Embedded
System Tools

Guide

Embedded
Development Kit

EDK (v3.1 EA) September 24, 2002

SUXILINX®

Embedded System Tools Guide www.Xxilinx.com EDK (v3.1 EA) September 24, 2002
1-800-255-7778

http://www.xilinx.com

2 XILINX®

"Xilinx" and the Xilinx logo shown above are registered trademarks of Xilinx, Inc. Any rights not expressly granted herein are reserved.

CoolRunner, RocketChips, Rocket IP, Spartan, StateBENCH, StateCAD, Virtex, XACT, XC2064, XC3090, XC4005, and XC5210 are
registered trademarks of Xilinx, Inc.

A 4

The shadow X shown above is a trademark of Xilinx, Inc.

ACE Controller, ACE Flash, A.K.A. Speed, Alliance Series, AllianceCORE, Bencher, ChipScope, Configurable Logic Cell, CORE
Generator, CoreLINX, Dual Block, EZTag, Fast CLK, Fast CONNECT, Fast FLASH, FastMap, Fast Zero Power, Foundation, Gigabit
Speeds...and Beyond!, HardWire, HDL Bencher, IRL, J Drive, JBits, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroBlaze,
MicroVia, MultiLINX, NanoBlaze, PicoBlaze, PLUSASM, PowerGuide, PowerMaze, QPro, Real-PCl, Rocket I/0, Selectl/O, SelectRAM,
SelectRAM+, Silicon Xpresso, Smartguide, Smart-IP, SmartSearch, SMARTswitch, System ACE, Testbench In A Minute, TrueMap, UIM,
VectorMaze, VersaBlock, VersaRing, Virtex-1l Pro, Virtex-ll EasyPath, Wave Table, WebFITTER, WebPACK, WebPOWERED, XABEL,
XACT-Floorplanner, XACT-Performance, XACTstep Advanced, XACTstep Foundry, XAM, XAPP, X-BLOX +, XC designated products,
XChecker, XDM, XEPLD, Xilinx Foundation Series, Xilinx XDTV, Xinfo, XSI, XtremeDSP and ZERO+ are trademarks of Xilinx, Inc.

The Programmable Logic Company is a service mark of Xilinx, Inc.
All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown herein; nor does it convey
any license under its patents, copyrights, or maskwork rights or any rights of others. Xilinx, Inc. reserves the right to make changes, at any
time, in order to improve reliability, function or design and to supply the best product possible. Xilinx, Inc. will not assume responsibility for
the use of any circuitry described herein other than circuitry entirely embodied in its products. Xilinx provides any design, code, or
information shown or described herein "as is." By providing the design, code, or information as one possible implementation of a feature,
application, or standard, Xilinx makes no representation that such implementation is free from any claims of infringement. You are
responsible for obtaining any rights you may require for your implementation. Xilinx expressly disclaims any warranty whatsoever with
respect to the adequacy of any such implementation, including but not limited to any warranties or representations that the implementation
is free from claims of infringement, as well as any implied warranties of merchantability or fitness for a particular purpose. Xilinx, Inc. devices
and products are protected under U.S. Patents. Other U.S. and foreign patents pending. Xilinx, Inc. does not represent that devices shown
or products described herein are free from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to
correct any errors contained herein or to advise any user of this text of any correction if such be made. Xilinx, Inc. will not assume any
liability for the accuracy or correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in such applications without
the written consent of the appropriate Xilinx officer is prohibited.

The contents of this manual are owned and copyrighted by Xilinx. Copyright 1994-2002 Xilinx, Inc. All Rights Reserved. Except as stated
herein, none of the material may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form
or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent
of Xilinx. Any unauthorized use of any material contained in this manual may violate copyright laws, trademark laws, the laws of privacy and
publicity, and communications regulations and statutes.

EDK (v3.1 EA) September 24, 2002 www.Xxilinx.com Embedded System Tools Guide
1-800-255-7778

http://www.xilinx.com

Embedded System Tools Guide
EDK (v3.1 EA) September 24, 2002

The following table shows the revision history for this document.

Version Revision
06/24/02 1.0 Initial Xilinx EDK (Embedded Processor Development Kit) release.
08713702 1.1 EDK (v3.1) release.
Embedded System Tools Guide www.Xxilinx.com EDK (v3.1 EA) September 24, 2002

1-800-255-7778

http://www.xilinx.com

Preface: About This Guide

1-800-255-7778

GUIde CONtENTS ... 17
Additional RESOUICES i 17
CONVENTIONS .. 18
Typographical. 18
ONline DOCUMENT e 19
Chapter 1: Embedded System Tools (EST) Architecture
SUMIMIAY o 21
Tool Architecture OVerVIEW o e 21
TOOLFIOWS . .. 22
Hardware Platform Creation e 22
Verification Platform Creation. e 23
Software Platform Creation e 23
Software Application Creation and Verification............... 24
Some Useful Tools 25
Xilinx Platform Studio. 25
Platform Generatort 25
HDL SYNtheSIS . ..o 25
Simulation Model Generatorttt 26
Library Generator.t 26
GNU Compiler TOOIS. . ..o 26
Software Debuggingo 27
Dumping an Object/Executable File. i i, 28
Verifying Tools SetUup. 29
Tools Directory Path 29
Xilinx Alliance Software 29
Chapter 2: Xilinx Platform Studio (XPS)
SUMIMIANY oo e e e 31
OV IV BW . .. 31
Processes SUPPOITEd 31
TOOIS SUPPOITEd 32
Project Management 33
XPSInterface 34
Platform Management. 35
Source Code Management. i 39
Flow Tool Settings and Required Files. 39
Tool Invocation 41
Debugand Simulation 42
XPSNoWindow Mode. 42
Xilinx Microprocessor Project (XMP) FileFormat 45
Chapter 3: Platform Generator
OV IV W L . 51
Tool REQUITEMENTS. . ..o 51
EDK (v3.1 EA) September 24, 2002 www.Xxilinx.com Embedded System Tools Guide

http://www.xilinx.com

Tool Usage. ... 52
TOOl OPLIONS. . .o 52
Load Path 53
OULPUL FIleS . 54
HDL DIFeCtOrY . . oottt e e e e e e e 54
Implementation DIreCtoryt 54
SYNheSIS DIFeCOrY e 55
About Memory Generation. 55
MHS Example (LMB LMB Controller with BRAM Block)....................... 56
Reserved MHS Attributes 56
Current LImitations 57
Chapter 4: Simulation Model Generator
SUMIMNI Y oo e e e e 59
OV IV B L . 59
About Simulation 59
Behavioral Simulation 59
Structural Simulation. 59
Timing Simulation 60
Simulation Libraries 60
EDK Library 60
UNISIM Library 60
SIMPRIM Library 60
ToOl ReqQUITEMENTS. ... 60
TO0l USage. . .o 60
TOOl OPLIONS. ... 61
INPUL FIleS. . . 62
HDL DIreCtOrY . . oottt e e e e e e e e 62
Implementation DIreCtoryttt 62
Output Files 63
SIMUIAtioN DireCtOry e 63
Memory Initialization. 63
VEIIOg .« oo 63
VH DL . . 64
Current LImitations 64
Chapter 5: Bus Functional Model Generator
SUMIMIANY oo 65
OV IVIBW . . 65
ToOl ReqQUITEMENTS. ... 65
TO0l USage. . e 65
TOOl OPLIONS. .. 65
INnput files. ... 66
OULPUL RIS . o o 66
Using BfmGen and IBM CoreConnect Toolkit............................... 67
Current LImitationso 67
EDK (v3.1 EA) September 24, 2002 www.Xxilinx.com Embedded System Tools Guide

1-800-255-7778

http://www.xilinx.com

Chapter 6: Library Generator

SUMIMANY .. e 69
OV IV . .ot e 69
TO0l USage. . .o 69
TOOl OPLIONS. .. 69
OUtPUL FIles .. 71
MSS Parameters. 72
D YT 72
Interrupts and Interrupt Controller......... i, 72
Boot and Debug Peripherals (MicroBlaze Specific)........................... 73
STDIN and STDOUT Peripherals i, 73

Chapter 7. Format Revision Tool

OV IV . o 75
Tool ReqUIrEMENTS. 75
TO0l USaQE. . e 75
TOOl OPLIONS. ... 75
Current LImitations 76

Chapter 8: Platform Specification Format Utility

SUMIMAIY . e e 77
OVEIVIBW . . o 77
Tool REQUITEMENTS. . ..o 77
Tool Usage. ... 77
TOOl OPLIONS. . . 77
Inputfiles. ... 78
OULPUL FIleS . 78

Chapter 9: GNU Compiler Tools

SO O . oo 79
GNU Compiler Framework. e 79
Compiler Usage and OpPLiONSttt 80
USB0E .« oottt 80
QUICK ReferenCeo 80
Compiler OPtioNS. 81
LinKer OPtioNsot 83
LiNKer SCIiPTS . ..ot 83
Search Paths 84
File EXEENSIONS . . .o 85
Libraries . . . 85
Compiler Interface 85
INPUE FIIES . 85
OULPUL FIlES ..o 86
MicroBlaze GNU Compiler. 86
EDK (v3.1 EA) September 24, 2002 www.Xxilinx.com Embedded System Tools Guide

1-800-255-7778

http://www.xilinx.com

QUICK REfEIeNCE . .. o 86
MicroBlaze Compiler OpLions i 87
MicroBlaze Linker Options. 89
PSEUO-OPS . . oot 89
Initialization Files. 90
Command Line ArgUMENTSt e 91
Interrupt Handlers 91
Power PC GNU Compiler ... e 92
Compiler OPtioNS. 92
LinKer OPtioNso 92
Initialization Files. 92
Chapter 10: GNU Debugger
SUMIMAIY . . 93
OV IV . .ot 93
OO0l USaQE . . et 93
TOOl OPLIONS. ..o 94
MicroBlaze GDB Targets.ouiii i 94
GDB BUIlt-in SIMUIator e 95
REMIOTE . . . 95
Compiling for Debugging on MicroBlazetargets..............., 96
POWEIP C TargetS. . .ot 97
GUIMOAE .. 97
CoNSOle MOAE o 97
GDB Command Reference ... 98
Chapter 11: Xilinx Microprocessor Debugger
OV IVIBW . . o 99
XMD USAQE . oo 100
MicroBlaze stub target 100
Stub Target RequUirements 100
MicroBlaze Simulatortarget. i 103
Simulation Statistics. 103
Simulator Target Requirements.t i e e e 103
POWEIrPC Target. 103
XMD Tcl commands 104
Chapter 12: Platform Specification Format (PSF)
OV IV W L . 107
FIles L 107
BBD - Black Box Definition 107
MDD - Microprocessor Driver Definition 107
MHS - Microprocessor Hardware Specification 107
MPD - Microprocessor Peripheral Definition 107
MSS - Microprocessor Software Specification 108
MVS - Microprocessor Verification Specification 108
PAO - Peripheral Analyze Order. e 108
EDK (v3.1 EA) September 24, 2002 www.Xxilinx.com Embedded System Tools Guide

1-800-255-7778

http://www.xilinx.com

VErSION SCNEMIE . . .o 108

Version Setting for MHS, MSS,and MVS. 108
Version Setting for BBD, MPD,and PAO. i, 108
Load Path 109
USING VEISIONS .« oo e e 110
Creating User 1P 110
ISYour IPPure HDL? 110
IsYour IP Only A Black-Box Netlist? 110
Is Your IP A Mixture Of Black-Box Netlists And HDL? 111

Chapter 13: Microprocessor Hardware Specification (MHS)

OV IV W . 113
MHS SYNtax 113
COMIMIENES .« . o e e 114
FOrmat .. e 114
MHS EXample. . ..o 114
Bus Interface Definition. 116
EXAMPIE . .o e 117
Global Parameter Command i 117
VERSION OpLioNo e e 117
Local Parameter Command i 118
HW_VEROPLION 118
INSTANCE Option e e e e e e 118
Local Bus Interface Command............. i 118
POSITION OpPLiON . ..o e e e e 118
Global Port Command 119
DIR OPtION . 119
EDGE Option ... 119
LEVEL OptioN ...ttt e 119
SIGIS OPtION . .o 119
VEC OPtiON . .ot e e 120
Local PORT Command........... ... 120
Design Considerations 120
ASSINGING CONStANTSottt 120
Defining Memory Size.o 120
Internal vs External Signals 120
External Interrupt Signals. i 121
Internal Interrupt Signals e 121
POWEr SIgNals . .. o 121

Chapter 14: Microprocessor Peripheral Description (MPD)

OV IV . o 123
MPD SYNtaXx 123
COMMIENTES . . o e e e 124
FOrmat .. .o 124
MPD EXample. ... o 124
Bus Interface Naming Conventions. ...t 125
Parameter Naming Conventions. s, 126
Reserved Parameters 127
EDK (v3.1 EA) September 24, 2002 www.Xxilinx.com Embedded System Tools Guide

1-800-255-7778

http://www.xilinx.com

Signal Naming Conventions. i 130

Global POItS. . .. 131
SIave DCR POItS . . . o e 131
SIave LIMIB POItS . . . o 132
Master OPB POItS 132
Slave OPB POItS .. .o 133
Master PLB POItSo 134
Slave PLB POrtS. . . . o 135
Reserved Signal ConNeCtioNS. e 136
Global POItS. . ..o 136
Slave DCR POItS . . . oo 136
Slave LIMB POItS . . . oo 136
Master OPB POItS o 137
Slave OPB POItS ... oo 137
Master PLB POKtS 137
Slave PLB POItS. ... oo 138
Component OPtiONS. oo 139
HDL OPLiON ..o e e e e e 139
IMP_NETLIST OPLIONottt e e e 139
IPTYPE OPtiON . . oot e e 140
STYLE OPLiONot 140
Global Parameter Command 140
VERSION OPtion . ..o e 140
Local Option Commandt 141
SIM_MODELS OPLION . . . oottt e e e e e e 141
Local Parameter Command i 141
BUS OPtioNo 141
DT OPtION .« ot 142
MIN_SIZE OPtION ...ttt ettt e e e 142
Local Bus Interface Command............... i 142
BUS OPLioN . .o 142
BUS_STD OPLION . ..\ttt et e 143
BUS_TYPE OPLIONt e 143
Local PortCommand 143
BUS OPtioNo 144
DIR OPtiON .o 144
EDGE OPLION . .ottt e 144
ENABLE Optiono 144
ENDIAN Option ... e e e 144
INITIALVAL Option e e 145
LEVEL OptioNn ... e e 145
SIGIS OPtiON . . oo 145
VEC OPLION . . oot e 145
HDL Design Considerations. i 145
Unconnected Signals 146
Scalable Data path e 146
Interrupt Signals. 147
3-state (INOUL) Signals e 147

Chapter 15: Peripheral Analyze Order (PAO)

OVEIVIBW . o . 149

EDK (v3.1 EA) September 24, 2002 www.Xxilinx.com Embedded System Tools Guide
1-800-255-7778

http://www.xilinx.com

PAO FOrmat. 149
COMMIBNES . . oo e 149

PAO EXample 149

Chapter 16: Black-Box Definition (BBD)

OVBIVIBW . o 151
BBD FOrmat. 151
COMIMEBNES . . .o e 152
LSt oot 152
BBD EXampPles 152
File Selection Without Options e 152
Multiple File Selections Without Options i ... 152
File Selection With Options e 152

Chapter 17: Microprocessor Verification Specification (MVS)

QUMY o 155
OV IV W L . 155
MV S FOrmat .. o 155
KEYWOIAS .. 155
ReQUITEMENTS . . . 155
MV S EXample . .. 156
Global Parameters 156
PSF VrSION . . oo 156
Hardware Specification File Pointer i, 157
Software Specification File Pointer i i 157
Simulation Language.ot e 157
SIMUIALOr . . .o 157
Simulation Model. e 157
ModelSim Behavioral Library 157
ModelSim Unisim Library 157
ModelSim Simprim Library 158

Chapter 18: Microprocessor Software Specification (MSS)

SUMIMAIY .. 159
OVBIVIBW . . 159
MSS FOrmat. 159
KEYWOIAS .. 159
REqUITEMENTS . . o 160
MSS EXample . .. 160
Global Parameters 161
Hardware Specification File Pointer i 161
PSF VerSION . . . 161
Instance Specific Parameters i 162
Driver and Processor Block Parameters 162
Processor Specific Parameters 164
Library and File System Parameters ..., 166
EDK (v3.1 EA) September 24, 2002 www.Xxilinx.com Embedded System Tools Guide

1-800-255-7778

http://www.xilinx.com

Chapter 19: Microprocessor Driver Definition (MDD)

SUMIMANY . . e 169
OVBIVIBW . ot 169
REQUITEMENTS . . . 169
MDD FOrmat. 169
KEYWOIAS .. 169
MDD EXampPle ... o 170
Driver BlOCK 170
Driver Block Specific Parameters and Constantsoou.... 171
Level BIOCK 171
Level Block Specific Parametersand Constantscoovunnn.. 172

Chapter 20: Xilinx Libraries

SO o 175
OV IVIBW . . 175
Library Organization. i e 175
Library Customization 177

Chapter 21: LibXil Standard C Libraries

SUMIMI Y oo e e e 179
OVEIVIBW . . . 179
Standard C Library (libc.a) 179
Xilinx C Library (libxil.a)....... ... 180
INput/Output FUNCLIONS 180
Memory Management FUNCEIONSt 181
MiICroBlaze ProCESSOr. . . .ottt e e e e e e 181
POWEIPC 405 ProCESSOrttt e e e e 181
Arithmetic Operations 181
MICroBlaze ProCESSOr. . ..ottt e e 181
POWEIPC 405 ProCESSOr . ottt e e 182

Chapter 22: LibXil File

SO I . oot 183
OV VI B L . 183
Module Usage 183
Module RoUtines. 183
Libgen SUPPOrt ... 186

LibXil File Instantiation. i e e 186

System Initialization e 186
LimMitatioNS ... 186

Chapter 23: LibXil Memory File System

SO 187
OV IV . o 187
EDK (v3.1 EA) September 24, 2002 www.Xxilinx.com Embedded System Tools Guide

1-800-255-7778

http://www.xilinx.com

MES FUNCHIONSo 187

QUICK GIaNCe. . ..o e 187
Detailed summary of MFS Functions i, 188
C-lIKE ACCESS . . .o 193
LibGen Customization 193

Chapter 24: LibXil Net

SUMIMI Y oot e e e e 195
OV IV B . .t 195
LIbXIINEet FUNCLIONS. e 195
QUICK GlanCe. o e e 195
Protocols Supported. 196
Library Architecture. 197
Protocol Function Description 198
Media Access Layer (MAC) Drivers Wrapper., 198
Ethernet DriVers e 198
ARP (RFC 826) . ..ottt e e e e e e 198
IP(REC 791) ..ottt et e e e e e 198
ICMP (RFEC 792) . .ot e e e e 198
UDP (RFC 768) . . oottt e e 198
TCP (RFC 793) .ttt e e e e 199
SOCKELS APl .. 199
CUITENt RESTIICHIONS. o 199
Functionsof LibXilNet. 199
LibGen Customization i i 210
Using XilNet in Application....... ... 211

Chapter 25: LibXil Kernel

SUMIMIAY o 213
OVBIVIBW . o 213
FOAtUIES. . .. 213
LibXilKernel BIOCKS. 213
Process Management 214
Functions of Process Management i 215
Thread Management 217
Functions of Thread Management. e, 217
Interrupt Handling. 218
Systemecall interface 218
SeMAPNOrE. . . 219
Functions of Semaphore 219
MeESSage QUEBUEt 220
Functions of Message QUEUEttt e 220
Shared Memory 222
Functions of Shared Memory 223
Dynamic Buffer Management i 224
Functions of Dynamic Buffer Management.................., 224
EDK (v3.1 EA) September 24, 2002 www.Xxilinx.com Embedded System Tools Guide

1-800-255-7778

http://www.xilinx.com

CUSTOMIZAION . .. oo 225

Customizing Process Management 226
Customizing Thread Management 226
Customizing SEMAPNOre. e 226
Customizing Message QUEUE.ottt e et 227
Customizing Shared MemoOry e e e e 227
Customizing Dynamic Buffer Management 228
Memory TOOTPIINT 228

Chapter 26: Device Drivers

SUMIMIANY o 229
OV IV W . 229
Goals and ObJeCtiVESo 229
Device Driver Architecture 230
Layer 2, RTOS Adaptation 230
Layer 1, High LeVel Drivers e 231
Layer 0, Low Level Drivers e 231
Object-Oriented Device DIiVErS. o e 232
APl and Naming Conventions. i 233
External Identifiers. 233
File Naming Conventionsottt e e e 233
High Level Device Driver APl e e 235
Configuration Parameters 236
XPArameters. N . .. 236
X<COMPONENTENAMES_J.C . .ottt ittt 237
EXAMPIE . . 238
Common Driver Infrastructure i 238
Source Code Documentationttt 238
DFIVEr VEISIONS. .« o ottt e e e e e e e 239
Primitive Data TYPES . . ottt 239
DEVICE 1/ 0. o 239
Error Handling o 239
Communication with the Application i i, 240
Reentrancy and Thread Safety i e 240
Interrupt Management o 240
Multi-threading & Dynamic Memory Management 240
Cache & MMU Managementt e 240

Chapter 27. Stand-Alone Board Support Package

OV IV W L . 241
MicroBlaze BSP 241
Interrupt Handling 241
POWEIPC BSP .. 241
BOOt GO .. 241
CaCNE . 242
Exception Handling 243
FIleS o 245
Memory Management 246
PrOCESS . o ot 246
Processor-Specific Include Files. o i 246
EDK (v3.1 EA) September 24, 2002 www.Xxilinx.com Embedded System Tools Guide

1-800-255-7778

http://www.xilinx.com

Chapter 28: Address Management

SUMIMIA Y o 251
MICroBlIaze ProCESSOr.t 251
Programs and MEMOIYot 251
Current Address Space Restrictions i 251
Memory Speeds and LatenCies.t 253
SyStem AdAreSS SPACE.ottt 253
Default User Address SPaceot 254
Advanced User AdAress SPacettt 254
Object-file SECLIONS o 255
Minimal Linker SCripto 257
LiNKer SCIIPt . . . 257
POWEIPC PrOCESSOYttt 260
Programs and MEMOKYot e 260
Current Address Space Restrictionsco i 260
Advanced User AdAress SPacecovvv it e 261
T] T T o) 262

Chapter 29: Interrupt Management

SUMIMAIY . 267
Levels of Interrupt Management. i 267
Level O (Low Level) ... e 267
Level 1 (High Level) e 267
MicroBlaze Interrupt Management i 268
Interrupt Handlers e 268
The Interrupt Controller Peripheral i .. 268
MicroBlaze Enable INterrupts.t e 269
System without Interrupt Controller (Single Interrupt Signal).................. 269
System with an Interrupt Controller (One or More Interrupt Signals) 272
PowerPC Interrupt Management i, 276
EDK (v3.1 EA) September 24, 2002 www.Xxilinx.com Embedded System Tools Guide

1-800-255-7778

http://www.xilinx.com

Embedded System Tools Guide www.Xxilinx.com EDK (v3.1 EA) September 24, 2002
1-800-255-7778

http://www.xilinx.com

27 XILINX®
Preface

About This Guide

Welcome to the Embedded Developement Kit. This kit is designed to provide designers
with a rich set of design tools and a wide selection of standard peripherals required to
build embedded processor systems using MicroBlaze, the industry’s fastest soft processor
solution, and the new and unique feature in Virtex-11 Pro, the IBM ® PowerPC ® CPU.

This guide provides information about the Embedded System Tools (EST) included in the
Embedded Development Kit (EDK). These tools, consisting of processor platform tailoring
utilities, software application development tool, a full featured debug tool chain and
device drivers and libraries, allow the developer to fully exploit the power of MicroBlaze
and Virtex-11 Pro.

Guide Contents

This guide discusses the following topics:

* Embedded System Tools Flow

e Processor Platform Tailoring Utilities

» Software Application Development Tools
* Debug Tool Chain

e Simulation

» Libraries

» Drivers

» Software Specification

Additional Resources

For additional information, go to http://support.xilinx.com. The following table lists
some of the resources you can access from this website. You can also directly access these
resources using the provided URLSs.

Resource Description/URL

Tutorials Tutorials covering Xilinx design flows, from design entry to
verification and debugging

http://support.xilinx.com/support/techsup/tutorials/index.htm

Answer Browser Database of Xilinx solution records

http://support.xilinx.com/xInx/xil ans_browser.jsp

Embedded System Tools Guide www.xilinx.com 17
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com
http://support.xilinx.com
http://support.xilinx.com/support/techsup/tutorials/index.htm
http://www.support.xilinx.com/xlnx/xil_ans_browser.jsp

SUXILINX®

Preface: About This Guide

Resource

Description/URL

Application Notes

Descriptions of device-specific design techniques and approaches
http://support.xilinx.com/apps/appsweb.htm

Data Book

Pages from The Programmable Logic Data Book, which contains
device-specific information on Xilinx device characteristics,
including readback, boundary scan, configuration, length count,
and debugging

http://support.xilinx.com/partinfo/databook.htm

Problem Solvers

Interactive tools that allow you to troubleshoot your design issues
http://support.xilinx.com/support/troubleshoot/psolvers.htm

Tech Tips

Latest news, design tips, and patch information for the Xilinx
design environment

http://www.support.xilinx.com/xInx/xil tt_home.jsp

GNU Manuals

The entire set of GNU manuals

http://www.gnu.org/manual

Conventions

This document uses the following conventions. An example illustrates each convention.

Typographical

The following typographical conventions are used in this document:

Convention

Meaning or Use Example

Courier font

Messages, prompts, and
program files that the system | speed grade: - 100
displays

Courier bold

Literal commands that you

enter in a syntactical statement ngdbuild design_name

Helvetica bold

Commands that you select

File -~ Open
from a menu

Keyboard shortcuts Ctrl+C

Italic font

Variables in a syntax
statement for which you must | ngdbui | d desi gn_nane
supply values

See the Development System
References to other manuals Reference Guide for more
information.

If a wire is drawn so that it
Emphasis in text overlaps the pin of a symbol,
the two nets are not connected.

18

www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com
http://support.xilinx.com/apps/appsweb.htm
http://support.xilinx.com/partinfo/databook.htm
http://www.support.xilinx.com/support/troubleshoot/psolvers.htm
http://www.support.xilinx.com/xlnx/xil_tt_home.jsp
http://www.gnu.org/manual

Conventions

SXILINX®

Convention

Meaning or Use

Example

Square brackets []

An optional entry or
parameter. However, in bus
specifications, such as

bus[7: 0] , they are required.

ngdbui | d [opti on_nane]
desi gn_nane

A list of items from which you

Repetitive material that has
been omitted

Braces {} must choose one or more | owpwr ={on] of }

. Separates items in a list of _
Vertical bar | choices | owpwr ={on| of f}

. L OB #1: Nane = QQUT’
Vertical ellipsis | OB #2: Name = CLKI N

Horizontal ellipsis ...

Repetitive material that has

al | owbl ock bl ock_nane

been omitted locl loc2 ... locn;
Online Document
The following conventions are used in this document:

Convention Meaning or Use Example
Cross-reference link to a See the section “Additional
location in the current file or Resources” for details.

Blue text . L
in another file in the current
document
Red text Cross-reference link to a See Figure 2-5 in the Virtex-II
location in another document | Handbook.
. . . Go to http://www.xilinx.com
Blue, underlined text | Hyperlink to a website (URL) for the latest speed files.

Embedded System Tools Guide
EDK (v3.1 EA) September 24, 2002

www.Xilinx.com
1-800-255-7778

19

http://www.xilinx.com

S XILINX® Preface: About This Guide

20 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

SXILINX®
Chapter 1

Embedded System Tools (EST)
Architecture

Summary

This chapter describes the Embedded System Tools (EST) architecture and flows for the
Xilinx embedded processors, PowerPC 405 and MicroBlaze.

Tool Architecture Overview

Figure 1-1 depicts the embedded software tool architecture. Multiple tools based on a
common framework allow the user to design the complete embedded system. System
design consists of the creation of the hardware and software components of the embedded
processor system, and optionally, a verification or simulation component as well. The
hardware component consists of an automatically generated hardware platform that can
be optionally extended to include other hardware functionality specified by the user. The
software component of the design consists of the software platform generated by the tools,
along with the user designed application software. The verification component consists of
automatically generated simulation models targeted to a specific simulator, based on the
hardware and software components.

Figure 1-1: Embedded Software Tool Architecture

HW Spec Ed. |+— \+—>| SW Spec Ed.
HW Plat. Gen SW Plat. Gen.
Sim Spec Ed. |e+—> -—| SW Source Ed.
Sim Plat. Gen. [*=—=| XPS |=—| SW. Compilers
Simulators - -—| SW Debugger
ISE - HW Impl. t——| XMD
iIMPACT n—— «—| Data2BRAM
X9878
Embedded System Tools Guide www.Xxilinx.com 21

EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 1: Embedded System Tools (EST) Architecture

Tool Flows

A typical embedded system design project involves the following phases:
¢ hardware platform creation,
+ hardware platform verification (simulation),
+ software platform creation,
+ software application creation, and
+ software verification (debugging).

Xilinx provides tools to assist in all the above design phases. These tools play together with
other, third-party tools such as simulators and text editors that may be used by the
designers.

Hardware Platform Creation

Hardware platform creation is depicted in Figure 1-2.

Figure 1-2: Hardware Platform Creation

MHS File
| HW Spec Ed. I

Emacs, SGP-GUI,
ECS-BBE, Other

MHS File
HW Plat. Gen | XPS
SGP-Engine, Platgen EDIF, NGC,
VHD,V,BMM

X9879

The hardware platform is defined by the MHS (Microprocessor Hardware Specification)
file (see Chapter 13, “Microprocessor Hardware Specification (MHS)”” for more
information). The hardware platform consists of one or more processors and peripherals
connected to the processor buses. Several useful peripherals are usually supplied by
Xilinx, along with the EST tools. Users can define their own peripherals and include them
in the MHS by following the guidelines in Chapter 12, “Platform Specification Format
(PSF)”. The MHS file is a simple text file and any text editor can be used to create this file.
The XPS tool provides graphical means to create the MHS file.

The MHS file defines the system architecture, peripherals and embedded processors. The
MHS file also defines the connectivity of the system, the address map of each peripheral in
the system and configurable options for each peripheral. Multiple processor instances
connected to one or more peripherals through one or more buses and bridges can also be
specified in the MHS.

The Platform Generator tool (platgen) creates the hardware platform using the MHS file as
input. Platgen creates netlist files in various formats (NGC, EDIF), as well as support files
for downstream tools, and top level HDL wrappers to allow users to add other

22

www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Tool Flows XX"JNX@

components to the automatically generated hardware platform. See Chapter 3, “Platform
Generator,” for more information.

Note: After running platgen, FPGA implementation tools (ISE) are run to complete the
implementation of the hardware. Typically, XPS spawns off the ProjNav front end for the
implementation tools, allowing full control over the implementation. See ISE documentation for more
info on the ISE tools. At the end of the ISE flow, a bitstream is generated to configure the FPGA. This
bitstream includes initialization information for BRAM memories on the FPGA chip. If user code or
data is required to be placed on these memories at startup time, the Data2BRAM tool in the ISE
toolset is used to update the bitstream with code/data information obtained from the user’s
executable files that are generated at the end of the “Software Application Creation and Verification”
flow.

Verification Platform Creation

The verification platform is based on the hardware platform. The verification specification
allows the user to specify a simulation model for each processor, peripheral or other
module in the hardware platform. The MVS (Microprocessor Verification Specification) file
is a simple text file, and can be created using any text editor. See Chapter 17,
“Microprocessor Verification Specification (MVS)” for more information. XPS provides a
GUI based method to create this file. The MVS file is processed by the Simgen tool to create
simulation files (VHDL, Verilog or various compiled models) along with some command
files for specific simulators supported by the tool. See Chapter 4, “Simulation Model
Generator” for more information. As in the case of the hardware platform, these
simulation files may be edited by the user to add other components to the automatically
generated verification platform. The entire process of generating the MVS and the
verification platform is depicted in Figure 1-3. If the software application that runs on the
hardware platform is available in executable format, it can be used to initialize memories
in the verification platform. Details of this process are provided in later chapters.

Figure 1-3: Verification Platform.

- MVS File
| Sim Spec Ed. I

Emacs, SGP-GUI,
XPS MVS Editor

MVS, MHS, .elf
Sim Plat. Gen | XPS
Simgen, SGP-sim-engine -vhd, .v for sim,
do_files

X9880

Software Platform Creation

The software platform is defined by the MSS (Microprocessor Software Specification) file
(see Chapter 18, “Microprocessor Software Specification (MSS)” for more information).
The MSS file defines driver and library customization parameters for peripherals,
processor customization parameters, standard input/output devices, interrupt handler
routines, and other related software features. The MSS file is a simple text file and any text

Embedded System Tools Guide www.xilinx.com 23
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 1: Embedded System Tools (EST) Architecture

editor can be used to create this file. The XPS tool (see Chapter 2, “Xilinx Platform Studio
(XPS)” for more information) provides a graphical user interface for creating the MSS file.

The MSS file is an input to the Library Generator tool (LibGen) for customization of
drivers, libraries and interrupt handlers. See Chapter 6, “Library Generator” for more
information. The entire process of creating the software platform is shown in Figure 1-4.

Figure 1-4: Software Platform

MSS File
| SW Spec Ed. I

Emacs, XPS MSS Editor

MSS, MHS,
lib/*.c, lib/*.h

SW Plat. Gen | XPS
libgen libc.a, libXil.a

X9881

Software Application Creation and Verification

The software application is the code that runs on the hardware and software platforms.
The source code for the application is written in a high level language such as C or C++, or
in assembly language. XPS provides a source editor for creating these files, but any other
text editor may be used here. Once the source files are created, they are compiled and
linked to generate executable files in the ELF (Executable and Link Format) format. GNU
compiler tools (see Chapter 9, “GNU Compiler Tools” for more information) for PowerPC
and MicroBlaze are used by default but other compiler tools that support the specific
processors used in the hardware platform may be used as well. XMD and the GNU
debugger (GDB) are used together to debug the software application. XMD provides an
instruction set simulator, and optionally connects to a working hardware platform to allow
GDB to run the user application. This entire process is depicted in Figure 1-5. See Chapter
11, “Xilinx Microprocessor Debugger” for more information on XMD and Chapter 10,
“GNU Debugger” for more information on GDB.

24

www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Some Useful Tools

SXILINX®

Figure 1-5: Software Application Creation and Verification

| SW Source Ed. I

Emacs, XPS Source Editor

.c and .h files

.c and .h files
libc.a, libXil.a
SW Compilers | XPS
Mb-gcc, ppc-gec elf file
.c and .h files
.elf file

SW Debuggers
Mb-gdb, ppc-gdb

'
X9882

Some Useful Tools

Xilinx Platform Studio

Once the hardware platform is defined and a stable MHS file is available, the Xilinx
Platform Studio (XPS) tool provides a GUI for creating an MSS file for the software flow.
XPS also provides source file editor capability and project and process management
capability. XPS is used for managing the complete tool flow, that is, both hardware and
software implementation flows. Please see Chapter 2, “Xilinx Platform Studio (XPS)” for
more information. XPS is available only on Windows platform in this release.

Platform Generator

The embedded processor system in the form of hardware netlists (HDL and EDIF files) is
customized and generated by the Platform Generator (platgen).

Please refer Chapter 3, “Platform Generator” for more information.

HDL Synthesis

Platgen generates hierarchal EDIF netlists in the default mode. This means that each
instance of a peripheral in the MHS file is synthesized. The default mode leaves the top-
level HDL file untouched allowing any synthesis tool to be used. Currently, Platform
Generator only supports XST (Xilinx Synthesis Technology) and Synplify.

Platform Generator produces a synthesis vendor specific project file. This is done with - s
option. The - s option builds the synthesis project file of the HDL files that were left
untouched in default mode.

If the - f | at option is specified, this synthesis step can be skipped since the top-level is
also synthesized automatically.

The -i option disables 10 insertion at the top-level, and also generates the HDL
component stub with the name system_stub.vhd or system_stub.v. This allows the

Embedded System Tools Guide
EDK (v3.1 EA) September 24, 2002

www.Xilinx.com 25
1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 1: Embedded System Tools (EST) Architecture

processor system to be included as a macro in a top-level HDL design. Otherwise, the
output from Platform Generator is the top-level netlist.

ISE XST

If Platform Generator is run without the -flat option and XST as the synthesis vendor, a

synthesis script file for XST is created. This script can be executed under XST using the
following command:

xst -ifn system scr

Synplicity Synplify

If Platform Generator is run without the -flat option and Synplicity as the vendor, a

synthesis project file for Synplify is written. This project can be executed under Synplify
using the following command:

synplify system prj

Simulation Model Generator

The Simulation Platform Generation tool (simgen) generates and configures various
simulation models for the hardware. It takes a Microprocessor Verification Specification
(MVS) file as input. The MVS file has a reference to MHS file.

Users can specify the simulation tool to be used in MVS. The HDL language in which the
simulation models need to be generated can also be specified. For each hardware instance,

users can also specify the simulation model to be used. Please refer Chapter 4, “Simulation
Model Generator” for details.

Library Generator

XPS calls the Library Generator tool for configuring the software flow.

The Library Generator (libgen) tool configures libraries, device drivers, file systems and
interrupt handlers for the embedded processor system. The input to LibGen is an MSS file.

Please see Chapter 6, “Library Generator” for more information. For more information on

Libraries and Device Drivers please refer to Chapter 20, “Xilinx Libraries” and Chapter 26,
“Device Drivers”.

GNU Compiler Tools

XPS calls GNU compiler tools for compiling and linking application executables for each
processor in the system.

Given a set of C source files, a Microprocessor executable is created as follows.

Microblaze
nmb-gcc filel.c file2.c

This command compiles and links the files into an executable that can run on the

MicroBlaze processor. The output executable is in a.out. The -o flag can be used to specify
a different file name for the output file.

In order to initialize memories in the hardware bitstream with this executable, the file
name should have an elf extension.

26 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Some Useful Tools S XILINX®

For further information on compiler options, mb-gcc -help can be run on the command
line. Please refer Chapter 9, “GNU Compiler Tools” for more information.

PowerPC

power pc-eabi-gcc filel.c file2.c

This command compiles and links the files into an executable that can run on the PowerPC
processor. The output executable is in a.out. The -o flag can be used to specify a different
file name for the output file.

In order to initialize memories in the hardware bitstream with this executable, the file
name should have an elf extension.

For further information on compiler options, powerpc-eabi-gcc -help can be run on the
command line. Please refer Chapter 9, “GNU Compiler Tools” for more information.

Compiling with Optimization

Once you are satisfied that your program is correct, recompile your program with
optimization turned on. This will reduce the size of your executable, and reduce the
number of cycles it needs to execute. This is achieved by the following:

mb-gcc -3 filel.c file2.c

Setting the Stack Size
By default, the EDK tools build the executable with a default stack size of 0x100 (256) bytes.
The stack size can be set at compile time by using:
nmb-gcc filel.c file2.c -W, defsym-W, STACK SI ZE=0x400
This will set the stack size to 0x400 (1024) bytes.

Software Debugging

You can debug your program in software (using a simulator, available for MicroBlaze
only), or on a board which has a Xilinx FPGA loaded with your hardware bitstream. Refer
to the XMD documentation for more information.

Debugging Using Hardware: software intrusive

Create your application executable using the compiler. For example
nb-gcc -g -xl -node-xmdstub filel.c file2.¢c

This command creates the Microprocessor executable a.out, linked with the C runtime
library crtl.o and starting at physical address 0x400, and with debugging information that
can be read by mb-gdb (or powerpc-eabi-gdb if compilation was done for PowerPC).

If you want to debug your code using a board, you must specify the DEAFULT_INIT
parameter for that processor to XMDSTUB in MSS file. This creates a data2bram script
(run_download) file that initializes the Local Memory (LM) with the xmdst ub executable.
Next, load the bitstream representing your design onto your FPGA. Refer to XMD and
Libgen documentation for more information.

Start xmd server in a new window with the following command:
xmd

Embedded System Tools Guide www.xilinx.com 27
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 1: Embedded System Tools (EST) Architecture

Connect to use stub target GDB. Please see XMD documentation for more information.
Load the program in mb-gdb using the command:

nmb- gdb a. out
Click on the “Run” icon and in the mb-gdb Target Selection dialog, choose

- Target: Remote/TCP
- Hostname: localhost
- Port: 1234

Now, mb-gdb’s Insight GUI can be used to debug the program.

Debugging Using A Simulator: non-intrusive

If you want to debug your code using a simulator, compile programs using the following
command:

nmb-gcc -g filel.c file2.c

This command creates the MicroBlaze executable file, a.out, with debugging
information that can be accessed by mb-gdb. For PowerPC, the compiler used is
powerpc-eabi-gcc.

Xilinx EDK provides two ways to debug programs in simulation.
1. Cycle-accurate simulator in XMD:
Start xmd server in a new window with the following command:
xmd
Connect using sim target. Please see the XMD documentation for more information.

Loading and debugging the program in mb-gdb is done the same way as for xmd in
hardware mode described above.

This is the preferred mechanism to debug user programs in simulation
2. Simple ISA simulator inmb-gdb:

The xmd server is not needed in this mode. After loading the program in mb-gdb, Click on
the “Run” icon and in the mb-gdb Target Selection dialog, choose “Simulator”.

Use this mechanism only if your program does not attempt to access any peripherals (not
even via a print call).

Dumping an Object/Executable File
The mb-objdump utility lets you see the contents of an object (.0) or executable (.out) file.

To see your symbol table, the size of your file, and the names/sizes of the sections in the
file, run the following:

nb- obj dunp -x a. out
To see a listing of the (assembly) code in your object or executable file, use
nmb- obj dunmp -d a. out

To get a list of other options, use the following command:

28 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Verifying Tools Setup S XILINX®

nmb- obj dunmp --hel p

Verifying Tools Setup

The environment variable XI LI NX_EDK, needs to be set at the level of the hierarchy where
the directories doc, hw, and bin reside.

Tools Directory Path

Ensure that the GNU tools are in your path.

For Solaris

Check the executable search path. Your path must include the following:
e ${XILINX_EDK}/gnu/microblaze/sol/bin

» ${XILINX_EDK}/gnu/powerpc-eabi/sol/bin

o ${XILINX_EDK}/bin/sol

For PC

Check the executable search path.

o %XILINX_EDK%\gnu\microblaze\nt\bin
* %XILINX_EDK%\gnu\powerpc-eabi\nt\bin
e %XILINX_EDK%\bin\nt

Xilinx Alliance Software

The system should be set up to use the Xilinx Development System. Please verify that the
system is properly configured. Consult release notes and installation notes included in the
Xilinx iSE software package for more information. The EDK 3.1 release supports Xilinx iSE
5.1 Tools.

Embedded System Tools Guide www.xilinx.com 29
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 1: Embedded System Tools (EST) Architecture

30 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

SXILINX®
Chapter 2

Xilinx Platform Studio (XPS)

Summary

This chapter describes the Xilinx Platform Studio (XPS) tool used for customizing the
software flow for the Xilinx Embedded Processors, MicroBlaze and PowerPC.

Overview

Xilinx Platform Studio (XPS) provides an integrated environment for creating the software
specification and verification specification files for a Embedded Processor system. It also
provides an editor and a project management interface to create and edit source code. The
XPS offers software tool flow configuration options. The tools allows user to run the
hardware flow. However, limited configuration of the hardware flow is supported.
Currently, XPS-GUI is available only on Windows platforms. XPS-Batch is available for
both Windows and Solaris users.

Processes Supported

XPS supports the creation of the MSS file (refer to the Microprocessor Software
Specification chapter), the MVS file (refer to the Microprocessor Verification Specification
chapter), and software tool flows associated with this software specification. It supports
customization of software libraries, drivers, interrupt handlers and compilation of user
programs. User can also choose the simulation model for the complete system. XPS also
aids users in creating a MHS (refer to Microprocessor Hardware Specification chapter)
template or add template core instances to an existing MHS file. The user can then edit this
MHS file to convert template instances into a valid MHS block. User can begin a project by
either importing an existing MHS file or by starting with an empty MHS file and then
adding cores to it. XPS also supports customizing the hardware flow for the Platform
Generation (platgen) tool. It performs process management and dependency checking
between the hardware and software tool flow by calling the tools in the correct order using
makefile mechanism. Please refer to Figure 2-1.

Embedded System Tools Guide www.xilinx.com 31
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 2: Xilinx Platform Studio (XPS)

MHS File XMP File

Project
Management

User Program Sources

Program
Sources
Management

Process
Management

I

I
| I
| I
| I
| :
} Platgen Libgen |
| I
| I
Implementation Compiler
Tools [
I
\ I
} Data2BRAM
I

—— e

Figure 2-1: XPS Process

Tools Supported

Table 2-1 describes the tools that are supported in the XPS.

Table 2-1: Tools supported in XPS

Tool Function Reference/Notes
Library Generator Customizes software libraries, drivers and interrupt The Library Generator
(LibGen) handlers Documentation
GNU Compiler Tools Preprocess, compile, assemble and link programs GNU tools Documentation
Platform Generator Allows to customize various options. Runs platgen with | The Platform Generator
(PlatGen) the options and the MHS file Document
Simulation Model Generates the simulation model and the compilation The Simulation Model
Generator (SimGen) script file for the complete system. Generator
Makefile Generates a Makefile, which provides targets to run Needs gmake on Solaris.

various hardware and software flow tools.

Features

XPS has the following features

e Adding core templates to Microprocessor Hardware Specification (MHS)

» Generation and modification of the Microprocessor Software Specification (MSS)

* Generation and modification of the Microprocessor Verification Specification (MVS)

32 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Project Management S XILINX®

* Support for all the tools described in Table 2-1.

» Viewing and editing of C source and header files
* Project Management

* Process and tool flow dependency management

Project Management

Project information is saved in a Xilinx Microprocessor Project (XMP) file. An XMP file
consists of location of the MHS file, the MSS file, the MVS file and the C source and header
files that need to be compiled into an executable. The project also includes the FPGA
architecture family and the device type for which the hardware tool flow needs to be run.
XMP file also contains information about any aspect of the project which is not saved in
MHS, MSS or MVS file.

Creating A New Project

A New Project is created using the New Project menu option in the Project submenu of the
main menu. The New Project toolbar button can also be used.

For creating a new project, users need to specify the location of the xmp file. The name of
the xmp file is take to be the project name and the directory where xmp file resides is
considered to be the project directory. Various tools are invoked from the project directory.
All relative paths are assumed to be relative to the project directory. Optionally, users can
also specify a MHS file to be used for the project. If the specified MHS file does not already
exist in the project directory or does not have same name as project name, XPS copies it
into the project directory with same base name as project name,

If you have created your hardware specification using SGP, you can specify a SGP Project
to be imported instead of the MHS file. XPS will import all the required files from the SGP
project directory into the implementation subdirectory of XPS project directory. However,
before importing a SGP project, please ensure that the netlist generation has been
successfully completed in SGP. If you are importing a SGP project, the MHS file
system_padded.mhs is copied into the project directory, but its name is not changed.

You can also set the target device for which you intend to generate your system. You must
set the correct target architecture before running any tool, since this is needed by all the
tools. However, you can defer choosing the device size, the package and the speed grade
till you are ready to generate a bitstream. These options can also be set/changed later in
the Set Project Options dialog box in Options->Project Options menu.

If your MHS uses a peripheral which is not present either in the Xilinx EDK installation
area or in myip directory of the XPS project directory, you must specify a Peripheral
Repository Directory where the peripheral(s) resides before loading the project. The
concept of a Peripheral Repository directory, and its subdirectory structure is explained in
detail in PlatGen and LibGen chapters. This corresponds to the -P option of the two tools.
Please note that all the tools automatically look into the myip and drivers directories in the
project directory and that the project directory should not be specified as the Peripheral
Repository Directory.

Opening An Existing Project

An existing XMP file should be opened and worked on using the Open Project menu
option (Project submenu of Main menu) or using the Open Project button on the toolbar. If
you are opening a XPS project that was created by importing a SGP project, XPS will ask
you whether you want to copy over the relevant files before continuing with the project. If

Embedded System Tools Guide www.xilinx.com 33
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 2: Xilinx Platform Studio (XPS)

XPS Interface

there are any changes in the hardware specification or in the netlist which you want to be
reflected in the XPS project, click ‘Yes’ so that XPS can copy over the files again. If you do
not have any changes in the SGP project or if you do not want the changes made in SGP
project to be reflected in XPS, click ‘No’ so that XPS continues to use the files which were
imported the last time.

New source files and header files can be created and added as described in the Source
Code Management section of this chapter.

XPS does not allow multiple projects to be open simultaneously. Any open project must be
closed before another project can be opened.

Figure 2-2 shows a screenshot of XPS. XPS opens three main windows by default.

Main Window

The main window appears on the right in the XPS in Figure 2-2. MHS, source and header
file editing can be performed in the main window of XPS. Users can also view and edit
other text files in the main window. However, MPD, MDD, MSS and MVS files can be
opened in a read-only mode. These file types can not be edited from the main window.
Any number of files can be opened simultaneously.

Project View Window (Tree View)

This view appears on the left in the XPS window in Figure 2-2. The project view window
shows system in a tree format. The System BSP tree shows system components (various
cores) by their instance names. Each core can have its own sub-tree which displays
information corresponding to that instance (for example base address and high address).
Source and header files corresponding to a processor are listed in the sub-tree for that
processor instance.

Transcript Window (Console)

The transcript window is the bottom window in Figure 2-2. This window acts as a console
for output, warning and error messages from XPS and from other tools invoked by XPS.
XPS warnings and errors are displayed in blue color while status or informational text
appears in black. For tools invoked by XPS, the STDOUT is shown in black while STDERR
is shown in blue.

34

www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Platform Management XX"JNX@

}:Zilin::-:: Platfarm Studio - [system] = IDIil
File Edit Project Miew Run Window Help - 181 x|
D& 280 BB @ 02wt 0| 0|56 E X ?
x f1€ﬂ‘ﬂ‘#ﬁﬂ‘#*?fﬂ‘#*ﬂ‘ﬂ‘#?fﬂ‘ﬂ‘?fﬁﬂ‘#*ﬁﬂ‘1f1€ﬂ‘ﬂ‘#ﬁﬂ‘#*?fﬂ‘1f1€ﬂ‘ﬂ‘?f?fﬂ‘ﬂ‘?fﬁﬁ#**ﬁ#ﬁ*ﬁ#ﬁ*#*ﬁﬁ#*ﬁﬂ‘#ﬁ

E--SystemBSP & Copyright (o) 2001 Eilinx, Ine. All rights reserwved.

[+ rrylmblb_entle * Hilinx, Inc.

[+ ryuart &

EI--m.bIaze * Simple Hello World Exsmple

+*

- Book Petipheral: myua
Debug Peripheral: m'}."L WT'XWW'R'KWT'R'ﬂ‘Tw'ﬂ‘ﬂ‘W'ﬂ"ﬂ‘ﬂ‘w'ﬁ'KWT'RH‘WT'XWW'R'KWT'RH‘WT'XWW'R'KH‘TK'XWT'XWT'X'XWH'X'XWT'XWTT'XWH,"
- STDIM: meuart #include <stdio.h>

- STOOUT: myuart

main()] {

int i = 5;
print ("Hello Worldin™):
putnwn (i) ;

Jd | 2|

¥ |Done. Found 7 IPs -]
Creating list of all the available drivers...Daone
Reading M35 file systerm.mss..

Daone
Reading M3 file systerm.mys...
Daone
Ready Ln o, Cal 0 [4

Figure 2-2: XPS Screenshot

Platform Management

In order to change the system specification and software settings, XPS supports the
following features and processes.

Add Cores

Right click on “System BSP” item in the Project View window gives a menu option to
“Add Cores” to the system. Selecting it brings up a dialog box which lists all the cores
which can be instantiated in the MHS file. Multiple cores can be selected at a time for
adding to the MHS file by using the ‘Shift’ or ‘CtrI’ key. If you click on button “Add to
MHS”, a stubbed instantiated of each of the selected core is added to the MHS file and the
System BSP Tree is updated. Note that the stubbed instantiations in the MHS file are not
complete and must be edited by hand. The window displaying list of available cores can
also be brought up by using Project->Add Cores menu item in the Main menu.

Simulation Models

Right click on “System BSP” item in the Project View window gives a menu option to set
“Simulation Model” for the system. User can choose between Behavioral, Structural, and
Timing simulation models. The currently selected model has a check mark against it. The
MVS file is updated anytime the simulation model is changed.

Embedded System Tools Guide www.xilinx.com 35
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 2: Xilinx Platform Studio (XPS)

View MPD

Right click on a instance name give user the option to “View MPD” for that core. If
selected, the MPD file for that core is opened in the main window. If the MPD file is already
open, focus is set on the file. MPD files are opened in read-only mode and can not be
edited.

View MDD

Right click on a instance name give user the option to “View MDD for driver assigned to
that core. If selected, the MDD file for that core is opened in the main window. If the MDD
file is already open, focus is set on the file. This option is disabled if no driver is assigned to
that core. MDD files are opened in read-only mode and can not be edited.

S/W Settings

In the System BSP tree, a double click on an instance hame opens a dialog window
displaying configurable software options for that peripheral. This window can also be
brought up by doing a Right click on peripheral instance hame and choosing the menu
item S/w Settings.There are two different kinds of dialog windows, the Processor Dialog
Window for cores of type PROCESSOR (MicroBlaze or PowerPC), and the Peripheral
Dialog Window for all non-PROCESSOR cores. Note that NO S/w Settings are required
for cores of type IP and BUS, therefore the option is disabled. The type of a core is defined
in the Microprocessor Peripheral Description (MPD) file corresponding to that core.

Peripheral Dialog Window

A Peripheral Dialog Window opens up when you double-click or choose S/w Settings
menu on the instance name of a core, if the core is of type PERIPH, BRIDGE, and
BUS_ARBITER. The options which can be set in a Peripheral Dialog Window are as
follows.

Interrupt Handler Routines

The name of the interrupt handling routine is specified for any peripheral interrupt signal.
If the peripheral has no interrupt port, or if those interrupt port(s) are not connected to any
signal in the MHS file, then this edit box is disabled. Currently, XPS can only handle upto
two interrupt ports. If there are more than 2 connected interrupt ports, you can close the
project in XPS, hand edit the MSS file to add interrupt handler routine for other ports, and
then reload the project.

Driver Options

There are three edit boxes which allow you to set the name of the driver, the driver version
and the interface level of driver to be set for that peripheral. If you do not select any driver
interface level, the default level specified in the MDD file for the driver is used. XPS only
supports driver interface levels 1 and 2. If a different driver interface level is specified, the
new value is ignored and the last value for the driver interface level is retained. Please refer
to the chapter on The Library Generator tool (Libgen) for definitions of these parameters.

Other MDD Parameters

Other parameters corresponding to the driver assigned to this core can be set by clicking
on “MDD Params” button. Any parameter for a driver which can be overwritten in MSS
file are specified in the MDD file corresponding to that driver. Currently, XPS supports
over-writing only 1 MDD parameter from the GUI. If you want to override any other MDD

36 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Platform Management XX"JNX@

parameter, close the XPS project, hand edit the MSS file and then load the project again. For
more details, please refer to the chapter on LibGen.

Processor Dialog Window

A Processor Dialog Window opens up when any processor instance hame is double-
clicked or S/w settings menu option is chosen for that instance in the System BSP tree. This
window has the following six tabs.

Processor Property

In this tab, users can specify the driver, driver version, and driver interface level for the
processor. Users can also specify which peripherals are to be used as Standard Input,
Standard Output, Debug and Boot Peripherals. The Mode for a MicroBlaze instance
(XMDSTUB, BOOTSTRAP, or EXECUTABLE) can also be specified in this tab. Please note
that Debug and Boot peripherals can not be specified for a PowerPC instance.

Environment

The tab allows users to specify compiler and archiver to be used for compiling libraries
and sources for that processor. You can also specify upto what stage the compiler should be
run. Currently, XPS supports only mb-gcc compiler for MicroBlaze. For PowerPC, XPS
supports both powerpc-eabi-gcc and the WindRiver dcc compiler. However, for the dcc
compiler, certain options in other tabs can not specified (see description for individual
tabs).

Optimization

This tab allows you to specify various compiler options. The degree of optimization can be
specified to be 1,2, or 3. For a MicroBlaze instance, the user can also specify whether to use
the hardware multiplier and whether to perform Global pointer optimizations. You can
also specify whether the code should be generated in debug mode or not.

Directories

This tab allows you to specify various search directories for the Compiler (-B), for
Libraries (-L) and for Include (-1) files. You can specify what user libraries, if any, should
be used by the linker (-1 option) in the Libs to Link (-1) field. The libxil.a library is
automatically picked up by gcc- based compilers. For dcc, XPS automatically adds libxil.a
as a library to link in the makefile compiler options. You can also specify any Linker script
(some times called map file) to be used. Again, the gcc based compilers pick up the default
linker script if this option is not specified. You can also specify the name of the Output ELF
file to be generated by the compiler. If these paths are not absolute, they must be relative to
the project directory.

Details

This tab gives you the ability to provide Program Start Address, Stack Size, and Heap
Size for the gcc-based compilers (mb-gcc and powerpc-eabi-gcc). Please note that these
options should not be used with dcc (they should be specified in the linker script for dcc).
Heap size is only for PowerPC instance.

The user can also specify various options which the compiler should pass to the
Preprocessor (-Wp), the Assembler (-Wa), and the Linker (-WI). Each option is dealt in
detail in the GNU Compiler Tools documentation. You do not need to type in the specific
flags as XPS introduces the correct flag for each option automatically. However, if you type

Embedded System Tools Guide www.xilinx.com 37
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 2: Xilinx Platform Studio (XPS)

Table 2-2:

the flags, then XPS does not introduce them. If there are more than one option in a field,
they should be separated by space.

Others

For compiling program sources, if you want to specify any Compiler Options in addition
to those specified in other tabs, you can specify them in the Program Sources Compiler
Options edit box. LibGen automatically puts default compiler options to build the library
libxil. If you want to override these default options used by LibGen, you can specify them
in Compiler Flags edit box. If you want to specify any additional options for compiling the
libraries, the can be specified in Extra Compiler Flags options. These two edit box values
are put as COMPILER_OPTIONS and EXTRA_COMPILER_OPTIONS parameters in the
MSS file. Please refer to the Microprocessor Software Specification chapter for more details
on these parameters.

Table 2-2 shows the options that are displayed in a processor dialog window under various

tabs.

Processor Options

Option

Value Type

Description

Boot Peripheral

Instance Name

Designates the peripheral instance as the Boot peripheral

Debug Peripheral

Instance Name

Designates the peripheral instance as the Debug Peripheral. Here the
peripheral is used to download the debug stub (xmdstub)

STDIN Instance Name Peripheral designated as the standard input
STDOUT Instance Name Peripheral designated as the standard output
Flow Option Compiler Option Runs the compiler flow until preprocessor, compile, assemble or link

stage.

Compiler Options

Optimization Level

Choose the level of compiler optimization. Equivalent to -O option in
gcc.

Global Pointer
Optimization

Compiler Option

This option enables global pointer optimization in the compiler. This
option is only for MicroBlaze.

Hardware Multiply

Compiler Option

Enables the use of hardware multiplier on Virtex Il or VirtexlIPro
architecture families. This option is only for MicroBlaze.

Debut

Compiler Option

-g option to generate debug symbols.

Search Paths

Directories

Compiler, Library and Include paths. Equivalent to -B, -L and -l option
to gcc.

Output File File path and name | Sets the name of the executable file. Equivalent to -o option of gcc.
Program Start Hex Value Specifies the start address of the text segment of the executable for
Address MicroBlaze and the program start address for PPC.

Stack Size Hex Value Specifies the stack size in bytes for the program.

Heap Size Hex Value Specifies the heap size in bytes for the program. Heap size can only

be specified for a PPC Instance.

Pass Options

Compiler Options

Options can also be passed to the compiler, assembler and linker.
The options have to be space separated.

38

www.Xilinx.com
1-800-255-7778

Embedded System Tools Guide
EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Source Code Management 27 XILINX®

For more information on the options, please refer to the Library Generator chapter and
Microprocessor Software Specification chapter.

Source Code Management

XPS has an integrated editor for viewing and editing C source and header files of the user
program. The source code is grouped for each processor instance. You can add or delete list
of source code files for each processor. All the source code files for a processor are compiled
using the compiler specified for that processor.

Adding Files

Files can be added to a processor by clicking the right mouse button on the Sources or
Headers child of the processor instance sub-tree in the System BSP Tree Item. The same
operation can be accomplished by using the Project->Add Program Sources menu item in
the Main menu. Multiple files are added by pressing the control key and using arrow keys
(or the mouse) to select in the file selection dialog. XPS adds files to Sources or Headers
subtree depending upon the file extension.

Deleting Files from Project

Any file can be deleted from a processor by selecting the file in the Project View window
then clicking the right mouse button on the item and choosing Delete File. Note that the
file does not get physically deleted from the disk. It is just removed from the list of files to
be compiled to generate the executable for that processor instance. The same operation can
be accomplished by selecting the file to be deleted in the Project View window and then
using the Project->Delete File menu item in the Main Menu

Editing Files

Double clicking on the source or header file in the Project View window opens the file for
editing. The editor supports basic editing functions such as cut, paste, copy and
search/replace. The editor highlights basic source code syntax. It also supports file
management and printing functions such as saving, printing, and print previews.
However, files of type MSS, MVS, MPD and MDD are opened in read-only mode and can
not be edited in XPS editor.

Flow Tool Settings and Required Files

XPS supports tool flows as shown in Table 2-1. The Main menu has a Options submenu.
You can set various project and tool options, as described below for each menu item.

Compiler Options

This menu opens the same dialog box as one opened by double-clicking on a processor
instance hame (excluding the Processor Property tab). If there is a single processor in your
system, it will automatically open the dialog box corresponding to the instance, otherwise,
user will be asked which processor you want the options to be set for. User can set various
compiler options in the processor dialog box which opens, as explained earlier in Processor
Dialog Box section.

Embedded System Tools Guide www.xilinx.com 39
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 2: Xilinx Platform Studio (XPS)

Project Options

Menu item Options->Project Options opens a dialog box which allows user to specify
various project options. There are three tabs in this dialog box.

Device and Repository

The target device for the project can be changed here. There are four different items:
Architecture, Device Size, Package, and Speed Grade. Please note that if your project was
created by importing a SGP project, you should not change the target architecture here.

User can also specify the Peripheral Repository Directory here. If you change this option
here, then you must close the project and load it again for the changes to be effective.This
option corresponds to the -P option of LibGen and PlatGen tools. See LibGen and PlatGen
documentation for more information.

Hierarchy and Flow

This tab allows user to specify the design hierarchy, whether the processor design being
done in XPS is the top level module or if it is just a sub-module in the entire hierarchy. If
this design is a sub-module, the Top Instance edit box allows you to specify the instance
name used to instantiate this module in the top-level design. This corresponds to the -i and
-ti options of PlatGen tool.

User can also specify the option to generate netlist in Flat or Hierarchical mode. If
hierarchical mode is chosen, user can choose to whether to run synthesis tool (“None”) and
which synthesis tool to run.

User can also specify the flow to use for running the Xilinx implementation tools. The
available options are XPS (Xflow) and ISE (Project Navigator) flow. If the design is a sub-
module, user must use the ISE flow. If the design in the top-level (not sub-module) and
user chooses to generate netlist in flat mode, then XPS must be used for implementation
flow. Only if the design is top-level and user chooses to generate netlist in hierarchical
mode, the user can choose between XPS and ISE for implementation tools. Please see the
ISE Project Navigator Interface section described later for details on how to add design
components and files to ProjNav project using XPS.

Simulation

This tab allows you to specify the HDL (VHDL or Verilog) to be used by PlatGen and
SimGen. You can also specify the location of the Behavioral, Unisim and Simprim libraries
required for simulation. These options are saved into the MVS file.

Required Files

If XPS (Xflow) is chosen to run the implementation tools, XPS expects a certain directory
structure in the project directory. For each project, you must provide User Constraints File
(UCF). The file should reside in data directory in the project directory and should have the
name <proj_name>.ucf. Users are also expected to provide an iMPACT script file. This file
should reside in etc directory and should be called download.cmd. If these files do not
exist, XPS will ask you to provide these files and will not run xflow.To run Xilinx
Implementation tools, XPS uses two more files, bitgen.ut and fast_runtime.opt from etc
directory. However, if not present, XPS creates the etc directory and copies the default
version of these two files in that directory from the EDK installation directory. To change
options for Xilinx implementation tools, you can modify the two files.

40

www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Tool Invocation XX"JNX@

Tool Invocation

After all options for the compiler and library generator are set, the tools can be invoked
from the Run submenu in the Main menu. The main toolbar also contains buttons to
invoke these tools.

There are four different stages of platform building for which the tools can be invoked

1. Generate Libraries: This button invokes the library building tool LibGen with the
correct MSS file as input.

2. Compile Program Sources: This button invokes the compiler for each processor
instance to compile corresponding program sources. It builds the executable files for
each processor. If LibGen has not been executed, this button first invokes LibGen.

3. Generate Netlist: This button calls the platform building tool PlatGen with the correct
MHS file and produces the netlist files in NGC format. Please note that if you have
imported a SGP Project, then you should have already generated the netlist using SGP
and this button will not perform any function.

4. Generate Bitstream: If using XPS for implementation tools, this button calls the tool
xflow with the fast_runtime.opt and bitgen.ut files residing in the etc. directory in the
project directory. XFlow in turn calls the Xilinx iSE Implementation tools. If using
ProjNav for the implementation flow, the button is greyed out. User must use Tools-
>Export to ProjNav menu to add the XPS files into ProjNav project, run the complete
flow in ProjNav and then use Tools->Import from ProjNav menu to import bitstream
and bmm files back into the flow.

5. Update Bitstream and Download: This button invokes tool data2bram. This is the
stage where the hardware and the software flows come together. This button also calls
hardware and software flow tools if required. So, you can use just a single-button to
build both hardware and software flows and download their bitstream. File
download.cmd is expected in etc directory.

XPS generates a makefile in the project directory and calls the corresponding target. The
dependencies between various tools being run is take care of by the Makefile.

When LibGen is invoked, an MSS file is created for the software specification. When the

user exits the application, a prompt to save the current project appears. The user can also
save the project in another name by using Save Project As in the Project submenu of the
Main menu.

ISE Project Navigator Interface

If ISE tools (ProjNav) is chosen for implementation flow in the Project Options dialog box,
then user must specify the ProjNav project (NPL) file. ProjNav will run implementation
tools in the directory where this ProjNav project file is created. Default NPL file location is
<proj_dir>/projnav/<proj_name>.npl. It is recommended not to use implementation
directory for ProjNav flow since XPS clean mechanism deletes this directory. To run the
ProjNav flow, user can create a new ProjNav project file or specify an already existing
ProjNav project file.

Menu option Tools->Export ProjNav Project adds the required vhdl and bmm files to the
ProjNav project. It also copies any ngc files generated by PlatGen or XST.

Menu option Tools->Import ProjNav Project gives user the option to import a bitstream
and a bmm file back into the XPS Project. The bit file should be the one generated by bitgen
at the end of implementation tools. The bmm file should also be the one generated by

Embedded System Tools Guide www.Xxilinx.com 41
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 2: Xilinx Platform Studio (XPS)

bitgen, which has BRAM placement information. XPS copies the bit and bmm files into
implementation directory as <proj_name>.bit and <proj_name>_bd.bmm respectively.

Debug and Simulation

You can debug the hardware and the software part of the design either by simulation or by
running it on the hardware itself. XPS provides support for invoking the corresponding
tools to perform the job.

» Xilinx Microprocessor Debug (XMD): You can call the XMD tool. to debug your
software. The XMD-button the XPS toolbar opens up a XMD shell in the project
directory.

» Software Debugger: The debug button calls the software debugger corresponding to
the compiler being used for the processor. If you have more than one processor, XPS
asks you to choose the processor whose program sources you want to debug.

* Hardware Simulation Model Generator (SimGen): You can call the SimGen tool to
generate various simulation models for the components instantiated in MHS File.
Depending on the simulation model to be used (Behavioral, Structural or Timing),
XPS calls SimGen with appropriate options to generate the simulation models and
initialize memory. Then XPS compiles those models for ModelTech’s ModelSim
simulator and start the simulator with the compiled files.

XPS No Window Mode

XPS no window mode can be invoked by typing the command xps -nw at the command
prompt. It provides limited functionality to generate MSS and MVS files. It also provides a
way to generate makefile. You can also create a XMP project file or load a XMP project file
created by the XPS GUI. Please note that unlike XPS-GUI, XPS-Batch is available on both
Solaris and Windows platforms.

Available Commands
XPS-Batch provides you a Tcl shell interface. You can use the commands in Table 2-3.

Table 2-3;: XPS-Batch commands

Command Description
load [mhs|xmp] <filename> Loads the MHS/XMP file and opens/creates XPS
project
load [mss|mvs] Loads in the corresponding file into the project
save [mss|mvs|xmp|make|proj] | Saves the corresponding file. Option proj will save all
files
42 www.xilinx.com Embedded System Tools Guide

1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

XPS No Window Mode S XILINX®

Table 2-3: XPS-Batch commands

Command Description
xset
[dev|package|speedgrade] Set arch, device, package and speedgrade
sgpdir SGP Project directory
perdir Peripheral Repository Directory
netlist Hierarchical or Flat netlist option
hdl HDL to be used
run option Executes makefile with appropriate target. Refer to
section “Executing Flow Commands”
exit Closes the project and exits out the XPS

Creating A New Project

For creating a new project, use the command
load mhs <basename>.mhs.

XPS will read in the MHS file and create the new project. The project name will be same as
MHS basename. All the files generated will have the same name as MHS.

After reading in the MHS file, XPS will also assign various default drivers to each of the
peripheral instance, if a driver is known and available to XPS.

Opening An Existing Project
If you already have a XMP project file, you can load that file using command
load xmp <basename>.xmp.

XPS will read in the XMP file and load the project. Project name will be same as XMP
basename. Note that XPS will take the names of MSS and MVS files from the XMP file, if
specified. Otherwise, it will assume these files based on the XMP file name.

Note that during a single execution of XPS-Batch, you should either create a new project or
open an existing one. You should not do both. XPS does not check whether an existing
MHS or XMP has already been loaded and doing both might cause unknown results.

Reading MSS and MVS Files

You can read in a MSS or MVS file using command
load [mss| mvs].

Note that you can not specify the name of the file. It is assumed to be project basename
with appropriate extension or taken from XMP file. Loading an MSS or MVS file will
override any earlier settings. For example, if you specify a new driver for a peripheral
instance in the MSS file, the old driver for that peripheral will be over ridden. However, if
you do not specify a new driver, the old driver will be used.

Saving Files and Project

You can save MSS, MVS, XMP and make files for your project using the command

save [mss]| mvs|xmp | make | proj].

Embedded System Tools Guide www.xilinx.com 43
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 2: Xilinx Platform Studio (XPS)

Command save proj will save all the files.

Executing Flow Commands

You can run various flow tools by using the command

run option

XPS will run the project’s makefile with appropriate targets. The valid options for

Table 3: Options for command run

netlist Generate netlist

bits Run Xilinx Implementation tools flow and generate bitstream
libs Generate software libraries

prog Compile user program into ELF file(s)

init_bram Update bitstream with BRAM initialization information
sim Generate simulation models and run simulator

dow Download bitstream onto the FPGA

netlistclean Delete netlist

hwclean Delete implementation directory

libsclean Delete software libraries

programclean Delete ELF file(s)

simclean Delete simulation directory

clean Delete all tool generated files and directories

command run are shown in the table.

Closing A Project and Exiting
For closing the project, you can use the command
exit.
This will also close XPS. Thus, you can only work on a single project during a single
execution of the batch mode version of XPS.

Limitations And Workarounds

MSS and MVS Changes

XPS-batch supports limited MVS or MSS editing. So, if you want to make any changes in
these files, you will have to hand-edit the file, make the changes and load it in to XPS. Note
that you do not have to close the project. You can save the MSS or MVS file, edit it and then
just re-load it into the project by using load [mss] mvs] command.

XMP Changes

XPS-batch also does not support adding of source and header files to a processor. To do so,
you must hand-edit the XMP file. To add a source file, open an existing XMP file, and find
the line containing ‘Processor: <instance_name>‘. Just below this line, introduce a line

44 www.Xilinx.com
1-800-255-7778

Embedded System Tools Guide
EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Xilinx Microprocessor Project (XMP) File Format XX"JNX@

containing ‘Source: <file_path>’. For adding a header file, you can add a line containing
‘Header: <file_path>’. Note that you must add a separate line for each source and header
file you want to add to a processor instance.

Importing SGP Project

XPS-batch does not have any mechanism of importing an SGP project. To achieve the same,
create a implementation directory in the directory where you intend to create XPS project.
Copy all the files (*.*) in the SGP project directory into this implementation directory. Also
copy the file system_padded.mhs into your intended XPS project directory. Use the
command ‘set sgpdir <sgp-dir>’ to set the SGP directory. This will let XPS generate the
correct makefile. Now you can load the MHS file system_padded.mhs to create your new
project.

Xilinx Microprocessor Project (XMP) File Format

XPS saves user options into Xilinx Microprocessor Project (XMP) file. Those options which
are not saved in MSS or MVS files get saved in XMP file. When you open an already
existing project, XPS loads these project options from the XMP file. XMP file is a formatted
text file which XPS writes when saving a project.

This section describes various fields in XMP file. XMP file is a set of name-value pairs. The
format is Field name immediately followed by a colon and then the value of that field.
Filed Names can have space in it.

Fi el d Name: Val ue
The directory in which the XMP file exists is assumed to be the Project Directory
and all paths are assumed to be relative to this directory. For example, on an

windows system, if XMP file exists in C:\myprojectdir\system1.xmp, Then the
project directory is C:\myprojectdir and the name of the project is system1.

There are two types of fields:

e Global
» Processor Instance Specific

Global fields are those which apply to the complete system. Processor instance specific
fields apply to that particular processor instance. We will first discuss Global Fields.
Peripheral Repository Directory

You can specify a Peripheral Repository Directory location as follows:

UsePeri phRepos: 1
Peri phReposDir: <dir_path>

Field UsePeriphRepos specifies whether to use any specified PeriphReposDir or not. A
value of 0 indicates not to use the directory. Default value is 0.

Field PeriphReposDir specifies the Directory location. Note that these fields should
specified before MHS File location.
MHS File Location

MHS File: <MHS file |ocation>

If the MHS File does not exist in the project directory with same base name as project name,
then XPS copies that MHS file into this name and location.

Embedded System Tools Guide www.xilinx.com 45
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 2: Xilinx Platform Studio (XPS)

MSS File Location
MSS File: <MsS file |ocation>

MSS Files are created by XPS in the project directory with project name as base.

MVS File Location
MS File: <MWS file |location>

MVS Files are created by XPS in the project directory with project name as base.

Project Navigator Options

UseProj Nav: 1
AddToNPL: 1
NPL File: <ProjNav project file |ocation>

The UseProjNav field specifies whether the XPS project should use Project Navigator or
Xflow for implementation tools. A value of 0 indicates to use Xflow, otherwise ProjNav.
The AddToNPL field specifies that if using ProjNav, whether XPS should overwrite the
existing NPL file or add modules to the existing file. A value of 0 indicates that any existing
NPL file should be overwritten. A value of 1 indicates that the NPL file already exists and
XPS should add modules to the existing project. The Project Navigator Project (NPL) file
location is specified by NPL File field.

SGP Project Location
SGP Dir: <SGP Proj directory |ocation>

SGP Project was imported from this location.

Xilinx Target Family and Device

Architecture: <Target Famly>
Devi ce: <Target Devi ce Name>
Package: <Package Nane>
SpeedG ade: <Speed Grade>

The valid strings for target architecture families are: virtex2, spartan2, spartan2e, virtex,
virtexe, and virtex2p. The field Device specifies the target device name. For example, if you
are targeting Virtex2 100, then device name should be xc2v100. The field Package specifies
the device package and SpeedGrade specifies the speed grade of the device. You have to
make sure that you specify a valid device, package and speed grade for the specified
family and device.

Netlist and Synthesis Tools Option

Hi er Mbde: O
SynProj: 2

HierMode corresponds to the PlatGen option of whether to generate netlist in hierarchical
mode or flat mode. A value of 0 (default) means netlist should be generated in flat mode.
If hierarchical mode of netlist generation of chosen, then option SynProj specifies which
synthesis tool script file is to be generated. Valid values are between 0 and 5. A value of 0
specifies not to generate any synthesis script file. Default value is 2, which generates script
for XST.

Design Hierarchy

I nsert NoPads: 0
Topl nst: inst_system

46

www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Xilinx Microprocessor Project (XMP) File Format XX"JNX@

This option specifies the design hierarchy. This corresponds to the PlatGen option of
whether to insert pads at the toplevel of netlist. A value of 0 (default) specifies that pads
should be inserted, any other value means that this is not the top-level and pads should not
be inserted. If this is not the toplevel, Toplnst specifies the instance name give to this
design in the top-level module.

We will now discuss Processor Specified Fields.

Processor Instance
Processor: nyppc

This field should be used atleast once before specifying any processor specific fields. For
example, if you have a PowerPC instance called “myppc”, then you would use the above
line to indicate that processor specific fields on following lines in XMP files apply to
instance myppc. This field makes the instance name the current processor in XMP file.
Then, all processor specific fields following this line will apply to the current processor
instance until another line specifying a different processor instance is specified in the XMP
file. Then that processor instance becomes the current processor instance.

Source and Header Files

Header: code/sysl.h
Source: code/a.c
Header: code/sys2.h
Sour ce: codel/b.c

The field Source specifies a source file for the current processor instance. The field Header
specifies a header file for the current processor instance. If you have multiple source or
header files, you should add one line for each file.
Compiler Flow

Conpi l erFl ow. 3

This field specifies how far the compiler flow should be run. Valid values are between 0
and 3. The values correspond to the following flow:

» 0: Preprocess Only

» 1:Preprocess and Compile

e 2: Preprocess, Compile and Assemble

» 3: Preprocess, Compile, Assemble and Link.

Default value is 3, which means the compiler flow is run to the end.

Compiler Optimization Level
Conpi | er Opt Level : 2

This field specifies the compiler optimization level. Valid values are between 0 and 3,
where 0 corresponds to no optimization and 3 corresponds to maximum optimization.

Use Hard Multiplier
Hardwul : O

This field specifies to use hard multiplier available on Virtex2 and Virtex2P devices for
MicroBlaze instance.

Embedded System Tools Guide www.xilinx.com a7
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 2: Xilinx Platform Studio (XPS)

Global Pointer Optimization

G obPtrOpt: 0
This field specifies whether to use Global Pointer Optimization during compilation of
program sources for the current processor. Value of 0 (default) indicates not to perform this
optimization.
Debugging Information

DebugSym 0

This field specifies whether to compile the program sources with debugging information
or not. Value of 0 (default) indicates not to generate debugging information.

Compiler Search Path
SearchComp: ./ ../
This field specifies various directories (separated by space) for compiler search path (-B
option).
Link Library Search Path
SearchLibs: ./ ../
This field specifies various directories (separated by space) where the linker should look
for libraries for the program sources (-L option).
Include Files Search Path
Searchincl: ./ ../

This filed specifies various directories (separated by space) where the compiler should
look for various include files for the program sources (-1 option).

Libraries to link
LFlags: a b
This field specifies libraries to be linked (separated by space) for compiling the program
sources (-1 option).
Preprocessor Options

PrepOpt :
This field specifies various options (separated by space) to be passed on to the
preprocessor (-Wp option).
Assembler Options

AsnOpt :
This field specifies various options (separated by space) to be passed to the assembler (-Wa
option).
Linker Options

Li nkOpt :

This field specifies various options (separated by space) to be passed to linker (-WI option).

48

www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Xilinx Microprocessor Project (XMP) File Format XX"JNX@

Program Start Address
ProgStart: Oxffffc000
This field specifies the program start address for your application software. This field is
ignored if dcc is the compiler.
Stack Size
St ackSi ze: 0x400
This field specifies the stack size for your application software. This field is ignore if dcc is
the compiler.
Heap Size
HeapSi ze: 0x400
This field specifies the heap size for your application software. This field is valid only for a
PowerPC instance. This field is ignored if dcc is the compiler.
Linker Script
Li nker Script: <file_nane>

This field specifies the linker script file to be used for compiling program sources.

Other Compiler Flags
Pr ogCCFl ags: -save-tenps

This field specifies various options to be passed to the top level compiler wrapper. You can
use this field to specify those options which you could not specify through other fields.

Embedded System Tools Guide www.xilinx.com 49
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 2: Xilinx Platform Studio (XPS)

50 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

$7 XILINX®

Chapter 3

Platform Generator

Overview

The hardware component is defined by the Microprocessor Hardware Specification (MHS)
file. An MHS file defines the configuration of the embedded processor system, and
includes the following:

Bus architecture
Peripherals

Connectivity of the system
Interrupt request priorities
Address space

Hardware generation is done with the Platform Generator (platgen) tool and an MHS file.
This will construct the embedded processor system in the form of hardware netlists (HDL
and implementation netlist files).

This chapter includes the following sections:

“Tool Requirements”

“Tool Usage”

“Tool Options”
“Load Path”
“Output Files”

“About Memory Generation”
“Reserved MHS Attributes”

“Current Limitations”

Note: The EDK offers a format revision tool, RevUp, that converts any old MHS format to
the new format. Please see Chapter 7, “Format Revision Tool” for more information.

Tool Requirements

Set up your system to use the Xilinx Development System. Verify that your system is
properly configured. Consult the release notes and installation notes that came with your
software package for more information.

Embedded System Tools Guide www.xilinx.com 51
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 3: Platform Generator

Tool Usage
Run Platform Generator as follows:
pl at gen system mhs
Tool Options
The following are the options supported in the current version:
-a (Architecture family)
The -a option allows you to target a specific architecture family. The default family is
virtex2.
-flat (Generate a flatten implementation netlist file)
The -flat option generates a flattened mplementation netlist file. A synthesis project file
is not created.
By default, Platform Generator runs in hierarchal mode. In hierarchal mode, Platform
Generator generates hierarchal implementation netlists. This means that each instance
of a defined peripheral in the MHS file is synthesized. The default mode leaves the top-
level HDL file untouched allowing you to synthesize it in any synthesizer of your
choice. Currently, Platform Generator only supports XST and Synplify.
-h (Help)
The -h option displays the usage menu and quits.
-i (Do not insert 10s at top-level)
The -i option disables 10 insertion at the top-level. This allows the processor system to
be included as a macro in a top-level design. Otherwise, the output from Platform
Generator is the top-level design.
-1 (Specify the HDL format)
The -1 option allows you to specify the HDL format. The default value is vhdl.
Options: [vhdl, verilog]
-p (Specify the Project Directory)
The -p option allows you to specify the project directory path. The default is the
current directory.
-P (Peripheral repository load path)
The -P option allows you to specify the peripheral repository load path.
-s (Generate synthesis vendor project file)
With the -s option, Platform Generator produces a synthesis vendor specific project
file. The -s option builds the synthesis project file for you of the HDL files that were left
untouched in default mode (that is, not specifying the -flat option). The only
supported values are 0, 2, and 4. The default value is 2.
Options: [0, 1, 2, 3, 4]
0 - None
1 - Exemplar - Leonardo
52 www.xilinx.com Embedded System Tools Guide

1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Load Path SXILINX®

2 - iSE - XST - SCR/PRI file

3 - Synopsys - FPGA Express

4 - Synplicity - Synplify - PRJ file
-v (Display version)

The -v option displays the version and quits.

Load Path

Refer to Figure 3-1 for a depiction of the peripheral directory structure. On a UNIX system,
the processor cores reside in the following location:

$XILINX_EDK/hw/coregen/ip/xilinx/pcores*/com/xilinx/ip2/processor
On a PC, the processor cores reside in the following location:
%XILINX_EDK%\hw\coregen\ip\xilinx\pcores*\com\xilinx\ip2\processor
To specify additional directories, use one of the following options:

e Current directory (where Platform Generator was launched; not where the MHS
resides)

e Set the Platform Generator -P option, or the XIL_MYPERIPHERALS environment
variable

Platform Generator uses a search priority mechanism to locate peripherals, as follows:

1. Search current directory in the myip directory

2. Search $XIL_MYPERIPHERALS/myip (UNIX) or %XIL_MYPERIPHERALS%\myip
(PC)
3. Search $XILINX_EDK/hw/coregen/ip/xilinx/pcores*/com/xilinx/ip2/processor

(UNIX) or
%XILINX_EDK%\hw\coregen\ip\xilinx\pcores*\com\xilinx\ip2\processor (PC)

The first two search areas (1 and 2) have the same underlying directory structure. The third
search area has the CORE Generator directory structure. For search areas 1 and 2, the
peripheral name is the name of the root directory. From the root directory, the underlying
directory structure is as follows:

dat a

hdl / veril og
hdl / vhdl

si model s

For example, if the XIL_MYPERIPHERALS environment is set, then the MPD, BBD, and
PAO files are found in the following location:

$XIL_MYPERIPHERALS/myip/<peripheral>/data (UNIX)
%XIL_MYPERIPHERALS%\myip\<peripheral>\data (PC)

Embedded System Tools Guide www.xilinx.com 53
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 3: Platform Generator

$XIL_MYPERIPHERALS

drivers myip
my_uart my_uart
data hdl netlist simmodels
C MPD) (BBD) Verilog VHDL
PAO

X9876

Figure 3-1: Peripheral Directory Structure

Output Files
Platform Generator produces the following directories and files. From the project
directory, this is the underlying directory structure:

hdl
i mpl enent ati on
synt hesi s

HDL Directory

The hdl directory contains the following:
system [vhd| v]
This is the top level HDL file of the processor and its peripherals.

Implementation Directory

The implementation directory contains the following:
system ngc

This is the top level implementation netlist of the processor and its peripherals. Only
created if the -flat option is given.

peri pheral _wr apper. ngc

Implementation netlist file of the peripheral. Only created if the -flat option is not
given.

54 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

About Memory Generation S XILINX®

Synthesis Directory

The synthesis directory contains the following:
system [prj|scr]
Synthesis project file.

About Memory Generation

Platform Generator generates the necessary banks of memory and the initialization files
for the BRAM Block (bram_block_v1 00 _a). The BRAM Block is coupled with a BRAM
controller.

Current BRAM controllers include the following:

« DSOCM BRAM Controller (dsbram_if _cntlr_v1 00_a) - PowerPC only

e ISOCM BRAM Controller (isbram_if cntlr_v1 00 _a) - PowerPC only

* LMB LMB BRAM Controller (Imb_Imb_bram_if_cntlr_v1_00_a) - MicroBlaze only
 LMB OPB BRAM Controller (Imb_opb_bram_if cntlr_v1_00_a) - MicroBlaze only

e« OPB BRAM Controller (opb_bram_if cntlr_v1 00 a)

 PLBBRAM Controller (plb_bram_if cntlr_v1 00 _a)

For the BRAM controllers the MHS options, C_ BASEADDR and C_HIGHADDR (see the

Chapter 13, “Microprocessor Hardware Specification (MHS),” documentation for more
information), define the different depth sizes of memory.

The MicroBlaze processor is a 32-bit machine, therefore, has data and instruction bus
widths of 32-bit. Only predefined memory sizes are allowed. Otherwise, MUX stages have
to be introduced to build bigger memories, thus slowing memory access to the memory
banks. For Spartan-11, the maximum allowed memory size is 4 kBytes which uses 8 Select
BlockRAM. For Spartan-IIE, the maximum allowed memory size is 8 kBytes which uses 16
Select BlockRAM. For Virtex/VirtexE, the maximum allowed memory size is 16 kBytes
which uses 32 Select BlockRAM. For Virtex-11, it is 64 kBytes which also uses 32 Select

BlockRAMs.
Table 3-1: Predefined Memory Sizes
Memory Size (kBytes) Memory Size (kBytes)

Architecture 32-bit 64-bit

byte-write byte-write
Spartan-I| 2,4 4,8
Spartan-I1E 2,4,8 4,8,16
Virtex 2,4,8,16 4,8, 16, 32
VirtexE 2,4,8,16 4,8, 16, 32
Virtex-11 8, 16, 32, 64 16, 32, 64, 128
Virtex-11 PRO 8, 16, 32, 64 16, 32, 64, 128

Be sure to check your FPGA resources can adequately accommodate your executable
image. For example, the smallest Spartan-I1 device, xc2s15, only 4 Select BlockRAMs are
available for a maximum memory size of 2 kBytes. Whereas, the largest Spartan-11 device,
xc2s200, 14 Select BlockRAMs are available for a maximum memory size of 7 kBytes.

Embedded System Tools Guide www.xilinx.com 55
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 3: Platform Generator

Platform Generator creates four blocks of memory. Each bank of memory is byte
addressable (8 bits wide). Depending on the pre-defined memory size, each bank will
contain one or more Select BlockRAMs.

For example, for a memory size of 4 kBytes on a Virtex device, Platform Generator creates
four banks of memory. Each bank is 8 bits wide and 1 kBytes deep. This configuration uses
eight Select BlockRAMSs, two Select BlockRAMSs for each bank.

MHS Example (LMB LMB Controller with BRAM Block)

The following is an example of the LMB LMB Controller with BRAM Block:

HHHBHBHHRHBH BB HA BB A R A R AR R AR R
BEG N | nb_I| mb_bram.if_cntlr

PARAMETER | NSTANCE = nyl nbl nb_cntIr

PARAMETER HW VER = 1.00. a

PARAMETER C_BASEADDR = 0x00000000

PARAVETER C_HI GHADDR = 0x00000f f f
BUS_| NTERFACE ILMB = i | nb

BUS_| NTERFACE DLMB = d_| b

BUS_| NTERFACE PORTA = | nb_porta
BUS_| NTERFACE PORTB = | nb_portb

END
BHABBHHBHH AR H R R A R R R R R R

BEG N bram bl ock

PARAVETER | NSTANCE = br ani
PARAVETER HW VER = 1.00. a
BUS_| NTERFACE PORTA = | nb_porta
BUS_| NTERFACE PORTB = | nb_portb

END

Reserved MHS Attributes

The Platform Generator automatically expands and populates certain reserved
parameters. This can help prevent errors when your peripheral requires information on
the platform that is generated. The following table lists the reserved parameter names:

Table 3-2: Automatically Expanded Reserved Parameters

Parameter Description
C_BUS_CONFIG Bus Configuration of MicroBlaze
C_FAMILY FPGA Device Family
C_INSTANCE Instance name of component

C_KIND_OF _EDGE

Vector of edge sensitive (rising/falling) of interrupt signals

C_KIND_OF_LVL

Vector of level sensitive (high/low) of interrupt signals

C_KIND_OF_INTR

Vector of interrupt signal sensitivity (edge/level)

C_NUM_INTR_INPUTS

Number of interrupt signals

C_NUM_MASTERS

Number of OPB masters

C_NUM_SLAVES

Number of OPB slaves

C_DCR_AWIDTH

DCR Address width

C_DCR_DWIDTH

DCR Data width

56

www.Xilinx.com
1-800-255-7778

Embedded System Tools Guide
EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Current Limitations

SXILINX®

Table 3-2: Automatically Expanded Reserved Parameters

Parameter

Description

C_DCR_NUM_SLAVES

Number of DCR slaves

C_LMB_AWIDTH

LMB Address width

C_LMB_DWIDTH

LMB Data width

C_LMB_NUM_SLAVES

Number of LMB slaves

C_OPB_AWIDTH

OPB Address width

C_OPB_DWIDTH

OPB Data width

C_OPB_NUM_MASTERS

Number of OPB masters

C_OPB_NUM_SLAVES

Number of OPB slaves

C_PLB_AWIDTH

PLB Address width

C_PLB_DWIDTH

PLB Data width

C_PLB_MID_WIDTH

PLB master ID width

C_PLB_NUM_MASTERS

Number of PLB masters

C_PLB_NUM_SLAVES

Number of PLB slaves

Current Limitations

The current limitations of the Platform Generator flow are:

Vector slicing is not allowed.

Embedded System Tools Guide
EDK (v3.1 EA) September 24, 2002

www.Xilinx.com
1-800-255-7778

57

http://www.xilinx.com

S XILINX® Chapter 3: Platform Generator

58 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

SXILINX®
Chapter 4

Simulation Model Generator

Summary

This chapter describes the Simulation Model Generator utility usage.

Overview

The Simulation Model Generation tool (SimGen) generates and configures various
simulation models for a specified hardware. It takes a Microprocessor Verification
Specification (MVS) file as input. MVS files have a reference to an MHS file that describes
the hardware. The simulation tool is specified in the MVS file. The HDL language in which
the simulation models need to be generated can also be specified. For each hardware
instance, you can specify the simulation model. Please refer to Chapter 17,
“Microprocessor Verification Specification (MVS)” for more information about the MVS
file.

The hardware component is defined by the Microprocessor Hardware Specification (MHS)
file. Please refer to Chapter 13, “Microprocessor Hardware Specification (MHS)”” for more
information.

SimGen produces a simulation model and a compilation script for vendor specific
simulators.

About Simulation

This section introduces the basic facts and terminology of HDL simulation. There are three
stages in the FPGA design process in which you conduct simulation.

Behavioral Simulation

Behavioral simulation is used to verify the syntax and functionality without timing
information. The majority of the design development is done through behavioral
simulation until you get the required functionality. Errors identified early in the design
cycle are inexpensive to fix compared to functional errors identified during silicon debug.

Structural Simulation

After the behavioral simulation is error free, the HDL design is synthesized to gates. The
post-synthesized structural simulation is a functional simulation with unit delay timing.
The simulation can be used to identify initialization issues and to analyze don’t care
conditions. The post synthesis simulation generally uses the same testbench as functional
simulation.

Embedded System Tools Guide www.xilinx.com 59
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 4: Simulation Model Generator

Timing Simulation

Structural timing simulation is a back-annotated timing simulation. Timing simulation is
important in verifying the operation of your circuit after the worst case place and route
delays are calculated for your design. The back annotation process produces a netlist of
library components annotated in an SDF file with the appropriate block and net delays
from the place and route process. The simulation will identify any race conditions and
setup-and-hold violations based on the operating conditions for the specified functionality.

Simulation Libraries

The following libraries are available for the Xilinx simulation flow.The HDL code must
refer to the appropriate compiled library. The HDL simulator must map the logical library
to the physical location of the compiled library.

EDK Library

Used for behavioral simulation. It contans all the EDK IP components, precompiled for
ModelSim.

UNISIM Library

Used for behavioral simulation and contains default unit delays. This library includes all
of the Xilinx Unified Library components that are inferred by most popular synthesis tools.
The UNISIM library also includes components that are commonly instantiated such as
I/0s and memory cells.

You can instantiate the UNISIM library components in your design (VHDL or Verilog) and
simulate them during behavioral simulation.

SIMPRIM Library

Used for structural and timing simulation. This library includes all of the Xilinx Primitives
Library components that are used by Xilinx implementation tools.

Structural and Timing simulation models generated by SimGen will instantiate SIMPRIM
library components.

Tool Requirements

Set up your system to use the Xilinx ISE 5.1 tools. Verify that your system is properly
configured. Consult the release notes and installation notes that came with your software
package for more information.

Tool Usage
At the prompt, execute SimGen with the MVS file and appropriate options as inputs.
For example,
si ngen [options] system nane. nvs
Note: SimGen will generate simulation models for platforms generated by Platform Generator.
PlatGen should be executed before SimGen to generate all the files that SimGen uses.
60 www.xilinx.com Embedded System Tools Guide

1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Tool Options S XILINX®

Tool Options

The following options are supported in the current version:

-a (Architecture family)
The -a option allows you to target a specific architecture family.
Usage: -a <architecture>
Options: { spartan2 | spartan2e | virtex | virtexe | virtex2 | virtex2p }
Default: virtex2

-h (Help)
The -h option displays the usage menu and quits.

-f (Flat)

The -f option specifies that a flat EDIF file should be used for structural simulation. If
it is not specified, hierarchical EDIF files will be used.

-i (Initialize)

The -i option allows memory initialization of previously created simulation models. If
this option is specified, only initialization will be performed and no simulation models
will be genrated.

Usage: -i <program>
-1 (Language)

The -1 option allows you to specify the HDL Language. This option will override the
language specified in the MVS file.

Usage: -l <language>
Options: { vhdl |verilog }
Default: vhdl

-m (Simulation model type)

The -m option allows you to select the type of simulation models to be used. The
supported simulation model types are behavioral (beh), structural (str) and timing
(tim). This option will override the simulation model specified in the MVS file.

Usage: -m <sim_model>
Options: { beh | str | tim}
Default: beh

-p (Project Directory)

The -p option allows you to specify the project directory path. The default is the
current directory.

Usage: -p <path>
-s (Simulator)

The -s option allows you to specify for which simulator to produce a compilation
script file. The supported simulators are Model Technology ModelSim (mti) and
Cadence Verilog-XL (vxl). This option will override the simulator specified in the MVS
file.

Embedded System Tools Guide www.xilinx.com 61
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 4: Simulation Model Generator

Input files

Usage: -s <simulator>

Options: { mti | vxI}

Default: mti
-v (\Version)

The -v option displays the version and quits.
-L (ModelSim Behavioral Library Path)

The -L option allows you to specify the ModelSim Behavioral Library directory path.
This option will override the value specified in the MVS file.

Usage: -L <path>
-S (ModelSim Simprim Library Path)

The -S option allows you to specify the ModelSim Simprim Library directory path.
This option will override the value specified in the MVS file.

Usage: -S <path>
-U (ModelSim Unisim Library Path)

The -U option allows you to specify the ModelSim Unisim Library directory path. This
option will override the value specified in the MVS file.

Usage: -U <path>

SimGen searches for files in the following directories located in the project directory. These
directories are created by Platform Generator:

<proj ect _directory>/hdl/
<project_directory>/inpl ementation/

HDL Directory

The hdl directory should contain the following:
syst em nane. [vhd| v]
This is the top level HDL file of the processor and its peripherals. Used for behavioral
and for hierarchical structural simulation models.
peri pheral _wraper.[vhd| v]

These are the wrapper HDL source files of each peripheral. Used for behavioral
simulation.

Implementation Directory

The implementation directory should contain the following files. Depending on the
simulation model to be used, only appropriate files will be taken.

peri pheral _w apper. ngc

Netlist file of each peripheral. Created by Platform Generator if the -flat option is not
given. Used to generate hierarchical structural simulation models.

syst em nane. ngc

62

www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Output Files S XILINX®
System netlist file. Created by Platform Generator if the -flat option is given. Used to
generate flat structural simulation models.
syst em nane. ncd
System EDIF file. Created by Platform Generator if the -flat option is given. Used to
generate timing simulation models.

Output Files

SimGen produces all simulation files in the simulation directory within the project
directory.

<project_directory>/simulation/

Simulation Directory

The simulation directory contains the following:
peri pheral _wr apper. [vhd]| v]
Post-synthesis simulation files.
system nane. [vhd| v]
The top level HDL file of the processor and its peripherals.

syst em nane. do
The compilation script for the specified simulator.

Memory Initialization

Platform Generator creates the necessary banks of memory for a system. The
corresponding memory simulation models generated by SimGen can be initialized with
data using the -i option.

To initialize memory of simulation models already crated by SimGen with a compiled
executable, you need:

* A compiled executable
e Asimulation model for your system
A BMM file for your system

The compiled executable is generated with the appropriate gcc compiler or assembler,
from corresponding C or assembly source code. The simulation model is generated
previously by executing PlatGen and then SimGen. The BMM file is a memory description
file that allow memory initialization and is created by PlatGen in the implementation
directory.

Verilog
For verilog simulation models, execute SimGen with the -i option to generate a verilog.
This file will contain defparams that initialize memory. For example:
simgen -1 verilog -i executable system nvs
This command takes an executable file as input to generate the verilog memory
initialization file system_init.v. This file is used along with your system to initialize
memory.
Embedded System Tools Guide www.xilinx.com 63

EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 4: Simulation Model Generator

VHDL

For vhdl simulation models, execute SimGen with the -i option to generate a VHDL file.
This file will contain a configuration a configuration for the system with all initialization
values. For example:

singen -i executable system nvs

This command takes an executable file and MVS file as input to generate the VHDL system
configuration un the file system_init.vhd. This file is used along with your system to
initialize memory.

Current Limitations

SimGen does not support generation of mixed level simulation models.

64 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

SXILINX®
Chapter 5

Bus Functional Model Generator

Summary

This chapter describes the Bus Functional Model Generator utility.

Overview

The Bus Functional Model Generation tool (BfmGen) generates and configures a
peripheral under test for simulation and verification using the IBM CoreConnect Toolkit.
The input to the tool is the MPD file corresponding to the peripheral under test. Further
options such as the preferred language for the bus functional model generation, the bus
interface to perform the test on and the path to the IBM CoreConnect Toolkit may be
specified. BfmGen creates the bus functional model of the peripheral under test in the
preferred language that may then be used for simulation using the IBM CoreConnect
Toolkit.

For more information on the MPD format, please refer Chapter 14, “Microprocessor
Peripheral Description (MPD)”. For information on using the IBM CoreConnect ToolKkit,
please refer the IBM CoreConnect Toolkit User’s Manual.

Tool Requirements

BfmGen requires a valid MPD file as input. A valid license for using the IBM CoreConnect
Toolkit is required for simulation and generation of the top level testbench. BfmGen
supports the IBM OPB ToolKit Version 2.0.X,the IBM PLB Toolkit Version 4.X for 64-bit PLB
data bus and the IBM DCR Toolkit Version 2.X.

Tool Usage

The BfmGen tool is invoked as follows:

bf ngen [options] peripheral _nane. npd

Tool Options

The following options are supported in the current version of BfmGen:
-h (Display Help)

The -h option displays the usage menu and quits.
-v (Display Version)

The -v option displays the version and quits.

Embedded System Tools Guide www.xilinx.com 65
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 5: Bus Functional Model Generator

Input files

Output Files

-b (Bus Interface Name)

The -b option defines the bus interface for which the Bus Functional Model needs to be
generated. This option must be specified when the MPD file for the peripheral under
test has more than one bus interface defined.

-lang (HDL Language)

The -lang option defines the Hardware Description Language to use for BfmGen. Valid
options are ver (for verilog) and vhdl (for vhdl). This option defaults to vhdl.

-tk (IBM CoreConnect Toolkit Dir Path)

The -tk option specifies the path for the IBM CoreConnect Toolkit. A valid license is
required to use the toolkit. If this option is specified, the peripheral under test is
declared and instantiated in the CoreConnect Toolkit testbench. The toolkit directory
must have either the vhdl or the verilog subdirectory based on the preferred language
for BfmGen output.

Bfmgen requires the MPD file corresponding to the peripheral under test as input.

Bfmgen produces the Bus Functional Model for the peripheral under test based on the -tk
option and the -lang specified to the tool.

When the -tk option is not specified and the -lang option is vhd, the following files are
produced.

» vhdl/peripheral_wrapper.vhd: VHDL wrapper file for the peripheral under test.

» vhdl/peripheral_comp.vhd: VHDL file that contains the component and signal
declarations of the peripheral under test to be inserted in the component declaration
section in the test bench of the IBM CoreConnect Toolkit.

» vhdl/peripheral_inst.vhd: VHDL file that contains the instance of the peripheral under
test to be inserted in the architecture body in the test bench of the IBM CoreConnect
Toolkit

When the -tk option is not specified and the -lang option is ver, the following files are
produced.

» verilog/peripheral_wrapper.v: Verilog wrapper file for the peripheral under test

» verilog/peripheral_wire.v: Verilog file containing signal declarations to be inserted in
the test bench module.

 verilog/peripheral_inst.v: Verilog file that contains the instance of the peripheral under
test to be inserted in the test bench module of the IBM CoreConnect Toolkit

When the -tk option is specified and the -lang option is vhd, the following files are
produced.

» vhdl/peripheral_wrapper.vhd: VHDL wrapper file for the peripheral under test

» vhdl/tk_th.vhd: Modified VHDL Toolkit testbench file with component declaration and
instantiation of the peripheral under test.

When the -tk option is specified and the -lang option is vhd, the following files are
produced.

66

www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Using BfmGen and IBM CoreConnect Toolkit XX"JNX@

» verilog/peripheral_wrapper.v: Verilog wrapper file for the peripheral under test
 verilog/tk_tb.v: Modified Verilog Toolkit testbench file with component declaration and
instantiation of the peripheral under test.

Using BfmGen and IBM CoreConnect Toolkit

In order to use the output files generated by BfmGen for simulation and verification using
the IBM CoreConnect Toolkit, do the following:

1. Copy all the toolkit vhdl or verilog files required for simulation, except the top-level
testbench file in the vhdl or verilog directory created by BfmGen.

2. Describe the bus transactions to be simulated in the IBM Bus Functional Language
(BFL).

3. Compile the BFL using the IBM Bus Functional Compiler (BFC) and set the
appropriate simulation target.

4. Simulate and verify the functionality of the peripheral under test for the given bus
interface.

Current Limitations

The current limitations of BfmGen are:

* The latest release of the IBM PLB 4.X toolkit does not contain the top level test bench
for the 64-bit data bus version. BfmGen in this case ignores the -tk option, if specified.

Embedded System Tools Guide www.xilinx.com 67
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 5: Bus Functional Model Generator

68 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

SXILINX®
Chapter 6

Library Generator

Summary

This chapter describes the Library Generator utility needed for the generation of libraries
and drivers for embedded soft processors. It also describes how the user can customize
peripherals and associated drivers.

Overview

The Library Generator (libgen) is generally the first tool to run to configure libraries and
device drivers. Libgen takes an MSS (Microprocessor Software Specification) file created
by the user as input. The MSS file defines the drivers associated with peripherals, standard
input/output devices, interrupt handler routines, and other related software features.
Libgen configures libraries and drivers with this information. For more information on the
MSS file format, please refer Chapter 18, “Microprocessor Software Specification (MSS)”.

Note: The EDK offers a RevUp tool to convert any old MSS file format to a new MSS
format. Please see Chapter 7, “Format Revision Tool” for more information.

Tool Usage

The Library Generator is run as follows:

libgen [options] fil enane. nmss

Tool Options
The following options are supported in this version:
-h, -help (Help)
This option causes LibGen to display the usage menu and exit.
-v, -ver (Display version information)
This option displays the version number of LibGen.

-a, -arch family_name (Architecture family)

This option defines the target architecture family. Family_name can be one of spartan2,
spartan2e, virtex, virtexe, virtex2 or virtex2p. The default option is virtex2.

Embedded System Tools Guide www.xilinx.com 69
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 6: Library Generator

-p, -proj proj_dir (Specify project directory)

This option specifies the project directory proj_dir. The default is the current directory. All
output files and directories are generated in the project directory. This project directory is
also called USER_PRQJECT for convenience in the documentation.

-P, -Per_Dir per_dir (Specify user peripherals and driver directory)

This option specifies user peripherals and drivers directory. LibGen looks for drivers in the
directory per _dir/drivers/

Please refer to the Drivers section of this document for more information on the search path
for drivers.

-m, -mode
Specifies the following modes for all processor instances in the MSS file.

-nmode execut abl e: This mode should be used if the user wants to generate a stand-
alone executable program for all processor instances. The EXECUTABLE attribute in the
MSS file is used in this mode. Note that in this mode, on-board debug support is not
available. The MSS file should have the line

par anmet er EXECUTABLE = proc_i nst_nane/ code/ exec_file.elf
where the directory is relative to USER_PRQJECT directory.

-mode boot st rap: (MicroBlaze only) This mode is used when the user wants to use a
bootstub executable to load user programs. The bootstub is created automatically for each
processor instance in the MSS file by libgen as the file proc_inst_name/code/bootstub.elf,
relative to the USER_PROJECT directory

-mode xndst ub: (MicroBlaze only) This mode is used when user wants to use a debug
stub for on-board debug. The xmdstub is created automatically for each processor instance
in the MSS file by libgen as the file proc_inst_name/code/xmdstub.elf, relative to the
USER_PROJECT directory

-X, -Xxmdstub proc_inst_name_1 [, proc_inst_name_2, ...]
Note: Option valid for MicroBlaze only.

Specifies that one or more processors have their memory initialized with xmdstubs (debug
stubs). Whereas the -mode option is a global option, applicable for all processors in the
system, this option can be used to specify initialization modes for specific processor
instances. When both -mode and -xmdstub options are used, the -xmdstub option takes
precedence for that processor instance alone.

-b, -bootstub proc_inst_ name_1 [, proc_inst_name 2, ...]
Note: Option valid for MicroBlaze only.
Similar in functionality for bootstubs as the -xmdstub option.

-e, -executable proc_inst_name_1 [, proc_inst_name_2, ...]
Similar in functionality for user executables as the -xmdstub option.

-, -lib

This option can be used to copy libraries and drivers but not compile them.

70 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Output Files S XILINX®

-S, -stub

Creates the stub files (for MicroBlaze) and BRAM initialization script run_download.sh
(solaris) or run_download.bat (windows) only. Using this option prevents the generation
of libraries and drivers.

-bspgen proc_inst_name_1 [, proc_inst_name_2, ...]

Runs the BspGen utility for each processor instance specified after drivers are configured.
The option can be used only when using the PowerPC processor with the OS parameter in
MSS file defined as VxWorks5_4. Please refer the BspGen Users Guide chapter in the
Processor IP Reference Guide for more information.

-d, -do_not_warn

Disables printing of some warning messages. By default, all warnings are printed.

Output Files

Libgen generates directories and files in the USER_PRQJECT directory. For every processor
instance in the MSS file, Libgen generates a directory with the name of the processor
instance. Within each processor instance directory, Libgen generates the following
directories and files.

include

The include directory contains C header files that are needed by drivers. The include file
xpar anet er s. h is also created by LibGen in this directory. This file defines base
addresses of the peripherals in the system, #defines needed by drivers and user programs,
and also function prototypes. The MDD file for each driver specifies the definitions that
need to be customized for each peripheral that uses the driver. Please refer Chapter 19,
“Microprocessor Driver Definition (MDD)” for more information.

lib
The lib directory contains | i bc. a, | i bm a and libxil.a libraries. The libxil library

contains driver functions that the particular processor can access. More information on the
libraries can be found in Chapter 20, “Xilinx Libraries”.

libsrc

The libsrc directory contains intermediate files and makefiles that are needed to compile
the libraries and drivers. The directory contains peripheral specific driver files that are
copied from the EDK and user driver directories. Please refer the Drivers section of this
document for more information. Note that this directory is overwritten each time libgen is
run.

code

The code directory is used as a repository for EDK executables. Libgen creates xmdstub.elf
(for MicroBlaze on-board debug) and bootstub.elf (for MicroBlaze bootstrap) in this
directory. The code directory can also be used for other user ELF files.

Embedded System Tools Guide www.xilinx.com 71
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 6: Library Generator

MSS Parameters

For a complete description of the MSS format and all the parameters that MSS supports,
please refer Chapter 18, “Microprocessor Software Specification (MSS)”

Drivers

Most peripherals require software drivers. The EDK peripherals are shipped with
associated drivers. Please refer Chapter 26, “Device Drivers” for more information on
driver functions.

The MSS file includes a driver block for each peripheral instance. The block contains a
reference to the driver by name (DRIVER_NAME parameter), and the driver version
(DRIVER_VER). There is no default value for these parameters. A driver LEVEL is also
specified depending on the driver functionality required. The driver directory contains C
source and header files for each level of drivers and a makefile for the driver.

For each processor in the system, and the connectivity between the processor and
peripherals through various buses and bridges is specified in the MHS file. LibGen uses
this information to analyze all the peripherals that can be accessed by each processor and
customize only those drivers. Libgen copies the necessary files in the driver directory over
to the USER_PRQIECT/ pr ocessor _i nst ance_nane/ | i bsr c directory for each
processor in the system and runs make for compiling the drivers. The MDD file for each
driver specifies all configurable options for the drivers. Please refer Chapter 19,
“Microprocessor Driver Definition (MDD)” and Chapter 18, “Microprocessor Software
Specification (MSS)” for more information.

Libgen also creates an include file xpar anmet er s. h in the

USER_PRQIECT/ pr ocessor _i nst ance_nane/ i ncl ude directory. This header file
must be included in the driver source files. This file contains peripheral base address
definitions and interrupt masks for the peripherals. This file also contains function
prototypes and other useful defines. The contents generated in this file can be controlled
through the MDD file for each driver.

Users can write their own drivers. These drivers must be in a specific directory under
USER_PRQJECT/ dri vers orper _dir/drivers. The DRIVER_NAME attribute allows
the user to specify any name for their drivers, which is also the name of the driver
directory. The source files and makefile for the driver must be in the src/ subdirectory
under the driver_name directory. Each driver must also contain an MDD file in the data/
subdirectory. Please refer to the existing EDK drivers to get an understanding of the
structure of the drivers.

Interrupts and Interrupt Controller

An interrupt controller peripheral must be instantiated if the MHS file has multiple
interrupt ports connected. When Level 0 interrupt controller driver is used, libgen
statically configures interrupts and interrupt handlers. When the Level 1 driver are used,
the user is responsible for registering interrupt handlers and enabling interrupts for the
peripherals in the user code.

Level O Customization

In the MSS file, the INT_HANDLER parameter allows an interrupt handler routine to be
associated with the interrupt signal. Libgen uses this parameter to configure the interrupt
controller handler to call the appropriate peripheral handlers on an interrupt. The

72 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Boot and Debug Peripherals (MicroBlaze Specific) S XILINX®

functionality of these handler routines is left to the user to implement. If the
INT_HANDLER parameter is not specified, LibGen uses a default dummy handler routine
for the peripheral.

For MicroBlaze, if there is only one interrupt driven peripheral, an interrupt controller
need not be used. However, the peripheral should still have an interrupt handler routine
specified. Otherwise a default one is used.

When the processor to which the interrupt controller is connected is MicroBlaze, and the
compiler used to compile drivers is mb-gcc, Libgen designates the interrupt controller
handler as the main interrupt handler. For the PowerPC processor, the user is responsible
for setting up the exception table. Please refer Chapter 29, “Interrupt Management” for
more information.

Boot and Debug Peripherals (MicroBlaze Specific)

These are peripherals that are specifically used to download bootstub and xmdstub. The
attributes BOOT_PERIPHERAL and DEBUG_PERIPHERAL are used for denoting the
boot and debug peripheral instances. Libgen uses these attributes in xmdstub and
bootstrap modes.

STDIN and STDOUT Peripherals

Peripherals that handle 1/0 need drivers to access data. Two filesi nbyt e. ¢ and

out byt e. ¢ are automatically generated with calls to the driver 1/0 functions for STDIN
and STDOUT peripherals. The driver I/0 functions are specified in the MDD as the
parameters INBYTE and OUTBYTE. Please refer Chapter 19, “Microprocessor Driver
Definition (MDD)” for more information. These inbyte and outbyte functions are used by
C library functions like scanf and printf. The peripheral instance should be specified as
STDIN or STDOUT in the MSS file.

Embedded System Tools Guide www.xilinx.com 73
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 6: Library Generator

74 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

$7 XILINX®

Chapter 7

Format Revision Tool

Overview

The Format Revision Tool (RevUp) reads older data files (MPD, MHS, BBD, PAO, or MSS),
and revises them upward. The upgrade is a format update and not an IP upgrade.

Current PSF version is 2.0.0. Previous supported versions include 1.0.0.

The PSF version demands that the current version of EDK be at least as recent as that
version, at run time. Therefore, EDK tools are always running with the latest formats. Only
RevUp needs to maintain compatibility with older versions.

This chapter includes the following sections:
“Tool Requirements”

“Tool Usage”

“Tool Options”

“Current Limitations”

Tool Requirements

Tool Usage

Tool Options

Set up your system to use the Xilinx Development System. Verify that your system is
properly configured. Consult the release notes and installation notes that came with your
software package for more information.

Run RevUp as follows:

revup system [mhs| npd| bbd| pao| nss]

The following are the options supported in the current version:
-h (Help)

The -h option displays the usage menu and quits.
-p (Specify the Project Directory)

The -p option allows you to specify the project directory path. The default is the
current directory.

-P (Peripheral repository load path)

Embedded System Tools Guide www.xilinx.com 75
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 7: Format Revision Tool

The -P option allows you to specify the peripheral repository load path.
-v (Display version)

The -v option displays the version and quits.

Current Limitations

The current limitations of the RevUp flow are:

» For an MHS that includes IP outside of the regularly released EDK peripherals (that
is, user IP), RevUp must be run on the MPD, PAO, and BBD before updating the
MHS.

» For an MSS file, RevUp must be run only after MHS, MPD, PAO and BBD files have
been reved up.

76 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

SXILINX®
Chapter 8

Platform Specification Format Utility

Summary
This chapter describes the PSF utility tool.

Overview

The PSF Utility (PsfUtil) may be used to generate template MHS specifications for a list of
user specified peripherals or to generate a catalog of peripherals available in the repository.

Tool Requirements

Please install the Xilinx EDK tool set before using the PsfUtil.

Tool Usage

Run PsfUtil as follows:

psfutil [options]

Tool Options
The following options are supported in the current version of PsfUTtil:
-h (Display Help)
The -h option displays the usage menu and quits.
-v (Display Version)
The -v option displays the version and quits.
-w (Overwrite output)
The -w option overwrites the output file specified.
-iplist (Print all IP with version in the repository)

The -iplist option prints the list of all available processor IP in the repository. The
output is written to either stdout or the output file.

-mpd2mhs (List of Peripherals for MHS Template Generation)

The -mp2mhs option specifies the list of peripherals for which the MHS template is to
be generated. The list of peripherals is specified in a text file. The output is written
either to stdout or the output file.

Embedded System Tools Guide www.xilinx.com 77
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 8: Platform Specification Format Utility

-mhs2sch (Generate ECS schematic from MHS specification)

The -mhs2sch option specifies the MHS file for which the ECS schematic files are to be
generated. The output is a “.sch” file that contains the schematic of the system. The
schematic may be viewed using the ECS schematic viewer provided with the Xilinx
ISE installation.

-0 (Output File)
The -0 option specifies the output file name.

Note: You must specify only one of -iplist or the -mpd2mhs or the -mhs2sch option.

Input files
PsfUtil requires no input file when using the -iplist option.
For generating MHS templates using the -mpd2mhs option, PsfUtil requires a text file as
input that specifies the peripherals for which MHS templates need to be generated in a text
file with each peripheral with the optional version number specified in a separate line. An
example text file is shown below
opb_v20 1.10.a
opb_uartlite
m crobl aze
bram bl ock
Imb_Inb_bramif_cntlr
I mb_v10
I mb_v10
opb_gpi o
When no version number is specified, the latest version present in the repository is
selected.
For generating the ECS schematic files using the -mhs2sch option, PsfUtil requires the
MHS file describing the system as input.
Output Files
The output is written to stdout if no -o option is specified, or it is written to the output file
specified.
When using the -iplist option, the output file lists all the available IPs in the repository
with their version numbers.
When using the -mpd2mphs option, the output file contains the MHS template
specification of all the peripherals listed in the input text file.
When using the -mhs2sch option, the schematic files are written into the SCH/ directory
relative to the current working directory.
78 www.xilinx.com Embedded System Tools Guide

1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

SXILINX®
Chapter 9

GNU Compiler Tools

Scope

This chapter describes the various options supported by MicroBlaze and Power PC GNU
tools. The MicroBlaze GNU tools include mb-gcc compiler, mb-as assembler and mb-Id
loader/linker. The Power PC tools include powerpc-eabi-gcc compiler, powerpc-eabi-as
assembler and the powerpc-eabi-ld linker. The EDK GNU tools also support C++.

In this chapter, only those options are discussed, which have been added or enhanced for
Embedded Development Kit (EDK).

GNU Compiler Framework

¢ Input C/C++ Files

cppO0

AN

ccl cclplus

N

as

(mb-as or powerpc-eabi-as)

!

Id
(mb-Id or powerpc-eabi-Id)

Libraries _

¢ Output EIf File
Figure 9-1: GNU Tool Flow

This section discusses the common features of both the MicroBlaze as well as PowerPC
compiler. Figure 9-1shows the GNU tool flow. The GNU compiler is named mb-gcc for

Embedded System Tools Guide www.xilinx.com 79
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 9: GNU Compiler Tools

MicroBlaze and powerpc-eabi-gcc for Power PC. The GNU compiler is a wrapper which
in turn calls four different executables:

1. Pre-processor: (cpp0)
¢ This is the first pass invoked by the compiler.

¢+ The pre-processor replaces all macros with definitions as defined in the source
and header files.

2. Machine and Language specific Compiler (ccl)

¢+ The compiler works on the pre-processed code, which is the output of the first
stage.

a. C Compiler (ccl)

¢ The compiler is responsible for most of the optimizations done on the input C
code and generates an assembly code.

b. C++ Compiler (cclplus)

¢+ The compiler is responsible for most of the optimizations done on the input C++
code and generates an assembly code.

3. Assembler (mb-as [For MicroBlaze] and powerpc-eabi-as [for PowerPC])

¢+ The assembly code has mnemonics in assembly language.The assembler converts
these to machine language.

¢+ The assembler also resolves some of the labels generated by the compiler.
¢ The assembler creates an object file, which is passed on to the linker

4. Linker (mb-Id [For MicroBlaze] and powerpc-eabi-Id [for PowerPC])
+ The linker links all the object files generated by the assembler.

+ If libraries are provided on the command line, the linker resolves some of the
undefined references in the code, by linking in some of the functions from the
assembler.

Options for all these executables in discussed in this chapter.

Note: Any reference to gcc in this chapter indicates reference to both MicroBlaze compiler (mb-
gcc) as well as PowerPC compiler (powerpc-eabi)

Compiler Usage and Options

Usage

GNU Compiler usage is as follows
Conpi | er _Name [options] files...

Where Conpi | er _Nane is powerpc-eabi-gcc or mb-gcc

Quick Reference

Table 9-1 briefly describes the commonly used compiler options. These options are
common to both the compilers, i.e MicroBlaze and PowerPC. Please note that the
compiler options are case sensitive.

80

www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Compiler Usage and Options

SXILINX®

Table 9-1: Commonly Used Compiler Options
Options Explanation
-E Preprocess only; Do not compile, assemble and link. The preprocessed output is
displayed on the standard out device
-S Compile only; Do not assemble and link (Generates .s file)
-C Compile and Assemble only; Do not link (Generates .o file)
-g Add debugging information, which is used by GNU debugger (mb-gdb or
powerpc-eabi-gdb)
-Wa,option Pass comma-separated options to the assembler
-Wp,option Pass comma-separated options to the preprocessor
-WI,option Pass comma-separated options to the linker
-B directory Add directory to the C-run time library search paths
-L directory Add directory to library search path
-1 directory Add directory to header search path
-l library Search library2 for undefined symbols.
-V (Verbose). Display the programs invoked by the compiler
-0 filename Place the output in the filename
-save-temps Store the intermediate files, i.e files produced at the end of each pass,
--help Display a short listing of options.
-On Specify Optimization level n =0,1,2,3

a. The compiler prefixes “lib” to the library name indicated in this command line switch.

Compiler Options

Some of the compiler options are discussed in details in this section

-0
This option adds debugging information to the output file. The debugging information is
required by the GNU Debugger (mb-gdb or powerpc-eabi-gdb). The debugger provides
debugging at the source as well as the assembly level.

-V
This option executes the compiler and all the tools underneath the compiler in verbose
mode. This option gives complete description of the options passed to all the tools. This
description is helpful in finding out the default options for each tool.

-save-temps

The GNU compiler provides a mechanism to save all the intermediate files generated
during the compilation process. The compiler stores the following files

Embedded System Tools Guide
EDK (v3.1 EA) September 24, 2002

www.Xilinx.com
1-800-255-7778

81

http://www.xilinx.com

SUXILINX®

Chapter 9: GNU Compiler Tools

¢ Preprocessor output (input_file_name.i for C code and input_file_name.ii for C++
code)

¢+ Compiler (ccl) output in assembly format (input_file_name.s)
¢+ Assembler output in elf format (input_file_name.s)

The default output of the entire compilation is stored as a.out.

-0 Filename

The default output of the compilation process is stored in an elf file name a.out. The default
name can be changed using the -0 output_file_name. The output file is created in elf format.
-Wp,option
-Wa,option

-WI,option

As described earlier in this chapter, the compiler (mb-gcc or powerpc-eabi-gcc) is a
wrapper around other executables such as the preprocessor, compiler (ccl), assembler and
the linker. These components of the compiler can be executed through the top level
compiler or individually.

There are certain options which are required by tool, but might not be necessary for the top
level compiler. These command can be issues using the options as indicated in Table 9-2

Table 9-2: Tool specific options passed to the top level gcc compiler

Option Tool
-Wp,option Preprocessor
-Wa,option Assembler
-WI,option Linker

--help

Use this option with any GNU compiler to get more information about the available
options or consult the GCC manual available online at
http://www.gnu.org/manual/manual.html

Library Search Options

-l libraryname

The compiler, by default, searches only the standard libraries such as libc, libm and libxil.
The users can create their own libraries containing some commonly used functions. The
users can indicate to the compiler, the name of the library, where the compiler can find the
definition of these functions. The compiler prefixes the word “lib” to the libraryname
provided by the user.

The compiler is sensitive to the order in which the various options are provided, especially
the -1 command line switch. This switch should be provided only after all the sources in the
command line.

82

www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.gnu.org/manual
http://www.xilinx.com

Compiler Usage and Options S XILINX®

For example, if a user creates his own library called libproject.a., he/she can include
functions from this library using the following command:

Conpi | er Source_Files -L${LIBDI R} -1 project

Caution! Ifthe library flag -llibrary name is given before the source files, the compiler will not
be able to find the functions called from any of the sources. The compiler search is only done in
one direction and does not keep a list of libraries available.

-L Lib Directory

This option indicates to the compiler, the directories to search for the libraries. The
compiler has a default library search path, where it looks for the standard library. By
providing -L option, the user can include some additional directories in the compiler
search path.

Header Files Search Option

-1 Directory Name

The option -1, indicates to the compiler to search for header files in the directory Directory
Name before searching the header files in the standard path.

Linker Options

-defsym STACK_ SIZE=value

The total memory allocated for the stack and the heap can be modified by using the above
linker option. The variable STACK_SIZE is the total space allocated for heap as well as the
stack. The variable STACK_SIZE is given the default value of 100 words (i.e 400 bytes). If
any user program is expected to need more than 400 bytes for stack and heap together, it is
recommended that the user should increase the value of STACK_SIZE using the above
option. This option expects value in bytes.

In certain cases, a program might need a bigger stack. If the stack size required by the
program is greater than the stack size available, the program will try to write in other
forbidden section of the code, leading to wrong execution of the code.

Note: For MicroBlaze systems, minimum stack size of 16 bytes (0x0010) is required for programs
linked with the C runtime routines (crt0.0 and crtl1.0).

Linker Scripts

The linker utility makes use of the linker scripts to divide the user’s program on different
blocks of memories. To provide a linker script on the gcc command line, use the following
command line option:

conpiler -W,-T -W, linker_script Gher Options and Input Files
If the linker is executed on its own, the linker script could be included as follows:
linker -T linker_script Oher Options and Input Files

For more information about usage of linker scripts, please refer to the chapter, “Address
Management”

Embedded System Tools Guide www.xilinx.com 83
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 9: GNU Compiler Tools

Search Paths

The compilers (mb-gcc and powerpc-eabi-gcc) search certain paths for libraries and
header files.

On Solaris

Libraries are searched in the following order:

1. Directories passed to the compiler with the - L di r nane option.
2. Directories passed to the compiler with the - B di r nane option.
3. ${XI LI NX_EDK}/ gnu/ processor (1)/sol / mi crobl aze/lib
4. ${XI LI NX_EDK}/1i b/ processor

Header files are searched in the following order:

1. Directories passed to the compiler with the -1 dir name option.$
2. ${XI LI NX_EDK}/ gnu/ processor/ sol / processor/incl ude

Initialization files are searched in the following order(?):

1. Directories passed to the compiler with the -B dir name option.
2. ${XI LI NX_EDK}/ gnu/ processor/sol /processor/lib

On Windows Xygwin Shell

The GNU compilers (mb-gcc and powerpc-eabi-gcc) search certain paths for libraries and
header files.

Libraries are searched in the following order:

Directories passed to the compiler with the - L di r nane option.

2. Directories passed to the compiler with the - B di r nane option.
3. %I LI NX_EDK% gnu/ pr ocessor/ nt/ processor/lib
4. 9YXI LI NX_EDK% | i b/ processor

Header files are searched in the following order:

1. Directories passed to the compiler with the -1 dir name option.$
2. 9%l LI NX_EDK% gnu/ pr ocessor/ nt/ processor/incl ude

Initialization files are searched in the following order:

1. Directories passed to the compiler with the -B dir name option.

1. Processor indicates powerpc-eabi for PowerPC and microblaze for MicroBlaze

2. Initialization files such as crt0.0 are searched by the compiler only for mb-gcc. For
powerpc-eabi-gcc, the C runtime library is a part of the library and is picked up by
default from the library libxil.a

84 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

File Extensions

SXILINX®

2. 9% LI NX_EDK% gnu/ pr ocessor/ nt/ processor/lib

File Extensions

The GNU compiler can determine the type of your file depending on the
extension.Table 9-3 illustrates the valid extension and the corresponding file type.The gcc

wrapper will call the appropriate lower level tools by recognizing these file types.

Table 9-3: File Extensions
Extension File type
.c C File
.C C++ File
.CXX C++ File
.cpp C++ File
C++ C++ File
.cc C++ File
.S Assembly File, but might have preprocessor directives
.S Assembly File with no preprocessor directives

Libraries

Both the compiler (powerpc-eabi-gcc and mb-gcc) use certain libraries. The following

libraries are needed for all the program.

Table 9-4:

Libraries used by the compilers

Library

Particular

libxil.a

Contain drivers and initialization files developed for the EDK tools

libc.a

Standard C libraries, including functions like strcmp, strlen etc

libm.a

Math Library, containing functions like cos, sine etc

These libraries are customized for every user’s project and copied

Compiler Interface

Input Files

The compiler (mb-gcc and the powerpc-eabi-gcc) take one or more of the following files are

input

e C source files.

e C++ source files.

* Assembly Files.

Embedded System Tools Guide
EDK (v3.1 EA) September 24, 2002

www.Xilinx.com
1-800-255-7778

85

http://www.xilinx.com

S XILINX® Chapter 9: GNU Compiler Tools

e Object Files.

» Linker scripts (These are optional and if not specified, the default linker script
embedded in the linker (mb-1ld or powerpc-eabi-ld) will be used.

The default extensions for each of these types is detailed in Table 9-3. In addition to the files
mentioned above, the compiler implicitly refers to the following files.

e Libraries (libc.a, libm.a and libxil.a). The default location for these files is the EDK
installation directory.

Output Files

The compiler generates the following files as output

* Anelffile (The default output file name is a.out on Solaris and a.exe on Windows)
» Assembly file (if -save-temps or -S option is used)

» Obiject file (if -save-temps or -c option is used)

* Preprocessor output (.i or .ii file) (if -save-temps option is used)

MicroBlaze GNU Compiler

The MicroBlaze GNU compiler is an enhancement over the standard GNU tools and hence
provides some additional options, which are specific to the MicroBlaze system.These
options are available only in the MicroBlaze GNU compiler.

Quick Reference

Table 9-5: MicroBlaze Specific Options

Options Explanation
-x|-mode-executable Default mode for compilation.
-xI-mode-xmdstub Intrusive hardware debugging on the board. Should be used only with xmdstub

downloaded on to MicroBlaze

-xI-mode-bootstrap Generate code, which can be downloaded using the boot strap loader

-xI-mode-bootstrap-reset | Same as bootstrap mode, but in this case, on reset, the control is transferred to the
user program instead of the boot stub.

-xI-mode-xilkernel If you use the xilkernel module, all the programs should be compiled with this
option.

-mxI-gp-opt Use the small data area anchors. Optimization for performance and size.

-mxI-soft-mul Use the software multiplier. Use this option when the hardware multiplier is not
present in the device. By default this option in turned ON.

-mno-xl-soft-mul Do not use software multiplier. Compiler generates “mul” instructions.

-mxl-stack-check Generates code for checking stack overflow.

-mxI-barrel_shift Use barrel shifter. Use this option when a barrel shifter is present in the device

86 www.xilinx.com Embedded System Tools Guide

1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

MicroBlaze GNU Compiler XX"JNX@

MicroBlaze Compiler Options

The mb-gcc compiler for Xilinx’s MicroBlaze soft processor introduces some new options
as well as modifications to certain options supported by the gnu compiler tools. The new
and modified options are summarized in this chapter.

-mxl-soft-mul

In some devices, a hardware multiplier is not present. In such cases, the user has the option
to either build the multiplier in hardware or use the software multiplier library routine
provided. MicroBlaze compiler mb-gcc assumes that the target device does not have a
hardware multiplier and hence every multiply operation is replaced by a call to
mulsi3_proc defined in library libc.a. Appropriate arguments are set before calling this
routine.

-mno-xl-soft-mul

Certain devices such as Virtex Il have a hardware multiplier integrated on the device.
Hence the compiler can safely generate the mul or muli instruction. Using a hardware
multiplier gives better performance, but can be done only on devices with hardware
multiplier such as Virtex Il.

-mxI-stack-check

This option lets users check if the stack overflows during the execution of the program. The
compiler inserts code in the prologue of the every function, comparing the stack pointer
value with the available memory. If the stack pointer exceeds the available free memory;,
the program jumps to a the subroutine _st ack_over f | ow_exi t. This subroutine sets
the value of the variable _st ack_overfl ow error tol.

The standard stack overflow handler can be overridden by providing the function
_stack_overfl ow exit inthesource code, which acts as the stack overflow handler.

-mxI|-barrel-shift

The MicroBlaze processor can be configured to be built with a barrel shifter. In order to use
the barrel shift feature of the processor, use the option - nx| - bar r el - shi ft. The default
option is to assume that no barrel shifter is present and hence the compiler will use add
and multiply operations to shift the operands. Barrel shift can increase the speed
significantly, especially while doing floating point operations.

-mxl-gp-opt

If the memory location requires more than 32K, the load/store operation requires two
instructions. MicroBlaze ABI offers two global small data areas, which can contain up to
64K bytes of data each. Any memory location within these areas can be accessed using the
small data area anchors and a 16-bit immediate value. Hence needing only one instruction
for load/store to the small data area. This optimization can be turned ON with the -mxI-gp-
opt command line parameter. Variables of size lesser than a certain threshold value are
stored in these areas. The value of the pointers is determined during linking. The threshold
value can be changed using the -Gn option discussed below.

Embedded System Tools Guide www.xilinx.com 87
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 9: GNU Compiler Tools

-xlI-mode-executable

This is the default mode used for compiling programs with mb-gcc. The final executable
created starts from address location 0x0 and links in crt0.0. This option need not be
provided on the command line for mb-gcc.

-xl-mode-xmdstub

The mb-gcc compiler links certain initialization files along with the program being
compiled. If the program is being compiled to work along with xmd, crtl.o initialization
file is used, which returns the control of the program to the xmdstub after the execution of
the user code is done. In other cases, crt0.0 is linked to the output program, which jumps to
halt after the execution of the program. Hence the option -xI-mode-xmdstub helps the
compiler in deciding which initialization file is to be linked with the current program.

The code start address is set to 0x400 for programs compiled for a system with xmd. This
ensures that the compiled program starts after the xmdstub. If you intend to modify the
default xmdstub, leading to increase in the size of the xmdstub, you should take care to
change the start address of the text section. This option is described in the Linker Loader
Options section.

-xI-mode-xmdstub is allowed only in hardware debugging mode and with xmdstub
loaded in the memory. For software debugging (even with xmdstub), do not use this
option. For more details on debugging with xmd, please refer to the chapter, “Xilinx
Microprocessor Debugger”

-xl-mode-bootstrap

Certain programs are downloaded using the boot loader onto the device. This option links
in crt2.0 as the initialization file and starts the program at address location 0x100, leaving
the first 100 words for the boot loader program. On a reset, the control is transferred back
to the boot stub, which waits for loading a new program in the memory.

-x|I-mode-bootstrap-reset

Same as the bootstrap mode above, but the reset location is overwritten to jump your code
instead of the boot stub. Using this mode, the user does not have to reload the program on
a reset, which is necessary in the previous mode.

-xI-mode-xilkernel

A kernel consisting of few key RTOS features is provided with the EDK tools. All the
program compiled to work with the kernel should have the above option.

Caution! mb-gcc will signal fatal error, if more than one mode of execution is supplied on the
command line.

-Gn

The compiler stores certain data in the small data area of the code. Any global variable,
which is equal to or lesser than 8 bytes will be stored in the small data area of the read-
write or read-only section. This threshold value of 8 bytes can be changed using the above
option in the command line.

88

www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

MicroBlaze GNU Compiler XX"JNX@

MicroBlaze Linker Options

-defsym TEXT_START ADDR=value

By default, the text section of the output code starts with the base address 0x0. This can be
overridden by using the above options. If this is supplied to mb-gcc, the text section of the
output code will now start from the given value. When the compiler is invoked with -xI-
mode-xmdstub, the user program starts at 0x400 by default.

The user does not have to use -defsym _TEXT_START_ADDR, if they wish to use the
default start address set by the compiler.

This is a linker option and should be used when the user is invoking the linker separately.
If the linker is being invoked as a part of the mb-gcc flow, the user has to use the following
option

-W, -defsym -W, _TEXT_START_ADDR=val ue

-relax

This is a linker option, used to remove all the unwanted imm instructions generated by the
assembler. The assembler generates imm instruction for every instruction, where the value
of the immediate can not be calculated during the assembler phase. Most of these
instructions won’t need an imm instruction, which is removed by the linker, when the -
relax command line option is provided to the linker.

This option is required only when linker is invoked on its own. When linker is invoked
through the mb-gcc compiler, this option is automatically provided to the linker.

This option sets the text and data section to be readable and writable. It also does not page-
align the data segment. This option is required only for MicroBlaze programs. The top
level gcc compiler automatically includes this option, while invoking the linker, but if you
intend to invoke the linker without using gcc, you should have use this option.

For more details on this option, please refer to the GNU manuals online at
http://www.gnu.org/manual/manual.html

Pseudo-Ops

MicroBlaze supports a certain pseudo-ops making assembly programming easier for
assembly writers. The supported pseudo-ops are listed in Table 9-6.

Table 9-6: Pseudo-Opcodes supported by Assembler

Pseudo Opcodes Explanation

nop No operation. Replaced by instruction:
or RO, RO, RO

laRd, Ra, Imm Replaced by instruction:
addi Rd, Ra, imm; = Rd = Ra + Imm;

not Rd, Ra Replace by instruction: xori Rd, Ra, -1

Embedded System Tools Guide www.xilinx.com 89
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.gnu.org/manual/manual.html
http://www.xilinx.com

S XILINX® Chapter 9: GNU Compiler Tools

Table 9-6: Pseudo-Opcodes supported by Assembler

Pseudo Opcodes Explanation
neg Rd, Ra Replace by instruction: rsub Rd, Ra, RO
sub Rd, Ra, Rb Replace by instruction: rsub Rd, Rb, Ra

Initialization Files

The final executable needs certain registers such as the small data area anchors (R2 and
R13) and the stack pointer (R1) to be initialized. These initialization files are distributed
with the Embedded Development Kit. In addition to the precompiled object files, source
files are also distributed in order to help user make their own changes as per their
requirements. Initialization can be done using one of the five C runtime routines:

crt0.o

This initialization file is to be used for programs which are to be executed standalone, i.e
without xmd.

crtl.o

This file is located in the same directory and should be used when the xmd debugger is to
be present in the system.

crt2.o

In case of programs used with the boot-loader, crt2.o is used as the initialization file. The
boot loader is used to load the program at runtime using the boot stub.

crt3.o

The source for crt2.0 and crt3.0 is the same as the functionality is the same except for the
behavior on a reset. In crt3.0, address location 0x0 is overwritten, such that on a reset, the
control is transferred to the user program instead of the boot stub.

crt4.o

When the kernel module is used in a particular MicroBlaze system, crt4.o is picked up by
the compiler.

The source for initialization file can be changed as per the requirements of the project.
These changed files have to be then assembled to generate an object file (.o format). To refer
to the newly created object files instead of the standard files, use the - B di r ect ory-
nanme command line option while invoking nmb- gcc.

According to the C standard specification, all global and static variables need to be
initialized to 0. This is a common functionality required by all the crt’s above. Hence
another routine _crtinit is defined in crtinit.o file. This file is part of the libc.a library.

The _crtinit routine will initialize memory in the bss section of the program, defined by the
default linker script. If you intend to provide your own linker script, you will need to
compile a new _crtinit routine. The default crtinit.S file is provided in assembly source
format as a part of the Embedded Development Kit.

920 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

MicroBlaze GNU Compiler XX"JNX@

Command Line Arguments

One of the several tasks performed by operating systems is to pass arguments to a
program. Since there is no operating system available for MicroBlaze, programs can not
take in command line arguments. The command line arguments argc and argv are
initialized to 0 by the C runtime routines.

Interrupt Handlers

Interrupt handlers need to be compiled in a different manner as compared to the normal
sub-routine calls. In addition to saving non-volatiles, interrupt handlers have to save the
volatile registers which are being used. Interrupt handler should also store the value of the
machine status register (RMSR), when an interrupt occurs.

_interrupt_handler attribute

In order to distinguish an interrupt handler from a sub-routine, mb-gcc looks for an
attribute (interrupt_handler) in the declaration of the code. This attribute is defined as
follows:

void function_nane () _ _attribute__ ((interrupt_handler));
Note: Attribute for interrupt handler is to be given only in the prototype and not the definition.

Interrupt handlers might also call other functions, which might use volatile registers. In
order to maintain the correct values in the volatile registers, the interrupt handler saves all
the volatiles, if the handler is a non-leaf function(@).

Interrupt handlers can also be defined in the MicroBlaze Hardware Specification (MHS)
and the MicroBlaze Software Specification (MSS) file. These definitions would
automatically add the attributes to the interrupt handler functions. For more information
please refer MicroBlaze Interrupt Management document.

The interrupt handler uses the instruction r t i d for returning to the interrupted function.

_save_volatiles attribute

The MicroBlaze compiler provides the attribute save_volatiles, which is similar to the
_interrupt_handler attribute, but returns using r t sd instead of rti d.

This attributes save all the volatiles for non-leaf functions and only the used volatiles in
case of leaf functions.

void function_nanme () __attribute_ ((save_volatiles));

The attributes with their functions are tabulated in Table 9-7.

1. Functions which have calls to other sub-routines are called non-leaf functions.

Embedded System Tools Guide www.xilinx.com 91
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 9: GNU Compiler Tools

Table 9-7: Use of attributes

Attributes Functions

interrupt_handler This attribute saves the machine status register and all the
volatiles in addition to the non-volatile registers. rti d is
used for returning from the interrupt handler. If the interrupt
handler function is a leaf function, only those volatiles which
are used by the function are saved.

save_volatiles This attribute is similar to interrupt_handler, but it used

rtsd toreturn to the interrupted function, instead of rt i d.

Power PC GNU Compiler

Compiler Options

The Power PC GNU compiler (powerpc-eabi-gcc) is built using the GNU gcc version
2.95.3-4. No enhancements have been done to the compiler. The PowerPC compiler does
not support any special options. All the listed common options are supported by the
powerpc-eabi compiler.

Linker Options

-defsym _START_ADDR=value

By default, the text section of the output code starts with the base address 0xffff8000, since
this is the start address indicated in the default linker script. This can be overridden by

» using the above option OR
e providing a linker script, which lists the value for start address

The user does not have to use -defsym START_ADDR, if they wish to use the default
start address set by the compiler.

This is a linker option and should be used when the user is invoking the linker separately.
If the linker is being invoked as a part of the powerpc-eabi-gcc flow, the user has to use the
following option

-W, -defsym -W, START_ADDR=val ue

Initialization Files

The compiler looks for certain initialization files (such as boot.o, crt0.0). These files are
compiled along with the drivers and archived in libxil.a library. This library is generated
using LibGen by compiling the distributed sources in the Board Support Package (BSP).
For more information about libgen, please refer to the , “Library Generator”’chapter.

92

www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

$7 XILINX®

GNU Debugger

Chapter 10

mb-gdb

Built-in Simulator

User Interface

X9871

Summary
This chapter describes the general usage of the Xilinx GNU debugger for MicroBlaze and
PowerPC.
Overview
GDB is a powerful yet flexible tool which provides a unified interface for
debugging/verifying MicroBlaze and PowerPC systems during various development
phases.
Tcl/Terminal Interface
User Interface PowerPC-eabi-gdb GDB Remote Protocol XMD GDB Remote Protocol
(TCP/IP) (TCP/IP)
cycle-accurate
Instruction Set Simulator
JTAG JTAG| XMD JyarT
Protocol
|| | |
PPC405 Debug Port JTAG UART UARTIite
PowerPC System MicroBlaze System
Tool Usage

MicroBlaze GDB usage:

Embedded System Tools Guide
EDK (v3.1 EA) September 24, 2002

www.Xilinx.com
1-800-255-7778

93

http://www.xilinx.com

S XILINX® Chapter 10: GNU Debugger

nb-gdb [options] [executable-file]
PowerPC GDB usage:

power pc- eabi -gdb [options] [executable-file]

Tool OptiOﬂS The most common options in the MicroBlaze GNU debugger are:

--command=FILE

Execute GDB commands from FILE. Used for debugging in batch/script mode.
--batch

Exit after processing options. Used for debugging in batch/script mode.
-nw

Do not use a GUI interface.
-W

Use a GUI interface. (Default)

MicroBlaze GDB Targets

Currently, there are three possible targets that are supported by the MicroBlaze GNU
Debugger and XMD tools - a built-in simulator target and two remote targets (XMD):

xilinx > nb-gdb hello_world. elf

hello_world.c - Source Window - |EI|1|

File Run WYiew Control Preferences Help

‘ Bx4hc &
|nello_world.c >| [main ~| [source | |
1 #include <{stdio.h>

main{) {

3
n
5 int i = 5;

[} print("Hello Worldin');
7 putnum{i};

8

9

Program not running. Click on run icon to start,

From the Run pull-down menu, select Connect to target in the mb-gdb window. In the
Target Selection dialog, you can choose between the Si mul at or (built-in) and
Renot e/ TCP (for XMD) targets.

In the target selection dialog, choose:
e Target: Remote/TCP

94 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

MicroBlaze GDB Targets S XILINX®

* Hostname: localhost
e Port: 1234

Click OK and mb-gdb attempts to make a connection to XMD. If successful, a message is
printed in the shell window where XMD was started.

“-iTarget Selection

[V Set breakpairk at 'main’

v Set b int at 'exit’
Target: Femate/ TCP - ¥ Set breakpaint at 'ex
Hostname: Ilocalhost " set breakpairk at I
Port: |1234 " Display Download Dialog

™ Use xterm as inferior's tby

I More Options

OF I Cancel Help |

At this point, mb- gdb is connected to XMD and controls the debugging. The simple but
powerful GUI can be used to debug the program, read and write memory and registers.

GDB Built-in Simulator

The MicroBlaze debugger provides an instruction set simulator, which can be used to
debug programs that do not access any peripherals. This simulator makes certain
assumption about the executable being debugged:

* The size of the application being debugged determines the maximum memory
location which can be accessed by the simulator.

» The simulator assumes that the accesses are made only to the fast local memory
(LMB).

When using the command i nf o t ar get, the number of cycles reported by the simulator
are under the assumptions that memory access are done only into local memory (LMB).
Any access to the peripherals results in the simulator indicating an error. This target does
not require xnd to be started up. This target should be used for basic verification of
functional correctness of programs which do not access any peripherals or OPB or external
memory.

Remote

Remote debugging is done through XMD. The XMD server program can be started on a
host computer with the Simulator target or with the Hardware target transparent to mb-
gdb. Both the Cycle-Accurate Instruction Set Simulator and the Hardware interface
provide powerful debugging tools for verifying a complete MicroBlaze system. nb- gdb
connects to xnd using the GDB Remote Protocol over TCP/IP socket connection.

Simulator Target

The XMD simulator is a Cycle-Accurate Instruction Set Simulator of the MicroBlaze system
which presents the simulated MicroBlaze system state to GDB.

Embedded System Tools Guide www.xilinx.com 95
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 10: GNU Debugger

Hardware Target

With the hardware target, XMD communicates with an xmdstub program running on a
hardware board through the serial cable or JTAG cable, and presents the running
MicroBlaze system state to GDB.

For more information about XMD refer to the XMD Chapter.
Note

1. The simulators provide a non-intrusive method of debugging a program. Debugging using the
hardware target is intrusive because it needs an xmdstub to be running on the board.

2. If the program has any I/O functions like print() or putnum(), that write output onto the UART or
JTAG Uart, it will be printed on the console/terminal where the xmd server was started. (Refer to
the MicroBlaze Libraries documentation for libraries and 1/O functions information).

Compiling for Debugging on MicroBlaze targets

In order to debug a program, you need to generate debugging information when you
compile it. This debugging information is stored in the object file; it describes the data type
of each variable or function and the correspondence between source line numbers and
addresses in the executable code. The mb-gcc compiler for Xilinx’s MicroBlaze soft
processor includes this information when the appropriate modifier is specified.

The - g option in nb- gcc allows you to perform debugging at the source level. mb-gcc
adds appropriate information to the executable file, which helps in debugging the code.
mb-gdb provides debugging at source, assembly and mixed (both source and assembly)
together. While initially verifying the functional correctness of a C program, it is also
advisable to not use any mb-gcc optimization option like -O2 or -O3 as mb-gcc does
aggressive code motion optimizations which may make debugging difficult to follow. For
debugging with xnd in hardware mode, the nmb- gcc option - x| - node- xndst ub must be
specified. Refer to the XMD documentation for more information about compiling for
specific targets.

96 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

PowerPC Targets

SXILINX®

PowerPC Targets

GUI mode

Hardware debugging for the PowerPC405 on Virtex-1l Pro is supported by powerpc-eabi-

-4 Target Selection x|

[+ Set breakpoint at 'main’

Conneckion
¥ set breakpaint at ‘st

Target: IRetheITCF‘ ﬂ

Hostname: |I|:|ca|hu:|st I™ et breakpoint at I

Part: |1234 [Display Download Dialog

[Use xterm as inferiot's by

~ Fewer Qplions

—Run Options
Run Method:
Run Method

W attach ko Target
= Run Program

% Continue From Last Stop

v Download Program

Caommand to issue after attaching:

Iset architecture puwerpc:4DS|

O Cancel

Help |

gdb and xmd through the GDB Remote TCP protocol. To connect to a hardware PowerPC
target, first start xmd and connect to the board using the ppcconnect command as
described in the XMD chapter. Next, select Run->Connect to target from GDB and in the
GDB target selection dialog, choose:

» Target: Remote/TCP
* Hostname: localhost
e Port: 1234

Click on More Options in the bottom left corner of the target selection dialog. In the
command field type:

set architecture powerpc:405

Click OK and powerpc-eabi-gdb attempts to make a connection to XMD. If successful, a
message is printed in the shell window where XMD was started.

Console mode

To start powerpc-eabi-gdb in the console mode type :

Embedded System Tools Guide www.xilinx.com 97
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 10: GNU Debugger

xilinx > powerpc-eabi-gdb -nw executabl e. el f

In the console mode, type the following two commands to connect to the board through
xmd.

(gdb) set architecture powerpc: 405
(gdb) target renote |ocal host: 1234

These two commands can also be placed in the GDB startup file gdb. i ni in the current
working directory.

GDB Command Reference
For help on using mb-gdb, click on Hel p- >Hel p Topi c¢s inthe GUI mode

or type “ hel p” in the console mode.
In the GUI mode, to open a console window, click on Vi ew >Consol e

For a comprehensive online documentation on using GDB, refer to
http://www.gnu.org/manual/gdb/

For information about the mb-gdb Insight GUI, refer to the Red Hat Insight webpage
http://sources.redhat.com/insight

Table 10-1 briefly describes the commonly used mb-gdb console commands. The

Table 10-1: Commonly Used GDB Console Commands

Command Description
load [program] load the program into the target
b main Set a breakpoint in function main
r Run the program (for the built-in simulator only)
c Continue after a breakpoint, or

Run the program (for the xmd simulator only)

I View a listing of the program at the current point

n Steps one line (stepping over function calls)
S Step one line (stepping into function calls)
stepi Step one assembly line
info reg View register values
info target View the number of instructions and cycles executed (for

the built-in simulator only)

monitor info View the number of instructions and cycles executed (for
the xmd simulator only)

p Xyz Print the value of xyz data

equivalent GUI versions can be easily identified in the mb-gdb GUI window icons. Some
of the commands like info target, monitor info, may be available only in the console mode.

98 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

SXILINX®
Chapter 11

Xilinx Microprocessor Debugger

Overview

The Xilinx Microprocessor Debug (XMD) Engine is a program that facilitates a unified
GDB interface as well as a Tcl (Tool Command Language) interface for debugging
programs and verifying systems using the MicroBlaze or PowerPC (Virtex-11 Pro)
microprocessors. It supports debugging user programs on different targets such as

- Cycle-accurate MicroBlaze instruction set simulator

- MicroBlaze system running xndst ub on a hardware board

- PowerPC system on a hardware board
The XMD Engine is used along with MicroBlaze and PowerPC GDB (nb- gdb &
power pc- eabi - gdb) for debugging. mb- gdb and power pc- eabi - gdb communicates
with xmd using the Remote TCP protocol and control the corresponding targets. In either
case, GDB can connect to xd on the same computer or on a remote computer on the

Internet. The xmd Tcl interface can be used for command line control and debugging of the
target as well as for running complex verification test scripts to test the complete system.

Tcl/Terminal Interface

|

er Interf . GDB Remote Protocol GDB Remote Protocol User Interf
er intertace PowerPC-eabi-gdb XMD mb-gdb ser Interta

B —

(TCP/IP) (TCP/IP)

cycle-accurate e
Instruction Set Simulator Built-in Simulator

XMD |yART
Protocol

JTAG

JTAG|
W

PPC405 Debug Port JTAG UART UARTIite

XMD stub

PowerPC System MicroBlaze System

Figure 11-1: Xilinx Microprocessor Debug (XMD) targets

Embedded System Tools Guide www.xilinx.com 99
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 11: Xilinx Microprocessor Debugger

XMD usage

To start the XMD engine, simply execute xmd from a shell as follows.
> xnd

From the xmd Tcl prompt, xnd can be connected to the desired target using the commands
described in Table 11-1.

MicroBlaze stub target

With a hardware target, user programs can be downloaded from nb- gdb directly onto a
remote hardware board and be executed with support of the xmd stub running on the
board. A sample session of XMD with a hardware stub target is shown below.

XMD% nbconnect stub -conmjtag -posit 2

Now XMD connects to the hardware target and waits for a connection from nb- gdb. Refer
to the GNU Debugger chapter to see how to start mb- gdb, make a remote connection from
nb- gdb to xnd, download a program onto the target and debug the program.

To debug a program by downloading on the remote hardware board, the program must be
compiled with -g -xI-mode-xmdstub options to mb-gcc.

Note: User Program outputs. If the program has any I/O functions like print() or putnum(), that write
output onto the UART or JTAG Uart, it will be printed on the console/terminal where the xnd was
started. (Refer to the MicroBlaze Libraries chapter for libraries and I/O functions information).

Stub Target Requirements

To debug programs on the hardware board using XMD, the following requirements have
to be met.

» xmd uses a JTAG or serial connection to communicate with xndst ub on the board.
Hence a JTAG Uart or a Uart designated as DEBUG_PERIPHERAL in the mss file is
needed on the target MicroBlaze system.

Platform Generator can create a system that includes a JTAG Uart or a Uart, if
specified in the system’s mhs file. For more information on creating a system with
a Uart or a JTAG Uart, refer to the MicroBlaze Hardware Specification Format
chapter.

e xndst ub on the board uses the JTAG Uart or Uart to communicate with the host
computer. Hence, it must be configured to use the JTAG Uart or Uart in the
MicroBlaze system.

Library Generator can configure the xnmdst ub to use the DEBUG_PERIPHERAL
in the system. | i bgen will generate a xnmdst ub configured for the
DEBUG_PERIPHERAL and putitin code/ xndst ub. el f as specified by the
XMDSTUB attribute in the mss file. For more information, refer to the Library
Generator chapter.

e xndst ub executable must be included in the MicroBlaze local memory at system
startup. To have the xndst ub included in the MicroBlaze local memory, the
xndst ub. el f file should be specified in the user’s mss file as follows:

PARAMETER XMDSTUB=code/ xndst ub. el f

Data2BRAM can populate the MicroBlaze memory with xndst ub. libgen
generates a Data2BRAM script file that can be used to populate the BRAM

100

www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

MicroBlaze stub target

SXILINX®

Table 11-1: XMD commands@

command [options]

Description

mbconnect <sim | stub> [options]

Connect to a MicroBlaze target as well as starta GDB server
for the target. xnd supports non-intrusive debugging on
the MicroBlaze simulator or intrusive debugging on
hardware board running xndst ub. Use si mfor simulator
or st ub for remote hardware. The default target is the
simulator.

¢ Simulator Target options
¢ -memsize size
size of the memory allocated in the simulator.
Programs can access the memory range from 0 to
size-1
e xmdstub Target options
¢ -comm <serial | jtag>
Specify the xnd communication. Debugging is
supported over JTAG (using opb_jtag_uart

peripheral) or serial cable (using opb_uart
peripheral). Default is JTAG communication

>

-posit device position

Specify the position of the FPGA device in the
JTAG chain that contains the MicroBlaze system to
be debugged. The JTAG chain positions are auto
detected and displayed by xmd when no position is
specified

+ -chain device count <list of BSDL files>

Specify the configuration of the JTAG chain on the
target board by providing the BSDL files for all the
devices that make up the JTAG chain in the same
order as they occur in the chain. By default, xmd
autodetects the JTAG chain. But if it fails to do so,
then this option can be used to connect to the target
board

-port serial port

<>

Specify the serial port to which the remote
hardware is connected, when xmd communication
is over the serial cable. The default serial port is
/dev/ttya on Solaris and Com1 on Windows

+ -baud baud rate

Specify the serial port baud rate in bps. The default
value is 19200 bps.

mbdisconnect target id

Disconnect from the current MicroBlaze target, close the
corresponding GDB server and revert to the previous
MicroBlaze target.

ppcconnect

Connect to a hardware PowerPC target as well as start a
remote GDB server.

Embedded System Tools Guide
EDK (v3.1 EA) September 24, 2002

www.Xilinx.com 101
1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 11: Xilinx Microprocessor Debugger

Table 11-1: XMD commands@

command [options]

Description

rrd

Register Read

rwr reg_num word

Register Write

mrd address [num_words]

Memory Read

mwr address word

Memory Write

dis [address] [num_words]

Disassemble

con [address]

Continue from current PC or “address”

stp [number]

Step one or “number” instructions

rst

Reset target

bps address

Set Breakpoint at “address”

bpr address

Remote Breakpoint from “address”

bpl

List Breakpoints

dow [-data] filename [addr]

Download the given ELF or data file (with -data option)
onto the current target’s memory. If no address is provided
alongwith ELF file, the download address is determined
from the ELF file by reading its headers. If an address is
provided with the ELF file, it is treated as PIC code
(Position Independent Code) and downloaded at the
specified address and Register R20 is set to the start address
according to the PIC code semantics. Note that NO Bounds
checking is done by xmd, except preventing writes into
xmdstub area (address 0x0 to 0x400).

help

List all commands

a.

xmdterm.tcl script in the installation directory provides commands for doing assembly level debugging using the
low level xmd commands. xmdterm.tcl is automatically loaded by xmd on startup. Powerful verification scripts
can be written in Tcl based on the xmdterm script. User scripts with helper commands can be loaded into xmd by
using the Tcl command “source script.tcl”. Refer to the Tcl documentation at the Tcl Developer site for more
information on writing Tcl scripts and custom commands.

contents of a bitstream containing a MicroBlaze system. It uses the executable
specified in the DEFAULT_INIT.

* Any user program that has to be downloaded on the board for debugging should
have a program start address higher than 0x400 and the program should be linked
with the startup code in crtl.o

nmb- gcc can compile programs satisfying the above two conditions when it is run
with the option - x| - node- xndst ub. For source level debugging, programs
should also be compiled with - g option. While initially verifying the functional
correctness of a C program, it is advisable to not use any mb-gcc optimization
option like -O2 or -O3 as mb-gcc does aggressive code motion optimizations which
may make debugging difficult to follow.

102

www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com
http://www.tcl-tk.net
http://www.tcl-tk.net
http://www.tcl-tk.net/
http://www.tcl-tk.net/

MicroBlaze Simulator target XX"JNX@

MicroBlaze Simulator target

You can use nb- gdb and xnd to debug programs on the cycle-accurate simulator built in
XMD. A sample session of XMD and GDB is shown below.

XMD% nbconnect sim

Connected to M croBl aze “sinf target. id =0

Starting Renote GDB server for “sinf target (id = 0) at TCP port no 1234
XMD%

Now XMD is running with the simulator target and waiting for a connection from mb-gdb.
The xmd Tcl prompt can also be used simultaneously for executing xmd commands.

Refer to the MicroBlaze GNU Debugger document to see how to start nb- gdb, make a
remote connection from nb- gdb to xnd, download a program onto the target and debug
the program. With xnd and nb- gdb, the debugging user interface is uniform with
simulation or hardware targets.

Simulation Statistics

While mb- gdb is connected to XMD with the simulator target, the statistics of the cycle-
accurate simulator can be viewed from mb-gdb as follows:

e Inthe nb- gdb GUI menu, select Vi ew >Consol e.

* Inthe console window, type noni tor info
» To reset the simulation statistics, type noni t or reset

Simulator Target Requirements

To debug programs on the Cycle-Accurate Instruction Set Simulator using XMD, the
following requirements have to be met.

* Programs should be compiled for debugging and should be linked with the startup
code in crt0.0

nb- gcc can compile programs with debugging information when it is run with
the option - g and by default, mb-gcc links crt0.0 with all programs. (Explicit option:
- x| - node- execut abl e)

* Programs can have a maximum size of 64Kbytes only.

* Currently, XMD with simulator target does not support the simulation of OPB
peripherals.

PowerPC Target

xmd can connect to a hardware PowerPC target over a JTAG connection to a board
containing a Virtex-11 Pro device. Use the ppcconnect command to connect to the PowerPC
target and start a remote GDB server. A sample session is shown below

XMD% ppcconnect

JTAG chain configuration

Devi ce I D Code IR Length Part Nane
1 05026093 8 XC18V04
2 05026093 8 XC18V04
3 0124a093 10 XC2VP7
Embedded System Tools Guide www.xilinx.com 103

EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 11: Xilinx Microprocessor Debugger

assunption: sel ected device 3 for debuggi ng.

Connected to PowerPC target. id = 0
Starting GDB server for target (id = 0) at TCP port no 1234
XMD%

XMD Tcl commands

In the Tcl interface mode, xmd starts a Tcl shell augmented with xmd commands. All xmd
Tcl commands start with ’x” and can be listed from xmd by typing “x?”.

Xrmem target addr [num]
Read num bytes or 1 byte from memory address <addr>

xwmem target addr value
Write a 8-bit byte value at the specified memory addr.

xrreg target [reg]
Read all registers or only register number r eg.

Xwreg target reg value
Write a 32-bit value into register number reg

xdownload target [-data] filename [addr]

Download the given ELF or data file (with -data option) onto the current target’s
memory. If no address is provided alongwith ELF file, the download address is
determined from the ELF file by reading its headers. If an address is provided with the
ELF file, it is treated as PIC code (Position Independent Code) and downloaded at the
specified address and Register R20 is set to the start address according to the PIC code
semantics. Note that NO Bounds checking is done by xmd, except preventing writes
into xmdstub area (address 0x0 to 0x400).

xcontinue target [addr]
Continue execution from the current PC or from the optional address argument.
xstep target

Single step one MicroBlaze instruction. If the PC is at an IMM instruction the next
instruction is executed as well. During a single step, interrupts are disabled by keeping
the BIP flag set. Use xcontinue with breakpoints to enable interrupts while debugging.

xreset target [reset type]

Reset target. Optionally provide target specific reset types like signals mentioned in ,
“XMD MicroBlaze Hardware target signals”.

xbreakpoint target addr

Set a breakpoint at the given address. Note - Breakpoints on instructions immediately
following i mminstruction can lead to undefined results.

xremove target addr

Remove breakpoint at given address.

xlist target

List all the breakpoint addresses.

xdisassemble inst

Disassemble and display one 32-bit instruction.

104

www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

XMD Tcl commands S XILINX®

e xsignal target signal

Send a signal to a hardware target. This is only supported by the JTAG UART when the
debug signals for Processor Break, Reset and System reset are connected to MicroBlaze
and the OPB bus. Platform Generator automatically connects these signals by default
of the implicit name matching in the respective MPD files. Supported signals are listed
in Table 11-2.

Table 11-2: XMD MicroBlaze Hardware target signals

Signal Name (value) Description

Processor Break (0x20) Raises the Brk signal on MicroBlaze using the JTAG UART
Ext_Brk signal. It sets the Break-in-Progress (BIP) flag on
MicroBlaze and jumps to addr 0x18

Non-maskable Break (0x10) Similar to the Break signal but works even while the BIP flag
is already set. Refer the MicroBlaze ISA documentation for
more information about the BIP flag.

System Reset (0x40) Resets the entire system by sending an OPB Rst using the
JTAG UART Debug_SYS_Rst signal.
Processor Reset (0x80) Resets MicroBlaze using the JTAG UART Debug_Rst signal.

e Xxstats target [options]

Display the simulation statistics for the current session.’reset’ option can be provided
to reset the simulation statistics.

* Xppcserver
Connect to a PPC405 target, start a remote OCD server and wait for GDB connections.
e Xtargets [target]
Print the target ID and target type of all curent targets or a specific target.

Embedded System Tools Guide www.xilinx.com 105
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 11: Xilinx Microprocessor Debugger

106 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

SXILINX®
Chapter 12

Platform Specification Format (PSF)

Overview

The Platfom Specification Format (PSF) defines the compatible set of infrastructure files for
a EDK tool release. The infrastructure files are BBD, MDD, MHS, MPD, MSS, MVS, and
PAO files.

This chapter includes the following sections:
“Files”

“Version Scheme”

“Load Path”

“Creating User IP”

Files

BBD - Black Box Definition

The Black Box Definition (BBD) file manages the file locations of optimized hardware
netlists for the black-box sections of your peripheral design.

Please see Chapter 16, “Black-Box Definition (BBD),” for more information.

MDD - Microprocessor Driver Definition

An MDD file contains directives for customizing software drivers.

Please see Chapter 19, “Microprocessor Driver Definition (MDD),” for more information.

MHS - Microprocessor Hardware Specification

The Microprocessor Hardware Specification (MHS) file defines the hardware component.
An MHS file is supplied by the user as an input to the Platform Generator (PlatGen) tool.

Please see Chapter 13, “Microprocessor Hardware Specification (MHS),” for more
information.
MPD - Microprocessor Peripheral Definition

The Microprocessor Peripheral Definition (MPD) file defines the interface of the
peripheral.

Embedded System Tools Guide www.xilinx.com 107
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 12: Platform Specification Format (PSF)

Please see Chapter 14, “Microprocessor Peripheral Description (MPD),” for more
information.
MSS - Microprocessor Software Specification

An MSS file is supplied by the user as an input to the Library Generator (LibGen). The MSS
file contains directives for customizing libraries, drivers and file systems.

Please see Chapter 18, “Microprocessor Software Specification (MSS),” for more
information.
MVS - Microprocessor Verification Specification

An MVS file is supplied by the user as an input to the Simulation Model Generator

(SimGen) tool. The MVS file contains directives for customizing a simulation model for a
defined system.

Please see Chapter 17, “Microprocessor Verification Specification (MVS),” for more
information.

PAO - Peripheral Analyze Order

A PAO (Peripheral Analyze Order) file contains a list of HDL files that are needed for
synthesis, and defines the analyze order for compilation.

Please see Chapter 15, “Peripheral Analyze Order (PAO),” for more information.

Version Scheme

Form of the version level is X.Y.Z
e X -major revision

* Y -minor revision

* Z-patch level

Version Setting for MHS, MSS, and MVS
In the body of the MHS, MSS, and MVS file, add the following statement:

Format

PARAMETER VERSION = 2.0.0

The version is specified as a literal of the form 2.0.0.

Version Setting for BBD, MPD, and PAO

The version level is concatenated to the basename of the data files. The literal form of the
version level isvX_Y_Z.

Format

e <ipname>_vX_Y_Z.mpd
e <ipname>_vX_Y_Z.bbd

108 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Load Path SXILINX®

* <ipname>_vX_Y_Z.pao
e <ipname>_vX_ Y Z.mdd

Load Path

Refer to Figure 12-1 for a depiction of the peripheral directory structure. On a UNIX
system, the processor cores reside in the following location:

$XILINX_EDK/hw/coregen/ip/xilinx/pcores*/com/xilinx/ip2/processor
On a PC, the processor cores reside in the following location:
%XILINX_EDK%\hw\coregen\ip\xilinx\pcores*\com\xilinx\ip2\processor
To specify additional directories, use one of the following options:

e Current directory (where Platform Generator was launched; not where the MHS
resides)

» Set the Platform Generator -P option, or the XIL_MYPERIPHERALS environment
variable

Platform Generator uses a search priority mechanism to locate peripherals, as follows:

1. Search current directory in the myip directory

2. Search $XIL_MYPERIPHERALS/myip (UNIX) or %XIL_MYPERIPHERALS%\myip
(PC)

3. Search $XILINX_EDK/hw/coregen/ip/xilinx/pcores*/com/xilinx/ip2/processor
(UNIX) or
%XILINX_EDK%\hw\coregen\ip\xilinx\pcores*\com\xilinx\ip2\processor (PC)

The first two search areas (1 and 2) have the same underlying directory structure. The third
search area has the CORE Generator directory structure. For search areas 1 and 2, the
peripheral name is the name of the root directory. From the root directory, the underlying
directory structure is as follows;

dat a

hdl

netli st

si model s

For example, if the XIL_MYPERIPHERALS environment is set, then the MPD, BBD, and
PAO files are found in the following location:

$XIL_MYPERIPHERALS/myip/<peripheral>/data (UNIX)
%XIL_MYPERIPHERALS%\myip\<peripheral>\data (PC)

Embedded System Tools Guide www.xilinx.com 109
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 12: Platform Specification Format (PSF)

$XIL_MYPERIPHERALS

drivers myip
my_uart my_uart
data hdl netlist simmodels
C MPD) (BBD) Verilog VHDL
PAO

X9876

Figure 12-1: Peripheral Directory Structure

Using Versions

You can create multiple versions of your peripheral. The version is specified as a literal of
the form 1.00.a. The version is always specified in lower-case.

At the MHS level, use the HW_VER parameter to set the hardware version. The Platform
Generator concatenates a"_v" and translates periods to underscores. The peripheral name
and HW_VER are joined together to form a name for a search level in the load path. For
example, if your peripheral is version 1.00.a, then the MPD, BBD, and PAO files are found
in the following location:

$XIL_MYPERIPHERALS/myip/<peripheral>_v1_00_a/data (UNIX)
%XIL_MYPERIPHERALS%\myip\<peripheral>_v1 00 _a\data (PC)

Creating User IP

To build your own refernce depends on the characteristics of your design.

Is Your IP Pure HDL?
Read about MPD and PAO files.

Is Your IP Only A Black-Box Netlist?
Read about MPD and BBD files.

110 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Creating User IP S XILINX®

Is Your IP A Mixture Of Black-Box Netlists And HDL?
Read about MPD, BBD, and PAO files.

Embedded System Tools Guide www.xilinx.com 111
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 12: Platform Specification Format (PSF)

112 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

$7 XILINX®

Chapter 13

Microprocessor Hardware Specification

(MHS)

Overview

The Microprocessor Hardware Specification (MHS) file defines the hardware component.
An MHS file is supplied by the user as an input to the Platform Generator (PlatGen) tool.
An MHS file defines the configuration of the embedded processor system, and includes the
following:

Bus architecture
Peripherals

Processor

Connectivity of the system
Interrupt request priorities
Address space

This chapter includes the following sections:
“MHS Syntax”

“Bus Interface Definition”

“Global Parameter Command”

“Local Parameter Command”

“Local Bus Interface Command”

“Global Port Command”
“Local PORT Command”

“Design Considerations”

MHS Syntax

MHS file syntax is case insensitive. Only connector names are case-sensitive.

Attribute settings in the MHS file have priority over the equivalent attribute setting in the
Microprocessor Peripheral Definition (MPD) file. Refer to the Microprocessor Peripheral
Definition Format document for more information on MPD file syntax.

Embedded System Tools Guide www.xilinx.com 113
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 13: Microprocessor Hardware Specification (MHS)

Comments

Format

You can insert comments in the MPD file without disrupting processing. The following are
guidelines for inserting comments:

e Precede comments with the pound sign (#)
» Comments can continue to the end of the line
« Comments can be anywhere on the line

Use the following format at the beginning of a component definition:
BEG N peri pheral _nane
The BEGIN keyword signifies the beginning of a new peripheral.
Use the following format for assignment commands:
command nane = val ue
Use the following format to end a peripheral definition:
END

Assignment Commands

There are three assignment commands:
1. bus_interface

2. parameter

3. port

MHS Example

The following is an example MHS file:
PARAMETER VERSION = 2.0.0
Define external ports

PORT vcc_out = net_vcc, DI R=OUTPUT
PORT gnd_out = net_gnd, DI R=OUTPUT

PORT ny_cl k
PORT fb_clk

sys_cl k, DI R=l NPUT
sys_clk # Default is DI R=OUTPUT

PORT sys_rst = sys_rst, DI R=I NPUT

Define external interrupts
PORT ny_intl = my_intl, LEVEL=H GH D R=I NPUT, SId S=I NTERRUPT
PORT ny_int2 = int2, EDGE=FALLI NG DI R=I NPUT, SI d S=I NTERRUPT

PORT rx1
PORT tx1

rxi, DI R=I NPUT
tx1, DI R=OUTPUT

HERHH R R R R R R R R R R R R R R R R
BEGA N opb_v20

PARAMETER HW VER = 1.10.a

PARAMETER | NSTANCE = nyopb

114

www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

MHS Syntax S XILINX®

O0x00FFAOFF
0x00FFAO000

PARAMETER C_HI GHADDR
PARAMETER C_BASEADDR
PARAMETER C _PARK = 0
PARAMETER C_PROC_|I NTRFCE = 0

PARAMETER C_REG GRANTS = 1

PORT OPB_ Ok = sys_clk

PORT SYS Rst = sys_rst

END

HHHHHH AR HHHHH AR H R R AR R R R TR H R R R
BEG N I nb_v10

PARAMETER HW VER = 1.00. a

PARAMETER | NSTANCE = d_I nb

PORT LMB_C k = sys_clk
PORT SYS Rst = sys_rst
END

B T
BEG N | nb_v10

PARAMETER HW VER = 1.00. a

PARAMETER | NSTANCE = i _Inmb

PORT LMB_CO k = sys_clk

PORT SYS Rst = sys_rst

END

HHHHHHHH R H R
BEG N mi crobl aze
PARAMETER HW VER = 1.00.c
PARAMETER | NSTANCE = mi crobl azel

BUS_| NTERFACE DOPB = nyopb

BUS_| NTERFACE | OPB = nyopb

BUS_| NTERFACE DLMB = d_I nb

BUS | NTERFACE ILMB = i _Inb

PORT Interrupt =intr

PORT Ak = sys_clk

END

B G T
BEG N | nb_| mb_bram.if_cntlr

PARAMETER | NSTANCE = nyl mbl mb_cntlr

PARAMETER HW VER = 1.00. a

PARAMETER C_H GHADDR = 0x00007fff

PARAMETER C_BASEADDR = 0x00000000

BUS_| NTERFACE I LMB = i _Inb

BUS_| NTERFACE DLMB = d_I nb

BUS_| NTERFACE PORTA = I nb_porta

BUS | NTERFACE PORTB = I nb_portb

END

HHBHHH PR H T H R H R R R
BEG N bram bl ock

PARAMETER | NSTANCE = | nbbr aml

PARAMETER HW VER = 1.00. a

BUS | NTERFACE PORTA = I nmb_porta

BUS | NTERFACE PORTB = I nb_portb

END

HHAHHH PR H T H R H PR R R R
BEG N opb_intc

PARAMETER HW VER = 1.00.b

PARAMETER | NSTANCE = nyintc

PARAMETER C_H GHADDR = OxFFFF90FF

PARAMETER C_BASEADDR = 0xFFFF9000

BUS_| NTERFACE SOPB = nyopb

PORT OPB_ Ok = sys_clk

Embedded System Tools Guide www.xilinx.com 115
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 13: Microprocessor Hardware Specification (MHS)

PORT Intr = nmy_intl &uart_intr & wdt_intr & tb_intr & int2
PORT Irq = intr

END

HHHHHHHHHHHHHH
BEG N opb_uartlite

PARAMETER HW VER = 1.00. b

PARAMETER | NSTANCE = nyuartlite

PARAMETER C_HI GHADDR = OxFFFF80FF

PARAMETER C_BASEADDR = OxFFFF8000

BUS_| NTERFACE SOPB = nyopb

PORT OPB_d k

= sys_clk

PORT RX = rx1
PORT TX = tx1
PORT Interrupt = uart_intr

END

HHHHHHHHHHHHHH
BEG N opb_bram.if_cntlr

PARAMETER | NSTANCE = nyopbbramcntlr

PARAMETER HW VER = 1.00. a

PARAMETER C_HI GHADDR = OxFFFF7FFF

PARAMETER C_BASEADDR = OxFFFF4000

BUS_| NTERFACE SOPB = nyopb

BUS_| NTERFACE PORTA = opb_porta

END

BRI R R R R R
BEG N bram bl ock

PARAMETER | NSTANCE = opbbraml

PARAMETER HW VER = 1.00. a

BUS_| NTERFACE PORTA = opb_porta

END

BRI R R R R R R R R
BEG N opb_ti nebase_wdt

PARAMETER HW VER = 1.00. a

PARAMETER | NSTANCE = nyti nebase_wdt

PARAMETER C_H GHADDR = Ox00FFDOFF

PARAMETER C_BASEADDR = 0x00FFDO000

BUS_| NTERFACE SOPB = nyopb

PORT OPB_d k

= sys_clk

PORT Ti nebase _Interrupt = tb_intr
PORT WDT Interrupt = wdt_intr

END

Bus Interface Definition

A bus interface is a grouping of interface ports which are related.

The following list are recommendations for bus labels:

Table 13-1: Bus Labels

Bus Name Description
SDCR Slave DCR interface
SLMB Slave LMB interface
MOPB Master OPB interface
MSOPB Master-slave OPB interface

116

www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Global Parameter Command S XILINX®

Table 13-1: Bus Labels

Bus Name Description
SOPB Slave OPB interface
MPLB Master PLB interface
MSPLB Master-slave PLB interface
SPLB Slave PLB interface

For components that have more than one bus interface, please look at the MPD file for a
definition of listed bus interface labels. For example, the data-side OPB and instruction-
side OPB are named DOPB and IOPB, respectively.

A bus interface is assigned by name to an instance of the bus in your system.

Example

For example, the OPB bus instance is named “myopb”, and a connection to the OPB slave
interface of the OPB Uart Lite is made with the bus_interface command.

BEG N opb_uartlite

PARAMETER HW VER = 1.00. b
PARAMETER | NSTANCE = nyuartlite
PARAMETER C_HI GHADDR = OxFFFF80FF
PARAMETER C_BASEADDR = OxFFFF8000
BUS_| NTERFACE SOPB = nyopb

PORT OPB Ok = sys _clk

PORT RX
PORT TX = tx1

PORT Interrupt = uart_intr
END

1|
-
x
[

Global Parameter Command

A global parameter is defined outside of a BEGIN-END block.

A global parameter can have the following options:

Table 13-2: Global Parameter Options

Option Values Default Definition
VERSION 2.0.0 X MHS version

VERSION Option

Use the VERSION option to set the MHS version.

Format

PARAVETER VERSION = 2.0.0

The version is specified as a literal of the form 2.0.0.

Embedded System Tools Guide www.xilinx.com 117
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 13: Microprocessor Hardware Specification (MHS)

Local Parameter Command

A local parameter is defined between a BEGIN-END block.

A local parameter can have the following options:

Table 13-3: Local Parameter Options

Option Values Default Definition
HW_VER 1.00.a X Hardware version
INSTANCE X User-defined instance name

Must be lower-case

HW_VER Option
Use the HW_VER option to set the hardware version.

Format

PARAMETER HW VER = 1.00. a

The version is specified as a literal of the form 1.00.a.

INSTANCE Option

Use the INSTANCE option to set the instance name of peripheral. This option is
mandatory, and the instance name must be specified in lower-case.

Format

PARAMETER | NSTANCE = my_uartO

Local Bus Interface Command
A local bus interface between a BEGIN-END block can have the following options:

Table 13-4: Local Bus Interface Options

Option Values Default Definition

POSITION integer Order Position of peripheral on the bus.
retained as Use to define master request

listed in the | priority or DCR slave rank.
MHS

POSITION Option

Use the POSITION option to set the hardware version.

Format

BUS_| NTERFACE MOPB=opb_bus_i nst, POSI Tl ON=i nt eger

Where i nt eger is a positive integer. Highest position is "1".

118 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Global Port Command S XILINX®

Global Port Command
A global port outside of a BEGIN-END block can have the following options:

Table 13-5: Global Port PORTOptions

Option Values Default Definition
DIR IN, INPUT, I @] Direction mode
OUT, OUTPUT, O
INOUT, 10
EDGE RISING X Interrupt edge sensitivity
FALLING
LEVEL HIGH X Interrupt level sensitivity
LOW
SIGIS CLK X Slgnal classification
INTERRUPT
VEC [A:B] X Vector dimension
DIR Option
The driver direction of a signal is specified by the DIR option.
Format
PORT nysignal = "", DI R=direction

Where direction is either INPUT, IN, I, OUTPUT, OUT, O, INOUT, or IO.

EDGE Option
The edge sensitivity of an interrupt signal is specified by the EDGE option.
Format
PORT interrupt = “”, DI R=O EDGE=edge_val ue, S| d S=I NTERRUPT

Where edge_value is either RISING or FALLING.

LEVEL Option

The level sensitivity of an interrupt signal is specified by the LEVEL option.

Format
PORT interrupt = “", DI R=O LEVEL=level _val ue, S| d S=I NTERRUPT
Where the level value is either HIGH or LOW.

SIGIS Option
The class of a signal is specified by the SIGIS option.

Embedded System Tools Guide www.xilinx.com 119
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 13: Microprocessor Hardware Specification (MHS)

Format

PORT interrupt = “", DI R=O, LEVEL=level _val ue, S| d S=I NTERRUPT
Where the level_value is either HIGH or LOW.

VEC Option
The vector width of a signal is specified by the VEC option.
Format
PORT nysignal = “", DI R=l, VECH A: B]

Local PORT Command

A local port is a port defined between a BEGIN-END block. A local port does not have
options.

Design Considerations

This section provides general design considerations.

Assinging Constants

Use Ob denotation to define a binary constant or Ox for a hex constant. An underscore ()
can be used for readability.
Format
PORT mysignal = 0b1010_0101 # nysignal is 8-bits
Or
PORT nysignal = OxA5 # nysignal is 8-bits

Defining Memory Size

Memory sizes are based on C_BASEADDR and C_HIGHADDR settings. Use the following
format when defining memory size:

PARAMETER C_HI GHADDR= OxFFFFOOFF
PARAVMETER C_BASEADDR= O0xFFFFO000

All memory sizes must be 2" where n is a positive integer, and 2" boundary overlaps are
not allowed.

Internal vs External Signals

By default, all signals defined between a BEGIN-END block are internal signals.

External signals are available through the port-declaration of the top-level module. Use the
PORT command outside of a BEGIN-END block to declare the external signal.

120 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

SXILINX®

Design Considerations

External Interrupt Signals
For internal interrupts, each interruptible peripheral instance defines an interrupt signal
locally.

For external interrupts, use the PORT command outside of a BEGIN-END block to declare
the external signal and define the interrupt sensitivity.

Format
PORT ny_intl = ny_intl, LEVEL=HI GH, DI R=l NPUT

Internal Interrupt Signals

For the opb_intc component, the interrupt vector will be a concatenation of the locally
defined interrupt signals and/or external interrupts. The position of the interrupt signal
defines the priority. The interrupt vector is in little-endian format, where the highest
priority interrupt sits at the LSBit position.

Format
PORT intr = my_intl & uart_intr &wdt_intr &tb_intr & int2

If there is only one interrupt defined in the platform, then you may be able to connect it
directly to the MicroBlaze processor. The MicroBlaze processor’s interrupt is level
sensitive. Consequently, any other level sensitive interrupt line from a peripheral can be
connected directly. However, if the peripheral’s interrupt line is edge sensitive, then you
must use the interrupt controller. If you connect an edge sensitive signal to a level sensitive

signal, you may miss an interrupt.

Power Signals
Power signals are signals that are constantly driven with either VCC or GND.

Format
PORT nysi gnal = power_si gnal

In this example, power_signal is either “net_vcc” or “net_gnd”. Platform Generator
expands “net_vcc” or “net_gnd” to the appropriate vector size.

Embedded System Tools Guide www.xilinx.com 121

EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 13: Microprocessor Hardware Specification (MHS)

122 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

SXILINX®
Chapter 14

Microprocessor Peripheral Description
(MPD)

Overview
The Microprocessor Peripheral Definition (MPD) file defines the interface of the
peripheral.
An MPD file has the following characteristics:
» Lists ports and default connectivity for bus interfaces
» Lists parameters and default values
* Any MPD parameter is overwritten by the equivalent MHS assignment (refer to the
Microprocessor Hardware Specification Format document for more details)
Individual peripheral documentation contains information on all MPD file options.
This chapter includes the following sections:
“MPD Syntax”
“Bus Interface Naming Conventions”
“Parameter Naming Conventions”
“Signal Naming Conventions”
“Reserved Signal Connections”
“Component Options”
“Global Parameter Command”
“Local Option Command”
“Local Parameter Command”
“Local Bus Interface Command”
“Local Port Command”
“HDL Design Considerations”
MPD Syntax
MPD file syntax is case insensitive. Only connector names are case-sensitive.
Embedded System Tools Guide www.xilinx.com 123

EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 14: Microprocessor Peripheral Description (MPD)

The MPD file is supplied by the IP provider and provides peripheral information. This file
lists ports and default connectivity to the bus interface. Parameters that you set in this file
are mapped to generics for VHDL or parameters for Verilog.

Comments

You can insert comments in the MPD file without disrupting processing. The following are
guidelines for inserting comments:

* Precede comments with the pound sign (#)
* Comments can continue to the end of the line
e Comments can be anywhere on the line

Format

Use the following format at the beginning of a component definition:
BEGQ N peri pheral _name

The BEGIN keyword signifies the beginning of a new peripheral.

Use the following format for assignment commands:
comrand nanme = val ue

Use the following format to end a peripheral definition:
END

Assignment Commands

There are four assignment commands:

1. bus_interface
2. option

3. parameter

4. port

Signal Direction

Signals have three modes. Signal mode indicates its driver direction, and if the port can be
read from within the peripheral.

The three modes and their accepted values are as follows:
e input- [input, in, i]

e output - [output, out, 0]

* inout - [inout, io]

MPD Example

The following is an example MPD file:
PARAVETER VERSION = 2.0.0

BEG N opb_gpi 0, | PTYPE=PERI PHERAL, | MP_NETLI ST=TRUE

124 www.Xxilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Bus Interface Naming Conventions XX"JNX@

OPTI ON SI M_MODELS = HDL

Define bus interfaces
BUS_| NTERFACE BUS=SOPB, BUS_STD=0PB, BUS_TYPE=SLAVE

Generics for vhdl or paraneters for verilog

PARAMETER C_BASEADDR = OxFFFFFFFF, DT=std_l ogi c_vector, M N_SI ZE=0x100,
BUS=SOPB

PARAMETER C _H GHADDR = 0x00000000, DT=std_| ogi c_vector, BUS=SOPB
PARAMETER C _OPB_DW DTH = 32, DT=i nteger, BUS=SOPB

PARAMETER C_OPB_AW DTH = 32, DT=i nteger, BUS=SOPB

PARAMETER C GPI O W DTH = 32, DT=int eger

PARAMETER C _ALL_I NPUTS = 0, DT=i nt eger

d obal ports
PORT OPB_d k
PORT OPB_Rst

", DIR=IN, SI 3 S=CLK, BUS=SOPB
OPB_Rst, DIR=IN, BUS=SOPB

OPB sl ave signals
PORT OPB_ABus = OPB_ABus, DI R=IN, VEC=[0:C OPB_AW DTH 1], BUS=SOPB
PORT OPB_BE = OPB_BE, DI R=IN, VEC=[0: C_OPB_DW DTH 8- 1], BUS=SOPB
PORT OPB_DBus = OPB_DBus, DI R=IN, VEC=[0:C OPB_DW DTH 1], BUS=SOPB
PORT OPB_RNW = OPB_RNW DI R=I N, BUS=SOPB
PORT OPB_sel ect = OPB_select, D R=IN, BUS=SOPB
PORT OPB_seqAddr = OPB_seqAddr, DI R=I N, BUS=SOPB
PORT GPI O DBus = Sl _DBus, DI R=QUT, VEC=[0:C_OPB_DW DTH 1], BUS=SOPB
PORT GPI O errAck = Sl _errAck, DIR=QUT, BUS=SOPB

|

PORT GPIOretry = Sl _retry, DI R=QUT, BUS=SOPB

PORT GPI O toutSup = Sl _toutSup, D R=QUT, BUS=SOPB

PORT GPI O xferAck = Sl _xferAck, DI R=OUT, BUS=SOPB

gpio signals

PORT GPIO 10 ="", DI R=INOUT, VEC-[0:C GPIO WDTH 1], ENABLE=MJLTI

END

Bus Interface Naming Conventions

A bus interface is a grouping of interface ports which are related.

The following list are recommendations for bus labels:

Table 14-1: Recommended Bus Labels

Bus Name Description

SDCR Slave DCR interface

SLMB Slave LMB interface

MOPB Master OPB interface

MSOPB Master-slave OPB interface
SOPB Slave OPB interface

MPLB Master PLB interface

MSPLB Master-slave PLB interface
SPLB Slave PLB interface

Embedded System Tools Guide www.xilinx.com 125

EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 14: Microprocessor Peripheral Description (MPD)

For components that have more than one bus interface, use an intuitive naming
convention. For example, the data-side OPB and instruction-side OPB are named DOPB
and IOPB, respectively.

Parameter Naming Conventions

An MPD parameter correlates to a generic for VHDL or parameter for Verilog. The
parameter name must be HDL (VHDL, Verilog) compliant. VHDL and Verilog have certain
naming rules and conventions that must be followed.

The Platform Generator automatically expands and populates certain reserved
parameters. This can help prevent errors when your peripheral requires information on
the platform that is generated. The following table lists the reserved parameter names:

Figure 14-1: Automatically Expanded Reserved Parameters

Parameter Description
C_BUS _CONFIG Bus Configuration of MicroBlaze
C_FAMILY FPGA Device Family
C_INSTANCE Instance name of component

C_KIND_OF EDGE

Vector of edge sensitive (rising/falling) of interrupt signals

C_KIND_OF LVL

Vector of level sensitive (high/low) of interrupt signals

C_KIND_OF_INTR

Vector of interrupt signal sensitivity (edge/level)

C_NUM_INTR_INPUTS

Number of interrupt signals

C_NUM_MASTERS

Number of OPB masters

C_NUM_SLAVES

Number of OPB slaves

C_DCR_AWIDTH

DCR Address width

C_DCR_DWIDTH

DCR Data width

C_DCR_NUM_SLAVES

Number of DCR slaves

C_LMB_AWIDTH

LMB Address width

C_LMB_DWIDTH

LMB Data width

C_LMB_NUM_SLAVES

Number of LMB slaves

C_OPB_AWIDTH

OPB Address width

C_OPB_DWIDTH

OPB Data width

C_OPB_NUM_MASTERS

Number of OPB masters

C_OPB_NUM_SLAVES

Number of OPB slaves

C_PLB_AWIDTH

PLB Address width

C_PLB_DWIDTH

PLB Data width

C_PLB_MID_WIDTH

PLB master ID width

C_PLB_NUM_MASTERS

Number of PLB masters

C_PLB_NUM_SLAVES

Number of PLB slaves

126

www.Xilinx.com
1-800-255-7778

Embedded System Tools Guide
EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Parameter Naming Conventions XX"JNX@

Reserved Parameters

C_BUS_CONFIG

The C_BUS_CONFIG parameter defines the bus configuration of the MicroBlaze
processor. This parameter is automatically populated by Platform Generator.

Format

PARAMETER C_BUS_CONFI G = bus_config, DT=integer
C_FAMILY

The C_FAMILY parameter defines the FPGA device family. This parameter is
automatically populated by Platform Generator.

Format
PARAMETER C_ FAM LY = fam |y, DT=string

C_INSTANCE

The C_INSTANCE parameter defines the instance name of the component. This parameter
is automatically populated by Platform Generator.

Format

PARAMETER C_| NSTANCE = instance_nanme, DT=string

C_NUM_MASTERS

The C_NUM_MASTERS parameter defines the number of OPB masters on the bus. This

parameter is automatically populated by Platform Generator. It’s use is deprecated. Please
use the C_NUM_OPB_MASTERS parameter.

Format

PARAMETER C_NUM MASTERS = <nun®, DT=int eger

Where <nun® is an integer value.

C_NUM_SLAVES

The C_NUM_SLAVES parameter defines the number of OPB slaves on the bus. This

parameter is automatically populated by Platform Generator. It’s use is deprecated. Please
use the C_NUM_OPB_SLAVES parameter.

Format

PARAMETER C_NUM SLAVES = <nune, DT=i nt eger

Where <nune is an integer value.

C_DCR_AWIDTH

The C_DCR_AWIDTH parameter defines the DCR address width. This parameter is
automatically populated by Platform Generator.

Embedded System Tools Guide www.xilinx.com

127
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 14: Microprocessor Peripheral Description (MPD)

Format

PARAMETER C_DCR_AW DTH = <nune, DT=i nt eger

Where <nun is an integer value.

C_DCR_DWIDTH

The C_DCR_DWIDTH parameter defines the DCR data width. This parameter is
automatically populated by Platform Generator.

Format

PARAMETER C_DCR _DW DTH = <nune, DT=i nt eger

Where <nun is an integer value.

C_DCR_NUM_SLAVES

The C_DCR_NUM_SLAVES parameter defines the number of DCR slaves on the bus. This
parameter is automatically populated by Platform Generator.

Format
PARAMETER C_DCR_NUM SLAVES = <nume, DT=i nt eger
Where <nune is an integer value.

C_LMB_AWIDTH

The C_LMB_AWIDTH parameter defines the LMB address width. This parameter is
automatically populated by Platform Generator.

Format

PARAMETER C LMB_AW DTH = <nun®, DT=i nt eger

Where <nun® is an integer value.

C_LMB_DWIDTH

The C_LMB_DWIDTH parameter defines the LMB data width. This parameter is
automatically populated by Platform Generator.

Format

PARAMETER C_LMB_DW DTH = <nune, DT=i nt eger

Where <nun is an integer value.

C_LMB_NUM_SLAVES

The C_LMB_NUM_SLAVES parameter defines the number of LMB slaves on the bus. This
parameter is automatically populated by Platform Generator.

Format

PARAMETER C_LMB_NUM SLAVES = <nun», DT=i nt eger

Where <nun is an integer value.

128 www.Xxilinx.com Embedded System Tools Guide

1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Parameter Naming Conventions XX"JNX@

C_OPB_AWIDTH

The C_OPB_AWIDTH parameter defines the OPB address width. This parameter is
automatically populated by Platform Generator.

Format
PARAMETER C_OPB_AW DTH = <nun®, DT=i nt eger

Where <nun is an integer value.

C_OPB_DWIDTH

The C_OPB_DWIDTH parameter defines the OPB data width. This parameter is
automatically populated by Platform Generator.

Format
PARAMETER C OPB DW DTH = <nun®, DT=i nt eger

Where <nune is an integer value.

C_OPB_NUM_MASTERS

The C_OPB_NUM_MASTERS parameter defines the number of OPB masters on the bus.
This parameter is automatically populated by Platform Generator.

Format

PARAMETER C_OPB_NUM MASTERS = <num, DT=i nt eger
Where <nun® is an integer value.
C_OPB_NUM_SLAVES

The C_OPB_NUM_SLAVES parameter defines the number of OPB slaves on the bus. This
parameter is automatically populated by Platform Generator.

Format
PARAMETER C_OPB_NUM SLAVES = <nun®, DT=int eger

Where <nun is an integer value.

C_PLB_AWIDTH

The C_PLB_AWIDTH parameter defines the PLB address width. This parameter is
automatically populated by Platform Generator.

Format
PARAMETER C PLB_AW DTH = <nun®, DT=i nt eger

Where <nun is an integer value.

C_PLB_DWIDTH

The C_PLB_DWIDTH parameter defines the PLB data width. This parameter is
automatically populated by Platform Generator.

Embedded System Tools Guide www.xilinx.com

129
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 14: Microprocessor Peripheral Description (MPD)

Format
PARAMETER C PLB DW DTH = <nun®, DT=i nt eger

Where <nun is an integer value.

C_PLB_MID_WIDTH

The C_PLB_MID_WIDTH parameter defines the PLB master ID width. This is set to
log2(S). This parameter is automatically populated by Platform Generator.

Format
PARAMETER C PLB_ M D W DTH = <nun®, DT=i nt eger

Where <nune is an integer value.

C_PLB_NUM_MASTERS

The C_PLB_NUM_MASTERS parameter defines the number of PLB masters on the bus.
This parameter is automatically populated by Platform Generator.

Format
PARAMETER C_PLB_NUM MASTERS = <nun®, DT=i nt eger

Where <nune is an integer value.

C_PLB_NUM_SLAVES

The C_PLB_NUM_SLAVES parameter defines the number of PLB slaves on the bus. This
parameter is automatically populated by Platform Generator.

Format
PARAMETER C PLB _NUM SLAVES = <nune, DT=int eger

Where <nun® is an integer value.

Signal Naming Conventions

This section provides naming conventions for bus interface signal names. These
conventions are flexible to accommodate embedded processor systems that have more
than one bus interface and more than one bus interface port per component.

The names must be HDL (VHDL or Verilog) compliant. As with any language, VHDL and
Verilog have certain naming rules and conventions that you must follow.

Platform Generator is capable of dealing with a design of mixed HDL.

* VHDL top-level with lower-level VHDL/Verilog cores
* \rilog top-level with lower-level VHDL/Verilog cores

Due to this case, a Verilog core’s signal interface must be written in lower-case. Verilog is a
case sensitive language, and it’s case is preserved in the synthesized netlist files (EDIF and
NGC). However, VHDL is a case-insensitive language, thus synthesis vendors normalize
all names to lower-case. So to have a VHDL core interface to a Verilog core, the ports must
match.

130 www.Xxilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Signal Naming Conventions XX"JNX@

Global Ports

The names for the global ports of a peripheral (such as clock and reset signals) are
standardized. You can use any name for other global ports (such as the interrupt signal).

LMB - Clock and Reset

LMB_ O k
LMB_Rst

OPB - Clock and Reset

oPB_d k
OPB_Rst

PLB - Clock and Reset

PLB_C k
PLB_Rst

Slave DCR Ports

Naming conventions should be followed for that part of the identifier following the last
underscore in the name.

DCR Slave Outputs

For interconnection to the DCR, all slaves must provide the following outputs:

<Sl n>_dcr DBus
<Sl n>_dcr Ack

Where <SIn> is a meaningful name or acronym for the slave output. An additional
requirement on <SIn> is that it must not contain the string, “DCR” (upper or lower case or
mixed case), so that slave outputs will not be confused with bus outputs.

uart _dcr Ack
intc_dcrAck
nmencon_dcr Ack

DCR Slave Inputs

For interconnection to the DCR, all slaves must provide the following inputs:

<nDCR>_ABuUs
<nDCR>_S| DBus
<nDCR>_Read
<nDCR>_Wite

Where <nDCR> is a meaningful name or acronym for the slave input. An additional
requirement on <nDCR> is that the last three characters must contain the string, “DCR”
(upper or lower case or mixed case).

DCR_SI _DBus
busl DCR_SI _DBus

Embedded System Tools Guide www.xilinx.com 131
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 14: Microprocessor Peripheral Description (MPD)

Slave LMB Ports

Naming conventions should be followed for that part of the identifier following the last
underscore in the name.

LMB Slave Outputs

For interconnection to the LMB, all slaves must provide the following outputs:

<Sl n>_DBus
<Sl n>_Ready

Where <SIn> is a meaningful name or acronym for the slave output. An additional
requirement on <SIn> is that it must not contain the string, “LMB” (upper or lower case or
mixed case), so that slave outputs will not be confused with bus outputs.

d_Ready
i _Ready

LMB Slave Inputs

For interconnection to the LMB, all slaves must provide the following inputs:

<nLMB>_ABus
<nLMB>_ReadSt r obe
<nLMB>_Addr St r obe
<nLMB>_ Wit eStrobe
<nLMB>_W i t eDBus
<nLMB>_BE

Where <nLMB> is a meaningful name or acronym for the slave input. An additional
requirement on <nLMB> is that the last three characters must contain the string, “LMB”
(upper or lower case or mixed case).

LMB_ABus
busl LMB_ABusS

Master OPB Ports

Naming conventions should be followed for that part of the identifier following the last
underscore in the name.

OPB Master Outputs

For interconnection to the OPB, all masters must provide the following outputs:

<Wh>_ABus
<Mh>_BE
<Mh>_busLock
<Mh>_DBus
<Mh>_r equest
<Mh>_RNW
<MWh>_sel ect
<Mh>_segAddr

Where <Mn> is a meaningful name or acronym for the master output. An additional
requirement on <Mn> is that it must not contain the string, “OPB” (upper or lower case or
mixed case), so that master outputs are not confused with bus outputs.

i M request
bri dge_request

132 www.Xxilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Signal Naming Conventions XX"JNX@

020b_request

OPB Master Inputs

For interconnection to the OPB, all masters must provide the following inputs:

<nOPB>_DBus
<nOPB>_err Ack
<nOPB>_M& ant
<nOPB> retry
<nOPB>_t i meout
<nOPB>_xf er Ack

Where <nOPB> is a meaningful name or acronym for the master input. An additional
requirement on <nOPB> is that the last three characters must contain the string, “OPB”
(upper or lower case or mixed case).

i OPB_DBus
OPB_DBus
busl1l_ OPB_DBus

Slave OPB Ports

Naming conventions should be followed for that part of the identifier following the last
underscore in the name.

OPB Slave Outputs

For interconnection to the OPB, all slaves must provide the following outputs:

<Sl n>_DBus
<SlI n>_errAck
<SIn> retry
<Sl n>_t out Sup
<Sl n>_xf er Ack

Where <SIn> is a meaningful name or acronym for the slave output. An additional
requirement on <SIn> is that it must not contain the string, “OPB” (upper or lower case or
mixed case), so that slave outputs will not be confused with bus outputs.

t nr _xferAck
uart _xferAck
i ntc_xferAck

OPB Slave Inputs

For interconnection to the OPB, all slaves must provide the following inputs:

<nOPB>_ABus
<nOPB>_BE
<nOPB>_DBus
<nOPB>_RNW
<nOPB>_sel ect
<nOPB>_seqgAddr

Where <nOPB> is a meaningful name or acronym for the slave input. An additional
requirement on <nOPB> is that the last three characters must contain the string, “OPB”
(upper or lower case or mixed case).

OPB_DBus
i OPB_DBus
Embedded System Tools Guide www.xilinx.com 133

EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 14: Microprocessor Peripheral Description (MPD)

bus1l_ OPB_DBus

Master PLB Ports

Naming conventions should be followed for that part of the identifier following the last
underscore in the name.

PLB Master Outputs

For interconnection to the PLB, all masters must provide the following outputs:

<Wh>_ABus
<Mh>_BE
<Mh>_RNW
<Mh>_abort
<Mh>_busLock
<Mh>_conpr ess
<Mh>_guar ded
<Mh>_| ockErr
<Mnh>_MBi ze
<Mh>_or der ed
<Mh> priority
<Mh>_rdBur st
<Mh>_r equest
<Mh>_si ze
<Mh>_t ype
<Mh>_wr Bur st
<Mh>_w DBus

Where <Mn> is a meaningful name or acronym for the master output. An additional
requirement on <Mn> is that it must not contain the string, “PLB” (upper or lower case or
mixed case), so that master outputs are not confused with bus outputs.

i M request
bri dge_r equest
020b_request

PLB Master Inputs

For interconnection to the PLB, all masters must provide the following inputs:

<nPLB>_MAddr Ack
<nPLB>_MBusy
<nPLB>_MErr
<nPLB>_MRdBTer m
<nPLB>_MRdDAck
<nPLB>_MRdDBus
<nPLB>_MRdWIAddr
<nPLB>_ MRarbitrate
<nPLB>_MN BTer m
<nPLB>_MN DAck
<nPLB>_MSSi ze
<nPLB>_SMEr r
<nPLB>_SMusy

Where <nPLB> is a meaningful name or acronym for the master input. An additional
requirement on <nPLB> is that the last three characters must contain the string, “PLB”
(upper or lower case or mixed case).

i PLB_MBuUsy

134 www.Xxilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Signal Naming Conventions

SXILINX®

PLB_MBusy
busl_PLB_MBusy

Slave PLB Ports

Naming conventions should be followed for that part of the identifier following the last

underscore in the name.

PLB Slave Outputs

For interconnection to the PLB, all slaves must provide the following outputs:

<S| n>_addr Ack
<Sl n>_MErr

<Sl n>_MBusy
<SlI n>_rdBTerm
<Sl n>_r dConp
<Sl n>_r dDAck
<S| n>_r dDBus
<Sl| n>_r dWIAddr
<SIn>_rearbitrate
<Sl n>_SSi ze
<SI n> wait

<SI n> wr BTerm
<Sl n>_wr Conp
<Sl n>_wr DAck

Where <SIn> is a meaningful name or acronym for the slave output. An additional
requirement on <SIn> is that it must not contain the string, “PLB” (upper or lower case or

mixed case), so that slave outputs will not be confused with bus outputs.

t nr _addr Ack
uart _addr Ack
i ntc_addr Ack

PLB Slave Inputs

For interconnection to the PLB, all slaves must provide the following inputs:

<nPLB>_ABus
<nPLB>_BE
<nPLB>_PAVal i d
<nPLB>_RNW
<nPLB>_abort
<nPLB>_busLock
<nPLB>_conpr ess
<nPLB>_guar ded
<nPLB>_| ockErr
<nPLB>_master| D
<nPLB>_MEsi ze
<nPLB>_or der ed
<nPLB>_pendPri
<nPLB>_pendReq
<nPLB>_reqpri
<nPLB>_si ze
<nPLB>_t ype
<nPLB>_rdPrim
<nPLB>_SAval i d
<nPLB> wrPrim

Embedded System Tools Guide www.xilinx.com

EDK (v3.1 EA) September 24, 2002 1-800-255-7778

135

http://www.xilinx.com

S XILINX® Chapter 14: Microprocessor Peripheral Description (MPD)

<nPLB>_wr Bur st
<nPLB>_wr DBus
<nPLB>_r dBur st

Where <nPLB> is a meaningful name or acronym for the slave input. An additional
requirement on <nPLB> is that the last three characters must contain the string, “PLB”
(upper or lower case or mixed case).

PLB_si ze
i PLB_si ze
dPLB_si ze

Reserved Signal Connections

Connectivity of the DCR, LMB, OPB and PLB busses to peripherals is done through a
common set of signal connections.

Global Ports

For interconnection to the global ports:

LMB - Clock and Reset

PORT LMB_d k
PORT LMB_Rst

DIR=l, SI G S=CLK
OPB_Rst, DI R=l

OPB - Clock and Reset

PORT OPB_d k
PORT OPB_Rst

", DIR=l, SI @ S=CLK
OPB_Rst, DI R=l

PLB - Clock and Reset

PORT PLB O k
PORT PLB_ Rst

", DR=l, SIdS=CLK
PLB_Rst, DI R=I

Slave DCR Ports

For interconnection to the DCR, all slaves must provide the following connections:

PORT <SI n>_dcrDBus = Sl _dcrDBus, DIR=O, VEC=[0:C_DCR DW DTH- 1],
BUS=SDCR

PORT <SI n> dcrAck = Sl _dcrAck, DI R=O BUS=SDCR

PORT <nDCR>_ABus = DCR _ABus, DIR=I, VEC=[0:C DCR AW DTH 1], BUS=SDCR
PORT <nDCR>_SI _DBus = DCR S| _DBus, DIR=l, VEC=[0:C DCR DW DTH 1],
BUS=SDCR

PORT <nDCR>_Read = DCR_Read, DI R=I, BUS=SDCR

PORT <nDCR> Wite = DCR Wite, D R=l, BUS=SDCR

Slave LMB Ports

For interconnection to the LMB, all slaves must provide the following connections:

PORT <SIn> DBus = Sl _DBus, DIR=O, VEC=[0:C _LMB _DW DTH 1], BUS=SLMB
PORT <SI n>_Ready = S|l _Ready, DI R=O BUS=SLMB

PORT <nLMB>_ABus = LMB_ABus, DI R=l, VECS[0:C LMB AW DTH 1], BUS=SLMB
PORT <nLMB>_ReadStrobe = LMB_ReadStrobe, DI R=I, BUS=SLMB

136 www.Xxilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Reserved Signal Connections S XILINX®

PORT <nLMB>_Addr Strobe = LMB_Addr Strobe, DI R=I, BUS=SLMB

PORT <nLMB> WiteStrobe = LMB WiteStrobe, D R=lI, BUS=SLMB

PORT <nLMB> WiteDBus = LMB_WiteDBus, DIR=l, VEC=[0:C LMB DW DTH 1],
BUS=SLMB

PORT <nLMB>_BE = LMB_BE, DI R=l, VEC=[0:C _LMB _DW DTH 8-1], BUS=SLMB

Master OPB Ports

For interconnection to the OPB, all masters must provide the following connections:

PORT <WMh>_ABus = M ABus, DI R=O, VECS[0:C OPB_AW DTH 1], BUS=MOPB
PORT <Wvh> BE = M BE, DI R=O, VEC=[0:C OPB DW DTH 8-1], BUS=MOPB
PORT <Mh>_busLock = M busLock, DI R=O, BUS=MOPB

PORT <Wvh> DBus = M DBus, DIR=O, VEC=[0:C _OPB DW DTH 1], BUS=MOPB
PORT <Mh>_request = Mrequest, DI R=O BUS=MOPB

PORT <Vh> RNW = M RNW DI R=0O, BUS=MOPB

PORT <MWh>_sel ect = M select, DI R=O BUS=MOPB

PORT <MWh>_segAddr = M seqAddr, DI R=O, BUS=MOPB

PORT <nOPB>_DBus = OPB _DBus, DI R=l, VEC=[0:C_OPB_DWDTH 1], BUS=MOPB
PORT <nOPB>_errAck = OPB_errAck, DI R=l, BUS=MOPB

PORT <nOPB>_ M& ant = OPB_ M ant, DI R=l, BUS=MOPB

PORT <nOPB> retry = OPB retry, DI R=I, BUS=MOPB

PORT <nOPB>_ti neout = OPB_tineout, D R=l, BUS=MOPB

PORT <nOPB>_xf er Ack OPB_xfer Ack, DI R=lI, BUS=MOPB

Slave OPB Ports

For interconnection to the OPB, all slaves must provide the following connections:

PORT <SIn>_DBus = Sl _DBus, DIR=O, VEC=[0:C OPB _DW DTH 1], BUS=SOPB
PORT <SIn>_errAck = Sl _errAck, DI R=0O, BUS=SOPB

PORT <SIn>_retry = Sl _retry, DI R=0O BUS=SOPB

PORT <SIn>_tout Sup = Sl _toutSup, DI R=O BUS=SOPB

PORT <SI n> xferAck = Sl _xferAck, D R=O

PORT <nOPB>_ABus = OPB_ABus, DI R=lI, VEC=[0:C OPB AW DTH 1], BUS=SOPB
PORT <nOPB>_BE = OPB_BE, DI R=I, VEC=[0:C OPB DW DTH 8-1], BUS=SOPB
PORT <nOPB>_DBus = OPB _DBus, DI R=l, VEC=[0:C _OPB_DWDTH 1], BUS=SOPB
PORT <nOPB>_RNW = OPB_RNW DI R=I, BUS=SOPB

PORT <nOPB>_sel ect = OPB_sel ect, DI R=l, BUS=SOPB

PORT <nOPB>_seqAddr = OPB_seqAddr, DI R=I, BUS=SOPB

Master PLB Ports

For interconnection to the PLB, all masters must provide the following connections:

PORT <WMh>_ABus = M ABus, DI R=O, VEC=[0:C PLB AW DTH 1], BUS=MPLB
PORT <wvh>_BE = M BE, DIR=O, VEC-[0:C PLB DW DTH 8-1], BUS=MPLB
PORT <Mh>_RNW = M RNW DI R=0O, BUS=MPLB

PORT <Wh>_abort = M abort, DI R=O, BUS=MPLB

PORT <MWh>_busLock = M busLock, DI R=O, BUS=MPLB

PORT <Mh>_conpress = M conpress, D R=O BUS=MPLB

PORT <MWh>_guarded = M guarded, DI R=O, BUS=MPLB

PORT <Mh>_| ockErr = M| ockErr, DI R=O BUS=MPLB

PORT <Mh>_MSi ze = M MsSize, DIR=O, VECS[O0:1], BUS=MPLB

PORT <Wh>_ ordered = Mordered, DI R=O, BUS=MPLB

PORT <Mh>_priority = Mpriority, DIR=O VEC-[0:1], BUS=MPLB
PORT <Mh>_r dBur st M rdBurst, DI R=O, BUS=MPLB

PORT <Mh>_request = Mrequest, DI R=O BUS=MPLB

Embedded System Tools Guide www.xilinx.com 137
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 14: Microprocessor Peripheral Description (MPD)

PORT
PORT
PORT
PORT
PORT
PORT
PORT
PORT
PORT
PORT

<MWMh>_size = Msize, D R=O VECH[O0:3], BUS=MPLB

<Mh>_type = Mtype, D R=O VECS[O0:2], BUS=MPLB

<Vh> wrBurst = MwBurst, D R=O BUS=MPLB

<Mnh>_wr DBus = M w DBus, DI R=O, VEC=[0:C PLB DW DTH 1], BUS=MPLB
<nPLB>_MAddr Ack = PLB_MAddr Ack, DI R=I, BUS=MPLB

<nPLB>_MBusy = PLB_MBusy, DI R=lI, BUS=MPLB

<nPLB>_MErr = PLB_Merr, DI R=l, BUS=MPLB

<nPLB>_MRdBTerm = PLB_MRdBTerm DI R=lI, BUS=MPLB

<nPLB>_MRdDAck = PLB_MRdDAck, DI R=I, BUS=MPLB

<nPLB>_MRdDBus = PLB_MRdDBus, DI R=I, VEC=[0:C _PLB DW DTH 1],

BUS=MPLB

PORT
PORT
PORT
PORT
PORT
PORT
PORT

Slave PLB Ports

<nPLB>_MRdWIAddr = PLB_MRdWiAddr, DI R=l, VEC=[O0: 3], BUS=MPLB
<nPLB>_MRarbitrate = PLB_MRarbitrate, D R=l, BUS=MPLB
<nPLB>_ MW BTerm = PLB_ MW BTerm DI R=I, BUS=MPLB

<nPLB>_MW DAck = PLB_MW DAck, DI R=I, BUS=MPLB

<nPLB>_MSSi ze = PLB_MSSi ze, DI R=l, VEC=[O0:1], BUS=MPLB
<nPLB>_SMErr = PLB_SMErr, DI R=l, BUS=MPLB

<nPLB>_SMousy = PLB_SMousy, DI R=l, BUS=MPLB

For interconnection to the PLB, all slaves must provide the following connections:

PORT <SI n>_addr Ack = SI _addr Ack, DI R=O, BUS=SPLB

PORT <SIn> Merr = Sl _Merr, DIR=O, VEC=[0: C_NUM MASTERS-1], BUS=SPLB
PORT <SI n>_MBusy = S| _MBusy, DI R=0O, VEC=[0: C_NUM MASTERS-1], BUS=SPLB
PORT <SIn> rdBTerm = Sl _rdBTerm DI R=O, BUS=SPLB

PORT <SI n>_rdConp = Sl _rdConp, DI R=O, BUS=SPLB

PORT <SI n>_rdDAck = Sl _rdDAck, DI R=O, BUS=SPLB

PORT <SIn>_rdDBus = S| _rdDBus, DI R=O, VEC=[0:C_PLB _DW DTH 1], BUS=SPLB
PORT <SI n>_rdwWiAddr = Sl _rdwWiAddr, DI R=O, VEC=[0: 3], BUS=SPLB

PORT <SIn>_rearbitrate = Sl _rearbitrate, DI R=O, BUS=SPLB

PORT <SIn>_SSize = Sl _SSize, DI R=0O VEC=[0:1], BUS=SPLB

PORT <SIn> wait = Sl _wait, DI R=O, BUS=SPLB

PORT <SI n>_ wBTerm = SI _w BTerm DI R=O BUS=SPLB

PORT <SI n>_wr Conp = SI _w Conp, DI R=O, BUS=SPLB

PORT <SI n> wr DAck = SI _wr DAck, DI R=O, BUS=SPLB

PORT <nPLB>_ABus = PLB_ABus, DI R=l, VECS[0:C PLB AW DTH 1], BUS=SPLB
PORT <nPLB> BE = PLB BE, DIR=I, VEC=[0:(C PLB DWDTH 8)-1], BUS=SPLB
PORT <nPLB>_PAvalid = PLB PAvalid, DI R=I, BUS=SPLB

PORT <nPLB>_RNW = PLB_RNW DI R=I, BUS=SPLB

PORT <nPLB>_abort = PLB_abort, DI R=l, BUS=SPLB

PORT <nPLB>_busLock = PLB_busLock, DI R=l, BUS=SPLB

PORT <nPLB>_conpress = PLB conpress, D R=I, BUS=SPLB

PORT <nPLB>_guarded = PLB_guarded, DI R=I, BUS=SPLB

PORT <nPLB>_| ockErr = PLB | ockErr, DI R=l, BUS=SPLB

PORT <nPLB>_nmsterI D = PLB masterI D, DIR=lI,VECS[0: C_ PLB M D WDTH 1],
BUS=SPLB

PORT <nPLB>_MSi ze = PLB_MsSi ze, DIR=l, VEC=[0:1], BUS=SPLB

PORT <nPLB> ordered = PLB ordered, DI R=I, BUS=SPLB

PORT <nPLB>_pendPri = PLB pendPri, D R=I, VECS[O0:1], BUS=SPLB

PORT <nPLB>_pendReq = PLB pendReq, DI R=I, BUS=SPLB

PORT <nPLB>_reqpri = PLB_ reqpri, DIR=l, VEC=[O0:1], BUS=SPLB

PORT <nPLB>_size = PLB_size, DI R=lI, VEC=[O0:3], BUS=SPLB

PORT <nPLB>_type = PLB type, DI R=lI, VEC=[O0:2], BUS=SPLB

PORT <nPLB> rdPrim = PLB rdPrim DI R=l, BUS=SPLB

PORT <nPLB>_SAvalid = PLB SAvalid, DI R=I, BUS=SPLB

PORT <nPLB> wPrim= PLB wPrim Dl R=l, BUS=SPLB

PORT <nPLB>_ wr Burst = PLB wBurst, DI R=I, BUS=SPLB

138

www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Component Options S XILINX®

PORT <nPLB>_ wr DBus = PLB_w DBus, DI R=I, VEC=[0: C_PLB_DW DTH 1], BUS=SPLB
PORT <nPLB> rdBurst = PLB rdBurst, DI R=I, BUS=SPLB

Component Options

Components can have the following options:

Table 14-2: MPD Peripheral Options
Option Values Default Definition
EDIF TRUE FALSE Deprecated. Use the IMP_NETLIST
FALSE option.
HDL BOTH VHDL HDL design availability.
VERILOG
VHDL

IMP_NETLIST TRUE FALSE Synthesize HDL to a hardware
FALSE implementation netlist

IPTYPE BRIDGE IP Type of component
BUS
BUS_ARBITER
1P
PERIPHERAL
PROCESSOR
STYLE BLACKBOX HDL Design style
MIX
HDL

HDL Option

The HDL option lists the HDL availability. The design is either completely written in
VHDL, or completely written in Verilog. The BOTH value signifies that design is available
in VHDL or Verilog format.

Format
BEG N peri pheral _name, HDL=VERI LOG

IMP_NETLIST Option

In hierarchal mode, this option directs the Platform Generator to write an implementation
netlist file for the peripheral. In flatten mode, the IMP_NETLIST option is ignored since the
entire system is synthesized.

Format

BEGA N peri pheral _name, | MP_NETLI ST=TRUE

Embedded System Tools Guide www.xilinx.com 139
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 14: Microprocessor Peripheral Description (MPD)

IPTYPE Option
The IPTYPE option lists defines the type of the component.

Format
BEG N peri pheral _name, | PTYPE=PERI PHERAL
The IPTYPE option can have the following Options:

* BRIDGE - bridge component

e BUS - bus component

* BUS_ARBITER - combined bus and arbiter component

* IP - component that is detached from a bus

e PERIPHERAL - component that is attached to a bus

* PROCESSOR - processor component (MicroBlaze or PPC405)

STYLE Option

The STYLE option defines the design composition of the peripheral.

If you have only optimized hardware netlists, you must specify the BLACKBOX value
within the MPD file. In this case, only the BBD file is read by the Platform Generator.

If you have a mix of optimized hardware netlists and HDL files, you must specify the MIX
value within the MPD file. In this case, the PAO and BBD files are read by the Platform
Generator.

If you have only HDL files, you must specify the HDL value within the MPD file. In this
case, only the PAO file is read by the Platform Generator.

Format

BEG N peri pheral _name, STYLE=val ue
Where value is BLACKBOX, MIX, or HDL. The default value is HDL.

Global Parameter Command
A global parameter can have the following options:

Table 14-3: Global Parameter Options

Option Values Default Definition
VERSION 2.0.0 X MPD version

VERSION Option
Use the VERSION option to set the MPD version.

Format

PARAVETER VERSION = 2.0.0

The version is specified as a literal of the form 2.0.0.

140 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Local Option Command S XILINX®

Local Option Command
A local option defined between a BEGIN-END block can have the following options:

Table 14-4: Local Option Options

Option Values Default Definition
SIM_MODELS BEHAVIORAL X Simulation model availability
STRUCTURAL
TIMING

SIM_MODELS Option
The simulation model availability is specified with the SIM_MODELS option.

Format

OPTI ON SI M_MODELS = BEHAVI ORAL

If you have more than one model is available, then use the colon (:) to separate each model
in the list. The first item in the list is the default setting.

Format

OPTI ON SI M_MODELS = BEHAVI ORAL: STRUCTURAL: TI M NG

Local Parameter Command
A local parameter defined between a BEGIN-END block can have the following options:

Table 14-5: Local Parameter Options

Option Values Default Definition
BUS string X Bus label
DT string X Datatype of VHDL generic
integer
std_logic
MIN_SIZE 2\n 0 Minimum size address window
BUS Option

The bus interface of an parameter is specified by the BUS option.

Format
PARAMETER C OPB_AW DTH = 32, DT=dat atype, BUS=bus_| abel
Where bus_label is a string.

If you have more than bus interface is sharing the parameter, then use the colon (;) to
separate each bus interface in the list. The first item in the list is the default setting.

Embedded System Tools Guide www.xilinx.com 141
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 14: Microprocessor Peripheral Description (MPD)

Format

PARAVETER C_OPB_AW DTH = 32, DT=dat atype, BUS=MSOPB: SOPB

DT Option

The datatype of an parameter is specified by the DT option.

Format
PARAMETER C OPB_AW DTH = 32, DT=dat at ype, BUS=bus_| abel
Where datatype is an VHDL datatype.

MIN_SIZE Option

The minimum size address window of an address is specified by the MIN_SIZE option.

Format

PARAMETER C_BASEADDR = OxFFFFFFFF, DT=std_| ogi c_vector, M N_SIZE=0x100

Local Bus Interface Command

A local bus interface between a BEGIN-END block can have the following Options:

Table 14-6: Bus Interface Options

Option Values Default Definition
BUS string X Bus label
BUS_STD DCR X Bus standard
LMB
OPB
PLB
TRANSPARENT

BUS_TYPE MASTER X Bus type
MASTER_SLAVE
SLAVE
UNDEF

BUS Option
The label of a bus interface is specified by the BUS option.

Format

BUS_| NTERFACE BUS=bus_label, BUS STD=bus_std, BUS_TYPE=bus_type

Where bus_label is a string.

142 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Local Port Command S XILINX®

BUS_STD Option
The bus standard of a bus interface is specified by the BUS_STD option.

Format

BUS_I NTERFACE BUS=bus_label, BUS STD=bus_std, BUS_TYPE=bus_type
Where bus_std is either DCR, LMB, OPB, PLB, or TRANSPARENT.
A TRANSPARENT bus interface is not tied to any physical bus component.

BUS_TYPE Option
The bus type of a bus interface is specified by the BUS_TYPE option.

Format
BUS_| NTERFACE BUS=bus_label, BUS STD=bus_std, BUS TYPE=bus_type
Where bus_type is either MASTER, MASTER_SLAVE, SLAVE, or UNDEF.

Local Port Command
A local port defined between a BEGIN-END block can have the following options:

Table 14-7: Local Port Options

Option Values Default Definition
BUS string X Bus label
DIR IN, INPUT, I 0] Direction mode
OUT, OUTPUT, O
INOUT, IO
EDGE RISING X Interrupt edge sensitivity
FALLING
ENABLE MULTI SINGLE 3-state enable control
SINGLE
ENDIAN BIG BIG Endianess
LITTLE
INITIALVAL VCC GND Driver value on unconnected inputs
GND
LEVEL HIGH X Interrupt level sensitivity
LOwW
SIGIS CLK X Slgnal classification
INTERRUPT
VEC [A:B] X Vector dimension. Where A and B are
positive integer expressions.

Embedded System Tools Guide www.Xxilinx.com 143
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 14: Microprocessor Peripheral Description (MPD)

BUS Option
The bus interface of a signal is specified by the BUS option.
Format

PPORT OPB_segAddr = OPB_seqAddr, DI R=IN, BUS=bus_| abel
Where bus_label is a string.

If you have more than bus interface is sharing the parameter, then use the colon (:) to
separate each bus interface in the list. The first item in the list is the default setting.

Format

PORT OPB_segAddr = OPB_segAddr, DI R=IN, BUS=MsOPB: SOPB

DIR Option
The driver direction of a signal is specified by the DIR option.
Format
PORT nysignal = "", DI R=direction

Where direction is either INPUT, IN, I, OUTPUT, OUT, O, INOUT, or 10.

EDGE Option
The edge sensitivity of an interrupt signal is specified by the EDGE option.
Format
PORT interrupt = “”, DIR=O EDGE=edge_val ue, S| d S=I NTERRUPT

Where edge_value is either RISING or FALLING.

ENABLE Option

Tri-state signals can have multi-bit enable control, or a single bit enable control on the bus.
This is specified with the ENABLE option.

Format

PORT nysignal = “", DI R=IQ VECS[O0:31], ENABLE=enabl e_val ue

Where enabl e_val ue is either SINGLE or MULTI. If there is no specification, then
SINGLE is the default value.

Please see the “HDL Design Considerations” section about designing tri-state signals at
the HDL level.

ENDIAN Option

The endianess of a signal is specified by the ENDIAN option.

144 www.Xxilinx.com Embedded System Tools Guide

1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

HDL Design Considerations S XILINX®

Format

PORT nysignal = “", DIR=l, VECS[A:B], ENDI AN=endi an_val ue

Where endian_value is either BIG or LITTLE. If there is no specification, then BIG is the
default value. Where A and B are positive integer expressions.

INITIALVAL Option
The signal driver value on unconnected input signals is specified by the INITIALVAL
option.
Format
PORT nysignal = “”, DI R=I NPUT, | N TIALVAL=init_val ue

Where the init_value is either VCC or GND. If there is no specification, then GND is the
default value.

LEVEL Option
The level sensitivity of an interrupt signal is specified by the LEVEL option.

Format

PORT interrupt = “”, DI R=QUTPUT, LEVEL=Il evel _val ue, SI G S=I NTERRUPT
Where the level _value is either HIGH or LOW.

SIGIS Option
The class of a signal is specified by the SIGIS option.
Format
PORT interrupt = “”, DI R=QUTPUT, LEVEL=Il evel _val ue, SI G S=I NTERRUPT

Where the level _value is either HIGH or LOW.

VEC Option
The vector width of a signal is specified by the VEC option.
Format
PORT nysignal = “”, DI RslI NPUT, VECS[A: B]

Where A and B are positive integer expressions.

HDL Design Considerations

This section includes HDL design considerations.

Embedded System Tools Guide www.xilinx.com 145
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 14: Microprocessor Peripheral Description (MPD)

Unconnected Signals

Unconnected output signals are assigned open, and unconnected input signals are either
set to GND or VCC.

An unconnected signal is identified as an empty double-quote (“*) string.

Platform Generator resolves the driver value on unconnected input signals by the
INITIALVAL option.

Format
PORT nysignal = “”, DI R=OUTPUT

Scalable Data path

Using an MPD option declaration, you can automatically scale data path width. Bus
expressions are evaluated as arithmetic equations.

Format
PORT nane = default_connection, VECSA: B]

Where A and B are positive integer expressions.

MPD Example

The following is an example MPD file:

BEG N ny_peri pher al

Generics for vhdl or paraneters for verilog

PARAMETER C_BASEADDR = 0xB00000, DT=std_| ogic_vector(0 to 31)
PARAMETER C_My_PERI PH_ AW DTH = 17, DT=i nt eger

G obal ports

PORT OPB Ok = “", DIR=l
PORT OPB_Rst = “”, DIR=l
My peripheral signals
PORT MY_ADDR = “”, DIR=O, VEC=[0: C_MY_PERI PH AW DTH- 1]

OPB signals

END

By default, if the vectors are larger than one bit, the Platform Generator determines the
range specification on buses as either big-endian or little-endian. However, if the vector is
one-bit width, then the range cannot be determined, and Platform Generator defaults to
big-endian style notation.

To change this default behavior, use the ENDIAN option.

Format
PORT nysignal = “", DIR=l, VEC=[0:0], ENDI AN=LI TTLE
This builds the VHDL equivalent:
nmysignal : in std_logic_vector(0 dowto 0);
146 www.Xxilinx.com Embedded System Tools Guide

1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

HDL Design Considerations S XILINX®

Interrupt Signals
Interrupt signals are identified by the EDGE or LEVEL option.

3-state (InOut) Signals

At the MHS/MPD level, there is a listing for an inout port in the MPD file that allows you
to map to it in the MHS file. In the MPD file, a 3-state signal is identified by the inout
direction mode, and the port name must be ioname.

MY_IP

PIOT |T
PIOO |l ! IPIO
PO |0

X9877

Figure 14-2: 10BUF Implementation

The Platform Generator expands the inout port in the MPD file to three ports in the port
declaration section of the HDL file, and writes out the RTL code to infer the IOBUF. This
port expansion occurs because if the top-level is synthesized without 10 insertion, the 3-
states on the inout ports are inferred as BUFTs at the CLB level. However, they should be
inferred as IOBUFs at the 10B level. Platform Generator infers the 3-states at the top-level
to ensure that the inout ports are always associated to the IOBUF.

Inout ports are currently defined at the top-level since the only internal signals are those
defined as an input or an output. There are no inout signals defined internally that need a
BUFT.

Itis important to note that the 3-state enables are all active-low to allow a direct connection
to the OBUFT of the IOBUF.

VHDL 3-state (InOut) With Multi-Bit Enable Example

The following is an VHDL example that includes 3-state signal with a multi-bit enable:

entity tri_state_nmulti is

generic (CWDTH : integer := 9);

port (
-- tri-state signal
tristate_| : in std_logic_vector(0 to C WDTH1);
tristate_O: out std_logic_vector(0 to C WDTH1);

Embedded System Tools Guide www.Xxilinx.com 147
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 14: Microprocessor Peripheral Description (MPD)

tristate_T : out std_logic_vector(0 to C WDTH 1)
);

end entity tri_state multi;

MPD 3-state (InOut) With Multi-Bit Enable Example

The following is an MPD example that includes 3-state signal with a multi-bit enable:
PARAVMETER VERSION = 2.0.0

BEG N tri_state nulti, |IPTYPE=IP
PARAMETER C W DTH = 9, DT=i nt eger
PORT tristate = "", DI R=I NOUT, VEC=[0:C WDTH 1], ENABLE=MULTI

END

VHDL 3-state (InOut) With Single-Bit Enable Example

The following is an VHDL example that includes 3-state signal with a single-bit enable:

entity tri_state_single is

generic (CWDTH : integer := 9);

port (
-- tri-state signal
tristate_| : in std_logic_vector(0 to C WDTH1);
tristate_O out std_logic_vector(0 to C WDTH1);
tristate_T : out std_logic

)

end entity tri_state_single;

MPD 3-state (InOut) With Single-Bit Enable Example

The following is an MPD example that includes 3-state signal with a single-bit enable:

PARAMETER VERSION = 2.0.0

BEG N tri_state_single, |PTYPE=IP

PARAMETER C W DTH = 9, DT=i nt eger

PORT tristate = "", DI R=I NOUT, VECS[0: C_ WDTH 1], ENABLE=SI NGLE

END

148 www.Xxilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

SXILINX®
Chapter 15

Peripheral Analyze Order (PAO)

Overview

A PAO (Peripheral Analyze Order) file contains a list of HDL files that are needed for
synthesis, and defines the analyze order for compilation.

The STYLE option in the MPD with the values of MIXED or HDL identify the core as
having a PAO file.

This chapter includes the following sections:
“PAO Format”
“PAO Example”

PAO Format

Use the following format:
lib library hdl _file_basenane

Library specifies the unique library for the peripheral, and HDL file names are specified
without a file extension. All names are in lower-case.

If your peripheral requires a certain version of a library, then the library name is given with
the version appended. For example, if you request version 1.00.a, then the library name is:

library_nanme_v1 _00_a

Comments

You can insert comments without disrupting processing. The following are guidelines for
inserting comments:

* Precede comments with the pound sign (#)
» Comments can continue to the end of the line
* Comments can be anywhere on the line

PAO Example

The following is an example PAO file:

lib conmon_v1l 00_a common_t ypes_pkg
lib conmon_v1l_00_a psel ect

lib opb_gpio_vl 00_a gpio_core

lib opb_gpio_vl 00_a opb_gpio

Embedded System Tools Guide www.xilinx.com 149
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 15: Peripheral Analyze Order (PAO)

150 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

$7 XILINX®

Chapter 16

Black-Box Definition (BBD)

Overview
The Black Box Definition (BBD) file manages the file locations of optimized hardware
netlists for the black-box sections of your peripheral design.
The STYLE option in the MPD with the values of MIXED or BLACKBOX identify the core
as having a BBD file.
This chapter includes the following sections:
“BBD Format”
“BBD Examples”

BBD Format
The BBD format is a look-up table chart that lists netlist files. The first line is the header of
the look-up table. There can be as many entries as necessary in the header to make a
selection. Header entries are tailored by MPD options. The last column of the table must be
the FILES column.
For implementation, the last column lists the relative path to the file from:
$XI L_MYPERI PHERALS/ nyi p/ <i p>/ netlist (UNIX)
%X L_MYPERI PHERALS% nyi p\ <i p>\ net |l i st (PC)
For simulation, the last column lists the relative path to the file from:
$XI L_MYPERI PHERALS/ nyi p/ <i p>/ si mmodel s (UNIX)
91 L_MYPERI PHERAL S% nyi p\ <i p>\ si nmodel s (PC)
The netlist and simmodels directories can have their own underlying directory structure
because the BBD file manages the relative file locations. However, the directories must
mirror each other.
Each file is listed with the file extension of the hardware implementation netlist. Since
implementation netlists have multiple file extensions (such as, .edn, .edf, .edo, .ngo), it is
important to identify the format. For simulation, the Platform Generator uses the file
extension .vhd for VHDL simulation and .v for Verilog.
The black-box simulation netlists for HDL simulation must be moved to the simmodels
directory, and the black-box hardware netlists for implementation must be moved to the
netlist directory. The simmodels and netlist directories can have their own underlying
directory structure, however, they must mirror each other.

Embedded System Tools Guide www.xilinx.com 151

EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 16: Black-Box Definition (BBD)

Comments

You can insert comments without disrupting processing. The following are guidelines for
inserting comments:

e Precede comments with the pound sign (#)
» Comments can continue to the end of the line
« Comments can be anywhere on the line

Lists

If you have multiple hardware implementation netlists, then use a comma (,) to separate
each individual netlist in the list.

BBD Examples

File Selection Without Options

The following is an example of a file selection without options. The NGC netlist is copied
into the your implementation directory regardless of specific options set on the core.

FI LES
bl ackbox. ngc

Multiple File Selections Without Options

The following is an example of multiple file selections without options. The set of NGC
netlists are copied into the your implementation directory regardless of specific options set
on the core.

FI LES
bl ackbox1. ngc, bl ackbox2. ngc, bl ackbox3. edn

File Selection With Options

The following is an example of a file selection with options. The specific EDIF netlist is
copied into the your implementation directory dependent on the C_FAMILY and
C_BUS_CONFIG options set on the core.

C FAM LY C BUS_CONFI G FI LES
Vi rtex 1 virtex/ m crobl aze_1. edf

Vi rtex 2 virtex/ m crobl aze_2. edf
Vi rtex 3 virtex/ m crobl aze_3. edf
Vi rtex 4 virtex/ m crobl aze_4. edf
virtex 5 virtex/ m crobl aze 5. edf
Vi rtex 6 virtex/ m crobl aze_6. edf
spartan2 1 virtex/ m crobl aze_1. edf
spartan2 2 virtex/ mcrobl aze_2. edf
spartan2 3 virtex/ mcrobl aze_3. edf
spartan2 4 virtex/ m crobl aze_4. edf
spartan2 5 virtex/ m crobl aze_5. edf
spartan2 6 virtex/ mcrobl aze_6. edf
Vi rtexe 1 virtex/ m crobl aze_1. edf
Vi rtexe 2 virtex/ m crobl aze_2. edf
Vi rtexe 3 vi rtex/ m crobl aze_3. edf
152 www.xilinx.com Embedded System Tools Guide

1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

BBD Examples

SXILINX®

Vi rtexe
Vi rtexe
virtexe
spartan2e
spartan2e
spartan2e
spartan2e
spartan2e
spartan2e
virtex2
Vi rtex2
Vi rtex2
Vi rtex2
Vi rtex2
virtex2
Vi rtex2p
virtex2p
virtex2p
Vi rtex2p
Vi rtex2p
Vi rtex2p

OO WNRFRPOUORMWNREFPOODMWNEOOOO M

virtex/ m
virtex/ m
virtex/ m
virtex/ m
virtex/ m
virtex/ m
virtex/ m
virtex/ m
virtex/ m

virtex2/ m
virtex2/ m
virtex2/ m
virtex2/ m
virtex2/ m
virtex2/ m
virtex2/m
virtex2/ m
virtex2/ m
virtex2/ m
virtex2/ m
virtex2/ m

crobl aze_4. edf
crobl aze_5. edf
crobl aze_6. edf
crobl aze_1. edf
crobl aze_2. edf
crobl aze_3. edf
crobl aze_4. edf
crobl aze_5. edf
crobl aze_6. edf

crobl aze_1.
crobl aze_2.
crobl aze_3.
crobl aze_4.
crobl aze 5.
crobl aze_6.
crobl aze_1.
crobl aze_2.
crobl aze_3.
crobl aze_4.
crobl aze 5.
crobl aze_6.

edf
edf
edf
edf
edf
edf
edf
edf
edf
edf
edf
edf

Embedded System Tools Guide
EDK (v3.1 EA) September 24, 2002

www.Xilinx.com
1-800-255-7778

153

http://www.xilinx.com

S XILINX® Chapter 16: Black-Box Definition (BBD)

154 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

SXILINX®
Chapter 17

Microprocessor Verification
Specification (MVS)

Summary
This chapter describes the Microprocessor Verification Specification (MVS) format.
Overview
You supply MVS file as an input to the Simulation Model Generator (SimGen) tool. The
MVS file contains directives for customizing a simulation model for a defined system.
MVS Format
An MVS file is the input to the SimGen. Its semantics are case insensitive, however, any
reference to a file name or instance name in the MVS file is case sensitive.
Comments can be specified anywhere in the file. A ‘#’ character denotes the beginning of a
comment and all characters after the ‘#’ though the end of the line are ignored. All white
spaces are also ignored and carriage returns act as sentence delimiters.
Keywords

The keywords that are used in an MVS file are as follows:
Begin

The begin keyword begins a simulation model definition.
End

The end keyword signifies the end of a definition block.
Parameter

The MVS file has a simple name = value format for most statements. The parameter
keyword is required before every such NAME, VALUE pairs. The format for assigning
a value to a parameter is parameter name = value. If the parameter is within a begin-
end block, it is a local assignment, otherwise it is a global (system level) assignment.

Requirements

The MVS file has a dependency on the hardware and software specification (MHS and
MSS) files. This dependency has to be specified in the MVS file as parameter
HW_SPEC_FILE = file_name.mhs or as parameter SW_SPEC_FILE = file_name.mss

Embedded System Tools Guide www.xilinx.com 155
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 17: Microprocessor Verification Specification (MVS)

respectively. Hence, a hardware platform has to be defined in order to configure the
simulation flow. Please refer to Chapter 13, “Microprocessor Hardware Specification
(MHS)” for more information on hardware configuration.

The syntax of various files that the Embedded Software Tools use are described by the
Platform Specification Format (PSF). The current PSF version is 2.0.0. The MVS file should
also contain version information in the form of parameter Version = 2.0.0 which represents
the PSF version 2.0.0.

MVS Example

An example MVS file is given below:

PSF Version
PARAMVETER VERSION = 2.0.0

Define the |ocation of the Hardware Specification file
PARAMETER HW SPEC FI LE = fil enane. nhs

Define the location of the Software Specification file
PARAMETER SW SPEC FI LE = fil enane. nss

Define sinulation | anguage
Options: vhdl / verilog
PARAMETER LANGUAGE = vhdl

Define sinmulator
Options: nti /[wvxl
PARAMETER SI MULATOR = nti

Define simulation nodel
PARAMETER SI M_MODEL = behavi or al
Options: behavioral / structural / timng

Specify path to Mdel Si m Behavi oral Library
PARAVETER MTI _NODEBUG LI B = / hone/ user/directory/ behavi oral

Specify path to Mdel Sim UnisimLibrary
PARAMETER MTI _UNI SIM LI B = /hone/ user/ directory/unisim

Specify path to Mddel Sim Si nprim Li brary
PARAVETER MTI _SIMPRIM LI B = /hone/ user/directory/sinprim

Global Parameters

These parameters are system specific parameters and do not relate to a particular driver,
file system or library.

PSF Version

This parameter specifies the PSF version of the MSS file. It is mandatory for versions 2.0.0
and above.

Format
paranmeter VERSION = 2.0.0

156

www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Global Parameters S XILINX®

Hardware Specification File Pointer

This parameter points to the MHS file. The path can be a relative path from the project
directory or can be an absolute path. This parameter is mandatory.

Format
par aneter HW SPEC FI LE = fil enane. nhs

Software Specification File Pointer

This parameter points to the MSS file. The path can be a relative path from the
<USER_PROJECT> directory or can be an absolute path. This parameter is optional.

Format

parameter SW SPEC FILE = fil enane. nss

Simulation Language

This parameter specifies the simulation language to be used for the generated HDL
simulation files. The available options are vhdl andveri | og. This parameter is optional.

Format
paraneter LANGUAGE = { vhdl | verilog }

Simulator

This parameter specifies the simulator to be used. SimGen generates a compilation script
for the specified simulator. The supported simulators are Model Technology ModelSim
and Cadence Verilog-XL. This parameter is optional.

Format
paraneter SIMJLATOR = { nti | wvxl| }

Simulation Model

This parameter specifies the simulation model to be generated. The supported simulation
model types are behavioral, structural and timing. This parameter is optional.

Format

paraneter SIM MODEL = { behavioral | structural | timng }

ModelSim Behavioral Library

This parameter specifies the path to the ModelSim behavioral library. This parameter is
optional.

Format

paraneter MIl _NODEBUG LI B = /path/to/ nodel si m behavioral/library

ModelSim Unisim Library

This parameter specifies the path to the ModelSim unisim library. This parameter is
optional.

Embedded System Tools Guide www.xilinx.com 157
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 17: Microprocessor Verification Specification (MVS)

Format
paranmeter MIl_UNISIMLIB = /path/to/ nodel simunisinmlibrary

ModelSim Simprim Library

This parameter specifies the path to the ModelSim simprim library. This parameter is
optional.

Format
paranmeter MIl_SIMPRIM LIB = /path/to/model sim sinmprimlibrary

158 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

$7 XILINX®

Chapter 18

Microprocessor Software Specification

(MSS)

Summary

Overview

MSS Format

This chaprter describes the Microprocessor Software Specification (MSS) format.

An MSS file is supplied by the user as an input to the Library Generator (Libgen). The MSS
file contains directives for customizing libraries, drivers and file systems.

Note: RevUp tool provides a way to convert old MSS format to the new one used in this
version of the EDK tools. Please see Chapter 7, “Format Revision Tool” for more
information.

An MSS file is supplied by the user as an input to the Library Generator (Libgen). An MSS
file is case insensitive. However, any reference to a file name or instance name in the MSS
file is case sensitive.

Comments can be specified anywhere in the file. A '#’ character denotes the beginning of a
comment and all characters after the '#’ till the end of the line are ignored. All white spaces
are also ignored and carriage returns act as sentence delimiters.

Keywords

The keywords that are used in an MSS file are as follows:
Begin

The begin keyword begins a driver, processor, or file system definition block. The begin
keyword should be followed by driver, processor or filesys keywords.

End
The end keyword signifies the end of a definition block.
Parameter

The MSS file has a simple name = value format for most statements. The parameter
keyword is required before every such NAME, VALUE pairs. The format for assigning a

Embedded System Tools Guide www.xilinx.com 159
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 18: Microprocessor Software Specification (MSS)

value to a parameter is parameter name = value. If the parameter is within a begin-end
block, it is a local assignment, otherwise it is a global (system level) assignment.

Requirements

The MSS file has a dependency on the MHS file. This dependency has to be specified in the
MSS file as parameter HW_SPEC_FILE = file_name.mhs. Hence, a hardware platform has
to be defined in order to configure the software flow. Please refer the Microprocessor

Hardware Specification documentation for more information on hardware configuration.

The syntax of various files that the Embedded Development Tools use are described by the
Platform Specification Format (PSF). Please refer Chapter 12, “Platform Specification
Format (PSF)” for more information. The current PSF version is 2.0.0. The MSS file should
also contain version information in the form of parameter \Version =2.0.0 which represents
the PSF version 2.0.0.

MSS Example

An example MSS file is given below:

paraneter HW SPEC FILE = system nhs
paraneter VERSION = 2.0.0

BEG N PROCESSOR

par anet er HW I NSTANCE = ny_ni crobl aze
paraneter DRI VER NAME = cpu

paraneter DRI VER_VER = 1.00.a

par aneter BOOT_PERI PHERAL = ny_jtag

par anet er DEBUG PERI PHERAL = ny_jtag

par amet er EXECUTABLE = code/ hel |l o_worl d. el f
paraneter STDIN = ny_uartlite_1

paraneter STDOUT = ny_uartlite_1

END

BEG N PROCESSCR

par anmet er HW | NSTANCE nmy_ppc

par anet er DRI VER_NAME cpu_ppc405
paraneter DRI VER VER = 1.00.a

paraneter STDIN = nmy_uartlite_2

paraneter STDOUT = ny_uartlite_2

par anmet er EXECUTABLE = code/ hel | o_worl d. el f

END

BEG N DRI VER

paraneter HWINSTANCE = ny_intc
paraneter DRI VER NAME = intc

paraneter DRI VER VER = 1.00.a
END

BEG N DRI VER

paranmeter HWINSTANCE = ny_uartlite_1

paraneter DRI VER_VER = 1.00.a

paraneter DRI VER_NAME = uartlite

parameter | NT_HANDLER = uart_1_handl er, |INT_PORT = Interrupt
END

BEG N DRI VER

160 www.Xxilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Global Parameters S XILINX®

paranmeter HWINSTANCE = ny_uartlite_2

paraneter DRI VER VER = 1.00.a

paraneter DRI VER NAME = uartlite

paraneter LIBRARY = XilFile

paraneter | NT_HANDLER = uart_2_handl er, | NT_PORT
END

I nterrupt

BEG N DRI VER

paraneter HW I NSTANCE = ny_ti mebase_wdt

paraneter DRI VER VER = 1.00.a

paranet er DRI VER_NAME = ti nmebase_wdt

par aneter | NT_HANDLER=mny_ti nebase_hndl, | NT_PORT
paraneter | NT_HANDLER=ny_ti nebase_hndl, | NT_PORT
END

Ti mebase_|I nt errupt
VDT _I nterrupt

BEG N FI LESYS

paraneter FILESYS NAME = Xi|l Ms

par anet er PROC_| NSTANCE = ny_ni crobl aze
paranmeter MOUNT = "/dev/nfs"

paraneter LIBRARY = XilFile

END

BEG N DRI VER

paraneter HW I NSTANCE = ny_jtag

paraneter DRI VER_NAME = uartlite

paranmeter DRI VER VER = 1.00.a

paraneter |INT_HANDLER = jtag uart_handl er, I NT_PORT = Interrupt
END

Global Parameters

These parameters are system specific parameters and do not relate to a particular driver,
file system or library.

Hardware Specification File Pointer

This option points to the MHS file. The path can be a relative path from the
USER_PROJECT directory or can be an absolute path. This option is mandatory.

Format

paraneter HW SPEC FI LE = system nhs

PSF Version

This option specifies the PSF version of the MSS file. This option is mandatory for versions
2.0.0 and above.

Format
paranmeter VERSION = 2.0.0

Embedded System Tools Guide www.xilinx.com 161
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 18: Microprocessor Software Specification (MSS)

Instance Specific Parameters

These parameters are driver, library or file system specific parameters. The parameters
have to be between a Begin and End block.

Driver and Processor Block Parameters

Table 18-1: Parameters Specified in Driver and Processor Blocks Only

Option Values Default Definition
HW_INSTANCE | Instance name None Instance name specified in the MHS file.
DRIVER_NAME | Driver name None Driver name.

DRIVER_VER 1.00.a No Version Driver version.
INT_HANDLER | C Function Name | None Specifies the interrupt handler function for the

peripheral interrupt.

LEVEL Number Specified in MDD file | An MDD file parameter that can be overwritten
in the MSS. Please see Chapter 19,
“Microprocessor Driver Definition (MDD)” for
more information.

LIBRARY XilFile, XilNet None Specifies that the device can be accessed through
this library. Please seeChapter 20, “Xilinx
Libraries” for more information.

Table 18-1 provides the parameters that can be used both in driver and processor blocks.

HW_INSTANCE Option

This option is required for drivers associated with peripheral instances specified in the
MHS file.

Format
paranet er HW. I NSTANCE = i nstance_nane

All drivers in the EDK require instances to be associated with the drivers. Even a processor
definition block should refer to the processor instance. The instance name that is given
must match the name specified in the MHS file.

DRIVER_NAME Option

This option is needed for peripherals that have drivers associated with them.
Format
paraneter DRI VER NAME = uartlite

Library Generator copies the driver directory specified to
USER_PROJECT/processor_instance_name/libsrc directory and compiles the drivers
using makefiles provided. Please see the Library Generator document for more
information.

DRIVER_VER Option
The driver version is set using the DRIVER_VER option.

162 www.Xxilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Instance Specific Parameters S XILINX®

Format
paraneter DRI VER VER = 1.00.a

This version is specified in the following format: x. yz. a, where x, y and z are digits, and
a is a character. This is translated to the driver directory searched by LibGen as follows:

USER PRQIECT/drivers/DRI VER_NAME vx_yz a

XI L_MYPERI PHERALS/drivers/DRI VER_NAMVE_vx_yz_a

XI LI NX_EDK/drivers/DRI VER_NAMVE_vx_yz_a

XI LI NX_EDK/hw/coregen/ip/xilinx/drivers/DRl VER_NANVE vX yz a

The XIL_MYPERIPHERALS variable is set when a -P option is given to LibGen.

The MDD (Microprocessor Driver Definition) files needed by Libgen for each driver
should be named DRIVER_NAME.mdd and should be present in a subdirectory data/
within the driver directory. Please refer Chapter 19, “Microprocessor Driver Definition
(MDD)” for more information.

INT_HANDLER Option

This option defines the interrupt handler software routine for an interrupt port of the
peripheral.

Format
paraneter | NT_HANDLER = ny_int_handl, INT_PORT = Interrupt

The interrupt port of the peripheral instance that raises the interrupt is specified after the
attribute as shown above with the INT_PORT keyword. This port should match the port
name (and not the signal name) specified in the MHS file for that peripheral instance.

LEVEL Option

The driver level is set using the LEVEL option. The levels of drivers available in the EDK
are levels 0 and 1. Level 0 drivers are small low level drivers, and level 1 drivers provide
more functionality than the level 0 drivers. Please refer Chapter 26, “Device Drivers” for
more information. The default level is specified in the MDD file for the driver. Please refer
Chapter 19, “Microprocessor Driver Definition (MDD)” for more information.

Format
parameter LEVEL = 1

Level is either 0 or 1 for EDK drivers

LIBRARY Option

The device driver functions (that support 1/0) can be accessed through a library that
provides block access functions for read and write. This option provides a way to specify
that the device is accessed through XilFile library shipped with the EDK. For more
information on libXil libraries for MicroBlaze, please refer Chapter 20, “Xilinx Libraries”.

Format
paraneter LIBRARY = XilFile

Please refer to the section on Libraries and File System Parameters in this document for details
on file systems (particularly Memory File Systems), and their access through the XilFile
library.

Embedded System Tools Guide www.xilinx.com 163
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 18: Microprocessor Software Specification (MSS)

MDD Specific Parameters

Parameters specified in the MDD file can be overwritten in the MSS file as

Format

par amet er PARAM NAME = PARAM VALUE

Please refer Chapter 19, “Microprocessor Driver Definition (MDD)” for information.

Processor Specific Parameters

Table 18-2: Parameters Specified in Processor Blocks Only

Option Values Default Definition
EXECUTABLE directory/file code/executable.elf Defines the user’s executable file name and
location.
DEFAULT_INIT | XMDSTUB, EXECUTABLE Specifies which file should be used to initialize
BOOTSTRAPR, that processor’s memory.
EXECUTABLE
BOOT_PERIPH | Instance name None Peripheral instance used for downloading
ERAL bootstub.
DEBUG_PERIP | Instance name None Peripheral instance used for On-board Debug.
HERAL
STDIN Instance name None Specifies standard input peripheral instance.
STDOUT Instance name None Specifies standard output peripheral instance.
COMPILER Name of the mb-gcc for Name of the compiler used for compiling drivers
compiler MicroBlaze, and libraries
powerpc-eabi-gcc for
PPC405
(ON] Name of the OS standalone Name of the OS supported (for example.,
VxWorks5_4)
ARCHIVER Name of the mb-ar for MicroBlaze, | Name of the archiver used for archiving drivers
archiver powerpc-eabi-ar for | and libraries.
PPC405
COMPILER_FL | Command line Libgen generates Need not be specified if using EDT compilers
AGS flags default
EXTRA_COMPI | Command line None User definable compiler flags used to compile
LER_FLAGS flags libraries and drivers
Table 18-2 provides all the parameters that can be specified only in a processor definition
block.
EXECUTABLE Option
The executable image is set using the EXECUTABLE option.
Format
164 www.Xxilinx.com Embedded System Tools Guide

1-800-255-7778

EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Instance Specific Parameters S XILINX®

par anmet er EXECUTABLE = code/ a. el f

This is the executable file used for populating memories of the particular processor
instance. By default, libgen assumes the EXECUTABLE to be
processor_instance_name/code/executable.elf

DEFAULT _INIT Option

This option specifies whether XMDSTUB, BOOTSTRAP or EXECUTABLE is the program
to load into the memory of that particular processor instance.

Format
par anet er DEFAULT_I NI T = XMDSTUB
The DEFAULT _INIT option can take EXECUTABLE, XMDSTUB or BOOTSTRAP as

values. By default, the value is EXECUTABLE. For the PowerPC, the executable option is
the only useful option.

STDIN Option
Identify standard input device with the STDIN option.
Format
paraneter STDIN = instance_nane
STDOUT Option
Identify standard output device with the STDOUT option.
Format
paraneter STDOUT = instance_nane

BOOT_PERIPHERAL Option

Identify the boot peripheral with the BOOT_PERIPHERAL option. This is useful for
MicroBlaze only. The boot peripheral is used for download of the bootstub.

Format

par anet er BOOT_PERI PHERAL = i nstance_nane

DEBUG_PERIPHERAL Option

The peripheral that is used to handle the xmdstub should be specified in the
DEBUG_PERIPHERAL option. This is useful for MicroBlaze only.

Format

par anet er DEBUG PERI PHERAL = i nstance_nane

COMPILER Option

This option specifies the compiler used for compiling drivers and libraries. The compiler
defaults to mb-gcc or powerpc-eabi-gcc depending on whether the drivers are part of the
microblaze instance or powerpc instance. Any other compatible compiler can be specified
as an option.

Format

Embedded System Tools Guide www.Xxilinx.com 165
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 18: Microprocessor Software Specification (MSS)

par anet er COWPI LER = dcc

This denotes the Diab compiler as the compiler to be used for drivers and libraries.

ARCHIVER Option

This option specifies the archive utility to be used for archiving object files into libraries.
The archiver defaults to mb-ar or powerpc-eabi-ar depending on whether the drivers are
part of the microblaze instance or powerpc instance. Any other compatible archiver can be
specified as an option.

Format
paranmet er ARCHI VER = ar

This denotes the archiver ar to be used for drivers and libraries.

COMPILER_FLAGS Option

This option specifies compiler flags to be used for compiling drivers and libraries. If the
option is not specified, Libgen automatically uses platform and processor specific options.
It is recommended that this option not be specified in the MSS if the standard compilers
and archivers in the EDK are used. COMPILER_FLAGS option can be defined in the MSS
if there is a need for custom compiler flags that override Libgen generated ones. The
EXTRA_COMPILER_FLAGS option is recommended if compiler flags have to be
appended to the ones Libgen already generates.

Format

paranmeter COWPI LER FLAGS = ““

EXTRA_COMPILER_FLAGS Option

This option can be used whenever custom compiler flags need to be used in addition to the
automatically generated compiler flags.

Format

par anmet er EXTRA_COMPI LER FLAGS = -g
This specifies that the drivers and libraries must be compiled with debugging symbols in
addition to the LibGen generated COMPILER_FLAGS.

OS Option

This option denotes whether an RTOS is present (for example., VXWorks5_4) or not. By
default, LibGen assumes a value of standalone as the OS.
Format

paraneter OS = VxWorks5_4

This specifies that the VxWorks5_4 adaptation layer must be generated for the drivers.
This option, although supported, is not currently used in Libgen.

Library and File System Parameters

The MSS file also includes directives to configure libraries and file systems for the
MicroBlaze processor. For more information on EDK libraries and EDK file systems, please
refer Chapter 20, “Xilinx Libraries”.

166 www.Xxilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Library and File System Parameters S XILINX®

The parameters that are supported for Libraries and File systems are as follows:
FILESYS_NAME Option

This option specifies the name of the file system. The file system that is supported in the

EDK is XilMfs (Memory File System). Please refer Chapter 20, “Xilinx Libraries” for more
information.

Format
paraneter FILESYS NAME = Xi| Ms

If the user has any other file system that is compatible with EDK file systems, that name
can be used.

PROC_INSTANCE Option
This option specifies the name of the processor instance that can access the file system.
Format
par anet er PROC_| NSTANCE = mny_mi crobl aze

This specifies that my_microblaze processor needs to access the file system functions.

MOUNT Option

Specifies the mount name as a directory string

Format

paraneter MOUNT = “/dev/nfs”

LIBRARY Option

The file system functions can be accessed through a library that provides block access

functions for read and write. This option provides a way to specify that the file system is
accessed through the library.

Format

paraneter LIBRARY = XilFile

Embedded System Tools Guide www.xilinx.com

167
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 18: Microprocessor Software Specification (MSS)

168 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

$7 XILINX®

Chapter 19

Microprocessor Driver Definition

(MDD)

Summary

Overview

Requirements

This chapter describes the Microprocessor Driver Definition (MDD) format.

An MDD file contains directives for customizing software drivers. This document
describes the MDD format and the parameters that can be used to customize drivers. For
more information on drivers please refer Chapter 26, “Device Drivers”. For all EDK
drivers, the user does not need to peruse this document. Reading this document is
recommended for user-written drivers that need to be configured by libgen.

Each device driver has an MDD file associated with it. This file is used by the Library
Generator (Libgen) to customize the driver depending on different options in the MSS file.
For more information on the MSS file format, please see Chapter 18, “Microprocessor
Software Specification (MSS)”.

The driver source files and the MDD file for each driver must be located at specific
directories in order for Libgen to find the files and drivers. Please refer Chapter 6, “Library
Generator” for a list of directories searched for drivers.

MDD Format
Comments can be specified anywhere in the file. A ’# character denotes the beginning of a
comment and all characters after the "#’ till the end of the line are ignored. All white spaces
are also ignored and carriage returns act as a sentence delimiter.

Keywords

The keywords that are used in an MDD file are as follows:
Begin

Embedded System Tools Guide www.xilinx.com 169

EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 19: Microprocessor Driver Definition (MDD)

The begin keyword begins a driver block or a driver level block. Device drivers in the EDK
come in three levels. Level 0 are the low-level drivers with basic functionality and small
size, level 1 drivers have more functionality but are larger in size and OS level drivers
assume the existence of an RTOS. The begin keyword should be followed by driver, or
level number (0 or 1).

End
The end keyword signifies the end of a definition block.
Parameter

The MDD file has a simple name = value format for most statements. The parameter
keyword is required before every such NAME, VALUE pairs. The format for assigning a
value to a parameter is parameter name = value. The parameter keyword specifies that the
parameter can be overwritten in the MSS file.

Constant

The constant keyword is similar to the parameter keyword, except that the constant cannot
be overwritten in the MSS file.The format for assigning a value to a constant is constant
name = value.

MDD Example

Driver Block

An example MDD file for the uartlite driver follows:

BEG N driver XUartLite

constant VERSION = 2.0.0 # uses PSF 2.0.0
paraneter LEVEL = 0 # default |evel

END

BEG N | evel O

constant INBYTE = XUartLite RecvByte, DEFINED IN = xuartlite_l
constant OUTBYTE = XUartLite_SendByte, DEFINED IN = xuartlite_l
constant COPYFILES = (xuartlite_|.c xuartlite_|.h Makefile)
constant DEPENDS = (comon_v1_00_a)

constant CONFI G | NCLUDE = xparaneters, VALUES = (NUM_| NSTANCES
C_BASEADDR)

paraneter | NT_HANDLER = XIntc_Defaul t Handl er, | NT_PORT = Interrupt
END

BEG N | evel 1

const ant COPYFI LES = ALL

constant DEPENDS = (comon_v1_00_a)

constant CONFI G | NCLUDE = xparaneters, VALUES = (NUM_ | NSTANCES
C_BASEADDR DEVICE ID)

constant CONFI G FILE = xuartlite_g, VALUES = (DEVICE_| D C _BASEADDR)
paraneter | NT_HANDLER = XUartLite_I nterruptHandl er, | NT_PORT=I nterrupt
END

The driver block begins with a Begin driver followed by the name of the driver, in the
above example, XUartLite. The name is significant, since it is used as a prefix for a
configuration table in the driver configuration C file by libgen. This name is case sensitive.

170

www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Level Block

SXILINX®

Driver Block Specific Parameters and Constants

VERSION

Every MDD file has a PSF (Platform Specification Format) version number. This is the
same number that is used in all file formats (MSS, MPD, PAO, MHS) in the EDK. The
version signifies the version of the file that libgen will accept. Please refer Chapter 12,
“Platform Specification Format (PSF)”” for more information.

Format
constant VERSION = 2.0.0
This indicates that the PSF version is 2.0.0

LEVEL

This parameter specifies the default level of the driver used by libgen. This parameter can
be overwritten

Format
paraneter LEVEL = 0O

This indicates that the default version is 0.

Other Generic Parameters

The user can define their own parameter name and specify a value for the parameter. This
parameter name can then be used in the VALUES, DEFINE_IF_ANY or DEFINE_IF_ALL
tags as explained in subsequent sections in the document. For DEFINE_IF_ANY and
DEFINE_IF_ALL, the value must be either a 0 (FALSE) or 1(TRUE).

Format
paranmeter MY_OAN_PARAMETER = ny_val ue
The literal my_value is used wherever it is referenced in one of the tags specified.

The Generic parameters can also take an optional tag TYPE. TYPE can have values
DRIVER and INSTANCE (default).

paraneter MY_OAN_DRV_PARAMETER = ny_val ue, TYPE = DRI VER

By default, these parameters are peripheral instance specific. That is, each peripheral
instance has the parameter defined. TYPE = DRIVER means that the parameter should be
treated as a driver specific parameter. Please see the CONFIG_INCLUDE Option
subsection of this document for a better understanding.

Level Block
The Level block begins with a begin level, followed by a number (0 or 1). This number
indicates the driver level that the block describes. For more information on the levels of
drivers, please refer Chapter 26, “Device Drivers”.

Embedded System Tools Guide www.xilinx.com 171

EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 19: Microprocessor Driver Definition (MDD)

Level Block Specific Parameters and Constants

INBYTE

This attribute specifies the driver function for input of a byte of data. The signature of the
function should be char function_name (int *base_address). When the peripheral using this
driver is specified as a standard input (STDIN) peripheral in the MSS file, this function is
called by library functions such as scanf. Only drivers for peripherals that can be used as
standard input should have this attribute defined.

Format

constant | NBYTE = XUartLite_RecvByte, DEFINED IN = xuartlite_l
This indicates that the INBYTE function_name is XUartLite_RecvByte and it is defined in
xuartlite_Lh file

OUTBYTE

This attribute specifies the driver function for output of a byte of data. The signature of the
function should be void function_name (int *base_address, char outchar). This function is
called by printf when the peripheral using this driver is specified as standard output
(STDOUT) peripheral. Only drivers for peripherals that can be used as standard output
should have this attribute defined.

Format

constant OUTBYTE = XUartLite_SendByte, DEFINED IN = xuartlite_l
This indicates that the OUTBYTE function_name is XUartLite_SendByte and it is defined in
xuartlite_L.h file

COPYFILES

This attribute specifies that files that should be copied for the specific level of the driver.
The files are copied from the src directory inside the drivers directory.

Format
constant COPYFILES = (filel file2 file3 ...)

This indicates that the files filel, file2, file3, and so on, should be copied in order to compile
this driver into the project software platform. The list must be enclosed in parentheses
(even if there is a single file) and separated by spaces. The keyword ALL can be used

instead of listing the files to specify that all files in the directory should be used to compile
the driver.

DEPENDS

This attribute specifies which drivers this particular level of the driver depends on. These
dependent drivers are then included in the compilation.

Format
constant DEPENDS = (driverl driver2 driver3 ...)

This indicates that the drivers driverl, driver2, driver3, ... should be copied in order to
compile this driver into the project software platform. The list must be enclosed in
parentheses (even if there is a single driver) and separated by spaces. The drivers should
have the complete name (including version suffixes, if any).

172 www.Xxilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Level Block XX"JNX@

CONFIG_INCLUDE

This attribute specifies the name of the include file (.h) that is configured with #defines
specific to each driver level and also specific to how the peripheral has been configured.
This file is generated in the include directory by libgen (refer Chapter 6, “Library
Generator” for more information)

Format

constant CONFI G | NCLUDE = xparaneters, VALUES = (C_BASEADDR DEVICE_ID
NUM | NSTANCES), DEFINE_| F_ANY = (C HAS | PR), DEFINE |F_ALL = (MY_PARAM

The name of the file that is configured in the preceeding example is xparameters.h. The
values that should be defined are specified in the VALUES tag as a space separated list
enclosed between parentheses. The parentheses are necessary even if there is a single item
in the list.

LibGen compares the names given in the VALUES tag with names of parameters in the
MPD or MHS files, or user defined parameters in the MDD file itself. If a match is found,
the value of the attribute is defined as

#def i ne XPAR_| NSTANCE_NAME_PARAMETER_NAME PARAMETER_VALUE

if the parameter is an instance specific parameter (for example, C_ BASEADDR). Any C_in
the name is removed. For the example MDD given above, suppose the instance name for
the uartlite peripheral in the MSS file is given as my_uart. Then the #define would be:

#def i ne XPAR_MY_UART_BASEADDR OxFFFF0100

On the other hand, if the parameter is a driver specific parameter and not peripheral
instance specific (for e.g. NUM_INSTANCES, which is recognized by libgen as number of
instances of peripherals that use this driver) then the define will be with the name of the
driver (as given in the BEGIN DRIVER DRIVER_NAME in the MDD) instead of the
INSTANCE_NAME. For example, if there are two instances of uart in the MSS referring to
this driver, then the definition would be:

#def i ne XPAR_XUARTLI TE_NUM_| NSTANCES 2

Note that all the names and parameters are upper case, and that all parameters having a
prefix of C_ are truncated to lose the prefix.

DEFINE_IF_ANY

This tag can be used to specify a list of parameters. Each parameter is defined if any
instance of a peripheral that uses the driver has the parameter defined as TRUE (1) in the
MPD or MHS file.

DEFINE_IF_ALL

This tag can be used to specify a list of parameters. Each parameter is defined only if all
instances of a peripheral that uses the driver has the parameter defined as TRUE (1) in the
MPD or MHS file.

CONFIG_FILE

This attribute specifies the name of the file (.c) that is configured by LibGen. The file
CONFIG_FILE.h will always be included in the C file. This file is generated in this drivers
src/ directory when LibGen configures the drivers.

Format

constant CONFI G FILE = xuartlite_ g, VALUES = (DEVICE_|I D C_BASEADDR)

Embedded System Tools Guide www.Xxilinx.com 173
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 19: Microprocessor Driver Definition (MDD)

The name of the file that is configured in the preceeding example is xuartlite_g.c. The file
xuartlite_g.h is always included using #include in this file. Also, if a CONFIG_INCLUDE
parameter is specified, that file is also included using #include. The values that should be
defined are specified in the VALUES tag as a space separated list enclosed between
parentheses. The parentheses are necessary even if there is a single item in the list. The list
is an ordered list as is apparent from the following discussion.

LibGen compares the names given in the VALUES tag with names of parameters in the
MPD or MHS files, or user defined parameters in the MDD file itself. LibGen creates a data
structure in the C file as follows (with the example given above):

XUartLite_Config XUartLite_ConfigTable[] =
{

{
XPAR_MYUART DEVI CE_I D,

XPAR_MYUART_BASEADDR
b

{
XPAR_MYUART2_DEVI CE_I D,

XPAR_MYUART2_BASEADDR
}
i
As seen in the code segment above, the MSS file contains two uartlite peripherals with
instance names myuart and myuart2. The type of the table is DRIVER_NAME_Config and
the name of the table is DRIVER_NAME_ConfigTable. The size of the table is the number

of instances of the peripheral using this particular driver. Each element in the table is an
ordered list of values given in the VALUES tag as shown above.

INT_HANDLER

This parameter defines the default interrupt handler software routine for an interrupt port
of the peripheral. This parameter can be overwritten in the MSS file for this particular
driver and peripheral instance.

Format
paraneter | NT_HANDLER = ny_int_handl, I NT_PORT = Interrupt

The interrupt port of the peripheral instance that raises the interrupt is specified after the
attribute as shown above with INT_PORT keyword. This port should match the port name
specified in the MHS file for that peripheral instance.

174

www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

SXILINX®
Chapter 20

Xilinx Libraries

Scope
This chapter describes the organization of Xilinx Libraries and the interaction of its
components with the user application. Xilinx provides three libraries,
e Math Library (libm)
» Standard C language support (libc)
o Xilinx drivers and libraries (libxil)
Overview

The Standard C support library consists of the newlib libc, which contains the standard C
functions such as strcpy, strcmp.

The Xilinx C library contains the following components
» Xilinx file support functions LibXil File

* Xilinx memory file system LibXil Mfs

» Xilinx networking support LibXil Net

» Xilinx device drivers LibXil Driver

» Xilinx Standalone Board Support Package (BSP)

Most of the routines in the library are written in C and can be ported to any platform. The
Library Generator (LibGen) configures the libraries for an embedded processor, using the
attributes defined in the Microprocessor Software Specification (MSS) file.

The math library is an enhancement over the newlib math library libm.a .

Library Organization

The structure of LibXil is outlined in Figure 20-1. The user application calls routines
implemented in LibXil and/or libm. In addition to the standard C routines supported by
libc.a, Xilinx library LibXil contains the following modules:

« Stream based file system and device access (LibXil File)

¢ These set of libraries allow access to devices and file systems through system
routines such as open, close, read and write.

¢+ For complete details refer to the Chapter 22, “LibXil File” chapter.
e Memory based file system (LibXil Mfs)

Embedded System Tools Guide www.xilinx.com 175
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 20: Xilinx Libraries

User Application

¢ C

libXil
libc libm
Standalone BSP LibXil Net > LibXil File - stdio
+ + stdlib
LibXil Mfs Devices
l l string
Other
LibXil Driver

Figure 20-1: Structure of LibXil library

» Xilinx provides a simple memory based file system, which allows easy access to data
using file based input-output.

» This system can be easily configured to meet project requirements by changing the
source provided in the installation area.

» This module is discussed in details in the Chapter 23, “LibXil Memory File System”
chapter.

* Networking application support (LibXil Net)

+ EDK provides a simple TCP/IP stack based library, which can be used for
network related projects.

¢+ For complete details, refer to the Chapter 24, “LibXil Net” chapter.
» Device drivers (LibXil Driver)

+ Some of the library modules interact with drivers. These drivers are provided in
the Embedded Development Kit and are configured by libgen.

¢ Drivers are detailed in the Chapter 26, “Device Drivers” chapter.
» Standalone Board Support Package (BSP)

+ Certain standalone board support files such as the crt0.S, boot.S and eabi.S are
required for the powerpc processor. These files are provided in the EDK.

+ For adetailed description, refer to the Chapter 27, “Stand-Alone Board Support
Package” description.

These libraries and include files are created in the current project’s | i b and i ncl ude
directories respectively. The -1 and -L options of mb-gcc should be used to add these
directories to its library search paths. Please refer to the Chapter 18, “Microprocessor

176 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Library Customization XX"JNX@

Software Specification (MSS)”chapter and Chapter 6, “Library Generator” chapter for
more information.

Library Customization

The standard newlib libc contains dummy functions for most of the operating system
specific function calls such as open, close, read, write. These routines are included in the
libgloss component of the standard libc library. The LibXil File module contains routines
to overwrite these dummy functions. The routines interact with file systems such as Xilinx
Memory File System (1) and peripheral devices(® such as UART, UARTLITE and GPIO.

LibXil Net routines provide support for networking applications via the ethernet. This
module is discussed more in details in the Chapter 24, “LibXil Net” chapter. The module
LibXil Net needs some support from the file system and hence calls other routines from the
LibXil File and/or the LibXil Mfs modules. On the other hand, if an application requires
opening files over the network, routines from the LibXil File module will need the support
of the LibXil Net.

LibGen is used to tailor the library compilation for a particular project using attributes in
the MSS. These attributes are described in theChapter 22, “LibXil File” and Chapter 23,
“LibXil Memory File System” chapters.

1. For more information on Memory File System, please refer to the chapter on LibXil Mfs

2. For more information on Device Drivers, please refer to the chapter on LibXil Driver

Embedded System Tools Guide www.xilinx.com 177
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 20: Xilinx Libraries

178 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

SXILINX®
Chapter 21

LibXil Standard C Libraries

Summary

This chapter describes the software libraries available for the embedded processors.

Overview

The Embedded Processor Design Kit (EDK) libraries and device drivers provide standard
C library functions, as well as functions to access peripherals. The EDK libraries are
automatically configured by libgen for every project based upon the Microprocessor
Software Specification file. These libraries and include files are saved in the current
project’s lib and include directories respectively. The -1 and -L options of nb- gcc should
be used to add these directories to its library search paths.

Standard C Library (libc.a)

The standard C library libc.a contains the standard C functions compiled for MicroBlaze or
PowerPC. For a list of all the supported functions refer to the following files in
XILINX_EDK/gnu/processor/platform/include

where
¢ processor = powerpc-eabi or microblaze
+ platform =sol or nt
¢ XILINX_EDK = Installation directory

—ansi.h fastmat h. h nmachi ne/ reent.h stdlib.h utine.h
_syslist.h fecntl.h mal | oc. h regdef.h string.h ut np. h
ar. h float.h mat h. h setjnp.h sys/

assert.h grp.h pat hs. h signal . h term os. h

ctype. h i eeefp. h process. h stdarg. h time.h

dirent.h limts.h pt hread. h stddef. h unctrl.h

errno. h | ocale. h pwd. h stdio.h uni std. h

Programs accessing standard C library functions must be compiled as follows:
nb-gcc C fil es (for MicroBlaze)

power pc- eabi -gcc C fil es (for PowerPC)

Embedded System Tools Guide www.xilinx.com

179
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 21: LibXil Standard C Libraries

The | i bc library is included automatically.
The - I m option should be specified for programs that access libm math functions.

Refer to Chapter 4, “MicroBlaze Application Binary Interface” for information on the C
Runtime Library.

Xilinx C Library (libxil.a)

The Xilinx C library libxil.a contains the following functions for the MicroBlaze Embedded
processor:

_exception_handler.o
_interrupt_handler.o
xil_malloc.o

xil _sbrk.o

Default exception and interrupt handlers are provided. A memory management targeted
for embedded systems is provided in xil_malloc.o file. The | i bxi | . a library is included
automatically.

Programs accessing Xilinx C library functions must be compiled as follows:
nmb-gcc C files

Input/Output Functions

The EDK libraries contains standard C functions for 1/0; such as printf and scanf. These
are large and may not be suitable for embedded processors. In addition, the MicroBlaze
processor library provides the following smaller 1/0 functions:

void print (char *)

This function prints a string to the peripheral designated as standard output in the MSS
file.

voi d putnum (int)

This function converts an integer to a hexadecimal string and prints it to the peripheral
designated as standard output in the MSS file.

void xil_printf (const *char ctrl1, ...)

This function is similar to printf but much smaller in size (only 1KB). It does not have
support for floating point numbers. xil_printf also does not support printing of long long
(i.e 64 bit numbers).

The prototypes for these functions are in st di 0. h.

Please refer to Chapter 18, “Microprocessor Software Specification (MSS)” for information
on setting the standard input and standard output devices for a system.

180

www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Memory Management Functions XX"JNX@

Memory Management Functions

MicroBlaze Processor

Memory management routines such asmal | oc, cal | oc and f r ee can run the gamut of
high functionality (with associated large size) to low functionality (and small size). This
version of the MicroBlaze processor library only supports a simple, small mal | oc, and a
dummy f r ee. Hence when memory is allocated using mal | oc, this memory cannot be
reused.

The _STACK_SI ZE option to nb- gcc specifies the total memory allocated to stack and
heap. The stack is used for function calls, register saves and local variables. All calls to
mal | oc allocate memory from heap. The stack pointer initially points to the bottom (high
end) of memory, and grows toward low memory while the heap pointer starts at low
memory and grows towards high memory. The size of the heap cannot be increased at
runtime. The return value of mal | oc must always be checked to ensure that it could
actually allocate the memory requested.

Please note that whereas nal | oc checks that the memory it allocates does not overwrite
the current stack pointer, updates to the stack pointer do not check if the heap is being
overwritten.

Increasing the _STACK_SI ZE may be one way to solve unexpected program behavior.
Refer to the “Linker Options” section of Chapter 9, “GNU Compiler Tools” for more
information on increasing the stack size.

PowerPC 405 Processor

PowerPC 405 processor supports all standard C library memory management functions
suchasnal l oc(), calloc(), free().

Arithmetic Operations

MicroBlaze Processor

Integer Arithmetic

Integer addition and subtraction operations are provided in hardware. By default, integer
multiplication is done in software using the library function nul si 3_pr oc. Integer
multiplication is done in hardware if the mb-gcc option - mo- x1 - sof t - nul is specified.

Integer divide and mod operations are done in software using the library functions
di vsi 3_pr oc and nodsi 3_pr oc.

Double precision multiplication, division and mod functions are carried out by the library
functions mul di 3_proc, divdi 3_proc and noddi 3_pr oc respectively.
Floating Point Arithmetic

All floating point addition, subtraction, multiplication and division operations are also
implemented using software functions in the C library.

Embedded System Tools Guide www.xilinx.com 181
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

ST XILINX® Chapter 21: LibXil Standard C Libraries

PowerPC 405 Processor

Integer Arithmetic

Integer addition and subtraction operations are provided in hardware. Hence no specific
software library is available for the PowerPC processor.

Floating Point Arithmetic

PowerPC supports all floating point arithmetic implemented in the standard C library.

182 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

SXILINX®
Chapter 22

LibXil File

Scope
Xilinx libraries provide block access to file systems and devices using standard calls such
as open, close, read, write etc. These routines form the LibXil File Module of the Libraries.
A system can be configured to use LibXil File module, using the Library Generator (libgen)
Overview

The LibXil library provides block access to files and devices through the LibXil File
module. This module provides standard routines such as open, close, read, write etc. to
access file systems and devices.

The module LibXil File can also be easily modified to incorporate additional file systems
and devices. This module implements a subset of operating system level functions.

Module Usage

Afile or a device is opened for read and write using the open call in the library. The library
maintains a list of open files and devices. Read and write commands can be issued to
access blocks of data from the open files and devices.

Module Routines

Functions

int open (const char *nane, int flags, int node)

int close (int fd)

int read (int fd, char* buf, int nbytes)

int wite (int fd, char* buf, int nbytes)

int Iseek (int fd, long offset, int whence)

int chdir (const char *buf)

const char* getcwd (void)

Embedded System Tools Guide www.xilinx.com 183
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 22: LibXil File

i nt open (const char *name, int flags, int node)

Parameters name refers to the name of the device/file

flags refers to the permissions of the file. This field does not have
any meaning for a device

mode indicates whether the stream is opened in read, write or
append mode.

Returns file/device descriptor fd assigned by LibXil File

Description This call registers the device or the file in the local device table and
calls the underlying open function for that particular file or a
device.

Includes xilfile.h

Xparameters.h
int close (int fd)

Parameters fd refers to the file descriptor assigned during by open()

Returns If a file is being close, returns the status returned by the underlying
file system. For devices, it returns 1, since devices can not be closed.

0 indicates success in closing a file.
Any other value indicates error

Description Close the file/device with the fd.

Includes xilfile.h
Xparameters.h

int read (int fd, char* buf, int nbytes)

Parameters fd refers to the file descriptor assigned by open()

buf refers to the destination buffer where the contents of the
stream should be copied

nbytes: Number of bytes to be copied
Returns The number of bytes read.

Description Read nbytes from the file/device pointed by the file descriptor fd
and store it in the destination pointed by buf.

Includes xilfile.h
Xparameters.h

184

www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Module Routines S XILINX®

int wite (int fd, char* buf, int nbytes)

Parameters fd: refers to the file descriptor assigned by open()
buf: refers to the source buffer
nbytes: Number of bytes to be copied

Returns The number of bytes written to the file.

Description Write nbytes from the buffer, buf to the file pointed by the file
descriptor fd

Includes xilfile.h
Xparameters.h

int Iseek (int fd, long offset, int whence)

Parameters fd: file descriptor returned by open
offset: Number of bytes to seek

whence: Location to seek from. This parameter depends on the
underlying File System being used.

Returns New file pointer location

Description The Iseek() system call moves the file pointer for fd by offset bytes
from whence.

Includes xilfile.h
Xparameters.h

int chdir (char* newdir)

Parameters newdir: Destination directory

Returns The same value as returned by the underlying file system. -1 for
failure.

Description Change the current directory to newdir

Includes xilfile.h

Xparameters.h

const char* getcwd (void)

Parameters None

Returns The current working directory.

Description Get the absolute path for the current working directory.
Includes xilfile.h

Xparameters.h

Embedded System Tools Guide www.xilinx.com 185
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 22: LibXil File

Libgen Support

LibXil File Instantiation

The users can write application to either interact directly with the underlying file systems
and devices or make use of the LibXil File module to integrate with file systems and
devices.

The Libgen attribute LI BRARY indicates that LibXil File module should be compiled into
the project specific Libraries.

To use Memory File System with LibXil File component, use the following code:

BEG N FI LESYS

parameter FILESYS NAME = Xi| Ms
par anet er PROC_| NSTANCE = procl
parameter MOUNT = "/dev/nfs"
paranmeter LIBRARY = XilFile

END

To access a device through Xilfile add the following to the peripheral description in the mss
file

paranmeter LIBRARY = XilFile

All devices which have stream based input/output mechanism are supported through
LibXil File.

System Initialization

LibGen also generates the system initialization file, which is compiled into the LibXil
library. This file initialized the data structure required by the LibXil File module, such as
the Device tables and the File System table. This routine also initializes the STDIN,
STDOUT and STDERR if present.

Limitations
LibXil File module currently enforces the following restrictions:
* Only one instance of a File System can be mounted. This file system and the mount
point has to be indicated in the Microprocessor Software Specification (MSS) file.
» Files cannot have names starting with /deyv, since it is a reserved word to be used only
for accessing devices
e Currently LibXil File has support only for 1 file system (LibXil Memory File System)
and 3 devices (UART, UARTIite and GPIO).
* Only devices can be assigned as STDIN, STDOUT and STDERR
186 www.Xxilinx.com Embedded System Tools Guide

1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

$7 XILINX®

LibXil Memory File System

Chapter 23

Scope

This document describes the Memory File System (MFS). This file system resides on the
memory and can be accessed through LibXil File module or directly. Memory File System
is integrated with a system using the Library Generator.

Overview

The Memory File System (MFS) component, LibXil MFS, provides users the capability to
manage program memory in the form of file handles. Users can create directories, and can

have files within each directory. The file system can be accessed from the high level C-

language through function calls specific to the file system. Alternatively, the users can also
manage files through the standard C language functions like open provided in XilFile.

MFS Functions

Quick Glance

This section presents a list of functions provided by the MFS. Table 23-1 provides the

function names with signature at a glance. C-like access.

Table 23-1: MFS functions at a glance

Functions

void nfs_init_fs (void)

int nfs_change_dir (char *newdir)

int nfs_delete file (char *fil enane)

int nMfs _create_dir (char *newdir)

int nMfs _delete dir (char *newdir)

int nfs_renane_file (char *fromfile, char *to_file)

int nMfs_exists file (char *fil enane)

int nMfs_get _current _dir_nanme (char *dirnane)

int nfs_get _usage(int *numbl ocks_used, int *num bl ocks_free)
int nMfs file_open (char *filenane, int node)

int nMfs file read (int fd, char *buf, int buflen)

Embedded System Tools Guide

www.Xilinx.com

EDK (v3.1 EA) September 24, 2002 1-800-255-7778

187

http://www.xilinx.com

SUXILINX®

Chapter 23: LibXil Memory File System

Table 23-1: MFS functions at a glance
Functions
int nMfs file wite (int fd, char *buf, int buflen)
int nMfs file close(int fd)
int nfs_file_Iseek (int fd, int offset, int whence)
int mMfs_Is (void)
int nMfs cat (char *fil enane)
int nMfs _copy_stdin_to file (char *fil enane)
int nMfs_file copy (char *fromfile, char *to_file)

Detailed summary of MFS Functions

int nfs_init_fs (void)
Parameters None
Returns 1 for success
0 for failure
Description Initialize the memory file system. This function must be called
before any file system operation.
Includes xilmfs.h
xio.h
int nfs_change_dir (char *newdir)
Parameters newdir is the chdir destination.
Returns 1 for success
0 for failure
Description If newdir exists, make it the current directory of MFS. Current
directory is not modified in case of failure.
Includes xilmfs.h
xio.h
int nfs_delete file (char *fil enane)
Parameters filename: file to be deleted
Returns 1 for success
0 for failure
Description Delete filename from its directory.
Includes xilmfs.h
xio.h
188 www.Xxilinx.com Embedded System Tools Guide

1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

MFS Functions

SXILINX®

int nfs_create_di

Parameters

Returns

Description

Includes

int nfs_delete_di

Parameters

Returns

Description

Includes

int nfs_rename_fi

Parameters

Returns

Description

Includes

int nfs_exists fi

Parameters

Returns

Description

Includes

r (char *newdir)

newdir: Directory name to be created

On success, return index of new directory in the file system
On failure, return 0

Create a new empty directory called newdir inside the current

directory.

xilmfs.h
xio.h

r (char *dirnane)

dirname: Directory to be deleted

On success, return index of new directory in the file system
On failure, return 0

Delete the directory dirname, if it exists and is empty;,

xilmfs.h
xio.h

le (char *fromfile, char *to file)

from_file: Original filename
to_file: New file name

On success, return 1
On failure, return 0

Rename from_file to to_file. Rename works for directories as well as

files. Function fails if to_file already exists.

xilmfs.h
Xio.h

le (char *fil enane)

filename: file/directory to be checked for existence

0: if filename does not exist
1: if filename is a file
2: if filename is a directory

Check if the file/directory is present in current directory.

xilmfs.h
xio.h

Embedded System Tools Guide
EDK (v3.1 EA) September 24, 2002

www.Xilinx.com
1-800-255-7778

189

http://www.xilinx.com

S XILINX® Chapter 23: LibXil Memory File System

int nfs_get_current _dir_nanme (char *dirnane)

Parameters dirname: Current directory name is returned in this pointer
Returns On Success return 0

On failure return 1

Description Return the name of the current directory in a pre allocated buffer,
dirname, of at least 16 chars.Note that it does not return the
absolute path name of the current directory, but just the name of
the current directory

Includes xilmfs.h
xio.h

int nfs_get _usage (int *numbl ocks_used, int *num bl ocks free)

Parameters num_blocks_used: Number of blocks used
num_blocks_free: Number of free blocks

Returns On Success return 0
On failure return 1

Description Get the number of used blocks and the number of free blocks in
the file system through pointers.

Includes xilmfs.h
xio.h

int nMfs file open (char *filenane, int node)

Parameters filename: file to be opened
mode: Read/Write or Create mode.

Returns The index of filename in the array of open files or -1 on failure.

Description Open file filename with given mode.

The function should be used for files and not directories:
MODE_READ, no error checking is done (if file or directory).
MODE_CREATE creates a file and not a directory.
MODE_WRITE fails if the specified file is a DIR.

Includes xilmfs.h
xio.h

190 www.Xxilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

MFS Functions S XILINX®

int nfs file read (int fd, char *buf, int buflen)

Parameters fd: File descriptor return by open
buf: Destination buffer for the read
buflen: Length of the buffer

Returns On Success return number of bytes read.
On Failure return 1

Description Read buflen number bytes and place it in buf. fd should be a valid
index in “open files” array, pointing to a file, not a directory. buf
should be a pre-allocated buffer of size buflen or more. If fewer
than buflen chars are available then only that many chars are read.

Includes xilmfs.h

xio.h
int Mfs file wite (int fd, char *buf, int buflen)

Parameters fd: File descriptor return by open
buf: Source buffer from where data is read
buflen: Length of the buffer

Returns On Success return 1
On Failure return 1

Description Write buflen number of bytes from buf to the file. fd should be a
valid index in open_files array. buf should be a pre-allocated
buffer of size buflen or more.

Includes xilmfs.h
xio.h

int nMfs file close (int fd)

Parameters fd: File descriptor return by open

Returns On success return 1
On failure return 1

Description Close the file pointed by fd. The file system regains the fd and uses
it for new files.
Includes xilmfs.h
xio.h
Embedded System Tools Guide www.xilinx.com 191

EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 23: LibXil Memory File System

int nfs file Iseek (int fd, int offset, int whence)

Parameters

Returns

Description

Includes

int nMfs_|Is (void)

fd: File descriptor return by open
offset: Number of bytes to seek
whence: File system dependent mode:

If whence is MFS_SEEK_END, the offset can be either 0 or negative,
otherwise offset should be non-negative.

If whence is MFS_SEEK_CURR, the offset is calculated from the
current location

If whence is MFS_SEEK_SET, the offset is calculated from the start
of the file

On success, return 1
On failure, return 0

Seek to a given offset within the file at location fd in open_files
array.

Itis an error to seek before beginning of file or after the end of file.

xilmfs.h
xio.h

Parameters None
Returns On success return 1
On failure return 0
Description List contents of current directory on STDOUT.
Includes xilmfs.h
xio.h
int nfs_cat (char *fil enane)
Parameters filename: File to be displayed
Returns On success return 1
On failure return 0
Description Print the file to STDOUT.
Includes xilmfs.h
xio.h
192 www.xilinx.com Embedded System Tools Guide

1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

C-like access S XILINX®

int nfs_copy_stdin_to_file (char *fil enane)

Parameters filename: Destination file.

Returns On success return 1
On failure return 0

Description Copy from STDIN to named file.
Includes xilmfs.h
xio.h

int nfs_file_copy (char *fromfile, char *to_file)

Parameters from_file: Source file
to_file: Destination file

Returns On success return 1
On failure return 0

Description Copy from_file to to_file. It fails if to_file already exists, or if either
could not be opened.

Includes xilmfs.h
xio.h

C-like access

The user can choose not to deal with the details of the file system by using the standard C-
like interface provided by Xil File. It provides the basic C stdio functions like open, close,
read, write, and seek. These functions have identical signature as those in the standard
ANSI-C. Thus any program with file operations performed using these functions can be
easily ported to MFS by interfacing the MFS in conjunction with library Xilfile.

LibGen Customization

Memory file system can be integrated with a system using the following snippet in the mss
file. The memory file system should be instantiated with the name XilMfs. The attributes
used by libgen and their descriptions are given in Table 23-2

BEG N FI LESYS

parameter FILESYS NAME = Xi | Ms
par amet er PROC_| NSTANCE = procl
paranmeter MOUNT = "/dev/nfs"
paranmeter LIBRARY = XilFile

END

Embedded System Tools Guide www.xilinx.com 193
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 23: LibXil Memory File System

Table 23-2: Attributes for including Memory File System

Attributes Description
MOUNT Mount name for the file system.
LIBRARY Set this attribute to XilFile if the file system is accessed through
XilFile component of the Libraries

194 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

$7 XILINX®

LibXil Net

Chapter 24

Summary

This chapter describes the network library for Embedded processors, libXilNet. The library
includes functions to support the TCP/IP stack and the higher level application
programming interface (Socket APIs).

Overview

The Embedded Development Kit (EDK) networking library, libXilNet, allows a processor
to connect to the internet. LibXilNet includes functions for handling the TCP/IP stack
protocols. It also provides a simple set of Sockets Application Programming Interface
(APIs) functions enabling network programming. Lib Xil Net supports multiple

connections (through Sockets interface) and hence enables multiple client support. This
chapter describes the various functions of LibXilNet.

LibXiINet Functions

Quick Glance

Table 24-1 presents a list of functions provided by the LibXilNet at a glance.

Table 24-1: LibXilNet functions at a glance

Functions

int xilsock_init (void)

void xilsock rel _socket (int sd)

int xilsock _socket (int donmain, int type, int proto)

int xilsock_bind (int sd, struct sockaddr* addr, int addrlen)

int xilsock accept (int sd, struct sockaddr* addr,

i nt addrl en)

int xilsock_recvfrom (int s, unsigned char* buf, int

int xilsock_sendto (int s, unsigned char* buf, int

int xilsock recv (int s, unsigned char* buf, int |en)

int xilsock_send (int s, unsigned char* buf, int |en)

void xilsock _close (int s)

void xilnet_mac_init (unsigned int baseaddr)

void xilnet_eth_init_hw addr(unsi gned char *addr)

Embedded System Tools Guide
EDK (v3.1 EA) September 24, 2002

www.Xilinx.com
1-800-255-7778

195

http://www.xilinx.com

S XILINX® Chapter 24: LibXil Net

Table 24-1: LibXilNet functions at a glance
Functions

int xilnet_eth recv_frane (unsigned char* frame, int |en)

int xilnet_eth send frane (unsigned char* frane, int len, void*
daddr, unsigned short type)

voi d xilnet_eth_update_hw_tbl (unsigned char* frame, int proto)

void xilnet_eth_add_hw tbl _entry (unsigned char* ip, unsigned
char* hw)

int xilnet_eth get hw addr (unsigned char* ip)
int xilnet_eth_init_hw addr_tbl (void)
int xilnet_arp (unsigned char* buf, int |en)

void xilnet_arp reply (unsigned char* buf, int |en)

void xilnet_ip_init (unsigned char* ip_addr)

int xilnet_ip (unsigned char* buf, int |en)

void xilnet _ip_header (unsigned char* buf, int len, int proto)

unsi gned short xilnet _ip_cal c_chksum (unsigned char* buf, int
[en, int proto)

int xilnet_udp (unsigned char* buf, int |en)

voi d xilnet_udp_header (struct xilnet_udp_conn conn, unsigned
char* buf, int |en)

unsi gned short xilnet _tcp_udp_cal c_chksum (unsi gned char* buf,
int len, unsigned char* saddr, unsigned char* daddr, unsigned
short proto)

void xilnet_udp_init_conns (void)

i nt xilnet_udp_open_conn (unsigned short port)

int xilnet_udp_close conn (struct xilnet_udp_conn* conn)

int xilnet_tcp (unsigned char* buf, int |en)

void xilnet_tcp _header (struct xilnet_tcp_conn conn, unsigned
char* buf, int |en)

voi d xil net _tcp_send_pkt (struct xilnet_tcp_conn conn, unsigned
char* buf, int len, unsigned char flags)

void xilnet_tcp_init_conns (void)

int xilnet_tcp_open_conn (unsigned short port)

int xilnet_tcp_close conn (struct xilnet_tcp_conn* conn)

int xilnet_icnp (unsigned char* buf, int |en)

void xilnet_icnp_echo reply (usigned char* buf, int |en)

Protocols Supported

LibXilNet supports drivers and functions for the Sockets API and protocols of TCP/IP
stack. The following list enumerates them.

» Ethernet Encapsulation (RFC 894)
e Address Resolution Protocol (ARP - RFC 826)

196 www.Xxilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Library Architecture S XILINX®

« Internet Protocol (IP - RFC 791)

* Internet Control Management Protocol (ICMP - RFC 792)
* Transmission Control Protocol (TCP - RFC 793)

e User Datagram Protocol (UDP - RFC 768)

» Sockets API

Library Architecture

Figure 24-1 gives the architecture of libXilNet. Higher Level applications like HTTP server,
TFTP (Trivial File Transfer Protocol), PING etc., uses API functions to use the libXilNet
library.

PING Application HTTP Server Application TFTP Application

? ? ?

Xilinx Sockets Interface

? Demultiplexing
based on
connections
UDP
ICMP TCP
T Demultiplexing based
on protocol value in
IP Header
ARP P
Demultiplexing based on
frame type in Ethernet Header
Ethernet
Driver
¢ Incoming Frame
MAC
Driver

T

From PHY Interface
LibXilNet Architecture

Figure 24-1: Schematic Diagram of LibXilNet Architecture

Embedded System Tools Guide www.xilinx.com 197
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 24: LibXil Net

Protocol Function Description

A detailed description of the drivers and the protocols supported is given below.

Media Access Layer (MAC) Drivers Wrapper

MAC drivers wrapper initializes the base address of the mac instance specified by the
user.This base address is used to send and receive frames. Ths initialization must be done
before using other functionalites of LibXil Net library. The details of the function prototype
is defined in the section“Functions of LibXilNet”.

Ethernet Drivers

Ethernet drivers perform the encapsulation/removal of ethernet headers on the payload in
accordance with the RFC 894. Based on the type of payload (IP or ARP), the drivers call the
corresponding protocol callback function. A Hardware Address Table is maintained for
mapping 48-bits ethernet address to 32-bits IP address.

ARP (RFC 826)

Functions are provided for handling ARP requests. An ARP request (for the 48-bit
hardware address) is acknowledged with the 48-bit ethernet address in the ARP reply.
Currently, ARP request generation for a desired IP address is not supported. The
Hardware address table is updated with the new IP/Ethernet address pair if the ARP
request is destined for the processor.

IP (RFC 791)

IPv4 datagrams are used by the higher level protocols like ICMP, TCP, and UDP for
receiving/sending data. A callback function is provided for ethernet drivers which is
invoked whenever there is an IP datagram as a payload in an ethernet frame. Minimal
processing of the source IP address check is performed before the corresponding higher
level protocol (ICMP, TCP, UDP) is called. Checksum is calculated on all the outgoing IP
datagrams before calling the ethernet callback function for sending the data. An IP address
for a Embedded Processor needs to be programmed before using it for communication. An
IP address initializing function is provided. Refer to the table describing the various
routines for further details on the function. Currently no IP fragmentation is performed on
the outgoing datagrams. The Hardware address table is updated with the new IP/Ethernet
address pair if an IP packet was destined for the processor.

ICMP (RFC 792)

ICMP functions handling only the echo requests (ping requests) are provided. Echo
requests are issued as per the appropriate requirements of the RFC (Requests For
Comments).

UDP (RFC 768)

UDRP is a connectionless protocol. The UDP callback function, called from the IP layer,
performs the minimal check of source port and strips off the UDP header. It demultiplexes
from the various open UDP connections. A UDP connection can be opened with a given
source port number through Socket functions. Checksum calculation is performed on the

198 www.Xxilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Current Restrictions XX"JNX@

outgoing UDP datagram. The number of UDP connections that can be supported
simultaneously is configurable.

TCP (RFC 793)

TCP is a connection-oriented protocol. Callback functions are provided for sending and
receiving TCP packets. TCP maintains connections as a finite state machine. On receiving
a TCP packet, minimal check of source port correctness is done, before demultiplexing the
TCP packet from the various TCP connections. Necessary action for the demultiplexed
connection is taken based on the current machine state. A status flag is returned to indicate
the kind of TCP packet received to support connection management. Connection
management has to be done at the application level using the status flag received from
TCP. Checksum is calculated on all outgoing TCP packets. The number of TCP connections
that can be supported simultaneously is configurable.

Sockets API

Functions for creating sockets (TCP/UDP), managing sockets, sending and receiving data
on UDP and TCP sockets are provided. High level network applications need to use these
functions for performing data communication. Refer to Table 24-1 for further details.

Current Restrictions

Certain restrictions apply to the EDK libXilNet library software. These are

e Only server functionalities for ARP - This means ARP requests are not being
generated from the processor

* Only server functionalities in libXilNet - This means no client application
development support provided in libXilNet.

* Notimersin TCP - Since there are no timers used, every "send" over a TCP connection
waits for an "ack" before performing the next "send".

Functions of LibXilNet

The following table gives the list of functions in libXilNet and their descriptions

int xilsock_init (void)

Parameters None
Returns 1 for success and 0 for failure
Description Initialize the xilinx internal sockets for use.
Includes xilsock.h
Embedded System Tools Guide www.xilinx.com 199

EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 24: LibXil Net

voi d xilsock_rel _socket (int sd)

Parameters sd is the socket to be released.

Returns None

Description Free the system level socket given by the socket descriptor sd
Includes xilsock.h

int xilsock socket (int donmain, int type, int proto)

Parameters domain: Socket Domain
type: Socket Type
proto: Protocol Family

Returns On success, return socket descriptor
On failure, return -1

Description Create a socket of type, domain and protocol proto and returns the
socket descriptor. The type of sockets can be:

SOCK_STREAM (TCP socket)
SOCK_DGRAM (UDP socket)
domain value currently is AF_INET

proto refers to the protocol family which is typically the same as
the domain.

Includes xilsock.h
int xilsock _bind (int sd, struct sockaddr* addr, int addrlen)

Parameters sd: Socket descriptor
addr: Pointer to socket structure
addrlen: Size of the socket structure

Returns On success, return 1
On failure, return -1

Description Bind socket given the descriptor sd to the ip address/port number
pair given in structure pointed to by addr of len addrlen. addr is the
typical socket structure.

Includes Xilsock.h

200 www.Xxilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Functions of LibXilNet

SXILINX®

int xilsock_accept (int sd, struct sockaddr* addr, int *addrl en)

Parameters

Returns

Description

Includes

sd: Socket descriptor
addr: Pointer to socket structure
addrlen: Pointer to the size of the socket structure

On success, return socket descriptor

On failure, return -1

Accepts new connections on socket sd. If a new connection request
arrives, it creates a new socket nsd, copies properties of sd to nsd,
returns nsd. If a packet arrives for an existing connection, returns

0 and sets the xilsock_status_flag global variable. The various
values of the is flag are:

XILSOCK_NEW_CONN
XILSOCK_CLOSE_CONN
XILSOCK_TCP_ACK

for new connection, closed a connection and acknowledgment for
data sent for a connection correspondingly.

This function implicitly polls/waits on a packet from MAC.
Arguments addr and addrlen are in place to support the standard
Socket accept function signature. At present, they are not used in
the accept function.

xilsock.h

int xilsock recvfrom(int s, unsigned char* buf, int |en)

Parameters

Returns
Description

Includes

s: UDP socket descriptor
buf: Buffer to receive data
len: Buffer size

Number of bytes received

Receives data (maximum length of len) from the UDP socket s in
buf and returns the number of bytes received.

xilsock.h

int xilsock_sendto (int s, unsigned char* buf, int |en)

Parameters s: UDP socket descriptor
buf: Buffer containing data to be sent
len: Buffer size

Returns Number of bytes received

Description Sends data of length len in buf on the UDP socket s and returns the
number of bytes sent.

Includes xilsock.h

Embedded System Tools Guide www.xilinx.com 201

EDK (v3.1 EA) September 24, 2002

1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 24: LibXil Net

int xilsock _recv (int s, unsigned char* buf, int |en)

Parameters s: TCP socket descriptor
buf: Buffer to receive data
len: Buffer size

Returns Number of bytes received

Description Receives data (maximum length of len) from the TCP socket s in
buf and returns the number of bytes received.

Includes xilsock.h
int xilsock_send (int s, unsigned char* buf, int |en)

Parameters s: TCP socket descriptor
buf: Buffer containing data to be sent
len: Buffer size

Returns Number of bytes received

Description Sends data of length len in buf on the UDP socket s and returns the
number of bytes sent.

Includes xilsock.h

voi d xilsock _close (int s)

Parameters s: socket descriptor
Returns None
Description Closes the socket connection given by the descriptor s. This

function has to be called from the application for a smooth
termination of the connection after a connection is done with the
communication.

Includes xilsock.h

void xilnet _mac_init (unsigned int baseaddr)

Parameters baseaddr: Base address of the MAC instance used in a system
Returns None
Description Initialize the MAC base address used in the libXil Net library to

baseaddr. This function has to be called at the start of a user
program with the base address used in the MHS file for ethernet
before starting to use other functions of libXil Net library.

Includes mac.h

202 www.Xxilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Functions of LibXilNet XX"JNX@

void xilnet_eth_init_hw addr (unsigned char* addr)

Parameters addr: 48-bit colon separated hexa decimal ethernet address string
Returns None
Description Initialize the source ethernet address used in the libXil Net library

to addr. This function has to be called at the start of a user program
with a 48-bit, colon separated, hexa decimal ethernet address
string for source ethernet address before starting to use other
functions of libXil Net library. This address will be used as the
source ethernet address in all the ethernet frames.

Includes xilsock.h
mac.h

int xilnet_eth recv_frane (unsigned char* frame, int |en)

Parameters frame: Buffer for receiving an ethernet frame
len: Buffer size

Returns Number of bytes received

Description Receives an ethernet frame from the MAC, strips the ethernet
header and calls either ip or arp callback function based on frame
type. This function is called from accept /receive socket functions.
The function receives a frame of maximum length len in buffer
frame.

Includes xilsock.h
mac.h

void xi Il net_eth_send_frame (unsigned char* frane, int | en, unsigned
char* di paddr, void *dhaddr, unsigned short type)

Parameters frame: Buffer for sending a ethernet frame
len: Buffer size
dipaddr: Pointer to the destination ip address
dhaddr: Pointer to the destination ethernet address
type: Ethernet Frame type (IP or ARP)

Returns None

Description Creates an ethernet header for payload frame of length len, with
destination ethernet address dhaddr, and frame type, type. Sends
the ethernet frame to the MAC. This function is called from
receive/send (both versions) socket functions.

Includes xilsock.h
mac.h
Embedded System Tools Guide www.xilinx.com 203

EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 24: LibXil Net

void xil net_eth_update_hw tbl (unsigned char* frame, int proto)

Parameters frame: Buffer containing an ethernet frame
proto: Ethernet Frame type (IP or ARP)

Returns None

Description Updates the hardware address table with ipaddress/hardware
address pair from the ethernet frame pointed to by frame. proto is
used in identifying the frame (ip/arp) to get the ip address from the
ip/arp packet.,

Includes xilsock.h
mac.h

void xi |l net _eth_add_hw tbl _entry (unsi gned char* ip, unsigned char*

hw)
Parameters ip: Buffer contains ip address
hw: Buffer containing hardware address
Returns None
Description Add an ip/hardware pair entry given by ip/hw into the hardware
address table
Includes xilsock.h

mac.h

int xilnet_eth_get_hw addr (unsigned char* ip)

Parameters ip: Buffer containing ip address

Returns Index of entry in the hardware address table that matches the ip
address

Description Receives an ethernet frame from the MAC, strips the ethernet

header and calls either ip or arp callback function based on the
frame type. This function is called from accept /receive socket
functions. The function receives a frame of maximum length len in
buffer frame.

Includes xilsock.h
mac.h

204 www.Xxilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Functions of LibXilNet XX"JNX@

void xilnet_eth_init_hw addr_tbl (void)

Parameters None
Returns None
Description Initializes Hardware Address Table. This function must be called
in the user program before using other functions of LibXilNet.
Includes xilsock.h
mac.h

int xilnet_arp (unsigned char* buf, int |en)

Parameters buf; Buffer for holding the ARP packet
len: Buffer size

Returns 0

Description This is the arp callback function. It gets called by the ethernet
driver for arp frame type. The arp packet is copied onto the buf of
length len.

Includes xilsock.h

void xilnet_arp reply (unsigned char* buf, int |en)

Parameters buf: Buffer containing the ARP reply packet
len: Buffer size

Returns None

Description This function sends the arp reply, present in buf of length len, for
arp requests. It gets called from the arp callback function for arp
requests.

Includes xilsock.h

void xilnet_ip_init (unsigned char* ip_addr)

Parameters ip_addr: Array of four bytes holding the ip address to be
configured

Returns None

Description This function initializes the ip address for the processor to the

address represented in ip_addr as a dotted decimal string. This
function must be called in the application before any
communication.

Includes xilsock.h

Embedded System Tools Guide www.xilinx.com 205
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 24: LibXil Net

int xilnet_ip (unsigned char* buf, int |en)

Parameters buf: Buffer for holding the IP packet
len: Buffer size
Returns 0
Description This is the ip callback function. It gets called by the ethernet

driver for ip frame type. The ip packet is copied onto the buf of
length len. This function calls in the appropriate protocol callback
function based on the protocol type.

Includes xilsock.h
void xilnet_ip_header (unsigned char* buf, int len, int proto)

Parameters buf; Buffer for the ip packet
len: Length of the ip packet
proto: Protocol Type in IP packet
Returns None

Description This function fills in the ip header from the start of buf. The ip
packet is of length len and proto is used to fill in the protocol field
of ip header. This function is called from the receive/send (both
versions) functions.

Includes xilsock.h

unsi gned short xilnet_ip_cal c_chksum (unsigned char* buf, int |en,

i nt proto)

Parameters buf; Buffer containing ip packet
len: Length of the ip packet

Returns checksum calculated for the given ip packet

Description This function calculates the checksum for the ip packet buf of
length len. This function is called from the ip header creation
function.

Includes xilsock.h

206 www.Xxilinx.com Embedded System Tools Guide

1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Functions of LibXilNet XX"JNX@

int xilnet_udp (unsigned char* buf, int |en)

Parameters buf: Buffer containing the UDP packet
len: Length of the UDP packet

Returns Length of the data if packet is destined for any open UDP
connections else returns 0

Description This is the udp callback function which is called when ip receives
a udp packet. This function checks for a valid udp port, strips the
udp header, and demultiplexes from the various UDP connections
to select the right connection.

Includes xilsock.h

voi d xi | net _udp_header (struct xilnet_udp_conn conn, unsi gned char*
buf, int Ien)

Parameters conn: UDP connection
buf: Buffer containing udp packet
len: Length of udp packet

Description This function fills in the udp header from the start of buf for the
UDP connection conn. The udp packet is of length len. This
function is called from the receivefrom/sendto socket functions.

Includes xilsock.h

unsi gned short xilnet _udp_tcp_cal c_chksum (unsi gned char* buf, int
I en, unsigned char* saddr, unsigned char* daddr, unsigned short

pr ot 0)

Parameters buf; Buffer containing UDP/TCP packet
len: Length of udp/tcp packet
saddr: IP address of the source
daddr: Destination IP address
proto: Protocol Type (UDP or TCP)
Returns the

Returns Checksum calculated for the given udp/tcp packet

Description This function calculates and fills the checksum for the udp/tcp
packet buf of length len. The source ip address (saddr), destination
ip address(daddr) and protocol (proto) are used in the checksum
calculation for creating the pseudo header. This function is called
from either the udp header or the tcp header creation function.

Includes xilsock.h

Embedded System Tools Guide www.xilinx.com 207

EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 24: LibXil Net

void xilnet_udp_init_conns (void)

Parameters
Returns

Description

Includes

None
None

Initialize all UDP connections so that the states of all the
connections specify that they are usable.

xilsock.h

nt xilnet_udp_open_conn (unsigned short port)

Parameters
Returns
Description

Includes

port: UDP port number
Connection index if able to open a connection. If not returns -1.
Open a UDP connection with port number port.

xilsock.h

nt xilnet_udp_close_conn (struct xilnet_udp_conn *conn)

Parameters
Returns
Description

Includes

conn: UDP connection
1 if able to close else returns -1.
Close a UDP connection conn.

xilsock.h

nt xilnet_tcp (unsigned char* buf, int |en)

Parameters

Returns

Description

Includes

buf: Buffer containing the TCP packet
len: Length of the TCP packet

A status flag based on the state of the connection for which the
packet has been received

This is the tcp callback function which is called when ip receives a
tcp packet. This function checks for a valid tcp port and strips the
tcp header. It maintains a finite state machine for all TCP
connections. It demultiplexes from existing TCP open/listening
connections and performs an action corresponding to the state of
the connection. It returns a status flag which identifies the type of
TCP packet received (data or ack or fin).

xilsock.h

208

www.Xilinx.com
1-800-255-7778

Embedded System Tools Guide
EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Functions of LibXilNet XX"JNX@

voi d xi | net _tcp_header (struct xilnet_tcp_conn conn, unsi gned char*
buf, int |en)

Parameters conn: TCP connection
buf: Buffer containing tcp packet
len: Length of tcp packet

Returns None

Description This function fills in the tcp header from the start of buf for the TCP
connection conn. The tcp packet is of length len. It sets the flags in
the tcp header.

Includes xilsock.h

void xilnet_tcp_send_pkt (struct xilnet_tcp_conn conn, unsigned
char* buf, int len, unsigned char flags)

Parameters conn: TCP connection
buf: Buffer containing TCP packet
len: Length of tcp packet

Returns The checksum calculated for the given udp/tcp packet

Description This function sends a tcp packet, given by buf of length len, with
flags (ack/rst/fin/urg/psh) from connection conn.

Includes xilsock.h

void xilnet_tcp_init_conns (void)

Parameters None
Returns None
Description Initialize all TCP connections so that the states of all the

connections specify that they are usable.

Includes xilsock.h

int xilnet_tcp_open_conn (unsigned short port)

Parameters port: TCP port number
Returns Connection index if able to open a connection. If not returns -1.
Description Open a TCP connection with port number port.
Includes xilsock.h
Embedded System Tools Guide www.xilinx.com 209

EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 24: LibXil Net

int xilnet_tcp_close _conn (struct xilnet_tcp_conn *conn)

Parameters
Returns
Description

Includes

int xilnet_icnp (

Parameters

Returns

Description

Includes

void xilnet_icnp_

Parameters

Returns

Description

Includes

LibGen Customization

conn: TCP connection
1 if able to close else returns -1.
Close a TCP connection conn.

xilsock.h
unsi gned char* buf, int |en)

buf: Buffer containing ICMP packet
len: Length of the ICMP packet

0

This is the icmp callback function which is called when ip receives
a icmp echo request packet (ping request). This function checks
only for a echo request and sends in an icmp echo reply.

xilsock.h
echo_reply (unsigned char* buf, int |en)

buf: Buffer containing ICMP echo reply packet
len: Length of the ICMP echo reply packet
None

This functions fills in the icmp header from the start of buf. The
icmp packet is of length len. It sends the icmp echo reply by calling
the ip, ethernet send functions. This function is called from the
icmp callback function.

xilsock.h

XilNet library is customized through LibGen tool. Here is a snippet from system.mss file
for specifying LibXilNet.

BEG N DRI VER

PARAMETER HW | NSTANCE = nyet her
PARAVETER DRI VER_NAME = enac
PARAMETER DRI VER VER = 1.00.b
PARAMETER LI BRARY = Xi | Net

END

BEG N PROCESSCR

PARAVETER HW. | NSTANCE
PARAVETER DRI VER _NAME

PPCA05_i
cpu_ppc405

PARAMETER DRI VER VER = 1.00. a
PARAVETER EXECUTABLE = ppc405_i/ code/ execut abl e. el f

PARAMETER COWPI LER
PARAVETER ARCHI VER

power pc- eabi - gcc
power pc- eabi - ar

210

www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Using XilNet in Application XX"JNX@

PARAVETER DEFAULT_I NI T=execut abl e

PARAMETER STDI N = nyuart

PARAMETER STDQUT = myuart

PARAMETER EXTRA_COWPI LER FLAGS = "-D_CONFI G_EMAC "
END

LibXilNet can be used with either the regular ethernet core or the lite version, ethernetlite.

When used with the the regular emac core, the following line should be added to the
processor declaration block in system.mss

PARAMETER EXTRA_COWPI LER FLAGS = "-D_CONFI G_EMAC "

When XilNet is used with ethernetlite core, the following line should be added to the
processor declaration block in system.ms.

PARAMETER EXTRA_COWVPI LER_FLAGS = "-D_CONFI G_EMACLI TE_

Using XilNet in Application
In order to use the XilNet functions in your application, you need to do the following:

e Define “#i ncl ude <net/ xi | sock. h>"in your C-file.

» XilNet is designed to be used with any Media Access Control Protocol (for example,
ethernet, SLIP, PPP. Currently it supports only ethernet protocol). In order to choose
the right MAC protocol, the compiler flag, -D_CONFIG_ETH_, should be added to
the compiler flags used for compiling your sources.

Embedded System Tools Guide www.xilinx.com 211
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 24: LibXil Net

212 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

SXILINX®
Chapter 25

LibXil Kernel

Summary
This chapter describes the kernel for Embedded processors, libXil Kernel.
Overview
LibXilKernel has the key features of RTOS like multi-tasking, priority-driven preemptive
scheduling, support for Inter-Process communication and synchronization. It is small,
modular, user customizable and can be used in any system configuration. It also has
system call interface, which allows a system to be built in different configurations.
Features

LibXilKernel supports the following features:

Process Management
Thread Management
Interrupt Handling
System Call Interface
Semaphore

Message Queue
Shared Memory

* & & 6 O o o o

Dynamic Buffer Allocation

LibXilKernel Blocks

The kernel is highly modular. The user can select and customize the kernel modules that
are needed for the application.The customizing of the kernel is discussed in
“Customization” section in detail. Figure 25-1 shows the various modules of the Xilinx
embedded kernel.

Embedded System Tools Guide www.xilinx.com 213
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 25: LibXil Kernel

Kernel Modules
User Application
Webserver User Interrupts
I
|
System Call : Timer Interrupt for
Library | Context Switch
|
1
LibXilKernel }
Y ¥ \
System Call Hander Interrupt Handler
Thread Process
Management Management Sl
Message Shared Dynamic Buffer
Queue Memory Management
P - P! I
| XilNet Pl Xilfile || XilMfs
[Jintegrated Modules {___i Non-Integrated Modules

X9875

Figure 25-1: Kernel Modules

Process Management

The kernel supports multi-processing and has two different scheduling schemes. A
process (thread) is an unit of scheduling in the kernel. Each process is associated with a
Process Control Block (PCB), that contains information about the process. A process is
created and handled using the APls. Each process is in any of the following four states.

PROC_NEW
PROC_READY
PROC_RUN
PROC_WAIT

Figure 25-2 shows the process state flow in the system.

¢
¢
¢
¢

214 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Process Management 27 XILINX®

process_exit
process_create context switch process_Kkill

thread_create thread_exit
— PROC_NEW (PROC_READY) PROC_RUN

/ context switch |
process_yield

process_unblock process_block

process_unblock

i

(PROC_WAIT)
X9874

Figure 25-2: Process State Flow

The kernel supports the following two scheduling scheme.

¢ Round Robin scheduling (SCHED_RR)
¢ Pre-emptive Priority scheduling (SCHED_PRIO)

The scheduling scheme is selected during system initialization and cannot be changed
dynamically.

Functions of Process Management

The following functions relate to process management. Most of the functions are optional
and can be selected during system initialization. Refer “Customizing Process
Management” section for more details.

void sys_init(void)

Parameters None
Returns None
Description Initialize the system. This is called at the start of the system.

¢ Initialize the Process Vector Table
¢ Create an idle task (PID - 0)
¢ Create the initial set of processes

Includes sys/process.h

Embedded System Tools Guide www.xilinx.com 215
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 25: LibXil Kernel

int process_create(unsigned int start_addr, int priority)

Parameters start_addr is the start address of the process

priority is the priority of the process in the system. The priority
cannot be changed when the process is active

Returns On success, return the PID of the new process
On failure, return -1

Description Create a new process. Allocate a new PID and Process Control
Block (PCB) for the process.The process is placed in the Ready
Queue.

Includes sys/process.h

int process_exit(void)

Parameters None
Returns None
Description Remove the process from the system.

This function is optional.

Includes sys/process.h
int process_Kkill(char pid)

Parameters pid is the PID of process to kill

Returns On success, return 0
On failure, return -1

Description Remove or kill the process with process ID, pid. This function
should be used with care, as any process can Kill other process.

This function is optional.

Includes sys/process.h
int process_status(int pid, p_stat *ps)

Parameters pid is the PID of process
ps is the buffer where the process status is returned

Returns On success, return process status in ps
On failure, return NULL in ps

Description Get the process status. The status is returned in structure p_stat
which has the following fields:

+ pidis the process ID
+ state is the current state of the process

Includes sys/process.h

216 www.Xxilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Thread Management XX"JNX@

int process_yield(void)

Parameters None
Returns None
Description Yield the processor to the next process.The current process goes to

PROC_READY state.
This function is optional.

Includes sys/process.h

int process_getpriority(void)

Parameters None

Returns Priority of the current process or thread
Description Get the priority of process or thread.
Includes sys/process.h

int process_setpriority(int priority)

Parameters priority is the new priority of process or thread

Returns On success, return 0
On failure, return -1

Description Set the priority of current process or thread to new value.

Includes sys/process.h

Thread Management

Threads are light weight processes.They share the same code segment with other threads
but have their own thread context, which is allocated when the threads are created. A
thread is handled in the same way as a process.

Functions of Thread Management

The following functions relate to thread management. The thread module is optional and
can be selected during system initialization. Refer “Customizing Thread Management”
section for more details.

Embedded System Tools Guide www.xilinx.com 217
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 25: LibXil Kernel

int thread_create(void *funcp, unsigned int arg, int priority)

Parameters funcp is the start address of the function from which the thread
starts to execute

arg is the argument to the thread function
priority is the priority of the thread

Returns On success, return the thread ID (PID) of the new thread
On failure, return -1

Description Create a new thread. The thread starts its execution from the start
function.

This function is optional.

Includes sys/process.h

int thread_exit(void)

Parameters None
Returns None
Description Remove the current thread from the system

This function is optional.

Includes sys/process.h

Interrupt Handling

The interrupt handler can be specified in the MSS file. Libgen generates the interrupt
controller routine for handling interrupts. The kernel only supports timer interrupt. This
interrupt is used as a timer tick to perform context switching between processes. The timer
interrupt is initialized and started during system start. The timer tick interval can be
customized by the user based on the application. Refer “Customization” section for more
details.

System call interface

The system can be built in two different configuration.

The user application can be built as part of the kernel; as a single application. Threads can
be used to support concurrent processing. In this case the kernels system call’s can be
directly accessed by the user application. Each system call name is prefixed by sys when
called directly. This configuration can be used if the system has only a single application
running.

If the system has multiple application’s running; then each application can be built as a
separate process. The kernel is built as a separate central process in this configuration. The
application can access the kernel services through the system call interface. The application
should be linked to libw.a library, which has the system call wrappers. The kernel services
can be configured during system initialization. Refer “Customization” section for more
details.

218 www.Xxilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Semaphore S XILINX®

Semaphore

Semaphore is used for Inter-Process Communication and Synchronization. A semaphore
can be used as a binary or integer semaphore.The number of semaphores and the length of
semaphore wait queue can be configured during system initialization. Refer “Functions of
Semaphore” section for more details.

The semaphore structure is declared in sys/sema.h. It contains the following fields.

¢ sema_id - semaphore ID
¢+ count - available resource count
¢ wait_q - queue of processes waiting for the resource

Functions of Semaphore

The following functions relate to semaphores. The semaphore module is optional and can
be configured during system initialization.

Note: Message Queue module uses semaphores, so this needs to be included if message
gueue is to be used.

int sema_init(semaphore **sema, char count)

Parameters sema is the semaphore structure which is returned when a new
semaphore is created

count is the resource count for the semaphore

Returns On success, sema is assigned a new semaphore and 0 is returned
On failure, return -1

Description Initialize and create the semaphore.

Includes sys/sema.h
int sema_wait(semaphore *sema)

Parameters sema is the semaphore structure returned by calling sema_init

Returns On success, return 0
On failure, return -1

Description Get the semaphore resource. If the resource is available then get
the resource else block the process.
Includes sys/sema.h
Embedded System Tools Guide www.xilinx.com 219

EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 25: LibXil Kernel

int sema_trywait(semaphore *sema)

Parameters sema is the semaphore structure returned by calling sema_init

Returns On success, return 0
On failure, return -1

Description Try to get the semaphore resource. If the resource is available then
get the resource else return error. This is a non-blocking function.

Includes sys/sema.h
int sema_post(semaphore *sema)

Parameters sema is the semaphore structure returned by calling sema_init

Returns On success, return 0
On failure, return -1

Description Free the semaphore resource or signal the availability of
semaphore resource. If any process is waiting on this resource,
then unblock the process.

Includes sys/sema.h

int sema_destroy(semaphore *sema)

Parameters sema is the semaphore structure returned by calling sema_init

Returns On success, return 0
On failure, return -1

Description Release the semaphore.

Includes sys/sema.h

Message Queue

Message Queue is used for Inter-Process Communication. The message queue size and
number can be configured during system initialization. Refer “Customizing Message
Queue” section for more details. Message queue internally uses semaphores, so
semaphore module should be included to use message queue.

The message queue structure struct msgid_ds has the following fields.

msgid - the message queue ID.

.
+ key - key used to identify the message queue.
¢ msgsize - the message size in the queue.

.

maxmsg - message queue maximum length.

Functions of Message Queue

The following functions relate to message queue. Message queue module is optional and
can be included when the system is built.

220 www.Xxilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Message Queue S XILINX®

int msgget(int key, int msgsize, int maxmsg, int flag)

Parameters key is used to uniquely identify the Message Queue
msgsize is the size of the message
maxmsg is the maximum number of messages in the queue
flag is used to identify IPC options

Returns On success, return unique message queue ID
On failure, return -1

Description Create a new message queue, if none with the given key exists.

If flag = IPC_CREAT, then return existing message queue ID for
the given key

If flag = IPC_EXCL, then return -1 if message queue for the key
exists.

Includes sys/msg.h
sys/ipc.h

int msgctl(int msgid, int cmd, struct msgid_ds *buf)

Parameters msgid is the message queue 1D got from msgget
cmd is the command to the control function
buf is the buffer where the status is returned

Returns On success, return 0. Status is returned in buf for IPC_STAT
On failure, return -1

Description Control the message queue.
If cmd = IPC_STAT, the return the message queue status in buf
If cmd = IPC_RMID, then remove the message queue

Includes sys/msg.h
sys/ipc.h
Embedded System Tools Guide www.xilinx.com 221

EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 25: LibXil Kernel

int msgsend(int msgid, const void *msg, int nbytes, int flag)

Parameters msgid is the message queue 1D got from msgget
msg is the message to send
nbytes is the size of the message
flag is used to specify IPC options

Returns On success, return 0
On failure, return -1

Description Send the message, if space is available on the message queue.

If queue is full, then wait for queue space.This is a blocking
function.

If flag = IPC_NOWAIT and queue is full, then return error.
Note: nbytes is not used. The message size specified during
msgget is used for a message.

Includes sys/msg.h
sys/ipc.h

int msgrecv(int msgid, void *msg, int nbytes, int type, int flag)

Parameters msgid is the message queue 1D got from msgget
msg is the buffer where the message is received
nbytes is the size of the message
type is used to specify receiving options
flag is used to specify IPC options

Returns On success, return 0
On failure, return -1

Description Receive the message in the message queue. The message is
received in a FIFO fashion. If queue is empty, then wait for

message in queue. If flag = IPC_NOWAIT and queue is empty;,
then return error.

Note:

nbytes is not used. The message size specified during msgget is
used for a message.

type is not used.

Includes sys/msg.h
sys/ipc.h

Shared Memory

Shared memory is used for Inter-Process Communication. The number of shared memory
and its size can be configured. Refer “Customizing Shared Memory” section for more
details.

222 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Shared Memory

SXILINX®

The shared memiry structure struct shmid_ds has the following fields.

shmid - shared memory ID.

size - the size of the shared memory segment.

.
+ key - key to identify the shared memory segment.
.
.

nattach - number of processes currently attached to the shared memory.

Functions of Shared Memory

The following functions relate to shared memory. Shared memory module is optional and
can be included when the system is built.

int shmget(int key, int size, int flag)

Parameters

Returns

Description

Includes

key is used to uniquely identify the shared memory
size is the size of the shared memory segment
flag is used to specify IPC options

On success, return unique shared memory ID

On failure, return -1

Create a new shared memory segment, if none with the given key
exists.

If flag = IPC_CREAT, then return existing shared memory ID for
the given key

If flag = IPC_EXCL, then return -1 if shared memory for the key
exists.

sys/shm.h

sys/ipc.h

int shmctl(int shmid, int cmd, struct shmid_ds *buf)

Parameters shmid is the shared memory got from shmget
cmd is the command to the control function
buf is the buffer where the status is returned
Returns On success, return 0. Status is returned in buf for IPC_STAT
On failure, return -1
Description Control the shared memory.
If cmd = IPC_STAT, the return the shared memory status in buf
If cmd = IPC_RMID, then remove the shared memory
Includes sys/shm.h
sys/ipc.h
Embedded System Tools Guide www.xilinx.com 223

EDK (v3.1 EA) September 24, 2002

1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 25: LibXil Kernel

void *shmat(int shmid, void *addr, int flag)

Parameters shmid is the shared memory got from shmget

addr is used to specify the location, to attach shared memory
segment

flag is used to specify IPC options

Returns On success, return the start address of the shared memory
segment

On failure, return NULL

Description Returns the shared memory segment for shmid.
Note: addr and flag arguments are not used.

Includes sys/shm.h
sys/ipc.h

int shmdt(void *addr)

Parameters addr is the shared memory address got from shmat

Returns On success, return 0
On failure, return -1

Description Detach the shared memory segment. The memory segment is not
removed from the system and can be attached later.

Includes sys/shm.h
sys/ipc.h

Dynamic Buffer Management

The kernel provides a simple buffer management scheme, which can be used by
applications that need dynamic memory allocation. The application can use the standard
‘c’ memory allocation routines.

The user can select different memory blocks sizes and number of such memory blocks
required for the application. The memory blocks and the total memory needed by the
system is allocated statically and can be configured by the user. Refer , “Customizing
Dynamic Buffer Management” section for more details.

This method of buffer management provides user the flexibility of using dynamic memory
allocation functions. And also a simple, small and fast way of allocating memory.

Functions of Dynamic Buffer Management

The following functions relate to buffer allocation. This module is optional and can be
included during system initialization.

224 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Customization

SXILINX®

void *bufmalloc(unsigned int size)

Parameters size is the size of memory to allocate

Returns On success, return the start address of memory block
On failure, return NULL

Description Allocate memory to the user process

Includes sys/mem.h

void buffree(void *mem)

Parameters mem is the address of the memory block got from bufmalloc
Returns None

Description Free the memory allocated by bufmalloc.

Includes sys/mem.h

Customization

LibXilKernel is highly customizable. Most of the modules and individual parameters can
be changed to suit the user application. The user can directly modify the config files and
build a system. Most configuration parameters are macros and some constant structures
definitions. The following files should be modified to configure the system.

+ os_config.h

¢ config_param.h
+ config_cparam.h
¢+ sys/init.c

The libxilkernel source is in lib/unsupported/xilkernel of EDK installation. All file paths
are relative to this directory. The include files are in the include directory. Structures used
for configuring start processes, message queue, shared memory and dynamic buffer
management are declared in sys/init.h file. Following are the various structures:

struct _process_init - Information about the process.
¢ unsigned int p_start_addr - Start address of the process.
¢ intpriority - Priority of the process.

struct _msgq_init - Information about each Message Queue.

¢ unsigned int msg_size - Size of the message.
+ char msgq_len - Message queue length.

struct _shm_config - Information about each shared memory segment.
¢ unsigned int shm_size - Shared memory size.
struct _malloc_init - Information about the memory blocks.

¢ unsigned int mem_bsize - The size of the memory block.
¢ char n_blocks - Number of memory blocks to allocate.

The following sections describe customizing the different modules.

Embedded System Tools Guide www.xilinx.com 225
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 25: LibXil Kernel

Customizing Process Management

The user can select the maximum number of processes in the system, the different
functions needed to handle processes, the scheduling types, priorities and other
parameters.

The os_config.h file can be used to configure the following.

MAX_PROCS - maximum number of processes in the system
MAX_READYQ - maximum size of Ready queue for each priority
CONFIG_PROCESS_EXIT - Include process_exit() function
CONFIG_PROCESS_KILL - Include process_kill() function
CONFIG_PROCESS_YIELD - Include process_yield() function

The following macros are used to configure the scheduling scheme.

TIMER_TICKS - Timer tick value used for context switching

SCHED_TYPE - Select the type of scheduling scheme. The two different scheduling
schemes and their configuration is specified in config_param.h file.

SCHED_RR - Round Robin Scheduling.
N_PRIO - Maximum number of priorities. This is always 1 for RR.
SCHED_PRIO - Pre-emptive Priority Scheduling.
N_PRIO - Maximum number of priorities.
MIN_PRIORITY - Lowest priority in the system.
MAX_PRIORITY - Highest priority in the system.

Processes can be statically created when the system is initialized. These processes can be
specified in the following manner.

The process start address and priority is specified in the variable struct _process_init
start_p[], which is defined in sys/init.c.

The macro N_INIT_PROCESS is defined (config_cparam.h) to be the number of
elements in start_p[] or the number of processes to create during system initialization.

Customizing Thread Management

The user can optionally select to include thread support, the maximum number of threads
and size of the thread context. The following macros are used for configuration.

CONFIG_THREAD_SUPPORT - Include thread support modules. Defined in
os_config.h.

MAX_THREADS - Maximum number of threads in the system. Defined in
config_param.h.

THREAD_BSS BSIZE - Size of the thread context memory. Defined in
config_param.h.

Customizing Semaphore

The user can optionally select to include semaphores, maximum number of semaphores
and semaphore queue length. The following macros are used for configuration.

226

www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Customization

SXILINX®

CONFIG_SEMA - Include the semaphore module. Defined in os_config.h.

MAX_SEMA - Maximum number of semaphores in the system. Defined in
config_param.h.

MAX_SEMA_WAITQ - Maximum length of the semaphore wait queue. Defined
in config_param.h.

Customizing Message Queue

The user can optionally select to include message queue module, number of message
gueue and size of each message queue. The following macros and structure definitions are
used for configuration.

CONFIG_MSGQ - Include message queue module. Defined in os_config.h.

The message size and message queue length is specified in the variable struct

_msgq_init msgqg_config[], which is defined in sys/init.c.

N_MSGQ - is defined to be the number of elements in msgq_config[] or the
number of message queue in the system.Defined in config_cparam.h.

MSG_QUEUE_MSIZE - is the total memory size for all message queue’s in the
system. The value is calculated from the definition of variable msgq_config([].
Defined in config_cparam.h.

(msg_size * msgq_len)

D(msgq_C(;ﬁg[] elmts)

Customizing Shared Memory

The user can optionally select to include shared memory and size of each shared memory.
The following macros and structure definitions are used for configuration.

CONFIG_SHM - Include shared memory module. Defined in os_config.h.

The shared memory size is specified in the variable struct _shm_init shm_config[],
defined in sys/init.c.

N_SHM - is defined to be the number of elements in shm_config[] or the number
of shared memory segments in the system.Defined in os_config.h

SHM_MSIZE - is the total memory size for all shared memory segments in the
system. The value is calculated from the definition of variable shm_config[].
Defined in config_cparam.h

(shm_size)

D(shm_co;lg[] elmts)

Embedded System Tools Guide
EDK (v3.1 EA) September 24, 2002

www.Xilinx.com 227
1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 25: LibXil Kernel

Customizing Dynamic Buffer Management

The user can optionally select to include dynamic buffer management module, size of
memory blocks and number of memory blocks. The following macros and structure
definitions are used for configuration.

CONFIG_MALLOC - Include the buffer management module. Defined in
os_config.h

The memory block size and number of memory blocks needed is specified in the
variable struct _malloc_init malloc_config[]. Defined in sys/init.c

N_MALLOC BLOCKS - is defined to be the number of elements in
malloc_config[] or the number of different sized memory blocks. Defined in
os_config.h

TOT_MALLOC BLOCKS - is defined to be the total number of memory blocks in
the system. Its value is calculated from the definition of variable
malloc_config[].Defined in config_cparam.h

(n_blocks)
O(malloc_config[] elmts)

MALLOC_MSIZE - is the total memory size for all memory blocks in the
system.lts value is calculated from the definition of variable
malloc_config[].Defined in config_cparam.h

(mem_bsize * n_blocks)
[(malloc_config[] elmts)

Memory footprint

The size of libxilkernel depends on the user configuration. It is small in size and can fit in
different configurations. The following is the memory size output from GNU size utility
for the kernel.

- Basic kernel functionality with multi-tasking - ~3k
- Full kernel functionality with all modules included - ~8k

228 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

$7 XILINX®

Chapter 26

Device Drivers

Summary

This chapter describes device drivers present in the EDK.

Overview

The purpose of this chapter is to describe the Xilinx device driver environment. This
includes the device driver architecture, the Application Programmer Interface (API)
conventions, the scheme for configuring the drivers to work with reconfigurable hardware
devices, and the infrastructure that is common to all device drivers.

This document is intended for the software engineer that is using the Xilinx device drivers.
It contains design and implementation details necessary for using the drivers.

Goals and Objectives

The Xilinx device drivers are designed to meet the following goals and objectives:

Provide maximum portability

The device drivers are provided as ANSI C source code. ANSI C was chosen to
maximize portability across processors and development tools. Source code is
provided both to aid customers in debugging their applications as well as allow
customers to modify or optimize the device driver if necessary.

A layered device driver architecture additionally separates device communication
from processor and Real Time Operating System (RTOS) dependencies, thus providing
portability of core device driver functionality across processors and operating systems.

Support FPGA configurability

Since FPGA-based devices can be parameterized to provide varying functionality, the
device drivers must support this varying functionality. The configurability of device
drivers should be supported at compile-time and at run-time. Run-time
configurability provides the flexibility needed for future dynamic system
reconfiguration.

In addition, a device driver supports multiple instances of the device without code
duplication for each instance, while at the same time managing unique characteristics
on a per instance basis.

Support simple and complex use cases

Device drivers are needed for simple tasks such as board bring-up and testing, as well
as complex embedded system applications. A layered device driver architecture

Embedded System Tools Guide www.xilinx.com 229
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 26: Device Drivers

provides both simple device drivers with minimal memory footprints and more
robust, full-featured device drivers with larger memory footprints.

* Ease of use and maintenance

Xilinx makes use of coding standards and provides well-documented source code in
order to give developers (i.e., customers and internal development) a consistent view
of source code that is easy to understand and maintain. In addition, the API for all
device drivers is consistent to provide customers a similar look and feel between
drivers.

Note: A detailed description of the Xilinx driver functions are given in the documentation area of the
EDK installation (XILINX_EDK/doc/xilinx_driver_api)

Device Driver Architecture

The architecture of the device drivers is designed as a layered architecture as shown in
Figure . The layered architecture accommodates the many use cases of device drivers
while at the same time providing portability across operating systems, toolsets, and
processors. The layered architecture provides seamless integration with an RTOS (Layer 2),
high-level device drivers that are full-featured and portable across operating systems and
processors (Layer 1), and low-level drivers for simple use cases (Layer 0). The following
paragraphs describe each of the layers. The user can choose to use any and all layers.

Layer 2, RTOS Adaptation

Layer 1, High Level Drivers

Layer 0, Low Level Drivers

Figure 26-1: Layered Architecture

Layer 2, RTOS Adaptation

This layer consists of adapters for device drivers. An adapter converts a Layer 1 device
driver interface to an interface that matches the requirements of the device driver scheme
for an RTOS. Unique adapters may be necessary for each RTOS. Adapters typically have
the following characteristics.

e Communicates directly to the RTOS and the Layer 1, high-level driver.

» References functions and identifiers specific to the RTOS. This layer is therefore not
portable across operating systems.

e Can use memory management
e Canuse RTOS services such as threading, inter-task communication, etc.

230

www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Device Driver Architecture XX"JNX@

» Can be simple or complex depending on the RTOS interface and requirements for the
device driver

Layer 1, High Level Drivers

This layer consists of high level device drivers. They are implemented as macros and
functions and are designed to allow a developer to utilize all features of a device. These
high-level drivers are independent of operating system and processor, making them
highly portable. They typically have the following characteristics.

» Consistent and high-level (abstract) API that gives the user an “out-of-the-box”
solution

* No RTOS or processor dependencies, making them highly portable

* Run-time error checking such as assertion of input arguments. Also provides the
ability to compile away asserts.

e Comprehensive support of device features
» Abstract API that isolates the API from hardware device changes

e Supports device configuration parameters to handle FPGA-based parameterization of
hardware devices.

» Supports multiple instances of a device while managing unique characteristics on a
per instance basis.

* Polled and interrupt driven I/0
» Non-blocking function calls to aid complex applications
* May have a large memory footprint

» Typically provides buffer interfaces for data transfers as opposed to byte interfaces.
This makes the API easier to use for complex applications.

» Does not communicate directly to Layer 2 adapters or application software. Utilizes
asynchronous callbacks for upward communication.

Layer O, Low Level Drivers

This layer consists of low level device drivers. They are implemented as macros and
functions and are designed to allow a developer to create a small system, typically for
internal memory of an FPGA. They typically have the following characteristics.

* Simple, low-level API

e Small memory footprint

» Little to no error checking is performed
* Supports primary device features only

« Minimal abstraction such that the API typically matches the device registers. The API
is therefore less isolated from hardware device changes.

* No support of device configuration parameters

* Supports multiple instances of a device with base address input to the API
* None or minimal state is maintained

* Polled 170 only

» Blocking functions for simple use cases

Embedded System Tools Guide www.xilinx.com 231
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 26: Device Drivers

» Typically provides byte interfaces but can provide buffer interfaces for packet-based
devices.

Object-Oriented Device Drivers

In addition to the layered architecture, it is important that the user understand the
underlying design of the device drivers. The device drivers are designed using an object-
oriented methodology. The methodology is based upon components and is described in
the following paragraphs. This approach pertains particularly to the Layer 1, high-level
device drivers.

Component Definition

A component is a logical partition of the software which provides a functionality similar to
one or more classes in C++. Each component provides a set of functions that operate on the
internal data of the component. In general, components are not allowed access to the data
of other components. A device driver is typically designed as a single component. A
component may consist of one or more files.

Component Implementation

The component contains data variables which define the set of values that instances of that
type can hold and a set of functions that operate on those data variables. Components must
utilize the functions of other components in order to access the data of other components,
rather than accessing component data directly. Components provide data abstraction and
encapsulation by gathering the state of an object and the functions that operate on that
object into a single unit and by denying direct access to its data members.

Component Data Variables

The primary mechanism for implementing a component in C is the structure. The data
variables for a component are grouped in a single structure such that instances of the
component each have their own data. The structure and the prototypes for all component
functions are declared in the header file which is shared between the implementing
component and other components which utilize it. A pointer to this structure, referred to
as the instance pointer, is passed into each function of the component which operates on
the instance data.

Component Interface

Each component has a set of functions which are collectively referred to as the component
interface. Every function of a component which operates on the instance data utilizes a
pointer, named InstancePtr, to an instance of a component as the first argument. This
argument emulates the this pointer in C++ and allows the component function to
manipulate the instance data.

Component Instance

An instance of acomponent is created when a variable is created using the component data
type. An instance of a component maps to each physical hardware device. Each instance
may have unique characteristics such as it’s memory mapped address and specific device
capabilities.

232 www.Xxilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

APl and Naming Conventions XX"JNX@

Component Example

The following code example illustrates a device driver component.

/* the device conponent data type */

t ypedef struct

{
Xui nt 32 BaseAddress; /* conponent data variables */
Xui nt 32 | sReady;
Xuint32 IsStarted;

} XDevi ce;

/* create an instance of a device */
XDevi ce Devi cel nst ance;
/* device conmponent interfaces */

XStatus XDevice_lnitialize(XDevice *InstancePtr, Xuintl6 Deviceld);
XSt at us XDevi ce_Start (XDevi ce *lnstancePtr);

APl and Naming Conventions

External Identifiers

External identifiers are defined as those items that are accessible to all other components in
the system (global) and include functions, constants, typedefs, and variables.

An X’ is prepended to each Xilinx external so it does not pollute the global name space,
thus reducing the risk of a name conflict with application code. The names of externals are
based upon the component in which they exist. The component name is prepended to each
external name. An underscore character always separates the component name from the
variable or function name.

External Name Pattern:

X<conponent nane>_Vari abl eNaneg;
X<conponent name>_Functi onName(Ar gunment Type Ar gunent)
X<conponent nanme>_TypeNane;

Constants are typically defined as all uppercase and prefixed with an abbreviation of the
component name. For example, a component named XUartLite (for the UART Lite device
driver) would have constants that begin with XUL _, and a component named XEmac (for
the Ethernet 10/100 device driver) would have constants that begin with XEM_. The
abbreviation utilizes the first three uppercase letters of the component name, or the first
three letters if there are only two uppercase letters in the component name.

File Naming Conventions

The file naming convention utilizes long file names and is not limited to 8 characters as
imposed by the older versions of the DOS operating system.

Component Based Source File Names

Source file names are based upon the name of the component implemented within the
source files such that the contents of the source file are obvious from the file name. All file

Embedded System Tools Guide www.xilinx.com 233
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 26: Device Drivers

names must begin with the lowercase letter “x” to differentiate Xilinx source files. File
extensions .h and .c are utilized to distinguish between header source files and
implementation source files.

Implementation Source Files (*.c)

The C source files contain the implementation of a component. A component is typically
contained in multiple source files to allow parts of the component to be user selectable.

Source File Naming Pattern:

x<conponent nane>.c mai n source file
x<conponent name>_functionality.c secondary source file

Header Source Files (*.h)

The header files contain the interfaces for a component. There will always be external
interfaces which is what an application that utilizes the component invokes.

» The external interfaces for the high level drivers (Layer 1) are contained in a header
file with the file name format x<component name>.h.

» The external interfaces for the low level drivers (Layer 0) are contained in a header file
with the file name format x<component name>_|.h.

In the case of multiple C source files which implement the class, there may also be a header
file which contains internal interfaces for the class. The internal interfaces allow the
functions within each source file to access functions in the another source file.

* The internal interfaces are contained in a header file with the file name format
x<component name>_i.h.

Device Driver Layers

Layer 1 and Layer 0 device drivers (i.e., high-level and low-level drivers) are typically
bundled together in a directory. The Layer 0 device driver files are named x<component
name>_|.h and x<component name>_l.c. The “_I” indicates low-level driver. Layer 2 RTOS
adapter files include the word “adapter” in the file name, such as x<component
name>_adapter.h and x<component name>_adapter.c. These are typically stored in a different
directory name (e.g., one specific to the RTOS) than the device driver files.

Example File Names

The following source file names illustrates an example which is complex enough to utilize
multiple C source files.

xuart ns550. c Mai n inplementation file

xuartns550_intr.c Secondary inplenmentation file for interrupt
handl i ng

xuart ns550. h H gh | evel external interfaces header file

Internal identifiers header file

Low | evel external interfaces header file
Low |l evel inplenentation file

Cenerated file controlling paraneterized

xuart ns550 i .
xuartns550 | .
xuar t ns550 | .
xuart ns550_g.
i nstances

[2N @ B plien 3

234

www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

APl and Naming Conventions XX"JNX@

and,

xuartns550_si o_adapter.c VxWorks Serial 1/0 (SIO adapter

High Level Device Driver API

High level device drivers are designed to have an APl which includes a standard API
together with functions that may be unique to that device. The standard API provides a
consistent interface for Xilinx drivers such that the effort to use multiple device drivers is
minimized. An example API follows.

Standard Device Driver API

Initialize

This function initializes an instance of a device driver. Initialization must be performed
before the instance is used. Initialization includes mapping a device to a memory-mapped
address and initialization of data structures. It maps the instance of the device driver to a
physical hardware device. The user is responsible for allocating an instance variable using
the driver’s data type, and passing a pointer to this variable to this and all other API
functions.

Reset

This function resets the device driver and device with which it is associated. This function
is provided to allow recovery from exception conditions. This function resets the device
and device driver to a state equivalent to after the Initialize() function has been called.

SelfTest

This function performs a self-test on the device driver and device with which it is
associated. The self-test verifies that the device and device driver are functional.

Optional Functions

Each of the following functions may be provided by device drivers.

Start

This function is provided to start the device driver. Starting a device driver typically
enables the device and enables interrupts. This function, when provided, must be called
prior to other data or event processing functions.

Stop

This function is provided to stop the device driver. Stopping a device driver typically
disables the device and disables interrupts.

GetStats

This function gets the statistics for the device and/or device driver.

ClearStats

This function clears the statistics for the device and/or device driver.

Embedded System Tools Guide www.xilinx.com 235
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 26: Device Drivers

InterruptHandler

This function is provided for interrupt processing when the device must handle interrupts.
It does not save or restore context. The user is expected to connect this interrupt handler to
their system interrupt controller. Most drivers will also provide hooks, or callbacks, for the
user to be notified of asynchronous events during interrupt processing (e.g., received data
or device errors).

Configuration Parameters

Standard device driver API functions (of Layer 1, high-level drivers) such as Initialize()
and Start() require basic information about the device such as where it exists in the system
memory map or how many instances of the device there are. In addition, the hardware
features of the device may change because of the ability to reconfigure the hardware within
the FPGA. Other parts of the system such as the operating system or application may need
to know which interrupt vector the device is attached to. For each device driver, this type
of information is distributed across two files: xparameters.h and x<component name>_g.c.

Typically, these files are automatically generated by a system generation tool based on
what the user has included in their system. However, these files can be hand coded to
support internal development and integration activities. Note that the low-level drivers of
Layer 0 do not require or make use of the configuration information defined in these two
files. Other than the memory-mapped location of the device, the low-level drivers are
typically fixed in the hardware features they support.

Xparameters.h

This source file centralizes basic configuration constants for all drivers within the system.
Browsing this file gives the user an overall view of the system architecture. The device
drivers and Board Support Package (BSP) utilize the information contained here to
configure the system at runtime. The amount of configuration information varies by
device, but at a minimum the following items should be defined for each device:

* Number of device instances
* Device ID for each instance

« A Device ID uniquely identifies each hardware device which maps to a device driver.
A Device ID is used during initialization to perform the mapping of a device driver to
a hardware device. Device IDs are typically assigned either by the user or by a system
generation tool. It is currently defined as a 16-bit unsigned integer.

» Device base address for each instance
» Device interrupt assignment for each instance if interrupts can be generated.

File Format and Naming Conventions

Every device must have the following constant defined indicating how many instances of
that device are present in the system (note that <conponent name> does not include the
preceding “X™):

XPAR_X<conponent nanme>_NUM | NSTANCES

Each device instance will then have multiple, unique constants defined. The names of the
constants typically match the hardware configuration parameters, but can also include
other constants. For example, each device instance has a unique device identifier

236

www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Configuration Parameters S XILINX®

(DEVICE_ID), the base address of the device’s registers (BASEADDR), and the end
address of the device’s registers (HIGHADDR).

XPAR_<conponent name>_<conponent instance> DEVICE |ID
XPAR_<conponent name>_<conponent i nstance>_BASEADDR
XPAR_<conponent nane>_<conponent i nstance>_H GHADDR

<component instance> is typically a number between 0 and (XPAR_X<conponent
nane>_NUM | NSTANCES - 1). Note that the system generation tools may create these
constants with a different convention than described here. Other device specific constants
are defined as needed:

XPAR_<conponent nanme>_<conponent instance> <item description>
When the device specific constant applies to all instances of the device:
XPAR_<conponent nane>_<item description>

For devices that can generate interrupts, a separate section within xparameters.h is used to
store interrupt vector information. While the device driver implementation files do not
utilize this information, their RTOS adapters, BSP files, or user application code will
require them to be defined in order to connect, enable, and disable interrupts from that
device. The naming convention of these constants varies whether an interrupt controller is
part of the system or the device hooks directly into the processor.

For the case where an interrupt controller is considered external and part of the system, the
naming convention is as follows:

XPAR_| NTC_<i nst ance>_<conponent nane>_<conponent instance>_VEC |D

Where INTC is the name of the interrupt controller component, <instance> is the
component instance of the INTC, <component name> and <component instance> is the
name and instance number of the component connected to the controller. Of course
XPAR_INTC must have the other required constants DEVICE_ID, BASEADDR, etc. This
convention supports single and cascaded interrupt controller architectures.

For the case where an interrupt controller is considered internal to a processor, the naming
convention changes:

XPAR_<proc name>_<conponent nane>_<conponent instance> VEC |ID

Where <proc name> is the name of the processor.

x<component name>_g.c

The header file x<component name>.h defines the type of a configuration structure. The type
will contain all of the configuration information necessary for an instance of the device.
The format of the data type is as follows:

t ypedef struct

{
Xui nt 16 Devi cel D,

Xui nt 32 BaseAddr ess;
/* Other device dependent data attributes */

} X<component name>_Confi g;

Embedded System Tools Guide www.Xxilinx.com 237
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 26: Device Drivers

Example

The implementation file x<component name>_g.c defines an array of structures of
X<conponent name>_Confi g type. Each element of the array represents an instance of the
device, and contains most of the per-instance XPAR constants from xparameters.h.

To help illustrate the relationships between these configuration files, an example is
presented that contains a single interrupt controller whose component name is INTC and
a single UART whose component name is (UART). Only xintc.h and xintc_g.c are
illustrated, but xuart.h and xuart_g.c would be very similar.

Xparameters.h

/* Constants for |INTC */

XPAR_| NTC_NUM | NSTANCES 1
XPAR_| NTC_0_DEVI CE_I D 21
XPAR | NTC_0_BASEADDR 0xA0000100

/* Interrupt vector assignnents for this instance */
XPAR_INTC O_UART O_VEC ID O

/* Constants for UART */

XPAR_UART_NUM | NSTANCES 1
XPAR_UART 0 _DEVI CE_I D 2
XPAR_UART_0_BASEADDR 0xB0001000

xintc.h

t ypedef struct
{
Xui nt 16 Devi cel D,
Xui nt 32 BaseAddr ess;
} Xlintc_Config;

xintc_g.c

static XintcConfig[XPAR | NTC_NUM | NSTANCES] =
{

{
XPAR_| NTC_0_DEVI CE_I D,
XPAR_| NTC_0_BASEADDR,

Common Driver Infrastructure

Source Code Documentation

The comments in the device driver source code contain doxygen tags for javadoc-style
documentation. Doxygen is a javadoc-like tool that works on C language source code. These
tags typically start with “@” and provide a means to automatically generate HTML-based
documentation for the device drivers. The HTML documentation contains a detailed
description of the API for each device driver.

238

www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

Common Driver Infrastructure XX"JNX@

Driver Versions

Some device drivers may have multiple versions. Device drivers are usually versioned
when the API changes, either due to a significant hardware change or simply restructuring
of the device driver code. The version of a device driver is only indicated within the
comment block of a device driver file. A modification history exists at the top of each file
and contains the version of the driver. An example of a device driver version is “1.00b”,
where 1 is the major revision, 00 is the minor revision, and b is a subminor revision. The
hardware device and its device driver must match major and minor revisions in order to be
compatible.

Currently, the user is not allowed to link two versions of the same device driver into their
application. The versions of a device driver use the same function and file names, thereby
preventing them from being linked into the same link image. As multiple versions of
drivers are supported, the version hame will be included in the driver file names, as in
x<component>_v1 00 a.c.

Primitive Data Types

The primitive data types provided by C are minimized by the device drivers because they
are not guaranteed to be the same size across processor architectures. Data types which are
size specific are utilized to provide portability and are contained in the header file
xbasic_types.h.

Device I/O

The method by which 1/0 devices are accessed varies between processor architectures. In
order for the device drivers to be portable, this difference is isolated such that the driver for
a device will work for many microprocessor architectures with minimal changes. A device
170 component, Xlo, in xio.c and xio.h source files, contains functions and/or macros
which provide access to the device 1/0 and are utilized for portability.

Error Handling

Errors that occur within device drivers are propagated to the application. Errors can be
divided into two classes, synchronous and asynchronous. Synchronous errors are those
that are returned from function calls (either as return status or as a parameter), so
propagation of the error occurs when the function returns. Asynchronous errors are those
that occur during an asynchronous event, such as an interrupt and are handled through
callback functions.

Return Status

In order to indicate an error condition, functions which include error processing return a
status which indicates success or an error condition. Any other return values for such
functions are returned as parameters. Error codes are standardized in a 32-bit word and
the definitions are contained in the file xstatus.h.

Asserts

Asserts are utilized in the device drivers to allow better debugging capabilities. Asserts are
used to test each input argument into a function. Asserts are also used to ensure that the
component instance has been initialized.

Embedded System Tools Guide www.xilinx.com 239
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 26: Device Drivers

Asserts may be turned off by defining the symbol NDEBUG before the inclusion of the
header file xbasic_types.h.

The assert macro is defined in xbasic_types.h and calls the function XAssert when an assert
condition fails. This function is designed to allow a debugger to set breakpoints to check
for assert conditions when the assert macro is not connected to any form of 1/0.

The XAssert function calls a user defined function and then enters an endless loop. A user
may change the default behavior of asserts such that an assert condition which fails does
return to the user by changing the initial value of the variable XWaitInAssert to XFALSE in
xbasic_types.c. A user defined function may be defined by initializing the variable
XAssertCallbackRoutine to the function in xbasic_types.c.

Communication with the Application

Communication from an application to a device driver is implemented utilizing standard
function calls. Asynchronous communication from a device driver to an application is
accomplished with callbacks using C function pointers. It should be noted that callback
functions are called from an interrupt context in many drivers. The application function
called by the asynchronous callback must minimize processing to communicate to the
application thread of control.

Reentrancy and Thread Safety

The device drivers are designed to be reentrant, but may not be thread-safe due to shared
resources.

Interrupt Management

The device drivers use device-specific interrupt management rather than processor-
specific interrupt management.

Multi-threading & Dynamic Memory Management

The device drivers are designed without the use of multi-threading and dynamic memory
management. This is expected to be accomplished by the application or by an RTOS
adapter.

Cache & MMU Management

The device drivers are designed without the use of cache and MMU management. This is
expected to be accomplished by the application or by an RTOS adapter.

240

www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

SXILINX®
Chapter 27

Stand-Alone Board Support Package

Overview

The Board Support Package (BSP) is a set of software modules used to access processor
specific functions. The stand-alone BSP is used when an application accesses
board/processor features directly (without an intervening Operating System layer).

MicroBlaze BSP

When the user system contains a MicroBlaze, and no Operating System, the Library
Generator automatically builds the Stand-Alone BSP in the project library libxil.a.
Interrupt Handling

The ni cr obl aze_enabl e_interrupts. s and

nm cr obl aze_di sabl e_i nt errupt s. s files contain functions to enable and disable
interrupts on the MicroBlaze.

void microblaze_enable_interrupts(void)

This function enables interrupts on the MicroBlaze. When the MicroBlaze starts up,
interrupts are disabled. Interrupts must be explicitly turned on using this function.

void microblaze disable_interrupts(void)

This function disables interrupts on the MicroBlaze. This function may be called when
entering a critical section of code where a context switch is undesirable.

PowerPC BSP

When the user system contains a PowerPC, and no Operating System, the Library
Generator automatically builds the Stand-Alone BSP in the project library libxil.a.

The Stand-Alone BSP contains boot code, cache, file and memory management,
configuration, exception handling, time and processor specific include functions.

Boot Code

The boot . S,crt 0. S, and eabi . Sfiles contain a minimal set of code for initializing the
processor and starting an application.

Embedded System Tools Guide www.xilinx.com 241
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 27: Stand-Alone Board Support Package

boot.S

Code in the boot . S consists of the two sections boot and boot0. The boot section contains
only one instruction that is labeled with _boot. During the link process, this instruction is
mapped to the reset vector and the _boot label marks the application's entry point. The
boot instruction is a jump to the _boot0 label. The _boot0 label must reside within a 23bit
address space of the _boot label. It is defined in the boot0 section. The code in the boot0
section calculates the 32-bit address of the _start label and jumps to it.

crt0.S

Code in the crt0.S file starts executing at the _start label. It initializes the .sbss and .bss
sections to zero, as required by the ANSI C specification, sets up the stack, initializes some
processor registers, and calls the main() function.

The program remains in an endless loop on return from main().

eabi.S

Cache

When an application is compiled and linked with the -msdata=eabi option, GCC inserts a
call to the __eabi label at the beginning of the main() function. This is the place where
register R13 must be set to point to the .sdata and .sbss data sections and register R2 must
be set to point to the .sdata2 read-only data section.

Code in eabi.S sets these two registers to the correct values. The SDA BASE_ and
_SDA2 _BASE_ labels are generated by the linker.

The xcache_| . c file and corresponding xcache_|I . h include file provide access to
cache and cache-related operations.

void XCache_WriteCCRO(unsigned int val);

The XCache_WriteCCRO() function writes an integer value to the CCRO register. Below is a
sample code sequence. Before writing to this register, the instruction cache must be
enabled to prevent a lockup of the processor core. After writing the CCRO, the instruction
cache can be disabled, if not needed.

XCache_Enabl el Cache(0x80000000) /* enable instruction cache for first
128 MB nenory region */

XCache_W it eCCRO(0x2700E00) /* enable 8 word pre-fetching */
XCache_Di sabl el Cache() /* disable instruction cache */

void XCache_ EnableDCache(unsigned int regions);

The XCache_EnableDCache() function enables the data cache for a specific memory region.
Each bit in the regions parameter represents 128 MB of memory.

A value of 0x80000000 enables the data cache for the first 128 MB of memory
(0 - OX7FFFFFF). A value of 0x1 enables the data cache for the last 128 MB of memory
(0xF8000000 - OXFFFFFFFF).

242

www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

PowerPC BSP XX"JNX@

void XCache_DisableDCache(void);

The XCache_DisableDCache() function disables the data cache for all memory regions.

void XCache_FlushDCacheLine(unsigned int adr);

The XCache_FlushDCacheLine() function flushes and invalidates the data cache line that
contains the address specified by the adr parameter. A subsequent data access to this
address results in a cache miss and a cache line refill.

void XCache_StoreDCacheLine(unsigned int adr);

The XCache_StoreDCacheLine() function stores in memory the data cache line that
contains the address specified by the adr parameter. A subsequent data access to this
address results in a cache hit if the address was already cached; otherwise, it results in a
cache miss and cache line refill.

void XCache_ EnablelCache(unsigned int regions);

The XCache_EnablelCache() function enables the instruction cache for a specific memory
region. Each bit in the regions parameter represents 128 MB of memory.

A value of 0x80000000 enables the instruction cache for the first 128 MB of memory
(0 - OX7FFFFFF). A value of 0x1 enables the instruction cache for the last 128 MB of memory
(OxF8000000 - OXFFFFFFFF).

void XCache_DisablelCache(void);

The XCache_DisablelCache() function disables the instruction cache for all memory
regions.

void XCache_InvalidatelCache(void);
The XCache_InvalidatelCache() function invalidates the whole instruction cache.
Subsequent instructions produce cache misses and cache line refills.

void XCache_InvalidatelCacheLine(unsigned int adr);

The XCache_InvalidatelCacheLine() function invalidates the instruction cache line that
contains the address specified by the adr parameter. A subsequent instruction to this
address produces a cache miss and a cache line refill.

Exception Handling

This section documents the exception handling API that is provided in the Board Support
Package. For an in-depth explanation on how exceptions and interrupts work on the
PPC405, please refer to the chapter “Exceptions and Interrupts” in the PPC User’s Manual.

The exception handling API consists of a set of the files xvect or s. S, xexception_| . c,
and the corresponding header file xexcepti on_| . h.

void XExc_Init(void);

This function sets up the interrupt vector table and registers a “do nothing” function for
each exception. This function has no parameters and does not return a value.

Embedded System Tools Guide www.Xxilinx.com 243
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 27: Stand-Alone Board Support Package

This function must be called before registering any exception handlers or enabling any
interrupts. When using the exception handler API, this function should be called at the
beginning of your main() routine.

IMPORTANT: If you are not using the default linker script, you need to reserve memory
space for storing the vector table in your linker script. The memory space must begin on a
64k boundary. The linker script entry should look like this example:

.vectors :

{
= ALI G\(64k) ;
*(.vectors)

}
For further information on linker scripts, please refer to the Linker documentation.

void XExc_RegisterHandler(Xuint8 Exceptionld, XExceptionHandler
Handler, void *DataPtr);

This function is used to register an exception handler for a specific exception. It does not
return a value. Please refer to Table 27-1 for a list of parameters.

Table 27-1: Exception Handler Parameters

Parameter Name Parameter Type Description

Exceptionid Xuint8 Exception to which this handler
should be registered. The type and the
values are defined in the header file
xexception_| . h. Please refer to
Table 27-2 for possible values.

Handler XExceptionHandler Pointer to the exception handling
function
DataPtr void * User value to be passed when the

handling function is called

Table 27-2: Registered Exception Types and Values

Exception Type Value
XEXC_ID_JUMP_TO_ZERO
XEXC_ID_MACHINE_CHECK
XEXC_ID_CRITICAL_INT
XEXC_ID_DATA _STORAGE_INT
XEXC_ID_INSTUCTION_STORAGE_INT
XEXC_ID_NON_CRITICAL_INT
XEXC_ID_ALIGNMENT_INT
XEXC_ID_PROGRAM_INT
XEXC_ID_FPU_UNAVAILABLE_INT
XEXC_ID_SYSTEM_CALL

Ol o N[O |l W DN | O

244 www.Xxilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

PowerPC BSP XX"JNX@

Table 27-2: Registered Exception Types and Values

Exception Type Value
XEXC_ID_APU_AVAILABLE 10
XEXC_ID_PIT_INT 11
XEXC_ID_FIT_INT 12
XEXC_ID_WATCHDOG_TIMER_INT 13
XEXC_ID_DATA_TLB_MISS_INT 14
XEXC_ID_INSTRUCTION_TLB_MISS_INT 15
XEXC_ID_DEBUG_INT 16

The function provided as the Handler parameter must have the following function
prototype:

t ypedef void (*XExceptionHandl er)(void * DataPtr);
This prototype is declared in the xexcepti on_I . h header file.

When this exception handler function is called, the parameter DataPtr will contain the
same value as you provided when you registered the handler.

void XExc_RemoveHandler(Xuint8 Exceptionld)

This function is used to deregister a handler function for a given exception. For possible
values of parameter Exceptionld, please refer to Table 27-2.

void XExc_mEnableExceptions (EnableMask);

This macro is used to enable exceptions. It must be called after initializing the vector table
with function exception_Init and registering exception handlers with function
XExc_RegisterHandler. The parameter EnableMask is a bitmask for exceptions to be
enabled. The EnableMask parameter may have the values XEXC_CRITICAL,
XEXC_NON_CRITICAL or XEXC_ALL.

void XExc_mDisableExceptions (DisableMask);

This macro is called to disable exceptions. The parameter DisableMask is a bitmask for
exceptions to be disabled.The DisableMask parameter may have the values
XEXC_CRITICAL, XEXC_NON_CRITICAL or XEXC_ALL.

Files
File support is limited to the stdin and stdout streams. In such an environment, the
following functions do not make much sense:
 open() (in open.c)
e close() (in close.c)
« fstat() (in fstat.c)
e unlink() (in unlink.c)
* Iseek() (in Iseek.c)
These files are included for completeness and because they are referenced by the C library.
Embedded System Tools Guide www.Xxilinx.com 245

EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 27: Stand-Alone Board Support Package

int read(int fd, char *buf, int nbytes);

The read() function in r ead. ¢ reads nbytes bytes from the standard input by calling
inbyte(). It blocks until all characters are available, or the end of line character is read.
Read() returns the number of characters read. The parameter fd is ignored.

int write(int fd, char *buf, int nbytes);

The write() function inwr i t e. ¢ writes nbytes bytes to the standard output by calling
outbyte(). It blocks until all characters have been written. Write() returns the number of
characters written. The parameter fd is ignored.

int isatty(int fd);

The isatty() functionini satty. c reports if a file is connected to a tty. This function
always returns 1, since only the stdin and stdout streams are supported.

Memory Management

char *sbrk(int nbytes);

The sbrk() function in the sbr k. ¢ file allocates nbyt es of heap and returns a pointer to
that piece of memory. This function is called from the memory allocation functions of the C
library.

Process

The functions getpid() in get pi d. c and kill() inki | | . ¢ are included for completeness
and because they are referenced by the C library.

Processor-Specific Include Files

The xr eg405. h include file contains the register numbers and the register bits for the PPC
405 processor.

The xpseudo- asm h include file contains the definitions for the most often used inline
assembler instructions.

These inline assembler instructions can be used from drivers and user applications written
in C.
Time

The xti me_| . c file and corresponding xt i me_| . h include file provide access to the 64-
bit time base counter inside the PowerPC core. The counter increases by one at every
processor cycle.

The sl eep. c file and corresponding sl eep. h include file implement functions for tired
programs. All sleep functions are implemented as busy loops.

typedef unsigned long long XTime;

The XTime type inxt i me_I| . h represents the Time Base register. This struct consists of the
Time Base Low (TBL) and Time Base High (TBH) registers, each of which is a 32-bit wide
register. The definition of XTime is as follows:

246 www.Xxilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

PowerPC BSP

SXILINX®

t ypedef unsigned | ong | ong XTi ne;

void XTime_SetTime(XTime xtime);

The XTime_SetTime() function in xt i me_| . ¢ sets the time base register to the value in

xtime.

void XTime_GetTime(XTime *xtime);

The XTime_GetTime() function in xt i me_| . ¢ writes the current value of the time base

register to variable xtime.

void XTime_TSRClearStatusBits(unsigned long Bitmask);

The XTime_TSRClearStatusBits() function in xt i me_| . ¢ is used to clear bits in the Timer
Status Register (TSR). The parameter Bitmask designates the bits to be cleared. A one in any
position of the Bitmask parameter clears the corresponding bit in the TSR. This function

does not return a value.

The header file xr eg405. h defines the following values for the Bitmask parameter:

Bitmask Parameter Values

Name

Value

Description

CHDOG

XREG_TSR_WDT_ENABLE_NEXT_WAT | 0x80000000

Clearing this bit disables the
watchdog timer event.

XREG_TSR_WDT_INTERRUPT_STATUS | 0x40000000

Clears the Watchdog Timer
Interrupt Status bit. This bit is
set after a watchdog interrupt
occurred, or could have
occurred had it been enabled.

XREG_TSR_WDT_RESET_STATUS_11

0x30000000

Clears the Watchdog Timer
Reset Status bits. These bits
Specify the kind of reset that
occurred as a result of a
watchdog timer event.

XREG_TSR_PIT_INTERRUPT_STATUS 0x08000000

Clears the Programmable
Interval Timer Status bit. This
bit is set after a PIT interrupt
has occurred.

XREG_TSR_FIT_INTERRUPT_STATUS 0x04000000

Clears the Fixed Interval Timer
Status bit. This bit is set after a
FIT interrupt has occurred.

XREG_TSR_CLEAR_ALL

OXFFFFFFFF

Clearsall bitsinthe TSR. Aftera
Reset, the content of the TSR is
not specified. Use this Bitmask
to clear all bits in the TSR.

Exanpl e:

XTi me_TSRC ear St at usBi t s(TSR_CLEAR_ALL);

Embedded System Tools Guide
EDK (v3.1 EA) September 24, 2002

www.Xilinx.com
1-800-255-7778

247

http://www.xilinx.com

S XILINX® Chapter 27: Stand-Alone Board Support Package

void XTime_PITSetInterval(unsigned long interval);

The XTime_PITSetInterval() function in xt i me_| . ¢ is used to load a new value into the
Programmable-Interval Timer Register. This register is a 32-bit decrementing counter
clocked at the same frequency as the time-base register. Depending on the AutoReload
setting the PIT is automatically reloaded with the last written value or has to be reloaded
manually. This function does not return a value.

Exanpl e:
XTi me_PI TSet | nt erval (Ox00f fffff);

void XTime_PITEnablelnterrupt(void);

The XTime_PITEnableinterrupt() function in xt i me_| . ¢ enables the generation of PIT
interrupts. An interrupt occurs when the PIT register contains a value of 1, and is then
decremented. This function does not return a value. XExc_Init() must be called, the PIT

interrupt handler must be registered, and exceptions must be enabled before calling this
function.

Exanpl e:
XTi me_PI TEnabl el nterrupt () ;

void XTime_PITDisablelnterrupt(void);

The XTime_PITDisablelnterrupt() function in xt i ne_| . ¢ disables the generation of PIT
interrupts. It does not return a value.

Exanpl e:
XTi me_PI TDi sabl el nterrupt ();

void XTime_PITEnableAutoReload(void);

The XTime_PITEnableAutoReload() function in xti me_I . ¢ enables the auto-reload
function of the PIT Register. When auto-reload is enabled the PIT Register is automatically
reloaded with the last value loaded by calling the XTime_PITSetInterval function when
the PIT Register contains a value of 1 and is decremented. When auto-reload is enabled, the
PIT Register never contains a value of 0. This function does not return a value.

Exanpl e:
XTi me_PI TEnabl eAut oRel oad() ;

void XTime_PITDisableAutoReload(void);

The XTime_PITDisableAutoReload() functionin xti nme_| . c disables the auto-reload
feature of the PIT Register. When auto-reload is disabled the PIT decrements from 1to 0. If

it contains a value of 0 it stops decrementing until it is loaded with a non-zero value. This
function does not return a value.

Exanpl e:
XTi me_PI TDi sabl eAut oRel oad() ;

void XTime_PITClearlInterrupt(void);

The XTime_PITC earInterrupt() function in xtime_|l.c is used to clear
PIT-Interrupt-Status bit in the Timer-Status Register. This bit

248 www.Xxilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

PowerPC BSP

SXILINX®

speci fies whether a PIT interrupt occurred. You nust call this function
inyour interrupt-handler to clear the Status bit, otherw se another PIT
interrupt will occur immediately after exiting the interrupt —handler
function. This function does not return a value. Calling this function
is equivalent to calling

XTi me_TSRC ear St at usBi t s(XREG_TSR_PI T_I NTERRUPT_STATUS) .

Exanpl e:

XTime_PI TCl earInterrupt();

unsigned int usleep(unsigned int __useconds);

The usleep() function in sl eep. ¢ delays the execution of a program by __useconds
microseconds. It always returns zero. This function requires that the processor frequency
(in Hz) is defined. The default value of this variable is 400MHz. This value can be
overwritten in the mss file as follows:

BEG N PROCESSOR

PARAVETER HW | NSTANCE = PPC405 i
PARAVETER DRI VER_NAME cpu_ppc405
PARAMETER DRI VER VER = 1.00. a

PARAMETER CORE_CLOCK_FREQ HZ = 20000000
END

The file xparameters.h can also be modified with the correct value, as follows:

#defi ne XPAR_CPU_PPC405_CORE_CLOCK_FREQ HZ 20000000

unsigned int sleep(unsigned int ___seconds);

The sleep() function in sl eep. ¢ delays the execution of a program by __seconds seconds.
It always returns zero.This function requires that the processor frequency (in Hz) is
defined. The default value of this variable is 400MHz. This value can be overwritten in the
mss file as follows:

BEG N PROCESSOR

PARAVETER HW | NSTANCE = PPCA405_i
PARAVETER DRI VER NAVE = cpu_ppc405
PARAVETER DRI VER VER = 1.00. a
PARAMETER CORE_CLOCK_FREQ HZ = 20000000
END

The file xparameters.h can also be modified with the correct value, as follows:

#define XPAR CPU_PPC405_CORE_CLOCK_FREQ HZ 20000000

int nanosleep(const struct timespec *rgtp, struct timespec *rmtp);

The nanosleep() function in sleep.c is currently not implemented. It is a placeholder for
linking applications against the C library. It always returns zero.

Embedded System Tools Guide www.Xxilinx.com 249
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 27: Stand-Alone Board Support Package

250 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

SXILINX®
Chapter 28

Address Management

Summary

This chapter describes the embedded processor program address management techniques.
For advanced address space management, a discussion on linker scripts is also included in
this chapter.

MicroBlaze Processor

Programs and Memory

MicroBlaze users can write either C or Assembly programs, and use the Embedded
Development Kit to transform their source code into bit patterns stored in the physical
memory of a EDK System. User programs typically access local/on-chip memory, external
memory and memory mapped peripherals. Memory requirements for your programs are
specified in terms of how much memory is required for storing the instructions, and how
much memory is required for storing the data associated with the program.

MicroBlaze address space is divided between the system address space and the user
address space. In certain examples, users would need advanced address space
management, which can be done with the help of linker script, described in this chapter.

Current Address Space Restrictions

Memory and Peripherals Overview

MicroBlaze uses 32-bit addresses, and as a result it can address memory in the range zero
through OXFFFFFFFF. MicroBlaze can access memory either through its Local Memory Bus
(LMB) port or through the On-chip Peripheral Bus (OPB). The LMB is designed to be a fast
access, on-chip block RAM (BRAM) memories only bus. The OPB represents a general
purpose bus interface to on-chip or off-chip memories as well as other non-memory
peripherals.

BRAM Size Limits

The amount of BRAM memory that can be assigned to the LMB address space or to each
instance of an OPB mapped BRAM peripheral is limited. The largest supported BRAM
memory size for Virtex/VirtexE is 16 kilobytes and for Virtex-Il it is 64 kilobytes. It is
important to understand that these limits apply to each separately decoded on-chip
memory region only. The total amount of on-chip memory available to a MicroBlaze
system may exceed these limits. The total amount of memory available in the form of

Embedded System Tools Guide www.xilinx.com 251
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 28: Address Management

BRAMs is also FPGA device specific. Smaller devices of a given device family provide less
BRAM than larger devices in the same device family.

ADDRESS SPACE MAP
0 (Address Start)

LMB Memory

On Chip OPB)
Memory Increasing addresses

External OPB
Memory

Peripherals

Represents Holes
(Address End) in Address Range

Figure 28-1: A Sample Address Map for a MicroBlaze System

Special Addresses

Every MicroBlaze system must have user writable memory present in addresses 0x00000000
through 0x00000018. These memory locations contain the addresses MicroBlaze jumps to after
a reset, interrupt, or exception event occurs. This memory can be part of the LMB or the OPB
BRAM address space. Please refer to Chapter 4, “MicroBlaze Application Binary Interface”
(ABI) for further details.

OPB Address Range Details

Within the OPB address space, the user can arbitrarily assign address space to on/off-chip
memory peripherals and to on/off-chip non-memory peripherals. The OPB address space may
contain holes representing regions that are not associated with any OPB peripheral. Special
linker scripts and directives may be required to control the assignment of object file sections to
address space regions.

Address Map

Figure 28-1 shows a possible address map for a MicroBlaze System. The actual address map is
defined in the MicroBlaze Hardware Specification (MHS) file. It contains an address map
specifying the addresses of LMB memory, OPB memory, External memory and peripherals.

The address range grows from 0. At the lowest range is the LMB memory. This is followed by
the OPB memory, External Memory and the Peripherals. Some addresses in this address space
have predefined meaning. The processor jumps to address 0x0 on reset, to address 0x8 on
exception, and to address 0x10 on interrupt.

252

www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

MicroBlaze Processor S XILINX®

Memory Speeds and Latencies

MicroBlaze requires 2 clock cycles to access on-chip Block RAM connected to the LMB for
write and 2 clock cycles for read. On chip memory connected to the OPB bus requires 3
cycles for write and 4 cycles for read. External memory access is further limited by off-chip
memory access delays for read access, resulting in 5-7 clock cycles for read. Furthermore,
memory accesses over the OPB bus may incur further latencies due to bus arbitration
overheads. As a result, instructions or data that need to be accessed quickly should be
stored in LMB memory when possible.

For more information on memory access times, see the MicroBlaze Hardware Reference
chapter.

System Address Space

MicroBlaze programs can be executed in different scenarios. Each scenario needs a
different set of system address space. The system address space is occupied by the
xmdstub or the bootstub, when debug or boot support is required. System address space is
also needed by the C-runtime routines.

System with only an executable [No debug, No Bootstrap]

The scenario is depicted in Figure 28-2(a). The C-runtime file crt0.0 is linked with the user
program. The system file, crt0.o starts at address location 0x0, immediately followed by
user’s program.

______ 0x00000000 0x00000000
r 0x00000000 !
xmdstub bootstub
crt0.0
r— - — — — — 1 r— - - — — — -1
crtl.o crt2.0/ crt3.0

main program

main program main program

€)) (b) (©)

Figure 28-2: Execution Scenarios

Embedded System Tools Guide www.xilinx.com 253
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 28: Address Management

System with debugging support

With systems requiring debug support, xmdstub must be downloaded at address location
0x0. The C-runtime file crtl.o is bundled with the user program and is place at a default
location. This scenario is shown in Figure 28-2(b).

System with bootstrap support

The user can also bootstrap their program by using the bootstub. This bootstub occupies
the system address space starting at address location 0x0. In addition to this system space,
every user program is pre-pended with another C-runtime routine crt2.o or crt3.0
depending on the compilation switch used. This scenario is shown in Figure 28-2(c).

Default User Address Space

The default usage of the compiler mb-gcc will place the users program immediately after
the system address space. The user does not have to give any additional options in order to

make space for the system files. The default start address for user programs is described in
Table 28-1

Table 28-1: Start address for different compilation switches

Compile Option Start Address
-xl-mode-executable 0x0
-xl-mode-xmdstub 0x400
-x|I-mode-bootstrap 0x100
-xlI-mode-bootstrap-reset 0x100

If the user needs to start the program at a location other than the default start address or if

non-contiguous address space is required, advanced address space management is
required.

Advanced User Address Space

Different Base Address, Contiguous User Address Space

The user program can run from any memory [that is, LMB memory or OPB memory]. By
default, the compiler will place the user program at location defined in Table 28-1. To
execute a program from any address location other than default, users must provide the
compiler mb-gcc with an additional option.

The option required is
-Wl,defsym -WI, TEXT_START_ADDR=start_address

where st art _addr ess is the new base address required for the user program.

Different Base Address, Non-contiguous User Address Space

The users can place different components of their program on different memories. For
example, on MicroBlaze systems with non-contiguous LMB and OPB memories, users can
keep their code on LMB memory and the data on OPB memory. The users can also create
systems which have contiguous address space for LMB and OPB memory, but having
holes in the OPB address space.

254 www.Xxilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

MicroBlaze Processor S XILINX®

All such user programs need creation of non-contiguous executables. To facilitate creation
of non-contiguous executable, linker scripts have to be modified. The default linker script
provided with the MicroBlaze Distribution Kit will place all user code and data in one
contiguous address space.

Linker scripts are defined in later sections in this document.

For more details on linker options see the Chapter 9, “GNU Compiler Tools” chapter.

Object-file Sections

The sections of an executable file are created by concatenating the corresponding sections
in an object (.0) file. The various sections in the object file are given in Figure 28-3.:

text

This section contains executable code. This section has the x (executable), r (read-only) and
i (initialized) flags.

.rodata

This section contains read-only data of a size more than 8 bytes (default). The size of the
data put into this section can be changed with an mb-gcc -G option. All data in this section
is accessed using absolute addresses. This section has the r (read-only) and the i
(initialized) flags. For more details refer to the Chapter 4, “MicroBlaze Application Binary
Interface”chapter.

.sdata2

This section contains small read-only data (size less than 8 bytes). The size of the data
going into this section can be changed with an mb-gcc -G option. All data in this section is
accessed with reference to the read-only small data anchor. This ensures that all data in the
.sdata2 section can be accessed using a single instruction (A preceding imm instruction
will never be necessary). This section has the r (read-only) and the i (initialized) flags. For
more details refer to the Chapter 4, “MicroBlaze Application Binary Interface” chapter.

.data

This section contains read-write data of a size more than 8 bytes (default). The size of the
data going into this section can be changed with an mb-gcc -G option. All data in this

Embedded System Tools Guide www.xilinx.com 255
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 28: Address Management

section is accessed using absolute addresses. This section has the w (read-write) and the i
(initialized) flags.

Sectional Layout of an Object or an Executable File

.text Text Section

.rodata Read-Only Data Section
.sdata2 Small Read-Only Data Section
.data Read-Write Data Section
.Sdata Small Read-Write Data Section
.sbss Small Uninitialized Data Section
.bss Uninitialized Data Section

Figure 28-3: Sectional layout of an object or executable file

.sdata

This section contains small read-write data of a size less than 8 bytes (default). The size of
the data going into this section can be changed with an mb-gcc -G option. All data in this
section is accessed with reference to the read-write small data anchor. This ensures that all
data in the .sdata section uses a single instruction. (A preceding imm instruction will never
be necessary). This section has the w (read-write) and the i (initialized) flags.

.sbss

This section contains small un-initialized data of a size less than 8 bytes (default). The size
of the data going into this section can be changed with an mb-gcc -G option. This section
has the w (read-write) flag.

.bss

This section contains un-initialized data of a size more than 8 bytes (default). The size of
the data going into this section can be changed with an mb-gcc -G option. All data in this
section is accessed using absolute addresses. The stack and the heap are also allocated to
this section. This section has the w (read-write) flag.

The linker script describes the mapping between all the sections in all the input object files,
and the output executable file.

If your address map specifies that the LMB, OPB and External Memory occupy
contiguous areas of memory, you can use the default (built-in) linker script to generate
your executable. This is done by invoking mb-gcc as follows:

nmb-gcc filel.c file2.c

Note that using the built-in linker script implies that you have no control over which parts
of your program are mapped to the different kinds of memory. The default scripts used by
the linker are located at:

256 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

MicroBlaze Processor S XILINX®

$XILINX_EDK/gnu/microblaze/nt(orsol)/microblaze/lib/ldscripts, where
$XILINX_EDK is the EDK installed directory. These scripts are imbibed into the linker and
hence any changes to these scripts will not be reflected. To customize linker scripts, you
must write your own linker script.

Minimal Linker Script

If your LMB, OPB and External Memory do not occupy contiguous areas of memory, you
can use a minimal linker script to define your memory layout. Here is a minimal linker
script that describes the memory regions only, and uses the default (built-in) linker script
for everything else.

/*
* Define the nmenory | ayout, specifying the start address and size of the
* different nenory regions. The ILMB will contain only executabl e code
(x),
* the DLMB will contain only initialized data (i), and the DOPB will
contain
* all other witable data (w). Note that all sections of all your input
* object files nmust map into one of these nenory regions. Other nenory
types
* that may be specified are "r" for read-only data.
*/
MEMORY
{
ILMB (x) : ORIGN
DLMB (i) : ORIGN
DOPB (w) : ORIG N

0x0, LENGIH = 0x1000
0x2000, LENGTH = 0x1000
0x8000, LENGTH = 0x30000

}

This script specifies that the ILMB memory contains all object file sections that have the x
flag, the DLMB contains all object file sections that have the i flag and the DOPB contains
all object file sections that have the w flag. An object file section that has both the x and the
i flag (for example, the .text section) will be loaded into ILMB memory because this is
specified first in the linker script. Refer to the “Object-file Sections” section of this chapter
for more information on object file sections, and the flags that are set in each.

Your source files can now be compiled by specifying the minimal linker script as though it
were a regular file, e.g.,

nmb-gcc minimal linker script filel.c file2.c
Remember to specify the minimal linker script as the first source file.

If you want more control over the layout of your memory, for example, if you want to split
up your .text section between ILMB and IOPB, or if you want your stack and heap in
DLMB and the rest of the .bss section in DOPB, you will need to write a full-fledged linker
script.

Linker Script

You will need to use a linker script if you want to control how your program is targeted to
LMB, OPB or External Memory. Remember that LMB memory is faster than both OPB and
External Memory, and you may want to keep that portion of your code that is accessed the
most frequently in LMB memory, and that which is accessed the least frequently in
External Memory.

Embedded System Tools Guide www.xilinx.com 257
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 28: Address Management

You will need to provide a linker script to mb-gcc using the following command:
mb-gcc -W,-T -W,linker_script filel.c file2.c -save-tenps

This tells mb-gcc to use your linker script only, and to not use the default (built-in) linker
script.

The Linker Script defines the layout and the start address of each of the sections for the
output executable file. Here is a sample linker script.
/*
* Define the menory | ayout, specifying the start address and size of the
* different nenory regions.

*/
MEMORY
{
LMB : ORIA N = 0x0, LENGTH = 0x1000
OPB : ORIG N = 0x8000, LENGTH = 0x5000
}
/*
* Specify the default entry point to the program
*/

ENTRY(_start)

/*

* Define the sections, and where they are mapped in nenory
*/

SECTI ONS

{

/*
* Specify that the .text section fromall input object files will be
* placed in LMB nenory into the output file section .text Note that
* nmb-gdb expects the executable to have a section called .text
*/
text @ {
/* Uncoment the following line to add specific files in the opb_text */
/* region */
/* *(EXCLUDE_FI LE(filel.0).text) */
/* Comment out the following line to have nultiple text sections */

*(.text)
} >LMB

/* Define space for the stack and heap */

/* Note that variables _heap nust be set to the beginning of this area
*/

/* and _stack set to the end of this area */

= ALIGN(4);
_heap = .;
.bss : {
_STACK_SI ZE = 0x400;
+= _STACK_SI ZE;
= ALIGN(4);
} >LMB
_stack = .;

258

www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

MicroBlaze Processor

SXILINX®

*/

/*
/* Start of OPB nenory */
>/

/*
{

.opb_text
/* opb memory */

/*
} >OPB

= ALIGN(4);

.rodata : {
*(.rodata)

} >OPB
/[* Alignnents by 8 to

= ALI G\(8);

_ssrw = .;

.sdataz : {
*(.sdat a2)

} >OPB
= ALIGN(8);

filel.o(.text) *

/* Unconment the following Iine to add an executabl e section into */

/

ensure that _SDA2 BASE_on a word boundary */

_essrw = .;
_SSrw._size = _eSSrw - _Ssrw

_SDA2_BASE_

= ALIG\(4);

.data : {
*(.data)

/* Note that

= ALI GN\(8);
_ssro = .;
.sdata : {
*(.sdata)
} >OPB
= ALIGN(4);
.sbss : {
*(.sbss)
} >OPB
= ALIGN(8);
_essro = .;
_Sssro_size
SDA BASE

_ssrw + (_ssrw.size / 2);

} >OPB
/* Alignnents by 8 to ensure that _SDA BASE on a word boundary */
.sdata and .sbss nmust be contiguous */

_essro - _Ssro;
_ssro + (_ssro_size / 2);

= ALIGN(4);

.opb_bss

*(bss) *(COMON)

} > OPB

= ALI G\(4) ;

—end = .;

}

www.Xilinx.com

259

Embedded System Tools Guide
EDK (v3.1 EA) September 24, 2002

1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 28: Address Management

Note that if you choose to write a linker script, you must do the following to ensure that
your program will work correctly:

» Allocate space in the .bss section for stack and heap. Set the _heap variable to the
beginning of this area, and the _stack variable to the end of this area. See the .bss
section in the preceding script for an example.

» Ensure that the _SDA2 BASE_ variable points to the center of the .sdata2 area, and
that SDA2 BASE_is aligned on a word boundary.

» Ensure that the .sdata and the .sbss sections are contiguous, that the _SDA_BASE_
variable points to the center of this section, and that SDA_BASE_ is aligned on a
word boundary.

e If you are not using the xmdstub, ensure that crt0 is always loaded into memory
address zero. mb-gcc ensures that this is the first file specified to the loader, but the
loader script needs to ensure that it gets loaded at address zero. See the .text section in
the example above to see how this is done.

For more details on the linker scripts, refer to the GNU loader documentation in the binutil
online manual (http://www.gnu.org/manual).

PowerPC Processor

Programs and Memory

PowerPC users can write either C or Assembly programs, and use the Embedded
Development Kit to transform their source code into bit patterns stored in the physical
memory of a EDK System. User programs typically access local/on-chip memory, external
memory and memory mapped peripherals. Memory requirements for your programs are
specified in terms of how much memory is required for storing the instructions, and how
much memory is required for storing the data associated with the program.

Figure 28-4 shows a sample address map for a PowerPC based EDK system. The figure
shows that there can be various memories in the system. Here users need advanced
address space management, which can be done with the help of linker script, described in
“Linker Script” section.

Current Address Space Restrictions

Special Addresses

Every PowerPC system should have the boot section starting at OXFFFFFFFC.

Default Linker Options

By default, the linker assumes that the program can occupy contigous address space from
OXFFFF0000 to OXFFFFFFFF. It also assumes a default stack size of 4K bytes, and a default
heap size of 4K bytes.

To change the size of the allocated stack space, provide the following option to the
compiler powerpc-eabi-gcc

-WI,defsym -WI,_ STACK_SIZE=stack_size

where stack_size is the required stack size in bytes.

260

www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com
http://www.gnu.org/manual

PowerPC Processor S XILINX®

To change the size of the allocated heap space, provide the following option to the
compiler powerpc-eabi-gcc

-Wl,defsym -WI,_HEAP_SIZE=heap_size

where heap_size is the required heap size in bytes.

SAMPLE ADDRESS MAP

OxFFFFO000
External Memory

PLB Peripherals
PLB BRAM

OPB Peripherals

OXFFFFFFFCQ .boot

.boot should be at 0xFFFFFFFC

Figure 28-4: A Sample Address Map for a PowerPC System

Advanced User Address Space

Different Base Address, Contiguous User Address Space

The user program can run from any memory. By default, the compiler places the user
program at location OxFFFF0000. To execute the program from any address location other
than the default, users must provide the compiler powerpc-eabi-gcc with additional
option.

The option required is
-WIl,defsym -WI,_START_ADDR=start_address

where st art _addr ess is the new base address required for the user program.

Different Base Address, Non-contiguous User Address Space

The users can place different components of their program on different memories. For
example, on PowerPC systems users can keep their code on instruction cache memory and
the data on ZBT memory.

All such user programs need the creation of a non-contiguous executables. To facilitate
creation of non-contiguous executable, linker scripts must be modified. The default linker
script provided with the Embedded Distribution Kit will place all user code and data in
one contiguous address space.

Linker scripts are defined in later sections in this chapter.

Embedded System Tools Guide www.xilinx.com 261
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 28: Address Management

For more details on linker options, see the Chapter 9, “GNU Compiler Tools” chapter.

Linker Script

PowerPC Linker is built with default linker scripts. This script assumes a contiguous
memory starting from address OXFFFF0000. You can take a look at the default linker scripts
used by the linker at:

$XILINX_EDK/gnu/powerpc-eabi/nt(orsol)/powerpc-eabi/lib/ldscripts, where
$XILINX_EDK is the EDK installed directory. These scripts are imbibed into the linker and
hence any changes to these scripts will not be reflected.

You must write a linker script if you want to control how your program is targeted to
Instruction Cache, ZBTor External Memory.

You will need to provide a linker script to powerpc-eabi-gcc using the following
command:

power pc-eabi -gcc -W,-T -W,linker script filel.c file2.c -save-tenps

This tells powerpc-eabi-gcc to use your linker script only, and to not use the default (built-
in) one. The Linker Script defines the layout and the start address of each of the sections for
the output executable file.

Restrictions

Note that if you choose to write a linker script, you must do the following to ensure that
your program will work correctly:

» Allocate space in the .bss section for stack and heap. Set the _stack variable to the
location after STACK_SIZE locations of this area, and the _heap_start variable to the
next location after STACK_SIZE location. Since the stack and heap need not be
initialized for hardware as well as simulation, define __bss_end variable after the bss
and COMMON defintions. See the .bss section in the script below for an example.

» Ensure that the variables _ SDATA_START__. _ SDATA_END__, SDATA2_START,
_ SDATA2_END__, SBSS2_START__,_SBSS2 END__, _ shss_start and
__sbss_end are defined to the beginning and end of the sections sdata, sdata2, sbss2,
sbss respectively.

» Ensure that the .sdata and the .sbss sections are contiguous.
» Ensure that the .sdata2 and the .shss2 sections are contiguous.
» Ensure that the .boot section starts at OXFFFFFFFC.

» Ensure that boot.o is the first file to be linked (Check the STARTUP(boot.o) in the
following script which achieves this)

» Ensure that the .vector section is aligned on a 64k boundary

* Each (physical) region of memory must use a separate program header. Two
discontinuous regions of memory cannot share a program header

» Putall uninitialized sections (.bss, .sbss, .sbss2, stack, heap) at the end of a memory
region. If this is impossible (eg., .sdata, .sbss and .sdata2, .sbss2 in same physical
memory), start a new program header for the first initialized section after
uninitialized sections.

» ANSI C requires that all uninitialized memory be initialized to startup (Not required
for stack and heap). The standard crt0.s that we provide assumes a single .bss section

262 www.Xxilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

PowerPC Processor

SXILINX®

that is initialized to zero. If there are multiple .bss sections, this crt will not work. You
should write your own crt that initializes all the bss sections.

For more details on the linker scripts, refer to the GNU loader documentation in the binutil
online manual (http://www.gnu.org/manual).

Here is the default linker script.

/*

* Define default stack and heap sizes
*/

STACKSIZE =1k;
_HEAP_SIZE = DEFINED(_HEAP_SIZE) ?_HEAP_SIZE : 4k;

/*

* Define boot.o to be the first file for linking.
* This statement is mandatory.

*/

STARTUP(boot.0)

/* Specify the default entry point to the program */
ENTRY(_boot)

/*
* Define the Memory layout, specifying the start address
* and size of the different memory locations

*/

MEMORY

{
bram : ORIGIN = 0xffff8000, LENGTH = Ox7fff

boot : ORIGIN = Oxfffffffc, LEN GTH =4
}

/*
* Define the sections and where they are mapped in memory

* Here .boot sections goes into boot memory. Other sections

Embedded System Tools Guide www.xilinx.com 263
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com
http://www.gnu.org/manual

S XILINX® Chapter 28: Address Management

* are mapped to bram memory.

*/

SECTIONS
{
.boot0 :{*(.boot0)} > bram
dext :{*(.text) } > bram
.boot :{*(boot)} > boot
.data :
{
*(.data)
*(.got2)
*(.rodata)
*(.fixup)

}>bram

/*
* vectors section must be aligned on a 64k boundary

* Hence the syntax BLOCK(64Kk)
*
/

.vectors BLOCK (64Kk):
{
*(.vectors)

}>bram

/* small data area (read/write): keep together! */
.sdata : { *(.sdata) } > bram
.Sbss :
{
.= ALIGN(4);
*(.sbss)
.= ALIGN(4);
}>bram
__sbss_start = ADDR(.shss);
__sbss_end = ADDR(.shss) + SIZEOF(.sbss);

264 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

PowerPC Processor

SXILINX®

/* small data area 2 (read only) */

.sdata? : {*(.sdata2) } > bram
__SDATA2_START__ = ADDR(.sdata2);
__SDATA2_END__ = ADDR(.sdata2) + SIZEOF(.sdata?);

.8bss2 : {*(.sbss2) } > bram
__SBSS2_START__ = ADDR(.shss2);
__SBSS2_END__ = ADDR(.shss2) + SIZEOF(.shss2);

.bss
{
.= ALIGN(4);
*(.bss)
*(COMMON)

/* stack and heap need not be initialized and hence bss end is declared here */

.= ALIGN(4);

__bss end =

/* add stack and heap and align to 16 byte boundary */

. =.+ STACKSIZE;
.= ALIGN(16);
__stack =
_heap_start = ;
.=.+ HEAP_SIZE;
.= ALIGN(16);
_heap_end = ;;
}>bram
__bss_start = ADDR(.bss);

}

Embedded System Tools Guide www.xilinx.com
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

265

http://www.xilinx.com

S XILINX® Chapter 28: Address Management

266 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

SXILINX®
Chapter 29

Interrupt Management

Summary

This chapter outlines interrupt management in both MicroBlaze and PowerPC. It
specifically details the role of LibGen for Low Level (Level 1) interrupt routines for
MicroBlaze and PowerPC.

Levels of Interrupt Management

There are two levels of interrupt management possible using EDK. Level 0 is low level
interrupt management and level 1 is a higher level interrupt management.

Level O (Low Level)

Level 0 interrupt management is charaterized by statically creating an interrupt vector
table for the interrupt controller peripheral with the handler routines for all the peripherals
that the interrupt controller is connected to. There is a statically determined priority
ordering in the interrupt table. Once the platform is built and generated, users cannot
register other interrupt handlers to handle peripheral interrupts. Currently there is a
restriction of only one interrupt controller peripheral being connected to each processor in
the system.

When using the level 0 procedure, LibGen can be used to statically configure interrupt
handlers for peripherals. LibGen also configures an interrupt vector table for the interrupt
controller peripheral to use. This is detailed in subsequent sections in this document.

Level 1 (High Level)

Level 1 interrupt management is characterized by having the flexibility of registering
interrupt routines at program runtime.

When using the high level interrupt management, the user must dynamically register
peripheral interrupt handler routines and enable/disable peripheral interrupts. Libgen
does not configure interrupt vector tables, or the interrupt handlers when using the Level
1 management procedure. For more information please refer to the Interrupt Controller
Driver specifics in Chapter 26, “Device Drivers”.

Embedded System Tools Guide www.xilinx.com 267
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 29: Interrupt Management

MicroBlaze Interrupt Management

This section describes interrupt management for MicroBlaze. Interrupt Management
involves writing interrupt handler routines for peripherals and setting up the MHS and
MSS files appropriately. MicroBlaze is capable of handling up to 32 interrupting devices.
An interrupt controller peripheral is required for handling more than one interrupt signal.
The mechanism of interrupt management is different if an interrupt controller is present
than when it is not. This chapter describes both these management procedures.

Interrupt Handlers

Users are expected to write their own interrupt handlers (or Interrupt Service Routines) for
any peripherals that raise interrupts. These routines can be written in C just like any other
function. The interrupt handler function can have any name with the signature void func
(void *).

The main interrupt handler routine has to be tagged with interrupt_handler attributes so
that mb-gcc can identify this as an interupt handler. Refer to the Interrupt Handlers section
in Chapter 9, “GNU Compiler Tools”, for more information on this attribute.

Libgen tags the interrupt controller interrupt routine automatically when the
recommended interrupt management procedures as described in subsequent sections are
followed.

The Interrupt Controller Peripheral

An interrupt controller peripheral should be used for handling multiple interrupts. In this
case, the user is responsible for writing interrupt handlers for the peripheral interrupt
signals only. The interrupt handler for the interrupt controller peripheral is automatically
generated by LibGen. This handler ensures that interrupts from the peripherals are
handled by individual interrupt handlers in the order of their priority. Figure 29-1 shows
peripheral interrupt signals with priorities 1 through 4 connected to the interrupt
controller input.

MicroBlaze

Interrupt Signal

Priority 1 Peripheral 1
Interrupt Priority 2
interrupt Peripheral 2
Priority 3 Peripheral 3
i eriphera
Interrupt interrupt —
Controller
Priority 4 Peripheral 4
interrupt

Figure 29-1: Interrupt Controller and Peripherals

268

www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

MicroBlaze Interrupt Management XX"JNX@

The interrupt signal output of the controller is connected to the interrupt input of
MicroBlaze. In the MSS file, each peripheral interrupt signal must be associated with
interrupt handler routines (also called Interrupt Service Routines). LibGen automatically
creates a vector table with the peripheral interrupt handler routines listed in the order of
priority. When any peripheral raises an interrupt, the default handler for the interrupt
controller is called. This handler then queries the interrupt controller to find out which
peripheral raised the interrupt and then calls the peripheral specific interrupt handler. For
a system where the interrupt controller is not present and only one interrupt signal is
connected, the peripheral’s interrupt handler (written by the user) gets called when an
interrupt occurs.

MicroBlaze Enable Interrupts

The functions microblaze_enable_interrupts and microblaze_disable_interrupts are used to
enable and disable interrupts on MicroBlaze. These functions are part of the MicroBlaze
BSP and are described there.

System without Interrupt Controller (Single Interrupt Signal)

An interrupt controller is not required if there is a single interrupting peripheral and its
interrupt signal is level sensitive. Note that a single peripheral may raise multiple
interrupts. In this case, an interrupt controller is required.

Procedure

To set up a system without an interrupt controller that handles only one level sensitive
interrupt signal, the following steps must be taken:

1. The MHS and MSS file must be set up as follows:

The interrupt signal of the peripheral must be connected to the interrupt input of
the MicroBlaze in the MHS file.

The peripheral must be given an instance name using the INSTANCE keyword in
the MHS file. Libgen creates a definition in xparameters.h

(USER_PRQIECT/ PROC | NST NAME/ i ncl ude) for
XPAR_INSTANCE_NAME_BASEADDR mapped to the base address of this
peripheral.

2. The interrupt handler routine that handles the signal should be written. The base
address of the peripheral instance is accessed as
XPAR_INSTANCE_NAME_BASEADDR.

3. The handler function is then designated to be an interrupt handler for the signal using

the

INT_HANDLER keyword in the MSS file (Refer Chapter 18, “Microprocessor

Software Specification (MSS)”). The peripheral instance is first selected in the MSS

file,

and then the INT_HANDLER attribute is given the function name.

4. Libgen and mb-gcc are executed. This operation has the following implications:

the function is marked as an interrupt handler using the mb-gcc interrupt_handler
attribute. All volatile registers used by this function are saved. Also, this function
will return using the rtid instruction, rather than the normal rtsd instruction.
Furthermore, this function will also be given the name _interrupt_handler by mb-
gcc. By default, MicroBlaze turns off interrupts from the time an interrupt is
recognized until the corresponding rtid instruction is executed.

Embedded System Tools Guide
EDK (v3.1 EA) September 24, 2002

www.Xilinx.com 269
1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 29: Interrupt Management

- the startup code (crtO, crtl, crt2 or crt3) places the address of _interrupt_handler
as the target address that MicroBlaze jumps to when an interrupt occurs.
Therefore control will go to the interrupt handler when an interrupt occurs.

Example MHS File

paraneter Version = 2.0.0

port sys_reset = sys_reset, DR = input

port sys_Ck = sys_Ck, DR = input

begi n opb_v20
paranmeter HWVER = 1.00.b
par amet er | NSTANCE = opb_bus

port SYS Rst = sys_reset
port OPB Ok = sys Ok
end

BEG N | nb_| nb_bram

par amet er | NSTANCE = |
parameter HWVER = 1.0
par anet er C_BASEADDR = 0x00000000
par amet er C_H GHADDR = 0x00000f f f
bus_interface ILMB =i _Inb
bus_interface DLMB = d_I nb

end

nb_| mb_bram i
0.a

begin | mb_v10

par ameter | NSTANCE = d_I nb
paraneter HWVER = 1.00. a
port LMB Ok = sys Ok
port SYS Rst = sys_reset
end

begin | mb_v10

parameter | NSTANCE = i _|Inb
paraneter HWVER = 1.00. a
port LMB_dk sys_CO k
port SYS Rst sys_reset
end

BEG N opb_ti ner

paranmet er | NSTANCE = nyti ner
paranmeter HWVER = 1.00.b

par anet er C_BASEADDR = OxFFFFO000
par amet er C_H GHADDR = OxFFFFOOf f
bus_interface SOPB = opb_bus

port Interrupt = interrupt

port CaptureTrigO = net_gnd

END

begi n m crobl aze

par anmet er | NSTANCE = nbl aze
parameter HWVER = 1.00.c
bus_interface DOPB = opb_bus
bus_interface DLMB = d_I nmb
bus_interface ILMB =i _Inb

port | NTERRUPT = interrupt

270

www.Xilinx.com
1-800-255-7778

Embedded System Tools Guide
EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

MicroBlaze Interrupt Management

SXILINX®

end

Example MSS File snippet

BEG N DRI VER
paramet er HW.I NSTANCE = nyti ner
paraneter DRI VER NAME = tnrctr

parameter DRI VER VER = 1.00.b
paraneter | NT_HANDLER = tiner_int_handler, |INT_PORT = Interrupt

END

Example C Program

#i
#i
#i
#i

/*
*

*

nclude <xtnrctr_|.h>
nclude <xintc_I.h>

ncl ude <xgpio_|.h>

ncl ude <xparaneters. h>

G obal variables: count is the count displayed using the

LEDs, and tinmer_count is the interrupt frequency.
/

unsigned int count = 1; /* default count */

unsigned int timer_count = 1; /* default timer_count */

/*

timer interrupt service routine */

void tiner_int_handl er(void * baseaddr_p) {

}

unsigned int csr;

unsi gned int gpio_data;

/* Read timer O CSRto see if it raised the interrupt

*/

csr = XTnmr Ctr _nGet Cont r ol St at usReg(XPAR_MYTI MER_BASEADDR, 0);

if (csr & XTC_CSR_| NT_OCCURED MASK) {
/* Increment the count */

if ((count <<= 1) > 8) {
count = 1;

}

/* Wite value to gpio. 0 neans |ight up, hence count

gpi o_data = ~count;

XGpi o_nBet Dat aReg(XPAR_MYGPI O BASEADDR, gpi o_data);

/* Clear the tiner interrupt */
XTnr Ct r _nfSet Cont r ol St at usReg(XPAR_MYTI MER_BASEADDR,

}

voi d
mai n() {

unsi gned int gpi o_data;

is negated */

0, csr);

Embedded System Tools Guide

www.Xilinx.com

EDK (v3.1 EA) September 24, 2002 1-800-255-7778

271

http://www.xilinx.com

SUXILINX®

Chapter 29: Interrupt Management

/* Enabl e mcroblaze interrupts */
m crobl aze_enabl e_interrupts();

/* Start the interrupt controller */
Xl nt c_mvast er Enabl e(XPAR_MYI NTC_BASEADDR) ;

/* Set the gpio as output on high 3 bits (LEDs)*/
XGpi o_nBet Dat abi r ect i on(XPAR_MYGPI O_BASEADDR, 0x00) ;

/* set the nunber of cycles the tinmer counts before interrupting */
XTnr Ctr_nBet LoadReg(XPAR_MYTI MER_BASEADDR, O,
(timer_count*timer_count+1) * 1000000);

/* reset the tiners, and clear interrupts */
XTnr Ct r _nBet Cont r ol St at usReg(XPAR_MWTI MER_BASEADDR, O,
XTC_CSR_| NT_OCCURED _MASK | XTC_CSR LOAD MASK);

/* Enable timer and uart interrupts in the interrupt controller */
Xl nt c_nEnabl el nt r (XPAR_MYl NTC_BASEADDR,
XPAR_MYTI MER_| NTERRUPT_MASK) ;

/* start the tiners */

XTnr Ct r _nBet Cont r ol St at usReg(XPAR_MYTI MER_BASEADDR, O,
XTC_CSR_ENABLE TMR_MASK | XTC CSR ENABLE | NT_MASK |
XTC_CSR_AUTO RELOAD MASK | XTC CSR_DOWN_COUNT_MASK) ;

/* Wait for interrupts to occur */
while (1)

1

System with an Interrupt Controller (One or More Interrupt Signals)

An Interrupt Controller peripheral (intc) should be present if more than one interrupt can
be raised. When an interrupt is raised, the interrupt handler for the Interrupt Controller
(XIntc_LowLevellnterruptHandler) is called. This function then accesses the interrupt
controller to find the highest priority device that raised an interrupt. This is done via the
vector table created automatically by LibGen. On return from the peripheral interrupt
handler, intc interrupt handler acknowledges the interrupt. It then handles any lower
priority interrupts, if they exist.

Procedure

To set up a system with one or more interrupting devices and an interrupt controller, the
following steps must be taken:

1. The MHS and MSS files must be set up as follows:

- The interrupt signals of all the peripherals must be assigned to the Intr port of the
interrupt controller in the MHS file. The interrupt signal output of intc is then
connected to the interrupt input of MicroBlaze.

- The peripherals must be given instance names using the INSTANCE keyword in
the MHS file. Libgen creates a definition in xparameters.h for
XPAR_INTC_INSTANCE_INSTANCE_NAME_BASEADDR mapped to the base
address of each peripheral for use in the user program. Libgen also creates an
interrupt mask for each interrupt signal using the priorities as

272

www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

MicroBlaze Interrupt Management XX"JNX@

XPAR_INTC_INSTANCE_INSTANCE_NAME_INTERRUPT_SIGNAL_NAME_MA

SK. This can be used to enable or disable interrupts.

2. The interrupt handler functions for each interruptible peripheral must be written.

3. Each handler function is then designated to be the handler for an interrupt signal using
the INT_HANDLER keyword in the MSS file. Note that intc interrupt signal must not be
given an INT_HANDLER keyword. If the INT_HANDLER keyword is not present for a
particular peripheral, a default dummy interrupt handler is used.

4. Libgen and mb-gcc is run to achieve the following:

The Xlintc_LowLevellnterruptHandler function is marked as the main interrupt
handler by mb-gcc using the interrupt_handler attribute. All volatile registers used
by this function are saved. Also, this function will return using the rtid instruction,
rather than the normal rtsd instruction. Furthermore, this function will also be
given the name _interrupt_handler. By default, MicroBlaze turns off interrupts
from the time an interrupt is recognized until the corresponding rtid instruction is
executed.

An interrupt vector table is generated and compiled automatically by libgen. This
table is accessed by the intc interrupt_handler to call peripheral interrupt handlers
in order of priority.

The startup code (crtO, crtl, crt2 or crt3) places the address of _interrupt_handler
as the target address that MicroBlaze jumps to when an interrupt occurs.
Therefore control will go to the intc interrupt handler when an interrupt occurs.

Example MHS File

paranmeter Version = 2.0.0

port
port

port
por t

sys_reset = sys_reset, DR = input
sys_ Ok = sys Ak, DR = input

i nput

rx =
= out put

tx

g
pyj
inon

begi n opb_v20
paraneter HWVER = 1.00.b
par amet er | NSTANCE = opb_bus

port
port
end

SYS_Rst
oPB_d k

sys_reset
sys_Cd k

BEG N | nb_| nb_bram
paramet er | NSTANCE = I nb_| mb_bram i
paraneter HWVER = 1.00. a

par anet er C_BASEADDR = 0x00000000
par amet er C_H GHADDR = 0x00000f f f
bus_interface ILMB =i _Inb
bus_interface DLMB = d_I nb

end

begin | mb_v10
parameter | NSTANCE = d_I nb
parameter HWVER = 1.00. a

port LMB Ok = sys Ok
port SYS Rst = sys_reset
end
Embedded System Tools Guide www.xilinx.com 273

EDK (v3.1 EA) September 24, 2002

1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 29: Interrupt Management

begin | mb_v10

paranet er | NSTANCE = i _|
par aneter HWVER = 1. 00.
port LMB Ok = sys Ok
port SYS Rst = sys_reset
end

BEG N opb_ti mer

par anet er | NSTANCE = myt
par aneter HWVER = 1.00.
par aneter C_BASEADDR = 0
paraneter C_H GHADDR = 0
bus_interface SOPB = opb
port Interrupt = timerl
port CaptureTrig0 = net_
END

EG N opb_uartlite
paranmeter | NSTANCE = myu
par aneter HWVER = 1. 00.
par anet er C_BASEADDR =
paraneter C_H GHADDR = 0
paramet er C_DATA BITS
paraneter C_CLK FREQ
par anet er C_BAUDRATE
paraneter C USE PARI TY
bus_interface SOPB = opb
port RX = rx

port TX = tX

port Interrupt = uartl
END

BEG N opb_intc

paramet er | NSTANCE = nyi
parameter HWVER = 1. 00.
par anet er C_BASEADDR = 0
paranmeter C_H GHADDR = 0
bus_interface SOPB = opb

port Irg = interrupt
port Intr = tinmerl & uar
END

begi n m crobl aze

par anet er | NSTANCE = nbl
paraneter HWVER = 1. 00.
bus_interface DOPB = opb
bus_i nterface DLMB = d_|

bus interface ILMB =i |
port | NTERRUPT = interru
end

Example MSS File snippet

BEG N DRI VER

par anmet er HW. I NSTANCE
par amet er DRI VER_NAME
paranmeter DRI VER_VER = 1

mb
a

i mer

b
xFFFF0000
x FFFFOOf f
_bus

gnd

art

b

0xFFFF8000

XFFFF80FF
8
30000000
19200
0

_bus

ntc

b
XFFFF1000
XFFFF10f f
_bus

tl

aze
c
_bus
nb
nb

pt

myti mer
tnrctr
.00. b

274

www.Xilinx.com

1-800-

Embedded System Tools Guide

255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

MicroBlaze Interrupt Management XX"JNX@

par anet er | NT_HANDLER
END

timer_int_handler, INT_PORT = Interrupt

BEG N DRI VER

parameter HW.I NSTANCE = nyuart

parameter DRI VER NAME = uartlite

parameter DRI VER VER = 1.00.b

parameter | NT_HANDLER = uart_i nt_handl er, |INT_PORT = Interrupt
END

Example C Program

#i nclude <xtnrctr _|.h>
#i nclude <xuartlite_ |.h>
#i nclude <xintc_I.h>

#i ncl ude <xgpio_I.h>

#i ncl ude <xparaneters. h>

/* dobal variables: count is the count displayed using the
* LEDs, and timer_count is the interrupt frequency.
*/

unsigned int count = 1; [/* default count */
unsigned int timer_count = 1; /* default tiner_count */

/* uartlite interrupt service routine */
voi d uart _int_handl er(void *baseaddr_p) {
char c;
[* till uart FIFCs are enpty */
while (!XUartLite_m sRecei veEnpt y(XPAR_MYUART _BASEADDR)) {
/* read a character */
¢ = XUartlLite_RecvByt e(XPAR_MYUART_BASEADDR) ;
/* if the character is between "0" and "9" */
if ((c>47) && (c¢<58)) {
timer_count = c-48;
[* print character on hyperterm nal (STDOUT) */
put nunm(ti mer_count);
/* Set timer with new value of tiner_count */
XTnr Ctr _nBet LoadReg(XPAR_MYTlI MER_BASEADDR, 0, (timer_count*tim
er_count+1) * 1000000);
}
}
}

/* timer interrupt service routine */

void tiner_int_handl er(void * baseaddr_p) {
unsigned int csr;
unsi gned int gpio_data;

/* Read timer O CSRto see if it raised the interrupt */
csr = XTrmr Ctr _nGet Cont r ol St at usReg(XPAR_MYTI MER_BASEADDR, 0);

if (csr & XTC CSR_|I NT_OCCURED MASK) {
/* Increnent the count */

if ((count <<= 1) > 8) {
count = 1;

Embedded System Tools Guide www.xilinx.com 275
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 29: Interrupt Management

}

/* Wite value to gpio. 0 neans |ight up, hence count is negated */
gpi o_data = ~count;

XCpi o_nBet Dat aReg(XPAR_MYGPI O_BASEADDR, gpi o_dat a) ;

/* Clear the tiner interrupt */
XTnr Ct r _nBet Cont r ol St at usReg(XPAR_MYTI MER_BASEADDR, 0, csr);

}
}

voi d
mai n() {

unsi gned int gpio_data;

/* Enabl e mcroblaze interrupts */
m crobl aze_enabl e_interrupts();

/* Start the interrupt controller */
XI' nt c_mvast er Enabl e(XPAR_MYI NTC_BASEADDR) ;

/* Set the gpio as output on high 3 bits (LEDs)*/
XGpi o_nBet Dat abi r ecti on(XPAR_MYGPI O BASEADDR, 0x00);

/* set the nunber of cycles the timer counts before interrupting */
XTnr Ct r _nSet LoadReg(XPAR_MYTI MER_BASEADDR, 0,
(timer_count*timer_count+1) * 1000000);

/* reset the tiners, and clear interrupts */
XTnr Ct r _nBet Cont r ol St at usReg(XPAR_MYTI MER_BASEADDR, O,
XTC_CSR_| NT_OCCURED MASK | XTC CSR _LOAD MASK);

/* Enable timer and uart interrupts in the interrupt controller */
Xl nt c_nEnabl el nt r (XPAR_MYl NTC_BASEADDR,
XPAR_MYTI MER_| NTERRUPT_MASK) ;

/* start the tiners */

XTnr Ct r _nBet Cont r ol St at usReg(XPAR_MYTI MER_BASEADDR, O,
XTC_CSR_ENABLE _TMR_MASK | XTC_CSR _ENABLE | NT_MASK |
XTC_CSR_AUTO RELOAD MASK | XTC_CSR_DOAN_COUNT_NMASK) ;

/* Wait for interrupts to occur */
while (1)

1

PowerPC Interrupt Management

For the PowerPC processor, LibGen can be used to statically configure Low Level (Level 1)
interrupt vector tables with the peripheral interrupt handlers as described above for
MicroBlaze. The only limitation is that LibGen does not automatically configure interrupt

276 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

PowerPC Interrupt Management XX"JNX@

controller interrupt handler to be the exception handler for the PowerPC. The user has to
register the interrupt controller handler as the exception handler.

Thus, for low level handlers, users can take advantage of LibGen’s configuration of
peripheral handlers and interrupt controller vector table. For more information on using
the exception handlers in the PowerPC, please refer Chapter 27, “Stand-Alone Board
Support Package”.

Embedded System Tools Guide www.xilinx.com 277
EDK (v3.1 EA) September 24, 2002 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 29: Interrupt Management

278 www.xilinx.com Embedded System Tools Guide
1-800-255-7778 EDK (v3.1 EA) September 24, 2002

http://www.xilinx.com

	Embedded System Tools Guide
	About This Guide
	Guide Contents
	Additional Resources
	Conventions
	Typographical
	Online Document

	Embedded System Tools (EST) Architecture
	Summary
	Tool Architecture Overview
	Tool Flows
	Hardware Platform Creation
	Verification Platform Creation
	Software Platform Creation
	Software Application Creation and Verification

	Some Useful Tools
	Xilinx Platform Studio
	Platform Generator
	HDL Synthesis
	iSE XST
	Synplicity Synplify

	Simulation Model Generator
	Library Generator
	GNU Compiler Tools
	Microblaze
	PowerPC
	Compiling with Optimization
	Setting the Stack Size

	Software Debugging
	Debugging Using Hardware: software intrusive
	Debugging Using A Simulator: non-intrusive

	Dumping an Object/Executable File

	Verifying Tools Setup
	Tools Directory Path
	For Solaris
	For PC

	Xilinx Alliance Software

	Xilinx Platform Studio (XPS)
	Summary
	Overview
	Processes Supported
	Tools Supported
	Features

	Project Management
	Creating A New Project
	Opening An Existing Project

	XPS Interface
	Main Window
	Project View Window (Tree View)
	Transcript Window (Console)

	Platform Management
	Add Cores
	Simulation Models
	View MPD
	View MDD
	S/W Settings
	Peripheral Dialog Window
	Processor Dialog Window

	Source Code Management
	Adding Files
	Deleting Files from Project
	Editing Files

	Flow Tool Settings and Required Files
	Compiler Options
	Project Options
	Required Files

	Tool Invocation
	ISE Project Navigator Interface

	Debug and Simulation
	XPS No Window Mode
	Available Commands
	Creating A New Project
	Opening An Existing Project
	Reading MSS and MVS Files
	Saving Files and Project
	Executing Flow Commands
	Closing A Project and Exiting
	Limitations And Workarounds

	Xilinx Microprocessor Project (XMP) File Format

	Platform Generator
	Overview
	Tool Requirements
	Tool Usage
	Tool Options
	Load Path
	Output Files
	HDL Directory
	Implementation Directory
	Synthesis Directory

	About Memory Generation
	MHS Example (LMB LMB Controller with BRAM Block)

	Reserved MHS Attributes
	Current Limitations

	Simulation Model Generator
	Summary
	Overview
	About Simulation
	Behavioral Simulation
	Structural Simulation
	Timing Simulation

	Simulation Libraries
	EDK Library
	UNISIM Library
	SIMPRIM Library

	Tool Requirements
	Tool Usage
	Tool Options
	Input files
	HDL Directory
	Implementation Directory

	Output Files
	Simulation Directory

	Memory Initialization
	Verilog
	VHDL

	Current Limitations

	Bus Functional Model Generator
	Summary
	Overview
	Tool Requirements
	Tool Usage
	Tool Options
	Input files
	Output Files
	Using BfmGen and IBM CoreConnect Toolkit
	Current Limitations

	Library Generator
	Summary
	Overview
	Tool Usage
	Tool Options
	-h, -help (Help)
	-v, -ver (Display version information)
	-a, -arch family_name (Architecture family)
	-p, -proj proj_dir (Specify project directory)
	-P, -Per_Dir per_dir (Specify user peripherals and driver directory)
	-m, -mode
	-x, -xmdstub proc_inst_name_1 [, proc_inst_name_2, ...]
	-b, -bootstub proc_inst_name_1 [, proc_inst_name 2, ...]
	-e, -executable proc_inst_name_1 [, proc_inst_name_2, ...]
	-l, -lib
	-s, -stub
	-bspgen proc_inst_name_1 [, proc_inst_name_2, ...]
	-d, -do_not_warn

	Output Files
	include
	lib
	libsrc
	code

	MSS Parameters
	Drivers
	Interrupts and Interrupt Controller
	Level 0 Customization

	Boot and Debug Peripherals (MicroBlaze Specific)
	STDIN and STDOUT Peripherals

	Format Revision Tool
	Overview
	Tool Requirements
	Tool Usage
	Tool Options
	Current Limitations

	Platform Specification Format Utility
	Summary
	Overview
	Tool Requirements
	Tool Usage
	Tool Options
	Input files
	Output Files

	GNU Compiler Tools
	Scope
	GNU Compiler Framework
	Compiler Usage and Options
	Usage
	Quick Reference
	Compiler Options
	-g
	-v
	-save-temps
	-o Filename
	-Wp,option
	-Wa,option
	-Wl,option
	--help
	Library Search Options
	Header Files Search Option

	Linker Options
	-defsym _STACK_SIZE=value

	Linker Scripts
	Search Paths
	On Solaris
	On Windows Xygwin Shell

	File Extensions
	Libraries

	Compiler Interface
	Input Files
	Output Files

	MicroBlaze GNU Compiler
	Quick Reference
	MicroBlaze Compiler Options
	-mxl-soft-mul
	-mno-xl-soft-mul
	-mxl-stack-check
	-mxl-barrel-shift
	-mxl-gp-opt
	-xl-mode-executable
	-xl-mode-xmdstub
	-xl-mode-bootstrap
	-xl-mode-bootstrap-reset
	-xl-mode-xilkernel
	-Gn

	MicroBlaze Linker Options
	-defsym _TEXT_START_ADDR=value
	-relax
	-N

	Pseudo-Ops
	Initialization Files
	crt0.o
	crt1.o
	crt2.o
	crt3.o
	crt4.o

	Command Line Arguments
	Interrupt Handlers
	_interrupt_handler attribute
	_save_volatiles attribute

	Power PC GNU Compiler
	Compiler Options
	Linker Options
	-defsym _START_ADDR=value

	Initialization Files

	GNU Debugger
	Summary
	Overview
	Tool Usage
	Tool Options
	--command=FILE
	--batch
	--nw
	-w

	MicroBlaze GDB Targets
	GDB Built-in Simulator
	Remote
	Simulator Target
	Hardware Target

	Compiling for Debugging on MicroBlaze targets

	PowerPC Targets
	GUI mode
	Console mode

	GDB Command Reference

	Xilinx Microprocessor Debugger
	Overview
	XMD usage
	MicroBlaze stub target
	Stub Target Requirements

	MicroBlaze Simulator target
	Simulation Statistics
	Simulator Target Requirements

	PowerPC Target
	XMD Tcl commands

	Platform Specification Format (PSF)
	Overview
	Files
	BBD - Black Box Definition
	MDD - Microprocessor Driver Definition
	MHS - Microprocessor Hardware Specification
	MPD - Microprocessor Peripheral Definition
	MSS - Microprocessor Software Specification
	MVS - Microprocessor Verification Specification
	PAO - Peripheral Analyze Order

	Version Scheme
	Version Setting for MHS, MSS, and MVS
	Format

	Version Setting for BBD, MPD, and PAO
	Format

	Load Path
	Using Versions

	Creating User IP
	Is Your IP Pure HDL?
	Is Your IP Only A Black-Box Netlist?
	Is Your IP A Mixture Of Black-Box Netlists And HDL?

	Microprocessor Hardware Specification (MHS)
	Overview
	MHS Syntax
	Comments
	Format
	Assignment Commands

	MHS Example

	Bus Interface Definition
	Example

	Global Parameter Command
	VERSION Option
	Format

	Local Parameter Command
	HW_VER Option
	Format

	INSTANCE Option
	Format

	Local Bus Interface Command
	POSITION Option
	Format

	Global Port Command
	DIR Option
	Format

	EDGE Option
	Format

	LEVEL Option
	Format

	SIGIS Option
	Format

	VEC Option
	Format

	Local PORT Command
	Design Considerations
	Assinging Constants
	Format

	Defining Memory Size
	Internal vs External Signals
	External Interrupt Signals
	Format

	Internal Interrupt Signals
	Format

	Power Signals
	Format

	Microprocessor Peripheral Description (MPD)
	Overview
	MPD Syntax
	Comments
	Format
	Assignment Commands
	Signal Direction

	MPD Example

	Bus Interface Naming Conventions
	Parameter Naming Conventions
	Reserved Parameters
	C_BUS_CONFIG
	C_FAMILY
	C_INSTANCE
	C_NUM_MASTERS
	C_NUM_SLAVES
	C_DCR_AWIDTH
	C_DCR_DWIDTH
	C_DCR_NUM_SLAVES
	C_LMB_AWIDTH
	C_LMB_DWIDTH
	C_LMB_NUM_SLAVES
	C_OPB_AWIDTH
	C_OPB_DWIDTH
	C_OPB_NUM_MASTERS
	C_OPB_NUM_SLAVES
	C_PLB_AWIDTH
	C_PLB_DWIDTH
	C_PLB_MID_WIDTH
	C_PLB_NUM_MASTERS
	C_PLB_NUM_SLAVES

	Signal Naming Conventions
	Global Ports
	LMB - Clock and Reset
	OPB - Clock and Reset
	PLB - Clock and Reset

	Slave DCR Ports
	DCR Slave Outputs
	DCR Slave Inputs

	Slave LMB Ports
	LMB Slave Outputs
	LMB Slave Inputs

	Master OPB Ports
	OPB Master Outputs
	OPB Master Inputs

	Slave OPB Ports
	OPB Slave Outputs
	OPB Slave Inputs

	Master PLB Ports
	PLB Master Outputs
	PLB Master Inputs

	Slave PLB Ports
	PLB Slave Outputs
	PLB Slave Inputs

	Reserved Signal Connections
	Global Ports
	LMB - Clock and Reset
	OPB - Clock and Reset
	PLB - Clock and Reset

	Slave DCR Ports
	Slave LMB Ports
	Master OPB Ports
	Slave OPB Ports
	Master PLB Ports
	Slave PLB Ports

	Component Options
	HDL Option
	Format

	IMP_NETLIST Option
	Format

	IPTYPE Option
	Format

	STYLE Option
	Format

	Global Parameter Command
	VERSION Option
	Format

	Local Option Command
	SIM_MODELS Option
	Format
	Format

	Local Parameter Command
	BUS Option
	Format
	Format

	DT Option
	Format

	MIN_SIZE Option
	Format

	Local Bus Interface Command
	BUS Option
	Format

	BUS_STD Option
	Format

	BUS_TYPE Option
	Format

	Local Port Command
	BUS Option
	Format
	Format

	DIR Option
	Format

	EDGE Option
	Format

	ENABLE Option
	Format

	ENDIAN Option
	Format

	INITIALVAL Option
	Format

	LEVEL Option
	Format

	SIGIS Option
	Format

	VEC Option
	Format

	HDL Design Considerations
	Unconnected Signals
	Format

	Scalable Data path
	Format
	MPD Example
	Format

	Interrupt Signals
	3-state (InOut) Signals
	VHDL 3-state (InOut) With Multi-Bit Enable Example
	MPD 3-state (InOut) With Multi-Bit Enable Example
	VHDL 3-state (InOut) With Single-Bit Enable Example
	MPD 3-state (InOut) With Single-Bit Enable Example

	Peripheral Analyze Order (PAO)
	Overview
	PAO Format
	Comments

	PAO Example

	Black-Box Definition (BBD)
	Overview
	BBD Format
	Comments
	Lists

	BBD Examples
	File Selection Without Options
	Multiple File Selections Without Options
	File Selection With Options

	Microprocessor Verification Specification (MVS)
	Summary
	Overview
	MVS Format
	Keywords
	Requirements
	MVS Example

	Global Parameters
	PSF Version
	Hardware Specification File Pointer
	Software Specification File Pointer
	Simulation Language
	Simulator
	Simulation Model
	ModelSim Behavioral Library
	ModelSim Unisim Library
	ModelSim Simprim Library

	Microprocessor Software Specification (MSS)
	Summary
	Overview
	MSS Format
	Keywords
	Requirements
	MSS Example

	Global Parameters
	Hardware Specification File Pointer
	PSF Version

	Instance Specific Parameters
	Driver and Processor Block Parameters
	HW_INSTANCE Option
	DRIVER_NAME Option
	DRIVER_VER Option
	INT_HANDLER Option
	LEVEL Option
	LIBRARY Option
	MDD Specific Parameters

	Processor Specific Parameters
	EXECUTABLE Option
	DEFAULT_INIT Option
	STDIN Option
	STDOUT Option
	BOOT_PERIPHERAL Option
	DEBUG_PERIPHERAL Option
	COMPILER Option
	ARCHIVER Option
	COMPILER_FLAGS Option
	EXTRA_COMPILER_FLAGS Option
	OS Option

	Library and File System Parameters
	FILESYS_NAME Option
	PROC_INSTANCE Option
	MOUNT Option
	LIBRARY Option

	Microprocessor Driver Definition (MDD)
	Summary
	Overview
	Requirements
	MDD Format
	Keywords
	MDD Example

	Driver Block
	Driver Block Specific Parameters and Constants
	VERSION
	LEVEL
	Other Generic Parameters

	Level Block
	Level Block Specific Parameters and Constants
	INBYTE
	OUTBYTE
	COPYFILES
	DEPENDS
	CONFIG_INCLUDE
	CONFIG_FILE
	INT_HANDLER

	Xilinx Libraries
	Scope
	Overview
	Library Organization
	Library Customization

	LibXil Standard C Libraries
	Summary
	Overview
	Standard C Library (libc.a)
	Xilinx C Library (libxil.a)
	Input/Output Functions
	Memory Management Functions
	MicroBlaze Processor
	PowerPC 405 Processor

	Arithmetic Operations
	MicroBlaze Processor
	Integer Arithmetic
	Floating Point Arithmetic

	PowerPC 405 Processor
	Integer Arithmetic
	Floating Point Arithmetic

	LibXil File
	Scope
	Overview
	Module Usage
	Module Routines
	Libgen Support
	LibXil File Instantiation
	System Initialization

	Limitations

	LibXil Memory File System
	Scope
	Overview
	MFS Functions
	Quick Glance
	Detailed summary of MFS Functions

	C-like access
	LibGen Customization

	LibXil Net
	Summary
	Overview
	LibXilNet Functions
	Quick Glance

	Protocols Supported
	Library Architecture
	Protocol Function Description
	Media Access Layer (MAC) Drivers Wrapper
	Ethernet Drivers
	ARP (RFC 826)
	IP (RFC 791)
	ICMP (RFC 792)
	UDP (RFC 768)
	TCP (RFC 793)
	Sockets API

	Current Restrictions
	Functions of LibXilNet
	LibGen Customization
	Using XilNet in Application

	LibXil Kernel
	Summary
	Overview
	Features
	LibXilKernel Blocks
	Process Management
	Functions of Process Management

	Thread Management
	Functions of Thread Management

	Interrupt Handling
	System call interface
	Semaphore
	Functions of Semaphore

	Message Queue
	Functions of Message Queue

	Shared Memory
	Functions of Shared Memory

	Dynamic Buffer Management
	Functions of Dynamic Buffer Management

	Customization
	Customizing Process Management
	Customizing Thread Management
	Customizing Semaphore
	Customizing Message Queue
	Customizing Shared Memory
	Customizing Dynamic Buffer Management

	Memory footprint

	Device Drivers
	Summary
	Overview
	Goals and Objectives

	Device Driver Architecture
	Layer 2, RTOS Adaptation
	Layer 1, High Level Drivers
	Layer 0, Low Level Drivers
	Object-Oriented Device Drivers
	Component Definition
	Component Implementation
	Component Data Variables
	Component Interface
	Component Instance
	Component Example

	API and Naming Conventions
	External Identifiers
	File Naming Conventions
	Component Based Source File Names
	Implementation Source Files (*.c)
	Header Source Files (*.h)
	Device Driver Layers
	Example File Names

	High Level Device Driver API
	Standard Device Driver API

	Configuration Parameters
	xparameters.h
	File Format and Naming Conventions

	x<component name>_g.c
	Example

	Common Driver Infrastructure
	Source Code Documentation
	Driver Versions
	Primitive Data Types
	Device I/O
	Error Handling
	Return Status
	Asserts

	Communication with the Application
	Reentrancy and Thread Safety
	Interrupt Management
	Multi-threading & Dynamic Memory Management
	Cache & MMU Management

	Stand-Alone Board Support Package
	Overview
	MicroBlaze BSP
	Interrupt Handling
	void microblaze_enable_interrupts(void)
	void microblaze_disable_interrupts(void)

	PowerPC BSP
	Boot Code
	boot.S
	crt0.S
	eabi.S

	Cache
	void XCache_WriteCCR0(unsigned int val);
	void XCache_EnableDCache(unsigned int regions);
	void XCache_DisableDCache(void);
	void XCache_FlushDCacheLine(unsigned int adr);
	void XCache_StoreDCacheLine(unsigned int adr);
	void XCache_EnableICache(unsigned int regions);
	void XCache_DisableICache(void);
	void XCache_InvalidateICache(void);
	void XCache_InvalidateICacheLine(unsigned int adr);

	Exception Handling
	void XExc_Init(void);
	void XExc_RegisterHandler(Xuint8 ExceptionId, XExceptionHandler Handler, void *DataPtr);
	void XExc_RemoveHandler(Xuint8 ExceptionId)
	void XExc_mEnableExceptions (EnableMask);
	void XExc_mDisableExceptions (DisableMask);

	Files
	int read(int fd, char *buf, int nbytes);
	int write(int fd, char *buf, int nbytes);
	int isatty(int fd);

	Memory Management
	char *sbrk(int nbytes);

	Process
	Processor-Specific Include Files
	Time
	typedef unsigned long long XTime;
	void XTime_SetTime(XTime xtime);
	void XTime_GetTime(XTime *xtime);
	void XTime_TSRClearStatusBits(unsigned long Bitmask);
	void XTime_PITSetInterval(unsigned long interval);
	void XTime_PITEnableInterrupt(void);
	void XTime_PITDisableInterrupt(void);
	void XTime_PITEnableAutoReload(void);
	void XTime_PITDisableAutoReload(void);
	void XTime_PITClearInterrupt(void);
	unsigned int usleep(unsigned int __useconds);
	unsigned int sleep(unsigned int __seconds);
	int nanosleep(const struct timespec *rqtp, struct timespec *rmtp);

	Address Management
	Summary
	MicroBlaze Processor
	Programs and Memory
	Current Address Space Restrictions
	Memory and Peripherals Overview
	BRAM Size Limits
	Special Addresses
	OPB Address Range Details
	Address Map

	Memory Speeds and Latencies
	System Address Space
	System with only an executable [No debug, No Bootstrap]
	System with debugging support
	System with bootstrap support

	Default User Address Space
	Advanced User Address Space
	Different Base Address, Contiguous User Address Space
	Different Base Address, Non-contiguous User Address Space

	Object-file Sections
	Minimal Linker Script
	Linker Script

	PowerPC Processor
	Programs and Memory
	Current Address Space Restrictions
	Special Addresses
	Default Linker Options

	Advanced User Address Space
	Different Base Address, Contiguous User Address Space
	Different Base Address, Non-contiguous User Address Space

	Linker Script
	Restrictions

	Interrupt Management
	Summary
	Levels of Interrupt Management
	Level 0 (Low Level)
	Level 1 (High Level)

	MicroBlaze Interrupt Management
	Interrupt Handlers
	The Interrupt Controller Peripheral
	MicroBlaze Enable Interrupts
	System without Interrupt Controller (Single Interrupt Signal)
	Procedure
	Example MHS File
	Example MSS File snippet
	Example C Program

	System with an Interrupt Controller (One or More Interrupt Signals)
	Procedure
	Example MHS File
	Example MSS File snippet
	Example C Program

	PowerPC Interrupt Management

