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ABSTRACT

Filtering noise, in real time, has applications in
speech and image processing. Considerable
interest has arisen in recent years regarding
filtering in the wavelet transform domain. This
technique has been effective in noise removal
with minimum side effects on important
features such as image details and edges. In
this paper, the effectiveness of both soft and
hard thresholding for desired detail levels has
been demonstrated. Efficient hardware
implementation based on FPGA technology is
proposed.

1. INTRODUCTION

Considerable interest has arisen in recent
years regarding wavelet as a new transform
technique for both speech and image
processing applications. This technique has
shown effective results in several applications
such as image compression, edge detection,
feature extraction, and nonlinear noise filtering
[1][2]. In this work, several nonlinear filtering
techniques, generally referred to as denoising
in the wavelet literature, are studied. Our main
emphasis in this work is in the hardware
implementation of denoising algorithms for
real-time image processing.

The method of wavelet denoising has been
researched extensively. This approach is
generally simple and effective. The processing

in this class of algorithms is carried on in the
transform domain. In this approach, the
discrete wavelet transform (DWT) of a signal is
calculated and the resultant wavelet
coefficients are passed through a threshold
testing. In this case, the coefficients that are
smaller than a certain value are removed.
Then the resultant coefficients are used to
reconstruct the signal. With this method, it is
possible to remove noise with little loss of
details. If a signal has its energy concentrated
in a small number of wavelet coefficients, its
coefficient values will be relatively large
compared to the noise that has its energy
spread over a large number of coefficients.

In traditional Fourier based signal processing;
the spectrum of the signal is assumed to have
little overlap with spectrum of the noise and
therefore a linear time-invariant filtering will be
employed. This linear filtering approach cannot
separate noise from signal where their Fourier
spectra overlap. In DWT analysis, the method
is entirely different. The idea in this case is
based on the assumption that the amplitude,
rather than the location, of the spectra of the
signal to be as different as possible for that of
the noise. This allows clipping, thresholding,
and shrinking of the amplitude of the
coefficients to separate signals or remove
noise. It is the localizing or concentrating
properties of the wavelet transform that makes
it particularly effective when used with this
nonlinear filtering method [2].

Thresholding generally gives a lowpass and
�smoother� version of the original noisy signal.



The objective is to suppress the additive noise
w k( )  from the signal x k( ) , where
x k u k w k( ) ( ) ( )= + . The signal x k( )  is first
decomposed into L-level of wavelet transform.
Then, the thresholding of the resultant wavelet
coefficients, for noise suppression, is carried
out. The thresholding is based on a value δ
that is used to compare with all the detailed
coefficients. Two types of thresholding are
more popular. One is based on hard
thresholding and the other one is based on soft
thresholding. Both of these, methods are
discussed in this work.

This paper is organized as follow: In the next
section, the 1-D DWT, used for transforming
the signal, is presented. The denoising process
in the transform domain is discussed in Section
3. The proposed algorithm for FPGA hardware
implementation of the denoising technique is
presented in Section 4. In Section 5,
preliminary results of the denoising algorithm
when applied to 2-D images are reported.

2. 1-D Discrete Wavelet Transform

The general form of an L-level DWT is written
in terms of L  detail sequences, d kj( )  for

j L=1 2, , ,� , and the L−th  level
approximation sequence, c kL( )  as follows:
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In (1), ϕ L t( )  is the L−th  level scaling
function and ψ j t( )  for j L=1 2, , ,�  are

wavelet function sequences for L  different
levels.

In order to work directly with the wavelet
transform coefficients, the relationship between
the detailed coefficients at a given level in
terms of those at previous level is used. In
general, the discrete signal is assumed the
highest achievable approximation sequence,
referred to as 0-th level scaling coefficients. It is
shown [3] that the approximation and detail

sequences at level j +1  are related to the
approximation sequence at level j  by

c k h m k c mj o j
m

+ = −�1 2( ) ( ) ( ) (2)

and

d k h m k c mj j
m

+ = −�1 1 2( ) ( ) ( ) (3)

Equations (2) and (3) state that approximation
sequence at higher scale (lower level index),
along with the wavelet and scaling filters,
h ko( )  and h k1( )  respectively, can be used to
calculate the detail and approximation
sequences (or discrete wavelet transform
coefficients) at lower scales.

In practice, a discrete signal, at its original
resolution is assumed the 0-th level
approximation sequence; i.e., c k x k0( ) ( )= .
For a given wavelet system, with known
wavelet filters h ko( )  and h k1( ) , it is possible
to use (2) and (3), in a recursive fashion, to
calculate the discrete wavelet transform
coefficients at all desired lower scales (higher
lever). In most engineering applications, the
wavelet systems are chosen such that the two
wavelet filters have finite number of non-zero
coefficients. In signal processing terminology,
these filters are referred to as finite impulse
response (FIR) filters. Under this assumption,
and by using ideas from multirate signal
processing literature [1], it is possible to
calculate the two summations in (2) and (3) by
using two FIR filters.

In this paper, the number of decomposition
level used is assumed to be five, namely
L = 5 . Data rate of the incoming signal is
assumed to be 80 MHz. After each level of
decomposition, the input data is branched into
two outputs, one associated to the upper half-
band of the input signal and the other one to
the lower half-band. In each branch, the rate of
data is half of that of the input data to that
branch. Therefore, the overall rate of data
remains constant. Since decomposition of the
DWT proceeds only on one branch (the lower
half-band branch), there will be different data
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Rates 80 MHz 40 MHz 20 MHz 10 MHz 5 MHz 2.5 MHz 2.5 MHz

Figure 1 – Five level decomposition tree of the discrete wavelet transform (DWT).

Figure 2 - The structure of the output coefficients ordering for having a fixed 80 MHz data rate at the output of the five-level DWT
decomposition.

rates for different branches that provide output
data. For examples, data rate at level 1 output
is 40 MHz, at level 2 output is 20 MHz and so
on. For the five-level decomposition used in
this work, the decomposition tree and rates are
shown in Figure 1.  This multirate output data
require special handling for proper output
transmission in the hardware implementation.
With a particular arrangement, It is possible to
output the overall data, at the fixed rate of the
input data. This arrangement requires proper
ordering of the output of different
decomposition level. The overall rate of the
output coefficients, which is obtained by adding
the rates of the L detail levels and the fifth
coarse level, is the same as the input rate
80MHz. It is therefore possible to transmit the
output with a proper ordering such that the
overall rate remains constant. The general
structure of the ordering of the output stream is
as shown in Figure 2.

3. Denoising 1-D DWT coefficients

In this section, the procedure for denoising,
applied to detail sequences is discussed. The
approximate sequence at the fifth level is
obtained by processing the original signal

through five stages of lowpass filtering. It is
therefore unnecessary to use the approximate
sequence, c kL( ) , in the denoising process.
One assumption that we use in denoising is
that the statistics of additive Gaussian noise is
known. It is known that soft thresholding
provides smoother results in comparison with
the hard thresholding technique. Hard
thresholding technique, however, provides
better edge preservation in comparison with
the soft thresholding. Based on these
properties, we decided to apply the soft
thresholding technique to the first two detail
sequences and hard thresholding technique to
the remaining detail sequences. By this
method, we are able to remove the noise from
the signal without disturbing important signal
features [2][4].

Hard thresholding is the usual process of
setting to zero the coefficients whose absolute
values are lower than the threshold. Soft
thresholding is an extension of hard
thresholding by first setting to zero coefficients
whose absolute values are lower than the
threshold and then shrinking the nonzero
coefficients toward zero. For threshold δ , the
hard thresholding technique is obtained by
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In the soft thresholding case, for the same
threshold, the calculation is given by

~ ( )
( ) ( ) ( )

( )
d k

d k d k d k

d kj
S j j j

j

=
⋅ − >

≤

R
S|
T|
sign if 

if 
d i e jδ δ

δ0
                                              (5)

Where sign(x) is +1 if x is positive and –1 if x is
negative.  Implementation of this denoising
approach is discussed in the next section.

4. FPGA Implementation

Implementation of the proposed denoising
algorithm is performed by using Xilinx Virtex
FPGA. In this discussion, implementation of
the DWT (wavelet decomposition) and IDWT
(signal reconstruction) are presented in block
diagrams but details of soft and hard
thresholding are presented for FPGA
implementation.  The calculation of the 1D
DWT or IDWT requires 2500 Logic Cells to
support a 80 MSa/s bandwidth.  In the Virtex
Family this would require a XCV100 device to
perform DWT or IDWT.

Architecture of the denoising system is shown
in Figure 3, which includes both soft and hard
thresholding . The coefficient and the threshold
value δ  are input on a sample basis.  Using
available Virtex technology, operation at 80
MHz is easily achievable. System clock rates
of 100 MHz and 120 MHz are also available for
more aggressive system bandwidth
requirements.  Calculation of the data path for
this algorithm is straightforward. The
architecture requires 144 Logic Cells. Each
coefficient will be compared to a unique
threshold as shown in Figure 3.  When the
input coefficient is greater than the threshold,
the output is logical value of `1'. If, however, the
coefficient is less than or equal to the
threshold, the output is logical value of '0'.

The decision of which stage should use hard or
soft thresholding is flexible and adaptable.
Figure 4 shows an example for the denoising
of a 1-D signal.

5. Denoising for 2-D image

Application of the proposed denoising
algorithm is extended to the 2-D images by
using similar strategy for thresholding the
detailed coefficients. Implementation of the
denoising algorithm is similar to that of the 1-D
case. Figure 5 shows the output of the
implementation of the denoising algorithm on
the Barbara image.

6. Conclusion

General problem of signal and image
denoising has been discussed and some
simulation results have been presented. VLSI
implementation for the developed algorithm,
using Xilinx FPGA has been presented.
Pipelining of the algorithm allows it to be used
for real- time speech and video processing.
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Figure 3 - Block diagram of the thresholding procedure, including both hard and soft thresholding.

Figure 4 - Result of the denoising algorithm for a 1-D signal.

Figure 5– Original, noisy and the filtered image using the proposed algorithm.
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