y 4 Y I7J JZ J J M
' 4 A Wy /|
' 44)y 4 a8/l 4

AN130

Application Note

Interfacing the CS5521/22/23/24/28 to the PIC16C84

TABLE OF CONTENTS

1. INTRODUCTION ..ooiciiiiiieeeiie e ceie e 1
2. ADC DIGITAL INTERFACEcccceeviviveiiireceee e 1
3. SOFTWARE DESCRIPTIONccccoociviiieeeviieeeeen 2
3.1 INILIANZE e 2
3.2 Write Channel Setup Registersccccccoviunns 2
3.3 Self-Offset Calibrationcccccovvvieieiiiinennnnns 3
3.4 Read/Write Gain Registercccccccveeeeeviiiiiinnnns 3
3.5 Acquire CONVEISIONccoecneviiiriiieeeeeesieesinees 4
4, MAXIMUM SCLK RATE ...ooiieeciee e 4
5. SERIAL PERIPHERAL INTERFACEccceene... 4
6. DEVELOPMENT TOOL DESCRIPTION 5
7. CONCLUSION ..ottt 5
8. APPENDIX: PIC16C84 MICROCODE TO
INTERFACE TO THE CS5521/22/23/24/28 6

1. INTRODUCTION
This application note details the interface of Crys-

tal Semiconductor's CS5521/22/23/24/28 Analog

to-Digital Converter (ADC) to the Microchip

2. ADC DIGITAL INTERFACE

The CS5521/22/23/24/28 interfaces to the
PIC16C84 through either a three-wire or a four-
wire interface. Figure 1 depicts the interface be-
tween the two devices. Though this software was
written to interface to Port A (RA) on the
PIC16C84 with a four-wire interface, the algo-
rithms can be easily modified to work with the
three-wire format.

The ADC'’s serial port consists of four control
lines: CS SCLK, SDIl,and SDO.

CS Chip Select, is the control line which enables
access to the serial port.

SCLK, Serial Clock, is the bit-clock which controls
the shifting of data to or from the ADC's serial

PIC16C84 microcontroller. This note takes theSDI, Serial Data In, is the data signal used to trans-
reader through a simple example which demorfer data from the PIC16C84 to the ADC.

strates how to communicate between the microcoBDO, Serial Data Out, is the data signal used to
troller and the ADC. All algorithms discussed areransfer output data from the ADC to the
included in Section 8. “APPENDIX: PIC16C84 p|C16C84.

Microcode to Interface to the
CS5521/22/23/24/28” on page 6.
3-Wire Interface 4-Wire Interface
CS5521/22/23/24/28 PIC16C84 CS5521/22/23/24/28 PIC16C84
cs v NC (RA0) CS [RAD
SDI «— RA1l SDI [RA1l
SDO—¥® RA2 SDO——¥ RA2
SCLK ¢«— RA3 SCLK «— RA3
Figurel. 3-Wireand 4-Wirelnterfaces
=B CIRRUS LOGIC' ght0 Cirus Logi
P.O. Box 17847, Austin, Texas 78760 P Ricts Rocarragy 2% NOV *99
(512) 445 7222 FAX: (512) 445 7581 AN130REV2
http://www.cirrus.com 1

FRUSTEr

3. SOFTWARE DESCRIPTION

This note presents algorithms to initialize the

PIC16C84 and the CS5521/22/23/24/28, perform INITIALIZE
calibrations, modify the CS5521/22/23/24/28's in- MICROCONTROLLER & ADC
ternal registers, and acquire a conversion. Figure 2 Y

depicts a block diagram of the main program struc- WRITE CSRs

ture. While reading this application note, please re- L

fer to Section 8. “APPENDIX: PIC16C84 SELF-OFFSET CAL.
Microcode to Interface to the Y
CS5521/22/23/24/28” on page 6 for the code list- MODIFY GAIN

ing. Y

3.1 |n|t|a||Z€ ACQUIRE CONVERSION j

Initialize is a subroutine that configures Port A Figure2. CS5521/22/23/24/28 Software Flowchart

(RA) on the PIC16C84 and places the serial port of

the CS5521/22/23/24/28 into the command stataDC is in the command state, where it waits for a
RA’s data direction is configured as depicted inyalid command.

Figure 1 by writing to the TRISA register (for more) .

information on configuring ports, see the3-2 Write Channel Setup Registers

PIC16C84 Data Sheet). The controller then enterBhe subroutinewrite csrsis an example of how to

a number of delay states to allow the appropriaterite to the CS5521/22/23/24/28's Channel Setup
time for the ADC's oscillator to start up and stabi-Registers (CSRs). For this example, two CSRs
lize (oscillator start-up time for a 32.768 KHz crys-(four Setups) are written. The number of CSRs to
tal is typically about 500ms). Finally, the ADCsbe accessed is determined by the Depth Pointer bits
serial port is reset by sending fifteen bytes of logi¢(DP3-DP0) in the configuration register. The
1's followed by a single byte with its LSB at logic Depth Pointer bits are set to “0011” to access the
0 to SDI (the serial port is initialized after any pow-+two CSRs. The value “0011” is calculated by tak-
er-on reset, and this software re-initialization is foing the number of Setups to be accessed and sub-
demonstration purposes) Once the proper sequerirtacting 1. Because each CSR holds two Setups,
of bits has been received, the serial port on thiéhis number must always be an odd value, that is,

Contacting Cirrus Logic Support
For a complete listing of Direct Sales, Distributor, and Sales Representative contacts, visit the Cirrus Logic web site at:
http://www.cirrus.com/corporate/contacts/

SPl is a trademark of Motorola.
MICROWIRE is a trademark of National Semiconductor.
MPLAB and MPASM are trademarks of Microchip.

Cirrus Logic, Inc. has made best efforts to ensure that the information contained in this document is accurate and reliable. However, the in-
formation is subject to change without notice and is provided “AS IS” without warranty of any kind (express or implied). No responsibility is
assumed by Cirrus Logic, Inc. for the use of this information, nor for infringements of patents or other rights of third parties. This document
is the property of Cirrus Logic, Inc. and implies no license under patents, copyrights, trademarks, or trade secrets. No part of this publication
may be copied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photographic,
or otherwise). Furthermore, no part of this publication may be used as a basis for manufacture or sale of any items without the prior written
consent of Cirrus Logic, Inc. The names of products of Cirrus Logic, Inc. or other vendors and suppliers appearing in this document may be
trademarks or service marks of their respective owners which may be registered in some jurisdictions. A list of Cirrus Logic, Inc. trademarks
and service marks can be found at http://www.cirrus.com.

2 AN130REV2

FRUSTEr

DPO must alwaysbelogic 1 whenreadingandwrit- 3.4 Read/Write Gain Register
ing the CSRs. To modify the Depth Pointer bits, the

) " :)) The routinemodify_gain provides an example of
configuration register is read to prevent corruption

: _ i how to modify the ADC'’s internal gain registers.
of_ other bits. After the read_register routineis UN T4 modify the gain register the command byte and
with the command 0x0B (HEX), the DP3-DPO It 545 pyte variables are written with the appropriate
are masked to “0011". Then, the updated informa¢ormation.Modify_gain then calls the subroutine
tion is written back into the ADC with the com-\yrite register, which uses these variables to set the
mand 0x03 (HEX) using therite register routine. contents of Physical Channel 1 (PC1)'s gain regis-
After the depth pointer bits are set correctly, théer to 0x800000 (HEX). Therite register routine
CSR information is written to the ADC. The com-calls thesend byte algorithm four times, once to
mand 0x05 (HEX) is sent to the ADC to begin thesend the command byte, and three more times to
write sequence (to read the CSRs, the commarsénd the three data byt&nd_byte is a subroutine
would be 0x0D). At this point, the ADC is expect-used to ‘bit-bang’ a byte of information from the
ing to receive information for two 24-bit CSRs, orPIC16C84 to the CS5521/22/23/24/28. A byte is
48 bits, based on the Depth Pointer bits. The firdtansferred one bit at a time, MSB (most significant
CSR is written with a value of 0x000000 (HEX). bit) first, by placing a bit of information on RA1
This sets Setup 1 and Setup 2 both to convert bip6SDI) and then pulsing RA3 (SCLK). The byte is
lar, 100mV signals on physical channel 1 (PC1) dransferred by repeating this process eight times.
an output word rate (OWR) of 15 Hz, and latch pingigure 3 depicts the timing diagram for the write-
A1-A0 equal to “00”. The second CSR is writtencycle in the CS5521/22/23/24/28's serial port. It is
with the value 0x4C0105 (HEX). This sets Setup 3mportant to note here that this section of the code
to convert a bipolar, 100mV signal on PC2 at glemonstrates how to write to the gain register of
101.1 Hz OWR, with latch pins A1-A0 at “01”. PCL1. It does not perform a gain calibration. To
This also sets Setup 4 to convert a unipolar, 25m\rite to the other internal registers of the ADC, fol-

input signal at 15 Hz on PC3, with output latch pindow the procedures outlined in the
A1-A0 set to “00". CS5521/22/23/24/28 data sheet.

. . To read the value in the gain register of PC1, the
3.3 Sdlf-Offset Calibration command byte is loaded with the value Ox0A
Calibrateis a subroutine that performs aself-oﬁse(HEx), and theread_register routine is called. It
calibration using Setup Lalibrate does this by qpjicates the read-cycle timing diagram depicted
sending the command 0x81 (HEX) to the ADC;, Figure 4Read register asserts CERAQ). Then
This tells the ADC to perform a self-offset calibra-j; 5|5 send_byte once to transfer the command-
tion using Setup 1 (see the CS5521/22/23/24/28 e to the CS5521/22/23/24/28. This places the
Data Sheet for information on performing offset ofconyerter into the data state where it waits until
gain calibrations using other Setups). Once thgats is read from its serial poRead_register then
command has been sent, the controller polls RAZ,||s receive byte three times and transfers three
(SDO) until it falls, indicating that the calibration is pytes of information from the CS5521/22/23/24/28
complete. Note that although calibrations are dongy the PIC16C84. Similar to send_byte,
on a specific Setup, the offset or gain register thakceive byte acquires a byte one bit at a time, MSB
is modified belongs to the physical channel referfirst. When the transfer is complete, the variables
enced by that Setup. high_byte, mid_byte, and low_byte contain the val-

ue present in PC1’s 24-bit gain register.

AN130REV2 3

r 4 Y I17 J J | &

' 4 A Wy //
|
3.5 Acquire Conversion from the ADC. The PIC16C84 then reads the con-

version data word by callingeceive byte three
times. Figure 6 depicts how the 16 or 24-bit data

channel, the MC (multiple conversion) and the LP word is stored in the memory locations HIGH-
(loop) bitsin the configuration register must belog- BY TE, MIDBYTE, and LOWBYTE.

ic 0. To prevent corruption of the configuration 4 MAXIMUM SCLK RATE

register, convert instructs the PIC16C84 to read
and save the contents. Thisinformation isstored in
the variables HIGHBY TE, MIDBY TE and LOW-
BYTE. Then the MC, LP, and RC (read convert)

To acquire a conversion the subroutine convert is
called. For single conversions on one physical

An instruction cycle in the PIC16C84 consists of
four oscillator periods, or 400ns if the microcon-
troller’s oscillator frequency is 10 MHz. Since the
bits are masked to logic O, and the new information C85521/22./.23/24/28 S maximum SCLK rate s
: . , . . . 2MHz, additional no operation (NOP) delays may
Is written back to the ADC'’s configuration register. . .
SR ; be necessary to reduce the transfer rate if the micro-
A conversion is initiated on Setup 1 by sending the ol ¢ e high ¢ ilat
command 0x80 to the converter. At this time, th& ONHrOTEr system requires higher rate osciiators.
controller polls RA2 (SDO) until it falls to a logic 5, SERIAL PERIPHERAL INTERFACE
0 level (see Figure 5). After SDO faltmnvert ap-
plies a logic 0 to RA1 (SDI) and pulses RA3

(SCLK) eight times to initiate the data transfe

When using a built-in Serial Peripheral Interface
(SPI) port, the designer must pay special attention
'to how the port is configured. Most SPI ports allow

Command Time Data Time 24 SCLKs
8 SCLKs

Write Cycle

Figure3. Write-Cycle Timing

CSs

SDI

Command Time
8 SCLKs

spo usal R A R R

b Data Time 24 SCLKs

Read Cycle

Figure 4. Read-Cycle Timing

4 AN130REV2

r 4 Y I17 J J | &
N 4 A Wy /|
' 447y 4 a8/ / 4

AN130

RN AR RN e A a AR R RS u AR R u AR —

command Time t"
8 SCLKs «

XIN/OWR

Clock Cycles
SDO 8 SCLKs Clear SDO Flag @DDC X X XLSBI ’

* td = XIN/OWR clock cycles for each conversion except the
first conversion which will take XIN/OWR + 7 clock cycles

Data Time
24 SCLKs

Data SDO Continuous Conversion Read

Figure5. Conversion/Acquisition Cycle Timing

MSB High-Byte

| D23 | D22 | D21 | D20 | D19 | D18 | D17 | D16 |
Mid-Byte

| D15 | D14 [D13 | D12 | D11 [D10 | D9 | D8]
Low-BytelL SB

| D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO |
A) 24-Bit Conversion Data Word (CS5522/24/28)

MSB High-Byte

[D15[D14 [D13 [D12 [D11 [D10 [D9 [D8 |
Mid-Byte

[D7 [D6 | D5 [D4 [D3 [D2 | D1 | DO |
Low-Byte

[1 [1 | 1] 0 [Cl1][CIO]| OD]| OF |
B) 16-bit Conversion Data Word (CS5521/23)
0- alwayszero, 1- always1
Cl1, CIO- Channel Indicator Bits
OD - Oscillation Detect, OF - Over flow

Figure6. Bit Representation/Storagein the PIC16C84
for a selectable clock polarity. However, many do

6. DEVELOPMENT TOOL
DESCRIPTION

The code in this application note was developed
with MPLAB™, a development package from Mi-
crochip, Inc. It was written in Microchip assembly
and compiled with th&IPASM™ assembler.

7. CONCLUSION

This application note presents an example of how
to interface the CS5521/22/23/24/28 to the
PIC16C84. It is divided into two main sections:
hardware and software. The hardware section illus-
trates both a three-wire and a four-wire interface.
The three-wire interface ISPI™ and MICROW-
IRE™ compatible. The software, developed using
tools from Microchip, Inc., illustrates how to ini-
tialize the converter and microcontroller, write to

the CSRs, write and read the ADC'’s internal regis-
ters, perform calibrations, and acquire conversions.

not have the capability to select the clock’s phasd.he software is modularized and provides impor-
When using a microcontroller with both featuresfant subroutines such aswrite register,
the clock polarity should be set to idle low, and theead_register, write_csrs andconvert, which were
clock phase should be set to begin clocking in thell written in PIC assembly language.

middle of the data bits. For an SPI port without therhe software described in the note is included in

variable clock phase feature to function properlysection 8. “APPENDIX: PIC16C84 Microcode to

with the CS5521/22/23/24/28, the clock polarity|nierface to the CS5521/22/23/24/28” on page 6.
needs to be set to idle high, and the ADC'’s serial

port must be re-initialized anytime new informa-
tion is transmitted between the microcontroller and

the converter.

AN130REV2

FRUSTEr

.
8. APPENDIX: PIC16C84 MICROCODE TO INTERFACE TO THE CS5521/22/23/24/28

chhkkkhkkkkkkhhhhhhhhhhkhhhhhhhhhhrhhhhhhhhhhhhhhhhhkhhhhhhhhhhrddhkhkhkdddhhrrrrrrik
)

* File: 55221684.ASM

;* Datee November 1, 1999

* Revision: 1

* Processor:PIC16C84

;* Program entry point at routine "main”. Entry point address is 0x05.

chkkhkhkkkkkkhhhhhhhhhhkhkhhhhhhhhhrhhhhhhhhhhhhhhhkhhkhhhhhhhhhhkddkhkhkhkdhhhhrrrrrxik
)

;* This program is designed to provide examples of how to interface the

;¥ CSb521/22/23/24/28 ADCsto a PIC16C84 Microcontroller. The software handles all
;* of the serial communi cations between the controller and the ADC to perform

;* system calibration and acquire 24 and 16-bit conversion words.

RS E S E S EEEEEE ST EE LSS E RS LSS EEEEEE LSRR EEEEEEEEEEEEEEEEEEE S
)

7¥** Memory Map Equates ***

STATUS equ 0x03 ; STATUS register

PORTA equ 0x05 ; 1/O Port A address

TRISA equ 0x85 ; Port A Data Direction Control Latch
CARRY equ 0x00 ; Carry Bitin STATUS

RPO equ 0x05 ; Register Bank Select Bit in STATUS
CS equ 0x00 ; Port A bit 0 - Chip Select

SDI equ 0x01 ; Port A bit 1 - Serial Dataln

SDO equ 0x02 ; Port A bit 2 - Serial Data Out

SCLK equ 0x03 ; Port A bit 3 - Serial Clock
HIGHBYTE equ 0XoC ; Upper 8 Bits of Conversion Register
MIDBYTE equ 0x0D ; Middle 8 Bits of Conversion Register
LOWBYTE equ OxOE ; Lowest 8 bits of Conversion Register
COMMAND equ OxOF ; Command Byte RAM location
TEMP equ 0x10 ; Temporary Data storage RAM location
COUNT equ 0x11 ; Software Counter RAM location
SERI_DATA equ 0x12 ; Serial Data RAM location

chkhkkkhkkkkkkhhhhhhhhhkddhhhhhhhhhkhhhhhdhhhhhhkhhhhhdhdhdkhhhhhhhkhdddhhhkdddhhrrrrrxid
1

;* Program Code

RS TR RS EEES S EEEEEEEE LSS ST EEEE LSS EEEEEEEE SRS EEEEEEEEEEEEEEEEEEEE S
)

processor 16C84 ; Set Processor Type
org 0x00 ; Reset Vector Location
goto main ; Start at "main” routine

RS ST EEEEE S S S S ST EEE LSS EETEEEE LSS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE S
)

6 AN130REV2

FRUSTEr

;* Routine - main

;* Input - none

;* Output - none

;* Thisisthe entry point to the program, as well as the central loop.

chkkkkhkkkhhkkhhkkhhhhhhhhhhhhhhhhhhhhhdhhhhhkhhhhhhhhkhhhdhhhhdhhdhhhhhdhhhhddhhdrddxixx
3

org 0x05 ; program memory beginning location
main

;¥** |nitialize and Calibrate System ***

CALL initialize ; Initialize the System

CALL write csrs ; Modify the Channel Setup Registers
CALL calibrate ; Calibrate ADC Offset

CALL modify_gain ; Write and Read gain register

;¥** | oop to perform continuous single conversions ***
mloop: CALL convert ; Obtain conversions from ADC
goto mloop ; Keep looping

*** End main ***

B E S E TR RS S S S S S EEE ST EEE LSS EE S S LSRR EEEEEEE SRS EEEEEEEEEEEEEEEEEEEE S

;* Subroutines

chkkkkkkkhhkhhhkhhhhhhhhhhhdhhhhhdhhhhdhdhhhdhhhhhdhhhhhhhdhhhhdhhdhhhdhhdhhhdrdhhdrddhrdx
3

;***
* Routine - initialize

;* Input - none

;* Output - none

;* This subroutine initializes Port A to interface to the CS5521/22/23/24/28 ADC.

;* A time delay is provided to allow for the ADC oscillator to power up.

;* Typicaly, a32.768 KHz crystal has a start-up time of about 500ms.

;* Additionally, 1003 XIN cycles are delayed for the ADC's power-on reset

;* after the crystal has stabilized. The total delay is 660ms upon system

;* power-up, assuming that the microcontroller has no start-up delay.

chkkkkhkkkkkhkhkhhhhkhkhkhkhkhkhhhhhhhhhhkhhhhhhhhhkhhhdddhhhhkhhhdhhdhhhdxddxddddddhhkxxxdd*xkx*x
1

initialize CLRF PORTA ; Clear Port A Output data latches
BSF STATUS, RPO; Select Register Bank 1 - control
MOVLW 0x04 ; Directional Valuesfor Port A:
MOVWF TRISA ; RA2 =input, RAO-1 & 3-4 = output

BCF STATUS, RPO; Select Register Bank 0 - normal
MOVLW 0x32 ; Load W for delay count
CALL delay ; Delay 1003 XIN cycles

AN130REV2 7

r 4 Y I17 J J | &

' 4 A wWry /i AN130
Yy 44y 47 a8/ /] 4
|

MOVLW OxFF ; Load W for new delay count

CALL delay ; Delay for Oscillator start-up 158ms
CALL delay ; Delay for Oscillator start-up 158ms
CALL delay ; Delay for Oscillator start-up 158ms
CALL delay ; Delay for Oscillator start-up 158ms

*** ADC Serial Port Initidlization ***

MOVLW OxOF ; Load W with avalue of 15
MOVWF TEMP ; Loop count variable= TEMP
BCF PORTA,CS ; Clear CStoenable ADC
loop: MOVLW OxFF ; Load W with all 1's
CALL send_byte ;send al I'sto ADC
DECFSZ TEMP, 1 ; loop through to send 15 bytes of all 1's
goto loop
MOVLW OxFE ; Load W with last byte - '11111110°

CALL send _byte ; send final initialize byteto ADC
BSF PORTA,CS ; Set CStodisable ADC
RETURN ; Exit to "main"

RS EEEE S S S EEE RS EEEE LS SRR E RS S LSS EEEEEE LSRR EEEEEEEEEEEEEEEEEEE S
)

;* Routine - calibrate

;¥ Input - none

;* Output - none

;* This subroutine tells the ADC to perform self-offset calibration on Setup 1

RS EEE S S S S S SRS T EEE LSRR EE S S LSS EEEEEEE SRS EEEEEEEEEEEEEEEEEEEE S
)

calibrate MOVLW 0x81 ; Command for Self-Offset Calibration
BCF PORTA,CS ; Enable ADC
CALL send_byte ; Send Calibration Command to ADC

poll_sdol: BTFSC PORTA, SDO ; Wait until SDO fallsto indicate
goto poll_sdol ; calibration completion.
BSF PORTA,CS ; Disable ADC
RETURN ; Exitto "main”

rhkkkhkhkkhkkkkkhkhhhhhhhkhkhkkhhhdddhhhhhhdhddhhhddhhhhhhdhdddhddhhhhxdxxddddddhdhxhxhxxxxixkx
)

;* Routine - modify_gain

8 AN130REV2

FRUSTEr

;* Input - none
;* Output - none
;* This subroutine writes to and reads from the gain register on physical

;* channel 1.
EESS S E S S S SEETE S L LSS LTSS ESSEEEEEETEEET S S EESTEESTEEEEEEEEEEEEEE LSS LT R LRSS E TR EE S

modify_gain MOVLW 0x02 ; Command to write Gain register
MOVWF COMMAND ; Set command byte
MOVLW 0x80 ; High byte information

MOVWF HIGHBYTE ; Set high byte

CLRF MIDBYTE ; Set middle byte

CLRF LOWBYTE ; Setlow byte

CALL write_register ; Write 0x800000 to Gain Register

MOVLW Ox0A ; Command to read Gain Register
MOVWF COMMAND ; Set Command byte
CALL read register ; Read datafrom the Gain Register

RETURN ; Exit

hkkkkhkkkhhhhhkhhhhhhhhhhhhhhhhdhhhhhdhhhhhhhhhhhhhhhhdhhhhdhhdhhhhhdhhhdhdrdhhdrddrisx

;* Routine - write_csrs

* Input - none

;* Output - none

;* This subroutine is used to modify the information in the Channel Setup
;* Registers. It first changes the depth pointer bitsin the ADCs config.

;* register to reflect the number of CSRsto be written, and then writesto
;* the appropriate CSRs

hkkkkkkkhhhhhkhhhhhhhhdhhhhhhhhdhhhhdhdhhhdhhhhhdhhhhhhhdhhhhdhhdhrhdhhdhhddrddhrdrddrdsx
)

write_csrs MOVLW 0x0B ; Command to read Config. Register
MOVWF COMMAND ; set command byte
CALL read register ; read the config. register

;*** Mask DP3-DPO to access two CSRs (four Setups) ***

MOVLW Ox3F ; mask DP3-DP2 low
ANDWF MIDBYTE, 1 ; change DP3 and DP2
MOVLW 0x30 ; mask DP1-DPO high

IORWF MIDBYTE, 1 ; change DP1 and DPO

MOVLW 0x03 ; Command to write config. register
MOVWF COMMAND ; set command byte
CALL write_register ; Change Depth Pointer Bits

;*** \Write to CSRs - note, the ADC expects information for the

; number CSRs indicated in the Depth Bits (DP3-0 in the
; configuration register) so al of the CSRs are

; written at thistime ***

AN130REV2 9

FRUSTEr

MOVLW 0x05 ; Command to write CSRs
BCF PORTA,CS ; sdlectthe ADC
CALL send_byte ; send command byte to ADC

;¥** Setup CSR #1 - Setups 1 and 2

; setting both to default value of 000’

; (A1-A0 =00, Physical Channel =1, OWR = 15Hz,

; input V-range = 100mV, Bipolar Measurement mode) ***

MOVLW 0x00 ; al zeros

CALL send_byte ; send first byte
CALL send_byte ; send second byte
CALL send_byte ; send third byte

;¥** Setup CSR #2 - Setups 3 and 4

; setting Setup 3 to '4C0O’ and Setup 4 to '105°

; Setup 3 Settings - (A1-A0 = 01, Physical Channel = 2,
; OWR = 101.1 Hz, input V-range = 100mV, Bipolar)

; Setup 4 Settings - (A1-A0 = 00, Physical Channel = 3,
; OWR = 15 Hz, input V-range = 25mV, Unipolar)

MOVLW 0x4C ; first byte of info
CALL send_byte ; send first byte
MOVLW 0x01 ; second byte of info
CALL send_byte ; send second byte
MOVLW 0x05 ; third byte of info

CALL send_byte ; send last byte

BSF PORTA,CS ; de-select the ADC
RETURN ; exit

RS SRR TS S S SRS ST EE LSS TS EEEE LSS ST EEEEEEEE SRS EEEEEEEEEEEEEEEEEEEE S
)

10 AN130REV2

FRUSTEr

;* Routine - convert

;* Input - none

;* Output - 24-hit Conversion Resultsin memory locations HIGHBY TE, MIDBYTE
* and LOWBYTE.

;* The Algorithm itself will only perform asingle

;* conversion using Setup 1. For multiple continuous

;* conversions, or for conversions using other setups, the routine

;* must be modified. (see the CS5521/22/23/24/28 data sheet for more info)

chkkkkkkhkhkhkhhhhkhhhkhkhkhhhhhrhhhhhhhhhhhhhkhkhkhdhhhhhhhhhkhkhhhhhrhdhdkhhhkddhhhkkrkkhkdik
)

convert MOVLW 0x0B ; Command to read Configuration Reg.
MOVWF COMMAND ; Set Command Byte
CALL read register ; Read Config. Register Information

MOVLW OxF8 ; Load mask infointo W
ANDWF HIGHBYTE, 1; Mask MC, LP,and RCto 0
MOVLW 0x03 ; Command to write Configuration Reg.

MOVWF COMMAND ; Set Command Byte
CALL write_register ; Write Config. Register with new info

: *** Receive Conversion Data***

BCF PORTA,CS ;Enable ADC
MOVLW 0X80 ; Command for conversion using Setup 1
CALL send_byte ; send command byte

poll_sdo2: BTFSC PORTA, SDO; Wait until SDO fallsto indicate

goto poll_sdo2 ; conversion completion
MOVLW 0X00 ; Command to start data output
CALL send_byte ; send command

CALL receive byte ; Receivedata...

MOVWF HIGHBYTE ; High Byte 1st..

CALL receive_byte

MOVWF MIDBYTE ; then the Middle Byte..
CALL receive_byte

MOVWF LOWBYTE ;andfinaly the Low Byte.
BSF PORTA,CS ; Disable ADC

RETURN ; Exit to "main"

RS TR RS S S E SRS ST EE LSS TS ETEEEE LSS ST EEEEEEEE SRS EEEEEEEEEEEEEEEEEEEE S
)

AN130REV2 11

FRUSTEr

;* Routine - write_register

i* Input - COMMAND, HIGHBYTE, MIDBYTE, LOWBYTE

;* Output - none

;* This subroutine writes to the internal registers of the CS55/2122/23/24/28

chkkkkhkhkkkhhkkhkkhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhdhhhhdhhdhhhhhdhhhhddhhdrdhrixkx

write_register BCF PORTA,CS ; Enable ADC
MOVF COMMAND, 0; Load W with Command byte
CALL send_byte ; Send command info
MOVF HIGHBYTE, 0; Load W with high byte
CALL send_byte ; Send high bytefirst..
MOVF MIDBYTE, O ;Load W with middle byte
CALL send_byte ; Then the middle byte..
MOVF LOWBYTE, O ; Load W with low byte

CALL send_byte ; .. and then the low byte last.
BSF PORTA,CS ; Disahle ADC
RETURN ; Exit Subroutine

RS RS S S S S S EEE ST EE LSS SRR EE S S LSS EEEEEE LSRR EEEEEEEEEEEEEEEEEEE S

;* Routine - read_register

;* Input - COMMAND

;* Output - HIGHBYTE, MIDBYTE, LOWBYTE

;* This subroutine reads from the internal registers of the CS5521/22/23/24/28

RS EE RS S S S S EEEEEEE LSS SRR EE S S LSS EEEEEEE SRS EEEEEEEEEEEEEEEEEEEE S
)

read_register BCF PORTA,CS ; Enable ADC
MOVF COMMAND, 0; Load W with Command Byte
CALL send_byte ; Send Command info
CALL receive_byte ;receive High bytefirst..
MOVWF HIGHBYTE ; MoveW toHIGHBYTE
CALL receive _byte ; and then the middie byte..
MOVWF MIDBYTE ; Move W to MIDBYTE
CALL receive byte ;andfinaly the Low byte.
MOVWF LOWBYTE ;MoveW to LOWBYTE
BSF PORTA,CS ; Disable ADC
RETURN ; Exit Subroutine

RS SRR LSS S SRS EEEE LSS E ST EEEE LSS ST EEEEEEEE SRS EEEEEEEEEEEEEEEEEEEE S
)

12 AN130REV2

FRUSTEr

;* Routine - send_byte

;* Input - Byte stored in W register

;* Output - none

;* This subroutine sends a byte, one bit at atime, MSB first, to the ADC

chkkkkhkkkhhkkhhkkhhhhhhhhhhhhhhhhhhhhhdhhhhhkhhhhhhhhkhhhdhhhhdhhdhhhhhdhhhhddhhdrddxixx
3

send_byte MOVWF SERI DATA ; MoveW to SERI_DATA
MOVLW 0x08 ; Set COUNT to 8
MOVWF COUNT ; to trasnsmit each bit individually
bitloopl: RLF SERI_DATA, 1 ; Rotate SERI_DATA to send MSB first
BTFSC STATUS, CARRY ; If bit islow, skip next instruction
BSF PORTA, SDI ; If high, set SDI
BTFSS STATUS, CARRY ; If bitis high, skip next ingtr.
BCF PORTA, SDI ; If low, clear SDI
BSF PORTA, SCLK ; Toggle SCLK High
BCF PORTA, SCLK ; Toggle SCLK Low
DECFSZ COUNT, 1 ; Go to next bit unless done
goto bitloopl
BCF PORTA, SDI ; Return SDI to low state
RETURN ; Exit Subroutine

chkkkkkhkkhhhhhkhhhhhhhhhhhdhhhhhdhhhhhdhhhdhhhhhdhhhhhhhdhhhhdhhdhhhhhdhhhddrdhhdrddrixsx
3

;* Routine - receive_byte

;* Input - none

;* Output - Byte stored in W register

;* This subroutine receives a byte, one bit at atime, MSB first, from the ADC

hkkkkkkhkhkhhhhhhhhhhhhhhhhhhhdhhhhhdhhhdhhhhdhhhhhhhdhhhhdhhdhhhhhdhhddrdhhdrddrdcsx
)

receive_byte MOVLW 0x08 ; Set COUNT to 8
MOVWF COUNT ; to receive each bit individually

bitloop2: BTFSC PORTA, SDO ; If Bitislow, skip next instruction
BSF STATUS, CARRY ; Otherwise, set carry bit
BTFSS PORTA, SDO ; If Bitishigh, skip next instruction
BCF STATUS, CARRY ; Otherwise, clear carry bit
RLF SERI_DATA,1 ; Rotate Carry into SERI_DATA, MSB first
BSF PORTA, SCLK ; Toggle SCLK High
BCF PORTA, SCLK ; Toggle SCLK Low
DECFSZ COUNT, 1 ; Go to next bit unless finished
goto bitloop2
MOVF SERI_DATA,O ; Put received byte into W
RETURN ; Exit Subroutine

chkkkkkkkkhkkhkkhhkhkkhhkkhhkkhhkkhhkkhhhhhkhhhkkhhhkhhhhkhhhhhkkhhkhhkkhhkkhhkkhhkkhhhkhhkkhhkkhkkhkhkdkkkx*x
1

AN130REV2 13

FRUSTEr

;* Routine - delay

;* Input - Count in W register

;* Output - none

;* This subroutine delays by using a count value stored in register W. This

;* example was tested using a 10MHz clock (E = 2.5 MHZ), thus each

;* cycleis400ns. This delay is approximately equivalent to:

;¥ (400Nn9)* (1536)* (count value in W) - A count of 720 provides a 445ms delay

chkkkkkkkkhkhkhhhhhhhkhkhkhhhhhrhhhhhhhhhhhhkhkhkhhhhdhhhhhhhkhhhhhhhrhhdkhkhhddhhhkdkkkhkdkx
)

delay MOVWF COUNT ; Move delay valueto COUNT
outlp: CLRF TEMP ; TEMP used for inner loop counter
innlp: NOP ; 1 cycle - 400ns

NOP ; 2 cycles - 800ns

NOP ; 3cycles- 1.2 us

NOP ;dcycles- 1.6 us

DECFSZ TEMP, 1 ; Decrement TEMP and loop 256 times

goto innlp

DECFSZ COUNT, 1 ; Decrement COUNT and loop

goto outlp

RETURN ; Exit delay

chkkkkkkkhhkhhhkhhhdhhhhhdhhhdhhhhhdhhhhhdhhhdhhhhhdhhhhhhhdhhhhdhhhdhhhdhhdhhdrdhhdrddrdsx

¥ Interrupt Vectors

chkkkkkkhkhkhhhhhhhhhhhhhhdhhhhhdhhhhhdhhhdhhhhdhhhhhhhdhhhhdhhdhhhhhdhhhdrddhhdrddrdsx
3

NOT_USEDRETFIE

ORG 0x04 ; originate interrupt vector here
goto NOT_USED ; no interrupts enabled
end ; end program listing

14 AN130REV2

* Notes

	AN130: Interfacing the CS5521/22/23/24/28 to the PIC16C84
	TABLE OF CONTENTS
	1. INTRODUCTION
	2. ADC DIGITAL INTERFACE
	Figure 1. 3-Wire and 4-Wire Interfaces

	3. SOFTWARE DESCRIPTION
	3.1 Initialize
	Figure 2. CS5521/22/23/24/28 Software Flowchart

	3.2 Write Channel Setup Registers
	3.3 Self-Offset Calibration
	3.4 Read/Write Gain Register
	3.5 Acquire Conversion
	Figure 3. Write-Cycle Timing
	Figure 4. Read-Cycle Timing
	Figure 5. Conversion/Acquisition Cycle Timing

	4. MAXIMUM SCLK RATE
	Figure 6. Bit Representation/Storage in the PIC16C84

	5. SERIAL PERIPHERAL INTERFACE
	6. DEVELOPMENT TOOL DESCRIPTION
	7. CONCLUSION
	8. APPENDIX: PIC16C84 MICROCODE TO INTERFACE TO THE CS5521/22/23/24/28

