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Wavelet Characteristics

What Wavelet Should I use?

OCTOBER 19, 1999  WHITE PAPER Ali M. Reza, Spire Lab, UWM
Abstract

This white paper briefly discusses characteristics of different wavelets in terms of their efficiencies and
usefulness in different circumstances. This discussion is aimed at helping to decide what wavelet to use for
a given application. The wavelets discussed in this paper include infinite support wavelets as well as finite
duration wavelets. Finite support and compact wavelets are further divided into orthogonal and
biorthogonal wavelets. When appropriate, the regularity of the wavelets and their symmetry are also
discussed.

Introduction

Wavelet theory had been developed independently on several fronts. Different signal processing
techniques, developed for signal and image processing applications, had significant contribution in this
development[1]. Some of the major contributors to this theory are: multiresolution signal processing[2],
used in computer vision; subband coding, developed for speech and image compression; and wavelet series
expansion, developed in applied mathematics[3]. The wavelet transform is successfully applied to non-
stationary signals and images. Some of the application areas are: nonlinear filtering or denoising, signal and
image compression, speech coding, seismic and geological signal processing, medical and biomedical
signal and image processing, and communication.

Wavelet theory is based on analyzing signals to their components by using a set of basis functions. One
important characteristic of the wavelet basis functions is that they relate to each other by simple scaling and
translation. The original wavelet function, known as mother wavelet, which is generally designed based on
some desired characteristics associated to that function, is used to generate all basis functions. For the
purpose of multiresolution formulation, there is also a need for a second function, known as scaling
function, to allow analysis of the function to finite number of components. These functions and their
interrelations will be discussed further in the following sections.

In most wavelet transform applications, it is required that the original signal be synthesized from the
wavelet coefficients. This condition is referred to as perfect reconstruction. In some cases, however, like
pattern recognition type of applications, this requirement can be relaxed. In the case of perfect
reconstruction, in order to use same set of wavelets for both analysis and synthesis, and compactly
represent the signal, the wavelets should also satisfy orthogonality condition. By choosing two different
sets of wavelets, one for analysis and the other for synthesis, the two sets should satisfy the biorthogonality
condition to achieve perfect reconstruction.

In general, the goal of most modern wavelet research is to create a mother wavelet function that will give
an informative, efficient, and useful description of the signal of interest. It is not easy to design a uniform
procedure for developing the best mother wavelet or wavelet transform for a given class of signals.
However, based on several general characteristics of the wavelet functions, it is possible to determine
which wavelet is more suitable for a given application.
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In the following sections, after discussing some of the basic ideas and formulations, several popular
wavelets are reviewed. Since it is not our intention to provide an extensive treatment of the subject, the
interested reader is referred to the extra references in the bibliography for more in depth discussion.

Basic Concepts

A wave is usually referred to an oscillating function of time or space, such as sinusoid. Fourier analysis is a
wave analysis, which expands signals in terms of sinusoids or equivalently complex exponentials. Wave
transformation of signals has proven to be extremely valuable in mathematics, science, and engineering,
especially for periodic, time-invariant, or stationary phenomenon. A wavelet is a small wave  with finite
energy, which has its energy concentrated in time or space to give a tool for the analysis of transient,
nonstationary, or time-varying phenomenon. The wavelet still has the oscillating wavelike characteristics,
but also has the ability to allow simultaneous time, or space, and frequency analysis with a flexible
mathematical foundation. This is illustrated by an example in Figure 1.

Figure 1- Comparison of a Wave and a Wavelet: Left graph is a Sine Wave with infinite energy and the right graph is a
Wavelet with finite energy.

Wavelets are used to analyze signals in much the same way as complex exponentials (sine and cosine
functions) used in Fourier analysis of signals. The compactness and finite energy characteristic of wavelet
functions differentiate wavelet decompositions from other Fourier like analysis in their applicability to
different circumstances. Wavelet functions not only can be used to analyze stationary signals but also it can
be used to decompose nonstationary, time-varying or transient signals.

In this discussion, for simplicity and uniform representation, the most common dyadic and discrete
formulation is discussed. For general treatment of wavelet theory, the reader is referred to many of the
existing literatures on the subject some of which are referred to in the bibliography. The wavelet transform
is a two-parameter expansion of a signal in terms of a particular wavelet basis functions or wavelets. Let

( )tψ  represent the mother wavelet. All other wavelets are obtained by simple scaling and translation of
( )tψ  as follows:

( ) ( ), ( ) 1a t a t aτψ ψ τ= −�� (1)

In the most common formulation, the scaling is discrete and dyadic, 2 ja −= . The translation is discretized
with respect to each scale by using 2 jk Tτ −= . In this case, the wavelet basis functions are obtained by

( )/ 2
, ( ) 2 2j j

j k t t kTψ ψ= − (2)

for different integer values of j  and k . Integer k  represents translation of the wavelet function and is an
indication of time or space in wavelet transform. Integer j , however, is an indication of the wavelet
frequency or spectrum shift and generally referred to as scale. This parameterization of the time (or space)
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by integer k  and frequency or scale by integer j  turns out to be extremely effective. For demonstration
purposes, two different scaled versions of a wavelet along with the mother wavelet are shown in Figure 2.

Figure 2- The left graph is the mother wavelet 12Dψ , the middle one is the wavelet at scale 1j = −  and the right one is the

wavelet at scale 2j = − . The other way to look at these graphs is: to assume that the right graph is the mother wavelet, the

middle one is the wavelet at scale 1j =  and the left one is the wavelet at scale 2j = .

As it is evident from Figure 2, different scales referred to different frequency spectrum. If we only look at
the center frequency of each spectrum, it is easy to see that the center frequency changes by a factor of two
for each increment or decrement of integer scale j . For example, if the center frequency of the mother

wavelet is at of , then the center frequency of the wavelet with integer scale j  is ( )2 j
of⋅ . For

simplicity, in wavelet transform reference to frequency is replaced by reference to scale. Another aspect of
the wavelet transform is that the localization or compactness of the wavelet increases as frequency or scale
increases. In other words, higher scale corresponds to finer localization and vice versa.

The multiresolution formulation needs two closely related basic functions. In addition to the wavelet
( )tψ , there is a need for another basic function called the scaling function, which is denoted by ( )tϕ .

Scaling and translation of ( )tϕ  is defined similar to (1) and (2). Without getting into the theoretical
discussions and with reference to [4], the two-parameter wavelet expansion for signal ( )x t  is given by the
following decomposition series in which the scaling and wavelet functions are utilized.

, , ,( ) ( ) ( )
o

o

k j k j k j k
k k j j

x t c t d tϕ ψ
∞

=

= + (3)

In this expansion, kc  coefficients are referred to as approximation coefficients at scale oj . The set of ,j kd
coefficients represents details of the signal at different scales. The discrete wavelet transform (DWT)
coefficients consist of both kc 's and ,j kd 's. In this case, since the signal is continuous, the upper limit for

the scales of the details can go to infinity. However, for discrete signals, this upper limit is bounded to the
maximum available details in the discrete signal.

Relations of the wavelet coefficients to the original signal, for real and orthogonal wavelets, are given by
the following two equations.

, ,( ) ( )j k j kd x t t dtψ= (4)

,( ) ( )
ok j kc x t t dtϕ= (5)

If the wavelets are biorthogonal, wavelet and scaling functions appear in pairs, ( )tψ , ( )tψ�  and ( )tϕ ,
( )tϕ� . In this case, one set of the wavelet and scaling functions is used for analysis and the other set is used
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for synthesis. In other words, if (3) is given for synthesis, then the wavelet coefficients are obtained from
the following two equations.

, ,( ) ( )j k j kd x t t dtψ= � (6)

,( ) ( )
ok j kc x t t dtϕ= � (7)

Efficient calculation of the DWT coefficients is generally formulated in terms of a particular set of
multirate filters. Filters used for calculation of the forward transform are referred to as analysis filters and
those used for calculation of the inverse transform are referred to as synthesis filters. The coefficients of
these filters, which are generally FIR, are obtained from the knowledge of the mother wavelet and scaling
functions. Computational formulas and other related topics are discussed in [4].

Unlike Fourier-like transforms, which are generally based on a particular set of basis functions, there exist
many different wavelet bases with different characteristics. Success of a given wavelet basis in a particular
application does not necessarily mean that this set is efficient at other applications. Therefore, the freedom
for choosing a particular wavelet for an application should carefully be explored.

Popular Wavelets

The simplest wavelet also referred to as Haar wavelet, turns out to be the only orthogonal wavelet that has
symmetric analysis and synthesis filters. This particular wavelet has been studied extensively in the image
processing area as Haar transform. Graphs of Haar scaling function and mother wavelet are shown in
Figure 3. This particular wavelet is ideal in situations with limited computational resources.

Figure 3- Left graph is the Haar scaling function and the right one is the Haar mother wavelet.

Due to simplicity and existence of fast computational algorithm, historically, Haar transform was a good
choice for image processing. Advances in high speed VLSI not only provide the opportunity to utilize the
Fourier transform in real-time processing of signals and images, but also provide opportunities to
implement and explore new and more advanced signal and image processing algorithms.

Researchers in Applied Mathematics, Communications, and Signal/Image Processing areas have developed
many different wavelet systems and some are still actively working in designing even newer wavelets with
specialized characteristics. Wavelets can be divided in different classes in many different ways. For
example, we can divide them based on their duration or support: infinite support wavelets and finite
duration wavelets. There are several interesting wavelets with infinite support. Some of the infinite support
wavelets are Gaussian wavelets, Mexican Hat, Morlet, and Meyer. Gaussian wavelets are obtained from
derivatives of the Gaussian function. Several examples of the Gaussian wavelets along with other infinite
duration wavelets are shown in Figure 4. Mexican Hat wavelet, referred to as MHψ , is similar to the

Gaussian wavelet 2Gψ . Among these wavelets, only Meyer wavelet has a scaling function.
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Figure 4- Different Gaussian wavelets obtained from derivatives of the Gaussian function along with Mexican Hat wavelet,
Morlet wavelet and Meyer scaling function and wavelet. The order of the derivatives for Gaussian wavelets are shown as
subscript for these wavelets.

In practice, finite support and compact wavelets are more popular due to their relations to multiresolution
filter banks. These wavelets have finite impulse response (FIR) wavelet filters. Among these wavelets, the
most commonly used can be categorized into two classes: orthogonal and biorthogonal wavelet systems.
Orthogonal wavelets decompose signals into well- behaved orthogonal signal spaces. In this case, however,
the analysis and synthesis filters are not symmetric, a condition that might be required in some applications
like image processing. Biorthogonal wavelets are more complicated and are defined based on a pair of
scaling and wavelet functions. Due to more flexibility in this case, the analysis and synthesis filters can be
forced to be symmetric and hence be useful for applications that demand linear phase filtering.

Orthogonality property is the most desired property in any signal analysis operation. For orthogonal
wavelet systems with real functions, the following conditions should be satisfied.

, ,

1 if  and 
( ) ( )

0 Otherwisej k m n

j m k n
t t dtψ ψ

= =
⋅ = (8)

, ,

1 if  and 
( ) ( )

0 Otherwisej k m n

j m k n
t t dtϕ ϕ

= =
⋅ = (9)

, ,( ) ( ) 0j k jt t dtϕ ψ⋅ = (10)

Many functions exist that can satisfy the orthogonality requirements. Some of these functions are
extraordinarily irregular, even fractal in nature. This may be an advantage in analyzing rough or fractal
signals but it is likely to be a disadvantage for most signals and images. It has been shown that the number
of vanishing moments of the wavelet, ( )tψ , is related to the smoothness or differentiability of ( )tϕ  and

( )tψ . The representation and approximation of polynomials, which are often a good model for certain
signals and images, are also related to the number of vanishing or minimized wavelet moments. On the
other hand, the number of zero moments in the scaling function, ( )tϕ , is related to the goodness  of the
approximation of high resolution scaling coefficients by samples of the signal. This number also affects the
symmetry and concentration of the scaling functions and wavelets.
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For a given wavelet order, order of the wavelet FIR filter, Daubechies developed wavelets with maximum
regularity. In this case, the number of zero moments for ( )tψ  is maximized. These wavelets, which are
referred to as Daubechies wavelets, are fully parameterized and have straightforward procedure for
calculation of their analysis filters. Several examples of Daubechies' wavelets and scaling functions are
shown in Figure 5. The order of the wavelet filter for orthogonal wavelets is always an even number. In
Figure 5, the order of each wavelet filter is shown by the indices used on the corresponding ( )tϕ  and

( )tψ  functions.

 
Figure 5- Several examples of Daubechies scaling and wavelet functions.

Daubechies wavelets have good compression property for wavelet coefficients but not for approximation
coefficients. In other words, with reference to (3), the wavelet coefficients ,j kd 's have the best

compression property under the circumstances while kc 's do not. In order to resolve this issue, Coifman

suggested to have as many zero moments for scaling function as for wavelets. This modification resulted in
what is referred to as coiflets. Figure 6 shows several of the examples in this case. These wavelets have
similar compression characteristics in both their approximation and detail coefficients. In Figure 6, the
order of each wavelet filter is shown by the indices used on the corresponding ( )tϕ  and ( )tψ  functions.

In general, all orthogonal wavelets are asymmetric. For some applications, it does not really matter if the
wavelet is symmetric or not. However, in other applications this may be a nuisance. In image processing
applications, e.g., image coding, since human vision is more tolerant to symmetric error than asymmetric
one, it is very desirable to use symmetric wavelets. In addition, symmetric wavelets make it easier to deal
with the boundaries of the image. Daubechies has shown that with some modifications, it is possible to
design orthogonal wavelets that are least symmetric. Interested readers are referred to [3] for further
discussion on this issue. By comparison, coiflets are closer to symmetry but still are not perfectly
symmetric. Perfect symmetry is possible only for complex wavelet filters, biorthogonal wavelets, infinite
support wavelets, and multi-wavelets.
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Figure 6- Several examples of Coiflets scaling and wavelet functions.

For most applications, it is desired to have real filter coefficients. In these cases, the only choice for the
class of symmetric wavelets would be biorthogonal wavelets. The most common biorthogonal wavelets are
those based on spline functions. Several examples of these wavelets are shown in Figure 7.

Figure 7- Several examples of biorthogonal wavelets.

In this case, for each wavelet system, there are two scaling functions, ( )tϕ  and ( )tϕ� , and two wavelet
functions, ( )tψ  and ( )tψ� . Therefore in each case, there are two wavelet filters associated to ( )tψ  and

( )tψ� . This association is shown by two indices on each function. The first number represents the order of
the lowpass filter for analysis and the second number represents the order of the lowpass filter for
synthesis. Unlike the orthogonal case, for biorthogonal wavelets, the order of the filters can be odd or even
and they do not have to be the same. The only restriction in this case is that their difference should be an
even number. In other words, both filters should be odd or they both should be even. It should also be
pointed out that the roles of analysis and synthesis filters are interchangeable.
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Applications

Wavelet transform has found many applications in applied mathematics and signal processing. Due to its
zooming  property, which allows a very good representation of discontinuities, wavelet transform is

successfully used in solving partial differential equations. They give a generalization of finite element
method and, due to their localizing ability, provide sparse operators and good numerical stability.

 In seismic and geological signal processing as well as medical and biomedical signal and image
processing, wavelet transforms are used for denoising, compression, and detection. In general, there are
many examples of successful application of wavelets in signal and image processing: speech coding,
communications, radar, sonar, denoising, edge detection, and feature detection. Wavelet transform is also
used in multi-scale models of stochastic processes and analysis and synthesis of 1 f  noise.

Orthogonal wavelets are very successful in numerical analysis like solving partial differential equations,
speech coding and other similar applications, where symmetry is not a major requirement. Daubechies
wavelets are very good in terms of their compact representation of signal details. They are, however, not
efficient in representation of signal approximation at a given resolution. On the other hand, coiflets are
similarly effective for both signal details and signal approximation. In image processing applications,
biorthogonal wavelets, which are symmetric, are more desirable. Symmetric wavelets allow extension at
the image boundaries and prevent image contents from shifting between subbands. In this case, due to
human sensitivity to asymmetric errors, orthogonal wavelets usually are not used. For FBI digitized
fingerprints compression[5], it is found that the biorthogonal wavelet system represented by 9,7 ( )tϕ ,

9,7 ( )tϕ� , 9,7 ( )tψ , and 9,7 ( )tψ� , in Figure 7, is very successful.
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