
Introduction

Getting Started

OrCAD SDT Design
Techniques

FPGA Design Issues

EPLD Design Issues

Functional Simulation

Design Implementation

Timing Simulation

OrCAD VST Simulation
Issues

Manual Translation

SDT Tutorial

VST Tutorial

OrCAD
Interface/
Tutorial
Guide
OrCAD Interface/Tutorial Guide — 0401409 01 Printed in U.S.A.

X-BLOX Tutorial

Xilinx ABEL Tutorial

XACT-Performance and
XDelay Tutorial

XEPLD Tutorial

Program Options

Error Messages

Warning Messages

OrCAD XEPLD
Demonstration Procedure

OrCAD
Interface/
Tutorial
Guide
OrCAD Interface/Tutorial Guide

OrCAD Interface/Tutorial Guide
Xilinx Development System

Preface

About This Manual
This manual describes Xilinx’s OrCAD interface programs, a set of
tools used to translate your schematics from OrCAD into
implemented design files and simulation files.

Before using this manual, you should be familiar with the operations
that are common to all Xilinx software tools: how to bring up the
system, select a tool for use, specify operations, and manage design
data. These topics are covered in the XACT Reference Guide and the
XEPLD Reference Guide. You should also be familiar with OrCAD and
the OrCAD documentation.

Alternatively, if you are a new user, you might wish to turn to the
tutorial chapters at the end of this manual for a set of tutorials that
introduce the new user to the process of creating a Xilinx design with
OrCAD. Other publications you can consult for related information
are the XACT Libraries Guide and The Programmable Logic Data Book.

Manual Contents
This manual covers the following topics.

● Chapter 1, INTRODUCTION, introduces the Xilinx programs and
the general task flow of the book.

● Chapter 2, GETTING STARTED, assists you in preparing your
system to use the OrCAD interface software.

● Chapter 3, ORCAD SDT DESIGN TECHNIQUES, discusses
schematic entry techniques common to both FPGA and EPLD
designs.
OrCAD Interface/Tutorial Guide — 0401409 01 i

OrCAD Interface/Tutorial Guide
● Chapter 4, FPGA DESIGN ISSUES, assists you in creating your
FPGA design in view of the conversion to implemented design
and simulation files.

● Chapter 5, EPLD DESIGN ISSUES, assists you in creating your
EPLD design.

● Chapter 6, FUNCTIONAL SIMULATION, provides translation
procedures for creating a functional netlist file for simulation as
well as instructions on how to simulate your design.

● Chapter 7, DESIGN IMPLEMENTATION, discusses the
translation of a schematic design into an implemented design file.

● Chapter 8, TIMING SIMULATION, provides translation
procedures for creating a timing netlist as well as instructions on
how to simulate your design.

● Chapter 9, ORCAD VST SIMULATION ISSUES, explains the
simulation issues you should understand to simulate your design.

● Chapter 10, MANUAL TRANSLATION, explains how to
manually translate your design into implemented design files and
simulation netlists, as an alternative to the automated procedures.

● Chapter 11, SDT TUTORIAL, teaches the first-time user how to
use OrCAD to enter an FPGA schematic design using Xilinx
libraries.

● Chapter 12, VST TUTORIAL, teaches the first-time user how to
prepare for simulation and do functional and timing simulations.

● Chapter 13, XILINX ABEL TUTORIAL, demonstrates the use of
OrCAD with Xilinx ABEL.

● Chapter 14, X-BLOX TUTORIAL, demonstrates the use of OrCAD
with X-BLOX for FPGA designs.

● Chapter 15, XACT-PERFORMANCE AND XDELAY TUTORIAL,
demonstrates the use of OrCAD with XACT-Performance and
XDelay for FPGA designs.

● Chapter 16, XEPLD TUTORIAL, teaches the first-time user how
to complete an XEPLD schematic design and perform simulations
on the design.

● Appendix A, PROGRAM OPTIONS, lists the options used with
the interface programs XDraft, SDT2XNF, and XNF2VST.
ii Xilinx Development System

Preface
● Appendix B, ERROR MESSAGES, lists all error messages and
suggested recovery techniques for SDT2XNF and XNF2VST.

● Appendix C, WARNING MESSAGES, lists all warning messages
and suggested recovery techniques for XDraft, SDT2XNF, and
XNF2VST.

● Appendix D, ORCAD XEPLD DEMONSTRATION PROCEDURE,
is a summary of the commands used in the XEPLD tutorial.
OrCAD Interface/Tutorial Guide iii

OrCAD Interface/Tutorial Guide
iv Xilinx Development System

Conventions

The following conventions are used in this manual’s syntactical
statements:

Courier font System messages or program files appear
regular in regular Courier font.

Courier font Literal commands that you must enter in
bold syntax statements are in bold Courier font.

italic font Variables that you replace in syntax
statements are in italic font.

[] Square brackets denote optional items or
parameters. However, in bus specifications,
such as bus [7:0], they are required.

{ } Braces enclose a list of items from which
you must choose one or more.

· A vertical ellipsis indicates material that has
· been omitted.
·

. . . A horizontal ellipsis indicates that the
preceding can be repeated one or more
times.

| A vertical bar separates items in a list of
choices.

↵ This symbol denotes a carriage return.
OrCAD Interface/Tutorial Guide – 0401409 01 v

OrCAD Interface/Tutorial Guide
vi Xilinx Development System

Contents
Chapter 1 Introduction
Defining the Design Flow ... 1-1
Defining the Interface... 1-3
What is New in this Release .. 1-3

Library Features.. 1-3
XDraft Support .. 1-4
SDT2XNF Enhancements .. 1-5
XNF2VST Enhancements... 1-5

Chapter 2 Getting Started
Preparing Your System.. 2-2
Partitioning Software Between Two Different Disks..................... 2-4
Entering the OrCAD/ESP Design Environment 2-5

From a DOS Command Prompt ... 2-5
From the XACT Design Manager ... 2-5

As an XDM Menu Selection... 2-5
At the XDM Command Line... 2-6

Configuring the OrCAD/ESP Design Environment 2-6
Creating a Design Directory... 2-6

From DOS... 2-6
From the Graphical User Interface ... 2-7

Using XDraft to Configure the OrCAD Environment 2-7
Running XDraft ... 2-8
Changes Made to SDT ... 2-9
Sample Sdt.cfg File... 2-10
Changes Made to VST ... 2-11
Connectivity Database Extension ... 2-11
Sample Vst.cfg File... 2-12
Macro Files ... 2-12

Entering the Draft Schematic Editor... 2-15
Retargeting Your Design to a Different Family 2-15

Example.. 2-17
OrCAD Interface/Tutorial Guide — 0401409 01 vii

OrCAD Interface/Tutorial Guide
Chapter 3 OrCAD SDT Design Techniques
Naming Conventions.. 3-1

Reserved Names .. 3-1
Valid Characters ... 3-2
Naming Nets and Subnets .. 3-2

Multiple-Sheet Designs .. 3-3
Flat Designs .. 3-3
Hierarchical Designs ... 3-6

Specifying a Sheet Symbol.. 3-6
Sheet-Path Part ... 3-7

User-Created Libraries... 3-7
Creating Schematic and Netlist Files 3-8
Creating a Symbol for the Schematic 3-8
Saving the Symbol .. 3-9
Changing Your Search Path ... 3-10

Chapter 4 FPGA Design Issues
Xilinx-Supplied Primitives and Macros ... 4-2
Entering Xilinx Attributes .. 4-3

Entering Symbol and External I/O Attributes 4-4
Entering Signal Attributes ... 4-5
Entering User Attributes.. 4-6

Entering XACT-Performance Attributes 4-7
TIMESPEC.. 4-7
TIMEGRP.. 4-8
TNM .. 4-9
TSidentifier.. 4-9

Entering a PARTTYPE Record .. 4-9
Using the Draft Edit Menu .. 4-10

XC2000/XC3000 Field Names.. 4-10
Location and Options (LOC,OPTIONS)............................. 4-10
Block Name (BLKNM).. 4-11
BASE and CONFIG Fields... 4-11
EQUATE_F, EQUATE_G, $FCONT, $GCONT Fields 4-11

XC4000 Field Names.. 4-11
Options (OPTIONS_1 and OPTIONS_2)........................... 4-12
Initialization State (INIT) .. 4-12
BASE, CONFIG, and EQUATE Fields............................... 4-12

Symbol and External I/O Attributes .. 4-12
Signal Attributes ... 4-18
viii Xilinx Development System

Contents
Representing Power and Ground Signals.................................... 4-20
VCC — Logic High.. 4-20
GND — Ground .. 4-20

Merging Design Files from Other Sources................................... 4-20
Creating a Symbol for the XNF File .. 4-21
Adding a Symbol to Your Schematic 4-22

Using X-BLOX Symbols... 4-22
Connecting a Wire .. 4-23
Adding Attributes .. 4-23
Processing the Design.. 4-23

Chapter 5 EPLD Design Issues
Using the Schematic Library Components................................... 5-1

Buffers and Pads .. 5-2
Input and Output Buffer Connections 5-2
Output Buffers and 3-State Buffers 5-4
On-Chip 3-State Multiplexing... 5-7
Input Buffers, Clocks, and Global Control Nets 5-8

EPLD-Specific Components ... 5-9
Counters .. 5-11
Arithmetic Components ... 5-11
PLD Components .. 5-11
Components Not Supported by Some EPLD Devices....... 5-12

Xilinx-Supplied Primitives and Macros... 5-13
User-Defined Primitives and Macros ... 5-13
Representing Power and Ground Signals.................................... 5-14

VCC — Logic High.. 5-14
GND — Ground .. 5-14

Entering Xilinx Attributes.. 5-15
Component Attributes ... 5-16

PLD Attribute: PLD Equation File Name............................ 5-17
LOC Attribute: Pin Assignments .. 5-18
LOWPWR Attribute: Power Setting 5-19
OPT: Logic Optimization Attributes 5-19

Global Attributes ... 5-20
Global Attributes .. 5-20
LOWPWR=ALL Attribute: Power Setting........................... 5-21
LOGIC_OPT Attribute: Logic Optimization 5-21
MRINPUT Attribute: Master Reset Pin 5-21
MINIMIZE Attribute: Logic Minimization 5-21
UIM_OPT Attribute: UIM Optimization............................... 5-21
OrCAD Interface/Tutorial Guide ix

OrCAD Interface/Tutorial Guide
FOE_OPT Attribute: Fast Output Enable Optimization...... 5-22
CLOCK_OPT Attribute: FastClock Optimization................ 5-22
REG_OPT Attribute: Input Register Optimization.............. 5-22
PRELOAD_OPT Attribute: Preload Values 5-22

The PARTTYPE Attribute ... 5-23
Signal Attributes.. 5-23

F/H ... 5-24

Chapter 6 Functional Simulation
Creating a Functional Simulation Netlist 6-1

From the XACT Design Manager.. 6-2
From the DOS Prompt .. 6-2
XSimMake Options ... 6-3
Converting Trace and Stimulus Files 6-4

XSimMake Summary ... 6-4
FPGA Designs with IOB and CLB Elements................................ 6-5
Simulating Your Design.. 6-6

Configuring the OrCAD/VST386+ Software............................ 6-6
Simulating from DOS .. 6-7
Simulating from the Graphical User Interface 6-7

Entering the OrCAD/ESP Design Environment 6-7
Entering the OrCAD/VST386+ Environment...................... 6-7
Simulating a Design... 6-8

Chapter 7 Design Implementation
Translating Your FPGA Design.. 7-2

Translating Automatically with XMake 7-4
Invoking XMake .. 7-4

From the XACT Design Manager 7-4
From the DOS Prompt ... 7-4

XMake Summary .. 7-5
XMake Options .. 7-7

Translating Your EPLD Design .. 7-7
Invoking XEMake .. 7-8

From the XACT Design Manager 7-8
From the DOS Prompt ... 7-9

XEMake Summary .. 7-10
Valid File Formats .. 7-10

Input Files ... 7-10
SCH File .. 7-10
MAK File .. 7-11
x Xilinx Development System

Contents
Output Files .. 7-11
Report File ... 7-11
Design File... 7-11
Programming File .. 7-12
MAK File .. 7-12

Reprocessing the Design After Minor Changes........................... 7-13

Chapter 8 Timing Simulation
Creating a Timing Simulation Netlist.. 8-2

From the XACT Design Manager ... 8-2
From a DOS Prompt ... 8-2
XSimMake Options ... 8-3
Converting Trace and Stimulus Files...................................... 8-4
EPLD Behavioral Designs .. 8-4

XSimMake Summaries .. 8-5
FPGA Designs .. 8-5
EPLD Designs .. 8-5

Simulating Your Design ... 8-6
Configuring the OrCAD/VST386+ Software............................ 8-6
Simulating from DOS .. 8-6
Simulating from the Graphical User Interface......................... 8-7

Entering the OrCAD/ESP Design Environment 8-7
Entering the OrCAD/VST386+ Environment 8-7
Simulating a Design... 8-8

Chapter 9 OrCAD VST Simulation Issues
FPGA Devices ... 9-1

Unconnected Control Pins .. 9-1
Global Reset and 3-State Signals... 9-1
Simulation Time Units... 9-2
Using Traces and Stimuli .. 9-2
Simulating High-Impedance Inputs... 9-2
Pulse-Widths Smaller than the Routing Delay........................ 9-2
No Weak-keeper... 9-2
Simulating the OSC, OSC4, and GXTL Oscillators 9-3
Hold Violations.. 9-3
Simulating Large ROMs in XC4000 Devices 9-5

EPLD Devices.. 9-5
Using PRLD for Initialization ... 9-5
3-State Outputs... 9-6
OrCAD Interface/Tutorial Guide xi

OrCAD Interface/Tutorial Guide
Chapter 10 Manual Translation
Creating an XNF File (SCH › XNF) .. 10-2

Annotate Program... 10-4
Syntax.. 10-4
Options .. 10-4

INET Program ... 10-5
Syntax.. 10-5
Options .. 10-5

SDT2XNF Program... 10-7
Syntax.. 10-7
Options .. 10-7

XNFMerge Program.. 10-9
Syntax.. 10-9
Options .. 10-9

Creating Functional Simulation Files (XNF › VST)....................... 10-10
Design Flows .. 10-11

FPGA Design Flow .. 10-12
Translating XFF Files Created with SDT2XNF and
XNFMerge... 10-12
FPGA Designs with X-BLOX Modules 10-13
FPGA Designs with IOB and CLB Primitives 10-13
Translating LCA Files Created with XMake 10-14

Creating Implemented Design Files .. 10-15
FPGA Designs (XNF › LCA › BIT)... 10-15
EPLD Designs (XNF › VMH › PRG or JED)............................ 10-15

Creating Timing Simulation Files ... 10-16
FPGA Designs (LCA › XNF › VST + DBA).............................. 10-16
EPLD Designs (VMH › XNF › VST + DBA) 10-17

Translation Programs for Simulation.. 10-19
XNF2VST Program ... 10-19

Input Files .. 10-20
Output Files ... 10-20
Options .. 10-21
XNF2VST Signal Names ... 10-22
XNF2VST and FPGA/OrCAD Naming Conventions.......... 10-23
Recycled Aliases ... 10-24

ASCTOVST Program.. 10-25
Input and Output Files ... 10-25
xii Xilinx Development System

Contents
Chapter 11 SDT Tutorial
Design Flow .. 11-1
Required Software ... 11-3
Before Beginning the Tutorial .. 11-3
Installing the SDT Tutorial.. 11-5

Running XDraft ... 11-6
Sdt.cfg File.. 11-6
Copying the Tutorial Design Files... 11-8
Solutions Directories... 11-8

Loading the CALC Schematic into OrCAD SDT 11-10
Starting the XACT Design Manager (XDM) 11-11
Accessing OrCAD from XDM.. 11-11
Selecting Calc as the Active Design 11-11
Changing the Default Design.. 11-12
Accessing SDT, the OrCAD Schematic Editor 11-12

Using OrCAD Commands.. 11-13
Entering OrCAD Commands with the Mouse 11-13
Entering OrCAD Commands from the Keyboard.................... 11-15
Using OrCAD Key Macros .. 11-15

Design Description... 11-16
Exploring OrCAD Symbols... 11-18
Completing the ALU Schematic ... 11-19

Pushing into the ALU Schematic .. 11-19
Enabling X and Y Coordinates.. 11-21
Defining a Sheet Symbol .. 11-22
Copying a Sheet Symbol .. 11-24
Placing a Library Symbol .. 11-26
Drawing Wires .. 11-26
Drawing Buses.. 11-28
Placing Bus Entry Elements ... 11-29
Completing Connections to ANDBLK2 and ORBLK2 11-30
Placing a Junction Symbol.. 11-31
Placing Labels .. 11-31
Placing Module Ports.. 11-33
Naming Buses in OrCAD/SDT.. 11-34
Saving the ALU Drawing... 11-36

Creating the ANDBLK2 Schematic .. 11-37
Creating a New Schematic Sheet... 11-37
Placing Xilinx Library Primitives.. 11-37
Copying Library Elements... 11-38
OrCAD Interface/Tutorial Guide xiii

OrCAD Interface/Tutorial Guide
Moving Library Elements .. 11-39
Experimenting with Wires and Buses 11-40
Completing the ANDBLK2 Schematic..................................... 11-40

Creating the ORBLK2 Schematic... 11-41
Exporting a Block .. 11-41
Importing a Block to Create ORBLK2 11-42
Completing the ORBLK2 Schematic....................................... 11-43
Saving a File to Another Name ... 11-44

Exploring Xilinx Library Elements... 11-45
Viewing a Xilinx Soft Macro Schematic................................... 11-45
Viewing a Xilinx RPM (XC4000 Family Only) 11-47
Returning to the CALC Schematic .. 11-49
Using the XC3000 Oscillator (XC3000 Family Only) 11-49
Using the XC4000 Oscillator (XC4000 Family Only) 11-51
Inverting Output Display Signals (XC3000 Demonstration
Board Only)... 11-52

Controlling FPGA Layout from the Schematic 11-53
Specifying the Part Type... 11-53
Assigning Pin Locations.. 11-54
Adding Net Attributes .. 11-55
Designating FAST Pads.. 11-57
Using the I/O Flip-Flops .. 11-58

Editing the Design for the XC4000 Family 11-60
Device-Independent Stack Implementation 11-60
RAM Stack Implementation (XC4000 Family Only) 11-61
Device-Independent State Machine.. 11-63
State Machine with Wide-Edge Decoders (XC4000
Family Only).. 11-65

Checking Schematics... 11-67
Exiting from SDT .. 11-68
Configuring XDM.. 11-69

Cleaning up the Design... 11-70
Additional Configuration (XC4000 Family Only) 11-71

Translating the Calc Design ... 11-74
Examining XMake Output Files... 11-74
Checking for Warnings in the OUT and PRP Files 11-76
Checking the RPT File .. 11-80

Examining Routed Designs with XDE .. 11-82
Entering the Design Editor .. 11-82
Finding a Block ... 11-84
Highlighting a Net.. 11-85
xiv Xilinx Development System

Contents
Using Command Line Entry.. 11-85
Running the Design Rule Checker ... 11-85

Verifying the Design Using a Demonstration Board..................... 11-86
Connecting the Cable for Download 11-87

FPGA (XC3000/XC4000) Demonstration Board 11-89
XC4000 Demonstration Board... 11-90
XC3000 Demonstration Board... 11-90

Downloading the Bitstream... 11-91
Testing the Design.. 11-92

Making Incremental Design Changes .. 11-95
Creating the Guide LCA File... 11-95
Making an Incremental Schematic Change 11-96
Configuring XMake for Incremental Design 11-98

PPR (XC3000A, XC3000L, XC4000 Family) 11-98
APR (XC3000, XC3100, XC2000 Family) 11-98
XNFMap (XC3000 Family, XC2000 Family) 11-99
Return to XDM (All Families) ... 11-99

Translating the Incremental Design .. 11-99
Checking for Errors in the Calc.out File 11-100
Verifying the Change in the Demonstration Board 11-100

Leaving XDM ... 11-101
Command Summaries ... 11-102

Basic Translation for XC3000A and XC3000L Designs.......... 11-102
Basic Translation for XC4000 Family Designs 11-102
Basic Translation for XC3000, XC3100, and XC2000
Family Designs ... 11-103
Incremental Translation for XC3000A and XC3000L Designs 11-103
Incremental Translation for XC4000 Family Designs 11-104
Incremental Translation for XC3000, XC3100, and
XC2000 Family Designs ... 11-104

Chapter 12 VST Tutorial
Required Software ... 12-1
Before Beginning the Tutorial .. 12-2

Skipping the SDT Tutorial ... 12-2
XDraft and the Vst.cfg File.. 12-3
Completing VST Configuration ... 12-4

Performing a Functional Simulation ... 12-5
Placing Stimulus and Trace Data on the Schematic............... 12-6
Creating a Functional Simulation Netlist with XSimMake 12-10

Creating a Functional Simulation Netlist............................ 12-11
OrCAD Interface/Tutorial Guide xv

OrCAD Interface/Tutorial Guide
Examining the XSimMake Output File 12-11
Files Created by XSimMake .. 12-14

Converting Stimulus and Trace Files to Binary Format 12-17
Configuring OrCAD VST for the Particular Design 12-18
Adding Stimulus Data Using OrCAD’s Stimulus Editor........... 12-19

XC2000/XC3000 Families Reset Signal 12-19
XC4000 Family Reset Signal... 12-19
Accessing the Stimulus Editor ... 12-20
Adding a New Stimulus.. 12-21

Design Description.. 12-22
Performing the Functional Simulation 12-22
Debugging the Functional Simulation 12-23
Useful Simulation Commands... 12-24
Exiting the OrCAD Simulator .. 12-25
Functional Command Summary ... 12-25

Performing a Timing Simulation ... 12-26
Placing and Routing the Design with XMake 12-27
Creating a Timing Simulation Netlist with XSimMake 12-28

Creating a Timing Simulation Netlist.................................. 12-28
Files Created by XSimMake .. 12-29

Converting AST and ATR Files to Binary Format 12-30
Configuring OrCAD VST for the Particular Design 12-30
Performing the Timing Simulation... 12-31
Timing Command Summary ... 12-32

Using the OrCAD Trace Editor... 12-33
Using the OrCAD Breakpoint Editor... 12-34

Inserting a Breakpoint ... 12-34
Resimulating the Design ... 12-35

Creating Tabular Output... 12-36

Chapter 13 X-BLOX Tutorial
Before Beginning the Tutorial... 13-1

Required Software .. 13-1
Preparing the Design .. 13-2

Modifying the Design.. 13-3
Adding X-BLOX-Based Module to CALC................................ 13-3
Viewing the ALU_BLOX Schematic .. 13-4
Completing the ALU_BLOX Schematic 13-5

Understanding X-BLOX Buses... 13-6
Using BUS_DEF Symbols .. 13-7
Completing the Bus Definition... 13-8
xvi Xilinx Development System

Contents
Saving Your Changes... 13-9
X-BLOX Symbol Library... 13-10

X-BLOX Symbol Examples... 13-10
X-BLOX Schematics ... 13-11

Functional Simulation... 13-11
Creating the Functional Simulation Netlist 13-11
Examining XSimMake Output... 13-13
Stimulus and Trace Files .. 13-14
Configuring OrCAD VST for the Calc Design 13-14
Performing a Functional Simulation.. 13-15

Implementing the Calc Design ... 13-17
Creating a Routed Design .. 13-17
Examining XMake Output ... 13-18

Verifying CALC on the Demonstration Board 13-20
Timing Simulation .. 13-20

Creating the Simulation Netlist ... 13-20
Examining XSimMake Output... 13-21
Configuring OrCAD VST for Timing Simulation 13-22
Performing a Timing Simulation.. 13-22

Command Summaries ... 13-23
Further Reading ... 13-23

Chapter 14 Xilinx ABEL Tutorial
Before Beginning the Tutorial .. 14-1

Required Software .. 14-1
Preparing the Design .. 14-2

Viewing Stat_abl.abl .. 14-3
Simulating Within Xilinx ABEL ... 14-10
Compiling STAT_ABL.ABL .. 14-10
Including STAT_ABL in the CALC Design 14-11

Creating a Symbol for STAT_ABL .. 14-11
Creating a Command File with SymGen 14-11
Creating the Library Symbol .. 14-11
Adding the Library to Your Search Path 14-13

Adding STAT_ABL to the CONTROL Schematic 14-14
Adding Symbol Attributes ... 14-14

Functional Simulation... 14-16
Creating the Functional Simulation Netlist 14-16
Examining XSimMake Output... 14-17
Stimulus and Trace Files .. 14-18
Configuring OrCAD VST for the Calc Design 14-19
OrCAD Interface/Tutorial Guide xvii

OrCAD Interface/Tutorial Guide
Performing a Functional Simulation .. 14-20
Implementing the CALC Design... 14-21

Creating a Routed Design... 14-22
Examining XMake Output ... 14-22
Verifying CALC on the Demonstration Board 14-24

Timing Simulation... 14-24
Creating the Simulation Netlist.. 14-24
Examining XSimMake Output ... 14-25
Configuring OrCAD VST for Timing Simulation 14-26
Performing a Timing Simulation.. 14-27

Further Reading ... 14-27

Chapter 15 XACT-Performance and XDelay Tutorial
Before Beginning the Tutorial... 15-2
Required Software ... 15-2
Preparing the Design ... 15-2
Understanding XACT-Performance ... 15-3
Grouping Symbols with TNM Attributes 15-4

TNMs on Logic Primitives .. 15-4
TNMs on Higher-Level Macro Symbols 15-5
TNMs on Nets, to Tag Flip-Flops....................................... 15-5

Grouping Symbols by Predefined Sets 15-6
Simplifying Symbol Grouping.. 15-6

Combining Sets: TIMEGRP ... 15-6
Joining Two or More Sets into One 15-7
Using the EXCEPT Statement... 15-7
Triggering on RISING or FALLING Clock Edges............... 15-8
Forming Sets by Output Net Name.................................... 15-8

Attaching Timing Specifications: TIMESPEC............................... 15-9
Deciding When to Use XACT-Performance 15-10
Setting Default Timing Requirements .. 15-11

Adding a TNM Attribute... 15-11
Entering Default Timing Specifications 15-12

Adding Timing Constraints to Specific Paths 15-15
Defining TNM Groups ... 15-15

Defining the ALUFF Set... 15-15
Defining the CTL_ADR_FF Set ... 15-16
Defining the STFF Set ... 15-18
Defining the INFFS Set.. 15-19

Defining Sets with TIMEGRP.. 15-21
Defining the LEDPADS Set ... 15-21
xviii Xilinx Development System

Contents
Defining the STACKER Set (XC4000 Family Only)........... 15-21
Defining the STACKER Set (XC3000A Only) 15-22

Combining Existing Sets with TIMEGRP 15-23
Specifying TIMESPEC Constraints... 15-24
Making a Final Check ... 15-25
Cleaning up the Design .. 15-27

Implementing the Calc Design ... 15-28
Creating a Routed Design .. 15-29
Examining XMake Output ... 15-29
Examining the PPR Log File... 15-30

Warnings in the PPR Log File ... 15-30
Timing Analysis Summary ... 15-31

Using XDelay, the Timing Analysis Program 15-34
Analyzing the Calc Design ... 15-35

Invoking XDelay.. 15-36
Using the Flagblk Option .. 15-36

Disabling Paths Through SD/RD Pins of Flip-Flops 15-36
Displaying Current Options.. 15-37

Using Analyze Mode... 15-37
Examining Analyze Output ... 15-38
Using XDelay-TimeSpec Mode... 15-39
Examining XDelay-TimeSpec Output 15-40
Using XDelay Mode .. 15-45

Reporting by Path Type... 15-45
Specifying Source and Destination... 15-47

Further Reading ... 15-49

Chapter 16 XEPLD Tutorial
Tutorial Guidelines ... 16-1
Tutorial Design... 16-2
Tutorial Files .. 16-3
Overview of the Sessions .. 16-4
Session 1: Using the XEPLD Software .. 16-5

Step 1: Preparing the System... 16-5
Step 2: Starting XDM .. 16-6
Step 3: Selecting Menu Items in XDM 16-7

Using the Mouse.. 16-7
Typing Commands .. 16-8
Accessing DOS ... 16-8
Responding to XDM Prompts and Menus 16-8

Step 4: Configuring the XEPLD Environment 16-9
OrCAD Interface/Tutorial Guide xix

OrCAD Interface/Tutorial Guide
Session 2: Drawing the Design in Draft 16-10
Step 1: Creating a New Design... 16-10

Creating the Design Directory.. 16-10
Copying the Design Files... 16-11
Configuring the UART Directory .. 16-11

Step 2: Opening and Viewing the Design 16-12
Opening the Design ... 16-12
Selecting from the SDT Menus.. 16-12

Step 3: Changing the Zoom Level .. 16-13
Step 4: Creating a New Schematic ... 16-14

Skipping Schematic Entry.. 16-14
Creating a New Schematic .. 16-14

Step 5: Entering and Arranging Components 16-15
Entering Components .. 16-15
Arranging Components.. 16-16
Deleting Components .. 16-16
Placing Rotated Components .. 16-17
Entering Additional Components 16-17

Step 6: Creating Wires.. 16-18
Drawing a Wire .. 16-18
Moving a Block .. 16-19
Drawing Wires Using Shortcuts ... 16-19

Step 7: Adding Junctions .. 16-21
Step 8: Labeling Components... 16-21

Labeling the PL22V10 Component.................................... 16-22
Labeling the CB8RE Component....................................... 16-22
Labeling the AND2B2 Component..................................... 16-22

Step 9: Labeling Wires.. 16-23
Step 10: Assigning Attributes.. 16-25

Adding the PLD Attribute ... 16-25
Adding the PARTTYPE Attribute 16-26
Adding Global Attributes .. 16-26

Step 11: Finishing the Drawing ... 16-28
Step 12: Assigning Signals to Specific Pins 16-28
Step 13: Saving the Design .. 16-29
Step 14: Exiting OrCAD .. 16-29

Session 3: Defining PLD Equations ... 16-30
Step 1: Defining Declaration Statements 16-30
Step 2: Creating Boolean Equations....................................... 16-31

Session 4: Fitting the Design ... 16-36
Step 1: Checking the Design .. 16-36
xx Xilinx Development System

Contents
Step 2: Invoking the Fitter... 16-37
Implementing the Design Automatically 16-37
Implementing the Design Manually 16-37
Alternative Ways to Process PLDs.................................... 16-39

Step 3: Viewing the Reports ... 16-40
Step 4: Saving Pin Assignments... 16-41
Step 5: Creating the Programming File 16-42

Session 5: Simulating the Design .. 16-42
Step 1: Creating a Simulation Netlist 16-43

Creating a Timing Simulation Netlist Automatically 16-43
Creating a Timing Simulation Netlist Manually 16-43

Step 2: Preparing Input Vectors.. 16-44
Entering the OrCAD Simulator .. 16-44
Configuring the OrCAD Simulator 16-44
Using the Stimulus Editor .. 16-45
Using the Trace Editor... 16-47

Step 3: Running the Simulation .. 16-49
Step 4: Viewing Simulation Results .. 16-50
Step 5: Correcting Vector Errors... 16-51

Identifying the Errors ... 16-51
Editing the Stimulus... 16-51

Step 6: Adding a Signal to the Waveform Display 16-53
Session 6: Functionally Simulating a Purely Schematic Design .. 16-55

Step 1: Copying the UART Design ... 16-56
Creating the Uarttop Design Directory............................... 16-56
Copying the Design Files... 16-56

Step 2: Creating a Custom Sheet Symbol 16-57
Step 3: Creating the Lower-Level Schematic 16-60
Step 4: Performing a Functional Simulation 16-62
Step 5: Exiting OrCAD and XDM .. 16-62

Appendix A Program Options
XDraft... A-1
SDT2XNF... A-1
XNF2VST... A-2

Appendix B Error Messages
XDRAFT (XCFG) ... B-1
SDT2XNF (INF2XNF) .. B-2
XNF2VST (XNF2INF) .. B-5
OrCAD Interface/Tutorial Guide xxi

OrCAD Interface/Tutorial Guide
Appendix C Warning Messages
XDRAFT (XCFG) ... C-1
SDT2XNF (INF2XNF) .. C-2
XNF2VST (XNF2INF)... C-4

Appendix D OrCAD XEPLD Demonstration Procedure
Entering XDM and OrCAD ... D-1
Configuring the Design Directory ... D-1
Examining the UART Schematic.. D-2
Examining the PLD File.. D-2
Implementing the Design ... D-2
Creating a Simulation Netlist.. D-3
Configuring the Simulator... D-3
Simulating the Design .. D-3
xxii Xilinx Development System

IntroductionOrCAD
Interface/
Tutorial
Guide
OrCAD Interface/Tutorial Guide — 0401409 01 Printed in U.S.A.

OrCAD Interface/Tutorial Guide
Xilinx Development System

Chapter 1

Introduction

This book explains how to use Release 5.0 of the XACT OrCAD
interface software to translate your FPGA and EPLD designs from
OrCAD schematics into implemented design files and simulation
files.

In order to make proper use of the information in this book, you
should be familiar with the overall design task flow and the concept
of interface software. Both concepts are defined in the following
sections.

Defining the Design Flow
The process of designing FPGAs and EPLDs can be summarized as
follows.

1. Enter your design with the OrCAD schematic editor making sure
that you observe the Xilinx design requirements mentioned in this
book.

2. Test the functionality of your design. Generate in one step a
functional netlist file using the XSimMake program with the
appropriate options and use the file for functional simulation.

When the functional verification test proves that the functions of
your design have been properly represented, proceed with the
third step, design implementation.

3. Implement your FPGA or EPLD design. Generate the
implemented design, an LCA™ or VMH file, automatically by
executing the XMake program for an FPGA design or the XEMake
program for an EPLD design.

4. Test the timing of your design. Generate a timing netlist in one
step using the XSimMake program on your LCA file or VMH file
OrCAD Interface/Tutorial Guide — 0401409 01 1-1

OrCAD Interface/Tutorial Guide
with the appropriate options. Use the VST output file for your
timing simulation.

 If you developed your EPLD design behaviorally instead of using
a schematic and you wish to simulate using OrCAD/VST386+,
refer to Chapter 8, “Timing Simulation.”

5. Download your design to an FPGA or EPLD device.

The following figure proposes an overall view of the design process:

Figure 1-1 Design Process: Design Entry, Functional Simulation,
Design Implementation, and Timing Simulation

X4626

Create/edit/add to your design

Download your design

1

2

3

4

5

Simulate functionality
using XSimMake

No

Yes

Implement your design
using XMake/XEMake

Simulate timing
using XSimMake

Design
functionally

correct?

No

Yes

Design
timing

correct?
1-2 Xilinx Development System

Introduction
Defining the Interface
Central to the interface is the concept of translation. The translation
between OrCAD and Xilinx format is enabled by two Xilinx
programs: SDT2XNF and XNF2VST.

The first interface program, SDT2XNF, converts your source
schematic design from the OrCAD SDT format into a format that
makes your design compatible with the Xilinx core tools. This format
is called Xilinx Netlist Format (XNF).

The other interface program, XNF2VST, converts either the original
or the processed design from the XNF format into an OrCAD
simulation file (VST).

Whereas SDT2XNF and XNF2VST are the engines of the interface,
there are other Xilinx programs that must be invoked to generate
implemented design and simulation files. XMake/XEMake and
XSimMake are the programs that automatically invoke the
appropriate sequence of programs to create the implemented design
and simulation files.

Also part of the interface are the Xilinx-supplied FPGA and EPLD
libraries, which you must use to draw your schematics. These
libraries determine the logic of the FPGAs and EPLDs you design.

What is New in this Release
This section summarizes the new features and enhancements of the
OrCAD interface software Version 5.0.

Library Features
● The main new feature of this release is a new set of library

symbols called Unified Libraries. The advantage of these new
libraries is that they use the same component names, with the
same footprints (shapes, pin names, and functionality) between
product families, thus enabling you to convert your designs easily
from one product family to another, EPLDs included.

● The names of the individual Unified Libraries are the XC2000,
XC3000, XC4000, and XC7000 libraries. These libraries are
installed under the XACT directory. You can still use the existing
sdt2k, sdt3k, sdt4k, and sdt7k libraries for your existing designs,
OrCAD Interface/Tutorial Guide 1-3

OrCAD Interface/Tutorial Guide
but we recommend that you use the new libraries to create all new
designs. When you start a new design, specify either the new or
the old libraries, as it is not allowed to mix old and new library
elements or components from different libraries. Each design you
create must be composed of either old-library elements or new
unified-library elements.

● The Unified SDT/VST Libraries are in OrCAD SDT/VST 386+
32-bit format only.

● Relationally placed macros (RPMs) replace all Xilinx-supplied
hard macros. RPMs are easier to use than hard macros; moreover,
they are simulatable. If you need to use your user-created hard
macros, you must convert them to RPMs using the HM2RPM
utility. Refer to the XACT Reference Guide for more information on
HM2RPM.

● EPLD designs use XNF-formatted netlists (not EDIF) for design
capture. Functional simulation is now supported for EPLD
designs.

XDraft Support
● XDraft now supports configuration for both SDT and VST. If you

need to configure the SDT and VST configuration files separately,
use the -s option for SDT and the -v option for VST. You can also
configure SDT and VST together using the XDraft command with
no options.

● In addition to supporting the new Unified SDT/VST Libraries,
XDraft supports the old v4.2x SDT/VST libraries. Use option -L to
configure the old libraries assuming they are under XACT.

● XDraft supports Xilinx EPLD configuration. Specify a 7 after the
XDraft command to specify the XC7000 library.

● You can override the default XACT environment variable by using
the -x command-line option.
1-4 Xilinx Development System

Introduction
SDT2XNF Enhancements
● You can run SDT2XNF on designs created with either the new

Unified SDT Libraries or the old v4.2x SDT libraries. However, do
not attempt to mix old and new library elements in your
schematics.

● SDT2XNF now offers two ways of handling multiple-sheet
designs:

● Flat designs (multiple sheets at the top level)

● Hierarchical designs (multiple sheets at different levels)

● SDT2XNF now generates multiple XNF files for Xilinx macros,
user-defined hierarchical sheet symbols, and user-defined macros
(schematics containing Xilinx primitives). XNFMerge merges all
the XNF files into one flat XNF format file (XFF file).

● You can specify the search path for the INF files of user-defined
sheet symbols and macros by using the new -u command-line
option. The default value for this path is the current directory.
(INF is the OrCAD netlist format produced by the OrCAD INET
program.)

● You can specify the search path for the INF files of Xilinx library
macros by using the new -s command-line option. The default
value for this path depends on the XACT environment variable
and the Xilinx part type used in the design.

● You can specify stimulus and trace information at any level in
your schematic and SDT2XNF passes it to the XNF files.

XNF2VST Enhancements
● You can run XNF2VST to simulate designs created with elements

from the new SDT/VST Unified Libraries or from the old v4.2x
SDT/VST library. However, do not attempt to mix old and new
library elements in your schematics.

● If you specify stimulus and trace information at any level in your
schematic, XNF2VST generates AST (OrCAD ASCII Stimulus)
and ATR (OrCAD ASCII Trace) files automatically.

● Because XNF2VST supports recycled aliasing in the Name
Reference File (NRF) file, you can modify the reference names in
OrCAD Interface/Tutorial Guide 1-5

OrCAD Interface/Tutorial Guide
the NRF file by entering a symbol and signal name of your choice.
XNF2VST uses the modified names during the translation process.
1-6 Xilinx Development System

Getting Started

OrCAD
Interface/
Tutorial
Guide
OrCAD Interface/Tutorial Guide — 0401409 01 Printed in U.S.A.

OrCAD Interface/Tutorial Guide
Xilinx Development System

Chapter 2

Getting Started

This chapter describes software configuration and the initial steps
you must perform before using the OrCAD Schematic Design Tools
and the Xilinx interface software to design FPGA and EPLD devices.

The chapter is structured as follows:

● Preparing Your System tells you all the steps you must complete for
your installation.

● Partitioning Software Between Two Different Disks explains how to
install your Xilinx software on one drive and your OrCAD
software on another drive.

● Entering the OrCAD/ESP Design Environment tells you the different
ways of starting OrCAD.

● Configuring the OrCAD/ESP Design Environment directs you to the
information source you should consult to configure the ESP
environment.

● Creating a Design Directory explains how to create a design
directory before designing a specific FPGA or EPLD device.

● Using XDraft to Configure the OrCAD Environment describes how to
configure the schematic editor and the simulation tools.

● Entering the Draft Schematic Editor shows you how to enter the
schematic editor.

● Retargeting Your Design to a Different Family discusses the
conversion of designs created with the Unified Libraries symbols.

If there is any question regarding the proper use of OrCAD/SDT386+
when creating a design file, the information contained in this manual
supersedes that contained in your OrCAD-supplied documentation.
OrCAD Interface/Tutorial Guide — 0401409 01 2-1

OrCAD Interface/Tutorial Guide
Note: The Unified Libraries provided by Xilinx cannot be used with
the OrCAD III or OrCAD IV software. You can only use them with
OrCAD/SDT386+. However, you can still use the OrCAD IV Xilinx
libraries with the new translators. As the old libraries are no longer
provided, you must copy them into the XACT directory where the
new OrCAD interface software is installed.

Preparing Your System
You must complete four basic steps before you can begin working
with your OrCAD software. The following is a summary of how to
prepare your system to use the OrCAD interface software. This
chapter documents only system configuration, which is defined
below in step 4. For instructions on software installation, refer to the
XACT Installation Guide.

1. Install the OrCAD-supplied software:

● OrCAD/ESP

● OrCAD/SDT386+

● OrCAD/VST386+ (optional)

2. Install the OrCAD interface software supplied by Xilinx into your
XACT directory. The following shows you the structure of your
typical XACT directories and files. Refer to the XACT Installation
Guide for information on how to complete the installation.
2-2 Xilinx Development System

Getting Started
3. Install the Xilinx XACT core tools as explained in the documents
provided with the software.

4. Verify that your system configuration files include the required
OrCAD environment variables and path names.

● Enter the OrCAD/ESP design environment.

● Configure ESP, referring to the OrCAD documentation for
instructions.

● Create a design directory for your new design. This is a
requirement of the OrCAD/ESP software.

● Configure SDT and VST automatically by running the XDraft
program as explained in this chapter or manually by following
the instructions in your OrCAD documentation.

\XACT

inf2xnf.exe

macro3.mac

sdt2xnf.exe

vstmac.mac

xcfg.exe

xdraft.exe

xnf2inf.exe

xnf2vst.exe

\data

\msg

\xc2000

\xc3000

\xc4000

\xc7000
OrCAD Interface/Tutorial Guide 2-3

OrCAD Interface/Tutorial Guide
Partitioning Software Between Two Different Disks
If you do not have a disk partition large enough to hold the Xilinx
Development System software, the Xilinx OrCAD interface and
libraries, and the OrCAD software, you can partition the software
between two different drives.

The simplest approach is to load the Xilinx Development System
software and the Xilinx OrCAD interface and libraries on the same
drive, and the OrCAD software on another drive. In this case, system
setup is straightforward.

Alternatively, you can load the Xilinx Development System software
on one drive and the Xilinx OrCAD interface and libraries with the
OrCAD software on another drive. For example, if you install the
Xilinx core software on drive C: and the OrCAD interface and
libraries with the OrCAD software on drive D:, your autoexec.bat file
resembles the following:

path=...;d:\xact;c:\xact;d:\orcadexe
set xact=d:\xact;c:\xact
set ORCADEXE=d:\orcadexe\
set ORCADESP=d:\orcadesp\
set ORCADPROJ=d:\orcad\
set ORCADUSER=d:\orcadesp\

The config.sys file is unchanged.

Configure the OrCAD design directory using XDraft as explained in
the section “Using XDraft to Configure the OrCAD Environment.”
You can make corrections to the file using any text editor. For this
example, the sdt.cfg file must contain the following lines:

{ OrCAD/SDT386+ Configuration File }
PDRV = ’d:\ORCADESP\DRV\’
PSCH = ’’
PLIB = ’d:\xact\xc3000*.LIB’
DD = ’VGA640.DRV’
PRD = ’’
PLD = ’’
LIB = ’XC3000.lib’
DMF = ’d:\xact\macro3.mac’
DIM = ’\I’
.
.
.

2-4 Xilinx Development System

Getting Started
Entering the OrCAD/ESP Design Environment
This section assumes that you have completed your software
installation. To configure your software, you need to enter the
OrCAD/ESP environment. You can enter OrCAD/ESP either from a
DOS prompt or from the XACT Design Manager (XDM).

From a DOS Command Prompt
Provided that your active path includes the OrCAD executable
directory, you can enter the OrCAD/ESP Design Environment by
entering the following command from a DOS command prompt:

orcad ↵

You can enter the OrCAD/ESP Design Environment directly from
DOS and execute all the OrCAD-supplied programs.

You can execute all the Xilinx-supplied programs from the XACT
Design Manager or from the DOS command line. It is a good idea to
run your programs from DOS if you run into memory problems.

To get information on the Xilinx program options from DOS, type the
program name at the DOS prompt and press the return key.
Appendix A supplies the syntax as well as a list of program options
for XDraft, SDT2XNF, and XNF2VST.

From the XACT Design Manager
There are two ways to invoke the OrCAD software from within
XDM. One way is to select it from the Design Entry menu. The other
way is to type it at the command line, which is located at the bottom
of the XDM screen. Help is available by pressing F1 from any XDM
menu option.

As an XDM Menu Selection

To enter the OrCAD/ESP Design Environment as an XDM menu
selection, complete these steps:

1. Open the Design Entry menu.

2. Select OrCAD from the menu.

Note: The menu items listed in your Design Entry menu are based on
OrCAD Interface/Tutorial Guide 2-5

OrCAD Interface/Tutorial Guide
the Xilinx-supported products installed on your system. If OrCAD
does not appear in your Design Entry menu, it might be necessary to
perform a ScanDisk by selecting ScanDisk from the Utilities menu.

At the XDM Command Line

To enter the OrCAD/ESP Design Environment at the XDM command
line, enter the following at the XDM command line:

orcad ↵

Configuring the OrCAD/ESP Design Environment
After invoking OrCAD from either DOS or XDM, the OrCAD/ESP
Design Environment Main Screen appears. You should refer to the
OrCAD Schematic Design Tools documentation to familiarize
yourself with your OrCAD software and to customize the
configuration of the OrCAD/ESP Design Environment.

Refer to your OrCAD documentation for an explanation on how to
configure the options for the driver, editor, design, and printer/
plotter output, as well as the color and pen plotter table.

Creating a Design Directory
Before entering your design, you need to create a design directory,
also called a working directory. You need to configure the directory to
use the device family you want. You can create a design directory
from DOS or from the OrCAD graphical user interface.

From DOS
To create a design directory from DOS, follow the steps outlined
below:

1. Change to your ORCADPROJ directory, which is \orcad by
default. Type:

cd \orcad ↵

2. Use the mkdir command followed by the directory name:

mkdir directoryname ↵
2-6 Xilinx Development System

Getting Started
3. Copy the OrCAD template files into your new design directory:

copy \orcad\template*.* directoryname ↵

From the Graphical User Interface
To create a design directory from the graphical user interface, follow
the steps below:

1. Invoke OrCAD.

2. Click on the Design Management Tools button. A menu
appears in the upper-left corner of your display.

3. Select Execute from the menu to display the screen for the
Design Management Tools.

4. With the Design View tools displayed, click the left mouse button
once on the Create Design selection to bring up another
window, and click again in the box to the right of “New Design
Name.”

5. Type the name of your design and press Enter . Then, click on OK
to confirm.

ESP creates the design directory under the path specified by the
ORCADPROJ environment variable. The default setting for
ORCADPROJ is drive:\orcad.

For example, if ORCADPROJ=c:\orcad\ and a new design, FIFO,
is specified, the directory c:\orcad\fifo is created. ESP also copies
all the template configuration files into the new design directory.

6. Click on the OK button to return to the ESP main menu.

Using XDraft to Configure the OrCAD Environment
You can only use one product family per logic design. To use
OrCAD/SDT386+ with the specific Xilinx product family required by
your logic design, you need to reconfigure your OrCAD Schematic
Tools every time you create a new design.

After creating a new design directory, modify the OrCAD/SDT386+
configuration file (sdt.cfg) to support logic development for the
device family targeted for your design. You can also modify the
OrCAD/VST386+ configuration file (vst.cfg) now, if you wish to
OrCAD Interface/Tutorial Guide 2-7

OrCAD Interface/Tutorial Guide
prepare for later simulation. You can perform both configurations
automatically and in a single step using the XDraft utility, or you can
perform them without XDraft as described in the OrCAD
documentation.

You can use the XDraft option under the XDM Translate menu or
enter the XDraft syntax from DOS as explained in the next section.

Note: Automatic configuration with XDraft enables you to configure
the schematic tools and the simulation tools separately or together.

Running XDraft
To modify your configuration files automatically from the ESP Design
Environment, click on the top of the screen and select Suspend to
System . This generates a DOS shell with the current directory
corresponding to the current design.

Note: To run XDraft, you must have sdt.cfg and vst.cfg in your local
directory. If they are not in this directory, copy them from the OrCAD
Template directory into your current design directory. Otherwise,
XDraft issues a warning that it cannot configure, because it cannot
find the configuration files. By default, XDraft configures the
environment for both schematic entry and simulation. There are a
number of options that you can use to limit your configuration.

Use the following DOS prompt syntax to configure the Draft
schematic editor and the simulation tools:

xdraft number [options] ↵

where number is 2, 3, 4, or 7.

Number stands for the device family you wish to use for your design.
For example, entering a “2” configures the schematic editor (SDT)
and the simulation tools (VST) for use with XC2000 design files. You
do not need to use the XDraft utility again unless you need to change
the configuration for a different device family. In most cases, XDraft is
needed only when creating a new design.

The following configuration options are available:

● To configure SDT only, add the -s command-line option to the
preceding syntax:

xdraft number -s ↵
2-8 Xilinx Development System

Getting Started
where number is 2, 3, 4, or 7.

● To configure VST only, add the -v command-line option to the
preceding syntax:

xdraft number -v ↵

where number is 2, 3, 4, or 7.

Warning: To configure SDT and VST to use the old v4.2 libraries,
specify the -L command-line option after the XDraft command:

xdraft number -l ↵

where number is 2, 3, 4, or 7.

If you ran the XDraft utility from DOS within the Draft schematic
editor, you must exit from Draft and invoke it again to reconfigure
the Draft menus.

Warning: XDraft does not update the Connectivity Database
extension for your VST configuration. Refer to the section
“Connectivity Database Extension” later in this chapter for
information on how to make this change.

Changes Made to SDT
XDraft makes the following modifications to the SDT configuration
in the sdt.cfg file for the current design:

● Library Options — The library path is set for the XC2000, XC3000,
XC4000, or XC7000 library depending on which family you select,
as in the following example:

PLIB = ’c:\XACT\XC4000\’

This example displays the library path for the XC4000 family.

● Macro Options — In the sdt.cfg file, the macro3.mac file is specified
as the default macro library and the \I macro (Alt - I) is set as the
initial macro. The \I macro is a user-defined macro.

DMF = ’c:\XACT\MACRO3.MAC’

DIM = ’\I’

● User Part Fields — The user part fields are set according to the
family specified by the XDraft option used. Tables 2-1 and 2-2
indicate the field names for each FPGA device family. The part
OrCAD Interface/Tutorial Guide 2-9

OrCAD Interface/Tutorial Guide
fields for the XC7000 EPLD family are simply called Part Fields 1
through 8.

Table 2-1 XC2000 and XC3000 Field Names

Table 2-2 XC4000 Field Names

Sample Sdt.cfg File
Ensure your configuration file sdt.cfg includes the following lines:

{ OrCAD/SDT386+ Configuration File }

PDRV = ’c:\ORCADESP\DRV\’

Part Value Field Field Name

1st Part Field LOC, OPTIONS

2nd Part Field BLKNM

3rd Part Field BASE

4th Part Field CONFIG

5th Part Field EQUATE_F

6th Part Field $FCONT

7th Part Field EQUATE_G

8th Part Field $GCONT

Part Value Field Field Name

1st Part Field OPTIONS_1

2nd Part Field OPTIONS_2

3rd Part Field INIT

4th Part Field BASE

5th Part Field CONFIG

6th Part Field EQUATE_F

7th Part Field EQUATE_G

8th Part Field EQUATE_H
2-10 Xilinx Development System

Getting Started
PSCH = ’’
PLIB = ’c:\XACT\XC4000\’
DD = ’VGA640.DRV’
LIB = ’XC4000.lib’
LIB = ’XBLOX.lib’
DMF = ’c:\XACT\MACRO3.MAC’
DIM = ’\I’

Note: This example is for a configuration file that uses the XC4000
libraries. For an XC2000, XC3000, or XC7000 design, replace the
XC4000 library names with those of the libraries that match your
design.

Changes Made to VST
XDraft makes the following modifications to the VST configuration in
the vst.cfg file for the current design:

● Library Options — The library path is set for the XC2000, XC3000,
XC4000, or XC7000 library depending on which family you select,
as follows:

PLIB = ’ c:\XACT\XC4000\ ’

In this instance, we show the library path for the XC4000 family.

● Macro Options — The vst.cfg file sets the vstmac.mac file as the
default macro library.

MAC = ’ c:\XACT\VSTMAC.MAC ’

● Simulator Options Prefix — XDraft updates the simulator options
prefix with a “G”.

PREFIX = ’G’

Warning: Without the “G” prefix, your outputs remain undefined.

Connectivity Database Extension
XDraft does not update the Connectivity Database extension for your
VST configuration. You need to manually update this extension from
INF to VST so that it specifies the VST file created by the XNF2VST
program.

1. Enter the OrCAD ESP design environment from DOS or from
XDM.
OrCAD Interface/Tutorial Guide 2-11

OrCAD Interface/Tutorial Guide
2. On the OrCAD/ESP main screen, select Design Management
Tools . Check that your design file is selected on the Design
Management Tools screen. Click OK to save the settings and exit.

3. Select Digital Simulation Tools on the OrCAD/ESP Main
Screen.

4. Select the menu command Simulate ➝ Local
Configuration ➝ Configure Simulate .

5. The Configure Simulate screen appears. The first field on the
Configure Simulate screen is the File Options field. Click on the
box next to Connectivity Database, and change the INF extension
of your schematic file to VST.

6. Click on OK to save the changes.

Sample Vst.cfg File
Ensure your configuration file, vst.cfg, includes the following lines:

{ OrCAD/VST386+ Configuration File }

PDRV = ’c:\ORCADESP\DRV\’
DD = ’VGA640.DRV’
PLIB = ’c:\XACT\XC4000\’
PREFIX = ’G’
MAC = ’c:\XACT\VSTMAC.MAC’
IMAC = ’\F6’

This example is for a configuration file that uses the XC4000 libraries.
For an XC2000, XC3000, or XC7000 design, replace the XC4000 library
name with that of the library that matches your design.

Macro Files
OrCAD/SDT386+ comes with two Draft macro files, macro1.mac and
macro2.mac. Your Xilinx translation software includes a third macro
file, macro3.mac, which supports OrCAD/SDT386+ for the Xilinx
design process, and a file called vstmac.mac, which supports
OrCAD/VST386+ for simulation.

Table 2-3 lists all macro keys and functions available when using the
macro3.mac file. Table 2-4 lists the macros and functions available
when using the vstmac.mac file. These files are copied into the XACT
directory during software installation.
2-12 Xilinx Development System

Getting Started
Note: Before executing a key macro, verify that you are at the main
menu level and that you did not select any menus or commands. If
you are not at the main menu level, the process executed by a macro
is unpredictable.

Some key macros require that the cursor point at an intended object
before execution. To cancel a macro requiring user interaction while it
is executing, press the Escape and Enter keys, as necessary, until you
are once again at the root-menu level.
OrCAD Interface/Tutorial Guide 2-13

OrCAD Interface/Tutorial Guide
Table 2-3 Macros in the Macro3.mac File

Key Function Key Function

F1 Get Component Shift-F1 Abandon and Quit

F2 Place Wire Shift-F2 Clear the Entire Sheet

F3 Copy Object at Cursor Shift-F3 Import Block

F4 Delete Object at Cursor Shift-F4 Export Block

F5 Drag Object at Cursor Shift-F5 Drag Block

F6 Place Bus Shift-F6 Save and Continue

F7 Place Label Shift-F7 Save File as...

F8 Place Module Port Shift-F8 Print Schematic

F9 Place Sheet Symbol Shift-F9 DOS Shell

F10 Redraw Screen Shift-F10 Save and Exit

Ctrl-F1 List Library Directory Alt-F1 Set Auto Pan Off

Ctrl-F2 Place Junction Alt-F2 Set Auto Pan On

Ctrl-F3 Copy Block Alt-F3 Zoom to Window

Ctrl-F4 Delete Block Alt-F4 Undo Delete

Ctrl-F5 Move Block Alt-F5 Zoom In

Ctrl-F6 Edit Net or Module Port Alt-F6 Zoom Out

Ctrl-F7 Edit Title Block Alt-F7 Save and Enter Sheet

Ctrl-F8 Set Work Sheet Size Alt-F8 Save and Leave Sheet

Ctrl-F9 Place Text Alt-F9 Turn Grid Off

Ctrl-F10 Show Condition Alt-F10 Turn Grid On

Left Mouse Enter (select) Alt-E Edit Label or Module Port

Middle Mouse Place Wire PgUp Zoom Out

Right Mouse Escape PgDn Zoom In
2-14 Xilinx Development System

Getting Started
Table 2-4 Macros in the Vstmac.mac File

Entering the Draft Schematic Editor
Verify your configuration by invoking the Schematic Editor. To
invoke the Draft schematic editor, first ensure the current design
displayed on the ESP main screen is the one you want to use. Then,
press the Schematic Design Tools button on the ESP main
screen and select Execute from the menu. Finally, press the Draft
button in the upper-left corner of the screen, and select Execute
from the menu. If you can access the SDT Draft menu, your
configuration was successful.

To enter the Draft schematic editor from DOS, use the following
syntax:

draft designname↵

Retargeting Your Design to a Different Family
The Unified Libraries allow you to retarget your designs from one
family to another as long as both your source and target designs only
include symbols from the Unified Libraries. Most of the symbols of
the Unified Libraries have the same footprint and name from one
device family to another, hence their ability to be easily converted.

Key Function

F1 Run simulation for 100 units (10 ns)

F2 Run simulation for 1,000 units (100 ns)

F3 Run simulation for 10,000 units (1,000 ns)

F4 Toggle on/off Setup, Hold, and Pulse Checking

F5 Initialize simulator, spool overflow simulation data to
file spool.tdf

F6 Zoom to time 0

F7 Change trace view to 1 (.1 ns/grid)

F8 Change trace view to 10 (1 ns/grid)

F9 Change trace view to 1,000 (100 ns/grid)
OrCAD Interface/Tutorial Guide 2-15

OrCAD Interface/Tutorial Guide
To retarget or convert a design, follow these simple steps:

1. Change to your ORCADPROJ directory, which is \orcad by
default. Type:

cd \orcad ↵

2. Create a new design directory for your target design.

mkdir newdesign↵

3. Copy the template files and the design you wish to retarget from
the old directory to your new design directory:

copy olddesign newdesign↵

4. Change directories to the new design directory:

cd newdesign↵

5. Run XDraft on the new design directory, specifying the target
family number 2, 3, 4, or 7. For example, to retarget an XC3000
family design to the XC4000 family, execute XDraft and specify 4
to designate the XC4000 target family.

xdraft 4↵

6. Run the OrCAD Draft schematic editor and check each schematic,
making sure all the symbols have been converted to the target
family.

draft filename.sch↵

In your target design, the symbols that are common to the source
and target families maintain their relative location and pin
position in the schematic. Pins on these symbols retain their
connectivity to the nets they were attached to in the source design.

Symbols that are not common to your source and target families
appear as empty spaces at the places where they used to be
displayed on the source schematic. Draft also issues a warning
that it could not find these components.

7. Replace with equivalent logic the symbols that have not been
converted to symbols in your target design.
2-16 Xilinx Development System

Getting Started
Example
To translate an XC3000 family ACLK (Alternate Clock Buffer), which
is not available in the XC4000 family, to an XC4000 symbol, replace it
with a BUFGS (Secondary Global Buffer). Because both the ACLK
and BUFGS modules are secondary global buffers, you can replace
one with the other. Place this macro in the blank space that was
occupied by the ACLK macro in the source design. Connect the pins
to the appropriate nets to emulate the original symbol. For some
symbols, you might have to change the length of the nets.

Repeat these steps for all underlying schematics in your design until
you have filled in all the missing parts of your design.
OrCAD Interface/Tutorial Guide 2-17

OrCAD Interface/Tutorial Guide
2-18 Xilinx Development System

OrCAD SDT Design
Techniques

OrCAD
Interface/
Tutorial
Guide
OrCAD Interface/Tutorial Guide — 0401409 01 Printed in U.S.A.

OrCAD Interface/Tutorial Guide
Xilinx Development System

Chapter 3

OrCAD SDT Design Techniques

This chapter discusses various schematic drawing techniques and
requirements common to both FPGA and EPLD designs.

● Naming Conventions lists the naming conventions you must follow
for nets and symbols in your schematics.

● Multiple-Sheet Designs explains how to create flat designs and
hierarchical designs.

● User-Created Libraries explains how to create library elements and
add them to a user library.

Naming Conventions
This section lists the valid characters and discusses the purposes and
conventions for naming nets and symbols used in an FPGA or EPLD
logic design.

Reserved Names
For FPGA designs, you cannot use the physical names associated
with every resource on every FPGA part to name signals and
symbols. Reserved names include CLBs, IOBs, clock buffers, TBUFs,
oscillators, package pin names, “CCLK,” “DP,” “GND,” “VCC,”
“M0RT,” “PWRDN,” and “RST.” Examples of reserved names
include CLB names such as AA and AB, pin names such as P1 and
P2, pad names such as PAD1 and PAD2, and primitive names such as
TDO, BSCAN, M0, M1, M2, or STARTUP.

For EPLD designs, you cannot use “PRLD,” “MRESET,” or any name
beginning with “_N” (underscore N) as a net label.
OrCAD Interface/Tutorial Guide — 0401409 01 3-1

OrCAD Interface/Tutorial Guide
Valid Characters
All names given to symbols and signals in an FPGA or an EPLD
design must be valid for the XACT Development System. Names for
nets, buses, and symbols must follow these conventions:

● Only A-Z, a-z, 0-9, ”_,” and “-” are allowed in user-defined names.

● Two other characters — the square open and square closed
brackets ([and]) — can only be used to represent a bus in the
OrCAD/SDT386+ software.

● Names, which are not case-sensitive, must contain at least one
non-numeric character, and can begin with any legal character.

● Names can be up to 1024 characters in length, including the
hierarchical paths.

Naming Nets and Subnets
Putting net names on your signals is always encouraged for easy
tracking and understanding of the design. Labeling important signals
provides future reference for the simulator. If a net has no label, the
interface assigns a default name, for example, $U10_O or $U25_Q.
The dollar sign ($) is part of the default name. The reference
designator and the pin name of a library part or the sheet name and
pin name of a sheet symbol determine the default net name.

If a net name appears before partitioning but disappears after
partitioning, the signal might have been pulled into the functional
block of the CLB, merged into another net through a minimizing
process, or removed because it was either loadless or sourceless.

Knowing how to reference subnets deep within a hierarchical design
is very important for simulation and debugging. During the
flattening process of a hierarchical design, the translator creates and
prefixes each of the subnets with a hierarchical path. The path is
always the sheet name of a sheet symbol or the reference designator
of a library part.

In Figure 3-1, for example, reference a subnet called MYNET in the
BOTTOM module in the following manner:

middle/bottom/mynet
3-2 Xilinx Development System

OrCAD SDT Design Techniques
Figure 3-1 Referencing Subnets in a Hierarchical Design

If a net connects hierarchically, it retains the net name at the parent
level, regardless of any lower-level names. For example, if a signal
from the root called TOPCLK is connected to a signal called MIDCLK
of the middle level and to a signal called BOTCLK of the bottom
level, it is simply referenced as TOPCLK.

Multiple-Sheet Designs
The OrCAD interface supports two ways of handling multiple-sheet
designs:

● Flat designs (multiple sheets at the top level)

● Hierarchical designs (multiple sheets at different levels)

Flat Designs
Flat design refers to the method of extending a design on multiple
sheets at the root level. This is achieved by means of module ports
and the |LINK keyword.

To link the worksheets together, first place input and output module
ports on the nets of your designs so that the output signals of one
sheet can be connected to the input signals of another sheet laterally.

X5020

MYNET

U1

AND2

U2

AND2

BOTTOM.SCH

MIDDLE.SCH

TOP.SCH
OrCAD Interface/Tutorial Guide 3-3

OrCAD Interface/Tutorial Guide
To attach module ports to your nets, do as follows:

1. Invoke the Place ➝ Module Port command.

2. Specify the name of the port at the Module Port Name? prompt.

3. Press Enter .

4. Specify the type of port: Input , Output , or Bidirectional .

5. Place the module port on the appropriate net using the Place
command.

6. When you have placed all the module ports, you can connect the
worksheets together.

Use the |LINK keyword and pipe character on the root level
schematic to tell the schematic tools which worksheets are included
in the flat design. In the following example, Figure 3-2, the TOP
schematic is first entered as a single design. Then, in an equivalent
implementation, the same circuit is entered as two separate sheets.
The |LINK keyword is used to link the root worksheet (TOP.SCH) to
SHEET1.SCH. (See Figure 3-3 and Figure 3-4.)

Figure 3-2 Top Schematic Design: Single Sheet Design

X4509

U1

I0
SIG0 OUT0

OUT[0..2]
U2

INV

INV

INV

U3

U4

OUT1

OUT2

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7
SIG3

SIG1

SIG2

SIG3

I1

I2

I3

I4

I5

I6

I7

EI

U5
GND

A0

A1

A2

EO

GS

X74_148

IN0

TOP.SCH

IN1

IN2

IN3

IN4

IN5

IN6

IN7

OUT[0..2]
3-4 Xilinx Development System

OrCAD SDT Design Techniques
Figure 3-3 Linking Multiple Sheets Together: Primary Design

Figure 3-4 Linking Multiple Sheets Together: Second Design

To place the |LINK keyword for the design names to be included on
your worksheet, do as follows:

1. From the top root-level design, select the Place ➝ Text
command.

2. At the Text? prompt, type |LINK .

3. Press Enter and place the keyword on the worksheet using the
Place command.

X4508

U1

I0
SIG0

SIG0

SIG1

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

SIG2

SIG3

SIG1

SIG2

SIG3

I1

I2

I3

I4

I5

I6

I7

EI

U5
GND

A0

A1

A2

EO

GS

X74_148

IN0

TOP.SCH
|LINK
|SHEET1

IN1

IN2

IN3

IN4

IN5

IN6

IN7

X4507

SIG0

SHEET1.SCH

OUT0

OUT[0..2]
U2

INV

INV

INV

U3

U4

OUT1

OUT2

SIG1

SIG2

SIG0

SIG1

SIG2

OUT[0..2]
OrCAD Interface/Tutorial Guide 3-5

OrCAD Interface/Tutorial Guide
4. Use the Place ➝ Text command and type the name of the
sheet you wish to connect to your primary design at the Text?
prompt. Precede the design name with the pipe character, as
follows.

| sheetname

5. Press Enter and use the Place command to place the design
name exactly under the |LINK keyword. Make sure the pipe
characters are aligned as you place each sheet name under the
keyword, as shown in Figure 3-3.

To add more sheets to your design, connect the input and output
ports as described above and include the schematic file name under
the |LINK keyword.

Hierarchical Designs
There are two ways to represent a lower-level drawing. One way is to
use a sheet symbol, and the other is to use a sheet-path part, or library
symbol.

Specifying a Sheet Symbol

There are two commands that are critical when creating a sheet
symbol. They are the Name and Filename commands.

The Name command specifies the name of a sheet symbol. Because
Xilinx uses the name as a part of the hierarchical path, the name of the
sheet symbol must follow the Xilinx naming conventions. The name
of the sheet must always be unique. The same file name, however, can
be used for more than one sheet symbol.

Note: In sheet names that include more than one word, do not use
spaces to separate words; use underscore characters instead.

With the Filename command, you can specify the file representing the
hierarchical worksheet. Do not use the default file name. Always
specify your own file name and be sure the file extension is SCH. This
is the extension XMake (the automatic design processor) expects. The
same rule applies for complex hierarchical structures.

For more information, refer to the OrCAD/Schematic Design Tools
Reference Guide.
3-6 Xilinx Development System

OrCAD SDT Design Techniques
Sheet-Path Part

A flip-flop of type D, called an FD, in the XC3000 library (XC3000.lib)
is an example of a sheet-path part. It is also called a library macro.
Every sheet-path part consists of two parts: the worksheet, for
example, FD.SCH, and the library symbol (FD symbol in XC3000.lib).

The worksheet is a drawing that contains the logic represented by the
symbol. All input and output signals must be terminated by a
module port.

The symbol is created in LibEdit. The input and output pin names
match the defined module port names.

User-Created Libraries
As described in the previous section, OrCAD includes two different
types of symbols: sheet symbols and library symbols, also known as
sheet-path parts. Sheet symbols are block-shaped symbols
representing lower-level hierarchies. Library symbols are symbols
that have been incorporated into a library. Each time you place a
sheet symbol, a new symbol must be drawn. In some cases it can be
more convenient to take a duplicated sheet and make it part of a user-
created library. This section details how to create a library symbol
and add it to a library. Any library symbol can be placed using the
Get command.

A user-created library consists of a LIB file containing any number of
symbols, and an INF file for each symbol. For documentation
purposes, it is a good idea to keep an SCH file, also. It is
recommended that you put the files in the working directory for each
design: by default, XMake and SDT2XNF look for these files in the
working directory.

Note: If you place the LIB and INF files for the user-defined libraries
in any directory other than the working directory, you must specify
the -u option for SDT2XNF when you run XMake or SDT2XNF
manually. If you place the files in the working directory, you do not
need to specify the -u option for SDT2XNF.

Using OrCAD to create and save library symbols, you can load the
symbols into a design in the same manner as Xilinx library elements.
To create such a library element and to add it to a user library,
continue with the sections:
OrCAD Interface/Tutorial Guide 3-7

OrCAD Interface/Tutorial Guide
● Creating Schematic and Netlist Files

● Creating a Symbol for the Schematic

● Saving the Symbol

● Changing Your Search Path

Creating Schematic and Netlist Files
The first step in creating a symbol is to generate a schematic file and a
netlist file.

1. Create a schematic for the element using Xilinx library elements.
Do not use the name of any Xilinx library component as your
schematic name. Suppose, for example, that the schematic has
been saved as example.sch.

2. Run the Annotate and INET programs to create an INF file.

Creating a Symbol for the Schematic
Next, create a symbol using OrCAD’s LibEdit utility. Although
LibEdit is described in detail in the OrCAD documentation, the steps
involved in creating a symbol are given here. The library in this
example is called userlib.

1. Go to the OrCAD ESP Design Environment, and select
Schematic Design Tools ➝ Execute ➝ Edit Library
➝ Execute .

Alternatively, you can type libedit ↵ at the DOS prompt to
enter the OrCAD LibEdit utility.

2. At the Read Library? prompt, type .\userlib.lib ↵.

If this library does not already exist, the words New Library
appear at the top of a blank sheet. If the library already exists, the
sheet is still blank, and all other steps remain unchanged.

Note: To install the new library in the recommended directory, that is
in the current working directory, type .\userlib.lib ↵. To place
the library in the same directory as the Xilinx-supplied libraries, type
userlib.lib ↵. In this case, you must copy the SCH and INF files
to the PLIB directory and always run XMake or SDT2XNF with the -u
option for SDT2XNF.
3-8 Xilinx Development System

OrCAD SDT Design Techniques
3. To create the symbol, select Body ➝ Block .

4. You are then asked to select the Number of Parts per
Package . You must select 0. If you select any other number, pin
numbers as well as pin names are assigned to the symbol pins.
The presence of pin numbers causes serious problems with the
translation software.

5. Draw the box, select Place , and press the Escape key.

The body of the symbol is now complete.

6. Position the cursor where you want to add a pin, and select
Pin ➝ Add .

7. Enter a name for the pin. This name must be the same as a name
on a module port in the schematic.

8. Select the appropriate pin type. You must select either input ,
output , or bidirectional . Do not choose any of the other
options.

9. Select any of the possible pin shapes.

The pin appears on the symbol with a name beside it. If a number
also appears, it means you did not select 0 for the number of parts
per package. This error is difficult to correct, so you might want to
exit LibEdit and start the process over.

10. Repeat the last few steps until you have added all the pins.

11. Add a name to the symbol. Select Name ➝ Add .

12. Type the name for the symbol, in this case, example ↵. The
symbol name you use must be the same as the name of the
corresponding schematic.

13. When prompted by Sheetpath? , do not add a sheetpath name.

14. Press ↵ and the Escape key.

Saving the Symbol
After creating a symbol, you must save it into the library.

1. Select Library ➝ Update Current .

2. To save the library to disk, select Quit ➝ Update File .
OrCAD Interface/Tutorial Guide 3-9

OrCAD Interface/Tutorial Guide
3. The library is automatically saved as userlib.lib in the working
directory.

4. To exit LibEdit, select Abandon Edits from the Quit menu.

Changing Your Search Path
After saving the symbol, add the library to your search path.

1. Select Draft ➝ Configure Schematic Tools .

2. Scan the list of available libraries. Click on .\USERLIB.LIB ➝
Insert .

The new library appears in the Configured Libraries list at the
right.

3. Return to the top of the screen and click on OK.

An alternative approach is to manually edit the sdt.cfg file using
any text editor in DOS, and add a line similar to the other “LIB”
statements, that is, LIB=’.\userlib.lib’ .

To verify that the library symbol is actually in the library, you can
go into Draft, select Get , and press ↵. A list of available libraries
appears. Click on .\Userlib.lib and then EXAMPLE.

Besides the LIB file, the INF file for the block must be saved in the
same directory as the LIB file. Additionally, it is a good idea to save a
copy of the schematic, in case you ever wish to consult it or change it.
However, neither of these rules applies in the case of a library symbol
without a schematic. These exceptions are discussed in the section,
“Merging Design Files from Other Sources” in Chapter 4.

If you have questions on the LibEdit program or other aspects of
user-created libraries, see the Schematic Design Tools Users Guide and
Reference Guide from OrCAD.

Note: Save the new library symbol to a user-created library file. Do
not edit the XC3000.lib, XC2000.lib, XC4000.lib or XC7000.lib files,
because future updates to the Xilinx library will overwrite user
library symbols.
3-10 Xilinx Development System

FPGA Design Issues

OrCAD
Interface/
Tutorial
Guide
OrCAD Interface/Tutorial Guide — 0401409 01 Printed in U.S.A.

OrCAD Interface/Tutorial Guide
Xilinx Development System

Chapter 4

FPGA Design Issues

This chapter explains the different Xilinx design requirements you
should be familiar with as you complete an FPGA design.

● Xilinx-Supplied Primitives and Macros defines the FPGA libraries of
primitives and macros.

● Entering Xilinx Attributes tells you how to attach attributes to
macros and primitives.

● Entering XACT-Performance Attributes details how to enter the
TIMESPEC, TIMEGRP, TNM, and TS attributes on your design.

● Entering a Parttype Record explains how to specify the Parttype
record on your worksheet.

● Using the Draft Edit Menu covers all the field names available for
the XC2000, XC3000, and XC4000 FPGA families.

● Symbol and External I/O Attributes defines the different attributes
you can enter on symbols and input/output buffers.

● Signal Attributes lists and describes the flags you can connect to
nets.

● Representing Power and Ground Signals explains how to tie signals
High or Low in your design.

● Merging Design Files from Other Sources explains how to include a
non-OrCAD netlist in your design.

● Using X-BLOX Symbols tells you how to use X-BLOX modules in
your OrCAD design.
OrCAD Interface/Tutorial Guide — 0401409 01 4-1

OrCAD Interface/Tutorial Guide
Xilinx-Supplied Primitives and Macros
The function of each Xilinx primitive and macro is described in the
XACT Libraries Guide. This section provides OrCAD-specific
information for some of the symbols.

Existing customers have two sets of libraries: old libraries and the
new Unified Libraries. Only the new libraries are shipped with the
new systems. You must do your design using either the old symbols
or the new Unified Libraries symbols. We strongly recommend that
you create all new designs using the new unified symbols. The old
libraries are supported in this release and allow you to continue to
process existing schematics without redrawing them. However, you
must not mix and match elements from the old libraries with
elements of the new libraries in the same design.

The Xilinx libraries contain primitives and macros, the building
blocks of any FPGA design. Primitives are basic logic elements, such
as gates and flip-flops. Macros are combinations of various primitives
or other macros, used to implement common functions. For example,
the ADSU8 macro represents an 8-bit adder. Macros are classified as
either “soft” or “relationally placed” macros (RPMs).

Soft macros are neither partitioned nor routed. This makes them more
malleable when fitted with other macros.

An RPM is a new type of macro designed to replace the Xilinx hard
macros. RPMs constitute a super-set of soft macros that support
FMAPs, HMAPs, carry-logic schematic elements, and absolute
location (LOC) or relative location (RLOC) constraints. As most
symbols in the Unified Libraries have relative location constraints,
you can easily design RPMs using symbols in these Xilinx libraries.
Moreover, you can simulate RPMs. RPMs are currently supported for
the XC4000 family only.

Warning: User-created hard macros must be converted for use with
the new Xilinx core tools. You must convert all your hard macros to
RPMs using the HM2RPM utility. Refer to your XACT Reference Guide
for more information.

The Xilinx OrCAD-FPGA library includes numerous macros, which
implement common functions as well as TTL-equivalent
components.
4-2 Xilinx Development System

FPGA Design Issues
Entering Xilinx Attributes
Some Xilinx macros and primitives require that you provide
attributes and attribute values. This section explains how to enter
these attributes.

The different types of attributes include:

● Symbol and External I/O attributes

● Signal attributes

● User attributes

Note: The Xilinx Pin attributes are not supported in OrCAD.

After placing a symbol, you can enter attributes with the Draft Edit
menu. Refer to the “Symbol and External I/O Attributes” section for
a list of the different attributes that you can use with each library.

Enter the signal attributes using the Draft Get command. Refer to the
“Signal Attributes” section for a list of the different signal attributes
that you can use with each library.

The following figure is used to illustrate how to place attributes on
your schematic. Refer to it throughout this section.
OrCAD Interface/Tutorial Guide 4-3

OrCAD Interface/Tutorial Guide
Figure 4-1 Entering Different Types of Attributes

Entering Symbol and External I/O Attributes
Symbol attributes define a symbol and its connections to signals. An
external attribute is an attribute you connect to an I/O symbol, such
as an IBUF, OBUF, INFF, INLAT, INREG, OUTFF, OUTFFT, or pad
symbol. To enter a symbol attribute or an external attribute, do as
follows:

1. Place the cursor over the symbol you wish to edit.

Use the menu command Edit ➝ Edit ➝ OPTIONS_1➝ Name, or
Edit ➝ Edit ➝ OPTIONS_2➝ Name for XC4000 devices.

Use the menu command Edit ➝ Edit ➝ LOC,OPTIONS➝ Name
for XC2000 family and XC3000 family devices.

2. At the prompt, enter an attribute name and a valid value
separated by the equal sign.

For example:

OPTIONS_1? loc=P17

X5024

U1

FD
init=S
u_set=Usetvalue

loc=P17, fast,user=xxx,xilinx

U2

IBUF

U3

IBUF

I0

U4

OBUF

U5

IPAD

U6

IPAD

W

F3
W=45

TNM

F4
TNM=FRED

S

F2
S

TNM

F1
TNM=MY

U7

OPAD

|TIMESPEC
|TS01=FROM:MYGRP:TO:PADS=60
|TS02=FROM:PADS:TO:MY=30

|TIMEGRP
|mygrp=MY:FRED

|parttype=4003apc84

D Q
4-4 Xilinx Development System

FPGA Design Issues
3. To specify multiple attributes, use a comma to separate the
different attribute definitions:

OPTIONS_1? loc=P17,init=S,U_set=Usetvalue

Some attributes, such as FAST, do not require a value. Check the
XACT Libraries Guide for the correct attribute syntax.

Those attributes that do require a value and are listed as selections in
the Edit menu can be entered from the Options field as well. In this
case, you must enter the attribute, the equal sign, and the attribute
value at the prompt. Alternatively, each of these attributes can be
entered from the field that bears its name. In this case, you only need
to enter a valid value at the prompt, as in the following example.

OPTIONS_1? INIT=S

 or

INIT? S

This last command is executed by selecting Edit ➝ Edit ➝ Init ➝
Name.

If you attempt to enter an attribute in a particular field designed for
another type of attribute, your attribute name supersedes the existing
field name. However, this only works if the attribute you enter is
accompanied by a valid value.

Use:

Base? U_SET=Usetvalue.

Do not use:

Base? U_SET

Note: For the XC2000 and XC3000 menus, the part field used to enter
attributes is called LOC, OPTIONS. If you enter a value without an
attribute in this field, the value defaults to the LOC field. If you
specify an attribute name with a value or an attribute that does not
require a value, the specification defaults to the OPTIONS field.

Entering Signal Attributes
A signal attribute is a symbol, or flag, that you connect to a net, or
signal. Use the Get command to get a flag, place the flag next to a
signal, and connect the flag to the signal with a net and a junction dot.
OrCAD Interface/Tutorial Guide 4-5

OrCAD Interface/Tutorial Guide
The following is a step-by-step procedure to enter this type of
attribute.

Note: The Xilinx Pin attributes are not supported in OrCAD.

1. Use the Get command to get the flag for the attribute.

2. At the Get? prompt, enter the flag name:

Get? symbolname ↵

3. Use the Place command to fix the flag on the worksheet next to a
signal.

4. Connect the flag to the net by drawing another net using the
Place ➝ Wire command.

5. Place a junction (programming intersection point) where the new
net connects with the designated signal.

For the W and TNM symbols, continue with the following steps:

1. Place the cursor over the flag you have just entered.

2. Use the menu command Edit ➝ Edit ➝ PartValue ➝ Name to
specify a value for your attribute. At the Value? W or Value?
TNM prompt, type an equal sign followed by your attribute value.

Value? W=45↵

or

Value? TNM=groupname

For a TS symbol, continue with the following steps:

1. Place the cursor over the TS symbol you have just entered.

2. Use the menu command Edit ➝ Edit ➝ PartValue ➝ Name
and, at the Value? TS prompt, enter the TS value without the
equal sign:

Value? TS03 ↵

Entering User Attributes
User attributes are user specified. You can enter any specifications
you want. User attributes are ignored by the Xilinx software and are
available for your own documentation purposes only. Enter these
attributes on library symbols by performing the following steps.
4-6 Xilinx Development System

FPGA Design Issues
1. Place the cursor over the symbol that you wish to edit.

2. Use the menu command Edit ➝ Edit ➝ OPTIONS_1➝ Name, or
Edit ➝ Edit ➝ OPTIONS_2➝ Name for XC4000 devices.

Use the menu command Edit ➝ Edit ➝ LOC,OPTIONS➝ Name
for XC2000 family and XC3000 family devices.

3. Specify your own attributes after any existing Xilinx attributes
that you already specified.

loc=P17,fast,user=xxx,xilinx

In this example, the first two attributes are Xilinx-specific
attributes. The last two attributes are user specified.

4. Press Enter to place the attributes on the library symbol.

Entering XACT-Performance Attributes
The following briefly explains the steps used to enter the TIMESPEC,
TIMEGRP, TNM and TS attributes.

For a complete discussion of XACT-Performance, refer to the XACT
Reference Guide and the “XACT-Performance and XDelay Tutorial”
chapter in this manual.

Note: As you place the text on the worksheet, separate each attribute
definition from other attribute definitions, as shown in Figure 4-1. Do
not put two attribute definitions on the same line or in the same
column.

TIMESPEC
To specify a TIMESPEC attribute:

1. Use the menu command Place ➝ Text .

2. At the Text? prompt, enter the pipe character followed by the
TIMESPEC keyword:

Text? |TIMESPEC

3. Press Enter and select Place to place the text on your
worksheet.

4. Use the same menu command again, Place ➝ Text , to specify a
value for your TIMESPEC. Enter a valid value as follows:
OrCAD Interface/Tutorial Guide 4-7

OrCAD Interface/Tutorial Guide
Text? |TSidentifier=specification

For example, enter a value such as |TS01=FROM:FFS:TO:PADS=30.

5. Press Enter and drag the specification under the TIMESPEC
keyword on your worksheet, aligning it with the keyword.

6. When it is aligned, select Place to place the specification on your
worksheet.

|TIMESPEC
|TS01=FROM:FFS:TO:PADS=30

Note: You can have several TS specifications. However, align all the
pipe characters as you place the specifications under the TIMESPEC
keyword.

TIMEGRP
To specify a TIMEGRP attribute:

1. Use the menu command Place ➝ Text.

2. At the Text? prompt, enter the pipe character followed by the
TIMEGRP keyword:

Text? |TIMEGRP

3. Press Enter and select Place to place the text on your
worksheet. Use the same menu command again, Place ➝ Text ,
to specify a value for your TIMEGRP and enter a valid value:

Text? |groupname1=set_definition1

4. Press Enter and drag the specification under the TIMEGRP
keyword on your worksheet, aligning it with the keyword.

5. When they are aligned, select Place to place the specification on
your worksheet.

Note: You can specify several group names for the TIMEGRP
keyword. Align all pipe characters as you place the group names
under the TIMEGRP attribute. Also, make sure you do not place a
TIMEGRP and a TIMESPEC specification on the same row or column.
(See Figure 4-1.)
4-8 Xilinx Development System

FPGA Design Issues
TNM
TNM is an attribute that defines groups of nets or symbols that can be
referenced by TIMESPEC or TIMEGRP specifications, as shown in
Figure 4-1. Refer to the “Entering Signal Attributes” section above for
information on how to attach the TNM symbol to a net and assign its
attribute value.

Note: You cannot enter the TNM attribute on a pin, as none of the
Xilinx pin attributes are supported in OrCAD.

TSidentifier
TSidentifier is an attribute that identifies individual XACT-
Performance timing specifications. Refer to the “Entering Signal
Attributes” section for information on how to attach the TS symbol to
a net and assign an attribute value.

Entering a PARTTYPE Record
The PARTTYPE record is a statement that you can enter on your
schematic to specify the family and speed of your device. If you do
not specify a part type for your device, the Xilinx software uses a
default device for each family.

To specify a PARTTYPE record:

1. Use the menu command Place ➝ Text.

2. At the Text? prompt, enter the pipe character followed by the
PARTTYPE or PART keyword and its value:

Text? |PARTTYPE=4005pg156-7

3. Press Enter and select Place to place the specification on your
worksheet.

|PARTTYPE=4005pg156-7

 or

|PART=4005pg156-7
OrCAD Interface/Tutorial Guide 4-9

OrCAD Interface/Tutorial Guide
Using the Draft Edit Menu
This section discusses the Edit Part fields that were configured by the
XDraft utility. Use this menu to enter attributes on Xilinx macros and
primitives in your design.

XC2000/XC3000 Field Names
If you configure the Edit Part menu to support an XC2000 or XC3000
design file, the Edit Part menu, when selected, generates a menu with
the following options:

LOC,OPTIONS
BLKNM
BASE
CONFIG
EQUATE_F
$FCONT
EQUATE_G
$GCONT

Location and Options (LOC,OPTIONS)

The LOC, OPTIONS field is used to enter Xilinx symbol attributes.
LOC, which is short for location, is used to lock a component to a
specific location and is described in the section on how to control
block placement in the XACT Libraries Guide. Each field retains the
attributes and attribute values you specify even after you place the
attribute or string of attributes on your worksheet symbols.
Therefore, the number of attributes you can enter in each Options
field is limited to the extent of the field. To enter additional attributes,
you can use the BASE, CONFIG, CONT, and EQUATE fields.

Note: If you enter a value without an attribute in the LOC,OPTIONS
field, it is presumed to be a location. If you specify an attribute name
with a value or an attribute that does not require a value, the
specification defaults to the OPTIONS field.

Available options are listed in the section “Symbol and External I/O
Attributes,” below.
4-10 Xilinx Development System

FPGA Design Issues
Block Name (BLKNM)

This field specifies a logical block name to be assigned to a CLB or an
IOB. However, it does not apply to Xilinx macros.

BASE and CONFIG Fields

Use these fields to enter CLB and IOB configurations. The BASE field
sets the base configuration of any IOB or CLB. The CONFIG field
specifies logic element inputs and the storage element function.

EQUATE_F, EQUATE_G, $FCONT, $GCONT Fields

Use these fields to enter CLB configurations. The EQUATE_F and
EQUATE_G fields let you configure CLB logic functions by entering
logic equations directly. To enter logic directly into the F function of
the CLB, select EQUATE_F (likewise for the G function) and Name
from the Edit Part submenus; then, type the function at the prompt.

The $FCONT and $GCONT fields in the Edit Part submenu let you
continue the function definition for Boolean expressions exceeding
the length of the EQUATE_F and EQUATE_G fields, respectively.
Refer to the XACT Libraries Guide for valid tags and options for
XC2000 family and XC3000 family designs.

XC4000 Field Names
If you configure the Edit Part menu to support an XC4000 design file,
the Edit Part menu appears with the following options:

Reference
Part Value
OPTIONS_1
OPTIONS_2
INIT
BASE
CONFIG
EQUATE_F
EQUATE_G
EQUATE_H
SheetPart Name
Orientation
OrCAD Interface/Tutorial Guide 4-11

OrCAD Interface/Tutorial Guide
Options (OPTIONS_1 and OPTIONS_2)

The Options fields are generic. You can specify one or more of the
symbol attributes listed in the section “Symbol and External I/O
Attributes,” following, using either of these two fields. Each field
retains the attributes and attribute values you specify even after you
place the attribute or string of attributes on your worksheet symbols.
Therefore, the number of attributes you can enter in each Options
field is limited to the extent of the field. To enter additional attributes,
use the BASE, CONFIG, and EQUATE fields.

Initialization State (INIT)

This field indicates the start-up state of an IOB flip-flop and the
ROMs but not the RAMs. To initialize a RAM, you must provide
additional circuitry.

BASE, CONFIG, and EQUATE Fields

These fields are generic. Use them as additional Options fields when
entering XC4000 family designs.

Symbol and External I/O Attributes
This section lists the symbol and external I/O attributes that you can
use in your FPGA designs. It also includes a table, Table 4-1, that
specifies the availability of each option for each FPGA family. For
more details, refer to the XACT Libraries Guide.

For instructions on how to enter these attributes, refer to the section
“Entering Symbol and External I/O Attributes.”
4-12 Xilinx Development System

FPGA Design Issues
Table 4-1 Symbol and External I/O Attributes

XC2000/L XC3000/A/L XC3100/A XC4000/A/D XC4000H

BLKNM= X X X X X

CAP X

CMOS X

DECODE X X

DEF= X X X X X

DOUBLE X X

FAST X X X

FILE= X X X X X

HBLKNM= X X X X X

HU_SET= X X

INIT= X X

LOC= X X X X X

LOC<> X X X X X

MAP= X X X X X

MEDFAST XC4000A

MEDSLOW XC4000A

NODELAY X

RES X

RLOC = X X

RLOC_ORIGIN= X X

RLOC_RANGE= X X

SLOW X X X

TNM= XC3000A/L XC3100A X X

TSidentifier= XC3000A/L XC3100A X X

TTL X

USE_RLOC= X X

U_SET= X X
OrCAD Interface/Tutorial Guide 4-13

OrCAD Interface/Tutorial Guide
● BLKNM=blockname

Use this field to specify the block name of a CLB or an IOB. You
can also use it on primitive I/O symbols, primitive flip-flop
symbols, and IOB and CLB primitives; it does not work on
macros. The default block name is always the output net name of
the IOB or CLB.

● CAP

Use the capacitive, “softedge” mode on the 4000H to connect an
output to a capacitive mode or to avoid ground bounce by turning
off the pull-down transistor as the output is pulled to ground.
Contrast this attribute with the RES attribute, which specifies the
resistive mode.

● CMOS

Use this attribute to configure output drivers on the 4000H to
drive CMOS-compatible levels, and IOBs to be CMOS-compatible
inputs. Contrast this attribute with the TTL attribute, which
specifies TTL I/O voltage levels. Do not combine a TTL output
with a CMOS input on a bidirectional pad, as this configuration is
not supported.

● DECODE

Use this attribute to indicate the function to be implemented with
the dedicated decoding logic at the edges of the XC4000 die.

● DEF=type

Use this attribute to indicate a Xilinx ABEL or MemGen netlist.
Valid values include XABEL and MEM.

● DOUBLE

Use this attribute to specify double pull-up resistors on a
horizontal longline. If your device is processed with PPR, you do
not need to use this attribute. PPR automatically uses two pull-up
resistors where appropriate.

● FAST

Use this attribute to specify a fast output pin on a pad or an I/O
buffer. The output pins default to slew-rate-limited output.
4-14 Xilinx Development System

FPGA Design Issues
● FILE=filename

Use this attribute to indicate that an XNF representation exists for
the symbol, that is, there exists an XNF file with the name of
“filename” for the symbol. This name is the file name of a logic
block that is not represented by an OrCAD schematic, for
example, a Xilinx ABEL file.

● HBLKNM=name

Use the HBLKNM attribute on a primitive in a macro that is
instantiated several times in a design. The design-flattening
process creates unique hierarchical HBLKNM values for each
occurrence of the symbol.

● HU_SET=name

Use this hierarchical attribute on a symbol that already includes
RLOC properties. The HU_SET attribute is the same as the U_SET
attribute except that it will be applied not only to the symbol with
the attribute, but to all symbols below it in the hierarchy. It defines
a set of symbols that will be considered related by their RLOC
attributes.

● INIT=value

Use this attribute to initialize XC4000 ROMs and IOB flip-flops.
The values used on a ROM are 4 or 8 HEX digits. The values used
on an IOB flip-flop are S (Set) or R (Reset, default).

● LOC=location(s)

Use this attribute to specify a particular location or a range of
locations for one or more CLBs, IOBs, flip-flops, FMAPs, HMAPs,
CLBMAPs, or I/O symbols.

● LOC<>location(s)

Use this attribute to avoid a particular location or a range of
locations.

● MAP=value

Use this attribute on CLBMAP, FMAP, and HMAP symbols to
specify explicit control over partitioning. Supported values
include PLC (pins locked and closed), PLO (pins locked and
OrCAD Interface/Tutorial Guide 4-15

OrCAD Interface/Tutorial Guide
open), PUC (pins unlocked and closed), and PUO (pins unlocked
and open). The default value is MAP=PUC.

● MEDFAST/MEDSLOW

Use these attributes to specify the transition time of the output
drivers. MEDFAST decreases the output transition time from the
default SLOW value and is slightly faster than MEDSLOW.

● NODELAY

Use this attribute to remove the input delay from the IOB flip-flop.
The default is to include the Delay buffer. The NODELAY
attribute changes the setup and hold time specifications for the
input flip-flop. See the Programmable Logic Data Book for additional
information.

● RES

Use the RES attribute on the 4000H to specify the resistive mode
for your output driver. In this mode, the output is faster and
draws more power. Contrast this attribute with the CAP attribute.

● RLOC=value

Use the RLOC attribute to define the spatial relationships between
two or more symbols. The syntax of the RLOC attribute value is
RnCn, where Rn and Cn denote the row and column numbers of
the LCA grid array. R0C0 is the upper left-hand corner of the
group of related symbols.

● RLOC_ORIGIN=value

Use this attribute on a symbol to establish the absolute position of
a set of symbols already in a relative location relationship on the
LCA. The syntax of the RLOC_ORIGIN attribute value is RnCn,
where Rn and Cn denote the row and column numbers of the LCA
grid array. The RLOC_ORIGIN is applied to the symbol with
RLOC=R0C0.

● RLOC_RANGE=value

Use this attribute on a symbol to establish a range within which a
set of symbols, already in a relative location relationship, can be
placed on the LCA. The syntax of the RLOC_RANGE attribute
value is RnCn:RnCn, where Rn and Cn denote the row and
column numbers of the LCA grid array.
4-16 Xilinx Development System

FPGA Design Issues
● SLOW

Use this attribute on the XC3000 and XC4000 families to specify
the transition time of the output drivers. SLOW is the default.

● TNM=namelist

Use the TNM attribute on a macro symbol, a primitive, or a net. If
you specify a TNM attribute on a macro symbol, it propagates
down to all lower-level symbols. You cannot put this attribute on
pins because of an OrCAD limitation. The TNM attribute defines
groups of nets or symbols to which an XACT-Performance
(TIMESPEC) attribute can be applied. (See Figure 4-1.) Refer to the
XACT-Performance chapter in the XACT Reference Guide for more
details.

● TSidentifier=specification

Use the TSidentifier attribute to convey timing information to the
Xilinx place and route program (PPR). Place it in alignment with
the TIMESPEC text specification. See Figure 4-1 for an example.

● TTL

Use this attribute to configure output drivers on the 4000H to
drive to TTL-compatible levels and IOBs to be TTL-compatible
inputs. Contrast this attribute with the CMOS attribute, which
specifies CMOS I/O voltage levels. Do not combine a TTL output
with a CMOS input on a bidirectional pad, as this configuration is
not supported.

● USE_RLOC=value

Use this attribute on a macro symbol to tell the XNFMerge
program whether the RLOC information used inside the macro
symbol should be used or ignored. Valid values are True and
False. The default value is True.

● U_SET=name

Use this attribute on a symbol that already includes RLOC
properties. It defines a set of symbols that will be considered
related by their RLOC attributes.
OrCAD Interface/Tutorial Guide 4-17

OrCAD Interface/Tutorial Guide
Signal Attributes
The symbols for signal attributes are in the Xilinx library. When used,
these symbols must make contact with the net to which they apply by
means of a net and a junction dot. The table below lists the signal
attributes (also known as flags) that apply to each FPGA family. For
instructions on how to enter these attributes, refer to the section
“Entering Signal Attributes.”

Table 4-2 Signal Attributes

C — Critical

The C flag is used to identify a net as critical. A C flag assigns a
weight of 100 to the attached net, which gives it the highest routing
priority.

G — G-Function Output

Any CLB clocks driven by this net are connected to the G function
generator output.

I — Input

Any CLB clocks driven by this net are connected to the C input.

K — Input

Any CLB clocks driven by this net are connected to the K input.

L — Long-Line Net

The APR software attempts to use a long line to route this net; this is
useful for nets with high fan-out and needing low skew.

FPGA Families Signal Attributes

XC2000/L C G I K L N P S X

XC3000, XC3100 C L N P S X

XC3000A/L, XC3100A C N P S TNM TS W X

XC4000/A/D/H TNM TS W X
4-18 Xilinx Development System

FPGA Design Issues
N — Non-Critical

The N flag is used to identify a net as non-critical. An N flag assigns a
weight of zero to the attached net, which gives it the lowest routing
priority.

P — Pinlock (CLBMAP Primitives Only)

This attribute specifies that APR is not to move the CLBMAP pin
connected to the associated net. This is useful for aligning CLB inputs
with a specified longline.

S — Save

This attribute is used to prevent XNFMAP from removing
unconnected signals. If you do not have the S attribute on a net,
XNFMAP removes the signal if it is not connected to some logic or an
I/O primitive. The Save flag is useful for placing and routing a
design with some logic blocks missing or incomplete, for preliminary
testing or simulation.

TNM — Group Nets

This attribute is used to group paths with the same Timespec
definition.

TS — Apply TS Attribute

This attribute is used to apply a specific TS attribute to a net.

W — Weight (Relative Routing Priority)

The W flag is used to assign a relative routing priority to a net. Attach
the W flag (symbol name: W) to the desired net, placing a junction at
the T connection. To specify the net weight value you must edit the
part value of the W symbol, add an equal sign (=) and add a weight
value to the existing text. The weight value is only legal from 1 to 99.
For example, W=34 will assign the attached net a weight of 34.

X — External

The X flag is used to identify a net as external. An external net is one
that exists at a CLB output, and will not be absorbed into a CLB. For
OrCAD Interface/Tutorial Guide 4-19

OrCAD Interface/Tutorial Guide
example, an external net between a logic gate and a flip-flop will force
APR or PPR to place the combinatorial logic and the flip-flop in
different CLBs. This may make the partitioning of the design less
efficient, but will guarantee that the external net exists at a CLB
output.

Representing Power and Ground Signals
The following sections describe the VCC and GND symbols used to
tie a net High or Low in an OrCAD design.

VCC — Logic High
The VCC symbol ties a net to a logic High state. Get the VCC symbol
(symbol name: VCC) from the library and place it on the schematic.
Attach it to the desired net, using a junction dot if a T connection is
formed. A net tied to VCC cannot have any other source.

When APR or PPR encounters a net tied to VCC, it removes any logic
that is disabled by the VCC signal. The VCC net is only physically
implemented in the FPGA if APR or PPR cannot remove the logic
sourced by the signal.

GND — Ground
The GND symbol ties a net to a logic Low state. Get the GND symbol
(symbol name: GND) from the library and place it on the schematic.
Attach it to the desired net, using a junction dot if a T connection is
formed. A net tied to GND cannot have any other source.

When APR or PPR encounters a net tied to GND, it removes any logic
that is disabled by the ground signal. The GND net is only physically
implemented in the FPGA if APR or PPR cannot remove the logic
sourced by the signal.

Merging Design Files from Other Sources
You can enter your design as a simple set of schematics. Alternatively,
you can enter part of your design in some form other than
schematics, such as text entry or a RAM or ROM description. You can
also bring in netlist files produced by interface software other than
OrCAD. Whatever the form of entry, the starting point for inclusion
4-20 Xilinx Development System

FPGA Design Issues
into an OrCAD schematic design must be a netlist file in XNF format.
This file must be located in the working directory. Without the XNF file,
this portion of the design cannot be included; with it, the origin of the
logic becomes irrelevant.

Suppose that you choose to include an XNF file that you generated
using software from one of Xilinx’s Alliance partners. You have a file
called, for example, example.xnf. This section describes how to
incorporate an XNF netlist into your schematic.

Creating a Symbol for the XNF File
The simplest approach is to add the element to a user-created library.
Use the procedure outlined in the “User-Created Libraries” section of
Chapter 3. Be sure to add any new library to your search path.

Alternatively, if the XNF file was created by Xilinx ABEL or
MemGen, you can bypass much of this procedure using Xilinx
utilities that automatically create a symbol for you. Specifically, the
following steps can be substituted for all steps outlined in the “User-
Created Libraries” section, up to the “Saving the Symbol” section of
Chapter 3.

1. If this is a Xilinx ABEL design and you have already produced an
XNF file for it, type the following at the DOS prompt:

symgen example -o ↵

where example is the name of a module for which you are trying to
build the symbol. Symgen produces the example.cmd file.

Do not run Symgen if you are using MemGen to create a memory
block, as MemGen automatically creates the CMD file.

2. Go into LibEdit by typing libedit .\userlib ↵ at the
prompt, assuming you chose “userlib” for your library name.

3. Create the new library element for the XNF file using the
example.cmd file created in step 1. To execute the command file,
select Import and type example.cmd ↵.

This procedure automatically creates the OrCAD symbol for you
from the command file.

4. Continue with “Saving the Symbol,” as described in the ‘‘User-
Created Libraries” section of Chapter 3.
OrCAD Interface/Tutorial Guide 4-21

OrCAD Interface/Tutorial Guide
Adding a Symbol to Your Schematic
Whenever a library symbol without a schematic is used in a design,
you must specify the name of the XNF file. To specify the XNF file
name, follow these instructions each time the symbol is placed.

1. Position the cursor on the symbol and select: Edit ➝ Edit ➝
LOC,Options ➝ Name for an XC2000 or XC3000 design,

or

Edit ➝ Edit ➝ OPTIONS_1➝ Name for an XC4000 design.

2. Type:

FILE=example ↵

where example.xnf is the file representing that symbol.

Note: Do not specify the .xnf file extension after the symbol name.

3. If the file is a Xilinx ABEL file, use the same command sequence to
append the string, DEF=XABEL. This attribute informs XSimMake
that the file was generated by Xilinx ABEL.

4. If the file is a MemGen file, use the same command sequence to
append the string, DEF=MEM. This attribute informs XSimMake
that the file was generated by MemGen.

Using X-BLOX Symbols
You can use X-BLOX modules in your OrCAD XC3000A/L, 3100A, or
XC4000 family design. The installation program places xblox.lib and
related files in the \xact\xc4000 and \xact\xc3000 directories. You
can use the other libraries available in these directories, either the
XC3000 or the XC4000 library, with the X-BLOX library.

To retrieve a library component, invoke the Get command and enter
the name of the X-BLOX component that you need. To choose a
component, you can consult a list of available X-BLOX modules by
using the Browse command and selecting the XBLOX.LIB library.
4-22 Xilinx Development System

FPGA Design Issues
Connecting a Wire
X-BLOX buses must always be placed as wires, not buses. Therefore,
do not attempt to use the Draft menu command Place Bus to connect
a bus to an X-BLOX pin.

Adding Attributes
To add attributes to an X-BLOX component, find the name and
proper value of the attribute in the X-BLOX User Guide. Use the Edit
command to add the attribute using either the OPTIONS_1 or
OPTIONS_2 field for an XC4000 family part, or the LOC, OPTIONS
field for an XC3000A/L or XC3100A part. If you need to add more
than one attribute on an XC4000 family part, use both Options fields
or, if you decide to specify the attributes in the same field, use a
comma to separate the attributes defined in the same field.

Processing the Design
Once an XNF file is generated, simply follow the procedure used to
process X-BLOX modules. If you run XMake, this program
recognizes X-BLOX designs and automatically processes them using
the X-BLOX flow.
OrCAD Interface/Tutorial Guide 4-23

OrCAD Interface/Tutorial Guide
4-24 Xilinx Development System

EPLD Design Issues

OrCAD
Interface/
Tutorial
Guide
OrCAD Interface/Tutorial Guide — 0401409 01 Printed in U.S.A.

OrCAD Interface/Tutorial Guide
Xilinx Development System

Chapter 5

EPLD Design Issues

This chapter explains how to create your EPLD schematic design so
that it can be fitted to an EPLD device. The chapter covers the
following topics:

● Using the Schematic Library Components explains how to take
advantage of the EPLD features and how to adhere to the EPLD
design rules.

● Xilinx-Supplied Primitives and Macros contrasts XC7000 primitives
with XC7000 macros.

● User-Defined Primitives and Macros briefly tells you where to store
your user-defined library primitives and macros.

● Representing Power and Ground Signals explains how to assign
logical High and Low values to unconnected inputs and symbols.

● Entering Xilinx Attributes explains how to control logic
optimization and other fitting options.

Using the Schematic Library Components
When creating an EPLD design, you must use only the components
included in the XC7000 library. The XC7000 library contains
components common to EPLD and FPGA designs. It also includes a
few components that are specific to EPLDs. This section describes
how to use the common and EPLD-specific components of the
XC7000 library.

There are three basic types of components:

● Buffers or pads — These components define the input and output
ports that represent the physical pins on the device.

● Standard components — These components represent the fixed
OrCAD Interface/Tutorial Guide — 0401409 01 5-1

OrCAD Interface/Tutorial Guide
logic functions, such as the gates, adders, and counters.

● PLD components — You can define these components by means
of a PLUSASM equation file.

Many of the components in the XC7000 library are also implemented
with special features that take advantage of the EPLD architecture.
Such components are referred to as EPLD-specific components. Refer
to Table 5-1 in the “EPLD-Specific Components” section for a list of
the common modules along with their EPLD-specific counterparts.
The sections that follow describe some of the features offered by the
XC7000 library.

Buffers and Pads

Input and Output Buffer Connections

To represent an ordinary device input pin, use an IPAD connected to
one IBUF buffer; you can then connect the IBUF to any number of on-
chip logic symbol inputs. See Figure 5-1. An IBUF can drive clocks
and 3-state output enables, except for OBUFEX1. There are special-
purpose buffer symbols in the library, BUFG and BUFFOE, that you
can use instead for these functions.

To take advantage of the input-pad registers and latches available in
EPLD devices, use one of the IFD, IFDX1, or ILD symbols instead of
the IBUF. Do not connect an IBUF to the D-input of an IFD/ILD
symbol. Refer to the XACT Libraries Guide for specific application
rules for the symbols.

To represent an ordinary device output pin, use an OBUF buffer that
is driven by one and only one on-chip logic source. Connect the
output of the OBUF to an OPAD symbol. You could also use one of
the 3-state output buffers (OBUFE, OBUFT) instead of an OBUF.
Drive the output enable control input (E or T) using any on-chip logic
source or input signal from an IBUF. The EPLD fitter attempts to
assign the enable signal to one of the EPLD’s FOE global enable lines.
5-2 Xilinx Development System

EPLD Design Issues
Figure 5-1 Input Buffers

To take advantage of an FOE global line explicitly, use a BUFFOE
input buffer instead of an IBUF, and connect it to an OBUFEX1
output buffer instead of an OBUFE, as shown in Figure 5-2.

Figure 5-2 Assigning an FOE Line

Note: Always label wires connecting PAD symbols and input/
output buffer symbols. These names are used by the software to refer
to your device pins in the reports and during simulation.

To represent a bidirectional I/O pin, use an IOPAD symbol connected

X4599

IBUF

ƒ

QD
INPUT1

IPAD

• • •

BUFG

FD

IFD

QD

CLK
IPAD

INPUT2

OR

IPAD

ƒ

• • •

X4600

OBUFEX1

BUFFOE

OUTPUT2

READ_EN

OPADƒ

IPAD
OrCAD Interface/Tutorial Guide 5-3

OrCAD Interface/Tutorial Guide
to both the input of an IBUF or IFD/ILD and the output of an OBUFE,
OBUFT, OBUFEX1, and so on as shown in Figure 5-3.

Figure 5-3 Bidirectional Pin

Output Buffers and 3-State Buffers

If a signal going into a common output buffer (OBUF) is generated by
any component containing a 3-state buffer, such as a BUFE or a PLD,
the 3-state control signal is used to enable and disable the device
output pin driver. This behavior is unique to EPLDs and is not
reproduced in FPGAs.

Figure 5-4 Output Enable Behavior in EPLDs

Note: Inserting a buffer (BUF) or inverter (INV) between the 3-state
buffer (BUFE) and the output buffer (OBUF) does not prevent the
3-state buffer from controlling the device pin. The XEPLD fitter
optimizes all buffers and inverters into the 3-state buffers unless you
place an OPT=OFF attribute on the 3-state buffer.

If you use a PLD symbol in your schematic and connect one of its
outputs to an output buffer such as OBUF, you can control the EPLD

X4601

IBUF OBUFEIO3
IOPAD

• • •
• • •

• • •

• • •

ƒ

X4602

OBUFBUFE

E

is equivalent to:

OPADƒ

OBUFE

E

OPADƒ
5-4 Xilinx Development System

EPLD Design Issues
device output pin using a 3-state control equation in the PLD, as
shown in Figure 5-5.

Figure 5-5 Controlling Output Using a PLD Equation

If you want to use a PLD output with a TRST equation to control a
bidirectional I/O pin of the EPLD, connect the OBUF output to an
IOPAD and an IBUF or an IFD/ILD. If the same PLD symbol that
generates the output is also to receive the I/O pin input, you must
use a separate pin of the PLD symbol to receive the signal from the
IBUF. Do not tie the output of an IBUF to the input of the OBUF of the
same IOPAD as shown in Figure 5-6; these input and output wires
must remain separate as shown in Figure 5-7.

Rules for connecting PLD symbols also apply to any custom symbols
defined by equation files or macro schematics.

Figure 5-6 PLD Component Controlling a Bidirectional Pin
(Incorrect Way)

X4603

PIN 20

OBUF

Q.TRST=READ_EN
PL22V10

Q
OPAD

X4606

PIN 20 OBUF

Q= ...;Q IS PIN 20
Q.TRST=READ_EN

R=Q ...
...

PL22V10

Q

IBUF

IOPAD

INCORRECT
OrCAD Interface/Tutorial Guide 5-5

OrCAD Interface/Tutorial Guide
Figure 5-7 PLD Component Controlling a Bidirectional Pin
(Correct Way)

If your design calls for 3-state multiplexing of multiple output
sources, it is best to output each signal source on its own set of 3-state
output pins and tie the signals together off-chip. You cannot connect
more than one signal source to the same OBUF or OPAD, as shown in
Figure 5-8. Instead, use the connection shown in Figure 5-9.

Figure 5-8 Incorrect 3-State Multiplexing of EPLD Outputs

X4607

PIN 20

PIN 14

OBUF

Q= ...;Q IS PIN 20
Q.TRST=READ_EN

R=Q_IN;Q_IN IS PIN 14
...

PL22V10

CORRECT

Q

IBUF

IOPAD

X4604

OBUF

BUFE

E

OUTPUT2
OPAD

ƒ

BUFE

E

ƒ

INCORRECT
5-6 Xilinx Development System

EPLD Design Issues
Figure 5-9 Correct Off-Chip 3-State Multiplexing of EPLD
Outputs

On-Chip 3-State Multiplexing

EPLD components emulate 3-state signals internally by gating the
macrocell feedback to the UIM. (Macrocell feedback signals are
never physically in a high-impedance state.) You can tie together the
outputs of multiple 3-state buffer symbols, such as BUFE or BUFT, or
3-state PLD outputs to multiplex these signals on-chip as shown in
Figure 5-10. You cannot connect such tied signals to an output buffer.
You must connect the tied signal to a logic symbol, such as BUF
before driving an output port.

X4605

OBUFE

E

OUTPUT2A
OPADƒ

OBUFE

E

ƒ OUTPUT2B

Tie pins
together on board

OPAD

CORRECT
OrCAD Interface/Tutorial Guide 5-7

OrCAD Interface/Tutorial Guide
Figure 5-10 On-Chip 3-State Multiplexing

Input Buffers, Clocks, and Global Control Nets

You can connect the clock pin of any FD component or registered
component to an ordinary logic signal, an IBUF, or a BUFG
(FastCLK) unless otherwise specified in the XACT Libraries Guide.

The input of a BUFG component must connect directly to a clock pin.
There can be no other components between the pin and the BUFG.

IFD and ILD components must have a BUFG clock input.

After assigning any BUFGs to FastCLK pins, the XEPLD
implementation software tries to assign IBUF signals driving clock
inputs onto FastCLK pins.

The XEPLD software also attempts to optimize FD (D-type flip-flop)
components into IFDs on the input pads. No other registers are ever
optimized into the input pad.

If your design requires a global clock enable, you must use IFDX1
components. The CE input to these components can only be driven
by a BUFCE, and the clock must be driven by a BUFG as shown in
Figure 5-11.

X4596

BUF OBUF

BUFE

E

OUTPUT2
OPAD

ƒ
ƒ

BUFE

E

ƒ

PIN 20

Q.TRST=SELECT
PL22V10
5-8 Xilinx Development System

EPLD Design Issues
Figure 5-11 Use of the IFDX1 Symbol

Note: You can prevent input register optimization for the whole
design using the REG_OPT=OFF global attribute. You can prevent
clock optimization for the design using the CLOCK_OPT=OFF global
attribute.

EPLD-Specific Components
In general, it is best to use EPLD-specific components whenever their
features apply to your application. They are more efficient as they are
designed to take advantage of special architectural features. For
example, EPLD-specific adders take advantage of fast carry lines. The
EPLD-specific library symbols are listed in Table 5-1.

However, if you want your design to be retargetable to either an
EPLD or an FPGA device, you should use only the common library
components. Most EPLD-specific components have at least one
common counterpart.

Note: Each common component functions the same way in EPLD
and FPGA devices. However, there might be a significant difference
in efficiency or performance between the families. Whenever you
map a design to a new device, you should do the following:

● Carefully check the reports created during integration to verify
that the style you used to draw the design does not consume
excessive logic resources in your target device.

● Perform timing analysis or simulation to catch any inefficient
parts of the design.

If you need further information on XEPLD software and design
techniques, see the XEPLD Design Guide.

X4595

BUFCE

BUFG

IPAD

QD

CE

IFDX1

IPAD

IPAD
OrCAD Interface/Tutorial Guide 5-9

OrCAD Interface/Tutorial Guide
Table 5-1 Common and EPLD-Specific Symbols

Common Symbols EPLD-Specific Symbols

Accumulators
ACC1 ACC1X1 or ACC1X2
ACC4 ACC4X1 or ACC4X2
ACC8 ACC8X1 or ACC8X2
ACC16 ACC16X1 or ACC16X2

Adders
ADD1 ADD1X1 or ADD1X2
ADD4 ADD4X1 or ADD4X2
ADD8 ADD8X1 or ADD8X2
ADD16 ADD16X1 or ADD16X2
ADSU1 ADSU1X1 or ADSU1X2
ADSU4 ADSU4X1 or ADSU4X2
ADSU8 ADSU8X1 or ADSU8X2
ADSU16 ADSU16X1 or ADSU16X2

Counters
CB2CLED CB2X1
CB4CLED4 CB4X1
CB8CLED4 CB8X1
CB16CLED4 CB16X1

Input Registers
IFD IFDX1
IFD4 IFD4X1
IFD8 IFD8X1
IFD16 IFD16X1

Output Buffers
OBUFE OBUFEX1
5-10 Xilinx Development System

EPLD Design Issues
Counters

Up/down counters in the common library, such as CB8CLED, have a
single CEO output, which changes in response to the up/down
direction input. Gating of this CEO function in this manner does not
allow it to be optimized for zero delay. As a result, if common up/
down counters are cascaded, they cannot operate at their maximum
original frequency.

The EPLD-specific up/down counters, such as CB8X1, have separate
outputs for the up and down directions, CEOU and CEOD, which are
optimizable. You can cascade these components without impacting
their maximum frequency.

Arithmetic Components

The ADD, ADDSU, and ACC types of common library components
use the EPLD macrocell carry-chain between outputs of the same
component, but they do not use it for cascading. If you cascade these
components, the CI and CO carry signals go through the UIM and
incur an extra macrocell delay. The CI and CO pins can be connected
to any ordinary logic components or I/O ports but not to the CI and
CO pins of EPLD-specific arithmetic components.

EPLD-specific adders and accumulators — whose names end in X1 or
X2, such as ADSU8X2 — use the EPLD macrocell carry-chain for
cascading without incurring a UIM delay. You can connect their CI
and CO pins only to the CI and CO pins of another EPLD-specific
arithmetic component or of the PLFB9 symbol.

Note: None of the accumulator symbols are supported by the
XC7272 devices.

PLD Components

The XC7000 library contains symbols representing industry standard
Programmable Logic Devices (PLDs) such as the PL22V10 and the
PL20V8. When using these PLD devices, you must link the PLD
component instance in your schematic to the associated PLD
equation file or to the imported JEDEC file. The PLD equation file,
processed by the PLUSASM assembler, defines the functionality of
the PLD component. For instructions on how to link the PLD symbol
and its equation file, see the description of the PLD attribute later in
this chapter.
OrCAD Interface/Tutorial Guide 5-11

OrCAD Interface/Tutorial Guide
Because the functionality of a PLD is defined outside the schematic,
designs containing PLDs cannot be functionally simulated prior to
being integrated into a device using the FITNET program. Instead of
performing functional simulation, integrate your design and perform
timing simulation on the completed design.

The PLD components are PL20V8, PL22V10, PL20PIN PL24PIN,
PL48PIN, PLFB9, and PLFFB9.

Components Not Supported by Some EPLD Devices

XC7272 devices do not support any of the common or EPLD-specific
accumulator components.

The following components require features implemented only in
High-Density Function Blocks. Therefore, they are not supported by
the XC7336 devices, which contain only Fast Function Blocks.

● ACC symbols

● ADD symbols

● ADSU symbols

● BUFCE

● BUFT

● COMPM

● FDCP, FDCPE

● IFD

● IFDX1

● ILD

● LD

● OBUFT

● OFDT

● PLFB9

● XOR7, XOR8, XOR9

Note: The BUFE component is allowed for external outputs only and
must allow FOE optimization.
5-12 Xilinx Development System

EPLD Design Issues
Xilinx-Supplied Primitives and Macros
Each symbol in the library is either a primitive or a macro. The primi-
tive logic components in the XC7000 library are all implemented
using PLUSASM equation files included in the software. The single
I/O pads, buffers, and input registers are also primitives, but they
have no PLUSASM descriptions.

The PLUSASM equations which define most of the XC7000 library
components are supplied for your reference in the
\xact\examples\behavior\library directory. You can copy and edit
these equation files as a convenient way to implement customized
logic components.

A macro refers to any symbol represented by an OrCAD schematic
included in the XC7000 library. The macro schematics contain either
XC7000 primitives or other macro symbols, or both. When your
design schematic is read by the software, the macro symbols are
expanded into their underlying schematics. The components actually
processed and listed by the software in the reports are the underlying
primitives, referenced by their hierarchical instance names, after
macro expansion has taken place.

A symbol implemented as a primitive in the EPLD library can be
implemented as a macro in the library of another device family, and
vice versa.

User-Defined Primitives and Macros
The procedure used to create a custom macro symbol is the same for
EPLDs and FPGAs, as described in the section “Creating a Symbol
for the Schematic” in Chapter 3. You can create a custom library file
containing your custom macro and primitive symbols using the
OrCAD LibEdit utility. You can draw macro schematics consisting of
other XC7000 and custom library symbols. Store your library file and
your macro schematics either under the \xact\xc7000 library
directory or in your local design directory. Do not add to or modify
the xc7000.lib file or any of the library macro schematics supplied by
Xilinx.

User-defined primitive symbols are defined very much like PLD
library symbols, except that you create your own custom symbols.
Create and store your custom symbol in your user library file as you
OrCAD Interface/Tutorial Guide 5-13

OrCAD Interface/Tutorial Guide
would a custom macro symbol, but do not draw a macro schematic
for it. Instead, create a PLUSASM equation file that defines the
desired functionality and place it in your design directory.

Assemble your equation file using the PLUSASM command from the
XDM Translate menu to debug the file and prepare it for use in your
designs. In your PLUSASM equation file, specify the keyword
COMPONENT as the target PAL type in the CHIP statement. This
definition tells the software to look for pins on your custom symbol
with the same names as the signals used in your equation file.

If you want to use a custom primitive in more than one design, you
must copy and assemble your PLUSASM equation file in each design
directory.

Representing Power and Ground Signals
Connect all unused inputs on symbols; warnings are issued by the
software if you do not connect them. Tie unused inputs to a constant
High or Low logic level in the schematic. The following sections
describe the VCC and GND symbols used to tie a net High or Low in
an OrCAD design.

VCC — Logic High
Use the VCC symbol to tie a net to a constant logic High state. Get the
VCC symbol from the XC7000 library and place it on the schematic.
Attach it to the desired net, using a junction dot if a T connection is
formed. A net tied to VCC cannot have any other source. As an
alternative, you can specify a constant High value by connecting a
wire segment to a component pin and labeling the wire VCC.

When FITNET encounters a net tied to VCC, it removes any logic that
is disabled by the VCC signal. A VCC signal is only physically
implemented in the EPLD if FITNET cannot remove the logic sourced
by the signal.

GND — Ground
Use the GND symbol to tie a net to a constant logic Low state from
the same library to specify a constant Low logic level. Get the GND
symbol from the library and place it on the schematic. Attach it to the
desired net, using a junction dot if a T connection is formed. A net
5-14 Xilinx Development System

EPLD Design Issues
tied to GND cannot have any other source. As an alternative, you can
specify a constant Low value by connecting a wire segment to a
component pin and labeling the wire GND.

When FITNET encounters a net tied to GND, it removes any logic
that is disabled by the ground signal. A GND signal is only
physically implemented in the EPLD if FITNET cannot remove the
logic the signal sources.

Note: One exception is that unused pins of PLD symbols (those
marked NC in the equation file pinlist) should remain unconnected.
Another exception is that unused channels of multibit I/O ports and
buffers may be left unconnected. If, for example, only six inputs of an
IPAD8 and IBUF8 are used in the design, you can leave two of the
input and output pins of each symbol unconnected. If inputs are tied
High or Low, or if they are left unconnected, the software removes
the logic associated with those inputs.

Entering Xilinx Attributes
To control the way the software processes your design, use attributes
on your schematic. Areas you can control include:

● Linking of PLD symbols and PLUSASM equation files

● Pin assignments

● Power consumption

● Optimization of logic, registers, and control signals

● Allocation of Fast Function Block resources

When you integrate your schematic design using the XEMake or
FITNET command, the schematic is converted to a PLUSASM
equation file. Many of the attributes in a schematic are translated to
PLUSASM declarations in the equation file.

Attributes enable you to express information that is specific to each
design, as opposed to run-time options, which you enter through the
XDM menu or command line to modify the way a specific program
processes your design at a particular time. Attributes are classified
according to the manner in which you place them on your schematic:
OrCAD Interface/Tutorial Guide 5-15

OrCAD Interface/Tutorial Guide
● Place component attributes, such as PLD, OPT, and LOC, on
selected symbols. Attributes of this type affect only the component
instances on which they are placed.

● Place global attributes, such as PRELOAD_OPT and LOGIC_OPT,
into the schematic as text items. This type of attribute affects the
entire design.

● Place the PARTTYPE attribute as a text item anywhere on your
schematic.

● Place signal attributes, such as F and H on wires. This type of
attribute affects individual component inputs or outputs and is
represented by library symbols that are connected via wires.

Component Attributes
The component attributes specific to EPLD designs include:

● PLD=filename

● LOC=pinname

● LOWPWR=value

● OPT=value

where value is On or Off.

Use the OrCAD Edit command to assign a component attribute by
using the following procedure:

1. Position the cursor over the schematic symbol.

2. Select Edit ➝ Edit .

3. Select any of the eight available part fields.

4. Select Name.

5. At the Name? prompt, enter an attribute name and a valid value
separated by the equal sign.

attributename=value↵

For example:

loc=P17
5-16 Xilinx Development System

EPLD Design Issues
6. To specify multiple attributes, you can use multiple part fields or
you can use commas to separate multiple attribute definitions in
the same part field, as follows:

PLD=RCVR,OPT=OFF,LOWPWR=ON

PLD Attribute: PLD Equation File Name

The PLD=filename attribute on a PLD symbol specifies the name of
the file with the logic equations for that PLD. This attribute is valid
on custom primitive symbols (where you would use COMPONENT
as the target in PLUSASM) and on the following PLD symbols from
the library: PL20V8, PL22V10, PL20PIN, PL24PIN, PL48PIN, PLFB9,
and PLFFB9. Do not specify the file extension in the PLD=filename
attribute.

You must also specify this filename as the first parameter of the CHIP
statement inside the equation file, as described in the PLUSASM
Language Reference section of the XEPLD Reference Manual. For
example:

CHIP filename PL22V10

Within the PLD file, the pin list must contain the names of all the
signals connected to all the PLD pins, in the proper order. For
example, if you have the signals shown in Figure 5-12, include the
following pin list in the equation file:

TITLE CNTR6

CHIP CNTR6 P16V8;

;PINLIST (Highest pin number = 20)
BUFG NC NC rd cs NC NC NC NC NC
NC NC read c5 c4 c3 c2 c1 c0 NC

The format of the equation file must conform to PLUSASM syntax
that is valid for PLD components in schematics; it should not contain
declaration statements reserved for stand-alone behavioral designs.
You can generate the PLUSASM file manually (using a text editor) or
translate it from a higher-level compiler, such as ABEL, Xilinx ABEL,
CUPL, or PALASM, or from a PAL JEDEC file.
OrCAD Interface/Tutorial Guide 5-17

OrCAD Interface/Tutorial Guide
Figure 5-12 PLD Pins

All PLD components in your schematic design must include the PLD
attribute. When you run XEMake, the program automatically
assembles the equation files referenced by the PLD=filename
attributes on the schematic. If you do not use XEMake, you must
assemble each PLD file in the design with the PLUSASM command
before you run FITNET.

Like PLDs, user-specified primitives are defined by PLUSASM
equation files. The PLD=filename attribute is not required but can be
applied as a convenient way to have your equation file automatically
assembled when you invoke XEMake. If you omit the PLD attribute,
FITNET expects to find a bitmap file for the symbol
(symbolname.vmh) in your local clib subdirectory.

LOC Attribute: Pin Assignments

Use the LOC=pinname attribute on a PAD symbol to assign the signal
to a specific pin. The PAD symbols are IPAD, OPAD, IOPAD, and
UPAD. The pin name is Pnn for PC packages, where nn is the pin
number. The pin name is rc (RowColumn) for PG packages. Examples
are LOC=P24 and LOC=G2.

Pin assignments are unconditional in that the software does not
attempt to relocate a pin if it cannot achieve the specified
assignments. You can apply the LOC attribute to as many PADs in
your design as you like. However, each pin assignment further
constrains the software as it automatically allocates logic and I/O
resources to internal nodes and I/O pins with no LOC attributes.

X4598

PIN1
BUFG

RD
CS

PIN20

PLD=CNTR6

PL20PIN

PIN2 PIN19
C0
C1
C2
C3
C4
C5

READ

PIN3 PIN18
PIN4 PIN17
PIN5 PIN16
PIN6 PIN15
PIN7 PIN14
PIN8 PIN13
PIN9 PIN12
PIN10 PIN11
5-18 Xilinx Development System

EPLD Design Issues
To save all resulting pin assignments to preserve them for the next
time you modify and re-integrate the design, use the PINSAVE
command in the XDM Translate menu. This command saves the pin
assignments to a designname.vmf file. You can override individual pin
assignments saved in the VMF file by changing or adding
LOC=pinname attributes in the schematic.

Note: Pin assignments using the LOC attribute are not supported for
bus pad symbols such as OPAD8.

LOWPWR Attribute: Power Setting

This attribute is valid only for XC7300 designs. You can use the
LOWPWR attribute either as a global or a component attribute.

The default is LOWPWR=OFF (high speed) for all macrocells used in
the design unless otherwise specified.

To determine the power setting of the macrocells used by an
individual symbol, use LOWPWR=ON, or use LOWPWR=OFF if the
global LOWPWR=ALL was used. This attribute is ignored if it is
assigned to a symbol that uses no macrocells, such as an inverter, an
optimized AND/OR gate, or an input register. To change the default
power for an entire design, refer to the global attribute LOWPWR.

OPT: Logic Optimization Attributes

Use the logic optimization attributes to control the optimization of
part or all of your design.

The OPT=OFF component attribute inhibits logic optimization of all
macrocells used by a symbol. OPT=ON can override the
LOGIC_OPT=OFF global attribute for individual symbols.

The logic optimizer collapses the levels of logic to remove
intermediate nodes. Components are optimized forward into
components connected to their outputs.

If you build combinatorial logic using low-level gates and
multiplexers, the software attempts to pack all logic bounded
between device I/O pins and registers into a single macrocell.

The logic optimizer moves logic forward into components connected
to their outputs. If collapsing an expression into all fanouts succeeds,
the original macrocell logic becomes unused and is removed. The
OrCAD Interface/Tutorial Guide 5-19

OrCAD Interface/Tutorial Guide
logic optimizer does not collapse an expression into its fanouts if the
resulting expression uses too many product terms or inputs.

The logic optimizer also moves forward any logic, whether
combinatorial or sequential, that is buffered by a 3-state buffer.
However, logic that itself contains a 3-state control is not moved
forward.

Specifying OPT=OFF prevents the software from optimizing a
component forward into any of its fanouts or into any non-macrocell
resource, such as the UIM. Placing OPT=OFF on a component does
not prevent the logic of another component from being collapsed into
one of its inputs.

The OPT attribute has no effect on any symbol that contains no
macrocell logic, such as an I/O buffer.

To change the logic optimization default for the entire design, refer to
the global attribute LOGIC_OPT.

Global Attributes
The global attributes specific to EPLD designs include:

● LOWPWR=ALL

● LOGIC_OPT=OFF

● MRINPUT=ON

● MINIMIZE=OFF

● UIM_OPT=OFF

● FOE_OPT=OFF

● CLOCK_OPT=OFF

● REG_OPT=OFF

● PRELOAD_OPT=OFF

Global Attributes

To use one or more EPLD-specific global attributes, you must first
place the keyword text string |GLOBAL into your schematic. Then,
list each global attribute beneath the |GLOBAL keyword. Precede
each attribute string with the pipe character (|). Align the pipe
5-20 Xilinx Development System

EPLD Design Issues
characters of all attribute strings directly beneath the pipe character
of the |GLOBAL keyword and leave no blank spaces between text
lines. For example:

|GLOBAL
|LOWPWR=ALL
|PRELOAD_OPT=OFF

LOWPWR=ALL Attribute: Power Setting

This attribute is valid only for XC7300 designs. You can use the
LOWPWR attribute as either a global or a component attribute.

To specify the default power setting for the entire design, place the
global attribute LOWPWR=ALL in the schematic. To set LOWPWR
off for individual components, use the LOWPWR=OFF component
attribute.

LOGIC_OPT Attribute: Logic Optimization

To inhibit logic optimization by default for the entire design, apply
the global attribute LOGIC_OPT=OFF. If you do not use this
attribute, the default LOGIC_OPT=ON is used. You can override this
setting for individual symbols using the OPT=ON component
attribute.

MRINPUT Attribute: Master Reset Pin

Specifying the MRINPUT=ON global attribute in an XC7354 or
XC7336 design changes the Master Reset pin to an ordinary input
pin. If this attribute is specified, the EPLD device is initialized only at
power-up.

MINIMIZE Attribute: Logic Minimization

Use the MINIMIZE=OFF global attribute to inhibit logic
minimization for the whole design. If this attribute is not specified,
any redundant or non-effective logic found in any user-specified
equation files is eliminated through Boolean minimization.

UIM_OPT Attribute: UIM Optimization

To inhibit UIM optimization for the entire design, apply the
UIM_OPT=OFF global attribute.
OrCAD Interface/Tutorial Guide 5-21

OrCAD Interface/Tutorial Guide
UIM optimization extracts AND expressions and inverters out of
macrocell logic functions and moves them into the UIM, which
reduces the use of Function Block resources.

FOE_OPT Attribute: Fast Output Enable Optimization

To inhibit FOE (Fast Output Enable) optimization for the entire
design, apply the FOE_OPT=OFF global attribute.

FOE optimization generally applies only to BUFE, OBUFE, or 3-state
PLD outputs driving an OBUF. FOE optimization changes a product-
term 3-state signal to an FOE global control signal. Like the FastCLK
assignment, this attribute reduces the number of UIM inputs and
product terms required by each Function Block.

CLOCK_OPT Attribute: FastClock Optimization

To inhibit FastCLK optimization for the entire design, apply the
CLOCK_OPT=OFF global attribute.

FastCLK optimization changes an ordinary clock signal to a FastCLK
global signal. This optimization reduces the number of UIM inputs
and product terms required by each Function Block.

REG_OPT Attribute: Input Register Optimization

To inhibit input register optimization for the entire design, apply the
REG_OPT=OFF global attribute.

Input register optimization reduces the number of macrocells in a
design by moving simple FD registers connected to IBUFs into a pad
register, provided that the IBUF has no other fanouts. The clock by
which the input register is controlled must be a FastCLK or an input
that can be assigned to a FastCLK pin.

PRELOAD_OPT Attribute: Preload Values

Apply the PRELOAD_OPT=OFF global attribute to prevent the
XEPLD software from changing the preload values of registered
components in the design to match the preload values supported by
specified device resources such as FFBs and input registers. The
default, PRELOAD_OPT=ON, allows the XEPLD software to map
your design most efficiently using the device resources most suited to
the elements of your design. Unless you specify
5-22 Xilinx Development System

EPLD Design Issues
PRELOAD_OPT=OFF, the software is free to change the initial
register states of any component, including PLD custom components
defined in PLUSASM. Use PRELOAD_OPT=OFF to preserve the
initial states specified in the XACT Libraries Guide for library
components and in the PRLD equations in your PLUSASM file for
PLD or custom components.

You can set a High or Low preload for High-Density Function Blocks.
The preload value of Fast Function Blocks depends on the use of set
or reset. Input register preload values are fixed at 1, except for those
on the XC7272, which are undefined.

The PARTTYPE Attribute
You can place the PARTTYPE attribute on your schematic to select the
target EPLD device for your design. Refer to the Release Notes or the
XDM Part menu for a list of EPLD device names supported by the
software. Do not include the XC prefix in the PARTTYPE attribute.

You can override any PARTTYPE attribute already defined in your
schematic by selecting a part type other than InDesign from the XDM
menu before invoking the Fitter program.

Unlike global attributes used for EPLD designs, the PARTTYPE
attribute is a stand-alone text string that can be placed anywhere in
the schematic and does not need to be placed beneath the |GLOBAL
keyword in the schematic. Simply place the text
|PARTTYPE=dddd-sspppp anywhere on your schematic.

The default part type used for the XC7000 family, if it is not already
specified in the schematic or in XDM, is 73108-12BG225, the highest
density EPLD at the time of this release.

Signal Attributes
The signal attributes used by EPLD include:

● F — Fast Function Block or FastInput

● H — High-Density Function Block

A signal attribute is a symbol, or flag, that you connect to a net, or
signal. Use the Get command to get a flag, place the flag next to a
signal, and connect the flag to the signal with a wire and a junction
dot if a T connection is formed. The following is a step-by-step
OrCAD Interface/Tutorial Guide 5-23

OrCAD Interface/Tutorial Guide
procedure to enter this type of attribute.

1. Select Get to get the flag symbol for the attribute.

2. At the Get? prompt, enter the flag name:

symbolname ↵

3. Select Place to fix the flag on the worksheet next to a signal.

4. Connect the pin on the flag to the signal with a wire using the
Place ➝ Wire command.

5. Place a junction dot where the new wire connects with the
designated signal as shown in Figure 5-13.

Figure 5-13 Applying the F Signal Attribute

F/H

Use the F or H signal attribute in an XC7300 device to specify
whether a macrocell implementing a component output should be
placed in a Fast Function Block (F) or a High-Density Function Block
(H). These attributes are represented in OrCAD by a primitive
symbol, called F or H, which is connected to the same wire that
connects to the desired component output.

You can also use the F attribute on a wire connected to an IBUF to
indicate a FastInput signal. Only a component implemented in a Fast
Function Block receives this signal from the FastInput path. Any
other high-density function block (HDFB) component receives the
same input from the UIM. Except for using F on an IBUF signal, it is
not valid to use F or H attributes on signals originating from any I/O
buffer symbol, such as IFD or OBUF.

X4597

C
R

CE
D3
D2
D1
D0

F

Q3
Q2
Q1
Q0

FD4RE
5-24 Xilinx Development System

EPLD Design Issues
The F attribute is not valid on the outputs of components that require
features implemented only in High-Density Function Blocks, such as
the following types of symbols:

● ACC

● ADD

● ADSU

● COMPM

● FDCP, FDCPE

● LD

● PLFB9

● XOR7, XOR8, XOR9

Note: A BUFE symbol can only be implemented as an FFB output
when it is driving an OBUF, and it must allow for FOE optimization.

The H attribute is not valid on the outputs of a PLFFB9.

For logic that is not labeled with F or H attributes, the XEPLD
software attempts to put as much logic as possible in the Fast
Function Blocks first, then it fills the High-Density Function Blocks.
OrCAD Interface/Tutorial Guide 5-25

OrCAD Interface/Tutorial Guide
5-26 Xilinx Development System

Functional Simulation

OrCAD
Interface/
Tutorial
Guide
OrCAD Interface/Tutorial Guide — 0401409 01 Printed in U.S.A.

OrCAD Interface/Tutorial Guide
Xilinx Development System

Chapter 6

Functional Simulation

This chapter shows you how to create files so that you can use
Simulate, the OrCAD/VST386+ simulation program, to simulate an
FPGA or EPLD design. Included are instructions for creating files for
functional simulation. The process is the same for FPGA and EPLD
designs unless otherwise indicated. For instructions on how to use
Simulate to simulate your designs, refer to the section “Simulating
Your Design” in this chapter.

Note: You can specify trace and stimulus information on your
schematic or using the simulation tool in OrCAD. Refer to your
OrCAD documentation for information on how to specify trace and
stimulus information from OrCAD/VST386+ or see the “VST
Tutorial” chapter of this manual.

This chapter contains the following sections:

● Creating a Functional Simulation Netlist — This section tells you
how to create a functional simulation netlist.

● XSimMake Summary — This section summarizes the steps
performed by XSimMake, the tool used to create a simulation
netlist.

● FPGA Designs with IOB and CLB Elements — This section explains
how to create a functional simulation netlist for a design that
contains IOB and CLB primitives.

● Simulating Your Design — This section tells you how to simulate a
design functionally.

Creating a Functional Simulation Netlist
Use XSimMake to invoke the required translation programs
automatically and convert the top-level design into VST, AST, and
OrCAD Interface/Tutorial Guide — 0401409 01 6-1

OrCAD Interface/Tutorial Guide
ATR files. The whole translation process is automatically completed
for you in a single step.

You can invoke XSimMake as a command line entry from the DOS
prompt or through the XACT Design Manager. The steps for
invoking XSimMake using the two methods are presented below.

From the XACT Design Manager
To create a functional netlist file, follow these simple steps:

1. Invoke XSIMMAKE from the XDM Verify Menu to bring up the
XSimMake options menu.

2. Select the -F option.

3. Choose OrCAD_Fpga_Func for FPGA designs or
OrCAD_Epld_Func for EPLD designs from the list of flows.

4. Select Done.

5. Select the file name for the design that you wish to simulate.

This process automatically creates a functional simulation netlist. For
information on the steps performed by XSimMake, refer to the next
section, “XSimMake Summary.”

From the DOS Prompt
To run the XSimMake program from DOS, use the command line
syntax shown below.

To process an FPGA design, use the following command:

xsimmake -f orcad_fpga_func [-options] designname↵

or

xsimmake -f off [-options] designname↵

To process an EPLD design, use the following command:

xsimmake -f orcad_epld_func [-options] designname↵

or

xsimmake -f oef [- options] designname↵
6-2 Xilinx Development System

Functional Simulation
Note: This command can also be executed from the XACT Design
Manager command line.

XSimMake Options
The following are the XSimMake program options:

-f — Flow Name

This option enables you to select the flow to run (functional or timing
simulation flow for FPGA or EPLD designs).

-h — Help

This option provides you with help on XSimMake commands.

-l — List Flows

This option lists all available flows. Possible flows include FPGA
timing, EPLD functional, and so forth.

-o — Old Libraries

This option tells XSimMake to use the old (pre-unified) libraries. Use
this option only if your design was created using the old libraries.

Note: EPLD functional simulation is not supported for old libraries;
use timing simulation instead.

-p — Parttype

This option enables you to select a part type. The designated part
type overrides any part type already specified in your design.

-r — Force Re-execution

This option forces re-execution of all programs in the flow whether or
not the design has changed.

-v — Verbose

This option enables you to view the progress of the program.
OrCAD Interface/Tutorial Guide 6-3

OrCAD Interface/Tutorial Guide
Converting Trace and Stimulus Files
Run ASCTOVST from the Verify menu to convert the AST and ATR
files to STM and TRC files. If AST and ATR files already exist in your
project directory, they are not overwritten. To overwrite existing AST
and ATR files, you must select the -w option for XNF2VST in your
XDM Profile menu.

XSimMake Summary
The following table summarizes all the steps that XSimMake
performs automatically for the functional flow of all designs:

XSimMake Command Summary: Functional Flow

 XSimMake performs the following steps:

Annotate Adds reference designators to symbols in
your schematic.

All designs

INET Writes an OrCAD netlist format file (INF file)
for each schematic.

SDT2XNF/INF2XNF Translates each INF file into an XNF file.

XNFMerge Merges all XNF files into one flat XNF format
file (XFF file).
XNF files generated by Xilinx ABEL and
MemGen are also merged for FPGA designs.

If there are X-BLOX modules, XSimMake performs these additional steps:

XNFPrep
drc_only=true

Runs an Electrical Rule Check and generates
an XTG file. Does not perform logic trimming.

XC3000A/L,
XC3100A, and
XC4000 designsX-BLOX

mergeio=false
archopt=false

Synthesizes the X-BLOX modules and gener-
ates an XNF format file (XG file).

For all designs, XSimMake continues with the following steps:

XNF2VST/XNF2INF
option -u

Generates a VST file.
Performs unit delay translation (creates no
DBA file).
Generates AST and ATR files if you specified
trace and stimulus information in your design
and the files do not already exist.

All designs
6-4 Xilinx Development System

Functional Simulation
Note: Do not use the INF files generated by the INET program for
functional simulation of Xilinx designs.

You can only perform functional simulation on an EPLD design if the
design consists entirely of self-defined library components. If your
design contains any PLD symbols or user-specified primitive
symbols defined by an equation file, you cannot perform a functional
simulation. Instead, implement the design and perform a timing
simulation as described in Chapter 8, “Timing Simulation.”

For EPLD designs, you must use XSimMake to prepare a functional
simulation netlist file (VST file). Do not use the individual netlist
translation programs, SDT2XNF and XNF2VST, as they do not
process EPLD schematics in a manner suitable for functional
simulation. You can only use STD2XNF to create files for
implementation. XSimMake creates special XNF files for EPLD
library primitives in a separate subdirectory named “func,” which is
used to prepare the functional simulation netlist. The XNF files in the
“func” directory must not be mixed with the XNF files used for
design implementation in the main design directory.

FPGA Designs with IOB and CLB Elements
You can only run XSimMake on designs that do not include CLB or
IOB primitives. If your FPGA design does include CLB or IOB
primitives, you must run XMake and then run the verification
programs manually rather than using XSimMake, or implement your
design with XMake and perform a timing simulation.

To manually create a functional simulation netlist, perform the
following steps:

1. Invoke XMake from the XDM Translate menu or from DOS.
This generates a placed and routed LCA file. For more
information on creating an LCA file, refer to Chapter 7, “Design
Implementation.”

2. Invoke LCA2XNF from the Verify menu or from DOS, specifying
the -u option. LCA2XNF translates your LCA file into an XNF file.

3. Run XNFBA from the Verify menu to combine the pre-route XFF
or XG (X-BLOX) file and post-route XNF file into a new file. By
default, XNFBA creates an output file called xnfba.xnf.

4. Select XNF2VST from the Verify menu, specifying the -u option.
OrCAD Interface/Tutorial Guide 6-5

OrCAD Interface/Tutorial Guide
The -u option performs unit delay translation. The program also
generates AST and ATR files if you specified trace and stimulus
information in your design and the files do not already exist in
your working directory.

5. Select ASCTOVST from the Verify menu to convert the AST and
ATR files to STM and TRC files.

For information on the syntax of the Xilinx-specific programs used,
refer to your XACT Reference Guide and Chapter 10, “Manual
Translation,” in this book.

Simulating Your Design
This section describes how to simulate your design from DOS or from
OrCAD/ESP. Included are instructions on how to enter the OrCAD/
ESP environment, how to configure the VST environment, and how
to simulate your designs. The “VST Tutorial” chapter guides the new
user step-by-step through a simple simulation.

Configuring the OrCAD/VST386+ Software
Before you can simulate your design, you must configure OrCAD/
VST386+ for use with your Xilinx software. You only need to
configure the software once in each design directory, as these settings
are stored in the vst.cfg file for the design on which you are working.

There are two ways to configure VST: automatically, using XDraft,
and manually, using the OrCAD/ESP menus. To configure with
XDraft, refer to “Using XDraft to Configure the OrCAD
Environment” in Chapter 2. To configure VST manually, refer to your
OrCAD documentation.

Before beginning your simulation, verify that you have changed the
Connectivity Database extension to VST from the default extension
INF, as described in the “Connectivity Database Extension”
subsection of Chapter 2.

If you already ran XDraft in your current working directory and
configured both the schematic tools and the simulator as explained in
Chapter 2 before entering your design, you do not have to
reconfigure VST.

You can simulate your design either from DOS or from XDM. In
6-6 Xilinx Development System

Functional Simulation
either case, follow the simulation instructions in the OrCAD
manuals. Refer to the chapter “OrCAD VST Simulation Issues” in this
manual for specific information on using the Simulate program to
simulate FPGA and EPLD designs.

Simulating from DOS
You can access the OrCAD software and execute all Xilinx-supplied
programs directly from DOS. It is a good idea to run your programs
from DOS if you run into memory problems.

To simulate from DOS, enter the following command:

simulate design.vst /t ↵

Option /t reads the trace and stimulus files: design.trc and design.stm.

Note: To simulate, you must specify the .vst extension. Otherwise,
the simulator uses the .inf extension, which is the default. If the
default is used, the simulator issues an error message indicating that
it could not find a symbol in X3K_LIB.

Simulating from the Graphical User Interface
If you decide to simulate your design from OrCAD/ESP, use the
instructions below.

Entering the OrCAD/ESP Design Environment

To simulate your design with OrCAD/VST386+, first enter the
OrCAD/ESP design environment. You can enter OrCAD/ESP either
from a DOS prompt or from the XACT Design Manager (XDM). Refer
to the chapter “Getting Started” for instructions.

Entering the OrCAD/VST386+ Environment

After you enter the OrCAD/ESP environment, you need to enter the
VST environment. Click the left mouse button on the Digital
Simulation Tools button on the ESP main screen. The Digital
Simulation Tools screen appears (see Figure 6-1).

Digital Simulation Tools provides five tool sets — editors, processors,
libraries, reporters, and transfers — and a set of user-definable
buttons. Refer to your OrCAD documentation for information about
the Digital Simulation Tools tool sets and user-definable buttons.
OrCAD Interface/Tutorial Guide 6-7

OrCAD Interface/Tutorial Guide
.

Figure 6-1 OrCAD Digital Simulation Tools Screen

Simulating a Design

To simulate a design from OrCAD/VST386+, follow these simple
steps:

1. Click on the Simulate button; the Simulate menu appears.

2. Select Local Configuration from the menu. The Select
Configuration menu appears.

3. Select Configure SIMULATE . The Configure Simulate screen
appears.

4. Ensure that VST, rather than INF, is specified as the extension of
the input simulation netlist file.

5. Click on the OK button at the top of the screen. You return to the
Digital Simulation Tools screen.

6. Click on the Simulate button. The Simulate menu appears.

7. Click on Execute to invoke the Simulate program.
6-8 Xilinx Development System

Functional Simulation
Follow the simulation instructions in the OrCAD manuals. Refer to
the chapter, “OrCAD VST Simulation Issues,” for specific
information on using Simulate to simulate FPGA and EPLD designs.
Chapter 12, “VST Tutorial,” provides an example simulation session.
OrCAD Interface/Tutorial Guide 6-9

OrCAD Interface/Tutorial Guide
6-10 Xilinx Development System

Design Implementation

OrCAD
Interface/
Tutorial
Guide
OrCAD Interface/Tutorial Guide — 0401409 01 Printed in U.S.A.

OrCAD Interface/Tutorial Guide
Xilinx Development System

Chapter 7

Design Implementation

This chapter discusses XMake, a Xilinx program used to translate an
FPGA schematic design into a logic cell array (LCA) file, and
XEMake, a Xilinx program used to translate an EPLD design into a
VMH file. The chapter is structured as follows:

● Translating Your FPGA Design — This section explains how to
translate FPGA designs into LCA and BIT files.

● Translating Your EPLD Design — This section describes how to
translate EPLD designs into VMH and PRG files.

● Valid File Formats — This section lists the input files you can use to
run XMake and XEMake, and the output files generated by these
programs.

● Reprocessing the Design after Minor Changes — This section outlines
the steps used to reprocess your design after minor modifications
that do not affect the hierarchy.

An LCA file refers to the implemented version of an FPGA design,
that is, a design that was placed and routed by the Xilinx APR core
tools (XC2000, XC3000, and XC3100 designs) or PPR core tools
(XC3000A/L, XC3100A, and XC4000 designs). You can download
your LCA design using the MakeBits-generated bit file as input to the
XChecker or MakePROM programs.

A VMH file refers to a database EPLD file that was created by the
FITNET or FITEQN program for an XC7000 design. FITNET reads
the design file in XNF format and implements it into an EPLD device.
XEMake optionally creates a programming file in Intel HEX format
(PRG file). You can also create a JEDEC format file (JED file) using the
MakeJED program.
OrCAD Interface/Tutorial Guide — 0401409 01 7-1

OrCAD Interface/Tutorial Guide
Before translating schematics, memory compilers, state machines,
Boolean equations, or other design entry format files into an LCA file
for FPGAs, you must first convert the design entry files into Xilinx
Netlist Format (XNF) files. For EPLDs, only the schematic is
converted to XNF. An XNF file describes each logic gate in a design,
its associated pins, the connections between the gates, and any
parameters you have specified on the symbols.

With the XACT Design Manager, you can translate and implement
your design in one step automatically. You can also do it manually by
invoking all the necessary translation programs as stand-alone
processes. See Chapter 10, “Manual Translation,” for a step-by-step
description.

Note: The information contained in this chapter on OrCAD/
SDT386+ file translations supersedes any similar information
contained in the OrCAD/SDT386+ manuals.

Translating Your FPGA Design
The XMake program supports the automatic translation of design
files into XNF files. XMake automatically converts a design file into a
placed and routed design file using the Annotate, INET, SDT2XNF,
and XNFMerge programs and the appropriate design
implementation tools in succession. Use XMake to convert your
FPGA design into an LCA file and a BIT file. The program can process
your design successfully given a schematic file (SCH).
7-2 Xilinx Development System

Design Implementation
Figure 7-1 Implementing Your FPGA Design with XMake

X4503

XNFMAP

XTF

Yes

No

MAP

XTG

XG

MakeBits

XDelay

LCA LCA

BIT

MAP2LCA

LCA

X-BLOX

PPR

APR

X-BLOX

Y

N

4K

Yes

No

3KA/L

XNFPrep

XNFPrep

SCH

SCH

INF

XNF

Annotate

INET

SDT2XNF

XNFXNF

XNFMerge

XABEL, MemGen, and
other symbols with FILE= attribute

XFF
OrCAD Interface/Tutorial Guide 7-3

OrCAD Interface/Tutorial Guide
Translating Automatically with XMake
The XMake program automatically executes the translation programs
needed to convert a design into an LCA file. Even designs that
contain both schematic and non-schematic modules, such as memory
modules and Boolean equations, are automatically translated.

Invoking XMake
You can invoke XMake as a command line entry from the DOS
prompt or from the XACT Design Manager. The steps for invoking
XMake using each of these methods are presented below.

From the XACT Design Manager

If no part type is specified in the root schematic, use the mouse to
select a supported part from the menu for your design. Then, perform
the following sequence of commands:

1. Select XMake from the Translate menu.

2. Select any desired XMake options from the displayed menu. To
process designs created with the old libraries, use option -L.

3. Select Done.

4. Select the top-level schematic (toplevel.sch) or MAK file from the
displayed menu.

From the DOS Prompt

The command-line syntax for the XMake program, when invoked
from the DOS prompt, is illustrated below:

xmake [- options] toplevel↵

or

xmake [- options] toplevel.mak ↵

Note: This command can also be executed from the XACT Design
Manager command line.

You can use the -p option to specify the intended part type. Option -L
is required to process designs that reference the old libraries.
Option -L also ensures that ABL2XNF and MemGen produce a
version 4 XNF file, which is a file compatible with the old libraries. If
7-4 Xilinx Development System

Design Implementation
you do not specify option -L, XMake generates XNF files with new
symbols from the Unified Libraries; these files clash with the old
library symbols used in the rest of your design.

XMake automatically invokes the appropriate translators to convert
the top-level design into an LCA file.

When a design file is used as an input file, XMake saves the
translation commands into a file called toplevel.mak, which you can
then use as an input to subsequent runs of XMake, provided that you
have not modified the hierarchical structure of your design. Refer to
the section “Reprocessing the Design After Minor Changes” for more
information.

XMake Summary
XMake creates a routed LCA file, and, optionally, a BIT file. It first
translates the design into a Xilinx Netlist Format (XNF) file to make
the design compatible with the Xilinx core tools. Then, it runs the
Xilinx core tools that implement the design.

Note: You can make minor changes to your design and recompile it
using the original design as a guide file for any of the FPGA families.
For information on this capability, see the XACT Reference Guide. An
example is provided in the “SDT Tutorial” chapter.
OrCAD Interface/Tutorial Guide 7-5

OrCAD Interface/Tutorial Guide
XMake Command Summary: FPGA Design Implementation

XMake performs the following steps:

Annotate Adds reference designators to your design
symbols.

All designs

INET Writes an OrCAD netlist format file (INF file)
for each schematic.

SDT2XNF Translates each INF file into an XNF file.

XNFMerge Merges all XNF files into one flat XNF format
file (XFF file). XNF files generated by Xilinx
ABEL and MemGen are also merged.

If there are X-BLOX modules, XMake performs these additional steps:

XNFPrep Performs DRC checking and trims unused/
disabled logic. Generates an XTG file, which is
a trimmed XNF format file.

XC3000A/L,
XC3100A, and
XC4000 designs

X-BLOX Synthesizes the X-BLOX modules and gener-
ates an XNF format file (XG file).

For all designs, XMake continues with the following steps:

XNFPrep Performs DRC checking and trims unused/
disabled logic. Generates an XNF format file
(XTF file).

All designs

XNFMAP Maps the XTF file logic into logic and I/O
resources of the LCA.
Generates a netlist (MAP file) mapped into
CLBs, IOBs, TBUFs, and clock buffers.

XC2000,
XC3000/A/L,
XC3100/A
designs

MAP2LCA Performs initial placement, translates MAP
file into an unrouted LCA file.

XC2000,
XC3000, and
XC3100
designs

APR Routes design, includes delays in your final
LCA file.

PPR Generates a mapped, placed and routed LCA
file.

XC3000A/L,
XC3100A, and
XC4000 designsXDelay

option -dw
Includes delays in your LCA file.

MakeBits Processes the LCA file and generates a BIT
file.

All designs
7-6 Xilinx Development System

Design Implementation
For additional information on XMake and design implementation,
refer to the XACT Reference Guide.

XMake Options

Some options control how MAK files are created. These options are
used by programs invoked automatically by XMake. Except for the -r
option, these options are only valid when you specify a design file.
They do not apply if you invoke XMake with a MAK file, since the
MAK file already describes which programs and options to use. Refer
to your XACT Reference Guide for information on the XMake options.

Translating Your EPLD Design
The XEMake program supports the automatic translation of design
files into XNF files. XEMake automatically converts a design file into
an implemented file using the Annotate, INET, SDT2XNF, and
XNFMerge programs and the appropriate design implementation
tools in succession. Use XEMake to convert an EPLD design into a
VMH file and optionally a HEX file. The program can process your
design successfully given a schematic file (SCH).

Note: If you want to create a JEDEC file instead of a HEX file, run the
MakeJED program on the VMH file.

The XEMake program automatically executes the translation
programs needed to convert a design into VMH and HEX files. Even
designs that contain both schematic and non-schematic modules,
such as Boolean equations, can be automatically translated.

If you have existing schematics that were created with an earlier
version of the XEPLD OrCAD library, you can continue to use your
earlier library to process your designs. However, you must create
new XNF netlists from your schematics using XEMake. XEPLD no
longer accepts EDIF formatted netlist files.
OrCAD Interface/Tutorial Guide 7-7

OrCAD Interface/Tutorial Guide
Figure 7-2 Implementing Your EPLD Design

Invoking XEMake
XEMake can be invoked as a command line entry from the DOS
prompt or through the XACT Design Manager. The steps for
invoking XEMake using each of these methods are presented below.

From the XACT Design Manager

If no part type is specified in the root schematic, use the mouse to
select a supported part from the menu for your design. Then, perform
the following sequence of commands.

1. Select XEMAKE from the Translate menu.

2. When the options menu appears, accept the default processing by
pressing Done.

X4517

SCH

INF

Annotate

PLS, PDS

VMH, VMD

PLUSASM

INET

SDT2XNF

XNFXNF

XNFMerge

FITNET

XFF

VMH

MakePRG

PRG (HEX)

MakeJED

JED (JEDEC)

• • •
7-8 Xilinx Development System

Design Implementation
3. Select the design file you wish to implement.

Files with the extension .sch are your schematic files.

4. Indicate the target for XEMake: either Make Intelhex bitmap
or Make design database . The first option generates a design
database file and an Intelhex bitmap file (VMH and HEX files).
The second option generates a design database file only (VMH
file). By default, XEMake generates a design database file only.

Note: To create a JEDEC file, run XEMake first. Invoke the MAKEJED
program from the Verify menu to process the VMH file.

From the DOS Prompt

To run the XEMake program from DOS, use the command-line
syntax shown below:

xemake [-options] toplevel [target.prg] ↵

or

xemake [-options] toplevel.mak ↵

If you want to create an Intel HEX file, specify a target file name with
a .prg extension.

You can use the -p option to specify the intended part type.

XEMake automatically invokes the appropriate translators to convert
the top-level design into a VMH file.

When a design file is used as an input file, XEMake saves the
translation commands into a file called toplevel.mak, which you can
then use as an input to subsequent runs of XEMake, provided that
you have not modified the hierarchical structure of your design.
Refer to the section “Reprocessing the Design After Minor Changes”
for more information.
OrCAD Interface/Tutorial Guide 7-9

OrCAD Interface/Tutorial Guide
XEMake Summary
The following table summarizes the steps performed by XEMake
when implementing an EPLD design:

For information on XEMake options, refer to the XEPLD Reference
Guide.

Valid File Formats
XMake and XEMake can use either of two types of input files, and
they produce four major output files in addition to many
intermediate files. These input and output files are described in detail
in the following subsections.

Input Files
When translating a design from OrCAD/SDT386+, XMake and
XEMake require one of two possible file formats as input. These files
include the SCH file or an XMake/XEMake-generated MAK file.

SCH File

● toplevel.sch is the FPGA or EPLD schematic design file created
with the Draft schematic editor.

XEMake Command Summary: EPLD Design Implementation

XEMake performs the following steps:

Annotate Adds reference designators to your design
symbols.

All designs

INET Writes an OrCAD netlist format file (INF file)
for each schematic.

SDT2XNF Translates each INF file into an XNF file.

XNFMerge Merges all XNF files into one flat XNF format
file (XFF file).

FITNET Generates a VMH file containing the imple-
mented EPLD design.

MAKEPRG
(optional)

Generates a programming list file (PRG) in
HEX format.
7-10 Xilinx Development System

Design Implementation
MAK File

● toplevel.mak is the file created by XMake or XEMake detailing the
sequence of implementation programs to be executed.

The sequence of programs run by XMake or XEMake varies
according to the structure and hierarchy of your design. Each
program uses the program options defined in the XDM profile file
(xdm.pro). It then records the program options it uses and the
steps it performs in a MAK file. After creating the MAK file, the
program uses the MAK file as an input file. You can perform faster
compilation using the MAK file as an input, rather than using an
SCH file, provided the input-design hierarchy has not changed
since the MAK file was created.

Output Files
Both XMake and XEMake perform a complete implementation of the
design. Output files from each program are discussed in this section.

Report File

XMake generates several report files, the most comprehensive of
which is toplevel.out.

● toplevel.out is an ASCII text file containing the screen outputs of
the various translation programs invoked by XMake.

XEMake generates several report files. Refer to the XEPLD Reference
Guide for more information.

Note: Since the OUT file contains all warnings and error messages
that occur during design processing, you should always review the
OUT file after XMake has run to ensure that your design is error-free.

Design File

Both XMake and XEMake generate a completed design file.

● toplevel.lca is the name of the design file generated by XMake.

XMake creates an LCA file that is mapped, placed, and routed by
either the APR (XC2000, XC3000, and XC3100 designs) or PPR
(XC3000A/L, XC3100A, and XC4000 designs) program, unless it
is disabled with the XMake -n option.
OrCAD Interface/Tutorial Guide 7-11

OrCAD Interface/Tutorial Guide
● toplevel.vmh is the name of the design file generated by XEMake.

XEMake creates a VMH file, which is a partitioned file fitted by
the FITNET program. Included are the PLD equations integrated
by FITNET.

Programming File

Both XMake and XEMake generate a programming file.

● toplevel.bit is the name of the bitstream file generated by XMake.

For all XC3000A/L, XC3100A, and XC4000 designs that PPR
successfully routes, or XC2000, XC3000, and XC3100 designs that
APR successfully routes, XMake creates a bitstream that can be
downloaded to an FPGA device. The configuration options for the
bitstream generator are determined by the options set in the
XACT Design Manager profile file, xdm.pro.

● toplevel.prg is the name of the bitmap file generated by XEMake.

XEMake creates a bitmap file that can be programmed into an
EPLD device through an EPLD programmer. The PRG file is in
HEX format.

MAK File

XMake and XEMake both create a MAK file.

● toplevel.mak

When you run XMake or XEMake on a Draft schematic file, the
program creates a text MAK file (toplevel.mak) that documents
how each design submodule is processed, including which
options were used by the translation programs. The information
in the MAK file serves three purposes:

● It is used as a script for XMake/XEMake when first translating
the design.

● It documents the commands used to translate the design into
an LCA file or a VMH file. By examining the MAK file, you can
determine exactly which programs and options XMake/
XEMake ran on each design submodule.

● It can be used as an input file the next time XMake/XEMake is
invoked on the same design. Discerning which schematic files
7-12 Xilinx Development System

Design Implementation
have been updated, XMake/XEMake only invokes the
necessary processes to obtain the final result using minimal
processing time.

Reprocessing the Design After Minor Changes
Your implementation program, XMake or XEMake, performs the
following operations.

● It creates a MAK file that describes which programs and options
to use when processing the design.

● It translates the design to an XNF file and an LCA or VMH file,
using the command sequence defined in the MAK file.

● It creates a configuration bitstream or program bitmap file.

To reprocess the design after making logic changes, you can invoke
XMake/XEMake using the MAK file that these programs created in
the process outlined above, provided that the changes do not affect
the hierarchy of the design.

For example, use your top-level design file called “mydesign.sch”
and follow these steps to reprocess your design:

1. Select XMake or XEMake from the Translate menu depending
on the type of device you are designing.

2. Select Done to indicate that you do not want to change any
program options.

3. Select mydesign.mak from the design menu, that is, instruct
XMake/XEMake to use the MAK file to decide which programs
and options to use when processing your design.

Using an existing MAK file has two benefits:

● Design processing is faster, because XMake/XEMake does not
have to process the entire design; it processes only those files that
have changed since the design was last processed.

● You can edit the MAK file to modify program options, then
reprocess the design to reflect these changes.
OrCAD Interface/Tutorial Guide 7-13

OrCAD Interface/Tutorial Guide
7-14 Xilinx Development System

Timing Simulation

OrCAD
Interface/
Tutorial
Guide
OrCAD Interface/Tutorial Guide — 0401409 01 Printed in U.S.A.

OrCAD Interface/Tutorial Guide
Xilinx Development System

Chapter 8

 Timing Simulation

This chapter shows you how to create files so that you can use
Simulate, the OrCAD/VST386+ simulation program, to simulate an
FPGA or EPLD design. Included are instructions for creating files for
timing simulation. The process is the same for FPGA and EPLD
designs unless otherwise indicated. It is assumed that you have
already created a routed LCA file using XMake or a VMH file using
XEMake. (See Chapter 7, “Design Implementation.”)

For instructions on how to use Simulate to simulate your designs,
refer to the section “Simulating Your Design” in this chapter.

Note: You can specify trace and stimulus information on your
schematic or using the simulation tool in OrCAD. Refer to your
OrCAD documentation for information on how to specify trace and
stimulus information from OrCAD/VST386+, or see the “VST
Tutorial” chapter of this manual.

This chapter contains the following sections:

● Creating a Timing Simulation Netlist — This section tells you how to
create a timing simulation netlist for FPGA, EPLD, and EPLD
behavioral designs.

● XSimMake Summaries — This section summarizes the steps
performed by XSimMake, the tool used to create a simulation
netlist.

● Simulating Your Design — This section tells you how to simulate
your design.
OrCAD Interface/Tutorial Guide — 0401409 01 8-1

OrCAD Interface/Tutorial Guide
Creating a Timing Simulation Netlist
Use XSimMake to invoke the required translation programs
automatically and convert the top-level design into VST, AST, and
ATR files. The whole translation process is automatically completed
for you in a single step.

You can invoke XSimMake as a command line entry from the DOS
prompt or through the XACT Design Manager. The steps for
invoking XSimMake using the two methods are presented below.

From the XACT Design Manager
If there is no part type specified from the root schematic, use the
mouse to select a supported part from the menu for your design.

To create a timing netlist file, follow these simple steps:

1. Invoke XSIMMAKEfrom the XDM Verify Menu to bring up the
XSimMake options menu.

2. Select the -F option.

3. Choose OrCAD_Fpga_Timing for FPGA designs from the list of
flows. Choose OrCAD_Epld_Timing for EPLD designs.

4. Select Done.

5. Select the file name for the design that you wish to simulate.

These steps create a timing simulation netlist. For information on the
steps performed by XSimMake, refer to the next section, “XSimMake
Summaries.”

From a DOS Prompt
To run the XSimMake program from DOS, use the command line
syntax shown below.

xsimmake -f orcad_fpga_timing [-options] designname ↵

or

xsimmake -f oft [-options] designname ↵
8-2 Xilinx Development System

Timing Simulation
To process an EPLD design, use the following command:

xsimmake -f orcad_epld_timing [-options] designname ↵

or

xsimmake -f oet [-options] designname ↵

Note: This command can also be executed from the XACT Design
Manager command line.

XSimMake Options
The following options are available for XSimMake:

-f — Flow Name

This option enables you to select the flow to run (functional or timing
simulation flow for FPGA or EPLD designs).

-h — Help

This option provides you with help on XSimMake commands.

-l — List Flows

This option lists all available flows. Possible flows include FPGA
timing, EPLD functional, and so forth.

-o — Old Libraries

This option tells XSimMake to use the old (pre-unified) libraries. Use
this option only if your design was created using the old libraries.

-p — Parttype

This option enables you to select a part type. The designated part
type overrides any part type already specified in your design.

-r — Force Re-execution

This option forces re-execution of all programs in the flow whether or
not the design has changed.
OrCAD Interface/Tutorial Guide 8-3

OrCAD Interface/Tutorial Guide
-v — Verbose

This option enables you to view the progress of the program.

Converting Trace and Stimulus Files
Run ASCTOVST from the Verify menu to convert the AST and ATR
files to STM and TRC files. If AST and ATR files already exist in your
project directory, they are not overwritten. To overwrite existing AST
and ATR files, you must select the -w option for XNF2VST in your
XDM Profile menu. AST and ATR files are not generated by the EPLD
Timing simulation flow; you must run the EPLD Functional
simulation flow to extract them from your schematic.

EPLD Behavioral Designs
If you do not use OrCAD/SDT386+ to enter your design, you can
enter your design in a behavioral format. To generate a timing
simulation netlist for a behavioral design, perform the steps outlined
below. A behavioral design refers to a design entirely represented by
an equation file instead of a schematic. Refer to the XEPLD Design
Guide for more information on behavioral designs.

1. Use the Translate ➝ PALCONVT or FITTER ➝ FITEQN
command to integrate your design.

2. Select Verify ➝ XSIMMAKE from the XDM menus.

3. Choose OrCAD_Epld_Timing as the flow.

4. Enter OrCAD and perform simulation in VST using the standard
procedure.
8-4 Xilinx Development System

Timing Simulation
XSimMake Summaries
With XSimMake, the process of translating your implementation file
into a VST file is automatically completed in a single step.

FPGA Designs
The following table summarizes all the steps that are performed by
XSimMake for an FPGA design:

EPLD Designs
The following table summarizes the steps XSimMake performs for an
EPLD design:

XSimMake Command Summary: FPGA Timing Flow

XSimMake performs the following steps:

LCA2XNF Translates the LCA file into an XNF file that
includes delays.

All designs

XNFBA Combines pre-route XFF or XG (X-BLOX) file
and post-route XNF file into a new file so that
the symbol and signal names correspond to
the names in the original schematics.

XNF2VST/XNF2INF Generates VST, DBA, and NRF files. Also gen-
erates AST and ATR files if you specified stim-
ulus and trace information in your schematic
and the files do not already exist.

XSimMake Command Summary: EPLD Timing Flow

XSimMake performs the following steps:

VMH2XNF Translates the VMH file into an XNF file that
includes delays.

All designs

XNF2VST Generates VST, DBA, and NRF files.
OrCAD Interface/Tutorial Guide 8-5

OrCAD Interface/Tutorial Guide
Simulating Your Design
This section describes how to simulate your design from DOS or from
OrCAD/ESP. Included are instructions on how to enter the OrCAD/
ESP environment, how to configure the VST environment, and how
to simulate your designs. The “VST Tutorial” chapter guides the new
user step-by-step through a simple simulation.

Configuring the OrCAD/VST386+ Software
Before you can simulate your design, you must configure OrCAD/
VST386+ for use with your Xilinx software. You only need to
configure the software once in each design directory, as these settings
are stored in the vst.cfg file for the design on which you are working.

There are two ways to configure VST: automatically, using XDraft,
and manually, using the OrCAD/ESP menus. To configure with
XDraft, refer to “Using XDraft to Configure the OrCAD
Environment” in Chapter 2. To configure VST manually, refer to your
OrCAD documentation.

Before beginning your simulation, verify that you have changed the
Connectivity Database extension to VST from the default extension
INF, as described in the “Connectivity Database Extension”
subsection of Chapter 2.

If you already ran XDraft in your current design directory and
configured both the schematic tools and the simulator as explained in
Chapter 2 before entering your design, you do not have to
reconfigure VST.

You can simulate your design either from DOS or from XDM. In
either case, follow the simulation instructions in the OrCAD manuals.
Refer to the chapter “OrCAD VST Simulation Issues” in this manual
for specific information on using the Simulate program to simulate
FPGA and EPLD designs.

Simulating from DOS
You can access the OrCAD software and execute all Xilinx-supplied
programs directly from DOS. It is a good idea to run your programs
from DOS if you run into memory problems.
8-6 Xilinx Development System

Timing Simulation
From DOS, enter the following command:

simulate design.vst /t /a ↵

Option /t reads the trace and stimulus files: design.trc and design.stm.

Option /a specifies full-timing simulation.

Note: To simulate, you must specify the .vst extension. Otherwise,
the simulator uses the .inf extension, which is the default. If the
default is used, the simulator issues an error message indicating that
it could not find a symbol in X3K_LIB.

Simulating from the Graphical User Interface
If you decide to simulate your design from OrCAD/ESP, use the
instructions below.

Entering the OrCAD/ESP Design Environment

To simulate your FPGA design with OrCAD/VST386+, first enter the
OrCAD/ESP design environment. You can enter OrCAD/ESP either
from a DOS prompt or from the XACT Design Manager (XDM). Refer
to the chapter “Getting Started” for instructions.

Entering the OrCAD/VST386+ Environment

After you enter the OrCAD/ESP environment, you need to enter the
VST environment. Click the left mouse button on the Digital
Simulation Tools button on the ESP main screen. The Digital
Simulation Tools screen appears (see Figure 8-1).

Digital Simulation Tools provides five tool sets — editors, processors,
libraries, reporters, and transfers — and a set of user-definable
buttons. Refer to your OrCAD documentation for information about
the Digital Simulation Tools tool sets and user-definable buttons.
OrCAD Interface/Tutorial Guide 8-7

OrCAD Interface/Tutorial Guide
.

Figure 8-1 OrCAD Digital Simulation Tools Screen

Simulating a Design

To simulate a design from OrCAD/VST386+, follow these simple
steps:

1. Click on the Simulate button; the Simulate menu appears.

2. Select Local Configuration from the menu. The Select
Configuration menu appears.

3. Select Configure SIMULATE . The Configure Simulate screen
appears.

4. Ensure that VST, rather than INF, is specified as the extension of
the input simulation netlist file.

5. Enable the Use Delay Annotation option to include delays in
your simulation.

6. Click on the OK button at the top of the screen. You return to the
Digital Simulation Tools screen.

7. Click on the Simulate button. The Simulate menu appears.
8-8 Xilinx Development System

Timing Simulation
8. Click on Execute to invoke the Simulate program.

Follow the simulation instructions in the OrCAD manuals. Refer to
the chapter, “OrCAD VST Simulation Issues,” for specific
information on using Simulate to simulate your designs. Chapter 12,
“VST Tutorial” provides an example simulation session.
OrCAD Interface/Tutorial Guide 8-9

OrCAD Interface/Tutorial Guide
8-10 Xilinx Development System

OrCAD VST Simulation
Issues

OrCAD
Interface/
Tutorial
Guide
OrCAD Interface/Tutorial Guide — 0401409 01 Printed in U.S.A.

OrCAD Interface/Tutorial Guide
Xilinx Development System

Chapter 9

OrCAD VST Simulation Issues

FPGA Devices
This section contains important information that you should consider
when using the Simulate program to simulate your FPGA designs.

Unconnected Control Pins
When left unconnected, control pins such as CE, CLR, PRE, and R on
Xilinx library macros can cause unknown output values during
functional simulation. The solution is to tie unused CE pins to VCC,
and unused CLR, PRE, and R pins to the inactive values. The logic is
later trimmed during the implementation process, so the extra VCC
and GND nets do not use any additional routing resources, and this
problem does not occur during timing simulation.

If there are unconnected control pins in the input netlist, XNF2VST
issues a warning message.

Global Reset and 3-State Signals
By default, the global reset signals are active at time zero and the
global 3-state signal is inactive. Therefore, all flip-flops in your design
remain in the reset state until you deactivate the reset signal. For
XC2000, XC3000, and XC3100 designs, drive GR High after 100
nanoseconds. For XC4000 designs, drive GSR Low.

There is no pulse-width check on the global reset and 3-state signals.
OrCAD Interface/Tutorial Guide — 0401409 01 9-1

OrCAD Interface/Tutorial Guide
Simulation Time Units
To simulate sub-nanosecond delays, the interface to VST passes data
that is scaled by one tenth. Consequently, VST uses .1 ns units. For
example, to simulate for 10 ns, select Run Simulation and type 100↵.

Using Traces and Stimuli
Trace and stimulus symbols can be placed in your design at any level
of the schematic. Refer to the “SDT Tutorial” chapter for an example
of how to enter trace and stimulus symbols. If you follow the
functional simulation design flow, the stimulus and trace information
associated with these symbols is usable when simulating with
OrCAD/VST386+. If you follow the timing simulation design flow,
schematic-level trace and stimulus information is only usable if you
back-annotate your net names using the XNFBA back-annotation
program. If you use XSimMake, the timing simulation flow
automatically runs XNFBA.

Note: At this time, stimulus and trace elements on buses are not
supported.

Simulating High-Impedance Inputs
OrCAD “test vector” input format is required when simulating
bidirectional signals. If a stimulus is specified directly in the Stimulus
Editor, VST treats high-impedance inputs incorrectly.

Pulse-Widths Smaller than the Routing Delay
The simulator invalidates (displays as undefined) pulses that have a
width less than the net delay time. In the actual FPGA device,
however, pulses with widths less than the net delay time are not
always absorbed.

No Weak-keeper
Weak-keeper on bus lines is not implemented. The bus goes to
High-Impedance when all sources are enabled to 3-state.
9-2 Xilinx Development System

OrCAD VST Simulation Issues
Simulating the OSC, OSC4, and GXTL Oscillators
These oscillators cannot be simulated by OrCAD/VST386+. When
using these signals, you must create the stimulus on the oscillator
output using the Stimulus Editor in the Simulate program or specify
the stimulus in the schematic.

Hold Violations
During simulation, you may encounter hold violations on flip-flops
used in your design. According to The Programmable Logic Data Book,
there is no hold time for the flip-flops in a CLB unless the DIN pin is
used. The lack of hold-time requirements is reflected in the modeling
in the routed XNF file similar to the following.

SYM, Q1.QX, DFF, INIT=R
PIN, Q, 0, Q1.QX, 5.0
PIN, D, I, Q1.F
PIN, C, I, CAB, 6.1
PIN, CE, I, BCE, 0
PULSE, C, +, 4.0
SETUP, D, C, +, 0.0, 4.5

END

The SETUP line indicates that the input pin D is clocked by C, which
is positive-edge-triggered, and has a setup time of 0 ns and a hold
time of 4.5 ns. This XNF file is for an XC4000 device with a speed
grade of 5. If you look up the setup time for a CLB flip-flop in The
Programmable Logic Data Book, the setup time is 4.5 ns, and the hold
time is 0 ns.

The setup and hold time specifications in the Xilinx data sheets are
based on a comparison of the CLB input signal and the CLB clock
input, which is also the clock input of the flip-flop. This comparison
is illustrated as (a) in Figure 9-1.
OrCAD Interface/Tutorial Guide 9-3

OrCAD Interface/Tutorial Guide
Figure 9-1 Hold Violation Example Circuit

Before OrCAD reads your netlist, the CLB is broken down into gates
and flip-flops. OrCAD makes its setup and hold-time checks by
comparing the D input of the flip-flop and the clock input, shown as
comparison (b) in Figure 9-2.

Figure 9-2 Hold Violation Waveform Output

Consequently, what appears to be a setup violation from the
viewpoint of the CLB specification may be reported by OrCAD as a
hold violation. Since the sum of the setup and hold-time
requirements is the same in either case, whether the violation is
reported as a setup or hold-time violation is immaterial.

D Q

X3593

Function
Generator

4.5ns Delay
Delay

Delay

CLB Input

CLK

(a) (b)

D Pin

C Pin
(a) 4.5ns setup, 0ns hold

(b) 0ns setup, 4.5ns hold

C
C Pin

CLB

X3594

CLB Input (a)

C Pin

D Pin (b)

4.5 ns

4.5 ns
9-4 Xilinx Development System

OrCAD VST Simulation Issues
Simulating Large ROMs in XC4000 Devices
If your XC4000 design requires more than 100 ROM16X1 or 50
ROM32X1 symbols, you need to add information from the
xmem2.dsf file to the model.dat and model.ndx files. Add the
information by using the Add Device Model button in the Librarians
section of the Digital Simulation Tools screen.

If you use the Clear Model Library button to clear model data from
the model.dat and model.ndx files, you might need to reload the VST
interface. You need to reload the VST interface because there is no
source (DSF) file available for most FPGA/VST models.

EPLD Devices

Using PRLD for Initialization
The PRLD (preload) signal is an input to your design that does not
appear on your schematic; it is included in the models of registered
components and is automatically added to both the functional and
timing models by XSimMake. You must include the PRLD signal in
your OrCAD simulation stimulus file (STM) to ensure that the
registers in your design are simulated properly. However, it is not
necessary to display this signal in your OrCAD trace file (TRC).

Before applying simulation stimuli, you must initialize the device by
pulsing PRLD High for at least 1 time unit (0.1ns). Before
initialization, all registers are in an unknown state (U) which usually
prevents any meaningful simulation results. PRLD simulates the
Master Reset signal (or power-on-reset) of the EPLD device and
forces all registers to a predefined state.

All input signals to the device should be set to a known logic state
before PRLD is returned Low, otherwise some internal nodes may
become trapped in an unknown state. You must return PRLD to a
Low state before the design will respond properly to input
stimulation.

For functional simulation, all registered components initialize to the
state defined in the XACT Libraries Guide. During implementation,
the FITNET program might alter the initial states of register to take
optimal advantage of device resources unless you inhibit Preload
optimization. Timing simulation will exhibit the actual register
OrCAD Interface/Tutorial Guide 9-5

OrCAD Interface/Tutorial Guide
preload values implemented by the software. You can control the
preset state of XEPLD registers in PLD components, so they are
forced either High or Low, by using the “output.PRLD” equation in
PLUSASM. See the XEPLD Reference Manual for more information on
the PRLD extension.

You can use the PRELOAD_OPT global attribute to determine
whether the preload value can be changed for parts of the design to
allow logic to fit as efficiently as possible into device resources (ON),
or the logic is mapped to device resources according to the
established preload values (OFF). PRLD equations in your PLD
components are only effective if PRELOAD_OPT is turned OFF. For
more information, see Chapter 5, “EPLD Design Issues.”

Under some conditions, the first simulation cycle after PRLD is
brought Low produces setup and hold violations. This is due to the
asynchronous nature of the PRLD signal. The resulting warnings are
usually not indicative of a circuit problem.

You should analyze your design for any potential initial-state
problems that could result when the device comes out of the power-
on-reset or the external Master Reset (MR). For example, if the device
recovers from its reset cycle and becomes operational coincident with
the rising edge of a free-running clock input, not all registers in the
device might respond to this first clock cycle. As a result, an invalid
internal state might occur. Such situations are not detectable during
simulation.

See the XEPLD Tutorial for an example of how to initialize the device
during simulation.

3-State Outputs
When performing functional simulation, remember that high-
impedance states (Z) only exist on the wire connected to a 3-state
symbol output. For example, if you connect a BUFE 3-state buffer
symbol to an OBUF, which is valid in EPLD designs, the output of the
OBUF becomes undefined (“U”) when the BUFE is disabled, as
shown in Figure 9-3. This undefined output occurs because the
OrCAD model used to represent the OBUF symbol cannot pass a
High-Z signal through it. When such a design is actually
implemented, the EPLD device pin goes to High-Z when the BUFE is
9-6 Xilinx Development System

OrCAD VST Simulation Issues
disabled, and timing simulation accurately demonstrates this
behavior.

Figure 9-3 Trace Waveforms of 3-State Signal Passed Through
OBUF

X4589

BUFE

OE_1

NODEQ_1 Z Z Z Z

OE

OBUF

NODEQ PINQ
OPAD

PINQ U U U U
OrCAD Interface/Tutorial Guide 9-7

OrCAD Interface/Tutorial Guide
9-8 Xilinx Development System

Manual Translation

OrCAD
Interface/
Tutorial
Guide
OrCAD Interface/Tutorial Guide — 0401409 01 Printed in U.S.A.

OrCAD Interface/Tutorial Guide
Xilinx Development System

Chapter 10

Manual Translation

If you need to execute manually as stand-alone processes the
programs executed automatically by the XMake and XSimMake
programs, follow the instructions in this chapter. This information is
also useful if you run into problems with XMake, XEMake, and
XSimMake because it explains the whole translation process. This
chapter details each type of translation and is structured as follows:

● Creating an XNF File tells you how to create an XNF file. Use the
XNF file as a starting point for implementing your design and
creating simulation files. The Annotate, INET, SDT2XNF, and
XNFMerge programs are described in detail in this section.

● Creating Functional Simulation Files tells you how to generate a
functional simulation netlist (VST file) using an XNF file for FPGA
designs. You must use XSimMake for EPLDs.

● Creating Implemented Design Files outlines the steps for creating a
routed LCA or VMH file and a downloadable BIT or PRG file.

● Creating Timing Simulation Files describes how to generate timing
simulation input files (VST and DBA files) using an implemented
LCA or VMH file.

● Translation Programs for Simulation details the program options,
syntax, and files needed to use XNF2VST and ASCTOVST.

The following figure shows the different types of files created in each
translation sequence.
OrCAD Interface/Tutorial Guide — 0401409 01 10-1

OrCAD Interface/Tutorial Guide
Figure 10-1 Four Types of Manual Translation

Although the objective of this chapter is to provide the syntax used to
execute each translation program from DOS, you can use the same
program and option information to execute the programs from the
XDM menus. To execute a program from XDM, simply select the
program from XDM and enable the options referenced in the
command-line syntax using the left mouse button.

The programs used to generate the different types of XNF files, such
as XFF, XG, and XTF files, are located under the XDM Translate menu.
Place and route programs are located under the XDM PlaceRoute
menu. The programs used to generate simulation files are located
under the XDM Verify menu.

Creating an XNF File (SCH ➝ XNF)
You must translate your design into an XNF file before you can create
an implemented design file or a simulation file. The Annotate, INET,
SDT2XNF, and XNFMerge programs are used sequentially to create a
flattened XNF format file (XFF) from your Draft schematic file. (See
Figure 10-2.)

X4450

SCH

XNF Xilinx Netlist Format

1

2

3
4

Implemented
Design Files

Functional
Netlist Timing Netlist

LCA/VMH BIT/PRG

XNF

VSTVST DBA
10-2 Xilinx Development System

Manual Translation
● Annotate — The Annotate program assigns or updates the
reference designators on all library symbols used in your design.
The original schematic files are renamed as backup (BAK) files.
The annotated file is then saved as the schematic (SCH) file. No
options are required by the Annotate program.

● INET — The INET program creates an INF file (OrCAD netlist
format) for each schematic in the design. No options are required
by the INET program.

● SDT2XNF — This program uses the INF files created by INET as
input files, and converts them into corresponding XNF files.

● XNFMerge — XNFMerge merges all XNF files for the design into
a single top-level XNF format (XFF) file. XNF files for blocks
without schematics, such as files created by Xilinx ABEL or
MemGen, are also merged.

Figure 10-2 Creating XNF Format Files

X4510

SCH

SCH

INF

XNF

Annotate

INET

SDT2XNF

XNFXNF

XNFMerge

XABEL, MemGen, and
other symbols with FILE= attribute

XFF
OrCAD Interface/Tutorial Guide 10-3

OrCAD Interface/Tutorial Guide
Annotate Program
Annotate is an OrCAD program that reads the drawing file, assigns a
unique reference designator to any unassigned component, and then
saves the result to the original drawing. Use .sch as your drawing file
extension. A backup of the original drawing with a .bak extension is
also created. Typically, no command-line options are required.

Syntax

To execute the Annotate program on hierarchical or single-level
designs, use the following syntax:

annotate toplevel.sch [/ options] ↵

The file name toplevel.sch is the OrCAD schematic file name
submitted to the system. It represents the top-level schematic file in a
hierarchical design. Structured designs and user-created macros use
the same syntax.

Note: You must specify the .sch extension.

Options

You can modify the operation of the Annotate program using the
following options.

/l — Last Reference Designators

This option creates a report listing the last reference designators
assigned by Annotate. If you do not specify a destination file, the
report is placed in a file called toplevel.end.

/o — One Sheet

This option treats the selected file as a single sheet.

/q — Quiet Mode

This option runs the program in quiet mode without echoing the
tracking information on the screen.
10-4 Xilinx Development System

Manual Translation
/r — Remove Annotations

This option removes all annotations on the schematic. All reference
designators are set to “U?”.

/s — Preserve Sheet Number

This option preserves the sheet number. If this switch is not set, the
sheet numbers are changed to reflect the current sheet in the design.

/u —Change References Unconditionally

This option changes references unconditionally. Use this option only
if there are multiple components that contain the same reference on
the same sheet.

/z — Ignore Warning Messages

This option causes warning messages to be ignored.

INET Program
INET is an OrCAD program that reads the root schematic and any
other related schematics, and converts them into individual netlist
(INF) files.

Syntax

To execute the INET program on a hierarchical or single-level
structure design, use the following syntax:

inet toplevel .sch [/ options] ↵

The file name toplevel.sch is the OrCAD schematic file name
submitted to the system. It represents the top-level schematic file in a
hierarchical design. Use the same syntax for flat-structured designs
and user-defined macros.

Note: You must specify the .sch extension.

Options

You can modify the operation of the INET program using the
following options:
OrCAD Interface/Tutorial Guide 10-5

OrCAD Interface/Tutorial Guide
/g — Check for Objects off the Grid

This option checks the worksheet for parts, sheets, labels, module
ports, and power objects placed off the grid. A report is placed in a
GRD file.

/l — Report Labels and Module Ports

This option reports all connected labels and module ports. The report
is placed in a LAB file.

/n — Prevent INF File Rebuild

This option prevents the INF files from being rebuilt. It can be used in
conjunction with the -g, -l, -u, and -w options.

/q — Quiet Mode

This option causes the program to run in quiet mode without echoing
tracking information on the screen.

/t — Rebuild Database

This option causes the entire database to be rebuilt. It recreates all
connected databases and all connecting database files.

/u — Unconnected Wires and Pins

This option reports all unconnected wires and pins. The report is
placed in an NC file. This option also checks for pins, module ports,
and power objects that are overlapping.

/w — Electrical Rules Check

This option runs an electrical rules check on all files that are netlisted.
If a destination is supplied, then the output is placed in the indicated
file; otherwise, standard out is used. Module ports are checked for
correctness after all incremental netlisting and electrical rules
checking is complete.

Note: If the /w option is used and INET issues severe warning
messages, INET might not generate an INF file. To force the
generation of an INF file with the /w option in use, turn on option
/z, Ignore Warning Messages.
10-6 Xilinx Development System

Manual Translation
/z — Ignore Warning Messages

This option causes the program to exit normally and ignore all
warning messages.

SDT2XNF Program
The SDT2XNF program invokes INF2XNF to convert the INET-
generated INF file into an XNF file (filename.xnf). After creating INF
files for each schematic file in your design, execute SDT2XNF on your
top-level schematic. The SDT2XNF program follows the hierarchical
structure of your design. As a result, any INF files representing
drawing files beneath the top-level design file, including Xilinx
macros, are also translated into individual XNF files.

Under some circumstances, SDT2XNF does not incorporate lower-
level INF files. If, for example, FILE= is used for a selected module,
the INF file for that module is not read.

Syntax

To execute the SDT2XNF program from the command line, use the
following syntax:

sdt2xnf inffile[.inf] [xnffile[.xnf]][-options] ↵

● Input File

inffile.inf

INET generates this file from your schematic file. The inffile file
must be your top-level schematic file. The INF extension is
optional.

● Output File

xnffile.xnf

This is the XNF file that corresponds to the INF input file. The
XNF extension is optional. If no output file name is specified,
SDT2XNF uses the input design name with the XNF extension.

Options

You can modify the operation of the SDT2XNF program using the
following options:
OrCAD Interface/Tutorial Guide 10-7

OrCAD Interface/Tutorial Guide
-d — Output Directory for XNF Files

The -d option specifies in which directory the XNF files are placed. If
you do not specify this argument, it is set to the current directory.

-m — Macro Option

When the -m option is specified, SDT2XNF reads all symbols for
which an INF file exists as macros and generates an XNF file for each
of these symbols.

-p — Part Type

The -p option is used to specify the FPGA or EPLD part type used in
the translation process. Specify this argument to set or override the
part type in the schematic.

The -p option can also be used to specify the speed grade. The
XC3000A/L, XC3100/A, and XC4000 family speed grades are of the
form –6 and –5, which represent CLB combinatorial block delays of 6
and 5 ns, respectively. The XC3000 and XC2000 family speed grades
are -70, –100, and –125, which represent the flip-flop toggle
frequencies (MHz).

The following examples illustrate 125 MHz and 5 ns speed grade
specifications for XC2000/XC3000 and XC4000 devices, respectively:

... -p 3020pc68–125

... -p 4005pg156–5

-s — Search Path for Xilinx-Defined INF Files

The -s option specifies the path used by SDT2XNF to search for
Xilinx-defined INF files that include the Xilinx soft macros and smart
macros. If you do not specify this option, the path is set to the
appropriate Xilinx-library path.

-u — Search Path for User-Defined INF Files

The -u option specifies the path used by SDT2XNF to search for user-
defined INF files that include the child-sheets and link-sheets. If you
do not specify this argument, it is set to the current directory.
10-8 Xilinx Development System

Manual Translation
XNFMerge Program
You must merge the XNF files into a single XNF-format file (XFF file)
representing the entire design using the XNFMerge program.

XNFMerge merges all of the XNF files created by SDT2XNF, as well
as the XNF files for blocks without schematics, such as Xilinx ABEL
or MemGen blocks. The output of XNFMerge is a single XNF format
file with an XFF extension.

Syntax

To execute the XNFMerge program from the command line, use the
following syntax:

xnfmerge [-options] input_file[.xnf][output_file[.xff]] ↵

Options

You can modify the operation of the XNFMerge program using the
following options:

-a — Abbreviate Report

This option abbreviates the file-reading report.

-d — Directory

This option uses the XNF files in the directory that you specify.

-f — Hierarchy Information

This option specifies that you do not wish to maintain hierarchy
information in your XNF file.

-i — Ignore RLOC

This option ignores RLOC-related information.

-o — Merge Report

This option is used to send the merge report to the file that you
specify. The MRG extension is used for this file.
OrCAD Interface/Tutorial Guide 10-9

OrCAD Interface/Tutorial Guide
-p — Partname

This option is used to specify the part type that you want in the
output XFF file. Do not include the XC prefix when specifying the
part type from the command line.

-q — Suppress Messages

This option suppresses messages about unresolved symbols. This is
the default for XC7000 parts due to the nature of the EPLD library.

Creating Functional Simulation Files (XNF ➝ VST)
This section explains how to execute as stand-alone processes each
program normally executed by XSimMake as it translates your XNF
file into a functional simulation netlist for FPGA designs. For EPLD
designs, you must use XSimMake to prepare the functional
simulation netlist file. XSimMake creates special XNF files for EPLD
library primitives in a separate subdirectory, “func,” which must not
be mixed with the XNF files used for design entry.

A file used for functional simulation does not require any delay
information, as the functional netlist file is only used to verify the
logic in your design. The translation of the XNF format file into a
functional netlist is achieved by the Xilinx program XNF2VST.

To create a functional simulation file in the OrCAD design flow, use
one of the following files:

● An XFF file created by SDT2XNF and XNFMerge. Designs with
Xilinx ABEL blocks can be simulated from the XFF file.

● An XG file, created by running XNFPrep with the drc_only=true
option and X-BLOX, if your design contains X-BLOX modules.

● A placed and routed LCA file produced by XMake. If XMake is
not used, this file is created by either APR (XC2000, XC3000, and
XC3100 designs) or PPR (XC3000A/L, XC3100A, and XC4000
designs). You must use an LCA file as a simulation starting-point
if your FPGA design contains CLB or IOB primitives.
10-10 Xilinx Development System

Manual Translation
Design Flows
This section discusses the functional simulation flows used for FPGA
designs.

Figure 10-3 Creating XNF Files for Functional Simulation (FPGA)

X4504

XFF XG

XFF

Yes

Yes

No

No

No

Yes

XTG

XTF

XG

XNFPrep

XNFPrep

MAP

XNFMAP

LCA

XNF

LCA2XNF

XNF

XNFBA

MAP2LCA

X-BLOX
mergeio=false

drc_only=true

archopt=false

PPR

route=false

X-BLOX

3KA/L

-u option

2K/3K
with CLB
IOB or
EQN

1

2

3

SCH

SCH

INF

XNF

Annotate

INET

SDT2XNF

XNFXNF

XNFMerge

XABEL, MemGen, and
other symbols with FILE= attribute
OrCAD Interface/Tutorial Guide 10-11

OrCAD Interface/Tutorial Guide
FPGA Design Flow

Before using the translator to generate the actual simulation file, you
must ensure that all XNF files generated from other HDL languages
are merged into one flat XNF format file (XFF file) with XNFMerge;
all X-BLOX modules are processed and all IOB and CLB designs are
mapped with XNFPrep, XNFMAP, and MAP2LCA.

Figure 10-3 illustrates the different types of XNF format files (XFF,
XG, and XNF) that are created depending on the type of FPGA
modules used in the design: logical primitives only, X-BLOX
modules, or IOB and CLB primitives.

● Area 1 shows the flow used for designs containing only logical
primitives and Xilinx macros.

● Area 2 shows the additional steps necessary to process X-BLOX
modules.

● Area 3 shows the additional steps necessary to process XC2000,
XC3000, and XC3100 designs that include IOB and CLB
primitives. In this last case, the XNF file must be mapped but need
not be routed.

Use the final XNF format file to run the simulation translator
(XNF2VST). In the case of designs with IOB and CLB primitives, you
can only use the final XNF file output by LCA2XNF and by XNFBA
for functional simulation.

Note: Only use XSimMake to generate a functional netlist file for
EPLD devices. Refer to the chapter, “Functional Simulation,” for
more information.

Translating XFF Files Created with SDT2XNF and
XNFMerge

Follow the step below to convert a file created with SDT2XNF and
XNFMerge into a file used for FPGA functional simulation.

1. Execute the XNF2VST program from the command line using the
following syntax:

xnf2vst filename[.xff] -u ↵

XNF2VST creates all files necessary to perform functional simulation
on your design. The -u option selects unit-delay translation; any
10-12 Xilinx Development System

Manual Translation
delay information included in the XNF file is ignored.

If you have either X-BLOX modules or IOB and CLB primitives in
your design, proceed to the next subsections.

FPGA Designs with X-BLOX Modules
If you are designing an XC3000A/L, XC3100A, or XC4000 family
device and your design contains X-BLOX modules, you need to run
XNFPrep with the drc_only option to perform a DRC check without
trimming logic and write an XTG file before running the X-BLOX
software.

1. Enter the following from the command line:

xnfprep filename[.xff] drc_only=true ↵

xblox filename[.xtg] mergeio=false archopt=false ↵

The mergeio and archopt options must be set to false to prevent
the X-BLOX program from doing any optimization.

2. From the command line, run XNF2VST with the -u option on the
XG file (XNF format) that you just created:

xnf2vst filename[.xg] -u ↵

FPGA Designs with IOB and CLB Primitives
If your XC2000, XC3000, or XC3100 family design contains IOB or
CLB primitives, you need to run XNFPrep to generate an XTF file and
XNFMAP to map the XTF file into logic and I/O resources of the
FPGA.

1. Enter the following from the command line as shown below:

xnfprep filename[.xff] ↵

xnfmap filename[.xtf] ↵

XNFMAP generates a netlist mapped into CLBs, IOBs, TBUFs,
and clock buffers.

2. Run PPR with the options route=false and placer_effort=1 if your
design is an XC3000A/L or an XC3100A design. Otherwise, run
MAP2LCA.
OrCAD Interface/Tutorial Guide 10-13

OrCAD Interface/Tutorial Guide
Use one of the following commands:

ppr filename[.map] route=false placer_effort=1 ↵

or

map2lca filename[.map] ↵

3. After mapping the design as explained in step 2, run LCA2XNF to
create an XNF file. Specify the -u option to create a unit-delay
netlist. Specify a new name for the output file to avoid overwriting
the original XNF file.

lca2xnf -u filename[.lca] newname[.xnf] ↵

4. Run XNFBA to back-annotate your file.

xnfba filename[.xff,.xg] newname[.xnf] ↵

XNFBA requires two input files: the unrouted netlist (XFF or XG)
and the routed XNF file created by LCA2XNF. Names in the new
XNF file are changed to match the names in the pre-routed XNF
format file. By default XNFBA creates an output file called
xnfba.xnf.

5. Use XNF2VST to translate the output XNF file into a functional
simulation netlist.

xnf2vst xnfba.xnf filename[.vst] -u ↵

Translating LCA Files Created with XMake
XMake creates a placed and routed LCA file. Follow the steps
outlined below to convert an LCA file into a file for use with the
Simulate program.

1. Execute LCA2XNF with the -u option from the command line.
Specify a new name for the output file to avoid overwriting the
original XNF file.

lca2xnf -u filename[.lca] newname[.xnf] ↵

Option -u selects unit-delay translation.

At this point you can skip to step 3. However, your LCA file might
contain signal names changed by the XNFMAP or PPR programs.
Follow Step 2 if you wish to restore any signal names that changed
during design processing.
10-14 Xilinx Development System

Manual Translation
2. Execute XNFBA from the command line as shown below:

xnfba filename[.xg,.xff] newname[.xnf] ↵

XNFBA requires two input files: the unrouted netlist (XFF or XG)
and the routed XNF file created by LCA2XNF. Names in the new
XNF file are changed to match the names in the pre-routed XNF
format file. By default, XNFBA creates an output file called
xnfba.xnf.

3. Run XNF2VST with the -u option enabled from the command
line as shown below:

xnf2vst xnfba.xnf filename[.vst] -u ↵

Creating Implemented Design Files
This section gives you a brief summary of how to generate
implemented FPGA and EPLD designs.

FPGA Designs (XNF ➝ LCA ➝ BIT)
To translate the XNF file (XFF, XG, or XNF) of an FPGA design into
an implemented LCA file, use the Xilinx implementation tools. For
more information, refer to Figure 7-1 in the “Design Implementation”
chapter of this manual and to your XACT Reference Guide.

You must implement your design before you can create a timing
simulation file.

EPLD Designs (XNF ➝ VMH ➝ PRG or JED)
Run FITNET on your schematic design to implement your EPLD
design. If you have PLD components or custom primitives in your
design, you must assemble each equation file using PLUSASM before
running FITNET. Implementing your design is a requirement before
generating a timing simulation file. To generate a programming file
in Intel HEX format (PRG file), run MakePRG. To generate a JEDEC
format file (JED file), use the MakeJED program. Refer to the XEPLD
Reference Guide for details.
OrCAD Interface/Tutorial Guide 10-15

OrCAD Interface/Tutorial Guide
Creating Timing Simulation Files
A file used for timing simulation must contain delay information,
which is generated when the design is placed and routed. Follow the
steps below to create a timing simulation file from a placed and
routed file.

FPGA Designs (LCA ➝ XNF ➝ VST + DBA)
This section details the procedure used to generate a timing
simulation file for FPGA designs.

For an XC3000A/L, XC3100A, or XC4000 family design, if you
created the LCA file without using XMake, you need to run XDelay
with the -dw option enabled on your LCA file; this option adds
routing delay information to the LCA file. Then perform the
following steps on the LCA file created by XDelay.

1. Type LCA2XNF from the command line. Specify a new name for
the output file to avoid overwriting the original XNF file.

lca2xnf filename[.lca] newname[.xnf] ↵

At this point you can skip to step 3. However, your LCA file might
contain signal names changed by XNFMap (XC2000, XC3000, and
XC3100) or PPR (XC3000A/L, XC3100A, and XC4000). Perform
step 2 if you wish to restore any signal names that changed during
design processing.

2. Run XNFBA from the command line as shown below:

xnfba filename[.xff,.xg] newname[.xnf] ↵

XNFBA requires two input files: the unrouted netlist (XFF or XG)
and the routed XNF file created by LCA2XNF. Names in the new
XNF file are changed to match the names in the pre-routed XNF
format file. By default XNFBA creates an output file called
xnfba.xnf.

3. Execute XNF2VST from the command line as shown below:

xnf2vst xnfba.xnf filename[.vst] ↵

At this point, the necessary files for timing simulation have been
created. If you have included trace and stimulus information in your
schematic, you can also run the ASCTOVST program on the ASCII
10-16 Xilinx Development System

Manual Translation
trace and stimulus files produced by XNF2VST. ASCTOVST converts
ASCII trace (ATR) files to binary trace (TRC) files, ASCII stimulus
(AST) files to binary stimulus (STM) files. ASCTOVST also converts
binary files to ASCII files. (See Figure 10-4.)

Figure 10-4 Translation Paths for Timing Simulation of FPGAs

EPLD Designs (VMH ➝ XNF ➝ VST + DBA)
This section outlines the steps used to create a timing simulation file
for EPLD designs.

X2350

LCA2XNF

XNF XNFBA

XNF

XNF2VST

AST ATR NRF VST

LCA

ASCTOVST

Simulate /a

TVS

HEXDBA

STM TRC
OrCAD Interface/Tutorial Guide 10-17

OrCAD Interface/Tutorial Guide
To perform timing simulation, you must first integrate your design
using XEMake, FITNET, or FITEQN for behavioral designs. The
implemented design database file resulting from any of these
procedures has a VMH extension for all EPLD part types except
XC7272, which uses a VMD file extension.

Then, perform the following steps on the VMH/VMD file:

1. Run VMH2XNF from the command line as shown below:

vmh2xnf filename↵

2. Run XNF2VST from the command line as shown below:

xnf2vst filename↵

At this point, the necessary files for timing simulation have been
created. You can run the ASCTOVST program if you have ASCII trace
and stimulus files. ASCTOVST converts ASCII trace (ATR) files to
binary trace (TRC) files, and ASCII stimulus (AST) files to binary
stimulus (STM) files. ASCTOVST also converts binary files to ASCII
files. (See Figure 10-5.)

Note: The original symbols and interconnections contained in your
OrCAD schematic are not used in the timing simulation netlist (XNF)
file. Instead, VMH2XNF creates an original netlist based on the target
EPLD device architecture as it is configured by your design. The
names of all of your external wires and internal nodes that were not
optimized by the software are preserved so that you can trace them
during simulation.
10-18 Xilinx Development System

Manual Translation
Figure 10-5 Translation Paths for Timing Simulation of EPLDs

Translation Programs for Simulation
This section includes information about the programs used to create
an OrCAD simulation file. Included are sections on the XNF2VST
and ASCTOVST programs. For information about the XNFBA and
LCA2XNF programs, which are also used in the translation process,
refer to the XACT Reference Guide. For information on the EPLD-
specific program, VMH2XNF, refer to the XEPLD Reference Guide.
This section applies to both functional and timing simulation
programs.

XNF2VST Program
XNF2VST accepts either a routed or an unrouted XNF file and
invokes XNF2INF to translate the XNF file into a VST file, which is
read by the Simulate program. Any delay information included in the
XNF file is passed to the DBA file, thus supporting timing simulation

VMH2XNF

XNF

XNF2VST

NRF VST

VMH

Simulate /a

X4584
TVS

DBA
OrCAD Interface/Tutorial Guide 10-19

OrCAD Interface/Tutorial Guide
 of your design. Use the syntax shown here to create the VST file and
other relevant simulation files from your XNF file:

xnf2vst xnffile[.xnf] [vstfile[.vst]] [options] ↵

Input Files

● xnffile.xnf

This file is an XNF format file for the current design. It can be
either a routed XNF file or an XNF format file created prior to
routing your current design. If your objective is to perform timing
simulation on your design, you must use a routed XNF file,
preferably back-annotated by the XNFBA program. The file
extension is optional. If an extension is not specified, XNF is
assumed. Valid extensions are XNF, XFF, and XG.

● xnffile.nrf

XNF2VST reads this file if the -r option is specified; however, it is
not a required input file.

Output Files

● vstfile.vst

This file is the primary data-input file for the Simulate program.
The VST file is a flattened netlist for the design, used for
simulation purposes only.

● vstfile.ast

The AST file is an ASCII file that contains all the stimulus
information from your schematic design file. This file is not
created if there is no stimulus information entered from the
schematic editor.

● vstfile.atr

The ATR file is an ASCII file that contains all the trace information
from your schematic design file. This file is not created if there is
no trace information entered from the schematic editor.

Note: AST and ATR files are created automatically the first time
XNF2VST is run on your design. When XNF2VST is invoked again, it
does not create new files. To create new files and overwrite the
existing ATR and AST files, specify the -w option.
10-20 Xilinx Development System

Manual Translation
● vstfile.dba

This file is an ASCII file that contains all timing delays within the
design. It also includes the delays generated by routing. This file is
created unless the -u option is specified. VST reads this file
whenever you execute the Simulate program with the /a option.

● vstfile.nrf

The name reference file (NRF) records any changes in the symbol
reference names, net names, and any added net names. Browse
through this file if you cannot find the original name you used.
See the “XNF2VST Signal Names” and the “XNF2VST and
FPGA/OrCAD Naming Conventions” sections, following, for
more information on how XNF2VST handles names.

XNF2VST always creates a new NRF file, which is based on the
input NRF file if the -r option is specified. If the -r option is not
specified, XNF2VST does not read the existing NRF file.

● vstfile.hex

This is an Intel MCS hex file. It is created whenever the input XNF
file contains one or more ROMs.

Options

You can modify the operation of XNF2VST using the following
options:

-u — Unit-Delay Translation

Select this option to create a file for functional simulation only. Any
delay information included in the XNF input file is ignored, and
XNF2VST does not generate a DBA file. Without a DBA file present in
your design directory, the Simulate program assumes a default delay
of 0.1 ns (1 VST unit) for each gate-level logic element and a 0 ns
delay for each net.

-r — Read Existing Name Reference File (NRF)

If the -r option is specified, XNF2VST reads the existing NRF file. A
new NRF file is generated that is based on the existing NRF file.
Previously assigned name references are retained.
OrCAD Interface/Tutorial Guide 10-21

OrCAD Interface/Tutorial Guide
-w — Overwrite Existing AST and ATR Files

If the -w option is specified, XNF2VST overwrites the existing AST
and ATR files using the stimulus and trace information from the XNF
file. Otherwise, XNF2VST generates new AST and ATR files only if
stimulus and trace information exists in the XNF file and no AST and
ATR files exist in the project directory.

-x — XACT Path

Use this option to specify the Xilinx XACT path. If you do not specify
this option, the path is set to the value of the XACT environment
variable.

XNF2VST Signal Names

Listed below are XNF2VST-generated signal names, which XNF2VST
adds to the VST file when necessary.

● GR —The GR signal is an active Low signal that clears the
contents of all flip-flops when you start simulation. It is only used
in XC2000 family and XC3000 family designs.

● GSR — The GSR signal is similar to the GR signal, except that it is
active High and is only used for XC4000 designs.

● GTS — GTS represents the global 3-state signal. When GTS is
High, then all outputs are 3-state; when GTS is Low, then all
outputs are active. GTS is only used for XC4000 designs.

● PRLD — The preload (PRLD) signal is active-High and initializes
the flip-flops in an XC7000 design. XNF2VST adds PRLD when
making an EPLD functional simulation netlist. VMH2XNF adds
PRLD when making an EPLD timing netlist.

● VCC, GND — These names represent logic High and logic Low
signals.

● signal_name_INV#_I — This naming convention is used whenever
an inversion of an input pin is required. (This does not apply to
logic gates.)

● signal_name_INV#_O— This naming convention is used whenever
an inversion of an output pin is required. (This does not apply to
logic gates.)
10-22 Xilinx Development System

Manual Translation
● OSC4_IN — This signal is created whenever the design uses an
OSC4 primitive. Since the model cannot generate the fixed
frequency by itself, you have to “drive” the OSC_4. The OSC4_IN
signal directly drives the F8M output and all other outputs after it
has been divided down properly. To get an exact 8 MHz
waveform, set High and Low time for OSC4_IN to be 625 units
(62.5 ns).

XNF2VST and FPGA/OrCAD Naming Conventions

When simulating an FPGA design with OrCAD/VST386+, all signals
and symbols in the design must conform to both OrCAD/VST386+
and FPGA naming conventions (listed in the “Naming Conventions”
section of Chapter 3). If a name does not conform to these
conventions, then XNF2VST changes it; both the original name and
the new name can be found in the NRF file. XNF2VST performs the
following changes.

Symbol Names

● All symbols are renamed to names that begin with a “G”.

● Lowercase characters are replaced with uppercase characters.

Signal Names

● Names with more than 14 characters are shortened to names that
begin with a “$”. The 14-character limitation is imposed by the
OrCAD simulator.

● Lowercase characters are replaced with uppercase characters.

The following is a typical NRF file that provides examples of how
XNF2VST changes names.
OrCAD Interface/Tutorial Guide 10-23

OrCAD Interface/Tutorial Guide
ALL XILINX SYMBOLS RENAMED TO UNIQUE REFERENCE DESIGNATOR
NAMES

G16 = U12
G17 = U10
G18 = U8
G70 = DEFVCC
G71 = DEFGND
G72 = U11
G73 = U9
G74 = U7
G75 = /atest/U13
G76 = /atest/another/U15
G77 = /atest/U14
G79 = /atest/another/U18
G80 = /atest/another/U17
G81 = /atest/another/U16

LONG XILINX SIGNAL NAMES RENAMED TO SHORT ORCAD NAMES

$4 = /atest/another/SIG4
$5 = /atest/another/SIG5

Recycled Aliases

XNF2VST supports recycled aliases in the Name Reference File.
Therefore, you can modify the reference designator names directly in
the NRF file by entering a symbol or signal name of your choice. The
new name is used by XNF2VST during the translation process if you
specify the -r option.

For instance, if the G75 reference designator name shown in the
example above is not detailed enough, you can preserve the
hierarchical structure of the original name (/atest/u13) by using the
name GAU13 instead of G75. “G” is the required first character of the
symbol name. “A” stands for the “atest” top-level portion of the
schematic. “U13” is the lower-level primitive name.

When you rename a signal or a symbol, the maximum number of
characters you can use is 14 characters for a signal and 5 characters
for a symbol. All modified reference designator names must end with
a number.

To rename signal name $4 in the NRF file using more details, you
could call it $SIG4.

To keep the modified signal and symbol names in the NRF file and
propagate the names back to your schematic file, use the -r option
with XNF2VST. The existing NRF file is read, any necessary
modifications are made, and a new NRF file is written.
10-24 Xilinx Development System

Manual Translation
ASCTOVST Program
ASCTOVST, provided with OrCAD/VST386+, is an ASCII-to-binary
translator that converts ASCII trace (ATR) files to binary trace (TRC)
files, and ASCII stimulus (AST) files to binary stimulus (STM) files. It
also converts binary files to ASCII. You can select this program from
the XDM Verify menu.

Input and Output Files

● filename.ast

The AST file is an ASCII file that contains all the stimulus
information from your schematic design file.

● filename.atr

The ATR file is an ASCII file that contains all the trace information
from your schematic design file.

● filename.stm

The STM file is a binary file that contains all the stimulus
information from your schematic design file. This file can be used
as input to the VST simulator.

● filename.trc

The TRC file is a binary file that contains all the trace information
from your schematic design file. This file can be used as input to
the VST simulator.
OrCAD Interface/Tutorial Guide 10-25

OrCAD Interface/Tutorial Guide
10-26 Xilinx Development System

SDT Tutorial

OrCAD
Interface/
Tutorial
Guide
OrCAD Interface/Tutorial Guide — 0401409 01 Printed in U.S.A.

OrCAD Interface/Tutorial Guide
Xilinx Development System

Chapter 11

SDT Tutorial

This chapter steps through a typical Field Programmable Gate Array
(FPGA) design procedure from schematic entry to completion of a
functioning device using OrCAD’s SDT Schematic Editor. Although
the design is fairly simple, it demonstrates many development
system features that you can use for more complex FPGA designs.

Design Flow
The Xilinx design flow is represented in Figure 11-1 and is described
in the following steps. Most of the process is handled by the XMake
program. You control each step using the XACT Design Manager
(XDM), a graphic interface for Xilinx software.

● Create a schematic with the OrCAD schematic editor, using
symbols from Xilinx libraries.

● XMake reads the SCH files and performs the following steps:

● Runs OrCAD’s Annotate program to assign unique instance
names to all symbol placements in the schematic

● Creates an OrCAD netlist (INF) file for each schematic using
OrCAD’s INET program

● Translates INF files to Xilinx Netlist Format (XNF) with
SDT2XNF

● Merges the XNF files into a single top-level XNF file

● Trims unused logic

● Performs an electrical rule check on the XNF file

● Maps the logic into FPGA device resources, configurable logic
blocks (CLBs), and input/output blocks (IOBs)
OrCAD Interface/Tutorial Guide — 0401409 01 11-1

OrCAD Interface/Tutorial Guide
● Places the blocks and routes the connections between them

● Creates a configuration bitstream

● Download the bitstream into one of the Xilinx demonstration
boards to test the design

In this tutorial, the processing sequence is executed once, then a small
change is made to the design, and it is processed again to show you
how to do incremental design. A second tutorial steps through
simulation of this design (see the “VST Tutorial” chapter in this
manual), and advanced tutorials use optional blocks to demonstrate
topics such as X-BLOX and Xilinx ABEL (see the “X-BLOX Tutorial,”
“Xilinx ABEL Tutorial,” and “XACT-Performance and XDelay
Tutorial” chapters of this manual).

You choose whether to target the design for an XC3000A, XC3000,
XC4000A, or XC4000 device. Make sure you have the Xilinx
demonstration board with the correct device, and the right software
for the part you choose. (The Release Document that comes with your
software package describes which devices it can support.) Then,
using the appropriate demonstration board, you can observe your
design in operation as part of a functioning system.

Note: This tutorial frequently references design flows that differ
depending on which device you are using. To simplify the text, the
phrase “XC3000 family” is used to reference all of the XC3000,
XC3000A, XC3000L, XC3100, and XC3100A devices. When simply
“XC3000” is used, it means that the XC3000A, XC3000L, XC3100, and
XC3100A devices are not included. Similarly, “XC4000 family” means
XC4000, XC4000A, XC4000D, and XC4000H parts, and “XC2000 fam-
ily” includes both XC2000 and XC2000L devices.

For more information about the Xilinx design flow, see your XACT
User Guide. For more information about the Xilinx/OrCAD interface,
see the other chapters of this manual. They include useful
information about the Xilinx/OrCAD interface and creating XNF
files.
11-2 Xilinx Development System

SDT Tutorial
Figure 11-1 FPGA Design Flow

Required Software
This tutorial assumes that you are using the following versions of the
development software.

● OrCAD/SDT 386+ — any version

● OrCAD/SDT Schematic Interface — SDT2XNF version 5.00 or
later

● XACT Design Manager — XDM version 5.00 or later

Before Beginning the Tutorial
Before beginning the tutorial, you must set up your PC to use OrCAD
386+ and the XACT Development System software.

1. Verify that your PC is properly configured — consult the
“Development System Hardware Requirements” section of The
Programmable Logic Data Book.

2. Install SDT 386+.

X4542

OrCAD SDT

SCH

SCH

Cleanup

XNF

XMake

LCA BIT Bitstream

Xilinx Netlist Xilinx Netlist

XChecker MakePROM

Download
to Board

Configuration
PROM File

X-ABEL

XNF

MEMGEN

XNF

Other
3rd Party
Interfaces

Routed
Design
OrCAD Interface/Tutorial Guide 11-3

OrCAD Interface/Tutorial Guide
3. Install the XACT Development System, following the installation
instructions in the release documents provided with the software.
You can install the Base Development System for OrCAD, which
includes the Base Development System FPGA core tools and the
OrCAD interface and libraries. Alternatively, you can load the
OrCAD SDT/VST Interface (DS35) and the XACT Development
System, DS502.

When you have finished the installation, verify that your
autoexec.bat file contains, among other things, lines similar to the
following.

set XACT=c:\xact
set ORCADEXE=c:\orcadexe\
set ORCADESP=c:\orcadesp\
set ORCADPROJ=c:\orcad\
set ORCADUSER=c:\orcadesp\
PATH ...;c:\xact;c:\orcadexe;...

Note: This tutorial assumes that your Xilinx and OrCAD software are
loaded on the c: drive, but you can substitute any other drive. If your
PC is configured with only one drive, it is not necessary to specify a
drive. You can load the Xilinx software on one drive and the OrCAD
software on another drive, but it is recommended that you load the
OrCAD/Xilinx Interface on the drive with your Development System
software rather than on the drive with the OrCAD software. If you
load the interface to a drive other than the one containing the
Development System, you create a second XACT directory containing
your Xilinx libraries. If you must create a second XACT directory
because of drive size limitations, see the ‘‘Partitioning Software
Between Two Different Disks” section in the ‘‘Getting Started”
chapter.

Your config.sys file should include lines similar to the following.

files=25
buffers=25
REM make extra space to accommodate more
REM environmental variables
shell=c:\dos\command.com c:\dos\ /e:1024 /p

After installing the software, reboot your PC so that the changes
are implemented. Changes to the autoexec.bat file take effect if
you simply run the file by typing c:\autoexec ↵, but changes to
11-4 Xilinx Development System

SDT Tutorial
the config.sys file do not take effect until the PC is rebooted.

Installing the SDT Tutorial
The tutorial files are optionally installed when you install the Xilinx/
OrCAD interface software. If you have already installed the software
but are not sure whether you specified tutorial installation, check for
the c:\xact\tutorial\orcad\calc directory. This directory contains the
tutorial files.

Creating the Project Directory
OrCAD project directories are always placed in the ORCADPROJ
directory as defined in your autoexec.bat file.

1. To create an OrCAD design directory using the ESP design
environment, type orcad ↵ from any directory. The ESP
executive screen appears.

2. Click twice with the left mouse button on the Design Management
Tools button at the lower right. The first click selects the Design
Management Tools , and the second selects Execute from the
menu that appears in response to the first click.

3. Click on Create Design .

4. Click on the box next to New Design Name, and type calc ↵.

5. Click on the OK button.

This procedure creates the c:\orcad\calc directory and copies
several OrCAD configuration files into that directory from the
c:\orcad\template directory.

Note: This tutorial assumes that your ORCADPROJ variable is set to
c:\orcad\. You need not follow this convention.

6. Click on the OK button to exit the Design Management Tools.

7. Click on Exit ESP twice to exit the OrCAD ESP environment.

Configuring the Project Directory
The next step is to configure the Calc design directory for use with
Xilinx designs. The design directory has been created and the
configuration files installed, but the files do not contain the correct
OrCAD Interface/Tutorial Guide 11-5

OrCAD Interface/Tutorial Guide
 information about the Xilinx libraries, the attributes allowed for
Xilinx devices, and so forth.

Running XDraft
Xilinx provides a program, XDraft, that configures the project
directory for either XC2000, XC3000, XC4000 or XC7000 (EPLD)
family devices. Use XDraft with the correct modifier to target the Calc
design to either the XC3000 or XC4000 family.

1. Type cd c:\orcad\calc ↵.

2. Type xdraft 3 ↵ or xdraft 4 ↵ , depending on whether you
are targeting an XC3000 or an XC4000 device.

Sdt.cfg File
You can create an OrCAD project directory using ESP, as you did in
the “Creating the Project Directory” section, or by creating a directory
under ORCADPROJ with the mkdir command. However, there is one
file that must be present before you can open the OrCAD schematic
editor, SDT. You cannot bring up SDT unless you have an OrCAD
configuration file, sdt.cfg, in the project directory.

XDraft’s only function is to edit the sdt.cfg file and its simulation
counterpart, vst.cfg. See the “Vst.cfg File” section of the “VST
Tutorial” chapter of this manual for a discussion of the vst.cfg file.

Using a text editor, look at the sdt.cfg file, which is in ASCII format.
(There is a binary version of the file, automatically created by the
software, called sdt.bcf. You can ignore the sdt.bcf file or even delete
it, but SDT regenerates it.) The sdt.cfg file is the most important file in
the design directory. In fact, you could create a design directory
simply by creating a directory under c:\orcadproj in DOS, and
copying the sdt.cfg file from c:\orcadproj\calc. You would not need
any other files, nor would you have to modify the file in any way to
enter another Xilinx design, as long as the sdt.cfg file is copied from a
directory configured for the same Xilinx device family.

XDraft makes several changes to the sdt.cfg file. The PLIB, LIB, DMF,
DIM, and FN lines are modified during the configuration process.
PLIB, the Library Prefix, points to the library files listed in the LIB
statements. DMF points to the Macro File where keystroke macros are
defined. DIM indicates the Initial Macro. The FN lines define the
11-6 Xilinx Development System

SDT Tutorial
parameters that can be used in Xilinx designs, such as LOCation and
BLKNM. The PLIB, LIB and FN lines differ between the product
families.

A portion of a sample sdt.cfg file for the XC3000 family follows.

{ OrCAD/SDT IV Configuration File }
PDRV = ’C:\ORCADESP\DRV\’
PSCH = ’’
PLIB = ’c:\xact\xc3000’
LIB = ’XC3000.LIB’
LIB = ’XBLOX.LIB’
DD = ’VGA640.DRV’
PRD = ’’
PLD = ’’
DMF = ’c:\xact\MACRO3.MAC’
DIM = ’\I’
.
.
.
FN1 = ’LOC, OPTIONS’
FN2 = ’BLKNM’
FN3 = ’BASE’
FN4 = ’CONFIG’
FN5 = ’EQUATE_F’
FN6 = ’$FCONT’
FN7 = ’EQUATE_G’
FN8 = ’$GCONT’
.
.
.

You can edit the sdt.cfg file with any text editor to add new libraries
to the search path just by adding additional LIB lines. OrCAD also
has automated methods of adding libraries. For a discussion of user-
created libraries, see the ‘‘User-Created Libraries” section in the
‘‘OrCAD SDT Desgin Techniques” chapter.

Note: If you manually edit the sdt.cfg file, it is a good idea to delete
the binary configuration file, sdt.bcf, before entering OrCAD again.
Otherwise, your changes may not be seen by the software.
OrCAD Interface/Tutorial Guide 11-7

OrCAD Interface/Tutorial Guide
Copying the Tutorial Design Files
The SDT tutorial installation creates a directory on the target drive
called c:\xact\tutorial\calc (assuming that c:\xact is your XACT
directory), and copies over the files you need to complete the tutorial.
However, you must copy the design files to your calc project
directory.

1. Make sure you are still in the c:\orcad\calc directory.

2. Copy the files you need to perform the tutorial. Type:

copy c:\xact\tutorial\orcad\calc ↵

The tutorial files are copied into the project directory.

Solutions Directories
Not all of the files for the complete Calc design are placed in the
project directory, because you create some files during the tutorial.
However, solutions directories with all input and output files are
provided. They are located in the c:\xact\tutorial\orcad\calc
directory and are named as follows:

soln_3ka — solution files forXC3020APC68
soln_4ka — solution files forXC4003APC84
soln_3k — solution files forXC3020PC68
soln_4k — solution files forXC4003PC84

The solutions directories contain all pertinent design files from the
completed tutorial, including all schematics and the bitstream
generated by the MakeBits program.

Brief descriptions of the solutions files are given in Figure 11-2. Most
of these files are created in the course of this tutorial; therefore, only a
few of them are placed directly into the c:\xact\tutorial\calc
directory. However, some may be needed for later reference, so do not
write over any files in the solutions directories.

Many of the files listed in Figure 11-2 are intermediate files that are
listed here for information only. Not all intermediate files are created
for all FPGA families. Not all intermediate files are included in all
solutions directories.
11-8 Xilinx Development System

SDT Tutorial
File Description

stat_abl.abl Xilinx ABEL file for state controller module,
replaces Statmach schematic (advanced tutorial)

stat_abl.xsf Symbol definition file for Xilinx ABEL block
(advanced tutorial)

calc_4k.cst Constraints file that sets pad locations for 4K parts
calc.sch Top-level schematic file for design
calcsim.sch Top-level schematic with stimulus and trace data
control.sch Schematic file for control module
statmach.sch Schematic file for state controller module
alu.sch Schematic file for ALU module
alu_blox.sch Schematic file for ALU module, X-BLOX

version (incomplete, advanced tutorial)
bloxsoln.sch Schematic file for ALU module, X-BLOX

version (complete, advanced tutorial)
muxblk2.sch Schematic files for arithmetic functions, used in
andblk2.sch ALU
orblk2.sch
xorblk2.sch
muxblk5.sch Schematic file for multiplexing arithmetic outputs,

used in ALU
stack.sch Schematic file for stack
stack_4k.sch Schematic file for stack, optional 4K version using

on-chip memory, replaces Stack schematic (use
with 4K parts only)

led_inv.sch Schematic file for pad interface to LED bar on
3K/4K and 4K demo boards

led_tru.sch Schematic file for pad interface to LED bar on
3K demo board

7segdec.sch Schematic file for 7-segment decoder
7seg_inv.sch Schematic for pad interface to 7- segment

display on 3K/4K and 4K demo boards
7seg_tru.sch Schematic for pad interface to 7-segment

display on 3K demo board
sw7.sch Schematic for pad interface to seven of eight

switches on demo boards
debounce.sch Schematic for debounce circuit
osc_3k.sch Schematic for pad interface to RC circuit on demo

boards
osc_4k.sch Schematic for 4K on-chip oscillator
calcsim.ast ASCII stimulus data for advanced tutorials
OrCAD Interface/Tutorial Guide 11-9

OrCAD Interface/Tutorial Guide
calcsim.stm Binary stimulus data for advanced tutorials
calcsim.atr ASCII trace data for advanced tutorials
calcsim.trc Binary trace data for advanced tutorials
*.inf OrCAD netlist files generated by INET
calc.inx File listing generated by INET
xnf\stat_abl.xnf Xilinx netlist format file created by Xilinx ABEL

(advanced tutorial)
xnf\stat_abl.xas Simulation version of XNF file created by Xilinx

ABEL (advanced tutorial)
xnf*.xnf Xilinx netlist format files created by SDT2XNF
calc.xff Output of XNFMerge, netlist of merged design
calc.mrg Merge report file generated by XNFMerge
calc.xtf Output of XNFPrep, netlist of trimmed design
calc.prp Report file generated by XNFPrep
xnfprep.log Log file generated by XNFPrep
calc.map Mapped logic file generated by XNFMAP
calc.pgf Paritioning guide file generated by XNFMAP,

 needed for doing incremental design
calc.crf Cross-reference file generated by XNFMAP
calc.rpt Routing report file generated by PPR
calc.rpf Routing report on file without delay optimization
ppr.log Log file generated by PPR
calc.lca Placed and routed LCA file generated by PPR
calc.lcb Earlier version of LCA file generated by XMake
calc.odf Intermediate version of LCA file generated by PPR
calc.tna Logic mapping table created by PPR
calc.bit Bitstream for downloading to FPGA generated by

MakeBits
calc.mbo Bitstream configuration file generated by MakeBits
calc.mak Script file generated and used by XMake
calc.out XMake report file

Figure 11-2 Tutorial Files in the Solutions Directories

Loading the CALC Schematic into OrCAD SDT
You have created and configured the project directory, and copied
over existing schematics for the Calc design. You are ready to load the
CALC schematic into the OrCAD schematic editor, SDT, and begin
working on the design.
11-10 Xilinx Development System

SDT Tutorial
Starting the XACT Design Manager (XDM)
The XACT Design Manager (XDM) is a menu–based shell program
that interfaces to all Xilinx development software. In addition, many
third–party software packages (including OrCAD) can be accessed
through XDM. Thus, you can control the entire design process, from
schematic entry in OrCAD to downloading the bitstream with
XChecker, from inside XDM.

1. To start XDM from the DOS prompt, type xdm ↵.

XDM provides a context–sensitive help command that provides
explanations of available software options.

2. To use XDM Help, position the cursor over the menu selection in
question and press the F1 function key. A text window briefly
explaining the command function and usage opens on the screen.
To return to the XDM menu, press F1 again.

Accessing OrCAD from XDM
The next step is to access the OrCAD software.

1. To start the OrCAD design environment from the XDM menu,
click the left mouse button once on DesignEntry .

2. Select ORCAD.

The ESP executive screen appears.

Note: If OrCAD does not appear in the DesignEntry menu, check the
autoexec.bat file. Verify that the ORCADEXE directory appears on
your path, with the correct drive designator. If the ORCADEXE
directory is on your search path, but OrCAD does not appear in the
DesignEntry menu, XDM may not know where to look for it. Select
Utilities ➝ Scandisk from the XDM menus; XDM scans your
system for supported software.

Selecting Calc as the Active Design
You must select Calc as your active design. Currently the active
directory is set to c:\orcad\template, which is the directory where
OrCAD stores templates for all of its configuration files.

1. Select Design Management Tools ➝ Execute .
OrCAD Interface/Tutorial Guide 11-11

OrCAD Interface/Tutorial Guide
A list of all OrCAD project directories appears.

2. Select the Calc design from the list of design directories.

3. Select OK.

The words CALC Design appear at the top of the ESP screen.

Changing the Default Design
If the startup design is set back to Template the next time that you go
into OrCAD, you must change it to Calc the same way you did the
first time. It is easier to set the default startup design from the OrCAD
ESP Design Environment to avoid having to set the design each time
you go into OrCAD. To make this change:

1. Select Schematic Design Tools ➝ Configure ESP .

2. Go down to Design Options and set the Startup Design to
CALC. Click OK to save the change.

This procedure is equivalent to changing the
c:\orcad\template\esp.cfg file so that one line reads DESIGN =
’CALC’ .

The Calc design remains the default design for the ESP Design
Environment until you change the default again.

Accessing SDT, the OrCAD Schematic Editor
The schematic editor portion of the OrCAD/SDT package is called
Draft.

1. To enter the schematic editor, select Schematic Design Tools
➝ Execute .

2. Click on DRAFT ➝ Execute .

Note: There are other ways of entering Draft. You can type orcad ↵
directly at the DOS command line, which bypasses XDM entirely but
still uses the ESP Design Environment. You can also type draft
calc ↵ at the DOS prompt, thereby bypassing all frameworks.

The top-level schematic for Calc appears on the screen. The drawing
consists of nine functional blocks, each labeled to describe the
operation of a logic diagram on a lower level, and one pad with an
11-12 Xilinx Development System

SDT Tutorial
input buffer. The root drawing of the design is already complete. You
will add schematic information to the lower levels.

Using the mouse, pan around the schematic to see the entire top–
level drawing. As the cursor is moved toward the edge of the screen,
a different section of the drawing scrolls into view. At first, the
schematic is displayed at a low level of magnification, which can be
changed by using the OrCAD Zoom command.

Using OrCAD Commands
In the OrCAD schematic editor, you execute commands by choosing
options from a series of pulldown menus. As shown in Figure 11-3,
each submenu contains a group of related commands. The diagram
in this figure shows the main Draft menu, labeled OrCAD/SDT, and
several submenus that are used in this tutorial.

Entering OrCAD Commands with the Mouse
The Zoom command brings up the Zoom menu, which changes the
magnification level of the drawing. The Zoom command is used here
to demonstrate how to execute commands and access menus using
the mouse.

1. To bring up the command menu, click the left mouse button
anywhere on the schematic, or type ↵.

The OrCAD/SDT menu shown in Figure 11-3 appears on the
screen.

2. Move the menu cursor to Zoom and click the left mouse button
again; the Zoom submenu appears.

Note: To escape from an incorrectly selected menu without executing
a command, either click the right mouse button or press the Escape
key.

3. Use the mouse to select the In option to execute the Zoom In
command.

The drawing is now displayed at its highest level of magnification
(scale = 1), so that you can read all of the text labels.

To zoom back out and view more of the drawing on one screen,
use the Zoom Out command.
OrCAD Interface/Tutorial Guide 11-13

OrCAD Interface/Tutorial Guide
4. Select Zoom from the main menu and then Out from the submenu.

Figure 11-3 OrCAD Menu Structure

X2927

OrCAD/SDT

Again
Block
Conditions
Delete
Edit
Find
Get
Hardcopy

Jump
Library
Macro
Place
Quit
Repeat
Set
Tag
Zoom

Block

Delete

Library

Place

Quit

Zoom

Move
Drag
Fixup
Get
Save
Import
Export
ASCII Import
Text Export

Object
Block
Undo

Directory
Browse

Wire

Enter Sheet
Leave Sheet
Update File
Write to File
Initialize
Suspend to System
Abandon Edits
Run User Commands

Center(1)
In (1)
Out (2)
Select

Bus
Junction
Entry (Bus)
Label
Module Port
Power
Sheet
Text
Dashed Line

Inquire

Trace Name
Vector
Stimulus
NoConnect
Layout
11-14 Xilinx Development System

SDT Tutorial
Entering OrCAD Commands from the Keyboard
As an alternative to using the mouse to select menu commands, you
can execute a command by typing the first character of a menu
command. If two commands begin with the same letter, a different
letter from the second command is highlighted in the menu. Use the
highlighted letter to select the second command using the keyboard.
Executing commands from the keyboard is usually faster and more
convenient than using the menus, once you are familiar with
available commands.

Although it is not necessary to have the main menu on the screen to
enter a command, the Enter (↵) key calls it up for reference.

1. To execute the Zoom Out command without using the mouse,
first press ↵ to call up the main menu. (This step is optional.)

2. Type z to execute the Zoom command.

The Zoom submenu appears on the screen.

3. Type o to execute the Out option.

The magnification level of the drawing is reduced.

Using OrCAD Key Macros
Although this menu organization provides a logical structure for the
many OrCAD commands, repetitive operations such as drawing
wires can be somewhat tedious. For this reason, OrCAD allows the
PC function keys to be defined as key macros, each of which triggers
a sequence of menu selections. All available key macros are listed in
the “Macro Files” section of the “Getting Started” chapter of this
manual. They are defined in the c:\xact\macro3.mac file, which is the
macro file referenced by the sdt.cfg file; see the discussion of the
sdt.cfg file in the ‘‘Before Beginning the Tutorial” section earlier in
this chapter.

In this tutorial, most commands are presented in menu form, since
familiarity with the menu structure is vital to understanding OrCAD.
However, equivalent key macros are available for many command
sequences. Key macros performing functions used in this tutorial are
listed in Figure 11-4, and each of these key macros is referenced as a
“Keyboard Shortcut” the first time the command sequence appears in
the tutorial.
OrCAD Interface/Tutorial Guide 11-15

OrCAD Interface/Tutorial Guide
Note: You can terminate a keyboard macro with the Escape key;
however, you may find that the interrupted command sequence
leaves you in an intermediate state. In this case, click the left mouse
button once, then the right button once, to exit the macro.

Block ➝ Drag ➝ Begin ➝ End F5
Block ➝ Export Shift-F4
Block ➝ Import Shift-F3
Block ➝ Move Ctrl-F5
Block ➝ Save ➝ Begin ➝ End ➝ Block ➝ Get F3
Delete ➝ Block Ctrl-F4
Delete ➝ Object F4
Edit ➝ Edit ➝ Name Alt-E
Get ↵ F1
Library ➝ Directory Ctrl-F1
Place ➝ Bus ➝ Begin F6
Place ➝ Junction Ctrl-F2
Place ➝ Label F7
Place ➝ Module port F8
Place ➝ Sheet F9
Place ➝ Text Ctrl-F9
Place ➝ Wire ➝ Begin F2
Quit ➝ Suspend to System Shift-F9
Quit ➝ Update File Shift-F6
Quit ➝ Update File ➝ Abandon Edits Shift-F10
Quit ➝ Update File ➝ Enter Sheet ➝ Enter ➝ Escape

Alt-F7
Quit ➝ Update File ➝ Leave Sheet Alt-F8
Quit ➝ Write to File Shift-F7
Zoom ➝ In PgDn or Alt-F5
Zoom ➝ Out PgUp or Alt-F6

Figure 11-4 OrCAD/SDT Key Macros Used in This Tutorial

Design Description
The top-level schematic for the tutorial design, Calc, is shown in
Figure 11-5. The Calc design consists of a 4-bit processor with a stack.
The processor performs functions between an internal register and
either the top of the stack or data input from external switches. The
results of the various operations are stored in the register and
displayed in hexadecimal on a 7-segment display. The top value in
the stack is displayed in binary on a bar LED.
11-16 Xilinx Development System

SDT Tutorial
The design consists of nine basic functional blocks:

● ALU

The arithmetic functions of the processor are performed in this
block.

● CONTROL

The opcodes are decoded into control lines for the stack and ALU
in this module.

● STACK

The stack is a 4-nibble storage device. It is implemented using flip-
flops in the device-independent design. You can substitute a RAM
module called STACK_4K in the XC4000-specific design to take
advantage of the on-chip RAM capability of the XC4000 family.

● OSC_3K

This module is used in XC3000 family designs. It generates a clock
signal using the RC oscillator circuit on the FPGA (XC3000/
XC4000) and XC3000 demonstration boards. It is replaced by the
OSC_4K internal oscillator circuit for the XC4000-specific design.

● DEBOUNCE

This circuit debounces the “execute” switch, providing a one-shot
output.

● SW7

The switch connections for opcode and data input are imple-
mented within this module.

● 7SEGDEC

This block decodes the output of the ALU for display on the 7-seg-
ment decoder.

● 7SEG_INV

This module implements the connections to the 7-segment display
on the FPGA (XC3000/XC4000) and XC4000 demonstration
boards. It is replaced by the 7SEG_TRU circuit if you are using the
XC3000 demonstration board.
OrCAD Interface/Tutorial Guide 11-17

OrCAD Interface/Tutorial Guide
● LED_INV

The value at the top of the stack is displayed in binary on the LED
bank of the FPGA (XC3000/XC4000) and XC4000 demonstration
boards using this block. It is replaced by the LED_TRU circuit if
you are using the XC3000 demonstration board.

Figure 11-5 Top-Level Schematic for CALC

Exploring OrCAD Symbols
Each of the blocks shown in Figure 11-5, such as CONTROL or ALU,
is linked to a second-level module that describes its logic. In turn, any
second-level module can contain another block that references a
third-level drawing. This organization is called a hierarchical
structure.

There are two types of symbols used in OrCAD schematics.
11-18 Xilinx Development System

SDT Tutorial
CONTROL and ALU are placements of OrCAD “sheets.” A sheet is a
schematic that you create. You must draw or copy a new symbol each
time you place a sheet in a schematic.

The other type of symbol is a library element. A library element has a
single symbol, which you place using the Get command. You can
place the symbol as many times as you wish. The symbol is stored as
part of a .lib file, such as the ones you received from Xilinx. You can
also create your own library symbols. If you plan to create a sheet
that will be placed many times in a design, or one that will be used in
more than one design, it is a good idea to put it into a user-created
library. See the ‘‘User-Created Libraries” section of the “OrCAD SDT
Design Techniques” chapter for instructions on how to make your
own libraries.

The IPAD and IBUF symbols in the Calc schematic are missing the
colors that characterize the other blocks in the design, because they
are elements from a library and not sheets in the design directory.
Placements of sheets from the design directory always appear in
color. The presence or absence of these colors is a simple and effective
way to tell the difference between library elements and schematic
sheets.

Completing the ALU Schematic
In this section, you push into the ALU schematic. The ALU schematic
is incomplete; you complete the schematic by adding two sheet
symbols and one element from the Xilinx library.

Pushing into the ALU Schematic
From the CALC schematic, push into the ALU block.

1. Select Zoom ➝ In to bring the drawing to its highest level of
magnification.

Keyboard Shortcut: Zoom ➝ In corresponds to the “PgDn” key or
the Key Macro “Alt-F5.” You can perform step 1 by pressing the PgDn
key or by holding down the Alt key and pressing the F5 function
key.

2. Move the cursor inside the ALU sheet symbol.
OrCAD Interface/Tutorial Guide 11-19

OrCAD Interface/Tutorial Guide
3. Press ↵ to bring up the main menu, and select Quit . Alternatively,
you can just type q.

4. Select Enter Sheet from the submenu.

A list of command options appears horizontally across the top of
the screen. This command list is different from a regular OrCAD
menu; only the keyboard can be used to make a selection. Simply
type the first letter of the desired option.

Alternatively, to call up an equivalent menu for this command list,
click the left mouse button; a menu with exactly the same options
appears.

5. Using either method just described, choose Enter from the menu
to finish the Enter Sheet command.

Draft now displays the drawing alu.sch, which is the schematic
represented by the ALU block in calc.sch.

6. Press the Escape key or click the right mouse button to exit the
Enter Sheet command list.

Keyboard Shortcut: Quit ➝ Enter Sheet ➝ Enter ➝ Escape
is similar to the Key Macro “Alt-F7,” which saves the current
schematic and then enters the new sheet. Alt-F7 actually corresponds
to Quit ➝ Update File ➝ Enter Sheet ➝ Enter ➝
Escape . You can perform steps 3 through 6 by holding down the Alt
key and pressing the F7 function key.

The incomplete schematic for the ALU is shown in Figure 11-6. This
schematic contains both library elements and sheet symbols that
reference third-level drawings. You will add two sheet symbols and a
library element to complete the schematic.
11-20 Xilinx Development System

SDT Tutorial
Figure 11-6 Incomplete Schematic Drawing for ALU

Enabling X and Y Coordinates
Before creating the sheet symbols for the ALU, enable the display of
the X and Y coordinates.

1. Select Set from the main menu.

2. Click on X,Y Display on the Set submenu.

3. Select Yes .

You can use either the mouse or the keyboard to enter these
commands.

Now move the cursor around the drawing, and observe that the
absolute X,Y coordinate location of the cursor is displayed in the
OrCAD Interface/Tutorial Guide 11-21

OrCAD Interface/Tutorial Guide
upper right corner of the screen. This display makes sheet symbol
placement easier.

Defining a Sheet Symbol
Now you are ready to begin creating the ANDBLK2 sheet symbol. As
a guide, refer to Figure 11-7, which shows the completed symbol for
ANDBLK2.

1. Click on Place ➝ Sheet .

Keyboard Shortcut: Place ➝ Sheet corresponds to the Key
Macro “F9.” You can perform step 1 by pressing the F9 function key.

2. Position the cursor at location 3.30, 2.60, using the coordinate
display as a guide. Establish this point as the upper left corner of
the sheet symbol by typing b to select Begin.

3. Now move the cursor to position 4.40, 3.50; the sheet symbol
changes size as the cursor is dragged to the lower right corner.
Establish this corner by selecting End.

This step creates a rectangular block with a “?” displayed above
the top left-hand corner. Move the mouse and observe that the
cursor now moves only along the sides of the block, facilitating
the placement of input and output pins. A new command list
appears displaying the options used in creating pins.

4. To define the first input pin, position the cursor at location 3.30,
2.70 and type a to select Add-NET.

The Net Name? prompt appears.

5. Type the name of the first input pin: A0 ↵.

Now the Net Type menu appears.

6. Select Input .

The A0 input pin is displayed on the left side of the functional
block.

7. To define the second input pin, position the cursor at 3.30, 2.80 and
select Add-Net . Type A1 ↵, and click on Input .

These commands establish the A1 input pin for the block.
11-22 Xilinx Development System

SDT Tutorial
8. Similarly, add input pins for A2, A3, B0, B1, B2, and B3, in the
locations shown in Figure 11-7

You will define the output as a bus. Any pins may be defined
either as buses or as individual signals. Which of these types of
pins you use in your designs is a matter of personal choice.

9. To define the output pin, position the cursor at 4.40, 3.00 and
select Add-Net . Type O[3..0] ↵, and select Output .

These commands establish the O[3..0] output pin for the block.

10. If a pin is misplaced or incorrectly named, delete it by placing the
cursor on the pin and selecting Delete . The erroneous pin is
erased; use Add-Net to place the correct pin.

Figure 11-7 Completed ANDBLK2 Symbol in ALU Block
OrCAD Interface/Tutorial Guide 11-23

OrCAD Interface/Tutorial Guide
11. Once all pins have been correctly placed, the sheet symbol must be
given a name. Select Name.

The Sheet Name? ? prompt appears. The second question mark
is actually the current name of this sheet symbol, as shown above
the block.

12. Use the Backspace key to delete this default name and type
ANDBLK2↵.

This particular sheet symbol can have any name, but for the sake
of simplicity it is given the same name as the schematic.

If you do not specify a Sheet Name for this symbol, a name is
assigned by the software, and the name may change if you make a
change anywhere in the schematic. It is easier in the long run to
make a habit of assigning a Sheet Name to each symbol as you
enter it on the schematic.

You must also specify the file that contains the actual drawing for
ANDBLK2. This file name must be defined to be the same as the
schematic name with the addition of an .sch extension.

13. To name this file, select Filename .

14. Use the Backspace key to erase the default file name given, and
type ANDBLK2.SCH↵.

This step completes the definition of the ANDBLK2 sheet symbol.

15. Press the Escape key twice or click the right mouse button twice
to escape from the current command lists.

Copying a Sheet Symbol
The other sheet symbol missing from the ALU schematic is called
ORBLK2. You could create this symbol with the same commands that
you used for ANDBLK2. However, since ORBLK2 is equivalent to
ANDBLK2 in size and pin format, it is simpler to copy ANDBLK2 to
another location, and then edit the symbol to create ORBLK2.

1. To copy ANDBLK2, move the cursor to the upper left corner of the
sheet symbol just below the symbol name.

2. Select Block ➝ Save ➝ Begin ➝ End .
11-24 Xilinx Development System

SDT Tutorial
This procedure stores a copy of the ANDBLK2 symbol in a
temporary buffer for later placement.

3. To place this copy, select Block ➝ Get .

A highlighted outline of ANDBLK2 appears; as the cursor is
moved, an outline of the sheet symbol is dragged with it.

Keyboard Shortcut: Block ➝ Save ➝ Begin ➝ End ➝ Block
➝ Get corresponds to the Key Macro “F3.” You can perform steps 2
and 3 by pressing the F3 function key.

4. To place this new symbol in the proper location for ORBLK2,
move the cursor up to location 3.30, 1.40 and select Place .

A copy of ANDBLK2 appears in the new location. The block
outline is still highlighted over this copy of ANDBLK2 , so you
could move the cursor to another location and place a second
copy. However, only one copy is needed for this schematic, so
press Escape to exit the command.

5. Next, the names on this copy of ANDBLK2 must be modified to
represent ORBLK2. Place the cursor inside the new block and
select Edit ➝ Edit .

The command list used during pin creation appears on the
prompt line. As before, the cursor is locked onto the sides of the
symbol.

6. Correct the symbol name by selecting Name.

7. Change the name ANDBLK2to ORBLK2↵.

As before, you can make the Sheet Name any string, as long as it
does not violate the Xilinx conventions. See the “Naming
Conventions” section of the “OrCAD SDT Design Techniques”
chapter in this manual for a discussion of legal names.

8. Now select Filename .

9. Change the file name to ORBLK2.SCH↵.

Since none of the pins or pin names need to be changed, this step
completes the definition of the ORBLK2 sheet symbol.

10. Press Escape twice to exit the Edit Edit command.
OrCAD Interface/Tutorial Guide 11-25

OrCAD Interface/Tutorial Guide
Placing a Library Symbol
You have placed two schematic sheets, ANDBLK2 and ORBLK2.
There is still one block missing from the ALU schematic: a 4-bit
register to store the contents of the ALU. You can use a 4-bit register
from the Xilinx library to implement this function. The Xilinx library
supports basic primitive functions such as AND gates and OR gates,
and also more sophisticated macros, including counters, registers,
and many other standard MSI functions

1. Move the cursor to the upper right-hand corner of the ALU
schematic.

2. To load the Xilinx macro symbol for a 4-bit register, select Get .

The Get? prompt appears.

Keyboard Shortcut: Get is similar to the Key Macro “F1,” which
corresponds to Get ↵. The Get command followed by a carriage
return displays a list of all libraries referenced by your sdt.cfg file.
When you select one of the libraries, the contents of the library are
displayed so that you can select an element for placement.

3. Type the Xilinx name for a 4-bit register with clock enable, fd4ce
↵.

An outline of the library symbol appears attached to the cursor.

4. Position the symbol at location 7.60, .90 and select Place .

This step places a copy of the FD4CE symbol at the specified
location. After the first register has been placed, the symbol is still
attached to the cursor, so that additional symbols can be placed on
the drawing. However, you only need one placement of FD4CE.

5. Press Escape to exit the Get command.

Drawing Wires
The next step is to add the wires that connect the FD4CE symbol to
the other signals on the schematic. Refer to Figure 11-8 for a drawing
of the symbol with added wires.

1. To draw the wire connected to the D0 pin, first position the cursor
at the D0 pin on FD4CE, and select Place ➝ Wire ➝ Begin .

These commands establish the starting point of the wire.
11-26 Xilinx Development System

SDT Tutorial
Keyboard Shortcut: Place ➝ Wire ➝ Begin corresponds to the
Key Macro “F2.” You can perform step 1 by pressing the F2 function
key.

2. Now move the cursor to the left, to the pin on the MUXBLK5
symbol labeled “O0.” A new wire is drawn behind the moving
cursor. To establish this point as the endpoint of the wire, select
End.

The complete wire is now in place.

3. Similarly, add wires connecting the pins labeled D1, D2, and D3
with the MUXBLK5 symbol pins labeled O1, O2, and O3.

Note: If a wire is drawn so that it overlaps the pin of a symbol, the
two nets are not connected. The wire must terminate at the endpoint
of the symbol pin.

4. Add dangling wires to the CE, C, and CLR pins. Refer to Figure
11-8 for approximate locations. You connect these wires later on in
the tutorial by placing labels on them that correspond to label
names on wires elsewhere in the schematic.

5. Add wires to the Q0, Q1, Q2, and Q3 pins as shown in Figure 11-8.
Besides making internal connections, these wires leave the ALU
schematic sheet by way of elements called module ports that you
add later on in the tutorial.
OrCAD Interface/Tutorial Guide 11-27

OrCAD Interface/Tutorial Guide
Figure 11-8 FD4CE with Wires in ALU Schematic

Drawing Buses
Move the cursor to the left until the ORBLK2 and ANDBLK2 sheet
symbols that you previously added come into view. Now draw the
buses connecting the bused output pins of ORBLK2 and ANDBLK2
with the MUXBLK5 input pins.

1. Position the cursor at the ORBLK2 output pin labelled O[3..0].

2. Select Place ➝ Bus ➝ Begin .

These commands establish the starting point of the bus.

Keyboard Shortcut: Place ➝ Bus ➝ Begin corresponds to the
Key Macro “F6.” You can perform step 2 by pressing the F6 function
key.
11-28 Xilinx Development System

SDT Tutorial
3. Now move the cursor right to the MUXBLK5 pin labeled D2[3..0].
The new bus is drawn behind the moving cursor.

4. Select End to establish the endpoint of the bus.

The complete bus is now in place.

5. Repeat steps 1 through 4 to make the bus connection between the
ANDBLK2 O[3..0] pin and the D1[3..0] pin of the MUXBLK5
symbol.

Placing Bus Entry Elements
It is often convenient to join several related signals into a bus. To join
signals into a bus, or to break individual signals from a bus, use a Bus
Entry element.

The 4-bit buses used as input to the ANDBLK2 and ORBLK2 sheets
are broken into individual elements before descending into the
sheets, in order to teach you to handle both types of symbol pins.

Break out the Q3, Q2, Q1, and Q0 signals from the bus labeled Q[3..0].
Refer to Figure 11-9 while performing the commands in this section.

1. Select Place ➝ Entry (Bus) .

A “/” symbol appears at the cursor.

2. Move the cursor to location 2.40, 1.50.

3. Select Place .

The Bus Entry element is placed so that one end rests on the bus
labeled Q[3..0] and the other end is in line with the A0 pin on the
ORBLK2 symbol.

4. Move the cursor down by one grid and select Place again to
place the Entry element for the A1 pin.

5. Similarly, place Entry elements for the A2 and A3 pins of the
register.

6. Move the cursor to location 2.60, 1.90 and select Place .

7. Moving down one grid at a time, place the other Bus Entry
elements to allow connections between the B pins and the bus
labeled DATA[3..0], as shown in Figure 11-9.

8. Similarly, add Entry elements for the ANDBLK2 inputs. As with
OrCAD Interface/Tutorial Guide 11-29

OrCAD Interface/Tutorial Guide
the ORBLK2 component, the Q[3..0] bus provides input to the A
pins, and the DATA[3..0] bus drives the B pins.

9. Press Escape or click the right mouse button to exit the Place
command.

Figure 11-9 ANDBLK2 and ORBLK2 Connections and Labels

Completing Connections to ANDBLK2 and ORBLK2
The next step is to add the wires that connect the ANDBLK2 and
ORBLK2 symbols with the bus entry elements, as shown in
Figure 11-9.

1. Use the Place ➝ Wire ➝ Begin ➝ End command to add
connections between the bus entry elements and the pins on the
ORBLK2 symbols.

2. Similarly, make the connections for the ANDBLK2 symbol.
11-30 Xilinx Development System

SDT Tutorial
Placing a Junction Symbol
If a bus or wire is drawn so that it overlaps or touches another bus or
wire, the two signals are not connected. At any location where two
buses or wires meet in a T-junction the connection must be indicated
with a junction symbol.

Where the Q[3..0] bus enters the schematic, it branches in two
directions in a T junction. However, as the schematic now stands, no
connection actually exists between the buses.

Add a junction symbol to the Q[3..0] bus as shown in Figure 11-9.

1. Select Place ➝ Junction .

Keyboard Shortcut: Place ➝ Junction corresponds to the Key
Macro “Ctrl-F2.” You can perform step 1 by holding down the
Control key and pressing the F2 function key,

2. Position the cursor at the junction of the buses, at location 2.30,
1.00, and select Place .

A blue square appears at the junction of the two buses,
completing the connection.

3. Press Escape to exit from the Place Junction command.

Placing Labels
Assigning a name to every signal net is highly recommended,
because it greatly simplifies debugging later in the design process.
Unnamed nets are automatically given names that have no meaning
to you. These semi-random names are used in all error and warning
messages, as well as by the simulator.

Every bus must have an indexed label. Every net broken from a bus
must be labeled with the name of the bus followed by the appropriate
index.

Label all wires and buses that you added to the ALU schematic.

1. Select Place ➝ Label .

The Label? prompt appears.

Keyboard Shortcut: Place ➝ Label corresponds to the Key
Macro “F7.” You can perform step 1 by pressing the F7 function key.
OrCAD Interface/Tutorial Guide 11-31

OrCAD Interface/Tutorial Guide
2. Enter the first signal name, OR[3..0] ↵.

This signal name appears attached to the cursor.

3. Move the label to the appropriate signal net, which is the bus
output of the ORBLK2 symbol.

The tip of the cursor arrow must be on the bus itself, ensuring that
the link between the bus and its label is recognized.

4. When the label is properly positioned, select Place .

The label is placed, and the Label? prompt reappears.

5. Type AND[3..0] ↵.

6. Move the label to the output of the ANDBLK2 block and select
Place .

7. In response to the Label? prompt, type Q0↵.

8. Move the cursor so that it points to the wire connecting the Q bus
entry with the A0 pin of the ORBLK2 symbol.

9. Select Place .

The Q0 label is attached to the wire and the label at the cursor
changes to Q1.

The label names increment automatically, which means that after
entering a label ending with a number, the next label defaults to
the same prefix with the next consecutive number. If you do not
want that label, simply press the Escape key or the right mouse
button before entering the next label.

10. Move the cursor down to the next net and select Place to attach
the Q1 label.

11. Repeat the above steps until you have labeled all inputs to the
ORBLK2 and ANDBLK2 symbols, as shown in Figure 11-9.

12. Move the mouse to the upper right until the FD4CE library
symbol appears on the screen.

13. Label all wires making connections to the FD4CE symbol, as
shown in Figure 11-10.

14. When all signals have been named, exit the Place Label command
by pressing Escape .
11-32 Xilinx Development System

SDT Tutorial
If a signal name is entered incorrectly, you can edit it by positioning
the cursor to point to the label and selecting Edit ➝ Edit ➝
Name. Correct the name and press Escape to leave the Edit Label
command.

Keyboard Shortcut: Edit ➝ Edit ➝ Name corresponds to the
Key Macro “Alt-E.” You can change the name of a label or a module
port by holding down the Alt key and typing E.

If a signal name is misplaced, the easiest solution is to erase it using
the Delete Object command, and place it again.

Figure 11-10 FD4CE Symbol with Labels and Module Ports

Placing Module Ports
In Figure 11-10, the symbols attached to the Q0, Q1, Q2, and Q3
signals are called module ports. They are necessary to link the signals
OrCAD Interface/Tutorial Guide 11-33

OrCAD Interface/Tutorial Guide
on the lower-level drawing to the pins on the upper-level sheet
symbol. The name used for each module port must exactly match the
name of the corresponding upper-level pin.

1. To place the first module port, select Place ➝ Module Port .

The Module Port Name? prompt appears.

Keyboard Shortcut: Place ➝ Module Port corresponds to the
Key Macro “F8.” You can perform step 1 by pressing the F8 function
key.

2. Enter the first port name, Q0↵.

The Module Port Type menu appears.

3. Since this is an output signal, select Output .

Now the module port appears attached to the cursor.

4. Move the port to the end of the Q0 signal net and select Place .

The Q0 module port is established, and a new module port, Q1,
appears at the cursor.

As with label names, module port names increment automatically.
If you do not want that module port name, simply press the
Escape key or the right mouse button before entering the next
module port name.

5. Place the remaining output module ports, Q1, Q2, and Q3, as
shown in Figure 11-10.

6. Press Escape to exit from the Place Module Port command.

7. To edit a module port, use the Edit ➝ Edit command, as
described for signal names.

Although the Calc design uses only input and output module port
types, an FPGA design can also use the bidirectional module port. Do
not use any port type other than input, output, or bidirectional; it will
not be understood by the translation software.

Naming Buses in OrCAD/SDT
Naming buses in OrCAD can be problematical because the naming
conventions must be strictly followed. Some important points for
using buses are listed here.
11-34 Xilinx Development System

SDT Tutorial
● The bus itself and each of its individual signals must be labeled.
The bus and its component signals are linked through a common
label prefix. If the individual nets are labeled D0 through D3, the
bus itself must be labeled D[0..3].

● If signals without a common label prefix, such as control signals,
are to be grouped on a single bus, additional labels with common
prefixes must be attached to the individual signals. This technique
is shown in Figure 11-11. Double labels are necessary where
signals are joined together and where the bus is broken apart.

● A bus can be connected to a sheet symbol pin. The pin name must
be a legal bus name, and it must exactly match both the module
port name and the bus signal name on the lower-level drawing.
The bus label in the upper-level drawing need not match the
name at the lower level. There are several buses in the Calc design
that have different names at different levels of hierarchy: one
example is the SWDATA[3:0] bus in the ALU schematic, which is
labeled SW[3..0] in the top-level CALC drawing.

● Bus pins are not allowed on library symbols.

● Remember, every bus on the schematic must be labeled, even if
you have a module port attached to the bus and there is a legal
bus name on the module port. Neglecting this rule leads to errors
in the translation process.

Figure 11-11 Double-Label Bus

1 2
U?

IBUF

DE C3

1 2
U?

IBUF

WR C2

1 2
U?

IBUF

RD C1

1 2
U?

IBUF

CS C0

C[0..3]

1 2
U?

OBUF

CBUS3 DE

1 2
U?

OBUF

CBUS2 WR

1 2
U?

OBUF

CBUS1 RD

1 2
U?

OBUF

CBUS0 CS

CBUS[0..3]

X2930
OrCAD Interface/Tutorial Guide 11-35

OrCAD Interface/Tutorial Guide
Saving the ALU Drawing
The schematic for the ALU module is now complete and ready to be
saved. The completed schematic for the ALU is shown in Figure 11-
12.

1. To save the finished drawing, select Quit ➝ Update File .

This procedure stores the schematic under the name alu.sch, as the
ALU sheet symbol specifies.

Keyboard Shortcut: Quit ➝ Update File corresponds to the
Key Macro “Shift-F6.” You can perform step 1 by holding down the
shift key and pressing the F6 function key.

2. Press Escape to exit the Quit command.

Figure 11-12 Completed Schematic for ALU
11-36 Xilinx Development System

SDT Tutorial
Creating the ANDBLK2 Schematic
In this section, you create a new schematic. There are currently no
schematics for the ANDBLK2 and ORBLK2 blocks that you placed in
the ALU. First, you create the ANDBLK2 schematic, which ANDs the
bits of two 4-bit buses.

The schematic for ANDBLK2 is shown in Figure 11-13. Since the
drawing for ORBLK2 is very similar to ANDBLK2, ANDBLK2 is
created first and then edited to create ORBLK2.

Note: If you feel that you are already proficient in creating OrCAD
schematics, you can copy the andblk2.sch file from any of the
solutions directories, such as c:\xact\tutorial\calc\soln_3ka, into
your project directory, and continue with the next section, “Creating
the ORBLK2 Schematic.”

Creating a New Schematic Sheet
Create a new worksheet for ANDBLK2.

1. Move the cursor into the ANDBLK2 sheet symbol on the ALU
drawing and select Quit ➝ Enter Sheet ➝ Enter .

The <<<New Worksheet>>> message appears briefly to indicate
that a blank drawing page has been created for andblk2.sch.

2. Press Escape .

Placing Xilinx Library Primitives
Xilinx primitive gates are named according to their function and
number of inputs, so a three-input AND gate is designated AND3.
If there are inverted inputs on the gate, the letter B followed by the
number of inverted inputs is appended to the name. For example,
a two-input NAND gate with one inverted input is designated
NAND2B1.

1. To see a list of all available Xilinx macros, select Library ➝
Directory.

Keyboard Shortcut: Library ➝ Directory corresponds to the
Key Macro “Ctrl-F1.” You can perform step 1 by holding down the
Control key and pressing the F1 function key.
OrCAD Interface/Tutorial Guide 11-37

OrCAD Interface/Tutorial Guide
2. Select XC3000.LIB , or XC4000.LIB if you are doing an XC4000
design.

The To? prompt appears at the top of the screen.

3. Select Screen to send the output to the screen.

4. Select More and type any key to return to the schematic editor.

Place the AND2 gates required to implement the ANDBLK2
function.

5. To load the primitive symbol for a two-input AND gate, select
Get .

The Get? prompt appears.

6. Type the Xilinx name for a two-input AND gate with no inverted
inputs, and2 ↵.

The AND2 symbol appears attached to the cursor.

7. Position the symbol as shown in Figure 11-13 and select Place .

This step places a copy of the AND2 symbol at the specified
location. After the first AND2 gate has been placed, the symbol is
still attached to the cursor, so that additional symbols can be
placed on the drawing.

8. Press Place to place a second copy of the AND2 gate.

9. Press Escape or click the right mouse button to exit the Get
command.

You will use a different technique to place the remaining AND2
gates.

Copying Library Elements
Use the Block Save and Block Get commands to copy one of the
symbols on the schematic. This command sequence seems
awkward but is both quick and easy if you use the corresponding
key macro. It works very well for copying any object under the
cursor.

1. Place the cursor on top of either of the AND2 symbols.

2. Select Block ➝ Save ➝ Begin ➝ End ➝ Block ➝ Get .
11-38 Xilinx Development System

SDT Tutorial
The AND2 symbol appears attached to the cursor.

3. Move the cursor to the correct location for the third symbol and
select Place .

4. Move the cursor again and select Place to place the last AND2
gate.

5. Press Escape to exit the Get command.

Figure 11-13 Schematic Drawing for ANDBLK2

Moving Library Elements
If you placed a symbol in the wrong location, you can move it:

1. Select Block ➝ Move .

Keyboard Shortcut: Block ➝ Move corresponds to the Key Macro
“Ctrl-F5.” You can perform step 1 by holding down the Control key
and pressing the F5 function key.

2. Position the cursor inside the symbol to be moved and select
Begin ➝ End .
OrCAD Interface/Tutorial Guide 11-39

OrCAD Interface/Tutorial Guide
This procedure attaches the symbol to the cursor so that it can be
repositioned.

3. Select Place to establish the new location.

Experimenting with Wires and Buses
When learning to draw wires and buses in Draft, it can be helpful
to experiment with the different methods.

Place Wire Begin (or the F2 function key) specifies the initial point
of a wire. Place Bus Begin (or the F6 function key) specifies the
initial point of a bus. Repeating the Begin key places a corner
point, End places an end point on the bus or wire, and the right
mouse button ends the command without adding any more
segments.

1. Experiment with the Place Wire and Place Bus commands.

2. After experimenting with drawing wires and buses, erase the
extra segments by placing the cursor on the bus or wire segment
and selecting Delete ➝ Object .

Keyboard Shortcut: Delete ➝ Object corresponds to the Key
Macro “F4.” You can perform step 2 by pressing the F4 function key.

3. For each additional object to be removed, position the cursor on
the object and select Delete .

4. If Draft cannot determine which object is to be deleted, it presents
an additional menu; select the appropriate object to complete the
command.

5. When all unnecessary wires and buses have been removed, press
Escape to exit from the Delete Object command.

Completing the ANDBLK2 Schematic
You have placed the components on the ANDBLK2 schematic. To
complete the schematic, you need to add wires, labels, and module
ports. This schematic does not require any junction symbols because
there are no T connections where wires meet wires, or buses meet
buses.

The completed schematic should look like the drawing in
Figure 11-13.
11-40 Xilinx Development System

SDT Tutorial
1. Use the Place Wire command to add wires to the schematic as
shown.

2. Use the Place Label command to add the following labels: A0, A1,
A2, A3, B0, B1, B2, B3, O0, O1, O2, O3.

3. Add module ports to each labeled wire using the Place Module
Port command.

4. Save the schematic using the Quit Update command.

Creating the ORBLK2 Schematic
Since the ORBLK2 schematic is very similar to the ANDBLK2
schematic, you can use the ANDBLK2 schematic as a template to
create the ORBLK2 drawing.

Note: If you skipped the previous section, “Creating the ANDBLK2
Schematic,” and copied the andblk2.sch file from a solutions
directory, push into the ANDBLK2 schematic and continue with this
section.

Exporting a Block
Using the Block Export command, you can save any rectangular
section of an OrCAD schematic as a new drawing file. The circuit
drawn for ANDBLK2 can be exported into a temporary file and then
loaded back into the ORBLK2 drawing.

The difference between the Block Export command and the Block
Save command, which you used in the “Copying Library Elements”
section earlier in the tutorial, is that Block Export writes the
information to a file, while Block Save places the information in a
temporary buffer. Unless you plan to use the saved information
immediately, it is safer to write it to a file. This file remains in your
design directory until you delete it.

1. To save the ANDBLK2 drawing created above to a temporary file,
select Block ➝ Export .

Keyboard Shortcut: Block ➝ Export corresponds to the Key
Macro “Shift-F4.” You can perform step 1 by holding down the
Shift key and pressing the F4 function key.
OrCAD Interface/Tutorial Guide 11-41

OrCAD Interface/Tutorial Guide
2. Position the cursor in the upper left corner of the schematic and
select Begin .

3. Now move the cursor to the lower right corner of the drawing.

The block definition window expands as the cursor is moved.

4. To establish this corner of the block, select End.

The Export Filename? prompt appears.

5. Enter the name of the temporary file, temp.tmp ↵.

The defined portion of the drawing is saved in the temp.tmp file.

6. Now move one level up in the hierarchy to the ALU schematic by
selecting Quit ➝ Leave Sheet .

The ALU drawing returns.

Importing a Block to Create ORBLK2
You are ready to create the ORBLK2 schematic.

1. Select Enter Sheet from the Quit submenu on the screen.

2. Position the cursor inside the ORBLK2 sheet symbol, and select
Enter .

The <<<New Worksheet>>> message appears briefly, indicating
that a blank drawing page has been created for ORBLK2.sch. The
entire process of moving from ANDBLK2 to ALU to ORBLK2 was
executed from within the Quit submenu; many OrCAD menus are
structured this way to facilitate the rapid selection of related
commands. It is often necessary to use the Escape key to exit from
a command menu.

3. Press Escape to exit the Quit Enter Sheet command.

4. To begin the ORBLK2 schematic, load the drawing previously
exported as temp.tmp by selecting Block ➝ Import .

The File to import? prompt appears.

Keyboard Shortcut: Block ➝ Import corresponds to the Key
Macro “Shift-F3.” You can perform step 4 by holding down the
Shift key and pressing the F3 function key.

5. Type temp.tmp ↵.
11-42 Xilinx Development System

SDT Tutorial
6. Move the cursor to place the drawing near the center of the
schematic sheet, and select Place .

The imported drawing is loaded into the ORBLK2 schematic. The
imported drawing remains highlighted, so you could place
another copy of the import file, if you wished to do so.

7. Press Escape to exit the Block Import command.

Completing the ORBLK2 Schematic
You need to change the AND2 gates to OR2 gates, and the ORBLK2
schematic will be complete, as shown in Figure 11-14.

Use the Delete Block command to delete the AND2 gates.

1. Select Delete ➝ Block .

Keyboard Shortcut: Delete ➝ Block corresponds to the Key
Macro “Ctrl-F4.” You can perform step 1 by holding down the
Control key and pressing the F4 function key.

2. Position the cursor inside one of the AND2 symbols and select
Begin ➝ End .

The symbol is deleted from the schematic.

3. Repeat steps 1 and 2 to delete the remaining AND2 components
from the schematic.

4. Select Get and type or2 ↵.

5. Position the OR2 symbol to replace one of the AND2 gates and
select Place .

6. Use Place to add the remaining components as in Figure 11-14.

7. Save the ORBLK2 schematic and return to the ALU schematic by
selecting Quit ➝ Update File ➝ Leave Sheet .

8. Press Escape to exit the Quit command.

Keyboard Shortcut: Quit ➝ Update File ➝ Leave Sheet
corresponds to the Key Macro “Alt-F8.” You can perform steps 7 and
8 by holding down the Alt key and pressing the F8 function key.
OrCAD Interface/Tutorial Guide 11-43

OrCAD Interface/Tutorial Guide
Figure 11-14 Schematic Drawing for ORBLK2

Saving a File to Another Name
This section is for your information only; no action is required.

If you wish to copy an entire schematic, rather than a block cut from a
schematic, you can use the Quit Write to File command rather than
the Block Save and Block Get, or Block Export and Block Import
commands. The Quit Write to File command saves a schematic under
a new name. For example, to save the ANDBLK2 schematic as
ORBLK2, select Quit ➝ Write to File from the ANDBLK2
schematic, and type orblk2.sch ↵.

Keyboard Shortcut: Quit ➝ Write to File corresponds to the
Key Macro “Shift-F7.” You can save a schematic file to another name
by holding down the Shift key and pressing the F7 function key.

Alternatively, you can simply exit to DOS with the Quit Suspend to
System command, and use the DOS Copy command to copy the file
to the new name. After copying the file, return to the OrCAD
environment by typing exit ↵.
11-44 Xilinx Development System

SDT Tutorial
Keyboard Shortcut: Quit ➝ Suspend to System corresponds
to the Key Macro “Shift-F9.” You can open a DOS shell by holding
down the Shift key and pressing the F9 function key.

Exploring Xilinx Library Elements
The Xilinx libraries contain three types of elements. Primitives are
basic logical elements such as the AND2 and OR2 gates that you
previously placed in ANDBLK2 and ORBLK2. Soft macros are
schematics made by combining primitives and sometimes other soft
macros into a schematic. Relationally placed macros (RPMs) are soft
macros that contain placement information and sometimes carry-
logic elements. RPMs are currently only available in the XC4000
library.

All three types of library elements are placed on a schematic in
exactly the same way. However, while soft macros and RPMs have
associated schematics, primitives do not.

Viewing a Xilinx Soft Macro Schematic
Soft macro schematics are just schematics such as you might make for
your own designs. In fact, you can load one of these schematics and
use the Quit Write to File command (or just use DOS Copy) to save
the schematic under another name, then edit this new schematic to
customize it to your needs.

You cannot use the Quit Enter Sheet command to view the Xilinx
library schematics, because SDT does not know where to look for
them. However, you can load the schematic for any soft macro in the
library by specifying the full path to the schematic supplied by
Xilinx.

Load the FD4CE schematic.

1. Select Quit ➝ Initialize from the menu.

The Abandon Hierarchy? prompt appears.

2. Select Yes , since you saved all of your edits each time you
changed levels of hierarchy.

The Load file? prompt appears.
OrCAD Interface/Tutorial Guide 11-45

OrCAD Interface/Tutorial Guide
3. Type c:\xact\xc3000\fd4ce.sch ↵. If you are targeting this
tutorial to an XC4000 design, load the schematic from the XC4000
library instead.

The schematic for FD4CE replaces the ALU schematic on the
screen.

4. If necessary, select Zoom ➝ Out to view the entire schematic.

Keyboard Shortcut: Zoom ➝ Out corresponds to the “PgUp” key
or the Key Macro “Alt-F6.” You can perform step 4 by pressing the
PgUp key or by holding down the Alt key and pressing the F6 func-
tion key.

As shown in Figure 11-15, FD4CE was created from four place-
ments of FDCE.

Figure 11-15 FD4CE Schematic From XC3000 Library
11-46 Xilinx Development System

SDT Tutorial
Viewing a Xilinx RPM (XC4000 Family Only)
The ALU contains a component from the Xilinx library called
ADSU4, which is a 4-bit wide adder/subtracter. If your design is
reading components from the XC4000 library, this schematic is
implemented as a relationally placed macro (RPM). If not, ADSU4 is
implemented with standard logic gates and multiplexers.

As with soft macros, RPM schematics are just schematics such as you
might create for your own designs. You can save an RPM schematic
under another name, then edit this new schematic to customize it to
your needs.

If your design is targeted towards the XC4000 family, load the
ADSU4 schematic. If you are targeting an XC3000 family part, you
will not be able to bring up the XC4000 schematic successfully. Read
through the text while looking at the schematic for the RPM depicted
in Figure 11-16, but do not perform any of the commands in this
section. Continue the tutorial with the next section, “Returning to the
CALC Schematic.”

1. Select Quit ➝ Initialize from the menu.

The Load file? prompt appears.

2. Type c:\xact\xc4000\adsu4.sch ↵.

The schematic for ADSU4 replaces the FD4CE schematic on the
screen.

3. Use the Zoom➝ In command to zoom into the upper portion of
the schematic as shown in Figure 11-16.
OrCAD Interface/Tutorial Guide 11-47

OrCAD Interface/Tutorial Guide
Figure 11-16 Zooming In on the ADSU4 RPM Schematic

Elements placed in the RPM schematic include CY4 components
and FMAPs. The CY4 symbol allows schematic access to the fast
carry logic that is one of the features of the XC4000 family devices.
The FMAPs map logical functions to the function generators in the
CLBs. Both CY4 symbols and FMAP symbols have RLOC
attributes attached to them; RLOCs are attributes attached to the
symbols that assign relative locations to the CLBs. You can use
CY4 and other carry symbols, as well as FMAPs and other map-
ping components, in your own schematics. For a description of
each of these components, see the XACT Libraries Guide.

Examine the attributes attached to the top FMAP component.

4. Place the mouse on the top FMAP component.

5. Select Edit ➝ Edit ➝ Options_1 ➝ Name.

The OPTIONS_1? RLOC=R0C0.G prompt appears at the top of
the screen, indicating that this function is mapped to the G
function generator of the upper-left corner CLB in the RPM. RPM
origins are in the upper left-hand corner.
11-48 Xilinx Development System

SDT Tutorial
6. Press Escape three times to cancel the Edit command.

7. Use the mouse to pan around the schematic looking at the RLOCs.

As you can see, logic is mapped to three different CLBs, desig-
nated as R0C0, R1C0, and R2C0. Therefore, this RPM uses three
CLBs that are arranged in a column. Information as to the number
of CLBs used and the shape of the logic block is readily available
for each RPM in the XACT Libraries Guide.

Returning to the CALC Schematic
Reload the CALC schematic to investigate some other features of the
Xilinx FPGA architecture.

1. Select Quit ➝ Initialize from the menu.

The Load file? prompt appears.

2. Type calc ↵.

The CALC schematic appears on the screen.

Using the XC3000 Oscillator (XC3000 Family Only)
The FPGA (XC3000/XC4000) and XC3000 demonstration boards
have a built-in RC circuit for clock generation for the XC3000 family
part. The OSC_3K block contains an oscillator that connects to that
circuit. The frequency of the output varies with processing, so it is not
suitable for many applications, but it is adequate for clocking a
human interface.

If your design is targeted towards the XC3000 family, push into the
OSC_3K schematic. If not, read through the text while looking at the
schematic for OSC_3K depicted in Figure 11-17, but do not perform
any of the commands in this section. Continue the tutorial with the
next section, “Using the XC4000 Oscillator.”

1. Place the mouse on the OSC_3K symbol at the lower left corner of
the Calc schematic.

2. Select Quit ➝ Enter Sheet ➝ Enter to push into the
OSC_3K schematic.

The OSC_3K schematic appears as shown in Figure 11-17.

The output of the oscillator circuit in OSC_3K is routed through a
OrCAD Interface/Tutorial Guide 11-49

OrCAD Interface/Tutorial Guide
global clock buffer before being passed to the rest of the device.
There are several reasons for using the global buffers. The global
clock buffers drive dedicated routing resources that can reach any
clock pin in the device very quickly with minimal skew. In addi-
tion, using the dedicated clock nets frees up programmable inter-
connect for use by other signals in the design.

The GCLK symbol at the right side of the OSC_3K schematic is the
Xilinx primitive for the XC3000 global clock buffer. The equivalent
primitive for the alternate clock buffer is named ACLK. The
ACLK buffer is used in this design to drive the divide-down cur-
cuit on the clock, although it is not really necessary.

In general, you should use at least one clock buffer (GCLK or
ACLK) in every clocked XC3000 or XC2000 design. Use GCLK for
the highest-priority clock net, that is, the largest fanout or fastest
clock net, and ACLK for the second-highest-priority clock.

3. Select Leave to return to the CALC schematic.

4. Press the Escape key or click the right mouse button to exit the
Edit command.

Figure 11-17 OSC_3K Schematic
11-50 Xilinx Development System

SDT Tutorial
Using the XC4000 Oscillator (XC4000 Family Only)
The XC4000 family devices include an on-chip oscillator, which
makes it unnecessary to use an external RC circuit. Therefore, no such
circuit is built into the demonstration boards for the XC4000 family
parts. If your design is targeted to an XC4000 family device, you must
exchange the OSC_3K component for one that calls the XC4000
family oscillator and the XC4000 family clock buffers.

If your design is targeted towards the XC4000 family, continue with
the commands in this section. If not, read through the text while
looking at the schematic for OSC_4K depicted in Figure 11-18, but do
not perform any of the commands in this section. Continue the
tutorial with the next section, “Inverting Output Display Signals.”

1. Place the mouse on the OSC_3K symbol at the lower left corner of
the Calc schematic.

2. Select Edit ➝ Edit ➝ Filename .

The Filename? OSC_3K.sch prompt appears at the top of the
screen.

3. Backspace to delete “ORC_3K.sch” and type orc_4k.sch ↵ to
change the name of the referenced schematic.

4. Press the Escape key twice or click the right mouse button twice
to exit the Edit command.

5. Select Quit ➝ Update File ➝ Enter Sheet ➝ Enter to
push into the OSC_4K schematic.

The OSC_4K schematic appears on the screen. The schematic is
shown in Figure 11-18. The OSC_4K schematic contains a place-
ment of the XC4000 library symbol called OSC4. This symbol pro-
vides access to an on-chip oscillator that generates clock frequen-
cies of a nominal 8 MHz, 500 KHz, 16 KHz, 490 Hz, and 15 Hz.
These frequencies are approximate, since they are process-depen-
dent. The Calc design uses the 15-Hz output from this component
when targeted for XC4000 family designs.

The clock output from OSC4 is buffered through a BUFGS global
clock buffer.

Members of the XC4000 family have eight on-chip clock buffers —
one BUFGP and one BUFGS in each corner of the device. The Calc
OrCAD Interface/Tutorial Guide 11-51

OrCAD Interface/Tutorial Guide
design uses a BUFGS because the clock is generated internally.
BUFGP inputs must come from pads. Although an internally gen-
erated clock can be routed out through an output buffer and back
in through a BUFGP, it is better to use a BUFGS for internal sig-
nals. Also, never use a BUFGP for any signal other than a clock.
You can use a BUFGS for a clock enable or flip-flop reset signal, as
long as you do it sparingly. See the XACT Libraries Guide and the
The Programmable Logic Data Book for more information on global
clock buffers for Xilinx devices.

6. Return to the top-level CALC schematic by selecting Leave .

7. Press the Escape key or click the right mouse button to exit the
Edit command.

Figure 11-18 OSC_4K Schematic

Inverting Output Display Signals (XC3000
Demonstration Board Only)

The FPGA (XC3000/XC4000) demonstration board and the XC4000
demonstration board are both designed such that a Low signal on an
output turns on the display element. Therefore the blocks controlling
the displays, 7SEG_INV and LED_INV, both contain inverters before
each output buffer. The CALC schematic is set up for this
configuration as the default.

The XC3000 demonstration board is designed in such a way that a
display element is turned on when the signal is High. In addition,
two pin connections are reversed on this board, LDC and HDC. The
inverters must be removed and the pin locations reversed if you plan
to download to an XC3000 demonstration board. This board has only
11-52 Xilinx Development System

SDT Tutorial
 a single FPGA socket and the socket contains an XC3000 family part
in a PC68 package.

If you plan to download to an XC3000 demonstration board, continue
with the commands in this section. If not, skip to the next section,
“Controlling FPGA Layout from the Schematic.”

To remove the output inverters and reverse the pin connections,
simply replace 7SEG_INV and LED_INV with 7SEG_TRU and
LED_TRU in the CALC schematic.

1. Place the mouse on the 7SEG_INV symbol.

2. Select Edit ➝ Edit ➝ Filename .

The Filename? 7SEG_INV.sch prompt appears at the top of
the screen.

3. Backspace to delete “7SEG_INV.sch” and type 7SEG_TRU.SCH↵
to change the name of the referenced schematic.

4. Press the Escape key twice or click the right mouse button twice
to exit the Edit command.

5. Repeat steps 1 through 4 to change the file name of the LED driver
from LED_INV.sch to LED_TRU.SCH.

Controlling FPGA Layout from the Schematic
You can use attributes in the schematics to control the placement and
routing of your design. One of these attributes enables you to specify
the part type on your schematic.

Specifying the Part Type
You can specify the part type on the schematic, in XDM, or by
controlling program defaults. The safest method is to specify it on the
schematic, because that way the part type is documented; also, the
translation software issues a warning if you accidentally override this
part type designation using one of the other two methods.

To specify the part type on the schematic, add text to the top-level
schematic.

1. Select Place ➝ Text .

The Text? prompt appears at the top of the screen.
OrCAD Interface/Tutorial Guide 11-53

OrCAD Interface/Tutorial Guide
Keyboard Shortcut: Place ➝ Text corresponds to the Key Macro
“Ctrl-F9.” You can perform step 1 by holding down the Control key
and pressing the F9 function key.

2. Type |parttype= and the name of the part on your demo board.
For example, if you are targeting the 3020APC68, type
|parttype=3020apc68-7 ↵.

Note: The first character you type must be a vertical bar. Without the
vertical bar, the ‘‘parttype” attribute is not passed to the Xilinx
software.

An outline of the text appears at the cursor.

3. Select Larger to increase the size of the text and make it more
readable.

4. Move the cursor to the bottom right-hand corner of the schematic
above the title box.

5. Select Place to place the text.

6. Click the right mouse button to cancel the Text command.

Other devices commonly found in Xilinx demonstration boards
are the 3020pc68-50, 4003apc84-6, and 4003pc84-6. The speed
grade can be included or omitted. If omitted, a default speed
grade is used. Which speed grade you select affects the timing of
the device, both in routing and during timing simulations.

Assigning Pin Locations
You can also assign pin locations to your pads or input/output
buffers on the schematic. It is highly recommended that you let the
automatic placing and routing programs, PPR and APR, define the
pinout, because locking the I/Os can restrict the programs from
placing and routing the design completely.

However, I/O pin numbers are assigned to the tutorial schematics so
that the Calc design functions in the Xilinx demonstration boards.
(Later in the tutorial you learn how to override these pin assignments
when using an XC4000 family device.) Because the design is fairly
simple, these pin assignments do not adversely affect the ability of
PPR or APR to place and route the design completely.

Assign a pin location to the EXC_P pin on the CALC schematic.
11-54 Xilinx Development System

SDT Tutorial
1. Move the cursor onto the I/O pad symbol connected to EXC_P.

2. For an XC2000 or XC3000 family design, select Edit ➝ Edit
➝ Loc, options ➝ Name. For an XC4000 family design,
select Edit ➝ Edit ➝ Options_1 ➝ Name.

3. At the Loc, options? or Options_1? prompt, type LOC=P11
↵.

The location is displayed under the pad symbol.

Note: The Options_1 and Options_2 fields are interchangeable for
XC4000 family designs. XC2000 and XC3000 family designs have
only a single LOC,Options field.

4. Press the Escape key twice or click the right mouse button twice
to exit the Edit command.

Valid pin locations vary depending on the package. PLCC package
pins are designated with a P followed by the pin number, such as
P17. Pin grid array (PGA) package pins use alphanumerics such as
A12. The Programmable Logic Data Book lists the pinouts of each FPGA
for each package that Xilinx supplies.

Adding Net Attributes
Suppose you want to make sure that a net in your design is not
absorbed into a CLB, to facilitate simulation or for some other reason.
You can attach an “Explicit” (or “External”) flag to the net.

Net flags are placed on the schematic with the Get command, just like
any other symbol.

1. Select Get .

The Get? prompt appears at the top of the screen.

2. Type x ↵.

3. Move the cursor so that the new symbol is positioned above the
net labeled “A.” between 7SEGDEC and 7SEG_INV or
7SEG_TRU, as in Figure 11-19.
OrCAD Interface/Tutorial Guide 11-55

OrCAD Interface/Tutorial Guide
4. Select Place and click the right mouse button to terminate the
command.

5. Use the Place Wire Begin End command to add a wire between the
“X” flag and the net labelled “A”.

6. Use the Place Junction Place command to add junction to the
intersection of the two wires.

The wire and the junction symbol must be used or the net flag is
not considered connected. See Figure 11-19.

There are several other net attributes. For a description of available
attributes, along with a discussion of when to use them and, more
importantly, when not to use them, see the “Attributes and
Constraints” section of the XACT Libraries Guide.

It is easy to overconstrain a design. Some constraints in a schematic
may prevent the software from doing the best possible job. First try to
route a design with no constraints at all, then go back and add
constraints only if necessary.

Figure 11-19 Net Flag on Net “A”
11-56 Xilinx Development System

SDT Tutorial
Designating FAST Pads
Output slew rate can be modified by assigning a FAST attribute to the
pad or output buffer. The default slew rate is SLOW. ‘‘Fast” pads
have different timing specifications from ‘‘slow,” or slew-rate-limited,
pads, and draw more current. Slew-rate-limited pads are used by
default.

Add a FAST attribute to the OFL_P pad in the 7SEG_INV or
7SEG_TRU schematic under CALC.

1. Place the mouse on the 7SEG_INV or 7SEG_TRU symbol at the
upper right corner of the Calc schematic.

2. Select Quit ➝ Update ➝ Enter Sheet ➝ Enter to push
into the 7SEG_INV or 7SEG_TRU schematic.

3. Click the right mouse button to exit the Quit Enter Sheet com-
mand.

4. Place the mouse on the topmost pad, labelled OFL_P.

5. For an XC2000 or XC3000 family design, select Edit ➝ Edit
➝ Loc, options ➝ Name. For an XC4000 family design, select
Edit ➝ Edit ➝ Options_1 ➝ Name.

6. The Loc, options? loc=P28 or Options_1? loc=P28
prompt appears.

7. Add the FAST attribute to the existing attribute list by typing:

,fast ↵.

The leading comma is necessary to separate the two attributes.

The Name field loc=p11,fast is displayed under the pad
symbol, as shown in Figure 11-20.

8. Click the right mouse button twice to cancel the Edit command.

9. Select Quit ➝ Update ➝ Leave Sheet to save your changes
and return to the CALC schematic.

10. Click the right mouse button to cancel the Quit command.
OrCAD Interface/Tutorial Guide 11-57

OrCAD Interface/Tutorial Guide
Figure 11-20 Designating a FAST Pad

Using the I/O Flip-Flops
Xilinx XC3000 family devices, XC4000 and XC4000A devices have
two flip-flops in each IOB (I/O block). Each pad has an associated
input flip-flop and output flip-flop. You can also configure input flip-
flops as latches and can make output flip-flops 3-state. You access
these I/O memory elements using special library components called
IFD, ILD, OFD, and OFDT. For more information on these library
elements, consult the XACT Libraries Guide.

Using the IOB flip-flops frees up internal CLB resources, which can be
a help when designs are large in proportion to the device size or are
difficult to route.

The SW7 schematic uses input flip-flops to latch data from the
switches. Push into the SW7 schematic.
11-58 Xilinx Development System

SDT Tutorial
1. Place the mouse on the SW7 symbol at the bottom of the CALC
schematic.

2. Select Quit ➝ Enter Sheet ➝ Enter to push into the SW7
schematic.

The SW7 schematic appears as shown in Figure 11-21.

3. Pan around the schematic; observe that the IFD library element is
used to access the input flip-flops.

4. Select Leave to return to the CALC schematic.

5. Click the right mouse button to exit the Quit command.

Figure 11-21 SW7 Schematic Using Input Flip-Flops
OrCAD Interface/Tutorial Guide 11-59

OrCAD Interface/Tutorial Guide
Editing the Design for the XC4000 Family
You have created or edited four schematic files, CALC, ALU,
ANDBLK2, and ORBLK2. The rest of the schematics were copied to
your disk during the tutorial installation. If you are targeting the
design to any of the XC3000 family parts, the schematics are
complete.

The design as it stands is perfectly suitable for use in an XC4000
family device. No changes need be made to adapt it further to the
XC4000 family. However, XC4000 family devices have several
advanced features that are not being used by this device-independent
design. One of these features is the on-chip memory built into the
XC4000 CLB. Another is the wide-edge decoder structures.

Device-Independent Stack Implementation
The device-independent stack is implemented as a set of registers and
muxes. This implementation is independent of chip architecture and
can be used for any Xilinx device.

View the stack as implemented in the device-independent design.

1. Place the mouse on the STACK symbol in the CALC schematic.

2. Select Quit ➝ Enter Sheet ➝ Enter to push into the
STACK schematic.

The schematic for STACK replaces the CALC schematic on the
screen, as shown in Figure 11-21.

There are 16 flip-flops in the block. Therefore, the most efficient
implementation of this logic uses a minimum of eight CLBs.

3. Select Leave to return to the CALC schematic.

4. Click the right mouse button to exit the Quit command.
11-60 Xilinx Development System

SDT Tutorial
Figure 11-22 Device-Independent Stack Implementation

RAM Stack Implementation (XC4000 Family Only)
Using the on-chip static memory feature of the XC4000 family CLB,
you can reduce the stack from eight CLBs to only two CLBs. If you
are not doing an XC4000 family design, skip this section and continue
with the “Device-Independent State Machine” section, following.

Replace the device independent stack with the XC4000 family RAM
implementation.

1. Place the mouse on the STACK symbol.

2. Select Edit ➝ Edit ➝ Filename .
OrCAD Interface/Tutorial Guide 11-61

OrCAD Interface/Tutorial Guide
The Filename? STACK.sch prompt appears at the top of the
screen.

3. Backspace to delete “STACK.sch” and type stack_4k.sch ↵ to
change the name of the referenced schematic.

4. Press the Escape key twice or click the right mouse button twice
to exit the Edit command.

5. Select Quit ➝ Update File ➝ Enter Sheet ➝ Enter to
push into the STACK_4K schematic.

The schematic for STACK_4K replaces the CALC schematic on the
screen, as shown in Figure 11-23.

The RAM stack is implemented by placing a single element from
the XC4000 library. Although the stack is only 4x4, RAM and ROM
are only available in 16x1 or 32x1 increments, so only one fourth of
this memory is used. You could implement a stack four times as
deep while still using only two CLBs. An equivalent flip-flop
implementation would require 64 flip-flops or 32 CLBs.

With the RAM implementation, a clock is not needed in the stack.
However, a sheet symbol in OrCAD may not have a pin that is left
unconnected, so the CLK net is used to drive a buffer and the out-
put is left hanging. This buffer is later removed by the software
when is it found to be unused. Alternatively, you could edit the
CALC schematic to remove the CLK pin from the STACK_4K
sheet symbol.

6. Select Leave to return to the CALC schematic.

7. Click the right mouse button to exit the Quit command.
11-62 Xilinx Development System

SDT Tutorial
Figure 11-23 XC4000 Family RAM Stack Implementation

Device-Independent State Machine
The device-independent control logic is implemented as a set of flip-
flops forming a three-state one-hot state machine, and some
additional control signals made from logic gates and muxes. This
implementation is independent of chip architecture and can be used
for any Xilinx device.

View the state machine and control logic as implemented in the
device-independent design.

1. Place the mouse on the CONTROL symbol in the CALC sche-
matic.

2. Select Quit ➝ Enter Sheet ➝ Enter to push into the
CONTROL schematic.

The CONTROL schematic appears on the screen.

3. Place the mouse on the STATMACH symbol in the CONTROL
schematic.

4. Select Enter to push into the STATMACH schematic.
OrCAD Interface/Tutorial Guide 11-63

OrCAD Interface/Tutorial Guide
5. Click the right mouse button to exit the Quit Enter Sheet com-
mand.

The schematic for STATMACH replaces the CALC schematic on
the screen, as shown in Figure 11-24.

Observe that the signals INT1, INT2, RST, SEL_OP, and UP_DN
are all just ANDs of opcode inputs and the EXC signal.

6. Select Quit ➝ Leave Sheet ➝ Leave Sheet to return to
the CALC schematic.

7. Click the right mouse button to exit the Quit command.

Figure 11-24 Device-Independent State Machine Implementation
11-64 Xilinx Development System

SDT Tutorial
State Machine with Wide-Edge Decoders (XC4000
Family Only)

XC4000 devices have four wide-edge decoder lines on each edge of
the device. XC4000A devices have two decoder lines per edge. Each
decoder can accept as input all pads on that side of the device and
also internal nets.

For this design, all opcode pins are on the left side of the device in the
4003A and 4003 parts to which this tutorial is targeted. EXC is an
internal net. You can therefore implement four of the five signals in
the STATMACH schematic as wide-edge decoders. For the XC4003A
device, two of the decoders must be implemented using decoders
from adjacent edges. Therefore, this implementation is not very
efficient for the 4003A device. However, it is included in this tutorial
to demonstrate the use of wide-edge decoders in an XC4000 family
design.

Normally, you should not use a wide-edge decoder to implement an
AND gate unless there are at least ten inputs to the gate, since a CLB
implementation is faster and routes more easily for an AND function
with nine or fewer inputs. When using a wide-edge decoder, you
should make sure that the pads associated with the inputs are all on
one edge of the device to make the best use of this feature.

Although none of the decoders in this simple tutorial design have as
many as ten inputs, the control logic in the STATMACH block is
implemented using wide-edge decoders as an example. This
schematic is called STATE_4K.

If you are not doing an XC4000 family design, skip this section and
continue with the “Checking Schematics” section, following.

Replace the device independent state machine with the XC4000
family wide-edge decoder implementation. The state machine is
placed in the CONTROL block.

1. Place the mouse on the CONTROL symbol.

2. Select Quit ➝ Enter Sheet ➝ Enter to push into the
CONTROL schematic.

The CONTROL schematic appears on the screen.
OrCAD Interface/Tutorial Guide 11-65

OrCAD Interface/Tutorial Guide
3. Click the right mouse button to exit the Quit Enter Sheet com-
mand.

4. Place the mouse on the STATMACH symbol.

5. Select Edit ➝ Edit ➝ Filename .

The Filename? STATMACH.sch prompt appears at the top of the
screen.

6. Backspace to delete “STATMACH.sch” and type
state_4k.sch ↵ to change the name of the referenced schematic.

7. Press the Escape key twice or click the right mouse button twice
to exit the Edit command.

8. Select Quit ➝ Update File ➝ Enter Sheet ➝ Enter to
push into the STATE_4K schematic.

The schematic for STATE_4K replaces the CONTROL schematic
on the screen, as shown in Figure 11-23.

9. Move the mouse within the STATE_4K schematic and observe the
new components that have been added to implement the wide-
edge decoders.

The decode logic is implemented by placing elements called
DECODE4, DECODE8, and so forth. A PULLUP symbol is con-
nected to the output. Tie unused inputs to a VCC symbol.

10. Select Leave ➝ Leave to return to the CALC schematic.

11. Click the right mouse button to exit the Quit command.

See The Programmable Logic Data Book for additional information
about wide-edge decoders in XC4000 family devices.
11-66 Xilinx Development System

SDT Tutorial
Figure 11-25 XC4000 State Machine with Wide-Edge Decoders

Checking Schematics
The schematic entry phase of the design process is now complete, but
before beginning the implementation phase, you should check your
drawing. The two main things that cause errors at this stage are
schematic connections that look like they are there but are not, and
naming problems, such as inconsistent names between nets and
module ports, and names missing from buses.

● Check the wiring on the different schematic pages, making certain
that all junction symbols are correctly placed and that all
connections are formed properly. One way to do this is to position
OrCAD Interface/Tutorial Guide 11-67

OrCAD Interface/Tutorial Guide
the cursor over each block in turn and use the Block Drag
Begin End command on each. Drag it a little way to make sure
all the connections stay with it, then terminate the command by
pressing the right mouse button. Wire-to-block connections in
OrCAD do not actually make a connection unless they are
positioned correctly. For example, a wire must end at the end of a
block pin, not overlap it. Set Drag Buses to Yes to enable dragging
buses as well as wires.

Keyboard Shortcut: Block ➝ Drag ➝ Begin ➝ End corre-
sponds to the “F5” function key. You can perform this command by
pressing the F5 function key.

● Make certain there is continuity between the pin names on upper-
level sheet symbols and the corresponding module port names on
lower-level drawings. If the names are not exactly the same, you
cannot process your design without errors.

● Ensure that all labels are placed correctly. Remember that the wire
should cross the bottom left corner of the attached label where the
cursor point was attached.

● For a new design, check to make sure you have used one or more
of the global clock buffers, where appropriate.

To check the schematics, move between the various drawings using
the Enter Sheet Enter and Leave commands.

Exiting from SDT
When the schematics are correct, save the design and return to XDM.

1. Select Quit ➝ Update File ➝ Abandon Edits .

Keyboard Shortcut: Quit ➝ Update File ➝ Abandon Edits
corresponds to the Key Macro “Shift-F10.” You can perform step 1 by
holding down the Shift key and pressing the F10 function key.

2. Select To Main ➝ Execute ➝ Exit ESP ➝ Execute .

3. Type any key to return to XDM.

The design entry phase is now complete.
11-68 Xilinx Development System

SDT Tutorial
Configuring XDM
The XACT Design Manager XMake program automates the
translation portion of the Xilinx design flow, making the processing
of a complex design as simple as running one program. Given the
name of the top-level schematic drawing, XMake can find and
process all lower-level drawings. It produces an LCA file that is
placed and routed, as well as a bit file ready for downloading to an
FPGA. It does this by creating and running a “makefile” — in this
case, calc.mak — that calls a series of subprograms. You can also run
these programs individually, either from XDM or at the command
line, but it is simpler just to run the single program, XMake. See the
‘‘Command Summaries” section at the end of this chapter for an
equivalent list of programs that you can run individually if you wish
to do so. Each program is covered at length in the XACT Reference
Guide or in the other chapters of this manual.

1. You should already be in XDM. If you are not in XDM, activate it
by typing xdm ↵ from the DOS prompt.

2. Verify that the directory in XDM is set to \orcad\calc. The
directory is displayed at the lower left corner of the XDM screen.
The directory should be set to \orcad\calc because you were in
the \orcad\calc directory when you brought up XDM.

If the directory is not set correctly, click on Directory: and use
the left mouse button to change the directory selection.

3. Click on Family: at the lower left corner of the screen.

A menu of available families appears. If a device family does not
show up in XDM, it means that your installed software does not
support that family.

4. Click on the family that you are targeting in this tutorial.

A list of available parts within the selected family appears on the
screen. If a given part type does not show up in XDM, it means
that your installed software does not support that device.

Since the Calc design already has the part type specified on the
schematic, you do not want to specify a part type in XDM.

5. If InDesign does not appear at the top of the list, scroll the list
using the scrollbar until the top of the list is visible.
OrCAD Interface/Tutorial Guide 11-69

OrCAD Interface/Tutorial Guide
6. Click on InDesign .

7. From the menus at the top of the XDM executive screen, select
Profile ➝ Options ➝ XMake.

8. Select -V (Verbose message mode) so XMake will keep you
informed of its progress as it processes the design.

9. Select Done ➝ Done to return to the XDM executive screen.

10. To save all of the changes that you just made to the XDM and
XMake defaults, pull down the Profile menu and select Save-
profile ➝ Yes .

The Saveprofile command saves the recent changes to the xdm.pro
file in your design directory. There are several PRO files associated
with the Xilinx software. They are used to set default options.
Xdm.pro sets options that are used by XMake, whether or not it is
called from XDM, and by any other tools called from XDM. Other
than XMake, if you run these commands directly from the DOS
command line, bypassing XDM, they do not use these defaults;
parameters must be typed at the command line or spelled out in a
batch file that you create. These defaults are a good reason for using
XDM to process your designs. To learn about running commands
from the command line, look up each tool in the XACT Reference
Guide.

Some default profiles are supplied with the Xilinx software, and some
are created the first time that a tool is run. Default files are located in
the \xact\data directory. If the appropriate PRO file exists in the
design directory, it is used; if not, the software uses the one from the
\xact\data directory. It is common practice to keep PRO files in the
design directory to customize your environment. With this practice,
you avoid having to change the program options each time the
software is run. User PRO files should be saved to the design
directory, not to the \xact\data directory. The files there should
generally be retained as templates. They are overwritten each time
that the software is updated or reinstalled.

Cleaning up the Design
From XDM, you can call an OrCAD utility, Cleanup, that checks your
design for dangling nets, corrects any errors that it can fix, and
reports any errors that it cannot correct.
11-70 Xilinx Development System

SDT Tutorial
1. Select Translate .

The various translation programs supported by Xilinx appear on
the Translate menu.

2. Select CLEANUP.

XDM presents a list of all schematic files in your project directory.

3. Select CALC.SCH from the list.

A list of all options to the Cleanup command is presented.

4. Select Done.

The Cleanup command displays a list of warnings and errors.

No warnings or errors should be displayed. If warnings or errors
are reported, return to the SDT schematic editor and correct the
problem. Rerun the Cleanup program to verify that the warnings
or errors do not reoccur.

5. Press any key to return to XDM.

Additional Configuration (XC4000 Family Only)
XC4000 family users must make three more changes to the XDM
configuration before processing the tutorial design. LOC attributes
are used throughout the Calc schematics to specify pad locations that
match the XC3000 sockets on the Xilinx demonstration boards. You
could go back and edit the schematics to include the XC4000 pad
locations. Instead, tell XMake to ignore schematic pad locations when
running the Xilinx netlist checker, XNFPrep. Then supply the XC4000
pad locations using a constraints file.

If you are not doing an XC4000 family design, do not perform any of
the commands in this section.

1. From the menus at the top of the XDM window, select Profile
➝ Options ➝ XNFPREP.

2. Select ignore_xnf_locs=<type> ➝ IO to specify that pad
constraints in the schematic be ignored.

If this option is not selected, XNFPrep reports that the pad loca-
tions in the schematic are illegal for the selected part type, and
XMake terminates.
OrCAD Interface/Tutorial Guide 11-71

OrCAD Interface/Tutorial Guide
3. Select Done to return to the Profile Options menu.

4. Select PPR ➝ -helpall .

5. Select cstfile=<file> .

A list of constraints files in the design directory appears.

6. Select calc_4k.cst to supply pad locations for the XC4000 sock-
ets in the Xilinx demo boards.

7. Select Done ➝ Done to return to the XDM executive menu.

8. Select Profile ➝ Saveprofile to save the changes.

Using a constraints file, you can supply constraints information in a
textual form rather than putting it on a schematic. Sometimes this
method is more powerful than putting constraints on a
schematic.Figure 11-26 shows the constraints file calc_4k.cst, that is
supplied for this tutorial. Figure 11-26 shows a sample constraints
file, not used here, which can help in routing some XC3000 family
designs.

Specifying a constraints file is valid for any device being processed by
the PPR program, including XC3000A, XC3000L, and all XC4000
family parts. All other devices are processed with the APR
(Automatic Place and Route) tool. To specify that a constraints file be
used with APR, make sure that the correct part is selected, then click
on Profile ➝ Options ➝ APR ➝ -C <file> and select the constraints
file from the list presented.

Constraints file syntax is different for PPR than for APR. For
additional information about constraints files, see the “PPR” and
“APR” sections of the XACT Reference Guide.

#This is a schematic constraints file for use with the
Calc Tutorial Design. It maps the I/O to the correct
pins for 4K family parts on the Xilinx demo boards.
#When using this contraints file,you must tell XNFPrep
to ignore pad locations on the schematic,as the
locations on the schematic are for 3K family parts.
#Set the ignore_xnf_locs option for XNFPrep to a value
of “IO.”

place instance EXC_P: P19;
place instance 7SEG/OFL_P: P41;
place instance 7SEG/A_P: P49;
place instance 7SEG/B_P: P48;
11-72 Xilinx Development System

SDT Tutorial
place instance 7SEG/C_P: P47;
place instance 7SEG/D_P: P46;
place instance 7SEG/E_P: P45;
place instance 7SEG/F_P: P50;
place instance 7SEG/G_P: P51;
place instance SW7/SW6_P: P20;
place instance SW7/SW5_P: P23;
place instance SW7/SW4_P: P24;
place instance SW7/SW3_P: P25;
place instance SW7/SW2_P: P26;
place instance SW7/SW1_P: P27;
place instance SW7/SW0_P: P28;
place instance LED/LED3_P: P57;
place instance LED/LED2_P: P58;
place instance LED/LED1_P: P59;
place instance LED/LED0_P: P60;

Figure 11-26 CALC_4K .CST File

;sample.cst, GOOD FOR 2K AND 3K ONLY, not needed for
; tutorial design
;Constraint file to prohibit columns A, D, and G. The
; technique of prohibiting every third or fourth
; column is very useful when routing designs that
; are less than two-thirds full, but are very routing-
; intensive.
;If prohibiting columns is necessary to ease routing
; congestion, always prohibit the leftmost column for
; best results. This eases congestion by the pads.
;
Prohibit Location AA AD AG ;
Prohibit Location BA BD BG ;
Prohibit Location CA CD CG ;
Prohibit Location DA DD DG ;
Prohibit Location EA ED EG ;
Prohibit Location FA FD FG ;
Prohibit Location GA GD GG ;
Prohibit Location HA HD HG ;

Figure 11-27 Sample .CST File, Not Used for This Design
OrCAD Interface/Tutorial Guide 11-73

OrCAD Interface/Tutorial Guide
Translating the Calc Design
Now that XDM is properly configured, you are ready to process the
Calc design.

1. Select Translate .

The various translation programs supported by Xilinx appear on
the Translate menu.

2. Choose automatic translation by selecting XMAKE.

A list of options is presented.

3. Since this design uses the default options preset in the xdm.pro
file, simply select Done.

A menu of design files in the current directory is displayed.

4. Identify the top-level drawing file by selecting CALC.SCH.

The Select target: prompt appears. A menu offers alterna-
tives for XMake. Each option goes further in the translation pro-
cess than the one above it. You want to complete the entire transla-
tion process all the way to creating a bitstream.

5. Select Make bitstream .

The XMake program processes all the necessary design files, dis-
playing its progress on the screen. If the translation is successful,
XMake issues this message:

’calc.bit’ has been made, check output in
’calc.out’

6. Press any key to return to XDM.

Examining XMake Output Files
In addition to the routed LCA file and the bitstream BIT file, XMake
generates three very useful output files.

● The OUT file, in this case calc.out, contains a copy of all text that is
echoed to the screen. You should always review the OUT file after
running XMake, even if you did not see any warnings or error messages
while the design was being translated. If there are any messages
reporting problems, you will save yourself a lot of time by catch-
ing the problem now, instead of later in the design process. The
11-74 Xilinx Development System

SDT Tutorial
OUT file shows every program run by XMake.

● The PRP file, in this case calc.prp, is the DRC report file generated
by XNFPrep. If XNFPrep finds any errors or warnings, the OUT
file directs you to examine this file. Besides explanation of errors
and warnings, the PRP file contains a detailed list of all logic
trimmed by XNFPrep and why it was unnecessary. This file can be
a very useful debugging tool.

● The RPT file, in this case calc.rpt, is a formal report of the results
of the placement and routing. It is generated by the place-and-
route software, either PPR or APR, depending on the family.
Check the RPT file to make sure there were no unrouted pins or
nets.

Examine the OUT, PRP, and RPT files for the Calc design.

1. Pull down the Utilities menu and select DOS.

This command exits XDM temporarily. You can also create a DOS
shell by typing either dos ↵ or sys ↵ at the keyboard; watch for
the letters to appear at the XDM command line at the bottom of
the screen. From any of these DOS accesses, you can return to the
suspended program by typing exit ↵.

2. Use any text editor or the DOS Type command to examine the
calc.out file.

3. Use any text editor or the DOS Type command to examine the
calc.prp file.

4. Use any text editor or the DOS Type command to examine the
calc.rpt file.

5. When you have finished looking at the files, return to XDM by
typing exit ↵ at the DOS prompt.
OrCAD Interface/Tutorial Guide 11-75

OrCAD Interface/Tutorial Guide
Checking for Warnings in the OUT and PRP Files
You should expect to see some warning messages in the calc.out and
calc.prp files, but no errors. Errors are problems with the design that
cause XMake to terminate. Warnings are simply notifications that
there are unusual aspects to your design of which you should be
aware. You may or may not choose to correct the reported situations.

The OUT file shows that XNFPrep issued one or two warnings,
depending on the product family, and no errors. The OUT file directs
you to the PRP file for explanations about the warnings.

If you examine the calc.prp file, you should see warnings similar to
those shown in Figure 11-28. Which of these warnings appear
depends on which product family you targeted. The PRP file includes
an explanation of the warnings, none of which are a matter for
concern for this design, since timing is not an issue.
11-76 Xilinx Development System

SDT Tutorial

XNFPREP: WARNING 4037:

These inverters could not be absorbed and each will be
implemented in a single function generator. This will
introduce additional delay and use resources inefficiently.
(Note that some of the symbols listed below may have been
reduced to inverters by earlier trimming.)

Inverter Name = DEBOUNCE/U64
Output Signal = DEBOUNCE/$U64_O

Inverter Name = CONTROL/U165/U1/U2/U1
Output Signal = CONTROL/U165/U1/MD

XNFPREP: WARNING 4082:

Double pullups were found on TBUF-driven longlines and/or
edge decoder longlines. Requiring two pullups would prevent
half-length longlines from being used, and design placement
and resource utilization would be adversely affected.

One pullup is being removed from each of these longlines. PPR
will activate both pullups if the signal is routed using a
complete longline.

XNFPREP: WARNING 4613:

Each of the following signals drives more than 20 inputs.

Signal Name

ADDR0
ALU3
ALU2
ALU1
ALU0

Although this is valid there is a possibility that the
routing delays of these signals will be unacceptable. If
these signals are critical to the timing of your design, you
may consider replicating the logic used to generate the
signals so that the loading (and hence the subsequent routing
delay) is reduced.

Figure 11-28 XNFPrep Warning Messages
OrCAD Interface/Tutorial Guide 11-77

OrCAD Interface/Tutorial Guide
The XMake OUT file also reports warnings and errors from programs
other than XNFPrep. A partial listing of calc.out for the
XC3020APC68 is shown in Figure 11-29.

For XC3000 family designs, PPR reports a warning that the Calc
design contains a combinational loop. This loop is intentional: the
OSC_3K schematic uses this logic loop, together with an external RC
circuit, to generate the clock. Therefore you should ignore this
warning if you compiled the Calc design to an XC3000 family part.

Any other errors or warnings besides those just discussed must be
corrected before continuing. To find the source of unexpected errors,
reload the design in SDT and compare the schematics to those in the
figures in this chapter. After correcting the errors, save the changes,
run the Cleanup program, and rerun XMake as previously described.

**
XMAKE: Execute command ‘annotate calc.sch ‘.
**

XMAKE: Execute command ‘inet calc.sch ‘.

**

XMAKE: Execute command ‘sdt2xnf calc.inf calc.xnf -D xnf ‘.

**

XMAKE: Execute command ‘xnfmerge -A -D xnf -D . -P 3020APC68-
7 xnf\calc.xnf calc.xff’.
Netlist written to file calc.xff

**

XMAKE: Execute command ‘xnfprep calc.xff calc.xtf
parttype=3020APC68-7’.

xnfprep: running design rule checker ...
xnfprep: checking XACT-Performance specifications ...
xnfprep: trimming unnecessary and redundant logic...
xnfprep: running design rule checker on trimmed design...
xnfprep: reverifying XACT-Performance specifications in
trimmed design ...

XNFPREP SUMMARY

0 Errors found
1 Warnings found
17 Unnecessary inverters and buffers removed
18 Unnecessary or disabled symbols removed
13 Sourceless or loadless signals removed
Refer to the calc.prp file for details.
11-78 Xilinx Development System

SDT Tutorial
**

XMAKE: Execute command ‘xnfmap -P 3020APC68-7 calc.xtf
calc.map’.

DESIGN SUMMARY:
Part type=3020APC68-7
49 of 64 CLBs used
23 of 58 I/O pins used
0 of 6 internal IOBs used
0 of 16 internal three-state signals used (0 TBUFS used)
29 CLB flipflops used
Total number of WARNINGS generated during mapping = 0.
Total number of ERRORS generated during mapping = 0.

Writing design file calc.map...
Writing guide file calc.pgf...

**
XMAKE: Execute command ‘ppr calc.map parttype=3020APC68-7’.

ppr: Routing signals...
ppr: Generating .LCA File...

ppr: Generating .BID Back Annotation File...
ppr: Making Report File...
Wrote report on the result without delay optimization to
calc.rpf.
ppr: Routing signals...

*** PPR: WARNING 6811:
This design has 1 purely combinational loop. Such loops
should be avoided. If at all possible, please modify the
design to eliminate all unclocked feedback paths.

A loop of 1 source-to-load connections:
FG4 FG_OSC_3K/Q (Net OSC_3K/Q) to first gate again.

No more unroutes
Therefore deleting result with 2 unroutes
Begin work on a 65.8ns path with 9 pins.
Design has 0 unroutes.

--
Timing analysis summary
--

Deadline Actual(*) label: [qualifier]
-------- --------- ------------------
<auto> 65.8ns DEFAULT_FROM_FFS_TO_FFS=FROM:ffs:TO:ffs
<auto> 14.0ns DEFAULT_FROM_PADS_TO_FFS=FROM:pads:TO:ffs
<auto> 52.8ns DEFAULT_FROM_FFS_TO_PADS=FROM:ffs:TO:pads

(*) Note: please run xdelay to confirm the actual path delays
OrCAD Interface/Tutorial Guide 11-79

OrCAD Interface/Tutorial Guide
computed by PPR.

*** PPR: WARNING 7028:
The design uses an asynchronous input (RD/CLR and/or SD/PRE
pin) of one or more flip-flops. PPR can trace paths up to such
a pin, but it never considers paths into a flip-flop on such
a pin and on through the flip-flop output.

of unrouted connections: 0.
ppr: Generating .LCA File...
ppr: Making Report File...

**
XMAKE: Execute command ‘xdelay -D -W calc.lca’.
xdelay: writing calc.lca with delay information...

**

XMAKE: Execute command ‘makebits -R2 -S0 -XB -YA calc.lca’.

XMAKE: ‘calc.bit’ has been made.

Figure 11-29 XMake Partial Output File, Calc.out

Checking the RPT File
The report file contains a great deal of detailed information about
your routed design. The most useful information you will find in the
RPT file is probably the pinout description, and detailed timing
information in the case of PPR.

A portion of the report file for the XC3020APC68 Calc design is
shown in Figure 11-30.

PPR RESULTS FOR DESIGN CALC

Design Statistics and Device Utilization

--
Design Summary from XNF File
Number of Signals: 133
Number of Pins: 497

Partitioned Design Utilization Using Part 3020APC68-7

No.Used Max Available % Used

---------------------------- ------- ----------- ------
Occupied CLBs 50 64 78%
Packed CLBs 42 64 65%
---------------------------- ------- ----------- ------
Bonded I/O Pins: 22 64 35%
CLB Function Generators: (*) 70 128 54%
11-80 Xilinx Development System

SDT Tutorial
CLB Flip Flops: 29 128 22%
IOB Input Flip Flops: 7 64 10%
IOB Output Flip Flops: 0 64 0%
3-State Buffers: 0 192 0%
3-State Longlines: 0 32 0%
---------------------------- ------- ----------- ------

(*) Each base F or FGM function counts as two

Routing Summary
Number of unrouted connections: 0

Chip Pinout Description

This chapter describes where your design’s pins were placed in
terms of the package pins. This first list is sorted by
package pin location. The second list presents the same data
sorted by your design’s pin names.

Package Pin Location Pin Name
-------------------- -----------------
P11 : EXC_P
P12 : OSC_3K/CQL
P13 : SW7/SW6_P
P14 : OSC_3K/CQ
.
.
P55 : 7SEG/G_P
P56 : 7SEG/D_P

This list describes where your design’s pins are in terms of
the package pins; it is sorted by your design’s pin name. The

list presented above has the same data sorted by package pin

location.

Package Pin Location Pin Name
-------------------- -----------------
P11 : EXC_P
P29 : LED/LED0_P
P30 : LED/LED1_P
P31 : LED/LED2_P
.
.
P55 : 7SEG/G_P
P53 : 7SEG/F_P

Figure 11-30 Partial Calc.rpt File
OrCAD Interface/Tutorial Guide 11-81

OrCAD Interface/Tutorial Guide
Examining Routed Designs with XDE
Note: The XACT Design Editor, XDE, is not available with the Base
Development System. This section can be skipped without affecting
the outcome of the tutorial; simply continue with the next section,
“Verifying the Design Using a Demonstration Board.”

The design process is now complete. Next, EditLCA, a subprogram
of the XACT Design Editor (XDE), allows you to take a graphic look
at the placed and routed design. XDE can be accessed from XDM or
directly from DOS.

XDE and EditLCA provide several useful functions, such as the
ability to hand-edit a routed design, insert probes while doing in-
circuit verification, and the ability to do static timing analysis. For a
much more complete tutorial on using XDE, see the “XDE Tutorial”
chapter of the XACT User Guide.

Entering the Design Editor
1. To call up XDE from XDM, pull down the PlaceRoute menu and

select XDE.

An options menu appears. The default options are correct.

2. Select Done.

The XDE Executive screen appears. If, instead, the message Com-
mand ‘xde’ failed, rc=-1 appears, there is probably a
semicolon at the end of your search path. Remove it and try again.

At the bottom left corner of the screen, Mode: Safe is reported.
This mode prevents you from making any changes to the LCA file
that will change the functionality of the design. If you want to
make changes to a design using EditLCA, you must change to
“Expert” mode before loading the design.

3. Click on Mode with the left mouse button.

A menu with a choice of Safe or Expert appears.

4. Click on Cancel to remain in Safe mode.

5. To load the design into the editor, select Designs .

A pulldown menu appears.
11-82 Xilinx Development System

SDT Tutorial
6. To choose the input LCA file, select Design .

A menu of available LCA files appears. In this case, there is only
one LCA file in the directory, calc.lca, the routed file generated by
XMake.

7. Select CALC.LCA.

The name of the design file appears in the status area above the
command line. When you select the design, the part type is auto-
matically set to the part type in the selected LCA file.

8. To enter the Design Editor, pull down the Programs menu and
select EditLCA .

The design begins loading into the editor. Watch the status line
above the command line to see what XDE is doing. The following
messages appear.

Loading die/package file...
Loading design file...
Building pip drawing information...
Drawing screen...
Timing nets...

Now the editor appears, as shown in Figure 11-31. The editor is a
graphic representation of the LCA file. Pan around the device by
holding down the left mouse button and moving the mouse. A
world view of the device appears in the lower right corner of the
screen, and a red box shows the current location on the device.

There are two types of blocks shown by the editor: the IOBs appear
around the periphery of the device, and the CLBs appear in the
middle. Pan around the screen to see how the design was placed and
routed in the device. Used blocks are highlighted, and the signal nets
connecting them are shown as highlighted traces.

Looking at the routed design, observe how the global clock was laid
out in the device and how the pin location constraints were carried
through from the schematic level to the routed design.
OrCAD Interface/Tutorial Guide 11-83

OrCAD Interface/Tutorial Guide
Figure 11-31 Portion of XDE EditLCA Screen, XC3020APC68

Finding a Block
You can locate the global clock buffers.

1. Pull down the Screen menu and select Find .

2. Now enter the name of the global clock buffer, gclk ↵ for an
XC3000 family design or bufgs_tl ↵ for an XC4000 family
design, to select the buffer in the top left corner.

The cursor moves to the top left corner of the LCA editor. This is
the location of the global clock buffer on XC3000 devices and one
11-84 Xilinx Development System

SDT Tutorial
of the global secondary clock buffers on XC4000 devices. This
buffer may or may not be the one that PPR used to generate the
clock signal in your XC4000 design.

3. Select Done to exit the Find command.

Highlighting a Net
The detailed operation of XDE is beyond the scope of this tutorial,
but there are a couple of commands that are especially useful for
examining this design. The Net Hilight command is used to highlight
the path of a particular net, which makes that net easier to trace
across the device.

1. Pull down the Net menu and select Hilight .

A menu of colors appears.

2. Select a highlight color to use.

3. Type clk ↵.

The clock net appears in the selected color.

4. Select Done from the top of the screen to finish the Net Hilight
command.

Using Command Line Entry
XDE commands can also be entered directly from the keyboard
without using the pulldown menus.

1. To remove the highlighting from the global clock net, type
unhilight clk ↵ on the command line.

2. Leave EditLCA by typing quit ↵.

The XDE Executive menu returns.

Running the Design Rule Checker
XDE has a design rule check program, called DRC, which ensures
that an LCA file is valid. If you make any edits in EditLCA, you
should run the DRC program to make sure you have not introduced
any invalid connections.
OrCAD Interface/Tutorial Guide 11-85

OrCAD Interface/Tutorial Guide
1. To run the DRC program, pull down the Programs menu and
select DRC. A menu of options appears.

2. Since none of these options are necessary for this design, simply
select Done.

The screen switches into text mode, and messages describing what
the DRC program is checking appear. No errors or warnings
should occur.

3. Press any key to return to the XDE Executive Screen.

4. Leave XDE by typing quit ↵.

5. Press any key to return to XDM.

You can also run DRC from inside the EditLCA program.

The commands just given are only a few of the many useful
commands available in the XACT Design Editor. For more details on
these and all other XDE commands, consult the XACT Reference
Guide.

Verifying the Design Using a Demonstration Board
Now that you have completed your design and run a design rule
check, you are ready to download it to an FPGA. XMake has already
generated a bitstream for the design.

There are three Xilinx demonstration boards in common use. Which
board you have depends on what software you purchased and when
you bought it. Your tutorial design should be targeted to a device on
the board that you have available.

The three boards include one with both an XC3000 family socket and
an XC4000 family socket, containing an XC3020APC68 and an
XC4003APC84. This tutorial only uses one of the two parts; which
part you use is up to you. This combination board is called the FPGA
Demonstration Board. Another board, referred to as the XC3000
Demonstration Board, contains a single XC3020PC68, and the XC4000
Demonstration Board contains a single 4003PC84 or 4003APC84.

To load the configuration bitstream to the demonstration board, you
need one of Xilinx’ hardware cables. Xilinx makes two different
hardware cables, the XChecker cable and the Download cable. Either
cable works with any of the Xilinx demonstration boards.
11-86 Xilinx Development System

SDT Tutorial
Connecting the Cable for Download
Before initiating the physical downloading of the design into the
FPGA on a Xilinx demonstration board, the board must be correctly
hooked up to your PC.

There are several control and power pins that must be connected
between the board and the cable. The bundles of leads supplied with
the cables are labeled to make connecting the board to the cable a
simple process. Additionally, a pair of power and ground pins must
be connected to a regulated 5 volt power supply to supply power to
the board and cable.

Connect one end of the cable to your demonstration board as
described in Table 11-1 and Table 11-1. For the FPGA demonstration
board, use the leftmost column of pins, which is missing the pin in
the third position.

The other end of the cable must be plugged into the back of your
machine. Attach the Download cable to a parallel port or the
XChecker cable to a serial port.

The “XC3000 Design Demonstration Board”, “XC4000 Design
Demonstration Board,” and “FPGA Demonstration Board” chapters
of the XACT Hardware and Peripherals Guide discuss in detail the
various demonstration boards and how to hook them up. Please refer
to this manual for instructions, if necessary, then carefully verify the
following.

● Verify that the hardware cable is correctly connected to both your
system and the demonstration board. Connections from the cable
to the demonstration boards are shown in Table 11-1 for XC3000
family devices and Table 11-1 for XC4000 family devices.

● Verify that the power supply is connected to the demonstration
board and is turned on. The power connections for the demonstra-
tion boards are shown in Table 11-3.
OrCAD Interface/Tutorial Guide 11-87

OrCAD Interface/Tutorial Guide
Table 11-1 Demonstration Board Cable Connections For XC3000

Table 11-2 Demonstration Board Cable Connections For XC4000

Table 11-3 Demonstration Board Power Connections

XC3000 Board Cable Label FPGA Board Cable Label

J1-1 VCC J1-1 VCC

J1-2 Gnd J1-3 Gnd

J1-3 No Connection J1-5 No Connection

J1-4 CCLK J1-7 CCLK

J1-5 D/P J1-9 D/P

J1-6 DIN J1-11 DIN

XC4000 Board Cable Label FPGA Board Cable Label

J1-1 VCC J2-1 VCC

J1-2 Gnd J2-3 Gnd

J1-3 No Connection J2-5 No Connection

J1-4 CCLK J2-7 CCLK

J1-5 D/P J2-9 D/P

J1-6 DIN J2-11 DIN

XChecker Cable Only: XChecker Cable Only:

J1-7 PROG J2-13 PROG

J1-8 INIT J2-15 INIT

J1-9 RST J2-17 RST

XC3000 Board XC4000 Board FPGA Board

J3-1 + 5 volts J2-1 +5 volts J9-1 +5 volts

J3-2 Gnd J2-2 Gnd J9-2 Gnd
11-88 Xilinx Development System

SDT Tutorial
FPGA (XC3000/XC4000) Demonstration Board

Make sure the FPGA demonstration board is set up for slave mode
configuration. The configuration mode for the XC3000 family part is
controlled by the SW1 bank of switches. The configuration mode for
the XC4000 family part is controlled by the SW2 bank of switches.
The switches should be set as shown in Table 11-4 and Table 11-5.

Table 11-4 FPGA Board Switch Positions for XC3000

Table 11-5 FPGA Board Switch Positions for XC4000

Switch Label Setting

SW1-1 (left) INP Don’t Care

SW1-2 MPE Off

SW1-3 SPE Off

SW1-4 M0 On

SW1-5 M1 On

SW1-6 M2 On

SW1-7 MCLK Off

SW1-8 (right) COUT Off

Switch Label Setting

SW2-1 (left) PWR Don’t Care

SW2-2 MPE Off

SW2-3 SPE Off

SW2-4 M0 On

SW2-5 M1 On

SW2-6 M2 On

SW2-7 RST Off

SW2-8 (right) No Label Off
OrCAD Interface/Tutorial Guide 11-89

OrCAD Interface/Tutorial Guide
XC4000 Demonstration Board

Make sure the XC4000 demonstration board is set up for slave mode
configuration. The configuration mode is controlled by the SW4 bank
of switches. The switches should be set as shown in Table 11-6.

Table 11-6 XC4000 Board Switch Positions

XC3000 Demonstration Board

If you have an XC3000 demonstration board that has been modified
for use with a serial PROM, be sure it is not configured for use with
an XC1736A or XC1765 Serial Configuration PROM. (If you have the
demonstration board as shipped with Xilinx products, there is no
serial PROM socket on the board.) Such a modified board contains a
four-position DIP switch with a power switch and three switches
controlling the programming mode. If this DIP switch is present,
make sure that the switches are set for slave mode download. A serial
PROM can be present on the board if this DIP switch is installed and
set correctly. Information on modifying the demonstration board for
use with a serial PROM is available in the “XC3000 Design
Demonstration Board” chapter of the XACT Hardware and Peripherals
Guide.

Switch Label Setting

SW4-7 PWR Off (unless using
battery)

SW4-6 MPE Off

SW4-5 SPE Off

SW4-4 M0 Off

SW4-3 M1 Off

SW4-2 M2 Off

SW4-1 RST On

SW4-0 No Label Don’t Care
11-90 Xilinx Development System

SDT Tutorial
Downloading the Bitstream
Once the cable is connected to your PC, you are ready to download
the bitstream.

1. Set all of the input switches High. This setting (SW3 switches
High on the FPGA (XC3000/XC4000) board, SW5 switches High
on the XC4000 boards, SW1 switches to “1” on the XC3000 board)
selects the No-Op command.

2. In XDM, select the Verify menu.

3. Select XCHECKER.

The XChecker software is used for either hardware cable.

4. Select -port <name> and the correct port.

5. Select Done and the input file name: CALC.BIT .

Alternatively, you can run XChecker from the system prompt.
Type:

xchecker -port portname calc ↵

An example is the following:

xchecker -port com2 calc ↵

Valid port names on a PC are COM1 or COM2.

Once you have used XChecker and set the correct port, that infor-
mation is saved in a file called xchecker.pro in your design direc-
tory, and you do not have to specify it each time.

6. If you are using the Download cable to program an XC4000 family
part, press the PROG button. This step is not necessary if you are
using the XChecker cable or using the Download cable to pro-
gram an XC3000 family part.

7. Press the ↵ key.

If the FPGA is successfully programmed, the following message
appears:

DONE signal went high.

8. Press any key to return to XDM.

If the done signal does not go High, check the connections
OrCAD Interface/Tutorial Guide 11-91

OrCAD Interface/Tutorial Guide
between the cable and the demonstration board, power the board
off and on, and try downloading again.

Note: The Download cable has limited functionality when used with
XC4000 family parts and may report that Done went High even if you
do not press the PROG button as in step 5, above. In this case the part
is not reprogrammed. Download the bitstream again, this time press-
ing the PROG button prior to configuration. Cycling the power off
and on before beginning the download has the same effect.

Testing the Design
As described in the “Design Description“ section near the beginning
of this tutorial, the Calc design is essentially a 4-bit processor with a
stack, in other words, a calculator that uses reverse polish notation.
There are three types of input that you must supply: an opcode, data,
and an Execute command.

Each demonstration board has a row of eight rocker switches that
provide input to the design (SW3 on the FPGA (XC3000/XC4000)
board, SW5 on the XC4000 board, SW1 on the XC3000 board). The
leftmost switch, labelled “1,” is the Execute command,which is
activated by toggling the switch twice. The next three switches
(labelled 2-4) select the opcode. Opcode encoding is shown in Table
11-7. Use the rightmost four switches (labelled 5-8) to input data.
When the extended instruction set is selected with opcode 111, these
switches provide additional bits of opcode.

Note: The rocker switches on the XC3000 demonstration board are
On when down, Off when up. Use the “0” and “1” labels on the board
as your guide.
11-92 Xilinx Development System

SDT Tutorial
Table 11-7 Processor Operations

To perform an operation, simply set the data on the rightmost
“nibble.” “On” is a one; “Off” is a zero. Look up the correct opcode
for the operation you want to perform and set the three opcode
switches to the correct value. Then toggle the leftmost Execute switch
twice. If the switch is already On, switch it Off, wait a moment, and
then return it to the On position.

The contents of the ALU register are displayed in hexadecimal on the
7-segment display. The top value in the stack is displayed in binary
on the bank of LEDs.

1. Verify that the inital contents of both ALU and stack are all zeros.
The decimal display says “0,” and the LED bar is all Off.

Now put a 1 on the data switches and load the switch value to the
ALU register. The op code is 110.

2. Set the seven rightmost switches to 110-0001.

2 3 4 5 6 7 8 Operation

0 0 0 DATA ADD between switches and register

0 0 1 DATA AND between switches and register

0 1 0 DATA OR between switches and register

0 1 1 DATA XOR between switches and register

1 0 0 DATA SUB switch value from register

1 0 1 X X X X CLEAR register

1 1 0 DATA LOAD register

1 1 1 0 0 0 X ADD between stack and register

1 1 1 0 0 1 X AND between stack and register

1 1 1 0 1 0 X OR between stack and register

1 1 1 0 1 1 X XOR between stack and register

1 1 1 1 0 0 X SUB stack value from register

1 1 1 1 0 1 X PUSH register value to stack

1 1 1 1 1 0 X POP stack value to register

1 1 1 1 1 1 X NOP
OrCAD Interface/Tutorial Guide 11-93

OrCAD Interface/Tutorial Guide
3. Toggle the leftmost switch to execute the command.

The decimal display shows the contents of the ALU register,
which is now “1.” The stack is still empty.

Add 13 to the ALU register. The opcode is 000.

4. Set the seven rightmost switches to 000-1101.

5. Toggle the leftmost switch twice to execute the command.

The decimal display shows the contents of the ALU register,
which is now “E.” The stack is still empty.

Push the register value onto the stack. The opcode is 111, which is
the extended opcode. The data must be set to 101x, where the x is a
don’t-care.

6. Set the seven rightmost switches to 111-1011.

7. Toggle the leftmost switch twice to execute the command.

The decimal display still shows “E.” The stack value is also “E,” so
the LED bar shows 1110 in the right-hand nibble.

Perform an XOR operation between the switch value and the reg-
ister. The opcode is 011. Set the data to all ones.

8. Set the seven rightmost switches to 011-1111.

9. Toggle the leftmost switch twice to execute the command.

The decimal display changes to “1.” The stack value on the LED
display is still “E,” 1110.

Pop the value from the stack. The opcode is 111, which is the
extended opcode. The data must be set to 110x, where the x is a
don’t-care.

10. Set the seven rightmost switches to 111-1101.

11. Toggle the leftmost switch twice to execute the command.

The decimal display changes to “E.” The stack value returns to
“0”.

Clear the ALU register. The opcode is 101. The data is ignored.

12. Set the seven rightmost switches to 101-1101.

13. Toggle the leftmost switch twice to execute the command.
11-94 Xilinx Development System

SDT Tutorial
The decimal display changes to “0.” The stack value remains at
“0”.

14. Try any other commands that you wish.

Making Incremental Design Changes
If you place and route your design, then decide to make a small
design change, you do not have to start the place-and-route process
over again from the beginning. You can use the existing design as a
guide file, and the logic and routing that has not changed is retained
from the previous version.

This is an advantage when you have a particular implementation
with timing that meets your needs, or when time is a factor, since
both APR and PPR place-and-route tools run significantly faster
when most of the work is already done.

In this section of the tutorial, you make a small change to the
schematic and reprocess the design using the Guide option.

Creating the Guide LCA File
The first step is to save the routed LCA file to another name. This file
is used as the guide file.

1. Type sys ↵ to open a DOS shell.

2. From the DOS prompt type copy calc.lca gcalc.lca ↵.

3. Type exit ↵ to return to XDM.

Note: Alternatively, to run a DOS command from within XDM you
can preface the command with the word “dos”. In this case you could
type dos copy calc.lca gcalc.lca ↵.

The LCA file is not necessarily the only file that is used as input when
using the Guide option. Incremental design with any member of the
XC2000 or XC3000 families also requires a file called filename.pgf, as
described in the “Configuring XMake for Incremental Design”
section, following. If you complete an XC2000 or XC3000 family
design and want to be able to use it as a guide file at a later time, it is
best to save the PGF file, as well as the LCA file, although the PGF file
can be recreated using the LCA2XNF program if necessary. There is
no PGF file for XC4000 family designs.
OrCAD Interface/Tutorial Guide 11-95

OrCAD Interface/Tutorial Guide
Making an Incremental Schematic Change
Make a simple change to the Calc schematic that will be visible
immediately on the demonstration board. Disconnect the overflow
net and tie the signal high. When this net, labeled OFL, is high, the
decimal point in the 7-segment display lights up to signal an
overflow condition in the ALU. With the net tied high, the decimal
point is on at all times.

Open OrCAD SDT and load the CALC schematic.

1. To start the OrCAD design environment from the XDM menu,
click the left mouse button once on DesignEntry .

2. Select ORCAD.

The ESP executive screen appears. Make sure that the words CALC
Design appear at the top of the ESP screen. If they do not, you
need to change the default project directory as described in the
“Changing the Default Design“ section near the beginning of the
tutorial.

3. To enter SDT, select Schematic Design Tools ➝ Execute .

4. Click on DRAFT ➝ Execute .

The CALC schematic appears on the screen.

5. Zoom in on the upper right-hand corner of the schematic.

6. Place the cursor over the vertical segment of the net connecting
OFL to the ALU.

7. Select Delete ➝ Object ➝ Delete .

The wire under the cursor disappears.

8. Click the right mouse button to exit the Delete command.

The next step is to tie the OFL net High using the VCC
component.

Note: For Xilinx designs, use the VCC and GND components from
the Xilinx libraries to make connections to power and ground. These
symbols are placed using the Get command just as with any other
library symbols and must be connected with a wire. The wire must be
used, or the symbol is not considered connected. Do not use the Place
Power command in OrCAD.
11-96 Xilinx Development System

SDT Tutorial
9. Select Get and type vcc ↵.

10. Move the cursor so that the bottom of the VCC symbol makes a
conection to the net that was formerly OFL, as shown in Figure 11-
32.

11. Select Place and click the right mouse button to exit the Get
command.

The net is now tied high.

Note: It is important that any net connected to power or ground not
be labeled with another name, or you will get errors during netlist
translation. If you must put a label on a power or ground net, place a
BUF symbol between the VCC or GND symbol and the net with the
label.

12. Select Quit ➝ Update File ➝ Abandon Edits to save the
changes and return to the ESP screen.

13. Select To Main ➝ Execute ➝ Exit ESP ➝ Execute .

14. Type any key to return to XDM.

Figure 11-32 Adding a VCC Component
OrCAD Interface/Tutorial Guide 11-97

OrCAD Interface/Tutorial Guide
Configuring XMake for Incremental Design
Xilinx has two separate programs that perform placement and
routing. PPR works for XC3000A, XC3000L, and all XC4000 family
designs. APR works for XC3000, XC3100, and all XC2000 family
designs.

If your tutorial design is targeted for a 3020APC68, 4003APC84, or
4003PC84 device, only commands related to PPR appear in the XDM
menus. If it is targeted for a 3020PC84 device, only APR commands
appear.

Read through the sequence of commands in this section and perform
all that apply to your design.

PPR (XC3000A, XC3000L, XC4000 Family)

Tell PPR to use the guide file.

1. Select Profile ➝ Options .

A list of programs appears on the screen.

2. Select PPR ➝ -helpall .

3. Select guide= <file>.

A list of LCA files in the design directory appears.

4. Select GCALC.LCA.

5. Select Done to return to the list of configurable programs.

APR (XC3000, XC3100, XC2000 Family)

Tell APR to use the guide file.

1. Select Profile ➝ Options .

A list of programs appears on the screen.

2. Select APR ➝ -G <file>.

A list of LCA files in the design directory appears.

3. Select GCALC.LCA.

4. Select Done to return to the list of configurable programs.
11-98 Xilinx Development System

SDT Tutorial
XNFMap (XC3000 Family, XC2000 Family)

For all XC3000 and XC2000 family designs, an additional step is
necessary. Logic mapping for these families is performed by a
program called XNFMap. If the logic is not mapped into CLBs and
IOBs in exactly the same way as in the guide design, PPR or APR
cannot match up logic and signal names with the guide design.
Therefore, you must select an option that tells XNFMap to use the
existing mapping guide.

1. Select XNFMAP➝ -K <file> .

XNFMap uses the file calc.pgf to guide mapping of the logic. The
PGF file name is assumed to be the same as the input file name.

2. Select Done to return to the list of configurable programs.

This step is not necessary for XC4000 family designs, because for
these parts PPR performs the mapping function as well as the
placement and routing steps.

Return to XDM (All Families)

Select Done to return to XDM.

Translating the Incremental Design
Translate the guided Calc design in exactly the same way as you did
the first time.

1. Select Translate .

The various translation programs supported by Xilinx appear on
the Translate menu.

2. Choose automatic translation by selecting XMAKE.

A list of options is presented.

3. Since you already set all desired options in the xdm.pro file, sim-
ply select Done.

A menu of design files in the current directory is displayed.

4. Identify the top-level drawing file by selecting CALC.SCH.

The Select target: prompt appears.
OrCAD Interface/Tutorial Guide 11-99

OrCAD Interface/Tutorial Guide
5. Select Make bitstream .

The XMake program processes all of the necessary design files,
displaying its progress on the screen. If the translation is success-
ful, XMake issues the following message:

’calc.bit’ has been made, check output in
’calc.out’

6. Press any key to return to XDM.

Checking for Errors in the Calc.out File
The next step is to look at the OUT file created by XMake and check
for errors. There should not be any errors or warnings that were not
present in the first OUT file.

As always when checking the OUT file, the first priority is to verify
that the placement and routing completed successfully and there
were no unrouted nets.

XMake did not perform all of the commands this run, because most
of the schematics did not change from last time. Also, XMake used
different options when calling the various Xilinx programs to process
the design.

For a description of the command flow followed by XMake for
original and incremental translation, see the “Command Summaries”
section at the end of this chapter. The command summaries are
simplified versions of the program flow used by XMake but are
equally valid.

Verifying the Change in the Demonstration Board
Verify that the change was performed by downloading the new
bitstream to the demonstration board, as you did previously.

1. Set all of the input switches High. This setting (SW5 switches High
on the FPGA (XC3000/XC4000) and XC4000 boards, SW1 switches
to “1” on the XC3000 board) selects the No-Op command.

2. In XDM, select the Verify menu.

3. Select XCHECKER.

The XChecker software is used for either hardware cable.
11-100 Xilinx Development System

SDT Tutorial
The port name is already set in the xchecker.pro file saved during
the first download.

4. Select Done and the input file name: CALC.BIT .

5. If you are using the Download cable to program an XC4000 family
part, press the PROG button. This step is not necessary if you are
using the XChecker cable, or using the Download cable to pro-
gram an XC3000 family part.

6. Press the ↵ key.

If the FPGA is successfully programmed, the following message
appears:

DONE signal went high.

7. Press any key to return to XDM.

If the Done signal does not go High, check the connections
between the cable and the demonstration board, power the board
off and on, and try downloading again.

The decimal point in the 7-segment display turns on, as directed by
the incremental change you made to the schematic.

Leaving XDM
1. To leave XDM, select quit or type quit ↵. The following mes-

sage appears:

Current profile option changes will be lost.
Do you really want to quit (Y/N)?

You do not want to save the profile changes that set up XMake for
incremental design.

2. Click on Yes in the menu or type y ↵ to quit without saving your
profile changes.

You have completed the Xilinx SDT tutorial. At this point, you can, if
you wish, continue on with the VST tutorial or skip to the special-
topic tutorials also included in this manual.
OrCAD Interface/Tutorial Guide 11-101

OrCAD Interface/Tutorial Guide
Command Summaries
Although this tutorial uses XMake to process the Calc design, you do
not have to use XMake if you do not wish to do so. You can also
bypass XDM and run either XMake or each individual program from
the system prompt.

This section details command sequences that you can use to perform
all of the translations using XMake in this tutorial. The commands are
written as you would type them at the system prompt or in a batch
file. XMake executes some of these commands individually on each
file in the design hierarchy, so that it does not rerun any program
unnecessarily, but it is not necessary for you to do the same.

The command summaries assume that you have specified the part
type in the schematic. If you prefer to specify the part type on the
command line, call SDT2XNF with the -P option.

The Ignore_xnf_locs and Cstfile options are necessary for overwriting
pad location constraints when compiling the Calc design for XC4000
family devices. You may or may not need to use them for your own
designs.

Basic Translation for XC3000A and XC3000L Designs
cleanup calc.sch (Not run by XMake)

annotate calc.sch Update reference designators
inet calc.sch Generate INF (OrCAD netlist) files
sdt2xnf calc Translate INF files to XNF netlists
xnfmerge calc Combine into one XNF file
xnfprep calc Trim logic and check for errors
xnfmap calc Map to CLBs and IOBs
ppr calc Place and route
xdelay -d -w calc Add delays to LCA file
makebits calc Create bitstream

Basic Translation for XC4000 Family Designs
cleanup calc.sch (Not run by XMake)

annotate calc.sch Update reference designators
inet calc.sch Generate INF (OrCAD netlist) files
sdt2xnf calc Translate INF files to XNF netlists
11-102 Xilinx Development System

SDT Tutorial
xnfmerge calc Combine into one XNF file
xnfprep calc ignore_xnf_locs=IO

Trim logic and check for errors
ppr calc cstfile=calc_4k

Map, place and route
xdelay -d -w calc Add delays to LCA file
makebits calc Create bitstream

Basic Translation for XC3000, XC3100, and XC2000
Family Designs

cleanup calc.sch (Not run by XMake)

annotate calc.sch Update reference designators
inet calc.sch Generate INF (OrCAD netlist) files
sdt2xnf calc Translate INF files to XNF netlists
xnfmerge calc Combine into one XNF file
xnfprep calc Check for errors
xnfmap calc Map to CLBs and IOBs
map2lca calc Convert to LCA file
apr -w calc calc Place and route, add delays
makebits calc Create bitstream

Incremental Translation for XC3000A and XC3000L
Designs

Make schematic changes.

copy calc.lca gcalc.lca (Not run by XMake)
cleanup calc.sch (Not run by XMake)

annotate calc.sch Update reference designators
inet calc.sch Generate INF (OrCAD netlist) files
sdt2xnf calc Translate INF files to XNF netlists
xnfmerge calc Combine into one XNF file
xnfprep calc Trim logic and check for errors
xnfmap -k calc Map to CLBs and IOBs
ppr calc guide=gcalc Place and route
xdelay -d -w calc Add delays to LCA file
makebits calc Create bitstream
OrCAD Interface/Tutorial Guide 11-103

OrCAD Interface/Tutorial Guide
Incremental Translation for XC4000 Family Designs
Make schematic changes.

copy calc.lca gcalc.lca (Not run by XMake)
cleanup calc.sch (Not run by XMake)

annotate calc.sch Update reference designators
inet calc.sch Generate INF (OrCAD netlist) files
sdt2xnf calc Translate INF files to XNF netlists
xnfmerge calc Combine into one XNF file
xnfprep calc ignore_xnf_locs=IO

Trim logic and check for errors
ppr calc guide=gcalc cstfile=calc_4k

Map, place and route
xdelay -d -w calc Add delays to LCA file
makebits calc Create bitstream

Incremental Translation for XC3000, XC3100, and
XC2000 Family Designs

Make schematic changes.

copy calc.lca gcalc.lca (Not run by XMake)
cleanup calc.sch (Not run by XMake)

annotate calc.sch Update reference designators
inet calc.sch Generate INF (OrCAD netlist) files
sdt2xnf calc Translate INF files to XNF netlists
xnfmerge calc Combine into one XNF file
xnfprep calc Check for errors
xnfmap -k calc Map to CLBs and IOBs
map2lca calc Convert to LCA file
apr -w -g gcalc calc calc

Place and route, add delays
makebits calc Create bitstream

Annotate and Inet require that the SCH extensions be specified. For
any design processed with PPR, you must run XDelay with the -w
option if you want timing information back-annotated to the LCA
file. You do not need to include this step for designs processed with
APR, as APR places the delay information in the LCA file.
11-104 Xilinx Development System

VST Tutorial

OrCAD
Interface/
Tutorial
Guide
OrCAD Interface/Tutorial Guide — 0401409 01 Printed in U.S.A.

OrCAD Interface/Tutorial Guide
Xilinx Development System

Chapter 12

VST Tutorial

This chapter steps through both a functional simulation and a timing
simulation using OrCAD’s VST simulator. The tutorial flow uses the
Calc design created in the ‘‘SDT Tutorial” chapter. It also
demonstrates how to use VST’s Stimulus, Trace, and Breakpoint
Editors and how to capture simulation output for later use as test
vector input.

Required Software
This tutorial assumes that you are using the following versions of the
development software:

● OrCAD/SDT — SDT 386+

● OrCAD/VST — VST 386+

● OrCAD/Xilinx Interface — Version 5.00 or later

● XACT Design Manager (XDM) — Version 5.00 or later

It is strongly recommended that you work through the SDT tutorial
in the ‘‘SDT Tutorial” chapter before beginning this VST tutorial,
even if you are familiar with OrCAD SDT. Information specific to
using Xilinx parts is included in the documentation. In addition to
schematic entry, the SDT tutorial steps through an entire place-and-
route sequence, downloads the design to a demonstration board, and
allows you to test the Calc processor in the board.

Directions given in this tutorial generally skip basic information
already provided in the SDT tutorial: it is assumed that you have
already read or performed that tutorial.
OrCAD Interface/Tutorial Guide — 0401409 01 12-1

OrCAD Interface/Tutorial Guide
Before Beginning the Tutorial
Before starting the VST tutorial, perform the following steps.

Skipping the SDT Tutorial
If you chose to read through the SDT tutorial rather than actually
perform the steps involved, you must verify that your PC is set up
correctly to use OrCAD 386+ and the XACT Development System
software. Then create and configure the design directory, and copy a
completed set of schematics from any of the solutions directories
supplied.

If you have already performed the SDT tutorial on your PC, skip to
the next section, “XDraft and the Vst.cfg File.”

1. Follow the instructions given in the “Before Beginning the
Tutorial” section of the “SDT Tutorial” chapter for setting up your
design environment.

2. The tutorial files are optionally installed when you install the
Xilinx/OrCAD interface software. If you have already installed
the software but are not sure whether you specified tutorial
installation, check for the c:\xact\tutorial\orcad\calc directory.
This directory contains the tutorial files.

Note: This tutorial assumes that your Xilinx and OrCAD software are
loaded on the c: drive, but you can substitute any other drive. If your
PC is configured with only one drive, it is not necessary to specify a
drive. You can load the Xilinx software on one drive and the OrCAD
software on another drive, but it is recommended that you load the
OrCAD/Xilinx Interface on the drive with your Development System
software rather than on the drive with the OrCAD software. If you
load the interface to a drive other than the one containing the
Development System, you create a second XACT directory containing
your Xilinx libraries. If you must create a second XACT directory
because of drive size limitations, see the ‘‘Partitioning Software
Between Two Different Disks” section in the ‘‘Getting Started”
chapter.

3. Create a new project called “Calc,” as described in the “Creating
the Project Directory” section of the “SDT Tutorial” chapter.

4. Copy a completed set of schematics from any one of the four
12-2 Xilinx Development System

VST Tutorial
solutions directories provided. The four solutions directories are
described in the “Solutions Directories” section of the “SDT
Tutorial” chapter. From the DOS prompt, type:

cd \orcad\calc ↵
copy \xact\tutorial\orcad\calc\ solution *.* ↵

where solution is either soln_3ka, soln_3k, soln_4ka, or soln_4k.
The solutions schematics are targeted towards the 3020APC68-7,
3020PC68-50, 4003APC84-6, and 4003PC84-6 devices, respectively.

This procedure gives you a full set of completed schematics for
the Calc design, with all supporting files.

Note: This tutorial assumes that your ORCADPROJ variable is set to
c:\orcad\. You need not follow this convention.

5. Configure the design directory by typing xdraft 3 ↵ or
xdraft 4 ↵, depending on whether you are targeting an XC3000
or an XC4000 device.

XDraft and the Vst.cfg File
Two important files in the design directory are sdt.cfg, the SDT
configuration file, and vst.cfg, the VST configuration file. XDraft
automatically edits these files to work with Xilinx designs.

XDraft makes the following changes to the vst.cfg file. The PLIB line
is modified to point to the directory containing the Xilinx simulation
model files. The name of this directory varies according to which
family you specify when calling XDraft. The Prefix G is used for
symbol instance names. A set of simulation macro files is provided
using the MAC entry, and IMAC sets the initial macro.

A sample sdt.cfg file for the XC3000 family follows.

PDRV = ’C:\ORCADESP\DRV\’
DD = ’VGA640.DRV’
PLIB = ’c:\xact\xc3000\’
PREFIX = ’G’
MAC = ’c:\xact\VSTMAC.MAC’
IMAC = ’F6’

See Table 12-1 for a listing of the macros defined in the vstmac.mac
file. Several of these macros are referenced as “Keyboard Shortcuts”
in the course of the tutorial.
OrCAD Interface/Tutorial Guide 12-3

OrCAD Interface/Tutorial Guide
Table 12-1 OrCAD/VST Key Macros

Completing VST Configuration
Although XDraft sets up the vst.cfg file for you, there is one more
change that you must make manually using the OrCAD
configuration procedure. You must change the simulation
configuration so that the input file is CALC.VST rather than
CALC.INF.

You must always simulate Xilinx designs from a VST file, never from
an INF file. Xilinx does not provide INF models, because their
functionality cannot correctly model the Xilinx libraries.

Enter the OrCAD environment and make sure you are editing files
for the correct design directory.

1. From any directory, type orcad ↵. The OrCAD ESP design
environment appears on the screen.

2. Make sure that the words CALC Design appear at the top of the
screen. If you did not perform the SDT tutorial, the default design
is probably set to TEMPLATE, instead of CALC. In that case,
change the design to CALC as described in the “Selecting Calc as
the Active Design” or “Changing the Default Design” sections of
the “SDT Tutorial” chapter.

Function Key Function

F1 Run Simulation ➝ 100 (10.0 ns)
F2 Run Simulation ➝ 1000 (100.0 ns)
F3 Run Simulation ➝ 10000 (1000.0 ns)
F4 Verify ➝ Enable Hold, Pulsewidth, and

Setup Violation Checks ➝ Escape
F5 Initialize ➝ Yes ➝ Set ➝ Spool to Disk ➝ Yes

➝ Yes
F6 Zoom ➝ Initial Display ➝ 0
F7 Trace ➝ Change View ➝ 1 (0.1 ns/grid)
F8 Trace ➝ Change View ➝ 10 (1 ns/grid)
F9 Trace ➝ Change View ➝ 1000 (100ns/grid)
12-4 Xilinx Development System

VST Tutorial
3. Select Digital Simulation Tools ➝ Execute to enter the
OrCAD simulation environment.

4. Select Simulate ➝ Local Configuration ➝ Configure
SIMULATE.

5. Under File Options , click on the box next to Connectivity
Database , and change the file name, such as CALC.INF , to
CALC.VST↵.

6. Make sure that the Stimulus File is set to CALC.STM and the
Trace File is set to CALC.TRC.

7. Click on OK to save the changes.

This step writes the information to the vst.bcf file, the binary
version of the vst.cfg file. If you edit the ASCII file vst.cfg using a
text editor, a new vst.bcf is automatically generated the next time
that you enter the simulator, and this change is lost. In general, it
is better to configure the simulator using the OrCAD interface.

8. Exit from OrCAD by clicking twice on To Main , then twice on
Exit ESP . ESP asks you whether you want to save the changes
you made to the local configuration. Click on Yes .

Performing a Functional Simulation
There are six basic steps to the functional simulation of a Xilinx
design in OrCAD. They are:

1. Place stimulus and trace data on the schematic to be simulated.

2. Create a functional simulation netlist with XSimMake, which
performs the following steps:

● Generates a Xilinx XNF netlist file for the design

● Converts the XNF file to an OrCAD VST simulation file

● Generates OrCAD stimulus (AST) and trace (ATR) files

3. Convert stimulus and trace files to binary format (STM and TRC).

4. Configure OrCAD VST for the particular design.

5. Add additional stimulus data using OrCAD’s Stimulus Editor.

6. Perform the functional simulation.
OrCAD Interface/Tutorial Guide 12-5

OrCAD Interface/Tutorial Guide
You perform these steps on the Calc design in this tutorial.

Placing Stimulus and Trace Data on the Schematic
The first step in functionally simulating a design is to place the
stimulus and trace data on the schematic to be simulated.

In this section, you place stimulus and trace data on the top-level
CALC schematic. Additional stimulus data is already included in the
SW7 schematic. You can place stimulus and trace data at any level of
hierarchy.

Note: A complete schematic for CALC, with stimulus and trace data,
is supplied in each solutions directory under the name calcsim.sch.
However, it is recommended that you enter the stimulus and trace
data using the procedure outlined in this section, unless you are
already familiar with this process.

1. Start XDM from the DOS prompt. Type XDM↵.

2. Start the OrCAD Schematic Editor by selecting DesignEntry
➝ ORCAD.

3. To enter the Schematic Editor, select Schematic Design Tools
➝ Execute ➝ Draft ➝ Execute .

The top-level Calc schematic appears on the screen.

There are two types of information to be added to the schematic.
The first is stimulus information, which defines values for input
nets, including clocks. The second is trace information, which tells
the simulator which signals to monitor throughout the simulation.

First, add the stimulus for the input clock. The oscillator output
must be driven directly by the simulator, because there is no
simulation model for the oscillator.

4. Select Place ➝ Stimulus .

The Stimulus? prompt appears at the top of the screen. If a
menu appears instead, it means that you typed S to select
Stimulus. Since the Sheet command occurs first on the menu,
typing S is interpreted as Sheet. You must either type I or use the
mouse to select Stimulus from the menu.
12-6 Xilinx Development System

VST Tutorial
5. Type:

0:0 500:T 1000:G:500 ↵

Note: Time units in VST are measured in tenths of nanoseconds. In
other words, specifying a time interval of 500 means 50 nanoseconds.

6. Position the cursor somewhere on the net labeled CLK. Select
Place .

A small waveform marker (purple on color screens) appears
above the net, as shown in Figure 12-1.

Note: Stimulus and trace data must always be placed with the cursor
pointing directly at the net. The marker sits directly above the net to
which the data is supplied. Additionally, make sure the point where
you place the data is not on top of a symbol pin; the data marker
must be at least one grid point from the end of the net segment, or it
is ignored.

7. Press the Escape key.

The stimulus just added defines the CLK signal to be low at time
zero, toggle at time 500 (50.0 ns), then toggle again every 50.0 ns
(according to the syntax, at time 1000, Goto 500). Thus, CLK is
defined as a clock signal with a 50% duty cycle and a 100-ns
period. Alternatively, you could obtain the same result by
defining the stimulus as:

0:0 500:1 1000:G:0 or
0:0 500:T 1000:G:0

8. Add the stimulus for EXC_P using the same technique as for CLK.
Set the stimulus to:

0:1 1000:0 3000:1 6000:0 8000:1

Be careful to place the stimulus marker well away from the
symbol pins at either end of the segment, as shown in Figure 12-1.
OrCAD Interface/Tutorial Guide 12-7

OrCAD Interface/Tutorial Guide
Figure 12-1 Stimulus and Trace Data for CLK and EXC_P

9. Add the trace data for the CLK node. Select Place ➝ Trace
Name.

To select Trace Name you must type R or use the mouse; typing T
selects the Text command.

The Trace Name? prompt appears at the top of the screen.

10. Type CLK↵.

11. Position the cursor on the CLK net near the stimulus data. Select
Place .

The Trace Name? prompt reappears.

12. Type EXC_P↵.

13. Position the cursor on the EXC_P net as shown in Figure 12-1.
Select Place .

14. Similarly, add trace data to the nets labeled WE, ALU0, ALU1,
ALU2, ALU3, STACK0, STACK1, STACK2, STACK3.

When you enter a trace name that ends with a number, the next
trace name defaults to the same name plus one. To use the default
12-8 Xilinx Development System

VST Tutorial
name, simply press ↵. If you do not want that name, backspace
over the default name and enter the new name, or press the
Escape key.

Note: You may not place trace or stimulus data on buses, only on
wires.

15. Press the Escape key to exit the Place Trace command.

Trace names should generally be the same as net names on the
schematic to avoid confusion, but they do not have to be. They are
the names that the simulator uses to display signal values. Trace
names must never contain spaces.

The complete CALC schematic, with stimulus and trace data, is
shown in Figure 12-2.

16. Save the changes to the CALC schematic by selecting Quit ➝
Update File ➝ Abandon Edits .

17. Exit from OrCAD by clicking twice on To Main and twice on
Exit ESP .

18. Press any key to return to the XDM environment.

It is not necessary to enter all stimulus and trace information from the
schematic. In fact, you could enter all of this data from the simulator,
but sometimes it is more convenient to place this type of information
on the schematic.
OrCAD Interface/Tutorial Guide 12-9

OrCAD Interface/Tutorial Guide
Figure 12-2 CALC Schematic with Stimulus and Trace Data

Creating a Functional Simulation Netlist with
XSimMake

When completely placing and routing the Calc design in the SDT
tutorial, you used the XMake program. To functionally simulate, it is
not necessary to route the design unless CLB or IOB primitives are
used; you need only translate it to XNF (Xilinx Netlist Format) and
back again to incorporate the Xilinx simulation models. Therefore,
instead of using XMake, you run a program called XSimMake.

The flow using XSimMake as described in this section works for
simulating all designs created using either the Xilinx Unified
12-10 Xilinx Development System

VST Tutorial
Libraries or the older v4.1 libraries, with or without X-BLOX, and
including designs where some symbols do not have schematics but
simply reference XNF netlist files by name. This flow specifically
includes logic blocks created using Xilinx ABEL and MemGen. For
more information on using these programs in Xilinx designs, see the
“Xilinx ABEL Tutorial ” chapter and the “Merging Design Files from
Other Sources” section of the “FPGA Design Issues” chapter of this
manual.

The commands in this section show you how to run XSimMake on
your design. To learn more about the command sequence used by
XSimMake, see the “Functional Command Summary” section of this
chapter, and the other chapters of this manual.

Creating a Functional Simulation Netlist

Use XSimMake to create a functional netlist from XDM.

1. Select the Verify menu and click on XSIMMAKE.

2. Select -F <flow name> . If it is already highlighted, click the left
mouse button twice to deselect it and select it again.

A menu of supported command flows appears.

3. Click on Orcad_Fpga_Func to select the functional simulation
flow.

4. Select Done.

A list of all schematic sheets in the design directory appears.

5. Select CALC.SCH as the input schematic file.

XSimMake routes text output to the screen, so that you can follow
the conversion process and watch for error messages.

6. Press any key to return to XDM.

Examining the XSimMake Output File

XSimMake generates a very useful output file called xsimmake.out
and places it in the project directory.

The xsimmake.out file contains a copy of all text that is echoed to the
screen. You should always review this file after running XSimMake,
even if you did not see any warnings or error messages while the design
OrCAD Interface/Tutorial Guide 12-11

OrCAD Interface/Tutorial Guide
was being translated. The xsimmake.out file shows every program
run by XSimMake.

Examine the xsimmake.out file for functional simulation of the Calc
design.

1. Pull down the Utilities menu and select DOS.

2. Use any text editor or the DOS Type command to examine the
xsimmake.out file.

Only one warning should be generated. XFind is a program run
by XSimMake to determine what special blocks are used in the
design, such as X-BLOX or Xilinx ABEL. The types of special
blocks found determine the flow used by XSimMake to process
the design. In this case, since there are no special blocks found,
XFind reports a Warning 2: No special blocks found in calc.xff.

3. When you have finished looking at the file, return to XDM by typ-
ing exit ↵ at the DOS prompt.

A partial xsimmake.out file for functional translation of the Calc
design is shown in Figure 12-3. The command sequence used by
XSimMake varies greatly depending on what device is used, whether
or not X-BLOX modules are included, and whether all blocks have
schematics under them, or some reference XNF netlists as with
designs containing Xilinx ABEL. XSimMake also calls the translation
programs INF2XNF and XNF2INF directly rather than through the
functionally equivalent programs SDT2XNF and XNF2VST. The
sequence shown in Figure 12-3 is for the Calc design as it now stands,
targeted for an XC3020APC68.

Note: XSimMake flows vary depending on the design. The flow used
by XSimMake for your design may be slightly different from the flow
shown in this tutorial.
12-12 Xilinx Development System

VST Tutorial
XSIMMAKE COMMAND : creating directory savexnf
XSIMMAKE COMMAND : creating directory otherxnf

XSIMMAKE COMMAND : annotate calc.sch
“OrCAD/SDT 386+ v1.10 H 17-SEP-93”
--
XSIMMAKE COMMAND : inet calc.sch /t
“OrCAD/SDT 386+ v1.10 H 17-SEP-93”
--
XSIMMAKE COMMAND : inf2xnf calc d= otherxnf
Executing ‘inf2xnf calc d=otherxnf logfile=sdt2xnf.log’
--
XSIMMAKE COMMAND : xnfmerge -y -d otherxnf otherxnf\calc.xnf
otherxnf\calc.xff
Netlist written to file otherxnf\calc.xff
--
XSIMMAKE COMMAND : xfind otherxnf\calc.xff calc.xfw calc.xgs

LIST OF WARNINGS FOUND for XFIND

WARNING 2: No special blocks found in otherxnf\calc.xff
0 Errors and 1 Warnings occured during processing.
--
XSIMMAKE COMMAND : xnfmerge -z -d otherxnf -d xnf -d .
otherxnf\calc.xnf otherxnf\calc.xff
--
XSIMMAKE COMMAND : xnf2inf otherxnf\calc.xff calc.vst u=true

* YOU HAVE SPECIFIED UNIT DELAY TRANSLATION *

Writing the NRF file “calc.nrf”
Writing the VST file “calc.vst”
Writing the AST file “calc.ast”
Writing the ATR file “calc.atr”

**
* BEFORE BEGINNING YOUR SIMULATION, BE SURE TO EXPLICITLY *
* SPECIFY THE FILE EXTENSION AS ‘VST’, INSTEAD OF ‘INF’. *
* EXAMPLE: *
* simulate calc.vst [/t] [/a] *
* NOTE: IF NO EXTENSION SPECIFIED, OrCAD USES ‘INF’ AS *
* DEFAULT. *
**

Figure 12-3 Partial Xsimmake.out File for Functional Translation
OrCAD Interface/Tutorial Guide 12-13

OrCAD Interface/Tutorial Guide
Files Created by XSimMake

Several simulation input files are created by the XSimMake functional
flow. These files are:

● calc.vst OrCAD simulation netlist

● calc.nrf Signal name aliases. This file is useful in
determining new names that may have been
 assigned during translation. (See Figure 12-4.)

● calc.ast ASCII stimulus information from the schematic
(See Figure 12-5.)

● calc.atr ASCII trace information from the schematic (See
Figure 12-6.)

ALL XILINX SYMBOLS RENAMED TO UNIQUE REFERENCE DESIGNATOR
NAMES

G1 = U44
G2 = CONTROL/STATMACH/U185
G3 = CONTROL/STATMACH/U184
.
.
.
G414= DEBOUNCE/U72-AND
G415= OSC_3K/U51-AND
G416= OSC_3K/U50-OR

LONG XILINX SIGNAL NAMES RENAMED TO SHORT ORCAD NAMES

$1 = CONTROL/STATMACH/SEL_OP
$2 = CONTROL/CE_ADDR
$3 = CONTROL/STATMACH/INT2
.
.
.
$253= DEBOUNCE/U70/$U2_G
$254= DEBOUNCE/U69/$U1_P
$255= DEBOUNCE/U69/$U2_G

Figure 12-4 Partial Calc.nrf File, Signal Name Aliases
12-14 Xilinx Development System

VST Tutorial
STIMULUS_SPECIFICATION

CONTEXT: .
NAME: CLK_1
INITIALSTATE: 0
L1
500: T
1000: GOTO L1
END

CONTEXT: .
NAME: EXC_P
INITIALSTATE: 1
1000: 0
3000: 1
6000: 0
8000: 1
END

CONTEXT: .
NAME: SW6_1
INITIALSTATE: 0
1000: 1
END

CONTEXT: .
NAME: SW5_1
INITIALSTATE: 0
1000: 1
END

CONTEXT: .
NAME: SW4_1
INITIALSTATE: 0
6000: 1
END

CONTEXT: .
NAME: SW3_1
INITIALSTATE: 0
1000: 1
END

CONTEXT: .
NAME: SW2_1
INITIALSTATE: 0
END

CONTEXT: .
NAME: SW1_1
INITIALSTATE: 0
1000: 1
END
OrCAD Interface/Tutorial Guide 12-15

OrCAD Interface/Tutorial Guide
CONTEXT: .
NAME: SW0_1
INITIALSTATE: 0
END

Figure 12-5 Calc.ast File, Stimulus Information

TRACE_SPECIFICATION

DISPLAYNAME: CLK
TYPE: Signal
TraceOn: ON
DisplayOn: ON
CONTEXT: .
TRACENAME: CLK_1

DISPLAYNAME: EXC_P
TYPE: Signal
TraceOn: ON
DisplayOn: ON
CONTEXT: .
TRACENAME: EXC_P

DISPLAYNAME: WE
TYPE: Signal
TraceOn: ON
DisplayOn: ON
CONTEXT: .
TRACENAME: WE_1

DISPLAYNAME: ALU0
TYPE: Signal
TraceOn: ON
DisplayOn: ON
CONTEXT: .
TRACENAME: ALU0_1

DISPLAYNAME: ALU1
TYPE: Signal
TraceOn: ON
DisplayOn: ON
CONTEXT: .
TRACENAME: ALU1_1

DISPLAYNAME: ALU2
TYPE: Signal
TraceOn: ON
DisplayOn: ON
CONTEXT: .
TRACENAME: ALU2_1

DISPLAYNAME: ALU3
12-16 Xilinx Development System

VST Tutorial
TYPE: Signal
TraceOn: ON
DisplayOn: ON
CONTEXT: .
TRACENAME: ALU3_1

DISPLAYNAME: STACK0
TYPE: Signal
TraceOn: ON
DisplayOn: ON
CONTEXT: .
TRACENAME: STACK0_1

DISPLAYNAME: STACK1
TYPE: Signal
TraceOn: ON
DisplayOn: ON
CONTEXT: .
TRACENAME: STACK1_1

DISPLAYNAME: STACK2
TYPE: Signal
TraceOn: ON
DisplayOn: ON
CONTEXT: .
TRACENAME: STACK2_1

DISPLAYNAME: STACK3
TYPE: Signal
TraceOn: ON
DisplayOn: ON
CONTEXT: .
TRACENAME: STACK3_1

Figure 12-6 Calc.atr File, Trace Information

Converting Stimulus and Trace Files to Binary
Format

You now have a netlist and two files, AST and ATR, containing
stimulus and trace information. However, OrCAD VST needs this
data in binary form. The OrCAD ASCTOVST program converts the
ASCII files to binary files.

1. From XDM, pull down the Verify menu and select ASCTOVST
➝ CALC.AST ➝ Done .

The calc.ast file is converted to binary format and written to
calc.stm.
OrCAD Interface/Tutorial Guide 12-17

OrCAD Interface/Tutorial Guide
2. Press any key to return to XDM.

3. Once again, from the Verify menu select ASCTOVST➝
CALC.ATR ➝ Done .

Calc.atr is converted to binary format and written to calc.trc.

4. Press any key to return to XDM.

Note: ASCTOVST is a memory-intensive program. If it fails with the
error message “Insufficient conventional memory for data buffers,”
terminate XDM by typing exit ↵ . Type asctovst calc.ast ↵ at
the DOS prompt to convert the stimulus file, and asctovst
calc.atr ↵ to convert the trace file. Type xdm↵ to return to XDM,
and continue with the tutorial.

Configuring OrCAD VST for the Particular Design
You should already have configured the simulator for this design, as
described in the ‘‘Before Starting the Tutorial” section earlier in this
chapter. However, it is good design practice to verify these values
before entering the simulator.

Performing these steps before each simulation eliminates the most
common error made by Xilinx users simulating with OrCAD VST:
simulating from the INF file rather than the VST file.

1. Select DesignEntry ➝ ORCADto enter the OrCAD design
environment.

2. Select Digital Simulation Tools ➝ Execute ➝
Simulate ➝ Local Configuration ➝ Configure
SIMULATE.

The Configure Simulate screen appears.

Note: OrCAD’s configuration programs are memory intensive. If you
receive the message Could not find the .EXE, or not
enough memory to load \orcadexe\VST_CLC.EXE , return to
the XDM executive screen. Close XDM by typing exit ↵, type
orcad ↵, and verify the configuration as described in this section.
Type xdm ↵ to return to XDM, and continue with the tutorial.

3. Look in the File Options portion of the screen. The file names
should read as follows:
12-18 Xilinx Development System

VST Tutorial
Connectivity database CALC.VST
Stimulus file CALC.STM
Trace file CALC.TRC

4. If the names are incorrect, make the necessary changes.

5. Click on OK.

Setting these values before entering the simulator is the easiest way
to select the files. You must do this each time you start a new project
or want to simulate from an input file of a different name.

Adding Stimulus Data Using OrCAD’s Stimulus
Editor

You have created input vectors by adding stimulus to the schematic.
Another method is to add an input stimulus using the Stimulus
Editor inside the simulator. This section describes this method of
defining input for the global reset signal in your schematic.

XC2000/XC3000 Families Reset Signal

For XC2000 and XC3000 family devices, the global reset signal is
called GR, for Global Reset. It is an active Low signal that resets all of
the flip-flops in the design. GR comes up Low, in the active state, to
initialize the device, just as it does in the actual FPGA. In this
simulation you set this signal High at 1 ns.

You cannot place this stimulus on the schematic, because the GR
signal is not accessible through the schematics; it is an integral part of
the silicon and is not user-programmable. This dedicated net is
connected to the Reset pad on each XC2000 or XC3000 family FPGA.

XC4000 Family Reset Signal

For XC4000 family devices, the corresponding signal is called GSR,
for Global Set Reset. It is an active High signal that sets or resets each
flip-flop in the device, Whether a flip-flop is set or reset depends on
whether it is an FDR or an FDS flip-flop, or on the value of the INIT
attribute attached to the flip-flop. Unless you deliberately use a set
flip-flop, the flip-flop will reset, since this is the default configuration.
OrCAD Interface/Tutorial Guide 12-19

OrCAD Interface/Tutorial Guide
GSR comes up High, in the active state, to initialize the device, just as
it does in the actual FPGA. In this simulation you set this signal Low
at 1 ns.

You can place the GSR stimulus on the schematic if you are using the
STARTUP symbol to gain access to the global set reset signal. If you
want access to the Global Set Reset net from one of the pins of the
XC4000 FPGA, place the STARTUP component in your schematic and
attach an IPAD and IBUF to the GSR pin. This pad becomes an active-
High Global Set Reset signal. You can also use an internally generated
signal to drive the GSR pin of the STARTUP component. There is an
active-High Global Three State signal (GTS) that you can access in the
same way. See the XACT Libraries Guide for more information on the
Startup symbol.

Accessing the Stimulus Editor

Enter the OrCAD simulator and bring up the stimulus editor.

1. Select Simulate ➝ Execute .

Occasionally an error message appears at this point in a
simulation. If the following message appears:

PAD in X3K_LIB not found. Delete Device or EXIT
Simulator?

it means that an INF file is being loaded into the simulator instead
of a VST file. If this message appears, exit the simulator and
change the Local Configuration under Simulate to select
CALC.VST as the connectivity database.

2. Press ↵ to access the menu. (From now on, it is assumed that you
know how to access the VST commands.)

3. Select Edit Stimulus ➝ Yes .

You are now in the stimulus editor. A list of existing stimulus data
appears.

The CLK signal has been renamed to CLK_1, and the SW signals
have been similarly altered. The OrCAD software renames all
internal signals to add the _1. The EXC_P signal, which comes
from a pad, is not changed. The _1 signifies an internal signal on
sheet number one.
12-20 Xilinx Development System

VST Tutorial
Adding a New Stimulus

Perform the following commands to add the necessary stimulus to
the appropriate global reset signal.

1. To add the new stimulus, select Add.

2. Move the cursor to the Signal Name field.

3. Select Browse .

A list of signal names appears.

4. Type g.

This step performs a search for names beginning with G. It
demonstrates one advantage of using meaningful labels.

5. Select GR or GSR, depending on whether you are simulating an
XC3000 or an XC4000 family design.

6. Move the cursor to Initial Value and select either 0 for GR or
1 for GSR.

7. Move the cursor to End Stimulus and select Add.

You are prompted by Time of Function? .

8. Enter 10 ↵ to set a time of 1.0 nanoseconds.

The Function? prompt appears.

9. Select either 1 for GR or 0 for GSR.

10. Return to the stimulus editor by selecting Return .

11. Save the new stimulus file and overwrite the old one by selecting
Write ➝ Yes .

This step overwrites the old calc.stm file, which now includes the
stimulus for the global reset signal. But the new stimulus file has
not yet been read into the simulator. If you ran a simulation now,
the global reset signal would not deactivate, and the flip-flop
outputs would remain reset throughout the simulation.

12. To read the new stimulus file into the simulator, select Use ➝
Stimulus .

This command also exits the Stimulus Editor and returns you to
the simulation screen.
OrCAD Interface/Tutorial Guide 12-21

OrCAD Interface/Tutorial Guide
This method allows you to apply a stimulus to a signal that does not
exist on the schematic. It is also very useful for making changes
quickly without starting over and reprocessing the entire design from
the schematic level. On the other hand, stimuli created and saved in
this way do not exist in an ASCII text format, so they are difficult to
reproduce without the original binary STM file.

You can also directly edit the ASCII AST and ATR files, and rerun
ASCTOVST to regenerate the binary STM and TRC files. This last
method provides you with stimulus and trace information in a
permanent, editable form.

Design Description
The Calc design consists of a four-bit processor with a stack. Inputs
are a seven-bit bus, SW[6:0], which defines the opcode and data, and
an Execute switch, EXC_P. Whenever EXC_P goes high, the processor
reads the opcode and data and executes the defined command.

The ALU performs functions between an internal register and either
the top of the stack or data read in from the external switches.
Outputs include ALU[3:0], the current contents of the internal
register, and STACK[3:0], the top value in the stack.

For a more detailed description of the Calc design, see the “Design
Description” section of the “SDT Tutorial” chapter. Additional infor-
mation, including a table of opcodes, appears in the “Testing the
Design” section of the same chapter.

Performing the Functional Simulation
The waveform data may not all fit in RAM, so you can spool the data
to disk as it is created.

1. Select Set ➝ Spool to Disk .

The Spool Trace Data to Disk? prompt appears.

2. Select Yes ➝ Yes to spool the data to the spool.tdf file.

Keyboard Shortcut: Set ➝ Spool to Disk ➝ Yes ➝ Yes
corresponds to the “F5” Key Macro. You can perform steps1 and 2 by
pressing the F5 function key.

The default time scale is 10.0 ns per screen. Adjust the time scale to
12-22 Xilinx Development System

VST Tutorial
1,000.0 ns per screen, which means increasing the scale by a factor
of 100. (About 1,200 ns will actually be visible on the screen.)

3. Select Trace ➝ Change View .

The Trace Delta Time? prompt appears at the top of the
screen.

4. Type 100 ↵.

You are ready to simulate the design using your stimulus and
trace data.

5. Select Run Simulation .

6. Type 12000 ↵ to simulate for 1,200 ns.

Keyboard Shortcut: Run Simulation ➝ 10000 corresponds to
the “F3” Key Macro, and Run Simulation ➝ 1000 corresponds
to the “F2” Key Macro. You can perform step 6 by typing the F3 func-
tion key once and the F2 function key twice.

The resulting waveforms are displayed as in Figure 12-7. Whenever
EXC_P goes High, the next rising CLK edge executes the opcode
selected by the SW switches (not displayed). First, the value 1010 is
loaded into the ALU. Then the next command, a PUSH to the stack,
writes 1010 into the stack. The PUSH command takes longer to
complete because it requires extra states in the state machine.

Debugging the Functional Simulation
If your results do not match those displayed in Figure 12-7, first make
sure that your traces are not simply displayed in a different order
than those in the figure. If the output is actually incorrect, you may
have one of the problems discussed in this section.

If all outputs are Low, it is probably because you did not set GR High
or GSR Low at 1 ns to deactivate the global reset.

If all outputs are Unknown, you may not have run XDraft, or you
may have run XDraft with the -S option, which does not configure
the VST simulator. One of the tasks performed by XDraft is to set the
prefix definition to ’G’. If the prefix definition ’G’ is not defined as
described in the “XDraft and the Vst.cfg File”section earlier in the
tutorial, all outputs are always Unknown. Exit OrCAD, rerun XDraft
as described in the “Skipping the SDT Tutorial” section earlier in the
OrCAD Interface/Tutorial Guide 12-23

OrCAD Interface/Tutorial Guide
tutorial, and try again.

If the circuit simulates, but you do not see the expected output, you
may have made an error in the circuitry or while entering stimulus
data. Return to the schematic editor, make the necessary corrections,
and rerun XSimMake before simulating again. Alternatively, you can
copy the simulation solution schematic, calcsim.sch, from the
appropriate solutions directory. Either way, to see the changes to the
stimulus or trace data, you must delete the existing AST and ATR
files before rerunning XSimMake, then use ASCTOVST to translate
the new stimulus and trace files. The XNF2VST program called by
XSimMake does not overwrite existing AST and ATR files, because
users often modify the stimulus and trace files created from the
schematic.

Figure 12-7 Results of Functional Simulation of Calc

Useful Simulation Commands
Experiment with the commands in the VST menus. Useful commands
for checking simulation output are:

● Hardcopy Print the waveforms (plotter must be properly
configured)

● Initialize Restart the simulation at time zero
12-24 Xilinx Development System

VST Tutorial
● Place Marker Measure times between two points

● Delete Marker Remove measurement marker

● Quit Leave the simulation environment

● Verify Examine or short (force) signal values

● Zoom Change the scale or time of displayed
waveforms

See the OrCAD Digital Simulation Tools Reference Guide and Users
Guide for more information about these commands.

Exiting the OrCAD Simulator
When you have finished testing the simulation commands, close the
simulator and return to the XDM environment.

1. Select Quit ➝ Abandon Simulation ➝ Yes ➝ To Main
➝ Execute ➝ Exit ESP ➝ Execute .

The following message may appear on the screen:

Local configuration(s) have changed. Do you want to save the
changes?

2. If this message appears, click on Yes . Otherwise, press any key to
return to XDM.

Functional Command Summary
Although this tutorial uses XSimMake to process the Calc design,
you do not have to use XSimMake if you do not wish to.

You can run any of the following programs from XDM, or bypass
XDM and run them from the system prompt. The commands are
listed below as you would type them at the system prompt or in a
batch file.

The command summaries assume that you have specified the part
type in the schematic. If you prefer to specify the part type on the
command line, call XSimMake or SDT2XNF with the -P option and
specify the part type.

To run XSimMake from the system prompt or a batch file, type:

xsimmake -f orcad_fpga_func calc
OrCAD Interface/Tutorial Guide 12-25

OrCAD Interface/Tutorial Guide
or

xsimmake -f off calc

The -f option specifies the flow.

Alternatively, you can run the individual programs from the system
prompt or from a batch file. The command sequence varies
depending on whether or not Xilinx ABEL files are included, whether
X-BLOX elements are placed in the schematic, and so forth.
XSimMake automatically uses the correct command sequence for
each type of design. The following command sequence applies only
to basic schematics without special Xilinx symbols such as X-BLOX or
Xilinx ABEL symbols.

annotate calc.sch Update reference designators
inet calc.sch Generate INF (OrCAD netlist) files
sdt2xnf calc -d otherxnf Translate INF files to XNF netlists
xnfmerge -d otherxnf -q otherxnf\calc.xnf
 otherxnf\calc.xff Combine into one XFF file
xnf2vst -u otherxnf\calc.xff calc

Create VST netlist, AST, ATR files

asctovst calc.ast Translate ASCII AST to binary STM
(Not run by XSimmake)

asctovst calc.atr Translate ASCII ATR to binary TRC
(Not run by XSimmake)

Performing a Timing Simulation
The basic steps involved in the timing simulation of a Xilinx design
are similar to those of the functional simulation flow. Instead of
merely creating an XNF file, however, you must fully route the design
using XMake before running XSimMake to create the VST netlist.

The basic steps of the timing simulation procedure are the following.

1. Place and route the design with XMake.

2. Create a timing simulation netlist with XSimMake, which
performs the following steps:

● Runs XDelay to backannotate delays to the routed LCA file

● Generates a Xilinx XNF netlist file from the routed LCA file

● Restores net names to match the original schematics
12-26 Xilinx Development System

VST Tutorial
● Generates an OrCAD VST simulation file from the Xilinx
netlist

● Generates OrCAD stimulus (AST) and trace (ATR) files if they
do not already exist

3. Convert AST and ATR files to binary format (STM and TRC) if
new files were created in step 2. This step is not necessary if you
have already performed a functional simulation, as in this tutorial.

4. Configure OrCAD VST for timing simulation.

5. Perform the timing simulation.

Placing and Routing the Design with XMake
The first step in a timing simulation is to place and route the design.
If you worked through the SDT Tutorial, you have already performed
this step. Skip to the next section, “Creating a Timing Simulation
Netlist with XSimMake.”

Use XMake to create a routed LCA file.

1. In XDM, verify that the Family and Part displayed in the lower
left-hand corner are correct for your design. These settings
override the parttype setting in your design.

2. If the settings are incorrect, click on Family and select the correct
family, then click on InDesign .

3. Pull down the Translate menu and select XMAKE.

A list of options is presented. The default options are correct for
this application.

4. Select Done.

A menu of design files in the current directory is displayed.

5. Identify the top-level drawing file by selecting CALC.SCH.

The Select target: prompt appears. A menu offers alterna-
tives for XMake. Each option goes further in the translation pro-
cess than the one above it. You want to create a placed and routed
design for timing simulation, but you do not need to make a bit-
stream.

6. Select Make placed & routed design .
OrCAD Interface/Tutorial Guide 12-27

OrCAD Interface/Tutorial Guide
The XMake program processes all the necessary design files, dis-
playing its progress on the screen. If the translation is successful,
XMake issues this message:

XMAKE succeeded. Check ’calc.out’ for warning
messages.

7. Press any key to return to XDM.

XMake produces a routed LCA file that you can use for timing
simulations. The most useful report file generated is calc.out, which
contains all error or warning messages generated by any subprogram
of XMake, as well as much other useful information. See the ‘‘SDT
Tutorial” chapter for more discussion of the OUT file.

Creating a Timing Simulation Netlist with XSimMake
The flow using XSimMake as described in this section works for
simulating any routed LCA file. To learn more about the command
sequence used by XSimMake, see the “Timing Command Summary”
section of this chapter, and the other chapters of this manual.

Creating a Timing Simulation Netlist

Use XSimMake to create a timing netlist from XDM.

1. Select the Verify menu and click on XSIMMAKE.

2. Select -F <flow name> . If it is already highlighted, click the left
mouse button twice to deselect it and select it again.

A menu of supported command flows appears.

3. If it is not already highlighted, click on Orcad_Fpga_Timing to
select the timing simulation flow.

4. Select Done.

A list of all routed LCA files in the design directory appears.

5. Select CALC.LCA as the input schematic file.

XSimMake routes text output to the screen, so that you can follow
the conversion process and watch for error messages. A portion of
the XSimMake output for the timing flow is displayed in Figure
12-3.
12-28 Xilinx Development System

VST Tutorial
Note: XSimMake flows vary depending on the design. The flow used
by XSimMake for your design may be slightly different from the flow
shown in this tutorial.

No errors or warnings should be reported.

6. Press any key to return to XDM.

--
XSIMMAKE COMMAND : xdelay -w -d calc.lca
xdelay: No paths traced for design calc.lca...
Xilinx LCA xdelay Ver. 4.7.3 ended normally
--
XSIMMAKE COMMAND : lca2xnf -g calc.lca calc.xnf
Simulation model written to file calc.xnf
--
XSIMMAKE COMMAND : xnfba calc.xff calc.xnf

File xnfba.rpt created.
File xnfba.xnf created.
--
XSIMMAKE COMMAND : xnf2inf xnfba.xnf calc

* YOU HAVE SPECIFIED TIMING DELAY TRANSLATION *

Writing the NRF file “calc.nrf”
Writing the VST file “calc.vst”
Writing the DBA file “calc.dba”

**
* BEFORE BEGINNING YOUR SIMULATION, BE SURE TO EXPLICITLY *
* SPECIFY THE FILE EXTENSION AS ‘VST’, INSTEAD OF ‘INF’ *
* EXAMPLE: *
* simulate calc.vst [/t] [/a] *
* NOTE: IF NO EXTENSION SPECIFIED, OrCAD USES ‘INF’ AS *
* DEFAULT. *
**

Figure 12-8 Partial Xsimmake.out File for Timing Translation

Files Created by XSimMake

Output files created by the XSimMake timing flow include the
following.
OrCAD Interface/Tutorial Guide 12-29

OrCAD Interface/Tutorial Guide
● xsimmake.out Screen output from all programs run by
XSimMake

● calc.vst OrCAD simulation netlist

● calc.dba Delay back-annotation file with timing
information for each signal; must be present
during timing simulation

● calc.ast ASCII stimulus information from the schematic
(This file is not created if there is already an
 existing file, as in this tutorial.)

● calc.atr ASCII trace information from the schematic
(This file is not created if there is already an
 existing file, as in this tutorial.)

Converting AST and ATR Files to Binary Format
Because you already have valid STM and TRC files from the
functional simulation, you do not need to run this conversion before
performing a timing simulation of the Calc design. For instructions
on how to perform this conversion, see the “Converting Stimulus and
Trace Files to Binary Format” section under “Performing a Functional
Simulation,” earlier in this tutorial.

Configuring OrCAD VST for the Particular Design
Verify that the simulator is correctly configured to simulate the input
file, calc.vst. Then configure the simulator to use timing delays from
the DBA file.

1. Select Design Entry ➝ ORCADto enter the OrCAD design
environment.

2. Select Digital Simulation Tools ➝ Execute ➝
Simulate ➝ Local Configuration ➝ Configure
SIMULATE.

The Configure Simulate screen appears.

Note: OrCAD’s configuration programs are memory intensive. If you
receive the message Could not find the .EXE, or not
enough memory to load \orcadexe\VST_CLC.EXE , return to
the XDM executive screen. Close XDM by typing exit ↵, type orcad
12-30 Xilinx Development System

VST Tutorial
↵, and complete the configuration as described in this section. Type
xdm ↵ to return to XDM, and continue with the tutorial.

3. Under File Options, verify that the file names read as follows:

Connectivity database CALC.VST
Stimulus file CALC.STM
Trace file CALC.TRC

4. If the names are incorrect, make the necessary changes.

5. Set the simulator to use timing delays from the DBA file by
selecting Use Delay Annotation.

6. Return to the ESP screen by seleting OK.

Performing the Timing Simulation
You are ready to perform the timing simulation. Since you are using
the same stimulus files as in the functional simulation, you do not
need to use the Stimulus Editor to release the global reset signal.

1. Enter the simulator by selecting Simulate ➝ Execute .

2. Select Set ➝ Spool to Disk .

The Spool Trace Data to Disk? prompt appears.

3. Select Yes ➝ Yes to spool the data to the spool.tdf file.

The default time scale is 10ns per screen. Adjust that to
1000ns per screen, which means increasing the scale by a factor of
100.

4. Select Trace ➝ Change View .

The Trace Delta Time? prompt appears at the top of the
screen.

5. Type 100 ↵.

6. Select Run Simulation .

7. Type 12000 ↵ to simulate for 1,200 ns.

The resulting waveforms are superficially the same as the
functional waveforms displayed in Figure 12-7.

However, this time the waveforms reflect the delays from the
routed design.
OrCAD Interface/Tutorial Guide 12-31

OrCAD Interface/Tutorial Guide
8. Zoom in on the traces with Zoom ➝ Scale ➝ 4 , and verify the
delay between clock high and WE going high.

Timing Command Summary
Although this tutorial uses XSimMake to process the Calc design, you
do not have to use XSimMake if you do not wish to.

You can run any of the following programs from XDM, or bypass
XDM and run them from the system prompt. The commands are
listed below as you would type them at the system prompt or in a
batch file. The same command sequence is valid for any Xilinx FPGA
design. The starting point is a placed and routed LCA file created by
XMake.

To run XSimMake from the system prompt or a batch file, type:

xsimmake -f orcad_fpga_timing calc

or

xsimmake -f oft calc

The -f option specifies the flow.

Alternatively, you can run the individual programs from the system
prompt or from a batch file.

xdelay -w -d calc.lca Add delays to LCA file
lca2xnf -g calc.lca calc.xnf

Translate LCA file to XNF netlist
xnfba calc.xff calc.xnf

Restore original net names to XNF file
xnf2vst xnfba.xnf calc Generate OrCAD simulation netlist

If you had no existing stimulus and trace files, new AST and TRC files
were created by XNF2VST. Convert the files to binary format.

asctovst calc.ast Translate ASCII AST to binary STM
(Not run by XSimMake)

asctovst calc.atr Translate ASCII ATR to binary TRC
(Not run by XSimMake)
12-32 Xilinx Development System

VST Tutorial
Using the OrCAD Trace Editor
Earlier in the tutorial you used the Stimulus Editor to add additional
stimulus to the simulation. Similarly, you can use the Trace Editor to
trace additional signals or buses.

1. Select Trace ➝ Trace Edit .

You are now in the Trace Editor, which displays the currently
defined traces. You previously defined these in the schematic.

Add a new signal to be traced. The new signal is the ALU register
value in bus format.

2. Select Add ➝ Edit .

The cursor is in the Display Name field.

3. Type ALUBUS↵.

4. Move the cursor to Type. Select DecimalBus .

5. Move the cursor to the Name column opposite Bit 0. Select
Browse and type a.

The list of signal names scrolls to the names starting with “A.”

6. Use the cursor or the PgDn key to scroll through the signal names
beginning with “A.”

7. Select ALU0_1 ➝ Next ➝ Next ➝ Next .

8. Exit the Trace Editor and overwrite the old TRC file by selecting
Return ➝ Write .

The CALC.TRC? prompt appears.

9. Select Yes .

This procedure overwrites the old calc.trc file. The new file
includes a trace record for the ALU bus. This file is in binary
format, so it cannot be viewed and is not very useful as
documentation.

As with the stimulus file created earlier, the new trace file is not
seen by the current simulation session until it is explicitly read in.

10. To read the new trace file into the simulator, select Use Trace .
This command also exits the Trace Editor and returns you to the
simulation screen.
OrCAD Interface/Tutorial Guide 12-33

OrCAD Interface/Tutorial Guide
Turn back to Table 12-1 and review the function key macros
defined in the vstmac.mac file.

11. Press F5 to initialize the simulator and set Spool to Disk on.

12. Select Trace ➝ Change View and type 100 ↵ to set the screen
width to 10,000 ns.

13. Press F3 ➝ F2 ➝ F2 to simulate for 1,200 nanoseconds.

The ALUBUS bus value is displayed as a decimal number. On color
screens, bus outputs are displayed in red.

Using the OrCAD Breakpoint Editor
In addition to the Stimulus Editor and the Trace Editor, OrCAD VST
has a Breakpoint Editor that you can set to stop the simulation
automatically when specified signals reach specified values. As an
example, this section shows you how to set a breakpoint to stop the
simulation when ALUBUS changes to a value of decimal ten.

Inserting a Breakpoint
Define the conditions under which you want the simulation to stop.

1. Re-initialize the simulation by pressing the F5 function key.

2. Select Breakpoint ➝ Breakpoint Edit .

The cursor is on breakpoint 1.

3. Select Edit .

The cursor moves to the Status field.

4. Select Enable .

5. Move the cursor to Type and select And.

6. Move the cursor to * Last Record * and type b to select
Browse.

7. Type a.

8. Scroll down with the mouse, the arrow keys, or the PgDn key and
select ALU0_1.
12-34 Xilinx Development System

VST Tutorial
9. Move the cursor down to * Last Record * again. Repeat the
last few steps to add ALU1_1, ALU2_1 and ALU3_1 using
Browse and a.

10. Place the cursor on ALU0_1 and select Edit .

11. Change the name to ~ALU0_1 ↵.

This step sets the breakpoint to check for a Low on ALU0 instead
of a High.

12. Place the cursor on ALU2_1 and select Edit .

13. Change the name to ~ALU2_1 ↵.

14. Select Return to exit the breakpoint editor.

15. Select Write to save the breakpoint file.

The message Write Breakpoint file? appears at the top of
the screen.

16. Type calc ↵.

The CALC.BRK? prompt appears.

17. Select Yes .

18. Select Use to read the breakpoint file, calc.brk, into the simulator.

 appears in the upper left-hand corner, indicating that a
breakpoint is active.

The simulator will stop when ALUBUS reaches the transition
from any other value to a value of 1010, binary ten.

Resimulating the Design
Resimulate the design and watch for the breakpoint when the load to
the ALU register becomes effective.

1. Press F3 to simulate for 1000 ns, which is enough to get past the
first breakpoint.

The simulator stops at the selected breakpoint. The following
message appears:

 BREAKPOINT 1 encountered !!! Type any key to
continue.
OrCAD Interface/Tutorial Guide 12-35

OrCAD Interface/Tutorial Guide
2. Type any key.

 disappears.

The breakpoint is disabled. At this point you could re-enable the
breakpoint with the Breakpoint Enable Breakpoint command to
break the next time the ALU register value changed to ten.

Creating Tabular Output
OrCAD VST offers a semi-automated way to create test vectors
directly from simulation files. The first step in creating test vectors is
to capture trace output in tabular format. You can then modify this
data using any text editor and use it as an input to future simulation.

1. Re-initialize the simulation by selecting F5.

2. Save the values of each traced node whenever one of them
changes. Select Set ➝ Print on Change ➝ Yes .

The default file name offered is prtonchg.tvs; however, in this
example you call the output calc.tvs.

3. Select No.

You are prompted to enter a file name.

4. Type calc.tvs ↵.

5. Select Yes .

6. Simulate for 1,200 ns by selecting Run Simulation and typing
12000 ↵. Alternatively, you can press F3 —> F2 —> F2 .

Tabular output is written to the calc.tvs file as the design is
simulated.

7. Exit the simulator by selecting Quit —> Abandon Edits —>
Yes .

8. Move the cursor to the blue bar at the top of the ESP screen. Click
the left mouse button.

A menu appears.

9. Select Suspend to System .
12-36 Xilinx Development System

VST Tutorial
Use any text editor or the DOS Type command to look at the
tabular output in the calc.tvs file. The results should be the same
as those in Figure 12-9.

You can modify the TVS file using any text editor or the VST Test
Vector Editor. It can be used as input stimulus in future simulations.
See the OrCAD Digital Simulation Tools User Guide for detailed
instructions.

You have completed the functional and timing simulation of a simple
Xilinx design. In the process, you learned how to configure the
OrCAD environment to work with Xilinx designs, how to process a
schematic for functional simulation, and how to perform a timing
simulation on a placed and routed design. You were then introduced
to some basic features of the OrCAD VST simulator. Information on
the simulator is available in the OrCAD manuals; issues specific to
Xilinx designs are covered in the other chapters of this manual.

;
; C E W A A A A S S S S
; L X E L L L L T T T T
; K C _ U U U U A A A A
; _ _ 1 0 1 2 3 C C C C
; 1 P _ _ _ _ K K K K
; 1 1 1 1 0 1 2 3
; _ _ _ _
; 1 1 1 1
;

0000000000 0 1 0 0 0 0 0 0 0 0 0
0000000500 1 1 0 0 0 0 0 0 0 0 0
0000001000 0 0 0 0 0 0 0 0 0 0 0
0000001500 1 0 0 0 0 0 0 0 0 0 0
0000002000 0 0 0 0 0 0 0 0 0 0 0
0000002500 1 0 0 0 0 0 0 0 0 0 0
0000003000 0 1 0 0 0 0 0 0 0 0 0
0000003500 1 1 0 0 0 0 0 0 0 0 0
0000003572 1 1 0 0 1 0 1 0 0 0 0
0000004000 0 1 0 0 1 0 1 0 0 0 0
0000004500 1 1 0 0 1 0 1 0 0 0 0
0000005000 0 1 0 0 1 0 1 0 0 0 0
0000005500 1 1 0 0 1 0 1 0 0 0 0
0000006000 0 0 0 0 1 0 1 0 0 0 0
0000006500 1 0 0 0 1 0 1 0 0 0 0
0000007000 0 0 0 0 1 0 1 0 0 0 0
0000007500 1 0 0 0 1 0 1 0 0 0 0
0000008000 0 1 0 0 1 0 1 0 0 0 0
0000008500 1 1 0 0 1 0 1 0 0 0 0
OrCAD Interface/Tutorial Guide 12-37

OrCAD Interface/Tutorial Guide
0000009000 0 1 0 0 1 0 1 0 0 0 0
0000009500 1 1 0 0 1 0 1 0 0 0 0
0000009572 1 1 1 0 1 0 1 0 0 0 0
0000010000 0 1 1 0 1 0 1 0 0 0 0
0000010500 1 1 1 0 1 0 1 0 0 0 0
0000010572 1 1 0 0 1 0 1 0 0 0 0
0000010688 1 1 0 0 1 0 1 0 0 0 1
0000010695 1 1 0 0 1 0 1 0 1 0 1
0000011000 0 1 0 0 1 0 1 0 1 0 1
0000011500 1 1 0 0 1 0 1 0 1 0 1
0000012000 0 1 0 0 1 0 1 0 1 0 1
END

Figure 12-9 Calc.tvs, Tabular Output of Timing Simulation
12-38 Xilinx Development System

X-BLOX TutorialOrCAD
Interface/
Tutorial
Guide
OrCAD Interface/Tutorial Guide — 0401409 01 Printed in U.S.A.

OrCAD Interface/Tutorial Guide
Xilinx Development System

Chapter 13

X-BLOX Tutorial

X-BLOX consists of an advanced library and a synthesis tool that
allow you to take advantage of the built-in expert knowledge and the
special features of Xilinx XC3000A, XC3000L, XC3100A, and all
XC4000 FPGAs. X-BLOX cannot be used on XC3000 designs. By using
X-BLOX, you can significantly shorten design entry time, increase
design speed, and use the device more efficiently.

This chapter gives a practical example using X-BLOX within the
OrCAD design environment. It is not intended to fully explain all of
the functionality found within X-BLOX. Please refer to the "Further
Reading" section at the end of this tutorial for a list of sources from
which to obtain more information.

Before Beginning the Tutorial
This section of the tutorial assumes that you are already familiar with
the material in the “SDT Tutorial” and “VST Tutorial” chapters of this
manual. If not, please review those chapters before continuing.

Required Software
This tutorial assumes that you are using the following versions of the
development software:

● OrCAD/SDT — SDT 386+

● OrCAD/VST — VST 386+

● OrCAD/Xilinx Interface — version 5.00 or later

● XACT Design Manager (XDM) — Version 5.00 or later

● X-BLOX program and libraries, which allow you to use and
synthesize X-BLOX library components — Version 5.00 or later.
OrCAD Interface/Tutorial Guide — 0401409 01 13-1

OrCAD Interface/Tutorial Guide
If you have Xilinx software on CD-ROM, you should have at least
temporary access to all of the above software using the temporary
licensing available on the programmable key, provided that the
temporary licensing has not already been exhausted.

Preparing the Design
If you chose to read through the SDT tutorial rather than actually
perform the steps involved, you must verify that your PC is set up
correctly to use OrCAD 386+, the XACT Development System
software, and X-BLOX. Then create and configure the design
directory, and copy a completed set of schematics from any of the
solutions directories supplied.

If you have already performed the SDT tutorial on your PC, skip to
the next section, “Modifying the Design.”

1. Follow the instructions given in the “Before Beginning the
Tutorial” section of the “SDT Tutorial” chapter for setting up your
design environment.

2. The tutorial files are optionally installed when you install the
Xilinx/OrCAD interface software. If you have already installed
the software but are not sure whether you specified tutorial
installation, check for the c:\xact\tutorial\orcad\calc directory.
This directory contains the tutorial files.

3. Create a new project called “Calc,” as described in the “Creating
the Project Directory” section of the “SDT Tutorial” chapter.

4. Full solutions for the SDT tutorial are supplied in the solutions
directories located in \xact\tutorial\orcad\calc. One of the
following file directories must be copied to the directory where
you will be performing the tutorial.

...\soln_3ka — Solution files for XC3020APC68

...\soln_4ka — Solution files for XC4003APC84

...\soln_4k — Solution files for XC4003PC84

For example, if you are targeting the tutorial for an XC3020APC68
device, perform the following sequence of commands.

cd \orcad\calc ↵
copy \xact\tutorial\orcad\calc\ solution *.* ↵

where solution is either soln_3ka, soln_4ka, or soln_4k. The
13-2 Xilinx Development System

X-BLOX Tutorial
solutions schematics are targeted towards the 3020APC68-7,
4003APC84-6, and 4003PC84-6 devices, respectively.

Note: This tutorial assumes that your ORCADPROJ variable is set to
c:\orcad\. You need not follow this convention.

This procedure gives you a full set of completed schematics for
the Calc design, with all supporting files.

5. Configure the design directory by typing xdraft 3 ↵ or
xdraft 4 ↵, depending on whether you are targeting an
XC3000A or an XC4000 device.

Note: All of the screen outputs refer to the processing of the 3000A
solutions design. Other devices have slightly different outputs.

Modifying the Design
In the Calc design, the ALU block performs many bus-oriented
arithmetic logic functions and is ideally suited for implementation
using X-BLOX. For more information on the function of the Calc
design, refer to the “Design Description” section of the “SDT
Tutorial” chapter.

Adding X-BLOX-Based Module to CALC
An X-BLOX-based replacement for the ALU instance on the CALC
schematic is inserted in this section. The replacement block is called
ALU_BLOX, which is functionally equivalent to ALU, except that
ALU_BLOX is implemented using X-BLOX components.

Replace the existing ALU block with the X-BLOX version.

1. Open the top-level CALC schematic in SDT.

2. Place the cursor on the ALU block.

3. Select Edit ➝ Edit ➝ Filename .

The Filename? ALU.sch prompt appears.

4. Backspace over the current name and type ALU_BLOX.sch ↵.

5. Press the Escape key twice to exit the Edit command.

This procedure replaces the original ALU file reference with
ALU_BLOX. The change is reflected by the name ALU_BLOX.sch
OrCAD Interface/Tutorial Guide 13-3

OrCAD Interface/Tutorial Guide
appearing at the bottom of the symbol.

Note: OrCAD is case insensitive, so you do not need to follow the
case conventions used in this tutorial.

Viewing the ALU_BLOX Schematic
Now save the change to the CALC schematic, and view the schematic
for ALU_BLOX by pushing into the ALU_BLOX symbol.

1. Place the cursor on the ALU_BLOX symbol in the CALC
schematic.

2. Select Quit ➝ Update File ➝ Enter Sheet ➝ Enter .

The schematic for ALU_BLOX appears, as shown in Figure 13-1.

3. Press the Escape key to exit the Quit Enter Sheet command.

Figure 13-1 Incomplete ALU_BLOX Schematic
13-4 Xilinx Development System

X-BLOX Tutorial
Completing the ALU_BLOX Schematic
The ALU-BLOX schematic on your screen is missing some key X-
BLOX elements that you add by performing the commands in this
section.

Complete the ALU_BLOX schematic, using Figure 13-2 and the
following steps as a guide.

1. Select Get and type data_reg ↵.

2. Select Place to place the DATA_REG symbol in the space at the
lower left corner of the schematic.

3. Use the Place Wire command to add the MUX, RST, CE, and CLK
nets, as shown in Figure 13-2. Be sure to label the nets as shown,
using the Place Label command.

4. Use the Get command to place the X-BLOX BUS_IF04 component
to the right of DATA_REG as shown in the figure.

5. Using the Place Wire command, add a wire connecting the
Q_OUT pin of the DATA_REG symbol to the XBLOX_BUS pin of
the BUS_IF04 symbol.

Note: Never use the Place Bus command to add an X-BLOX bus. Use
the Place Wire command. For a discussion of X-BLOX buses and how
they differ from OrCAD buses, see the next section, “Understanding
X-BLOX Buses.”

6. Label the wire Q_BLX.

7. Place a BUS_DEF component above and between DATA_REG and
BUS_IF04, as shown in the figure.

8. Connect the BUS_DEF symbol to the Q_BLX net with a wire
segment, and add a junction with the Place Junction command to
make the T-connection.

9. Attach dangling wires to the BUS_IF04 pins E00, E01, E02, and
E03, and label them Q0, Q1, Q2, and Q3.

10. Add input module ports to RST, CE, and CLK using the Place
Module Port command.

11. Add output module ports to Q0, Q1, Q2, and Q3.

At this point, the ALU_BLOX schematic is almost complete.
OrCAD Interface/Tutorial Guide 13-5

OrCAD Interface/Tutorial Guide
However, you must still add X-BLOX-specific attributes to complete
the schematic.

Figure 13-2 Adding X-BLOX Components and Buses

Understanding X-BLOX Buses
In Figure 13-1 and Figure 13-2, the rectangular BUS_IF02 and
BUS_IF04 boxes connecting OrCAD nets to X-BLOX buses are bus
interfaces. They interface X-BLOX buses with OrCAD nets.

An X-BLOX bus is not the same as a bus normally used in OrCAD. It
does not have a defined width, and therefore you must use a wire to
represent an X-BLOX bus on your schematic. The width of an
X-BLOX bus is not defined by the name attached to the bus. In fact,
X-BLOX buses must never be given indexed names such as
Q_BLX[3:0], because the bus pins on X-BLOX symbols do not have
indexed names. For example, the output pin of DATA_REG on the
ALU_BLOX schematic has the unindexed name Q_OUT. All X-BLOX
symbols have unindexed bus pins so that the same symbol can be
used in any design, regardless of the width of the buses in the design.

If an indexed label is attached to a wire representing an X-BLOX bus,
INET flags the label as an error. If an OrCAD bus is used instead of a
wire, SDT2XNF does not see the connection. Therefore, BUS_IF
symbols are needed as interfaces between X-BLOX buses and OrCAD
buses.
13-6 Xilinx Development System

X-BLOX Tutorial
The specific BUS_IF symbol required depends upon the width of the
bus being interfaced. No interface is necessary for individual nets
that connect to X-BLOX symbols, such as CTL2 and CTL3 on the two
MUXBUS2 symbols.

Using BUS_DEF Symbols
Where are the X-BLOX bus widths defined? Attached to two buses in
the schematic are BUS_DEFs, or bus definition symbols. By adding
attributes to these symbols, you can define the properties of the entire
data path attached to the BUS_DEF, not just those of the bus to which
the BUS_DEF is directly connected. That is why the ALU_BLOX
schematic requires only two BUS_DEF elements: one for the 4-bit
data path through the ALU, and one for the 2-bit control signal path.

The BOUNDS attribute is placed on a BUS_DEF to define the width
of the bus attached to the BUS_DEF, as shown in Figure 13-3. In this
case, the data path has a width of four bits, giving "3:0" for the value
of BOUNDS.

The ENCODING attribute specifies the type of data being
propagated on the data path. The possible choices are UBIN
(unsigned binary), BIT (same as UBIN), TWO_COMP (two's
complement), or ONE_HOT (one-of-n). The choice of ENCODING
value affects the functionality of every symbol on the data path. The
ADD_SUB block in the ALU_BLOX schematic, for example, is
implemented as an unsigned binary adder/subtracter. If you
designated a data type of TWO_COMP, the macro would be
implemented as a two's- complement adder/subtracter, with a
different implementation of the OFL output.

Only some ENCODING types are appropriate for a given data path.
For example, it does not make sense to give the ADD_SUB data path
ONE_HOT, or one-of-n, encoding. On the other hand, on the control
path for the multiplexer, the other BUS_DEF in the schematic,
ONE_HOT encoding would be suitable. If the control lines attached
to the multiplexer are encoded as ONE_HOT, you must define
ENCODING accordingly. In that case, the choice of ENCODING
completely alters the implementation of the multiplexer.
OrCAD Interface/Tutorial Guide 13-7

OrCAD Interface/Tutorial Guide
Figure 13-3 Adding ENCODING and BOUNDS Attributes

Completing the Bus Definition
The definition of the ALU data path has not yet been set. Add the
following properties to the BUS_DEF symbol attached to the bus
named Q_BLX on the bottom of the sheet. Figure 13-3 shows the
resulting BUS_DEF symbol with attributes defined.

1. Place the cursor over the BUS_DEF symbol connected to the
Q_BLX bus, on the lower portion of the page.

2. Select Edit ➝ Edit ➝ LOC,OPTIONS ➝ Name for an
XC3000A design, or Edit ➝ Edit ➝ OPTIONS_1 ➝ Name
for an XC4000 family design.

3. Type ENCODING=UBIN,BOUNDS=3:0↵.

The text appears above the BUS_DEF symbol.

4. Press the Escape key to exit the Edit menu.

5. If you wish, you can move the text inside the symbol as shown in
Figure 13-3, by selecting Edit ➝ Edit ➝ LOC,OPTIONS or
OPTIONS_1 ➝ Location , moving the cursor inside the
BUS_DEF symbol, and selecting Place . The placement of the text
has no effect on the function of the attributes.

6. Press the Escape key if necessary until all menus are cleared from
the screen.
13-8 Xilinx Development System

X-BLOX Tutorial
Figure 13-4 Complete ALU_BLOX Schematic

Saving Your Changes
Save the changes you made to the ALU_BLOX schematic before
continuing with the tutorial.

1. Select Quit ➝ Update File ➝ Abandon Edits to save your
changes and exit SDT.

The Abandon Hierarchy? prompt appears, because you are
closing SDT from a schematic that is not at the top level.

2. Select Yes to return to XDM or the DOS prompt.
OrCAD Interface/Tutorial Guide 13-9

OrCAD Interface/Tutorial Guide
X-BLOX Symbol Library
The X-BLOX library contains elements that simplify the design
process by providing bus-oriented versions of logic, register, and
multiplexing functions. By placing different attributes on X-BLOX
symbols, you can customize them for a specific application. Also, the
X-BLOX software implements macros differently depending on
which pins are used on the symbol. This flexibility allows a wide
range of different functions to be implemented using the small set of
parts found in the X-BLOX library.

X-BLOX Symbol Examples
The following are examples of how attributes and pin usage affect the
implementation of the X-BLOX macros in ALU_BLOX. You may wish
to refer to the X-BLOX User Guide during this discussion.

● DATA_REG

DATA_REG in this design has two attributes that can be set to
alter its implementation, SYNC_VAL and ASYNC_VAL. These
attributes define the value that is loaded in the data register when
it is synchronously or asynchronously reset using the
SYNC_CTRL and ASYNC_CTRL pins, respectively. In this
example, the data register must reset to zero in either case, so both
values are undefined and thus default to zero. The SYNC_CTRL
pin is connected, specifying a synchronous reset register.

● ADD_SUB

The ADD_SUB component used in ALU_BLOX is implemented as
an adder/subtracter, because the ADD_SUB pin is connected.
Since the C_IN pin is unconnected, the block defaults to the
proper values for normal adding and subtracting. The
implementation of the ADD_SUB macro is greatly affected by the
definition of its data path and the pins connected to it.

● ANDBUS2, ORBUS2, XORBUS2, MUXBUSx

The other X-BLOX symbols on the schematic are implemented the
same way as those used in the original ALU design. Their
considerable advantage, however, is that you do not need to create
any special schematic and symbol for them, much reducing the
time necessary to enter the design. The MUXBUSx symbols are
13-10 Xilinx Development System

X-BLOX Tutorial
affected by the ENCODING value of their attached buses.

The bused logic symbols, such as ANDBUS2 and ORBUS2, have
one very useful attribute that affects their implementation, the
INVMASK attribute. By changing INVMASK, you can invert the
inputs to the symbol. For example, in order to invert input bit zero
on the upper bus connection to the ANDBUS, all that is necessary
is to select the ANDBUS and set the value for the INVMASK
attribute to 2#0001#. The "1" in the string represents the inversion
of bit zero, the "2" indicates that the INVMASK value is specified
in binary, with the total number of bits on the bus equal to four.
All of the INVMASKs in ALU_BLOX are undefined and thus all
default to a value of zero, indicating no bit inversions.

X-BLOX Schematics
X-BLOX macros have a unique ability to adapt to any bus width and
to be implemented differently depending on data path encoding and
pin usage, so no single schematic can represent the functionality of an
X-BLOX macro. The schematic page underneath each X-BLOX macro
is "filled in" by the X-BLOX synthesis program, which is run by the
two Xilinx program processors XMake and XSimMake. When you
first create a design using X-BLOX, no information is available even
to functionally simulate the design. You must exit OrCAD to prepare
a design containing X-BLOX symbols for simulation with VST.

Functional Simulation
The XSimMake program allows you to easily simulate designs
containing X-BLOX components. It coordinates the program execu-
tion flow necessary for functional or timing simulation. XSimMake is
similar to XMake, except that it produces a schematic that can be
simulated instead of producing a bitstream.

Note: For more detailed information on XSimMake, refer to the
“Creating a Functional Simulation Netlist with XSimMake” section of
the “VST Tutorial” chapter.

Creating the Functional Simulation Netlist
Run XSimMake to generate a netlist that you can functionally
simulate.
OrCAD Interface/Tutorial Guide 13-11

OrCAD Interface/Tutorial Guide
1. Enter XDM by typing xdm ↵, if you are not already in XDM.

2. Select Verify ➝ XSIMMAKE.

3. Select the -F option.

A menu of possible flows appears.

4. Select the Orcad_Fpga_Func flow option.

5. Select Done.

6. Choose CALC.SCH from the list of schematic files shown.

XSimMake now executes.

7. After you review the XSimMake output, press any key to return to
XDM.

Note: If XSimMake returns errors, check the xsimmake.out, calc.prp,
and calc.blx files for details. A completed version of ALU_BLOX is
included in each of the solutions directories, with the name
BLOXSOLN. If problems cannot be resolved, replace ALU_BLOX
with BLOXSOLN on the CALC schematic, save, and try again.

Text similar to the following appears in the XDM window.

Note: XSimMake flows vary depending on the design. The flow used
by XSimMake for your design may be slightly different from the flow
shown in this tutorial.

XSIMMAKE COMMAND : creating directory savexnf
XSIMMAKE COMMAND : creating directory otherxnf
XSIMMAKE COMMAND : annotate calc.sch
XSIMMAKE COMMAND : inet calc.sch /t
XSIMMAKE COMMAND : inf2xnf calc d= otherxnf
XSIMMAKE COMMAND : xnfmerge -y -d otherxnf otherxnf\calc.xnf
otherxnf\calc.xff
XSIMMAKE COMMAND : xfind otherxnf\calc.xff calc.xfw calc.xgs
READING XFW FILE : calc.xfw
XSIMMAKE COMMAND : xnfmerge -z -d otherxnf -d xnf -d .
otherxnf\calc.xnf otherxnf\calc.xff
XSIMMAKE COMMAND : xnfprep otherxnf\calc.xff
otherxnf\calc.xtg drc_only=true
XSIMMAKE COMMAND : xblox otherxnf\calc.xtg otherxnf\calc.xg
archopt=false mergeio=false
XSIMMAKE COMMAND : xnf2inf otherxnf\calc.xg calc.vst u=true
0 Errors and 0 Warnings occurred during processing.
13-12 Xilinx Development System

X-BLOX Tutorial
Examining XSimMake Output
An explanation of the XSimMake functional flow output seen in
XDM follows.

XSIMMAKE COMMAND : creating directory savexnf
XSIMMAKE COMMAND : creating directory otherxnf

First, XSimMake creates new directories for storage of intermediate
files.

XSIMMAKE COMMAND : annotate calc.sch
XSIMMAKE COMMAND : inet calc.sch /t

XSimMake then runs the OrCAD conversion programs to create an
updated OrCAD netlist.

XSIMMAKE COMMAND : inf2xnf calc d= otherxnf

Next, XSimMake runs INF2XNF to convert the OrCAD INF files to
standard Xilinx Netlist Format (XNF) files. INF2XNF is the engine of
the SDT2XNF program used by XMake and in the manual flow.

XSIMMAKE COMMAND : xnfmerge -y -d otherxnf otherxnf\calc.xnf
otherxnf\calc.xff

XMFMerge combines all of the schematic XNF files into a single XNF
format file with an .xff extension.

XSIMMAKE COMMAND : xfind otherxnf\calc.xnf calc.xfw calc.xgs

XFind reads the XNF file to determine what types of symbols the
netlist contains. In this case, it discovers X-BLOX symbols and
modifies program execution accordingly by generating a file called
calc.xfw.

READING XFW FILE : calc.xfw
XSIMMAKE COMMAND : xnfmerge -z -d otherxnf -d xnf -d .
otherxnf\calc.xnf otherxnf\calc.xff
XSIMMAKE COMMAND : xnfprep otherxnf\calc.xff
otherxnf\calc.xtg drc_only=true

XSimMake reads the calc.xfw file produced by XFind. The calc.xfw
file instructs XSimMake to run XNFMerge and XNFPrep in order to
prepare the netlist for use as input to X-BLOX. XNFMerge flattens the
hierarchical netlists into a single, completely flattened XFF file, while
XNFPrep verifies that the XFF file is correct.

XSIMMAKE COMMAND : xblox otherxnf\calc.xtg otherxnf\calc.xg
archopt=false mergeio=false
OrCAD Interface/Tutorial Guide 13-13

OrCAD Interface/Tutorial Guide
X-BLOX implements the X-BLOX modules and optimizes the design.

XSIMMAKE COMMAND : xnf2inf otherxnf\calc.xg calc.vst u=true

XSimMake then runs XNF2INF to generate a simulation file from the
X-BLOX output for use in the VST simulator. XNF2INF is the engine
of the XNF2VST program used in the manual flow.

Stimulus and Trace Files
You now have a simulatable VST netlist. In the “VST Tutorial”
chapter, you learned how to add stimulus and trace information to
your schematic, and how to use the stimulus and trace editors within
VST. However, since this tutorial assumes you already know how to
create stimulus and trace data, Xilinx has supplied both ASCII and
binary stimulus and trace files that you can use to simulate your
design. The files are located in the solutions directories discussed in
the “Preparing the Design” section of this tutorial. The binary files are
are called calcsim.stm and calcsim.trc, respectively.

1. If you copied one of the solutions directories in order to perform
this tutorial, the stimulus and trace files are already present in
your working directory.

2. If the files do not exist in your working directory, copy them by
typing the following commands at the DOS prompt, from your
working directory:

copy \xact\tutorial\orcad\calc\ solution *.stm ↵
copy \xact\tutorial\orcad\calc\ solution *.trc ↵

where solution is either soln_3ka, soln_4ka, or soln_4k.

Configuring OrCAD VST for the Calc Design
You must specify the simulation input files before entering VST.

Performing these steps before each simulation eliminates the most
common error made by Xilinx users simulating with OrCAD VST:
simulating from the INF file rather than the VST file.

1. Select DesignEntry ➝ ORCADto enter the OrCAD design
environment.
13-14 Xilinx Development System

X-BLOX Tutorial
2. Select Digital Simulation Tools ➝ Execute ➝
Simulate ➝ Local Configuration ➝ Configure
SIMULATE.

The Configure Simulate screen appears.

Note: OrCAD’s configuration programs are memory intensive. If you
receive the message Could not find the .EXE, or not
enough memory to load \orcadexe\VST_CLC.EXE , return
to the XDM executive screen. Close XDM by typing exit ↵, type
orcad ↵, and verify the configuration as described in this section.
After completing the commands in this section, type xdm ↵ to return
to XDM, and continue with the “Performing a Functional
Simulation” section, following.

3. Look in the File Options portion of the screen. The file names
appear similar to the following:

Connectivity database CALC.VST
Stimulus file CALC.STM
Trace file CALC.TRC

4. Change the file names to the following:

Connectivity database CALC.VST
Stimulus file CALCSIM.STM
Trace file CALCSIM.TRC

5. Click on OK.

Setting these values before entering the simulator is the easiest way
to select the files. You must do this each time you start a new project
or want to change the name of one of your input files.

Performing a Functional Simulation
You are ready to enter the OrCAD simulator, VST.

1. Select Simulate ➝ Execute .

The VST waveform display appears on the screen. At the left are
listed the nodes from the trace file. No waveforms are visible,
since you have not yet run a simulation.

The waveform data may not all fit in RAM, so you can spool the
data to disk as it is created.
OrCAD Interface/Tutorial Guide 13-15

OrCAD Interface/Tutorial Guide
2. Select Set ➝ Spool to Disk .

The Spool Trace Data to Disk? prompt appears.

3. Select Yes ➝ Yes to spool the data to the spool.tdf file.

The default time scale is 10.0 ns per screen. Adjust the time scale to
1,000.0 ns per screen, which means increasing the scale by a factor
of 100. (About 1,200 ns will actually be visible on the screen.)

4. Select Trace ➝ Change View .

The Trace Delta Time? prompt appears at the top of the
screen.

5. Type 100 ↵.

You are ready to simulate the design using your stimulus and
trace data.

6. Select Run Simulation .

The Simulation Length? prompt appears.

7. Type 12000 ↵ to simulate for 1,200 ns.

The resulting waveforms are displayed as in Figure 13-5. Whenever
EXC_P goes high, the next rising CLK edge executes the opcode
selected by the SW switches (not displayed). First, the value 1010 is
loaded into the ALU. Then the next command, a PUSH to the stack,
writes 1010 into the stack. The PUSH command takes longer to
complete because it requires extra states in the state machine.

The output of this simulation run is identical to the output of the
functional simulation run on the original non-X-BLOX Calc design, in
the “VST Tutorial” chapter.
13-16 Xilinx Development System

X-BLOX Tutorial
Figure 13-5 Simulation Output for X-BLOX Design

Implementing the Calc Design
The translation of designs containing X-BLOX components is similar
to the translation of other designs. You can use XMake to generate
files for timing simulation, or to make a bitstream for programming
actual devices, just as you use it for non-X-BLOX designs. In the
process, XMake runs the X-BLOX program, which synthesizes the X-
BLOX macros into standard logic gates.

For detailed information on XMake and the translation process, refer
to the “Configuring XDM and XMake” and subsequent sections in
the “SDT Tutorial” chapter and to the XACT Reference Guide.

Creating a Routed Design
Run XMake to generate files for use in timing simulation and device
programming.

1. Quit OrCAD, saving your changes to the VST configuration, and
re-enter XDM.

2. Select Translate ➝ XMAKE.
OrCAD Interface/Tutorial Guide 13-17

OrCAD Interface/Tutorial Guide
3. Using the default options, choose the CALC.SCH file as input.

4. Choose Make bitstream as the target.

XMake translates, maps, places, and routes the design.

5. After you review the XSimMake output, press any key to return to
XDM.

Examining XMake Output
XMake produces a screen output similar to the following.

XMAKE: Generating makefile 'calc.mak' ...
XMAKE: Profile used is the current XDM settings.
XMAKE: Execute command 'annotate calc.sch'.
XMAKE: Execute command 'inet calc.sch'.
XMAKE: Execute command 'sdt2xnf calc.inf calc.xnf -D xnf'.
XMAKE: Set the part type to '3020APC68-7 from 'xnf\calc.xnf'.
XMAKE: Running with the following options: (none)
>>> XDELAY is run always with '-D' and '-W' options by XMAKE.
XMAKE: Makefile saved in 'calc.mak'.
XMAKE: Making 'calc.bit' ...
XMAKE: Execute command 'xnfmerge -A -D xnf -D . -P 3020APC68-
7 xnf\calc.xnf calc.xff'.
XMAKE: Execute command 'xnfprep calc.xff calc.xtg
parttype=3020APC68-7'.
XMAKE: Execute command 'xblox calc.xtg calc.xg
parttype=3020APC68-7'.
XMAKE: Execute command 'xnfprep calc.xg calc.xtf
parttype=3020APC68-7'.
XMAKE: Execute command 'xnfmap -P 3020APC68-7 calc.xtf
calc.map'.
XMAKE: Execute command 'ppr calc.map parttype=3020APC68-7'.
XMAKE: Execute command 'xdelay -D -W calc.lca'.
XMAKE: Execute command 'makebits -R2 -S0 -XB -YA calc.lca'.
XMAKE: 'calc.bit' has been made. Check output in 'calc.out'.

An explanation of the XDM output follows.

XMAKE: Generating makefile 'calc.mak' ...
XMAKE: Profile used is the current XDM settings.
XMAKE: Execute command 'annotate calc.sch'.
XMAKE: Execute command 'inet calc.sch'.
XMAKE: Execute command 'sdt2xnf calc.inf calc.xnf -D xnf'.

XMake runs a series of commands that convert the OrCAD SCH files
to Xilinx XNF files.
13-18 Xilinx Development System

X-BLOX Tutorial
XMAKE: Set the part type to '3020APC68-7 from 'xnf\calc.xnf'.
XMAKE: Running with the following options: (none)
>>> XDELAY is run always with '-D' and '-W' options by XMAKE.
XMAKE: Makefile saved in 'calc.mak'.

XMake always creates a file with a .mak extension that contains a list
of the commands used to process the design.

XMAKE: Making 'calc.bit' ...
XMAKE: Execute command 'xnfmerge -A -D xnf -D . -P 3020APC68-
7 xnf\calc.xnf calc.xff'.

XNFMerge flattens the hierarchical XNF files into a single netlist,
which is written out as an XFF file.

XMAKE: Execute command 'xnfprep calc.xff calc.xtg
parttype=3020APC68-7'.

XNFPrep is run to verify that the flattened XFF file is correct. It
creates a report that is stored in the file calc.prp. If you choose Stop to
Review DRC as the target for XMake, it stops at this point so that you
can review this report. The output of XNFPrep is specified as calc.xtg.

XMAKE: Execute command 'xblox calc.xtg calc.xg
parttype=3020APC68-7'.

X-BLOX is run to synthesize the X-BLOX symbols in the design into
standard logic.

XMAKE: Execute command 'xnfprep calc.xg calc.xtf
parttype=3020APC68-7'.

XNFPrep must once again be run to verify that the logic produced by
X-BLOX is correct. In this case, the output file name is specified as
calc.xtf.

XMAKE: Execute command 'xnfmap -P 3020APC68-7 calc.xtf
calc.map'.

XNFMap maps the logic found in the calc.xtf file into sections that
will fit within XC3000A CLBs. For XC4000 designs, this step is
handled by PPR.

XMAKE: Execute command 'ppr calc.map parttype=3020APC68-7'.

XMake runs PPR to place the mapped logic and route the
interconnections. The output is a Logic Cell Array (LCA) file, which
is a description of the design as it will actually be configured on the
chip. For XC3000 designs, this step is performed by APR.

XMAKE: Execute command 'xdelay -D -W calc.lca'
OrCAD Interface/Tutorial Guide 13-19

OrCAD Interface/Tutorial Guide
XDelay writes delay information into the LCA file.

XMAKE: Execute command 'makebits -R2 -S0 -XB -YA calc.lca'

Since Make Bitstream was the chosen target, XMake runs MakeBits in
order to create a bitstream that can be downloaded to the part.

XMAKE: 'calc.bit’ has been made. Check output in 'calc.out'

The entire output of XMake is stored in the calc.out file.

Verifying CALC on the Demonstration Board
At this point, a BIT file has been created that can be downloaded to
the appropriate demonstration board to verify the validity of the
design. If you are unfamiliar with this process, please refer to the
“Verifying the Design Using a Demonstration Board” section of the
“SDT Tutorial” chapter for more information.

Timing Simulation
You have already performed many of the steps necessary for timing
simulation. The calc.lca file created in the previous design
implementation section contains the timing information for the
design. All that is necessary is to back-annotate the timing and netlist
information from the LCA file to VST. This task is accomplished with
the aid of XSimMake.

Creating the Simulation Netlist
Run XSimMake to generate a netlist that can be used for timing
simulation.

1. Select Verify ➝ XSIMMAKE.

2. Select the -F option.

A menu of possible flows appears.

3. Choose the Orcad_Fpga_Timing option and select Done.

4. Choose CALC.LCA from the list of LCA files shown.

5. After you review the XSimMake output, press any key to return to
XDM.
13-20 Xilinx Development System

X-BLOX Tutorial
As XSimMake runs, text similar to the following appears in the XDM
window.

Note: XSimMake flows vary depending on the design. The flow used
by XSimMake for your design may be slightly different from the flow
shown in this tutorial.

XSIMMAKE COMMAND : xdelay -w -d calc.lca
XSIMMAKE COMMAND : lca2xnf -g calc.lca calc.xnf
XSIMMAKE COMMAND : xnfba calc.xg calc.xnf
XSIMMAKE COMMAND : xnf2inf xnfba.xnf calc
XSIMMAKE COMMAND : deleted file xnfba.xnf
0 Errors and 0 Warnings occurred during processing.

Examining XSimMake Output
An explanation of the XSimMake output for the timing flow follows.

XSIMMAKE COMMAND : xdelay -w -d calc.lca

XSimMake runs XDelay on the design, although it may already have
been run by XMake, to ensure that timing information is included in
the LCA file.

XSIMMAKE COMMAND : lca2xnf -g calc.lca calc.xnf

LCA2XNF converts the LCA file, which contains the delay
information, back to an XNF file.

XSIMMAKE COMMAND : xnfba calc.xg calc.xnf

When logic is optimized by the place and route tools, although
functionally equivalent, it may not exactly reflect the logic as seen on
the schematic. XNFBA reads the XNF file produced by LCA2XNF
and the XG file produced by X-BLOX, and attempts to rewrite the
netlist so that it looks like the logic described on the schematic.
However, it still reflects the timing information found in the back-
annotated netlist.

XSIMMAKE COMMAND : xnf2inf xnfba.xnf calc
XSIMMAKE COMMAND : deleted file xnfba.xnf

The above steps generate simulation input files from the back-
annotated netlist, then delete the intermediate XNF file created by
XNFBA.
OrCAD Interface/Tutorial Guide 13-21

OrCAD Interface/Tutorial Guide
Configuring OrCAD VST for Timing Simulation
Verify that the simulator is correctly configured to simulate the input
file, calc.vst. Then configure the simulator to use timing delays from
the DBA file.

1. Select Design Entry ➝ ORCADto enter the OrCAD design
environment.

2. Select Digital Simulation Tools ➝ Execute ➝
Simulate ➝ Local Configuration ➝ Configure
SIMULATE.

The Configure Simulate screen appears.

Note: OrCAD’s configuration programs are memory intensive. If you
receive the message Could not find the .EXE, or not
enough memory to load \orcadexe\VST_CLC.EXE , return
to the XDM executive screen. Close XDM by typing exit ↵, type
orcad ↵, and modify the configuration as described in this section.
After completing the commands in this section, type xdm ↵ to return
to XDM, and continue with the “Performing a Timing Simulation”
section, following.

3. Under File Options, verify that the file names read as follows:

Connectivity database CALC.VST
Stimulus file CALCSIM.STM
Trace file CALCSIM.TRC

4. If the names are incorrect, make the necessary changes.

5. Set the simulator to use timing delays from the DBA file by
selecting Use Delay Annotation.

6. Return to the ESP screen by selecting OK.

Performing a Timing Simulation
You are ready to perform the timing simulation.

1. Enter the simulator by selecting Simulate ➝ Execute .

2. Select Set ➝ Spool to Disk .

The Spool Trace Data to Disk? prompt appears.

3. Select Yes ➝ Yes to spool the data to the spool.tdf file.
13-22 Xilinx Development System

X-BLOX Tutorial
The default time scale is 10 ns per screen. Adjust that to
1,000 ns per screen, which means increasing the scale by a factor
of 100.

4. Select Trace ➝ Change View .

The Trace Delta Time? prompt appears at the top of the
screen.

5. Type 100 ↵.

6. Select Run Simulation .

The Simulation Length? prompt appears.

7. Type 12000 ↵ to simulate for 1,200 ns.

The output of this simulation run is nearly identical to the output of
the timing simulation run on the original non-X-BLOX Calc design.
The timing differs slightly, because different place and route runs
produce different net delays.

Command Summaries
Implementation and simulation of designs containing X-BLOX
modules is significantly more complex than that of standard
schematics. It is strongly recommended that you use XMake and
XSimMake when processing your X-BLOX designs rather than using
a manual flow or creating your own batch files. For this reason,
X-BLOX command summaries are not given.

Further Reading
Before beginning an X-BLOX design, you should read the
descriptions of the X-BLOX macros found in the XACT Libraries Guide
in order to understand the abilities and limitations of each macro.
You should also review the section on the X-BLOX program found in
the X-BLOX User Guide.
OrCAD Interface/Tutorial Guide 13-23

OrCAD Interface/Tutorial Guide
13-24 Xilinx Development System

Xilinx ABEL Tutorial

OrCAD
Interface/
Tutorial
Guide
OrCAD Interface/Tutorial Guide — 0401409 01 Printed in U.S.A.

OrCAD Interface/Tutorial Guide
Xilinx Development System

Chapter 14

Xilinx ABEL Tutorial

The Xilinx ABEL software package enables you to define logic in
terms of text-based Boolean equations, truth tables, and state
machine descriptions using the ABEL Hardware Description
Language (HDL). These logic blocks can then be included as part of a
larger design, allowing logic defined by both graphical and text-
based entry to exist within the same design.

This chapter gives a practical example of using Xilinx ABEL within
the OrCAD design environment. It is not intended to fully explain all
of the functionality found within Xilinx ABEL. Please refer to the
"Further Reading" section at the end of this tutorial for a list of
sources from which to obtain more information.

Before Beginning the Tutorial
This section of the tutorial assumes that you are already familiar with
the material in the “SDT Tutorial” and “VST Tutorial” chapters of this
manual. If not, please review those chapters before continuing.

Required Software
This tutorial assumes that you are using the following versions of the
development software:

● OrCAD/SDT — SDT 386+

● OrCAD/VST — VST 386+

● OrCAD/Xilinx Interface — Version 5.00 or later

● XACT Design Manager (XDM) — Version 5.00 or later

● Xilinx ABEL, the Xilinx text-based entry tool that uses Data I/O's
ABEL HDL language to enter logic descriptions
OrCAD Interface/Tutorial Guide — 0401409 01 14-1

OrCAD Interface/Tutorial Guide
If you have Xilinx software on CD-ROM, you should have at least
temporary access to all of the above software using the temporary
licensing available on the programmable key, provided that the
temporary licensing has not already been exhausted.

Preparing the Design
If you chose to read through the SDT tutorial rather than actually
perform the steps involved, you must verify that your PC is set up
correctly to use OrCAD 386+, the XACT Development System
software, and X-BLOX. Then create and configure the design
directory, and copy a completed set of schematics from any of the
solutions directories supplied.

If you have already performed the SDT tutorial on your PC, skip to
the next section, “Viewing Stat_abl.abl.”

1. Follow the instructions given in the “Before Beginning the
Tutorial” section of the “SDT Tutorial” chapter for setting up your
design environment.

2. The tutorial files are optionally installed when you install the
Xilinx/OrCAD interface software. If you have already installed
the software but are not sure whether you specified tutorial
installation, check for the c:\xact\tutorial\orcad\calc directory.
This directory contains the tutorial files.

3. Create a new project called “Calc,” as described in the “Creating
the Project Directory” section of the “SDT Tutorial” chapter.

4. Full solutions for the SDT tutorial are supplied in the solutions
directories located in \xact\tutorial\orcad\calc. One of the
following must be copied to the directory where you will be
performing the tutorial.

...\soln_3k — Solution files for XC3020PC68

...\soln_3ka — Solution files for XC3020APC68

...\soln_4ka — Solution files for XC4003APC84

...\soln_4k — Solution files for XC4003PC84

For example, if you are targeting the tutorial for an XC3020APC68
device, perform the following sequence of commands on a PC.

cd \orcad\calc ↵
copy \xact\tutorial\orcad\calc\ solution *.* ↵
14-2 Xilinx Development System

Xilinx ABEL Tutorial
where solution is either soln_3ka, soln_3k, soln_4ka, or soln_4k.
The solutions schematics are targeted towards the 3020APC68-7,
3020PC68-70, 3020PC68-4003APC84-6, and 4003PC84-6 devices,
respectively.

Note: This tutorial assumes that your ORCADPROJ variable is set to
c:\orcad\. You need not follow this convention.

This procedure gives you a full set of completed schematics for
the Calc design, with all supporting files.

5. Configure the design directory by typing xdraft 3 ↵ or
xdraft 4 ↵, depending on whether you are targeting an
XC3000A or an XC4000 device.

Note: All of the screen outputs refer to the processing of the 3000A
solutions design. Other devices have slightly different outputs.

Viewing Stat_abl.abl
A Xilinx ABEL-based block called STAT_ABL is created in this
section to replace the STATMACH state machine that resides within
the CONTROL block on the CALC schematic. The Xilinx ABEL code
for STAT_ABL is functionally identical to the schematic for STAT-
MACH, so this substitution in no way alters the function of the
CALC design.

Note: If you are not already familiar with the CALC design, read the
discussion found in the “Design Description” section of the “SDT
Tutorial” chapter.

Stat_abl.abl is the name of the Xilinx ABEL HDL file from which a
logic description for the STAT_ABL block is generated.

Enter the Xilinx ABEL environment and view the stat_abl.abl source
code.

1. In XDM select Design Entry ➝ XABEL ➝ STAT_ABL.ABL.

2. The file displayed in Figure 14-1 appears in the text window of
Xilinx ABEL.
OrCAD Interface/Tutorial Guide 14-3

OrCAD Interface/Tutorial Guide
module stat_abl

title 'State machine for Calc design'
"This state machine has 3 states which control the functions
"of the ALU and the stack. The states are as follows:
" SPUSH -- increment stack pointer
" SWE -- write value into stack
" SOTHER -- do neither (initial state)

"This is a one-hot state machine, which means that only
"one of the states is active at any given time. This method
"is particularly suited for use with Xilinx ABEL and Xilinx
"FPGAs, which are rich in flip-flop resources.
"This file also generates control signals from equations.
"For an equivalent schematic, see statmach.1.

declarations
"inputs

OP5, OP4, OP3, OP2, OP1, OP0, EXC pin;
"clock

CLK pin;
"outputs

CTL3, CTL2, CTL1, CTL0 pin;
 UP_DN, WE, RST, ADD_SUB, CE_ALU, CE_ADDR pin;

"state diagram declarations and assignments
XABELSM state_register istype 'reg_d';
SPUSH, SWE, SOTHER state;

"vector definitions
OP = [OP5,OP4,OP3,OP2,OP1,OP0];
HOP = [OP5,OP4,OP3];
CTL = [CTL3,CTL2,CTL1,CTL0];

"declare internal nodes
SEL_OP, OP_CTL2, OP_CTL1, OP_CTL0 node;

"node declarations for simulation only, can't use state names
"in simulation vectors

PUSH, OTHER node;

"define clock & don't-care values for test vectors
C, X = .C., .X.;

Xilinx property 'initialstate SOTHER';
14-4 Xilinx Development System

Xilinx ABEL Tutorial
equations
XABELSM.CLK = CLK;
RST = (HOP == ^b101) & EXC;
ADD_SUB = !OP_CTL2;
SEL_OP = (HOP == ^b111);
CE_ALU = !(SEL_OP & OP2 & OP0) & SOTHER & EXC;
CE_ADDR = !(OP2 & OP1 & OP0) & SEL_OP & EXC;
OP_CTL2 = (OP5 & !SEL_OP) # (OP2 & SEL_OP);
OP_CTL1 = (OP4 & !SEL_OP) # (OP1 & SEL_OP);
OP_CTL0 = (OP3 & !SEL_OP) # (OP0 & SEL_OP);
CTL3 = SEL_OP;
CTL2 = OP_CTL2 & OP_CTL1;
CTL1 = OP_CTL1 & !OP_CTL2;
CTL0 = !OP_CTL2 & OP_CTL0;
UP_DN = OP2 & !OP1 & OP0 & SEL_OP & EXC;
PUSH = SPUSH;
WE = SWE;
OTHER = SOTHER;

"always optimize out don't-cares
@DCSET

state_diagram XABELSM
state SPUSH: goto SWE;
state SWE: goto SOTHER;
state SOTHER: if (UP_DN) then SPUSH

else SOTHER;

test_vectors
"begin in initial state, each line is one clock cycle

([CLK EXC OP]->[PUSH WE OTHER ADD_SUB RST CE_ALU CE_ADD RCTL])

"quick check to test the state machine
[C, 0, X]->[0, 0, 1, X, X, X, X, X];
[C, 1, ^h3F]->[0, 0, 1, X, X, X, X, X];
[C, 0, X]->[0, 0, 1, X, X, X, X, X];
[C, 1, ^h3D]->[1, 0, 0, X, X, X, X, X];
[C, 0, X]->[0, 1, 0, X, X, X, X, X];
[C, 0, X]->[0, 0, 1, X, X, X, X, X];
[C, 1, ̂ h38]->[0, 0, 1, X, X, X, X, X];

"test the control logic, EXC low
[C, 0, ^h0]->[0, 0, 1, 1, 0, 0, 0, ^h0];
[C, 0, ^h8]->[0, 0, 1, 1, 0, 0, 0, ^h1];
[C, 0, ^h10]->[0, 0, 1, 1, 0, 0, 0, ^h2];
[C, 0, ^h18]->[0, 0, 1, 1, 0, 0, 0, ^h3];
[C, 0, ^h20]->[0, 0, 1, 0, 0, 0, 0, ^h0];
[C, 0, ^h28]->[0, 0, 1, 0, 0, 0, 0, ^h0];
[C, 0, ̂ h30]->[0, 0, 1, 0, 0, 0, 0, ̂ h4];
OrCAD Interface/Tutorial Guide 14-5

OrCAD Interface/Tutorial Guide
"extended instruction set
[C, 0, ^h38]->[0, 0, 1, 1, 0, 0, 0, ^h8];
[C, 0, ^h39]->[0, 0, 1, 1, 0, 0, 0, ^h9];
[C, 0, ^h3A]->[0, 0, 1, 1, 0, 0, 0, ^hA];
[C, 0, ^h3B]->[0, 0, 1, 1, 0, 0, 0, ^hB];
[C, 0, ^h3C]->[0, 0, 1, 0, 0, 0, 0, ^h8];
[C, 0, ^h3D]->[0, 0, 1, 0, 0, 0, 0, ^h8];
[C, 0, ^h3E]->[0, 0, 1, 0, 0, 0, 0, ^hC];
[C, 0, ̂ h3F]->[0, 0, 1, 0, 0, 0, 0, ̂ hC];

"test the control logic, EXC high
[C, 1, ^h0]->[0, 0, 1, 1, 0, 1, 0, ^h0];
[C, 1, ^h8]->[0, 0, 1, 1, 0, 1, 0, ^h1];
[C, 1, ^h10]->[0, 0, 1, 1, 0, 1, 0, ^h2];
[C, 1, ^h18]->[0, 0, 1, 1, 0, 1, 0, ^h3];
[C, 1, ^h20]->[0, 0, 1, 0, 0, 1, 0, ^h0];
[C, 1, ^h28]->[0, 0, 1, 0, 1, 1, 0, ^h0];
[C, 1, ̂ h30]->[0, 0, 1, 0, 0, 1, 0, ̂ h4];

"extended instruction set
[C, 1, ^h38]->[0, 0, 1, 1, 0, 1, 1, ^h8];
[C, 1, ^h39]->[0, 0, 1, 1, 0, 1, 1, ^h9];
[C, 1, ^h3A]->[0, 0, 1, 1, 0, 1, 1, ^hA];
[C, 1, ^h3B]->[0, 0, 1, 1, 0, 1, 1, ^hB];
[C, 1, ^h3C]->[0, 0, 1, 0, 0, 1, 1, ^h8];
[C, 1, ̂ h3D]->[1, 0, 0, 0, 0, 0, 1, ̂ h8];

"insert two clocks to return to initial state
[C, 0, ^h3D]->[0, 1, 0, 0, 0, 0, 0, ^h8];
[C, 0, ^h3D]->[0, 0, 1, 0, 0, 0, 0, ^h8];
[C, 1, ^h3E]->[0, 0, 1, 0, 0, 1, 1, ^hC];
[C, 1, ̂ h3F]->[0, 0, 1, 0, 0, 0, 0, ̂ hC];

end stat_abl

Figure 14-1 Stat_abl.abl File

A breakdown of the contents of the Xilinx ABEL file follows.

module stat_abl

The Module statement specifies the beginning of the Xilinx ABEL
module.

title 'State machine for Calc design'

The Title statement, while not necessary, is added as a header for the
intermediate files created by Xilinx ABEL.
14-6 Xilinx Development System

Xilinx ABEL Tutorial
"This state machine has 3 states which control the functions
"of the ALU and the stack. The states are as follows:
" SPUSH -- increment stack pointer
" SWE -- write value into stack
" SOTHER -- do neither (initial state)

"This is a one-hot state machine, which means that only
"one of the states is active at any given time. This method
"is particularly suited for use with Xilinx ABEL and Xilinx
"FPGAs, which are rich in flip-flop resources.
"This file also generates control signals from equations.
"For an equivalent schematic, see statmach.1.

Any text preceded by double quotation marks, as in the example just
given, is interpreted as comment text.

declarations
"inputs

OP5, OP4, OP3, OP2, OP1, OP0, EXC pin;
"clock

CLK pin;
"outputs

CTL3, CTL2, CTL1, CTL0 pin;
UP_DN, WE, RST, ADD_SUB, CE_ALU, CE_ADDR pin;

The Pin statements in the declaration define the pinout of the Xilinx
ABEL module. Pins must be either inputs or outputs; bidirectional
pins are not allowed.

"state diagram declarations and assignments
XABELSM state_register istype 'reg_d';
SPUSH, SWE, SOTHER state;

The State_register keyword declares a symbolic state machine. The
State keyword declares states that appear in a symbolic state
machine. Istype ‘reg_d’ declares that the state machine will be imple-
mented using D flip-flops. State_register must be used in conjunction
with State.

"vector definitions
OP = [OP5,OP4,OP3,OP2,OP1,OP0];
HOP = [OP5,OP4,OP3];
CTL = [CTL3,CTL2,CTL1,CTL0];

Vector definitions define bus vectors within Xilinx ABEL; these
vectors can be used during simulation in the Xilinx ABEL environ-
ment.

"declare internal nodes
SEL_OP, OP_CTL2, OP_CTL1, OP_CTL0 node;
OrCAD Interface/Tutorial Guide 14-7

OrCAD Interface/Tutorial Guide
These nodes are declared for use as variables in intermediate
equations.

"node declarations for simulation only, can't use state names
"in simulation vectors

PUSH, OTHER node;

The Xilinx ABEL simulator does not allow the use of symbolic state
names — that is, state names used in the definition of a state machine
— in test vectors, so these two "dummy" nodes were created. They
mirror SPUSH and SOTHER for use in the simulation test vectors
found at the end of the file.

"define clock & don't-care values for test vectors
C, X = .C., .X.;

This definition allows the default clock and don't-care syntax (.C. and
.X.) to be replaced by a simpler one without periods (C and X) so that
the simulation vectors are easier to read.

Xilinx property 'initialstate SOTHER';

The Xilinx Property statement defines the initial power-up state of the
state machine as the SOTHER state. This state and others are defined
in a later section of the file.

equations

 XABELSM.CLK= CLK;
RST = (HOP == ^b101) & EXC;
ADD_SUB = !OP_CTL2;
SEL_OP = (HOP == ^b111);
CE_ALU = !(SEL_OP & OP2 & OP0) & SOTHER & EXC;
CE_ADDR = !(OP2 & OP1 & OP0) & SEL_OP & EXC;
OP_CTL2 = (OP5 & !SEL_OP) # (OP2 & SEL_OP);
OP_CTL1 = (OP4 & !SEL_OP) # (OP1 & SEL_OP);
OP_CTL0 = (OP3 & !SEL_OP) # (OP0 & SEL_OP);
CTL3 = SEL_OP;
CTL2 = OP_CTL2 & OP_CTL1;
CTL1 = OP_CTL1 & !OP_CTL2;
CTL0 = !OP_CTL2 & OP_CTL0;
UP_DN = OP2 & !OP1 & OP0 & SEL_OP & EXC
PUSH = SPUSH;
WE = SWE;
OTHER = SOTHER;

The Equations statement defines the internal logic of the module.
Each equation is synthesized into combinatorial logic.
14-8 Xilinx Development System

Xilinx ABEL Tutorial
"always optimize out don't-cares
@DCSET

The @DCSET statement instructs Xilinx ABEL to optimize don't-cares
in the same way that Karnaugh maps are used to minimize a logic
function.

state_diagram XABELSM
state SPUSH: goto SWE;
state SWE: goto SOTHER;
state SOTHER: if (UP_DN) then SPUSH

else SOTHER;

The State_diagram statement defines under what circumstances state
transitions occur. In this case, the SPUSH state is always followed by
SWE, SWE is always followed by SOTHER, and SOTHER is followed
by SPUSH if the UP_DN signal is High. Otherwise, the state machine
remains in the SOTHER state.

test_vectors

Test_vectors specifies the beginning of a section containing test
vectors. The test vectors define sets of inputs and expected outputs.

"begin in initial state, each line is one clock cycle

([CLK EXC OP]->[PUSH WE OTHER ADD_SUB RST CE_ALU CE_ADD RCTL])

This line defines the set of inputs as the vectors CLK, EXC, and OP.
Output names are then specified, for which expected values are spec-
ified in the following lines.

"quick check to test the state machine
[C, 0, X]->[0, 0, 1, X, X, X, X, X];
[C, 1, ^h3F]->[0, 0, 1, X, X, X, X, X];
[C, 0, X]->[0, 0, 1, X, X, X, X, X];
[C, 1, ^h3D]->[1, 0, 0, X, X, X, X, X];
[C, 0, X]->[0, 1, 0, X, X, X, X, X];

.

.

.
"insert two clocks to return to initial state
[C, 0, ^h3D]->[0, 1, 0, 0, 0, 0, 0, ^h8];
[C, 0, ^h3D]->[0, 0, 1, 0, 0, 0, 0, ^h8];
[C, 1, ^h3E]->[0, 0, 1, 0, 0, 1, 1, ^hC];
[C, 1, ̂ h3F]->[0, 0, 1, 0, 0, 0, 0, ̂ hC];

Simulation begins with the state machine in the initial power-up
state. Each successive line steps forward by one clock cycle. The input
values to the left of the arrow are applied to the current state; the
OrCAD Interface/Tutorial Guide 14-9

OrCAD Interface/Tutorial Guide
resulting outputs are displayed to the right of the arrow. The "^h"
before some values tells the simulator that the vectors are specified in
hexadecimal.

end stat_abl

The End statement specifies the end of the Xilinx ABEL module.

Simulating Within Xilinx ABEL
The Xilinx ABEL simulator is now used to verify the STAT_ABL
design, using the test vectors described above as input.

1. Hold down the Alt key and type c to select the Compile menu.

2. Select Simulate Equations .

Note: Xilinx ABEL running from XDM may run out of memory on
some designs. If your system runs out of memory at any time during
this tutorial, exit Xilinx ABEL by selecting File ➝ Exit, quit XDM, and
reboot your machine to free the memory. Restart Xilinx ABEL directly
from the DOS prompt by typing xabel ↵. Return to step 1 and
continue with the tutorial.

Xilinx ABEL prepares the test vectors for simulation, then simulates
them. It reports that 39 of 39 test vectors simulated correctly. This
result means that as each of the test vector inputs was executed, the
output of the state machine corresponded exactly to the expected
values entered in the test vectors.

Note: If errors occur, you may have inadvertently modified the Xilinx
ABEL source code. Recopy stat_abl.abl from the appropriate solu-
tions directory and try again.

Compiling STAT_ABL.ABL
The Xilinx ABEL file could be compiled within Xilinx ABEL using the
Compile ➝ Xilinx FPGA Netlist command. Instead, perform this step
from within XDM, using a program called ABL2XNF. It is necessary
at this point to compile the netlist in order to ensure its validity.
ABL2XNF also generates an XSF file that is used to create an OrCAD
symbol for the Xilinx ABEL design, and an XAS simulation netlist
file.
14-10 Xilinx Development System

Xilinx ABEL Tutorial
1. Select File ➝ Exit and return to XDM.

2. Within XDM, make sure the Family, Part, and Directory options
are set correctly, then choose Translate ➝ ABL2XNF ➝
STAT_ABL.ABL.

3. Choose Done to select the default options.

ABL2XNF compiles the ABL file into an XNF netlist.

Note: If errors occur, be sure your path and XACT environment
variable are set correctly. If errors persist, re-copy the stat_abl.abl file
from the installation area.

Including STAT_ABL in the CALC Design
You are ready to create a symbol for the Xilinx ABEL block and place
it in your schematic.

Creating a Symbol for STAT_ABL
You must create a special symbol so that you can include the Xilinx
ABEL module on the CONTROL schematic.

Creating a Command File with SymGen

The SymGen program automates the creation of symbols for Xilinx
ABEL modules. It uses as input an XSF file created by ABL2XNF. The
XSF file contains the pinout for the symbol. SymGen uses this file to
generate a command file for the OrCAD library editor.

1. Within XDM, select Design Entry ➝ SYMGEN.

2. Select the -o option to generate an OrCAD symbol, then select
Done.

3. Choose STAT_ABL.XSF from the menu of available input files. It
should be the only file on the menu.

SymGen creates a command file called stat_abl.cmd and places it
in the design directory.

Creating the Library Symbol

The next step is to create the library symbol for the STAT_ABL block
by invoking the command file from inside the library editor.
OrCAD Interface/Tutorial Guide 14-11

OrCAD Interface/Tutorial Guide
1. Enter the OrCAD environment by selecting DesignEntry ➝
ORCAD from the XDM menus.

2. Select Schematic Design Tools ➝ Execute ➝ Edit
Library ➝ Execute .

The Read Library? prompt appears at the top of the screen.

3. Type .\stat_abl.lib ↵.

The “.\” at the head of the library name ensures that the new
library is placed in the design directory. The Xilinx/OrCAD
interface software looks for user-created libraries in the current
design directory.

Note: You can invoke the OrCAD library editor from the DOS
prompt, by typing libedit .\stat_abl.lib↵.

4. Select Import and type stat_abl.cmd ↵ to invoke the command
file.

The symbol editor creates a symbol, as shown in Figure 14-2. The
new symbol has now been drawn but not saved into the library.

5. Select Library ➝ Update Current to save the symbol to
memory.

6. Select Quit ➝ Update File to save the library to disk.

The stat_abl.lib file is written to the current design directory.

7. Select Abandon Edits to exit the library editor.
14-12 Xilinx Development System

Xilinx ABEL Tutorial
Figure 14-2 STAT_ABL Symbol

Adding the Library to Your Search Path

You must add the new library to your search path.

1. Select Draft ➝ Configure Schematic Tools .

2. Pan down to find the list of Available Libraries.

3. Click on .\STAT_ABL.LIB ➝ Insert .

The new library appears in the Configured Libraries list at right.

4. Pan back to the top and click on OK.

Note: Alternatively, you can add the new library to your search path
by using any text editor to edit the sdt.cfg file in your design
directory. Add the line: LIB = ‘.\STAT_ABL.LIB’ below the other
library definitions.
OrCAD Interface/Tutorial Guide 14-13

OrCAD Interface/Tutorial Guide
Adding STAT_ABL to the CONTROL Schematic
Now that you have generated the symbol and the XNF file for
STAT_ABL, substitute the symbol for the schematic-based STAT-
MACH state machine.

1. Open the CALC schematic in an SDT window.

2. Place the cursor on the CONTROL instance on the CALC sche-
matic.

3. Select Quit ➝ Enter Sheet ➝ Enter ➝ Escape .

The schematic for CONTROL is displayed.

4. Place the cursor on the upper left-hand corner of the STATMACH
block.

5. Without moving the cursor, use the keyboard keys to select
Delete ➝ Block ➝ Begin ➝ End .

The STATMACH block disappears.

Note: If the nets connected to the STATMACH block disappear also,
then the cursor must have moved during the delete process. Quit
without saving your changes and reload the schematic.

Place the new STAT_ABL block on the schematic.

6. Select Get and type stat_abl ↵.

7. Move the cursor to the correct location and select Place .

This procedure replaces the original STATMACH block with the
functionally equivalent Xilinx ABEL module called STAT_ABL.

Adding Symbol Attributes
The STAT_ABL symbol is different from the other symbols in the
CALC schematic, because its logic is described in an XNF file, gener-
ated earlier using Xilinx ABEL, instead of in a graphical representa-
tion using parts from the OrCAD libraries.

You must tell the Xilinx programs where to find the logic description
for the STAT_ABL block by attaching the FILE attribute to the symbol
placement. The FILE attribute specifies the name of the ABL file
containing the logic description. Do not specify an extension when
including the file name on the symbol.
14-14 Xilinx Development System

Xilinx ABEL Tutorial
Additionally, XSimMake looks for an attribute that defines the
symbol as representing a Xilinx ABEL netlist, since the FILE attribute
can be used to designate an XNF file from any source. This attribute is
DEF=XABEL.

Add the FILE and DEF attributes to the STAT_ABL symbol
placement.

1. Position the cursor on the STAT_ABL symbol.

2. Select Edit ➝ Edit ➝ LOC,OPTIONS ➝ Name for an XC3000
family design, or Edit ➝ Edit ➝ OPTIONS1 ➝ Name for an
XC4000 family design.

3. Type FILE=STAT_ABL,DEF=XABEL↵.

4. Select Quit ➝ Update File ➝ Abandon Edits ➝ Yes to
save your schematic and leave the SDT schematic editor.

The CONTROL schematic with the STAT_ABL module is shown in
Figure 14-3.

Figure 14-3 STAT_ABL Symbol in CONTROL Schematic
OrCAD Interface/Tutorial Guide 14-15

OrCAD Interface/Tutorial Guide
Functional Simulation
The XSimMake program allows you to easily simulate designs
containing Xilinx ABEL components. It coordinates the program
execution flow necessary for functional or timing simulation. XSim-
Make is similar to XMake, except that it produces a simulation netlist
instead of a bitstream.

Note: For more detailed information on XSimMake, refer to the
“Creating a Functional Simulation Netlist with XSimMake” section of
the “VST Tutorial” chapter.

Creating the Functional Simulation Netlist
Run XSimMake to generate a netlist that you can functionally
simulate.

1. Return to XDM.

2. Select Verify ➝ XSIMMAKE.

3. Select the -F option.

A menu of possible flows appears.

4. Select the Orcad_Fpga_Func flow option.

5. Select Done.

6. Choose CALC.SCH from the list of schematic files shown.

XSimMake now executes.

7. After you review the XSimMake output, press any key to return to
XDM.

As XSimMake runs, text similar to the following appears in the XDM
window.

Note: XSimMake flows vary depending on the design. The flow used
by XSimMake for your design may be slightly different from the flow
shown in this tutorial.

XSIMMAKE COMMAND : creating directory savexnf
XSIMMAKE COMMAND : creating directory otherxnf
XSIMMAKE COMMAND : annotate calc.sch
XSIMMAKE COMMAND : inet calc.sch /t
XSIMMAKE COMMAND : inf2xnf calc d= otherxnf
XSIMMAKE COMMAND : xnfmerge -y -d otherxnf otherxnf\calc.xnf
14-16 Xilinx Development System

Xilinx ABEL Tutorial
otherxnf\calc.xff
XSIMMAKE COMMAND : xfind otherxnf\calc.xff calc.xfw calc.xgs
READING XFW FILE : calc.xfw
XSIMMAKE COMMAND : copied file xnf\stat_abl.xas to
savexnf\stat_abl.xnf
XSIMMAKE COMMAND : copied file savexnf\stat_abl.xnf to
otherxnf\stat_abl.xnf
XSIMMAKE COMMAND : xnfmerge -z -d otherxnf -d xnf -d .
otherxnf\calc.xnf otherxnf\calc.xff
XSIMMAKE COMMAND : xnf2inf otherxnf\calc.xff calc.vst u=true
0 Errors and 0 Warnings occured during processing.

Examining XSimMake Output
An explanation of the XSimMake functional flow output seen in
XDM follows. While it is not necessary to know anything about the
inner workings of XSimMake, it sometimes gives useful perspective
to have some idea of how the preparation of the design is
accomplished. However, none of the information in this section is
necessary for everyday usage of XSimMake.

XSIMMAKE COMMAND : creating directory savexnf
XSIMMAKE COMMAND : creating directory otherxnf

First, XSimMake creates new directories for storage of intermediate
files.

XSIMMAKE COMMAND : annotate calc.sch
XSIMMAKE COMMAND : inet calc.sch /t

XSimMake then runs the OrCAD conversion programs to create an
updated OrCAD netlist.

XSIMMAKE COMMAND : inf2xnf calc d= otherxnf

Next, XSimMake runs INF2XNF to convert the OrCAD INF files to
standard Xilinx Netlist Format (XNF) files. INF2XNF is the engine of
the SDT2XNF program used by XMake and in the manual flow.

XSIMMAKE COMMAND : xnfmerge -y -d otherxnf otherxnf\calc.xnf
otherxnf\calc.xff

XMFMerge combines all of the schematic XNF files into a single XNF
format file with an .xff extension.

XSIMMAKE COMMAND : xfind otherxnf\calc.xff calc.xfw calc.xgs

XFind reads the XNF file to determine what types of symbols the
netlist contains. In this case, it discovers the Xilinx ABEL symbol
OrCAD Interface/Tutorial Guide 14-17

OrCAD Interface/Tutorial Guide
STAT_ABL in the netlist and modifies program execution accordingly
by generating a file called calc.xfw.

READING XFW FILE : calc.xfw

The calc.xfw file created in the previous step is now read by
XSimMake. In this case, the file changes the program flow so that the
simulation netlist for the Xilinx ABEL file is used.

XSIMMAKE COMMAND : copied file xnf\stat_abl.xas to
savexnf\stat_abl.xnf
XSIMMAKE COMMAND : copied file savexnf\stat_abl.xnf to
otherxnf\stat_abl.xnf

XSimMake copies the simulation netlist XAS file created by
ABL2XNF into the simulation XNF directory, otherxnf. This step
ensures that the simulation netlist for STAT_ABL is used when
creating the simulation netlist for CALC. If you have not run
ABL2XNF already, XSimMake runs it for you.

XSIMMAKE COMMAND : xnfmerge -z -d otherxnf -d xnf -d .
otherxnf\calc.xnf otherxnf\calc.xff

Next, XNFMerge is run to merge the Xilinx ABEL simulation XNF file
into the design.

XSIMMAKE COMMAND : xnf2inf otherxnf\calc.xff calc.vst u=true

XSimMake then runs XNF2INF to generate a simulation file from the
merged XNF format (XFF) file for use in the VST simulator.
XNF2INF is the engine of the XNF2VST program used in the manual
flow.

Stimulus and Trace Files
You now have a simulatable VST netlist. In the “VST Tutorial”
chapter, you learned how to add stimulus and trace information to
your schematic, and how to use the stimulus and trace editors within
VST. However, since this tutorial assumes you already know how to
create stimulus and trace data, Xilinx has supplied both ASCII and
binary stimulus and trace files that you can use to simulate your
design. The files are located in the solutions directories discussed in
the “Preparing the Design” section of this tutorial. The binary files
are called calcsim.stm and calcsim.trc, respectively.
14-18 Xilinx Development System

Xilinx ABEL Tutorial
1. If you copied one of the solutions directories in order to perform
this tutorial, the stimulus and trace files are already present in
your working directory.

2. If the files do not exist in your working directory, copy them by
typing the following commands at the DOS prompt, from your
working directory:

copy \xact\tutorial\orcad\calc\ solution *.stm ↵
copy \xact\tutorial\orcad\calc\ solution *.trc ↵

where solution is either soln_3ka, soln_3k, soln_4ka, or soln_4k.

Configuring OrCAD VST for the Calc Design
You must specify the simulation input files before entering VST.

Performing these steps before each simulation eliminates the most
common error made by Xilinx users simulating with OrCAD VST:
simulating from the INF file rather than the VST file.

1. Select DesignEntry ➝ ORCADto enter the OrCAD design
environment.

2. Select Digital Simulation Tools ➝ Execute ➝
Simulate ➝ Local Configuration ➝ Configure
SIMULATE.

The Configure Simulate screen appears.

Note: OrCAD’s configuration programs are memory intensive. If you
receive the message Could not find the .EXE, or not
enough memory to load \orcadexe\VST_CLC.EXE , return
to the XDM executive screen. Close XDM by typing exit ↵, type
orcad ↵, and verify the configuration as described in this section.
After completing the commands in this section, type xdm ↵ to return
to XDM, and continue with the “Performing a Functional
Simulation” section, following.

3. Look in the File Options portion of the screen. The file names
appear similar to the following:

Connectivity database CALC.INF
Stimulus file CALC.STM
Trace file CALC.TRC
OrCAD Interface/Tutorial Guide 14-19

OrCAD Interface/Tutorial Guide
4. Change the file names to the following:

Connectivity database CALC.VST
Stimulus file CALCSIM.STM
Trace file CALCSIM.TRC

5. Click on OK.

Setting these values before entering the simulator is the easiest way to
select the files. You must do this each time you start a new project or
want to change the name of one of your input files.

Performing a Functional Simulation
You are ready to enter the OrCAD simulator, VST.

1. Select Simulate ➝ Execute .

The VST waveform display appears on the screen. At the left are
listed the nodes from the trace file. No waveforms are visible,
since you have not yet run a simulation.

The waveform data may not all fit in RAM, so you can spool the
data to disk as it is created.

2. Select Set ➝ Spool to Disk .

The Spool Trace Data to Disk? prompt appears.

3. Select Yes ➝ Yes to spool the data to the spool.tdf file.

The default time scale is 10.0 ns per screen. Adjust the time scale to
1,000.0 ns per screen, which means increasing the scale by a factor
of 100. (About 1,200 ns will actually be visible on the screen.)

4. Select Trace ➝ Change View .

The Trace Delta Time? prompt appears at the top of the
screen.

5. Type 100 ↵.

You are ready to simulate the design using your stimulus and
trace data.

6. Select Run Simulation .

The Simulation Length? prompt appears.

7. Type 12000 ↵ to simulate for 1,200 ns.
14-20 Xilinx Development System

Xilinx ABEL Tutorial
The resulting waveforms are displayed as in Figure 14-4. Whenever
EXC_P goes high, the next rising CLK edge executes the opcode
selected by the SW switches (not displayed). First, the value 1010 is
loaded into the ALU. Then the next command, a PUSH to the stack,
writes 1010 into the stack. The PUSH command takes longer to
complete because it requires extra states in the state machine.

The output of this simulation run is identical to the output of the
functional simulation run on the original non-Xilinx ABEL Calc
design, in the “VST Tutorial” chapter.

Figure 14-4 Simulation Output for Xilinx ABEL Design

Implementing the CALC Design
The translation of designs containing Xilinx ABEL blocks is similar to
the translation of other designs. You can use XMake to generate files
for timing simulation or a bitstream for programming actual devices,
just as you use it for designs that do not contain Xilinx ABEL blocks.
When the translation programs find the FILE attribute on the
STAT_ABL symbol, the logic described in the stat_abl.xnf file, created
earlier using Xilinx ABEL, is simply merged with the top-level XNF
OrCAD Interface/Tutorial Guide 14-21

OrCAD Interface/Tutorial Guide
file created from CALC before mapping, placing, and routing is
begun.

For detailed information on XMake and the translation process, refer
to the ”Configuring XDM and XMake” and subsequent sections in
the “SDT Tutorial” chapter and to the XACT Reference Guide.

Creating a Routed Design
1. Quit OrCAD, saving your changes to the VST configuration, and

re-enter XDM.

2. Select Translate ➝ XMAKE.

3. Using the default options, choose the CALC.SCH file as input.

4. Choose Make bitstream as the target.

XMake translates, maps, places, and routes the design, then
creates a bit file that you can use to program a device.

5. After you review the XMake output, press any key to return to
XDM.

Examining XMake Output
Xmake produces a screen output similar to the following.

XMAKE: Generating makefile 'calc.mak' ...
XMAKE: Profile used is the current XDM settings
XMAKE: Execute command 'annotate calc.sch'.
XMAKE: Execute command 'inet calc.sch'.
XMAKE: Execute command 'sdt2xnf calc.inf calc.xnf -D xnf'.
XMAKE: Set the part type to 3020APC68-7 from xnf\calc.xnf'.
XMAKE: Running with the following options: (none)
>>> XDELAY is run always with '-D' and '-W' options by XMAKE.
XMAKE: Makefile saved in 'calc.mak'.
XMAKE: Making 'calc.bit'...
XMAKE: Execute command 'xnfmerge -A -D xnf -D . -P3020APC68-7
xnf\calc.xnf calc.xff'.
XMAKE: Execute command 'xnfprep calc.xff calc.xtf
parttype=3020APC68-7'.
XMAKE: Execute command 'xnfmap -P 3020APC68-7 calc.xtf
calc.map'.
XMAKE: Execute command 'ppr calc.map parttype=3020APC68-7'.
XMAKE: Execute command 'xdelay -D -W calc.lca'
XMAKE: Execute command 'makebits -R2 -S0 -XB -YA calc.lca'
XMAKE: 'calc.bit' has been made. Check output in 'calc.out'.
14-22 Xilinx Development System

Xilinx ABEL Tutorial
The following is an explanation of the XMake output seen within
XDM.

XMAKE: Generating makefile 'calc.mak' ...

XMake always generates a MAK file that can be used to finish an
XMake run that has been halted in the middle. For example, if you
chose the Stop To Review DRC option in XMake, you might deter-
mine that the DRC output was acceptable, and continue compiling
the design by selecting the MAK file as the input to XMake instead of
the design file. The MAK file contains a listing of the commands that
were executed by XMake, so it is also useful for those who like to
create their own custom command scripts.

XMAKE: Profile used is the current XDM settings
XMAKE: Execute command 'annotate calc.sch'.
XMAKE: Execute command 'inet calc.sch'.
XMAKE: Execute command 'sdt2xnf calc.inf calc.xnf -D xnf'.

XMake runs a series of commands that convert the OrCAD SCH files
to Xilinx XNF files.

XMAKE: Set the part type to 3020APC68-7 from xnf\calc.xnf
XMAKE: Running with the following options: (none)
>>> XDELAY is run always with '-D' and '-W' options by XMAKE.
XMAKE: Makefile saved in 'calc.mak'.
XMAKE: Making 'calc.bit'...

If you have not already done so, XMake runs ABL2XNF for you at
this point in the flow to generate an XNF netlist from your Xilinx
ABEL input file.

XMAKE: Execute command 'xnfmerge -A -D xnf -D . -P3020APC68-7
xnf\calc.xnf calc.xff'.

Next XMake runs XNFMerge to flatten the hierarchy of the design
and produce a single XFF file that contains a netlist for the entire
design. This step merges the XNF file produced by ABL2XNF with
the rest of the design.

XMAKE: Execute command 'xnfprep calc.xff calc.xtf
parttype=3020APC68-7'.

XNFPrep is run to check the validity of the netlist that XNFMerge
produces. Many schematic errors are caught at this phase.

XMAKE: Execute command 'xnfmap -P 3020APC68-7 calc.xtf
calc.map'.
XMAKE: Execute command 'ppr calc.map parttype=3020APC68-7'.
OrCAD Interface/Tutorial Guide 14-23

OrCAD Interface/Tutorial Guide
XMake partitions XC3000A designs with XNFMAP before running
PPR to place and route the design. Depending on the part for which
the design is targeted, programs executed may include XNFMAP for
XC3000/XC3000A mapping, APR for XC3000 placing and routing,
and/or PPR for XC3000A/XC4000 mapping, placing, and routing.

XMAKE: Execute command 'xdelay -D -W calc.lca'

XMake runs XDelay to write the proper delay values in the LCA file
produced by PPR.

XMAKE: Execute command 'makebits -R2 -S0 -XB -YA calc.lca'

From the LCA file, MakeBits produces a bitstream that can be used to
program a device. The bitstream is placed in a file with a .bit exten-
sion.

XMAKE: 'calc.bit' has been made. Check output in 'calc.out'.

A copy of the entire output of the XMake run is always placed in a file
with the same name as the top-level design and an .out extension.

Verifying CALC on the Demonstration Board
XMake created a BIT file that you can download to the appropriate
demonstration board to verify the validity of the design. If you are
unfamiliar with this process, please refer to the “Verifying the Design
Using a Demonstration Board” section of the “SDT Tutorial” chapter
for more information.

Timing Simulation
You have already performed many of the steps necessary for timing
simulation. The calc.lca file created in the previous design
implementation section contains the timing information for the
design. All that is necessary is to back-annotate the timing and netlist
information from the LCA file to VST. This task is accomplished with
the aid of XSimMake.

Creating the Simulation Netlist
Run XSimMake to generate a netlist that can be used for timing simu-
lation.

1. From the XDM menus, select Verify ➝ XSIMMAKE.
14-24 Xilinx Development System

Xilinx ABEL Tutorial
2. Select the -F option.

A menu of possible flows appears.

3. Choose the Orcad_Fpga_Timing option and select Done.

4. Choose CALC.LCA from the list of design files shown.

5. After you review the XSimMake output, press any key to return to
XDM.

As XSimMake runs, text similar to the following appears in the XDM
window.

Note: XSimMake flows vary depending on the design. The flow used
by XSimMake for your design may be slightly different from the flow
shown in this tutorial.

XSIMMAKE COMMAND : xdelay -w -d calc.lca
XSIMMAKE COMMAND : lca2xnf -g calc.lca calc.xnf
XSIMMAKE COMMAND : xnfba calc.xff calc.xnf
XSIMMAKE COMMAND : xnf2inf xnfba.xnf calc
XSIMMAKE COMMAND : deleted file xnfba.xnf
0 Errors and 0 Warnings occurred during processing.

Examining XSimMake Output
An explanation of the XSimMake output for the timing flow follows.
None of the following information is necessary in order to use XSim-
Make. It is provided to give you insight into the back-annotation
process.

XSIMMAKE COMMAND : xdelay -w -d calc.lca

XDelay is a tool that can be used to perform static timing analysis on
a design. In this case, it writes the delay information into the LCA file
produced by XMake. Once the delay information is in the LCA file, it
can be back-annotated and used in simulation.

XSIMMAKE COMMAND : lca2xnf -g calc.lca calc.xnf

XSimMake then runs LCA2XNF to convert the LCA description of
the design, including the timing information, back into an XNF file.

XSIMMAKE COMMAND : xnfba calc.xff calc.xnf

XNFBA reads the original (pre-routed) calc.xff netlist and the post-
routed calc.xnf netlist generated in the previous step by LCA2XNF
and writes out a new netlist. It writes this netlist so that as many
OrCAD Interface/Tutorial Guide 14-25

OrCAD Interface/Tutorial Guide
instance and net names match the original schematic as possible. In
the process of placing and routing the design, some of this
information is lost and must be replaced by XNFBA.

XSIMMAKE COMMAND : xnf2inf xnfba.xnf calc
XSIMMAKE COMMAND : deleted file xnfba.xnf

The above steps generate simulation input files from the back-
annotated netlist, then delete the intermediate XNF file created by
XNFBA.

Configuring OrCAD VST for Timing Simulation
Verify that the simulator is correctly configured to simulate the input
file, calc.vst. Then configure the simulator to use timing delays from
the DBA file.

1. Select Design Entry ➝ ORCADto enter the OrCAD design
environment.

2. Select Digital Simulation Tools ➝ Execute ➝
Simulate ➝ Local Configuration ➝ Configure
SIMULATE.

The Configure Simulate screen appears.

Note: OrCAD’s configuration programs are memory intensive. If you
receive the message Could not find the .EXE, or not
enough memory to load \orcadexe\VST_CLC.EXE , return
to the XDM executive screen. Close XDM by typing exit ↵, type
orcad ↵, and modify the configuration as described in this section.
After completing the commands in this section, type xdm ↵ to return
to XDM, and continue with the “Performing a Timing Simulation”
section, following.

3. Under File Options, verify that the file names read as follows:

Connectivity database CALC.VST
Stimulus file CALCSIM.STM
Trace file CALCSIM.TRC

4. If the names are incorrect, make the necessary changes.

5. Set the simulator to use timing delays from the DBA file by
selecting Use Delay Annotation.

6. Return to the ESP screen by selecting OK.
14-26 Xilinx Development System

Xilinx ABEL Tutorial
Performing a Timing Simulation
You are ready to perform the timing simulation.

1. Enter the simulator by selecting Simulate ➝ Execute .

2. Select Set ➝ Spool to Disk .

The Spool Trace Data to Disk? prompt appears.

3. Select Yes ➝ Yes to spool the data to the spool.tdf file.

The default time scale is 10 ns per screen. Adjust that to
1,000 ns per screen, which means increasing the scale by a factor
of 100.

4. Select Trace ➝ Change View .

The Trace Delta Time? prompt appears at the top of the
screen.

5. Type 100 ↵.

6. Select Run Simulation .

The Simulation Length? prompt appears.

7. Type 12000 ↵ to simulate for 1,200 ns.

The output of this simulation run is similar to the output of the
timing simulation run on the original (non-Xilinx ABEL) Calc design.
The timing differs slightly, because different place and route runs
produce different net delays.

Further Reading
This tutorial shows you the basic functions involved in including
Xilinx ABEL-based components in an OrCAD SDT design. Before
attempting to build your own Xilinx ABEL design, please review
both the Xilinx ABEL User Guide and the Xilinx ABEL Software Design
Reference Manual.
OrCAD Interface/Tutorial Guide 14-27

OrCAD Interface/Tutorial Guide
14-28 Xilinx Development System

XACT-Performance and
XDelay Tutorial

OrCAD
Interface/
Tutorial
Guide
OrCAD Interface/Tutorial Guide — 0401409 01 Printed in U.S.A.

OrCAD Interface/Tutorial Guide
Xilinx Development System

Chapter 15

XACT-Performance and XDelay Tutorial

The specification of exact timing requirements on schematics has
become a necessity as FPGAs have become larger and designs conse-
quently more complex. The term XACT-Performance refers to the
method used by the Xilinx software to describe these timing require-
ments. XACT-Performance consists of a set of library primitives that
allow timing requirements to be placed on a schematic, along with
built-in functionality within the PPR program that allows PPR to use
this timing information during mapping, placement, and routing of
the design.

XDelay is the companion tool that allows you to obtain exact timing
information about the routed design created by PPR. Whenever
using XACT-Performance, you should verify the path timing using
the XDelay program. In order to reduce run time, XACT-Performance
does not use the highest possible level of accuracy in computing
delays. XDelay reports completely accurate worst-case delays for all
Xilinx FPGAs. Differences between the two reports are minor, but
when they occur, use the XDelay output as the definitive source for
timing information.

Note: Since APR does not interpret XACT-Performance specifica-
tions, only XC3000A/L, XC3100A, and all XC4000 family designs can
take advantage of the features described in this tutorial. XACT-Per-
formance does not function on XC3000, XC3100, or XC2000 family
designs.

The intent of this tutorial is to give a practical example of using
XACT-Performance and XDelay within the OrCAD design environ-
ment. It is not intended to fully explain all of the functionality found
within XACT-Performance or XDelay. Please refer to the “Further
Reading” section at the end of this tutorial for a list of sources from
which to obtain more information.
OrCAD Interface/Tutorial Guide — 0401409 01 15-1

OrCAD Interface/Tutorial Guide
Before Beginning the Tutorial
This section of the tutorial assumes that you are already familiar with
the material in the “SDT Tutorial” and “VST Tutorial” chapters of this
manual. If not, please review those chapters before continuing.

Required Software
You should have access to the following software:

● OrCAD/SDT — SDT 386+

● OrCAD/Xilinx Interface — version 5.00 or later

● XACT Design Manager (XDM) — Version 5.00 or later

If you have Xilinx software on CD-ROM, you should have at least
temporary access to all of the above software (with the exception of
SDT) using the temporary licensing available on the programmable
key, provided that the temporary licensing has not already been
exhausted.

Preparing the Design
If you chose to read through the SDT tutorial rather than actually
perform the steps involved, you must verify that your PC is set up
correctly to use OrCAD 386+ and the XACT Development System
software. Then create and configure the design directory, and copy a
completed set of schematics from any of the solutions directories
supplied.

If you have already performed the SDT tutorial on your PC, skip to
the next section, “Understanding XACT-Performance.”

1. Follow the instructions given in the “Before Beginning the
Tutorial” section of the “SDT Tutorial” chapter for setting up your
design environment.

2. The tutorial files are optionally installed when you install the
Xilinx/OrCAD interface software. If you have already installed
the software but are not sure whether you specified tutorial
installation, check for the c:\xact\tutorial\orcad\calc directory.
This directory contains the tutorial files.
15-2 Xilinx Development System

XACT-Performance and XDelay Tutorial
3. Create a new project called “Calc,” as described in the “Creating
the Project Directory” section of the “SDT Tutorial” chapter.

4. Full solutions for the SDT tutorial are supplied in the solutions
directories located in \xact\tutorial\orcad\calc. One of the
following file directories must be copied to the directory where
you will be performing the tutorial.

...\soln_3ka — Solution files for XC3020APC68

...\soln_4ka — Solution files for XC4003APC84

...\soln_4k — Solution files for XC4003PC84

For example, if you are targeting the tutorial for an XC3020APC68
device, perform the following sequence of commands.

cd \orcad\calc ↵
copy \xact\tutorial\orcad\calc\ solution *.* ↵

where solution is either soln_3ka, soln_4ka, or soln_4k. The
solutions schematics are targeted towards the 3020APC68-7,
4003APC84-6, and 4003PC84-6 devices, respectively.

Note: This tutorial assumes that your ORCADPROJ variable is set to
c:\orcad\. You need not follow this convention.

This procedure gives you a full set of completed schematics for
the Calc design, with all supporting files.

5. Configure the design directory by typing xdraft 3 ↵ or
xdraft 4 ↵, depending on whether you are targeting an
XC3000A or an XC4000 family device.

Note: All of the screen outputs refer to the processing of the 3000A
solutions design. If you wish to reproduce the software output as
referenced in this tutorial, copy the XC3020APC68 solutions design.
Other devices have slightly different outputs.

Understanding XACT-Performance
When discussing the timing requirements of a design, it is simple to
describe a requirement in such terms as “this path must get from the
source to this load in a certain amount of time.” XACT-Performance
uses a similar from:to type of syntax. Symbols are grouped into sets,
and these sets are then used as endpoints for timing specification.
Timing requirements are defined as the maximum acceptable delays
OrCAD Interface/Tutorial Guide 15-3

OrCAD Interface/Tutorial Guide
from the sources in one defined set, through intermediate combinato-
rial logic, to the associated loads in another set.

The three steps for adding timing specifications to a schematic are as
follows:

1. Add TNM attributes to symbols on your schematic to group them
into sets. This step is not necessary if you are using only pre-
defined sets.

2. Add a TIMEGRP text string and define new timegroups based on
the sets defined in step 1. These timegroups combine existing sets
into additional, more complex, sets. This step is optional.

3. Add a TIMESPEC text string and specify the timing requirements
for the sets defined in steps 1 and 2.

Grouping Symbols with TNM Attributes
The most basic and flexible way of defining these sets is through the
addition of TNM (Timing NaMe) attributes to symbols on a sche-
matic. By giving two or more symbols TNM attributes with identical
values, these symbols become part of the same set, which you can
reference in a from:to statement.

TNM attributes can be applied to library symbols with the Edit Edit
Options Name command. You cannot add TNM attributes to sheet
symbols: you must either create corresponding library symbols or use
one of the other TIMEGRP techniques.

TNMs on Logic Primitives

TNMs are applicable to four types of primitives: flip-flops, RAMs,
I/O pads, and IOB latches. A set may not contain more than one of
these types of symbols, with the exception of flip-flops and IOB
latches, which may be included in the same set. TNMs on other prim-
itives, such as OR gates, are invalid.

The syntax of the TNM attribute is as follows:

TNM=identifier

where identifier is replaced with the name of the set. The name can be
any ASCII string using only the characters A-Z, a-z, _, and 0-9.
15-4 Xilinx Development System

XACT-Performance and XDelay Tutorial
TNMs on Higher-Level Macro Symbols

You can also place TNM attributes on library macro symbols
containing one or more of the logic primitives just discussed. The
TNM attribute is passed down through the hierarchy and placed on
the logic primitives below.

If the macro contains primitives of more than one type, you must
specify the types of primitives inside the macro to which the TNM
attribute applies. For example, a macro may contain RAMs and flip-
flops. If you place a TNM on this macro, you must specify it as
applying to either the RAMs or the flip-flops. Since RAMs and flip-
flops cannot be in the same set, if neither set is specified XMake fails
while running XNFMerge, and issues a message explaining the error.

The syntax for applying TNM attributes to macros is as follows. You
can specify one or more of the primitive types.

TNM=FFS:identifier;RAMS: identifier;LATCHES: identifier;
PADS:identifier

In this case, each instance of identifier is replaced by a unique set
name, with the exception of FFS and LATCHES, which can be in the
same set if desired.

TNMs on Nets, to Tag Flip-Flops

The TNM attribute can also be placed on nets, by using the Get
command to place the TNM symbol, attaching it to your net using the
Place Wire and Place Junction commands, then using Edit Edit Value
Name on the TNM symbol to add the TNM=identifier attribute. The
software traces the signal to all load pins on the net and forward
through combinatorial logic, and applies the TNM to any flip-flops
reached. This spreading of TNM specifications to load pins is known
as forward tracing.

For this purpose, if RAMs are encountered while tracing forward to
load pins, they are seen as transparent. This means that if a flip-flop is
sourced by the output of a RAM, and a TNM property is attached to
the write enable of the RAM, the flip-flop becomes part of the set.
OrCAD Interface/Tutorial Guide 15-5

OrCAD Interface/Tutorial Guide
Grouping Symbols by Predefined Sets
In many cases, it makes sense to apply a timing requirement to all
associated symbols of a certain type. For example, a given flip-flop
output may have a clock-to-setup timing requirement that applies to
all other flip-flops driven by the flip-flop output.

In order to simplify the grouping procedure in such cases, Xilinx
provides four predefined sets. These sets are FFS (flip-flops), PADS
(I/O pads), RAMS (XC4000 family RAM elements), and LATCHES
(IOB latches). Instead of placing a TNM attribute on each symbol, you
can reference the entire set in a from:to statement by taking advan-
tage of the predefined sets.

In the flip-flop example just discussed, you can use the from:to syntax
to specify that the timing requirement be applied from the source flip-
flop to the predefined set FFS.

Simplifying Symbol Grouping
The simplest way to group symbols is to use the basic syntax, TNM=
identifier, on primitives. The other methods are shortcuts that enable
you to quickly define sets that are related in some way, such as
instances within the same library macro, flip-flops driven by a
common net, and so forth.

Combining Sets: TIMEGRP
Once sets are defined using TNM attributes, it can be useful to define
new sets in terms of the existing sets. You may wish to join two or
more sets into one, define a set of all symbols not already included in
another set, or designate a set of flip-flops triggered by a given clock
edge. You can also use TIMEGRP to designate a set by the output net
names of the primitive symbols.

To create these new sets, add the TIMEGRP text string to your sche-
matic, then add a text string for each new attribute. The name of the
attribute is the new set name. The value of the attribute is the set defi-
nition.
15-6 Xilinx Development System

XACT-Performance and XDelay Tutorial
The format of the text strings must be as follows:

|TIMEGRP
| group1 =set_definition1
| group2 =set_definition2

The pipe characters must be vertically aligned, with the group defini-
tions on succeeding lines below the TIMEGRP text. Do not place any
of this text in the same horizontal row as PARTTYPE or TIMESPEC
text strings. Do not place the pipe characters in the same vertical
column as pipe characters from PARTTYPE or TIMEGRP text.

You can place TIMEGRP text strings at any level of your hierarchy.
There is no limit to the number of group specifications.

Joining Two or More Sets into One

You can define a new set as the combination of two or more existing
sets using the following syntax:

|new_set=set1: set2[...: setn]

Using the EXCEPT Statement

A set defined using TNM attributes may account for all but a few of
the flip-flops in a design. One way to apply timing specifications to
the rest of the flip-flops is to create a new set that consists of all flip-
flops not already in the first set. You can create the new set by
defining an attribute that contains an EXCEPT statement. Use the
following syntax:

|new_set=set1:EXCEPT: set2

where set1 is replaced by one of the predefined sets (FFS, PADS,
RAMS, or LATCHES) or by the name of a user-defined set. Set2 is
replaced by the name of a user-defined set.

For example, in the situation just discussed, assume that the set
defined using TNMs is called FFGRP1, and the new set name is
FFGRP2. You can create the set of all flip-flops not in the set FFGRP1
by adding the following text string below the TIMEGRP text:

|FFGRP2=FFS:EXCEPT:FFGRP1
OrCAD Interface/Tutorial Guide 15-7

OrCAD Interface/Tutorial Guide
Triggering on RISING or FALLING Clock Edges

You can also use TIMEGRP symbol attributes to make subsets of flip-
flops that are triggered by a certain clock edge. Use the following
syntax:

|new_set=RISING: set

|new_set=FALLING: set

The new set consists of all symbols within set that are clocked by the
specified clock edge.

Forming Sets by Output Net Name

You can define a new set as the set of all primitives with output net
names starting with a certain string. (BLKNMs or HBLKNMs are
used for PADS, if you added these attributes; otherwise the external
net name is used.) The full hierarchical net name is used. This tech-
nique is particularly useful when you wish to form a set, for example,
of all flip-flops placed within a given sheet symbol. Provided the output
net is not renamed at a higher level of the hierarchy, the hierarchical
output net name starts with the sheet name of the symbol.

Specify the set of all primitives with output net names beginning with
name using the following syntax:

| new_set =class (name*)

where class is one of FFS, RAMS, LATCHES, or PADS. This designa-
tion defines a new set called new_set, which consists of all blocks in
the designated class with output net names starting with the string
name.

Note: This TIMEGRP capability must be used with caution. If your
design contains unrelated nets with names beginning with the same
string, they may be included in your time group or cause errors in
XNFMerge or XNFPrep. If you attempt to apply the attribute to all
blocks in a given sheet symbol, but the outputs of some flip-flops are
renamed at a higher level of hierarchy, they are not included in the
set.
15-8 Xilinx Development System

XACT-Performance and XDelay Tutorial
Attaching Timing Specifications: TIMESPEC
Once you have defined appropriate sets by attaching TNM attributes
to symbols, and, optionally, by combining these sets using TIMEGRP
text strings, the next step is to add the timing specifications to the
schematic.

First place a TIMESPEC text string on the schematic, then add the
from:to timing requirements in the form of attributes in the following
lines. The name of the attribute is TS followed by a unique identifier.
The value of the attribute defines the paths to which the specification
applies, and the timing requirement that applies to the paths.

The format of the text strings must be as follows:

|TIMESPEC
|TS name1=FROM:set1 :TO: set2 =time1
|TS name2=FROM:set3 :TO: set4 =time2

The set references are replaced with the appropriate set names, as
defined by using TNMs and TIMEGRP attributes or by using the pre-
defined sets. Time specifies the timing requirement in microseconds
(US), nanoseconds (NS), kilohertz (KHZ), or megahertz (MHZ). If no
units are specified, time is assumed to be in nanoseconds.

The pipe characters must be vertically aligned, with the attribute
definitions on succeeding lines below the TIMESPEC text. Do not
place any of this text in the same horizontal row as PARTTYPE or
TIMEGRP text strings. Do not place the pipe characters in the same
vertical column as pipe characters from PARTTYPE or TIMEGRP
text.

For example, to specify that the pad-to-setup path delay between all
pads and all flip-flops should be no greater than 40ns, place the
following text anywhere in your schematic:

|TIMESPEC
|TS01=FROM:PADS:TO:FFS=40NS

Note: FROM:PADS:TO:FFS is not exactly equivalent to pad-to-setup,
since the PADS group includes not just data pads but also clock pads.
Therefore, FROM:PADS:TO:FFS includes both pad-to-setup and pad-
to-clock specifications. This inclusion is normally an advantage; how-
ever, if desired, you can use the EXCEPT syntax to eliminate the pad
to clock paths. For example, to create a source group equivalent to the
OrCAD Interface/Tutorial Guide 15-9

OrCAD Interface/Tutorial Guide
set referenced by pad-to-setup, use the TIMEGRP symbol to define a
group such as PADS:EXCEPT:pads_sourcing_clocks.

You can place TIMESPEC text strings at any level of your hierarchy.
There is no limit to the number of attribute specifications.

Deciding When to Use XACT-Performance
The ideal approach to using XACT-Performance is to route your
design once without any timing constraints. PPR by default controls
path timing, using reasonable default values it calculates based on
your design. If the resulting LCA file meets your timing require-
ments, your design is complete.

If not, the PPR log file (ppr.log) gives values that can be achieved for
FFS:TO:FFS, PADS:TO:FFS, and FFS:TO:PADS timing. Use these
values to help determine reasonable default timing requirements as
described in the following section, “Setting Default Timing Require-
ments.”

After this run, check the new log file. If PPR is unable to meet the
default timing for all paths, it reports the paths for which the default
is not met. If critical paths in your design are not fast enough to meet
your specifications, it is time to consider adding more specific
constraints, as described in the “Adding Timing Constraints to
Specific Paths” section.

Clearly, tightening the default specifications for the entire design is
unlikely to help PPR speed up the critical paths. Instead, consider a
tighter specification on the most critical paths, combined with a
looser specification for unimportant paths. You can even assign a
value of IGNORE to some classes of paths, which is a very effective
technique because it clearly tells PPR that it can sacrifice timing on
the unimportant paths in order to improve timing on the important
ones. To use the IGNORE value, you must use the following syntax:

|TS name=class :IGNORE

where class is one of the following special sets: DC2S, DC2P, DP2S, or
DP2P.

You may want to skip the first step and start by setting reasonable
default timing requirements.

If XACT-Performance and PPR are unable to achieve the speed
15-10 Xilinx Development System

XACT-Performance and XDelay Tutorial
needed for your application, you may have simply reached the limits
of the hardware and/or software. You can increase the speed of the
hardware by using a part with a faster speed grade. The tutorial
designs, being designed to work with the Xilinx Demonstration
Boards, use the slowest available speed grades.

Consider speeding up your design by making changes to the logic to
use the Xilinx FPGA architectures to better advantage. For example,
try reducing the number of logic levels between flip-flops in critical
paths. Xilinx FPGA architectures are rich in flip-flops, so pipelining is
a good approach. Alternatively, you can often increase the speed of
your design by using floorplanning: planning the placement of your
logic to simplify the data flow and locking down symbol locations
using CLBMAPs, FMAPs, HMAPs, and LOC attributes. See the
XACT Libraries Guide, the XACT Reference Guide, and the other chap-
ters of this manual for more information on how to floorplan your
design.

Setting Default Timing Requirements
In this tutorial, you add XACT-Performance attributes to the Calc
schematics but do not otherwise change the design. Many of the
TIMESPEC constraints used in the following tutorial are not actually
necessary for this or similar applications. They are used here to illus-
trate different usages of XACT-Performance that you may find useful
in other designs.

Note: For more information on the Calc design, refer to the discus-
sion in the “Design Description” section of the “SDT Tutorial”
 chapter.

Adding a TNM Attribute
First, use a TNM attribute to define a group of flip-flops. The group is
used in the next section to specify the clock to pad default timing
requirement.

1. Open OrCAD SDT 386+ and load the CALC top-level schematic.

2. Select Get from the menu.

The Get? prompt appears at the top of the screen.

3. Type tnm ↵.
OrCAD Interface/Tutorial Guide 15-11

OrCAD Interface/Tutorial Guide
4. Move the cursor so the TNM symbol is above the net labeled CLK.

5. Select Place to place the symbol on the schematic, and press
Escape to terminate the command.

6. Use the Place Wire and Place Junction commands to attach the
TNM symbol to the CLK net, as shown in Figure 15-1.

7. Place the cursor over the TNM symbol and select Edit ➝ Edit
➝ Part Value ➝ Name.

The Value? TNM prompt appears.

8. Type =FFGRP↵ and press Escape twice to terminate the com-
mand.

The part value TNM=FFGRP is displayed above the TNM symbol.

You have defined a set with the name FFGRP that consists of all flip-
flops driven by the clock net CLK.

Note: Because there is only one clock in the Calc design, the FFGRP
set in this case is the same as the predefined set FFS, which includes
every flip-flop in the design. However, the set is defined in order to
demonstrate the effects of attaching TNMs to clock signals, a very
common technique in XACT-Performance.

Entering Default Timing Specifications
Next, set the default timing specifications for the clock. For the tuto-
rial design, assume that the clock speed is 500kHz. This clock speed is
quite slow, so the place and route software has no problem meeting
the timing requirements.

1. Use the Place Text command to place the following text on the
schematic, as shown in Figure 15-1.

|TIMESPEC
|TS01=FROM:FFS:TO:FFS=500KHZ
|TS02=FROM:PADS:TO:FFS=1MHZ
|TS03=FROM:FFGRP:TO:PADS=1000NS

Warning: If you have INET v1.10 or 1.10 H, you must perform an
additional step each time you add text to the schematic. This version
of INET discards the first line of each group of pipe text, after the first
group of text encountered on the schematic. For each placement of
text on the schematic, including the part type already present, you must
15-12 Xilinx Development System

XACT-Performance and XDelay Tutorial
place an additional text line consisting of a single pipe character
above the first line of the text, with the pipe characters vertically
aligned. INET discards this pipe character and correctly reads the text
in the next line. INET v1.08 did not display this behavior and it
should be fixed in any release subsequent to v1.10.

2. Select Quit ➝ Update File ➝ Escape to save your changes
to the CALC schematic.

The new attribute TS01 specifies that all clock-to-setup paths must
have timing such that they can be driven by a 500kHz clock.

Pad-to-setup and clock-to-pad path delays are typically half of the
clock-to-setup requirement. For the Calc design, they must be driven
by a 1-MHZ clock. TS02 specifies that all pad-to-setup path delays
have timing such that they can be driven by a 1-MHz clock.

Making use of the FFGRP set, which in this case is equivalent to the
FFS set, TS03 specifies that the clock-to-pad timing for the design be a
maximum of 1000 ns. The two timing specifications of 1000NS and
1MHz are interchangeable. An equivalent specification for TS03 is
|TS03=FROM:FFS:TO:PADS=1MHZ.

Figure 15-1 shows a portion of the CALC schematic with the TNM
attribute and TIMESPEC text strings.
OrCAD Interface/Tutorial Guide 15-13

OrCAD Interface/Tutorial Guide
Figure 15-1 Default Timing Constraints on CALC Schematic
15-14 Xilinx Development System

XACT-Performance and XDelay Tutorial
Adding Timing Constraints to Specific Paths
In the previous section, you applied default timing specifications to
the Calc tutorial design. In real applications, the above specifications
usually supply enough guidance to allow PPR to meet the timing
requirements. However, in this section the tutorial continues with
more specific path timing constraints to illustrate the application of
XACT-Performance to more specific groups of paths in a design.

Defining TNM Groups
First, define sets to be used as endpoints for timing specification. You
can use these sets to apply timing requirements from one set to
another or from one set to the same set.

Defining the ALUFF Set

The ALUFF set includes all flip-flops from the ALU sheet symbol.
Define the set by adding the TNM attribute to the CE pin of the ALU.
This pin drives all flip-flops in the ALU and no other flip-flops.

1. Select Get from the menu.

The Get? prompt appears at the top of the screen.

2. Type tnm ↵.

3. Move the cursor so the TNM symbol is in the open area above the
CE_ALU signal, as shown in Figure 15-2.

4. Select Place to place the symbol on the schematic, and press
Escape to terminate the command.

5. Use the Place Wire and Place Junction commands to attach the
TNM symbol to the CE_ALU net.

6. Place the cursor over the TNM symbol and select Edit ➝ Edit
➝ Part Value ➝ Name.

The Value? TNM prompt appears.

7. Type =ALUFF↵ and press Escape twice to terminate the com-
mand.

The part value TNM=ALUFF is displayed above the TNM
symbol.
OrCAD Interface/Tutorial Guide 15-15

OrCAD Interface/Tutorial Guide
You have defined a set named ALUFF that consists of all flip-flops
driven by the clock enable signal CE_ALU.

Figure 15-2 Defining the ALUFF Set

Defining the CTL_ADR_FF Set

The CTL_ADR_FF set includes all flip-flops from the CB2CLED
counter macro in the CONTROL sheet. To define the set, push into
the CONTROL sheet. The counter is a library macro, to which you
can attach a TNM attribute.

1. Place the cursor over the CONTROL symbol in the top level
CALC schematic.
15-16 Xilinx Development System

XACT-Performance and XDelay Tutorial
2. Select Quit ➝ Update File ➝ Enter Sheet ➝ Enter ➝
Escape to save your changes and push into the CONTROL sche-
matic.

3. Place the cursor over the CB2CLED symbol.

4. For an XC3000A device, select Edit ➝ Edit ➝ LOC,OPTIONS
➝ Name. For an XC4000 family device, select Edit ➝ Edit ➝
OPTIONS_1 ➝ Name.

5. Type TNM=FFS:CTL_ADR_FF↵ and press Escape twice to termi-
nate the command.

The attribute TNM=FFS:CTL_ADR_FF is displayed below the
CB2CLED symbol, as shown in Figure 15-3.

Note: Whenever a library macro contains more than one class of
primitives, you must specify the class to which the attribute applies.
In this case, since the counter contains no RAMS, PADS, or
LATCHES, the class specification is optional.

You have defined a set named CTL_ADR_FF that contains all flip-
flops in the CB2CLED macro.

Figure 15-3 TNM Attribute in CONTROL Schematic
OrCAD Interface/Tutorial Guide 15-17

OrCAD Interface/Tutorial Guide
Defining the STFF Set

The STFF set includes all flip-flops in the state machine. Define the set
by adding the TNM attribute to each FD in the schematic. The
completed schematic for STATMACH, the XC3020A version of the
state machine, is shown in Figure 15-4.

Note: If you already performed the Xilinx ABEL tutorial on this
design, the state machine consists of a single library symbol called
STAT_ABL. Use the technique described in the previous section,
“Defining the CTL_ADR_FF Set,” to add the TNM=STFF attribute to
the symbol, rather than following the steps in this section.

1. Place the cursor over the STATMACH (XC3000A) or STATE_4K
(XC4000 family) symbol in the top-level CALC schematic.

2. Select Quit ➝ Update File ➝ Enter Sheet ➝ Enter ➝
Escape to save your changes and push into the state machine
schematic.

3. Placing the cursor over each FD symbol in turn, select Edit ➝
Edit ➝ Options (LOC,OPTIONS or OPTIONS_1) ➝ Name,
and type TNM=STFF↵.

The attribute and value appear below each FD as shown in Figure
15-4.

4. Select Quit ➝ Update File ➝ Leave Sheet ➝ Leave
Sheet ➝ Escape to save your changes and return to the CALC
schematic.

This attribute definition places each of the FDs in the state machine
into a new timing set called STFF.
15-18 Xilinx Development System

XACT-Performance and XDelay Tutorial
Figure 15-4 TNM Attributes in State Machine (XC3020A Shown)

Defining the INFFS Set

The INFFS set includes all input flip-flops from the SW7 macro.
Define the set by adding the TNM attribute to each IFD in the sheet.
The completed schematic is shown in Figure 15-5.

1. Place the cursor over the SW7 symbol in the top-level CALC sche-
matic.

2. Select Quit ➝ Enter Sheet ➝ Enter ➝ Escape to push
into the SW7 schematic.
OrCAD Interface/Tutorial Guide 15-19

OrCAD Interface/Tutorial Guide
3. Placing the cursor over each IFD symbol in turn, select Edit ➝
Edit ➝ Options (LOC,OPTIONS or OPTIONS_1) ➝ Name,
and type TNM=INFFS↵.

The attribute and value appear below each INFF as shown in
Figure 15-5.

4. Select Quit ➝ Update File ➝ Leave Sheet ➝ Escape
to save your changes and return to the CALC schematic.

This attribute definition places each of the IFDs (IOB flip-flops) in the
SW7 macro into a new timing set called INFFS.

Figure 15-5 Defining the Set INFFS (XC3020A Shown)
15-20 Xilinx Development System

XACT-Performance and XDelay Tutorial
Defining Sets with TIMEGRP
Applying TNM attributes to form sets is very useful for tagging
library symbols. Alternatively, you could have defined the INFFS set
with a single TIMEGRP statement, using the same technique you use
to define the next two sets.

Defining the LEDPADS Set

The next set, LEDPADS, represents all symbols of the PADS type that
begin with the character string “LED.” In this case, the pad symbols
themselves do not have assigned BLKNM attributes, so XACT-
Performance uses the full hierarchical names from the attached nets.
The pads in the LED block are therefore named LED/LED0_P, LED/
LED1_P, and so forth.

1. Select Place ➝ Text.

The Text? prompt appears.

2. Place the following text in the upper left corner of the CALC sche-
matic, as shown in Figure 15-6.

|TIMEGRP
|LEDPADS=PADS(LED*)

This attribute defines the new set named LEDPADS to contain all I/O
pads with external net names starting with the string “LED,” which
in this case is all pads within the macro with sheet name LED.

Defining the STACKER Set (XC4000 Family Only)

The Calc design for the XC4000 family contains a stack implemented
using on-chip RAM elements. In this section, these RAM elements are
grouped into a set called STACKER. If your design is an XC3000A
design, skip this section and continue with the next section,
“Defining the STACKER Set (XC3000A Only).”

1. Select Place ➝ Text.

The Text? prompt appears.
OrCAD Interface/Tutorial Guide 15-21

OrCAD Interface/Tutorial Guide
2. Place the following text directly below the previous TIMEGRP
text, similar to Figure 15-6. (Figure 15-6 shows the TIMEGRP text
for the 3020APC68.) Make sure that the pipe characters are lined
up vertically.

|STACKER=RAMS(STACK*)

This attribute defines the new set named STACKER to contain all
RAM elements with output net names starting with the string
“STACK,” which in this case is all RAM elements in the STACK _4K
macro.

Defining the STACKER Set (XC3000A Only)

The Calc design for the XC3000A implements the stack using flip-
flops. In this section these flip-flops are grouped into a set called
STACKER. If your design is an XC4000 family design, skip this
section and continue with the next section, “Combining Existing Sets
with TIMEGRP.”

1. Select Place ➝ Text.

The Text? prompt appears.

2. Place the following text directly below the previous TIMEGRP
text, as shown in Figure 15-6. Make sure that the pipe characters
are lined up vertically.

|STACKER=FFS(STACK*)

This attribute defines a new set named STACKER that contains all
flip-flops with output net names starting with the string “STACK,”
which in this case is all flip-flops in the STACK macro.
15-22 Xilinx Development System

XACT-Performance and XDelay Tutorial
Figure 15-6 TIMEGRP Attributes on CALC Schematic

Combining Existing Sets with TIMEGRP
In addition to the TNM sets, you can use the TIMEGRP text string to
define new sets in terms of existing sets or predefined symbol types
(FFS, RAMS, PADS, LATCHES).

Use the TIMEGRP text string to create the CTL_ALU_FF set.

1. Use the Place Text command to place the following text directly
below the previous TIMEGRP text, as shown in Figure 15-6. Make
sure that the pipe characters are lined up vertically.

|CTL_ALU_FF=CTL_ADR_FF:STFF:ALUFF
OrCAD Interface/Tutorial Guide 15-23

OrCAD Interface/Tutorial Guide
2. Select Quit ➝ Update File ➝ Escape to save your changes
to the CALC schematic.

This attribute defines a new set named CTL_ALU_FF that combines
three TNM sets, CTL_ADR_FF, STFF, and ALUFF. This set includes
all flip-flops in any of these sets.

Specifying TIMESPEC Constraints
After completing all set definitions, specify the timing constraints.
Use the defined sets from TNM and TIMEGRP and the predefined
sets FFS, RAMS, PADS, and LATCHES as endpoints of the timing
paths.

Since there is limited space below the TIMESPEC text string already
on the top-level schematic, add an additional TIMESPEC text string
in the lower left-hand corner of the CALC schematic, as shown in
Figure 15-9.

1. Use the Place Text command to place the following text on the
schematic.

|TIMESPEC
|TS04=FROM:INFFS:TO:FFS=80NS
|TS05=FROM:CTL_ADR_FF:TO:ALUFF=50
|TS06=FROM:CTL_ALU_FF:TO:STACKER=30
|TS07=FROM:STACKER:TO:LEDPADS=50
|TS08=FROM:ALUFF:TO:PADS=45

2. Select Quit ➝ Update File ➝ Escape to save your changes
to the CALC schematic.

The constraints that you have specified are the following.

● The TS04 timing attribute specifies that the clock-to-setup timing
from the set of flip-flops named INFFS to all flip flops (FFS) of the
design be no more than 80 ns.

● TS05 specifies the clock-to-setup timing from the TNM set
CTL_ADR_FF to the set of flip-flops named ALUFF to be 50 ns.

● TS06 specifies the clock-to-setup timing from the TIMEGRP
CTL_ALU_FF to the set STACKER to be 30 ns.
15-24 Xilinx Development System

XACT-Performance and XDelay Tutorial
● TS07 specifies the maximum path delays from the time the
STACKER data becomes valid, plus any combinatorial delays, to
the TIMEGRP LEDPADS, to be 50 ns.

● TS08 specifies the clock-to-pad timing from the TNM set ALUFF
to all the pads in the design to be 45 ns.

Making a Final Check
Check to make sure that the TIMEGRP and TIMESPEC specifications
look like the ones in Figure 15-7 and Figure 15-8. The order of the
attributes is unimportant.

The completed CALC schematic for the 3020APC68 is shown in
Figure 15-9.

Warning: If you have INET v1.10 or 1.10 H, you must perform an
additional step each time you add text to the schematic. This version
of INET discards the first line of each group of pipe text, after the first
group of text encountered on the schematic. For each placement of
text on the schematic, including the part type already present, you must
place an additional text line consisting of a single pipe character
above the first line of the text, with the pipe characters vertically
aligned. INET discards this pipe character and correctly reads the text
in the next line. INET v1.08 did not display this behavior and it
should be fixed in any release subsequent to v1.10.

All desired XACT-Performance specifications have been entered on
the schematic. The next step is to implement the design using XMake
and verify the results in the calc.out and ppr.log files.
OrCAD Interface/Tutorial Guide 15-25

OrCAD Interface/Tutorial Guide
Figure 15-7 TIMEGRP Text Definitions

Figure 15-8 TIMESPEC Text Specifications

| TIMEGRP

|LEDPADS=PADS(LED*)

|STACKER=FFS(STACK*) or |STACKER=RAMS(STACK*)

|CTL_ALU_FF=CTL_ADR_FF:STFF:ALUFF

| TIMESPEC

|TS01=FROM:FFS:TO:FFS=500KHZ

|TS02=FROM:PADS:TO:FFS=1MHZ

|TS03=FROM:FFGRP:TO:PADS=1000NS

|TS04=FROM:INFFS:TO:FFS=80NS

|TS05=FROM:CTL_ADR_FF:TO:ALUFF=50

|TS06=FROM:CTL_ALU_FF:TO:STACKER=30

|TS07=FROM:STACKER:TO:LEDPADS=50

|TS08=FROM:ALUFF:TO:PADS=45
15-26 Xilinx Development System

XACT-Performance and XDelay Tutorial
Figure 15-9 CALC Schematic with TNM, TIMEGRP, and
TIMESPECs

Cleaning up the Design
From XDM you can call an OrCAD utility, Cleanup, that checks your
design for dangling nets, corrects any errors that it can fix, and
reports any errors that it cannot correct.

1. Quit OrCAD and enter XDM.

2. Select Translate .

The various translation programs supported by Xilinx appear on
the Translate menu.
OrCAD Interface/Tutorial Guide 15-27

OrCAD Interface/Tutorial Guide
3. Select CLEANUP.

XDM presents a list of all schematic files in your project directory.

4. Select CALC.SCH from the list.

A list of options to the Cleanup command is presented.

5. Select Done.

The Cleanup command displays a list of warnings and errors.

No warnings or errors should be displayed. If warnings or errors
are reported, return to the SDT schematic editor and correct the
problem. Rerun the Cleanup program to verify that the warnings
or errors do not reoccur.

6. Press any key to return to XDM.

Implementing the Calc Design
The translation of designs containing XACT-Performance attributes is
exactly the same as the translation of other designs. In fact, even if
you do not specify any XACT-Performance attributes, PPR by default
controls path timing. PPR assigns reasonable default values and
attempts to meet the self-imposed requirements.

If you apply XACT-Performance attributes to your schematics, PPR
detects these specifications and, wherever they apply, uses them
instead of calculating default values. In each phase of the implemen-
tation, which includes mapping, placement, and routing, PPR takes
the XACT-Performance attributes into account. If it is unable to meet
a given specification, it issues a warning to the PPR log file, relaxes
the requirement, and continues.

Note: You can tell PPR to terminate when it encounters an XACT-Per-
formance specification it cannot meet, by setting
stop_on_miss=true.

For more information on PPR, see the “PPR” section of the XACT
Reference Guide. For detailed information on XMake and the
translation process, refer to the “Configuring XDM and XMake” and
subsequent sections in the “SDT Tutorial” chapter and to the XACT
Reference Guide.
15-28 Xilinx Development System

XACT-Performance and XDelay Tutorial
Creating a Routed Design
Run XMake to generate a routed LCA file.

1. From the XDM menus, select Translate ➝ XMAKE.

2. Using the default options, choose CALC.SCH as input.

3. Choose Make Bitstream as the target.

XMake translates, maps, places, and routes the design.

Examining XMake Output
XMake produces a screen output similar to the following.

XMAKE: Generating makefile 'calc.mak' ...
XMAKE: Profile used is the current XDM settings.
XMAKE: Execute command 'annotate calc.sch'.
XMAKE: Execute command 'inet calc.sch'.
XMAKE: Execute command 'sdt2xnf calc.inf calc.xnf -D xnf'.
XMAKE: Set the part type to '3020APC68-7 from 'xnf\calc.xnf'.
XMAKE: Running with the following options: (none)
>>> XDELAY is run always with '-D' and '-W' options by XMAKE.
XMAKE: Makefile saved in 'calc.mak'.
XMAKE: Making 'calc.bit' ...
XMAKE: Execute command 'xnfmerge -A -D xnf -D . -P 3020APC68-
7 xnf\calc.xnf calc.xff'.
XMAKE: Execute command 'xnfprep calc.xff calc.xtf
parttype=3020APC68-7'.
XMAKE: Execute command 'xnfmap -P 3020PC68-7 calc.xtf
calc.map'.
XMAKE: Execute command 'ppr calc.map parttype=3020APC68-7'.
XMAKE: Execute command 'xdelay -D -W calc.lca'.
XMAKE: Execute command 'makebits -R2 -S0 -XB -YA calc.lca'.
XMAKE: 'calc.bit' has been made. Check output in 'calc.out'

If your XACT-Performance specifications have any syntax errors,
they are flagged by XNFPrep. XNFPrep is a tool that performs a
series of checks on the XFF file, looking for illegal conditions of any
sort, and then trims unused logic from the netlist. If XNFPrep detects
an illegal XACT-Performance specification, XMake terminates. The
XMake output as recorded in the calc.out file prompts you to check
the calc.prp file for errors detected by XNFPrep. The PRP file includes
a list of all errors and warnings issued by XNFPrep. In this case the
error message displays the attribute containing the syntax error and
shows the correct syntax for the attribute.
OrCAD Interface/Tutorial Guide 15-29

OrCAD Interface/Tutorial Guide
If XNFPrep detects syntax errors in your design, locate the errors by
checking the calc.prp file, correct the errors in the schematics, and
rerun XMake.

If the calc.out file contains an INF2XNF warning message that an
unknown primitive or macro ‘TNM’ was found, it usually means that
the TNM symbol is present in your schematic but is not correctly
connected to a net. Verify that you used a wire to connect the symbol
to the net and placed the junction correctly.

Always check the design.out file after running XMake.

Examining the PPR Log File
After XMake completes, view the ppr.log file produced by PPR.

Figure 15-10 shows portions of the ppr.log file from the soln_3ka solu-
tions directory design. The timing numbers reported vary depending
on the target device. Additionally, unless you specify identical input
parameters, each PPR run produces a slightly different result.

Note: Once you have a routed design that meets your timing needs,
you can make changes to your design while retaining the timing char-
acteristics of the unmodified logic. Use the incremental design proce-
dure discussed in the “Making Incremental Design Changes” section
of the “SDT Tutorial” chapter.

Warnings in the PPR Log File

There are several warnings in the PPR log file in Figure 15-10.

 Warning 6811 refers to the oscillator loop in the XC3000A design.
Since this loop is deliberate, this warning can safely be ignored.

Warning 7030 tells you how many paths are not controlled by timing
specifications and how many paths are controlled by more than one
timing specification.

Warnings 10601 and 10609 inform you that there was a block name
duplication in the design, and a new name was assigned to one of the
blocks. Since you did not assign any block names manually, this is not
a matter of concern.

Warning 7015 reports that the timing specification TS05 does not meet
the deadline. That particular constraint was purposely specified so
that it would fail in order to illustrate how PPR displays a failure to
15-30 Xilinx Development System

XACT-Performance and XDelay Tutorial
meet an XACT-Performance specification in the log file. The log file
tells you which XACT-Performance specification failed and also gives
the timing it was able to achieve for the associated set of paths. Since
PPR checks timing both during placement and routing, this warning
appears twice. Ignore the timing reported in the warning messages,
since these are “best estimates” computed before the placement and
routing is complete. The data in the timing analysis summary near
the end of the log file is more accurate, although for the most accurate
results you should run XDelay as shown in the latter half of this tuto-
rial.

The rest of the XACT-Performance constraints all meet the timing
requirements.

Warning 7028 is a reminder that PPR does not trace timing through
asynchronous set/reset control signals. Since XDelay does trace these
paths by default, to compare PPR and XDelay results you must
disable this tracing in XDelay. This procedure is discussed in the
“Using the FlagBlk Option” section in the XDelay portion of this
tutorial.

Warning 10604 occurs whenever PPR saves a new LCA file and there
is already an existing LCA file. Since PPR routes the design more than
once, these warnings occur in virtually every ppr.log file and can
safely be ignored.

Timing Analysis Summary

The tabular timing analysis summary near the end of the ppr.log file
shows all XACT-Performance specifications in the design. For each
specification, it reports both the timing requirement and the resulting
timing for the worst-case path. Any missed specification, such as
TS05 in this example, is flagged.
OrCAD Interface/Tutorial Guide 15-31

OrCAD Interface/Tutorial Guide
ppr 5.0.0 -- Xilinx Automatic CAE Tools
Copyright (c) 1994 Xilinx Inc. All Rights Reserved.

ppr: Reading input design data...
ppr: Placing logic...

*** PPR: WARNING 6811:

This design has 1 purely combinational loop. Such loops
should be avoided. If at all possible, please modify the
design to eliminate all unclocked feedback paths.

A loop of 1 source-to-load connections:

FG4 FG_OSC_3K/Q (Net OSC_3K/Q) to first gate aga in.

*** PPR: WARNING 7030:

The design has 0 path end-point pairs that are not controlled
by any timing specification and 178 that are controlled by
more than one timing specification. The end-point pairs are
listed in file calc.tsi. Note that there may be multiple
paths between any listed pair of end points. To limit the
number of paths reported in each category, set PPR paramenter
show_tsi_paths = <value>.

TS05: FROM_TO 50.0 ns;/ [best possible, 51.0 ns] = 0.98

*** PPR: WARNING 7015:
At least 1 of 5 path endpoints will miss spec. Continuing
anyway ..

ppr: Routing signals...

*** PPR: WARNING 10601:

The block name ‘WE’ associated with the instance ‘CONTROL/
STATMACH/U250/U3’ has already been used to name another
block. Another block name will be created for this block.

*** PPR: WARNING 10609:

The new block name ‘CONTROL/STATMACH/OTHER’ in assigned to
the instance ‘CONTROL/STATMACH/U250/U3’.

Design has 0 unroutes.

ppr: Generating .LCA File...

*** PPR: WARNING 10604:
An lca file already exists. The old lca file will be saved as
‘calc.lcb’.

ppr: Routing signals...

TS05: FROM_TO 50.0 ns;/ [best possible, 64.4 ns] = 0.78

*** PPR: WARNING 7015:
15-32 Xilinx Development System

XACT-Performance and XDelay Tutorial
At least 4 of 5 path endpoints will miss spec. Continuing
anyway ..

Design has 0 unroutes.

--
Timing analysis summary
--

Deadline Actual(*) Specification
-------- --------- -------------

1000.0ns 48.6ns TSO3=FROM:FFGRP:TO:PADS
45.0ns 40.1ns TS08=FROM:ALUFF:TO:PADS
50.0ns 43.6ns TS07=FROM:STACKER:TO:LEDPADS
30.0ns 24.4ns TS06=FROM:CTL_ALU_FF:TO:STACKER

(*) 50.0ns 79.2ns TS05=FROM:CTL_ADR_FF:TO:ALUFF
80.0ns 66.3ns TS04=FROM:INFFS:TO:FFS
1000.0ns 29.4ns TS02=FROM:PADS:TO:FFS
2000.0ns 79.2ns TS01=FROM:FFS:TO:FFS

(*) Note: the actual path delays computed by PPR indicate
that 1 of 8 timing specifications you provided was not met.
To confirm this result, please run xdelay.

*** PPR: WARNING 7028:
The design has flip-flops with asynchronous set/reset
controls (PRE/SD or CLR/RD pins). When PPR analyzes design
timing, it does not trace paths through the asynchronous set/
reset input and on through the Q output.

of unrouted connections: 0.

ppr: Generating .LCA File...

*** PPR: WARNING 10604:
An lca file already exists. The old lca file will be saved as
‘calc.lcb’.

ppr: Making Report File...

- ppr @ 1994/01/16 08:55:22 [00:15:57]
= ---- @ 1994/01/16 00:17:33 [00:15:49]

+ ppr required [3896.727] kbytes of dynamic/allocated memory

Figure 15-10 Partial PPR Log File for an XC3020APC68-7 Design
OrCAD Interface/Tutorial Guide 15-33

OrCAD Interface/Tutorial Guide
Using XDelay, the Timing Analysis Program
The next step is to verify the timing of your routed design using
XDelay.

XDelay is a static timing analysis tool that reports the worst-case
timing delays of a routed FPGA design. XDelay has three operating
modes:

● Analyze mode quickly shows the maximum clock speed of a
design. It reports the worst-case timing paths for each of four
typical design path types: pad-to-setup, clock-to-setup, clock-to-
pad, and pad-to-pad.

● XDelay-TimeSpec mode verifies which XACT-Performance
constraints are met and reports all missed paths in detail.

● XDelay mode provides detailed path timing information
according to the selected options and offers insight as to which
paths in the design are the most critical. This information helps
you determine where to make modifications to meet the design
timing requirements.

XDelay has many command options. The following options are the
most commonly used. Many of them are demonstrated in this tuto-
rial.

The following options apply to all three operating modes:

● The Flagblk option flags certain blocks to which the path-delay
calculator gives special consideration.

● Query/Clear/Save/Read Template are commands to view, clear,
save, and load a template file containing XDelay options.

The FailedSpec and SelectSpec options apply to the XDelay-TimeSpec
mode:

● The FailedSpec option reports path delays that did not meet an
XACT-Performance timing specification. It considers only the
specifications selected using the SelectSpec option.

● The SelectSpec option allows you to select from a list of all defined
XACT-Performance specifications. The number of delay paths
reported for each selected specification is controlled by the
TSMaxpaths option.
15-34 Xilinx Development System

XACT-Performance and XDelay Tutorial
The following options apply to the XDelay and Analyze modes:

● The ClockToSetup option constrains reporting to paths that start
at clocked outputs, such as flip-flop outputs, and end at clocked
inputs, such as flip-flop data inputs. Reported delays include the
setup requirement on flip-flops.

● The ClockToPad option constrains reporting to paths that start at
clocked outputs, such as flip-flop outputs, and end at output
pads.

● The PadToSetup option constrains reporting to paths that start at
input pads and end at clocked inputs, such as flip-flop data
inputs. Reported delays include the setup requirement on flip-
flops.

● The PadToPad option constrains reporting to all paths that start at
input pads and end at output pads, with only combinatorial logic
elements in the path. (This option is not demonstrated, because
the only unclocked paths in the tutorial design are in the clock
oscillator in the XC3000A.)

● The FromFF and ToFF options together allow reporting on specific
paths by selecting the flip-flops at the endpoints of the paths.

For more information on using XDelay, refer to the “XDelay” section
of the XACT Reference Guide.

Analyzing the Calc Design
This section analyzes the results of the XACT-Performance design
created earlier in this tutorial. The routed LCA file input to XDelay
contains actual timing delays as well as XACT-Performance specifica-
tions. XDelay analyzes this information and shows different types of
delay paths according to the options you select. Selected options are
stored as an XDelay template file with an .xtm extension.

This section demonstrates a typical XDelay analysis command
sequence.

Note: The sample XDelay output in this tutorial is from a single Calc
LCA file, targeted to the XC3020APC68-7. Your results will vary.
OrCAD Interface/Tutorial Guide 15-35

OrCAD Interface/Tutorial Guide
Invoking XDelay
You can invoke XDelay from the operating system prompt, from the
Verify menu in XDM, or from the EditLCA program under the XACT
Design Editor (XDE), which is not available in the Base Development
System.

1. Invoke XDelay from the operating system prompt by typing
xdelay ↵.

The XDelay graphic environment appears on the screen.

2. Load the CALC design into memory by selecting Design ➝
Design ➝ CALC.LCA .

Using the Flagblk Option
In the Calc design, there are a number of flip-flops with asynchronous
reset signals. You want to ignore the paths through these asynchro-
nous inputs during timing analysis. (Normally a designer is uncon-
cerned with asynchronous reset paths when considering clock-to-
setup requirements.) The Flagblk option is useful for specifying that
this type of path be ignored.

PPR does not trace paths through the Set and Reset (SD/RD) pins of
flip-flops, so the timing results in the timing analysis summary of the
ppr.log file do not include any paths through the SD/RD pins.

In order to verify the timing results from the ppr.log file, you must
disable tracing paths through the SD/RD pins. As a result, XDelay
does not trace through the above-mentioned paths when calculating
path delays, which permits a valid comparison of the timing results
from the PPR log file and the XDelay output.

Disabling Paths Through SD/RD Pins of Flip-Flops

Disable these paths with the Flagblk option as follows.

1. From the menu, select Timing ➝ Flagblk ➝
CLB_Disable_SR_Q.

A menu appears, displaying a list of all CLB blocks in the design.

2. Type * ↵ to select all blocks.
15-36 Xilinx Development System

XACT-Performance and XDelay Tutorial
A prompt appears, asking whether you are sure you want to
select all of the blocks.

3. Select Yes ➝ Done .

This command disallows paths from a CLB Asynchronous Set or
Reset input to the Q output of the flip-flop.

Displaying Current Options

The Query Template command displays the current settings of all
options. You can save a template to a file using the Save Template
command, load a customized template using the Read Template
command, or clear the current template with the Clear Template
command.

1. Select Timing ➝ QueryTemplate to view the current XDelay
options.

2. After viewing the template listing, press any key to return to the
XDelay executive screen.

The current template appears on the screen. The template includes all
restrictions you applied to each CLB. A partial template for an
example XC3000A design is shown in Figure 15-11.

XDelay -NoSourceClock
XDelay -NoDestClock
XDelay -NoIgnorenet
XDelay -NoNetfilter
XDelay -NoBreakLoop

Flagblk CLB_Disable_SR_Q ALU/DATA0
Flagblk CLB_Disable_SR_Q STACK2
.
.
Flagblk CLB_Disable_SR_Q ALU/ENOV
Flagblk CLB_Disable_SR_Q CTL2

Figure 15-11 Partial Template for an XC3020APC86-7 Design

Using Analyze Mode
Now that you have restricted XDelay to considering only clocked
paths, perform a quick analysis to determine the worst-case timing
for the Calc design.
OrCAD Interface/Tutorial Guide 15-37

OrCAD Interface/Tutorial Guide
By default, XDelay output is written to the screen. Normally, you
want to keep a copy of the analysis results. Also, writing to a file is
much faster than reporting to the screen, since there is no need to
funnel information through a graphical interface.

1. Select Misc ➝ Report to specify that you want the results writ-
ten to a file.

You are prompted to enter a file name.

2. Type ↵ to accept the default file name, calc.xrp.

3. Select Analyze ➝ Done .

For the example 3020APC68 design, XDelay reports the same combi-
natorial logic loop detected by PPR. Since this loop is deliberately
included to create an oscillator, ignore this message.

Examining Analyze Output
Examine the Analyze output file.

1. Press any key to return to the XDelay graphic screen.

2. Use any text editor to examine the XDelay report file, calc.xrp.

A partial report file for the XC3020APC68-7 example design is shown
in Figure 15-12. The last line of the file shows that the design will
operate at approximately 12.7 megahertz under worst-case condi-
tions.

The XRP file lists the worst case delays for each of pad-to-pad, pad-
to-setup, clock-to-pad, and clock-to-setup. It also provides an esti-
mate of the minimum clock period and maximum clock speed for the
input design.

Warning: Combinational logic loop(s) have been detected.
These may cause subtle design problems, and may yield some
inaccurate path delays. For a detailed enumeration of these
loops, use the “DRC -Inform” command from within XDE/EditLCA.

XDelay Report File:

Worst case Pad to Pad path delay : 37.8ns (1 block level)
 Pad “OSC_3K/CQ” (P14) to Pad “OSC_3K/CQL” (P12.T)

Clock net “CLK” path delays:

Pad to Setup : 14.0ns (0 block levels)
 (Includes an external input margin of 0.0ns.)
15-38 Xilinx Development System

XACT-Performance and XDelay Tutorial
 Pad to Input FF Setup, Pad “SW7/SW0_P” (P24).
 Target InFF drives output net “SW0”

Clock to Pad : 48.3ns (2 block levels)
 (Includes an external output margin of 0.0ns.)
 Clock to Q, net “ADDR0” to Pad “LED/LED1_P” (P30.O)

Clock to Setup (same edge) : 78.6ns (6 block levels)
 Clock to Q, net “ADDR0” to FF Setup (D) at “ALU2.A”
 Target FFX drives output net “ALU2”

Minimum Clock Period : 78.6ns
Estimated Maximum Clock Speed : 12.7Mhz

Figure 15-12 Analyze Output for an XC3020APC68-7 Design

Using XDelay-TimeSpec Mode
Use the XDelay-TimeSpec mode to evaluate the timing of your design
with respect to the XACT-Performance attributes that you added to
your schematic.

The FailedSpec and SelectSpec options are particularly useful for
evaluating XACT-Performance results. FailedSpec reports all path
delays that do not meet timing specifications, and SelectSpec allows
you to select which XACT-Performance specifications you wish to be
considered.

Note: Used without the FailedSpec option, the SelectSpec option
reports the worst paths for each XACT-Performance specification.

As in the “Using the Analyze Mode” section, create a written report
file.

1. Select Misc ➝ Report .

2. Type calcts.xrp ↵ to distinguish the new output file from the
previous one.

3. Select XDelay-TimeSpec .

A menu appears displaying available delay options. The default
options are highlighted.

4. Select ClearOptions to remove any delay options you may
have previously selected.

The Flagblk options you set earlier in the tutorial are not cleared,
because they are template options rather than delay options.
OrCAD Interface/Tutorial Guide 15-39

OrCAD Interface/Tutorial Guide
5. Select the -FailedSpec option.

6. The SelectSpec option is already on by default, but select it
anyway.

A menu of defined XACT-Performance attributes appears. You
can select any or all of the timing specifications on this list. By
default, all XACT-Performance specifications are already selected.

7. Select Cancel to accept the list with all entries selected.

Next, set the maximum number of paths shown for each failed
XACT-Performance constraint to be three.

8. Select -TSMaxpaths .

9. Type 3↵.

Note: If you do not set the TSMaxpaths option, the report file lists
delays for every path controlled by each XACT-Performance specifi-
cation in your design. This may cause XDelay to run out of memory;
if not, it produces a very large output file.

10. Select Done to initiate the timing analysis.

As before, for the example 3020APC68 design XDelay reports the
same combinatorial logic loop detected by PPR. Since this loop is
deliberately included to create an oscillator, ignore this message.

Examining XDelay-TimeSpec Output
The XDelay-TimeSpec output file contains a great deal of informa-
tion.

1. Press any key to return to the XDelay graphic screen.

2. Use any text editor to examine the XDelay report file, calcts.xrp.

A portion of the resulting report file for the XC3020APC68-7 example
design is shown in Figure 15-13.

The first section of the XRP file lists all XACT-Performance specifica-
tions applied to your design. If you do not specify any paths that fall
into a given default path type, FFS:TO:FFS, PADS:TO:FFS, or
FFS:TO:PADS, that default specification is set to “auto,” which means
that PPR assigns some reasonable value as the timing specification.
15-40 Xilinx Development System

XACT-Performance and XDelay Tutorial
The output file then lists the contents of each time group that you
defined using TNM attributes and TIMEGRP symbol attributes. This
section can be useful in verifying your time group definitions.

For example, in Figure 15-13, the ALUFF time group contains the
four ALU outputs and the OFL flip-flop output. Therefore, the group
contains all of the flip-flops in the ALU, and no other flip-flops, just
as expected.

The worst path delay is then reported for each XACT-Performance
specification.

For TS05, which missed the target timing, the XRP file includes a
detailed listing of the three slowest paths. You can use this listing to
examine your critical paths and determine why each path is not
routable with the current timing requirement, then take steps to
remedy the situation.

For example, for the failed path shown in Figure 15-13, the longest
delay on the path is an 8.9 ns delay between the Y output of CLB FE
and the C input of CLB HH. (The block name of CLB FE is ADDR1,
since the block is named after the X output, but the signal you are
tracing is ADDR0.) Since these CLBs are some distance from each
other, the net delay is significant. Compare this net delay to the net
delay listed further down the path, between the X output of CD and
the B input of CLB DD; the delay between these adjacent CLBs is only
1.9 ns. You might be able to speed up this path by using
floorplanning techniques to place the logic within a smaller area.

A comparison of the results of the FailedSpec output in Figure 15-13
with the PPR log file in Figure 15-10 shows that the PPR and XDelay
results vary by only a few tenths of nanoseconds. When there is a
discrepancy between the two, the XDelay results are correct.

For example, the last XACT-Performance specification listing in
Figure 15-13 is for TS08, FROM:ALUFF:TO:PADS=45. The FailedSpec
output shows that the worst path delay is 40.0 ns. The ppr.log file in
Figure 15-10 shows the worst path delay to be 40.1 ns.
OrCAD Interface/Tutorial Guide 15-41

OrCAD Interface/Tutorial Guide
XDelay: calc.lca (3020APC68-7), xdelay 5.0.0, Mon Jan 17
11:15:36 1994

Warning: Combinational logic loop(s) have been detected.
These may cause subtle design problems, and may yield some
inaccurate path delays. For a detailed enumeration of these
loops, use the “DRC -Inform” command from within XDE/EditLCA.

XDelay Report File:

Xdelay path report options:

TimeSpec ‘TSO3’ from group ‘FFGRP’ to group ‘PADS’ is
1000.0ns.
TimeSpec ‘TS01’ from group ‘FFS’ to group ‘FFS’ is 2000.0ns.
TimeSpec ‘TS02’ from group ‘PADS’ to group ‘FFS’ is 1000.0ns.
TimeSpec ‘TS04’ from group ‘INFFS’ to group ‘FFS’ is 80.0ns.
TimeSpec ‘TS05’ from group ‘CTL_ADR_FF’ to group ‘ALUFF’ is
50.0ns.
TimeSpec ‘TS06’ from group ‘CTL_ALU_FF’ to group ‘STACKER’ is
30.0ns.
TimeSpec ‘TS07’ from group ‘STACKER’ to group ‘LEDPADS’ is
50.0ns.
TimeSpec ‘TS08’ from group ‘ALUFF’ to group ‘PADS’ is 45.0ns.

TimeGroup ‘ALUFF’ contains these Flip-Flop output nets:
ALU0 ALU1 ALU2 ALU3 OFL

TimeGroup ‘CTL_ADR_FF’ contains these Flip-Flop output nets:
ADDR0 ADDR1

TimeGroup ‘CTL_ALU_FF’ contains these Flip-Flop output nets:
ADDR0 ALU0 ALU2 CONTROL/STATMACH/OTHER OFL
ADDR1 ALU1 ALU3 CONTROL/STATMACH/PUSH WE
.
.
.
TimeGroup ‘STACKER’ contains these Flip-Flop output nets:
STACK/A0 STACK/A3 STACK/B2 STACK/C1 STACK/D0 STACK/D3
STACK/A1 STACK/B0 STACK/B3 STACK/C2 STACK/D1
STACK/A2_1 STACK/B1 STACK/C0 STACK/C3 STACK/D2

Only paths that do not meet the selected TimeSpecs will be
reported.
Output will be sorted by decreasing path delays.
A maximum of 3 paths will be reported for each TimeSpec.

--

TimeSpec ‘TSO3’ summary:
From TimeGroup ‘FFGRP’
To TimeGroup ‘PADS’

TimeSpec limit is : 1000.0ns (Spec speed = 1.0MHz)
15-42 Xilinx Development System

XACT-Performance and XDelay Tutorial
Worst path delay is : 48.3ns (Real speed = 20.7MHz)

TimeSpec passes by : 951.7ns

List of delay paths that fail the TimeSpec:
There are no paths that fail the TimeSpec.

--

TimeSpec ‘TS01’ summary:
From TimeGroup ‘FFS’
To TimeGroup ‘FFS’

TimeSpec limit is : 2000.0ns (Spec speed = 0.5MHz)
Worst path delay is : 78.6ns (Real speed = 12.7MHz)

TimeSpec passes by : 1921.4ns

List of delay paths that fail the TimeSpec:
There are no paths that fail the TimeSpec.

--

TimeSpec ‘TS02’ summary:
From TimeGroup ‘PADS’
To TimeGroup ‘FFS’

TimeSpec limit is : 1000.0ns (Spec speed = 1.0MHz)
Worst path delay is : 29.4ns (Real speed = 34.0MHz)

TimeSpec passes by : 934.6ns

List of delay paths that fail the TimeSpec:
There are no paths that fail the TimeSpec.

--

TimeSpec ‘TS04’ summary:
From TimeGroup ‘INFFS’
To TimeGroup ‘FFS’

TimeSpec limit is : 80.0ns (Spec speed = 12.5MHz)
Worst path delay is : 65.4ns (Real speed = 15.3MHz)

TimeSpec passes by : 14.6ns

List of delay paths that fail the TimeSpec:
There are no paths that fail the TimeSpec.

--

TimeSpec ‘TS05’ summary: *** TimeSpec FAILED! ***
From TimeGroup ‘CTL_ADR_FF’
To TimeGroup ‘ALUFF’

TimeSpec limit is : 50.0ns (Spec speed = 20.0MHz)
Worst path delay is : 78.6ns (Real speed = 12.7MHz)
OrCAD Interface/Tutorial Guide 15-43

OrCAD Interface/Tutorial Guide
*** TimeSpec FAILS by : 28.6ns ***

List of delay paths that fail the TimeSpec:

Logical Path Delay Cumulative
------------ ----- ----------

Source clock net : “CLK” (Rising edge)
From: Blk ADDR1 CLOCK to FE.Y : 4.5ns (4.5ns)
Thru: Net ADDR0 to HH.C : 8.9ns (13.4ns)
Thru: Blk STACK/$1I15/M01 to HH.X : 5.1ns (18.5ns)
Thru: Net STACK/$1I15/M01 to HF.C : 3.1ns (21.6ns)
Thru: Blk STACK0 to HF.X : 5.6ns (27.2ns)
Thru: Net STACK0 to HB.A : 4.7ns (31.9ns)
Thru: Blk ALU/DATA0 to HB.X : 5.1ns (37.0ns)
Thru: Net ALU/DATA0 to ED.D : 6.2ns (43.2ns)
Thru: Blk ALU/$1I308/C0 to ED.X : 5.1ns (48.3ns)
Thru: Net ALU/$1I308/C0 to BE.E : 4.5ns (52.8ns)
Thru: Blk ALU/$1I308/C1 to BE.X : 5.1ns (57.9ns)
Thru: Net ALU/$1I308/C1 to CD.A : 2.5ns (60.4ns)
Thru: Blk ALU/$1I308/C2 to CD.X : 5.1ns (65.5ns)
Thru: Net ALU/$1I308/C2 to DD.B : 1.9ns (67.4ns)
Thru: Blk LU/MUXBLK5/$1I5/M01 to DD.X : 5.6ns (73.0ns)
Thru: Net LU/MUXBLK5/$1I5/M01 to DE.B : 0.6ns (73.6ns)
To: FF Setup (D), Blk ALU3 : 5.0ns (78.6ns)

Target FFX drives output net “ALU3”
Dest clock net : “CLK” (Rising edge)
Clock delay to Source clock pin : 2.8 ns
Clock delay to Dest clock pin : 2.8 ns
Clock net “CLK”, delta clock delay [skew] : 0.0 ns

.

. (TWO MORE FAILED PATHS OMITTED)

.

--

TimeSpec ‘TS06’ summary:
From TimeGroup ‘CTL_ALU_FF’
To TimeGroup ‘STACKER’

TimeSpec limit is : 30.0ns (Spec speed = 33.3MHz)
Worst path delay is : 24.0ns (Real speed = 41.8MHz)

TimeSpec passes by : 6.0ns

List of delay paths that fail the TimeSpec:
There are no paths that fail the TimeSpec.

--

TimeSpec ‘TS07’ summary:
From TimeGroup ‘STACKER’
15-44 Xilinx Development System

XACT-Performance and XDelay Tutorial
To TimeGroup ‘LEDPADS’

TimeSpec limit is : 50.0ns (Spec speed = 20.0MHz)
Worst path delay is : 43.4ns (Real speed = 23.0MHz)

TimeSpec passes by : 6.6ns

List of delay paths that fail the TimeSpec:
There are no paths that fail the TimeSpec.

--

TimeSpec ‘TS08’ summary:
From TimeGroup ‘ALUFF’
To TimeGroup ‘PADS’

TimeSpec limit is : 45.0ns (Spec speed = 22.2MHz)
Worst path delay is : 40.0ns (Real speed = 25.0MHz)

TimeSpec passes by : 5.0ns

List of delay paths that fail the TimeSpec:
There are no paths that fail the TimeSpec.

--

Paths not used in TimeSpecs :

There are no paths in this section!

--

Figure 15-13 XDelay-TimeSpec Output for XC3020APC68-7

Using XDelay Mode
In XDelay mode, you can generate reports either based on general
path types or analyzing designated paths from specific sources to
specific destinations.

Reporting by Path Type

In order to simplify analysis of designs without XACT-Performance
specifications, XDelay has four options that restrict reporting to paths
of four common types. These options are ClockToSetup, ClockToPad,
PadToSetup, and PadToPad. You can select one or more of these
options.

The number of paths reported depends on the value of the Maxpaths
option.
OrCAD Interface/Tutorial Guide 15-45

OrCAD Interface/Tutorial Guide
Use the ClockToSetup option to report the single slowest path
between two flip-flops clocked by the same edge of the clock.

1. Select Misc ➝ Report .

You are prompted to enter the name of the report file.

2. Type calcc2s.xrp ↵.

3. Select XDelay .

A menu appears displaying available delay options.

4. Select ClearOptions to remove any delay options you may have
previously selected.

The Flagblk options you set earlier in the tutorial are not cleared,
because they are template options rather than delay options.

5. Select -ClockToSetup .

6. Select -Maxpaths and type 1↵.

Setting Maxpaths=1 directs XDelay to report only the worst clock-
to-setup path in the design.

Note: If you do not set the Maxpaths option, the report file lists
delays for every path in your design. This may cause XDelay to run
out of memory; if not, it produces a very large output file.

7. Select Done and press any key to return to the XDelay graphic
screen.

8. Use any text editor to examine the XDelay report file, calcc2s.xrp.

A portion of an example calcc2s.xrp file is shown in Figure 15-14.

The only paths reported are those between flip-flops: in other words,
the paths that fall into the ClockToSetup or FROM:FFS:TO:FFS
category. Since Maxpaths was set to one, only the worst-case clock-to-
setup path is reported.
15-46 Xilinx Development System

XACT-Performance and XDelay Tutorial
Output will be sorted by decreasing path delays.
Report file may include Clock To Setup paths.
A maximum of 1 path will be reported.

--

Logical Path Delay Cumulative
------------ ----- ----------

Source clock net : “CLK” (Rising edge)
From: Blk ADDR1 CLOCK to FE.Y : 4.5ns (4.5ns)
Thru: Net ADDR0 to HH.C : 8.9ns (13.4ns)
Thru: Blk STACK/$1I15/M01 to HH.X : 5.1ns (18.5ns)
Thru: Net STACK/$1I15/M01 to HF.C : 3.1ns (21.6ns)
Thru: Blk STACK0 to HF.X : 5.6ns (27.2ns)
Thru: Net STACK0 to HB.A : 4.7ns (31.9ns)
Thru: Blk ALU/DATA0 to HB.X : 5.1ns (37.0ns)
Thru: Net ALU/DATA0 to ED.D : 6.2ns (43.2ns)
Thru: Blk ALU/$1I308/C0 to ED.X : 5.1ns (48.3ns)
Thru: Net ALU/$1I308/C0 to BE.E : 4.5ns (52.8ns)
Thru: Blk ALU/$1I308/C1 to BE.X : 5.1ns (57.9ns)
Thru: Net ALU/$1I308/C1 to CD.A : 2.5ns (60.4ns)
Thru: Blk ALU/$1I308/C2 to CD.X : 5.1ns (65.5ns)
Thru: Net ALU/$1I308/C2 to DD.B : 1.9ns (67.4ns)
Thru: Blk LU/MUXBLK5/$1I5/M01 to DD.X : 5.6ns (73.0ns)
Thru: Net LU/MUXBLK5/$1I5/M01 to DE.B : 0.6ns (73.6ns)
To: FF Setup (D), Blk ALU3 : 5.0ns (78.6ns)
Target FFX drives output net “ALU3”

Dest clock net : “CLK” (Rising edge)
Clock delay to Source clock pin : 2.8 ns
Clock delay to Dest clock pin : 2.8 ns
Clock net “CLK”, delta clock delay [skew] : 0.0 ns

--

Figure 15-14 ClockToSetup Output for XC3020APC68-7 Design

Specifying Source and Destination
For a report of a specific path, use the FromFF and ToFF options in
the XDelay mode. For instance, suppose you are concerned about the
path delay between Delay1 and Delay2 in the debounce circuit of the
Calc design. (These nets are the outputs of consecutive flip-flops.
XDelay can not report path delays that span more than one flip-flop.)

Follow the steps below to get a detailed report of the delays on this
path.

1. Select Misc ➝ Report .
OrCAD Interface/Tutorial Guide 15-47

OrCAD Interface/Tutorial Guide
You are prompted to enter the name of the report file.

2. Type dpath.xrp ↵.

3. Select XDelay ➝ -ClearOptions .

You are ready to enter the endpoints of the desired path.

4. Select -FromFF .

A list of all flip-flops in the design appears on the screen. The flip-
flops are identified by the name of the output net.

5. Select the source flip-flop by the name of the output net,
DEBOUNCE/DELAY1.

6. Select Done to accept the list of source flip-flops.

Alternatively, you could select additional flip-flops to get reports
on more than one path.

7. Select -ToFF .

8. Select the destination flip-flop by the name of the output net,
DEBOUNCE/DELAY2↵.

9. Select Done.

As with the FromFF option, entering more names would enable
you to obtain reports of multiple paths.

10. Select Done to initiate the analysis.

Note: In the EditLCA design editor, you can select the FromFF and
ToFF flip-flops with the mouse. Alternatively, you can type the output
net names or select the flip-flops from the menu.

11. Use any text editor to examine the XDelay report file, dpath.xrp.

The dpath.xrp file details a single path, the path between the Delay1
flip-flop and the Delay2 flip-flop, as shown in Figure 15-15. From the
rising clock edge on the Delay1 flip-flop to the setup on the input pin
of the Delay2 flip-flop, there is a maximum delay of 11.9 ns, under
worst-case conditions. There is no detectable clock skew between the
two flip-flops.

The From, FromIOB, FromAll, To, ToIOB, and ToAll options are all
similar in usage to the FromFF and ToFF options demonstrated in this
section. Refer to the “XDelay” section of the XACT Reference Guide for
more details.
15-48 Xilinx Development System

XACT-Performance and XDelay Tutorial
Note: When selecting nets in EditLCA for the From and To options,
place the cursor on a pin, such as .X, .YQ, .F1, or .G2, that is connected
to the desired net. Make sure the correct net name appears in the sta-
tus window. Click the left mouse button to add the net to the list of
selected nets.

.

.

.
From FF “DEBOUNCE/DELAY1”
To FF “DEBOUNCE/DELAY2”
Output will be sorted by decreasing path delays.

--

Logical Path Delay Cumulative
------------ ----- ----------

Source clock net : “CLK” (Rising edge)
From: Blk BOUNCE/DELAY1 CLOCK to BA.X : 4.5ns (4.5ns)
Thru: Net DEBOUNCE/DELAY1 to BA.DI : 3.4ns (7.9ns)
To: FF Setup (D), Blk DEBOUNCE/DELAY1 : 4.0ns (11.9ns)
Target FFY drives output net “DEBOUNCE/DELAY2”

Dest clock net : “CLK” (Rising edge)
Clock delay to Source clock pin : 2.7 ns
Clock delay to Dest clock pin : 2.7 ns
Clock net “CLK”, delta clock delay [skew] : 0.0 ns

--

Figure 15-15 Dpath.xrp File for an XC3020APC68-7 Design

Further Reading
Before using XACT-Performance for your own designs, you should
read the “XACT-Performance Utility” section of the XACT Reference
Guide. More information on XDelay can be found in the “XDelay”
section of the same manual.
OrCAD Interface/Tutorial Guide 15-49

OrCAD Interface/Tutorial Guide
15-50 Xilinx Development System

XEPLD Tutorial

OrCAD
Interface/
Tutorial
Guide
OrCAD Interface/Tutorial Guide — 0401409 01 Printed in U.S.A.

OrCAD Interface/Tutorial Guide
Xilinx Development System

Chapter 16

XEPLD Tutorial

Welcome to the Xilinx EPLD OrCAD tutorial. This tutorial gives you
a basic understanding of the XEPLD development software and some
hands-on experience so you can start your first design as quickly as
possible. This tutorial is not meant as a substitute for the XEPLD
Reference Guide or your OrCAD manuals. For a summary of all
commands used in this tutorial, refer to Appendix D.

Tutorial Guidelines
The tutorial consists of six sessions. Each session begins with an
overview and summary of the interactive steps required. If you are
not familiar with OrCAD, it takes about six hours to complete the
entire tutorial. If you are familiar with OrCAD and you wish to skip
the schematic capture and simulation sessions, you can finish in
about an hour. Xilinx supplies example files, including a schematic of
the tutorial design.

To end your XEPLD session at any time, select Quit from the XDM
(Xilinx Design Manager) menu. To quit OrCAD and return to XDM at
any time, go back to the main menu and select the Exit ESP
command.

To remove an OrCAD menu from the screen without executing a
command, or to cancel an OrCAD command before it is executed,
press the Escape (Esc) key or click on the right mouse button. The
Draft menu also has an Undo command for undoing deletions.
OrCAD Interface/Tutorial Guide — 0401409 01 16-1

OrCAD Interface/Tutorial Guide
Tutorial Design
In this tutorial, you design the receiver section of a Universal Asyn-
chronous Receiver Transmitter (UART). This circuit converts a serial
data stream to parallel bytes and provides handshaking and error
detection signals to the host system. Figure 16-1 illustrates the func-
tionality of this design.

Figure 16-1 UART Receiver Functional Logic Diagram

The example design functions as follows:

1. A serial to parallel shift register (Deserializer) converts the serial
stream to parallel data, which is then latched in a register (Data
Output Reg).

2. A simple state machine (Frame Detector) controls the receiver.
Once the start bit is detected, the counter (Frequency Divider)
begins to count sequentially, clocked by the 4X Baud Rate Clk.

Communication
Interface UART Receiver

System
Interface

Frequency
Divider

Frame
Detector

Start

Error
Detector

Deserializer
Data

Output Reg

4X Baud
Rate Clk

Serial
Input

Stream

Rcvr Output
Bus Enable

Rcvr
Output

Rcvr Error
Flags

Rcvr
Ready

S Q D
Q

Q

X2988

OutIn

OutIn
16-2 Xilinx Development System

XEPLD Tutorial
3. The host is notified with the ready signal (Rcvr Ready) and reads
the data by asserting the Rcvr Output Bus Enable signal.

4. The output of the counter is decoded to generate the control
signals for the shift register, data latch, and error detection
circuits. The following signals are generated:

● Parity Error is generated if a byte parity is odd.

● Framing Error is generated if any of the stop bits are low.

● Overrun Error is generated if new data is ready to be latched
into the output register before the CPU reads the previous
data.

Figure 16-2 shows the format of the serial input stream.

Figure 16-2 UART Serial Input Waveform

Tutorial Files
All the files used in the UART tutorial are installed into a sample
design directory named tutorial\orcad\uart beneath your
designated XACT software directory. The default path is
c:\xact\tutorial\orcad\uart. The design in the uart directory
contains a PAL symbol and its associated equation file. A second
directory, c:\xact\tutorial\orcad\uarttop, contains an alternative
implementation based purely on schematic library symbols. The file
names in these directories are listed in Table 16-1. These directories
also contain some of the resulting report files.

4X Baud
Rate Clock

Serial
Input

Stream
Data Bits (MSB) Parity StopStart

Next Data
FrameFrame Data Format

X2989

Start(LSB)
OrCAD Interface/Tutorial Guide 16-3

OrCAD Interface/Tutorial Guide
Table 16-1 Tutorial Files

The tutorial files are optionally installed during the installation of the
OrCADInterface and Libraries software. If these files do not exist,
refer to the library installation instructions in the XACT Installation
Guide for directions.

Overview of the Sessions
The six sessions cover the following topics:

Session 1: Using the XEPLD Software

Session 2: Drawing the Design in Draft

Session 3: Defining PLD Equations

Session 4: Fitting the Design

Session 5: Simulating the Design

Session 6: Functionally Simulating a Purely Schematic Design

If you are unfamiliar with OrCAD, you should work through the
entire tutorial.

Directory xact\tutorial\orcad\uart

uart.sch Schematic
rcvr.pld PLD Equations
uart.stm Simulation Stimulus File
uart.trc Simulation Trace File

Directory xact\tutorial\orcad\uarttop

uarttop.sch Schematic
rcvrsub.sch Schematic
uarttop.stm Simulation Stimulus File
uarttop.trc Simulation Trace File
16-4 Xilinx Development System

XEPLD Tutorial
If you are already familiar with OrCAD and want to focus on
learning the XEPLD software, perform Sessions 1, 3, and 4 of this
tutorial. Also review Steps 1 through 4 of Session 2 to view the design
and Step 1 of Session 5 to see how XDM interfaces with OrCAD VST.

Session 1: Using the XEPLD Software
Session 1 concentrates on the XEPLD environment. The following
operations are introduced in this session:

 Step 1: Preparing the System

 Step 2: Starting XDM

 Step 3: Selecting Menu Items in XDM

 Step 4: Configuring the XEPLD Environment

Step 1: Preparing the System
From the XDM menu system, you can access the XEPLD software.
Before you start XDM, you must have installed the XEPLD software
and the OrCAD libraries. Refer to the installation instructions in the
XACT Installation Guide for information on how to install these
products.

In addition, verify the following DOS environment configurations:

1. The XACT software directory containing XDM and the OrCAD
software directory must be included in your path.

You must set the OrCAD variables and the XACT variable before
performing any other preparatory steps.

2. All OrCAD environment variables must be set according to
OrCAD requirements.

Take note of the directory to which the ORCADPROJ variable
points, because this is the directory in which you store your
design directories, including the directory for the tutorial design.

Note: This tutorial assumes that your ORCADPROJ variable is set to
c:\orcad\. You need not follow this convention.

3. The XACT variable must be set according to XACT installation
requirements.
OrCAD Interface/Tutorial Guide 16-5

OrCAD Interface/Tutorial Guide
Note: This tutorial assumes that your XACT variable is set to c:\xact.
You need not follow this convention.

4. To specify a text editor to be used under XDM, set the EDITOR
environment variable.

Step 2: Starting XDM
1. Invoke XDM by typing xdm ↵ at the DOS prompt.

The XDM menu is displayed.

You can access your preferred development tools for schematic
capture, text editing, and programmer control through the XDM
menu interface (Figure 16-3). For detailed information regarding the
menu items, refer to the “XACT Design Manager” chapter of the
XEPLD Reference Guide.

Note: To end your XDM session at any time, select Quit from the
menu.
16-6 Xilinx Development System

XEPLD Tutorial
Figure 16-3 XDM Menu

Step 3: Selecting Menu Items in XDM
You can use either the mouse or the command line to select menu
items.

Using the Mouse

You can use the mouse to open the menu and click on the command.
The commands in this tutorial assume that the mouse is set to the
default button configuration.

● Left button: Select

● Middle button: Done

● Right button: Cancel
OrCAD Interface/Tutorial Guide 16-7

OrCAD Interface/Tutorial Guide
You can also use the arrow keys to move up and down in the menus
and the Enter key to select a menu item.

Typing Commands

Alternatively, you can type the command and any specified options
from XDM. Your entry appears on the XDM command line, indicated
by the Cmd: prompt at the bottom of the screen

Accessing DOS

To open a menu, position the cursor on the appropriate menu item
and click on the left mouse button. You can also cancel the last
command selected by pointing anywhere on the screen except on the
menu titles and pressing the right mouse button. For example:

1. Move the mouse cursor over the Utilities menu item and click
the left mouse button. Then move the mouse over the DOS
command and click the left mouse button. This invokes the DOS
command.

2. XDM opens up a DOS shell and lets you execute DOS commands
or run utility programs. Type exit ↵ at the DOS prompt to return
to the XDM menu.

Each command has a few characters highlighted. The highlighted
characters indicate the command abbreviations that you can also use
to invoke the commands at the command line.

Responding to XDM Prompts and Menus

If you select a command and do not get the expected result, check the
following:

● Some commands prompt you at the command line for more
information, so you should always be aware of when the
command line prompt changes. For example, when you select
Utilities ➝ Directory, the Directory: prompt appears at the
command line, and you must type a directory name if none of the
menu choices correspond to the desired directory.

● Other commands display a submenu with their own set of
commands above the submenu. If you select an item on a
submenu and nothing happens, select one of the commands above
the menu, for example, Done.
16-8 Xilinx Development System

XEPLD Tutorial
Step 4: Configuring the XEPLD Environment
First, select the family and part type in XDM.

1. Select Family to specify the desired Xilinx device.

2. Select XC7300 to bring up the menu for the EPLD devices. A
submenu of parts appears.

3. Select InDesign .

You can customize the XDM interface by defining function keys
using the Keydef command. For example, to invoke an external text
editor with the push of a button, program one of the function keys
using the Profile Keydef command. To use the DOS EDIT editor,
enter the following on the XDM command line:

Cmd: keydef f2 dos edit\ ↵

F2 is now programmed to invoke EDIT.

The backslash (\) causes XDM to prompt you to finish entering the
command when you press the defined key. You can use the backslash
with any command that requires a variable argument at the end of its
syntax. For example, if you define the F2 key as shown above and
then press F2, you can answer the prompt with a file name as follows:

Cmd: dos edit uart.pin ↵

You use a text editor with XDM primarily for preparing Boolean
equation (behavioral entry) files for the PLUSASM equation
assembler, and for viewing the reports generated by XEPLD.
PLUSASM requires that text files contain only ASCII characters. If
you use a word processor, it must save files as unformatted ASCII
text.

Note: Do not change the file extensions assigned by XDM and
OrCAD, as these applications do not recognize or process files with
incorrect or unfamiliar extensions.
OrCAD Interface/Tutorial Guide 16-9

OrCAD Interface/Tutorial Guide
Session 2: Drawing the Design in Draft
In this session, you learn how to draw OrCAD schematics using
Draft, OrCAD’s schematic design entry package. Draft contains a
large repertoire of features. To effectively use the software, you only
need to master a few basic operations covered in this session.

Step 1: Creating a New Design

Step 2: Opening and Viewing the Design

Step 3: Changing the Zoom Level

Step 4: Creating a New Schematic

Step 5: Entering and Arranging Components

Step 6: Creating Wires

Step 7: Adding Junctions

Step 8: Labeling Components

Step 9: Labeling Wires

Step 10: Assigning Attributes

Step 11: Finishing the Drawing

Step 12: Assigning Signals to Specific Pins

Step 13: Saving the Design

Step 14: Exiting OrCAD

Step 1: Creating a New Design
Before beginning a new design, you must create a new design
directory.

Creating the Design Directory

To create a design directory, follow these steps:

1. Select DesignEntry ➝ ORCAD.

The OrCAD ESP main menu appears.

2. Select Design Management Tools ➝ Execute .
16-10 Xilinx Development System

XEPLD Tutorial
A dialog box appears with directories listed on the left, design
files listed on the right, and a group of buttons at the bottom.

3. The TEMPLATE directory is normally highlighted. If it is not
highlighted, select the TEMPLATE directory from the list on the
left.

4. Click on the Create Design button.

5. The Create Design dialog box appears. Click on the New Design
Name box.

6. When a small white square appears in the box, type uart ↵.

7. Click on the OK button. The new UART directory is selected in the
directory listing on the left.

Copying the Design Files

The complete UART design provided with the Xilinx OrCAD library
is installed under the \xact directory. Copy the files into your new
design directory as follows:

1. While in the Design Management Tools dialog box, click on
Suspend to System .

A DOS shell opens with the new design directory as your current
directory.

2. Copy the entire contents of the tutorial directory,
\xact\tutorial\orcad\uart, into your new design directory,
\orcad\uart.

copy c:\xact\tutorial\orcad\uart ↵

Configuring the UART Directory

Before beginning a Xilinx EPLD design, you must use the XDraft
program to configure the design directory to access the \xact\xc7000
libraries.

1. At the DOS prompt, type xdraft 7 ↵.

2. Type exit ↵ to return to OrCAD.

3. Click on the OK button to return to the main menu.

The dialog box disappears and you are back in the main menu.
OrCAD Interface/Tutorial Guide 16-11

OrCAD Interface/Tutorial Guide
Step 2: Opening and Viewing the Design
Open the UART schematic in Draft, the OrCAD schematic editor.

Opening the Design

1. Select Schematic Design Tools ➝ Execute .

2. Select Draft ➝ Execute .

The UART schematic appears, as shown in Figure 16-4.

Note: If the UART schematic does not appear, select Quit ➝ Initialize
and type uart↵ to open the schematic.

Examine the UART schematic. Note the PLD library symbol, the
other standard components, such as latches and shift registers, and
the input and output ports. The PLD library symbol is especially
significant because it requires that you use an equation file to define
its internal logic. Session 3 explains how to use equation files in your
Xilinx EPLD designs.

Note: To quit schematic entry and return to the main menu at any
time, select Quit ➝ Abandon Edits.

Using the Mouse in OrCAD

In OrCAD, the mouse buttons perform the following functions:

● Left Button: Select

● Right Button: Cancel (same as Escape key)

Selecting from the SDT Menus

The commands for editing the schematic are organized in a series of
menus. You can select a menu command in one of two ways:

● Click the left mouse button until the command you want appears
on a menu, then select the command.

The placement of the cursor on the schematic is not affected when
you select a command. The cursor freezes and the mouse only
affects command selection.

● Press the key that corresponds to the first letter of the command
name. If you know the name of the desired command, this is often
the easier method.
16-12 Xilinx Development System

XEPLD Tutorial
To cancel a command and return to the previous menu, click the right
mouse button or press the Escape (Esc) key.

Figure 16-4 The Complete UART Schematic

Step 3: Changing the Zoom Level
Draft provides several Zoom commands that change the
magnification level of the design.

1. Select the Zoom command either by clicking with the left mouse
button to display the menu and selecting Zoom, or simply by
typing z .

Date: January 12, 1994 Sheet of 1

Size Document Number REV

A

Title

UART Receiver Schematic

EPLD Tutorial Design

Xilinx

O0
O1
O2
O3
O4
O5
O6
O7

U?

OPAD8

READY
OVERUN
PARITY

I0
I1
I2
I3
I4
I5
I6
I7

O0
O1
O2
O3
O4
O5
O6
O7

U?

OBUF8

C0
C1
C2

PIN1
PIN2
PIN3
PIN4
PIN5
PIN6
PIN7
PIN8
PIN9
PIN10
PIN11 PIN13

PIN14
PIN15
PIN16
PIN17
PIN18
PIN19
PIN20
PIN21
PIN22
PIN23

CONTROLLER

PL22V10
PLD=RCVR

CE
C
R

Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
CEO
TC

FREQ_DIVIDER

CB8RE

U?
VCC

C3
C4
C5

D0
ISDIN
READ

FRAMING

BYTECLK
BITCLK
START

U?

IOPAD

ISTART
U?

INV
U?

BUFG

U?

IPAD

X4CLK

U?

IPAD

RD
U?

IBUF

READ_EN

AND2B2

READ
U?

OBUF

U?

BUFFOE

DOE

O0
O1
O2
O3
O4
O5
O6
O7

U?

OPAD8

E

I0
I1
I2
I3
I4
I5
I6
I7

O0
O1
O2
O3
O4
O5
O6
O7

U?

OBUFE8X1

DOUT1
DOUT2

DOUT0D0
D1
D2
D3
D4
D5
D6
D7

C

Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7

OUTPUT_REG

FD8

D0
D1
D2

A
B

CK

CLR

QA
QB
QC
QD
QE
QF
QG
QH

DESERIALIZER

X74_164

U?

IBUF

U?

IBUF

ISDIN

U?

IPAD

U?

IPAD

CS

SDIN

D3
D4
D5
D6
D7

DOUT3
DOUT4
DOUT5
DOUT6
DOUT7

|PARTTYPE=7354-12PC68

|GLOBAL
|PRELOAD_OPT=OFF
OrCAD Interface/Tutorial Guide 16-13

OrCAD Interface/Tutorial Guide
The following commands are displayed:

● Center — Centers the design at the current magnification level,
which is listed in parentheses.

● In — Displays the design at the next larger magnification level,
listed in parentheses, to show more detail.

● Out — Displays the design at the next smaller magnification
level, listed in parentheses, to show more of the design.

● Select — Allows you to select a magnification level. The
choices, from largest (most detail) to smallest (widest area), are
1, 2, 5, 10, and 20.

The design is displayed at zoom level 2 when you first view it.

2. Select In .

The part of the schematic under the cursor is displayed in more
detail. Some of the labels that were not previously readable are
now readable.

If the design is too large to fit on the screen at the current level of
magnification, you can view another part of the design by moving
the mouse cursor off the edge of the screen.

3. View the entire design by panning with the mouse.

Step 4: Creating a New Schematic
Create a blank OrCAD schematic.

Skipping Schematic Entry

If you are already familiar with OrCAD SDT and do not wish to draw
the schematic, perform these steps:

1. Select Quit ➝ Abandon Edits to close the UART schematic and
return to the Schematic Design Tools menu.

2. Exit OrCAD and skip to Session 3.

Creating a New Schematic

To continue with the schematic capture session of this tutorial,
perform these steps:
16-14 Xilinx Development System

XEPLD Tutorial
1. Click with the left mouse button to display the menu and then
select Quit ➝ Initialize , or simply type q i .

This command exits the current schematic and prompts you for a
new schematic.

2. Type uart2 ↵ in response to the prompt:

A blank schematic appears, with the message <<<New
Worksheet>>> in the top left corner. This schematic is named
uart2.sch.

Step 5: Entering and Arranging Components
Enter components in the schematic and arrange them as shown in
Figure 16-5.

Entering Components

To place IBUF components on the schematic, follow these steps:

1. Click with the left mouse button and select Get , or simply type g.

The Get? prompt appears.

2. Type ibuf ↵.

The image of an IBUF component appears.

Note: Alternatively, you can browse a list of all components available
from the XC7000 library. Press the Enter key in response to the Get?
prompt and select XC7000.LIB from the menu. Move the mouse
through the list of component names and select IBUF.

3. Move the mouse until the component image is in the lower left
corner of the screen.

4. Select the Place command from the Get menu.

The component is placed, and a second image appears on top of it.

5. Move this second image an inch above the first.

6. Select Place again.

A third image appears.

7. Move the image an inch above the second IBUF.

8. Select Place again.
OrCAD Interface/Tutorial Guide 16-15

OrCAD Interface/Tutorial Guide
A fourth image appears.

9. Click the right mouse button or press the Escape key to cancel
the Get command.

The fourth image and the Get menu both disappear.

Arranging Components

After adding components, you must be able to move them. To move a
component, follow these steps:

1. Select Block ➝ Move from the menu.

2. Put the cursor near the top IBUF component.

3. Select the Begin command to initiate the selection of objects to be
moved.

4. Move the cursor.

The first location of the cursor corresponds to one corner of the
selection frame box, and the current location is the opposite
corner.

5. Move the corner of the selection frame box until the box traces the
location of the top IBUF component.

Note: When you select a component or a group of components, any
component that is partially in the box is included in the selection.

6. Select End.

An image of the component appears.

7. Move the mouse to move the component image.

8. When the image is where you want it, select the Place command.

The component disappears from its original location and appears
where you placed the image.

Deleting Components

You must also be able to delete components. To delete a component,
follow these steps:

1. Select Delete ➝ Object .
16-16 Xilinx Development System

XEPLD Tutorial
2. Move the cursor over the top IBUF component, the one you
moved in the last exercise.

3. Select the Delete submenu command.

The component disappears.

4. Click the right mouse button or press Escape to end the Delete
command.

Note: If you delete something by mistake, click the right mouse
button or press Escape, then use the Delete Undo command.

Placing Rotated Components

Occasionally, you might need to rotate components. To place a
rotated component, follow these steps:

1. Select Get and type inv ↵ at the prompt.

2. Select Rotate twice on the Get menu.

The INV component is now backwards.

3. Select Place on the Get menu to place the inverter as shown in
Figure 16-5.

4. Click the right mouse button or press Escape to exit the Get
command.

Entering Additional Components

Place the remaining components on the schematic.

1. Use the Get command to add the following components:
PL22V10, CB8RE, BUFG, IBUF, IPAD, and AND2B2.

The BUFG component represents a FastCLK input.

Leave some space between the IPADs and the IBUFs. In Step 9,
“Labeling Wires,” you will add a label to each wire to name the
EPLD device pins.

2. Use the Get command to add the VCC symbol. Do not use the
Add Power command to add this symbol.

When you have finished arranging the components, the screen
should look like Figure 16-5. If necessary, move the components
using the Block Move command.
OrCAD Interface/Tutorial Guide 16-17

OrCAD Interface/Tutorial Guide
Figure 16-5 Adding Components

Step 6: Creating Wires
Connect your symbols by adding wires to your schematic.

Drawing a Wire

To create a signal between the Q0 output pin of the CB8RE and pin 2
of the PL22V10, follow these steps:

1. Select Place ➝ Wire .

2. Move the cursor to the end of the Q0 pin of the CB8RE.

3. Select Begin .

4. Move the cursor to pin 2 of the PL22V10.

5. Select End.
16-18 Xilinx Development System

XEPLD Tutorial
Warning: When drawing a wire, be careful to begin and end the wire
on the exact grid point where a component pin ends, otherwise
OrCAD does not consider the wire to be connected.

To save time, you can use the Repeat command to draw wires that
are parallel to and the same length as a wire you just drew. You
might need to use the Set Repeat Parameters command to set your
X Repeat step to 0 and your Y Repeat step to +1.

6. Select Repeat five times.

Verify that pins Q0 through Q5 of the CB8RE now have wires
going to pins 2 through 7 of the PL22V10.

Moving a Block

If the wires you just drew are not straight, you can use the Block Drag
command to move one of the components while maintaining its
connectivity .

To move the PL22V10 and maintain its connectivity, follow these
steps:

1. Select Block ➝ Drag .

2. Move the cursor to a point in or around the PL22V10.

3. Select Begin .

4. Move the box corner to another point in or around the PL22V10 so
that no other component is in the box.

5. Select End.

6. Move the PL22V10 symbol to various locations.

The wires change angle, stretch, and contract.

7. Move the PL22V10 symbol until the connecting wires are straight.

8. Select Place .

Drawing Wires Using Shortcuts

If you are drawing wires continuously and do not want to select the
Place Wire command for each wire, you can use a few shortcuts.

To draw the wires between the IBUF components and the AND2B2
component, follow these steps:
OrCAD Interface/Tutorial Guide 16-19

OrCAD Interface/Tutorial Guide
1. Select Place ➝ Wire .

2. Put the cursor on the output of the upper IBUF component and
select Begin .

3. Move the cursor to the upper input of the AND2B2.

4. Select New.

5. Move the cursor to the output of the lower IBUF and select Begin .

6. Move the cursor so that it is even with the lower input of the
AND2B2 and midway between the IBUFs and the AND2B2.

7. Select Begin again.

8. Move the cursor to the lower input of the AND2B2 and select New.

9. Continue to add wires until your design looks like Figure 16-6.

10. Click the right mouse button or press the Escape key to stop
adding wires.

Figure 16-6 Adding Wires
16-20 Xilinx Development System

XEPLD Tutorial
Step 7: Adding Junctions
To add junctions where wires branch, follow these steps:

1. Select Place ➝ Junction .

2. Move the cursor over the point where the wires meet.

3. Select Place .

4. Click the right mouse button or press the Escape key.

Your design should look like Figure 16-7.

Figure 16-7 Adding Junctions

Step 8: Labeling Components
The reports generated by the XEPLD Fitter refer to all your on-chip
signals using names based on your component labels, also called
reference designators, and component output pin names.
OrCAD Interface/Tutorial Guide 16-21

OrCAD Interface/Tutorial Guide
For example, the macrocell logic and the signal produced by the least-
significant bit of the CB8RE counter is referred to in the reports using
the name FREQ_DIVIDER:Q0. Assigning your own unique labels
makes it much easier to identify elements of your design in the
reports.

Labeling the PL22V10 Component

To label the PL22V10 component, follow the steps outlined below:

1. Place the cursor on the PL22V10 component.

2. Select Edit ➝ Edit ➝ Reference ➝ Name.

3. Backspace over the U? that follows the Reference? prompt.

4. Type Controller ↵.

5. Click the right mouse button or press Escape .

You are still in the Edit menu.

Labeling the CB8RE Component

To label the CB8RE component, follow the steps outlined below:

1. Move the cursor to the CB8RE component.

2. Select Edit ➝ Reference ➝ Name.

3. Backspace over the U? that follows the Reference? prompt.

4. Type Freq_Divider ↵.

5. Click the right mouse button or press Escape .

You are still in the Edit menu.

Labeling the AND2B2 Component

To label the AND2B2 component, follow the steps outlined below:

1. Move the cursor to the AND2B2 component.

2. Select Edit ➝ Reference ➝ Name.

3. Backspace over the U? that follows the Reference? prompt.

4. Type Read_En↵.

5. Click the right mouse button or press Escape .
16-22 Xilinx Development System

XEPLD Tutorial
When you are finished, your design should look like Figure 16-8.

6. Press the right mouse button or press Escape when you have
reviewed the schematic.

Note: Use only alphanumeric characters and the underscore “_”
character in labels.

Figure 16-8 Adding Component Labels

Step 9: Labeling Wires
Names assigned to EPLD device pins in the Pinlist report and names
on all signals used during simulation are taken from the labels you
place on wires in your schematic. For example, the label X4CLK that
you place on the wire between the IPAD and BUFG is listed as a pin
name in the Pinlist report produced by the XEPLD Fitter. You will
also apply your clock waveform to the X4CLK signal during
functional and timing simulation.
OrCAD Interface/Tutorial Guide 16-23

OrCAD Interface/Tutorial Guide
To label the output wire of the AND2B2 component, follow these
steps:

1. Select Place ➝ Label .

The Label? prompt appears.

2. Type READ↵.

The label appears, attached to the cursor.

3. Move the cursor so that the tip touches the wire connected to the
output of the AND2B2 component. Center the label on the
segment just to the right of the component.

4. Select Place .

The Label? prompt reappears.

5. Repeat steps 2 through 4 and place labels C0 through C5, X4CLK,
RD, CS, SDIN, START, ISTART, and ISDIN as shown in
Figure 16-9.

6. Click the right mouse button or press Escape to stop adding
labels.

Note: Use only alphanumeric characters and the underscore “_”
character in labels.
16-24 Xilinx Development System

XEPLD Tutorial
Figure 16-9 Adding Wire Labels

Step 10: Assigning Attributes
The PLD=filename component attribute must be attached to each PLD
in your schematic. This attribute identifies the bitmap file used to
define the logic of the PLD. The bitmap file is prepared by the
PLUSASM assembler. The preparation of the logic equations for the
PLD is covered in Session 3.

Adding the PLD Attribute

To add the PLD attribute to the PL22V10 component, follow these
steps:

1. Move the cursor over the PL22V10 component.

2. Select Edit ➝ Edit ➝ 1st Part Field ➝ Name.

The 1st Part Field? prompt appears.
OrCAD Interface/Tutorial Guide 16-25

OrCAD Interface/Tutorial Guide
Note: If the first part field is used for something else at your site, pick
any of the other seven part fields. The XEPLD Fitter checks all part
fields and extracts all the XEPLD attributes that it finds.

3. Type PLD=RCVR↵.

4. Click the right mouse button twice or press Escape twice to exit
the Edit command.

Adding the PARTTYPE Attribute

To add the PARTTYPE attribute to the PL22V10 component, follow
these steps:

1. Select Place ➝ Text .

The Text? prompt appears.

2. Type |PARTTYPE=7354-12PC68 ↵.

3. Using the mouse, move the text to the blank area near the lower
left corner of the design border. Refer to Figure 16-10.

4. Select Place to place the text.

Adding Global Attributes

You also need to assign the PRELOAD_OPT global attribute.

1. Use the Place Text command to add the following text to your
schematic.

|GLOBAL
|PRELOAD_OPT=OFF

2. Press the right mouse button to exit the Place Text command.

The initial pipe characters (|) must be aligned, with the GLOBAL
text string first.

The text strings for the attributes should appear as follows:

|GLOBAL
|PRELOAD_OPT=OFF
16-26 Xilinx Development System

XEPLD Tutorial
Warning: If you have INET v1.10 or 1.10 H, you must perform an
additional step each time you add text to the schematic. This version
of INET discards the first line of each group of pipe text after the first
group of text encountered on the schematic. For each placement of
text on the schematic, you must place an additional text line consist-
ing of a single pipe character above the first line of the text, with the
pipe characters vertically aligned. INET discards this pipe character
and correctly reads the text in the next line. INET v1.08 did not dis-
play this behavior, and the problem should be fixed in any release
subsequent to v1.10.

Figure 16-10 Completed UART Schematic

Date: January 12, 1994 Sheet of 1

Size Document Number REV

A

Title

UART Receiver Schematic

EPLD Tutorial Design

Xilinx

O0
O1
O2
O3
O4
O5
O6
O7

U?

OPAD8

READY
OVERUN
PARITY

I0
I1
I2
I3
I4
I5
I6
I7

O0
O1
O2
O3
O4
O5
O6
O7

U?

OBUF8

C0
C1
C2

PIN1
PIN2
PIN3
PIN4
PIN5
PIN6
PIN7
PIN8
PIN9
PIN10
PIN11 PIN13

PIN14
PIN15
PIN16
PIN17
PIN18
PIN19
PIN20
PIN21
PIN22
PIN23

CONTROLLER

PL22V10
PLD=RCVR

CE
C
R

Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
CEO
TC

FREQ_DIVIDER

CB8RE

U?
VCC

C3
C4
C5

D0
ISDIN
READ

FRAMING

BYTECLK
BITCLK
START

U?

IOPAD

ISTART
U?

INV
U?

BUFG

U?

IPAD

X4CLK

U?

IPAD

RD
U?

IBUF

READ_EN

AND2B2

READ
U?

OBUF

U?

BUFFOE

DOE

O0
O1
O2
O3
O4
O5
O6
O7

U?

OPAD8

E

I0
I1
I2
I3
I4
I5
I6
I7

O0
O1
O2
O3
O4
O5
O6
O7

U?

OBUFE8X1

DOUT1
DOUT2

DOUT0D0
D1
D2
D3
D4
D5
D6
D7

C

Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7

OUTPUT_REG

FD8

D0
D1
D2

A
B

CK

CLR

QA
QB
QC
QD
QE
QF
QG
QH

DESERIALIZER

X74_164

U?

IBUF

U?

IBUF

ISDIN

U?

IPAD

U?

IPAD

CS

SDIN

D3
D4
D5
D6
D7

DOUT3
DOUT4
DOUT5
DOUT6
DOUT7

|PARTTYPE=7354-12PC68

|GLOBAL
|PRELOAD_OPT=OFF
OrCAD Interface/Tutorial Guide 16-27

OrCAD Interface/Tutorial Guide
Step 11: Finishing the Drawing
You now know enough Draft commands to finish the schematic on
your own. Figure 16-10 shows the completed UART receiver
schematic.

1. Add the remaining components, wires, and labels as shown in
Figure 16-10.

2. Double-check labels assigned to components and wires in the
schematic. Do not confuse characters in labels such as “DO” and
“D0”. Conflicting labels on wires cause errors during design
compilation.

When you finish the drawing, your design still has a “U?” above each
unlabeled component. If you do not assign labels to the components,
the OrCAD software automatically labels them as U1, U2, …, Ux as it
annotates the schematic.

Step 12: Assigning Signals to Specific Pins
You can assign signals to specific EPLD pins rather than letting the
software assign them. To do pin assignment, you must be aware of
the architecture of the target EPLD device so that you do not, for
example, assign an output to an input pin.

You assign pins to input and output signals by assigning the
LOC=pin_number attribute to IPAD and OPAD components. For
example, you can assign a pin number to the SDIN signal to place it
in a convenient position on the chip.

To assign the SDIN signal to pin 18, follow these steps:

1. Move the cursor over the IPAD component to which the SDIN
signal is connected.

2. Select Edit ➝ Edit ➝ 2nd Part Field ➝ Name.

The 2nd Part Field? prompt appears.

Note: If the second part field is used for something else at your site,
pick any of the other seven part fields. The XEPLD Fitter looks at all
of them and extracts all the XEPLD attributes that it finds.

3. Type LOC=P18↵.
16-28 Xilinx Development System

XEPLD Tutorial
4. Click the right mouse button twice or press Escape twice to exit
the Edit command.

5. Assign any other signals to pins that you wish. Consult The
Programmable Logic Data Book for a map of the pins on the device.

The LOC attribute assigns the SDIN signal to a specific pin of the
targeted XC7236 EPLD device.

The XEPLD software automatically allocates the remaining signals.

Note: If a pin number is entirely numeric, for example pin 18, you
must begin the pin number with a “P.” If the pin number begins with
a letter, for example pin E7, the “P” is not needed. You can assign pins
to individual IPAD, OPAD, and IOPAD symbols, but not to the
multibit OPAD8 symbols in this schematic.

Step 13: Saving the Design
Save your schematic if you intend to use your design rather than the
one provided by Xilinx for the remainder of this tutorial.

1. To use the schematic you created for the rest of this tutorial, select
Quit ➝ Write to File and type uart ↵ to save your design
as UART rather than as UART2.

2. Alternatively, you can select Quit ➝ Abandon Edits ➝ Yes
to exit and use the Xilinx-supplied UART file for the rest of the
tutorial.

Note: You cannot simulate EPLD designs that contain PLD symbols,
such as the PL22V10 symbol, until they are mapped by the XEPLD
software. The PLD library components do not have any models
associated with them to support pre-mapping functional simulation.

Step 14: Exiting OrCAD
Exit OrCAD and return to XDM.

1. Select To Main ➝ Execute from the Schematic Design Tools
menu.

2. Select Exit ESP ➝ Execute .

3. Press any key to return to XDM.

The XDM screen reappears.
OrCAD Interface/Tutorial Guide 16-29

OrCAD Interface/Tutorial Guide
You have now completed this session and are ready to proceed to the
next section of the tutorial, where you define the function of the
PL22V10 PLD component used in the schematic.

Session 3: Defining PLD Equations
You can define the function of the PLD in a schematic either directly
in the PLUSASM equation language or through a third-party PLD
compiler. As an example, a Xilinx ABEL file that produces a PLD file
equivalent to rcvr.pld is shown in Figure 16-12. This session demon-
strates the creation of a simple PLD equation file using PLUSASM.

You can use the PLUSASM language to define the function of a PLD
in a schematic in terms of Boolean equations. In this session you learn
how to develop the equation file, rcvr.pld, for the PL22V10 PLD used
in the UART schematic. The following functions are introduced in
this session:

 Step 1: Defining Declaration Statements

 Step 2: Creating Boolean Equations

Step 1: Defining Declaration Statements
Display the contents of the rcvr.pld text file.

1. Click on the XDM Directory field or select Utilities ➝
Directory .

2. Type c:\orcad\uart ↵ at the command prompt or select the
UART project directory from the displayed directory list.

3. Select Done.

The Directory field in XDM now displays the full path to the
UART design directory.

4. Similarly, ensure that the Family and Part fields are set to XC7300
and InDesign.

5. Select Utilities ➝ Browse or Utilities ➝ Edit .

6. Select RCVR.PLD from the list of files in your design directory.

7. Examine the declarations section of the PLD file.
16-30 Xilinx Development System

XEPLD Tutorial
The declarations section of the RCVR Boolean equation file is
shown in Figure 16-11.

The declarations section contains design and signal identification
information. The PLUSASM keywords TITLE, AUTHOR,
COMPANY, and DATE identify the design. The keyword CHIP
identifies the PLD equation file name RCVR and PLD type PL22V10.
The last two lines in the declarations section form a sequential list of
signal names and polarities for each pin on the PL22V10.

Step 2: Creating Boolean Equations
Boolean equations are defined in the equations section of the PLD
file.

1. Examine the equations section of the rcvr.pld file.

The equations section of the RCVR equation file is shown in
Figure 16-11. The keyword EQUATIONS identifies the beginning
of this section. Following the EQUATIONS keyword are the
Boolean equations written for each output signal used in the
PL22V10.

2. Exit from your editor and return to the XDM executive screen.

For more detailed information regarding the syntax of PLUSASM
equations and keywords, refer to the PLUSASM Language Reference
in the XEPLD Reference Manual.
OrCAD Interface/Tutorial Guide 16-31

OrCAD Interface/Tutorial Guide
Figure 16-11 Rcvr.pld File

TITLE UART Receiver Controller

AUTHOR Applications

COMPANY Xilinx

DATE February 1993

CHIP RCVR PL22V10

; 1 2 3 4 5 6 7 8 9 10 11 12

 x4clk c0 c1 c2 c3 c4 c5 read sdin d0 nc gnd

; 13 14 15 16 17 18 19 20 21 22 23 24

 nc nc start bitclk byteclk par framing parity overun ready nc vcc

EQUATIONS

/start := /start * sdin

 + c5*/c4*c3*/c2*/c1*c0

 ; start goes high when sdin goes low

 ; and stays high until count=41.

bitclk := /c0 * /c1 * start

 ; bitclk pulses every 4 clock cycles

 ; to strobe deserializer.
16-32 Xilinx Development System

XEPLD Tutorial
Figure 16-11Rcvr.pld File (continued)

byteclk := c5*/c4*/c3*/c2*c1*/c0 * /ready

 ; byteclk strobes output_reg at count=34

 ; only if ready not still active.

overun := c5*/c4*/c3*/c2*c1*/c0 * ready

 + overun * /read

 ; overrun error at count=34 if ready still

 ; active; stays on until read.

par := par * /sdin * bitclk * start

 + /par * sdin * bitclk * start

 + par * /bitclk * start

 ; accumulate parity on sdin on each bitclk;

 ; reset while start=0.

parity := c5*/c4*/c3*/c2*c1*/c0 * par

 + parity * /read

 ; parity error at count=34 if par odd (1);

 ; stays on until read.

framing := c5*/c4*c3*/c2*/c1*/c0 * /sdin
OrCAD Interface/Tutorial Guide 16-33

OrCAD Interface/Tutorial Guide
Figure 16-12 Rcvr.abl File

module rcvr

title 'Control Logic and Error Detector for UART Receiver Design

 Xilinx EPLD Applications, Feb. 93'

 rcvr device 'p22v10';

" Inputs

 x4clk pin 1; " External clock (4x baud rate)

 c0,c1,c2,c3,c4,c5 pin 2,3,4,5,6,7; " State counter outputs (from cntr6)

 read pin 8; " Read enable (from cntr6,active-high)

 sdin pin 9; " Serial data input (external)

 d0 pin 10; " Shift register LSB output

" Outputs

 start pin 15 istype 'reg'; " Start bit detector

 bitclk pin 16 istype 'reg'; " Bit clock (to shifter)

 byteclk pin 17 istype 'reg'; " Output data register clock

 par pin 18 istype 'reg'; " Parity accumulator

 framing pin 19 istype 'reg'; " Framing error output (external)

 parity pin 20 istype 'reg'; " Parity error output (external)

 overun pin 21 istype 'reg'; " Overrun error output (external)

 ready pin 22 istype 'reg'; " Receiver ready output (external)

" Variables

 count = [c5..c0]; " c5 is MSB

Equations

!start := !start & sdin " Start goes high when sdin goes low;

 # (count == 41); " start stays high until count=41.

start.clk = x4clk;

bitclk := !c0 & !c1 & start; " Bitclk pulses every 4 cycles.

bitclk.clk = x4clk;
16-34 Xilinx Development System

XEPLD Tutorial
Figure 16-12 Rcvr.abl File (continued)

ready := (count == 41) & !parity & !framing & !overun

 # ready & !read; " Ready goes high at count=41 if no errors

ready.clk = x4clk; " and stays high until register read.

byteclk := (count == 34) & !ready; " Strobe data register at count=34

byteclk.clk = x4clk; " only if ready not still active.

overun := (count == 34) & ready " Overrun error at count=34 if ready still on;

 # overun & !read; " overun stays on until register read.

overun.clk = x4clk;

par := (par $ sdin) & bitclk & start

 # par & !bitclk & start; " Accumulate parity of sdin on each bitclk;

par.clk = x4clk; " reset while start=0.

parity := (count == 34) & par " Parity error at count=34 if par odd (1);

 # parity & !read; " parity stays on until register read.

parity.clk = x4clk;

framing := (count == 40) & (!sdin # !d0) " Framing error at count=40 if either

 # framing & !read; " stop bit low;

framing.clk = x4clk; " framing stays on until register read.

end
OrCAD Interface/Tutorial Guide 16-35

OrCAD Interface/Tutorial Guide
Session 4: Fitting the Design
Session 4 focuses on the XEPLD Fitter. The following tasks are
explained in this session.

Step 1: Checking the Design

Step 2: Invoking the Fitter

Step 3: Viewing the Reports

Step 4: Saving Pin Assignments

Step 5: Creating the Programming File

Step 1: Checking the Design
Check the following items before fitting your design:

1. Your directory must be set to the UART design directory in the
XDM main screen. The default path is c:\orcad\uart.

2. Just below the Directory field, the Part field must be set to
InDesign.

After you have drawn a new schematic or made significant
changes, check for drawing errors by running the Cleanup utility.

3. Select Translate ➝ CLEANUP, select the UART.SCH file, then
select Done.

4. If you also want to perform electrical rule checking (ERC), first
annotate your design by selecting Translate ➝ ANNOTATE ➝
UART.SCH ➝ Done .

5. Run the rule checker by selecting Translate ➝ INET ➝
UART.SCH ➝ /W (Also perform ERC) ➝ Done .

Note: Alternatively, to write the ERC messages to a report file called
uart.erc, type the following on the XDM command line: dos inet
uart.sch uart.erc /w ↵.

The ERC report shows several warnings about single node nets and
inputs with no driving source. These warnings are due to signals
deliberately left unconnected in the UART schematic and can safely
be ignored.
16-36 Xilinx Development System

XEPLD Tutorial
Step 2: Invoking the Fitter
You can create a netlist from the schematic, process the PLD file, fit
the design, and optionally create an Intel Hex programming file
using a single command.

Implementing the Design Automatically

Implement your design automatically using the XEMake program.

1. Select Translate ➝ XEMAKE.

2. Do not select any of the options; select Done from the options
prompt.

3. Select UART.SCH from the displayed list.

4. When asked to select a target, select Make design data base .

XEMake invokes the XDM commands listed in the next section.

Implementing the Design Manually

Alternatively, you can invoke the individual commands to control
each step in the fitting process. You do not need to select any options
for any of the commands.

The commands in this section are included for your information only;
you do not need to perform a manual translation.

1. If you have not yet annotated your schematic, select Translate
➝ ANNOTATE➝ UART.SCH ➝ Done.

The Annotate program assigns unique name reference
designators to each symbol in your schematic.

2. To create an OrCAD netlist, select Translate ➝ INET ➝
UART.SCH, turn off the /W (Also perform ERC) option if it is
on, then select Done.

The INET program creates an OrCAD netlist file for each
schematic in your design.

3. Select Translate ➝ SDT2XNF ➝ UART.INF . The default
output file is uart.xnf; select Done to accept this output file name.
By default, XNF files are written to the xnf subdirectory using the
-d option; select Done to accept this output directory.
OrCAD Interface/Tutorial Guide 16-37

OrCAD Interface/Tutorial Guide
SDT2XNF generates a Xilinx netlist file for each INF file created by
INET.

4. Merge all schematics and macros in your design by selecting
Translate ➝ XNFMERGE. By default, XNF files are read from
the “xnf” subdirectory using the -D option; select Done to accept
this directory. Select XNF\UART.XNF from the list of file names
displayed. By default, the output file name is uart.xff; select Done
to accept this output file name.

XNFMerge creates a single netlist file containing the complete
design.

5. Assemble your RCVR equation file by selecting Translate ➝
PLUSASM. Select RCVR.PLD from the displayed list of input files.

The Assembling rcvr.pld message appears on the screen.
After PLUSASM has run, the screen displays where the output log
files are stored.

PLUSASM displays error or warning messages to the screen
during processing. If you encounter any errors or warnings,
review the contents of the rcvr.lga log file to understand their
context.

The result of the equation assembler is a VMH file stored in the
“clib” subdirectory. If you make changes only in the schematic,
you do not have to assemble your equations again before fitting.

6. Invoke the XEPLD Fitter by selecting Fitter ➝ FITNET .
Select UART.XFF from the list of file names displayed.

If you saved pin allocation information from a prior fitting in a
VMF file using the PINSAVE command, the FITNET -f option
appears in the FITNET menu. The -f option instructs the Fitter to
use an existing pinout.

7. To allow FITNET to automatically assign pin locations, select
Done.

The XEPLD Fitter is composed of several submodules. As the
Fitter processing proceeds, a message is displayed on the screen
indicating which submodule is running. The FITNET modules
produce a database file (uart.vmh). From this database, a
programming file can be produced to program the device.
Simulation models are also produced from this database file.
16-38 Xilinx Development System

XEPLD Tutorial
If the Fitter encounters errors, it displays them on the screen and
stores them in a file called uart.err for future reference. If errors
are encountered, you can press Ctrl-C at any time to stop the
execution and look at the error and warning logs.

Three warnings are displayed for the UART design. One port is
removed because it has no logic connection, and two
Freq_Divider outputs are removed because they do not drive
anything. Ignore these warnings, since they are expected for this
design.

Alternative Ways to Process PLDs

Read this section to learn about other design entry methods for
XEPLD designs.

XEPLD can read 20V8 or 22V10 PLD designs in the form of JEDEC
standard programming maps produced by any third-party PLD
compiler. Select Translate ➝ JED2PLD to read the JEDEC file and
automatically process it using PLUSASM. If you choose this method,
you do not need to also execute the PLUSASM command. The result
is a bitmap file. Refer to the Behavioral Entry section of the XEPLD
Reference Guide for details on JEDEC input.

Some third-party PLD compilers produce PALASM-compatible
Boolean equation output files. Most PALASM equation syntax can be
read directly by the PLUSASM assembler. For example, the logic for
the PLD used in the UART design can be implemented using ABEL
syntax, as shown in Figure 16-12, and compiled by Xilinx ABEL or
ABEL to produce a formatted PLD equation file. You can read the
resulting rcvr.pld file directly using the Translate ➝ PLUSASM
command.
OrCAD Interface/Tutorial Guide 16-39

OrCAD Interface/Tutorial Guide
Step 3: Viewing the Reports
The following report files are produced by the FITNET command:

uart.err Fitter Error report

rcvr.err Assembler Error report

rcvr.lga Assembler Log report

uart.res Resource report

uart.map Mapping report

uart.pin Pinlist report

uart.lgc Logic Optimizer report

uart.par Partitioner report

View the reports that the Fitter generates using the Utilities Browse or
Utilities Edit command.

1. View the Fitter Error and Assembler Log reports if error or
warning messages appeared on the screen during fitting.

PLUSASM stores errors and warnings in a report file called
rcvr.err. PLUSASM also produces a detailed report of its results in
an assembler log file named rcvr.lga.

2. View the Resource report, uart.res.

The Resource report lists the amount of resources that were used
to implement the design. This report contains the total number of
macrocell and Function Block resources and I/O pins used on the
target device. These totals are subtracted from the total resources
of the device to give the amount of remaining resources available
to the designer.

3. View the Mapping report, uart.map.

The Mapping report lists each Function Block in the device and
details which component outputs were mapped to macrocells of
each Function Block. The Mapping report is used primarily for
design debugging and to assist manual mapping.

4. View the Pinlist report, uart.pin.

The Pinlist report provides you with chip pin placement
information. For each pin on the package, the Pinlist report
indicates the operation of the pin as used in the design and the
16-40 Xilinx Development System

XEPLD Tutorial
name of the signal in your design appearing on the pin. The signal
names in the Pinlist report are the labels you placed on the wires
connected to pad symbols in your schematic.

5. View the Logic Optimizer report, uart.lgc.

The Logic Optimizer report lists which inputs have been
collapsed into their fanouts and which outputs have been
optimized.

6. View the Partitioner report, uart.par.

The Partitioner report provides cross-reference tables showing the
allocation of all Function Block resources. This report provides
detailed information for optimizing your design and
manipulating chip resources.

Note: When you are using schematic capture, XEPLD uses the names
based on component reference designators passed to it from OrCAD.
Understanding these reports with OrCAD-assigned labels can be
very difficult. For this reason, you should provide unique reference
designators to components.

Step 4: Saving Pin Assignments
 Save the pin allocation information into a Pinsave file, uart.vmf, after
a successful fitting of your design.

1. Select Translate ➝ PINSAVE .

2. Select UART.VMH from the list of file names displayed.

This command preserves the saved pinout. In most cases, if you
make a design change or add more logic, you can re-use this
pinout assignment using the data saved in the VMF file.

A message similar to the following is displayed on your screen:
Writing pin allocation in c:\ORCAD\UART.VMF .

If you set the -f (Pin-freezing) option of the FITNET command to
On, the Fitter assigns listed pins to the locations indicated in the
Pinsave file before mapping any other logic or new pins. This
allows you to assign pins to the same positions with each iteration
of your design. The -f option is Off by default. Selecting -f
repeatedly before you select Done toggles the -f option On and
Off. The On or Off setting of this option is displayed in a status
OrCAD Interface/Tutorial Guide 16-41

OrCAD Interface/Tutorial Guide
line at the bottom of the XDM screen just above the command line.
The -f option only appears in the menu if one or more VMF files
exist in the project directory.

Step 5: Creating the Programming File
Since you did not select the “Make Intelhex bitmap” target when you
used the XEMake command, you must create a programming file.

1. Select Verify ➝ MAKEPRG.

2. Select UART.VMH from the list of file names displayed.

3. Enter a user signature string to be written into an inactive EPROM
area in the chip for identification purposes by typing uart ↵.

MAKEPRG creates a programming file, uart.prg.

If you installed the Xilinx HW120 programmer, PROLINK appears
under the XDM Verify menu. PROLINK is the control and interface
software used to download the programming file to the programmer.
Refer to the HW120 documentation for instructions.

You can also create a JEDEC programming file, required by other
third-party programmers, by selecting Verify ➝ MAKEJED ➝
UART.VMH.

Session 5: Simulating the Design
This session shows how to simulate the UART design. The following
tasks are explained in this session:

Step 1: Creating a Simulation Netlist

Step 2: Preparing Input Vectors

Step 3: Running the Simulation

Step 4: Viewing Simulation Results

Step 5: Correcting Vector Errors

Step 6: Adding a Signal to the Waveform Display
16-42 Xilinx Development System

XEPLD Tutorial
Step 1: Creating a Simulation Netlist
After fitting your design, you can create an OrCAD VST file for
timing simulation using a single command.

Creating a Timing Simulation Netlist Automatically

Translate your design automatically using the XSimMake program.

1. Select Verify ➝ XSIMMAKE.

2. Select the -F option and choose Orcad_Epld_Timing as the
flow to run, then select Done.

A list of available input files is displayed.

3. Select UART.VMH from the displayed list.

XSimMake invokes the XDM commands listed in the next section.

Creating a Timing Simulation Netlist Manually

Alternatively, you can invoke the individual commands to control
each step in the translation process. You do not need to select any
options for any of the commands.

The commands in this section are included for your information only;
you do not need to perform a manual translation.

1. Select Verify ➝ VMH2XNF ➝ UART.VMH.

2. Designate an output file name by typing simuart.xnf ↵.

3. Select Done.

This step creates a new XNF file that contains an image of the
EPLD device and its timing parameters.

4. Select Verify ➝ XNF2VST ➝ SIMUART.XNF ➝ New File .

5. Designate the output file name by typing uart.vst ↵.

6. Select Done.

This step creates a model, expressed as an OrCAD VST file, of an
EPLD device containing the UART design.

If you are already familiar with OrCAD’s simulator, you do not need
to complete the rest of the tutorial.
OrCAD Interface/Tutorial Guide 16-43

OrCAD Interface/Tutorial Guide
Step 2: Preparing Input Vectors
After you have prepared the VST file as described in the last step, you
are ready to enter OrCAD and run the simulation.

Entering the OrCAD Simulator

Use the XDM menus to access the OrCAD simulation software.

1. Select DesignEntry ➝ ORCAD.

2. Select Design Management Tools ➝ Execute from the main
menu.

3. In the directory listing on the left, select the UART directory and
click on the OK button.

4. Select Digital Simulation Tools ➝ Execute from the
main menu.

Configuring the OrCAD Simulator

Before simulating for the first time, you must configure your UART
design directory for simulation.

1. Select Simulate .

2. Select Local Configuration ➝ Configure SIMULATE .

Note: OrCAD’s configuration programs are memory intensive. If you
receive the message Could not find the .EXE, or not
enough memory to load \orcadexe\VST_CLC.EXE , return to
the XDM executive screen. Close XDM by typing exit ↵, type
orcad ↵, and continue the configuration as described in this section.
Type xdm↵ to return to XDM, re-enter OrCAD, and continue with the
tutorial.

3. Under File Options, click on the Connectivity database field,
type UART.VST in the box, and press Enter .

The File Options box appears as shown in Figure 16-13.

4. Make any necessary corrections to the file names in the box.

5. Under the Processing Options section, click on Use Delay
Annotation .

6. Click on the OK button.
16-44 Xilinx Development System

XEPLD Tutorial
Figure 16-13 File Options in the Configure Simulate Screen

Using the Stimulus Editor

OrCAD provides a stimulus editor that you can use to provide input
stimulus for your simulation.

1. Select Simulate ➝ Execute to begin your simulation session.

A waveform display appears. The display is blank except for a list
of signals on the left.

Two setup files determine which signals are on this list and the
waveforms of the inputs. To save you time following this tutorial,
we have provided these two setup files for you.

2. To view uart.stm, the stimulus setup file, select Edit Stimulus .

The Editing Stimulus will INITIALIZE simulator.
Continue? prompt appears.

3. Select Yes.

The Stimulus Editor screen of the uart.stm file appears as shown
in Figure 16-14.

4. Use the mouse or arrow keys to move the selection to SDIN.

SDIN is the input data stream.

5. Select Edit .

6. The Stimulus Detail Editor screen appears as shown in
Figure 16-15.

This screen determines the times at which the input stimulus
changes value. You will edit this screen later in the tutorial.

 File Options

Connectivity Database UART.VST

Stimulus File UART.STM

Trace File UART.TRC
OrCAD Interface/Tutorial Guide 16-45

OrCAD Interface/Tutorial Guide
Figure 16-14 Uart.stm File: Stimulus Editor

Figure 16-15 Uart.stm File: Stimulus Detail Editor Showing Data
Input

 STIMULUS EDITOR

Test Vectors : Disabled

Signal Context || Signal Name

1. .X4CLK

2. .CS

3. .RD

4. .SDIN

5. .PRLD

6. * Last Record *

 STIMULUS DETAIL EDITOR

Context : .

Signal Name : SDIN

Initial Value: 1

Time Function

 3500 0

 7500 1

 15500 0

 19500 1

 31500 0

 35500 1

 59500 0

 63500 1

 75500 0

 87500 1

 95500 0

 99500 1

 End Stimulus
16-46 Xilinx Development System

XEPLD Tutorial
7. Select Return to return to the Stimulus Editor screen.

8. Move the mouse or use the arrow keys to move the selection to
X4CLK, the clock input.

9. Select Edit .

The Stimulus Detail Editor screen appears as shown in
Figure 16-16.

The JMP 1500 function in the last line allows you to define a
repeating waveform without specifying the specific times at
which the input value changes.

10. Select Return to return to the Stimulus Editor screen.

11. Select Use Stimulus to return to the waveform screen and use
the contents of the stimulus file.

Figure 16-16 Uart.stm File: Stimulus Detail Editor Showing Clock
Input

Using the Trace Editor

OrCAD VST also includes a trace editor that you can use to provide a
list of signals to be monitored during simulation.

1. Select Trace ➝ Trace Edit to view uart.trc, the trace setup
file.

The uart.trc file is shown in Figure 16-17. This file lists the signals
that are displayed in the waveform display and determines their

 STIMULUS DETAIL EDITOR

Context : .

Signal Name : X4CLK

Initial Value: 1

Time Function

 1500 0

 2000 1

 2500 JMP 1500

 End Stimulus
OrCAD Interface/Tutorial Guide 16-47

OrCAD Interface/Tutorial Guide
display characteristics. The signal names displayed are aliases,
which you can change using the Trace Editor.

Figure 16-17 Uart.trc File

2. To view the information for the S.DATA.IN signal, select the
S.DATA.IN signal, then select Edit .

The screen shown in Figure 16-18 is displayed.

S.DATA.IN is an alias, or display name, that you can edit. The
actual signal name, SDIN, is listed in the Signal Name field.

You can use the Browse command to choose signals to add to the
Trace file. You will add a new signal to the Trace file later in this
tutorial.

 TRACE EDITOR

Display Name Type Trace Display

 1. PRLD Signal ON ON

 2. X4CLK Signal ON ON

 3. RD Signal ON ON

 4. CS Signal ON ON

 5. S.DATA.IN Signal ON ON

 6. START Signal ON ON

 7. BITCLK Signal ON ON

 8. BYTECLK Signal ON ON

 9. READY Signal ON ON

10. OVERRUN Signal ON ON

11. PARITY Signal ON ON

12. FRAMING Signal ON ON

13. D0 BinBus ON ON

14. D1 BinBus ON ON

15. D2 BinBus ON ON

16. D3 BinBus ON ON

17. D4 BinBus ON ON

18. D5 BinBus ON ON

19. D6 BinBus ON ON

20. D7 BinBus ON ON

21. * Last Record *
16-48 Xilinx Development System

XEPLD Tutorial
3. Select Return to return to the main screen of the Trace file.

4. Select Use Trace to return to the waveform screen and use the
defined set of signals.

Figure 16-18 Uart.trc File Showing Detail for One Signal

Step 3: Running the Simulation
The waveform screen only shows 100 time intervals on its X-axis at
the bottom of the graph. Each time interval is 0.1 nanoseconds.

1. To view more of the simulation at one time, select Trace ➝
Change View .

The Trace Delta Time? prompt appears.

2. Type 1100 ↵ at the prompt.

The waveform graph now shows 11,000 nanoseconds.

You are now ready to run the simulation.

3. Select Run Simulation .

The Simulation length? prompt appears.

4. Type 110000 ↵ at the prompt to simulate for 11,000 ns.

The simulation waveforms appear on the screen as shown in
Figure 16-19.

 TRACE EDITOR

Display Name : S.DATA.IN

Type : Signal

Trace : ON

Display : ON

Context : .

Signal Name : SDIN
OrCAD Interface/Tutorial Guide 16-49

OrCAD Interface/Tutorial Guide
Step 4: Viewing Simulation Results
Figure 16-19 shows the waveforms after simulation is complete.

Figure 16-19 UART Simulation Results

Note: This scale is not detailed enough to show all value changes for
BITCLK or for X4CLK, which changes four times as often as the
BITCLK signal; therefore, only random samples of these waveforms
are displayed. Zoom in with the Trace Change View command to see
the actual waveforms.

If only a portion of the waveforms is displayed, you can view a part
of the waveforms not currently visible by moving the mouse off the
edge of the screen.

To rerun a simulation, select Initialize ➝ Yes ➝ Run Simulation.
16-50 Xilinx Development System

XEPLD Tutorial
At about 9,600 nanoseconds, a parity error occurs, and at 10,200
nanoseconds a framing error occurs. These errors were deliberately
introduced to test whether the design could catch them.

In the next step, you alter the uart.stm file to correct the parity error.
You then modify the uart.trc file to add another signal to the
waveform display.

Step 5: Correcting Vector Errors
Edit the values in the uart.stm file to correct the parity error.

Identifying the Errors

The simulation waveforms show that a parity error occurred at
approximately 9,600 ns.

1. Look at the first series of bits in the S.DATA.IN stream of the
simulation.

The UART processed these bits without errors. The BITCLK signal
identifies the time at which these bits arrive in the S.DATA.IN
stream. The first bit is the start bit, and its value is 0. The parity is
even, so there are supposed to be an even number of 1s in each
group of 7 data bits. The first group contains six 1s. The last two
bits are the stop bits, which both have values of 1.

Note: Zoom in with the Trace Change View command to see all
transitions on the BITCLK waveform.

2. Compare the first series of bits to the second series, which
includes a 0 start bit, five 1s in the data bits, and stop bit values of
0 and 1.

Editing the Stimulus

Edit the uart.stm file to eliminate the parity error. You must change
the value of one bit. A good choice is the bit that corresponds to the
rising edge of BITCLK at 8200.0 ns.

1. Select Edit Stimulus .

The Editing Stimulus will INITIALIZE simulator.
Continue? prompt appears.
OrCAD Interface/Tutorial Guide 16-51

OrCAD Interface/Tutorial Guide
2. Select Yes .

The Stimulus Editor screen appears.

3. Move the selection to the SDIN signal and select Edit .

The Stimulus Detail Editor appears.

4. Move the selection to any of the values in the Time column and
select Add.

The Time of Function? prompt appears.

5. Type 80500 ↵.

The Function? prompt appears.

6. Select 1 to insert a rising edge.

7. Repeat this procedure to return SDIN to 0 at time 83500.

8. Select Return ➝ Use Stimulus to return to the waveform
graph.

9. Select Run Simulation and type 110000 ↵ to simulate for
11,000 ns.

The Parity error has disappeared, but the Framing error remains,
as shown in Figure 16-20. You can eliminate the framing error as
well, if you wish, by deleting the Stimulus Detail Editor entry that
sets the S.DATA.IN value to 0 at time 95500.
16-52 Xilinx Development System

XEPLD Tutorial
Figure 16-20 Elimination of the Parity Error

Step 6: Adding a Signal to the Waveform Display
You can add a signal to the waveform display. To add the C0 signal,
follow these steps:

1. Select Trace ➝ Trace Edit .

2. Select Add.

The Trace Editor screen appears as shown in Figure 16-21. The
Display Name field is automatically selected.
OrCAD Interface/Tutorial Guide 16-53

OrCAD Interface/Tutorial Guide
Figure 16-21 Uart.trc File: Trace Editor

3. Select Edit and type C0↵.

4. Move the selection to the Signal Name field.

5. Select Browse .

All the signals in the design are listed.

6. Use the PageDown key to scroll down the list until you see the
C0_1 signal.

Note: Alternatively, you can type c to tab to the first signal name
beginning with C.

The internal wire originally labeled C0 appears as C0_1 in the
Trace Editor.

7. Select the C0_1 signal.

8. Select Return ➝ Use Trace to return to the waveform screen.

9. Select Initialize ➝ Yes .

10. Select Run Simulation and type 110000 ↵.

The simulation waveforms appear as shown in Figure 16-22.

11. After examining the simulation output, select Quit ➝ Abandon
Simulation ➝ Yes to return to the Digital Simulation Tools
screen.

12. Select To Main ➝ Execute to return to the OrCAD ESP screen.

 TRACE EDITOR

Display Name :

Type : Signal

Trace : ON

Display : ON

Context : .

Signal Name :
16-54 Xilinx Development System

XEPLD Tutorial
Figure 16-22 Addition of the C0 Signal

Session 6: Functionally Simulating a Purely
Schematic Design

This session uses a version of the UART design in which the PL22V10
has been replaced with a lower-level schematic, which represents the
RCVR function and has the same logic as the rcvr.pld file. This
session also outlines the steps for functional simulation, which you
can only perform for a purely schematic design.

Step 1: Copying the UART Design

Step 2: Creating a Custom Sheet Symbol

Step 3: Creating the Lower-Level Schematic
OrCAD Interface/Tutorial Guide 16-55

OrCAD Interface/Tutorial Guide
Step 4: Performing a Functional Simulation

Step 5: Exiting OrCAD and XDM

Step 1: Copying the UART Design
Create a new design directory for the purely schematic UART design.

Creating the Uarttop Design Directory

Use the Design Management Tools to create the new design directory.

1. Select DesignEntry ➝ ORCAD from the XDM menus if you are
not already in the OrCAD ESP environment.

2. Select Design Management Tools ➝ Execute .

A dialog box with directories listed on the left, design files listed
on the right, and a group of buttons at the bottom appears.

3. Select the UART directory from the list on the left, if it is not
already selected.

4. Click on the Copy Design button.

The Copy Design dialog box appears.

5. Click on the Destination design box.

6. When a small white square appears in the box, type uarttop ↵.

7. Click on the OK button.

The new design directory is created.

8. Click on Cancel to return to the Design Management Tools
screen.

9. Select UARTTOP from the list of directories on the left to designate
the new design directory.

Copying the Design Files

The completed Uarttop design provided with the Xilinx OrCAD
library is installed under the XACT directory. Copy it into your new
uarttop design directory so you can view it, as follows:
16-56 Xilinx Development System

XEPLD Tutorial
1. While in the Design Management Tools dialog box, click on
Suspend to System to open a DOS shell with the uarttop
design directory as your current directory.

Copy the entire contents of the installed uarttop tutorial directory,
c:\xact\tutorial\orcad\uarttop, into your new tutorial directory,
\orcad\uarttop.

2. Type copy c:\xact\tutorial\orcad\uarttop ↵.

Also copy the uart.sch file from the uart design directory.

3. Type copy ..\uart\uart.sch ↵.

4. Type exit ↵ to return to OrCAD.

5. Click on the OK button to return to the ESP menu.

Step 2: Creating a Custom Sheet Symbol
You can create your own sheet symbols, symbols that represent
lower-level schematics. Under these sheet symbols, you can build
other schematics. Creating a design with multiple levels allows you
to focus on specific parts of the design rather than trying to
understand the entire design all at once.

You can either use the uarttop.sch file provided or create your own
by creating a custom sheet in the uart.sch file. To create a custom
sheet, follow these steps:

1. Select Schematic Design Tools ➝ Execute ➝ Draft ➝
Execute to open the schematic editor, Draft.

2. Select Quit ➝ Initialize and type uart ↵ to edit the UART
schematic.

3. Delete the PL22V10 component by selecting Delete ➝ Object ,
moving the cursor over the PL22V10 component, and selecting
the Delete submenu command.

4. Click the right mouse button or press the Escape key to exit the
Delete command.

5. Select Place ➝ Sheet . Use the mouse and the Begin and End
menu selections to draw a sheet whose edges touch all the nets
that were connected to the PL22V10. Make sure the sheet extends
OrCAD Interface/Tutorial Guide 16-57

OrCAD Interface/Tutorial Guide
at least one grid unit higher than the highest net and one grid unit
lower than the lowest net.

Note: You can stop and then resume editing the sheet symbol if you
are interrupted while following this tutorial. To resume editing, place
the cursor on the sheet symbol and select Edit ➝ Edit .

6. Select the Filename command from the Place Sheet menu, and
type rcvrsub.sch ↵ when prompted for a file name.

7. Select the Name command from the Place Sheet menu, and type
Controller ↵ when prompted for a sheet name.

8. Select the Add-Net command. Type X4CLK↵ when prompted for
a name, and select Input for the net type. Place this input even
with the top net on the left side of the sheet.

9. Repeat the last step for the following nets, in order, from top to
bottom on the left side of the sheet: C0 - C5, READ, SDIN, and D0.
Refer to Figure 16-23 as a guide.

Align these inputs with the input nets. If you make a mistake,
delete the input and add it again. You cannot move an input pin
once you have created it.

10. Select the Add-Net command. Type READY↵ when prompted for
a name, and select Output for the net type. Place this output even
with the top net on the right side of the sheet.

11. Repeat the last step for the following nets, in order, from top to
bottom on the right side of the sheet: OVERUN, PARITY,
FRAMING, BYTECLK, BITCLK, and START. Refer to Figure 16-23
as a guide.

Align these outputs with the output nets. If you make a mistake,
delete the output and add it again. You cannot move an output
pin once you have created it.

12. Select Quit ➝ Write to File and type uarttop.sch ↵ when
prompted for a file name.

You have created the RCVRSUB sheet symbol. The UARTTOP
schematic appears as shown in Figure 16-23.
16-58 Xilinx Development System

XEPLD Tutorial
Figure 16-23 UART Schematic with RCVRSUB Sheet Symbol

Date: January 12, 1994 Sheet of 2

Size Document Number REV

A

Title

UART Receiver Schematic

EPLD Tutorial Design

Xilinx

O0
O1
O2
O3
O4
O5
O6
O7

U?

OPAD8

READY
OVERUN
PARITY

I0
I1
I2
I3
I4
I5
I6
I7

O0
O1
O2
O3
O4
O5
O6
O7

U?

OBUF8

Controller

rcvrsub.sch

X4CLK
C0
C1
C2
C3
C4
C5
READ

D0

READY
OVERUN
PARITY
FRAMING

BYTECLK
BITCLK
STARTSDIN

C0
C1
C2

CE
C
R

Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
CEO
TC

FREQ_DIVIDER

CB8RE

U?
VCC

C3
C4
C5

D0
ISDIN
READ

FRAMING

BYTECLK
BITCLK
START

U?

IOPAD

ISTART
U?

INV
U?

BUFG

U?

IPAD

X4CLK

U?

IPAD

RD
U?

IBUF

READ_EN?

AND2B2

READ
U?

OBUF

U?

BUFFOE

DOE

O0
O1
O2
O3
O4
O5
O6
O7

U?

OPAD8

E

I0
I1
I2
I3
I4
I5
I6
I7

O0
O1
O2
O3
O4
O5
O6
O7

U?

OBUFE8X1

DOUT1
DOUT2

DOUT0D0
D1
D2
D3
D4
D5
D6
D7

C

Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7

OUTPUT_REG?

FD8

D0
D1
D2

A
B

CK

CLR

QA
QB
QC
QD
QE
QF
QG
QH

DESERIALIZER?

X74_164

U?

IBUF

U?

IBUF

ISDIN

U?

IPAD

U?

IPAD

CS

SDIN

D3
D4
D5
D6
D7

DOUT3
DOUT4
DOUT5
DOUT6
DOUT7

|PARTTYPE=7354-12PC68

|GLOBAL
|PRELOAD_OPT=OFF
OrCAD Interface/Tutorial Guide 16-59

OrCAD Interface/Tutorial Guide
Step 3: Creating the Lower-Level Schematic
Next, you create the lower-level schematic. To save you time in this
tutorial, this file is provided for you.

To view the RCVRSUB schematic, follow these steps:

1. Place the cursor on top of the RCVRSUB sheet symbol.

2. Select Quit ➝ Enter Sheet ➝ Enter .

A schematic sheet named rcvrsub.sch opens, as shown in
Figure 16-24 below.

The only components it contains are INV, OR2, NOR2, OR3, FD,
and ANDn, where n is a number between 2 and 9 that indicates
the number of inputs.

The module ports, which match inputs and outputs in the lower-
level schematic to the pins in the sheet, were placed using the
Place Module Port Place command. This command prompts you
for the name of the module port, which must match a pin name in
the sheet.

3. Select Quit ➝ Leave Sheet to return to the UART schematic.

4. Select Abandon Edits to return to the Schematic Design Tools
screen.
16-60 Xilinx Development System

XEPLD Tutorial
Figure 16-24 RCVRSUB Schematic

START
START

U24

FD

U90

NOR2

U20

AND6

U21

AND2

U27

INV

U28

INVU29

INV

U91

INV

OPT=OFF

X4CLK
X4CLK

C0

C1

C0

c1

U22

AND3

U23

AND7

U30

INV

U31

INV

U32

INV
U33

INV

U34

INV

U35

INV
U36

INV

U37

AND3

U40

INV

U25

FD

U26

FD

BITCLK

BYTECLK

BITCLK

BYTECLK

U43

OR3

U44

FD

U38

AND3

U39

AND4

U41

INV

U42

INV

C2

C3

C4

C5

C2

C3

C4

C5

READ
READ

U45

AND2

U46

AND7

U47

AND7

U49

INV
U50

INV

U51

INV

U52

INV

U53

INV
U54

INV

U55

INV

U86

INV

U58

OR2

U59

OR2

U60

FD

U61

FD

OVERUN
OVERUN

PARITY
PARITY

U64

OR3

U48

AND2

U56

INV

U57

AND7

U62

AND7

U66

INV

U67

INV

U68

INV
U69

INV
U70

INVU71

INV

U72

INV

U73

INV

U87

INV

SDIN
SDIN

D0
D0

U63

AND2

U74

INV
U75

INV

U76

AND9

U80

INV

U81

INV
U82

INV
U83

INV

U84

INV

U85

INV

U88

INV

U65

FD

U78

OR2

U79

FD

FRAMING

READY

FRAMING

READY

U77

AND2

U89

INV
OrCAD Interface/Tutorial Guide 16-61

OrCAD Interface/Tutorial Guide
Step 4: Performing a Functional Simulation
To perform a functional simulation in OrCAD, follow the steps below.

1. Select To Main ➝ Execute ➝ Exit ESP ➝ Execute to exit
OrCAD and return to XDM.

2. Click on the Directory field in XDM and select
C:\ORCAD\UARTTOP ➝ Done .

3. Ensure that the Family and Part fields in XDM are set to XC7300
and InDesign.

4. Select Verify ➝ XSIMMAKE ➝ -F .

5. Select Orcad_Epld_Func as the flow to run, then select Done.

6. Select UARTTOP.SCH from the displayed list.

7. Re-enter OrCAD and run the simulation as described in Session 5,
Steps 2 through 6. Be sure to configure the simulator not to use
Delay Annotation, or an error will occur when you enter the
simulator.

Step 5: Exiting OrCAD and XDM
Return to the DOS prompt as follows:

1. To exit VST, select Quit ➝ Abandon Simulation ➝ Yes .

2. To exit OrCAD, select To Main ➝ Execute , then select Exit
ESP ➝ Execute .

3. To end your XDM session, select Quit from the XDM menu.

You have now completed the XEPLD OrCAD Tutorial.
16-62 Xilinx Development System

Program Options

OrCAD
Interface/
Tutorial
Guide
OrCAD Interface/Tutorial Guide — 0401409 01 Printed in U.S.A.

OrCAD Interface/Tutorial Guide
Xilinx Development System

Appendix A

Program Options

This Appendix contains all the program options available for XDraft,
SDT2XNF, and XNF2VST.

XDraft
Usage: xdraft number [-options]↵

where number represents the architecture of the family being targeted:
2, 3, 4, or 7.

Options

-l — Old library option

-s — SDT configuration only

-v — VST configuration only

-x — XACT path

SDT2XNF
Usage: sdt2xnf inffile[.inf] [xnffile[.xnf]] [-options]↵

inffile— Input INF file

xnffile — Output XNF file

Options

-d — Output directory for XNF files

-p parttype — Part type used

-s path — Search path for Xilinx-defined INF files

-u path — Search path for user-defined INF files
OrCAD Interface/Tutorial Guide — 0401409 01 A-1

OrCAD Interface/Tutorial Guide
XNF2VST
Usage: xnf2vst xnffile[.xnf] [vstfile[.vst]] [-options]↵

xnffile — Input XNF file

vstfile — Output VST file

Options

-r — Read existing Name Reference File (NRF) file

-u — Unit delay option

-w — Overwrite existing AST and ATR files

-x path — XACT path

Note: For more information, enter the program name at the DOS
prompt and press Enter.
A-2 Xilinx Development System

Error Messages

OrCAD
Interface/
Tutorial
Guide
OrCAD Interface/Tutorial Guide — 0401409 01 Printed in U.S.A.

OrCAD Interface/Tutorial Guide
Xilinx Development System

Appendix B

Error Messages

XDRAFT (XCFG)
This section lists the error messages for XDraft.

ERROR 001: The command-line options S and V
cannot be both true at the same time.

ERROR 002: The XACT environment variable is not
set.

The variable needs to point to the directory where the XACT
software is installed. Typically, it should be SET XACT=c:\xact .

ERROR 003: The XACT path path is not set up
properly or the Xilinx DS35 OrCAD interface is
not installed in the XACT path.

The XACT variable should be pointing to a valid location,
typically the XACT directory.

ERROR 004: Invalid directory path dirpath is
detected.

ERROR 005: A command syntax error was detected at
linenum linenum of the file filename.

Your sdt.cfg or vst.cfg file is corrupted or contains syntax that is
not recognized by XDraft. Check the content of these files.
OrCAD Interface/Tutorial Guide — 0401409 01 B-1

OrCAD Interface/Tutorial Guide
SDT2XNF (INF2XNF)
This section lists the error messages for SDT2XNF.

ERROR 001: An internal program error occurred,
code code.

Your sdt.cfg file might be corrupted. You can rectify this situation
by copying the sdt.cfg file from the template directory and
rerunning XDraft.

ERROR 002: The root INF file was not specified
from the command line.

ERROR 003: An invalid file extension was
specified with the file filename.

SDT2XNF should be invoked on INF files.

ERROR 004: A non-existent file filename was
specified.

ERROR 005: A non-readable file filename was
specified.

Check the “read” permission of the specified INF file.

ERROR 006: A non-writable file filename was
specified.

There might exist an output file that does not have any write
permission.

ERROR 007: A non-existent directory dirname was
specified.

 If the SDT2XNF command is invoked with the “-s” option, make
sure that the specified directory exists.

ERROR 008: A command syntax error was detected at
line number linenum of the INF file filename.

ERROR 009: An invalid part type parttype was
specified in the root INF file filename.

You might have specified a part type that does not exist. Check the
part type and try again.
B-2 Xilinx Development System

Error Messages
ERROR 010: Invalid part type parttype was specified
from the command line.

ERROR 011: A syntax error in the part type
specification parttypespec was detected.

Make sure you have specified a part type in your schematic.
Examples of proper syntax include |PARTTYPE=4005PC84 or
|PART=4005PC84-6.

ERROR 012: Failed to add the user record username
of value uservalue.

ERROR 013: The XACT environment variable is not
set.

The variable needs to point to the directory where the XACT
software is installed. Typically, it should be SET XACT=c:\xact .

ERROR 014: The Xilinx DS35 OrCAD interface is not
installed or the XACT path is not set up
properly.

Make sure the XACT environment variable is pointing to the
proper directory. The default is where your XACT software is
installed.

ERROR 015: No default Xilinx OrCAD family library
was found under the path xactpath.

ERROR 016: Failed to open the file filename for
reading.

Make sure all the schematic files have “read” permissions.

ERROR 017: Failed to create the xnf cell
xnfcellname.

ERROR 018: Failed to get the next INF command at
line number linenum in the INF file filename.

Your INF file might be corrupted. Try running INET with option
 /t on your schematic, then try SDT2XNF again.

ERROR 019: Failed to add the signal signame at
line number linenum in the INF file filename.

ERROR 020: Failed to find the signal signame.
OrCAD Interface/Tutorial Guide B-3

OrCAD Interface/Tutorial Guide
ERROR 021: Failed to add the symbol symname of
type symtype at linenum linenum in the INF file
filename.

ERROR 022: Failed to add parameter paramname to
the symbol symname at line number linenum in the
INF file filename.

ERROR 023: Failed to add user parameter
userparamname to the symbol symname at line number
linenum in the INF file filename.

ERROR 024: Failed to add the loc specification
loc_spec on the symbol symname.

ERROR 025: Failed to add the signal signame to the
XNF network structure at line number linenum in
the INF file filename.

ERROR 026: Failed to add the external I/O for the
signal signame of type type to the XNF file at line
number linenum in the INF file filename.

This situation arises when there might be more than one source to
a net. Check your schematic and try again.

ERROR 027: Program internal parsing error at line
mumber linenum.

ERROR 028: An invalid INF command line was
detected at line number linenum of the file filename.

The INF file contains characters that are not understood by
SDT2XNF. You either need to correct this problem or generate an
INF file again by running the INET program.

ERROR 029: No source was found on the joint
statement at line number linenum in the INF file
filename.

ERROR 030: Multiple sources were found on the
joint statement at line number linenum in the INF
file filename.
B-4 Xilinx Development System

Error Messages
ERROR 031: The symbol symname was not found in the
XNF file when processing the command command.

Your INF file is missing an instance of a symbol or it might be
corrupted. Regenerate the INF file by running the INET program.

ERROR 032: Failed to add pin pinname of type pintype
on the signal signame to the symbol symname.

There might be a duplicate reference designator and a duplicate
net in the INF file or the INF file might be corrupt. First check the
schematic file (SCH) and remove the duplicate symbol and net if
they are present. Regenerate the INF file by running the INET
program.

XNF2VST (XNF2INF)
This section lists the error messages for XNF2VST.

ERROR 001: The XNF file was not specified from
the command line.

ERROR 002: An invalid file extension was detected
with the file filename. The valid file extensions
are ".xnf", ".xff", ".xg".

ERROR 003: A non-existent file filename was
detected.

ERROR 004: A non-readable file filename wasx
detected. Check the “read” permission of your
input filename.

ERROR 005: A non-writable file filename was
detected. Check the “write” permission of the
output filename.

ERROR 006: Failed to create the XNF data cell
xnfcellname. This can be an indication of a symbol
error.

If your design includes setup/hold timing information, check to
make sure that the input file includes that timing.

ERROR 007: No part type was specified in the XNF
file filename.
OrCAD Interface/Tutorial Guide B-5

OrCAD Interface/Tutorial Guide
ERROR 008: An invalid part type parttype was
specified in the XNF file filename.

ERROR 009: The XACT environment variable is not
set.

The variable needs to point to the directory where the XACT
software is installed. Typically, it should be SET XACT=c:\xact .

ERROR 010: The Xilinx DS35 OrCAD interface is not
installed or the XACT path is not set up
properly.

Make sure the XACT environment variable is pointing to the
proper directory. The default is where your XACT software is
installed.

ERROR 011: An invalid directory path dirpath was
detected.

ERROR 012: A duplicate symbol symname of type
symtypename was detected.

ERROR 013: Failed to create the symbol symname of
type symtypename.

ERROR 014: Failed to create the signal signame.

ERROR 015: Failed to create the pin pinname of
type pintype on the signal signame of the symbol
symname.

ERROR 016: Failed to find the input pin inpinname
or the clock pin clkpinname for the setup record on
the symbol symname of type symtypename.

ERROR 017: Failed to create setup on the symbol
symname of type symtypename.

ERROR 018: Failed to create the external name
extname of type exttype.

ERROR 019: Failed to create a parameter name
paramname with the value paramvalue on the symbol
symname of type symtypename.
B-6 Xilinx Development System

Error Messages
ERROR 020: Failed to create a parameter name
paramname with the value paramvalue on the pin
pinname.

ERROR 021: Failed to create a parameter name
paramname with the value paramvalue on the signal
signame.

ERROR 022: A pin pinname is invalid on the symbol
symname of type symtypename.

Your input file might be corrupted. Re-create it and then run
XNF2VST again.

ERROR 023: A command syntax error was detected at
line number linenum of the NRF file filename.

Your NRF file might be corrupted or missing an argument. If there
is a variable $number=signalname, make sure that signalname
exists.

ERROR 024: A syntax error was detected in the
stimulus specification stmspec for signal signame.

Check the stimulus data on your schematic. It might contain
illegal syntax.

ERROR 025: Sym symname of type symtypename has only
one input connected.

ERROR 026: There is no initial value for the
symbol symname of type symtypename.

You must define an “INIT” value for your ROM on the schematic.

ERROR 027: There is an illegal initial value
initvalue for the symbol symname of type symtypename.

The “INIT” value on your ROM might be too long for its size.

ERROR 028: There is an illegal hex value initvalue
for the symbol symname of type symtypename.

Check the syntax of the “INIT” value on the ROM part of the
schematic.
OrCAD Interface/Tutorial Guide B-7

OrCAD Interface/Tutorial Guide
ERROR 029: Some symbols have the LIBVER parameter
and some do not. A LIBVER parameter indicates
that the symbol is from the Unified Libraries.

Your design contains symbols from both the Unified Libraries and
the older libraries. You cannot mix the two symbol types in the
same design.
B-8 Xilinx Development System

Warning Messages

OrCAD
Interface/
Tutorial
Guide
OrCAD Interface/Tutorial Guide — 0401409 01 Printed in U.S.A.

OrCAD Interface/Tutorial Guide
Xilinx Development System

Appendix C

Warning Messages

XDRAFT (XCFG)
This section lists the earning messages for XDraft.

WARNING 001: The Xilinx family was not specified
from the command line.

WARNING 002: An invalid Xilinx device family was
specified from the command line. The valid
families are 2 (XC2000), 3 (XC3000), 4 (XC4000),
and 7 (7000).

WARNING 003: Could not find the OrCAD
configuration file filename in the current
directory.

WARNING 004: The OrCAD configuration file filename
is not readable.

Check the “read” permission on the configuration file.

WARNING 005: Failed to open the file filename.

Check the permission of the configuration files or the directory
where these files are located.

WARNING 006: No SDT configuration is performed.

WARNING 007: No VST configuration is performed.

WARNING 008: Failed to create the new SDT
configuration file sdt.cfg. The new SDT
configuration file is called xcfg.sdt.

Check the permissions on the sdt.cfg file.
OrCAD Interface/Tutorial Guide — 0401409 01 C-1

OrCAD Interface/Tutorial Guide
WARNING 009: Failed to create the new VST
configuration file vst.cfg. The new VST
configuration file is called xcfg.vst.

Check the permissions on the vst.cfg file.

SDT2XNF (INF2XNF)
This section lists the warning messages for SDT2XNF.

WARNING 001: The part type was either not
specified on the command line or in the schematic
or it conflicts with the SDT library used in the
design, the default part type defaultpart is being
used.

WARNING 002: Syntax error in parameter
specification; it will be ignored.

WARNING 003: An unknown primitive or macro
symbolname was found. If this is a user-created
macro, make sure that a corresponding INF file
exists.

The INF file might be corrupted. Try to regenerate the INF file.

WARNING 004: You might have mixed the old and new
SDT libraries together, which is not allowed. If
you ignore this warning, the output of this
program is unpredictable.

The SDT configuration file should contain only one type of library,
with only one “PLIB” statement.

WARNING 005: Illegal parameter specification
param_spec at line number linenum in the INF file
filename.

WARNING 006: Failed to add loc parameter locparam
to the external I/O.

Check the syntax of the parameters you specified on the
designated external record.

WARNING 007: Failed to add parameter paramname of
value paramvalue to the external I/O.
C-2 Xilinx Development System

Warning Messages
WARNING 008: Failed to add user parameter
paramname of value paramvalue to the external
I/O.

WARNING 009: Failed to add the parameter paramname
to pin pinname of type pintype on symbol symname.

WARNING 010: The INF vector statement is not
supported; therefore, it will be ignored.

WARNING 011: All pins on the symbol symname of
type symtypename are unconnected and the symbol
will be removed.

You might have inserted a component in the schematic with no
connections to it. If there is no connection to a component, the
symbol is ignored. Even if the component appears to be
connected, it may not be. Run Cleanup to adjust wire endpoints.

WARNING 012: The stimulus specified on the bus
busname is not supported; therefore, it will be
ignored.

WARNING 013: The stimulus specified on the pin
pinname of symbol symname will be ignored. Please
make sure that the net to which the stimulus was
attached is labeled.

WARNING 014: The parttype was not specified
either from the command line or in the root INF
file.

WARNING 015: The trace specified on the bus
busname is not supported; therefore, it will be
ignored.

WARNING 016: The trace specified on the pin
pinname of symbol symname will be ignored. Make
sure that the net to which the trace was attached
is labeled.
OrCAD Interface/Tutorial Guide C-3

OrCAD Interface/Tutorial Guide
XNF2VST (XNF2INF)
This section lists the warning messages for XNF2VST.

WARNING 001: The GTS pin is not connected on the
4K STARTUP symbol.

WARNING 002: The GSR pin is not connected on the
4K STARTUP symbol.

WARNING 003: Failed to find the signal name
signame in the NRF file.

Either check your NRF file again for the proper syntax, or try
executing the XNF2VST command without the “-r” parameter.

WARNING 004: Failed to find the symbol name
symname.

WARNING 005: The name name is longer than length
characters at line number linenum of the file
filename.

WARNING 006: The pin pinname on symbol symname of
type symtype is not connected. It is assumed to be
inactive.

WARNING 007: No setup or hold information was
found for the pin pinname on the symbol symname of
type symtype.

WARNING 008: Timing delay translation was
specified, but no delay information was found.
The DBA file is invalid for timing simulation.

WARNING 009: A non-simulatable symbol symname of
type symtypename was found. The netlist might be
invalid for simulation.
C-4 Xilinx Development System

OrCAD XEPLD
Demonstration Procedure

OrCAD
Interface/
Tutorial
Guide
OrCAD Interface/Tutorial Guide — 0401409 01 Printed in U.S.A.

OrCAD Interface/Tutorial Guide
Xilinx Development System

Appendix D

OrCAD XEPLD Demonstration Procedure

This appendix summarizes the steps needed to run through the entire
EPLD tutorial as a demonstration. These steps are described fully in
the XEPLD tutorial chapter. This demonstration procedure assumes
that you have completely installed and configured the XEPLD
implementation software (DS550 or DS502), the OrCAD Library and
Interface (DS35), and the OrCAD SDT, VST, and ESP tool sets.

Entering XDM and OrCAD
1. Type xdm ↵ at the DOS prompt.

2. In XDM, select Family ➝ XC7300 ➝ InDesign .

3. Select DesignEntry ➝ ORCAD.

The OrCAD ESP menu appears.

4. Select Design Management Tools ➝ Execute .

Configuring the Design Directory
Execute these commands the first time that you perform the tutorial:

1. Select Create Design ➝ New Design Name , type uart ↵,
and select OK.

2. Select Suspend to System .

3. To copy the tutorial files from the XACT installation area, type the
following at the DOS prompt:

copy \xact\tutorial\orcad\uart ↵

Adjust the directory path in the copy command if you installed
the OrCAD interface to a directory other than \xact.
OrCAD Interface/Tutorial Guide — 0401409 01 D-1

OrCAD Interface/Tutorial Guide
4. Type xdraft 7 ↵ to configure the XC7000 library.

5. Type exit ↵ to return to OrCAD.

Examining the UART Schematic
1. Select the UART directory and click on the OK button.

2. Select Schematic Design Tools ➝ Execute .

3. Select Draft ➝ Execute .

The UART schematic appears; examine it as you wish.

4. Select Quit ➝ Abandon Edits to close the UART schematic.

5. To exit OrCAD, select To Main ➝ Execute , then select
Exit ESP ➝ Execute .

Examining the PLD File
1. Select Directory ➝ C:\ORCAD\UART ➝ Done .

You might need to traverse several directories to find
\orcad\uart.

2. To display the contents of the rcvr.pld file, select Utilities ➝
Browse ➝ RCVR.PLD.

Examine the contents of the rcvr.pld file

3. Exit the browser by selecting File ➝ Exit .

Implementing the Design
1. Select Translate ➝ XEMAKE ➝ Done.

2. Select UART.SCH from the list.

3. Select the Make design data base target.

The schematic is read and the design is mapped into an XC7354
device.

4. Select Verify ➝ MAKEPRG➝ UART.VMH to create a
programming file.

5. Enter uart ↵ as the signature.
D-2 Xilinx Development System

OrCAD XEPLD Demonstration Procedure
Creating a Simulation Netlist
1. Select Verify ➝ XSIMMAKE.

2. Select -F ➝ Orcad_Epld_Timing ➝ Done .

3. Select UART.VMH from the list.

A timing simulation model is generated.

4. Select DesignEntry ➝ ORCAD on the XDM menu.

5. Select Design Management Tools ➝ Execute .

6. Select the UART directory and click on the OK button.

7. Click on Digital Simulation Tools ➝ Execute .

Configuring the Simulator
Execute these commands the first time you perform the simulation:

1. Select Simulate ➝ Local Configuration ➝ Configure
SIMULATE.

2. Click on the Connectivity database field, type uart.vst ↵
in the box.

3. Ensure that the stimulus and trace files are set to uart.stm and
uart.trc.

4. Click on the Use Delay Annotation button.

5. Click on OK.

Simulating the Design
1. Select Simulate ➝ Execute to begin your simulation session.

2. Select Trace ➝ Change View ; enter 1100 ↵ as the Trace Delta
Time.

3. Select Run Simulation ; enter 110000 ↵ as the Simulation
Length.

Simulation waveforms appear.

4. Select Quit ➝ Abandon Simulation ➝ Yes to return to the
Digital Simulation Tools menu.
OrCAD Interface/Tutorial Guide D-3

OrCAD Interface/Tutorial Guide
5. To exit OrCAD, select To Main ➝ Execute , then select Exit
ESP ➝ Execute .

6. To exit XDM, select Quit from the menu.
D-4 Xilinx Development System

Index

OrCAD
Interface/
Tutorial
Guide
OrCAD Interface/Tutorial Guide — 0401409 01 Printed in U.S.A.

OrCAD Interface/Tutorial Guide
Xilinx Development System

Index
A
ABEL, see Xilinx ABEL
ABL2XNF program

Compiling Xilinx ABEL file, 14-10
Add

Add signals to waveform, 16-53
Default timing specifications, 15-12
Junctions, 16-21
Signals, 16-28
Stimulus editor, 12-21
Stimulus to schematic, 12-6
Trace to schematic, 12-6
X-BLOX bus, 13-5
X-BLOX module, 13-3

Aliases
 see also NRF file
Recycled aliases, 10-24
Signal name aliases, 12-14

Analyze
Mode for XDelay, 15-37

Annotate program, 3-8, 10-4
ASCTOVST program, 10-25, 12-17
AST file, 6-4, 8-4, 10-20
ATR file, 6-4, 8-4, 10-20
Attributes

see also Symbol, Signal attributes
Adding, 4-3, 4-7, 16-25
EPLD attributes

CLOCK_OPT, 5-22
Component, 5-16
FOE_OPT, 5-22
Global, 5-16

LOGIC_OPT, 5-21
LOWPWR=ALL, 5-21
MINIMIZE, 5-21
MRINPUT, 5-21
Parttype, 5-16
PRELOAD_OPT, 5-22
REG_OPT, 5-22
Signal, 5-16
UIM_OPT, 5-21

FPGA attributes
External I/O, 4-4
PARTTYPE, 4-9
Pin, 4-3
Signal, 4-5
Symbol, 4-4
Table of, 4-13
TIMEGRP, 4-8
TIMESPEC, 4-7
TNM, 4-9, 15-11
User, 4-6

Net attributes
Adding, 11-55

Parttype, 11-53
Autoexec.bat file, 2-4
Automatic translation

EPLD implementation, 7-7
FPGA implementation, 7-4
Functional simulation, 6-1
Timing simulation, 8-1
XEMake
OrCAD Interface/Tutorial Guide — 0401409 01 i

OrCAD Interface/Tutorial Guide
Command summary, 7-10
Flow chart, 7-8
Subprograms, 7-10

XMake
Command summary, 7-6
Flow chart, 7-3
Subprograms, 7-6, 8-5

XSimMake
Subprograms, 8-5

B
BASE field, 4-11
Bidirectional I/O pin, 5-5
BIT file, 7-1
Bitstream

Downloading to an FPGA, 11-91
BLKNM attribute, 4-14
Block

Export, 11-41
Import, 11-42

Block Name (BLKNM) field, 4-11
Bus

Naming buses, 11-34
Placing buses, 11-28, 11-40
X-BLOX buses, 13-6

C
CAP attribute, 4-14
Checking schematics, 16-36
CLB primitives

Functional simulation, 10-13
Cleanup utility, 11-70, 15-27
CLOCK_OPT attribute, 5-22
CMOS attribute, 4-14
Commands, 11-13

Entering commands, 11-13
Summaries, 11-102

Component attributes, 5-16
Components

Enter, 16-15
Label, 16-21

Move, 16-15
Place, 16-15

CONFIG field, 4-11
Config.sys file, 2-4
Configuration

Design directory, 2-7
OrCAD/ESP, 2-6
VST386+, 12-4, 12-18

Connectivity database extension,
16-44

XDM, 11-69
XEPLD environment, 16-9
XMake

Incremental design, 11-98
Connectivity database extension, 16-44
Constraints flags, 4-18
CONT field, 4-11
Conversion, see Translation
Coordinates

Enabling X and Y, 11-21
Copy

Library symbols, 11-38
Creating a design file

Creating a design directory, 2-6
Entering the Draft editor, 2-15
Hierarchical symbols

Sheet path part, 3-7
Sheet symbol, 3-6

Naming conventions, 3-1
Naming nets and subnets, 3-2

Schematic, 11-37, 16-10, 16-14
Critical flag, 4-18

D
DBA file, 10-21
Debug

Functional simulation, 12-23
DECODE attribute, 4-14
DEF attribute, 4-14
Design

Design check, 11-67
ii Xilinx Development System

Index
Design directory creation, 2-6
Design entry

Tutorial, 11-1
Downloading to an FPGA, 11-91
Incremental design, 11-95
Testing the design, 11-92

Design flow, 1-1
Functional simulation, 10-11
Implementation (EPLD), 7-8
Implementation (FPGA), 7-3
Timing simulation (EPLD), 10-19
Timing simulation (FPGA), 10-17
XNF file creation, 10-3

Design issues
EPLD devices, 3-1, 5-1
FPGA devices, 3-1, 4-1

Design process
Tasks, 1-2

Design Rule Checker, see DRC
Design verification

XChecker program, 11-86
Directory

Design directory creation, 2-6
Directory structure, 2-2
DOUBLE attribute, 4-14
Downloading the design

XChecker, 11-91
Draft

EPLD designs
Tasks, 16-10

Draft Edit menu, see Edit menu
Draw

Buses, 11-40
Wires, 11-40

DRC
EditLCA program, 11-85
XNFPrep output, 11-75

E
Edit command, 16-9

Stimulus file, 16-51

Edit menu
XC2000/XC3000 field names

BASE and CONFIG, 4-11
BLKNM, 4-11
EQUATE and CONT, 4-11
LOC,OPTIONS, 4-10

XC4000 field names
BASE and CONFIG, 4-12
EQUATE, 4-12
INIT, 4-12
OPTIONS_1, 4-12
OPTIONS_2, 4-12

EditLCA, 15-48, 15-49
EPLD designs

3-state buffers, 5-4
3-state multiplexing, 5-7
Arithmetic components, 5-11
Bidirectional I/O pin, 5-5
Buffers, 5-2
Counters, 5-11
Design issues, 3-1, 5-1
Device initialization

Functional simulation, 9-5
Timing simulation, 9-5

EPLD-specific components, 5-9, 5-10
Fast output enable, 5-2
Fitting the design, 16-36
Functional simulation, 6-1, 9-6
High-Z, 9-6
Input buffers, 5-2
Library components, 5-1
Macros, 5-13
Output buffers, 5-4
Pads, 5-2
PLD components, 5-11
PLUSASM equations, 5-13
Power and ground signals, 5-14
Primitives, 5-13
Timing simulation, 8-1, 9-5
OrCAD Interface/Tutorial Guide iii

OrCAD Interface/Tutorial Guide
User-defined macros, 5-13
User-defined primitives, 5-13

Equate field, 4-11
ERC, 16-36
Error messages

SDT2XNF, B-2
XDraft, B-1
XNF2VST, B-5

ESP Design Environment
Software installation, 2-2

EXCEPT statement, see XACT-Perfor-
mance
Exit

SDT, 11-68, 16-29
VST, 12-25, 16-62
XDM, 11-101, 16-62

Export
Block, 11-41

External (X) flag, 4-19
External I/O attribute, 4-4, 4-13

F
FailedSpec XDelay option, 15-39
FAST attribute, 4-14, 11-57
Fast Function Block attribute, 5-24
Fast output enable, 5-2
FastCLK input, assigning, 16-17
Field names

XC2000, XC3000, 2-10
XC4000, 2-10

FILE attribute, 4-15
Files

see also Macro files
ABL file, 16-34
AST file, 6-4, 8-4, 10-20
ATR file, 6-4, 8-4, 10-20
DBA file, 10-21
Functional netlist creation, 6-1
Guide file, 11-95
HEX file, 10-21
INF file, 10-5
LCA file, 7-1, 7-11, 10-15

NRF file, 10-20, 10-21, 12-14
PIN file, 16-40
PLD file, 16-32
ppr.log file, 15-30
PRP file, 11-76
RCVR.ABL file, 16-34
Sdt.cfg file, 2-10, 11-6
STM file, 12-17, 16-46, 16-51
Timing netlist creation, 8-1
TRC file, 12-17, 16-48
VMF file, 16-41
VMH file, 7-1, 7-12, 16-38
VST file, 10-16, 10-20
Vst.cfg file, 2-12, 12-3
Xsimmake.out file, 12-13

FITNET program, 10-15, 16-36
Reports, 16-40

Fitter
Invoking, 16-37

Flagblk XDelay option, 15-36
Flat designs, 3-3
Flip-flops

I/O flip-flops, 11-58
FOE, 5-2
FOE_OPT attribute, 5-22
FPGA designs

Design issues, 3-1, 4-1
Libraries, 4-2
Primitives and macros, 4-2

FromFF option to XDelay, 15-47
Functional simulation, 6-1

Creating a VST file, 10-10
EPLD designs, 6-1, 16-62
FPGA designs, 6-1

Creating a VST file, 12-10
Debugging, 12-23
IOB and CLB primitives, 6-5, 10-13
Manual translation, 12-26
Summary, 12-5
XSimMake program, 12-10, 12-25
iv Xilinx Development System

Index
X-BLOX designs, 10-13, 13-11
Xilinx ABEL designs, 14-16
XSimMake program, 6-4

G
G output flag, 4-18
Get command, 3-7
Getting started, 2-1
Global attributes, 5-20
GND symbol, 4-20

EPLD designs, 5-14
GR signal, 10-22
Ground signal, 10-22
GSR signal, 10-22
GTS signal, 10-22
Guide file

Incremental design, 11-95

H
Hard macros, see RPM
HBLKNM attribute, 4-15
HEX file, 10-21
Hierarchical designs, 3-6

Sheet path part, 3-7
Sheet symbol, 3-6, 16-57

High-density Block attribute, 5-24
High-impedance

EPLD designs, 9-6
Highlight

Net, 11-85
HM2RPM, 1-4
HU_SET attribute, 4-15

I
I input flag, 4-18
Implementation, 7-1

Calc design, 15-28
Creating files manually, 10-15
LCA file, 7-1
PPR log file, 15-30
VMH file, 7-1
XEMake, 7-1
XMake, 7-1

Import
Block, 11-42

Incremental design
Checking changes

XChecker, 11-100
Configuring XMake, 11-98
Translation, 11-99

INET program, 3-8
INF file, 10-5
INF2XNF program, 10-7
INIT attribute, 4-15
Initialization State (INIT), 4-12
Input buffers, 5-2
Input vectors

EPLD designs, 16-44
Installation

Partitioning software, 2-4
Software, 2-2

Interface
Description, 1-3
Libraries, 1-3

IOB primitives
Functional simulation, 10-13

J
Junction

Place, 16-21
Symbol, 11-31, 16-21

K
K output flag, 4-18
Key macros, see Macros

L
L net flag, 4-18
Label, 11-31

Components, 16-21
Wires, 16-23

LCA file, 7-1, 7-11
Guide file, 11-95

LCA2XNF program, 10-16
Timing simulation
OrCAD Interface/Tutorial Guide v

OrCAD Interface/Tutorial Guide
Syntax, 10-16
LIB file, 3-10
LibEdit, 3-8, 4-21
Libraries

Adding to search path
Symbol, 3-10

Constraints, 4-2
Creating a netlist file, 3-8
Creating a symbol, 3-8
Creating libraries, 3-7
Creating schematics, 3-8
Description, 1-3
Old vs. new libraries, 4-2
Saving a symbol, 3-9
User-created libraries, 3-7
X-BLOX library, 13-10

Library symbols, 3-7
Copy, 11-38
Definition, 3-7
Move, 11-39
Xilinx symbols, 11-45

|LINK keyword, 3-4
Linking multiple sheets, 3-5
Load

Reload schematic, 11-49
LOC attribute, 4-15
LOC,OPTIONS

XC2000, XC3000 Edit menu, 4-10
Location statements

XC2000 and XC3000 designs, 4-10
LOGIC_OPT attribute, 5-21
LOWPWR=ALL attribute, 5-21

M
Macro files

Macro3.mac, 2-12
Macros list, 2-14

Vstmac.mac, 2-12
Macros list, 2-15

Macros
Hard macros, 4-2

Key macros, 11-15
RPMs, 4-2, 11-45, 11-47
Soft macros, 4-2

Viewing, 11-45
Supplied by Xilinx, 4-2

Manual translation, 10-2
MAP attribute, 4-15
MEDFAST attribute, 4-16
MEDSLOW attribute, 4-16
MemGen design files

Merging into OrCAD design files, 4-21
MemGen program, 4-21
Menu

Menu structure, 11-14
Merging third-party designs, 4-20
MINIMIZE attribute, 5-21
Module ports, 11-33
Mouse

Configuration in XDM, 16-12
Move

Library symbols, 11-39
MRINPUT attribute, 5-21
Multiple-sheet designs, 3-3

|LINK keyword, 3-4
Flat designs, 3-3
Hierarchical designs, 3-6

N
Name

Buses, 11-34
Name Reference File, see NRF file
Naming conventions

Symbols and nets, 3-1, 4-2
Nets and subnets, 3-2
Reserved names, 3-1
Valid characters, 3-2

Net
Highlighting a net, 11-85

Netlist file, 3-8
NODELAY attribute, 4-16
Non-critical flag, 4-19
vi Xilinx Development System

Index
NRF file, 10-20, 10-21
see also Recycled aliases

O
OrCAD/ESP

 see also ESP
Configuration, 2-6
Invoking

From DOS, 2-5
From XDM, 2-5

OSC4_IN signal, 10-23
Oscillator

XC3000 designs, 11-49
XC4000 designs, 11-51

Output buffers, 5-2, 5-4
Output files

Warning messages, 11-76

P
Parity error

Elimination, 16-53
PART, see PARTTYPE
Partitioning software, 2-4

Sample sdt.cfg file, 2-4
PARTTYPE attribute, 4-9, 5-23
Parttype option, 10-8
Pin assignment, 16-28

Example, 16-28
Pin attribute, 4-3
Pin locations, 11-54
Pinlist report file, 16-40
Pinlock flag, 4-19
Place

Bus entry elements, 11-29
Junction symbol, 11-31
Labels, 11-31
Module ports, 11-33
Primitives, 11-37
Stimulus and trace, 12-6
Wires, 11-30

PLD equations
Boolean equations, 16-31

Define functions, 16-30
Processing JEDEC file, 16-39
RCVR.ABL file, 16-34
RCVR.PLD file, 16-31

PLUSASM equations, 5-13, 16-31
ppr.log file, 15-30, 15-41
PRELOAD_OPT attribute, 5-22
PRG file, 10-15
Primitives

Description, 11-45
Placing primitives, 11-37
Supplied by Xilinx, 4-2

Primitives and macros
XC4000 library exceptions

Power and ground symbols, 4-20
PRLD signal, 10-22
Program options

SDT2XNF, A-1
XDraft, A-1
XNF2VST, A-2

Programming file
MAKEJED (JEDEC), 16-42
MAKEPRG (HEX format), 16-42

Programs
 see also XSimMake, XMake, XEMake
ASCTOVST, 10-25
INET, 10-5
INF2XNF, 10-7
MemGen, 4-21
SDT2XNF, 10-7
Symgen, 4-21
XDraft, 2-8
XNF2INF, 10-19
XNF2VST, 10-19
XNFMerge, 10-9

Project directory
Configuration, 11-5
Creation, 11-5

PRP file, 11-76
OrCAD Interface/Tutorial Guide vii

OrCAD Interface/Tutorial Guide
R
RAM, 4-21
RCVR.ABL file, contents, 16-34
RCVRSUB schematic, 16-61
Recycled aliases, 10-24
REG_OPT attribute, 5-22
Relationally placed macro, see RPM
Release 5.0

New features, 1-3
SDT2XNF enhancements, 1-5
XNF2VST enhancements, 1-5

Reports
Pinlist, 16-40

RES attribute, 4-16
Reset signals

XC2000/3000 families, 12-19
XC4000 family, 12-19

Retarget design, 2-15
Example, 2-17

RLOC attribute, 4-16
RLOC_ORIGIN attribute, 4-16
RLOC_RANGE attribute, 4-16
ROM, 4-21
RPM

Converting hard macros, 1-4
Description, 4-2, 11-45
View, 11-47

RPT file, 11-80

S
Save

Drawing, 11-36, 16-29
File

Changing file name, 11-44
Pin assignments, 16-41

Save flag, 4-19
SCH file, 3-8
Schematic editor, 16-10

Invoking Draft, 2-15
Schematic file, 3-8
SDT

Exiting, 11-68
Software installation, 2-2

Sdt.cfg file, 11-6
Sample file, 2-10

SDT2XNF program
Enhancements, 1-5
Error messages, B-2
Options, 10-7
Program options, A-1
Syntax, 10-7
Warning messages, C-2

Sheet symbol, 3-6
Copying, 11-24
Defining, 11-22
Definition, 3-7
Lower-level schematic, 16-60

Sheet-path part, 3-7
Signal attributes, 4-5, 5-23

Applicable devices, 4-18
Critical, 4-18
External, 4-19
G output, 4-18
I input, 4-18
K output, 4-18
L net, 4-18
Non-critical, 4-19
Pinlock, 4-19
Save, 4-19
Table of, 4-18
TNM, 4-19
TS, 4-19
Weight, 4-19

Signals
Adding, 16-28

Simulation
 see also Functional, Timing simulation
Configuring VST (functional), 12-18
Configuring VST (timing), 12-31
EPLD designs, 16-42

Device initialization, 9-5
High-Z, 9-6
viii Xilinx Development System

Index
PRLD, 9-5
Run simulation, 6-6, 8-6, 16-49
Trace file, 16-48
View results, 16-50
VST configuration, 16-44

FPGA designs
Commands, 12-24
Globalreset buffer, 9-1
Globaltristate buffer, 9-1
High-impedance inputs, 9-2
Hold violations, 9-3
Large ROMs in XC4000s, 9-5
Oscillators, 9-3
Pulse-width, 9-2
Run simulation, 6-6, 8-6
Time units, 9-2
Traces and stimuli, 9-2
Unconnected inputs, 9-1
Weak-keeper, 9-2

Guidelines, 9-1
Xilinx ABEL simulator, 14-10

SLOW attribute, 4-17
Soft macros

Description, 11-45
Software installation, 2-2
Solutions for tutorials (FPGA), 11-8
State machine entry, 4-21
Stimulus and Trace

Placing data on schematic, 12-6
Stimulus editor, 12-19, 12-20, 12-21
Stimulus file, 12-16, 16-46

Editing STM file, 16-51
Example file, 12-16

STM file, 12-17
 see also Stimulus file

Symbol attributes, 4-4
BLKNM, 4-14
CAP, 4-14

CMOS, 4-14
DECODE, 4-14
DEF, 4-14
DOUBLE, 4-14
FAST, 4-14, 11-57
FILE, 4-15
HBLKNM, 4-15
HU_SET, 4-15
INIT, 4-15
LOC, 4-15
MAP, 4-15
MEDFAST, 4-16
MEDSLOW, 4-16
NODELAY, 4-16
RES, 4-16
RLOC, 4-16
RLOC_ORIGIN, 4-16
RLOC_RANGE, 4-16
SLOW, 4-17
Table of, 4-13
TNM, 4-9, 4-17
TSidentifier, 4-9, 4-17
TTL, 4-17
U_SET, 4-17
USE_RLOC, 4-17

Symbols
Creating MemGen symbols, 4-21
Creating Xilinx ABEL symbols, 4-21,
14-11
OrCAD schematics, 11-18

Symgen program, 4-21, 14-11

T
Text editor

Accessing from XDM, 16-9
Third-party design files

Merging into OrCAD designs, 4-21
Adding symbol to schematic, 4-22
Creating a symbol, 4-21
MemGen designs, 4-21
Xilinx ABEL designs, 4-21
OrCAD Interface/Tutorial Guide ix

OrCAD Interface/Tutorial Guide
3-state multiplexing, 5-7
TIMEGRP attribute, 4-8

Combining sets, 15-6
Flip-flops by output net name, 15-8
Text definitions, 15-26

TIMESPEC attribute, 4-7, 15-9
Text specifications, 15-26

Timing analysis, see XDelay, 15-34
Timing simulation, 8-1

Creating VST and DBA files, 10-16
EPLD designs, 16-43

Creating VST and DBA files, 10-17
Input vectors, 16-44
XSimMake summary, 8-5

FPGA designs
Creating VST and DBA files, 10-16,

12-28
Summary, 12-26
XSimMake summary, 8-5

Timing see XACT-Performance, 15-6
TNM attribute, 4-9, 4-17, 15-4, 15-11
Trace data, 12-6
Trace file

Example file, 12-17
Translation

 see also Retarget design
Calc design, 11-74
Creating a timing netlist file, 10-16
EPLD designs

Automatic implementation, 7-7
FPGA designs

Automatic implementation, 7-2
Commands, 11-102
Functional netlist creation, 6-1
Timing netlist creation, 8-1

FPGA Incremental designs
Commands, 11-103

Incremental designs, 11-99
Manual translation, 10-2

RPMs, 1-4
SDT2XNF, 1-3
Stimulus and trace files, 12-17
XNF2VST, 1-3
XSimMake, 6-1

TRC file, 12-17
 see also Trace file

TSidentifier attribute, 4-9, 4-17
TTL attribute, 4-17
Tutorial

Design entry (SDT), 11-1
Design files, 11-8
Simulation (VST), 12-1
XACT-Performance, 15-1
X-BLOX, 13-1
XDelay, 15-1
XEPLD command summary, D-1
Xilinx ABEL, 14-1

U
U_SET attribute, 4-17
UIM_OPT attribute, 5-21
Unified Libraries, 4-2

Description, 1-3
Format, 1-4
Names, 1-3

Unknown simulation values, 9-1
USE_RLOC attribute, 4-17
User attribute, 4-6
User-created libraries, 3-7

V
VCC signal, 10-22
VCC symbol, 4-20

EPLD designs, 5-14
Verification

XChecker, 11-86
VMF file, 16-41
VMH file, 7-1, 7-12, 16-38
VMH2XNF program, 10-18
VST

Software installation, 2-2
x Xilinx Development System

Index
VST file, 10-16, 10-20
Vst.cfg file, 12-3

Sample file, 2-12
VST386+, 6-1

Configuration, 12-4

W
Warning messages

SDT2XNF, C-2
XDraft, C-1
XNF2VST, C-4

Weight flag, 4-19
Wires

Place, 11-40, 16-18
Wire labels, 16-23

Workview
Mouse configuration, 16-12

X
X flag, see External flag
XACT

Directory structure, 2-3
XACT Design Editor, see XDE
XACT path, 10-22
XACT-Performance, 15-1

Adding timing constraints
Combining sets (TIMEGRP), 15-23
Defining sets (TIMEGRP), 15-21
Defining TNM groups, 15-15
Specific paths, 15-15
TIMESPEC constraints, 15-24

Concepts, 15-3
Default timing, 15-12
Disabling paths, 15-36
Evaluating results (XDelay)

Failedspec option, 15-39
SelectSpec option, 15-39

EXCEPT statement, 15-7
Grouping symbols, 15-6
TIMEGRP attributes

Flip-flops by clock edge, 15-8

TIMESPEC attribute, 15-9
X-BLOX

Adding module to schematic, 13-3
X-BLOX design

Adding a bus, 13-6
Adding a module, 13-3
Bus definition, 13-8
BUS_DEF symbols, 13-7
Buses, 13-6

BOUNDS attribute, 13-7
ENCODING attribute, 13-7

Creating a design, 13-5
Functional simulation, 13-11
Implementation, 13-17
Simulating a design, 13-15, 13-22
Timing simulation, 13-20
XMake output, 13-18
XSimMake output (functional), 13-12
XSimMake output (timing), 13-21

X-BLOX library, 13-10
X-BLOX modules

Functional simulation, 10-13
XC3000 designs

Oscillator, 11-49
XC4000 designs

Oscillator, 11-51
XChecker

Cable connections, 11-88
Design verification, 11-86

XDE editor, 11-82
EditLCA screen, 11-84

XDelay ClearOptions command, 15-46
XDelay program, 10-16, 15-34

Analyze mode, 15-37
Invoking, 15-36
XDelay-TimeSpec output, 15-40

XDM
Accessing text editor from XDM, 16-9
Configuration, 11-69
User interface, 16-8

XDraft program, 11-6
OrCAD Interface/Tutorial Guide xi

OrCAD Interface/Tutorial Guide
Error messages, B-1
Options, 2-8, A-1
SDT changes, 2-9
Support, 1-4
VST changes, 2-11

Connectivity Database extension,
2-11

Vst.cfg file, 12-3
Warning messages, C-1

XEMake program
Command summary, 7-10
File formats, 7-10

Input files, 7-10
Output files, 7-11

Flow chart, 7-8
Invoking, 7-8
Options, 7-10
Reprocessing after changes, 7-13

XEPLD command summary, D-1
Xilinx ABEL

Example file, 14-6
Functional simulation with VST, 14-16
Internal simulator, 14-10
Placing symbols in schematics, 14-14
Symbol creation, 14-11
XSimMake output (functional), 14-16
XSimMake output (timing), 14-25

Xilinx ABEL design files
Merging into OrCAD design files, 4-21

XMake program, 7-2
Command summary, 7-6
Configuring for incremental design,
11-98
File formats

Input files, 7-10
Output files, 7-11

Flow chart, 7-3
Invoking, 7-4
Options, 7-7
Output files, 11-74

Reprocessing after changes, 7-13
XNF file, 4-21, 4-22
XNF2INF program, 10-19
XNF2VST program, 1-3, 10-16, 10-18

Enhancements, 1-5
Error messages, B-5
Program options, A-2
Signal names, 10-22
Syntax, 10-19
Timing simulation

Syntax, 10-16
Warning messages, C-4

XNFBA program
Timing simulation

Syntax, 10-16
XSimMake program

Functional simulation, 6-2
Command summary, 6-4
FPGA designs, 12-10
Options, 6-3
Subprograms, 6-4
Syntax, 6-2

Output files, 12-14
Timing simulation

Command summary, EPLD, 8-5
Command summary, FPGA, 8-5
EPLD devices, 8-5
FPGA devices, 8-5
Options, 8-3
Syntax, 8-2

Z
Zoom

Commands, 11-45, 16-13
xii Xilinx Development System

	Preface
	About This Manual
	Manual Contents
	Chapter 1

	Introduction
	Defining the Design Flow
	Defining the Interface
	What is New in this Release
	Library Features
	XDraft Support
	SDT2XNF Enhancements
	XNF2VST Enhancements
	Chapter 2

	Getting Started
	Preparing Your System
	Partitioning Software Between Two Different Disks
	Entering the OrCAD/ESP Design Environment
	From a DOS Command Prompt
	From the XACT Design Manager
	As an XDM Menu Selection
	At the XDM Command Line

	Configuring the OrCAD/ESP Design Environment
	Creating a Design Directory
	From DOS
	From the Graphical User Interface

	Using XDraft to Configure the OrCAD Environment
	Running XDraft
	Changes Made to SDT
	Sample Sdt.cfg File
	Changes Made to VST
	Connectivity Database Extension
	Sample Vst.cfg File
	Macro Files

	Entering the Draft Schematic Editor
	Retargeting Your Design to a Different Family
	Example
	Chapter 3

	OrCAD SDT Design Techniques
	Naming Conventions
	Reserved Names
	Valid Characters
	Naming Nets and Subnets

	Multiple-Sheet Designs
	Flat Designs
	Hierarchical Designs
	Specifying a Sheet Symbol
	Sheet-Path Part

	User-Created Libraries
	Creating Schematic and Netlist Files
	Creating a Symbol for the Schematic
	Saving the Symbol
	Changing Your Search Path
	Chapter 4

	FPGA Design Issues
	Xilinx-Supplied Primitives and Macros
	Entering Xilinx Attributes
	Entering Symbol and External I/O Attributes
	Entering Signal Attributes
	Entering User Attributes

	Entering XACT-Performance Attributes
	TIMESPEC
	TIMEGRP
	TNM
	TSidentifier

	Entering a PARTTYPE Record
	Using the Draft Edit Menu
	XC2000/XC3000 Field Names
	Location and Options (LOC,OPTIONS)
	Block Name (BLKNM)
	BASE and CONFIG Fields
	EQUATE_F, EQUATE_G, $FCONT, $GCONT Fields

	XC4000 Field Names
	Options (OPTIONS_1 and OPTIONS_2)
	Initialization State (INIT)
	BASE, CONFIG, and EQUATE Fields

	Symbol and External I/O Attributes
	Signal Attributes
	Representing Power and Ground Signals
	VCC — Logic High
	GND — Ground

	Merging Design Files from Other Sources
	Creating a Symbol for the XNF File
	Adding a Symbol to Your Schematic

	Using X-BLOX Symbols
	Connecting a Wire
	Adding Attributes
	Processing the Design
	Chapter 5

	EPLD Design Issues
	Using the Schematic Library Components
	Buffers and Pads
	Input and Output Buffer Connections
	Output Buffers and 3-State Buffers
	On-Chip 3-State Multiplexing
	Input Buffers, Clocks, and Global Control Nets

	EPLD-Specific Components
	Counters
	Arithmetic Components
	PLD Components
	Components Not Supported by Some EPLD Devices

	Xilinx-Supplied Primitives and Macros
	User-Defined Primitives and Macros
	Representing Power and Ground Signals
	VCC — Logic High
	GND — Ground

	Entering Xilinx Attributes
	Component Attributes
	PLD Attribute: PLD Equation File Name
	LOC Attribute: Pin Assignments
	LOWPWR Attribute: Power Setting
	OPT: Logic Optimization Attributes

	Global Attributes
	Global Attributes
	LOWPWR=ALL Attribute: Power Setting
	LOGIC_OPT Attribute: Logic Optimization
	MRINPUT Attribute: Master Reset Pin
	MINIMIZE Attribute: Logic Minimization
	UIM_OPT Attribute: UIM Optimization
	FOE_OPT Attribute: Fast Output Enable Optimization...
	CLOCK_OPT Attribute: FastClock Optimization
	REG_OPT Attribute: Input Register Optimization
	PRELOAD_OPT Attribute: Preload Values

	The PARTTYPE Attribute
	Signal Attributes
	F/H

	Chapter 6

	Functional Simulation
	Creating a Functional Simulation Netlist
	From the XACT Design Manager
	From the DOS Prompt
	XSimMake Options
	Converting Trace and Stimulus Files

	XSimMake Summary
	FPGA Designs with IOB and CLB Elements
	Simulating Your Design
	Configuring the OrCAD/VST386+ Software
	Simulating from DOS
	Simulating from the Graphical User Interface
	Entering the OrCAD/ESP Design Environment
	Entering the OrCAD/VST386+ Environment
	Simulating a Design

	Chapter 7

	Design Implementation
	Translating Your FPGA Design
	Translating Automatically with XMake
	Invoking XMake
	From the XACT Design Manager
	From the DOS Prompt

	XMake Summary
	XMake Options

	Translating Your EPLD Design
	Invoking XEMake
	From the XACT Design Manager
	From the DOS Prompt

	XEMake Summary

	Valid File Formats
	Input Files
	SCH File
	MAK File

	Output Files
	Report File
	Design File
	Programming File
	MAK File

	Reprocessing the Design After Minor Changes
	Chapter 8

	Timing Simulation
	Creating a Timing Simulation Netlist
	From the XACT Design Manager
	From a DOS Prompt
	XSimMake Options
	Converting Trace and Stimulus Files
	EPLD Behavioral Designs

	XSimMake Summaries
	FPGA Designs
	EPLD Designs

	Simulating Your Design
	Configuring the OrCAD/VST386+ Software
	Simulating from DOS
	Simulating from the Graphical User Interface
	Entering the OrCAD/ESP Design Environment
	Entering the OrCAD/VST386+ Environment
	Simulating a Design

	Chapter 9

	OrCAD VST Simulation Issues
	FPGA Devices
	Unconnected Control Pins
	Global Reset and 3-State Signals
	Simulation Time Units
	Using Traces and Stimuli
	Simulating High-Impedance Inputs
	Pulse-Widths Smaller than the Routing Delay
	No Weak-keeper
	Simulating the OSC, OSC4, and GXTL Oscillators
	Hold Violations
	Simulating Large ROMs in XC4000 Devices

	EPLD Devices
	Using PRLD for Initialization
	3-State Outputs
	Chapter 10

	Manual Translation
	Creating an XNF File (SCH › XNF)
	Annotate Program
	Syntax
	Options

	INET Program
	Syntax
	Options

	SDT2XNF Program
	Syntax
	Options

	XNFMerge Program
	Syntax
	Options

	Creating Functional Simulation Files (XNF › VST)
	Design Flows
	FPGA Design Flow

	Translating XFF Files Created with SDT2XNF and XNF...
	FPGA Designs with X-BLOX Modules
	FPGA Designs with IOB and CLB Primitives
	Translating LCA Files Created with XMake

	Creating Implemented Design Files
	FPGA Designs (XNF › LCA › BIT)
	EPLD Designs (XNF › VMH › PRG or JED)

	Creating Timing Simulation Files
	FPGA Designs (LCA › XNF › VST + DBA)
	EPLD Designs (VMH › XNF › VST + DBA)

	Translation Programs for Simulation
	XNF2VST Program
	Input Files
	Output Files
	Options
	XNF2VST Signal Names
	XNF2VST and FPGA/OrCAD Naming Conventions
	Recycled Aliases

	ASCTOVST Program
	Input and Output Files

	Chapter 11

	SDT Tutorial
	Design Flow
	Required Software
	Before Beginning the Tutorial
	Installing the SDT Tutorial
	Running XDraft
	Sdt.cfg File
	Copying the Tutorial Design Files
	Solutions Directories

	Loading the CALC Schematic into OrCAD SDT
	Starting the XACT Design Manager (XDM)
	Accessing OrCAD from XDM
	Selecting Calc as the Active Design
	Changing the Default Design
	Accessing SDT, the OrCAD Schematic Editor

	Using OrCAD Commands
	Entering OrCAD Commands with the Mouse
	Entering OrCAD Commands from the Keyboard
	Using OrCAD Key Macros

	Design Description
	Exploring OrCAD Symbols
	Completing the ALU Schematic
	Pushing into the ALU Schematic
	Enabling X and Y Coordinates
	Defining a Sheet Symbol
	Copying a Sheet Symbol
	Placing a Library Symbol
	Drawing Wires
	Drawing Buses
	Placing Bus Entry Elements
	Completing Connections to ANDBLK2 and ORBLK2
	Placing a Junction Symbol
	Placing Labels
	Placing Module Ports
	Naming Buses in OrCAD/SDT
	Saving the ALU Drawing

	Creating the ANDBLK2 Schematic
	Creating a New Schematic Sheet
	Placing Xilinx Library Primitives
	Copying Library Elements
	Moving Library Elements
	Experimenting with Wires and Buses
	Completing the ANDBLK2 Schematic

	Creating the ORBLK2 Schematic
	Exporting a Block
	Importing a Block to Create ORBLK2
	Completing the ORBLK2 Schematic
	Saving a File to Another Name

	Exploring Xilinx Library Elements
	Viewing a Xilinx Soft Macro Schematic
	Viewing a Xilinx RPM (XC4000 Family Only)
	Returning to the CALC Schematic
	Using the XC3000 Oscillator (XC3000 Family Only)
	Using the XC4000 Oscillator (XC4000 Family Only)
	Inverting Output Display Signals (XC3000 Demonstra...

	Controlling FPGA Layout from the Schematic
	Specifying the Part Type
	Assigning Pin Locations
	Adding Net Attributes
	Designating FAST Pads
	Using the I/O Flip-Flops

	Editing the Design for the XC4000 Family
	Device-Independent Stack Implementation
	RAM Stack Implementation (XC4000 Family Only)
	Device-Independent State Machine
	State Machine with Wide-Edge Decoders (XC4000 Fami...

	Checking Schematics
	Exiting from SDT
	Configuring XDM
	Cleaning up the Design
	Additional Configuration (XC4000 Family Only)

	Translating the Calc Design
	Examining XMake Output Files
	Checking for Warnings in the OUT and PRP Files
	Checking the RPT File

	Examining Routed Designs with XDE
	Entering the Design Editor
	Finding a Block
	Highlighting a Net
	Using Command Line Entry
	Running the Design Rule Checker

	Verifying the Design Using a Demonstration Board
	Connecting the Cable for Download
	FPGA (XC3000/XC4000) Demonstration Board
	XC4000 Demonstration Board
	XC3000 Demonstration Board

	Downloading the Bitstream
	Testing the Design

	Making Incremental Design Changes
	Creating the Guide LCA File
	Making an Incremental Schematic Change
	Configuring XMake for Incremental Design
	PPR (XC3000A, XC3000L, XC4000 Family)
	APR (XC3000, XC3100, XC2000 Family)
	XNFMap (XC3000 Family, XC2000 Family)
	Return to XDM (All Families)

	Translating the Incremental Design
	Checking for Errors in the Calc.out File
	Verifying the Change in the Demonstration Board

	Leaving XDM
	Command Summaries
	Basic Translation for XC3000A and XC3000L Designs
	Basic Translation for XC4000 Family Designs
	Basic Translation for XC3000, XC3100, and XC2000 F...
	Incremental Translation for XC3000A and XC3000L De...
	Incremental Translation for XC4000 Family Designs
	Incremental Translation for XC3000, XC3100, and XC...
	Chapter 12

	VST Tutorial
	Required Software
	Before Beginning the Tutorial
	Skipping the SDT Tutorial
	XDraft and the Vst.cfg File
	Completing VST Configuration

	Performing a Functional Simulation
	Placing Stimulus and Trace Data on the Schematic
	Creating a Functional Simulation Netlist with XSim...
	Creating a Functional Simulation Netlist
	Examining the XSimMake Output File
	Files Created by XSimMake

	Converting Stimulus and Trace Files to Binary Form...
	Configuring OrCAD VST for the Particular Design
	Adding Stimulus Data Using OrCAD’s Stimulus Editor...
	XC2000/XC3000 Families Reset Signal
	XC4000 Family Reset Signal
	Accessing the Stimulus Editor
	Adding a New Stimulus

	Design Description
	Performing the Functional Simulation
	Debugging the Functional Simulation
	Useful Simulation Commands
	Exiting the OrCAD Simulator
	Functional Command Summary

	Performing a Timing Simulation
	Placing and Routing the Design with XMake
	Creating a Timing Simulation Netlist with XSimMake...
	Creating a Timing Simulation Netlist
	Files Created by XSimMake

	Converting AST and ATR Files to Binary Format
	Configuring OrCAD VST for the Particular Design
	Performing the Timing Simulation
	Timing Command Summary

	Using the OrCAD Trace Editor
	Using the OrCAD Breakpoint Editor
	Inserting a Breakpoint
	Resimulating the Design

	Creating Tabular Output
	Chapter 13

	X-BLOX Tutorial
	Before Beginning the Tutorial
	Required Software
	Preparing the Design

	Modifying the Design
	Adding X-BLOX-Based Module to CALC
	Viewing the ALU_BLOX Schematic
	Completing the ALU_BLOX Schematic

	Understanding X-BLOX Buses
	Using BUS_DEF Symbols
	Completing the Bus Definition
	Saving Your Changes

	X-BLOX Symbol Library
	X-BLOX Symbol Examples
	X-BLOX Schematics

	Functional Simulation
	Creating the Functional Simulation Netlist
	Examining XSimMake Output
	Stimulus and Trace Files
	Configuring OrCAD VST for the Calc Design
	Performing a Functional Simulation

	Implementing the Calc Design
	Creating a Routed Design
	Examining XMake Output

	Verifying CALC on the Demonstration Board
	Timing Simulation
	Creating the Simulation Netlist
	Examining XSimMake Output
	Configuring OrCAD VST for Timing Simulation
	Performing a Timing Simulation

	Command Summaries
	Further Reading
	Chapter 14

	Xilinx ABEL Tutorial
	Before Beginning the Tutorial
	Required Software
	Preparing the Design

	Viewing Stat_abl.abl
	Simulating Within Xilinx ABEL
	Compiling STAT_ABL.ABL
	Including STAT_ABL in the CALC Design
	Creating a Symbol for STAT_ABL
	Creating a Command File with SymGen
	Creating the Library Symbol
	Adding the Library to Your Search Path

	Adding STAT_ABL to the CONTROL Schematic
	Adding Symbol Attributes

	Functional Simulation
	Creating the Functional Simulation Netlist
	Examining XSimMake Output
	Stimulus and Trace Files
	Configuring OrCAD VST for the Calc Design
	Performing a Functional Simulation

	Implementing the CALC Design
	Creating a Routed Design
	Examining XMake Output
	Verifying CALC on the Demonstration Board

	Timing Simulation
	Creating the Simulation Netlist
	Examining XSimMake Output
	Configuring OrCAD VST for Timing Simulation
	Performing a Timing Simulation

	Further Reading
	Chapter 15

	XACT-Performance and XDelay Tutorial
	Before Beginning the Tutorial
	Required Software
	Preparing the Design
	Understanding XACT-Performance
	Grouping Symbols with TNM Attributes
	TNMs on Logic Primitives
	TNMs on Higher-Level Macro Symbols
	TNMs on Nets, to Tag Flip-Flops
	Grouping Symbols by Predefined Sets
	Simplifying Symbol Grouping

	Combining Sets: TIMEGRP
	Joining Two or More Sets into One
	Using the EXCEPT Statement
	Triggering on RISING or FALLING Clock Edges
	Forming Sets by Output Net Name

	Attaching Timing Specifications: TIMESPEC
	Deciding When to Use XACT-Performance
	Setting Default Timing Requirements
	Adding a TNM Attribute
	Entering Default Timing Specifications

	Adding Timing Constraints to Specific Paths
	Defining TNM Groups
	Defining the ALUFF Set
	Defining the CTL_ADR_FF Set
	Defining the STFF Set
	Defining the INFFS Set

	Defining Sets with TIMEGRP
	Defining the LEDPADS Set
	Defining the STACKER Set (XC4000 Family Only)
	Defining the STACKER Set (XC3000A Only)

	Combining Existing Sets with TIMEGRP
	Specifying TIMESPEC Constraints
	Making a Final Check
	Cleaning up the Design

	Implementing the Calc Design
	Creating a Routed Design
	Examining XMake Output
	Examining the PPR Log File
	Warnings in the PPR Log File
	Timing Analysis Summary

	Using XDelay, the Timing Analysis Program
	Analyzing the Calc Design
	Invoking XDelay
	Using the Flagblk Option
	Disabling Paths Through SD/RD Pins of Flip-Flops
	Displaying Current Options

	Using Analyze Mode
	Examining Analyze Output
	Using XDelay-TimeSpec Mode
	Examining XDelay-TimeSpec Output
	Using XDelay Mode
	Reporting by Path Type

	Specifying Source and Destination

	Further Reading
	Chapter 16

	XEPLD Tutorial
	Tutorial Guidelines
	Tutorial Design
	Tutorial Files
	Overview of the Sessions
	Session 1: Using the XEPLD Software
	Step 1: Preparing the System
	Step 2: Starting XDM
	Step 3: Selecting Menu Items in XDM
	Using the Mouse
	Typing Commands
	Accessing DOS
	Responding to XDM Prompts and Menus

	Step 4: Configuring the XEPLD Environment

	Session 2: Drawing the Design in Draft
	Step 1: Creating a New Design
	Creating the Design Directory
	Copying the Design Files
	Configuring the UART Directory

	Step 2: Opening and Viewing the Design
	Opening the Design
	Selecting from the SDT Menus

	Step 3: Changing the Zoom Level
	Step 4: Creating a New Schematic
	Skipping Schematic Entry
	Creating a New Schematic

	Step 5: Entering and Arranging Components
	Entering Components
	Arranging Components
	Deleting Components
	Placing Rotated Components
	Entering Additional Components

	Step 6: Creating Wires
	Drawing a Wire
	Moving a Block
	Drawing Wires Using Shortcuts

	Step 7: Adding Junctions
	Step 8: Labeling Components
	Labeling the PL22V10 Component
	Labeling the CB8RE Component
	Labeling the AND2B2 Component

	Step 9: Labeling Wires
	Step 10: Assigning Attributes
	Adding the PLD Attribute
	Adding the PARTTYPE Attribute
	Adding Global Attributes

	Step 11: Finishing the Drawing
	Step 12: Assigning Signals to Specific Pins
	Step 13: Saving the Design
	Step 14: Exiting OrCAD

	Session 3: Defining PLD Equations
	Step 1: Defining Declaration Statements
	Step 2: Creating Boolean Equations

	Session 4: Fitting the Design
	Step 1: Checking the Design
	Step 2: Invoking the Fitter
	Implementing the Design Automatically
	Implementing the Design Manually
	Alternative Ways to Process PLDs

	Step 3: Viewing the Reports
	Step 4: Saving Pin Assignments
	Step 5: Creating the Programming File

	Session 5: Simulating the Design
	Step 1: Creating a Simulation Netlist
	Creating a Timing Simulation Netlist Automatically...
	Creating a Timing Simulation Netlist Manually

	Step 2: Preparing Input Vectors
	Entering the OrCAD Simulator
	Configuring the OrCAD Simulator
	Using the Stimulus Editor
	Using the Trace Editor

	Step 3: Running the Simulation
	Step 4: Viewing Simulation Results
	Step 5: Correcting Vector Errors
	Identifying the Errors
	Editing the Stimulus

	Step 6: Adding a Signal to the Waveform Display

	Session 6: Functionally Simulating a Purely Schema...
	Step 1: Copying the UART Design
	Creating the Uarttop Design Directory
	Copying the Design Files

	Step 2: Creating a Custom Sheet Symbol
	Step 3: Creating the Lower-Level Schematic
	Step 4: Performing a Functional Simulation
	Step 5: Exiting OrCAD and XDM
	Appendix A

	Program Options
	XDraft
	SDT2XNF
	XNF2VST

	Error Messages
	XDRAFT (XCFG)
	SDT2XNF (INF2XNF)
	XNF2VST (XNF2INF)

	Warning Messages
	XDRAFT (XCFG)
	SDT2XNF (INF2XNF)
	XNF2VST (XNF2INF)
	Appendix D

	OrCAD XEPLD Demonstration Procedures
	Entering XDM and OrCAD
	Configuring the Design Directory
	Examining the UART Schematic
	Examining the PLD File
	Implementing the Design
	Creating a Simulation Netlist
	Configuring the Simulator
	Simulating the Design

