
Real Time Image Rotation and Resizing, Algorithms and
Implementations

Robert D. Turney and Chris H. Dick
CORE SOLUTIONS GROUP, XILINX, INC.

2100 LOGIC DRIVE SAN JOSE, CA 95124-3450

ABSTRACT

Recent growth in the area of digital
communications has been fueled by new and
exciting communications algorithms to satisfy
the ever increasing bandwidth needs. While
the majority of the bandwidth requirements are
driven by multi-channel voice or data needs,
video and imaging communications is
becoming both realizable and practical.
Additional progress in the area of video and
imaging compression has reduced the
bandwidth requirements for video
communications thus enabling video
conferencing, video broadcast, and video
wireless applications. With the continued
growth in the video communication industry
different size and orientation of image data sets
is a noteworthy problem to address. In this
work we will explore implementation of image
rotation and resizing for both low and high
quality imaging systems. Implementations are
proposed for real time processing using field
programmable gate arrays (FPGAs).

1. Introduction

When addressing the problem of image
resizing one needs to satisfy the two
dimensional sampling theorem [1]. Aliasing
and “imaging” found in one dimensional signal
processing are extended to two dimensional
processing with spatial distribution rather than
time dependency. In a majority of one
dimensional multi-rate systems integer
decimation or interpolation resampling are
often the case. Image resizing typically
involves fractional resampling and can lead to
prohibitively large implementations resulting in
comprimises in range and resolution.
Additional requirements due the the human

visual system (HVS), such as constant aspect
ratio, edge sensitivity, and noise uniformity add
constraints to the image resize algorithm. In
addition, frequently one must also deal with
interlaced video data as an input to the imaging
system. In this work we will discuss traditional
bilinear and bicubic interpolation methods from
an algorithm and real time implementation
perspective.

The problem of image rotation is becoming
more prevalent due to the emergence of flat
panel and CCD acquisition devices. While
commercial applications for rotation may be of
a limited nature, medical, military and industrial
uses for image rotation abound. Similar to
image resizing, interpolation algorithms must
be utilized to achieve image quality acceptable
for the particular application. Since, in general,
image rotation involves a rectangular shaped
image, image cropping and padding needs to
be incorporated into the algorithm. One of the
more challenging problems in image resizing
and rotation is dealing with edge preservation
in the presence of noise with a real time
implementation. In this work we deal with the
computational aspects of implementing image
resize and rotation by efficient co-design of
algorithmic aspects and implementation
aspects so that memory bandwidth and frame
latency considerations are included.

2. 1-D Resampling

Resampling by decimation of digital data
requires one to pay attention to the Nyquist
rate to eliminate aliasing. For example if a 512
pixel line is decimated by 4 to produce 128
pixels a quarter-band filter would be employed
to eliminate the high frequecy from folding into
the low frequecy terms. This structure is
usually implemented as a polyphase decimator

shown in Figure 1. The primary advantage of
this structure is the filters run at ¼ the input
sample rate.

H1(z-1)

H2(z-1)

H0(z-1)

H3(z-1)

y(m)x(n)

Figure 1 Polyphase Decimator

Up-sampling requires interpolation of digital
data and requires one to pay attention to
“images” of the original spectra. For example,
if we were interpolating by 3 a 256 pixel line to
768 pixels one would utilize a filter to reject the
“image” spectra. This structure is usually
implemented as a polyphase interpolator
shown in Figure 2. Note that the three filters in
this structure run at the low input sample rate
in contrast to the high sample rate of the output
stream.

H1(z-1)

H2(z-1)

H0(z-1)

y(m)x(n)

Figure 2 Polyphase Interpolator

To perform up-sampling at various interpolation
rates a fractional filter needs to be designed.
Consider the case of 512 input samples with
desired up sample by 4 (2048) and resolution
of 16 pixels. A polyphase fractional
upsampling architecture is presented in Figure
3 that allows P/Q resampling [5]. In this
structure P polyphase filters are used with a Q
sequencer to determine filter utilization. In the
present example Q is 512/16 or 32. The
number of filter banks (P) is defined by
2048/16 (128). During the actual operation of
the P/Q resampling the number of P filters
included in the sequencing of Q is determined

by the up-sampling rate. The design of the
actual filters is application dependent. For
image processing linear and cubic have been
widely accepted in order to keep the filter
lengths to a minimum. Implementation of this
polyphase up-sampling filter is usually carried
out with a single filter with a coefficient bank.

h0(n)

h1(n)

hp-3(n)

fs
d(n)

1:Q

d()Pn + r
Q

fs
P
Q

hp-2(n)

hp-1(n)

Figure 3 Polyphase Resampling

To design a system which can both down
sample by 4 and upsample by 2 with resultion
of 16 pixels we can utilize the polyphase
resampling structure. In this case the
sequencer would require a skip condition
where a sample has been input but no sample
is extracted from the polyphase structure. It
can be shown that the overall filter response
during decimation is providing the necessary
aliasing protection. For this resampling case
Q is 32, P is 64, and the range of filters
included in the computation is 8 to 64 to
support 128 to 1024 pixel sizes.

3. 2-D Image Resizing

Extending the resampling to two dimensions
for the purpose of imaging or video
applications involves considerations for the
filter design and the impact on the Human
Visual System (HVS). Preservation of edges
and noise characteristics play a major role in
this area of research. In this paper we will not
address this issue but rather explore current
algorithm and architecture tradeoffs. We have
considered the design parameters (range and
resolution) as they relate to the one
dimensional polyphase resampling. Extending
our current example to two dimensions
consider a 512x512 image which we would like

to resize from 128x128 to 1024x1024.
Depending on the real time constraints of the
imaging application and human interaction with
the imaging system two dimensional
architectures can be formed with the
polyphase resampler. The driving imaging
parameters are usually specified as frame rate
and frame latency.

The natural way to extend to two dimensions is
to incorporate an intermediate buffer between
row and column operations as shown in Figure
4. This structure has considerable memory
overhead since the intermediate buffer would
have to be double buffered to allow for
continuous operation. The imaging system
must also allow for a frame latency in the
resizing structure. Complicated systems in the
medical imaging area generally have a number
of frame latencies and thus any processing you
can perform without using a frame latency is
desirable. To remove the frame latency and
excessive memory requirements Figure 5
shows an architecture that performs vertical
resampling cascaded with horizontal
resampling. This structure inputs a number of
rows simultaneously and performs the vertical
filtering with the Q sequencer only changing on
a row basis. Depending on your vertical down
sample rate throw away out lines are possible
just as in the one dimensional case. Similarly
repeat lines on the input are needed when up-
sampling.

 R o w D ou b le
 B uffer C o lu m n

 Inpu t Im age

 R es iz ed Im age

Figure 4 Resize Architecture

We would ideally like to have an
implementation with a raster interface and
provide the x and y resize parameters on a
frame basis. Accomplishing these goals
requires integration of line buffer memory and
pushes the limits of present silicon technology.

Line

 V ertica l

 H orizonta l

Input Image

 Resized Image

Line

Line

 :

Figure 5 Zero Frame Latency Resizing

4. 2-D Image Rotation

Image rotation in the digital domain is a form of
resampling but is performed on non-integer
points. A typical system specification might
include 1024x1024x12 30 frames/s with 40
MHz pixel clock parameters. With the center
point defined, a single parameter θ specifies
the transformation. The derivation utilizes the
general form of the Hotelling transform with
basis vectors cos(θ) and sin(θ). Equation (1)
gives the coordinate transformation in terms of
rotation of the coordinate axis.

S D D
S D D

x x y

y x y

= +
= − +

cos() sin()
sin() cos()

θ θ
θ θ

 (1)

where S and D represent source and
destination coordinates. Separable rotation
algorithms and architectures require
intermediate memory and will not be included
in this discussion.

Given the requirement of linear addressing
through the destination image the first step in
the rotation algorithm is computation of the
source values Sx and Sy . From these values
the neighborhood of pixels are known for the
filter operation. The location of the destination
pixel in the source pixel matrix also gives the
weighting factors for bilinear or bicubic
interpolation to be performed. The pixel value
is then calculated with the weighting factors
and pixel values in the neighborhood. The
algorithm repeats by incrementing the
Dx value and continuing in a raster out format.
One drawback of this process is the non
uniform addressing of the source pixels.
Essentially the input memory design must have

four times the bandwidth (sixteen for bicubic)
because there is no sharing of source pixels
between destination pixel operations.

 Line

 B icub ic
 C alc

 Index
 G en

 Input Image

 R o ta ted Image Line

 Line

 H
 D est
 G en

 S R C
 G en

 Rc
 G en

 D est A ddress

 θ
V

 Line

Figure 6 Rotation Architecture

To address the short commings of source
address generation consider raster scan
through the source image and construct the
rotated image. By inverting (1) we get
destination coordinates which can be truncated
to find integer Dx and Dy values. These
values are reiterated into (1) and used to
calculate weighting factors for bilinear or
bicubic interpolation in the neighborhood of
source pixels available. Rastering through the
input image with this procedure fills in the
resultant rotated image. A block diagram of
the architecture is shown in Figure 6.

5. FPGA Implementation

Real time implementation of image resizing
and rotation systems involves evaluating
FPGA vendor silicon functionality and software
support including predefined parameterized
cores available for use. Most of the devices
are basically organized as an array of logic
elements and programmable routing resources
used to provide the connectivity between the
logic elements, FPGA I/O pins and other
resources such as on-chip memory. Device
features such as block memory and delay
locked loop (DLL) technology are also
significant factors that influence the complexity
and performance of the implementation.

The architecture of the Xilinx 4th generation
FPGA VirtexTM [7] device is shown in Figure 7.

The objective of the FPGA image processing
designer is to efficiently map a imaging system
to the FPGA hardware, using the logic array,
block memory and DLL in the most efficient
and economic way possible. This may include
both algorithm and architecture analysis to
achieve the optimal implementation. The most
important advance in this technology with
respect to the image processing community is
the Virtex E technology which has double the
number of block rams available compared to
Virtex technology. These block rams can be
configured as 1024x4, 512x8, or 256x16 and
can also be combined for line buffering
applications. The number of block rams
available in the largest VirtexE device at
present is 208.

The logic fabric can be employed to implement
various types of arithmetic functional units, for
example high-speed (150 MHz) adders,
subtracters, multipliers and dividers to name a
few. One design option for realization single
and multi-rate filters in FPGAs is to simply
schedule a MAC unit to perform the inner-
product calculation. In the case of a single rate
filter data management and the coefficient
addressing is simple. For polyphase
decimators and interpolators it is still possible
to employ a single MAC data path in
conjunction with a slightly more sophisticated
control unit to sequence the filter coefficient set
in the correct manner. Performance can easily
be purchased by employing a parallel data
path based on multi-MAC processing units.
The filter coefficients can be stored in block
RAM/ROM or in the logic array itself. The
same is true of the sample history buffer.

BANK 0 BANK 1

BANK 4

RAM

RAM

RAM

RAM

RAM

RAM

RAM

RAM

DLLDLL

DLL DLL

DLL = DELAY LOCKED LOOP
RAM = BLOCK RAM - VARIOUS FORM FACTORS FROM
 4096x1 TO 256X16

= 2 SLICE CLB =I/O

BANK5

BANK N =MULTI-STANDARD I/O SUPPORT

ROUTING

Figure 7 Xilinx Virtex FGPA Architecture

Alternative algorithms are also available to
construct the filtering engine. For example,
distributed arithmetic (DA) [9] has been
demonstrated to be an extremely useful re-
organization of the inner-product equation for
FPGA systems. It exploits the look-up table
and distributed memory [7] features of the
FPGA. Filters and computational units are
available from FPGA Vendors (Xilinx
CoreGenTM) as part of the software tool suite
for implementation.

For the resizing architecture Cores are
available for vertical and horizontal functions of
Figure 5. This algorithm can be implemented
in a single chip device. Depending on the
image quality required for the application Xilinx
Virtex E part types can range from a XCV300
to XCV1000. Similarly analysis of the rotation
architecture of Figure 6 yields Xilinx Virtex E
part types ranging from XCV600 to XCV1000.

6. Conclusion

In this paper we have discussed the
algorithms, architectures, and implementations
for image rotation and resizing. Single chip
FPGA implementations have been proposed
which enable real time processing.
Technology advances in the area of embedded
memory on FGPAs is particularly attractive to
the video and image processing community.
Applications in the video communications and
medical imaging area can benefit from the real
time processing capabilities. Future work in
this area will be directed toward image quality
issues such as edge preservation and noise
characteristics.

References
[1] Bracewell, R., Two-Dimensional Imaging,

Prentice-Hall, Inc., Englewood Cliffs, New
Jersey, Inc., 1995.

[2] Pratt, W., Digital Image Processing, John
Wiley & Sons, Inc., 1991.

[3] Gonzalez, R., Wintz, P., Digital Image
Processing 2nd Ed., Addison-Wesle, 1987.

[4] Gonzalez, R., Woods, R., Digital Image
Processing, Addison-Wesley, 1992.

[5] Dick, C., harris, f., “FPGA Interpolators
Using Polynomial Filters”, The 8th

International Conference on Signal
Processing Applications and Technology,
September 1998.

[6] Rasche, V., et al. “Resampling of Data
Between Arbitrary Grids Using
Convolution Interpolation”, IEEE
Transactions on Medical Imaging, Vol. 18,
NO. 5, May1999.

[7] Xilinx Inc., The Programmable Logic Data
Book, 1999.

[8] Carey, W., Chuang, D., Hemami, S.,
“Regular-Preserving Image Interpolation”,
IEEE Transactions on Image Processing, Vol.
8, NO. 9, Setpember 1999.

[9] S. A. White, “Applications of Distributed
Arithmetic to Digital Signal Processing”,
IEEE ASSP Magazine, Vol. 6(3), pp. 4-19,
July 1989.

	1. Introduction
	2. 1-D Resampling
	3. 2-D Image Resizing
	4. 2-D Image Rotation
	FPGA Implementation
	Conclusion
	References

