
The 8th International Conference on Signal Processing Applications and Technology, Toronto Canada, September 13-16 1998.

Computing Multidimensional DFTs Using Xilinx FPGAs

Chris Dick
chrisd@xilinx.com

Xilinx Inc.
2100 Logic Drive

San Jose
CA 95124

Abstract: This paper reports on a reconfigurable
computing architecture that takes advantage of the
reduced computational requirements of the
polynomial transform method for computing 2-D
DFTs. An FPGA architecture is described that is
capable of processing 24 512 × 512-pixel images per
second. The proposed system is 46% more area
efficient than a row-column DFT processor
implemented using the same technology.

1 Introduction

One class of reduced computational complexity
algorithms for computing multidimensional FFTs and
convolutions are the polynomial transform (PT)
algorithms first proposed by Nussbaumer and
Quandelle in [1]. These algorithms offer considerable
savings in terms of the number of operations required
to compute 2-D FFTs. However, they have found
little application in practice for several reasons. One
factor is probably the higher degree of specialized
knowledge required to efficiently code the algorithm
in comparison to something like the row-column
algorithm. Another factor is due to algorithmic
overheads, such as modulo reductions and data re-
ordering that are not efficiently implemented by
VLSI digital signal processors (DSPs).

Technological advancements in field programmable
gate arrays (FPGAs) over the past 10 years have
opened new paths for digital signal processing
design engineers. The FPGA maintains the
advantages of the high specificity of the ASIC while
avoiding the high development costs and inability to
make design modifications after production. The
FPGA also brings design flexibility and adaptability
to a signal processing architecture. FPGA-based
reconfigurable computers are emerging as a class of

computers that can provide near application specific
computational performance. Designers can also
configure them for a variety of tasks. Such platforms
let designers customize specific operations for
function and size, and dynamically construct data
paths for individual applications. An advantage of
this is that the cost of the hardware can be amortized
over a wide range of applications.

In this paper a datapath is designed for computing 2-
D FFTs based on polynomial transforms in modified
rings of polynomials [2]. The design implementation
and performance using Xilinx [3] FPGAs is
described. The advantages of the implementation in
terms of area efficiency and performance in
comparison to standard row-column processing are
highlighted.

2 Computation of the 2-D Fourier
Transform Using Polynomial
Transforms

Nussbaumer in [2] describes a technique for
computing power-of-2 DFTs based on roots of unity
in fields of polynomials. A structurally simpler
technique based on polynomial transforms defined in
modified rings of polynomials is also described.
Although this latter method is not the most
computationally efficient of the polynomial transform
based methods for computing DFTs, its operation
count is lower than that of the conventional row-
column approach often used for computing 2-D
transforms. The combination of structural simplicity
and reduced operations count make the algorithm
well suited for FPGA implementation. The algorithm
is summarized in Figure 1.

The 2-D transform is computed with
2N premultiplications by 2n−ω),(/ Nje πω −= one

polynomial transform of length N and kernel ,2z N

reduced DFTs of N terms and output permutations.

Figure 1: Computing an NN ↔ DFT using polynomial
transforms defined in modified rings of polynomials.

.2tN = ./ Nje πω −=

Figure 2: Radix-2 polynomial transform decimation-in-
frequency butterfly.

2.1 The Fast Polynomial Transform
Algorithm

The polynomial transform is implemented with a
minimum number of additions using a radix-2
decimation-in-time (DIT) or decimation-in-frequency
(DIF) FFT-type algorithm. This algorithm is referred
to as a fast polynomial transform (FPT) algorithm.
The signal flow graph for a DIF polynomial

transform butterfly is shown in Figure 2. Instead of
multiplications by powers of roots of unity as used in
the radix-2 Cooley-Tukey FFT algorithm, the
polynomial transform butterflies use multiplications

modulo 11 ++Nz by powers of z. These amount to
simple polynomial rotations followed by sign
inversion of the overflow words, and are therefore
implemented without any multiplications.
Each polynomial in the FPT calculation consists of N
terms. Each polynomial coefficient is complex valued
because of the complex input premultiplications. The
calculation in each arm of the butterfly therefore
requires N2 additions. There are 2/N butterflies in

each of N2log processing ranks giving the total

number of additions as .log2 2 NN

2.2 Input Premultiplications

Assuming real-valued input data, for example an
image frame, each premultiplication is the product of
a real-number with a complex number and requires 2
real multiplications and no additions. Fast
multipliers, such as array multipliers are expensive
functional units to implement using FPGAs. The
design used here is a radix-2 Booth recoded serial-
parallel multiplier [4]. For a B-bit multiplicand and
multiplier, B clock cycles are required to form a
two’s complement product. Only the most significant
B-bits of the 2B-bit result are retained. A bit-1616↔
multiplier occupies 40 4000 series configurable logic
blocks (CLBs) [3], while an bit-1818↔ unit occupies
43 CLBs. Not all of the occupied CLB flip-flops are
used. When the multiplier is incorporated into a
larger design, data registers can be merged into the
unused locations to give better device utilisation. The
2 real multiplications needed for each
premultiplication are implemented with one time-
division multiplexed multiplier. The

2N premultiplications are executed in

f

NB 2

PM

2
T =

seconds, where f is the system clock frequency.

2.3 Polynomial Transform

The architecture of a polynomial transform butterfly
is shown in Figure 3.

The design is pipelined so that data fetches, stores
and calculations are overlapped. A sum or difference
of the complex input data is computed in 2 clock
cycles - the real and imaginary parts being handled
separately.

Figure 3: Radix-2 polynomial transform butterfly.

The execution time PTT for the polynomial

transform is

seconds
log2

T 2
2

PT f

NN=

The polynomial transform arithmetic core occupies
27 4000 series CLBs. In addition to the processing
core a complete polynomial transform engine
requires a memory address generator which occupies
another 40 CLBs.

2.4 FFT Processor
The final stage of the calculation requires N N-point
reduced DFTs. These DFTs can be calculated using a
radix-2 Cooley-Tukey FFT partitioning with
modified phase factors. The algorithm used is based
on the DIT radix-2 butterfly shown in the bottom
right-hand corner of Figure 4. The multiplication by

the complex phase factor, ,k
Nω is implemented using

4 real multiplications and 2 real additions. Two
complex additions are required to form the final
butterfly output. Each complex addition is
implemented with 2 real additions. A schematic of
the butterfly circuit implemented using a Xilinx
FPGA is shown in Figure 4. The real and imaginary
components of a complex datum are each kept to a
precision of B-bits. The butterfly processor
reads a complex datum in one clock cycle, i.e., 2B-bit
words are read from memory on each read access. An

18-bit fractional fixed-point representation is used

Figure 4: Block diagram of the Radix-2 DIT butterfly used in the FPGA FFT processor.

for each of the real and imaginary components of a
complex number. This requires a 36-bit wide

datapath to memory. The phase factors, ,k
Nω are kept

to a precision of 16-bits).16(=ωB The complex

product engine for computing k
Nyω is based on the

Booth recoded multiplier outlined earlier. Four
multipliers, M0,M1,M2 and M3, operating in parallel
are used for the complex multiplication. The
subtractor S0 and the adder A0 are used to combine
the multiplier outputs to form the final product. Each
multiplier produces a result in 16 clock cycles. The
butterfly design is pipelined to allow uninterrupted
processing. Data fetches, stores, the complex

multiplication, as well as the sum)(k
Nyx ω+ and

difference)(k
Nyx ω− calculations are overlapped.

One complete butterfly is completed every 16 clock
cycles. The pipelined processing offsets the time-
penalty of the slow serial-parallel multipliers used in
the design. The time to perform 1 DFT is

fNN/ /log2B 2ω seconds. The execution time FFTT

for all N FFTs is

f
NN

B
2
log

T 2
2

FFT ω=

The butterfly unit occupies 294 Xilinx 4000 series

CLBs. As highlighted earlier, there are unused flip-
flops in the multiplier layout. A dense placement was
achieved by merging butterfly pipeline registers into
these locations. For example, the registers L2 and L3
in Figure 4 are merged into the multiplier M0. The
basic multiplier design has a latched output, so
register L6 is already included in the 43 CLB figure
quoted earlier for implementing an 18 × 18-bit
multiplier. So even though a multiplier by itself
occupies 43 CLBs, registers L2, L3, the multiplier
M0 and the latch L6 can all be accommodated in 43
CLBs if the layout is carefully controlled.
In addition to the butterfly processor, data input,
output and a phase factor memory address generators
are required. In the current system a change of
transform size requires re-loading the FPGA. This
was done to minimize the overheads associated with
a fully programmable address generator. The area
that the address units occupy vary with the transform
size. For a 512-point transform, 134 CLBs are
required for the address generators. So a complete
512-point FFT processor occupies 428 4000 series
CLBs.

3 System Architecture

An architecture that exploits parallelism of the
polynomial transform DFT algorithm will maximize
the system throughput. The parallel processing
approach is based on duplication of the FPT and FFT

Figure 5: Multi-FPGA architecture for computing 2-D DFTs based on polynomial transforms. An FPGA virtual processor is used
for each processing stage of the FPT and FFT. The input premultiplications are also allocated to a separate virtual processor.

butterfly functional units. Unique FPT and FFT
butterfly processors are used for each rank of the FPT
and FFT processes respectively. The 2-D transform
architecture is shown in Figure 5.
The algorithm is partitioned and mapped onto a set of
virtual processors (VP). There does not have to be a
one-to-one mapping between virtual processors and
physical processors. Multiple virtual processors can
be accommodated in a single FPGA or a single
virtual processor can be partitioned across several
physical processors. For the partitioning shown in
Figure 5 virtual processor VX 0 performs the input
premultiplications, while virtual processors VX 1 to
VX N2log perform the FPT butterfly ranks

0,…,log1N-1 respectively. Each of these VP’s
implement one polynomial butterfly that is time
division multiplexed to compute the N/2 polynomial
butterflies in a processing rank of the FPT. Similarly,
virtual processors VX 1log2 +N to VX 2log1N each

compute one of the N2log butterfly ranks of the FFT

algorithm. Each of these virtual processors is a radix-
2 FFT butterfly that is time division multiplexed over
the N/2 butterflies in a single processing stage of the
FFT. Closer observation reveals that a physical FPT
butterfly processor can be time division multiplexed
over multiple virtual FPT butterfly processors. Three
physical FPT butterfly units are sufficient for this
design.
The CLB count is ,log3 2PMPTFFT NCCCC FFTPT ++=
where ,PMC PTC and FFTC are the CLB counts for

the premultiplication stage multiplier, PT butterfly
and FFT butterfly respectively. For a parallelized
row-column technique to achieve the same
processing throughput as the parallel PT approach,
separate row and column processors are required.
Each of these would consist of an FFT butterfly
module for each of the N2log2 processing ranks.

The CLB count is .log2 2FFTRC NCC = For 512=N

4123PTFFT =C and .7704RC =C The two approaches

produce the same transform throughput but the
parallel PT architecture uses 54% of the logic
resources of the parallel row-column implementation.
In terms of the number of FPGAs, the logic
requirements for the PT architecture is equivalent to
approximately four Xilinx 25,000 gate 4025 devices.
The system computation rate is quite high. With
some layout optimizations and using faster 2 ns
FPGAs, the clock frequency is estimated to be 50

MHz. With this frequency and ,512=N a new 2-D

transform is generated every 42 milliseconds. This
corresponds to a frame rate of 24 frames per second.
The arithmetic performance is 405 million operations
per second.

4 Conclusion
FPGA based machines offer the DSP system designer
a new means of implementing data paths that are
highly optimized for a particular algorithm. This
approach maintains the high-performance advantages
of dedicated hardware based solutions, but with the
flexibility of software.

There are several ways to use such machines. The
FPGA machine may be the final target hardware, be
used as a rapid prototyping system, or in an
environment where a single piece of hardware is
required to perform different processing tasks at
different times. By combining knowledge of both fast
algorithms and computer arithmetic, these machines
can exploit the reduced computational requirements
of procedures whose computational advantage may
not be able to be exploited in software solutions. The
polynomial transform method is a case in-point.
Implemented on a DSP processor, the computational
advantages are sacrificed due to increased control
overhead in implementing the modulo arithmetic and
the data permutations. These aspects are not an issue
when the algorithm is implemented using FPGAs.

Finally, it is useful to place the proposed FPGA PT
architecture in context with a DSP processor like the
Texas Instruments TMS320C30 (C30). The rating of
one functional unit for a 40 MHz device is 20
MFLOPS. To achieve the same transform execution

time as the multi-FPGA architecture, NN 2
2log10

real operations need to be performed every 42ms for
.512=N Even without any concurrent

inefficiencies, a parallel VLSI DSP solution would
require approximately 30 C30 processors.

[1] H. J. Nussbaumer and P. Quandelle,
“Computation of Convolutions and Discrete Fourier
Transforms by Polynomial Transforms”, IBM J. Res.
Develop., vol. 22 no. 2, pp. 134-144, Mar. 1978.

[2] H. J. Nussbaumer, Fast Fourier Transform and
Convolution Algorithms, Springer-Verlag, New York,
1981.

[3] Xilinx Inc., The Programmable Logic Data Book,
1998.

[4] Kai Hwang, Computer Arithmetic Principles
Architecture and Design, John Wiley &
Sons.,New York, 1979.

