8.2 Protecting Computer HardwarePhysically protecting a computer presents many of the same problems that arise when protecting typewriters, jewelry, and file cabinets. As with a typewriter, an office computer is something that many people inside the office need to access on an ongoing basis. As with jewelry, computers are valuable and generally easy for a thief to sell. But the real danger in having a computer stolen isn't the loss of the system's hardware but the loss of the data that was stored on the computer's disks. As with legal files and financial records, if you don't have a backup—or if the backup is stolen or destroyed along with the computer—the data you lost may well be irreplaceable. Even if you do have a backup, you will still need to spend valuable time setting up a replacement system. Finally, there is always the chance that the stolen information itself, or even the mere fact that information was stolen, will be used against you. Your computers are among the most expensive possessions in your home or office; they are also the pieces of equipment that you can least afford to lose. We know of some computer professionals who say, "I don't care if the thief steals my computer; I only wish that he would first take out the hard drive!" Unfortunately, you can rarely reason in this manner with would-be thieves. To make matters worse, computers and computer media are by far the most temperamental objects in today's homes and offices. Few people worry that their television sets will be damaged if they're turned on during a lightning storm, but a computer's power supply can be blown out simply by leaving the machine plugged into the wall if lightning strikes nearby. Even if the power surge doesn't destroy the information on your hard disk, it still may make the information inaccessible until the computer system is repaired. Power surges don't come only during storms: one of the authors once had a workstation ruined because a vacuum cleaner was plugged into the same outlet as the running workstation. When the vacuum was switched on, the power surge fatally damaged the workstation's power supply. Because the computer was an aging Digital Pro 350 workstation with a proprietary disk interface and filesystem, it proved to be cheaper to throw out the machine and lose the data than to attempt to salvage the hardware and information stored on the machine's disk. This proved to be an expensive form of spring cleaning! There are several measures that you can take to protect your computer system against physical threats. Many of them will simultaneously protect the system from dangers posed by nature, outsiders, and inside saboteurs. 8.2.1 Protecting Against Environmental DangersComputers often require exactly the right balance of physical and environmental conditions to operate properly. Altering this balance can cause your computer to fail in unexpected and often undesirable ways. Even worse, your computer might continue to operate erratically, producing incorrect results and corrupting valuable data. In this respect, computers are a lot like people: they don't work well if they're too hot, too cold, or submerged in water without special protection. 8.2.1.1 FireComputers are notoriously bad at surviving fires. If the flames don't cause your system's case and circuit boards to ignite, the heat might melt your hard drive and all the solder holding the electronic components in place. Your computer might even survive the fire, only to be destroyed by the water used to fight the flames. You can increase the chances that your computer will survive a fire by making sure that there is good fire-extinguishing equipment nearby. Gas-charged fire extinguishers are popular for large corporate computer rooms. These work by physically blocking oxygen from coming into contact with the burning materials. Unfortunately, gases may also asphyxiate humans in the area. For this reason, all automatic gas discharge systems have loud alarms that sound before the gas is discharged. Commonly used gases include nitrogen, argon, and, less frequently, carbon dioxide.[1]
Here are some guidelines for fire control:
Many modern computers will not be damaged by automatic sprinkler systems, provided that the computer's power is turned off before the water starts to flow (although disks, tapes, and printouts left out in the open may suffer). Consequently, you should have your computer's power automatically cut if the water sprinkler triggers. If you have an uninteruptable power supply, be sure that it automatically disconnects as well. Getting sensitive electronics wet is never a good idea. But if your computer has been soaked after the power was cut, you can possibly recover the system by completely drying the system and then carefully reapplying the power. If your water has a very high mineral content, you may find it necessary to have the computer's circuit boards professionally cleaned before attempting to power up. In some cases, you may find it easier to simply remove your computer's disk drives and put them into a new computer. You should immediately copy the data onto new disks, rather than attempting to run with the salvaged equipment. Because many computers can now survive exposure to water, many fire-protection experts now suggest that a water sprinkler system may be as good as (or better than) a gas discharge system. In particular, a water system will continue to run long after a gas system is exhausted, so it's more likely to work against major fires. Such a system is also less expensive to maintain, and less hazardous to humans. If you choose to have a water-based sprinkler system installed, be sure it is a "dry-pipe" system. These systems keep water out of the pipes until an alarm is actually triggered, rather than keeping the sprinkler heads pressurized all the time. Because they are not continuously pressurized, dry-pipe systems tend to be resistant to leaks.[2]
Be sure that your wiring is protected, in addition to your computers. Be certain that smoke detectors and sprinkler heads are appropriately positioned to cover wires in wiring trays (often above your suspended ceilings) and in wiring closets. 8.2.1.2 SmokeSmoke is very damaging to computer equipment. Smoke is a potent abrasive and collects on the heads of unsealed magnetic disks, optical disks, and tape drives. A single smoke particle can cause a severe disk crash on some kinds of older disk drives that lack a sealed drive compartment. Sometimes smoke is generated by computers themselves. Electrical fires—particularly those caused by the transformers in video monitors—can produce a pungent, acrid smoke that may damage other equipment and may also be poisonous or a carcinogen. Several years ago, an entire laboratory at Stanford had to be evacuated because of the toxic smoke caused by a fire in a single video monitor. Another significant danger is the smoke that comes from cigarettes and pipes. Such smoke is a hazard to people and computers alike. Besides the known cancer risk, tobacco smoke can cause premature failure of keyboards and require that they be cleaned more often. Nonsmokers in a smoky environment will not perform as well as they might otherwise, both in the short and long term. In many locales, smoking in public or semi-public places is now illegal. Here are some guidelines for smoke control:
8.2.1.3 DustDust destroys data. As with smoke, dust can collect on the heads of magnetic disks, tape drives, and optical drives. Dust is abrasive and will slowly destroy both recording heads and media. Many kinds of dust are somewhat conductive. The designs of many computers leads them to suck large amounts of air through the computer's insides for cooling. Invariably, a layer of dust will accumulate on a computer's circuit boards, covering every surface, exposed and otherwise. Eventually, the dust may cause circuits to short, fail, or at least behave erratically. Here are some guidelines for dust control:
8.2.1.4 EarthquakesWhile some parts of the world are subject to frequent and severe earthquakes, nearly every part of the planet experiences the occasional temblor. In the United States, for example, the San Francisco Bay Area experiences several noticeable earthquakes every year; a major earthquake that may be equal in force to the great San Francisco earthquake of 1906 is expected within the next 20 years. Scientists also say there is an 80% chance that the Eastern half of the United States will experience a similar earthquake within the next 30 years. The only unknown factor is where it will occur. One of the most powerful U.S. earthquakes in the last 200 years didn't occur in California, but along the New Madrid fault—the quake actually changed the course of the Mississippi River! Recent earthquakes have also been felt in New York City and Chicago. As a result, several Eastern cities have enacted stringent anti-earthquake building codes modeled on California's. These days, many new buildings in Boston are built with diagonal cross-braces, using the type of construction that one might expect to see in San Francisco. While some buildings collapse in an earthquake, most remain standing. Careful attention to the placement of shelves and bookcases in your office can increase the chances that you and your computers will survive all but the worst disasters. Here are some guidelines for earthquake remediation:
8.2.1.5 ExplosionsAlthough computers are not prone to explosions, buildings can be—especially if the building is equipped with natural gas or is used to store flammable solvents. If you need to operate a computer in an area where there is a risk of explosion, you might consider purchasing a system with a ruggedized case. Disk drives can be shock-mounted within a computer; if explosions are a constant hazard, consider using a ruggedized laptop with an easily removed, shock-resistant hard drive. Here are some guidelines for explosion control:
8.2.1.6 Extreme temperaturesComputers, like people, operate best within certain temperature ranges. Most computer systems should be kept between 50 and 90 degrees Fahrenheit (10 to 32 degrees Celsius). If the ambient temperature around your computer gets too high, the computer cannot adequately cool itself, and internal components can be damaged. If the temperature gets too cold, the system can undergo thermal shock when it is turned on, causing circuit boards or integrated circuits to crack. Here are some basic guidelines for temperature control:
8.2.1.7 Bugs (biological)Sometimes insects and other kinds of bugs find their way into computers. Indeed, the very term bug, used to describe something wrong with a computer program, dates back to the 1950s, when Grace Murray Hopper found a moth trapped between a pair of relay contacts on Harvard University's Mark 1 computer. Insects have a strange predilection for getting trapped between the high-voltage contacts of switching power supplies. Others have insatiable cravings for the insulation that covers wires carrying line current, and the high-pitched whine that switching power supplies emit. Spider webs inside computers collect dust like a magnet. For all these reasons, you should take active measures to limit the amount of insect life in your machine room. 8.2.1.8 Electrical noiseMotors, fans, heavy equipment, and even other computers generate electrical noise that can cause intermittent problems with the computer you are using. This noise can be transmitted through space or nearby power lines. Electrical surges are a special kind of electrical noise that consists of one (or a few) high-voltage spikes. As we've mentioned, an ordinary vacuum cleaner plugged into the same electrical outlet as a workstation can generate a spike capable of destroying the workstation's power supply. Here are some guidelines for electrical noise control:
8.2.1.9 LightningLightning generates large power surges that can damage even computers with otherwise protected electrical supplies. If lightning strikes your building's metal frame (or hits your building's lightning rod), the resulting current can generate an intense magnetic field on its way to the ground. Here are some guidelines for lightning control:
8.2.1.10 VibrationVibration can put an early end to your computer system by literally shaking it apart. Even gentle vibration, over time, can work printed circuit boards out of their connectors and integrated circuits out of their sockets. Vibration can cause hard disk drives to come out of alignment and thus increase the chance for catastrophic failure and resulting data loss. Here are some guidelines for vibration control:
8.2.1.11 HumidityHumidity is your computer's friend—but as with all friends, you can get too much of a good thing. Humidity prevents the buildup of static charge. If your computer room is too dry, static discharge between operators and your computer (or between the computer's moving parts) may destroy information or damage your computer itself. If the computer room is too humid, you may experience condensation on chilled surfaces. Collected condensate can short out and damage the electrical circuits. Here are some guidelines for humidity control:
8.2.1.12 WaterWater can destroy your computer. The primary danger is an electrical short, which can happen if water bridges between a circuit-board trace carrying voltage and a trace carrying ground. A short will cause too much current to be pulled through a trace, heat up the trace, and possibly melt it. Shorts can also destroy electronic components by pulling too much current through them. Water usually comes from rain or flooding. Sometimes it comes from an errant sprinkler system. Water may also come from strange places, such as a toilet overflowing on a higher floor, vandalism, or the fire department. Here are some guidelines for water control:
8.2.1.13 Environmental monitoringTo detect spurious problems, continuously monitor and record your computer room's temperature and relative humidity. As a general rule of thumb, every 1,000 square feet of office space should have its own recording equipment. Log and check recordings on a regular basis. 8.2.2 Preventing AccidentsIn addition to environmental problems, your computer system is vulnerable to a multitude of accidents. While it is impossible to prevent all accidents, careful planning can minimize the impact of accidents that will inevitably occur. 8.2.2.1 Food and drinkPeople need food and drink to stay alive. Computers, on the other hand, need to stay away from food and drink. One of the fastest ways of putting a desktop keyboard out of commission is to pour a soft drink or cup of coffee between the keys. If this keyboard is your system console (as is the case with most PCs), you may be unable to reboot the computer until the console is replaced (we know this from experience). Food—especially oily food—collects on people's fingers and from there gets on anything that a person touches. Often this includes dirt-sensitive surfaces such as magnetic tapes and optical disks. Sometimes food can be cleaned away; other times it cannot. Oils from foods also tend to get onto screens, increasing glare and decreasing readability. Some screens are equipped with special quarter-wavelength antiglare coatings: when touched with oily hands, the fingerprints will glow with an annoying iridescence. Generally, the simplest rule is the safest: keep all food and drink away from your computer systems.[3]
8.2.3 Controlling Physical AccessSimple common sense will tell you to keep your computer in a locked room. But how safe is that room? Sometimes a room that appears to be safe is actually wide open. 8.2.3.1 Raised floors and dropped ceilingsIn many modern office buildings, internal walls do not extend above dropped ceilings or beneath raised floors. This type of construction makes it easy for people in adjoining rooms, and sometimes adjoining offices, to gain access. Here are some guidelines for dealing with raised floors and dropped ceilings:
8.2.3.2 Entrance through air ductsIf the air ducts that serve your computer room are large enough, intruders can use them to gain entrance to an otherwise secured area. Here are some guidelines for dealing with air ducts:
8.2.3.3 Glass wallsAlthough glass walls and large windows frequently add architectural panache, they can be severe security risks. Glass walls are easy to break; a brick and a bottle of gasoline thrown through a window can cause an incredible amount of damage. An attacker can also gain critical knowledge, such as passwords or information about system operations, simply by watching people on the other side of a glass wall or window. It may even be possible to capture information from a screen by analyzing its reflective glow. Here are some guidelines for dealing with glass walls:
8.2.4 Defending Against VandalismComputer systems are good targets for vandalism. Reasons for vandalism include:
Computer vandalism is often fast, easy, and tremendously damaging. Sometimes vandalism is actually sabotage presented as random mischief. In principle, any part of a computer system—or the building that houses it—may be a target of vandalism. In practice, some targets are more vulnerable than others. 8.2.4.1 Ventilation holesSeveral years ago, 60 workstations at the Massachusetts Institute of Technology were destroyed in a single evening by a student who poured Coca-Cola into each computer's ventilation holes. Authorities surmised that the vandal was a student who had not completed a problem set due the next day. Computers that have ventilation holes need them. Don't seal up the holes to prevent this sort of vandalism. However, a rigidly enforced policy against food and drink in the computer room—or a 24-hour guard, in person or via closed-circuit TV—can help prevent this kind of incident from happening at your site. 8.2.4.2 Network cablesLocal and wide area networks are exceedingly vulnerable to vandalism. In many cases, a vandal can disable an entire subnet of workstations by cutting a single wire with a pair of wire cutters. Compared with Ethernet, fiber optic cables are at the same time more vulnerable (they can be more easily damaged), more difficult to repair (they are difficult to splice), and more attractive targets (they often carry more information). One simple method for protecting a network cable is to run it through physically secure locations. For example, Ethernet cable is often placed in cable trays or suspended from ceilings with plastic loops. But Ethernet can also be run through steel conduits. Besides protecting against vandalism, this practice protects against some forms of network eavesdropping, and may help protect your cables in the event of a small fire. Some high-security installations use double-walled, shielded conduits with a pressurized gas between the layers. Pressure sensors on the conduit break off all traffic or sound a warning bell if the pressure ever drops, as might occur if someone breached the walls of the pipe. Many universities have networks that rely on Ethernet or fiber optic cables strung through the basements. A single frustrated student with a pair of scissors or a pocketknife can stop thousands of students and professors from working. Some organizations believe that an alternative to physically protecting their network cables is to have redundant connections between various locations on their campus. While it is true that redundant connections will protect an organization from a single failure, if redundancy is the only protection against cable cuts, all an aggressive attacker needs to do is cut the cable in several locations. We also have heard stories about a fiber optic cable suffering small fractures because someone stepped on it. A fracture of this type is difficult to locate because there is no break in the coating. Once again, it pays to be careful where you place your cables.
8.2.4.3 Network connectorsIn addition to cutting a cable, a vandal who has access to a network's endpoint—a network connector—can electronically disable or damage the network. All networks based on wire are vulnerable to attacks with high voltage. At one university in the late 1980s, a student destroyed a cluster of workstations by plugging a thin-wire Ethernet cable into a 110VAC wall outlet. (The student wanted to simulate a lightning strike because he realized that he wasn't going to complete his assignment by the time it was due the next morning.) 8.2.4.4 Utility connectionsIn many buildings, electrical, gas, or water cutoffs may be accessible—sometimes even from the outside of the building. Because computers require electrical power, and because temperature control systems may rely on gas heating or water cooling, these utility connections represent points of attack for a vandal. 8.2.5 Defending Against Acts of War and TerrorismThe successful attack on New York's World Trade Center demonstrated that even computers that are not used by the military and are not operated in a war zone may be the object of terrorist attacks. Because computers are attractive targets, you may wish to consider additional structural protection for your computer room. If your computers are in any way involved in support of something that might inspire violent protest—e.g., university research with animal subjects, oil exploration, fashion design using furs, lumber production—you should definitely consider extra protection for them. Although protection is important, it is simply impossible to defend against many attacks. In many cases, you should devise a system of hot backups and mirrored disks and servers. With a reasonably fast network link, you can arrange for files stored on one computer to be simultaneously copied to another system on the other side of town—or the other side of the world. Sites that cannot afford simultaneous backup can make hourly or nightly incremental dumps across the network link. Although a tank or suicide bomber may destroy your computer center, your data can be safely protected someplace else. |