
The 8th International Conference on Signal Processing Applications and Technology, Toronto Canada, September 13-16 1998.

FPGA Interpolators Using Polynomial Filters

Chris Dick fred harris
chrisd@xilinx.com fred.harris@sdsu.edu

Xilinx Inc. Signal Processing Chair
2100 Logic Drive College of Engineering

San Jose, CA 95124 San Diego State University
San Diego, CA 92182

Abstract: A fractional delay (FD) filter is a device
for performing bandlimited interpolation between the
samples of a time-series. It finds application in a vast
number of signal processing applications including
digital modems, echo cancellers, software radios,
array processing, speech coding, image processing,
transferring data between quasi-synchronous systems
and music technology. In many applications the
fractional delay value must be continuously variable.
The Farrow filter [1] is a multirate filter structure that
offers the option of continuously adjustable delay.
This paper presents a derivation of the method
proposed by Farrow and demonstrates the
performance and complexity of resampling filters
using his technique. The field programmable gate
array (FPGA) implementation of the Farrow
architecture is described. This implementation
requires only 2.7% of the logic resources of a
conventional polyphase decomposition with the same
functionality. The paper also develops some
important system options made available to the
designer as spin-offs of the derivation.

1 Introduction

Multirate filters are designed and implemented as
polyphase P-path filters with each path providing a
delay of an integer multiple of th/1 P  of the output

sample rate for down-sampling or th/1 P of the input

sample rate for up-sampling. Since each path
corresponds to different phase slopes, their outputs
are normally referred to by their phase index. For an
up-sampling filter we say )( rnPd +  or )(ndr is the

output from the thr  phase in response to the input at

time n.  Traditionally the coefficients for the bank of
the P-path filters are precomputed and stored, and

then accessed by a Q-to-1 sequencing rule to
implement a P/Q resampling operation. This structure
is shown in Figure 1, and while this figure presents
the functional operation, the implementation is
actually performed as memory management of the P
coefficient sets. For filters designed to operate over a
large ratio of P/Q, the number of stages P is made
large so that time jitter associated with selecting a
phase path nearest to the desired output time position
is made acceptably small. The output is selected from
the stage nearest the desired time location.

Figure 1. Polyphase upsampling filter.

The nearest neighbor rule is a course interpolator and
results in spectral artifacts bounded by )2/(1 P  [2].

Linear interpolation between two adjacent outputs

reduces the level of spectral artifacts to 2)2/(1 P . For

a specific example, to hold spectral artifacts 50 dB
below peak signal spectra, we would require 158
stages using the nearest neighbor rule and would only
require 9-stages using the linear interpolator.



2 Polynomial Representation of
the Filter

One option available to implement an arbitrary
resampling filter is to have precomputed the weights
of the polyphase filter stages for each resampling
ratio and then download them to the processor on
startup. Another option is to form a large array
representing a highly oversampled filter (large
oversampling ratio) with the desired lowpass spectral
response and then use the nearest neighbor or linear
interpolation rule to form samples of the filter at the
desired points required for the specific P stage
polyphase filter bank. If the filter requires L symbols
per stage to compute an output, the oversampled
prototype is of length 9L. As a useful reference, for a
square-root Nyquist filter with 0.25 dB
implementation loss and with a rolloff 4.0=α and 50
dB sidelobes, L is 22, and with a rolloff 2.0=α with
the same sidelobes, L is 44. This means a prototype
table of length 198 to 396 taps would have to
available for linear interpolation to an arbitrary set of
filter weights.

A third option is to approximate the filter weights in
a segment of its impulse response by a low order
polynomial and then use the polynomial to compute
the filter weights at their desired positions. Consider
a 32-stage polyphase filter with 8-taps per stage. This
filter is defined by its 256 taps which can be
visualized as having been loaded into the polyphase
filter set as a two-dimensional array by loading
successive columns but processing the data by rows.
The c-th column of the two-dimensional coefficient
set contains the c-th coefficient of each polyphase
filter. We note that it takes 32 entries to define each
column. The filter weights corresponding to the r-th
stage are located r-steps down each column or the
fraction )/( Pr between input samples. The filter

weights corresponding to the )1( +r -th stage are of

course located 1+r  steps down each column. This
process can be visualized with the aid of Figure 2.
Rather than define each column by the 32 samples of
the polyphase partition we can pass a low degree
polynomial through the coefficients and use the
polynomial as an equivalent description.

Figure 3 presents the 32 samples of column zero of a
prototype filter along with a fourth order polynomial
that approximates these samples. Figure 4 presents the

error between the samples and the fourth order polynomial
expansion. The error is seen to be in the order of

4102 −↔ or approximately the error of a 12-bit
quantizer. Applying the rule of thumb that the
sidelobe structure of a filter follows a 5 dB per bit
requirement, this 12-bit error is sufficient to support
the 60 dB sidelobes of the prototype filter we are
currently examining.

Figure 2: Two-dimensional mapping of polyphase filter
coefficient set

In like fashion each column of the polyphase
partition is cast into a fourth order polynomial so that
the entire 32 stages of the prototype are now
represented by 40 coefficients. In fact, filters with an
arbitrary number of stages are now represented by the
polynomial description. Figure 5 presents the
frequency responses of the corresponding filter
approximations. As we can see, the spectral artifacts
generated by the 4th order polynomial approximation
are more than 60 dB below the filters’ passband
level.

Similarly, the third degree polynomial created 55 dB
artifacts while the second order filter generated
unacceptably high 28 dB artifacts.

3 Farrow Filter

The filter structure of a polyphase partition is
presented in Eq. (1) where the parameter ∆ replaces



the index r specifying the polyphase stage to
emphasize that the displacement ∆  is now
continuous.

)()()(
7

0

kndkcnd
k

−=∆+ �
=

∆ (1)

Figure 3: Samples of column zero of polyphase filter and
fourth order approximation.

Figure 4: Error between actual samples and fourth order
polynomial approximation.

Figure 5: Frequency response of polynomial
approximations to prototype filer.

Eq. (1) is recast in the polynomial form in Eq. (2).
Exchanging the order of the summations we obtain
Eq. (3) which we write more compactly as Eq. (4).

)(),()(
7

0

4

0

kndlkbnd
k l

l −�
�

�
�
�

� ∆=∆+ � �
= =

(2)

l

l k

kndlkbnd ∆�
�

�
�
�

� −=∆+ � �
= =

4

0

7

0

)(),()( (3)

�
=

∆=∆+
4

0

)()(
l

l
l dhnd (4)

It is a convenient perspective to think of the
polynomial expansion of the coefficient sets as their
Taylor series (actually Tchebyshev) expansion. From
this perspective we conclude that the terms )(dhl ,

defined in Eq. (5), are the result of processing the
data with the Taylor series expansion of the data.

�
=

−=
7

0

)(),()(
k

l kndlkbdh (5)

This is more obvious if we examine the two
dimensional list of polynomial coefficients

),( lkb where k is the index defining the tap (or

column in Figure 2.) and l is the index within the
thk  column.

The structure of the Farrow filters is shown in Figure
6. Here the data is delivered to each differentiating
filter. The outputs of these five filters are the Taylor
series expansion of the data, which evaluates the
output at offset ∆ by Horner’s rule as shown in Eq.
(6).

Figure 6: Farrow filter employing 5 polynomial filters.



))))((((

)(

43210

4
4

3
3

2
210

hhhhh

hhhhhny

∆+∆+∆+∆+=
∆+∆+∆+∆+=∆+

(6)

Figure 7 presents the spectrum of a sinusoid passed
through the Farrow filter to perform a 1-to-6
upsampling operation. The figure also shows the
spectrum of the impulse response of the same 1-to-6
filter. Note the sidelobes are suppressed to the 50 dB
level for which the prototype filter had been
designed.

Figure7: Spectrum of Farrow filter output and filter
response for 1-to-6 upsampling.

4 FPGA Implementation of the
Farrow Filter

The filter requires m differentiating filters
miibk ,...0),( = and a sum-multiply datapath that

combines the sub-filter outputs to form the final
output )( ∆+ny  according to Eq. (6). Each of the

filters miibk ,...0),( =  are 8- tap finite impulse

response (FIR) filters. These are most efficiently
implemented with Xilinx [4] FPGA technology using
a distributed arithmetic [3] (DA) approach. Using a
DA implementation, each filter occupies
approximately 69 Xilinx  4000 series configurable
logic blocks (CLBs). If the input data x(n) is kept to
16-bit precision, and a serial distributed arithmetic
approach is used to construct the differentiating
filters, each sub-filter will produce a new output
every 17 clock cycles. This suggests an approach for

building the multiply-add datapath: since multiple
clock cycles are available to form )( ∆+ny , trade

area for speed and use an area efficient serial-parallel
(SP) Booth recoded multiplier to form the required
products. If the phase offset ∆ is kept to a precision
of ∆b bits, and a radix-3 serial-parallel multiplier is

used, a product is formed every 2/∆b  clock cycles.

For 8=∆b , 4 clock cycles are required to compute an

8-by-16 product. Therefore the 4 multiplies needed to
form )( ∆+ny  can be implemented with one radix-3

multiplier. This unit occupies 50 CLBs. The logic to
realize the complete multiply-add datapath can be
implemented with 124 CLBs. The entire Farrow filter
structure shown in Figure 6 can be realized with

469124695 =+↔ CLBs.

5 Why the Farrow Filter for
FPGAs?

To understand why the Farrow filter architecture can
be advantageous for FPGA implementation of
fractional delay filters, it is necessary to understand
how the same functionality provided by this filter is
achieved using the more conventional polyphase
filter approach. Using the precisions defined above,
consider the implication of selecting 8=∆b . With

this choice, a simple change in the value of ∆ can
generate 1 out of a possible 256 interpolants. Or put
another way, using 8 bits of  precision for ∆ splits the
unit delay into 256 phases. To achieve this same
phase resolution using a polyphase filter would
require 256 polyphase filter segments. For some
applications, at any one time only a small number -
possibly one - of the segment outputs will be in
active use. However, if the output signal phase is to
be continuously variable, all 256 filter outputs must
be available. One option is to have all 256 filters
executing concurrently in the FPGA – this is very
expensive in terms of logic resources. Each filter arm
is the same complexity as the differentiating filters
used in the Farrow architecture. The parallel
implementation of the 256 filters alone requires

1766469256 =↔  CLBs! This is clearly unacceptable
for current generation FPGAs. Another strategy that
could be adopted is to only maintain a small number
of polyphase filter segments executing at any one
time. The implication is that all of the coefficient sets
needed to implement the entire 1-to-256 interpolating



filter be available in external memory, and the
appropriate filter coefficients be loaded into the
FPGA filter as required. To reduce the amount of
storage required, the eight coefficient values that
define each polyphase segment could be stored.
Although the memory requirements are minimized
using the later approach, the DA LUTs must now be
calculated on-line by either a functional unit
implemented in the FPGA itself or an external
microprocessor. Since the main emphasis here is on
fast on-line adjustment of the fractional delay, any of
the methods that store tables of coefficients are
unlikely to be suitable solutions for systems where
the fractional delay is required to be continuously
variable.

Comparing the CLB count of the Farrow filter with
the polyphase filter implementation, shows that the
Farrow filter implementation requires only
469/17664 = 2.7% of the logic resources required by
a full polyphase filter implementation.

For sample rate conversion processes where the
conversion ratio is incommensurate (irrational) the
output samples generated  using a polyphase filter
approach are taken from different polyphase
segments for each sample period. If a large number
of segments are required, the management, as well as
the amount of logic occupied by the DA LUT tables
can be a problem with an FPGA implementation.
This consideration is of course not a concern for the
FPGA realization of the Farrow filter since the
coefficients are effectively generated on-line. For this
example the area advantage leveraged by the Farrow
architecture over a polyphase filter is clear.

6 Conclusion

We have re-derived the Farrow filter which supports
continuously variable resampling. The filter
accomplishes this in a two step process by efficiently
describing partitions of an oversampled polyphase
filter into segments corresponding to columns of the
underlying two-dimensional mapping. The segments
are represented by low order polynomials formed by
using the polyfit m-file in Matlab.

We discovered that the approximating polynomial
had to be of fourth degree to sustain artifacts more
than 60 dB below the design passband.

The compact representation of the filter segments has
system implications when coefficients have to be
computed on the fly or in response to a programmed
change in sample rate. Filters operating at low input
data rates or with large resampling ratios can be
implemented efficiently in the Taylor Series of data
form.

The second step in forming the Farrow filter reorders
the two dimensional summation which first forms the
filter coefficients for a specified ∆  and then uses the
input data to compute the output for that ∆ . In the
reordered form, the input data is used to compute the
Taylor series expansion in the neighborhood of the
current input sample and uses that expansion to
compute the output at the desired ∆ . We note that
when the upsampling ratio is greater than 1-to-5 the
Farrow filter will compute the output samples with
fewer operations than the standard polyphase form. A
significant advantage of the polynomial form of the
polyphase filter set is the savings in memory needed
to store the stage coefficients.

Finally, the Taylor series form of the filter has
significant implications for FPGA implementation.
This realization occupies only 2.7% of the logic
resources of a conventional polyphase filter. The
economy of the structure makes it a serious candidate
for systems using fractional delay filters when the
delay must be varied dynamically.

7 References

[1] C. W. Farrow, ``A Continuously Variable Digital
Delay Element’’, Proc. IEEE Int. Symp. Cir. And Sys.
(ISCAS), Vol. 3. Pp. 2641-2645, Espoo, Finland, June
6-9, 1988.

[2] f. j. harris, ``Forming Arbitrary Length Windows
or Filter Sequences From a Fixed Length
Reference’’, Eighteenth Annual Asilomar Conference
on Circuits, Systems and Computers, Pacific Grove,
Nov. 1984.

[3] S. A. White, ``Applications of Distributed
Arithmetic to Digital Signal Processing'', IEEE ASSP
Magazine, Vol. 6(3), pp. 4-19, July 1989.

[4] Xilinx Inc., The Programmable
Logic Data Book, 1998.


