
Application Note
Fusion SRAM/FIFO Blocks

Introduction
As design complexity grows, greater demands are placed upon an FPGA's embedded memory. Actel Fusion
devices provide the flexibility of true dual-port as well as two-port SRAM blocks. The embedded memory,
along with built-in, dedicated FIFO control logic, can be used to create cascading RAM blocks and FIFOs
without using additional logic gates.

Architecture
The Fusion devices feature up to 504 kbits of RAM in 4,608-bit blocks (Figure 1). The total embedded
SRAM memory for each device can be found in the Fusion Family of Mixed-Signal FPGAs datasheet. These
memory blocks are arranged along the top and bottom of the device to allow better access from the core
and I/O (in some device it is only available at the bottom of the device). Every RAM block has a flexible,
hardwired embedded FIFO controller, enabling the user to implement efficient FIFOs without sacrificing
user gates.

Figure 1 • Fusion Device Architecture Overview (AFS600)

Flash Array Flash ArrayADC

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

VersaTile

CCC/PLL

I/Os

OSC

CCC

ISP AES
Decryption

User Nonvolatile
FlashROM (FROM)

Charge Pumps

Bank 0

B
an

k
4 B

an
k 2

Bank 1

Bank 3

RAM Block
4,608-Bit Dual-Port SRAM
or FIFO Block

RAM Block
4,608-Bit Dual-Port SRAM
or FIFO Block
November 2005 1
© 2005 Actel Corporation

http://www.actel.com/documents/Fusion_DS.pdf

Fusion SRAM/FIFO Blocks
Memory blocks can be configured with many different aspect ratios, but are generically supported in the
macro libraries as one of two memory elements: RAM4K9 or RAM512X18. The RAM4K9 is configured as a
true dual-port memory block, and the RAM512X18 is configured as a two-port memory block. Dual-port
memory allows the RAM to both read from and write to either port independently. Two-port memory
allows the RAM to read from one port and write to the other using a common clock or independent read
and write clocks. If needed, the RAM4K9 blocks can be configured as two-port memory blocks. The
memory block can be configured as FIFO by combining the basic memory block with dedicated FIFO
controller logic. The FIFO macro is named FIFO4KX18.
Clocks for the RAM blocks can be driven by the VersaNet (global resources) or by regular nets. When using
local clock segments, the clock segment region that encompasses the RAM blocks can drive the RAMs. In
the dual-port configuration (RAM4K9), each memory block port can be driven by either rising-edge or
falling-edge clocks. Each port can be driven by clocks with different edges. While only a rising-edge clock
can drive the physical block itself, the Actel Designer software will automatically bubble push the
inversion to properly implement the falling edge trigger for the RAM block.

Memory Configuration
Variable aspect ratio and cascading allow users to configure the memory in the width and depth required.
Fusion RAM can be configured as 1, 2, 4, 9, or 18 bits wide. By cascading the memory blocks, any multiple
of those widths can be created. The RAM memory blocks can be from 256 to 4,096 bits deep, depending
on the aspect ratio, and the blocks can also be cascaded to create deeper areas. Refer to the aspect ratios
available for each macro cell in the "SRAM Features" section on page 4. The largest continuous
configurable memory area is equal to half the total memory available on the device because the RAM is
separated into two groups, one on each side of the device.

The Actel SmartGen core generator will automatically configure and cascade both RAM and FIFO blocks.
Cascading is accomplished using dedicated memory logic and does not consume user gates for depths up
to 4,096 bits deep and widths up to 18, depending on the configuration. Deeper memory will utilize some
user gates to multiplex the outputs.

Generated RAM and FIFO macros can be created as either structural VHDL or Verilog for easy instantiation
into the design. Users of Actel Libero® Integrated Design Environment (IDE) can create a symbol for the
macro and incorporate it into a design schematic.

Table 2 on page 3 shows the number of memory blocks required for each of the supported depth and
width memory configurations, and for each depth and width combination. For example, a 256-bit deep by
32-bit wide two-port RAM would consist of two 256x18 RAM blocks. The first 18 bits would be stored in
the first RAM block, and the remaining 14 bits would be implemented in the other 256x18 RAM block.
This second RAM block would have 4 bits of unused storage. Similarly, a dual port memory block that is
8,192 bits deep and 8 bits wide would be implemented using 16 memory blocks. The dual-port memory
would be configured in a 4,096x1 aspect ratio. These blocks would then be cascaded 2 deep to achieve
8,192 bits of depth and 8 wide to achieve the 8 bits of width.

Table 1 shows the maximum potential width and depth configuration for each Fusion device.

Table 1 • Memory Availability per Device

Device RAM Blocks

Maximum Potential Width1 Maximum Potential Depth2

Depth Width Depth Width

AFS090 6 256 108 (6x18) 24,576 (4,094x6) 1

AFS250 8 256 144 (8x18) 32,768 (4,094x8) 1

AFS600 24 256 432 (24x18) 98,304 (4,096x24) 1

AFS1500 60 256 1,080 (60x18) 245,760 (4,096x60) 1

Notes:

1. Maximum potential width uses the two-port configuration.

2. Maximum potential depth uses the dual-port configuration.
2

3

Fusion SRAM/FIFO Blocks

Table

16,384 32,768 65,536

Dual-Port Dual-Port Dual-Port

W
id

th

1

8 16 x 1

 x (4,096 x 1)
ascade Deep

8 x (4,096 x 1)
Cascade Deep

16 x (4,096 x 1)
Cascade Deep

2

16 32

 x (4,096 x 1)
ascaded 4 Deep
nd 2 Wide

16 x (4,096 x 1)
Cascaded 8 Deep
and 2 Wide

32 x (4,096 x 1)
Cascaded 16
Deep and 2 Wide

4

6 32 64

6 x (4,096 x 1)
ascaded 4 Deep
nd 4 Wide

32 x (4,096 x 1)
Cascaded 8 Deep
and 4 Wide

64 x (4,096 x 1)
Cascaded 16
Deep and 4 Wide

8

2 64

2 x (4,096 x 1)
ascaded 4 Deep
nd 8 Wide

64 x (4,096 x 1)
Cascaded 8 Deep
and 8 Wide

9

2

2 x (512 x 9)
ascaded Deep

1

4

2 x (4,096 x 1)
ascaded 4 Deep
nd 16 Wide

1

3

3

6

7

Note
 2 • RAM and FIFO Memory Block Consumption

Depth

256 512 1,024 2,048 4,096 8,192

Two-Port Dual-Port Dual-Port Dual-Port Dual-Port Dual-Port Dual-Port

Number Block 1 1 1 1 1 1 2 4

Configuration Any Any Any 1,024 x 4 2,048 x 2 4,096 x 1 2 x (4,096 x 1)
Cascade Deep

4
C

Number Block 1 1 1 1 1 2 4 8

Configuration Any Any Any 1,024x4 2,048 x 2 2 x (4,096 x 1)
Cascaded Wide

4 x (4,096 x 1)
Cascaded 2 Deep and 2
Wide

8
C
a

Number Block 1 1 1 1 2 4 8 1

Configuration Any Any Any 1,024 x 4 2 x (2,048 x 2)
Cascaded Wide

4 x (4,096 x 1)
Cascaded Wide

4 x (4,096 x 1)
Cascaded 2 Deep and 4
Wide

1
C
a

Number Block 1 1 1 2 4 8 16 3

Configuration Any Any Any 2 x (1,024 x 4)
Cascaded Wide

4 x (2,048 x 2)
Cascaded Wide

8 x (4,096 x 1)
Cascaded Wide

16 x (4,096 x 1)
Cascaded 2 Deep and 8
Wide

3
C
a

Number Block 1 1 1 2 4 8 16 3

Configuration Any Any Any 2 x (512 x 9)
Cascaded Deep

4 x (512 x 9)
Cascaded Deep

8 x (512 x 9)
Cascaded Deep

16 x (512 x 9)
Cascaded Deep

3
C

6

Number Block 1 1 1 4 8 16 32 6

Configuration 25 6x 18 256 x 18 256 x 18 4 x (1,024 x 4)
Cascaded Wide

8 x (2,048 x 2)
Cascaded Wide

16 x (4,096 x 1)
Cascaded Wide

32 x (4,096 x 1)
Cascaded 2 Deep and
16 Wide

3
C
a

8

Number Block 1 2 2 4 8 18 32

Configuration 256 x 8 2 x (512 x 9)
Cascaded Wide

2 x (512 x 9)
Cascaded Wide

4 x (512 x 9)
Cascaded 2 Deep
and 2 Wide

8 x (512 x 9)
Cascaded 4 Deep and 2
Wide

16 x (512 x 9)
Cascaded 8 Deep
and 2 Wide

16 x (512 x 9)
Cascaded 16 Deep and
2 Wide

2

Number Block 2 4 4 8 16 32 64

Configuration 2 x (256 x 18)
Cascaded Wide

4 x (512 x 9)
Cascaded Wide

4 x (512 x 9)
Cascaded Wide

8 x (1,024 x 4)
Cascaded Wide

16 x (2,048 x 2)
Cascaded Wide

32 x (4,096 x 1)
Cascaded Wide

64 x (4,096 x 1)
Cascaded 2 Deep and
32 Wide

6

Number Block 2 4 4 8 16 32

Configuration 2 x (256 x 18)
Cascaded Wide

4 x (512 x 9)
Cascaded Wide

4 x (512 x 9)
Cascaded Wide

4 x (512 x 9)
Cascaded 2 Deep
and 4 Wide

16 x (512 x 9)
Cascaded 4 Deep and 4
Wide

16 x (512 x 9)
Cascaded 8 Deep
and 4 Wide

4

Number Block 4 8 8 16 32 64

Configuration 4 x (256 x 18)
Cascaded Wide

8 x (512 x 9)
Cascaded Wide

8 x (512 x 9)
Cascaded Wide

16 x (1,024 x 4)
Cascaded Wide

32 x (2,048 x 2)
Cascaded Wide

64 x (4,096 x 1)
Cascaded Wide

2

Number Block 4 8 8 16 32

Configuration 4 x (256 x 18)
Cascaded Wide

8 x (512 x 9)
Cascaded Wide

8 x (512 x 9)
Cascaded Wide

16 x (512 x 9)
Cascaded Wide

16 x (512 x 9) Cascaded
4 Deep and 8 Wide

: Memory configurations represented by grayed cells are not supported.

Fusion SRAM/FIFO Blocks
SRAM Features

RAM4K9 Macro
The RAM4K9 is the dual-port configuration of the RAM block (Figure 2). The RAM4K9 nomenclature refers
to both the deepest possible configuration and the widest possible configuration that the dual-port RAM
block can assume, and does not denote a possible memory aspect ratio. The RAM block can be configured
to the following aspect ratios: 4,096x1, 2,048x2, 1,024x4, and 512x9. The RAM4K9 is fully synchronous and
has the following features:

• Two ports that allow fully independent reads and writes at different frequencies

• Selectable pipelined or nonpipelined read

• Active low block enables for each port

• Toggle control between read and write mode for each port

• Active low asynchronous reset

• Pass-through write data or hold existing data on output. In pass-though mode, the data written to
the write port will immediately appear on the read port.

• Designer software will automatically facilitate falling edge clocks by bubble pushing the inversion
to previous stages.

RAM512X18 Macro
The RAM512X18 is the two-port configuration of the same RAM block (Figure 3 on page 5). Like the
RAM4K9 nomenclature, the RAM512X18 nomenclature refers to both the deepest possible configuration
and the widest possible configuration that the two-port RAM block can assume. In two-port mode, the
RAM block can be configured to either the 512x9 aspect ratio or the 256x18 aspect ratio. The RAM512x18
is also fully synchronous and has the following features:

• Dedicated read and write ports

• Active low read and write enables

• Selectable pipelined or nonpipelined read

• Active low asynchronous reset

• Designer software will automatically facilitate falling-edge clocks by bubble pushing the inversion
to previous stages.

Note: For timing diagrams of the RAM signals, refer to the Fusion Family of Mixed-Signals FPGAs datasheet.
Figure 2 • RAM4K9 Configuration

DINA

DOUTA DOUTB

Write Data

RAM4K9

Reset

Write Data

Read DataRead Data
DINB

ADDRA Address Address ADDRB

BLKA
BLK BLK

BLKB

WENA
WEN WEN

WENB

CLKA
CLK CLK CLKB
4

http://www.actel.com/documents/Fusion_DS.pdf

Fusion SRAM/FIFO Blocks
FIFO Features
The FIFO4KX18 macro is created by merging the RAM block with dedicated FIFO logic (Figure 4). Since the
FIFO logic can only be used in conjunction with the memory block, there is no separate FIFO controller
macro. As with the RAM blocks, the FIFO4KX18 nomenclature does not refer to a possible aspect ratio, but
rather to the deepest possible data depth and the widest possible data width. The FIFO4KX18 can be
configured into the following aspect ratios: 4,096x1, 2,048x2, 1,024x4, 512x9, and 256x18. In addition to
being fully synchronous, the FIFO4KX18 also has the following features:

• Four FIFO flags: Empty, Full, Almost-Empty, and Almost-Full

• EMPTY flag is synchronized to the read clock

• FULL flag is synchronized to the write clock

• Both Almost-Empty and Almost-Full flags have programmable thresholds

• Active low asynchronous reset

• Active low block enable

• Active low write enable

• Active high read enable

• Ability to configure the FIFO to either stop counting after the empty or full states are reached or to
allow the FIFO counters to continue

• Designer software will automatically facilitate falling-edge clocks by bubble pushing the inversion
to previous stages.

Note: For timing diagrams of the RAM signals, refer to the Fusion Family of Mixed-Signals FPGAs datasheet.
Figure 3 • Fusion Two-Port RAM Block Diagram

Figure 4 • Fusion FIFO Block Diagram

WD

WADDR RADDR

Write Data Read Data

Read AddressWrite Address

RD

WEN
Write Enable Read Enable

REN

WCLK
Write CLK Read CLK

RCLK

RAM512X18

Reset

WD

FULL EMPTY

Write Data

FIFO4KX18

Reset

Read Data

Empty FlagFull Flag
RD

AFULL Almost-Full Flag Almost-Empty Flag AEMPTY

WEN
Write Enable

Write Clock

Read Enable
REN

WCLK Read Clock RCLK
5

http://www.actel.com/documents/Fusion_DS.pdf

Fusion SRAM/FIFO Blocks
The FIFOs maintain a separate read and write address. Whenever the difference between the write
address and the read address is greater than or equal to the almost-full value (AFVAL), the Almost-Full
flag is asserted. Similarly, the Almost-Empty flag is asserted whenever the difference between the write
address and read address is less than or equal to the almost-empty value (AEVAL).

Due to synchronization between the read and write clocks, the Empty flag will de-assert after the second
read clock edge from the point that the write enable asserts. However, since the Empty flag is
synchronized to the read clock, it will assert after the read clock reads the last data in the FIFO. Also, since
the Full flag is dependent on the actual hardware configuration, it will assert when the actual physical
implementation of the FIFO is full.

For example, when a user configures a 128x18 FIFO, the actual physical implementation will be a 256x18
FIFO element. Since the actual implementation is 256x18, the Full flag will not trigger until the 256x18
FIFO is full, even though a 128x18 FIFO was requested. For this example, the Almost-Full flag can be used
instead of the Full flag to signal when the 128th data word is reached.

In order to accommodate different aspect ratios, the almost-full and almost-empty values are expressed in
terms of data bits instead of data words. SmartGen translates the user’s input, expressed in data words,
into data bits internally. SmartGen will allow the user to select the thresholds for the Almost-Empty and
Almost-Full flags, in terms of either the read data words or the write data words, and make the
appropriate conversions for each flag.

After the empty or full states are reached, the FIFO can be configured so the FIFO counters either stop or
continue counting. For timing diagrams of the FIFO signals, refer to the Fusion Family of Mixed-Signal
FPGAs datasheet.

Initializing the Fusion RAM/FIFO
The SRAM blocks can be initialized with data to use it as a lookup table (LUT). Data initialization can be
accomplished either by loading the data through the design logic or through the UJTAG interface. The
UJTAG macro is used to allow access from the JTAG port to the internal logic in the device. By sending the
appropriate initialization string to the JTAG Test Access Port (TAP) Controller, the designer can put the
JTAG circuitry into a mode which allows the user to shift data into the array logic through the JTAG port
using the UJTAG macro.

A user interface is required to receive the user command, initialization data, and clock from the UJTAG
macro. The interface must synchronize and load the data into the correct RAM block of the design. The
main outputs of the user interface block are the following:

• Memory block chip select: Selects a memory block for initialization. The chip selects signals for each
memory block that can be generated from different user-defined pockets or simple logic such as a
ring counter (see below).

• Memory block write address: Identifies the address of the memory cell that needs to be initialized.

• Memory block write data: The interface block receives the data serially from the UTDI port of the
UJTAG macro and loads it in parallel into the write data ports of the memory blocks.

• Memory block write clock: Drives the WCLK of the memory block and synchronizes the write data,
write address, and chip-select signals.
6

http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/Fusion_DS.pdf

Fusion SRAM/FIFO Blocks
Figure 5 shows the user interface between UJTAG and the memory blocks.

An important component of the interface between the UJTAG macro and the RAM blocks is a serial-in/
parallel-out shift register. The width of the shift register should equal the data width of the RAM blocks.
The RAM data arrives serially from the UTDI output of the UJTAG macro. The data must be shifted into a
shift register clocked by the JTAG clock (provided at the UDRCK output of the UJTAG macro).

Then, after the shift register is fully loaded, the data must be transferred to the write data port of the
RAM block. To synchronize the loading of the write data with the write address and write clock, the
output of the shift register can be pipelined before driving the RAM block.

The write address can be generated in different ways. It can be imported through the TAP using a
different instruction opcode and another shift register, or generated internally using a simple counter.
Using a counter to generate the address bits and sweep through the address range of the RAM blocks is
recommended, since it reduces the complexity of the user interface block and the board-level JTAG driver.

Moreover, using an internal counter for address generation speeds up the initialization procedure, since
the user only needs to import the data through the JTAG port.

The designer may use different methods to select among the multiple RAM blocks. Using counters along
with demultiplexers is one approach to set the write enable signals. Basically, the number of RAM blocks
needing initialization determines the most efficient approach. For example, if all the blocks are initialized
with the same data, one enable signal is enough to activate the write procedure for all of them at the
same time. Another alternative is to use different opcodes to initialize each memory block. For a small
number of RAM blocks, using counters is an optimal choice. For example, a ring counter can be used to
select among multiple RAM blocks. The clock driver of this counter needs to be controlled by the address
generation process.

Once the addressing of one block is finished, a clock pulse is sent to the (ring) counter to select the next
memory block.

Figure 5 • Interfacing TAP Ports and SRAM Blocks

TRST

UJTAG

TDO

TDI

TMS

TCK

TRST

TDO

TDI

TMS

TCK

URSTB

UDRUPD

UDRSH
UDRCAP

UDRCK
UTDI

UTDO

UIREG [7:0] IR [7:0]

User Interface

WDATA

WADDR

WCLK
WEN1

WEN2

WEN3

Reset

DR_UPDATE

DR_SHIFT
DR_CAPTURE
DR_CLK
DIN
DOUT

WD
WADDR

WCLK

WEN

RAM1

WD
WADDR

WCLK

WEN

RAM2

WD
WADDR

WCLK

WEN

RAM3
7

Fusion SRAM/FIFO Blocks
Figure 6 illustrates a simple block diagram of an interface block between UJTAG and RAM blocks.

In the circuit shown in Figure 6, the shift register is enabled by the UDRSH output of the UJTAG macro.
The counters and chip-select outputs are controlled by the value of the TAP Instruction Register. The
comparison block compares the UIREG value with the "start initialization" opcode value (defined by user).
If the result is true, the counters start to generate addresses and activate the WEN inputs of appropriate
RAM blocks.

The UDRUPD output of the UJTAG macro, also shown in Figure 6, is used for generating the write clock
(WCLK) and synchronizing the data register and address counter with WCLK. UDRUPD is high when the
TAP Controller is in the Data Register Update state, which is an indication of completing the loading of
one data word. Once the TAP Controller goes into the Data Register Update state, the UDRUPD output of
the UJTAG macro goes high. Therefore, the pipeline register and the address counter place the proper
data and address on the outputs of the interface block. Meanwhile, WCLK is defined as the inverted
UDRUPD. This will provide enough time (equal to the UDRUP high time) for the data and address to be
placed at the proper ports of the RAM block before the rising edge of WCLK. The inverter is not required
if the RAM blocks are clocked at the falling edge of the write clock. An example of this is described in the
"Example of RAM Initialization" section.

Example of RAM Initialization
This section of the document presents a sample design in which a 4x4 RAM block is being initialized
through the JTAG port. A test feature has been implemented in the design to read back the contents of
the RAM after initialization to verify the procedure.

The interface block of this example performs two major functions: initialization of the RAM block and
running a test procedure to read back the contents. The clock output of the interface is either the write
clock (for initialization) or the read clock (for reading back the contents). The Verilog code for the
interface block is included in the Appendix on page 14.

For simulation purposes, users can declare the input ports of the UJTAG macro for easier assignment in the
testbench. However, the UJTAG input ports should not be declared on the top level during synthesis. If the
input ports of the UJTAG are declared during synthesis, the synthesis tool will instantiate input buffers on
these ports. The input buffers on the ports will cause Compile to fail in Designer.

Figure 7 on page 9 shows the simulation results for the initialization step of the example design.

Figure 6 • Block Diagram of a Sample User Interface

nn

m

m

UTDI

UDRSH

UDRCK

UTDO

UDRUPDI

UIREG

URSTB

CLK

Enable

SIN

Serial-to-Port Shift Register

POUT

SOUT

D

En
Reset
CLK

En
Reset
CLK

Q

Q

CLK

WDATA

WCLK

WEN1

WEN2

WENi

WADDR

Chip Select

Data Reg.

Addr Counter

Ring
Counter

Binary
Counter

Compare
with

Defined Opcode

In Result
8

Fusion SRAM/FIFO Blocks
The CLK_OUT signal, which is the clock output of the interface block, is the inverted DR_UPDATE output of
the UJTAG macro. It is clear that it gives sufficient time (while the TAP Controller is in the Data Register
Update state) for the write address and data to become stable before loading them into the RAM block.

Figure 8 presents the test procedure of the example. The data read back from the memory block matches
the written data, thus verifying the design functionality.

The ROM emulation application is based on RAM block initialization. If the user's main design has access
only to the read ports of the RAM block (RADDR, RD, RCLK, and REN), and the contents of the RAM are
already initialized through the TAP, then the memory blocks will emulate ROM functionality for the core
design. In this case, the write ports of the RAM blocks are accessed only by the user interface block, and
the interface is activated only by the TAP Instruction Register contents.

Users should note that the contents of the RAM blocks are lost in the absence of applied power. However,
the 1 kbit of Flash memory, FROM, in Fusion can be used to retain data after power is removed from the
device. Refer to the Fusion FlashROM (FROM) application note for more information.

Figure 7 • Simulation of Initialization Step

Figure 8 • Simulation of the Test Procedure of the Example
9

http://www.actel.com/documents/Fusion_FROM_AN.pdf

Fusion SRAM/FIFO Blocks
Software Support
The SmartGen core generator is the easiest way to select and configure the memory blocks (Figure 9).
SmartGen automatically selects the proper memory block type and aspect ratio, and cascades the memory
blocks based on the user's selection. SmartGen also configures any additional signals that may require tie-
off.

SmartGen will attempt to use the minimum number of blocks required to implement the desired memory.
When cascading, SmartGen will configure the memory for width before configuring for depth. For
example, if the user requests a 256x8 FIFO, SmartGen will use a 512x9 FIFO configuration, not 256x18.

Figure 9 • SmartGen Core Generator Interface
10

Fusion SRAM/FIFO Blocks
SmartGen enables the user to configure the desired RAM element to use either a single clock for read and
write, or two independent clocks for read and write. The user can select the type of RAM as well as the
width/depth and several other parameters (Figure 10).

SmartGen also has a Port Mapping option that allows the user to specify the names of the ports generated
in the memory block (Figure 11).

Figure 10 • SmartGen Memory Configuration Interface

Figure 11 • Port Mapping Interface for SmartGen Generated Memory
11

Fusion SRAM/FIFO Blocks
SmartGen also configures the FIFO according to user specifications. Users can select no flags, static flags, or
dynamic flags. Static flag settings are configured using configuration flash and cannot be altered without
reprogramming the device. Dynamic flag settings are determined by register values and can be altered
without reprogramming the device by reloading the register values either from the design or through the
UJTAG interface described in the "Initializing the Fusion RAM/FIFO" section on page 6.

SmartGen can also configure the FIFO to continue counting after the FIFO is full. In this configuration, the
FIFO write counter will wrap after the counter is full and continue to write data. With the FIFO configured
to continue to read after the FIFO is empty, the read counter will also wrap and re-read data which was
previously read. This mode can be used to continually read back repeating data patterns stored in the FIFO
(Figure 12).

FIFOs configured using SmartGen can also make use of the port mapping feature to configure the names
of the ports.

Limitations
Users should be aware of the following limitations when configuring SRAM blocks for Fusion:

• SmartGen does not track the target device in a family, so it cannot determine if a configured
memory block will fit in the target device.

• Dual-port RAMs with different read and write aspect ratios are not supported.

• Cascaded memory blocks can only use a maximum of 64 blocks of RAM.

• The Full flag of the FIFO is sensitive to the maximum depth of the actual physical FIFO block, not the
depth requested in the SmartGen interface.

Figure 12 • SmartGen FIFO Configuration Interface
12

Fusion SRAM/FIFO Blocks
Conclusion
Fusion devices provide users with extremely flexible SRAM blocks for most design needs, with the ability
to choose between an easy-to-use dual-port memory or a wide-word two-port memory. Used with the
built-in FIFO controllers, these memory blocks also serve as highly-efficient FIFOs, which do not consume
user gates when implemented. The Actel SmartGen core generator provides a fast and easy way to
configure these memory elements for use in designs.

Related Documents

Application Notes
Fusion FlashROM (FROM)

http://www.actel.com/documents/Fusion_FROM_AN.pdf

Datasheets
Fusion Family of Mixed-Signal FPGAs

http://www.actel.com/documents/Fusion_DS.pdf
13

http://www.actel.com/documents/Fusion_FROM_AN.pdf
http://www.actel.com/documents/Fusion_AN.pdf
http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/Fusion_DS.pdf

Fusion SRAM/FIFO Blocks
Appendix

Interface Block
`define Initialize_start 8'h22 //INITIALIZATION START COMMAND VALUE

`define Initialize_stop 8'h23 //INITIALIZATION START COMMAND VALUE

module interface(IR, rst_n, data_shift, clk_in, data_update, din_ser, dout_ser, test,
test_out,test_clk,clk_out,wr_en,rd_en,write_word,read_word,rd_addr, wr_addr);

input [7:0] IR;

input [3:0] read_word; //RAM DATA READ BACK

input rst_n, data_shift, clk_in, data_update, din_ser; //INITIALIZATION SIGNALS

input test, test_clk; //TEST PROCEDURE CLOCK AND COMMAND INPUT

output [3:0] test_out; //READ DATA

output [3:0] write_word; //WRITE DATA

output [1:0] rd_addr; //READ ADDRESS

output [1:0] wr_addr; //WRITE ADDRESS

output dout_ser; //TDO DRIVER

output clk_out, wr_en, rd_en;

wire [3:0] write_word;

wire [1:0] rd_addr;

wire [1:0] wr_addr;

wire [3:0] Q_out;

wire enable, test_active;

reg clk_out;

//SELECT CLOCK FOR INITIALIZATION OR READBACK TEST

always @(enable or test_clk or data_update)

begin

case ({test_active})

1 : clk_out = test_clk ;

0 : clk_out = !data_update;

default : clk_out = 1'b1;

endcase

end

assign test_active = test && (IR == 8'h23);

assign enable = (IR == 8'h22);

assign wr_en = !enable;

assign rd_en = !test_active;

assign test_out = read_word;

assign dout_ser = Q_out[3];

//4-bit SIN/POUT SHIFT REGISTER
14

Fusion SRAM/FIFO Blocks
shift_reg data_shift_reg (.Shiften(data_shift), .Shiftin(din_ser), .Clock(clk_in),
.Q(Q_out));

//4-bit PIPELINE REGISTER

D_pipeline pipeline_reg (.Data(Q_out), .Clock(data_update), .Q(write_word));

//

addr_counter counter_1 (.Clock(data_update), .Q(wr_addr), .Aset(rst_n),
.Enable(enable));

addr_counter counter_2 (.Clock(test_clk), .Q(rd_addr), .Aset(rst_n), .Enable(
test_active));

endmodule

Interface Block/UJTAG Wrapper
This example is a sample wrapper, which connects the interface block to the UJTAG and the memory
blocks.

// WRAPPER

module top_init (TDI, TRSTB, TMS, TCK, TDO, test, test_clk, test_ out);

input TDI, TRSTB, TMS, TCK;

output TDO;

input test, test_clk;

output [3:0] test_out;

wire [7:0] IR;

wire reset, DR_shift, DR_cap, init_clk, DR_update, data_in, data_out;

wire clk_out, wen, ren;

wire [3:0] word_in, word_out;

wire [1:0] write_addr, read_addr;

UJTAG UJTAG_U1

(.UIREG0(IR[0]),.UIREG1(IR[1]),.UIREG2(IR[2]),.UIREG3(IR[3]),.UIREG4(IR[4]),
.UIREG5(IR[5]),.UIREG6(IR[6]),.UIREG7(IR[7]),.URSTB(reset),.UDRSH(DR_shift),.UDRCAP(
DR_cap),.UDRCK(init_clk),

.UDRUPD(DR_update),.UT-DI(data_in),.TDI(TDI),.TMS(TMS),.TCK(TCK),

.TRSTB(TRSTB),.TDO(TDO),.UT-DO(data_out));

mem_block RAM_block (.DO(word_out), .RCLOCK(clk_out), .WCLOCK(clk_out), .DI(word_in),

.WRB(wen),

.RDB(ren), .WAD-DR(write_addr), .RADDR(read_addr));

interface init_block (.IR(IR), .rst_n(reset), .data_shift(DR_shift),

.clk_in(init_clk),

.data_update(DR_update), .din_ser(data_in), .dout_ser(data_out), .test(test),

.test_out(test_out), .test_clk(test_clk), .clk_out(clk_out), .wr_en(wen),
15

Fusion SRAM/FIFO Blocks
.rd_en(ren), .write_word(word_in), .read_word(word_out), .rd_addr(read_addr),

.wr_addr(write_addr));

endmodule

Address Counter
module addr_counter (Clock, Q, Aset, Enable);

input Clock;

output [1:0] Q;

input Aset;

input Enable;

reg [1:0] Qaux;

always @(posedge Clock or negedge Aset)

begin

if (!Aset)

Qaux <= 2'b11;

else if (Enable)

Qaux <= Qaux + 1;

end

assign Q = Qaux;

endmodule

Pipeline Register:

module D_pipeline (Data, Clock, Q);

input [3:0] Data;

input Clock;

output [3:0] Q;

reg [3:0] Q;

always @ (posedge Clock)

Q <= Data;

endmodule

4x4 RAM Block (Created by SmartGen Core Generator)
module mem_block(DI,DO,WADDR,RADDR,WRB,RDB,WCLOCK,RCLOCK);

input [3:0] DI;

output [3:0] DO;

input [1:0] WADDR, RADDR;

input WRB, RDB, WCLOCK, RCLOCK;

wire WEBP, WEAP, VCC, GND;

VCC VCC_1_net(.Y(VCC));

GND GND_1_net(.Y(GND));

INV WEBUBBLEB(.A(WRB), .Y(WEBP));
16

Fusion SRAM/FIFO Blocks
RAM4K9 RAMBLOCK0(.ADDRA11(GND), .ADDRA10(GND), .ADDRA9(GND),

.ADDRA8(GND), .ADDRA7(GND), .ADDRA6(GND), .ADDRA5(GND),

.ADDRA4(GND), .ADDRA3(GND), .ADDRA2(GND), .ADDRA1(

RADDR[1]), .ADDRA0(RADDR[0]), .ADDRB11(GND), .ADDRB10(GND)

, .ADDRB9(GND), .ADDRB8(GND), .ADDRB7(GND), .ADDRB6(GND),

.ADDRB5(GND), .ADDRB4(GND), .ADDRB3(GND), .ADDRB2(GND),

.ADDRB1(WADDR[1]), .ADDRB0(WADDR[0]), .DINA8(GND), .DINA7(

GND), .DINA6(GND), .DINA5(GND), .DINA4(GND), .DINA3(GND),

.DINA2(GND), .DINA1(GND), .DINA0(GND), .DINB8(GND),

.DINB7(GND), .DINB6(GND), .DINB5(GND), .DINB4(GND),

.DINB3(DI[3]), .DINB2(DI[2]), .DINB1(DI[1]), .DINB0(DI[0])

, .WIDTHA0(GND), .WIDTHA1(VCC), .WIDTHB0(GND), .WIDTHB1(

VCC), .PIPEA(GND), .PIPEB(GND), .WMODEA(GND), .WMODEB(GND)

, .BLKA(WEAP), .BLKB(WEBP), .WENA(VCC), .WENB(GND), .CLKA(

RCLOCK), .CLKB(WCLOCK), .RESET(VCC), .DOUTA8(), .DOUTA7(),

.DOUTA6(), .DOUTA5(), .DOUTA4(), .DOUTA3(DO[3]), .DOUTA2(

DO[2]), .DOUTA1(DO[1]), .DOUTA0(DO[0]), .DOUTB8(),

.DOUTB7(), .DOUTB6(), .DOUTB5(), .DOUTB4(), .DOUTB3(),

.DOUTB2(), .DOUTB1(), .DOUTB0());

INV WEBUBBLEA(.A(RDB), .Y(WEAP));

endmodule
17

Actel Corporation

2061 Stierlin Court
Mountain View, CA
94043-4655 USA
Phone 650.318.4200
Fax 650.318.4600

Actel Europe Ltd.

Dunlop House, Riverside Way
Camberley, Surrey GU15 3YL
United Kingdom
Phone +44 (0) 1276 401 450
Fax +44 (0) 1276 401 490

Actel Japan
www.jp.actel.com

EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Phone +81.03.3445.7671
Fax +81.03.3445.7668

Actel Hong Kong
www.actel.com.cn

Suite 2114, Two Pacific Place
88 Queensway, Admiralty
Hong Kong
Phone +852 2185 6460
Fax +852 2185 6488

www.actel.com

Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.
51900114-0/11.05

http://www.jp.actel.com
http://www.actel.com.cn
http://www.actel.com

	Fusion SRAM/FIFO Blocks
	Introduction
	Architecture
	Figure 1 . Fusion Device Architecture Overview (AFS600)
	Memory Configuration
	Table 1 . Memory Availability per Device
	Table 2 . RAM and FIFO Memory Block Consumption

	SRAM Features
	Figure 2 . RAM4K9 Configuration
	Figure 3 . Fusion Two-Port RAM Block Diagram

	FIFO Features
	Figure 4 . Fusion FIFO Block Diagram

	Initializing the Fusion RAM/FIFO
	Figure 5 . Interfacing TAP Ports and SRAM Blocks
	Figure 6 . Block Diagram of a Sample User Interface
	Example of RAM Initialization
	Figure 7 . Simulation of Initialization Step
	Figure 8 . Simulation of the Test Procedure of the Example

	Software Support
	Figure 9 . SmartGen Core Generator Interface
	Figure 10 . SmartGen Memory Configuration Interface
	Figure 11 . Port Mapping Interface for SmartGen Generated Memory
	Figure 12 . SmartGen FIFO Configuration Interface

	Limitations
	Conclusion
	Related Documents
	Application Notes
	Datasheets

	Appendix
	Interface Block
	Interface Block/UJTAG Wrapper
	Address Counter
	4x4 RAM Block (Created by SmartGen Core Generator)

