y 4 Y I7J JZ J J M
' 4 A Wy /|
' 44)y 4 a8/l 4

AN115

APPLICATION NOTE

CS4923/4/5/6/7/8/9 HARDWARE USER’S GUIDE

Contents

e Host Communication (Serial and Parallel
Host Communication)

e Boot Procedures for Host Boot and Autoboot
® Resetting the CS492x

e Connecting External Memory (Using Paged
and Non-Paged Memory)

e Understanding Configuration Messages

e Input & Output Hardware Configuration

e Pseudocode examples for SPI and 12C
Communication with the CS492x

e Pseudocode Outlining a Typical Download
Session with the CS492X

e Pseudocode Outlining a Typical Reset
Sequence with the CS492X

Description

The CS4923/4/5/6/7/8/9 is a system on a chip
solution for multi-channel audio decompression
and digital signal processing. Because the
device is RAM-based, a download of
application software is required each time the
CS4923/4/5/6/7/8/9 is powered up. This
document focuses on hardware control of the
chip from a functional perspective.

This document takes more of a functional
approach to the hardware of the chip. An in-
depth description of communication, boot
procedure, external memory and the hardware
configuration are given in this document. This
document will be valuable to both the

hardware designer and the system
programmer.

DIGITAL SOUND Input

a input MPEG

' Configuration Transport

I — 4 J DX

CRYSTAL®
PROCESSING

Host COMM
& Boot

Host

EXT é>
Memory

]

uControIler‘ ' CS492x

hAnalog Input

Multi-Channel
Analog Output

i ihS/PDIF

DAC

il

Output
Configuration

64K x 8
ROM

== CIRRUS LOGIC"

P.O. Box 17847, Austin, Texas 78760
(512) 445 7222 FAX: (512) 445 7581
http://www.cirrus.com

C ight O Ci Logic, Inc. 1999 AUG "99
opyrig irrus Logic, Inc.

(All Rights Reserved) AN115REV2

1

y 4 Y Iy J J [K
' 4 A Wy /|

Y 44y 4 a8/ / 4
|
TABLE OF CONTENTS
@ o | S 5
1.1 Multi-Channel Decoder Family Of PaArtScccooiiiiiiiiiiie e e e e 5
I Lo ol ¥ 4 1= 1 S 1= U =T) 6
1.2.1 Hardware DOCUMENTALIONcvvviieeieeiiiiiiiiiieeireeeeeeesssssieteeere e e e e e e e e e e e s s nnnnennnneeeeeees 6
1.2.2 CS4923/4/5/6/7/8/9 Application Code User's GUIdEScccccvvveeeeeviicciiviiniieneeeeenn, 6
1.3 USING the CSA923/AI5/6/TI8I9ueeeeeeeeei ittt e e e e e e neeneees 7
2. HOST COMMUNICATION ..oiiiiiiitiee et e e st e ste e e sttt e e steesastee e s steeeanteeessneeesnneeeannseeeanseeeassenesnsnnens 8
2.1 Serial COMMUNICALION ...uviiiiiieeiiiiciiiie e e e e s e e e e e e e s s s e e e e e aesesansnnnrnaeerereeeeeeens 8
2.1.1 SPI COMMUNICALION .ecieiiiiiiiiiie i e e e ee e e et e e e e e e s s e s e e e e e e e e e e e snnnnnenaneneeeeeeas 8
b2 I O Y1V 11T Vo T T TS SRR 9
2.1.1.2 ReAdING IN SPI .ooreiiiiiiee it e e 9
2.1.2 12C COMMUNICALION ... s ee e s eeneens 12
2.1.2. 1 WHIING N T2C oot 12
2.1.2.2 REAUING 1N 12C .ot 13
2.1.3 INTREQ Behavior: A Special CaSeccooeiiiiiiiiiiieeie e 14
2.2 Parallel Host COMMUNICALIONcceiiiiiieieiee e et e e e e e s st r e s e e e e s e e e neeeeeeeee e s 17
2.2.1 Intel Parallel Host Communication Modeccccceeeeiiiiiiiiiiiiiice e 18
2.2.1.1 Writing a Byte in INtel MOdEccovveiveeiiiiiiiieeeee e 19
2.2.1.2 Reading a Byte in INtel MOAEoevvviieeiiiiiiiee e 19
2.2.2 Motorola Parallel Host Communication Modeccooovveiviiiieieeeee e 20
2.2.2.1 Writing a Byte in Motorola MOdecoooveivvieiiieeee e e 20
2.2.2.2 Reading a Byte in Motorola Modeccccvviviereeee s 21
2.2.3 Procedures for Parallel Host Mode Communicationcccccccveveeeeenvicvvnvnennenn. 22
2.2.3.1 Control Write in a Parallel Host Modeccccccveeieeeiiciciieee e 22
2.2.3.2 Control Read in a Parallel Host Modecccccvveevveveeiieeiiieeee e 23
3. BOOT PROCEDURE & RESEToiiiiiiieiiie it eiee s e s siee e tee s aee e s sneeesntaeesneeeenaeesnnneeenneeas 25
G 700 I [0 53 A= T T 25
G 3720 Y U (0] o T Yo | RS 28
3.2.1 Autoboot INTREQ BERAVIOLcevvviiiiiiiiiiiiiiiieieieie e e e e e e eeeeeeeeeeeeeeeeveeesvaresaaranaaes 31
3.3 Application Failure BOOt MESSAQEuuviiiieeiiiiiiiiiiiieieee e e e e e sre e e e e e e e e s s snnraeeer e e e e e e e e aan 32
3.4 Resetting the CSA923/A/5/6/TI8I9ueeeeeeeee ettt e e 32
4, EXTERNAL MEMORY ..ooiiiiieiiiie ittt ettt ettt et e e ssee e e sten e e snteeasseee e anteesssenesanteeanaeesnnteeennnes 34
4.1 BasiC MemMOry ArCHITECIUIEccoiiiiiieiieiie e e e e e e e e s e e e e e e e e e enne e eeees 35
A Lo T B o= o 1= 1Y/ =Y T Y/ R 36
B o= o T=To Y=Y g T Y/ S 36
= 11 1]] [S 38
I N T B =T =T I Y1 T o o Y 38
4.4.2 32 Kilobyte Paged AUutoboot MEMOIYcoocciiiiiiiiieeece e 39

Contacting Cirrus Logic Support
For a complete listing of Direct Sales, Distributor, and Sales Representative contacts, visit the Cirrus Logic web site at:
http://www.cirrus.com/corporate/contacts/

Preliminary product information describes products which are in production, but for which full characterization data is not yet available. Advance product infor-
mation describes products which are in development and subject to development changes. Cirrus Logic, Inc. has made best efforts to ensure that the information
contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided “AS 1S” without warranty of any
kind (express or implied). No responsibility is assumed by Cirrus Logic, Inc. for the use of this information, nor for infringements of patents or other rights of third
parties. This document is the property of Cirrus Logic, Inc. and implies no license under patents, copyrights, trademarks, or trade secrets. No part of this publi-
cation may be copied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photographic, or otherwise)
without the prior written consent of Cirrus Logic, Inc. Items from any Cirrus Logic website or disk may be printed for use by the user. However, no part of the
printout or electronic files may be copied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photo-
graphic, or otherwise) without the prior written consent of Cirrus Logic, Inc.Furthermore, no part of this publication may be used as a basis for manufacture or
sale of any items without the prior written consent of Cirrus Logic, Inc. The names of products of Cirrus Logic, Inc. or other vendors and suppliers appearing in
this document may be trademarks or service marks of their respective owners which may be registered in some jurisdictions. A list of Cirrus Logic, Inc. trade-
marks and service marks can be found at http://www.cirrus.com.

2 AN115REV2

y 4 Y Iy J J [K
' 4 A Wy /|

Y 44y 4 a8/ /] 4
. ___|
4.4.3 64 Kilobyte Paged AUtOboOt MEMOIYcooiiiiiiiiiiiiieieee e 40
4.4.4 64 Kilobyte Paged DTS & AutObOOt MEMOIYcviiiiiiiiiiieeie e 41
4.5 CRDA923-MEM ..ottt ettt bttt bbbt ehb e sa e e e s e e s b e e nan e ne s 42
5. .HARDWARE CONFIGURATION ...iiitiiiiititieiit ettt ettt ettt 46
5.1 AdAress CheCKINGceeiiiiiiiiiiee ettt e e e e e e e e e e b b e eee e a7
LI (o] o1 A= T (o @ 11 11 11 | PP EPTTRT PR a7
5.2.1 Digital AUIO FOIMALSccoiiiiiiiiiiie et e e e a7
5.2.2 Digital Input and OULPUL POITSeiiiiiiiiiiiiiiiieie e 49
5.2.3 Parallel Delivery Of Data@c...uueiiiiiiiiiiiiiieie et 50
5.2.3.1 PCM Data Write in Parallel HOSt MOdeccoooviiiieeiiiiiiieeeniiiieee e 50
5.2.3.2 Compressed Data Write in Parallel Host Modecccciiiieeenenennn. 51
5.2.3.2.1 MFB Bit EXaMPIE ... 51
5.2.3.2.2 CMPREQ EXamPIeccccuiiiiiiiiiiieiiee e 52
5.3 CoNfiguration MESSAQESuuveiiiieeiii e ittt e e s s s r e e e e e e s e s s st e e e eeaeeaeeannrnnrnaeeees 52
5.3.1 AdAress ChECKING ...uuveiiiiieeeiiiiiiiiieiiie e e e e e e se s s e e e e e e e e e s e s e eereee e e e s e s nnnnneees 52
LG 77 1] 11 | SO 53
5.3.2.1 Special ConsSiderationsccccuvririiiieeeieiiiriiere e e eereeee s 53
LS 70 T 111 1o | 55
5.3.3.1 Special ConSiderationNsccccvvririiiieeeieiiiriiiere e e e s erreeee s 55
5.3.4 Creating Hardware Configuration MESSAgEScevvveeieiiiiiiiriiinrieeeeeeesesnvveneens 56
6. APPENDIX A - PSEUDOCODE FOR THE CS4923/4/5/6/7/8/9 FAMILYcccoviiviiviiiiiiieee 58
6.1 SPI PSEUAOCOUEcuviiiiiiiieiet ettt ettt nn e nn e nees 58
I I S o VY 1 ST @] o 1T - 4o o P 58
L S o I =T (o [@ o T= - U1 o] o S 59
6.2 12C PSEUUAOCOUEoovoceeeeeiceoceeeese e eeseeseeee s eesese s aen s s enaen s s en e anees e 60
6.2.1 12C WIILE OPEIALIONveeeeeeeeeeeeeeeee e e eeeeee e et et ne e et s s e ene s seetes s eeeseneseees 60
6.2.2 12C REAA OPEIALION ...veeeeeeeeeeeeeeeeeeeeeeeee e e et e et et e e et er e eeee s seee s s eeeseneseens 62
6.3 Typical Download Session with the CS4923/4/5/6/718/9ccccovecciiviiieiieeee e 64
6.4 Typical Reset Sequence for the CS4923/4/5/6/7/819oevevveeeiiiiiiiieie e 65
LIST OF FIGURES
Figure 1. SP1WTrite FIOW DIagram...........uuiiiiiiiiiieaiii ittt ettt e e e e e e e e e b ee e eeaaaae e e e aans 9
Figure 2. SPI Read FIOW DIBQIAMc.eiiiiiiiiiiie ettt ettt e e e e e e e e e s benb e e e eeeaaeeeas 10
FIQUIE 3. SPTTIMING ..ttt et e e e e e e st e e e et e e e e e e e e e s nbebbeeeeeeeaaaaans 11
Figure 4. 12C Write Flow DI T= To | =10 TR PUPPRPUPRR 12
Figure 5. 12C Read Flow (D F=To | =10 ¢ PP TRR PRI 13
Figure 6. 12C BT 111 o PP PP UT PP 15
Figure 7. Intel Mode, One-Byte Write FIOW DIiagramccceiiiiiaiiiiiiiiiieie et eee e 19
Figure 8. Intel Mode, One-Byte Read FIOW Diagramcccieiiiiiiiiiiiiiiiae e 20
Figure 9. Motorola Mode, One-Byte Write FIOW Diagram ... 21
Figure 10. Motorola Mode, One-Byte Read FIOW Diagramcooooiiiiiiiiiiiiieeineiiieeeeeee e 21
Figure 11. Typical Parallel Host Mode Control Write Sequence Flow Diagram............ccccccceeeeennn. 22
Figure 12. Typical Parallel Host Mode Control Read Sequence Flow Diagram..............cccccceeeene. 23
Figure 13. Typical Serial Boot and Download ProCedUrecoouiiiiiiiiiiiiiiee i 26
Figure 14. Typical Parallel Boot and Download ProCeduUre...........coouiiiiiiiieiiieieeeee i 27
Figure 15. Autoboot Memory ArChIECIUIEoiiiiiiiiee e e e 28
Figure 16. Autoboot TimMiNg DIAGIAIMuuuiiiiiiiiaaii ettt e e e e e e beb e eeeaaeeeas 29
Figure 17. AULODOOE SEOUEBNCEcoiiiiiiiiiiititiie ettt et e e e e e e e e et e e e e e e e e e e e e e eanbenbeeeeaeas 30
Figure 18. Autoboot INTREQ BERAVIONciiiiiiiiiiiiiiiie ettt e e 31
Figure 19. Performing @ RESEL.......ccoo ittt e e e e et eeeaaeeeas 32
Figure 21. Autoboot TimMiNg DIAGIAIMuuuiiiiiiiiiaii ettt e e e e e e e eeeeeaaeeeas 35
Figure 22. RUN-TIME MEMOIY ACCESS. ttetiiitiaiaeaiiaiaiititte et eetaaaaeaaaaaabbebbe et aaaaaaaseeaaaaanbbeaeaeeaaaaans 35
Figure 20. Basic MemOry ArChIitECIUIEueiiiiiieii et 35

AN115REV2 3

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

Figure 23. External Memory with 64 Kilobyte Pages...........cuiiiiiiiiiiiiiiiiiiiiieeee e 37
Figure 24. External Memory With 32 KDYte PAgESccuiiiiiiiiiiiiiiiiiiee e 37
Figure 25. NON-Paged MEMOIYooiiiiiiiieitee ettt ettt e e e e e e e e s s bbb e beeeaaaaee e e s 39
Figure 26. 32 KDYte Paged MEMOIYuuiiiiiiaaie ittt ettt e e e e e e e s e ebe e eeeaeaaeeseeaennaes 39
Figure 27. Autoboot Sequence for 32 Kbyte Paged MemoOryoccuuiiiiiiiiaiiiiiiiiiieiieeee e 40
Figure 28. 64 Kbyte Paged AUtODOOt MEMOIYccuiiiiiiiiiie i 40
Figure 29. Autoboot for 64 Kbyte paged MEMOIYcoeiiiiiiiiiiiiiiiiiie e 41
Figure 30. 64 Kbyte Paged DTS/AUtODOOt MEMIOIYuiiiiiiiiaiiiiiiiieieee et 42
Figure 31. Autoboot Sequence for DTS System using Symmetrical 64 Kilobyte Pages............... 43
Figure 32. CRDA923-IMEM ..ottt ettt ettt et e bt e et e e e sab e e e sbbe e e sabeeesabeeesbeeeaas 45
Figure 33. Memory Map for CRD4923 Daughter Board.............coocuuiiiiiiiiiieiiiiiiiiee e 46
Figure 34. DTS AUtODOOt FIOW DIagramS......coooii ittt ettt e e e e eeeea e e e e e e annaes 46
FIGQUIE 35. 125 FOMMALeeiieiiie ettt et e e e e e e e e bbb ettt e e e e e e e s e s s anbbnbeeeeeeeaaesaeaaannnns 48
Figure 36. Left JUSHIfied FOIMAL...........cc.uviiieiiiei e e e e e e e eee e e s 48
Figure 37. Multi-Channel Format (M == 20)cccoiiiiiiiiiiiier e r e e e e e s rrrereeeeeeee s 48
Figure 38. PCM Data Write Sequence in Parallel Host Mode Flow Diagram..........cccccccvveeeeviinnns 51
Figure 39. MFB Bit Status Polling FIOW DIiagramcceeeeeieoiiiiiiiiieiieeeeeeeesssssienineeeesee e e s e e ennnnns 52
Figure 40. CMPREQ Pin Status Polling FIOW Diagramccoeccueiiiirieiee s scciiieeeeeee e e s e e snnenns 52
LIST OF TABLES
Table 1. Serial Host Mode ConfigurationsS..............uueiiiiiiiiiii i 8
Table 2. SP1 CommUNICAtION SIGNAIScoiiiiiiiiie it e e e e 8
Table 3. 12C Communication SIGNAUS .ttt e e e e e e e 12
Table 4. Parallel Host Mode ConfigurationS.............euueeiiiiaiiiiiiiiee e 17
Table 5. Intel Mode CommuUuNICAtioN SIGNAISuuiiiiiiiiiaiii e 18
Table 6. Motorola Mode Communication SIgNAlS...........oooiiiiiiiiiiiieee e 20
Table 7. BOOt WIEE IMESSAGESuutteiieiiiaiaaaaiaiiiitiiee et e e e e e e e e et bt e et e e e e e e e e s s s babbbeeeeeeaaeeeesaasnnrneeeees 25
Table 8. BOOt REAU MESSAUESuutteiiiiiiaaiei ittt e e e e e ettt e e e e e e e e s bbbt e e et e eeaa e e e e aaansanbeneeees 25
Table 9. MemOry INtErfACE PINSuiiiiiii et e e e e e e e e ee b eeeeees 34
Table 10. Memory and Control Requirements for the CS4923/4/5/6/7/8/9 Family........................ 34
Table 11. ROM SPEEUS ... ittt e e e e e ettt ettt e e e e e e s e s s abbbbeeeeeeaaeeseesansnsbeeeeees 36
Table 12. External Memory ConfiQUIatioNSeeeiiiiiiiiiiiiieiee e 38
Table 13. DAI - Digital AUIO INPUL POITooiiiiiieee et e e e e eieeees 49
Table 14. CDI - Compressed Digital INPUL POFt..........cooiiiiiii e 49
Table 15. DAO - Digital AUdio OULPUL POF..........uuiiiiiiiiiee et 49
Table 16. Output Channel MapPingcoui et e e e e eee b eeee e 49
Table 17. Input Data Type CoNnfigUIationeeeeeiiiiiiaiiiii e e e 53
Table 18. Input Data Format ConfigUrationc.ciii oo 54
Table 19. Input SCLK Polarity Configuration..............coui oo 54
Table 20. FIFO Setup ConfigUIationooueiiiiiie et e e e 54
Table 21. Output Clock CONFIQUIALIONcooiiiieiiiiiee e 55
Table 22. Output Data Format ConfigUIationccouor i 55
Table 23. Output MCLK CONFIQUIALIONooiiiiiiiiiiie ettt e e e e e e eeneeeee 56
Table 24. Output SCLK CONfIQUIALIONccoiiiiiiiiiie et e e e e e e e eeireeee 56
Table 25. Output SCLK Polarity CONfIQUIAtioNc.oiiiiiiiiiiiiiiieeee e 56
Table 26. Example Values to be Sent to CS492X After Download or Soft Reset.............ccc.veeeeee. 57

4 AN115REV2

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

1. OVERVIEW

The CS$4923/4/5/6/7/8/9 is a family of system on a
chip solutions for multi-channel audio
decompression and digital signal processing. Since
the part is RAM-based, a download of application
software is required each time the
C4923/4/516/7/8/9 is powered up.

These parts are generally targeted at two different
market segments. The broadcast market where
audio/video (A/V) synchronizationis required, and
the outboard decoder markets where audio/video
synchronization is not required. The important
differentiation is the format in which the data will
be received by the CS4923/4/5/6/7/8/9. In systems
where A/V synchronization is required from the
C4923/4/516/7/8/9, the incoming data is typically
PES encoded. In an outboard decoder application
the data typically comes in the IEC61937 format
(as specified by the DVD consortium). An
important point to remember is that the
C4923/4/516/7/8/9 will support both
environments, but different downloads arerequired
depending on the input data type.

Broadcast applications include (but are not limited
to) set top box applications, DVDsand digital TVs.
Outboard decoder applications include standalone
decoders and audio/video receivers. Often times a
system may be a hybrid between an outboard
decoder and a broadcast system depending on its
functionality.

As discussed above, compressed audio can be
packed in IEC61937, PES, or elementary formats
depending on the decoder environment. Each for-
mat is supported by a separate download of appli-
cation code. Consult the relevant Application Code

Digital bitstream); used primarily in broadcast en-
vironments.

PES - a Packetized Elementary Stream (PES) bit-
stream contains the elementary compressed audio
stream and additional header information which
can be used for A/V synchronization; used primari-
ly in broadcast environments.

IEC61937 - a method of packing compressed audio
such that it can be delivered using a bi-phase en-
coded signal (e.g., S/PDIF output signal from DVD
player); used primarily for outboard decoders
where A/V synchronization is not required.

1.1 Multi-Channel Decoder Family of Parts

CHA923 - Dolby Digita™ Audio Decoder. The
CS4923 is the original member of the family and is
intended to be used if only Dolby Digital decoding
is required. For Dolby Digital, post processing
includes bass management, delays and Dolby Pro
Logic decoding. Separate downloads can also be
used to support stereo to 5.1 channel effects
processing and stereo MPEG decoding.

CHA924 - Dolby Digital™ Source Product
Decoder. The CS4924 is the stereo version of the
CS4923 designed for source products such as
DVD, HDTV, and set-top boxes. Separate
downloads are available for stereo decode of Dolby
Digital and MPEG audio.

CHA925 - International Multi-Channel DVD
Audio Decoder. The CS4925 supports both Dolby
Digital and MPEG-2 multi-channel formats. For
both Dolby Digital and MPEG-2 multi-channel,
post processing includes bass management and
Dolby Pro Logic decoding. Separate downloads are
available for decode of Dolby Digital and MPEG

User’s Guide to determine which formats are supaudio. Another code load can be used to support
ported by a particular application. A brief descrip-Stereo to 5.1 channel effects processing.

tion of each format is presented below.

C$4926 - DTS/Dolby® Multi-Channel Audio

Elementary - an elementary bitstream consists onlyPecoder. The C34926 supports both Dolby Digital
of compressed audio data (e.g., strictly the Dolbgnd DTS, or Digital Theater Surround. For Dolby

Digital, post processing includes bass management

AN115REV2

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

and Dolby Pro Logic. The Dolby Digital code and
DTS code take separate code downloads. Separate
downloads can aso be used to support stereo to 5.1
channel effects processing and stereo MPEG
decoding.

CHA927 - MPEG-2 Multi-Channel Decoder. The
C927 supports MPEG-2 multi-channel decoding
and should be used in applications where Dolby
Digital decoding is not necessary. For MPEG-2
multi-channel decoding, post processing includes
bass management and Dolby Pro Logic decoding.
Another code load can be used to support stereo to
5.1 channel effects processing.

CHA928 - DTS Multi-Channel Decoder. The
C4928 supports DTS multi-channel decoding and
should be used in applications where Dolby Digital
decoding is not necessary. For DTS multi-channel
decoding, post processing includes bass
management. Separate downloads can also be used
to support stereo to 5.1 channel effects processing
and stereo MPEG decoding.

C$4929 - AAC 2-Channdl, (Low Complexity) and
MPEG-2 Stereo Decoder. The C4929 is capable
of decoding both 2-channel AAC and MPEG-2
audio. The C$4929 supports elementary and PES
formats.

1.2 Document Strategy

Multiple documents are needed to fully define,
understand and implement the functionality of the
C4923/4/516/7/8/9. They can be split up into two
basic groups. hardware and application code
documentation. It should be noted that hardware
and application code are co-dependent and one can
not successfully use the part without an

the device from timing to base functionality. This is
the hardware designers tool to learn the part’s
electrical and systems requirements.

AN115 - CS4923/4/5/6/7/8/9 Hardware User’'s
Guide - describes the functional aspects of the
device. Anin depth description of communication,
boot procedure, externa memory and hardware
configuration are given in this document. This
document will be valuable to both the hardware
designer and the system programmer.

1.2.2 CS4923/4/5/6/7/8/9 Application Code
User’s Guides

The following application notes describe the
application codes used with the
C4923/4/5/6/7/8/9. Whenever an application code
user’s guide is referred to, it should be assumed that
one or more of the below documents are being
referenced. The following list covers currently
released application notes. This list will grow with
each new application released. For a current list of
released user’s guides please see www.crystal.com
and search for the part number.

AN120 - Dolby Digital User's Guide for the
CS4923/4/5/6This document covers the features
avalable in the Dolby Digita code including
delays, pink noise, bass management, Pro Logic,
PCM pass through and Dolby Digital processing
features. Optional appendices are available that
document code for Dolby Virtual, Q-Surround and
VMAX.

AN121 - MPEG User’'s Guide for the CS4925
This document covers the features available in the
MPEG Multi-Channel code including delays, bass
management, Pro Logic, and MPEG processing

understanding of both. The ‘ANXXX’ notation features.
denotes the application note number under Whicl'&N122 . DTS Users Guide for the CS4926

the respective user’s guide was released.

1.2.1 Hardware Documentation

CS4923/4/5/6/7/8/9 Family Data Sheet - This

CS4928 This document covers the features
avallable in the DTS code including bass
management and DTS processing features.

document describes the electrical characteristics of

AN115REV2

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

AN123 - Surround User's Guide for
CS4923/4/5/6/7/8This code covers the different
Stereo PCM to surround effects processing code.
Optional appendices are available that document
Crystal Original Surround, Circle Surround and
Logic7.

AN140 - Broadcast Systems Guide for the

CS4923/4/5/6/7/8/9 This guide describes all
application code (e.g. Dolby Digital, MPEG, AAC)
designed for broadcast systems such asHDTV and
set-top box receivers. This document also provides
a discussion of broadcast system considerations
and dependencies such as A/V synchronization and
channel change procedures.

1.3 Using the CS4923/4/5/6/7/8/9

No matter what application is being used on the
chip, the following four steps are always followed
to use the C4923/4/5/6/7/8/9 in system.

2)

3)

4)

the 1) Reset and/or Download Code - Detailed

information in AN115

Hardware Configuration - Detailed information
in AN115
Application configuration - Detailed

information in the appropriate Application
Code User’s guide

Kickstart - This is the “Go” command to the
CS492X once the system is properly
configured. Information can be found in the
appropriate Application Code User’s guide.

For this document, CS4923/4/5/6/7/8/9 has been
replaced in certain places with CS492X for
readability. Unless otherwise specified CS492X
should be interpreted as applying to the CS4923,
CS4924, CS4925 and CS4926.

AN115REV2

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

2. HOST COMMUNICATION

The host communication port of the
C4923/4/516/7/8/9 is used for downloading
application code to the DSP and it is used for
communicating with the DSP during run-time. The
CS492X supportstwo parallel host communication
modes (Intel mode and Motorola mode) and two
serial host communication modes (IZC and SPI).

Please note that when a parale host
communication mode has been selected, the
external memory interface cannot be used. This
constraint has two significant implications:

parallel host communication

RD WR MODE
0 1 12c
0 SPI

Table 1. Serial Host Mode Configurations

(t,shi) times must be satisfied around the rising
edge of reset as specified in the RESEAlitching
characteristics portion of the CS492X Family
Datasheet.

The following sections will explain each
communication mode in more detail. Flow
diagrams will illustrate read and write cycles.
Pseudocode is presented in “Appendix A -

Autoboot cannot be used in a system usingseydocode For The CS4923/4/5/6/7/8/9 Family”

58 to demonstrate communication with the chip

Parallel host communication modes cannot bérom a programming perspective.

used when processing DTS (CS4926 or CS4928ming diagrams will be shown to demonstrate

Each of the host communication modes supported
by the CS492X family will be discussed in
subsequent sections. The following information
will be provided for each mode:

relative edge positions of signal transitions for read
and write operations.

Only the subsection describing the communication
mode being used needs to be read by the system

How to configure the CS492X for each hostdesigner.

communication mode 2.1.1 SPI Communication

Which pins of the CS492X must be used SPI communication with the CS4923/4/5/6/7/8/9 is
The protocol used for writing to the CS492X accomplished with 5 communication lines: chip
The protocol used for reading from the CS492)8€elect, serial control clock, serial data in, serial data
) o out and an interrupt request line to signal that the
2.1 Serial Communication DSP has data to transmit to the host. Table 2 shows
The CS4923/4/5/6/7/8/9 has a serial control pothe mnemonic, pin name and pin number of each of
that supports both SPI and?C forms of these signals on the CS4923/4/5/6/7/8/9.
communication. The mode of communication i

determined by the states of the Rin 5) and WR Mnemonic Pin Name Pin Number
(pin 4) pins at the rising edge of RESKin 36). Chip Select CS 18
Table 1 below shows the two possible mode Serial Clock SCCLK !
configurations: Se.r|al Data In SCDIN 6
Serial Data Out SCDOUT 19
Other modes are not supported at this time and |nterrupt Request INTREQ 20

should not be used. If the mode pins are driven
dynamically by the host, then set ug4t) and hold

Table 2. SPI Communication Signals

AN115REV2

y 4 Y Iy J J [K

2111

Writing in SPI

When writing to the device in SPI the same
protocol will be used whether writing a byte, a
message or even an entire executable download
image. The examples shown in this document can
be expanded to fit any write situation. Figure 1
shows atypical write sequence:

< SPI START: CS (LOW) >

Y

WRITE ADDRESS BYTE
WITH MODE BIT
SET TO 0 FOR WRITE

r

< SEND DATABYTE >

MORE DATA?

N

< CS (HIGH) >

Figurel. SPI Write Flow Diagram

The following is a detailed description of an SPI
write sequence with the CS492X.

1)

2)

An SPI transfer is initiated when chip select
(CS) isdriven low.

This is followed by a 7-bit address and the
read/write bit set low for a write. The address
for the CS492X defaults to 0000000b. It is
necessary to clock this address in prior to any
transfer in order for the CS492X to accept the
write. In other words a byte of 0x00 should be
clocked into the device preceding any write. The
0x00 byte representsthe 7 bit address 0000000b,
and the least significant bit set to O to designate
awrite.

3) The host should then clock datainto the device
most significant bit first, one byte at atime. The
databyteistransferred to the DSP on thefalling
edge of the eighth serial clock. For this reason,
the serial clock should be default low so that
eight transitions from low to high to low will
occur for each byte.

4) When al of the bytes have been transferred,
chip select should be raised to signify an end of
write. Once again it is crucial that the seria
clock transitionsfrom high to low on the last bit
of the last byte before chip select israised, or a
loss of datawill occur.

The pseudocode in Section 6.1.1 “SPl Write
Operation” -- page 58 demonstrates a write
operation for the SPI mode of communication.

The same write routine could be used to send a
single byte, message or an entire application code
image. From a hardware perspective, it makes no
difference whether communication is by byte or
multiple bytes of any length as long as the correct
hardware protocol is followed.

2.1.1.2 Readingin SPI

A read operation is necessary when the
CS4923/4/5/6/7/8/9 signals that it has data to be
read. The CS492X does this by dropping its
interrupt request line (INTREQ low. When
reading from the device in SPI, the same protocol
will be used whether reading a single byte or
multiple bytes. The examples shown in this
document can be expanded to fit any read situation.
Figure 2 shows a typical read sequence:

The following is a detailed description of an SPI
read sequence with the CS492X.

1) An SPI read transaction is initiated by the
CS492X dropping INTREQsignaling that it
has data to be read.

2) The host responds by driving chip selectCS
low.

AN115REV2

y 4 Y Iy J J [K
' 4 A Wy /|

Y 44y 4 o/l 4
NO
YES
< CS (LOW))

Y

WRITE ADDRESS BYTE
WITH MODE BIT
SET TO 1 FOR READ

#4
< READ DATA BYTE)

YES

INTREQ STILL LOW?

(CS (HIGH))

Figure2. SPI Read Flow Diagram

3) This is followed by a 7-bit address and the
read/write bit set high for a read. The address
for the CS492X defaults to 0000000b. It is
necessary to clock this address in prior to any
transfer in order for the CS492X to
acknowledge the read. In other words a byte of
0x01 should be clocked into the device
preceding any read. The 0x01 byte represents
the 7 bit address 0000000b, and the least
significant bit set to 1 to designate a read.

4) After thefalling edge of the serial control clock
(SCCLK) for the read/write bit, the data is
ready to be clocked out on the control data out
pin (CDOUT). Data clocked out by the host is
valid on the rising edge of SCCLK and data

transitions occur on thefalling edge of SCCLK.
The serial clock should be default low so that
eight transitions from low to high to low will
occur for each byte.

5) If INTREQ isstill low, another byte should be
clocked out of the C492X. Please see the
discussion below for a complete description of
INTREQ behavior.

6) When INTREQ hasrisen, the chip select line of
the C3492X should be raised to end the read
transaction.

Understanding therole of INTREQ isimportant for
successful communication. INTREQ is guaranteed
to remain low (once it has gone low) until the
second to last rising edge of SCCLK of thelast byte
to be transferred out of the CS492X. If there is no
more data to be transferred, INTREQ will go high
at this point. For SPI thisisthe rising edge for the
second to last bit of the last byte to be transferred.
After going high, INTREQ is guaranteed to stay
high until the next rising edge of SCCLK. Thisend
of transfer condition signalsthe host to end the read
transaction by clocking the last data bit out and
raising CS. If INTREQ is still low after the second
to last rising edge of SCCLK, the host should
continue reading data from the serial control port.

It should be noted that all data should be read out of
the serial control port during one cycle or aloss of
data will occur. In other words, all data should be
read out of the chip until INTREQ signals the last
byte by going high as described above. Please see
Section 2.1.3 “INTRE@ehavior: A Special Case”
-- page 10 for a more detailed description of
INTREQ behavior.

The pseudocode in Section 6.1.2 “SPl Read

Operation” -- page 59demonstrates a read
operation for the SPI mode of communication.

The Figure 3 timing diagram shows the relative

edges of the control lines for an SPI read and write.

10

AN115REV2

¢NIHSTINY

1T

SCCLK

SCDIN [AD6 [ADS [AD4| AD3][AD2[AD1[ADO|R/W [D7 [D6 [D5 [D4 [D3 [D2 [D1 [D0 [D7 [D6 [D5 [D4 [D3 [D2 [D1 [DO [D7 [D6 [D5 [D4 [D3 [D2 [D1 | DO | |

cs |

—

SPI Write Functional Timing

SCCLK

SCDIN [AD6 [AD5 [AD4 [AD3 [AD2 [AD1 [ADO |R/W |

SCDOUT | [D7 [D6 [D5 [D4 [D3 [D2 [D1 [DO [D7 [D6 [D5 [D4 [D3 [D2 [D1 [DO [D7 [D6 [D5 [D4 [D3 [D2 | D1 [DO | |
cs
INTREQ | A
Note 2

Notes:

1.

SPI Read Functional Timing Note 1

INTREQ is guaranteed to stay LOW until the rising edge of SCCLK for bit D1 of the last byte
to be transferred out of the CS4923/4/5/6/7/8/9.

INTREQ is guaranteed to remain HIGH until the next rising edge of SCCLK at which point it
may go LOW again if there is new data to be read. The condition of INTREQ going LOW at this
point should be treated as a new read condition. After a stop condition, a new start condition
and an address byte should be sent

Figure3. SPI Timing

- J /7 orw J J4J17 |/
'/ B8 Y Y &/
Y J J/ J/ 4 I A F U

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

2.1.2 12C Communication

12C communication with the CS4923/4/5/6/7/8/9 is
accomplished with 3 communication lines: seria
control clock, a bi-directiona serial data
input/output line and an interrupt request line to
signal that the DSP has data to transmit to the host.
Table 3 shows the mnemonic, pin name and pin
number of each of these signals on the C$492X.

Mnemonic Pin Name Pin Number

Serial Clock SCCLK 7
Bi-Directional Data SCDIO 19
Interrupt Request INTREQ 20

Table 3. 1°C Communication Signals

Typicaly in 12C communication SCDIO isan open
drain line with a pull-up. A logic oneis placed on
the line by tri-stating the output and allowing the
pull-up to raise the line. At this point another
device can drive the line low if necessary. Tri-
stating SCDI O can have two effects. 1. To send out

a one when writing data or sending a “no
acknowledge”; 2. release the line when another

chip is writing data.

For our pseudocode examples, driving SCDIO high
effectively tri-states this signal since it is open
drain and SCDIO (HIGH) should be interpreted as

such.

2121 Writingin1°C

When writing to the device in?C the same

protocol will be used whether writing a byte, a
message or even an application code image. The
examples shown in this document can be expanded
to fit any write situation. Figure 4 shows a typical

write sequence:

The following is a detailed description of ACl
write sequence with the CS492X.

1) An 1°C transfer is initiated with arfC start

condition which is defined as the data (SCDIO)

line falling while the clock (SCCLK) is held
high.

N

SEND I2C START:
DROP SCDIO LOW
WHILE SCCLK IS HIGH
WRITE ADDRESS BYTE
WITH MODE BIT
SET TO 0 FOR WRITE

Y

GET ACK

< SEND DATABYTE

N

Y

GET ACK

N N BN

MORE DATA?

N

I2C STOP:
RAISE SCDIO HIGH
WHILE SCCLK IS HIGH

Figure 4. 12C Write Flow Diagram

2) Next a 7-bit address with the read/write bit set

low for a write should be sent to the CS492X.
The address for the CS492X defaults to
0000000b. It is necessary to clock this address
in prior to any transfer in order for the CS492X
to accept the write. In other words a byte of
0x00 should be clocked into the device
preceding any write. The 0x00 byte represents
the 7 bit of address (0000000b) and the
read/write bit set to O to designate a write.

12

AN115REV2

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

I

(0 5N

GET ACK

)
“
)

READ DATABYTE

N Y

3) After each byte (including the address and each

data byte) the host must release the data line

and provide a ninth clock for the CS492X to

acknowledge. The C$492X will drive the data

linelow during the ninth clock to acknowledge. NO

If for some reason the CS492X does not

acknowledge, it means that the last byte sent

was not received and should be resent. If the

resent byte fails to produce an acknowledge, a SEND I°C START:]

stop condition should be sent and the device DROP SCDIO LOW

should be reset. WHILE SCCLK IS HIGH
4) The host should then clock data into the device

most significant bit first, one byteat atime. The

CH92X will (and must) acknowledge each WRITE ADDRESS BYTi

. .) WITH MODE BIT

bytethat it receiveswhich meansthat after each SETTO 1 FOR READ

byte the host must provide an acknowledge

clock pulse on SCCLK and release the data

line, SCDIO.
5) At the end of a data transfer a stop condition

must be sent. The stop condition is defined as

the rising edge of SCDIO while SCCLK is

high.
The pseudocode in Section 6.2.1°C| Write
Operation” -- page 60 demonstrates a write INTREQ STILL LOW? SEND ACK
operation for the2C mode of communication.
2.1.22 Readinginl’C
A read operation is necessary when the (SEND NACK >

CS4923/4/5/6/7/8/9 signals that it has data to be

read. It does this by dropping its interrupt request *

line (INTREQ) low. When reading from the device SEND I2C STOP:

in 12C, the same protocol will be used whether | RISING EDGE OF SCDIO
reading a single byte or multiple bytes. The WHILE SCLK IS HIGH

examples shown in this document can be expanded
to fit any read situation. Figure 5 shows a typical
12C read sequence

1) An I°C read transaction is initiated by the2) The host responds by sending & Istart
CS492X dropping INTREQsignaling that it condition which is SCDIO dropping while
has data to be read. SCCLK is held high.

Figureb. I°C Read Flow Diagram

AN115REV2 13

y 4 Y Iy J J [K

3)

The start condition is followed by a 7-bit
address and the read/write bit set high for a
read. The address for the CS492X defaults to
0000000b. It is necessary to clock this address
in prior to any transfer in order for the CS492X
to acknowledge the read. In other words a byte
of 0x01 should be clocked into the device
preceding any read. The 0x01 byte represents
the 7 bit address 0000000b and a read/write bit
set to 1 to designate aread.

edge of SCCLK before the ACK SCCLK). If there
is no more data to be transferred, INTR&AQ) go

high at this point. After going high, INTRE@
guaranteed to stay high until the next rising edge of
SCCLK (i.e. it will stay high until the rising edge
of SCCLK for the ACK/NACK bit). This end of
transfer condition signals the host to end the read
transaction by clocking the last data bit out of the
CS492X and then sending a no acknowledge to the
CS492X to signal that the read sequence is over. At
this point the host should send afCl| stop

4) After thefalling edge of the serial control clock L
(SCCLK) for the read/write bit of the address condition .to _complete the reaq_ sequence. If
byte, an acknowledge must be read in by the INTREQ is still low after the rising edge of
host. The CS492X will drive SCDIO low to SCCLK on the last data bit of the current byte, the
acknowledge the address byte and to indicate host should send an acknowledge and continue
that it is ready for a read operation. If an reading data from the serial control port.
acknowledge is not sent by the C$492X, astop It should be noted that all data should be read out of
condition should be issued and the read the serial control port during one cycle or a loss of
sequence should be restarted. data will occur. In other words, all data should be

5) The data is ready to be clocked out on the read out of_ the phip until INTRE@ignaIs the last
SCDIO line at this point. Data clocked out by byte_by going high as descrl_bed above: Please see
the host is valid on the rising edge of SCCLK Section 2.1.3 “INTRE(Behawor_: A SpeC|aI_ Qase”
and datatransitions occur on thefallingedgeof ~ -~ Page 10 for a more detailed description of
SCCLK. INTREQ behavior.

6) If INTREQ is still low after a byte transfer, an The pseudocode in Section 6.2.2°Cl Read

acknowledge (SCDIO clocked low by SCCLK)
must be sent by the host to the C492X and
another byte should be clocked out of the
CA92X. Please see the discussion below for a
complete description of INTREQ’s behavior.

Operation” -- page 62 demonstrates a read
operation for the2C mode of communication.

The timing diagram in Figure 6 shows the relative
edges of the control lines for aClread and write.

2.1.3 INTREQ Behavior: A Special Case

7) When INTREQhas risen, a no acknowledge h L ith th 14/5/6/7/8/
should be sent by the host (SCDIO clockeaN en communicating with the CS4923/4/5/6/7/8/9

high by the host) to the CS492X. This, followedNe’€_are tW"l typei of messages WhikCh force
by an PC stop condition (SCDIO raised, while INTREQo0 go low. These messages are known as

SCCLK is high) signals an end of read to th(_:;solicited messages and unsolicited messages. For
CS492X more information on the specific types of messages

_ _ that require a read from the host, one of the
Understanding the role of INTRE®important for application code users guides should be

successful communication. INTREQqguaranteed eferenced.
to remain low (once it has gone low), until the | wh — ith the CS492
rising edge of SCCLK for the last bit of the last bytelngﬂa’W en communicating with the CS492X,

to be transferred out of the CS492X (i.e. the risinéNTREQWiII not go low unless the host first sends

14 AN115REV2

¢NIHSTINY

GT

SCCLK

SCDIO [AD6 [AD5 [AD4 JAD3 JAD2 [ADL JADO |[RW ACK [D7 [D6 [D5 [D4 [D3 [D2 [D1 [DO | ACK[D7 [D6 [D5 [D4 [D3 [D2 [DL [DO | ACK|D7 [D6 [D5 [D4 [D3 [D2 [D1 [DO | ACK
|
|

SCCLK
SCDIO

INTREQ

12C Start 12C Stop
|
|
|
|
|
|

I2C Write Functional Timing

12C Start 12C Stop
|
|
T
|
|
|

[AD6 | AD5 [AD4 [AD3 [AD2 [AD1 [ADO [RAW |ACK[D7 [D6 [D5 [D4 [D3 [D2 [D1 [DO |ACK[D7 [D6 | D5 [D4 [D3 [D2 [D1 [DO | ACK] D7 [D6 [D5 [D4 [D3 [D2 [D1 [DO |NACK]

1

Note 1 Note 2 Note 3 Note 5
Note 4

I2C Read Functional Timing

Notes: 1. The ACK for the address byte is driven by the CS4923/4/5/6/7/8/9.

2. The ACKs for the data bytes being read from the CS4923/4/5/6/7/8/9 should be driven by the
host.

3. INTREQ is guaranteed to stay LOW until the rising edge of SCCLK for bit DO of the last byte
to be transferred out of the CS4923/4/5/6/7/8/9.

4. A NACK should be sent by the host after the last byte to indicate the end of the read cycle.

5. INTREQ is guaranteed to stay HIGH until the next rising edge of SCCLK (for the ACK/NACK
bit) at which point it may go LOW again if there is new data to be read. The condition of
INTREQ going LOW at this point should be treated as a new read condition. After a stop
condition, a new start condition followed by an address byte should be sent.

Figure®6. 1’C Timing

- J /7 orw J J4J17 |/
'/ B8 Y Y &/
Y J J/ J/ 4 I A F U

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

aread request command message. In other words
the host must solicit a response from the DSP. In
this environment, the host must read from the
CH92X until INTREQ goes high again. Once the
INTREQ pin hasgone highit will not be drivenlow
until the host sends another read request.

When unsolicited messages, such as those used for
Autodetect, have been enabled, the behavior of
INTREQ is noticeably different. The CS492X will
drop the INTREQ pin whenever the DSP has an
outgoing message, even though the host may not
have requested data.

There are three ways in which INTREQ can be
affected by an unsolicited message:

1) During normal operation, while INTREQ is
high, the DSP could drop INTREQ to indicate an
outgoing message, without a prior read request.

2) The host is in the process of reading from the
C$492X, meaning that INTREQ isalready low. An
unsolicited message arrives which forces INTREQ
to remain low after the solicited message is read.

3) The hot is reading from the CS492X when the
unsolicited message is queued, but INTREQ goes
high for one period of SCCLK and then goes low
again before the end of the read cycle.

In case (1) the host should perform aread operation
as discussed in the previous sections.

In case (2) an unsolicited message arrives before
the second to last SCCLK of the final byte transfer
of aread, forcing the INTREQ pin to remain low.
In this scenario the host should continue to read
from the C492X without a stop/start condition or
datawill be lost.

In case (3) an unsolicited message arrives between
the second to last SCCLK and the last SCCLK of
the final byte transfer of a read. In this scenario,
INTREQ will transition high for one clock (asif the
read transaction has ended), and then back low
(indicating that more data has queued). This final

caseisthe most complicated and shall be explained
in detail.

There are two constraints which completely
characterize the behavior of the INTREQ pin
during a read. The first constraint is that the
INTREQ pin is guaranteed to remain low until the
second tolast SCCLK (SCCLK number N-1) of the
final byte being transferred from the CS492X (not
necessarily the second to last bit of the data byte).
The second constraint isthat once the INTREQ pin
has gone high it is guaranteed to remain high until
therising edge of thelast SCCLK (SCCLK number
N) of the final byte being transferred from the
CHA92X (not necessarily the last bit of the data
byte). If an unsolicited message arrives in the
window of time between the rising edge of the
second to last SCCLK and the final SCCLK,
INTREQ will drop low on the rising edge of the
final SCCLK asillustrated in the functional timing
diagrams shown for 1°C and SP! read cycles.

INTREQ behavior for 12C communication is
illustrated in figure 6. When using 1°C
communication the INTREQ pin will remain low
until the rising edge of SCCLK for the data bit DO
(SCCLK N-1), but it can go low at the rising edge
of SCCLK for the NACK hit (SCCLK N) if an
unsolicited message has arrived. If no unsolicited
messages arrive, the INTREQ pin will remain high
after rising.

INTREQ behavior for SPI communication is
illustrated in figure 3. When using SPI
communication, the INTREQ pin will remain low
until the rising edge of SCCLK for the data bit D1
(SCCLK N-1), but it can go low at the rising edge
of SCCLK for data bit DO (SCCLK N) if an
unsolicited message has arrived. If no unsolicited
messages arrive, the INTREQ pin will remain high
after rising.

Idedlly, the host will sample INTREQ on the
falling edge of SCCLK number N-1 of the final
byte of each read response message. If INTREQ is

16

AN115REV2

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

sampled high, the host should conclude the current
read cycle using the stop condition defined for the
communication mode chosen. The host should then
begin a new read cycle complete with the
appropriate start condition and the chip address. If
INTREQ is sampled low, the host should continue
reading the next message from the CS$S492X
without ending the current read cycle.

When using automated communication ports,
however, the host is often limited to sampling the
status of INTREQ after an entire byte has been
transferred. In this situation a low-high-low
transition (case 3) would be missed and the host
will see a constantly low INTREQ pin. Since the
host should read from the C$492X until it detects
that INTREQ has gone high, this condition will be
treated as a multiple-message read (more than one
read response is provided by the C$492X). Under
these conditions a single byte of 0x00 will be read
out before the unsolicited message.

The length of every read response is defined in the

must be shifted out of the CS492X before the first
byte of the unsolicited message can be read.

In other words, if a system can only sample
INTREQ after an entire byte transfer the following
routine should be used if INTRE® low after the
last byte of the message being read:

1) Read one byte

2) If the byte == 0x00 discard it and skip to step 3.
If the byte !'= 0x00 then it is the OPCODE for
the next message. For this case skip to step 4.

3) Read one more byte. This is the OPCODE for
the next message.

4) Read the rest of the message as indicated in the
previous sections.

2.2 Parald Host Communication

The parallel host communication modes of the
CS4923/4/5/6/7/8/9 provide an 8-bit interface to
the DSP. An Intel-style parallel mode and a
Motorola-style parallel mode are supported. The

user's manual for each piece of application codénode of communication is determined by the states
Thus, the host should know how many bytes to expeef the RD(pin 5), WR(pin 4), and PSEL (pin 19)
based on the first byte (the OPCODE) of a reaflins at the rising edge of RESEpin 36). Each
response message. It is guaranteed that no reiie the CS492X is reset, the RIVR, and PSEL
responses will begin with 0x00, which means that Rins are sampled to determine how the host
NULL byte (0x00) detected in the OPCODE positiorinterface port will be configured. Table 4 shows the
of a read response message should be discardBgicessary pin configurations for selecting a parallel
Please see an Application Code User's Guide for &®nfiguration mode.

explanation of the OPCODE.

. RD | WR PSEL MODE
It is important that the host be aware _of Fh" 1 1 0 intel Mode
presence of NULL bytes, or the communication 1 1 Motorola Mode

channel could become corrupted. Table 4. Parallel Host M ode Configurations

When case (3) occurs and the host issues a stoE _ o _
condition before starting a new read cycle, the firstne host interface is implemented using four
byte of the unsolicited message is loaded directifommunication registers within the CS492X:

into the shift register and 0x00 is never seen. « The Host Message register (A[1:0]==00b):
receives incoming control data bytes and

Alternatively, if case (3) occurs and the host con- : _
provides outgoing response data bytes.

tinues to read from the CS492X without a stop con-
dition (a multiple message read), the 0x00 byte

AN115REV2 17

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

e The Host Control register (A[1:0]=01b): « The pins of the CS492X which must be used for
provides information about the state of the proper communication

communication interface. « Flow diagram and description for a parallel

e The PCM Data Input register (A[1:0]=10b): byte write
accepts bytes of linear PCM audio datg

Flow diagram and description for a parallel
(WRITE ONLY).

byte read

* The Compressed Data Input registeirpg four registers of the CS492X’s parallel host
(A[1:0]=11b): accepts bytes of compressedy,qe are not used identically. The algorithm used
audio data (WRITE ONLY). for communicating with each register will be given

When the host is downloading code to the CS4924s a functional description, building upon the basic

or configuring the application code, controlread and write protocols defined in the Motorola

messages will be written to (and read from) thand Intel sections. The following will be covered:

Host Message register. The Host Control register S o,y diagram and description for a control write

used during messaging sessions to determine when

the CS492X can accept another byte of control

data, and when the CS492X has an outgoing byte2 1 |nte Parallel Host Communication
that may be read. Mode

The PCM Data and Compressed Data registers &g |nte| parallel host communication mode is

used strictly for the transfer of aU(_:iio data. The ho%plemented using the pins given in Table 5.
cannot read from these two registers. Audio data

Flow diagram and description for a control read

written to registers 11b and 10b are transferred Mnemonic Pin Name | Pin Number
directly to the internal FIFOs of the CS492X. Whenchip Select cS 18
the level of the PCM FIFO reaches the FIFQwrite Enable WR 4
threshold level, the MFC bit of the Host ControlOutput Enable RD 5
register will be set. When the level of the CompresseBegister Address Bit 1~ |Al 6
Data FIFO reaches the FIFO threshold level, the MFERegister Address Bit0 |AO 7
bit of the Host Control register will be set. Interrupt Request INTREQ |19
o DATA7 DATA7 8
It is important to remember that the parallel hostya7ag DATAG 9
interface requires the DATA[7:0] pins of the[patas DATAS 10
CS492X. The external memory interface alsOpatas DATA4 1
requires the DATA[7:0] pins. This conflict results|paTa3 DATA3 14
in the following constraint: DATA2 DATA?2 15
» Parallel host communication modes cannot be usﬁ?ﬁml DATAL 16
DATAO DATAO 17

when processing DTS (CS4926 and CS4928)

Systems that require DTS capability and systems
utilizing the autoboot capabilities of the CS492XThe INTREQpin is controlled by the application code
must use a serial host communication protocol. when a parallel host communication mode has been

A detailed description for each parallel host modé&elected. When the code supports INTREQ
will now be given. The following information will netification, the INTREQpin is asserted whenever
be provided for the Intel mode and Motorola modeth® DSP has an outgoing message for the host. This

Table 5. Intel Mode Communication Signals

18 AN115REV2

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

same information is reflected by the HOUTRDY bit
of the Host Control Register (A[1:0] = 01b).

INTREQ is useful for informing the host of
unsolicited messages. An unsolicited message is
defined as amessage generated by the DSP without
an associated host read request. Unsolicited
messages can be used to notify the host of
conditions such as a change in the incoming audio
datatype (e.g. PCM --> AC-3).

2.2.1.1 Wkiting a Bytein Intel Mode

Information provided in this section is intended as
a functional description of how to write control
information to the C$492X. The system designer
must insure that all of the timing constraints of the
Intel Paralel Host Mode Write Cycle are met. The
timing specifications for the Intel Parallel Host
Mode can be found in the CS4923/4/5/6/7/8/9
Family Datasheet.

The flow diagram shown in Figure 7 illustrates the
sequence of events that define a one-byte write in
Intel mode.

ADDRESS A PARALLEL /O REGISTER
(A[1:0] SET APPROPRIATELY
CS (LOW)
WR (LOW)
WRITE BYTE TO
DATA [7:0]
_CS (HIGH)
WR (HIGH)

Figure7. Intel Mode, One-Byte Write Flow Diagram

The protocol presented in Figure 7 will now be
described in detail .

1) Thehost must first drivethe A1 and AO register
address pins of the CS492X with the address of
the desired Parallel 1/0 Register.

Host Message: A[1:0]==00b.
Host Control: A[1:0]==01b.
PCMDATA: A[1:0]==10b.
CMPDATA: A[1:0]==11b.

2) Thehost thenindicatesthat the sel ected register
will be written. The host initiates awrite cycle
by driving the CS and WR pins low.

3) Thehost drivesthe databyteto the DATA[7:0]
pins of the C$492X.

4) Once the setup time for the write has been met,
the host ends the write cycle by driving the CS
and WR pins high.

2.2.1.2 Reading a Bytein Intel Mode

Information provided in this section is intended as
a functional description of how to write control
information to the C$492X. The system designer
must insure that all of the timing constraints of the
Intel Parallel Host Mode Read Cycle are met. The
timing specifications for the Intel Paralel Host
Mode can be found in the CS4923/4/5/6/7/8/9
Family Datasheet

The flow diagram shown in Figure 8 illustrates the
sequence of events that define a one-byte read in
Intel mode.

The protocol presented in Figure 8 will now be
described in detail .

1) Thehost must first drivethe A1 and AO register
address pins of the CS492X with the address of
the desired Parallel 1/0O Register. Note that only
the Host Message register and the Host Control
register can be read.

A[1:0]==00b.
A[1:0]==01b.

Host Message:
Host Control:

AN115REV2

19

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

ADDRESS A PARALLEL /O REGISTER
(A[1:0] SET APPROPRIATELY
CS (LOW)
RD (LOW)
READ BYTE FROM
DATA [7:0]
CS (HIGH)
RD (HIGH)

Figure8. Intel Mode, One-Byte Read Flow Diagram

2) Thehost now indicatesthat the sel ected register
will be read. The host initiates a read cycle by
driving the CS and RD pins low.

3) Once the data is valid, the host can read the
vaue of the selected register from the
DATA[7:0] pins of the CS492X.

4) The host should now terminate the read cycle
by driving the CS and RD pins high.

2.2.2 Motorola Parallel Host
Communication Mode

The Motorola parallel host communication modeis
implemented using the pins given in Table 6.The
INTREQ pin is controlled by the application code
when aparallel host communi cation mode has been
selected. When the code supports INTREQ
notification, the INTREQ pin is asserted whenever
the DSP has an outgoing message for the host. This
same information is reflected by the HOUTRDY
bit of the Host Control Register (A[1:0] = 01b).

INTREQ is useful for informing the host of
unsolicited messages. An unsolicited message is
defined as amessage generated by the DSP without
an associated host read request. Unsolicited
messages can be used to notify the host of
conditions such as a change in the incoming audio
datatype (e.g. PCM --> AC-3).

Mnemonic Pin Name | Pin Number
Chip Select cs 18
Data Strobe DS 4
Read or Write Select R/W 5
Register Address Bit 1 Al 6
Register Address Bit 0 A0 7
Interrupt Request INTREQ 19
DATA7 DATA7Y 8
DATA6 DATAG6 9
DATAS DATAS 10
DATA4 DATA4 11
DATA3 DATA3 14
DATA2 DATA2 15
DATAL DATA1L 16
DATAO DATAOQ 17

Table 6. M otorola Mode Communication Signals

2.2.2.1 Wkiting a Bytein Motorola Mode

Information provided in this section is intended as
a functional description of how to write control
information to the C$492X. The system designer
must insure that all of the timing constraints of the
Motorola Parallel Host Mode Write Cycle are met.
The timing specifications for the Motorola Parallel
Host Mode can be found in the CS4923/4/5/6/7/8/9
Family Datasheet.

The flow diagram shown in Figure 9 illustrates the
sequence of events that define a one-byte write in
Motorola mode.

The protocol presented in figure 9 will now be
described in detail .

20

AN115REV2

y 4 Y Iy J J [K

1)

2)

3)

4)

2222

R/W (LOW)
ADDRESS A PARALLEL 1/O REGISTER
(A[1:0] SET APPROPRIATELY

Ly
(Som)
C)
C

WRITE BYTE TO
Figure9. Motorola Mode, One-Byte Write Flow
Diagram

DATA [7:0]

'

CS (HIGH)
DS (HIGH)

The host must drive the A1 and AO register
address pins of the CS492X with the address of
the address of the desired Paralel 1/0 Register.

Host Message: A[1:0]==00b.
Host Control: A[1:0]==01b.
PCMDATA: A[1:0]==10b.
CMPDATA: A[1:0]==11b.

The host indicates that this is a write cycle by
driving the R/W pin low.

The host initiates a write cycle by driving the
CSand DS pins low.

The host drivesthe data byte to the DATA[7:0]
pins of the CS492X.

Once the setup time for the write has been met,
the host ends the write cycle by driving the CS
and DS pins high.

Reading a Byte in Motorola Mode

Theflow diagram shown in Figure 10illustratesthe
sequence of events that define a one-byte read in
Motorola mode.

CS (HIGH)
DS (HIGH)

ADDRESS A PARALLEL /O REGISTER
(A[1:0] SET APPROPRIATELY
DS (LOW)

Figure 10. Motorola M ode, One-Byte Read Flow

R/W (HIGH)

CS (LOW)
READ BYTE FROM
DATA [7:0]

Diagram

The protocol presented Figure 10 will now be
described in detail .

1)

2)

3)

4)

The host must drive the A1 and AO register
address pins of the CS492X with the address of
the desired Parallel 1/0 Register. Note that only
the Host Message register and the Host Control
register can be read.

Host M essage: A[1:0]==00b.
Host Control: A[1:0]==01b.

The host indicates that this is a read cycle by
driving the R/W pin high.

The host initiates the read cycle by driving the
CSand DS pinslow.

Once the data is valid, the host can read the
vaue of the selected register from the
DATA[7:0] pins of the CS492X.

The host should now terminate the read cycle
by driving the CS and DS pins high.

AN115REV2

21

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

2.2.3 Proceduresfor Parallel Host Mode

Communication

2231 Control Writein a Paralld Host Mode

When writing control datato the CS492X, the same
protocol is used whether the host is writing a
control message or an entire executable download
image. Messages sent to the CS492X should be
written most significant byte first. Likewise,
downloads of the application code should also be
performed most significant byte first.

The example shown in this section can be
generalized to fit any control write situation. The
generic function ‘Read_Byte *()’ is used in the
following example as a generalized reference to
either Read Byte MOT() or Read Byte INT(),
and ‘Write_Byte_*()’ is a generic reference to
Write_Byte_ MOT() or Write_Byte INT(). Figure
11 shows a typical write sequence.

The protocol presented in figure 11 will now be
described in detail.

1) When the host is communicating with the
CS492X, the host must verify that the DSP is
ready to accept a new control byte. If the DSP
is in the midst of an interrupt service routine, it
will be unable to retrieve control data from the
Host Message Register. Please note that
‘Read_Byte *()’ and ‘Write_Byte *()’ are 3
generic references to either the Intel or
Motorola communication protocol.

If the most recent control byte has not yet been
read by the DSP, the host must not write a ne\ﬂ)
byte.

In order to determine whether the CS492X is
ready to accept a new control byte the host must
check the HINBSY bit of the Host Control

2)

—>< READ_*(HOST CONTROL REGISTER) >

YES

NO

@RITE_*(HOST MESSAGE REGISTE@

MORE BYTES
TO WRITE?

C)

Figure 11. Typical Parallel Host Mode Control
Write Sequence Flow Diagram

FINISHED

Register (bit 2). If HINBSY is high, then the
DSP is not prepared to accept a new control
byte, and the host should poll the Host Control
Register again. If HINBSY is low, then the host
may write a control byte into the Host Message
Reqgister.

The host knows that the DSP is ready for a new
control byte at this point and should write the
control byte to the Host Message Register
(A[1:0] = O0b).

If the host would like to write any more control
bytes to the CS492X, the host should once

again poll the Host Control Register (return to
step 1).

22

AN115REV2

y 4 Y Iy J J [K
' 4 A Wy /|

Y 44y 4 a8/ / 4
2.2.3.2 Control Read in a Parallel Host 7
- - ~

Mode < _INTREQ=0_~>
When reading control data from the >~ 7
C$4923/4/5/6/7/8/9, the same protocol is used YES
whether the host is reading asingle byte or a6 byte y
message. _,(READ_*(HOST CONTROL REGISTER)

During the boot procedure, a handshaking protocol
isused by the CS492X. This handshake consists of
a 3 byte write to the C492X followed by a1 byte NO
response from the DSP. The host must read the
response byte and act accordingly. The boot
procedure is discussed in Section 3.1 “Host Boot” - YES
- page 25.

During regular operation (at run-time), the GEAD “(HOST MESSAGE REGISTER))‘
responses from the CS492X will always be 6 bytes _

in length.

The example shown in this section can be used for
any control read situation. The generic function
‘Read_Byte *()’ is used in the following example
as a generalized reference to either
Read_Byte MOT() or Read_Byte INT(). Figure

MORE BYTES
TO READ?

12 shows a typical read sequence. < WAIT 100 uS)
The protocol presented in Figure 12 will now be ¢
described in detail.

1) Optionally, INTREQgoing low may be used as < READ _*(HOST CONTROL REGISTER))

an interrupt to the host to indicate that the

CS492X has an outgoing message. Even with

the use of INTREQ HOUTRDY must be YES
checked to insure that bytes are ready for the

host during the read process. Please note that

INTREQ does not go low to indicate an ¢N0
outgoing message during boot.
: < FINISHED >
2) The host reads the Host Control Register

(A[1:0] = 01b) in order to determine the state of

the communication interface. Please note thatFgurel12. Typical Parallel Host Mode Control Read
‘Read_Byte *()’ is a generalized reference to Sequence Flow Diagram

either Read_Byte MOT() or Read_Byte INT().

AN115REV2

23

y 4 Y Iy J J [K

3)

4)

5)

In order to determine whether the CS492X has
an outgoing control byte that is valid, the host
must check the HOUTRDY bhit of the Host
Control Register (bit 1). If HOUTRDY is high,
then the Host Message Register containsavalid
message byte for the host. If HOUTRDY is
low, then the DSP has not placed a new control
byte in the Host Message Register, and the host
should poll the Host Control Register again.

The host knows that the DSP is ready to
provide a new response byte at this point. The
host can safely read a byte from the Host
Message Register (A[1:0] = 00b).

If the host expects to read any more response

6)

bytes, the host should once again check the
HOUTRDY hit (return to step 1). Please refer

to one of the application code user’s guides to
determine the length of messages to read from
the CS492X. Typically this length is 1, 3 or 6
bytes, and can be deduced from the message
OPCODE.

After the response has been read the host
should wait at least 100 uS and check
HOUTRDY one final time. If HOUTRDY is
high once again this means that an unsolicited
message has come during the read process and
the host has another message to read (i.e. skip
back to step 4 and read out the new message).

24

AN115REV2

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

3. BOOT PROCEDURE & RESET 2)

In this section the process of booting and
downloading to the CS492X will be covered as
well as how to perform a soft reset. Both host boot
and autoboot are covered in this section. 3)

3.1 Host Boot
A flow diagram of a typica seria download

The host should then send the boot message
DOWNLOAD_BOOT (0x000004). This
causes the CS492X to initialize itself for
download.

If the initialization was successful the CS492X
sends out the boot message BOOT_START
(Ox01) and the host should proceed to step 5.

sequence and atypical parallel download sequence

will be presented, as well as pseudocode

representing a download sequence from the

programmers perspective. The pseudocode is
written in a general sense where function calls are

made to Write * and Read *. The * can be

MNEMONIC VALUE
SOFT_RESET 0x000001
RESERVED 0x000002
RESERVED 0x000003
DOWNLOAD_BOOT 0x000004
BOOT_SUCCESS_RECEIVED 0x000005

replaced by 12C, SPI, INTEL, or MOTO depending

Table 7. Boot Write M essages

on the mode of host communication. For each case

the general download algorithm is the same.

The download and boot procedure is accomplished

with RESET (pin 36), and the communication pins

discussed in Section 2.1 “Serial Communication” +

- page 8. The flow diagrams in Figures 13 and 14

illustrate a typical boot and download procedur

Table 7 defines the boot write messages and Tahle

8 defines the boot read messages in mnemonic aTnd

MNEMONIC VALUE

BOOT_START 0x01
BOOT_SUCCESS 0x02
APPLICATION_FAILURE O0xFO
BOOT_ERROR OxFA
INVALID_MSG OxFB
BOOT_ERROR OxFC
INIT_FAILURE OxFD
INIT_FAILURE OXFE
BAD_CHECKSUM OxFF

actual hex value. These messages will be used'n
the boot sequence.

The following is a detailed description of a4)
download sequence for the CS492X. All writes and
reads with the CS492X should follow the protocol
given in Section 2 “Host Communication” -- page
8, and timing given in the CS492X Datasheet.

NOTE: When reading from the chip in a serial
communication mode, the host must wait for the
interrupt request (INTREJo fall before starting
the read cycle. 5)

1) A download sequence is started when the host
issues a hard reset and holds the mode pins
appropriately (WRRD, and PSEL) as described 6)
in Section 2 “Host Communication” -- page 8
and in the CS492X Datasheet. It is assumed that
timing is satisfied as per the CS492X Datasheet.

Table 8. Boot Read M essages

If initialization fails, the CS492X sends out an
INIT_FAILURE boot message byte (OxFD or
OXFE), INVALID_MSG byte (OxFB), or
BOOT_ERROR byte (OxFA or OxFC) and
spins waiting for a hard reset. The host should
re-try steps 1 through 3 and if failure is met
again, the serial communication timing and
protocol should be inspected.

After receiving the BOOT_START byte, the
host should write the downloadable image
(from the .LD file).

The end of the .LD file contains a three byte
checksum. If the checksum is good after
download, the CS492X will send a

BOOT_SUCCESS message (0x02) to the host.

AN115REV2

25

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

(RESET(LOW) (NOTE 1) >—>< RESET(HIGH) (NOTE 2) >—><

WAIT 500 NS

)

WRITE_*(DOWNLOAD_
BOOT, MSG_SIZE)

RESET must be held LOW for at
least 100 ns to satisfy t,gy

It should be noted that mode pins
are used to configure the CS492X
serial communication mode.
These mode pins are latched
internally on the rising edge of
reset. The pins can be set
dynamically by a microprocessor
or can be statically pulled HIGH or
LOW. If these pins are driven
dynamically, setup and hold times
must be satisfied as stated in the
CS492X datasheet. More
information about the function of
the mode pins can be found in the
CS492X datasheet and in Section
2 “Host Communication” -- page 8.

Time-out values reflect worst case
response time for the CS492X.
The values shown may be used for
the host’s time-out control loop.

Hardware configuration messages
are covered in Section 5
“.Hardware Configuration” -- page
46. Application configuration
messages are covered in each
application code user’'s manual.

Notes: 1.
N TIMEOUT AFTER
20MS (NOTE 3)
2.
Y
< READ_*(MESSAGE) >
MESSAGE == EXIT(ERROR))
BOOTSTART?
WRITE_*(.LD FILE,
DOWNLOAD FILE SIZE)
3.
N TIMEOUT AFTER
20MS (NOTE 3) 4.
Y
< READ_*(MESSAGE) >
EXIT(ERROR) >
WRITE_*(BOOT_
SUCCESS_RECEIVED, WAIT 5 MS

MSG-SIZE)

WRITE_*(CONFIGURATION_
MESSAGES, CONFIG_

MSG_SIZE) (NOTE 4)

(DOWN LOAD COMPLETE><

Figure 13. Typical Serial Boot and Download

Procedure

26

AN115REV2

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

(RESET(LOW) (NOTE 1) >—>< RESET(HIGH) (NOTE 2) >—><

WAIT 500 NS

)

CONTROL_WRITE_*(DOWNLOAD
BOOT, MSG_SIZE)

D)

HOUTRDY HIGH?

TIMEOUT AFTER

RESET must be held LOW for at
least 100 ns to satisfy t,gy

Notes: 1.

20MS (NOTE 3)
2. It should be noted that mode pins

are used to configure a CS492X
parallel communication mode.
These mode pins are latched
internally on the rising edge of
reset. The pins can be set
dynamically by a microprocessor

MESSAGE ==
BOOTSTART?

or can be statically pulled HIGH or
LOW. If these pins are driven

)

EXIT(ERROR)

CONTROL_WRITE_*(.LD FILE,
DOWNLOAD FILE SIZE)

dynamically, setup and hold times
must be satisfied as stated in the
CS492X Datasheet. More
information about the function of
the mode pins can be found in the
CS492X Datasheet and in Section
2 “Host Communication” -- page 8.

3. Time-outvalues reflect worst case
response time for the CS492X.
The values shown may be used for

HOUTRDY HIGH?

TIMEOUT AFTER

the host’s time-out control loop.

20MS (NOTE 3) 4. Hardware configuration messages

< READ_*(MESSAGE)

are covered in Section 5
“.Hardware Configuration” -- page
46. Application configuration
messages are covered in each
application code user’'s manual.

)

EXIT(ERROR)

CONTROL_WRITE_*(BOOT_
SUCCESS_RECEIVED,
MSG-SIZE)

CONTROL_WRITE_*(CONFIGURATION_

MESSAGES, CONFIG_MSG_SIZE)
(NOTE 4)

WAIT 5 MS

DOWN LOAD COMPLETE><

Figure 14. Typical Parallel Boot and Download Procedure

AN115REV2

27

y 4 Y Iy J J [K

7)

8)

The pseudocode in Section 6.3

EMAD[7:0]

3.3V

ADDRIZO! ADDRI[7:0] DATA[7:0] J

3.3V

CS4923/4/5/6/7/8/9

ADDR[15:8]
Q

ADDR[15:8]

HOST

°F 64K X 8

UCONTROLLER

ABOOT is an open-drain pin which requires
the pull-up shown.

ABOOT and INTREQ are multiplexed onto
the same pin. Therefore the host should
drive ABOOT with an open-drain driver.

> ROM

3.8V Only one of R1 and R2 should be stuffed.
Only one of R3 and R4 should be stuffed.
The state of EMOE and EMWR at the
rising edge of RESET will determine the
serial mode that the part comes up in
while using external memory. Please see
the Serial Communication section for

4 more details.

Figure 15. Autoboot Memory Architecture

If the checksum was bad, the CS492X responds
with the BAD_CHECKSUM message byte
(OxFF) and spins, waiting for hard reset.

After reading out the BOOT_SUCCESS byte,
the host should send the
BOOT_SUCCESS RECEIVED message
(Ox000005) which will cause an internd
application code reset and alow the
downloaded application to run.

After waiting 5ms to alow the downloaded
application to initialize, the host can send
configuration messages for both hardware and
software configuration. The hardware
configuration messages are described in

3.2 Autoboot

Autoboot is a feature available on all DSPs in the
CS492X family which gives the decoder the ability

to load application code into itself. Because

external memory is accessed with the 8-bit GPIO
interface, autoboot restricts host control to serial
communication. Figure 15 shows that an autoboot
system can be built with a CS492X decoder, two
octal latches and an external ROM.

In this system RESE#&nd ABOOQOTare the control
pins which are used to initiate autoboot. It is
important to be aware that the ABO@In also
serves as the INTREQIn for the decoder, which
means that it will be driven by the decoder when

Section 5 “.Hardware Configuration” -- pageout of the reset condition. Due to this constraint,
46. For more information about softwareABOOT should be connected to an open-drain

application messages please

refer to theutput of the microcontroller so as to allow the

Application Code User’s Guide for the code(s)specified pull-up resistor to generate the high

that are being used.

value. At the completion of a successful download

“Typical DownloadNTREQ (ABOOT) becomes an output and the

Session with the CS4923/4/5/6/7/8/9" -- page 640St should no longer drive it.
demonstrates a typical serial host download sessidine EMADI[7:0] pins serve as a multiplexed data
with the CS492X.

and address bus. Note that the pins are connected to

28

AN115REV2

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

AgooT | L

EXTMEM |

EwoE | | I e e R
e |

EMAD7:0

MA23:16

MA15:8 MA7:0 Data7:0

Figure 16. Autoboot Timing Diagram

both theinput of thefirst latch, and the output of the
ROM. The two latches are cascaded such that on
each clock pulse anew address byte is latched into
thefirst latch, and the previous ADDR[7:0] byteis
latched into the second register becoming
ADDR[15:8].

The timing for an autoboot sequence is illustrated
in Figure 16. The sequence is initiated by driving
RESET low and placing the decoder into a reset
state. At the rising edge of RESET the ABOOQOT,
WR, and RD pins are sampled. If ABOOT is low
when sampled, and the WR and RD pins are set to
configure the devicefor serial communications, the
device will begin to autoboot. Section 2.1 discusses
the procedure required for placing the CS492X into
aserial communication mode. For amore thorough

description of ABOQOT’s behavior after the rising

edge of RESEplease see section 3.2.1

appear to be a discrepancy. The timing diagram
shows three address cycles, but there are only two
latches in the illustration of the memory
architecture. This difference is a result of code size
limitations. The application code is guaranteed to
fit into a 32 Kilobyte space, which means that only
15 address bits will actually be used for retrieving
code from the ROM. Thus, the two latches catch
the least significant bytes, and the most significant
byte is dropped.

In autoboot mode, latching the most significant
byte would be perfectly valid since the most
significant bits are guaranteed to be zeros (the three
bytes represent a true 24-bit address). If the
external memory is to be used for access during
run-time (such as in DTS decode), however, a third
latch would break the memory interface. Different
external memory interface schemes are discussed

The EMOE pin of the CS492X is used for two N More detail in Section 4.
purposes. It generates clock pulses for the latcheBhe flow chart given in Figure 17 demonstrates the

and it is used in conjunction with EXTMENb

interaction required by the microcontroller when

enable the outputs of the ROM. The first threglacing the DSP into autoboot mode. The host must
rising edges of EMOEare used to latch addressfirst drive the RESETine low. The host also drives
bytes, as shown in the diagram. The fourth lowvABOOT low and hold it in a low state until the
pulse of EMOBHs used to enable the ROM outputsrising edge of RESETThe low state of ABOO&t

When both EXTMEMand EMOEgo low, the

the rising edge of RESEihitiates autoboot. As

EMADI7:0] pins of the DSP become inputs andnoted on the diagram, the host control mode must

await the data coming from the ROM.

be configured for serial communications, and the

When comparing the memory system in Figure 18PPropriate setup {dg) and hold (Tgnq) times
to the timing diagram of Figure 16 there may™Must be observed.

AN115REV2

29

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

RESET(LOW) (NOTE 1)
ABOOT(LOW)

< RESET(HIGH) (NOTE 2) >

'

< ABOOT(HIGH) >
Y

< WAIT 175 MS (NOTE 3) >

READ_*(VARIABLE)
(NOTE 4)

CORRECT VALUE?

AUTOBOOT COMPLETE

v

WRITE_*(HW_CONFIG_MSG,
HW_MSG_SIZE)
(NOTE 4)

Y

WRITE_*(SW_CONFIG_MSG,
SW_MSG_SIZE)
(NOTE 4)

Y

WRITE_*(KICKSTART,
MSG_SIZE)
(NOTE 4)

7
/

/)
2

)
N

WAIT 5 MS

Notes: 1.

RESET must be held LOW for at least 100 ns to
satisfy the T,¢y as specified in the CS4923/4/5/6/7/8/9
Datasheet.

The RD and WR pins must be configured to select a
serial communication mode as defined in the
CS4923/4/5/6/7/8/9 Datasheet. The setup (T,sts, = 50
ns) and hold (T, g =15 ns) times must be observed
for the RD, WR, and AUTOBOOT pins.

INTREQ should be ignored during this period.

The READ_* and WRITE_* functions are
placeholders for the READ_I2C/READ_SPI and
WRITE_I2C/WRITE_SPI functions defined in the
Serial Communication section.

Figure 17. Autoboot Sequence

30

AN115REV2

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

Because ABOOT must be driven by the host with
an open-drain pin, the statement ABOOT (HIGH)
should be understood to mean
ABOOT(RELEASE). The pull-up resistor required
on the ABOOT (or INTREQ) line will always be
responsible for producing a high value on the pin.
ABOOQT should never be driven high by the host.

After waiting for 175ms, the download should have
completed. During the wait period, the host should
ignore all INTREQ behavior (mask the INTREQ
interrupt). The host can then verify that the code
has successfully initialized itself by reading a
variable from the application and checking the
returned value against the known default value.
Any variable can be used for the verification step,
but a robust design will select a variable whose

The software configuration messages are specific
to each application (AC-3, MPEG, Crystal Original
Surround, and DTS). The user’'s guide for each
application provides a list of all pertinent
configuration messages. Writing the KICKSTART
message to the CS492X begins the audio decode
process. The KICKSTART message will also be
described in the user’s guide for each application.
Until the KICKSTART has been sent, the decoder
IS in a wait state.

3.21 Autoboot INTREQ Behavior

It is important to note that ABOO@nd INTREQ

are multiplexed on pin 20 of the CS492X. Because
this pin serves as an input before reset, and an
output after reset, the host should release the

value is neither all 0’s nor all 1's. If the first readAhBOOT Iige afte1r8RI;SIiThas gonde %‘?ﬁ
attempt returns an incorrect value, a 5ms waft 'own in Figure , the host must drive

should be inserted and the read should be repeaté(%’.v arpundh the risindg Tedge_ O_f RESEWhile
If a second invalid number is read, the entire boot?>€"VINg the &y and Tgnig timing parameters

process should be repeated. When the numb@ven in the CS492X Family Data Sheet in order to

returned matches the default value for the variabg'i1€ an autoboot sequence.

read, the host can be confident that the applicatiohfter the host has released the ABOE, it will

is resident in the DSP and awaiting furtheremain high while the DSP prepares to load code

instruction. into itself. When the DSP has begun the boot
pocess INTREQABOOT) will be driven low and

At will remain low during the entire download

grocedure. INTREQshould be ignored during
ownload, i.e. interrupts should be masked on the

host. The download time will vary according to the

size of the download image and the frequency of

Hardware configuration messages are used
define the behavior of the DSP’s audio ports.
more detailed description of the different hardwar
configurations can be found in the Section
“.Hardware Configuration” -- page 46.

W Driven Low by Host

Trstsu
m Driven Low by CS492X

RESET Download in Progress

AROOT 7 <
ABOOT M 2RI IRLRIIIRIELHLRKKS

Trsthid

Figure 18. Autoboot INTREQ Behavior

AN115REV2 31

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

the main DSP clock. At the conclusion of autoboot,
the DSP issues an internal reset which will cause
INTREQ to rise, indicating that boot has
completed. The autoboot sequence is guaranteed to
complete in 175ms (from rising edge of RESET to
the internal reset of the CS492X).

3.3 Application Failure Boot Message

Each piece of application code is specifically
tailored for either the CS4923, C34924, CS4925,
C$4926, C34927, CS4928 or CS4929. Although it
Is possible to load a piece of code into the wrong
chip and receive a BOOT_SUCCESS byte, the
code will not initialize itself. In order to facilitate
the debug of designs which can accept many
members of the CS492X family, an
APPLICATION_FAILURE messageis provided.

As mentioned earlier, the host should wait for at
least 5ms after download before sending
configuration messages to the C3492X. This

provides time for the code to initialize itself. If the
INTREQ pinislow 1msafter the download process
has completed, the host should read from the
CH92X. The byte OxFO indicates
APPLICATION_FAILURE. Thisbyte informsthe
host that the application code was loaded into an
incompatible DSP. As an example, loading DTS
application code into the CS4923 will generate an
APPLICATION_FAILURE byte.

Although most boot messages are essentialy
ignored for autoboot, it should be noted that the
APPLICATION_FAILURE message is applicable
whether serial boot or autoboot is used.

34 Resetting the CS4923/4/5/6/7/8/9

Resetting the C3492X uses a combination of
software and hardware. To reset the device, a
previous application must have been downloaded.
Theflow diagram in Figure 19 showsthe procedure
for performing areset.

< RESET(LOW) (NOTE 1)>
<RESET(HIGH) (NOTE 2)>
* Notes: 1. RESET must be held LOW for at least 100 ns to satisfy
trsti
< WAIT 500 ns > 2. Itshould be noted that mode pins are used to configure

* the CS492X communication mode. These mode pins
are latched internally on the rising edge of reset and

can be set dynamically by a microprocessor or can be

statically pulled HIGH or LOW. If these pins are driven

WRITE_* (SOFTRESET,

MSG_SIZE) dynamically, setup and hold times must be satisfied as
stated in the CS492X Datasheet. More information
* about the function of the mode pins can be found in the
< WAIT 5 ms > CS492X Datasheet and in Section 2 “Host
Communication” -- page 8,
* 3. Configuration messages determine both hardware and
software configuration. Hardware configurations are
WRITE_* described in section 5 of this manual. Software

(CONFIGURATION_MESSAGES,
CONFIG_MSG_SIZE)
(NOTE 3)

application configuration messages are described in
the Application Code User’s Guide for the code being
used.

Figure 19. Performing a Reset

32 AN115REV2

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

The following is a detailed description of a reset
sequence to the C$492X. All writes and reads with
the C$492X should follow the protocol given in
Section 2 "Host Communication” -- page @&d

timing given in the CS492X Datasheet.

of the hardware configurations in their default

states. The Application Code User’s Guide for

each application lists those parameters which
are affected by a SOFT_RESET.

3) After waiting 5 ms to allow the downloaded

1) Reset begins when the host issues a hard reset application to initialize, the host can send

2)

and holds the mode pins appropriately (WR
RD, and PSEL) as described in Section 2 “Host
Communication” -- page 8nd in the CS492X

Datasheet. It is assumed that the
communication protocol is followed for

whichever communication mode is chosen by
the host and that timing is satisfied per the
CS492X Datasheet.

configuration messages for both hardware and
software configuration. Hardware configuration
messages are described in Section 5
“Hardware Configuration” -- page 46.
Software application configuration messages
are described in the Application Code User’s
Guide for the code being used.

The pseudocode in Section 6.4 “Typical Reset

The host should then send the messadgeequence for the CS4923/4/5/6/7/8/9” -- page 65
SOFT_RESET (0x000001). This will restartdemonstrates a typical reset sequence for the
the previously downloaded application with allCS492X.

AN115REV2

33

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

4. EXTERNAL MEMORY

The CA92X family of DSPs provide a byte-wide
interface for accessing externa memory. The basic
memory interfaceisimplemented with thefollowing
pins. EMAD[7:0], EXTMEM, EMOE, and EMWR.
Each pin has been described in Table 9.

The host communication mode is important when
considering the externa memory interface.
External memory can only be connected to those
systems which implement a serial control host
interface. Any systems using the parallel host
cannot use the external memory interface.

The entire family of decoders has the capability of
autobooting, as discussed in Section 3.2 External
memory is used to hold the application code that
the DSP will load into itself. Because the C$4923,
CH924, CHA925 and CS4929 do not require
Autoboot capability, external memory is optional.

The C$4926 and C4928, however, require the use
of external memory. An external ROM must be
used for holding the DTS look-up tables employed
by the CS4926 and CS4928 during the decode of a
DTS bit-stream. Table 10 lists the memory
configurations for each decoder.

In a ssimple system, a non-paged memory can be
used to hold a single piece of autoboot code or the
DTS tables alone (e.g., the C$4928). In more
complex systems, apaged memory architecture can
be used to hold multiple pieces of application code
and the DTS tables (e.g., the C34926). Both
memory architectures, paged and non-paged, will
be presented in detail later in this section.

Pin Name Pin Number Pin Function
EMADO 17 Multiplexed Address and Data Bit O
EMAD1 16 Multiplexed Address and Data Bit 1
EMAD2 15 Multiplexed Address and Data Bit 2
EMAD3 14 Multiplexed Address and Data Bit 3
EMADA4 11 Multiplexed Address and Data Bit 4
EMAD5 10 Multiplexed Address and Data Bit 5
EMADG6 9 Multiplexed Address and Data Bit 6
EMAD7 8 Multiplexed Address and Data Bit 7
EXTMEM 21 External Memory Select
EMOE 5 * External Memory Output Enable &Address Latch Strobe
EMWR 4 * External Memory Write Strobe

* - These pins must be configured appropriately to select a serial host communication mode for the

CS4923/4/5/6/7/8/9 at the rising edge of RESET

Table 9. Memory | nterface Pins

Part Number

Host Control Mode if using External ROM

Memory Usage

CS4923,4,5,7,9 12C or SPI

OPTIONAL — Autoboot mode

CS4926,8 I°C or SPI

REQUIRED - DTS Tables
OPTIONAL — Autoboot mode

Table 10. Memory and Control Requirementsfor the CS4923/4/5/6/7/8/9 Family

34

AN115REV2

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

4.1 Basic Memory Architecture

The smplest external memory system consistsof the
DSP’s memory interface, the external memory, an

two octal latches to hold the memory address. Th 8
configuration is a non-paged memory architecture o oo [HJ
and a block diagram of this system is shown il S e A e

_ _ _ CS4923/4/5/6/7/8/9 o | | G
Figure 20. Non-paged memories are ideal fo B
autobooting a single piece of application code suc oo BAKXB
as AC-3. Because the application code is guarante

33v Only one of R1 and R2 should be stuffed. -
Only one of R3 and R4 should be stuffed. |
The state of EMOE and EMWR at the

rising edge of RESET will determine the
serial mode that the part comes up in !
while using external memory. Please see .
section 2, Serial Communication for

4 more details.

to fit within a 32 Kilobyte space, it is only necessar
to provide 15 address bits. The 16th address t
coming from the DSP may, however, be connecte
to the memory since the most significant bit is
guaranteed to always be 0 during autoboot. Figure Figure 20. Basic Memory Architecture

21 shows the functional timing of an autoboot

sequence in which three address cycles af@TS tables since only 16 bits are necessary for
illustrated. Due to the code size limitation, howeveraddressing all 64 Kilobytes. The timing
only the lower 15 bits of this address are relevant. requirements for the memory used in a DTS

The CS4926 and CS4928 both have speci&lySIem' however, are different from the timing
memory requirements since they must access lookgauirements of the memory used for autoboot
up tables while processing DTS encoded audi@nly- Accesses made during run-time occur at a
These tables will reside in a 64 Kilobyte page oftigher frequency, and there are only two address
external memory. The memory architecturefYCles as can be seen in Figure 22. Consequently, a

illustrated in Figure 20 is also applicable for the® TS System requires a faster ROM.

aecor | L

EXTMEM |

EuoE | [e N s N e FO
EvWR |

EMAD7:0 MA23:16 MA15:8 MA7:0 Data7:0

Figure21. Autoboot Timing Diagram

EXTMEM | [
EMOE | I [
EMAD7:0 MA15:8 X MA7:0 X Data7:0

Figure22. Run-TimeMemory Access

AN115REV2 35

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

Table 11 lists the memory speed requirements
based on the ROM content.

ROM Content ROM Speed
AUTOBOOT Code 330ns
DTS Tables Only 110ns
AUTOBOOT Code & DTS 110ns
Tables

Table 11. ROM Speeds

4.2 Non-Paged Memory

A non-paged memory architecture should be used in
systems which will need to access 64 Kilobytes of
data or less. One example of such a system would be
a decoder designed for AC-3 autoboot only. In this
caxe the only code ever needed would be the
application code that would run on the CS4923 or the
C$4924. The code is constrained to occupy less than
32 Kilobytes of memory, which means that only 15
bits would be required to access the entire image.
Therefore a sngle-code autoboot system could use
the 16-bit addressing scheme shown in Figure 20.

Another possible scenario is a C34926 or C$4928
DTS decoder which will be booted by the host. Inthis
system only a 64 Kilobyte ROM would be necessary
for holding the look-up tables. Once again, the basic
memory architecture presented in Figure 20 would be
adequate.

The DSP always considers its address space to range
from 0x0000 to OxFFFF. This meansthat the decoder
isunaware of any datawhich falls outside of these 64
Kilobytes. In autoboot mode there is yet another

4.3 Paged Memory

A paged memory architecture is necessary for
those systems which provide autoboot for multiple
code loads (e.g. when using Autodetect), or in any
CS4926 or CS4928 system which utilizes autoboot.

Paged memory is defined as a large memory
partitioned into smaller blocks. The easiest
partitioning scheme for the CS4923/4/5/6/7/8/9
family is on 64 Kilobyte boundaries because of the
sixteen bits of address provided by the DSP. If
memory space is at a premium, and the system
under design doeBIOT use the CS4926 or the
CS4928, itis possible to perform paging on 32
Kilobyte boundaries.

The host microcontroller plays a crucial role in
paged memory systems, since it is directly
responsible for addressing each page. In a memory
composed of 64 Kilobyte pages, the high order
address bits of the ROM, A16 and A17, would be
controlled directly by the microcontroller as shown
in Figure 23. These two address lines give the host
the capability to select any of four 64 Kilobyte
pages in memory.

A memory with 32 Kilobyte pages can be used only
to hold autoboot code. Such a memory would be
paged with bits A15 and A16. Using this design
template, it is vital that the most significant address
bit latched from the DSP, A15, not be connected to
the memory. The host microcontroller is

responsible for controlling address bits A15 and
greater. A 32 Kilobyte design is presented in Figure

constraint — the autoboot process always begins wih.
address 0x0000. The implication is that the hos}he main variable in organizing the ROM is the

microcontroller must somehow be involved in
memory accesses which exceed the 64 Kilobytg
scope of the CS492X, and the host must also man

page size. The easiest way to determine the page
ize for your system is to look at the largest block
memory required for any operation. If the

access to all _pieces of ‘?UtObOOt code Wh_icr_' d_o "Bternal ROM is designed to hold only autoboot
physically reside at location OXOQOO. The Ilmltatlonscode’ the designer has the option of using either 32
of a non-paged memory are easily seen, and they Cfi‘ﬁobyte or 64 Kilobyte pages. The final decision

(t;e circurg_/enrt]ed using paged memory designs Fould depend upon the size of the memory which
Iscussed in the next section. will be used in the final design.

36 AN115REV2

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

3.3V
8
ADDR[7:0]
EMADI7:0] D Q L —— ADDR[7:0] DATA7:0]
33v ?SELT D ADDR[15:8) ADDR[15:8]
UCADDR16**
CS4923/4/5/6/7/8/9 ofr | | 2ET| UCADRIE® | ongss
l ST4 | WCADDRIT™ | oy
— T
__EMmoE °E 256K X 8
EXTMEM CS ROM
EMWR—— |

3.3V Only one of R1 and R2 should be stuffed.
Only one of R3 and R4 should be stuffed.
The state of EMOE and EMWR at the
rising edge of RESET will determine the
serial mode that the part comes up in
while using external memory. Please see
section 2, Serial Communication for

R4 more details.

**The address lines uCADDR16 and uCADDR17 should come
from an external microcontroller and be used to page the
memory for the CS4923/4/5/6.

Figure 23. External Memory with 64 Kilobyte Pages

3.3V
8
ADDR[7:0]
EMAD([7:0] D Q L ——{ ADDR[T:0] DATA[7:0]
33y ?53": D 0 ADDR(14:] ADDR[14:8]
UCADDR15*
CS4923/4/5/7/9 e I A B
l oFr | UCADDRIE™ | appR1g
— T
EMOE O 128K X 8
EXTMEM ¢S ROM
T e N

33v Only one of R1 and R2 should be stuffed.
Only one of R3 and R4 should be stuffed.
The state of EMOE and EMWR at the
rising edge of RESET will determine the
serial mode that the part comes up in
while using external memory. Please see
section 2, Serial Communication for

R4 more details.

**The address lines uCADDR15 and uCADDR16 should come from an
external microcontroller and be used to page the memory for the
CS4923/4/5/7/9. The high order bit from the second D flip flop should be left
as a no connect to allow for an external microcontroller to drive ADDR1 5 of
the memory. Because the CS4923/4/5/7/9 will not drive ADDR15, only
ADDR([14:8] should be connected from the second D flip flop to the
memory.

Figure24. External Memory With 32 Kbyte Pages

AN115REV2 37

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

ROM Content Image Size Number of Pages Required |Recommended Page Size
CS54923
AC-3 32 Khytes 1 Non-Paged
AC-3,Crystal Original Surround | 32 + 32 = 64 Kbytes 2 32 Kbytes or 64 Kbytes
CS54924
AC-3 32 Khytes 1 Non-Paged
AC-3 with Q-Sound 32 Kbytes 1 Non-Paged
CS54925
AC-3, MPEG Multi-Channel, 32+32+32= 3 32 Kbytes or 64 Kbytes
Crystal Original Surround 96 Khytes
CS54926
DTS Tables 64 Kbytes 1 Non-Paged
DTS Tables, DTS, AC-3, Crystal | 64 + 32 + 32+ 32 = 4 64 Kbytes
Original Surround 160 Kbytes
CS54927
MPEG Multi-Channel 32 Khytes 1 Non-Paged
MPEG Multi-Channel, Crystal 32 + 32 = 64 Kbytes 2 32 Kbytes or 64 Kbytes
Original Surround
CS54928
DTS Tables 64 Kbytes 1 Non-Paged
DTS Tables, DTS, Crystal 64 +32+32= 3 64 Kbytes
Original Surround 128 Kbytes
CS54929
AAC 2-Channel 32 Khytes 1 Non-Paged
AAC 2-Channel, MPEG Stereo |32 + 32 = 64 Kbytes 2 32 Kbytes or 64 Kbytes

Table 12. External Memory Configurations

A system using a CS4926 or C$4928, however,
will alwaysrequire a 64 Kilobyte page for the DTS
look-up tables. Thus, the most straightforward
externally paged ROM for an autobooting CS4926
or C4928 would have 64 Kilobyte pages. The
CH926 or CS4928 would control the lowest
sixteen bits of address, and the host microcontroller
would control the most significant address bits.

Table 12 lists possible external memory
configurations for each DSP. The table provides a
list of the ROM content, the size of the combined
memory images, the recommended page size, and
the number of discrete pages required. The page
sizes were caculated using the methodology
discussed previously. A more complex memory
scheme is given in the CRD4923-MEM example
(Figure 32), which demonstrates how to pack the

memory more efficiently in a DTS system. The
examples also include severa figures which
present the different ROM configurations as
composite memory images.

44 Examples
44.1

The most rudimentary memory design discussed
above is the non-paged memory. In a non-paged
design, the DSP can only access one item in
memory which could be either a single autoboot
code load, or the DTS tables for the CS4926 or
C4928. The memory image given in Figure 25 is
an example of a non-paged memory image.

Non-Paged Memory

The memory image shown above would be
designed into a system using the memory
architecture laid out in Figure 20. All 16 output bits

38

AN115REV2

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

0x00000 AC-3 Code

or
DTS Tables

OXOFFFF

Figure 25. Non-Paged Memory

of the address latches would be connected to
address bits AO-A 15 of the external ROM. The host
Is completely isolated from memory accesses in
this dtuation. Once the hardware has been

0x00000
AC-3 Code
OxO7FFF
0x08000 -
Crystal Original
Surround Code
OXOFFFF

Address line A15
used for paging

Figure 26. 32 Kbyte Paged memory

designed, the DSP itself will be responsible for all
communication with the ROM.

4.4.2 32 Kilobyte Paged Autoboot Memory

An external memory architecture which is paged
on 32 Kilobyte boundaries will necessarily contain
only autoboot code. Therefore, thisarchitecture can
only be used by the CS4923/4/5/7/9. Because of the
64 Kilobyte look-up table that must be used during
the decode of a DTS stream, the C34926 and
C3A928 could never be used with a fixed
32 Kilobyte page size. Figure 26 shows an example
of a 32 Kilobyte paged memory image.

value. The open-drain driver is required because
the DSP will begin using the pin as an output after
a successful download (INTREQ and ABOOT are
multiplexed on the same pin).

After waiting for 175 msthe download should have
completed. During the wait period, the host should
ignore all INTREQ behavior (mask the INTREQ
interrupt). The host can then verify that the code

has successfully initialized itself by reading a
variable from the application and checking the
returned value against the default value. Any
variable can be used for the verification step, but a
robust design will select avariable whose value is
neither all 0’s nor all 1’s. If the first read attempt
returns an incorrect value, a 5 ms wait should be
inserted and the read should be repeated. If a
second invalid number is read, the entire boot
process should be repeated. When the number
returned matches the default value for the variable
read, the host knows that the application is resident
in the DSP and awaiting further instruction. Please
see Section 3.2 “Autoboot” -- page 28 for more
information.

The flow diagram given in Figure 27 demonstrates
the interaction required by the microcontroller
during autoboot. After placing the decoder into a
reset state, the host selects the page in memory
containing AC-3 Code by driving uC15 to a low
state. The host also drives ABOOT low and holds
it in alow state until the rising edge of RESET to
initiate autoboot. As noted in the autoboot section,
the ABOQOT pin should be connected to an open-
drain output of the microcontroller so as to allow
the specified pull-up resistor to generate the high

AN115REV2 39

y 4 Y Iy J J [K
' 4 A Wy /|

Y 44y 4 a8/ / 4

|
(' REsET LOW)) 4.4.3 64 Kilobyte Paged Autoboot Memory
Systems using fixed page sizes can implement either

(ABoOT(LOW)) 64 Kilobyte or 32 Kilobyte pages when the audio
decoder is one of the CS4923/4/5/7/9, but the

< uC15 (LOW)) CHA926 and CS4928 are restricted to 64 Kilobyte
Address AC-3 Code pages. The larger page size adds more versatility to

* the system design because both autoboot code and

< RESET (HIGH)) DTS tables can be included in any external ROM
utilizing 64 Kilobyte pages. The next two examples

* show possible memory designs. The first memory

C ABOQOT (HIGH)) Image contains only autoboot code, and the second
example shows an external ROM image which holds

< Wait 175 ms multiple pieces of autoboot code in addition to the

ignore INTREQ DTS look-up tables.

The memory image illustrated in Figure 28 is
designed for a system using externa ROM for
autoboot purposes only. There are only two pagesto
choose from, which means that the host
microcontroller needs to drive one memory address
line. In this case, it would be bit A16. The
architecture for this memory configuration is shown

(_ READ_*(variable)l) e——

Wait 5 ms

Correct Value?

(__ Autoboot Complete) in Figure 23. All 16 bits of latched address are
connected to the memory, and the microcontroller
WRITE_*(HW_CONFIG_MSG. would provide uCl§ f_or paging between the AC-3
HW_MSG_SIZE)™ Code and Crystal Origina Surround.
* The flow diagram given in Figure 29 demongtrates
WRITE_*(SW_CONFIG_MSG, the interaction required by the microcontroller when
SW_MSG_SIZE)™ placing the DSP into autoboot mode. After placing
* the decoder into a reset state, the host selects the
WRITE_*(KICKSTART, page in memory containing Crystal Original
MSG_SIZE)"
0x00000
TThe READ_*and WRITE_*functions are placeholders AC-3 Code
for the READ_I2C/READ_SPI and WRITE_I2C/ OXOFFFF
WRITE_SPI functions defined in the Serial 0x10000 .
Communications section. Crystal Original
Surround Code
Figure 27. Autoboot Sequencefor 32 Kbyte Ox1FFFF
Paged Memory Address line A16

used for paging

Figure28. 64 Kbyte Paged Autoboot Memory

40 AN115REV2

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

Surround Code by driving uC16 to a high state. The
host also drives ABOOT low and holds it in a low
state until the risng edge of RESET to initiate (
autoboot. As noted in the autoboot section, the

ABOOT pin should be connected to an open-drain (
output of the microcontroller so as to dlow the
specified pull-up resistor to generate the high value. <

RESET (LOW)

ABOOT (LOW)

uC16 (HIGH)
Address Crystal
Surround Sound

v

RESET (HIGH)
ABOOT (HIGH)

The open-drain driver is required because the DSP
will begin using the pin as an output after a
successful download (INTREQ and ABOOT are
multiplexed on the same pin).

After waiting for 175 ms the download should have
completed. During the wait period, the host should WAt 17E s
ignore al INTREQ behavior (mask the INTREQ < ignore INTREQ
interrupt). The host can then verify that the code has
successfully initialized itself by reading a variable :)

from the application and checking the returned value (__READ (Variable)
against the default value. Any variable can be used

for the verification step, but a robust design will
select a variable whose value is neither all O’'s nor alll
1's. If the first read attempt returns an incorrect
value, a 5 ms wait should be inserted and the read
should be repeated. If a second invalid number is (_ Autoboot Complete)
read, the entire boot process should be repeated.

When the number returned matches the default valy€\ygre «Hw conric_Mmsa,
for the variable read, the host knows that th HW_MSG_SIZE)" >
application is resident in the DSP and awaiting *

further instruction. Please see Section 3.

“Autoboot” -- page 28 for more information. Z<

/\/\//_/

Correct Value? Wait 5 ms

WRITE_*(SW_CONFIG_MSG,
SW_MSG_SIzE)™

444 64 Kilobyte Paged DTS & Autoboot *
Mem()ry WRITE_*(KICKSTART, >

MSG_SIZE)"

The memory image of Figure 30 provides one
example Of. a ROM .conflgur_auon for external "The READ_* and WRITE_* functions are placeholders
memory which contains multiple autoboot cod&,, e READ 12C/READ SPI and WRITE 12C/
loads in addition to the look-up tables required foyrITE SPI functions defined in the Serial

DTS decode. The four pages in memory are eacbmmunication section.

64 Kilobytes in size. The symmetry of this design
simplifies the necessary address logic when
compared to the CRD4923-MEM design discussed
later in this section. The host can select any page in

Figure 29. Autoboot for 64 Kbyte paged Memory

AN115REV2 41

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

memory by toggling the A16 and A17 address bits
of the external memory.

Figure 31 shows the sequence of actions required
for performing an autoboot in a DTS system
(C4926 or C4928). Note the similarities to the
flow chart for a smple autoboot system. This
memory arrangement requires an additional
address bit, uC17, and memory must be paged to
the DTS Tables before KICKSTARTing the DTS
decode application.

After placing the decoder into areset state, the host
selects the page in memory containing the DTS
Code by driving uC16 to alow state, and uC17to a
high state. The host also drives ABOOT low and
holds it in a low state until the rising edge of
RESET to initiate autoboot. As noted in the
autoboot section, the ABOOT pin should be
connected to an open-drain output of the
microcontroller so asto allow the specified pull-up
resistor to generate the high value. The open-drain
driver isrequired because the DSP will begin using
the pin as an output after a successful download
(INTREQ and ABOOT are multiplexed on the
same pin).

0x00000
AC-3 Code
OXOFFFF
0x10000 -
Crystal Original
Surround Code
Ox1FFFF
0x20000
DTS Code
Ox2FFFF
0x30000
DTS Tables
Ox3FFFF

Address lines A16 and
A17 used for paging

Figure 30. 64 Kbyte Paged DT S/Autoboot Memory

After waiting for 175 msthe download should have
completed. During the wait period, the host should
ignore all INTREQ behavior (mask the INTREQ
interrupt). The host can then verify that the code

has successfully initialized itself by reading a
variable from the application and checking the
returned value against the default value. Any
variable can be used for the verification step, but a
robust design will select avariable whose value is
neither all 0’s nor all 1’s. If the first read attempt
returns an incorrect value, a 5 ms wait should be
inserted and the read should be repeated. If a
second invalid number is read, the entire boot
process should be repeated. When the number
returned matches the default value for the variable
read, the host knows that the application is resident
in the DSP and awaiting further instruction.

DTS, unlike the other applications for the CS492X
family, performs run-time accesses to the external
memory. In order to ensure that the decoding
process begins properly, the host should page to the
DTS tables before sending a KICKSTART to the
CS4926 or CS4928. The memory image in Figure
30 shows the DTS tables located at address
0x30000, so the host drives both uC16 and uC17 to
a high state. After the address has been set, the host
can move on to the configuration messages
required for the final decoder setup. Please see
Section 3.2 “Autoboot” -- page 28 for more
information.

45 CRD4923-MEM

The CRD4923-MEM is an external memory
adapter card designed for use with the CRD4923
and CDB4923. The schematic for the CRD4923-
MEM is shown in Figure 32. In order to reduce the
number of microcontroller lines needed for paging
the memory and controlling the autoboot sequence,
some ‘glue logic’ was added to the board. A
consequence of this logic was a hybrid paging
scheme. Both 32 Kilobyte and 64 Kilobyte pages
are used in the external ROM found on the

42

AN115REV2

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

RESET (LOW)

ABOOT (LOW)

C)

C)

uC17 (HIGH), uC16 (LOW)
Address DTS Code

< RESET (HIGH))

(ABOOT (HIGH))
Wait 175 ms
Ignore INTREQ

(_ READ_*(variable)l) e——

Correct Value? Wait 5 ms

(Autoboot Complete)

uC17 (HIGH), uC16 (HIGH)
Address DTS Tables

Y

WRITE_*(HW_CONFIG_MSG,
HW_MSG_sSIzE)T

Y

WRITE_*(SW_CONFIG_MSG,
SW_MSG_sIze)T

Y

WRITE_*(KICKSTART,
MSG_SIZE)"

NN

TN DN 7
N

AN

"The READ_*and WRITE_*functions are placeholders
for the READ_I2C/READ_SPI and WRITE_I2C/
WRITE_SPI functions defined in the Serial
Communications section.

Figure 31. Autoboot Sequencefor DTS System using
Symmetrical 64 Kilobyte Pages

expander card. One example CRD4923-MEM
memory image can be seen in Figure 33.

The aforementioned ‘glue logic’ was implemented
with four tri-state buffers and the most significant
address bit as shown in Figure 32. The high order
address bit, uC17, is used to page between the
Autoboot Sector and DTS Table Sector, as well as
to initiate an autoboot sequence. The tri-state
buffers are enabled and disabled according to the
state of uCl7, making the autoboot function
address dependent.

When uC17 is high, the uC15 buffer and REQ23
buffer outputs are in a high impedance state, the
DSP15 buffer is enabled, and the microcontroller is
given control of only A16 and A17. This allows the
CS4926 (or CS4928) to access all 64 Kbytes
(A[15:0]) of the DTS Tables located in the upper
half of external memory. In the DTS Sector of the
memory there are only two 64 Kilobyte pages
which are selected by uC16.

An autoboot sequence is activated when uC17 is
driven low during reset. The uC15 and REQ23
buffers are enabled, and the REQ23 (ABQOxie

is driven low. Recall that holding ABOOTow
during the rising edge of RESEIignals the DSP to
begin an autoboot sequence. Using uC17 in this
fashion frees the microcontroller from dedicating
an open-drain output for driving the ABOQIn,

but it also splits the memory into the Autoboot and
DTS Sectors shown in Figure 33. The Autoboot
Sector has four 32 Kilobyte pages which are
selected with A15 and A16. While in the DTS
Sector of memory, the DSP can access two
different 64 Kilobyte pages with microcontroller
address line uC16.

Obviously, the most complicated process involving
external memory is autobooting the CS4926 or
CS4928 into DTS mode. The microcontroller must
first load the CS4926 with the DTS application
code, and then page to the DTS Tables to ensure
proper decode of DTS streams. The flow diagram

AN115REV2

43

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

shown in Figure 34 illustrates the DTS autoboot
process (C$4926 and CS4928 systems). Note that
the control of the ABOQOT line and the uC17 line
are synonymous because of the glue logic used on
the CRD4923-MEM.

After placing the decoder into areset state, the host
selects the page in memory containing the DTS
Code by driving uC15 low, uC16 high, and uC17to
alow state. In the act of addressing autoboot code,
the host also drives ABOOT low because of the
relationship between uCl7 and ABOOT. The
ABOOQOT pinis held in alow state until the rising
edge of RESET to initiate autoboot. In fact, for the
CRD4923-MEM, it isimportant that ABOOT (i.e.
uCl7) is not driven high until autoboot has
completed. Placing uC17 into a high state would
prevent the DSP from accessing the correct code.
The tri-state buffer on the ABOOT line acts as an
open-drain driver. The open-drain driver is
required because the DSP will begin using the pin
as an output after a successful download (INTREQ
and ABOOT are multiplexed on the same pin).

After waiting for 175 msthe download should have
completed. During the wait period, the host should
ignore all INTREQ behavior (mask the INTREQ
interrupt). The host can then verify that the code
has successfully initialized itself by reading a
variable from the application and checking the

returned value against the default value. Any
variable can be used for the verification step, but a
robust design will select avariable whose value is
neither all 0’s nor all 1’s. If the first read attempt
returns an incorrect value, a 5 ms wait should be
inserted and the read should be repeated. If a
second invalid number is read, the entire boot
process should be repeated. When the number
returned matches the default value for the variable
read, the host knows that the application is resident
in the DSP and awaiting further instruction.

DTS, unlike the other applications for the CS492X
family, performs run-time accesses to the external
memory. In order to ensure that the decoding
process begins properly, the host should page to the
DTS tables before sending a KICKSTART to the
CS4926 or CS4928. The memory image in Figure
33 shows the DTS tables located at address
0x20000, so the host drives uC17 to a high state
(this was required for releasing ABOQTand
uC16 to a low state. In this state, with uC17 high,
the DSP15 buffer has been enabled giving the
decoder full access to all 64 Kbytes of the DTS
look-up tables. After the address has been set, the
host can move on to the configuration messages
required for the final decoder setup. Please see
Section 3.2 “Autoboot” -- page 28 for more
information.

44

AN115REV2

¢NIHSTINY

114

u1
2 19 A
D0 QO
3 D1 Q1 18 :
D2 Q2 A
5 D3 Q3 vy
) D4 Q4 7
= D5 Q5 A
D6 Q6
D7 Q7 A
EMOE »>——* e« 2
vce 10

1o GE onp
TC74VHC574FW

+3.3V
c7 4wk T
|
Yl
Co | LuF
= ! +3.3V
1 be| uc16
MRESET23< <9 p: < REQ23 |
79 S 2
0 3
EXTMEM q P8 o7 0
EMOE Eé D6 g 24 D5 R0 3X1HDR
D4 d ple D3
DZ 4 Os‘D‘I_‘ =
DO 194 2o
——»uc16
+3.3V
ucC1s
1
L AAr~— 2
RO 0 2
3X1HDR
b———————»ucC15
e — [0
+3.3V
uc17
1
2
R§ 0 2
3X1HDR

uct7 »—L s
ucie > S Al7 00 3 DO
U2 Al5 ; Al6 o1
AlS 02
ﬁo 2100 Qo 2 ﬁ AL 20 s 03
A P D1 Q1 A | AL3 04 1
Iy Hoe @ ry Al A2 05 (5
& o3 @3 & ATG o] ALL 06 [
A 7|04 9 A 55 AL0 o7
A 5|05 @ A 377 A09 —lz —<EXTMEM +3.3V
A 9]D6 Q6 };L% A08 CE %
by o7 |2 AL S {7 _oe i ———<KEMOE
+3.3V L] P»DSP15 ﬂfﬁ > A6 oM =Y Yox
[EMOE »——pck /&4—523 vep -
vee +3.3V Al R1¥ 0K
et 19 6 onp (L A0 vee 2
= v I 16 l
uF TC74VHC574FW c2 |~ — A0 GND c3
= {JUF AT27LV020A-90JC 1uF
AlQ:14] 1
uc17 y
U5A .
uC15 2 > 3
74LVC125
L Al5
USB[\L +3.3V
DSP15 5 > 5
74LVC125
C5
uscC 5E
£ V 8 » REQ23 1F 74LVC125
74LVC125 L
+3.3V U5

v

74LVC125

Figure32. CRD4923-MEM

R1

W—\/\/\H
.
S
2

- J /7 orw J J4J17 |/
'/ B8 Y Y &/
Y J J/ J/ 4 I A F U

y 4 Y Iy J J [K
' 4 A Wy /|

Y 44y 4 a8/ / 4

5. .HARDWARE CONFIGURATION ¢ RESET (LOW))
After download or soft reset, and before

kickstarting the application (please see the Audio < ~ABOOT (LOW)
Manager in the Application Messaging Section of Equivalent to uC17(LOW)

any Application Code User's Guide for more
information on kickstarting), the host has the / uC17(LOW), uC16 (HIGH),>

option of changing the default hardware Ad;rg;ssg}%v&de

configuration. Hardware configuration messages *
are used to physically reconfigure the hardware of

the audio decoder, as in enabling or disablin(ét
address checking for the serial communication
port. Hardware configuration messages are als@ Wait 175 ms, Ignore INTREQ)
used to initialize the data type (i.e., PCM or
compressed) and format (e.g%SJ left justified,

etc.) for digital data inputs, as well as the data<
format and clocking options for the digital output

port. (__ READ_*(variable)l)———

Autoboot Sector

RESET (HIGH))

ABOOT (HIGH)
Equivalent to uC17(HIGH)

0x00000
AC-3 Code Correct Value? Wait 5 ms

OxO07FFF
0x08000

Crystal Original

Surround Code (DTS Autoboot Complete!)
OXOFFFF
0x10000

DTS Code UC17 (HIGH), uC16 (LOW),
OX17FFF uC15 (DON'T CARE)
0x18000 Address DTS Tables

MPEG Code

OXLFFFF <WRITE HHW CONFIG MS >

HW._| MSG _size)T

DTS Table Sector

0x20000
WRITE_*(SW._ CONFIG MSG,
DTS Tables < SW. MSG SIZE)T
OX2FFFF
0x30000
Unused WRITE *(KICKSTART
OX3FFFF MSG_SIZE)!
Address lines A15 and A16 page Autoboot Sector TThe READ_*and WRITE_*functions are placeholders

Address line A17 selects DTS Tables or Autoboot for the READ I2C/READ SPI and WRITE 12C/
WRITE_SPI functions defined in the Serial

Figure 33. Memory Map for CRD4923 Daughter Communications section.

Board Figure 34. DTS Autoboot Flow Diagrams

46 AN115REV2

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

In general, the hardware configuration canonly be 5.2 Input and Output
changed immediately after download or after soft
reset. However, some applications provide the
capability to change the input ports without
affecting other hardware configurations after

The CS492X has two input ports and one output
port. This section will describe the digital audio
formats supported by the ports and give a
description of the ports themselves. The full

sending a special Application Restart message ¢4papilities of each port will be presented, although
(please see the Audio Manager in any Application o configurations may not be currently supported
Code User's Guide to determine whether th%y the software.

Application Restart message is supported). Section

5.3 at the end of this chapter will describe how tdVhen configuring the input ports, both data format
construct a hardware configuration message. and data type must be considered. Data format is
defined as the bit level presentation of the data,

5.1 Address Checking such as left justified ofS. Data type refers to what

When using one of the serial communicatiorthe bits actually represent, such as AC-3 or PCM. It
modes, ¥C or SPI, as discussed in Section 2.1, it i$5 the combination of these parameters that fully
necessary to send a 7-bit address along with define the hardware configuration for the input
read/write bit at the start of any serial transactiorPorts. To allow for real-time data type changes, the
By default, address checking is enabled in th8ardware configuration of the input ports can be
CS492X with an address of 0000000b. What thishanged after a special run-time restart message
means is that all transactions starting with thi§please see the Audio Manager in any Application
address will be accepted by the Cs492)Xcode User's Guide to determine whether the
communication port and all other communicatiorAPplication Restart message is supported). All
will be ignored. The address checking portion ofther hardware configurations can change only
the hardware configuration message allows thénmediately following download or a soft reset.
host to enable or disable address checking as W%I_Iz_l

: _ Digital Audio Formats
as assign a unique address to the CS492X.

hould b d th ith il This subsection will describe some common audio
v snou € noted that systems with multiple, 1 ais that the CS492X supports. It should be

devu?es on the same _bus require Spec""?'loted that the input ports always use 24-bit PCM
consideration. Since the unique address can notpe. .\ o and 16-bit compressed data word

assigned until after download or reset, every deV'CI%ngths. The output port of the CS492X provides
but one should be held in reset. That single devicg, . oM resolution

should then be brought out of reset, downloade

and assigned a unique address. The next devite> Figure 35 shows thés format. Fords, data

should then be brought out of reset and so on. Thig Presented most significant bit first, one SCLK
will insure that there is no contention on the bugl€lay after the transition of LRCLK and is valid on

and that the communication integrity is upheld. 1th€ rising edge of SCLK. For thég format, the left
should also be noted that performing a Soft Resetubframe is presented when LRCLK is low and the

as described in Section 3.4, will cause addredight subframe is presented when LRCLK is high.
checking to be re-enabled and the address wiCLK is expected to run at a frequency of 48Fs or

return to its default of 0000000b. greater on the input ports.

Left Justified: Figure 36 shows the left justified
format. Data is presented most significant bit first

AN115REV2 a7

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

onthefirst SCLK after an LRCLK transition andis
valid on the rising edge of SCLK. For the left
justified format, the left subframe is presented
when LRCLK is high and the right subframe is
presented when LRCLK islow. SCLK is expected
to run at afrequency of 48Fsor greater on the input
ports.

Multi-Channel: Figure 37 shows the multi-
channel format. In this format up to 6 channels of
audio are presented on one dataline with 20 bits per
channel. Channels 0, 2, and 4 are presented while
the LRCLK is high and channels 1, 3, 5 are
presented whilethe LRCLK islow. Dataisvalid on
the rising edge of SCLK and is presented most
significant bit first.

Bursty: Bursty audio delivery isaspecial format in
which only clock and data are used to deliver
compressed data to the C492X (i.e. no frame
clock or LRCLK). A third line is used as a request
to the host for more data. It is an indicator that the
CHA92X internal FIFO is low on data and can
accept another block of data. Typically thismodeis
used for compressed data delivery where
asynchronous data transfer occurs in the system,
i.e. in a system such as a Set Top Box or HDTV.
PCM data can not be presented in this mode since
data is interpreted as a continuous stream with no
word boundaries. For this reason bursty mode
covers both dataformat and data type.

LRCK | Left | Right
sew AL] EEEaEEEn e
SDATA msB] [LsB mMsB] [LsB
Figure 35. 12S Format
LRCK | Left | Right
sclk [A0 A C o ‘
SDATA msB] [LsB ms] [isB MSB

Figure 36. Left Justified Format

LRCLK | \

Se NS e s e e e A s I O N O O B R A A
SDATA _ [msB| [isB[wmsB| _ [ts[msB] _ [isB| [wsB| [isB[msB| _[LsB[msB] [LsB| [msB]

N L N
M Clocks M Clocks M Clocks M Clocks M Clocks M Clocks
Per Channel Per Channel Per Channel Per Channel Per Channel Per Channel
Figure 37. Multi-Channel Format
(M == 20)
48 AN115REV2

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

5.2.2 Digital Input and Output Ports

Digital Audio Input or DAI port: Table 13 shows
the three pins associated with the DAI port.
LRCLKNL1 is the frame clock which frames the
incoming data. It is synonymous with LRCLK in
the digital audio format figures. SCLKN1 is the bit
clock which clocks in the data and is synonymous
with SCLK in the digital audio format figures.
SDATAN1 is the serid data input and is
synonymous with SDATA in the digital audio
format figures. This port operates asadave. In the
save mode both SCLKN1 and LRCLKNL1 are
driven from an external source. This port can take
either compressed data or PCM data but it will not
operate in the Bursty data format.

Pin Name Pin Number
LRCLKN1 26
SCLKN1 25
SDATAN1 22

Table 13. DAI - Digital Audio Input Port

Compressed Data Input or CDI port: Table 14
shows the three pins associated with the CDI port.
The pins have different functions depending on
how the port is configured. When configured for
1°S, left justified or multi-channel, LRCLKN2 is
the frame clock synonymous with LRCLK,
SCLKN2 isthe bit clock synonymous with SCLK,
and SDATANZ2 isthe seria datainput synonymous
with SDATA. This port operates as a slave. In the
save mode both SCLKN2 and LRCLKN2 are
driven from an external source. This port can take
either compressed data or PCM data.

that the internal FIFO in the CS492X can accept a
block of data The block size is defined in the
hardware configuration message section. This pin
could be used as an interrupt request to a host
controlling dataflow or as athrottle for an externa
FIFO. CMPCLK is the bit clock that will clock in
data on its rising edge and CMPDAT is the seria
datainput. It should be noted that CMPCLK must
be gated when valid data is not present as
CMPCLK will clock in data on its rising edge
whether CMPREQ is high or low.

Digital Audio Output or DAO port: Table 15
shows the six lines associated with the DAO port.
MCLK is the master clock which can be used to
synchronize data flow throughout the system.
MCLK is an input. LRCLK is the frame clock
which framesthe outgoing dataand SCLK isthe bit
clock which clocks out the data. AUDATADO,
AUDATAL, and AUDATAZ2 are the PCM audio
outputs from the chip. Data is valid on the rising
edge of SCLK. Table 16 shows the default
mapping of data on the AUDATA[2:0] lines. This
default can be changed using the DAO channel
messages discussed in the Audio Manager portion
of the each Application Code User’s guide.

Pin Name Pin Number
MCLK 44
SCLK 43

LRCLK 42

AUDATAO 41

AUDATA1L 40

AUDATA2 39

Table 15. DAO - Digital Audio Output Port

Pin Name Pin Number
LRCLKN2, CMPREQ 29
SCLKN2, CMPCLK 28
SDATAN2, CMPDAT 27

Table 14. CDI - Compressed Digital Input Port

When the CDI is configured to operate in the
Bursty format, CMPREQ is an output from the
C492X. When CMPREQ goes low it indicates

Data
Channel | Output Name | Subframe | Signal
0 Left Left AUDATAO
1 Right Right AUDATAO
2 Left Surround Left AUDATA1
3 Right Surround Right AUDATA1
4 Center Left AUDATA2
5 Subwoofer Right AUDATA2

Table 16. Output Channel Mapping

AN115REV2

49

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

The DAO can operate as amaster or aslave. Asa byte at a time with the internal DSP assigning the
master, the DAO drives both LRCLK and SCLK. first 8-bit write (after PCMRST) to the left channel
LRCLK and SCLK will be divided down from and the second 8-bit write to the right channel. For
MCLK. When the DAO is configured in dlave 24-bit PCM, it assigns the first three 8-bit writes
mode, LRCLK and SCLK areinputs. If theDAOis (after PCMRST) to the left channel and the next
a slave, then MCLK is a don't care as an input. Théhree writes to the right channel. Before starting
DAO can also be configured to drive MCLK, PCM transfer, or to initiate a new PCM transfer, the
LRCLK, and SCLK when the internal PLL is PCMRST bit must be toggled as described above to
enabled. insure data integrity.

52.3 Parallel Delivery of Data Data must be delivc_ared_ to the CS492X in blocks of
_ i . . data. The block size is set through a hardware
This section covers parallel delivery of digital au'configuration message. Before each block is
d'o dgta. The low Igvel read.and W”te formats ar‘tafielivered, the host should check the MFC bit. If the
identical to those discussed in Section 2.2 “Parallrii\l/”:C bit is low. then the host can deliver a block of
Host Communication” -- page 17. data one byte at a time. If the MFC bit is high, no
It should be noted that when switching betweemore data should be sent to the CS492X. Once the
PCM and compressed data delivery using the pafMFC bit has gone low again, the host may send
allel data delivery, a new download, soft reset oanother block of PCM audio data. The MFC bit is
application restart must be sent along with a FIF®IFO level sensitive. In other words, it may change
configuration message for the appropriate data typguring the transfer of a block. The host should

(along with any other required hardware configuracomplete the block transfer and ignore the MFC bit

tion messages). until the block transfer is complete.
5231 PCM Data Write in Parallel Host ~The generic function ‘Read_Byte_*()" is used in
Mode the following example as a generalized reference to

. . _ . either Read_Byte_ MOT() or Read_Byte INT(),
ertlng to_the PCM audio data register ent-a_lls &nd ‘Write Byte_*()’ is a generic reference to
slightly different protocol than when writing Write Byte_MOT_() or Write_Byte_INT(). Figure

control infor.mati(.)n. The _MFC bit in the Host 38 shows the sequence for writing one block of
Control Register is an indicator of the PCM FIFO

)) _ PCM data when the device is in parallel host mode.
level. The MFC bit remains low until the FIFO
threshold has been reached. The protocol presented in the flow diagram on the

_ i following page will now be described in detail.

The PCMRST bit of the CONTROL register pro- _ _
vides absolute software/hardware synchronizatioh) The host first reads the Host Control Register
by initializing the input channel to uniquely recog- ~ (Al1:0] = 01b) in order to determine the state of
nize the first write to the byte-wide PCMDATA the input FIFOs.
port. Toggling PCMRST high and low informs the2) In order to determine whether the CS492X is
DSP that the next sample read from the PCMDA- ready to accept another block of data, the host
TA port is the first sample of the left channel. In must check the MFC bit of the Host Control
this fashion, the CS492X can translate successive Register (bit 4). If MFC is high, then the DSP is
byte writes into a variable number of channels with not prepared to accept a new block of data, and
a variable PCM sample size. In the most simple the host should poll the Host Control Register
case, the CS492X can receive stereo 8-bit PCM one again. If MFC is low, then the host may write a

50 AN115REV2

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

< READ_*(HOST CONTROL REGISTER))

YES

NO

< WRITE_*(PCMDATA REGISTER) >
NOT BLOCK

WRITTEN?

< FINISHED >

Figure 38. PCM Data Write Sequencein Parallel
Host Mode Flow Diagram

block of PCM audio data to the PCMDATA
register (A[1:0] = 10b) one byte at atime.

5.2.3.2 Compressed Data Write in Parallel
Host Mode

Writing to the compressed data register is very
similar to writing the PCM dataregister. Like PCM
data transfers the host should check level of the
Compressed Data FIFO before sending data, but
the CS492X has two means of indicating the
Compressed Data FIFO level. The MFB bit in the
Host Control Register is one indicator of the
Compressed Data FIFO level. The MFB bit
remains low until the FIFO threshold has been
reached. The alternativeisto usethe CMPREQ pin
of the CS492X. The CMPREQ pin also remains
low until the FIFO threshold has been reached. The
host has the option of using either CMPREQ or the
MFB bit.

Data must be delivered to the CS492X in blocks of
data. Before each block is delivered, the host
should check the MFB bit (or the CMPREQ pin). If
the MFB bit (CMPREQ) is low, then the host can
deliver a block of data one byte at a time. If the
MFB bit (CMPREQ) is high, no more data should
be sent to the C3492X. Once the MFB hit
(CMPREQ) has gone low again, the host may send
another block of compressed audio data.

One example is given for a system using the MFB
bit, and one example has been given for systems
using the CMPREQ pin. (Refer to figures 39 and 40
on the following pages).

The generic function’Read Byte *()’isusedinthe
following examples as a generalized reference to
either Read Byte MOT() or Read Byte INT(),
and 'Write Byte *()’ is a generic reference to
Write Byte MOT() or Write Byte INT().

52321 MFB Bit Example

1) .The host first reads the Host Control Register
(A[1:0] = 01b) in order to determine the state of
the input FIFOs.

2) In order to determine whether the C$492X is
ready to accept another block of data, the host
must check the MFB bit of the Host Control
Register (bit 4). If MFB ishigh, thenthe DSPis
not prepared to accept a new block of data, and
the host should poll the Host Control Register
again. If MFB islow, then the host may write a
block of compressed audio data to the CMP-
DATA register (A[1:0] = 11b) one byte at a
time.

AN115REV2

51

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

(READ_*(HOST CONTROL REGISTER) >

YES

NO

< WRITE_*(CMPDATA REGISTER) >
NOT BLOCK

WRITTEN?

'

< FINISHED >

Figure 39. MFB Bit Status Polling Flow Diagram

52322 CMPREQ Example

1) In order to determine whether the CS492X is
ready to accept another block of data, the host
can check the CMPREQ pin of the C3492X. If
CMPREQ ishigh, then the DSPis not prepared
to accept a new block of data, and the host
should poll the CMPREQ again. If CMPREQIis
low, then the host may write a block of com-
pressed audio data to the CMPDATA register
(A[2:0] = 11b) one byte at atime.

5.3 Configuration M essages

This section discusses the actual messages to be
sent to the device after soft reset or download. To
assemble the entire hardware configuration
message, the hex messages for each individual
parameter should be concatenated, creating one
large message. If the default configuration for a
parameter is acceptable, then no message needs to
be sent.

531 AddressChecking

The following 4-word hex message configures the
address checking circuitry of the CS492X: It should be
noted that this will dlow the host to disable address
checking or changethe address of the device. If address
checking enabled with an address of Ox00 is
acceptable, then these messages do not need to be sent.

0x800252
OxO00FFFF
0x800152
OxHHO0000

In the last word the following bits should replace
HH:

bits23:17 - New Address to use for checking (if
enabling address checking)

bit 16 - 1= Address checking on

0 = Address checking off

YES

NO

C WRITE_*(CMPDATA REGISTER) >
NOT BLOCK

WRITTEN?

C FINISHED)

Figure40. CMPREQ Pin Status Polling Flow
Diagram

52

AN115REV2

y 4 Y Iy J J [K
' 4 A Wy /|

Y 44y 4 a8/ / 4
|
5.3.2 I nput A Value Hex
Both data format (12S, Left Justified, etc) and data [N°e 1) T ey
type (compressed or PCM) arerequired to fully de- (default) |CDI - Compressed 0x3FBECO
fine the input port's hardware configuration. The 0x800110
DAl and the CDI are configured by the same grou 0x80002C
of messages since their configurations are interret DAI - PCM and Compressed (0x800210
. . . CDI - Unused Ox3FBFCO
lated. The naming convention of the input hard: 0X800110
ware configuration is as follows: 0xC0002C
2 DAl - Unused 0x800210
INPUTABCD CDI - PCM 0x3FBFCO
where A, B, C and D are the parameters used 0x800110
fully define the input port. The parameters are e gngggig
. . - X
defined as follows: CDI - Bursty Compressed 0x003FCO0
A - Data Type (See Special Considerations |0x800110
o Note 2) O0xO0E002C
B - Data Format (This is a don’t care for paralle[z DAl - Multi-Channel PCM 0x800210
modes of data delivery) CDI - PCM 0x3FBFCO
. 0x800110
C-SCLK POla“ty 0x80002C
D - FIFO Setup (only valid for parallel modes of|> DAI - PCM 0x800210
. CDI - Multi-Channel PCM 0x3FBFCO
data delivery) 0x800110
The following tables show the different values for 0x800025
each parameter as well as the hex message t[® D Pl 0x800210
: CDI - Not Used 0x003FCO
needs to be sent. When creating the hardware cq Parallel Port - Compressed 0x800110
figuration message, only one hex message shou (FIFO B) 0X0E002B
be sent per parameter. It should be noted that tje DAI - Not Used 0x800210
entire B parameter hex message must be sent, even CDI '”PIC'V' . 0x003FCO
if one of the input ports has been defined as unused (F)Fa}'r:aoeB)F) ort - Compresse 8?32%%12%
by the A parameter . 8 DAI - Not Used 0x800210
. . . CDI - Not Used 0x003FCO0
53.2.1 Special Considerations Parallel Port - PCM (FIFO C) |0x800110
1) 24-bit PCM input requires at least 24 SCLKS and Compressed (FIFO B) OxOE0013

per sub-frame. The DSP always uses 24-bit
resolution for PCM input. Systems having less
than 24-bit resolution will not have a problem
as the extra bits taken by the DSP will be under
the noise floor of the input signal for left justified
and FS formats. For compressed input, data is
always taken in 16 bit word lengths.

2) If the clocks to the audio ports are known to be
corrupted, such as when an SPDIF receiver

Table 17. Input Data Type Configuration

goes out of lock, the device should be reset and
reconfigured. Failure to do so could result in
corrupted data and unpredictable behavior.

Any modes not listed are not supported by
current software. If a certain mode is desired
that is not available, please contact the factory
about its availability.

AN115REV2

53

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

B Value Hex C Value | SCLK Polarity (Both CDI & Hex
(note 1) Data Format Message (note 1) DAI Port) Message
0 PCM - I2S 24 Bit 0x800217 0 Data Clocked in on Rising 0x800217
(default) 2 . 0x8080FF (default) |[Edge OxFFFFDF
Compressed - 1S 16 Bit Ox80021A OX80021A
0x8080FF OxFFFFDF
0x800117 1 Data Clocked in on Falling 0x800117
0x011100 Edge 0x000020
0x80011A 0x80011A
0x011900 0x000020
1 PCM - Left Justified 24 Bit 0x800217 Table 19. Input SCLK Polarity Configuration
Compressed - Left Justified 16 |Ox8080FF
Bit 0x80021A
0x8080FF
0x800117
0x001000
0x80011A
0x001800
2 PCM - 12S 24 Bit 0x800217

Multi-channel PCM - Left Justi-| 0x8080FF -
fied 24 bit PCM 0x80021A 2 PCM FIFO C Size - 6kbyte 0x800014

OX8080FF Blocksize - 2kbyte 0x820300

0x800117 Table 20. FIFO Setup Configuration
0x0048C0
0x80011A
0x0119CO0
3 PCM - Left Justified 24 Bit 0x800217
Multi-channel PCM - Left Justi-|0x8080FF
fied 24 bit 0x80021A
0x8080FF
0x800117
0x0048C0
0x80011A
0x0018C0

FIFO Size & Blocksize (no
default - only applicable to Hex

D Value | parallel delivery modes) Message
1 Compressed FIFO B Size - 0x800014
6kbyte 0x280D00
Blocksize - 2kbyte

4-6 Not Used
7 PCM - 12S 24 Bit 0x800217

Multi-channel PCM - Left Justi-|0x8080FF
fied 20 bit 0x80021A
0x8080FF
0x800117

0x003CCO0
0x80011A
0x0119C0
8 PCM - Left Justified 24 Bit 0x800217

Multi-channel PCM - Left Justi-| 0x8080FF
fied 20 bit 0x80021A
0x8080FF
0x800117

0x003CCO0
0x80011A
0x0018C0

Table 18. Input Data Format Configuration

54 AN115REV2

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

5.3.3 Output

The naming convention for the DAO configuration
iIsasfollows:

OUTPUTABCDE
where the parameters are defined as:

A - DAO Mode (Master/Slave for LRCLK and
SCLK)

B - Data Format

C - MCLK Frequency
D - SCLK Freguency
E - SCLK Polarity

The following tables show the different values for
each parameter as well as the hex message that
needs to be sent. When creating the hardware
configuration message, only one hex message
should be sent per parameter.

B Value Hex
(Note 3) DAO Data Format Message

0 12S 20-bit 0x80027F
(default) OXFC7FFF
0x80027C
OxFO1F00
0x80027D
OxFO1F00
0x80027E
OxFO1F00
0x80017F
0x038000
0x80017C
0x000001
0x80017D
0x000001
0x80017E
0x000001

0x80027F
OXFC7FFF
0x80027C
O0xFO1FO00
0x80027D
O0xFO1F00
0x80027E
O0xFO1F00
0x80017F
0x018000

1 Left Justified 20-bit

DAO Modes (LRCLK & Hex
A Value SCLK) Message
0 MCLK - Slave 0x80017F
(default) |SCLK - Slave 0x400000
LRCLK - Slave
1 MCLK - Slave 0x80027F
SCLK - Master OxBFFFFF

LRCLK - Master

0x80027F
OxBFDFFF

2 MCLK - Master
SCLK - Master

2 Multi-Channel 0x80027F
20 bit Left Justified OXFC7FFF
(SCLK must be at least 128Fs |0x80027C
for this mode) 0xFO1F00
0x80027D
0xFO1F00
0x80027E
0xFO1F00

LRCLK - Master

Table 21. Output Clock Configuration

5331 Soecial Considerations
1) All PCM output is 20-bit resolution

2) An SCLK frequency of at least 128Fs must be
selected for the 20-bit multi-channel mode.

3) An SCLK frequency of at least 256Fs must be
selected for the 24-bit multi-channel mode.

4) If the clocksto the audio ports are known to be
corrupted, such as when an SPDIF receiver
goes out of lock, the device should be reset and

3 Multi-Channel 0x80027F
24 bit Left Justified OXFC7FFF
(SCLK must be at least 256Fs |0x80027C
for this mode) 0xFO1F00
0x80027D
0xFO1F00
0x80027E
0xFO1F00
0x80017C
0x008000

Table 22. Output Data Format Configuration

reconfigured. Failure to do so could result in
corrupted data and unpredictable behavior.

AN115REV2

55

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

Hex (where the default is not acceptable) and
CValue | Output MCLK Frequency | Message concatenating the messages together. No messages
0 256Fs 0x80027F | need to be sent if the default configuration for a
(defaul) OXEFEZEE | particular parameter is acceptable. This example
1 512Fs 0x80027F : :
OxEEE7EE | €an _be easily expanded to fit other system
0x80017F requirements.
0x001000 . .
2 128Fs OXxB0027E For gxamr_)le .|f the host system has the following
oxFFE7EE | configuration:
gigggégg Address Checking: Enabled with an address of
3 384Fs 0x80027F 00000000
(SCLK mustbe 64Fsinthis |OXFFE7FF | The above configuration is default so no
mode) 0x80017F : . . .
0x000800 configuration message is required.

Table 23. Output MCLK Configuration DAI: Left Justified Slave Mode
o PCM and Compressed data
D Value Output SCLK Frequency Message CDI: Not used
?default) 64Fs 8§§,0:?:287Fi The above configuration corresponds to
0x80017F INPUT 11
0x000100
1 128Fs 0x80027F | Which corresponds to a configuration message of:
OXFFF8FF
oxgoo17F | 9x800210
0x000200 Ox3FBFCO
2 256Fs 0x80027F | (0x800110
OxFFF8FF 0xC0002C
0x80017F
0x000300 0x800217
Table 24. Output SCLK Configuration Ox8080FF
0x80021A
rex OX8080FF
E Value Output SCLK Polarity Message X
0 Data Valid on Rising Edge 0x80027F 0x800117
(default) |(clocked out on falling) OXF7FFFF 0x001000
1 Data Valid on Falling Edge 0x80017F 0x80011A
(clocked out on rising) 0x080000 0x001800
Table 25. Output SCLK Polarity Configuration .
))) DAO: Left Justified slave mode (LRCLK, SCLK
534 Creating Hardware Configuration inputs)
Messages MCLK @ 256Fs
The single hardware configuration message that SCLK @ 64Fs

must be sent to the CS492X after download or soft
reset should be a concatenation of the messagesin
the Section 5.3.1 through Section 5.3.3. The
complete hardware configuration message should
be created by taking a message for each parameter

The above configuration corresponds to
OUTPUTO0100

which has a configuration message of:

56

AN115REV2

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

0x80027F
OXFC7FFF
0x80027C
OxFO1F00
0x80027D
OxFO1F00
0x80027E
OxFO1F00
0x80017F
0x018000

Concatenating the messages together gives the
following hardware configuration message that
should be sent after download or soft reset:

WORD# VALUE
1 0x800210
2 0x3FBFCO
3 0x800110
4 0xC0002C
5 0x800217
6 0x8080FF
7 0x80021A
8 0x8080FF
9 0x800117
10 0x001000
11 0x80011A
12 0x001800
13 0x80027F
14 OXFC7FFF
15 0x80027C
16 0xFO1FO00
17 0x80027D
18 0xFO1F00
19 0x80027E
20 0xFO1F00
21 0x80017F
22 0x018000

Table 26. Example Valuesto be Sent to CS492X After
Download or Soft Reset

AN115REV2 57

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

-
6. APPENDIX A - PSEUDOCODE FOR THE C$4923/4/5/6/7/8/9 FAMILY

In the pseudocode, it is assumed a function call to a signal name forces the signal HIGH or LOW (i.e.
CS(LOW) forces the chip select line of the CS492X LOW). Also, the function Read(SY GNAL) returns the
value of SGNAL. The pseudocode that is not communication specific uses function calls to Write_ * and
Read *. The* should be replaced by the communication mode for the system.

6.1 SPI Pseudocode

6.1.1 SPI Write Operation

#defi ne ADDR23 0x00
#def i ne WRI TE OxFE

unsi gned char nessage[si ze];
void Wite_SPI (unsigned char *nessage, int size) /* size=nessage length in bytes */
int x;
CS(LOowW ;
Wite Byte SPI(ADDR4923 & WRI TE);
for (x=0; x<si ze; x++)
Wite_Byte_ SPI(nessage[X]);
CS(H GH);
}/* Wite_SPI */

void Wite_Byte_SPI (unsigned char data_byte)
{

char bit_nunber;

for (bit_nunmber=7;bit_nunber>=0; bit _nunber--)

i f((data_byte>>bit_nunber)&x01) /* check each bit to wite */

CDI N(HI GH) ;
el se
CDI N(LOW ;
SCL(H GH) ; /* clock in the bit */
SCL(LOW ; /* insure data byte is clocked in to CS4923/4/5/6/7/8/9 */

}
} /*Wite_Byte SPI */

58 AN115REV2

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

. ___|
6.1.2 SPI Read Operation

#def i ne ADDR23 0x00
#defi ne READ 0x01

unsi gned char data_byte_array[size];
voi d Read_SPI (unsi gned char *data_byte_array)

int i =0;
char not_end of read = 1;

CS23(LOW ;

Wite_ Byte_ SPl (ADDR4923 | READ);

whi |l e (not_end_of _read)
not _end_of _read = Read_Byte_SPI (data_byte_array + i);
printf("%®2x ", data_byte_array[i]);
| ++;

}

CS23(H &H) ;

} /* SPI _Read */

unsi gned char Read_Byte_SPI (unsi gned char *Dat al n)
{

int bit_nunber;
int end_of _data = 1,

*Dat al n=0;
for (bit_nunber=0; bit_nunber<8; bit_nunber++)
SCL(H GH); /*clock out data */
if (bit_nunber == 6)
if (Read(/INTREQ == 1)/*check request */
end_of _data = 0; /*if HGH -> no nore data, if LON-> read again */
*Dataln | = Read(CDOUT) << bit_nunber;
SCL(LOW ;
}

return(end_of _data);

} /*Read_Byte SPl */

AN115REV2 59

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

6.2 12C Pseudocode

6.2.1 1%C Write Operation

#def i ne ADDR23 0x00
#defi ne WRI TE OxFE

unsi gned char nessage[si ze];

void Wite_|2C(unsi gned char *nessage, int size) /* size=nessage length in bytes */
{

int x;

Send_I| 2C _Start();

if(Wite Byte_ | 2C(ADDRA923 & WRI TE))
{

/* Received NACK so resend address */

if(Wite_Byte_| 2C(ADDR4923 & WRI TE))
/*Second NACK so send stop condition and return ERROR*/
printf("\n error sending address byte");

Send_I 2C_Stop();
return ERROR,

}
for (x=0; x<si ze; x++)
{ E{f (Wite_Byte_ | 2C(message[x]))
/*Recei ved NACK so resend data byte */
if(Wite_Byte | 2C(nessage[x]))
t /*Second NACK so send stop condition and return ERROR*/
printf("\n error sending byte %", x);

Send_I 2C _Stop();
return ERROR,

}
Send_I 2C _Stop();

return O;
*Wite_|2C/
voi d Send_|2C Start()
/* This function assunmes that SCCLK and SCDI O are both Hl GH when cal led */

SCDI Q(LOW ;/* drive SCDIO LONVNwhile SCCLK is HIGH for start condition */
SCCLK(LOW ;/* drive SCCLK LONto prepare for data transfer */
}

void Send_I 2C_St op()

SCDIQ(LOW; /* make sure SCDIOis LOW*/

SCCLK(HI GH); /* drive SCCLK HI GH */

SCDOOQH GH);/* drive SCDIO for the STCOP condition */
}

unsi gned char Wite_Byte_ | 2C(unsi gned char data)
{

60 AN115REV2

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

I —————————————————————.
int bit_nunber;
for (bit_nunmber=7;bit_nunber>=0; bit_nunber--)
i f((data>>bit_nunber)&x01) /* check each bit to wite and drive data |line */

SCDI (A GH) ;
el se
SCDI (LOW ;
SCCLK(HI GH) ; /*clock in data */
SCCLK(LOW ;
}
SCDI Q(H GH) ; [*rel ease bus so 4923 can ACK*/
} return Get _ACK(); /* return val ue of ACK*/
unsi gned char Get _ACK()
¢ unsi gned char ack;
SCCLK(HIGH); /* latch the ACK */
ack = Read(SCDI O); /*Read ACK*/
SCCLK(LOW ;
) return(ack);

AN115REV2 61

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

6.2.2 1°C Read Operation

#defi ne ADDR23 0x00
#def i ne READ 0x01

unsi gned char data_byte_array[size];

char Read_l 2C(unsi gned char *data_byte_array)

{ o
int i = 0;
char not_end of read = 1;
Send_I 2C Start();
if(Wite_Byte_ | 2C(ADDR4923 | READ))
{
/ *Recei ved NACK so send again */
if(Wite_Byte_| 2C(ADDR4923 | READ))
{
/*Second NACK so send stop condition and return ERROR*/
printf("\n error sending address byte for read condition");
Send_I 2C_Stop();
return ERROR;
}
}
whil e (not_end_of _read)
{
not _end_of _read = Read_Byte_|2C(data_byte_array + i);
printf("%2x ", data_byte_array[i]);
| ++;
}
Send_I 2C _Stop();
return(0);
}

unsi gned char Read_Byte_l| 2C(unsi gned char *Dat al n)
¢ int bit_nunber;
int end of data = O;
*Dat al n=0;
for (bit_nunmber=0; bit_nunber<8; bit_nunber++)
SCL(H GH) ;
if (bit_nunber ==
if (Read(/INTREQ) /* check request */
end_of data =1; /* if HGH -> no nore data, if LON-> read again */

*Datal n | = Read(CDOUT) << bit_numnber

SCL(LOW ;

}

i f (end_of _data)
Send_NACK() ;
return O;

}

el se

62 AN115REV2

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

{
Send_ACK() ;
return 1;

}
¥oi d Send_ACK()

SCDIQ(LOW;/* force SCDIO LONto ACK */
SCCLK(HI GH); /* clock the ACK */
SCCLK(LOW ;

}

}{/oi d Send_NACK()

SCDOOQH GH);/* release SCDIO H GH to NACK */
SCCLK(HI GH); /* clock the NACK */
SCCLK(LOW ;

AN115REV2 63

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

6.3 Typical Download Session with the CS4923/4/5/6/7/8/9

#def i ne BOOT_MSG SI ZE 3
voi d Boot _CS4923()
{

unsi gned char error = 0;

unsi gned char nessage_bytes[3];

RESET(LOW ; /* hard reset the CS4923/4/5/6/7/8/9 */
RESET(H GH) ;

Wite *(DOANLOAD BOOT, BOOT_MSG Sl ZE);

whil e(Read(/INTREQ));/* wait for /INTREQto fall */
Read_*(nessage_bytes);/* read CS4923/4/5/6/7/8/9 response */

swi t ch(message_byt es[0])

case 0x01:
printf("\'n BOOT_START ");
error = 0;
br eak;

case Oxfa:

case Oxfc:
printf("\n BOOT_ERROR ");
error = 1;
br eak;

case Oxfb:
printf("\n I NVALID MSG ");
error = 1;
br eak;

case 0Oxfd:

case Oxfe:
printf("\n INIT_FA LURE ");
error = 1;
br eak;

def aul t:
printf("\'n UNRECOGNI ZED BYTE ");
error = 1;
br eak;

}
if(error)
exit();

Wite *(.LD_FILE_| MAGE_ PO NTER, .LD FILE_| MAGE_SI ZE);
whil e(Read(/INTREQ));/* wait for /INTREQ to fall */
Read_*(nessage_bytes);/* read CS4923/4/5/6/7/8/9 response */

swi t ch(message_bytes[0])

{

case 0x02:
printf("\'n BOOT_SUCCESS ");
error=0;
br eak;

case Oxff:
printf("\'n BAD_CHECKSUM ") ;
error = 1;
br eak;

def aul t:
printf("\'n UNRECOGNI ZED BYTE AFTER DOANLQAD");
error = 1;
br eak;

64 AN115REV2

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

if(error)
exit();

Wite_ *(BOOT_SUCCESS RECEl VED, BOOT_MSG Sl ZE);
}/* Boot_CS4923/4/5/6/7/8/9 */

6.4 Typical Reset Sequence for the CS4923/4/5/6/7/8/9

voi d Reset _CS492X()
{

RESET(LOW ;

RESET(H GH) ;

Wite *(SOFTRESET, BOOT_MSG S| ZE);

Del ay(1); /* Insure 1 ns pause before sending configuration nmessages */

Wite_*(Configuration_Messages, Message Size)

AN115REV2 65

	CS4923/4/5/6/7/8/9 HARDWARE USER’S GUIDE
	Contents
	Description
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Contacting Cirrus Logic Support
	1. OVERVIEW
	1.1 Multi-Channel Decoder Family of Parts
	1.2 Document Strategy
	1.2.1 Hardware Documentation
	1.2.2 CS4923/4/5/6/7/8/9 Application Code User’s Guides

	1.3 Using the CS4923/4/5/6/7/8/9

	2. HOST COMMUNICATION
	Table 1. Serial Host Mode Configurations
	2.1 Serial Communication
	2.1.1 SPI Communication
	Table 2. SPI Communication Signals
	2.1.1.1 Writing in SPI
	Figure 1. SPI Write Flow Diagram

	2.1.1.2 Reading in SPI
	Figure 2. SPI Read Flow Diagram

	Figure 3. SPI Timing

	2.1.2 I2C Communication
	Table 3. I 2 C Communication Signals
	2.1.2.1 Writing in I2C
	Figure 4. I 2 C Write Flow Diagram

	2.1.2.2 Reading in I2C
	Figure 5. I 2 C Read Flow Diagram

	Figure 6. I 2 C Timing

	2.1.3 INTREQ Behavior: A Special Case

	2.2 Parallel Host Communication
	Table 4. Parallel Host Mode Configurations
	2.2.1 Intel Parallel Host Communication Mode
	Table 5. Intel Mode Communication Signals
	2.2.1.1 Writing a Byte in Intel Mode
	Figure 7. Intel Mode, One-Byte Write Flow Diagram

	2.2.1.2 Reading a Byte in Intel Mode
	Figure 8. Intel Mode, One-Byte Read Flow Diagram

	2.2.2 Motorola Parallel Host Communication Mode
	Table 6. Motorola Mode Communication Signals
	2.2.2.1 Writing a Byte in Motorola Mode
	Figure 9. Motorola Mode, One-Byte Write Flow Diagram

	2.2.2.2 Reading a Byte in Motorola Mode
	Figure 10. Motorola Mode, One-Byte Read Flow Diagram

	2.2.3 Procedures for Parallel Host Mode Communication
	2.2.3.1 Control Write in a Parallel Host Mode
	Figure 11. Typical Parallel Host Mode Control Write Sequence Flow Diagram

	2.2.3.2 Control Read in a Parallel Host Mode
	Figure 12. Typical Parallel Host Mode Control Read Sequence Flow Diagram

	3. BOOT PROCEDURE & RESET
	3.1 Host Boot
	Table 7. Boot Write Messages
	Table 8. Boot Read Messages
	Figure 13. Typical Serial Boot and Download Procedure
	Figure 14. Typical Parallel Boot and Download Procedure

	3.2 Autoboot
	Figure 15. Autoboot Memory Architecture
	Figure 16. Autoboot Timing Diagram
	Figure 17. Autoboot Sequence
	3.2.1 Autoboot INTREQ Behavior
	Figure 18. Autoboot INTREQ Behavior

	3.3 Application Failure Boot Message
	3.4 Resetting the CS4923/4/5/6/7/8/9
	Figure 19. Performing a Reset

	4. EXTERNAL MEMORY
	Table 9. Memory Interface Pins
	Table 10. Memory and Control Requirements for the CS4923/4/5/6/7/8/9 Family
	4.1 Basic Memory Architecture
	Figure 20. Basic Memory Architecture
	Figure 21. Autoboot Timing Diagram
	Figure 22. Run-Time Memory Access
	Table 11. ROM Speeds

	4.2 Non-Paged Memory
	4.3 Paged Memory
	Figure 23. External Memory with 64 Kilobyte Pages
	Figure 24. External Memory With 32 Kbyte Pages
	Table 12. External Memory Configurations

	4.4 Examples
	4.4.1 Non-Paged Memory
	Figure 25. Non-Paged Memory

	4.4.2 32 Kilobyte Paged Autoboot Memory
	Figure 26. 32 Kbyte Paged memory
	Figure 27. Autoboot Sequence for 32 Kbyte Paged Memory

	4.4.3 64 Kilobyte Paged Autoboot Memory
	Figure 28. 64 Kbyte Paged Autoboot Memory
	Figure 29. Autoboot for 64 Kbyte paged Memory

	4.4.4 64 Kilobyte Paged DTS & Autoboot Memory
	Figure 30. 64 Kbyte Paged DTS/Autoboot Memory
	Figure 31. Autoboot Sequence for DTS System using Symmetrical 64 Kilobyte Pages

	4.5 CRD4923-MEM
	Figure 32. CRD4923- MEM

	5. HARDWARE CONFIGURATION
	Figure 33. Memory Map for CRD4923 Daughter Board
	Figure 34. DTS Autoboot Flow Diagrams
	5.1 Address Checking
	5.2 Input and Output
	5.2.1 Digital Audio Formats
	Figure 35. I 2 S Format
	Figure 36. Left Justified Format
	Figure 37. Multi-Channel Format (M == 20)

	5.2.2 Digital Input and Output Ports
	Table 13. DAI - Digital Audio Input Port
	Table 14. CDI - Compressed Digital Input Port
	Table 15. DAO - Digital Audio Output Port
	Table 16. Output Channel Mapping

	5.2.3 Parallel Delivery of Data
	5.2.3.1 PCM Data Write in Parallel Host Mode
	Figure 38. PCM Data Write Sequence in Parallel Host Mode Flow Diagram

	5.2.3.2 Compressed Data Write in Parallel Host Mode
	5.2.3.2.1 MFB Bit Example
	Figure 39. MFB Bit Status Polling Flow Diagram

	5.2.3.2.2 CMPREQ Example
	Figure 40. CMPREQ Pin Status Polling Flow Diagram

	5.3 Configuration Messages
	5.3.1 Address Checking
	5.3.2 Input
	5.3.2.1 Special Considerations
	Table 17. Input Data Type Configuration
	Table 18. Input Data Format Configuration
	Table 19. Input SCLK Polarity Configuration
	Table 20. FIFO Setup Configuration

	5.3.3 Output
	5.3.3.1 Special Considerations
	Table 21. Output Clock Configuration
	Table 22. Output Data Format Configuration
	Table 23. Output MCLK Configuration
	Table 24. Output SCLK Configuration

	5.3.4 Creating Hardware Configuration Messages
	Table 26. Example Values to be Sent to CS492X After Download or Soft Reset

	6. APPENDIX A - PSEUDOCODE FOR THE CS4923/4/5/6/7/8/9 FAMILY
	6.1 SPI Pseudocode
	6.1.1 SPI Write Operation
	6.1.2 SPI Read Operation

	6.2 I2C Pseudocode
	6.2.1 I2C Write Operation
	6.2.2 I2C Read Operation

	6.3 Typical Download Session with the CS4923/4/5/6/7/8/9
	6.4 Typical Reset Sequence for the CS4923/4/5/6/7/8/9

