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INTRODUCTION

The software programmable digital signal processor (DSP) has been the
cornerstone of commercial configurable signal processing hardware for approximately 16
years. In comparatively recent times, approximately the last 5 years, a new option has
been available for constructing programmable high-performance arithmetic datapaths:
field programmable gate arrays (FPGAs). Recently, FPGA technology has undergone
remarkable advances in density, performance and power. These advances have opened
new dimensions for the signal processing engineer, allowing the construction of DSP
systems that maintain the flexibility of software based solutions but providing
performance closer to application specific integrated circuits (ASICs).
This paper provides an overview of FPGA DSP from both an applications and
implementation perspective. Examples of FPGA DSP in image processing and digital
communications will be used to illustrate the utility of FPGAs for high-performance
DSP.  An overview of the discrete wavelet transform (DWT) will be provided, and
considerations for its efficient FPGA implementation will be discussed. Anovel technique
for efficiently implementing FPGA-based digital filters will be presented.  The design of
several digital receiver functions as well as the use of run-time re-configuration will be
covered.

WAVLET BASED SIGNAL PROCESSING

The discrete wavelet transform (DWT) is one of the most useful and efficient tools
used to analyze digital signals in various signal processing areas. Some of the common
application areas for the DWT are: seismic exploration, speech analysis and synthesis,
image analysis and compression, signal detection, communications, filter banks, time
varying spectral estimation, noise filtering and signal or image restoration, feature
detection for general pattern recognition algorithms, adaptive systems, and biomedical
signal processing. In signal analysis, the DWT has some inherent generic advantages and
are near optimal for wide class of problems. As a decomposition tool the DWT separates



components of a signal in a way that is superior to most other methods for analysis,
processing, or compression. This powerful and flexible decomposition tool also offers
new nonlinear processing option for signal and image processing, detection, filtering, and
compression.

One major concern, in signal and image processing as well as the communication
communitie is the effective implementation of the wavelet transform and advanced tools for
designing wavelet systems. When there are limitations in processing time and/or system size,
implementation of the DWT becomes an engineering issue. In this situation, FPGA's offer a
framework which not only addresses the issue of speed for real-time processing but also offers
flexibility in terms of system size.

WAVELET TRANSFORM THEORY

A wavelet system consists of building blocks to construct or represent a function. This
system, which is not unique, is identified by its two-dimensional basis, ψ j k t, ( )  for

i j, , , ,= 12 L  in an orthogonal expansion and by ψ j k t, ( )  and ~ ( ),ψ j k t  for i j, , , ,= 12 L  in a

biorthogonal expansion [5]. The main property of this expansion is localization of the function
(or signal) in the time-frequency or space-frequency domain. In other words, a wavelet
representation will provide information about the signal in both time and frequency (or space
and frequency). The basis for a wavelet expansion system is generated from a single scaling
function or wavelet by simple scaling and translation. The generating wavelet or mother
wavelet, represented by ψ ( )t , results in the following two-dimensional parameterization of
ψ j k t, ( )'s .

ψ ψj k
j jt t k j k,
/( ) ( ) ,= − 2 22  ;     for  Z (1)

where Z  is the set of all integers and the 2 2j /  factor normalizes each wavelet to maintain
a constant norm independent of scale j . All useful wavelet systems satisfy the
multiresolution conditions. In this case, the lower resolution coefficients can be
calculated from the higher resolution coefficients by a tree-structured algorithm called a
filter-bank [7]. This allows a very efficient calculation of the DWT coefficients. The
multiresolution idea is better understood by using a function represented by ϕ( )t  and
referred to as a scaling function. A two-dimensional family of functions is generated,
similar to Eq. (1), from the basic scaling function by

ϕ ϕj k
j jt t k j k,
/( ) ( ) ,= − 2 22  ;     for  Z (2)

Any continuous function, x t( ) , can be represented, at a given resolution or scale j0 , by a

sequence of coefficients given in x t a tk j k
k

( ) ( ),= � ϕ
0

 expansion. Higher values of j

correspond to higher resolution [6]. The lower resolution function, ϕ( )t , can be
expressed by a weighted sum of shifted version of the same scaling function at the next
higher resolution, ϕ( )2t , by

ϕ ϕ( ) ( ) ( ),t h k t k k
k

= − � 2 2            Z (3)



where the coefficients )(kh are called the scaling functions. This recursive equation is
fundamental to the theory of the scaling function and is referred to by the refinement equation,
the multiresolution analysis equation, or the dilation equation.  Design of a wavelet system is
the choosing of the set of coefficients represented by the h k( ) 's, in Eq. (3).

Important features of a signal can be described better by defining a slightly different set of
functions that span the difference between the spaces spanned by various scales of the scaling
function. Since these wavelets reside in the space spanned by the next narrower scaling
function, they can be represented by a weighted sum of shifted scaling function ϕ( )2t  as

ψ ϕ( ) ( ) ( )t h k t k k
k

= ′ − � 2 2 ,      Z (4)

for some set of coefficients ′h k( ) .  Wavelet coefficients, h k( ) , and scaling function
coefficients, ′h k( ) , can be related to each other by some imposing conditions. For example,
by forcing the orthogonality condition on the integer translates of the wavelets, and based on
the requirement that wavelets should span the “difference” spaces [1] or by requiring mirror
image [4], it is shown that

′ = ± − −h k h kk( ) ( ) ( )1 1      or       ′ = ± −h k h kk( ) ( ) ( )1 (5)

The function generated by (4) gives the prototype or mother wavelet ψ ( )t  for a class of

expansion functions of the form of Equation (1) in which 2 j  is the scaling of t , 2− j k  is the
translation in t , and 2 2j /  maintains the constant norm of the wavelet at different scales.  It is
shown [1] that any continuous function can be represented by the following expansion,
defined in terms of a given scaling function and its wavelet derivatives:

x t c k t d k tj j k j j k
kj jk

( ) ( ) ( ) ( ) ( ), ,= +
=−×

×

=

×

=−×

×

��� 0 0

0

ϕ ψ (6)

In this expansion, the first summation gives a function that is a low resolution or coarse
approximation of x t( )  at scale j0 . For each increasing j  in the second summation, a higher
or finer resolution function is added. The choice of j0  sets the coarsest scale whose space is
spanned by ϕ j k t

0 , ( ) . The set of coefficients in the wavelet expansion represented by (6) is

called the discrete wavelet transform of x t( ) .

Figure 1 - Three-stage wavelet decomposition, DWT analysis, tree.



Figure 2 - Logarithmic division of the frequency band between different DWT sequences.

WAVELET TRANSFORM SYSTEMS

Researchers in related engineering and applied mathematics areas have developed many
different wavelet transform systems each with specific properties. The difference
between these wavelet transforms is mainly in their scaling functions and the way that
they are developed. There are two major classes of wavelet transform systems. One class
consists of orthogonal wavelets and the other one consists of biorthogonal wavelets.
Other wavelet transform systems, not included in the two main categories, have generally
limited applications.

A set of functions is called a basis set for a given function space if there is a
unique set of coefficients, for any particular function in that space, g t( ) , that satisfy the
following equation [3]

g t a f t( ) ( )= � l l
l

(7)

The required condition for a set of functions to construct a basis is that they should be
independent. The set is called an orthogonal basis if f t f tm n( ), ( ) = 0  for all m n? . The

set is an orthonormal basis if f t f t m nm n( ), ( ) ( )= −δ . The basis functions are

normalized to unity norm: f tl ( ) = 1 for all l 's. In the case of orthonormal basis, any

function in the function space can be expressed as
g t g t f t f t( ) ( ), ( ) ( )= � l l

l

(8)

not orthogonal to each other, but they are orthogonal to the corresponding elements of the

expansion set f t f t m nm n( ),
~

( ) ( )= −δ . Since this kind of orthogonality requires two sets

of basis functions, the expansion set and the dual set, the system is called biorthogonal.
Any function in the function space can be expressed by

g t g t f t f t( ) ( ),
~

( ) ( )= � l l
l

(9)

A biorthogonal system is more general and allows a larger class of expansions.  If a set of
functions are dependent and yet does allow the expansion described in (8), then the set is
called a frame. Frames are over-complete versions of a basis set, and tight frames are
over-complete versions of an orthogonal basis set. If one is using a frame that is neither a



basis nor a tight frame, a dual frame can be specified so that analysis and synthesis can be
done for a non-orthogonal basis.

Requiring orthogonality uses up a large number of the degrees of freedom, results in
complicated design equations, prevents linear phase analysis and synthesis filter banks,
and prevents asymmetric analysis and synthesis systems. By allowing nonorthogonal
basis and dual basis, in biorthogonal wavelet systems, we can attain greater flexibility in
achieving other goals.  In this case, by relaxing the orthogonality constraint, a pair of
scaling functions and their corresponding scaling filters are introduced [2][4]. If h k( )  and
~

( )h k  represent the pair of scaling filters, then, they should satisfy
~

( ) ( ) ( )h k h k
k

− =� 2l lδ

In the orthogonal case, (25), h k( )  is orthogonal to even translation of itself while in the

biorthogonal case, 
~

( )h k  is orthogonal to even translation of h k( ) . In the orthogonal case,
for finite duration h k( ) , the length of the filter h k( )  has to be even. In the biorthogonal

case, the difference between the lengths of h k( )  and 
~

( )h k  must be even. Thus, their
length must be both either even or odd [4]. In this situation, it is possible to design linear
phase filters, the property that is not possible to attain in orthogonal wavelet systems.

The multiresolution definition for biorthogonal wavelet systems is given as follows:

ϕ ϕ( ) ( ) ( ),t h k t k k
k

= − � 2 2            Z  ; ~( )
~

( ) ~( ),ϕ ϕt h k t k k
k

= − � 2 2            Z (11)

The biorthogonal wavelets, ψ ( )t  and ~( )ψ t , are defined by

ψ ϕ ϕ( ) ( )
~

( ) ( ) ( ) ( )t h k t k g k t k kk

kk

= − − − = − �� 1 1 2 2 2 21 ,      Z (12)

~( ) ( ) ( ) ~( ) ( ) ~( )ψ ϕ ϕt h k t k h k t k kk

kk

= − − − = − �� 1 1 2 2 2 21 ,      Z (13)

Under some technical conditions, we can expand functions using the wavelets, ψ ( )t , and
reconstruct them using their dual functions, ~( )ψ t .

The classical wavelet system results in a logarithmic frequency resolution shown in
Figure 2. The low frequencies have narrow bandwidth and the high frequencies have
wide bandwidth. This is called “constant-Q” filtering and is appropriate for some
applications but not all. The wavelet packet system allows a finer and adjustable
resolution of frequencies at higher bandwidth. It also gives a rich structure that allows
adaptation to particular signals or signal classes. This can be achieved by allowing the
highpass wavelet branch as well as the lowpass wavelet branch to split and down
sampled, in an iterative fashion. The resulting three-stage analysis tree is shown in
Figure 3. In this case, the resulting filter bank structure is like a full binary tree.



Figure 3 - The full binary tree for the three-scale wavelet packet transform

WAVELET REALIZATION

The filter bank realizations of the discrete wavelet transform and its inverse are
based on two basic building blocks, shown in Figure 4. In the forward transform, the two
decimating FIR filters are h k0 ( )  and h k1( ) , and in the inverse transform, the two
interpolating filters are g k0 ( )  and g k1( ) .

Figure 4: - Basic Blocks for (a) analysis and (b) synthesis filter banks

Perfect reconstruction requires that the output of the synthesis block be the same as a
delayed and scaled version of the input of the analysis block. Based on this desired
condition, the analysis and synthesis filters should always satisfy the following two
relations[4]:

)()1()(

)()1()(

01

01

khkg

kgkh
k

k

−−=

−=
(14)

Direct realization of the two building blocks shown in Figure 5 require that all
computations be carried out at the higher input rate for the analysis filters and at the
higher output rate for the synthesis filters. Realization of the analysis and synthesis filters



can be accomplished at the lower rate by taking advantage of polyphase representation of
these filters[7]. The synthesis and analysis building blocks can be utilized in the form
shown in Figure 5.  Both analysis and synthesis building blocks are realized by only the
knowledge of analysis and synthesis lowpass filters. In this configuration, all the filtering
operations are carried out in the lower rate.

Figure 5 - Polyphase realization of the basic (a) analysis and (b) synthesis blocks

In biorthogonal realization, the assumption is that the desired wavelet transform is a
particular biorthogonal system whose scaling filters, h k0 ( )  with K  coefficients and

g k0 ( )  with 
~K  coefficients, are known. Both of these filters should be known with

highpass filters obtained from perfect reconstruction conditions given in (11). Unlike the
orthogonal wavelet filters, which are always even, biorthogonal filters can both be
selected to be odd or even.

WAVELET IMPLEMENTATION

VLSI implementation of  the DWT or wavelet packet has been addressed in journal
articles [8][9][10].  In addressing the implementation of the DWT analysis tree, it is useful to
define the basic wavelet engine as shown in Figure 4a.  Referring to Figure 1 we recognize
that each stage has processing elements which are half the rate of the previous stage.  By using
the polyphase realization we can implement a DWT analysis tree with a single engine and
proper scheduling of that resource.  This feedback method is particularly attractive in terms of
IO cycles off chip to and from memory.  We can essentially design a 1D DWT by time
sharing a single DWT engine.

VLSI implementation of wavelet packet (Figure 3) requires more processing due to the
full binary tree structure.  Since each stage is further processed a DWT engine being shared
down the levels of the tree structure is not desirable.  By observing the amount of processing
performed at each stage we find that a more desirable VLSI structure is one of a DWT engine
per stage.  Through proper scheduling within each stage a stream in / stream out structure is
designed which handles the decimation properly and fully utilizes the DWT engine.  Other
approaches can be taken which design DWT engines which are smaller and slower but do add
to the complexity of the VLSI design.  In both the DWT and wavelet packet the inverse
operations have dual arguments for processing.



FPGA DIGITAL FILTERS

There have been many techniques for implementing digital filters using FPGAs
reported in the open literature. One of the more successful approaches has been the
implementation of Peled and Liu’s distributed arithmetic (DA) filter realization [11]
reported in [12]. This section extends the DA approach and describes an efficient
approach for implementing narrowband FPGA filters using an interpolated finite impulse
response (FIR) filter.

INTERPOLATED FIR – IFIR

Linear phase filters are conventionally implemented using a standard tapped
delay-line or transversal filter structure. However, many other realization options present
themselves if the filter designer is prepared to take advantage of the certain features that
may be characteristics of the filter requirements themselves, or that become available
when the filter is taken in context with adjacent processing blocks. Filters whose
bandwidth is considerably smaller than the system sample rate, or narrow-band filters,
occur in many practical applications. Several options other than the standard FIR
realization can be used to produce efficient narrow-band filter implementations.

The cascade filter structure shown in Figure 6 is a two-stage interpolated FIR
(IFIR) filter.

y(n)M(zk) I(z)x(n)

Figure 6: Interpolated FIR (IFIR) architecture.

The sample rate for both stages is the same as that at the input and output. So although
the name alludes to multirate techniques, strictly speaking this is not a multirate filter,
since the sampling frequency at all stages is the same. With IFIRs the multirate aspect of
the system is embodied in the filter impulse response.

The transfer function )( kzM of the first stage is a function of .kz

a0 a1

z-k

a2

z-k

a3

z-k

aNM -1

z-k

y(n)

x(n)

Figure 7: Upsampled FIR architecture ).( kzM

It can be implemented by replacing the unit delay operator 1−z  in a transversal filter
)( kzM  by kz −  as shown in Figure 7. This means simply replacing each delay element by



k  units of delay. This is equivalent to inserting 1−k  zeros between the original impulse
response values of ).(zM  Now recall that a k-fold rate expansion of a time series causes

1−k spectral replicates to fold back into the frequency interval [ ].0 πa  The same

observation is obviously true for ),( kzM  since a filter impulse response is just a time-
series. The situation is shown in the frequency domain plot of Figure 8 for a rate
expansion k=4.

π 2π

|M(ejkΩ)|

Ω

image image image
|I(ejΩ)| - image suppression filter

π 2π

|M(ejΩ)|

Ω
kΩp,H kΩs,H

- model filter

Ωp,H Ωs,H

(b)

(c)

π 2π

|H(ejΩ)| - required filter

Ω
Ωp,H Ωs,H

(a)

Figure 8: IFIR - frequency domain illustration.

In going from )( ΩjeM  to )( ΩjkeM  the frequency domain response is compressed by the

factor k. The critical frequencies in the baseband spectrum of )( ΩjkeM  are k times

narrower than those of ).( ΩjeM

So far we have seen that rate expanding a filter's impulse response has the desired
effect of decreasing the baseband filter transition-band without introducing any additional
arithmetic. The narrow-band response comes at only the expense of some additional
memory to accommodate the increased storage requirements for the input signal time
history. However, the spectral replicates or  images are a problem and must be dealt with.
This is the function of the image rejection filter )(zI  in Figure 6 and Figure 8(c). The

resultant transfer function is )()()( zIzMzH k=

The compressed response reduces the computational complexity by a factor of
approximately k. The complexity for constructing )(zI  must also be considered. In many
situations a suitable choice of k will result in a shallow transition slope for the image
suppressor, so that this filter will have substantially fewer filter coefficients than the
desired filter )(zH and only contribute modestly to the computation load.



IFIR DESIGN

The IFIR approach is suitable for any narrow-band filter process-lowpass,
bandpass or highpass. The design approach will be described using a lowpass
methodology.

Consider the synthesis of a lowpass filter )(zH with a passband edge frequency

,,HpΩ  stopband edge frequency Sp,Ω  and with Hp,δ and Sp,δ passband and stopband

ripple respectively. First a model filter )(zM is defined having a passband edge frequency

HpMp k ,, Ω=Ω and stopband edge frequency .,, HsMs kΩ=Ω  The passband edge

frequency of )(zI must be the same as the required filter ),(zH  so .,, HpIp Ω=Ω  The

stopband edge frequency for the image suppression filter must be chosen so that its
magnitude response provides the specified attenuation at the first intercept point with the
first image of )( kzM  above baseband. Some simple arithmetic results in this design

frequency being defined as .,, 2 HsIs k Ω−=Ω π  The passband ripple for )(zH is distributed

between )( kzM and ).(zI Formally we require

HpIpMp ,,, 1)1)(1( δδδ +=++
If the ripple Hp,δ  is small, then .,,, HpIpMp δδδ ∪+ One possibility for solving this

equation that works in practice is to choose .5.0 ,,, HpIpMp δδδ ==
Provided pδ is small it is possible to make the further approximation .,, sIsMs δδδ ∪=

Lowpass IFIR Example

Consider implementing the lowpass filter characterized in Figure 9.

π

|H(ejΩ)|

Ω
Ωp,H=0.1π Ωs,H=0.12π

0.2 dB

60 dB

Figure 9: Narrow-Band lowpass filter example - magnitude response requirements.

Using a normalized sample rate of π2 radians, the passband edge frequency is
,205.0, π↔=Ω Hp the stopband edge frequency is ,206.0, π↔=Ω Hs the passband ripple is

to be 0.2 dB and the required minimum stopband attenuation is 60 dB. Using filter design
software the number of filter taps, N, required to meet the filter requirements is 260. An
efficient technique for implementing inner-product calculations using distributed memory
FPGA architectures like the Xilinx XC4000 series, is distributed arithmetic [11]. The
mechanization of this type of filter, as well as many other DSP related functions is



facilitated by the Core Generator [14] design automation tool. The largest FIR module
that can be produced automatically is an 80-tap filter. However, these modules are
cascadable. The required 260-tap filter can be easily built from available modules by
cascading three 80-tap filters and a 20-tap section. Exploiting optimizations based on the
symmetry in the filter coefficient data, a single 80-tap filter employing 16-bit arithmetic
requires 320 CLBs. A 20-tap filter using 16-bit precision occupies 95 CLBs. Cascading
these modules to produce the required  260-tap filter gives a CLB count of 1055.

Now consider an IFIR realization of the same filter. The model filter passband
and stopband specifications are HpMp k ,, Ω=Ω  and .,, HsMs kΩ=Ω  To support the

required passband ripple requirement Hp,δ  of the original filter ),(zH  the model and

image rejection filters do not simply inherit the same value. They must be designed using
a smaller value for passband ripple, so that the series cascade combination provides the
required performance. For this example the passband ripple requirement will be equally
distributed between )(zM and ).(zI So

( ) 0116464.0110
2

1 20/2.0
,, =−== IpMp δδ

Selecting the up-sampling factor as k=4 results in the model filter specification defined in
Figure 10. The image rejection filter )(zI design frequencies are π1.0,, =Ω=Ω HpIp and

.38.0/2 ,, ππ =Ω−=Ω HsIs k  This filter is illustrated in Figure 11. To meet the model

filter requirements a 69-tap filter is needed. Figure 12a shows the magnitude frequency
response for ).(zM  Upsampling )(zM  by a factor k=4 produces the response in Figure
12b. The image rejection filter specifications can be met with a 22-tap filter. The
magnitude response for )(zI is shown in Figure 12c. The net frequency response of this

combination is obtained by multiplying )( 4zM with ).(zI This result is shown in Figure
12d.

π

|H(ejkΩ)|

Ω
Ωp,M=0.4π Ωs,M=0.48π

0.1 dB

60 dB

      π

|I(ejΩ)|

Ω
Ωp,M=0.1π Ωs,M=0.38π

0.1 dB

60 dB

Figure 10: Model filter specifications for the Figure11: Image rejection filter specications
Lowpass IFIR example, k=4. a lowpass IFIR, k=4.



Figure 12: (a) Model filter magnitude response. (b) Upsampled model filter, k=4. (c)
Image filter response. (d) IFIR ).()( 4 zIzM

 IFIR FPGA Implementation

The architecture of the upsampled filter )( kzM implemented in an FPGA is
shown in Figure 13. Zero-packing the filter impulse response is of course achieved in
practice by replacing the unit delay 1−z  in the model filter with k units of delay. The filter
supports a history of the previous )1( −MNk  input samples, but only MN multiply-
accumulates are required to compute an output value. Taking advantage of the highly

x(n)

DA LUT
0 1 k-1 k k+1 2k-1 2k 2k+1 k(N-1)-1

A0 A1 A2 AN-1

Scaling
Accumulator

register

v(n)
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bit of DA procesing

sequence

FFFF

FFFF

FF

GG
HH

4000 CLB

F/G CLB Function Generator

FF = Flip-Flop

H = H function generator

onfigurable Logic for Digital Signal Processing



efficient implementation of FIR filters in Xilinx FPGAs using distributed arithmetic
results in the architecture shown in Figure 13.

Logic Requirements

The IFIR implementation requires an input sample delay-line or shift-register, and
two FIR structures for )(zM and ).(zI The delay-line must have taps at intervals of the
up-sampling factor k. This structure supports the input sample precision B, and its length
is the product of k and the model filter length .)( zMN  The shift-register is implemented

with Xilinx technology using RAM-cell based shift-registers - function generators. Two
shift-register stages of up to 16-bit precision can be supported in a single XC4000 series
configurable logic block (CLB). Excluding the minimal amount of control required for
the input shift-register, the CLB count Γ  for an IFIR filter is

))(())((
2

)(
zIzM

kN zM Ξ+Ξ+=Γ

where )( fΞ  denotes the number of CLBs required to implement the functional unit f.
Using the LPF example above, with B=16, the input delay-line is 276694 =↔ samples
deep, and requires 136 CLBs to implement. The filter )(zM is implemented with 270

CLBs and )(zI requires 99 CLBs. The total CLB count is .5091 =Γ  Comparing this
figure to the 1010 CLB requirement for a direct implementation of )(zF  for the above
example shows that the IFIR approach requires only %481001055/509 =↔ of the logic
resources. This is a considerable saving.

Performance - Computation Rate The entire IFIR architecture will support a sample rate
of 6 MHz. This equates to a computation throughput of 1.5 Giga-MACs (multiply-
accumulates) per second. Re-phrasing this number, it is equivalent to 3 Mega-MACs per
CLB - this is a large amount of filtering using only a modest amount of silicon real
estate!

DIGITAL COMMUNICATIONS

FPGAs are being employed in high-performance communication systems at an
exponential growth rate. Pulse shaping filters, modulators, convolutional encoders,
Viterbi decoders, interleavers and de-interleavers, transforms and adaptive equalizers are
just a few of the types of functionality this technolgy is being used for.

It is not always apparent how best to best implement a desired type of DSP
functionality in an FPGA. Many digital signal processing engineers may be
knowledgeable on implementing signal processing algorithms using software
programmable digital signal processors. However, a direct translation of this approach to
the FPGA domain may not produce area efficient high-performance FPGA designs:
alternative algorithms and architectures may be called for.



Multiplication–Free DSP

Structures that save multiplications and implement transcendental functions
without multiplications can be easily mapped to FPGAs. One simple example is polar-to-
rectangular and rectangular-to-polar conversions.  These conversions are used in
communication receivers and modulators as complex heterodynes. A signal presented to
the front end of a receiver is often subjected to a spectral translation, i.e. a heterodyne,
implemented as a complex multiplication with a complex sinusoid. In conventional
receivers, forming the complex sinusoid and applying it to the input data are two different
tasks as shown in Figure 14.

cos(θ(n)) sin(θ(n))

Real[s(n)]

Imag[s(n)]

- s(n)ejθ(n)

z-1

Quantize First
Quadrant

Quadrant

Quadrant
Rotator

Trig
 Table

jp

ejθ0(n)^

∆θ θ(n)θ(n) ^

d(n)

θ(n-1)

2-MSB

θ0(n)^ p = Quadrant

ejθ(n)^

Figure 14; Conventional heterodyne employing a direct digital synthesizer and complex
multiplier.

For a complex input signal, the heterodyne requires 4 multiplications and 2 additions, as
well as the cost of generating the complex heterodyning waveform by a direct digital
synthesizer (DDS). The major consumer of logic resources in the DDS is the sin/cosine
lookup-table (LUT). Using Xilinx FPGA technology, this  module is placed in distributed
RAM in XC4000 devices. Using Virtex [13] technology the LUT may be located in on-
chip block memory or distributed RAM.

The complex product performed in the heterodyne circuit performs a rotation of
the complex input samples. This functionality can be performed in an alternative manner
using coordinate rotation digital computer (CORDIC) arithmetic [15]. A CORDIC based
heterodyne is shown in Figure 15.
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Figure 15: CORDIC based heterodyne.

The complex input sample is loaded as the initial condition (IC) to the CORDIC engine.
The angle of rotation is generated by the integrator. The interesting points to observe here
are that the circuit does not employ any multipliers. The CORDIC algorithm only
requires a sequence of shift and add/subtract operations. This type of arithmetic is easily
and efficiently accommodated using FPGAs. The design illustrates an approach to
solving a DSP problem that would not normally be employed in a software
programmable DSP solution, but that can afford logic resource savings in an FPGA
design.

Run-Time Reconfiguration

Xilinx SRAM based FPGAs are configurable by downloading a configuration bit-
stream. The bit-stream defines the device functionality and in most systems the
configuration memory is static during operation. In more recent times a new facet has
been introduced to this aspect of system design with FPGAs: dynamic or {run-time
reconfiguration (RTR). With this hardware model, selected parts of the configuration
memory can be updated at execution time. During the reconfiguration period, the parts of
the datapath that are not influenced by the changes in configuration memory remain
active, and are still usefully processing data or maintaining state information. The
approach offers the potential for true silicon resource sharing. A useful analogy can be
drawn between RTR and the type of resource sharing afforded by a multi-user operating
system.

The recent Virtex family from Xilinx provides RTR hardware support. An early
example application that explored the potential for RTR was the DISC (dynamic
instruction set computer) [16] project. DISC essentially consisted of a processor
augmented with configurable hardware for performing application specific tasks. The
application specific functions were supported by a set of complex instruction that
executed on the FPGA hardware. So, in an image processing environment, for example, a
2-D convolution instruction would be designed that executed on the FPGA hardware.
This feature would be made available to an application as an extension to the host
processor's instruction set. An example of RTR in a DSP context is presented as a
solution to an automatic target recognition problem is described in [17]. The utility of
RTR for DSP is further explored in the next example.



Consider the digital receiver architecture defined in Figure 16.
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Figure 16: Run-time reconfigurable digital receiver.

The receiver operates in two distinct modes-fast acquisition and post acquisition
detection. Here the transform generates a pre-processing estimate of system parameters
such as center frequency in a multi-carrier system, bandwidth estimate in a bandwidth on
demand system, spreading code parameters in a spread spectrum system such as GPS and
CDMA, and Doppler frequency estimate for systems with high relative velocities (such
as low earth orbit satellites (LEOS)). The receiver cannot be processing data until system
parameters are passed to it from the transform based pre-processor and select subsystem.
After the parameters have been estimated and passed to the receiver, the transform serves
no purpose and can be disabled. Here we see two distinct and non-overlapping processes
required for this system to operate. In a reconfigurable machine, the same resources can
be applied to the two distinct tasks. After the transform has finished with its task, it can
be disassembled and reassembled as the back end processor of the receiver. The
disassembly and reassembly can occur during the compare and select process.

For the interested reader, several very useful overviews of reconfigurable computing and
RTR can be found in references [18] and [19].

CONCLUSION

This paper has provided an overview of FPGAs and their utility in bringing both
flexibility and performance to a DSP design.

FPGAs put the silicon back in the hands of the signal processing engineer and
expose a diverse range of design opportunities. This was illustrated in the filter design
example. The IFIR approach is not optimal for a software programmable DSP platform,
but was shown to be a useful technique for FPGA based hardware.

The wavelet transform offers a new method for signal processing in
time/frequency (space/frequency) domain with applications toward digital
communications and imaging.  VLSI architectures were proposed which make effective
use of silicon area for real time processing.



Run-time reconfiguration techniques are at an early stage of evolution. Even so
this technology offers exciting new possibilities for future generation DSP hardware.
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