VAciel

Using ProASIC3/E RAM as Multipliers

Introduction

Multiplication is one of the more area intensive functions in FPGAs. Traditional multiplication techniques
use the digital equivalent of long-hand multiplication. These techniques are basically shift-and-add
procedures, which usually result in many levels of logic, and limit performance. Pipelining can help to
improve the clock performance of the multipliers in this case, at the cost of more area.

Most people multiply by individually multiplying digits and referring back to memorized multiplication
tables. A similar technique can be employed using the embedded memory on an FPGA. The result of using
the RAM as a look-up table multiplier incurs only the delay of the memory access and has the advantage
of not consuming a large number of user gates on the FPGA.

This document will address three ways of using RAM blocks as multipliers. The basic single look-up table
multiplier, the partial product multiplier, and a RAM-based constant coefficient multiplier.

For the ProASIC3/E devices, the single look-up table approach can create a very fast but narrow, four-bit
multiplier. The partial product multiplier approach uses logic to reduce the amount of memory required, but
is slower than a pure look-up table. In fact, the pure logic multiplier implementation for the ProASIC3/E
available in the Actel ACTgen core generator can produce a multiplier that runs at a frequency comparable
to the partial product implementation, though the pure logic approach uses more core tiles. The constant
coefficient multiplier is the most efficient implementation, since it uses a minimum of additional logic gates
and still maintains the performance of the basic look-up table multiplier.

Basic Look-Up Table (LUT) Based Multipliers

A basic LUT-based multiplier is simply a look-up table with the addresses arranged so that part of the
address is the multiplicand and the other part is the multiplier. The data width should be set to the sum of
the address width to accommodate the product.

Implementing a Basic LUT Based Multiplier

In the case where a four-bit value is multiplied by a four-bit value, you will need a memory block that is
eight bits wide and 256 words deep. The first four bits of the address can be configured as the
multiplicand and the second four bits can be configured as the multiplier. The memory will store the
appropriate product values. To multiply the upper four bits by the lower four bits, feed both values into
the address and clock the memory. The appropriate product value will appear on the RAM output. A
diagram of this LUT-based multiplier implementation is shown in Figure 1 on page 2.

Since the memory block in the ProASIC3/E is synchronous, this configuration will result in a synchronous
multiplier, whose clock frequency is only limited by the data access time of the memory.

While this approach is more efficient than implementing multipliers in gates, it can consume a large
amount of memory. The amount of memory required increases with the square of the bit width. The
example above demonstrates a 4x4 bit multiplier with 256 eight-bit words of storage required. For an 8x8
bit multiplier, 65,536 16-bit words must be stored using this technique.

March 2005 1
© 2005 Actel Corporation

| Using ProASIC3/E RAM as Multipliers

|Mu|tip|icand[3:0]|

|
| |
: |Address[7:0]| DataOut[7:0] | | | Product[7:0] |
— : RAM i
| Multiplier[3:0] | : 8 bits wide |
| by 256 words I
| deep I
[ok] | |
[|
I |
|

Figure 1 e Basic Single LUT-Based Multiplier

Partial Product Multipliers

One way to mitigate the amount of memory required is to use partial product multiplication. This
technique combines the look-up table approach with elements of long-hand multiplication. For example,
to multiply 24 x 43 = 1,032 using long hand, simplify the problem into the sum of four multiply functions
and three add functions (Figure 2).

(4X3 + ((2X3) X 10)) + (((4X4) + ((2X4) X 10)) X 10) = 1,032

EQ1

4 < A 4 < A 4 < A 4 < A
X43 <B x43<B X43 < B X43 < B
12 12 12 12
60 < Shifted by 1 < Shifted by 1 < Shifted by 2
decimal place 16 decimal place decimal places
8
1,032 1,032 1,032 1,032

Figure 2 e Partial Product Multiplier Techniques

Implementing a Partial Product Multiplier

In logic, this same technique can be used to reduce the amount of memory required to perform a multiply
function. Using a basic look-up table technique, an eight-bit by eight-bit multiply would require 128 kb of
storage. As shown in Figure 3 on page 3, using partial product multipliers, the same procedure can be
accomplished using 1 kb of storage.

In order to accomplish this in logic, using A as the multiplicand and B as the multiplier, take the lower four
bits of A and multiply it by the lower four bits of B using the look-up table technique. Then take the upper
four bits of A and multiply it by the lower four bits of B and shift the partial product result to the left by
four. Then add the two results together for the first part of the product.

For the second part of the product, multiply the lower four bits of A by the upper four bits of B. Then do
the same with the upper four bits of both A and B and shift this partial product value to the left by four.
Add the two values of the previous calculation and shift the whole result to the left by four.

Then add the first part of the product to the second part of the product for the final result.

YActel

Using ProASIC3/E RAM as Multipliers

While this technique is not as fast as implementing the entire multiply as a single memory element, it does
greatly reduce the amount of memory required at the expense of using more core tiles.

A0l 4xa | 8
B[320]74;
®
AL3:0]—4— axa | 8
<<4
B[7:4]74; 12
16
A[320]74; ax4 | 8 <+
B[7:4]74;
<+ 12) 16
Al7:4] 24— axa | 8
<<4
B[7:4]74; 12

Figure 3 o Partial Product Multiplier Logic Implementation

Constant Coefficient Multiplier

A third approach to using memory blocks as multipliers is employing a constant coefficient multiplier. In
many cases, especially in DSP applications, the multiplicand remains constant and only the multiplier
varies.

Implementing a Constant Coefficient Multiplier

In this approach, only the multiplier must be assigned to the address lines of the memory block. The
multiplicand is predetermined and the memory block is loaded with the appropriate product values
(Figure 4 on page 4). For example, given that the multiplicand is always 4/h, if the multiplier is B/h, when
that value is sent to the address of the memory block, it will return the stored value 2C/h.

This type of multiplier scales linearly with the width of the values being multiplied. While a basic look-up
table 8x8 multiplier uses one block of 65536x16 bit words, 128 kb, of storage, and the partial product
look-up table multiplier uses four blocks of 256x8 bit words, 1 kb, the constant coefficient multiplier
requires one block of 256x16 bit words, 0.5 kb, and does not incur the cost of the additional logic and
delay incurred by using the partial product multiplier.

| Using ProASIC3/E RAM as Multipliers

The multiplicand is predetermined.

|
|
[Multiplier[7:0] | | [Address[7:0] | [DataOut[15:0]| : [Product[15:0] |

1 RAM |

I 8 bits wide |

: by 256 words |

| Clock || | _Clock | deep :

T p |

l |
- __ —

Figure 4 o Constant Coefficient Multiplier Logic

Performance and Utilization

Because of architectural variations, the effectiveness of each approach varies between device families.
Table 1 shows, for a 4x4 multiplier, the RAM-based multiplier is much faster than the equivalent Booth
multiplier provided by the ACTgen core generator. The Booth multiplier is an optimized multiplier that
reduces the number of stages required to perform the multiplication function. However, as we expand to
an 8x8 multiplier, the amount of memory required to implement the 8x8 multiplier in RAM is too large to
be practical, and the Booth multiplier provided by ACTgen performs as well as implementing a partial
product RAM multiplier. Also, as shown in Table 1, pipelining either the booth multiplier or the partial
product multiplier increases the performance of both, and both implementations run at similar speeds.
However, a constant coefficient multiplier is clearly much faster than either implementation.

Utilization is another consideration for choosing a multiplier. If your design leaves you with unused RAM
cells, employing the unused RAM as multipliers can save core tiles. Table 1 shows the number of core tiles
required to implement each of the multipliers. Not counting the logic required to load the RAM cells, the
4x4 RAM multiplier requires only the RAM cell, and the eight-bit constant coefficient multiplier only
requires two cells. The partial product multiplier uses a third fewer tiles to implement as the Booth
multiplier.

Table 1 o Performance and Utilization of Multiplier Variations

Utilization
Multiplier Used Performance MHz Core Tiles RAM Blocks
4x4 RAM multiplier 293 0 1
4x4 Booth multiplier 98 79 0
4x4 pipelined Booth multiplier 158 92 0
8x8 Booth multiplier 68 305 0
8x8 Booth multiplier with 1 pipeline stage 102 344 0
8x8 Booth multiplier with 2 pipeline stage 123 386 0
8x8 Booth multiplier with 3 pipeline stage 120 431 0
8x8 partial product multiplier 63 196 4
8x8 partial product multiplier with pipelining 129 311 4
8x8 constant coefficient multiplier 281 2 1

Note: Timing numbers are based on worst-case, commercial numbers for an A3P250 in a-2 speed grade.

YActel

Using ProASIC3/E RAM as Multipliers

Constant Coefficient Multiplier Example

The constant coefficient multiplier is the most efficient implementation and will be the multiplier used in
this example. The RAM block must first be loaded with data in order to produce the correct product
values. The ProASIC3/E RAM makes preloading the memory block very simple. Since the memory in the
ProASIC3/E has two ports, one port can be dedicated to reading the data for multiply and the other can be
dedicated to loading data. The data can either be loaded from an external source, such as a
microprocessor, using the logic within the device, or through the JTAG port using the UJTAG feature.

The UJTAG feature allows the user to interface with the internal array of the device through the JTAG
ports. This allows you to send signals through the JTAG port to your design. One of the uses of this feature
is to load data into RAM blocks. Refer to the ProASIC3/E RAMI/FIFO Blocks application note for details on
how to load a RAM block using the UJTAG.

The example in Figure 5 uses logic within the device as a simple memory loader to preload the RAM for
use as a four-bit constant coefficient multiplier with a four-bit multiplicand value of E/h. "Appendix 1" on
page 7 includes the design files and the ACTgen generation screens for this example. The memory loader
is simply a counter that cycles through the addresses available, with an adder that increments the product
values and feeds them into a register file that passes the correct data for each address. Once the loader is
finished, the load signal is deasserted, and the RAM block is ready to be used as a multiplier. Since the
memory in the ProASIC3/E is synchronous, the multiplier acts as a synchronous multiplier.

Load Port
Load Address

RAM
8 bits wide

Load Data by 256 words

-
o
Q
o
]
=

|
|
|
|
[DataOut[15:0]| |Product[15:0]| |
|
|
|
|

Figure 5 o Constant Coefficient Multiplier Logic

http://www.actel.com/documents/PA3FROM_AN.pdf

| Using ProASIC3/E RAM as Multipliers

Additional Considerations

While in many cases using RAM blocks as multipliers can save area, there is overhead required in using this
approach. The RAM block must be loaded with the correct values before they can be used as multipliers.
An interface to load and increment the RAM block can then load the data on power-up.

A second approach is using a multiplier or adder to generate values in the RAM block to be loaded
without having to have the values prestored. However, using either a multiplier or an adder to generate
the values takes additional logic and does require time to create and store the proper values.

If a microprocessor is available in the system, it can also be used to generate the proper values and load
them into the RAM blocks. This approach avoids the additional storage required by the first approach and
the logic overhead of the additional multiplier or adder in the second approach.

Conclusion

Using the ProASIC3/E memory as look-up tables can greatly increase the speed of functions that require
multiplication. Several techniques can be used, depending upon the widths and types of the values to be
multiplied. For applications where one of the values being multiplied remains constant, often found in
DSP functions, the constant coefficient multiplier is the fastest and the most efficient look-up table
multiplier.

Related Documents

Application Notes

ProASIC3/E SRAMI/FIFO Blocks
http://www.actel.com/documents/PA3FROM_AN.pdf

List of Changes

Previous Version Changes in the current version 51900074-1/3.05* Page

51900074-0/1.05* Table 1 was updated. 4

Note: *The part number is located on the last page of the document.

http://www.actel.com/documents/PA3E_FROM_AN.pdf
http://www.actel.com/documents/PA3_E_FROM_AN.pdf

YActel

Using ProASIC3/E RAM as Multipliers
Appendix 1

Design Example: 8 Bit Constant Coefficient Multiplier

The design implemented here is the example for the eight-bit constant coefficient multiplier described
above. This design includes a loading module that loads the proper product values into the RAM and
prepared it for use as a multiplier.

After briefly asserting the active low clear signal, bring clear and load signals high. Allow the clk to cycle
for 256 cycles in order to load the memory. When the memory is loaded, bring the load signal low in order
to allow the RAM to start functioning as a multiplier.

The mclk, used for multiplying, is independent of the clk signal, the loading clock. This allows the
multiplying clock to run at a different rate than the clock used to load the data.

Design Hierarchy
Multiply.vhd
Loader.vhd
Counter.vhd
Adder.vhd
Regl6.vhd
Raml6x8.vhd
Multiply

The multiply module combines the loader module, which loads the proper values for multiplying by E/h,
with the RAM module which will act as the actual multiplier.

-- multiply.vhd
library IEEE;

use IEEE.std_logic_1164.all;
entity multiply is

port (load, clr, clk, mclk : in std_logic;
multiplier: in std_logic_vector (7 downto 0);
product : out std_logic_vector (15 downto 0));

end multiply;
architecture structure of multiply is

component loader
port(enable, clr, clk : in std_logic;
datal : out std_logic_vector (15 downto 0);
addr : out std_logic_vector (7 downto 0));

end component;

component raml6x8

port(DATA : in std_logic_vector (15 downto 0); PROD : out

Using ProASIC3/E RAM as Multipliers

std_logic_vector (15 downto 0); LOAD_ADDR : in
std_logic_vector (7 downto 0); MULT : in std_logic_vector(
7 downto 0);LOAD_EN, MULT_EN, LOAD_CLK, MULT_CLK, RESET
in std_logic) ;

end component;

signal address : std_logic_vector (7 downto 0);

signal dat : std_logic_vector (15 downto 0);

signal mult_en : std_logic;

begin

MULT_EN <= load;

loadl : loader

port map (enable => load, clr => clr, clk => clk, datal => dat, addr => address) ;

ram : ramlé6x8

port map (DATA => dat, PROD => product, LOAD_ADDR => address, MULT => multiplier,

LOAD_EN => load, MULT_EN => mult_en, LOAD_CLK => clk, MULT_CLK => mclk,

RESET => clr);

end structure;

Loader

The loader module accepts a clock, a clear, and an enable signal. It ties together the register, counter, and

adder which performs the actual data loading for the RAM.
-- loader
library IEEE;

use IEEE.std_logic_1164.all;
entity loader is
port (enable, clr, clk : in std_logic;
datal : out std_logic_vector (15 downto 0);
addr : out std_logic_vector (7 downto 0));

end loader;

architecture struct of loader is

YActel

Using ProASIC3/E RAM as Multipliers

component counter
port (Enable, Aclr, Clock : in std_logic; Q : out
std_logic_vector (7 downto 0)) ;

end component;

component regl6
port(Data : in std_logic_vector (15 downto 0);Enable, Aclr,
Clock : in std_logic; Q : out std_logic_vector(l5 downto 0
))

end component;
component adder
port(DataA : in std_logic_vector (15 downto 0); DataB : in

std_logic_vector (15 downto 0); Sum : out std_logic_vector (
15 downto 0)) ;

end component;

constant multiplicand : std_logic_vector := "0000000000001110";

signal data, data2 : std_logic_vector (15 downto 0);

begin

count : counter

port map (Enable => enable, Aclr => clr, Clock => clk, Q => addr);
values : adder

port map (DataA => datal2, DataB => multiplicand, sum => data);

reg : reglb
port map (Data => data, Enable => enable, Aclr => clr, Clock => clk,
Q => data2);

datal <= data2;

end struct;

| Using ProASIC3/E RAM as Multipliers

Reg16

The reg16 register file is generated using ACTgen. The register file is an 16 bit parallel storage register and
is used to gate the values from the counter and allows the values to be initially cleared. The register file is
generated using the following parameters (Figure 6).

x
Storage Register | Storage Latchl Shift Hegisterl Barrel Shiflerl
Width i’
—hanc Clear——————— 1~ Load Enable
+ Active Law i Active Low
" Active High * Active High
" Mone = MNone
—hsync Set————————— 1 LClock
 Active Low {+ Rizing
" Active High " Falling
+ Mone
Output
" Active Low
f* Active High

Generate I FRezet Fan-ln Contral Help Cancel

Figure 6 * Reg16

10

YActel

Using ProASIC3/E RAM as Multipliers

Adder

The adder component is a 16-bit adder with continually increments the values loaded into the RAM by a
value of E/h (Figure 7).

arithmetic x|

Adder |.f3«rray.t’-‘n.dder| Subtractorl Addera’SubtractorI Accumulatorl Incremmll_’l

Wariations Fipple j
Width |157il
Camyln—— Carry Out
= Active Low Active Low
" Active High " Active High
& Mane & None

Generate I Rezet Help Cancel

Figure 7 » Adder

1

| Using ProASIC3/E RAM as Multipliers

Counter

The counter is a eight-bit counter which cycles through all the address values for the RAM. This counter is
also generated using ACTgen with the following parameters (Figure 8).

Counters N
—Teminal Count
" Active Low
sk " Active High
f* Mone
—Async Clear r— Diirection
% Active Low & Up
¢ Active High " Down
~ MNone " UpDown
— Clack — Count Enable
* Rising " Achive Low
" Falling {* Active High
" Mone
—dzunc Preset —Sunc Load
" Active Low " Active Low
(" Active High ™ Active High
f+ None f* Mone
Generate I Reset Fan-In Control Help Cancel

Figure 8 » Counter

12

YActel

Using ProASIC3/E RAM as Multipliers

RAM16x8

The ram16x8 is the memory block configuration used as the multiplier in this design. The memory block is
256 words deep with a pair of eight-bit addresses and 16-bit data buses (Figure 9).

RaM x|
 Clocks
i Single Read”#/rite Clock

{+ {ndependent Bead and ‘Whte Clocks

—Fak Type Rezet
% Active Low
% Two Port
" Active High
" Dual Port None
wirite Depth 2086 Fead Depth 2hE
wiite Width [16 ﬂ Read Width [16 i’
Wite Clock —Fiead Clock
{+ Rizing i+ Rizing
i~ Faling " Faling
—wiite Enable — Read Enable
" Active Low e Active Low
{+ Active High " Active High
—Wwirite Mode & — Read Pipeline &
{* Retain Dutput Data {* Mo
{ Pasz'Wite Data to Output i Yes
r—Write Mode B — Fead Pipeline B
{ Retair Dutpat Data = Ho
{7 Pass bwihte Diata o tput T es

Generate I Resat

Part Mapping Help Cancel

Figure 9 « RAM16x8

13

| Using ProASIC3/E RAM as Multipliers

In Figure 10, the following port map is used in order to make the signals more meaningful as a multiplier.

PortMapping Dialog)

Ed

Port Port Hame
Diata In DATA,
Diata Ot PROD
Wirite Enable LoaD Er
Fead Enable MULT_EM
Wirite Lddress Loan ARDE
Read Address WLT
Wirite Clock Loan CLRK
Read Clock MULT_CLK
Rezet REZET

Cancel Help

Figure 10 * Port Mapping Dialog

14

Actel and the Actel logo are registered trademarks of Actel Corporation.

Actel Corporation

2061 Stierlin Court
Mountain View, CA
94043-4655 USA

Phone 650.318.4200
Fax 650.318.4600

All other trademarks are the property of their owners.

VActel

http://www.actel.com

Actel Europe Ltd.

Dunlop House, Riverside Way
Camberley, Surrey GU15 3YL
United Kingdom

Phone +44 (0) 1276 401 450
Fax +44 (0) 1276 401 490

Actel Japan
www.jp.actel.com

EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan

Phone +81.03.3445.7671
Fax +81.03.3445.7668

Actel Hong Kong
www.actel.com.cn

Suite 2114, Two Pacific Place
88 Queensway, Admiralty
Hong Kong

Phone +852 2185 6460
Fax +852 2185 6488

51900074-1/3.05

http://www.jp.actel.com
http://www.actel.com.cn

	Using ProASIC3/E RAM as Multipliers
	Introduction
	Basic Look-Up Table (LUT) Based Multipliers
	Implementing a Basic LUT Based Multiplier
	Figure 1 . Basic Single LUT-Based Multiplier

	Partial Product Multipliers
	Figure 2 . Partial Product Multiplier Techniques

	Implementing a Partial Product Multiplier
	Figure 3 . Partial Product Multiplier Logic Implementation

	Constant Coefficient Multiplier
	Implementing a Constant Coefficient Multiplier
	Figure 4 . Constant Coefficient Multiplier Logic

	Performance and Utilization
	Table 1 . Performance and Utilization of Multiplier Variations

	Constant Coefficient Multiplier Example
	Figure 5 . Constant Coefficient Multiplier Logic

	Additional Considerations
	Conclusion
	Related Documents
	Application Notes

	List of Changes
	Appendix 1
	Design Example: 8 Bit Constant Coefficient Multiplier
	Figure 6 . Reg16
	Figure 7 . Adder
	Figure 8 . Counter
	Figure 9 . RAM16x8
	Figure 10 . Port Mapping Dialog

