[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Character sets used in the early days of computing had only six, seven, or eight bits for each character: there was never a case where more than eight bits (one byte) were used to represent a single character. The limitations of this approach became more apparent as more people grappled with non-Roman character sets, where not all the characters that make up a language's character set can be represented by 2^8 choices. This chapter shows the functionality that was added to the C library to support multiple character sets.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
A variety of solutions is available to overcome the differences between character sets with a 1:1 relation between bytes and characters and character sets with ratios of 2:1 or 4:1. The remainder of this section gives a few examples to help understand the design decisions made while developing the functionality of the C library.
A distinction we have to make right away is between internal and external representation. Internal representation means the representation used by a program while keeping the text in memory. External representations are used when text is stored or transmitted through some communication channel. Examples of external representations include files waiting in a directory to be read and parsed.
Traditionally there has been no difference between the two representations. It was equally comfortable and useful to use the same single-byte representation internally and externally. This comfort level decreases with more and larger character sets.
One of the problems to overcome with the internal representation is handling text that is externally encoded using different character sets. Assume a program that reads two texts and compares them using some metric. The comparison can be usefully done only if the texts are internally kept in a common format.
For such a common format (= character set) eight bits are certainly no longer enough. So the smallest entity will have to grow: wide characters will now be used. Instead of one byte per character, two or four will be used instead. (Three are not good to address in memory and more than four bytes seem not to be necessary).
As shown in some other part of this manual,
a completely new family has been created of functions that can handle wide
character texts in memory. The most commonly used character sets for such
internal wide character representations are Unicode and ISO 10646
(also known as UCS for Universal Character Set). Unicode was originally
planned as a 16-bit character set; whereas, ISO 10646 was designed to
be a 31-bit large code space. The two standards are practically identical.
They have the same character repertoire and code table, but Unicode specifies
added semantics. At the moment, only characters in the first 0x10000
code positions (the so-called Basic Multilingual Plane, BMP) have been
assigned, but the assignment of more specialized characters outside this
16-bit space is already in progress. A number of encodings have been
defined for Unicode and ISO 10646 characters:
UCS-2 is a 16-bit word that can only represent characters
from the BMP, UCS-4 is a 32-bit word than can represent any Unicode
and ISO 10646 character, UTF-8 is an ASCII compatible encoding where
ASCII characters are represented by ASCII bytes and non-ASCII characters
by sequences of 2-6 non-ASCII bytes, and finally UTF-16 is an extension
of UCS-2 in which pairs of certain UCS-2 words can be used to encode
non-BMP characters up to 0x10ffff
.
To represent wide characters the char
type is not suitable. For
this reason the ISO C standard introduces a new type that is
designed to keep one character of a wide character string. To maintain
the similarity there is also a type corresponding to int
for
those functions that take a single wide character.
This data type is used as the base type for wide character strings.
In other words, arrays of objects of this type are the equivalent of
char[]
for multibyte character strings. The type is defined in
‘stddef.h’.
The ISO C90 standard, where wchar_t
was introduced, does not
say anything specific about the representation. It only requires that
this type is capable of storing all elements of the basic character set.
Therefore it would be legitimate to define wchar_t
as char
,
which might make sense for embedded systems.
But for GNU systems wchar_t
is always 32 bits wide and, therefore,
capable of representing all UCS-4 values and, therefore, covering all of
ISO 10646. Some Unix systems define wchar_t
as a 16-bit type
and thereby follow Unicode very strictly. This definition is perfectly
fine with the standard, but it also means that to represent all
characters from Unicode and ISO 10646 one has to use UTF-16 surrogate
characters, which is in fact a multi-wide-character encoding. But
resorting to multi-wide-character encoding contradicts the purpose of the
wchar_t
type.
wint_t
is a data type used for parameters and variables that
contain a single wide character. As the name suggests this type is the
equivalent of int
when using the normal char
strings. The
types wchar_t
and wint_t
often have the same
representation if their size is 32 bits wide but if wchar_t
is
defined as char
the type wint_t
must be defined as
int
due to the parameter promotion.
This type is defined in ‘wchar.h’ and was introduced in Amendment 1 to ISO C90.
As there are for the char
data type macros are available for
specifying the minimum and maximum value representable in an object of
type wchar_t
.
The macro WCHAR_MIN
evaluates to the minimum value representable
by an object of type wint_t
.
This macro was introduced in Amendment 1 to ISO C90.
The macro WCHAR_MAX
evaluates to the maximum value representable
by an object of type wint_t
.
This macro was introduced in Amendment 1 to ISO C90.
Another special wide character value is the equivalent to EOF
.
The macro WEOF
evaluates to a constant expression of type
wint_t
whose value is different from any member of the extended
character set.
WEOF
need not be the same value as EOF
and unlike
EOF
it also need not be negative. In other words, sloppy
code like
{ int c; … while ((c = getc (fp)) < 0) … } |
has to be rewritten to use WEOF
explicitly when wide characters
are used:
{ wint_t c; … while ((c = wgetc (fp)) != WEOF) … } |
This macro was introduced in Amendment 1 to ISO C90 and is defined in ‘wchar.h’.
These internal representations present problems when it comes to storing and transmittal. Because each single wide character consists of more than one byte, they are effected by byte-ordering. Thus, machines with different endianesses would see different values when accessing the same data. This byte ordering concern also applies for communication protocols that are all byte-based and therefore require that the sender has to decide about splitting the wide character in bytes. A last (but not least important) point is that wide characters often require more storage space than a customized byte-oriented character set.
For all the above reasons, an external encoding that is different from
the internal encoding is often used if the latter is UCS-2 or UCS-4.
The external encoding is byte-based and can be chosen appropriately for
the environment and for the texts to be handled. A variety of different
character sets can be used for this external encoding (information that
will not be exhaustively presented here–instead, a description of the
major groups will suffice). All of the ASCII-based character sets
fulfill one requirement: they are "filesystem safe." This means that
the character '/'
is used in the encoding only to
represent itself. Things are a bit different for character sets like
EBCDIC (Extended Binary Coded Decimal Interchange Code, a character set
family used by IBM), but if the operation system does not understand
EBCDIC directly the parameters-to-system calls have to be converted
first anyhow.
In most uses of ISO 2022 the defined character sets do not allow state changes that cover more than the next character. This has the big advantage that whenever one can identify the beginning of the byte sequence of a character one can interpret a text correctly. Examples of character sets using this policy are the various EUC character sets (used by Sun's operations systems, EUC-JP, EUC-KR, EUC-TW, and EUC-CN) or Shift_JIS (SJIS, a Japanese encoding).
But there are also character sets using a state that is valid for more than one character and has to be changed by another byte sequence. Examples for this are ISO-2022-JP, ISO-2022-KR, and ISO-2022-CN.
0xc2 0x61
(non-spacing acute accent, followed by lower-case `a') to get the “small
a with acute” character. To get the acute accent character on its own,
one has to write 0xc2 0x20
(the non-spacing acute followed by a
space).
Character sets like ISO 6937 are used in some embedded systems such as teletex.
There were a few other attempts to encode ISO 10646 such as UTF-7, but UTF-8 is today the only encoding that should be used. In fact, with any luck UTF-8 will soon be the only external encoding that has to be supported. It proves to be universally usable and its only disadvantage is that it favors Roman languages by making the byte string representation of other scripts (Cyrillic, Greek, Asian scripts) longer than necessary if using a specific character set for these scripts. Methods like the Unicode compression scheme can alleviate these problems.
The question remaining is: how to select the character set or encoding to use. The answer: you cannot decide about it yourself, it is decided by the developers of the system or the majority of the users. Since the goal is interoperability one has to use whatever the other people one works with use. If there are no constraints, the selection is based on the requirements the expected circle of users will have. In other words, if a project is expected to be used in only, say, Russia it is fine to use KOI8-R or a similar character set. But if at the same time people from, say, Greece are participating one should use a character set that allows all people to collaborate.
The most widely useful solution seems to be: go with the most general character set, namely ISO 10646. Use UTF-8 as the external encoding and problems about users not being able to use their own language adequately are a thing of the past.
One final comment about the choice of the wide character representation
is necessary at this point. We have said above that the natural choice
is using Unicode or ISO 10646. This is not required, but at least
encouraged, by the ISO C standard. The standard defines at least a
macro __STDC_ISO_10646__
that is only defined on systems where
the wchar_t
type encodes ISO 10646 characters. If this
symbol is not defined one should avoid making assumptions about the wide
character representation. If the programmer uses only the functions
provided by the C library to handle wide character strings there should
be no compatibility problems with other systems.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
A Unix C library contains three different sets of functions in two families to handle character set conversion. One of the function families (the most commonly used) is specified in the ISO C90 standard and, therefore, is portable even beyond the Unix world. Unfortunately this family is the least useful one. These functions should be avoided whenever possible, especially when developing libraries (as opposed to applications).
The second family of functions got introduced in the early Unix standards (XPG2) and is still part of the latest and greatest Unix standard: Unix 98. It is also the most powerful and useful set of functions. But we will start with the functions defined in Amendment 1 to ISO C90.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The ISO C standard defines functions to convert strings from a multibyte representation to wide character strings. There are a number of peculiarities:
LC_CTYPE
category of the current locale is used; see
Categories of Activities that Locales Affect.
Despite these limitations the ISO C functions can be used in many
contexts. In graphical user interfaces, for instance, it is not
uncommon to have functions that require text to be displayed in a wide
character string if the text is not simple ASCII. The text itself might
come from a file with translations and the user should decide about the
current locale, which determines the translation and therefore also the
external encoding used. In such a situation (and many others) the
functions described here are perfect. If more freedom while performing
the conversion is necessary take a look at the iconv
functions
(see section Generic Charset Conversion).
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
We already said above that the currently selected locale for the
LC_CTYPE
category decides about the conversion that is performed
by the functions we are about to describe. Each locale uses its own
character set (given as an argument to localedef
) and this is the
one assumed as the external multibyte encoding. The wide character
character set always is UCS-4, at least on GNU systems.
A characteristic of each multibyte character set is the maximum number of bytes that can be necessary to represent one character. This information is quite important when writing code that uses the conversion functions (as shown in the examples below). The ISO C standard defines two macros that provide this information.
MB_LEN_MAX
specifies the maximum number of bytes in the multibyte
sequence for a single character in any of the supported locales. It is
a compile-time constant and is defined in ‘limits.h’.
MB_CUR_MAX
expands into a positive integer expression that is the
maximum number of bytes in a multibyte character in the current locale.
The value is never greater than MB_LEN_MAX
. Unlike
MB_LEN_MAX
this macro need not be a compile-time constant, and in
the GNU C library it is not.
MB_CUR_MAX
is defined in ‘stdlib.h’.
Two different macros are necessary since strictly ISO C90 compilers do not allow variable length array definitions, but still it is desirable to avoid dynamic allocation. This incomplete piece of code shows the problem:
{
char buf[MB_LEN_MAX];
ssize_t len = 0;
while (! feof (fp))
{
fread (&buf[len], 1, MB_CUR_MAX - len, fp);
/* … process buf */
len -= used;
}
}
|
The code in the inner loop is expected to have always enough bytes in
the array buf to convert one multibyte character. The array
buf has to be sized statically since many compilers do not allow a
variable size. The fread
call makes sure that MB_CUR_MAX
bytes are always available in buf. Note that it isn't
a problem if MB_CUR_MAX
is not a compile-time constant.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
In the introduction of this chapter it was said that certain character sets use a stateful encoding. That is, the encoded values depend in some way on the previous bytes in the text.
Since the conversion functions allow converting a text in more than one step we must have a way to pass this information from one call of the functions to another.
A variable of type mbstate_t
can contain all the information
about the shift state needed from one call to a conversion
function to another.
mbstate_t
is defined in ‘wchar.h’. It was introduced in
Amendment 1 to ISO C90.
To use objects of type mbstate_t
the programmer has to define such
objects (normally as local variables on the stack) and pass a pointer to
the object to the conversion functions. This way the conversion function
can update the object if the current multibyte character set is stateful.
There is no specific function or initializer to put the state object in any specific state. The rules are that the object should always represent the initial state before the first use, and this is achieved by clearing the whole variable with code such as follows:
{
mbstate_t state;
memset (&state, '\0', sizeof (state));
/* from now on state can be used. */
…
}
|
When using the conversion functions to generate output it is often necessary to test whether the current state corresponds to the initial state. This is necessary, for example, to decide whether to emit escape sequences to set the state to the initial state at certain sequence points. Communication protocols often require this.
The mbsinit
function determines whether the state object pointed
to by ps is in the initial state. If ps is a null pointer or
the object is in the initial state the return value is nonzero. Otherwise
it is zero.
mbsinit
was introduced in Amendment 1 to ISO C90 and is
declared in ‘wchar.h’.
Code using mbsinit
often looks similar to this:
{ mbstate_t state; memset (&state, '\0', sizeof (state)); /* Use state. */ … if (! mbsinit (&state)) { /* Emit code to return to initial state. */ const wchar_t empty[] = L""; const wchar_t *srcp = empty; wcsrtombs (outbuf, &srcp, outbuflen, &state); } … } |
The code to emit the escape sequence to get back to the initial state is
interesting. The wcsrtombs
function can be used to determine the
necessary output code (see section Converting Multibyte and Wide Character Strings). Please note that on
GNU systems it is not necessary to perform this extra action for the
conversion from multibyte text to wide character text since the wide
character encoding is not stateful. But there is nothing mentioned in
any standard that prohibits making wchar_t
using a stateful
encoding.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The most fundamental of the conversion functions are those dealing with single characters. Please note that this does not always mean single bytes. But since there is very often a subset of the multibyte character set that consists of single byte sequences, there are functions to help with converting bytes. Frequently, ASCII is a subpart of the multibyte character set. In such a scenario, each ASCII character stands for itself, and all other characters have at least a first byte that is beyond the range 0 to 127.
The btowc
function (“byte to wide character”) converts a valid
single byte character c in the initial shift state into the wide
character equivalent using the conversion rules from the currently
selected locale of the LC_CTYPE
category.
If (unsigned char) c
is no valid single byte multibyte
character or if c is EOF
, the function returns WEOF
.
Please note the restriction of c being tested for validity only in
the initial shift state. No mbstate_t
object is used from
which the state information is taken, and the function also does not use
any static state.
The btowc
function was introduced in Amendment 1 to ISO C90
and is declared in ‘wchar.h’.
Despite the limitation that the single byte value always is interpreted in the initial state this function is actually useful most of the time. Most characters are either entirely single-byte character sets or they are extension to ASCII. But then it is possible to write code like this (not that this specific example is very useful):
wchar_t * itow (unsigned long int val) { static wchar_t buf[30]; wchar_t *wcp = &buf[29]; *wcp = L'\0'; while (val != 0) { *--wcp = btowc ('0' + val % 10); val /= 10; } if (wcp == &buf[29]) *--wcp = L'0'; return wcp; } |
Why is it necessary to use such a complicated implementation and not
simply cast '0' + val % 10
to a wide character? The answer is
that there is no guarantee that one can perform this kind of arithmetic
on the character of the character set used for wchar_t
representation. In other situations the bytes are not constant at
compile time and so the compiler cannot do the work. In situations like
this it is necessary btowc
.
There also is a function for the conversion in the other direction.
The wctob
function (“wide character to byte”) takes as the
parameter a valid wide character. If the multibyte representation for
this character in the initial state is exactly one byte long, the return
value of this function is this character. Otherwise the return value is
EOF
.
wctob
was introduced in Amendment 1 to ISO C90 and
is declared in ‘wchar.h’.
There are more general functions to convert single character from multibyte representation to wide characters and vice versa. These functions pose no limit on the length of the multibyte representation and they also do not require it to be in the initial state.
The mbrtowc
function (“multibyte restartable to wide
character”) converts the next multibyte character in the string pointed
to by s into a wide character and stores it in the wide character
string pointed to by pwc. The conversion is performed according
to the locale currently selected for the LC_CTYPE
category. If
the conversion for the character set used in the locale requires a state,
the multibyte string is interpreted in the state represented by the
object pointed to by ps. If ps is a null pointer, a static,
internal state variable used only by the mbrtowc
function is
used.
If the next multibyte character corresponds to the NUL wide character,
the return value of the function is 0 and the state object is
afterwards in the initial state. If the next n or fewer bytes
form a correct multibyte character, the return value is the number of
bytes starting from s that form the multibyte character. The
conversion state is updated according to the bytes consumed in the
conversion. In both cases the wide character (either the L'\0'
or the one found in the conversion) is stored in the string pointed to
by pwc if pwc is not null.
If the first n bytes of the multibyte string possibly form a valid
multibyte character but there are more than n bytes needed to
complete it, the return value of the function is (size_t) -2
and
no value is stored. Please note that this can happen even if n
has a value greater than or equal to MB_CUR_MAX
since the input
might contain redundant shift sequences.
If the first n
bytes of the multibyte string cannot possibly form
a valid multibyte character, no value is stored, the global variable
errno
is set to the value EILSEQ
, and the function returns
(size_t) -1
. The conversion state is afterwards undefined.
mbrtowc
was introduced in Amendment 1 to ISO C90 and
is declared in ‘wchar.h’.
Use of mbrtowc
is straightforward. A function that copies a
multibyte string into a wide character string while at the same time
converting all lowercase characters into uppercase could look like this
(this is not the final version, just an example; it has no error
checking, and sometimes leaks memory):
wchar_t * mbstouwcs (const char *s) { size_t len = strlen (s); wchar_t *result = malloc ((len + 1) * sizeof (wchar_t)); wchar_t *wcp = result; wchar_t tmp[1]; mbstate_t state; size_t nbytes; memset (&state, '\0', sizeof (state)); while ((nbytes = mbrtowc (tmp, s, len, &state)) > 0) { if (nbytes >= (size_t) -2) /* Invalid input string. */ return NULL; *wcp++ = towupper (tmp[0]); len -= nbytes; s += nbytes; } return result; } |
The use of mbrtowc
should be clear. A single wide character is
stored in tmp[0]
, and the number of consumed bytes is stored
in the variable nbytes. If the conversion is successful, the
uppercase variant of the wide character is stored in the result
array and the pointer to the input string and the number of available
bytes is adjusted.
The only non-obvious thing about mbrtowc
might be the way memory
is allocated for the result. The above code uses the fact that there
can never be more wide characters in the converted results than there are
bytes in the multibyte input string. This method yields a pessimistic
guess about the size of the result, and if many wide character strings
have to be constructed this way or if the strings are long, the extra
memory required to be allocated because the input string contains
multibyte characters might be significant. The allocated memory block can
be resized to the correct size before returning it, but a better solution
might be to allocate just the right amount of space for the result right
away. Unfortunately there is no function to compute the length of the wide
character string directly from the multibyte string. There is, however, a
function that does part of the work.
The mbrlen
function (“multibyte restartable length”) computes
the number of at most n bytes starting at s, which form the
next valid and complete multibyte character.
If the next multibyte character corresponds to the NUL wide character, the return value is 0. If the next n bytes form a valid multibyte character, the number of bytes belonging to this multibyte character byte sequence is returned.
If the first n bytes possibly form a valid multibyte
character but the character is incomplete, the return value is
(size_t) -2
. Otherwise the multibyte character sequence is invalid
and the return value is (size_t) -1
.
The multibyte sequence is interpreted in the state represented by the
object pointed to by ps. If ps is a null pointer, a state
object local to mbrlen
is used.
mbrlen
was introduced in Amendment 1 to ISO C90 and
is declared in ‘wchar.h’.
The attentive reader now will note that mbrlen
can be implemented
as
mbrtowc (NULL, s, n, ps != NULL ? ps : &internal) |
This is true and in fact is mentioned in the official specification.
How can this function be used to determine the length of the wide
character string created from a multibyte character string? It is not
directly usable, but we can define a function mbslen
using it:
size_t
mbslen (const char *s)
{
mbstate_t state;
size_t result = 0;
size_t nbytes;
memset (&state, '\0', sizeof (state));
while ((nbytes = mbrlen (s, MB_LEN_MAX, &state)) > 0)
{
if (nbytes >= (size_t) -2)
/* Something is wrong. */
return (size_t) -1;
s += nbytes;
++result;
}
return result;
}
|
This function simply calls mbrlen
for each multibyte character
in the string and counts the number of function calls. Please note that
we here use MB_LEN_MAX
as the size argument in the mbrlen
call. This is acceptable since a) this value is larger then the length of
the longest multibyte character sequence and b) we know that the string
s ends with a NUL byte, which cannot be part of any other multibyte
character sequence but the one representing the NUL wide character.
Therefore, the mbrlen
function will never read invalid memory.
Now that this function is available (just to make this clear, this function is not part of the GNU C library) we can compute the number of wide character required to store the converted multibyte character string s using
wcs_bytes = (mbslen (s) + 1) * sizeof (wchar_t); |
Please note that the mbslen
function is quite inefficient. The
implementation of mbstouwcs
with mbslen
would have to
perform the conversion of the multibyte character input string twice, and
this conversion might be quite expensive. So it is necessary to think
about the consequences of using the easier but imprecise method before
doing the work twice.
The wcrtomb
function (“wide character restartable to
multibyte”) converts a single wide character into a multibyte string
corresponding to that wide character.
If s is a null pointer, the function resets the state stored in
the objects pointed to by ps (or the internal mbstate_t
object) to the initial state. This can also be achieved by a call like
this:
wcrtombs (temp_buf, L'\0', ps) |
since, if s is a null pointer, wcrtomb
performs as if it
writes into an internal buffer, which is guaranteed to be large enough.
If wc is the NUL wide character, wcrtomb
emits, if
necessary, a shift sequence to get the state ps into the initial
state followed by a single NUL byte, which is stored in the string
s.
Otherwise a byte sequence (possibly including shift sequences) is written
into the string s. This only happens if wc is a valid wide
character (i.e., it has a multibyte representation in the character set
selected by locale of the LC_CTYPE
category). If wc is no
valid wide character, nothing is stored in the strings s,
errno
is set to EILSEQ
, the conversion state in ps
is undefined and the return value is (size_t) -1
.
If no error occurred the function returns the number of bytes stored in the string s. This includes all bytes representing shift sequences.
One word about the interface of the function: there is no parameter
specifying the length of the array s. Instead the function
assumes that there are at least MB_CUR_MAX
bytes available since
this is the maximum length of any byte sequence representing a single
character. So the caller has to make sure that there is enough space
available, otherwise buffer overruns can occur.
wcrtomb
was introduced in Amendment 1 to ISO C90 and is
declared in ‘wchar.h’.
Using wcrtomb
is as easy as using mbrtowc
. The following
example appends a wide character string to a multibyte character string.
Again, the code is not really useful (or correct), it is simply here to
demonstrate the use and some problems.
char * mbscatwcs (char *s, size_t len, const wchar_t *ws) { mbstate_t state; /* Find the end of the existing string. */ char *wp = strchr (s, '\0'); len -= wp - s; memset (&state, '\0', sizeof (state)); do { size_t nbytes; if (len < MB_CUR_LEN) { /* We cannot guarantee that the next character fits into the buffer, so return an error. */ errno = E2BIG; return NULL; } nbytes = wcrtomb (wp, *ws, &state); if (nbytes == (size_t) -1) /* Error in the conversion. */ return NULL; len -= nbytes; wp += nbytes; } while (*ws++ != L'\0'); return s; } |
First the function has to find the end of the string currently in the
array s. The strchr
call does this very efficiently since a
requirement for multibyte character representations is that the NUL byte
is never used except to represent itself (and in this context, the end
of the string).
After initializing the state object the loop is entered where the first
task is to make sure there is enough room in the array s. We
abort if there are not at least MB_CUR_LEN
bytes available. This
is not always optimal but we have no other choice. We might have less
than MB_CUR_LEN
bytes available but the next multibyte character
might also be only one byte long. At the time the wcrtomb
call
returns it is too late to decide whether the buffer was large enough. If
this solution is unsuitable, there is a very slow but more accurate
solution.
… if (len < MB_CUR_LEN) { mbstate_t temp_state; memcpy (&temp_state, &state, sizeof (state)); if (wcrtomb (NULL, *ws, &temp_state) > len) { /* We cannot guarantee that the next character fits into the buffer, so return an error. */ errno = E2BIG; return NULL; } } … |
Here we perform the conversion that might overflow the buffer so that
we are afterwards in the position to make an exact decision about the
buffer size. Please note the NULL
argument for the destination
buffer in the new wcrtomb
call; since we are not interested in the
converted text at this point, this is a nice way to express this. The
most unusual thing about this piece of code certainly is the duplication
of the conversion state object, but if a change of the state is necessary
to emit the next multibyte character, we want to have the same shift state
change performed in the real conversion. Therefore, we have to preserve
the initial shift state information.
There are certainly many more and even better solutions to this problem. This example is only provided for educational purposes.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The functions described in the previous section only convert a single character at a time. Most operations to be performed in real-world programs include strings and therefore the ISO C standard also defines conversions on entire strings. However, the defined set of functions is quite limited; therefore, the GNU C library contains a few extensions that can help in some important situations.
The mbsrtowcs
function (“multibyte string restartable to wide
character string”) converts an NUL-terminated multibyte character
string at *src
into an equivalent wide character string,
including the NUL wide character at the end. The conversion is started
using the state information from the object pointed to by ps or
from an internal object of mbsrtowcs
if ps is a null
pointer. Before returning, the state object is updated to match the state
after the last converted character. The state is the initial state if the
terminating NUL byte is reached and converted.
If dst is not a null pointer, the result is stored in the array pointed to by dst; otherwise, the conversion result is not available since it is stored in an internal buffer.
If len wide characters are stored in the array dst before reaching the end of the input string, the conversion stops and len is returned. If dst is a null pointer, len is never checked.
Another reason for a premature return from the function call is if the
input string contains an invalid multibyte sequence. In this case the
global variable errno
is set to EILSEQ
and the function
returns (size_t) -1
.
In all other cases the function returns the number of wide characters
converted during this call. If dst is not null, mbsrtowcs
stores in the pointer pointed to by src either a null pointer (if
the NUL byte in the input string was reached) or the address of the byte
following the last converted multibyte character.
mbsrtowcs
was introduced in Amendment 1 to ISO C90 and is
declared in ‘wchar.h’.
The definition of the mbsrtowcs
function has one important
limitation. The requirement that dst has to be a NUL-terminated
string provides problems if one wants to convert buffers with text. A
buffer is normally no collection of NUL-terminated strings but instead a
continuous collection of lines, separated by newline characters. Now
assume that a function to convert one line from a buffer is needed. Since
the line is not NUL-terminated, the source pointer cannot directly point
into the unmodified text buffer. This means, either one inserts the NUL
byte at the appropriate place for the time of the mbsrtowcs
function call (which is not doable for a read-only buffer or in a
multi-threaded application) or one copies the line in an extra buffer
where it can be terminated by a NUL byte. Note that it is not in general
possible to limit the number of characters to convert by setting the
parameter len to any specific value. Since it is not known how
many bytes each multibyte character sequence is in length, one can only
guess.
There is still a problem with the method of NUL-terminating a line right
after the newline character, which could lead to very strange results.
As said in the description of the mbsrtowcs
function above the
conversion state is guaranteed to be in the initial shift state after
processing the NUL byte at the end of the input string. But this NUL
byte is not really part of the text (i.e., the conversion state after
the newline in the original text could be something different than the
initial shift state and therefore the first character of the next line
is encoded using this state). But the state in question is never
accessible to the user since the conversion stops after the NUL byte
(which resets the state). Most stateful character sets in use today
require that the shift state after a newline be the initial state–but
this is not a strict guarantee. Therefore, simply NUL-terminating a
piece of a running text is not always an adequate solution and,
therefore, should never be used in generally used code.
The generic conversion interface (see section Generic Charset Conversion)
does not have this limitation (it simply works on buffers, not
strings), and the GNU C library contains a set of functions that take
additional parameters specifying the maximal number of bytes that are
consumed from the input string. This way the problem of
mbsrtowcs
's example above could be solved by determining the line
length and passing this length to the function.
The wcsrtombs
function (“wide character string restartable to
multibyte string”) converts the NUL-terminated wide character string at
*src
into an equivalent multibyte character string and
stores the result in the array pointed to by dst. The NUL wide
character is also converted. The conversion starts in the state
described in the object pointed to by ps or by a state object
locally to wcsrtombs
in case ps is a null pointer. If
dst is a null pointer, the conversion is performed as usual but the
result is not available. If all characters of the input string were
successfully converted and if dst is not a null pointer, the
pointer pointed to by src gets assigned a null pointer.
If one of the wide characters in the input string has no valid multibyte
character equivalent, the conversion stops early, sets the global
variable errno
to EILSEQ
, and returns (size_t) -1
.
Another reason for a premature stop is if dst is not a null pointer and the next converted character would require more than len bytes in total to the array dst. In this case (and if dest is not a null pointer) the pointer pointed to by src is assigned a value pointing to the wide character right after the last one successfully converted.
Except in the case of an encoding error the return value of the
wcsrtombs
function is the number of bytes in all the multibyte
character sequences stored in dst. Before returning the state in
the object pointed to by ps (or the internal object in case
ps is a null pointer) is updated to reflect the state after the
last conversion. The state is the initial shift state in case the
terminating NUL wide character was converted.
The wcsrtombs
function was introduced in Amendment 1 to
ISO C90 and is declared in ‘wchar.h’.
The restriction mentioned above for the mbsrtowcs
function applies
here also. There is no possibility of directly controlling the number of
input characters. One has to place the NUL wide character at the correct
place or control the consumed input indirectly via the available output
array size (the len parameter).
The mbsnrtowcs
function is very similar to the mbsrtowcs
function. All the parameters are the same except for nmc, which is
new. The return value is the same as for mbsrtowcs
.
This new parameter specifies how many bytes at most can be used from the
multibyte character string. In other words, the multibyte character
string *src
need not be NUL-terminated. But if a NUL byte
is found within the nmc first bytes of the string, the conversion
stops here.
This function is a GNU extension. It is meant to work around the problems mentioned above. Now it is possible to convert a buffer with multibyte character text piece for piece without having to care about inserting NUL bytes and the effect of NUL bytes on the conversion state.
A function to convert a multibyte string into a wide character string and display it could be written like this (this is not a really useful example):
void
showmbs (const char *src, FILE *fp)
{
mbstate_t state;
int cnt = 0;
memset (&state, '\0', sizeof (state));
while (1)
{
wchar_t linebuf[100];
const char *endp = strchr (src, '\n');
size_t n;
/* Exit if there is no more line. */
if (endp == NULL)
break;
n = mbsnrtowcs (linebuf, &src, endp - src, 99, &state);
linebuf[n] = L'\0';
fprintf (fp, "line %d: \"%S\"\n", linebuf);
}
}
|
There is no problem with the state after a call to mbsnrtowcs
.
Since we don't insert characters in the strings that were not in there
right from the beginning and we use state only for the conversion
of the given buffer, there is no problem with altering the state.
The wcsnrtombs
function implements the conversion from wide
character strings to multibyte character strings. It is similar to
wcsrtombs
but, just like mbsnrtowcs
, it takes an extra
parameter, which specifies the length of the input string.
No more than nwc wide characters from the input string
*src
are converted. If the input string contains a NUL
wide character in the first nwc characters, the conversion stops at
this place.
The wcsnrtombs
function is a GNU extension and just like
mbsnrtowcs
helps in situations where no NUL-terminated input
strings are available.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The example programs given in the last sections are only brief and do
not contain all the error checking, etc. Presented here is a complete
and documented example. It features the mbrtowc
function but it
should be easy to derive versions using the other functions.
int file_mbsrtowcs (int input, int output) { /* Note the use of |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The functions described in the previous chapter are defined in Amendment 1 to ISO C90, but the original ISO C90 standard also contained functions for character set conversion. The reason that these original functions are not described first is that they are almost entirely useless.
The problem is that all the conversion functions described in the original ISO C90 use a local state. Using a local state implies that multiple conversions at the same time (not only when using threads) cannot be done, and that you cannot first convert single characters and then strings since you cannot tell the conversion functions which state to use.
These original functions are therefore usable only in a very limited set of situations. One must complete converting the entire string before starting a new one, and each string/text must be converted with the same function (there is no problem with the library itself; it is guaranteed that no library function changes the state of any of these functions). For the above reasons it is highly requested that the functions described in the previous section be used in place of non-reentrant conversion functions.
6.4.1 Non-reentrant Conversion of Single Characters | ||
6.4.2 Non-reentrant Conversion of Strings | ||
6.4.3 States in Non-reentrant Functions |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The mbtowc
(“multibyte to wide character”) function when called
with non-null string converts the first multibyte character
beginning at string to its corresponding wide character code. It
stores the result in *result
.
mbtowc
never examines more than size bytes. (The idea is
to supply for size the number of bytes of data you have in hand.)
mbtowc
with non-null string distinguishes three
possibilities: the first size bytes at string start with
valid multibyte characters, they start with an invalid byte sequence or
just part of a character, or string points to an empty string (a
null character).
For a valid multibyte character, mbtowc
converts it to a wide
character and stores that in *result
, and returns the
number of bytes in that character (always at least 1 and never
more than size).
For an invalid byte sequence, mbtowc
returns -1. For an
empty string, it returns 0, also storing '\0'
in
*result
.
If the multibyte character code uses shift characters, then
mbtowc
maintains and updates a shift state as it scans. If you
call mbtowc
with a null pointer for string, that
initializes the shift state to its standard initial value. It also
returns nonzero if the multibyte character code in use actually has a
shift state. See section States in Non-reentrant Functions.
The wctomb
(“wide character to multibyte”) function converts
the wide character code wchar to its corresponding multibyte
character sequence, and stores the result in bytes starting at
string. At most MB_CUR_MAX
characters are stored.
wctomb
with non-null string distinguishes three
possibilities for wchar: a valid wide character code (one that can
be translated to a multibyte character), an invalid code, and
L'\0'
.
Given a valid code, wctomb
converts it to a multibyte character,
storing the bytes starting at string. Then it returns the number
of bytes in that character (always at least 1 and never more
than MB_CUR_MAX
).
If wchar is an invalid wide character code, wctomb
returns
-1. If wchar is L'\0'
, it returns 0
, also
storing '\0'
in *string
.
If the multibyte character code uses shift characters, then
wctomb
maintains and updates a shift state as it scans. If you
call wctomb
with a null pointer for string, that
initializes the shift state to its standard initial value. It also
returns nonzero if the multibyte character code in use actually has a
shift state. See section States in Non-reentrant Functions.
Calling this function with a wchar argument of zero when
string is not null has the side-effect of reinitializing the
stored shift state as well as storing the multibyte character
'\0'
and returning 0.
Similar to mbrlen
there is also a non-reentrant function that
computes the length of a multibyte character. It can be defined in
terms of mbtowc
.
The mblen
function with a non-null string argument returns
the number of bytes that make up the multibyte character beginning at
string, never examining more than size bytes. (The idea is
to supply for size the number of bytes of data you have in hand.)
The return value of mblen
distinguishes three possibilities: the
first size bytes at string start with valid multibyte
characters, they start with an invalid byte sequence or just part of a
character, or string points to an empty string (a null character).
For a valid multibyte character, mblen
returns the number of
bytes in that character (always at least 1
and never more than
size). For an invalid byte sequence, mblen
returns
-1. For an empty string, it returns 0.
If the multibyte character code uses shift characters, then mblen
maintains and updates a shift state as it scans. If you call
mblen
with a null pointer for string, that initializes the
shift state to its standard initial value. It also returns a nonzero
value if the multibyte character code in use actually has a shift state.
See section States in Non-reentrant Functions.
The function mblen
is declared in ‘stdlib.h’.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
For convenience the ISO C90 standard also defines functions to convert entire strings instead of single characters. These functions suffer from the same problems as their reentrant counterparts from Amendment 1 to ISO C90; see Converting Multibyte and Wide Character Strings.
The mbstowcs
(“multibyte string to wide character string”)
function converts the null-terminated string of multibyte characters
string to an array of wide character codes, storing not more than
size wide characters into the array beginning at wstring.
The terminating null character counts towards the size, so if size
is less than the actual number of wide characters resulting from
string, no terminating null character is stored.
The conversion of characters from string begins in the initial shift state.
If an invalid multibyte character sequence is found, the mbstowcs
function returns a value of -1. Otherwise, it returns the number
of wide characters stored in the array wstring. This number does
not include the terminating null character, which is present if the
number is less than size.
Here is an example showing how to convert a string of multibyte characters, allocating enough space for the result.
wchar_t * mbstowcs_alloc (const char *string) { size_t size = strlen (string) + 1; wchar_t *buf = xmalloc (size * sizeof (wchar_t)); size = mbstowcs (buf, string, size); if (size == (size_t) -1) return NULL; buf = xrealloc (buf, (size + 1) * sizeof (wchar_t)); return buf; } |
The wcstombs
(“wide character string to multibyte string”)
function converts the null-terminated wide character array wstring
into a string containing multibyte characters, storing not more than
size bytes starting at string, followed by a terminating
null character if there is room. The conversion of characters begins in
the initial shift state.
The terminating null character counts towards the size, so if size is less than or equal to the number of bytes needed in wstring, no terminating null character is stored.
If a code that does not correspond to a valid multibyte character is
found, the wcstombs
function returns a value of -1.
Otherwise, the return value is the number of bytes stored in the array
string. This number does not include the terminating null character,
which is present if the number is less than size.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
In some multibyte character codes, the meaning of any particular byte sequence is not fixed; it depends on what other sequences have come earlier in the same string. Typically there are just a few sequences that can change the meaning of other sequences; these few are called shift sequences and we say that they set the shift state for other sequences that follow.
To illustrate shift state and shift sequences, suppose we decide that
the sequence 0200
(just one byte) enters Japanese mode, in which
pairs of bytes in the range from 0240
to 0377
are single
characters, while 0201
enters Latin-1 mode, in which single bytes
in the range from 0240
to 0377
are characters, and
interpreted according to the ISO Latin-1 character set. This is a
multibyte code that has two alternative shift states (“Japanese mode”
and “Latin-1 mode”), and two shift sequences that specify particular
shift states.
When the multibyte character code in use has shift states, then
mblen
, mbtowc
, and wctomb
must maintain and update
the current shift state as they scan the string. To make this work
properly, you must follow these rules:
mblen (NULL,
0)
. This initializes the shift state to its standard initial value.
Here is an example of using mblen
following these rules:
void scan_string (char *s) { int length = strlen (s); /* Initialize shift state. */ mblen (NULL, 0); while (1) { int thischar = mblen (s, length); /* Deal with end of string and invalid characters. */ if (thischar == 0) break; if (thischar == -1) { error ("invalid multibyte character"); break; } /* Advance past this character. */ s += thischar; length -= thischar; } } |
The functions mblen
, mbtowc
and wctomb
are not
reentrant when using a multibyte code that uses a shift state. However,
no other library functions call these functions, so you don't have to
worry that the shift state will be changed mysteriously.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The conversion functions mentioned so far in this chapter all had in
common that they operate on character sets that are not directly
specified by the functions. The multibyte encoding used is specified by
the currently selected locale for the LC_CTYPE
category. The
wide character set is fixed by the implementation (in the case of GNU C
library it is always UCS-4 encoded ISO 10646.
This has of course several problems when it comes to general character conversion:
LC_CTYPE
category, one has to change the LC_CTYPE
locale using
setlocale
.
Changing the LC_TYPE
locale introduces major problems for the rest
of the programs since several more functions (e.g., the character
classification functions, see section Classification of Characters) use the
LC_CTYPE
category.
LC_CTYPE
selection is global and shared by all
threads.
wchar_t
representation, there is at least a two-step
process necessary to convert a text using the functions above. One would
have to select the source character set as the multibyte encoding,
convert the text into a wchar_t
text, select the destination
character set as the multibyte encoding, and convert the wide character
text to the multibyte (= destination) character set.
Even if this is possible (which is not guaranteed) it is a very tiring work. Plus it suffers from the other two raised points even more due to the steady changing of the locale.
The XPG2 standard defines a completely new set of functions, which has none of these limitations. They are not at all coupled to the selected locales, and they have no constraints on the character sets selected for source and destination. Only the set of available conversions limits them. The standard does not specify that any conversion at all must be available. Such availability is a measure of the quality of the implementation.
In the following text first the interface to iconv
and then the
conversion function, will be described. Comparisons with other
implementations will show what obstacles stand in the way of portable
applications. Finally, the implementation is described in so far as might
interest the advanced user who wants to extend conversion capabilities.
6.5.1 Generic Character Set Conversion Interface | ||
6.5.2 A complete iconv example | ||
6.5.3 Some Details about other iconv Implementations | ||
6.5.4 The iconv Implementation in the GNU C library |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This set of functions follows the traditional cycle of using a resource: open–use–close. The interface consists of three functions, each of which implements one step.
Before the interfaces are described it is necessary to introduce a data type. Just like other open–use–close interfaces the functions introduced here work using handles and the ‘iconv.h’ header defines a special type for the handles used.
This data type is an abstract type defined in ‘iconv.h’. The user must not assume anything about the definition of this type; it must be completely opaque.
Objects of this type can get assigned handles for the conversions using
the iconv
functions. The objects themselves need not be freed, but
the conversions for which the handles stand for have to.
The first step is the function to create a handle.
The iconv_open
function has to be used before starting a
conversion. The two parameters this function takes determine the
source and destination character set for the conversion, and if the
implementation has the possibility to perform such a conversion, the
function returns a handle.
If the wanted conversion is not available, the iconv_open
function
returns (iconv_t) -1
. In this case the global variable
errno
can have the following values:
EMFILE
The process already has OPEN_MAX
file descriptors open.
ENFILE
The system limit of open file is reached.
ENOMEM
Not enough memory to carry out the operation.
EINVAL
The conversion from fromcode to tocode is not supported.
It is not possible to use the same descriptor in different threads to perform independent conversions. The data structures associated with the descriptor include information about the conversion state. This must not be messed up by using it in different conversions.
An iconv
descriptor is like a file descriptor as for every use a
new descriptor must be created. The descriptor does not stand for all
of the conversions from fromset to toset.
The GNU C library implementation of iconv_open
has one
significant extension to other implementations. To ease the extension
of the set of available conversions, the implementation allows storing
the necessary files with data and code in an arbitrary number of
directories. How this extension must be written will be explained below
(see section The iconv
Implementation in the GNU C library). Here it is only important to say
that all directories mentioned in the GCONV_PATH
environment
variable are considered only if they contain a file ‘gconv-modules’.
These directories need not necessarily be created by the system
administrator. In fact, this extension is introduced to help users
writing and using their own, new conversions. Of course, this does not
work for security reasons in SUID binaries; in this case only the system
directory is considered and this normally is
‘prefix/lib/gconv’. The GCONV_PATH
environment
variable is examined exactly once at the first call of the
iconv_open
function. Later modifications of the variable have no
effect.
The iconv_open
function was introduced early in the X/Open
Portability Guide, version 2. It is supported by all commercial
Unices as it is required for the Unix branding. However, the quality and
completeness of the implementation varies widely. The iconv_open
function is declared in ‘iconv.h’.
The iconv
implementation can associate large data structure with
the handle returned by iconv_open
. Therefore, it is crucial to
free all the resources once all conversions are carried out and the
conversion is not needed anymore.
The iconv_close
function frees all resources associated with the
handle cd, which must have been returned by a successful call to
the iconv_open
function.
If the function call was successful the return value is 0.
Otherwise it is -1 and errno
is set appropriately.
Defined error are:
EBADF
The conversion descriptor is invalid.
The iconv_close
function was introduced together with the rest
of the iconv
functions in XPG2 and is declared in ‘iconv.h’.
The standard defines only one actual conversion function. This has, therefore, the most general interface: it allows conversion from one buffer to another. Conversion from a file to a buffer, vice versa, or even file to file can be implemented on top of it.
The iconv
function converts the text in the input buffer
according to the rules associated with the descriptor cd and
stores the result in the output buffer. It is possible to call the
function for the same text several times in a row since for stateful
character sets the necessary state information is kept in the data
structures associated with the descriptor.
The input buffer is specified by *inbuf
and it contains
*inbytesleft
bytes. The extra indirection is necessary for
communicating the used input back to the caller (see below). It is
important to note that the buffer pointer is of type char
and the
length is measured in bytes even if the input text is encoded in wide
characters.
The output buffer is specified in a similar way. *outbuf
points to the beginning of the buffer with at least
*outbytesleft
bytes room for the result. The buffer
pointer again is of type char
and the length is measured in
bytes. If outbuf or *outbuf
is a null pointer, the
conversion is performed but no output is available.
If inbuf is a null pointer, the iconv
function performs the
necessary action to put the state of the conversion into the initial
state. This is obviously a no-op for non-stateful encodings, but if the
encoding has a state, such a function call might put some byte sequences
in the output buffer, which perform the necessary state changes. The
next call with inbuf not being a null pointer then simply goes on
from the initial state. It is important that the programmer never makes
any assumption as to whether the conversion has to deal with states.
Even if the input and output character sets are not stateful, the
implementation might still have to keep states. This is due to the
implementation chosen for the GNU C library as it is described below.
Therefore an iconv
call to reset the state should always be
performed if some protocol requires this for the output text.
The conversion stops for one of three reasons. The first is that all characters from the input buffer are converted. This actually can mean two things: either all bytes from the input buffer are consumed or there are some bytes at the end of the buffer that possibly can form a complete character but the input is incomplete. The second reason for a stop is that the output buffer is full. And the third reason is that the input contains invalid characters.
In all of these cases the buffer pointers after the last successful conversion, for input and output buffer, are stored in inbuf and outbuf, and the available room in each buffer is stored in inbytesleft and outbytesleft.
Since the character sets selected in the iconv_open
call can be
almost arbitrary, there can be situations where the input buffer contains
valid characters, which have no identical representation in the output
character set. The behavior in this situation is undefined. The
current behavior of the GNU C library in this situation is to
return with an error immediately. This certainly is not the most
desirable solution; therefore, future versions will provide better ones,
but they are not yet finished.
If all input from the input buffer is successfully converted and stored
in the output buffer, the function returns the number of non-reversible
conversions performed. In all other cases the return value is
(size_t) -1
and errno
is set appropriately. In such cases
the value pointed to by inbytesleft is nonzero.
EILSEQ
The conversion stopped because of an invalid byte sequence in the input.
After the call, *inbuf
points at the first byte of the
invalid byte sequence.
E2BIG
The conversion stopped because it ran out of space in the output buffer.
EINVAL
The conversion stopped because of an incomplete byte sequence at the end of the input buffer.
EBADF
The cd argument is invalid.
The iconv
function was introduced in the XPG2 standard and is
declared in the ‘iconv.h’ header.
The definition of the iconv
function is quite good overall. It
provides quite flexible functionality. The only problems lie in the
boundary cases, which are incomplete byte sequences at the end of the
input buffer and invalid input. A third problem, which is not really
a design problem, is the way conversions are selected. The standard
does not say anything about the legitimate names, a minimal set of
available conversions. We will see how this negatively impacts other
implementations, as demonstrated below.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
iconv
example The example below features a solution for a common problem. Given that
one knows the internal encoding used by the system for wchar_t
strings, one often is in the position to read text from a file and store
it in wide character buffers. One can do this using mbsrtowcs
,
but then we run into the problems discussed above.
int
file2wcs (int fd, const char *charset, wchar_t *outbuf, size_t avail)
{
char inbuf[BUFSIZ];
size_t insize = 0;
char *wrptr = (char *) outbuf;
int result = 0;
iconv_t cd;
cd = iconv_open ("WCHAR_T", charset);
if (cd == (iconv_t) -1)
{
/* Something went wrong. */
if (errno == EINVAL)
error (0, 0, "conversion from '%s' to wchar_t not available",
charset);
else
perror ("iconv_open");
/* Terminate the output string. */
*outbuf = L'\0';
return -1;
}
while (avail > 0)
{
size_t nread;
size_t nconv;
char *inptr = inbuf;
/* Read more input. */
nread = read (fd, inbuf + insize, sizeof (inbuf) - insize);
if (nread == 0)
{
/* When we come here the file is completely read.
This still could mean there are some unused
characters in the |
This example shows the most important aspects of using the iconv
functions. It shows how successive calls to iconv
can be used to
convert large amounts of text. The user does not have to care about
stateful encodings as the functions take care of everything.
An interesting point is the case where iconv
returns an error and
errno
is set to EINVAL
. This is not really an error in the
transformation. It can happen whenever the input character set contains
byte sequences of more than one byte for some character and texts are not
processed in one piece. In this case there is a chance that a multibyte
sequence is cut. The caller can then simply read the remainder of the
takes and feed the offending bytes together with new character from the
input to iconv
and continue the work. The internal state kept in
the descriptor is not unspecified after such an event as is the
case with the conversion functions from the ISO C standard.
The example also shows the problem of using wide character strings with
iconv
. As explained in the description of the iconv
function above, the function always takes a pointer to a char
array and the available space is measured in bytes. In the example, the
output buffer is a wide character buffer; therefore, we use a local
variable wrptr of type char *
, which is used in the
iconv
calls.
This looks rather innocent but can lead to problems on platforms that
have tight restriction on alignment. Therefore the caller of iconv
has to make sure that the pointers passed are suitable for access of
characters from the appropriate character set. Since, in the
above case, the input parameter to the function is a wchar_t
pointer, this is the case (unless the user violates alignment when
computing the parameter). But in other situations, especially when
writing generic functions where one does not know what type of character
set one uses and, therefore, treats text as a sequence of bytes, it might
become tricky.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
iconv
Implementations This is not really the place to discuss the iconv
implementation
of other systems but it is necessary to know a bit about them to write
portable programs. The above mentioned problems with the specification
of the iconv
functions can lead to portability issues.
The first thing to notice is that, due to the large number of character sets in use, it is certainly not practical to encode the conversions directly in the C library. Therefore, the conversion information must come from files outside the C library. This is usually done in one or both of the following ways:
This solution is problematic as it requires a great deal of effort to apply to all character sets (potentially an infinite set). The differences in the structure of the different character sets is so large that many different variants of the table-processing functions must be developed. In addition, the generic nature of these functions make them slower than specifically implemented functions.
This solution provides much more flexibility. The C library itself contains only very little code and therefore reduces the general memory footprint. Also, with a documented interface between the C library and the loadable modules it is possible for third parties to extend the set of available conversion modules. A drawback of this solution is that dynamic loading must be available.
Some implementations in commercial Unices implement a mixture of these possibilities; the majority implement only the second solution. Using loadable modules moves the code out of the library itself and keeps the door open for extensions and improvements, but this design is also limiting on some platforms since not many platforms support dynamic loading in statically linked programs. On platforms without this capability it is therefore not possible to use this interface in statically linked programs. The GNU C library has, on ELF platforms, no problems with dynamic loading in these situations; therefore, this point is moot. The danger is that one gets acquainted with this situation and forgets about the restrictions on other systems.
A second thing to know about other iconv
implementations is that
the number of available conversions is often very limited. Some
implementations provide, in the standard release (not special
international or developer releases), at most 100 to 200 conversion
possibilities. This does not mean 200 different character sets are
supported; for example, conversions from one character set to a set of 10
others might count as 10 conversions. Together with the other direction
this makes 20 conversion possibilities used up by one character set. One
can imagine the thin coverage these platform provide. Some Unix vendors
even provide only a handful of conversions, which renders them useless for
almost all uses.
This directly leads to a third and probably the most problematic point.
The way the iconv
conversion functions are implemented on all
known Unix systems and the availability of the conversion functions from
character set A to B and the conversion from
B to C does not imply that the
conversion from A to C is available.
This might not seem unreasonable and problematic at first, but it is a quite big problem as one will notice shortly after hitting it. To show the problem we assume to write a program that has to convert from A to C. A call like
cd = iconv_open ("C", "A"); |
fails according to the assumption above. But what does the program do now? The conversion is necessary; therefore, simply giving up is not an option.
This is a nuisance. The iconv
function should take care of this.
But how should the program proceed from here on? If it tries to convert
to character set B, first the two iconv_open
calls
cd1 = iconv_open ("B", "A"); |
and
cd2 = iconv_open ("C", "B"); |
will succeed, but how to find B?
Unfortunately, the answer is: there is no general solution. On some systems guessing might help. On those systems most character sets can convert to and from UTF-8 encoded ISO 10646 or Unicode text. Beside this only some very system-specific methods can help. Since the conversion functions come from loadable modules and these modules must be stored somewhere in the filesystem, one could try to find them and determine from the available file which conversions are available and whether there is an indirect route from A to C.
This example shows one of the design errors of iconv
mentioned
above. It should at least be possible to determine the list of available
conversion programmatically so that if iconv_open
says there is no
such conversion, one could make sure this also is true for indirect
routes.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
iconv
Implementation in the GNU C library After reading about the problems of iconv
implementations in the
last section it is certainly good to note that the implementation in
the GNU C library has none of the problems mentioned above. What
follows is a step-by-step analysis of the points raised above. The
evaluation is based on the current state of the development (as of
January 1999). The development of the iconv
functions is not
complete, but basic functionality has solidified.
The GNU C library's iconv
implementation uses shared loadable
modules to implement the conversions. A very small number of
conversions are built into the library itself but these are only rather
trivial conversions.
All the benefits of loadable modules are available in the GNU C library
implementation. This is especially appealing since the interface is
well documented (see below), and it, therefore, is easy to write new
conversion modules. The drawback of using loadable objects is not a
problem in the GNU C library, at least on ELF systems. Since the
library is able to load shared objects even in statically linked
binaries, static linking need not be forbidden in case one wants to use
iconv
.
The second mentioned problem is the number of supported conversions. Currently, the GNU C library supports more than 150 character sets. The way the implementation is designed the number of supported conversions is greater than 22350 (150 times 149). If any conversion from or to a character set is missing, it can be added easily.
Particularly impressive as it may be, this high number is due to the
fact that the GNU C library implementation of iconv
does not have
the third problem mentioned above (i.e., whenever there is a conversion
from a character set A to B and from
B to C it is always possible to convert from
A to C directly). If the iconv_open
returns an error and sets errno
to EINVAL
, there is no
known way, directly or indirectly, to perform the wanted conversion.
Triangulation is achieved by providing for each character set a conversion from and to UCS-4 encoded ISO 10646. Using ISO 10646 as an intermediate representation it is possible to triangulate (i.e., convert with an intermediate representation).
There is no inherent requirement to provide a conversion to ISO 10646 for a new character set, and it is also possible to provide other conversions where neither source nor destination character set is ISO 10646. The existing set of conversions is simply meant to cover all conversions that might be of interest.
All currently available conversions use the triangulation method above, making conversion run unnecessarily slow. If, for example, somebody often needs the conversion from ISO-2022-JP to EUC-JP, a quicker solution would involve direct conversion between the two character sets, skipping the input to ISO 10646 first. The two character sets of interest are much more similar to each other than to ISO 10646.
In such a situation one easily can write a new conversion and provide it
as a better alternative. The GNU C library iconv
implementation
would automatically use the module implementing the conversion if it is
specified to be more efficient.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
All information about the available conversions comes from a file named
‘gconv-modules’, which can be found in any of the directories along
the GCONV_PATH
. The ‘gconv-modules’ files are line-oriented
text files, where each of the lines has one of the following formats:
alias
define an alias name for a character
set. Two more words are expected on the line. The first word
defines the alias name, and the second defines the original name of the
character set. The effect is that it is possible to use the alias name
in the fromset or toset parameters of iconv_open
and
achieve the same result as when using the real character set name.
This is quite important as a character set has often many different
names. There is normally an official name but this need not correspond to
the most popular name. Beside this many character sets have special
names that are somehow constructed. For example, all character sets
specified by the ISO have an alias of the form ISO-IR-nnn
where nnn is the registration number. This allows programs that
know about the registration number to construct character set names and
use them in iconv_open
calls. More on the available names and
aliases follows below.
module
introduce an available conversion
module. These lines must contain three or four more words.
The first word specifies the source character set, the second word the destination character set of conversion implemented in this module, and the third word is the name of the loadable module. The filename is constructed by appending the usual shared object suffix (normally ‘.so’) and this file is then supposed to be found in the same directory the ‘gconv-modules’ file is in. The last word on the line, which is optional, is a numeric value representing the cost of the conversion. If this word is missing, a cost of 1 is assumed. The numeric value itself does not matter that much; what counts are the relative values of the sums of costs for all possible conversion paths. Below is a more precise description of the use of the cost value.
Returning to the example above where one has written a module to directly convert from ISO-2022-JP to EUC-JP and back. All that has to be done is to put the new module, let its name be ISO2022JP-EUCJP.so, in a directory and add a file ‘gconv-modules’ with the following content in the same directory:
module ISO-2022-JP// EUC-JP// ISO2022JP-EUCJP 1 module EUC-JP// ISO-2022-JP// ISO2022JP-EUCJP 1 |
To see why this is sufficient, it is necessary to understand how the
conversion used by iconv
(and described in the descriptor) is
selected. The approach to this problem is quite simple.
At the first call of the iconv_open
function the program reads
all available ‘gconv-modules’ files and builds up two tables: one
containing all the known aliases and another that contains the
information about the conversions and which shared object implements
them.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
iconv
The set of available conversions form a directed graph with weighted
edges. The weights on the edges are the costs specified in the
‘gconv-modules’ files. The iconv_open
function uses an
algorithm suitable for search for the best path in such a graph and so
constructs a list of conversions that must be performed in succession
to get the transformation from the source to the destination character
set.
Explaining why the above ‘gconv-modules’ files allows the
iconv
implementation to resolve the specific ISO-2022-JP to
EUC-JP conversion module instead of the conversion coming with the
library itself is straightforward. Since the latter conversion takes two
steps (from ISO-2022-JP to ISO 10646 and then from ISO 10646 to
EUC-JP), the cost is 1+1 = 2. The above ‘gconv-modules’
file, however, specifies that the new conversion modules can perform this
conversion with only the cost of 1.
A mysterious item about the ‘gconv-modules’ file above (and also
the file coming with the GNU C library) are the names of the character
sets specified in the module
lines. Why do almost all the names
end in //
? And this is not all: the names can actually be
regular expressions. At this point in time this mystery should not be
revealed, unless you have the relevant spell-casting materials: ashes
from an original DOS 6.2 boot disk burnt in effigy, a crucifix
blessed by St. Emacs, assorted herbal roots from Central America, sand
from Cebu, etc. Sorry! The part of the implementation where
this is used is not yet finished. For now please simply follow the
existing examples. It'll become clearer once it is. –drepper
A last remark about the ‘gconv-modules’ is about the names not
ending with //
. A character set named INTERNAL
is often
mentioned. From the discussion above and the chosen name it should have
become clear that this is the name for the representation used in the
intermediate step of the triangulation. We have said that this is UCS-4
but actually that is not quite right. The UCS-4 specification also
includes the specification of the byte ordering used. Since a UCS-4 value
consists of four bytes, a stored value is effected by byte ordering. The
internal representation is not the same as UCS-4 in case the byte
ordering of the processor (or at least the running process) is not the
same as the one required for UCS-4. This is done for performance reasons
as one does not want to perform unnecessary byte-swapping operations if
one is not interested in actually seeing the result in UCS-4. To avoid
trouble with endianness, the internal representation consistently is named
INTERNAL
even on big-endian systems where the representations are
identical.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
iconv
module data structures So far this section has described how modules are located and considered to be used. What remains to be described is the interface of the modules so that one can write new ones. This section describes the interface as it is in use in January 1999. The interface will change a bit in the future but, with luck, only in an upwardly compatible way.
The definitions necessary to write new modules are publicly available in the non-standard header ‘gconv.h’. The following text, therefore, describes the definitions from this header file. First, however, it is necessary to get an overview.
From the perspective of the user of iconv
the interface is quite
simple: the iconv_open
function returns a handle that can be used
in calls to iconv
, and finally the handle is freed with a call to
iconv_close
. The problem is that the handle has to be able to
represent the possibly long sequences of conversion steps and also the
state of each conversion since the handle is all that is passed to the
iconv
function. Therefore, the data structures are really the
elements necessary to understanding the implementation.
We need two different kinds of data structures. The first describes the conversion and the second describes the state etc. There are really two type definitions like this in ‘gconv.h’.
This data structure describes one conversion a module can perform. For each function in a loaded module with conversion functions there is exactly one object of this type. This object is shared by all users of the conversion (i.e., this object does not contain any information corresponding to an actual conversion; it only describes the conversion itself).
struct __gconv_loaded_object *__shlib_handle
const char *__modname
int __counter
All these elements of the structure are used internally in the C library to coordinate loading and unloading the shared. One must not expect any of the other elements to be available or initialized.
const char *__from_name
const char *__to_name
__from_name
and __to_name
contain the names of the source and
destination character sets. They can be used to identify the actual
conversion to be carried out since one module might implement conversions
for more than one character set and/or direction.
gconv_fct __fct
gconv_init_fct __init_fct
gconv_end_fct __end_fct
These elements contain pointers to the functions in the loadable module. The interface will be explained below.
int __min_needed_from
int __max_needed_from
int __min_needed_to
int __max_needed_to;
These values have to be supplied in the init function of the module. The
__min_needed_from
value specifies how many bytes a character of
the source character set at least needs. The __max_needed_from
specifies the maximum value that also includes possible shift sequences.
The __min_needed_to
and __max_needed_to
values serve the
same purpose as __min_needed_from
and __max_needed_from
but
this time for the destination character set.
It is crucial that these values be accurate since otherwise the conversion functions will have problems or not work at all.
int __stateful
This element must also be initialized by the init function.
int __stateful
is nonzero if the source character set is stateful.
Otherwise it is zero.
void *__data
This element can be used freely by the conversion functions in the
module. void *__data
can be used to communicate extra information
from one call to another. void *__data
need not be initialized if
not needed at all. If void *__data
element is assigned a pointer
to dynamically allocated memory (presumably in the init function) it has
to be made sure that the end function deallocates the memory. Otherwise
the application will leak memory.
It is important to be aware that this data structure is shared by all
users of this specification conversion and therefore the __data
element must not contain data specific to one specific use of the
conversion function.
This is the data structure that contains the information specific to each use of the conversion functions.
char *__outbuf
char *__outbufend
These elements specify the output buffer for the conversion step. The
__outbuf
element points to the beginning of the buffer, and
__outbufend
points to the byte following the last byte in the
buffer. The conversion function must not assume anything about the size
of the buffer but it can be safely assumed the there is room for at
least one complete character in the output buffer.
Once the conversion is finished, if the conversion is the last step, the
__outbuf
element must be modified to point after the last byte
written into the buffer to signal how much output is available. If this
conversion step is not the last one, the element must not be modified.
The __outbufend
element must not be modified.
int __is_last
This element is nonzero if this conversion step is the last one. This information is necessary for the recursion. See the description of the conversion function internals below. This element must never be modified.
int __invocation_counter
The conversion function can use this element to see how many calls of the conversion function already happened. Some character sets require a certain prolog when generating output, and by comparing this value with zero, one can find out whether it is the first call and whether, therefore, the prolog should be emitted. This element must never be modified.
int __internal_use
This element is another one rarely used but needed in certain
situations. It is assigned a nonzero value in case the conversion
functions are used to implement mbsrtowcs
et.al. (i.e., the
function is not used directly through the iconv
interface).
This sometimes makes a difference as it is expected that the
iconv
functions are used to translate entire texts while the
mbsrtowcs
functions are normally used only to convert single
strings and might be used multiple times to convert entire texts.
But in this situation we would have problem complying with some rules of
the character set specification. Some character sets require a prolog,
which must appear exactly once for an entire text. If a number of
mbsrtowcs
calls are used to convert the text, only the first call
must add the prolog. However, because there is no communication between the
different calls of mbsrtowcs
, the conversion functions have no
possibility to find this out. The situation is different for sequences
of iconv
calls since the handle allows access to the needed
information.
The int __internal_use
element is mostly used together with
__invocation_counter
as follows:
if (!data->__internal_use
&& data->__invocation_counter == 0)
/* Emit prolog. */
…
|
This element must never be modified.
mbstate_t *__statep
The __statep
element points to an object of type mbstate_t
(see section Representing the state of the conversion). The conversion of a stateful character
set must use the object pointed to by __statep
to store
information about the conversion state. The __statep
element
itself must never be modified.
mbstate_t __state
This element must never be used directly. It is only part of this structure to have the needed space allocated.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
iconv
module interfaces With the knowledge about the data structures we now can describe the conversion function itself. To understand the interface a bit of knowledge is necessary about the functionality in the C library that loads the objects with the conversions.
It is often the case that one conversion is used more than once (i.e.,
there are several iconv_open
calls for the same set of character
sets during one program run). The mbsrtowcs
et.al. functions in
the GNU C library also use the iconv
functionality, which
increases the number of uses of the same functions even more.
Because of this multiple use of conversions, the modules do not get
loaded exclusively for one conversion. Instead a module once loaded can
be used by an arbitrary number of iconv
or mbsrtowcs
calls
at the same time. The splitting of the information between conversion-
function-specific information and conversion data makes this possible.
The last section showed the two data structures used to do this.
This is of course also reflected in the interface and semantics of the functions that the modules must provide. There are three functions that must have the following names:
gconv_init
The gconv_init
function initializes the conversion function
specific data structure. This very same object is shared by all
conversions that use this conversion and, therefore, no state information
about the conversion itself must be stored in here. If a module
implements more than one conversion, the gconv_init
function will
be called multiple times.
gconv_end
The gconv_end
function is responsible for freeing all resources
allocated by the gconv_init
function. If there is nothing to do,
this function can be missing. Special care must be taken if the module
implements more than one conversion and the gconv_init
function
does not allocate the same resources for all conversions.
gconv
This is the actual conversion function. It is called to convert one
block of text. It gets passed the conversion step information
initialized by gconv_init
and the conversion data, specific to
this use of the conversion functions.
There are three data types defined for the three module interface functions and these define the interface.
This specifies the interface of the initialization function of the module. It is called exactly once for each conversion the module implements.
As explained in the description of the struct __gconv_step
data
structure above the initialization function has to initialize parts of
it.
__min_needed_from
__max_needed_from
__min_needed_to
__max_needed_to
These elements must be initialized to the exact numbers of the minimum and maximum number of bytes used by one character in the source and destination character sets, respectively. If the characters all have the same size, the minimum and maximum values are the same.
__stateful
This element must be initialized to an nonzero value if the source character set is stateful. Otherwise it must be zero.
If the initialization function needs to communicate some information
to the conversion function, this communication can happen using the
__data
element of the __gconv_step
structure. But since
this data is shared by all the conversions, it must not be modified by
the conversion function. The example below shows how this can be used.
#define MIN_NEEDED_FROM 1 #define MAX_NEEDED_FROM 4 #define MIN_NEEDED_TO 4 #define MAX_NEEDED_TO 4 int gconv_init (struct __gconv_step *step) { /* Determine which direction. */ struct iso2022jp_data *new_data; enum direction dir = illegal_dir; enum variant var = illegal_var; int result; if (__strcasecmp (step->__from_name, "ISO-2022-JP//") == 0) { dir = from_iso2022jp; var = iso2022jp; } else if (__strcasecmp (step->__to_name, "ISO-2022-JP//") == 0) { dir = to_iso2022jp; var = iso2022jp; } else if (__strcasecmp (step->__from_name, "ISO-2022-JP-2//") == 0) { dir = from_iso2022jp; var = iso2022jp2; } else if (__strcasecmp (step->__to_name, "ISO-2022-JP-2//") == 0) { dir = to_iso2022jp; var = iso2022jp2; } result = __GCONV_NOCONV; if (dir != illegal_dir) { new_data = (struct iso2022jp_data *) malloc (sizeof (struct iso2022jp_data)); result = __GCONV_NOMEM; if (new_data != NULL) { new_data->dir = dir; new_data->var = var; step->__data = new_data; if (dir == from_iso2022jp) { step->__min_needed_from = MIN_NEEDED_FROM; step->__max_needed_from = MAX_NEEDED_FROM; step->__min_needed_to = MIN_NEEDED_TO; step->__max_needed_to = MAX_NEEDED_TO; } else { step->__min_needed_from = MIN_NEEDED_TO; step->__max_needed_from = MAX_NEEDED_TO; step->__min_needed_to = MIN_NEEDED_FROM; step->__max_needed_to = MAX_NEEDED_FROM + 2; } /* Yes, this is a stateful encoding. */ step->__stateful = 1; result = __GCONV_OK; } } return result; } |
The function first checks which conversion is wanted. The module from which this function is taken implements four different conversions; which one is selected can be determined by comparing the names. The comparison should always be done without paying attention to the case.
Next, a data structure, which contains the necessary information about
which conversion is selected, is allocated. The data structure
struct iso2022jp_data
is locally defined since, outside the
module, this data is not used at all. Please note that if all four
conversions this modules supports are requested there are four data
blocks.
One interesting thing is the initialization of the __min_
and
__max_
elements of the step data object. A single ISO-2022-JP
character can consist of one to four bytes. Therefore the
MIN_NEEDED_FROM
and MAX_NEEDED_FROM
macros are defined
this way. The output is always the INTERNAL
character set (aka
UCS-4) and therefore each character consists of exactly four bytes. For
the conversion from INTERNAL
to ISO-2022-JP we have to take into
account that escape sequences might be necessary to switch the character
sets. Therefore the __max_needed_to
element for this direction
gets assigned MAX_NEEDED_FROM + 2
. This takes into account the
two bytes needed for the escape sequences to single the switching. The
asymmetry in the maximum values for the two directions can be explained
easily: when reading ISO-2022-JP text, escape sequences can be handled
alone (i.e., it is not necessary to process a real character since the
effect of the escape sequence can be recorded in the state information).
The situation is different for the other direction. Since it is in
general not known which character comes next, one cannot emit escape
sequences to change the state in advance. This means the escape
sequences that have to be emitted together with the next character.
Therefore one needs more room than only for the character itself.
The possible return values of the initialization function are:
__GCONV_OK
The initialization succeeded
__GCONV_NOCONV
The requested conversion is not supported in the module. This can happen if the ‘gconv-modules’ file has errors.
__GCONV_NOMEM
Memory required to store additional information could not be allocated.
The function called before the module is unloaded is significantly easier. It often has nothing at all to do; in which case it can be left out completely.
The task of this function is to free all resources allocated in the
initialization function. Therefore only the __data
element of
the object pointed to by the argument is of interest. Continuing the
example from the initialization function, the finalization function
looks like this:
void gconv_end (struct __gconv_step *data) { free (data->__data); } |
The most important function is the conversion function itself, which can get quite complicated for complex character sets. But since this is not of interest here, we will only describe a possible skeleton for the conversion function.
The conversion function can be called for two basic reason: to convert
text or to reset the state. From the description of the iconv
function it can be seen why the flushing mode is necessary. What mode
is selected is determined by the sixth argument, an integer. This
argument being nonzero means that flushing is selected.
Common to both modes is where the output buffer can be found. The
information about this buffer is stored in the conversion step data. A
pointer to this information is passed as the second argument to this
function. The description of the struct __gconv_step_data
structure has more information on the conversion step data.
What has to be done for flushing depends on the source character set.
If the source character set is not stateful, nothing has to be done.
Otherwise the function has to emit a byte sequence to bring the state
object into the initial state. Once this all happened the other
conversion modules in the chain of conversions have to get the same
chance. Whether another step follows can be determined from the
__is_last
element of the step data structure to which the first
parameter points.
The more interesting mode is when actual text has to be converted. The first step in this case is to convert as much text as possible from the input buffer and store the result in the output buffer. The start of the input buffer is determined by the third argument, which is a pointer to a pointer variable referencing the beginning of the buffer. The fourth argument is a pointer to the byte right after the last byte in the buffer.
The conversion has to be performed according to the current state if the
character set is stateful. The state is stored in an object pointed to
by the __statep
element of the step data (second argument). Once
either the input buffer is empty or the output buffer is full the
conversion stops. At this point, the pointer variable referenced by the
third parameter must point to the byte following the last processed
byte (i.e., if all of the input is consumed, this pointer and the fourth
parameter have the same value).
What now happens depends on whether this step is the last one. If it is
the last step, the only thing that has to be done is to update the
__outbuf
element of the step data structure to point after the
last written byte. This update gives the caller the information on how
much text is available in the output buffer. In addition, the variable
pointed to by the fifth parameter, which is of type size_t
, must
be incremented by the number of characters (not bytes) that were
converted in a non-reversible way. Then, the function can return.
In case the step is not the last one, the later conversion functions have to get a chance to do their work. Therefore, the appropriate conversion function has to be called. The information about the functions is stored in the conversion data structures, passed as the first parameter. This information and the step data are stored in arrays, so the next element in both cases can be found by simple pointer arithmetic:
int gconv (struct __gconv_step *step, struct __gconv_step_data *data, const char **inbuf, const char *inbufend, size_t *written, int do_flush) { struct __gconv_step *next_step = step + 1; struct __gconv_step_data *next_data = data + 1; … |
The next_step
pointer references the next step information and
next_data
the next data record. The call of the next function
therefore will look similar to this:
next_step->__fct (next_step, next_data, &outerr, outbuf, written, 0) |
But this is not yet all. Once the function call returns the conversion
function might have some more to do. If the return value of the function
is __GCONV_EMPTY_INPUT
, more room is available in the output
buffer. Unless the input buffer is empty the conversion, functions start
all over again and process the rest of the input buffer. If the return
value is not __GCONV_EMPTY_INPUT
, something went wrong and we have
to recover from this.
A requirement for the conversion function is that the input buffer pointer (the third argument) always point to the last character that was put in converted form into the output buffer. This is trivially true after the conversion performed in the current step, but if the conversion functions deeper downstream stop prematurely, not all characters from the output buffer are consumed and, therefore, the input buffer pointers must be backed off to the right position.
Correcting the input buffers is easy to do if the input and output character sets have a fixed width for all characters. In this situation we can compute how many characters are left in the output buffer and, therefore, can correct the input buffer pointer appropriately with a similar computation. Things are getting tricky if either character set has characters represented with variable length byte sequences, and it gets even more complicated if the conversion has to take care of the state. In these cases the conversion has to be performed once again, from the known state before the initial conversion (i.e., if necessary the state of the conversion has to be reset and the conversion loop has to be executed again). The difference now is that it is known how much input must be created, and the conversion can stop before converting the first unused character. Once this is done the input buffer pointers must be updated again and the function can return.
One final thing should be mentioned. If it is necessary for the
conversion to know whether it is the first invocation (in case a prolog
has to be emitted), the conversion function should increment the
__invocation_counter
element of the step data structure just
before returning to the caller. See the description of the struct
__gconv_step_data
structure above for more information on how this can
be used.
The return value must be one of the following values:
__GCONV_EMPTY_INPUT
All input was consumed and there is room left in the output buffer.
__GCONV_FULL_OUTPUT
No more room in the output buffer. In case this is not the last step this value is propagated down from the call of the next conversion function in the chain.
__GCONV_INCOMPLETE_INPUT
The input buffer is not entirely empty since it contains an incomplete character sequence.
The following example provides a framework for a conversion function. In case a new conversion has to be written the holes in this implementation have to be filled and that is it.
int gconv (struct __gconv_step *step, struct __gconv_step_data *data, const char **inbuf, const char *inbufend, size_t *written, int do_flush) { struct __gconv_step *next_step = step + 1; struct __gconv_step_data *next_data = data + 1; gconv_fct fct = next_step->__fct; int status; /* If the function is called with no input this means we have to reset to the initial state. The possibly partly converted input is dropped. */ if (do_flush) { status = __GCONV_OK; /* Possible emit a byte sequence which put the state object into the initial state. */ /* Call the steps down the chain if there are any but only if we successfully emitted the escape sequence. */ if (status == __GCONV_OK && ! data->__is_last) status = fct (next_step, next_data, NULL, NULL, written, 1); } else { /* We preserve the initial values of the pointer variables. */ const char *inptr = *inbuf; char *outbuf = data->__outbuf; char *outend = data->__outbufend; char *outptr; do { /* Remember the start value for this round. */ inptr = *inbuf; /* The outbuf buffer is empty. */ outptr = outbuf; /* For stateful encodings the state must be safe here. */ /* Run the conversion loop. |
This information should be sufficient to write new modules. Anybody doing so should also take a look at the available source code in the GNU C library sources. It contains many examples of working and optimized modules.
[ << ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This document was generated by root on January, 9 2009 using texi2html 1.78.