
R

Embedded
System Tools
Guide
Embedded
Development Kit

EDK (v3.1 EA) September 24, 2002

Embedded System Tools Guide www.xilinx.com EDK (v3.1 EA) September 24, 2002
1-800-255-7778

http://www.xilinx.com

EDK (v3.1 EA) September 24, 2002 www.xilinx.com Embedded System Tools Guide
1-800-255-7778

"Xilinx" and the Xilinx logo shown above are registered trademarks of Xilinx, Inc. Any rights not expressly granted herein are reserved.

CoolRunner, RocketChips, Rocket IP, Spartan, StateBENCH, StateCAD, Virtex, XACT, XC2064, XC3090, XC4005, and XC5210 are
registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

ACE Controller, ACE Flash, A.K.A. Speed, Alliance Series, AllianceCORE, Bencher, ChipScope, Configurable Logic Cell, CORE
Generator, CoreLINX, Dual Block, EZTag, Fast CLK, Fast CONNECT, Fast FLASH, FastMap, Fast Zero Power, Foundation, Gigabit
Speeds...and Beyond!, HardWire, HDL Bencher, IRL, J Drive, JBits, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroBlaze,
MicroVia, MultiLINX, NanoBlaze, PicoBlaze, PLUSASM, PowerGuide, PowerMaze, QPro, Real-PCI, Rocket I/O, SelectI/O, SelectRAM,
SelectRAM+, Silicon Xpresso, Smartguide, Smart-IP, SmartSearch, SMARTswitch, System ACE, Testbench In A Minute, TrueMap, UIM,
VectorMaze, VersaBlock, VersaRing, Virtex-II Pro, Virtex-II EasyPath, Wave Table, WebFITTER, WebPACK, WebPOWERED, XABEL,
XACT-Floorplanner, XACT-Performance, XACTstep Advanced, XACTstep Foundry, XAM, XAPP, X-BLOX +, XC designated products,
XChecker, XDM, XEPLD, Xilinx Foundation Series, Xilinx XDTV, Xinfo, XSI, XtremeDSP and ZERO+ are trademarks of Xilinx, Inc.

The Programmable Logic Company is a service mark of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown herein; nor does it convey
any license under its patents, copyrights, or maskwork rights or any rights of others. Xilinx, Inc. reserves the right to make changes, at any
time, in order to improve reliability, function or design and to supply the best product possible. Xilinx, Inc. will not assume responsibility for
the use of any circuitry described herein other than circuitry entirely embodied in its products. Xilinx provides any design, code, or
information shown or described herein "as is." By providing the design, code, or information as one possible implementation of a feature,
application, or standard, Xilinx makes no representation that such implementation is free from any claims of infringement. You are
responsible for obtaining any rights you may require for your implementation. Xilinx expressly disclaims any warranty whatsoever with
respect to the adequacy of any such implementation, including but not limited to any warranties or representations that the implementation
is free from claims of infringement, as well as any implied warranties of merchantability or fitness for a particular purpose. Xilinx, Inc. devices
and products are protected under U.S. Patents. Other U.S. and foreign patents pending. Xilinx, Inc. does not represent that devices shown
or products described herein are free from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to
correct any errors contained herein or to advise any user of this text of any correction if such be made. Xilinx, Inc. will not assume any
liability for the accuracy or correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in such applications without
the written consent of the appropriate Xilinx officer is prohibited.

The contents of this manual are owned and copyrighted by Xilinx. Copyright 1994-2002 Xilinx, Inc. All Rights Reserved. Except as stated
herein, none of the material may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form
or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent
of Xilinx. Any unauthorized use of any material contained in this manual may violate copyright laws, trademark laws, the laws of privacy and
publicity, and communications regulations and statutes.

R

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com EDK (v3.1 EA) September 24, 2002
1-800-255-7778

Embedded System Tools Guide
EDK (v3.1 EA) September 24, 2002

The following table shows the revision history for this document.

Version Revision

06/24/02 1.0 Initial Xilinx EDK (Embedded Processor Development Kit) release.

08/13/02 1.1 EDK (v3.1) release.

http://www.xilinx.com

EDK (v3.1 EA) September 24, 2002 www.xilinx.com Embedded System Tools Guide
1-800-255-7778

Preface: About This Guide
Guide Contents . 17
Additional Resources . 17
Conventions . 18

Typographical . 18
Online Document . 19

Chapter 1: Embedded System Tools (EST) Architecture
Summary . 21
Tool Architecture Overview . 21
Tool Flows . 22

Hardware Platform Creation . 22
Verification Platform Creation . 23
Software Platform Creation . 23
Software Application Creation and Verification . 24

Some Useful Tools . 25
Xilinx Platform Studio . 25
Platform Generator . 25
HDL Synthesis . 25
Simulation Model Generator . 26
Library Generator. 26
GNU Compiler Tools . 26
Software Debugging . 27
Dumping an Object/Executable File . 28

Verifying Tools Setup . 29
Tools Directory Path . 29
Xilinx Alliance Software . 29

Chapter 2: Xilinx Platform Studio (XPS)
Summary . 31
Overview . 31
Processes Supported . 31
Tools Supported . 32
Project Management . 33
XPS Interface . 34
Platform Management. 35
Source Code Management . 39
Flow Tool Settings and Required Files. 39
Tool Invocation . 41
Debug and Simulation . 42
XPS No Window Mode . 42
Xilinx Microprocessor Project (XMP) File Format . 45

Chapter 3: Platform Generator
Overview . 51
Tool Requirements . 51

http://www.xilinx.com

EDK (v3.1 EA) September 24, 2002 www.xilinx.com Embedded System Tools Guide
1-800-255-7778

Tool Usage . 52
Tool Options . 52
Load Path . 53
Output Files . 54

HDL Directory . 54
Implementation Directory . 54
Synthesis Directory . 55

About Memory Generation . 55
MHS Example (LMB LMB Controller with BRAM Block) . 56

Reserved MHS Attributes . 56
Current Limitations . 57

Chapter 4: Simulation Model Generator
Summary . 59
Overview . 59
About Simulation . 59

Behavioral Simulation . 59
Structural Simulation. 59
Timing Simulation . 60

Simulation Libraries . 60
EDK Library . 60
UNISIM Library . 60
SIMPRIM Library . 60

Tool Requirements . 60
Tool Usage . 60
Tool Options . 61
Input files. 62

HDL Directory . 62
Implementation Directory . 62

Output Files . 63
Simulation Directory . 63

Memory Initialization . 63
Verilog . 63
VHDL . 64

Current Limitations . 64

Chapter 5: Bus Functional Model Generator
Summary . 65
Overview . 65
Tool Requirements . 65
Tool Usage . 65
Tool Options . 65
Input files. 66
Output Files . 66
Using BfmGen and IBM CoreConnect Toolkit . 67
Current Limitations . 67

http://www.xilinx.com

EDK (v3.1 EA) September 24, 2002 www.xilinx.com Embedded System Tools Guide
1-800-255-7778

Chapter 6: Library Generator
Summary . 69
Overview . 69
Tool Usage . 69
Tool Options . 69
Output Files . 71
MSS Parameters. 72
Drivers. 72
Interrupts and Interrupt Controller . 72
Boot and Debug Peripherals (MicroBlaze Specific). 73
STDIN and STDOUT Peripherals . 73

Chapter 7: Format Revision Tool
Overview . 75
Tool Requirements . 75
Tool Usage . 75
Tool Options . 75
Current Limitations . 76

Chapter 8: Platform Specification Format Utility
Summary . 77
Overview . 77
Tool Requirements . 77
Tool Usage . 77
Tool Options . 77
Input files. 78
Output Files . 78

Chapter 9: GNU Compiler Tools
Scope . 79
GNU Compiler Framework. 79
Compiler Usage and Options . 80

Usage . 80
Quick Reference . 80
Compiler Options. 81
Linker Options . 83
Linker Scripts . 83
Search Paths . 84

File Extensions . 85
Libraries . 85

Compiler Interface . 85
Input Files . 85
Output Files . 86

MicroBlaze GNU Compiler. 86

http://www.xilinx.com

EDK (v3.1 EA) September 24, 2002 www.xilinx.com Embedded System Tools Guide
1-800-255-7778

Quick Reference . 86
MicroBlaze Compiler Options . 87
MicroBlaze Linker Options . 89
Pseudo-Ops . 89
Initialization Files . 90
Command Line Arguments . 91
Interrupt Handlers . 91

Power PC GNU Compiler . 92
Compiler Options. 92
Linker Options . 92
Initialization Files . 92

Chapter 10: GNU Debugger
Summary . 93
Overview . 93
Tool Usage . 93
Tool Options . 94
MicroBlaze GDB Targets . 94

GDB Built-in Simulator . 95
Remote . 95
Compiling for Debugging on MicroBlaze targets . 96

PowerPC Targets . 97
GUI mode . 97
Console mode . 97

GDB Command Reference . 98

Chapter 11: Xilinx Microprocessor Debugger
Overview . 99
XMD usage . 100
MicroBlaze stub target . 100

Stub Target Requirements . 100
MicroBlaze Simulator target . 103

Simulation Statistics . 103
Simulator Target Requirements . 103

PowerPC Target . 103
XMD Tcl commands . 104

Chapter 12: Platform Specification Format (PSF)
Overview . 107
Files . 107

BBD - Black Box Definition . 107
MDD - Microprocessor Driver Definition . 107
MHS - Microprocessor Hardware Specification . 107
MPD - Microprocessor Peripheral Definition . 107
MSS - Microprocessor Software Specification . 108
MVS - Microprocessor Verification Specification . 108
PAO - Peripheral Analyze Order . 108

http://www.xilinx.com

EDK (v3.1 EA) September 24, 2002 www.xilinx.com Embedded System Tools Guide
1-800-255-7778

Version Scheme . 108
Version Setting for MHS, MSS, and MVS. 108
Version Setting for BBD, MPD, and PAO. 108

Load Path . 109
Using Versions . 110

Creating User IP . 110
Is Your IP Pure HDL? . 110
Is Your IP Only A Black-Box Netlist? . 110
Is Your IP A Mixture Of Black-Box Netlists And HDL? . 111

Chapter 13: Microprocessor Hardware Specification (MHS)
Overview . 113
MHS Syntax . 113

Comments . 114
Format . 114
MHS Example . 114

Bus Interface Definition . 116
Example . 117

Global Parameter Command . 117
VERSION Option . 117

Local Parameter Command . 118
HW_VER Option . 118
INSTANCE Option . 118

Local Bus Interface Command . 118
POSITION Option . 118

Global Port Command . 119
DIR Option . 119
EDGE Option . 119
LEVEL Option . 119
SIGIS Option . 119
VEC Option . 120

Local PORT Command . 120
Design Considerations . 120

Assinging Constants . 120
Defining Memory Size . 120
Internal vs External Signals . 120
External Interrupt Signals . 121
Internal Interrupt Signals . 121
Power Signals . 121

Chapter 14: Microprocessor Peripheral Description (MPD)
Overview . 123
MPD Syntax . 123

Comments . 124
Format . 124
MPD Example . 124

Bus Interface Naming Conventions . 125
Parameter Naming Conventions . 126

Reserved Parameters . 127

http://www.xilinx.com

EDK (v3.1 EA) September 24, 2002 www.xilinx.com Embedded System Tools Guide
1-800-255-7778

Signal Naming Conventions. 130
Global Ports . 131
Slave DCR Ports . 131
Slave LMB Ports . 132
Master OPB Ports . 132
Slave OPB Ports . 133
Master PLB Ports . 134
Slave PLB Ports . 135

Reserved Signal Connections. 136
Global Ports . 136
Slave DCR Ports . 136
Slave LMB Ports . 136
Master OPB Ports . 137
Slave OPB Ports . 137
Master PLB Ports . 137
Slave PLB Ports . 138

Component Options. 139
HDL Option . 139
IMP_NETLIST Option . 139
IPTYPE Option . 140
STYLE Option . 140

Global Parameter Command . 140
VERSION Option . 140

Local Option Command . 141
SIM_MODELS Option . 141

Local Parameter Command . 141
BUS Option . 141
DT Option . 142
MIN_SIZE Option . 142

Local Bus Interface Command . 142
BUS Option . 142
BUS_STD Option . 143
BUS_TYPE Option . 143

Local Port Command . 143
BUS Option . 144
DIR Option . 144
EDGE Option . 144
ENABLE Option . 144
ENDIAN Option . 144
INITIALVAL Option . 145
LEVEL Option . 145
SIGIS Option . 145
VEC Option . 145

HDL Design Considerations. 145
Unconnected Signals . 146
Scalable Data path . 146
Interrupt Signals . 147
3-state (InOut) Signals . 147

Chapter 15: Peripheral Analyze Order (PAO)
Overview . 149

http://www.xilinx.com

EDK (v3.1 EA) September 24, 2002 www.xilinx.com Embedded System Tools Guide
1-800-255-7778

PAO Format. 149
Comments . 149

PAO Example . 149

Chapter 16: Black-Box Definition (BBD)
Overview . 151
BBD Format . 151

Comments . 152
Lists . 152

BBD Examples . 152
File Selection Without Options . 152
Multiple File Selections Without Options . 152
File Selection With Options . 152

Chapter 17: Microprocessor Verification Specification (MVS)
Summary . 155
Overview . 155
MVS Format . 155

Keywords . 155
Requirements . 155
MVS Example . 156

Global Parameters . 156
PSF Version . 156
Hardware Specification File Pointer . 157
Software Specification File Pointer . 157
Simulation Language . 157
Simulator . 157
Simulation Model . 157
ModelSim Behavioral Library . 157
ModelSim Unisim Library . 157
ModelSim Simprim Library . 158

Chapter 18: Microprocessor Software Specification (MSS)
Summary . 159
Overview . 159
MSS Format. 159

Keywords . 159
Requirements . 160
MSS Example . 160

Global Parameters . 161
Hardware Specification File Pointer . 161
PSF Version . 161

Instance Specific Parameters . 162
Driver and Processor Block Parameters . 162
Processor Specific Parameters . 164

Library and File System Parameters . 166

http://www.xilinx.com

EDK (v3.1 EA) September 24, 2002 www.xilinx.com Embedded System Tools Guide
1-800-255-7778

Chapter 19: Microprocessor Driver Definition (MDD)
Summary . 169
Overview . 169
Requirements . 169
MDD Format. 169

Keywords . 169
MDD Example . 170

Driver Block . 170
Driver Block Specific Parameters and Constants . 171

Level Block . 171
Level Block Specific Parameters and Constants . 172

Chapter 20: Xilinx Libraries
Scope . 175
Overview . 175
Library Organization . 175
Library Customization . 177

Chapter 21: LibXil Standard C Libraries
Summary . 179
Overview . 179
Standard C Library (libc.a) . 179
Xilinx C Library (libxil.a) . 180
Input/Output Functions . 180
Memory Management Functions . 181

MicroBlaze Processor. 181
PowerPC 405 Processor . 181

Arithmetic Operations . 181
MicroBlaze Processor. 181
PowerPC 405 Processor . 182

Chapter 22: LibXil File
Scope . 183
Overview . 183
Module Usage . 183
Module Routines. 183
Libgen Support . 186

LibXil File Instantiation . 186
System Initialization . 186

Limitations . 186

Chapter 23: LibXil Memory File System
Scope . 187
Overview . 187

http://www.xilinx.com

EDK (v3.1 EA) September 24, 2002 www.xilinx.com Embedded System Tools Guide
1-800-255-7778

MFS Functions . 187
Quick Glance . 187
Detailed summary of MFS Functions . 188

C-like access . 193
LibGen Customization . 193

Chapter 24: LibXil Net
Summary . 195
Overview . 195
LibXilNet Functions. 195

Quick Glance . 195
Protocols Supported. 196
Library Architecture. 197
Protocol Function Description . 198

Media Access Layer (MAC) Drivers Wrapper. 198
Ethernet Drivers . 198
ARP (RFC 826) . 198
IP (RFC 791) . 198
ICMP (RFC 792) . 198
UDP (RFC 768) . 198
TCP (RFC 793) . 199
Sockets API . 199

Current Restrictions . 199
Functions of LibXilNet . 199
LibGen Customization . 210
Using XilNet in Application . 211

Chapter 25: LibXil Kernel
Summary . 213
Overview . 213
Features . 213
LibXilKernel Blocks. 213
Process Management . 214

Functions of Process Management . 215
Thread Management . 217

Functions of Thread Management. 217
Interrupt Handling . 218
System call interface . 218
Semaphore . 219

Functions of Semaphore . 219
Message Queue . 220

Functions of Message Queue . 220
Shared Memory . 222

Functions of Shared Memory . 223
Dynamic Buffer Management . 224

Functions of Dynamic Buffer Management . 224

http://www.xilinx.com

EDK (v3.1 EA) September 24, 2002 www.xilinx.com Embedded System Tools Guide
1-800-255-7778

Customization . 225
Customizing Process Management . 226
Customizing Thread Management . 226
Customizing Semaphore . 226
Customizing Message Queue . 227
Customizing Shared Memory . 227
Customizing Dynamic Buffer Management . 228

Memory footprint . 228

Chapter 26: Device Drivers
Summary . 229
Overview . 229

Goals and Objectives . 229
Device Driver Architecture . 230

Layer 2, RTOS Adaptation . 230
Layer 1, High Level Drivers . 231
Layer 0, Low Level Drivers . 231
Object-Oriented Device Drivers . 232

API and Naming Conventions . 233
External Identifiers . 233
File Naming Conventions . 233
High Level Device Driver API . 235

Configuration Parameters . 236
xparameters.h . 236
x<component name>_g.c . 237
Example . 238

Common Driver Infrastructure . 238
Source Code Documentation . 238
Driver Versions. 239
Primitive Data Types . 239
Device I/O. 239
Error Handling . 239
Communication with the Application . 240
Reentrancy and Thread Safety . 240
Interrupt Management . 240
Multi-threading & Dynamic Memory Management . 240
Cache & MMU Management . 240

Chapter 27: Stand-Alone Board Support Package
Overview . 241
MicroBlaze BSP . 241

Interrupt Handling . 241
PowerPC BSP . 241

Boot Code . 241
Cache . 242
Exception Handling . 243
Files . 245
Memory Management . 246
Process . 246
Processor-Specific Include Files . 246

http://www.xilinx.com

EDK (v3.1 EA) September 24, 2002 www.xilinx.com Embedded System Tools Guide
1-800-255-7778

Time . 246

Chapter 28: Address Management
Summary . 251
MicroBlaze Processor. 251

Programs and Memory . 251
Current Address Space Restrictions . 251
Memory Speeds and Latencies. 253
System Address Space . 253
Default User Address Space . 254
Advanced User Address Space . 254
Object-file Sections . 255
Minimal Linker Script . 257
Linker Script . 257

PowerPC Processor . 260
Programs and Memory . 260
Current Address Space Restrictions . 260
Advanced User Address Space . 261
Linker Script . 262

Chapter 29: Interrupt Management
Summary . 267
Levels of Interrupt Management. 267

Level 0 (Low Level) . 267
Level 1 (High Level) . 267

MicroBlaze Interrupt Management . 268
Interrupt Handlers . 268
The Interrupt Controller Peripheral . 268
MicroBlaze Enable Interrupts . 269
System without Interrupt Controller (Single Interrupt Signal) 269
System with an Interrupt Controller (One or More Interrupt Signals) 272

PowerPC Interrupt Management . 276

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com EDK (v3.1 EA) September 24, 2002
1-800-255-7778

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 17
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

R

Preface

About This Guide

Welcome to the Embedded Developement Kit. This kit is designed to provide designers
with a rich set of design tools and a wide selection of standard peripherals required to
build embedded processor systems using MicroBlaze, the industry’s fastest soft processor
solution, and the new and unique feature in Virtex-II Pro, the IBM ® PowerPC ® CPU.

This guide provides information about the Embedded System Tools (EST) included in the
Embedded Development Kit (EDK). These tools, consisting of processor platform tailoring
utilities, software application development tool, a full featured debug tool chain and
device drivers and libraries, allow the developer to fully exploit the power of MicroBlaze
and Virtex-II Pro.

Guide Contents
This guide discusses the following topics:

• Embedded System Tools Flow

• Processor Platform Tailoring Utilities

• Software Application Development Tools

• Debug Tool Chain

• Simulation

• Libraries

• Drivers

• Software Specification

Additional Resources
For additional information, go to http://support.xilinx.com. The following table lists
some of the resources you can access from this website. You can also directly access these
resources using the provided URLs.

Resource Description/URL

Tutorials Tutorials covering Xilinx design flows, from design entry to
verification and debugging

http://support.xilinx.com/support/techsup/tutorials/index.htm

Answer Browser Database of Xilinx solution records

http://support.xilinx.com/xlnx/xil_ans_browser.jsp

http://www.xilinx.com
http://support.xilinx.com
http://support.xilinx.com/support/techsup/tutorials/index.htm
http://www.support.xilinx.com/xlnx/xil_ans_browser.jsp

18 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Preface: About This Guide
R

Conventions
This document uses the following conventions. An example illustrates each convention.

Typographical
The following typographical conventions are used in this document:

Application Notes Descriptions of device-specific design techniques and approaches

http://support.xilinx.com/apps/appsweb.htm

Data Book Pages from The Programmable Logic Data Book, which contains
device-specific information on Xilinx device characteristics,
including readback, boundary scan, configuration, length count,
and debugging

http://support.xilinx.com/partinfo/databook.htm

Problem Solvers Interactive tools that allow you to troubleshoot your design issues

http://support.xilinx.com/support/troubleshoot/psolvers.htm

Tech Tips Latest news, design tips, and patch information for the Xilinx
design environment

http://www.support.xilinx.com/xlnx/xil_tt_home.jsp

GNU Manuals The entire set of GNU manuals

http://www.gnu.org/manual

Resource Description/URL

Convention Meaning or Use Example

Courier font
Messages, prompts, and
program files that the system
displays

speed grade: - 100

Courier bold
Literal commands that you
enter in a syntactical statement ngdbuild design_name

Helvetica bold

Commands that you select
from a menu File → Open

Keyboard shortcuts Ctrl+C

Italic font

Variables in a syntax
statement for which you must
supply values

ngdbuild design_name

References to other manuals
See the Development System
Reference Guide for more
information.

Emphasis in text
If a wire is drawn so that it
overlaps the pin of a symbol,
the two nets are not connected.

http://www.xilinx.com
http://support.xilinx.com/apps/appsweb.htm
http://support.xilinx.com/partinfo/databook.htm
http://www.support.xilinx.com/support/troubleshoot/psolvers.htm
http://www.support.xilinx.com/xlnx/xil_tt_home.jsp
http://www.gnu.org/manual

Embedded System Tools Guide www.xilinx.com 19
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Conventions
R

Online Document
The following conventions are used in this document:

Square brackets []

An optional entry or
parameter. However, in bus
specifications, such as
bus[7:0], they are required.

ngdbuild [option_name]
design_name

Braces { } A list of items from which you
must choose one or more lowpwr ={on|off}

Vertical bar | Separates items in a list of
choices lowpwr ={on|off}

Vertical ellipsis
.
.
.

Repetitive material that has
been omitted

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

Horizontal ellipsis . . .
Repetitive material that has
been omitted

allow block block_name
loc1 loc2 ... locn;

Convention Meaning or Use Example

Convention Meaning or Use Example

Blue text

Cross-reference link to a
location in the current file or
in another file in the current
document

See the section “Additional
Resources” for details.

Red text Cross-reference link to a
location in another document

See Figure 2-5 in the Virtex-II
Handbook.

Blue, underlined text Hyperlink to a website (URL) Go to http://www.xilinx.com
for the latest speed files.

http://www.xilinx.com

20 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Preface: About This Guide
R

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 21
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

R

Chapter 1

Embedded System Tools (EST)
Architecture

Summary
This chapter describes the Embedded System Tools (EST) architecture and flows for the
Xilinx embedded processors, PowerPC 405 and MicroBlaze.

Tool Architecture Overview
Figure 1-1 depicts the embedded software tool architecture. Multiple tools based on a
common framework allow the user to design the complete embedded system. System
design consists of the creation of the hardware and software components of the embedded
processor system, and optionally, a verification or simulation component as well. The
hardware component consists of an automatically generated hardware platform that can
be optionally extended to include other hardware functionality specified by the user. The
software component of the design consists of the software platform generated by the tools,
along with the user designed application software. The verification component consists of
automatically generated simulation models targeted to a specific simulator, based on the
hardware and software components.

Figure 1-1: Embedded Software Tool Architecture

SW Spec Ed.

SW Plat. Gen.

SW Source Ed.

SW. Compilers

SW Debugger

XMD

Data2BRAM

X9878

HW Spec Ed.

HW Plat. Gen

Sim Spec Ed.

Sim Plat. Gen.

Simulators

ISE - HW Impl.

iMPACT

XPS

http://www.xilinx.com

22 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 1: Embedded System Tools (EST) Architecture
R

Tool Flows
A typical embedded system design project involves the following phases:

♦ hardware platform creation,

♦ hardware platform verification (simulation),

♦ software platform creation,

♦ software application creation, and

♦ software verification (debugging).

Xilinx provides tools to assist in all the above design phases. These tools play together with
other, third-party tools such as simulators and text editors that may be used by the
designers.

Hardware Platform Creation
Hardware platform creation is depicted in Figure 1-2.

Figure 1-2: Hardware Platform Creation

The hardware platform is defined by the MHS (Microprocessor Hardware Specification)
file (see Chapter 13, “Microprocessor Hardware Specification (MHS)” for more
information). The hardware platform consists of one or more processors and peripherals
connected to the processor buses. Several useful peripherals are usually supplied by
Xilinx, along with the EST tools. Users can define their own peripherals and include them
in the MHS by following the guidelines in Chapter 12, “Platform Specification Format
(PSF)”. The MHS file is a simple text file and any text editor can be used to create this file.
The XPS tool provides graphical means to create the MHS file.

The MHS file defines the system architecture, peripherals and embedded processors. The
MHS file also defines the connectivity of the system, the address map of each peripheral in
the system and configurable options for each peripheral. Multiple processor instances
connected to one or more peripherals through one or more buses and bridges can also be
specified in the MHS.

The Platform Generator tool (platgen) creates the hardware platform using the MHS file as
input. Platgen creates netlist files in various formats (NGC, EDIF), as well as support files
for downstream tools, and top level HDL wrappers to allow users to add other

X9879

HW Spec Ed.

HW Plat. Gen

MHS File

MHS File

Emacs, SGP-GUI,
ECS-BBE, Other

SGP-Engine, Platgen EDIF, NGC,
VHD,V,BMM

XPS

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 23
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Tool Flows
R

components to the automatically generated hardware platform. See Chapter 3, “Platform
Generator,” for more information.

Note: After running platgen, FPGA implementation tools (ISE) are run to complete the
implementation of the hardware. Typically, XPS spawns off the ProjNav front end for the
implementation tools, allowing full control over the implementation. See ISE documentation for more
info on the ISE tools. At the end of the ISE flow, a bitstream is generated to configure the FPGA. This
bitstream includes initialization information for BRAM memories on the FPGA chip. If user code or
data is required to be placed on these memories at startup time, the Data2BRAM tool in the ISE
toolset is used to update the bitstream with code/data information obtained from the user’s
executable files that are generated at the end of the “Software Application Creation and Verification”
flow.

Verification Platform Creation
The verification platform is based on the hardware platform. The verification specification
allows the user to specify a simulation model for each processor, peripheral or other
module in the hardware platform. The MVS (Microprocessor Verification Specification) file
is a simple text file, and can be created using any text editor. See Chapter 17,
“Microprocessor Verification Specification (MVS)” for more information. XPS provides a
GUI based method to create this file. The MVS file is processed by the Simgen tool to create
simulation files (VHDL, Verilog or various compiled models) along with some command
files for specific simulators supported by the tool. See Chapter 4, “Simulation Model
Generator” for more information. As in the case of the hardware platform, these
simulation files may be edited by the user to add other components to the automatically
generated verification platform. The entire process of generating the MVS and the
verification platform is depicted in Figure 1-3. If the software application that runs on the
hardware platform is available in executable format, it can be used to initialize memories
in the verification platform. Details of this process are provided in later chapters.

Figure 1-3: Verification Platform.

Software Platform Creation
The software platform is defined by the MSS (Microprocessor Software Specification) file
(see Chapter 18, “Microprocessor Software Specification (MSS)” for more information).
The MSS file defines driver and library customization parameters for peripherals,
processor customization parameters, standard input/output devices, interrupt handler
routines, and other related software features. The MSS file is a simple text file and any text

X9880

Sim Spec Ed.

Sim Plat. Gen

MVS File

MVS, MHS, .elf

Emacs, SGP-GUI,
XPS MVS Editor

Simgen, SGP-sim-engine .vhd, .v for sim,
do_files

XPS

http://www.xilinx.com

24 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 1: Embedded System Tools (EST) Architecture
R

editor can be used to create this file. The XPS tool (see Chapter 2, “Xilinx Platform Studio
(XPS)” for more information) provides a graphical user interface for creating the MSS file.

The MSS file is an input to the Library Generator tool (LibGen) for customization of
drivers, libraries and interrupt handlers. See Chapter 6, “Library Generator” for more
information. The entire process of creating the software platform is shown in Figure 1-4.

Figure 1-4: Software Platform

Software Application Creation and Verification
The software application is the code that runs on the hardware and software platforms.
The source code for the application is written in a high level language such as C or C++, or
in assembly language. XPS provides a source editor for creating these files, but any other
text editor may be used here. Once the source files are created, they are compiled and
linked to generate executable files in the ELF (Executable and Link Format) format. GNU
compiler tools (see Chapter 9, “GNU Compiler Tools” for more information) for PowerPC
and MicroBlaze are used by default but other compiler tools that support the specific
processors used in the hardware platform may be used as well. XMD and the GNU
debugger (GDB) are used together to debug the software application. XMD provides an
instruction set simulator, and optionally connects to a working hardware platform to allow
GDB to run the user application. This entire process is depicted in Figure 1-5. See Chapter
11, “Xilinx Microprocessor Debugger” for more information on XMD and Chapter 10,
“GNU Debugger” for more information on GDB.

X9881

SW Spec Ed.

SW Plat. Gen

MSS File

MSS, MHS,
lib/*.c, lib/*.h

Emacs, XPS MSS Editor

libgen libc.a, libXil.a

XPS

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 25
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Some Useful Tools
R

Figure 1-5: Software Application Creation and Verification

Some Useful Tools

Xilinx Platform Studio
Once the hardware platform is defined and a stable MHS file is available, the Xilinx
Platform Studio (XPS) tool provides a GUI for creating an MSS file for the software flow.
XPS also provides source file editor capability and project and process management
capability. XPS is used for managing the complete tool flow, that is, both hardware and
software implementation flows. Please see Chapter 2, “Xilinx Platform Studio (XPS)” for
more information. XPS is available only on Windows platform in this release.

Platform Generator
The embedded processor system in the form of hardware netlists (HDL and EDIF files) is
customized and generated by the Platform Generator (platgen).

Please refer Chapter 3, “Platform Generator” for more information.

HDL Synthesis
Platgen generates hierarchal EDIF netlists in the default mode. This means that each
instance of a peripheral in the MHS file is synthesized. The default mode leaves the top-
level HDL file untouched allowing any synthesis tool to be used. Currently, Platform
Generator only supports XST (Xilinx Synthesis Technology) and Synplify.

Platform Generator produces a synthesis vendor specific project file. This is done with -s
option. The -s option builds the synthesis project file of the HDL files that were left
untouched in default mode.

If the -flat option is specified, this synthesis step can be skipped since the top-level is
also synthesized automatically.

The -i option disables IO insertion at the top-level, and also generates the HDL
component stub with the name system_stub.vhd or system_stub.v. This allows the

X9882

SW Source Ed.

SW Compilers

.c and .h files

.c and .h files
libc.a, libXil.a

Emacs, XPS Source Editor

SW Debuggers

.c and .h files
.elf file

Mb-gdb, ppc-gdb

Mb-gcc, ppc-gcc .elf file

XMD

XPS

http://www.xilinx.com

26 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 1: Embedded System Tools (EST) Architecture
R

processor system to be included as a macro in a top-level HDL design. Otherwise, the
output from Platform Generator is the top-level netlist.

iSE XST

If Platform Generator is run without the -flat option and XST as the synthesis vendor, a
synthesis script file for XST is created. This script can be executed under XST using the
following command:

xst -ifn system.scr

Synplicity Synplify

If Platform Generator is run without the -flat option and Synplicity as the vendor, a
synthesis project file for Synplify is written. This project can be executed under Synplify
using the following command:

synplify system.prj

Simulation Model Generator
The Simulation Platform Generation tool (simgen) generates and configures various
simulation models for the hardware. It takes a Microprocessor Verification Specification
(MVS) file as input. The MVS file has a reference to MHS file.

Users can specify the simulation tool to be used in MVS. The HDL language in which the
simulation models need to be generated can also be specified. For each hardware instance,
users can also specify the simulation model to be used. Please refer Chapter 4, “Simulation
Model Generator” for details.

Library Generator
XPS calls the Library Generator tool for configuring the software flow.

The Library Generator (libgen) tool configures libraries, device drivers, file systems and
interrupt handlers for the embedded processor system. The input to LibGen is an MSS file.

Please see Chapter 6, “Library Generator” for more information. For more information on
Libraries and Device Drivers please refer to Chapter 20, “Xilinx Libraries” and Chapter 26,
“Device Drivers”.

GNU Compiler Tools
XPS calls GNU compiler tools for compiling and linking application executables for each
processor in the system.

Given a set of C source files, a Microprocessor executable is created as follows.

Microblaze

mb-gcc file1.c file2.c

This command compiles and links the files into an executable that can run on the
MicroBlaze processor. The output executable is in a.out. The -o flag can be used to specify
a different file name for the output file.

In order to initialize memories in the hardware bitstream with this executable, the file
name should have an elf extension.

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 27
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Some Useful Tools
R

For further information on compiler options, mb-gcc -help can be run on the command
line. Please refer Chapter 9, “GNU Compiler Tools” for more information.

PowerPC

powerpc-eabi-gcc file1.c file2.c

This command compiles and links the files into an executable that can run on the PowerPC
processor. The output executable is in a.out. The -o flag can be used to specify a different
file name for the output file.

In order to initialize memories in the hardware bitstream with this executable, the file
name should have an elf extension.

For further information on compiler options, powerpc-eabi-gcc -help can be run on the
command line. Please refer Chapter 9, “GNU Compiler Tools” for more information.

Compiling with Optimization

Once you are satisfied that your program is correct, recompile your program with
optimization turned on. This will reduce the size of your executable, and reduce the
number of cycles it needs to execute. This is achieved by the following:

mb-gcc -O3 file1.c file2.c

Setting the Stack Size

By default, the EDK tools build the executable with a default stack size of 0x100 (256) bytes.

The stack size can be set at compile time by using:

mb-gcc file1.c file2.c -Wl,defsym -Wl,_STACK_SIZE=0x400

This will set the stack size to 0x400 (1024) bytes.

Software Debugging
You can debug your program in software (using a simulator, available for MicroBlaze
only), or on a board which has a Xilinx FPGA loaded with your hardware bitstream. Refer
to the XMD documentation for more information.

Debugging Using Hardware: software intrusive

Create your application executable using the compiler. For example

mb-gcc -g -xl-mode-xmdstub file1.c file2.c

This command creates the Microprocessor executable a.out, linked with the C runtime
library crt1.o and starting at physical address 0x400, and with debugging information that
can be read by mb-gdb (or powerpc-eabi-gdb if compilation was done for PowerPC).

If you want to debug your code using a board, you must specify the DEAFULT_INIT
parameter for that processor to XMDSTUB in MSS file. This creates a data2bram script
(run_download) file that initializes the Local Memory (LM) with the xmdstub executable.
Next, load the bitstream representing your design onto your FPGA. Refer to XMD and
Libgen documentation for more information.

Start xmd server in a new window with the following command:

xmd

http://www.xilinx.com

28 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 1: Embedded System Tools (EST) Architecture
R

Connect to use stub target GDB. Please see XMD documentation for more information.

Load the program in mb-gdb using the command:

mb-gdb a.out

Click on the “Run” icon and in the mb-gdb Target Selection dialog, choose

- Target: Remote/TCP

- Hostname: localhost

- Port: 1234

Now, mb-gdb’s Insight GUI can be used to debug the program.

Debugging Using A Simulator: non-intrusive

If you want to debug your code using a simulator, compile programs using the following
command:

mb-gcc -g file1.c file2.c

This command creates the MicroBlaze executable file, a.out, with debugging
information that can be accessed by mb-gdb. For PowerPC, the compiler used is
powerpc-eabi-gcc.

Xilinx EDK provides two ways to debug programs in simulation.

1. Cycle-accurate simulator in XMD:

Start xmd server in a new window with the following command:

xmd

Connect using sim target. Please see the XMD documentation for more information.

Loading and debugging the program in mb-gdb is done the same way as for xmd in
hardware mode described above.

This is the preferred mechanism to debug user programs in simulation

2. Simple ISA simulator inmb-gdb:

The xmd server is not needed in this mode. After loading the program in mb-gdb, Click on
the “Run” icon and in the mb-gdb Target Selection dialog, choose “Simulator”.

Use this mechanism only if your program does not attempt to access any peripherals (not
even via a print call).

Dumping an Object/Executable File
The mb-objdump utility lets you see the contents of an object (.o) or executable (.out) file.

To see your symbol table, the size of your file, and the names/sizes of the sections in the
file, run the following:

mb-objdump -x a.out

To see a listing of the (assembly) code in your object or executable file, use

mb-objdump -d a.out

To get a list of other options, use the following command:

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 29
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Verifying Tools Setup
R

mb-objdump --help

Verifying Tools Setup
The environment variable XILINX_EDK, needs to be set at the level of the hierarchy where
the directories doc, hw, and bin reside.

Tools Directory Path
Ensure that the GNU tools are in your path.

For Solaris

Check the executable search path. Your path must include the following:

• ${XILINX_EDK}/gnu/microblaze/sol/bin

• ${XILINX_EDK}/gnu/powerpc-eabi/sol/bin

• ${XILINX_EDK}/bin/sol

For PC

Check the executable search path.

• %XILINX_EDK%\gnu\microblaze\nt\bin

• %XILINX_EDK%\gnu\powerpc-eabi\nt\bin

• %XILINX_EDK%\bin\nt

Xilinx Alliance Software
The system should be set up to use the Xilinx Development System. Please verify that the
system is properly configured. Consult release notes and installation notes included in the
Xilinx iSE software package for more information. The EDK 3.1 release supports Xilinx iSE
5.1 Tools.

http://www.xilinx.com

30 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 1: Embedded System Tools (EST) Architecture
R

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 31
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

R

Chapter 2

Xilinx Platform Studio (XPS)

Summary
This chapter describes the Xilinx Platform Studio (XPS) tool used for customizing the
software flow for the Xilinx Embedded Processors, MicroBlaze and PowerPC.

Overview
Xilinx Platform Studio (XPS) provides an integrated environment for creating the software
specification and verification specification files for a Embedded Processor system. It also
provides an editor and a project management interface to create and edit source code. The
XPS offers software tool flow configuration options. The tools allows user to run the
hardware flow. However, limited configuration of the hardware flow is supported.
Currently, XPS-GUI is available only on Windows platforms. XPS-Batch is available for
both Windows and Solaris users.

Processes Supported
XPS supports the creation of the MSS file (refer to the Microprocessor Software
Specification chapter), the MVS file (refer to the Microprocessor Verification Specification
chapter), and software tool flows associated with this software specification. It supports
customization of software libraries, drivers, interrupt handlers and compilation of user
programs. User can also choose the simulation model for the complete system. XPS also
aids users in creating a MHS (refer to Microprocessor Hardware Specification chapter)
template or add template core instances to an existing MHS file. The user can then edit this
MHS file to convert template instances into a valid MHS block. User can begin a project by
either importing an existing MHS file or by starting with an empty MHS file and then
adding cores to it. XPS also supports customizing the hardware flow for the Platform
Generation (platgen) tool. It performs process management and dependency checking
between the hardware and software tool flow by calling the tools in the correct order using
makefile mechanism. Please refer to Figure 2-1.

http://www.xilinx.com

32 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 2: Xilinx Platform Studio (XPS)
R

Tools Supported
Table 2-1 describes the tools that are supported in the XPS.

Features

XPS has the following features

• Adding core templates to Microprocessor Hardware Specification (MHS)

• Generation and modification of the Microprocessor Software Specification (MSS)

• Generation and modification of the Microprocessor Verification Specification (MVS)

Figure 2-1: XPS Process

MSS
EngineUser Program Sources Make File

MHS File

Project
Management

Process
Management

Program
Sources

Management

XMP File

Platgen Libgen

Implementation
Tools

Compiler

Data2BRAM

Table 2-1: Tools supported in XPS

Tool Function Reference/Notes

Library Generator
(LibGen)

Customizes software libraries, drivers and interrupt
handlers

The Library Generator
Documentation

GNU Compiler Tools Preprocess, compile, assemble and link programs GNU tools Documentation

Platform Generator
(PlatGen)

Allows to customize various options. Runs platgen with
the options and the MHS file

The Platform Generator
Document

Simulation Model
Generator (SimGen)

Generates the simulation model and the compilation
script file for the complete system.

The Simulation Model
Generator

Makefile Generates a Makefile, which provides targets to run
various hardware and software flow tools.

Needs gmake on Solaris.

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 33
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Project Management
R

• Support for all the tools described in Table 2-1.

• Viewing and editing of C source and header files

• Project Management

• Process and tool flow dependency management

Project Management
Project information is saved in a Xilinx Microprocessor Project (XMP) file. An XMP file
consists of location of the MHS file, the MSS file, the MVS file and the C source and header
files that need to be compiled into an executable. The project also includes the FPGA
architecture family and the device type for which the hardware tool flow needs to be run.
XMP file also contains information about any aspect of the project which is not saved in
MHS, MSS or MVS file.

Creating A New Project

A New Project is created using the New Project menu option in the Project submenu of the
main menu. The New Project toolbar button can also be used.

For creating a new project, users need to specify the location of the xmp file. The name of
the xmp file is take to be the project name and the directory where xmp file resides is
considered to be the project directory. Various tools are invoked from the project directory.
All relative paths are assumed to be relative to the project directory. Optionally, users can
also specify a MHS file to be used for the project. If the specified MHS file does not already
exist in the project directory or does not have same name as project name, XPS copies it
into the project directory with same base name as project name,

If you have created your hardware specification using SGP, you can specify a SGP Project
to be imported instead of the MHS file. XPS will import all the required files from the SGP
project directory into the implementation subdirectory of XPS project directory. However,
before importing a SGP project, please ensure that the netlist generation has been
successfully completed in SGP. If you are importing a SGP project, the MHS file
system_padded.mhs is copied into the project directory, but its name is not changed.

You can also set the target device for which you intend to generate your system. You must
set the correct target architecture before running any tool, since this is needed by all the
tools. However, you can defer choosing the device size, the package and the speed grade
till you are ready to generate a bitstream. These options can also be set/changed later in
the Set Project Options dialog box in Options->Project Options menu.

If your MHS uses a peripheral which is not present either in the Xilinx EDK installation
area or in myip directory of the XPS project directory, you must specify a Peripheral
Repository Directory where the peripheral(s) resides before loading the project. The
concept of a Peripheral Repository directory, and its subdirectory structure is explained in
detail in PlatGen and LibGen chapters. This corresponds to the -P option of the two tools.
Please note that all the tools automatically look into the myip and drivers directories in the
project directory and that the project directory should not be specified as the Peripheral
Repository Directory.

Opening An Existing Project

An existing XMP file should be opened and worked on using the Open Project menu
option (Project submenu of Main menu) or using the Open Project button on the toolbar. If
you are opening a XPS project that was created by importing a SGP project, XPS will ask
you whether you want to copy over the relevant files before continuing with the project. If

http://www.xilinx.com

34 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 2: Xilinx Platform Studio (XPS)
R

there are any changes in the hardware specification or in the netlist which you want to be
reflected in the XPS project, click ‘Yes’ so that XPS can copy over the files again. If you do
not have any changes in the SGP project or if you do not want the changes made in SGP
project to be reflected in XPS, click ‘No’ so that XPS continues to use the files which were
imported the last time.

New source files and header files can be created and added as described in the Source
Code Management section of this chapter.

XPS does not allow multiple projects to be open simultaneously. Any open project must be
closed before another project can be opened.

XPS Interface
Figure 2-2 shows a screenshot of XPS. XPS opens three main windows by default.

Main Window

The main window appears on the right in the XPS in Figure 2-2. MHS, source and header
file editing can be performed in the main window of XPS. Users can also view and edit
other text files in the main window. However, MPD, MDD, MSS and MVS files can be
opened in a read-only mode. These file types can not be edited from the main window.
Any number of files can be opened simultaneously.

Project View Window (Tree View)

This view appears on the left in the XPS window in Figure 2-2. The project view window
shows system in a tree format. The System BSP tree shows system components (various
cores) by their instance names. Each core can have its own sub-tree which displays
information corresponding to that instance (for example base address and high address).
Source and header files corresponding to a processor are listed in the sub-tree for that
processor instance.

Transcript Window (Console)

The transcript window is the bottom window in Figure 2-2. This window acts as a console
for output, warning and error messages from XPS and from other tools invoked by XPS.
XPS warnings and errors are displayed in blue color while status or informational text
appears in black. For tools invoked by XPS, the STDOUT is shown in black while STDERR
is shown in blue.

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 35
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Platform Management
R

Platform Management
In order to change the system specification and software settings, XPS supports the
following features and processes.

Add Cores

Right click on “System BSP” item in the Project View window gives a menu option to
“Add Cores” to the system. Selecting it brings up a dialog box which lists all the cores
which can be instantiated in the MHS file. Multiple cores can be selected at a time for
adding to the MHS file by using the ‘Shift’ or ‘Ctrl’ key. If you click on button “Add to
MHS”, a stubbed instantiated of each of the selected core is added to the MHS file and the
System BSP Tree is updated. Note that the stubbed instantiations in the MHS file are not
complete and must be edited by hand. The window displaying list of available cores can
also be brought up by using Project->Add Cores menu item in the Main menu.

Simulation Models

Right click on “System BSP” item in the Project View window gives a menu option to set
“Simulation Model” for the system. User can choose between Behavioral, Structural, and
Timing simulation models. The currently selected model has a check mark against it. The
MVS file is updated anytime the simulation model is changed.

Figure 2-2: XPS Screenshot

http://www.xilinx.com

36 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 2: Xilinx Platform Studio (XPS)
R

View MPD

Right click on a instance name give user the option to “View MPD” for that core. If
selected, the MPD file for that core is opened in the main window. If the MPD file is already
open, focus is set on the file. MPD files are opened in read-only mode and can not be
edited.

View MDD

Right click on a instance name give user the option to “View MDD” for driver assigned to
that core. If selected, the MDD file for that core is opened in the main window. If the MDD
file is already open, focus is set on the file. This option is disabled if no driver is assigned to
that core. MDD files are opened in read-only mode and can not be edited.

S/W Settings

In the System BSP tree, a double click on an instance name opens a dialog window
displaying configurable software options for that peripheral. This window can also be
brought up by doing a Right click on peripheral instance name and choosing the menu
item S/w Settings.There are two different kinds of dialog windows, the Processor Dialog
Window for cores of type PROCESSOR (MicroBlaze or PowerPC), and the Peripheral
Dialog Window for all non-PROCESSOR cores. Note that NO S/w Settings are required
for cores of type IP and BUS, therefore the option is disabled. The type of a core is defined
in the Microprocessor Peripheral Description (MPD) file corresponding to that core.

Peripheral Dialog Window

A Peripheral Dialog Window opens up when you double-click or choose S/w Settings
menu on the instance name of a core, if the core is of type PERIPH, BRIDGE, and
BUS_ARBITER. The options which can be set in a Peripheral Dialog Window are as
follows.

Interrupt Handler Routines

The name of the interrupt handling routine is specified for any peripheral interrupt signal.
If the peripheral has no interrupt port, or if those interrupt port(s) are not connected to any
signal in the MHS file, then this edit box is disabled. Currently, XPS can only handle upto
two interrupt ports. If there are more than 2 connected interrupt ports, you can close the
project in XPS, hand edit the MSS file to add interrupt handler routine for other ports, and
then reload the project.

Driver Options

There are three edit boxes which allow you to set the name of the driver, the driver version
and the interface level of driver to be set for that peripheral. If you do not select any driver
interface level, the default level specified in the MDD file for the driver is used. XPS only
supports driver interface levels 1 and 2. If a different driver interface level is specified, the
new value is ignored and the last value for the driver interface level is retained. Please refer
to the chapter on The Library Generator tool (Libgen) for definitions of these parameters.

Other MDD Parameters

Other parameters corresponding to the driver assigned to this core can be set by clicking
on “MDD Params” button. Any parameter for a driver which can be overwritten in MSS
file are specified in the MDD file corresponding to that driver. Currently, XPS supports
over-writing only 1 MDD parameter from the GUI. If you want to override any other MDD

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 37
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Platform Management
R

parameter, close the XPS project, hand edit the MSS file and then load the project again. For
more details, please refer to the chapter on LibGen.

Processor Dialog Window

A Processor Dialog Window opens up when any processor instance name is double-
clicked or S/w settings menu option is chosen for that instance in the System BSP tree. This
window has the following six tabs.

Processor Property

In this tab, users can specify the driver, driver version, and driver interface level for the
processor. Users can also specify which peripherals are to be used as Standard Input,
Standard Output, Debug and Boot Peripherals. The Mode for a MicroBlaze instance
(XMDSTUB, BOOTSTRAP, or EXECUTABLE) can also be specified in this tab. Please note
that Debug and Boot peripherals can not be specified for a PowerPC instance.

Environment

The tab allows users to specify compiler and archiver to be used for compiling libraries
and sources for that processor. You can also specify upto what stage the compiler should be
run. Currently, XPS supports only mb-gcc compiler for MicroBlaze. For PowerPC, XPS
supports both powerpc-eabi-gcc and the WindRiver dcc compiler. However, for the dcc
compiler, certain options in other tabs can not specified (see description for individual
tabs).

Optimization

This tab allows you to specify various compiler options. The degree of optimization can be
specified to be 1,2, or 3. For a MicroBlaze instance, the user can also specify whether to use
the hardware multiplier and whether to perform Global pointer optimizations. You can
also specify whether the code should be generated in debug mode or not.

Directories

This tab allows you to specify various search directories for the Compiler (-B), for
Libraries (-L) and for Include (-I) files. You can specify what user libraries, if any, should
be used by the linker (-l option) in the Libs to Link (-l) field. The libxil.a library is
automatically picked up by gcc- based compilers. For dcc, XPS automatically adds libxil.a
as a library to link in the makefile compiler options. You can also specify any Linker script
(some times called map file) to be used. Again, the gcc based compilers pick up the default
linker script if this option is not specified. You can also specify the name of the Output ELF
file to be generated by the compiler. If these paths are not absolute, they must be relative to
the project directory.

Details

This tab gives you the ability to provide Program Start Address, Stack Size, and Heap
Size for the gcc-based compilers (mb-gcc and powerpc-eabi-gcc). Please note that these
options should not be used with dcc (they should be specified in the linker script for dcc).
Heap size is only for PowerPC instance.

The user can also specify various options which the compiler should pass to the
Preprocessor (-Wp), the Assembler (-Wa), and the Linker (-Wl). Each option is dealt in
detail in the GNU Compiler Tools documentation. You do not need to type in the specific
flags as XPS introduces the correct flag for each option automatically. However, if you type

http://www.xilinx.com

38 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 2: Xilinx Platform Studio (XPS)
R

the flags, then XPS does not introduce them. If there are more than one option in a field,
they should be separated by space.

Others

For compiling program sources, if you want to specify any Compiler Options in addition
to those specified in other tabs, you can specify them in the Program Sources Compiler
Options edit box. LibGen automatically puts default compiler options to build the library
libxil. If you want to override these default options used by LibGen, you can specify them
in Compiler Flags edit box. If you want to specify any additional options for compiling the
libraries, the can be specified in Extra Compiler Flags options. These two edit box values
are put as COMPILER_OPTIONS and EXTRA_COMPILER_OPTIONS parameters in the
MSS file. Please refer to the Microprocessor Software Specification chapter for more details
on these parameters.

Table 2-2 shows the options that are displayed in a processor dialog window under various
tabs.

Table 2-2: Processor Options

Option Value Type Description

Boot Peripheral Instance Name Designates the peripheral instance as the Boot peripheral

Debug Peripheral Instance Name Designates the peripheral instance as the Debug Peripheral. Here the
peripheral is used to download the debug stub (xmdstub)

STDIN Instance Name Peripheral designated as the standard input

STDOUT Instance Name Peripheral designated as the standard output

Flow Option Compiler Option Runs the compiler flow until preprocessor, compile, assemble or link
stage.

Compiler Options Optimization Level Choose the level of compiler optimization. Equivalent to -O option in
gcc.

Global Pointer
Optimization

Compiler Option This option enables global pointer optimization in the compiler. This
option is only for MicroBlaze.

Hardware Multiply Compiler Option Enables the use of hardware multiplier on Virtex II or VirtexIIPro
architecture families. This option is only for MicroBlaze.

Debut Compiler Option -g option to generate debug symbols.

Search Paths Directories Compiler, Library and Include paths. Equivalent to -B, -L and -I option
to gcc.

Output File File path and name Sets the name of the executable file. Equivalent to -o option of gcc.

Program Start
Address

Hex Value Specifies the start address of the text segment of the executable for
MicroBlaze and the program start address for PPC.

Stack Size Hex Value Specifies the stack size in bytes for the program.

Heap Size Hex Value Specifies the heap size in bytes for the program. Heap size can only
be specified for a PPC Instance.

Pass Options Compiler Options Options can also be passed to the compiler, assembler and linker.
The options have to be space separated.

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 39
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Source Code Management
R

For more information on the options, please refer to the Library Generator chapter and
Microprocessor Software Specification chapter.

Source Code Management
XPS has an integrated editor for viewing and editing C source and header files of the user
program. The source code is grouped for each processor instance. You can add or delete list
of source code files for each processor. All the source code files for a processor are compiled
using the compiler specified for that processor.

Adding Files

Files can be added to a processor by clicking the right mouse button on the Sources or
Headers child of the processor instance sub-tree in the System BSP Tree Item. The same
operation can be accomplished by using the Project->Add Program Sources menu item in
the Main menu. Multiple files are added by pressing the control key and using arrow keys
(or the mouse) to select in the file selection dialog. XPS adds files to Sources or Headers
subtree depending upon the file extension.

Deleting Files from Project

Any file can be deleted from a processor by selecting the file in the Project View window
then clicking the right mouse button on the item and choosing Delete File. Note that the
file does not get physically deleted from the disk. It is just removed from the list of files to
be compiled to generate the executable for that processor instance. The same operation can
be accomplished by selecting the file to be deleted in the Project View window and then
using the Project->Delete File menu item in the Main Menu

Editing Files

Double clicking on the source or header file in the Project View window opens the file for
editing. The editor supports basic editing functions such as cut, paste, copy and
search/replace. The editor highlights basic source code syntax. It also supports file
management and printing functions such as saving, printing, and print previews.
However, files of type MSS, MVS, MPD and MDD are opened in read-only mode and can
not be edited in XPS editor.

Flow Tool Settings and Required Files
XPS supports tool flows as shown in Table 2-1. The Main menu has a Options submenu.
You can set various project and tool options, as described below for each menu item.

Compiler Options

This menu opens the same dialog box as one opened by double-clicking on a processor
instance name (excluding the Processor Property tab). If there is a single processor in your
system, it will automatically open the dialog box corresponding to the instance, otherwise,
user will be asked which processor you want the options to be set for. User can set various
compiler options in the processor dialog box which opens, as explained earlier in Processor
Dialog Box section.

http://www.xilinx.com

40 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 2: Xilinx Platform Studio (XPS)
R

Project Options

Menu item Options->Project Options opens a dialog box which allows user to specify
various project options. There are three tabs in this dialog box.

Device and Repository

The target device for the project can be changed here. There are four different items:
Architecture, Device Size, Package, and Speed Grade. Please note that if your project was
created by importing a SGP project, you should not change the target architecture here.

User can also specify the Peripheral Repository Directory here. If you change this option
here, then you must close the project and load it again for the changes to be effective.This
option corresponds to the -P option of LibGen and PlatGen tools. See LibGen and PlatGen
documentation for more information.

Hierarchy and Flow

This tab allows user to specify the design hierarchy, whether the processor design being
done in XPS is the top level module or if it is just a sub-module in the entire hierarchy. If
this design is a sub-module, the Top Instance edit box allows you to specify the instance
name used to instantiate this module in the top-level design. This corresponds to the -i and
-ti options of PlatGen tool.

User can also specify the option to generate netlist in Flat or Hierarchical mode. If
hierarchical mode is chosen, user can choose to whether to run synthesis tool (“None”) and
which synthesis tool to run.

User can also specify the flow to use for running the Xilinx implementation tools. The
available options are XPS (Xflow) and ISE (Project Navigator) flow. If the design is a sub-
module, user must use the ISE flow. If the design in the top-level (not sub-module) and
user chooses to generate netlist in flat mode, then XPS must be used for implementation
flow. Only if the design is top-level and user chooses to generate netlist in hierarchical
mode, the user can choose between XPS and ISE for implementation tools. Please see the
ISE Project Navigator Interface section described later for details on how to add design
components and files to ProjNav project using XPS.

Simulation

This tab allows you to specify the HDL (VHDL or Verilog) to be used by PlatGen and
SimGen. You can also specify the location of the Behavioral, Unisim and Simprim libraries
required for simulation. These options are saved into the MVS file.

Required Files

If XPS (Xflow) is chosen to run the implementation tools, XPS expects a certain directory
structure in the project directory. For each project, you must provide User Constraints File
(UCF). The file should reside in data directory in the project directory and should have the
name <proj_name>.ucf. Users are also expected to provide an iMPACT script file. This file
should reside in etc directory and should be called download.cmd. If these files do not
exist, XPS will ask you to provide these files and will not run xflow.To run Xilinx
Implementation tools, XPS uses two more files, bitgen.ut and fast_runtime.opt from etc
directory. However, if not present, XPS creates the etc directory and copies the default
version of these two files in that directory from the EDK installation directory. To change
options for Xilinx implementation tools, you can modify the two files.

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 41
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Tool Invocation
R

Tool Invocation
After all options for the compiler and library generator are set, the tools can be invoked
from the Run submenu in the Main menu. The main toolbar also contains buttons to
invoke these tools.

There are four different stages of platform building for which the tools can be invoked

1. Generate Libraries: This button invokes the library building tool LibGen with the
correct MSS file as input.

2. Compile Program Sources: This button invokes the compiler for each processor
instance to compile corresponding program sources. It builds the executable files for
each processor. If LibGen has not been executed, this button first invokes LibGen.

3. Generate Netlist: This button calls the platform building tool PlatGen with the correct
MHS file and produces the netlist files in NGC format. Please note that if you have
imported a SGP Project, then you should have already generated the netlist using SGP
and this button will not perform any function.

4. Generate Bitstream: If using XPS for implementation tools, this button calls the tool
xflow with the fast_runtime.opt and bitgen.ut files residing in the etc. directory in the
project directory. XFlow in turn calls the Xilinx iSE Implementation tools. If using
ProjNav for the implementation flow, the button is greyed out. User must use Tools-
>Export to ProjNav menu to add the XPS files into ProjNav project, run the complete
flow in ProjNav and then use Tools->Import from ProjNav menu to import bitstream
and bmm files back into the flow.

5. Update Bitstream and Download: This button invokes tool data2bram. This is the
stage where the hardware and the software flows come together. This button also calls
hardware and software flow tools if required. So, you can use just a single-button to
build both hardware and software flows and download their bitstream. File
download.cmd is expected in etc directory.

XPS generates a makefile in the project directory and calls the corresponding target. The
dependencies between various tools being run is take care of by the Makefile.

When LibGen is invoked, an MSS file is created for the software specification. When the
user exits the application, a prompt to save the current project appears. The user can also
save the project in another name by using Save Project As in the Project submenu of the
Main menu.

ISE Project Navigator Interface

If ISE tools (ProjNav) is chosen for implementation flow in the Project Options dialog box,
then user must specify the ProjNav project (NPL) file. ProjNav will run implementation
tools in the directory where this ProjNav project file is created. Default NPL file location is
<proj_dir>/projnav/<proj_name>.npl. It is recommended not to use implementation
directory for ProjNav flow since XPS clean mechanism deletes this directory. To run the
ProjNav flow, user can create a new ProjNav project file or specify an already existing
ProjNav project file.

Menu option Tools->Export ProjNav Project adds the required vhdl and bmm files to the
ProjNav project. It also copies any ngc files generated by PlatGen or XST.

Menu option Tools->Import ProjNav Project gives user the option to import a bitstream
and a bmm file back into the XPS Project. The bit file should be the one generated by bitgen
at the end of implementation tools. The bmm file should also be the one generated by

http://www.xilinx.com

42 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 2: Xilinx Platform Studio (XPS)
R

bitgen, which has BRAM placement information. XPS copies the bit and bmm files into
implementation directory as <proj_name>.bit and <proj_name>_bd.bmm respectively.

Debug and Simulation
You can debug the hardware and the software part of the design either by simulation or by
running it on the hardware itself. XPS provides support for invoking the corresponding
tools to perform the job.

• Xilinx Microprocessor Debug (XMD): You can call the XMD tool. to debug your
software. The XMD-button the XPS toolbar opens up a XMD shell in the project
directory.

• Software Debugger: The debug button calls the software debugger corresponding to
the compiler being used for the processor. If you have more than one processor, XPS
asks you to choose the processor whose program sources you want to debug.

• Hardware Simulation Model Generator (SimGen): You can call the SimGen tool to
generate various simulation models for the components instantiated in MHS File.
Depending on the simulation model to be used (Behavioral, Structural or Timing),
XPS calls SimGen with appropriate options to generate the simulation models and
initialize memory. Then XPS compiles those models for ModelTech’s ModelSim
simulator and start the simulator with the compiled files.

XPS No Window Mode
XPS no window mode can be invoked by typing the command xps -nw at the command
prompt. It provides limited functionality to generate MSS and MVS files. It also provides a
way to generate makefile. You can also create a XMP project file or load a XMP project file
created by the XPS GUI. Please note that unlike XPS-GUI, XPS-Batch is available on both
Solaris and Windows platforms.

Available Commands

XPS-Batch provides you a Tcl shell interface. You can use the commands in Table 2-3.

Table 2-3: XPS-Batch commands

Command Description

load [mhs|xmp] <filename> Loads the MHS/XMP file and opens/creates XPS
project

load [mss|mvs] Loads in the corresponding file into the project

save [mss|mvs|xmp|make|proj] Saves the corresponding file. Option proj will save all
files

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 43
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

XPS No Window Mode
R

Creating A New Project

For creating a new project, use the command

load mhs <basename>.mhs.

XPS will read in the MHS file and create the new project. The project name will be same as
MHS basename. All the files generated will have the same name as MHS.

After reading in the MHS file, XPS will also assign various default drivers to each of the
peripheral instance, if a driver is known and available to XPS.

Opening An Existing Project

If you already have a XMP project file, you can load that file using command

load xmp <basename>.xmp.

XPS will read in the XMP file and load the project. Project name will be same as XMP
basename. Note that XPS will take the names of MSS and MVS files from the XMP file, if
specified. Otherwise, it will assume these files based on the XMP file name.

Note that during a single execution of XPS-Batch, you should either create a new project or
open an existing one. You should not do both. XPS does not check whether an existing
MHS or XMP has already been loaded and doing both might cause unknown results.

Reading MSS and MVS Files

You can read in a MSS or MVS file using command

load [mss|mvs].

Note that you can not specify the name of the file. It is assumed to be project basename
with appropriate extension or taken from XMP file. Loading an MSS or MVS file will
override any earlier settings. For example, if you specify a new driver for a peripheral
instance in the MSS file, the old driver for that peripheral will be over ridden. However, if
you do not specify a new driver, the old driver will be used.

Saving Files and Project

You can save MSS, MVS, XMP and make files for your project using the command

save [mss|mvs|xmp|make|proj].

xset

[dev|package|speedgrade]

sgpdir

perdir

netlist

hdl

Set arch, device, package and speedgrade

SGP Project directory

Peripheral Repository Directory

Hierarchical or Flat netlist option

HDL to be used

run option Executes makefile with appropriate target. Refer to
section “Executing Flow Commands”

exit Closes the project and exits out the XPS

Table 2-3: XPS-Batch commands

Command Description

http://www.xilinx.com

44 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 2: Xilinx Platform Studio (XPS)
R

Command save proj will save all the files.

Executing Flow Commands

You can run various flow tools by using the command

run option

XPS will run the project’s makefile with appropriate targets. The valid options for

command run are shown in the table.

Closing A Project and Exiting

For closing the project, you can use the command

exit.

This will also close XPS. Thus, you can only work on a single project during a single
execution of the batch mode version of XPS.

Limitations And Workarounds

MSS and MVS Changes

XPS-batch supports limited MVS or MSS editing. So, if you want to make any changes in
these files, you will have to hand-edit the file, make the changes and load it in to XPS. Note
that you do not have to close the project. You can save the MSS or MVS file, edit it and then
just re-load it into the project by using load [mss|mvs] command.

XMP Changes

XPS-batch also does not support adding of source and header files to a processor. To do so,
you must hand-edit the XMP file. To add a source file, open an existing XMP file, and find
the line containing ‘Processor: <instance_name>‘. Just below this line, introduce a line

Table 3: Options for command run

netlist Generate netlist

bits Run Xilinx Implementation tools flow and generate bitstream

libs Generate software libraries

prog Compile user program into ELF file(s)

init_bram Update bitstream with BRAM initialization information

sim Generate simulation models and run simulator

dow Download bitstream onto the FPGA

netlistclean Delete netlist

hwclean Delete implementation directory

libsclean Delete software libraries

programclean Delete ELF file(s)

simclean Delete simulation directory

clean Delete all tool generated files and directories

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 45
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Xilinx Microprocessor Project (XMP) File Format
R

containing ‘Source: <file_path>’. For adding a header file, you can add a line containing
‘Header: <file_path>’. Note that you must add a separate line for each source and header
file you want to add to a processor instance.

Importing SGP Project

XPS-batch does not have any mechanism of importing an SGP project. To achieve the same,
create a implementation directory in the directory where you intend to create XPS project.
Copy all the files (*.*) in the SGP project directory into this implementation directory. Also
copy the file system_padded.mhs into your intended XPS project directory. Use the
command ‘set sgpdir <sgp-dir>’ to set the SGP directory. This will let XPS generate the
correct makefile. Now you can load the MHS file system_padded.mhs to create your new
project.

Xilinx Microprocessor Project (XMP) File Format
XPS saves user options into Xilinx Microprocessor Project (XMP) file. Those options which
are not saved in MSS or MVS files get saved in XMP file. When you open an already
existing project, XPS loads these project options from the XMP file. XMP file is a formatted
text file which XPS writes when saving a project.

This section describes various fields in XMP file. XMP file is a set of name-value pairs. The
format is Field name immediately followed by a colon and then the value of that field.
Filed Names can have space in it.

Field Name: Value

The directory in which the XMP file exists is assumed to be the Project Directory
and all paths are assumed to be relative to this directory. For example, on an
windows system, if XMP file exists in C:\myprojectdir\system1.xmp, Then the
project directory is C:\myprojectdir and the name of the project is system1.

There are two types of fields:

• Global

• Processor Instance Specific

Global fields are those which apply to the complete system. Processor instance specific
fields apply to that particular processor instance. We will first discuss Global Fields.

Peripheral Repository Directory

You can specify a Peripheral Repository Directory location as follows:

UsePeriphRepos: 1
PeriphReposDir: <dir_path>

Field UsePeriphRepos specifies whether to use any specified PeriphReposDir or not. A
value of 0 indicates not to use the directory. Default value is 0.

Field PeriphReposDir specifies the Directory location. Note that these fields should
specified before MHS File location.

MHS File Location

MHS File: <MHS file location>

If the MHS File does not exist in the project directory with same base name as project name,
then XPS copies that MHS file into this name and location.

http://www.xilinx.com

46 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 2: Xilinx Platform Studio (XPS)
R

MSS File Location

MSS File: <MSS file location>

MSS Files are created by XPS in the project directory with project name as base.

MVS File Location

MVS File: <MVS file location>

MVS Files are created by XPS in the project directory with project name as base.

Project Navigator Options

UseProjNav: 1
AddToNPL: 1
NPL File: <ProjNav project file location>

The UseProjNav field specifies whether the XPS project should use Project Navigator or
Xflow for implementation tools. A value of 0 indicates to use Xflow, otherwise ProjNav.
The AddToNPL field specifies that if using ProjNav, whether XPS should overwrite the
existing NPL file or add modules to the existing file. A value of 0 indicates that any existing
NPL file should be overwritten. A value of 1 indicates that the NPL file already exists and
XPS should add modules to the existing project. The Project Navigator Project (NPL) file
location is specified by NPL File field.

SGP Project Location

SGP Dir: <SGP Proj directory location>

SGP Project was imported from this location.

Xilinx Target Family and Device

Architecture: <Target Family>
Device: <Target Device Name>
Package: <Package Name>
SpeedGrade: <Speed Grade>

The valid strings for target architecture families are: virtex2, spartan2, spartan2e, virtex,
virtexe, and virtex2p. The field Device specifies the target device name. For example, if you
are targeting Virtex2 100, then device name should be xc2v100. The field Package specifies
the device package and SpeedGrade specifies the speed grade of the device. You have to
make sure that you specify a valid device, package and speed grade for the specified
family and device.

Netlist and Synthesis Tools Option

HierMode: 0
SynProj: 2

HierMode corresponds to the PlatGen option of whether to generate netlist in hierarchical
mode or flat mode. A value of 0 (default) means netlist should be generated in flat mode.
If hierarchical mode of netlist generation of chosen, then option SynProj specifies which
synthesis tool script file is to be generated. Valid values are between 0 and 5. A value of 0
specifies not to generate any synthesis script file. Default value is 2, which generates script
for XST.

Design Hierarchy

InsertNoPads: 0
TopInst: inst_system

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 47
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Xilinx Microprocessor Project (XMP) File Format
R

This option specifies the design hierarchy. This corresponds to the PlatGen option of
whether to insert pads at the toplevel of netlist. A value of 0 (default) specifies that pads
should be inserted, any other value means that this is not the top-level and pads should not
be inserted. If this is not the toplevel, TopInst specifies the instance name give to this
design in the top-level module.

We will now discuss Processor Specified Fields.

Processor Instance

Processor: myppc

This field should be used atleast once before specifying any processor specific fields. For
example, if you have a PowerPC instance called “myppc”, then you would use the above
line to indicate that processor specific fields on following lines in XMP files apply to
instance myppc. This field makes the instance name the current processor in XMP file.
Then, all processor specific fields following this line will apply to the current processor
instance until another line specifying a different processor instance is specified in the XMP
file. Then that processor instance becomes the current processor instance.

Source and Header Files

Header: code/sys1.h
Source: code/a.c
Header: code/sys2.h
Source: code/b.c

The field Source specifies a source file for the current processor instance. The field Header
specifies a header file for the current processor instance. If you have multiple source or
header files, you should add one line for each file.

Compiler Flow

CompilerFlow: 3

This field specifies how far the compiler flow should be run. Valid values are between 0
and 3. The values correspond to the following flow:

• 0: Preprocess Only

• 1: Preprocess and Compile

• 2: Preprocess, Compile and Assemble

• 3: Preprocess, Compile, Assemble and Link.

Default value is 3, which means the compiler flow is run to the end.

Compiler Optimization Level

CompilerOptLevel: 2

This field specifies the compiler optimization level. Valid values are between 0 and 3,
where 0 corresponds to no optimization and 3 corresponds to maximum optimization.

Use Hard Multiplier

HardMul: 0

This field specifies to use hard multiplier available on Virtex2 and Virtex2P devices for
MicroBlaze instance.

http://www.xilinx.com

48 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 2: Xilinx Platform Studio (XPS)
R

Global Pointer Optimization

GlobPtrOpt: 0

This field specifies whether to use Global Pointer Optimization during compilation of
program sources for the current processor. Value of 0 (default) indicates not to perform this
optimization.

Debugging Information

DebugSym: 0

This field specifies whether to compile the program sources with debugging information
or not. Value of 0 (default) indicates not to generate debugging information.

Compiler Search Path

SearchComp: ./ ../

This field specifies various directories (separated by space) for compiler search path (-B
option).

Link Library Search Path

SearchLibs: ./ ../

This field specifies various directories (separated by space) where the linker should look
for libraries for the program sources (-L option).

Include Files Search Path

SearchIncl: ./ ../

This filed specifies various directories (separated by space) where the compiler should
look for various include files for the program sources (-I option).

Libraries to link

LFlags: a b

This field specifies libraries to be linked (separated by space) for compiling the program
sources (-l option).

Preprocessor Options

PrepOpt:

This field specifies various options (separated by space) to be passed on to the
preprocessor (-Wp option).

Assembler Options

AsmOpt:

This field specifies various options (separated by space) to be passed to the assembler (-Wa
option).

Linker Options

LinkOpt:

This field specifies various options (separated by space) to be passed to linker (-Wl option).

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 49
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Xilinx Microprocessor Project (XMP) File Format
R

Program Start Address

ProgStart: 0xffffc000

This field specifies the program start address for your application software. This field is
ignored if dcc is the compiler.

Stack Size

StackSize: 0x400

This field specifies the stack size for your application software. This field is ignore if dcc is
the compiler.

Heap Size

HeapSize: 0x400

This field specifies the heap size for your application software. This field is valid only for a
PowerPC instance. This field is ignored if dcc is the compiler.

Linker Script

LinkerScript: <file_name>

This field specifies the linker script file to be used for compiling program sources.

Other Compiler Flags

ProgCCFlags: -save-temps

This field specifies various options to be passed to the top level compiler wrapper. You can
use this field to specify those options which you could not specify through other fields.

http://www.xilinx.com

50 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 2: Xilinx Platform Studio (XPS)
R

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 51
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

R

Chapter 3

Platform Generator

Overview
The hardware component is defined by the Microprocessor Hardware Specification (MHS)
file. An MHS file defines the configuration of the embedded processor system, and
includes the following:

• Bus architecture

• Peripherals

• Connectivity of the system

• Interrupt request priorities

• Address space

Hardware generation is done with the Platform Generator (platgen) tool and an MHS file.
This will construct the embedded processor system in the form of hardware netlists (HDL
and implementation netlist files).

This chapter includes the following sections:

“Tool Requirements”

“Tool Usage”

“Tool Options”

“Load Path”

“Output Files”

“About Memory Generation”

“Reserved MHS Attributes”

“Current Limitations”

Note: The EDK offers a format revision tool, RevUp, that converts any old MHS format to
the new format. Please see Chapter 7, “Format Revision Tool” for more information.

Tool Requirements
Set up your system to use the Xilinx Development System. Verify that your system is
properly configured. Consult the release notes and installation notes that came with your
software package for more information.

http://www.xilinx.com

52 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 3: Platform Generator
R

Tool Usage
Run Platform Generator as follows:

platgen system.mhs

Tool Options
The following are the options supported in the current version:

-a (Architecture family)

The -a option allows you to target a specific architecture family. The default family is
virtex2.

-flat (Generate a flatten implementation netlist file)

The -flat option generates a flattened mplementation netlist file. A synthesis project file
is not created.

By default, Platform Generator runs in hierarchal mode. In hierarchal mode, Platform
Generator generates hierarchal implementation netlists. This means that each instance
of a defined peripheral in the MHS file is synthesized. The default mode leaves the top-
level HDL file untouched allowing you to synthesize it in any synthesizer of your
choice. Currently, Platform Generator only supports XST and Synplify.

-h (Help)

The -h option displays the usage menu and quits.

-i (Do not insert IOs at top-level)

The -i option disables IO insertion at the top-level. This allows the processor system to
be included as a macro in a top-level design. Otherwise, the output from Platform
Generator is the top-level design.

-l (Specify the HDL format)

The -l option allows you to specify the HDL format. The default value is vhdl.

Options: [vhdl, verilog]

-p (Specify the Project Directory)

The -p option allows you to specify the project directory path. The default is the
current directory.

-P (Peripheral repository load path)

The -P option allows you to specify the peripheral repository load path.

-s (Generate synthesis vendor project file)

With the -s option, Platform Generator produces a synthesis vendor specific project
file. The -s option builds the synthesis project file for you of the HDL files that were left
untouched in default mode (that is, not specifying the -flat option). The only
supported values are 0, 2, and 4. The default value is 2.

Options: [0, 1, 2, 3, 4]

0 - None

1 - Exemplar - Leonardo

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 53
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Load Path
R

2 - iSE - XST - SCR/PRJ file

3 - Synopsys - FPGA Express

4 - Synplicity - Synplify - PRJ file

-v (Display version)

The -v option displays the version and quits.

Load Path
Refer to Figure 3-1 for a depiction of the peripheral directory structure. On a UNIX system,
the processor cores reside in the following location:

$XILINX_EDK/hw/coregen/ip/xilinx/pcores*/com/xilinx/ip2/processor

On a PC, the processor cores reside in the following location:

%XILINX_EDK%\hw\coregen\ip\xilinx\pcores*\com\xilinx\ip2\processor

To specify additional directories, use one of the following options:

• Current directory (where Platform Generator was launched; not where the MHS
resides)

• Set the Platform Generator -P option, or the XIL_MYPERIPHERALS environment
variable

Platform Generator uses a search priority mechanism to locate peripherals, as follows:

1. Search current directory in the myip directory

2. Search $XIL_MYPERIPHERALS/myip (UNIX) or %XIL_MYPERIPHERALS%\myip
(PC)

3. Search $XILINX_EDK/hw/coregen/ip/xilinx/pcores*/com/xilinx/ip2/processor
(UNIX) or
%XILINX_EDK%\hw\coregen\ip\xilinx\pcores*\com\xilinx\ip2\processor (PC)

The first two search areas (1 and 2) have the same underlying directory structure. The third
search area has the CORE Generator directory structure. For search areas 1 and 2, the
peripheral name is the name of the root directory. From the root directory, the underlying
directory structure is as follows:

data
hdl/verilog
hdl/vhdl
simmodels

For example, if the XIL_MYPERIPHERALS environment is set, then the MPD, BBD, and
PAO files are found in the following location:

$XIL_MYPERIPHERALS/myip/<peripheral>/data (UNIX)

%XIL_MYPERIPHERALS%\myip\<peripheral>\data (PC)

http://www.xilinx.com

54 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 3: Platform Generator
R

Figure 3-1: Peripheral Directory Structure

Output Files
Platform Generator produces the following directories and files. From the project
directory, this is the underlying directory structure:

hdl
implementation
synthesis

HDL Directory
The hdl directory contains the following:

system.[vhd|v]

This is the top level HDL file of the processor and its peripherals.

Implementation Directory
The implementation directory contains the following:

system.ngc

This is the top level implementation netlist of the processor and its peripherals. Only
created if the -flat option is given.

peripheral_wrapper.ngc

Implementation netlist file of the peripheral. Only created if the -flat option is not
given.

X9876

$XIL_MYPERIPHERALS

drivers

my_uart my_uart

data hdl netlist simmodels

myip

MPD BBD

PAO

Verilog VHDL

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 55
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

About Memory Generation
R

Synthesis Directory
The synthesis directory contains the following:

system.[prj|scr]

Synthesis project file.

About Memory Generation
Platform Generator generates the necessary banks of memory and the initialization files
for the BRAM Block (bram_block_v1_00_a). The BRAM Block is coupled with a BRAM
controller.

Current BRAM controllers include the following:

• DSOCM BRAM Controller (dsbram_if_cntlr_v1_00_a) - PowerPC only

• ISOCM BRAM Controller (isbram_if_cntlr_v1_00_a) - PowerPC only

• LMB LMB BRAM Controller (lmb_lmb_bram_if_cntlr_v1_00_a) - MicroBlaze only

• LMB OPB BRAM Controller (lmb_opb_bram_if_cntlr_v1_00_a) - MicroBlaze only

• OPB BRAM Controller (opb_bram_if_cntlr_v1_00_a)

• PLB BRAM Controller (plb_bram_if_cntlr_v1_00_a)

For the BRAM controllers the MHS options, C_BASEADDR and C_HIGHADDR (see the
Chapter 13, “Microprocessor Hardware Specification (MHS),” documentation for more
information), define the different depth sizes of memory.

The MicroBlaze processor is a 32-bit machine, therefore, has data and instruction bus
widths of 32-bit. Only predefined memory sizes are allowed. Otherwise, MUX stages have
to be introduced to build bigger memories, thus slowing memory access to the memory
banks. For Spartan-II, the maximum allowed memory size is 4 kBytes which uses 8 Select
BlockRAM. For Spartan-IIE, the maximum allowed memory size is 8 kBytes which uses 16
Select BlockRAM. For Virtex/VirtexE, the maximum allowed memory size is 16 kBytes
which uses 32 Select BlockRAM. For Virtex-II, it is 64 kBytes which also uses 32 Select
BlockRAMs.

Be sure to check your FPGA resources can adequately accommodate your executable
image. For example, the smallest Spartan-II device, xc2s15, only 4 Select BlockRAMs are
available for a maximum memory size of 2 kBytes. Whereas, the largest Spartan-II device,
xc2s200, 14 Select BlockRAMs are available for a maximum memory size of 7 kBytes.

Table 3-1: Predefined Memory Sizes

Architecture
Memory Size (kBytes)

32-bit
byte-write

Memory Size (kBytes)
64-bit

byte-write

Spartan-II 2, 4 4, 8

Spartan-IIE 2, 4, 8 4, 8, 16

Virtex 2, 4, 8, 16 4, 8, 16, 32

VirtexE 2, 4, 8, 16 4, 8, 16, 32

Virtex-II 8, 16, 32, 64 16, 32, 64, 128

Virtex-II PRO 8, 16, 32, 64 16, 32, 64, 128

http://www.xilinx.com

56 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 3: Platform Generator
R

Platform Generator creates four blocks of memory. Each bank of memory is byte
addressable (8 bits wide). Depending on the pre-defined memory size, each bank will
contain one or more Select BlockRAMs.

For example, for a memory size of 4 kBytes on a Virtex device, Platform Generator creates
four banks of memory. Each bank is 8 bits wide and 1 kBytes deep. This configuration uses
eight Select BlockRAMs, two Select BlockRAMs for each bank.

MHS Example (LMB LMB Controller with BRAM Block)
The following is an example of the LMB LMB Controller with BRAM Block:

##
BEGIN lmb_lmb_bram_if_cntlr
PARAMETER INSTANCE = mylmblmb_cntlr
PARAMETER HW_VER = 1.00.a
PARAMETER C_BASEADDR = 0x00000000
PARAMETER C_HIGHADDR = 0x00000fff
BUS_INTERFACE ILMB = i_lmb
BUS_INTERFACE DLMB = d_lmb
BUS_INTERFACE PORTA = lmb_porta
BUS_INTERFACE PORTB = lmb_portb
END
##
BEGIN bram_block
PARAMETER INSTANCE = bram1
PARAMETER HW_VER = 1.00.a
BUS_INTERFACE PORTA = lmb_porta
BUS_INTERFACE PORTB = lmb_portb
END

Reserved MHS Attributes
The Platform Generator automatically expands and populates certain reserved
parameters. This can help prevent errors when your peripheral requires information on
the platform that is generated. The following table lists the reserved parameter names:

Table 3-2: Automatically Expanded Reserved Parameters

Parameter Description

C_BUS_CONFIG Bus Configuration of MicroBlaze

C_FAMILY FPGA Device Family

C_INSTANCE Instance name of component

C_KIND_OF_EDGE Vector of edge sensitive (rising/falling) of interrupt signals

C_KIND_OF_LVL Vector of level sensitive (high/low) of interrupt signals

C_KIND_OF_INTR Vector of interrupt signal sensitivity (edge/level)

C_NUM_INTR_INPUTS Number of interrupt signals

C_NUM_MASTERS Number of OPB masters

C_NUM_SLAVES Number of OPB slaves

C_DCR_AWIDTH DCR Address width

C_DCR_DWIDTH DCR Data width

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 57
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Current Limitations
R

Current Limitations
The current limitations of the Platform Generator flow are:

• Vector slicing is not allowed.

C_DCR_NUM_SLAVES Number of DCR slaves

C_LMB_AWIDTH LMB Address width

C_LMB_DWIDTH LMB Data width

C_LMB_NUM_SLAVES Number of LMB slaves

C_OPB_AWIDTH OPB Address width

C_OPB_DWIDTH OPB Data width

C_OPB_NUM_MASTERS Number of OPB masters

C_OPB_NUM_SLAVES Number of OPB slaves

C_PLB_AWIDTH PLB Address width

C_PLB_DWIDTH PLB Data width

C_PLB_MID_WIDTH PLB master ID width

C_PLB_NUM_MASTERS Number of PLB masters

C_PLB_NUM_SLAVES Number of PLB slaves

Table 3-2: Automatically Expanded Reserved Parameters

Parameter Description

http://www.xilinx.com

58 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 3: Platform Generator
R

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 59
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

R

Chapter 4

Simulation Model Generator

Summary
This chapter describes the Simulation Model Generator utility usage.

Overview
The Simulation Model Generation tool (SimGen) generates and configures various
simulation models for a specified hardware. It takes a Microprocessor Verification
Specification (MVS) file as input. MVS files have a reference to an MHS file that describes
the hardware. The simulation tool is specified in the MVS file. The HDL language in which
the simulation models need to be generated can also be specified. For each hardware
instance, you can specify the simulation model. Please refer to Chapter 17,
“Microprocessor Verification Specification (MVS)” for more information about the MVS
file.

The hardware component is defined by the Microprocessor Hardware Specification (MHS)
file. Please refer to Chapter 13, “Microprocessor Hardware Specification (MHS)” for more
information.

SimGen produces a simulation model and a compilation script for vendor specific
simulators.

About Simulation
This section introduces the basic facts and terminology of HDL simulation. There are three
stages in the FPGA design process in which you conduct simulation.

Behavioral Simulation
Behavioral simulation is used to verify the syntax and functionality without timing
information. The majority of the design development is done through behavioral
simulation until you get the required functionality. Errors identified early in the design
cycle are inexpensive to fix compared to functional errors identified during silicon debug.

Structural Simulation
After the behavioral simulation is error free, the HDL design is synthesized to gates. The
post-synthesized structural simulation is a functional simulation with unit delay timing.
The simulation can be used to identify initialization issues and to analyze don’t care
conditions. The post synthesis simulation generally uses the same testbench as functional
simulation.

http://www.xilinx.com

60 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 4: Simulation Model Generator
R

Timing Simulation
Structural timing simulation is a back-annotated timing simulation. Timing simulation is
important in verifying the operation of your circuit after the worst case place and route
delays are calculated for your design. The back annotation process produces a netlist of
library components annotated in an SDF file with the appropriate block and net delays
from the place and route process. The simulation will identify any race conditions and
setup-and-hold violations based on the operating conditions for the specified functionality.

Simulation Libraries
The following libraries are available for the Xilinx simulation flow.The HDL code must
refer to the appropriate compiled library. The HDL simulator must map the logical library
to the physical location of the compiled library.

EDK Library
Used for behavioral simulation. It contans all the EDK IP components, precompiled for
ModelSim.

UNISIM Library
Used for behavioral simulation and contains default unit delays. This library includes all
of the Xilinx Unified Library components that are inferred by most popular synthesis tools.
The UNISIM library also includes components that are commonly instantiated such as
I/Os and memory cells.

You can instantiate the UNISIM library components in your design (VHDL or Verilog) and
simulate them during behavioral simulation.

SIMPRIM Library
Used for structural and timing simulation. This library includes all of the Xilinx Primitives
Library components that are used by Xilinx implementation tools.

Structural and Timing simulation models generated by SimGen will instantiate SIMPRIM
library components.

Tool Requirements
Set up your system to use the Xilinx ISE 5.1 tools. Verify that your system is properly
configured. Consult the release notes and installation notes that came with your software
package for more information.

Tool Usage
At the prompt, execute SimGen with the MVS file and appropriate options as inputs.

For example,

simgen [options] system_name.mvs

Note: SimGen will generate simulation models for platforms generated by Platform Generator.
PlatGen should be executed before SimGen to generate all the files that SimGen uses.

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 61
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Tool Options
R

Tool Options
The following options are supported in the current version:

-a (Architecture family)

The -a option allows you to target a specific architecture family.

Usage: -a <architecture>

Options: { spartan2|spartan2e|virtex|virtexe|virtex2|virtex2p }

Default: virtex2

-h (Help)

The -h option displays the usage menu and quits.

-f (Flat)

The -f option specifies that a flat EDIF file should be used for structural simulation. If
it is not specified, hierarchical EDIF files will be used.

-i (Initialize)

The -i option allows memory initialization of previously created simulation models. If
this option is specified, only initialization will be performed and no simulation models
will be genrated.

Usage: -i <program>

-l (Language)

The -l option allows you to specify the HDL Language. This option will override the
language specified in the MVS file.

Usage: -l <language>

Options: { vhdl |verilog }

Default: vhdl

-m (Simulation model type)

The -m option allows you to select the type of simulation models to be used. The
supported simulation model types are behavioral (beh), structural (str) and timing
(tim). This option will override the simulation model specified in the MVS file.

Usage: -m <sim_model>

Options: { beh | str | tim }

Default: beh

-p (Project Directory)

The -p option allows you to specify the project directory path. The default is the
current directory.

Usage: -p <path>

-s (Simulator)

The -s option allows you to specify for which simulator to produce a compilation
script file. The supported simulators are Model Technology ModelSim (mti) and
Cadence Verilog-XL (vxl). This option will override the simulator specified in the MVS
file.

http://www.xilinx.com

62 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 4: Simulation Model Generator
R

Usage: -s <simulator>

Options: { mti | vxl }

Default: mti

-v (Version)

The -v option displays the version and quits.

-L (ModelSim Behavioral Library Path)

The -L option allows you to specify the ModelSim Behavioral Library directory path.
This option will override the value specified in the MVS file.

Usage: -L <path>

-S (ModelSim Simprim Library Path)

The -S option allows you to specify the ModelSim Simprim Library directory path.
This option will override the value specified in the MVS file.

Usage: -S <path>

-U (ModelSim Unisim Library Path)

The -U option allows you to specify the ModelSim Unisim Library directory path. This
option will override the value specified in the MVS file.

Usage: -U <path>

Input files
SimGen searches for files in the following directories located in the project directory. These
directories are created by Platform Generator:

<project_directory>/hdl/
<project_directory>/implementation/

HDL Directory
The hdl directory should contain the following:

system_name.[vhd|v]

This is the top level HDL file of the processor and its peripherals. Used for behavioral
and for hierarchical structural simulation models.

peripheral_wraper.[vhd|v]

These are the wrapper HDL source files of each peripheral. Used for behavioral
simulation.

Implementation Directory
The implementation directory should contain the following files. Depending on the
simulation model to be used, only appropriate files will be taken.

peripheral_wrapper.ngc

Netlist file of each peripheral. Created by Platform Generator if the -flat option is not
given. Used to generate hierarchical structural simulation models.

system_name.ngc

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 63
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Output Files
R

System netlist file. Created by Platform Generator if the -flat option is given. Used to
generate flat structural simulation models.

system_name.ncd

System EDIF file. Created by Platform Generator if the -flat option is given. Used to
generate timing simulation models.

Output Files
SimGen produces all simulation files in the simulation directory within the project
directory.

<project_directory>/simulation/

Simulation Directory
The simulation directory contains the following:

peripheral_wrapper.[vhd|v]

Post-synthesis simulation files.

system_name.[vhd|v]

The top level HDL file of the processor and its peripherals.

system_name.do

The compilation script for the specified simulator.

Memory Initialization
Platform Generator creates the necessary banks of memory for a system. The
corresponding memory simulation models generated by SimGen can be initialized with
data using the -i option.

To initialize memory of simulation models already crated by SimGen with a compiled
executable, you need:

• A compiled executable

• A simulation model for your system

• A BMM file for your system

The compiled executable is generated with the appropriate gcc compiler or assembler,
from corresponding C or assembly source code. The simulation model is generated
previously by executing PlatGen and then SimGen. The BMM file is a memory description
file that allow memory initialization and is created by PlatGen in the implementation
directory.

Verilog
For verilog simulation models, execute SimGen with the -i option to generate a verilog.
This file will contain defparams that initialize memory. For example:

simgen -l verilog -i executable system.mvs

This command takes an executable file as input to generate the verilog memory
initialization file system_init.v. This file is used along with your system to initialize
memory.

http://www.xilinx.com

64 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 4: Simulation Model Generator
R

VHDL
For vhdl simulation models, execute SimGen with the -i option to generate a VHDL file.
This file will contain a configuration a configuration for the system with all initialization
values. For example:

simgen -i executable system.mvs

This command takes an executable file and MVS file as input to generate the VHDL system
configuration un the file system_init.vhd. This file is used along with your system to
initialize memory.

Current Limitations
SimGen does not support generation of mixed level simulation models.

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 65
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

R

Chapter 5

Bus Functional Model Generator

Summary
This chapter describes the Bus Functional Model Generator utility.

Overview
The Bus Functional Model Generation tool (BfmGen) generates and configures a
peripheral under test for simulation and verification using the IBM CoreConnect Toolkit.
The input to the tool is the MPD file corresponding to the peripheral under test. Further
options such as the preferred language for the bus functional model generation, the bus
interface to perform the test on and the path to the IBM CoreConnect Toolkit may be
specified. BfmGen creates the bus functional model of the peripheral under test in the
preferred language that may then be used for simulation using the IBM CoreConnect
Toolkit.

For more information on the MPD format, please refer Chapter 14, “Microprocessor
Peripheral Description (MPD)”. For information on using the IBM CoreConnect Toolkit,
please refer the IBM CoreConnect Toolkit User’s Manual.

Tool Requirements
BfmGen requires a valid MPD file as input. A valid license for using the IBM CoreConnect
Toolkit is required for simulation and generation of the top level testbench. BfmGen
supports the IBM OPB ToolKit Version 2.0.X,the IBM PLB Toolkit Version 4.X for 64-bit PLB
data bus and the IBM DCR Toolkit Version 2.X.

Tool Usage
The BfmGen tool is invoked as follows:

bfmgen [options] peripheral_name.mpd

Tool Options
The following options are supported in the current version of BfmGen:

-h (Display Help)

The -h option displays the usage menu and quits.

-v (Display Version)

The -v option displays the version and quits.

http://www.xilinx.com

66 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 5: Bus Functional Model Generator
R

-b (Bus Interface Name)

The -b option defines the bus interface for which the Bus Functional Model needs to be
generated. This option must be specified when the MPD file for the peripheral under
test has more than one bus interface defined.

-lang (HDL Language)

The -lang option defines the Hardware Description Language to use for BfmGen. Valid
options are ver (for verilog) and vhdl (for vhdl). This option defaults to vhdl.

-tk (IBM CoreConnect Toolkit Dir Path)

The -tk option specifies the path for the IBM CoreConnect Toolkit. A valid license is
required to use the toolkit. If this option is specified, the peripheral under test is
declared and instantiated in the CoreConnect Toolkit testbench. The toolkit directory
must have either the vhdl or the verilog subdirectory based on the preferred language
for BfmGen output.

Input files
Bfmgen requires the MPD file corresponding to the peripheral under test as input.

Output Files
Bfmgen produces the Bus Functional Model for the peripheral under test based on the -tk
option and the -lang specified to the tool.

When the -tk option is not specified and the -lang option is vhd, the following files are
produced.

• vhdl/peripheral_wrapper.vhd: VHDL wrapper file for the peripheral under test.
• vhdl/peripheral_comp.vhd: VHDL file that contains the component and signal

declarations of the peripheral under test to be inserted in the component declaration
section in the test bench of the IBM CoreConnect Toolkit.

• vhdl/peripheral_inst.vhd: VHDL file that contains the instance of the peripheral under
test to be inserted in the architecture body in the test bench of the IBM CoreConnect
Toolkit

When the -tk option is not specified and the -lang option is ver, the following files are
produced.

• verilog/peripheral_wrapper.v: Verilog wrapper file for the peripheral under test
• verilog/peripheral_wire.v: Verilog file containing signal declarations to be inserted in

the test bench module.
• verilog/peripheral_inst.v: Verilog file that contains the instance of the peripheral under

test to be inserted in the test bench module of the IBM CoreConnect Toolkit

When the -tk option is specified and the -lang option is vhd, the following files are
produced.

• vhdl/peripheral_wrapper.vhd: VHDL wrapper file for the peripheral under test
• vhdl/tk_tb.vhd: Modified VHDL Toolkit testbench file with component declaration and

instantiation of the peripheral under test.

When the -tk option is specified and the -lang option is vhd, the following files are
produced.

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 67
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Using BfmGen and IBM CoreConnect Toolkit
R

• verilog/peripheral_wrapper.v: Verilog wrapper file for the peripheral under test
• verilog/tk_tb.v: Modified Verilog Toolkit testbench file with component declaration and

instantiation of the peripheral under test.

Using BfmGen and IBM CoreConnect Toolkit
In order to use the output files generated by BfmGen for simulation and verification using
the IBM CoreConnect Toolkit, do the following:

1. Copy all the toolkit vhdl or verilog files required for simulation, except the top-level
testbench file in the vhdl or verilog directory created by BfmGen.

2. Describe the bus transactions to be simulated in the IBM Bus Functional Language
(BFL).

3. Compile the BFL using the IBM Bus Functional Compiler (BFC) and set the
appropriate simulation target.

4. Simulate and verify the functionality of the peripheral under test for the given bus
interface.

Current Limitations
The current limitations of BfmGen are:

• The latest release of the IBM PLB 4.X toolkit does not contain the top level test bench
for the 64-bit data bus version. BfmGen in this case ignores the -tk option, if specified.

http://www.xilinx.com

68 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 5: Bus Functional Model Generator
R

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 69
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

R

Chapter 6

Library Generator

Summary
This chapter describes the Library Generator utility needed for the generation of libraries
and drivers for embedded soft processors. It also describes how the user can customize
peripherals and associated drivers.

Overview
The Library Generator (libgen) is generally the first tool to run to configure libraries and
device drivers. Libgen takes an MSS (Microprocessor Software Specification) file created
by the user as input. The MSS file defines the drivers associated with peripherals, standard
input/output devices, interrupt handler routines, and other related software features.
Libgen configures libraries and drivers with this information. For more information on the
MSS file format, please refer Chapter 18, “Microprocessor Software Specification (MSS)”.

Note: The EDK offers a RevUp tool to convert any old MSS file format to a new MSS
format. Please see Chapter 7, “Format Revision Tool” for more information.

Tool Usage
The Library Generator is run as follows:

libgen [options] filename.mss

Tool Options
The following options are supported in this version:

-h, -help (Help)

This option causes LibGen to display the usage menu and exit.

-v, -ver (Display version information)

This option displays the version number of LibGen.

-a, -arch family_name (Architecture family)

This option defines the target architecture family. Family_name can be one of spartan2,
spartan2e, virtex, virtexe, virtex2 or virtex2p. The default option is virtex2.

http://www.xilinx.com

70 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 6: Library Generator
R

-p, -proj proj_dir (Specify project directory)

This option specifies the project directory proj_dir. The default is the current directory. All
output files and directories are generated in the project directory. This project directory is
also called USER_PROJECT for convenience in the documentation.

-P, -Per_Dir per_dir (Specify user peripherals and driver directory)

This option specifies user peripherals and drivers directory. LibGen looks for drivers in the
directory per_dir/drivers/

Please refer to the Drivers section of this document for more information on the search path
for drivers.

-m, -mode

Specifies the following modes for all processor instances in the MSS file.

-mode executable: This mode should be used if the user wants to generate a stand-
alone executable program for all processor instances. The EXECUTABLE attribute in the
MSS file is used in this mode. Note that in this mode, on-board debug support is not
available. The MSS file should have the line

parameter EXECUTABLE = proc_inst_name/code/exec_file.elf
where the directory is relative to USER_PROJECT directory.

-mode bootstrap: (MicroBlaze only) This mode is used when the user wants to use a
bootstub executable to load user programs. The bootstub is created automatically for each
processor instance in the MSS file by libgen as the file proc_inst_name/code/bootstub.elf,
relative to the USER_PROJECT directory

-mode xmdstub: (MicroBlaze only) This mode is used when user wants to use a debug
stub for on-board debug. The xmdstub is created automatically for each processor instance
in the MSS file by libgen as the file proc_inst_name/code/xmdstub.elf, relative to the
USER_PROJECT directory

-x, -xmdstub proc_inst_name_1 [, proc_inst_name_2, ...]

Note: Option valid for MicroBlaze only.

Specifies that one or more processors have their memory initialized with xmdstubs (debug
stubs). Whereas the -mode option is a global option, applicable for all processors in the
system, this option can be used to specify initialization modes for specific processor
instances. When both -mode and -xmdstub options are used, the -xmdstub option takes
precedence for that processor instance alone.

-b, -bootstub proc_inst_name_1 [, proc_inst_name 2, ...]

Note: Option valid for MicroBlaze only.

Similar in functionality for bootstubs as the -xmdstub option.

-e, -executable proc_inst_name_1 [, proc_inst_name_2, ...]

Similar in functionality for user executables as the -xmdstub option.

-l, -lib

This option can be used to copy libraries and drivers but not compile them.

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 71
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Output Files
R

-s, -stub

Creates the stub files (for MicroBlaze) and BRAM initialization script run_download.sh
(solaris) or run_download.bat (windows) only. Using this option prevents the generation
of libraries and drivers.

-bspgen proc_inst_name_1 [, proc_inst_name_2, ...]

Runs the BspGen utility for each processor instance specified after drivers are configured.
The option can be used only when using the PowerPC processor with the OS parameter in
MSS file defined as VxWorks5_4. Please refer the BspGen Users Guide chapter in the
Processor IP Reference Guide for more information.

-d, -do_not_warn

Disables printing of some warning messages. By default, all warnings are printed.

Output Files
Libgen generates directories and files in the USER_PROJECT directory. For every processor
instance in the MSS file, Libgen generates a directory with the name of the processor
instance. Within each processor instance directory, Libgen generates the following
directories and files.

include

The include directory contains C header files that are needed by drivers. The include file
xparameters.h is also created by LibGen in this directory. This file defines base
addresses of the peripherals in the system, #defines needed by drivers and user programs,
and also function prototypes. The MDD file for each driver specifies the definitions that
need to be customized for each peripheral that uses the driver. Please refer Chapter 19,
“Microprocessor Driver Definition (MDD)” for more information.

lib

The lib directory contains libc.a, libm.a and libxil.a libraries. The libxil library
contains driver functions that the particular processor can access. More information on the
libraries can be found in Chapter 20, “Xilinx Libraries”.

libsrc

The libsrc directory contains intermediate files and makefiles that are needed to compile
the libraries and drivers. The directory contains peripheral specific driver files that are
copied from the EDK and user driver directories. Please refer the Drivers section of this
document for more information. Note that this directory is overwritten each time libgen is
run.

code

The code directory is used as a repository for EDK executables. Libgen creates xmdstub.elf
(for MicroBlaze on-board debug) and bootstub.elf (for MicroBlaze bootstrap) in this
directory. The code directory can also be used for other user ELF files.

http://www.xilinx.com

72 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 6: Library Generator
R

MSS Parameters
For a complete description of the MSS format and all the parameters that MSS supports,
please refer Chapter 18, “Microprocessor Software Specification (MSS)”

Drivers
Most peripherals require software drivers. The EDK peripherals are shipped with
associated drivers. Please refer Chapter 26, “Device Drivers” for more information on
driver functions.

The MSS file includes a driver block for each peripheral instance. The block contains a
reference to the driver by name (DRIVER_NAME parameter), and the driver version
(DRIVER_VER). There is no default value for these parameters. A driver LEVEL is also
specified depending on the driver functionality required. The driver directory contains C
source and header files for each level of drivers and a makefile for the driver.

For each processor in the system, and the connectivity between the processor and
peripherals through various buses and bridges is specified in the MHS file. LibGen uses
this information to analyze all the peripherals that can be accessed by each processor and
customize only those drivers. Libgen copies the necessary files in the driver directory over
to the USER_PROJECT/processor_instance_name/libsrc directory for each
processor in the system and runs make for compiling the drivers. The MDD file for each
driver specifies all configurable options for the drivers. Please refer Chapter 19,
“Microprocessor Driver Definition (MDD)” and Chapter 18, “Microprocessor Software
Specification (MSS)” for more information.

Libgen also creates an include file xparameters.h in the
USER_PROJECT/processor_instance_name/include directory. This header file
must be included in the driver source files. This file contains peripheral base address
definitions and interrupt masks for the peripherals. This file also contains function
prototypes and other useful defines. The contents generated in this file can be controlled
through the MDD file for each driver.

Users can write their own drivers. These drivers must be in a specific directory under
USER_PROJECT/drivers or per_dir/drivers.The DRIVER_NAME attribute allows
the user to specify any name for their drivers, which is also the name of the driver
directory. The source files and makefile for the driver must be in the src/ subdirectory
under the driver_name directory. Each driver must also contain an MDD file in the data/
subdirectory. Please refer to the existing EDK drivers to get an understanding of the
structure of the drivers.

Interrupts and Interrupt Controller
An interrupt controller peripheral must be instantiated if the MHS file has multiple
interrupt ports connected. When Level 0 interrupt controller driver is used, libgen
statically configures interrupts and interrupt handlers. When the Level 1 driver are used,
the user is responsible for registering interrupt handlers and enabling interrupts for the
peripherals in the user code.

Level 0 Customization

In the MSS file, the INT_HANDLER parameter allows an interrupt handler routine to be
associated with the interrupt signal. Libgen uses this parameter to configure the interrupt
controller handler to call the appropriate peripheral handlers on an interrupt. The

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 73
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Boot and Debug Peripherals (MicroBlaze Specific)
R

functionality of these handler routines is left to the user to implement. If the
INT_HANDLER parameter is not specified, LibGen uses a default dummy handler routine
for the peripheral.

For MicroBlaze, if there is only one interrupt driven peripheral, an interrupt controller
need not be used. However, the peripheral should still have an interrupt handler routine
specified. Otherwise a default one is used.

When the processor to which the interrupt controller is connected is MicroBlaze, and the
compiler used to compile drivers is mb-gcc, Libgen designates the interrupt controller
handler as the main interrupt handler. For the PowerPC processor, the user is responsible
for setting up the exception table. Please refer Chapter 29, “Interrupt Management” for
more information.

Boot and Debug Peripherals (MicroBlaze Specific)
These are peripherals that are specifically used to download bootstub and xmdstub. The
attributes BOOT_PERIPHERAL and DEBUG_PERIPHERAL are used for denoting the
boot and debug peripheral instances. Libgen uses these attributes in xmdstub and
bootstrap modes.

STDIN and STDOUT Peripherals
Peripherals that handle I/O need drivers to access data. Two files inbyte.c and
outbyte.c are automatically generated with calls to the driver I/O functions for STDIN
and STDOUT peripherals. The driver I/O functions are specified in the MDD as the
parameters INBYTE and OUTBYTE. Please refer Chapter 19, “Microprocessor Driver
Definition (MDD)” for more information. These inbyte and outbyte functions are used by
C library functions like scanf and printf. The peripheral instance should be specified as
STDIN or STDOUT in the MSS file.

http://www.xilinx.com

74 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 6: Library Generator
R

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 75
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

R

Chapter 7

Format Revision Tool

Overview
The Format Revision Tool (RevUp) reads older data files (MPD, MHS, BBD, PAO, or MSS),
and revises them upward. The upgrade is a format update and not an IP upgrade.

Current PSF version is 2.0.0. Previous supported versions include 1.0.0.

The PSF version demands that the current version of EDK be at least as recent as that
version, at run time. Therefore, EDK tools are always running with the latest formats. Only
RevUp needs to maintain compatibility with older versions.

This chapter includes the following sections:

“Tool Requirements”

“Tool Usage”

“Tool Options”

“Current Limitations”

Tool Requirements
Set up your system to use the Xilinx Development System. Verify that your system is
properly configured. Consult the release notes and installation notes that came with your
software package for more information.

Tool Usage
Run RevUp as follows:

revup system.[mhs|mpd|bbd|pao|mss]

Tool Options
The following are the options supported in the current version:

-h (Help)

The -h option displays the usage menu and quits.

-p (Specify the Project Directory)

The -p option allows you to specify the project directory path. The default is the
current directory.

-P (Peripheral repository load path)

http://www.xilinx.com

76 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 7: Format Revision Tool
R

The -P option allows you to specify the peripheral repository load path.

-v (Display version)

The -v option displays the version and quits.

Current Limitations
The current limitations of the RevUp flow are:

• For an MHS that includes IP outside of the regularly released EDK peripherals (that
is, user IP), RevUp must be run on the MPD, PAO, and BBD before updating the
MHS.

• For an MSS file, RevUp must be run only after MHS, MPD, PAO and BBD files have
been reved up.

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 77
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

R

Chapter 8

Platform Specification Format Utility

Summary
This chapter describes the PSF utility tool.

Overview
The PSF Utility (PsfUtil) may be used to generate template MHS specifications for a list of
user specified peripherals or to generate a catalog of peripherals available in the repository.

Tool Requirements
Please install the Xilinx EDK tool set before using the PsfUtil.

Tool Usage
Run PsfUtil as follows:

psfutil [options]

Tool Options
The following options are supported in the current version of PsfUtil:

-h (Display Help)

The -h option displays the usage menu and quits.

-v (Display Version)

The -v option displays the version and quits.

-w (Overwrite output)

The -w option overwrites the output file specified.

-iplist (Print all IP with version in the repository)

The -iplist option prints the list of all available processor IP in the repository. The
output is written to either stdout or the output file.

-mpd2mhs (List of Peripherals for MHS Template Generation)

The -mp2mhs option specifies the list of peripherals for which the MHS template is to
be generated. The list of peripherals is specified in a text file. The output is written
either to stdout or the output file.

http://www.xilinx.com

78 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 8: Platform Specification Format Utility
R

-mhs2sch (Generate ECS schematic from MHS specification)

The -mhs2sch option specifies the MHS file for which the ECS schematic files are to be
generated. The output is a “.sch” file that contains the schematic of the system. The
schematic may be viewed using the ECS schematic viewer provided with the Xilinx
ISE installation.

-o (Output File)

The -o option specifies the output file name.

Note: You must specify only one of -iplist or the -mpd2mhs or the -mhs2sch option.

Input files
PsfUtil requires no input file when using the -iplist option.

For generating MHS templates using the -mpd2mhs option, PsfUtil requires a text file as
input that specifies the peripherals for which MHS templates need to be generated in a text
file with each peripheral with the optional version number specified in a separate line. An
example text file is shown below

opb_v20 1.10.a
opb_uartlite
microblaze
bram_block
lmb_lmb_bram_if_cntlr
lmb_v10
lmb_v10
opb_gpio

When no version number is specified, the latest version present in the repository is
selected.

For generating the ECS schematic files using the -mhs2sch option, PsfUtil requires the
MHS file describing the system as input.

Output Files
The output is written to stdout if no -o option is specified, or it is written to the output file
specified.

When using the -iplist option, the output file lists all the available IPs in the repository
with their version numbers.

When using the -mpd2mphs option, the output file contains the MHS template
specification of all the peripherals listed in the input text file.

When using the -mhs2sch option, the schematic files are written into the SCH/ directory
relative to the current working directory.

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 79
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

R

Chapter 9

GNU Compiler Tools

Scope
This chapter describes the various options supported by MicroBlaze and Power PC GNU
tools. The MicroBlaze GNU tools include mb-gcc compiler, mb-as assembler and mb-ld
loader/linker. The Power PC tools include powerpc-eabi-gcc compiler, powerpc-eabi-as
assembler and the powerpc-eabi-ld linker. The EDK GNU tools also support C++.

In this chapter, only those options are discussed, which have been added or enhanced for
Embedded Development Kit (EDK).

GNU Compiler Framework

This section discusses the common features of both the MicroBlaze as well as PowerPC
compiler. Figure 9-1shows the GNU tool flow. The GNU compiler is named mb-gcc for

cpp0

cc1 cc1plus

as

(mb-as or powerpc-eabi-as)

ld

(mb-ld or powerpc-eabi-ld)

Figure 9-1: GNU Tool Flow

Input C/C++ Files

Libraries

Output Elf File

http://www.xilinx.com

80 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 9: GNU Compiler Tools
R

MicroBlaze and powerpc-eabi-gcc for Power PC. The GNU compiler is a wrapper which
in turn calls four different executables:

1. Pre-processor: (cpp0)

♦ This is the first pass invoked by the compiler.

♦ The pre-processor replaces all macros with definitions as defined in the source
and header files.

2. Machine and Language specific Compiler (cc1)

♦ The compiler works on the pre-processed code, which is the output of the first
stage.

a. C Compiler (cc1)

♦ The compiler is responsible for most of the optimizations done on the input C
code and generates an assembly code.

b. C++ Compiler (cc1plus)

♦ The compiler is responsible for most of the optimizations done on the input C++
code and generates an assembly code.

3. Assembler (mb-as [For MicroBlaze] and powerpc-eabi-as [for PowerPC])

♦ The assembly code has mnemonics in assembly language.The assembler converts
these to machine language.

♦ The assembler also resolves some of the labels generated by the compiler.

♦ The assembler creates an object file, which is passed on to the linker

4. Linker (mb-ld [For MicroBlaze] and powerpc-eabi-ld [for PowerPC])

♦ The linker links all the object files generated by the assembler.

♦ If libraries are provided on the command line, the linker resolves some of the
undefined references in the code, by linking in some of the functions from the
assembler.

Options for all these executables in discussed in this chapter.

Note: Any reference to gcc in this chapter indicates reference to both MicroBlaze compiler (mb-
gcc) as well as PowerPC compiler (powerpc-eabi)

Compiler Usage and Options

Usage
GNU Compiler usage is as follows

Compiler_Name [options] files...

Where Compiler_Name is powerpc-eabi-gcc or mb-gcc

Quick Reference
Table 9-1 briefly describes the commonly used compiler options. These options are
common to both the compilers, i.e MicroBlaze and PowerPC. Please note that the
compiler options are case sensitive.

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 81
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Compiler Usage and Options
R

Compiler Options
Some of the compiler options are discussed in details in this section

-g

This option adds debugging information to the output file. The debugging information is
required by the GNU Debugger (mb-gdb or powerpc-eabi-gdb). The debugger provides
debugging at the source as well as the assembly level.

-v

This option executes the compiler and all the tools underneath the compiler in verbose
mode. This option gives complete description of the options passed to all the tools. This
description is helpful in finding out the default options for each tool.

-save-temps

The GNU compiler provides a mechanism to save all the intermediate files generated
during the compilation process. The compiler stores the following files

Table 9-1: Commonly Used Compiler Options

Options Explanation

-E Preprocess only; Do not compile, assemble and link. The preprocessed output is
displayed on the standard out device

-S Compile only; Do not assemble and link (Generates .s file)

-c Compile and Assemble only; Do not link (Generates .o file)

-g Add debugging information, which is used by GNU debugger (mb-gdb or
powerpc-eabi-gdb)

-Wa,option Pass comma-separated options to the assembler

-Wp,option Pass comma-separated options to the preprocessor

-Wl,option Pass comma-separated options to the linker

-B directory Add directory to the C-run time library search paths

-L directory Add directory to library search path

-I directory Add directory to header search path

-l library Search librarya for undefined symbols.

-v (Verbose). Display the programs invoked by the compiler

-o filename Place the output in the filename

-save-temps Store the intermediate files, i.e files produced at the end of each pass,

--help Display a short listing of options.

-O n Specify Optimization level n = 0,1,2,3

a. The compiler prefixes “lib” to the library name indicated in this command line switch.

http://www.xilinx.com

82 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 9: GNU Compiler Tools
R

♦ Preprocessor output (input_file_name.i for C code and input_file_name.ii for C++
code)

♦ Compiler (cc1) output in assembly format (input_file_name.s)

♦ Assembler output in elf format (input_file_name.s)

The default output of the entire compilation is stored as a.out.

-o Filename

The default output of the compilation process is stored in an elf file name a.out. The default
name can be changed using the -o output_file_name. The output file is created in elf format.

-Wp,option

-Wa,option

-Wl,option

As described earlier in this chapter, the compiler (mb-gcc or powerpc-eabi-gcc) is a
wrapper around other executables such as the preprocessor, compiler (cc1), assembler and
the linker. These components of the compiler can be executed through the top level
compiler or individually.

There are certain options which are required by tool, but might not be necessary for the top
level compiler. These command can be issues using the options as indicated in Table 9-2

--help

Use this option with any GNU compiler to get more information about the available
options or consult the GCC manual available online at
http://www.gnu.org/manual/manual.html

Library Search Options

-l libraryname

The compiler, by default, searches only the standard libraries such as libc, libm and libxil.
The users can create their own libraries containing some commonly used functions. The
users can indicate to the compiler, the name of the library, where the compiler can find the
definition of these functions. The compiler prefixes the word “lib” to the libraryname
provided by the user.

The compiler is sensitive to the order in which the various options are provided, especially
the -l command line switch. This switch should be provided only after all the sources in the
command line.

Table 9-2: Tool specific options passed to the top level gcc compiler

Option Tool

-Wp,option Preprocessor

-Wa,option Assembler

-Wl,option Linker

http://www.gnu.org/manual
http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 83
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Compiler Usage and Options
R

For example, if a user creates his own library called libproject.a., he/she can include
functions from this library using the following command:

Compiler Source_Files -L${LIBDIR} -lproject

Caution! If the library flag -llibrary name is given before the source files, the compiler will not
be able to find the functions called from any of the sources. The compiler search is only done in
one direction and does not keep a list of libraries available.

-L Lib Directory

This option indicates to the compiler, the directories to search for the libraries. The
compiler has a default library search path, where it looks for the standard library. By
providing -L option, the user can include some additional directories in the compiler
search path.

Header Files Search Option

-I Directory Name

The option -I, indicates to the compiler to search for header files in the directory Directory
Name before searching the header files in the standard path.

Linker Options

-defsym _STACK_SIZE=value

The total memory allocated for the stack and the heap can be modified by using the above
linker option. The variable STACK_SIZE is the total space allocated for heap as well as the
stack. The variable STACK_SIZE is given the default value of 100 words (i.e 400 bytes). If
any user program is expected to need more than 400 bytes for stack and heap together, it is
recommended that the user should increase the value of STACK_SIZE using the above
option. This option expects value in bytes.

In certain cases, a program might need a bigger stack. If the stack size required by the
program is greater than the stack size available, the program will try to write in other
forbidden section of the code, leading to wrong execution of the code.

Note: For MicroBlaze systems, minimum stack size of 16 bytes (0x0010) is required for programs
linked with the C runtime routines (crt0.o and crt1.o).

Linker Scripts
The linker utility makes use of the linker scripts to divide the user’s program on different
blocks of memories. To provide a linker script on the gcc command line, use the following
command line option:

compiler -Wl,-T -Wl,linker_script Other Options and Input Files

If the linker is executed on its own, the linker script could be included as follows:

linker -T linker_script Other Options and Input Files

For more information about usage of linker scripts, please refer to the chapter, “Address
Management”

http://www.xilinx.com

84 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 9: GNU Compiler Tools
R

Search Paths
The compilers (mb-gcc and powerpc-eabi-gcc) search certain paths for libraries and
header files.

On Solaris

Libraries are searched in the following order:

1. Directories passed to the compiler with the -L dir name option.

2. Directories passed to the compiler with the -B dir name option.

3. ${XILINX_EDK}/gnu/processor(1)/sol/microblaze/lib

4. ${XILINX_EDK}/lib/processor

Header files are searched in the following order:

1. Directories passed to the compiler with the -I dir name option.$

2. ${XILINX_EDK}/gnu/processor/sol/processor/include

Initialization files are searched in the following order(2):

1. Directories passed to the compiler with the -B dir name option.

2. ${XILINX_EDK}/gnu/processor/sol/processor/lib

On Windows Xygwin Shell

The GNU compilers (mb-gcc and powerpc-eabi-gcc) search certain paths for libraries and
header files.

Libraries are searched in the following order:

1. Directories passed to the compiler with the -L dir name option.

2. Directories passed to the compiler with the -B dir name option.

3. %XILINX_EDK%/gnu/processor/nt/processor/lib

4. %XILINX_EDK%/lib/processor

Header files are searched in the following order:

1. Directories passed to the compiler with the -I dir name option.$

2. %XILINX_EDK%/gnu/processor/nt/processor/include

Initialization files are searched in the following order:

1. Directories passed to the compiler with the -B dir name option.

1. Processor indicates powerpc-eabi for PowerPC and microblaze for MicroBlaze

2. Initialization files such as crt0.o are searched by the compiler only for mb-gcc. For
powerpc-eabi-gcc, the C runtime library is a part of the library and is picked up by
default from the library libxil.a

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 85
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

File Extensions
R

2. %XILINX_EDK%/gnu/processor/nt/processor/lib

File Extensions
The GNU compiler can determine the type of your file depending on the
extension.Table 9-3 illustrates the valid extension and the corresponding file type.The gcc
wrapper will call the appropriate lower level tools by recognizing these file types.

Libraries
Both the compiler (powerpc-eabi-gcc and mb-gcc) use certain libraries. The following
libraries are needed for all the program.

These libraries are customized for every user’s project and copied

Compiler Interface

Input Files
The compiler (mb-gcc and the powerpc-eabi-gcc) take one or more of the following files are
input

• C source files.

• C++ source files.

• Assembly Files.

Table 9-3: File Extensions

Extension File type

.c C File

.C C++ File

.cxx C++ File

.cpp C++ File

.c++ C++ File

.cc C++ File

.S Assembly File, but might have preprocessor directives

.s Assembly File with no preprocessor directives

Table 9-4: Libraries used by the compilers

Library Particular

libxil.a Contain drivers and initialization files developed for the EDK tools

libc.a Standard C libraries, including functions like strcmp, strlen etc

libm.a Math Library, containing functions like cos, sine etc

http://www.xilinx.com

86 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 9: GNU Compiler Tools
R

• Object Files.

• Linker scripts (These are optional and if not specified, the default linker script
embedded in the linker (mb-ld or powerpc-eabi-ld) will be used.

The default extensions for each of these types is detailed in Table 9-3. In addition to the files
mentioned above, the compiler implicitly refers to the following files.

• Libraries (libc.a, libm.a and libxil.a). The default location for these files is the EDK
installation directory.

Output Files
The compiler generates the following files as output

• An elf file (The default output file name is a.out on Solaris and a.exe on Windows)

• Assembly file (if -save-temps or -S option is used)

• Object file (if -save-temps or -c option is used)

• Preprocessor output (.i or .ii file) (if -save-temps option is used)

MicroBlaze GNU Compiler
The MicroBlaze GNU compiler is an enhancement over the standard GNU tools and hence
provides some additional options, which are specific to the MicroBlaze system.These
options are available only in the MicroBlaze GNU compiler.

Quick Reference

Table 9-5: MicroBlaze Specific Options

Options Explanation

-xl-mode-executable Default mode for compilation.

-xl-mode-xmdstub Intrusive hardware debugging on the board. Should be used only with xmdstub
downloaded on to MicroBlaze

-xl-mode-bootstrap Generate code, which can be downloaded using the boot strap loader

-xl-mode-bootstrap-reset Same as bootstrap mode, but in this case, on reset, the control is transferred to the
user program instead of the boot stub.

-xl-mode-xilkernel If you use the xilkernel module, all the programs should be compiled with this
option.

-mxl-gp-opt Use the small data area anchors. Optimization for performance and size.

-mxl-soft-mul Use the software multiplier. Use this option when the hardware multiplier is not
present in the device. By default this option in turned ON.

-mno-xl-soft-mul Do not use software multiplier. Compiler generates “mul” instructions.

-mxl-stack-check Generates code for checking stack overflow.

-mxl-barrel_shift Use barrel shifter. Use this option when a barrel shifter is present in the device

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 87
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

MicroBlaze GNU Compiler
R

MicroBlaze Compiler Options
The mb-gcc compiler for Xilinx’s MicroBlaze soft processor introduces some new options
as well as modifications to certain options supported by the gnu compiler tools. The new
and modified options are summarized in this chapter.

-mxl-soft-mul

In some devices, a hardware multiplier is not present. In such cases, the user has the option
to either build the multiplier in hardware or use the software multiplier library routine
provided. MicroBlaze compiler mb-gcc assumes that the target device does not have a
hardware multiplier and hence every multiply operation is replaced by a call to
mulsi3_proc defined in library libc.a. Appropriate arguments are set before calling this
routine.

-mno-xl-soft-mul

Certain devices such as Virtex II have a hardware multiplier integrated on the device.
Hence the compiler can safely generate the mul or muli instruction. Using a hardware
multiplier gives better performance, but can be done only on devices with hardware
multiplier such as Virtex II.

-mxl-stack-check

This option lets users check if the stack overflows during the execution of the program. The
compiler inserts code in the prologue of the every function, comparing the stack pointer
value with the available memory. If the stack pointer exceeds the available free memory,
the program jumps to a the subroutine _stack_overflow_exit. This subroutine sets
the value of the variable _stack_overflow_error to 1.

The standard stack overflow handler can be overridden by providing the function
_stack_overflow_exit in the source code, which acts as the stack overflow handler.

-mxl-barrel-shift

The MicroBlaze processor can be configured to be built with a barrel shifter. In order to use
the barrel shift feature of the processor, use the option -mxl-barrel-shift. The default
option is to assume that no barrel shifter is present and hence the compiler will use add
and multiply operations to shift the operands. Barrel shift can increase the speed
significantly, especially while doing floating point operations.

-mxl-gp-opt

If the memory location requires more than 32K, the load/store operation requires two
instructions. MicroBlaze ABI offers two global small data areas, which can contain up to
64K bytes of data each. Any memory location within these areas can be accessed using the
small data area anchors and a 16-bit immediate value. Hence needing only one instruction
for load/store to the small data area.This optimization can be turned ON with the -mxl-gp-
opt command line parameter. Variables of size lesser than a certain threshold value are
stored in these areas. The value of the pointers is determined during linking. The threshold
value can be changed using the -Gn option discussed below.

http://www.xilinx.com

88 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 9: GNU Compiler Tools
R

-xl-mode-executable

This is the default mode used for compiling programs with mb-gcc. The final executable
created starts from address location 0x0 and links in crt0.o. This option need not be
provided on the command line for mb-gcc.

-xl-mode-xmdstub

The mb-gcc compiler links certain initialization files along with the program being
compiled. If the program is being compiled to work along with xmd, crt1.o initialization
file is used, which returns the control of the program to the xmdstub after the execution of
the user code is done. In other cases, crt0.o is linked to the output program, which jumps to
halt after the execution of the program. Hence the option -xl-mode-xmdstub helps the
compiler in deciding which initialization file is to be linked with the current program.

The code start address is set to 0x400 for programs compiled for a system with xmd. This
ensures that the compiled program starts after the xmdstub. If you intend to modify the
default xmdstub, leading to increase in the size of the xmdstub, you should take care to
change the start address of the text section. This option is described in the Linker Loader
Options section.

-xl-mode-xmdstub is allowed only in hardware debugging mode and with xmdstub
loaded in the memory. For software debugging (even with xmdstub), do not use this
option. For more details on debugging with xmd, please refer to the chapter, “Xilinx
Microprocessor Debugger”

-xl-mode-bootstrap

Certain programs are downloaded using the boot loader onto the device. This option links
in crt2.o as the initialization file and starts the program at address location 0x100, leaving
the first 100 words for the boot loader program. On a reset, the control is transferred back
to the boot stub, which waits for loading a new program in the memory.

-xl-mode-bootstrap-reset

Same as the bootstrap mode above, but the reset location is overwritten to jump your code
instead of the boot stub. Using this mode, the user does not have to reload the program on
a reset, which is necessary in the previous mode.

-xl-mode-xilkernel

A kernel consisting of few key RTOS features is provided with the EDK tools. All the
program compiled to work with the kernel should have the above option.

Caution! mb-gcc will signal fatal error, if more than one mode of execution is supplied on the
command line.

-Gn

The compiler stores certain data in the small data area of the code. Any global variable,
which is equal to or lesser than 8 bytes will be stored in the small data area of the read-
write or read-only section. This threshold value of 8 bytes can be changed using the above
option in the command line.

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 89
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

MicroBlaze GNU Compiler
R

MicroBlaze Linker Options

-defsym _TEXT_START_ADDR=value

By default, the text section of the output code starts with the base address 0x0. This can be
overridden by using the above options. If this is supplied to mb-gcc, the text section of the
output code will now start from the given value. When the compiler is invoked with -xl-
mode-xmdstub, the user program starts at 0x400 by default.

The user does not have to use -defsym _TEXT_START_ADDR, if they wish to use the
default start address set by the compiler.

This is a linker option and should be used when the user is invoking the linker separately.
If the linker is being invoked as a part of the mb-gcc flow, the user has to use the following
option

-Wl,-defsym -Wl,_TEXT_START_ADDR=value

-relax

This is a linker option, used to remove all the unwanted imm instructions generated by the
assembler. The assembler generates imm instruction for every instruction, where the value
of the immediate can not be calculated during the assembler phase. Most of these
instructions won’t need an imm instruction, which is removed by the linker, when the -
relax command line option is provided to the linker.

This option is required only when linker is invoked on its own. When linker is invoked
through the mb-gcc compiler, this option is automatically provided to the linker.

-N

This option sets the text and data section to be readable and writable. It also does not page-
align the data segment. This option is required only for MicroBlaze programs. The top
level gcc compiler automatically includes this option, while invoking the linker, but if you
intend to invoke the linker without using gcc, you should have use this option.

For more details on this option, please refer to the GNU manuals online at
http://www.gnu.org/manual/manual.html

Pseudo-Ops
MicroBlaze supports a certain pseudo-ops making assembly programming easier for
assembly writers. The supported pseudo-ops are listed in Table 9-6.

Table 9-6: Pseudo-Opcodes supported by Assembler

Pseudo Opcodes Explanation

nop No operation. Replaced by instruction:

or R0, R0, R0

la Rd, Ra, Imm Replaced by instruction:

addi Rd, Ra, imm; = Rd = Ra + Imm;

not Rd, Ra Replace by instruction: xori Rd, Ra, -1

http://www.gnu.org/manual/manual.html
http://www.xilinx.com

90 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 9: GNU Compiler Tools
R

Initialization Files
The final executable needs certain registers such as the small data area anchors (R2 and
R13) and the stack pointer (R1) to be initialized. These initialization files are distributed
with the Embedded Development Kit. In addition to the precompiled object files, source
files are also distributed in order to help user make their own changes as per their
requirements. Initialization can be done using one of the five C runtime routines:

crt0.o

This initialization file is to be used for programs which are to be executed standalone, i.e
without xmd.

crt1.o

This file is located in the same directory and should be used when the xmd debugger is to
be present in the system.

crt2.o

In case of programs used with the boot-loader, crt2.o is used as the initialization file. The
boot loader is used to load the program at runtime using the boot stub.

crt3.o

The source for crt2.o and crt3.o is the same as the functionality is the same except for the
behavior on a reset. In crt3.o, address location 0x0 is overwritten, such that on a reset, the
control is transferred to the user program instead of the boot stub.

crt4.o

When the kernel module is used in a particular MicroBlaze system, crt4.o is picked up by
the compiler.

The source for initialization file can be changed as per the requirements of the project.
These changed files have to be then assembled to generate an object file (.o format). To refer
to the newly created object files instead of the standard files, use the -B directory-
name command line option while invoking mb-gcc.

According to the C standard specification, all global and static variables need to be
initialized to 0. This is a common functionality required by all the crt’s above. Hence
another routine _crtinit is defined in crtinit.o file. This file is part of the libc.a library.

The _crtinit routine will initialize memory in the bss section of the program, defined by the
default linker script. If you intend to provide your own linker script, you will need to
compile a new _crtinit routine. The default crtinit.S file is provided in assembly source
format as a part of the Embedded Development Kit.

neg Rd, Ra Replace by instruction: rsub Rd, Ra, R0

sub Rd, Ra, Rb Replace by instruction: rsub Rd, Rb, Ra

Table 9-6: Pseudo-Opcodes supported by Assembler

Pseudo Opcodes Explanation

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 91
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

MicroBlaze GNU Compiler
R

Command Line Arguments
One of the several tasks performed by operating systems is to pass arguments to a
program. Since there is no operating system available for MicroBlaze, programs can not
take in command line arguments. The command line arguments argc and argv are
initialized to 0 by the C runtime routines.

Interrupt Handlers
Interrupt handlers need to be compiled in a different manner as compared to the normal
sub-routine calls. In addition to saving non-volatiles, interrupt handlers have to save the
volatile registers which are being used. Interrupt handler should also store the value of the
machine status register (RMSR), when an interrupt occurs.

_interrupt_handler attribute

In order to distinguish an interrupt handler from a sub-routine, mb-gcc looks for an
attribute (interrupt_handler) in the declaration of the code. This attribute is defined as
follows:

void function_name () __attribute__ ((interrupt_handler));

Note: Attribute for interrupt handler is to be given only in the prototype and not the definition.

Interrupt handlers might also call other functions, which might use volatile registers. In
order to maintain the correct values in the volatile registers, the interrupt handler saves all
the volatiles, if the handler is a non-leaf function(1).

Interrupt handlers can also be defined in the MicroBlaze Hardware Specification (MHS)
and the MicroBlaze Software Specification (MSS) file. These definitions would
automatically add the attributes to the interrupt handler functions. For more information
please refer MicroBlaze Interrupt Management document.

The interrupt handler uses the instruction rtid for returning to the interrupted function.

_save_volatiles attribute

The MicroBlaze compiler provides the attribute save_volatiles, which is similar to the
_interrupt_handler attribute, but returns using rtsd instead of rtid.

This attributes save all the volatiles for non-leaf functions and only the used volatiles in
case of leaf functions.

void function_name () __attribute__((save_volatiles));

The attributes with their functions are tabulated in Table 9-7.

1. Functions which have calls to other sub-routines are called non-leaf functions.

http://www.xilinx.com

92 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 9: GNU Compiler Tools
R

Power PC GNU Compiler

Compiler Options
The Power PC GNU compiler (powerpc-eabi-gcc) is built using the GNU gcc version
2.95.3-4. No enhancements have been done to the compiler. The PowerPC compiler does
not support any special options. All the listed common options are supported by the
powerpc-eabi compiler.

Linker Options

-defsym _START_ADDR=value

By default, the text section of the output code starts with the base address 0xffff8000, since
this is the start address indicated in the default linker script. This can be overridden by

• using the above option OR

• providing a linker script, which lists the value for start address

The user does not have to use -defsym _START_ADDR, if they wish to use the default
start address set by the compiler.

This is a linker option and should be used when the user is invoking the linker separately.
If the linker is being invoked as a part of the powerpc-eabi-gcc flow, the user has to use the
following option

-Wl,-defsym -Wl,_START_ADDR=value

Initialization Files
The compiler looks for certain initialization files (such as boot.o, crt0.o). These files are
compiled along with the drivers and archived in libxil.a library. This library is generated
using LibGen by compiling the distributed sources in the Board Support Package (BSP).
For more information about libgen, please refer to the , “Library Generator”chapter.

Table 9-7: Use of attributes

Attributes Functions

interrupt_handler This attribute saves the machine status register and all the
volatiles in addition to the non-volatile registers. rtid is
used for returning from the interrupt handler. If the interrupt
handler function is a leaf function, only those volatiles which
are used by the function are saved.

save_volatiles This attribute is similar to interrupt_handler, but it used
rtsd to return to the interrupted function, instead of rtid.

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 93
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

R

Chapter 10

GNU Debugger

Summary
This chapter describes the general usage of the Xilinx GNU debugger for MicroBlaze and
PowerPC.

Overview
GDB is a powerful yet flexible tool which provides a unified interface for
debugging/verifying MicroBlaze and PowerPC systems during various development
phases.

Tool Usage
MicroBlaze GDB usage:

X9871

Tcl/Terminal Interface

cycle-accurate
Instruction Set Simulator

XMD

XMD stub

MicroBlaze System

XMD
Protocol

Built-in Simulator

User InterfaceUser Interface GDB Remote ProtocolGDB Remote Protocol

(TCP/IP)

PowerPC-eabi-gdb

(TCP/IP)

JTAG UART

JTAG UART

JTAG

PPC405 Debug Port UARTlite

PowerPC System

mb-gdb

http://www.xilinx.com

94 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 10: GNU Debugger
R

mb-gdb [options] [executable-file]

PowerPC GDB usage:

powerpc-eabi-gdb [options] [executable-file]

Tool Options The most common options in the MicroBlaze GNU debugger are:

--command=FILE

Execute GDB commands from FILE. Used for debugging in batch/script mode.

--batch

Exit after processing options. Used for debugging in batch/script mode.

--nw

Do not use a GUI interface.

-w

Use a GUI interface. (Default)

MicroBlaze GDB Targets
Currently, there are three possible targets that are supported by the MicroBlaze GNU
Debugger and XMD tools - a built-in simulator target and two remote targets (XMD):

xilinx > mb-gdb hello_world.elf

From the Run pull-down menu, select Connect to target in the mb-gdb window. In the
Target Selection dialog, you can choose between the Simulator (built-in) and
Remote/TCP (for XMD) targets.

In the target selection dialog, choose:

• Target: Remote/TCP

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 95
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

MicroBlaze GDB Targets
R

• Hostname: localhost

• Port: 1234

Click OK and mb-gdb attempts to make a connection to XMD. If successful, a message is
printed in the shell window where XMD was started.

At this point, mb-gdb is connected to XMD and controls the debugging. The simple but
powerful GUI can be used to debug the program, read and write memory and registers.

GDB Built-in Simulator
The MicroBlaze debugger provides an instruction set simulator, which can be used to
debug programs that do not access any peripherals. This simulator makes certain
assumption about the executable being debugged:

• The size of the application being debugged determines the maximum memory
location which can be accessed by the simulator.

• The simulator assumes that the accesses are made only to the fast local memory
(LMB).

When using the command info target, the number of cycles reported by the simulator
are under the assumptions that memory access are done only into local memory (LMB).
Any access to the peripherals results in the simulator indicating an error. This target does
not require xmd to be started up. This target should be used for basic verification of
functional correctness of programs which do not access any peripherals or OPB or external
memory.

Remote
Remote debugging is done through XMD. The XMD server program can be started on a
host computer with the Simulator target or with the Hardware target transparent to mb-
gdb. Both the Cycle-Accurate Instruction Set Simulator and the Hardware interface
provide powerful debugging tools for verifying a complete MicroBlaze system. mb-gdb
connects to xmd using the GDB Remote Protocol over TCP/IP socket connection.

Simulator Target

The XMD simulator is a Cycle-Accurate Instruction Set Simulator of the MicroBlaze system
which presents the simulated MicroBlaze system state to GDB.

http://www.xilinx.com

96 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 10: GNU Debugger
R

Hardware Target

With the hardware target, XMD communicates with an xmdstub program running on a
hardware board through the serial cable or JTAG cable, and presents the running
MicroBlaze system state to GDB.

For more information about XMD refer to the XMD Chapter.

Note

1. The simulators provide a non-intrusive method of debugging a program. Debugging using the
hardware target is intrusive because it needs an xmdstub to be running on the board.

2. If the program has any I/O functions like print() or putnum(), that write output onto the UART or
JTAG Uart, it will be printed on the console/terminal where the xmd server was started. (Refer to
the MicroBlaze Libraries documentation for libraries and I/O functions information).

Compiling for Debugging on MicroBlaze targets
In order to debug a program, you need to generate debugging information when you
compile it. This debugging information is stored in the object file; it describes the data type
of each variable or function and the correspondence between source line numbers and
addresses in the executable code. The mb-gcc compiler for Xilinx’s MicroBlaze soft
processor includes this information when the appropriate modifier is specified.

The -g option in mb-gcc allows you to perform debugging at the source level. mb-gcc
adds appropriate information to the executable file, which helps in debugging the code.
mb-gdb provides debugging at source, assembly and mixed (both source and assembly)
together. While initially verifying the functional correctness of a C program, it is also
advisable to not use any mb-gcc optimization option like -O2 or -O3 as mb-gcc does
aggressive code motion optimizations which may make debugging difficult to follow. For
debugging with xmd in hardware mode, the mb-gcc option -xl-mode-xmdstubmust be
specified. Refer to the XMD documentation for more information about compiling for
specific targets.

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 97
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

PowerPC Targets
R

PowerPC Targets

GUI mode
Hardware debugging for the PowerPC405 on Virtex-II Pro is supported by powerpc-eabi-

gdb and xmd through the GDB Remote TCP protocol. To connect to a hardware PowerPC
target, first start xmd and connect to the board using the ppcconnect command as
described in the XMD chapter. Next, select Run->Connect to target from GDB and in the
GDB target selection dialog, choose:

• Target: Remote/TCP

• Hostname: localhost

• Port: 1234

Click on More Options in the bottom left corner of the target selection dialog. In the
command field type:

set architecture powerpc:405

Click OK and powerpc-eabi-gdb attempts to make a connection to XMD. If successful, a
message is printed in the shell window where XMD was started.

Console mode
To start powerpc-eabi-gdb in the console mode type :

http://www.xilinx.com

98 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 10: GNU Debugger
R

xilinx > powerpc-eabi-gdb -nw executable.elf

In the console mode, type the following two commands to connect to the board through
xmd.

(gdb) set architecture powerpc:405
(gdb) target remote localhost:1234

These two commands can also be placed in the GDB startup file gdb.ini in the current
working directory.

GDB Command Reference
For help on using mb-gdb, click on Help->Help Topics in the GUI mode

or type “help” in the console mode.

In the GUI mode, to open a console window, click on View->Console

For a comprehensive online documentation on using GDB, refer to
http://www.gnu.org/manual/gdb/

For information about the mb-gdb Insight GUI, refer to the Red Hat Insight webpage
http://sources.redhat.com/insight

Table 10-1 briefly describes the commonly used mb-gdb console commands. The

equivalent GUI versions can be easily identified in the mb-gdb GUI window icons. Some
of the commands like info target, monitor info, may be available only in the console mode.

Table 10-1: Commonly Used GDB Console Commands

Command Description

load [program] load the program into the target

b main Set a breakpoint in function main

r Run the program (for the built-in simulator only)

c Continue after a breakpoint, or

Run the program (for the xmd simulator only)

l View a listing of the program at the current point

n Steps one line (stepping over function calls)

s Step one line (stepping into function calls)

stepi Step one assembly line

info reg View register values

info target View the number of instructions and cycles executed (for
the built-in simulator only)

monitor info View the number of instructions and cycles executed (for
the xmd simulator only)

p xyz Print the value of xyz data

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 99
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

R

Chapter 11

Xilinx Microprocessor Debugger

Overview
The Xilinx Microprocessor Debug (XMD) Engine is a program that facilitates a unified
GDB interface as well as a Tcl (Tool Command Language) interface for debugging
programs and verifying systems using the MicroBlaze or PowerPC (Virtex-II Pro)
microprocessors. It supports debugging user programs on different targets such as

- Cycle-accurate MicroBlaze instruction set simulator

- MicroBlaze system running xmdstub on a hardware board

- PowerPC system on a hardware board

The XMD Engine is used along with MicroBlaze and PowerPC GDB (mb-gdb &
powerpc-eabi-gdb) for debugging. mb-gdb and powerpc-eabi-gdb communicates
with xmd using the Remote TCP protocol and control the corresponding targets. In either
case, GDB can connect to xmd on the same computer or on a remote computer on the
Internet.The xmd Tcl interface can be used for command line control and debugging of the
target as well as for running complex verification test scripts to test the complete system.

Figure 11-1: Xilinx Microprocessor Debug (XMD) targets

Tcl/Terminal Interface

cycle-accurate
Instruction Set Simulator

XMD

XMD stub

MicroBlaze System

XMD
Protocol

Built-in Simulator

User Interfaser Interface GDB Remote ProtocolGDB Remote Protocol

(TCP/IP)

PowerPC-eabi-gdb

(TCP/IP)

JTAG UART

JTAG UART

JTAG

PPC405 Debug Port UARTlite

PowerPC System

mb-gdb

http://www.xilinx.com

100 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 11: Xilinx Microprocessor Debugger
R

XMD usage
To start the XMD engine, simply execute xmd from a shell as follows.

> xmd

From the xmd Tcl prompt, xmd can be connected to the desired target using the commands
described in Table 11-1.

MicroBlaze stub target
With a hardware target, user programs can be downloaded from mb-gdb directly onto a
remote hardware board and be executed with support of the xmd stub running on the
board. A sample session of XMD with a hardware stub target is shown below.

XMD% mbconnect stub -comm jtag -posit 2

Now XMD connects to the hardware target and waits for a connection from mb-gdb. Refer
to the GNU Debugger chapter to see how to start mb-gdb, make a remote connection from
mb-gdb to xmd, download a program onto the target and debug the program.

To debug a program by downloading on the remote hardware board, the program must be
compiled with -g -xl-mode-xmdstub options to mb-gcc.

Note: User Program outputs. If the program has any I/O functions like print() or putnum(), that write
output onto the UART or JTAG Uart, it will be printed on the console/terminal where the xmd was
started. (Refer to the MicroBlaze Libraries chapter for libraries and I/O functions information).

Stub Target Requirements
To debug programs on the hardware board using XMD, the following requirements have
to be met.

• xmd uses a JTAG or serial connection to communicate with xmdstub on the board.
Hence a JTAG Uart or a Uart designated as DEBUG_PERIPHERAL in the mss file is
needed on the target MicroBlaze system.

Platform Generator can create a system that includes a JTAG Uart or a Uart, if
specified in the system’s mhs file. For more information on creating a system with
a Uart or a JTAG Uart, refer to the MicroBlaze Hardware Specification Format
chapter.

• xmdstub on the board uses the JTAG Uart or Uart to communicate with the host
computer. Hence, it must be configured to use the JTAG Uart or Uart in the
MicroBlaze system.

Library Generator can configure the xmdstub to use the DEBUG_PERIPHERAL
in the system. libgen will generate a xmdstub configured for the
DEBUG_PERIPHERAL and put it in code/xmdstub.elf as specified by the
XMDSTUB attribute in the mss file. For more information, refer to the Library
Generator chapter.

• xmdstub executable must be included in the MicroBlaze local memory at system
startup. To have the xmdstub included in the MicroBlaze local memory, the
xmdstub.elf file should be specified in the user’s mss file as follows:

PARAMETER XMDSTUB=code/xmdstub.elf

Data2BRAM can populate the MicroBlaze memory with xmdstub. libgen
generates a Data2BRAM script file that can be used to populate the BRAM

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 101
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

MicroBlaze stub target
R

Table 11-1: XMD commandsa

command [options] Description

mbconnect <sim|stub> [options] Connect to a MicroBlaze target as well as start a GDB server
for the target. xmd supports non-intrusive debugging on
the MicroBlaze simulator or intrusive debugging on
hardware board running xmdstub. Use sim for simulator
or stub for remote hardware. The default target is the
simulator.

• Simulator Target options
♦ -memsize size

size of the memory allocated in the simulator.
Programs can access the memory range from 0 to
size-1

• xmdstub Target options
♦ -comm <serial|jtag>

Specify the xmd communication. Debugging is
supported over JTAG (using opb_jtag_uart
peripheral) or serial cable (using opb_uart
peripheral). Default is JTAG communication

♦ -posit device position

Specify the position of the FPGA device in the
JTAG chain that contains the MicroBlaze system to
be debugged. The JTAG chain positions are auto
detected and displayed by xmdwhen no position is
specified

♦ -chain device count <list of BSDL files>

Specify the configuration of the JTAG chain on the
target board by providing the BSDL files for all the
devices that make up the JTAG chain in the same
order as they occur in the chain. By default, xmd
autodetects the JTAG chain. But if it fails to do so,
then this option can be used to connect to the target
board

♦ -port serial port

Specify the serial port to which the remote
hardware is connected, when xmd communication
is over the serial cable. The default serial port is
/dev/ttya on Solaris and Com1 on Windows

♦ -baud baud rate

Specify the serial port baud rate in bps. The default
value is 19200 bps.

mbdisconnect target id Disconnect from the current MicroBlaze target, close the
corresponding GDB server and revert to the previous
MicroBlaze target.

ppcconnect Connect to a hardware PowerPC target as well as start a
remote GDB server.

http://www.xilinx.com

102 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 11: Xilinx Microprocessor Debugger
R

contents of a bitstream containing a MicroBlaze system. It uses the executable
specified in the DEFAULT_INIT.

• Any user program that has to be downloaded on the board for debugging should
have a program start address higher than 0x400 and the program should be linked
with the startup code in crt1.o

mb-gcc can compile programs satisfying the above two conditions when it is run
with the option -xl-mode-xmdstub. For source level debugging, programs
should also be compiled with -g option. While initially verifying the functional
correctness of a C program, it is advisable to not use any mb-gcc optimization
option like -O2 or -O3 as mb-gcc does aggressive code motion optimizations which
may make debugging difficult to follow.

rrd Register Read

rwr reg_num word Register Write

mrd address [num_words] Memory Read

mwr address word Memory Write

dis [address] [num_words] Disassemble

con [address] Continue from current PC or “address”

stp [number] Step one or “number” instructions

rst Reset target

bps address Set Breakpoint at “address”

bpr address Remote Breakpoint from “address”

bpl List Breakpoints

dow [-data] filename [addr] Download the given ELF or data file (with -data option)
onto the current target’s memory. If no address is provided
alongwith ELF file, the download address is determined
from the ELF file by reading its headers. If an address is
provided with the ELF file, it is treated as PIC code
(Position Independent Code) and downloaded at the
specified address and Register R20 is set to the start address
according to the PIC code semantics. Note that NO Bounds
checking is done by xmd, except preventing writes into
xmdstub area (address 0x0 to 0x400).

help List all commands
a.

xmdterm.tcl script in the installation directory provides commands for doing assembly level debugging using the
low level xmd commands. xmdterm.tcl is automatically loaded by xmd on startup. Powerful verification scripts
can be written in Tcl based on the xmdterm script. User scripts with helper commands can be loaded into xmd by
using the Tcl command “source script.tcl”. Refer to the Tcl documentation at the Tcl Developer site for more
information on writing Tcl scripts and custom commands.

Table 11-1: XMD commandsa

command [options] Description

http://www.xilinx.com
http://www.tcl-tk.net
http://www.tcl-tk.net
http://www.tcl-tk.net/
http://www.tcl-tk.net/

Embedded System Tools Guide www.xilinx.com 103
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

MicroBlaze Simulator target
R

MicroBlaze Simulator target
You can use mb-gdb and xmd to debug programs on the cycle-accurate simulator built in
XMD. A sample session of XMD and GDB is shown below.

XMD% mbconnect sim
Connected to MicroBlaze “sim” target. id = 0
Starting Remote GDB server for “sim” target (id = 0) at TCP port no 1234
XMD%

Now XMD is running with the simulator target and waiting for a connection from mb-gdb.
The xmd Tcl prompt can also be used simultaneously for executing xmd commands.

Refer to the MicroBlaze GNU Debugger document to see how to start mb-gdb, make a
remote connection from mb-gdb to xmd, download a program onto the target and debug
the program. With xmd and mb-gdb, the debugging user interface is uniform with
simulation or hardware targets.

Simulation Statistics
While mb-gdb is connected to XMD with the simulator target, the statistics of the cycle-
accurate simulator can be viewed from mb-gdb as follows:

• In the mb-gdb GUI menu, select View->Console.

• In the console window, type monitor info

• To reset the simulation statistics, type monitor reset

Simulator Target Requirements
To debug programs on the Cycle-Accurate Instruction Set Simulator using XMD, the
following requirements have to be met.

• Programs should be compiled for debugging and should be linked with the startup
code in crt0.o

mb-gcc can compile programs with debugging information when it is run with
the option -g and by default, mb-gcc links crt0.o with all programs. (Explicit option:
-xl-mode-executable)

• Programs can have a maximum size of 64Kbytes only.

• Currently, XMD with simulator target does not support the simulation of OPB
peripherals.

PowerPC Target
xmd can connect to a hardware PowerPC target over a JTAG connection to a board
containing a Virtex-II Pro device. Use the ppcconnect command to connect to the PowerPC
target and start a remote GDB server. A sample session is shown below

XMD% ppcconnect

JTAG chain configuration
--
Device ID Code IR Length Part Name
 1 05026093 8 XC18V04
 2 05026093 8 XC18V04
 3 0124a093 10 XC2VP7

http://www.xilinx.com

104 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 11: Xilinx Microprocessor Debugger
R

assumption: selected device 3 for debugging.

Connected to PowerPC target. id = 0
Starting GDB server for target (id = 0) at TCP port no 1234
XMD%

XMD Tcl commands
In the Tcl interface mode, xmd starts a Tcl shell augmented with xmd commands. All xmd
Tcl commands start with ’x’ and can be listed from xmd by typing “x?”.

• xrmem target addr [num]

Read num bytes or 1 byte from memory address <addr>

• xwmem target addr value

Write a 8-bit byte value at the specified memory addr.

• xrreg target [reg]

Read all registers or only register number reg.

• xwreg target reg value

Write a 32-bit value into register number reg

• xdownload target [-data] filename [addr]

Download the given ELF or data file (with -data option) onto the current target’s
memory. If no address is provided alongwith ELF file, the download address is
determined from the ELF file by reading its headers. If an address is provided with the
ELF file, it is treated as PIC code (Position Independent Code) and downloaded at the
specified address and Register R20 is set to the start address according to the PIC code
semantics. Note that NO Bounds checking is done by xmd, except preventing writes
into xmdstub area (address 0x0 to 0x400).

• xcontinue target [addr]

Continue execution from the current PC or from the optional address argument.

• xstep target

Single step one MicroBlaze instruction. If the PC is at an IMM instruction the next
instruction is executed as well. During a single step, interrupts are disabled by keeping
the BIP flag set. Use xcontinue with breakpoints to enable interrupts while debugging.

• xreset target [reset type]

Reset target. Optionally provide target specific reset types like signals mentioned in ,
“XMD MicroBlaze Hardware target signals”.

• xbreakpoint target addr

Set a breakpoint at the given address. Note - Breakpoints on instructions immediately
following imm instruction can lead to undefined results.

• xremove target addr

Remove breakpoint at given address.

• xlist target

List all the breakpoint addresses.

• xdisassemble inst

Disassemble and display one 32-bit instruction.

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 105
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

XMD Tcl commands
R

• xsignal target signal

Send a signal to a hardware target. This is only supported by the JTAG UART when the
debug signals for Processor Break, Reset and System reset are connected to MicroBlaze
and the OPB bus. Platform Generator automatically connects these signals by default
of the implicit name matching in the respective MPD files. Supported signals are listed
in Table 11-2.

• xstats target [options]

Display the simulation statistics for the current session.’reset’ option can be provided
to reset the simulation statistics.

• xppcserver

Connect to a PPC405 target, start a remote OCD server and wait for GDB connections.

• xtargets [target]

Print the target ID and target type of all curent targets or a specific target.

Table 11-2: XMD MicroBlaze Hardware target signals

Signal Name (value) Description

Processor Break (0x20) Raises the Brk signal on MicroBlaze using the JTAG UART
Ext_Brk signal. It sets the Break-in-Progress (BIP) flag on
MicroBlaze and jumps to addr 0x18

Non-maskable Break (0x10) Similar to the Break signal but works even while the BIP flag
is already set. Refer the MicroBlaze ISA documentation for
more information about the BIP flag.

System Reset (0x40) Resets the entire system by sending an OPB Rst using the
JTAG UART Debug_SYS_Rst signal.

Processor Reset (0x80) Resets MicroBlaze using the JTAG UART Debug_Rst signal.

http://www.xilinx.com

106 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 11: Xilinx Microprocessor Debugger
R

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 107
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

R

Chapter 12

Platform Specification Format (PSF)

Overview
The Platfom Specification Format (PSF) defines the compatible set of infrastructure files for
a EDK tool release. The infrastructure files are BBD, MDD, MHS, MPD, MSS, MVS, and
PAO files.

This chapter includes the following sections:

“Files”

“Version Scheme”

“Load Path”

“Creating User IP”

Files

BBD - Black Box Definition
The Black Box Definition (BBD) file manages the file locations of optimized hardware
netlists for the black-box sections of your peripheral design.

Please see Chapter 16, “Black-Box Definition (BBD),” for more information.

MDD - Microprocessor Driver Definition
An MDD file contains directives for customizing software drivers.

Please see Chapter 19, “Microprocessor Driver Definition (MDD),” for more information.

MHS - Microprocessor Hardware Specification
The Microprocessor Hardware Specification (MHS) file defines the hardware component.
An MHS file is supplied by the user as an input to the Platform Generator (PlatGen) tool.

Please see Chapter 13, “Microprocessor Hardware Specification (MHS),” for more
information.

MPD - Microprocessor Peripheral Definition
The Microprocessor Peripheral Definition (MPD) file defines the interface of the
peripheral.

http://www.xilinx.com

108 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 12: Platform Specification Format (PSF)
R

Please see Chapter 14, “Microprocessor Peripheral Description (MPD),” for more
information.

MSS - Microprocessor Software Specification
An MSS file is supplied by the user as an input to the Library Generator (LibGen). The MSS
file contains directives for customizing libraries, drivers and file systems.

Please see Chapter 18, “Microprocessor Software Specification (MSS),” for more
information.

MVS - Microprocessor Verification Specification
An MVS file is supplied by the user as an input to the Simulation Model Generator
(SimGen) tool. The MVS file contains directives for customizing a simulation model for a
defined system.

Please see Chapter 17, “Microprocessor Verification Specification (MVS),” for more
information.

PAO - Peripheral Analyze Order
A PAO (Peripheral Analyze Order) file contains a list of HDL files that are needed for
synthesis, and defines the analyze order for compilation.

Please see Chapter 15, “Peripheral Analyze Order (PAO),” for more information.

Version Scheme
Form of the version level is X.Y.Z

• X - major revision

• Y - minor revision

• Z - patch level

Version Setting for MHS, MSS, and MVS
In the body of the MHS, MSS, and MVS file, add the following statement:

Format

PARAMETER VERSION = 2.0.0

The version is specified as a literal of the form 2.0.0.

Version Setting for BBD, MPD, and PAO
The version level is concatenated to the basename of the data files. The literal form of the
version level is vX_Y_Z.

Format

• <ipname>_vX_Y_Z.mpd

• <ipname>_vX_Y_Z.bbd

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 109
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Load Path
R

• <ipname>_vX_Y_Z.pao

• <ipname>_vX_Y_Z.mdd

Load Path
Refer to Figure 12-1 for a depiction of the peripheral directory structure. On a UNIX
system, the processor cores reside in the following location:

$XILINX_EDK/hw/coregen/ip/xilinx/pcores*/com/xilinx/ip2/processor

On a PC, the processor cores reside in the following location:

%XILINX_EDK%\hw\coregen\ip\xilinx\pcores*\com\xilinx\ip2\processor

To specify additional directories, use one of the following options:

• Current directory (where Platform Generator was launched; not where the MHS
resides)

• Set the Platform Generator -P option, or the XIL_MYPERIPHERALS environment
variable

Platform Generator uses a search priority mechanism to locate peripherals, as follows:

1. Search current directory in the myip directory

2. Search $XIL_MYPERIPHERALS/myip (UNIX) or %XIL_MYPERIPHERALS%\myip
(PC)

3. Search $XILINX_EDK/hw/coregen/ip/xilinx/pcores*/com/xilinx/ip2/processor
(UNIX) or
%XILINX_EDK%\hw\coregen\ip\xilinx\pcores*\com\xilinx\ip2\processor (PC)

The first two search areas (1 and 2) have the same underlying directory structure. The third
search area has the CORE Generator directory structure. For search areas 1 and 2, the
peripheral name is the name of the root directory. From the root directory, the underlying
directory structure is as follows:

data
hdl
netlist
simmodels

For example, if the XIL_MYPERIPHERALS environment is set, then the MPD, BBD, and
PAO files are found in the following location:

$XIL_MYPERIPHERALS/myip/<peripheral>/data (UNIX)

%XIL_MYPERIPHERALS%\myip\<peripheral>\data (PC)

http://www.xilinx.com

110 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 12: Platform Specification Format (PSF)
R

Figure 12-1: Peripheral Directory Structure

Using Versions
You can create multiple versions of your peripheral. The version is specified as a literal of
the form 1.00.a. The version is always specified in lower-case.

At the MHS level, use the HW_VER parameter to set the hardware version. The Platform
Generator concatenates a "_v" and translates periods to underscores. The peripheral name
and HW_VER are joined together to form a name for a search level in the load path. For
example, if your peripheral is version 1.00.a, then the MPD, BBD, and PAO files are found
in the following location:

$XIL_MYPERIPHERALS/myip/<peripheral>_v1_00_a/data (UNIX)

%XIL_MYPERIPHERALS%\myip\<peripheral>_v1_00_a\data (PC)

Creating User IP
To build your own refernce depends on the characteristics of your design.

Is Your IP Pure HDL?
Read about MPD and PAO files.

Is Your IP Only A Black-Box Netlist?
Read about MPD and BBD files.

X9876

$XIL_MYPERIPHERALS

drivers

my_uart my_uart

data hdl netlist simmodels

myip

MPD BBD

PAO

Verilog VHDL

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 111
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Creating User IP
R

Is Your IP A Mixture Of Black-Box Netlists And HDL?
Read about MPD, BBD, and PAO files.

http://www.xilinx.com

112 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 12: Platform Specification Format (PSF)
R

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 113
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

R

Chapter 13

Microprocessor Hardware Specification
(MHS)

Overview
The Microprocessor Hardware Specification (MHS) file defines the hardware component.
An MHS file is supplied by the user as an input to the Platform Generator (PlatGen) tool.
An MHS file defines the configuration of the embedded processor system, and includes the
following:

• Bus architecture

• Peripherals

• Processor

• Connectivity of the system

• Interrupt request priorities

• Address space

This chapter includes the following sections:

“MHS Syntax”

“Bus Interface Definition”

“Global Parameter Command”

“Local Parameter Command”

“Local Bus Interface Command”

“Global Port Command”

“Local PORT Command”

“Design Considerations”

MHS Syntax
MHS file syntax is case insensitive. Only connector names are case-sensitive.

Attribute settings in the MHS file have priority over the equivalent attribute setting in the
Microprocessor Peripheral Definition (MPD) file. Refer to the Microprocessor Peripheral
Definition Format document for more information on MPD file syntax.

http://www.xilinx.com

114 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 13: Microprocessor Hardware Specification (MHS)
R

Comments
You can insert comments in the MPD file without disrupting processing. The following are
guidelines for inserting comments:

• Precede comments with the pound sign (#)

• Comments can continue to the end of the line

• Comments can be anywhere on the line

Format
Use the following format at the beginning of a component definition:

BEGIN peripheral_name

The BEGIN keyword signifies the beginning of a new peripheral.

Use the following format for assignment commands:

command name = value

Use the following format to end a peripheral definition:

END

Assignment Commands

There are three assignment commands:

1. bus_interface

2. parameter

3. port

MHS Example
The following is an example MHS file:

PARAMETER VERSION = 2.0.0

Define external ports
PORT vcc_out = net_vcc, DIR=OUTPUT
PORT gnd_out = net_gnd, DIR=OUTPUT

PORT my_clk = sys_clk, DIR=INPUT
PORT fb_clk = sys_clk # Default is DIR=OUTPUT

PORT sys_rst = sys_rst, DIR=INPUT

Define external interrupts
PORT my_int1 = my_int1, LEVEL=HIGH, DIR=INPUT, SIGIS=INTERRUPT
PORT my_int2 = int2, EDGE=FALLING, DIR=INPUT, SIGIS=INTERRUPT

PORT rx1 = rx1, DIR=INPUT
PORT tx1 = tx1, DIR=OUTPUT

##
BEGIN opb_v20
PARAMETER HW_VER = 1.10.a
PARAMETER INSTANCE = myopb

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 115
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

MHS Syntax
R

PARAMETER C_HIGHADDR = 0x00FFA0FF
PARAMETER C_BASEADDR = 0x00FFA000
PARAMETER C_PARK = 0
PARAMETER C_PROC_INTRFCE = 0
PARAMETER C_REG_GRANTS = 1
PORT OPB_Clk = sys_clk
PORT SYS_Rst = sys_rst
END
##
BEGIN lmb_v10
PARAMETER HW_VER = 1.00.a
PARAMETER INSTANCE = d_lmb
PORT LMB_Clk = sys_clk
PORT SYS_Rst = sys_rst
END
##
BEGIN lmb_v10
PARAMETER HW_VER = 1.00.a
PARAMETER INSTANCE = i_lmb
PORT LMB_Clk = sys_clk
PORT SYS_Rst = sys_rst
END
##
BEGIN microblaze
PARAMETER HW_VER = 1.00.c
PARAMETER INSTANCE = microblaze1
BUS_INTERFACE DOPB = myopb
BUS_INTERFACE IOPB = myopb
BUS_INTERFACE DLMB = d_lmb
BUS_INTERFACE ILMB = i_lmb
PORT Interrupt = intr
PORT Clk = sys_clk
END
##
BEGIN lmb_lmb_bram_if_cntlr
PARAMETER INSTANCE = mylmblmb_cntlr
PARAMETER HW_VER = 1.00.a
PARAMETER C_HIGHADDR = 0x00007fff
PARAMETER C_BASEADDR = 0x00000000
BUS_INTERFACE ILMB = i_lmb
BUS_INTERFACE DLMB = d_lmb
BUS_INTERFACE PORTA = lmb_porta
BUS_INTERFACE PORTB = lmb_portb
END
##
BEGIN bram_block
PARAMETER INSTANCE = lmbbram1
PARAMETER HW_VER = 1.00.a
BUS_INTERFACE PORTA = lmb_porta
BUS_INTERFACE PORTB = lmb_portb
END
##
BEGIN opb_intc
PARAMETER HW_VER = 1.00.b
PARAMETER INSTANCE = myintc
PARAMETER C_HIGHADDR = 0xFFFF90FF
PARAMETER C_BASEADDR = 0xFFFF9000
BUS_INTERFACE SOPB = myopb
PORT OPB_Clk = sys_clk

http://www.xilinx.com

116 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 13: Microprocessor Hardware Specification (MHS)
R

PORT Intr = my_int1 & uart_intr & wdt_intr & tb_intr & int2
PORT Irq = intr
END
##
BEGIN opb_uartlite
PARAMETER HW_VER = 1.00.b
PARAMETER INSTANCE = myuartlite
PARAMETER C_HIGHADDR = 0xFFFF80FF
PARAMETER C_BASEADDR = 0xFFFF8000
BUS_INTERFACE SOPB = myopb
PORT OPB_Clk = sys_clk
PORT RX = rx1
PORT TX = tx1
PORT Interrupt = uart_intr
END
##
BEGIN opb_bram_if_cntlr
PARAMETER INSTANCE = myopbbram_cntlr
PARAMETER HW_VER = 1.00.a
PARAMETER C_HIGHADDR = 0xFFFF7FFF
PARAMETER C_BASEADDR = 0xFFFF4000
BUS_INTERFACE SOPB = myopb
BUS_INTERFACE PORTA = opb_porta
END
##
BEGIN bram_block
PARAMETER INSTANCE = opbbram1
PARAMETER HW_VER = 1.00.a
BUS_INTERFACE PORTA = opb_porta
END
##
BEGIN opb_timebase_wdt
PARAMETER HW_VER = 1.00.a
PARAMETER INSTANCE = mytimebase_wdt
PARAMETER C_HIGHADDR = 0x00FFD0FF
PARAMETER C_BASEADDR = 0x00FFD000
BUS_INTERFACE SOPB = myopb
PORT OPB_Clk = sys_clk
PORT Timebase_Interrupt = tb_intr
PORT WDT_Interrupt = wdt_intr
END

Bus Interface Definition
A bus interface is a grouping of interface ports which are related.

The following list are recommendations for bus labels:

Table 13-1: Bus Labels

Bus Name Description

SDCR Slave DCR interface

SLMB Slave LMB interface

MOPB Master OPB interface

MSOPB Master-slave OPB interface

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 117
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Global Parameter Command
R

For components that have more than one bus interface, please look at the MPD file for a
definition of listed bus interface labels. For example, the data-side OPB and instruction-
side OPB are named DOPB and IOPB, respectively.

A bus interface is assigned by name to an instance of the bus in your system.

Example
For example, the OPB bus instance is named “myopb”, and a connection to the OPB slave
interface of the OPB Uart Lite is made with the bus_interface command.

BEGIN opb_uartlite
PARAMETER HW_VER = 1.00.b
PARAMETER INSTANCE = myuartlite
PARAMETER C_HIGHADDR = 0xFFFF80FF
PARAMETER C_BASEADDR = 0xFFFF8000
BUS_INTERFACE SOPB = myopb
PORT OPB_Clk = sys_clk
PORT RX = rx1
PORT TX = tx1
PORT Interrupt = uart_intr
END

Global Parameter Command
A global parameter is defined outside of a BEGIN-END block.

A global parameter can have the following options:

VERSION Option
Use the VERSION option to set the MHS version.

Format

PARAMETER VERSION = 2.0.0

The version is specified as a literal of the form 2.0.0.

SOPB Slave OPB interface

MPLB Master PLB interface

MSPLB Master-slave PLB interface

SPLB Slave PLB interface

Table 13-1: Bus Labels

Bus Name Description

Table 13-2: Global Parameter Options

Option Values Default Definition

VERSION 2.0.0 X MHS version

http://www.xilinx.com

118 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 13: Microprocessor Hardware Specification (MHS)
R

Local Parameter Command
A local parameter is defined between a BEGIN-END block.

A local parameter can have the following options:

HW_VER Option
Use the HW_VER option to set the hardware version.

Format

PARAMETER HW_VER = 1.00.a

The version is specified as a literal of the form 1.00.a.

INSTANCE Option
Use the INSTANCE option to set the instance name of peripheral. This option is
mandatory, and the instance name must be specified in lower-case.

Format

PARAMETER INSTANCE = my_uart0

Local Bus Interface Command
A local bus interface between a BEGIN-END block can have the following options:

POSITION Option
Use the POSITION option to set the hardware version.

Format

BUS_INTERFACE MOPB=opb_bus_inst, POSITION=integer

Where integer is a positive integer. Highest position is "1".

Table 13-3: Local Parameter Options

Option Values Default Definition

HW_VER 1.00.a X Hardware version

INSTANCE X User-defined instance name
Must be lower-case

Table 13-4: Local Bus Interface Options

Option Values Default Definition

POSITION integer Order
retained as
listed in the
MHS

Position of peripheral on the bus.
Use to define master request
priority or DCR slave rank.

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 119
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Global Port Command
R

Global Port Command
A global port outside of a BEGIN-END block can have the following options:

DIR Option
The driver direction of a signal is specified by the DIR option.

Format

PORT mysignal = "", DIR=direction

Where direction is either INPUT, IN, I, OUTPUT, OUT, O, INOUT, or IO.

EDGE Option
The edge sensitivity of an interrupt signal is specified by the EDGE option.

Format

PORT interrupt = “”, DIR=O, EDGE=edge_value, SIGIS=INTERRUPT

Where edge_value is either RISING or FALLING.

LEVEL Option
The level sensitivity of an interrupt signal is specified by the LEVEL option.

Format

PORT interrupt = “”, DIR=O, LEVEL=level_value, SIGIS=INTERRUPT

Where the level_value is either HIGH or LOW.

SIGIS Option
The class of a signal is specified by the SIGIS option.

Table 13-5: Global Port PORTOptions

Option Values Default Definition

DIR IN, INPUT, I

OUT, OUTPUT, O

INOUT, IO

O Direction mode

EDGE RISING

FALLING

X Interrupt edge sensitivity

LEVEL HIGH

LOW

X Interrupt level sensitivity

SIGIS CLK

INTERRUPT

X SIgnal classification

VEC [A:B] X Vector dimension

http://www.xilinx.com

120 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 13: Microprocessor Hardware Specification (MHS)
R

Format

PORT interrupt = “”, DIR=O, LEVEL=level_value, SIGIS=INTERRUPT

Where the level_value is either HIGH or LOW.

VEC Option
The vector width of a signal is specified by the VEC option.

Format

PORT mysignal = “”, DIR=I, VEC=[A:B]

Local PORT Command
A local port is a port defined between a BEGIN-END block. A local port does not have
options.

Design Considerations
This section provides general design considerations.

Assinging Constants
Use 0b denotation to define a binary constant or 0x for a hex constant. An underscore (_)
can be used for readability.

Format

PORT mysignal = 0b1010_0101 # mysignal is 8-bits

Or

PORT mysignal = 0xA5 # mysignal is 8-bits

Defining Memory Size
Memory sizes are based on C_BASEADDR and C_HIGHADDR settings. Use the following
format when defining memory size:

PARAMETER C_HIGHADDR= 0xFFFF00FF
PARAMETER C_BASEADDR= 0xFFFF0000

All memory sizes must be 2n where n is a positive integer, and 2n boundary overlaps are
not allowed.

Internal vs External Signals
By default, all signals defined between a BEGIN-END block are internal signals.

External signals are available through the port-declaration of the top-level module. Use the
PORT command outside of a BEGIN-END block to declare the external signal.

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 121
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Design Considerations
R

External Interrupt Signals
For internal interrupts, each interruptible peripheral instance defines an interrupt signal
locally.

For external interrupts, use the PORT command outside of a BEGIN-END block to declare
the external signal and define the interrupt sensitivity.

Format

PORT my_int1 = my_int1, LEVEL=HIGH, DIR=INPUT

Internal Interrupt Signals
For the opb_intc component, the interrupt vector will be a concatenation of the locally
defined interrupt signals and/or external interrupts. The position of the interrupt signal
defines the priority. The interrupt vector is in little-endian format, where the highest
priority interrupt sits at the LSBit position.

Format

PORT intr = my_int1 & uart_intr & wdt_intr & tb_intr & int2

If there is only one interrupt defined in the platform, then you may be able to connect it
directly to the MicroBlaze processor. The MicroBlaze processor’s interrupt is level
sensitive. Consequently, any other level sensitive interrupt line from a peripheral can be
connected directly. However, if the peripheral’s interrupt line is edge sensitive, then you
must use the interrupt controller. If you connect an edge sensitive signal to a level sensitive
signal, you may miss an interrupt.

Power Signals
Power signals are signals that are constantly driven with either VCC or GND.

Format

PORT mysignal = power_signal

In this example, power_signal is either “net_vcc” or “net_gnd”. Platform Generator
expands “net_vcc” or “net_gnd” to the appropriate vector size.

http://www.xilinx.com

122 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 13: Microprocessor Hardware Specification (MHS)
R

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 123
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

R

Chapter 14

Microprocessor Peripheral Description
(MPD)

Overview
The Microprocessor Peripheral Definition (MPD) file defines the interface of the
peripheral.

An MPD file has the following characteristics:

• Lists ports and default connectivity for bus interfaces

• Lists parameters and default values

• Any MPD parameter is overwritten by the equivalent MHS assignment (refer to the
Microprocessor Hardware Specification Format document for more details)

Individual peripheral documentation contains information on all MPD file options.

This chapter includes the following sections:

“MPD Syntax”

“Bus Interface Naming Conventions”

“Parameter Naming Conventions”

“Signal Naming Conventions”

“Reserved Signal Connections”

“Component Options”

“Global Parameter Command”

“Local Option Command”

“Local Parameter Command”

“Local Bus Interface Command”

“Local Port Command”

“HDL Design Considerations”

MPD Syntax
MPD file syntax is case insensitive. Only connector names are case-sensitive.

http://www.xilinx.com

124 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 14: Microprocessor Peripheral Description (MPD)
R

The MPD file is supplied by the IP provider and provides peripheral information. This file
lists ports and default connectivity to the bus interface. Parameters that you set in this file
are mapped to generics for VHDL or parameters for Verilog.

Comments
You can insert comments in the MPD file without disrupting processing. The following are
guidelines for inserting comments:

• Precede comments with the pound sign (#)

• Comments can continue to the end of the line

• Comments can be anywhere on the line

Format
Use the following format at the beginning of a component definition:

BEGIN peripheral_name

The BEGIN keyword signifies the beginning of a new peripheral.

Use the following format for assignment commands:

command name = value

Use the following format to end a peripheral definition:

END

Assignment Commands

There are four assignment commands:

1. bus_interface

2. option

3. parameter

4. port

Signal Direction

Signals have three modes. Signal mode indicates its driver direction, and if the port can be
read from within the peripheral.

The three modes and their accepted values are as follows:

• input - [input, in, i]

• output - [output, out, o]

• inout - [inout, io]

MPD Example
The following is an example MPD file:

PARAMETER VERSION = 2.0.0

BEGIN opb_gpio, IPTYPE=PERIPHERAL, IMP_NETLIST=TRUE

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 125
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Bus Interface Naming Conventions
R

OPTION SIM_MODELS = HDL

Define bus interfaces
BUS_INTERFACE BUS=SOPB, BUS_STD=OPB, BUS_TYPE=SLAVE

Generics for vhdl or parameters for verilog
PARAMETER C_BASEADDR = 0xFFFFFFFF, DT=std_logic_vector, MIN_SIZE=0x100,
BUS=SOPB
PARAMETER C_HIGHADDR = 0x00000000, DT=std_logic_vector, BUS=SOPB
PARAMETER C_OPB_DWIDTH = 32, DT=integer, BUS=SOPB
PARAMETER C_OPB_AWIDTH = 32, DT=integer, BUS=SOPB
PARAMETER C_GPIO_WIDTH = 32, DT=integer
PARAMETER C_ALL_INPUTS = 0, DT=integer

Global ports
PORT OPB_Clk = "", DIR=IN, SIGIS=CLK, BUS=SOPB
PORT OPB_Rst = OPB_Rst, DIR=IN, BUS=SOPB

OPB slave signals
PORT OPB_ABus = OPB_ABus, DIR=IN, VEC=[0:C_OPB_AWIDTH-1], BUS=SOPB
PORT OPB_BE = OPB_BE, DIR=IN, VEC=[0:C_OPB_DWIDTH/8-1], BUS=SOPB
PORT OPB_DBus = OPB_DBus, DIR=IN, VEC=[0:C_OPB_DWIDTH-1], BUS=SOPB
PORT OPB_RNW = OPB_RNW, DIR=IN, BUS=SOPB
PORT OPB_select = OPB_select, DIR=IN, BUS=SOPB
PORT OPB_seqAddr = OPB_seqAddr, DIR=IN, BUS=SOPB
PORT GPIO_DBus = Sl_DBus, DIR=OUT, VEC=[0:C_OPB_DWIDTH-1], BUS=SOPB
PORT GPIO_errAck = Sl_errAck, DIR=OUT, BUS=SOPB
PORT GPIO_retry = Sl_retry, DIR=OUT, BUS=SOPB
PORT GPIO_toutSup = Sl_toutSup, DIR=OUT, BUS=SOPB
PORT GPIO_xferAck = Sl_xferAck, DIR=OUT, BUS=SOPB

gpio signals
PORT GPIO_IO = "", DIR=INOUT, VEC=[0:C_GPIO_WIDTH-1], ENABLE=MULTI

END

Bus Interface Naming Conventions
A bus interface is a grouping of interface ports which are related.

The following list are recommendations for bus labels:

Table 14-1: Recommended Bus Labels

Bus Name Description

SDCR Slave DCR interface

SLMB Slave LMB interface

MOPB Master OPB interface

MSOPB Master-slave OPB interface

SOPB Slave OPB interface

MPLB Master PLB interface

MSPLB Master-slave PLB interface

SPLB Slave PLB interface

http://www.xilinx.com

126 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 14: Microprocessor Peripheral Description (MPD)
R

For components that have more than one bus interface, use an intuitive naming
convention. For example, the data-side OPB and instruction-side OPB are named DOPB
and IOPB, respectively.

Parameter Naming Conventions
An MPD parameter correlates to a generic for VHDL or parameter for Verilog. The
parameter name must be HDL (VHDL, Verilog) compliant. VHDL and Verilog have certain
naming rules and conventions that must be followed.

The Platform Generator automatically expands and populates certain reserved
parameters. This can help prevent errors when your peripheral requires information on
the platform that is generated. The following table lists the reserved parameter names:

Figure 14-1: Automatically Expanded Reserved Parameters

Parameter Description

C_BUS_CONFIG Bus Configuration of MicroBlaze

C_FAMILY FPGA Device Family

C_INSTANCE Instance name of component

C_KIND_OF_EDGE Vector of edge sensitive (rising/falling) of interrupt signals

C_KIND_OF_LVL Vector of level sensitive (high/low) of interrupt signals

C_KIND_OF_INTR Vector of interrupt signal sensitivity (edge/level)

C_NUM_INTR_INPUTS Number of interrupt signals

C_NUM_MASTERS Number of OPB masters

C_NUM_SLAVES Number of OPB slaves

C_DCR_AWIDTH DCR Address width

C_DCR_DWIDTH DCR Data width

C_DCR_NUM_SLAVES Number of DCR slaves

C_LMB_AWIDTH LMB Address width

C_LMB_DWIDTH LMB Data width

C_LMB_NUM_SLAVES Number of LMB slaves

C_OPB_AWIDTH OPB Address width

C_OPB_DWIDTH OPB Data width

C_OPB_NUM_MASTERS Number of OPB masters

C_OPB_NUM_SLAVES Number of OPB slaves

C_PLB_AWIDTH PLB Address width

C_PLB_DWIDTH PLB Data width

C_PLB_MID_WIDTH PLB master ID width

C_PLB_NUM_MASTERS Number of PLB masters

C_PLB_NUM_SLAVES Number of PLB slaves

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 127
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Parameter Naming Conventions
R

Reserved Parameters

C_BUS_CONFIG

The C_BUS_CONFIG parameter defines the bus configuration of the MicroBlaze
processor. This parameter is automatically populated by Platform Generator.

Format

PARAMETER C_BUS_CONFIG = bus_config, DT=integer

C_FAMILY

The C_FAMILY parameter defines the FPGA device family. This parameter is
automatically populated by Platform Generator.

Format

PARAMETER C_FAMILY = family, DT=string

C_INSTANCE

The C_INSTANCE parameter defines the instance name of the component. This parameter
is automatically populated by Platform Generator.

Format

PARAMETER C_INSTANCE = instance_name, DT=string

C_NUM_MASTERS

The C_NUM_MASTERS parameter defines the number of OPB masters on the bus. This
parameter is automatically populated by Platform Generator. It’s use is deprecated. Please
use the C_NUM_OPB_MASTERS parameter.

Format

PARAMETER C_NUM_MASTERS = <num>, DT=integer

Where <num> is an integer value.

C_NUM_SLAVES

The C_NUM_SLAVES parameter defines the number of OPB slaves on the bus. This
parameter is automatically populated by Platform Generator. It’s use is deprecated. Please
use the C_NUM_OPB_SLAVES parameter.

Format

PARAMETER C_NUM_SLAVES = <num>, DT=integer

Where <num> is an integer value.

C_DCR_AWIDTH

The C_DCR_AWIDTH parameter defines the DCR address width. This parameter is
automatically populated by Platform Generator.

http://www.xilinx.com

128 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 14: Microprocessor Peripheral Description (MPD)
R

Format

PARAMETER C_DCR_AWIDTH = <num>, DT=integer

Where <num> is an integer value.

C_DCR_DWIDTH

The C_DCR_DWIDTH parameter defines the DCR data width. This parameter is
automatically populated by Platform Generator.

Format

PARAMETER C_DCR_DWIDTH = <num>, DT=integer

Where <num> is an integer value.

C_DCR_NUM_SLAVES

The C_DCR_NUM_SLAVES parameter defines the number of DCR slaves on the bus. This
parameter is automatically populated by Platform Generator.

Format

PARAMETER C_DCR_NUM_SLAVES = <num>, DT=integer

Where <num> is an integer value.

C_LMB_AWIDTH

The C_LMB_AWIDTH parameter defines the LMB address width. This parameter is
automatically populated by Platform Generator.

Format

PARAMETER C_LMB_AWIDTH = <num>, DT=integer

Where <num> is an integer value.

C_LMB_DWIDTH

The C_LMB_DWIDTH parameter defines the LMB data width. This parameter is
automatically populated by Platform Generator.

Format

PARAMETER C_LMB_DWIDTH = <num>, DT=integer

Where <num> is an integer value.

C_LMB_NUM_SLAVES

The C_LMB_NUM_SLAVES parameter defines the number of LMB slaves on the bus. This
parameter is automatically populated by Platform Generator.

Format

PARAMETER C_LMB_NUM_SLAVES = <num>, DT=integer

Where <num> is an integer value.

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 129
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Parameter Naming Conventions
R

C_OPB_AWIDTH

The C_OPB_AWIDTH parameter defines the OPB address width. This parameter is
automatically populated by Platform Generator.

Format

PARAMETER C_OPB_AWIDTH = <num>, DT=integer

Where <num> is an integer value.

C_OPB_DWIDTH

The C_OPB_DWIDTH parameter defines the OPB data width. This parameter is
automatically populated by Platform Generator.

Format

PARAMETER C_OPB_DWIDTH = <num>, DT=integer

Where <num> is an integer value.

C_OPB_NUM_MASTERS

The C_OPB_NUM_MASTERS parameter defines the number of OPB masters on the bus.
This parameter is automatically populated by Platform Generator.

Format

PARAMETER C_OPB_NUM_MASTERS = <num>, DT=integer

Where <num> is an integer value.

C_OPB_NUM_SLAVES

The C_OPB_NUM_SLAVES parameter defines the number of OPB slaves on the bus. This
parameter is automatically populated by Platform Generator.

Format

PARAMETER C_OPB_NUM_SLAVES = <num>, DT=integer

Where <num> is an integer value.

C_PLB_AWIDTH

The C_PLB_AWIDTH parameter defines the PLB address width. This parameter is
automatically populated by Platform Generator.

Format

PARAMETER C_PLB_AWIDTH = <num>, DT=integer

Where <num> is an integer value.

C_PLB_DWIDTH

The C_PLB_DWIDTH parameter defines the PLB data width. This parameter is
automatically populated by Platform Generator.

http://www.xilinx.com

130 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 14: Microprocessor Peripheral Description (MPD)
R

Format

PARAMETER C_PLB_DWIDTH = <num>, DT=integer

Where <num> is an integer value.

C_PLB_MID_WIDTH

The C_PLB_MID_WIDTH parameter defines the PLB master ID width. This is set to
log2(S). This parameter is automatically populated by Platform Generator.

Format

PARAMETER C_PLB_MID_WIDTH = <num>, DT=integer

Where <num> is an integer value.

C_PLB_NUM_MASTERS

The C_PLB_NUM_MASTERS parameter defines the number of PLB masters on the bus.
This parameter is automatically populated by Platform Generator.

Format

PARAMETER C_PLB_NUM_MASTERS = <num>, DT=integer

Where <num> is an integer value.

C_PLB_NUM_SLAVES

The C_PLB_NUM_SLAVES parameter defines the number of PLB slaves on the bus. This
parameter is automatically populated by Platform Generator.

Format

PARAMETER C_PLB_NUM_SLAVES = <num>, DT=integer

Where <num> is an integer value.

Signal Naming Conventions
This section provides naming conventions for bus interface signal names. These
conventions are flexible to accommodate embedded processor systems that have more
than one bus interface and more than one bus interface port per component.

The names must be HDL (VHDL or Verilog) compliant. As with any language, VHDL and
Verilog have certain naming rules and conventions that you must follow.

Platform Generator is capable of dealing with a design of mixed HDL.

• VHDL top-level with lower-level VHDL/Verilog cores

• Verilog top-level with lower-level VHDL/Verilog cores

Due to this case, a Verilog core’s signal interface must be written in lower-case. Verilog is a
case sensitive language, and it’s case is preserved in the synthesized netlist files (EDIF and
NGC). However, VHDL is a case-insensitive language, thus synthesis vendors normalize
all names to lower-case. So to have a VHDL core interface to a Verilog core, the ports must
match.

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 131
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Signal Naming Conventions
R

Global Ports
The names for the global ports of a peripheral (such as clock and reset signals) are
standardized. You can use any name for other global ports (such as the interrupt signal).

LMB - Clock and Reset

LMB_Clk
LMB_Rst

OPB - Clock and Reset

OPB_Clk
OPB_Rst

PLB - Clock and Reset

PLB_Clk
PLB_Rst

Slave DCR Ports
Naming conventions should be followed for that part of the identifier following the last
underscore in the name.

DCR Slave Outputs

For interconnection to the DCR, all slaves must provide the following outputs:

<Sln>_dcrDBus
<Sln>_dcrAck

Where <Sln> is a meaningful name or acronym for the slave output. An additional
requirement on <Sln> is that it must not contain the string, “DCR” (upper or lower case or
mixed case), so that slave outputs will not be confused with bus outputs.

uart_dcrAck
intc_dcrAck
memcon_dcrAck

DCR Slave Inputs

For interconnection to the DCR, all slaves must provide the following inputs:

<nDCR>_ABus
<nDCR>_Sl_DBus
<nDCR>_Read
<nDCR>_Write

Where <nDCR> is a meaningful name or acronym for the slave input. An additional
requirement on <nDCR> is that the last three characters must contain the string, “DCR”
(upper or lower case or mixed case).

DCR_Sl_DBus
bus1_DCR_Sl_DBus

http://www.xilinx.com

132 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 14: Microprocessor Peripheral Description (MPD)
R

Slave LMB Ports
Naming conventions should be followed for that part of the identifier following the last
underscore in the name.

LMB Slave Outputs

For interconnection to the LMB, all slaves must provide the following outputs:

<Sln>_DBus
<Sln>_Ready

Where <Sln> is a meaningful name or acronym for the slave output. An additional
requirement on <Sln> is that it must not contain the string, “LMB” (upper or lower case or
mixed case), so that slave outputs will not be confused with bus outputs.

d_Ready
i_Ready

LMB Slave Inputs

For interconnection to the LMB, all slaves must provide the following inputs:

<nLMB>_ABus
<nLMB>_ReadStrobe
<nLMB>_AddrStrobe
<nLMB>_WriteStrobe
<nLMB>_WriteDBus
<nLMB>_BE

Where <nLMB> is a meaningful name or acronym for the slave input. An additional
requirement on <nLMB> is that the last three characters must contain the string, “LMB”
(upper or lower case or mixed case).

LMB_ABus
bus1_LMB_ABus

Master OPB Ports
Naming conventions should be followed for that part of the identifier following the last
underscore in the name.

OPB Master Outputs

For interconnection to the OPB, all masters must provide the following outputs:

<Mn>_ABus
<Mn>_BE
<Mn>_busLock
<Mn>_DBus
<Mn>_request
<Mn>_RNW
<Mn>_select
<Mn>_seqAddr

Where <Mn> is a meaningful name or acronym for the master output. An additional
requirement on <Mn> is that it must not contain the string, “OPB” (upper or lower case or
mixed case), so that master outputs are not confused with bus outputs.

iM_request
bridge_request

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 133
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Signal Naming Conventions
R

o2ob_request

OPB Master Inputs

For interconnection to the OPB, all masters must provide the following inputs:

<nOPB>_DBus
<nOPB>_errAck
<nOPB>_MGrant
<nOPB>_retry
<nOPB>_timeout
<nOPB>_xferAck

Where <nOPB> is a meaningful name or acronym for the master input. An additional
requirement on <nOPB> is that the last three characters must contain the string, “OPB”
(upper or lower case or mixed case).

iOPB_DBus
OPB_DBus
bus1_OPB_DBus

Slave OPB Ports
Naming conventions should be followed for that part of the identifier following the last
underscore in the name.

OPB Slave Outputs

For interconnection to the OPB, all slaves must provide the following outputs:

<Sln>_DBus
<Sln>_errAck
<Sln>_retry
<Sln>_toutSup
<Sln>_xferAck

Where <Sln> is a meaningful name or acronym for the slave output. An additional
requirement on <Sln> is that it must not contain the string, “OPB” (upper or lower case or
mixed case), so that slave outputs will not be confused with bus outputs.

tmr_xferAck
uart_xferAck
intc_xferAck

OPB Slave Inputs

For interconnection to the OPB, all slaves must provide the following inputs:

<nOPB>_ABus
<nOPB>_BE
<nOPB>_DBus
<nOPB>_RNW
<nOPB>_select
<nOPB>_seqAddr

Where <nOPB> is a meaningful name or acronym for the slave input. An additional
requirement on <nOPB> is that the last three characters must contain the string, “OPB”
(upper or lower case or mixed case).

OPB_DBus
iOPB_DBus

http://www.xilinx.com

134 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 14: Microprocessor Peripheral Description (MPD)
R

bus1_OPB_DBus

Master PLB Ports
Naming conventions should be followed for that part of the identifier following the last
underscore in the name.

PLB Master Outputs

For interconnection to the PLB, all masters must provide the following outputs:

<Mn>_ABus
<Mn>_BE
<Mn>_RNW
<Mn>_abort
<Mn>_busLock
<Mn>_compress
<Mn>_guarded
<Mn>_lockErr
<Mn>_MSize
<Mn>_ordered
<Mn>_priority
<Mn>_rdBurst
<Mn>_request
<Mn>_size
<Mn>_type
<Mn>_wrBurst
<Mn>_wrDBus

Where <Mn> is a meaningful name or acronym for the master output. An additional
requirement on <Mn> is that it must not contain the string, “PLB” (upper or lower case or
mixed case), so that master outputs are not confused with bus outputs.

iM_request
bridge_request
o2ob_request

PLB Master Inputs

For interconnection to the PLB, all masters must provide the following inputs:

<nPLB>_MAddrAck
<nPLB>_MBusy
<nPLB>_MErr
<nPLB>_MRdBTerm
<nPLB>_MRdDAck
<nPLB>_MRdDBus
<nPLB>_MRdWdAddr
<nPLB>_MRarbitrate
<nPLB>_MWrBTerm
<nPLB>_MWrDAck
<nPLB>_MSSize
<nPLB>_SMErr
<nPLB>_SMbusy

Where <nPLB> is a meaningful name or acronym for the master input. An additional
requirement on <nPLB> is that the last three characters must contain the string, “PLB”
(upper or lower case or mixed case).

iPLB_MBusy

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 135
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Signal Naming Conventions
R

PLB_MBusy
bus1_PLB_MBusy

Slave PLB Ports
Naming conventions should be followed for that part of the identifier following the last
underscore in the name.

PLB Slave Outputs

For interconnection to the PLB, all slaves must provide the following outputs:

<Sln>_addrAck
<Sln>_MErr
<Sln>_MBusy
<Sln>_rdBTerm
<Sln>_rdComp
<Sln>_rdDAck
<Sln>_rdDBus
<Sln>_rdWdAddr
<Sln>_rearbitrate
<Sln>_SSize
<Sln>_wait
<Sln>_wrBTerm
<Sln>_wrComp
<Sln>_wrDAck

Where <Sln> is a meaningful name or acronym for the slave output. An additional
requirement on <Sln> is that it must not contain the string, “PLB” (upper or lower case or
mixed case), so that slave outputs will not be confused with bus outputs.

tmr_addrAck
uart_addrAck
intc_addrAck

PLB Slave Inputs

For interconnection to the PLB, all slaves must provide the following inputs:

<nPLB>_ABus
<nPLB>_BE
<nPLB>_PAValid
<nPLB>_RNW
<nPLB>_abort
<nPLB>_busLock
<nPLB>_compress
<nPLB>_guarded
<nPLB>_lockErr
<nPLB>_masterID
<nPLB>_MSize
<nPLB>_ordered
<nPLB>_pendPri
<nPLB>_pendReq
<nPLB>_reqpri
<nPLB>_size
<nPLB>_type
<nPLB>_rdPrim
<nPLB>_SAValid
<nPLB>_wrPrim

http://www.xilinx.com

136 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 14: Microprocessor Peripheral Description (MPD)
R

<nPLB>_wrBurst
<nPLB>_wrDBus
<nPLB>_rdBurst

Where <nPLB> is a meaningful name or acronym for the slave input. An additional
requirement on <nPLB> is that the last three characters must contain the string, “PLB”
(upper or lower case or mixed case).

PLB_size
iPLB_size
dPLB_size

Reserved Signal Connections
Connectivity of the DCR, LMB, OPB and PLB busses to peripherals is done through a
common set of signal connections.

Global Ports
For interconnection to the global ports:

LMB - Clock and Reset

PORT LMB_Clk = "", DIR=I, SIGIS=CLK
PORT LMB_Rst = OPB_Rst, DIR=I

OPB - Clock and Reset

PORT OPB_Clk = "", DIR=I, SIGIS=CLK
PORT OPB_Rst = OPB_Rst, DIR=I

PLB - Clock and Reset

PORT PLB_Clk = "", DIR=I, SIGIS=CLK
PORT PLB_Rst = PLB_Rst, DIR=I

Slave DCR Ports
For interconnection to the DCR, all slaves must provide the following connections:

PORT <Sln>_dcrDBus = Sl_dcrDBus, DIR=O, VEC=[0:C_DCR_DWIDTH-1],
BUS=SDCR
PORT <Sln>_dcrAck = Sl_dcrAck, DIR=O, BUS=SDCR
PORT <nDCR>_ABus = DCR_ABus, DIR=I, VEC=[0:C_DCR_AWIDTH-1], BUS=SDCR
PORT <nDCR>_Sl_DBus = DCR_Sl_DBus, DIR=I, VEC=[0:C_DCR_DWIDTH-1],
BUS=SDCR
PORT <nDCR>_Read = DCR_Read, DIR=I, BUS=SDCR
PORT <nDCR>_Write = DCR_Write, DIR=I, BUS=SDCR

Slave LMB Ports
For interconnection to the LMB, all slaves must provide the following connections:

PORT <Sln>_DBus = Sl_DBus, DIR=O, VEC=[0:C_LMB_DWIDTH-1], BUS=SLMB
PORT <Sln>_Ready = Sl_Ready, DIR=O, BUS=SLMB
PORT <nLMB>_ABus = LMB_ABus, DIR=I, VEC=[0:C_LMB_AWIDTH-1], BUS=SLMB
PORT <nLMB>_ReadStrobe = LMB_ReadStrobe, DIR=I, BUS=SLMB

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 137
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Reserved Signal Connections
R

PORT <nLMB>_AddrStrobe = LMB_AddrStrobe, DIR=I, BUS=SLMB
PORT <nLMB>_WriteStrobe = LMB_WriteStrobe, DIR=I, BUS=SLMB
PORT <nLMB>_WriteDBus = LMB_WriteDBus, DIR=I, VEC=[0:C_LMB_DWIDTH-1],
BUS=SLMB
PORT <nLMB>_BE = LMB_BE, DIR=I, VEC=[0:C_LMB_DWIDTH/8-1], BUS=SLMB

Master OPB Ports
For interconnection to the OPB, all masters must provide the following connections:

PORT <Mn>_ABus = M_ABus, DIR=O, VEC=[0:C_OPB_AWIDTH-1], BUS=MOPB
PORT <Mn>_BE = M_BE, DIR=O, VEC=[0:C_OPB_DWIDTH/8-1], BUS=MOPB
PORT <Mn>_busLock = M_busLock, DIR=O, BUS=MOPB
PORT <Mn>_DBus = M_DBus, DIR=O, VEC=[0:C_OPB_DWIDTH-1], BUS=MOPB
PORT <Mn>_request = M_request, DIR=O, BUS=MOPB
PORT <Mn>_RNW = M_RNW, DIR=O, BUS=MOPB
PORT <Mn>_select = M_select, DIR=O, BUS=MOPB
PORT <Mn>_seqAddr = M_seqAddr, DIR=O, BUS=MOPB
PORT <nOPB>_DBus = OPB_DBus, DIR=I, VEC=[0:C_OPB_DWIDTH-1], BUS=MOPB
PORT <nOPB>_errAck = OPB_errAck, DIR=I, BUS=MOPB
PORT <nOPB>_MGrant = OPB_MGrant, DIR=I, BUS=MOPB
PORT <nOPB>_retry = OPB_retry, DIR=I, BUS=MOPB
PORT <nOPB>_timeout = OPB_timeout, DIR=I, BUS=MOPB
PORT <nOPB>_xferAck = OPB_xferAck, DIR=I, BUS=MOPB

Slave OPB Ports
For interconnection to the OPB, all slaves must provide the following connections:

PORT <Sln>_DBus = Sl_DBus, DIR=O, VEC=[0:C_OPB_DWIDTH-1], BUS=SOPB
PORT <Sln>_errAck = Sl_errAck, DIR=O, BUS=SOPB
PORT <Sln>_retry = Sl_retry, DIR=O, BUS=SOPB
PORT <Sln>_toutSup = Sl_toutSup, DIR=O, BUS=SOPB
PORT <Sln>_xferAck = Sl_xferAck, DIR=O
PORT <nOPB>_ABus = OPB_ABus, DIR=I, VEC=[0:C_OPB_AWIDTH-1], BUS=SOPB
PORT <nOPB>_BE = OPB_BE, DIR=I, VEC=[0:C_OPB_DWIDTH/8-1], BUS=SOPB
PORT <nOPB>_DBus = OPB_DBus, DIR=I, VEC=[0:C_OPB_DWIDTH-1], BUS=SOPB
PORT <nOPB>_RNW = OPB_RNW, DIR=I, BUS=SOPB
PORT <nOPB>_select = OPB_select, DIR=I, BUS=SOPB
PORT <nOPB>_seqAddr = OPB_seqAddr, DIR=I, BUS=SOPB

Master PLB Ports
For interconnection to the PLB, all masters must provide the following connections:

PORT <Mn>_ABus = M_ABus, DIR=O, VEC=[0:C_PLB_AWIDTH-1], BUS=MPLB
PORT <Mn>_BE = M_BE, DIR=O, VEC=[0:C_PLB_DWIDTH/8-1], BUS=MPLB
PORT <Mn>_RNW = M_RNW, DIR=O, BUS=MPLB
PORT <Mn>_abort = M_abort, DIR=O, BUS=MPLB
PORT <Mn>_busLock = M_busLock, DIR=O, BUS=MPLB
PORT <Mn>_compress = M_compress, DIR=O, BUS=MPLB
PORT <Mn>_guarded = M_guarded, DIR=O, BUS=MPLB
PORT <Mn>_lockErr = M_lockErr, DIR=O, BUS=MPLB
PORT <Mn>_MSize = M_MSize, DIR=O, VEC=[0:1], BUS=MPLB
PORT <Mn>_ordered = M_ordered, DIR=O, BUS=MPLB
PORT <Mn>_priority = M_priority, DIR=O, VEC=[0:1], BUS=MPLB
PORT <Mn>_rdBurst = M_rdBurst, DIR=O, BUS=MPLB
PORT <Mn>_request = M_request, DIR=O, BUS=MPLB

http://www.xilinx.com

138 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 14: Microprocessor Peripheral Description (MPD)
R

PORT <Mn>_size = M_size, DIR=O, VEC=[0:3], BUS=MPLB
PORT <Mn>_type = M_type, DIR=O, VEC=[0:2], BUS=MPLB
PORT <Mn>_wrBurst = M_wrBurst, DIR=O, BUS=MPLB
PORT <Mn>_wrDBus = M_wrDBus, DIR=O, VEC=[0:C_PLB_DWIDTH-1], BUS=MPLB
PORT <nPLB>_MAddrAck = PLB_MAddrAck, DIR=I, BUS=MPLB
PORT <nPLB>_MBusy = PLB_MBusy, DIR=I, BUS=MPLB
PORT <nPLB>_MErr = PLB_MErr, DIR=I, BUS=MPLB
PORT <nPLB>_MRdBTerm = PLB_MRdBTerm, DIR=I, BUS=MPLB
PORT <nPLB>_MRdDAck = PLB_MRdDAck, DIR=I, BUS=MPLB
PORT <nPLB>_MRdDBus = PLB_MRdDBus, DIR=I, VEC=[0:C_PLB_DWIDTH-1],
BUS=MPLB
PORT <nPLB>_MRdWdAddr = PLB_MRdWdAddr, DIR=I, VEC=[0:3], BUS=MPLB
PORT <nPLB>_MRarbitrate = PLB_MRarbitrate, DIR=I, BUS=MPLB
PORT <nPLB>_MWrBTerm = PLB_MWrBTerm, DIR=I, BUS=MPLB
PORT <nPLB>_MWrDAck = PLB_MWrDAck, DIR=I, BUS=MPLB
PORT <nPLB>_MSSize = PLB_MSSize, DIR=I, VEC=[0:1], BUS=MPLB
PORT <nPLB>_SMErr = PLB_SMErr, DIR=I, BUS=MPLB
PORT <nPLB>_SMbusy = PLB_SMbusy, DIR=I, BUS=MPLB

Slave PLB Ports
For interconnection to the PLB, all slaves must provide the following connections:

PORT <Sln>_addrAck = Sl_addrAck, DIR=O, BUS=SPLB
PORT <Sln>_MErr = Sl_MErr, DIR=O, VEC=[0:C_NUM_MASTERS-1], BUS=SPLB
PORT <Sln>_MBusy = Sl_MBusy, DIR=O, VEC=[0:C_NUM_MASTERS-1], BUS=SPLB
PORT <Sln>_rdBTerm = Sl_rdBTerm, DIR=O, BUS=SPLB
PORT <Sln>_rdComp = Sl_rdComp, DIR=O, BUS=SPLB
PORT <Sln>_rdDAck = Sl_rdDAck, DIR=O, BUS=SPLB
PORT <Sln>_rdDBus = Sl_rdDBus, DIR=O, VEC=[0:C_PLB_DWIDTH-1],BUS=SPLB
PORT <Sln>_rdWdAddr = Sl_rdWdAddr, DIR=O, VEC=[0:3], BUS=SPLB
PORT <Sln>_rearbitrate = Sl_rearbitrate, DIR=O, BUS=SPLB
PORT <Sln>_SSize = Sl_SSize, DIR=O, VEC=[0:1], BUS=SPLB
PORT <Sln>_wait = Sl_wait, DIR=O, BUS=SPLB
PORT <Sln>_wrBTerm = Sl_wrBTerm, DIR=O, BUS=SPLB
PORT <Sln>_wrComp = Sl_wrComp, DIR=O, BUS=SPLB
PORT <Sln>_wrDAck = Sl_wrDAck, DIR=O, BUS=SPLB
PORT <nPLB>_ABus = PLB_ABus, DIR=I, VEC=[0:C_PLB_AWIDTH-1], BUS=SPLB
PORT <nPLB>_BE = PLB_BE, DIR=I, VEC=[0:(C_PLB_DWIDTH/8)-1], BUS=SPLB
PORT <nPLB>_PAValid = PLB_PAValid, DIR=I, BUS=SPLB
PORT <nPLB>_RNW = PLB_RNW, DIR=I, BUS=SPLB
PORT <nPLB>_abort = PLB_abort, DIR=I, BUS=SPLB
PORT <nPLB>_busLock = PLB_busLock, DIR=I, BUS=SPLB
PORT <nPLB>_compress = PLB_compress, DIR=I, BUS=SPLB
PORT <nPLB>_guarded = PLB_guarded, DIR=I, BUS=SPLB
PORT <nPLB>_lockErr = PLB_lockErr, DIR=I, BUS=SPLB
PORT <nPLB>_masterID = PLB_masterID, DIR=I,VEC=[0:C_PLB_MID_WIDTH-1],
BUS=SPLB
PORT <nPLB>_MSize = PLB_MSize, DIR=I, VEC=[0:1], BUS=SPLB
PORT <nPLB>_ordered = PLB_ordered, DIR=I, BUS=SPLB
PORT <nPLB>_pendPri = PLB_pendPri, DIR=I, VEC=[0:1], BUS=SPLB
PORT <nPLB>_pendReq = PLB_pendReq, DIR=I, BUS=SPLB
PORT <nPLB>_reqpri = PLB_reqpri, DIR=I, VEC=[0:1], BUS=SPLB
PORT <nPLB>_size = PLB_size, DIR=I, VEC=[0:3], BUS=SPLB
PORT <nPLB>_type = PLB_type, DIR=I, VEC=[0:2], BUS=SPLB
PORT <nPLB>_rdPrim = PLB_rdPrim, DIR=I, BUS=SPLB
PORT <nPLB>_SAValid = PLB_SAValid, DIR=I, BUS=SPLB
PORT <nPLB>_wrPrim = PLB_wrPrim, DIR=I, BUS=SPLB
PORT <nPLB>_wrBurst = PLB_wrBurst, DIR=I, BUS=SPLB

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 139
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Component Options
R

PORT <nPLB>_wrDBus = PLB_wrDBus, DIR=I, VEC=[0:C_PLB_DWIDTH-1],BUS=SPLB
PORT <nPLB>_rdBurst = PLB_rdBurst, DIR=I, BUS=SPLB

Component Options
Components can have the following options:

HDL Option
The HDL option lists the HDL availability. The design is either completely written in
VHDL, or completely written in Verilog. The BOTH value signifies that design is available
in VHDL or Verilog format.

Format

BEGIN peripheral_name, HDL=VERILOG

IMP_NETLIST Option
In hierarchal mode, this option directs the Platform Generator to write an implementation
netlist file for the peripheral. In flatten mode, the IMP_NETLIST option is ignored since the
entire system is synthesized.

Format

BEGIN peripheral_name, IMP_NETLIST=TRUE

Table 14-2: MPD Peripheral Options

Option Values Default Definition

EDIF TRUE

FALSE

FALSE Deprecated. Use the IMP_NETLIST
option.

HDL BOTH

VERILOG

VHDL

VHDL HDL design availability.

IMP_NETLIST TRUE

FALSE

FALSE Synthesize HDL to a hardware
implementation netlist

IPTYPE BRIDGE

BUS

BUS_ARBITER

IP

PERIPHERAL

PROCESSOR

IP Type of component

STYLE BLACKBOX

MIX

HDL

HDL Design style

http://www.xilinx.com

140 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 14: Microprocessor Peripheral Description (MPD)
R

IPTYPE Option
The IPTYPE option lists defines the type of the component.

Format

BEGIN peripheral_name, IPTYPE=PERIPHERAL

The IPTYPE option can have the following Options:

• BRIDGE - bridge component

• BUS - bus component

• BUS_ARBITER - combined bus and arbiter component

• IP - component that is detached from a bus

• PERIPHERAL - component that is attached to a bus

• PROCESSOR - processor component (MicroBlaze or PPC405)

STYLE Option
The STYLE option defines the design composition of the peripheral.

If you have only optimized hardware netlists, you must specify the BLACKBOX value
within the MPD file. In this case, only the BBD file is read by the Platform Generator.

If you have a mix of optimized hardware netlists and HDL files, you must specify the MIX
value within the MPD file. In this case, the PAO and BBD files are read by the Platform
Generator.

If you have only HDL files, you must specify the HDL value within the MPD file. In this
case, only the PAO file is read by the Platform Generator.

Format

BEGIN peripheral_name, STYLE=value

Where value is BLACKBOX, MIX, or HDL. The default value is HDL.

Global Parameter Command
A global parameter can have the following options:

VERSION Option
Use the VERSION option to set the MPD version.

Format

PARAMETER VERSION = 2.0.0

The version is specified as a literal of the form 2.0.0.

Table 14-3: Global Parameter Options

Option Values Default Definition

VERSION 2.0.0 X MPD version

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 141
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Local Option Command
R

Local Option Command
A local option defined between a BEGIN-END block can have the following options:

SIM_MODELS Option
The simulation model availability is specified with the SIM_MODELS option.

Format

OPTION SIM_MODELS = BEHAVIORAL

If you have more than one model is available, then use the colon (:) to separate each model
in the list. The first item in the list is the default setting.

Format

OPTION SIM_MODELS = BEHAVIORAL:STRUCTURAL:TIMING

Local Parameter Command
A local parameter defined between a BEGIN-END block can have the following options:

BUS Option
The bus interface of an parameter is specified by the BUS option.

Format

PARAMETER C_OPB_AWIDTH = 32, DT=datatype, BUS=bus_label

Where bus_label is a string.

If you have more than bus interface is sharing the parameter, then use the colon (:) to
separate each bus interface in the list. The first item in the list is the default setting.

Table 14-4: Local Option Options

Option Values Default Definition

SIM_MODELS BEHAVIORAL

STRUCTURAL

TIMING

X Simulation model availability

Table 14-5: Local Parameter Options

Option Values Default Definition

BUS string X Bus label

DT string

integer

std_logic

X Datatype of VHDL generic

MIN_SIZE 2^n 0 Minimum size address window

http://www.xilinx.com

142 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 14: Microprocessor Peripheral Description (MPD)
R

Format

PARAMETER C_OPB_AWIDTH = 32, DT=datatype, BUS=MSOPB:SOPB

DT Option
The datatype of an parameter is specified by the DT option.

Format

PARAMETER C_OPB_AWIDTH = 32, DT=datatype, BUS=bus_label

Where datatype is an VHDL datatype.

MIN_SIZE Option
The minimum size address window of an address is specified by the MIN_SIZE option.

Format

PARAMETER C_BASEADDR = 0xFFFFFFFF, DT=std_logic_vector, MIN_SIZE=0x100

Local Bus Interface Command
A local bus interface between a BEGIN-END block can have the following Options:

BUS Option
The label of a bus interface is specified by the BUS option.

Format

BUS_INTERFACE BUS=bus_label, BUS_STD=bus_std, BUS_TYPE=bus_type

Where bus_label is a string.

Table 14-6: Bus Interface Options

Option Values Default Definition

BUS string X Bus label

BUS_STD DCR

LMB

OPB

PLB

TRANSPARENT

X Bus standard

BUS_TYPE MASTER

MASTER_SLAVE

SLAVE

UNDEF

X Bus type

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 143
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Local Port Command
R

BUS_STD Option
The bus standard of a bus interface is specified by the BUS_STD option.

Format

BUS_INTERFACE BUS=bus_label, BUS_STD=bus_std, BUS_TYPE=bus_type

Where bus_std is either DCR, LMB, OPB, PLB, or TRANSPARENT.

A TRANSPARENT bus interface is not tied to any physical bus component.

BUS_TYPE Option
The bus type of a bus interface is specified by the BUS_TYPE option.

Format

BUS_INTERFACE BUS=bus_label, BUS_STD=bus_std, BUS_TYPE=bus_type

Where bus_type is either MASTER, MASTER_SLAVE, SLAVE, or UNDEF.

Local Port Command
A local port defined between a BEGIN-END block can have the following options:

Table 14-7: Local Port Options

Option Values Default Definition

BUS string X Bus label

DIR IN, INPUT, I

OUT, OUTPUT, O

INOUT, IO

O Direction mode

EDGE RISING

FALLING

X Interrupt edge sensitivity

ENABLE MULTI

SINGLE

SINGLE 3-state enable control

ENDIAN BIG

LITTLE

BIG Endianess

INITIALVAL VCC

GND

GND Driver value on unconnected inputs

LEVEL HIGH

LOW

X Interrupt level sensitivity

SIGIS CLK

INTERRUPT

X SIgnal classification

VEC [A:B] X Vector dimension. Where A and B are
positive integer expressions.

http://www.xilinx.com

144 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 14: Microprocessor Peripheral Description (MPD)
R

BUS Option
The bus interface of a signal is specified by the BUS option.

Format

PPORT OPB_seqAddr = OPB_seqAddr, DIR=IN, BUS=bus_label

Where bus_label is a string.

If you have more than bus interface is sharing the parameter, then use the colon (:) to
separate each bus interface in the list. The first item in the list is the default setting.

Format

PORT OPB_seqAddr = OPB_seqAddr, DIR=IN, BUS=MSOPB:SOPB

DIR Option
The driver direction of a signal is specified by the DIR option.

Format

PORT mysignal = "", DIR=direction

Where direction is either INPUT, IN, I, OUTPUT, OUT, O, INOUT, or IO.

EDGE Option
The edge sensitivity of an interrupt signal is specified by the EDGE option.

Format

PORT interrupt = “”, DIR=O, EDGE=edge_value, SIGIS=INTERRUPT

Where edge_value is either RISING or FALLING.

ENABLE Option
Tri-state signals can have multi-bit enable control, or a single bit enable control on the bus.
This is specified with the ENABLE option.

Format

PORT mysignal = “”, DIR=IO, VEC=[0:31], ENABLE=enable_value

Where enable_value is either SINGLE or MULTI. If there is no specification, then
SINGLE is the default value.

Please see the “HDL Design Considerations” section about designing tri-state signals at
the HDL level.

ENDIAN Option
The endianess of a signal is specified by the ENDIAN option.

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 145
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

HDL Design Considerations
R

Format

PORT mysignal = “”, DIR=I, VEC=[A:B], ENDIAN=endian_value

Where endian_value is either BIG or LITTLE. If there is no specification, then BIG is the
default value. Where A and B are positive integer expressions.

INITIALVAL Option
The signal driver value on unconnected input signals is specified by the INITIALVAL
option.

Format

PORT mysignal = “”, DIR=INPUT, INITIALVAL=init_value

Where the init_value is either VCC or GND. If there is no specification, then GND is the
default value.

LEVEL Option
The level sensitivity of an interrupt signal is specified by the LEVEL option.

Format

PORT interrupt = “”, DIR=OUTPUT, LEVEL=level_value, SIGIS=INTERRUPT

Where the level_value is either HIGH or LOW.

SIGIS Option
The class of a signal is specified by the SIGIS option.

Format

PORT interrupt = “”, DIR=OUTPUT, LEVEL=level_value, SIGIS=INTERRUPT

Where the level_value is either HIGH or LOW.

VEC Option
The vector width of a signal is specified by the VEC option.

Format

PORT mysignal = “”, DIR=INPUT, VEC=[A:B]

Where A and B are positive integer expressions.

HDL Design Considerations
This section includes HDL design considerations.

http://www.xilinx.com

146 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 14: Microprocessor Peripheral Description (MPD)
R

Unconnected Signals
Unconnected output signals are assigned open, and unconnected input signals are either
set to GND or VCC.

An unconnected signal is identified as an empty double-quote (““) string.

Platform Generator resolves the driver value on unconnected input signals by the
INITIALVAL option.

Format

PORT mysignal = “”, DIR=OUTPUT

Scalable Data path
Using an MPD option declaration, you can automatically scale data path width. Bus
expressions are evaluated as arithmetic equations.

Format

PORT name = default_connection, VEC=[A:B]

Where A and B are positive integer expressions.

MPD Example

The following is an example MPD file:

BEGIN my_peripheral
Generics for vhdl or parameters for verilog
PARAMETER C_BASEADDR = 0xB00000, DT=std_logic_vector(0 to 31)
PARAMETER C_MY_PERIPH_AWIDTH = 17, DT=integer
Global ports
PORT OPB_Clk = “”, DIR=I
PORT OPB_Rst = “”, DIR=I
My peripheral signals
PORT MY_ADDR = “”, DIR=O, VEC=[0:C_MY_PERIPH_AWIDTH-1]
OPB signals
.
.
END

By default, if the vectors are larger than one bit, the Platform Generator determines the
range specification on buses as either big-endian or little-endian. However, if the vector is
one-bit width, then the range cannot be determined, and Platform Generator defaults to
big-endian style notation.

To change this default behavior, use the ENDIAN option.

Format

PORT mysignal = “”, DIR=I, VEC=[0:0], ENDIAN=LITTLE

This builds the VHDL equivalent:

mysignal : in std_logic_vector(0 downto 0);

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 147
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

HDL Design Considerations
R

Interrupt Signals
Interrupt signals are identified by the EDGE or LEVEL option.

3-state (InOut) Signals
At the MHS/MPD level, there is a listing for an inout port in the MPD file that allows you
to map to it in the MHS file. In the MPD file, a 3-state signal is identified by the inout
direction mode, and the port name must be ioname.

Figure 14-2: IOBUF Implementation

The Platform Generator expands the inout port in the MPD file to three ports in the port
declaration section of the HDL file, and writes out the RTL code to infer the IOBUF. This
port expansion occurs because if the top-level is synthesized without IO insertion, the 3-
states on the inout ports are inferred as BUFTs at the CLB level. However, they should be
inferred as IOBUFs at the IOB level. Platform Generator infers the 3-states at the top-level
to ensure that the inout ports are always associated to the IOBUF.

Inout ports are currently defined at the top-level since the only internal signals are those
defined as an input or an output. There are no inout signals defined internally that need a
BUFT.

It is important to note that the 3-state enables are all active-low to allow a direct connection
to the OBUFT of the IOBUF.

VHDL 3-state (InOut) With Multi-Bit Enable Example

The following is an VHDL example that includes 3-state signal with a multi-bit enable:

entity tri_state_multi is
generic (C_WIDTH : integer := 9);
port (

 -- tri-state signal
tristate_I : in std_logic_vector(0 to C_WIDTH-1);
tristate_O : out std_logic_vector(0 to C_WIDTH-1);

X9877

MY_IP

IOBUF

T

I

O

O

O

I

IPIO_T

IPIO_O IPIO

IPIO_I

http://www.xilinx.com

148 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 14: Microprocessor Peripheral Description (MPD)
R

tristate_T : out std_logic_vector(0 to C_WIDTH-1)
);
end entity tri_state_multi;

MPD 3-state (InOut) With Multi-Bit Enable Example

The following is an MPD example that includes 3-state signal with a multi-bit enable:

PARAMETER VERSION = 2.0.0

BEGIN tri_state_multi, IPTYPE=IP

PARAMETER C_WIDTH = 9, DT=integer

PORT tristate = "", DIR=INOUT, VEC=[0:C_WIDTH-1], ENABLE=MULTI

END

VHDL 3-state (InOut) With Single-Bit Enable Example

The following is an VHDL example that includes 3-state signal with a single-bit enable:

entity tri_state_single is
generic (C_WIDTH : integer := 9);
port (

 -- tri-state signal
tristate_I : in std_logic_vector(0 to C_WIDTH-1);
tristate_O: out std_logic_vector(0 to C_WIDTH-1);
tristate_T : out std_logic

);
end entity tri_state_single;

MPD 3-state (InOut) With Single-Bit Enable Example

The following is an MPD example that includes 3-state signal with a single-bit enable:

PARAMETER VERSION = 2.0.0

BEGIN tri_state_single, IPTYPE=IP

PARAMETER C_WIDTH = 9, DT=integer

PORT tristate = "", DIR=INOUT, VEC=[0:C_WIDTH-1], ENABLE=SINGLE

END

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 149
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

R

Chapter 15

Peripheral Analyze Order (PAO)

Overview
A PAO (Peripheral Analyze Order) file contains a list of HDL files that are needed for
synthesis, and defines the analyze order for compilation.

The STYLE option in the MPD with the values of MIXED or HDL identify the core as
having a PAO file.

This chapter includes the following sections:

“PAO Format”

“PAO Example”

PAO Format
Use the following format:

lib library hdl_file_basename

Library specifies the unique library for the peripheral, and HDL file names are specified
without a file extension. All names are in lower-case.

If your peripheral requires a certain version of a library, then the library name is given with
the version appended. For example, if you request version 1.00.a, then the library name is:

library_name_v1_00_a

Comments
You can insert comments without disrupting processing. The following are guidelines for
inserting comments:

• Precede comments with the pound sign (#)

• Comments can continue to the end of the line

• Comments can be anywhere on the line

PAO Example
The following is an example PAO file:

lib common_v1_00_a common_types_pkg
lib common_v1_00_a pselect
lib opb_gpio_v1_00_a gpio_core
lib opb_gpio_v1_00_a opb_gpio

http://www.xilinx.com

150 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 15: Peripheral Analyze Order (PAO)
R

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 151
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

R

Chapter 16

Black-Box Definition (BBD)

Overview
The Black Box Definition (BBD) file manages the file locations of optimized hardware
netlists for the black-box sections of your peripheral design.

The STYLE option in the MPD with the values of MIXED or BLACKBOX identify the core
as having a BBD file.

This chapter includes the following sections:

“BBD Format”

“BBD Examples”

BBD Format
The BBD format is a look-up table chart that lists netlist files. The first line is the header of
the look-up table. There can be as many entries as necessary in the header to make a
selection. Header entries are tailored by MPD options. The last column of the table must be
the FILES column.

For implementation, the last column lists the relative path to the file from:
$XIL_MYPERIPHERALS/myip/<ip>/netlist (UNIX)

%XIL_MYPERIPHERALS%\myip\<ip>\netlist (PC)

For simulation, the last column lists the relative path to the file from:
$XIL_MYPERIPHERALS/myip/<ip>/simmodels (UNIX)

%XIL_MYPERIPHERALS%\myip\<ip>\simmodels (PC)

The netlist and simmodels directories can have their own underlying directory structure
because the BBD file manages the relative file locations. However, the directories must
mirror each other.

Each file is listed with the file extension of the hardware implementation netlist. Since
implementation netlists have multiple file extensions (such as, .edn, .edf, .edo, .ngo), it is
important to identify the format. For simulation, the Platform Generator uses the file
extension .vhd for VHDL simulation and .v for Verilog.

The black-box simulation netlists for HDL simulation must be moved to the simmodels
directory, and the black-box hardware netlists for implementation must be moved to the
netlist directory. The simmodels and netlist directories can have their own underlying
directory structure, however, they must mirror each other.

http://www.xilinx.com

152 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 16: Black-Box Definition (BBD)
R

Comments
You can insert comments without disrupting processing. The following are guidelines for
inserting comments:

• Precede comments with the pound sign (#)

• Comments can continue to the end of the line

• Comments can be anywhere on the line

Lists
If you have multiple hardware implementation netlists, then use a comma (,) to separate
each individual netlist in the list.

BBD Examples

File Selection Without Options
The following is an example of a file selection without options. The NGC netlist is copied
into the your implementation directory regardless of specific options set on the core.

FILES
blackbox.ngc

Multiple File Selections Without Options
The following is an example of multiple file selections without options. The set of NGC
netlists are copied into the your implementation directory regardless of specific options set
on the core.

FILES
blackbox1.ngc, blackbox2.ngc, blackbox3.edn

File Selection With Options
The following is an example of a file selection with options. The specific EDIF netlist is
copied into the your implementation directory dependent on the C_FAMILY and
C_BUS_CONFIG options set on the core.

C_FAMILY C_BUS_CONFIG FILES
virtex 1 virtex/microblaze_1.edf
virtex 2 virtex/microblaze_2.edf
virtex 3 virtex/microblaze_3.edf
virtex 4 virtex/microblaze_4.edf
virtex 5 virtex/microblaze_5.edf
virtex 6 virtex/microblaze_6.edf
spartan2 1 virtex/microblaze_1.edf
spartan2 2 virtex/microblaze_2.edf
spartan2 3 virtex/microblaze_3.edf
spartan2 4 virtex/microblaze_4.edf
spartan2 5 virtex/microblaze_5.edf
spartan2 6 virtex/microblaze_6.edf
virtexe 1 virtex/microblaze_1.edf
virtexe 2 virtex/microblaze_2.edf
virtexe 3 virtex/microblaze_3.edf

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 153
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

BBD Examples
R

virtexe 4 virtex/microblaze_4.edf
virtexe 5 virtex/microblaze_5.edf
virtexe 6 virtex/microblaze_6.edf
spartan2e 1 virtex/microblaze_1.edf
spartan2e 2 virtex/microblaze_2.edf
spartan2e 3 virtex/microblaze_3.edf
spartan2e 4 virtex/microblaze_4.edf
spartan2e 5 virtex/microblaze_5.edf
spartan2e 6 virtex/microblaze_6.edf
virtex2 1 virtex2/microblaze_1.edf
virtex2 2 virtex2/microblaze_2.edf
virtex2 3 virtex2/microblaze_3.edf
virtex2 4 virtex2/microblaze_4.edf
virtex2 5 virtex2/microblaze_5.edf
virtex2 6 virtex2/microblaze_6.edf
virtex2p 1 virtex2/microblaze_1.edf
virtex2p 2 virtex2/microblaze_2.edf
virtex2p 3 virtex2/microblaze_3.edf
virtex2p 4 virtex2/microblaze_4.edf
virtex2p 5 virtex2/microblaze_5.edf
virtex2p 6 virtex2/microblaze_6.edf

http://www.xilinx.com

154 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 16: Black-Box Definition (BBD)
R

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 155
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

R

Chapter 17

Microprocessor Verification
Specification (MVS)

Summary
This chapter describes the Microprocessor Verification Specification (MVS) format.

Overview
You supply MVS file as an input to the Simulation Model Generator (SimGen) tool. The
MVS file contains directives for customizing a simulation model for a defined system.

MVS Format
An MVS file is the input to the SimGen. Its semantics are case insensitive, however, any
reference to a file name or instance name in the MVS file is case sensitive.

Comments can be specified anywhere in the file. A ‘#’ character denotes the beginning of a
comment and all characters after the ‘#’ though the end of the line are ignored. All white
spaces are also ignored and carriage returns act as sentence delimiters.

Keywords
The keywords that are used in an MVS file are as follows:

Begin

The begin keyword begins a simulation model definition.

End

The end keyword signifies the end of a definition block.

Parameter

The MVS file has a simple name = value format for most statements. The parameter
keyword is required before every such NAME, VALUE pairs. The format for assigning
a value to a parameter is parameter name = value. If the parameter is within a begin-
end block, it is a local assignment, otherwise it is a global (system level) assignment.

Requirements
The MVS file has a dependency on the hardware and software specification (MHS and
MSS) files. This dependency has to be specified in the MVS file as parameter
HW_SPEC_FILE = file_name.mhs or as parameter SW_SPEC_FILE = file_name.mss

http://www.xilinx.com

156 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 17: Microprocessor Verification Specification (MVS)
R

respectively. Hence, a hardware platform has to be defined in order to configure the
simulation flow. Please refer to Chapter 13, “Microprocessor Hardware Specification
(MHS)” for more information on hardware configuration.

The syntax of various files that the Embedded Software Tools use are described by the
Platform Specification Format (PSF). The current PSF version is 2.0.0. The MVS file should
also contain version information in the form of parameter Version = 2.0.0 which represents
the PSF version 2.0.0.

MVS Example
An example MVS file is given below:

PSF Version
PARAMETER VERSION = 2.0.0

Define the location of the Hardware Specification file
PARAMETER HW_SPEC_FILE = filename.mhs

Define the location of the Software Specification file
PARAMETER SW_SPEC_FILE = filename.mss

Define simulation language
Options: vhdl / verilog
PARAMETER LANGUAGE = vhdl

Define simulator
Options: mti / vxl
PARAMETER SIMULATOR = mti

Define simulation model
PARAMETER SIM_MODEL = behavioral

Options: behavioral / structural / timing

Specify path to ModelSim Behavioral Library
PARAMETER MTI_NODEBUG_LIB = /home/user/directory/behavioral

Specify path to ModelSim Unisim Library
PARAMETER MTI_UNISIM_LIB = /home/user/directory/unisim

Specify path to ModelSim Simprim Library
PARAMETER MTI_SIMPRIM_LIB = /home/user/directory/simprim

Global Parameters
These parameters are system specific parameters and do not relate to a particular driver,
file system or library.

PSF Version
This parameter specifies the PSF version of the MSS file. It is mandatory for versions 2.0.0
and above.

Format

parameter VERSION = 2.0.0

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 157
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Global Parameters
R

Hardware Specification File Pointer
This parameter points to the MHS file. The path can be a relative path from the project
directory or can be an absolute path. This parameter is mandatory.

Format

parameter HW_SPEC_FILE = filename.mhs

Software Specification File Pointer
This parameter points to the MSS file. The path can be a relative path from the
<USER_PROJECT> directory or can be an absolute path. This parameter is optional.

Format

parameter SW_SPEC_FILE = filename.mss

Simulation Language
This parameter specifies the simulation language to be used for the generated HDL
simulation files. The available options are vhdl and verilog. This parameter is optional.

Format

parameter LANGUAGE = { vhdl | verilog }

Simulator
This parameter specifies the simulator to be used. SimGen generates a compilation script
for the specified simulator. The supported simulators are Model Technology ModelSim
and Cadence Verilog-XL. This parameter is optional.

Format

parameter SIMULATOR = { mti | vxl }

Simulation Model
This parameter specifies the simulation model to be generated. The supported simulation
model types are behavioral, structural and timing. This parameter is optional.

Format

parameter SIM_MODEL = { behavioral | structural | timing }

ModelSim Behavioral Library
This parameter specifies the path to the ModelSim behavioral library. This parameter is
optional.

Format

parameter MTI_NODEBUG_LIB = /path/to/modelsim/behavioral/library

ModelSim Unisim Library
This parameter specifies the path to the ModelSim unisim library. This parameter is
optional.

http://www.xilinx.com

158 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 17: Microprocessor Verification Specification (MVS)
R

Format

parameter MTI_UNISIM_LIB = /path/to/modelsim/unisim/library

ModelSim Simprim Library
This parameter specifies the path to the ModelSim simprim library. This parameter is
optional.

Format

parameter MTI_SIMPRIM_LIB = /path/to/modelsim/simprim/library

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 159
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

R

Chapter 18

Microprocessor Software Specification
(MSS)

Summary
This chaprter describes the Microprocessor Software Specification (MSS) format.

Overview
An MSS file is supplied by the user as an input to the Library Generator (Libgen). The MSS
file contains directives for customizing libraries, drivers and file systems.

Note: RevUp tool provides a way to convert old MSS format to the new one used in this
version of the EDK tools. Please see Chapter 7, “Format Revision Tool” for more
information.

MSS Format
An MSS file is supplied by the user as an input to the Library Generator (Libgen). An MSS
file is case insensitive. However, any reference to a file name or instance name in the MSS
file is case sensitive.

Comments can be specified anywhere in the file. A ’#’ character denotes the beginning of a
comment and all characters after the ’#’ till the end of the line are ignored. All white spaces
are also ignored and carriage returns act as sentence delimiters.

Keywords
The keywords that are used in an MSS file are as follows:

Begin

The begin keyword begins a driver, processor, or file system definition block. The begin
keyword should be followed by driver, processor or filesys keywords.

End

The end keyword signifies the end of a definition block.

Parameter

The MSS file has a simple name = value format for most statements. The parameter
keyword is required before every such NAME, VALUE pairs. The format for assigning a

http://www.xilinx.com

160 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 18: Microprocessor Software Specification (MSS)
R

value to a parameter is parameter name = value. If the parameter is within a begin-end
block, it is a local assignment, otherwise it is a global (system level) assignment.

Requirements
The MSS file has a dependency on the MHS file. This dependency has to be specified in the
MSS file as parameter HW_SPEC_FILE = file_name.mhs. Hence, a hardware platform has
to be defined in order to configure the software flow. Please refer the Microprocessor
Hardware Specification documentation for more information on hardware configuration.

The syntax of various files that the Embedded Development Tools use are described by the
Platform Specification Format (PSF). Please refer Chapter 12, “Platform Specification
Format (PSF)” for more information. The current PSF version is 2.0.0. The MSS file should
also contain version information in the form of parameter Version = 2.0.0 which represents
the PSF version 2.0.0.

MSS Example
An example MSS file is given below:

parameter HW_SPEC_FILE = system.mhs
parameter VERSION = 2.0.0

BEGIN PROCESSOR
parameter HW_INSTANCE = my_microblaze
parameter DRIVER_NAME = cpu
parameter DRIVER_VER = 1.00.a
parameter BOOT_PERIPHERAL = my_jtag
parameter DEBUG_PERIPHERAL = my_jtag
parameter EXECUTABLE = code/hello_world.elf
parameter STDIN = my_uartlite_1
parameter STDOUT = my_uartlite_1
END

BEGIN PROCESSOR
parameter HW_INSTANCE = my_ppc
parameter DRIVER_NAME = cpu_ppc405
parameter DRIVER_VER = 1.00.a
parameter STDIN = my_uartlite_2
parameter STDOUT = my_uartlite_2
parameter EXECUTABLE = code/hello_world.elf
END

BEGIN DRIVER
parameter HW_INSTANCE = my_intc
parameter DRIVER_NAME = intc
parameter DRIVER_VER = 1.00.a
END

BEGIN DRIVER
parameter HW_INSTANCE = my_uartlite_1
parameter DRIVER_VER = 1.00.a
parameter DRIVER_NAME = uartlite
parameter INT_HANDLER = uart_1_handler, INT_PORT = Interrupt
END

BEGIN DRIVER

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 161
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Global Parameters
R

parameter HW_INSTANCE = my_uartlite_2
parameter DRIVER_VER = 1.00.a
parameter DRIVER_NAME = uartlite
parameter LIBRARY = XilFile
parameter INT_HANDLER = uart_2_handler, INT_PORT = Interrupt
END

BEGIN DRIVER
parameter HW_INSTANCE = my_timebase_wdt
parameter DRIVER_VER = 1.00.a
parameter DRIVER_NAME = timebase_wdt
parameter INT_HANDLER=my_timebase_hndl, INT_PORT = Timebase_Interrupt
parameter INT_HANDLER=my_timebase_hndl, INT_PORT = WDT_Interrupt
END

BEGIN FILESYS
parameter FILESYS_NAME = XilMfs
parameter PROC_INSTANCE = my_microblaze
parameter MOUNT = "/dev/mfs"
parameter LIBRARY = XilFile
END

BEGIN DRIVER
parameter HW_INSTANCE = my_jtag
parameter DRIVER_NAME = uartlite
parameter DRIVER_VER = 1.00.a
parameter INT_HANDLER = jtag_uart_handler, INT_PORT = Interrupt
END

Global Parameters
These parameters are system specific parameters and do not relate to a particular driver,
file system or library.

Hardware Specification File Pointer
This option points to the MHS file. The path can be a relative path from the
USER_PROJECT directory or can be an absolute path. This option is mandatory.

Format

parameter HW_SPEC_FILE = system.mhs

PSF Version
This option specifies the PSF version of the MSS file. This option is mandatory for versions
2.0.0 and above.

Format

parameter VERSION = 2.0.0

http://www.xilinx.com

162 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 18: Microprocessor Software Specification (MSS)
R

Instance Specific Parameters
These parameters are driver, library or file system specific parameters. The parameters
have to be between a Begin and End block.

Driver and Processor Block Parameters

Table 18-1 provides the parameters that can be used both in driver and processor blocks.

HW_INSTANCE Option

This option is required for drivers associated with peripheral instances specified in the
MHS file.

Format

parameter HW_INSTANCE = instance_name

All drivers in the EDK require instances to be associated with the drivers. Even a processor
definition block should refer to the processor instance. The instance name that is given
must match the name specified in the MHS file.

DRIVER_NAME Option

This option is needed for peripherals that have drivers associated with them.

Format

parameter DRIVER_NAME = uartlite

Library Generator copies the driver directory specified to
USER_PROJECT/processor_instance_name/libsrc directory and compiles the drivers
using makefiles provided. Please see the Library Generator document for more
information.

DRIVER_VER Option

The driver version is set using the DRIVER_VER option.

Table 18-1: Parameters Specified in Driver and Processor Blocks Only

Option Values Default Definition

HW_INSTANCE Instance name None Instance name specified in the MHS file.

DRIVER_NAME Driver name None Driver name.

DRIVER_VER 1.00.a No Version Driver version.

INT_HANDLER C Function Name None Specifies the interrupt handler function for the
peripheral interrupt.

LEVEL Number Specified in MDD file An MDD file parameter that can be overwritten
in the MSS. Please see Chapter 19,
“Microprocessor Driver Definition (MDD)” for
more information.

LIBRARY XilFile, XilNet None Specifies that the device can be accessed through
this library. Please seeChapter 20, “Xilinx
Libraries” for more information.

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 163
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Instance Specific Parameters
R

Format

parameter DRIVER_VER = 1.00.a

This version is specified in the following format: x.yz.a, where x,y and z are digits, and
a is a character. This is translated to the driver directory searched by LibGen as follows:

USER_PROJECT/drivers/DRIVER_NAME_vx_yz_a

XIL_MYPERIPHERALS/drivers/DRIVER_NAME_vx_yz_a

XILINX_EDK/drivers/DRIVER_NAME_vx_yz_a

XILINX_EDK/hw/coregen/ip/xilinx/drivers/DRIVER_NAME_vx_yz_a

The XIL_MYPERIPHERALS variable is set when a -P option is given to LibGen.

The MDD (Microprocessor Driver Definition) files needed by Libgen for each driver
should be named DRIVER_NAME.mdd and should be present in a subdirectory data/
within the driver directory. Please refer Chapter 19, “Microprocessor Driver Definition
(MDD)” for more information.

INT_HANDLER Option

This option defines the interrupt handler software routine for an interrupt port of the
peripheral.

Format

parameter INT_HANDLER = my_int_handl, INT_PORT = Interrupt

The interrupt port of the peripheral instance that raises the interrupt is specified after the
attribute as shown above with the INT_PORT keyword. This port should match the port
name (and not the signal name) specified in the MHS file for that peripheral instance.

LEVEL Option

The driver level is set using the LEVEL option. The levels of drivers available in the EDK
are levels 0 and 1. Level 0 drivers are small low level drivers, and level 1 drivers provide
more functionality than the level 0 drivers. Please refer Chapter 26, “Device Drivers” for
more information. The default level is specified in the MDD file for the driver. Please refer
Chapter 19, “Microprocessor Driver Definition (MDD)” for more information.

Format

parameter LEVEL = 1

Level is either 0 or 1 for EDK drivers

LIBRARY Option

The device driver functions (that support I/O) can be accessed through a library that
provides block access functions for read and write. This option provides a way to specify
that the device is accessed through XilFile library shipped with the EDK. For more
information on libXil libraries for MicroBlaze, please refer Chapter 20, “Xilinx Libraries”.

Format

parameter LIBRARY = XilFile

Please refer to the section on Libraries and File System Parameters in this document for details
on file systems (particularly Memory File Systems), and their access through the XilFile
library.

http://www.xilinx.com

164 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 18: Microprocessor Software Specification (MSS)
R

MDD Specific Parameters

Parameters specified in the MDD file can be overwritten in the MSS file as

Format

parameter PARAM_NAME = PARAM_VALUE

Please refer Chapter 19, “Microprocessor Driver Definition (MDD)” for information.

Processor Specific Parameters

Table 18-2 provides all the parameters that can be specified only in a processor definition
block.

EXECUTABLE Option

The executable image is set using the EXECUTABLE option.

Format

Table 18-2: Parameters Specified in Processor Blocks Only

Option Values Default Definition

EXECUTABLE directory/file code/executable.elf Defines the user’s executable file name and
location.

DEFAULT_INIT XMDSTUB,
BOOTSTRAP,
EXECUTABLE

EXECUTABLE Specifies which file should be used to initialize
that processor’s memory.

BOOT_PERIPH
ERAL

Instance name None Peripheral instance used for downloading
bootstub.

DEBUG_PERIP
HERAL

Instance name None Peripheral instance used for On-board Debug.

STDIN Instance name None Specifies standard input peripheral instance.

STDOUT Instance name None Specifies standard output peripheral instance.

COMPILER Name of the
compiler

mb-gcc for
MicroBlaze,
powerpc-eabi-gcc for
PPC405

Name of the compiler used for compiling drivers
and libraries

OS Name of the OS standalone Name of the OS supported (for example.,
VxWorks5_4)

ARCHIVER Name of the
archiver

mb-ar for MicroBlaze,
powerpc-eabi-ar for
PPC405

Name of the archiver used for archiving drivers
and libraries.

COMPILER_FL
AGS

Command line
flags

Libgen generates
default

Need not be specified if using EDT compilers

EXTRA_COMPI
LER_FLAGS

Command line
flags

None User definable compiler flags used to compile
libraries and drivers

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 165
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Instance Specific Parameters
R

parameter EXECUTABLE = code/a.elf

This is the executable file used for populating memories of the particular processor
instance. By default, libgen assumes the EXECUTABLE to be
processor_instance_name/code/executable.elf

DEFAULT_INIT Option

This option specifies whether XMDSTUB, BOOTSTRAP or EXECUTABLE is the program
to load into the memory of that particular processor instance.

Format

parameter DEFAULT_INIT = XMDSTUB

The DEFAULT_INIT option can take EXECUTABLE, XMDSTUB or BOOTSTRAP as
values. By default, the value is EXECUTABLE. For the PowerPC, the executable option is
the only useful option.

STDIN Option

Identify standard input device with the STDIN option.

Format

parameter STDIN = instance_name

STDOUT Option

Identify standard output device with the STDOUT option.

Format

parameter STDOUT = instance_name

BOOT_PERIPHERAL Option

Identify the boot peripheral with the BOOT_PERIPHERAL option. This is useful for
MicroBlaze only. The boot peripheral is used for download of the bootstub.

Format

parameter BOOT_PERIPHERAL = instance_name

DEBUG_PERIPHERAL Option

The peripheral that is used to handle the xmdstub should be specified in the
DEBUG_PERIPHERAL option. This is useful for MicroBlaze only.

Format

parameter DEBUG_PERIPHERAL = instance_name

COMPILER Option

This option specifies the compiler used for compiling drivers and libraries. The compiler
defaults to mb-gcc or powerpc-eabi-gcc depending on whether the drivers are part of the
microblaze instance or powerpc instance. Any other compatible compiler can be specified
as an option.

Format

http://www.xilinx.com

166 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 18: Microprocessor Software Specification (MSS)
R

parameter COMPILER = dcc

This denotes the Diab compiler as the compiler to be used for drivers and libraries.

ARCHIVER Option

This option specifies the archive utility to be used for archiving object files into libraries.
The archiver defaults to mb-ar or powerpc-eabi-ar depending on whether the drivers are
part of the microblaze instance or powerpc instance. Any other compatible archiver can be
specified as an option.

Format

parameter ARCHIVER = ar

This denotes the archiver ar to be used for drivers and libraries.

COMPILER_FLAGS Option

This option specifies compiler flags to be used for compiling drivers and libraries. If the
option is not specified, Libgen automatically uses platform and processor specific options.
It is recommended that this option not be specified in the MSS if the standard compilers
and archivers in the EDK are used. COMPILER_FLAGS option can be defined in the MSS
if there is a need for custom compiler flags that override Libgen generated ones. The
EXTRA_COMPILER_FLAGS option is recommended if compiler flags have to be
appended to the ones Libgen already generates.

Format

parameter COMPILER_FLAGS = ““

EXTRA_COMPILER_FLAGS Option

This option can be used whenever custom compiler flags need to be used in addition to the
automatically generated compiler flags.

Format

parameter EXTRA_COMPILER_FLAGS = -g

This specifies that the drivers and libraries must be compiled with debugging symbols in
addition to the LibGen generated COMPILER_FLAGS.

OS Option

This option denotes whether an RTOS is present (for example., VxWorks5_4) or not. By
default, LibGen assumes a value of standalone as the OS.

Format

parameter OS = VxWorks5_4

This specifies that the VxWorks5_4 adaptation layer must be generated for the drivers.
This option, although supported, is not currently used in Libgen.

Library and File System Parameters
The MSS file also includes directives to configure libraries and file systems for the
MicroBlaze processor. For more information on EDK libraries and EDK file systems, please
refer Chapter 20, “Xilinx Libraries”.

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 167
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Library and File System Parameters
R

The parameters that are supported for Libraries and File systems are as follows:

FILESYS_NAME Option

This option specifies the name of the file system. The file system that is supported in the
EDK is XilMfs (Memory File System). Please refer Chapter 20, “Xilinx Libraries” for more
information.

Format

parameter FILESYS_NAME = XilMfs

If the user has any other file system that is compatible with EDK file systems, that name
can be used.

PROC_INSTANCE Option

This option specifies the name of the processor instance that can access the file system.

Format

parameter PROC_INSTANCE = my_microblaze

This specifies that my_microblaze processor needs to access the file system functions.

MOUNT Option

Specifies the mount name as a directory string

Format

parameter MOUNT = “/dev/mfs”

LIBRARY Option

The file system functions can be accessed through a library that provides block access
functions for read and write. This option provides a way to specify that the file system is
accessed through the library.

Format

parameter LIBRARY = XilFile

http://www.xilinx.com

168 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 18: Microprocessor Software Specification (MSS)
R

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 169
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

R

Chapter 19

Microprocessor Driver Definition
(MDD)

Summary
This chapter describes the Microprocessor Driver Definition (MDD) format.

Overview
An MDD file contains directives for customizing software drivers. This document
describes the MDD format and the parameters that can be used to customize drivers. For
more information on drivers please refer Chapter 26, “Device Drivers”. For all EDK
drivers, the user does not need to peruse this document. Reading this document is
recommended for user-written drivers that need to be configured by libgen.

Requirements
Each device driver has an MDD file associated with it. This file is used by the Library
Generator (Libgen) to customize the driver depending on different options in the MSS file.
For more information on the MSS file format, please see Chapter 18, “Microprocessor
Software Specification (MSS)”.

The driver source files and the MDD file for each driver must be located at specific
directories in order for Libgen to find the files and drivers. Please refer Chapter 6, “Library
Generator” for a list of directories searched for drivers.

MDD Format
Comments can be specified anywhere in the file. A ’#’ character denotes the beginning of a
comment and all characters after the ’#’ till the end of the line are ignored. All white spaces
are also ignored and carriage returns act as a sentence delimiter.

Keywords
The keywords that are used in an MDD file are as follows:

Begin

http://www.xilinx.com

170 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 19: Microprocessor Driver Definition (MDD)
R

The begin keyword begins a driver block or a driver level block. Device drivers in the EDK
come in three levels. Level 0 are the low-level drivers with basic functionality and small
size, level 1 drivers have more functionality but are larger in size and OS level drivers
assume the existence of an RTOS. The begin keyword should be followed by driver, or
level number (0 or 1).

End

The end keyword signifies the end of a definition block.

Parameter

The MDD file has a simple name = value format for most statements. The parameter
keyword is required before every such NAME, VALUE pairs. The format for assigning a
value to a parameter is parameter name = value. The parameter keyword specifies that the
parameter can be overwritten in the MSS file.

Constant

The constant keyword is similar to the parameter keyword, except that the constant cannot
be overwritten in the MSS file.The format for assigning a value to a constant is constant
name = value.

MDD Example
An example MDD file for the uartlite driver follows:

BEGIN driver XUartLite
constant VERSION = 2.0.0 # uses PSF 2.0.0
parameter LEVEL = 0 # default level
END

BEGIN level 0
constant INBYTE = XUartLite_RecvByte, DEFINED_IN = xuartlite_l
constant OUTBYTE = XUartLite_SendByte, DEFINED_IN = xuartlite_l
constant COPYFILES = (xuartlite_l.c xuartlite_l.h Makefile)
constant DEPENDS = (common_v1_00_a)
constant CONFIG_INCLUDE = xparameters, VALUES = (NUM_INSTANCES
C_BASEADDR)
parameter INT_HANDLER = XIntc_DefaultHandler, INT_PORT = Interrupt
END

BEGIN level 1
constant COPYFILES = ALL
constant DEPENDS = (common_v1_00_a)
constant CONFIG_INCLUDE = xparameters, VALUES = (NUM_INSTANCES
C_BASEADDR DEVICE_ID)
constant CONFIG_FILE = xuartlite_g, VALUES = (DEVICE_ID C_BASEADDR)
parameter INT_HANDLER = XUartLite_InterruptHandler, INT_PORT=Interrupt
END

Driver Block
The driver block begins with a Begin driver followed by the name of the driver, in the
above example, XUartLite. The name is significant, since it is used as a prefix for a
configuration table in the driver configuration C file by libgen. This name is case sensitive.

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 171
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Level Block
R

Driver Block Specific Parameters and Constants

VERSION

Every MDD file has a PSF (Platform Specification Format) version number. This is the
same number that is used in all file formats (MSS, MPD, PAO, MHS) in the EDK. The
version signifies the version of the file that libgen will accept. Please refer Chapter 12,
“Platform Specification Format (PSF)” for more information.

Format

constant VERSION = 2.0.0

This indicates that the PSF version is 2.0.0

LEVEL

This parameter specifies the default level of the driver used by libgen. This parameter can
be overwritten

Format

parameter LEVEL = 0

This indicates that the default version is 0.

Other Generic Parameters

The user can define their own parameter name and specify a value for the parameter. This
parameter name can then be used in the VALUES, DEFINE_IF_ANY or DEFINE_IF_ALL
tags as explained in subsequent sections in the document. For DEFINE_IF_ANY and
DEFINE_IF_ALL, the value must be either a 0 (FALSE) or 1(TRUE).

Format

parameter MY_OWN_PARAMETER = my_value

The literal my_value is used wherever it is referenced in one of the tags specified.

The Generic parameters can also take an optional tag TYPE. TYPE can have values
DRIVER and INSTANCE (default).

parameter MY_OWN_DRV_PARAMETER = my_value, TYPE = DRIVER

By default, these parameters are peripheral instance specific. That is, each peripheral
instance has the parameter defined. TYPE = DRIVER means that the parameter should be
treated as a driver specific parameter. Please see the CONFIG_INCLUDE Option
subsection of this document for a better understanding.

Level Block
The Level block begins with a begin level, followed by a number (0 or 1). This number
indicates the driver level that the block describes. For more information on the levels of
drivers, please refer Chapter 26, “Device Drivers”.

http://www.xilinx.com

172 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 19: Microprocessor Driver Definition (MDD)
R

Level Block Specific Parameters and Constants

INBYTE

This attribute specifies the driver function for input of a byte of data. The signature of the
function should be char function_name (int *base_address). When the peripheral using this
driver is specified as a standard input (STDIN) peripheral in the MSS file, this function is
called by library functions such as scanf. Only drivers for peripherals that can be used as
standard input should have this attribute defined.

Format

constant INBYTE = XUartLite_RecvByte, DEFINED_IN = xuartlite_l

This indicates that the INBYTE function_name is XUartLite_RecvByte and it is defined in
xuartlite_l.h file

OUTBYTE

This attribute specifies the driver function for output of a byte of data. The signature of the
function should be void function_name (int *base_address, char outchar). This function is
called by printf when the peripheral using this driver is specified as standard output
(STDOUT) peripheral. Only drivers for peripherals that can be used as standard output
should have this attribute defined.

Format

constant OUTBYTE = XUartLite_SendByte, DEFINED_IN = xuartlite_l

This indicates that the OUTBYTE function_name is XUartLite_SendByte and it is defined in
xuartlite_l.h file

COPYFILES

This attribute specifies that files that should be copied for the specific level of the driver.
The files are copied from the src directory inside the drivers directory.

Format

constant COPYFILES = (file1 file2 file3 ...)

This indicates that the files file1, file2, file3, and so on, should be copied in order to compile
this driver into the project software platform. The list must be enclosed in parentheses
(even if there is a single file) and separated by spaces. The keyword ALL can be used
instead of listing the files to specify that all files in the directory should be used to compile
the driver.

DEPENDS

This attribute specifies which drivers this particular level of the driver depends on. These
dependent drivers are then included in the compilation.

Format

constant DEPENDS = (driver1 driver2 driver3 ...)

This indicates that the drivers driver1, driver2, driver3, ... should be copied in order to
compile this driver into the project software platform. The list must be enclosed in
parentheses (even if there is a single driver) and separated by spaces. The drivers should
have the complete name (including version suffixes, if any).

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 173
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Level Block
R

CONFIG_INCLUDE

This attribute specifies the name of the include file (.h) that is configured with #defines
specific to each driver level and also specific to how the peripheral has been configured.
This file is generated in the include directory by libgen (refer Chapter 6, “Library
Generator” for more information)

Format

constant CONFIG_INCLUDE = xparameters, VALUES = (C_BASEADDR DEVICE_ID
NUM_INSTANCES), DEFINE_IF_ANY = (C_HAS_IPR), DEFINE_IF_ALL = (MY_PARAM)

The name of the file that is configured in the preceeding example is xparameters.h. The
values that should be defined are specified in the VALUES tag as a space separated list
enclosed between parentheses. The parentheses are necessary even if there is a single item
in the list.

LibGen compares the names given in the VALUES tag with names of parameters in the
MPD or MHS files, or user defined parameters in the MDD file itself. If a match is found,
the value of the attribute is defined as

#define XPAR_INSTANCE_NAME_PARAMETER_NAME PARAMETER_VALUE

if the parameter is an instance specific parameter (for example, C_BASEADDR). Any C_ in
the name is removed. For the example MDD given above, suppose the instance name for
the uartlite peripheral in the MSS file is given as my_uart. Then the #define would be:

#define XPAR_MY_UART_BASEADDR 0xFFFF0100

On the other hand, if the parameter is a driver specific parameter and not peripheral
instance specific (for e.g. NUM_INSTANCES, which is recognized by libgen as number of
instances of peripherals that use this driver) then the define will be with the name of the
driver (as given in the BEGIN DRIVER DRIVER_NAME in the MDD) instead of the
INSTANCE_NAME. For example, if there are two instances of uart in the MSS referring to
this driver, then the definition would be:

#define XPAR_XUARTLITE_NUM_INSTANCES 2

Note that all the names and parameters are upper case, and that all parameters having a
prefix of C_ are truncated to lose the prefix.

DEFINE_IF_ANY

This tag can be used to specify a list of parameters. Each parameter is defined if any
instance of a peripheral that uses the driver has the parameter defined as TRUE (1) in the
MPD or MHS file.

DEFINE_IF_ALL

This tag can be used to specify a list of parameters. Each parameter is defined only if all
instances of a peripheral that uses the driver has the parameter defined as TRUE (1) in the
MPD or MHS file.

CONFIG_FILE

This attribute specifies the name of the file (.c) that is configured by LibGen. The file
CONFIG_FILE.h will always be included in the C file. This file is generated in this drivers
src/ directory when LibGen configures the drivers.

Format

constant CONFIG_FILE = xuartlite_g, VALUES = (DEVICE_ID C_BASEADDR)

http://www.xilinx.com

174 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 19: Microprocessor Driver Definition (MDD)
R

The name of the file that is configured in the preceeding example is xuartlite_g.c. The file
xuartlite_g.h is always included using #include in this file. Also, if a CONFIG_INCLUDE
parameter is specified, that file is also included using #include. The values that should be
defined are specified in the VALUES tag as a space separated list enclosed between
parentheses. The parentheses are necessary even if there is a single item in the list. The list
is an ordered list as is apparent from the following discussion.

LibGen compares the names given in the VALUES tag with names of parameters in the
MPD or MHS files, or user defined parameters in the MDD file itself. LibGen creates a data
structure in the C file as follows (with the example given above):

XUartLite_Config XUartLite_ConfigTable[] =
{
{
XPAR_MYUART_DEVICE_ID,
XPAR_MYUART_BASEADDR

},
{
XPAR_MYUART2_DEVICE_ID,
XPAR_MYUART2_BASEADDR

}
};

As seen in the code segment above, the MSS file contains two uartlite peripherals with
instance names myuart and myuart2. The type of the table is DRIVER_NAME_Config and
the name of the table is DRIVER_NAME_ConfigTable. The size of the table is the number
of instances of the peripheral using this particular driver. Each element in the table is an
ordered list of values given in the VALUES tag as shown above.

INT_HANDLER

This parameter defines the default interrupt handler software routine for an interrupt port
of the peripheral. This parameter can be overwritten in the MSS file for this particular
driver and peripheral instance.

Format

parameter INT_HANDLER = my_int_handl, INT_PORT = Interrupt

The interrupt port of the peripheral instance that raises the interrupt is specified after the
attribute as shown above with INT_PORT keyword. This port should match the port name
specified in the MHS file for that peripheral instance.

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 175
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

R

Chapter 20

Xilinx Libraries

Scope
This chapter describes the organization of Xilinx Libraries and the interaction of its
components with the user application. Xilinx provides three libraries,

• Math Library (libm)

• Standard C language support (libc)

• Xilinx drivers and libraries (libxil)

Overview
The Standard C support library consists of the newlib libc, which contains the standard C
functions such as strcpy, strcmp.

The Xilinx C library contains the following components

• Xilinx file support functions LibXil File

• Xilinx memory file system LibXil Mfs

• Xilinx networking support LibXil Net

• Xilinx device drivers LibXil Driver

• Xilinx Standalone Board Support Package (BSP)

Most of the routines in the library are written in C and can be ported to any platform. The
Library Generator (LibGen) configures the libraries for an embedded processor, using the
attributes defined in the Microprocessor Software Specification (MSS) file.

The math library is an enhancement over the newlib math library libm.a .

Library Organization
The structure of LibXil is outlined in Figure 20-1. The user application calls routines
implemented in LibXil and/or libm. In addition to the standard C routines supported by
libc.a, Xilinx library LibXil contains the following modules:

• Stream based file system and device access (LibXil File)

♦ These set of libraries allow access to devices and file systems through system
routines such as open, close, read and write.

♦ For complete details refer to the Chapter 22, “LibXil File” chapter.

• Memory based file system (LibXil Mfs)

http://www.xilinx.com

176 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 20: Xilinx Libraries
R

• Xilinx provides a simple memory based file system, which allows easy access to data
using file based input-output.

• This system can be easily configured to meet project requirements by changing the
source provided in the installation area.

• This module is discussed in details in the Chapter 23, “LibXil Memory File System”
chapter.

• Networking application support (LibXil Net)

♦ EDK provides a simple TCP/IP stack based library, which can be used for
network related projects.

♦ For complete details, refer to the Chapter 24, “LibXil Net” chapter.

• Device drivers (LibXil Driver)

♦ Some of the library modules interact with drivers. These drivers are provided in
the Embedded Development Kit and are configured by libgen.

♦ Drivers are detailed in the Chapter 26, “Device Drivers” chapter.

• Standalone Board Support Package (BSP)

♦ Certain standalone board support files such as the crt0.S, boot.S and eabi.S are
required for the powerpc processor. These files are provided in the EDK.

♦ For a detailed description, refer to the Chapter 27, “Stand-Alone Board Support
Package” description.

These libraries and include files are created in the current project’s lib and include
directories respectively. The -I and -L options of mb-gcc should be used to add these
directories to its library search paths. Please refer to the Chapter 18, “Microprocessor

LibXil Mfs

LibXil File

libXil

Devices

LibXil Driver

LibXil NetStandalone BSP

User Application

libm

Figure 20-1: Structure of LibXil library

libc

stdio

stdlib

string

Other

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 177
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Library Customization
R

Software Specification (MSS)”chapter and Chapter 6, “Library Generator” chapter for
more information.

Library Customization
The standard newlib libc contains dummy functions for most of the operating system
specific function calls such as open, close, read, write. These routines are included in the
libgloss component of the standard libc library. The LibXil File module contains routines
to overwrite these dummy functions. The routines interact with file systems such as Xilinx
Memory File System(1) and peripheral devices(2) such as UART, UARTLITE and GPIO.

LibXil Net routines provide support for networking applications via the ethernet. This
module is discussed more in details in the Chapter 24, “LibXil Net” chapter. The module
LibXil Net needs some support from the file system and hence calls other routines from the
LibXil File and/or the LibXil Mfs modules. On the other hand, if an application requires
opening files over the network, routines from the LibXil File module will need the support
of the LibXil Net.

LibGen is used to tailor the library compilation for a particular project using attributes in
the MSS. These attributes are described in theChapter 22, “LibXil File” and Chapter 23,
“LibXil Memory File System” chapters.

1. For more information on Memory File System, please refer to the chapter on LibXil Mfs

2. For more information on Device Drivers, please refer to the chapter on LibXil Driver

http://www.xilinx.com

178 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 20: Xilinx Libraries
R

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 179
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

R

Chapter 21

LibXil Standard C Libraries

Summary
This chapter describes the software libraries available for the embedded processors.

Overview
The Embedded Processor Design Kit (EDK) libraries and device drivers provide standard
C library functions, as well as functions to access peripherals. The EDK libraries are
automatically configured by libgen for every project based upon the Microprocessor
Software Specification file. These libraries and include files are saved in the current
project’s lib and include directories respectively. The -I and -L options of mb-gcc should
be used to add these directories to its library search paths.

Standard C Library (libc.a)
The standard C library libc.a contains the standard C functions compiled for MicroBlaze or
PowerPC. For a list of all the supported functions refer to the following files in
XILINX_EDK/gnu/processor/platform/include

where

♦ processor = powerpc-eabi or microblaze

♦ platform = sol or nt

♦ XILINX_EDK = Installation directory

_ansi.h fastmath.h machine/ reent.h stdlib.h utime.h

_syslist.h fcntl.h malloc.h regdef.h string.h utmp.h

ar.h float.h math.h setjmp.h sys/

assert.h grp.h paths.h signal.h termios.h

ctype.h ieeefp.h process.h stdarg.h time.h

dirent.h limits.h pthread.h stddef.h unctrl.h

errno.h locale.h pwd.h stdio.h unistd.h

Programs accessing standard C library functions must be compiled as follows:

mb-gcc C files (for MicroBlaze)

powerpc-eabi-gcc C files (for PowerPC)

http://www.xilinx.com

180 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 21: LibXil Standard C Libraries
R

The libc library is included automatically.

The -lm option should be specified for programs that access libm math functions.

Refer to Chapter 4, “MicroBlaze Application Binary Interface” for information on the C
Runtime Library.

Xilinx C Library (libxil.a)
The Xilinx C library libxil.a contains the following functions for the MicroBlaze Embedded
processor:

_exception_handler.o

_interrupt_handler.o

xil_malloc.o

xil_sbrk.o

Default exception and interrupt handlers are provided. A memory management targeted
for embedded systems is provided in xil_malloc.o file. The libxil.a library is included
automatically.

Programs accessing Xilinx C library functions must be compiled as follows:

mb-gcc C files

Input/Output Functions
The EDK libraries contains standard C functions for I/O; such as printf and scanf. These
are large and may not be suitable for embedded processors. In addition, the MicroBlaze
processor library provides the following smaller I/O functions:

void print (char *)

This function prints a string to the peripheral designated as standard output in the MSS
file.

void putnum (int)

This function converts an integer to a hexadecimal string and prints it to the peripheral
designated as standard output in the MSS file.

void xil_printf (const *char ctrl1, ...)

This function is similar to printf but much smaller in size (only 1KB). It does not have
support for floating point numbers. xil_printf also does not support printing of long long
(i.e 64 bit numbers).

The prototypes for these functions are in stdio.h.

Please refer to Chapter 18, “Microprocessor Software Specification (MSS)” for information
on setting the standard input and standard output devices for a system.

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 181
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Memory Management Functions
R

Memory Management Functions

MicroBlaze Processor
Memory management routines such as malloc, calloc and free can run the gamut of
high functionality (with associated large size) to low functionality (and small size). This
version of the MicroBlaze processor library only supports a simple, small malloc, and a
dummy free. Hence when memory is allocated using malloc, this memory cannot be
reused.

The _STACK_SIZE option to mb-gcc specifies the total memory allocated to stack and
heap. The stack is used for function calls, register saves and local variables. All calls to
malloc allocate memory from heap. The stack pointer initially points to the bottom (high
end) of memory, and grows toward low memory while the heap pointer starts at low
memory and grows towards high memory. The size of the heap cannot be increased at
runtime. The return value of malloc must always be checked to ensure that it could
actually allocate the memory requested.

Please note that whereas malloc checks that the memory it allocates does not overwrite
the current stack pointer, updates to the stack pointer do not check if the heap is being
overwritten.

Increasing the _STACK_SIZE may be one way to solve unexpected program behavior.
Refer to the “Linker Options” section of Chapter 9, “GNU Compiler Tools” for more
information on increasing the stack size.

PowerPC 405 Processor
PowerPC 405 processor supports all standard C library memory management functions
such as malloc(), calloc(), free().

Arithmetic Operations

MicroBlaze Processor

Integer Arithmetic

Integer addition and subtraction operations are provided in hardware. By default, integer
multiplication is done in software using the library function mulsi3_proc. Integer
multiplication is done in hardware if the mb-gcc option -mno-xl-soft-mul is specified.

Integer divide and mod operations are done in software using the library functions
divsi3_proc and modsi3_proc.

Double precision multiplication, division and mod functions are carried out by the library
functions muldi3_proc, divdi3_proc and moddi3_proc respectively.

Floating Point Arithmetic

All floating point addition, subtraction, multiplication and division operations are also
implemented using software functions in the C library.

http://www.xilinx.com

182 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 21: LibXil Standard C Libraries
R

PowerPC 405 Processor

Integer Arithmetic

Integer addition and subtraction operations are provided in hardware. Hence no specific
software library is available for the PowerPC processor.

Floating Point Arithmetic

PowerPC supports all floating point arithmetic implemented in the standard C library.

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 183
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

R

Chapter 22

LibXil File

Scope
Xilinx libraries provide block access to file systems and devices using standard calls such
as open, close, read, write etc. These routines form the LibXil File Module of the Libraries.

A system can be configured to use LibXil File module, using the Library Generator (libgen)

Overview
The LibXil library provides block access to files and devices through the LibXil File
module. This module provides standard routines such as open, close, read, write etc. to
access file systems and devices.

The module LibXil File can also be easily modified to incorporate additional file systems
and devices. This module implements a subset of operating system level functions.

Module Usage
A file or a device is opened for read and write using the open call in the library. The library
maintains a list of open files and devices. Read and write commands can be issued to
access blocks of data from the open files and devices.

Module Routines

Functions

int open (const char *name, int flags, int mode)

int close (int fd)

int read (int fd, char* buf, int nbytes)

int write (int fd, char* buf, int nbytes)

int lseek (int fd, long offset, int whence)

int chdir (const char *buf)

const char* getcwd (void)

http://www.xilinx.com

184 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 22: LibXil File
R

int open (const char *name, int flags, int mode)

int close (int fd)

int read (int fd, char* buf, int nbytes)

Parameters name refers to the name of the device/file

flags refers to the permissions of the file. This field does not have
any meaning for a device

mode indicates whether the stream is opened in read, write or
append mode.

Returns file/device descriptor fd assigned by LibXil File

Description This call registers the device or the file in the local device table and
calls the underlying open function for that particular file or a
device.

Includes xilfile.h

xparameters.h

Parameters fd refers to the file descriptor assigned during by open()

Returns If a file is being close, returns the status returned by the underlying
file system. For devices, it returns 1, since devices can not be closed.

0 indicates success in closing a file.

Any other value indicates error

Description Close the file/device with the fd.

Includes xilfile.h

xparameters.h

Parameters fd refers to the file descriptor assigned by open()

buf refers to the destination buffer where the contents of the
stream should be copied

nbytes: Number of bytes to be copied

Returns The number of bytes read.

Description Read nbytes from the file/device pointed by the file descriptor fd
and store it in the destination pointed by buf.

Includes xilfile.h

xparameters.h

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 185
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Module Routines
R

int write (int fd, char* buf, int nbytes)

int lseek (int fd, long offset, int whence)

int chdir (char* newdir)

const char* getcwd (void)

Parameters fd: refers to the file descriptor assigned by open()

buf: refers to the source buffer

nbytes: Number of bytes to be copied

Returns The number of bytes written to the file.

Description Write nbytes from the buffer, buf to the file pointed by the file
descriptor fd

Includes xilfile.h

xparameters.h

Parameters fd: file descriptor returned by open

offset: Number of bytes to seek

whence: Location to seek from. This parameter depends on the
underlying File System being used.

Returns New file pointer location

Description The lseek() system call moves the file pointer for fd by offset bytes
from whence.

Includes xilfile.h

xparameters.h

Parameters newdir: Destination directory

Returns The same value as returned by the underlying file system. -1 for
failure.

Description Change the current directory to newdir

Includes xilfile.h

xparameters.h

Parameters None

Returns The current working directory.

Description Get the absolute path for the current working directory.

Includes xilfile.h

xparameters.h

http://www.xilinx.com

186 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 22: LibXil File
R

Libgen Support

LibXil File Instantiation
The users can write application to either interact directly with the underlying file systems
and devices or make use of the LibXil File module to integrate with file systems and
devices.

The Libgen attribute LIBRARY indicates that LibXil File module should be compiled into
the project specific Libraries.

To use Memory File System with LibXil File component, use the following code:

BEGIN FILESYS
parameter FILESYS_NAME = XilMfs
parameter PROC_INSTANCE = proc1
parameter MOUNT = "/dev/mfs"
parameter LIBRARY = XilFile
END

To access a device through Xilfile add the following to the peripheral description in the mss
file

parameter LIBRARY = XilFile

All devices which have stream based input/output mechanism are supported through
LibXil File.

System Initialization
LibGen also generates the system initialization file, which is compiled into the LibXil
library. This file initialized the data structure required by the LibXil File module, such as
the Device tables and the File System table. This routine also initializes the STDIN,
STDOUT and STDERR if present.

Limitations
LibXil File module currently enforces the following restrictions:

• Only one instance of a File System can be mounted. This file system and the mount
point has to be indicated in the Microprocessor Software Specification (MSS) file.

• Files cannot have names starting with /dev, since it is a reserved word to be used only
for accessing devices

• Currently LibXil File has support only for 1 file system (LibXil Memory File System)
and 3 devices (UART, UARTlite and GPIO).

• Only devices can be assigned as STDIN, STDOUT and STDERR

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 187
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

R

Chapter 23

LibXil Memory File System

Scope
This document describes the Memory File System (MFS). This file system resides on the
memory and can be accessed through LibXil File module or directly. Memory File System
is integrated with a system using the Library Generator.

Overview
The Memory File System (MFS) component, LibXil MFS, provides users the capability to
manage program memory in the form of file handles. Users can create directories, and can
have files within each directory. The file system can be accessed from the high level C-
language through function calls specific to the file system. Alternatively, the users can also
manage files through the standard C language functions like open provided in XilFile.

MFS Functions

Quick Glance
This section presents a list of functions provided by the MFS. Table 23-1 provides the
function names with signature at a glance. C-like access.

Table 23-1: MFS functions at a glance

Functions

void mfs_init_fs (void)

int mfs_change_dir (char *newdir)

int mfs_delete_file (char *filename)

int mfs_create_dir (char *newdir)

int mfs_delete_dir (char *newdir)

int mfs_rename_file (char *from_file, char *to_file)

int mfs_exists_file (char *filename)

int mfs_get_current_dir_name (char *dirname)

int mfs_get_usage(int *num_blocks_used, int *num_blocks_free)

int mfs_file_open (char *filename, int mode)

int mfs_file_read (int fd, char *buf, int buflen)

http://www.xilinx.com

188 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 23: LibXil Memory File System
R

Detailed summary of MFS Functions
int mfs_init_fs (void)

int mfs_change_dir (char *newdir)

int mfs_delete_file (char *filename)

int mfs_file_write (int fd, char *buf, int buflen)

int mfs_file_close(int fd)

int mfs_file_lseek (int fd, int offset, int whence)

int mfs_ls (void)

int mfs_cat (char *filename)

int mfs_copy_stdin_to_file (char *filename)

int mfs_file_copy (char *from_file, char *to_file)

Table 23-1: MFS functions at a glance

Functions

Parameters None

Returns 1 for success

0 for failure

Description Initialize the memory file system. This function must be called
before any file system operation.

Includes xilmfs.h

xio.h

Parameters newdir is the chdir destination.

Returns 1 for success

0 for failure

Description If newdir exists, make it the current directory of MFS. Current
directory is not modified in case of failure.

Includes xilmfs.h

xio.h

Parameters filename: file to be deleted

Returns 1 for success

0 for failure

Description Delete filename from its directory.

Includes xilmfs.h

xio.h

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 189
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

MFS Functions
R

int mfs_create_dir (char *newdir)

int mfs_delete_dir (char *dirname)

int mfs_rename_file (char *from_file, char *to_file)

int mfs_exists_file (char *filename)

Parameters newdir: Directory name to be created

Returns On success, return index of new directory in the file system

On failure, return 0

Description Create a new empty directory called newdir inside the current
directory.

Includes xilmfs.h

xio.h

Parameters dirname: Directory to be deleted

Returns On success, return index of new directory in the file system

On failure, return 0

Description Delete the directory dirname, if it exists and is empty,

Includes xilmfs.h

xio.h

Parameters from_file: Original filename

to_file: New file name

Returns On success, return 1

On failure, return 0

Description Rename from_file to to_file. Rename works for directories as well as
files. Function fails if to_file already exists.

Includes xilmfs.h

xio.h

Parameters filename: file/directory to be checked for existence

Returns 0: if filename does not exist

1: if filename is a file

2: if filename is a directory

Description Check if the file/directory is present in current directory.

Includes xilmfs.h

xio.h

http://www.xilinx.com

190 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 23: LibXil Memory File System
R

int mfs_get_current_dir_name (char *dirname)

int mfs_get_usage (int *num_blocks_used, int *num_blocks_free)

int mfs_file_open (char *filename, int mode)

Parameters dirname: Current directory name is returned in this pointer

Returns On Success return 0

On failure return 1

Description Return the name of the current directory in a pre allocated buffer,
dirname, of at least 16 chars.Note that it does not return the
absolute path name of the current directory, but just the name of
the current directory

Includes xilmfs.h

xio.h

Parameters num_blocks_used: Number of blocks used

num_blocks_free: Number of free blocks

Returns On Success return 0

On failure return 1

Description Get the number of used blocks and the number of free blocks in
the file system through pointers.

Includes xilmfs.h

xio.h

Parameters filename: file to be opened

mode: Read/Write or Create mode.

Returns The index of filename in the array of open files or -1 on failure.

Description Open file filename with given mode.

The function should be used for files and not directories:
MODE_READ, no error checking is done (if file or directory).
MODE_CREATE creates a file and not a directory.
MODE_WRITE fails if the specified file is a DIR.

Includes xilmfs.h

xio.h

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 191
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

MFS Functions
R

int mfs_file_read (int fd, char *buf, int buflen)

int mfs_file_write (int fd, char *buf, int buflen)

int mfs_file_close (int fd)

Parameters fd: File descriptor return by open

buf: Destination buffer for the read

buflen: Length of the buffer

Returns On Success return number of bytes read.

On Failure return 1

Description Read buflen number bytes and place it in buf. fd should be a valid
index in “open files” array, pointing to a file, not a directory. buf
should be a pre-allocated buffer of size buflen or more. If fewer
than buflen chars are available then only that many chars are read.

Includes xilmfs.h

xio.h

Parameters fd: File descriptor return by open

buf: Source buffer from where data is read

buflen: Length of the buffer

Returns On Success return 1

On Failure return 1

Description Write buflen number of bytes from buf to the file. fd should be a
valid index in open_files array. buf should be a pre-allocated
buffer of size buflen or more.

Includes xilmfs.h

xio.h

Parameters fd: File descriptor return by open

Returns On success return 1

On failure return 1

Description Close the file pointed by fd. The file system regains the fd and uses
it for new files.

Includes xilmfs.h

xio.h

http://www.xilinx.com

192 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 23: LibXil Memory File System
R

int mfs_file_lseek (int fd, int offset, int whence)

int mfs_ls (void)

int mfs_cat (char *filename)

Parameters fd: File descriptor return by open

offset: Number of bytes to seek

whence: File system dependent mode:

If whence is MFS_SEEK_END, the offset can be either 0 or negative,
otherwise offset should be non-negative.

If whence is MFS_SEEK_CURR, the offset is calculated from the
current location

If whence is MFS_SEEK_SET, the offset is calculated from the start
of the file

Returns On success, return 1

On failure, return 0

Description Seek to a given offset within the file at location fd in open_files
array.

It is an error to seek before beginning of file or after the end of file.

Includes xilmfs.h

xio.h

Parameters None

Returns On success return 1

On failure return 0

Description List contents of current directory on STDOUT.

Includes xilmfs.h

xio.h

Parameters filename: File to be displayed

Returns On success return 1

On failure return 0

Description Print the file to STDOUT.

Includes xilmfs.h

xio.h

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 193
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

C-like access
R

int mfs_copy_stdin_to_file (char *filename)

int mfs_file_copy (char *from_file, char *to_file)

C-like access
The user can choose not to deal with the details of the file system by using the standard C-
like interface provided by Xil File. It provides the basic C stdio functions like open, close,
read, write, and seek. These functions have identical signature as those in the standard
ANSI-C. Thus any program with file operations performed using these functions can be
easily ported to MFS by interfacing the MFS in conjunction with library Xilfile.

LibGen Customization
Memory file system can be integrated with a system using the following snippet in the mss
file. The memory file system should be instantiated with the name XilMfs. The attributes
used by libgen and their descriptions are given in Table 23-2

BEGIN FILESYS
parameter FILESYS_NAME = XilMfs
parameter PROC_INSTANCE = proc1
parameter MOUNT = "/dev/mfs"
parameter LIBRARY = XilFile
END

Parameters filename: Destination file.

Returns On success return 1

On failure return 0

Description Copy from STDIN to named file.

Includes xilmfs.h

xio.h

Parameters from_file: Source file

to_file: Destination file

Returns On success return 1

On failure return 0

Description Copy from_file to to_file. It fails if to_file already exists, or if either
could not be opened.

Includes xilmfs.h

xio.h

http://www.xilinx.com

194 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 23: LibXil Memory File System
R

Table 23-2: Attributes for including Memory File System

Attributes Description

MOUNT Mount name for the file system.

LIBRARY Set this attribute to XilFile if the file system is accessed through
XilFile component of the Libraries

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 195
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

R

Chapter 24

LibXil Net

Summary
This chapter describes the network library for Embedded processors, libXilNet. The library
includes functions to support the TCP/IP stack and the higher level application
programming interface (Socket APIs).

Overview
The Embedded Development Kit (EDK) networking library, libXilNet, allows a processor
to connect to the internet. LibXilNet includes functions for handling the TCP/IP stack
protocols. It also provides a simple set of Sockets Application Programming Interface
(APIs) functions enabling network programming. Lib Xil Net supports multiple
connections (through Sockets interface) and hence enables multiple client support. This
chapter describes the various functions of LibXilNet.

LibXilNet Functions

Quick Glance
Table 24-1 presents a list of functions provided by the LibXilNet at a glance.

Table 24-1: LibXilNet functions at a glance

Functions

int xilsock_init (void)

void xilsock_rel_socket (int sd)

int xilsock_socket (int domain, int type, int proto)

int xilsock_bind (int sd, struct sockaddr* addr, int addrlen)

int xilsock_accept (int sd, struct sockaddr* addr, int addrlen)

int xilsock_recvfrom (int s, unsigned char* buf, int len)

int xilsock_sendto (int s, unsigned char* buf, int len)

int xilsock_recv (int s, unsigned char* buf, int len)

int xilsock_send (int s, unsigned char* buf, int len)

void xilsock_close (int s)

void xilnet_mac_init (unsigned int baseaddr)

void xilnet_eth_init_hw_addr(unsigned char *addr)

http://www.xilinx.com

196 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 24: LibXil Net
R

Protocols Supported
LibXilNet supports drivers and functions for the Sockets API and protocols of TCP/IP
stack. The following list enumerates them.

• Ethernet Encapsulation (RFC 894)

• Address Resolution Protocol (ARP - RFC 826)

int xilnet_eth_recv_frame (unsigned char* frame, int len)

int xilnet_eth_send_frame (unsigned char* frame, int len, void*
daddr, unsigned short type)

void xilnet_eth_update_hw_tbl (unsigned char* frame, int proto)

void xilnet_eth_add_hw_tbl_entry (unsigned char* ip, unsigned
char* hw)

int xilnet_eth_get_hw_addr (unsigned char* ip)

int xilnet_eth_init_hw_addr_tbl (void)

int xilnet_arp (unsigned char* buf, int len)

void xilnet_arp_reply (unsigned char* buf, int len)

void xilnet_ip_init (unsigned char* ip_addr)

int xilnet_ip (unsigned char* buf, int len)

void xilnet_ip_header (unsigned char* buf, int len, int proto)

unsigned short xilnet_ip_calc_chksum (unsigned char* buf, int
len, int proto)

int xilnet_udp (unsigned char* buf, int len)

void xilnet_udp_header (struct xilnet_udp_conn conn, unsigned
char* buf, int len)

unsigned short xilnet_tcp_udp_calc_chksum (unsigned char* buf,
int len, unsigned char* saddr, unsigned char* daddr, unsigned
short proto)

void xilnet_udp_init_conns (void)

int xilnet_udp_open_conn (unsigned short port)

int xilnet_udp_close_conn (struct xilnet_udp_conn* conn)

int xilnet_tcp (unsigned char* buf, int len)

void xilnet_tcp_header (struct xilnet_tcp_conn conn, unsigned
char* buf, int len)

void xilnet_tcp_send_pkt (struct xilnet_tcp_conn conn, unsigned
char* buf, int len, unsigned char flags)

void xilnet_tcp_init_conns (void)

int xilnet_tcp_open_conn (unsigned short port)

int xilnet_tcp_close_conn (struct xilnet_tcp_conn* conn)

int xilnet_icmp (unsigned char* buf, int len)

void xilnet_icmp_echo_reply (usigned char* buf, int len)

Table 24-1: LibXilNet functions at a glance

Functions

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 197
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Library Architecture
R

• Internet Protocol (IP - RFC 791)

• Internet Control Management Protocol (ICMP - RFC 792)

• Transmission Control Protocol (TCP - RFC 793)

• User Datagram Protocol (UDP - RFC 768)

• Sockets API

Library Architecture
Figure 24-1 gives the architecture of libXilNet. Higher Level applications like HTTP server,
TFTP (Trivial File Transfer Protocol), PING etc., uses API functions to use the libXilNet
library.

Figure 24-1: Schematic Diagram of LibXilNet Architecture

Ethernet
Driver

IPARP

ICMP UDP
TCP

MAC
Driver

From PHY Interface

Incoming Frame

TFTP ApplicationHTTP Server ApplicationPING Application

Demultiplexing based on
frame type in Ethernet Header

Demultiplexing based
on protocol value in
IP Header

Xilinx Sockets Interface

Demultiplexing
based on
connections

LibXilNet Architecture

http://www.xilinx.com

198 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 24: LibXil Net
R

Protocol Function Description
A detailed description of the drivers and the protocols supported is given below.

Media Access Layer (MAC) Drivers Wrapper
MAC drivers wrapper initializes the base address of the mac instance specified by the
user.This base address is used to send and receive frames. Ths initialization must be done
before using other functionalites of LibXil Net library. The details of the function prototype
is defined in the section“Functions of LibXilNet”.

Ethernet Drivers
Ethernet drivers perform the encapsulation/removal of ethernet headers on the payload in
accordance with the RFC 894. Based on the type of payload (IP or ARP), the drivers call the
corresponding protocol callback function. A Hardware Address Table is maintained for
mapping 48-bits ethernet address to 32-bits IP address.

ARP (RFC 826)
Functions are provided for handling ARP requests. An ARP request (for the 48-bit
hardware address) is acknowledged with the 48-bit ethernet address in the ARP reply.
Currently, ARP request generation for a desired IP address is not supported. The
Hardware address table is updated with the new IP/Ethernet address pair if the ARP
request is destined for the processor.

IP (RFC 791)
IPv4 datagrams are used by the higher level protocols like ICMP, TCP, and UDP for
receiving/sending data. A callback function is provided for ethernet drivers which is
invoked whenever there is an IP datagram as a payload in an ethernet frame. Minimal
processing of the source IP address check is performed before the corresponding higher
level protocol (ICMP, TCP, UDP) is called. Checksum is calculated on all the outgoing IP
datagrams before calling the ethernet callback function for sending the data. An IP address
for a Embedded Processor needs to be programmed before using it for communication. An
IP address initializing function is provided. Refer to the table describing the various
routines for further details on the function. Currently no IP fragmentation is performed on
the outgoing datagrams. The Hardware address table is updated with the new IP/Ethernet
address pair if an IP packet was destined for the processor.

ICMP (RFC 792)
ICMP functions handling only the echo requests (ping requests) are provided. Echo
requests are issued as per the appropriate requirements of the RFC (Requests For
Comments).

UDP (RFC 768)
UDP is a connectionless protocol. The UDP callback function, called from the IP layer,
performs the minimal check of source port and strips off the UDP header. It demultiplexes
from the various open UDP connections. A UDP connection can be opened with a given
source port number through Socket functions. Checksum calculation is performed on the

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 199
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Current Restrictions
R

outgoing UDP datagram. The number of UDP connections that can be supported
simultaneously is configurable.

TCP (RFC 793)
TCP is a connection-oriented protocol. Callback functions are provided for sending and
receiving TCP packets. TCP maintains connections as a finite state machine. On receiving
a TCP packet, minimal check of source port correctness is done, before demultiplexing the
TCP packet from the various TCP connections. Necessary action for the demultiplexed
connection is taken based on the current machine state. A status flag is returned to indicate
the kind of TCP packet received to support connection management. Connection
management has to be done at the application level using the status flag received from
TCP. Checksum is calculated on all outgoing TCP packets. The number of TCP connections
that can be supported simultaneously is configurable.

Sockets API
Functions for creating sockets (TCP/UDP), managing sockets, sending and receiving data
on UDP and TCP sockets are provided. High level network applications need to use these
functions for performing data communication. Refer to Table 24-1 for further details.

Current Restrictions
Certain restrictions apply to the EDK libXilNet library software. These are

• Only server functionalities for ARP - This means ARP requests are not being
generated from the processor

• Only server functionalities in libXilNet - This means no client application
development support provided in libXilNet.

• No timers in TCP - Since there are no timers used, every "send" over a TCP connection
waits for an "ack" before performing the next "send".

Functions of LibXilNet
The following table gives the list of functions in libXilNet and their descriptions

int xilsock_init (void)

Parameters None

Returns 1 for success and 0 for failure

Description Initialize the xilinx internal sockets for use.

Includes xilsock.h

http://www.xilinx.com

200 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 24: LibXil Net
R

void xilsock_rel_socket (int sd)

int xilsock_socket (int domain, int type, int proto)

int xilsock_bind (int sd, struct sockaddr* addr, int addrlen)

Parameters sd is the socket to be released.

Returns None

Description Free the system level socket given by the socket descriptor sd

Includes xilsock.h

Parameters domain: Socket Domain

type: Socket Type

proto: Protocol Family

Returns On success, return socket descriptor

On failure, return -1

Description Create a socket of type, domain and protocol proto and returns the
socket descriptor. The type of sockets can be:

SOCK_STREAM (TCP socket)

SOCK_DGRAM (UDP socket)

domain value currently is AF_INET

proto refers to the protocol family which is typically the same as
the domain.

Includes xilsock.h

Parameters sd: Socket descriptor

addr: Pointer to socket structure

addrlen: Size of the socket structure

Returns On success, return 1

On failure, return -1

Description Bind socket given the descriptor sd to the ip address/port number
pair given in structure pointed to by addr of len addrlen. addr is the
typical socket structure.

Includes xilsock.h

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 201
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Functions of LibXilNet
R

int xilsock_accept (int sd, struct sockaddr* addr, int *addrlen)

int xilsock_recvfrom (int s, unsigned char* buf, int len)

int xilsock_sendto (int s, unsigned char* buf, int len)

Parameters sd: Socket descriptor

addr: Pointer to socket structure

addrlen: Pointer to the size of the socket structure

Returns On success, return socket descriptor

On failure, return -1

Description Accepts new connections on socket sd. If a new connection request
arrives, it creates a new socket nsd, copies properties of sd to nsd,
returns nsd. If a packet arrives for an existing connection, returns
0 and sets the xilsock_status_flag global variable. The various
values of the is flag are:

XILSOCK_NEW_CONN

XILSOCK_CLOSE_CONN

XILSOCK_TCP_ACK

for new connection, closed a connection and acknowledgment for
data sent for a connection correspondingly.

This function implicitly polls/waits on a packet from MAC.
Arguments addr and addrlen are in place to support the standard
Socket accept function signature. At present, they are not used in
the accept function.

Includes xilsock.h

Parameters s: UDP socket descriptor

buf: Buffer to receive data

len: Buffer size

Returns Number of bytes received

Description
Receives data (maximum length of len) from the UDP socket s in
buf and returns the number of bytes received.

Includes xilsock.h

Parameters s: UDP socket descriptor

buf: Buffer containing data to be sent

len: Buffer size

Returns Number of bytes received

Description Sends data of length len in buf on the UDP socket s and returns the
number of bytes sent.

Includes xilsock.h

http://www.xilinx.com

202 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 24: LibXil Net
R

int xilsock_recv (int s, unsigned char* buf, int len)

int xilsock_send (int s, unsigned char* buf, int len)

void xilsock_close (int s)

void xilnet_mac_init (unsigned int baseaddr)

Parameters s: TCP socket descriptor

buf: Buffer to receive data

len: Buffer size

Returns Number of bytes received

Description Receives data (maximum length of len) from the TCP socket s in
buf and returns the number of bytes received.

Includes xilsock.h

Parameters s: TCP socket descriptor

buf: Buffer containing data to be sent

len: Buffer size

Returns Number of bytes received

Description Sends data of length len in buf on the UDP socket s and returns the
number of bytes sent.

Includes xilsock.h

Parameters s: socket descriptor

Returns None

Description Closes the socket connection given by the descriptor s. This
function has to be called from the application for a smooth
termination of the connection after a connection is done with the
communication.

Includes xilsock.h

Parameters baseaddr: Base address of the MAC instance used in a system

Returns None

Description Initialize the MAC base address used in the libXil Net library to
baseaddr. This function has to be called at the start of a user
program with the base address used in the MHS file for ethernet
before starting to use other functions of libXil Net library.

Includes mac.h

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 203
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Functions of LibXilNet
R

void xilnet_eth_init_hw_addr (unsigned char* addr)

int xilnet_eth_recv_frame (unsigned char* frame, int len)

void xilnet_eth_send_frame (unsigned char* frame, int len, unsigned
char* dipaddr, void *dhaddr, unsigned short type)

Parameters addr: 48-bit colon separated hexa decimal ethernet address string

Returns None

Description Initialize the source ethernet address used in the libXil Net library
to addr. This function has to be called at the start of a user program
with a 48-bit, colon separated, hexa decimal ethernet address
string for source ethernet address before starting to use other
functions of libXil Net library. This address will be used as the
source ethernet address in all the ethernet frames.

Includes xilsock.h

mac.h

Parameters frame: Buffer for receiving an ethernet frame

len: Buffer size

Returns Number of bytes received

Description Receives an ethernet frame from the MAC, strips the ethernet
header and calls either ip or arp callback function based on frame
type. This function is called from accept /receive socket functions.
The function receives a frame of maximum length len in buffer
frame.

Includes xilsock.h

mac.h

Parameters frame: Buffer for sending a ethernet frame

len: Buffer size

dipaddr: Pointer to the destination ip address

dhaddr: Pointer to the destination ethernet address

type: Ethernet Frame type (IP or ARP)

Returns None

Description Creates an ethernet header for payload frame of length len, with
destination ethernet address dhaddr, and frame type, type. Sends
the ethernet frame to the MAC. This function is called from
receive/send (both versions) socket functions.

Includes xilsock.h

mac.h

http://www.xilinx.com

204 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 24: LibXil Net
R

void xilnet_eth_update_hw_tbl (unsigned char* frame, int proto)

void xilnet_eth_add_hw_tbl_entry (unsigned char* ip, unsigned char*
hw)

int xilnet_eth_get_hw_addr (unsigned char* ip)

Parameters frame: Buffer containing an ethernet frame

proto: Ethernet Frame type (IP or ARP)

Returns None

Description Updates the hardware address table with ipaddress/hardware
address pair from the ethernet frame pointed to by frame. proto is
used in identifying the frame (ip/arp) to get the ip address from the
ip/arp packet.,

Includes xilsock.h

mac.h

Parameters ip: Buffer contains ip address

hw: Buffer containing hardware address

Returns None

Description Add an ip/hardware pair entry given by ip/hw into the hardware
address table

Includes xilsock.h

mac.h

Parameters ip: Buffer containing ip address

Returns Index of entry in the hardware address table that matches the ip
address

Description Receives an ethernet frame from the MAC, strips the ethernet
header and calls either ip or arp callback function based on the
frame type. This function is called from accept /receive socket
functions. The function receives a frame of maximum length len in
buffer frame.

Includes xilsock.h

mac.h

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 205
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Functions of LibXilNet
R

void xilnet_eth_init_hw_addr_tbl (void)

int xilnet_arp (unsigned char* buf, int len)

void xilnet_arp_reply (unsigned char* buf, int len)

void xilnet_ip_init (unsigned char* ip_addr)

Parameters None

Returns None

Description Initializes Hardware Address Table. This function must be called
in the user program before using other functions of LibXilNet.

Includes xilsock.h

mac.h

Parameters buf: Buffer for holding the ARP packet

len: Buffer size

Returns 0

Description This is the arp callback function. It gets called by the ethernet
driver for arp frame type. The arp packet is copied onto the buf of
length len.

Includes xilsock.h

Parameters buf: Buffer containing the ARP reply packet

len: Buffer size

Returns None

Description This function sends the arp reply, present in buf of length len, for
arp requests. It gets called from the arp callback function for arp
requests.

Includes xilsock.h

Parameters ip_addr: Array of four bytes holding the ip address to be
configured

Returns None

Description This function initializes the ip address for the processor to the
address represented in ip_addr as a dotted decimal string. This
function must be called in the application before any
communication.

Includes xilsock.h

http://www.xilinx.com

206 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 24: LibXil Net
R

int xilnet_ip (unsigned char* buf, int len)

void xilnet_ip_header (unsigned char* buf, int len, int proto)

unsigned short xilnet_ip_calc_chksum (unsigned char* buf, int len,
int proto)

Parameters buf: Buffer for holding the IP packet

len: Buffer size

Returns 0

Description This is the ip callback function. It gets called by the ethernet
driver for ip frame type. The ip packet is copied onto the buf of
length len. This function calls in the appropriate protocol callback
function based on the protocol type.

Includes xilsock.h

Parameters buf: Buffer for the ip packet

len: Length of the ip packet

proto: Protocol Type in IP packet

Returns None

Description This function fills in the ip header from the start of buf. The ip
packet is of length len and proto is used to fill in the protocol field
of ip header. This function is called from the receive/send (both
versions) functions.

Includes xilsock.h

Parameters buf: Buffer containing ip packet

len: Length of the ip packet

Returns checksum calculated for the given ip packet

Description This function calculates the checksum for the ip packet buf of
length len. This function is called from the ip header creation
function.

Includes xilsock.h

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 207
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Functions of LibXilNet
R

int xilnet_udp (unsigned char* buf, int len)

void xilnet_udp_header (struct xilnet_udp_conn conn, unsigned char*
buf, int len)

unsigned short xilnet_udp_tcp_calc_chksum (unsigned char* buf, int
len, unsigned char* saddr, unsigned char* daddr, unsigned short
proto)

Parameters buf: Buffer containing the UDP packet

len: Length of the UDP packet

Returns Length of the data if packet is destined for any open UDP
connections else returns 0

Description This is the udp callback function which is called when ip receives
a udp packet. This function checks for a valid udp port, strips the
udp header, and demultiplexes from the various UDP connections
to select the right connection.

Includes xilsock.h

Parameters conn: UDP connection

buf: Buffer containing udp packet

len: Length of udp packet

Description This function fills in the udp header from the start of buf for the
UDP connection conn. The udp packet is of length len. This
function is called from the receivefrom/sendto socket functions.

Includes xilsock.h

Parameters buf: Buffer containing UDP/TCP packet

len: Length of udp/tcp packet

saddr: IP address of the source

daddr: Destination IP address

proto: Protocol Type (UDP or TCP)

Returns the

Returns Checksum calculated for the given udp/tcp packet

Description This function calculates and fills the checksum for the udp/tcp
packet buf of length len. The source ip address (saddr), destination
ip address(daddr) and protocol (proto) are used in the checksum
calculation for creating the pseudo header. This function is called
from either the udp header or the tcp header creation function.

Includes xilsock.h

http://www.xilinx.com

208 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 24: LibXil Net
R

void xilnet_udp_init_conns (void)

int xilnet_udp_open_conn (unsigned short port)

int xilnet_udp_close_conn (struct xilnet_udp_conn *conn)

int xilnet_tcp (unsigned char* buf, int len)

Parameters None

Returns None

Description Initialize all UDP connections so that the states of all the
connections specify that they are usable.

Includes xilsock.h

Parameters port: UDP port number

Returns Connection index if able to open a connection. If not returns -1.

Description Open a UDP connection with port number port.

Includes xilsock.h

Parameters conn: UDP connection

Returns 1 if able to close else returns -1.

Description Close a UDP connection conn.

Includes xilsock.h

Parameters buf: Buffer containing the TCP packet

len: Length of the TCP packet

Returns A status flag based on the state of the connection for which the
packet has been received

Description This is the tcp callback function which is called when ip receives a
tcp packet. This function checks for a valid tcp port and strips the
tcp header. It maintains a finite state machine for all TCP
connections. It demultiplexes from existing TCP open/listening
connections and performs an action corresponding to the state of
the connection. It returns a status flag which identifies the type of
TCP packet received (data or ack or fin).

Includes xilsock.h

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 209
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Functions of LibXilNet
R

void xilnet_tcp_header (struct xilnet_tcp_conn conn, unsigned char*
buf, int len)

void xilnet_tcp_send_pkt (struct xilnet_tcp_conn conn, unsigned
char* buf, int len, unsigned char flags)

void xilnet_tcp_init_conns (void)

int xilnet_tcp_open_conn (unsigned short port)

Parameters conn: TCP connection

buf: Buffer containing tcp packet

len: Length of tcp packet

Returns None

Description This function fills in the tcp header from the start of buf for the TCP
connection conn. The tcp packet is of length len. It sets the flags in
the tcp header.

Includes xilsock.h

Parameters conn: TCP connection

buf: Buffer containing TCP packet

len: Length of tcp packet

Returns The checksum calculated for the given udp/tcp packet

Description This function sends a tcp packet, given by buf of length len, with
flags (ack/rst/fin/urg/psh) from connection conn.

Includes xilsock.h

Parameters None

Returns None

Description Initialize all TCP connections so that the states of all the
connections specify that they are usable.

Includes xilsock.h

Parameters port: TCP port number

Returns Connection index if able to open a connection. If not returns -1.

Description Open a TCP connection with port number port.

Includes xilsock.h

http://www.xilinx.com

210 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 24: LibXil Net
R

int xilnet_tcp_close_conn (struct xilnet_tcp_conn *conn)

int xilnet_icmp (unsigned char* buf, int len)

void xilnet_icmp_echo_reply (unsigned char* buf, int len)

LibGen Customization
XilNet library is customized through LibGen tool. Here is a snippet from system.mss file
for specifying LibXilNet.

BEGIN DRIVER
PARAMETER HW_INSTANCE = myether
PARAMETER DRIVER_NAME = emac
PARAMETER DRIVER_VER = 1.00.b
PARAMETER LIBRARY = XilNet
END

BEGIN PROCESSOR
 PARAMETER HW_INSTANCE = PPC405_i
 PARAMETER DRIVER_NAME = cpu_ppc405
 PARAMETER DRIVER_VER = 1.00.a
 PARAMETER EXECUTABLE = ppc405_i/code/executable.elf
 PARAMETER COMPILER = powerpc-eabi-gcc
 PARAMETER ARCHIVER = powerpc-eabi-ar

Parameters conn: TCP connection

Returns 1 if able to close else returns -1.

Description Close a TCP connection conn.

Includes xilsock.h

Parameters buf: Buffer containing ICMP packet

len: Length of the ICMP packet

Returns 0

Description This is the icmp callback function which is called when ip receives
a icmp echo request packet (ping request). This function checks
only for a echo request and sends in an icmp echo reply.

Includes xilsock.h

Parameters buf: Buffer containing ICMP echo reply packet

len: Length of the ICMP echo reply packet

Returns None

Description This functions fills in the icmp header from the start of buf. The
icmp packet is of length len. It sends the icmp echo reply by calling
the ip, ethernet send functions. This function is called from the
icmp callback function.

Includes xilsock.h

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 211
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Using XilNet in Application
R

 PARAMETER DEFAULT_INIT=executable
 PARAMETER STDIN = myuart
 PARAMETER STDOUT = myuart
PARAMETER EXTRA_COMPILER_FLAGS = "-D_CONFIG_EMAC_"
END

LibXilNet can be used with either the regular ethernet core or the lite version, ethernetlite.

When used with the the regular emac core, the following line should be added to the
processor declaration block in system.mss

PARAMETER EXTRA_COMPILER_FLAGS = "-D_CONFIG_EMAC_"

When XilNet is used with ethernetlite core, the following line should be added to the
processor declaration block in system.ms.

PARAMETER EXTRA_COMPILER_FLAGS = "-D_CONFIG_EMACLITE_

Using XilNet in Application
In order to use the XilNet functions in your application, you need to do the following:

• Define “#include <net/xilsock.h>” in your C-file.

• XilNet is designed to be used with any Media Access Control Protocol (for example,
ethernet, SLIP, PPP. Currently it supports only ethernet protocol). In order to choose
the right MAC protocol, the compiler flag, -D_CONFIG_ETH_, should be added to
the compiler flags used for compiling your sources.

http://www.xilinx.com

212 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 24: LibXil Net
R

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 213
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

R

Chapter 25

LibXil Kernel

Summary
This chapter describes the kernel for Embedded processors, libXil Kernel.

Overview
LibXilKernel has the key features of RTOS like multi-tasking, priority-driven preemptive
scheduling, support for Inter-Process communication and synchronization. It is small,
modular, user customizable and can be used in any system configuration. It also has
system call interface, which allows a system to be built in different configurations.

Features
LibXilKernel supports the following features:

♦ Process Management

♦ Thread Management

♦ Interrupt Handling

♦ System Call Interface

♦ Semaphore

♦ Message Queue

♦ Shared Memory

♦ Dynamic Buffer Allocation

LibXilKernel Blocks
The kernel is highly modular. The user can select and customize the kernel modules that
are needed for the application.The customizing of the kernel is discussed in
“Customization” section in detail. Figure 25-1 shows the various modules of the Xilinx
embedded kernel.

http://www.xilinx.com

214 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 25: LibXil Kernel
R

Figure 25-1: Kernel Modules

Process Management
The kernel supports multi-processing and has two different scheduling schemes. A
process (thread) is an unit of scheduling in the kernel. Each process is associated with a
Process Control Block (PCB), that contains information about the process. A process is
created and handled using the APIs. Each process is in any of the following four states.

♦ PROC_NEW

♦ PROC_READY

♦ PROC_RUN

♦ PROC_WAIT

Figure 25-2 shows the process state flow in the system.

X9875

System Call Hander Interrupt Handler

Thread
Management

Message
Queue

XilNet

Integrated Modules Non-Integrated Modules

Process
Management

Shared
Memory

Xilfile

Semaphores

User Application
Webserver User Interrupts

System Call
Library

Timer Interrupt for
Context Switch

Dynamic Buffer
Management

XilMfs

LibXilKernel

Kernel Modules

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 215
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Process Management
R

Figure 25-2: Process State Flow

The kernel supports the following two scheduling scheme.

♦ Round Robin scheduling (SCHED_RR)

♦ Pre-emptive Priority scheduling (SCHED_PRIO)

The scheduling scheme is selected during system initialization and cannot be changed
dynamically.

Functions of Process Management
The following functions relate to process management. Most of the functions are optional
and can be selected during system initialization. Refer “Customizing Process
Management” section for more details.

void sys_init(void)

X9874

PROC_NEW

process_create
thread_create

process_exit
process_kill
thread_exit

PROC_READY

context switch

context switch
process_yield

process_unblock process_block

process_unblock

PROC_RUN

PROC_WAIT

Parameters None

Returns None

Description Initialize the system. This is called at the start of the system.

• Initialize the Process Vector Table

• Create an idle task (PID - 0)

• Create the initial set of processes

Includes sys/process.h

http://www.xilinx.com

216 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 25: LibXil Kernel
R

int process_create(unsigned int start_addr, int priority)

int process_exit(void)

int process_kill(char pid)

int process_status(int pid, p_stat *ps)

Parameters start_addr is the start address of the process

priority is the priority of the process in the system. The priority
cannot be changed when the process is active

Returns On success, return the PID of the new process

On failure, return -1

Description Create a new process. Allocate a new PID and Process Control
Block (PCB) for the process.The process is placed in the Ready
Queue.

Includes sys/process.h

Parameters None

Returns None

Description Remove the process from the system.

This function is optional.

Includes sys/process.h

Parameters pid is the PID of process to kill

Returns On success, return 0

On failure, return -1

Description Remove or kill the process with process ID, pid. This function
should be used with care, as any process can kill other process.

This function is optional.

Includes sys/process.h

Parameters pid is the PID of process

ps is the buffer where the process status is returned

Returns On success, return process status in ps

On failure, return NULL in ps

Description Get the process status. The status is returned in structure p_stat
which has the following fields:

♦ pid is the process ID

♦ state is the current state of the process

Includes sys/process.h

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 217
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Thread Management
R

int process_yield(void)

int process_getpriority(void)

int process_setpriority(int priority)

Thread Management
Threads are light weight processes.They share the same code segment with other threads
but have their own thread context, which is allocated when the threads are created. A
thread is handled in the same way as a process.

Functions of Thread Management
The following functions relate to thread management. The thread module is optional and
can be selected during system initialization. Refer “Customizing Thread Management”
section for more details.

Parameters None

Returns None

Description Yield the processor to the next process.The current process goes to
PROC_READY state.

This function is optional.

Includes sys/process.h

Parameters None

Returns Priority of the current process or thread

Description Get the priority of process or thread.

Includes sys/process.h

Parameters priority is the new priority of process or thread

Returns On success, return 0

On failure, return -1

Description Set the priority of current process or thread to new value.

Includes sys/process.h

http://www.xilinx.com

218 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 25: LibXil Kernel
R

int thread_create(void *funcp, unsigned int arg, int priority)

int thread_exit(void)

Interrupt Handling
The interrupt handler can be specified in the MSS file. Libgen generates the interrupt
controller routine for handling interrupts. The kernel only supports timer interrupt. This
interrupt is used as a timer tick to perform context switching between processes. The timer
interrupt is initialized and started during system start. The timer tick interval can be
customized by the user based on the application. Refer “Customization” section for more
details.

System call interface
The system can be built in two different configuration.

The user application can be built as part of the kernel; as a single application. Threads can
be used to support concurrent processing. In this case the kernels system call’s can be
directly accessed by the user application. Each system call name is prefixed by sys_ when
called directly. This configuration can be used if the system has only a single application
running.

If the system has multiple application’s running; then each application can be built as a
separate process. The kernel is built as a separate central process in this configuration. The
application can access the kernel services through the system call interface. The application
should be linked to libw.a library, which has the system call wrappers. The kernel services
can be configured during system initialization. Refer “Customization” section for more
details.

Parameters funcp is the start address of the function from which the thread
starts to execute

arg is the argument to the thread function

priority is the priority of the thread

Returns On success, return the thread ID (PID) of the new thread

On failure, return -1

Description Create a new thread. The thread starts its execution from the start
function.

This function is optional.

Includes sys/process.h

Parameters None

Returns None

Description Remove the current thread from the system

This function is optional.

Includes sys/process.h

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 219
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Semaphore
R

Semaphore
Semaphore is used for Inter-Process Communication and Synchronization. A semaphore
can be used as a binary or integer semaphore.The number of semaphores and the length of
semaphore wait queue can be configured during system initialization. Refer “Functions of
Semaphore” section for more details.

The semaphore structure is declared in sys/sema.h. It contains the following fields.

♦ sema_id - semaphore ID

♦ count - available resource count

♦ wait_q - queue of processes waiting for the resource

Functions of Semaphore
The following functions relate to semaphores. The semaphore module is optional and can
be configured during system initialization.

Note: Message Queue module uses semaphores, so this needs to be included if message
queue is to be used.

int sema_init(semaphore **sema, char count)

int sema_wait(semaphore *sema)

Parameters sema is the semaphore structure which is returned when a new
semaphore is created

count is the resource count for the semaphore

Returns On success, sema is assigned a new semaphore and 0 is returned

On failure, return -1

Description Initialize and create the semaphore.

Includes sys/sema.h

Parameters sema is the semaphore structure returned by calling sema_init

Returns On success, return 0

On failure, return -1

Description Get the semaphore resource. If the resource is available then get
the resource else block the process.

Includes sys/sema.h

http://www.xilinx.com

220 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 25: LibXil Kernel
R

int sema_trywait(semaphore *sema)

int sema_post(semaphore *sema)

int sema_destroy(semaphore *sema)

Message Queue
Message Queue is used for Inter-Process Communication. The message queue size and
number can be configured during system initialization. Refer “Customizing Message
Queue” section for more details. Message queue internally uses semaphores, so
semaphore module should be included to use message queue.

The message queue structure struct msgid_ds has the following fields.

♦ msgid - the message queue ID.

♦ key - key used to identify the message queue.

♦ msgsize - the message size in the queue.

♦ maxmsg - message queue maximum length.

Functions of Message Queue
The following functions relate to message queue. Message queue module is optional and
can be included when the system is built.

Parameters sema is the semaphore structure returned by calling sema_init

Returns On success, return 0

On failure, return -1

Description Try to get the semaphore resource. If the resource is available then
get the resource else return error. This is a non-blocking function.

Includes sys/sema.h

Parameters sema is the semaphore structure returned by calling sema_init

Returns On success, return 0

On failure, return -1

Description Free the semaphore resource or signal the availability of
semaphore resource. If any process is waiting on this resource,
then unblock the process.

Includes sys/sema.h

Parameters sema is the semaphore structure returned by calling sema_init

Returns On success, return 0

On failure, return -1

Description Release the semaphore.

Includes sys/sema.h

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 221
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Message Queue
R

int msgget(int key, int msgsize, int maxmsg, int flag)

int msgctl(int msgid, int cmd, struct msgid_ds *buf)

Parameters key is used to uniquely identify the Message Queue

msgsize is the size of the message

maxmsg is the maximum number of messages in the queue

flag is used to identify IPC options

Returns On success, return unique message queue ID

On failure, return -1

Description Create a new message queue, if none with the given key exists.

If flag = IPC_CREAT, then return existing message queue ID for
the given key

If flag = IPC_EXCL, then return -1 if message queue for the key
exists.

Includes sys/msg.h

sys/ipc.h

Parameters msgid is the message queue ID got from msgget

cmd is the command to the control function

buf is the buffer where the status is returned

Returns On success, return 0. Status is returned in buf for IPC_STAT

On failure, return -1

Description Control the message queue.

If cmd = IPC_STAT, the return the message queue status in buf

If cmd = IPC_RMID, then remove the message queue

Includes sys/msg.h

sys/ipc.h

http://www.xilinx.com

222 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 25: LibXil Kernel
R

int msgsend(int msgid, const void *msg, int nbytes, int flag)

int msgrecv(int msgid, void *msg, int nbytes, int type, int flag)

Shared Memory
Shared memory is used for Inter-Process Communication. The number of shared memory
and its size can be configured. Refer “Customizing Shared Memory” section for more
details.

Parameters msgid is the message queue ID got from msgget

msg is the message to send

nbytes is the size of the message

flag is used to specify IPC options

Returns On success, return 0

On failure, return -1

Description Send the message, if space is available on the message queue.

If queue is full, then wait for queue space.This is a blocking
function.

If flag = IPC_NOWAIT and queue is full, then return error.

Note: nbytes is not used. The message size specified during
msgget is used for a message.

Includes sys/msg.h

sys/ipc.h

Parameters msgid is the message queue ID got from msgget

msg is the buffer where the message is received

nbytes is the size of the message

type is used to specify receiving options

flag is used to specify IPC options

Returns On success, return 0

On failure, return -1

Description Receive the message in the message queue. The message is
received in a FIFO fashion. If queue is empty, then wait for
message in queue. If flag = IPC_NOWAIT and queue is empty,
then return error.

Note:

nbytes is not used. The message size specified during msgget is
used for a message.

type is not used.

Includes sys/msg.h

sys/ipc.h

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 223
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Shared Memory
R

The shared memiry structure struct shmid_ds has the following fields.

♦ shmid - shared memory ID.

♦ key - key to identify the shared memory segment.

♦ size - the size of the shared memory segment.

♦ nattach - number of processes currently attached to the shared memory.

Functions of Shared Memory
The following functions relate to shared memory. Shared memory module is optional and
can be included when the system is built.

int shmget(int key, int size, int flag)

int shmctl(int shmid, int cmd, struct shmid_ds *buf)

Parameters key is used to uniquely identify the shared memory

size is the size of the shared memory segment

flag is used to specify IPC options

Returns On success, return unique shared memory ID

On failure, return -1

Description Create a new shared memory segment, if none with the given key
exists.

If flag = IPC_CREAT, then return existing shared memory ID for
the given key

If flag = IPC_EXCL, then return -1 if shared memory for the key
exists.

Includes sys/shm.h

sys/ipc.h

Parameters shmid is the shared memory got from shmget

cmd is the command to the control function

buf is the buffer where the status is returned

Returns On success, return 0. Status is returned in buf for IPC_STAT

On failure, return -1

Description Control the shared memory.

If cmd = IPC_STAT, the return the shared memory status in buf

If cmd = IPC_RMID, then remove the shared memory

Includes sys/shm.h

sys/ipc.h

http://www.xilinx.com

224 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 25: LibXil Kernel
R

void *shmat(int shmid, void *addr, int flag)

int shmdt(void *addr)

Dynamic Buffer Management
The kernel provides a simple buffer management scheme, which can be used by
applications that need dynamic memory allocation. The application can use the standard
‘c’ memory allocation routines.

The user can select different memory blocks sizes and number of such memory blocks
required for the application. The memory blocks and the total memory needed by the
system is allocated statically and can be configured by the user. Refer , “Customizing
Dynamic Buffer Management” section for more details.

This method of buffer management provides user the flexibility of using dynamic memory
allocation functions. And also a simple, small and fast way of allocating memory.

Functions of Dynamic Buffer Management
The following functions relate to buffer allocation. This module is optional and can be
included during system initialization.

Parameters shmid is the shared memory got from shmget

addr is used to specify the location, to attach shared memory
segment

flag is used to specify IPC options

Returns On success, return the start address of the shared memory
segment

On failure, return NULL

Description Returns the shared memory segment for shmid.

Note: addr and flag arguments are not used.

Includes sys/shm.h

sys/ipc.h

Parameters addr is the shared memory address got from shmat

Returns On success, return 0

On failure, return -1

Description Detach the shared memory segment. The memory segment is not
removed from the system and can be attached later.

Includes sys/shm.h

sys/ipc.h

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 225
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Customization
R

void *bufmalloc(unsigned int size)

void buffree(void *mem)

Customization
LibXilKernel is highly customizable. Most of the modules and individual parameters can
be changed to suit the user application. The user can directly modify the config files and
build a system. Most configuration parameters are macros and some constant structures
definitions. The following files should be modified to configure the system.

♦ os_config.h

♦ config_param.h

♦ config_cparam.h

♦ sys/init.c

The libxilkernel source is in lib/unsupported/xilkernel of EDK installation. All file paths
are relative to this directory. The include files are in the include directory. Structures used
for configuring start processes, message queue, shared memory and dynamic buffer
management are declared in sys/init.h file. Following are the various structures:

struct _process_init - Information about the process.

♦ unsigned int p_start_addr - Start address of the process.

♦ int priority - Priority of the process.

struct _msgq_init - Information about each Message Queue.

♦ unsigned int msg_size - Size of the message.

♦ char msgq_len - Message queue length.

struct _shm_config - Information about each shared memory segment.

♦ unsigned int shm_size - Shared memory size.

struct _malloc_init - Information about the memory blocks.

♦ unsigned int mem_bsize - The size of the memory block.

♦ char n_blocks - Number of memory blocks to allocate.

The following sections describe customizing the different modules.

Parameters size is the size of memory to allocate

Returns On success, return the start address of memory block

On failure, return NULL

Description Allocate memory to the user process

Includes sys/mem.h

Parameters mem is the address of the memory block got from bufmalloc

Returns None

Description Free the memory allocated by bufmalloc.

Includes sys/mem.h

http://www.xilinx.com

226 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 25: LibXil Kernel
R

Customizing Process Management
The user can select the maximum number of processes in the system, the different
functions needed to handle processes, the scheduling types, priorities and other
parameters.

The os_config.h file can be used to configure the following.

MAX_PROCS - maximum number of processes in the system

MAX_READYQ - maximum size of Ready queue for each priority

CONFIG_PROCESS_EXIT - Include process_exit() function

CONFIG_PROCESS_KILL - Include process_kill() function

CONFIG_PROCESS_YIELD - Include process_yield() function

The following macros are used to configure the scheduling scheme.

TIMER_TICKS - Timer tick value used for context switching

SCHED_TYPE - Select the type of scheduling scheme. The two different scheduling
schemes and their configuration is specified in config_param.h file.

SCHED_RR - Round Robin Scheduling.

N_PRIO - Maximum number of priorities. This is always 1 for RR.

SCHED_PRIO - Pre-emptive Priority Scheduling.

N_PRIO - Maximum number of priorities.

MIN_PRIORITY - Lowest priority in the system.

MAX_PRIORITY - Highest priority in the system.

Processes can be statically created when the system is initialized. These processes can be
specified in the following manner.

• The process start address and priority is specified in the variable struct _process_init
start_p[], which is defined in sys/init.c.

• The macro N_INIT_PROCESS is defined (config_cparam.h) to be the number of
elements in start_p[] or the number of processes to create during system initialization.

Customizing Thread Management
The user can optionally select to include thread support, the maximum number of threads
and size of the thread context. The following macros are used for configuration.

CONFIG_THREAD_SUPPORT - Include thread support modules. Defined in
os_config.h.

MAX_THREADS - Maximum number of threads in the system. Defined in
config_param.h.

THREAD_BSS_BSIZE - Size of the thread context memory. Defined in
config_param.h.

Customizing Semaphore
The user can optionally select to include semaphores, maximum number of semaphores
and semaphore queue length. The following macros are used for configuration.

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 227
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Customization
R

CONFIG_SEMA - Include the semaphore module. Defined in os_config.h.

MAX_SEMA - Maximum number of semaphores in the system. Defined in
config_param.h.

MAX_SEMA_WAITQ - Maximum length of the semaphore wait queue. Defined
in config_param.h.

Customizing Message Queue
The user can optionally select to include message queue module, number of message
queue and size of each message queue. The following macros and structure definitions are
used for configuration.

CONFIG_MSGQ - Include message queue module. Defined in os_config.h.

The message size and message queue length is specified in the variable struct
_msgq_init msgq_config[], which is defined in sys/init.c.

N_MSGQ - is defined to be the number of elements in msgq_config[] or the
number of message queue in the system.Defined in config_cparam.h.

MSG_QUEUE_MSIZE - is the total memory size for all message queue’s in the
system. The value is calculated from the definition of variable msgq_config[].
Defined in config_cparam.h.

Customizing Shared Memory
The user can optionally select to include shared memory and size of each shared memory.
The following macros and structure definitions are used for configuration.

CONFIG_SHM - Include shared memory module. Defined in os_config.h.

The shared memory size is specified in the variable struct _shm_init shm_config[],
defined in sys/init.c.

N_SHM - is defined to be the number of elements in shm_config[] or the number
of shared memory segments in the system.Defined in os_config.h

SHM_MSIZE - is the total memory size for all shared memory segments in the
system. The value is calculated from the definition of variable shm_config[].
Defined in config_cparam.h

msg_size * msgq_len()
msgq_config[] elmts()∀

∑

shm_size()
shm_config[] elmts()∀

∑

http://www.xilinx.com

228 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 25: LibXil Kernel
R

Customizing Dynamic Buffer Management
The user can optionally select to include dynamic buffer management module, size of
memory blocks and number of memory blocks. The following macros and structure
definitions are used for configuration.

CONFIG_MALLOC - Include the buffer management module. Defined in
os_config.h

The memory block size and number of memory blocks needed is specified in the
variable struct _malloc_init malloc_config[]. Defined in sys/init.c

N_MALLOC_BLOCKS - is defined to be the number of elements in
malloc_config[] or the number of different sized memory blocks. Defined in
os_config.h

TOT_MALLOC_BLOCKS - is defined to be the total number of memory blocks in
the system. Its value is calculated from the definition of variable
malloc_config[].Defined in config_cparam.h

MALLOC_MSIZE - is the total memory size for all memory blocks in the
system.Its value is calculated from the definition of variable
malloc_config[].Defined in config_cparam.h

Memory footprint
The size of libxilkernel depends on the user configuration. It is small in size and can fit in
different configurations. The following is the memory size output from GNU size utility
for the kernel.

- Basic kernel functionality with multi-tasking - ~3k

- Full kernel functionality with all modules included - ~8k

n_blocks()
malloc_config[] elmts()∀

∑

mem_bsize * n_blocks()
malloc_config[] elmts()∀

∑

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 229
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

R

Chapter 26

Device Drivers

Summary
This chapter describes device drivers present in the EDK.

Overview
The purpose of this chapter is to describe the Xilinx device driver environment. This
includes the device driver architecture, the Application Programmer Interface (API)
conventions, the scheme for configuring the drivers to work with reconfigurable hardware
devices, and the infrastructure that is common to all device drivers.

This document is intended for the software engineer that is using the Xilinx device drivers.
It contains design and implementation details necessary for using the drivers.

Goals and Objectives
The Xilinx device drivers are designed to meet the following goals and objectives:

• Provide maximum portability

The device drivers are provided as ANSI C source code. ANSI C was chosen to
maximize portability across processors and development tools. Source code is
provided both to aid customers in debugging their applications as well as allow
customers to modify or optimize the device driver if necessary.

A layered device driver architecture additionally separates device communication
from processor and Real Time Operating System (RTOS) dependencies, thus providing
portability of core device driver functionality across processors and operating systems.

• Support FPGA configurability

Since FPGA-based devices can be parameterized to provide varying functionality, the
device drivers must support this varying functionality. The configurability of device
drivers should be supported at compile-time and at run-time. Run-time
configurability provides the flexibility needed for future dynamic system
reconfiguration.

In addition, a device driver supports multiple instances of the device without code
duplication for each instance, while at the same time managing unique characteristics
on a per instance basis.

• Support simple and complex use cases

Device drivers are needed for simple tasks such as board bring-up and testing, as well
as complex embedded system applications. A layered device driver architecture

http://www.xilinx.com

230 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 26: Device Drivers
R

provides both simple device drivers with minimal memory footprints and more
robust, full-featured device drivers with larger memory footprints.

• Ease of use and maintenance

Xilinx makes use of coding standards and provides well-documented source code in
order to give developers (i.e., customers and internal development) a consistent view
of source code that is easy to understand and maintain. In addition, the API for all
device drivers is consistent to provide customers a similar look and feel between
drivers.

Note: A detailed description of the Xilinx driver functions are given in the documentation area of the
EDK installation (XILINX_EDK/doc/xilinx_driver_api)

Device Driver Architecture
The architecture of the device drivers is designed as a layered architecture as shown in
Figure . The layered architecture accommodates the many use cases of device drivers
while at the same time providing portability across operating systems, toolsets, and
processors. The layered architecture provides seamless integration with an RTOS (Layer 2),
high-level device drivers that are full-featured and portable across operating systems and
processors (Layer 1), and low-level drivers for simple use cases (Layer 0). The following
paragraphs describe each of the layers. The user can choose to use any and all layers.

Figure 26-1: Layered Architecture

Layer 2, RTOS Adaptation

This layer consists of adapters for device drivers. An adapter converts a Layer 1 device
driver interface to an interface that matches the requirements of the device driver scheme
for an RTOS. Unique adapters may be necessary for each RTOS. Adapters typically have
the following characteristics.

• Communicates directly to the RTOS and the Layer 1, high-level driver.

• References functions and identifiers specific to the RTOS. This layer is therefore not
portable across operating systems.

• Can use memory management

• Can use RTOS services such as threading, inter-task communication, etc.

Layer 2, RTOS Adaptation

Layer 1, High Level Drivers

 Layer 0, Low Level Drivers

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 231
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Device Driver Architecture
R

• Can be simple or complex depending on the RTOS interface and requirements for the
device driver

Layer 1, High Level Drivers
This layer consists of high level device drivers. They are implemented as macros and
functions and are designed to allow a developer to utilize all features of a device. These
high-level drivers are independent of operating system and processor, making them
highly portable. They typically have the following characteristics.

• Consistent and high-level (abstract) API that gives the user an “out-of-the-box”
solution

• No RTOS or processor dependencies, making them highly portable

• Run-time error checking such as assertion of input arguments. Also provides the
ability to compile away asserts.

• Comprehensive support of device features

• Abstract API that isolates the API from hardware device changes

• Supports device configuration parameters to handle FPGA-based parameterization of
hardware devices.

• Supports multiple instances of a device while managing unique characteristics on a
per instance basis.

• Polled and interrupt driven I/O

• Non-blocking function calls to aid complex applications

• May have a large memory footprint

• Typically provides buffer interfaces for data transfers as opposed to byte interfaces.
This makes the API easier to use for complex applications.

• Does not communicate directly to Layer 2 adapters or application software. Utilizes
asynchronous callbacks for upward communication.

Layer 0, Low Level Drivers
This layer consists of low level device drivers. They are implemented as macros and
functions and are designed to allow a developer to create a small system, typically for
internal memory of an FPGA. They typically have the following characteristics.

• Simple, low-level API

• Small memory footprint

• Little to no error checking is performed

• Supports primary device features only

• Minimal abstraction such that the API typically matches the device registers. The API
is therefore less isolated from hardware device changes.

• No support of device configuration parameters

• Supports multiple instances of a device with base address input to the API

• None or minimal state is maintained

• Polled I/O only

• Blocking functions for simple use cases

http://www.xilinx.com

232 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 26: Device Drivers
R

• Typically provides byte interfaces but can provide buffer interfaces for packet-based
devices.

Object-Oriented Device Drivers
In addition to the layered architecture, it is important that the user understand the
underlying design of the device drivers. The device drivers are designed using an object-
oriented methodology. The methodology is based upon components and is described in
the following paragraphs. This approach pertains particularly to the Layer 1, high-level
device drivers.

Component Definition

A component is a logical partition of the software which provides a functionality similar to
one or more classes in C++. Each component provides a set of functions that operate on the
internal data of the component. In general, components are not allowed access to the data
of other components. A device driver is typically designed as a single component. A
component may consist of one or more files.

Component Implementation

The component contains data variables which define the set of values that instances of that
type can hold and a set of functions that operate on those data variables. Components must
utilize the functions of other components in order to access the data of other components,
rather than accessing component data directly. Components provide data abstraction and
encapsulation by gathering the state of an object and the functions that operate on that
object into a single unit and by denying direct access to its data members.

Component Data Variables

The primary mechanism for implementing a component in C is the structure. The data
variables for a component are grouped in a single structure such that instances of the
component each have their own data. The structure and the prototypes for all component
functions are declared in the header file which is shared between the implementing
component and other components which utilize it. A pointer to this structure, referred to
as the instance pointer, is passed into each function of the component which operates on
the instance data.

Component Interface

Each component has a set of functions which are collectively referred to as the component
interface. Every function of a component which operates on the instance data utilizes a
pointer, named InstancePtr, to an instance of a component as the first argument. This
argument emulates the this pointer in C++ and allows the component function to
manipulate the instance data.

Component Instance

An instance of a component is created when a variable is created using the component data
type. An instance of a component maps to each physical hardware device. Each instance
may have unique characteristics such as it’s memory mapped address and specific device
capabilities.

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 233
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

API and Naming Conventions
R

Component Example

The following code example illustrates a device driver component.

/* the device component data type */

typedef struct
{
 Xuint32 BaseAddress; /* component data variables */
 Xuint32 IsReady;
 Xuint32 IsStarted;
} XDevice;

/* create an instance of a device */

XDevice DeviceInstance;

/* device component interfaces */

XStatus XDevice_Initialize(XDevice *InstancePtr, Xuint16 DeviceId);
XStatus XDevice_Start(XDevice *InstancePtr);

API and Naming Conventions

External Identifiers
External identifiers are defined as those items that are accessible to all other components in
the system (global) and include functions, constants, typedefs, and variables.

An ’X’ is prepended to each Xilinx external so it does not pollute the global name space,
thus reducing the risk of a name conflict with application code. The names of externals are
based upon the component in which they exist. The component name is prepended to each
external name. An underscore character always separates the component name from the
variable or function name.

External Name Pattern:

X<component name>_VariableName;
X<component name>_FunctionName(ArgumentType Argument)
X<component name>_TypeName;

Constants are typically defined as all uppercase and prefixed with an abbreviation of the
component name. For example, a component named XUartLite (for the UART Lite device
driver) would have constants that begin with XUL_, and a component named XEmac (for
the Ethernet 10/100 device driver) would have constants that begin with XEM_. The
abbreviation utilizes the first three uppercase letters of the component name, or the first
three letters if there are only two uppercase letters in the component name.

File Naming Conventions
The file naming convention utilizes long file names and is not limited to 8 characters as
imposed by the older versions of the DOS operating system.

Component Based Source File Names

Source file names are based upon the name of the component implemented within the
source files such that the contents of the source file are obvious from the file name. All file

http://www.xilinx.com

234 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 26: Device Drivers
R

names must begin with the lowercase letter “x” to differentiate Xilinx source files. File
extensions .h and .c are utilized to distinguish between header source files and
implementation source files.

Implementation Source Files (*.c)

The C source files contain the implementation of a component. A component is typically
contained in multiple source files to allow parts of the component to be user selectable.

Source File Naming Pattern:

x<component name>.c main source file
x<component name>_functionality.c secondary source file

Header Source Files (*.h)

The header files contain the interfaces for a component. There will always be external
interfaces which is what an application that utilizes the component invokes.

• The external interfaces for the high level drivers (Layer 1) are contained in a header
file with the file name format x<component name>.h.

• The external interfaces for the low level drivers (Layer 0) are contained in a header file
with the file name format x<component name>_l.h.

In the case of multiple C source files which implement the class, there may also be a header
file which contains internal interfaces for the class. The internal interfaces allow the
functions within each source file to access functions in the another source file.

• The internal interfaces are contained in a header file with the file name format
x<component name>_i.h.

Device Driver Layers

Layer 1 and Layer 0 device drivers (i.e., high-level and low-level drivers) are typically
bundled together in a directory. The Layer 0 device driver files are named x<component
name>_l.h and x<component name>_l.c. The “_l” indicates low-level driver. Layer 2 RTOS
adapter files include the word “adapter” in the file name, such as x<component
name>_adapter.h and x<component name>_adapter.c. These are typically stored in a different
directory name (e.g., one specific to the RTOS) than the device driver files.

Example File Names

The following source file names illustrates an example which is complex enough to utilize
multiple C source files.

xuartns550.c Main implementation file
xuartns550_intr.c Secondary implementation file for interrupt
handling
xuartns550.h High level external interfaces header file
xuartns550_i.h Internal identifiers header file
xuartns550_l.h Low level external interfaces header file
xuartns550_l.c Low level implementation file
xuartns550_g.c Generated file controlling parameterized
instances

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 235
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

API and Naming Conventions
R

and,

xuartns550_sio_adapter.c VxWorks Serial I/O (SIO) adapter

High Level Device Driver API
High level device drivers are designed to have an API which includes a standard API
together with functions that may be unique to that device. The standard API provides a
consistent interface for Xilinx drivers such that the effort to use multiple device drivers is
minimized. An example API follows.

Standard Device Driver API

Initialize

This function initializes an instance of a device driver. Initialization must be performed
before the instance is used. Initialization includes mapping a device to a memory-mapped
address and initialization of data structures. It maps the instance of the device driver to a
physical hardware device. The user is responsible for allocating an instance variable using
the driver’s data type, and passing a pointer to this variable to this and all other API
functions.

Reset

This function resets the device driver and device with which it is associated. This function
is provided to allow recovery from exception conditions. This function resets the device
and device driver to a state equivalent to after the Initialize() function has been called.

SelfTest

This function performs a self-test on the device driver and device with which it is
associated. The self-test verifies that the device and device driver are functional.

Optional Functions

Each of the following functions may be provided by device drivers.

Start

This function is provided to start the device driver. Starting a device driver typically
enables the device and enables interrupts. This function, when provided, must be called
prior to other data or event processing functions.

Stop

This function is provided to stop the device driver. Stopping a device driver typically
disables the device and disables interrupts.

GetStats

This function gets the statistics for the device and/or device driver.

ClearStats

This function clears the statistics for the device and/or device driver.

http://www.xilinx.com

236 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 26: Device Drivers
R

InterruptHandler

This function is provided for interrupt processing when the device must handle interrupts.
It does not save or restore context. The user is expected to connect this interrupt handler to
their system interrupt controller. Most drivers will also provide hooks, or callbacks, for the
user to be notified of asynchronous events during interrupt processing (e.g., received data
or device errors).

Configuration Parameters
Standard device driver API functions (of Layer 1, high-level drivers) such as Initialize()
and Start() require basic information about the device such as where it exists in the system
memory map or how many instances of the device there are. In addition, the hardware
features of the device may change because of the ability to reconfigure the hardware within
the FPGA. Other parts of the system such as the operating system or application may need
to know which interrupt vector the device is attached to. For each device driver, this type
of information is distributed across two files: xparameters.h and x<component name>_g.c.

Typically, these files are automatically generated by a system generation tool based on
what the user has included in their system. However, these files can be hand coded to
support internal development and integration activities. Note that the low-level drivers of
Layer 0 do not require or make use of the configuration information defined in these two
files. Other than the memory-mapped location of the device, the low-level drivers are
typically fixed in the hardware features they support.

xparameters.h
This source file centralizes basic configuration constants for all drivers within the system.
Browsing this file gives the user an overall view of the system architecture. The device
drivers and Board Support Package (BSP) utilize the information contained here to
configure the system at runtime. The amount of configuration information varies by
device, but at a minimum the following items should be defined for each device:

• Number of device instances

• Device ID for each instance

• A Device ID uniquely identifies each hardware device which maps to a device driver.
A Device ID is used during initialization to perform the mapping of a device driver to
a hardware device. Device IDs are typically assigned either by the user or by a system
generation tool. It is currently defined as a 16-bit unsigned integer.

• Device base address for each instance

• Device interrupt assignment for each instance if interrupts can be generated.

File Format and Naming Conventions

Every device must have the following constant defined indicating how many instances of
that device are present in the system (note that <component name> does not include the
preceding “X”):

XPAR_X<component name>_NUM_INSTANCES

Each device instance will then have multiple, unique constants defined. The names of the
constants typically match the hardware configuration parameters, but can also include
other constants. For example, each device instance has a unique device identifier

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 237
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Configuration Parameters
R

(DEVICE_ID), the base address of the device’s registers (BASEADDR), and the end
address of the device’s registers (HIGHADDR).

XPAR_<component name>_<component instance>_DEVICE_ID
XPAR_<component name>_<component instance>_BASEADDR
XPAR_<component name>_<component instance>_HIGHADDR

<component instance> is typically a number between 0 and (XPAR_X<component
name>_NUM_INSTANCES - 1). Note that the system generation tools may create these
constants with a different convention than described here. Other device specific constants
are defined as needed:

XPAR_<component name>_<component instance>_<item description>

When the device specific constant applies to all instances of the device:

XPAR_<component name>_<item description>

For devices that can generate interrupts, a separate section within xparameters.h is used to
store interrupt vector information. While the device driver implementation files do not
utilize this information, their RTOS adapters, BSP files, or user application code will
require them to be defined in order to connect, enable, and disable interrupts from that
device. The naming convention of these constants varies whether an interrupt controller is
part of the system or the device hooks directly into the processor.

For the case where an interrupt controller is considered external and part of the system, the
naming convention is as follows:

XPAR_INTC_<instance>_<component name>_<component instance>_VEC_ID

Where INTC is the name of the interrupt controller component, <instance> is the
component instance of the INTC, <component name> and <component instance> is the
name and instance number of the component connected to the controller. Of course
XPAR_INTC must have the other required constants DEVICE_ID, BASEADDR, etc. This
convention supports single and cascaded interrupt controller architectures.

For the case where an interrupt controller is considered internal to a processor, the naming
convention changes:

XPAR_<proc name>_<component name>_<component instance>_VEC_ID

Where <proc name> is the name of the processor.

x<component name>_g.c
The header file x<component name>.h defines the type of a configuration structure. The type
will contain all of the configuration information necessary for an instance of the device.
The format of the data type is as follows:

typedef struct
{
 Xuint16 DeviceID;
 Xuint32 BaseAddress;

 /* Other device dependent data attributes */

} X<component name>_Config;

http://www.xilinx.com

238 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 26: Device Drivers
R

The implementation file x<component name>_g.c defines an array of structures of
X<component name>_Config type. Each element of the array represents an instance of the
device, and contains most of the per-instance XPAR constants from xparameters.h.

Example
To help illustrate the relationships between these configuration files, an example is
presented that contains a single interrupt controller whose component name is INTC and
a single UART whose component name is (UART). Only xintc.h and xintc_g.c are
illustrated, but xuart.h and xuart_g.c would be very similar.

xparameters.h

/* Constants for INTC */
XPAR_INTC_NUM_INSTANCES 1
XPAR_INTC_0_DEVICE_ID 21
XPAR_INTC_0_BASEADDR 0xA0000100

/* Interrupt vector assignments for this instance */
XPAR_INTC_0_UART_0_VEC_ID 0

/* Constants for UART */
XPAR_UART_NUM_INSTANCES 1
XPAR_UART_0_DEVICE_ID 2
XPAR_UART_0_BASEADDR 0xB0001000

xintc.h

typedef struct
{
 Xuint16 DeviceID;
 Xuint32 BaseAddress;

} XIntc_Config;

xintc_g.c

static XintcConfig[XPAR_INTC_NUM_INSTANCES] =
{
{

XPAR_INTC_0_DEVICE_ID,
XPAR_INTC_0_BASEADDR,

}
}

Common Driver Infrastructure

Source Code Documentation
The comments in the device driver source code contain doxygen tags for javadoc-style
documentation. Doxygen is a javadoc-like tool that works on C language source code. These
tags typically start with “@” and provide a means to automatically generate HTML-based
documentation for the device drivers. The HTML documentation contains a detailed
description of the API for each device driver.

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 239
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

Common Driver Infrastructure
R

Driver Versions
Some device drivers may have multiple versions. Device drivers are usually versioned
when the API changes, either due to a significant hardware change or simply restructuring
of the device driver code. The version of a device driver is only indicated within the
comment block of a device driver file. A modification history exists at the top of each file
and contains the version of the driver. An example of a device driver version is “1.00b”,
where 1 is the major revision, 00 is the minor revision, and b is a subminor revision. The
hardware device and its device driver must match major and minor revisions in order to be
compatible.

Currently, the user is not allowed to link two versions of the same device driver into their
application. The versions of a device driver use the same function and file names, thereby
preventing them from being linked into the same link image. As multiple versions of
drivers are supported, the version name will be included in the driver file names, as in
x<component>_v1_00_a.c.

Primitive Data Types
The primitive data types provided by C are minimized by the device drivers because they
are not guaranteed to be the same size across processor architectures. Data types which are
size specific are utilized to provide portability and are contained in the header file
xbasic_types.h.

Device I/O
The method by which I/O devices are accessed varies between processor architectures. In
order for the device drivers to be portable, this difference is isolated such that the driver for
a device will work for many microprocessor architectures with minimal changes. A device
I/O component, XIo, in xio.c and xio.h source files, contains functions and/or macros
which provide access to the device I/O and are utilized for portability.

Error Handling
Errors that occur within device drivers are propagated to the application. Errors can be
divided into two classes, synchronous and asynchronous. Synchronous errors are those
that are returned from function calls (either as return status or as a parameter), so
propagation of the error occurs when the function returns. Asynchronous errors are those
that occur during an asynchronous event, such as an interrupt and are handled through
callback functions.

Return Status

In order to indicate an error condition, functions which include error processing return a
status which indicates success or an error condition. Any other return values for such
functions are returned as parameters. Error codes are standardized in a 32-bit word and
the definitions are contained in the file xstatus.h.

Asserts

Asserts are utilized in the device drivers to allow better debugging capabilities. Asserts are
used to test each input argument into a function. Asserts are also used to ensure that the
component instance has been initialized.

http://www.xilinx.com

240 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 26: Device Drivers
R

Asserts may be turned off by defining the symbol NDEBUG before the inclusion of the
header file xbasic_types.h.

The assert macro is defined in xbasic_types.h and calls the function XAssert when an assert
condition fails. This function is designed to allow a debugger to set breakpoints to check
for assert conditions when the assert macro is not connected to any form of I/O.

The XAssert function calls a user defined function and then enters an endless loop. A user
may change the default behavior of asserts such that an assert condition which fails does
return to the user by changing the initial value of the variable XWaitInAssert to XFALSE in
xbasic_types.c. A user defined function may be defined by initializing the variable
XAssertCallbackRoutine to the function in xbasic_types.c.

Communication with the Application
Communication from an application to a device driver is implemented utilizing standard
function calls. Asynchronous communication from a device driver to an application is
accomplished with callbacks using C function pointers. It should be noted that callback
functions are called from an interrupt context in many drivers. The application function
called by the asynchronous callback must minimize processing to communicate to the
application thread of control.

Reentrancy and Thread Safety
The device drivers are designed to be reentrant, but may not be thread-safe due to shared
resources.

Interrupt Management
The device drivers use device-specific interrupt management rather than processor-
specific interrupt management.

Multi-threading & Dynamic Memory Management
The device drivers are designed without the use of multi-threading and dynamic memory
management. This is expected to be accomplished by the application or by an RTOS
adapter.

Cache & MMU Management
The device drivers are designed without the use of cache and MMU management. This is
expected to be accomplished by the application or by an RTOS adapter.

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 241
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

R

Chapter 27

Stand-Alone Board Support Package

Overview
The Board Support Package (BSP) is a set of software modules used to access processor
specific functions. The stand-alone BSP is used when an application accesses
board/processor features directly (without an intervening Operating System layer).

MicroBlaze BSP
When the user system contains a MicroBlaze, and no Operating System, the Library
Generator automatically builds the Stand-Alone BSP in the project library libxil.a.

Interrupt Handling
The microblaze_enable_interrupts.s and
microblaze_disable_interrupts.s files contain functions to enable and disable
interrupts on the MicroBlaze.

void microblaze_enable_interrupts(void)

This function enables interrupts on the MicroBlaze. When the MicroBlaze starts up,
interrupts are disabled. Interrupts must be explicitly turned on using this function.

void microblaze_disable_interrupts(void)

This function disables interrupts on the MicroBlaze. This function may be called when
entering a critical section of code where a context switch is undesirable.

PowerPC BSP
When the user system contains a PowerPC, and no Operating System, the Library
Generator automatically builds the Stand-Alone BSP in the project library libxil.a.

The Stand-Alone BSP contains boot code, cache, file and memory management,
configuration, exception handling, time and processor specific include functions.

Boot Code
The boot.S, crt0.S, and eabi.S files contain a minimal set of code for initializing the
processor and starting an application.

http://www.xilinx.com

242 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 27: Stand-Alone Board Support Package
R

boot.S

Code in the boot.S consists of the two sections boot and boot0. The boot section contains
only one instruction that is labeled with _boot. During the link process, this instruction is
mapped to the reset vector and the _boot label marks the application's entry point. The
boot instruction is a jump to the _boot0 label. The _boot0 label must reside within a 23-bit
address space of the _boot label. It is defined in the boot0 section. The code in the boot0
section calculates the 32-bit address of the _start label and jumps to it.

crt0.S

Code in the crt0.S file starts executing at the _start label. It initializes the .sbss and .bss
sections to zero, as required by the ANSI C specification, sets up the stack, initializes some
processor registers, and calls the main() function.

The program remains in an endless loop on return from main().

eabi.S

When an application is compiled and linked with the -msdata=eabi option, GCC inserts a
call to the __eabi label at the beginning of the main() function. This is the place where
register R13 must be set to point to the .sdata and .sbss data sections and register R2 must
be set to point to the .sdata2 read-only data section.

Code in eabi.S sets these two registers to the correct values. The _SDA_BASE_ and
_SDA2_BASE_ labels are generated by the linker.

Cache
The xcache_l.c file and corresponding xcache_l.h include file provide access to
cache and cache-related operations.

void XCache_WriteCCR0(unsigned int val);

The XCache_WriteCCR0() function writes an integer value to the CCR0 register. Below is a
sample code sequence. Before writing to this register, the instruction cache must be
enabled to prevent a lockup of the processor core. After writing the CCR0, the instruction
cache can be disabled, if not needed.

...
XCache_EnableICache(0x80000000) /* enable instruction cache for first
128 MB memory region */
XCache_WriteCCR0(0x2700E00) /* enable 8 word pre-fetching */
XCache_DisableICache() /* disable instruction cache */
...

void XCache_EnableDCache(unsigned int regions);

The XCache_EnableDCache() function enables the data cache for a specific memory region.
Each bit in the regions parameter represents 128 MB of memory.

A value of 0x80000000 enables the data cache for the first 128 MB of memory
(0 - 0x7FFFFFF). A value of 0x1 enables the data cache for the last 128 MB of memory
(0xF8000000 - 0xFFFFFFFF).

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 243
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

PowerPC BSP
R

void XCache_DisableDCache(void);

The XCache_DisableDCache() function disables the data cache for all memory regions.

void XCache_FlushDCacheLine(unsigned int adr);

The XCache_FlushDCacheLine() function flushes and invalidates the data cache line that
contains the address specified by the adr parameter. A subsequent data access to this
address results in a cache miss and a cache line refill.

void XCache_StoreDCacheLine(unsigned int adr);

The XCache_StoreDCacheLine() function stores in memory the data cache line that
contains the address specified by the adr parameter. A subsequent data access to this
address results in a cache hit if the address was already cached; otherwise, it results in a
cache miss and cache line refill.

void XCache_EnableICache(unsigned int regions);

The XCache_EnableICache() function enables the instruction cache for a specific memory
region. Each bit in the regions parameter represents 128 MB of memory.

A value of 0x80000000 enables the instruction cache for the first 128 MB of memory
(0 - 0x7FFFFFF). A value of 0x1 enables the instruction cache for the last 128 MB of memory
(0xF8000000 - 0xFFFFFFFF).

void XCache_DisableICache(void);

The XCache_DisableICache() function disables the instruction cache for all memory
regions.

void XCache_InvalidateICache(void);

The XCache_InvalidateICache() function invalidates the whole instruction cache.
Subsequent instructions produce cache misses and cache line refills.

void XCache_InvalidateICacheLine(unsigned int adr);

The XCache_InvalidateICacheLine() function invalidates the instruction cache line that
contains the address specified by the adr parameter. A subsequent instruction to this
address produces a cache miss and a cache line refill.

Exception Handling
This section documents the exception handling API that is provided in the Board Support
Package. For an in-depth explanation on how exceptions and interrupts work on the
PPC405, please refer to the chapter “Exceptions and Interrupts” in the PPC User’s Manual.

The exception handling API consists of a set of the files xvectors.S, xexception_l.c,
and the corresponding header file xexception_l.h.

void XExc_Init(void);

This function sets up the interrupt vector table and registers a “do nothing” function for
each exception. This function has no parameters and does not return a value.

http://www.xilinx.com

244 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 27: Stand-Alone Board Support Package
R

This function must be called before registering any exception handlers or enabling any
interrupts. When using the exception handler API, this function should be called at the
beginning of your main() routine.

IMPORTANT: If you are not using the default linker script, you need to reserve memory
space for storing the vector table in your linker script. The memory space must begin on a
64k boundary. The linker script entry should look like this example:

.vectors :
 {
 . = ALIGN(64k);
 *(.vectors)
 }

For further information on linker scripts, please refer to the Linker documentation.

void XExc_RegisterHandler(Xuint8 ExceptionId, XExceptionHandler
Handler, void *DataPtr);

This function is used to register an exception handler for a specific exception. It does not
return a value. Please refer to Table 27-1 for a list of parameters.

Table 27-1: Exception Handler Parameters

Parameter Name Parameter Type Description

ExceptionId Xuint8 Exception to which this handler
should be registered. The type and the
values are defined in the header file
xexception_l.h. Please refer to
Table 27-2 for possible values.

Handler XExceptionHandler Pointer to the exception handling
function

DataPtr void * User value to be passed when the
handling function is called

Table 27-2: Registered Exception Types and Values

Exception Type Value

XEXC_ID_JUMP_TO_ZERO 0

XEXC_ID_MACHINE_CHECK 1

XEXC_ID_CRITICAL_INT 2

XEXC_ID_DATA_STORAGE_INT 3

XEXC_ID_INSTUCTION_STORAGE_INT 4

XEXC_ID_NON_CRITICAL_INT 5

XEXC_ID_ALIGNMENT_INT 6

XEXC_ID_PROGRAM_INT 7

XEXC_ID_FPU_UNAVAILABLE_INT 8

XEXC_ID_SYSTEM_CALL 9

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 245
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

PowerPC BSP
R

The function provided as the Handler parameter must have the following function
prototype:

typedef void (*XExceptionHandler)(void * DataPtr);

This prototype is declared in the xexception_l.h header file.

When this exception handler function is called, the parameter DataPtr will contain the
same value as you provided when you registered the handler.

void XExc_RemoveHandler(Xuint8 ExceptionId)

This function is used to deregister a handler function for a given exception. For possible
values of parameter ExceptionId, please refer to Table 27-2.

void XExc_mEnableExceptions (EnableMask);

This macro is used to enable exceptions. It must be called after initializing the vector table
with function exception_Init and registering exception handlers with function
XExc_RegisterHandler. The parameter EnableMask is a bitmask for exceptions to be
enabled. The EnableMask parameter may have the values XEXC_CRITICAL,
XEXC_NON_CRITICAL or XEXC_ALL.

void XExc_mDisableExceptions (DisableMask);

This macro is called to disable exceptions. The parameter DisableMask is a bitmask for
exceptions to be disabled.The DisableMask parameter may have the values
XEXC_CRITICAL, XEXC_NON_CRITICAL or XEXC_ALL.

Files
File support is limited to the stdin and stdout streams. In such an environment, the
following functions do not make much sense:

• open() (in open.c)

• close() (in close.c)

• fstat() (in fstat.c)

• unlink() (in unlink.c)

• lseek() (in lseek.c)

These files are included for completeness and because they are referenced by the C library.

XEXC_ID_APU_AVAILABLE 10

XEXC_ID_PIT_INT 11

XEXC_ID_FIT_INT 12

XEXC_ID_WATCHDOG_TIMER_INT 13

XEXC_ID_DATA_TLB_MISS_INT 14

XEXC_ID_INSTRUCTION_TLB_MISS_INT 15

XEXC_ID_DEBUG_INT 16

Table 27-2: Registered Exception Types and Values

Exception Type Value

http://www.xilinx.com

246 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 27: Stand-Alone Board Support Package
R

int read(int fd, char *buf, int nbytes);

The read() function in read.c reads nbytes bytes from the standard input by calling
inbyte(). It blocks until all characters are available, or the end of line character is read.
Read() returns the number of characters read. The parameter fd is ignored.

int write(int fd, char *buf, int nbytes);

The write() function in write.c writes nbytes bytes to the standard output by calling
outbyte(). It blocks until all characters have been written. Write() returns the number of
characters written. The parameter fd is ignored.

int isatty(int fd);

The isatty() function in isatty.c reports if a file is connected to a tty. This function
always returns 1, since only the stdin and stdout streams are supported.

Memory Management

char *sbrk(int nbytes);

The sbrk() function in the sbrk.c file allocates nbytes of heap and returns a pointer to
that piece of memory. This function is called from the memory allocation functions of the C
library.

Process
The functions getpid() in getpid.c and kill() in kill.c are included for completeness
and because they are referenced by the C library.

Processor-Specific Include Files
The xreg405.h include file contains the register numbers and the register bits for the PPC
405 processor.

The xpseudo-asm.h include file contains the definitions for the most often used inline
assembler instructions.

These inline assembler instructions can be used from drivers and user applications written
in C.

Time
The xtime_l.c file and corresponding xtime_l.h include file provide access to the 64-
bit time base counter inside the PowerPC core. The counter increases by one at every
processor cycle.

The sleep.c file and corresponding sleep.h include file implement functions for tired
programs. All sleep functions are implemented as busy loops.

typedef unsigned long long XTime;

The XTime type in xtime_l.h represents the Time Base register. This struct consists of the
Time Base Low (TBL) and Time Base High (TBH) registers, each of which is a 32-bit wide
register. The definition of XTime is as follows:

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 247
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

PowerPC BSP
R

typedef unsigned long long XTime;

void XTime_SetTime(XTime xtime);

The XTime_SetTime() function in xtime_l.c sets the time base register to the value in
xtime.

void XTime_GetTime(XTime *xtime);

The XTime_GetTime() function in xtime_l.c writes the current value of the time base
register to variable xtime.

void XTime_TSRClearStatusBits(unsigned long Bitmask);

The XTime_TSRClearStatusBits() function in xtime_l.c is used to clear bits in the Timer
Status Register (TSR). The parameter Bitmask designates the bits to be cleared. A one in any
position of the Bitmask parameter clears the corresponding bit in the TSR. This function
does not return a value.

The header file xreg405.h defines the following values for the Bitmask parameter:

Example:

XTime_TSRClearStatusBits(TSR_CLEAR_ALL);

Bitmask Parameter Values

Name Value Description

XREG_TSR_WDT_ENABLE_NEXT_WAT
CHDOG

0x80000000 Clearing this bit disables the
watchdog timer event.

XREG_TSR_WDT_INTERRUPT_STATUS 0x40000000 Clears the Watchdog Timer
Interrupt Status bit. This bit is
set after a watchdog interrupt
occurred, or could have
occurred had it been enabled.

XREG_TSR_WDT_RESET_STATUS_11 0x30000000 Clears the Watchdog Timer
Reset Status bits. These bits
Specify the kind of reset that
occurred as a result of a
watchdog timer event.

XREG_TSR_PIT_INTERRUPT_STATUS 0x08000000 Clears the Programmable
Interval Timer Status bit. This
bit is set after a PIT interrupt
has occurred.

XREG_TSR_FIT_INTERRUPT_STATUS 0x04000000 Clears the Fixed Interval Timer
Status bit. This bit is set after a
FIT interrupt has occurred.

XREG_TSR_CLEAR_ALL 0xFFFFFFFF Clears all bits in the TSR. After a
Reset, the content of the TSR is
not specified. Use this Bitmask
to clear all bits in the TSR.

http://www.xilinx.com

248 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 27: Stand-Alone Board Support Package
R

void XTime_PITSetInterval(unsigned long interval);

The XTime_PITSetInterval() function in xtime_l.c is used to load a new value into the
Programmable-Interval Timer Register. This register is a 32-bit decrementing counter
clocked at the same frequency as the time-base register. Depending on the AutoReload
setting the PIT is automatically reloaded with the last written value or has to be reloaded
manually. This function does not return a value.

Example:

XTime_PITSetInterval(0x00ffffff);

void XTime_PITEnableInterrupt(void);

The XTime_PITEnableInterrupt() function in xtime_l.c enables the generation of PIT
interrupts. An interrupt occurs when the PIT register contains a value of 1, and is then
decremented. This function does not return a value. XExc_Init() must be called, the PIT
interrupt handler must be registered, and exceptions must be enabled before calling this
function.

Example:

XTime_PITEnableInterrupt();

void XTime_PITDisableInterrupt(void);

The XTime_PITDisableInterrupt() function in xtime_l.c disables the generation of PIT
interrupts. It does not return a value.

Example:

XTime_PITDisableInterrupt();

void XTime_PITEnableAutoReload(void);

The XTime_PITEnableAutoReload() function in xtime_l.c enables the auto-reload
function of the PIT Register. When auto-reload is enabled the PIT Register is automatically
reloaded with the last value loaded by calling the XTime_PITSetInterval function when
the PIT Register contains a value of 1 and is decremented. When auto-reload is enabled, the
PIT Register never contains a value of 0. This function does not return a value.

Example:

XTime_PITEnableAutoReload();

void XTime_PITDisableAutoReload(void);

The XTime_PITDisableAutoReload() function in xtime_l.c disables the auto-reload
feature of the PIT Register. When auto-reload is disabled the PIT decrements from 1 to 0. If
it contains a value of 0 it stops decrementing until it is loaded with a non-zero value. This
function does not return a value.

Example:

XTime_PITDisableAutoReload();

void XTime_PITClearInterrupt(void);

The XTime_PITClearInterrupt() function in xtime_l.c is used to clear
PIT-Interrupt-Status bit in the Timer-Status Register. This bit

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 249
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

PowerPC BSP
R

specifies whether a PIT interrupt occurred. You must call this function
in your interrupt-handler to clear the Status bit, otherwise another PIT
interrupt will occur immediately after exiting the interrupt –handler
function. This function does not return a value. Calling this function
is equivalent to calling
XTime_TSRClearStatusBits(XREG_TSR_PIT_INTERRUPT_STATUS).

Example:

XTime_PITClearInterrupt();

unsigned int usleep(unsigned int __useconds);

The usleep() function in sleep.c delays the execution of a program by __useconds
microseconds. It always returns zero. This function requires that the processor frequency
(in Hz) is defined. The default value of this variable is 400MHz. This value can be
overwritten in the mss file as follows:

BEGIN PROCESSOR
PARAMETER HW_INSTANCE = PPC405_i
PARAMETER DRIVER_NAME = cpu_ppc405
PARAMETER DRIVER_VER = 1.00.a
PARAMETER CORE_CLOCK_FREQ_HZ = 20000000
END

The file xparameters.h can also be modified with the correct value, as follows:

#define XPAR_CPU_PPC405_CORE_CLOCK_FREQ_HZ 20000000

unsigned int sleep(unsigned int __seconds);

The sleep() function in sleep.c delays the execution of a program by __seconds seconds.
It always returns zero.This function requires that the processor frequency (in Hz) is
defined. The default value of this variable is 400MHz. This value can be overwritten in the
mss file as follows:

BEGIN PROCESSOR
PARAMETER HW_INSTANCE = PPC405_i
PARAMETER DRIVER_NAME = cpu_ppc405
PARAMETER DRIVER_VER = 1.00.a
PARAMETER CORE_CLOCK_FREQ_HZ = 20000000
END

The file xparameters.h can also be modified with the correct value, as follows:

#define XPAR_CPU_PPC405_CORE_CLOCK_FREQ_HZ 20000000

int nanosleep(const struct timespec *rqtp, struct timespec *rmtp);

The nanosleep() function in sleep.c is currently not implemented. It is a placeholder for
linking applications against the C library. It always returns zero.

http://www.xilinx.com

250 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 27: Stand-Alone Board Support Package
R

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 251
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

R

Chapter 28

Address Management

Summary
This chapter describes the embedded processor program address management techniques.
For advanced address space management, a discussion on linker scripts is also included in
this chapter.

MicroBlaze Processor

Programs and Memory
MicroBlaze users can write either C or Assembly programs, and use the Embedded
Development Kit to transform their source code into bit patterns stored in the physical
memory of a EDK System. User programs typically access local/on-chip memory, external
memory and memory mapped peripherals. Memory requirements for your programs are
specified in terms of how much memory is required for storing the instructions, and how
much memory is required for storing the data associated with the program.

MicroBlaze address space is divided between the system address space and the user
address space. In certain examples, users would need advanced address space
management, which can be done with the help of linker script, described in this chapter.

Current Address Space Restrictions

Memory and Peripherals Overview

MicroBlaze uses 32-bit addresses, and as a result it can address memory in the range zero
through 0xFFFFFFFF. MicroBlaze can access memory either through its Local Memory Bus
(LMB) port or through the On-chip Peripheral Bus (OPB). The LMB is designed to be a fast
access, on-chip block RAM (BRAM) memories only bus. The OPB represents a general
purpose bus interface to on-chip or off-chip memories as well as other non-memory
peripherals.

BRAM Size Limits

The amount of BRAM memory that can be assigned to the LMB address space or to each
instance of an OPB mapped BRAM peripheral is limited. The largest supported BRAM
memory size for Virtex/VirtexE is 16 kilobytes and for Virtex-II it is 64 kilobytes. It is
important to understand that these limits apply to each separately decoded on-chip
memory region only. The total amount of on-chip memory available to a MicroBlaze
system may exceed these limits. The total amount of memory available in the form of

http://www.xilinx.com

252 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 28: Address Management
R

BRAMs is also FPGA device specific. Smaller devices of a given device family provide less
BRAM than larger devices in the same device family.

Figure 28-1: A Sample Address Map for a MicroBlaze System

Special Addresses

Every MicroBlaze system must have user writable memory present in addresses 0x00000000
through 0x00000018. These memory locations contain the addresses MicroBlaze jumps to after
a reset, interrupt, or exception event occurs. This memory can be part of the LMB or the OPB
BRAM address space. Please refer to Chapter 4, “MicroBlaze Application Binary Interface”
(ABI) for further details.

OPB Address Range Details

Within the OPB address space, the user can arbitrarily assign address space to on/off-chip
memory peripherals and to on/off-chip non-memory peripherals. The OPB address space may
contain holes representing regions that are not associated with any OPB peripheral. Special
linker scripts and directives may be required to control the assignment of object file sections to
address space regions.

Address Map

Figure 28-1 shows a possible address map for a MicroBlaze System. The actual address map is
defined in the MicroBlaze Hardware Specification (MHS) file. It contains an address map
specifying the addresses of LMB memory, OPB memory, External memory and peripherals.

The address range grows from 0. At the lowest range is the LMB memory. This is followed by
the OPB memory, External Memory and the Peripherals. Some addresses in this address space
have predefined meaning. The processor jumps to address 0x0 on reset, to address 0x8 on
exception, and to address 0x10 on interrupt.

On Chip OPB

LMB Memory

External OPB

Peripherals

ADDRESS SPACE MAP

(Address End)

Increasing addresses

Represents Holes
in Address Range

0 (Address Start)

Memory

Memory

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 253
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

MicroBlaze Processor
R

Memory Speeds and Latencies
MicroBlaze requires 2 clock cycles to access on-chip Block RAM connected to the LMB for
write and 2 clock cycles for read. On chip memory connected to the OPB bus requires 3
cycles for write and 4 cycles for read. External memory access is further limited by off-chip
memory access delays for read access, resulting in 5-7 clock cycles for read. Furthermore,
memory accesses over the OPB bus may incur further latencies due to bus arbitration
overheads. As a result, instructions or data that need to be accessed quickly should be
stored in LMB memory when possible.

For more information on memory access times, see the MicroBlaze Hardware Reference
chapter.

System Address Space
MicroBlaze programs can be executed in different scenarios. Each scenario needs a
different set of system address space. The system address space is occupied by the
xmdstub or the bootstub, when debug or boot support is required. System address space is
also needed by the C-runtime routines.

System with only an executable [No debug, No Bootstrap]

The scenario is depicted in Figure 28-2(a). The C-runtime file crt0.o is linked with the user
program. The system file, crt0.o starts at address location 0x0, immediately followed by
user’s program.

Figure 28-2: Execution Scenarios

crt0.o

main program

crt1.o

main program

xmd -stbxmdstub

(a) (b)

crt2.o / crt3.o

main program

xmd -stbbootstub

(c)

0x000000000x00000000
0x00000000

http://www.xilinx.com

254 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 28: Address Management
R

System with debugging support

With systems requiring debug support, xmdstub must be downloaded at address location
0x0. The C-runtime file crt1.o is bundled with the user program and is place at a default
location. This scenario is shown in Figure 28-2(b).

System with bootstrap support

The user can also bootstrap their program by using the bootstub. This bootstub occupies
the system address space starting at address location 0x0. In addition to this system space,
every user program is pre-pended with another C-runtime routine crt2.o or crt3.o
depending on the compilation switch used. This scenario is shown in Figure 28-2(c).

Default User Address Space
The default usage of the compiler mb-gcc will place the users program immediately after
the system address space. The user does not have to give any additional options in order to
make space for the system files. The default start address for user programs is described in
Table 28-1

If the user needs to start the program at a location other than the default start address or if
non-contiguous address space is required, advanced address space management is
required.

Advanced User Address Space

Different Base Address, Contiguous User Address Space

The user program can run from any memory [that is, LMB memory or OPB memory]. By
default, the compiler will place the user program at location defined in Table 28-1. To
execute a program from any address location other than default, users must provide the
compiler mb-gcc with an additional option.

The option required is

-Wl,defsym -Wl,_TEXT_START_ADDR=start_address

where start_address is the new base address required for the user program.

Different Base Address, Non-contiguous User Address Space

The users can place different components of their program on different memories. For
example, on MicroBlaze systems with non-contiguous LMB and OPB memories, users can
keep their code on LMB memory and the data on OPB memory. The users can also create
systems which have contiguous address space for LMB and OPB memory, but having
holes in the OPB address space.

Table 28-1: Start address for different compilation switches

Compile Option Start Address

-xl-mode-executable 0x0

-xl-mode-xmdstub 0x400

-xl-mode-bootstrap 0x100

-xl-mode-bootstrap-reset 0x100

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 255
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

MicroBlaze Processor
R

All such user programs need creation of non-contiguous executables. To facilitate creation
of non-contiguous executable, linker scripts have to be modified. The default linker script
provided with the MicroBlaze Distribution Kit will place all user code and data in one
contiguous address space.

Linker scripts are defined in later sections in this document.

For more details on linker options see the Chapter 9, “GNU Compiler Tools” chapter.

Object-file Sections
The sections of an executable file are created by concatenating the corresponding sections
in an object (.o) file. The various sections in the object file are given in Figure 28-3.:

.text

This section contains executable code. This section has the x (executable), r (read-only) and
i (initialized) flags.

.rodata

This section contains read-only data of a size more than 8 bytes (default). The size of the
data put into this section can be changed with an mb-gcc -G option. All data in this section
is accessed using absolute addresses. This section has the r (read-only) and the i
(initialized) flags. For more details refer to the Chapter 4, “MicroBlaze Application Binary
Interface”chapter.

.sdata2

This section contains small read-only data (size less than 8 bytes). The size of the data
going into this section can be changed with an mb-gcc -G option. All data in this section is
accessed with reference to the read-only small data anchor. This ensures that all data in the
.sdata2 section can be accessed using a single instruction (A preceding imm instruction
will never be necessary). This section has the r (read-only) and the i (initialized) flags. For
more details refer to the Chapter 4, “MicroBlaze Application Binary Interface” chapter.

.data

This section contains read-write data of a size more than 8 bytes (default). The size of the
data going into this section can be changed with an mb-gcc -G option. All data in this

http://www.xilinx.com

256 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 28: Address Management
R

section is accessed using absolute addresses. This section has the w (read-write) and the i
(initialized) flags.

.sdata

This section contains small read-write data of a size less than 8 bytes (default). The size of
the data going into this section can be changed with an mb-gcc -G option. All data in this
section is accessed with reference to the read-write small data anchor. This ensures that all
data in the .sdata section uses a single instruction. (A preceding imm instruction will never
be necessary). This section has the w (read-write) and the i (initialized) flags.

.sbss

This section contains small un-initialized data of a size less than 8 bytes (default). The size
of the data going into this section can be changed with an mb-gcc -G option. This section
has the w (read-write) flag.

.bss

This section contains un-initialized data of a size more than 8 bytes (default). The size of
the data going into this section can be changed with an mb-gcc -G option. All data in this
section is accessed using absolute addresses. The stack and the heap are also allocated to
this section. This section has the w (read-write) flag.

The linker script describes the mapping between all the sections in all the input object files,
and the output executable file.

If your address map specifies that the LMB, OPB and External Memory occupy
contiguous areas of memory, you can use the default (built-in) linker script to generate
your executable. This is done by invoking mb-gcc as follows:

mb-gcc file1.c file2.c

Note that using the built-in linker script implies that you have no control over which parts
of your program are mapped to the different kinds of memory. The default scripts used by
the linker are located at:

Sectional Layout of an Object or an Executable File

.text

.rodata

.sdata2

.data

.sdata

.sbss

.bss

Text Section

Read-Only Data Section

Small Read-Only Data Section

Read-Write Data Section

Small Read-Write Data Section

Small Uninitialized Data Section

Uninitialized Data Section

Figure 28-3: Sectional layout of an object or executable file

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 257
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

MicroBlaze Processor
R

$XILINX_EDK/gnu/microblaze/nt(orsol)/microblaze/lib/ldscripts, where
$XILINX_EDK is the EDK installed directory. These scripts are imbibed into the linker and
hence any changes to these scripts will not be reflected. To customize linker scripts, you
must write your own linker script.

Minimal Linker Script
If your LMB, OPB and External Memory do not occupy contiguous areas of memory, you
can use a minimal linker script to define your memory layout. Here is a minimal linker
script that describes the memory regions only, and uses the default (built-in) linker script
for everything else.

/*
* Define the memory layout, specifying the start address and size of the
* different memory regions. The ILMB will contain only executable code
(x),
* the DLMB will contain only initialized data (i), and the DOPB will
contain
* all other writable data (w). Note that all sections of all your input
* object files must map into one of these memory regions. Other memory
types
* that may be specified are "r" for read-only data.
*/
MEMORY
 {
 ILMB (x) : ORIGIN = 0x0, LENGTH = 0x1000
 DLMB (i) : ORIGIN = 0x2000, LENGTH = 0x1000
 DOPB (w) : ORIGIN = 0x8000, LENGTH = 0x30000
 }

This script specifies that the ILMB memory contains all object file sections that have the x
flag, the DLMB contains all object file sections that have the i flag and the DOPB contains
all object file sections that have the w flag. An object file section that has both the x and the
i flag (for example, the .text section) will be loaded into ILMB memory because this is
specified first in the linker script. Refer to the “Object-file Sections” section of this chapter
for more information on object file sections, and the flags that are set in each.

Your source files can now be compiled by specifying the minimal linker script as though it
were a regular file, e.g.,

mb-gcc minimal linker script file1.c file2.c

Remember to specify the minimal linker script as the first source file.

If you want more control over the layout of your memory, for example, if you want to split
up your .text section between ILMB and IOPB, or if you want your stack and heap in
DLMB and the rest of the .bss section in DOPB, you will need to write a full-fledged linker
script.

Linker Script
You will need to use a linker script if you want to control how your program is targeted to
LMB, OPB or External Memory. Remember that LMB memory is faster than both OPB and
External Memory, and you may want to keep that portion of your code that is accessed the
most frequently in LMB memory, and that which is accessed the least frequently in
External Memory.

http://www.xilinx.com

258 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 28: Address Management
R

You will need to provide a linker script to mb-gcc using the following command:

mb-gcc -Wl,-T -Wl,linker_script file1.c file2.c -save-temps

This tells mb-gcc to use your linker script only, and to not use the default (built-in) linker
script.

The Linker Script defines the layout and the start address of each of the sections for the
output executable file. Here is a sample linker script.

/*
* Define the memory layout, specifying the start address and size of the
* different memory regions.
*/
MEMORY
 {
 LMB : ORIGIN = 0x0, LENGTH = 0x1000
 OPB : ORIGIN = 0x8000, LENGTH = 0x5000
 }

/*
* Specify the default entry point to the program
*/
ENTRY(_start)

/*
* Define the sections, and where they are mapped in memory
*/
SECTIONS
{

/*
* Specify that the .text section from all input object files will be
* placed in LMB memory into the output file section .text Note that
* mb-gdb expects the executable to have a section called .text
*/
.text : {
/* Uncomment the following line to add specific files in the opb_text */
/* region */
 /* *(EXCLUDE_FILE(file1.o).text) */
 /* Comment out the following line to have multiple text sections */

 *(.text)
 } >LMB

 /* Define space for the stack and heap */
/* Note that variables _heap must be set to the beginning of this area

*/
 /* and _stack set to the end of this area */

 . = ALIGN(4);
 _heap = .;
 .bss : {
 _STACK_SIZE = 0x400;
 . += _STACK_SIZE;
 . = ALIGN(4);
 } >LMB
 _stack = .;

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 259
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

MicroBlaze Processor
R

 /* */
 /* Start of OPB memory */
 /* */

 .opb_text : {
/* Uncomment the following line to add an executable section into */
 /* opb memory */

 /* file1.o(.text) */
 } >OPB

. = ALIGN(4);
 .rodata : {
 *(.rodata)
 } >OPB

/* Alignments by 8 to ensure that _SDA2_BASE_ on a word boundary */
. = ALIGN(8);

 _ssrw = .;
 .sdata2 : {
 *(.sdata2)
 } >OPB
 . = ALIGN(8);
 _essrw = .;
 _ssrw_size = _essrw - _ssrw;
_SDA2_BASE_ = _ssrw + (_ssrw_size / 2);

 . = ALIGN(4);
 .data : {
 *(.data)
 } >OPB

 /* Alignments by 8 to ensure that _SDA_BASE_ on a word boundary */
 /* Note that .sdata and .sbss must be contiguous */

 . = ALIGN(8);
 _ssro = .;
 .sdata : {
 *(.sdata)
 } >OPB
 . = ALIGN(4);
 .sbss : {
 *(.sbss)
 } >OPB
 . = ALIGN(8);
 _essro = .;
 _ssro_size = _essro - _ssro;
_SDA_BASE_ = _ssro + (_ssro_size / 2);

 . = ALIGN(4);
 .opb_bss : {
 *(.bss) *(COMMON)
 } > OPB
 . = ALIGN(4);
 _end = .;
}

http://www.xilinx.com

260 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 28: Address Management
R

Note that if you choose to write a linker script, you must do the following to ensure that
your program will work correctly:

• Allocate space in the .bss section for stack and heap. Set the _heap variable to the
beginning of this area, and the _stack variable to the end of this area. See the .bss
section in the preceding script for an example.

• Ensure that the _SDA2_BASE_ variable points to the center of the .sdata2 area, and
that _SDA2_BASE_ is aligned on a word boundary.

• Ensure that the .sdata and the .sbss sections are contiguous, that the _SDA_BASE_
variable points to the center of this section, and that _SDA_BASE_ is aligned on a
word boundary.

• If you are not using the xmdstub, ensure that crt0 is always loaded into memory
address zero. mb-gcc ensures that this is the first file specified to the loader, but the
loader script needs to ensure that it gets loaded at address zero. See the .text section in
the example above to see how this is done.

For more details on the linker scripts, refer to the GNU loader documentation in the binutil
online manual (http://www.gnu.org/manual).

PowerPC Processor

Programs and Memory
PowerPC users can write either C or Assembly programs, and use the Embedded
Development Kit to transform their source code into bit patterns stored in the physical
memory of a EDK System. User programs typically access local/on-chip memory, external
memory and memory mapped peripherals. Memory requirements for your programs are
specified in terms of how much memory is required for storing the instructions, and how
much memory is required for storing the data associated with the program.

Figure 28-4 shows a sample address map for a PowerPC based EDK system. The figure
shows that there can be various memories in the system. Here users need advanced
address space management, which can be done with the help of linker script, described in
“Linker Script” section.

Current Address Space Restrictions

Special Addresses

Every PowerPC system should have the boot section starting at 0xFFFFFFFC.

Default Linker Options

By default, the linker assumes that the program can occupy contigous address space from
0xFFFF0000 to 0xFFFFFFFF. It also assumes a default stack size of 4K bytes, and a default
heap size of 4K bytes.

To change the size of the allocated stack space, provide the following option to the
compiler powerpc-eabi-gcc

-Wl,defsym -Wl,_STACK_SIZE=stack_size

where stack_size is the required stack size in bytes.

http://www.xilinx.com
http://www.gnu.org/manual

Embedded System Tools Guide www.xilinx.com 261
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

PowerPC Processor
R

To change the size of the allocated heap space, provide the following option to the
compiler powerpc-eabi-gcc

-Wl,defsym -Wl,_HEAP_SIZE=heap_size

where heap_size is the required heap size in bytes.

Figure 28-4: A Sample Address Map for a PowerPC System

Advanced User Address Space

Different Base Address, Contiguous User Address Space

The user program can run from any memory. By default, the compiler places the user
program at location 0xFFFF0000. To execute the program from any address location other
than the default, users must provide the compiler powerpc-eabi-gcc with additional
option.

The option required is

-Wl,defsym -Wl,_START_ADDR=start_address

where start_address is the new base address required for the user program.

Different Base Address, Non-contiguous User Address Space

The users can place different components of their program on different memories. For
example, on PowerPC systems users can keep their code on instruction cache memory and
the data on ZBT memory.

All such user programs need the creation of a non-contiguous executables. To facilitate
creation of non-contiguous executable, linker scripts must be modified. The default linker
script provided with the Embedded Distribution Kit will place all user code and data in
one contiguous address space.

Linker scripts are defined in later sections in this chapter.

.boot

SAMPLE ADDRESS MAP

0xFFFF0000

0xFFFFFFFC

External Memory

PLB Peripherals

OPB Peripherals

.boot should be at 0xFFFFFFFC

PLB BRAM

http://www.xilinx.com

262 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 28: Address Management
R

For more details on linker options, see the Chapter 9, “GNU Compiler Tools” chapter.

Linker Script
PowerPC Linker is built with default linker scripts. This script assumes a contiguous
memory starting from address 0xFFFF0000. You can take a look at the default linker scripts
used by the linker at:

$XILINX_EDK/gnu/powerpc-eabi/nt(orsol)/powerpc-eabi/lib/ldscripts, where
$XILINX_EDK is the EDK installed directory. These scripts are imbibed into the linker and
hence any changes to these scripts will not be reflected.

You must write a linker script if you want to control how your program is targeted to
Instruction Cache, ZBTor External Memory.

You will need to provide a linker script to powerpc-eabi-gcc using the following
command:

powerpc-eabi-gcc -Wl,-T -Wl,linker script file1.c file2.c -save-temps

This tells powerpc-eabi-gcc to use your linker script only, and to not use the default (built-
in) one. The Linker Script defines the layout and the start address of each of the sections for
the output executable file.

Restrictions

Note that if you choose to write a linker script, you must do the following to ensure that
your program will work correctly:

• Allocate space in the .bss section for stack and heap. Set the _stack variable to the
location after_ STACK_SIZE locations of this area, and the _heap_start variable to the
next location after _STACK_SIZE location. Since the stack and heap need not be
initialized for hardware as well as simulation, define __bss_end variable after the bss
and COMMON defintions. See the .bss section in the script below for an example.

• Ensure that the variables __SDATA_START__. __SDATA_END__, SDATA2_START,
__SDATA2_END__, __SBSS2_START__ , __SBSS2_END__, __sbss_start and
__sbss_end are defined to the beginning and end of the sections sdata, sdata2, sbss2,
sbss respectively.

• Ensure that the .sdata and the .sbss sections are contiguous.

• Ensure that the .sdata2 and the .sbss2 sections are contiguous.

• Ensure that the .boot section starts at 0xFFFFFFFC.

• Ensure that boot.o is the first file to be linked (Check the STARTUP(boot.o) in the
following script which achieves this)

• Ensure that the .vector section is aligned on a 64k boundary

• Each (physical) region of memory must use a separate program header. Two
discontinuous regions of memory cannot share a program header

• Put all uninitialized sections (.bss, .sbss, .sbss2, stack, heap) at the end of a memory
region. If this is impossible (eg., .sdata, .sbss and .sdata2, .sbss2 in same physical
memory), start a new program header for the first initialized section after
uninitialized sections.

• ANSI C requires that all uninitialized memory be initialized to startup (Not required
for stack and heap). The standard crt0.s that we provide assumes a single .bss section

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 263
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

PowerPC Processor
R

that is initialized to zero. If there are multiple .bss sections, this crt will not work. You
should write your own crt that initializes all the bss sections.

For more details on the linker scripts, refer to the GNU loader documentation in the binutil
online manual (http://www.gnu.org/manual).

Here is the default linker script.

/*

 * Define default stack and heap sizes

 */

STACKSIZE = 1k;

_HEAP_SIZE = DEFINED(_HEAP_SIZE) ? _HEAP_SIZE : 4k;

/*

 * Define boot.o to be the first file for linking.

 * This statement is mandatory.

 */

STARTUP(boot.o)

/* Specify the default entry point to the program */

ENTRY(_boot)

/*

 * Define the Memory layout, specifying the start address

 * and size of the different memory locations

 */

MEMORY

{

 bram : ORIGIN = 0xffff8000, LENGTH = 0x7fff

 boot : ORIGIN = 0xfffffffc, LEN GTH = 4

}

/*

 * Define the sections and where they are mapped in memory

 * Here .boot sections goes into boot memory. Other sections

http://www.xilinx.com
http://www.gnu.org/manual

264 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 28: Address Management
R

 * are mapped to bram memory.

 */

SECTIONS

{

 .boot0 : { *(.boot0)} > bram

 .text : { *(.text) } > bram

 .boot : { *(.boot) } > boot

 .data :

 {

 *(.data)

 *(.got2)

 *(.rodata)

 *(.fixup)

 } > bram

/*

 * .vectors section must be aligned on a 64k boundary

 * Hence the syntax BLOCK(64k)

 */

 .vectors BLOCK (64k):

 {

 *(.vectors)

 } > bram

 /* small data area (read/write): keep together! */

.sdata : { *(.sdata) } > bram

.sbss :

 {

 . = ALIGN(4);

 *(.sbss)

 . = ALIGN(4);

 } > bram

 __sbss_start = ADDR(.sbss);

 __sbss_end = ADDR(.sbss) + SIZEOF(.sbss);

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 265
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

PowerPC Processor
R

/* small data area 2 (read only) */

 .sdata2 : { *(.sdata2) } > bram

__SDATA2_START__ = ADDR(.sdata2);

__SDATA2_END__ = ADDR(.sdata2) + SIZEOF(.sdata2);

.sbss2 : { *(.sbss2) } > bram

 __SBSS2_START__ = ADDR(.sbss2);

 __SBSS2_END__ = ADDR(.sbss2) + SIZEOF(.sbss2);

.bss :

 {

 . = ALIGN(4);

 *(.bss)

 *(COMMON)

/* stack and heap need not be initialized and hence bss end is declared here */

. = ALIGN(4);

__bss_end = .;

 /* add stack and heap and align to 16 byte boundary */

 . = . + STACKSIZE;

 . = ALIGN(16);

 __stack = .;

 _heap_start = .;

 . = . + _HEAP_SIZE;

 . = ALIGN(16);

 _heap_end = .;

 } > bram

 __bss_start = ADDR(.bss);

}

http://www.xilinx.com

266 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 28: Address Management
R

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 267
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

R

Chapter 29

Interrupt Management

Summary
This chapter outlines interrupt management in both MicroBlaze and PowerPC. It
specifically details the role of LibGen for Low Level (Level 1) interrupt routines for
MicroBlaze and PowerPC.

Levels of Interrupt Management
There are two levels of interrupt management possible using EDK. Level 0 is low level
interrupt management and level 1 is a higher level interrupt management.

Level 0 (Low Level)
Level 0 interrupt management is charaterized by statically creating an interrupt vector
table for the interrupt controller peripheral with the handler routines for all the peripherals
that the interrupt controller is connected to. There is a statically determined priority
ordering in the interrupt table. Once the platform is built and generated, users cannot
register other interrupt handlers to handle peripheral interrupts. Currently there is a
restriction of only one interrupt controller peripheral being connected to each processor in
the system.

When using the level 0 procedure, LibGen can be used to statically configure interrupt
handlers for peripherals. LibGen also configures an interrupt vector table for the interrupt
controller peripheral to use. This is detailed in subsequent sections in this document.

Level 1 (High Level)
Level 1 interrupt management is characterized by having the flexibility of registering
interrupt routines at program runtime.

When using the high level interrupt management, the user must dynamically register
peripheral interrupt handler routines and enable/disable peripheral interrupts. Libgen
does not configure interrupt vector tables, or the interrupt handlers when using the Level
1 management procedure. For more information please refer to the Interrupt Controller
Driver specifics in Chapter 26, “Device Drivers”.

http://www.xilinx.com

268 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 29: Interrupt Management
R

MicroBlaze Interrupt Management
This section describes interrupt management for MicroBlaze. Interrupt Management
involves writing interrupt handler routines for peripherals and setting up the MHS and
MSS files appropriately. MicroBlaze is capable of handling up to 32 interrupting devices.
An interrupt controller peripheral is required for handling more than one interrupt signal.
The mechanism of interrupt management is different if an interrupt controller is present
than when it is not. This chapter describes both these management procedures.

Interrupt Handlers
Users are expected to write their own interrupt handlers (or Interrupt Service Routines) for
any peripherals that raise interrupts. These routines can be written in C just like any other
function. The interrupt handler function can have any name with the signature void func
(void *).

The main interrupt handler routine has to be tagged with interrupt_handler attributes so
that mb-gcc can identify this as an interupt handler. Refer to the Interrupt Handlers section
in Chapter 9, “GNU Compiler Tools”, for more information on this attribute.

Libgen tags the interrupt controller interrupt routine automatically when the
recommended interrupt management procedures as described in subsequent sections are
followed.

The Interrupt Controller Peripheral
An interrupt controller peripheral should be used for handling multiple interrupts. In this
case, the user is responsible for writing interrupt handlers for the peripheral interrupt
signals only. The interrupt handler for the interrupt controller peripheral is automatically
generated by LibGen. This handler ensures that interrupts from the peripherals are
handled by individual interrupt handlers in the order of their priority. Figure 29-1 shows
peripheral interrupt signals with priorities 1 through 4 connected to the interrupt
controller input.

Figure 29-1: Interrupt Controller and Peripherals

MicroBlaze

Interrupt
Controller

Peripheral 1

Peripheral 2

Peripheral 3

Peripheral 4

Interrupt Signal

Priority 1
interrupt Priority 2

interrupt

Priority 4
interrupt

Priority 3
interrupt

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 269
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

MicroBlaze Interrupt Management
R

The interrupt signal output of the controller is connected to the interrupt input of
MicroBlaze. In the MSS file, each peripheral interrupt signal must be associated with
interrupt handler routines (also called Interrupt Service Routines). LibGen automatically
creates a vector table with the peripheral interrupt handler routines listed in the order of
priority. When any peripheral raises an interrupt, the default handler for the interrupt
controller is called. This handler then queries the interrupt controller to find out which
peripheral raised the interrupt and then calls the peripheral specific interrupt handler. For
a system where the interrupt controller is not present and only one interrupt signal is
connected, the peripheral’s interrupt handler (written by the user) gets called when an
interrupt occurs.

MicroBlaze Enable Interrupts
The functions microblaze_enable_interrupts and microblaze_disable_interrupts are used to
enable and disable interrupts on MicroBlaze. These functions are part of the MicroBlaze
BSP and are described there.

System without Interrupt Controller (Single Interrupt Signal)
An interrupt controller is not required if there is a single interrupting peripheral and its
interrupt signal is level sensitive. Note that a single peripheral may raise multiple
interrupts. In this case, an interrupt controller is required.

Procedure

To set up a system without an interrupt controller that handles only one level sensitive
interrupt signal, the following steps must be taken:

1. The MHS and MSS file must be set up as follows:

- The interrupt signal of the peripheral must be connected to the interrupt input of
the MicroBlaze in the MHS file.

- The peripheral must be given an instance name using the INSTANCE keyword in
the MHS file. Libgen creates a definition in xparameters.h
(USER_PROJECT/PROC INST NAME/include) for
XPAR_INSTANCE_NAME_BASEADDR mapped to the base address of this
peripheral.

2. The interrupt handler routine that handles the signal should be written. The base
address of the peripheral instance is accessed as
XPAR_INSTANCE_NAME_BASEADDR.

3. The handler function is then designated to be an interrupt handler for the signal using
the INT_HANDLER keyword in the MSS file (Refer Chapter 18, “Microprocessor
Software Specification (MSS)”). The peripheral instance is first selected in the MSS
file, and then the INT_HANDLER attribute is given the function name.

4. Libgen and mb-gcc are executed. This operation has the following implications:

- the function is marked as an interrupt handler using the mb-gcc interrupt_handler
attribute. All volatile registers used by this function are saved. Also, this function
will return using the rtid instruction, rather than the normal rtsd instruction.
Furthermore, this function will also be given the name _interrupt_handler by mb-
gcc. By default, MicroBlaze turns off interrupts from the time an interrupt is
recognized until the corresponding rtid instruction is executed.

http://www.xilinx.com

270 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 29: Interrupt Management
R

- the startup code (crt0, crt1, crt2 or crt3) places the address of _interrupt_handler
as the target address that MicroBlaze jumps to when an interrupt occurs.
Therefore control will go to the interrupt handler when an interrupt occurs.

Example MHS File

parameter Version = 2.0.0

port sys_reset = sys_reset, DIR = input
port sys_Clk = sys_Clk, DIR = input

begin opb_v20
parameter HW_VER = 1.00.b
parameter INSTANCE = opb_bus
port SYS_Rst = sys_reset
port OPB_Clk = sys_Clk
end

BEGIN lmb_lmb_bram
parameter INSTANCE = lmb_lmb_bram_i
parameter HW_VER = 1.00.a
parameter C_BASEADDR = 0x00000000
parameter C_HIGHADDR = 0x00000fff
bus_interface ILMB = i_lmb
bus_interface DLMB = d_lmb
end

begin lmb_v10
parameter INSTANCE = d_lmb
parameter HW_VER = 1.00.a
port LMB_Clk = sys_Clk
port SYS_Rst = sys_reset
end

begin lmb_v10
parameter INSTANCE = i_lmb
parameter HW_VER = 1.00.a
port LMB_Clk = sys_Clk
port SYS_Rst = sys_reset
end

BEGIN opb_timer
parameter INSTANCE = mytimer
parameter HW_VER = 1.00.b
parameter C_BASEADDR = 0xFFFF0000
parameter C_HIGHADDR = 0xFFFF00ff
bus_interface SOPB = opb_bus
port Interrupt = interrupt
port CaptureTrig0 = net_gnd
END

begin microblaze
parameter INSTANCE = mblaze
parameter HW_VER = 1.00.c
bus_interface DOPB = opb_bus
bus_interface DLMB = d_lmb
bus_interface ILMB = i_lmb
port INTERRUPT = interrupt

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 271
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

MicroBlaze Interrupt Management
R

end

Example MSS File snippet

BEGIN DRIVER
parameter HW_INSTANCE = mytimer
parameter DRIVER_NAME = tmrctr
parameter DRIVER_VER = 1.00.b
parameter INT_HANDLER = timer_int_handler, INT_PORT = Interrupt
END

Example C Program

#include <xtmrctr_l.h>
#include <xintc_l.h>
#include <xgpio_l.h>
#include <xparameters.h>

/* Global variables: count is the count displayed using the
 * LEDs, and timer_count is the interrupt frequency.
 */

unsigned int count = 1; /* default count */
unsigned int timer_count = 1; /* default timer_count */

/* timer interrupt service routine */
void timer_int_handler(void * baseaddr_p) {
unsigned int csr;

 unsigned int gpio_data;

 /* Read timer 0 CSR to see if it raised the interrupt */
 csr = XTmrCtr_mGetControlStatusReg(XPAR_MYTIMER_BASEADDR, 0);

 if (csr & XTC_CSR_INT_OCCURED_MASK) {
 /* Increment the count */

 if ((count <<= 1) > 8) {
 count = 1;
 }

/* Write value to gpio. 0 means light up, hence count is negated */
 gpio_data = ~count;

 XGpio_mSetDataReg(XPAR_MYGPIO_BASEADDR, gpio_data);

 /* Clear the timer interrupt */
 XTmrCtr_mSetControlStatusReg(XPAR_MYTIMER_BASEADDR, 0, csr);

 }
}

void
main() {

 unsigned int gpio_data;

http://www.xilinx.com

272 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 29: Interrupt Management
R

 /* Enable microblaze interrupts */
 microblaze_enable_interrupts();

 /* Start the interrupt controller */
 XIntc_mMasterEnable(XPAR_MYINTC_BASEADDR);

 /* Set the gpio as output on high 3 bits (LEDs)*/
 XGpio_mSetDataDirection(XPAR_MYGPIO_BASEADDR, 0x00);

 /* set the number of cycles the timer counts before interrupting */
 XTmrCtr_mSetLoadReg(XPAR_MYTIMER_BASEADDR, 0,
(timer_count*timer_count+1) * 1000000);

 /* reset the timers, and clear interrupts */
 XTmrCtr_mSetControlStatusReg(XPAR_MYTIMER_BASEADDR, 0,
XTC_CSR_INT_OCCURED_MASK | XTC_CSR_LOAD_MASK);

 /* Enable timer and uart interrupts in the interrupt controller */
 XIntc_mEnableIntr(XPAR_MYINTC_BASEADDR,
XPAR_MYTIMER_INTERRUPT_MASK);

 /* start the timers */
 XTmrCtr_mSetControlStatusReg(XPAR_MYTIMER_BASEADDR, 0,
XTC_CSR_ENABLE_TMR_MASK | XTC_CSR_ENABLE_INT_MASK |
XTC_CSR_AUTO_RELOAD_MASK | XTC_CSR_DOWN_COUNT_MASK);

 /* Wait for interrupts to occur */
 while (1)
 ;

}

System with an Interrupt Controller (One or More Interrupt Signals)
An Interrupt Controller peripheral (intc) should be present if more than one interrupt can
be raised. When an interrupt is raised, the interrupt handler for the Interrupt Controller
(XIntc_LowLevelInterruptHandler) is called. This function then accesses the interrupt
controller to find the highest priority device that raised an interrupt. This is done via the
vector table created automatically by LibGen. On return from the peripheral interrupt
handler, intc interrupt handler acknowledges the interrupt. It then handles any lower
priority interrupts, if they exist.

Procedure

To set up a system with one or more interrupting devices and an interrupt controller, the
following steps must be taken:

1. The MHS and MSS files must be set up as follows:

- The interrupt signals of all the peripherals must be assigned to the Intr port of the
interrupt controller in the MHS file. The interrupt signal output of intc is then
connected to the interrupt input of MicroBlaze.

- The peripherals must be given instance names using the INSTANCE keyword in
the MHS file. Libgen creates a definition in xparameters.h for
XPAR_INTC_INSTANCE_INSTANCE_NAME_BASEADDR mapped to the base
address of each peripheral for use in the user program. Libgen also creates an
interrupt mask for each interrupt signal using the priorities as

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 273
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

MicroBlaze Interrupt Management
R

XPAR_INTC_INSTANCE_INSTANCE_NAME_INTERRUPT_SIGNAL_NAME_MA
SK. This can be used to enable or disable interrupts.

2. The interrupt handler functions for each interruptible peripheral must be written.

3. Each handler function is then designated to be the handler for an interrupt signal using
the INT_HANDLER keyword in the MSS file. Note that intc interrupt signal must not be
given an INT_HANDLER keyword. If the INT_HANDLER keyword is not present for a
particular peripheral, a default dummy interrupt handler is used.

4. Libgen and mb-gcc is run to achieve the following:

- The XIntc_LowLevelInterruptHandler function is marked as the main interrupt
handler by mb-gcc using the interrupt_handler attribute. All volatile registers used
by this function are saved. Also, this function will return using the rtid instruction,
rather than the normal rtsd instruction. Furthermore, this function will also be
given the name _interrupt_handler. By default, MicroBlaze turns off interrupts
from the time an interrupt is recognized until the corresponding rtid instruction is
executed.

- An interrupt vector table is generated and compiled automatically by libgen. This
table is accessed by the intc interrupt_handler to call peripheral interrupt handlers
in order of priority.

- The startup code (crt0, crt1, crt2 or crt3) places the address of _interrupt_handler
as the target address that MicroBlaze jumps to when an interrupt occurs.
Therefore control will go to the intc interrupt handler when an interrupt occurs.

Example MHS File

parameter Version = 2.0.0

port sys_reset = sys_reset, DIR = input
port sys_Clk = sys_Clk, DIR = input

port rx = rx, DIR = input
port tx = tx, DIR = output

begin opb_v20
parameter HW_VER = 1.00.b
parameter INSTANCE = opb_bus
port SYS_Rst = sys_reset
port OPB_Clk = sys_Clk
end

BEGIN lmb_lmb_bram
parameter INSTANCE = lmb_lmb_bram_i
parameter HW_VER = 1.00.a
parameter C_BASEADDR = 0x00000000
parameter C_HIGHADDR = 0x00000fff
bus_interface ILMB = i_lmb
bus_interface DLMB = d_lmb
end

begin lmb_v10
parameter INSTANCE = d_lmb
parameter HW_VER = 1.00.a
port LMB_Clk = sys_Clk
port SYS_Rst = sys_reset
end

http://www.xilinx.com

274 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 29: Interrupt Management
R

begin lmb_v10
parameter INSTANCE = i_lmb
parameter HW_VER = 1.00.a
port LMB_Clk = sys_Clk
port SYS_Rst = sys_reset
end

BEGIN opb_timer
parameter INSTANCE = mytimer
parameter HW_VER = 1.00.b
parameter C_BASEADDR = 0xFFFF0000
parameter C_HIGHADDR = 0xFFFF00ff
bus_interface SOPB = opb_bus
port Interrupt = timer1
port CaptureTrig0 = net_gnd
END

EGIN opb_uartlite
parameter INSTANCE = myuart
parameter HW_VER = 1.00.b
parameter C_BASEADDR = 0xFFFF8000
parameter C_HIGHADDR = 0xFFFF80FF
parameter C_DATA_BITS = 8
parameter C_CLK_FREQ = 30000000
parameter C_BAUDRATE = 19200
parameter C_USE_PARITY = 0
bus_interface SOPB = opb_bus
port RX = rx
port TX = tx
port Interrupt = uart1
END

BEGIN opb_intc
parameter INSTANCE = myintc
parameter HW_VER = 1.00.b
parameter C_BASEADDR = 0xFFFF1000
parameter C_HIGHADDR = 0xFFFF10ff
bus_interface SOPB = opb_bus
port Irq = interrupt
port Intr = timer1 & uart1
END

begin microblaze
parameter INSTANCE = mblaze
parameter HW_VER = 1.00.c
bus_interface DOPB = opb_bus
bus_interface DLMB = d_lmb
bus_interface ILMB = i_lmb
port INTERRUPT = interrupt
end

Example MSS File snippet

BEGIN DRIVER
parameter HW_INSTANCE = mytimer
parameter DRIVER_NAME = tmrctr
parameter DRIVER_VER = 1.00.b

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 275
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

MicroBlaze Interrupt Management
R

parameter INT_HANDLER = timer_int_handler, INT_PORT = Interrupt
END

BEGIN DRIVER
parameter HW_INSTANCE = myuart
parameter DRIVER_NAME = uartlite
parameter DRIVER_VER = 1.00.b
parameter INT_HANDLER = uart_int_handler, INT_PORT = Interrupt
END

Example C Program

#include <xtmrctr_l.h>
#include <xuartlite_l.h>
#include <xintc_l.h>
#include <xgpio_l.h>
#include <xparameters.h>

/* Global variables: count is the count displayed using the
 * LEDs, and timer_count is the interrupt frequency.
 */

unsigned int count = 1; /* default count */
unsigned int timer_count = 1; /* default timer_count */

/* uartlite interrupt service routine */
void uart_int_handler(void *baseaddr_p) {
char c;
/* till uart FIFOs are empty */
while (!XUartLite_mIsReceiveEmpty(XPAR_MYUART_BASEADDR)) {
/* read a character */
c = XUartLite_RecvByte(XPAR_MYUART_BASEADDR);
/* if the character is between "0" and "9" */
if ((c>47) && (c<58)) {
timer_count = c-48;
/* print character on hyperterminal (STDOUT) */
putnum(timer_count);
/* Set timer with new value of timer_count */
XTmrCtr_mSetLoadReg(XPAR_MYTIMER_BASEADDR, 0, (timer_count*tim

er_count+1) * 1000000);
}

}
}

/* timer interrupt service routine */
void timer_int_handler(void * baseaddr_p) {
unsigned int csr;

 unsigned int gpio_data;

 /* Read timer 0 CSR to see if it raised the interrupt */
 csr = XTmrCtr_mGetControlStatusReg(XPAR_MYTIMER_BASEADDR, 0);

 if (csr & XTC_CSR_INT_OCCURED_MASK) {
 /* Increment the count */

 if ((count <<= 1) > 8) {
 count = 1;

http://www.xilinx.com

276 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 29: Interrupt Management
R

 }

/* Write value to gpio. 0 means light up, hence count is negated */
 gpio_data = ~count;

 XGpio_mSetDataReg(XPAR_MYGPIO_BASEADDR, gpio_data);

 /* Clear the timer interrupt */
 XTmrCtr_mSetControlStatusReg(XPAR_MYTIMER_BASEADDR, 0, csr);

 }
}

void
main() {

 unsigned int gpio_data;

 /* Enable microblaze interrupts */
 microblaze_enable_interrupts();

 /* Start the interrupt controller */
 XIntc_mMasterEnable(XPAR_MYINTC_BASEADDR);

 /* Set the gpio as output on high 3 bits (LEDs)*/
 XGpio_mSetDataDirection(XPAR_MYGPIO_BASEADDR, 0x00);

 /* set the number of cycles the timer counts before interrupting */
 XTmrCtr_mSetLoadReg(XPAR_MYTIMER_BASEADDR, 0,
(timer_count*timer_count+1) * 1000000);

 /* reset the timers, and clear interrupts */
 XTmrCtr_mSetControlStatusReg(XPAR_MYTIMER_BASEADDR, 0,
XTC_CSR_INT_OCCURED_MASK | XTC_CSR_LOAD_MASK);

 /* Enable timer and uart interrupts in the interrupt controller */
 XIntc_mEnableIntr(XPAR_MYINTC_BASEADDR,
XPAR_MYTIMER_INTERRUPT_MASK);

 /* start the timers */
 XTmrCtr_mSetControlStatusReg(XPAR_MYTIMER_BASEADDR, 0,
XTC_CSR_ENABLE_TMR_MASK | XTC_CSR_ENABLE_INT_MASK |
XTC_CSR_AUTO_RELOAD_MASK | XTC_CSR_DOWN_COUNT_MASK);

 /* Wait for interrupts to occur */
 while (1)
 ;

}

PowerPC Interrupt Management
For the PowerPC processor, LibGen can be used to statically configure Low Level (Level 1)
interrupt vector tables with the peripheral interrupt handlers as described above for
MicroBlaze. The only limitation is that LibGen does not automatically configure interrupt

http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com 277
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

PowerPC Interrupt Management
R

controller interrupt handler to be the exception handler for the PowerPC. The user has to
register the interrupt controller handler as the exception handler.

Thus, for low level handlers, users can take advantage of LibGen’s configuration of
peripheral handlers and interrupt controller vector table. For more information on using
the exception handlers in the PowerPC, please refer Chapter 27, “Stand-Alone Board
Support Package”.

http://www.xilinx.com

278 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

Chapter 29: Interrupt Management
R

http://www.xilinx.com

	Embedded System Tools Guide
	About This Guide
	Guide Contents
	Additional Resources
	Conventions
	Typographical
	Online Document

	Embedded System Tools (EST) Architecture
	Summary
	Tool Architecture Overview
	Tool Flows
	Hardware Platform Creation
	Verification Platform Creation
	Software Platform Creation
	Software Application Creation and Verification

	Some Useful Tools
	Xilinx Platform Studio
	Platform Generator
	HDL Synthesis
	iSE XST
	Synplicity Synplify

	Simulation Model Generator
	Library Generator
	GNU Compiler Tools
	Microblaze
	PowerPC
	Compiling with Optimization
	Setting the Stack Size

	Software Debugging
	Debugging Using Hardware: software intrusive
	Debugging Using A Simulator: non-intrusive

	Dumping an Object/Executable File

	Verifying Tools Setup
	Tools Directory Path
	For Solaris
	For PC

	Xilinx Alliance Software

	Xilinx Platform Studio (XPS)
	Summary
	Overview
	Processes Supported
	Tools Supported
	Features

	Project Management
	Creating A New Project
	Opening An Existing Project

	XPS Interface
	Main Window
	Project View Window (Tree View)
	Transcript Window (Console)

	Platform Management
	Add Cores
	Simulation Models
	View MPD
	View MDD
	S/W Settings
	Peripheral Dialog Window
	Processor Dialog Window

	Source Code Management
	Adding Files
	Deleting Files from Project
	Editing Files

	Flow Tool Settings and Required Files
	Compiler Options
	Project Options
	Required Files

	Tool Invocation
	ISE Project Navigator Interface

	Debug and Simulation
	XPS No Window Mode
	Available Commands
	Creating A New Project
	Opening An Existing Project
	Reading MSS and MVS Files
	Saving Files and Project
	Executing Flow Commands
	Closing A Project and Exiting
	Limitations And Workarounds

	Xilinx Microprocessor Project (XMP) File Format

	Platform Generator
	Overview
	Tool Requirements
	Tool Usage
	Tool Options
	Load Path
	Output Files
	HDL Directory
	Implementation Directory
	Synthesis Directory

	About Memory Generation
	MHS Example (LMB LMB Controller with BRAM Block)

	Reserved MHS Attributes
	Current Limitations

	Simulation Model Generator
	Summary
	Overview
	About Simulation
	Behavioral Simulation
	Structural Simulation
	Timing Simulation

	Simulation Libraries
	EDK Library
	UNISIM Library
	SIMPRIM Library

	Tool Requirements
	Tool Usage
	Tool Options
	Input files
	HDL Directory
	Implementation Directory

	Output Files
	Simulation Directory

	Memory Initialization
	Verilog
	VHDL

	Current Limitations

	Bus Functional Model Generator
	Summary
	Overview
	Tool Requirements
	Tool Usage
	Tool Options
	Input files
	Output Files
	Using BfmGen and IBM CoreConnect Toolkit
	Current Limitations

	Library Generator
	Summary
	Overview
	Tool Usage
	Tool Options
	-h, -help (Help)
	-v, -ver (Display version information)
	-a, -arch family_name (Architecture family)
	-p, -proj proj_dir (Specify project directory)
	-P, -Per_Dir per_dir (Specify user peripherals and driver directory)
	-m, -mode
	-x, -xmdstub proc_inst_name_1 [, proc_inst_name_2, ...]
	-b, -bootstub proc_inst_name_1 [, proc_inst_name 2, ...]
	-e, -executable proc_inst_name_1 [, proc_inst_name_2, ...]
	-l, -lib
	-s, -stub
	-bspgen proc_inst_name_1 [, proc_inst_name_2, ...]
	-d, -do_not_warn

	Output Files
	include
	lib
	libsrc
	code

	MSS Parameters
	Drivers
	Interrupts and Interrupt Controller
	Level 0 Customization

	Boot and Debug Peripherals (MicroBlaze Specific)
	STDIN and STDOUT Peripherals

	Format Revision Tool
	Overview
	Tool Requirements
	Tool Usage
	Tool Options
	Current Limitations

	Platform Specification Format Utility
	Summary
	Overview
	Tool Requirements
	Tool Usage
	Tool Options
	Input files
	Output Files

	GNU Compiler Tools
	Scope
	GNU Compiler Framework
	Compiler Usage and Options
	Usage
	Quick Reference
	Compiler Options
	-g
	-v
	-save-temps
	-o Filename
	-Wp,option
	-Wa,option
	-Wl,option
	--help
	Library Search Options
	Header Files Search Option

	Linker Options
	-defsym _STACK_SIZE=value

	Linker Scripts
	Search Paths
	On Solaris
	On Windows Xygwin Shell

	File Extensions
	Libraries

	Compiler Interface
	Input Files
	Output Files

	MicroBlaze GNU Compiler
	Quick Reference
	MicroBlaze Compiler Options
	-mxl-soft-mul
	-mno-xl-soft-mul
	-mxl-stack-check
	-mxl-barrel-shift
	-mxl-gp-opt
	-xl-mode-executable
	-xl-mode-xmdstub
	-xl-mode-bootstrap
	-xl-mode-bootstrap-reset
	-xl-mode-xilkernel
	-Gn

	MicroBlaze Linker Options
	-defsym _TEXT_START_ADDR=value
	-relax
	-N

	Pseudo-Ops
	Initialization Files
	crt0.o
	crt1.o
	crt2.o
	crt3.o
	crt4.o

	Command Line Arguments
	Interrupt Handlers
	_interrupt_handler attribute
	_save_volatiles attribute

	Power PC GNU Compiler
	Compiler Options
	Linker Options
	-defsym _START_ADDR=value

	Initialization Files

	GNU Debugger
	Summary
	Overview
	Tool Usage
	Tool Options
	--command=FILE
	--batch
	--nw
	-w

	MicroBlaze GDB Targets
	GDB Built-in Simulator
	Remote
	Simulator Target
	Hardware Target

	Compiling for Debugging on MicroBlaze targets

	PowerPC Targets
	GUI mode
	Console mode

	GDB Command Reference

	Xilinx Microprocessor Debugger
	Overview
	XMD usage
	MicroBlaze stub target
	Stub Target Requirements

	MicroBlaze Simulator target
	Simulation Statistics
	Simulator Target Requirements

	PowerPC Target
	XMD Tcl commands

	Platform Specification Format (PSF)
	Overview
	Files
	BBD - Black Box Definition
	MDD - Microprocessor Driver Definition
	MHS - Microprocessor Hardware Specification
	MPD - Microprocessor Peripheral Definition
	MSS - Microprocessor Software Specification
	MVS - Microprocessor Verification Specification
	PAO - Peripheral Analyze Order

	Version Scheme
	Version Setting for MHS, MSS, and MVS
	Format

	Version Setting for BBD, MPD, and PAO
	Format

	Load Path
	Using Versions

	Creating User IP
	Is Your IP Pure HDL?
	Is Your IP Only A Black-Box Netlist?
	Is Your IP A Mixture Of Black-Box Netlists And HDL?

	Microprocessor Hardware Specification (MHS)
	Overview
	MHS Syntax
	Comments
	Format
	Assignment Commands

	MHS Example

	Bus Interface Definition
	Example

	Global Parameter Command
	VERSION Option
	Format

	Local Parameter Command
	HW_VER Option
	Format

	INSTANCE Option
	Format

	Local Bus Interface Command
	POSITION Option
	Format

	Global Port Command
	DIR Option
	Format

	EDGE Option
	Format

	LEVEL Option
	Format

	SIGIS Option
	Format

	VEC Option
	Format

	Local PORT Command
	Design Considerations
	Assinging Constants
	Format

	Defining Memory Size
	Internal vs External Signals
	External Interrupt Signals
	Format

	Internal Interrupt Signals
	Format

	Power Signals
	Format

	Microprocessor Peripheral Description (MPD)
	Overview
	MPD Syntax
	Comments
	Format
	Assignment Commands
	Signal Direction

	MPD Example

	Bus Interface Naming Conventions
	Parameter Naming Conventions
	Reserved Parameters
	C_BUS_CONFIG
	C_FAMILY
	C_INSTANCE
	C_NUM_MASTERS
	C_NUM_SLAVES
	C_DCR_AWIDTH
	C_DCR_DWIDTH
	C_DCR_NUM_SLAVES
	C_LMB_AWIDTH
	C_LMB_DWIDTH
	C_LMB_NUM_SLAVES
	C_OPB_AWIDTH
	C_OPB_DWIDTH
	C_OPB_NUM_MASTERS
	C_OPB_NUM_SLAVES
	C_PLB_AWIDTH
	C_PLB_DWIDTH
	C_PLB_MID_WIDTH
	C_PLB_NUM_MASTERS
	C_PLB_NUM_SLAVES

	Signal Naming Conventions
	Global Ports
	LMB - Clock and Reset
	OPB - Clock and Reset
	PLB - Clock and Reset

	Slave DCR Ports
	DCR Slave Outputs
	DCR Slave Inputs

	Slave LMB Ports
	LMB Slave Outputs
	LMB Slave Inputs

	Master OPB Ports
	OPB Master Outputs
	OPB Master Inputs

	Slave OPB Ports
	OPB Slave Outputs
	OPB Slave Inputs

	Master PLB Ports
	PLB Master Outputs
	PLB Master Inputs

	Slave PLB Ports
	PLB Slave Outputs
	PLB Slave Inputs

	Reserved Signal Connections
	Global Ports
	LMB - Clock and Reset
	OPB - Clock and Reset
	PLB - Clock and Reset

	Slave DCR Ports
	Slave LMB Ports
	Master OPB Ports
	Slave OPB Ports
	Master PLB Ports
	Slave PLB Ports

	Component Options
	HDL Option
	Format

	IMP_NETLIST Option
	Format

	IPTYPE Option
	Format

	STYLE Option
	Format

	Global Parameter Command
	VERSION Option
	Format

	Local Option Command
	SIM_MODELS Option
	Format
	Format

	Local Parameter Command
	BUS Option
	Format
	Format

	DT Option
	Format

	MIN_SIZE Option
	Format

	Local Bus Interface Command
	BUS Option
	Format

	BUS_STD Option
	Format

	BUS_TYPE Option
	Format

	Local Port Command
	BUS Option
	Format
	Format

	DIR Option
	Format

	EDGE Option
	Format

	ENABLE Option
	Format

	ENDIAN Option
	Format

	INITIALVAL Option
	Format

	LEVEL Option
	Format

	SIGIS Option
	Format

	VEC Option
	Format

	HDL Design Considerations
	Unconnected Signals
	Format

	Scalable Data path
	Format
	MPD Example
	Format

	Interrupt Signals
	3-state (InOut) Signals
	VHDL 3-state (InOut) With Multi-Bit Enable Example
	MPD 3-state (InOut) With Multi-Bit Enable Example
	VHDL 3-state (InOut) With Single-Bit Enable Example
	MPD 3-state (InOut) With Single-Bit Enable Example

	Peripheral Analyze Order (PAO)
	Overview
	PAO Format
	Comments

	PAO Example

	Black-Box Definition (BBD)
	Overview
	BBD Format
	Comments
	Lists

	BBD Examples
	File Selection Without Options
	Multiple File Selections Without Options
	File Selection With Options

	Microprocessor Verification Specification (MVS)
	Summary
	Overview
	MVS Format
	Keywords
	Requirements
	MVS Example

	Global Parameters
	PSF Version
	Hardware Specification File Pointer
	Software Specification File Pointer
	Simulation Language
	Simulator
	Simulation Model
	ModelSim Behavioral Library
	ModelSim Unisim Library
	ModelSim Simprim Library

	Microprocessor Software Specification (MSS)
	Summary
	Overview
	MSS Format
	Keywords
	Requirements
	MSS Example

	Global Parameters
	Hardware Specification File Pointer
	PSF Version

	Instance Specific Parameters
	Driver and Processor Block Parameters
	HW_INSTANCE Option
	DRIVER_NAME Option
	DRIVER_VER Option
	INT_HANDLER Option
	LEVEL Option
	LIBRARY Option
	MDD Specific Parameters

	Processor Specific Parameters
	EXECUTABLE Option
	DEFAULT_INIT Option
	STDIN Option
	STDOUT Option
	BOOT_PERIPHERAL Option
	DEBUG_PERIPHERAL Option
	COMPILER Option
	ARCHIVER Option
	COMPILER_FLAGS Option
	EXTRA_COMPILER_FLAGS Option
	OS Option

	Library and File System Parameters
	FILESYS_NAME Option
	PROC_INSTANCE Option
	MOUNT Option
	LIBRARY Option

	Microprocessor Driver Definition (MDD)
	Summary
	Overview
	Requirements
	MDD Format
	Keywords
	MDD Example

	Driver Block
	Driver Block Specific Parameters and Constants
	VERSION
	LEVEL
	Other Generic Parameters

	Level Block
	Level Block Specific Parameters and Constants
	INBYTE
	OUTBYTE
	COPYFILES
	DEPENDS
	CONFIG_INCLUDE
	CONFIG_FILE
	INT_HANDLER

	Xilinx Libraries
	Scope
	Overview
	Library Organization
	Library Customization

	LibXil Standard C Libraries
	Summary
	Overview
	Standard C Library (libc.a)
	Xilinx C Library (libxil.a)
	Input/Output Functions
	Memory Management Functions
	MicroBlaze Processor
	PowerPC 405 Processor

	Arithmetic Operations
	MicroBlaze Processor
	Integer Arithmetic
	Floating Point Arithmetic

	PowerPC 405 Processor
	Integer Arithmetic
	Floating Point Arithmetic

	LibXil File
	Scope
	Overview
	Module Usage
	Module Routines
	Libgen Support
	LibXil File Instantiation
	System Initialization

	Limitations

	LibXil Memory File System
	Scope
	Overview
	MFS Functions
	Quick Glance
	Detailed summary of MFS Functions

	C-like access
	LibGen Customization

	LibXil Net
	Summary
	Overview
	LibXilNet Functions
	Quick Glance

	Protocols Supported
	Library Architecture
	Protocol Function Description
	Media Access Layer (MAC) Drivers Wrapper
	Ethernet Drivers
	ARP (RFC 826)
	IP (RFC 791)
	ICMP (RFC 792)
	UDP (RFC 768)
	TCP (RFC 793)
	Sockets API

	Current Restrictions
	Functions of LibXilNet
	LibGen Customization
	Using XilNet in Application

	LibXil Kernel
	Summary
	Overview
	Features
	LibXilKernel Blocks
	Process Management
	Functions of Process Management

	Thread Management
	Functions of Thread Management

	Interrupt Handling
	System call interface
	Semaphore
	Functions of Semaphore

	Message Queue
	Functions of Message Queue

	Shared Memory
	Functions of Shared Memory

	Dynamic Buffer Management
	Functions of Dynamic Buffer Management

	Customization
	Customizing Process Management
	Customizing Thread Management
	Customizing Semaphore
	Customizing Message Queue
	Customizing Shared Memory
	Customizing Dynamic Buffer Management

	Memory footprint

	Device Drivers
	Summary
	Overview
	Goals and Objectives

	Device Driver Architecture
	Layer 2, RTOS Adaptation
	Layer 1, High Level Drivers
	Layer 0, Low Level Drivers
	Object-Oriented Device Drivers
	Component Definition
	Component Implementation
	Component Data Variables
	Component Interface
	Component Instance
	Component Example

	API and Naming Conventions
	External Identifiers
	File Naming Conventions
	Component Based Source File Names
	Implementation Source Files (*.c)
	Header Source Files (*.h)
	Device Driver Layers
	Example File Names

	High Level Device Driver API
	Standard Device Driver API

	Configuration Parameters
	xparameters.h
	File Format and Naming Conventions

	x<component name>_g.c
	Example

	Common Driver Infrastructure
	Source Code Documentation
	Driver Versions
	Primitive Data Types
	Device I/O
	Error Handling
	Return Status
	Asserts

	Communication with the Application
	Reentrancy and Thread Safety
	Interrupt Management
	Multi-threading & Dynamic Memory Management
	Cache & MMU Management

	Stand-Alone Board Support Package
	Overview
	MicroBlaze BSP
	Interrupt Handling
	void microblaze_enable_interrupts(void)
	void microblaze_disable_interrupts(void)

	PowerPC BSP
	Boot Code
	boot.S
	crt0.S
	eabi.S

	Cache
	void XCache_WriteCCR0(unsigned int val);
	void XCache_EnableDCache(unsigned int regions);
	void XCache_DisableDCache(void);
	void XCache_FlushDCacheLine(unsigned int adr);
	void XCache_StoreDCacheLine(unsigned int adr);
	void XCache_EnableICache(unsigned int regions);
	void XCache_DisableICache(void);
	void XCache_InvalidateICache(void);
	void XCache_InvalidateICacheLine(unsigned int adr);

	Exception Handling
	void XExc_Init(void);
	void XExc_RegisterHandler(Xuint8 ExceptionId, XExceptionHandler Handler, void *DataPtr);
	void XExc_RemoveHandler(Xuint8 ExceptionId)
	void XExc_mEnableExceptions (EnableMask);
	void XExc_mDisableExceptions (DisableMask);

	Files
	int read(int fd, char *buf, int nbytes);
	int write(int fd, char *buf, int nbytes);
	int isatty(int fd);

	Memory Management
	char *sbrk(int nbytes);

	Process
	Processor-Specific Include Files
	Time
	typedef unsigned long long XTime;
	void XTime_SetTime(XTime xtime);
	void XTime_GetTime(XTime *xtime);
	void XTime_TSRClearStatusBits(unsigned long Bitmask);
	void XTime_PITSetInterval(unsigned long interval);
	void XTime_PITEnableInterrupt(void);
	void XTime_PITDisableInterrupt(void);
	void XTime_PITEnableAutoReload(void);
	void XTime_PITDisableAutoReload(void);
	void XTime_PITClearInterrupt(void);
	unsigned int usleep(unsigned int __useconds);
	unsigned int sleep(unsigned int __seconds);
	int nanosleep(const struct timespec *rqtp, struct timespec *rmtp);

	Address Management
	Summary
	MicroBlaze Processor
	Programs and Memory
	Current Address Space Restrictions
	Memory and Peripherals Overview
	BRAM Size Limits
	Special Addresses
	OPB Address Range Details
	Address Map

	Memory Speeds and Latencies
	System Address Space
	System with only an executable [No debug, No Bootstrap]
	System with debugging support
	System with bootstrap support

	Default User Address Space
	Advanced User Address Space
	Different Base Address, Contiguous User Address Space
	Different Base Address, Non-contiguous User Address Space

	Object-file Sections
	Minimal Linker Script
	Linker Script

	PowerPC Processor
	Programs and Memory
	Current Address Space Restrictions
	Special Addresses
	Default Linker Options

	Advanced User Address Space
	Different Base Address, Contiguous User Address Space
	Different Base Address, Non-contiguous User Address Space

	Linker Script
	Restrictions

	Interrupt Management
	Summary
	Levels of Interrupt Management
	Level 0 (Low Level)
	Level 1 (High Level)

	MicroBlaze Interrupt Management
	Interrupt Handlers
	The Interrupt Controller Peripheral
	MicroBlaze Enable Interrupts
	System without Interrupt Controller (Single Interrupt Signal)
	Procedure
	Example MHS File
	Example MSS File snippet
	Example C Program

	System with an Interrupt Controller (One or More Interrupt Signals)
	Procedure
	Example MHS File
	Example MSS File snippet
	Example C Program

	PowerPC Interrupt Management

