

Design Architect Tutorial
Viewing a Xilinx RPM (XC4000 Family Only)
Note: The following description of RPMs contains detailed
information on the XC4000 architecture. Refer to The Programmable
Logic Data Book for more information on the XC4000 CLB structure
and fast carry logic.

If your design is not targeted for the XC4000 family, read this section,
but do not perform any of the commands. Continue the tutorial with
the next section, “Opening the Calc Schematic.”

The ALU contains a component from the Xilinx library, adsu4, which
is a four-bit wide adder/subtracter. If your design is targeted for the
XC4000 library, this schematic is implemented as a Relationally
Placed Macro (RPM). If your design is not targeted for the XC4000
library, adsu4 is implemented without this placement information.

RPM schematics are schematics such as you might make for your
own designs. In fact, you can load one of these schematics and use
the File Save As command to save it under another name. You can
then edit this new schematic to customize it to your needs.

Elements placed in the adsu4 RPM schematic include CY4
components and FMAPs. The CY4 symbol gives you the ability to
specify fast carry logic functionality from the schematic. Fast carry
logic is a hardware feature in XC4000 parts that allows very fast
arithmetic-type functions.

The FMAPs map logic functions to function generators in
Configurable Logic Blocks (CLBs), which are arranged in a
rectangular grid in the die. Both CY4 symbols and FMAP symbols
have RLOC attributes. RLOCs are attached to the symbols that assign
relative locations to the CLBs. You can use carry symbols as well as
FMAPs and other mapping components in your own schematics.
However, knowledge of them is not necessary to use RPMs. Only
expert users should create macros containing carry logic and FMAPs.
For a description of these components, see the XACT Libraries Guide.

Push into the adsu4 schematic as follows:

1. Press F2 key.

2. Select adsu4.

3. Open the schematic underneath adsu4.
Mentor Graphics Interface/Tutorial Guide 11-61

Mentor Graphics Interface/Tutorial Guide
4. Use the F8 key (or stroke 1 59) to zoom into the upper portion of
the schematic as shown in the following figure.

5. Press F2 key to unselect everything.

6. Select the FMAP component in the upper right corner.

Figure 11-37 Upper portion of the ADSU4 RPM Schematic

7. Select Report ➝ Object ➝ Selected ➝ All . A text
window appears displaying the attributes on the symbol, as
shown in the figure below. The RLOC attribute is set to R0C0.G,
indicating that this function is mapped to the G function generator
of the upper-left corner (row zero, column zero) CLB in the RPM.
RPM origins are in the upper left-hand corner.

8. Close the text window to return to the adsu4 schematic window.

9. Use the scroll bars on the sides of the window to pan around the
schematic and look at the RLOCs. Note that logic is mapped to
three CLBs, designated as R0C0, R1C0, and R2C0. Therefore, this
11-62 Xilinx Development System

Design Architect Tutorial
RPM uses three CLBs that are arranged in a column. Information
on the number of CLBs used and the shape of the logic block is
available for each RPM in the XACT Libraries Guide. Note that
these locations are relative, not absolute. The macro is not defined
as placed in the uppermost CLB in the left most column.
Regardless of what the RPMs absolute location, the logic
associated with the FMAP with the location R0C0 is always at the
top, R1C1 is in the CLB directly below, and so on.

10. Close the adsu4 schematic and return to the ALU schematic.

Figure 11-38 RLOC Attribute on FMAP Component

Opening the Calc Schematic
Close all open schematic or symbol windows except for the top-level
Calc schematic window. If the Calc window is closed, open it. The
Calc schematic appears on the screen.
Mentor Graphics Interface/Tutorial Guide 11-63

Mentor Graphics Interface/Tutorial Guide
Using the XC3000 Oscillator
If your design is not targeted for the XC3000 family, read this section,
but do not perform any of the commands. Continue the tutorial with
the next section, “Using the XC4000 Oscillator.”

The XC3000/XC4000 and XC3000 demonstration boards have a built-
in RC circuit for clock generation for the XC3000 family part. The
OSC_3K block contains an oscillator that connects to that circuit. The
frequency of the output varies with processing, so it is not suitable for
applications that require a very precise clock. For this design,
however, the oscillator is adequate.

The output of the oscillator circuit in OSC_3K is routed through a
global clock buffer before being passed to the rest of the device. There
are several reasons for using one of the two global buffers available in
the XC3000 family of devices. The global clock buffers drive
dedicated routing resources that can reach any clock pin in the device
very quickly with minimal skew. In addition, using the dedicated
clock nets frees up other general purpose programmable interconnect
for other signals.

The GCLK symbol at the right side of the OSC_3K schematic in the
figure below is the Xilinx primitive for the XC3000 global clock buffer.
Another available global clock buffer is ACLK, the alternate clock
buffer. In general, you will use at least one clock buffer (GCLK or
ACLK) in every clocked XC2000 or XC3000 design. The Calc design
uses the global clock buffer, GCLK. Use GCLK for the highest-priority
clock net (the largest fan-out or fastest clock net) and use ACLK for
the second-highest-priority clock.

Push into the OSC_3K schematic as follows:

1. Press F2 key to unselect everything.

2. Select the OSC_3K symbol at the lower left.

3. Use File ➝ Open Down to open the schematic underneath
OSC_3K. The OSC_3K schematic appears as shown in the figure
below.

4. Close the OSC_3K schematic.
11-64 Xilinx Development System

Design Architect Tutorial
Figure 11-39 OSC_3K Schematic

Using the XC4000 Oscillator
If your design is not targeted for the XC4000 family, read this section,
but do not perform any of the commands. Continue the tutorial with
the next section, “Inverting Output Display Signals.”

The XC4000 family devices contain an on-chip clock generator, which
makes it unnecessary to use an external circuit for this purpose. The
on-board clock circuitry is not precise, but is suitable for designs that
do not need a highly accurate clock, such as the Calc design. If your
design is targeted to an XC4000 family device, you must replace the
OSC_3K component with one that uses the XC4000 family oscillator
and the XC4000 family clock buffers. The OSC_3K symbol is replaced
with the OSC_4K symbol.

The OSC_4K schematic contains an XC4000 library part, OSC4. This
symbol represents the on-chip oscillator that generates nominal clock
Mentor Graphics Interface/Tutorial Guide 11-65

Mentor Graphics Interface/Tutorial Guide
frequencies of 8 MHz, 500 KHz, 16 KHz, 490 Hz, and 15 Hz. The Calc
design uses the 15-Hz output from this component when targeted for
XC4000 family designs. The clock output from OSC4 is buffered
through a BUFGS global clock buffer.

XC4000 family devices have eight on-chip clock buffers, one BUFGP
(primary global buffer) and one BUFGS (secondary global buffer) in
each corner of the device. Although it is possible to use them for other
purposes, BUFGPs are best used to route externally-generated clock
signals. BUFGSs have more flexibility, and can be used to route any
large fan-out net, even if it is internally sourced. The Calc design uses
a BUFGS because the clock is generated internally by the on-chip
oscillator. See the XACT Libraries Guide and the The Programmable
Logic Data Book for more information on global clock buffers for Xilinx
devices.

Replace the OSC_3K with OSC_4K and push into the OSC_4K
schematic as follows:

1. Press F2 key.

2. Select the OSC_3K instance on the schematic.

3. Select Right Mouse Button ➝ Replace ➝ Other. A
dialog box appears.

4. Type $xilinx_tutorial/calc_da/osc_4k in the
Component Name field, or select the component using the
Navigator button. The OSC_3K symbol is replaced with the
OSC_4K symbol. Note that the two pad inputs, CQ and CQL, are
now loadless. These pads and their associated nets can be deleted
if desired. If they are not deleted, they are optimized out of the
netlist later.

5. Confirm that the OSC_4k symbol is the only object selected. Select
File ➝ Open Down and open the schematic sheet under
OSC_4K. The OSC_4K schematic appears as shown in the
following figure.

6. Close the OSC_4K schematic and return to the Calc schematic.
11-66 Xilinx Development System

Design Architect Tutorial
Figure 11-40 OSC_4K Schematic

Inverting Output Display Signals
Note: XC3000 Demonstration Board Only.

The XC3000/XC4000 demonstration board and the XC4000
demonstration board are both designed so a low signal on an output
turns on the display element. Therefore, the component that drives
the display, 7SEG_DEC_INV, produces inverted sense outputs. The
Calc schematic is set up for this configuration as the default.

The XC3000 demonstration board has only a single LCA socket
containing an XC3000 family part in a PC68 package. It is designed so
that a display element is turned on when the input is driven HIGH. If
you plan to target the design to an XC3000 demonstration board, the
7SEG_DEC_INV component on the Calc schematic must be replaced
with its non-inverting equivalent. If you plan to download to an
XC3000 demonstration board, continue with the commands in this
Mentor Graphics Interface/Tutorial Guide 11-67

Mentor Graphics Interface/Tutorial Guide
section. If not, go to the next section, “Controlling LCA Layout from
the Schematic.”

To make the output signals compatible with the XC3000
demonstration board, make the following changes to the Calc
schematic.

1. Unselect everything using F2 key.

2. Click the left mouse button on the 7SEG_DEC_INV symbol.

3. Select Right Mouse Button ➝ Replace ➝ Other.. . A
dialog box appears.

4. Type $xilinx_tutorial/calc_da/7seg_dec in the field
labeled Component Name, then press return or choose OK. The
7SEG_DEC_INV symbol is replaced by the symbol for 7SEG_DEC.
This changes the outputs to the seven-segment display to the
correct polarity. The outputs driving the led bar must still be
changed.

5. Unselect using the F2 key.

6. Select the Library icon in the palette. Since XC3000 users should
have set the XC3000 library as the default earlier, this library
appears in the palette, organized by type.

7. Choose buffer from the menu.

8. Using the left mouse button, select the four inverters attached to
the STACK(3:0) bus, as shown in the following figure.

9. Select Right Mouse Button ➝ Replace ➝ From Library
Menu. A message appears at the bottom of the Design Architect
window requesting that you select the replacement part from the
library window.

10. Select the buf symbol from the library menu.The inverters are
replaced by buffers. Extraneous buffers in the design does not
adversely affect its implementation. Any unneeded buffers are
automatically removed from the netlist. The schematic is now in a
state suitable for download to an XC3000 demonstration board.
11-68 Xilinx Development System

Design Architect Tutorial
Figure 11-41 Selecting Inverters

Controlling FPGA Layout from the Schematic

Assigning Pin Locations
It is highly recommended that you let the automatic placement and
routing programs, PPR and APR, define the pinout. Pre-assigning
locations to the I/Os can sometimes degrade the performance of the
place and route tools. However, it is usually necessary, at some point,
to lock the pinout of a design so that it can be integrated into a board
design. The initial pinout should be defined by running the place and
route tools without pin assignments, then locking down the I/O
placement so that it reflects the locations chosen by the tools. I/O in
the tutorial schematics must be assigned pin locations so that the Calc
design can function in the Xilinx demonstration boards. Because the
design is fairly simple, these pin assignments do not adversely affect
the ability of PPR or APR to place and route the design completely.

Pin locations are specified by attaching a LOC property to the net
attached to the pad. LOC properties should not be attached directly
Mentor Graphics Interface/Tutorial Guide 11-69

Mentor Graphics Interface/Tutorial Guide
to I/O pads. Properties are not associated with nets, only with
vertices on nets. When attaching properties, if the center of a net is
selected, the entire net segment appears highlighted, indicating that
two net vertices are selected, one at each end of the net segment. If a
property is then attached to the net, it appears twice when placed,
indicating it has been attached to both net vertices associated with the
segment. While this is not illegal, it does clutter the schematic. To
prevent this, select only one vertex before attaching properties. To
select a net vertex, position the cursor exactly above the point where
the net attaches to the pin, or above the point where the net bends.
Otherwise, an entire net segment is selected. This operation is
simplified because default pin locations are included with the I/O
pins; for example, the “PXX” on the opad symbols. You can modify
the existing property, rather than adding a new one.

Modify the LOC property on the pad associated with the LED0 signal
on the Calc schematic as follows:

1. Position the mouse over the “PXX” text to the right of the pad
attached to net LED0; this is the default location property attached
to the net. Refer to the following figure.

2. Without moving the mouse, press Shift-F7. A dialog box appears.

3. If targeting an XC3000 family device, modify the “PXX” text to
read P29. For XC4000 family devices, type P60.

4. Click on OK or press return to execute the command.

For simplicity, the other pin locations for the Calc design have been
placed in a data file known as a constraint file, which is described in a
later section. You can leave the other location values undefined. Valid
pin locations vary depending on the package. PLCC package pins are
designated with a P followed by the pin number, such as P17. Pin
Grid Array (PGA) package pins use alphanumerics such as A12. The
Programmable Logic Data Book lists the pinouts of each FPGA for each
package that Xilinx supplies.
11-70 Xilinx Development System

Design Architect Tutorial
Figure 11-42 Assigning a Location to an Output Net

Designating FAST Pads
Output slew rate can be modified by assigning a FAST attribute to the
output buffer, as shown in the following figure. The default slew rate
is SLOW. “Fast” pads have different timing specifications and draw
more current than “slow” (slew-rate-limited) pads. Slow pads are
used by default. In XC4000A devices, the MEDFAST and MEDSLOW
properties can also be placed on output buffers, to indicate that
XC4000A devices have four different selectable output slew rates,
compared to the two available in the standard XC4000 family. See The
Programmable Logic Data Book for timing specifications for the various
slew rate modes.

Add a FAST attribute to the led output display drivers attached to the
STACK(3:0) bus as follows:

1. Press Shift-F8 to display the entire Calc schematic.

2. Click the left mouse button on the obuf4 symbol attached to the
stack (3:0) bus.

3. Select Right Mouse Button ➝ Properties ➝ Add . A
dialog box appears.
Mentor Graphics Interface/Tutorial Guide 11-71

Mentor Graphics Interface/Tutorial Guide
4. In the both the Property Name and Property value fields type the
word fast .

5. Press return or select OK to execute the command.

6. Use the left mouse button to place the text near the obuf4 symbol,
as shown in the following figure. Since the property is attached to
the obuf4 symbol, it affects all four of the LED outputs.

Figure 11-43 Designating a FAST Pad

Using the I/O Flip-Flops
Xilinx XC3000 family devices, XC4000 devices, and XC4000A devices
have two flip-flops in each Input Output Block (IOB). Each pad has
an associated input flip-flop and output flip-flop. You can also
configure input flip-flops as latches and output flip-flops as 3-state.
You access these elements using the library components IFD, ILD,
OFD, and OFDT, as well as other higher-level macros that contain
these components. For more information on these library elements,
consult the XACT Libraries Guide.
11-72 Xilinx Development System

Design Architect Tutorial
IOB flip-flops are used whenever possible to free up internal CLB
resources. IOB flip-flops are used to register the switch inputs. As
shown in the figure below, the IFD8 macro attached to the input bus
SW<7:0> in the lower-left area of the schematic has an underlying
schematic that consists of eight IFD Xilinx primitives. If a similar data
register, such as RD8, had been used instead, the flip-flops in the IOBs
would be wasted and would occupy valuable CLB resources.

Figure 11-44 Underlying IFD8 Schematic Using Input Flip-Flops

Saving the Calc Schematic
Before continuing, check and save the changes made to Calc, as
shown earlier in this tutorial.

Optimizing the Design for the XC4000 Family
At this point in the tutorial, you have created or edited the following
four schematic files: calc, alu, andblk2, and orblk2. The design, at this
Mentor Graphics Interface/Tutorial Guide 11-73

Mentor Graphics Interface/Tutorial Guide
point, is suitable for use in an XC4000 family device. Other than
changing the references in the design to the XC4000 library, you do
not need to make any changes to adapt it to the XC4000 family.
However, XC4000 family devices have several advanced features that
are not used by this device-independent design. Two of these
advanced features are the on-chip memory built into the XC4000 CLB
and wide-edge decoders.

Device-Independent Stack Implementation
The device-independent stack is implemented as a set of registers and
muxes. This implementation can be used for any Xilinx device.

View the stack as implemented in the device-independent design as
follows:

1. Deselect everything on the schematic.

2. Use the left mouse button to select STACK.

3. Open the schematic underneath STACK. The schematic for
STACK appears on the screen, as shown in the following figure.
Since there are sixteen flip-flops in the block, the most efficient
implementation of this logic uses a minimum of eight CLBs.

4. Close the STACK schematic and return to the Calc schematic.
11-74 Xilinx Development System

Design Architect Tutorial
Figure 11-45 Device-Independent Stack Implementation

RAM Stack Implementation (XC4000 Family Only)
The RAM stack is implemented using a single element from the
XC4000 library. Although the stack is 4x4, RAM and ROM are only
available in 16x1 or 32x1 increments, so only one fourth of the
memory addresses are used. A stack four times as deep could be
implemented while still using only two CLBs. An equivalent flip-flop
implementation would require 64 flip-flops or 32 CLBs.

Using the static memory feature of the XC4000 family CLB, you can
reduce the stack from eight CLBs to two CLBs as follows:
Mentor Graphics Interface/Tutorial Guide 11-75

Mentor Graphics Interface/Tutorial Guide
1. Make sure the STACK symbol is selected in the Calc schematic.

2. Replace the device independent stack with the RAM stack by
selecting Right Mouse Button ➝ Replace ➝ Other .

3. Use the dialog box that appears to replace STACK with
$xilinx_tutorial/calc_da/stack_4k.

4. The STACK_4K symbol does not have a CLK pin. The RAM stack
implementation does not require a clock. If desired, you can select
the unconnected clock segments and remove them using the
delete command. Make sure nothing else is selected when this is
done.

5. Unselect everything, then select the STACK_4K symbol and open
the underlying schematic. The schematic appears as shown in the
following figure.

6. Close STACK_4K and return to the Calc schematic.

7. Check and save the changes to the Calc schematic.

Figure 11-46 XC4000 Family RAM Stack Implementation
11-76 Xilinx Development System

Design Architect Tutorial
Device-Independent State Machine
The device-independent control logic is implemented as a set of flip-
flops forming a three-state one-hot state machine and some
additional logic gates. This implementation can be used in any Xilinx
device. View the state machine and control logic as implemented in
the device-independent design as follows:

1. Unselect everything by pressing F2 key.

2. Select CONTROL using the left mouse button.

3. Open the schematic for CONTROL. The CONTROL schematic
appears on the screen.

4. Making sure nothing else is selected, select STATMACH.

5. Open the schematic for STATMACH. The schematic for
STATMACH appears on the screen, as shown in the following
figure. Note that the signals RST, SEL_OP, and UP_DN are all
ANDs of opcode inputs and the EXC signal. This is important in a
later step.

6. Close the STATMACH schematic and return to the CONTROL
schematic.
Mentor Graphics Interface/Tutorial Guide 11-77

Mentor Graphics Interface/Tutorial Guide
Figure 11-47 Device-Independent State Machine Implementation

Wide-Edge Decoders (XC4000 Family Only)
XC4000 family parts have wide-edge decoder lines on each edge of
the device. Each decoder line can be driven by many edge decoders.
Some edge decoders have dedicated connections to pads, while
others can be driven from internal logic. You can view this as a wire
to which many wired-and outputs can be connected.

For this design, all opcode pins are on the left side of the device in the
4003A and 4003 parts. EXC is an internal net. You can implement four
of the five signals in the STATMACH schematic using wide-edge
decoders. Do not use a wide-edge decoder to implement an AND
gate unless there are at least ten inputs to the gate, since a CLB
implementation is faster and routes more easily for an AND function
with nine or fewer inputs. In a dense design, however, using edge
decoders can be advantageous because it frees up CLB resources.
11-78 Xilinx Development System

Design Architect Tutorial
When you use a wide-edge decoder, make sure that the pads
associated with the inputs are all on the same edge of the device.

Although the decoders in this design do not have ten inputs, the
control logic in the STATMACH block is implemented using wide-
edge decoders as an example. See The Programmable Logic Data Book
for additional information on wide-edge decoders in XC4000 family
devices.

Replace the STATMACH symbol with the STATE_4K symbol as
follows:

1. Make sure the STATMACH symbol is selected.

2. Replace the STATMACH component with $xilinx_tutorial/
calc_da/state_4k using the Right Mouse Button ➝ Replace
➝ Other command.

3. Open the underlying schematic for STATE_4K using File ➝
Open Down from the menu bar. The STATE_4K schematic appears
on the screen, as shown in the following figure.

4. The decode logic is implemented using the elements DECODE4,
DECODE8, and so on. A pull-up must be placed on the output.
Tie unused inputs to a VCC symbol.

5. Close STATE_4K and return to the CONTROL schematic.

6. Check and save the changes to the CONTROL schematic. If errors
occur during the check, fix them and then re-check the schematic.

7. Close the CONTROL schematic and return to the top-level Calc
schematic.
Mentor Graphics Interface/Tutorial Guide 11-79

Mentor Graphics Interface/Tutorial Guide
Figure 11-48 XC4000 State Machine with Wide-Edge Decoders

Configuring XMake using XDM
The XACT Design Manager (XDM) is a program similar to
PLD_DMGR. It provides you with an interface to run the various
programs necessary to implement a design. The XMake program can
be run from within both PLD_DMGR and XDM. XMake
automatically converts your design to a bitstream that you can use to
program a part. You can use XDM to configure and run the individual
programs that are run by XMake. You cannot perform this task in
PLD_DMGR. See the “Command Summaries” section at the end of
this tutorial for a list of XMake programs.
11-80 Xilinx Development System

Design Architect Tutorial
Using a Constraints File
Using a constraints file, you can supply constraints information in a
textual form rather than putting it on a schematic. Sometimes this
method is more efficient than putting constraints on a schematic. An
example of a constraints file is shown in the figure below. The figure
shows the constraints file, calc_4k.cst, that is supplied with this
tutorial. The constraints file syntax is slightly different for XC3000,
XC3000A, and XC4000 family designs.

If there is a constraints file in the design directory with the same
name as the top-level schematic, it is used by PPR. If you do not want
the constraints file applied, you must disable this function in the
Profile Options menu. APR never automatically reads constraints
files; it must be explicitly instructed to do so. Constraints file syntax is
different for PPR and APR. Also see XACT Reference Guide.

This is a schematic constraints file for use with the
Calc Tutorial Design. It maps the I/O to the correct
pins for 4K family parts on the Xilinx demo boards.
When using this constraints file, you must tell both
XNFPrep and PPR to ignore pad locations on the
schematic, as the locations on the schematic are for
3K family parts.
Set the ignore_locs options for XNFPrep and PPR to a
value of “IO”.
place instance A: P49;
place instance B: P48;
place instance C: P47;
place instance D: P46;
place instance E: P45;
place instance F: P50;
place instance G: P51;
place instance SW<7>: P19;
place instance SW<6>: P20;
place instance SW<5>: P23;
place instance SW<4>: P24;
place instance SW<3>: P25;
place instance SW<2>: P26;
place instance SW<1>: P27;
place instance SW<0>: P28;
place instance LED3: P57;
place instance LED2: P58;
place instance LED1: P59;
place instance LED0: P60;

Figure 11-49 calc_4K .cst File
Mentor Graphics Interface/Tutorial Guide 11-81

Mentor Graphics Interface/Tutorial Guide
Since you only specified a pin location for one of the many inputs and
outputs on the Calc schematic, you must use a constraints file to find
the rest. You can do this in XDM by specifying an option for the place
and route tool as follows:

1. Quit PLD_DA and enter PLD_DMGR.

2. Execute XDM from PLD_DMGR by double-clicking on the
PLD_XDM icon. The XACT Design Manager appears.

3. Verify that the directory in XDM is set to $xilinx_tutorial/calc_da
directory. The directory is displayed in the lower left corner of the
XDM screen. $xilinx_tutorial is not displayed in XDM, but the
value assigned to $xilinx_tutorial is displayed.If the directory is
incorrect, click on Directory: and change the directory in the
dialog box.

4. In the lower left corner, verify that the family is set correctly for
the device being targeted. If not, click on Family : and choose the
correct family from the dialog box that appears.The part type can
be set to InDesign, or to any part, since its value is not used by the
programs in this tutorial.

5. Select Profile ➝ Options from the menu bar. A list of
available programs appears.

6. If using an XC3000A or XC4000 family device, select PPR ➝
helpall ➝ cstfile . Choose calc_3ka.cst for XC3000A
designs and calc_4k.cst for any XC4000 family design. If
using an XC3000 device, select APR ➝ -C. Select calc_3k.cst
to supply pad locations for the XC3020PC68 device in the Xilinx
demonstration boards.

7. Select Done ➝ Done to return to the XDM executive menu.

8. To save all of the changes that you just made to the XDM and
XMake defaults, pull down the Profile menu and select
Saveprofile ➝ Yes .

9. Select Quit from the menu, then select Yes from the dialog box
that appears.

10. Return to the PLD_DMGR window.
11-82 Xilinx Development System

Design Architect Tutorial
Using .PRO Files
The Saveprofile command saves changes to the xdm.pro file in your
design directory. There are several .pro files associated with the
Xilinx software; they are used to set default options. The xdm.pro file
sets options that are used by XMake, whether or not it is called from
XDM, and by any other tools called from XDM. If you do not use
XDM and run programs from the UNIX command line, you must
enter the parameters at the command line or in a batch file.

Some default profiles are supplied with the Xilinx software, and some
are created the first time you run a program. Default files are located
in the $XACT/data directory. If the appropriate .pro file exists in the
design directory, it is used; if not, the software uses the one from the
$XACT/data directory. It is common practice to keep .pro files in the
design directory to customize your environment. By doing this, you
can avoid changing the program options each time you run the
software. User .pro files are saved to the design directory, not to the
$XACT/data directory. The files there are retained as templates. They
are overwritten each time the software is updated or reinstalled.

Using PLD_Men2XNF8
PLD_Men2XNF8 is a Design Manager icon. Running
PLD_Men2XNF8 is always the first step in simulating or
implementing a design. This icon allows you to create a Xilinx netlist
from your Mentor Graphics design. You must run PLD_Men2XNF8
again if you make changes to the schematic.

When you run PLD_Men2XNF8 a dialog box with the following
options appears:

● Design Object: enter the name of the Design Object you want to
process.

● Part Type: Type the part type in this field: 3020PC68, 3020APC68,
4003PC84, or 4003APC84.

● Run Memgen only?

If selected, Men2XNF8 does not generate a netlist for the selected
design object. Instead, it searches the design directory and runs
the MemGen program on .mem RAM or ROM description files.
Mentor Graphics Interface/Tutorial Guide 11-83

Mentor Graphics Interface/Tutorial Guide
● Verbose Output?

If chosen, PLD_Men2XNF8 provides additional output to the
screen.

● Help?

If the Help option is chosen, a short help listing is produced by the
Men2XNF8 script.

Perform the following steps for the Calc design:

1. Double-click on the PLD_Men2XNF8 icon.

2. In the Design Object field type $xilinx_tutorial/calc_da/
calc.

3. Type the correct Part Type in the Part Type field.

4. Select Yes for Verbose Output.

5. Leave the other options set at the defaults. Press return or choose
OK.

6. PLD_Men2XNF8 is run and produces an XNF netlist. “Done”
appears at the bottom of the window that was created by
PLD_Men2XNF8 when the program is finished. Dismiss the
window by typing CTRL-C in it.

Examining PLD_Men2XNF8 Output Files
In addition to the XNF netlist, PLD_Men2XNF8 also creates the
men2xnf8.log file. This file contains a transcript of the outputs of the
programs run by PLD_Men2XNF8. If the program fails before
creating an XNF netlist, the error is logged in this file. Other files that
contain useful information are referenced in men2xnf8.log.

Examine the men2xnf8.log file for the Calc design as follows:

1. Select the navigator window.

2. Choose Right Mouse Button ➝ Update Window. This
updates the navigator window to display the new files created by
PLD_Men2XNF8.
11-84 Xilinx Development System

Design Architect Tutorial
3. Select the men2xnf8.log file and choose Right Mouse Button
➝ Open ➝ Read-Only Editor. A text window appears
containing the log file. When you are done viewing it, close the
window.

Using PLD_XMake
PLD_XMake is a Design Manager icon that allows you to
automatically implement your design.

When you run PLD_XMake a dialog box with the following options
appears:

● Design Object: enter the name of the Design Object you want to
process.

● Override Part Type?

When PLD_Men2XNF8 is run, it inserts the selected part type into
the netlist that is read by PLD_XMake. This option allows you to
override the part type without having to run PLD_Men2XNF8
again. If you select Yes, a field appears, and you can enter the new
part type.

● Verbose Output?

If chosen, PLD_XMake provides additional output to the screen.

● Rerun all Steps?

If interrupted and then run again, PLD_XMake can determine
where in the place and route process it was stopped, and then
resume processing at this point. If this option is selected,
PLD_XMake restarts the place and route process using the netlist
from PLD_Men2XNF8. This option is useful if, for example, a
change is made to a constraints file, and you want to see how this
affects the design. In this case, you would select Yes for this
option.

● Use Guide File?

A placed and routed design from a prior iteration of PLD_XMake
can be used to guide the place and route of another design
iteration after small modifications to the design have been made.
When you select this option, the place and route time is usually
Mentor Graphics Interface/Tutorial Guide 11-85

Mentor Graphics Interface/Tutorial Guide
significantly improved and the timing of the unchanged parts of
the design remain more stable over multiple place and route runs.

● Perform X-BLOX Optimization?

Use this option to force the execution of the X-BLOX program on a
design, even on one that does not use X-BLOX symbols, in order
to take advantage of the optimization X-BLOX performs.

● Generate MAK File Only?

Use this option to create a MAK file only, without running the
commands in the MAK file to implement the design. Select this
option when you want to create a custom MAK file, forcing
XMake to generate a script that you can edit.

● Output to Screen?

If selected, this option directs the output of all programs run by
PLD_XMake to the screen.

● Mapping Strategy

It is sometimes preferable to map sections of a design separately
before merging the different sections together. This option gives
you control over the mapping strategy. Refer to the sections on
PPR, XNFMap, and XNFMerge in the XACT Reference Guide for
more information on mapping strategies.

● Target

By default, PLD_XMake processes a design all the way to a
configuration bitstream BIT file, unless you specify a different
target. XMake will stop after creating the specified target file.
After stopping, PLD_XMake can be run again with a different
target, and executes the commands that were not run in the
previous iteration.

Perform the following steps for the Calc design:

1. In the Design Object field type $xilinx_tutorial/calc_da/
calc.

2. Leave the rest of the options set to the defaults. Press return or
choose OK. PLD_XMake spawns a shell and runs XMake in it with
the selected options. Fix any errors, as described in the next
section. If there are no errors, a message appears indicating that
the calc.bit file was successfully created.
11-86 Xilinx Development System

Design Architect Tutorial
Examining PLD_XMake Output Files
In addition to the routed LCA file and the bitstream BIT file,
PLD_XMake generates three useful output files as described below:

● OUT File

For the Calc design, the file calc.out contains a copy of all text that
is echoed to the screen. You should always review the OUT file
after running XMake, even if you did not see any warnings or
error messages while the design was being translated. If there are
any error messages, it is easier to resolve problems at this point in
the design process rather than in later steps. The OUT file lists
every program run by XMake.

● PRP File

For the Calc design, calc.prp is the design rule check report file
generated by the XNFPrep program. If XNFPrep finds any errors
or warnings, the OUT file directs you to examine this file. Other
than an explanation of errors and warnings, the PRP file contains
a detailed list of all logic trimmed by XNFPrep and the reason
why it was unnecessary. This file can be a very useful debugging
tool.

● RPT File

For the Calc design, calc.rpt is a report of the results of the
placement and routing. It is generated by the place and route
software, either PPR or APR, depending on the family. Check the
RPT file to make sure there were no unrouted pins or nets.

Examine OUT, PRP, and RPT files for the Calc design as follows:

1. Select the navigator window.

2. Choose Right Mouse Button ➝ Update Window. This
updates the navigator window to display the new files that were
created by PLD_XMake.

3. Select the calc.out file in the navigator and choose Right Mouse
Button ➝ Open ➝ Read-Only Editor . A text window
appears containing the .out file. When you are done viewing it,
close the window.

4. Repeat step three for the .prp and .rpt files.
Mentor Graphics Interface/Tutorial Guide 11-87

Mentor Graphics Interface/Tutorial Guide
Checking for Warnings in the OUT and PRP Files
You should expect to see some warning messages in the calc.out and
calc.prp files, but no errors. Errors are problems with the design that
cause PLD_XMake to terminate. Warnings tell you that there are
unusual aspects to your design. You can choose to correct the
reported problems. A partial listing of calc.out for the XC3020APC68
is shown in the following figure.

In the calc.out file, PPR reports a warning that the Calc design
contains a combinational loop. This loop is intentional. The OSC_3K
schematic uses this logic loop with an external RC circuit to generate
the clock. You can ignore this warning if you targeted the Calc design
to an XC3000 family part.

Correct any other errors or warnings before continuing. To find the
source of unexpected errors, reload the design in Design Architect
and compare the schematics to the schematics shown in the figures in
this chapter. After correcting the errors, save the changes, run the
Check program, and run PLD_XMake again.

XMAKE: Begin command ‘xnfmerge -D xnf -D. -P3020APC68-6 xnf/
calc.xnf calc.xff’.
Netlist written to file calc.xff

**
XMAKE: Begin command ‘xnfprep calc.xff calc.xtf
parttype=3020APC68-6’.

xnfprep: running design rule checker ...
xnfprep: checking XACT-Performance specifications ...
xnfprep: trimming unnecessary and redundant logic...
xnfprep: running design rule checker on trimmed design...
xnfprep: reverifying XACT-Performance specifications in trimmed
design ...

XNFPREP SUMMARY

0 Errors found
2 Warnings found
16 Unnecessary inverters and buffers removed
32 Unnecessary or disabled symbols removed
27 Sourceless or loadless signals removed
Refer to the calc.prp file for details.

**
XMAKE: Begin command ‘xnfmap -P3020APC68-6 calc.xtf calc.map’.

DESIGN SUMMARY:
11-88 Xilinx Development System

Design Architect Tutorial
Part type=3020APC68-6
50 of 64 CLBs used
22 of 58 I/O pins used
0 of 6 internal IOBs used
0 of 16 internal three-state signals used (0 TBUFS used)
28 CLB flip-flops used
Total number of WARNINGS generated during mapping = 0.
Total number of ERRORS generated during mapping = 0.

Writing design file calc.map...
Writing guide file calc.pgf...

**
XMAKE: Begin command ‘ppr calc.map parttype=3020APC68-6’.

ppr: Routing signals...
ppr: Generating .LCA File...

ppr: Generating .BID Back Annotation File...
ppr: Making Report File...
Wrote report on the result without delay optimization to
calc.rpf.
ppr: Routing signals...

*** PPR: WARNING:

This design has 1 purely combinational loop. Such loops should

be avoided. If at all possible, please modify the design to

eliminate all unclocked feedback paths.

A loop of 1 source-to-load connections: FG FG_OSC_3K/Q (Net
OSC_3K/Q) to first gate again.

No more unroutes

Therefore deleting result with 1 unroute

Begin work on a 65.5ns path with 9 pins.

Design has 0 unroutes.

--
Timing analysis summary
--

Deadline Actual(*) label: [qualifier]
-------- --------- ------------------
pad to pad <auto> 38.4ns <default>

Selector net: Default

clock to setup <auto> 59.9ns
pad to setup <auto> 12.0ns
clock to pad <auto> 42.6ns

(*) Note: please run xdelay to confirm the actual path delays
Mentor Graphics Interface/Tutorial Guide 11-89

Mentor Graphics Interface/Tutorial Guide
computed by PPR.

of unrouted connections: 0.
ppr: Making Report File...

**
XMAKE: Begin command ‘xdelay -D -W calc.lca’.

xdelay: writing calc.lca with delay information...

**

XMAKE: Begin command ‘makebits -R2 -S0 calc.lca’.

Timing nets....

Figure 11-50 XMake Partial calc.out File

The OUT file for the XC3020APC68 design shows that XNFPrep
issued two warnings and no errors. The OUT file directs you to the
PRP file for explanations about the warnings.

When you examine the calc.prp file, you may see warnings similar to
those shown in the following figure. The PRP file includes an
explanation of these warnings. The warnings listed in calc.prp are for
your information only and do not require any further action.

XNFPREP: WARNING 4037:

These inverters could not be absorbed and each will be
implemented in a single function generator. This will introduce
additional delay and use resources inefficiently. (Note that
some of the symbols listed below may have been reduced to
inverters by earlier trimming.)

Inverter Name = DEBOUNCE/$1I27
Output Signal = DEBOUNCE/$1N14

Inverter Name = ALU/$1I195
Output Signal = $1N403

Inverter Name = CONTROL/$1I31/Q0/$1I30/$1I8
Output Signal = CONTROL/$1I31/Q0/MD

XNFPREP: WARNING 4082:

Double pull-ups were found on TBUF-driven longlines and/or edge
decoder longlines. Requiring two pull-ups would prevent half-
length longlines from being used, and design placement and
resource utilization would be adversely affected.
11-90 Xilinx Development System

Design Architect Tutorial
One pull-up is being removed from each of these longlines. PPR
will activate both pull-ups if the signal is routed using a
complete longline.

XNFPREP: WARNING 4613:

Each of the following signals drives more than 20 inputs.

Signal Name

ADDR0
ALU3
ALU2
ALU1
ALU0

Although this is valid there is a possibility that the routing
delays of these signals will be unacceptable. If these signals
are critical to the timing of your design, you may consider
replicating the logic used to generate the signals so that the
loading (and hence the subsequent routing delay) is reduced.

Figure 11-51 XNFPrep Warning Messages

Checking the RPT File
The report file contains detailed information on your routed design.
Useful information in the RPT file includes the pinout description
and detailed timing information for PPR. A portion of the report file
for the XC3020APC68 Calc design is shown in the following figure:

PPR RESULTS FOR DESIGN CALC Xilinx, Inc.

Design Statistics and Device Utilization

--
Design Summary from XNF File
Number of Logic Symbols: 0
Number of Signals: 132
Number of Pins: 487

Equivalent “Gate Array” Gates: 198

Partitioned Design Utilization Using Part 3020APC68-6

No.Used Max Available % Used

--------------------------- ------- ------------- ------
Occupied CLBs 50 64 78%
Packed CLBs 35 64 54%
---------------------------- ------- ------------- ------
Mentor Graphics Interface/Tutorial Guide 11-91

Mentor Graphics Interface/Tutorial Guide
Package Pins: 22 64 34%
F and G Function Generators: 71 128 55%
H Function Generators: 0 64 0%
CLB Flip Flops: 35 256 13%
Memory Write Controls: 0 64 0%
3-State Buffers: 0 192 0%
3-State Longlines: 0 32 0%
Edge Decode Inputs: 0 96 0%
Edge Decode Longlines: 0 32 0%

Routing Summary
Number of unrouted connections: 0

Cpu Times
Reading Input: 00:00:15
Partition: 00:00:17
Placement: 00:02:36
Routing: 00:01:50

Chip Pinout Description

This chapter describes where your design’s pins were placed in
terms of the package pins. This first list is sorted by package
pin location. The second list presents the same data sorted by
your design’s pin names.

Package Pin Location Pin Name
-------------------- -----------------
P11 : EXC_P
P12 : OSC_3K/CQL
P13 : SW7/SW6_P
P14 : OSC_3K/CQ
.
.
P55 : 7SEG/G_P
P56 : 7SEG/D_P

This list describes where your design’s pins are in terms of the
package pins; it is sorted by your design’s pin name. The list

presented above has the same data sorted by package pin

location.

Package Pin Location Pin Name
-------------------- -----------------
P11 : EXC_P
P29 : LED/LED0_P
P30 : LED/LED1_P
P31 : LED/LED2_P
.
.

11-92 Xilinx Development System

Design Architect Tutorial
P53 : 7SEG/F_P
P55 : 7SEG/G_P

Figure 11-52 Partial calc.rpt File

Examining Routed Designs with XDE
Note: The XACT Design Editor (XDE) is not available with the Base
Development System. You can omit this section without affecting the
outcome of the tutorial. If you skip this section, continue with the
next section, “Verifying the Design Using a Demonstration Board.”

At this point in the tutorial, the design process is complete. You can
take a graphic look at your placed and routed design using the
EditLCA program, which is included in the XACT Design Editor
(XDE). You can access XDE from XDM or from the UNIX command
line.

XDE and EditLCA provide several useful functions, such as:

● Manual editing of a routed design

● Probe insertion during in-circuit verification

● Static timing analysis

For more information on XDE, see the XACT User Guide.

Entering the Design Editor
1. Double-click on the PLD_XDM icon in PLD_DMGR to execute

XDM.

2. Pull down the PlaceRoute menu and select XDE. An options menu
appears. Use the default options.

3. Select Done. The XDE Executive screen appears. In the bottom left
corner of the screen, Mode: Safe, appears. This mode prevents you
from making any changes to the LCA file that changes the
functionality of the design. To make changes to a design using
EditLCA, you must change to Expert mode before loading the
design.

4. Click on Mode with the left mouse button. A menu with the
choices, Safe or Expert, appears.

5. Click on Cancel to remain in Safe mode.
Mentor Graphics Interface/Tutorial Guide 11-93

Mentor Graphics Interface/Tutorial Guide
6. To load the design into the editor, select Design . A pull-down
menu appears.

7. To choose the input LCA file, select Design . A menu of available
LCA files appears. In this case, there is only one LCA file in the
directory, calc.lca, the routed file generated by XMake.

8. Select CALC.LCA. The name of the design file appears in the status
area above the command line. When you select the design, the
part type is automatically set to the part type in the selected LCA
file.

9. To enter the Design Editor, pull down the Programs menu and
select EditLCA . The design begins loading into the editor. Note
the status line above the command line to watch the progress of
XDE. The following messages appear.

Loading die/package file...
Loading design file...
Building pip drawing information...
Drawing screen...
Timing nets...

10. The editor appears, as shown in the following figure. The editor is
a graphic representation of the LCA. Pan around the device by
holding down the left mouse button and moving the mouse. A
world view of the LCA appears in the lower right corner of the
screen, and a red box shows the current location on the device.

11. Two types of blocks are shown in the editor. The IOBs appear
around the periphery of the device, and the CLBs appear in the
middle. Pan around the screen to see how the design was placed
and routed in the device. Used blocks are highlighted, and the
signal nets connecting them are shown as highlighted traces.

12. Looking at the routed design, observe how the global clock was
laid out in the device and how the pin location constraints were
carried through from the schematic level to the routed design.
11-94 Xilinx Development System

Design Architect Tutorial
Figure 11-53 Portion of XDE EditLCA Screen, XC3020APC68

Finding a Block
You can locate the global clock buffers as follows:

1. Pull down the Screen menu and select Find .

2. Now enter the name of the global clock buffer, gclk ↵ for an
XC3000 family design or bufgs_tl ↵ for an XC4000 family
design, to select the buffer in the top left corner. The cursor moves
to the top left corner of the LCA editor. This is the location of the
global clock buffer on XC3000 devices and one of the global
secondary clock buffers on XC4000 devices. This buffer may be
the one that PPR used to generate the clock signal in your XC4000
design.

3. Select Done to exit the Find command.
Mentor Graphics Interface/Tutorial Guide 11-95

Mentor Graphics Interface/Tutorial Guide
Highlighting a Net
The detailed operation of XDE is beyond the scope of this tutorial, but
there are a few commands that are especially useful for examining
this design. The Net Hilight command is used to highlight the path of
a particular net to make the net easier to trace across the device.

1. Pull down the Net menu and select Hilight . A menu of colors
appears.

2. Select a highlight color to use.

3. Type clk ↵. The clock net appears in the selected color.

4. Select Done from the top of the screen to finish the Net Hilight
command.

Using Command Line Entry
XDE commands can also be entered directly from the keyboard
instead of using the pull-down menus.

1. To remove the highlighting from the global clock net, type
unhilight clk ↵ on the command line.

2. Leave EditLCA by typing quit ↵. The XDE Executive menu
returns.

Running the Design Rule Checker
XDE has a design rule check program, DRC, which ensures that an
LCA design is valid. If you make any edits in EditLCA, you should
run the DRC program to make sure you have not introduced any
invalid connections. You can also run DRC from inside the EditLCA
program.

To run DRC from XDE, perform the following:

1. Pull down the Programs menu and select DRC. A menu of options
appears.

2. None of these options are necessary for this design; select Done.
The screen switches to text mode and messages describing what
the DRC program is checking appear. No errors or warnings
should occur.

3. Press any key to return to the XDE Executive Screen.
11-96 Xilinx Development System

Design Architect Tutorial
4. Exit XDE by typing quit ↵.

5. Press any key to return to XDM.

Verifying the Design Using a Demonstration Board
Now that you have completed your design and run a design rule
check, you are ready to download it to an FPGA. The design
bitstream was created by PLD_XMake.

There are three Xilinx demonstration boards that are commonly used.
Which board you have depends on what software you purchased
and when you bought it. Your tutorial design should be targeted to a
device on the board that you have available. The three boards are as
follows:

● The XC3000/XC4000 board has both an XC3000 family socket and
an XC4000 family socket, containing an XC3020APC68 and an
XC4003APC84. Use only one of the two parts for this tutorial.

● The XC3000 demonstration board contains a single XC3020PC68.

● The XC4000 board contains a single 4003PC84 or 4003APC84.

To load the configuration bitstream to the demonstration board, you
need a Xilinx hardware cable. Xilinx makes two hardware cables, the
XChecker cable and the Download cable. Either cable works with any
of the Xilinx demonstration boards.

Connecting the Cable for Download
Before initiating the downloading of the design into the LCA, the
demonstration board must be correctly hooked up to your
workstation.

There are several control and power pins that must be connected
between the board and the cable. The bundles of leads supplied with
the cables are labeled to make connecting the board to the cable a
simple procedure. Additionally, a pair of power and ground pins
must be connected to a regulated 5 volt power supply to supply
power to the board and cable.

Connect one end of the cable to your demonstration board as
described in the appropriate table below. For the XC3000/XC4000
Mentor Graphics Interface/Tutorial Guide 11-97

Mentor Graphics Interface/Tutorial Guide
demonstration board, use the leftmost column of pins, which is
missing the pin in the third position.

Table 11-3 Demonstration Board Cable Connections For XC3000

Table 11-4 Demonstration Board Cable Connections For XC4000

The other end of the cable must be plugged into the back of your
machine. Attach the cable to your system RS-232 serial port.

The “XC3000 Design Demonstration Board,” “XC4000 Design
Demonstration Board,” and “FPGA Demonstration Board” chapters
of the XACT Hardware and Peripherals Guide discuss in detail the

XC3000 Board Cable Label
XC3000/

XC4000 Board
Cable Label

J1-1 VCC J1-1 VCC

J1-2 Gnd J1-3 Gnd

J1-3 No Connection J1-5 No Connection

J1-4 CCLK J1-7 CCLK

J1-5 D/P J1-9 D/P

J1-6 DIN J1-11 DIN

XC4000 Board Cable Label
XC3000/

XC4000 Board
Cable Label

J1-1 VCC J2-1 VCC

J1-2 Gnd J2-3 Gnd

J1-3 No Connection J2-5 No Connection

J1-4 CCLK J2-7 CCLK

J1-5 D/P J2-9 D/P

J1-6 DIN J2-11 DIN

XChecker Cable Only: XChecker Cable Only:

J1-7 PROG J2-13 PROG

J1-8 INIT J2-15 INIT

J1-9 RST J2-17 RST
11-98 Xilinx Development System

Design Architect Tutorial
various demonstration boards and how to hook them up. Please refer
to this manual for instructions, if necessary, then carefully verify the
following:

● Verify that the hardware cable is correctly connected to both your
system and the demonstration board. Connections from the cable
to the demonstration boards are shown in the two tables shown
above.

● Verify that the power supply is connected to the demonstration
board and is turned on. The power connections for the demonstra-
tion boards are shown in the following table.

Table 11-5 Demonstration Board Power Connections

XC3000/XC4000 Demonstration Board

Make sure the XC3000/XC4000 FPGA demonstration board is set up
for slave mode configuration. The configuration mode for the XC3000
family part is controlled by the SW1 bank of switches. The
configuration mode for the XC4000 family part is controlled by the
SW2 bank of switches. The switches should be set as shown in the
appropriate table below.

XC3000 Board XC4000 Board
XC3000/XC4000

Board

J3-1 + 5 volts J2-1 +5 volts J9-1 +5 volts

J3-2 Gnd J2-2 Gnd J9-2 Gnd
Mentor Graphics Interface/Tutorial Guide 11-99

Mentor Graphics Interface/Tutorial Guide
Table 11-6 XC3000/XC4000 Board Switch Positions for XC3000

Table 11-7 XC3000/XC4000 Board Switch Positions for XC4000

XC4000 Demonstration Board

Make sure the XC4000 demonstration board is set up for slave mode
configuration. The configuration mode is controlled by the SW4 bank
of switches. The switches should be set as shown in the following
table.

Switch Label Setting

SW1-1 (left) OE/R Off (unless using
battery)

SW1-2 MPE off

SW1-3 SPE off

SW1-4 M0 on

SW1-5 M1 on

SW1-6 M2 on

SW1-7 MCLK off

SW1-8 (right) COUT off

Switch Label Setting

SW2-1 (left) PWR Off (unless using
battery)

SW2-2 MPE Off

SW2-3 SPE Off

SW2-4 M0 On

SW2-5 M1 On

SW2-6 M2 On

SW2-7 RST Off

SW2-8 (right) No Label Off
11-100 Xilinx Development System

Design Architect Tutorial
Table 11-8 XC4000 Board Switch Positions

XC3000 Demonstration Board

If you have an XC3000 demonstration board that has been modified
for use with a serial PROM, be sure it is not configured for use with
an XC1736A or XC1765 Serial Configuration PROM.

Note: If you have the demonstration board as shipped with Xilinx
products, there is no serial PROM socket on the board.

Such a modified board contains a four-position DIP switch with a
power switch and three switches controlling the programming mode.
If this DIP switch is present, make sure that the switches are set for
slave mode download. A serial PROM can be present on the board if
this DIP switch is installed and set correctly. Information on
modifying the demonstration board for use with a serial PROM is
available in the “XC3000 Design Demonstration Board” chapter of
the XACT Hardware and Peripherals Guide.

Downloading the Bitstream
Once the cable is connected to your PC or workstation, you are ready
to download the bitstream.

1. Set all of the input switches High. This setting (SW3 switches
High on the XC3000/XC4000 board, SW5 switches High on the
XC4000 boards, SW1 switches to “1” on the XC3000 board) selects
the No-Op command.

Switch Label Setting

SW4-7 PWR Off (unless using
battery)

SW4-6 MPE Off

SW4-5 SPE Off

SW4-4 M0 Off

SW4-3 M1 Off

SW4-2 M2 Off

SW4-1 RST On

SW4-0 No Label Don’t Care
Mentor Graphics Interface/Tutorial Guide 11-101

Mentor Graphics Interface/Tutorial Guide
2. In XDM, select the Verify menu.

3. Select XCHECKER.

The XChecker software is used for either hardware cable.

4. Select -port <name> and the correct port.

5. Select Done and the input file name: CALC.BIT .

Alternatively, you can run XChecker from the system prompt.
Type:

xchecker -port portname calc ↵

An example is the following:

xchecker -port com2 calc ↵

Valid port names for a workstation are normally /dev/ttya or /
dev/ttyb. Consult your system administrator if these do not work.

Once you have used XChecker and set the correct port, that infor-
mation is saved in the file, xchecker.pro, in your design directory,
and you do not have to specify it each time.

6. If you are using the Download cable to program an XC4000 family
part, press the PROG button. This step is not necessary if you are
using the XChecker cable or using the Download cable to program
an XC3000 family part.

7. Press the ↵ key.

If the LCA is successfully programmed, the following message
appears:

DONE signal went high.

8. Press any key to return to XDM.

If the done signal does not go HIGH, check the connections
between the cable and the demonstration board, power the board
off and on, and try downloading again.

Note: The Download cable has limited functionality when used with
XC4000 family parts and can report that Done went HIGH even if
you do not press the PROG button. In this case the part is not repro-
grammed. Download the bitstream again, this time pressing the
11-102 Xilinx Development System

Design Architect Tutorial
PROG button prior to configuration. Cycling the power off and on
before beginning the download has the same effect.

Testing the Design
As described earlier, the Calc design is a four-bit processor with a
stack similar to a calculator that uses reverse polish notation. You
must supply three types of input: an opcode, data, and an execute
command.

Each demonstration board has a row of eight rocker switches that
provide input to the design (SW3 on the XC3000/XC4000 board, SW5
on the XC4000 board, SW1 on the XC3000 board). The leftmost
switch, labelled “1,” is the Execute command which is activated by
toggling the switch twice. The next three switches (labelled 2-4) select
the opcode. Opcode encoding is shown in the table below. Use the
right-most four switches (labelled 5-8) to input data. When the
extended instruction set is selected with opcode 111, these switches
provide additional bits of opcode.

Note: The rocker switches on the XC3000 demonstration board are
On when down, Off when up. Use the “0” and “1” labels on the
board as your guide.
Mentor Graphics Interface/Tutorial Guide 11-103

Mentor Graphics Interface/Tutorial Guide
Table 11-9 Processor Operations

To perform an operation, set the data on the right-most “nibble.”
“On” is a one; “Off” is a zero. Look up the correct opcode for the
operation you want to perform and set the three opcode switches to
the correct value. Then toggle the leftmost Execute switch twice. If the
switch is already On, switch it Off, wait a moment, and then return it
to the On position.

The contents of the ALU register are displayed in hexadecimal on the
seven-segment display. The top value in the stack is displayed in
binary on the bank of LEDs.

1. Verify that the initial contents of both ALU and stack are all zeros.
The decimal display says “0,” and the LED bar is all Off. Now put
a 1 on the data switches and load the switch value to the ALU reg-
ister. The op code is 110.

2. Set the seven right-most switches to 110-0001.

2 3 4 5 6 7 8 Operation

0 0 0 DATA ADD between switches and register

0 0 1 DATA AND between switches and register

0 1 0 DATA OR between switches and register

0 1 1 DATA XOR between switches and register

1 0 0 DATA SUB switch value from register

1 0 1 X X X X CLEAR register

1 1 0 DATA LOAD register

1 1 1 0 0 0 X ADD between stack and register

1 1 1 0 0 1 X AND between stack and register

1 1 1 0 1 0 X OR between stack and register

1 1 1 0 1 1 X XOR between stack and register

1 1 1 1 0 0 X SUB stack value from register

1 1 1 1 0 1 X PUSH register value to stack

1 1 1 1 1 0 X POP stack value to register

1 1 1 1 1 1 X NOP
11-104 Xilinx Development System

Design Architect Tutorial
3. Toggle the leftmost switch to execute the command. The decimal
display shows the contents of the ALU register, which is now “1.”
The stack is still empty. Add 13 to the ALU register. The opcode is
000.

4. Set the seven right-most switches to 000-1101.

5. Toggle the leftmost switch twice to execute the command. The
decimal display shows the contents of the ALU register, which is
now “E.” The stack is still empty. Push the register value onto the
stack. The opcode is 111, which is the extended opcode. The data
must be set to 101x, where the x is a don’t-care.

6. Set the seven right-most switches to 111-1011.

7. Toggle the leftmost switch twice to execute the command. The
decimal display still shows “E.” The stack value is also “E,” so the
LED bar shows 1110 in the right-hand nibble. Perform an XOR
operation between the switch value and the register. The opcode
is 011. Set the data to all ones.

8. Set the seven right-most switches to 011-1111.

9. Toggle the leftmost switch twice to execute the command. The
decimal display changes to “1.” The stack value on the LED dis-
play is still “E,” 1110. Pop the value from the stack. The opcode is
111, which is the extended opcode. The data must be set to 110x,
where the x is a don’t-care.

10. Set the seven right-most switches to 111-1101.

11. Toggle the leftmost switch twice to execute the command. The
decimal display changes to “E.” The stack value returns to “0.”
Clear the ALU register. The opcode is 101. The data is ignored.

12. Set the seven right-most switches to 101-1101.

13. Toggle the leftmost switch twice to execute the command. The
decimal display changes to “0.” The stack value remains at “0.”

14. Try any other commands that you wish.

Making Incremental Design Changes
After initially placing and routing a design, it is often necessary to go
back to the schematic and make slight modifications to the original
design. When this situation occurs, much of the place and route
Mentor Graphics Interface/Tutorial Guide 11-105

Mentor Graphics Interface/Tutorial Guide
information from the previous design iteration can be “recycled”, as
much of it is unchanged. This process is known as incremental
design, and the LCA file (containing partition, placement and routing
information) from the prior place and route run is the guide file.

Since much of the place and route information is extracted from the
guide file, the place and route time is greatly reduced. The reuse of
place and route information also results in more stable timing over a
number of guided place and route iterations. Once a section of your
design passes your timing requirements, guided design ensures that
it will pass in the future, even if other parts of the design are
modified.

In this section of the tutorial, you make a small change to the
schematic and reprocess the design using the guide option.

Note: A small design change is the addition, removal, or replacement
of only a small amount of logic in the design; the exact amount is
dependent on the size of the design. If radical changes are made to a
design, it can be disadvantageous to guide the design.

Creating the Guide LCA File
First you must save the routed LCA file to another name. This file is
used as the guide file. Open a shell in UNIX, make sure you are in the
$xilinx_tutorial/calc_da directory, and type cp calc.lca
gcalc.lca ↵.

The LCA file is not the only file that is used as input with the guide
option. Incremental design with any member of the XC2000 or
XC3000 families also requires a Partitioning Guide File (PGF). This
file is described below. If you complete an XC2000 or XC3000 family
design and want to use it as a guide file at a later time, save the PGF
file as well as the LCA file. If necessary, the PGF file can be recreated
using the LCA2XNF program. There is no PGF file for XC4000 family
designs.

Making an Incremental Schematic Change
Make a simple change to the Calc schematic that will be visible
immediately on the demonstration board. For example, assume that
the reset opcode is no longer needed and needs to be removed from
the design. This can be done by deleting the RST net on the top-level
11-106 Xilinx Development System

Design Architect Tutorial
schematic. The logic that generated the RST signal, and the logic it
drove, is automatically optimized out of the netlist by the XNFPrep
program.

Open PLD_DA and load the Calc schematic.

1. Since you will return to XDM, do not close it, but iconize it on the
desktop.

2. From PLD_DMGR, select the $xilinx_tutorial/calc_da/calc design
object and choose Right Mouse Button ➝ Open ➝
PLD_DA. Design Architect appears with the Calc design loaded.

3. Use the F8 key to zoom in on the upper left quadrant of the
schematic.

4. Press the F2 key to unselect everything.

5. Select RST net, connected between the CONTROL and ALU
components, as shown in the figure below.

6. Press the Delete key to delete the net.

7. Check and save the schematic.

8. Exit PLD_DA and return to PLD_DMGR.
Mentor Graphics Interface/Tutorial Guide 11-107

Mentor Graphics Interface/Tutorial Guide
Figure 11-54 Disconnecting RST in Calc Schematic

Translating the Incremental Design
Translate the guided Calc design in exactly the same way as you did
the first time.

1. Select the Calc design in the navigator window.

2. Since the design has been modified, it is necessary to generate a
new netlist before running PLD_XMake. Choose Right Mouse
Button ➝ Open ➝ PLD_Men2XNF8. Use the default options
and select OK.

3. Now that the design changes are reflected in the netlist, select the
calc.xnf file from the navigator and choose Right Mouse
Button ➝ Open ➝ PLD_XMake . The PLD_XMake dialog box
is displayed.
11-108 Xilinx Development System

Design Architect Tutorial
4. Enter the appropriate part type, choose the verbose and output to
screen options as before.

5. Select Yes for Use Guide File? option. A File Name field appears.

6. Type gcalc.lca for the name of the guide file.

7. Press return or select OK.

The XMake program processes all of the necessary design files and
displays its progress on the screen. It also automatically performs the
steps necessary to guide the design.

If the design is targeted for an XC3000 family part, the partitioning of
the design is done by XNFMap. To mimic the partitioning of the
previous run, XNFMap reads the PGF file created by the previous run
of XNFMap. Then, APR (or PPR for 3000A designs) reads the .LCA
file so that it can follow the CLB placement and routing from the
previous iteration. In 4000 family designs, PPR does all of the
partitioning, placement, and routing, and the PGF file is not
necessary. In either case, XMake automatically reads the appropriate
files and performs the correct steps. If the translation is successful,
XMake issues the following message:

’calc.bit’ has been made, check output in
’calc.out’

Checking for Errors in the calc.out File
Next, look at the OUT file created by XMake and check for errors.
There should not be any errors or warnings that were not present in
the initial OUT file. It is important to verify that the placement and
routing completed successfully and that there are no unrouted nets.

For a description of the command flow followed by XMake for
original and incremental translation, see the “Command Summaries”
section at the end of this chapter. The command summaries are
simplified, but valid, versions of the program flow used by XMake.

Verifying the Change in the Demonstration Board
Verify that the change was performed by downloading the new
bitstream to the demonstration board, as you did previously.
Mentor Graphics Interface/Tutorial Guide 11-109

Mentor Graphics Interface/Tutorial Guide
1. Set all of the input switches High. This setting (SW5 switches High
on the XC3000/XC4000 and XC4000 boards; SW1 switches to “1”
on the XC3000 board) selects the No-Op command.

2. Double-click on the XDM icon to open it.

3. In XDM, select the Verify menu.

4. Select XCHECKER. The XChecker software is used for either
hardware cable. The port name is already set in the xchecker.pro
file saved during the first download.

5. Select Done and the input file name: CALC.BIT .

6. If you are using the Download cable to program an XC4000 family
part, press the PROG button. This step is not necessary if you are
using the XChecker cable, or using the Download cable to
program an XC3000 family part.

7. Press the ↵ key. If the LCA is successfully programmed, the
following message appears:

DONE signal went high.

8. Press any key to return to XDM.

9. If the Done signal does not go HIGH, check the connections
between the cable and the demonstration board, power the board
off and on, and try downloading again.

10. Verify that the change has been made by loading a value into the
register, then attempting to execute the RESET (101XXXX)
command.

Leaving XDM
1. To leave XDM, select quit or type quit ↵. The following

message appears:

Current profile option changes will be lost.
Do you really want to quit (Y/N)?

2. You do not want to save the profile changes that set up XMake for
incremental design. Click on Yes in the menu or type y ↵ to quit
without saving your profile changes.

You have completed the Xilinx Design Architect tutorial. At this
point, you can continue with the QuickSim II tutorial or skip to the X-
11-110 Xilinx Development System

Design Architect Tutorial
BLOX Tutorial, the Xilinx ABEL Tutorial, or the XACT-Performance
and XDelay Tutorial.

Command Summaries
Although this tutorial uses XMake to process the Calc design, you
can also manually run the individual programs that XMake runs. You
can also bypass XDM and run either XMake or each individual
program from the system prompt.

This section details command sequences that you can use to perform
the translations XMake performs in this tutorial. The commands are
written as you would type them at the system prompt or in a batch
file. XMake executes some of these commands individually on each
file in the design hierarchy, so that it does not rerun any program
unnecessarily, but it is not necessary for you to do the same.

The cstfile options are necessary for specifying pad location
constraints when compiling the Calc design. You may need to use
them for your own designs.

Basic Translation for XC3000A and XC3000L Designs
men2xnf8 calc -p <part> Translate schematics to XNF netlist
xnfmerge calc Combine into one XNF file
xnfprep calc Trim logic and check for errors
xnfmap calc Map to CLBs and IOBs
ppr calc Place and route
xdelay -d -w calc Add delays to LCA file
makebits calc Create bitstream

Basic Translation for XC4000 Family Designs
men2xnf8 calc -p <part> Translate schematics to XNF netlist
xnfmerge calc Combine into one XNF file
xnfprep calc Trim logic and check for errors
ppr calc cstfile=calc_4k

Partition, place and route
xdelay -d -w calc Add delays to LCA file
makebits calc Create bitstream
Mentor Graphics Interface/Tutorial Guide 11-111

Mentor Graphics Interface/Tutorial Guide
Basic Translation for XC3000, XC3100, and XC2000
Family Designs

men2xnf8 calc -p <part> Translate schematics to XNF netlist
xnfmerge calc Combine into one XNF file
xnfprep calc Check for errors
xnfmap calc Map to CLBs and IOBs
map2lca calc Convert to LCA file
apr -w calc calc -c calc_3k.cst

Place and route, add delays
makebits calc Create bitstream

Incremental Translation for XC3000A and XC3000L
Designs

Make schematic changes.

copy calc.lca gcalc.lca (Not run by XMake)

men2xnf8 calc -p <part> Translate schematics to XNF netlist
xnfmerge calc Combine into one XNF file
xnfprep calc Trim logic and check for errors
xnfmap -k calc Map to CLBs and IOBs
ppr calc guide=gcalc Place and route
xdelay -d -w calc Add delays to LCA file
makebits calc Create bitstream

Incremental Translation for XC4000 Family Designs
Make schematic changes.

copy calc.lca gcalc.lca (Not run by XMake)

men2xnf8 calc -p <part> Translate schematics to XNF netlist
xnfmerge calc Combine into one XNF file
xnfprep calc ignore_locs=IO

Trim logic and check for errors
ppr calc guide=gcalc cstfile=calc_4k ignore_locs=IO

Partition, place and route
xdelay -d -w calc Add delays to LCA file
makebits calc Create bitstream
11-112 Xilinx Development System

Design Architect Tutorial
Incremental Translation for XC3000, XC3100, and
XC2000 Family Designs

Make schematic changes.

copy calc.lca gcalc.lca (Not run by XMake)

men2xnf8 calc -p <part> Translate schematics to XNF netlist
xnfmerge calc Combine into one XNF file
xnfprep calc Check for errors
xnfmap -k calc Map to CLBs and IOBs
map2lca calc Convert to LCA file
apr -w -g gcalc calc calc

Place and route, add delays
makebits calc Create bitstream

Further Reading
The Design Architect tutorial is provided to give you the information
necessary to begin a Xilinx design using Mentor Graphics software. It
is important to note that a tool as broad and complex as Design
Architect cannot be fully explained in a single tutorial. There are
many different ways to use the commands in Design Architect, and
there are also many ways to customize the application. It is strongly
recommended that you read the Mentor Graphics Design Architect
documentation as well as the Xilinx Mentor Graphics Interface User
Guide.
Mentor Graphics Interface/Tutorial Guide 11-113

Mentor Graphics Interface/Tutorial Guide
11-114 Xilinx Development System

QuickSim Tutorial

Mentor
Graphics
Interface/
Tutorial
Guide
Mentor Graphics Interface/Tutorial Guide — 0401408 01 Printed in U.S.A.

Mentor Graphics Interface/Tutorial Guide
Xilinx Development System

Chapter 12

QuickSim Tutorial

This tutorial steps you through both a functional simulation and a
timing simulation using the Mentor Graphics QuickSim II program.
The Calc design created in the “Design Architect Tutorial” chapter or
one of the completed designs in the solutions directories can be used
for this tutorial. You can choose to target the design to any of the
following parts: XC3020APC68, XC3020PC68, XC4003APC84, or
XC4003PC84.

Note: Although this tutorial describes simulating FPGA designs, you
can apply most of the steps to EPLD designs. See the “XEPLD
Tutorial” chapter for EPLD-specific information.

Required Background Knowledge
This tutorial assumes that you have a basic understanding of the
following:

● UNIX Operating System. None of the command sequences are
given in AEGIS.

● Motif Windows. Mentor Graphics applications conform to the
Motif window style.

Note: When you are instructed to close a window, it is important that
you exit from the window rather than iconize it.

● Some knowledge of Design Manager, QuickSim II, and Xilinx core
software. For more information on these applications, refer to the
list of related publications at the beginning of this user guide.
Mentor Graphics Interface/Tutorial Guide — 0401408 01 12-1

Mentor Graphics Interface/Tutorial Guide
Software Installation

Required Software
The following versions of software are required to perform this
tutorial:

● Mentor Graphics Version 8.2_5 or later

● Xilinx/Mentor Graphics Interface DS344 Version 5 or later

● XACT Design Manager (XDM) Version 5 or later

Before Beginning the Tutorial
Before beginning the tutorial, set up your workstation to use Mentor
Graphics and XACT Development System software as follows:

1. Verify that your system is properly configured. Consult the release
notes that came with your software package for more information.

2. Install the following sets of software:

● XACT Development System (DS501 or DS502) Version 5.00

● Xilinx DS344 Mentor Graphics Version 5 interface

● Mentor Graphics software Version 8.2_5 or later, including
Design Manager, Design Architect, QuickSim II, QuickPath, as
well as the software needed to produce EDIF netlists from
ENWRITE, which requires special licensing

3. Verify the installation. When you finish the installation, verify that
your .cshrc or setup file contains lines similar to the following:

Note: Path names of directories will vary. For more information on
paths and environment variables, refer to your Release Notes.

setenv LCA /location_of_ds_344:
setenv XACT /location_of_ds_344:
/location_of_ds502
set PATH=($PATH \

$LCA/com/sparc \
$LCA/bin/sparc \
/location_of_ds502 /bin/sparc \
)

12-2 Xilinx Development System

QuickSim Tutorial
Modifying Mentor Graphics Variables

Make sure that the following Mentor Graphics specific variables are
set correctly:

● MGC_HOME

This should point to the Mentor Graphics software tree.

● MGC_GENLIB

This should point to the Mentor Graphics gen_lib library,
normally $MGC_HOME/gen_lib.

● LD_LIBRARY_PATH

This variable is used by the Mentor Graphics Design DataPort
(DDP) routines that are accessed by some Xilinx programs. On a
SPARC station with OpenWindows installed in /usr, this variable
is set as follows:

setenv LD_LIBRARY_PATH $MGC_HOME/shared/
lib:$MGC_HOME/lib:/usr/openwin/lib

● MGC_LOCATION_MAP

This variable should point to a valid location map file.

Every symbol and schematic in your design contains a reference.
A reference indicates where the design object resides on your disk.
The tutorial designs use variables in their reference definitions so
they can be easily relocated. All of the tutorial designs use the
variable, $xilinx_tutorial, to define the path reference.
$xilinx_tutorial must be defined in the file pointed to by
$MGC_LOCATION_MAP. For example, the design object, led_inv
in the install_path/tutorial/mentor/calc_da directory, uses the
path reference $xilinx_tutorial/calc_da/led_inv to define where it
is located in the directory structure. If the tutorial directories were
copied to the path, /home/bclinton/mentor/xtutorial, the
following two lines must be added to the file pointed to by
$MGC_LOCATION_MAP:

$xilinx_tutorial
/home/bclinton/mentor/xtutorial

If a query was made to determine where the design object
‘$xilinx_tutorial/stack’ is located, the Mentor Graphics tools
Mentor Graphics Interface/Tutorial Guide 12-3

Mentor Graphics Interface/Tutorial Guide
would use this definition to determine that stack is at /home/
bclinton/mentor/xtutorial/calc_da/stack.

It is also important that the $LCA variable be instantiated, but not
defined, in the file pointed to by $MGC_LOCATION_MAP. To do
this, add the following line to MGC_LOCATION_MAP, followed
by an empty line:

LCA
(empty line)

Refer to the Mentor Graphics documentation for more
information on location maps.

● MGC_WD

This variable should point to the working directory. For the
tutorial, it should point to the directory where the tutorial is
worked on.

● LCA

In addition to instantiating it in the file pointed to by
MGC_LOCATION_MAP, the LCA environment variable should
point to the directory where the DS344 software is installed.

Installing the Tutorial
If you have performed the Design Architect tutorial, stay in the same
project directory and continue with the next section, “Basic
Functional Simulation”.

If you choose not to perform the Design Architect tutorial, you must
perform the following steps before you can begin the QuickSim
tutorial.

1. The tutorial files are optionally installed when you install the
DS344 interface software. If you have already installed the
software, but are not sure whether you specified tutorial
installation, check for check for a tutorial directory under your
DS344 directory. The tutorial directory contains the tutorial files.

2. Since the schematics used in the Design Architect tutorial are
incomplete when installed, you must copy a completed set of
schematics and symbols from one of the solutions directories.You
must also copy the routed calc.lca file so that you can do timing
12-4 Xilinx Development System

QuickSim Tutorial
simulation. Solutions for the QuickSim tutorial are supplied in the
following directories:

calc_3k — solution files for XC3020PC68
calc_3ka — solution files for XC3020APC68
calc_4k — solution files for XC4003PC84 and XC4003APC84

It is recommended that you copy the appropriate tutorial
directory in its entirety from the original install area to another
area as described in a later step. This is done using the copy
command in PLD_DMGR. Never use the UNIX cp command to
copy a Mentor Graphics design.

Note: In this tutorial, file names and directory names are in lower
case and the design example is referred to as Calc.

Starting PLD_DMGR
PLD_DMGR is the Mentor Graphics Design Manager run with a
special start-up script that adds Xilinx icons to the tools window. To
invoke PLD_DMGR, perform the following steps:

1. In UNIX, go to the project directory.

2. Use the UNIX command, setenv, to set the $MGC_WD to the
directory where you will be working on the tutorial. For example,
if you plan on copying the calc_4k solutions directory from the
DS344 install area to the directory /home/dum/mentor/tutor,
type the following:

setenv MGC_WD /home/dum/mentor/tutor/calc_4k

3. Invoke PLD_DMGR by typing pld_dmgr .

Note: It is important that $MGC_WD be set to the working directory.
Problems may occur in the Xilinx scripts if this variable is not set
correctly.

Making a Working Copy of the CALC design
Note: If you already have a Calc design from completing the Design
Architect tutorial, you can use it for this tutorial if desired. Skip the
following steps and go to the next section.

Perform the following steps to make a working copy of the Calc
design:
Mentor Graphics Interface/Tutorial Guide 12-5

Mentor Graphics Interface/Tutorial Guide
1. In the navigator, select from the tutorial/mentor directory in the
DS344 installation area the design directory you want to use
(either calc_3k, calc_3ka, or calc_4k). Pick calc_3k for an XC3000
design, calc_3ka for an XC3000A design, or calc_4k for an XC4000
family design.

2. Select RIGHT MOUSE BUTTON➝ EDIT ➝ COPY. A dialog box
appears.

3. In the dialog box, type the path to the directory where you want
the working copy of the tutorial files to reside. For example, if you
want to copy the calc_4k design directory to /home/dum/tutor,
type “/home/dum/tutor/calc_4k” in the dialog box.

4. Select OK to execute the Copy command.

5. Use the navigator to change directories until the newly-created
working copy of the tutorial directory appears in the navigator.

Basic Functional Simulation
The Calc design, at this point, does not contain any X-BLOX or Xilinx
ABEL elements, so very little pre-processing is necessary for
simulation. Refer to the appropriate tutorial chapter for information
on simulating designs with Xilinx ABEL or X-BLOX elements.

Preparing the Calc Schematic for Simulation
Components in the Calc design at this point have built-in simulation
models so little pre-processing is necessary. However, every design
must have a simulation viewpoint before it can be used in QuickSim.
The viewpoint defines the simulation model that should be used for a
primitive. The scripts, Men2XNF8 and FNCSIM8, are represented as
the PLD_Men2XNF8 and PLD_FNCSIM8 icons in PLD_DMGR.These
icons are used to prepare a design for functional simulation.

You must run Men2XNF8 on a design before functional simulation
because FNCSIM8 reads the netlist produced by Men2XNF8 to
determine how much pre-processing is required. An X-BLOX design,
for example, requires more pre-processing than a design without X-
BLOX symbols.
12-6 Xilinx Development System

QuickSim Tutorial
PLD_Men2XNF8

The design is translated by the Men2XNF8 program to an XNF
(Xilinx Netlist Format) file. Invoke Men2XNF8 on the Calc design
using the following method:

1. Select the Calc design object from the appropriate directory in the
navigator window.

2. Invoke Men2XNF8 on the design by selecting RIGHT MOUSE
BUTTON➝ OPEN ➝ PLD_MEN2XNF8. A dialog box appears.

3. Type the appropriate part type in the Part Type field, then select
OK.The Men2XNF8 script executes. If errors occur, check the
men2xnf8.log file for more information.

PLD_FNCSIM8

Invoke FNCSIM8 on the Calc design using the following method:

1. Select the Calc design object in the navigator window.

2. Invoke FNCSIM8 on the design by selecting RIGHT MOUSE
BUTTON➝ OPEN ➝ PLD_FNCSIM8. A dialog box appears.

3. Select Use Original . This specifies that the original schematic is
used in simulation.

4. Select the Yes for Run QuickSim, then press return or select OK.
The FNCSIM8 script executes and a simulation viewpoint is
generated. The design is then automatically loaded into QuickSim
II.

Viewing the Calc Schematic
When QuickSim starts, no windows are open. Open a window and
view the top-level schematic for the Calc design. Displaying the
schematic is convenient for viewing back-annotation during the
simulation.

1. To open a window containing the Calc schematic, select Open
Sheet from the palette. This automatically opens the top-level
sheet for Calc.

2. Move the window to the upper left corner of the QuickSim
window.
Mentor Graphics Interface/Tutorial Guide 12-7

Mentor Graphics Interface/Tutorial Guide
Figure 12-1 Top-level Calc schematic

Selecting Nets for Simulation
There are several ways to select the signals that you would like to
monitor. One way is to select the Right Mouse Button ➝ Add ➝
Traces ➝ Specified command, then type in the nets you want to
view in simulation. Another way is to select the nets on the
schematic. To select the signals, you may need to zoom and pan using
the scroll bars or using strokes.

To select the nets on the schematic:

1. Using the F8 key, zoom in on the area pictured in the following
figure.

2. Position the cursor on the net labeled CLK, and press the left
mouse button. The net appears highlighted, as in the figure below.
Whenever any portion of a net is selected in QuickSim, the entire
12-8 Xilinx Development System

QuickSim Tutorial
net appears highlighted. You can select additional nets using the
same procedure. If you make a mistake, click the left mouse
button a second time on the net or object to unselect it.

Figure 12-2 Selecting the CLK Net for Display in Trace Window

3. Use the left mouse button to select the following nets: WE, RST.

4. Using the Shift -F8 key, view the entire schematic.

5. Select the net labeled EXC (output of the DEBOUNCE
component) with the left mouse button.

One of the advantages of labeling all nets is now clear. When you
select an unlabeled net for simulation display, note that a default
name is used for the net, such as N$14. This name is not very
useful for debugging, especially since making changes to the
Mentor Graphics Interface/Tutorial Guide 12-9

Mentor Graphics Interface/Tutorial Guide
schematic may cause renumbering of net names.

6. You can also add buses to your list of signals to be monitored. Use
the left mouse button to select the buses labeled ALU(3:0) and
STACK(3:0).

7. Press the blue TRACE button in the palette to add these two buses
to the trace window.

A bus selected in this manner is displayed as a bus in the Trace
window. Later in the tutorial you learn how to create buses out of
discrete signals on the schematic, so that they may be viewed as a bus
in the Trace window.

Opening Trace and List Windows
To view the waveforms of the selected signals, you must open a Trace
window. To open a trace window, select the blue button labeled
Trace in the palette with the left mouse button.

A Trace window appears. The waveforms selected on the schematic
appear in the Trace window. It may be necessary to resize the Trace
window to see all the signals at once. Otherwise, move the cursor into
the Trace window and use the PageUp and PageDown keys to scroll
the signals in the window.

Note that all the signals in the Trace window are highlighted. Every
window opened in QuickSim is dynamically linked to the others. The
selection of a net on the schematic sheet, for example, is also reflected
in the Trace window, and in any other window that is open. This is
useful, for example, if a setup violation occurs. The instance name in
the error message text will be highlighted, and the related component
on the schematic page will also appear highlighted.
12-10 Xilinx Development System

QuickSim Tutorial
Figure 12-3 Trace Window

It is sometimes useful to obtain tabular output using a List window.
A List window displays signal values and highlights the points at
which a given signal value changes. To open a List Window, perform
the following:

1. Since the desired signals are already selected, select the blue LIST
button in the palette with the left mouse button. The list window
appears, with the signal names at the bottom. The caret (‘^’) is an
arrow pointing up to indicate the correct column for each signal.

2. Move the List window to the upper right-hand corner of the
screen next to the schematic window.
Mentor Graphics Interface/Tutorial Guide 12-11

Mentor Graphics Interface/Tutorial Guide
Figure 12-4 List Window

Adding Traces Manually
In the Calc design, inputs are entered via a set of eight switches,
SW(7:0). The lower seven switches (SW(6:0)) define the opcode. The
left-most switch (SW(7)) is the execute switch. When SW(7) is
toggled, the selected opcode on SW(6:0) is executed. It is useful to
view SW(6:0) and SW(7) separately in the Trace window.

Add these two traces to the Trace window as follows:

1. Press the F2 key to unselect everything.

2. Select the Trace window with the left mouse button.

3. Choose Right Mouse Button ➝ Add ➝ Traces ➝
Specified... A dialog box appears.

4. Select the Named Signals button in the dialog box with the left
mouse button. A field for entering text appears.

5. Fill in the dialog box as shown in the figure below.

6. Select OK or press return. The bus SW(6:0) and the signal SW(7) are
12-12 Xilinx Development System

QuickSim Tutorial
added to the trace window.

Figure 12-5 Adding Manual Traces

Assigning Values to the Clock
The first step is to define a clock for the circuit as follows:

1. Make sure that the trace window is active (border appears blue). If
not, select the window using the left mouse button.

2. Press the F2 key to unselect everything, then select the CLK net in
the Trace window using the left mouse button.

3. Select the red button labeled STIMULUS in the Palette. The icons
in the Palette change.

4. Select ADD CLOCK in the Palette. A dialog box appears.

5. Fill in the dialog box as shown in the figure below.
Mentor Graphics Interface/Tutorial Guide 12-13

Mentor Graphics Interface/Tutorial Guide
Figure 12-6 Adding Clock Waveform

The dialog box selections give the clock a 100 ns period and a 50
percent duty cycle. At zero ns, the clock begins with a value of
zero. The Absolute option indicates that the times are absolute,
and not relative to the state of the simulator. For example, if you
had already been simulating, the state of the simulator may not be
at zero ns. If Absolute is selected, the times entered in the dialog
box are referenced from time zero. If Absolute is not selected, the
times entered in the dialog box are added to the present time in
the simulation.

Selecting a Fixed Force type indicates that the signal is driven as if
it were connected directly to VCC or GND. If Wired were selected,
the signal would be driven as if it were connected to a pull-up or
pull-down resistor. A Charge Force type represents a default
charge on a floating signal. Wired values are overridden by Fixed
values, and Charge values are overridden by both. In general, for
Xilinx designs always use a force type of Fixed unless it is a
bidirectional input, in which case a Wired force type should be
used.

6. Press return or select OK to add the force to CLK.
12-14 Xilinx Development System

QuickSim Tutorial
Asserting Global Reset (XC2000 & XC3000 Families
Only)

This section applies only to XC3000 and XC2000 family designs. If
your design is targeted toward an XC4000 family device, go to the
next section, “Asserting Global Set Reset”.

The first node you must assert is the globalresetb signal. This signal
does not exist on your schematic, but it is does exist in the device.
This dedicated net is connected to the Reset pin on every XC2000
family or XC3000 family FPGA. It is an active-low signal that resets
all of the flip-flops and IOB latches in the chip.

Globalresetb is part of the simulation models; you must toggle it at
the beginning of every simulation. If you do not pulse globalresetb
low, all flip-flop outputs are unknown at all times during your
simulation. Set globalresetb low at time 0 and high at 100 ns as
follows:

1. With the Trace window selected, press the blue Unselect All
button in the Palette with the left mouse button.

2. Select the Add Force icon in the Palette with the left mouse
button. A dialog box appears.

3. Since a signal is not selected, the Signal name field is empty. Fill in
the dialog box as shown in the following figure. The globalresetb
signal is entered with two leading forward slashes because it is a
global signal. The signal is to be forced low (asserted) at time zero
and high at time 100ns.
Mentor Graphics Interface/Tutorial Guide 12-15

Mentor Graphics Interface/Tutorial Guide
Figure 12-7 Forcing Globalresetb (XC3000 only)

Asserting Global Set Reset (XC4000 Family Only)
Note: This section applies only to XC4000 family designs. If your
design is targeted toward a device from any other family, go to the
“Design Description” section.

The Global Set Reset signal must be forced at the beginning of all
XC4000 family simulations. It is an active-High signal that sets or
resets all flip-flops in the chip. Whether a flip-flop is set or reset
depends on whether it is an FDR or an FDS flip-flop, or on the value
of the flip-flop’s INIT attribute. The default configuration for all flip-
flops is to function as a reset flip-flop.

Unlike the XC3000 family devices, the globalsetreset signal is not
hard-wired to a package pin, and need not appear on one at all. If you
want access to the Global Set Reset net from an external pin, place the
STARTUP component in your schematic and attach an IPAD and
IBUF to the GSR pin. This pad becomes an active-High Global Set
Reset signal. You can also use an internally generated signal to drive
the GSR pin of the STARTUP component. There is also an active-High
Global Three State signal (GTS) that you can access in the same way.
See the XACT Libraries Guide for more information on the STARTUP
symbol.
12-16 Xilinx Development System

QuickSim Tutorial
Globalsetreset is the name of the net in simulation. It is part of the
simulation models, and must be toggled at the beginning of every
simulation. If you do not pulse globalsetreset high, all flip-flop
outputs are unknown at all times during your simulation. Set it high
at time 0 and low at 100 ns as follows:

1. With the Trace window selected, press the blue Unselect All
button in the Palette with the left mouse button.

2. Select the Add Force icon in the Palette with the left mouse
button. A dialog box appears.

3. Since a signal is not selected, the Signal name field is empty. Fill in
the dialog box as shown in the following figure. The globalsetreset
signal is entered with two leading forward slashes because it is a
global signal. The signal is to be forced high (asserted) at time zero
and low at 100ns.

Figure 12-8 Forcing Globalsetreset (XC4000)

Design Description
The Calc design is a simple four-bit processor with a stack. The
CONTROL module interprets the switch input and drives the control
lines of the ALU and STACK components. The ALU performs
Mentor Graphics Interface/Tutorial Guide 12-17

Mentor Graphics Interface/Tutorial Guide
functions between an internal register and either the top of the stack
or data read in from the external switches. Outputs include ALU(3:0),
the current contents of the internal register, and STACK(3:0), the top
value in the stack.

For a more detailed description of the Calc design, see the “Design
Architect Tutorial” chapter. Additional information, including a table
of opcodes, appears in the “Testing the Design” section of the same
chapter.

Simulating the Circuit
You are now ready to force the inputs to known values and simulate.

1. Press the blue Unselect All button in the Palette.

2. Select the Add Force button in the Palette with the left mouse
button.

3. Fill in the dialog box as shown in the figure below.

All numbers entered are interpreted as hex. This sets opcode
(SW(6:0)) to perform the following actions:

00: ADD 0h to register value (should produce a zero).
61: LOAD register with 1h.
0D: ADD Dh to register value (1 + D should produce F).
7B: PUSH register value to stack (top of stack=F).
50: CLEAR register value.
12-18 Xilinx Development System

QuickSim Tutorial
Figure 12-9 Forcing Values to SW(6:0)

For these commands to be executed, you must provide stimulus to
SW(7), the execute switch. Perform the following actions to force
SW(7) correctly:

1. Press the blue Unselect All button in the Palette.

2. Select the SW(7) signal from the Trace window. It may be
necessary to use the PageDown key to scroll through the list of
signals in the Trace window.

3. Select the red WF EDITOR button from the top of the Palette. The
icons in the Palette change.

4. Select the icon labeled EDIT WAVEFORM. A new trace appears
labeled forces@@/SW(7) . While the SW7 trace represents the
value of SW7 up to the present time in simulation, the trace
forces@@/SW(7) represents all values that will ever be forced
on the signal. During simulation, this waveform can be edited to
modify future values of SW(7).
Mentor Graphics Interface/Tutorial Guide 12-19

Mentor Graphics Interface/Tutorial Guide
A blue line appears extending from SW(7) to indicate that it has not
been given a value. First, force SW(7) to a known value at time zero as
follows:

1. Select the CHANGE VALUE icon in the Palette.

2. Move the cursor into the Trace window. A red vertical line
appears under the cursor. The numbers in the grey box reflect the
value and time that are pointed to as the cursor is moved.

3. Move the cursor close to the beginning of forces@@/SW(7) , as
shown in the figure below, and then press the left mouse button.
This indicates that you want to change the value from the nearest
left edge (in this case, time zero is considered an edge) to the next
right edge. Since the signal makes no transitions, you can assign
the same value to the entire length of the signal.

4. Type a ‘1’ in the value field of the small dialog box and choose OK.
This indicates that you want to change the signal value between
the two nearest edges to a one. The entire length of the signal
changes color from dark blue to light blue, and the line moves up,
indicating it will be driven to a one.
12-20 Xilinx Development System

QuickSim Tutorial
Figure 12-10 Forcing SW(7) to Initial Value

5. Press the Escape key to end the Change Value operation.

Now that SW(7) has been given an initial value, you must define
when transitions occur on the signal as follows:

1. Select the ADD TOGGLE icon from the Palette.

2. Move the cursor to the trace window. A red vertical line appears
with numbers indicating the value and time of the signal at the
position beneath the cursor.

3. Move the cursor to the forces@@/SW(7) signal at time 700ns
and press the mouse button, as shown in the figure below. A high
to low transition is added to the force waveform at time 700ns.
Mentor Graphics Interface/Tutorial Guide 12-21

Mentor Graphics Interface/Tutorial Guide
Figure 12-11 Adding the First Toggle to SW(7)

Note: It is sometimes difficult to position the cursor at exactly the
right value if you are zoomed in too close. If you zoom out, the
numbers get rounded to the nearest 1.0 ns, making it easy to place the
edges correctly. Use the stroke 753 to zoom out. If you still cannot
place the edges exactly, err to the left of the desired location. If you
make a mistake, select the CUT EDGE icon in the Palette and click the
left mouse button on the incorrectly placed edge. The edge
disappears. Then, select ADD TOGGLE to continue adding edges.

4. Without moving the cursor, use the right arrow key to scroll the
window forward in time. Each press of the right arrow key
advances the window (and, consequently, the position under the
cursor) by 50 ns. Add toggles at times 900, 1200, 1400, 1800, 2000,
2300, 2500, 2800, and 3000 ns. The waveform then appears as in
the figure below. Press Shift-F8 to view the entire waveform.

5. Press Escape to end the ADD TOGGLE command
12-22 Xilinx Development System

QuickSim Tutorial
Figure 12-12 SW(7) Force Waveform

Now that your inputs and clock have been defined, you are ready to
run the simulation.

Type run 3400 at any location in the QuickSim window, then press
return. A window automatically appears containing the text. The
results should look similar to those in the following figure.

Note: XC4000 users will see unknown values on the STACK(3:0)
output for parts of the simulation. Since the XC4000 stack is
implemented using RAM, not flip-flops, it can only be initialized by
writing to it. Globalsetreset does not initialize RAM.
Mentor Graphics Interface/Tutorial Guide 12-23

Mentor Graphics Interface/Tutorial Guide
Figure 12-13 Output from Simulation (XC3000A design)

Saving the Results
If you were to exit QuickSim now, you would lose your waveform
data. You can save the waveform information in a waveform
database. To view the waveforms at a later time, you can use the
File ➝ Load ➝ Waveform DB command found in the menu bar.

1. Select the red STIMULUS button from the palette.

2. Select the SAVE WDB icon from the Palette. A dialog box appears.

3. Fill in the dialog box as shown in the following figure. This saves
your results to the WaveForm Database, simrun1. This database is
created in the directory specified by the $MGC_WD environment
variable.

4. Press return or select OK.
12-24 Xilinx Development System

QuickSim Tutorial
Figure 12-14 Saving Results

After saving the results, reset the simulator to time zero as follows:

1. Press the blue reset button in the palette. A dialog box appears.

2. Select the State button so that it highlights. Deselect any
highlighted buttons. This forces the simulator to reset without
saving.

3. Press return or choose OK. The trace window results disappear,
while the forces waveform remains.

It may be useful to save the stimulus so that it can be run again. To do
this perform the following steps:

1. Press the red STIMULUS button in the palette.

2. Select the SAVE WDB icon from the palette. A dialog box appears.

3. Fill in the dialog box as shown in the figure below. This saves the
stimulus to the file, forces1. As with simrun1, this file is created in
the directory specified by $MGC_WD.
Mentor Graphics Interface/Tutorial Guide 12-25

Mentor Graphics Interface/Tutorial Guide
4. Press return or choose OK to save the forces.

Figure 12-15 Saving Forces

Using the Transcript
In addition to saving the results and forces, you can also save the
actual transcript for the QuickSim session. Every mouse click and key
press is recorded. This is sometimes useful for making macros to
perform complicated, repetitive tasks. The saved transcript can then
be replayed using the MGC ➝ Transcript ➝ Replay command
found in the menu bar. Save the transcript as follows:

1. Select the MGC➝ Transcript ➝ Show Transcript
command from the menu bar. A text window appears. In this text
window are AMPLE commands. AMPLE is a C-like programming
language used by all of the Mentor Graphics tools.

2. Select Right Mouse Button ➝ Export . A dialog box appears.

3. Type the file name ‘transcript.out’ in the text field of the dialog
box. This saves the transcript to that file.

It is usually necessary to edit the transcript to make it useful. For
12-26 Xilinx Development System

QuickSim Tutorial
example, if this transcript were re-run on the Calc design, it would
setup the simulation, run, save the results, reset the simulator, and
open a transcript window. Perhaps all you want it to do is setup
and run the simulation. You would then have to delete the other
commands from the transcript file before re-running it. For
example, the $show_transcript(); command at the end of the
transcript file could be deleted to keep the transcript window
from appearing. You would probably also want to delete the
$set_active_window(“Transcript”); command as well if you did
this. For more information on AMPLE, refer to Mentor Graphics
documentation.

4. Select File ➝Quit to exit QuickSim.

Performing a Timing Simulation with PLD_TIMSIM8
The simulation flow previously described in this tutorial is for
functional simulation. Timing simulation uses the block and routing
delay information from the routed design to give a more accurate
assessment of the behavior of the circuit under worst-case conditions.
In this section, you perform a timing simulation of the Calc design by
preparing the design using PLD_TIMSIM8.

The timing flow using PLD_TIMSIM8, as described in this section,
works for simulating designs created with the Xilinx Unified
Libraries or with the V1.10 libraries. The Calc design is composed of
only standard library components, so the original schematic can be
used for timing simulation. This timing flow is not applicable to
designs with X-BLOX symbols, Xilinx ABEL symbols, MemGen
symbols, or symbols that reference an XNF file. For more information
on simulating these designs, see the applicable tutorial chapter.

Using PLD_TIMSIM8 to Prepare for Timing
Simulation

PLD_TIMSIM8 reads a routed LCA file and back-annotates the
delays to the schematic. This includes a number of steps, all of which
are automatically run by the TIMSIM8 script. This script is
represented by the PLD_TIMSIM8 icon in PLD_DMGR. The files
necessary for back-annotation have either been created in the Design
Architect tutorial or are included in the solutions directories.
Mentor Graphics Interface/Tutorial Guide 12-27

Mentor Graphics Interface/Tutorial Guide
Use PLD_TIMSIM8 to prepare the design for timing simulation as
follows:

1. In PLD_DMGR, use the navigator to find and select the Calc
design that you are using.

2. Select Right Mouse Button ➝ Open ➝ PLD_TIMSIM8 . A
dialog box appears.

3. In the dialog box, select Use Original radio button.

4. Select Yes for Verbose Output? .

5. If Yes were selected for the Run Quicksim? option, QuickSim
would automatically be run on the design after it was prepared for
timing simulation. In this case, you want to stop and analyze the
timsim8.log file, so select No.

6. Press return or select OK to execute the command. The script
produces a shell and runs in it.

Examining the timsim8.log File
Examine the timsim8.log file as follows:

1. In PLD_DMGR, select Right Mouse Button ➝ Update
Window. The window is updated with the files that TIMSIM8
generated.

2. Find the timsim8.log file and select it with the left mouse button.

3. Choose Right Mouse Button ➝ Open ➝ Editor to open
the file in the editor. No errors or warnings should be reported.
For a short summary of the commands executed by TIMSIM8
during the timing flow, see the ”Timing Simulation Command
Summary” at the end of this chapter. The timing flow is always
the same since the starting point is always a routed LCA file with
delays.

4. When you have finished looking at the file, close the editor
window.

Simulating with a Command File in QuickSim
1. Double-click on the QuickSim II icon in the tools window. A

dialog box appears.
12-28 Xilinx Development System

QuickSim Tutorial
2. Type the appropriate Component name in the field labeled Design
pathname. For example, use $xilinx_tutorial/calc_3ka/calc for the
3ka calc design.

3. Select the Constraint option for Timing mode.

4. Select the Visible option for Detail of ‘Constraint’ timing mode.
A new set of buttons appears in the dialog box.

5. Select Typ for Timing mode. This specifies the use of the back-
annotated timing information.

6. Select Messages for Constraint mode.

7. Leave the rest of the buttons set at their defaults, and press return
to start QuickSim. For more information on these other options,
refer to the Mentor Graphics documentation on QuickSim. For
most Xilinx simulations, the above setup is appropriate.

8. Resize the QuickSim window so that it is as large as the entire
screen.

9. At any location in the QuickSim window, type “dofile calc_3k.do”
for 3k or 3ka designs, and “dofile calc_4k.do” for 4k or 4ka
designs. This replays a transcript file similar to the one created
earlier. This transcript file opens the design; opens Trace and
Monitor windows with the correct signals; assigns stimulus to the
signals; and then runs the simulation. It should be obvious when
you look at the trace output that real delay values are being used.
It may be useful to view the transcript file using the editor in
PLD_DMGR or another editor.

Timing Simulation Command Summary
Although this tutorial uses PLD_FNCSIM8 and PLD_TIMSIM8 to
process the Calc design, you do not have to use these scripts,
although it is recommended. You can run any of the following
programs from the system prompt. The commands are listed below
as you would type them at the system prompt or in a script.

To run Men2XNF8 from the system prompt or a batch file, use:

men2xnf8 calc -p parttype

To run FNCSIM8 from the system prompt or a batch file, type:

fncsim8 calc -o
Mentor Graphics Interface/Tutorial Guide 12-29

Mentor Graphics Interface/Tutorial Guide
The -o option specifies to use the original schematic, as opposed to
generating a new, flat schematic using the -g option.

To create a timing simulation netlist with TIMSIM8, after
implementing the design using PLD_XMake, type:

timsim8 calc -o

To run the individual programs to create a timing simulation netlist
from a routed design, type:

lca2xnf -g calc calc_timaka
Translate LCA file to XNF netlist

unakaxnf calc_timaka
Remove aliases, only run if .aka file
exists (XC3000 only)

mv calc_timaka.xnf calc_tim.xnf Rename file
xnfba calc.xff calc_tim.xnf -m

Restore original net names to XNF file
and produce Mentor Graphics
simulation .mbafile

pld_dve_ba calc_tim.mba
Annotate delay values to design

For more information on the Xilinx programs referenced in this
tutorial, refer to the XACT Reference Guide or the Mentor Graphics
Version 8 Interface User Guide.

For simulation command summaries for designs with X-BLOX or
Xilinx ABEL modules, see the appropriate section in the applicable
tutorial chapter in this manual.
12-30 Xilinx Development System

X-BLOX TutorialMentor
Graphics
Interface/
Tutorial
Guide
Mentor Graphics Interface/Tutorial Guide — 0401408 01 Printed in U.S.A.

Mentor Graphics Interface/Tutorial Guide
Xilinx Development System

Chapter 13

X-BLOX Tutorial

Introduction
The X-BLOX library contains module generators that describe a
system using high-level functions instead of gate primitives. The X-
BLOX synthesis tool processes these modules. Using X-BLOX you
can reduce design entry time as well as create fast and efficient
designs. The X-BLOX library can be used with XC3000A, XC3000L,
XC3100A, and XC4000 FPGA designs.

This chapter provides a step-by-step example using X-BLOX in the
Mentor Graphics design environment. It is not intended to provide a
complete description of X-BLOX functionality. Please refer to the
“Further Reading” section at the end of this tutorial for advice on
where to go for more information.

Before Beginning the Tutorial
This tutorial assumes you are familiar with the Design Architect and
QuickSim tutorial chapters. It is especially important that the
MGC_LOCATION_MAP variable is set as described in the Design
Architect or QuickSim tutorial chapters. If you are not familiar with
these chapters, review them before continuing.

Required Software
The following versions of the development software are required to
perform this tutorial:

● Mentor Graphics Version 8.2_5 or later

● Xilinx/Mentor Graphics Interface DS344 Version 5 or later
Mentor Graphics Interface/Tutorial Guide — 0401408 01 13-1

Mentor Graphics Interface/Tutorial Guide
● XACT Design Manager (XDM) Version 5 or later

● X-BLOX DS380 Version 5 or later

Preparing the Design
You must have a completed Calc design to perform this tutorial. You
can obtain this design by completing the Design Architect tutorial or
by copying it from one of the tutorial solution directories. The tutorial
files are optionally installed when you install the DS344 interface
software. The tutorial directory contains the tutorial files. It is
recommended that you copy the appropriate tutorial directory in its
entirety from the original installation area to another area. Completed
Calc designs are in the following directories:

● calc_3ka — solution files for XC3020APC68

● calc_4k — solution files for XC4003PC84 and XC4003APC84

Alternatively, if you completed the Design Architect tutorial, use the
design you created if it is targeted for an XC4000 family or an
XC3000A part.

Note: Do not use the calc_3k design since X-BLOX cannot be used to
create XC3000 designs.

To copy a completed Calc design from a solution directory, perform
the following steps:

1. Check for a tutorial/mentor directory under your DS344 directory.
If necessary, install the tutorial files.

2. In the DS344_install_path/tutorial/mentor directory are two
solutions directories, calc_3ka and calc_4k. Copy one of these
directories using the copy command in PLD_DMGR. You must
use PLD_DMGR to make a working copy of the tutorial.

Modifying the Calc Design
In this tutorial, you replace the ALU block in the Calc design with an
ALU block created with X-BLOX. Because the ALU block performs
many bus-oriented arithmetic logic functions it is suited for
replacement with an X-BLOX module. The replacement block is
called ALU_BLOX. ALU_BLOX is functionally equivalent to ALU,
except that ALU_BLOX is implemented using X-BLOX components.
13-2 Xilinx Development System

X-BLOX Tutorial
Adding X-BLOX Module to Calc
Replace the existing ALU block with the X-BLOX version as follows:

1. Start PLD_DMGR in the tutorial working directory, either
calc_3ka, calc_4k, or calc_da.

Note: Make sure $MGC_WD is set to the working directory.

2. Open the top-level Calc schematic sheet in Design Architect.

3. Select only the ALU instance on the Calc schematic.

4. Select Right Mouse Button ➝ Replace ➝ Other. A
dialog box appears.

5. Select the alu _blox design component from the dialog box
navigator or type the component name in the text field. Press the
return key.

6. The original ALU instance is replaced with ALU_BLOX. The
name at the top of the symbol should now be ALU_BLOX.

Viewing the ALU_BLOX Schematic
View the ALU_BLOX schematic by pushing into the ALU_BLOX
symbol as follows:

1. Select only the ALU_BLOX symbol on the Calc schematic.

2. Select File ➝ Open Down from the menu bar and then open
the schematic under the ALU_BLOX symbol. The schematic for
ALU_BLOX appears similar to the one in the following figure. The
DATA_REG module shown in the schematic is added in
subsequent steps.
Mentor Graphics Interface/Tutorial Guide 13-3

Mentor Graphics Interface/Tutorial Guide
Figure 13-1 Completed ALU_BLOX Schematic
13-4 Xilinx Development System

X-BLOX Tutorial
Completing the ALU_BLOX Schematic
Complete the ALU_BLOX using the schematic shown in the figure
above and the following steps as a guide.

Note: The names of symbols and buses that you will add have been
enlarged in the figure.

1. Open the X-BLOX Unified library, using the menu bar
Libraries ➝ XACT LIB option and the palette.

2. Find and select the DATA_REG library part from the X-BLOX
library.

3. Place the DATA_REG symbol in the open area in the lower right-
hand corner of the sheet, as shown in the figure above.

4. Connect and label the buses, MUX and Q_BLX, as shown in the
ALU_BLOX schematic.

5. Connect and label the nets, RST, CE, and CLK, as shown in the
ALU_BLOX schematic.

6. Select the BUS_IF04 component from the X-BLOX library.

7. Place the BUS_IF04 symbol to the right of DATA_REG as shown
in the ALU_BLOX schematic.

8. Attach the bus Q_BLX to the end of the BUS_IF04 symbol labeled
“X”.

9. Place a BUS_DEF symbol from the X-BLOX library above and
between the DATA_REG and BUS_IF04 as shown in the
ALU_BLOX schematic.

10. Attach the Q_BLX bus to the BUS_DEF.

11. Attach a bus to the BUS_IF04 pin B(3:0) and label it Q(3:0).

Understanding X-BLOX Buses
The bus pin output of the DATA_REG symbol has the name “Q”. In
most cases, bus pins have names with an index, such as “Q(7:0)”, to
specify the width of the bus pin. However, X-BLOX symbols are
unique in that they do not have pre-defined bus widths. The same
symbols are used, regardless of the size of the attached bus. Because
of this difference, you must use a special interface to connect a non-
Mentor Graphics Interface/Tutorial Guide 13-5

Mentor Graphics Interface/Tutorial Guide
indexed X-BLOX bus to a standard indexed bus. The BUS_IF symbols
are used to interface an X-BLOX bus with a standard bus.

The bus interface used depends on the width of the bus that is
interfaced. For example, in the ALU_BLOX schematic, the Design
Architect bus STACK(3:0) is four bits wide and is interfaced to an X-
BLOX bus with a BUS_IF04. CTL(1:0), a two bit bus, is interfaced with
a BUS_IF02. You should connect only X-BLOX buses to X-BLOX
symbol bus pins. You do not need an interface for individual nets that
connect to X-BLOX symbols; for example, CTL2 and CTL3 on the two
MUXBUS2 symbols.

Using BUS_DEF Symbols to Define Bus Widths
Attached to two buses in the schematic are BUS_DEFs, or bus
definition symbols. By adding attributes to these symbols, you can
define the properties of the entire data path attached to the BUS_DEF.
Because you can define the properties of the entire data path and not
just the properties of the bus directly connected to the BUS_DEF, the
ALU_BLOX schematic requires only two BUS_DEF symbols. One
BUS_DEF is needed for the four-bit data path through the ALU and
another BUS_DEF is needed for the two-bit control signal path.

Use the BOUNDS attribute on a BUS_DEF symbol to define the width
of the bus attached to the BUS_DEF. In the ALU_BLOX schematic, the
BOUNDS value is 3:0 to indicate that the data path is four bits wide.

Use the ENCODING attribute to specify the type of data propagated
on the data path. The possible choices are UBIN (unsigned binary),
BIT (unsigned binary), TWO_COMP (two’s complement), or
ONE_HOT (one-of-n). The type of ENCODING chosen can affect the
functionality of every symbol on the data path. For example, the
ADD_SUB block in the schematic is implemented as an unsigned
binary adder/subtractor. If you specified TWO_COMP, the block
would have been implemented as a two’s complement adder/
subtractor.

Only certain ENCODING types are valid on a given data path. For
example, you would not give the ADD_SUB data path a ONE_HOT
encoding. However, you could use ONE_HOT encoding on the
control path for the multiplexer. If the control lines that need to be
attached to the mux are ONE_HOT, it would be necessary to define
13-6 Xilinx Development System

X-BLOX Tutorial
the ENCODING accordingly. In that case, choice of ENCODING
completely alters the implementation of the mux.

Completing the Bus Definition
The definition of the ALU data path has not been specified. Add the
following properties to the BUS_DEF symbol attached to the Q_BLX
bus at the bottom of the ALU_BLOX sheet.

1. Select the BUS_DEF connected to the Q_BLX bus.

2. Select Properties ➝ Modify. A dialog box appears
containing a list of the properties attached to the symbol. Since the
bounds and encoding properties must always be defined on a
BUS_DEF, these two properties already exist on the symbol, but
have undefined values.

3. Use the left mouse button to select bounds from the list of
properties. Select OK. A new dialog box appears.

4. In the value field of the new dialog box, type 3:0 to give a value
to the bounds property, as shown in the following figure.

5. Select OK to execute the command.

6. Repeat the necessary steps to assign the value, UBIN, to the
ENCODING property.

7. Check and save the ALU_BLOX schematic.
Mentor Graphics Interface/Tutorial Guide 13-7

Mentor Graphics Interface/Tutorial Guide
Figure 13-2 Modify Property Dialog Box

X-BLOX Symbols
The X-BLOX library contains elements that simplify designs by
providing bus-oriented versions of logic, register, and multiplexing
functions. You can place different attributes on X-BLOX symbols to
customize them for specific applications. Also, X-BLOX implements
macros differently depending on which pins are used on the symbol.
This flexibility allows you to implement a wide range of different
functions using the small set of parts in the X-BLOX library.

The following are examples of how attribute and pin usage affect the
implementation of the X-BLOX macros in ALU_BLOX:

● DATA_REG

The DATA_REG in this design has two attributes that can be set to
alter its implementation, SYNC_VAL and ASYNC_VAL. These
attributes are used to define the value that is loaded in the data
register when it is synchronously or asynchronously reset. In this
example, the data register should be reset to zero in either case, so
13-8 Xilinx Development System

X-BLOX Tutorial
both values are undefined, and default to zero. The SYNC_CTRL
pin is connected, specifying a synchronous reset register.

● ADD_SUB

The implementation of this ADD_SUB is affected by the definition
of its data path and the pins connected to it. Since the data path is
unsigned binary, the adder is implemented as an unsigned adder.
The C_IN pin is not connected, and will default to the proper
values for adding and subtracting. Since the ADD_SUB pin is
connected, the ADD_SUB is implemented as an adder/subtractor.

● ANDBUS, ORBUS, MUXBUSx,...

The implementation of the other X-BLOX symbols is similar to the
original ALU design.The MUXBUSx symbols are affected by the
ENCODING value of their attached buses.

The bused logic symbols, such as ANDBUS and ORBUS, have a
useful attribute, INVMASK, that affects their implementation. By
changing INVMASK, you can invert the inputs to the symbol. For
example, to invert input bit zero on the upper bus connection to
the ANDBUS, select the ANDBUS and set the value for the
INVMASK attribute to 2#0001#. The “1” in the string indicates the
inversion of bit zero and the “2” indicates that the INVMASK
value is specified in binary, with the total number of bits on the
bus equal to four. All the INVMASKs in ALU_BLOX are
undefined and default to a value of zero, indicating no bit
inversions.

To illustrate another special characteristic of X-BLOX symbols,
perform the following steps:

1. Select the DATA_REG instance on the ALU_BLOX schematic.

2. Attempt to open its underlying schematic using File ➝ Open
Down from the menu bar. A dialog box appears. Since X-BLOX
macros do not have underlying schematic sheets, a schematic
sheet does not appear in the dialog box. Select CANCEL.

Because X-BLOX macros adapt to any bus width and implement
differently depending on data path encoding and pin usage, a single
schematic cannot be used to represent the functionality of an X-BLOX
macro. The schematic underneath the X-BLOX macros are created by
the X-BLOX synthesis program, which is run by PLD_XMake and
PLD_FNCSIM8. When you create a design using X-BLOX symbols,
Mentor Graphics Interface/Tutorial Guide 13-9

Mentor Graphics Interface/Tutorial Guide
the information necessary for functional simulation does not exist.
You must prepare the design for functional simulation as described in
the next section.

Functional Simulation
A special set of programs allow you to easily simulate designs
containing X-BLOX components. The execution of these programs
has been encapsulated in the FNCSIM8 script. This script can be run
using the PLD_FNCSIM8 icon in the Mentor Graphics Design
Manager.

Note: For detailed information on FNCSIM8, please refer to the
“Functional Simulation Preparation” chapter and the “QuickSim
Tutorial” chapter.

To prepare an X-BLOX design for functional simulation you must run
PLD_FNCSIM8. X-BLOX symbols are part of a set of objects that are
referred to as non-schematic elements. This means that the
functionality of the macro is not originally defined on the schematic,
but is inserted in a later step. Because of this, some pre-processing of
the schematic must be done to create the description of this missing
functionality. PLD_FNCSIM8 runs the X-BLOX program, which reads
X-BLOX macros and synthesizes the appropriate logic for them.

Once the functionality of the entire design has been described, the
schematic itself must be modified. Recall that none of the X-BLOX
buses or bus pins had defined bus widths on the original schematic.
After the logic for the X-BLOX symbols is synthesized, these bus
widths are available. PLD_FNCSIM8 runs a program called XBLXGS
that redraws a new schematic. This new schematic is identical to the
original schematic, except all of the buses and bus pins with
unspecified widths are replaced by ones with specified widths. In
addition, schematics are inserted underneath these modified
symbols, so that the entire functionality of the design is then
described on the schematic.

This new simulation-only schematic is placed in a directory called
simdir, underneath the project directory. The simdir directory
contains the modified design with the same name as the original. This
is the design that is used for functional simulation.
13-10 Xilinx Development System

X-BLOX Tutorial
Using PLD_Men2XNF8
Before you can functionally simulate your design, you must run
PLD_Men2XNF8 to generate an XNF netlist as follows:

1. Quit Design Architect and enter PLD_DMGR.

2. Select the Calc design in the navigator window.

3. Select Right Mouse Button ➝ Open ➝ pld_men2xnf8 . A
dialog appears.

4. Type the appropriate part type in the Part Type field, 3020APC68,
4003APC84, or 4003PC84.

5. In not already selected, select Use Original .

6. Select OK or press return.

7. After the script finishes running, dismiss the window it was run
in by pressing CTRL-C with the cursor in the window.

Men2XNF8 Log File

If errors occur, check the men2xnf8.log file for more information. A
complete version of ALU_BLOX named BLOXSOLN is included in
the solutions directories. If you cannot resolve the errors, replace
ALU_BLOX with BLOXSOLN on the Calc schematic and then check
and save. An example of a Men2XNF8 log file is shown in the
following figure. The file is described below.

pld_dve /tutor/calc_3ka/calc xc3000

rm -f /tutor/calc_3ka/calc.edif

rm -f enwrite.cfg

/idea8.2/bin/enwrite /tutor/calc_3ka/calc/xnf -wef /tutor/
calc_3ka/calc.edif -rcf enwrite.cfg

rm -f /tutor/calc_3ka/calc.flt

rm -f /tutor/calc_3ka/calc.clb

edif2xnf /tutor/calc_3ka/calc.edif -l /ds344/data/unified/
edif3000 -lcanet 5 -n -p 3020APC68 -f -od /tutor/calc_3ka -of
calc.xnf

Figure 13-3 Men2XNF8 Log File
Mentor Graphics Interface/Tutorial Guide 13-11

Mentor Graphics Interface/Tutorial Guide
1. pld_dve /tutor/calc_3ka/calc xc3000

PLD_DVE creates the XNF viewpoint for the design. The
viewpoint defines which symbols are written to the netlist. For
example, a two-input AND gate in the Calc design has a
simulation model underneath it. In this case, the AND gate and
not the underlying simulation model is written to the netlist.
Conversely, the hierarchical block SW7 is not written directly to
the netlist, but the symbols in the underlying schematic are
represented in the netlist.

2. rm -f /tutor/calc_3ka/calc.edif
rm -f enwrite.cfg
/idea8.2/bin/enwrite /tutor/calc_3ka/calc/xnf -wef /tutor/
calc_3ka/calc.edif -rcf enwrite.cfg

In these steps, any existing design .edif file or enwrite.cfg
configuration file is deleted to prepare for the generation of a new
EDIF file by ENWRITE. ENWRITE is a Mentor Graphics program
that produces an EDIF netlist from a Mentor Graphics design. It
reads the XNF viewpoint created by PLD_DVE and produces an
EDIF file that contains only Xilinx primitives.

3. rm -f /tutor/calc_3ka/calc.flt
.
.
rm -f /tutor/calc_3ka/calc.clb

PLD_Men2XNF8 creates a number of files that serve as flags to
other scripts. For example, if a design.clb file exists in the design
directory, this indicates the presence of XC3000 CLB primitives in
the netlist. Before continuing, PLD_Men2XNF8 initializes the
project directory by deleting any of these files that may be left in
the directory from a previous run.

4. edif2xnf /tutor/calc_3ka/calc.edif -l /ds344/data/unified/
edif3000 -lcanet 5 -n -p 3020APC68 -f -od /tutor/calc_3ka -of
calc.xnf

EDIF2XNF converts the EDIF file produced by ENWRITE to a
standard Xilinx Netlist (XNF) file. One XNF file is produced for
every block in the schematic.
13-12 Xilinx Development System

X-BLOX Tutorial
Using PLD_FNCSIM8
Next, run PLD_FNCSIM8 to generate a schematic for functional
simulation, using the information in the XNF file and the original
schematic.

1. Select the Calc design in the navigator window.

2. Select Right Mouse Button ➝ Open ➝ pld_fncsim8 . A
dialog appears.

3. If not already selected, select Use Original .

4. Select OK or press return.

The FNCSIM8 script creates a shell and executes within it. FNCSIM8
flattens the XNF file created by Men2XNF8 and then checks it for
errors. This netlist is then processed by the X-BLOX program. X-
BLOX produces netlists that represent the functionality of the X-
BLOX symbols in the design, and also creates a file that describes
how to redraw the simulation schematic. The XBLXGS program then
redraws the schematic using this information. The Gen_Sch8
program generates the simulation models for the X-BLOX symbols
on the schematic from the XNF netlists. As noted earlier, this new
schematic is placed in the simdir directory, underneath the project
directory. The entire process of running PLD_FNCSIM8 may take
several minutes.

FNCSIM8 Output

If FNCSIM8 returns errors, check the fncsim8.log, calc.prp, and
calc.blx files for details. A complete version of ALU_BLOX named
BLOXSOLN is included in the solutions directories. If you cannot
resolve the errors, replace ALU_BLOX with BLOXSOLN on the Calc
schematic and then check and save. The commands shown in the
following figure are included in the FNCSIM8 output window; the
entire output is not shown. The commands are described below.

Note: The complete output is not shown

xnfmerge /tutor/calc_3ka/calc.xnf /tutor/calc_3ka/calc.xff

xnfprep /tutor/calc_3ka/calc.xff /tutor/calc_3ka/calc.xtf

rm -r simdir

mkdir simdir
Mentor Graphics Interface/Tutorial Guide 13-13

Mentor Graphics Interface/Tutorial Guide
xblox /tutor/calc_3ka/calc.xtf simdir=simdir sim=xnf

xblxgs calc /tutor/calc_3ka/simdir/calc.xgs -w -d simdir

gen_sch8 simdir/bsm1.xnf -w -o simdir/bsm1

.

.

gen_sch8 simdir/bsm9.xnf -w -o simdir/bsm9

pld_dve_sim /tutor/calc_3ka/simdir/calc xc3000

Figure 13-4 FNCSIM8 Output

1. xnfmerge /tutor/calc_3ka/calc.xnf /tutor/calc_3ka/calc.xff

XNFMerge takes the numerous XNF files produced by EDIF2XNF
and merges them into one flattened netlist, which is given a .xff
extension.

2. xnfprep /tutor/calc_3ka/calc.xff /tutor/calc_3ka/calc.xtf

XNFPrep checks the flattened netlist for errors. Any errors are
reported in a file with the same name as the design with a .prp
extension. XNFPrep also trims unused logic from the netlist, and
writes a new netlist with a .xtf extension.

3. rm -r simdir

mkdir simdir

In order to keep the new simulation schematic separate from the
original design, it is generated in the new simdir directory. The
simulation design has the same name as the original schematic,
but is located in simdir.

4. xblox /tutor/calc_3ka/calc.xtf simdir=simdir sim=xnf

X-BLOX is run on the flattened and trimmed netlist produced by
XNFPrep. The X-BLOX program finds the X-BLOX symbols in the
netlist, generates appropriate logic for them, and writes netlists
describing this functionality to the simdir directory. It also
produces a file with a .xgs extension that contains information
describing how the simulation schematic should be drawn.

5. xblxgs calc /tutor/calc_3ka/simdir/calc.xgs -w -d simdir

XBLXGS reads the .xgs file and the original schematic and
13-14 Xilinx Development System

X-BLOX Tutorial
produces a new top-level schematic in the simdir directory. In this
schematic, all X-BLOX buses and bus pins are given indexed
names.

6. gen_sch8 simdir/bsm1.xnf -w -o simdir/bsm1
.
.
gen_sch8 simdir/bsm9.xnf -w -o simdir/bsm9

The simulation schematic is completed by running Gen_Sch8 on
the netlists produced by X-BLOX. This program creates
simulation schematics for the X-BLOX symbols.

7. pld_dve_sim /tutor/calc_3ka/simdir/calc xc3000

Finally, PLD_DVE_SIM is run to generate a simulation viewpoint
for the new simulation schematic.

Viewing the Simulation Schematic

After FNCSIM8 is done, view the simulation schematic in Design
Architect as follows:

1. In Design Manager, double-click on the simdir directory.

2. Select the Calc component in the simdir directory and open it in
PLD_DA. To differentiate the simulation schematic from the
original, all of the nets are green, otherwise, the schematic is
identical to the original.

3. Open the schematic underneath the ALU_BLOX component. The
following figure appears:
Mentor Graphics Interface/Tutorial Guide 13-15

Mentor Graphics Interface/Tutorial Guide
Figure 13-5 (Top) DATA_REG from Original ALU_BLOX
(Bottom) DATA_REG from Simulation ALU_BLOX

The X-BLOX symbols are replaced with their simulation equivalents.
Note that the X-BLOX buses and bus pins have specific widths. Also,
note the difference between the DATA_REG in the original
ALU_BLOX in the Calc schematic and the one in ALU_BLOX from
the simdir/calc schematic. The D_IN pin is now D_IN[3:0], and the
OUT pin is OUT[7:0].
13-16 Xilinx Development System

X-BLOX Tutorial
Note: You might have some difficulty noting this difference because
the pin names overlap on the symbols when they are given indices.

If the X-BLOX symbols are not modified, be sure you have opened
the Calc simulation schematic in the simdir directory and not the
original Calc schematic. Inspect the fncsim8.log, men2xnf8.log,
calc.prp, and calc.blx files for errors. Correct any errors and run
FNCSIM8 again. Make sure that all attributes, nets, and buses you
added to ALU_BLOX are spelled correctly. If you cannot resolve the
problem, replace ALU_BLOX with BLOXSOLN.

Using QuickSim II

Open the simulation schematic in QuickSim as follows:

1. Close the Design Architect window.

2. In the Design Manager, open the simdir/calc design in QuickSim.

3. Resize the QuickSim window to cover the entire screen.

4. Execute either the calc_3k.do or calc_4k.do simulation command
file, depending on whether you are working with an XC3000 or an
XC4000 design, by typing dofile and one of the following path
names:

Note: You must type the full path name since the simulation
command file is not in the simdir directory.

● $xilinx_tutorial/calc_da/calc_3k.do or calc_4k.do

● $xilinx_tutorial/calc_3ka/calc_3k.do

● $xilinx_tutorial/calc_4k/calc_4k.do

The command file creates trace, list, and schematic windows; forces
the inputs to values similar to those simulated in the QuickSim
tutorial; and then runs the simulation for 3400 ns.

Note: The command file was created assuming a nineteen inch
monitor. You may need to move or resize the windows, depending on
the size of your monitor.

The output of the simulation should match the output from the
functional simulation of the original Calc design without X-BLOX
symbols. Refer to the “QuickSim Tutorial” chapter for more detailed
information on the results of this simulation.
Mentor Graphics Interface/Tutorial Guide 13-17

Mentor Graphics Interface/Tutorial Guide
Implementing the Calc Design
Implementing designs that contain X-BLOX components is
superficially identical to the translation of other designs. PLD_XMake
can be used to generate files for timing simulation or bitstream for
programming actual devices just as it is for non-X-BLOX designs. In
the process XMake runs the X-BLOX program, which synthesizes the
X-BLOX macros into standard logic gates.

For more information on PLD_XMake and the translation process,
refer to the “Design Implementation” and the “Design Architect
Tutorial” chapters as well as the XACT Reference Guide.

The design has not been modified since the last time we ran
PLD_Men2XNF8, it is not necessary to run it again here.

Now, run PLD_XMake to generate files for use in timing simulation
and device programming.

1. Quit QuickSim without saving and enter PLD_DMGR.

2. Select the Calc icon with the label XNF on top of it in the navigator
window.

3. Select Right Mouse Button ➝ Open ➝ pld_xmake . A
dialog box appears.

4. Keep the default settings and select Done.

PLD_XMake Output Window
The following output appears in the window created by
PLD_XMake:

XMAKE: Generating makefile 'calc.mak'...
.
.

XMAKE: Making 'calc.bit'...

XMAKE: Execute command 'xnfmerge -D xnf -P 3020APC68-6
calc.xnf calc.xff'.

XMAKE: Execute command 'xnfprep calc.xff calc.xtg
parttype=3020APC68-7'.

XMAKE: Execute command 'xblox calc.xtg calc.xg
parttype=3020APC68-7'.

XMAKE: Execute command 'xnfprep calc.xg calc.xtf
13-18 Xilinx Development System

X-BLOX Tutorial
parttype=3020APC68-7'.

XMAKE: Execute command 'xnfmap -P 3020APC68-7 calc.xtf
calc.map'.

XMAKE: Execute command 'ppr calc.map cstfile=calc_3ka.cst
parttype=3020APC68-7'.

XMAKE: Execute command ‘xdelay -D -W calc.lca’

XMAKE: Execute command 'makebits -R2 -S0 calc.lca'

XMAKE: 'calc.bit' has been made. Check output in 'calc.out'.

Figure 13-6 PLD_XMake Output Window

The following is a description of the steps in the output window of
PLD_XMake:

1. XMAKE: Generating makefile 'calc.mak'...

The PLD_XMake icon runs the XMake program. This is a core
Xilinx program that processes XNF netlists to produce a placed
and routed design. XMake always creates a makefile, in this case
calc.mak, that allows you to stop the processing of a design at any
point, and then continue processing later from the same point.
This is accomplished by using the .mak file as input to XMake.
Additionally, since this file contains a transcript of the programs
run by XMake, it is useful as a starting point for the creation of
customized processing scripts.

2. XMAKE: Execute command 'xnfmerge -D xnf -P 3020APC68-7
calc.xnf calc.xff'.

XMAKE: Execute command 'xnfprep calc.xff calc.xtg
parttype=3020APC68-7'.

As in the functional simulation flow, XNFMerge combines the
hierarchical XNF netlists created by EDIF2XNF into one large,
flattened netlist, calc.xff. This netlist is then input to XNFPrep,
which validates the contents of the file and performs logic
trimming and optimization.

3. XMAKE: Execute command 'xblox calc.xtg calc.xg
parttype=3020APC68-7'.

Unlike the functional simulation flow, X-BLOX is run this time
without the sim=xnf option. Since you are implementing the
Mentor Graphics Interface/Tutorial Guide 13-19

Mentor Graphics Interface/Tutorial Guide
design, not simulating it, X-BLOX does not need to generate
simulation models for every X-BLOX component in the design.
Instead, it generates a single file, replacing the X-BLOX symbols in
the netlist with synthesized logic.

4. XMAKE: Execute command 'xnfprep calc.xg calc.xtf
parttype=3020APC68-7'.

The new netlist produced by X-BLOX is again verified by
XNFPrep, to ensure that no errors were introduced by X-BLOX.

5. XMAKE: Execute command 'xnfmap -P 3020APC68-7 calc.xtf
calc.map'.

For XC3000/XC3000A designs, XNFMap maps the logic to CLBs.

6. XMAKE: Execute command 'ppr calc.map cstfile=calc_3ka.cst
parttype=3020APC68-7'.

For XC3000A and all XC4000 family designs, PPR is run to place
and route the design. PPR also performs the mapping step on
XC4000 family designs. PPR reads the pin location constraints file
specified by xdm.pro. In XC3000 designs, the APR program
performs this step. The result of this step is the calc.lca file, which
contains the place and route information.

7. XMAKE: Execute command ‘xdelay -D -W calc.lca’

The XDelay program writes timing information to the calc.lca file,
so that the timing information can then be back-annotated into
simulation.

8. XMAKE: Execute command 'makebits -R2 -S0 calc.lca'
XMAKE: 'calc.bit' has been made. Check output in 'calc.out'.

MakeBits is run on calc.lca to produce a file you can use to
program a device.This file is referred to as a bitstream, and is
given the name calc.bit.

Verifying Calc on the Demonstration Board
At this point, a bitstream file has been created that can be
downloaded to the appropriate demonstration board to verify the
validity of the design. If you are unfamiliar with this process, please
refer to the Design Architect tutorial or the XChecker section in the
reference guide for more information.
13-20 Xilinx Development System

X-BLOX Tutorial
Timing Simulation
When a design containing X-BLOX components is implemented, the
X-BLOX symbols are expanded into blocks of logic. As a result, there
is no longer a direct correlation between each symbol on the
schematic and each block of logic in the LCA file. This creates a
problem, because the delay information found in the LCA file must
be back-annotated to a schematic before it can be used in simulation.
Back-annotation is not possible without a direct correlation between
the schematic and the LCA file. You must generate an entirely new
schematic from the information found in the LCA file.

The schematic generated for functional schematic is based on the
original schematic. The timing simulation schematic is based on
information in the LCA file. The TIMSIM8 script creates a single page
flat schematic from the information found in the LCA file.

Use TIMSIM8 to generate a schematic to use in timing simulation as
follows:

1. Select the Calc component in the navigator window of
PLD_DMGR.

2. Select Right Mouse Button ➝ Open ➝ pld_timsim8

3. Choose the Auto Generate radio button.

PLD_TIMSIM8 Output Window
TIMSIM8 executes and text similar to the following appears in the
TIMSIM8 window:

lca2xnf -wg /tutor/calc_3ka/calc /tutor/calc_3ka/calc_timaka
/bin/mv -f /tutor/calc_3ka/calc_timaka.xnf /tutor/calc_3ka/

calc_tim.xnf
xnfba /tutor/calc_3ka/calc.xg /tutor/calc_3ka/calc_tim.xnf -o /

tutor/calc_3ka/calc_tim.xbf
mv -f /tutor/calc_3ka/calc_tim.xbf /tutor/calc_3ka/calc_tim.xnf
gen_sch8 -w /tutor/calc_3ka/calc_tim.xnf

Figure 13-7 PLD_TIMSIM8 Output Window

An explanation of the TIMSIM8 output follows:

lca2xnf -wg /tutor/calc_3ka/calc /tutor/calc_3ka/calc_timaka
Mentor Graphics Interface/Tutorial Guide 13-21

Mentor Graphics Interface/Tutorial Guide
LCA2XNF translates the calc.lca file that contains the timing
information back into a standard XNF netlist, calc.xnf

/bin/mv -f /tutor/calc_3ka/calc_timaka.xnf /tutor/calc_3ka/
calc_tim.xnf

The netlist output by LCA2XNF is changed to calc_tim. The timing
simulation schematic eventually created from this file will also be
named calc_tim.

xnfba /tutor/calc_3ka/calc.xg /tutor/calc_3ka/calc_tim.xnf -o /
tutor/calc_3ka/calc_tim.xbf

In the process of placing and routing the design and then converting
it back to an XNF netlist, some instance/net names and logic
structures may no longer correspond to those found on the original
schematic. The XNFBA program minimizes these differences by
reading the original, pre-route XNF netlist and then rewriting the
post-route XNF netlist, produced by LCA2XNF, so that the two are as
similar as possible. This makes simulation easier since more net/
instance names appear in simulation as they were originally entered.
The output of XNFBA is given a .xbf extension.

mv -f /tutor/calc_3ka/calc_tim.xbf /tutor/calc_3ka/calc_tim.xnf
gen_sch8 -w /tutor/calc_3ka/calc_tim.xnf

The schematic generation tool Gen_Sch8, is run on the output of
XNFBA to create a schematic you can use in simulation. The new
schematic is given a “_tim” extension. Because there are X-BLOX
symbols in the original schematic, it is not possible to use the original
schematic for timing simulation. Instead, Gen_Sch8 produces a one-
page, flat schematic. While this schematic is not very aesthetically
pleasing, it is suitable for use in timing simulation since most design
problems are resolved during functional simulation. An example of a
portion of a timing simulation schematic produced from the Calc
design by Gen_Sch8 is given in the figure below.
13-22 Xilinx Development System

X-BLOX Tutorial
Figure 13-8 Portion of Calc Timing Simulation Schematic
Produced by Gen_Sch8

Using QuickSim II
Enter QuickSim II and verify that the timing information has been
back-annotated as described in the following steps:

1. Double-click on the QuickSim II icon in the Design Manager tools
window. A dialog box appears.

2. In the field labeled Design pathname, enter the name of the
Component created during the last step of the Gen_Sch8 program.
For example, $xilinx_tutorial/calc_3ka/calc_tim for the 3ka calc
design.

3. Select Delay for Timing mode.

4. Select Visible for Detail of ‘Delay’ timing mode. A new set of
buttons appear in the dialog box.
Mentor Graphics Interface/Tutorial Guide 13-23

Mentor Graphics Interface/Tutorial Guide
5. Select the Typ for Timing mode. This specifies the use of the back-
annotated timing information.

6. Select Messages for Constraint mode.

7. Leave the rest of the buttons set at their defaults, and press return
to start QuickSim II. For more information on the QuickSim II
options, refer to Mentor Graphics documentation. For most Xilinx
simulations, the above selections are applicable.

8. Resize the QuickSim window so that it is as large as the entire
screen.

9. Anywhere in the QuickSim window, type dofile calc_3k.do
for 3K or 3KA designs, or dofile calc_4k.do for 4K or 4KA
designs.

10. Check the trace output to confirm that real delay values are being
used. You can view the transcript file using the editor in
PLD_DMGR or using another editor.

Further Reading
Before beginning an X-BLOX design, read the descriptions of the
X-BLOX macros found in the XACT Libraries Guide to understand the
abilities and limitations of each macro. Also review the section on the
X-BLOX executable program in the XACT Reference Guide.
Additionally, see the X-BLOX User Guide for more detailed
information.
13-24 Xilinx Development System

Xilinx ABEL Tutorial

Mentor
Graphics
Interface/
Tutorial
Guide
Mentor Graphics Interface/Tutorial Guide — 0401408 01 Printed in U.S.A.

Mentor Graphics Interface/Tutorial Guide
Xilinx Development System

Chapter 14

Xilinx ABEL Tutorial

Introduction
Xilinx ABEL allows you to define logic in terms of text-based Boolean
equations, truth tables, and state machine descriptions using the
ABEL Hardware Description Language (HDL). These logic blocks
can then be included as part of a larger design, allowing logic defined
by both graphical and text-based entry to exist in the same design.

This chapter provides a step-by-step example using Xilinx ABEL in
the Mentor Graphics design environment. It is not intended to
provide a complete description of Xilinx ABEL functionality. Refer to
the “Further Reading” section at the end of this tutorial for
information on additional Xilinx ABEL documentation.

Before Beginning the Tutorial
This tutorial assumes you are familiar with the Design Architect and
QuickSim tutorial chapters. It is especially important that the
MGC_LOCATION_MAP variable is set as described in the Design
Architect or QuickSim tutorial chapters. If you are not familiar with
these chapters, review them before continuing.

Required Software
The following versions of software are required to perform the
tutorial:

● Mentor Graphics Version 8.2_5 or later

● Xilinx/Mentor Graphics Interface DS344 Version 5 or later

● XACT Design Manager (XDM) Version 5 or later
Mentor Graphics Interface/Tutorial Guide — 0401408 01 14-1

Mentor Graphics Interface/Tutorial Guide
● Xilinx ABEL (DS371). This is the Xilinx text-based entry tool that
uses the DATA I/O ABEL HDL language to enter logic
descriptions.

Note: You can perform the tutorial without Xilinx ABEL licensing,
since compiled netlists for the Xilinx ABEL code are provided.

To use Xilinx-ABEL, add the location of the DS371 Xilinx ABEL
software to both the path and the XACT variable. See the DS371
release notes for more information.

Preparing the Design
You must have a completed Calc design to perform this tutorial. You
can obtain this design by completing the Design Architect tutorial or
by copying it from one of the tutorial solution directories. The tutorial
files are optionally installed when you install the DS344 interface
software. The calc_da directory contains the tutorial files. It is
recommended that you copy the appropriate directory in its entirety
from the original installation area to another area. Completed Calc
designs are in the directories listed in the table below:

Table 14-1 Tutorial Design Directories

The solutions directories contain the design files for the completed
tutorial, including schematics and the bitstream file. To conserve disk
space, some intermediate files are not provided, except in the calc_3k
directory, which is complete. Different intermediate files are created
for different device families. Do not overwrite any files in the
solutions directories.

Directory Description

calc_da Tutorial Directory

calc_3k Solution Directory for XC3020PC68

calc_3ka Solution Directory for XC3020APC68

calc_4k Solution Directory for XC4003PC84 and
XC4003APC84
14-2 Xilinx Development System

Xilinx ABEL Tutorial
Copying the Tutorial Files

Note: Do not use the Calc design in the calc_da directory unless you
completed the Design Architect tutorial. If you did not complete the
tutorial, use one of the solutions directories.

In PLD_DMGR, use the copy command to copy the applicable
directory in its entirety to a different area. You must copy the
directory in PLD_DMGR, so that the reference information is not
corrupted. Do not use the UNIX cp command to copy a directory.

Modifying the Calc Design
An Xilinx ABEL-based block, STAT_ABL, is created in this section to
replace the STATMACH (XC3000 family) or STAT_4k (XC4000
family) state machines that reside in the CONTROL block on the Calc
schematic. Since the Xilinx ABEL code for STAT_ABL is functionally
identical to the schematics for STATMACH and STATE_4k, this
substitution does not alter the function of the Calc design.

Note: If you are not familiar with the Calc design, refer to the Design
Architect tutorial.

Viewing STAT_ABL.ABL
STAT_ABL.ABL is the name of the Xilinx ABEL HDL file that is used
to generate a logic description for the STAT_ABL block.

Enter the Xilinx ABEL environment and view the STAT_ABL.ABL
source code by performing the following steps.

Note: If you do not have Xilinx ABEL, view the file with a text editor.

1. Enter the Xilinx Design Manager (XDM).

2. Select Design Entry ➝ Xabel . A dialog box appears,
allowing you to select an input .abl file.

Note: If Xabel does not appear in the menu, ensure that the directory
containing it is referenced both in the path and in the XACT variable.
Then, execute Utilities ➝ ScanDisk in XDM to add it to the
menu.

3. Select stat_abl.abl from the dialog box. XDM then runs Xilinx
ABEL and loads the selected design into it.
Mentor Graphics Interface/Tutorial Guide 14-3

Mentor Graphics Interface/Tutorial Guide
Note: If stat_abl.abl does not appear in the dialog box, cancel the
command and check to be sure you have the directory set correctly in
XDM.

Text similar to the following appears in the main Xilinx ABEL
window:

module stat_abl

title ‘State machine for Calc design’

“This state machine has 3 states which control the function

“of the ALU and the stack. The states are as follows:

“ SPUSH -- increment stack pointer

“ SWE -- write value into stack

“ SOTHER -- do neither (initial state)

“This is a one-hot state machine, which means that only

“one of the states is active at any given time. This method

“is particularly suited for use with Xilinx ABEL and Xilinx

“FPGAs, which are rich in flip-flop resources.

“This file also generates control signals from equations.

“For an equivalent schematic, see statmach.

declarations

“inputs

 OP5, OP4, OP3, OP2, OP1, OP0, EXC pin;

“clock

 CLK pin;

“outputs

 CTL3, CTL2, CTL1, CTL0 pin;

 UP_DN, WE, RST, ADD_SUB, CE_ALU, CE_ADDR pin;

“state diagram declarations and assignments

 XABELSM state_register istype 'reg_d';

 SPUSH, SWE, SOTHER state;

“vector definitions

 OP = [OP5,OP4,OP3,OP2,OP1,OP0];

 HOP = [OP5,OP4,OP3];
14-4 Xilinx Development System

Xilinx ABEL Tutorial
 CTL = [CTL3,CTL2,CTL1,CTL0];

“declare internal nodes

 SEL_OP, OP_CTL2, OP_CTL1, OP_CTL0 node;

“node declarations for simulation only, can't use state names

“in simulation vectors

 PUSH, OTHER node;

“define clock & don't-care values for test vectors

 C, X = .C., .X.;

Xilinx property 'initialstate SOTHER';

equations

 XABELSM.CLK = CLK;

 RST = (HOP == ^b101) & EXC;

 ADD_SUB = !OP_CTL2;

 SEL_OP = (HOP == ^b111);

 CE_ALU = !(SEL_OP & OP2 & OP0) & SOTHER & EXC;

 CE_ADDR = !(OP2 & OP1 & OP0) & SEL_OP & EXC;

 OP_CTL2 = (OP5 & !SEL_OP) # (OP2 & SEL_OP);

 OP_CTL1 = (OP4 & !SEL_OP) # (OP1 & SEL_OP);

 OP_CTL0 = (OP3 & !SEL_OP) # (OP0 & SEL_OP);

 CTL3 = SEL_OP;

 CTL2 = OP_CTL2 & OP_CTL1;

 CTL1 = OP_CTL1 & !OP_CTL2;

 CTL0 = !OP_CTL2 & OP_CTL0;

 UP_DN = OP2 & !OP1 & OP0 & SEL_OP & EXC;

 PUSH = SPUSH;

 WE = SWE;

 OTHER = SOTHER;

“always optimize out don't-cares

@DCSET

state_diagram XABELSM

 state SPUSH: goto SWE;
Mentor Graphics Interface/Tutorial Guide 14-5

Mentor Graphics Interface/Tutorial Guide
 state SWE: goto SOTHER;

 state SOTHER: if (UP_DN) then SPUSH

 else SOTHER;

test_vectors

“begin in initial state, each line is one clock cycle

([CLK,EXC,OP]-
>[PUSH,WE,OTHER,ADD_SUB,RST,CE_ALU,CE_ADDR,CTL])

“quick check to test the state machine

[C, 0, X]->[0, 0, 1, X, X, X, X, X];

[C, 1, ^h3F]->[0, 0, 1, X, X, X, X, X];

[C, 0, X]->[0, 0, 1, X, X, X, X, X];

[C, 1, ^h3D]->[1, 0, 0, X, X, X, X, X];

[C, 0, X]->[0, 1, 0, X, X, X, X, X];

[C, 0, X]->[0, 0, 1, X, X, X, X, X];

[C, 1, ^h38]->[0, 0, 1, X, X, X, X, X];

“test the control logic, EXC low

[C, 0, ^h0]->[0, 0, 1, 1, 0, 0, 0, ^h0];

[C, 0, ^h8]->[0, 0, 1, 1, 0, 0, 0, ^h1];

[C, 0, ̂ h10]->[0, 0, 1, 1, 0, 0, 0, ̂ h2];

[C, 0, ̂ h18]->[0, 0, 1, 1, 0, 0, 0, ̂ h3];

[C, 0, ̂ h20]->[0, 0, 1, 0, 0, 0, 0, ̂ h0];

[C, 0, ̂ h28]->[0, 0, 1, 0, 0, 0, 0, ̂ h0];

[C, 0, ̂ h30]->[0, 0, 1, 0, 0, 0, 0, ̂ h4];

“extended instruction set

[C, 0, ̂ h38]->[0, 0, 1, 1, 0, 0, 0, ̂ h8];

[C, 0, ̂ h39]->[0, 0, 1, 1, 0, 0, 0, ̂ h9];

[C, 0, ̂ h3A]->[0, 0, 1, 1, 0, 0, 0, ̂ hA];

[C, 0, ̂ h3B]->[0, 0, 1, 1, 0, 0, 0, ̂ hB];

[C, 0, ̂ h3C]->[0, 0, 1, 0, 0, 0, 0, ̂ h8];

[C, 0, ̂ h3D]->[0, 0, 1, 0, 0, 0, 0, ̂ h8];

[C, 0, ̂ h3E]->[0, 0, 1, 0, 0, 0, 0, ̂ hC];
14-6 Xilinx Development System

Xilinx ABEL Tutorial
[C, 0, ̂ h3F]->[0, 0, 1, 0, 0, 0, 0, ̂ hC];

“test the control logic, EXC high

[C, 1, ̂ h0]->[0, 0, 1, 1, 0, 1, 0, ̂ h0];

[C, 1, ̂ h8]->[0, 0, 1, 1, 0, 1, 0, ̂ h1];

[C, 1, ̂ h10]->[0, 0, 1, 1, 0, 1, 0, ̂ h2];

[C, 1, ̂ h18]->[0, 0, 1, 1, 0, 1, 0, ̂ h3];

[C, 1, ̂ h20]->[0, 0, 1, 0, 0, 1, 0, ̂ h0];

[C, 1, ̂ h28]->[0, 0, 1, 0, 1, 1, 0, ̂ h0];

[C, 1, ̂ h30]->[0, 0, 1, 0, 0, 1, 0, ̂ h4];

“extended instruction set

[C, 1, ̂ h38]->[0, 0, 1, 1, 0, 1, 1, ̂ h8];

[C, 1, ̂ h39]->[0, 0, 1, 1, 0, 1, 1, ̂ h9];

[C, 1, ̂ h3A]->[0, 0, 1, 1, 0, 1, 1, ̂ hA];

[C, 1, ̂ h3B]->[0, 0, 1, 1, 0, 1, 1, ̂ hB];

[C, 1, ̂ h3C]->[0, 0, 1, 0, 0, 1, 1, ̂ h8];

[C, 1, ̂ h3D]->[1, 0, 0, 0, 0, 0, 1, ̂ h8];

“insert two clocks to return to initial state

[C, 0, ̂ h3D]->[0, 1, 0, 0, 0, 0, 0, ̂ h8];

[C, 0, ̂ h3D]->[0, 0, 1, 0, 0, 0, 0, ̂ h8];

[C, 1, ̂ h3E]->[0, 0, 1, 0, 0, 1, 1, ̂ hC];

[C, 1, ̂ h3F]->[0, 0, 1, 0, 0, 0, 0, ̂ hC];

end stat_abl

Figure 14-1 Xilinx ABEL Output

Xilinx ABEL Output
A description of the contents of the Xilinx ABEL file follows:

1. module stat_abl

The module statement specifies the beginning of the Xilinx ABEL
module.
Mentor Graphics Interface/Tutorial Guide 14-7

Mentor Graphics Interface/Tutorial Guide
2. title 'State machine for Calc design'

The title statement is not necessary, but if used it is added as a
header for the intermediate files created by Xilinx ABEL.

3. “This state machine has 3 states which control the functions
“of the ALU and the stack. The states are as follows:
“ SPUSH -- increment stack pointer
“ SWE -- write value into stack
“ SOTHER -- do neither (initial state)
“This is a one-hot state machine, which means that only
“one of the states is active at any given time. This method
“is particularly suited for use with Xilinx ABEL and Xilinx
“FPGAs, which are rich in flip-flop resources.
“This file also generates control signals from equations.
“For an equivalent schematic, see statmach.

Any text preceded by a double quote, as in the above text, is
interpreted as comment text.

4. declarations
“inputs
OP5, OP4, OP3, OP2, OP1, OP0, EXC pin;
“clock
CLK pin;
“outputs
CTL3, CTL2, CTL1, CTL0 pin;
UP_DN, WE, RST, ADD_SUB, CE_ALU, CE_ADDR pin;

The pin statements in the declaration are used to define the pinout
of the Xilinx ABEL module.

5. “state diagram declarations and assignments
XABELSM state_register istype 'reg_d';
SPUSH, SWE, SOTHER state;

The state_register keyword declares a symbolic state machine. The
state keyword is used to declare states that appear in a symbolic
state machine. “istype ‘reg_d’” declares that the state machine will
be implemented using D flip-flops. State_register must be used in
conjunction with state.

6. “vector definitions
OP = [OP5,OP4,OP3,OP2,OP1,OP0];
HOP = [OP5,OP4,OP3];
14-8 Xilinx Development System

Xilinx ABEL Tutorial
CTL = [CTL3,CTL2,CTL1,CTL0];

Vector definitions are used to define bus vectors in Xilinx ABEL,
which can be used during simulation in the Xilinx ABEL
environment.

7. “declare internal nodes
SEL_OP, OP_CTL2, OP_CTL1, OP_CTL0 node;

The above nodes were declared for use as variables in
intermediate equations.

8. “node declarations for simulation only, can't use state names
“in simulation vectors
PUSH, OTHER node;

Since the Xilinx ABEL simulator does not allow the use of
symbolic state names (those used in the definition of a state
machine) in test vectors, two “dummy” nodes were created that
mirror SPUSH and SOTHER, for use in the simulation test vectors
found at the end of the file.

9. “define clock & don't-care values for test vectors
C, X = .C., .X.;

This definition allows for substitution of the default clock and
don’t care syntax (.C and .X) with a simpler syntax without a
period (C and X) to make the simulation vectors easier to read.

10. Xilinx property 'initialstate SOTHER';

This defines the initial power-up state of the state machine as the
state “SOTHER”. This state and others are defined in a later
section of the file.

11. equations
XABELSM.CLK = CLK;
RST = (HOP == ^b101) & EXC;
ADD_SUB = !OP_CTL2;
SEL_OP = (HOP == ^b111);
CE_ALU = !(SEL_OP & OP2 & OP0) & SOTHER & EXC;
CE_ADDR = !(OP2 & OP1 & OP0) & SEL_OP & EXC;
OP_CTL2 = (OP5 & !SEL_OP) # (OP2 & SEL_OP);
OP_CTL1 = (OP4 & !SEL_OP) # (OP1 & SEL_OP);
OP_CTL0 = (OP3 & !SEL_OP) # (OP0 & SEL_OP);
CTL3 = SEL_OP;
Mentor Graphics Interface/Tutorial Guide 14-9

Mentor Graphics Interface/Tutorial Guide
CTL2 = OP_CTL2 & OP_CTL1;
CTL1 = OP_CTL1 & !OP_CTL2;
CTL0 = !OP_CTL2 & OP_CTL0;
UP_DN = OP2 & !OP1 & OP0 & SEL_OP & EXC;
PUSH = SPUSH;
WE = SWE;
OTHER = SOTHER;

The equation statement is used to define the internal logic of the
module. Each equation statement is synthesized into
combinatorial logic.

12. “always optimize out don't-cares
@DCSET

The @DCSET statement instructs Xilinx ABEL to optimize don’t-
cares, as is done when you use Karnaugh maps to minimize a
logic function.

13. state_diagram XABELSM
state SPUSH: goto SWE;
state SWE: goto SOTHER;
state SOTHER: if (UP_DN) then SPUSH
else SOTHER;

The state_diagram statement defines the circumstances that cause
state transitions to occur. In this case, state SPUSH is always
followed by SWE, SWE is always followed by SOTHER, and
SOTHER is followed by SPUSH if the UP_DN signal is high.
Otherwise, the state machine remains in the state SOTHER.

14. test_vectors

The above line specifies the beginning of a section containing test
vectors. The test vectors define sets of inputs and expected
outputs.

15. “begin in initial state, each line is one clock cycle
([CLK,EXC,OP]
[PUSH,WE,OTHER,ADD_SUB,RST,CE_ALU,CE_ADR,CTL])

This line defines the set of inputs as the vectors CLK, EXC, and
OP. The rest are outputs, for which expected values are specified
below.
14-10 Xilinx Development System

Xilinx ABEL Tutorial
16. “quick check to test the state machine
“test the control logic, EXC low
“extended instruction set
“test the control logic, EXC high
“extended instruction set
“insert two clocks to return to initial state

Note: See the figure above for the complete output.

As noted above, each line represents one clock cycle, the inputs
are specified in the square brackets to the left of the arrow, and the
expected outputs are specified in the square brackets to the right
of the arrow. The “^h” preceding some values indicates to the
simulator that the vectors are specified in hexadecimal.

17. end stat_abl

The end statement specifies the end of the Xilinx ABEL module.

Verifying STAT_ABL
The Xilinx ABEL simulator is now used to verify the STAT_ABL
design, using the test vectors described above as input.

Select Compile ➝ Simulate Equations. A transcript window
appears.

Xilinx ABEL prepares the test vectors for simulation and then
simulates them. It should report that 39 of 39 test vectors simulated
correctly. This means that as each of the test vector inputs was
executed, the output of the state machine corresponded exactly to the
expected values entered in the test vectors.

Note: If errors occur, it is possible that the Xilinx ABEL source code
was inadvertently modified. Recopy stat_abl.abl from the
appropriate solutions directory and try again.

Synthesizing STAT_ABL.ABL
Before replacing STATMACH with its Xilinx ABEL-based equivalent
on the Mentor Graphics schematic, the Xilinx ABEL code must first
be synthesized to a Xilinx Netlist Format (XNF) file, the standard file
type for logic descriptions input to Xilinx tools. Also, a Mentor
Graphics symbol must be generated.
Mentor Graphics Interface/Tutorial Guide 14-11

Mentor Graphics Interface/Tutorial Guide
While it is possible to generate an XNF file from stat_abl.abl in Xilinx
ABEL, alternatively you will perform this task in XDM, using the
ABL2XNF program.

If you do not have access to Xilinx ABEL or do not want to compile
the code, the XNF file is provided in the solutions directories. If the
steps below cannot be performed, rename the stat_abl.xnf.backup file
to stat_abl.xnf, rename stat_abl.xsf.backup to stat_abl.xsf, and rename
stat_abl.xas.backup to stat_abl.xas. You can then complete the tutorial
by reading, but not performing the Xilinx-ABEL specific sections and
completing only the remaining sections.

1. Select File ➝ Exit in Xilinx ABEL and return to XDM.

2. In XDM, choose Translate ➝ Abl2xnf ➝ stat_abl.abl . An
options dialog box appears.

3. Two very important options are the speed and area options.
ABL2XNF has the ability to optimize code either for design speed
or for device area. Choose the -speed option. The other files can be
left at their defaults. Make sure only the -speed option is
highlighted. If any other options are selected, deselect them using
the left mouse button.

4. Choose Done to execute ABL2XNF.

ABL2XNF runs a number of translation and optimization tools and
produces three important files: .xnf, .xas, and .xsf files. The .xnf file
contains a partitioned netlist, for use in implementing the design. The
.xsf file contains a symbol description that is used by the Gen_Sym8
program to create a Mentor Graphics symbol for the design. The .xas
file contains an unpartitioned netlist, which is used for functionally
simulating the design.

Under standard circumstances, it is not necessary to run any of the
programs individually. Use ABL2XNF when possible to translate
Xilinx ABEL designs.

Creating a Symbol for STAT_ABL
A special symbol must now be created so that the Xilinx ABEL
module can be included in the CONTROL schematic. The Gen_Sym8
tool automates the creation of symbols for Xilinx ABEL modules.
Gen_Sym8 uses as input the .xsf file created by Xilinx ABEL. This file
14-12 Xilinx Development System

Xilinx ABEL Tutorial
contains the pinout for the symbol. Gen_Sym8 uses this file to
generate an appropriate symbol

1. Gen_Sym8 is not available in XDM or PLD_DMGR, and must be
run from a UNIX shell. Quit XDM and move to the shell where
XDM was executed.

2. Change directories to the appropriate project directory (calc_da,
calc_3k, calc_3ka, or calc_4k). Be sure the MGC_WD environment
variable is set to the project directory.

3. Type ls *.xsf . The stat_abl.xsf file should be in the project
directory. If it is not in the project directory, errors may have
occurred during processing in Xilinx ABEL. Go back and try it
again if the file does not exist.

4. Type gen_sym8 stat_abl.xsf . Gen_Sym8 executes, reads the
.xsf file and writes out the symbol $MGC_WD/stat_abl.

Adding STAT_ABL to Calc
Now add the newly-created symbol to the Calc schematic.

1. Open PLD_DMGR.

2. Find the Control design component in the project directory and
open it in PLD_DA. The schematic for CONTROL is displayed.

3. For 3K designs, select only the STATMACH instance on the
CONTROL schematic. For 4K designs, select only the STATE_4K
instance on the CONTROL schematic.

4. Select Right Mouse Button ➝ Replace ➝ Other. A
dialog box appears.

5. Type the appropriate path to the newly-created STAT_ABL
symbol in the Component Name field, or use the navigator in the
dialog box to select it. For example, if you are working in the
calc_3ka directory, the path would be $xilinx_tutorial/calc_3ka/
stat_abl.

This replaces the original STATMACH (or STATE_4k) block with
the functionally equivalent Xilinx ABEL module, STAT_ABL. This
change is reflected by the name STAT_ABL appearing at the top of
the symbol.

6. Check and save the schematic.
Mentor Graphics Interface/Tutorial Guide 14-13

Mentor Graphics Interface/Tutorial Guide
The STAT_ABL symbol
The STAT_ABL symbol differs from the other symbols in the
schematic because its logic is described in an XNF file instead of
represented graphically using parts from the Xilinx libraries. To
illustrate this, attempt to view the schematic for STAT_ABL by
pushing into the STAT_ABL symbol as follows:

1. Select only the STAT_ABL symbol on the CONTROL schematic.

2. Select File ➝ Open Down. A dialog box appears.

Note that the only component that can be opened for STAT_ABL
is the symbol. There is no existing schematic for it. The logic
description for the STAT_ABL block is not defined inside Design
Architect, but by the netlist stat_abl.xnf.

3. Press Escape to cancel the dialog box.

The FILE Property

Since the logic description does not exist in the schematic, the tools
that translate the design must be passed two important pieces of
information:

● The logic description does not exist in an underlying schematic

● The logic description exists in a file

This information is specified by attaching a FILE property to the
symbol. The value of the FILE property specifies the name of the file
containing the logic description. In this example, the description is in
the file STAT_ABL.XNF. This file was generated by Xilinx ABEL from
the file containing the ABEL-HDL description of the logic.

Verify that the macro created by Gen_Sym8 placed the appropriate
FILE property on the macro as follows:

1. Select only the STAT_ABL symbol on the CONTROL schematic .

2. Select Report ➝ Object ➝ Selected . A report window
appears. As shown in the following figure, the FILE property with
the value, stat_abl, is attached to the symbol.

3. Close the report output window. Since you did not modify the
schematic since the last save, you do not need to check or save it
now.
14-14 Xilinx Development System

Xilinx ABEL Tutorial
Figure 14-2 Results of Report on STAT_ABL Symbol

Functional Simulation
A special set of programs allow easy simulation of designs containing
Xilinx ABEL components. The execution of these programs is
encapsulated in the FNCSIM8 script. This script can be executed
using the PLD_FNCSIM8 icon found in PLD_DMGR.

Note: For more information on PLD_FNCSIM8, refer to the
“Functional Simulation Preparation” and “QuickSim Tutorial”
chapters.

Use PLD_FNCSIM8 to prepare a Xilinx ABEL design for functional
simulation. Unlike standard schematics, schematics containing Xilinx
ABEL symbol blocks require extra processing. The simulation tools
cannot directly use the information found in stat_abl.xnf, and a
simulation schematic must be generated from the stat_abl.xnf file.
This is done automatically by PLD_FNCSIM8, using the Gen_Sch8
program. Gen_Sch8 creates a new schematic that is inserted under
the STAT_ABL symbol. Once this is done, the functionality of the
design is described on the schematic, and it can be simulated.
Mentor Graphics Interface/Tutorial Guide 14-15

Mentor Graphics Interface/Tutorial Guide
PLD_Men2XNF8
Run PLD_Men2XNF8 to generate a netlist from the design as follows:

1. Quit Design Architect and re-enter PLD_DMGR.

2. Select the Calc design in the navigator window.

3. Select Right Mouse Button ➝ Open ➝ pld_men2xnf8 . A
dialog box appears.

4. Type the appropriate part type in the Part Type field.

5. Select OK or press return. The script creates a window and
executes in it. Text similar to the text in the following figure
appears.

6. Once the script completes, dismiss the window it executed within
by pressing CTRL-C while holding the cursor in the window.

pld_dve /tutor/calc_3ka/calc xc3000
rm -f /tutor/calc_3ka/calc.edif
rm -f enwrite.cfg
/idea/bin/enwrite /tutor/calc_3ka/calc/xnf -wef /tutor/calc_3ka/

calc.edif -rcf enwrite.cfg
rm -f /tutor/calc_3ka/calc.flt
.
.
rm -f /tutor/calc_3ka/calc.clb
edif2xnf /tutor/calc_3ka/calc.edif -l /ds344/data/unified/

edif3000 -lcanet 5 -n -p 3020APC68 -f -od /tutor/calc_3ka
-of calc.xnf

Figure 14-3 PLD_Men2XNF8 Output

PLD_Men2XNF8 Output

An explanation of the Men2XNF8 output follows.

pld_dve /tutor/calc_3ka/calc xc3000

PLD_DVE creates the XNF viewpoint for the design. This viewpoint
defines which symbols are written to the netlist. For example, a two-
input and gate in the Calc design has a simulation model underneath
it. For the purposes of producing a netlist, the underlying simulation
model is ignored and instead the and gate is written to the netlist.
14-16 Xilinx Development System

Xilinx ABEL Tutorial
Conversely, for the hierarchical block SW7, the symbols in the
underlying schematic are represented in the netlist.

rm -f /tutor/calc_3ka/calc.edif
rm -f enwrite.cfg
/idea/bin/enwrite /tutor/calc_3ka/calc/xnf -wef /tutor/

calc_3ka/calc.edif -rcf enwrite.cfg

In this step, any existing design .edif file or enwrite.cfg configuration
file is deleted to prepare for the generation of a new EDIF file by
ENWRITE. ENWRITE is a Mentor Graphics program that produces
an EDIF netlist from a Mentor Graphics design. It reads the XNF
viewpoint created by PLD_DVE and produces an EDIF file that
contains only Xilinx primitives.

rm -f /tutor/calc_3ka/calc.flt
.
.
rm -f /tutor/calc_3ka/calc.clb

FNCSIM8 creates a number of files that serve as flags to other parts of
the script, indicating such things as the presence of X-BLOX macros
or FILE properties in a netlist. Before continuing, FNCSIM8 initializes
the project directory by deleting any of these files that may be left
from a previous run.

edif2xnf /tutor/calc_3ka/calc.edif -l /ds344/data/unified/
edif3000 -lcanet 5 -n -p 3020APC68 -f -od /tutor/
calc_3ka -of calc.xnf

EDIF2XNF converts the EDIF file produced by ENWRITE to a
standard Xilinx Netlist (XNF) file. One XNF file is produced for every
block in the schematic.

PLD_FNCSIM8
Run PLD_FNCSIM8 to generate a schematic that can be functionally
simulated:

1. Select the Calc design in the navigator window.

2. Select Right Mouse Button ➝ Open ➝ pld_fncsim8 . A
dialog box appears.

3. Select Use Original .

4. Select OK or press return.
Mentor Graphics Interface/Tutorial Guide 14-17

Mentor Graphics Interface/Tutorial Guide
At this point, the FNCSIM8 script creates a shell and executes within
it. FNCSIM8 recognizes the presence of the FILE=stat_abl.xnf
property in the netlist produced by Men2XNF8, and generates a
model for STAT_ABL. A simulation viewpoint is created, and the
design is ready for simulation.

Note: If FNCSIM8 returns errors, check the fncsim8.log for details.

The following commands appear in the FNCSIM8 window (most of
the output is not shown, only the significant commands):

gen_sch8 stat_abl.xas -w -o stat_abl
pld_dve_sim /tutor/calc_3ka/calc xc3000

Figure 14-4 PLD_FNCSIM8 Output

PLD_FNCSIM8 Output

An explanation of the FNCSIM8 output follows:

gen_sch8 stat_abl.xas -w -o stat_abl

On finding the FILE property in the netlist, FNCSIM8 creates a
simulation model for it. The simulation schematic is completed by
running Gen_Sch8 on the stat_abl.xas netlist to produce a simulation
schematic from the netlist.

pld_dve_sim /tutor/calc_3ka/simdir/calc xc3000

PLD_DVE_SIM is run to generate a simulation viewpoint for the new
simulation schematic.

Viewing the Simulation Schematic
After FNCSIM8 completes, view the simulation schematic in Design
Architect as follows:

1. In the Design Manager, select the appropriate control design
component in the navigator window. For example, if you are
using the XC3000A design, select $xilinx_tutorial/calc_3ka/
control.

2. Choose Right Mouse Button ➝ Open ➝ pld_da. The
control schematic appears in the Design Architect window.

3. Select the STAT_ABL component on the control schematic.
14-18 Xilinx Development System

Xilinx ABEL Tutorial
4. Open the schematic underneath the STAT_ABL symbol. Unlike
previously, “schematic” appears as an option in the File ➝ Open
Down dialog box, since Gen_Sch8 generated a simulation
schematic for it.

5. The generated schematic appears, as shown in the figure below.
This schematic is not very readable, but it is not intended to be
used except for during timing simulation. Most design problems
are resolved during functional simulation, so you will not need to
reference the schematic very much during timing simulation. If
the schematic does not appear, go back and check the fncsim8.log
file for errors.

Figure 14-5 Portion of generated schematic for STAT_ABL
Mentor Graphics Interface/Tutorial Guide 14-19

Mentor Graphics Interface/Tutorial Guide
QuickSim II
Now that you have verified that the simulation schematic has been
correctly created by FNCSIM8, open it in QuickSim and simulate as
follows:

1. Close the Design Architect window.

2. In PLD_DMGR, open the Calc design in QuickSim.

3. Resize the QuickSim window so it covers the entire screen.

4. Execute either the calc_3k.do or calc_4k.do simulation command
file (depending on whether you are using an XC3000 or an XC4000
design) by typing dofile , then the full path name to the
command file (the command file path names are $xilinx_tutorial/
calc_3ka/calc_3k.do and $xilinx_tutorial/calc_4k/calc_4k.do).

Note: The command file creates trace, list, and schematic windows;
forces the inputs to values similar to those simulated in the QuickSim
tutorial; and then runs the simulation for 3400 ns. It may be necessary
to move or resize the windows created by this script, depending on
the size of your monitor. The command file was created assuming a
nineteen inch monitor.

The output of this simulation run should be identical to the output of
the functional simulation run on the original (non-Xilinx ABEL) Calc
design. If the Design Architect tutorial was performed, the output
from this simulation could be compared to the results saved in
simrun1 (see Design Architect tutorial for more information). For a
more detailed inspection of the results of this simulation of Calc, refer
to the discussion found in the Quicksim tutorial.

Implementing the Calc Design
Implementing designs that contain Xilinx ABEL components is
superficially identical to the translation of other types of designs. You
can use PLD_XMake to generate timing simulation files or bitstream
files for programming devices. If necessary, PLD_XMake runs the
ABL2XNF program to synthesize the Xilinx ABEL file into a standard
Xilinx netlist.

Note: For more information on PLD_XMake and the translation
process, refer to the discussion of it found in the Design Architect
14-20 Xilinx Development System

Xilinx ABEL Tutorial
tutorial. The XACT Reference Guide also contains information on the
XMake program.

PLD_XMake
The design has not been modified since you ran PLD_Men2XNF8 to
generate a netlist. This means you can skip the PLD_Men2XNF8 step,
and can proceed directly to running PLD_XMake to generate files
used in timing simulation and device programming.

1. Quit QuickSim, without saving and enter PLD_DMGR.

2. Select the calc.xnf file, produced earlier by PLD_Men2XNF8, in
the navigator window. It will appear as an file icon with “XNF”
written on it, and the word “calc” beneath it.

3. Select Right Mouse Button ➝ Open ➝ pld_xmake . A
dialog box appears.

4. Select OK. Output similar to the following appears.

XMAKE: Generating makefile 'calc.mak'...
.
.
.

XMAKE: Profile used is 'xdm.pro' file.
XMAKE: Makefile saved in 'calc.mak'.

XMAKE: Making 'calc.bit'...
XMAKE: Execute command 'xnfmerge -D xnf -P 3020APC68-6 calc.xnf

calc.xff'.
XMAKE: Execute command 'xnfprep calc.xff calc.xtf

parttype=3020APC68-6'.
XMAKE: Execute command 'xnfmap -P 3020APC68-6 calc.xtf

calc.map'.
XMAKE: Execute command 'ppr calc.map cstfile=calc_3ka.cst

parttype=3020APC68-6'.
XMAKE: Execute command 'makebits -R2 -S0 calc.lca'

XMAKE: 'calc.bit' has been made. Check output in
'calc.out'.

Figure 14-6 PLD_XMake Output
Mentor Graphics Interface/Tutorial Guide 14-21

Mentor Graphics Interface/Tutorial Guide
PLD_XMake Output

The following is a description of the PLD_XMake output:

XMAKE: Generating makefile 'calc.mak'...

The PLD_XMake icon runs the XMake program. This is a core Xilinx
program that processes XNF files to produce a placed and routed
design. XMake always creates a make file, in this case, calc.mak, that
allows you to stop the processing of a design at any point, and then
continue processing later from the same point. This is accomplished
by giving the .mak file as input to XMake. Additionally, since this file
contains a transcript of the programs run by XMake, it is useful as a
starting point for the creation of customized processing scripts.

XMAKE: Profile used is 'xdm.pro' file.

XMake reads the xdm.pro file in the directory. This file specifies
which options XMake should use when running programs. In this
case, xdm.pro specifies the name of the appropriate pin location
constraints file that is used by the place and route tools.

XMAKE: Execute command 'xnfmerge -D xnf -P 3020APC68-7 calc.xnf
calc.xff'.

XMAKE: Execute command 'xnfprep calc.xff calc.xtf
parttype=3020APC68-7'.

XNFMerge combines the hierarchical XNF netlists created by
EDIF2XNF into one large, flattened netlist (calc.xff). This netlist is
then input to XNFPrep, which validates the contents of the file and
does logic trimming and optimization.

XMAKE: Execute command 'xnfmap -P 3020APC68-7 calc.xtf
calc.map'.

For XC3000/XC3000A designs, mapping (logic is broken into parcels
that fit in CLBs) is performed by XNFMap. This step is performed by
PPR for XC4000 family designs.

XMAKE: Execute command 'ppr calc.map cstfile=calc_3ka.cst
parttype=3020APC68-7'.

For XC3000A and all XC4000 family designs, PPR is run to place and
route the design (PPR also performs the mapping step on XC4000
family designs). The pin location constraints file specified by xdm.pro
is read by PPR. (In XC3000 designs, the APR program performs this
step). The result of this step is a file containing the place and route
information, calc.lca.
14-22 Xilinx Development System

Xilinx ABEL Tutorial
XMAKE: Execute command 'makebits -R2 -S0 calc.lca'
XMAKE: 'calc.bit' has been made. Check output in
'calc.out'.

MakeBits is run on calc.lca to produce a file that can be used to
program a device. This file is referred to as a bitstream, and is given
the name calc.bit.

Verifying Calc on the Demonstration Board
At this point, a BIT file has been created that you can download to the
appropriate demonstration board to verify the validity of the design.
If unfamiliar with this process, please refer to the Design Architect
tutorial for more information.

Timing Simulation
When a design containing Xilinx ABEL components is implemented,
the logic for the Xilinx ABEL component on the schematic is merged
into the netlist by XNFMerge. This means that there is logic in the
placed and routed design.lca file that does not exist on the schematic.
Because of this, there is no longer a direct correlation between each
symbol on the schematic and each block of logic in the resulting LCA
file. This creates a problem, because the delay information found in
the LCA file must be back-annotated to a schematic before it can be
used in simulation. Without a direct correlation between schematic
and LCA file, this back-annotation is not possible. It then becomes
necessary to generate an entirely new schematic from the information
found in the LCA file.

PLD_TIMSIM8
Use PLD_TIMSIM8 to generate a schematic for use in timing
simulation:

1. Select the Calc component in the navigator window of
PLD_DMGR.

2. Select Right Mouse Button ➝ Open ➝ pld_timsim8

3. Choose Auto Generate .

4. PLD_TIMSIM8 executes.Text similar to the following appears in
the TIMSIM8 window:
Mentor Graphics Interface/Tutorial Guide 14-23

Mentor Graphics Interface/Tutorial Guide
lca2xnf -wg /tutor/calc_3ka/calc /tutor/calc_3ka/calc_timaka
/bin/mv -f /tutor/calc_3ka/calc_timaka.xnf /tutor/calc_3ka/

calc_tim.xnf
xnfba /tutor/calc_3ka/calc.xg /tutor/calc_3ka/calc_tim.xnf -o /

tutor/calc_3ka/calc_tim.xbf
mv -f /tutor/calc_3ka/calc_tim.xbf /tutor/calc_3ka/calc_tim.xnf
gen_sch8 -w /tutor/calc_3ka/calc_tim.xnf

Figure 14-7 PLD_TIMSIM8 Output

PLD_TIMSIM8 Output

An explanation of the PLD_TIMSIM8 output follows:

lca2xnf -wg /tutor/calc_3ka/calc /tutor/calc_3ka/calc_timaka

LCA2XNF translates the calc.lca file, which contains the timing
information, back into a standard XNF netlist, calc.xnf

/bin/mv -f /tutor/calc_3ka/calc_timaka.xnf /tutor/calc_3ka/
calc_tim.xnf

Since the .xnf file is used later to produce a timing simulation
schematic, it is given the name calc_tim.

xnfba /tutor/calc_3ka/calc.xg /tutor/calc_3ka/calc_tim.xnf -o /
tutor/calc_3ka/calc_tim.xbf

In the process of placing and routing the design, and then converting
it back to an XNF netlist, some instance and nets names and logic
structures may no longer correspond to those found on the original
schematic. XNFBA minimizes these differences by reading the
original, pre-route XNF netlist and rewriting the post-route XNF
netlist (produced by LCA2XNF) so that the two are as similar as
possible. This simplifies simulation since more net/instance names
appear in simulation as they were originally entered. The output of
XNFBA is given a .xbf extension.

mv -f /tutor/calc_3ka/calc_tim.xbf /tutor/calc_3ka/calc_tim.xnf
gen_sch8 -w /tutor/calc_3ka/calc_tim.xnf

The schematic generation tool Gen_Sch8 is then run on the output of
XNFBA, to create a schematic that can be used in simulation. The new
schematic is given a “_tim” extension.
14-24 Xilinx Development System

Xilinx ABEL Tutorial
QuickSim II
Enter QuickSim and verify that the timing information has been
back-annotated.

1. Double-click on the QuickSim II icon in the tools window. A
dialog box appears.

2. Type the Component name calc_tim , preceded by the path to
your working directory, in the Design pathname field. (for
example, $xilinx_tutorial/calc_3ka/calc_tim for the 3ka calc
design).

3. Select Delay for Timing mode.

4. Select Visible for Detail of ‘Constraint’ timing mode. A new set
of buttons appears in the dialog box.

5. Select Typ for Timing mode. This specifies the use of the back-
annotated timing information.

6. Select the Messages for Constraint mode.

7. Leave the rest of the buttons set at their defaults, and press return
to start QuickSim. For more information on the options, refer to
the Mentor Graphics documentation on QuickSim. For most
Xilinx simulations, the above setup is appropriate.

8. Anywhere in the QuickSim window, type “dofile calc_3k.do” for
3k or 3ka designs, and “dofile calc_4k.do” for 4k or 4ka designs.

9. When you look at the trace output, it should be obvious that real
delay values are being used. It may be useful to view the
transcript file using the editor in PLD_DMGR or another editor.

Further Reading
Before beginning an Xilinx ABEL design, refer to the Xilinx ABEL
User Guide and examine the design examples.
Mentor Graphics Interface/Tutorial Guide 14-25

Mentor Graphics Interface/Tutorial Guide
14-26 Xilinx Development System

XACT-Performance and
XDelay Tutorial

Mentor
Graphics
Interface/
Tutorial
Guide
Mentor Graphics Interface/Tutorial Guide — 0401408 01 Printed in U.S.A.

Mentor Graphics Interface/Tutorial Guide
Xilinx Development System

Chapter 15

XACT-Performance and XDelay Tutorial

The specification of exact timing requirements on schematics has
become a necessity as FPGAs have become larger and designs conse-
quently more complex. XACT-Performance refers to the method used
by the Xilinx software to describe these timing requirements. XACT-
Performance consists of a set of library primitives that allow timing
requirements to be placed on a schematic, along with built-in func-
tionality in the PPR program that allows PPR to use this timing infor-
mation during mapping, placement, and routing of the design.

XDelay is the companion tool that allows you to obtain exact timing
information about the routed design created by PPR. Whenever you
use XACT-Performance, verify the path timing using the XDelay
program. To reduce run time, XACT-Performance does not use the
highest possible level of accuracy in computing delays. XDelay
reports completely accurate worst-case delays for all Xilinx FPGAs.
Any differences between the two reports are minor, but when they
occur, use the XDelay output as the definitive source for timing infor-
mation.

Note: Since APR does not interpret XACT-Performance specifica-
tions, only XC3000A/L and all XC000 family designs can be used for
this tutorial. XACT-Performance does not function on XC3000,
XC3100, or XC2000 family designs.

The intent of this tutorial is to give you a practical example of using
XACT-Performance and XDelay in the Mentor Graphics design envi-
ronment. It is not intended to fully explain all of the functionality
found in XACT-Performance or XDelay. Please refer to the “Further
Reading” section at the end of this tutorial for a list of additional
documentation you can refer to for more information.
Mentor Graphics Interface/Tutorial Guide — 0401408 01 15-1

Mentor Graphics Interface/Tutorial Guide
Before Beginning the Tutorial
This section of the tutorial assumes that you are already familiar with
the material in the “Design Architect Tutorial” and “Quicksim Tuto-
rial” chapters of this manual. If not, please review those chapters
before continuing.

Required Software
The following versions of the development software are required to
perform this tutorial:

● Mentor Graphics 8.2_5 or later

● Xilinx/Mentor Graphics Interface — DS344 V5.00 or later

● XACT Design Manager — XDM V5.00 or later

Preparing the Design
1. The tutorial files are optionally installed when you install the

DS344 interface software. If you have already installed the soft-
ware but are not sure whether you specified tutorial installation,
check for a directory named tutorial under your DS344 directory.
The tutorial directory contains the tutorial files

2. You must copy a completed set of schematics and symbols from
one of the solutions directories. Solutions for the tutorial are sup-
plied in the following directories:

calc_da — directory for Design Architect tutorial
calc_3ka — solution files for XC3020APC68
calc_4k — solution files for XC4003PC84 and XC4003APC84

XACT-Performance cannot be used with XC3000 designs, so do
not use the calc_3k design. It is recommended that you copy the
appropriate tutorial directory in its entirety from the original
install area to another area using the copy command available in
PLD_DMGR. The copy directory must be given the same name as
the original, since this directory name is encoded in the design
component references. For more information on how to use
PLD_DMGR to make a copy of a design directory, refer to the
beginning of the Design Architect tutorial.

The design in the calc_da directory should only be used if it was
15-2 Xilinx Development System

XACT-Performance and XDelay Tutorial
completed by performing the Design Architect tutorial. Other-
wise, use one of the solutions directories.

Understanding XACT-Performance
When discussing the timing requirements of a design, it is simple to
describe a requirement in such terms as “this signal must get from its
source to this load in a certain amount of time.” XACT-Performance
uses a similar from:to type of syntax. Symbols are grouped into
classes, and these classes are then used as endpoints for timing speci-
fication. Timing requirements are defined as the maximum accept-
able delays from the sources in one defined class, through interme-
diate combinatorial logic, to the associated loads in another class.

The three steps for adding timing specifications to a schematic are as
follows:

1. Add TNM attributes to symbols on your schematic to group them
into classes. This step is not necessary if you are using only pre-
defined classes.

2. Add a TIMEGRP symbol and add properties to the symbol. These
properties can combine the classes defined in step 1 into addi-
tional, more complex, classes. This step is optional.

3. Add a TIMESPEC symbol and add attributes to the symbol, defin-
ing the timing requirements for signals travelling between the
classes defined in steps 1 and 2.

Grouping Symbols with TNM Attributes
The most basic and flexible way of defining classes is through the
addition of TNM (Timing NaMe) attributes to symbols on a sche-
matic. By giving two or more symbols TNM attributes with identical
values, these symbols become part of the same class, which you can
reference in a from:to statement.

TNMs on Logic Primitives

TNMs are applicable to four types of primitives: flip-flops, RAMs,
I/O pads, and IOB latches. A class may not contain more than one of
these types of symbols, with the exception of flip-flops and IOB
Mentor Graphics Interface/Tutorial Guide 15-3

Mentor Graphics Interface/Tutorial Guide
latches, which may be included in the same class. TNMs on other
primitives, such as OR gates, are invalid.

The syntax of the TNM attribute is as follows:

TNM=identifier

where identifier is replaced with the name of the class. The name can
be any ASCII string using only the characters A-Z, a-z, _, and 0-9.

TNMs on Higher-Level Macro Symbols

You can also place TNM attributes on macro symbols containing one
or more of the logic primitives just discussed. The TNM attribute is
passed down through the hierarchy and placed on the logic primi-
tives below. If the macro contains primitives of more than one type,
you must specify the types of primitives inside the macro to which
the TNM attribute applies. For example, a macro may contain RAMs
and flip-flops. If you place a TNM on this macro, you must specify it
as applying to either the RAMs or the flip-flops.

The syntax for applying TNM attributes to macros is as follows. You
can specify one or more of the primitive types.

TNM=FFS:identifier;RAMS: identifier;LATCHES: identifier;
PADS:identifier

In this case, each instance of identifier is replaced by a unique class
name, with the exception of FFS and LATCHES, which can be in the
same class if desired.

TNMs on Nets to Tag Flip-Flops

The TNM attribute can also be placed on nets, using the TNM=identi-
fier syntax. The software traces the signal to all load pins on the net
and forward through combinatorial logic, and applies the TNM to
any flip-flops reached. This spreading of TNM specifications to load
pins is known as forward tracing.

For this purpose, if RAMs are encountered while tracing forward to
load pins, they are seen as transparent. This means that if a flip-flop is
sourced by the output of a RAM, and a TNM property is attached to
the write enable of the RAM, the flip-flop becomes part of the class.
15-4 Xilinx Development System

XACT-Performance and XDelay Tutorial
Grouping Symbols by Predefined Class
In many cases, it makes sense to apply a timing requirement to all
associated symbols of a certain type. For example, a given flip-flop
output may have a clock-to-setup timing requirement that applies to
all other flip-flops driven by the flip-flop output.

To simplify the grouping procedure in such cases, Xilinx provides
four predefined classes. These classes are FFS (flip-flops), PADS (I/O
pads), RAMS (XC4000 family RAM elements), and LATCHES (IOB
latches). Instead of placing a TNM attribute on each symbol, you can
reference the entire class in a from:to statement by taking advantage
of the predefined classes.

In the flip-flop example just discussed, you can use the from:to syntax
to specify that the timing requirement be applied from the source
flip-flop to the predefined class FFS.

Simplifying Symbol Grouping
The simplest way to group symbols is to use the basic syntax, TNM=
identifier, on primitives. The other methods are shortcuts that enable
you to quickly define classes that are related in some way, such as
instances in the same macro, flip-flops driven by a common net, and
so forth.

Combining Classes: TIMEGRP Symbol
Once classes are defined using TNM attributes, it can be useful to
define new classes in terms of the existing classes. You may wish to
join two or more classes into one, define a class that consists of all
symbols not already included in another class, or designate a set of
flip-flops triggered by a given clock edge as a new class. You can also
use TIMEGRP to designate a class by the output net names of the
primitive symbols.

To create these new classes, add the TIMEGRP symbol to your sche-
matic, then add an attribute for each new class definition. The name
of the attribute is the new class name. The value of the attribute is the
class definition.

Each TIMEGRP symbol has room for eight class definitions. If you
need to define more than eight classes, add additional TIMEGRP
Mentor Graphics Interface/Tutorial Guide 15-5

Mentor Graphics Interface/Tutorial Guide
symbols to your schematic. You can place TIMEGRP symbols at any
level of your hierarchy.

Joining Two or More Classes into One

You can define a new class as the combination of two or more existing
classes using the following syntax:

new_class=class1: class2[...: classn]

Using the EXCEPT Statement

A class defined using TNM attributes may account for all but a few of
the flip-flops in a design. One way to apply timing specifications to
the rest of the flip-flops is to create a new class that consists of all flip-
flops not already in the first class. You can create the new class by
defining an attribute that contains an EXCEPT statement. Use the
following syntax:

new_class=class1:EXCEPT: class2

where class1 is replaced by one of the predefined classes (FFS, PADS,
RAMS, or LATCHES) or by the name of a user-defined class. class2 is
replaced by the name of a user-defined class.

For example, in the situation just discussed, assume that the class
defined using TNMs is called FFGRP1, and the new class name is
FFGRP2. You can create the class of all flip-flops not in the class
FFGRP1 by adding the following attribute to the TIMEGRP symbol:

FFGRP2=FFS:EXCEPT:FFGRP1

Triggering on RISING or FALLING Clock Edges

You can also use TIMEGRP symbol attributes to make subsets of flip-
flops that are triggered by a certain clock edge. Use the following
syntax:

new_class=RISING: class

new_class=FALLING: class

New_class consists of all symbols in class that are clocked by the spec-
ified clock edge.
15-6 Xilinx Development System

XACT-Performance and XDelay Tutorial
Forming Classes by Output Net Name

You can define a new class as the class of all primitives with output
net names starting with a certain string. (BLKNMs or HBLKNMs are
used for PADS, if you added these attributes; otherwise the external
net name is used.) The full hierarchical net name is used.

You can also specify a class consisting of all blocks with output net
names beginning with a certain name by using the following syntax:

new_class=class(name*)

where class is one of FFS, RAMS, LATCHES, or PADS, and name*
limits the new class to those instances whose output net names
contain the string name. The asterisk is a wildcard, and is not always
necessary.

Note: This TIMEGRP capability must be used with caution. If your
design contains unrelated nets with names beginning with the same
string, they may be included in your time group or cause errors in
XNFMerge or XNFPrep. If you attempt to apply the attribute to all
blocks in a given schematic by specifying the instance name of the
symbol, but the outputs of some flip-flops are renamed at a higher
level of hierarchy, they are not included in the class.

Attaching Timing Specifications: TIMESPEC Symbol
Once you have defined appropriate classes by attaching TNM
attributes to symbols, and, optionally, by combining these classes
using the TIMEGRP symbol, the next step is to add the timing specifi-
cations to the schematic. First, place a TIMESPEC symbol on the sche-
matic, then add the from:to timing requirements in the form of
Mentor Graphics attributes. As with the TIMEGRP symbol, the
TIMESPEC symbol itself has no electrical functionality, but serves as
a placeholder for XACT-Performance attributes.

Use the following syntax to add timing specification attributes to a
TIMESPEC symbol:

TSname=FROM:class:TO: class=time

All TIMESPEC attribute names must start with TS, followed by a
unique identifier (name in the above example). The two class refer-
ences are replaced with the appropriate class names, as defined by
using TNMs and TIMEGRP symbols or by using the pre-defined
Mentor Graphics Interface/Tutorial Guide 15-7

Mentor Graphics Interface/Tutorial Guide
classes. Time specifies the timing requirement, in microseconds (US),
nanoseconds (NS), kilohertz (KHZ), or megahertz (MHZ). If no units
are specified, time is assumed to be in nanoseconds.

For example, to specify that the pad to setup path delay between all
pads and all flip-flops should be no greater than 40ns, add the
following attribute to the TIMESPEC symbol:

TS01=FROM:PADS:TO:FFS=40NS

Note: FROM:PADS:TO:FFS is not exactly equivalent to pad to setup,
since the PADS group includes not just data pads but also clock pads.
Therefore, FROM:PADS:TO:FFS includes both pad-to-setup and pad-
to-clock specifications. This inclusion is normally an advantage; how-
ever, if desired, you can use the EXCEPT syntax to eliminate the pad
to clock paths. For example, to create a source group equivalent to the
class referenced by pad to setup, use the TIMEGRP symbol to define a
group such as PADS:EXCEPT:pads_sourcing_clocks.

Each TIMESPEC symbol has room for eight timing specification
attributes. If you need more than eight specifications, add additional
TIMESPEC symbols to your schematic. You can place TIMESPEC
symbols at any level of your hierarchy.

Deciding When to Use XACT-Performance
The ideal approach to using XACT-Performance is to route your
design once without any timing constraints. PPR by, default, controls
path timing, using reasonable default values that it calculates based
on your design. If the resulting LCA file meets your timing require-
ments, your design is complete.

If not, the PPR log file, ppr.log, gives values that can be achieved for
FFS:TO:FFS, PADS:TO:FFS and FFS:TO:PADS timing. Use these
values to help determine reasonable default timing requirements as
described in the following section, “Setting Default Timing Require-
ments.”

After this run, check the new log file. If PPR is unable to meet the
default timing for all paths, it reports the paths for which the default
is not met. If critical paths in your design are not fast enough to meet
your specifications, it is time to consider adding more specific
15-8 Xilinx Development System

XACT-Performance and XDelay Tutorial
constraints, as described in a later section “Adding Timing
Constraints to Specific Paths”.

Clearly, tightening the default specifications for the entire design is
unlikely to help PPR speed up the critical paths. Instead, consider a
tighter specification on the most critical paths, combined with a
looser specification for unimportant paths. You can even assign a
value of IGNORE to some classes of paths, which is a very effective
technique because it tells PPR that it can sacrifice timing on the unim-
portant paths to improve timing on the important ones. To use the
IGNORE value, use the following syntax:

TSname=path:IGNORE

where path is one of the following special path types: DC2S, DC2P,
DP2S, or DP2P.

You may want to skip the first step and start by setting reasonable
default timing requirements.

If XACT-Performance and PPR are unable to achieve the speed
needed for your application, you may have reached the limits of the
hardware and/or software. You can increase the speed of the hard-
ware by using a part with a faster speed grade. The tutorial designs
are designed to work with the Xilinx Demonstration Boards and use
the slowest available speed grades.

Consider speeding up your design by making changes to the logic to
use the Xilinx FPGA architectures to better advantage. For example,
try reducing the number of logic levels between flip-flops in critical
paths. Xilinx FPGA architectures are rich in flip-flops, so pipelining is
a good approach. Alternatively, you can often increase the speed of
your design by using floorplanning. Use floorplanning to plan the
placement of your logic to simplify the data flow and lock down
symbol locations using CLBMAPs, FMAPs, HMAPs, and LOC
attributes. See the XACT Libraries Guide, the XACT Reference Guide,
and the other chapters of this manual for more information on how to
floorplan your design.

Setting Default Timing Requirements
In this tutorial, you add XACT-Performance symbols and attributes
to the Calc schematic but do not otherwise change the design. Many
Mentor Graphics Interface/Tutorial Guide 15-9

Mentor Graphics Interface/Tutorial Guide
of the TIMESPEC constraints used in the this tutorial are not actually
necessary for this or similar applications. They are included here to
illustrate different uses of XACT-Performance that you may find
useful in other designs.

Note: For more information on the Calc design, refer to the Design
Architect tutorial.

Adding a TNM Property
First, use a TNM property to define a group of flip-flops. The group is
used to specify the clock to pad default timing requirement.

1. Open Design Architect and load the Calc top-level schematic from
the appropriate design directory (calc_da, calc_3k, calc_3ka, or
calc_4k).

2. Making sure nothing else is selected, select a vertex (not an entire
net segment) on the main clock net CLK and choose Right
Mouse Button ➝ Properties ➝ Add . A dialog box appears.

3. Enter the data in the dialog box as shown in the figure below.

Figure 15-1 Adding TNM Property

4. Select OK.

5. Place the property near the CLK net, using the left mouse button.
15-10 Xilinx Development System

XACT-Performance and XDelay Tutorial
You have defined a class with the name FFGRP that consists of all
flip-flops driven by the clock net CLK.

Note: Because there is only one clock in the Calc design, the FFGRP
class in this case is the same as the predefined class FFS, which
includes every flip-flop in the design. However, the class is defined to
demonstrate the effects of attaching TNMs to clock signals, a very
common technique in XACT-Performance.

Entering Default Timing Specifications
Next, set the default timing specifications for the clock. The clock in
the XC3000A design should run at ~100Hz using the built-in on-
board oscillator. The clock in the XC4000 design is driven by the on-
chip oscillator, with the clock connected to the 15Hz output. We do
not actually need to use XACT-Performance to meet these slow
speeds. For simplicity, assume that in either case the clock speed is
500kHz. This clock speed is still quite slow, so the place and route
software will meet these timing requirements easily.

1. Use the Add Component command to place a TIMESPEC symbol
from the appropriate library (XC3000 for 3000A designs, XC4000
for 4000 designs) on the Calc schematic in the open area on the
right.

Note: All of the XACT-Performance symbols can be found in the sub-
library labeled “general” in the XACT_LIB library palette.

2. Making sure nothing else is selected, select the TIMESPEC symbol
by clicking the left mouse button on it. The TIMESPEC symbol
appears highlighted.

3. Choose Right Mouse Button ➝ Properties ➝ Add ➝
Add Multiple Properties . A dialog box appears.

4. Add the following data in the property name and property value
fields of the dialog box.

Property Name Property Value

TS01 FROM:FFS:TO:FFS=500KHZ

TS02 FROM:PADS:TO:FFS=1MHZ

TS03 FROM:FFGRP:TO:PADS=1000
NS
Mentor Graphics Interface/Tutorial Guide 15-11

Mentor Graphics Interface/Tutorial Guide
5. Select OK, then place the properties on the TIMESPEC symbol.

Note: You may notice that the property names do not appear when
the property is placed, only the property value is visible. This is a
characteristic of the Mentor Graphics software. It may be desirable to
place comment text next to the property values so that the name
(TS01, TS02, and so on) associated with a property can be easily seen.

6. Check and save your changes to the Calc schematic.

The new attribute TS01 specifies that all clock-to-setup paths must
have timing such that they can be driven by a 500kHz clock.

Pad-to-setup and clock-to-pad path delays are typically half of the
clock-to-setup requirement. For the Calc design, they must be driven
by a 1-MHz clock. TS02 specifies that all pad-to-setup path delays
have timing such that they can be driven by a 1-MHz clock.

Making use of the FFGRP class, which in this case is equivalent to the
FFS class, TS03 specifies that the clock-to-pad timing for the design be
a maximum of 1000 ns. The two timing specifications of 1000NS and
1MHZ are interchangeable. An equivalent specification for TS03 is
TS03=FROM:FFS:TO:PADS=1MHZ.

The following figure shows a portion of the Calc schematic with the
TNM attribute and TIMESPEC symbol.
15-12 Xilinx Development System

XACT-Performance and XDelay Tutorial
Figure 15-2 Calc Schematic with Default Timing Constraints

Adding Timing Constraints to Specific Paths
In the previous section, you applied default timing specifications to
the Calc tutorial design. In real applications, the above specifications
usually supply enough guidance to allow PPR to meet the timing
requirements. However, in this section the tutorial continues with
more specific path timing constraints to illustrate the application of
XACT-Performance to more specific groups of paths in a design.
Mentor Graphics Interface/Tutorial Guide 15-13

Mentor Graphics Interface/Tutorial Guide
Defining TNM Groups
First, define classes to be used as endpoints for timing specification.
You can use these classes to apply timing requirements from one class
to another or from one class to the same class.

Defining the INFFS Class

The INFFS class includes all input flip-flops from the IFD8 macro.

1. Select the IFD8 symbol from the top level Calc schematic.

2. Choose Right Mouse Button ➝ Properties ➝ Add .

3. Enter the following data in the dialog box.

4. Select OK, then place the property near or on the IFD8 symbol.

This property places the IFDs (IOB flip flops) in the IFD8 macro into a
new timing class called INFFS. The keyword “FFS” specifies that the
TNM property should only be applied to flip-flops underneath the
selected symbol. If, for example, there were also pads or RAM under-
neath the symbol, these instances would not be placed in the TNM
group. In this case, there are only flip-flops underneath IFD8, so the
keyword is not absolutely necessary. However, if there is more than
one symbol type underneath a macro and a keyword is not used to
identify which symbol types the TNM is to apply, XMake will fail
while running XNFMerge and issues a message explaining the error.

Defining the STACKER Class (XC4000 Family Only)

The Calc design for the XC4000 family contains a stack implemented
using on-chip RAM elements. In this section, these RAM elements are
grouped into a class called STACKER. If your design is an XC3000A
design, skip this section and continue with the next section, “Defining
the STACKER Class (XC3000A Only).”

1. Making sure nothing else is selected, select the STACK_4K symbol
from the top level Calc schematic.

2. Choose Right Mouse Button ➝ Properties ➝ Add .

Property Name Property Value

TNM FFS:INFFS
15-14 Xilinx Development System

XACT-Performance and XDelay Tutorial
3. Enter the following data in the first row of the dialog box.

4. Select OK, then place the property on or near the STACK_4K sym-
bol.

This attribute defines the new class named STACKER to contain all
RAM symbols in the STACK _4K macro.

Note: The predefined class RAMS is optional in defining STACKER
since the STACK_4K schematic contains only symbols of type RAM.

Defining the STACKER Class (XC3000A Only)

The Calc design for the XC3000A implements the stack using flip-
flops. In this section, these flip-flops are grouped into a class called
STACKER. If your design is an XC4000 family design, skip this
section and continue with the next section, “Defining the ALUFF
Class.”

1. Making sure nothing else is selected, select the STACK symbol
from the top level Calc schematic.

2. Choose Right Mouse Button ➝ Properties ➝ Add .

3. Enter the following data in the first row of the dialog box.

4. Select OK, then place the property on or near the STACK symbol

This attribute defines a new class named STACKER that contains all
flip-flops in the STACK macro.

Note: The predefined class FFS is optional in defining STACKER
since the only symbols in the STACK macro that can be given a TNM
property are of type FFS.

Defining the ALUFF Class

1. Making sure nothing else is selected, select the ALU symbol from
the top level Calc schematic.

Property Name Property Value

TNM RAMS:STACKER

Property Name Property Value

TNM FFS:STACKER
Mentor Graphics Interface/Tutorial Guide 15-15

Mentor Graphics Interface/Tutorial Guide
2. Choose Right Mouse Button ➝ Properties ➝ Add .

3. Enter the following data in the first row of the dialog box.

4. Select OK, then place the property on or near the ALU.

This attribute defines a new class named ALUFF that contains all flip
flops in the ALU macro. If a specific symbol type is not given (as was
in the last two TNM definitions), the software assumes that the TNM
should be applied to flip-flops. This is a useful shortcut if the only
primitives pertaining to XACT-Performance underneath a macro are
flip-flops (no rams or pads), as in the case of the ALU macro.

Defining the CTLFF Class

1. Making sure nothing else is selected, select the CONTROL symbol
from the top-level Calc schematic.

2. Choose Right Mouse Button ➝ Properties ➝ Add .

3. Enter the following data in the first row of the dialog box.

4. Select OK, then place the property on or near the CONTROL sym-
bol. This attribute defines a new class named CTLFF that contains
all flip flops in the CONTROL macro.

5. Check and save your changes to the Calc schematic.

Defining the STFF Class

1. Verify that the CONTROL symbol is still selected.

2. Select File ➝ Open Down . Open the schematic sheet for CON-
TROL.

3. Making sure nothing else is selected, select the STATE_4K symbol
(XC4000 family designs) or the STATMACH symbol (XC3000A
design).

4. Choose Right Mouse Button ➝ Properties ➝ Add .

Property Name Property Value

TNM ALUFF

Property Name Property Value

TNM CTLFF
15-16 Xilinx Development System

XACT-Performance and XDelay Tutorial
5. Enter the following data in the first row of the dialog box.

6. Select OK, then place the property on or near the state machine
symbol.

This attribute defines a new class named STFF that contains all flip-
flops in the state machine. STFF is a sub-class of the CTLFF class.
Even though this TNM attribute is defined on a lower-level sche-
matic, it is valid to use it in the TIMESPEC symbol on a different level
of the schematic.

Note: The above TNM attributes are all attached to macros, which
simplifies grouping. Alternatively, you can attach TNM attributes to
individual primitives, such as one or more individual flip-flops. In
that case, attach the TNM=class_name attribute individually to each
flip-flop you want included in the class.

Grouping Classes with TIMEGRP
In addition to the TNM classes, you can use the TIMEGRP primitive
symbol to define new classes in terms of existing classes or
predefined symbol types (FFS, RAMS, PADS, LATCHES).

Use the TIMEGRP symbol to create additional classes. Because the
Calc schematic sheet is crowded, place the TIMEGRP symbol in the
CONTROL schematic. TIMESPEC and TIMEGRP symbols can be
placed at any level in the schematic.

1. Add a TIMEGRP symbol from the appropriate Xilinx library (3000
for 3000A designs, 4000 for 4000 family designs) to the CONTROL
schematic in the open area at the lower right.

2. Make sure nothing is selected except for the TIMEGRP symbol.

3. Choose Right Mouse Button ➝ Properties ➝ Add ➝
Add Multiple Properties .

Property Name Property Value

TNM STFF
Mentor Graphics Interface/Tutorial Guide 15-17

Mentor Graphics Interface/Tutorial Guide
4. Enter the following properties in the dialog box.

Note that the property names start with an equal sign. The tools
that write an XNF netlist from a design use a table that provides
information on the Xilinx-specific properties that need to be writ-
ten to the netlist, such as the LOC property. All other properties
found in the schematic are not written to the netlist unless they are
preceded by an equal sign. Since the class names on the TIMEGRP
symbol are always different, there is no way to provide this infor-
mation to the tools ahead of time. Because of this, the property
names placed on the TIMEGRP symbol must be preceded by an
equal sign.

5. Select OK, then use the left mouse button to place the properties on
the TIMEGRP symbol.

The above procedure defines three new classes:

● The first new class, LEDPADS, represents all PADS symbols that
begin with the character string “LED.” In this case, the pad sym-
bols themselves do not have assigned BLKNM attributes, so
XACT-Performance uses the full hierarchical names from the
attached nets. The pads in the LED block are therefore named
LED/LED0_P, LED/LED1_P, and so forth.

● The second class, CTL_ALU_FF, combines two TNM classes,
CTLFF and ALUFF. This class includes all flip flops in either class.

● The third class, CTL_ADR_FF, represents all symbols in the
CTLFF class except for those in the STFF class. Since CTLFF
includes all flip-flops in the CONTROL block, and STFF includes
all flip-flops in the state machine (STATE_4K or STATMACH),
CTL_ADR_FF represents all flip flops in the CB2CLED macro
below CONTROL.

6. Check and save your changes to the CONTROL schematic.

7. Close the CONTROL schematic and return to the Calc schematic.

Property Name Property Value

=LEDPADS PADS(LED*)

=CTL_ALU_FF CTLFF:ALUFF

=CTL_ADR_FF CTLFF:EXCEPT:STFF
15-18 Xilinx Development System

XACT-Performance and XDelay Tutorial
The following figure shows the CONTROL schematic for the 3020A
with the TNM on STATMACH and the TIMEGRP symbol.

Figure 15-3 CONTROL Schematic with TNM and TIMEGRP

Specifying TIMESPEC Constraints
After completing all class definitions, specify the timing constraints.
Use the defined classes from TNM and TIMEGRP and the predefined
classes FFS, RAMS, PADS, and LATCHES as endpoints of the timing
paths.

1. Select the TIMESPEC symbol by clicking the left mouse button on
it.

2. Choose Right Mouse Button ➝ Properties ➝ Add ➝
Add Multiple Properties .
Mentor Graphics Interface/Tutorial Guide 15-19

Mentor Graphics Interface/Tutorial Guide
3. Enter the following data in the dialog box.

4. Select OK, then place the properties on the TIMESPEC symbol.

5. Check and save your changes to the Calc schematic.

The constraints that you have specified are the following.

● The TS04 timing attribute specifies that the clock-to-setup timing
from the class of flip-flops named INFFS to all flip-flops (FFS) of
the design be no more than 80 ns.

● TS05 specifies the clock-to-setup timing from the TIMEGRP
CTL_ADR_FF to the class of flip-flops named ALUFF to be 50 ns.

● TS06 specifies the clock-to-setup timing from the TIMEGRP
CTL_ALU_FF to the TNM class STACKER to be 30 ns.

● TS07 specifies the maximum path delays from the time the
STACKER data becomes valid, plus any combinatorial delays, to
the TIMEGRP LEDPADS, to be 50 ns.

● TS08 specifies the clock-to-pad timing from the TNM class ALUFF
to all the pads in the design to be 45 ns.

Making a Final Check
Finally, check to make sure that the TIMEGRP and TIMESPEC
symbols now have properties as shown in the following two figures.
The order of the attributes is unimportant. Check this by first
selecting the TIMEGRP symbol and executing Right Mouse
Button ➝ Properties ➝ Modify. A dialog box appears
showing the properties attached to the symbol. Check the properties,
then dismiss the dialog box by pressing the Escape key. Repeat this
for the TIMESPEC symbol as well.

Property Name Property Value

TS04 FROM:INFFS:TO:FFS=80NS

TS05 FROM:CTL_ADR_FF:TO:ALUFF=50

TS06 FROM:CTL_ALU_FF:TO:STACKER=30

TS07 FROM:STACKER:TO:LEDPADS=50

TS08 FROM:ALUFF:TO:PADS=45
15-20 Xilinx Development System

XACT-Performance and XDelay Tutorial
Figure 15-4 Completed TIMEGRP Symbol

Figure 15-5 Completed TIMESPEC Symbol

The completed Calc schematic is shown in the following figure. All
desired XACT-Performance specifications have been entered on the
schematic. The next step is to implement the design using XMake and
verify the results in the calc.out and ppr.log files.

TIMEGRP

=LEDPADS=PADS(LED*)

=CTL_ALU_FF=CTLFF:ALUFF

=CTL_ADR_FF=CTLFF:EXCEPT:STFF

TIMESPEC

TS01=FROM:FFS:TO:FFS=500KHZ

TS02=FROM:PADS:TO:FFS=1MHZ

TS03=FROM:FFGRP:TO:PADS=1000NS

TS04=FROM:INFFS:TO:FFS=80NS

TS05=FROM:CTL_ADR_FF:TO:ALUFF=50

TS06=FROM:CTL_ALU_FF:TO:STACKER=30

TS07=FROM:STACKER:TO:LEDPADS=50

TS08=FROM:ALUFF:TO:PADS=45
Mentor Graphics Interface/Tutorial Guide 15-21

Mentor Graphics Interface/Tutorial Guide
Figure 15-6 Calc Schematic with TNMs and TIMESPEC
Symbol

Implementing the Calc Design
The translation of designs containing XACT-Performance attributes is
exactly the same as the translation of other designs. In fact, even if
you do not specify any XACT-Performance attributes, PPR by default
controls path timing. PPR assigns reasonable default values and
attempts to meet the imposed requirements.

If you apply XACT-Performance attributes to your schematics, PPR
detects these specifications and, wherever they apply, uses them
15-22 Xilinx Development System

XACT-Performance and XDelay Tutorial
instead of calculating default values. In each phase of the implemen-
tation, which includes mapping, placement, and routing, PPR takes
the XACT-Performance attributes into account. If PPR is unable to
meet a given specification, it issues a warning to the PPR log file,
relaxes the requirement, and continues.

Note: You can make PPR terminate when it encounters an XACT-Per-
formance specification it cannot meet, by setting the PPR option
stop_on_miss=true↵.

For more information on PPR, see the PPR section of the XACT
Reference Guide. For detailed information on XMake and the
translation process, refer to the “Design Architect Tutorial” chapter
and to the XACT Reference Guide.

Creating a Routed Design
Run XMake to generate a routed LCA file.

1. Quit PLD_DA and open PLD_DMGR.

2. Select the Calc design component from the appropriate directory
in the navigator window.

3. Select Right Mouse Button ➝ Open ➝ pld_men2xnf8 .

4. Enter the appropriate part type and speed grade in the Part Type
field, 3020PC68-70, 3020APC68-7, 4003PC84-6, or 4003APC84-6.

5. Using the default options, choose OK. The Men2XNF8 program is
run to generate a Xilinx netlist (XNF) file from the schematic.

6. After Men2XNF8 executes, select the top-level calc.xnf file. It
appears as a file icon named calc with the word “XNF” written on
it.

7. Select Right Mouse Button ➝ Open ➝ pld_xmake.

8. Using the default options, choose OK. XMake maps, places, and
routes the design.

Examining XMake Output
XMake produces a screen output similar to the following.
Mentor Graphics Interface/Tutorial Guide 15-23

Mentor Graphics Interface/Tutorial Guide
XMAKE: Generating makefile 'calc.mak' ...
XMAKE: Set the part type to '3020APC68-7 from 'calc.xnf'.
XMAKE: Profile used is the current XDM settings.

>>> XDELAY is run always with '-D' and '-W' options by
XMAKE.
XMAKE: Makefile saved in 'calc.mak'.
XMAKE: Making 'calc.bit' ...
XMAKE: Execute command 'xnfmerge -D xnf -D . -P 3020APC68-7
calc.xnf calc.xff'.
XMAKE: Execute command 'xnfprep calc.xff calc.xtf
parttype=3020APC68-7'.
XMAKE: Execute command 'xnfmap -P 3020PC68-7 calc.xtf
calc.map'.
XMAKE: Execute command 'ppr calc.map parttype=3020APC68-7'.
XMAKE: Execute command 'xdelay -D -W calc.lca'
XMAKE: Execute command 'makebits -R2 -S0 calc.lca'
XMAKE: 'calc.bit' has been made. Check output in 'calc.out'

Figure 15-7 XMake Output

If your XACT-Performance specifications have any syntax errors,
they are flagged by XNFPrep. XNFPrep is a tool that performs a series
of checks on the XFF file, looks for illegal conditions of any sort, and
then trims unused logic from the netlist. If XNFPrep detects an illegal
XACT-Performance specification, XMake terminates. The XMake
output as recorded in the calc.out file prompts you to check the
calc.prp file for errors detected by XNFPrep. The PRP file includes a
list of all errors and warnings issued by XNFPrep. In this case, the
error message displays the attribute containing the syntax error and
shows the correct syntax for the attribute.

If XNFPrep detects syntax errors in your design, locate the errors by
checking the calc.prp file, correct the errors in the schematics, and run
XMake again.

Note: Always check the design.out file after running XMake.

Examining the PPR Log File
After XMake completes, view the ppr.log file produced by PPR.

The figure below shows portions of the ppr.log file from the calc_3ka
solutions directory design. The timing numbers reported vary
depending on the target device. Additionally, unless you specify
identical input parameters, each PPR run produces a slightly different
result.
15-24 Xilinx Development System

XACT-Performance and XDelay Tutorial
Note: Once you have a routed design that meets your timing needs,
you can make changes to your design while retaining the timing
characteristics of the unmodified logic. Use the incremental design
procedure discussed in the “Making Incremental Design Changes”
section of the Design Architect tutorial.

ppr 5.0.0 -- Xilinx Automatic CAE Tools
Copyright (c) 1994 Xilinx Inc. All Rights Reserved.

ppr: Reading input design data...
ppr: Placing logic...

*** PPR: WARNING 6811:

This design has 1 purely combinational loop. Such loops
should be avoided. If at all possible, please modify the
design to eliminate all unclocked feedback paths.

A loop of 1 source-to-load connections:

FG4 FG_OSC_3K/Q (Net OSC_3K/Q) to first gate aga in.

TS05: FROM_TO 50.0 ns;/ [best possible, 51.0 ns] = 0.98

*** PPR: WARNING 7015:
At least 1 of 5 path endpoints will miss spec. Continuing
anyway ..

ppr: Routing signals...
Design has 0 unroutes.

ppr: Generating .LCA File...
*** PPR: WARNING 10604:
An lca file already exists. The old lca file will be saved as
‘calc.lcb’.

ppr: Routing signals...

TS05: FROM_TO 50.0 ns;/ [best possible, 64.4 ns] = 0.78

*** PPR: WARNING 7015:
At least 4 of 5 path endpoints will miss spec. Continuing
anyway ..

Design has 0 unroutes.

--
Timing analysis summary
--

Deadline Actual(*) label: [qualifier]
-------- --------- ------------------

‘from’ ‘to’ 1000.0ns 48.6ns TSO3
‘from’ ‘to’ 45.0ns 40.1ns TS08:
Mentor Graphics Interface/Tutorial Guide 15-25

Mentor Graphics Interface/Tutorial Guide
‘from’ ‘to’ 50.0ns 43.6ns TS07:
‘from’ ‘to’ 30.0ns 24.4ns TS06:

(*) ‘from’ ‘to’ 50.0ns 79.2ns TS05:
‘from’ ‘to’ 80.0ns 66.3ns TS04:
‘from’ ‘to’ 1000.0ns 29.4ns TS02:
‘from’ ‘to’ 2000.0ns 79.2ns TS01:

(*) Note: the actual path delays computed by PPR indicate
that 1 of 8 timing specifications you provided was not met.
To confirm this result, please run xdelay.

of unrouted connections: 0.

ppr: Generating .LCA File...

*** PPR: WARNING 10604:
An lca file already exists. The old lca file will be saved as
‘calc.lcb’.

ppr: Making Report File...

- ppr @ 1994/01/16 08:55:22 [00:15:57]
= ---- @ 1994/01/16 00:17:33 [00:15:49]

+ ppr required [3896.727] kbytes of dynamic/allocated memory

Figure 15-8 Partial PPR Log File for an XC3020APC68-7 Design

Warnings in the PPR Log File

There are several warnings in the PPR log file. Warning 6811 refers to
the oscillator loop in the XC3000A design. Since this loop is delib-
erate, this warning can be ignored.

Warning 7015 reports that the timing specification TS05 does not meet
the deadline. That particular constraint was purposely specified so
that it would fail in order to illustrate how PPR displays a failure to
meet an XACT-Performance specification in the log file. The log file
tells you which XACT-Performance specification failed and also gives
the timing that it was able to achieve for the associated set of paths.
Since PPR checks timing both during placement and routing, this
error appears twice. Ignore the timing reported in the warning
messages, since these are “best estimates” computed before the place-
ment and routing is complete. The data in the timing analysis
summary near the end of the log file is more accurate. The rest of the
XACT-Performance constraints all meet the timing requirements.
15-26 Xilinx Development System

XACT-Performance and XDelay Tutorial
Warning 10604 occurs whenever PPR saves a new LCA file and there
is already an existing LCA file. Since PPR routes the design more than
once, these warnings occur in every ppr.log file and can safely be
ignored.

Timing Analysis Summary

The tabular timing analysis summary near the end of the ppr.log file
shows all XACT-Performance specifications in the design. For each
specification, it reports both the timing requirement and the resulting
timing for the worst-case path. Any missed specification, such as
TS05 in this example, is flagged.

Using XDelay, the Timing Analysis Program
The next step is to verify the timing of your routed design using
XDelay.

XDelay is a static timing analysis tool that reports the worst-case
timing delays of a routed FPGA design. XDelay has three operating
modes:

● Analyze mode quickly shows the maximum clock speed of a
design. It reports the worst-case timing paths for each of four
typical design path types: pad-to-setup, clock-to-setup, clock-to-
pad, and pad-to-pad.

● XDelay-TimeSpec mode verifies which XACT-Performance
constraints are met and reports all missed paths in detail.

● XDelay mode provides detailed path timing information
according to the selected options and offers insight as to which
paths in the design are the most critical. This information helps
you determine where to make modifications to meet the design
timing requirements.

XDelay has many command options. The following options are the
most commonly used. Many of them are demonstrated in this tuto-
rial.

The following options apply to all three operating modes:

● The Flagblk option flags certain blocks to which the path-delay
calculator gives special consideration.
Mentor Graphics Interface/Tutorial Guide 15-27

Mentor Graphics Interface/Tutorial Guide
● Query/Clear/Save/Read Template are commands to view, clear,
save, and load a template file containing XDelay options.

The FailedSpec and SelectSpec options apply to the XDelay-TimeSpec
mode:

● The FailedSpec option reports path delays that did not meet an
XACT-Performance timing specification. It considers only the
specifications selected using the SelectSpec option.

● The SelectSpec option allows you to select from a list of all defined
XACT-Performance specifications. The number of delay paths
reported for each selected specification is controlled by the
TSMaxpaths option.

The following options apply to the XDelay and Analyze modes:

● The ClockToSetup option constrains reporting to paths that start
at clocked outputs, such as flip-flop outputs, and end at clocked
inputs, such as flip-flop data inputs. Reported delays include the
setup requirement on flip-flops.

● The ClockToPad option constrains reporting to paths that start at
clocked outputs, such as flip-flop outputs, and end at output pads.

● The PadToSetup option constrains reporting to paths that start at
input pads and end at clocked inputs, such as flip-flop data
inputs. Reported delays include the setup requirement on flip-
flops.

● The PadToPad option constrains reporting to all paths that start at
input pads and end at output pads, with only combinatorial logic
elements in the path. (This option is not demonstrated, because
the only unclocked paths in the tutorial design are in the clock
oscillator in the XC3000A.)

● The FromFF and ToFF options together allow reporting on specific
paths by selecting the flip-flops at the endpoints of the paths.

For more information on using XDelay, refer to the “XDelay” section
of the XACT Reference Guide.
15-28 Xilinx Development System

XACT-Performance and XDelay Tutorial
Analyzing the Calc Design
This section analyzes the results of the XACT-Performance design
created earlier in this tutorial. The routed LCA file input to XDelay
contains actual timing delays as well as XACT-Performance specifica-
tions. XDelay analyzes this information and shows different types of
delay paths according to the options you select. Selected options are
stored as an XDelay template file with an .xtm extension. This section
demonstrates a typical XDelay analysis command sequence.

Note: The sample XDelay output in this tutorial is from a single Calc
LCA file, targeted to the XC3020APC68-7. Your results will vary.

Invoking XDelay
You can invoke XDelay from the operating system prompt, from the
Verify menu in XDM, or from the EditLCA program under the XACT
Design Editor (XDE), which is not available in the Base Development
System.

1. Invoke XDelay from the operating system prompt by typing
xdelay ↵. The XDelay graphic environment appears.

2. Load the Calc design into memory by selecting Design ➝
Design ➝ CALC.LCA from the XDelay menu bar.

Using the Flagblk Option
In the Calc design, there are a number of flip-flops with asynchro-
nous reset signals. You want to ignore the paths through these asyn-
chronous inputs during timing analysis. (Normally a designer is
unconcerned with asynchronous reset paths when considering clock-
to-setup requirements.) The Flagblk option is useful for specifying
that this type of path be ignored.

PPR does not trace paths through the Set and Reset (SD/RD) pins of
flip-flops, so the timing results in the timing analysis summary of the
ppr.log file do not include any paths through the SD/RD pins.

To verify the timing results from the ppr.log file, you must disable
tracing paths through the SD/RD pins. As a result, XDelay does not
trace through the above-mentioned paths when calculating path
delays, which permits a valid comparison of the timing results from
the PPR log file and the XDelay output.
Mentor Graphics Interface/Tutorial Guide 15-29

Mentor Graphics Interface/Tutorial Guide
Disabling Paths Through SD/RD Pins of Flip-Flops

Disable these paths with the Flagblk option as follows.

1. Select Timing ➝ Flagblk ➝
CLB_Disable_SR_Q. A menu appears, displaying a list of all
CLB blocks in the design.

2. Type * ↵ to select all blocks. A prompt appears, asking whether
you are sure you want to select all of the blocks.

3. Select Yes ➝ Done . This command disallows paths from a CLB
Asynchronous Set or Reset input to the Q output of the flip-flop.

Displaying Current Options

The Query Template command displays the current settings of all
options. You can save a template to a file using the Save Template
command, load a customized template using the Read Template
command, or clear the current template with the Clear Template
command.

1. Select Timing ➝ QueryTemplate to view the current XDelay
options.

2. After viewing the template listing, press any key to return to the
XDelay executive screen.

The current template appears on the screen. The template includes all
restrictions you applied to each CLB. A partial template for an
example XC3000A design is shown in the following figure.

XDelay -NoSourceClock
XDelay -NoDestClock
XDelay -NoIgnorenet
XDelay -NoNetfilter
XDelay -NoBreakLoop

Flagblk CLB_Disable_SR_Q ALU/DATA0
Flagblk CLB_Disable_SR_Q STACK2
.
Flagblk CLB_Disable_SR_Q ALU/ENOV
Flagblk CLB_Disable_SR_Q CTL2

Figure 15-9 Partial Template for an XC3020APC86-7 Design
15-30 Xilinx Development System

XACT-Performance and XDelay Tutorial
Using Analyze Mode
Now that you have restricted XDelay to considering only clocked
paths, perform a quick analysis to determine the worst-case timing
for the Calc design.

By default, XDelay output is written to the screen. Normally, you
want to keep a copy of the analysis results. Also, writing to a file is
much faster than reporting to the screen, since there is no need to
funnel information through a graphical interface.

1. Select Misc ➝ Report to specify that you want the results writ-
ten to a file. You are prompted to enter a file name.

2. Type ↵ to accept the default file name, calc.xrp.

3. Select Analyze ➝ Done .

For the example 3020APC68 design, XDelay reports the same combi-
natorial logic loop detected by PPR. Since this loop is deliberately
included to create an oscillator, ignore this message.

Examining Analyze Mode Output
Examine the Analyze output file.

1. Press any key to return to the XDelay graphic screen.

2. Use any text editor to examine the XDelay report file, calc.xrp,
which was created in the present design directory.

A partial report file for the XC3020APC68-7 example design is shown
in the following figure. The last line of the file shows that the design
will operate at approximately 12.7 MHz under worst-case conditions.

The XRP file lists the worst-case pad-to-pad, pad-to-setup, clock-to-
pad, and clock-to-setup delays. It also provides an estimate of the
minimum clock period and maximum clock speed for the input
design.

Warning: Combinational logic loop(s) have been detected.
These may cause subtle design problems, and may yield some
inaccurate path delays. For a detailed enumeration of these
loops, use the “DRC -Inform” command from within XDE/EditLCA.

XDelay Report File:

Worst case Pad to Pad path delay : 37.8ns (1 block level)
 Pad “OSC_3K/CQ” (P14) to Pad “OSC_3K/CQL” (P12.T)
Mentor Graphics Interface/Tutorial Guide 15-31

Mentor Graphics Interface/Tutorial Guide
Clock net “CLK” path delays:

Pad to Setup : 14.0ns (0 block levels)
 (Includes an external input margin of 0.0ns.)
 Pad to Input FF Setup, Pad “SW7/SW0_P” (P24).
 Target InFF drives output net “SW0”

Clock to Pad : 48.3ns (2 block levels)
 (Includes an external output margin of 0.0ns.)
 Clock to Q, net “ADDR0” to Pad “LED/LED1_P” (P30.O)

Clock to Setup (same edge) : 78.6ns (6 block levels)
 Clock to Q, net “ADDR0” to FF Setup (D) at “ALU2.A”
 Target FFX drives output net “ALU2”

Minimum Clock Period : 78.6ns

Estimated Maximum Clock Speed : 12.7Mhz

Figure 15-10 Analyze Output for an XC3020APC68-7 Design

Using XDelay-TimeSpec Mode
Use the XDelay-TimeSpec mode to evaluate the timing of your design
with respect to the XACT-Performance attributes that you added to
your schematic.

The FailedSpec and SelectSpec options are particularly useful for
evaluating XACT-Performance results. FailedSpec reports all path
delays that do not meet timing specifications, and SelectSpec allows
you to select which XACT-Performance specifications you wish to be
considered.

Note: Used without the FailedSpec option, the SelectSpec option
reports the worst paths for each XACT-Performance specification.

As in the “Using the Analyze Mode” section, create a written report
file.

1. Select Misc ➝ Report .

2. Type calcts.xrp ↵ to distinguish the new output file from the
previous one.

3. Select XDelay-TimeSpec . A menu appears displaying available
delay options. The default options are highlighted.

4. Select ClearOptions to remove any delay options you may have
previously selected. The Flagblk options you set earlier in the
15-32 Xilinx Development System

XACT-Performance and XDelay Tutorial
tutorial are not cleared, because they are template options rather
than delay options.

5. Select the -FailedSpec option.

6. The SelectSpec option is already on by default, but select it
anyway. A menu of defined XACT-Performance attributes
appears. You can select any or all of the timing specifications on
this list. By default, all XACT-Performance specifications are
already selected.

7. Select Cancel to accept the list with all entries selected. Next, set
the maximum number of paths shown for each failed XACT-Per-
formance constraint to be three.

8. Select -TSMaxpaths .

9. Type 3↵.

Note: If you do not set the TSMaxpaths option, the report file lists
delays for every path controlled by each XACT-Performance specifi-
cation in your design. This may cause XDelay to run out of memory;
if not, it produces a very large output file.

10. Select Done to initiate the timing analysis. As before, for the exam-
ple 3020APC68 design XDelay reports the same combinatorial
logic loop detected by PPR. Since this loop is deliberately
included to create an oscillator, ignore this message.

Examining XDelay-TimeSpec Mode Output
The XDelay-TimeSpec output file contains a great deal of informa-
tion.

1. Press any key to return to the XDelay graphic screen.

2. Use any text editor to examine the XDelay report file, calcts.xrp.

A portion of the resulting report file for the XC3020APC68-7 example
design is shown in the following figure.

XDelay: calc.lca (3020APC68-7), xdelay 5.0.0, Mon Jan 17
11:15:36 1994

Warning: Combinational logic loop(s) have been detected.
These may cause subtle design problems, and may yield some
inaccurate path delays. For a detailed enumeration of these
loops, use the “DRC -Inform” command from within XDE/EditLCA.
Mentor Graphics Interface/Tutorial Guide 15-33

Mentor Graphics Interface/Tutorial Guide
XDelay Report File:

Xdelay path report options:

TimeSpec ‘TSO3’ from group ‘FFGRP’ to group ‘PADS’ is
1000.0ns.
TimeSpec ‘TS01’ from group ‘FFS’ to group ‘FFS’ is 2000.0ns.
TimeSpec ‘TS02’ from group ‘PADS’ to group ‘FFS’ is 1000.0ns.
TimeSpec ‘TS04’ from group ‘INFFS’ to group ‘FFS’ is 80.0ns.
TimeSpec ‘TS05’ from group ‘CTL_ADR_FF’ to group ‘ALUFF’ is
50.0ns.
TimeSpec ‘TS06’ from group ‘CTL_ALU_FF’ to group ‘STACKER’ is
30.0ns.
TimeSpec ‘TS07’ from group ‘STACKER’ to group ‘LEDPADS’ is
50.0ns.
TimeSpec ‘TS08’ from group ‘ALUFF’ to group ‘PADS’ is 45.0ns.

TimeGroup ‘ALUFF’ contains these Flip-Flop output nets:
ALU0 ALU1 ALU2 ALU3 OFL

TimeGroup ‘CTL_ADR_FF’ contains these Flip-Flop output nets:
ADDR0 ADDR1

TimeGroup ‘CTL_ALU_FF’ contains these Flip-Flop output nets:
ADDR0 ALU0 ALU2 CONTROL/STATMACH/OTHER OFL
ADDR1 ALU1 ALU3 CONTROL/STATMACH/PUSH WE
.
.
.
TimeGroup ‘STACKER’ contains these Flip-Flop output nets:
STACK/A0 STACK/A3 STACK/B2 STACK/C1 STACK/D0 STACK/D3
STACK/A1 STACK/B0 STACK/B3 STACK/C2 STACK/D1
STACK/A2_1 STACK/B1 STACK/C0 STACK/C3 STACK/D2

Only paths that do not meet the selected TimeSpecs will be
reported.
Output will be sorted by decreasing path delays.
A maximum of 3 paths will be reported for each TimeSpec.

--

TimeSpec ‘TSO3’ summary:
From TimeGroup ‘FFGRP’
To TimeGroup ‘PADS’

TimeSpec limit is : 1000.0ns (Spec speed = 1.0MHz)
Worst path delay is : 48.3ns (Real speed = 20.7MHz)

TimeSpec passes by : 951.7ns

List of delay paths that fail the TimeSpec:
There are no paths that fail the TimeSpec.

--
15-34 Xilinx Development System

XACT-Performance and XDelay Tutorial
TimeSpec ‘TS01’ summary:
From TimeGroup ‘FFS’
To TimeGroup ‘FFS’

TimeSpec limit is : 2000.0ns (Spec speed = 0.5MHz)
Worst path delay is : 78.6ns (Real speed = 12.7MHz)

TimeSpec passes by : 1921.4ns

List of delay paths that fail the TimeSpec:
There are no paths that fail the TimeSpec.

--

TimeSpec ‘TS02’ summary:
From TimeGroup ‘PADS’
To TimeGroup ‘FFS’

TimeSpec limit is : 1000.0ns (Spec speed = 1.0MHz)
Worst path delay is : 29.4ns (Real speed = 34.0MHz)

TimeSpec passes by : 934.6ns

List of delay paths that fail the TimeSpec:
There are no paths that fail the TimeSpec.

--

TimeSpec ‘TS04’ summary:
From TimeGroup ‘INFFS’
To TimeGroup ‘FFS’

TimeSpec limit is : 80.0ns (Spec speed = 12.5MHz)
Worst path delay is : 65.4ns (Real speed = 15.3MHz)

TimeSpec passes by : 14.6ns

List of delay paths that fail the TimeSpec:
There are no paths that fail the TimeSpec.

--

TimeSpec ‘TS05’ summary: *** TimeSpec FAILED! ***
From TimeGroup ‘CTL_ADR_FF’
To TimeGroup ‘ALUFF’

TimeSpec limit is : 50.0ns (Spec speed = 20.0MHz)
Worst path delay is : 78.6ns (Real speed = 12.7MHz)

*** TimeSpec FAILS by : 28.6ns ***

List of delay paths that fail the TimeSpec:

Logical Path Delay Cumulative
------------ ----- ----------

Source clock net : “CLK” (Rising edge)
Mentor Graphics Interface/Tutorial Guide 15-35

Mentor Graphics Interface/Tutorial Guide
From: Blk ADDR1 CLOCK to FE.Y : 4.5ns (4.5ns)
Thru: Net ADDR0 to HH.C : 8.9ns (13.4ns)
Thru: Blk STACK/$1I15/M01 to HH.X : 5.1ns (18.5ns)
Thru: Net STACK/$1I15/M01 to HF.C : 3.1ns (21.6ns)
Thru: Blk STACK0 to HF.X : 5.6ns (27.2ns)
Thru: Net STACK0 to HB.A : 4.7ns (31.9ns)
Thru: Blk ALU/DATA0 to HB.X : 5.1ns (37.0ns)
Thru: Net ALU/DATA0 to ED.D : 6.2ns (43.2ns)
Thru: Blk ALU/$1I308/C0 to ED.X : 5.1ns (48.3ns)
Thru: Net ALU/$1I308/C0 to BE.E : 4.5ns (52.8ns)
Thru: Blk ALU/$1I308/C1 to BE.X : 5.1ns (57.9ns)
Thru: Net ALU/$1I308/C1 to CD.A : 2.5ns (60.4ns)
Thru: Blk ALU/$1I308/C2 to CD.X : 5.1ns (65.5ns)
Thru: Net ALU/$1I308/C2 to DD.B : 1.9ns (67.4ns)
Thru: Blk LU/MUXBLK5/$1I5/M01 to DD.X : 5.6ns (73.0ns)
Thru: Net LU/MUXBLK5/$1I5/M01 to DE.B : 0.6ns (73.6ns)
To: FF Setup (D), Blk ALU3 : 5.0ns (78.6ns)

Target FFX drives output net “ALU3”
Dest clock net : “CLK” (Rising edge)
Clock delay to Source clock pin : 2.8 ns
Clock delay to Dest clock pin : 2.8 ns
Clock net “CLK”, delta clock delay [skew] : 0.0 ns

.

. (TWO MORE FAILED PATHS OMITTED)

.

--

TimeSpec ‘TS06’ summary:
From TimeGroup ‘CTL_ALU_FF’
To TimeGroup ‘STACKER’

TimeSpec limit is : 30.0ns (Spec speed = 33.3MHz)
Worst path delay is : 24.0ns (Real speed = 41.8MHz)

TimeSpec passes by : 6.0ns

List of delay paths that fail the TimeSpec:
There are no paths that fail the TimeSpec.

--

TimeSpec ‘TS07’ summary:
From TimeGroup ‘STACKER’
To TimeGroup ‘LEDPADS’

TimeSpec limit is : 50.0ns (Spec speed = 20.0MHz)
Worst path delay is : 43.4ns (Real speed = 23.0MHz)

TimeSpec passes by : 6.6ns

List of delay paths that fail the TimeSpec:
15-36 Xilinx Development System

XACT-Performance and XDelay Tutorial
There are no paths that fail the TimeSpec.

--

TimeSpec ‘TS08’ summary:
From TimeGroup ‘ALUFF’
To TimeGroup ‘PADS’

TimeSpec limit is : 45.0ns (Spec speed = 22.2MHz)
Worst path delay is : 40.0ns (Real speed = 25.0MHz)

TimeSpec passes by : 5.0ns

List of delay paths that fail the TimeSpec:
There are no paths that fail the TimeSpec.

--

Paths not used in TimeSpecs :

There are no paths in this section!

--

Figure 15-11 XDelay-TimeSpec Output for XC3020APC68-7

The first section of the XRP file lists all XACT-Performance
specifications applied to your design. If you do not specify any paths
that fall into a given default path type, FFS:TO:FFS, PADS:TO:FFS, or
FFS:TO:PADS, that default specification is set to “auto,” which means
that PPR assigns some reasonable value as the timing specification.

The output file then lists the contents of each time group that you
defined using TNM attributes and TIMEGRP symbol attributes. This
section can be useful in verifying your time group definitions.

The ALUFF time group contains the four ALU outputs and the OFL
flip-flop output. Therefore, the group contains all of the flip-flops in
the ALU, and no other flip-flops, just as expected.

The CTL_ADR_FF set was defined in the “Grouping Sets with
TIMEGRP” section. It is defined as CTLFF:EXCEPT:STFF and should
contain only the flip-flops in the CB2CLED macro below CONTROL.
The outputs of the CB2CLED macro are ADDR0 and ADDR1, and, as
shown in the output, the set CTL_ADR_FF does include only these
two flip-flop outputs.

The worst path delay is then reported for each XACT-Performance
specification.
Mentor Graphics Interface/Tutorial Guide 15-37

Mentor Graphics Interface/Tutorial Guide
For TS05, which missed the target timing, the XRP file includes a
detailed listing of the three slowest paths. You can use this listing to
examine your critical paths and determine why each path is not
routable with the current timing requirement, then take steps to
remedy the situation.

For example, for the failed path shown in the output, the longest
delay on the path is an 8.9 ns delay between the Y output of CLB FE
and the C input of CLB HH. (The block name of CLB FE is ADDR1,
since the block is named after the X output, but the signal you are
tracing is ADDR0.) Since these CLBs are some distance from each
other, the net delay is significant. Compare this net delay to the net
delay listed further down the path, between the X output of CD and
the B input of CLB DD; the delay between these adjacent CLBs is only
1.9 ns. You might be able to speed up this path by using floorplanning
techniques to place the logic in a smaller area.

A comparison of the results of the FailedSpec output with the PPR log
file shows that the PPR and XDelay results vary by only a few tenths
of nanoseconds. When there is a discrepancy between the two, the
XDelay results are correct.

For example, in the FailedSpec output, the last XACT-Performance
specification listing is for TS08, FROM:ALUFF:TO:PADS=45. The
FailedSpec output shows that the worst path delay is 40.0 ns. The
ppr.log file shows the worst path delay to be 40.1 ns.

Using XDelay Mode
In XDelay mode, you can generate reports either based on general
path types or analyzing designated paths from specific sources to
specific destinations.

Reporting by Path Type

To simplify the analysis of designs without XACT-Performance speci-
fications, the XDelay mode offers four options that restrict reporting
to paths of four common types. These options are ClockToSetup,
ClockToPad, PadToSetup, and PadToPad. You can select one or more
of these options.

The number of paths reported depends on the value of the Maxpaths
option.
15-38 Xilinx Development System

XACT-Performance and XDelay Tutorial
Use the ClockToSetup option to report the single slowest path
between two flip-flops clocked by the same edge of the clock.

1. Select Misc ➝ Report . You are prompted to enter the name of
the report file.

2. Type calcc2s.xrp ↵.

3. Select XDelay . A menu appears displaying available delay
options.

4. Select ClearOptions to remove any delay options you may
have previously selected.

The Flagblk options you set earlier in the tutorial are not cleared,
because they are template options rather than delay options.

5. Select -ClockToSetup .

6. Select -Maxpaths and type 1↵.

Setting Maxpaths=1 directs XDelay to report only the worst clock-
to-setup path in the design.

Note: If you do not set the Maxpaths option, the report file lists
delays for every path in your design. This may cause XDelay to run
out of memory; if not, it produces a very large output file.

7. Select Done and press any key to return to the XDelay graphic
screen.

8. Use any text editor to examine the XDelay report file, calcc2s.xrp.

A portion of an example calcc2s.xrp file is shown in the figure below.

The only paths reported are those between flip-flops: in other words,
the paths that fall into the ClockToSetup or FROM:FFS:TO:FFS
category. Since Maxpaths was set to one, only the worst-case clock-to-
setup path is reported.

Output will be sorted by decreasing path delays.
Report file may include Clock To Setup paths.
A maximum of 1 path will be reported for each TimeSpec.

--

Logical Path Delay Cumulative
------------ ----- ----------

Source clock net : “CLK” (Rising edge)
Mentor Graphics Interface/Tutorial Guide 15-39

Mentor Graphics Interface/Tutorial Guide
From: Blk ADDR1 CLOCK to FE.Y : 4.5ns (4.5ns)
Thru: Net ADDR0 to HH.C : 8.9ns (13.4ns)
Thru: Blk STACK/$1I15/M01 to HH.X : 5.1ns (18.5ns)
Thru: Net STACK/$1I15/M01 to HF.C : 3.1ns (21.6ns)
Thru: Blk STACK0 to HF.X : 5.6ns (27.2ns)
Thru: Net STACK0 to HB.A : 4.7ns (31.9ns)
Thru: Blk ALU/DATA0 to HB.X : 5.1ns (37.0ns)
Thru: Net ALU/DATA0 to ED.D : 6.2ns (43.2ns)
Thru: Blk ALU/$1I308/C0 to ED.X : 5.1ns (48.3ns)
Thru: Net ALU/$1I308/C0 to BE.E : 4.5ns (52.8ns)
Thru: Blk ALU/$1I308/C1 to BE.X : 5.1ns (57.9ns)
Thru: Net ALU/$1I308/C1 to CD.A : 2.5ns (60.4ns)
Thru: Blk ALU/$1I308/C2 to CD.X : 5.1ns (65.5ns)
Thru: Net ALU/$1I308/C2 to DD.B : 1.9ns (67.4ns)
Thru: Blk LU/MUXBLK5/$1I5/M01 to DD.X : 5.6ns (73.0ns)
Thru: Net LU/MUXBLK5/$1I5/M01 to DE.B : 0.6ns (73.6ns)
To: FF Setup (D), Blk ALU3 : 5.0ns (78.6ns)
Target FFX drives output net “ALU3”

Dest clock net : “CLK” (Rising edge)
Clock delay to Source clock pin : 2.8 ns
Clock delay to Dest clock pin : 2.8 ns
Clock net “CLK”, delta clock delay [skew] : 0.0 ns

--

Figure 15-12 ClockToSetup Output for XC3020APC68-7 Design

Specifying Source and Destination
For a report of a specific path, use the FromFF and ToFF options in the
XDelay mode. For instance, suppose you are concerned about the
path delay between Delay1 and Delay2 in the debounce circuit of the
Calc design. (These nets are the outputs of consecutive flip-flops.
XDelay can not report path delays that span more than one flip-flop.)

Follow the steps below to get a detailed report of the delays on this
path.

1. Select Misc ➝ Report .

You are prompted to enter the name of the report file.

2. Type dpath.xrp ↵.

3. Select XDelay ➝ -ClearOptions .

You are ready to enter the endpoints of the desired path.
15-40 Xilinx Development System

XACT-Performance and XDelay Tutorial
4. Select -FromFF .

A list of all flip-flops in the design appears on the screen. The flip-
flops are identified by the name of the output net.

5. Select the source flip-flop by the name of the output net,
DEBOUNCE/DELAY1.

6. Select Done to accept the list of source flip-flops.

Alternatively, you could select additional flip-flops to get reports
on more than one path.

7. Select -ToFF .

8. Select the destination flip-flop by the name of the output net,
DEBOUNCE/DELAY2↵.

9. Select Done.

As with the FromFF option, entering more names would enable
you to obtain reports of multiple paths.

10. Select Done to initiate the analysis.

Note: In the EditLCA design editor, you can select the FromFF and
ToFF flip-flops with the mouse. Alternatively, you can type the out-
put net names or select the flip-flops from the menu.

11. Use any text editor to examine the XDelay report file, dpath.xrp.

The dpath.xrp file details a single path, the path between the Delay1
flip-flop and the Delay2 flip-flop, as shown in the figure below. From
the rising clock edge on the Delay1 flip-flop to the setup on the input
pin of the Delay2 flip-flop, there is a maximum delay of 11.9 ns under
worst-case conditions. There is no detectable clock skew between the
two flip-flops.

The From, FromIOB, FromAll, To, ToIOB, and ToAll options are all
similar in usage to the FromFF and ToFF options demonstrated in
this section. Refer to the “XDelay” section of the XACT Reference
Guide for more details.

Note: When selecting nets in EditLCA for the From and To options,
place the cursor on a pin, such as .X, .YQ, .F1, or .G2, that is connected
to the desired net. Make sure the correct net name appears in the sta-
tus window. Click the left mouse button to add the net to the list of
selected nets.
Mentor Graphics Interface/Tutorial Guide 15-41

Mentor Graphics Interface/Tutorial Guide
From FF “DEBOUNCE/DELAY1”
To FF “DEBOUNCE/DELAY2”
Output will be sorted by decreasing path delays.

--

Logical Path Delay Cumulative
------------ ----- ----------

Source clock net : “CLK” (Rising edge)
From: Blk BOUNCE/DELAY1 CLOCK to BA.X : 4.5ns (4.5ns)
Thru: Net DEBOUNCE/DELAY1 to BA.DI : 3.4ns (7.9ns)
To: FF Setup (D), Blk DEBOUNCE/DELAY1 : 4.0ns (11.9ns)
Target FFY drives output net “DEBOUNCE/DELAY2”

Dest clock net : “CLK” (Rising edge)
Clock delay to Source clock pin : 2.7 ns
Clock delay to Dest clock pin : 2.7 ns
Clock net “CLK”, delta clock delay [skew] : 0.0 ns

--

Figure 15-13 Dpath.xrp File for an XC3020APC68-7 Design

Further Reading
Before using XACT-Performance for your own designs, you should
read the “XACT-Performance Utility” section of the XACT Reference
Guide. More information on XDelay can be found in the “XDelay”
section of the same manual.
15-42 Xilinx Development System

XEPLD Tutorial

Mentor
Graphics
Interface/
Tutorial
Guide
Mentor Graphics Interface/Tutorial Guide — 0401408 01 Printed in U.S.A.

Mentor Graphics Interface/Tutorial Guide
Xilinx Development System

Chapter 16

XEPLD Tutorial

Welcome to the Xilinx EPLD Mentor Graphics tutorial. This tutorial
will give you a basic understanding of the XEPLD development
software and some hands-on experience so you can start your first
design as quickly as possible. This tutorial is not meant as a substitute
for the XEPLD Reference Guide or your Mentor Graphics manuals.

Software Installation

Required Software
The following versions of software are required to perform this
tutorial:

● Mentor Graphics Version 8.2_5 or later

● Xilinx/Mentor Graphics Interface DS344 Version 5 or later

● XACT Design Manager (XDM) Version 5 or later

Before Beginning the Tutorial
Before beginning the tutorial, set up your workstation to use Mentor
Graphics and XACT Development System software as follows:

1. Verify that your system is properly configured. Consult the
release notes that came with your software package for more
information.

2. Install the following sets of software:

● XACT Development System (DS550) version 5.00.

● Xilinx DS344 Mentor Graphics Version 5 interface.

● Mentor Graphics software Version 8.2_5 or later, including
Mentor Graphics Interface/Tutorial Guide — 0401408 01 16-1

Mentor Graphics Interface/Tutorial Guide
Design Manager, Design Architect, QuickSim II, QuickPath,
and the ability to produce EDIF netlists from ENWRITE, which
requires special licensing.

3. Verify the installation. When you finish the installation, verify that
your .cshrc or setup file contains lines similar to the following:

Note: Path names of directories will vary. For more information on
paths and environment variables, refer to the release notes that came
with your software package.

setenv LCA /location_of_ds_344:
setenv XACT /location_of_ds_344:
/location_of_ds550
set PATH=($PATH \

$LCA/com/sparc \
$LCA/bin/sparc \

/location_of_ds550 /bin/sparc\
)

Modifying Mentor Graphics Variables

Make sure that the following Mentor specific variables are set
correctly:

● MGC_HOME

This should point to the Mentor Graphics software tree.

● MGC_GENLIB

This should point to the Mentor Graphics genlib library, normally
$MGC_HOME/gen_lib.

● LD_LIBRARY_PATH

This variable is used by the Mentor Design DataPort (DDP)
routines that are accessed by some Xilinx programs. This variable
is normally set with the following, on a SPARC station, assuming
that OpenWindows is installed in /usr:

setenv LD_LIBRARY_PATH $MGC_HOME/shared/
lib:$MGC_HOME/lib:/usr/openwin/lib

● MGC_LOCATION_MAP

This variable should point to a valid location map file.
16-2 Xilinx Development System

XEPLD Tutorial
Every symbol and schematic in your design contains a reference.
A reference indicates where the design object resides on your disk.
The tutorial designs use variables in their reference definitions so
they can be easily relocated. All of the tutorial designs use the
variable $xilinx_tutorial to define the path reference.
$xilinx_tutorial must be defined in the file pointed to by
$MGC_LOCATION_MAP. For example, the design object rcvrsub
in the install_path/tutorial/mentor/uarttop directory uses the
path reference $xilinx_tutorial/uarttop/rcvrsub to define where it
is located in the directory structure. If the tutorial directories were
copied to the path /home/bclinton/mentor the following two
lines must be added to the file pointed to by
$MGC_LOCATION_MAP:

$xilinx_tutorial
/home/bclinton/mentor

If a query was made to determine where the design object
‘$xilinx_tutorial/uarttop/rcvrsub’ is located, the Mentor
Graphics tools would use this definition to determine that rcvrsub
is at /home/bclinton/mentor/uarttop/rcvrsub.

It is also important that the $LCA variable be instantiated, but not
defined, in the file pointed to by $MGC_LOCATION_MAP. To do
this, add the following line to MGC_LOCATION_MAP, followed
by an empty line:

LCA
(empty line)

● MGC_WD

This variable points to the working directory. For the tutorial, it
should be set to point to the directory where the tutorial will be
worked on.

How to Follow this Tutorial
The tutorial consists of six sessions. Each session begins with an
overview and summary of the interactive steps required.

If you are not familiar with Mentor Graphics software, it will take
about six hours to complete the entire tutorial. If you are familiar
with Mentor Graphics software and you wish to skip the schematic
Mentor Graphics Interface/Tutorial Guide 16-3

Mentor Graphics Interface/Tutorial Guide
capture and simulation sessions, you can finish in about an hour. We
supply example files, including a schematic of the tutorial design.

When you see an arrow between two commands, “➝”, it indicates
that you select the first command and then select the second
command from a menu that the first command displays. For
example, File ➝ Save Sheet means that you select File , then
select Save Sheet from the menu that appears.

To quit at any time, move the mouse cursor to the square in the upper
left corner of the Mentor Graphics window (which is inside the
operating system window), press and hold the left mouse button, and
select Close from the displayed menu.

The Edit menu has an Undo command, which allows you to undo
changes and deletions.
16-4 Xilinx Development System

XEPLD Tutorial
The Tutorial Design
In this tutorial, you will design the receiver section of a Universal
Asynchronous Receiver Transmitter (UART). This circuit converts a
serial data stream to parallel bytes and provides handshaking and
error detection signals to the host system. The following figure illus-
trates the functionality of this design.

Figure 16-1 UART Receiver Functional Logic Diagram

The example design functions as follows:

1. A serial to parallel shift register (Deserializer) converts the serial
stream to parallel data, which is then latched in a register (Output
Reg).

2. A simple state machine (Frame Detector) controls the receiver.
Once the start bit is detected, the counter (Frequency Divider)
begins to count sequentially, clocked by the 4X Baud Rate Clk.

3. The host is notified with the ready signal (Rcvr Ready) and reads
the data by asserting the Rcvr Output Bus Enable signal.

Communication
Interface UART Receiver

System
Interface

Frequency
Divider

Frame
Detector

Start

Error
Detector

Deserializer
Data

Output Reg

4X Baud
Rate Clk

Serial
Input

Stream

Rcvr Output
Bus Enable

Rcvr
Output

Rcvr Error
Flags

Rcvr
Ready

S Q D
Q

Q

X2988

OutIn

OutIn
Mentor Graphics Interface/Tutorial Guide 16-5

Mentor Graphics Interface/Tutorial Guide
4. The output of the counter is decoded to generate the control sig-
nals for the shift register, data latch, and error detection circuits.
The following signals are generated:

● Parity Error is generated if a byte parity is odd.

● Framing Error is generated if any of the stop bits are low.

● Overrun Error is generated if new data is ready to be latched
into the output register before the CPU reads the previous
data.

See the following figure for the format of the serial input stream.

Figure 16-2 UART Serial Input Waveform

The Example Files
All the files containing the UART examples are installed into a
sample design directory named $LCA/tutorial/mentor/uart. The
design in the uart directory contains a PAL symbol and its associated
equation file. A second sample design directory, $LCA/tutorial/
mentor/uarttop, contains an alternative implementation based
purely on schematic library symbols. The file names in both these
directories are listed in the following table. These directories also
contain some of the resulting report files.

4X Baud
Rate Clock

Serial
Input

Stream
Data Bits (MSB) Parity StopStart

Next Data
FrameFrame Data Format

X2989

Start(LSB)
16-6 Xilinx Development System

XEPLD Tutorial
Table 16-1 Tutorial Directories

During the course of this tutorial, you will use these sample files as
examples of a completed design. The schematic capture example files
are installed during library installation. If these files do not exist,
refer to the library installation instructions in the Release Document
for directions.

Mentor XEPLD Demonstration Procedure
This section briefly summarizes all the steps needed to run through
the entire EPLD tutorial design as a demonstration. These steps are
described fully in the following tutorial sessions. This demonstration
procedure assumes you have completely installed and configured
XEPLD implementation software (DS550), the Mentor Graphics
Library and Interface (DS344), and the Mentor Graphics software
system.

1. Change to the tutorial directory; the default path is
$LCA/tutorial/mentor/uart.

2. Invoke pld_dmgr at the UNIX prompt.

3. From the Mentor Graphics Design Manager, select the uart con-
tainer, then select Open ➝ pld_da . The Design Architect win-
dow appears with the uart schematic window in it.

Directory XACT/tutorial/mentor/uart

uart Top level design directory

rcvr.pld PLD Equations

uart.do Simulation Commands

Directory XACT/tutorial/mentor/uarttop

uarttop Top level design directory

rcvrsub Design directory for rcvrsub

rcvrsub/rcvrsub Symbol

uarttop.do Simulation Commands
Mentor Graphics Interface/Tutorial Guide 16-7

Mentor Graphics Interface/Tutorial Guide
4. Follow these steps to make the schematic more visible:

● Click on the square in the upper right corner of the Design
Architect window to fully expand it.

● Expand the schematic window as well.

● Press Shift-F8 to expand the drawing within the schematic
window.

● Examine the schematic as you wish.

5. To exit Design Architect, move the mouse cursor to the square in
the upper left corner of the Design Architect window, press and
hold the left mouse button, and select Close from the displayed
menu.

6. Display the contents of the rcvr.pld file in an operating system
window using an ASCII text editor such as vi.

7. From the Design Manager, select the uart container again. Select
Open ➝ pld_men2xnf8 . A dialog box appears. Type 7354-
12PC68 in the Part Type field. Select OK.

8. Select the uart.xnf icon. Select Open ➝ pld_xemake . Follow
these steps to run PLD_XEMake:

● To create an Intel HEX programming file, select the File
option under Target and enter uart.prg in the text box that
appears.

● Select the Yes option under Signature and enter uart as the
signature string in the text box that appears.

● Select the OK button.

9. Select the uart container again, and select Open ➝
pld_timsim8 to prepare for timing simulation. Select Auto
Generate under the Schematic option. Select Yes under the Run
QuickSim option. Select OK.

10. When PLD_TIMSIM8 is complete, the QuickSim window appears.
Expand the QuickSim window by clicking on the button in the top
right corner that contains the larger square.

11. Move the mouse to the large display area, then select Force ➝
From File from the pop-up menu. Type uart.do in the prompt
window.
16-8 Xilinx Development System

XEPLD Tutorial
12. The trace and list files appear. Iconize the trace file by clicking on
the button in the top right corner that contains the smaller square.

13. Expand the list file view by clicking on the button in the top right
corner that contains the larger square.

14. Use the Page Up and Page Down keys to scroll through the list
file. Examine the file as you wish.

15. Iconize the list file and click twice on the trace file icon. Expand
the trace file window.

16. Select View ➝ All from the pop-up menu to make all the wave-
forms visible.

17. To quit QuickSim, move the mouse cursor to the square in the
upper left corner of the Mentor Graphics window, press and hold
the left mouse button, and select Close from the displayed menu.
A dialog box appears. Select Without Saving followed by OK.

Overview of the Sessions
The six sessions cover the following topics:

Session 1: Using the XEPLD Software

Session 2: Drawing the Design in Design Architect

Session 3: Defining the PLD Equations

Session 4: Fitting the Design Using XEPLD

Session 5: Simulating the Design Using QuickSim

Session 6: Completely Schematic-Based Designs and Functional
Simulation

Which sessions you should complete depends on whether you need
to learn about Mentor Graphics software:

● If you are unfamiliar with Mentor Graphics, you should go
through the entire tutorial.

● If you are familiar with Mentor Graphics and want to focus on
learning the XEPLD software, go through Sessions 1, 3, and 4 and
the last part of Session 6. You might want to glance at Step 1 of
Sessions 2 and 5 just to see how XDM interfaces with Mentor
Graphics software.
Mentor Graphics Interface/Tutorial Guide 16-9

Mentor Graphics Interface/Tutorial Guide
Session 1: Using the XEPLD Software
Session One concentrates on the XEPLD environment. The following
operations are introduced in this session:

 STEP 1: Prepare the System

 STEP 2: Start XDM

 STEP 3: Select Menu Items

 STEP 4: Configure the XEPLD Environment

Step 1: Prepare the System
You must make sure that you installed all the software, the required
libraries, and the tutorial designs and that you have set up the UNIX
environment.

1. Install the XEPLD development system, the Mentor Graphics
library, and the Xilinx Mentor Graphics Tutorial. Refer to the
installation instructions in the Release Notes for information on
how to install these products.

2. Make sure the XACT software directory is included in the path
and the XACT environment variable in your .cshrc file. (This also
allows you to reference the XACT directory with $XACT. When
$XACT is shown in italics, it means “substitute the directory
pointed to by the XACT variable.”)

3. If you are using a workstation, copy the tutorial files from the
$LCA path established during installation to a user directory, for
example:

% cd
% mkdir mentor
% cd mentor
% cp -r $XACT/tutorial/mentor/*.

You must then edit the location map file (pointed to by the
MGC_LOCATION_MAP variable) so that the Mentor Graphics
software recognizes the new tutorial location.

The location map file should have an entry such as the following:

$xilinx_tutorial
/home/bclinton/mentor
16-10 Xilinx Development System

XEPLD Tutorial
4. Make sure the MGC_WD, MGC_HOME, MGC_GENLIB, and
MGC_LOCATION_MAP variables are set according to Mentor
Graphics requirements. The setting for MGC_WD should be as
follows:

cd uart
setenv MGC_WD /home/bclinton/mentor/uart

Step 2: Start the Mentor Graphics Design Manager
Start the Design Manager by entering the following:

cd /home/bclinton/mentor/uart ↵

pld_dmgr ↵

The Design Manager window is displayed. Its structure is as follows:

● The subwindow on the left is the Tools window, which contains
icons for the schematic capture, text editing, simulation, and pro-
grammer control environments within the Mentor Graphics soft-
ware.

● The subwindow in the middle is the Directory window, which
contains icons for the design directories, schematic sheets, and
other files that are part of your designs.

● The subwindow on the right is the Command Palette. It provides
easy access to the most commonly used Design Manager menu
items.

● Across the bottom is a listing of the keyboard shortcuts available
to you.

To quit at any time, move the mouse cursor to the square in the upper
left corner of the Mentor Graphics window (which is inside the
operating system window), press and hold the left mouse button, and
select Close from the displayed menu.

Step 3: Select Menu Items
There are two types of menus in Mentor Graphics software: pull-
downs and pop-ups.

● The pull-down menus are across the top of the Mentor Graphics
window (which is inside the operating system window). To select
a command on a pull-down menu, move the mouse cursor to the
Mentor Graphics Interface/Tutorial Guide 16-11

Mentor Graphics Interface/Tutorial Guide
menu title, press and hold down the left mouse button, slide the
mouse until the desired command is highlighted, then release the
mouse button.

● To display a pop-up menu, press and hold down the right mouse
button. To select a command, slide the mouse until the desired
command is selected, then release the mouse button. The pop-up
menus are context-sensitive.

The mouse button actions are as follows:

● Select for the left mouse button

● Strokes (commands activated by mouse movements) for the
middle mouse button

● Pop-Up Menu for the right mouse button

Session 2: Drawing the Design in Design Architect
In this session you will learn how to draw Mentor Graphics
schematics using Design Architect, Mentor Graphics’s schematic
design entry package. Design Architect contains a large repertoire of
features. To be able to effectively use the software, you need only
master a few basic operations. These include creating new
schematics, editing existing schematics, wiring components together,
adding names to signals and components, adding attributes to
components, and saving your design.

In this session you will perform the following functions:

STEP 1: Open and View the Existing Design

STEP 2: Create a New Schematic

STEP 3: Change Zoom Level

STEP 4: Enter and Arrange Symbols

STEP 5: Create a Bus

STEP 6: Create Wires

STEP 7: Add Names

STEP 8: Add a Bus Name

STEP 9: Assign Xilinx EPLD Attributes

STEP 10: Finish the Drawing

STEP 11: Assign Signals to Specific EPLD Pins
16-12 Xilinx Development System

XEPLD Tutorial
STEP 12: Check Your Design

STEP 13: Save Your Design

STEP 14: Exit Design Architect

Step 1: Open and View the Existing Design
Select the uart container (folder with schematic symbols on it) in the
directory window, press and hold down the right mouse button, and
select the Open ➝ pld_da command.

At first a small process window appears.

After a few minutes, the Mentor Graphics Design Architect window
appears. The UART design is displayed in the large central window
with the black background.

Click on the square in the upper right corner of the Design Architect
window (which is inside the operating system window). The Design
Architect window expands to fill the entire screen.

Then expand the schematic window, which is highlighted in light
blue and has a black background, by clicking on its square in the
upper right corner.

Finally, press Shift-F8 to make the entire design visible.

The UART design schematic appears as in the following figure.
Mentor Graphics Interface/Tutorial Guide 16-13

Mentor Graphics Interface/Tutorial Guide
Figure 16-3 The Complete UART Schematic

Three windows appear to the right of the design window:

● The Active Symbol window displays the last symbol added to the
schematic, which allows you to add multiple copies of a symbol
without using the palette or menus.

● The Palette window displays either icons for commonly used
commands or library components that you use to create your
design.

● The Context window represents the entire schematic workspace
and indicates which part of the entire sheet the main schematic
window is displaying.

Take some time and examine the UART schematic. Notice the library
PLD, the other standard symbols (counters, shift registers etc.), and
the input and output pads.
16-14 Xilinx Development System

XEPLD Tutorial
Note: The library PLD is especially significant because it requires
that you use an equation file to define its internal logic. Session 3
explains how to do this.

To close the UART schematic, move the mouse cursor to the square in
the upper left corner of the schematic window, press and hold the left
mouse button, and select Close from the displayed menu.

If you are familiar with your schematic capture tool and you do not
wish to draw the schematic, close the Design Architect window and
skip to Session 3.

Step 2: Create a New Schematic
To open a new schematic window, follow these steps:

1. Select File ➝ Open ➝ Sheet .

2. A dialog box appears. Type $xilinx_tutorial/uart/uart2
to create a design called UART2.

3. Select the OK button or press Return.

4. Click on the square in the upper right corner of the schematic
window to expand it.

Step 3: Change Zoom Level
Design Architect provides several commands for changing the area
of the schematic that appears on your screen. These commands allow
you to reduce or magnify the area of the schematic displayed:

Zoom In
Zoom Out

Zoom In magnifies the area currently displayed. Zoom Out, its oppo-
site, reduces the scale of the display and displays more of the sche-
matic.

Two commands allow you select a specific area of the schematic
displayed:

View Area (hold down F8 key and sweep area with mouse)
View Full (Shift-F8)

View Area lets you select a specific area of the schematic for display.
View Full displays the entire schematic in the work space window.
Mentor Graphics Interface/Tutorial Guide 16-15

Mentor Graphics Interface/Tutorial Guide
Use the Zoom Out command twice, or until the grid marks in the
schematic window disappear.

Step 4: Enter and Arrange Symbols
Before you add symbols, you must display the Xilinx libraries.

To display the library for the XC7000 devices, follow these steps:

1. Select Libraries ➝ XACT_LIB from the menus.

2. The Palette window changes to a library listing. Select
UNIFIED_LIB from the list.

3. Next, a list of device families appears. Select XC7000 LIB .

4. Finally, you are given the alternatives BY TYPE and ALL PARTS.
Select ALL PARTS. All the XC7000 library symbols are listed.

5. Press and hold the right mouse button while the mouse cursor is
in the library listing. The Schematic Palette pop-up window
appears. Select Show Scroll Bars from the menu.

You are now ready to start adding symbols. Add a symbol by
following these steps:

1. Scroll the library listing until you can see the ibuf symbol.

2. Click on the ibuf symbol in the listing.

3. Move the mouse cursor near the center of the left side of the
schematic display window. The symbol follows the mouse.

4. Click with the left button. The symbol is now placed.

5. Add two more ibuf symbols below the first one.

In Mentor Graphics software, a symbol remains selected until you
deselect it.

Click several times, slowly, on each ibuf symbol. Notice how each
becomes unhighlighted, then highlighted. Now press the F2 function
key. This key deselects everything in the schematic.

Note: If you double-click on a symbol, you activate the Open Down
command. If you do this accidentally, click on the cancel button.

Different pop-up menus appear depending on whether something is
selected and what is selected. If you deselect everything with the F2
16-16 Xilinx Development System

XEPLD Tutorial
key, you always see the ADD pop-up menu in the schematic window
when you press the right mouse button. The ADD menu is probably
the menu you will use most, therefore, you will probably want to use
the F2 key often.

After you have added symbols, you can move and delete them. To
move a symbol, follow these steps:

1. Select the lower ibuf symbol.

2. Select Move from the schematic window’s pop-up menu.

3. Move the mouse. Notice how the symbol moves with it.

4. Click the left mouse button. This places the symbol in its new
location.

5. Press the F2 key to deselect the symbol.

To delete a symbol, follow these steps:

1. Select the ibuf symbol that you just moved.

2. Select Delete from the pop-up menu. The symbol disappears.

If you move or delete something by mistake, you can use the Undo
command to reverse the move or deletion.

For example, select Undo from the pop-up menu. The ibuf symbol
you just deleted reappears.

Select Undo again three more times. The symbol is moved to its
original position.

Add the following symbols: and2b2, equal, cb8re, inv, four ipads,
pl22v10, and vcc.

After all the symbols are added, press the F2 key to deselect
everything.

The inv symbol must be rotated. Follow these steps:

1. Select the inv symbol. Be sure nothing else is selected.

2. Select Rotate/Flip from the pop-up menu twice.

3. Press the F2 key to deselect everything.

When you are finished, the screen should look like the figure below.
Move the symbols if necessary, and deselect everything when you are
done (press F2).
Mentor Graphics Interface/Tutorial Guide 16-17

Mentor Graphics Interface/Tutorial Guide
Note: The bufg symbol represents a FastCLK input. Leave some
space between the ipads and the ibufs. When you name a wire
between a pad and a buffer, you name the pin.

Figure 16-4 Adding Symbols

Step 5: Create a Bus
To create a bus between six of the Q output pins of the cb8re and pins
2 through 7 of the pl22v10, follow these steps:

1. Move the cb8re symbol so that its Q bus is vertically positioned
between pins 1 and 2 of the pl22v10.

2. Use the Bus command on the pop-up menu to draw a bus in the
schematic. The cursor changes to a star. You add bus segments by
16-18 Xilinx Development System

XEPLD Tutorial
clicking once at the beginning of the segment, once every time the
segment bends, and twice at the end.

3. Place the cursor on the Q bus.

4. Click the left mouse button.

5. Move the cursor to about a third of the way between the cb8re and
the pl22v10 and click once again.

6. Move the mouse cursor down until it is vertically positioned
between pins 6 and 7 of the pl22v10.

7. Click the left button twice to end the bus.

8. Select the Cancel button in the ADD BUS dialog box that extends
along the bottom of the screen.

9. Press F2 to deselect everything.

The following figure shows how the schematic appears after you
have added a bus. Note the position of the vertical segment in
relation to the pins on the pl22v10.
Mentor Graphics Interface/Tutorial Guide 16-19

Mentor Graphics Interface/Tutorial Guide
Figure 16-5 Adding a Bus

Step 6: Create Wires
To create a signal between the bus you just created and pin 2 of the
pl22v10, follow these steps:

1. Use the Wire command on the pop-up menu to draw wires in the
schematic. As in the bus command, the cursor changes to a star.

2. Place the cursor on pin 2 of the pl22v10 and click left.

3. Move the cursor straight across to the bus.

4. Double click to complete the wire.
16-20 Xilinx Development System

XEPLD Tutorial
5. Select Cancel from the Add Wire dialog box at the bottom of the
screen to stop adding wires.

When you draw wires, Mentor Graphics software automatically
connects to the closest pin. If you make a mistake, select and delete
the unwanted wire (you delete wires in the same way you delete
symbols).

If you connect a wire to a bus, a short diagonal segment named with
an “R” appears. This segment, called a “bus ripper”, splits an
individual wire from the bus and names the wire. In the section on
naming buses, you will learn how to number bus rippers as well.

If the wire segment between the bus and pin 2 of the pl22v10 is not
straight, move one of the symbols or bus segments until the wire is
straight. If your wires are not straight, multiple pins on the pl22v10
may overlap and appear confusing.

You can quickly add more wires of the same length by copying them.
Follow these steps:

1. If it is not already highlighted, select the wire to be copied: in this
case, the wire you just created. Select the bus ripper as well.

2. Select the Copy command from the pop-up menu.

3. Move the cursor to move the copied wire so it is between the bus
and the pin 3 input.

4. Click the left button to place the new wire. Note that yellow circles
appear at each end of the wire. This means that the wire is not
connected.

5. Repeat steps 2 through 4 to place nets between the bus and pins 4
through 7 of the pl22v10.

6. Press Shift-F6 (Connect All) to connect all the nets.

7. If a segment of the bus extends beyond the last wire connected to
it, delete this extra segment (be sure nothing else is selected first).

8. Press F2 to deselect everything.

Note: To move nets, names, or any other objects in your schematic,
use the Move command as previously described for moving symbols.
To copy any object, use the Copy command.
Mentor Graphics Interface/Tutorial Guide 16-21

Mentor Graphics Interface/Tutorial Guide
A junction (a point where three or more wire segments connect) is
represented as a square. Design Architect automatically places a
junction whenever you terminate one segment onto another.

The following figure shows how the schematic appears after you
have added the nets. Add the nets shown.

Figure 16-6 Adding Nets

Step 7: Add Names
The reports generated by the XEPLD Fitter refer to all your on-chip
signals using names based on your symbol names and symbol output
pin names. For example, the macrocell logic and the signal produced
by the least-significant bit of the CB8RE counter is referred to in the
reports using the name FREQ_DIVIDER:Q0. Assigning your own
16-22 Xilinx Development System

XEPLD Tutorial
unique names will make it much easier to identify elements of your
design in the reports.

Names assigned to EPLD device pins in the Pinlist report, and names
on all signals used during simulation, are taken from the names you
place on nets in your schematic. For example, the name X4CLK that
you place on the wire between the IPAD and BUFG is listed as a pin
name in the Pinlist report produced by the XEPLD Fitter. You will
also apply your clock waveform to the X4CLK signal during func-
tional and timing simulation.

Use the Properties ➝ Add command to add names to symbols
and nets. To name the pl22v10 component, follow these steps:

1. Select the symbol. Be sure nothing else is selected.

2. Select the Properties ➝ Add command from the pop-up
menu.

3. A dialog box appears. Type INST in the Property Name box and
CONTROLLER in the Property Value box. Select OK or press Return.

4. The name appears, attached to the cursor. Position the cursor
where you want to place the name, in this case, above the
component.

5. Click the left button to place the name.

6. Press F2 to deselect everything.

To name the output wire of the and2b2 symbol, follow these steps:

1. Select the joint where the output of the symbol connects to the
wire. Be sure you have selected only that joint — a single star
should appear at that location.

2. Select the Properties ➝ Add command from the pop-up
menu.

3. A dialog box appears. Type NET in the Property Name box and
READ in the Property Value box. Select OK or press Return.

4. Position the cursor where you want to place the name, in this case,
above the wire.

5. Click the left button to place the name.

If you put a name in the wrong place, you can move it. First place the
mouse cursor over the name and press the F1 key. This is the best
Mentor Graphics Interface/Tutorial Guide 16-23

Mentor Graphics Interface/Tutorial Guide
way of isolating the name. Then move the name just as you would a
wire or symbol.

Use only uppercase alphanumeric characters and the underscore “_”
in names.

Use the Properties ➝ Add command to name the symbols and
nets as shown in the following figure:

Figure 16-7 Adding Names

The component names are FREQ_DIVIDER and READ_EN. The wire
names are as follows: C0, C1, C2, C3, C4, C5, X4CLK, RD, CS, ISTART,
SDIN, and ISDIN.

Note: Some of the text in your schematic may be hard to read when
the design is finished and you are viewing it all at once. As an option,
you can change the text size. Follow these steps:
16-24 Xilinx Development System

XEPLD Tutorial
1. Select the text you want to resize using one of these methods:

● Use the F1 key to select just the name under the mouse cursor.

● Press F2 to deselect everything, select the Select Area ➝
Property command from the pop-up menu, and sweep an
area of the schematic while pressing the left mouse button. All
text in the area you swept out is highlighted.

2. Select Change Height ➝ 1.0 from the pop-up menu. This is
the size used in the example UART schematic. You can make the
text larger or smaller if you like.

Step 8: Add A Bus Name
A bus must have a name. If a bus is split into individual signals, the
numbers you assign to the bus rippers (in place of the “R”) must be
within the range specified by the bus name. For example, if the bus
name is D(7:0), the signal numbers must be 0, 1, ... 7. The order and
arrangement of the nets from the bus does not matter.

If you connect a bus to a multi-signal pin, the order in which signals
are listed in the bus name determines which signals from the bus are
connected to which signals on the pin. For example, if a pin is named
Q(7:0) and the bus connected to it is D(7:0), this connects Q0 to D0,
Q1 to D1, Q2 to D2, and so on. However, if you name the bus D(0:7),
this connects Q0 to D7, Q1 to D6, and so on.

Use the Properties ➝ Add command to add a bus name. Follow
these steps:

1. Zoom in on the bus: position the mouse cursor just above the
cb8re symbol, press and hold down the F8 key, sweep over the bus
with the mouse cursor, and release the F8 key.

2. Select the joint that connects the cb8re to the bus. Be sure to select
only this joint. A star appears at that joint.

3. Select the Properties ➝ Add command from the pop-up
menu.

4. In the dialog box that comes up, type NET in the Property Name
box and C(7:0) in the Property Value box. Select OK.

5. Position the cursor where you want to place the name, in this case,
above the bus.
Mentor Graphics Interface/Tutorial Guide 16-25

Mentor Graphics Interface/Tutorial Guide
6. Click the left button to place the name.

7. Press F2 to deselect everything.

Next, you must number the bus rippers correctly. Follow these steps:

1. Position the cursor on the top right corner of the uppermost “R”
and press F1 to select it.

If you select the wire or ripper segment instead, press F2, move
the mouse cursor farther away from what you accidentally
selected, and try to select the “R” again.

2. Select the Change Values command from the pop-up menu.

3. A dialog box appears at the bottom of the screen. Backspace over
the “R”, type 0 in response to the prompt, then select OK or press
Return.

4. Repeat these steps to name the next bus rippers 1, 2, 3, 4, and 5.
The following figure shows how the screen appears after you have
changed the bus ripper names.
16-26 Xilinx Development System

XEPLD Tutorial
Figure 16-8 Adding a Bus Name and Ripper Names

5. Change the height of the text if you wish.

6. View the entire design again by typing Shift-F8.
Mentor Graphics Interface/Tutorial Guide 16-27

Mentor Graphics Interface/Tutorial Guide
Step 9: Assign Xilinx EPLD Attributes
The PLD=filename symbol attribute must be attached to each PLD in
your schematic. This attribute identifies the bitmap file (prepared by
the PLUSASM assembler) used to define the logic of the PLD. The
preparation of the logic equations for the PLD is covered in Session 3.
Refer to the figure below.

To add the necessary attribute to the pl22v10 component, follow these
steps:

1. Select the pl22v10 component.

2. Select the Properties ➝ Add command.

3. In the dialog box that comes up, type PLD in the Property Name
box and rcvr in the Property Value box.

4. Position the cursor where you want to place the name, in this case,
below the symbol.

5. Click the left button to place the name.

6. Press F2.

You must also specify a global property. You can attach a global prop-
erty to any symbol, but typically you attach it to a tblock symbol.

To add the global attributes, follow these steps:

1. Zoom out to make space.

2. Add a tblock symbol in the lower left corner of the design.

3. Make sure only the tblock symbol is selected.

4. Select the Properties ➝ Add command.

5. Type PRELOAD_OPT in the Property Name box and OFF in the
Property Value box. Select OK.

6. Position the cursor where you want to place the name, in this case,
above the symbol.

7. Click the left button to place the name.
16-28 Xilinx Development System

XEPLD Tutorial
Figure 16-9 Adding Global Attributes
Mentor Graphics Interface/Tutorial Guide 16-29

Mentor Graphics Interface/Tutorial Guide
Step 10: Finish the Drawing
You now know enough Design Architect commands to draw sche-
matics on your own. The figure below shows the completed UART
receiver schematic.

Use the View Full (Shift-F8) command to display all of the
schematic’s logic you have drawn so far. Zoom out and/or scroll
right, then add the remaining components, nets, and names as shown
in the figure below.

Figure 16-10 The Complete UART Schematic

Note: Be careful to double check names assigned to components and
nets in the schematic. Be sure not to confuse characters in names such
as “DO” and “D0”. Conflicting names on nets cause errors during
design compilation.
16-30 Xilinx Development System

XEPLD Tutorial
Step 11: Assign Signals to Specific EPLD Pins
As an option, you can assign signals to specific EPLD pins. To do pin
assignment, you must be aware of the architecture of the target EPLD
device so that you do not, for example, assign an output to an input
pin.

You assign pins to input and output signals by assigning the
LOC=pin_number attribute to ipad and opad components. For
example, you can assign a pin number to the RD and CS signals to
ensure that they are next to each other on the chip.

To assign the RD signal to pin 18, follow these steps:

1. Use F1 key to select the Pxx string.

2. Select the Change Values command from the pop-up menu.

3. In the dialog box that comes up, type P18 in the New Value box.
Select OK.

4. Repeat these steps to assign the CS signal to pin 19.

These attributes assign signals RD and CS to specific pins of the
targeted XC7354 EPLD device.

Note: If a pin number is entirely numeric, for example pin 18, you
must begin the pin number with a “P”. If the pin number begins with
a letter, for example pin E7, the “P” is not needed. You can assign pins
to individual IPAD, OPAD, and IOPAD symbols, but not to the multi-
bit OPAD8 symbol in this schematic.

The remaining signals are allocated automatically by the XEPLD soft-
ware.

Step 12: Check Your Design
Use the Check ➝ Sheet command to verify that your design does
not violate any design rules.

After the check, you should see only warnings about unconnected
outputs on the cb8re and unconnected pins on the pl22v10. You can
ignore these.
Mentor Graphics Interface/Tutorial Guide 16-31

Mentor Graphics Interface/Tutorial Guide
Step 13: Save Your Design
Use the File ➝ Save Sheet command to save your design.

If you wish to use the schematic you created for the rest of this
tutorial, you can use the File ➝ Save Sheet As command and
save it to $xilinx_tutorial/uart/uart. Otherwise, use the Xilinx-
supplied UART file for the rest of the tutorial.

Note: You must not rename Mentor Graphics schematics using
UNIX. The Mentor Graphics security system does not allow you to
open or process any renamed schematics. Use the File ➝ Save Sche-
matic command instead.

Step 14: Exit Design Architect
To quit, move the mouse cursor to the square in the upper left corner
of the Mentor Graphics window (which is inside the operating
system window), press and hold the left mouse button, and select
Close from the displayed menu.

You have now completed this session and are ready to proceed to the
next section of the tutorial, where you define the function of the
pl22v10 PLD component used in the schematic.

Session 3: Defining the PLD Equations
You can define the function of the PLD in a schematic either directly
in the PLUSASM equation language or through a third-party PLD
compiler (for example, a Xilinx ABEL file that produces a .PLD file
equivalent to RCVR.PLD is shown in). This session demonstrates the
creation of a simple PLD equation file using PLUSASM.

You can use the PLUSASM language to define the function of a PLD
in a schematic in terms of Boolean equations. In this session you will
learn how to develop the equation file, RCVR.PLD, for the PL22V10
PLD used in the UART schematic. The following functions are
introduced in this session:

 STEP 1: Define the Declaration Statements

 STEP 2: Create the Boolean Equations
16-32 Xilinx Development System

XEPLD Tutorial
Step 1: Define the Declaration Statements
Display the contents of the rcvr.pld text file using an operating
system editor such as vi. This file is located in $xilinx_tutorial/uart.
The RCVR Boolean equation file is shown in the figure below.

The declarations section contains design and signal identification
information. The PLUSASM keywords TITLE, AUTHOR,
COMPANY, and DATE identify the design. The keyword CHIP iden-
tifies the PLD equation file name RCVR and PLD type PL22V10. The
last two lines in declarations section form a sequential list of signal
names and polarities for each pin on the PL22V10.

Step 2: Create the Boolean Equations
The keyword EQUATIONS identifies the beginning of the equations
section. Following the EQUATIONS keyword are the Boolean
equations written for each output signal used in the PL22V10.

For more detailed information regarding the syntax of PLUSASM
equations and keywords, refer to the PLUSASM Language Reference
in the XEPLD Reference Manual.

Exit your editor.

TITLE UART Receiver Controller
AUTHOR Applications
COMPANY Xilinx
DATE February 1993

CHIP RCVR PL22V10

; 1 2 3 4 5 6 7 8 9 10 11 12
x4clk c0 c1 c2 c3 c4 c5 read sdin d0 nc gnd

; 13 14 15 16 17 18 19 20 21 22
23 24 nc nc start bitclk byteclk par framing parity overun
ready nc vcc

EQUATIONS

/start := /start * sdin
+ c5*/c4*c3*/c2*/c1*c0
; start goes high when sdin goes low
; and stays high until count=41.

bitclk := /c0 * /c1 * start
Mentor Graphics Interface/Tutorial Guide 16-33

Mentor Graphics Interface/Tutorial Guide
; bitclk pulses every 4 clock cycles
; to strobe deserializer.

ready := c5*/c4*c3*/c2*/c1*c0 * /parity * /framing * /overun
+ ready * /read
; ready goes high at count=41 if no errors
; and stays high until read.

byteclk := c5*/c4*/c3*/c2*c1*/c0 * /ready
; byteclk strobes output_reg at count=34
; only if ready not still active.

overun := c5*/c4*/c3*/c2*c1*/c0 * ready
+ overun * /read
; overrun error at count=34 if ready still
; active; stays on until read.

par := par * /sdin * bitclk * start
+ /par * sdin * bitclk * start
+ par * /bitclk * start
; accumulate parity on sdin on each bitclk;
; reset while start=0.

parity := c5*/c4*/c3*/c2*c1*/c0 * par
+ parity * /read
; parity error at count=34 if par odd (1);
; stays on until read.

framing := c5*/c4*c3*/c2*/c1*/c0 * /sdin
+ c5*/c4*c3*/c2*/c1*/c0 * /d0
+ framing * /read
; framing error at count=40 if either stop
; bit is low; stays on until read.

Figure 16-11 rcvr.pld File Contents
16-34 Xilinx Development System

XEPLD Tutorial
module rcvr

title ‘Control Logic and Error Detector for UART Receiver
Design
Xilinx EPLD Applications, Feb. 93’

 rcvr device ‘p22v10’;

“ Inputs

 x4clk pin 1; “ External clock (4x
baud rate)

 c0,c1,c2,c3,c4,c5 pin 2,3,4,5,6,7; “ State counter outputs
(from cntr6)

 read pin 8; “ Read enable (from
cntr6,active-high)

 sdin pin 9; “ Serial data input
(external)

 d0 pin 10; “ Shift register LSB
output

“ Outputs

 start pin 15 istype ‘reg’; “ Start bit detector

 bitclk pin 16 istype ‘reg’; “ Bit clock (to
shifter)

 byteclk pin 17 istype ‘reg’; “ Output data
register clock

 par pin 18 istype ‘reg’; “ Parity accumulator

 framing pin 19 istype ‘reg’; “ Framing error
output (external)

 parity pin 20 istype ‘reg’; “ Parity error
output (external)

 overun pin 21 istype ‘reg’; “ Overrun error
output (external)

 ready pin 22 istype ‘reg’; “ Receiver ready
output (external)

“ Variables
count = [c5..c0]; “ c5 is MSB

Equations

!start := !start & sdin “ Start goes high when
sdin goes low;

 # (count == 41); “ start stays high until
Mentor Graphics Interface/Tutorial Guide 16-35

Mentor Graphics Interface/Tutorial Guide
count=41.

start.clk = x4clk;

bitclk := !c0 & !c1 & start; “ Bitclk pulses every 4
cycles.

bitclk.clk = x4clk;

ready := (count == 41) & !parity & !framing & !overun

 # ready & !read; “ Ready goes high at
count=41 if no errors

ready.clk = x4clk; “ and stays high until
register read.

byteclk := (count == 34) & !ready; “ Strobe data register
at count=34

byteclk.clk = x4clk; “ only if ready not still
active.

overun := (count == 34) & ready “ Overrun error at
count=34 if ready still
on;

 # overun & !read; “ overun stays on until
register read.

overun.clk = x4clk;

par := (par $ sdin) & bitclk & start

 # par & !bitclk & start; “ Accumulate parity of
sdin on each bitclk;

par.clk = x4clk; “ reset while start=0.

parity := (count == 34) & par “ Parity error at
count=34 if par odd (1);

 # parity & !read; “ parity stays on until
register read.

parity.clk = x4clk;

framing := (count == 40) & (!sdin # !d0)“ Framing error at
count=40 if either

 # framing & !read; “ stop bit low;

framing.clk = x4clk; “ framing stays on until
register read.

end

Figure 16-12 rcvr.abl File Contents
16-36 Xilinx Development System

XEPLD Tutorial
Session 4: Fitting the Design
Session 4 concentrates on the XEPLD Fitter. The following tasks are
explained in this session.

STEP 1: Invoke the Fitter

STEP 2: View the Reports

Step 1: Invoke the Fitter
You can create a netlist from the schematic, process the PLD file, fit
the design, and optionally create an Intel Hex programming file
using a single command.

1. Select the icon for the UART design in the directory window.

2. Select Open ➝ pld_men2xnf8 from the pop-up menu.

3. A dialog box appears with options. Type 7354-12PC68 in the
Part Type field. Select OK.

4. Select the xnf uart icon, which should be just above the original
uart icon. Select Open ➝ pld_xemake from the pop-up menu.

5. A second dialog box appears. To create an Intel HEX program-
ming file, select the File option under Target and enter
uart.prg in the text box that appears.

6. Because you are creating a programming file, you will also need a
signature. Select the Yes option under Signature and enter
uart in the text box that appears.

7. Do not change any other options. Select OK to start the Fitter.

For instructions on how to invoke the commands and options behind
PLD_Men2XNF8 and PLD_XEMake, see the “Manual Translation”
chapter.

Alternative Ways to Process PLDs

XEPLD can also read 20V8 or 22V10 PLD designs in the form of
JEDEC standard programming maps produced by any third party
PLD compiler.

Some third-party PLD compilers produce PALASM-compatible
Boolean equation output files. Most PALASM equation syntax can be
Mentor Graphics Interface/Tutorial Guide 16-37

Mentor Graphics Interface/Tutorial Guide
read directly by the PLUSASM assembler. For example, the logic for
the PLD used in the UART design could be implemented using Xilinx
ABEL syntax, as shown in, and compiled by Xilinx ABEL to produce
a PLD formatted equation file.

For instructions on using JEDEC or PALASM files, see the “Manually
Processing Your Design” chapter of this manual.

Step 2: View the Reports
The following extensions designate the reports produced by the
PLD_XEMake command. These reports are in the /home/bclinton/
mentor/uart directory.

.err The Fitter Error report

.lga The Assembler Log report

.res The Resource report

.map The Mapping report

.pin The Pinlist report

.lgc The Logic Optimizer report

.par The Partitioner report

You can view the reports that the Fitter generates using your favorite
editor.

1. First, view the Fitter Error and Assembler Log reports if error mes-
sages appeared on the screen during fitting.

PLUSASM stores errors and warnings in a report file called
rcvr.err. PLUSASM also produces a detailed report of its results in
a file named rcvr.lga (the assembler log).

2. Next, view the Resource report, uart.res.

The Resource report lists the amount of resources that were used
to implement the design. This report contains the total number of
macrocell and Function Block resources and input/output (I/O)
pins used on the target device. These totals are subtracted from
the total resources of the device to give the amount of remaining
resources available to the designer.
16-38 Xilinx Development System

XEPLD Tutorial
3. Next, view the Mapping report, uart.map.

The Mapping report lists each Function Block in the device and
details which component outputs were mapped to macrocells of
each Function Block. The Mapping report is used primarily for
design debugging and to assist manual mapping.

4. Next, view the Pinlist report, uart.pin.

The Pinlist report provides the designer with chip pin placement
information. For each pin on the package, the Pinlist report indi-
cates the operation of the pin as used in the design and the signal
in your design appearing on the pin. The signal names in the Pin-
list report are the names you placed on the nets connected to PAD
symbols in your schematic.

5. Next, view the Logic Optimizer report, uart.lgc.

The Logic Optimizer report lists which inputs have been col-
lapsed into their fanouts and which outputs have been optimized.

6. Finally, view the Partitioner report, uart.par.

The Partitioner report provides cross-reference tables showing the
allocation of all Function Block resources. This report provides
detailed information for optimizing your design and manipulat-
ing chip resources.

Note: When you are using schematic capture, XEPLD uses the names
passed to it from Mentor Graphics. Understanding these reports with
Mentor Graphics-assigned names can be very difficult. For this rea-
son, designers are encouraged to provide unique names to symbols
and nets.

Session 5: Simulating the Design
Session 5 gives an example of one way to simulate the UART design.
The following tasks are explained in this session:

STEP 1: Prepare Your Input Vectors

STEP 2: Run the Simulation and View the Results

You can end the tutorial here if you are familiar with QuickSim.
Mentor Graphics Interface/Tutorial Guide 16-39

Mentor Graphics Interface/Tutorial Guide
Step 1: Prepare Your Input Vectors
Before you run the simulation, you should prepare a list of inputs in a
do file. You can enter QuickSim and specify inputs one at a time, but
it is often easier and faster to put them in a do file.

A do file, uart.do, is provided for you in /home/bclinton/mentor
directory. The following figure is an abbreviated listing of its contents
— most clock input vectors have been removed.

You can view the entire do file in any ASCII text editor.

ADD BUS DOUT DOUT(7) DOUT(6) DOUT(5) DOUT(4) DOUT(3)
DOUT(2) DOUT(1) DOUT(0)
ADD LIST //PRLD
ADD LIST X4CLK
ADD LIST RD
ADD LIST CS
ADD LIST SDIN
ADD LIST START
ADD LIST BITCLK
ADD LIST BYTECLK
ADD LIST DOUT
ADD LIST READY
ADD LIST OVERUN
ADD LIST PARITY
ADD LIST FRAMING
ADD TRACE //PRLD
ADD TRACE X4CLK
ADD TRACE RD
ADD TRACE CS
ADD TRACE SDIN
ADD TRACE START
ADD TRACE BITCLK
ADD TRACE BYTECLK
ADD TRACE DOUT
ADD TRACE READY
ADD TRACE OVERUN
ADD TRACE PARITY
ADD TRACE FRAMING
DELETE FORCE -all

FORCE //PRLD 1 0 -F
FORCE //PRLD 0 50 -F
FORCE X4CLK 1 0 -F
FORCE X4CLK 0 150 -F
FORCE X4CLK 1 200 -F
FORCE X4CLK 0 250 -F
16-40 Xilinx Development System

XEPLD Tutorial
FORCE X4CLK 1 300 -F
FORCE X4CLK 0 350 -F
FORCE X4CLK 1 400 -F
FORCE X4CLK 0 450 -F
FORCE X4CLK 1 500 -F
...
FORCE X4CLK 1 10700 -F
FORCE X4CLK 0 10750 -F

FORCE RD 1 0 -F
FORCE RD 0 4650 -F
FORCE RD 1 5600 -F
FORCE CS 1 0 -F
FORCE CS 0 4800 -F
FORCE CS 1 5600 -F
FORCE SDIN 1 0 -F
FORCE SDIN 0 350 -F
FORCE SDIN 1 750 -F
FORCE SDIN 0 1550 -F
FORCE SDIN 1 1950 -F
FORCE SDIN 0 3150 -F
FORCE SDIN 1 3550 -F
FORCE SDIN 0 5950 -F
FORCE SDIN 1 6350 -F
FORCE SDIN 0 7550 -F
FORCE SDIN 1 8750 -F
FORCE SDIN 0 9550 -F
FORCE SDIN 1 9950 -F

RUN 11000

Figure 16-13 The uart.do File

The commands in the uart.do file perform the following actions:

● The ADD BUS command groups the DOUT signal into a bus.

● The ADD LIST commands add all the input and output signals
and buses to the list file, which you will view later.

● The ADD TRACE commands add all the input and output signals
and buses to the trace file, which you will view later.

● The DELETE FORCE -all command deletes any FORCE
commands that might still be in effect from the last simulation.

● The FORCE commands are input vectors: they specify at which
times each input changes value from 0 to 1 or from 1 to 0. First the
Mentor Graphics Interface/Tutorial Guide 16-41

Mentor Graphics Interface/Tutorial Guide
X4CLK vectors are listed, then the RD vectors, the CS vectors, and
finally the SDIN vectors.

● The RUN command specifies how long the simulation will run,
which is 11000 nsec in this case.

Step 2: Run the Simulation and View the Results
To run the simulation and view the results, follow these steps:

1. Select the uart icon in the Directory window of the Design Man-
ager, then select the Open ➝ pld_timsim8 command from the
pop-up menu.

2. Select the Auto Generate option.

3. Select Yes under the Run QuickSim? option.

4. Select the OK button to start the simulation.

A window appears and displays messages about the process of
making a simulation netlist file. If this process runs successfully,
the QuickSim window opens.

5. Expand the QuickSim window by clicking on the button in the top
right corner that contains the larger square.

6. Move the mouse to the large display area, then select the Force
➝ From File command from the pop-up menu.

7. Type uart.do in the prompt window. Select OK.

8. In a few minutes, list and trace files appear. Iconize the trace file
by clicking on the button in the top right corner that contains the
smaller square.

9. Expand the list file view by clicking on the button in the top right
corner that contains the larger square. The following figure shows
what the list file should look like.

10. Use the PgUp and PgDn keys to scroll through the listing. The Y-
axis displays the times, with zero at the top, and the X-axis dis-
plays the signal names. Note that whenever the value of a signal
changes, the new value is displayed in green.

11. Iconize the list file and click twice on the trace file icon. Expand
the trace file window.
16-42 Xilinx Development System

XEPLD Tutorial
Figure 16-14 The List File
Mentor Graphics Interface/Tutorial Guide 16-43

Mentor Graphics Interface/Tutorial Guide
12. To see the waveforms from the beginning of the simulation, select
the View ➝ All command from the banner menus. The follow-
ing figure shows what the trace file should look like.

Figure 16-15 The Trace File

Note that between about 5000 and 5800 nanoseconds the output data
bus is active. At about 9600 nanoseconds a parity error occurs, and at
about 10200 nanoseconds a framing error occurs. (These errors were
introduced deliberately to test whether the design could catch them.)

To quit QuickSim, move the mouse cursor to the square in the upper
left corner of the Mentor Graphics window (which is inside the
operating system window), press and hold the left mouse button, and
select Close from the displayed menu. The Exit QuickSim dialog box
16-44 Xilinx Development System

XEPLD Tutorial
appears. Select the Without Saving button followed by the OK
button.

Session 6: Completely Schematic-Based Designs
and Functional Simulation

Session 6 shows a version of the UART design in which the PL22V10
has been replaced with a lower-level schematic, which represents the
RCVR function and has the same logic as the rcvr.pld file. This
session also outlines the steps for functional simulation, which you
can only perform for a purely schematic design.

STEP 1: Change the Working Directory

STEP 2: Create a Custom Symbol

STEP 2: Place the Custom Symbol in the Schematic

STEP 3: Create the Lower-Level Schematic

STEP 4: Prepare for Functional Simulation

STEP 5: Quit Mentor Graphics

Step 1: Change the Working Directory
1. MGC➝ Location Map ➝ Set Working Directory

2. Type $xilinx_tutorial/uarttop in dialog box at bottom of
window.

3. Select OK.

Step 2: Create a Custom Symbol
You can create your own symbols to place on the schematic. Under
these symbols, you can build other schematics. Creating a design
with multiple levels allows you to focus on specific parts of the
design rather than trying to understand the entire design all at once.

The next subsections explain how to create a custom symbol.

Open a Symbol Window

To open a symbol window, follow these steps:
Mentor Graphics Interface/Tutorial Guide 16-45

Mentor Graphics Interface/Tutorial Guide
1. Double click on the PLD_DA (Design Architect) tool to open it.

2. Expand the Design Architect window by clicking on the button in
the top right corner that contains the larger square.

3. Click on the Open Symbol box in the palette window to open a
symbol window. If this box is not visible, select the Session but-
ton in the palette window to display it.

4. A prompt box appears. Type the following in the Component
Name field:

$xilinx_tutorial/uarttop/rcvrsub2

5. Select the OK button. The symbol window appears.

6. Expand the symbol window by clicking on the button in the top
right corner that contains the larger square.

7. Zoom out so that the view in the symbol window is about 25 grid
units high.

Draw the Rectangle

To draw the rectangle of the symbol, follow these steps:

1. Select the Add Rectangle box in the Palette window. You will
make a rectangle that is 12 grid units wide and 22 grid units high.
Be sure that enough grid units show in the window.

2. Position the cursor at the top of the symbol window a little bit left
of center and press the left mouse button.

3. While holding down the left mouse button, move the cursor 12
grid units to the right and 22 grid units down. Release the mouse
button.

Add the Pins

To add the pins, follow these steps:

1. Select Add Pin from the Palette window.

2. In the dialog box that comes up, select the <>-Name option under
Name Placement, IN for the pin type, and the <>-| option under
Pin Placement.
16-46 Xilinx Development System

XEPLD Tutorial
3. Type the following names in the Pin Name(s) fields. Do not press
return after entering a name. Note that each time you type a
name, another pin name box appears.

X4CLK
C0
C1
C2
C3
C4
C5
READ
SDIN
D0

4. Select the OK button.

5. The dialog box disappears and the mouse changes to a star. Move
the mouse one grid unit to the left side of the rectangle and two
grid units below the top of the rectangle. Click with the left mouse
button.

6. Move the mouse two grid units down. Click with the left mouse
button again to place the second pin.

7. Continue moving the mouse down two grid units and clicking to
place pins until all the pins are placed.

8. Select Add Pin again.

9. In the dialog box that comes up, select the <>-Name option under
Name Placement, IXO for the pin type, and the |-<> option
under Pin Placement.

10. Type the following names in the Pin Name(s) fields:

READY
OVERUN
PARITY
FRAMING
BYTECLK
BITCLK
START

11. Select the OK button.
Mentor Graphics Interface/Tutorial Guide 16-47

Mentor Graphics Interface/Tutorial Guide
12. The dialog box disappears and the mouse changes to a star. Move
the mouse one grid unit to the right side of the rectangle and four
grid units below the top of the rectangle. Click with the left mouse
button.

13. Move the mouse two grid units down. Click with the left mouse
button again to place the second pin.

14. Continue moving the mouse down two grid units and clicking to
place pins until all the pins are placed. Move down four units
between the FRAMING and BYTECLK pins.

Lengthening the Pins

The pins are each one grid unit long. To make them each two grid
units long, follow these steps:

1. Select all of the pins on the left side of the symbol, being careful
NOT to select the lines connected to the pins.

2. Move the pins one grid unit to the left using the Move command
on the pop-up menu. Press F2.

3. Move the pin names to the right one grid unit. Use F1 to select
each pin name (positioning the mouse in the lower left corner of
the text before pressing F1 works best). Press F2.

4. Select all of the lines, and select Delete on the pop-up menu.

5. Select the Two Point Line command from the pop-up menu.
Move the mouse to the X4CLK pin. Press and hold the left mouse
button as you drag the mouse to the rectangle edge. The resulting
line should be two grid units long.

6. Use the Copy command on the pop-up menu to copy the line you
just drew. Place the copy at the C0 pin.

7. Continue copying lines until all the pins on the left side of the
symbol have lines.

8. Repeat the above steps to lengthen the pins on the right side of the
symbol.

9. Select each of the pin names using the F1 key. Then select the
Change Height ➝ 1.0 command from the pop-up menu.
16-48 Xilinx Development System

XEPLD Tutorial
Add the Symbol Name

To name the symbol and reference the schematic that will be under it,
follow these steps:

1. Press F2 to deselect everything, then select the rectangle.

2. Select Properties ➝ Add .

3. In the dialog box that comes up, type REF in the Property Name
box and rcvrsub in the Property Value box. Select OK.

4. Move the rcvrsub text to the top of the rectangle and click to place
the text.

5. Deselect everything using F2.

6. Select the rcvrsub text using F1.

7. Select the Change Height ➝ 2.0 command.

8. Use the Move command to adjust the rcvrsub text position.

Check the Symbol

Select Check ➝ With Defaults to verify that your symbol does
not violate any symbol rules.

Save the Symbol

To save the symbol, you can do one of the following:

● Select the Save ➝ Symbol command (File menu) to save to the
name rcvrsub2, then use the rcvrsub symbol supplied by Xilinx in
the next step.

● Select the Save ➝ Symbol As... command (File menu) and
save to the following Component Name:

$xilinx_tutorial/uarttop/rcvrsub

This overwrites the rcvrsub symbol supplied by Xilinx and allows
you to use the symbol you created in the next step.

When you are finished, the RCVRSUB symbol should appear as in
the following figure.
Mentor Graphics Interface/Tutorial Guide 16-49

Mentor Graphics Interface/Tutorial Guide
Figure 16-16 The RCVRSUB Custom Symbol

Step 3: Place the Custom Symbol in the Schematic
Next, you must place the new symbol in the top-level schematic.

To place the RCVRSUB symbol in the UART schematic, follow these
steps:

1. Close the symbol window. Move the mouse cursor to the square in
the upper left corner of the symbol window, press and hold the
left mouse button, and select Close from the displayed menu.

2. Select File ➝ Open ➝ Sheet .

3. A dialog box appears. Type $xilinx_tutorial/uart/uart .

4. Select the OK button or press Return.
16-50 Xilinx Development System

XEPLD Tutorial
5. Click on the square in the upper right corner of the schematic
window to expand it. Press Shift-F8 to view the entire sheet at
once.

6. Use the Delete command to delete the PL22V10.

7. Use the Move command to move the ends of the nets that were
connected to the right side of the PL22V10 two grid units to the
right.

8. Select the Choose Symbol icon in the palette and select
rcvrsub from the list. Place the new symbol in the space left by
the PL22V10 symbol. The wires and the RCVRSUB pins should
line up.

9. Select the Properties ➝ Add command and name the
RCVRSUB symbol controller.

10. Select the File ➝ Save Sheet As... command and type the
following in the Component Name field:

$xilinx_tutorial/uarttop/uarttop2

11. Click on the OK button.

After you have added the RCVRSUB symbol, the schematic should
appear as shown in the following figure.
Mentor Graphics Interface/Tutorial Guide 16-51

Mentor Graphics Interface/Tutorial Guide
Figure 16-17 The UART Schematic with the RCVRSUB Symbol

Step 4: Create the Lower-Level Schematic
The next step is to create the lower-level schematic. To save you time
going through this tutorial, we have created this file for you.

To view the RCVRSUB schematic, follow these steps:

1. Select the rcvrsub symbol in the uarttop schematic.

2. Select the Open ➝ Down command and select schematic
sheet1 from the list. Click OK. A schematic sheet named RCVR-
SUB opens.

3. Click on the square in the upper right corner of the schematic win-
dow to expand it. Press Shift-F8 to view the entire sheet at once.
16-52 Xilinx Development System

XEPLD Tutorial
4. The schematic is shown in the figure below. The only components
it contains are INV, OR2, NOR2, OR3, FD, and ANDn, where n is a
number between 2 and 9 that indicates the number of inputs.

The wire names match inputs and outputs in the lower-level sche-
matic to the pins in the RCVRSUB symbol.

Figure 16-18 The RCVRSUB Schematic
Mentor Graphics Interface/Tutorial Guide 16-53

Mentor Graphics Interface/Tutorial Guide
5. Close Design Architect. Move the mouse cursor to the square in
the upper left corner of the Design Architect window, press and
hold the left mouse button, and select Close from the displayed
menu.

Step 5: Run the Simulation and View the Results
To run the simulation and view the results, follow these steps:

1. Select the icon for the uarttop design in the directory window.

2. Select Open ➝ pld_men2xnf8 from the pop-up menu.

3. A dialog box appears with options. Type 7354-12PC68 in the
Part Type field. Select OK.

4. Select the uarttop icon in the Directory window of the Design
Manager, then select the Open ➝ pld_fncsim8 command from
the pop-up menu.

5. Select the Use Original option.

6. Select Yes under the Run QuickSim? option.

7. Select the OK button to start the simulation.

A window appears and displays messages about the process of
making a simulation netlist file. If this process runs successfully,
the QuickSim window opens.

8. Move the mouse to the large display area, then select the Force
➝ From File command from the pop-up menu.

9. Type uarttop.do in the prompt window. Select OK.

10. In a few minutes, list and trace files appear. Iconize the trace file
by clicking on the button in the top right corner that contains the
smaller square.

11. Expand the list file view by clicking on the button in the top right
corner that contains the larger square.

12. Use the PgUp and PgDn keys to scroll through the listing. The Y-
axis displays the times, with zero at the top, and the X-axis dis-
plays the signal names. Note that whenever the value of a signal
changes, the new value is displayed in green.
16-54 Xilinx Development System

XEPLD Tutorial
13. Iconize the list file and click twice on the trace file icon. Expand
the trace file window.

14. To see the waveforms from the beginning of the simulation, select
the View ➝ All command from the banner menus. The results
should be the same as for timing simulation; the figure labeled
Trace File above shows what the trace file should look like.

15. To quit QuickSim, move the mouse cursor to the square in the
upper left corner of the Mentor Graphics window (which is inside
the operating system window), press and hold the left mouse but-
ton, and select Close from the displayed menu. The Exit Quick-
Sim dialog box appears. Select the Without Saving button fol-
lowed by the OK button.

Step 6: Quit Mentor Graphics
To quit, move the mouse cursor to the square in the upper left corner
of the Mentor Graphics window (which is inside the operating
system window), press and hold the left mouse button, and select
Close from the displayed menu.

You have now finished the XEPLD Mentor Graphics Tutorial.
Mentor Graphics Interface/Tutorial Guide 16-55

Mentor Graphics Interface/Tutorial Guide
16-56 Xilinx Development System

Error Messages

Mentor
Graphics
Interface/
Tutorial
Guide
Mentor Graphics Interface/Tutorial Guide — 0401408 01 Printed in U.S.A.

Mentor Graphics Interface/Tutorial Guide
Xilinx Development System

Appendix A

Error Messages

This section lists warning and error messages, and possible recovery
solutions.

EDIF2XNF
In the following error messages, variables are preceded by a “$’’ sign
and are written in italics; however, EDIF2XNF displays information
specific to your software (for example, file names and port names)
on–screen.

Error 1: Cell $ cellref not found in library $library
for cellRef on instance $ instance in cell $ cell.
Explicit libraryRef may be missing. Bad EDIF
input file!

Error 2: library reference name $ library not found
for design $ design. Bad EDIF input file!

Error 3: Port name $ port not found on external
library primitive for cell $ cell.

EDIF2XNF uses EDIF data files that describe the known set of Xilinx
primitives for a technology. These files are usually located in $XACT/
data/edif2000 , $XACT/data/edif3000 , or $XACT/data/
edif4000 . They contain a stripped–down version of the EDIF netlist
extracted from Xilinx’s set of golden symbols. The netlist contains a
primitive that is not recognized. An EDIF primitive is defined as a
cell with no contents record. Exceptions to this rule are user–defined
primitives created using the FILE=<fn>[.xnf] property or
DEF=HM property (user–defined hard macro, XC4000 only).

Error 4: No cellRef for instance $ instance in cell
$cell. Bad EDIF input file!
Mentor Graphics Interface/Tutorial Guide — 0401408 01 A-1

Mentor Graphics Interface/Tutorial Guide
Error 5: No direction/pintype for port:
$instance_port.

Error 6: EDIF data $ file not found in directory
$directory. Cell $ cell is not a recognized Xilinx
primitive component.

There is no CONTENTS record found in this cell. Refer to the
explanation for Error 3.

Error 7: Port $ port not mapped in map file for
primitive cell $cell.

The Map File feature is not supported.

Error 8: Library not found for libraryRef $ library
on instance $ instance in cell $ cell. Bad EDIF input
file!

Error 9: Output directory $ directory does not exist.

Error 10: No design records found in $ edif_input_file.

Error 11: Part type not specified for design
$design in the file $ file.

Error 12: Part type $ part is invalid for design
$design in file $ file.

Specify the part type with the EDIF2XNF command-line option, -p.

Error 13: Unknown direction for port $ port.

Error 14: PortRef $port not found for instance
$instance on net $ net in cell $cell. Bad EDIF input
file!

Net arrays might not contain PortRef references to PortBundles,
because EDIF does not have a method of specifying how to connect
the bits in the Net Array to the PortBundle, (low order/high order).

Workaround: Label the Net using the same convention as the
PortBundle it is connected to and do not mix Bundles and Arrays. For
example:

Okay: Port A<5,2> - Net B<3,1> - Port C<5,1>
Not okay: Port A<5,2> - Net B<0:1> - Port C<5,1>

Explanation: Some schematic-capture programs attempt to use EDIF
A-2 Xilinx Development System

Error Messages
in an illegal way. Connecting bundles to arrays is not legal within
EDIF, because by definition, nets within a bundle can be in any order.
The program reading the EDIF file does not recognize the order, and
cannot make any assumptions.

Error 15: Instance $ instance not found for
instanceref in joined record on net $ net in cell
$cell. Bad EDIF input file!

Error 16: Cell $ cell not found in library $ library
for cellRef on instance $ instance in cell $ cell. Bad
EDIF input file!

Error 17: Cell $ cell not found for design $ design.

Error 18: Out of memory.

Error 19: No direction for port $ port in external
library primitive $ cell.

Error 20: PortRef $ port not found within
portBundle $ portBundle for instance $ instance in
joined record for net $ net in cell $ cell. Bad EDIF
input file!

Error 21: PortBundle $ portBundle not found for
instance $ instance in joined record for net $ net in
cell $ cell. Bad EDIF input file!

Error 22: Could not open $ file for read.

Error 23: Could not open $ file for write.

Error 30: Cell $ cell not found in Verilog map file.

The EDIF2VERILOG program requires a map file to map XNF pin
names to Verilog pin names.

Error 31: Could not checkout license for $ EDIF
version $ VERSION EDIF2VERILOG requires the
correct Xilinx license server.

Error 32: LCANET %s record not valid, must be 4
or 5.

Error 33: XACT environment variable not set or
lib_path arg missing.
Mentor Graphics Interface/Tutorial Guide A-3

Mentor Graphics Interface/Tutorial Guide
Gen_Sch8
This section lists Gen_Sch8 warning and error messages.

WARNING 48: Aka file read error: <aka_error>.

Something is wrong in the AKA file. Check the file.

WARNING 86: Unknown command-line option flag
<flag> ignored.

An unexpected option was specified.

WARNING 87: Extra command-line argument <arg>
ignored.

You specified too many arguments in the command line.

WARNING 220: Can’t open file <file_name>.

Possible reasons:
File does not exist in current directory.
You do not have read privilege to the file.
File is locked by another process.

Error 220: Can’t open file <input_file_name>.
Possible reasons:
File does not exist in current directory.
You do not have read privilege to the file.
File is locked by another process.

Error 230: <net_reader_message>.
Aborting due to errors in <xnf_filename> xnf
file.

XNF file is corrupt; regenerate XNF file.

Error 283: Missing aka file name.
The -a command-line option flag must be followed
by an aka file name.

Error 285: Missing output file name.
The -o command-line option flag must be followed
by a new file name.

Error 286: LCA environment variable undefined.

You need to set an LCA environment variable, pointing to the
location of DS344 software and libraries.
A-4 Xilinx Development System

Error Messages
Error 287: Missing sheet number.
The -s command line option flag must be followed
by a positive non-zero integer.

Error 327: Could not find <symbol_name> in
<library_pathname> library.

XNF file is corrupt; regenerate XNF file.

Error 384: Check Sheet failed.

Invoke Design Architect on the newly generated schematic. Perform
a check sheet on the schematic in Design Architect.

Error 396: Could not find pin <pin_name> on
symbol <symbol_name>.

XNF file is corrupt; regenerate XNF file.

Gen_Sym8
This section lists Gen_Sym8 warning and error messages.

WARNING 86: Unknown command-line option flag
<flag> ignored.

An unexpected option was specified.

WARNING 87: Extra command-line argument <arg>
ignored.

You specified too many arguments in the command line.

WARNING 220: Can’t open file <file_name>.
Possible reasons:
File does not exist in current directory.
You do not have read privilege to the file.
File is locked by another process.

Error 220: Can’t open file <input_file_name>.
Possible reasons:
File does not exist in current directory.
You do not have read privilege to the file.
File is locked by another process.

Error 230: <net_reader_message>.
Aborting due to errors in <xnf_filename> xnf
file.
Mentor Graphics Interface/Tutorial Guide A-5

Mentor Graphics Interface/Tutorial Guide
XNF file is corrupt; regenerate XNF file.

Error 250: Error while writing DA script to disk.
Some information may be found in file
<temp_filename>.
Check for disk full condition.

Check to see that you have write permission.

Error 281: Unable to generate <output_pathname>
file name - too long.

Use the -o option and enter a shorter pathname.

Error 285: Missing output file name.
The -o command-line option flag must be followed
by a new file name.

Error 287: Unable to open temporary work file
<temp_filename>.

Make sure file exists in current directory; you have read privilege to
the file; and that the file is not locked by another process.

Error 289: Could find neither <design_name>.xnf
nor <design_name>.xsf file for input.

Make sure XNF or XSF file exists in your working directory.

PLD_DVE_BA
This section lists PLD_DVE_BA warning and error messages.

WARNING: mba_file_name not specified on command
line.

WARNING: component_name not found in current
directory.

WARNING: mba_file_name not found in current
directory.

Error: Cannot determine value of $LCA.

You need to set an LCA environment variable, pointing to the
location of DS344 software and libraries for PLD_DVE_BA to work.
A-6 Xilinx Development System

Error Messages
PLD_DVE
This section lists PLD_DVE warning and error messages.

WARNING: lca_technology not specified on command
line. Please enter lca technology for this
component (xc2000, xc3000, or xc4000):

Error: Invalid lca_technology type specified.

You must specify a valid XC library, either XC2000, XC3000, or
XC4000.

Error: Cannot determine value of $LCA.

You need to set an LCA environment variable, pointing to the
location of DS344 software and libraries for PLD_DVE_BA to work.

PLD_DVE_SIM
This section lists PLD_DVE_SIM warning and error messages.

WARNING: lca_technology not specified on command
line. Please enter lca technology for this
component (xc2000, xc3000, or xc4000):

WARNING: component_name not found in current
directory.

Error: Invalid lca_technology type specified.

You must specify a valid XC library, either XC2000, XC3000, or
XC4000.

Error: Cannot determine value of $LCA.

You must specify a valid XC library, either XC2000, XC3000, or
XC4000.

UNAKAXNF
This section lists UNAKAXNF warning and error messages.

WARNING 43: Invalid part type <part> ignored.

You must have a valid part type in the XNF file.

WARNING 48: Aka file read error: <aka_error>.
Mentor Graphics Interface/Tutorial Guide A-7

Mentor Graphics Interface/Tutorial Guide
Something is wrong in the AKA file. Check the file.

WARNING 86: Unknown command–line option flag -
<option_flag> ignored.

An unexpected option was specified.

WARNING 87: Extra command–line argument <arg>
ignored.

You specified too many arguments in the command line.

Error 220: Can’t open file <input_file_name>.
Possible reasons:
File does not exist in current
directory.
You do not have read privilege to
the file.
File is locked by another process.

WARNING 221: Can’t open file <input_file_name>.
Possible reasons:
File does not exist in current
directory.
You do not have read privilege to
the file.
File is locked by another process.
If map2lca was run with the -a
option, you can ignore this
warning.

Error 230: Aborting due to errors in
<xnf_file_name> netlist file.

Your XNF file is corrupt. The program aborted, because the XNF file
contains too many errors. Check your XNF file.

Error 250: Error while writing XNF information to
disk. Some information may be found in file
<temp_file_name>. Check for disk–full condition.

Either your disk is full, or you do not have write permission for the
directory.

Error 283: Missing aka file name.

The -a command-line option must be followed by an AKA file name.
A-8 Xilinx Development System

Error Messages
Error 285: Missing output file name.

The -o command-line option must be followed by a new file name.

Error 287: Unable to open temporary work file
<temp_file_name>.

Either your disk is full, or you do not have write permission for the
directory.

XBLXGS
This section lists XBLXGS warning and error messages.

WARNING 86: Unknown command-line option flag
<flag> ignored.

An unexpected option was specified.

WARNING 87: Extra command-line argument <arg>
ignored.

You specified too many arguments in the command line.

Error 11: Bottom-level symbol already there:
<sym_name>.

XGS file is corrupt; rerun X-BLOX to generate new XGS file.

Error 12: FILE property missing: <sym_name>.

FILE property was expected, but not found. Add FILE property to
<sym_name> in your schematic.

Error 13: No PIN property found on symbol pin:
<symbol_name>.

PIN property was expected, but not found. Add PIN property to
<symbol_name> in your schematic.

Error 14: Incomplete BUSSIGS record: <record>.

XGS file is corrupt; rerun X-BLOX to generate new XGS file.

Error 15: No INIT property found on symbol:
<symbol_name>.

INIT property was expected, but not found. Add INIT property to
<symbol_name> in your schematic.
Mentor Graphics Interface/Tutorial Guide A-9

Mentor Graphics Interface/Tutorial Guide
Error 16: Modified net width mismatch found on
net <net_name>.

XGS file is corrupt; rerun X-BLOX to generate new XGS file.

Error 17: Modified pin width mismatch found on
pin <pin_name>.

XGS file is corrupt; rerun X-BLOX to generate new XGS file.

Error 220: Can’t open file <input_file_name>.
Possible reasons:
File does not exist in current directory.
You do not have read privilege to the file.
File is locked by another process.

Error 230: <net_reader_message>.
Aborting due to errors in <xgs_filename> xgs
file.

Error 285: Missing output file name.
The -o command-line option flag must be followed
by a new file name.

XNFBA
This section lists XNFBA warning and error messages.

WARNING 202: The two input XNF files are
identical.

No operation is performed. The file names specified with the -a and -
b options are the same. Check your command line and try again.

WARNING 203: Non–primitive <symbol name> is found
(TYPE=<type name>) in <xnf file>.

Run XNFMERGE to flatten the design, before routing it. Flattening a
design before routing it can improve back-annotation results.

ERROR 251: The pre–route XNF file is required but
is not available.

The -a option was not used, or no file name was specified for the -a
option. Check your command line and try again.

ERROR 252: The post–route XNF file is required
but is not available.
A-10 Xilinx Development System

Error Messages
The -b option was not used, or no file name was specified for the -b
option. Check your command line and try again.

ERROR 253: CLB/IOB detected in <post–route xnf
file>. Please run LCA2XNF -g and try again.

You must specify the -g option with LCA2XNF to generate a post-
route XNF file that can be used by XNFBA with the -b option. The -g
option ensures that the CLB and IOB symbols are not present in the
XNF file.

ERROR 254: Invalid part type <parttype> found
in file <file name>.
Mentor Graphics Interface/Tutorial Guide A-11

Mentor Graphics Interface/Tutorial Guide
A-12 Xilinx Development System

Index

Mentor
Graphics
Interface/
Tutorial
Guide
Mentor Graphics Interface/Tutorial Guide — 0401408 01 Printed in U.S.A.

Mentor Graphics Interface/Tutorial Guide
Xilinx Development System

Index
A
ABEL-HDL, 3-9
ABL2XNF, 6-5
Add force, 9-2
Add property, 3-7
AKA file, 10-17, 10-28
Attributes. See Properties

B
Back-annotation, 8-1, 10-15
BASE property, 4-9
BIT file, 7-1, 7-4, 7-7
Bitstream, 11-101
BLKNM property, 4-3, 4-4
BUFG, 5-7
Bus rippers, 3-5

RULE property, 3-6

C
Calc_da, 11-9
CAP property, 4-9
Carry-logic, 3-4
chref, 2-8
Class P symbols, 1-8
CLB, 6-5, 8-3, 10-3, 10-5, 10-14
CLB/IOB properties

Also see Properties
Modifying, 4-9

CLOCK_OPT property, 5-17, 5-21
CMOS property, 4-9
COMP property, 4-1, 4-2
CONFIG property, 4-10
Configuring your system, 2-1
Converting designs, 2-3

D
DDP, 2-2
DECODE property, 4-4
DEF=PLD, 5-14
default.dvpt, 6-7
Delay option, 8-5
Design architect, 1-1

See also PLD_DA
Tutorial

.PRO files, 11-83
Adding buses, 11-35
Adding labels, 11-56
Adding nets, 11-36
Adding pins to symbol, 11-22
Adding ports, 11-42
Adding text, 11-25
Assigning pin locations, 11-69
Bus rippers, 11-45
calc_3k, 11-9
Checking design rules, 11-96
Checking for errors, 11-109
Command summary, 11-111
Completing ALU schematic, 11-50
Configuring system, 11-5
Configuring XMake with XDM,

11-80
Constraints file, 11-81
Copying components, 11-33
Copying files, 11-13
Creating ANDBLK2 symbol, 11-21
Mentor Graphics Interface/Tutorial Guide — 0401408 01 i

Mentor Graphics Interface/Tutorial Guide
Creating ORBLK2 symbol, 11-28
Creating schematics for symbols,

11-30
Demonstration board, 11-97
Design description, 11-19
Download cable, 11-97
Downloading bitstream, 11-101
Entering commands, 11-18
Examining routed design, 11-93
FAST pads, 11-71
FD4CE symbol, 11-54
Files used, 11-8
Finding block, 11-95
Guide file, 11-106
Highlighting net, 11-96
I/O Flip-Flops, 11-72
Incremental changes, 11-105
Installing, 11-7
Inverting output display signals,

11-67
Labeling buses, 11-44
Labeling nets/buses, 11-39
Men2XNF8, 11-83
Mentor graphics variables, 11-6
Net connections, 11-38
Opening calc schematic, 11-63
Optimizing for XC4000, 11-73
Placing library components, 11-53
Placing user-created components,

11-51
PLD_XMake, 11-85
RAM stack, 11-75
Required software, 11-5
Saving ALU schematic, 11-58
Saving calc schematic, 11-73

Saving symbol, 11-27
Schematic layout, 11-69
Solution files, 11-8
Stack implementation, 11-74
State machine, 11-77
Targeting for XC4000, 11-14
Testing design, 11-103
Translating design, 11-108
Using function keys, 11-17
Using mouse, 11-16
Viewing primitive, 11-60
Viewing RPM, 11-61
Viewing soft macro, 11-59
Wide-edge decoders, 11-78
XC3000 demo board, 11-101
XC3000 oscillator, 11-64
XC3000/XC4000 demo board,

11-99
XC4000 demo board, 11-100
XC4000 oscillator, 11-65
Xilinx library elements, 11-58

Design DataPort, 2-2
Design flow, 1-1, 11-2
Design manager, 1-1

Defining the interface, 1-3
Icons, 1-3
See also PLD_DMGR

Design rule check, 7-8, 11-96
Design Viewpoint Editor

See PLD_DVE
Design.out file, 7-2
Do file, 9-1
DOUBLE property, 4-4
DRC, 11-96

E
EDIF file, 10-7, 10-22
EDIF primitive library, 10-19
ii Xilinx Development System

Index
EDIF2XNF, 10-5, 10-7, 10-8, 10-11, 10-18
Error messages, A-1
Options, 10-19
Signal naming conventions, 3-3
Symbol naming conventions, 3-3
Syntax, 10-19
Variables, 10-19

Editor icon, 1-5
ENWRITE, 10-22

EDIF2XNF, 10-19
Functional simulation, 10-5, 10-7, 10-8,
10-11
Options, 10-22
REF property, 4-1
Syntax, 10-22
Variables, 10-22

EPLD, 5-1
3-state multiplexing, 5-7
BUFG, 5-7
Clocks, 5-7
Components, 5-1, 5-8

Counters, 5-11
PLD, 5-12

FastCLK, 5-7
FOE line, 5-3
Functional simulation, 6-2, 9-5, 10-2
Global control nets, 5-7
Input/output buffer connections, 5-2
Output buffers and 3-States, 5-3
Primitives and macros, 5-13
XC7000 library, 5-1

EQN, 6-5, 8-3, 10-5
EQUATE_F property, 4-10
EQUATE_G property, 4-10
Error Messages, A-1
EXT records, 10-20

F
F attribute, 5-22
FAST property, 4-8
FastCLK, 5-7, 5-21

FILE property, 4-2, 6-5, 10-3
Functional simulation, 10-8, 10-11
Timing simulation, 10-15

FITNET, 10-13
Fitter, 3-8
Flip–flops, 9-2
FNCSIM8, 6-4

Manual translation, 10-1
Options, 10-23
See also Functional simulation
See also PLD_FNCSIM8
Syntax, 10-22
Variables, 10-23

fncsim8.log, 6-6
fncsim8.sh, 6-6
FOE_OPT property, 5-16, 5-21
Functional simulation, 1-2, 6-1

Auto generate, 6-5
EPLD, 6-2
Manual translation, 10-2
ROMs, 9-3
See also PLD_FNCSIM8, FNCSIM8
Use original, 6-5

G
GCLK, 11-64
gen_lib, 2-2
Gen_Sch8

Error messages, A-4
Functional simulation, 6-5, 10-5, 10-7,
10-8, 10-11
Options, 10-24
Syntax, 10-23
Timing simulation, 10-17, 10-18
Variables, 10-23

Gen_Sym8, 3-9
EPLD, 5-14
Error messages, A-5

Globalresetb, 9-2, 9-5
Globalsetreset, 9-2, 9-5
Guide file, 7-3
Mentor Graphics Interface/Tutorial Guide iii

Mentor Graphics Interface/Tutorial Guide
H
H attribute, 5-23
HM2RPM, 3-4
HU_SET property, 4-8

I
IBUF, 5-2
Implementation, 1-2, 7-1

Manual translation, 10-11
EPLD, 10-13
FPGA, 10-11

See also PLD_XEMake
See also PLD_XMake

Incremental design, 11-4
INIT property, 4-5, 9-2, 9-3
Input/Output properties. See Properties.
INST property, 4-2
Intel Hex file, 7-1, 7-7, 10-13
INTERNAL property, 4-8
IOB, 6-5, 8-3, 10-3, 10-5, 10-14
IOB flip–flops, 9-2
IPAD, 5-2

L
Latches, 9-2
LCA file, 7-1, 7-4, 7-7, 8-1, 8-3

Timing simulation, 10-15
LCA2XNF, 6-5, 10-5, 10-15, 10-16

Program description, 10-24
LD_LIBRARY_PATH, 2-2, 11-6, 12-3, 16-2
listref, 2-8
LOC (EPLD) property, 5-18
LOC property, 4-6

Adding to symbols, 4-6
Location maps, 2-2
Location properties. See Properties.
Logic cell array, 7-1
LOGIC_OPT property, 5-16, 5-20
LOWPWR property, 5-19
LOWPWR=ALL, 5-16

M
Macros

EPLD, 5-13
User-defined, 5-14

FPGA, 3-4
Hard, 3-4
HM2RPM, 3-4
RPM, 3-4
Soft, 3-4

MAK file, 7-3, 7-6, 7-8
MakeBits, 7-4
Manual translation, 10-1

Program summary, 10-18
MAP2LCA, 10-15, 10-17
Map-FILE=-then-merge, 7-4
Map-then-merge, 7-4
MBA file, 10-15
MBAPP, 10-15
MEDFAST property, 4-9
MEDSLOW property, 4-9
MemGen, 3-9, 6-3, 8-3, 10-3, 10-14
Men2XNF8, 6-1

Log file, 7-8
Manual translation, 10-1
Options, 10-25
See also PLD_Men2XNF8
Syntax, 10-24
Variables, 10-24

men2xnf8.log, 6-7, 7-8
men2xnf8.sh, 6-7
Merge-then-map, 7-4
MGC_GENLIB, 2-2, 11-6, 12-3, 16-2
MGC_HOME, 2-1, 11-6, 12-3, 16-2
MGC_LOCATION_MAP, 2-2, 11-6, 12-3,
16-2
MGC_WD, 2-2, 12-4, 16-3
MINIMIZE property, 5-16, 5-20
Models

QuickSim II simulation, 9-1
Modify property, 3-8
iv Xilinx Development System

Index
MRINPUT property, 5-16, 5-23

N
Naming conventions, 3-1
Net properties. See Properties.
NET property, 4-13
NETFLAG (EPLD) property, 5-22
NETFLAG property, 4-13
Nets

Analyzing, 9-1
NODELAY property, 4-8

O
Obsolete libraries, 3-4
OBUF, 5-2
OPAD, 5-2
Open sheet command, 3-7
OPT property, 5-19
Out file, 7-8

P
PALASM, 5-17
Part type, 10-20
PINTYPE property, 4-2
PLD, 1-1, 3-7, 5-1
PLD attribute, 5-17
PLD equation file, 5-12
PLD Functional Simulation

Dialog box, 6-4
PLD symbol, 3-10
PLD Timing Simulation

Dialog box, 8-2
PLD XNF Translation

Dialog box, 6-2
PLD=, 3-10
PLD_DA, 1-1, 1-6

Entering, 2-5
See also Design architect

PLD_DMGR, 1-4
Running applications, 2-4
See also Design manager
Starting, 2-3

PLD_DVE

Design manager, 1-6
Dialog box, 6-9
Error messages, A-7
Functional simulation, 10-5, 10-7, 10-8,
10-11
Options, 10-25
PINTYPE property, 4-2
Syntax, 10-25
Variables, 10-25

PLD_DVE_BA, 10-15
Error messages, A-6
Options, 10-26
Syntax, 10-26
Variables, 10-26

PLD_DVE_SIM, 10-3
Error messages, A-7
Functional simulation, 10-5, 10-7, 10-9,
10-11
Options, 10-27
Syntax, 10-26
Timing simulation, 10-15, 10-17, 10-18
Variables, 10-26

PLD_FNCSIM8, 1-2, 1-6, 6-1, 6-4, 6-6
See also FNCSIM8
See also Functional simulation

PLD_Men2XNF8, 1-6, 6-1, 7-1, 11-83
Output files, 11-84
See also Men2XNF8

PLD_TIMSIM8, 1-2, 1-7, 8-1
See also Timing simulation, TIMSIM8

PLD_XDM, 1-7
PLD_XEMake, 1-2, 1-7, 7-1, 7-5

Dialog box, 7-5
MAK file, 7-6
Output files, 7-7
See also XEMake
Target file, 7-6

PLD_XMake, 1-2, 1-7, 7-1, 11-85
Dialog box, 7-1
Output files, 7-7, 11-87
See also XMake
Mentor Graphics Interface/Tutorial Guide v

Mentor Graphics Interface/Tutorial Guide
Target file, 7-4
PLUSASM, 3-10, 5-1, 5-12, 10-13

PLD attribute, 5-17
User-defined primitives, 5-14

PPR, 1-8, 9-3
Preload

Initialization, 9-3
PRELOAD_OPT, 9-4
PRELOAD_OPT property, 5-17, 5-21
PRG file, 7-7, 10-13
Primitives

EPLD, 5-13
User-defined, 5-14

FPGA, 3-4
PRLD

Equations, 5-22
Forcing, 9-5
Initialization, 9-3

Programmable logic device, 1-1
Prolink, 1-2
Properties, 3-7, 4-1

Adding, 3-7
Also see specific property.
EPLD, 5-15

Adding, 5-16
CLOCK_OPT, 5-21
FOE_OPT, 5-21
Global, 5-16
LOC=pin_name, 5-18
LOGIC_OPT, 5-20
LOWPWR, 5-19
MINIMIZE, 5-20
MRINPUT, 5-23
NETFLAG, 5-22
OPT, 5-19
PLD=file_name, 5-17
PRELOAD_OPT, 5-21
REG_OPT, 5-21

UIM_OPT, 5-20
FPGA, 4-1

BASE, 4-9
BLKNM, 4-3, 4-4
CAP, 4-9
CMOS, 4-9
COMP, 4-1, 4-2
CONFIG, 4-10
DECODE, 4-4
DOUBLE, 4-4
EQUATE_F, 4-10
EQUATE_G, 4-10
FAST, 4-8
FILE, 4-2
HU_SET, 4-8
INIT, 4-5
INST, 4-2
INTERNAL, 4-8
LOC, 4-6
MEDFAST, 4-9
MEDSLOW, 4-9
NET, 4-13
NETFLAG, 4-13
NODELAY, 4-8
PINTYPE, 4-2
REF, 4-1
RES, 4-9
RLOC, 4-7
RLOC_ORIGIN, 4-8
RLOC_RANGE, 4-8
SLOW, 4-8
TNM, 4-11
TSidentifier, 4-11
TTL, 4-9
U_SET, 4-7
vi Xilinx Development System

Index
USE_RLOC, 4-7
Modifying, 3-8

PRP file, 7-8

Q
QuickPart tables, 9-1
QuickPath, 1-5, 8-6

Dialog box, 8-6
QuickSim II, 6-6, 9-1

Analyzing nets, 9-1
Dialog box, 6-7, 8-4
Functional simulation, 6-1, 6-7
Icon, 1-5
Options, 10-27
Simulation models, 9-1
Syntax, 10-27
Timing simulation, 8-1, 8-3
Tutorial, 12-1

Adding traces manually, 12-12
Asserting global reset, 12-15
Asserting global set reset, 12-16
Assigning values to clock, 12-13
Command file, 12-28
Command summary, 12-29
Design description, 12-17
Dofile, 12-29
FNCSIM8, 12-29
Functional simulation, 12-6
Installing, 12-4
Men2XNF8, 12-29
Opening list window, 12-10
Opening trace window, 12-10
PLD_FNCSIM8, 12-7
PLD_Men2XNF8, 12-7
PLD_TIMSIM8, 12-27
Required software, 12-2
Saving waveform data, 12-24
Selecting nets for simulation, 12-8

Simulating the circuit, 12-18
Timing simulation, 12-27
Timsim8.log file, 12-28
Using the transcript, 12-26
Viewing calc schematic, 12-7

Variables, 10-27

R
RAMs, 4-5
REF property, 4-1
REG_OPT property, 5-17, 5-21
Relationally placed macro

See RPM
Report file, 7-8
RES property, 4-9
Retargeting design, 2-6
Rip component, 3-5
RLOC property, 4-7
RLOC_ORIGIN property, 4-8
RLOC_RANGE property, 4-8
ROM

INIT property, 4-5
Simulation, 9-3

RPM, 1-8, 3-4
RPT file, 7-8

S
Schematic

Creating, 3-6
Signature, 7-7
SIMDIR, 10-7, 10-11, 10-29, 13-10
Simulation

ROMs, 9-3
Simulation models, 9-1
SLOW property, 4-8
Symbol properties. See Properties.
Symbols

Adding pins, 11-22
Syntax conventions, 10-2
System V Bourne Shell, 10-1
Mentor Graphics Interface/Tutorial Guide vii

Mentor Graphics Interface/Tutorial Guide
T
TIMESPEC primitives, 4-12
Timing simulation, 1-2, 8-1

Auto generate, 8-3
Manual translation, 10-14
Output files, 8-4
See also PLD_TIMSIM8, TIMSIM8
Use original, 8-3

Timing specification properties
Adding TIMESPEC/TIMEGRP, 4-11
Adding TS flag, 4-12
See also Properties
TS Flag, 4-11

TIMSIM8, 8-1
Manual translation, 10-1
Options, 10-28
Syntax, 10-27
Variables, 10-28

timsim8.log, 8-4
timsim8.sh, 8-4
TNM property, 4-11
Tri-state (3-state), 9-3
TS flag, 4-11, 4-12
TSidentifier property, 4-11
TTL property, 4-9

U
U_SET property, 4-7
UIM_OPT property, 5-16, 5-20
UNAKAXNF, 10-15, 10-17

Error messages, A-7
Options, 10-28
Syntax, 10-28

Unified libraries, 1-8, 3-4
Retargeting design, 2-6

USE_RLOC property, 4-7

V
VCC symbol

EPLD, 5-15
Viewpoint, 6-5

Back-annotation, 6-9, 10-26

Default, 10-26
Functional simulation, 6-4
Simulation, 6-9, 10-7
Timing simulation, 8-3
XNF, 6-9, 10-25

Visible option, 8-5
VMD file, 7-7
VMH file, 7-6, 7-7
VMH/VMD file, 5-14, 8-1, 8-3
VMH/VMD files, 3-9, 7-1
VMH2XNF, 10-18

Program description, 10-29

X
XACT Design Editor, 11-93, 15-29
XACT libraries, 3-4, 3-5
XACT-Performance, 15-1

Tutorial, 15-1
Adding TNM, 15-10
ALUFF class, 15-15
Analyze mode, 15-31
Analyze mode output, 15-31
Analyzing design, 15-29
Clock speed, 15-11
ClockToPad option, 15-28, 15-38
ClockToSetup option, 15-28, 15-38
CTLFF class, 15-16
Default timing, 15-9, 15-11
EditLCA, 15-41
EXCEPT statement, 15-6
FailedSpec option, 15-28, 15-32
Flagblk option, 15-27, 15-29
Floorplanning, 15-9
FromFF option, 15-28, 15-40
Grouping symbols, 15-3
IGNORE value, 15-9
Implementation, 15-22
INFFS class, 15-14
viii Xilinx Development System

Index
Installing, 15-2
Maxpaths, 15-39
PadToPad, 15-38
PadToPad option, 15-28
PadToSetup option, 15-28, 15-38
PLD_Men2XNF8, 15-23
PLD_XMake, 15-23
PLD_XMake output, 15-23
PPR, 15-1, 15-8, 15-22
PPR log file, 15-24
Predefined class, 15-5
Query template, 15-30
Required software, 15-2
Running XDelay, 15-29
SD/RD pins, 15-30
SelectSpec option, 15-28, 15-32
Speed grade, 15-9
Stacker class, 15-14
STFF class, 15-16
TIMEGRP, 15-3, 15-5, 15-17
TIMESPEC, 15-3, 15-7, 15-11
TIMESPEC constraints, 15-19
TimeSpec mode, 15-32
TimeSpec output, 15-33
Timing constraints, 15-8, 15-13
Timing specifications, 15-7
TNM attribute, 15-3
TNM groups, 15-14
ToFF option, 15-28, 15-40
TSMaxpaths option, 15-33
Using XACT-Performance, 15-8
XDelay, 15-1, 15-27
XDelay mode, 15-38
XNFPrep, 15-24
XRP file, 15-37

XAS file, 3-9
X-BLOX, 1-8, 3-4, 10-3, 10-7

Functional simulation, 6-6
Libraries, 3-4
Optimization, 7-3
Program description, 10-29
Syntax, 10-29
Timing simulation, 8-3
Tutorial, 13-1

ADD_SUB, 13-9
Adding X-BLOX module, 13-3
ANDBUS, 13-9
ASYNC_VAL, 13-8
Back-annotation, 13-21
BLOXSOLN, 13-11, 13-13
BOUNDS attribute, 13-6
Bus definition, 13-7
Bus widths, 13-6
BUS_DEF, 13-6
BUS_IF symbol, 13-6
Buses, 13-5
Completing ALU_BLOX, 13-5
DATA_REG, 13-8
Design description, 13-2
Dofile, 13-17, 13-24
Download to demo board, 13-20
ENCODING attribute, 13-6
FNCSIM8 output, 13-13
Functional simulation, 13-10
Gen_Sch8, 13-13
Implementation, 13-18
INVMASK, 13-9
Library, 13-1, 13-8
Men2xnf8.log file, 13-11
MUXBUSx, 13-9
ORBUS, 13-9
Mentor Graphics Interface/Tutorial Guide ix

Mentor Graphics Interface/Tutorial Guide
PLD_FNCSIM8, 13-9, 13-10, 13-13
PLD_Men2XNF8, 13-11
PLD_TIMSIM8, 13-21
PLD_TIMSIM8 output, 13-21
PLD_XMake, 13-9, 13-18
PLD_XMake output, 13-18
QuickSim II, 13-17, 13-23
Required software, 13-1
SIMDIR, 13-10
Symbols, 13-8
SYNC_VAL, 13-8
Timing simulation, 13-21
TIMSIM8, 13-21
Viewing ALU_BLOX, 13-3
Viewing schematic, 13-15
XBLXGS, 13-10, 13-13

Variables, 10-29
X-BLOX library, 13-1, 13-8
XBLXGS, 10-7, 10-11

Error messages, A-9
Options, 10-31
Syntax, 10-30
Variables, 10-30

XC2000/XC3000 designs
Globalresetb, 9-2, 9-5

XC4000 designs
Globalsetreset, 9-2, 9-5

XC7000 library, 3-10, 5-1
XDE, 11-93

Checking design rules, 11-96
Finding block, 11-95
Highlighting net, 11-96
Invoking, 11-93

XDelay, 10-15, 10-16, 15-1, 15-27
Program description, 10-31

XDM, 1-7
XEPLD

Tutorial, 16-1

.err file, 16-38

.lga file, 16-38

.lgc file, 16-38

.map file, 16-38

.par file, 16-38

.pin file, 16-38

.res file, 16-38
Add bus, 16-41
Add list, 16-41
Add pins, 16-46
Add symbol name, 16-49
Add trace, 16-41
Adding bus names, 16-25
Adding names, 16-22
Adding symbols, 16-16
Assembler log report, 16-38
Assigning signals, 16-31
Attributes, 16-28
Boolean equations, 16-32, 16-33
Bus command, 16-18
Bus names, 16-25
Bus rippers, 16-21, 16-26
Check symbol, 16-49
Checking design, 16-31
Complete UART schematic, 16-30
Creating a bus, 16-18
Creating a schematic, 16-15
Creating wires, 16-20
Custom symbols, 16-45
Delete force, 16-41
Deleting symbols, 16-17
Demonstration summary, 16-7
Design architect, 16-12
Design description, 16-5
Do file, 16-40
x Xilinx Development System

Index
Draw symbol, 16-46
Drawing design, 16-12
EQUATIONS keyword, 16-33
Example files, 16-6
Fitter, 16-22, 16-37
Fitter error report, 16-38
Fitting the design, 16-37
Force command, 16-41
Global property, 16-28
Installing, 16-1
Intel Hex file, 16-37
JEDEC, 16-37
Lengthen pins, 16-48
List file, 16-43
Logic optimizer report, 16-38
Mapping report, 16-38
Open symbol, 16-46
PALASM, 16-37
Partitioner report, 16-38
Pinlist report, 16-38
Placing symbol, 16-50
PLD equations, 16-32
PLD file, 16-32
PLD=filename, 16-28
PLD_DMGR, 16-11
PLD_FNCSIM8, 16-54
PLD_Men2XNF8, 16-37, 16-54
PLD_TIMSIM8, 16-42
PLD_XEMake, 16-37
PLD_XEMake reports, 16-38
PLUSASM, 16-32
Preparing system, 16-10
Properties, 16-28
QuickSim II, 16-40, 16-54
RCVR.PLD file, 16-32

RCVRSUB, 16-51
Required software, 16-1
Resource report, 16-38
Run command, 16-42
Save symbol, 16-49
Saving design, 16-32
Session 1, 16-10
Session 2, 16-12
Session 3, 16-32
Session 4, 16-37
Session 6, 16-45
Session overview, 16-9
Simulation, 16-39, 16-54
Symbol window, 16-45
Trace file, 16-44
UART, 16-5
UART schematic, 16-13
Unified library, 16-16
Viewing design, 16-13
Wire command, 16-20
XACT library, 16-16
Zoom level, 16-15

XFF file, 10-7
XGS file, 10-7, 10-29
Xilinx ABEL, 3-9, 6-5, 10-3, 10-14

Adding symbol to schematic, 3-9
Creating a symbol, 3-9
Timing simulation, 8-3
Tutorial, 14-1

ABL2XNF, 14-12
Adding STAT_ABL to calc, 14-13
Back-annotation, 14-23
Creating a symbol, 14-12
Design description, 14-3
Dofile, 14-20, 14-25
File property, 14-14
Mentor Graphics Interface/Tutorial Guide xi

Mentor Graphics Interface/Tutorial Guide
FNCSIM8, 14-15
Functional simulation, 14-15
Gen_Sch8, 14-15
Gen_Sym8, 14-12
Implementation, 14-20
Installing, 14-2
PLD_FNCSIM8, 14-15, 14-17
PLD_FNCSIM8 output, 14-18
PLD_Men2XNF8, 14-16
PLD_Men2XNF8 output, 14-16
PLD_TIMSIM8, 14-23
PLD_TIMSIM8 output, 14-24
PLD_XMake, 14-20
PLD_XMake output, 14-22
QuickSim II, 14-20, 14-25
Required software, 14-1
STAT_ABL, 14-3, 14-14
Synthesizing Xilinx ABEL, 14-11
Timing simulation, 14-23
Verifying design with demo

board, 14-23
Verifying STAT_ABL, 14-11

Viewing schematic, 14-18
Viewing STAT_ABL.ABL, 14-3
XAS file, 14-12
Xilinx ABEL output, 14-7
XSF file, 14-12

Xilinx attributes. See Properties
Xilinx design manager. See XDM,
PLD_XDM
Xilinx libraries, 3-4
XMake

MAK file, 7-3
XNF file, 6-1, 6-5, 7-1, 10-7
XNFBA, 10-15, 10-17

Error messages, A-10
Syntax, 10-31
Variables, 10-31

XNFMerge, 10-5, 10-7, 10-11, 10-15
Program description, 10-34
Tutorial design files, 11-10

XNFPrep, 7-8, 10-7, 10-11, 10-29
Program description, 10-35

XSF file, 3-9
EPLD, 5-14

XTF file, 10-7, 10-29
xii Xilinx Development System

	Table of Contents
	Preface
	About This Manual
	Manual Contents
	Related Publications
	Xilinx Publications
	Mentor Graphics Publications
	Conventions
	Chapter 1 Introduction
	Chapter 2 Getting Started
	Chapter 3 Design Techniques
	Chapter 4 FPGA Design Issues
	Chapter 5 EPLD Design Issues
	Chapter 6 Functional Simulation Preparation
	Chapter 7 Design Implementation
	Chapter 8 Timing Simulation Preparation
	Chapter 9 Simulation Issues
	Chapter 10 Manual Translation
	Chapter 11 Design Architect Tutorial
	Chapter 12 QuickSim Tutorial
	Chapter 13 X-BLOX Tutorial
	Chapter 14 Xilinx ABEL Tutorial
	Chapter 15 XACT-Performance and XDelay Tutorial
	Chapter 16 XEPLD Tutorial
	Appendix A Error Messages
	Mentor
	Graphics
	Interface/
	Tutorial
	Guide
	Introduction

	Chapter 1
	Introduction
	Defining the Design Flow
	1. Enter your design with the Design Architect sch...
	2. Test the functionality of your design. Generate...
	3. Implement your PLD design. Generate a Logic Cel...
	4. Test the timing of your design. Use PLD_TIMSIM8...
	5. Download your FPGA design to the appropriate de...
	Figure 1-1 Xilinx Design Flow

	Defining the Design Manager Interface
	Figure 1-2 Design Manager Window
	Tools Window Applications
	Editor
	QuickPath
	QuickSim II
	PLD_DA
	PLD_DVE
	PLD_FNCSIM8
	PLD_Men2XNF8
	PLD_TIMSIM8
	PLD_XDM
	PLD_XEMake
	PLD_XMake

	What is New in this Release
	Mentor
	Graphics
	Interface/
	Tutorial Guide
	Getting Started

	Chapter 2
	Getting Started
	Configuring Your System
	Standard Directory Structure
	Converting V7 Designs to V8.x

	Entering the Design Manager Environment
	Figure 2-1 Design Manager Window
	Invoking Applications in the Design Manager
	Data-centered Invocation
	1. Select a design object in the Navigator window ...
	2. Select Open from the Navigator menu.
	3. Select the appropriate application from the pop...
	4. A dialog box appears with option fields or the ...

	Tool-centered Invocation
	1. Select the appropriate application in the Tools...
	2. Double-click the left mouse button.
	3. A dialog box appears with option fields or the ...

	Entering Design Architect
	Tool-centered Invocation of Design Architect
	1. Select the PLD_DA icon.
	2. Double-click the left mouse button.
	3. The Design Architect window appears similar to ...

	Data-centered Invocation of Design Architect
	1. Select a design in the Navigator window and pre...
	2. Select Open from the Navigator menu.
	3. Select pld_da.
	4. The Design Architect window appears similar to ...
	Figure 2-2 Design Architect Window

	Retargeting Your Design to a Different Family
	Retargeting in the Design Manager
	1. Select MGC › Location Map › Set Working Directo...
	2. Enter the name of the directory above your sour...
	3. Select your design directory in the navigator w...
	4. Select Edit › Change › References.
	5. A dialog box appears. In the From field, enter ...
	6. Check the changes to the path references to the...
	7. Open your design in Design Architect and perfor...

	Retargeting from the Command Line
	1. Set the working directory to the directory abov...
	2. Type listref design directory to look at the pa...
	3. Type chref xc3000 xc4000 design directory to ch...
	4. Type listref design directory to check the chan...
	5. Open your design in Design Architect and perfor...
	Mentor
	Graphics
	Interface/
	Tutorial Guide
	Design Techniques

	Chapter 3
	Design Techniques
	Naming Conventions
	EDIF2XNF
	Table 3-1 Bus Name Examples
	Table 3-2 Symbols Converted By EDIF2XNF
	Signal Naming Conventions
	Symbol Naming Conventions

	Xilinx Libraries
	Primitives and Macros
	X-BLOX
	Using the XACT Libraries
	1. Select XACT_LIB from the Libraries pull-down me...
	2. Select UNIFIED LIB from the libraries menu. The...
	3. Select the correct library for your design. A m...
	4. Select a component from the library list. A sma...
	5. Move the cursor into the schematic window. An o...
	6. Move the outline to the appropriate location an...

	Bus Rippers
	Figure 3-1 Bus Ripper
	1. Select the wire end of the bus ripper part whos...
	2. Access the Edit Window pop-up menu and select P...
	3. Select the RULE property and enter the desired ...

	Creating a Schematic
	1. Use the Open Sheet icon in the Session Palette ...
	2. Place Unified Libraries components and user-cre...
	3. Add and label nets and buses.
	4. Add or modify schematic and symbol attributes a...
	5. Check and save your design.

	Entering Xilinx Attributes
	Adding Properties
	1. Select object(s), for example: net, pin, or ins...
	2. Press the Shift-F5 function key. The Add Proper...
	3. Scroll through the list of existing property na...
	4. Type the new property value in the Property Val...
	5. Fill in the rest of the dialog box and then cli...
	6. Move the cursor to where you want to place the ...

	Modifying Properties
	1. Use the right mouse button to display the popup...
	2. Select the property you want to modify and clic...
	3. The Modify Property dialog box is displayed. En...

	Merging Design Files from Other Sources
	Creating a Xilinx ABEL Symbol
	1. At the UNIX system prompt in your project direc...
	2. Enter:

	Adding a Xilinx ABEL Symbol to Your Schematic
	1. Execute PLD_DMGR to enter the Mentor Graphics D...
	2. Select your design in your project directory an...
	3. Select Right Mouse Button › Instance › Symbol b...
	4. Use the navigator button in the dialog box to s...
	5. Select OK or press return.
	6. Place the symbol by moving the cursor to the ap...
	7. For FPGA designs, add the FILE property to the ...
	8. For EPLD designs, perform the following:
	Mentor
	Graphics
	Interface/
	Tutorial Guide
	FPGA Design Issues

	Chapter 4
	FPGA Design Issues
	FPGA Properties
	Symbol Properties
	REF
	PINTYPE
	INST
	COMP
	FILE
	BLKNM
	HBLKNM
	MAP
	DOUBLE
	DECODE
	INIT
	EQN
	DEF
	CYMODE
	SCHNM
	LIBVER

	Location Properties
	LOC
	1. Select the symbol.
	2. Display the Edit window pop-up menu and select ...
	3. Type LOC in the Property Name box.
	4. Enter the desired value in the Property Value b...
	5. Select String in the Property Type box.
	6. Click on OK and place the text in the desired l...

	RLOC
	USE_RLOC
	U_SET
	HU_SET
	RLOC_ORIGIN
	RLOC_RANGE

	Input/Output Properties
	INTERNAL
	NODELAY
	FAST or SLOW
	MEDFAST or MEDSLOW
	RES or CAP
	CMOS or TTL

	CLB/IOB Properties
	BASE
	CONFIG
	EQUATE_F AND EQUATE_G
	Modifying CLB/IOB Properties
	1. Select the component.
	2. Bring up the pop-up menu and select Properties ...
	3. In the dialog box, select the properties you wa...
	4. Modify the property, then click on OK. A dialog...

	Timing Specification Properties
	TSidentifier
	TNM
	TS Flag
	Adding TIMESPEC/TIMEGRP Properties
	1. Select the TIMESPEC primitive.
	2. Select Properties › Add › Add Multiple Properti...
	3. In the Property Name field, enter a TSidentifie...
	4. Enter the TS attribute definition (for example,...
	5. Repeat steps 3. and 4. until you define all TS ...
	6. Select String in the Property Type field, selec...
	7. Click on OK.
	8. Place the TS attributes in the fields within th...

	Adding a TS Flag to a Net
	1. Select a vertex of the net to which you want to...
	2. Bring up the pop-up menu and select Properties ...
	3. Enter Netflag in the Property Name field.
	4. Enter TSidentifier in the Property Value field,...
	5. Select String in the Property Type field.
	6. Select On in the Visibility field.
	7. Select Attach to Vertices in the remaining fiel...
	8. Click on OK.
	9. Place the TS flag on the schematic.

	Net Properties
	NET
	1. Select all of the net vertices that you want to...
	2. Select Name Nets from the pop-up menu, name the...
	3. Subsequent dialog boxes appear for each net you...

	NETFLAG
	Mentor
	Graphics
	Interface/
	Tutorial Guide
	EPLD Design Issues

	Chapter 5
	EPLD Design Issues
	Components
	Buffers and Pads
	Input and Output Buffer Connections
	Figure 5-1 Input Buffers
	Figure 5-2 Assigning an FOE Line
	Figure 5-3 Bidirectional Pin

	Output Buffers and 3-State Buffers
	Figure 5-4 Output Enable Behavior in EPLDs
	Figure 5-5 Controlling Output Using a PLD Equation...
	If you want to use a PLD output with a TRST equati...
	Figure 5-6 Incorrect Way to Control a Bidirectiona...
	Figure 5-7 Correct Way to Control a Bidirectional ...
	Figure 5-8 Incorrect 3-State Multiplexing
	Figure 5-9 Correct Off-Chip 3-State Multiplexing

	On-Chip 3-State Multiplexing
	Figure 5-10 Correct On-Chip 3-State Multiplexing

	Input Buffers, Clocks, and Global Control Nets
	You can connect the clock pin of any FD component ...
	Figure 5-11 Use of the IFDX1 Symbol

	EPLD-Specific Components
	Table 5-1 Common and EPLD-Specific Symbols

	Accumulators
	ACC1
	ACC1X1 or ACC1X2
	ACC4
	ACC4X1 or ACC4X2
	ACC8
	ACC8X1 or ACC8X2
	ACC16
	ACC16X1 or ACC16X2
	Adders
	ADD1
	ADD1X1 or ADD1X2
	ADD4
	ADD4X1 or ADD4X2
	ADD8
	ADD8X1 or ADD8X2
	ADD16
	ADD16X1 or ADD16X2
	ADSU1
	ADSU1X1 or ADSU1X2
	ADSU4
	ADSU4X1 or ADSU4X2
	ADSU8
	ADSU8X1 or ADSU8X2
	ADSU16
	ADSU16X1 or ADSU16X2
	Counters
	CB2CLED
	CB2X1
	CB4CLED4
	CB4X1
	CB8CLED4
	CB8X1
	CB16CLED4
	CB16X1
	Input Registers
	IFD
	IFDX1
	IFD4
	IFD4X1
	IFD8
	IFD8X1
	IFD16
	IFD16X1
	Output Buffers
	OBUFE
	OBUFEX1
	Counters
	Arithmetic Components
	PLD Components
	Components Not Supported by Specific Devices
	Primitives and Macros
	Each symbol in the library is either a primitive o...
	User-Defined Primitives and Macros
	Creating a User-defined Primitive
	1. Create a behavioral description of the primitiv...
	2. Run PLUSASM on the behavioral description to ge...
	3. Run Gen_Sym8 on the XSF file to create the prim...
	4. Add the FILE=<symbolname> property to the primi...
	5. Add the PLD=<symbolname> property to the primit...
	6. Add the DEF=PLD property to the primitive symbo...

	Creating a User-defined Macro
	1. Create a lower level schematic in Design Archit...
	2. Create a user-defined macro symbol in Design Ar...
	3. Add the REF=<design> property to the symbol to ...

	Assigning Logical High and Low Values
	Attributes
	Attributes, which you place in your schematic, all...
	Using Attributes
	1. If you are applying an attribute to a symbol, s...
	2. Select the Properties › Add command from the po...
	3. A dialog box appears. Type the name of the attr...
	4. Position the cursor where you want to place the...
	5. Click the left button to place the attribute.

	Global Attributes
	PLD Equation File Name: The PLD Attribute
	The PLD=file_name attribute on a PLD symbol specif...
	Figure 5-12 Pin List Example

	Pin Assignment: The LOC Attribute
	Power Setting: The LOWPWR Attribute
	Logic Optimization Attributes
	OPT
	LOGIC_OPT
	MINIMIZE
	UIM_OPT
	FOE_OPT
	CLOCK_OPT
	REG_OPT
	PRELOAD_OPT

	Fast or High-Density Function Blocks: F and H Attr...
	MRINPUT
	Mentor
	Graphics
	Interface/
	Tutorial Guide
	Functional Simulation
	Preparation

	Chapter 6
	Functional Simulation Preparation
	PLD_Men2XNF8
	Figure 6-1 PLD XNF Translation Dialog Box
	Design Object
	Part Type
	Run MemGen Only
	Verbose Output
	Help
	OK or Cancel

	PLD_FNCSIM8
	Figure 6-2 PLD Functional Simulation Dialog Box
	Design Object
	Schematic
	Use Original
	Auto Generate

	Run QuickSim
	Verbose Output
	Help
	OK or Cancel

	Output Files
	QuickSim II
	Figure 6-3 QuickSim II Dialog Box
	Design Pathname
	Symbol
	Interface

	Timing Mode
	Simulator Resolution
	OK, Reset, or Cancel

	PLD_DVE
	Figure 6-4 PLD DVE Dialog Box
	Design Object
	Create Viewpoint Type
	Simulation
	XNF Translation
	Back Annotation

	PLD Technology
	Use Default Viewpoint Name
	Help
	OK, Reset, or Cancel
	Mentor
	Graphics
	Interface/
	Tutorial Guide
	Design Implementation

	Chapter 7
	Design Implementation
	PLD_XMake
	Figure 7-1 XMake Dialog Box
	Design Object
	Override Part Type
	Verbose Output
	Rerun All Steps
	Use Guide File
	Perform X-BLOX Optimization
	Generate MAK File Only
	Output to Screen
	Mapping Strategy
	Map-Then-Merge
	Map-FILE=-Then-Merge
	Merge-Then-Map

	Target
	Make Bitstream
	Make Placed & Routed Design
	Stop to Review DRC
	File

	OK or Cancel

	PLD_XEMake
	Figure 7-2 XEMake Dialog Box
	Design Object
	Override Part Type
	Generate MAK File Only
	Force Execution
	Target
	Table 7-1 Target Specification

	.vmh
	.vmd
	.prg
	Signature
	Output Files
	Design File
	Programming File
	MAK File
	Report File
	Out File
	PRP File
	Men2XNF8.log File
	Mentor
	Graphics
	Interface/
	Tutorial Guide
	Timing Simulation
	Preparation

	Chapter 8
	Timing Simulation Preparation
	PLD_TIMSIM8
	Figure 8-1 PLD Timing Simulation Dialog Box
	Design Object
	Schematic
	Use Original
	Auto Generate

	Run QuickSim
	Verbose Output
	Help
	OK or Cancel

	Output Files
	QuickSim II
	Figure 8-2 QuickSim II Dialog Box
	Design Pathname
	Symbol
	Interface

	Timing Mode
	Simulator Resolution
	OK, Reset, or Cancel
	QuickPath
	Figure 8-3 QuickPath Dialog Box
	Mentor
	Graphics
	Interface/
	Tutorial Guide
	Simulation Issues

	Chapter 9
	Simulation Issues
	Simulation Models
	Analyzing Nets from the Schematic
	1. Select the (schematic view) Add › Traces › Sele...
	2. You can List and Monitor selected nets by selec...

	FPGA Devices
	Global Reset and 3-State Signals
	1. Select your design directory icon in the Naviga...
	2. Select the File › Open Sheet menu item to displ...
	3. Select the Add Force menu from the QuickSim II ...
	4. Fill in the dialog box with the //globalresetb ...
	1. Set the IOB flip-flops High or Low on power-up ...
	2. To activate the signal and begin simulation, se...
	3. Fill in the dialog box with the //globalsetrese...

	XC4000 Simulation Exceptions

	EPLD Devices
	Using PRLD for Initialization
	1. Select your design directory icon in the Naviga...
	2. Select the File › Open Sheet menu item to displ...
	3. Select the Add Force menu from the QuickSim II ...
	4. Fill in the dialog box with the //PRLD signal n...

	XC7000 Simulation Exceptions
	Mentor
	Graphics
	Interface/
	Tutorial Guide
	Manual Translation

	Chapter 10
	Manual Translation
	Functional Simulation
	FPGA and EPLD Designs with Only Schematic Elements...
	Figure 10-1 Schematic Only (Functional Simulation)...

	FPGA Designs with Schematic and CLB/IOB/EQN Elemen...
	Figure 10-2 Schematic & CLB/IOB/EQN (Functional Si...

	FPGA Designs with Schematic and X-BLOX Elements
	Figure 10-3 Schematic and X-BLOX (Functional Simul...

	FPGA Designs with Schematic Elements and Elements ...
	Figure 10-4 Schematic and FILE Property (Functiona...

	FPGA Designs with Schematic Elements, Elements wit...
	Figure 10-5 Schematic, FILE Property, and X-BLOX (...

	Design Implementation
	FPGA Designs
	Figure 10-6 FPGA Implementation

	EPLD Designs
	Figure 10-7 EPLD Implementation

	Timing Simulation
	FPGA Designs with Schematic Elements Only
	Figure 10-8 Schematic Only (Timing Simulation)

	FPGA Designs with Non-schematic Elements
	Figure 10-9 FPGA Non-schematic (Timing Simulation)...

	EPLD Designs
	Figure 10-10 EPLD Designs (Timing Simulation)

	Program Summary
	EDIF2XNF
	Syntax
	Variables
	Options
	-f, -w Force Overwrite
	-h Help Text
	-l library_path Specify EDIF Primitive Library
	-n Do Not Flatten the Design
	-ni Do Not Inherit Properties
	-noio Do Not Create EXT Records in XNF File
	-ns Do Not Skip Unrecognized EDIF Records
	-od output_directory Specify Alternate Output Dire...
	-of Specify Alternate Output File Name
	-p part_type Specify Part Type
	-s Skip Checks
	-x Flatten Xilinx Soft Macros Only
	-nt Omit Timing
	-m map_file Specify Name of Map File
	-v verilog_map Generate Verilog Netlist

	ENWRITE
	Syntax
	Variables
	Options
	-rcf Read Configuration File
	-wef edif_file Write EDIF File

	FNCSIM8
	Syntax
	Variables
	Options
	-o Use original schematic for simulation
	-g Generate a new schematic for simulation
	-q Run QuickSim II
	-verbose Run FNCSIM8 in verbose mode
	-help Display FNCSIM8 syntax

	Gen_Sch8
	Syntax
	Variables
	Options
	-a aka_file[.aka]
	-o output_filename
	-s starting sheet_number
	-w Silent overwrite

	LCA2XNF
	Men2XNF8
	Syntax
	Variables
	Options
	-p Xilinx part type
	-m Run only MemGen on .mem files
	-v Run Men2XNF8 in verbose mode
	-h Display Men2XNF8 syntax

	PLD_DVE
	Syntax
	Variables
	Options
	-h Display syntax for PLD_DVE

	PLD_DVE_BA
	Syntax
	Variables
	Options
	design_viewpoint Specify different viewpoint other...
	-help Display syntax for PLD_DVE_BA

	PLD_DVE_SIM
	Syntax
	Variables
	Options
	design_viewpoint Specify different viewpoint other...
	-help Display syntax for PLD_DVE_SIM.

	QUICKSIM II
	Syntax
	Variables
	Options

	TIMSIM8
	Syntax
	Variables
	Options
	-o Use original schematic for simulation
	-g Generate schematic for simulation
	-q Run QuickSim II
	-verbose Run TIMSIM8 in verbose mode
	-help Display TIMSIM8 syntax

	UNAKAXNF
	Syntax
	Variables
	Options
	-a aka_file.aka Specifies the AKA File Name
	-o output_file.xnf Specifies Alternate Output XNF ...
	-w Overwrite Output XNF

	VMH2XNF
	X-BLOX
	Syntax
	Variables
	Figure 10-11 X-BLOX Directory Structure

	XBLXGS
	Syntax
	Variables
	Options
	-w Silent overwrite
	-d Output directory name; default is simdir
	-o Output design name

	XDelay
	XNFBA
	Syntax
	Variables
	Options
	-a design.xnf Specify Pre-Routing Flat XNF file
	-b design_routed.xnf Specify Post–Routing Flat XNF...
	-m Write Mentor Back–Annotation File
	-x Write Back–Annotated XNF file
	Examples
	Figure 10-12 Logic Block with 10 Load Pins
	Figure 10-13 Replicated Logic Blocks

	XNFMerge
	XNFPrep
	Mentor
	Graphics
	Interface/
	Tutorial Guide
	Design Architect Tutorial

	Chapter 11
	Design Architect Tutorial
	Required Background Knowledge
	FPGA Design Flow
	Figure 11-1 FPGA Design Flow
	1. Create a schematic using Design Architect with ...
	2. Use PLD_Men2XNF8 to translate the Mentor Graphi...
	3. Use PLD_XMake to read the netlist produced by P...
	4. Download the bitstream into one of the Xilinx d...

	Software Installation
	Required Software
	Before Beginning the Tutorial
	1. Verify that your system is properly configured....
	2. Install the following sets of software:
	3. Verify the installation. When you finish the in...
	Modifying Mentor Graphics Variables

	Installing the Tutorial
	Standard Directory Structure
	Tutorial Directory and Files
	Table 11-1 Tutorial Design Directories

	Starting the Design Manager
	Figure 11-2 Design Manager Window
	Tools Window
	Navigator Window
	Command Palette

	Copying the Tutorial Files
	1. In the navigator window, move to the directory ...
	2. Select the calc_da directory.
	3. Choose Right Mouse Button › Edit › Copy: A dial...
	4. In the dialog box, type the directory path wher...
	5. Use the navigator to change directories to the ...
	6. If necessary, modify MGC_LOCATION_MAP so that t...

	Targeting the Design for the XC4000 Family
	1. Select MGC › Location Map › Set Working Directo...
	2. Type $xilinx_tutorial in the Directory field of...
	3. In the navigator window, select the $xilinx_tut...
	4. Select Right Mouse Button › Edit › Change › Ref...
	5. A dialog box appears. In the “from” box, type x...
	6. Whenever you change references in a design, you...

	Starting Design Architect
	1. Select MGC › Location Map › Set Working Directo...
	2. Type $xilinx_tutorial/calc_da in the Directory ...
	3. Select the $xilinx_tutorial/calc_da/calc design...
	4. Select Right Mouse Button › Open › PLD_DA. The ...
	5. Resize the Design Architect window to cover the...
	Figure 11-3 Top-Level Schematic for Calc
	Using the Mouse in Design Architect
	Left Mouse Button
	Middle Mouse Button (Strokes)
	Figure 11-4 Using Strokes, Example of “Z” stroke (...

	Right Mouse Button

	Using the Function Keys
	Selecting Commands from the Menu Bar
	Selecting Commands from the Palette
	Entering Commands from the Keyboard
	Cancelling Commands
	Repeating Menu Commands
	Manipulating the Screen

	Completing the Calc Design
	Design Description
	Creating the ANDBLK2 Symbol
	Opening a Symbol Window
	1. Use the left mouse button to select Open Symbol...
	2. Type $xilinx_tutorial/calc_da/andblk2 in the Co...

	Creating the Symbol Outline
	1. Zoom in until the grid space markers, represent...
	2. Select ADD RECTANGLE from the palette.
	3. Position the cursor in the upper left corner of...
	4. While holding down the left mouse button, move ...

	Adding Pins to the ANDBLK2 Symbol
	1. Select Add Pin from the palette. The dialog box...
	2. Fill in the Dialog box exactly as shown and the...
	Figure 11-5 Add Pin(s) Dialog Box
	3. A small crosshair appears under the cursor, and...
	4. Place pin B(3:0).

	Figure 11-6 Adding Pins A(3:0) and B(3:0)
	5. Select Add Pin from the palette and fill in the...

	Figure 11-7 Add Pin(s) Dialog Box
	6. Place the pin Q(3:0) as shown in the figure bel...
	7. To adjust the positioning of the pin names, mov...

	Figure 11-8 Adding Pin Q(3:0)

	Adding Text
	1. Select the red TEXT button at the top of the pa...
	2. Choose ADD TEXT from the palette. A small recta...
	3. Type ANDBLK2 in the Text field of the dialog bo...
	4. Move the cursor into the symbol editor window a...

	Modifying Text Size
	1. Press the F2 key to unselect everything.
	2. Use the left mouse button to select the text, A...
	3. Select Right Mouse Button › Change Height › 1.5...
	4. Place the cursor over the text and press and ho...
	5. While still holding down the F7 key, move the t...
	Figure 11-9 Completed ANDBLK2 Symbol

	Saving the ANDBLK2 Symbol
	1. From the menu bar, select Check › With Defaults...
	2. Check to see that the information displayed is ...
	3. Close the text window by selecting Close from t...
	4. Select File › Save Symbol from the menu bar to ...
	Figure 11-10 Output from Check

	Creating the ORBLK2 Symbol
	1. Move the cursor above the ANDBLK2 text. Press t...
	2. In the small dialog box that appears in the low...
	Figure 11-11 Completed ORBLK2 Symbol
	3. If necessary, use the cursor and F7 key to move...
	4. From the menu bar, select Check › With Defaults...
	5. If any errors are reported in the Check text wi...
	6. To save the symbol as ORBLK2, select File › Sav...
	7. Enter $xilinx_tutorial/calc_da/orblk2 in the co...
	8. Select OK to execute the command. This saves th...
	9. Close the window containing the symbol.
	10. A dialog box appears prompting you to save the...

	Creating Schematics for ANDBLK2 Symbol
	Opening a Schematic Window
	1. To open a schematic window, select OPEN SHEET f...
	2. Type $xilinx_tutorial/calc_da/andblk2 in the Co...

	Adding the First Component to a Schematic
	1. From the menu bar, select Libraries › XACT LIB....
	2. Use the Unified Libraries for new designs. The ...
	3. Select the correct library for the device you a...
	4. Choose BY TYPE from the palette. This option or...
	Figure 11-12 XC3000 Library BY TYPE Menu
	5. To move up and down in the menu, turn on the sc...
	6. Click the left mouse button on the Set As Defau...
	7. Choose the logic category from the BY TYPE menu...
	8. Select and2.
	9. A small dialog box appears on the screen. Move ...
	10. Move the symbol outline to the location shown ...

	Figure 11-13 Placing a Component

	Placing Additional Components
	Figure 11-14 Placing a Second Component

	Copying a Component
	1. Press the F2 function key to ensure that nothin...
	2. Move the mouse above and to the left of the two...
	3. While holding down the left mouse button, move ...
	4. Release the mouse button to select the objects....
	5. Select Right Mouse Button › Copy. Alternatively...
	6. Place the two copied gates above the original t...
	7. Press Shift - F8 to view the entire schematic. ...
	Figure 11-15 Component Placements for ANDBLK2

	Moving a Component
	1. Use the F2 key to deselect. Select the componen...
	2. Select Right Mouse Button › Move, or use the st...
	3. Click the left mouse button to correctly place ...

	Adding Buses to a Schematic
	1. After pressing the F2 key, select Right Mouse B...
	2. Draw a bus by clicking the left mouse button to...
	3. After adding the three buses, press the Escape ...
	Figure 11-16 ANDBLK2 Schematic with Buses

	Adding Nets to a Schematic
	1. Press the F2 key. Select Right Mouse Button › W...
	2. Move the cursor to the top input pin of the top...
	3. Move the cursor to the left to a position direc...
	4. Press the Escape key to exit the wire-adding mo...
	Figure 11-17 Connecting a net

	Completing the Net Connections
	1. Press the F3 key to execute the Add Wire comman...
	2. Add the remaining nets as shown in the figure b...
	Figure 11-18 ANDBLK2 with all wires and buses conn...

	Labeling Nets and Buses
	1. Press the F2 key to unselect everything on the ...
	2. Move the mouse above the topmost net and betwee...
	3. Press and hold the left mouse button. Drag the ...
	Figure 11-19 Selecting Nets
	4. Select Right Mouse Button › Name Nets. A crossh...
	5. Now, you can place the text on the schematic, a...

	Figure 11-20 Adding Text
	6. The white cross moves down to the next net and ...
	7. Name the remaining nets. Repeat the appropriate...

	Figure 11-21 Schematic with all Nets Labeled
	8. If you incorrectly label a net or bus, move the...

	Adding Ports
	1. If the appropriate Unified library is not displ...
	2. If the library is already visible, you may need...
	3. Select BY TYPE, and then choose the io category...
	4. Select the portin library part from the menu.
	5. Place the portin so that the white crosshair is...
	6. Place another portin at the end of the lower in...
	7. Next select a portout symbol from the library a...
	8. Press Shift - F8 to view the entire schematic. ...
	Figure 11-22 Adding Ports

	Labeling Buses
	1. Press F2 key to unselect everything on the sche...
	2. Move the cursor so that it sits above the NET l...
	3. Press Shift - F7 to choose the Text Change Valu...
	4. In the New Value field, change the text to Q(3:...
	5. Press return or choose OK in the dialog box.
	6. Repeat this procedure on the two remaining buse...
	Figure 11-23 Labeling Buses

	Defining Bus Ripper Rule Properties
	1. Press the F2 key to unselect everything on the ...
	2. Select Right Mouse Button › Other Menus › Prope...
	3. Enter a zero in the Beginning Index Number box,...
	4. Click the left mouse button while positioning t...
	5. Move down the bus A(3:0), clicking on the bus r...
	6. When the fourth bus ripper is reached, click th...
	Figure 11-24 Defining Bus Rippers
	7. Repeat steps 1-6 for the buses B(3:0) and Q(3:0...

	Saving the Schematic
	1. Select Check › Sheet. The text window that appe...
	Figure 11-25 Completed ANDBLK2 Schematic
	2. Once all schematic errors have been corrected, ...

	Creating Schematics for ORBLK2 Symbol
	1. Press F2 key to unselect everything on the ANDB...
	2. Display the BY TYPE library menu. Select the lo...
	3. Press and hold the left mouse button and move t...
	Figure 11-26 Selecting Gates
	4. When the rectangle is positioned correctly, rel...
	5. Select Right Mouse Button › Replace › From Libr...
	6. Use the PageUp and PageDown keys to scroll the ...
	7. Select Check › Sheet from the menu bar. The che...
	8. Close the text window containing the results of...
	9. Select File › Save Sheet As...A dialog box appe...
	10. Type $xilinx_tutorial/calc_da/orblk2 in the Co...
	11. Press return to save the schematic.

	Figure 11-27 Completed ORBLK2 Schematic

	Completing the ALU Schematic
	1. Close the only open window, which is the modifi...
	2. Choose OPEN SHEET from the session palette.
	3. Press the Navigator... button. A navigator wind...
	4. Press return or select OK from the navigator wi...
	5. Press return or select OK from the OPEN SHEET d...
	6. Press F2 key to unselect everything on the sche...
	7. Select the ALU symbol.
	8. The additions you need to make are all in the A...
	9. You must select whether to modify the symbol or...
	10. Press return or select OK. A second schematic ...
	Figure 11-28 Open Down Dialog Box

	Placing User-Created Components
	1. Use the F8 key to zoom into the empty area near...
	2. Press the F2 key to ensure that nothing is sele...
	3. Choose Right Mouse Button › Instance › Symbol b...
	4. Use the Navigator button in the dialog box to s...
	5. Press return or select OK to execute the comman...
	6. Move the cursor to the correct location as show...
	Figure 11-29 Adding ANDBLK2 and ORBLK2 to ALU Sche...
	7. Press the left mouse button to place the compon...
	8. Follow the same procedure to add the ORBLK2 sym...

	Placing Library Components
	1. Use the Shift -F8 to display the entire ALU sch...
	2. Select Libraries › XACT LIB from the menu bar.
	3. Select the Unified Libraries and the appropriat...
	4. Choose BY TYPE› flip_flop › fd4ce from the Libr...
	5. Move the component to lower right corner of the...
	6. Press the left mouse button to place the compon...
	Figure 11-30 Adding fd4ce to ALU Schematic

	Adding Nets, Buses, Ports and Labels
	FD4CE
	1. Add the necessary nets and buses to complete co...
	2. Add ports to the nets and buses attached to the...
	3. Change the default “NET” properties to the prop...
	4. Modify the bus ripper RULE properties appropria...
	Figure 11-31 Nets, Buses, and Ports for fd4ce

	ANDBLK2 and ORBLK2
	1. Add the necessary buses to complete connections...
	2. Use the figure below to name the added buses, a...
	Figure 11-32 Nets, Buses and Labels for ANDBLK2 an...

	Adding Labels to Components
	1. Press the F2 key to unselect everything.
	2. Use the left mouse button to select the ANDBLK2...
	3. Select Right Mouse Button › Properties › Add. A...
	4. In the window labeled “Existing property Name”,...
	5. In the Property Value field, type ANDBLK2, then...
	6. Move the text to position it as shown in the fo...
	7. Label the ORBLK2 symbol the same way using the ...
	8. Give the fd4ce component the label, ALU_REG.
	Figure 11-33 Adding Component Labels to ALU Schema...
	9. The completed ALU schematic is shown in the fol...

	Figure 11-34 Completed ALU Schematic

	Saving the ALU Schematic
	Exploring Xilinx Library Elements
	Viewing a Xilinx Soft Macro Schematic
	1. Press the F2 key to unselect everything.
	2. Select fd4ce with the left mouse button.
	3. Select File › Open Down from the menu bar. A di...
	Figure 11-35 fd4ce Schematic from XC3000 Library

	Viewing a Xilinx Library Primitive
	1. Use the left mouse button to select one of the ...
	2. Select File › Open Down from the menu bar. A di...
	3. Close the fdce schematic and reselect the fd4ce...
	Figure 11-36 fdce Schematic

	Viewing a Xilinx RPM (XC4000 Family Only)
	1. Press F2 key.
	2. Select adsu4.
	3. Open the schematic underneath adsu4.
	4. Use the F8 key (or stroke 1 59) to zoom into th...
	5. Press F2 key to unselect everything.
	6. Select the FMAP component in the upper right co...
	Figure 11-37 Upper portion of the ADSU4 RPM Schema...
	7. Select Report › Object › Selected › All. A text...
	8. Close the text window to return to the adsu4 sc...
	9. Use the scroll bars on the sides of the window ...
	10. Close the adsu4 schematic and return to the AL...

	Figure 11-38 RLOC Attribute on FMAP Component

	Opening the Calc Schematic
	Using the XC3000 Oscillator
	1. Press F2 key to unselect everything.
	2. Select the OSC_3K symbol at the lower left.
	3. Use File › Open Down to open the schematic unde...
	4. Close the OSC_3K schematic.
	Figure 11-39 OSC_3K Schematic

	Using the XC4000 Oscillator
	1. Press F2 key.
	2. Select the OSC_3K instance on the schematic.
	3. Select Right Mouse Button › Replace › Other. A ...
	4. Type $xilinx_tutorial/calc_da/osc_4k in the Com...
	5. Confirm that the OSC_4k symbol is the only obje...
	6. Close the OSC_4K schematic and return to the Ca...
	Figure 11-40 OSC_4K Schematic

	Inverting Output Display Signals
	1. Unselect everything using F2 key.
	2. Click the left mouse button on the 7SEG_DEC_INV...
	3. Select Right Mouse Button › Replace › Other... ...
	4. Type $xilinx_tutorial/calc_da/7seg_dec in the f...
	5. Unselect using the F2 key.
	6. Select the Library icon in the palette. Since X...
	7. Choose buffer from the menu.
	8. Using the left mouse button, select the four in...
	9. Select Right Mouse Button › Replace › From Libr...
	10. Select the buf symbol from the library menu.Th...
	Figure 11-41 Selecting Inverters

	Controlling FPGA Layout from the Schematic
	Assigning Pin Locations
	1. Position the mouse over the “PXX” text to the r...
	2. Without moving the mouse, press Shift-F7. A dia...
	3. If targeting an XC3000 family device, modify th...
	4. Click on OK or press return to execute the comm...
	Figure 11-42 Assigning a Location to an Output Net...

	Designating FAST Pads
	1. Press Shift-F8 to display the entire Calc schem...
	2. Click the left mouse button on the obuf4 symbol...
	3. Select Right Mouse Button › Properties › Add. A...
	4. In the both the Property Name and Property valu...
	5. Press return or select OK to execute the comman...
	6. Use the left mouse button to place the text nea...
	Figure 11-43 Designating a FAST Pad

	Using the I/O Flip-Flops
	Figure 11-44 Underlying IFD8 Schematic Using Input...

	Saving the Calc Schematic

	Optimizing the Design for the XC4000 Family
	Device-Independent Stack Implementation
	1. Deselect everything on the schematic.
	2. Use the left mouse button to select STACK.
	3. Open the schematic underneath STACK. The schema...
	4. Close the STACK schematic and return to the Cal...
	Figure 11-45 Device-Independent Stack Implementati...

	RAM Stack Implementation (XC4000 Family Only)
	1. Make sure the STACK symbol is selected in the C...
	2. Replace the device independent stack with the R...
	3. Use the dialog box that appears to replace STAC...
	4. The STACK_4K symbol does not have a CLK pin. Th...
	5. Unselect everything, then select the STACK_4K s...
	6. Close STACK_4K and return to the Calc schematic...
	7. Check and save the changes to the Calc schemati...
	Figure 11-46 XC4000 Family RAM Stack Implementatio...

	Device-Independent State Machine
	1. Unselect everything by pressing F2 key.
	2. Select CONTROL using the left mouse button.
	3. Open the schematic for CONTROL. The CONTROL sch...
	4. Making sure nothing else is selected, select ST...
	5. Open the schematic for STATMACH. The schematic ...
	6. Close the STATMACH schematic and return to the ...
	Figure 11-47 Device-Independent State Machine Impl...

	Wide-Edge Decoders (XC4000 Family Only)
	1. Make sure the STATMACH symbol is selected.
	2. Replace the STATMACH component with $xilinx_tut...
	3. Open the underlying schematic for STATE_4K usin...
	4. The decode logic is implemented using the eleme...
	5. Close STATE_4K and return to the CONTROL schema...
	6. Check and save the changes to the CONTROL schem...
	7. Close the CONTROL schematic and return to the t...
	Figure 11-48 XC4000 State Machine with Wide-Edge D...

	Configuring XMake using XDM
	Using a Constraints File
	Figure 11-49 calc_4K .cst File
	1. Quit PLD_DA and enter PLD_DMGR.
	2. Execute XDM from PLD_DMGR by double-clicking on...
	3. Verify that the directory in XDM is set to $xil...
	4. In the lower left corner, verify that the famil...
	5. Select Profile › Options from the menu bar. A l...
	6. If using an XC3000A or XC4000 family device, se...
	7. Select Done › Done to return to the XDM executi...
	8. To save all of the changes that you just made t...
	9. Select Quit from the menu, then select Yes from...
	10. Return to the PLD_DMGR window.

	Using .PRO Files

	Using PLD_Men2XNF8
	1. Double-click on the PLD_Men2XNF8 icon.
	2. In the Design Object field type $xilinx_tutoria...
	3. Type the correct Part Type in the Part Type fie...
	4. Select Yes for Verbose Output.
	5. Leave the other options set at the defaults. Pr...
	6. PLD_Men2XNF8 is run and produces an XNF netlist...
	Examining PLD_Men2XNF8 Output Files
	1. Select the navigator window.
	2. Choose Right Mouse Button › Update Window.This ...
	3. Select the men2xnf8.log file and choose Right M...

	Using PLD_XMake
	1. In the Design Object field type $xilinx_tutoria...
	2. Leave the rest of the options set to the defaul...
	Examining PLD_XMake Output Files
	1. Select the navigator window.
	2. Choose Right Mouse Button › Update Window.This ...
	3. Select the calc.out file in the navigator and c...
	4. Repeat step three for the .prp and .rpt files.

	Checking for Warnings in the OUT and PRP Files
	Figure 11-50 XMake Partial calc.out File
	Figure 11-51 XNFPrep Warning Messages

	Checking the RPT File
	Figure 11-52 Partial calc.rpt File

	Examining Routed Designs with XDE
	Entering the Design Editor
	1. Double-click on the PLD_XDM icon in PLD_DMGR to...
	2. Pull down the PlaceRoute menu and select XDE. A...
	3. Select Done. The XDE Executive screen appears. ...
	4. Click on Mode with the left mouse button. A men...
	5. Click on Cancel to remain in Safe mode.
	6. To load the design into the editor, select Desi...
	7. To choose the input LCA file, select Design. A ...
	8. Select CALC.LCA. The name of the design file ap...
	9. To enter the Design Editor, pull down the Progr...
	10. The editor appears, as shown in the following ...
	11. Two types of blocks are shown in the editor. T...
	12. Looking at the routed design, observe how the ...
	Figure 11-53 Portion of XDE EditLCA Screen, XC3020...

	Finding a Block
	1. Pull down the Screen menu and select Find.
	2. Now enter the name of the global clock buffer, ...
	3. Select Done to exit the Find command.

	Highlighting a Net
	1. Pull down the Net menu and select Hilight. A me...
	2. Select a highlight color to use.
	3. Type clk ø. The clock net appears in the select...
	4. Select Done from the top of the screen to finis...

	Using Command Line Entry
	1. To remove the highlighting from the global cloc...
	2. Leave EditLCA by typing quit ø. The XDE Executi...

	Running the Design Rule Checker
	1. Pull down the Programs menu and select DRC. A m...
	2. None of these options are necessary for this de...
	3. Press any key to return to the XDE Executive Sc...
	4. Exit XDE by typing quit ø.
	5. Press any key to return to XDM.

	Verifying the Design Using a Demonstration Board
	Connecting the Cable for Download
	Table 11-3 Demonstration Board Cable Connections F...
	Table 11-4 Demonstration Board Cable Connections F...
	Table 11-5 Demonstration Board Power Connections
	XC3000/XC4000 Demonstration Board
	Table 11-6 XC3000/XC4000 Board Switch Positions fo...
	Table 11-7 XC3000/XC4000 Board Switch Positions fo...

	XC4000 Demonstration Board
	Table 11-8 XC4000 Board Switch Positions

	XC3000 Demonstration Board

	Downloading the Bitstream
	1. Set all of the input switches High. This settin...
	2. In XDM, select the Verify menu.
	3. Select XCHECKER.
	4. Select -port <name> and the correct port.
	5. Select Done and the input file name: CALC.BIT.
	6. If you are using the Download cable to program ...
	7. Press the ø key.
	8. Press any key to return to XDM.

	Testing the Design
	Table 11-9 Processor Operations

	Making Incremental Design Changes
	Creating the Guide LCA File
	Making an Incremental Schematic Change
	1. Since you will return to XDM, do not close it, ...
	2. From PLD_DMGR, select the $xilinx_tutorial/calc...
	3. Use the F8 key to zoom in on the upper left qua...
	4. Press the F2 key to unselect everything.
	5. Select RST net, connected between the CONTROL a...
	6. Press the Delete key to delete the net.
	7. Check and save the schematic.
	8. Exit PLD_DA and return to PLD_DMGR.
	Figure 11-54 Disconnecting RST in Calc Schematic

	Translating the Incremental Design
	1. Select the Calc design in the navigator window....
	2. Since the design has been modified, it is neces...
	3. Now that the design changes are reflected in th...
	4. Enter the appropriate part type, choose the ver...
	5. Select Yes for Use Guide File? option. A File N...
	6. Type gcalc.lca for the name of the guide file.
	7. Press return or select OK.

	Checking for Errors in the calc.out File
	Verifying the Change in the Demonstration Board
	1. Set all of the input switches High. This settin...
	2. Double-click on the XDM icon to open it.
	3. In XDM, select the Verify menu.
	4. Select XCHECKER. The XChecker software is used ...
	5. Select Done and the input file name: CALC.BIT.
	6. If you are using the Download cable to program ...
	7. Press the ø key. If the LCA is successfully pro...
	8. Press any key to return to XDM.
	9. If the Done signal does not go HIGH, check the ...
	10. Verify that the change has been made by loadin...

	Leaving XDM
	Command Summaries
	Basic Translation for XC3000A and XC3000L Designs
	Basic Translation for XC4000 Family Designs
	Basic Translation for XC3000, XC3100, and XC2000 F...
	Incremental Translation for XC3000A and XC3000L De...
	Incremental Translation for XC4000 Family Designs
	Incremental Translation for XC3000, XC3100, and XC...
	Further Reading
	Mentor
	Graphics
	Interface/
	Tutorial Guide
	QuickSim Tutorial

	Chapter 12
	QuickSim Tutorial
	Required Background Knowledge
	Software Installation
	Required Software
	Before Beginning the Tutorial
	1. Verify that your system is properly configured....
	2. Install the following sets of software:
	3. Verify the installation. When you finish the in...
	Modifying Mentor Graphics Variables

	Installing the Tutorial
	1. The tutorial files are optionally installed whe...
	2. Since the schematics used in the Design Archite...

	Starting PLD_DMGR
	1. In UNIX, go to the project directory.
	2. Use the UNIX command, setenv, to set the $MGC_W...
	3. Invoke PLD_DMGR by typing pld_dmgr.
	Making a Working Copy of the CALC design
	1. In the navigator, select from the tutorial/ment...
	2. Select RIGHT MOUSE BUTTON › EDIT› COPY. A dialo...
	3. In the dialog box, type the path to the directo...
	4. Select OK to execute the Copy command.
	5. Use the navigator to change directories until t...

	Basic Functional Simulation
	Preparing the Calc Schematic for Simulation
	PLD_Men2XNF8
	1. Select the Calc design object from the appropri...
	2. Invoke Men2XNF8 on the design by selecting RIGH...
	3. Type the appropriate part type in the Part Type...

	PLD_FNCSIM8
	1. Select the Calc design object in the navigator ...
	2. Invoke FNCSIM8 on the design by selecting RIGHT...
	3. Select Use Original. This specifies that the or...
	4. Select the Yes for Run QuickSim, then press ret...

	Viewing the Calc Schematic
	1. To open a window containing the Calc schematic,...
	2. Move the window to the upper left corner of the...
	Figure 12-1 Top-level Calc schematic

	Selecting Nets for Simulation
	1. Using the F8 key, zoom in on the area pictured ...
	2. Position the cursor on the net labeled CLK, and...
	Figure 12-2 Selecting the CLK Net for Display in T...
	3. Use the left mouse button to select the followi...
	4. Using the Shift -F8 key, view the entire schema...
	5. Select the net labeled EXC (output of the DEBOU...
	6. You can also add buses to your list of signals ...
	7. Press the blue TRACE button in the palette to a...

	Opening Trace and List Windows
	Figure 12-3 Trace Window
	1. Since the desired signals are already selected,...
	2. Move the List window to the upper right-hand co...

	Figure 12-4 List Window

	Adding Traces Manually
	1. Press the F2 key to unselect everything.
	2. Select the Trace window with the left mouse but...
	3. Choose Right Mouse Button › Add › Traces › Spec...
	4. Select the Named Signals button in the dialog b...
	5. Fill in the dialog box as shown in the figure b...
	6. Select OK or press return. The bus SW(6:0) and ...
	Figure 12-5 Adding Manual Traces

	Assigning Values to the Clock
	1. Make sure that the trace window is active (bord...
	2. Press the F2 key to unselect everything, then s...
	3. Select the red button labeled STIMULUS in the P...
	4. Select ADD CLOCK in the Palette. A dialog box a...
	5. Fill in the dialog box as shown in the figure b...
	Figure 12-6 Adding Clock Waveform
	6. Press return or select OK to add the force to C...

	Asserting Global Reset (XC2000 & XC3000 Families O...
	1. With the Trace window selected, press the blue ...
	2. Select the Add Force icon in the Palette with t...
	3. Since a signal is not selected, the Signal name...
	Figure 12-7 Forcing Globalresetb (XC3000 only)

	Asserting Global Set Reset (XC4000 Family Only)
	1. With the Trace window selected, press the blue ...
	2. Select the Add Force icon in the Palette with t...
	3. Since a signal is not selected, the Signal name...
	Figure 12-8 Forcing Globalsetreset (XC4000)

	Design Description
	Simulating the Circuit
	1. Press the blue Unselect All button in the Palet...
	2. Select the Add Force button in the Palette with...
	3. Fill in the dialog box as shown in the figure b...
	Figure 12-9 Forcing Values to SW(6:0)
	1. Press the blue Unselect All button in the Palet...
	2. Select the SW(7) signal from the Trace window. ...
	3. Select the red WF EDITOR button from the top of...
	4. Select the icon labeled EDIT WAVEFORM. A new tr...
	1. Select the CHANGE VALUE icon in the Palette.
	2. Move the cursor into the Trace window. A red ve...
	3. Move the cursor close to the beginning of force...
	4. Type a ‘1’ in the value field of the small dial...

	Figure 12-10 Forcing SW(7) to Initial Value
	5. Press the Escape key to end the Change Value op...
	1. Select the ADD TOGGLE icon from the Palette.
	2. Move the cursor to the trace window. A red vert...
	3. Move the cursor to the forces@@/SW(7) signal at...

	Figure 12-11 Adding the First Toggle to SW(7)
	4. Without moving the cursor, use the right arrow ...
	5. Press Escape to end the ADD TOGGLE command

	Figure 12-12 SW(7) Force Waveform
	Figure 12-13 Output from Simulation (XC3000A desig...

	Saving the Results
	1. Select the red STIMULUS button from the palette...
	2. Select the SAVE WDB icon from the Palette. A di...
	3. Fill in the dialog box as shown in the followin...
	4. Press return or select OK.
	Figure 12-14 Saving Results
	1. Press the blue reset button in the palette. A d...
	2. Select the State button so that it highlights. ...
	3. Press return or choose OK. The trace window res...
	1. Press the red STIMULUS button in the palette.
	2. Select the SAVE WDB icon from the palette. A di...
	3. Fill in the dialog box as shown in the figure b...
	4. Press return or choose OK to save the forces.

	Figure 12-15 Saving Forces

	Using the Transcript
	1. Select the MGC › Transcript › Show Transcript c...
	2. Select Right Mouse Button › Export. A dialog bo...
	3. Type the file name ‘transcript.out’ in the text...
	4. Select File›Quit to exit QuickSim.

	Performing a Timing Simulation with PLD_TIMSIM8
	Using PLD_TIMSIM8 to Prepare for Timing Simulation...
	1. In PLD_DMGR, use the navigator to find and sele...
	2. Select Right Mouse Button › Open › PLD_TIMSIM8....
	3. In the dialog box, select Use Original radio bu...
	4. Select Yes for Verbose Output?.
	5. If Yes were selected for the Run Quicksim? opti...
	6. Press return or select OK to execute the comman...

	Examining the timsim8.log File
	1. In PLD_DMGR, select Right Mouse Button › Update...
	2. Find the timsim8.log file and select it with th...
	3. Choose Right Mouse Button › Open › Editor to op...
	4. When you have finished looking at the file, clo...

	Simulating with a Command File in QuickSim
	1. Double-click on the QuickSim II icon in the too...
	2. Type the appropriate Component name in the fiel...
	3. Select the Constraint option for Timing mode.
	4. Select the Visible option for Detail of ‘Constr...
	5. Select Typ for Timing mode. This specifies the ...
	6. Select Messages for Constraint mode.
	7. Leave the rest of the buttons set at their defa...
	8. Resize the QuickSim window so that it is as lar...
	9. At any location in the QuickSim window, type “d...

	Timing Simulation Command Summary
	Mentor
	Graphics
	Interface/
	Tutorial Guide
	X-BLOX Tutorial

	Chapter 13
	X-BLOX Tutorial
	Introduction
	Before Beginning the Tutorial
	Required Software
	Preparing the Design
	1. Check for a tutorial/mentor directory under you...
	2. In the DS344_install_path/tutorial/mentor direc...

	Modifying the Calc Design
	Adding X-BLOX Module to Calc
	1. Start PLD_DMGR in the tutorial working director...
	2. Open the top-level Calc schematic sheet in Desi...
	3. Select only the ALU instance on the Calc schema...
	4. Select Right Mouse Button › Replace › Other. A ...
	5. Select the alu _blox design component from the ...
	6. The original ALU instance is replaced with ALU_...

	Viewing the ALU_BLOX Schematic
	1. Select only the ALU_BLOX symbol on the Calc sch...
	2. Select File › Open Down from the menu bar and t...
	Figure 13-1 Completed ALU_BLOX Schematic

	Completing the ALU_BLOX Schematic
	1. Open the X-BLOX Unified library, using the menu...
	2. Find and select the DATA_REG library part from ...
	3. Place the DATA_REG symbol in the open area in t...
	4. Connect and label the buses, MUX and Q_BLX, as ...
	5. Connect and label the nets, RST, CE, and CLK, a...
	6. Select the BUS_IF04 component from the X-BLOX l...
	7. Place the BUS_IF04 symbol to the right of DATA_...
	8. Attach the bus Q_BLX to the end of the BUS_IF04...
	9. Place a BUS_DEF symbol from the X-BLOX library ...
	10. Attach the Q_BLX bus to the BUS_DEF.
	11. Attach a bus to the BUS_IF04 pin B(3:0) and la...

	Understanding X-BLOX Buses
	Using BUS_DEF Symbols to Define Bus Widths
	Completing the Bus Definition
	1. Select the BUS_DEF connected to the Q_BLX bus.
	2. Select Properties › Modify. A dialog box appear...
	3. Use the left mouse button to select bounds from...
	4. In the value field of the new dialog box, type ...
	5. Select OK to execute the command.
	6. Repeat the necessary steps to assign the value,...
	7. Check and save the ALU_BLOX schematic.
	Figure 13-2 Modify Property Dialog Box

	X-BLOX Symbols
	1. Select the DATA_REG instance on the ALU_BLOX sc...
	2. Attempt to open its underlying schematic using ...

	Functional Simulation
	Using PLD_Men2XNF8
	1. Quit Design Architect and enter PLD_DMGR.
	2. Select the Calc design in the navigator window....
	3. Select Right Mouse Button › Open › pld_men2xnf8...
	4. Type the appropriate part type in the Part Type...
	5. In not already selected, select Use Original.
	6. Select OK or press return.
	7. After the script finishes running, dismiss the ...
	Men2XNF8 Log File
	Figure 13-3 Men2XNF8 Log File
	1. pld_dve /tutor/calc_3ka/calc xc3000
	2. rm -f /tutor/calc_3ka/calc.edif rm -f enwrite.c...
	3. rm -f /tutor/calc_3ka/calc.flt . . rm -f /tutor...
	4. edif2xnf /tutor/calc_3ka/calc.edif -l /ds344/da...

	Using PLD_FNCSIM8
	1. Select the Calc design in the navigator window....
	2. Select Right Mouse Button › Open › pld_fncsim8....
	3. If not already selected, select Use Original.
	4. Select OK or press return.
	FNCSIM8 Output
	Figure 13-4 FNCSIM8 Output
	1. xnfmerge /tutor/calc_3ka/calc.xnf /tutor/calc_3...
	2. xnfprep /tutor/calc_3ka/calc.xff /tutor/calc_3k...
	3. rm -r simdir
	4. xblox /tutor/calc_3ka/calc.xtf simdir=simdir si...
	5. xblxgs calc /tutor/calc_3ka/simdir/calc.xgs -w ...
	6. gen_sch8 simdir/bsm1.xnf -w -o simdir/bsm1
	7. pld_dve_sim /tutor/calc_3ka/simdir/calc xc3000

	Viewing the Simulation Schematic
	1. In Design Manager, double-click on the simdir d...
	2. Select the Calc component in the simdir directo...
	3. Open the schematic underneath the ALU_BLOX comp...
	Figure 13-5 (Top) DATA_REG from Original ALU_BLOX ...

	Using QuickSim II
	1. Close the Design Architect window.
	2. In the Design Manager, open the simdir/calc des...
	3. Resize the QuickSim window to cover the entire ...
	4. Execute either the calc_3k.do or calc_4k.do sim...

	Implementing the Calc Design
	1. Quit QuickSim without saving and enter PLD_DMGR...
	2. Select the Calc icon with the label XNF on top ...
	3. Select Right Mouse Button › Open › pld_xmake. A...
	4. Keep the default settings and select Done.
	PLD_XMake Output Window
	Figure 13-6 PLD_XMake Output Window
	1. XMAKE: Generating makefile 'calc.mak'...
	2. XMAKE: Execute command 'xnfmerge -D xnf -P 3020...
	3. XMAKE: Execute command 'xblox calc.xtg calc.xg ...
	4. XMAKE: Execute command 'xnfprep calc.xg calc.xt...
	5. XMAKE: Execute command 'xnfmap -P 3020APC68-7 c...
	6. XMAKE: Execute command 'ppr calc.map cstfile=ca...
	7. XMAKE: Execute command ‘xdelay -D -W calc.lca’
	8. XMAKE: Execute command 'makebits -R2 -S0 calc.l...

	Verifying Calc on the Demonstration Board
	Timing Simulation
	1. Select the Calc component in the navigator wind...
	2. Select Right Mouse Button › Open › pld_timsim8
	3. Choose the Auto Generate radio button.
	PLD_TIMSIM8 Output Window
	Figure 13-7 PLD_TIMSIM8 Output Window
	Figure 13-8 Portion of Calc Timing Simulation Sche...

	Using QuickSim II
	1. Double-click on the QuickSim II icon in the Des...
	2. In the field labeled Design pathname, enter the...
	3. Select Delay for Timing mode.
	4. Select Visible for Detail of ‘Delay’ timing mod...
	5. Select the Typ for Timing mode. This specifies ...
	6. Select Messages for Constraint mode.
	7. Leave the rest of the buttons set at their defa...
	8. Resize the QuickSim window so that it is as lar...
	9. Anywhere in the QuickSim window, type dofile ca...
	10. Check the trace output to confirm that real de...

	Further Reading
	Mentor
	Graphics
	Interface/
	Tutorial Guide
	Xilinx ABEL Tutorial

	Chapter 14
	Xilinx ABEL Tutorial
	Introduction
	Before Beginning the Tutorial
	Required Software
	Preparing the Design
	Table 14-1 Tutorial Design Directories

	Chapter 15
	XACT-Performance and XDelay Tutorial
	Before Beginning the Tutorial
	Required Software
	Preparing the Design
	1. The tutorial files are optionally installed whe...
	2. You must copy a completed set of schematics and...

	Understanding XACT-Performance
	1. Add TNM attributes to symbols on your schematic...
	2. Add a TIMEGRP symbol and add properties to the ...
	3. Add a TIMESPEC symbol and add attributes to the...
	Grouping Symbols with TNM Attributes
	TNMs on Logic Primitives
	TNMs on Higher-Level Macro Symbols
	TNMs on Nets to Tag Flip-Flops

	Grouping Symbols by Predefined Class
	Simplifying Symbol Grouping
	Combining Classes: TIMEGRP Symbol
	Joining Two or More Classes into One
	Using the EXCEPT Statement
	Triggering on RISING or FALLING Clock Edges
	Forming Classes by Output Net Name

	Attaching Timing Specifications: TIMESPEC Symbol

	Deciding When to Use XACT-Performance
	Setting Default Timing Requirements
	Adding a TNM Property
	1. Open Design Architect and load the Calc top-lev...
	2. Making sure nothing else is selected, select a ...
	3. Enter the data in the dialog box as shown in th...
	Figure 15-1 Adding TNM Property
	4. Select OK.
	5. Place the property near the CLK net, using the ...

	Entering Default Timing Specifications

	Implementing the Calc Design
	Creating a Routed Design
	1. Quit PLD_DA and open PLD_DMGR.
	2. Select the Calc design component from the appro...
	3. Select Right Mouse Button › Open › pld_men2xnf8...
	4. Enter the appropriate part type and speed grade...
	5. Using the default options, choose OK. The Men2X...
	6. After Men2XNF8 executes, select the top-level c...
	7. Select Right Mouse Button › Open › pld_xmake.
	8. Using the default options, choose OK. XMake map...

	Examining XMake Output
	Figure 15-7 XMake Output

	Examining the PPR Log File
	Figure 15-8 Partial PPR Log File for an XC3020APC6...
	Warnings in the PPR Log File
	Timing Analysis Summary

	1. Use the Add Component command to place a TIMESP...
	2. Making sure nothing else is selected, select th...
	3. Choose Right Mouse Button › Properties › Add › ...
	4. Add the following data in the property name and...

	Using XDelay, the Timing Analysis Program
	Analyzing the Calc Design
	Invoking XDelay
	1. Invoke XDelay from the operating system prompt ...
	2. Load the Calc design into memory by selecting D...

	Using the Flagblk Option
	Disabling Paths Through SD/RD Pins of Flip-Flops
	1. Select Timing › Flagblk › CLB_Disable_SR_Q. A m...
	2. Type *ø to select all blocks. A prompt appears,...
	3. Select Yes › Done. This command disallows paths...

	Displaying Current Options
	1. Select Timing › QueryTemplate to view the curre...
	2. After viewing the template listing, press any k...
	Figure 15-9 Partial Template for an XC3020APC86-7 ...

	Using Analyze Mode
	1. Select Misc › Report to specify that you want t...
	2. Type ø to accept the default file name, calc.xr...
	3. Select Analyze › Done.

	Examining Analyze Mode Output
	1. Press any key to return to the XDelay graphic s...
	2. Use any text editor to examine the XDelay repor...
	Figure 15-10 Analyze Output for an XC3020APC68-7 D...

	Using XDelay-TimeSpec Mode
	1. Select Misc › Report.
	2. Type calcts.xrpø to distinguish the new output ...
	3. Select XDelay-TimeSpec. A menu appears displayi...
	4. Select ClearOptions to remove any delay options...
	5. Select the -FailedSpec option.
	6. The SelectSpec option is already on by default,...
	7. Select Cancel to accept the list with all entri...
	8. Select -TSMaxpaths.
	9. Type 3ø.
	10. Select Done to initiate the timing analysis. A...

	Examining XDelay-TimeSpec Mode Output
	1. Press any key to return to the XDelay graphic s...
	2. Use any text editor to examine the XDelay repor...
	Figure 15-11 XDelay-TimeSpec Output for XC3020APC6...

	Using XDelay Mode
	Reporting by Path Type
	1. Select Misc › Report. You are prompted to enter...
	2. Type calcc2s.xrpø.
	3. Select XDelay. A menu appears displaying availa...
	4. Select ClearOptions to remove any delay options...
	5. Select -ClockToSetup.
	6. Select -Maxpaths and type 1ø.
	7. Select Done and press any key to return to the ...
	8. Use any text editor to examine the XDelay repor...
	Figure 15-12 ClockToSetup Output for XC3020APC68-7...

	Specifying Source and Destination
	1. Select Misc › Report.
	2. Type dpath.xrpø.
	3. Select XDelay › -ClearOptions.
	4. Select -FromFF.
	5. Select the source flip-flop by the name of the ...
	6. Select Done to accept the list of source flip-f...
	7. Select -ToFF.
	8. Select the destination flip-flop by the name of...
	9. Select Done.
	10. Select Done to initiate the analysis.
	11. Use any text editor to examine the XDelay repo...
	Figure 15-13 Dpath.xrp File for an XC3020APC68-7 D...

	Further Reading
	Mentor
	Graphics
	Interface/
	Tutorial Guide
	XEPLD Tutorial

	Chapter 16
	XEPLD Tutorial
	Software Installation
	Required Software
	Before Beginning the Tutorial
	1. Verify that your system is properly configured....
	2. Install the following sets of software:
	3. Verify the installation. When you finish the in...
	Modifying Mentor Graphics Variables

	How to Follow this Tutorial
	The Tutorial Design
	Figure 16-1 UART Receiver Functional Logic Diagram...
	1. A serial to parallel shift register (Deserializ...
	2. A simple state machine (Frame Detector) control...
	3. The host is notified with the ready signal (Rcv...
	4. The output of the counter is decoded to generat...

	Figure 16-2 UART Serial Input Waveform

	The Example Files
	Table 16-1 Tutorial Directories

	Mentor XEPLD Demonstration Procedure
	1. Change to the tutorial directory; the default p...
	2. Invoke pld_dmgr at the UNIX prompt.
	3. From the Mentor Graphics Design Manager, select...
	4. Follow these steps to make the schematic more v...
	5. To exit Design Architect, move the mouse cursor...
	6. Display the contents of the rcvr.pld file in an...
	7. From the Design Manager, select the uart contai...
	8. Select the uart.xnf icon. Select Open › pld_xem...
	9. Select the uart container again, and select Ope...
	10. When PLD_TIMSIM8 is complete, the QuickSim win...
	11. Move the mouse to the large display area, then...
	12. The trace and list files appear. Iconize the t...
	13. Expand the list file view by clicking on the b...
	14. Use the Page Up and Page Down keys to scroll t...
	15. Iconize the list file and click twice on the t...
	16. Select View › All from the pop-up menu to make...
	17. To quit QuickSim, move the mouse cursor to the...

	Overview of the Sessions
	Session 1: Using the XEPLD Software
	Step 1: Prepare the System
	1. Install the XEPLD development system, the Mento...
	2. Make sure the XACT software directory is includ...
	3. If you are using a workstation, copy the tutori...
	4. Make sure the MGC_WD, MGC_HOME, MGC_GENLIB, and...

	Step 2: Start the Mentor Graphics Design Manager
	Step 3: Select Menu Items

	Session 2: Drawing the Design in Design Architect
	Step 1: Open and View the Existing Design
	Figure 16-3 The Complete UART Schematic

	Step 2: Create a New Schematic
	1. Select File › Open › Sheet.
	2. A dialog box appears. Type $xilinx_tutorial/uar...
	3. Select the OK button or press Return.
	4. Click on the square in the upper right corner o...

	Step 3: Change Zoom Level
	Step 4: Enter and Arrange Symbols
	1. Select Libraries › XACT_LIB from the menus.
	2. The Palette window changes to a library listing...
	3. Next, a list of device families appears. Select...
	4. Finally, you are given the alternatives BY TYPE...
	5. Press and hold the right mouse button while the...
	1. Scroll the library listing until you can see th...
	2. Click on the ibuf symbol in the listing.
	3. Move the mouse cursor near the center of the le...
	4. Click with the left button. The symbol is now p...
	5. Add two more ibuf symbols below the first one.
	1. Select the lower ibuf symbol.
	2. Select Move from the schematic window’s pop-up ...
	3. Move the mouse. Notice how the symbol moves wit...
	4. Click the left mouse button. This places the sy...
	5. Press the F2 key to deselect the symbol.
	1. Select the ibuf symbol that you just moved.
	2. Select Delete from the pop-up menu. The symbol ...
	1. Select the inv symbol. Be sure nothing else is ...
	2. Select Rotate/Flip from the pop-up menu twice.
	3. Press the F2 key to deselect everything.
	Figure 16-4 Adding Symbols

	Step 5: Create a Bus
	1. Move the cb8re symbol so that its Q bus is vert...
	2. Use the Bus command on the pop-up menu to draw ...
	3. Place the cursor on the Q bus.
	4. Click the left mouse button.
	5. Move the cursor to about a third of the way bet...
	6. Move the mouse cursor down until it is vertical...
	7. Click the left button twice to end the bus.
	8. Select the Cancel button in the ADD BUS dialog ...
	9. Press F2 to deselect everything.
	Figure 16-5 Adding a Bus

	Step 6: Create Wires
	1. Use the Wire command on the pop-up menu to draw...
	2. Place the cursor on pin 2 of the pl22v10 and cl...
	3. Move the cursor straight across to the bus.
	4. Double click to complete the wire.
	5. Select Cancel from the Add Wire dialog box at t...
	1. If it is not already highlighted, select the wi...
	2. Select the Copy command from the pop-up menu.
	3. Move the cursor to move the copied wire so it i...
	4. Click the left button to place the new wire. No...
	5. Repeat steps 2 through 4 to place nets between ...
	6. Press Shift-F6 (Connect All) to connect all the...
	7. If a segment of the bus extends beyond the last...
	8. Press F2 to deselect everything.
	Figure 16-6 Adding Nets

	Step 7: Add Names
	1. Select the symbol. Be sure nothing else is sele...
	2. Select the Properties › Add command from the po...
	3. A dialog box appears. Type INST in the Property...
	4. The name appears, attached to the cursor. Posit...
	5. Click the left button to place the name.
	6. Press F2 to deselect everything.
	1. Select the joint where the output of the symbol...
	2. Select the Properties › Add command from the po...
	3. A dialog box appears. Type NET in the Property ...
	4. Position the cursor where you want to place the...
	5. Click the left button to place the name.
	Figure 16-7 Adding Names
	1. Select the text you want to resize using one of...
	2. Select Change Height › 1.0 from the pop-up menu...

	Step 8: Add A Bus Name
	1. Zoom in on the bus: position the mouse cursor j...
	2. Select the joint that connects the cb8re to the...
	3. Select the Properties › Add command from the po...
	4. In the dialog box that comes up, type NET in th...
	5. Position the cursor where you want to place the...
	6. Click the left button to place the name.
	7. Press F2 to deselect everything.
	1. Position the cursor on the top right corner of ...
	2. Select the Change Values command from the pop-u...
	3. A dialog box appears at the bottom of the scree...
	4. Repeat these steps to name the next bus rippers...
	Figure 16-8 Adding a Bus Name and Ripper Names
	5. Change the height of the text if you wish.
	6. View the entire design again by typing Shift-F8...

	Step 9: Assign Xilinx EPLD Attributes
	1. Select the pl22v10 component.
	2. Select the Properties › Add command.
	3. In the dialog box that comes up, type PLD in th...
	4. Position the cursor where you want to place the...
	5. Click the left button to place the name.
	6. Press F2.
	1. Zoom out to make space.
	2. Add a tblock symbol in the lower left corner of...
	3. Make sure only the tblock symbol is selected.
	4. Select the Properties › Add command.
	5. Type PRELOAD_OPT in the Property Name box and O...
	6. Position the cursor where you want to place the...
	7. Click the left button to place the name.
	Figure 16-9 Adding Global Attributes

	Step 10: Finish the Drawing
	Figure 16-10 The Complete UART Schematic

	Step 11: Assign Signals to Specific EPLD Pins
	1. Use F1 key to select the Pxx string.
	2. Select the Change Values command from the pop-u...
	3. In the dialog box that comes up, type P18 in th...
	4. Repeat these steps to assign the CS signal to p...

	Step 12: Check Your Design
	Step 13: Save Your Design
	Step 14: Exit Design Architect

	Session 3: Defining the PLD Equations
	Step 1: Define the Declaration Statements
	Step 2: Create the Boolean Equations
	Figure 16-11 rcvr.pld File Contents
	Figure 16-12 rcvr.abl File Contents

	Session 4: Fitting the Design
	Step 1: Invoke the Fitter
	1. Select the icon for the UART design in the dire...
	2. Select Open › pld_men2xnf8 from the pop-up menu...
	3. A dialog box appears with options. Type 7354-12...
	4. Select the xnf uart icon, which should be just ...
	5. A second dialog box appears. To create an Intel...
	6. Because you are creating a programming file, yo...
	7. Do not change any other options. Select OK to s...
	Alternative Ways to Process PLDs

	Step 2: View the Reports
	1. First, view the Fitter Error and Assembler Log ...
	2. Next, view the Resource report, uart.res.
	3. Next, view the Mapping report, uart.map.
	4. Next, view the Pinlist report, uart.pin.
	5. Next, view the Logic Optimizer report, uart.lgc...
	6. Finally, view the Partitioner report, uart.par....

	Session 5: Simulating the Design
	Step 1: Prepare Your Input Vectors
	Figure 16-13 The uart.do File

	Step 2: Run the Simulation and View the Results
	1. Select the uart icon in the Directory window of...
	2. Select the Auto Generate option.
	3. Select Yes under the Run QuickSim? option.
	4. Select the OK button to start the simulation.
	5. Expand the QuickSim window by clicking on the b...
	6. Move the mouse to the large display area, then ...
	7. Type uart.do in the prompt window. Select OK.
	8. In a few minutes, list and trace files appear. ...
	9. Expand the list file view by clicking on the bu...
	10. Use the PgUp and PgDn keys to scroll through t...
	11. Iconize the list file and click twice on the t...
	Figure 16-14 The List File
	12. To see the waveforms from the beginning of the...

	Figure 16-15 The Trace File

	Session 6: Completely Schematic-Based Designs and ...
	Step 1: Change the Working Directory
	1. MGC › Location Map › Set Working Directory
	2. Type $xilinx_tutorial/uarttop in dialog box at ...
	3. Select OK.

	Step 2: Create a Custom Symbol
	Open a Symbol Window
	1. Double click on the PLD_DA (Design Architect) t...
	2. Expand the Design Architect window by clicking ...
	3. Click on the Open Symbol box in the palette win...
	4. A prompt box appears. Type the following in the...
	5. Select the OK button. The symbol window appears...
	6. Expand the symbol window by clicking on the but...
	7. Zoom out so that the view in the symbol window ...

	Draw the Rectangle
	1. Select the Add Rectangle box in the Palette win...
	2. Position the cursor at the top of the symbol wi...
	3. While holding down the left mouse button, move ...

	Add the Pins
	1. Select Add Pin from the Palette window.
	2. In the dialog box that comes up, select the <>-...
	3. Type the following names in the Pin Name(s) fie...
	4. Select the OK button.
	5. The dialog box disappears and the mouse changes...
	6. Move the mouse two grid units down. Click with ...
	7. Continue moving the mouse down two grid units a...
	8. Select Add Pin again.
	9. In the dialog box that comes up, select the <>-...
	10. Type the following names in the Pin Name(s) fi...
	11. Select the OK button.
	12. The dialog box disappears and the mouse change...
	13. Move the mouse two grid units down. Click with...
	14. Continue moving the mouse down two grid units ...

	Lengthening the Pins
	1. Select all of the pins on the left side of the ...
	2. Move the pins one grid unit to the left using t...
	3. Move the pin names to the right one grid unit. ...
	4. Select all of the lines, and select Delete on t...
	5. Select the Two Point Line command from the pop-...
	6. Use the Copy command on the pop-up menu to copy...
	7. Continue copying lines until all the pins on th...
	8. Repeat the above steps to lengthen the pins on ...
	9. Select each of the pin names using the F1 key. ...

	Add the Symbol Name
	1. Press F2 to deselect everything, then select th...
	2. Select Properties › Add.
	3. In the dialog box that comes up, type REF in th...
	4. Move the rcvrsub text to the top of the rectang...
	5. Deselect everything using F2.
	6. Select the rcvrsub text using F1.
	7. Select the Change Height › 2.0 command.
	8. Use the Move command to adjust the rcvrsub text...

	Check the Symbol
	Save the Symbol
	Figure 16-16 The RCVRSUB Custom Symbol

	Step 3: Place the Custom Symbol in the Schematic
	1. Close the symbol window. Move the mouse cursor ...
	2. Select File › Open › Sheet.
	3. A dialog box appears. Type $xilinx_tutorial/uar...
	4. Select the OK button or press Return.
	5. Click on the square in the upper right corner o...
	6. Use the Delete command to delete the PL22V10.
	7. Use the Move command to move the ends of the ne...
	8. Select the Choose Symbol icon in the palette an...
	9. Select the Properties › Add command and name th...
	10. Select the File › Save Sheet As... command and...
	11. Click on the OK button.
	Figure 16-17 The UART Schematic with the RCVRSUB S...

	Step 4: Create the Lower-Level Schematic
	1. Select the rcvrsub symbol in the uarttop schema...
	2. Select the Open › Down command and select schem...
	3. Click on the square in the upper right corner o...
	4. The schematic is shown in the figure below. The...
	Figure 16-18 The RCVRSUB Schematic
	5. Close Design Architect. Move the mouse cursor t...

	Step 5: Run the Simulation and View the Results
	1. Select the icon for the uarttop design in the d...
	2. Select Open › pld_men2xnf8 from the pop-up menu...
	3. A dialog box appears with options. Type 7354-12...
	4. Select the uarttop icon in the Directory window...
	5. Select the Use Original option.
	6. Select Yes under the Run QuickSim? option.
	7. Select the OK button to start the simulation.
	8. Move the mouse to the large display area, then ...
	9. Type uarttop.do in the prompt window. Select OK...
	10. In a few minutes, list and trace files appear....
	11. Expand the list file view by clicking on the b...
	12. Use the PgUp and PgDn keys to scroll through t...
	13. Iconize the list file and click twice on the t...
	14. To see the waveforms from the beginning of the...
	15. To quit QuickSim, move the mouse cursor to the...

	Step 6: Quit Mentor Graphics
	Mentor
	Graphics
	Interface/
	Tutorial Guide
	Error Messages

	Appendix A
	Error Messages
	EDIF2XNF
	Gen_Sch8
	Gen_Sym8
	PLD_DVE_BA
	PLD_DVE
	PLD_DVE_SIM
	UNAKAXNF
	XBLXGS
	XNFBA
	Mentor
	Graphics
	Interface/
	Tutorial Guide
	Index

	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	X

