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ABSTRACT
Multirate signal processing is an enabling technology that brings DSP techniques to
applications requiring low-cost and high sample rates. Field programmable gate arrays
(FPGAs) provide system-level hardware solutions for signal processing architects
demanding both high-performance and flexibility. This workshop provides an
introduction to the fundamental theory of multirate filter techniques and provides simple
descriptions of polyphase decimators and interpolators. Wavelet theory has development
roots in both mathematics and signal processing communities. In this workshop we will
explain wavelet theory from both a signal expansion and filter bank viewpoint. Classes of
signal processing problems that can benefit from wavelet techniques will be presented
with simple examples. Implementation of mulitrate filters and wavelet structures  with
FPGAs will be explained for real time applications.

INTRODUCTION
Digital signal processing (DSP) systems offer degrees of freedom to the system designer
that are unparalleled in the analog signal processing domain. One of the most important
of these parameters is the availability of a system sample clock. In the context of digital
filters, the sample clock is accessed and exploited using multirate filter techniques.
Judicious and creative use of multirate processes in digital signal processing systems
allow a designer to realize a hardware efficient solution, that in many instances just
would not be feasible using single rate signal processing. This paper provides an
introductory level overview of multirate filters. The basic theory of multirate techniques
is presented along with an explanation of polyphase interpolators and decimators.  The
hardware realization of multirate systems using field programmable gate arrays (FPGAs)
is also examined.
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Wavelet theory had been developed independently on several fronts. Different signal
processing techniques, developed for signal and image processing applications, had
significant contribution in this development [1]. Some of the major contributors to this
theory are: multiresolution signal processing [2], used in computer vision; subband
coding, developed for speech and image compression; and wavelet series expansion,
developed in applied mathematics [3]. The wavelet transform is successfully applied to
non-stationary signals and images. Some of the application areas are: nonlinear filtering
or denoising, signal and image compression, speech coding, seismic and geological signal
processing, medical and biomedical signal and image processing, and communication.

MULTIRATE FILTERS AND REALIZATIONS
Filters, analog or digital, are one of the most widely used signal processing functions. In
the analog domain, a filter transfer function is realized by a suitable arrangement of
resistors, capacitors, operational-amplifiers (op-amps) and possibly inductors. As with
any analog platform, this implementation is exposed to the potential problems that result
from temperature dynamics, and component tolerances. The motivation to migrate this
type of processing to an all ( or mostly) digital implementation involves eliminating these
issues, coupled with the system economics, manufacturability  and repeatability issues.
One might be tempted to start with an analog prototype design and digitize this system to
produce a DSP implementation. In fact, this is precisely the worst approach to adopt. In
making a digital clone of an analog system all of the unique features of the DSP domain
are not exploited. These features include adjusting the sample rate at various nodes in a
system, together with the creative use of deliberate aliasing. Exploiting these degrees of
freedom in a digital design is of paramount importance in order to obtain the maximum
performance with a minimum amount of digital hardware. Indeed, it may even be the
difference between being able to perform a required function at a specified sample rate at
all using a DSP implementation. One of the most important techniques that a DSP
designer has at their disposal to exploit the time dimension of a problem is multirate
filtering.

In their most basic form, multirate filters are used to decrease (decimation) or increase
the sample rate (interpolation) of a stream of samples. Multirate filters are employed in
many diverse applications and for many different reasons. One broad motivating factor is
to match the sample rate to the signal bandwidth at all, or most, of the nodes in a system
or to alter the sample rate so that signals with differing sample rates may be combined in
some manner. Ultimately, multirate filters minimize the arithmetic workload required to
perform a specified calculation. In turn, this minimizes the number of clock cycles
consumed in a software based implementation, the number of gates in an ASSP
(application specific standard part) realization, or the number of logic elements consumed
in an FPGA design.

Decimation
Decimation can be useful if the sample rate of a signal is considerably greater than twice
the signal’s bandwidth. The process of sample rate decimation, or simply decimation,



involves two steps as shown in Figure 1. The first stage is a bandwidth limiting operation
(anti-aliasing filter) while the second step performs the down-sampling.

MH(z)x(n) y(m)

ANTI-ALIASING FILTER DOWN-SAMPLER

Figure 1: Signal decimation – bandwidth reduction followed by down-sampling.

The anti-aliasing filter is a lowpass design. This filter must reduce the signal bandwidth
in accordance with the Nyquist sampling theorem. The filtered signal’s bandwidth B
must satisfy B f s≤ ' , f f Ms s

' /= , where f s
'  is the decimated data stream output sample

rate, f s  is the input sample rate and M  is the decimation factor. The implicit assumption
employed here is that the band of frequencies B f f s≤ ≤ / 2  contains no useful
information and may be safely discarded in the application.  The bandwidth limiting
process is often constrained to preserve phase linearity and so a FIR filter, as shown in
Figure 2, is employed.
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Figure 2: Direct form FIR filter architecture.

The elemental process needed to compute the filter as a multiply-accumulate (MAC)
operation.  The coefficients a aN0 1, ,� − control the filter frequency response. The
computation workload is a function of the filter quality, and the filter quality is reflected
by the number of filter taps in the structure.

To establish a context for a discussion on efficient decimating filter stuctures, consider
the following design problem.

Example 1
A communication system employs frequency division multiplexing (FDM) to allow
multi-user access to the system channel. A decimating filter is to be designed that
recovers the baseband channel and adjusts the system sample rate to match the filter
bandwidth. The input sample rate is 100 MHz, the passband channel bandwidth is 2
MHz, adjacent channels must be suppressed by at least 50 dB and the maximum
allowable passband ripple is 0.5 dB. The decimation factor is 50. The filter must have a
linear phase response.

Solution
The signal frequency spectrum together with an overlay of the baseband filter is shown in
Figure 3.
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Figure 3: Input signal spectrum and baseband filter specifications.
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Figure 4: Decimator consisting of an anti-aliasing filter and down-sampler.

Some design iterations in a filter design environment indicate that a 205-tap filter will
meet the requirements. Using the MAC as the basic unit of work, a simple calculation
shows that a real-time data path to support the 205-tap filter must supply 205 Mega-
MACs (MMACs) of processing performance. While this is achievable using several
hardware approaches, including a DSP processor or FPGA, it is definitely not the most
efficient realization.  We should examine the simple filter-and-decimate structure with a
view to removing any redundancy so that the implementation cost can be minimized.  On
examining, there is a glaring inefficiency. The filter produces 1 output for every sample
presented at its input, and yet only 1 in 50 of these samples survives the down-sampling
operation. There must be a method that avoids computing the discarded output samples
altogether – this is the function of a polyphase realization of the decimator.

Polyphase Decimators
Polyphase filters, both decimators and interpolators, are efficient structures for
simultaneously and efficiently filtering and decimating (or interpolating) a signal stream.
Some relationships that will be useful in the development of polyphase structures are
presented in Figure 5. These figures state certain rules that may be applied to manipulate
a dataflow graph. The fundamental set of relationships that are employed to manipulate a
multirate signal flowgraph are the Noble Identities [5] in Figure 6. These relationships are
very powerful tools for performing various types of signal flowgraph transformations.
Space requirements do not permit a detailed explanation of the Noble Identities, and the
reader is referred to [5] for a more complete treatment.
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Figure 5: Simple identities for interconnected systems.
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Figure 6: The Noble Identities.

The polyphase decimator structure will be introduced via a simple example.  Consider the
decimator in Figure 1 with M = 4.  The transfer function H z( )  can be expressed as
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�   The filter structure described by Eq. (1) is shown in Figure 7(a).
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Figure 7: Polyphase decimator, M = 4.  (a)-(c) illustrate the transformations that produce
the input commutator polyphase filter (d).

The filter in Figure 7(a) can be simplified by applying identity (b) of  Figure 6 to produce
the structure shown in Figure 7(b). Now use Noble Identity (c) to generate the filter in
Figure 7(c). Finally, the structure presenting samples to the four polyphase sub-filters
H z H z H z0 1 2( ), ( ), ( )  and H z3( ) is recognized as a simple commutator. This leads to the
representation of the polyphase filter shown in Figure 7(d). A key observation is that the
sub-filters operate at the output sample rate, in contrast to the filter H z( )  in Figure 4 that
operates at the high input sample rate.

Decimator Computational Complexity
Analysis of the polyphase structure reveals that we have achieved a significant
computation reduction in exchange for a modest increase in algorithm complexity and
control.  Again, using the MAC as the unit of work, the computation rate in Figure 4 is
Nfs  MACs/s. The arithmetic requirements of the polyphase filter is only Nf Ms / .  The
polyphase structure is more efficient by a factor of M  in comparison to the non-
polyphase realization. The workload reduction allows very efficient hardware realizations
of decimating structures that employ polyphase structures. The computational savings
can be exploited in a system in many ways. For example, it may be possible to process
more channels in communication system with a given piece of hardware, introduce a
higher quality filter, or utilize fewer logic resources in an FPGA implementation.

One interesting point to observe is that the order of the processing stages in the polyphase
decimator has been reversed. In Figure 4, the sample rate is reduced by first filtering and
then down-sampling. In the polyphase structure the input signal is first decimated and
then filtered. At first glance this would appear to violate the Nyquist sampling theorem.
However, the aliasing in the polyphase structure has been performed in a controlled
manner. M  different aliases, each differing in phase angle, have been generated in the



M  polyphase sub-filters. Careful analysis of the polyphase architecture reveals that all
but one of the aliased spectra are cancelled at the filter output summing node, leaving
only a single non-aliased version of the filtered signal at baseband.

Interpolation
There is a requirement in many systems to increase the sample rate of signal stream. For
example, in the audio community three common samples rates are employed – 32 kHz in
the broadcast industry, 44.1 kHz for consumer compact disc (CD) media and 48 kHz for
digital audio tapes (DAT). If we want to digitally combine (mix) signals from these three
environments, a common sample rate for all of the constituent signals must be employed.
To preserve audio integrity, the stream at the lower sample rate must have its sample rate
increased, that is interpolated, to match the sample rate of the high sample rate signal.
Interpolators also find use in digital receivers as part of the timing recovery loop, for
constructing sample converters where the input and output rates are incommensurate and
in oversampling digital-to-analog converters.  Conceptually, the interpolation process is
shown in Figure 8.

x(n) y(m)H(z)L

RATE EXPANDER ANTI-IMAGING FILTER

Figure 8: Interpolation circuit showing sample rate expander and interpolation filter.

The L-fold rate expander simply inserts L −1  zeros between the available data samples.
As shown in Figure 9, the result is the introduction of L spectral images in the interval 0
to 2π  radians. The purpose of the filter in Figure 8 is to remove all but the baseband
image.
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Figure 9: Spectral domain illustration of L-fold rate expansion.

We immediately observe a source of inefficiency in this simple interpolation scheme.
Only 1 out of every L input samples presented to the filter represent actual data samples,
the other L −1  samples are zero, and yet energy is being expended performing arithmetic
on these values. A polyphase interpolator is a multirate filter mechanization that exploits
this characteristic to produce a computationally efficient method for increasing the
sample rate of a signal.



Polyphase Interpolators
Consider the circuit in Figure 10 with L = 3. The transfer function H z( )  can be
expressed as
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The filter described by Eq. (2) is shown in Figure 10(a).
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Figure 10: Polyphase interpolator – transformation steps.

Figure 10(b) is obtained simply by applying identity (b) in Figure 5. Making use of one
of the Noble Identities allows the rate expanders to migrate through the interpolator sub-
filters to the output summing node. In so doing, the order of the sub-filter polynomials
collapse to first order. Finally, the sub-filter combining structure is recognized as a
commutation operation so producing the polyphase interpolator signal flowgraph of
Figure 10(d).

Interpolator Computational Complexity
The polyphase interpolator is computationally more efficient than the simple circuit in
Figure 8 by a factor of approximately L . Also note that the sub-filters operate at the
input rate in contrast to the higher output rate of the simple approach.



FPGA Decimator/Interpolator Implementation
There is a rich range of FPGAs provided by many semiconductor vendors including
Xilinx, Altera, Atmel, AT&T and several others. The architectural approaches are as
diverse as there are manufacturers, but some generalizations can be made. Most of the
devices are basically organized as an array of logic elements and programmable routing
resources used to provide the connectivity between the logic elements, FPGA I/O pins
and other resources such as on-chip memory. The structure and complexity of the logic
elements, as well as the organization and functionality supported by the interconnection
hierarchy, distinguish the devices from each other. Other device features such as block
memory and delay locked loop technology are also significant factors that influence the
complexity and performance of an algorithm that is implemented using FPGAs.

A logic element usually consists of 1 or more RAM (random access memory) n-input
look-up tables, where n is between 3 and 6, and 1 to several flip-flops. There may also be
additional hardware support in each element to enable high-speed arithmetic operations.
The architecture of the Xilinx 4th generation VirtexTM [6] device is shown in Figure 11.
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Figure 11: Xilinx Virtex FPGA architecture.

The objective of the FPGA signal processing designer is to efficiently map a DSP system
to the FPGA hardware, using the logic array, block memory and other special features
such as delay locked, in the most efficient and economic way possible.

The logic fabric can be employed to implement various types of arithmetic functional
units, for example high-speed (150 MHz) adders, subtracters, multipliers and dividers to
name a few. One design option for realization single and multi-rate filter sin FPGAs is to
simply schedule a MAC unit to perform the inner-product calculation. In the case of a
single rate filter data management and the coefficient addressing is simple. For polyphase
decimators and interpolators it is still possible to employ a single MAC data path in
conjunction with a slightly more sophisticated control unit to sequence the filter



coefficient set in the correct manner. Performance can easily be purchased by employing
a parallel data path based on multi-MAC processing units. The filter coefficients can be
stored in block RAM/ROM or in the logic array itself. The same is true of the sample
history buffer.

Alternative algorithms are also available to construct the inner-product engine. For
example, distributed arithmetic (DA) [4] has been demonstrated to be an extremely useful
re-organization of the inner-product equation for FPGA systems. It exploits the look-up
table and distributed memory [6] features of the FPGA. An interesting characteristic of
the DA approach is that the filter sample throughput is de-coupled from the filter length.
The system designer can easily trade FPGA resources for higher performance. Yet
another option is based on sigma-delta modulation encoding [8]. Binomial filters have
also been shown to be good candidates for certain multi-rate applications [7].

FROM FOURIER TO WAVELET
Wavelet theory is based on analyzing signals to their components by using a set of basis
functions. One important characteristic of the wavelet basis functions is that they relate to
each other by simple scaling and translation. The original wavelet function, known as
mother wavelet, which is generally designed based on some desired characteristics
associated to that function, is used to generate all basis functions. For the purpose of
multiresolution formulation, there is also a need for a second function, known as scaling
function, to allow analysis of the function to finite number of components. In most
wavelet transform applications, it is required that the original signal be synthesized from
the wavelet coefficients. This condition is referred to as perfect reconstruction. In some
cases, however, like pattern recognition type of applications, this requirement can be
relaxed. In the case of perfect reconstruction, in order to use same set of wavelets for both
analysis and synthesis, and compactly represent the signal, the wavelets should also
satisfy orthogonality condition. By choosing two different sets of wavelets, one for
analysis and the other for synthesis, the two sets should satisfy the biorthogonality
condition to achieve perfect reconstruction.

Fourier Background
The essence of the Fourier transform of a waveform is to decompose or separate the
waveform into a sum of sinusoids of different frequencies. In other words, the Fourier
transform identifies or distinguishes the different frequency sinusoids, and their
respective amplitudes, which combine to form an arbitrary waveform. The Fourier
transform is then a frequency domain representation of a function. This transform
contains exactly the same information as that of the original function; they differ only in
the manner of presentation of the information [1]. Fourier analysis allows one to examine
a function from another point of view, the transform domain.

Mathematically this relationship is stated by a pair of equations denoting the forward and
inverse transform.  In the case of a continuous function the transform pair is known as
Fourier Transform (FT) .  In the case of continuous periodic functions, the function does
not have a finite energy. If ( )x t  is periodic with a period of T  and fundamental
frequency of 1of T= , ( )x t  satisfies ( ) ( )x t x t T= +  for all t 's, and if it has a finite



power, the periodic function can then be expressed as a linear combination of
harmonically related sinusoidal functions known as the Fourier Series (FS). This
transform converts a continuous periodic function to a sequence of complex numbers. In
general, this sequence is infinite. However, in most practical cases, only finite number of
coefficients have significant values. The Fourier transform that is applied to discrete
sequences and is referred to as discrete time Fourier transform (DTFT).

Calculation of DTFT by computer can only be carried out for finite sequences and for
discrete samples of ( )2j fX e π  in frequency domain. These requirements and constraints
result in another formulation of the Fourier transform that is defined for periodic discrete
functions. Let [ ]x n  be a periodic sequence with a period of N ; i.e., [ ] [ ]x n x n N= +  for
all n 's, the pair of the Fourier transform relations, referred to as discrete Fourier
transform (DFT), for [ ]x n , is defined by
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In Eq. (3), both discrete functions [ ]x n  and its DFT, [ ]X k , are periodic with the same
period N . Although different formulations of the Fourier transform have real application
in analyzing signals and systems, the DFT is practically used in real world digital
computations. Some of the applications of the DFT in signal processing are spectrum
estimation, feature extraction, and frequency domain filtering. Due to advances in fast
computation algorithms for the DFT, known as Fast Fourier Transform (FFT) [10], and
high-speed hardware implementation, this approach is used for real-time digital signal
processing .

One main assumption in using the DFT for calculation of the spectrum of a discrete
signal is that the observed signal is stationary during the observation time oT . In other
words, the spectrum of the signal is assumed to remain the same during the observation
time. For most practical signals, this assumption is not valid. For example, in speech
signals, the spectrum of the signal may vary significantly from one point to another. This
depends on the content of the speech and the sampling period. In this case, and other
similar cases, the Fourier transform is modified such that a two-dimensional time-
frequency representation of the signal is obtained. The modified Fourier transform,
referred to as short-time or time-dependent Fourier transform, depends on a window
function. For discrete signals, this transformation is referred to as discrete short-time
Fourier transform (DSTFT) [11] and is obtained by using a window function, [ ]g � . The
pair of equations, that define the DSTFT of a discrete sequence, is stated by
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In the DSTFT, there is a trade off between the desired resolution in the frequency
domain, which is inversely proportional to the actual length of the window in time, and
the assumption of short-time stationary. Based on this trade off, the window function is
determined. In general, for the DSTFT, after deciding about the window function, the
frequency and time resolutions are fixed for all frequencies and all times respectively.
This approach does not allow any variation in resolutions in terms of time or frequency.

Figure 12: Time-frequency resolution of STFT

Calculation of the DSTFT via a filtering approach requires N  complex FIR filters to get
N  components of [ , ]X n k , for 0,1,2, , 1k N= −� . As an example, the real parts of three
of these complex FIR filters are shown in Figure 13. These functions indicate how
different frequencies appear inside a fixed window. The number of samples at all
frequencies is the same. This number is determined by the size of the window sequence.

Figure 13: Real parts of three different filters associated to STFT



Wavelet Background
A wave is usually referred to an oscillating function of time or space, such as sinusoid.
Fourier analysis is a wave analysis, which expands signals in terms of sinusoids or
equivalently complex exponentials. Wave transformation of signals has proven to be
extremely valuable in mathematics, science, and engineering, especially for periodic,
time-invariant, or stationary phenomenon. A wavelet is a small wave with finite energy,
which has its energy concentrated in time or space to give a tool for the analysis of
transient, nonstationary, or time-varying phenomenon. The wavelet still has the
oscillating wavelike characteristics, but also has the ability to allow simultaneous time, or
space, and frequency analysis with a flexible mathematical foundation. This is illustrated
by an example in Figure 14.

Figure 14: Comparison of a Wave and a Wavelet: Left graph is a Sine Wave with infinite
energy and the right graph is a Wavelet with finite energy.

Wavelets are used to analyze signals in much the same way as complex exponentials
(sine and cosine functions) used in Fourier analysis of signals. The compactness and
finite energy characteristic of wavelet functions differentiate wavelet decompositions
from other Fourier like analysis in their applicability to different circumstances. Wavelet
functions not only can be used to analyze stationary signals but also it can be used to
decompose nonstationary, time-varying or transient signals.  In this discussion, for
simplicity and uniform representation, the most common dyadic and discrete formulation
are discussed.

The Wavelet transform can be defined for different class of functions. The intention in
this transformation is to address some of the shortcomings of the STFT. Instead of fixing
the time and the frequency resolutions t∆  and f∆ , one can let both resolutions vary in
time-frequency plane in order to obtain a multiresolution analysis. This variation can be
carried out without violating the Heisenberg inequality [11]. In this case, the time
resolution must increase as frequency increases and the frequency resolution must
increase as frequency decreases. This can be obtained by fixing the ratio of f∆  over f  to
be equal to a constant c .  In terms of the filter bank terminology, the analysis filter bank
consists of band-pass filters with constant relative bandwidth (so-called constant-Q
analysis). The way that the time-frequency plane is resolved in this approach is as shown
in Figure 15. In this case, the frequency responses of the analysis filters in the filter bank
are regularly spaced in a logarithmic scale. These filters are naturally distributed into
octaves.  With this approach, the time resolution becomes arbitrarily good at high
frequencies, while the frequency resolution becomes arbitrarily good at low frequencies.



Two very close short bursts can eventually be separated if one goes to higher analysis
frequencies in order to increase time resolution. The wavelet analysis, as explained,
works best if the signal is composed of high frequency components of short duration plus
low frequency components of long duration. The concept of changing resolution at
different frequencies can be obtained by introducing what is referred to as wavelet
packets [1]. Depending on the signal, arbitrary time-frequency resolutions, within the
uncertainty bound [11], can be chosen. As an example, three of these functions for three
different frequencies are shown in Figure 16.

Figure 15: Time-frequency resolution for constant Q filter bank.

Figure 16: Three different wavelets with different frequencies and time duration's.



It is shown in [12] that any continuous function can be represented by the following
expansion, defined in terms of a given scaling function and its wavelet derivatives:

, ,( ) ( ) ( ) ( ) ( )
o o

o

j j k j j k
k j j k

x t c k t d k tϕ ψ
∞ ∞ ∞

=−∞ = =−∞

= +� � �                               (5)

In this expansion, the first summation gives a function that is a low resolution or coarse
approximation of ( )x t  at scale oj . For each increasing j  in the second summation, a
higher or finer resolution function is added, which adds increasing details. The choice of

oj  sets the coarsest scale whose space is spanned by , ( )
oj k tϕ . The rest of the function is

spanned by the wavelets providing the high-resolution details of the function. The set of
coefficients in the wavelet expansion represented by Eq. (5) is called the discrete wavelet
transform (DWT) of the function ( )x t . These wavelet coefficients, under certain
conditions, can completely describe the original function, and in a way similar to Fourier
series coefficients, can be used for analysis, description, approximation, and filtering. If
the scaling function is well behaved, then at a high scale, samples of the signal are very
close to the scaling coefficients.

In order to work directly with the wavelet transform coefficients, we should present the
relationship between the expansion coefficients at a given scale in terms of those at one
scale higher. This relationship is especially practical by noting the fact that the original
signal is usually unknown and only a sampled version of the signal at a given resolution
is available. As mentioned before, for well- behaved scaling or wavelet functions, the
samples of a discrete signal can approximate the highest achievable scaling coefficients.
It can be shown [12][13] that the scaling and wavelet coefficients at scale j  are related to
the scaling coefficients at scale 1j +  by the following two relations.
                                        1( ) ( 2 ) ( )j j

m
c k h m k c m+= −�                                          (6)

                                        1( ) ( 2 ) ( )j j
m

d k h m k c m+′= −�                                            (7)

Equations (6) and (7) state that scaling coefficients at higher scale, along with the wavelet
and scaling filters, ( )h k  and ( )h k′  respectively, can be used to calculate the wavelet and
scaling coefficients or discrete wavelet transform coefficients, at lower scales. In
practice, a discrete signal, at its original resolution is assumed the corresponding scaling
coefficients. For a given wavelet system, with known wavelet filters ( )h k  and ( )h k′ , it is
possible to use (6) and (7), in a recursive fashion, to calculate the discrete wavelet
transform coefficients at all desired lower scales. By using multirate signal processing, it
is possible to calculate the two summations by using two FIR filters. Outputs of these
filters are calculated for only even indices and the filters are used with their indices being
negated. These differences can be incorporated into the filtering operation by decimation
of the output of the filter [5] and by reversing the order of the filter coefficients. These
calculations are continued until ( )

oj
c k  and ( )

oj
d k  are calculated. The collection of these

coefficients, namely { }1 2 1( ), ( ), , ( ), ( ), ( )
o o oJ J j j jd k d k d k d k c k− − +� , is called DWT of the

original signal ( )x k . As an example a three-stage analysis operation is shown in Figure



17.  Closer look at the number of coefficients obtained for DWT reveals that this number
equals to the original number of points in the discrete signal. This is due to the
decimation by two that operates in each stage of the process.

Figure 17: Three-stage wavelet decomposition, DWT analysis, tree.

Since the pair of filters used in the calculation of DWT is complementing lowpass and
highpass filters; the final result provides sequences that are coming from different
frequency bands of the original signal. The DWT divides the original signal bandwidth in
a logarithmic fashion. These filters are referred to as analysis filters in filter bank as well
as wavelet literatures.

With reference to Eq. (5), in which the original continuous signal is written in its wavelet
expansion form, mathematical relations for synthesis filters can be derived. It has been
shown [12][13] that the higher resolution scaling coefficients are related to the lower
resolution scaling and wavelet coefficients by the following relationship.

1( ) ( ) ( 2 ) ( ) ( 2 )j j j
m m

c k c m h k m d k h k m+ ′= − + −� �                                   (8)  

This equation indicates how the DWT sequences at resolution oj  can be used, in an
iterative fashion, to reconstruct the scaling coefficients at the highest achievable
resolution, J .  The three-stage synthesis operation is better explained in Figure 18.
Recall that the analysis filter bank efficiently calculates the DWT using banks of
decimating digital filters. Similarly, the synthesis filter bank efficiently calculates the
inverse DWT by reconstructing the original discrete signal by using interpolating digital
filters.

Figure 18: Three-stage wavelet reconstruction, DWT synthesis tree.



In summary the forward and inverse wavelet transform for discrete function [ ]x k  is
obtained through the following relations:
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WAVELET REALIZATIONS AND IMPLEMENTATIONS
In this section, first we discuss how to realize different wavelet filters needed for
calculation of forward and inverse DWT. Then, the issue of full integration of these
building blocks is considered. In the realizations presented here, we only use low level
computation or operation blocks. The most common block, in this case, are addition,
multiplication, decimation by two or up-sampling and delay units. The filter bank
realizations of the discrete wavelet transform and its inverse are based on two basic
building blocks, shown in Figure 19.

Figure 19: Basic Blocks for (a) analysis and (b) synthesis filter banks.

In the forward transform, the two decimating FIR filters are h k0 ( )  and h k1( ) , and in the
inverse transform, the two interpolating filters are g k0 ( )  and g k1( ) . Perfect



reconstruction requires that the output of the synthesis block be the same as a delayed and
scaled version of the input of the analysis block. Based on this desired condition, the
analysis and synthesis filters should always satisfy the following two[13]:
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In the orthogonal wavelet systems, knowledge of the scaling filter is sufficient for design
of the analysis and synthesis filters [13]. For a given even size, K , FIR scaling filter
h k( ) , we have
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In the signal processing literatures, similar conditions are used for two-band filter banks
for perfect reconstruction, without the imposed orthogonality [5][13]. For that situation,
which is referred to as quadrature mirror filter (QMF) or conjugate mirror filter (CMF),
based on frequency response symmetry, the following conditions are established:
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Direct realization of the two building blocks shown in Figure 19 require that all
computations be carried out at the higher input rate for the analysis filters and at the
higher output rate for the synthesis filters. Realization of the analysis and synthesis filters
can be accomplished at the lower rate by taking advantage of polyphase representation of
these filters.

Figure 20: Polyphase realization of the basic (a) analysis and (b) synthesis blocks.



In this section, we discuss how resources can be shared between different filters used in
any one- dimensional analysis or synthesis wavelet tree. To this end, and for better
explanation of implementation issues, delay units, adders and multipliers are put together
as blocks. This block diagram representation help to better discuss the issue of proper
time-sharing and data scheduling. Any of the filter realization that uses polyphase
structure discussed in the previous section can be simplified as shown in Figure 20.

Figure 21: (a) Analysis and (b) synthesis shown in blocks of operation tasks.

Block representation of individual tasks helps to decide which part of the filtering
operation can be shared between different branches of any wavelet tree. The purpose is to
optimize the resource allocation within a given FPGA by specifically sharing the
multiplication block, which is very demanding in resources. For example, in a multi-stage
DWT, shown in Figure 22, one set of multipliers is sufficient for all stages. In the case of
wavelet packet, for any stage one set of multipliers is enough to carry out the task.
Alternatively, for faster multipliers, one set of multipliers can be shared between two
consecutive wavelet packet stages.

Figure 22: Four stage DWT tree for (a) analysis and (b) synthesis.

In Figure 23, one method for implementation of five stage DWT is shown. In this case,
the constant multipliers and post add/subtract blocks are shared between all stages. The
pre-add/subtract block can also be shared between different stages. Since constant
multipliers use most of resources, they should be minimized as much as the algorithm
allows. Add/subtract blocks can be reduced to the minimum level if that does not cause
any increase in other resources. For example, the complexity of the logic's used for
control purposes and extra shift registers needed for proper pipelining should be
compared by the savings that will be resulted from sharing the add/subtract blocks.



Figure 23a: Implementation of five stage DWT analysis.

Figure 23b: Implementation of five stage DWT synthesis.



The reason that the DWT requires only one set of constant multipliers, working at the
highest signal rate is as follows. In the first stage, the multipliers are working at half
speed therefore they are free half time to do other computations. For the second stage, the
multipliers are needed for one-fourth of the original clock rate. This means that half of
the remaining time from the first stage can be dedicated to the second stage. In that case,
the multipliers will be free for one-forth of the original clock rate. Using this extra time
for the third stage, which only needs one-eighth of the original clock rate, is still giving
us enough time to spend on the following stages. No matter how many stages for the
DWT is required, always there is enough time to allocate a single bank of constant
coefficient multipliers to all of them. This architecture behaves like the limit of the

geometric series ( 1
2

1
4

1
8

1
16

1+ + + + =� ) and always has an open cycle for a finite frame.

In the case of inverse DWT, synthesis, the situation is the same, in this case, however, the
multipliers start at lower rates and as data becomes available they go to higher rates.
Maximum rate of use of multipliers is the same in both analysis and synthesis. The
situation for customized tree structure will be different. Depending on the decomposition
tree, proper resource allocation should be planned. A general approach for customized
tree structure cannot be formulated unless the decomposition tree is known before hand.
One general rule of thumb, which is not based on an optimum use of resources, is to
allocate one set of multipliers to the first stage plus any other following stages that look
like a DWT stage. For all other stages, use the structure from wavelet packet. Another ad-
hoc approach would be to decompose the customized tree to several DWT-like trees and
allocate one set of multiplier to each one of those DWT-like trees. In this way, it may be
possible to use one set of multipliers for several slower DWT-like trees.

CONCLUSION
This white paper has provided an overview of the multirate filter fundamentals. Some
options for the implementing this type of data path using programmable logic were
highlighted. Although the focus of this work was based on polyphase filter concepts,
many other alternative options are available. These include Lagrange interpolation, and
Farrow filters [14] and cascaded-integrator-comb filters [9] to name a few.

In general, the goal of most modern wavelet research is to create a mother wavelet
function that will give an informative, efficient, and useful description of the signal of
interest. It is not easy to design a uniform procedure for developing the best mother
wavelet or wavelet transform for a given class of signals. However, based on several
general characteristics of the wavelet functions, it is possible to determine which wavelet
is more suitable for a given application.  Once that mother wavelet has been determined
designing the wavelet tree can proceed.  The realization and implementation of the
forward and inverse DWT in the appropriate technology (DSP processor or FPGA) can



then take place.  Wavelet signal processing in the transform domain in the form of
Denoising and Compression algorithms can now be explored with the assurances that the
Wavelet transform can be computed in real time.
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