A DIVISION OF =2 CIRRUS LOGIC®

AN74

Application Note

Interfacing the CS5525/6/9 to the 80C51

By Keith Coffey
INTRODUCTION

This application note details the interface of Crys- The ADC's serial port consists of four control
tal Semiconductor’s CS5525/6/9 Analog-to-Digi-|ines: CS SCLK, SDI,and SDO.

tal Converter (ADC) to an 80C51 microcontroller.
This note takes the reader through a simple exar@S Chip Select, is the control line which enables
ple describing how to communicate with the ADC.access to the serial port.

All algorithms discussed are included in thpe-

pendix at the end of this note. SCLK, Serial Clock, is the bit-clock which controls

the shifting of data to or from the ADC'’s serial
ADC DIGITAL INTERFACE port.

The CS5525/6/9 interfaces to the 80C51 througBbDl, Serial Data In, is the data signal used to trans-
either a three-wire or a four-wire interface. Figurefer data from the 80C51 to the ADC.
1 depicts the interface between the two devices,

Though this software was written to interface toSDO’ Serial Data Out, Is the data signal used to

Port 1 (P1) on the 80C51 with a four-wire interface,tranSfer output data from the ADC to the 80C51.

the algorithms can be easily modified to work withgyFT\WARE DESCRIPTION

the three-wire format.
This note presents algorithms to initialize the
80C51 and the CS5525/6/9, perform self-offset cal-
ibration, modify the CS5525/6/9’s gain register,

and acquire a conversion. Figure 2 depicts a block

CS5525/6/9 80C51 CS5525/6/9 80C51

CS Evall P1.0 (logic 0) CS «— P10

SDl +—— P1.1 SDl +—— P1.1

SDO = P1.2 SDO ——— 1 P1.2

SCLK ~4¢— P13 SCLK — P13

Figurel. 3-Wireand 4-Wire Interfaces
Cirrus Logic, Inc.

Crystal Semiconductor Products Division Copyright O Cirrus Logic, Inc. 1997 NOV ‘97
P.O. Box 17847, Austin, Texas 78760 (All Rights Reserved) AN74Rev?2

(512) 445 7222 FAX: (512) 445 7581
http://www.crystal.com 1

y 4 Y I17 J J [A
1 4 /1) 4 a8/ /7 4

diagram. While reading this application note, Self-Offset Calibration

please refer to the Appendix for the code listing. Calibrate is a subroutine that calibrates the con-

I nitialize verter's offset. Calibrate first sends 0x000001
(Hex) to the configuration register. This instructs
Initializeis asubroutine that configures P1 (Port 1) the converter to perform a self-offset calibration.
on the 80C51 and places the CS5525/6/9 into the Then the Done Flag (DF) bit in the configuration
command-state. First, P1’s data direction is configregister is polled until set. Once DF is set, it indi-
ured as depicted in Figure 1 (for more informatiorcates that a valid calibration was performed. To
on configuring ports refer to 80C51 Data Sheet)minimize digital noise (while performing a calibra-
After configuring the port, the controller enters ation or a conversion), many system designers may
delay state to allow time for the CS5525/6/9’s powfind it advantageous to add a software delay equiv-
er-on-reset and oscillator to start-up (oscillatoglent to a conversion or calibration cycle before
start-up time is typically 500ms). The last step is t®olling the DF bit.
reinitialize the serial port on the ADC (reinitializ-
ing the serial port is unnecessary here, the code wi§ad/Write Gain Register

added for demonstration purposes only). This i?o modify the gain register the command-byte and

implemented by sending the converter S"Xteerélata-byte variables are first initialized. Then the

bytes of logic 1's followed by one final byte, with . . : .

. . subroutinenrite_to_register uses these variables to

its LSB at logic 0. Once sent, the sequence places . . .

the serial port of the ADC into the command-stateset the contents of the gain register in the CS5525/
P 6/9 to 0x800000 (HEX). To do this,

where it awaits a valid command. write to_register calls transfer_byte four times

After retuning tomain, the software demonstrates (once for the command byte and three additional

how to calibrate the converter’s offset. times for the 24 bits of dataJransfer_byte is a
subroutine used to ‘bit-bang’ a byte of information

from the 80C51 to the CS5525/6/9. A byte is trans-
m ferred one bit at a time, MSB (most significant bit)
first, by placing a bit of information on P1.1 (SDI)
INITIALIZE and then pulsing P1.3 (SCLK). The byte is trans-
MICROCONTROLLER & CS5525/6/9 ferred by repeating this process eight times. Figure
3 depicts the timing diagram for the write-cycle in
v the CS5525/6/9's serial port. This algorithm dem-

onstrates how to write to the gain register. It does
not perform a gain calibration. To perform a gain

SELF-OFFSET CAL.

v calibration, follow the procedures outlined in the
data sheet.
MODIFY GAIN
To verify that 0x800000(HEX) was written to the
‘ gain registerread_register is called. It duplicates
the read-cycle timing diagram depicted in Figure 4.
ACQUIRE CONVERSION Read register first asserts CS Then it calls

transfer_byte once to transfer the command-byte to

Fi 2. CS5525/6/9 Soft Flowchart . :
ure warerlowenar the CS5525/6/9. This places the converter into the

2 AN74Rev2

y 4 Y I17 J J [A
1 4 /1) 4 a8/ /7 4

data-state where it waits until dataisread fromits mid_byte and low_byte. Then, PF (Port Flag, the
serial port. Read register then calls receive byte fifth bit in the configuration register which is now
three times and transfers three bytes of information ~ represented as bit five in the variable low-byte) is
from the CS5525/6/9 to the 80C51. Similar to Masked to logic 1. When PF is set to logic 1, SDO’s
transfer_byte, receive_byte acquires a byte one bit function is moc!ifiepl to fall to logic O signaling_
at atime MSB first. When the transfer is complete, when a conversion is complete and ready t_o acquire
the variables high_byte, mid_byte, and low_byte (refer to Figure 5). After the PF is set,

. , e) acquire_conversion sends the command-byte
contain the CS5525/6/9's 24-bit gain register. 0xCO to the converter instructing it to perform a

single conversion. From ther@quire_conversion
calls the subroutintaggle sdo. Toggle sdois rou-

To acquire a conversion the subroutingine that polls P1.2 (SDO) until its logic level drops
acquire_conversion is called. To prevent from cor- to logic 0. After SDO fallstoggle_sdo pulses P1.3
rupting the configuration register (SCLK) eight times to clear the SDO signal flag.
acquire_conversion first instructs the 80C51 to After the SDO flag is cleared, the 80C51 reads the
save the contents of configuration register. This ineonversion data word. Figure 6 depicts how 16-bit
formation is stored in the variable high_byte,and 20-bit conversion words are stored.

Acquire Conversion

Command Time Data Time 24 SCLKs
8 SCLKs (or 72 SCLKs for Set-up Registers)
Write Cycle

Figure3. Write-Cycle Timing

SDI

Command Time
8 SCLKs

Data Time 24 SCLKs
(or 72 SCLKs for Set-up Registers)

Read Cycle
Figure4. Read-Cycle Timing

AN74Rev2 3

y 4 Y I17 J J [A
1 4 /1) 4 a8/ /7 4

s [JUUUUUUWE JyyuudydUpyye e

SDI
Command Time tg* L XINJOWR
8 SCLKs ' Clock Cycles
sno | |/ s sore cewrson i w 1

*td = XIN/OWR clock cycles for each conversion except the Data Time
first conversion which will take XIN/OWR + 7 clock cycles 24 SCLKs

Data SDO Continuous Conversion Read (PF bit = 1)

Figure5. Conversion/Acquisition Cyclewith PF Bit Asserted

An alternative method can be used to acquire acon- High-Byte

version. By Clearing the Port Flag b|t, the seria ’ D19 I D18 | D17 | D16 I D15 I D14 | D13 | D12 |
port’s function isn’t modified. The Done Flag bit Mid-Byte

(bit three in the configuration register) can bg D11 [D10 [D9 | D8 | D7 | D6 [D5 [D4 |
polled as it indicates when a conversion is compete L ow-Byte

and ready to acquire. The conversion is acquired b"D3 [D2 | D1 | DO | 0 | O | OD | OF |

: -) 7 A) 20-Bit Conversion Data Word
reading the conversion data register.

MSB High-Byte

MAXIMUM SCLK RATE (D15 D14 [D13[D12 [D11 [D10 [D9 [D8 |
Mid-Byte

A machine cycle in the 80C51 consists 12 oscillatdr D7 | D6 [D5 [D4 [D3 [D2 [D1 | DO |
periods or fus if the microcontroller’'s oscillator L ow-Byte

1 [1 [1070 [ODJOF]

. . \ 1]
frequency is 12 MHz. Since the CS5525/6/9’s ma>J B) 16.Bit Conversion DataWord

imum SCLK rate is 2MHz, additional no operation

(NOP) delays may be necessary to reduce the trans- O- always zero, 1- always one,
fer rate if the microcontroller system requires high- OD - Oscillation Detect, OF - Overflow
er rate oscillators. Figure 6. Bit Representation/Storagein PIC16F84

DEVELOPMENT TOOL DESCRIPTION evaluation board from Crystal Semiconductor.

The code in the application note was developed ug@oreover, Franklin’s A51 Assembler, C51 Com-

. .piler, and L51 Linker development software were
ing a software development package from Frankli : :

. . : sed to generate the run-time software for the mi-
Software, Inc. The code consists of intermixed

and assembler algorithms which are subsets of tﬁ:éocontroller on the CDB5526.

algorithms used by the CDB5525/6/9, a customer

4 AN74Rev2

y 4 Y I17 J J [A
a 4 A Wy /i
1 4 /1) 4 a8/ /7 4

AN74

CONCLUSION

This application note presents an example of how
to interface the CS5525/6/9 to the 80C51. It is di-
vided into two main sections: hardware and soft-
ware. The hardware interface illustrates both a
three-wire and a four-wire interface. The three-
wire is SPI™ and MICROWIRE™ compatible.
The software, developed with development tools
from Franklin Software, Inc., illustrates how to

write to the ADC’s internal register, read from the

portant subroutines, e grite byte, read_byte, and
toggle sdo, each of which were written in assem-
bly language. This allows both assembly and C
programmers access to these modules.

The software described in the note is included in
the Appendix at the end of this document.

SPI™ is a trademark of Motorola.

MICROWIRE™ is a trademark of National Semi-
conductor.

ADC'’s internal registers, and acquire a conversion:.
The software is modularized and illustrates the im-

AN74Rev2

y 4 Y I17 J J [A
1 4 /1) 4 a8/ /7 4

APPENDI X
80C51 Microcodeto Interfaceto the CS5525/6/9

/**

* File: 55268051.asm

* Date: November 1, 1996

* Programmer: Keith Coffey

* Revision: 0

* Processor: 80C51

* Program entry point at routine "main".
khkkkhkhkhkhkkhkkhkhkkhhkhhhkkhhkhhhhkhhkdhhhkhhkhhhhhhhhkhhkhhohkkhhhhhhhhdhhhohdhkkdhhhhhdhdrdhrhdhkhhxhkxkx
* This program is designed as an example of interfacing a 80C51 to a CS5525/6/9

* Analog-to-Digital Converter. The program interfaces via Port 1 which controls the

* serial communications, calibration, and conversion signals.

**/

[*** Function Prototypes ***/

void initialize(void);

void reset_converter(void);

void toggle_sdo(void);

char receive_byte(void);

void transfer_byte(char);

void write_to_register(char command,char low,char mid, char high);
void read_register(char command);

void acquire_conversion(char command);

[*** Byte Memory Map Equates ***/
sfr P1 = 0x90; /*Port One*/
sfr ACC = OxEQ; /* Accumulator Register Equate*/

[*** Bit Memory Map Equates ***/

shit CsS = 0x90; /* Chip Select, only used in four-wire mode*/
shit SDI = 0x91; /* Serial Data In*/

shit SDO = 0x92; [*Serial Data Out*/

shit SCLK = 0x93; I* Serial Clock*/

[*** Global Variable ***/

char command, /*Memory Storage Variable for Command Byte */
high_byte, /*Memory Storage Variable for Most Significant Byte*/
mid_byte, /* Memory Storage Variable for Most Significant Byte*/
low_byte, /* Memory Storage Variable for Most Significant Byte*/
temp, /*Genera Purpose Temporary Variable*/
mode; [*Variable Stores Mode of Operation 0 = three wire, 1 = 4 wire*/

6 AN74Rev2

y 4 Y I17 J J [A
1 4 /1) 4 a8/ /7 4

/**

* Program Code

LRSS ST S S S S S S S S S SRR L LS LSS S S ST EEE LT RS EEE TR SRR EEEEEEEE SRR
* Routine - Main

*Input - none

* Qutput - none

* Thisisthe entry point to the program

**/

main() {
mode =1, *Make Communication be Four-Wire Mode*/
initialize(); /*Call Routine to Initialize 80C51 and CS5525/6/9*/
while(1){
command = 0x82; [* Prepare to Write to Gain Register*/
high_byte = 0x80; /*Make High_byte 80 (HEX)*/
mid_byte = 0x00; [*Make Mid_byte all Zero's*/
low_byte = 0x00; [*Make low_byte all Zero’s*/
write_to_register(command,low_byte,mid_byte,high_byte);/*Write to gain Register*/
read_register(0x92); /*Read Contents of Gain Register*/
while(1){
acquire_conversion(0xCO0); [*Acquire a Single Conversion*/

¥*End inner while loop*/
¥*End While Loop*/
Y*end main*/

[FFFFFIKFKF K AKX *% *% * “SHJbrOLH"1eS**/
/***
* Routine - initialize
*Input - none
* Qutput - none
* This subroutine initializes Port 1 for interfacing to the CS5525/6/9 ADC.
* |t provides a time delay for oscillator start-up/wake-up period.
* A typical start-up time for a 32768 Hz crystal, due to high Q, is 500 ms.
* Also 1003 XIN clock cycles are allotted for the ADC's power on reset.
**/
void initialize()
[*** Local Variables ***/
dataint counter;
[*** Body of Subroutine ***/
[*** |nitialize 80C51's Port 1 ***/
P1 = OxF4; /*SCLK - Output */
/*SDI - Output */
/*SDO - Input */
[*CS - Output */
[*Initialize CS5525/6/9*/
/*Delay 2048 SCLK Cycles, to allow time for Oscillator start-up and power on reset*/
for(counter=0;counter<2047;counter++){
SCLK = 0x01; [*Assert SCLK*/
SCLK = 0x00; [*Deassert*/

AN74Rev2 7

y 4 Y I17 J J [A
1 4 /1) 4 a8/ /7 4

/*Reset Serial Port on CS5525/6/9*/

SDI = 0x01; * Assert SDI*/
for(counter=0;counter<255;counter++) {
SCLK = 0x01,; * Assert SCLK*/
SCLK = 0x00; /*Deassert SCLK*/
}
SDI = 0x00; *Deassert SDI PIN*/
SCLK = 0x01; * Assert SCLK*/
SCLK = 0x00; * Deassert SCLK*/

}

/**

* Routine - calibrate

*Input - none

* Qutput - none

* This subroutine instructs the CS5525/6/9 to perform self-offset calibration.
**/
void calibrate()

{ write_to_register(0x84,0x01,0x00,0x00); /* Assert RS bit*/

/*Read Configuration Register Until DF Bit is Asserted*/
do{
read_register(0x94); /*Read Configuration Register*/
temp = low_byte& 0x08; /*Mask DF bit to 1*/
} while (temp !'= 0x08);
read_register(0x92); /*Deasserts DF Bit*/
}/*End calibrate */

/**
* Routine - write to_register

* |lnput - command, lowbyte, midbyte, highbyte

* Qutput - none

* This subroutine instructs the CS5525/6/9 to write to an internal register.

**/

void write_to_register(char command,char low,char mid,char high){
if(mode==1) P1 =0xF4; I* Assert CSif necessary*/
transfer_byte(command); [*Transfer Command Byte to CS5525/6/9*/
transfer_byte(high); [*Transfer High Byte to CS5525/6/9*/
transfer_byte(mid); [*Transfer Middle Byte to CS5525/6/9* /
transfer_byte(low); [*Transfer Low Byte to CS5525/6/9*/
if(mode==1) P1 =O0xF5; * Deassert CS if necessary*/

}

8 AN74Rev2

y 4 Y I17 J J [A
1 4 /1) 4 a8/ /7 4

/**
* Routine - read_register

*lnput - command

* Output - low_byte, mid_byte, high_byte

*

* This subroutine reads an internal register of the ADC

/**/

void read_register(char command){
if(mode == 1) P1 = OxF4; * Assert CSif necessary */
transfer_byte(command); [*Transfer Command Byte to CS5525/6/9*/
high_byte = receive byte(); /*Receive Command Byte from CS5525/6/9* /
mid_byte = receive byte(); /*Receive Command Byte from CS5525/6/9*/
low_byte =receive byte(); /*Receive Command Byte from CS5525/6/9*/
if(mode == 1)P1 = OxF5; [*Deassert CS if necessary */

}

/**/

* Routine - acquire_conversion

*lnput - command

* Output - Conversion resultsin memory locations HIGHBY TE, MIDBY TE and
* LOWBY TE. This algorithm performs only single conversions. If

* continuous conversions are needed the routine needs to be

* modified. Port flag is zero.

*

* HIGHBYTE MIDBYTE LOWBYTE

* 76543210 76543210 76543210

* 16-bit results MSB LSB1111000D OF
* 20-bit results MSB LSB 000D OF

* This subroutine initiates a single conversion.

/**/

void acquire_conversion(char command){
/*** Read Configuration Register to Prevent Previously Set Bits from being Altered ***/
read_register(0x94); /*Read Configuration Register*/
low_byte = low_byte|0x20; [* Assert Port Flag Bit*/

write_to_register(0x84,low_byte, mid_byte, high_byte);/* Actualy Send Commands*/

/* Acquire a Conversion*/

if(mode == 1)P1 = OxF4; * Assert CSif necessary*/
transfer_byte(OxC0); [*Transfer Command to CS5525/6/9*/
toggle_sdo(); [*Clear SDO*/

high_byte =receive byte(); /* Receive Command Byte from CS5525/6/9*/
mid_byte =receive byte(); /* Receive Command Byte from CS5525/6/9*/
low_byte =receive byte(); /* Receive Command Byte from CS5525/6/9*/
if(mode==1) P1 = OxF5; /*Deassert CSif necessary*/

AN74Rev2 9

y 4 Y I17 J J [A
1 4 /1) 4 a8/ /7 4

rchkkhkkkhkhkkkhkkhkhhhhhkhhkhhhkhhhhhkhhhkhhkhhhkkhhhhhhhhhkkhhkhhhkhhkhhkkhkhhkkhhxkdx*

;* Routine - RECEIVE_BYTE

¥ Input - none

;* Output - Bytereceived is placed in R7

;* Description - Thisroutine moves 1 byte from the CS5525/6/9 to the 80C51.

It transfers the byte by acquiring the logic level on PORT1 BIT 2
It then pulses SCLK high and then back low again

to advance the A/D’s serial output shift register to the next bit.

It does this eight times to acquire one complete byte.

This function’s prototype in C is: char receive_byte(void);
;Note: This routine can be used three time consecutively to transfer all 24 bits
from the internal registers of the CS5525/6/9.

aaaaaa * *kkkkkkkkkkkkkkkhk * *kk%k * *%k%

$DEBUG

USING 0 ; Use register bank 0
TCOD SEGMENT CODE ; Define ROUT as a segment of code
PUBLIC RECEIVE_BYTE ; Make subroutine global
RSEG TCOD ; Make code relocatable
RECEIVE_BYTE:
MOV R1,#08 ; Set count to 8 to receive byte
LOOP: ; Receive the byte
MOV C,P1.2 ; Move bit to carry
RLC A ; Rotate A in preparation for next bit
SETB P1.3 ; Set SCLK
CLR P1.3 ; Clear SCLK
DJNZ R1,LOOP ; Decrement byte, repeat loop if not zero
MOV R7,A ; Byte to be return is placed in R7
RET ; Exit subroutine
END

10 AN74Rev2

y 4 Y I17 J J [A
1 4 /1) 4 a8/ /7 4

rhkkhkkkhkhkkkhkkhkhhkhhkkhhkhhhkhhhhhkhhhhhkhhhkkhhkhhhhhhkhkhhhkdhhhdhhkhhkkhhkhkhkkhhxkdx*

;* Routine - TRANSFER_BYTE

;* Input - byte to be transferred

;¥ Output - None

;* Description - This subroutine transfers 1 byte to the CS5525/6/9

It transfers the byte by first placing abit in PORT1 BIT 1.
It then pulses the SCLK to advance the A/D’s serial

output shift register to the next bit.

It does this eight times to transmit one complete byte.

The function prototypeis. void TRANSFER_BY TE(char);
;Note: This routine can be used three time consecutively to transfer al 24 bits
; from the 80C51 to the internal registers of the CS5525/6/9.

rkkkkkkkkhkhkhhhkhkhkhhkhkhkkdhhhrrrddhdhhhkhhhhhkhhhhkdkdkddddddhhhhkkkkddhdhxx
l

$DEBUG
USING 0 ; Useregister bank O
TCOD SEGMENT CODE ; Make TCOD a segment of code
TDAT SEGMENT DATA ; Make TDAT a segment of data
PUBLIC TRANSFER BYTE ; Make subroutine global
PUBLIC ?TRANSFER BYTE?BYTE ; Make subroutine global
RSEG TDAT ; Make code relocatable
?TRANSFER_BYTE?BYTE:
VAR: DS 1 ; Define a storage location
RSEG TCOD ; Make code relocatable
TRANSFER_BYTE:
MOV AVAR ; Move byte to be transmitted to ACC
MOV R1,#08 ; Set count to 8 to transmit byte
CLR P13 ; Clear SCLK

loop: ; Send Byte

RLC A ; Rotate Accumulator, send MSB 1st
MOV P11,C ; Transmit M SB first through C bit

SETB P13 ; Set SCLK

CLR P13 ; Clear SCLK

DJINZ R1,loop ; Decrement byte, repeat loop if not zero
CLR P11 ; Reset SDI to zero when not transmitting
RET ; Exit subroutine

END

AN74Rev2 11

y 4 Y I17 J J [A
1 4 /1) 4 a8/ /7 4

rchkkhkkkhkhkkkhkkhkhhhhhkhhkhhhkhhhhhkhhhkhhkhhhkkhhhhhhhhhkkhhkhhhkhhkhhkkhkhhkkhhxkdx*

;* Routine - TOGGLE_SDO
¥ Input - none
;¥ Output - none
;* Description - Thisroutine reset the DRDY pin by toggling
* SCLK 8 times after SDO falls.
Thisroutine polls SDO, waitsfor it to be asserted, then clears SDO
for next conversion by pulsing SCLK eight times after SDO falls
; This functions prototypein C is: void toggle sdo(void);

rkkkkkkkkhhkhhhhkhkhkhkkhkkhhhhrrrddhhhkhhhhhhhhdkdkdkdkdddddhhhhkkkkhdhdhxx
l

$DEBUG
USING 0 ; Useregister bank 0
TCOD SEGMENT CODE ; Define Rout as a segment of code
PUBLIC TOGGLE_SDO ; Make subroutine public
RSEG TCOD ; Make code relocatable
TOGGLE_SDO:
MOV R1,#08 ; Setup counter
CLR P11 ; Clear SDI
B P1.2,$; Poll SDO
loop:
SETB P13 ; Set SCLK
CLR P13 ; Clear SCLK
DJINZ R1,loop ; Decrement byte, repeat loop if not zero
RET ; Exit Subroutine
END

12 AN74Rev2

e Notes

	note-cry.pdf
	Notes Page -
	PAGE BREAK -

