y 4 Y I7J JZ J J M
' 4 A Wy /|
' 44)y 4 a8/l 4

AN118

Application Note
Interfacing the CS5521/22/23/24/28 to the 80C51

TABLE OF CONTENTS 2. ADCDIGITAL INTERFACE

1. INTRODUCTION ..o 1 The CS5521/22/23/24/28 interfaces to the 80C51

2. ADC DIGITAL INTERFACE ... 1 through either a three-wire or a four-wire interface.

3. SOFTWARE DESCRIPTION ..ooviviviieiieeeeeeeeee, 1 Ei 1 debicts the interf bet the t q
3.1 Main Program LOOPccccocvverierenneeenneee e 2 _|gure) epIcts the Inter af:e e V_/een e two de-
3.2 INILANIZE e, 2 vices. This software was written to interface to Port
3.3 Transfer Data To/From ADCcccoceeinne. 3 1 (P1) on the 80C51 with either type of interface.
g-g E’:C”;;?JQDF??CT;{E :;?]dzc ------------------------------- 2 The ADC's serial port consists of four control
3.6 SaMPIe INAEX ...vvvviiiieiieeeeeiiie e 6 lines: CS SCLK, SDl,and SDO.

A ?\ATA;?,\S/IIU'\,/:/IO(;ECSLKRATE .. g C_S’ Chlp Select’ |S the Control ||ne Wthh enables

5. DEVELOPMENT TOOL DESCRIPTION ... g ACCESS to the serial port.

6. CONCLUSION ..ot 8 SCLK, Serial Clock, is the bit-clock which controls

7. APPENDIX: 80C51 MICROCONTROLLER CODE 9 the shifting of data to or from the ADC's serial

port.

1. INTRODUCTION
Thi licati te details the interf ‘C SDI, Serial Data In, is the data signal used to trans-
'S apprication note detalls the Itertace of LIYS ¢ qata from the 80C51 to the ADC.

tal Semiconductor's CS5521/22/23/24/28 Analog- _ _ _

to-Digital Converter (ADC) to an 80C51 micro- SDO, Serial Data Out, is the data signal used to
controller. It includes the complete code written fofransfer output data from the ADC to the 80C51.
the CDB5521/22/23/24/28 Evaluation Board,3_ SOFTWARE DESCRIPTION

which also interfaces the 80C51 to a PC. All algo- _ _ _)
rithms discussed are included in Section 7. “Ap_Thls note details all of the algorlthms contained in
pendix: 80C51 Microcontroller Code” on page 9. the CDB5521/22/23/24/28 Evaluation Board soft-

ware. The software is written for the 80C51 micro-
controller on the evaluation board. The more
important communication algorithms are written in

http://www.cirrus.com

CS5521/22/23/24/28 80C51 CS5521/22/23/24/28 80C51
CS [77| PLO(logic 0) Cs [«—— P10
SD| 4¢— P1.1 SDI 4— P1.1
SDO ¥ P1.2 SDO —— ¥ P1.2
SCLK [— P13 SCLK [———— P13
Figurel. 3-Wireand 4-Wirelnterfaces
=2 CIRRUS LOGIC* - i i
P.O. Box 17847, Austin, Texas 78760 P Ricts Rocarragy 2% NOV '99
(512) 445 7222 FAX: (512) 445 7581 AN118REV:2L

FRUSTE

80C51 assembly language, providing a good set of
tools for both C and assembly programmers to @
build their own designs upon. While reading this

application note, please refer to Section 7. “Appen-
dix: 80C51 Microcontroller Code” on page 9 for INITIALIZE
the code listing.

3.1 Main Program L oop

Non-Zero Zero
The main loop of the program is responsible for @
calling all other algorithms and controlling the pro-

gram flow. Figure 2 depicts the data flow of the GET
main loop. When the evaluation board is first pow- COMMAND
: TEST MODES
ered up, or after a system reset, the microcontrollel *
and ADC are set up by calling thetialize routine.
The value present on the DIP switches is then Cgll\EACMC'JA[,)\E
checked. If this value is anything other than zero,
the program goes into test mode. If the value is L |
equal to zero, the program goes into a continuous
loop, where it receives commands from the PC, de- Figure 2. Software Flow Diagram

codes them, and performs the desired actions. Port P3 is then set up to use the 80C51’s internal
32 |nitialize _UAR_T tq interface tp the PC at 9600 b{_alud, no par-
ity bit, eight data bits, and one stop bit. To allow
Initialize is used to configure the microcontrollertime for the ADCs oscillator to start up, a delay
and the ADC to the proper settings that will allowstate is entered (oscillator start-up time is typically
the PC to control the ADC indirectly through the500ms)_ After this delay, the ADC is ready to ac-
microcontroller. The 80C51’s port P1 is configuredcept data. However, it is a good idea to reset the
as depicted in Figure 1 (for more information onMApC’s serial port before communicating with it.
configuring ports refer to the 80C51 Data Sheet)rq reset the serial port on the ADC, SDI is asserted,
Next, port P2 is written twice, once with all zerosyng 255 SCLKs are provided. SDI is then cleared,
and once with all ones, with a delay in between tgnd one final SCLK is provided (this is a slight

the user that the board has been reset successfully.

Contacting Cirrus Logic Support

For a complete listing of Direct Sales, Distributor, and Sales Representative contacts, visit the Cirrus Logic web site at:
http://www.cirrus.com/corporate/contacts/

SPI is a trademark of Motorola.

MICROWIRE is a trademark of National Semiconductor.

Cirrus Logic, Inc. has made best efforts to ensure that the information contained in this document is accurate and reliable. However, the information
is subject to change without notice and is provided “AS IS” without warranty of any kind (express or implied). No responsibility is assumed by Cirrus
Logic, Inc. for the use of this information, nor for infringements of patents or other rights of third parties. This document is the property of Cirrus
Logic, Inc. and implies no license under patents, copyrights, trademarks, or trade secrets. No part of this publication may be copied, reproduced,
stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photographic, or otherwise). Furthermore, no part
of this publication may be used as a basis for manufacture or sale of any items without the prior written consent of Cirrus Logic, Inc. The names of
products of Cirrus Logic, Inc. or other vendors and suppliers appearing in this document may be trademarks or service marks of their respective
owners which may be registered in some jurisdictions. A list of Cirrus Logic, Inc. trademarks and service marks can be found at http://www.cir-
rus.com.

2 AN118REV2

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

AN118

final bytewith itsL SB at logic O are needed to reset
the serial port). This places the ADC in the com-
mand state, where it awaits a valid command. Fi-
nally, before returning to the main routine, the
mode pin is queried to determine whether athree or
four-wire interface is being used.

3.3 Transfer Data To/From ADC

Transferring data to and from the ADC is done
through the transfer_byte and receive byte func-
tions. Transfer_byte takes one byte of input and
sendsit to the ADC onebit at atime (M SB first) by
applying the bit information to P1.1 (SDI) and then
pulsing P1.3 (SCLK). This is repeated eight times
to transfer the entire byte of data to the ADC.
Receive byte works in just the opposite direction,
obtaining byte information MSB-first on the P1.2
(SDO) line as it provides the clock on P1.3. The
functions write to register and read register
make use of these byte transfer functions to send
and receive internal register information in the
proper order from the ADC. Write to_register
writes four bytes of information to the ADC using
transfer_byte. The command byte is written first,
followed by the high, middle, and low bytes of the
24-bit register word. Read register, on the other
hand, sends a command byte to the ADC using
transfer_byte, and then obtains the 24-hit register
word by calling receive_byte three timesin succes-
sion. Due to the conversion time delay, reading
conversion datarequiresasdlightly different method
than reading register information. The
read_conversion algorithmisdesigned for this pur-
pose. The configuration register is read and stored
in memory using the read register command. The
LP, RC, and MC bits are then masked to zero, and
the register is written using write_to_register. The
command to start aconversion isthen written using
transfer_byte, and SDO is polled until the ADC in-
dicatesthat the conversion is complete. Once aval-
id conversion has been obtained, eight zeros are
sent to the ADC with transfer_byte to start the
transfer of data, at which time receive byte is

called three times to obtain the data word (see Fig-
ure 3 for more detail on how the information is or-
ganized among the three bytes) Figure 6 shows the
conversion data timing.

MSB High-Byte

| D23 | D22 | D21 | D20 | D19 | D18 | D17 | D16 |
Mid-Byte

| D15 | D14 | D13 | D12 | D11 [D10 | D9 | D8 |
Low-Byte

| D7 | D6 | D5 | D4 | D3 | D2 [D1 [DO]
A) 24-bit Conversion Data Word (CS5522/24/28)

MSB High-Byte

| D15 | D14 | D13 | D12 [D11 [D10 | D9 | D8 |
Mid-Byte

| D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO |
Low-Byte

[1] 1] 1] 0 cCci1][Clo]OD]OF]
B) 16-bit Conversion Data Word (CS5521/23)
0- alwayszero, 1 - always1
CI1, CIO- Channel Indicator Bits
OD - Oscillation Detect, OF - Overflow

Figure 3. Bit Representation/Storagein 80C51

3.4 Transfer Data To/From PC

Transferring data to and from a PC through the
80C51’s serial port is accomplished with the rou-
tinestxser andrxser. These two routines rely upon
status bits in the 80C51’s Serial Control Register
(SCON, located at address 0x98 Héxser trans-
fers data to the serial port by first polling Tl (Trans-
fer Interrupt, bit 1 in SCON) until the 80C51’s
serial buffer is empty, and ready to receive infor-
mation. Once Tl is at a logic high level, the soft-
ware clears the Tl bit and moves the byte to be
transferred into the 80C51’s serial buffer, where it
is transmitted to the PC LSB firdtxser receives a
byte in a similar fashion, by polling Rl (Receive In-
terrupt, bit 0 in SCON) until there is valid data
available in the 80C51’s serial buffer. When Rl is
at a logic high level, the data is transferred out of
the serial buffer to an immediate memory location.

AN118REV2

3

y 4 Y Iy J J [K

o AN118
Ccs

Command Time Data Time 24 SCLKs
8 SCLKs

Write Cycle

Figure4. Write-Cycle Timing

SDI

Command Time
8 SCLKs

spo usal R A R R

b Data Time 24 SCLKs

Read Cycle

Figure5. Read-Cycle Timing

s [0 UL Tl pguues

SDI
Command Time tg* XINJOWR
8 SCLKs <+ 4# p Clock Cycles
SDO 8 SCLKs Clear SDO Flag @DDC)(X XLSBI
* td = XIN/OWR clock cycles for each conversion except the Data Time
first conversion which will take XIN/OWR + 7 clock cycles 24 SCLKs

Data SDO Continuous Conversion Read

Figure 6. Conversion/Acquisition Cycle Timing

4 AN118REV2

FRUSTE

3.5 Decoding PC Commands Read Conversion Data FIFO - To read the conver-
sion data FIFO, the sample size requested, the con-
version channel, and the loop bit status are received
many smaller routines to direct the flow of data to from the PC, in that order. The conversion channel

the proper locations. Decode_command acceptsin- is then sent to the ADC to begin a conversion, and
formation fromthe PC. decideswhichtasksneedto SPO is polled until it falls, indicating that the con-

be done based on that information. and carriesout ~ VErSIon is complete. At this time, a byte of zeros is
those tasks accordingly. This is accomplished sent to the ADC to initiate the data transfer, and the

through the use of a very large switch statement program loops through to receive each 24-bit con-

based on the input command byte, which tests for version word and send it to the PC, for as many

every possibility and performs the appropriate rou- times as the sample size that has been r(_equest(_ed. If
tines shown in Section 7. “Appendix: 80C51 nvi-the LP bitis set, then another sample set is received

crocontroller Code” on page 9. from the ADC, but not sent to the PC.

Write Register - If the PC has sent a command t§&2d Channel Setup Registers - To read the CSRs,
write to a specific register in the this algorithm first obtains the number of registers

CS5521/22/23/24/28, three more bytes are rd0 read from the PC usimgser. It then transfers the
ceived from the PC usingser (24-bit data is al- 0xOD(HEX) command to the ADC, indicating that

ways transferred via the UART in the order: lonthe CSRs are to be read. Next, the individual regis-
byte, middle byte, high byte). Then the informa-t€rs are read from the ADC and sent to the PC until

tion, including the command byte is sent to the corf"® NUMber of registers specified by the PC com-

verter using thewrite to register function. In Mand has been met.

contrast with the PC serial data, data transferred tdormal Conversions - For a normal conversion us-
or from the ADC is always in the order: high byte,ing any Setup, theead conversion subroutine is
middle byte, low byte. executed using the appropriate command word.
In the case that tH&'€ data is then sent directly to the PC uskser.

The decode_command routine iswhere most of the
functionality of the program lies. It consists of

Write Channel Setup Registers -
PC requests to write to the Channel Setup Registe$lf Calibration - To perform a self-offset or self-
(CSRs), the program receives another byte from thgin calibration using any Setup, the appropriate
PC to find out how many registers to write to. Theeommand word is sent to the ADC, and SDO is
command word Ox05(HEX) is sent to the ADC topolled until the calibration is complete to avoid
begin writing to the registers. The data is receivedending a new command when the ADC is busy.
from the PC usingxser, and sent directly to the System Calibration -

ADC usingtransfer_byte. This process of receiV- gain calibrations use the same procedure as self cal-

ing data from the PC and transferring it to the ADGyati0n hut areseparated in the code to set the two
is repeated until the requested number of bytes hag,mand sets apart from one another.
been sent to the PC.

System-offset and system-

) Variable Number of Normal Conversions - This
Read Registers - When the decoded command §ine is used when a set of samples is requested
asking to read the ADC's internal registersy o the PC (as opposed to a single sample). The
read register is called, using the command sentgym e index is obtained from the PC, as well as the
from-the_ PC. The information obtained by th'SSetup to be used. Thiecode sample index rou-
function is then sent to the PC usiniger. tine is then called to find out exactly how many
conversions to perform. The conversion channel

AN118REV2 5

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

AN118

data is then transferred to the ADC, and SDO is
polled until the conversionisready. A byte of zeros
Is then transmitted to the ADC to begin the data
transfer, and the data word is received. The data
word is then sent to the PC, and the processiis re-
peated until the sample size has been reached. Once
enough samples have been collected and trans-
ferred to the PC, a command byte consisting of all
ones is sent to the ADC to instruct it to stop con-
verting data, and the final conversion word is re-
ceived from the ADC and discarded.

Variable Number of Offset or Gain Calibrations -
When more than one offset or gain calibration isre-
quested, the software obtains a sample index, the
type of calibration (self or system), and which Set-
up is being used to calibrate from the PC.
Decode _sample index is called to determine the
actual number of calibrationsto be performed, and
thenthe calibration typeissenttothe ADC. SDOis
polled until the calibration is completed, and then
the calibration register is sent. The calibrated regis-
ter isreturned by the ADC, and sent to the PC. This
process continues until the number of calibrations
requested have been performed.

Serial Port Initialization - Thisroutinere-initializes
the serial port onthe ADC if itisrequested. To ac-
complish this, the SDI pinisset to alogic high lev-
e, and SCLK is pulsed 255 times. SDI is then
brought low and asingle SCLK pulseis sent. This
initialization routine is the same as what is done
within the start-up initialize command, but is limit-
ed to the serial port on the ADC.

Reset Converter ViaRS and RV Bits- Thisroutine
resetsthe ADC, and returns all of itsinternal regis-
ters to their initial states. The command 0x03 fol-
lowed by Ox800000(HEX) is sent to the ADC,
which sets the RS (Reset) bit and nothing else.
Then the OXOB(HEX) register is read, and the low
byte is masked for the RV (Reset Valid) bit. If a
valid reset has occurred, the RS bit is cleared. If no
valid reset has occurred, the routine continues to

cycle and poll the RV bit until the reset is success-
ful.

Read Output Latch Pins - The ADC'’s output latch
pins (A0 and Al) are connected to pins P1.4 and
P1.5, respectively, on the 80C51. If the PC requests
the status of these pins, they are read from the prop-
er pins and transmitted to the PC.

Arbitrary Read - This routine is used to read any
number of bytes from the ADC and return them to
the PC. The number of bytes requested is obtained
from the PC, and then bytes are successively read
from the ADC and transmitted to the PC until that
number has been reached.

Arbitrary Write - This routine asks for one byte
from the PC, and transfers it to the ADC.

If none of these conditions are met, the software
does nothing but return to tihaain routine.

3.6 Samplelndex

When the PC requests an entire sample set, the mi-
crocontroller code assumes that it will be sending a
sample index. This number, 0-10, is passed to the
decode_sample_index routine to select one of the
ten sample set size options. The sample set sizes are
based on the FFT algorithms in the PC evaluation
board software, which require a sample set size of
2N samples, and the software’s internal limitation
of between 16 and 8192 samples. A single sample
option is also included, and if none of these are se-
lected, the sample size defaults to zero.

3.7 Test Modes

There are a seven self-test modes built in the con-
troller software, contained in the routitest_mode.
These tests allow the user to troubleshoot certain
problems that may be occurring with the evaluation
board and its software. The test modes are entered
by setting the DIP switches to a value greater than
zero and resetting the board. This instructsriaie
routine to skip over the normal operation loop and
go straight into test mode. To exit any of these rou-

AN118REV2

FRUSTE

tines, the user must place the DIP switches back By probing HDR6 on the evaluation board and us-
into the ‘000’ position and reset the evaluatioring CSas a triggering pin, an oscilloscope or logic
board. Each of the seven test modes is now danalyzer will display how the microcontroller reads
scribed. conversion data in real-time.

Mode 1, Loop Back Test - This test is used to chedklode 4, Continuously Write Gain Register - In
the 80C51’s on-chip UART. To perform this test,mode 4, the gain register of PC1 is written to con-
the user must place HDR7 in loop back position asnuously. The test mode is entered by setting the
indicated on the evaluation board, and set the DIBIPs to ‘100’. The third LED (GAIN_CAL) is lit,
switches to ‘001’. When this mode is entered, and the code loops and keeps writing to the gain
byte (OXAA) is sent out to the UART and then aregister of PC1 until the evaluation board is re-
byte is received from the UART. A delay is insert-set.By probing HDR6 on the evaluation board and
ed to allow time for the information to be transmit-using CSas a triggering pin, an oscilloscope or log-
ted and received, and then the received byte is analyzer will display how the microcontroller
compared to the transmitted information. If the rewrites information to the ADC’s internal registers
ceived byte is equal to OXAA(HEX), then the tesin real-time.

was successful, and the code calls g qe 5 continuously Read Gain Register - This
toggle_all_leds routine, which continuously blinks 5 4e continuously reads the gain register on PC1.
all four LEDs. If the information does not matChgeing the DIPs to ‘101’ selects this test mode. The
up, the test failed, and the code branches to theyy | Eps (RESET and GAIN_CAL) are lit, and

toggle_two_leds routine, which continuously he code Ioops through to read from the gain regis-
blinks only the first two LEDs (RESET and e of pc1 until the evaluation board is reset. By
COMM). probing HDR6 on the evaluation board and using
Mode 2, Read/Write to ADC - This mode tests theCS as a triggering pin, an oscilloscope or logic an-
microcontroller’s ability to read and write the inter-alyzer will display how the microcontroller reads

nal registers of the ADC. To perform this test, thelata from the ADC’s internal registers in real-time.

user sets the DIPs to ‘010" and resets the boargy,qe 6 pC to Microcontroller RS-232 Communi-
Upon entering this test mode, the code writegaion Link Test - This test is performed in con-
OXAAOOOO(HEX) to both the offset and gain regis-jntion with the PC to verify that the RS-232 link
ters of Physical Channel 1 (PC1). The informatiofs 1 operational on both ends. Setting the DIPs

is then read from these two registers, and the high} 110’ selects for this test mode. When HDR7 is
byte of each is compared to the value OXAA(HEX)j, the Normal position, the controller receives three

If they are both the same, then the test passed, af\tas of information from the PC, and then echoes
toggle_all_leds is called. If either of the registers \nam back in the same order that they were re-
were not written properly, the test failed, and.qied and calloggle all_leds. When HDR7 is in
toggle_two_ledsis called. the Loopback position, the three bytes are automat-
Mode 3, Continuously Acquire Single Conversionically looped back to the PC through the RS-232

- In this mode, conversions are continuously obeircuitry. The PC software indicates whether this
tained from the ADC. This test mode is initiated bytest passes or fails, based upon the bytes it receives
setting the DIPs to ‘011’. The first two LEDs areback from the board.

lighted, and the code loops and continuously gathy,qe 7, Toggle LEDs - This mode is used to test
ers conversions until the evaluation board is reseg,, functionality of the LEDs on the evaluation

AN118REV2 7

FRUSTE

-
board, and is entered by setting the DIPs to ‘1116. CONCLUSION

Immediately upon entering mode 7, therpis application note describes code that can be
toggle all_leds routine is called to blink the LEDS |,caq to interface an 80C51 to both the
repeatedly until the board is reset. CS5521/22/23/24/28 ADC and a PC. It is divided
4. MAXIMUM SCLK RATE into two main sections: hardware and software. The

. _hardware interface illustrates both a three-wire and
A machine cycle in the 80C51 consists 12 os.cﬂlatog1 four-wire interface between the 80C51 and the
periods or fis if the microcontroller’s oscillator ADC. The three-wire iSPI™and MICROWIRE ™
frequency is 12 MHz. Since the '

CS5521/22/23/24/28's maximum SCLK rate is o Patible: Thesoftware, developed with develop-
ment tools from Franklin Software, Inc., isused in

2MHz, additional no operation (NOP) delays mayConj unction with the PC evaluation software and
be necessary to reduce the transfer rate if the micrﬁ)]-e CDB5521/22/23/24/28 evaluation board to pro-
controller system requires higher rate oscillators. vide a system by which the CS5521/22/23/24/28's

5. DEVELOPMENT TOOL performance can be evaluated. There are four main

DESCRIPTION routines which interface the CS5521/22/23/24/28

The code in this application note was developed ule the 80C51, and provide the communication be-
ing a software development package from FraninHNe?n the 80C51 and the PC, e(:r@nsfer_by'Fe,
Software, Inc. The code consists of intermixed d:ecewe._byte,. txser, andrxser. These four routines
and assembler algorithms which are used by € _wr|.tten In 80_CSl asse_:mb_ly Iangug_ge, an_d are
CDB5521/22/23/24/28, a customer evaluatiorf @Sy imported into application-specific designs
board designed to help customers evaluate the pgry both C and assembly programmers.
formance of the CS5521/22/23/24/28 devices. All of the software described in this note is includ-
ed Section 7. “Appendix: 80C51 Microcontroller
Code” on page 9.

8 AN118REV2

FRUSTE

7. APPENDI X: 80C51 MICROCONTROLLER CODE

[* CS5521/22/23/24/28 Runtime Constants and Prototypes*/
/*PROTOTY PES*/

void initialize(void);

void decode_command(char command);

void decode_sample_index(void);

void TXSER(char);

char RXSER(void);

char receive_byte(void);

void transfer_byte(char);

void write_to_register(char command,char low,char mid, char high);
void read_register(char command);

void read_conversion(char command);

void Delay(void);

void test_mode(void);

void toggle_all_leds(void);

void toggle two_leds(void);

I* BYTE Register equates for the register ports */

sfr PO = 0x80;

sfr P1 = 0x90;

sfr P2 = OXAQ;

sfr P3 = 0xBO;

sfrPSW = 0xDO;

sfrACC = OXEQ;

sfrB = OxFoO;

sfr SP = 0x81;

sfrDPL = 0x82;

sfrDPH = 0x83;

sfr PCON = 0x87;

sfr TCON = 0x88;

sfr TMOD = 0x89;

srTLO = Ox8A;

sfrTL1 = 0x8B;

sfrTHO = 0x8C;

sfrTH1 = 0x8D;

sfrIE = OxAB8;

sfrIP = 0xBS§;

sfr SCON = 0x98;

sfr SBUF = 0x99;

/*PORT 1 equates*/

shit CS = 0x90 ; I* Chip Select */
shit SDI = 0x91 ; I* Serial Dataln */
shit SDO = 0x92 ; I* Serial DataOut */

AN118REV2 9

y 4 Y Iy J J [K

' 4 A wWrF /i AN118
Y 44y 4 a8/ / 4
|
shit SCLK = 0x93 ; I* Serial Clock */

shit Al = 0x94 ; I* Latch Input */

shit A0 = 0x95 ; I* Latch Input */

shit RESET = OxAS3;

shit COMM = OxA2;

shit GAIN_CAL = OxAL;

shit OFFSET CAL = OXAOQ;

shit TEST BIT1 = 0xB2;

shit TEST_BIT2 = 0xB3;

shit TEST BIT3 = 0xB4;
shit MODE = 0x80;
shit CTRL3 = 0x83;
shit CTRL2 = 0x84;
shit CTRL1 = 0x85;

/* BIT Register */

[* PSW */

shitCy = 0xD7;
shitAC = 0xD6;
shit FO = 0xD5;
shitRS1 = 0xD4;
shitRSO = 0xD3;
shitOvV = 0xD2;
shit P = 0xDO;
/* TCON */

Shit TF1 = Ox8F;
shitTR1 = Ox8E;
shit TFO = 0x8D;
shit TRO = 0x8C;
shitlIE1 = 0x8B;
shitITl = Ox8A;
shitIE0 = 0x89;
shitITO = 0x88;
* 1IE */

shitEA = OXAF,;
shitES = OxXAC;
ShitET1 = OxAB;
shit EX1 = OXAA;
Shit ETO = OxA9;
shit EXO = OxAS;
[* 1P */

shitPS = 0xBC;
shit PT1 = 0xBB;

10 AN118REV2

y 4 Y Iy J J [K

Y 44y 4 o/l 4
|
shit PX1 = OxBA;
shit PTO = 0xB9;
shit PXO = 0xBS;
[* P3 */

shitRD = 0xB7;
shitWR = 0xB6;
shit T1 = 0xB5;
shit TO = 0xB4;
shit INT1 = 0xB3;
shit INTO = 0xB2;
shit TXD = 0xB1;
shit RXD = 0xBQ;
/* SCON */

shit SMO = Ox9F;
shitSM1 = Ox9E;
shitSM2 = 0x9D;
shit REN = 0x9C;
shit TB8 = 0x9B;
shit RB8 = Ox9A;
shit Tl = 0x99;
shit RI = 0x98;

/**/

[* CDB5521/22/23/24/28 Engineering Microcontroller code Version 1.00 */

/* Purpose: Interfaces the CCS5521/22/23/24/28 to a PC */
/* Comments: */
/**/
#pragma nointvector [* Disable Interrupt Vectors */

#pragma debug /* Include Debug I nformation with .obj file*/
#pragma code [* Include Assemble Code with .Ist file */
#pragma small /* Use a Small Memory Model*/

#pragma RB(0) /* Use Register Bank Zero */

#pragma OPTIMIZE(3) /* Use Highest Level of Optimizing */

#include "cs5522.h"
* Global Variable*/
char command, /* One Byte Variables*/
ext_byte,
high_byte,
mid_byte,
low_byte,
temp,
templ;
int sample_index, /* Two BytesLong */
sample_size,
I
mode; /* 0 =threewire 1 =4 wire*/

AN118REV2 11

FRUSTE

/**/

/* Routine - Main */
/* Input - none */
/* Output - none */
/* Description - Thisroutine is the main algorithm used to call */
/* al subroutines. */
/**/
main() {
initialize();
/*Check Dip Switches to see which Mode to Enter*/
temp = TEST_BITS;
temp = temp<<1;
temp =temp [TEST_BIT2;
temp = temp<<1;
temp =temp [TEST_BIT1,
if(temp ==0){
while(1) {
COMM = 0x01; [*Turn off LED*/
command = RXSER(); [*Get Command from PC*/
COMM = 0xQ0; /*Turn on LED*/
decode_command(command); /* Decode Command*/
}
}
else
test_mode(); [*Enter Test Modes*/
}

/**************************Eubrounnesk**************************/

/**/

/* Routine - Initialize */
/* Input - none */
/* Output - none */
/* Description - Thisroutine is used to setup the microcontroller */
/¥ and reset the converter. */
/**/
void initialize()

{ dataintj; /* Loca counter variable*/

Pl =0xF4; [*SCLK - output, therefore low*/
/*SDI - output, therefore low*/
[*SDO - input, therefore high*/
[*CSb - ouput, therefore low */

P2 =0x00; [*Toggleall LED’s, Start Up Sequence indicator*/
Delay();
P2 =O0xFF;

12 AN118REV2

y 4 Y Iy J J [K

Y 41y 4 a8/l 4
|
P3 =0xFF; /*Use the alternative function of Port 3*/
EA = 0x00; /*Disable all interrupts*/

SCON =0x72; /*8 bit UART*/
/*Set T to enable TXSER UART function*/
/*Transmission Rate is 9600,N,8,1*/

TMOD = 0x20; /*Use TIMERL, 8-bit auto-reload */

TH1 =O0xFD; [*Initialize Auto-reload to FD for 11.059MHz external clock*/
PCON = 0x00; /*when set we run at 19200 Baud, 9600 when clear*/

TCON = 0X40; /*Turninternal UART timer on*/

for(j=0;j<2047;j++)X /*Delay 2048 SCLK cycles, ... */
SCLK = 0x01; /*to alow oscillator to start*/
SCLK = 0x00;

}

/* Reset Serial Port*/

SDI =1; /*SET SDI PIN*/

for(j=0;j<254;j++) {
SCLK = 0x01; [*SET SCLK*/
SCLK = 0x00; /*CLR SCLK*/

}

SDI =0; [*RESET SDI PIN*/

SCLK =0x01; /*SET SCLK*/

SCLK = 0x00; /*CLR SCLK*/

mode = PO & Ox01; [*Test Mode Pin*/

/*if Mode = 0, three wire mode ...*/
/*if Mode = 1, four wire mode. ...*/
/* NOTE: To change mode board must be Reset.*/

}

/**/
/* Routine - write_to_register */
/* Input - command, low, mid, high */
/* Output - none */
* Description - Thisroutineis used to write to any internal */
[* register. */

/**/

void write to_register(char command,char low,char mid,char high){
if(mode==1) P1 =0xF4; [* Clear CSh*/
transfer_byte(command);
transfer_byte(high);
transfer_byte(mid);
transfer_byte(low);
if(mode==1) P1 =O0xF5; [* Set CSb */

AN118REV2 13

FRUSTE

/**/

/* Routine - read register */
/* Input - command */
/* Output - none */
/* Description - Thisroutine is used to write to any internal */
[* register. */

/**/

void read_register(char command){
if(mode==1) Pl =O0xF4; /*Clear CSb*/
transfer_byte(command); /* Send Command*/
high_byte =receive byte(); /*Receive Bytes*/
mid_byte =receive_byte();
low_byte =receive_byte();
iflmode==1) P1 =O0xF5; I* Set CSb*/

}

/**/

/* Read a Single Conversion */
/**/
void read_conversion(char command){
read_register(Ox0OB); /* Read Configuration Register */
high_byte = high_byte& OxFS8; /* Mask Loop, RC, MC bitsto 0 */
write_to_register(0x03,low_byte, mid_byte, high_byte);

/* Start Conversion*/

if(mode==1) Pl =O0xF4; /* Clear CSh*/
transfer_byte(command); [* Initiate Single conversion */

do { /* Nothing*/} while (SDO !=0); /* Wait for Conversion to Complete */
transfer_byte(0x00); /* Send Command */

high_byte =receive byte(); /* Receive Bytes*/
mid_byte =receive_byte();

low_byte =receive_byte();

if(mode==1) Pl =O0xF5; [* Set CSb */
}
/**/
/* Routine - decode_command */
/* Input - command */
/* Output - none */
/* Description - Thisroutine is used to transfer the command byte */
/* from the 80C5L1 to the converter. */

/**/

void decode_command(char command)
{ dataintj,size;
switch (command) {

/**********************/

/* Write to Register */

/**********************/

case 0x01: /* Offset Register Physical Channel 1 */

14 AN118REV2

FRUSTE

case Ox11: /* Offset Register Physical Channel 2 */
case 0x21: /* Offset Register Physical Channel 3*/
case 0x31: /* Offset Register Physical Channel 4 */
case 0x41: /* Offset Register Physical Channel 5*/
case 0x51: /* Offset Register Physical Channel 6 */
case 0x61: /* Offset Register Physical Channel 7 */
case 0x71: /* Offset Register Physical Channel 8 */

case0x02: /* Gain Register Physical Channel 1 */
case0x12: /* Gain Register Physical Channel 2*/
case 0x22: [* Gain Register Physical Channel 3 */
case 0x32: /* Gain Register Physical Channel 4 */
case 0x42: [* Gain Register Physical Channel 5*/
case 0x52: /* Gain Register Physical Channel 6 */
case 0x62: /* Gain Register Physical Channel 7 */
case 0x72: /* Gain Register Physical Channel 8 */

case 0x03: /* Configuration Register */
low_byte =RXSER(); /*Receive datalow byte first*/

mid_byte =RXSER();
high_byte = RXSER();

COMM = 0x00; /* Turnon LED */

Delay();

COMM = 0x01; [* Turn off LED */

write to_register(command,low_bytemid_byte high byte);
break;

/*****************************/

/* Write Channel-Setup Registers */

/*****************************/

case 0x05:
COMM = 0x00; [* Turn on LED*/
sample size = RXSER(); /* How many Registers? */
if(mode==1) Pl =0xF4; /* Clear CSb*/
transfer_byte(command); /* Send command to A/D */

for (j=0; j<sample_size; j++) {
low_byte =RXSER(); /* Receive Data*/
mid_byte = RXSER();
high_byte = RXSER();
transfer_byte(high byte); /* Transfer Datato A/D */
transfer_byte(mid_byte);
transfer_byte(low_byte);

} /* END for loop */

if(mode==1) P1 =O0xF5; /* Set CSb */
COMM =0x01; [* Turn off LED*/
break;

AN118REV2 15

FRUSTE

___|
/**********************/

/* Read from Register */

/**********************/

case 0x09: /* Offset Register Physical Channel 1 */
case 0x19: /* Offset Register Physical Channel 2 */
case 0x29: /* Offset Register Physical Channel 3 */
case 0x39: /* Offset Register Physical Channel 4 */
case 0x49: /* Offset Register Physical Channel 5*/
case 0x59: /* Offset Register Physical Channel 6 */
case 0x69: /* Offset Register Physical Channel 7 */
case 0x79: /* Offset Register Physical Channel 8 */

case OX0A: /* Gain Register Physical Channel 1 */
case Ox1A: /* Gain Register Physical Channel 2 */
case Ox2A: /* Gain Register Physical Channel 3 */
case Ox3A: /* Gain Register Physical Channel 4 */
case Ox4A: [* Gain Register Physical Channel 5 */
case OxbA: /* Gain Register Physical Channel 6 */
case OX6A: /* Gain Register Physical Channel 7 */
case OX7A: /* Gain Register Physical Channel 8 */

case OxOB: /* Configuration Register */

read_register(command); /* Read register’s content */
TXSER(low_byte); * Transfer bytesto PC*/
TXSER(mid_byte);

TXSER(high_byte);

COMM = 0x00; [* Turn on LED*/
Delay();

COMM =0x01; [* Turn off LED*/
break;

/*****************************/

/* Read Conversion Data FIFO */

/*****************************/

case Ox0C:
COMM = 0x00; /* Turnon LED */
sample_size = RXSER(); /* How many Conversions? */
temp = RXSER(); I* What conversion channel? */
templ = RXSER(); /* ISLP bit set?*/
Initiate Continuous Conversion/
if(mode==1) Pl =O0xF4; /* Clear CSh*/
transfer_byte(temp); [* Initiate Single conversion */
do { /* Nothing*/} while (SDO !=0); [* Wait for SDO to fall */
transfer_byte(0x00); /* Send all zeros*/

for (j=0; j<sample_size; j++) {
high_byte =receive byte();/* Receive Bytes*/
mid_byte =receive_byte();

16 AN118REV2

FRUSTE

|
low_byte =receive_byte();
TXSER(low_byte); [* Return bytesto PC */

TXSER(mid_byte);
TXSER(high_byte);

}
if (templ==1){
do{ /* Nothing*/} while (SDO !=0);/* Wait for SDO to fall */
transfer_byte(OxFF); /* Send all zeros*/
for (j=0; j<sample_size; j++) {
high_byte =receive byte();/* Receivelast conversion */
mid_byte =receive_byte();
low_byte =receive_byte();
} /* END for */
} I* END if */
if(mode==1) Pl =O0xF5; /* Set CSb*/
COMM = 0x01; /* Turn off LED */
break;

/*****************************/

/* Read Channel-Setup Registers */

/*****************************/

case 0x0OD:
COMM = 0x00; /* Turn on LED*/
sample size = RXSER(); /* How many Registers?*/
iflmode==1) P1 =0xF4; /* Clear CSh */
transfer_byte(command); /* Send command to A/D */

for (j=0; j<sample_size; j++) {
high_byte =receive byte();/* Receive Bytes*/
mid_byte = receive byte();
low_byte =receive byte();
TXSER(low_byte); /* Transfer datato PC */
TXSER(mid_byte);
TXSER(high_byte);

} /* END for loop */

if(mode==1) P1 = OxF5; [* Set CSb */
COMM =0x01; [* Turn off LED*/
break;

/**********************/

/* Normal Conversions */
/**********************/

case 0x80: /* Normal Conversion on Setup 1 */
case 0x88: /* Normal Conversion on Setup 2 */
case 0x90: /* Normal Conversion on Setup 3 */
case 0x98: /* Normal Conversion on Setup 4 */

AN118REV2 17

y 4 Y Iy J J [K

' 4 A wWry /| AN118
Y 44y 4 a8/ /] 4
|

case OxAO: /* Normal Conversion on Setup 5 */
case OxAS8: /* Normal Conversion on Setup 6 */
case 0xBO: /* Normal Conversion on Setup 7 */
case OxB8: /* Normal Conversion on Setup 8 */
case 0xCO: /* Normal Conversion on Setup 9 */
case 0xC8: /* Normal Conversion on Setup 10 */
case 0xDO: /* Normal Conversion on Setup 11 */
case 0xD8: /* Normal Conversion on Setup 12 */
case OxEQ: /* Normal Conversion on Setup 13 */
case OxES: /* Normal Conversion on Setup 14 */
case OxFO: /* Normal Conversion on Setup 15 */
case OxF8: /* Normal Conversion on Setup 16 */

read_conversion(command);

TXSER(low_byte); * Return bytesto PC */
TXSER(mid_byte);

TXSER(high_byte);

COMM = 0x00; /* Turnon LED */
Delay();

COMM =0x01; /* Turn off LED*/
break;

/********************/

/* Self Calibration */

/********************/

case 0x81: * Self-Offset Cal on Setup 1 */
case 0x89: * Self-Offset Cal on Setup 2 */
case 0x91: * Self-Offset Cal on Setup 3 */
case 0x99: [* Self-Offset Cal on Setup 4 */
case OxA1l: /* Self-Offset Cal on Setup 5 */
case OxA9: /* Self-Offset Cal on Setup 6 */
case OxB1: [* Self-Offset Cal on Setup 7 */
case 0xB9: * Self-Offset Cal on Setup 8 */
case OxCL: [* Self-Offset Cal on Setup 9 */
case OxCo: /* Self-Offset Cal on Setup 10 */
case OxD1. [* Self-Offset Cal on Setup 11 */
case 0xD9: [* Self-Offset Cal on Setup 12 */
case OxE1: [* Self-Offset Cal on Setup 13 */
case OXE9: [* Self-Offset Cal on Setup 14 */
case OxF1: /* Self-Offset Cal on Setup 15 */
case OxF9: /* Self-Offset Cal on Setup 16 */
case 0x82: [* Self-Gain Cal on Setup 1 */
case Ox8A: [* Self-Gain Cal on Setup 2 */
case 0x92: [* Self-Gain Cal on Setup 3 */
case Ox9A: [* Self-Gain Cal on Setup 4 */
case OXA2: [* Self-Gain Cal on Setup 5 */
case OxAA: [* Self-Gain Cal on Setup 6 */
case 0xB2: [* Self-Gain Cal on Setup 7 */
case OxBA: /* Self-Gain Cal on Setup 8 */

18 AN118REV2

y 4 Y Iy J J [K

Y 44y 4 a8/ /] 4
|
case 0xC2: /* Self-Gain Cal on Setup 9 */
case OxCA: [* Self-Gain Cal on Setup 10 */
case 0xD2: [* Self-Gain Cal on Setup 11 */
case OxDA: [* Self-Gain Cal on Setup 12 */
case OXE2: [* Self-Gain Cal on Setup 13 */
case OXEA: [* Self-Gain Cal on Setup 14 */
case OxF2: [* Self-Gain Cal on Setup 15 */
case OxFA: [* Self-Gain Cal on Setup 16 */
COMM = 0x00; /* Turnon LED */
if(mode==1) Pl =O0xF4; /*Clear CSb*/

transfer_byte(command);
do{ /* Nothing*/} while (SDO !=0); /* Wait for cal to Complete */

if(mode==1) P1 = OxF5; /*Set CSb*/
COMM =0x01; [* Turn off LED */
break;

/**********************/

[* System Calibration */

/**********************/

case 0x85: * System-Offset Cal on Setup 1 */
case 0x8D: * System-Offset Cal on Setup 2 */
case 0x95: /* System-Offset Cal on Setup 3 */
case 0x9D: [* System-Offset Cal on Setup 4 */
case OxA5: [* System-Offset Cal on Setup 5 */
case OXAD: [* System-Offset Cal on Setup 6 */
case 0xB5: * System-Offset Cal on Setup 7 */
case OxBD: [* System-Offset Cal on Setup 8 */
case OxC5: [* System-Offset Cal on Setup 9 */
case OxCD: [* System-Offset Cal on Setup 10 */
case OxD5: [* System-Offset Cal on Setup 11 */
case 0xDD: [* System-Offset Cal on Setup 12 */
case OxE5: [* System-Offset Cal on Setup 13 */
case OXED: [* System-Offset Cal on Setup 14 */
case OxF5: [* System-Offset Cal on Setup 15 */
case OxFD: [* System-Offset Cal on Setup 16 */
case 0x86: /* System-Gain Cal on Setup 1 */
case Ox8E: [* System-Gain Cal on Setup 2 */
case 0x96: /* System-Gain Cal on Setup 3*/
case Ox9E: /* System-Gain Cal on Setup 4 */
case OXAG6: [* System-Gain Cal on Setup 5*/
case OXAE: [* System-Gain Cal on Setup 6 */
case 0xB6: [* System-Gain Cal on Setup 7 */
case OxBE: [* System-Gain Cal on Setup 8 */
case 0xC6: [* System-Gain Cal on Setup 9 */
case OxCE: [* System-Gain Cal on Setup 10 */
case 0xD6: [* System-Gain Cal on Setup 11 */
case OxDE: [* System-Gain Cal on Setup 12 */
case OxE6: [* System-Gain Cal on Setup 13 */

AN118REV2 19

y 4 Y Iy J J [K

Y 44y 4 a8/ /] 4
. ___|
case OXEE: [* System-Gain Cal on Setup 14 */
case OxF®6: [* System-Gain Cal on Setup 15 */
case OxFE: /* System-Gain Cal on Setup 16 */
COMM = 0x00; /* Turnon LED */
if(lmode==1) P1 =O0xF4; /*Clear CSb*/
transfer_byte(command);
do {/* Nothing*/} while (SDO !=0); /* Wait for cal to Complete */
if(mode==1) Pl =O0xF5; /*Set CSb*/
COMM =0x01; [* Turn off LED */
break;

/******************************/

[* Variable # of Normal Conversions */

/******************************/

case Ox1F:
COMM = 0x00; /* Turnon LED */
sample index = RXSER(); /* How many Conversions? */
temp = RXSER(); /* What conversion channel? */

decode_sample_index();

[* Initiate Continuous Conversion*/
if(mode==1) Pl =0xF4; /* Clear CSbh*/
transfer_byte(temp); /* Initiate Single conversion */
for (j=0; j<sample_size; j++) {
do{ /* Nothing*/} while (SDO !=0); /* Wait for SDO to fall */
transfer_byte(0x00); /* Send all zeros*/
high_byte =receive byte();/* Receive Bytes*/
mid_byte = receive_byte();
low_byte =receive_byte();

TXSER(low_byte); /* Return bytesto PC */
TXSER(mid_byte);
TXSER(high_byte);

}

transfer_byte(OXFF); /* Send al zeros */

high_ byte =receive _byte(); /* Receive last conversion */
mid_byte = receive_byte();

low_byte = receive_byte();

if(mode==1) Pl =O0xF5; I* Set CSb*/

COMM = 0x01; /* Turn off LED */

break;

/************************************/

[* Variable # of Offset or Gain Calibrations */

/************************************/

case Ox2F:
COMM = 0x00; /* Turnon LED */
sample_index =RXSER(); /* How many Cals?*/
temp = RXSER(); /* What type of Cal?*/

20 AN118REV2

y 4 Y Iy J J [K

' 4 A wWrF /i
Y 44y 4 a8/ / 4 AN118
|
templ = RXSER(); /* Which PC Cal. register isinfluenced? */
decode_sample_index();
if(mode==1) P1 =0xF4; /* Clear CSb*/
for (j=0; j<sample_size; j++) {

transfer_byte(temp); /* Perform Calibration */
do {/* Nothing*/} while (SDO !=0); /* Wait for cal. to Complete */

transfer_byte(templ); [* Send Command*/
high_byte =receive byte();/* Receive Bytes*/
mid_byte =receive_byte();
low_byte =receive_byte();
TXSER(low_byte); [* Transfer Caled Register back */
TXSER(mid_byte);
TXSER(high_byte);
} /* END for loop */

if(mode==1) P1 =0xF5; /* Set CSb */
COMM = 0x01; /* Turn off LED */
break;

/**********************/

[* Serid Port Initialization */

/**********************/

case Ox3F:
COMM = 0x00; /* Turn LED on*/
if(mode==1) Pl =0xF4; * Clear CSb */
SDI =1; [* SET SDI PIN */

/* Write 255 bits of 1'sto SDI and then 1 zero */
for(j=0;j<254;j++) {

SCLK = 0x01; /* SET SCLK */
SCLK = 0x00; /* CLR SCLK */
}
SDI =0; /* RESET SDI PIN */
SCLK =0x01; /* SET SCLK */
SCLK = 0x00; /* CLR SCLK */
if(mode==1) P1 =0xF5; /* Set CSb */
COMM = 0x01; /* Turn LED off */
break;

/******************************/

/* Reset Converter viaRS & RV bits*/
/******************************/
case Ox4F:

write_to_register(0x03,0x80,0x00,0x00); /* Set RS bit */

[* Test for Valid Reset */

do{
read register(0Ox0B);
temp = low_byte& 0x40; /* Mask RV hitto1*/
if(temp == 0x40)

AN118REV2 21

FRUSTE

write_to_register(0x03,0x00,0x00,0x00); /* Clear RS Bit */
} while (temp != 0x40);
break;

/**********************/

/* Read Output Latch Pins*/
/**********************/
case Ox5F:
temp = AL,
temp = temp<<1;
temp =temp |AOQ;
TXSER(temp);
COMM =0x00; /* TurnonLED */
Delay();
COMM =0x01; /* Turnoff LED */
break;

/********************/
* Arbitrary Read */
/********************/
case OxEF:
temp= RXSER(); /* How many byte to return to PC*/
for(j=0;j<temp;j++){
iflmode==1) P1 =0x04;
templ = receive_byte();
if(mode==1) P1 = 0x05;

TXSER(templ);
COMM =0x00; /* TurnLED on*/
Delay();
COMM =0x01; /* Turn LED off */
} /* END for loop */
break;

/********************/

/* Arbitrary Write */

/********************/

case OxFF:
temp = RXSER(); /* How many bytesto writeto A/D */
COMM = 0x00; /* Turnon LED */
Delay();
COMM = 0x01; /* Turn off LED */

if(mode==1) P1 =0x04;
transfer_byte(temp);
if(mode==1) P1 =0x05;
break;

22 AN118REV2

FRUSTE

/********************************/

/* No Cases were met, let port time out */
/********************************/
default:
break;
}

}/* END decode_command*/

/**/

/* Routine - decode_sample_index */
/* Input - sample_index */
/* Output - none */
* Description - Thisroutineis used to decode the meaning of the */
[* variable sample_index. */

/**/

void decode_sample_index()

{
switch (sample_index) {

case 0
sample_size = 16;
break;

case 1.
sample size = 32;
break;

case 2.
sample_size = 64;
break;

case 3.
sample _size = 128;
break;

case 4:
sample_size = 256;
break;

case 5:
sample _size=512;
break;

case 6:
sample_size = 1024,
break;

case 7.
sample_size = 2048;
break;

case 8:
sample_size = 4096;
break;

case 9:
sample_size = 8192;
break;

case 10:

AN118REV2 23

FRUSTE

|
sample size=1,
break;
default:
sample size=0;
break;

}
} I* END decode_sample_index */

/**/

/* Routine - test_ mode */
/* Input - none */
/* Output - none */
* Description - Thisroutine is used to perform special test */
/* functionsto aid in debugging the CDB hardware. */

/**/

void test_mode(){
switch (temp) {
/* Test Mode 1: For thistest, user must place HDR7 into
loop back position. A byte of datais sent out UART
of 80C51 and received at sametime. It the byte
that isreturned is the same all LEDs toggle.
Otherwise, only half the LEDstoggle. */

case Ox01:

RESET = 0xQ0; /* Set LED Indicator */
TXSER(OXAA);
low_byte = RXSER(); I* low byte first*/
Delay();
if(low_byte == OxAA)

toggle_al_leds(); /* Test Passed */

else

toggle two_leds(); [* Test Failed */

break;

/* Test Mode 2: Thistest mode writes to the offset and gain
registers of PCL. It then reads the registers.
If the correct datais read back all the LED’stoggle
otherwise only half of them toggle to indicate an error. */
case 0x02:
COMM = 0x01;
write to_register(0x01,0x00,0x00,0xAA); /* Write Offset PC1 */
write to_register(0x02,0x00,0x00,0xAA); /* Write Gain PC1 */

read register(0x09); /* Read Offset PC1 */
if(high_byte ==0xAA){ I* Was data sent?*/
read_register(Ox0A); /* Read Gain PC1 */
if(high_byte==0xAA)
toggle al_leds();
else
toggle two_leds(); /* Test Failed */
} I* END if */

24 AN118REV2

y 4 Y Iy J J [K

' 4 A wWrF /i
Y 44y 4 a8/ / 4 AN118
|
ese
toggle two_leds(); [* Test Failed */
break;

/* Test Mode 3: Thistest lights the first two LED and then
repeatively iniates a conversion and reads it from the serial port. */

case 0x03:
RESET = 0x00;
COMM = 0x00;
while(1)
read_conversion(0x80);
break;

[* Test Mode 4: Thistest lightsthe third LED’s. Then it
continuously write to the Gain Registers of PC1. */

case 0x04:
GAIN_CAL = 0x00;
while(1)
write to_register(0x02,0xAA ,0xAA,0xAA);
break;

/* Test Mode 5: Thistest lightsthe odd LED’s. Then it
continuously reads the gain register of PC1. */

case 0x05:
RESET = 0x00;
GAIN_CAL = 0x00;
while(1)
read register(Ox0A); /* Read Gain Register of PC1 */
break;

[* Test Mode 6: This test mode tests the RS232 link.
it receives three bytes from the PC and echoes them
back. ThisPC determinesif the test passed. The last
three LED’s are it to indicate this test mode. */

case 0x06:
COMM = 0x00;
GAIN_CAL = 0x00;

low_byte =RXSER(); /* Receivelow byte from PC */
mid_byte = RXSER();
high_byte =RXSER();

TXSER(low_byte); /* Transfer bytes back to PC */
TXSER(mid_byte);

TXSER(high_byte);

toggle al_leds();

break;

AN118REV2 25

FRUSTE

/* Test Mode 7: This test mode tests the operation of
the LEDS's by turning all of them on and off. */
case 0x07:
toggle all_leds();
break;
} I* END switch */
} /* End test_mode */

/**/

/* Routine - toggle all_leds */
/* Input - none */
/* Output - none */
* Description - Thisroutineis used toggle all four LED */

/**/

void toggle_all_leds(){

while(1){
P2 =0x00; /*Toggleal LED’sfor Start Up Sequence indicator test*/
Delay();
P2 = OxFF;
Delay();
}
}
/**/
/* Routine - toggle two_leds */
/* Input - none */
/* Output - none */
/* Description - Thisroutine is used toggle two LEDS */

/**/

void toggle_two_leds(){

while(1){
RESET = 0x00;
COMM = 0x00;
Delay();
RESET = 0x01;
COMM = 0x01;
Delay();

}

26 AN118REV2

FRUSTE

/**/

/* Routine - Delay */
/* Input - none */
/* Output - none */
/* Description - Thisroutineis used asa LED delay routine */
/**/
void Delay(void) {

dataint j;

for (j=0; j<10000; j++)
for (j=0; j<10000; j++);
}

RS EE L LSS SRR S S S EE LSS EEEE LSRR R LR EEEEEEEEEEEEEEEEE R
)

;* Routine - RECEIVE BYTE

¥ Input - none

¥ Output - Bytereceived isplaced in R7

;* Description - This subroutine receives 1 byte from converter

chkkkkhkkhkhkhhhkhhhdhhhhhhhhhhdhhhhhhhhhhhhhdhhdhdhhhhddhhdhdrhdhddhrdhrdx
3

; The function prototypeis. char RECEIVE_BY TE(void);

$DEBUG
USING 0 ; Useregister bank 0
TCOD SEGMENT CODE ; Define ROUT as a segment of code

PUBLIC RECEIVE_BYTE ; Make subroutine global
RSEG TCOD ; Make code relocatable

RECEIVE_BYTE:
MQV R1#08 ; Set count to 8 to receive byte

LOOP: ; Receive the byte
MOV C,P12 ; Movebhittocarry
RLC A ; Rotate A in preparation for next bit
SETB P1.3 ; Set SCLK
CLR P1.3 ; Clear SCLK

DJINZ R1,LOOP ; Decrement byte, repeat loop if not zero

MOV R7,A ; Byteto bereturnis placed in R7
RET ; Exit subroutine
END

AN118REV2 27

FRUSTE

hkkkkkhkhkkkhkkhkhkkhhhkhhkkhhhkhhkhhhhhkhhhhhkhhhhkhhhhkhhhdhkhdhhdhhkhhhhrkdhrdx*x
1

;* Routine - transfer_byte
;¥ Input - Byteto be transmitted is placed in Accumulator
¥ Output - None

;* Description - This subroutine sends 1 byte to converter
EESS S E ST R R T EE SR TR RS ST RS E R R e R R E R R R R R R R R R R R

;The function prototypeis: void TRANSFER_BY TE(char);

$DEBUG
USING 0 ; Use register bank 0
TCOD SEGMENT CODE ; Make TCOD a segment of code

PUBLIC _TRANSFER_BYTE ; Make subroutine global

RSEG TCOD ; Make code relocatable
_TRANSFER BYTE:
MQV A, R7 ; Move byte to be transmitted to ACC
MOV R1,#08 ; Set count to 8 to transmit byte

CLR P1.3 ; Clear SCLK

loop: ; Send Byte
RLC A ; Rotate Accumulator, send MSB 1st
MOV P1.1,C ; Transmit M SB first through C bit
SETB P1.3 ; Set SCLK
CLR P13 ; Clear SCLK
DJINZ R1,loop ; Decrement byte, repeat loop if not zero
SETB P1.1 ; Reset SDI to one when not transmitting
RET ; EXit subroutine

END

28 AN118REV2

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

AN118

chkkkkkkkkhkkhhkkhhhkhhkkhhhhhkhhhhhkhhhhhkhhhhkhhhhkhhhdhhhkhhdhhkdhhhrkdhdd*x
1

;* Routine - RXSER

¥ Input - none

;* Output - Bytereceived is placed in R7

;* Description - This subroutine receives 1 byte from converter
;¥ viaUART. It usesthe RS-232 seria protocol to transmit
;¥ one byte from a PC/UART system to the 8051.

chkkhkhkkkkkkhhhkhhhhhhhkhhhkhhhhhhrhhhhhhhhhhhhhhhhkkkhkhkdhhhhhrrrrxx
)

; The function prototypeis: char RXSER(void);

$DEBUG
USING O ; Useregister bank 0
TCOD SEGMENT CODE ; Define ROUT as a segment of code

PUBLIC RXSER ; Make subroutine global
RSEG TCOD ; Make code relocatable
RXSER:

JNB SCON.0,$; Pall RI
MQV R7,SBUF ; Placereceived bytein R7
CLR SCON.O ; Reset RI bit
RET
END

AN118REV2

29

y 4 Y Iy J J [K
' 4 A Wy /|
' 44) 4 a8/ / 4

AN118

hkkkkkhkhkkkhkkhkhkkhhhkhhkkhhhkhhkhhhhhkhhhhhkhhhhkhhhhkhhhdhkhdhhdhhkhhhhrkdhrdx*x
1

;* Routine - TXSER

¥ Input - Byteto be transmitted is placed in R7

¥ Output - None

;* Description - This subroutine transfers 1 byte from converter
;¥ viaUART. It usesthe RS-232 seria protocol to transmit

;¥ one byte from a 80C51 to the PC/UART system. To

;* function properly, the programmer must first initialize the
;¥ Tl bitin the SCON register to 0X01.

chkkhkhkkkkkkhkhhkhhhhhhhhkhhkhhhhhhhhhhhhhhhhhhhhhhhhkkkhkhkdhhhhhrrxrxx
)

;The function prototypeis: void TXSER(char);

$DEBUG
USING O ; Useregister bank 0
TCOD SEGMENT CODE ; Define TCOD as a segment of code

PUBLIC _TXSER ; Make subroutine global
RSEG TCOD ; Make code relocatable
_TXSER: IJNB SCON.1,$; Poll Tl

CLR SCON.1 ; Reset Tl
MQV SBUF, R7 ; Move byte to output register
RET ; EXit subroutine

END

30

AN118REV2

* Notes

	AN118: Interfacing the CS5521/22/23/24/28 to the 80C51
	TABLE OF CONTENTS
	1. INTRODUCTION
	2. ADC DIGITAL INTERFACE
	Figure 1. 3-Wire and 4-Wire Interfaces

	3. SOFTWARE DESCRIPTION
	3.1 Main Program Loop
	Figure 2. Software Flow Diagram

	3.2 Initialize
	3.3 Transfer Data To/From ADC
	Figure 3. Bit Representation/Storage in 80C51

	3.4 Transfer Data To/From PC
	Figure 4. Write-Cycle Timing
	Figure 5. Read-Cycle Timing
	Figure 6. Conversion/Acquisition Cycle Timing

	3.5 Decoding PC Commands
	3.6 Sample Index
	3.7 Test Modes

	4. MAXIMUM SCLK RATE
	5. DEVELOPMENT TOOL DESCRIPTION
	6. CONCLUSION
	7. APPENDIX: 80C51 MICROCONTROLLER CODE

