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Preface

First came the 32-bit SPARC Version 7 (V7) architecture, publicly released in 1987. Shortly after, the
SPARC V8 architecture was announced and published in book form. The 64-bit SPARC V9
architecture was released in 1994. Now, the UltraSPARC Architecture specification provides the first
significant update in over 10 years to Sun’s SPARC processor architecture.

What's New?

UltraSPARC Architecture 2007 pulls together in one document all parts of the architecture:

» the nonprivilged (Level 1) architecture from SPARC V9

» most of the privileged (Level 2) architecture from SPARC V9

» more in-depth coverage of all SPARC V9 features

Plus, it includes all of Sun’s now-standard architectural extensions (beyond SPARC V9), developed
through the processor generations of UltraSPARC 1II, 1V, IV+, and T1:

» the VISO 1 and VIS 2 instruction set extensions and the associated GSR register

» multiple levels of global registers, controlled by the GL register

» Sun’s 64-bit MMU architecture

» privileged instructions ALLCLEAN, OTHERW, NORMALW, and INVALW

= access to the VER register is now hyperprivileged (and VER was renamed the HVER register)
» the SIR instruction is now hyperprivileged

» new hyperprivileged instructions RDHPR and WRHPR

» the new Hyperprivileged mode

s Chip-level Multithreading (CMT) architecture

UltraSPARC Architecture 2007 includes the following changes since :

» replacement of instruction_address_exception and data_acess_exception exceptions by multiple
IAE_* and DAE_* exceptions

» FSR.ftt = 3 (unimplemented_FPop) has been retired; all unimplemented FPops now generate the
illegal_instruction exception instead of fp_exception_other with FSR.ftt =3
(unimplemented_FPop).
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In addition, architectural features are now tagged with Software Classes and Implementation
Classes'. Software Classes provide a new, high-level view of the expected architectural longevity and
portability of software that references those features. Implementation Classes give an indication of
how efficiently each feature is likely to be implemented across current and future UltraSPARC
Architecture processor implementations. This information provides guidance that should be
particularly helpful to programmers who write in assembly language or those who write tools that
generate SPARC instructions. It also provides the infrastructure for defining clear procedures for

adding and removing features from the architecture over time, with minimal software disruption.
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CHAPTER 1

Document Overview

This chapter discusses:

» Navigating UltraSPARC Architecture 2007 on page 1.
» Fonts and Notational Conventions on page 2.
= Reporting Errors in this Specification on page 4.

1.1

Navigating UltraSPARC Architecture 2007

If you are new to the SPARC architecture, read Chapter 3, Architecture Overview, study the definitions
in Chapter 2, Definitions, then look into the subsequent sections and appendixes for more details in
areas of interest to you.

If you are familiar with the SPARC V9 architecture but not UltraSPARC Architecture 2007, note that
UltraSPARC Architecture 2007 conforms to the SPARC V9 Level 1 architecture (and most of Level 2),
with numerous extensions — particularly with respect to CMT features, VIS instructions, and support
for hyperprivileged-mode operation.

This specfication is structured as follows:

» Chapter 2, Definitions, which defines key terms used throughout the specification

» Chapter 3, Architecture Overview, provides an overview of UltraSPARC Architecture 2007

» Chapter 4, Data Formats, describes the supported data formats

s Chapter 5, Registers, describes the register set

» Chapter 6, Instruction Set Overview, provides a high-level description of the UltraSPARC
Architecture 2007 instruction set

s Chapter 7, Instructions, describes the UltraSPARC Architecture 2007 instruction set in great detail

» Chapter 8, IEEE Std 754-1985 Requirements for UltraSPARC Architecture 2007, describes the trap
model

» Chapter 9, Memory describes the supported memory model
s Chapter 10, Address Space Identifiers (ASIs), provides a complete list of supported ASIs

» Chapter 11, Performance Instrumentation describes the architecture for performance monitoring
hardware

s Chapter 12, Traps, describes the trap model

» Chapter 13, Interrupt Handling, describes how interrupts are handled

» Chapter 14, Memory Management, describes MMU operation

» Chapter 15, Chip-Level Multithreading (CMT), describes the new CMT features
s Chapter 16, Resets, describes resets, RED_st at e, and error _stat e.

» Chapter 17, Error Handling, describes handling of detected errors
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» Appendix A, Opcode Maps, provides the overall picture of how the instruction set is mapped into
opcodes

» Appendix B, Implementation Dependencies, describes all implementation dependencies

» Appendix C, Assembly Language Syntax, describes extensions to the SPARC assembly language
syntax; in particular, synthetic instructions are documented in this appendix

1.2 Fonts and Notational Conventions

Fonts are used as follows:
» Italic font is used for emphasis, book titles, and the first instance of a word that is defined.

» [talic font is also used for terms where substitution is expected, for example, “f ccn”, “virtual
processor n”, or “reg_plus_imm”.

» Italic sans serif font is used for exception and trap names. For example, “The privileged_action
exception....”

= lowercase helvetica font is used for register field names (named bits) and instruction field names,
for example: “The rsl field contains....”

» UPPERCASE HELVETICA font is used for register names; for example, FSR.

» TYPEWRI TER (Courier) font is used for literal values, such as code (assembly language, C
language, ASI names) and for state names. For example: % 0, ASI _PRI MARY, execut e_st at e.

= When a register field is shown along with its containing register name, they are separated by a
period ('."), for example, “FSR.cexc”.

» UPPERCASE words are acronyms or instruction names. Some common acronyms appear in the
glossary in Chapter 2, Definitions. Note: Names of some instructions contain both upper- and
lower-case letters.

» An underscore character joins words in register, register field, exception, and trap names. Note:
Such words may be split across lines at the underbar without an intervening hyphen. For example:
“This is true whenever the integer_condition_
code field....”

The following notational conventions are used:

s The left arrow symbol ( « ) is the assignment operator. For example, “PC ~ PC + 1” means that
the Program Counter (PC) is incremented by 1.

» Square brackets ( [ ]) are used in two different ways, distinguishable by the context in which they
are used:

= Square brackets indicate indexing into an array. For example, TT[TL] means the element of the
Trap Type (TT) array, as indexed by the contents of the Trap Level (TL) register.

= Square brackets are also used to indicate optional additions/extensions to symbol names. For
example, “ST[D | QJF” expands to all three of “STF”, “STDF”, and “STQF”. Similarly,
AS| _PRI MARY[_LI TTLE] indicates two related address space identifiers, ASI _PRI MARY and
AS| _PRI MARY_LI TTLE. (Contrast with the use of angle brackets, below)

» Angle brackets ( < > ) indicate mandatory additions/extensions to symbol names. For example,
“ST<D | Q>F” expands to mean “STDF” and “STQEF”. (Contrast with the second use of square
brackets, above)

» Curly braces ({}) indicate a bit field within a register or instruction. For example, CCR{4} refers to
bit 4 in the Condition Code Register.

» A consecutive set of values is indicated by specifying the upper and lower limit of the set separated
by a colon ( : ), for example, CCR{3:0} refers to the set of four least significant bits of register CCR.
(Contrast with the use of double periods, below)
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1.2.1

1.2.2

1.2.3

» A double period ( .. ) indicates any single intermediate value between two given end values is
possible. For example, NAMEJ[2..0] indicates four forms of NAME exist: NAME, NAME2, NAME]1,
and NAMEO; whereas NAME<2..0> indicates that three forms exist: NAME2, NAME], and
NAMEQ. (Contrast with the use of the colon, above)

» A vertical bar ( | ) separates mutually exclusive alternatives inside square brackets ( [ ] ), angle
brackets ( < > ), or curly braces ({} ). For example, “"NAMEJA | B]” expands to “NAME, NAMEA,
NAMEB” and “NAME<A | B>" expands to "NAMEA, NAMEB".

s The asterisk ( *) is used as a wild card, encompassing the full set of valid values. For example,
FCMP* refers to FCMP with all valid suffixes (in this case, FCMP<s|d |q> and FCMPE<s|d | g>).
An asterisk is typically used when the full list of valid values either is not worth listing (because it
has little or no relevance in the given context) or the valid values are too numerous to list in the
available space.

» The slash ( /) is used to separate paired or complementary values in a list, for example, “the
LDBLOCKEF/STBLOCKEF instruction pair ....”

s The double colon (::) is an operator that indicates concatenation (typically, of bit vectors).
Concatenation strictly strings the specified component values into a single longer string, in the
order specified. The concatenation operator performs no arithmetic operation on any of the
component values.

Implementation Dependencies

Implementors of UltraSPARC Architecture 2007 processors are allowed to resolve some aspects of the
architecture in machine-dependent ways.

The definition of each implementation dependency is indicated by the notation “IMPL. DEP. #nn-XX:
Some descriptive text”. The number nn provides an index into the complete list of dependencies in
Appendix B, Implementation Dependencies.

A reference to (but not definition of) an implementation dependency is indicated by the notation
“(impl. dep. #nn)”.

Notation for Numbers

Numbers throughout this specification are decimal (base-10) unless otherwise indicated. Numbers in
other bases are followed by a numeric subscript indicating their base (for example, 1001,,

FFFF 000044). Long binary and hexadecimal numbers within the text have spaces inserted every four
characters to improve readability. Within C language or assembly language examples, numbers may
be preceded by “0x” to indicate base-16 (hexadecimal) notation (for example, OxFFFF0000).

Informational Notes

This guide provides several different types of information in notes, as follows:

Note | General notes contain incidental information relevant to the
paragraph preceding the note.

Programming | Programming notes contain incidental information about how
Note | software can use an architectural feature.

Implementation | An Implementation Note contains incidental information,
Note | describing how an UltraSPARC Architecture 2007 processor
might implement an architectural feature.
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V9 Compatibility | Note containing information about possible differences between

Note | UltraSPARC Architecture 2007 and SPARC V9 implementations.
Such information is relevant to UltraSPARC Architecture 2007
implementations and might not apply to other SPARC V9
implementations.

Forward | Note containing information about how the UltraSPARC
Compatibility | Architecture is expected to evolve in the future. Such notes are
Note | not intended as a guarantee that the architecture will evolve as
indicated, but as a guide to features that should not be depended
upon to remain the same, by software intended to run on both
current and future implementations.

1.3 Reporting Errors in this Specification

This specification has been reviewed for completeness and accuracy. Nonetheless, as with any
document this size, errors and omissions may occur, and reports of such are welcome. Please send
“bug reports” and other comments on this document to the email address: UA- edi t or @un. com

4 UltraSPARC Architecture 2007 « Draft D0.9.4, 27 Sep 2010



CHAPTER 2

Definitions

This chapter defines concepts and terminology common to all implementations of UltraSPARC
Architecture 2007.

address space

address space identifier
(ASI)
aliased

application program

ASI
ASR

available (virtual
processor)

big-endian

BLD
BST
byte
CCR

clean window

cleared

CMT

coherence

A range of 264 Jocations that can be addressed by instruction fetches and load, store, or load-store
instructions. See also address space identifier (ASI).

An 8-bit value that identifies a particular address space. An ASI is (implicitly or explicitly)
associated with every instruction access or data access. See also implicit ASI.

Said of each of two virtual or real addresses that refer to the same underlying memory location.

A program executed with the virtual processor in nonprivileged mode. Note: Statements made in
this specification regarding application programs may not be applicable to programs (for
example, debuggers) that have access to privileged virtual processor state (for example, as stored
in a memory-image dump).

Addpress space identifier.

Ancillary State register.

A virtual processor that is physically present and functional, that can be enabled and used.

An addressing convention. Within a multiple-byte integer, the byte with the smallest address is
the most significant; a byte’s significance decreases as its address increases.

(Obsolete) abbreviation for Block Load instruction; replaced by LDBLOCKFP.
(Obsolete) abbreviation for Block Store instruction; replaced by STBLOCKEP.
Eight consecutive bits of data, aligned on an 8-bit boundary.

Abbreviation for Condition Codes Register.

A register window in which each of the registers contain 0, a valid address from the current
address space, or valid data from the current address space.

A term applied to an error when the originating incorrect signal or datum is set to a value that is
not in error. An originating incorrect signal that is stored in a memory (a stored error) may be
cleared automatically by hardware action or may need software action to clear it. An originating
incorrect signal that is not stored in any memory needs no action to clear it. (For this definition,
"memory" includes caches, registers, flip-flops, latches, and any other mechanism for storing
information, and not just what is usually considered to be system memory.)

Chip-level MultiThreading (or, as an adjective, Chip-level MultiThreaded). Refers to a physical
processor containing more than one virtual processor.

A set of protocols guaranteeing that all memory accesses are globally visible to all caches on a
shared-memory bus.



completed (memory
operation)

context

context ID

copyback

CPI

core

correctable

corrected

cross-call
CTI

current window

cycle

data access
(instruction)

DCTI
demap
denormalized number

deprecated

disable (core)

Said of a memory transaction when an idealized memory has executed the transaction with
respect to all processors. A load is considered completed when no subsequent memory
transaction can affect the value returned by the load. A store is considered completed when no
subsequent load can return the value that was overwritten by the store.

A set of translations that defines a particular address space. See also Memory Management Unit
(MMU).

A numeric value that uniquely identifies a particular context.

The process of sending a copy of the data from a cache line owned by a physical processor core,
in response to a snoop request from another device.

Cycles per instruction. The number of clock cycles it takes to execute an instruction.

In an UltraSPARC Architecture processor, may refer to either a virtual processor or a physical
processor core.

A term applied to an error when at the time the error occurs, the error detector knows that
enough information exists, either accompanying the incorrect signal or datum or elsewhere in the
system, to correct the error. Examples include parity errors on clean L1s, which are corrected by
invalidation of the line and refetching of the data from higher up in the memory hierarchy, and
correctable errors on L2s. See also uncorrectable.

A term applied to an error when the incorrect signal or datum is replaced by the correct signal or
datum, perhaps in a downstream location. Depending on the circuit, correcting an error may or
may not clear it.

An interprocessor call in a system containting multiple virtual processors.
Abbreviation for control-transfer instruction.

The block of 24 R registers that is presently in use. The Current Window Pointer (CWP) register
points to the current window.

The atomic unit of time in a physical implementation of a processor core. The duration of a cycle
is its period, and the inverse of the period is the physical processor core’s operating frequency
(typically measured in gigaHertz, in contemporary implementations). The physical processor
core divides the work of managing instructions and data and executing instructions into multiple
cycles. This division of processing steps into cycles is implementation-dependent. The operating
frequency is implementation-dependent and potentially varying in time for a given
implementation.

A load, store, load-store, or FLUSH instruction.
Delayed control transfer instruction.

To invalidate a mapping in the MMU.
Synonym for subnormal number.

The term applied to an architectural feature (such as an instruction or register) for which an
UltraSPARC Architecture implementation provides support only for compatibility with previous
versions of the architecture. Use of a deprecated feature must generate correct results but may
compromise software performance.

Deprecated features should not be used in new UltraSPARC Architecture software and may not
be supported in future versions of the architecture.

The process of changing the state of a virtual processor to Di sabl ed, during which all other
processor state (including cache coheriency) may be lost and all interrupts to that virtual
processor will be discarded. See also park and enable.
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disabled (core)

doubleword

D-SFAR

enable (core)

enabled (core)

error

ESR

even parity

exception

explicit ASI

extended word

fault

fcen
FGU

floating-point
exception

F register

floating-point operate
instructions

floating-point trap
type

floating-point unit

FPop
FPRS

A virtual processor that is out of operation (not executing instructions, not participating in cache
coherency, and discarding interrupts). See also parked and enabled.

An 8-byte datum. Note: The definition of this term is architecture dependent and may differ from
that used in other processor architectures.

Data Synchronous Fault Address register.

The process of moving a virtual processor from Di sabl ed to Enabl ed state and preparing it for
operation. See also disable and park.

A virtual processor that is in operation (participating in cache coherency, but not executing
instructions unless it is also Runni ng). See also disabled and running.

A signal or datum that is wrong. The error can be created by some problem internal to the
processor, or it can appear at inputs to the processor. An error can propagate through fault-free
circuitry and appear as an error at the output. It can be stored in a memory, whether program-
visible or not, and can later be either read out of the memory or overwritten.

Abbreviation for Error Status Register.

The mode of parity checking in which each combination of data bits plus a parity bit contains an
even number of ‘1’ bits.

A condition that makes it impossible for the processor to continue executing the current
instruction stream. Some exceptions may be masked (that is, trap generation disabled — for
example, floating-point exceptions masked by FSR.tem) so that the decision on whether or not to
apply special processing can be deferred and made by software at a later time. See also trap.

An ASI that that is provided by a load, store, or load-store alternate instruction (either from its
imm_asi field or from the ASI register).

An 8-byte datum, nominally containing integer data. Note: The definition of this term is
architecture dependent and may differ from that used in other processor architectures.

A physical condition that causes a device, a component, or an element to fail to perform in a
required manner; for example, a short-circuit, a broken wire, or an intermittent connection.

One of the floating-point condition code fields fccO, fccl, fcc2, or fce3.

Floating-point and Graphics Unit (which most implementations specify as a superset of FPU).

An exception that occurs during the execution of a floating-point operate (FPop) instruction. The
exceptions are unfinished_FPop, sequence_error, hardware_error, invalid_fp_register, or
IEEE_754_exception.

A floating-point register. The SPARC V9 architecture includes single-, double-, and quad-
precision F registers.

Instructions that perform floating-point calculations, as defined in Floating-Point Operate (FPop)
Instructions on page 96. FPop instructions do not include FBfcc instructions, loads and stores
between memory and the F registers, or non-floating-point operations that read or write F
registers.

The specific type of a floating-point exception, encoded in the FSRftt field.

A processing unit that contains the floating-point registers and performs floating-point
operations, as defined by this specification.

Abbreviation for floating-point operate (instructions).

Floating-Point Register State register.
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FPU

FSR

GL

GSR
halfword

hyperprivileged

hypervisor (software)

IEEE 754

IEEE-754 exception

implementation

implementation
dependent

implicit ASI

initiated
instruction field
instruction group

instruction set
architecture

integer unit

interrupt request
inter-strand
intra-strand

invalid
(ASI or address)

ISA

Floating-Point Unit.
Floating-Point Status register.
Global Level register.
General Status register.

A 2-byte datum. Note: The definition of this term is architecture dependent and may differ from
that used in other processor architectures.

An adjective that describes:

(1) the state of the processor when HPSTATE.hpriv = 1, that is, when the
processor is in hyperprivileged mode;

(2) processor state that is only accessible to software while the processor is in
hyperprivileged mode; for example, hyperprivileged registers,
hyperprivileged ASRs, or, in general, hyperprivileged state;

(3) an instruction that can be executed only when the processor is in
hyperprivileged mode.

A layer of software that executes in hyperprivileged processor state. One purpose of hypervisor
software (also referred to as “the hypervisor”) is to provide greater isolation between operating
system (“supervisor”) software and the underlying processor implementation.

IEEE Standard 754-1985, the IEEE Standard for Binary Floating-Point Arithmetic.

A floating-point exception, as specified by IEEE Std 754-1985. Listed within this specification as
IEEE_754_exception.

Hardware or software that conforms to all of the specifications of an instruction set architecture
(ISA).

An aspect of the UltraSPARC Architecture that can legitimately vary among implementations. In
many cases, the permitted range of variation is specified. When a range is specified, compliant
implementations must not deviate from that range.

An address space identifier that is implicitly supplied by the virtual processor on all instruction
accesses and on data accesses that do not explicitly provide an ASI value (from either an imm_asi
instruction field or the ASI register).

Synonym for issued.
A bit field within an instruction word.

One or more independent instructions that can be dispatched for simultaneous execution.

A set that defines instructions, registers, instruction and data memory, the effect of executed
instructions on the registers and memory, and an algorithm for controlling instruction execution.
Does not define clock cycle times, cycles per instruction, data paths, etc. This specification defines
the UltraSPARC Architecture 2007 instruction set architecture.

A processing unit that performs integer and control-flow operations and contains general-
purpose integer registers and virtual processor state registers, as defined by this specification.

A request for service presented to a virtual processor by an external device.
Describes an operation that crosses virtual processor (strand) boundaries.

Describes an operation that occurs entirely within one virtual processor (strand).

Undefined, reserved, or illegal.

Instruction set architecture.
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issued

IU

little-endian

load

load-store

may
Memory Management

Unit

MMU
multiprocessor system

must

next program counter

NFO

nonfaulting load

nonprivileged

nonprivileged mode

nontranslating ASI

normal trap

A memory transaction (load, store, or atomic load-store) is said to be “issued” when a virtual
processor has sent the transaction to the memory subsystem and the completion of the request is
out of the virtual processor’s control. Synonym for initiated.

Integer Unit.

An addressing convention. Within a multiple-byte integer, the byte with the smallest address is
the least significant; a byte’s significance increases as its address increases.

An instruction that reads (but does not write) memory or reads (but does not write) location(s) in
an alternate address space. Some examples of Load includes loads into integer or floating-point
registers, block loads, and alternate address space variants of those instructions. See also load-
store and store, the definitions of which are mutually exclusive with load.

An instruction that explicitly both reads and writes memory or explicitly reads and writes
location(s) in an alternate address space. Load-store includes instructions such as CASA, CASXA,
LDSTUB, and the deprecated SWAP instruction. See also load and store, the definitions of which
are mutually exclusive with load-store.

A keyword indicating flexibility of choice with no implied preference. Note: “may” indicates that
an action or operation is allowed; “can” indicates that it is possible.

The address translation hardware in an UltraSPARC Architecture implementation that translates
64-bit virtual address into underlying physical addresses. The MMU is composed of the TLBs,
ASRs, and ASI registers used to manage address translation. See also context, physical address,
real address, and virtual address.

Abbreviation for Memory Management Unit.
A system containing more than one processor.

A keyword indicating a mandatory requirement. Designers must implement all such mandatory
requirements to ensure interoperability with other UltraSPARC Architecture-compliant products.
Synonym for shall.

Conceptually, a register that contains the address of the instruction to be executed next if a trap
does not occur.

Nonfault access only.

A load operation that behaves identically to a normal load operation, except when supplied an
invalid effective address by software. In that case, a regular load triggers an exception whereas a
nonfaulting load appears to ignore the exception and loads its destination register with a value of
zero (on an UltraSPARC Architecture processor, hardware treats regular and nonfaulting loads
identically; the distinction is made in trap handler software). Contrast with speculative load.

An adjective that describes

(1) the state of the virtual processor when PSTATE.priv = 0 and
HPSTATE.hpriv = 0, that is, when it is in nonprivileged mode;

(2) virtual processor state information that is accessible to software regardless
of the current privilege mode; for example, nonprivileged registers,
nonprivileged ASRs, or, in general, nonprivileged state;

(3) an instruction that can be executed in any privilege mode (hyperprivileged,
privileged, or nonprivileged).

The mode in which a virtual processor is operating when executing application software (at the
lowest privilege level). Nonprivileged mode is defined by PSTATE.priv = 0 and
HSTATE.hpriv = 0. See also privileged and hyperprivileged.

An ASI that does not refer to memory (for example, refers to control/status register(s)) and for
which the MMU does not perform address translation.

A trap processed in execut e_st at e (or equivalently, a non-RED_st at e trap). Contrast with
RED_st at e trap.
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NPC

npt

nucleus software
NUMA
N_REG_WINDOWS

octlet

odd parity

opcode
optional
PA

park

parked

PC

physical address

physical core

physical processor
PIL

pipeline

PIPT
POR

prefetchable

privileged

Next program counter.

Nonprivileged trap.

Privileged software running at a trap level greater than 0 (TL> 0).
Nonuniform memory access.

The number of register windows present in a particular implementation.

Eight bytes (64 bits) of data. Not to be confused with “octet,” which has been commonly used to
describe eight bits of data. In this document, the term byte, rather than octet, is used to describe
eight bits of data.

The mode of parity checking in which each combination of data bits plus a parity bit together
contain an odd number of ‘1’ bits.

A Dbit pattern that identifies a particular instruction.
A feature not required for UltraSPARC Architecture 2007 compliance.
Physical address.

The process of suspending a virtual processor from operation. There may be a delay until the
virtual processor is parked, but no heavyweight operation (such as a reset) is required to
complete the parking process. See also disable and unpark.

Said of a virtual processor that is suspended from operation. When parked, a virtual processor
does not issue instructions for execution but still maintains cache coherency. See also disabled,
enabled, and running.

Program counter.

An address that maps to actual physical memory or I/O device space. See also real address and
virtual address.

The term physical processor core, or just physical core, is similar to the term pipeline but represents a
broader collection of hardware that are required for performing the execution of instructions
from one or more software threads. For a detailed definition of this term, see page 474. See also
pipeline, processor, strand, thread, and virtual processor.

Synonym for processor; used when an explicit contrast needs to be drawn between processor and
virtual processor. See also processor and virtual processor.

Processor Interrupt Level register.

Refers to an execution pipeline, the basic collection of hardware needed to execute instructions.
For a detailed definition of this term, see page 474. See also physical core, processor, strand,
thread, and virtual processor.

Physically indexed, physically tagged (cache).
Power-on reset.

(1) An attribute of a memory location that indicates to an MMU that PREFETCH operations to
that location may be applied.

(2) A memory location condition for which the system designer has determined that no
undesirable effects will occur if a PREFETCH operation to that location is allowed to succeed.
Typically, normal memory is prefetchable.

Nonprefetchable locations include those that, when read, change state or cause external events to
occur. For example, some I/O devices are designed with registers that clear on read; others have
registers that initiate operations when read. See also side effect.

An adjective that describes:
(1) the state of the virtual processor when PSTATE.priv = 1 and
HPSTATE.hpriv = 0,that is, when the virtual processor is in privileged mode;
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privileged mode

processor

processor core
processor module
program counter

quadword

R register
RA

RAS
RAW

rd

real address

recoverable

RED state

RED_st at e trap

reserved

(2) processor state that is only accessible to software while the virtual processor
is in hyperprivileged or privileged mode; for example, privileged registers,
privileged ASRs, or, in general, privileged state;

(3) an instruction that can be executed only when the virtual processor is in
hyperprivileged or privileged mode.

The mode in which a processor is operating when PSTATE.priv = 1 and HPSTATE.hpriv = 0. See
also nonprivileged and hyperprivileged.

The unit on which a shared interface is provided to control the configuration and execution of a
collection of strands; a physical module that plugs into a system. Synonym for processor module.
For a detailed definition of this term, see page 474. See also pipeline, physical core, strand,
thread, and virtual processor.

Synonym for physical core.
Synonym for processor.
A register that contains the address of the instruction currently being executed.

A 16-byte datum. Note: The definition of this term is architecture dependent and may be different
from that used in other processor architectures.

An integer register. Also called a general-purpose register or working register.
Real address.

Reliability, Availability, and Serviceability

Read After Write (hazard)

Rounding direction.

An address produced by a virtual processor that refers to a particular software-visible memory
location, as viewed from privileged mode. Virtual addresses are usually translated by a
combination of hardware and software to real addresses, which can be used to access real
memory. Real addresses, in turn, are usually translated to physical addresses, which can be used
to access physical memory. See also physical address and virtual address.

A term applied to an error when enough information exists elsewhere in the system for software
to recover from an uncorrectable error. Examples include uncorrectable errors on clean L2 lines,
which are recovered by software invalidating the line and initiating a refetch from memory. See
also unrecoverable.

Reset, Error, and Debug state. The virtual processor state when HPSTATE.red = 1. A restricted
execution environment used to process resets and traps that occur when TL = MAXTL — 1.

A trap processed in RED_st at e. Contrast with normal trap.

Describing an instruction field, certain bit combinations within an instruction field, or a register
field that is reserved for definition by future versions of the architecture.

A reserved instruction field must read as 0, unless the implementation supports extended
instructions within the field. The behavior of an UltraSPARC Architecture 2007 virtual processor
when it encounters a nonzero value in a reserved instruction field is as defined in Reserved
Opcodes and Instruction Fields on page 97.

A reserved bit combination within an instruction field is defined in Chapter 7, Instructions. In all cases,
an UltraSPARC Architecture 2007 processor must decode and trap on such reserved bit
combinations.

A reserved field within a register reads as 0 in current implementations and, when written by
software, should always be written with values of that field previously read from that register or
with the value zero (as described in Reserved Register Fields on page 34).

Throughout this specification, figures and tables illustrating registers and instruction encodings
indicate reserved fields and reserved bit combinations with a wide (“em”) dash (—).
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reset trap

restricted

retired

RMO
RTO
RTS

running

service processor

shall
should

side effect

SIMD

SIR

snooping

speculative load

store

A vectored transfer of control to hyperprivileged software through a fixed-address reset trap
table. Reset traps cause entry into RED_st at e.

Describes an address space identifier (ASI) that may be accessed only while the virtual processor
is operating in privileged or hyperprivileged mode.

An instruction is said to be “retired” when one of the following two events has occurred:

(1) A precise trap has been taken, with TPC containing the instruction's address (the instruction
has not changed architectural state in this case).

(2) The instruction’s execution has progressed to a point at which architectural state affected by
the instruction has been updated such that all three of the following are true:

» The PC has advanced beyond the instruction.

= Except for deferred trap handlers, no consumer in the same instruction stream can see the old
values and all consumers in the same instruction stream will see the new values.

= Stores are visible to all loads in the same instruction stream, including stores to noncacheable
locations.

Abbreviation for Relaxed Memory Order (a memory model).
Read to Own (a type of transaction, used to request ownership of a cache line).
Read to Share (a type of transaction, used to request read-only access to a cache line).

A state of a virtual processor in which it is in operation (maintaining cache coherency and issuing
instructions for execution) and not Par ked.

A device external to the processor that can examine and alter internal processor state. A service
processor may be used to control/coordinate a multiprocessor system and aid in error recovery.

Synonym for must.

A keyword indicating flexibility of choice with a strongly preferred implementation. Synonym
for it is recommended.

The result of a memory location having additional actions beyond the reading or writing of data.
A side effect can occur when a memory operation on that location is allowed to succeed.
Locations with side effects include those that, when accessed, change state or cause external
events to occur. For example, some I/O devices contain registers that clear on read; others have
registers that initiate operations when read. See also prefetchable.

Single Instruction/Multiple Data; a class of instructions that perform identical operations on
multiple data contained (or “packed”) in each source operand.

Software-initiated reset.

The process of maintaining coherency between caches in a shared-memory bus architecture. Each
cache controller monitors (snoops) the bus to determine whether it needs to copy back or
invalidate its copy of each shared cache block.

A load operation that is issued by a virtual processor speculatively, that is, before it is known
whether the load will be executed in the flow of the program. Speculative accesses are used by
hardware to speed program execution and are transparent to code. An implementation, through
a combination of hardware and system software, must nullify speculative loads on memory
locations that have side effects; otherwise, such accesses produce unpredictable results. Contrast
with nonfaulting load.

An instruction that writes (but does not explicitly read) memory or writes (but does not explicitly
read) location(s) in an alternate address space. Some examples of Store includes stores from either
integer or floating-point registers, block stores, Partial Store, and alternate address space variants
of those instructions. See also load and load-store, the definitions of which are mutually
exclusive with store.
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strand

subnormal number

superscalar

supervisor software
suspend
suspended

synchronization

system

taken

TBA

thread

TLB

TLB hit
TLB miss
TNPC
TPC

Translation Lookaside
Buffer

trap

TSB
TSO

TTE

UA-2007

unassigned

The hardware state that must be maintained in order to execute a software thread. For a detailed
definition of this term, see page 474. See also pipeline, physical core, processor, thread, and
virtual processor.

A nonzero floating-point number, the exponent of which has a value of zero. A more complete
definition is provided in IEEE Standard 754-1985.

An implementation that allows several instructions to be issued, executed, and committed in one
clock cycle.

Software that executes when the virtual processor is in privileged mode.
Synonym for park.
Synonym for parked.

An operation that causes the processor to wait until the effects of all previous instructions are
completely visible before any subsequent instructions are executed.

A set of virtual processors that share a common physical address space.

A control-transfer instruction (CTI) is taken when the CTI writes the target address value into
NPC.

A trap is taken when the control flow changes in response to an exception, reset, Tcc instruction,
or interrupt. An exception must be detected and recognized before it can cause a trap to be taken.

Trap base address.

A software entity that can be executed on hardware. For a detailed definition of this term, see
page 474. See also pipeline, physical core, processor, strand, and virtual processor.

Abbreviation for Translation Lookaside Buffer.
The desired translation is present in the TLB.
The desired translation is not present in the TLB.
Trap-saved next program counter.

Trap-saved program counter.

A cache within an MMU that contains recently-used Translation Table Entries (TTEs). TLBs speed
up translations by often eliminating the need to reread TTEs from memory.

The action taken by a virtual processor when it changes the instruction flow in response to the
presence of an exception, reset, a Tec instruction, or an interrupt. The action is a vectored transfer
of control to more-privileged software through a table, the address of which is specified by the
privileged Trap Base Address (TBA) register or the Hyperprivileged Trap Base Address (HTBA)
register. See also exception.

Translation storage buffer. A table of the address translations that is maintained by software in
system memory and that serves as a cache of virtual-to-real address mappings.

Total Store Order (a memory model).

Translation Table Entry. Describes the virtual-to-real, virtual-to-physical, or real-to-physical
translation and page attributes for a specific page in the page table. In some cases, this term is
explicitly used to refer to entries in the TSB.

UltraSPARC Architecture 2007

A value (for example, an ASI number), the semantics of which are not architecturally mandated
and which may be determined independently by each implementation within any guidelines
given.
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undefined

unimplemented

unpark

unparked
unpredictable
uniprocessor system

uncorrectable

unrecoverable

unrestricted

user application
program

VA

virtual address

virtual core,
virtual processor core

virtual processor

VIS
vP
WDR

word

XIR

An aspect of the architecture that has deliberately been left unspecified. Software should have no
expectation of, nor make any assumptions about, an undefined feature or behavior. Use of such a
feature can deliver unexpected results and may or may not cause a trap. An undefined feature
may vary among implementations, and may also vary over time on a given implementation.

Notwithstanding any of the above, undefined aspects of the architecture shall not cause security
holes (such as changing the privilege state or allowing circumvention of normal restrictions
imposed by the privilege state), put a virtual processor into a more-privileged mode, or put the
virtual processor into an unrecoverable state.

An architectural feature that is not directly executed in hardware because it is optional or is
emulated in software.

The process of bringing a virtual processor out of suspension. There may be a delay until the
virtual processor is unparked, but no heavyweight operation (such as a reset) is required to
complete the unparking process. See also disable and park.

Synonym for running.
Synonym for undefined.
A system containing a single virtual processor.

A term applied to an error when not enough information accompanies the incorrect signal or
datum to allow correction of the error, and it is not known by the error detector whether enough
such information exists elsewhere in the system. Examples include uncorrectable errors on L2s.
Uncorrectable errors can be further divided into two types: recoverable and unrecoverable. See
also correctable.

A term applied to an error when not enough information exists elsewhere in the system for
software to recover from an uncorrectable error. Examples include uncorrectable errors on dirty
L2 lines. See also recoverable.

Describes an address space identifier (ASI) that can be used in all privileged modes; that is,
regardless of the value of PSTATE.priv and HPSTATE.hpriv.

Synonym for application program.
Abbreviation for virtual address.

An address produced by a virtual processor that refers to a particular software-visible memory
location. Virtual addresses usually are translated by a combination of hardware and software to
physical addresses, which can be used to access physical memory. See also physical address
and real address.

Synonyms for virtual processor.

The term virtual processor, or virtual processor core, is used to identify each strand in a processor.
At any given time, an operating system can have a different thread scheduled on each virtual
processor. For a detailed definition of this term, see page 475. See also pipeline, physical core,
processor, strand, and thread.

Abbreviation for VIS™ Instruction Set.
Abbreviation for virtual processor.
Watchdog reset.

A 4-byte datum. Note: The definition of this term is architecture dependent and may differ from
that used in other processor architectures.

Externally initiated reset.
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CHAPTER 3

Architecture Overview

The UltraSPARC Architecture supports 32-bit and 64-bit integer and 32-bit, 64-bit, and 128-bit
floating-point as its principal data types. The 32-bit and 64-bit floating-point types conform to IEEE
Std 754-1985. The 128-bit floating-point type conforms to IEEE Std 1596.5-1992. The architecture
defines general-purpose integer, floating-point, and special state/status register instructions, all
encoded in 32-bit-wide instruction formats. The load/store instructions address a linear, 2®*-byte
virtual address space.

The UltraSPARC Architecture 2007 specification describes a processor architecture to which Sun
Microsystem’s SPARC processor implementations (beginning with ) comply. Future implementations
are expected to comply with either this document or a later revision of this document.

The UltraSPARC Architecture 2007 is a descendant of the SPARC V9 architecture and complies fully
with the “Level 1”7 (nonprivileged) SPARC V9 specification.

Nonprivileged (application) software that is intended to be portable across all SPARC V9 processors
should be written to adhere to The SPARC Architecture Manual-Version 9.

Material in this document specific to UltraSPARC Architecture 2007 processors may not apply to
SPARC V9 processors produced by other vendors.

In this specification, the word architecture refers to the processor features that are visible to an
assembly language programmer or to a compiler code generator. It does not include details of the
implementation that are not visible or easily observable by software, nor those that only affect timing
(performance).

3.1

3.1.1

The UltraSPARC Architecture 2007

This section briefly describes features, attributes, and components of the UltraSPARC Architecture
2007 and, further, describes correct implementation of the architecture specification and SPARC V9-
compliance levels.

Features

The UltraSPARC Architecture 2007, like its ancestor SPARC V9, includes the following principal
features:

» A linear 64-bit address space with 64-bit addressing.

» 32-bit wide instructions — These are aligned on 32-bit boundaries in memory. Only load and store
instructions access memory and perform I/0.

» Few addressing modes — A memory address is given as either “register + register” or “register +
immediate”.
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3.1.2

Triadic register addresses — Most computational instructions operate on two register operands or
one register and a constant and place the result in a third register.

A large windowed register file — At any one instant, a program sees 8 global integer registers plus
a 24-register window of a larger register file. The windowed registers can be used as a cache of
procedure arguments, local values, and return addresses.

Floating point — The architecture provides an IEEE 754-compatible floating-point instruction set,
operating on a separate register file that provides 32 single-precision (32-bit), 32 double-precision
(64-bit), and 16 quad-precision (128-bit) overlayed registers.

Fast trap handlers — Traps are vectored through a table.

Multiprocessor synchronization instructions — Multiple variations of atomic load-store memory
operations are supported.

Predicted branches — The branch with prediction instructions allows the compiler or assembly
language programmer to give the hardware a hint about whether a branch will be taken.

Branch elimination instructions — Several instructions can be used to eliminate branches
altogether (for example, Move on Condition). Eliminating branches increases performance in
superscalar and superpipelined implementations.

Hardware trap stack — A hardware trap stack is provided to allow nested traps. It contains all of
the machine state necessary to return to the previous trap level. The trap stack makes the handling
of faults and error conditions simpler, faster, and safer.

In addition, UltraSPARC Architecture 2007 includes the following features that were not present in the
SPARC V9 specification:

Hyperprivileged mode, which simplifies porting of operating systems, supports far greater
portability of operating system (privileged) software, supports the ability to run multiple
simultaneous guest operating systems, and provides more robust handling of error conditions.

Multiple levels of global registers — Instead of the two 8-register sets of global registers specified
in the SPARC V9 architecture, UltraSPARC Architecture 2007 provides multiple sets; typically, one
set is used at each trap level.

Extended instruction set — UltraSPARC Architecture 2007 provides many instruction set
extensions, including the VIS instruction set for "vector" (SIMD) data operations.

More detailed, specific instruction descriptions — UltraSPARC Architecture 2007 provides many
more details regarding what exceptions can be generated by each instruction and the specific
conditions under which those exceptions can occur. Also, detailed lists of valid ASIs are provided
for each load/store instruction from/to alternate space.

Detailed MMU architecture — Although some details of the UltraSPARC MMU architecture are
necessarily implementation-specifc, UltraSPARC Architecture 2007 provides a blueprint for the
UltraSPARC MMU, including software view (TTEs and TSBs) and MMU hardware control
registers.

Chip-Level Multithreading (CMT) — UltraSPARC Architecture 2007 provides a control
architecture for highly-threaded processor implementations.

Attributes

UltraSPARC Architecture 2007 is a processor instruction set architecture (ISA) derived from SPARC V8
and SPARC V9, which in turn come from a reduced instruction set computer (RISC) lineage. As an
architecture, UltraSPARC Architecture 2007 allows for a spectrum of processor and system
implementations at a variety of price/performance points for a range of applications, including
scientific/engineering, programming, real-time, and commercial applications.

16 UltraSPARC Architecture 2007 < Draft D0.9.4, 27 Sep 2010



3.1.3

3.1.2.1 Design Goals

The UltraSPARC Architecture 2007 architecture is designed to be a target for optimizing compilers
and high-performance hardware implementations. This specification documents the UltraSPARC
Architecture 2007 and provides a design spec against which an implementation can be verified, using
appropriate verification software.

3.1.2.2 Register Windows

The UltraSPARC Architecture 2007 architecture is derived from the SPARC architecture, which was
formulated at Sun Microsystems in 1984 through1987. The SPARC architecture is, in turn, based on
the RISC I and II designs engineered at the University of California at Berkeley from 1980 through
1982. The SPARC “register window” architecture, pioneered in the UC Berkeley designs, allows for
straightforward, high-performance compilers and a reduction in memory load/store instructions.

Note that privileged software, not user programs, manages the register windows. Privileged software
can save a minimum number of registers (approximately 24) during a context switch, thereby
optimizing context-switch latency.

System Components

The UltraSPARC Architecture 2007 allows for a spectrum of subarchitectures, such as cache system, I/
O, and memory management unit (MMU).

3.1.3.1 Binary Compatibility

The most important mandate for the UltraSPARC Architecture is compatibility across
implementations of the architecture for application (nonprivileged) software, down to the binary
level. Binaries executed in nonprivileged mode should behave identically on all UltraSPARC
Architecture systems when those systems are running an operating system known to provide a
standard execution environment. One example of such a standard environment is the SPARC V9
Application Binary Interface (ABI).

Although different UltraSPARC Architecture 2007 systems can execute nonprivileged programs at
different rates, they will generate the same results as long as they are run under the same memory
model. See Chapter 9, Memory, for more information.

Additionally, UltraSPARC Architecture 2007 is binary upward-compatible from SPARC V9 for
applications running in nonprivileged mode that conform to the SPARC V9 ABI and upward-
compatible from SPARC V8 for applications running in nonprivileged mode that conform to the
SPARC V8 ABL

3.1.3.2 UltraSPARC Architecture 2007 MMU

Although the SPARC V9 architecture allows its implementations freedom in their MMU designs,
UltraSPARC Architecture 2007 defines a common MMU architecture (see Chapter 14, Memory
Management) with some specifics left to implementations (see processor implementation documents).

3.1.3.3 Privileged Software

UltraSPARC Architecture 2007 does not assume that all implementations must execute identical
privileged software (operating systems) or hyperprivileged software (hypervisors). Thus, certain traits
that are visible to privileged software may be tailored to the requirements of the system.
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3.1.4

3.1.5

3.1.6

Architectural Definition

The UltraSPARC Architecture 2007 is defined by the chapters and appendixes of this specification. A
correct implementation of the architecture interprets a program strictly according to the rules and
algorithms specified in the chapters and appendixes.

UltraSPARC  Architecture 2007 defines a set of implementations that conform to the SPARC V9
architecture, Level 1.

UltraSPARC Architecture 2007 Compliance with SPARC V9
Architecture

UltraSPARC Architecture 2007 fully complies with SPARC V9 Level 1 (nonprivileged). It partially
complies with SPARC V9 Level 2 (privileged).

Implementation Compliance with UltraSPARC Architecture
2007

Compliant implementations must not add to or deviate from this standard except in aspects described
as implementation dependent. Appendix B, Implementation Dependencies lists all UltraSPARC
Architecture 2007, SPARC V9, and SPARC V8 implementation dependencies. Documents for specific
UltraSPARC Architecture 2007 processor implementations describe the manner in which
implementation dependencies have been resolved in those implementations.

IMPL. DEP. #1-V8: Whether an instruction complies with UltraSPARC Architecture 2007 by being
implemented directly by hardware, simulated by software, or emulated by firmware is
implementation dependent.

3.2

3.2.1

Processor Architecture

An UltraSPARC Architecture processor logically consists of an integer unit (IU) and a floating-point
unit (FPU), each with its own registers. This organization allows for implementations with concurrent
integer and floating-point instruction execution. Integer registers are 64 bits wide; floating-point
registers are 32, 64, or 128 bits wide. Instruction operands are single registers, register pairs, register
quadruples, or immediate constants.

An UltraSPARC Architecture virtual processor can run in nonprivileged mode, privileged mode, or
hyperprivileged mode. In hyperprivileged mode, the processor can execute any instruction, including
privileged instructions. In privileged mode, the processor can execute nonprivileged and privileged
instructions. In nonprivileged mode, the processor can only execute nonprivileged instructions. In
nonprivileged or privileged mode, an attempt to execute an instruction requiring greater privilege
than the current mode causes a trap to hyperprivileged software.

Integer Unit (IU)

An UltraSPARC Architecture 2007 implementation’s integer unit contains the general-purpose
registers and controls the overall operation of the virtual processor. The IU executes the integer
arithmetic instructions and computes memory addresses for loads and stores. It also maintains the
program counters and controls instruction execution for the FPU.
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3.2.2

IMPL. DEP. #2-V8: An UltraSPARC Architecture implementation may contain from 72 to 640 general-
purpose 64-bit R registers. This corresponds to a grouping of the registers into MAXGL + 1 sets of
global R registers plus a circular stack of N_REG_WINDOWS sets of 16 registers each, known as register
windows. The number of register windows present (N_REG_WINDOWS) is implementation dependent,
within the range of 3 to 32 (inclusive).

Floating-Point Unit (FPU)

An UltraSPARC Architecture 2007 implementation’s FPU has thirty-two 32-bit (single-precision)
floating-point registers, thirty-two 64-bit (double-precision) floating-point registers, and sixteen 128-
bit (quad-precision) floating-point registers, some of which overlap.

If no FPU is present, then it appears to software as if the FPU is permanently disabled.

If the FPU is not enabled, then an attempt to execute a floating-point instruction generates an
fp_disabled trap and the fp_disabled trap handler software must either

» Enable the FPU (if present) and reexecute the trapping instruction, or
» Emulate the trapping instruction in software.

3.3

3.3.1

Instructions

Instructions fall into the following basic categories:

= Memory access

» Integer arithmetic / logical / shift

» Control transfer

= State register access

» Floating-point operate

» Conditional move

» Register window management

» SIMD (single instruction, multiple data) instructions

These classes are discussed in the following subsections.

Memory Access

Load, store, load-store, and PREFETCH instructions are the only instructions that access memory.
They use two R registers or an R register and a signed 13-bit immediate value to calculate a 64-bit,
byte-aligned memory address. The Integer Unit appends an ASI to this address.

The destination field of the load/store instruction specifies either one or two R registers or one, two,
or four F registers that supply the data for a store or that receive the data from a load.

Integer load and store instructions support byte, halfword (16-bit), word (32-bit), and extended-word
(64-bit) accesses. There are versions of integer load instructions that perform either sign-extension or
zero-extension on 8-bit, 16-bit, and 32-bit values as they are loaded into a 64-bit destination register.
Floating-point load and store instructions support word, doubleword, and quadword! memory
accesses.

1 No UltraSPARC Architecture processor currently implements the LDQF instruction in hardware; it generates an exception and is
emulated in hyperprivileged software.
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CASA, CASXA, and LDSTUB are special atomic memory access instructions that concurrent processes
use for synchronization and memory updates.

Note | The SWAP instruction is also specified, but it is deprecated and
should not be used in newly developed software.

The (nonportable) LDTXA instruction supplies an atomic 128-bit (16-byte) load that is important in
certain system software applications.

3.3.1.1 Memory Alignment Restrictions

A memory access on an UltraSPARC Architecture virtual processor must typically be aligned on an
address boundary greater than or equal to the size of the datum being accessed. An improperly
aligned address in a load, store, or load-store in instruction may trigger an exception and cause a
subsequent trap. For details, see Memory Alignment Restrictions on page 83.

3.3.1.2 Addressing Conventions

The UltraSPARC Architecture uses big-endian byte order by default: the address of a quadword,
doubleword, word, or halfword is the address of its most significant byte. Increasing the address
means decreasing the significance of the unit being accessed. All instruction accesses are performed
using big-endian byte order.

The UltraSPARC Architecture also supports little-endian byte order for data accesses only: the address
of a quadword, doubleword, word, or halfword is the address of its least significant byte. Increasing
the address means increasing the significance of the data unit being accessed.

Addressing conventions are illustrated in FIGURE 6-2 on page 85 and FIGURE 6-3 on page 87.

3.3.1.3 Addressing Range

IMPL. DEP. #405-S10: An UltraSPARC Architecture implementation may support a full 64-bit virtual
address space or a more limited range of virtual addresses. In an implementation that does not
support a full 64-bit virtual address space, the supported range of virtual addresses is restricted to
two equal-sized ranges at the extreme upper and lower ends of 64-bit addresses; that is, for n-bit
virtual addresses, the valid address ranges are 0 to 271 _ 1 and 204 - 271 0 264 - 1.

3.3.1.4 Load/Store Alternate

Versions of load/store instructions, the load/store alternate instructions, can specify an arbitrary 8-bit
address space identifier for the load/store data access.

Access to alternate spaces 001¢—2F is restricted to privileged and hyperprivileged software, access to
alternate spaces 304—7F4 is restricted to hyperprivileged software, and access to alternate spaces
801¢—FFq4 is unrestricted. Some of the ASIs are available for implementation-dependent uses.
Privileged and hyperprivileged software can use the implementation-dependent ASIs to access special
protected registers, such as MMU control registers, cache control registers, virtual processor state
registers, and other processor-dependent or system-dependent values. See Address Space Identifiers
(ASIs) on page 87 for more information.

Alternate space addressing is also provided for the atomic memory access instructions LDSTUBA,
CASA, and CASXA.

Note | The SWAPA instruction is also specified, but it is deprecated and
should not be used in newly developed software.
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3.3.2

3.3.1.5 Separate Instruction and Data Memories

The interpretation of addresses can be unified, in which case the same translations and caching are
applied to both instructions and data. Alternatively, addresses can be “split”, in which case instruction
references use one caching and translation mechanism and data references use another, although the
same underlying main memory is shared.

In such split-memory systems, the coherency mechanism may be split, so a write! into data memory
is not immediately reflected in instruction memory. For this reason, programs that modify their own
instruction stream (self-modifying code?) and that wish to be portable across all UltraSPARC
Architecture (and SPARC V9) processors must issue FLUSH instructions, or a system call with a
similar effect, to bring the instruction and data caches into a consistent state.

An UltraSPARC Architecture virtual processor may or may not have coherent instruction and data
caches. Even if an implementation does have coherent instruction and data caches, a FLUSH
instruction is required for self-modifying code — not for cache coherency, but to flush pipeline
instruction buffers that contain unmodified instructions which may have been subsequently modified.

3.3.1.6  Input/Output (I/0)

The UltraSPARC Architecture assumes that input/output registers are accessed through load/store
alternate instructions, normal load/store instructions, or read/write Ancillary State Register
instructions (RDasr, WRasr).

IMPL. DEP. #123-V9: The semantic effect of accessing input/output (I/O) locations is implementation
dependent.

IMPL. DEP. #6-V8: Whether the I/O registers can be accessed by nonprivileged code is
implementation dependent.

IMPL. DEP. #7-V8: The addresses and contents of I/O registers are implementation dependent.

3.3.1.7 Memory Synchronization

Two instructions are used for synchronization of memory operations: FLUSH and MEMBAR. Their
operation is explained in Flush Instruction Memory on page 146 and Memory Barrier on page 217,
respectively.

Note | STBAR is also available, but it is deprecated and should not be

used in newly developed software.

Integer Arithmetic / Logical / Shift Instructions

The arithmetic/logical/shift instructions perform arithmetic, tagged arithmetic, logical, and shift
operations. With one exception, these instructions compute a result that is a function of two source
operands; the result is either written into a destination register or discarded. The exception, SETHI,
can be used in combination with other arithmetic and/or logical instructions to create a constant in an
R register.

Shift instructions shift the contents of an R register left or right by a given number of bits (“shift
count”). The shift distance is specified by a constant in the instruction or by the contents of an R
register.

1 this includes use of store instructions (executed on the same or another virtual processor) that write to instruction memory, or any
other means of writing into instruction memory (for example, DMA)

2 this is practiced, for example, by software such as debuggers and dynamic linkers
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3.3.3

3.3.4

Control Transfer

Control-transfer instructions (CTIs) include PC-relative branches and calls, register-indirect jumps,
and conditional traps. Most of the control-transfer instructions are delayed; that is, the instruction
immediately following a control-transfer instruction in logical sequence is dispatched before the
control transfer to the target address is completed. Note that the next instruction in logical sequence
may not be the instruction following the control-transfer instruction in memory.

The instruction following a delayed control-transfer instruction is called a delay instruction. Setting
the annul bit in a conditional delayed control-transfer instruction causes the delay instruction to be
annulled (that is, to have no effect) if and only if the branch is not taken. Setting the annul bit in an
unconditional delayed control-transfer instruction (“branch always”) causes the delay instruction to
be always annulled.

Note | The SPARC V8 architecture specified that the delay instruction
was always fetched, even if annulled, and that an annulled
instruction could not cause any traps. The SPARC V9
architecture does not require the delay instruction to be fetched
if it is annulled.

Branch and CALL instructions use PC-relative displacements. The jump and link (JMPL) and return
(RETURN) instructions use a register-indirect target address. They compute their target addresses
either as the sum of two R registers or as the sum of an R register and a 13-bit signed immediate
value. The “branch on condition codes without prediction” instruction provides a displacement of +8
Mbytes; the “branch on condition codes with prediction” instruction provides a displacement of *1
Mbyte; the “branch on register contents” instruction provides a displacement of 128 Kbytes; and the
CALL instruction’s 30-bit word displacement allows a control transfer to any address within * 2
gigabytes (+ 23! bytes).

Note | The return from privileged trap instructions (DONE and
RETRY) get their target address from the appropriate TPC or
TNPC register.

State Register Access

3.3.41 Ancillary State Registers

The read and write ancillary state register instructions read and write the contents of ancillary state
registers visible to nonprivileged software (Y, CCR, ASI, PC, TICK, and FPRS) and some registers
visible only to privileged and hyperprivileged software (SOFTINT, TICK_CMPR, and STICK_CMPR).

IMPL. DEP. #8-V8-Cs20: Ancillary state registers (ASRs) in the range 0-27 that are not defined in
UltraSPARC Architecture 2007 are reserved for future architectural use. ASRs in the range 28-31 are
available to be used for implementation-dependent purposes.

IMPL. DEP. #9-V8-Cs20: The privilege level required to execute each of the implementation-
dependent read/write ancillary state register instructions (for ASRs 28-31) is implementation
dependent.

3.3.4.2 PR State Registers

The read and write privileged register instructions (RDPR and WRPR) read and write the contents of
state registers visible only to privileged and hyperprivileged software (TPC, TNPC, TSTATE, TT,
TICK, TBA, PSTATE, TL, PIL, CWP, CANSAVE, CANRESTORE, CLEANWIN, OTHERWIN, and
WSTATE).
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3.3.5

3.3.6

3.3.7

3.3.8

3.3.4.3 HPR State Registers

The read and write hyperprivileged register instructions (RDHPR and WRHPR) read and write the
contents of state registers visible only to hyperprivileged software (HPSTATE, HTSTATE, HINTP,
HVER, and HSTICK_CMPR).

Floating-Point Operate

Floating-point operate (FPop) instructions perform all floating-point calculations; they are register-to-
register instructions that operate on the floating-point registers. FPops compute a result that is a
function of one , two, or three source operands. The groups of instructions that are considered FPops
are listed in Floating-Point Operate (FPop) Instructions on page 96.

Conditional Move

Conditional move instructions conditionally copy a value from a source register to a destination
register, depending on an integer or floating-point condition code or on the contents of an integer
register. These instructions can be used to reduce the number of branches in software.

Register Window Management

Register window instructions manage the register windows. SAVE and RESTORE are nonprivileged
and cause a register window to be pushed or popped. FLUSHW is nonprivileged and causes all of the
windows except the current one to be flushed to memory. SAVED and RESTORED are used by
privileged software to end a window spill or fill trap handler.

SIMD

UltraSPARC Architecture 2007 includes SIMD (single instruction, multiple data) instructions, also
known as "vector" instructions, which allow a single instruction to perform the same operation on
multiple data items, totalling 64 bits, such as eight 8-bit, four 16-bit, or two 32-bit data items. These
operations are part of the “VIS” extensions.

3.4

Traps

A trap is a vectored transfer of control to privileged or hyperprivileged software through a trap table
that may contain the first 8 instructions (32 for some frequently used traps) of each trap handler. The
base address of the table is established by software in a state register (the Trap Base Address register,
TBA, or the Hyperprivileged Trap Base Register, HTBA). The displacement within the table is encoded
in the type number of each trap and the level of the trap. Part of the trap table is reserved for
hardware traps, and part of it is reserved for software traps generated by trap (Tcc) instructions.

A trap causes the current PC and NPC to be saved in the TPC and TNPC registers. It also causes the
CCR, ASI, PSTATE, and CWP registers to be saved in TSTATE. TPC, TNPC, and TSTATE are entries in
a hardware trap stack, where the number of entries in the trap stack is equal to the number of
supported trap levels. A trap causes hyperprivileged state to be saved in the HTSTATE trap stack. A
trap also sets bits in the PSTATE (and, in some cases, HPSTATE) register and typically increments the
GL register. Normally, the CWP is not changed by a trap; on a window spill or fill trap, however, the
CWP is changed to point to the register window to be saved or restored.
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A trap can be caused by a Tcc instruction, an asynchronous exception, an instruction-induced
exception, or an interrupt request not directly related to a particular instruction. Before executing each
instruction, a virtual processor determines if there are any pending exceptions or interrupt requests. If
any are pending, the virtual processor selects the highest-priority exception or interrupt request and
causes a trap.

See Chapter 12, Traps, for a complete description of traps.

3.5

Chip-Level Multithreading (CMT)

An UltraSPARC Architecture implementation may include multiple virtual processor cores on the
same processor module to provide a dense, high-throughput system. This may be achieved by having
a combination of multiple physical processor cores and/or multiple strands (threads) per physical
processor core, referred to as chip-level multithreaded (CMT) processors. CMT-specific
hyperprivileged registers are used for identification and configuration of CMT processors.

The CMT programming model describes a common interface between hardware (CMT registers) and
software

The common CMT registers and the CMT programming model are described in Chapter 15, Chip-Level
Multithreading (CMT).
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CHAPTER 4

Data Formats

The UltraSPARC Architecture recognizes these fundamental data types:

» Signed integer: 8, 16, 32, and 64 bits

» Unsigned integer: 8, 16, 32, and 64 bits

= SIMD data formats: Uint8 SIMD (32 bits), Int16 SIMD (64 bits), and Int32 SIMD (64 bits)
» Floating point: 32, 64, and 128 bits

The widths of the data types are as follows:

= Byte: 8 bits

« Halfword: 16 bits

» Word: 32 bits

» Tagged word: 32 bits (30-bit value plus 2-bit tag)
» Doubleword/Extended-word: 64 bits

= Quadword: 128 bits

The signed integer values are stored as two’s-complement numbers with a width commensurate with
their range. Unsigned integer values, bit vectors, Boolean values, character strings, and other values

representable in binary form are stored as unsigned integers with a width commensurate with their

range. The floating-point formats conform to the IEEE Standard for Binary Floating-point Arithmetic,
IEEE Std 754-1985. In tagged words, the least significant two bits are treated as a tag; the remaining 30
bits are treated as a signed integer.

Data formats are described in these sections:

= Integer Data Formats on page 26.
» Floating-Point Data Formats on page 29.
= SIMD Data Formats on page 31.

Names are assigned to individual subwords of the multiword data formats as described in these
sections:

» Signed Integer Doubleword (64 bits) on page 27.

» Unsigned Integer Doubleword (64 bits) on page 28.

» Floating Point, Double Precision (64 bits) on page 29.

» Floating Point, Quad Precision (128 bits) on page 30.
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4.1 Integer Data Formats

TABLE 4-1 describes the width and ranges of the signed, unsigned, and tagged integer data formats.

TABLE 4-1  Signed Integer, Unsigned Integer, and Tagged Format Ranges

Width
Data Type (bits) Range
Signed integer byte 8 -27t027 -1
Signed integer halfword 16 240215 -1
Signed integer word 32 23140231 -1
Signed integer doubleword/extended-word 64 -263 40203 -1
Unsigned integer byte 8 0to28 -1
Unsigned integer halfword 16 0to2'-1
Unsigned integer word 32 0to2% -1
Unsigned integer doubleword/extended-word 64 0to2% -1
Integer tagged word 32 0t02%0-1

TABLE 4-2 describes the memory and register alignment for multiword integer data. All registers in the
integer register file are 64 bits wide, but can be used to contain smaller (narrower) data sizes. Note
that there is no difference between integer extended-words and doublewords in memory; the only
difference is how they are represented in registers.

TABLE 4-2 Integer Doubleword /Extended-word Alignment

Memory Address Register Number

Subformat Required Address Required Register
Name Subformat Field Alignment (big-endian)! Alignment Number
SD-0 signed_dbl_integer{63:32} nmod 8 =0 n rmod2 =0 r

SD-1 signed_dbl_integer{31:0} m+4)mod8=4 n+4 r+1)mod2=1 r+1
SX signed_ext_integer{63:0} nmod 8 =0 n — r

UD-0 unsigned_dbl_integer{63:32} nmod 8 =0 n rmod2 =0 r

UD-1 unsigned_dbl_integer{31:0} m+4)mod8=4 n+4 r+1)mod2=1 r+1
UXx unsigned_ext_integer{63:0} nmod 8 =0 n — r

1. The Memory Address in this table applies to big-endian memory accesses. Word and byte order are reversed when little-endian access-
es are used.

The data types are illustrated in the following subsections.

41.1 Signed Integer Data Types

Figures in this section illustrate the following signed data types:

= Signed integer byte

» Signed integer halfword

» Signed integer word

» Signed integer doubleword

» Signed integer extended-word
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41.1.1 Signed Integer Byte, Halfword, and Word

FIGURE 4-1 illustrates the signed integer byte, halfword, and word data formats.

SB S
76 0
SH |S
1514 0
SW |S
3130 0

FIGURE 4-1 Signed Integer Byte, Halfword, and Word Data Formats

41.1.2 Signed Integer Doubleword (64 bits)

FIGURE 4-2 illustrates both components (SD-0 and SD-1) of the signed integer double data format.

SD-0 |s signed_int_doubleword{ 62:32}

3130

SD-1 signed_int_doubleword{31:0}

31

FIGURE 4-2 Signed Integer Double Data Format

4.1.1.3 Signed Integer Extended-Word (64 bits)

FIGURE 4-3 illustrates the signed integer extended-word (SX) data format.

SX IS signed_int_extended

63 62

FIGURE 4-3 Signed Integer Extended-Word Data Format

4.1.2 Unsigned Integer Data Types

Figures in this section illustrate the following unsigned data types:

Unsigned integer byte

Unsigned integer halfword
Unsigned integer word
Unsigned integer doubleword
Unsigned integer extended-word
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4121 Unsigned Integer Byte, Halfword, and Word

FIGURE 4-4 illustrates the unsigned integer byte data format.

uB

UH

15 0

uw

31 0

FIGURE 4-4 Unsigned Integer Byte, Halfword, and Word Data Formats

4.1.2.2 Unsigned Integer Doubleword (64 bits)

FIGURE 4-5 illustrates both components (UD-0 and UD-1) of the unsigned integer double data format.

UbD-0 unsigned_int_doubleword{63:32}

31

ubD-1 unsigned_int_doubleword{31:0}

31

FIGURE 4-5 Unsigned Integer Double Data Format

4123 Unsigned Extended Integer (64 bits)

FIGURE 4-6 illustrates the unsigned extended integer (UX) data format.

ux unsigned_int_extended

63

FIGURE 4-6 Unsigned Extended Integer Data Format

4.1.3 Tagged Word (32 bits)

FIGURE 4-7 illustrates the tagged word data format.

TW

tag

31

FIGURE 4-7 Tagged Word Data Format
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4.2

4.2.1

422

Floating-Point Data Formats

Single-precision, double-precision, and quad-precision floating-point data types are described below.

Floating Point, Single Precision (32 bits)

FIGURE 4-8 illustrates the floating-point single-precision data format, and TABLE 4-3 describes the
formats.

FS |S| exp{7:0} fraction{ 22:0}

3130 2322 0

FIGURE 4-8 Floating-Point Single-Precision Data Format

TABLE4-3  Floating-Point Single-Precision Format Definition

s =sign (1 bit)

e = biased exponent (8 bits)
f = fraction (23 bits)

u =undefined

Normalized value (0 < e < 255): (-1)8 x 27127 x 1 f
Subnormal value (e = 0): (-1)8 x 27126 x (.f
Zero (e =0,f =0) (-1)*x0
Signalling NaN s =u; e =255 (max); f =.0uu--uu
(At least one bit of the fraction must be nonzero)
Quiet NaN s =u; e =255 (max); f =.luu--uu
- o (negative infinity) s =1; e =255 (max); f =.000--00
+ oo (positive infinity) s =0; e =255 (max); f =.000--00

Floating Point, Double Precision (64 bits)

FIGURE 4-9 illustrates both components (FD-0 and FD-1) of the floating-point double-precision data
format, and TABLE 4-4 describes the formats.

FD-0 |s| exp{10:0} fraction{51:32}

3130 2019 0
FD-1 fraction{31:0}

31 0

FIGURE 4-9 Floating-Point Double-Precision Data Format
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TABLE 4-4  Floating-Point Double-Precision Format Definition

s =sign (1 bit)

e = Dbiased exponent (11 bits)
f = fraction (52 bits)

1 = undefined

Normalized value (0 < e < 2047): (-1)8 x 2671023 5 1 f
Subnormal value (e =0): (-1)5 x 271022 x 0 f
Zero (e =0,f =0) (-1 %0
Signalling NaN s =u; e =2047 (max); f =.0uu--uu
(At least one bit of the fraction must be nonzero)
Quiet NaN s =u; e =2047 (max); f =.luu--uu
- o (negative infinity) s =1; e =2047 (max); f =.000--00
+ o (positive infinity) s =0; e =2047 (max); f =.000--00

4.2.3 Floating Point, Quad Precision (128 bits)

FIGURE 4-10 illustrates all four components (FQ-0 through FQ-3) of the floating-point quad-precision
data format, and TABLE 4-5 describes the formats.

FQ-0 S exp{14:0} fraction{111:96}

3130 1615 0
FO-1 fraction{95:64}

31 0
FQ-2 fraction{63:32}

31 0
FQ-3 fraction{ 31:0}

31 0

FIGURE 4-10 Floating-Point Quad-Precision Data Format

TABLE 4-5  Floating-Point Quad-Precision Format Definition

s =sign (1 bit)

e =biased exponent (15 bits)
f = fraction (112 bits)

1 = undefined

Normalized value (0 < e < 32767): (-1)% x 2e716383 1 ¢

Subnormal value (e = 0): (-1)° x 2716382 0 £

Zero (e =0,f =0) (-1)* x0

Signalling NaN s =u; e =32767 (max); f = .0uu--uu

(At least one bit of the fraction must be nonzero)
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TABLE 4-5  Floating-Point Quad-Precision Format Definition (Continued)

s =sign (1 bit)

e = Dbiased exponent (15 bits)
f = fraction (112 bits)

1 = undefined

Quiet NaN s =u; e =32767 (max); f =.luu--uu
- o (negative infinity) s =1; e =32767 (max); f =.000--00
+ o (positive infinity) s =0; e =32767 (max); f =.000--00

424 Floating-Point Data Alignment in Memory and Registers

TABLE 4-6 describes the address and memory alignment for floating-point data.

TABLE 4-6 Floating-Point Doubleword and Quadword Alignment

Memory Address Register Number
Subformat Required Address Required Register
Name Subformat Field Alignment (big-endian)*  |Alignment Number
FD-0 s:exp{10:0}:fraction{51:32} Omod4t n Omod2  f
FD-1 fraction{31:0} Omod4®™  n+4 Tmod2  f+1°
FQ-0 s:exp{14:0}:fraction{111:96} 0 mod 4% n 0 mod 4 f
FQ-1 fraction{95:64} Omod4t n+4 1mod4  f+1°
FQ-2 fraction{63:32} 0mod 4 ¥ n+8 2 mod 4 f+2
FQ-3 fraction{31:0} Omod4t  n+12 3mod4  f+3°

*

The memory Address in this table applies to big-endian memory accesses. Word and byte order are reversed when little-endian
accesses are used.

-+

Although a floating-point doubleword is required only to be word-aligned in memory, it is recommended that it be double-
word-aligned (that is, the address of its FD-0 word should be 0 mod 8 so that it can be accessed with doubleword loads/stores
instead of multiple singleword loads/stores).

++

Although a floating-point quadword is required only to be word-aligned in memory, it is recommended that it be quadword-
aligned (that is, the address of its FQ-0 word should be 0 mod 16).

Note that this 32-bit floating-point register is only directly addressable in the lower half of the register file (that is, if its register
number is < 31).

<>

4.3 SIMD Data Formats

SIMD (single instruction/multiple data) instructions perform identical operations on multiple data
contained (“packed”) in each source operand. This section describes the data formats used by SIMD
instructions.

Conversion between the different SIMD data formats can be achieved through SIMD multiplication or
by the use of the SIMD data formatting instructions.
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Programming | The SIMD data formats can be used in graphics calculations to
Note | represent intensity values for an image (e.g., a, B, G, R).

Intensity values are typically grouped in one of two ways, when
using SIMD data formats:

» Band interleaved images, with the various color components
of a point in the image stored together, and

» Band sequential images, with all of the values for one color
component stored together.

4.3.1 Uint8 SIMD Data Format

The Uint8 SIMD data format consists of four unsigned 8-bit integers contained in a 32-bit word (see
FIGURE 4-11).

Uint8 SIMD value, value; value, values

31 24 23 16 15 87

FIGURE 4-11 Uint8 SIMD Data Format

4.3.2 Int16 SIMD Data Formats

The Int16 SIMD data format consists of four signed 16-bit integers contained in a 64-bit word (see
FIGURE 4-12).

Int16
SIMD %0 valueg S1 value S value, S3 valuez

63 62 48 47 46 32 31 30 16 1514 0

FIGURE 4-12 Int16 SIMD Data Format

4.3.3 Int32 SIMD Data Format

The Int32 SIMD data format consists of two signed 32-bit integers contained in a 64-bit word (see
FIGURE 4-13).

Int32

SIMD | %0 valueg S value

63 62 32 31 30 0

FIGURE 4-13 Int32 SIMD Data Format

Programming | The integer SIMD data formats can be used to hold fixed-point
Note | data. The position of the binary point in a SIMD datum is
implied by the programmer and does not influence the
computations performed by instructions that operate on that
SIMD data format.
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CHAPTER 5

Registers

The following registers are described in this chapter:

General-Purpose R Registers on page 35.

Floating-Point Registers on page 40.

Floating-Point State Register (FSR) on page 44.

Ancillary State Registers on page 50. The following registers are included in this category:
= 32-bit Multiply/Divide Register (Y) (ASR 0) on page 52.

= Integer Condition Codes Register (CCR) (ASR 2) on page 52.

= Address Space Identifier (ASI) Register (ASR 3) on page 53.

= Tick (TICK) Register (ASR 4) on page 54.

= Program Counters (PC, NPC) (ASR 5) on page 55.

= Floating-Point Registers State (FPRS) Register (ASR 6) on page 55.

= General Status Register (GSR) (ASR 19) on page 56.

« SOFTINTP Register (ASRs 20, 21, 22) on page 57.

« SOFTINT_SETF Pseudo-Register (ASR 20) on page 58.

«» SOFTINT_CLRP Pseudo-Register (ASR 21) on page 59.

« Tick Compare (TICK_CMPR") Register (ASR 23) on page 59.

= System Tick (STICK) Register (ASR 24) on page 59.

« System Tick Compare (STICK_CMPRP) Register (ASR 25) on page 60.

Register-Window PR State Registers on page 61. The following registers are included in this
subcategory:

« Current Window Pointer (CWPF) Register (PR 9) on page 62.

» Savable Windows (CANSAVEP) Register (PR 10) on page 62.

« Restorable Windows (CANRESTOREP) Register (PR 11) on page 62.

» Clean Windows (CLEANWINP) Register (PR 12) on page 62.

« Other Windows (OTHERWIN?) Register (PR 13) on page 63.

» Window State (WSTATEY) Register (PR 14) on page 63.

Non-Register-Window PR State Registers on page 64. The following registers are included in this
subcategory:

« Trap Program Counter (TPCF) Register (PR 0) on page 64.

« Trap Next PC (TNPCP) Register (PR 1) on page 65.

» Trap State (TSTATEF) Register (PR 2) on page 66.

« Trap Type (TTF) Register (PR 3) on page 67.

. Trap Base Address (TBAF) Register (PR 5) on page 67.

« Processor State (PSTATEP) Register (PR 6) on page 68.

» Trap Level Register (TLY) (PR 7) on page 72.

= Processor Interrupt Level (PILP) Register (PR 8) on page 73.
« Global Level Register (GLF) (PR 16) on page 73.

HPR State Registers on page 75. The following registers are included in this category.

. Hyperprivileged State (HPSTATEY) Register (HPR 0) on page 75.

= Hyperprivileged Trap State (HTSTATE™) Rei_%ister (HPR 1) on page 76.

= Hyperprivileged Interrupt Pending (HINTP*) Register (HPR 3) on page 77.

. Hyperprivileged Trap Base Address (HTBAY) Re%Iister (HPR 5) on page 78.

= Hyperprivileged Implementation Version (HVER"™) Register (HPR 6) on page 78.

» Hyperprivileged System Tick Compare (HSTICK_CMPRY) Register (HPR 31) on page 79.
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There are additional registers that may be accessed through ASIs; those registers are described in
Chapter 10, Address Space Identifiers (ASIs).

5.1 Reserved Register Fields

Some register bit fields in this specification are explicitly marked as "reserved". In addition, for
convenience, some registers in this chapter are illustrated as fewer than 64 bits wide. Any bits not
illustrated are implicitly reserved and treated as if they were explicitly marked as reserved.

Reserved bits, whether explicitly or implicitly reserved, may be assigned meaning in future versions
of the architecture.

To ensure that existing software will continue to operate correctly, software must take into account
that reserved register bits may be used in the future. The following Programming and
Implementation Notes support that intent.

Programming | Software should ensure that when a reserved register field is
Notes | written, it is only written with (1) the value zero or (2) a value
previously read from that field.

If software writes a reserved register field to any value other
than (1) zero or (2) a value previously read from that field, it is
considered a software error. Such an error:

* may or may not be detected or reported (for example, by a trap) by
UltraSPARC Architecture 2007 processors (and software should not
expect that it will be)

* may cause a trap or cause other unintended behavior when executed
on future UltraSPARC Architecture processors

When a register is read, software should not assume that
register fields reserved in UltraSPARC Architecture 2007 will
read as 0 or any other particular value, either now or in the
future.

Implementation | When a register is read by software, an UltraSPARC
Notes | Architecture 2007 virtual processor should return a value of zero
for any bits reserved in UltraSPARC Architecture 2007

When software attempts to change the contents of a register
field that is reserved in UltraSPARC Architecture 200x by
writing a value to that field that differs from the current
contents of that field, an UltraSPARC Architecture 200x virtual
processor will either ignore the write to that field or cause an
exception. "Current contents” means the contents that software
would observe if it read that field (nominally zero).
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5.2

General-Purpose R Registers

An UltraSPARC Architecture virtual processor contains an array of general-purpose 64-bit R registers.
The array is partitioned into MAXGL + 1 sets of eight global registers, plus N_REG_WINDOWS groups of 16
registers each. The value of N_REG_WINDOWS in an UltraSPARC Architecture implementation falls
within the range 3 to 32 (inclusive).

One set of 8 global registers is always visible. At any given time, a group of 24 registers, known as a
register window, is also visible. A register window comprises the 16 registers from the current 16-
register group (referred to as 8 in registers and 8 local registers), plus half of the registers from the next
16-register group (referred to as 8 out registers). See FIGURE 5-1.

SPARC instructions use 5-bit fields to reference R registers. That is, 32 R registers are visible to
software at any moment. Which 32 out of the full set of R registers are visible is described in the
following sections. The visible 32 R registers are named R[0] through R[31], illustrated in FIGURE 5-1.

R[31] i7
R[30] i6
R[29] i5
R[28] i4 .
R[27] 3 ns
R[26] i2
R[25] i1
R[24] i0
R[23] A
R[22] 16
R[21] 15
R[20] 14 |
ocals
R[19] 13
R[18] 12
R[17] 11
R[16] 10
R[15] Y
R[14] 06
R[13] 05
R[12] 04
R[11] 03 outs
R[10] 02
R[9] ol
R[8] 00
R[7] o7 |
RI[6] g6
R[5] g5
R[4 g4 globals
R[3] g3
R[2] g2
R[1] g1
R[0] g0

FIGURE 5-1 General-Purpose Registers (as Visible at Any Given Time)
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52.1

522

Global R Registers

Registers R[0]-R[7] refer to a set of eight registers called the global registers (labelled g0 through g7).
At any time, one of MAXGL +1 sets of eight registers is enabled and can be accessed as the current set
of global registers. The currently enabled set of global registers is selected by the GL register. See
Global Level Register (GLY) (PR 16) on page 73.

Global register zero (GO) always reads as zero; writes to it have no software-visible effect.

Windowed R Registers

A set of 24 R registers that is visible as R[8]-R[31] at any given time is called a “register window”.
The registers that become R[8]-R[15] in a register window are called the out registers of the window.
Note that the in registers of a register window become the out registers of an adjacent register
window. See TABLE 5-1 and FIGURE 5-2.

The names in, local, and out originate from the fact that the out registers are typically used to pass
parameters from (out of) a calling routine and that the called routine receives those parameters as its
in registers.

TABLE5S-1  Window Addressing

windowed Register Address R Register Address
in[0] — in[7] R[24] - R[31]
local[0] - local[7] R[16] — R[23]
out[0] — out[7] R[ 8] - R[15]
global[0] — global[7] R[ 0] -R[ 7]

V9 Compatibility | In the SPARC V9 architecture, the number of 16-register
Notes | windowed register sets, N_REG_WINDOWS, ranges from 3' to 32
(impl. dep. #2-V8).

The maximum global register set index in the UltraSPARC
Architecture, MAXGL, ranges from 2 to 15. The number of
implemented global register sets is MAXGL + 1.

The total number of R registers in a given UltraSPARC
Architecture implementation is:

(N_REG_WINDOWS % 16) + (( MAXGL + 1) x 8)
Therefore, an UltraSPARC Architecture processor may contain
from 72 to 640 R registers.

t. The controlling equation for register window operation, as described in 5.6.7.1 on page 63, is:

CANSAVE + CANRESTORE + OTHERWIN = N_REG_WINDOWS — 2
Since N_REG_WINDOWS cannot be negative, the minimum number of implemented register windows is “2”.
However, since the SAVED and RESTORED instructions increment CANSAVE and CANRESTORE, the mini-
mum value of N_REG_WINDOWS in practice increases to “3”. An implementation with N_REG_WINDOWS =2
would not be able to support use of the SAVED and RESTORED instructions — in such an implementation, a
spill trap handler would have to emulate the SAVE instruction (the one that caused the spill trap) in its entirety
(including its addition semantics) and the spill handler would have to end with a DONE instruction instead of
RETRY .
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The current window in the windowed portion of R registers is indicated by the current window
pointer (CWP) register. The CWP is decremented by the RESTORE instruction and incremented by the
SAVE instruction.

Window (CWP — 1)

R[31]
. ins
R[24]
R[23]
. locals
RI16] Window (CWP)
R[15] R[31]
. outs : ins
R[ 8] R[24]
R[23]
: locals
RI16] Window (CWP + 1)
R[15] R[31]
: outs : ins
R €] R[24]
R[23]
: locals
RI16]
R[15]
. outs
R[ 8]
R[ 7]
) globals
R[ 1]
EEEE
63 0

FIGURE5-2 Three Overlapping Windows and Eight Global Registers

Overlapping Windows. Each window shares its ins with one adjacent window and its outs with
another. The outs of the CWP — 1 (modulo N_REG_WINDOWS) window are addressable as the ins of the
current window, and the outs in the current window are the ins of the CWP + 1 (modulo
N_REG_WINDOWS) window. The locals are unique to each window.

Register address o, where 8 < 0 < 15, refers to exactly the same out register before the register window
is advanced by a SAVE instruction (CWP is incremented by 1 (modulo N_REG_WINDOWS)) as does
register address 0+16 after the register window is advanced. Likewise, register address i, where 24 < i
< 31, refers to exactly the same in register before the register window is restored by a RESTORE
instruction (CWP is decremented by 1 (modulo N_REG_WINDOWS)) as does register address i—16 after
the window is restored. See FIGURE 5-2 on page 37 and FIGURE 5-3 on page 39.

To application software, the virtual processor appears to provide an infinitely-deep stack of register
windows.

Programming | Since the procedure call instructions (CALL and JMPL) do not
Note | change the CWP, a procedure can be called without changing
the window. See the section “Leaf-Procedure Optimization” in
Software Considerations, contained in the separate volume
UltraSPARC Architecture Application Notes
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Since CWP arithmetic is performed modulo N_REG_WINDOWS, the highest-numbered implemented
window overlaps with window 0. The outs of window N_REG_WINDOWS — 1 are the ins of window 0.
Implemented windows are numbered contiguously from 0 through N_REG_wINDOWS —1.

Because the windows overlap, the number of windows available to software is 1 less than the number
of implemented windows; that is, N_REG_WINDOWS — 1. When the register file is full, the outs of the
newest window are the ins of the oldest window, which still contains valid data.

Window overflow is detected by the CANSAVE register, and window underflow is detected by the
CANRESTORE register, both of which are controlled by privileged software. A window overflow
(underflow) condition causes a window spill (fill) trap.

When a new register window is made visible through use of a SAVE instruction, the local and out
registers are guaranteed to contain either zeroes or valid data from the current context. If software
executes a RESTORE and later executes a SAVE, then the contents of the resulting window’s local and
out registers are not guaranteed to be preserved between the RESTORE and the SAVE!. Those registers
may even have been written with “dirty” data, that is, data created by software running in a different
context. However, if the clean_window protocol is being used, system software must guarantee that
registers in the current window after a SAVE always contains only zeroes or valid data from that
context. See Clean Windows (CLEANWIN®) Register (PR 12) on page 62, Savable Windows (CANSAVEP)
Register (PR 10) on page 62, and Restorable Windows (CANRESTORE?) Register (PR 11) on page 62.

Implementation | An UltraSPARC Architecture virtual processor supports the
Note | guarantee in the preceding paragraph of “either zeroes or valid
data from the current context”; it may do so either in hardware
or in a combination of hardware and system software.

Register Window Management Instructions on page 94 describes how the windowed integer registers are
managed.

1 For example, any of those 16 registers might be altered due to the occurrence of a trap between the RESTORE and the SAVE, or might
be altered during the RESTORE operation due to the way that register windows are implemented. After a RESTORE instruction
executes, software must assume that the values of the affected 16 registers from before the RESTORE are unrecoverable.
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CWP =0 1
(CURRENT WINDOW POINTER)

\

woO locals

CANSAVE =4

wO0 outs

SAVE RESTORE

i w6 locals
CANRESTORE =1
)

CANSAVE + CANRESTORE + OTHERWIN = N_REG_WINDOWS — 2

w4 outs

w5 locals

(Overlap)

w5 outs

The current window (window 0) and the overlap window (window 5) account for the
two windows in the right side of the equation. The “overlap window” is the window
that must remain unused because its ins and outs overlap two other valid windows.

FIGURE 5-3 Windowed R Registers for N_REG_WINDOWS = 8

In FIGURE 5-3, N_REG_WINDOWS = 8. The eight global registers are not illustrated. CWP =0,

CANSAVE = 4, OTHERWIN = 1, and CANRESTORE = 1. If the procedure using window w0 executes a
RESTORE, then window W7 becomes the current window. If the procedure using window w0 executes
a SAVE, then window w1 becomes the current window.

523 Special R Registers

The use of two of the R registers is fixed, in whole or in part, by the architecture:
» The value of R[0] is always zero; writes to it have no program-visible effect.

» The CALL instruction writes its own address into register R[15] (out register 7).
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Register-Pair Operands. LDTW, LDTWA, STTW, and STTWA instructions access a pair of words
(“twin words”) in adjacent R registers and require even-odd register alignment. The least significant
bit of an R register number in these instructions is unused and must always be supplied as 0 by
software.

When the R[0]-R[1] register pair is used as a destination in LDTW or LDTWA, only R[1] is modified.
When the R[0]-R[1] register pair is used as a source in STTW or STTWA, 0 is read from R[0], so 0 is
written to the 32-bit word at the lowest address, and the least significant 32 bits of R[1] are written to
the 32-bit word at the highest address.

An attempt to execute an LDTW, LDTWA, STTW, or STTWA instruction that refers to a misaligned
(odd) destination register number causes an illegal_instruction trap.

5.3

Floating-Point Registers

The floating-point register set consists of sixty-four 32-bit registers, which may be accessed as follows:
= Sixteen 128-bit quad-precision registers, referenced as Fg[0], Fg[4], ..., Fo[60]
» Thirty-two 64-bit double-precision registers, referenced as Fp[0], Fp[2], ..., Fp[62]

» Thirty-two 32-bit single-precision registers, referenced as Fg[0], Fg[1], ..., Fg[31] (only the lower
half of the floating-point register file can be accessed as single-precision registers)

The floating-point registers are arranged so that some of them overlap, that is, are aliased. The layout
and numbering of the floating-point registers are shown in TABLE 5-2. Unlike the windowed R
registers, all of the floating-point registers are accessible at any time. The floating-point registers can
be read and written by floating-point operate (FPopl/FPop2 format) instructions, by load/store
single/double/quad floating-point instructions, by VIS™ instructions, and by block load and block
store instructions.

TABLE5-2  Floating-Point Registers, with Aliasing (1 of 3)

Single Precision Double Precision Quad Precision
(32-bit) (64-bit) (128-bit)
Assembly Assembly Assembly
Register Language |Bits Register Language |Bits Register Language
Fsl0] %0 63:32
Fpl0] %0 127:64
Fsl1] % 1 31:0
Folo] %0
Fgl2] %2 63:32
Fpl2] %2 63:0
Fsl3] %3 31:0
Fsl4] %4 63:32
Fpol4] %4 127:64
Fsl5] %5 31:0
Fol4]l 4
Fgl6] %6 63:32
Fpl6] %6 63:0
Fsl7] %7 31:0
Fsl8]] %8 63:32
Fpl8] %8 127:64
Fsl9] %9 31:0
Fol8] 8
Fg[10] 9% 10 63:32
Fpl10] %10 63:0
Fsl11] 9% 11 31:0
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TABLE5-2  Floating-Point Registers, with Aliasing (2 of 3)
Single Precision Double Precision Quad Precision
(32-bit) (64-bit) (128-bit)
Assembly Assembly Assembly
Register Language |Bits Register Language |Bits Register Language
Fsl12] 9% 12 63:32
Fpl12] %12 127:64
Fg[13] 9% 13 31:0
FQ[12] %12
Fgl14] 9% 14 63:32
Fpl14] %14 63:0
Fs[15] 9% 15 31:0
Fs[16] 9% 16 63:32
Fpll6] %16 127:64
Fs[17] 9% 17 31:0
FQ[16] %916
Fg[18] 9% 18 63:32
Fp[18] %18 63:0
Fs[19] 9% 19 31:0
Fs[20] 9% 20 63:32
Fpl20] %20 127:64
Fg[21] 9% 21 31:0
FQ[20] %920
Fgl22] 9% 22 63:32
Fpl22] %22 63:0
Fs[23] 9% 23 31:0
Fsl24] 9% 24 63:32
Fpl24] %24 127:64
Fs[25] 9% 25 31:0
FQ[24] %24
Fg[26] %26  [63:32
Fpl26] %26 63:0
Fsl27] 9% 27 31:0
Fs[28] 9% 28 63:32
Fpl28] %28 127:64
Fg[29] 9% 29 31:0
FQ[28] %928
Fs[30] 9% 30 63:32
Fp[30] %630 63:0
Fs[31] 9% 31 31:0
Fpl32] %32 127:64
FQ[32] %932
:32
Fp[34] %34 63:0
63:32
Fpl36] %36 127:64
FQ[36] %936
63:32
Fp[38] %38 63:0
63:32
Fpl40] %40 127:64
FQ[40] %940
63:32
Fpl42] %42 63:0
Fpl44] %44 127:64
- FQ[44] %44
——Fpl46] %46 [63:0
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5.3.1

TABLE 5-3

TABLE 5-2

Floating-Point Registers, with Aliasing (3 of 3)

Single Precision Double Precision Quad Precision
(32-bit) (64-bit) (128-bit)
Assembly Assembly Assembly
Register Language |Bits Register Language |Bits Register Language
63:32
Fpl48] %48 127:64
Fol48] %48
63:32
Fpl50] %50 63:0
63:32
Fpl52] %52 127:64
Fol52] %52
63:32
Fpl54] %54 63:0
Fpl56] %56 127:64
= Fol56] %56
Fpl58] %58 63:0
63:32
Fpl60] %60 127:64
Fol60] %60
63:32
Fpl62] %62 63:0

Floating-Point Register Number Encoding

Register numbers for single, double, and quad registers are encoded differently in the 5-bit register
number field of a floating-point instruction. If the bits in a register number field are labelled b{4} ...
b{0} (where b{4} is the most significant bit of the register number), the encoding of floating-point
register numbers into 5-bit instruction fields is as given in TABLE 5-3.

Floating-Point Register Number Encoding

Register Operand Encoding in a 5-bit Register Field in an
Type Full 6-bit Register Number Instruction
Single 0 bi{4} b{3} b{2} b{1} b{0} b{4} b{3} b{2} b{1} b{0}
Double b{5} b{4} b{3} b{2} b{1} 0 b{4} b{3} b{2} b{1} b{5}
Quad b{5} bi{4} b{3} b{2} 0 0 b{4} b{3} b{2} 0 b{5}
SPARC V8 | In the SPARC V8 architecture, bit 0 of double and quad register
Compatibility | numbers encoded in instruction fields was required to be zero.

Note

Therefore, all SPARC V8 floating-point instructions can run

unchanged on an UltraSPARC Architecture virtual processor,
using the encoding in TABLE 5-3.
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5.3.2 Double and Quad Floating-Point Operands

A single 32-bit F register can hold one single-precision operand; a double-precision operand requires
an aligned pair of F registers, and a quad-precision operand requires an aligned quadruple of F
registers. At a given time, the floating-point registers can hold a maximum of 32 single-precision, 16
double-precision, or 8 quad-precision values in the lower half of the floating-point register file, plus
an additional 16 double-precision or 8 quad-precision values in the upper half, or mixtures of the
three sizes.

Programming | The upper 16 double-precision (upper 8 quad-precision)

Note | floating-point registers cannot be directly loaded by 32-bit load
instructions. Therefore, double- or quad-precision data that is
only word-aligned in memory cannot be directly loaded into the
upper registers with LDF[A] instructions. The following
guidelines are recommended:

1. Whenever possible, align floating-point data in memory on
proper address boundaries. If access to a datum is required to
be atomic, the datum must be properly aligned.

2. If a double- or quad-precision datum is not properly aligned
in memory or is still aligned on a 4-byte boundary, and access
to the datum in memory is not required to be atomic, then
software should attempt to allocate a register for it in the
lower half of the floating-point register file so that the datum
can be loaded with multiple LDF[A] instructions.

3. If the only available registers for such a datum are located in
the upper half of the floating-point register file and access to
the datum in memory is not required to be atomic, the word-
aligned datum can be loaded into them by one of two
methods:
= Load the datum into an upper register by using multiple

LDF[A] instructions to first load it into a double- or quad-
precision register in the lower half of the floating-point
register file, then copy that register to the desired
destination register in the upper half.

Use an LDDF[A] or LDQF[A] instruction to perform the load
directly into the upper floating-point register, understanding
that use of these instructions on poorly aligned data can cause a
trap (LDDF_mem_not_aligned) on some implementations,
possibly slowing down program execution significantly.

Programming | If an UltraSPARC Architecture 2007 implementation does not
Note | implement a particular quad floating-point arithmetic operation

in hardware and an invalid quad register operand is specified,

the illegal_instruction trap occurs because it has higher priority.

Implementation | Oracle SPARC Architecture 2011 implementations do not

Note | implement any quad floating-point arithmetic operations in
hardware. Therefore, an attempt to execute any of them results
in a trap on the illegal_instruction exception.
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5.4

Floating-Point State Register (FSR)

The Floating-Point State register (FSR) fields, illustrated in FIGURE 5-4, contain FPU mode and status
information. The lower 32 bits of the FSR are read and written by the (deprecated) STFSR and LDFSR
instructions, respectively. The 64-bit FSR register is read by the STXFSR instruction and written by
the LDXFSR instruction. The ver, ftt, gne, unimplemented (for example, ns), and reserved (“—")
fields of FSR are not modified by either LDFSR or LDXFSR.

RW RW RW

— fce3 | fec2 | fecl
63 38 37 36 35 34 33 32
FSR
RW RW RW R R R RW RW RW
rd — tem ns| — ver ftt — |—| fccO aexc cexc
31 30 29 28 27 23 22 21 20 19 17 16 14 13 12 11 10 9 54 0
FIGURE 5-4 FSR Fields

54.1

Bits 63-38, 29-28, 21-20, and 12 of FSR are reserved. When read by an STXFSR instruction, these bits
always read as zero

Programming | For future compatibility, software should issue LDXFSR
Note | instructions only with zero values in these bits or values of these
bits exactly as read by a previous STXFSR.

The subsections on pages 44 through 50 describe the remaining fields in the FSR.

Floating-Point Condition Codes (fccO, fccl, fcc2, fcc3)

The four sets of floating-point condition code fields are labelled fccO, fccl, fcc2, and fcc3 (feen refers
to any of the floating-point condition code fields).

The fccO field consists of bits 11 and 10 of the FSR, fccl consists of bits 33 and 32, fcc2 consists of bits
35 and 34, and fcc3 consists of bits 37 and 36. Execution of a floating-point compare instruction
(FCMP or FCMPE) updates one of the fccn fields in the FSR, as selected by the compare instruction.
The fccn fields are read by STXFSR and written by LDXFSR. The fccO field can also be read and
written by STFSR and LDEFSR, respectively. FBfcc and FBPfcc instructions base their control transfers
on the content of these fields. The MOVcc and FMOVcc instructions can conditionally copy a register,
based on the contents of these fields.

In TABLE 5-4, f,5; and fis» correspond to the single, double, or quad values in the floating-point
registers specified by a floating-point compare instruction’s rs1 and rs2 fields. The question mark (?)
indicates an unordered relation, which is true if either f; or f,5, is a signalling NaN or a quiet NaN.
If FCMP or FCMPE generates an fp_exception_ieee_754 exception, then fccn is unchanged.

TABLE5-4  Floating-Point Condition Codes (fccn) Fields of FSR

Content of fccn

0 1 2 3

Indicated Relation  F[rs1] = F[rs2] Flrsl1] < F[rs2] F[rs1] > F[rs2] Flrs1] ? F[rs2]
(FCMP*, FCMPE*) (unordered)

44 UltraSPARC Architecture 2007 « Draft D0.9.4, 27 Sep 2010



54.2

5.4.3

544

5.4.5

Rounding Direction (rd)

Bits 31 and 30 select the rounding direction for floating-point results according to IEEE Std 754-1985.
TABLE 5-5 shows the encodings.

TABLES-5  Rounding Direction (rd) Field of FSR

rd Round Toward

0 Nearest (even, if tie)
1 0

2 + 00

3 - o0

If the interval mode bit of the General Status register has a value of 1 (GSR.im = 1), then the value of
FSR.rd is ignored and floating-point results are instead rounded according to GSR.irnd. See General
Status Register (GSR) (ASR 19) on page 56 for further details.

Trap Enable Mask (tem)

Bits 27 through 23 are enable bits for each of the five IEEE-754 floating-point exceptions that can be
indicated in the current_exception field (cexc). See FIGURE 5-6 on page 49. If a floating-point
instruction generates one or more exceptions and the tem bit corresponding to any of the exceptions is
1, then this condition causes an fp_exception_ieee_754 trap. A tem bit value of 0 prevents the
corresponding IEEE 754 exception type from generating a trap.

Nonstandard Floating-Point (ns)

When FSR.ns =1, it causes a SPARC V9 virtual processor to produce implementation-defined results
that may or may not correspond to IEEE Std 754-1985 (impl. dep. #18-V8).

For an implementation in which no nonstandard floating-point mode exists, the ns bit of FSR should
always read as 0 and writes to it should be ignored.

For detailed requirements for the case when an UltraSPARC Architecture processor elects to
implement floating-point nonstandard mode, see Floating-Point Nonstandard Mode on page 315.

FPU Version (ver)

IMPL. DEP. #19-V8: Bits 19 through 17 identify one or more particular implementations of the FPU
architecture.

For each SPARC V9 IU implementation (as identified by its HYER.impl field), there may be one or
more FPU implementations, or none. FSR.ver identifies the particular FPU implementation present.
The value in FSR.ver for each implementation is strictly implementation dependent. Consult the
appropriate document for each implementation for its setting of FSR.ver.

FSR.ver =7 is reserved to indicate that no hardware floating-point controller is present.

The ver field of FSR is read-only; it cannot be modified by the LDFSR or LDXFSR instructions.
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5.4.6

Floating-Point Trap Type (ftt)

Several conditions can cause a floating-point exception trap. When a floating-point exception trap
occurs, FSRftt (FSR{16:14}) identifies the cause of the exception, the “floating-point trap type.” After
a floating-point exception occurs, FSR.ftt encodes the type of the floating-point exception until it is
cleared (set to 0) by execution of an STFSR, STXFSR, or FPop that does not cause a trap due to a
floating-point exception.

The FSR.ftt field can be read by a STFSR or STXFSR instruction. The LDFSR and LDXFSR instructions
do not affect FSR.ftt.

Privileged software that handles floating-point traps must execute an STFSR (or STXFSR) to
determine the floating-point trap type. STFSR and STXFSR set FSR.ftt to zero after the store completes
without error. If the store generates an error and does not complete, FSR.fit remains unchanged.

Programming | Neither LDFSR nor LDXFSR can be used for the purpose of

Note | clearing the ftt field, since both leave ftt unchanged. However,
executing a nontrapping floating-point operate (FPop)
instruction such as “f rovs % 0, % 0” prior to returning to
nonprivileged mode will zero FSR.ftt. The ftt field remains zero
until the next FPop instruction completes execution.

FSR.ftt encodes the primary condition (“floating-point trap type”) that caused the generation of an
fp_exception_other or fp_exception_ieee_754 exception. It is possible for more than one such
condition to occur simultaneously; in such a case, only the highest-priority condition will be encoded
in FSR.ftt. The conditions leading to fp_exception_other and fp_exception_ieee_754 exceptions, their
relative priorities, and the corresponding FSR.fit values are listed in TABLE 5-6. Note that the FSR.fit
values 4 and 5 were defined in the SPARC V9 architecture but are not currently in use, and that the
value 7 is reserved for future architectural use.

TABLE5-6  FSR Floating-Point Trap Type (ftt) Field

. Result

Relative
Condition Detected During Priority FSR.ftt Set
Execution of an FPop (1 = highest) to Value Exception Generated
invalid_fp_register 20 6 fp_exception_other
unfinished_FPop 30 2 fp_exception_other
IEEE_754_exception 40 1 fp_exception_ieee_754
Reserved — 3,4,5,7 —
(none detected) — 0 —

The IEEE_754_exception and unfinished_FPop conditions will likely arise occasionally in the normal
course of computation and must be recoverable by system software.

When a floating-point trap occurs, the following results are observed by user software:
1. The value of aexc is unchanged.

2. When an fp_exception_ieee_754 trap occurs, a bit corresponding to the trapping exception is set in
cexc. On other traps, the value of cexc is unchanged.

3. The source and destination registers are unchanged.
4. The value of fcen is unchanged.

The foregoing describes the result seen by a user trap handler if an IEEE exception is signalled, either
immediately from an fp_exception_ieee_754 exception or after recovery from an unfinished_FPop. In
either case, cexc as seen by the trap handler reflects the exception causing the trap.

46 UltraSPARC Architecture 2007 « Draft D0.9.4, 27 Sep 2010



In the cases of an fp_exception_other exception with a floating-point trap type of unfinished_FPop
that does not subsequently generate an IEEE trap, the recovery software should set cexc, aexc, and
the destination register or fccn, as appropriate.

ftt =1 (IEEE_754_exception). The IEEE_754_exception floating-point trap type indicates the
occurrence of a floating-point exception conforming to IEEE Std 754-1985. The IEEE 754 exception
type (overflow, inexact, etc.) is set in the cexc field. The aexc and fccn fields and the destination F
register are unchanged.

ftt = 2 (unfinished_FPop). The unfinished_FPop floating-point trap type indicates that the virtual
processor was unable to generate correct results or that exceptions as defined by IEEE Std 754-1985
have occurred. In cases where exceptions have occurred, the cexc field is unchanged.

Implementation | Implementations are encouraged to support standard IEEE 754
Note | floating-point arithmetic with reasonable performance (that is,
without generating fp_exception_other with
FSR ftt=unfinished_FPop) in all cases, even if some cases are
slower than others.

IMPL. DEP. #248-U3: The conditions under which an fp_exception_other exception with floating-
point trap type of unfinished_FPop can occur are implementation dependent. An implementation may
cause fp_exception_other with FSR.ftt = unfinished_FPop under a different (but specified) set of
conditions.

ftt = 3 (Reserved).

SPARC V9 | In SPARC V9, FSR.ftt = 3 was defined to be
Compatibility | "unimplemented_FPop". All conditions which used to cause
Note | cause fp_exception_other with FSR.ftt = 3 now cause an
illegal_instruction exception, instead. FSR.ftt = 3 is now reserved
and available for other future uses.

ftt = 4 (Reserved).

SPARC V9 | In the SPARC V9 architecture, FSR.ftt = 4 was defined to be
Compatibility | "sequence_error", for use with certain error conditions
Note | associated with a floating-point queue (FQ). Since UltraSPARC
Architecture implementations generate precise (rather than
deferred) traps for floating-point operations, an FQ is not
needed; therefore sequence_error conditions cannot occur and
ftt =4 has been returned to the pool of reserved ftt values.

ftt = 5 (Reserved).

SPARC V9 | In the SPARC V9 architecture, FSR.ftt = 5 was defined to be

Compatibility | "hardware_error", for use with hardware error conditions
Note | associated with an external floating-point unit (FPU) operating

asynchronously to the main processor (IU). Since UltraSPARC
Architecture processors are now implemented with an integral
FPU, a hardware error in the FPU can generate an exception
directly, rather than indirectly report the error through FSR.ftt
(as was required when FPUs were external to IUs). Therefore,
ftt = 5 has been returned to the pool of reserved ftt values.
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ftt = 6 (invalid_fp_register). This trap type indicates that one or more F register operands of an
FPop are misaligned; that is, a quad-precision register number is not 0 mod 4. An implementation
generates an fp_exception_other trap with FSR.ftt = invalid_fp_register in this case.

Implementation | If an UltraSPARC Architecture 2007 processor does not
Note | implement a particular quad FPop in hardware, that FPop
generates an illegal_instruction exception instead of
fp_exception_other with FSR.ftt = 6 (invalid_fp_register),
regardless of the specified F registers.

Accrued Exceptions (aexc)

Bits 9 through 5 accumulate IEEE_754 floating-point exceptions as long as floating-point exception
traps are disabled through the tem field. See FIGURE 5-7 on page 49.

After an FPop completes with ftt = 0, the tem and cexc fields are logically anded together. If the result
is nonzero, aexc is left unchanged and an fp_exception_ieee_754 trap is generated; otherwise, the
new cexc field is ored into the aexc field and no trap is generated. Thus, while (and only while) traps
are masked, exceptions are accumulated in the aexc field.

FSR.aexc can be set to a specific value when an LDFSR or LDXFSR instruction is executed.

Current Exception (cexc)

FSR.cexc (FSR{4:0}) indicates whether one or more IEEE 754 floating-point exceptions were
generated by the most recently executed FPop instruction. The absence of an exception causes the
corresponding bit to be cleared (set to 0). See FIGURE 5-6 on page 49.

Programming | If the FPop traps and software emulate or finish the instruction,
Note | the system software in the trap handler is responsible for
creating a correct FSR.cexc value before returning to a
nonprivileged program.

The cexc bits are set as described in Floating-Point Exception Fields on page 49, by the execution of an
FPop that either does not cause a trap or causes an fp_exception_ieee_754 exception with

FSR.fit = IEEE_754_exception. An IEEE 754 exception that traps shall cause exactly one bit in
FSR.cexc to be set, corresponding to the detected IEEE Std 754-1985 exception.

Floating-point operations which cause an overflow or underflow condition may also cause an
“inexact” condition. For overflow and underflow conditions, FSR.cexc bits are set and trapping
occurs as follows:

= If an IEEE 754 overflow condition occurs:

« if FSR.tem.ofm = 0 and tem.nxm = 0, the FSR.cexc.ofc and FSR.cexc.nxc bits are both set to 1,
the other three bits of FSR.cexc are set to 0, and an fp_exception_ieee_754 trap does not occur.

« if FSR.tem.ofm = 0 and tem.nxm = 1, the FSR.cexc.nxc bit is set to 1, the other four bits of
FSR.cexc are set to 0, and an fp_exception_ieee_754 trap does occur.

« if FSR.tem.ofm =1, the FSR.cexc.ofc bit is set to 1, the other four bits of FSR.cexc are set to 0,
and an fp_exception_ieee_754 trap does occur.

= If an IEEE 754 underflow condition occurs:

« if FSR.tem.ufm = 0 and FSR.tem.nxm = 0, the FSR.cexc.ufc and FSR.cexc.nxc bits are both set
to 1, the other three bits of FSR.cexc are set to 0, and an fp_exception_ieee_754 trap does not
occur.

« if FSR.tem.ufm = 0 and FSR.tem.nxm = 1, the FSR.cexc.nxc bit is set to 1, the other four bits of
FSR.cexc are set to 0, and an fp_exception_ieee_754 trap does occur.
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« if FSR.tem.ufm =1, the FSR.cexc.ufc bit is set to 1, the other four bits of FSR.cexc are set to 0,
and an fp_exception_ieee_754 trap does occur.

The above behavior is summarized in TABLE 5-7 (where “0” indicates “exception was detected” and
“x” indicates “don’t care”):

TABLE5-7  Setting of FSR.cexc Bits

Conditions Results
Exception(s) Current
Detected Trap Enable Exception
in F.p. Mask bits ) bits (in
operation (in FSR.tem) fp_exception_ FSR.cexc)
ieee_754
of uf nx ofm ufm nxm | Trap Occurs? ofc ufc nxc
- - - X X X no 0 0 0
- - O X X 0 no 0 0 1
- ol ol «x 0 0 no 0o 1 1
02 - 0z o x 0 no 1 0 1
- - 0 X X 1 yes 0 0 1
- ol ol «x 0 1 yes 0 0 1
- a - X 1 X yes 0 1 0
- 0 0 X 1 X yes 0 1 0
02 - 02 1 X X yes 1 0 0
02 - 0z o0 X 1 yes 0 0 1

Notes: ! When the underflow trap is disabled (FSR.tem.ufm = 0)
underflow is always accompanied by inexact.
2 Overflow is always accompanied by inexact.

If the execution of an FPop causes a trap other than fp_exception_ieee_754, FSR.cexc is left
unchanged.

5.4.9 Floating-Point Exception Fields

The current and accrued exception fields and the trap enable mask assume the following definitions of
the floating-point exception conditions (per IEEE Std 754-1985):

RW RW RW RW _ RW
FSR.tem I nvm | ofm | ufm | dzm | nxm I
27 26 25 24 23

FIGURE 5-6 Trap Enable Mask (tem) Fields of FSR

RW _RW __RW __RW ___RW
FSR.aexc | nva | ofa | ufa | dza | nxa I
) 3 7 3 5

FIGURE 5-7 Accrued Exception Bits (aexc) Fields of FSR

RW _RW __RW ___RW __ RW
FSR.cexc I nve | ofc | ufc | dzc | nxc I
4 3 2 1 0

FIGURE 5-8 Current Exception Bits (aexc) Fields of FSR
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Invalid (nvc, nva). An operand is improper for the operation to be performed. For example, 0.0 +
0.0 and 0 — o are invalid; 1 = invalid operand(s), 0 = valid operand(s).

Overflow (ofc, ofa). The result, rounded as if the exponent range were unbounded, would be
larger in magnitude than the destination format’s largest finite number; 1 = overflow, 0 = no overflow.

Underflow (ufc, ufa). The rounded result is inexact and would be smaller in magnitude than the
smallest normalized number in the indicated format; 1 = underflow, 0 = no underflow.

Underflow is never indicated when the correct unrounded result is 0.
Otherwise, when the correct unrounded result is not 0:

If FSR.tem.ufm = 0: Underflow occurs if a nonzero result is tiny and a loss of accuracy occurs.

If FSR.tem.ufm = 1: Underflow occurs if a nonzero result is tiny.

The SPARC V9 architecture allows tininess to be detected either before or after rounding. However, in
all cases and regardless of the setting of FSR.tem.ufm, an UltraSPARC Architecture strand detects
tininess before rounding (impl. dep. #55-V8-Cs10). See Trapped Underflow Definition (ufm = 1) on page
315 and Untrapped Underflow Definition (ufm = 0) on page 315 for additional details.

Division by zero (dzc, dza). An infinite result is produced exactly from finite operands. For
example, X + 0.0, where X is subnormal or normalized; 1 = division by zero, 0 = no division by zero.

Inexact (nxc, nxa). The rounded result of an operation differs from the infinitely precise
unrounded result; 1 = inexact result, 0 = exact result.

FSR Conformance

An UltraSPARC Architecture implementation implements the tem, cexc, and aexc fields of FSR in
hardware, conforming to IEEE Std 754-1985 (impl. dep. #22-V8).

Programming | Privileged software (or a combination of privileged and

Note | nonprivileged software) must be capable of simulating the
operation of the FPU in order to handle the fp_exception_other
(with FSRftt = unfinished_FPop) and IEEE_754_exception
floating-point trap types properly. Thus, a user application
program always sees an FSR that is fully compliant with IEEE
Std 754-1985.

5.5

Ancillary State Registers

The SPARC V9 architecture defines several optional ancillary state registers (ASRs) and allows for
additional ones. Access to a particular ASR may be privileged or nonprivileged.

An ASR is read and written with the Read State Register and Write State Register instructions,
respectively. These instructions are privileged if the accessed register is privileged.

The SPARC V9 architecture left ASRs numbered 16-31 available for implementation-dependent uses.
UltraSPARC Architecture virtual processors implement the ASRs summarized in TABLE 5-8 and
defined in the following subsections.
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Each virtual processor contains its own set of ASRs; ASRs are not shared among virtual processors.

TABLE 5-8 ASR Register Summary
Read by Written by
ASR number ASR name Register Instruction(s) Instruction(s)
0 & Y register (deprecated) RDYP WRYP
1 — Reserved — —
2 CCR Condition Codes register RDCCR WRCCR
3 ASI ASI register RDASI WRASI
4 TICKPnet TICK register RDTICK s, WRPRP (TICK)
RDPR? (TICK)
5 PC Program Counter (PC) RDPC (all instructions)
6 FPRS Floating-Point Registers Status register RDFPRS WRFPRS
7-14 (7-0E15) — Reserved — —
15 (0Fq4) — Reserved — —
16-31 (1014-1F14) non-SPARC V9 ASRs — —
16-18 (1014- 121¢) — Implementation dependent (impl. dep. — —
#8-V8-Cs20, 9-V8-Cs20)

19 (134¢) GSR General Status register (GSR) RDGSR, WRGSR,
FALIGNDATA, BMASK, SIAM
many VIS and
floating-point
instructions

20 (1444) SOFTINT_SETP (pseudo-register, for "Write 1s Set"to ~ — WRSOFTINT_SET?

SOFTINT register, ASR 22)
21 (154¢) SOFTINT_CLRP (pseudo-register, for "Write 1s Clear" to — WRSOFTINT_CLRF
SOFTINT register, ASR 22)

22 (16y4)  SOFTINTP per-virtual processor Soft Interrupt RDSOFTINT? WRSOFTINT?

register

23 (174¢) TICK_CMPRP  Tick Compare register RDTICK_CMPR? WRTICK_CMPRP

24 (181¢) STICKPmwt System Tick register RDSTICK et WRSTICKH

25 (1944) STICK_CMPRP  System Tick Compare register RDSTICK_CMPRF  WRSTICK_CMPRF

26 (1A4¢) — Implementation dependent (impl. dep. — —

#8-V8-Cs20, 9-V8-Cs20)
27 (1Bqg) — Implementation dependent (impl. dep. — —

28-29 (1C;4-1Dy¢)

#8-V8-Cs20, 9-V8-Cs20)

Implementation dependent (impl. dep.
#8-V8-Cs20, 9-V8-Cs20)

Reserved

Implementation dependent (impl. dep.
#38-V8-Cs20, 9-V8-Cs20)
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5.5.2

32-bit Multiply /Divide Register (Y) (ASR 0)

The Y register is deprecated; it is provided only for compatibility with previous
versions of the architecture. It should not be used in new SPARC V9 software.
It is recommended that all instructions that reference the Y register (that is,
SMUL, SMULcc, UMUL, UMULce, MULScc, SDIV, SDIVee, UDIV, UDIVec,
RDY, and WRY) be avoided. For suitable substitute instructions, see the
following pages: for the multiply instructions, see pages 265 and page 303; for
the multiply step instruction, see page 225; for division instructions, see pages
258 and 301; for the read instruction, see page 243; and for the write
instruction, see page 306.

The low-order 32 bits of the Y register, illustrated in FIGURE 5-9, contain the more significant word of
the 64-bit product of an integer multiplication, as a result of either a 32-bit integer multiply (SMUL,
SMULcc, UMUL, UMULcc) instruction or an integer multiply step (MULScc) instruction. The Y
register also holds the more significant word of the 64-bit dividend for a 32-bit integer divide (SDIV,
SDIVce, UDIV, UDIVcc) instruction.

R RW
Y 0 product{63:32} or dividend{63:32}
63 32 31 0

FIGURE 5-9 Y Register

Although Y is a 64-bit register, its high-order 32 bits always read as 0.

The Y register may be explicitly read and written by the RDY and WRY instructions, respectively.

Integer Condition Codes Register (CCR) (ASR 2)

The Condition Codes Register (CCR), shown in FIGURE 5-10, contains the integer condition codes. The
CCR register may be explicitly read and written by the RDCCR and WRCCR instructions,
respectively.

RW RW
CCR | Xcc icc |
7 73 0

FIGURE 5-10 Condition Codes Register

5.5.2.1 Condition Codes (CCR.xcc and CCR.icc)

All instructions that set integer condition codes set both the xcc and icc fields. The xcc condition
codes indicate the result of an operation when viewed as a 64-bit operation. The icc condition codes
indicate the result of an operation when viewed as a 32-bit operation. For example, if an operation
results in the 64-bit value 0000 0000 FFFF FFFF¢, the 32-bit result is negative (icc.n is set to 1) but the
64-bit result is nonnegative (xcc.n is set to 0).

Each of the 4-bit condition-code fields is composed of four 1-bit subfields, as shown in FIGURE 5-11.

Lnfzlvi]el]
xcc: 7 6 5 4
ice.: 3 2 1 0

FIGURE 5-11 Integer Condition Codes (CCR.icc and CCR.xcc)

The n bits indicate whether the two’s-complement ALU result was negative for the last instruction
that modified the integer condition codes; 1 = negative, 0 = not negative.
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The z bits indicate whether the ALU result was zero for the last instruction that modified the integer
condition codes; 1 = zero, 0 = nonzero.

The v bits signify whether the ALU result was within the range of (was representable in) 64-bit (xcc)
or 32-bit (icc) two’s complement notation for the last instruction that modified the integer condition
codes; 1 = overflow, 0 = no overflow.

The c bits indicate whether a 2’s complement carry (or borrow) occurred during the last instruction
that modified the integer condition codes. Carry is set on addition if there is a carry out of bit 63 (xcc)
or bit 31 (icc). Carry is set on subtraction if there is a borrow into bit 63 (xcc) or bit 31 (icc);

1 = borrow, 0 = no borrow (see TABLE 5-9).

TABLE 5-9 Setting of Carry (Borrow) bits for Subtraction That Sets CCs

Unsigned Comparison of Operand Values Setting of Carry bits in CCR

R[rs1]{31:0} = R[rs2]{31:0} CCR.icc.c < 0
R[rs1]{31:0} < R[rs2]{31:0} CCR.icc.c « 1
R[rs1]{63:0} = R[rs2]{63:0} CCR.xcc.c « 0
R[rs1]{63:0} < R[rs2]{63:0} CCRu.xcc.c « 1

Both fields of CCR (xcc and icc) are modified by arithmetic and logical instructions, the names of
which end with the letters “cc” (for example, ANDcc), and by the WRCCR instruction. They can be
modified by a DONE or RETRY instruction, which replaces these bits with the contents of TSTATE.ccr.
The behavior of the following instructions are conditioned by the contents of CCR.icc or CCR.xcc:

= BPcc and Tcc instructions (conditional transfer of control)
» Bicc (conditional transfer of control, based on CCR.icc only)
» MOVcc instruction (conditionally move the contents of an integer register)

» FMOVcc instruction (conditionally move the contents of a floating-point register)

Extended (64-bit) integer condition codes (xcc). Bits 7 through 4 are the IU condition codes,
which indicate the results of an integer operation, with both of the operands and the result considered
to be 64 bits wide.

32-bit Integer condition codes (icc). Bits 3 through 0 are the IU condition codes, which indicate
the results of an integer operation, with both of the operands and the result considered to be 32 bits
wide.

Address Space Identifier (ASI) Register (ASR 3)

The Address Space Identifier register (FIGURE 5-12) specifies the address space identifier to be used for
load and store alternate instructions that use the “rs1 + simm13” addressing form.

The ASI register may be explicitly read and written by the RDASI and WRASI instructions,
respectively.

Software (executing in any privilege mode) may write any value into the ASI register. However,
values in the range 004 to 7F;4 are “restricted” ASIs; an attempt to perform an access using an ASI in
that range is restricted to software executing in a mode with sufficient privileges for the ASI. When an
instruction executing in nonprivileged mode attempts an access using an ASI in the range 004 to 7Fq4
or an instruction executing in privileged mode attempts an access using an ASI the range 3044 to 7Fy,
a privileged_action exception is generated. See Chapter 10, Address Space Identifiers (ASIs) for details.
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RW
ASI I I
7 0

FIGURE 5-12 Address Space Identifier Register

5.54 Tick (TICK) Register (ASR 4)

FIGURE 5-13 illustrates the TICK register.

R, WY R, WH
TICKPnpt npt (D2) counter
63 62 0

FIGURE 5-13 TICK Register

The counter field of the TICK register is a 63-bit counter that counts strand clock cycles.

Bit 63 of the TICK register is the nonprivileged trap (npt) bit, which controls access to the TICK
register by nonprivileged software.

Hyperprivileged software can always read the TICK register, with either the RDPR or RDTICK
instruction.

Hyperprivileged software can always write to the TICK register with the WRPR instruction (there is
no distinct WRTICK instruction).

Privileged software can always read the TICK register, with either the RDPR or RDTICK instruction.

Privileged software cannot write to the TICK register; an attempt to do so (with the WRPR instruction)
results in an illegal_instruction exception.

Nonprivileged software can read the TICK register by using the RDTICK instruction, but only when
nonprivileged access to TICK is enabled (TICK.npt = 0) by hyperprivileged software. If nonprivileged
access is disabled (TICK.npt = 1), an attempt by nonprivileged software to read the TICK register using
the RDTICK instruction causes a privileged_action exception.

An attempt by nonprivileged software at any time to read the TICK register using the privileged
RDPR instruction causes a privileged_opcode exception.

Nonprivileged software cannot write the TICK register. An attempt by nonprivileged software to
write the TICK register using the privileged WRPR instruction causes a privileged_opcode exception.

TICK.npt is set to 1 by a power-on reset trap. The value of TICK.counter is undefined after a power-on
reset trap.

Programming | It is recommended that hyperprivileged software set
Note | TICK.counter during power-on reset (POR) processing, so that
TICK overflow will not happen soon after POR.

After the TICK register is written, reading the TICK register returns a value incremented (by 1 or
more) from the last value written, rather than from some previous value of counter. The number of
counts between a write and a subsequent read does not accurately reflect the number of strand cycles
between the write and the read. Software may rely only on read-to-read counts of the TICK register
for accurate timing, not on write-to-read counts.
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The difference between the values read from the TICK register on two reads is intended to reflect the
number of strand cycles executed between the reads.

Programming | If a single TICK register is shared among multiple virtual
Note | processors, then the difference between subsequent reads of
TICK.counter reflects a shared cycle count, not a count specific to
the virtual processor reading the TICK register.

IMPL. DEP. #105-V9: (a) If an accurate count cannot always be returned when TICK is read, any
inaccuracy should be small, bounded, and documented.

(b) An implementation may implement fewer than 63 bits in TICK.counter; however, the counter as
implemented must be able to count for at least 10 years without overflowing. Any upper bits not
implemented must read as zero.

Programming | TICK.npt may be used by a secure operating system to control
Note | access by nonprivileged software to high-accuracy timing
information. The operation of the timer might be emulated by
the trap handler, which could read TICK.counter and “fuzz” the
value to lower accuracy.

Program Counters (PC, NPC) (ASR 5)

The PC contains the address of the instruction currently being executed. The least-significant two bits
of PC always contain zeroes.

The PC can be read directly with the RDPC instruction. PC cannot be explicitly written by any
instruction (including Write State Register), but is implicitly written by control transfer instructions. A
WRasr to ASR 5 causes an illegal_instruction exception.

The Next Program Counter, NPC, is a pseudo-register that contains the address of the next instruction
to be executed if a trap does not occur. The least-significant two bits of NPC always contain zeroes.

NPC is written implicitly by control transfer instructions. However, NPC cannot be read or written
explicitly by any instruction.
PC and NPC can be indirectly set by privileged software that writes to TPC[TL] and/or TNPC[TL]

and executes a RETRY instruction.

See Chapter 6, Instruction Set Overview, for details on how PC and NPC are used.

Floating-Point Registers State (FPRS) Register (ASR 6)

The Floating-Point Registers State (FPRS) register, shown in FIGURE 5-14, contains control information
for the floating-point register file; this information is readable and writable by nonprivileged software.

RW __RW __RW

PR [ T [ a_

2 1 0
FIGURE 5-14 Floating-Point Registers State Register

The FPRS register may be explicitly read and written by the RDFPRS and WRFPRS instructions,
respectively.

Enable FPU (fef). Bit 2, fef, determines whether the FPU is enabled. If it is disabled, executing a
floating-point instruction causes an fp_disabled trap. If this bit is set (FPRS.fef = 1) but the
PSTATE.pef bit is not set (PSTATE.pef = 0), then executing a floating-point instruction causes an
fp_disabled exception; that is, both FPRS.fef and PSTATE.pef must be set to 1 to enable floating-point
operations.
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TABLE 5-10

GSRP

Programming | FPRS.fef can be used by application software to notify system

Note | software that the application does not require the contents of the
F registers to be preserved. Depending on system software, this
may provide some performance benefit, for example, the F
registers would not have to be saved or restored during context
switches to or from that application. Once an application sets
FPRS.fef to 0, it must assume that the values in all F registers
are volatile (may change at any time).

Dirty Upper Registers (du). Bit 1 is the “dirty” bit for the upper half of the floating-point registers;
that is, F[32]-F[62]. It is set to 1 whenever any of the upper floating-point registers is modified. The
du bit is cleared only by software.

An UltraSPARC Architecture 2007 virtual processor may set FPRS.du pessimistically; that is, it may
be set whenever an FPop executes, even though an exception may occur that prevents the instruction
from completing so no destination F register was actually modified (impl. dep. #403-510). Note that
if the FPop triggers fp_disabled, FPRS.du is not modified.

Dirty Lower Registers (dl). Bit 0 is the “dirty” bit for the lower 32 floating-point registers; that is,
F[0]-F[31]. It is set to 1 whenever any of the lower floating-point registers is modified. The dl bit is
cleared only by software.

An UltraSPARC Architecture 2007 virtual processor may set FPRS.dl pessimistically; that is, it may be
set whenever an FPop executes, even though an exception may occur that prevents the instruction
from completing so no destination F register was actually modified (impl. dep. #403-510). Note that
if the FPop triggers fp_disabled, FPRS.dI is not modified.

General Status Register (GSR) (ASR 19)

The General Status Register! (GSR) is a nonprivileged read/write register that is implicitly referenced
by many VIS instructions. The GSR can be read by the RDGSR instruction (see Read Ancillary State
Register on page 242) and written by the WRGSR instruction (see Write Ancillary State Register on page
305).

If the FPU is disabled (PSTATE.pef = 0 or FPRS.fef = 0), an attempt to access this register using an
otherwise-valid RDGSR or WRGSR instruction causes an fp_disabled trap.

The GSR is illustrated in FIGURE 5-15 and described in TABLE 5-10.

RW RW _RW RW RW
mask — |im{irnd — scale |align
63 32 31 28 27 26 2524 8 7 32 0

FIGURE 5-15 General Status Register (GSR) (ASR 19)

GSR Bit Description

Bit Field Description

63:32 mask This 32-bit field specifies the mask used by the BSHUFFLE instruction. The field
contents are set by the BMASK instruction.

31:28 — Reserved.

27 im Interval Mode: If GSR.im = 0, rounding is performed according to FSR.rd; if

GSR.im = 1, rounding is performed according to GSR.irnd.

1 This register was (inaccurately) referred to as the "Graphics Status Register” in early UltraSPARC implementations
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TABLE5-10  GSR Bit Description (Continued)

Bit

26:25

24:8
7:3
2:0

ALIGNADDRESS or ALIGNADDRESS_LITTLE instruction.

Field Description
irnd IEEE Std 754-1985 rounding direction to use in Interval Mode (GSR.im = 1), as follows:
irnd Round toward ...
0 Nearest (even, if tie)
1 0
2 + 00
3 -
— Reserved.
scale 5-bit shift count in the range 0-31, used by the FPACK instructions for formatting.
align Least three significant bits of the address computed by the last-executed

5.5.8 SOFTINTY Register (ASRs 20 @, 21 @, 22 D)

Software uses the privileged, read /write SOFTINT register (ASR 22) to schedule interrupts (via
interrupt_level_n exceptions).

SOFTINT can be read with a RDSOFTINT instruction (see Read Ancillary State Register on page
242) and written with a WRSOFTINT, WRSOFTINT_SET, or WRSOFTINT_CLR instruction (see Write
Ancillary State Register on page 305). An attempt to access to this register in nonprivileged mode

causes a privileged_opcode exception.

Programming | To atomically modify the set of pending software interrupts, use

Note | of the SOFTINT_SET and SOFTINT_CLR ASRs is

recommended.

The SOFTINT register is illustrated in FIGURE 5-16 and described in TABLE 5-11.

RW RW RW
SOFTINTP — sm int_level tm
63 17 16 15 10
FIGURE 5-16 SOFTINT Register (ASR 22)
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TABLE 5-11

SOFTINT Bit Description
Bit Field Description
16 sm When the STICK_CMPR (ASR 25) register’s int_dis (interrupt disable) field is 0 (that is,
System Tick Compare is enabled) and its stick_cmpr field matches the value in the
STICK register, then SOFTINT.sm (“STICK match”) is set to 1 and a level 14 interrupt
(interrupt_level_14) is generated. See System Tick Compare (STICK_CMPRP) Register (ASR
25) on page 60 for details. SOFTINT.sm can also be directly written to 1 by software.
15:1  int_level When SOFTINT.int_level{n—1} (SOFTINT{n}) is set to 1, an interrupt_level_n exception is
generated.
Notes: |A level-14 interrupt (interrupt_level_14) can be triggered by
SOFTINT.sm, SOFTINT.tm, or a write to SOFTINT.int_level{13}
(SOFTINT{14}).
A level-15 interrupt (interrupt_level_15) can be triggered by a write to
SOFTINT.int_level{14} (SOFTINT{15}), or possibly by other
implementation-dependent mechanisms.
An interrupt_level_n exception will only cause a trap if (PIL < n) and
(PSTATE.ie = 1) and (HPSTATE.hpriv = 0).
0 tm When the TICK_CMPR (ASR 23) register’s int_dis (interrupt disable) field is 0 (that is,
Tick Compare is enabled) and its tick_cmpr field matches the value in the TICK register,
then the tm (“TICK match”) field in SOFTINT is set to 1 and a level-14 interrupt
(interrupt_level_14) is generated. See Tick Compare (TICK_CMPRP?) Register (ASR 23) on
page 59 for details. SOFTINT.tm can also be directly written to 1 by software.
Setting any of SOFTINT.sm, SOFTINT.tm, or SOFTINT.int_level{13} (SOFTINT{14}) to 1 causes a
level-14 interrupt (interrupt_level_14). However, those three bits are independent; setting any one of
them does not affect the other two.
See Software Interrupt Register (SOFTINT) on page 420 for additional information regarding the
SOFTINT register.
5.5.8.1 SOFTINT_SET! Pseudo-Register (ASR 20)
A Write State register instruction to ASR 20 (WRSOFTINT_SET) atomically sets selected bits in the
privileged SOFTINT Register (ASR 22) (see page 57). That is, bits 16:0 of the write data are ored into
SOFTINT; any ‘1’ bit in the write data causes the corresponding bit of SOFTINT to be set to 1. Bits
63:17 of the write data are ignored.
Access to ASR 20 is privileged and write-only. There is no instruction to read this pseudo-register. An
attempt to write to ASR 20 in non-privileged mode, using the WRasr instruction, causes a
privileged_opcode exception.
Programming | There is no actual “register” (machine state) corresponding to
Note | ASR 20; it is just a programming interface to conveniently set
selected bits to “1” in the SOFTINT register, ASR 22.
FIGURE 5-17 illustrates the SOFTINT_SET pseudo-register.
Wis
SOFTINT_SETP — ASR 22 bits to be set
63 17 16 0

FIGURE 5-17 SOFTINT_SET Pseudo-Register (ASR 20)
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5.5.9

5.5.10

SOFTINT_CLRP — ASR 22 bits to be cleared

5.5.8.2 SOFTINT_CLRP Pseudo-Register (ASR 21)

A Write State register instruction to ASR 21 (WRSOFTINT_CLR) atomically clears selected bits in the
privileged SOFTINT register (ASR 22) (see page 57). That is, bits 16:0 of the write data are inverted
and anded into SOFTINT; any ‘1’ bit in the write data causes the corresponding bit of SOFTINT to be
set to 0. Bits 63:17 of the write data are ignored.

Access to ASR 21 is privileged and write-only. There is no instruction to read this pseudo-register. An
attempt to write to ASR 21 in non-privileged mode, using the WRasr instruction, causes a
privileged_opcode exception.

Programming | There is no actual “register” (machine state) corresponding to
Note | ASR 21; it is just a programming interface to conveniently clear
(set to ‘0’) selected bits in the SOFTINT register, ASR 22.

FIGURE 5-18 illustrates the SOFTINT_CLR pseudo-register.

Wic

63 17 16 0
FIGURE 5-18 SOFTINT_CLR Pseudo-Register (ASR 21))

Tick Compare (TICK_CMPRP) Register (ASR 23)

The privileged TICK_CMPR register allows system software to cause a trap when the TICK register
reaches a specified value. Nonprivileged accesses to this register cause a privileged_opcode exception
(see Exception and Interrupt Descriptions on page 406).

After a power-on reset trap, the int_dis bit is set to 1 (disabling Tick Compare interrupts) and the
value of the tick_cmpr field is undefined.

The TICK_CMPR register is illustrated in FIGURE 5-19 and described in TABLE 5-12.

RW RW
TICK_CMPRP int_dis tick_cmpr
63 62 0

FIGURE 5-19 TICK_CMPR Register

TABLE5-12 TICK_CMPR Register Description

Bit Field Description

63 int_dis Interrupt Disable. If int_dis = 0, TICK compare interrupts are enabled
and if int_dis = 1, TICK compare interrupts are disabled.

62:0 tick_cmpr  Tick Compare Field. When this field exactly matches the value in
TICK.counter and TICK_CMPR.int_dis = 0, SOFTINT.tm is set to 1.
This has the effect of posting a level-14 interrupt to the virtual
processor, which causes an interrupt_level_14 trap when (PIL < 14)
and (PSTATE.ie = 1 and HPSTATE.hpriv = 0). The level-14 interrupt
handler must check SOFTINT{14}, SOFTINT{0} (tm), and
SOFTINT({16} (sm) to determine the source of the level-14 interrupt.

System Tick (STICK) Register (ASR 24)

The System Tick (STICK) register provides a counter that is synchronized across a system, useful for
timestamping. The counter field of the STICK register is a 63-bit counter that increments at a rate
determined by a clock signal external to the processor.
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5.5.11

Bit 63 of the STICK register is the nonprivileged trap (npt) bit, which controls access to the STICK
register by nonprivileged software.

The STICK register is illustrated in FIGURE 5-20 and described below.

R, W' R, W'
STICKPnpt npt counter
63 62 0

FIGURE 5-20 STICK Register

Hyperprivileged software can always read the STICK register with the RDSTICK instruction and
write it with the WRSTICK instruction.

Privileged software can always read the STICK register with the RDSTICK instruction.

Privileged software cannot write the STICK register; an attempt to execute the WRSTICK instruction
in privileged mode results in an illegal_instruction exception.

Nonprivileged software can read the STICK register by using the RDSTICK instruction, but only
when nonprivileged access to STICK is enabled (STICK.npt = 0) by hyperprivileged software. If
nonprivileged access is disabled (STICK.npt = 1), an attempt by nonprivileged software to read the
STICK register causes a privileged_action exception.

Nonprivileged software cannot write the STICK register; an attempt to execute the WRSTICK
instruction in nonprivileged mode results in an illegal_instruction exception.

After the STICK register is written, reading the STICK register returns a value incremented (by 1 or
more) from the last value written, rather than from some previous value of counter.

IMPL. DEP. #442-S10: (a) If an accurate count cannot always be returned when STICK is read, any
inaccuracy should be small, bounded, and documented.

(b) An implementation may implement fewer than 63 bits in STICK.counter; however, the counter as
implemented must be able to count for at least 10 years without overflowing. Any upper bits not
implemented must read as zero.

After a power-on reset trap, STICK.npt is set to 1 and the value of STICK.counter is undefined.

Note | The STICK register is unaffected by any reset other than a

power-on reset.

System Tick Compare (STICK_CMPR") Register (ASR
25)

The privileged STICK_CMPR register allows system software to cause a trap when the STICK register
reaches a specified value. An attempt to accesses to this register while in nonprivileged mode causes
a privileged_opcode exception (see Exception and Interrupt Descriptions on page 406).

After a power-on reset trap, the int_dis bit is set to 1 (disabling System Tick Compare interrupts), and
the stick_cmpr field is undefined.

The System Tick Compare Register is illustrated in FIGURE 5-21 and described in TABLE 5-13.

RW RW
STICK_CMPRP int_dis stick_cmpr
63 62 0

FIGURE 5-21 STICK_CMPR Register
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TABLE 5-13 STICK_CMPR Register Description

Bit Field Description
63 int_dis Interrupt Disable. If set to 1, STICK_CMPR interrupts are disabled.
62:0 stick_cmpr System Tick Compare Field. When this field exactly matches

STICK.counter and STICK_CMPR.int_dis = 0, SOFTINT.sm is set to
1. This has the effect of posting a level-14 interrupt to the virtual
processor, which causes an interrupt_level_14 trap when (PIL < 14)
and (PSTATE.ie = 1). The level-14 interrupt handler must check
SOFTINT{14}, SOFTINT{0} (tm), and SOFTINT{16} (sm) to
determine the source of the level-14 interrupt.

5.6

Register-Window PR State Registers

The state of the register windows is determined by the contents of a set of privileged registers. These
state registers can be read/written by privileged software using the RDPR/WRPR instructions. An
attempt by nonprivileged software to execute a RDPR or WRPR instruction causes a
privileged_opcode exception. In addition, these registers are modified by instructions related to
register windows and are used to generate traps that allow supervisor software to spill, fill, and clean
register windows.

IMPL. DEP. #126-V9-Ms10: Privileged registers CWP, CANSAVE, CANRESTORE, OTHERWIN, and
CLEANWIN contain values in the range 0 to N_REG_WINDOWS — 1. An attempt to write a value greater
than N_REG_WINDOWS — 1 to any of these registers causes an implementation-dependent value
between 0 and N_REG_WINDOWS — 1 (inclusive) to be written to the register. Furthermore, an attempt
to write a value greater than N_REG_WINDOWS — 2 violates the register window state definition in
Register Window State Definition on page 63.

Although the width of each of these five registers is architecturally 5 bits, the width is implementation
dependent and shall be between Hog,(N_REG_WINDOWS)Oand 5 bits, inclusive. If fewer than 5 bits are
implemented, the unimplemented upper bits shall read as 0 and writes to them shall have no effect.
All five registers should have the same width.

For UltraSPARC Architecture 2007 processors, N_REG_WINDOWS = 8. Therefore, each register window
state register is implemented with 3 bits, the maximum value for CWP and CLEANWIN is 7, and the
maximum value for CANSAVE, CANRESTORE, and OTHERWIN is 6. When these registers are
written by the WRPR instruction, bits 63:3 of the data written are ignored.

For details of how the window-management registers are used, see Register Window Management
Instructions on page 94.

Programming | CANSAVE, CANRESTORE, OTHERWIN, and CLEANWIN must

Note | never be set to a value greater than N_REG_WINDOWS — 2 on an
UltraSPARC Architecture virtual processor. Setting any of these
to a value greater than N_REG_WINDOWS — 2 violates the register
window state definition in Register Window State Definition on
page 63. Hardware is not required to enforce this restriction; it is
up to system software to keep the window state consistent.

Implementation | A write to any privileged register, including PR state registers,
Note | may drain the CPU pipeline.
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5.6.1

5.6.2

5.6.3

5.6.4

Current Window Pointer (CWPY) Register (PR 9)

The privileged CWP register, shown in FIGURE 5-22, is a counter that identifies the current window
into the array of integer registers. See Register Window Management Instructions on page 94 and
Chapter 12, Traps, for information on how hardware manipulates the CWP register.

RW RW
cwpP | | |
4 32 0

FIGURE 5-22 Current Window Pointer Register

Savable Windows (CANSAVEY) Register (PR 10)

The privileged CANSAVE register, shown in FIGURE 5-23, contains the number of register windows
following CWP that are not in use and are, hence, available to be allocated by a SAVE instruction
without generating a window spill exception.

RW RW
CANSAVEP | | |
4 32 0

FIGURE 5-23 CANSAVE Register, Figure 5-24, page 88

Restorable Windows (CANRESTORED) Register (PR 11)

The privileged CANRESTORE register, shown in FIGURE 5-24, contains the number of register
windows preceding CWP that are in use by the current program and can be restored (by the
RESTORE instruction) without generating a window fill exception.

RW RW
CANRESTOREP | | |
4 32 0

FIGURE 5-24 CANRESTORE Register

Clean Windows (CLEANWINP) Register (PR 12)

The privileged CLEANWIN register, shown in FIGURE 5-25, contains the number of windows that can
be used by the SAVE instruction without causing a clean_window exception.

RW RW
CLEANWINP | | |
4 32 0

FIGURE 5-25 CLEANWIN Register

The CLEANWIN register counts the number of register windows that are “clean” with respect to the
current program; that is, register windows that contain only zeroes, valid addresses, or valid data
from that program. Registers in these windows need not be cleaned before they can be used. The
count includes the register windows that can be restored (the value in the CANRESTORE register)
and the register windows following CWP that can be used without cleaning. When a clean window is
requested (by a SAVE instruction) and none is available, a clean_window exception occurs to cause the
next window to be cleaned.

62 UltraSPARC Architecture 2007 < Draft D0.9.4, 27 Sep 2010



5.6.5

5.6.6

5.6.7

Other Windows (OTHERWINP) Register (PR 13)

The privileged OTHERWIN register, shown in FIGURE 5-26, contains the count of register windows that
will be spilled/filled by a separate set of trap vectors based on the contents of WSTATE.other. If
OTHERWIN is zero, register windows are spilled/filled by use of trap vectors based on the contents of
WSTATE.normal.

The OTHERWIN register can be used to split the register windows among different address spaces
and handle spill/fill traps efficiently by use of separate spill/fill vectors.

RW RW
OTHERWINP | | |
4 32 0

FIGURE 5-26 OTHERWIN Register

Window State (WSTATEY) Register (PR 14)

The privileged WSTATE register, shown in FIGURE 5-27, specifies bits that are inserted into TT[TL]{4:2}
on traps caused by window spill and fill exceptions. These bits are used to select one of eight different
window spill and fill handlers. If OTHERWIN = 0 at the time a trap is taken because of a window spill
or window fill exception, then the WSTATE.normal bits are inserted into TT[TL]. Otherwise, the
WSTATE.other bits are inserted into TT[TL]. See Register Window State Definition, below, for details of
the semantics of OTHERWIN.

RW RW
WSTATEP I other | normal I
5 3 2 0

FIGURE 5-27 WSTATE Register

Register Window Management

The state of the register windows is determined by the contents of the set of privileged registers
described in Register-Window PR State Registers on page 61. Those registers are affected by the
instructions described in Register Window Management Instructions on page 94. Privileged software can
read /write these state registers directly by using RDPR/WRPR instructions.

5.6.7.1 Register Window State Definition

For the state of the register windows to be consistent, the following must always be true:
CANSAVE + CANRESTORE + OTHERWIN = N_REG_WINDOWS — 2

FIGURE 5-3 on page 39 shows how the register windows are partitioned to obtain the above equation.
The partitions are as follows:

s The current window plus the window that must not be used because it overlaps two other valid
windows. In FIGURE 5-3, these are windows 0 and 5, respectively. They are always present and
account for the “2” subtracted from N_REG_WINDOWS in the right-hand side of the above equation.

» Windows that do not have valid contents and that can be used (through a SAVE instruction)
without causing a spill trap. These windows (windows 1-4 in FIGURE 5-3) are counted in CANSAVE.

» Windows that have valid contents for the current address space and that can be used (through the
RESTORE instruction) without causing a fill trap. These windows (window 7 in FIGURE 5-3) are
counted in CANRESTORE.
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» Windows that have valid contents for an address space other than the current address space. An
attempt to use these windows through a SAVE (RESTORE) instruction results in a spill (fill) trap to
a separate set of trap vectors, as discussed in the following subsection. These windows (window 6
in FIGURE 5-3) are counted in OTHERWIN.

In addition,
CLEANWIN = CANRESTORE

since CLEANWIN is the sum of CANRESTORE and the number of clean windows following CWP.

For the window-management features of the architecture described in this section to be used, the state
of the register windows must be kept consistent at all times, except within the trap handlers for
window spilling, filling, and cleaning. While window traps are being handled, the state may be
inconsistent. Window spill/fill trap handlers should be written so that a nested trap can be taken
without destroying state.

Programming | System software is responsible for keeping the state of the
Note | register windows consistent at all times. Failure to do so will
cause undefined behavior. For example, CANSAVE,
CANRESTORE, and OTHERWIN must never be greater than or
equal to N_REG_WINDOWS — 1.

5.6.7.2 Register Window Traps

Window traps are used to manage overflow and underflow conditions in the register windows,
support clean windows, and implement the FLUSHW instruction.

See Register Window Traps on page 416 for a detailed description of how fill, spill, and clean_window
traps support register windowing.

5.7

5.7.1

Non-Register-Window PR State Registers

The registers described in this section are visible only to software running in privileged or
hyperprivileged mode (that is, when PSTATE.priv = 1 or HPSTATE.hpriv = 1), and may be accessed
with the WRPR and RDPR instructions. (An attempt to execute a WRPR or RDPR instruction in
nonprivileged mode causes a privileged_opcode exception.)

Each virtual processor provides a full set of these state registers.
Implementation | A write to any privileged register, including PR state registers,
Note | may drain the CPU pipeline.

Trap Program Counter (TPCP) Register (PR 0)

The privileged Trap Program Counter register (TPC; FIGURE 5-28) contains the program counter (PC)
from the previous trap level. There are MAXTL instances of the TPC, but only one is accessible at any
time. The current value in the TL register determines which instance of the TPC[TL] register is
accessible. An attempt to read or write the TPC register when TL = 0 causes an illegal_instruction
exception.

After a power-on reset, the contents of TPC[1] through TPC[MAXTL] are undefined. During normal
operation, the value of TPC[n], where n is greater than the current trap level (n > TL), is undefined.

TABLE 5-14 lists the events that cause TPC to be read or written.
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5.7.2

RW R

TPC,P pc_high62 (PC{63:2} from trap while TL = 0) 00

TPC,F pc_high62 (PC{63:2} from trap while TL = 1) 00

TPC,F pc_high62 (PC{63:2} from trap while TL =2) 00

TPCMAXTLP pc_high62 (PC{ 63:2} from trap while TL = MAXTL - 1) 00
63 210

FIGURE 5-28 Trap Program Counter Register Stack

TABLE 5-14 Events that involve TPC, when executing with TL = n.

Event Effect

Trap TPC[n +1] -~ PC
RETRY instruction PC ~ TPC[n]
RDPR (TPC) R[rd] — TPC[n]
WRPR (TPC) TPC[n] « value

Power-on reset (POR)

All TPC values are left undefined

Trap Next PC (TN pch) Register (PR 1)

The privileged Trap Next Program Counter register (TNPC; FIGURE 5-28) is the next program counter
(NPC) from the previous trap level. There are MAXTL instances of the TNPC, but only one is accessible
at any time. The current value in the TL register determines which instance of the TNPC register is
accessible. An attempt to read or write the TNPC register when TL = 0 causes an illegal_instruction

exception.
RW R
TNPC1P npc_high62 (NPC{63:2} from trap while TL =0) 00
P
TNPC, npc_high62 (NPC{63:2} from trap while TL = 1) 00
TNPC,P npc_high62 (NPC{63:2} from trap while TL =2) 00
TNPCMAXTLP npc_high62 (NPC{63:2} from trap while TL = MAXTL — 1) 00
63 210

FIGURE 5-29 Trap Next Program Counter Register Stack

After a power-on reset, the contents of TNPCJ[1] through TNPC[MAXTL] are undefined. During normal
operation, the value of TNPCJ[n], where n is greater than the current trap level (n > TL), is undefined.

TABLE 5-15 lists the events that cause TNPC to be read or written.

TABLE 5-15 Events that involve TNPC, when executing with TL = n.

Event Effect

Trap TNPC[n +1] « NPC

DONE instruction PC — TNPC[n]; NPC —~ TNPC[n] +4
RETRY instruction NPC — TNPC[n]

RDPR (TNPC) R[rd] — TNPC[n]

WRPR (TNPC) TNPC[n] « value

Power-on reset (POR)

All TNPC values are left undefined

CHAPTER 5 « Registers 65



5.7.3

Trap State (TSTATE') Register (PR 2)

The privileged Trap State register (TSTATE; FIGURE 5-30) contains the state from the previous trap
level, comprising the contents of the GL, CCR, ASI, CWP, and PSTATE registers from the previous
trap level. There are MAXTL instances of the TSTATE register, but only one is accessible at a time. The
current value in the TL register determines which instance of TSTATE is accessible. An attempt to read
or write the TSTATE register when TL = 0 causes an illegal_instruction exception.

RW RW RW R RW R RW
TSTATE1P gl ccr asi — pstate — cwp
(GL from TL = 0) |(CCR from TL = 0)[(ASI from TL = 0) (PSTATE from TL =0) (CWP from TL =0)
TSTATEZP gl ccr asi — pstate — cwp
(GL from TL = 1) |(CCR from TL = 1)| (ASI from TL=1 (PSTATE fromTL =1) (CWP fromTL =1)
TSTATESP gl ccr asi — pstate — cwp
P (GL from TL = 2) |(CCR from TL = 2)| (ASI from TL =2 (PSTATE from TL =2) (CWP from TL = 2)
gl cer asi — pstate — cwp
TSTATE yaxer | (GL from (CCR from (ASI from (PSTATE from (CWP from
TL = MAXPTL — 1)|TL = MAXPTL — 1)[TL = MAXPTL — 1 TL = MAXPTL - 1) TL = MAXPTL - 1)
gl cer asi — pstate — cwp
TSTATEaxeriet ] (GL from (CCR from (ASI from (PSTATE from (CWP from
- TL = MAXPTL) TL = MAXPTL) TL = MAXPTL) TL = MAXPTL) TL = MAXPTL)
TSTATEMAXTLH gl cer asi — pstate — cwp
(GL from (CCR from (ASI from (PSTATE from (CWP from
TL = MAXTL = 1) | TL = MAXTL = 1) |TL = MAXTL - 1) TL = MAXTL - 1) TL = MAXTL - 1)
47 40 39 32 3T 74732T 20 75 14

FIGURE 5-30 Trap State (TSTATE) Register Stack

After a power-on reset the contents of TSTATE[1] through TSTATE[MAXTL] are undefined. During
normal operation the value of TSTATE[n], when # is greater than the current trap level (n > TL), is
undefined.

V9 Compatibility | Because there are more bits in the UltraSPARC Architecture’s
Note | PSTATE register than in a SPARC V9 PSTATE register, a 13-bit
PSTATE value is stored in TSTATE instead of the 10-bit value
specified in the SPARC V9 architecture.

TABLE 5-16 lists the events that cause TSTATE to be read or written.
TABLE5-16 Events That Involve TSTATE, When Executing with TL =n

Event Effect

Trap TSTATE[n + 1] ~ (registers)

DONE instruction (registers) — TSTATE[n]

RETRY instruction (registers) — TSTATE[n]

RDPR (TSTATE) R[rd] — TSTATE[n]

WRPR (TSTATE) TSTATE[n] ~ value

Power-on reset (POR) All TSTATE values are left undefined
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5.7.4

5.7.5

TBAP tba_high49 000 0000 0000 0000

Trap Type (TTF) Register (PR 3)

The privileged Trap Type register (TT; see FIGURE 5-31) contains the trap type of the trap that caused
entry to the current trap level. On a reset trap, the TT register contains the trap type of the reset (see
TABLE 12-2 on page 376). There are MAXTL instances of the TT register, but only one is accessible at a
time. The current value in the TL register determines which instance of the TT register is accessible.
An attempt to read or write the TT register when TL = 0 causes an illegal_instruction exception.

RW
TT1P Trap type from trap while TL = 0
TT2P Trap type from trap while TL = 1
: P
TTMAXPTLP Trap type from trap while TL = MAXPTL - 1

TTuaxer + 1H Trap type from trap while TL = MAXPTL

-H

TTMAXTLH Trap type from trap while TL = MAXTL - 1

FIGURE 5-31 Trap Type Register Stack

After a power-on reset the contents of TT[1] through TT[MAXTL — 1] are undefined and TT[MAXTL] =
001;¢. During normal operation, the value of TT[n], where # is greater than the current trap level (n >
TL), is undefined.

TABLE 5-17 lists the events that cause TT to be read or written.

TABLE 5-17 Events that involve TT, when executing with TL = n.

Event Effect

Trap TT[n + 1] « (trap type)

RDPR (TT) R[rd] — TT[n]

WRPR (TT) TT[n] « value

Power-on reset (POR) TT values TT[1] through TT[MAXTL — 1] are left undefined;

TTIMAXTL] « 00144.

Trap Base Address (TBAP) Register (PR 5)

The privileged Trap Base Address register (TBA), shown in FIGURE 5-32, provides the upper 49 bits
(bits 63:15) of the virtual address used to select the trap vector for a trap that is to be delivered to
privileged mode. The lower 15 bits of the TBA always read as zero, and writes to them are ignored.

RW R

63 15 14 0
FIGURE 5-32 Trap Base Address Register

Details on how the full address for a trap vector is generated, using TBA and other state, are provided
in Trap-Table Entry Address to Privileged Mode on page 383.
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5.7.6 Processor State (PSTATEP) Register (PR 6)

The privileged Processor State register (PSTATE), shown in FIGURE 5-33, contains control fields for the
current state of the virtual processor. There is only one instance of the PSTATE register per virtual

processor.
RW RW RW RW RW _RW ___RW __RW
PSTATEP tct — cle tle mm — pef am | priv ie —
12 11 10 9 8 7 6 5 4 3 2 1 0

FIGURE 5-33 PSTATE Field

Writes to PSTATE are nondelayed; that is, new machine state written to PSTATE is visible to the next
instruction executed. The privileged RDPR and WRPR instructions are used to read and write
PSTATE, respectively.

The following subsections describe the fields of the PSTATE register.

Trap on Control Transfer (tct). PSTATE.tct enables the Trap-on-Control-Transfer feature.When
PSTATE.tct = 1, the virtual processor monitors each control transfer instruction (CTI) to determine
whether a control_transfer_instruction exception should be generated. If the virtual processor is
executing a CTI, PSTATE.tct = 1, and a successful control transfer is going to occur as a result of
execution of that CTI, the processor generates a control_transfer_instruction exception instead of
completing execution of the control transfer instruction.

When the trap is taken, the address of the CTI (the value of PC when the CTI began execution) is
saved in TPC[TL] and the value of NPC when the CTI began execution is saved in TNPC[TL].

During initial trap processing, before trap handler code is executed, the virtual processor sets
PSTATE.tct to 0 (so that control transfers within the trap handler don’t cause additional traps).

Programming | Trap handler software for a control_transfer_instruction trap

Note | should take care when returning to the software that caused the
trap. Execution of DONE or RETRY causes PSTATE.tct to be
restored from TSTATE, normally setting PSTATE.tct back to 1. If
trap handler software intends for control_transfer_instruction
exceptions to be reenabled, then it must emulate the trapped
control transfer instruction.

IMPL. DEP. #450-S20: Availability of the control_transfer_instruction exception feature is
implementation dependent. If not implemented, trap type 0744 is unused, PSTATE.tct always reads
as zero, and writes to PSTATE.tct are ignored.

For the purposes of the control_transfer_instruction exception, a discontinuity in instruction-fetch
addresses caused by a WRPR to PSTATE that changes the value of PSTATE.am (and thus, potentially
the more-significant 32 bits of the address of the next instruction; see page 71) is not considered a
control transfer. Only explicit CTIs can generate a control_transfer_instruction exception.

Current Little Endian (cle). This bit affects the endianness of data accesses performed using an
implicit ASI. When PSTATE.cle = 1, all data accesses using an implicit ASI are performed in little-
endian byte order. When PSTATE.cle = 0, all data accesses using an implicit ASI are performed in big-
endian byte order. Specific ASIs used are shown in TABLE 6-3 on page 87. Note that the endianness of
a data access may be further affected by TTE.ie used by the MMU.

Instruction accesses are unaffected by PSTATE.cle and are always performed in big-endian byte order.
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Trap Little Endian (tle). When a trap is taken, the current PSTATE register is pushed onto the trap
stack. During a virtual processor trap to privileged mode, the PSTATE.tle bit is copied into
PSTATE.cle in the new PSTATE register. This behavior allows system software to have a different
implicit byte ordering than the current process. Thus, if PSTATE.tle is set to 1, data accesses using an
implicit ASI in the trap handler are little-endian.

The original state of PSTATE.cle is restored when the original PSTATE register is restored from the
trap stack. During a virtual processor trap to hyperprivileged mode, the PSTATE.tle bit is not copied
into PSTATE.cle of the new PSTATE register and is unused.

Memory Model (mm). This 2-bit field determines the memory model in use by the virtual
processor. The defined values for an UltraSPARC Architecture virtual processor are listed in
TABLE 5-18.

TABLE 5-18 PSTATE.mm Encodings

mm Value Selected Memory Model
00 Total Store Order (TSO)
01 Reserved

10 Implementation dependent (impl. dep. #113-V9-Ms10)
11 Implementation dependent (impl. dep. #113-V9-Ms10)

The current memory model is determined by the value of PSTATE.mm. Software should refrain from
writing the values 01,, 10,, or 11, to PSTATE.mm because they are implementation-dependent or
reserved for future extensions to the architecture, and in any case not currently portable across
implementations.

» Total Store Order (TSO) — Loads are ordered with respect to earlier loads. Stores are ordered with
respect to earlier loads and stores. Thus, loads can bypass earlier stores but cannot bypass earlier
loads; stores cannot bypass earlier loads or stores.

IMPL. DEP. #113-V9-Ms10: Whether memory models represented by PSTATE.mm = 10, or 11, are
supported in an UltraSPARC Architecture processor is implementation dependent. If the 10, model
is supported, then when PSTATE.mm = 10, the implementation must correctly execute software that
adheres to the RMO model described in The SPARC Architecture Manual-Version 9. If the 11, model is
supported, its definition is implementation dependent.

IMPL. DEP. #119-Ms10: The effect of writing an unimplemented memory model designation into
PSTATE.mm is implementation dependent.

SPARC V9 | The PSO memory model described in SPARC V8 and SPARC V9
Compatibility | architecture specifications was never implemented in a SPARC
Notes | V9 implementation and is not included in the UltraSPARC
Architecture specification.

The RMO memory model described in the SPARC V9
specification was implemented in some non-Sun SPARC V9
implementations, but is not directly supported in UltraSPARC
Architecture 2007 implementations. All software written to run
correctly under RMO will run correctly under TSO on an
UltraSPARC Architecture 2007 implementation.

Enable FPU (pef). When set to 1, the PSTATE.pef bit enables the floating-point unit. This allows
privileged software to manage the FPU. For the FPU to be usable, both PSTATE.pef and FPRS.fef
must be set to 1. Otherwise, any floating-point instruction that tries to reference the FPU causes an
fp_disabled trap.
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If an implementation does not contain a hardware FPU, PSTATE.pef always reads as 0 and writes to it
are ignored.

Address Mask (am). The PSTATE.am bit is provided to allow 32-bit SPARC software to run
correctly on a 64-bit SPARC processor. When PSTATE.am = 1, bits 63:32 of virtual addresses are
masked out (treated as 0). PSTATE.am does not affect real or physical addresses.

When PSTATE.am = 0, the full 64 bits of all instruction and data addresses are preserved at all points in
the virtual processor.

When an MMU is disabled or in bypass, PSTATE.am has no effect on (does not cause masking of)
addresses.

Programming | It is the responsibility of privileged and hyperprivileged
Note | software to manage the setting of the PSTATE.am bit, since
hardware masks virtual addresses when PSTATE.am = 1.

Misuse of the PSTATE.am bit can result in undesirable behavior.
In particular, PSTATE.am should not be set to 1 in privileged or
hyperprivileged mode.

The PSTATE.am bit should always be set to 1 when 32-bit
nonprivileged software is executed.

Instances in which the more-significant 32 bits of a virtual address are masked when PSTATE.am =1
include:

= Before any data virtual address is sent out of the virtual processor (notably, to the memory system,
which includes MMU, internal caches, and external caches).

» Before any instruction virtual address is sent out of the virtual processor (notably, to the memory
system, which includes MMU, internal caches, and external caches)

= When the value of PC is stored to a general-purpose register by a CALL, JMPL, or RDPC
instruction (closed impl.dep. #125-V9-Cs10)

= When the values of PC and NPC are written to TPC[TL] and TNPC[TL] (respectively) during a trap
(closed impl.dep. #125-V9-Cs10)

= Before any virtual address is sent to a watchpoint comparator

Programming | A 64-bit comparison is always used when performing a masked
Note | watchpoint address comparison with the Instruction or Data VA
watchpoint register. When PSTATE.am = 1, the more significant
32 bits of the VA watchpoint register must be zero for a match
(and resulting trap) to occur.

» When an exception occurs and an address is written to the Data Synchronous Fault Address
register (D-SFAR) (impl.dep. #241-U3)
Programming | If a memory access is initiated when PSTATE.am =1, the
Note | memory system will only see a 32-bit memory address.

Therefore, if such a memory access causes an exception or error,
the memory system will (is only able to) report a 32-bit address
in the D-SFAR register (64-bit address with the more-significant
32 bits set to 0).

When PSTATE.am = 1, the more-significant 32 bits of a virtual address are explicitly preserved and
not masked out in the following cases:

= When a target address is written to NPC by a control transfer instruction
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» When NPC is incremented to NPC + 4 during execution of an instruction that is not a taken control
transfer

= When a WRPR instruction writes to TPC[TL] or TNPC[TL]

Programming | Since writes to PSTATE are nondelayed (see page 68), a change

Note | to PSTATE.am can affect which instruction is executed
immediately after the write to PSTATE.am. Specifically, if a
WRPR to the PSTATE register changes the value of PSTATE.am
from ’0" to '1’, and NPC{63:32} when the WRPR began execution
was nonzero, then the next instruction executed after the WRPR
will be from the address indicated in NPC{31:0} (with the more-
significant 32 address bits set to zero).

= When a RDPR instruction reads from TPC[TL] or TNPC[TL]

If (1) TSTATE[TL].pstate.am =1 and (2) a DONE or RETRY instruction is executed!, it is
implementation dependent whether the DONE or RETRY instruction masks (zeroes) the more-
significant 32 bits of the values it places into PC and NPC (impl. dep. #417-510).

Programming | Because of implementation dependency #417-510, great care

Note | must be taken in trap handler software if
TSTATE[TL].pstate.am = 1 and the trap handler wishes to write
a nonzero value to the more-significant 32 bits of TPC[TL] or
TNPCJTL].

Programming | PSTATE.am affects the operation of the edge-handling
Note | instructions, EDGE<8116 | 32>[L]*. See Edge Handling Instructions
on page 129 and Edge Handling Instructions (no CC) on page 131.

Privileged Mode (priv). When PSTATE.priv =1 and HPSTATE.hpriv = 0, the virtual processor is
operating in privileged mode.

When PSTATE.priv = 0 and HPSTATE.hpriv = 0, the processor is operating in nonprivileged mode

When HPSTATE.hpriv = 1, the virtual processor is operating in hyperprivileged mode, independent of
the state of PSTATE.priv. Hyperprivileged mode provides a superset of the capabilities of privileged
mode.

PSTATE_interrupt_enable (ie). PSTATE.ie controls when the virtual processor can take traps due
to disrupting exceptions (such as interrupts or errors unrelated to instruction processing).

Outstanding disrupting exceptions that are destined for privileged mode can only cause a trap when
the virtual processor is in nonprivileged or privileged mode and PSTATE.ie = 1. At all other times,
they are held pending. For more details, see Conditioning of Disrupting Traps on page 379.

Outstanding disrupting exceptions that are destined for hyperprivileged mode can only cause a trap
when the virtual processor is not in hyperprivileged mode, or when it is in hyperprivileged mode and
PSTATE.ie = 1. At all other times, they are held pending. For more details, see Conditioning of
Disrupting Traps on page 379

SPARC V9 | Since the UltraSPARC Architecture provides a more general
Compatibility | “alternate globals” facility (through use of the GL register) than
Note | does SPARC V9, an UltraSPARC Architecture processor does not
implement the SPARC V9 PSTATE.ag bit.

1 which sets PSTATE.am to '1’, by restoring the value from TSTATE[TL].pstate.am to PSTATE.am
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5.7.7 Trap Level Register (TL) (PR 7)

The privileged Trap Level register (TL; FIGURE 5-34) specifies the current trap level. TL = 0 is the
normal (nontrap) level of operation. TL > 0 implies that one or more traps are being processed.

TLP 1l |

2 0

FIGURE 5-34 Trap Level Register

The maximum valid value that the TL register may contain is MAXTL, which is always equal to the
number of supported trap levels beyond level 0.

IMPL. DEP. #101-V9-CS10: The architectural parameter MAXPTL is a constant for each
implementation; its legal values are from 2 to 6 (supporting from 2 to 6 levels of saved trap state
visible to privileged software). In a typical implementation MAXPTL = MAXPGL (see impl. dep. #401-
510). The architectural parameter MAXTL is a constant for each implementation; its legal values are
from 4 to 7 (supporting from 4 to 7 levels of saved trap state). Architecturally, MAXPTL must be = 2,
MAXTL must be = 4, and MAXTL must be > MAXPTL.

In an UltraSPARC Architecture 2007 implementation, MAXPTL = 2 and MAXTL = 6. See Chapter 12, Traps,
for more details regarding the TL register.

; see processor-specific documentation for the value of MAXTL on a particular implementationAfter a
power-on reset (POR), TL is set to MAXTL.

The effect of writing to TL with a WRPR instruction is summarized in TABLE 5-19.

TABLES5-19  Effect of WRPR of Value x to Register TL

Privilege Level when Executing WRPR

Value x Written with WRPR Nonprivileged Privileged Hyperprivileged

x < MAXPTL TL « x

o TL « x
MAXPTL < x < MAXTL privileged_opcode TL « MAXPTL
exception no exception generated
x > MAXTL p ( P & ) TL < MAXTL
(no exception generated)

Writing the TL register with a WRPR instruction does not alter any other machine state; that is, it is not
equivalent to taking a trap or returning from a trap.

Programming
Note

Implementation
Note

An UltraSPARC Architecture implementation only needs to
implement sufficient bits in the TL register to encode the
maximum trap level value. In an implementation

whereMAXTL < 7, bits 63:3 of data written to the TL register using
the WRPR instruction are ignored; only the least-significant
three bits (bits 2:0) of TL are actually written. For example, if
MAXTL = 6, writing a value of 0914 to the TL register causes a
value of 114 to actually be stored in TL.

MAXPTL =2 for all UltraSPARC Architecture 2007 processors.
Writing a value between 3 and 7 to the TL register in privileged
mode causes a 2 to be stored in TL.
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5.7.8

5.7.9

Programming | Although it is possible for hyperprivileged software to set

Note | TL > MAXPTL for privileged or nonprivileged software®, an
UltraSPARC Architecture virtual processor’s behavior when
executing with TL > MAXPTL outside of hyperprivileged mode is

undefined.

Although it is possible for privileged or hyperprivileged
software to set TL > 0 for nonprivileged software', an
UltraSPARC Architecture virtual processor’s behavior when
executing with TL > 0 in nonprivileged mode is undefined.

t by executing a WRPR to TSTATE followed by DONE instruction or RETRY
instruction or a JMPL/WRHPR instruction pair.

Processor Interrupt Level (PILP) Register (PR 8)

The privileged Processor Interrupt Level register (PIL; see FIGURE 5-35) specifies the interrupt level
above which the virtual processor will accept an interrupt_level_n interrupt. Interrupt priorities are
mapped so that interrupt level 2 has greater priority than interrupt level 1, and so on. See TABLE 12-4
on page 387 for a list of exception and interrupt priorities.

PILP [ ivnv |
3 0

FIGURE 5-35 Processor Interrupt Level Register

V9 Compatibility | On SPARC V8 processors, the level 15 interrupt is considered to
Note | be nonmaskable, so it has different semantics from other
interrupt levels. SPARC V9 processors do not treat a level 15
interrupt differently from other interrupt levels.

Global Level Register (G L") (PR 16)

The privileged Global Level (GL) register selects which set of global registers is visible at any given
time.

FIGURE 5-36 illustrates the Global Level register.
RW

o

2 0

FIGURE 5-36 Global Level Register, GL

When a trap occurs, GL is stored in TSTATE[TL].gl, GL is incremented, and a new set of global
registers (R[1] through R[7]) becomes visible. A DONE or RETRY instruction restores the value of GL
from TSTATE[TL].

The valid range of values that the GL register may contain is MAXGL, where MAXGL is one fewer than
the number of global register sets available to the virtual processor.

IMPL. DEP. #401-S10: The architectural parameter MAXPGL is a constant for each implementation; its
legal values are from 2 to 7 (supporting from 3 to 8 sets of global registers visible to privileged
software). In a typical implementation, MAXPGL = MAXPTL (see impl. dep. #101-V9-CS10). The
architectural parameter MAXGL is a constant for each implementation; its legal values are from 3 to 7
(supporting from 4 to 8 sets of global registers). Architecturally, MAXPGL must be = 2 and MAXGL must
be > MAXPGL.
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In all UltraSPARC Architecture 2007 implementations, MAXPGL = 2 and MAXGL = 3. (impl. dep. #401-
510).

IMPL. DEP. #400-S10: Although GL is defined as a 3-bit register, an implementation may implement
any subset of those bits sufficient to encode the values from 0 to MAXGL for that implementation. If
any bits of GL are not implemented, they read as zero and writes to them are ignored.

Implementation | In UltraSPARC Architecture 2007 implementations MAXGL = 3.

Note | Since only 2 bits are required to represent the full range of
values for GL, it is implemented as a 2-bit register. When GL is
written, bits 63:4 are ignored, as specified above. Although bits
3:2 are not stored to GL, they are not strictly ignored; an attempt
to write a value with bits 3:2 nonzero to GL causes MAXGL (3) to
be written to GL. This behavior is specific to UltraSPARC
Architecture 2007 implementations.

GL operates similarly to TL, in that it increments during entry to a trap, but the values of GL and TL
are independent. That is, TL = n does not imply that GL = #, and GL = #n does not imply that TL = n.
Furthermore, there may be a different total number of global levels (register sets) than there are trap
levels; that is, MAXTL and MAXGL are not necessarily equal.

The GL register can be accessed directly with the RDPR and WRPR instructions (as privileged register
number 16). Writing the GL register directly with WRPR will change the set of global registers visible
to all instructions subsequent to the WRPR.

In privileged mode, attempting to write a value greater than MAXPGL to the GL register causes MAXPGL
to be written to GL.

In hyperprivileged mode, attempting to write a value greater than MAXGL to the GL register causes
MAXGL to be written to GL.

When a DONE or RETRY instruction is executed and HTSTATE[TL].hpstate.hpriv = 0 (which will
cause the DONE or RETRY to return the virtual processor to nonprivileged or privileged mode), the
value of GL restored from TSTATE[TL] saturates at MAXPGL. That is, if the value in TSTATE[TL].gl is
greater than MAXPGL, then MAXPGL is substituted and written to GL. This protects against non-
hyperprivileged software executing with GL > MAXPGL.

Programming | Although it is possible for hyperprivileged software to set

Note | GL > MAXPGL for privileged or nonprivileged software’,
executing with GL > MAXPGL outside of hyperprivileged mode is
an illegal state and the behavior of a virtual processor in that
state is undefined.

¥ by executing a WRPR that modifies GL, followed by a JMPL/WRHPR instruction
pair (it is not possible to set GL > MAXPGL using DONE/RETRY)

The effect of writing to GL with a WRPR instruction is summarized in TABLE 5-20.

TABLE5-20  Effect of WRPR to Register GL

Privilege Level when WRPR Is Executed

Value x Written with WRPR Nonprivileged Privileged Hyperprivileged

X < MAXPGL GL « x

o GL « x
MAXPGL < X £ MAXGL privileged_opcode
exception GL ~ MAXPGL
X > MAXGL (no exception generated) GL — MAXGL
(no exception generated)
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If MAXGL < MAXTL, then there are fewer sets of global registers than trap levels. In this case, if a trap
occurs while GL = MAXGL, GL will have the same value before the trap occurs and in the software that
handles the trap. Trap handler software must detect this case and safely save any global register
before the trap handler writes to it. The Hyperprivileged Scratchpad registers (see Privileged
Scratchpad Registers (ASI _SCRATCHPAD) on page 363) may be useful in such cases.

Programming | An UltraSPARC Architecture implementation only needs to
Note | implement sufficient bits in the GL register to encode the
maximum global level value. In an implementation where
MAXGL < 7, bits 63:3 of data written to the GL register using the
WRPR instruction are ignored; only the least-significant three
bits (bits 2:0) are actually written to GL. For example, if
MAXGL = 7, writing a value of 914 to the TL register causes a
value of 14 to actually be stored in GL.

Since TSTATE itself is software-accessible, it is possible that when a DONE or RETRY is executed to
return from a trap handler, the value of GL restored from TSTATE[TL] will be different from that
which was saved into TSTATE[TL] when the trap occurred.

During power-on reset (POR), the value of GL is set to MAXGL. During all other resets, GL is
incremented (the same behavior as TL).

5.8

5.8.1

HPR State Registers

The registers described in this section can be directly accessed with the hyperprivileged WRHPR and
RDHPR instructions.

An attempt to read or write any HPR state register (using RDHPR or WRHPR) in privileged or
nonprivileged modes (that is, when HPSTATE.hpriv = 0) causes an illegal_instruction exception.

Hyperprivileged State (HPSTATE!) Register (HPR 0)

The Hyperprivileged State register (HPSTATE), shown in FIGURE 5-37, contains hyperprivileged
control fields for the virtual processor. There is one instance of the HPSTATE register per virtual
processor.

RW RW RW RW
HPSTATEM — ibe — red] — |hpriv|—|tlz
63 11 109 6 5 4 3 2 1 0

FIGURE 5-37 HPSTATE Fields

Writing HPSTATE is nondelayed; that is, new machine state written to HPSTATE is visible to the next
instruction executed. The hyperprivileged RDHPR and WRHPR instructions are used to read and
write HPSTATE, respectively.

Upon a reset, the contents of HPSTATE are set as described in TABLE 16-1 on page 500.

The following subsections describe the fields contained in the HPSTATE register.

Instruction Breakpoint Enable (ibe). When HPSTATE.ibe = 1, the Instruction Breakpoint feature
is enabled, allowing an instr_breakpoint exception to occur. When an instr_breakpoint exception trap
occurs, the virtual processor sets HPSTATE.ibe to 0 before entering trap handler software, to
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5.8.2

guarantee that no additional instr_breakpoint exception can occur in the instruction breakpoint trap
handler unless the trap handler explicitly reenables instruction breakpointing by setting HPSTATE.ibe
to 1.

RED_state (red). When HPSTATE.red is set to 1, the virtual processor is operating in RED_st at e
(Reset, Error, and Debug state). See RED_st at € on page 374. The virtual processor sets HPSTATE.red
when any hardware reset occurs. HPSTATE.red is also set to 1 when a trap is taken while

TL = (MAXTL - 1). Software can reliably exit RED_st at e by one of two methods:

1. Execute a DONE or RETRY instruction, which restores the stacked copy of HPSTATE and clears
HPSTATE.red if it was 0 in the stacked copy.

2. Write a 0 to HPSTATE.red with a WRHPR instruction.
Programming | Software should not write 0 to HPSTATE.red in the delay slot of
Note [ a DCTI (e.g. JMPL instruction). Exiting RED st at e using a
DONE or RETRY instruction avoids this problem entirely.

Programming | HPSTATE.hpriv = 0 and HPSTATE.red =1 is an undefined
Note | operational state. Therefore, care should be taken never to write
that combination of values to HPSTATE.

Hyperprivileged mode (hpriv). When HPSTATE.hpriv = 1, the virtual processor is operating in
hyperprivileged mode and ignores PSTATE.priv.

When HPSTATE.hpriv = 0, the processor is operating in privileged or nonprivileged mode, as
determined by PSTATE.priv.

See the Programming Note on page 308, recommending that a WRHPR instruction that changes
HPSTATE.priv never be executed in the delay slot of a DCTI instruction.

Trap Level Zero trap enable (t1z). When HPSTATE.tlz = 0, generation of trap_level_zero
exceptions is disabled. When all three of the following conditions exist, a trap_level_zero exception is
generated:

» HPSTATE.tlz = 1 (generation of trap_level_zero is enabled)

» the virtual processor is in nonprivileged or privileged mode (HPSTATE.hpriv = 0)

» the trap level (TL) register’s value is zero (TL = 0)

Programming | The purpose of trap_level_zero is to improve efficiency when

Note | descheduling a virtual processor. When a descheduling event
occurs and the virtual processor is executing in privileged mode
at TL > 0, hyperprivileged software can choose to enable the
trap_level_zero exception (set HPSTATE.tlz — 1) and return to
privileged mode, enabling privileged software to complete its
TL > 0 processing. When privileged code returns to TL = 0, this
exception enables the hyperprivileged code to regain control
and deschedule the virtual processor with low overhead.

Hyperprivileged Trap State (HTSTATEN) Register (HPR
1)

The Hyperprivileged Trap State register (HTSTATE; FIGURE 5-38) contains the hyperprivileged state
from the previous trap level, comprising the contents of the HPSTATE register from the previous trap
level. There are MAXTL instances of the HTSTATE register, but only one is accessible at a time. The
current value in the TL register determines which instance of HTSTATE is accessible.
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5.8.3

HTSTATE," — HPSTATE from TL =0
HTSTATEM — HPSTATE from TL =1
HTSTATE3H —_ HPSTATE from TL =2

H
HTSTATEyaxtL . HPSTATE from TL =MAXTL - 1

63 11 10 0

FIGURE 5-38 Hyperprivileged Trap State Register

An attempt to read or write the HTSTATE register when TL = 0 causes an illegal_instruction exception.

After a power-on reset the contents of HTSTATE[1] through HTSTATE[MAXTL] are undefined. During
normal operation the value of HTSTATE[#n], when n is greater than the current trap level (n > TL), is
undefined.

TABLE 5-21 lists the events that cause HTSTATE to be read or written.

TABLE 5-21 Events that involve HTSTATE, when executing with TL = n.

Event Effect

Trap HTSTATE[n + 1]{10:0} — HPSTATE
DONE instruction HPSTATE ~ HTSTATE[#]{10:0}
RETRY instruction HPSTATE ~ HTSTATE[#]{10:0}
RDHPR (HTSTATE) R[rd] « HTSTATE[n]

WRHPR (HTSTATE) HTSTATE[n] « value

Power-on reset (POR) All HTSTATE values are left undefined

Hyperprivileged Interrupt Pending (HINTP™) Register (HPR
3)

The hyperprivileged HINTP register provides a mechanism for hyperprivileged software to determine
that an hstick_match interrupt is pending while PSTATE.ie = 0 and to clear the interrupt without
having to first set PSTATE.ie = 1 and take a disrupting trap.

When HINTP.hsp =1, a match between STICK and HSTICK_CMPR has occurred while match
interrupt generation was enabled (HSTICK_CMPR.int_dis = 0, see System Tick Compare
(STICK_CMPR?) Register (ASR 25) on page 60), causing an hstick_match exception to be generated.

Programming | A pending hstick_match exception can also be generated if
Note | software directly writes a ‘1’ to HINTP.hsp.

When HINTP.hsp = 0, no interrupt is pending due to a match between STICK and HSTICK_CMPR.
Software can clear a pending hstick_match interrupt (indicated by HINTP.hsp = 1) by writing 0 to
HINTP.hsp.

The format of the HINTP register is illustrated in FIGURE 5-39.
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5.8.5

HINTPH — hsp

HTBAH htba_high50 00 0000 0000 0000

RW

63 1 0
FIGURE 5-39 Hyperprivileged Interrupt Pending (HINTP) Register Format

Hyperprivileged Trap Base Address (HTBAM) Register (HPR
5)

The Hyperprivileged Trap Base Address register (HTBA), shown in FIGURE 5-40, provides the most
significant 50 bits (bits 63:14) of the physical address used to select the trap vector for a trap that is to
be serviced in hyperprivileged mode. The least significant 14 bits of HTBA always read as zero, and
writes to them are ignored.

RW R

63 14 13 0
FIGURE 5-40 Hyperprivileged Trap Base Address Register

Details on how the full address for a trap vector is generated, using HTBA and other state, are
provided in Trap-Table Entry Address to Hyperprivileged Mode on page 383.

IMPL. DEP. #406-S10: It is implementation dependent whether all 50 bits of HTBA{63:14} are
implemented or if only bits n-1:14 are implemented. If the latter, writes to bits 63:n are ignored and
when HTBA is read, bits 63:n read as sign-extended copies of the most significant implemented bit,
HTBA{n - 1}.

See Chapter 12, Traps, for more details on trap vectors.

Hyperprivileged Implementation Version (HVERH) Register
(HPR 6) @

The Hyperprivileged Implementation Version register, shown in FIGURE 5-41, specifies the fixed
parameters pertaining to a particular processor implementation and mask set. The HVER register is
read-only, readable by the RDHPR instruction in hyperprivileged mode.

R R R R R R

HVERH manuf impl mask — | maxgl maxtl | — maxwinl

63 48 47 32 31 2423 1918 16 15 87 54 0

FIGURE 5-41 Hyperprivileged Implementation Version Register

IMPL. DEP. #104-V9: HVER.manuf contains a 16-bit manufacturer code. This field is optional and if
not present shall read as 0. HVER.manuf may indicate the original supplier of a second-sourced
processor. It is intended that the contents of HVER.manuf track the JEDEC semiconductor
manufacturer code as closely as possible. If the manufacturer does not have a JEDEC semiconductor
manufacturer code, SPARC International will assign a value for HVER.manuf.

IMPL. DEP. #13-V8: HVER.impl uniquely identifies an implementation or class of software-compatible
implementations of the architecture. Values FFF0,4,—FFFF4 are reserved and are not available for
assignment.
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5.8.6

HSTICK_CMPRH int_dis hstick_cmpr

HVER.mask specifies the current mask set revision and is chosen by the implementor. It generally
increases numerically with successive releases of the processor but does not necessarily increase by 1
for consecutive releases.

Implementation | Conventionally, this field is die-specific, with bits 31:28
Note | indicating the major mask revision number and bits 27:24
indicating the minor mask revision number.

HVER.maxgl contains the maximum number of levels of global register sets supported by an
implementation (impl. dep. #401-510), that is, MAXGL, the maximum value that the GL register may
contain.

HVER.maxtl contains the maximum number of trap levels supported by an implementation (impl.
dep. #101-V9-CS10), that is, MAXTL, the maximum value of the contents of the TL register.

HVER.maxwin contains the maximum index number available for use as a valid CWP value in an
implementation; that is, HYER.maxwin contains the value N_REG_WINDOWS — 1 (impl. dep. #2-V8).

SPARC V9 | The SPARC V9 VER register was replaced in the UltraSPARC
Compatibility | Architecture by the hyperprivileged HVER register.
Note

Hyperprivileged System Tick Compare (HSTICK_CMPRHM)
Register (HPR 31)

The Hyperprivileged System Tick Compare (HSTICK_CMPR) register allows hyperprivileged
software to set up so that an hstick_match interrupt will occur when the STICK register reaches a
specified value while HSTICK_CMPR.int_dis = 0.

The Hyperprivileged System Tick Compare Register is illustrated in FIGURE 5-42.

RW RW

63 62 0
FIGURE 5-42 HSTICK_CMPR Register

The fields of HSTICK_CMPR are described in TABLE 5-22.

TABLE 5-22 Bit Description of HSTICK_CMPR Register

Bit(s) Field Name Description

63 int_dis If int_dis = 0, a match between HSTICK_CMPR.hstick_cmpr and
STICK will cause hardware to set HINTP.hsp to 1. If int_dis = 1, this
behavior is disabled; when a match occurs, HINTP.hsp will not be
changed.

62:0 hstick_cmpr Hyperprivileged System Tick Compare Field. When
HSTICK_CMPR.int_dis = 0 and the value in
HSTICK_CMPR hstick_cmpr exactly matches the value in
STICK.counter, HINTP.hsp is set to 1. After that, if HINTP.hsp
remains set to 1, the next time that hyperprivileged interrupts are
unmasked (HPSTATE.hpriv = 0 or PSTATE.ie = 1), an hstick_match
exception will occur.

Programming | When int_dis = 1, an hstick_match interrupt can still occur if
Note | HINTP.hsp is set to 1 by software and the other prerequisite
conditions for triggering hstick_match are met.
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Programming | HINTP.hsp must be set to 0 between the time an hstick_match

Note | trap occurs and the hstick_match trap handler returns.
Otherwise, a return from the trap handler could immediately
trigger another hstick_match trap. Refer to implementation-
specific documentation regarding whether hardware sets
HINTP.hsp to 0 when the hstick_match trap is taken or
HINTP.hsp must be set to 0 by hyperprivileged software in the
hstick_match trap handler.

After a power-on reset trap, the int_dis bit is set to 1 (disabling Hyperprivileged System Tick Compare
interrupts), and the value of HSTICK_CMPR hstick_cmpr is undefined.
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CHAPTER 6

Instruction Set Overview

Instructions are fetched by the virtual processor from memory and are executed, annulled, or trapped.
Instructions are encoded in 4 major formats and partitioned into 11 general categories. Instructions are
described in the following sections:

= Instruction Execution on page 81.
= Instruction Formats on page 82.
= Instruction Categories on page 82.

6.1

Instruction Execution

The instruction at the memory location specified by the program counter is fetched and then executed.
Instruction execution may change program-visible virtual processor and/or memory state. As a side
effect of its execution, new values are assigned to the program counter (PC) and the next program
counter (NPC).

An instruction may generate an exception if it encounters some condition that makes it impossible to
complete normal execution. Such an exception may in turn generate a precise trap. Other events may
also cause traps: an exception caused by a previous instruction (a deferred trap), an interrupt or
asynchronous error (a disrupting trap), or a reset request (a reset trap). If a trap occurs, control is
vectored into a trap table. See Chapter 12, Traps, for a detailed description of exception and trap
processing.

If a trap does not occur and the instruction is not a control transfer, the next program counter is
copied into the PC, and the NPC is incremented by 4 (ignoring arithmetic overflow if any). There are
two types of control-transfer instructions (CTIs): delayed and immediate. For a delayed CTI, at the
end of the execution of the instruction, NPC is copied into the PC and the target address is copied into
NPC. For an immediate CTI, at the end of execution, the target is copied to PC and target + 4 is copied
to NPC. In the SPARC instruction set, many CTIs do not transfer control until after a delay of one
instruction, hence the term “delayed CTI” (DCTI). Thus, the two program counters provide for a
delayed-branch execution model.

For each instruction access and each normal data access, an 8-bit address space identifier (ASI) is
appended to the 64-bit memory address. Load/store alternate instructions (see Address Space Identifiers
(ASIs) on page 87) can provide an arbitrary ASI with their data addresses or can use the ASI value
currently contained in the ASI register.
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6.2 Instruction Formats

Every instruction is encoded in a single 32-bit word. The most typical 32-bit formats are shown in
FIGURE 6-1. For detailed formats for specific instructions, see individual instruction descriptions in the
Instructions chapter.

op = 00,: SETHI, Branches, and ILLTRAP

00 rd op2 imm22
00 |a| cond op2 disp22
00 |a| cond op2 |cclccl| p disp19
00 |a|O| rcond op2 |di6hi| p rsl di6lo
31 302928 27 2524 22 2120 19 18 14 13 0
op =01,: CALL
01 disp30
31 3029 0

op = 10, or 11,: Arithmetic, Logical, Moves, Tcc, Loads, Stores, Prefetch, and Misc

1x rd op3 rsl i=0| imm_asi rs2
1X rd op3 rsl i=1 simm13
31 3029 2524 19 18 14 13 12 5 4 0

FIGURE 6-1 Summary of Instruction Formats

6.3 Instruction Categories

UltraSPARC Architecture instructions can be grouped into the following categories:

= Memory access

= Memory synchronization

» Integer arithmetic

= Control transfer (CTI)

» Conditional moves

» Register window management
» State register access

» Privileged register access

» Floating-point operate

» Implementation dependent
» Reserved

These categories are described in the following subsections.
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6.3.1

Memory Access Instructions

Load, store, load-store, and PREFETCH instructions are the only instructions that access memory. All
of the memory access instructions except CASA, CASXA, and Partial Store use either two R registers
or an R register and simm13 to calculate a 64-bit byte memory address. For example, Compare and
Swap uses a single R register to specify a 64-bit byte memory address. To this 64-bit address, an ASI
is appended that encodes address space information.

The destination field of a memory reference instruction specifies the R or F register(s) that supply the
data for a store or that receive the data from a load or LDSTUB. For SWAP, the destination register
identifies the R register to be exchanged atomically with the calculated memory location. For
Compare and Swap, an R register is specified, the value of which is compared with the value in
memory at the computed address. If the values are equal, then the destination field specifies the R
register that is to be exchanged atomically with the addressed memory location. If the values are
unequal, then the destination field specifies the R register that is to receive the value at the addressed
memory location; in this case, the addressed memory location remains unchanged. LDFSR/LDXFSR
and STFSR/STXFSR are special load and store instructions that load or store the floating-point status
register, FSR, instead of acting on an R or F register.

The destination field of a PREFETCH instruction (fcn) is used to encode the type of the prefetch.

Memory is byte (8-bit) addressable. Integer load and store instructions support byte, halfword (2
bytes), word (4 bytes), and doubleword/extended-word (8 bytes) accesses. Floating-point load and
store instructions support word, doubleword, and quadword memory accesses. LDSTUB accesses
bytes, SWAP accesses words, CASA accesses words, and CASXA accesses doublewords. The LDTXA
(load twin-extended-word) instruction accesses a quadword (16 bytes) in memory. Block loads and
stores access 64-byte aligned data. PREFETCH accesses at least 64 bytes.

Programming | For some instructions, by use of simm13, any location in the
Note | lowest or highest 4 Kbytes of an address space can be accessed
without the use of a register to hold part of the address.

6.3.1.1 Memory Alignment Restrictions

A halfword access must be aligned on a 2-byte boundary, a word access (including an instruction
fetch) must be aligned on a 4-byte boundary, an extended-word (LDX, LDXA, STX, STXA) or integer
twin word (LDTW, LDTWA, STTW, STTWA ) access must be aligned on an 8-byte boundary,an
integer twin-extended-word (LDTXA) access must be aligned on a 16-byte boundary, and a Block
Load (LDBLOCKEFP) or Store (STBLOCKFP) access must be aligned on a 64-byte boundary.

A floating-point doubleword access (LDDF, LDDFA, STDF, STDFA) should be aligned on an 8-byte
boundary, but is only required to be aligned on a word (4-byte) boundary. A floating-point
doubleword access to an address that is 4-byte aligned but not 8-byte aligned may result in less
efficient and nonatomic access (causes a trap and is emulated in software (impl. dep. #109-V9-Cs10)),
so 8-byte alignment is recommended.

A floating-point quadword access (LDQF, LDQFA, STQF, STQFA) should be aligned on a 16-byte
boundary, but is only required to be aligned on a word (4-byte) boundary. A floating-point quadword
access to an address that is 4-byte or 8-byte aligned but not 16-byte aligned may result in less efficient
and nonatomic access (causes a trap and is emulated in software (impl. dep. #111-V9-Cs10)), so 16-
byte alignment is recommended.

An improperly aligned address in a load, store, or load-store instruction causes a
mem_address_not_aligned exception to occur, with these exceptions:

»« An LDDF or LDDFA instruction accessing an address that is word aligned but not doubleword
aligned may cause an LDDF_mem_address_not_aligned exception (impl. dep. #109-V9-Cs10).

= An STDF or STDFA instruction accessing an address that is word aligned but not doubleword
aligned may cause an STDF_mem_address_not_aligned exception (impl. dep. #110-V9-Cs10).
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» An LDQF or LDQFA instruction accessing an address that is word aligned but not quadword
aligned may cause an LDQF_mem_address_not_aligned exception (impl. dep. #111-V9-Cs10a).

Implementation | Although the architecture provides for the
Note | LDQF_mem_address_not_aligned exception,UltraSPARC
Architecture 2007 implementations do not currently generate it.

» An STQF or STQFA instruction accessing an address that is word aligned but not quadword
aligned may cause an STQF_mem_address_not_aligned exception (impl. dep. #112-V9-Cs10a).

Implementation | Although the architecture provides for the
Note | STQF_mem_address_not_aligned exception, UltraSPARC
Architecture 2007 implementations do not currently generate it.

6.3.1.2 Addressing Conventions

An UltraSPARC Architecture virtual processor uses big-endian byte order for all instruction accesses
and, by default, for data accesses. It is possible to access data in little-endian format by use of selected
ASIs. It is also possible to change the default byte order for implicit data accesses. See Processor State
(PSTATEP) Register (PR 6) on page 68 for more information.!

Big-endian Addressing Convention. Within a multiple-byte integer, the byte with the smallest
address is the most significant; a byte’s significance decreases as its address increases. The big-endian
addressing conventions are described in TABLE 6-1 and illustrated in FIGURE 6-2.

TABLE6-1  Big-endian Addressing Conventions

Term Definition

byte A load/store byte instruction accesses the addressed byte in both big- and
little-endian modes.

halfword For a load/store halfword instruction, two bytes are accessed. The most
significant byte (bits 15-8) is accessed at the address specified in the
instruction; the least significant byte (bits 7-0) is accessed at the
address + 1.

word For a load/store word instruction, four bytes are accessed. The most
significant byte (bits 31-24) is accessed at the address specified in the
instruction; the least significant byte (bits 7-0) is accessed at the
address + 3.

doubleword or For a load/store extended or floating-point load/store double instruction,

extended word eight bytes are accessed. The most significant byte (bits 63:56) is accessed
at the address specified in the instruction; the least significant byte (bits
7:0) is accessed at the address + 7.
For the deprecated integer load/store twin word instructions (LDTW,
LDTWA', STTW, STTWA), two big-endian words are accessed. The word
at the address specified in the instruction corresponds to the even register
specified in the instruction; the word at address + 4 corresponds to the

following odd-numbered register.
+Note that the LDTXA instruction, which is not an LDTWA operation but does share
LDTWA'’s opcode, is not deprecated.

quadword For a load/store quadword instruction, 16 bytes are accessed. The most
significant byte (bits 127-120) is accessed at the address specified in the
instruction; the least significant byte (bits 7-0) is accessed at the
address + 15.

1. Readers interested in more background information on big- vs. little-endian can also refer to Cohen, D., “On Holy Wars and a Plea for
Peace,” Computer 14:10 (October 1981), pp. 48-54.
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Byte Address

7 0
Halfword Address{ 0} = 0 1
15 8|7 0
Word Address{ 1:0} = 00 01 10 11
31 2423 16|15 8|7 0
Doubleword / Address{2:0} = 000 001 010 011
Extended word 63 56| 55 48|47 40|39 32
Address{ 2:0} = 100 101 110 111
31 24|23 16|15 8|7 0
Quadword  Address{3:0} = 0000 0001 0010 0011
127 120|119 112|111 104 (103 96
Address{ 3:0} = 0100 0101 0110 0111
95 88| 87 80|79 72|71 64
Address{ 3:0} = 1000 1001 1010 1011
63 56| 55 48|47 40|39 32
Address{ 3:0} = 1100 1101 1110 1111
31 24|23 16|15 8|7 0

FIGURE 6-2 Big-endian Addressing Conventions
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Little-endian Addressing Convention. Within a multiple-byte integer, the byte with the smallest
address is the least significant; a byte’s significance increases as its address increases. The little-endian
addressing conventions are defined in TABLE 6-2 and illustrated in FIGURE 6-3.

TABLE6-2  Little-endian Addressing Convention

Term

Definition

byte

halfword

word

doubleword or
extended word

quadword

A load/store byte instruction accesses the addressed byte in both big-
and little-endian modes.

For a load/store halfword instruction, two bytes are accessed. The least
significant byte (bits 7-0) is accessed at the address specified in the
instruction; the most significant byte (bits 15-8) is accessed at the
address + 1.

For a load/store word instruction, four bytes are accessed. The least
significant byte (bits 7-0) is accessed at the address specified in the
instruction; the most significant byte (bits 31-24) is accessed at the
address + 3.

For a load/store extended or floating-point load/store double
instruction, eight bytes are accessed. The least significant byte (bits 7-0)
is accessed at the address specified in the instruction; the most significant
byte (bits 63-56) is accessed at the address + 7.

For the deprecated integer load/store twin word instructions (LDTW,
LDTWA*, STTW, STTWA), two little-endian words are accessed. The
word at the address specified in the instruction corresponds to the even
register in the instruction; the word at the address specified in the
instruction +4 corresponds to the following odd-numbered register. With
respect to little-endian memory, an LDTW/LDTWA (STTW/STTWA)
instruction behaves as if it is composed of two 32-bit loads (stores), each
of which is byte-swapped independently before being written into each
destination register (memory word).

+Note that the LDTXA instruction, which is not an LDTWA operation but does share
LDTWA's opcode, is not deprecated.

For a load/store quadword instruction, 16 bytes are accessed. The least
significant byte (bits 7-0) is accessed at the address specified in the
instruction; the most significant byte (bits 127-120) is accessed at the
address + 15.
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Byte
Address

Halfword
Address{0} =

Word
Address{1:0} =

Doubleword / Address{2:0} =
Extended word

Address{2:0} =

7 0
0 1

7 0] 15 8
00 01 10 11

7 0] 15 8| 23 16|31 24
000 001 010 011

7 0|15 8| 23 16|31 24
100 101 110 111

39 32| 47 40| 55 48|63 56
0000 0001 0010 0011

7 0] 15 8|23 16|31 24
0100 0101 0110 0111

39 32| 47 40| 55 48|63 56
1000 1001 1010 1011

71 64|79 72| 87 80|95 88
1100 1101 1110 1111

103 96| 111 104( 119 112|127 120

FIGURE 6-3 Little-endian Addressing Conventions

Quadword
Address{3:0} =
Address(3:0} =
Address(3:0} =
Address{3:0} =
6.3.1.3

provided in the ASI register.

Non-alternate-space load, store, and load-store instructions use an implicit ASI value that depends on
the current trap level (TL) and the value of PSTATE.cle. Instruction fetches use an implicit ASI that

Address Space Identifiers (ASIs)

Alternate-space load, store, and load-store instructions specify an explicit ASI to use for their data
access; when i = 0, the explicit ASI is provided in the instruction’s imm_asi field, and when i =1, it is

depends only on the current trap level. The cases are enumerated in TABLE 6-3. Note that in

hyperprivileged mode, all accesses are performed using physical addresses, so there is no implicit ASI
in hyperprivileged mode (see ASI Value, Context ID, and Endianness Selection for Translation on page 445

for details).

TABLE 6-3

Access Type PSTATE.cle ASI Used

Instruction Fetch any AS| _PRI MARY
any AS| _NUCLEUS*
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TABLE 6-3  ASIs Used for Data Accesses and Instruction Fetches in Nonprivileged and Privileged Modes

Access Type TL PSTATE.cle ASI Used
Non-alternate-space =0 0 AS| _PRI MARY
Load, Store, or 1 AS|_PRI MARY_LI TTLE
Load-Store |
(implicit ASI) >0 0 ASI| _NUCLEUS*
1 ASI _NUCLEUS_LI TTLE**
Alternate-space Load, any any ASI explicitly specified in the instruction
Store, or Load-Store (subject to privilege-level restrictions)

*On some early SPARC V9 implementations, ASl _PRI MARY may have been used for this case.
**On some early SPARC V9 implementations, ASI _PRI MARY_LI TTLE may have been used for this case.

See also Memory Addressing and Alternate Address Spaces on page 330.

ASIs 0014-7Fq¢ are restricted; only software with sufficient privilege is allowed to access them. ASIs
0014-2F1¢ are accessible by both privileged and hyperprivileged software, while ASIs 304-7F¢ are
accessible only by hyperprivileged software. An attempt to access a restricted ASI by insufficiently-
privileged software results in a privileged_action exception (impl. dep #103-V9-Ms10(6)). ASIs 801¢
through FFq¢ are unrestricted; software is allowed to access them regardless of the virtual processor’s
privilege mode, as summarized in TABLE 6-4.

TABLE 6-4  Allowed Accesses to ASIs

Processor Mode
(HPSTATE.hpriv,

Value Access Type PSTATE.priv) Result of ASI Access
0016—2F1¢ Restricted Nonprivileged (0,0) privileged_action exception
(Privileged) Privileged (0,1) Valid access

Hyperprivileged (1,x)  Valid access
3016—7F16 Restricted Nonprivileged (0,0) privileged_action exception
(Hyperprivileged) Privileged (0,1) privileged_action exception
Hyperprivileged (1,x)  Valid access
8014-FF1¢ Unrestricted Nonprivileged (0,0) Valid access
Privileged (0,1) Valid access

Hyperprivileged (1,x)  Valid access

IMPL. DEP. #29-V8: Some UltraSPARC Architecture 2007 ASIs are implementation dependent. See
TABLE 10-1 on page 347 for details.

V9 Compatibility
Note

In SPARC V9, many ASIs were defined to be implementation
dependent.

An UltraSPARC Architecture implementation decodes all 8 bits of ASI specifiers (impl. dep. #30-V8-
Cu3).

V9 Compatibility
Note

In SPARC V9, an implementation could choose to decode only a
subset of the 8-bit ASI specifier.

6.3.14 Separate Instruction Memory

A SPARC V9 implementation may choose to access instruction and data through the same address
space and use hardware to keep data and instruction memory consistent at all times. It may also
choose to overload independent address spaces for data and instructions and allow them to become
inconsistent when data writes are made to addresses shared with the instruction space.
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6.3.2

6.3.3

Programming | A SPARC V9 program containing self-modifying code should
Note | use FLUSH instruction(s) after executing stores to modify
instruction memory and before executing the modified
instruction(s), to ensure the consistency of program execution.

Memory Synchronization Instructions

Two forms of memory barrier (MEMBAR) instructions allow programs to manage the order and
completion of memory references. Ordering MEMBARs induce a partial ordering between sets of
loads and stores and future loads and stores. Sequencing MEMBARs exert explicit control over
completion of loads and stores (or other instructions). Both barrier forms are encoded in a single
instruction, with subfunctions bit-encoded in cmask and mmask fields.

Integer Arithmetic and Logical Instructions

The integer arithmetic and logical instructions generally compute a result that is a function of two
source operands and either write the result in a third (destination) register R[rd] or discard it. The first
source operand is R[rs1]. The second source operand depends on the i bit in the instruction; if i =0,
then the second operand is R[rs2]; if i = 1, then the second operand is the constant simm10, simm11,
or simm13 from the instruction itself, sign-extended to 64 bits.

Note | The value of R[0] always reads as zero, and writes to it are
ignored.

6.3.3.1 Setting Condition Codes

Most integer arithmetic instructions have two versions: one sets the integer condition codes (icc and
xcc) as a side effect; the other does not affect the condition codes. A special comparison instruction for
integer values is not needed since it is easily synthesized with the “subtract and set condition codes”
(SUBcc) instruction. See Synthetic Instructions on page 556 for details.

6.3.3.2  Shift Instructions

Shift instructions shift an R register left or right by a constant or variable amount. None of the shift
instructions change the condition codes.

6.3.3.3  Set High 22 Bits of Low Word

The “set high 22 bits of low word of an R register” instruction (SETHI) writes a 22-bit constant from
the instruction into bits 31 through 10 of the destination register. It clears the low-order 10 bits and
high-order 32 bits, and it does not affect the condition codes. Its primary use is to construct constants
in registers.

6.3.3.4 Integer Multiply/Divide

The integer multiply instruction performs a 64 x 64 — 64-bit operation; the integer divide instructions
perform 64 + 64 — 64-bit operations. For compatibility with SPARC V8 processors, 32 x 32 — 64-bit
multiply instructions, 64 + 32 - 32-bit divide instructions, and the Multiply Step instruction are
provided. Division by zero causes a division_by_zero exception.
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6.3.4

6.3.3.5 Tagged Add/Subtract

The tagged add/subtract instructions assume tagged-format data, in which the tag is the two low-
order bits of each operand. If either of the two operands has a nonzero tag or if 32-bit arithmetic
overflow occurs, tag overflow is detected. If tag overflow occurs, then TADDcc and TSUBcc set the
CCRu.cc.v bit; if 64-bit arithmetic overflow occurs, then they set the CCR.xcc.v bit.

The trapping versions (TADDccTV, TSUBccTV) of these instructions are deprecated. See Tagged Add
on page 294 and Tagged Subtract on page 299 for details.

Control-Transfer Instructions (CTIs)

The basic control-transfer instruction types are as follows:

= Conditional branch (Bicc, BPcc, BPr, FBfcc, FBPfcc)
= Unconditional branch

= Call and link (CALL)

» Jump and link JMPL, RETURN)

» Return from trap (DONE, RETRY)

s Trap (Tcc)

A control-transfer instruction functions by changing the value of the next program counter (NPC) or
by changing the value of both the program counter (PC) and the next program counter (NPC). When
only NPC is changed, the effect of the transfer of control is delayed by one instruction. Most control
transfers are of the delayed variety. The instruction following a delayed control-transfer instruction is
said to be in the delay slot of the control-transfer instruction.

Some control transfer instructions (branches) can optionally annul, that is, not execute, the instruction
in the delay slot, based on the setting of an annul bit in the instruction. The effect of the annul bit
depends upon whether the transfer is taken or not taken and whether the branch is conditional or
unconditional. Annulled delay instructions neither affect the program-visible state, nor can they
cause a trap.

Programming | The annul bit increases the likelihood that a compiler can find a

Note | useful instruction to fill the delay slot after a branch, thereby
reducing the number of instructions executed by a program. For
example, the annul bit can be used to move an instruction from
within a loop to fill the delay slot of the branch that closes the
loop.

Likewise, the annul bit can be used to move an instruction from
either the “else” or “then” branch of an “if-then-else” program
block to the delay slot of the branch that selects between them.
Since a full set of conditions is provided, a compiler can arrange
the code (possibly reversing the sense of the condition) so that
an instruction from either the “else” branch or the “then” branch
can be moved to the delay slot. Use of annulled branches
provided some benefit in older, single-issue SPARC
implementations. On an UltraSPARC Architecture
implementation, the only benefit of annulled branches might be
a slight reduction in code size. Therefore, the use of annulled
branch instructions is no longer encouraged.

TABLE 6-5 defines the value of the program counter and the value of the next program counter after
execution of each instruction. Conditional branches have two forms: branches that test a condition
(including branch-on-register), represented in the table by Bec, and branches that are unconditional,
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that is, always or never taken, represented in the table by BA and BN, respectively. The effect of an
annulled branch is shown in the table through explicit transfers of control, rather than by fetching and
annulling the instruction.

TABLE 6-5 Control-Transfer Characteristics

Instruction Group Address Form Delayed? Taken?  Annul Bit? New PC New NPC
Non-CTIs — — — — NPC NPC + 4
Bcc PC-relative Yes Yes 0 NPC EA

Bcc PC-relative Yes No 0 NPC NPC + 4
Bee PC-relative Yes Yes 1 NPC EA

Bcc PC-relative Yes No 1 NPC + 4 NPC + 8
BA PC-relative Yes Yes 0 NPC EA

BA PC-relative No Yes 1 EA EA +4
BN PC-relative Yes No 0 NPC NPC + 4
BN PC-relative Yes No 1 NPC + 4 NPC + 8
CALL PC-relative Yes — — NPC EA

JMPL, RETURN Register-indirect Yes — — NPC EA
DONE Trap state No — — TNPC[TL] TNPC[TL] + 4
RETRY Trap state No — — TPC[TL] TNPCI[TL]
Tec Trap vector No Yes — EA EA +4
Tec Trap vector No No — NPC NPC + 4

The effective address, “EA” in TABLE 6-5, specifies the target of the control-transfer instruction. The
effective address is computed in different ways, depending on the particular instruction.

s PC-relative effective address — A PC-relative effective address is computed by sign extending the
instruction’s immediate field to 64-bits, left-shifting the word displacement by 2 bits to create a
byte displacement, and adding the result to the contents of the PC.

» Register-indirect effective address — If i = 0, a register-indirect effective target address is R[rs1] +
R[rs2]. If i =1, a register-indirect effective target address is R[rs1] + sign_ext(simm13).

» Trap vector effective address — A trap vector effective address first computes the software trap
number as the least significant 7 or 8 bits of R[rs1] + R[rs2] if i =0, or as the least significant 7 or 8
bits of R[rs1] + imm_trap# if i =1. Whether 7 or 8 bits are used depends on the privilege level —
7 bits are used in nonprivileged mode and 8 bits are used in privileged and hyperprivileged
modes. The trap level, TL, is incremented. The hardware trap type is computed as 256 + the
software trap number and stored in TT[TL]. The effective address is generated by combining the
contents of the TBA register with the trap type and other data; see Trap Processing on page 396 for
details.

» Trap state effective address — A trap state effective address is not computed but is taken directly
from either TPC[TL] or TNPCJTL].

SPARC V8 | The SPARC V8 architecture specified that the delay instruction
Compatibility | was always fetched, even if annulled, and that an annulled
Note | instruction could not cause any traps. The SPARC V9
architecture does not require the delay instruction to be fetched
if it is annulled.

6.3.4.1 Conditional Branches

A conditional branch transfers control if the specified condition is TRUE. If the annul bit is 0, the
instruction in the delay slot is always executed. If the annul bit is 1, the instruction in the delay slot is
executed only when the conditional branch is taken.
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Note | The annuling behavior of a taken conditional branch is different
from that of an unconditional branch.

6.3.4.2 Unconditional Branches

An unconditional branch transfers control unconditionally if its specified condition is “always”; it
never transfers control if its specified condition is “never.” If the annul bit is 0, then the instruction in
the delay slot is always executed. If the annul bit is 1, then the instruction in the delay slot is never
executed.

Note | The annul behavior of an unconditional branch is different from
that of a taken conditional branch.

6.3.4.3 CALL and JMPL Instructions

The CALL instruction writes the contents of the PC, which points to the CALL instruction itself, into
R[15] (out register 7) and then causes a delayed transfer of control to a PC-relative effective address.
The value written into R[15] is visible to the instruction in the delay slot.

The JMPL instruction writes the contents of the PC, which points to the JMPL instruction itself, into
R[rd] and then causes a register-indirect delayed transfer of control to the address given by

“R[rs1] + R[rs2]” or “R[rs1] + a signed immediate value.” The value written into R[rd] is visible to
the instruction in the delay slot.

When PSTATE.am = 1, the value of the high-order 32 bits transmitted to R[15] by the CALL
instruction or to R[rd] by the JMPL instruction is zero.

6.3.44 RETURN Instruction

The RETURN instruction is used to return from a trap handler executing in nonprivileged mode.
RETURN combines the control-transfer characteristics of a JMPL instruction with R[0] specified as the
destination register and the register-window semantics of a RESTORE instruction.

6.3.45 DONE and RETRY Instructions

The DONE and RETRY instructions are used by privileged software to return from a trap. These
instructions restore the machine state to values saved in the TSTATE register stack.

RETRY returns to the instruction that caused the trap in order to reexecute it. DONE returns to the
instruction pointed to by the value of NPC associated with the instruction that caused the trap, that is,
the next logical instruction in the program. DONE presumes that the trap handler did whatever was
requested by the program and that execution should continue.

6.3.4.6 Trap Instruction (Tcc)

The Tcc instruction initiates a trap if the condition specified by its cond field matches the current state
of the condition code specified in its cc field; otherwise, it executes as a NOP. If the trap is taken, it
increments the TL register, computes a trap type that is stored in TT[TL], and transfers to a computed
address in a trap table pointed to by a trap base address register.
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6.3.5

A Tcc instruction can specify one of 256 software trap types (128 when in nonprivileged mode). When
a Tcc is taken, 256 plus the 7 (in nonprivileged mode) or 8 (in privileged or hyperprivileged mode)
least significant bits of the Tcc’s second source operand are written to TT[TL]. The only visible
difference between a software trap generated by a Tcc instruction and a hardware trap is the trap
number in the TT register. See Chapter 12, Traps, for more information.

Programming | Tcc can be used to implement breakpointing, tracing, and calls
Note | to privileged or hyperprivileged software. Tcc can also be used
for runtime checks, such as out-of-range array index checks or

integer overflow checks.

6.3.4.7 DCTI Couples

A delayed control transfer instruction (DCTI) in the delay slot of another DCTI is referred to as a
“DCTI couple”. The use of DCTI couples is deprecated in the UltraSPARC Architecture; no new
software should place a DCTI in the delay slot of another DCTI, because on future UltraSPARC
Architecture implementations DCTI couples may execute either slowly or differently than the
programmer assumes it will.

SPARC V8 and | The SPARC V8 architecture left behavior undefined for a DCTI
SPARC V9 | couple. The SPARC V9 architecture defined behavior in that
Compatibility | case, but as of UltraSPARC Architecture 2005, use of DCTI couples
Note | was deprecated.

Conditional Move Instructions

This subsection describes two groups of instructions that copy or move the contents of any integer or
floating-point register.

MOVcc and FMOVcc Instructions. The MOVcc and FMOVcc instructions copy the contents of
any integer or floating-point register to a destination integer or floating-point register if a condition is
satisfied. The condition to test is specified in the instruction and can be any of the conditions allowed
in conditional delayed control-transfer instructions. This condition is tested against one of the six sets
of condition codes (icc, xcc, fceO, fcel, fee2, and fee3), as specified by the instruction. For example:

f novdg % cc2, 9% 20, 9% 22
moves the contents of the double-precision floating-point register 9% 20 to register % 22 if floating-

point condition code number 2 (fcc2) indicates a greater-than relation (FSR.fcc2 = 2). If fcc2 does not
indicate a greater-than relation (FSR.fcc2 # 2), then the move is not performed.

The MOVcc and FMOVcc instructions can be used to eliminate some branches in programs. In most
implementations, branches will be more expensive than the MOVcc or FMOVcc instructions. For
example, the C statement:

if (A>B) X =1; else X =0;

can be coded as

cnp %0, %2 I (A > B)
or %90, 0, %3 ! set X =0
novg ocec, 1, %3 ! overwite Xwith 1l if A>B

to eliminate the need for a branch.
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6.3.6

MOVr and FMOVr Instructions. The MOVr and FMOVr instructions allow the contents of any
integer or floating-point register to be moved to a destination integer or floating-point register if the
contents of a register satisfy a specified condition. The conditions to test are enumerated in TABLE 6-6.

TABLE6-6  MOVr and FMOVr Test Conditions

Condition Description

NZ Nonzero

V4 Zero

GEZ Greater than or equal to zero
LZ Less than zero

LEZ Less than or equal to zero
GZ Greater than zero

Any of the integer registers (treated as a signed value) may be tested for one of the conditions, and the
result used to control the move. For example,

nmovr nz % 2, %4, %6
moves integer register % 4 to integer register % 6 if integer register % 2 contains a nonzero value.

MOVr and FMOVr can be used to eliminate some branches in programs or can emulate multiple
unsigned condition codes by using an integer register to hold the result of a comparison.

Register Window Management Instructions

This subsection describes the instructions that manage register windows in the UltraSPARC
Architecture. The privileged registers affected by these instructions are described in Register-Window
PR State Registers on page 61.

6.3.6.1 SAVE Instruction

The SAVE instruction allocates a new register window and saves the caller’s register window by
incrementing the CWP register.

If CANSAVE = 0, then execution of a SAVE instruction causes a window spill exception, that is, one of
the spill_n_<normal | other> exceptions.

If CANSAVE # 0 but the number of clean windows is zero, that is,
(CLEANWIN - CANRESTORE) = 0, then SAVE causes a clean_window exception.

If SAVE does not cause an exception, it performs an ADD operation, decrements CANSAVE, and
increments CANRESTORE. The source registers for the ADD operation are from the old window (the
one to which CWP pointed before the SAVE), while the result is written into a register in the new
window (the one to which the incremented CWP points).

6.3.6.2 RESTORE Instruction

The RESTORE instruction restores the previous register window by decrementing the CWP register.

If CANRESTORE = 0, execution of a RESTORE instruction causes a window fill exception, that is, one
of the fill_n_<normal | other> exceptions.

If RESTORE does not cause an exception, it performs an ADD operation, decrements CANRESTORE,
and increments CANSAVE. The source registers for the ADD are from the old window (the one to
which CWP pointed before the RESTORE), and the result is written into a register in the new window
(the one to which the decremented CWP points).
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Programming | This note describes a common convention for use of register
Note | windows, SAVE, RESTORE, CALL, and JMPL instructions.

A procedure is invoked by execution of a CALL (or a JMPL)
instruction. If the procedure requires a register window, it
executes a SAVE instruction in its prologue code. A routine that
does not allocate a register window of its own (possibly a leaf
procedure) should not modify any windowed registers except
out registers 0 through 6. This optimization, called “Leaf-
Procedure Optimization”, is routinely performed by SPARC
compilers.

A procedure that uses a register window returns by executing
both a RESTORE and a JMPL instruction. A procedure that has
not allocated a register window returns by executing a JMPL
only. The target address for the JMPL instruction is normally 8
plus the address saved by the calling instruction, that is, the
instruction after the instruction in the delay slot of the calling
instruction.

The SAVE and RESTORE instructions can be used to atomically
establish a new memory stack pointer in an R register and
switch to a new or previous register window.

6.3.6.3 SAVED Instruction

SAVED is a privileged instruction used by a spill trap handler to indicate that a window spill has
completed successfully. It increments CANSAVE and decrements either OTHERWIN or
CANRESTORE, depending on the conditions at the time SAVED is executed.

See SAVED on page 257 for details.

6.3.6.4 RESTORED Instruction

RESTORED is a privileged instruction, used by a fill trap handler to indicate that a window has been
filled successfully. It increments CANRESTORE and decrements either OTHERWIN or CANSAVE,
depending on the conditions at the time RESTORED is executed. RESTORED also manipulates
CLEANWIN, which is used to ensure that no address space’s data become visible to another address
space through windowed registers.

See RESTORED on page 250 for details.

6.3.6.5 Flush Windows Instruction

The FLUSHW instruction flushes all of the register windows, except the current window, by
performing repetitive spill traps. The FLUSHW instruction causes a spill trap if any register window
(other than the current window) has valid contents. The number of windows with valid contents is
computed as:

N_REG_WINDOWS — 2 — CANSAVE

If this number is nonzero, the FLUSHW instruction causes a spill trap. Otherwise, FLUSHW has no
effect. If the spill trap handler exits with a RETRY instruction, the FLUSHW instruction continues
causing spill traps until all the register windows except the current window have been flushed.
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6.3.7

6.3.8

6.3.9

6.3.10

Ancillary State Register (ASR) Access

The read /write state register instructions access program-visible state and status registers. These
instructions read /write the state registers into/from R registers. A read/write Ancillary State register
instruction is privileged only if the accessed register is privileged.

The supported RDasr and WRasr instructions are described in Ancillary State Registers on page 50.

Privileged Register Access

The read /write privileged register instructions access state and status registers that are visible only to
privileged software. These instructions read/write privileged registers into/from R registers. The
read /write privileged register instructions are privileged.

Floating-Point Operate (FPop) Instructions

Floating-point operate instructions (FPops) compute a result that is a function of one , two, or three
source operands and place the result in one or more destination F registers, with one exception:
floating-point compare operations do not write to an F register but instead update one of the fccn
fields of the FSR.

The term “FPop” refers to instructions in the FPopl, FMAf, and FPop2 opcode spaces. FPop
instructions do not include FBfcc instructions, loads and stores between memory and the F registers,
or non-floating-point operations that read or write F registers.

The FMOVcc instructions function for the floating-point registers as the MOVcc instructions do for the
integer registers. See MOVcc and FMOVcc Instructions on page 93.

The FMOVr instructions function for the floating-point registers as the MOVr instructions do for the
integer registers. See MOVr and FMOVr Instructions on page 94.

If no floating-point unit is present or if PSTATE.pef = 0 or FPRS.fef = 0, then any instruction,
including an FPop instruction, that attempts to access an FPU register generates an fp_disabled
exception.

All FPop instructions clear the ftt field and set the cexc field unless they generate an exception.
Floating-point compare instructions also write one of the fccn fields. All FPop instructions that can
generate IEEE exceptions set the cexc and aexc fields unless they generate an exception.
FABS<s|dlq>, FMOV<s|d|q>, FMOVcc<s|d|q>, FMOVr<s|d|q>, and FNEG<s|d | gq> cannot
generate IEEE exceptions, so they clear cexc and leave aexc unchanged.

IMPL. DEP. #3-V8: An implementation may indicate that a floating-point instruction did not produce
a correct IEEE Std 754-1985 result by generating an fp_exception_other exception with

FSR.ftt = unfinished_FPop. In this case, software running in a mode with greater privileges must
emulate any functionality not present in the hardware.

See ftt = 2 (unfinished_FPop) on page 47 to see which instructions can produce an fp_exception_other
exception (with FSR.ftt = unfinished_FPop).

Implementation-Dependent Instructions

The SPARC V9 architecture provided two instruction spaces that are entirely implementation
dependent: IMPDEP1 and IMPDEP2 .

In the UltraSPARC Architecture, the IMPDEP1 opcode space is used by many VIS instructions. The
remaining opcodes in IMPDEP1 and IMPDEP2 are now marked as reserved opcodes.
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6.3.11 Reserved Opcodes and Instruction Fields

If a conforming UltraSPARC Architecture 2007 implementation attempts to execute an instruction bit
pattern that is not specifically defined in this specification, it behaves as follows:

» If the instruction bit pattern encodes an implementation-specific extension to the instruction set,
that extension is executed.

» If the instruction does not encode an extension to the instruction set, then the instruction bit pattern
is invalid and causes an illegal_instruction exception.

See Appendix A, Opcode Maps, for an enumeration of the reserved instruction bit patterns (opcodes).

Programming | For software portability, software (such as assemblers, static
Note | compilers, and dynamic compilers) that generates SPARC
instructions must always generate zeroes in instruction fields
marked “reserved” (“—").
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CHAPTER s 7

Instructions

UltraSPARC Architecture 2007 extends the standard SPARC V9 instruction set with additional classes
of instructions:

» Enhanced functionality:
= Instructions for alignment (Align Address on page 111)
« Array handling (Three-Dimensional Array Addressing on page 114)
= Byte-permutation instructions (Byte Mask and Shuffle on page 119)
» Edge handling (Edge Handling Instructions on pages 129 and 131)
= Logical operations on floating-point registers (F Register Logical Operate (1 operand) on page 176)
» Partitioned arithmetic (Fixed-point Partitioned Add on page 171Fixed-point Partitioned Subtract (64-
bit) on page 174)
= Pixel manipulation (FEXPAND on page 144, FPACK on page 166, and FPMERGE on page 173)
= Access to hyperprivileged state (such asRDHPR and WRHPR instructions)

» Efficient memory access

= Partial store (Store Partial Floating-Point on page 279)
= Short floating-point loads and stores (Store Short Floating-Point on page 282)
= Block load and store (Block Load on page 192 and Block Store on page 269)

» Efficient interval arithmetic: SIAM (Set Interval Arithmetic Mode on page 261) and all instructions
that reference GSR.im

» Floating-point Multiply-Add and Multiply-Subtract (FMA) instructions (Floating-Point Multiply-Add
and Multiply-Subtract (fused) on page 150
TABLE 7-2 provides a quick index of instructions, alphabetically by architectural instruction name.

TABLE 7-3 summarizes the instruction set, listed within functional categories.

Within these tables and throughout the rest of this chapter, and in Appendix A, Opcode Maps, certain
opcodes are marked with mnemonic superscripts. The superscripts and their meanings are defined in
TABLE 7-1.

TABLE7-1  Instruction Superscripts

Superscript Meaning

D Deprecated instruction (do not use in new software)

H Hyperprivileged instruction

N Nonportable instruction

P Privileged instruction

Pugr Privileged action if bit 7 of the referenced ASI is 0

Pasr Privileged instruction if the referenced ASR register is privileged
Prpt Privileged action if in nonprivileged mode (PSTATE.priv = 0 and

HPSTATE.hpriv = 0) and nonprivileged access is disabled
((S)TICK.npt = 1)
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TABLE 7-2 UltraSPARC Architecture 2007 Instruction Set - Alphabetical (1 of 2)

Page Instruction Page Instruction Page Instruction
110 ADD (ADDcc) 135  FBfecP 171 FPADD<16,32>[S]
110 ADDC (ADDCcc) 137  FBPfcc
141 FCMP<sldlq> 173 FPMERGE
139 FCMP*<16,32>
141 FCMPE<s|d|q> 174 FPSUB<16,32>[S]
143 FDIV<sldlqg>
164 FdMULq
144 FEXPAND 164 FsMULd
111  ALIGNADDRESS[_LITTLE] 179 FSQRT<s|d | q>
112 ALLCLEAN 177 FSRC<112>[s]
113 AND (ANDcc) 145 FiTO<sld|g> 183 FSUB<s|d|q>
114 ARRAY<8116132>
117 Bicc 146 FLUSH 178 EXNOR
119 BMASK 149 FLUSHW 178 FXOR
120 BPcc 150 FMADD(s,d) 184 FxTO<s|d|q>
122 BPr 176 FZERO
119 BSHUFFLE 152 FMOV<sl|dlg>
124 CALL 153 FMOV<s|d|g>cc 185 ILLTRAP
157 FMOV<s|d|g>R 186 INVALW
150 FMSUB(s,d) 187  JMPL
164 FMUL<sl|dlqg>
125 CASAPAS 159 FMULS[SU | UL]x16
125 CASXAPASI 159 FMULS8x16
159 FMUL8x16[AU I AL]
159 EMULDS[SU | UL]x16 192 LDBLOCKFP
195 LDDF
178 FENAND 197 LDDFAPAS!
165 FNEG<s!d|q> 195 LDF
197 LDFAPAST
150 FNMADD 201 LDFSRP
127 DONEP 150 FNMSUB 195 LDQF
129 EDGE<8116132>[L]cc 197 LDQFAPASI
131 EDGE<8116132>[L]N 178 FNOR 188 LDSB
181 F<sldlq>TO<sld|q> 177 FNOT<1I2> 189  LDSBAPASI
180 F<sld!|g>TOi 188 LDSH
180 F<sld|g>TOx 176 FONE 189  LDSHAPAS!
132 FABS<s|dlq> 178 FORNOT<112> 203 LDSHORTF
133 FADD<sldlq> 178 FOR 205 LDSTUB
134 FALIGNDATA 166 FPACK<16 132 | FIX> 206 LDSTUBAPAS!
178 FANDNOT<1 2> 188 LDSW
178 FAND 189 LDSWAPAST
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TABLE 7-2 UltraSPARC Architecture 2007 Instruction Set - Alphabetical (2 of 2)

Page Instruction Page Instruction Page Instruction
213 LDTXAN 286 STTWAD P45t
208 LDTWP 266 STW
210 LDTWAD PASI 246 RDPRF 267 STWAPASI
205 LDUB 242 RDSOFTINT? 266 STX
189 LDUBAPAS! 242 RDSTICK_CMPR? 267 STXAPAS!
188 LDUH 242 RDSTICK!mpt 288 STXFSR
189 LDUHAPASI 242  RDTICK_CMPRF 290 SUB (SUBcc)
188 LDUW 242 RDTICKPmpt 290 SUBC (SUBCcc)
189 LDUWAPASI 250 RESTOREDF 292 SWAPAP; PASI
188  LDX 248 RESTOREF 291 SWAPP
189  LDXAPASI 251 RETRY? 294 TADDcc
253 RETURN 295 TADDccTVP
215 LDXFSR 257 SAVEDP 296 Tec
255 SAVET 299 TSUBcc
258  SDIVP (SDIVccP) 300 TSUBccTVP
217 MEMBAR 227 SDIVX 301 UDIVP (UDIVccP)
260 SETHI 227 UDIVX
303 UMULP (UMULccP)
220 MOVcc
305 WRASI
305 WRasrASR
223  MOVr 261 SIAM 305 WRCCR
262 SIRH
225 MULSccP 263 SLL 305 WREFPRS
227  MULX 263 SLLX 305 WRGSR
228 NOP 265 SMULP (SMULccP) 308 WRHPRH
229 NORMALW 263 SRA
230  OR (ORcc) 263 SRAX
230 ORN (ORNcc) 266 STB
231 OTHERW 267 STBAFPASI 308 WRPRF
305 WRSOFTINT_CLR?
232 PDIST 269 STBLOCKF 305 WRSOFTINT_SET
272 STDF 305 WRSOFTINT?
233  POPC 274  STDFAPASI 305 WRSTICK_CMPRP
235 PREFETCH 272 STF 305 WRSTICK?
235 PREFETCHAPAS! 274  STFAPASI 305 WRTICK_CMPR?
277  STESRP 305 WRYP
242 RDASI 266 STH
242 RDasrPASR 267 STHAPAS! 312 XNOR (XNORcc)
242 RDCCR 279  STPARTIALF 312 XOR (XORcc)
266 STB
242 RDFPRS 272 STQF
242 RDGSR 274  STQFAPASI
245 RDHPRH 282 STSHORTF
242 RDPC 284 STTWP
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TABLE 7-3 Instruction Set - by Functional Category (1 of 6)

Ext. to

Instruction Category and Function Page V9?
Data Movement Operations, Between R Registers
MOVcc Move integer register if condition is satisfied 220
MOVr Move integer register on contents of integer register 223
Data Movement Operations, Between F Registers
FMOV<s|d|q> Floating-point move 152
FMOV<sldlq>cc Move floating-point register if condition is satisfied 153
FMOV<sldlg>R Move {-p reg. if integer reg. contents satisfy condition 157
FSRC<112>[s] Copy source 177 VIS 1
Data Conversion Instructions
FiTO<s|d|g> Convert 32-bit integer to floating-point 145
F<sld1g>TOi Convert floating point to integer 180
F<sld1q>TOx Convert floating point to 64-bit integer 180
F<sld|g>TO<s!|dIqg> Convert between floating-point formats 181
FxTO<sld|q> Convert 64-bit integer to floating-point 184
Logical Operations on R Registers
AND (ANDcc) Logical and (and modify condition codes) 113
OR (ORcc) Inclusive-or (and modify condition codes) 230
ORN (ORNcc) Inclusive-or not (and modify condition codes) 230
XNOR (XNORcc) Exclusive-nor (and modify condition codes) 312
XOR (XORcc) Exclusive-or (and modify condition codes) 312
Logical Operations on F Registers
FANDs] Logical and operation 178 VIS 1
FANDNOT<1 |2>[s] Logical and operation with one inverted source 178 VIS 1
FNANDIs] Logical nand operation 178 VIS 1
FNOR([s] Logical nor operation 178 VIS 1
FNOT<112>[s] Copy negated source 177 VIS 1
FONE][s] One fill 176 VIS 1
FOR([s] Logical or operation 178 VIS 1
FORNOT<1 |2>[s] Logical or operation with one inverted source 178 VIS 1
FXNOR([s] Logical xnor operation 178 VIS 1
FXOR[s] Logical xor operation 178 VIS 1
FZERO[s] Zero fill 176 VIS 1
Shift Operations on R Registers
SLL Shift left logical 263
SLLX Shift left logical, extended 263
SRA Shift right arithmetic 263
SRAX Shift right arithmetic, extended 263
SRL Shift right logical 263
SRLX Shift right logical, extended 263
Special Addressing Operations

ALIGNADDRESS[_LITTLE] Calculate address for misaligned data 111 VIS 1
ARRAY<8116132> 3-D array addressing instructions 114 VIS 1
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TABLE 7-3 Instruction Set - by Functional Category (2 of 6)

Ext. to
Instruction Category and Function Page V9?
FALIGNDATA Perform data alignment for misaligned data 134 VIS 1

Control Transfers
Bicc Branch on integer condition codes 117
BPcc Branch on integer condition codes with prediction 120
BPr Branch on contents of integer register with prediction 122
CALL Call and link 124
DONE? Return from trap 127
FBfccP Branch on floating-point condition codes 135
FBPfcc Branch on floating-point condition codes with prediction 137
ILLTRAP Illegal instruction 185
JMPL Jump and link 187
RETRY? Return from trap and retry 251
RETURN Return 253
SIRH Software-initiated reset 262
Tec Trap on integer condition codes 296
Byte Permutation
BMASK Set the GSR.mask field 119 VIS 2
BSHUFFLE Permute bytes as specified by GSR.mask 119 VIS 2
Data Formatting Operations on F Registers
FEXPAND Pixel expansion 144 VIS 1
FPACK<16 |32 | FIX> Pixel packing 166 VIS 1
FPMERGE Pixel merge 173 VIS 1
Memory Operations to/from F Registers
LDBLOCKFP Block loads 192 VISt
STBLOCKF Block stores 269 VIS 1
LDDF Load double floating-point 195
LDDFAFss! Load double floating-point from alternate space 197
LDF Load floating-point 195
LDFAPast Load floating-point from alternate space 197
LDQF Load quad floating-point 195
LDQFAFas! Load quad floating-point from alternate space 197
LDSHORTF Short floating-point loads 203 VIS 1
STDF Store double floating-point 272
STDFAPs! Store double floating-point into alternate space 274
STF Store floating-point 272
STEAPast Store floating-point into alternate space 274
STPARTIALF Partial Store instructions 279 VIS 1
STQF Store quad floating point 272
STQFAPast Store quad floating-point into alternate space 274
STSHORTF Short floating-point stores 282 VIS 1
Memory Operations — Miscellaneous

LDFSRP Load floating-point state register (lower) 201
LDXFSR Load floating-point state register 215
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TABLE 7-3 Instruction Set - by Functional Category (3 of 6)

Ext. to
Instruction Category and Function Page V9?
MEMBAR Memory barrier 217
PREFETCH Prefetch data 235
PREFETCHAP»st Prefetch data from alternate space 235
STFSRP Store floating-point state register (lower) 277
STXFSR Store floating-point state register 288
Atomic (Load-Store) Memory Operations to/from R Registers
CASAPast Compare and swap word in alternate space 125
CASXAPast Compare and swap doubleword in alternate space 125
LDSTUB Load-store unsigned byte 205
LDSTUBAP»st Load-store unsigned byte in alternate space 206
SWAPP Swap integer register with memory 291
SWAPAD: Past Swap integer register with memory in alternate space 292
Memory Operations to/from R Registers
LDSB Load signed byte 188
LDSBAPast Load signed byte from alternate space 189
LDSH Load signed halfword 188
LDSHAPs! Load signed halfword from alternate space 189
LDSW Load signed word 188
LDSWAPast Load signed word from alternate space 189
LDTXAN Load integer twin extended word from alternate space 213 VIS 2+
LDTWD: Pasi Load integer twin word 208
LDTWAP” Past Load integer twin word from alternate space 210
LDUB Load unsigned byte 205
LDUBADPs! Load unsigned byte from alternate space 189
LDUH Load unsigned halfword 188
LDUHAPs! Load unsigned halfword from alternate space 189
LDUW Load unsigned word 188
LDUWAPast Load unsigned word from alternate space 189
LDX Load extended 188
LDXAPast Load extended from alternate space 189
STB Store byte 266
STBAPast Store byte into alternate space 267
STTWP Store twin word 284
STTWAD Past Store twin word into alternate space 286
STH Store halfword 266
STHAPast Store halfword into alternate space 267
STW Store word 266
STWAPas! Store word into alternate space 267
STX Store extended 266
STXAPast Store extended into alternate space 267
Floating-Point Arithmetic Operations

FABS<s!dlqg> Floating-point absolute value 132
FADD<s|dlg> Floating-point add 133
FDIV<sldlg> Floating-point divide 143
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TABLE 7-3 Instruction Set - by Functional Category (4 of 6)

Ext. to
Instruction Category and Function Page V9?
FdMULq Floating-point multiply double to quad 164
FMADD(s,d) Floating-point multiply-add single/double (fused) 150
FMSUB(s,d) Floating-point multiply-subtract single/double (fused) 150
FMUL<s |d | q> Floating-point multiply 164
FNMADD(s,d) Floating-point negative multiply-add single/double (fused) 150
FNEG<sldlqg> Floating-point negate 165
FNMSUB(s,d) Floating-point negative multiply-subtract single/double (fused) 150
FsMULd Floating-point multiply single to double 164
FSQRT<s|d | q> Floating-point square root 179
FSUB<s|d|qg> Floating-point subtract 183

Floating-Point Comparison Operations
FCMP*<16,32> Compare four 16-bit signed values or two 32-bit signed values 139 VIS 1
FCMP<sId|q> Floating-point compare 141
FCMPE<s Id I g> Floating-point compare (exception if unordered) 141
Register-Window Control Operations
ALLCLEAN? Mark all register window sets as “clean” 112
INVALWF Mark all register window sets as “invalid” 186
FLUSHW Flush register windows 149
NORMALW? “Other” register windows become “normal” register windows 229
OTHERW? “Normal” register windows become “other” register windows 231
RESTORE Restore caller’s window 248
RESTORED” Window has been restored 250
SAVE Save caller’s window 255
SAVEDF Window has been saved 257
Miscellaneous Operations
FLUSH Flush instruction memory 146
NOP No operation 228
Integer SIMD Operations on F Registers
FPADD<16,32>[S] Fixed-point partitioned add 171 VIS 1
FPSUB<16,32>[S] Fixed-point partitioned subtract 174 VIS 1
Integer Arithmetic Operations on R Registers

ADD (ADDcc) Add (and modify condition codes) 110
ADDC (ADDCcc) Add with carry (and modify condition codes) 110
MULSccP Multiply step (and modify condition codes) 225
MULX Multiply 64-bit integers 227
SDIVP (SDIVecP) 32-bit signed integer divide (and modify condition codes) 258
SDIVX 64-bit signed integer divide 227
SMULP (SMULccP) Signed integer multiply (and modify condition codes) 265
SUB (SUBcc) Subtract (and modify condition codes) 290
SUBC (SUBCcc) Subtract with carry (and modify condition codes) 290
TADDcc Tagged add and modify condition codes (trap on overflow) 294
TADDccTVP Tagged add and modify condition codes (trap on overflow) 295
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TABLE 7-3 Instruction Set - by Functional Category (5 of 6)

Ext. to
Instruction Category and Function Page V9?
TSUBcc Tagged subtract and modify condition codes (trap on overflow) 299
TSUBccTVP Tagged subtract and modify condition codes (trap on overflow) 300
UDIVP (UDIVCCD) Unsigned integer divide (and modify condition codes) 301
UDIVX 64-bit unsigned integer divide 227
UMULP (UMULccP) Unsigned integer multiply (and modify condition codes) 303

Integer Arithmetic Operations on F Registers
FMULS8x16 8x16 partitioned product 159 VIS 1
FMULS8x16[AU | AL] 8x16 upper/lower a partitioned product 159 VIS 1
FMULS[SU | UL]x16 8x16 upper/lower partitioned product 159 VIS 1
FMULDS[SU | UL]x16 8x16 upper/lower partitioned product 159 VIS 1
Miscellaneous Operations on R Registers
POPC Population count 233
SETHI Set high 22 bits of low word of integer register 260
Miscellaneous Operations on F Registers
EDGE<8116132>[L]cc Edge handling instructions (and modify condition codes) 129 VIS 1
EDGE<8116132>[L]N Edge handling instructions 131 VIS 2
PDIST Pixel component distance 232 VIS 1
Control and Status Register Access

RDASI Read ASI register 242
RDasrPAsk Read ancillary state register 242
RDCCR Read Condition Codes register (CCR) 242
RDFPRS Read Floating-Point Registers State register (FPRS) 242
RDGSR Read General Status register (GSR) 242
RDPC Read Program Counter register (PC) 242
RDHPRH Read hyperprivileged register 245
RDPRP Read privileged register 246
RDSOFTINT? Read per-virtual processor Soft Interrupt register (SOFTINT) 242
RDSTICK wt Read System Tick register (STICK) 242
RDSTICK_CMPRY Read System Tick Compare register (STICK_CMPR) 242
RDTICK et Read Tick register (TICK) 242
RDTICK_CMPR? Read Tick Compare register (TICK_CMPR) 242
RDYP Read Y register 242
SIAM Set interval arithmetic mode 261 VIS 2
WRASI Write ASI register 305
WRasrPAsk Write ancillary state register 305
WRCCR Write Condition Codes register (CCR) 305
WRFPRS Write Floating-Point Registers State register (FPRS) 305
WRGSR Write General Status register (GSR) 305
WRHPR! Write hyperprivileged register 308
WRPRP Write privileged register 308
WRSOFTINT? Write per-virtual processor Soft Interrupt register (SOFTINT) 305
WRSOFTINT_CLRF Clear bits of per-virtual processor Soft Interrupt register (SOFTINT) 305
WRSOFTINT_SET? Set bits of per-virtual processor Soft Interrupt register (SOFTINT) 305
WRTICK_CMPRF Write Tick Compare register (TICK_CMPR) 305
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TABLE 7-3 Instruction Set - by Functional Category (6 of 6)

Ext. to
Instruction Category and Function Page V9?
WRSTICK" Write System Tick register (STICK) 305
WRSTICK_CMPR” Write System Tick Compare register (STICK_CMPR) 305
WRYP Write Y register 305
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In the remainder of this chapter, related instructions are grouped into subsections. Each subsection
consists of the following sets of information:

(1) Instruction Table.

This section of an instruction page lists the instructions that are defined in

the subsection, including the values of the field(s) that uniquely identify the instruction(s) and its
assembly language syntax. In the rightmost column, Software (alphabetic) and Implementation
(numeric) classifications for the instructions are provided. The meaning of the alphabetic Software
Classifications is as follows:

Software How this feature
Usage Class may be used Attributes
A Use freely. Compilers always free to use (no option to disable use).
Executes well across all implementations.
“Use Freely”
B Use with care/ Usage is being phased in.
forethought in A compiler option exists to enable/disable references to this
“Use portable software feature; by default, use is enabled.
Carefully”
C Use only in New feature; usage is being phased in.

“New Feature”

D

“Deprecated”

N

“Non-portable
(platform-
specific)”

platform-specific
software
(privileged code,
DLLs, and
non-portable
applications)

Use in portable

software is strongly

discouraged.

Only use in
platform-specific
software
(privileged code,
hyperprivileged
code, DLLs, JIT
code, and [if
absolutely
necessary]
non-portable
applications)

A compiler optiont exists to enable/disable references to this
feature; by default, use is disabled.

An assembler optiont exists to enable/disable references to this
feature; by default, use is disabled. If use is enabled, reference to
feature triggers a warning; if disabled, reference triggers an error
message.

Usage is being phased out and this feature may not perform as
well in future implementations.

A compiler optiont exists to enable/disable use of this feature;
by default, use is disabled.

An assembler optiont exists to enable/disable references to this
feature; by default, use is disabled. If use is enabled, reference to
feature triggers a warning; if disabled, reference triggers an error
message.

A compiler optiont exists to enable/disable references to this
feature; by default, use is disabled.

An assembler optiont exists to enable/disable references to this
feature; by default, use is disabled. If use is enabled, reference to
feature triggers a warning; if disabled, reference triggers an error
message.

(2) Illustration of Instruction Format(s).

These illustrations show how the instruction is encoded

in a 32-bit word in memory. In them, a dash (—) indicates that the field is reserved for future versions
of the architecture and must be 0 in any instance of the instruction. If a conforming UltraSPARC
Architecture implementation encounters nonzero values in these fields, its behavior is as defined in
Reserved Opcodes and Instruction Fields on page 97.
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(3) Description. This subsection describes the operation of the instruction, its features, restrictions,
and exception-causing conditions.

(4) Exceptions. The exceptions that can occur as a consequence of attempting to execute the
instruction(s). Exceptions due to an IAE_*, fast_instruction_access_MMU_miss,
instruction_access_error, fast_ECC_error, ECC_error (corrected ECC_error), WDR, and interrupts are
not listed because they can occur on any instruction. An instruction not implemented in hardware
generates an illegal_instruction exception and therefore will not generate any of the other exceptions
listed. Exceptions are listed in order of trap priority (see Trap Priorities on page 396), from highest to
lowest priority.

(5) See Also. A list of related instructions (on selected pages).

Note | This specification does not contain any timing information (in
either cycles or elapsed time), since timing is always
implementation dependent.
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ADD

7.1 Add

Instruction op3 Operation Assembly Language Syntax Class
ADD 00 0000 Add add regrs1, reg_or_imm, regyy Al
ADDcc 01 0000 Add and modify cc’s addcc  regs1, reg_or_imm, regyg Al
ADDC 00 1000 Add with 32-bit Carry addc regsy, reg_or_imm, regy Al
ADDCcc 011000 Add with 32-bit Carry and modify cc’saddccc reg,sy, reg_or_imm, regy Al

10 rd op3 rsl i= — rs2

10 rd op3 rsl i=1 simm13

31 30 29 25 24 19 18 14 13 12 5 4 0

Description ~ 1f i =0, ADD and ADDcc compute “R[rs1] + R[rs2]”. If i = 1, they compute
“R[rs1] + sign_ext( simm13)”. In either case, the sum is written to R[rd].

ADDC and ADDCcc (“ADD with carry”) also add the CCR register’s 32-bit carry (icc.c) bit. That is, if
i =0, they compute “R[rs1] + R[rs2] + icc.c” and if i = 1, they compute
“R[rs1] + sign_ext( simm13) + icc.c”. In either case, the sum is written to R[rd].

ADDcc and ADDCcc modify the integer condition codes (CCR.icc and CCR.xcc). Overflow occurs on
addition if both operands have the same sign and the sign of the sum is different from that of the
operands.

Programming
Note

ADDC and ADDCcc read the 32-bit condition codes’ carry bit
(CCRucc.c), not the 64-bit condition codes’ carry bit (CCR.xcc.c).

SPARC V8
Compatibility
Note

ADDC and ADDCcc were previously named ADDX and
ADDXcc, respectively, in SPARC V8.

An attempt to execute an ADD, ADDcc, ADDC or ADDCcc instruction when i = 0 and reserved
instruction bits 12:5 are nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction
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ALIGNADDRESS

7.2

Align Address

Instruction opf Operation Assembly Language Syntax Class  Added
ALIGNADDRESS 00001 1000 Calculate address for misaligned  al i gnaddr regs1, 7€8rs2,  7€8rg Al UA 2005
data access
ALIGNADDRESS_ 000011010  Calculate address for misaligned  al i gnaddr| regs1, regrs2,  7€grg Al UA 2005
LITTLE data access, little-endian
10 rd | 110110 rsl opf rs2
3T 30 29 25 24 19 18 7 13 5 2 0
Description ALIGNADDRESS adds two integer values, R[rs1] and R[rs2], and stores the result (with the least
significant 3 bits forced to 0) in the integer register R[rd]. The least significant 3 bits of the result are
stored in the GSR.align field.
ALIGNADDRESS_LITTLE is the same as ALIGNADDRESS except that the two’s complement of the
least significant 3 bits of the result is stored in GSR.align.
Note | ALIGNADDRESS_LITTLE generates the opposite-endian byte
ordering for a subsequent FALIGNDATA operation.
A byte-aligned 64-bit load can be performed as shown below.
al i gnaddr Address, Offset, Address !set GSR. align
| dd [ Address] , %0
| dd [ Address + 8], %2
faligndata %0, %2, %4 luse GSR. align to sel ect bytes
If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an ALIGNADDRESS or ALIGNADDRESS_LITTLE instruction causes an
fp_disabled exception.
Exceptions fp_disabled
See Also Align Data on page 134
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ALLCLEAN

7.3 Mark All Register Window Sets “Clean”

Instruction Operation Assembly Language Syntax Class Added
ALLCLEAN"  Mark all register window sets as “clean”  al | cl ean Al UA 2005
10 | fcn=00010 11 0001 —
31 30 29 25 24 19 18 0

Description The ALLCLEAN instruction marks all register window sets as “clean”; specifically, it performs the
following operation:

CLEANWIN « (N_REG_WINDOWS — 1)

Programming | ALLCLEAN is used to indicate that all register windows are

Note | “clean”; that is, do not contain data belonging to other address
spaces. It is needed because the value of N_REG_WINDOWS is not
known to privileged software.

This instruction allows window manipulations to be atomic,
without the value of N_REG_WINDOWS being visible to privileged
software and without an assumption that N_REG_WINDOWS is
constant (since hyperprivileged software can migrate a thread
among virtual processors, across which N_REG_WINDOWS may
vary).

An attempt to execute an ALLCLEAN instruction when reserved instruction bits 18:0 are nonzero
causes an illegal_instruction exception.

An attempt to execute an ALLCLEAN instruction in nonprivileged mode (PSTATE.priv = 0 and
HSTATE.hpriv = 0) causes a privileged_opcode exception.

Exceptions
illegal_instruction
privileged_opcode

See Also INVALW on page 186
NORMALW on page 229
OTHERW on page 231

RESTORED on page 250
SAVED on page 257
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AND, ANDN

7.4

AND Logical Operation

Instruction op3 Operation Assembly Language Syntax Class
AND 00 0001 and and regrs1, reg_or_imm, regyy Al
ANDcc 01 0001 and and modify cc’s andcc  reg.gp, reg_or_imm, tegyg Al
ANDN 00 0101 and not andn regrs1, reg_or_imm, regyq Al
ANDNCcc 010101 and not and modify cc’s andncc reggy, reg_or_imm, regyy Al
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description These instructions implement bitwise logical and operations. They compute “R[rs1] op R[rs2]” if i = 0,
or “R[rs1] op sign_ext( simm13)” if i = 1, and write the result into R[rd].
ANDcc and ANDNcc modify the integer condition codes (icc and xcc). They set the condition codes
as follows:
= icc.y, icc.c, xce.v, and xcc.c are set to 0
» icc.n is copied from bit 31 of the result
» Xcc.n is copied from bit 63 of the result
= icc.z is set to 1 if bits 31:0 of the result are zero (otherwise to 0)
= XccC.z is set to 1 if all 64 bits of the result are zero (otherwise to 0)
ANDN and ANDNcc logically negate their second operand before applying the main (and) operation.
An attempt to execute an AND, ANDcc, ANDN or ANDNCcc instruction when i = 0 and reserved
instruction bits 12:5 are nonzero causes an illegal_instruction exception.
Exceptions illegal_instruction
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ARRAY<8|16|32>

7.5 Three-Dimensional Array Addressing

Instruction  opf Operation Assembly Language Syntax Class Added

ARRAY8 000010000  Convert 8-bit 3D address to blocked byte address array8 regrs1, regrs2y regrq Bl UA 2005
ARRAY16 000010010  Convert 16-bit 3D address to blocked byte address arrayl6 regis1, regrs2y regrq Bl UA 2005
ARRAY32 000010100  Convert 32-bit 3D address to blocked byte address array32 regrs1, regrs2y regrq Bl UA 2005

10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description These instructions convert three-dimensional (3D) fixed-point addresses contained in R[rs1] to a
blocked-byte address; they store the result in R[rd]. Fixed-point addresses typically are used for
address interpolation for planar reformatting operations. Blocking is performed at the 64-byte level to
maximize external cache block reuse, and at the 64-Kbyte level to maximize TLB entry reuse,

regardless of the orientation of the address interpolation. These instructions specify an element size of
8 bits (ARRAYS), 16 bits (ARRAY16), or 32 bits (ARRAY32).

The second operand, R[rs2], specifies the power-of-2 size of the X and Y dimensions of a 3D image
array. The legal values for R[rs2] and their meanings are shown in TABLE 7-4. Illegal values produce
undefined results in the destination register, R[rd].

TABLE7-4 3D R[rs2] Array X and Y Dimensions
R[rs2] Value (n) Number of Elements
0 64
128
256
512
1024
2048

Ul W N =

Implementation | Architecturally, an illegal R[rs2] value (>5) causes the array
Note | instructions to produce undefined results. For historic reference,
past implementations of these instructions have ignored
R[rs2]{63:3} and have treated R[rs2] values of 6 and 7 as if they
were 5.

The array instructions facilitate 3D texture mapping and volume rendering by computing a memory
address for data lookup based on fixed-point X, y, and z coordinates. The data are laid out in a
blocked fashion, so that points which are near one another have their data stored in nearby memory
locations.

If the texture data were laid out in the obvious fashion (the z = 0 plane, followed by the z = 1 plane,
etc.), then even small changes in z would result in references to distant pages in memory. The
resulting lack of locality would tend to result in TLB misses and poor performance. The three versions
of the array instruction, ARRAY8, ARRAY16, and ARRAY32, differ only in the scaling of the computed
memory offsets. ARRAY16 shifts its result left by one position and ARRAY32 shifts left by two in
order to handle 16- and 32-bit texture data.

When using the array instructions, a “blocked-byte” data formatting structure is imposed. The N x N
x M volume, where N = 2" x 64, M = m % 32,0 < n <5, 1 < m <16 should be composed of 64 x 64 x 32
smaller volumes, which in turn should be composed of 4 x 4 x 2 volumes. This data structure is
optimal for 16-bit data. For 16-bit data, the 4 x 4 x 2 volume has 64 bytes of data, which is ideal for
reducing cache-line misses; the 64 x 64 x 32 volume will have 256 Kbytes of data, which is good for
improving the TLB hit rate. FIGURE 7-1 illustrates how the data has to be organized, where the origin
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ARRAY<8|16|32>

(0,0,0) is assumed to be at the lower-left front corner and the x coordinate varies faster than y than z.
That is, when traversing the volume from the origin to the upper right back, you go from left to right,
front to back, bottom to top.

z |
A |
|
I
M=m X 32 I
|
| Y
| b 4
Ve
|
N=2"x 64 e e e e | - — — —
/
I /
16x2=32 Z _
T ——— 16 % 4= 64
. —_
A
X
0o 4 16 X 4= 64 N=2"x64 >

FIGURE 7-1 Blocked-Byte Data Formatting Structure

The array instructions have 2 inputs:

The (x,y,z) coordinates are input via a single 64-bit integer organized in R[rs1] as shown in FIGURE 7-2.

Z integer Z fraction Y integer Y fraction| X integer X fraction
63 55 54 44 43 33 32 22 21 11 10 0

FIGURE 7-2 Three-Dimensional Array Fixed-Point Address Format

Note that z has only 9 integer bits, as opposed to 11 for x and y. Also note that since (x,y,z) are all
contained in one 64-bit register, they can be incremented or decremented simultaneously with a single
add or subtract instruction (ADD or SUB).

So for a 512 x 512 x 32 or a 512 x 512 x 256 volume, the size value is 3. Note that the x and y size of
the volume must be the same. The z size of the volume is a multiple of 32, ranging between 32 and
512.

The array instructions generate an integer memory offset, that when added to the base address of the
volume, gives the address of the volume element (voxel) and can be used by a load instruction. The
offset is correct only if the data has been reformatted as specified above.

The integer parts of x, y, and z are converted to the following blocked-address formats as shown in
FIGURE 7-3 for ARRAY8, FIGURE 7-4 for ARRAY16, and FIGURE 7-5 for ARRAY32.

UPPER MIDDLE LOWER
z Y X Z Y X Z Y X
20 17 17 17 13 9 5 4 2 0
+2n +2n +n

FIGURE 7-3 Three-Dimensional Array Blocked-Address Format (ARRAYS)
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ARRAY<8|16|32>

UPPER MIDDLE LOWER
0
z Y X VA Y X Zz Y X
21 18 18 18 14 10 6 5 3 1 0
+2n +2n +n
FIGURE 7-4 Three-Dimensional Array Blocked-Address Format (ARRAY16)
UPPER MIDDLE LOWER
00
z Y X z Y X Zz Y X
22 19 19 19 15 11 7 6 5 4 3 21 0
+2n +2n +n

FIGURE 7-5 Three Dimensional Array Blocked-Address Format (ARRAY32)

The bits above Z upper are set to 0. The number of zeroes in the least significant bits is determined by
the element size. An element size of 8 bits has no zeroes, an element size of 16 bits has one zero, and
an element size of 32 bits has two zeroes. Bits in X and Y above the size specified by R[rs2] are
ignored.

TABLE7-5  ARRAYS8 Description

Result (R[rd]) Bits Source (R[rs1] Bits Field Information

1:0 12:11 X_integer{1:0}

3:2 34:33 Y_integer{1:0}

4 55 Z_integer{0}

8:5 16:13 X_integer{5:2}

12:9 38:35 Y_integer{5:2}
16:13 59:56 Z_integer{4:1}
17+n-1:17 17+n-1:17 X_integer{6+1-1:6}
17+2n-1:17+n 39+n-1:39 Y_integer{6+71-1:6}
20+2n:17+2n 63:60 Z_integer{8:5}
63:20+2n+1 n/a 0

In the above description, if n = 0, there are 64 elements, so X_integer{6} and Y_integer{6} are not
defined. That is, result{20:17} equals Z_integer{8:5}.

Note | To maximize reuse of external cache and TLB data, software
should block array references of a large image to the 64-Kbyte
level. This means processing elements within a 32 x 32 x 64
block.

The code fragment below shows assembly of components along an interpolated line at the rate of one
component per clock.

add Addr, DeltaAddr, Addr
array8 Addr, %90, bAddr
| dda [ bAddr] #ASI _FL8_ PRI MARY, data
faligndata data, accum, accum
Exceptions None
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7.6

Bicc

Branch on Integer Condition Codes (Bicc)

Assembly Language

Opcode cond  Operation icc Test Syntax Class
BA 1000 Branch Always 1 ba{, a} label Al
BN 0000 Branch Never 0 bn{, a} label Al
BNE 1001  Branch on Not Equal not Z bne'{, a} label Al
BE 0001 Branch on Equal 4 be{,a} label Al
BG 1010  Branch on Greater not (Z or (N xor V)) bg{, a} label Al
BLE 0010 Branch on Less or Equal Z or (N xor V) bl e{,a} label Al
BGE 1011  Branch on Greater or Equal not (N xor V) bge{, a} label Al
BL 0011 Branch on Less N xor V bl {, a} label Al
BGU 1100 Branch on Greater Unsigned not (C or Z) bgu{, a} label Al
BLEU 0100 Branch on Less or Equal Unsigned CorZ bl eu{, a} label Al
BCC 1101  Branch on Carry Clear (Greater Than not C bc CO{ ,a} label Al
or Equal, Unsigned)
BCS 0101  Branch on Carry Set (Less Than, Unsigned) C besH{, a} label Al
BPOS 1110 Branch on Positive not N bpos{, a} label Al
BNEG 0110 Branch on Negative N bneg{, a} label Al
BVC 1111 Branch on Overflow Clear not V bvc{,a} label Al
BVS 0111  Branch on Overflow Set \Y bvs{, a} label Al
* synonym: bnz ¥ synonym: bz synonym: bgeu U synonym: bl u
00 |a cond 010 disp22
3130 29 28 25 24 22 21 0

Programming | To set the annul (a) bit for Bicc instructions, append “, a” to the
Note | opcode mnemonic. For example, use “bgu, a label”. In the
preceding table, braces signify that the “, a” is optional.

Unconditional branches and icc-conditional branches are described below:

= Unconditional branches (BA, BN) — If its annul bit is 0 (a = 0), a BN (Branch Never) instruction is
treated as a NOP. If its annul bit is 1 (a = 1), the following (delay) instruction is annulled (not
executed). In neither case does a transfer of control take place.

BA (Branch Always) causes an unconditional PC-relative, delayed control transfer to the address
“PC + (4 x sign_ext( disp22) )”. If the annul (a) bit of the branch instruction is 1, the delay
instruction is annulled (not executed). If the annul bit is 0 (a = 0), the delay instruction is executed.

= icc-conditional branches — Conditional Bicc instructions (all except BA and BN) evaluate the 32-
bit integer condition codes (icc), according to the cond field of the instruction, producing either a
TRUE or FALSE result. If TRUE, the branch is taken, that is, the instruction causes a PC-relative,
delayed control transfer to the address “PC + (4 x sign_ext( disp22) )”. If FALSE, the branch is not
taken.
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Bicc

If a conditional branch is taken, the delay instruction is always executed regardless of the value of
the annul field. If a conditional branch is not taken and the annul bit is 1 (a = 1), the delay
instruction is annulled (not executed).

Note | The annul bit has a different effect on conditional branches than
it does on unconditional branches.

Annulment, delay instructions, and delayed control transfers are described further in Chapter 6,
Instruction Set Overview.

If the Trap on Control Transfer feature is implemented (impl. dep. #450-520), PSTATE.tct = 1, and the
Bicc instruction will cause a transfer of control (BA or taken conditional branch), then Bicc generates a
control_transfer_instruction exception instead of causing a control transfer. When a
control_transfer_instruction trap occurs, PC (the address of the Bicc instruction) is stored in TPC[TL]
and the value of NPC from before the Bicc was executed is stored in TNPC[TL].

Note that BN never causes a control_transfer_instruction exception.

Exceptions control_transfer_instruction (impl. dep. #450-520)
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BMASK / BSHUFFLE

7.7

Byte Mask and Shuffle

Instruction opf

Operation Assembly Language Syntax Class Added

BMASK 00001 1001 Set the GSR.mask field in preparation bmask regrs1s 1eSrs2, 1€Srd B1 UA 2007

for a subsequent BSHUFFLE instruction

BSHUFFLE 00100 1100 Permute 16 bytes as specified by GSR.mask  bshuffle fregs, fregrso, fregg B1  UA 2007

rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
Description BMASK adds two integer registers, R[rs1] and R[rs2], and stores the result in the integer register
R[rd]. The least significant 32 bits of the result are stored in the GSR.mask field.
BSHUFFLE concatenates the two 64-bit floating-point registers Fp[rs1] (more significant half) and
Fplrs2] (less significant half) to form a 128-bit (16-byte) value. Bytes in the concatenated value are
numbered from most significant to least significant, with the most significant byte being byte 0.
BSHUFFLE extracts 8 of those 16 bytes and stores the result in the 64-bit floating-point register Fp[rd].
Bytes in Fp[rd] are also numbered from most to least significant, with the most significant being byte
0. The following table indicates which source byte is extracted from the concatenated value to
generate each byte in the destination register, Fp[rd].
Destination Byte (in F[rd])  Source Byte
0 (most significant)  (Fp[rs1] :: Fp[[rs2]) {GSR.mask{31:28}}
1 (Fpllrsi] : Fpllrs2]) {GSR.mask{27:24}}
2 (Fpllrs1] :: Fpllrs2]) {GSR.mask{23:20}}
3 (Fpllrs1] :: Fpllrs2]) {GSR.mask{19:16}}
4 (Fpllrs1] :: Fpllrs2]) {GSR.mask{15:12}}
5 (Fpllrs1] :: Fp[[rs2]) {GSR.mask{11:8}}
6 (Fpllrs1] :: Fpllrs2]) {GSR.mask{7:4}}
7 (least significant)  (Fp[[rs1] :: Fp[[rs2]) {GSR.mask{3:0}}
If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute a BMASK or BSHUFFLE instruction causes an fp_disabled exception.
Exceptions fp_disabled
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7.8

BPcc

Branch on Integer Condition Codes with
Prediction (BPcc)

Instructioncond Operation cc Test Assembly Language Syntax Class
BPA 1000 Branch Always 1 ba{, a}{, pt I, pn} i_or_x_cc, label Al
BPN 0000 Branch Never 0 bn{, a}{, pt I, pn} i_or_x_cc, label Al
BPNE 1001 Branch on Not Equal not Z bnet{, a}{, pt |, pn} i_or_x_cc, label Al
BPE 0001 Branch on Equal Z bet{, a}){, pt I, pn} ior_x_cc, label Al
BPG 1010 Branch on Greater not (Z or bg{, a}{, pt I, pn} i_or_x_cc, label Al
(N xor V))
BPLE 0010 Branch on Less or Equal Zor (N xor V) blef{,a}{,pt!l,pn} ior_x_cc, label Al
BPGE 1011 Branch on Greater or Equal not (N xor V) bge{, a}{, pt I, pn} i_or_x_cc, label Al
BPL 0011 Branch on Less N xor V bl {, a}{, pt I, pn} i_or_x_cc, label Al
BPGU 1100 Branch on Greater Unsigned not (C or Z) bgu{, a}{, pt |, pn} i_or_x_cc, label Al
BPLEU 0100 Branch on Less or Equal Unsigned C or Z bl eu{, a}{, pt I, pn} i_or_x_cc, label Al
BPCC 1101 Branch on Carry Clear not C bcedf, al{, pt |, pn} i_or_x_cc, label Al
(Greater than or Equal, Unsigned)
BPCS 0101 Branch on Carry Set C becsOf, a}{, pt |, pn}i_or_x_cc, label Al
(Less than, Unsigned)
BPPOS 1110 Branch on Positive not N bpos{, a}{, pt |, pn} i_or_x_cc, label Al
BPNEG 0110 Branch on Negative N bneg{, a}{, pt |, pn} i_or_x_cc, label Al
BPVC 1111 Branch on Overflow Clear not V bvc{, al{, pt |, pn} i_or_x_cc, label Al
BPVS 0111 Branch on Overflow Set \Y% bvs{, al{, pt I, pn} i_or_x_cc, label Al
t synonym: bnz T synonym: bz ¢ synonym: bgeu O synonym: bl u
00 |a cond 001 |ccifccO| p disp19
3130 29 28 25 24 22 21 20 19 18
ccl cc0 Condition Code
0 0 icc
0 1 —
1 0 Xcc
1 1 —
Programming | To set the annul (a) bit for BPcc instructions, append “, a” to the
Note | opcode mnemonic. For example, use bgu, a % cc, label. Braces in
the preceding table signify that the “, a” is optional. To set the
branch prediction bit, append to an opcode mnemonic either
“, pt” for predict taken or “, pn” for predict not taken. If neither
“, pt ” nor “, pn” is specified, the assembler defaults to “,pt . To
select the appropriate integer condition code, include “% cc” or
“o%cc” before the label.
Description Unconditional branches and conditional branches are described below.
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Exceptions

See Also

BPcc

= Unconditional branches (BPA, BPN) — A BPN (Branch Never with Prediction) instruction for this
branch type (0p2 = 1) may be used in the SPARC V9 architecture as an instruction prefetch; that is,
the effective address (PC + (4 x sign_ext( disp19))) specifies an address of an instruction that is
expected to be executed soon. If the Branch Never’s annul bit is 1 (a = 1), then the following (delay)
instruction is annulled (not executed). If the annul bit is 0 (a = 0), then the following instruction is
executed. In no case does a Branch Never cause a transfer of control to take place.

BPA (Branch Always with Prediction) causes an unconditional PC-relative, delayed control transfer
to the address “PC + (4 x sign_ext( disp19))”. If the annul bit of the branch instruction is 1 (a =1),
then the delay instruction is annulled (not executed). If the annul bit is 0 (a = 0), then the delay
instruction is executed.

= Conditional branches — Conditional BPcc instructions (except BPA and BPN) evaluate one of the
two integer condition codes (icc or xcc), as selected by ccO and ccl, according to the cond field of
the instruction, producing either a TRUE or FALSE result. If TRUE, the branch is taken; that is, the
instruction causes a PC-relative, delayed control transfer to the address
“PC + (4 x sign_ext( disp19))”. If FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed regardless of the value of
the annul (a) bit. If a conditional branch is not taken and the annul bit is 1 (a = 1), the delay
instruction is annulled (not executed).

Note | The annul bit has a different effect on conditional branches than
it does on unconditional branches.

The predict bit (p) is used to give the hardware a hint about whether the branch is expected to be
taken. A 1 in the p bit indicates that the branch is expected to be taken; a 0 indicates that the branch
is expected not to be taken.

Annulment, delay instructions, prediction, and delayed control transfers are described further in
Chapter 6, Instruction Set Overview.

An attempt to execute a BPcc instruction with cc0 =1 (a reserved value) causes an illegal_instruction
exception.

If the Trap on Control Transfer feature is implemented (impl. dep. #450-520), PSTATE.tct = 1, and the
BPcc instruction will cause a transfer of control (BPA or taken conditional branch), then BPcc
generates a control_transfer_instruction exception instead of causing a control transfer. When a
control_transfer_instruction trap occurs, PC (the address of the BPcc) is stored in TPC[TL] and the
value of NPC from before the BPcc was executed is stored in TNPC[TL].

Note that BPN never causes a control_transfer_instruction exception.

illegal_instruction
control_transfer_instruction (impl. dep. #450-520)

Branch on Integer Register with Prediction (BPr) on page 122
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BPr

7.9

BranchonInteger Register with Prediction (BPr)

Register
Contents
Instruction rcond  Operation Test Assembly Language Syntax Class
— 000 Reserved — —
BRZ 001 Branch on Register Zero Rlrs1]=0 brz {, a}{,pt |, pn} reggs, label Al
BRLEZ 010 Branch on Register Less Than or Equal R[rs1]<0 brlez {, a}{, pt |, pn} reg.s1, label Al
to Zero
BRLZ 011 Branch on Register Less Than Zero Rlrs1] <0 brlz {, a}{,pt |, pn} reg.s1, label Al
— 100 Reserved — —
BRNZ 101 Branch on Register Not Zero Rlrs1]#0 brnz {, a}{, pt |, pn} reg.s1, label Al
BRGZ 110 Branch on Register Greater Than Zero R[rs1] >0 brgz {, a}{, pt |, pn} reg.s1, label Al
BRGEZ 111 Branch on Register Greater Than or  R[rs1] 20 brgez {, a}{, pt |, pn} reg.s1, label Al
Equal to Zero
00 [a|0"| rcond 011 [d16hi|p rsl d16lo
3130 29 28 27 25 24 22 21 20 19 18 14 13 0
" Although SPARC V9 implementations should cause an illegal_instruction exception when bit 28 = 1, some early implementations
ignored the value of this bit and executed the opcode as a BPr instruction even if bit 28 = 1.
Programming | To set the annul (a) bit for BPr instructions, append “, a” to the
Note | opcode mnemonic. For example, use “brz, a % 3, label.” In the
preceding table, braces signify that the “, a” is optional. To set the
branch prediction bit p, append either “, pt ” for predict taken or
“, pn” for predict not taken to the opcode mnemonic. If neither
“, pt” nor “, pn” is specified, the assembler defaults to “, pt ”.
Description These instructions branch based on the contents of R[rs1]. They treat the register contents as a signed

integer value.

A BPr instruction examines all 64 bits of R[rs1] according to the rcond field of the instruction,
producing either a TRUE or FALSE result. If TRUE, the branch is taken; that is, the instruction causes a
PC-relative, delayed control transfer to the address “PC + (4 x sign_ext( d16hi :: d16lo))”. If FALSE,
the branch is not taken.

If the branch is taken, the delay instruction is always executed, regardless of the value of the annul (a)
bit. If the branch is not taken and the annul bit is 1 (a = 1), the delay instruction is annulled (not
executed).

The predict bit (p) gives the hardware a hint about whether the branch is expected to be taken. If
p =1, the branch is expected to be taken; p = 0 indicates that the branch is expected not to be taken.

An attempt to execute a BPr instruction when instruction bit 28 = 1 or rcond is a reserved value (000,
or 100,) causes an illegal_instruction exception.

If the Trap on Control Transfer feature is implemented (impl. dep. #450-520), PSTATE.tct = 1, and the
BPr instruction will cause a transfer of control (taken conditional branch), then BPr generates a
control_transfer_instruction exception instead of causing a control transfer.
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Annulment, delay instructions, prediction, and delayed control transfers are described further in
Chapter 6, Instruction Set Overview.

Implementation | If this instruction is implemented by tagging each register value
Note [ with an N (negative) bit and Z (zero) bit, the table below can be
used to determine if rcond is TRUE:
Branch Test
BRNZ not Z
BRZ Z
BRGEZ not N
BRLZ N
BRLEZ NorZ
BRGZ not (N or Z)

Exceptions illegal_instruction
control_transfer_instruction (impl. dep. #450-520)

See Also Branch on Integer Condition Codes with Prediction (BPcc) on page 120

CHAPTER 7 ¢ Instructions 123



CALL

7.10

Call and Link

Instruction op Operation Assembly Language Syntax Class
CALL 01 Call and Link call label Al
01 disp30
31 30 29 0
Description The CALL instruction causes an unconditional, delayed, PC-relative control transfer to address

Exceptions

See Also

PC + (4 x sign_ext(disp30)). Since the word displacement (disp30) field is 30 bits wide, the target
address lies within a range of —23! to +23! — 4 bytes. The PC-relative displacement is formed by sign-
extending the 30-bit word displacement field to 62 bits and appending two low-order zeroes to obtain
a 64-bit byte displacement.

The CALL instruction also writes the value of PC, which contains the address of the CALL, into R[15]
(out register 7).

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address are masked out
(set to 0) before being sent to the memory system and in the address written into R[15]. (closed impl.
dep. #125-V9-Cs10)

If the Trap on Control Transfer feature is implemented (impl. dep. #450-520) and PSTATE.tct = 1, then
CALL generates a control_transfer_instruction exception instead of causing a control transfer. When a
control_transfer_instruction trap occurs, PC (the address of the CALL instruction) is stored in TPC[TL]
and the value of NPC from before the CALL was executed is stored in TNPC[TL]. The full 64-bit
(nonmasked) PC and NPC values are stored in TPC[TL] and TNPC[TL], regardless of the value of
PSTATE.am.

control_transfer_instruction (impl. dep. #450-520)

JMPL on page 187
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CASA / CASXA

7.11

Compare and Swap

Instruction op3 Operation Assembly Language Syntax Class
CASAPAs 111100  Compare and Swap Word from casa [ regrs1] imm_asi, regiso, regq Al
Alternate Space casa [ regisi] Y@Si, regrso, regrq
CASXAPat 111110  Compare and Swap Extended from casxa [ regsi] imm_asi, reg.ss, regq Al
Alternate Space casxa | regisi] Y@Si, regso, 7egg
11 rd op3 rsl i= imm_asi rs2
11 rd op3 rsl i=1 — rs2
3130 29 25 24 19 18 14 13 12 5 4 0
Description Concurrent processes use Compare-and-Swap instructions for synchronization and memory updates.

Uses of compare-and-swap include spin-lock operations, updates of shared counters, and updates of
linked-list pointers. The last two can use wait-free (nonlocking) protocols.

The CASXA instruction compares the value in register R[rs2] with the doubleword in memory
pointed to by the doubleword address in R[rs1].

» If the values are equal, the value in R[rd] is swapped with the doubleword pointed to by the
doubleword address in R[rs1].

» If the values are not equal, the contents of the doubleword pointed to by R[rs1] replaces the value
in R[rd], but the memory location remains unchanged.

The CASA instruction compares the low-order 32 bits of register R[rs2] with a word in memory
pointed to by the word address in R[rs1].

» If the values are equal, then the low-order 32 bits of register R[rd] are swapped with the contents of
the memory word pointed to by the address in R[rs1] and the high-order 32 bits of register R[rd]
are set to 0.

» If the values are not equal, the memory location remains unchanged, but the contents of the
memory word pointed to by R[rs1] replace the low-order 32 bits of R[rd] and the high-order 32 bits
of register R[rd] are set to 0.

A compare-and-swap instruction comprises three operations: a load, a compare, and a swap. The
overall instruction is atomic; that is, no intervening interrupts or deferred traps are recognized by the
virtual processor and no intervening update resulting from a compare-and-swap, swap, load, load-
store unsigned byte, or store instruction to the doubleword containing the addressed location, or any
portion of it, is performed by the memory system.

A compare-and-swap operation behaves as if it performs a store, either of a new value from R[rd] or
of the previous value in memory. The addressed location must be writable, even if the values in
memory and R[rs2] are not equal.

If i = 0, the address space of the memory location is specified in the imm_asi field; if i = 1, the address
space is specified in the ASI register.

An attempt to execute a CASXA or CASA instruction when i = 1 and instruction bits 12:5 are nonzero
causes an illegal_instruction exception.

A mem_address_not_aligned exception is generated if the address in R[rs1] is not properly aligned.
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In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI is 0, CASXA and
CASA cause a privileged_action exception. In privileged mode (PSTATE.priv = 1 and

HPSTATE.hpriv = 0), if the ASI is in the range 3014 to 7F;5, CASXA and CASA cause a
privileged_action exception.

Compatibility | An implementation might cause an exception because of an
Note | error during the store memory access, even though there was no
error during the load memory access.

Programming | Compare and Swap (CAS) and Compare and Swap Extended

Note | (CASX) synthetic instructions are available for “big endian”
memory accesses. Compare and Swap Little (CASL) and Compare
and Swap Extended Little (CASXL) synthetic instructions are
available for “little endian” memory accesses. See Synthetic
Instructions on page 536 for the syntax of these synthetic
instructions.

The compare-and-swap instructions do not affect the condition codes.

The compare-and-swap instructions can be used with any of the following ASIs, subject to the
privilege mode rules described for the privileged_action exception above. Use of any other ASI with
these instructions causes a DAE_invalid_asi exception.

ASls valid for CASA and CASXA instructions
ASI _AS_| F_PRI V_PRI MARY ASI _AS_| F_PRI V_PRI MARY_LI TTLE
ASI _AS | F_PRI V_SECONDARY ASI _AS | F_PRI V_SECONDARY_LI TTLE

ASl _NUCLEUS ASI _NUCLEUS LI TTLE
ASI _AS | F_USER PRI MARY  ASI _AS | F_USER PRI MARY_ LI TTLE
ASI _AS | F_USER SECONDARY ASI _AS | F_USER SECONDARY LI TTLE

AS| _REAL ASI _REAL_LI TTLE

AS| _PRI MARY ASI _PRI MARY_LI| TTLE

AS| _SECONDARY ASI _SECONDARY_LI TTLE
Exceptions illegal_instruction

mem_address_not_aligned

privileged_action

VA_watchpoint

DAE_invalid_asi

DAE_privilege_violation

DAE_nc_page (attempted access to noncacheable page)
DAE_nfo_page (attempted access to non-faulting-only page)
fast_data_access_MMU_miss

data_access_MMU_miss

data_access_MMU_error

fast_data_access_protection

PA_watchpoint

data_access_error

See Also CASA on page 125
LDSTUB on page 205
LDSTUBA on page 206
SWAP on page 291
SWAPA on page 292
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DONE

7.12 DONE

Instruction  op3 Operation Assembly Language Syntax Class
DONEF 111110  Return from Trap (skip trapped instruction) done Al
10 | fcn =0 0000 11 1110 —
31 30 29 25 24 19 18 0

Description The DONE instruction restores the saved state from TSTATE[TL] (GL, CCR, ASI, PSTATE, and CWP),
HTSTATE[TL] (HPSTATE), sets PC and NPC, and decrements TL. DONE sets PC —« TNPC[TL] and
NPC — TNPC[TL]+4 (normally, the value of NPC saved at the time of the original trap and address of
the instruction immediately after the one referenced by the NPC).

Programming | The DONE and RETRY instructions are used to return from
Notes | privileged trap handlers.

Unlike RETRY, DONE ignores the contents of TPC[TL].

If the saved TNPC[TL] was not altered by trap handler software, DONE causes execution to resume
immediately after the instruction that originally caused the trap (as if that instruction was “done”
executing).

Execution of a DONE instruction in the delay slot of a control-transfer instruction produces undefined
results.

When a DONE instruction is executed and HTSTATE[TL].hpstate.hpriv = 0 (which will cause the
DONE to return the virtual processor to nonprivileged or privileged mode), the value of GL restored
from TSTATE[TL] saturates at MAXPGL. That is, if the value in TSTATE[TL].gl is greater than MAXPGL,
then MAXPGL is substituted and written to GL. This protects against non-hyperprivileged software
executing with GL > MAXPGL.

If software writes invalid or inconsistent state to TSTATE or HTSTATE before executing DONE, virtual
processor behavior during and after execution of the DONE instruction is undefined.

The DONE instruction does not provide an error barrier, as MEMBAR #Sync does (impl. dep. #215-
us).

Note that since PSTATE.tct is automatically set to 0 during entry to a trap handler, execution of a
DONE instruction at the end of a trap handler will not cause a control_transfer_instruction exception
unless trap handler software has explicitly set PSTATE.tct to 1. During execution of the DONE
instruction, the value of PSTATE.tct is restored from TSTATE.

Programming | If control_transfer_instruction traps are to be re-enabled

Notes | (PSTATE.tct — 1, restored from TSTATE[TL].pstate.tct) when trap
handler software for the control_transfer_instruction trap returns,
the trap handler must
(1) emulate the trapped CTI, setting TPC[TL] and TNPC[TL]
appropriately, remembering to compensate for annul bits) and
(2) use a DONE (not RETRY) instruction to return.

If the CTI that caused the control_transfer_instruction trap was a
DONE (RETRY) instruction, the trap handler must carefully
emulate the trapped DONE (RETRY) (decrementing TL may
suffice) before the trap handler returns using its own DONE
(RETRY) instruction.

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address are masked out
(set to 0) before being sent to the memory system.
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Exceptions

See Also

DONE

IMPL. DEP. #417-S10: If (1) TSTATE[TL].pstate.am =1 and (2) a DONE instruction is executed
(which sets PSTATE.am to ‘1’ by restoring the value from TSTATE[TL].pstate.am to PSTATE.am), it is
implementation dependent whether the DONE instruction masks (zeroes) the more-significant 32 bits
of the values it places into PC and NPC.

Exceptions. In privileged mode (PSTATE.priv = 1 and HPSTATE.hpriv = 0) or hyperprivileged mode
(HPSTATE.hpriv = 1), an attempt to execute DONE while TL = 0 causes an illegal_instruction exception.
An attempt to execute DONE (in any mode) with instruction bits 18:0 nonzero causes an
illegal_instruction exception.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), an attempt to execute DONE causes
a privileged_opcode exception.

Implementation | In nonprivileged mode, illegal_instruction exception due to TL =0
Note | does not occur. The privileged_opcode exception occurs instead,
regardless of the current trap level (TL).

If the Trap on Control Transfer feature is implemented (impl. dep. #450-520) and PSTATE.tct = 1, then
DONE generates a control_transfer_instruction exception instead of causing a control transfer. When a
control_transfer_instruction trap occurs, PC (the address of the DONE instruction) is stored in
TPC[TL] and the value of NPC from before the DONE was executed is stored in TNPC[TL]. The full
64-bit (nonmasked) PC and NPC values are stored in TPC[TL] and TNPC[TL], regardless of the value
of PSTATE.am.

Programming | Because DONE changes the TL register, it can cause a

Note | trap_level_zero exception to occur on the next instruction to be
executed, if the following three conditions are true after DONE
has executed:

* trap_level_zero exceptions are enabled (HPSTATE.tlz = 1),

e the virtual processor is in nonprivileged or privileged mode
(HPSTATE.hpriv = 0), and

e the trap level (TL) register’s value is zero (TL = 0)

illegal_instruction
privileged_opcode
control_transfer_instruction (impl. dep. #450-520)

RETRY on page 251
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EDGE<8|16|32>{L}cc

7.13  Edge Handling Instructions

Instruction opf Operation Assembly Language Syntax T Class

EDGE8cc 0 0000 0000 Eight 8-bit edge boundary processing  edge8cc regrs1, "€Srs2y €grg Bl

EDGES8Lcc 000000010 Eight 8-bit edge boundary processing, edge8l cc reQrs1, 1€Srs2y 1€y B1
little-endian

EDGEl6cc 000000100 Four 16-bit edge boundary processing edgel6cc reQrs1y 1€Srs2y 1€y B1

EDGE1l6Lcc 000000110 Four 16-bit edge boundary processing, edgel6l cc  regs1, 7€gsn, €3rd B1
little-endian

EDGE32cc 00000 1000 Two 32-bit edge boundary processing edge32cc reQrs1, 'eSrs2, 1€8rd B1

EDGE32Lcc 000001010 Two 32-bit edge boundary processing, edge32l cc  reg.g, regmsy, regyg Bl
little-endian

t The original assembly language mnemonics for these instructions did not include the “cc” suffix, as appears in the names of all other
instructions that set the integer condition codes. The old, non-"cc” mnemonics are deprecated. Over time, assemblers will support
the new mnemonics for these instructions. In the meantime, some older assemblers may recognize only the mnemonics, without “cc”.

10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description These instructions handle the boundary conditions for parallel pixel scan line loops, where R[rs1] is
the address of the next pixel to render and R[rs2] is the address of the last pixel in the scan line.

EDGES8Lcc, EDGE16Lcc, and EDGE32Lcc are little-endian versions of EDGE8cc, EDGE16cc, and
EDGE32cc, respectively. They produce an edge mask that is bit-reversed from their big-endian
counterparts but are otherwise identical. This makes the mask consistent with the mask produced by
the Partial Store instruction (see Partial Store on page 298) on little-endian data.

A 2-bit (EDGE32cc), 4-bit (EDGE16cc), or 8-bit (EDGES8cc) pixel mask is stored in the least significant
bits of R[rd]. The mask is computed from left and right edge masks as follows:

1. The left edge mask is computed from the 3 least significant bits of R[rs1] and the right edge mask
is computed from the 3 least significant bits of R[rs2], according to TABLE 7-6.

2. If 32-bit address masking is disabled (PSTATE.am = 0 or HPSTATE.hpriv =1 or D/UMMU is
disabled) so 64-bit addressing is in use, and the most significant 61 bits of R[rs1] are equal to the
corresponding bits in R[rs2], R[rd] is set to the right edge mask anded with the left edge mask.

3. If 32-bit address masking is enabled (PSTATE.am =1 and HPSTATE.hpriv =0 and D/UMMU is
enabled) so 32-bit addressing is in use, and bits 31:3 of R[rs1] match bits 31:3 of R[rs2], R[rd] is set
to the right edge mask anded with the left edge mask.

4. Otherwise, R[rd] is set to the left edge mask.

The integer condition codes are set per the rules of the SUBcc instruction with the same operands (see
Subtract on page 303).

TABLE 7-6 lists edge mask specifications.

TABLE 7-6  Edge Mask Specification

Ed Big Endian Little Endian

ge R[rsn]

Size {2:0} Left Edge Right Edge Left Edge Right Edge
8 000 1111 1111 1000 0000 1111 1111 0000 0001
8 001 0111 1111 1100 0000 1111 1110 0000 0011
8 010 0011 1111 1110 0000 1111 1100 0000 0111
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TABLE 7-6  Edge Mask Specification (Continued)
Edge R[rsn] Big Endian Little Endian
Size  {2:0} Left Edge Right Edge Left Edge Right Edge
8 011 0001 1111 1111 0000 1111 1000 0000 1111
8 100 0000 1111 1111 1000 1111 0000 0001 1111
8 101 0000 0111 1111 1100 1110 0000 0011 1111
8 110 0000 0011 1111 1110 1100 0000 0111 1111
8 111 0000 0001 1111 1111 1000 0000 1111 1111
16 00x 11 1000 11 0001
16 0lx 0111 1100 1110 0011
16 10x 0011 1110 1100 0111
16 11x 0001 1111 1000 111
32 Oxx 11 10 11 01
32 Ixx 01 11 10 11
Exceptions None
See Also EDGE<8116132>[L]N on page 131
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7.14  Edge Handling Instructions (no CC)

Instruction opf Operation Assembly Language Syntax Class

EDGESN 000000001 Eight 8-bit edge boundary processing, no CC edge8n  regs;, regs2, tegrg Bl

EDGESLN 000000011 Eight 8-bit edge boundary processing, edge8l n  reg.g1, 1grsos 1€Srd B1
little-endian, no CC

EDGE16N 000000101 Four 16-bit edge boundary processing, no CC edgel6n regs1, 7egrs2: "€8rd B1

EDGE16LN 000000111 Four 16-bit edge boundary processing, edgel6l n regis1, regrs2s T€grd B1
little-endian, no CC

EDGE32N 000001001 Two 32-bit edge boundary processing, no CC edge32n reg,s;, regsy, regyg Bl

EDGE32LN 000001011 Two 32-bit edge boundary processing, edge32l n reg.g;, regisy, regyy Bl
little-endian, no CC

10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description EDGES[L]IN, EDGE16[LIN, and EDGE32[L]N operate identically to EDGE8[L]cc, EDGE16[L]cc, and
EDGEB32[L]cc, respectively, but do not set the integer condition codes.

See Edge Handling Instructions on page 129 for details.
Exceptions None

See Also EDGE<8,16,32>[L]cc on page 129
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7.15

Floating-Point Absolute Value

Instruction  op3

opf Operation Assembly Language Syntax Class

FABSs
FABSd
FABSq

11 0100
11 0100
11 0100

00000 1001
00000 1010
00000 1011

f abss
f absd
fabsq

Absolute Value Single
Absolute Value Double
Absolute Value Quad

fregrsa,  fregud Al
fregisa,  fregra Al
fregrsa,  fregrd C3

10

rd op3 — opf rs2

31 30 29

Description

Exceptions

25 24 19 18 14 13 5 4 0

FABS copies the source floating-point register(s) to the destination floating-point register(s), with the
sign bit cleared (set to 0).

FABSs operates on single-precision (32-bit) floating-point registers, FABSd operates on double-precision
(64-bit) floating-point register pairs, and FABSq operates on quad-precision (128-bit) floating-point
register quadruples.

These instructions clear (set to 0) both FSR.cexc and FSRftt. They do not round, do not modify
FSR.aexc, and do not treat floating-point NaN values differently from other floating-point values.

Note | UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FABSq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

An attempt to execute an FABS instruction when instruction bits 18:14 are nonzero causes an
illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FABS instruction causes an fp_disabled exception.

An attempt to execute an FABSq instruction when rs2{1} # 0 or rd{1} # O causes an fp_exception_other
(FSR.ftt = invalid_fp_register) exception.

illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = invalid_fp_register (FABSq only))
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7.16  Floating-Point Add

Instruction op3 opf Operation Assembly Language Syntax Class
FADDs 11 0100 00100 0001 Add Single f adds fregest,  fregrsos  fregid Al
FADDd 110100 001000010  Add Double faddd  fregst, fregrsas fregr Al
FADDq 11 0100 00100 0011 Add Quad f addq fregest,  fregrsos  fregid C3
10 rd op3 rsl opf rs2
31 30 29 25 24 19 18 14 13 4 0
Description The floating-point add instructions add the floating-point register(s) specified by the rs1 field and the
floating-point register(s) specified by the rs2 field. The instructions then write the sum into the
floating-point register(s) specified by the rd field.
Rounding is performed as specified by FSR.rd.
Note | UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FADDq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.
If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FADD instruction causes an fp_disabled exception.
An attempt to execute an FADDq instruction when (rs1{1} # 0) or (rs2{1} # 0) or (rd{1:0} # 0) causes
an fp_exception_other (FSR.ftt = invalid_fp_register) exception.
Note | An fp_exception_other with FSR.ftt = unfinished_FPop can occur
if the operation detects unusual, implementation-specific
conditions.
For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007 .
Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = invalid_fp_register (FADDq only))
fp_exception_other (FSR.ftt = unfinished_FPop)
fp_exception_ieee_754 (OF, UF, NX, NV)
See Also FMAf on page 150

CHAPTER 7 ¢ Instructions 133



FALIGNDATA

7.17  Align Data

Instruction opf Operation Assembly Language Syntax Class

FALIGNDATA 00100 1000 Perform data alignment for faligndata fregwsi, fregrsz, fregq Al
misaligned data

10 rd | 110110 | rsi opf rs2
31730 29 75727 15 18 7 13 57 0

Description FALIGNDATA concatenates the two 64-bit floating-point registers specified by rsl and rs2 to form a
128-bit (16-byte) intermediate value. The contents of the first source operand form the more-
significant 8 bytes of the intermediate value, and the contents of the second source operand form the
less significant 8 bytes of the intermediate value. Bytes in the intermediate value are numbered from
most significant (byte 0) to least significant (byte 15). Eight bytes are extracted from the intermediate
value and stored in the 64-bit floating-point destination register specified by rd. GSR.align specifies
the number of the most significant byte to extract (and, therefore, the least significant byte extracted is
numbered GSR.align+7).

GSR.align is normally set by a previous ALIGNADDRESS instruction.

GSR.align
byte byte
Fplrsl] :: Fp[rs2] ol1|2|3|4a|5|6|7|8|9]|20|12|12]|23[14(15
27 0
|1< Fplrsi] > | Fplrs2]
FD[rd]
63 0
FIGURE 7-6 FALIGNDATA
A byte-aligned 64-bit load can be performed as shown below.
al i gnaddr Address, Offset, Address !set GSR align
| dd [ Address] , %0
| dd [ Address + 8], %2
faligndata %0, %2, %4 luse GSR. align to sel ect bytes

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FALIGNDATA instruction causes an fp_disabled exception.

Exceptions fp_disabled
See Also Align Address on page 111
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7.18

FBfcc

Branch on Floating-Point Condition Codes

(FBfcc)

Opcode cond Operation fcc Test Assembly Language Syntax Class
FBAP 1000  Branch Always 1 fba{,a} label Al
FBNP 0000 Branch Never 0 fon{,a}  label Al
FBUP 0111  Branch on Unordered U fbu{, a} label Al
FBGP 0110  Branch on Greater G fbg{, a} label Al
FBUGP 0101 Branch on Unordered or Greater GorU fbug{, a} label Al
FBLP 0100  Branch on Less L fbl{,a} label Al
FBULP 0011 Branch on Unordered or Less LorU fbul {,a} label Al
FBLGP 0010 Branch on Less or Greater LorG fblg{,a} Ilabel Al
FBNEP 0001 Branch on Not Equal LorGorU fbnef(, a} label Al
FBEP 1001  Branch on Equal E foel(,a}  label Al
FBUEP 1010  Branch on Unordered or Equal EorU fbue{, a} label Al
FBGEP 1011  Branch on Greater or Equal EorG fbge{, a} label Al
FBUGEP 1100 Branch on Unordered or Greater or Equal EorGorU f buge{, a} label Al
FBLEP 1101  Branch on Less or Equal EorL fbl e{,a}l label Al
FBULEP 1110  Branch on Unordered or Less or Equal EorLorU fbul ef, a} label Al
FBOP 1111 Branch on Ordered EorLorG fbo{, a} label Al
t synonym: f bnz ¥ synonym: f bz
00 |a cond 110 disp22
31 30 29 28 25 24 22 21 0
Programming | To set the annul (a) bit for FBfcc instructions, append “, a” to
Note | the opcode mnemonic. For example, use “f bl , a label”. In the
preceding table, braces around “, a” signify that “, a” is
optional.

Description ~ Unconditional and Fcc branches are described below:

= Unconditional branches (FBA, FBN) — If its annul field is 0, an FBN (Branch Never) instruction
acts like a NOP. If its annul field is 1, the following (delay) instruction is annulled (not executed)
when the FBN is executed. In neither case does a transfer of control take place.

FBA (Branch Always) causes a PC-relative, delayed control transfer to the address

“PC + (4 x sign_ext( disp22) )” regardless of the value of the floating-point condition code bits. If
the annul field of the branch instruction is 1, the delay instruction is annulled (not executed). If the
annul (a) bit is 0, the delay instruction is executed.

» Fcc-conditional branches — Conditional FBfcc instructions (except FBA and FBN) evaluate
floating-point condition code zero (fcc0) according to the cond field of the instruction. Such
evaluation produces either a TRUE or FALSE result. If TRUE, the branch is taken, that is, the
instruction causes a PC-relative, delayed control transfer to the address
“PC + (4 x sign_ext(disp22))”. If FALSE, the branch is not taken.
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If a conditional branch is taken, the delay instruction is always executed, regardless of the value of
the annul (a) bit. If a conditional branch is not taken and the annul bit is 1 (a = 1), the delay
instruction is annulled (not executed).

Note | The annul bit has a different effect on conditional branches than
it does on unconditional branches.

Annulment, delay instructions, and delayed control transfers are described further in Chapter 6.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FBfcc instruction causes an fp_disabled exception.

If the Trap on Control Transfer feature is implemented (impl. dep. #450-520), PSTATE.tct = 1, and the
FBfcc instruction will cause a transfer of control (FBA or taken conditional branch), then FBfcc
generates a control_transfer_instruction exception instead of causing a control transfer. When a
control_transfer_instruction trap occurs, PC (the address of the FBfcc instruction) is stored in TPC[TL]
and the value of NPC from before the FBfcc was executed is stored in TNPC[TL]. Note that FBN never
causes a control_transfer_instruction exception.

Exceptions fp_disabled
control_transfer_instruction (impl. dep. #450-520)
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FBPfcc

7.19

Branch on Floating-Point Condition Codes with
Prediction (FBPfcc)

Instruction cond Operation fcc Test Assembly Language Syntax Class
FBPA 1000  Branch Always 1 fbaf, a}{, pt I, pn} % ccn, label Al
FBPN 0000 Branch Never 0 fbn{, a}{, pt I, pn} % ccn, label Al
FBPU 0111  Branch on Unordered 8] fbu{, a}{, pt I, pn} % ccn, label Al
FBPG 0110  Branch on Greater G fbg{, a}{, pt I, pn} % ccn, label Al
FBPUG 0101  Branch on Unordered or Greater G or U fbug{, a}{, pt I, pn} % ccn, label Al
FBPL 0100  Branch on Less L fbl {, a}{, pt I, pn} % ccn, label Al
FBPUL 0011  Branch on Unordered or Less LorU fbul {,a}{,pt I, pn} % ccn, label Al
FBPLG 0010 Branch on Less or Greater LorG fblg{,a}{, ptI,pn} 9% ccn, label Al
FBPNE 0001  Branch on Not Equal LorGorU fbne'(, a}{, pt |, pn} 9% ccn, label Al
FBPE 1001  Branch on Equal E f belt(, a}{, pt |, pn} % ccn, label Al
FBPUE 1010  Branch on Unordered or Equal EorU fbuef{, a}{, pt I, pn} % ccn, label Al
FBPGE 1011  Branch on Greater or Equal EorG fbge{, a}{, pt I, pn} % ccn, label Al
FBPUGE 1100 Branch on Unordered or Greater E or Gor U fbuge{, a}{, pt |, pn} % ccn, label Al
or Equal
FBPLE 1101  Branch on Less or Equal EorL fble{,a}{, pt!l,pn} % ccn, label Al
FBPULE 1110 Branch on Unordered or Lessor EorLorU fbul e{, a}{, pt I, pn} % ccn, label Al
Equal
FBPO 1111  Branch on Ordered EorLorG fbof{ a}{, pt!, pn} % ccn, label Al
t synonym: f bnz T synonym: f bz
00 |a cond 101 ccliccO| p disp19
31 30 29 28 25 24 22 21 20 19 18 0
ccl cc0 Condition Code
0 0 fccO
0 1 fccl
1 0 fcc2
1 1 fcec3
Programming | To set the annul (a) bit for FBPfcc instructions, append “, a” to the
Note | opcode mnemonic. For example, use “f bl , a % cc3, label”. In
the preceding table, braces signify that the “, a” is optional. To set
the branch prediction bit, append either “, pt ” (for predict taken)
or “pn” (for predict not taken) to the opcode mnemonic. If neither
‘, pt 7 nor “, pn” is specified, the assembler defaults to “, pt ”. To
select the appropriate floating-point condition code, include
“o cc0”, “% ccl”, “9% cc2”, or “% cc3” before the label.
Description Unconditional branches and Fcc-conditional branches are described below.
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» Unconditional branches (FBPA, FBPN) — If its annul field is 0, an FBPN (Floating-Point Branch

Never with Prediction) instruction acts like a NOP. If the Branch Never’s annul field is 0, the
following (delay) instruction is executed; if the annul (a) bit is 1, the following instruction is
annulled (not executed). In no case does an FBPN cause a transfer of control to take place.

FBPA (Floating-Point Branch Always with Prediction) causes an unconditional PC-relative, delayed
control transfer to the address “PC + (4 x sign_ext( disp19))”. If the annul field of the branch
instruction is 1, the delay instruction is annulled (not executed). If the annul (a) bit is 0, the delay
instruction is executed.

Fcc-conditional branches — Conditional FBPfcc instructions (except FBPA and FBPN) evaluate one
of the four floating-point condition codes (f ccO, f cc1, f cc2, f cc3) as selected by cc0 and cc1,
according to the cond field of the instruction, producing either a TRUE or FALSE result. If TRUE, the
branch is taken, that is, the instruction causes a PC-relative, delayed control transfer to the address
“PC + (4 x sign_ext( disp19))”. If FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed, regardless of the value of
the annul (a) bit. If a conditional branch is not taken and the annul bit is 1 (a = 1), the delay
instruction is annulled (not executed).

Note | The annul bit has a different effect on conditional branches than it
does on unconditional branches.

The predict bit (p) gives the hardware a hint about whether the branch is expected to be taken. A 1
in the p bit indicates that the branch is expected to be taken. A 0 indicates that the branch is
expected not to be taken.

Annulment, delay instructions, and delayed control transfers are described further in Chapter 6,
Instruction Set Overview.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FBPfcc instruction causes an fp_disabled exception.

If the Trap on Control Transfer feature is implemented (impl. dep. #450-S20), PSTATE.tct = 1, and the
FBPfcc instruction will cause a transfer of control (FBPA or taken conditional branch), then FBPfcc
generates a control_transfer_instruction exception instead of causing a control transfer. When a
control_transfer_instruction trap occurs, PC (the address of the FBPfcc instruction) is stored in
TPC[TL] and the value of NPC from before the FBPfcc was executed is stored in TNPC[TL]. Note that
FBPN never causes a control_transfer_instruction exception.

fp_disabled
control_transfer_instruction (impl. dep. #450-520)
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FCMP*<16|32> (SIMD)

7.20  SIMD Signed Compare

Instruction opf Operation sl s2 d Assembly Language Syntax Class

FCMPLE16 0 0010 0000 Four 16-bit compare; fo4 fo4 164 fcnpl el6 fregis1, fregisa, tegrd Bl
set R[rd] if srcl < src2

FCMPNE16 0 0010 0010 Four 16-bit compare; fo4 f64 164 fcnpnel6 fregis1, fregisa, *egrd Bl
set R[rd] if src1 # src2

FCMPLE32 00010 0100 Two 32-bit compare; fo4 fo4 164 fcnpl e32 fregis1, fregisa, tegrd Bl
set R[rd] if srcl < src2

FCMPNE32 00010 0110 Two 32-bit compare; fo4 f64 164 fcnpne32 fregis1, fregiso, tegrd Bl
set R[rd] if src1 # src2

FCMPGT16 0 0010 1000 Four 16-bit compare; fo4 fo4 164 fcnpgt 16 fregis1, fregisa, *egrd Bl
set R[rd] if src1 > src2

FCMPEQ16 0 0010 1010 Four 16-bit compare; fo4 f64 164 fcnpeql6 fregis1, fregiso, *egrd Bl
set R[rd] if src1 = src2

FCMPGT32 00010 1100 Two 32-bit compare; fo4 fo4 164 fcnpgt 32 fregis1, fregisa, tegrd Bl
set R[rd] if src1 > src2

FCMPEQ32 00010 1110 Two 32-bit compare; fo4 fo4 164 fcnpeq32 fregis1, fregisa, tegrd Bl

set R[rd] if src1 = src2

10 rd | 110110 rsi opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description Either four 16-bit signed values or two 32-bit signed values in Fp[rs1] and Fp[rs2] are compared. The
4-bit or 2-bit condition-code results are stored in the least significant bits of the integer register R[rd].
The least significant 16-bit or 32-bit compare result corresponds to bit zero of R[rd].

Note | Bits 63:4 of the destination register R[rd] are set to zero for 16-bit
compares. Bits 63:2 of the destination register R[rd] are set to
zero for 32-bit compares.

For FCMPGT({16,32}, each bit in the result is set to 1 if the corresponding signed value in Fp[rs1] is
greater than the signed value in Fp[rs2]. Less-than comparisons are made by swapping the operands.

For FCMPLE({16,32}, each bit in the result is set to 1 if the corresponding signed value in Fp[rs1] is less
than or equal to the signed value in Fp[rs2]. Greater-than-or-equal comparisons are made by
swapping the operands.

For FCMPEQ(16,32}, each bit in the result is set to 1 if the corresponding signed value in Fp[rs1] is
equal to the signed value in Fp[rs2].

For FCMPNE(16,32}, each bit in the result is set to 1 if the corresponding signed value in Fp[rs1] is not
equal to the signed value in Fp[rs2].

FIGURE 7-7 and FIGURE 7-8 illustrate 16-bit and 32-bit pixel comparison operations, respectively.
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Fplrsi]

63 48 47 32 31 16 15 0
femp[gt, le, eq, ne, It, ge]16

Fplrs2]

R[rd]

FIGURE 7-7 Four 16-bit Signed Fixed-point SIMD Comparison Operations

Fplrsi]
63 32 31 o
fcmplgt, le, eq, ne, It ge]32
Fplrs2]
R[rd]

FIGURE 7-8 Two 32-bit Signed Fixed-point SIMD Comparison Operation

In all comparisons, if a compare condition is not true, the corresponding bit in the result is set to 0.

Programming | The results of a SIMD signed compare operation can be used
Note | directly by both integer operations (for example, partial stores)
and partitioned conditional moves.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute a SIMD signed compare instruction causes an fp_disabled exception.

Exception fp_disabled

See Also Floating-Point Compare on page 141
STPARTIALF on page 279
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FCMP<s|d|g>/ FCMPE<s|d|g>

721  Floating-Point Compare

Instruction opf Operation Assembly Language Syntax Class
FCMPs 001010001  Compare Single fcnps Y ccen, fregsy, fregrso Al
FCMPd 001010010  Compare Double fcpd % ccen, fregsy, fregso Al
FCMPq 001010011  Compare Quad fcpg Y ccen, fregisr, fregiso C3
FCMPEs 001010101  Compare Single and Exception if fcnpes %Y ccn, fregsy, fregrso Al
Unordered
FCMPEd 001010110  Compare Double and Exception if fcped % ccn, fregsy, fregrso Al
Unordered
FCMPEq 001010111  Compare Quad and Exception if fcnpeq % ccn, fregisr, fregrso C3
Unordered
10 — |eclfeeQ 110101 rsl opf rs2
31 30 29 27 26 25 24 19 18 14 13 5 0
ccl cco Condition Code
0 0 fcco
0 1 fcecl
1 0 fcec2
1 1 fce3

Description These instructions compare F[rs1] with F[rs2], and set the selected floating-point condition code

(f ccn) as follows

Relation Resulting fcc value
fregrs1 =fregrsn 0

fregrsa < fregrs2 1

fregrs1 > fregrs2 2

fregrsy ? fregrsp (unordered) 3

The “?” in the preceding table means that the compared values are unordered. The unordered
condition occurs when one or both of the operands to the comparison is a signalling or quiet NaN

The “compare and cause exception if unordered” (FCMPEs, FCMPEd, and FCMPE(q) instructions
cause an invalid (NV) exception if either operand is a NaN.

CHAPTER 7 ¢ Instructions 141



Exceptions

See Also

FCMP<s|d|g>/ FCMPE<s|d|g>

FCMP causes an invalid (NV) exception if either operand is a signalling NaN.

V8 Compatibility | Unlike the SPARC V8 architecture, SPARC V9 and the

Note | UltraSPARC Architecture do not require an instruction between a
floating-point compare operation and a floating-point branch
(FBfcc, FBPfcc).

SPARC V8 floating-point compare instructions are required to
have rd = 0. In SPARC V9 and the UltraSPARC Architecture, bits
26 and 25 of the instruction (rd{1:0}) specify the floating-point
condition code to be set. Legal SPARC V8 code will work on
SPARC V9 and the UltraSPARC Architecture because the zeroes
in the R[rd] field are interpreted as f ccO and the FBfcc
instruction branches based on the value of f ccO.

An attempt to execute an FCMP instruction when instruction bits 29:27 are nonzero causes an
illegal_instruction exception.

Note | UltraSPARC Architecture 2007 processors do not implement in
hardware the instructions that refer to quad-precision floating-
point registers. An attempt to execute FCMPq or FCMPEq
generates an illegal_instruction exception, which causes a trap,
allowing privileged software to emulate the instruction.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FCMP or FCMPE instruction causes an fp_disabled exception.

An attempt to execute an FCMPq or FCMPE(q instruction when (rs1{1} # 0) or (rs2{1} # 0) causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007 .

illegal_instruction

fp_disabled

fp_exception_ieee_754 (NV)

fp_exception_other (FSRfit = invalid_fp_register (FCMPq, FCMPEq only))

SIMD Signed Compare on page 139
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FDIV<s|d|g>

7.22

Floating-Point Divide

Instruction op3

opf Operation Assembly Language Syntax Class

FDIVs
FDIVd
FDIVq

11 0100
11 0100
11 0100

00100 1101
00100 1110
00100 1111

Divide Single fdivs
Divide Double

Divide Quad

fregests fregrsa, fregrg Al
fdivd fregsi, fregisa freg Al
fdivg fregis1, fregrso, fregug c3

10

rd op3 rsl opf rs2

31 30 29

Description

Exceptions

25 24 19 18 14 13 5 4 0

The floating-point divide instructions divide the contents of the floating-point register(s) specified by
the rsl field by the contents of the floating-point register(s) specified by the rs2 field. The instructions
then write the quotient into the floating-point register(s) specified by the rd field.

Rounding is performed as specified by FSR.rd.

Note | UltraSPARC Architecture 2007 processors do not implement in
hardware the instructions that refer to quad-precision floating-
point registers. An attempt to execute an FDIVq instruction
generates an illegal_instruction exception, allowing privileged
software to emulate the instruction.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FCMP or FCMPE instruction causes an fp_disabled exception.

An attempt to execute an FADDq instruction when (rs1{1} # 0) or (rs2{1} # 0) causes an
fp_exception_other (FSR.fit = invalid_fp_register) exception.

Note | For FDIVs and FDIVd, an fp_exception_other with
FSR(ftt = unfinished_FPop can occur if the divide unit detects
unusual, implementation-specific conditions.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007 .

illegal_instruction

fp_disabled

fp_exception_other (FSRftt = invalid_fp_register (FDIVq only)
fp_exception_other (FSR.ftt = unfinished_FPop (FDIVs, FDIV))
fp_exception_ieee_754 (OF, UF, DZ, NV, NX)
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723  FEXPAND

Instruction opf Operation sl s2 d Assembly Language Syntax Class
FEXPAND 001001101 Four 16-bit expands — 32 fo4 fexpand fregso, fregyq B1

10 rd 110110 — opf rs2

31 30 29 25 24 19 18 14 13 5 4 0

Description ~ FEXPAND takes four 8-bit unsigned integers from Fg[rs2], converts each integer to a 16-bit fixed-
point value, and stores the four resulting 16-bit values in a 64-bit floating-point register Fp[rd].
FIGURE 7-10 illustrates the operation.

Fs[rs2] | /
/yz 23 % By 0
Folrdl | og00 <& 0000 | 0000 & 0000| 0000 A& 0000 | 0000 0000
63 60 59 52 51 48 47 44 43 36 35 32 31 28 27 20 19 16 15 12 11 43 0

FIGURE 7-9 FEXPAND Operation

This operation is carried out as follows:
1. Left-shift each 8-bit value by 4 and zero-extend each result to a 16-bit fixed value.

2. Store the result in the destination register, Fp[rd].

Programming | FEXPAND performs the inverse of the FPACK16 operation.
Note

An attempt to execute an FEXPAND instruction when instruction bits 18:14 are nonzero causes an
illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FEXPAND instruction causes an fp_disabled exception.

Exceptions illegal_instruction
fp_disabled
See Also FPMERGE on page 173

FPACK on page 166
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FITO<s|d|g>

7.24

Convert 32-bit Integer to Floating Point

Instruction op3

Assembly Language

opf Operation sl s2 d Syntax Class

FiTOs
FiTOd

FiTOq

11 0100 01100 0100

11 0100 0 1100 1000

11 0100 01100 1100

Convert 32-bit Integer to — {32 {32

Single

fitos fregrs2, fregu Al

Convert 32-bit Integer to — {32 f64

Double

fitod fregrsp, fregrg Al

Convert 32-bit Integer to  —
Quad

32 f128 fitoq fregsp, fregq  C3

10

rd op3 — opf rs2

31 30 29

Description

Exceptions

25 24 19 18 14 13 5 4 0

FiTOs, FiTOd, and FiTOq convert the 32-bit signed integer operand in floating-point register Fg[rs2]
into a floating-point number in the destination format. All write their result into the floating-point
register(s) specified by rd.

The value of FSR.rd determines how rounding is performed by FiTOs.

Note | UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FiTOq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

An attempt to execute an FiTO<s|d | g> instruction when instruction bits 18:14 are nonzero causes an
illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FiTO<s|d | g> instruction causes an fp_disabled exception.

An attempt to execute an FiTOq instruction when rd{1} # O causes an fp_exception_other
(FSR.ftt = invalid_fp_register) exception.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007 .

illegal_instruction

fp_disabled

fp_exception_other (FSRftt = invalid_fp_register (FiTOq))
fp_exception_ieee_754 (NX (FiTOs only))
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7.25

Flush Instruction Memory

Instruction op3 Operation Assembly Language Syntaxt Class

FLUSH 111011 Flush Instruction Memory flush [address] Al

t The original assembly language syntax for a FLUSH instruction (“f | ush address”) has been deprecated be-
cause of inconsistency with other SPARC assembly language syntax. Over time, assemblers will support the
new syntax for this instruction. In the meantime, some existing assemblers may only recognize the original syn-
tax.

— op3 rsl i=0 — rs2
— op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description

FLUSH ensures that the aligned doubleword specified by the effective address is consistent across any
local caches and, in a multiprocessor system, will eventually (impl. dep. #122-V9) become consistent
everywhere.

The SPARC V9 instruction set architecture does not guarantee consistency between instruction
memory and data memory. When software writes! to a memory location that may be executed as an
instruction (self-modifying code?), a potential memory consistency problem arises, which is addressed
by the FLUSH instruction. Use of FLUSH after instruction memory has been modified ensures that
instruction and data memory are synchronized for the processor that issues the FLUSH instruction.

The virtual processor waits until all previous (cacheable) stores have completed before issuing a
FLUSH instruction. For the purpose of memory ordering, a FLUSH instruction behaves like a store
instruction.

In the following discussion Pgp sy refers to the virtual processor that executed the FLUSH
instruction.

FLUSH causes a synchronization within a virtual processor which ensures that instruction fetches
from the specified effective address by Py gy appear to execute after any loads, stores, and atomic
load-stores to that address issued by Pgpysy prior to the FLUSH. In a multiprocessor system, FLUSH
also ensures that these values will eventually become visible to the instruction fetches of all other
virtual processors in the system. With respect to MEMBAR-induced orderings, FLUSH behaves as if it
is a store operation (see Memory Barrier on page 217).

Given any store Sp to address A, that precedes in memory order a FLUSH F, to address A, that in
turn precedes in memory order a store Sg to address B; if any instruction Ig fetched from address B
executes the instruction created by store Sg, then any instruction I, that fetched from address A and
that follows Ig in program order cannot execute any version of the instruction from address A that
existed prior to the store Sy.

The preceeding statement defines an ordering requirement to which UltraSPARC Architecture
processors comply. By using a FLUSH instruction between two stores that modify instructions,
atomicity between the two stores is guaranteed such that any virtual processor executing the
instruction modified by the later store will never fetch and/or execute the instruction before it was
modified by the earlier store.

If i = 0, the effective address operand for the FLUSH instruction is “R[rs1] + R[rs2]”; if i = 1, it is

“R[rs1] + sign_ext (simm13)”. The three least-significant bits of the effective address are ignored;

that is, the effective address always refers to an aligned doubleword.

1 this includes use of store instructions (executed on the same or another virtual processor) that write to instruction memory, or any
other means of writing into instruction memory (for example, DMA transfer)

2 practiced, for example, by software such as debuggers and dynamic linkers
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See implementation-specific documentation for details on specific implementations of the FLUSH
instruction.

On an UltraSPARC Architecture processor:

» A FLUSH instruction causes a synchronization within the virtual processor on which the FLUSH is
executed, which flushes its instruction pipeline to ensure that no instruction already fetched has
subsequently been modified in memory. Any other virtual processors on the same physical
processor are unaffected by a FLUSH.

» Coherency between instruction and data memories may or may not be maintained by hardware.

IMPL. DEP. #409-S10: The implementation of the FLUSH instruction is implementation dependent. If
the implementation automatically maintains consistency between instruction and data memory,
(1) the FLUSH address is ignored and
(2) the FLUSH instruction cannot cause any data access exceptions, because

its effective address operand is not translated or used by the MMU.
On the other hand, if the implementation does not maintain consistency between instruction and data
memory, the FLUSH address is used to access the MMU and the FLUSH instruction can cause data
access exceptions.

Programming | For portability across all SPARC V9 implementations, software
Note | must always supply the target effective address in FLUSH
instructions.

» If the implementation contains instruction prefetch buffers:
= the instruction prefetch buffer(s) are invalidated

= instruction prefetching is suspended, but may resume starting with the instruction immediately
following the FLUSH

Programming | 1.Typically, FLUSH is used in self-modifying code.
Notes | The use of self-modifying code is discouraged.

2. If a program includes self-modifying code, to be portable it must
issue a FLUSH instruction for each modified doubleword of
instructions (or make a call to privileged software that has an
equivalent effect) after storing into the instruction stream.

3. The order in which memory is modified can be controlled by
means of FLUSH and MEMBAR instructions interspersed
appropriately between stores and atomic load-stores. FLUSH is
needed only between a store and a subsequent instruction fetch
from the modified location. When multiple processes may
concurrently modify live (that is, potentially executing) code, the
programmer must ensure that the order of update maintains the
program in a semantically correct form at all times.

4. The memory model guarantees in a uniprocessor that data loads
observe the results of the most recent store, even if there is no
intervening FLUSH.

5. FLUSH may be a time-consuming operation.
(see the Implementation Note below)

6. In a multiprocessor system, the effects of a FLUSH operation
will be globally visible before any subsequent store becomes
globally visible.
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7. FLUSH is designed to act on a doubleword. On some
implementations, FLUSH may trap to system software. For these
reasons, system software should provide a service routine,
callable by nonprivileged software, for flushing arbitrarily-sized
regions of memory. On some implementations, this routine
would issue a series of FLUSH instructions; on others, it might
issue a single trap to system software that would then flush the
entire region.

8. FLUSH operates using the current (implicit) context. Therefore,
a FLUSH executed in privileged or hyperprivileged mode will
use the nucleus context and will not necessarily affect instruction
cache lines containing data from a user (nonprivileged) context.

Implementation | In a multiprocessor configuration, FLUSH requires all processors
Note | that may be referencing the addressed doubleword to flush their
instruction caches, which is a potentially disruptive activity.

V9 Compatibility | The effect of a FLUSH instruction as observed from the virtual
Note | processor on which FLUSH executes is immediate. Other virtual

processors in a multiprocessor system eventually will see the

effect of the FLUSH, but the latency is implementation dependent.

An attempt to execute a FLUSH instruction when instruction bits 29:25 are nonzero causes an
illegal_instruction exception.

An attempt to execute a FLUSH instruction when i = 0 and instruction bits 12:5 are nonzero causes an
illegal_instruction exception.

Exceptions illegal_instruction
DAE_nfo_page
fast_data_access_MMU_miss (TLB miss with hardware tablewalk disabled)
(impl. dep. #409-510)
data_access_MMU_miss (TLB miss with hardware tablewalk enabled)
(impl. dep. #409-510)
fast_data_access_protection

148 UltraSPARC Architecture 2007 « Draft D0.9.4, 27 Sep 2010



FLUSHW

7.26  Flush Register Windows

Instruction op3 Operation Assembly Language Syntax Class
FLUSHW 101011  Flush Register Windows fl ushw Al
10 — op3 —
31 30 29 25 24 19 18 0

Description FLUSHW causes all active register windows except the current window to be flushed to memory at
locations determined by privileged software. FLUSHW behaves as a NOP if there are no active
windows other than the current window. At the completion of the FLUSHW instruction, the only
active register window is the current one.

Programming | The FLUSHW instruction can be used by application software to
Note | flush register windows to memory so that it can switch memory
stacks or examine register contents from previous stack frames.

FLUSHW acts as a NOP if CANSAVE = N_REG_WINDOWS — 2. Otherwise, there is more than one
active window, so FLUSHW causes a spill exception. The trap vector for the spill exception is based
on the contents of OTHERWIN and WSTATE. The spill trap handler is invoked with the CWP set to
the window to be spilled (that is, (CWP + CANSAVE + 2) mod N_REG_WINDOWS). See Register Window
Management Instructions on page 94.

Programming | Typically, the spill handler saves a window on a memory stack
Note | and returns to reexecute the FLUSHW instruction. Thus, FLUSHW
traps and reexecutes until all active windows other than the
current window have been spilled.

An attempt to execute a FLUSHW instruction when instruction bits 29:25 or 18:0 are nonzero causes
an illegal_instruction exception.

Exceptions illegal_instruction
spill_n_normal
spill_n_other
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FMAf

Floating-Point Multiply-Add and Multiply-

Subtract (fused)

Instruction op5 Operation Assembly Language Syntax Class Added
FMADDs 0001 Multiply-Add Single fmadds  fregis1, fregiso, fregrsa, fregid C3 UA 2007
FMADDd 0010 Multiply-Add Double frmaddd  fregis1, fregiso, fregrsa, freSid C3 UA 2007
FMSUBs 0101  Multiply-Subtract Single frrsubs  fregis1, fregrsos fregisa, freSrd C3 UA 2007
FMSUBd 0110  Multiply-Subtract Double freubd  fregis1, fregrso, fregrsa, fregrg C3 UA 2007
UA 2007
FNMSUBs 1001 Negative Multiply-Subtract Single fnmsubs  fregis1, fregiso, fregrsa, fregid C3 UA 2007
FNMSUBd 1010 Negative Multiply-Subtract Double  fnmsubd  fregs1, fregrso, fregrsa fregrd C3 UA 2007
FNMADDs 1101  Negative Multiply-Add Single fnmadds  fregis1, fregrsa, fregrsa, fregig C3 UA 2007
FNMADDd 1110 Negative Multiply-Add Double fnmaddd  fregis1, fregiso, fregrsa, fregid C3 UA 2007
10 rd 110111 rsl rs3 op5
31 30 29 25 24 19 18 14 13 98 54

Instruction Implementation

Multiply-Add (fused) F[rd] — (F[rs1] x F[rs2]) + F[rs3]

Multiply-Subtract (fused) F[rd] — (F[rs1] x F[rs2]) — F[rs3]

Negative Multiply-Add (fused) Flrd] « = ((F[rs1] x F[rs2]) + F[rs3])

Negative Multiply-Subtract (fused) F[rd] — - ((F[rs1] x F[rs2]) — F[rs3])
Description  The fused floating-point multiply-add instructions, FMADD<s | d>, multiply the floating-point

150 UltraSPARC Ar

register(s) specified by rs1 and the floating-point register(s) specified by rs2, add that product to the
register(s) specified by rs3, round the result, and write the result into the floating-point register(s)
specified by rd.

The fused floating-point multiply-subtract instructions, FMSUB<s | d>, multiply the floating-point
register(s) specified by rs1 and the floating-point register(s) specified by rs2, subtract from that
product the register(s) specified by rs3, round the result, and write the result into the floating-point
register(s) specified by rd.

The fused floating-point negative multiply-add instructions, FNMADD<s | d>, multiply the floating-
point register(s) specified by rs1 and the floating-point register(s) specified by rs2, add to the product
the register(s) specified by rs3, negate the result, round the result, and write the result into the
floating-point register(s) specified by rd.

The fused floating-point negative multiply-subtract instructions, FNMSUB<s | d>, multiply the
floating-point register(s) specified by the rsl field and the floating-point register(s) specified by the
rs2 field, subtract from the product the register(s) specified by the rs3 field, negate the result, round
the result, and write the result into the floating-point register(s) specified by the rd field.

All of the above instructions are “fused” operations; no rounding is performed between the
multiplication operation and the subsequent addition (or subtraction). Therefore, at most one
rounding step occurs.

The negative fused multiply-add/subtract instructions (FNM?*) treat NaN values as follows:

» A source QNaN propagates with its sign bit unchanged
» A generated (default response) QNaN result has a sign bit of zero
» A source SNaN that is converted to a QNaN result retains the sign bit of the source SNaN
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Exceptions. If an FMAf instruction is not implemented in hardware, it generates an
illegal_instruction exception, so that privileged software can emulate the instruction.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FMAf instruction causes an fp_disabled exception.

Overflow, underflow, and inexact exception bits within FSR.cexc and FSR.aexc are updated based on
the final result of the operation and not on the intermediate result of the multiplication. The invalid
operation exception bits within FSR.cexc and FSR.aexc are updated as if the multiplication and the
addition/subtraction were performed using two individual instructions. An invalid operation
exception is detected when any of the following conditions are true:

» A source operand (F[rs1], F[rs2], or F[rs3]) is a SNaN
a 00 x 0
s 00 -0

If the instruction generates an IEEE-754 exception or exceptions for which the corresponding trap
enable mask (FSR.tem) bits are set, an fp_exception_ieee_754 exception and subsequent trap is
generated.

If either the multiply or the add/subtract operation detects an unfinished_FPop condition (for
example, due to a subnormal operand or final result), the Multiply-Add/Subtract instruction
generates an fp_exception_other exception with FSR.ftt = unfinished_FPop. An fp_exception_other
exception with FSR.ftt = unfinished_FPop always takes precedence over an fp_exception_ieee_754
exception. That is, if an fp_exception_other exception occurs due to an unfinished_FPop condition,
the FSR.cexc and FSR.aexc fields remain unchanged even if a floating point IEEE 754 exception
occurs during the multiply operation (regardless whether traps are enabled, via FSR.tem, for the IEEE
exception) and the unfinished_FPop condition occurs during the subsequent add/subtract operation.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007 .

Semantic Definitions

Exceptions

See Also

FMADD: FNMADD:
(1) tnmp « F[rs1] x F[rs2] (1) tnp « F[rsl] x F[rs2]
(2) tmp « tnp + F[rs3] (2) tnp « tnmp + F[rs3]
(3) tnp — - tnp
(3) F[rd] < round(tnp) (4) F[rd] <« round(tnp)
FMSUB: FNMSUB:
(1) tnp « F[rsl] x F[rs2] (1) tnmp « F[rsl] x F[rs2]
(2) tnmp « tnmp - F[rs3] (2) tnp « tnp — F[rs3]
(3) tnp — - tnp
(3) F[rd] ~ round(tnp) (4) F[rd] ~ round(tnp)
fp_disabled

fp_exception_ieee_754 (OF, UF, NX, NV)
fp_exception_other (FSR.ftt = unfinished_FPop)

FMUL on page 164
FADD on page 133
FSUB on page 174
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7.28

Floating-Point Move

Instruction  op3

opf Operation Assembly Language Syntax Class

FMOVs
FMOVd
FMOVq

11 0100
11 0100
11 0100

00000 0001
00000 0010
00000 0011

Move (copy) Single f movs fregrso,  fregyg Al

fregisa,  fregig Al
fregrsa, fregrg Cc3

Move (copy) Double f movd

Move (copy) Quad f movg

10

rd op3 — opf rs2

31 30 29

Description

Exceptions

See Also

25 24 19 18 14 13 5 4 0

FMOV copies the source floating-point register(s) to the destination floating-point register(s),
unaltered.

FMOVs, FMOVd, and FMOVq perform 32-bit, 64-bit, and 128-bit operations, respectively.

These instructions clear (set to 0) both FSR.cexc and FSRftt. They do not round, do not modify
FSR.aexc, and do not treat floating-point NaN values differently from other floating-point values.

Note | UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FMOV(q instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

An attempt to execute an FMOV instruction when instruction bits 18:14 are nonzero causes an
illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FMOV instruction causes an fp_disabled exception.

An attempt to execute an FMOV(q instruction when rs2{1} # 0 or rd{1} # O causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007 .

illegal_instruction
fp_disabled fp_exception_other (FSRfit = invalid_fp_register (FMOV(q only))

F Register Logical Operate (2 operand) on page 177
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7.29

FMOVcc

Move Floating-Point Register on Condition
(FMOVcc)

Instruction opf_low Operation Assembly Language Syntax Class

FMOVSicc 000001 Move Floating-Point Single, fmovsicc % cc, fregrso, fregrg Al
based on 32-bit integer condition codes

FMOVDicc 000010 Move Floating-Point Double, fmovdicc % cc, fregrso, fregrg Al
based on 32-bit integer condition codes

FMOVQicc 000011  Move Floating-Point Quad, fmovaicc % cc, fregrso, fregrg C3
based on 32-bit integer condition codes

FMOVSxcc 00 0001  Move Floating-Point Single, fovsxce %xcc, fregrso, fregrg Al
based on 64-bit integer condition codes

FMOVDxcc 000010 Move Floating-Point Double, fmovdxce Xcc, fregrso, fregrg Al
based on 64-bit integer condition codes

FMOVQxcc 000011 Move Floating-Point Quad, fmovaxce Xcc, fregrso, fregrg C3
based on 64-bit integer condition codes

FMOVSfcc 000001  Move Floating-Point Single, fovsfce 9% ccn, fregigo, fregrg Al
based on floating-point condition codes

FMOVDfcc 000010 Move Floating-Point Double, fmovdfce % ccn, fregiso, fregrg Al
based on floating-point condition codes

FMOVQfcc 000011 Move Floating-Point Quad, fnovqfecc % ccn, fregso, fregg  C3
based on floating-point condition codes

10 rd 110101 —| cond opf_cc opf_low rs2
31 30 29 25 24 19 18 17 1413 11 10 5 4 0
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Encoding of the cond Field for F.P. Moves Based on Integer Condition Codes (icc or Xcc)

icc/xcc name(s) in
Assembly Language

cond Operation icc / xcc Test Mnemonics
1000 Move Always 1 a
0000 Move Never 0 n
1001  Move if Not Equal not Z ne (or nz)
0001 Move if Equal zZ e (or z)
1010 Move if Greater not (Z or (N xor V)) g
0010 Move if Less or Equal Z or (N xor V) le
1011  Move if Greater or Equal not (N xor V) ge
0011 Move if Less N xor V |

1100 Move if Greater Unsigned not (C or Z) gu
0100 Move if Less or Equal Unsigned (CorZ) I eu
1101  Move if Carry Clear (Greater or Equal, Unsigned) not C cc (or geu)
0101 Move if Carry Set (Less than, Unsigned) C cs (orlu)
1110  Move if Positive not N pos
0110 Move if Negative N neg
1111 Move if Overflow Clear not V vec
0111 Move if Overflow Set A% Vs

Encoding of the cond Field for F.P. Moves Based on Floating-Point Condition Codes (fccn)

cond

feec name(s) in Assembly
Language Mnemonics

1000
0000
0111
0110
0101
0100
0011
0010
0001
1001
1010
1011
1100
1101
1110
1111

Operation fcen Test
Move Always 1

Move Never 0

Move if Unordered U
Move if Greater G
Move if Unordered or Greater GorU
Move if Less L

Move if Unordered or Less LorU
Move if Less or Greater LorG
Move if Not Equal LorGorU
Move if Equal E

Move if Unordered or Equal EorU
Move if Greater or Equal Eor G

Move if Unordered or Greater or Equal EorGorU

Move if Less or Equal EorL
Move if Unordered or Less or Equal EorL orU
Move if Ordered EorLorG

a
n

u

g
ug

I

ul
lg

ne (or nz)
e (orz

ue
ge
uge
le
ul e

o
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Encoding of opf_cc Field (also see TABLE E-10 on page 484)

Description

Condition Code
opf_cc Instruction to be Tested

100,  FMOV<sldlg>icc icc
110,  FMOV<s!|d|lg>xcc xcc
000, FMOV<sldlg>fcc fecO

001, fccl
010, fcc2
011, fce3

101,  (illegal_instruction exception)
111,

The FMOVcc instructions copy the floating-point register(s) specified by rs2 to the floating-point
register(s) specified by rd if the condition indicated by the cond field is satisfied by the selected
floating-point condition code field in FSR. The condition code used is specified by the opf_cc field of
the instruction. If the condition is FALSE, then the destination register(s) are not changed.

These instructions read, but do not modify, any condition codes.

These instructions clear (set to 0) both FSR.cexc and FSR.ftt. They do not round, do not modify
FSR.aexc, and do not treat floating-point NaN values differently from other floating-point values.

Note | UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FMOVQicc, FMOVQxcc, or
FMOVQfcc instruction causes an illegal_instruction exception,
allowing privileged software to emulate the instruction.

An attempt to execute an FMOVcc instruction when instruction bit 18 is nonzero or opf_cc = 101, or
111, causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FMOVQicc, FMOVQxcc, or FMOVQfcc instruction causes an fp_disabled exception.

An attempt to execute an FMOVQicc, FMOVQxcc, or FMOVQfcc instruction when rs2{1} # 0 or
rd{1} # O causes an fp_exception_other (FSR.ftt = invalid_fp_register) exception.
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Programming | Branches cause the performance of most implementations to

Note | degrade significantly. Frequently, the MOVcc and FMOVcc
instructions can be used to avoid branches. For example, the
following C language segment:

double A B, X
if (A>B) then X =1.03; else X = 0.0;

can be coded as

I assune Ais in %0; Bis in %2, %x points to

! constant area
| dd [%x+C_1.03],% 4 ' X =1.03
fcnpd % cc3,%0, %2 I A>B
fble,a % cc3,| abel
! follow ng instructiononly executed if the
! precedi ng branch was taken
fsubd %4,%4,%4 I X =0.0

label : ...

This code takes four instructions including a branch.
With FMOVcg, this could be coded as

| dd [%x+C _1.03],% 4 ' X =1.03
fsubd 9% 4,%4,%6 ' X =0.0
fcmpd % cc3,%0,% 2 I A>B

frnovdl e % cc3,% 6, % 4 ' X =0.0

This code also takes four instructions but requires no branches
and may boost performance significantly. Use MOVcc and
FMOVcc instead of branches wherever these instructions would
improve performance.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = invalid_fp_register (FMOVQ instructions))
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7.30  Move Floating-Point Register on Integer Register
Condition (FMOVR)

Instruction rcond opf_low Operation Test Class
— 000 00101 Reserved — —
FMOVRsZ 001 00101 Move Single if Register = 0 Rirs1]=0 A1l
FMOVRsLEZ 010 00101 Move Single if Register < 0 Rlrs1]<0 A1l
FMOVRsLZ 011 00101 Move Single if Register < 0 Rlrsl]<0 Al
— 100 00101 Reserved — —
FMOVRsNZ 101 00101 Move Single if Register # 0 Rlrs1]z0 Al
FMOVRsGZ 110 00101 Move Single if Register > 0 Rlrs1]>0 A1l
FMOVRsGEZ 111 00101 Move Single if Register = 0 Rrsl]z0 Al
— 000 00110 Reserved — —
FMOVRdZ 001 00110 Move Double if Register = 0 R[rs1]=0 Al
FMOVRALEZ 010 00110 Move Double if Register < 0 R[rsl]<0 A1l
FMOVRALZ 011 00110 Move Double if Register < 0 R[rs1] <0 A1l
— 100 00110 Reserved — —
FMOVRdANZ 101 00110 Move Double if Register # 0 R[rs1]#0 A1l
FMOVRAGZ 110 00110 Move Double if Register > 0 R[rs1] >0 A1l
FMOVRAGEZ 111 00110 Move Double if Register = 0 R[rs1]=0 A1l
— 000 00111 Reserved — —

FMOVRqgZ 001 00111 Move Quad if Register = 0 R[rs1]=0 C3
FMOVRqLEZ 010 00111 Move Quad if Register < 0 R[rsl]<0 C3
FMOVRgLZ 011 00111 Move Quad if Register < 0 R[rs1l]<0 C3

— 100 00111 Reserved — —
FMOVRgNZ 101 00111 Move Quad if Register # 0 R[rs1]#0 C3
FMOVRqGZ 110 00111 Move Quad if Register > 0 Rlrs1]>0 C3
FMOVRgGEZ 111 00111 Move Quad if Register = 0 R[rs1]=0 C3

10 rd 110101 rsl —| rcond opf_low rs2
31 30 29 25 24 19 18 14 13 12 10 9 5 4 0

Assembly Language Syntax

frovri{s, d, qjz  regs1. fregrsos fregrd (synonym: f movr {s, d, qle)
frovr (s, d, q}l ez regis1, fregrso, fregrg
frovri{s, d, q}l z regs1, fregrso, fregrd
frovr{s, d, qinz regis1, fregiso, freged (synonym: f movr {s, d, gjne)
lgz
}

frovr{s, d, qlgz regs1, fregrsa, fregid

{
{
{
frovr (s, d, qlgez regis1. fregrso, fregrd
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Description If the contents of integer register R[rs1] satisfy the condition specified in the rcond field, these
instructions copy the contents of the floating-point register(s) specified by the rs2 field to the floating-
point register(s) specified by the rd field. If the contents of R[rs1] do not satisfy the condition, the
floating-point register(s) specified by the rd field are not modified.

These instructions treat the integer register contents as a signed integer value; they do not modify any
condition codes.

These instructions clear (set to 0) both FSR.cexc and FSRftt. They do not round, do not modify
FSR.aexc, and do not treat floating-point NaN values differently from other floating-point values.

Note | UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FMOVRq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

An attempt to execute an FMOVR instruction when instruction bit 13 is nonzero or rcond = 000, or
100, causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FMOVR instruction causes an fp_disabled exception.

An attempt to execute an FMOVR(q instruction when rs2{1} # 0 or rd{1} # O causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.

Implementation | If this instruction is implemented by tagging each register value
Note [ with an N (negative) and a Z (zero) condition bit, use the
following table to determine whether rcond is TRUE:

Branch Test
FMOVRNZ not Z
FMOVRZ Z

FMOVRGEZ not N
FMOVRLZ N
FMOVRLEZ N or Z
FMOVRGZ N nor Z

Exceptions illegal_instruction
fp_disabled fp_exception_other (FSR.ftt = invalid_fp_register (FMOVR(q instructions))
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7.31  Partitioned Multiply Instructions

Instruction opf Operation sl s2 d Assembly Language Syntax Class

FMULS8x16 00011 0001 Unsigned 8-bit by signed 16-bit f32 f64 f64 f mul 8x16  fregsy, fregrsz, fregyg Bl
partitioned product

FMUL8x16AU 00011 0011 Unsigned 8-bit by signed 16-bit 32 f32 f64 f mul 8x16au fregs1, fregrsz, fregq Bl
upper a partitioned product

FMUL8xI6AL 00011 0101 Unsigned 8-bit by signed 16-bit £32 £32 f64 f mul 8x16al freg,s1, fregrsy fregg Bl
lower a partitioned product

FMUL8SUx16 000110110 Signed upper 8-bit by signed  f64 f64 f64 f mul 8sux16 freg,s1. fregrso, fregrq Bl
16-bit partitioned product

FMUL8ULx16 00011 0111 Unsigned lower 8-bit by signed f64 f64 f64 f mul 8ul x16 freg,s1. fregrso, fregrg Bl
16-bit partitioned product

FMULD8SUx16 000111000 Signed upper 8-bit by signed {32 £32 f64 f mul d8sux16 freg,s1, fregrsz, fregrq Bl
16-bit partitioned product

FMULDS8ULx16 000111001 Unsigned lower 8-bit by signed {32 £32 f64 f mul d8ul x16 freg,s1, fregrsz, fregrq Bl
16-bit partitioned product

10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Programming | When software emulates an 8-bit unsigned by 16-bit signed
Note | multiply, the unsigned value must be zero-extended and the 16-bit
value sign-extended before the multiplication.

Description  The following sections describe the versions of partitioned multiplies.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an partitioned multiply instruction causes an fp_disabled exception.

Exceptions fp_disabled
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7.31.1 FMULS8x16 Instruction

FMULB8x16 multiplies each unsigned 8-bit value (for example, a pixel component) in the 32-bit
floating-point register Fg[rs1] by the corresponding (signed) 16-bit fixed-point integer in the 64-bit
floating-point register Fp[rs2]. It rounds the 24-bit product (assuming binary point between bits 7 and
8) and stores the most significant 16 bits of the result into the corresponding 16-bit field in the 64-bit
floating-point destination register Fp[rd]. FIGURE 7-10 illustrates the operation.

Note | This instruction treats the pixel component values as fixed-point
with the binary point to the left of the most significant bit.
Typically, this operation is used with filter coefficients as the fixed-
point rs2 value and image data as the rs1 pixel value. Appropriate
scaling of the coefficient allows various fixed-point scaling to be
realized.

Flrs1] /

312/413 167787/0

Flrs2l | | | ]
63 * /8’ 47 * /éz 31 * / 16 15 ** 0
XMs16b XMs16b XMs16b XMs16b
Flrd] ¢ ¢ ¢
63 28 a7 32 31 6 15 0

FIGURE 7-10 FMULB8x16 Operation

7.31.2 FMUL8Xx16AU Instruction

FMULB8x16AU is the same as FMULS8x16, except that one 16-bit fixed-point value is used as the
multiplier for all four multiplies. This multiplier is the most significant (“upper”) 16 bits of the 32-bit
register Fg[rs2] (typically an o pixel component value). FIGURE 7-11 illustrates the operation.

Fslrsi] /
31 %3 16/5 8 7 0
Ffrs2t 7 _ /T o 1!
o T
XMs16b XMs16b XMs16b XMs16b
Fplrd] ¢ ¢ ¢ ¢
63 48 47 32 31 16 15 0

FIGURE 7-11 FMUL8x16AU Operation
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7.31.4

7.31.5

FMUL (partitioned)
FMUL8Xx16AL Instruction

FMULB8x16AL is the same as FMUL8x16AU, except that the least significant (“lower”) 16 bits of the
32-bit register Fg[rs2] register are used as a multiplier. FIGURE 7-12 illustrates the operation.

Fslrsi]

Fslrs2]

Fplrd]

63 48 47 32 31 16 15 0

FIGURE 7-12 FMULS8x16AL Operation

FMUL8SUx16 Instruction

FMULS8SUx16 multiplies the most significant (“upper”) 8 bits of each 16-bit signed value in the 64-bit
floating-point register Fp[rs1] by the corresponding signed, 16-bit, fixed-point, signed integer in the
64-bit floating-point register Fp[rs2]. It rounds the 24-bit product toward the nearest representable
value and then stores the most significant 16 bits of the result into the corresponding 16-bit field of the
64-bit floating-point destination register Fp[rd]. If the product is exactly halfway between two
integers, the result is rounded toward positive infinity. FIGURE 7-13 illustrates the operation.

et [ [ L I L [ L

- = - — - = - —_ = R |

63 \56 55 48 47 \40 39 32 31 \24 23 16 15 \<3 7 0
Folrs] \ \ \ \
63 ** 48 47 ** 32 31 ** 16 15 ** 0
XMs16b X\Ms16b X\Ms16b XMs16b
63 28 47 2 31 6 15 0

FIGURE 7-13 FMUL8SUx16 Operation

FMUL8SULX16 Instruction

FMULSULXx16 multiplies the unsigned least significant (“lower”) 8 bits of each 16-bit value in the 64-
bit floating-point register Fp[rs1] by the corresponding fixed-point signed 16-bit integer in the 64-bit
floating-point register Fp[rs2]. Each 24-bit product is sign-extended to 32 bits. The most significant
(“upper”) 16 bits of the sign-extended value are rounded to nearest and then stored in the
corresponding 16-bit field of the 64-bit floating-point destination register Fp[rd]. If the result is exactly
halfway between two integers, the result is rounded toward positive infinity. FIGURE 7-14 illustrates the
operation; CODE EXAMPLE 7-1 exemplifies the operation.
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FMUL (partitioned)

sty L 1 L 1 L [ [ ]

[

63 56 55/ 48 47 40 39/ 32 31 24 23/ 16 15 8 7 / 0
Folrs?] L/ L/ L/ L/

Tw T w T w ttw

X .
sign-extended, X sign-extended, X sign-extended, X sign-extended,
MS16b ¢ MS16b ¢ MS16b ¢ MS16b
FD[rd]
63 48 47 32 31 16 15 0

FIGURE 7-14 FMUL8ULXx16 Operation

CODE EXAMPLE 7-1  16-bit x 16-bit 16-bit Multiply

f mul 8sux16 %0, %1, %2
f mul 8ul x16 %0, %1, %3

f padd16 %2, %3, %4

FMULDS8SUx16 Instruction

FMULDS8SUx16 multiplies the most significant (“upper”) 8 bits of each 16-bit signed value in F[rs1]
by the corresponding signed 16-bit fixed-point value in F[rs2]. Each 24-bit product is shifted left by 8
bits to generate a 32-bit result, which is then stored in the 64-bit floating-point register specified by rd.
FIGURE 7-15 illustrates the operation.

Fslrsi] \ T \ T -;
31 \24 23 16 15 \87___0
Fslrs2]
31 ** 16 15 ** 0
X X
Fplrd] 44— |00000000 e 00000000
63 20 39 32 31 8 7 0

FIGURE 7-15 FMULD8SUx16 Operation
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7.31.7 FMULDSULX16 Instruction

FMULDSULx16 multiplies the unsigned least significant (“lower”) 8 bits of each 16-bit value in F[rs1]
by the corresponding 16-bit fixed-point signed integer in F[rs2]. Each 24-bit product is sign-extended
to 32 bits and stored in the corresponding half of the 64-bit floating-point register specified by rd.
FIGURE 7-16 illustrates the operation; CODE EXAMPLE 7-2 exemplifies the operation.

Fslrsi] L o
b — = - _——
31 24 23] 16 15 87 0

Fslrs2] | / | /
31 ** 16 15 ** 0
X sign-extended X sign-extended
Fplrd] - F
63 32 31 0

FIGURE 7-16 FMULDS8ULXx16 Operation

CODE EXAMPLE 7-2  16-bit x 16-bit 32-bit Multiply
fnul d8sux16 %0, %1, %2

frul d8ul x16 9% 0, %1, 9% 3
f padd32 %2, %3, %4
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7.32

FMUL<s|d|g>

Floating-Point Multiply

Instruction op3 opf Operation Assembly Language Syntax Class
FMULs 11 0100 001001001  Multiply Single frnul's  fregs1, fregrsos  fregig Al
FMULd 110100 001001010 Multiply Double fruld  fregss, fregrsp  fregr Al
FMULq 110100 001001011 Multiply Quad frulq  fregs1, fregrsos  fregig Cs3
FsMULd 11 0100 001101001  Multiply Single to Double  fsnul d freg.s1, fregisos freged Al
FAMULq 11 0100 001101110 ~ Multiply Double to Quad ~ fdnul q fregis1, fregrsor fregeg C3
10 rd op3 rsl opf
31 30 29 25 24 19 18 14 13
Description The floating-point multiply instructions multiply the contents of the floating-point register(s)
specified by the rsl field by the contents of the floating-point register(s) specified by the rs2 field. The
instructions then write the product into the floating-point register(s) specified by the rd field.
The FsMULd instruction provides the exact double-precision product of two single-precision
operands, without underflow, overflow, or rounding error. Similarly, FAMULq provides the exact
quad-precision product of two double-precision operands.
Rounding is performed as specified by FSR.rd.
Note | UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FMULq or FAMULq instruction
causes an illegal_instruction exception, allowing privileged
software to emulate the instruction.
If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute any FMUL instruction causes an fp_disabled exception.
An attempt to execute an FMUL(q instruction when rs1{1} # 0 or rs2{1} # 0 or rd{1:0} # O causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.
An attempt to execute an FAMULq instruction when rd{1} # O causes an fp_exception_other
(FSR.ftt = invalid_fp_register) exception.
For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007.
Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSRftt = invalid_fp_register (FMULq and FAMULq only))
fp_exception_other (FSR.ftt = unfinished_FPop)
fp_exception_ieee_754 (any: NV; FMUL<s|d|q> only: OF, UF, NX)
See Also FMAf on page 150
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7.33

Floating-Point Negate

Instruction  op3

opf Operation Assembly Language Syntax Class

ENEGs
FNEGd
FNEGq

11 0100
11 0100
11 0100

00000 0101
00000 0110
00000 0111

Negate Single
Negate Double
Negate Quad

fnegs  fregiso, fregud Al
fregisa,  fregrd Al

fregesa,  freged Cc3

fnegd
fnegq

10

rd op3 — opf rs2

31 30 29

Description

Exceptions

25 24 19 18 14 13 5 4 0

FNEG copies the source floating-point register(s) to the destination floating-point register(s), with the
sign bit complemented.

These instructions clear (set to 0) both FSR.cexc and FSRftt. They do not round, do not modify
FSR.aexc, and do not treat floating-point NaN values differently from other floating-point values.

Note | UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FNEGq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

An attempt to execute an FNEG instruction when instruction bits 18:14 are nonzero causes an
illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FNEG instruction causes an fp_disabled exception.

An attempt to execute an FNEGq instruction when rs2{1} # 0 or rd{1} # O causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.

illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = invalid_fp_register (FNEGq only))

CHAPTER 7 ¢ Instructions 165



FPACK

7.34

FPACK

Instruction opf Operation sl s2 d Assembly Language Syntax Class
FPACK16 000111011 Four 16-bit packs into 8 — f64 32 fpackl6 fregisr, fregg B1
unsigned bits
FPACK32 000111010 Two 32-bit packs into 8 fo4 f64 f64 fpack32 fregs1, fregsas fregrd B1
unsigned bits
FPACKFIX 000111101 Four 16-bit packs into 16 ~—  f64 {32 fpackfix freg.so, fregyg B1
signed bits
rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
Description The FPACK instructions convert multiple values in a source register to a lower-precision fixed or pixel

Exceptions

See Also

format and stores the resulting values in the destination register. Input values are clipped to the
dynamic range of the output format. Packing applies a scale factor from GSR.scale to allow flexible
positioning of the binary point. See the subsections on following pages for more detailed descriptions
of the operations of these instructions.

An attempt to execute an FPACK16 or FPACKFIX instruction when rs1 # 0 causes an illegal_instruction
exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute any FPACK instruction causes an fp_disabled exception.

illegal_instruction fp_disabled

FEXPAND on page 144
FPMERGE on page 173
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FPACK
7.34.1 FPACK16

FPACK16 takes four 16-bit fixed values from the 64-bit floating-point register Fp[rs2], scales,
truncates, and clips them into four 8-bit unsigned integers, and stores the results in the 32-bit
destination register, Fg[rd]. FIGURE 7-17 illustrates the FPACK16 operation.

Folrs2] | | | | |
63 48 4 @w\ 23 \6\15 7\ ©
0

0

000

0

Fs[rd] 1\ X

31

GSR.scale | x0100

Fo[rs2] (16 bits)

4
L[] | o
19 16 15 T4 7A6 3

]

FIGURE 7-17 FPACK16 Operation

Note | FPACK16 ignores the most significant bit of GSR.scale
(GSR.scale{4}).

This operation is carried out as follows:

1. Left-shift the value from Fp[rs2] by the number of bits specified in GSR.scale while maintaining
clipping information.

2. Truncate and clip to an 8-bit unsigned integer starting at the bit immediately to the left of the
implicit binary point (that is, between bits 7 and 6 for each 16-bit word). Truncation converts the
scaled value into a signed integer (that is, round toward negative infinity). If the resulting value is
negative (that is, its most significant bit is set), 0 is returned as the clipped value. If the value is
greater than 255, then 255 is delivered as the clipped value. Otherwise, the scaled value is returned
as the result.

3. Store the result in the corresponding byte in the 32-bit destination register, Fg[rd].

For each 16-bit partition, the sequence of operations performed is shown in the following example
pseudo-code:

tnp « source_operand{15: 0} << GSR.scale;

/1 Pick off the bits frombit position 15+GSR.scale to
/] bit position 7 fromthe shifted result
trunc_signed_val ue « tmp{(15+GSR.scale): 7};

If (trunc_signed_value < 0)

unsi gned_8bit_result « O;

else if (trunc_signed_val ue > 255)

unsi gned_8bit_result ~ 255;

el se

unsi gned_8bit_result « trunc_signed_val ue{14: 7};
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7.34.2

FPACK

FPACK32

FPACKB32 takes two 32-bit fixed values from the second source operand (64-bit floating-point register
Fplrs2]) and scales, truncates, and clips them into two 8-bit unsigned integers. The two 8-bit integers
are merged at the corresponding least significant byte positions of each 32-bit word in the 64-bit
floating-point register Fp[rs1], left-shifted by 8 bits. The 64-bit result is stored in Fp[rd]. Thus,
successive FPACK32 instructions can assemble two pixels by using three or four pairs of 32-bit fixed
values. FIGURE 7-18 illustrates the FPACK32 operation.

Fplrs2]
Fplrs1]
Y /& T /&
63 56 55 48 47 40 39 32 31 24 23 16 15 87 0
GSR.scale (00110
4 0
Fplrs2] (32 bits)
000000
37 31 30 22 6 5 0
implicit binary point FD[I’d] (8 bits)

FIGURE 7-18 FPACK32 Operation

This operation, illustrated in FIGURE 7-18, is carried out as follows:

1.

5.

Left-shift each 32-bit value in Fp[rs2] by the number of bits specified in GSR.scale, while
maintaining clipping information.

. For each 32-bit value, truncate and clip to an 8-bit unsigned integer starting at the bit immediately

to the left of the implicit binary point (that is, between bits 23 and 22 for each 32-bit word).
Truncation is performed to convert the scaled value into a signed integer (that is, round toward
negative infinity). If the resulting value is negative (that is, the most significant bit is 1), then 0 is
returned as the clipped value. If the value is greater than 255, then 255 is delivered as the clipped
value. Otherwise, the scaled value is returned as the result.

. Left-shift each 32-bit value from Fp[rs1] by 8 bits.

. Merge the two clipped 8-bit unsigned values into the corresponding least significant byte positions

in the left-shifted Fp[rs2] value.

Store the result in the 64-bit destination register Fp[rd].

For each 32-bit partition, the sequence of operations performed is shown in the following pseudo-
code:

tnp —~ source_operand2{31: 0} << GSR.scale;

/1 Pick off the bits frombit position 31+GSR.scale to
/] bit position 23 fromthe shifted result
trunc_signed_val ue « tmp{(31+GSR.scale): 23};

if (trunc_signed_value < 0)

unsi gned_8bi t _val ue ~ 0;

168 UltraSPARC Architecture 2007 « Draft D0.9.4, 27 Sep 2010



7.34.3

FPACK

else if (trunc_signed_val ue > 255)

unsi gned_8bi t _val ue — 255;

el se

unsi gned_8bit _val ue « trunc_si gned_val ue{30: 23};

Fi nal _32bit_Result — (source_operandl{31l:0} << 8) |
(unsi gned_8bit _val ue{7:0});

FPACKFIX

FPACKFIX takes two 32-bit fixed values from the 64-bit floating-point register Fp[rs2], scales,
truncates, and clips them into two 16-bit unsigned integers, and then stores the result in the 32-bit
destination register Fg[rd]. FIGURE 7-19 illustrates the FPACKFIX operation.

Fplrs2]
63 32 31 0
Fglrd] RN
31 16 15 0
GSR.scale (00110
4 0
Fplrs2] (32 bits)
r/ 000000
37 32 31 16415 6 5 0
implicit binary point
Fglrd] (16 hits)

FIGURE 7-19 FPACKFIX Operation

This operation is carried out as follows:

1. Left-shift each 32-bit value from Fp[rs2]) by the number of bits specified in GSR.scale, while
maintaining clipping information.

2. For each 32-bit value, truncate and clip to a 16-bit unsigned integer starting at the bit immediately
to the left of the implicit binary point (that is, between bits 16 and 15 for each 32-bit word).
Truncation is performed to convert the scaled value into a signed integer (that is, round toward
negative infinity). If the resulting value is less than -32768, then —32768 is returned as the clipped
value. If the value is greater than 32767, then 32767 is delivered as the clipped value. Otherwise,
the scaled value is returned as the result.

3. Store the result in the 32-bit destination register Fg[rd].

For each 32-bit partition, the sequence of operations performed is shown in the following pseudo-
code:

tnp —~ source_operand{31: 0} << GSR.scale;

/1 Pick off the bits frombit position 31+GSR.scale to
/1 bit position 16 fromthe shifted result
trunc_signed_val ue « tnmp{(31+GSR.scale): 16};

if (trunc_signed_value < -32768)

signed_16bit _result ~ -32768;

else if (trunc_signed_val ue > 32767)
signed_16bit_result — 32767,
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el se
signed_16bit_result — trunc_signed_val ue{31: 16};
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FPADD

7.35

Fixed-point Partltloned Addvist ]

Instruction Operation sl s2 Assembly Language Syntax Class

FPADD16 0 0101 0000 Four 16-bit adds f64 f64  f64  fpaddlé  fregsy, fregrso, fregq Al

FPADD16S 00101 0001 Two 16-bit adds 32 f32 32 fpaddl6s fregs1, fregrso, fregrg Al

FPADD32 0 0101 0010 Two 32-bit adds fo4 f64 fo4 fpadd32  fregsy, fregrso, fregrg Al

FPADD32S 00101 0011 One 32-bit add 32 £32 32 fpadd32s fregs1, fregrso, fregrq Al

10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description FPADD16 (FPADD32) performs four 16-bit (two 32-bit) partitioned additions between the

corresponding fixed-point values contained in the source operands (Fp[rsl1], Fplrs2]). The result is
placed in the destination register, Fp[rd].

The 32-bit versions of these instructions (FPADD16S and FPADD32S) perform two 16-bit or one 32-bit
partitioned additions.

Any carry out from each addition is discarded and a 2’s-complement arithmetic result is produced.

o 63 \\ 48 47 \\ 32 31 \\ 16 15 \\ 0
Fplrs2] \ | \ / \ / &_/

63 V_! 48 47 v+ 7 32 31 v+y 16 15 A 0
Fplrd] (sum) + + % +

63 48 47 32 31 16 15 0

FIGURE 7-20 FPADD16 Operation

Fplrsi]
63 \ 32 31 | 0
L
Fplrs2] \ \
63 * % 32 31 * / 0
+ +
Fplrd] (sum) + +
63 32 31 0

FIGURE 7-21 FPADD32 Operation
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Fglrsil \ l
31 \ 16 15 \ 0
Fglrs2] \ \
31 16 15 0
VT
Fglrd] (sum) * *
31 16 15 0
FIGURE 7-22 FPADD16S Operation
Fglrsil
31 0
Fs[rSZ] \
31 0
7
|
Fglrd] (sum) v
31 0

FIGURE 7-23 FPADD32S Operation

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FPADD instruction causes an fp_disabled exception.

Exceptions fp_disabled
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FPMERGE

7.36

FPMERGE

Instruction opf

Operation sl s2 d Assembly Language Syntax Class

FPMERGE 00100 1011 Two 32-bit merges f32 32 fe4 fprerge fregis1, fregrsas fregeg Bl

rd 110110 rsl opf rs2

31 30 29 25 24 19 18 14 13 5 4 0

Description

Exceptions

See Also

FPMERGE interleaves eight 8-bit unsigned values in Fg[rsl1] and Fg[rs2] to produce a 64-bit value in
the destination register Fp[rd]. This instruction converts from packed to planar representation when it
is applied twice in succession; for example, RIG1B1A1,R3G3B3A3 - RIR3G1G3AlA3 -
R1IR2R3R4G1G2G3G4.

FPMERGE also converts from planar to packed when it is applied twice in succession; for example,
R1R2R3R4,B1B2B3B4 - R1B1R2B2R3B3R4B4 - R1G1B1A1R2G2B2A2.

FIGURE 7-24 illustrates the operation.

Fs[I'S].] /

Fglrs2] — |
/31 /2,3( ;xé /8 7 0
Fplrd] a1 &K »

63 5655 48 47 4039 32 31 24 23 16 15 8 7 0

FIGURE 7-24 FPMERGE Operation

'zﬁ } packed representation

S
G
e fola
a
2
N

fpnrerge %0, %2, %4 A3, . .
fpmerge %1, %3, %6 A2 A4} intermediate

fprerge %4, %6, %0 !
fprerge %5, %7, %2 !

fprerge %0, %2, %4 B4 . .
fpmerge %1, %3, %6 G4 A4l intermediate

N
8
&
R
RE(Re
'S

G4 .
A3 A } planar representation

ﬁi} packed representation

:
S
g
&
7
ge
&
3
Y
RE
g

CODE EXAMPLE 7-3 FPMERGE

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FPMERGE instruction causes an fp_disabled exception.

fp_disabled

FPACK on page 166
FEXPAND on page 144
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7.37  Fixed-point Partitioned Subtract (64-bit)

Instruction opf Operation sl s2 d Assembly Language Syntax Class
FPSUB16 00101 0100 Four 16-bit subtracts 64 f64 f64 fpsublé  fregy, fregrso, fregyg Al
FPSUB16S 00101 0101 Two 16-bit subtracts 32 32 f32 fpsubl16s freg.s1, fregso, fregq Al
FPSUB32 00101 0110 Two 32-bit subtracts f64 f64 {64 fpsub32  fregis1, fregrso, fregq Al
FPSUB32S 00101 0111 One 32-bit subtract  f32 32 f32 fpsub32s freg.s1, fregsy, fregq Al

10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description FPSUB16 (FPSUB32) performs four 16-bit (two 32-bit) partitioned subtractions between the
corresponding fixed-point values contained in the source operands (Fp[rs1], Fp[rs2]). The values in
Fplrs2] are subtracted from those in Fp[rs1], and the result is placed in the destination register, Fp[rd].

The 32-bit versions of these instructions (FPSUB16S and FPSUB32S) perform two 16-bit or one 32-bit
partitioned subtractions.

Any carry out from each subtraction is discarded and a 2’s-complement arithmetic result is produced.

rolrsd \ \ | \
63 \ 48 47 \ 32 31 \ 16 15 \ 0
Folrs2] | | \ ; |
63 V_v 48 47 v_ 32 31 v_r 16 15 [ 0
I | |
z:dDi[frfilence) v %

63 48 47 32 31 16 15 0

FIGURE 7-25 FPSUB16 Operation

Fplrsi] \ \

63 \ 32 31 \ 0

FD[rSZ] \ \
63 V_ ’ 32 31 *_’ 0
| |
Fplrd]
(difference) v v

63 32 31 0

FIGURE 7-26 FPSUB32 Operation
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FPSUB

Fs[rS].] \

|
L
\ |
R L Y
+

Fslrd] *

Fslrs2]

(difference)
31 16 15 0
FIGURE 7-27 FPSUB16S Operation
Fglrsi]
31 0
Fslrs2]
31 } 0
|
Fslrd] v
(difference)
31 0

FIGURE 7-28 FPSUB32S Operation

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FPSUB instruction causes an fp_disabled exception.

Exceptions fp_disabled
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F Register 1-operand Logical Ops

7.38

F Register Logical Operate (1 operand)

Instruction opf Operation Assembly Language Syntax Class
FZEROd 00110 0000  Zero fill fzero fregrg Al
FZEROs 00110 0001  Zero fill, 32-bit fzeros  fregyq Al
FONEd 001111110  One fill fone fregg Al
FONEs 001111111  One fill, 32-bit fones fregrg Al
10 rd 110110 — opf —
31 30 29 25 24 19 18 14 13 5 4 0
Description FZEROd and FONEd fill the 64-bit destination register, Fp[rd], with all ‘0’ bits or all ‘1’ bits
(respectively).
FZEROs and FONEs fill the 32-bit destination register, Fp[rd], with all ‘0’ bits or all ‘1’ bits
(respectively.
An attempt to execute an FZERO or FONE instruction when instruction bits 18:14 or bits 4:0 are
nonzero causes an illegal_instruction exception.
If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FZERO or FONE instruction causes an fp_disabled exception.
Exceptions illegal_instruction
fp_disabled
See Also F Register 2-operand Logical Operations on page 177

F Register 3-operand Logical Operations on page 178
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F Register 2-operand Logical Ops

7.39

F Register Logical Operate (2 operand)

Instruction opf Operation Assembly Language Syntax Class
FSRC1d 00111 0100  Copy Fplrsi] to Fp[rd] fsrcl fregis1, fregrd Al
FSRCl1s 001110101 Copy Fs[rs1] to Fg[rd], 32-bit fsrcls  fregs1, fregyg Al
FSRC2d 001111000 Copy Fplrs2] to Fp[rd] fsrc2 fregrso, fregg Al
FSRC2s 001111001  Copy Fg[rs2] to Fg[rd], 32-bit fsrc2s  fregisp, fregrg Al
FNOT1d 001101010 Negate (1's complement) Fp[rs1] fnotl fregrs1, fregig Al
FNOT1s 001101011 Negate (1's complement) Fg[rs1], 32-bit fnotls  freg.s1, fregyg Al
FNOT2d 00110 0110  Negate (1’s complement) Fp[rs2] fnot2 fregrso, fregrg Al
IFNOTZS 00110 0111  Negate (1’s complement) Fg[rs2], 32-bit fnot2s  freg.so, fregrg Al |
10 rd 110110 rsl opf —
10 rd 110110 — opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description The standard 64-bit versions of these instructions perform one of four 64-bit logical operations on the

Exceptions

See Also

data from the 64-bit floating-point source register Fp[rs1] (or Fp[rs2]) and store the result in the 64-bit
floating-point destination register Fp[rd].

The 32-bit (single-precision) versions of these instructions perform 32-bit logical operations on Fg[rs1]
(or Fg[rs2]) and store the result in Fg[rd].

An attempt to execute an FSRC1 or FNOT1 instruction when instruction bits 4:0 are nonzero causes an
illegal_instruction exception. An attempt to execute an FSRC2(s) or FNOT2(s) instruction when
instruction bits 18:14 are nonzero causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FSRC1[s], FNOT1[s], FSRC1[s], or FNOT1[s] instruction causes an fp_disabled exception.

Programming | FSRC1s (FSRC1) functions similarly to FMOVs (FMOVd), except
Note | that FSRC1s (FSRC1) does not modify the FSR register while
FMOVs (FMOVd) update some fields of FSR (see Floating-Point
Move on page 152). Programmers are encouraged to use FMOVs
(FMOVd) instead of FSRC1s (FSRC1) whenever practical.

illegal_instruction
fp_disabled

Floating-Point Move on page 152
F Register 1-operand Logical Operations on page 176
F Register 3-operand Logical Operations on page 178
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F Register 3-operand Logical Ops

740  F Register Logical Operate (3 operand)

Instruction opf Operation Assembly Language Syntax Class
FORd 001111100 Logical or for fregis1, fregrso, fregrg Al
FORs 001111101  Logical or, 32-bit fors fregrs1, fregrsoy fregid Al
FNORd 001100010 Logical nor fnor fregis1, fregrsos fregid Al
FNORs 00110 0011  Logical nor, 32-bit fnors fregs1y fregrsos freged Al
FANDd 001110000 Logical and fand fregs1y fregrsas freged Al
FANDs 00111 0001 Logical and, 32-bit fands fregrs1, fregrsa, fregrg Al
FNANDd 001101110  Logical nand fnand fregrs1, fregrsa, fregrg Al
FNANDs 001101111  Logical nand, 32-bit f nands fregrs1, fregrso, fregrg Al
FXORd 00110 1100  Logical xor f xor fregrs1, fregrsa, fregrg Al
FXORs 001101101  Logical xor, 32-bit fxors fregrs1, fregrsz, fregig Al
FXNORd 00111 0010 Logical xnor f xnor fregis1, fregrso, fregrg Al
FXNORs 00111 0011  Logical xnor, 32-bit fxnors fregis1, fregrso, fregig Al
FORNOT1d 001111010 (not Fp[rsl]) or Fp[rs2]\ fornotl  fregis1, fregrso, fregid Al
FORNOT1s 001111011 (not Fg[rs1]) or Fg[rs2], 32-bit fornotls fregis1, fregrsz, fregrg Al
FORNOT2d 001110110  Fp[rs1] or (not Fp[rs2]) fornot2  fregis1, fregrsoy freSid Al
FORNOT2s 001110111  Fg[rs1] or (not Fg[rs2]), 32-bit fornot2s  fregs1, fregrsz, fregig Al
FANDNOT1d 001101000 (not Fp[rsl]) and Fp[rs2] fandnotl fregis1, fregrs2y fregrd Al
FANDNOT1s 001101001 (not Fg[rs1]) and Fg[rs2], 32-bit fandnot 1s freg,s1, fregrsz, fregrg Al
FANDNOT2d 001100100 Fp[rs1] and (not Fp[rs2]) fandnot 2 freg,s1, fregrso, fregrg Al
IFANDNOTZS 00110 0101  Fg[rs1] and (not Fg[rs2]), 32-bit fandnot 2s freg,s1, fregrsz, fregrg Al |
10 rd 110110 rsi opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description The standard 64-bit versions of these instructions perform one of ten 64-bit logical operations between
the 64-bit floating-point registers Fp[rs1] and Fp[rs2]. The result is stored in the 64-bit floating-point
destination register Fp[rd].

The 32-bit (single-precision) versions of these instructions perform 32-bit logical operations between
Fslrsl] and Fg[rs2], storing the result in Fg[rd].

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute any 3-operand F Register Logical Operate instruction causes an fp_disabled exception.

Exceptions fp_disabled

See Also F Register 1-operand Logical Operations on page 176
F Register 2-operand Logical Operations on page 177
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FSQRT<s|d|g> Instructions

741  Floating-Point Square Root

Instruction op3 opf Operation Assembly Language Syntax Class
FSQRTs 11 0100 00010 1001 Square Root Single fsqrts  fregrsn, fregeg Al
FSQRTd 11 0100 00010 1010 Square Root Double fsaqrtd fregso, fregid Al
FSQRTq 11 0100 00010 1011 Square Root Quad fsqrtq fregrso, fregrg C3
10 rd op3 — opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description These SPARC V9 instructions generate the square root of the floating-point operand in the floating-
point register(s) specified by the rs2 field and place the result in the destination floating-point
register(s) specified by the rd field. Rounding is performed as specified by FSR.rd.

Note | UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FSQRT(q instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

An attempt to execute an FSQRT instruction when instruction bits 18:14 are nonzero causes an
illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FSQRT instruction causes an fp_disabled exception.

An attempt to execute an FSQRTq instruction when rs2{1} # 0 or rd{1} # O causes an
fp_exception_other (FSR.fit = invalid_fp_register) exception.

An fp_exception_other (with FSR.ftt = unfinished_FPop) can occur if the operand to the square root is
positive and subnormal. See FSR_floating-point_trap_type (ftt) on page 55 for additional details.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007 .

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSRftt = invalid_fp_register (FSQRTq only))
fp_exception_other (FSR.ftt = unfinished_FPop)
fp_exception_ieee_754 (IEEE_754_exception (NV, NX))
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F<s|d|q>TOi

742 Convert Floating-Point to Integer

Instruction opf Operation sl s2 d Assembly Language Syntax Class
FsTOx 010000001 Convert Single to 64-bit Integer — f32  fe4 fstox fregsn, fregyq Al
FATOx 01000 0010 Convert Double to 64-bit Integer — fe4 fe4 fdtox fregsn, fregyg Al
FqTOx 010000011 Convert Quad to 64-bit Integer — f128 f64 fqtox fregrsr, fregr C3
FsTOi 01101 0001 Convert Single to 32-bit Integer — f32 32 fstoi fregsn, fregyg Al
FATOi 011010010 Convert Double to 32-bit Integer — f64 32 fdtoi fregsp, fregig Al
FqTOi 011010011  Convert Quad to 32-bit Integer — f128 f32 fqtoi fregsr, fregy C3
10 rd op3 =11 0100 — opf rs2
31 30 29 25 24 19 18 1413 5 4 0

Description FsTOx, FATOx, and FqTOx convert the floating-point operand in the floating-point register(s)
specified by rs2 to a 64-bit integer in the floating-point register Fp[rd].

FsTOi, FdTOi, and FqTOi convert the floating-point operand in the floating-point register(s) specified
by rs2 to a 32-bit integer in the floating-point register Fg[rd].

The result is always rounded toward zero; that is, the rounding direction (rd) field of the FSR register
is ignored.

Note | UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FqTOx or FqTOi instruction
causes an illegal_instruction exception, allowing privileged
software to emulate the instruction.

An attempt to execute an F<s|d | q>TO<il x> instruction when instruction bits 18:14 are nonzero
causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an F<s 1d | q>TO<ilx> instruction causes an fp_disabled exception.

An attempt to execute an FqTOi or FqTOx instruction when rs2{1} # 0 causes an fp_exception_other
(FSR.ftt = invalid_fp_register) exception.

If the floating-point operand’s value is too large to be converted to an integer of the specified size or
is a NaN or infinity, then an fp_exception_ieee_754 “invalid” exception occurs. The value written into
the floating-point register(s) specified by rd in these cases is as defined in Integer Overflow Definition on
page 315.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007 .

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSRftt = invalid_fp_register (FqTOx and FqTOi only))
fp_exception_other (FSR.ftt = unfinished_FPop)
fp_exception_ieee_754 (NV, NX)
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F<s|d|g>TO<s|d|g>

743  Convert Between Floating-Point Formats

Instruction op3 opf Operation sl s2 d Assembly Language Syntax Class
FsTOd 110100 011001001 Convert Single to Double — 32 f64 fstod  freg.so, fregq Al
FsTOq 110100 011001101 Convert Single to Quad — 32 128 fstoq fregso, fregrg  C3
FdTOs 110100 011000110 Convert Double to Single — f64 32 fdtos  freg.sp, fregq Al
FATOq 110100 011001110 Convert Double to Quad — f64 {128 fdtoq  fregsy, fregrg  C3
FqTOs 110100 011000111 Convert Quad to Single — 128 32 fqtos  freg.so, fregg  C3
FqTOd 110100 011001011 Convert Quad to Double — 128 f64 fqtod  freg.sp, fregy C3
10 rd op3 — opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description These instructions convert the floating-point operand in the floating-point register(s) specified by rs2
to a floating-point number in the destination format. They write the result into the floating-point
register(s) specified by rd.

The value of FSR.rd determines how rounding is performed by these instructions.

Note | UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FsTOq, FdTOq, FqTOs, or
FqTOd instruction causes an illegal_instruction exception, allowing
privileged software to emulate the instruction.

An attempt to execute an F<s|d|q>TO<s|d | q> instruction when instruction bits 18:14 are nonzero
causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an F<s1d | q>TO<s|d | q> instruction causes an fp_disabled exception.

An attempt to execute an FsTOq or FdTOq instruction when rd{1} # 0 causes an fp_exception_other
(FSR.fit = invalid_fp_register) exception. An attempt to execute an FqTOs orFqTOd instruction when
rs2{1} # 0 causes an fp_exception_other (FSR.ftt = invalid_fp_register) exception.

FqTOd, FqTOs, and FdTOs (the “narrowing” conversion instructions) can cause
fp_exception_ieee_754 OF, UF, and NX exceptions. FATOq, FsTOq, and FsTOd (the “widening”
conversion instructions) cannot.

Any of these six instructions can trigger an fp_exception_ieee_754 NV exception if the source
operand is a signalling NaN.

Note | For FdTOs and FsTOd, an fp_exception_other with
FSR.ftt = unfinished_FPop can occur if implementation-dependent
conditions are detected during the conversion operation.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007 .

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSRftt = invalid_fp_register (FsTOq, FqTOs, FdTOq,
and FqTOd only))
fp_exception_other (FSR.ftt = unfinished_FPop)
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F<s|d|g>TO<s|d|g>

fp_exception_ieee_754 (NV)
fp_exception_ieee_754 (OF, UF, NX (FqTOd, FqTOs, and FdTOs))
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FSUB

7.44

Floating-Point Subtract

Instruction op3 opf Operation Assembly Language Syntax Class
FSUBs 11 0100 00100 0101 Subtract Single fsubs  fregis1, fregrso, fregig Al
FSUBd 11 0100 00100 0110 Subtract Double fsubd  fregis1, fregrsos fregid Al
FSUBq 11 0100 00100 0111 Subtract Quad fsubg fregis1, fregrsos fregrg C3
10 rd op3 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
Description The floating-point subtract instructions subtract the floating-point register(s) specified by the rs2 field
from the floating-point register(s) specified by the rs1 field. The instructions then write the difference
into the floating-point register(s) specified by the rd field.
Rounding is performed as specified by FSR.rd.
Note | UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FSUB(q instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.
If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FSUB instruction causes an fp_disabled exception.
An attempt to execute an FSUBq instruction when (rs1{1} # 0) or (rs2{1} # 0) or (rd{1:0} # 0) causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.
Note | An fp_exception_other with FSR.fit = unfinished_FPop can occur
if the operation detects unusual, implementation-specific
conditions (for FSUBs or FSUBJ).
For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007.
Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = invalid_fp_register (FSUBq only))
fp_exception_other (FSR.ftt = unfinished_FPop)
fp_exception_ieee_754 (OF, UF, NX, NV)
See Also FMAf on page 150
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FxTO(<s|d|g>

7.45

Convert 64-bit Integer to Floating Point

Instruction op3

Assembly Language

opf Operation sl s2 d Syntax Class

FxTOs
FxTOd

FxTOq

11 0100 0 1000 0100

11 0100 0 1000 1000

11 0100 01000 1100

Convert 64-bit Integer to — i64 {32
Single
Convert 64-bit Integer to — 64 {64
Double

Convert 64-bit Integer to — i64 {128
Quad

fxtos fregso, fregig Al
fxtod fregso, fregrg Al

fxtoq fregiso, fregyg C3

10

rd op3 — opf rs2

31 30 29

Description

Exceptions

25 24 19 18 14 13 5 4 0

FxTOs, FxTOd, and FxTOq convert the 64-bit signed integer operand in the floating-point register
Fplrs2] into a floating-point number in the destination format.

All write their result into the floating-point register(s) specified by rd.
The value of FSR.rd determines how rounding is performed by FxTOs and FxTOd.

Note | UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FxXTOq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

An attempt to execute an FxTO<s | d | q> instruction when instruction bits 18:14 are nonzero causes an
illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FxTO<s | d | g> instruction causes an fp_disabled exception.

An attempt to execute an FxTOq instruction when rd{1} # 0 causes an fp_exception_other
(FSR.ftt = invalid_fp_register) exception.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007 .

illegal_instruction

fp_disabled

fp_exception_other (FSR.ftt = invalid_fp_register (FxTOq))
fp_exception_ieee_754 (NX (FxTOs and FxTOd only))
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ILLTRAP

746  Illegal Instruction Trap

Instruction op op2 Operation Assembly Language Syntax Class

ILLTRAP 00 000 illegal_instruction trap illtrap const22 Al
00 — 000 const22

31 30 29 25 24 22 21 0

Description The ILLTRAP instruction causes an illegal_instruction exception. The const22 value in the instruction
is ignored by the virtual processor; specifically, this field is not reserved by the architecture for any
future use.

V9 Compatibility | Except for its name, this instruction is identical to the SPARC V8
Note | UNIMP instruction.

An attempt to execute an ILLTRAP instruction when reserved instruction bits 29:25 are nonzero (also)
causes an illegal_instruction exception. However, software should not rely on this behavior, because a
future version of the architecture may use nonzero values of bits 29:25 to encode other functions.

Exceptions illegal_instruction
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INVALW

7.47  Mark Register Window Sets as “Invalid”

Instruction Operation Assembly Language Syntax Class
INVALW? Mark all register window sets as “invalid” i nval w Al
10 | fen=00101 11 0001 —
31 30 29 25 24 19 18 0

Description The INVALW instruction marks all register window sets as “invalid”; specifically, it atomically
performs the following operations:

CANSAVE « (N_REG_WINDOWS - 2)
CANRESTORE ~ 0
OTHERWIN «~ 0

Programming | INVALW marks all windows as invalid; after executing INVALW,

Notes | N_REG_WINDOWS-2 SAVEs can be performed without generating a
spill trap. This instruction allows window manipulations to be
atomic, without the value of N_REG_WINDOWS being visible to
privileged software and without an assumption that
N_REG_WINDOWS is constant (since hyperprivileged software can
migrate a thread among virtual processors, across which
N_REG_WINDOWS may vary).

An attempt to execute an INVALW instruction when instruction bits 18:0 are nonzero causes an
illegal_instruction exception.

An attempt to execute an INVALW instruction in nonprivileged mode (PSTATE.priv = 0 and
HSTATE.hpriv = 0) causes a privileged_opcode exception.

Exceptions illegal_instruction
privileged_opcode

See Also ALLCLEAN on page 112
NORMALW on page 229
OTHERW on page 231
RESTORED on page 250
SAVED on page 257
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JMPL

7.48

Jump and Link

Instruction op3 Operation Assembly Language Syntax Class

JMPL 11 1000 Jump and Link j mpl address, regq Al

rd op3 rsl i=0 — rs2

10

rd op3 rsl i=1 simm13

31 30 29 25 24 19 18 14 13 12 5 4 0

Description

Exceptions

See Also

The JMPL instruction causes a register-indirect delayed control transfer to the address given by
“R[rsl1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext( simm13)” if i = 1.

The JMPL instruction copies the PC, which contains the address of the JMPL instruction, into register
R[rd].

An attempt to execute a JMPL instruction when i = 0 and instruction bits 12:5 are nonzero causes an
illegal_instruction exception.

If either of the low-order two bits of the jump address is nonzero, a mem_address_not_aligned
exception occurs.

Programming | A JMPL instruction with rd = 15 functions as a register-indirect
Notes | call using the standard link register.

JMPL with rd = 0 can be used to return from a subroutine. The
typical return address is “r[31] + 8” if a nonleaf routine (one that
uses the SAVE instruction) is entered by a CALL instruction, or
“R[15] + 8” if a leaf routine (one that does not use the SAVE
instruction) is entered by a CALL instruction or by a JMPL
instruction with rd = 15.

If the Trap on Control Transfer feature is implemented (impl. dep. #450-520) and PSTATE.tct = 1, then
JMPL generates a control_transfer_instruction exception instead of causing a control transfer. When a
control_transfer_instruction trap occurs, PC (the address of the JMPL instruction) is stored in TPC[TL]
and the value of NPC from before the JMPL was executed is stored in TNPC[TL].

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address are masked out
(set to 0) before being sent to the memory system or being written into R[rd] (oz, if a
control_transfer_instruction trap occurs, into TPC[TL]). (closed impl. dep. #125-V9-Cs10)

illegal_instruction
mem_address_not_aligned
control_transfer_instruction (impl. dep. #450-520)

CALL on page 124
Bicc on page 117
BPCC on page 122
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LD

7.49

Load Integer

Instruction op3 Operation Assembly Language Syntax Class
LDSB 00 1001 Load Signed Byte | dsb [ address] , regyq Al
LDSH 001010 Load Signed Halfword I dsh [ address] , regrg Al
LDSW 00 1000 Load Signed Word I dsw [ address] , regyq Al
LDUB 00 0001 Load Unsigned Byte I dub [ address] , regyq Al
LDUH 00 0010 Load Unsigned Halfword | duh [ address] , regq Al
LDUW 00 0000 Load Unsigned Word I duwt [ address] , regyq Al
LDX 00 1011 Load Extended Word | dx [ address] , regq Al

t synonym: | d

rd op3 rsl i=0 — rs2

rd op3 rsl i=1 simm13

31 30 29 25 24 19 18 14 13 12 5 4 0

Description

Exceptions

The load integer instructions copy a byte, a halfword, a word, or an extended word from memory. All
copy the fetched value into R[rd]. A fetched byte, halfword, or word is right-justified in the
destination register R[rd]; it is either sign-extended or zero-filled on the left, depending on whether
the opcode specifies a signed or unsigned operation, respectively.

Load integer instructions access memory using the implicit ASI (see page 87). The effective address is
“R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext( Simm13)” if i = 1.

A successful load (notably, load extended) instruction operates atomically.

An attempt to execute a load integer instruction when i = 0 and instruction bits 12:5 are nonzero
causes an illegal_instruction exception.

If the effective address is not halfword-aligned, an attempt to execute an LDUH or LDSH causes a
mem_address_not_aligned exception. If the effective address is not word-aligned, an attempt to
execute an LDUW or LDSW instruction causes a mem_address_not_aligned exception. If the effective
address is not doubleword-aligned, an attempt to execute an LDX instruction causes a
mem_address_not_aligned exception.

V8 Compatibility | The SPARC V8 LD instruction was renamed LDUW in the SPARC
Note [ V9 architecture. The LDSW instruction was new in the SPARC V9
architecture.

A load integer twin word (LDTW) instruction exists, but is deprecated; see Load Integer Twin Word on
page 208 for details.

illegal_instruction

mem_address_not_aligned (all except LDSB, LDUB)
VA_watchpoint

DAE_privilege_violation

DAE_nfo_page

fast_data_access_MMU_miss
data_access_MMU_miss

data_access_MMU_error

PA_watchpoint

data_access_error
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LDA

7.50

Load Integer from Alternate Space

Instruction op3 Operation Assembly Language Syntax Class
LDSBAPAt 011001  Load Signed Byte from Alternate | dsba [ regaddr] imm_asi, reg.q Al

Space | dsba [ reg_plus_imm] %@Si, regq
LDSHAPA 011010  Load Signed Halfword from Alternate | dsha [ regaddr] imm_asi, regq Al

Space I dsha [ reg_plus_imm] Y@Si, regyq
LDSWAPas1 011000  Load Signed Word from Alternate | dswa [ regaddr] imm_asi, regyq Al

Space | dswa [ reg_plus_imm] Y@Si, regq
LDUBAP* 010001 Load Unsigned Byte from Alternate | duba [ regaddr] imm_asi, regq Al

Space | duba [ reg_plus_imm] Y@Si, regyq
LDUHAPs 010010 Load Unsigned Halfword from | duha [ regaddr] imm_asi, reg.q Al

Alternate Space I duha [ reg_plus_imm] Y@si, regyq
LDUWAPast 010000 Load Unsigned Word from Alternate | duwat [ regaddr] imm_asi, regq Al

Space I duwa [ reg plus_imm] Y@si, regyq
LDXAFPast 011011  Load Extended Word from Alternate | dxa [ regaddr] imm_asi, reg.q Al

Space | dxa [ req_plus_imm] Y@Si, regyq

t synonym: | da
11 rd op3 rsl i=0 imm_asi rs2
11 rd op3 rsl i= simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description  The load integer from alternate space instructions copy a byte, a halfword, a word, or an extended

word from memory. All copy the fetched value into R[rd]. A fetched byte, halfword, or word is right-
justified in the destination register R[rd]; it is either sign-extended or zero-filled on the left, depending
on whether the opcode specifies a signed or unsigned operation, respectively.

The load integer from alternate space instructions contain the address space identifier (ASI) to be used
for the load in the imm_asi field if i = 0, or in the ASI register if i = 1. The access is privileged if bit 7
of the ASI is 0; otherwise, it is not privileged. The effective address for these instructions is

“R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext( simm13)” if i = 1.

A successful load (notably, load extended) instruction operates atomically.

A load integer twin word from alternate space (LDTWA) instruction exists, but is deprecated; see Load
Integer Twin Word from Alternate Space on page 210 for details.

If the effective address is not halfword-aligned, an attempt to execute an LDUHA or LDSHA
instruction causes a mem_address_not_aligned exception. If the effective address is not word-aligned,
an attempt to execute an LDUWA or LDSWA instruction causes a mem_address_not_aligned
exception. If the effective address is not doubleword-aligned, an attempt to execute an LDXA
instruction causes a mem_address_not_aligned exception.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI is 0, these
instructions cause a privileged_action exception. In privileged mode (PSTATE.priv =1 and
HPSTATE.hpriv = 0), if the ASI is in the range 3044 to 7F;4, these instructions cause a privileged_action
exception.
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LDSBA, LDSHA, LDSWA, LDUBA, LDUHA, and LDUWA can be used with any of the following
ASlIs, subject to the privilege mode rules described for the privileged_action exception above. Use of
any other ASI with these instructions causes a DAE_invalid_asi exception.

ASils valid for LDSBA, LDSHA, LDSWA, LDUBA, LDUHA, and LDUWA
ASI _AS | F_PRIV_PRIMARY  ASlI_AS | F_PRIV_PRI MARY_LI TTLE
ASI _AS | F_PRI V_SECONDARY AS|_AS | F_PRIV_SECONDARY LI TTLE

AS| _NUCLEUS ASI _NUCLEUS_LI TTLE
ASl _AS_| F_USER PRIMARY  ASI _AS_| F_USER PRI MARY_ LI TTLE
AS| _AS_| F_USER _SECONDARY ASI AS | F_USER SECONDARY_ LI TTLE

ASl _REAL ASI _REAL_LI TTLE
ASI_REAL 10O ASI _REAL_1O LI TTLE

ASl _PRI MARY AS| _PRI MARY_LI TTLE

AS| _SECONDARY AS| _SECONDARY LI TTLE

ASI _PRI MARY_NO FAULT AS| _PRI MARY_NO FAULT LI TTLE

ASI _SECONDARY_NO FAULT  ASI _SECONDARY_NO FAULT LI TTLE

LDXA can be used with any ASI (including, but not limited to, the above list), unless it either (a)
violates the privilege mode rules described for the privileged_action exception above or (b) is used
with any of the following ASIs, which causes a DAE_invalid_asi exception.

ASils invalid for LDXA (cause DAE_invalid_asi exception)

2216 (ASI _TW NX_AI UP) 2A16 (ASI _TW NX_AI UP_L)

2316 (ASI _TW NX_AI US) 2By (ASI _TW NX_AI US_L)

26,6 (ASI _TW NX_REAL) 2E; (ASI _TW NX_REAL_L)

2716 (ASI _TW NX_N) 2F;6 (ASI _TW NX_NL)

ASI _BLOCK_AS_| F_USER PRI MARY ASI _BLOCK_AS_| F_USER PRI MARY_ LI TTLE
ASI _BLOCK_AS | F_USER SECONDARY  ASI BLOCK_AS_| F_USER SECONDARY LI TTLE
ASI _PST8_PRI MARY ASI _PST8_PRI MARY_ LI TTLE

ASI _PST8_SECONDARY ASI _PST8_SECONDARY_LI TTLE
ASI _PST16_PRI MARY AS| _PST16_PRI MARY_LI TTLE
AS| _PST16_SECONDARY AS| _PST16_SECONDARY LI TTLE
ASI _PST32_PRI MARY AS| _PST32_PRI MARY_LI TTLE
AS| _PST32_SECONDARY AS| _PST32_ SECONDARY_LI TTLE
ASI _FL8_PRI MARY ASI _FL8_PRI MARY_LI TTLE

ASI _FL8_SECONDARY ASI _FL8_SECONDARY_ LI TTLE
ASI _FL16_PRI MARY ASI _FL16_PRI MARY LI TTLE

ASI _FL16_SECONDARY ASI _FL16_SECONDARY_ LI TTLE
ASI _BLOCK_COWM T_PRI MARY ASI _BLOCK_COMM T_SECONDARY
E2;6 (ASI _TW NX_P) EAss (ASI _TW NX_PL)

E3;6 (ASI _TW NX_S) EByg ( ASI _TW NX_SL)

ASI _BLOCK_PRI MARY ASI _BLOCK_PRI MARY_LI TTLE
ASI _BLOCK_SECONDARY AS| _BLOCK_SECONDARY_LI TTLE

Exceptions mem_address_not_aligned (all except LDSBA and LDUBA)
privileged_action
VA_watchpoint
DAE_invalid_asi
DAE_privilege_violation
DAE_nfo_page
DAE_side_effect_page
fast_data_access_MMU_miss
data_access_ MMU_miss
data_access_MMU_error
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PA_watchpoint
data_access_error

See Also LD on page 188
STA on page 267
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7.51 Block Load

The LDBLOCKEF instructions are deprecated and should not be used in new
software. A sequence of LDDF instructions should be used instead.

The LDBLOCKEF instruction is intended to be a processor-specific instruction,
which may or may not be implemented in future UltraSPARC Architecture
implementations. Therefore, it should only be used in platform-specific
dynamically-linked libraries, in hyperprivileged software, or in software created
by a runtime code generator that is aware of the specific virtual processor
implementation on which it is executing.

ASI
Instruc-tion Value Operation Assembly Language Syntax Class
LDBLOCKFP 16,4 64-byte block load from primary address | dda [ regaddr] #ASl _BLK_AI UP, freg,q D2
space, user privilege | dda [ reg_plus_imm] Y@si, fregyq
LDBLOCKFP 17, 64-byte block load from secondary | dda [ regaddr] #ASI _BLK_AI US, freg,q D2
address space, user privilege I dda [ reg_plus_imm] Y@sSi, fregyq
LDBLOCKFP 1E;4 64-byte block load from primary address | dda [ regaddr] #AS|I _BLK_Al UPL, fregq D2
space, little-endian, user privilege I dda [ reg_plus_imm] Y@sSi, fregyq
LDBLOCKFP 1F;4 64-byte block load from secondary | dda [ regaddr] #ASI _BLK_AlI USL, freg,q D2
address space, little-endian, user privilegel dda [ reg_plus_imm] %@Si , freqyq
LDBLOCKFP F0;4 64-byte block load from primary address | dda [ regaddr] #AS _BLK_P, fregyq D2
space | dda [ reg_plus_imm] Y@Si, fregyq
LDBLOCKFP Fl;4 64-byte block load from secondary | dda [ regaddr] #ASI _BLK_S, freg.q D2
address space I dda [ reg_plus_imm] Y@si, fregyq
LDBLOCKFP F8;4 64-byte block load from primary address | dda [ regaddr] #AS _BLK_PL, fregg D2
space, little-endian I dda [ reg_plus_imm] Y@si, fregyq
LDBLOCKFP F9;4 64-byte block load from secondary | dda [ regaddr] #ASI _BLK_SL, fregq D2
address space, little-endian I dda [ reg_plus_imm] Y@si, fregyq
11 rd 110011 rsl 1=0 imm_asi rs2
11 rd | 110011 rsi 1=1 simm_13
31 30 29 25 24 19 18 14 13 5 4 0

Description A block load (LDBLOCKEF) instruction uses one of several special block-transfer ASIs. Block transfer
ASIs allow block loads to be performed accessing the same address space as normal loads. Little-

endian ASIs (those with an ‘L’ suffix) access data in little-endian format; otherwise, the access is

assumed to be big-endian. Byte swapping is performed separately for each of the eight 64-bit (double-
precision) F registers used by the instruction.

A block load instruction loads 64 bytes of data from a 64-byte aligned memory area into the eight
double-precision floating-point registers specified by rd. The lowest-addressed eight bytes in memory
are loaded into the lowest-numbered 64-bit (double-precision) destination F register.

A block load only guarantees atomicity for each 64-bit (8-byte) portion of the 64 bytes it accesses.

Programming | The block load instruction, LDBLOCKEFP, and its companion,

Note | STBLOCKFP, were originally defined to provide a fast

mechanism for block-copy operations. However, in modern
implementations they are rarely much faster than a sequence of
regular loads and stores, so are now deprecated.
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Programming | LDBLOCKEFP is intended to be a processor-specific instruction

Note | (see the warning at the top of page 192). If LDBLOCKEFP must be
used in software intended to be portable across current and
previous processor implementations, then it must be coded to
work in the face of any implementation variation that is
permitted by implementation dependency #410-S10, described
below.

IMPL. DEP. #410-S10: The following aspects of the behavior of block load (LDBLOCKEF) instructions
are implementation dependent:

What memory ordering model is used by LDBLOCKFP (LDBLOCKFP is not required to follow TSO
memory ordering)

Whether LDBLOCKEP follows memory ordering with respect to stores (including block stores),
including whether the virtual processor detects read-after-write and write-after-read hazards to
overlapping addresses

Whether LDBLOCKEP appears to execute out of order, or follow LoadLoad ordering (with respect
to older loads, younger loads, and other LDBLOCKFs)

Whether LDBLOCKEP follows register-dependency interlocks, as do ordinary load instructions
Whether VA_watchpoint and PA_watchpoint exceptions are recognized on accesses to all 64 bytes of
a LDBLOCKEFP (the recommended behavior), or only on the first eight bytes

Whether the MMU ignores the side-effect bit (TTE.e) for LDBLOCKEP accesses

Programming | If ordering with respect to earlier stores is important (for

Note [ example, a block load that overlaps a previous store) and read-
after-write hazards are not detected, there must be a MEMBAR
#St or eLoad instruction between earlier stores and a block
load.

If ordering with respect to later stores is important, there must
be a MEMBAR #LoadSt or e instruction between a block load
and subsequent stores.

If LoadLoad ordering with respect to older or younger loads or
other block load instructions is important and is not provided
by an implementation, an intervening MEMBAR #LoadLoad is
required.

For further restrictions on the behavior of the block load instruction, see implementation-specific
processor documentation.

Implementation | In all UltraSPARC Architecture implementations, the MMU
Note | ignores the side-effect bit (TTE.e) for LDBLOCKFP accesses
(impl. dep. #410-510).

Exceptions. An illegal_instruction exception occurs if LDBLOCKF’s floating-point destination
registers are not aligned on an eight-double-precision register boundary.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an LDBLOCKFP instruction causes an fp_disabled exception.

If the least significant 6 bits of the effective memory address in an LDBLOCKFP instruction are
nonzero, a mem_address_not_aligned exception occurs.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI is 0 (ASIs 1644,
1714, 1E14, and 1F;), LDBLOCKEP causes a privileged_action exception.

An access caused by LDBLOCKFP may trigger a VA_watchpoint or PA_watchpoint exception (impl.
dep. #410-510).
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See Also

LDBLOCKF

An attempted access by an LDBLOCKEFP instruction to noncacheable memory causes an a
DAE_nc_page exception.

Implementation | LDBLOCKEP shares an opcode with LDDFA and LDSHORTF; it
Note | is distinguished by the ASI used.

illegal_instruction

fp_disabled
mem_address_not_aligned
privileged_action

VA_watchpoint (impl. dep. #410-510)
DAE_privilege_violation
DAE_nc_page

DAE_nfo_page (attempted access to Non-Faulting-Only page of memory)
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
PA_watchpoint (impl. dep. #410-510)
data_access_error

LDDF on page 195
STBLOCKFP on page 269
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7.52  Load Floating-Point Register

Instruction op3 rd Operation Assembly Language Syntax Class
LDF 10 0000 0-31 Load Floating-Point Register I d [ address], fregq Al
LDDF 10 0011 ¥ Load Double Floating-Point Register | dd [ address], fregyq Al
LDQF 10 0010 ¥ Load Quad Floating-Point Register I dg [ address], fregq C3

¥ Encoded floating-point register value, as described on page 51.

11 rd op3 rsl i=0 — rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description ~ The load single floating-point instruction (LDF) copies a word from memory into 32-bit floating-point
destination register Fg[rd].

The load doubleword floating-point instruction (LDDF) copies a word-aligned doubleword from
memory into a 64-bit floating-point destination register, Fp[rd]. The unit of atomicity for LDDF is 4
bytes (one word).

The load quad floating-point instruction (LDQF) copies a word-aligned quadword from memory into
a 128-bit floating-point destination register, Fg[rd]. The unit of atomicity for LDQF is 4 bytes (one
word).

These load floating-point instructions access memory using the implicit ASI (see page 87).

If i = 0, the effective address for these instructions is “R[rs1] + R[rs2]” and if i = 0, the effective address
is “R[rs1] + sign_ext( simm13)”.

Exceptions. An attempt to execute an LDF, LDDEF, or LDQF instruction when i = 0 and instruction
bits 12:5 are nonzero causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an LDF, LDDE, or LDQF instruction causes an fp_disabled exception.

If the effective address is not word-aligned, an attempt to execute an LDF instruction causes a
mem_address_not_aligned exception.

LDDF requires only word alignment. However, if the effective address is word-aligned but not
doubleword-aligned, an attempt to execute an LDDF instruction causes an
LDDF_mem_address_not_aligned exception. In this case, trap handler software must emulate the
LDDF instruction and return (impl. dep. #109-V9-Cs10(a)).

LDQF requires only word alignment. However, if the effective address is word-aligned but not
quadword-aligned, an attempt to execute an LDQF instruction causes an
LDQF_mem_address_not_aligned exception. In this case, trap handler software must emulate the
LDQF instruction and return (impl. dep. #111-V9-Cs10(a)).

Programming | Some compilers issued sequences of single-precision loads for
Note | SPARC V8 processor targets when the compiler could not
determine whether doubleword or quadword operands were
properly aligned. For SPARC V9 processors, since emulation of
misaligned loads is expected to be fast, compilers should issue
sets of single-precision loads only when they can determine that
doubleword or quadword operands are not properly aligned.
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An attempt to execute an LDQF instruction when rd{1} # 0 causes an fp_exception_other
(FSR.ftt = invalid_fp_register) exception.

Implementation | Since UltraSPARC Architecture 2007 processors do not implement

Note |in hardware instructions (including LDQF) that refer to quad-
precision floating-point registers, the
LDQF_mem_address_not_aligned and fp_exception_other (with
FSR.fit = invalid_fp_register) exceptions do not occur in
hardware. However, their effects must be emulated by software
when the instruction causes an illegal_instruction exception and
subsequent trap.

Destination Register(s) when Exception Occurs. If a load floating-point instruction generates an
exception that causes a precise trap, the destination floating-point register(s) remain unchanged.

IMPL. DEP. #44-V8-Cs10(a)(1): If a load floating-point instruction generates an exception that causes
a non-precise trap, the contents of the destination floating-point register(s) remain unchanged or are
undefined.

Exceptions illegal_instruction
fp_disabled
LDDF_mem_address_not_aligned
LDQF_mem_address_not_aligned (not used in UltraSPARC Architecture 2007)
mem_address_not_aligned
fp_exception_other (FSR.ftt = invalid_fp_register (LDQF only))
VA_watchpoint
DAE_privilege_violation
DAE_nfo_page
fast_data_access_ MMU_miss
data_access_ MMU_miss
data_access_MMU_error
PA_watchpoint
data_access_error

See Also Load Floating-Point from Alternate Space on page 197
Load Floating-Point State Register (Lower) on page 201
Store Floating-Point on page 272
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7.53  Load Floating-Point from Alternate Space

Instruction op3 rd Operation Assembly Language Syntax Class
LDFAPast 110000 0-31 Load Floating-Point Register | da [ regaddr] imm_asi, freg.q Al
from Alternate Space lda [ reg_plus_imm] Y@si, fregyq
LDDFAPas 110011 ¥ Load Double Floating-Point | dda [ regaddr] imm_asi, fregq Al
Register from Alternate Space | dda [ reg_plus_imm] Y@sSi , fregyq
LDQFAPast 110010 ¥ Load Quad Floating-Point | dga [ regaddr] imm_asi, fregq C3

Register from Alternate Space | dqa [ reg_plus_imm] Y@Si, fregyq

¥ Encoded floating-point register value, as described in Floating-Point Register Number Encoding on page 51.

11 rd op3 rsl i=0 imm_asi rs2
11 rd op3 rsl i=1 simm13
3T 30 29 25 24 19 18 14 13 12 5 4 0

Description ~ The load single floating-point from alternate space instruction (LDFA) copies a word from memory
into 32-bit floating-point destination register Fg[rd].

The load double floating-point from alternate space instruction (LDDFA) copies a word-aligned
doubleword from memory into a 64-bit floating-point destination register, Fp[rd]. The unit of
atomicity for LDDFA is 4 bytes (one word).

The load quad floating-point from alternate space instruction (LDQFA) copies a word-aligned
quadword from memory into a 128-bit floating-point destination register, Fg[rd]. The unit of
atomicity for LDQFA is 4 bytes (one word).

If i = 0, these instructions contain the address space identifier (ASI) to be used for the load in the
imm_asi field and the effective address for the instruction is “R[rs1] + R[rs2]”. If i = 1, the ASI to be
used is contained in the ASI register and the effective address for the instruction is

“R[rs1] + sign_ext( simm13)”.

Exceptions. If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an LDFA, LDDFA, or LDQFA instruction causes an fp_disabled exception.

LDFA causes a mem_address_not_aligned exception if the effective memory address is not word-
aligned.

V9 Compatibility | LDFA, LDDFA, and LDQFA cause a privileged_action exception if
Note | PSTATE.priv = 0 and bit 7 of the ASl is 0.

LDDFA requires only word alignment. However, if the effective address is word-aligned but not
doubleword-aligned, LDDFA causes an LDDF_mem_address_not_aligned exception. In this case, trap
handler software must emulate the LDDFA instruction and return (impl. dep. #109-V9-Cs10(b)).

LDQFA requires only word alignment. However, if the effective address is word-aligned but not
quadword-aligned, LDQFA causes an LDQF_mem_address_not_aligned exception. In this case, trap
handler software must emulate the LDQFA instruction and return (impl. dep. #111-V9-Cs10(b)).
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An attempt to execute an LDQFA instruction when rd{1} # 0 causes an fp_exception_other (with
FSR.ftt = invalid_fp_register) exception.

Implementation | Since UltraSPARC Architecture 2007 processors do not implement

Note |in hardware instructions (including LDQFA) that refer to quad-
precision floating-point registers, the
LDQF_mem_address_not_aligned and fp_exception_other (with
FSR.fit = invalid_fp_register) exceptions do not occur in
hardware. However, their effects must be emulated by software
when the instruction causes an illegal_instruction exception and
subsequent trap.

Programming | Some compilers issued sequences of single-precision loads for
Note | SPARC V8 processor targets when the compiler could not
determine whether doubleword or quadword operands were
properly aligned. For SPARC V9 processors, since emulation of
misaligned loads is expected to be fast, compilers should issue
sets of single-precision loads only when they can determine that
doubleword or quadword operands are not properly aligned.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI is 0, this
instruction causes a privileged_action exception. In privileged mode (PSTATE.priv =1 and
HPSTATE.hpriv = 0), if the ASI is in the range 3074 to 7F¢, this instruction causes a privileged_action
exception.

LDFA and LDQFA can be used with any of the following ASIs, subject to the privilege mode rules
described for the privileged_action exception above. Use of any other ASI with these instructions
causes a DAE_invalid_asi exception.

ASils valid for LDFA and LDQFA
ASI _AS | F_PRI V_PRI MARY ASI _AS | F_PRIV_PRI MARY_LI TTLE
ASI _AS | F_ PRIV ASI _AS | F_PRI V_SECONDARY_LI TTLE

ASI _NUCLEUS ASI _NUCLEUS LI TTLE
ASI _AS | F_USER PRI MARY  ASI_AS | F_USER PRI MARY LI TTLE
ASl _AS | F_USER SECONDARY AS| _AS | F_USER SECONDARY LI TTLE

ASI _REAL ASI _REAL_LI TTLE

ASl _REAL_| O ASI _REAL_| O LI TTLE

ASI _PRI MARY ASI _PRI MARY_LI TTLE

ASI _SECONDARY ASI _SECONDARY_LI TTLE

ASI _PRI MARY_NO_FAULT ASI _PRI MARY_NO FAULT LI TTLE

ASI _SECONDARY_NO FAULT  ASI _SECONDARY_NO FAULT LI TTLE

LDDFA can be used with any of the following ASIs, subject to the privilege mode rules described for
the privileged_action exception above. Use of any other ASI with the LDDFA instruction causes a
DAE_invalid_asi exception.

ASils valid for LDDFA

ASI _NUCLEUS ASl _NUCLEUS LI TTLE

AS| _AS | F_USER PRI MARY ASI _AS | F_USER PRI MARY LI TTLE
ASl _AS | F_USER SECONDARY ASI _AS | F_USER SECONDARY_ LI TTLE
AS| _REAL ASI _REAL_LI TTLE

ASI_REAL_|1O ASI _REAL_| O LI TTLE

AS| _PRI MARY ASI _PRI MARY_LI TTLE

AS| _SECONDARY AS|I _SECONDARY LI TTLE

ASl _PRI MARY_NO FAULT AS|I _PRI MARY_NO FAULT LI TTLE

AS| _SECONDARY_NO FAULT AS|I _SECONDARY_NO FAULT LI TTLE
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Behavior with Block-Store-with-Commit ASIs. ASIs E0;; and E1y4 are only defined for use in
Block Store with Commit operations (see page 269). Neither ASI E0;¢4 nor El;4 should be used with
LDDFA; however, if it is used, the LDDFA behaves as follows:

1. If an LDDFA opcode is used with an ASI of E0;4 or El14 and a destination register number rd is
specified which is not a multiple of 8 (“misaligned” rd), an UltraSPARC Architecture 2007 virtual
processor generates an illegal_instruction exception (impl. dep. #255-U3-Cs10).

2. IMPL. DEP. #256-U3: If an LDDFA opcode is used with an ASI of E0¢4 or E1ly4 and a memory
address is specified with less than 64-byte alignment, the virtual processor generates an exception.
It is implementation dependent whether the exception generated is DAE_invalid_asi,
mem_address_not_aligned, or LDDF_mem_address_not_aligned.

3. If both rd and the memory address are correctly aligned, a DAE_invalid_asi exception occurs.

Behavior with Partial Store ASIs. ASIs C0,,—C5;¢ and C8;4—CDj are only defined for use in
Partial Store operations (see page 279). None of them should be used with LDDFA; however, if any of
those ASIs is used with LDDFA, the LDDFA behaves as follows:

1. IMPL. DEP. #257-U3: If an LDDFA opcode is used with an ASI of C0;¢—C574 or C8;,—CD;¢ (Partial
Store ASIs, which are an illegal combination with LDDFA) and a memory address is specified with
less than 8-byte alignment, the virtual processor generates an exception. It is implementation
dependent whether the generated exception is a DAE_invalid_asi, mem_address_not_aligned, or
LDDF_mem_address_not_aligned exception.

2. If the memory address is correctly aligned, the virtual processor generates a DAE_invalid_asi.

Destination Register(s) when Exception Occurs. If a load floating-point alternate instruction
generates an exception that causes a precise trap, the destination floating-point register(s) remain
unchanged.

IMPL. DEP. #44-V8-Cs10(b): If a load floating-point alternate instruction generates an exception that
causes a non-precise trap, it is implementation dependent whether the contents of the destination
floating-point register(s) are undefined or are guaranteed to remain unchanged.

Implementation | LDDFA shares an opcode with the LDBLOCKFP and
Note | LDSHORTF instructions; it is distinguished by the ASI used.

illegal_instruction

fp_disabled

LDDF_mem_address_not_aligned
LDQF_mem_address_not_aligned (not generated in UltraSPARC Architecture 2007)
mem_address_not_aligned

fp_exception_other (FSR.ftt = invalid_fp_register (LDQFA only))
privileged_action

VA_watchpoint

DAE_invalid_asi

DAE_privilege_violation

DAE_nfo_page

DAE_side_effect_page

fast_data_access_MMU_miss

data_access_MMU_miss

data_access_MMU_error

PA_watchpoint

data_access_error
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See Also Load Floating-Point Register on page 195
Block Load on page 192
Store Short Floating-Point on page 282
Store Floating-Point into Alternate Space on page 274
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7.54

Load Floating-Point State Register (Lower)

The LDFSR instruction is deprecated and should not be used in new software.

The LDXFSR instruction should be used instead.

Opcode op3

rd Operation Assembly Language Syntax Class

LDFSRP 100001 0 Load Floating-Point State Register (Lower) |d [address], % sr D2
100001  1-31 (see page 215)

11

rd op3 rsl i= — rs2

11

rd op3 rsl i= simm13

31 30 29 25 24 19 18 14 13 12 5 4 0

Description

Exceptions

The Load Floating-point State Register (Lower) instruction (LDFSR) waits for all FPop instructions
that have not finished execution to complete and then loads a word from memory into the less
significant 32 bits of the FSR. The more-significant 32 bits of FSR are unaffected by LDFSR. LDFSR
does not alter the ver, ftt, qne, reserved, or unimplemented (for example, ns) fields of FSR (see
page 44).

Programming
Note

For future compatibility, software should only issue an LDFSR
instruction with a zero value (or a value previously read from
the same field) in any reserved field of FSR.

LDFSR accesses memory using the implicit ASI (see page 87).

An attempt to execute an LDFSR instruction when i = 0 and instruction bits 12:5 are nonzero causes an
illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an LDFSR instruction causes an fp_disabled exception.

LDFSR causes a mem_address_not_aligned exception if the effective memory address is not word-
aligned.

V8 Compatibility | The SPARC V9 architecture supports two different instructions

Note | to load the FSR: the (deprecated) SPARC V8 LDFSR instruction
is defined to load only the less-significant 32 bits of the FSR,
whereas LDXFSR allows SPARC V9 programs to load all 64 bits
of the FSR.

Implementation | LDFSR shares an opcode with the LDXFSR instruction (and

Note | possibly with other implementation-dependent instructions);
they are differentiated by the instruction rd field. An attempt to
execute the op = 11,, op3 = 10 0001, opcode with an invalid rd
value causes an illegal_instruction exception.

illegal_instruction
fp_disabled
mem_address_not_aligned
VA_watchpoint
DAE_privilege_violation
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DAE_nfo_page
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
PA_watchpoint
data_access_error

See Also Load Floating-Point Register on page 195
Load Floating-Point State Register on page 215
Store Floating-Point on page 272
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7.55

Load Short Floating-Point

ASI
Instruction Value Operation Assembly Language Syntax Class

LDSHORTF D04 8-bit load from primary address space | dda [ regaddr] #ASI _FL8_P, freg,q B1
| dda [ reg_plus_imm] %asi, fregyq

LDSHORTF Dly4 8-bit load from secondary address | dda [ regaddr] #AS| _FL8_S, freg.q B1
space | dda [ reg_plus_imm] %asi, fregyq

LDSHORTF D84 8-bit load from primary address space, |dda [ regaddr] #ASI _FL8_PL, fregy B1
little-endian | dda  [reg_plus_imm] %asi, fregyq

LDSHORTF D94 8-bitload from secondary address space, | dda [ regaddr] #ASI _FL8_SL, freg Bl
little-endian | dda  [reg_plus_imm] Y@si, fregyq

LDSHORTF D2y 16-bit load from primary address space |dda [ regaddr] #ASI _FL16_P, fregyq B1
| dda [ reg_plus_imm] Y@asi, fregq

LDSHORTF  D3;¢ 16-bit load from secondary address | dda  [regaddr] #AS| _FL16_S, fregyq Bl
space | dda [ reg_plus_imm] Y@si, fregq

LDSHORTF DA, 16-bit load from primary address space, | dda [ regaddr] #ASI _FL16_PL, fregq Bl
little-endian | dda [ reg_plus_imm] Y&asi, fregq

LDSHORTF  DBjg 16-bit load from secondary address | dda  [regaddr] #AS| _FL16_SL, fregq.q Bl
space, little-endian | dda  [reg_plus_imm] Yasi, fregy

rd 110011 rsl i=0 imm_asi rs2

rd 110011 rsl i=1 simm13

31 30 29 25 24 19 18 14 13 5 4 0

Description

Exceptions

Short floating-point load instructions allow an 8- or 16-bit value to be loaded from memory into a 64-
bit floating-point register.

An 8-bit load places the loaded value in the least significant byte of Fp[rd] and zeroes in the most-
significant three bytes of Fp[rd]. An 8-bit LDSHORTF can be performed from an arbitrary byte
address.

A 16-bit load places the loaded value in the least significant halfword of Fp[rd] and zeroes in the
more-significant halfword of Fp[rd]. A 16-bit LDSHORTF from an address that is not halfword-
aligned (an odd address) causes a mem_address_not_aligned exception.

Little-endian ASIs transfer data in little-endian format from memory; otherwise, memory is assumed
to be in big-endian byte order.

Programming | LDSHORTF is typically used with the FALIGNDATA instruction
Note | (see Align Address on page 111) to assemble or store 64 bits from
noncontiguous components.

Implementation | LDSHORTF shares an opcode with the LDBLOCKFP and
Note | LDDFA instructions; it is distinguished by the ASI used.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an LDSHORTF instruction causes an fp_disabled exception.

fp_disabled
mem_address_not_aligned
VA_watchpoint
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DAE_privilege_violation
DAE_nfo_page
fast_data_access_MMU_miss
data_access_ MMU_miss
data_access_MMU_error
PA_watchpoint
data_access_error

See Also STSHORTF on page 282
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7.56

Load-Store Unsigned Byte

Instruction op3 Operation Assembly Language Syntax Class
LDSTUB 00 1101 Load-Store Unsigned Byte | dstub [ address], reg.q Al
11 rd op3 rsl i=0 — rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description The load-store unsigned byte instruction copies a byte from memory into R[rd], then rewrites the

Exceptions

See Also

addressed byte in memory to all 1’s. The fetched byte is right-justified in the destination register R[rd]
and zero-filled on the left.

The operation is performed atomically, that is, without allowing intervening interrupts or deferred
traps. In a multiprocessor system, two or more virtual processors executing LDSTUB, LDSTUBA,
CASA, CASXA, SWAP, or SWAPA instructions addressing all or parts of the same doubleword
simultaneously are guaranteed to execute them in an undefined, but serial, order.

LDSTUB accesses memory using the implicit ASI (see page 87). The effective address for this
instruction is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext( Simm13)” if i = 1.

The coherence and atomicity of memory operations between virtual processors and 1/O DMA
memory accesses are implementation dependent (impl. dep. #120-V9).

An attempt to execute an LDSTUB instruction when i = 0 and instruction bits 12:5 are nonzero causes
an illegal_instruction exception.

illegal_instruction
VA_watchpoint
DAE_privilege_violation
DAE_nc_page
DAE_nfo_page
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
fast_data_access_protection
PA_watchpoint
data_access_error

CASA on page 125
LDSTUBA on page 206
SWAP on page 291
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7.57  Load-Store Unsigned Byte to Alternate Space

Instruction op3 Operation Assembly Language Syntax Class
LDSTUBAPast 011101 Load-Store Unsigned Byte into | dstuba [ regaddr] imm_asi, regyq Al
Alternate Space I dstuba [ reg_plus_imm] %@sSi, regyq
11 rd op3 rsl i=0 imm_asi rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description  The load-store unsigned byte into alternate space instruction copies a byte from memory into R[rd],
then rewrites the addressed byte in memory to all 1’s. The fetched byte is right-justified in the

destination register R[rd] and zero-filled on the left.

The operation is performed atomically, that is, without allowing intervening interrupts or deferred
traps. In a multiprocessor system, two or more virtual processors executing LDSTUB, LDSTUBA,
CASA, CASXA, SWAP, or SWAPA instructions addressing all or parts of the same doubleword

simultaneously are guaranteed to execute them in an undefined, but serial, order.

If i =0, LDSTUBA contains the address space identifier (ASI) to be used for the load in the imm_asi
field. If i = 1, the ASI is found in the ASI register. In nonprivileged mode (PSTATE.priv =0 and
HPSTATE.hpriv = 0), if bit 7 of the ASI is 0, this instruction causes a privileged_action exception. In
privileged mode (PSTATE.priv = 1 and HPSTATE.hpriv = 0), if the ASI is in the range 304 to 7F¢, this

instruction causes a privileged_action exception.

LDSTUBA can be used with any of the following ASlIs, subject to the privilege mode rules described

for the privileged_action exception above. Use of any other ASI with this instruction causes a
DAE_invalid_asi exception.

ASiIs valid for LDSTUBA

ASI _NUCLEUS ASI _NUCLEUS_LI TTLE
ASI _AS_| F_USER_PRI MARY ASI _AS | F_USER PRI MARY_LI| TTLE
ASI _AS | F_USER_SECONDARY ASI _AS | F_USER_SECONDARY_LI TTLE
ASI _REAL ASI _REAL_LI TTLE
ASI _PRI MARY ASI _PRI MARY_LI| TTLE
AS| _SECONDARY ASI _SECONDARY_LI TTLE
Exceptions privileged_action

VA_watchpoint

DAE_invalid_asi

DAE_privilege_violation

DAE_nc_page

DAE_nfo_page
fast_data_access_MMU_miss
data_access_ MMU_miss
data_access_MMU_error
fast_data_access_protection
PA_watchpoint
data_access_error
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See Also CASA on page 125
LDSTUB on page 205
SWAP on page 291
SWAPA on page 292
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LDTW (Deprecated)

7.58  Load Integer Twin Word

The LDTW instruction is deprecated and should not be used in new software. It
is provided only for compatibility with previous versions of the architecture.The
LDX instruction should be used instead.

Instruction op3 Operation Assembly Language Syntax T Class

LDTWP 00 0011 Load Integer Twin Word I dtw [ address] , regq D2

1 The original assembly language syntax for this instruction used an “I dd” instruction mnemonic, which is now
deprecated. Over time, assemblers will support the new “I dt w” mnemonic for this instruction. In the mean-
time, some existing assemblers may only recognize the original “I dd” mnemonic.

11 rd op3 rsl i= — rs2
11 rd op3 rsl i= simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description The load integer twin word instruction (LDTW) copies two words (with doubleword alignment) from
memory into a pair of R registers. The word at the effective memory address is copied into the least
significant 32 bits of the even-numbered R register. The word at the effective memory address + 4 is
copied into the least significant 32 bits of the following odd-numbered R register. The most significant
32 bits of both the even-numbered and odd-numbered R registers are zero-filled.

Note | Execution of an LDTW instruction with rd = 0 modifies only
R[1].

Load integer twin word instructions access memory using the implicit ASI (see page 87). If i = 0, the
effective address for these instructions is “R[rs1] + R[rs2]” and if i = 0, the effective address is
“R[rs1] + sign_ext( simm13)”.

With respect to little endian memory, an LDTW instruction behaves as if it comprises two 32-bit loads,
each of which is byte-swapped independently before being written into its respective destination
register.

IMPL. DEP. #107-V9a: It is implementation dependent whether LDTW is implemented in hardware. If
not, an attempt to execute an LDTW instruction will cause an unimplemented_LDTW exception.

Programming | LDTW is provided for compatibility with existing SPARC V8
Note | software. It may execute slowly on SPARC V9 machines because
of data path and register-access difficulties.

SPARC V9 | LDTW was (inaccurately) named LDD in the SPARC V8 and
Compatibility | SPARC V9 specifications. It does not load a doubleword; it
Note | loads two words (into two registers), and has been renamed
accordingly.

The least significant bit of the rd field in an LDTW instruction is unused and should always be set to
0 by software. An attempt to execute an LDTW instruction that refers to a misaligned (odd-numbered)
destination register causes an illegal_instruction exception.

An attempt to execute an LDTW instruction when i = 0 and instruction bits 12:5 are nonzero causes an
illegal_instruction exception.

If the effective address is not doubleword-aligned, an attempt to execute an LDTW instruction causes
a mem_address_not_aligned exception.
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See Also

LDTW (Deprecated)

A successful LDTW instruction operates atomically.

Programming
Notes

LDTW is provided for compatibility with SPARC V8. It may
execute slowly on SPARC V9 machines because of data path and
register-access difficulties. Therefore, software should avoid
using LDTW.

If LDTW is emulated in software, an LDX instruction should be
used for the memory access in the emulation code to preserve
atomicity. Emulation software should examine
TSTATE[TL].pstate.cle (and, if appropriate, TTE.ie) to determine
the endianness of the emulated memory access.

Note that the value of TTE.ie is not saved during a trap.
Therefore, if it is examined in the emulation trap handler, that
should be done as quickly as possible, to minimize the window
of time during which the value of TTE.ie could possibly be
changed from the value it had at the time of the attempted
execution of LDTW.

unimplemented_LDTW (not used in UltraSPARC Architecture 2007)

illegal_instruction

mem_address_not_aligned

VA_watchpoint

DAE_privilege_violation

DAE_nfo_page

fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error

PA_watchpoint
data_access_error

LDW/LDX on page 188

STTW on page 284
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7.59

Load Integer Twin Word from Alternate Space

The LDTWA instruction is deprecated and should not be used in new software.
The LDXA instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class
LDTWAP PAst 010011  Load Integer Twin Word from Alternate | dt wa [regaddr] imm_asi, reg,q D2, Y3%
Space I dtwa [reg_plus_imm] Y@Si , regyq

1 The original assembly language syntax for this instruction used an “I dda” instruction mnemonic, which is now deprecated. Over time,
assemblers will support the new “I dt wa” mnemonic for this instruction. In the meantime, some assemblers may only recognize the
original “I dda” mnemonic.

t Y3 for restricted ASIs (0014-7Fq4); D2 for unrestricted ASIs (8014-FFy¢)

11 rd op3 rsl i= imm_asi rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description The load integer twin word from alternate space instruction (LDTWA) copies two 32-bit words from

memory (with doubleword memory alignment) into a pair of R registers. The word at the effective
memory address is copied into the least significant 32 bits of the even-numbered R register. The word
at the effective memory address + 4 is copied into the least significant 32 bits of the following odd-
numbered R register. The most significant 32 bits of both the even-numbered and odd-numbered R
registers are zero-filled.

Note | Execution of an LDTWA instruction with rd = 0 modifies only
RI[1].

If i = 0, the LDTWA instruction contains the address space identifier (ASI) to be used for the load in its
imm_asi field and the effective address for the instruction is “R[rs1] + R[rs2]”. If i = 1, the ASI to be
used is contained in the ASI register and the effective address for the instruction is

“R[rs1] + sign_ext( simm13)”.

With respect to little endian memory, an LDTWA instruction behaves as if it is composed of two 32-bit
loads, each of which is byte-swapped independently before being written into its respective
destination register.

IMPL. DEP. #107-V9b: It is implementation dependent whether LDTWA is implemented in hardware.
If not, an attempt to execute an LDTWA instruction will cause an unimplemented_LDTW exception so
that it can be emulated.

Programming | LDTWA is provided for compatibility with SPARC V8. It may

Notes | execute slowly on SPARC V9 machines because of data path and
register-access difficulties. Therefore, software should avoid
using LDTWA.

If LDTWA is emulated in software, an LDXA instruction should
be used for the memory access in the emulation code to preserve
atomicity. Emulation software should examine
TSTATE[TL].pstate.cle (and, if appropriate, TTE.ie) to determine
the endianness of the emulated memory access.
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Note that the value of TTE.ie is not saved during a trap.
Therefore, if it is examined in the emulation trap handler, that
should be done as quickly as possible, to minimize the window
of time during which the value of TTE.ie could possibly be
changed from the value it had at the time of the attempted
execution of LDTWA.

SPARC V9 | LDTWA was (inaccurately) named LDDA in the SPARC V8 and
Compatibility | SPARC V9 specifications.
Note

The least significant bit of the rd field in an LDTWA instruction is unused and should always be set to
0 by software. An attempt to execute an LDTWA instruction that refers to a misaligned (odd-
numbered) destination register causes an illegal_instruction exception.

If the effective address is not doubleword-aligned, an attempt to execute an LDTWA instruction
causes a mem_address_not_aligned exception.

A successful LDTWA instruction operates atomically.
LDTWA causes a mem_address_not_aligned exception if the address is not doubleword-aligned.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI is 0, these
instructions cause a privileged_action exception. In privileged mode (PSTATE.priv =1 and
HPSTATE.hpriv = 0), if the ASI is in the range 3044 to 7F;4, these instructions cause a privileged_action
exception.

LDTWA can be used with any of the following ASIs, subject to the privilege mode rules described for
the privileged_action exception above. Use of any other ASI with this instruction causes a
DAE_invalid_asi exception (impl. dep. #300-U4-Cs10).

ASls valid for LDTWA

ASI _NUCLEUS ASI _NUCLEUS_LI TTLE

ASI _AS_| F_USER_PRI MARY ASl _AS_| F_USER PRI MARY_LI TTLE
ASI _AS_| F_USER_SECONDARY ASl _AS_| F_USER_SECONDARY_ LI TTLE
ASI _REAL ASl _REAL_LI TTLE

ASI _REAL_1O ASI _REAL_1 O LI TTLE

22161 (ASI _TW NX_Al UP) 2A161 (ASI_TW NX_AI UP_L)

23161 (ASI_TW NX_AI US) 2B1st (ASI_TW NX_AI US_L)

26,61 (ASI_TW NX_REAL) 2E;6t (ASI _TW NX_REAL_L)

27161 (ASI _TW NX_N) 2F161 (ASI _TW NX_NL)

ASI _PRI MARY ASI _PRI MARY_LI TTLE

AS| _SECONDARY AS| _SECONDARY_LI TTLE

AS| PRI MARY_NO FAULT AS| _PRI MARY_NO FAULT LI TTLE
AS| _SECONDARY_NO FAULT AS| _SECONDARY_NO FAULT LI TTLE
E216} (ASI _TW NX_P) EA;6f (ASI _TW NX_PL)

E316} (ASI _TW NX_S) EB;g} (ASI _TW NX_SL)

f If this ASI is used with the opcode for LDTWA and i =0, the LDTXA
instruction is executed instead of LDTWA. For behavior of LDTXA,
see Load Integer Twin Extended Word from Alternate Space on page 213.
If this ASI is used with the opcode for LDTWA and i =1, a DAE_invalid_asi
exception occurs.

Programming | Nontranslating ASIs (see page 345) should only be accessed
Note | using LDXA (not LDTWA) instructions. If an LDTWA
referencing a nontranslating ASI is executed, per the above
table, it generates a DAE_invalid_asi exception (impl. dep. #300-
U4-Cs10).
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Implementation | The deprecated instruction LDTWA shares an opcode with
Note | LDTXA. LDTXA is not deprecated and has different address
alignment requirements than LDTWA. See Load Integer Twin
Extended Word from Alternate Space on page 213.

Exceptions unimplemented_LDTW (not used in UltraSPARC Architecture 2007)
illegal_instruction
mem_address_not_aligned
privileged_action
VA_watchpoint
DAE_invalid_asi
DAE_privilege_violation
DAE_nfo_page
DAE_side_effect_page
fast_data_access_MMU_miss
data_access_ MMU_miss
data_access_MMU_error
PA_watchpoint
data_access_error

See Also LDWA/LDXA on page 189
LDTXA on page 213
STTWA on page 286
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7.60  Load Integer Twin Extended Word from
Alternate Space

The LDTXA instructions are not guaranteed to be implemented on all
UltraSPARC Architecture implementations. Therefore, they should only be
used in platform-specific dynamically-linked libraries, in hyperprivileged
software, or in software created by a runtime code generator that is aware of the
specific virtual processor implementation on which it is executing.

ASI
Instruction Value Operation Assembly Language Syntax t Class
LDTXAN 221 Load Integer Twin Extended Word, | dt xa [ regaddr] #ASI _TW NX_Al UP, reg.q N-

as if user (nonprivileged), Primary
address space
2314 Load Integer Twin Extended Word, | dt xa [ regaddr] #ASI _TW NX_AI US, regq N-

as if user (nonprivileged), Secondary
address space

261 Load Integer Twin Extended Word, | dt xa [ regaddr] #ASI _TW NX_REAL, regq N-
real address

271¢ Load Integer Twin Extended Word, | dt xa [ regaddr] #ASI _TW NX_N, reg,q N-
nucleus context

2A1¢ Load Integer Twin Extended Word, | dt xa [ regaddr] #ASI _TW NX_Al UP_L, reg.q N-

as if user (nonprivileged), Primary
address space, little endian
2B14 Load Integer Twin Extended Word, | dt xa [ regaddr] #ASI _TW NX_AlI US_L, reg.q N-
as if user (nonprivileged), Secondary
address space, little endian

2E1¢ Load Integer Twin Extended Word, | dt xa [ regaddr] #ASI _TW NX_REAL_L, reg.q N-
real address, little endian

2F1¢ Load Integer Twin Extended Word, | dt xa [ regaddr] #ASI _TW NX_NL, regq N-
nucleus context, little-endian

LDTXAN E2;, Load Integer Twin Extended Word, | dt xa [ regaddr] #ASI _TW NX_P, regq N-

Primary address space

E31, Load Integer Twin Extended Word, | dt xa [ regaddr] #ASI _TW NX_S, reg.y N-
Secondary address space

EAj¢ Load Integer Twin Extended Word, | dt xa [ regaddr] #ASI _TW NX_PL, regq N-
Primary address space, little endian

EBi¢ Load Integer Twin Extended Word, | dt xa [ regaddr] #ASI _TW NX_SL, regq N-

Secondary address space, little-endian

t The original assembly language syntax for these instructions used the “I dda” instruction mnemonic. That syntax is now deprecated.
Over time, assemblers will support the new “I dt xa” mnemonic for this instruction. In the meantime, some existing assemblers may
only recognize the original “I dda” mnemonic.

11 rd 01 0011 rsl i=0 imm_asi rs2
31 30 29 25 24 19 18 14 13 12 5 4 0

Description ASIs 2614, 2E14, E214, E314, FO14, and F1;¢ are used with the LDTXA instruction to atomically read a
128-bit data item into a pair of 64-bit R registers (a “twin extended word”). The data are placed in an
even/odd pair of 64-bit registers. The lowest-address 64 bits are placed in the even-numbered register;
the highest-address 64 bits are placed in the odd-numbered register.

Note | Execution of an LDTXA instruction with rd = 0 modifies only R[1].
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See Also

LDTXA

ASIs E244, E31¢, FO14, and F1;4 perform an access using a virtual address, while ASIs 2614 and 2E;4 use
a real address.

An LDTXA instruction that performs a little-endian access behaves as if it comprises two 64-bit loads
(performed atomically), each of which is byte-swapped independently before being written into its
respective destination register.

Exceptions. An attempt to execute an LDTXA instruction with an odd-numbered destination
register (rd{0} = 1) causes an illegal_instruction exception.

An attempt to execute an LDTXA instruction with an effective memory address that is not aligned on
a 16-byte boundary causes a mem_address_not_aligned exception.

IMPL. DEP. #413-S10: It is implementation dependent whether VA_watchpoint and PA_watchpoint
exceptions are recognized on accesses to all 16 bytes of a LDTXA instruction (the recommended
behavior) or only on accesses to the first 8 bytes.

An attempted access by an LDTXA instruction to noncacheable memory causes an a DAE_nc_page
exception (impl. dep. #306-U4-Cs10).

Programming | A key use for this instruction is to read a full TTE entry (128 bits,

Note | tag and data) in a TSB directly, without using software
interlocks. The “real address” variants can perform the access
using a real address, bypassing the VA-to-RA translation.

Programming | In hyperprivileged mode, an access to ASI E214, E314, FO14, or
Note | F14 is performed using physical (not virtual) addressing.

The virtual processor MMU does not provide virtual-to-real translation for ASIs 26,4 and 2E;4; the
effective address provided with either of those ASIs is interpreted directly as a real address.

Compatibility | ASIs 2744, 2F14, 2614, and 2E;4 are now standard ASIs that
Note | replace (respectively) ASIs 244, 2Cy4, 3414, and 3Cq¢ that were
supported in some previous UltraSPARC implementations.

A mem_address_not_aligned trap is taken if the access is not aligned on a 128-byte boundary.

Implementation | LDTXA shares an opcode with the “i = 0” variant of the
Note | (deprecated) LDTWA instruction; they are differentiated by the
combination of the value of “i” and the ASI used in the
instruction. See Load Integer Twin Word from Alternate Space on
page 210.

illegal_instruction
mem_address_not_aligned
privileged_action

VA_watchpoint (impl. dep. #413-510)
DAE_nc_page

DAE_nfo_page
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
PA_watchpoint (impl. dep. #413-510)
data_access_error

LDTWA on page 210
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7.61

Load Floating-Point State Register

Instruction op3 rd Operation Assembly Language Syntax Class
10 0001 0 (see page 201)
LDXFSR 100001 1 Load Floating-Point State Register | dx [ address], 96 sr Al
— 10 0001 2-31 Reserved
11 rd op3 rsl i=0 — rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description A load floating-point state register instruction (LDXFSR) waits for all FPop instructions that have not

finished execution to complete and then loads a doubleword from memory into the FSR.

LDXFSR does not alter the ver, ftt, qne, reserved, or unimplemented (for example, ns) fields of FSR
(see page 44).

Programming | For future compatibility, software should only issue an LDXFSR
Note | instruction with a zero value (or a value previously read from
the same field) written into any reserved field of FSR.

LDXFSR accesses memory using the implicit ASI (see page 87).

If i = 0, the effective address for these instructions is “R[rs1] + R[rs2]” and if i = 0, the effective address
is “R[rs1] + sign_ext( simm13)”.

Exceptions. An attempt to execute an instruction encoded as op = 2 and 0p3 = 2115 when any of the
following conditions exist causes an illegal_instruction exception:

» i =0 and instruction bits 12:5 are nonzero

n (rd>1)

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an LDXFSR instruction causes an fp_disabled exception.

If the effective address is not doubleword-aligned, an attempt to execute an LDXFSR instruction
causes a mem_address_not_aligned exception.

Destination Register(s) when Exception Occurs. If a load floating-point state register instruction
generates an exception that causes a precise trap, the destination register (FSR) remains unchanged.

IMPL. DEP. #44-V8-Cs10(a)(2): If an LDXFSR instruction generates an exception that causes a non-
precise trap, it is implementation dependent whether the contents of the destination register (FSR) is
undefined or is guaranteed to remain unchanged.

Implementation | LDXFSR shares an opcode with the (deprecated) LDFSR
Note | instruction (and possibly with other implementation-dependent
instructions); they are differentiated by the instruction rd field.
An attempt to execute the op = 11,, op3 = 10 0001, opcode with
an invalid rd value causes an illegal_instruction exception.
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Exceptions illegal_instruction
fp_disabled
mem_address_not_aligned
VA_watchpoint
DAE_privilege_violation
DAE_nfo_page
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
PA_watchpoint
data_access_error

See Also Load Floating-Point Register on page 195
Load Floating-Point State Register (Lower) on page 201
Store Floating-Point State Register on page 288
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MEMBAR

7.62

Memory Barrier

Instruction op3 Operation Assembly Language Syntax Class
MEMBAR 10 1000 Memory Barrier menmbar membar_mask Al
10 0 op3 01111 i=1 — cmask | mmask
31 30 29 25 24 19 18 14 13 12 7 6 4 3 0
Description ~ The memory barrier instruction, MEMBAR, has two complementary functions: to express order

constraints between memory references and to provide explicit control of memory-reference
completion. The membar_mask field in the suggested assembly language is the concatenation of the
cmask and mmask instruction fields.

MEMBAR introduces an order constraint between classes of memory references appearing before the
MEMBAR and memory references following it in a program. The particular classes of memory
references are specified by the mmask field. Memory references are classified as loads (including load
instructions LDSTUB[A], SWAP[A], CASA, and CASX[A] and stores (including store instructions
LDSTUBI[A], SWAP[A], CASA, CASXA, and FLUSH). The mmask field specifies the classes of memory
references subject to ordering, as described below. MEMBAR applies to all memory operations in all
address spaces referenced by the issuing virtual processor, but it has no effect on memory references
by other virtual processors. When the cmask field is nonzero, completion as well as order constraints
are imposed, and the order imposed can be more stringent than that specifiable by the mmask field
alone.

A load has been performed when the value loaded has been transmitted from memory and cannot be
modified by another virtual processor. A store has been performed when the value stored has become
visible, that is, when the previous value can no longer be read by any virtual processor. In specifying
the effect of MEMBAR, instructions are considered to be executed as if they were processed in a
strictly sequential fashion, with each instruction completed before the next has begun.

The mmask field is encoded in bits 3 through 0 of the instruction. TABLE 7-7 specifies the order
constraint that each bit of mmask (selected when set to 1) imposes on memory references appearing
before and after the MEMBAR. From zero to four mask bits may be selected in the mmask field.

TABLE 7-7 MEMBAR mmask Encodings

Assembly
Mask Bit Language Name Description

mmask{3}  #St or eSt or e The effects of all stores appearing prior to the MEMBAR
instruction must be visible to all virtual processors before the
effect of any stores following the MEMBAR.

mmask{2}  #LoadSt ore Allloads appearing prior to the MEMBAR instruction must
have been performed before the effects of any stores following
the MEMBAR are visible to any other virtual processor.

mmask{l}  #St or eLoad The effects of all stores appearing prior to the MEMBAR
instruction must be visible to all virtual processors before loads
following the MEMBAR may be performed.

mmask{0}  #LoadLoad All loads appearing prior to the MEMBAR instruction must
have been performed before any loads following the MEMBAR
may be performed.
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The cmask field is encoded in bits 6 through 4 of the instruction. Bits in the cmask field, described in
TABLE 7-8, specify additional constraints on the order of memory references and the processing of
instructions. If cmask is zero, then MEMBAR enforces the partial ordering specified by the mmask
field; if cmask is nonzero, then completion and partial order constraints are applied.

TABLE7-8 MEMBAR cmask Encodings

Assembly
Mask Bit Function Language Name Description
cmask{2}  Synchronization  #Sync All operations (including nonmemory reference
barrier operations) appearing prior to the MEMBAR must have
been performed and the effects of any exceptions be
visible before any instruction after the MEMBAR may be
initiated.
cmask{l} Memory issue #Memnl ssue  All memory reference operations appearing prior to the
barrier MEMBAR must have been performed before any memory

operation after the MEMBAR may be initiated.

cmask{0} Lookaside barrier #Lookasi deP (Deprecated) A store appearing prior to the MEMBAR
must complete before any load following the MEMBAR
referencing the same address can be initiated.
MEMBAR #Lookaside is deprecated and is supported only
for legacy code; it should not be used in new software. A
slightly more restrictive MEMBAR operation (such as
MEMBAR #StoreLoad) should be used, instead.
Implementation Note: Since #Lookaside is deprecated,
implementations are not expected to perform address
matching, but instead provide #Lookaside functionality
using a more restrictive MEMBAR operation (such as
#StoreLoad).

A MEMBAR instruction with both mmask = 0 and cmask = 0 is functionally a NOP.

For information on the use of MEMBAR, see Memory Ordering and Synchronization on page 339 and
Programming with the Memory Models contained in the separate volume UltraSPARC Architecture
Application Notes. For additional information about the memory models themselves, see Chapter 9,
Memory.

The coherence and atomicity of memory operations between virtual processors and I/O DMA
memory accesses are implementation dependent (impl. dep. #120-V9).

V9 Compatibility | MEMBAR with mmask = 8,5 and cmask = 0;, (MEMBAR
Note | #St or eSt or e) is identical in function to the SPARC V8 STBAR
instruction, which is deprecated.

An attempt to execute a MEMBAR instruction when instruction bits 12:7 are nonzero causes an
illegal_instruction exception.

Implementation | MEMBAR shares an opcode with RDasr; it is distinguished by
Note |rs1 =15,rd =0, i=1, and bit 12 =0.

7.62.1  Memory Synchronization

The UltraSPARC Architecture provides some level of software control over memory synchronization,
through use of the MEMBAR and FLUSH instructions for explicit control of memory ordering in
program execution.

IMPL. DEP. #412-S10: An UltraSPARC Architecture implementation may define the operation of each
MEMBAR variant in any manner that provides the required semantics.
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7.62.2

7.62.3

Exceptions

MEMBAR

Implementation | For an UltraSPARC Architecture virtual processor that only

Note | provides TSO memory ordering semantics, three of the ordering
MEMBARs would normally be implemented as NOPs. TABLE 7-9
shows an acceptable implementation of MEMBAR for a TSO-
only UltraSPARC Architecture implementation.

TABLE 7-9 MEMBAR Semantics for TSO-only implementation

MEMBAR variant Preferred Implementation
#StoreStore NOP

#LoadSt or e NOP

#St or eLoad #Sync

#LoadLoad NOP

#Sync #Sync

#Menl ssue #Sync

#Lookasi deP #Sync

If an UltraSPARC Architecture implementation provides a less
restrictive memory model than TSO (for example, RMO), the
implementation of the MEMBAR variants may be different. See
implementation-specific documentation for details.

Synchronization of the Virtual Processor

Synchronization of a virtual processor forces all outstanding instructions to be completed and any
associated hardware errors to be detected and reported before any instruction after the synchronizing
instruction is issued.

Synchronization can be explicitly caused by executing a synchronizing MEMBAR instruction
(MEMBAR #Sync) or by executing an LDXA /STXA /LDDFA/STDFA instruction with an ASI that
forces synchronization.

During synchronization, if a disrupting trap condition due to a hardware error is detected and
external interrupts are enabled, the disrupting trap will occur before the instruction after the
synchronizing instruction is executed. In this case, the PC value saved in TPC during trap entry will
be the address of the instruction after the synchronizing instruction.

Programming | Completion of a MEMBAR #Sync instruction does not

Note | guarantee that data previously stored has been written all the
way out to external memory (that is, that cache writebacks to
external memory have completed). Software cannot rely on
that behavior. There is no mechanism in the UltraSPARC
Architecture that allows software to wait for all previous stores
to be written to external memory (that is, for cache writebacks to
completely drain).

TSO Ordering Rules affecting Use of MEMBAR

For detailed rules on use of MEMBAR to enable software to adhere to the ordering rules on a virtual
processor running with the TSO memory model, refer to TSO Ordering Rules on page 337.

illegal_instruction

CHAPTER 7 ¢ Instructions 219



7.63

For Integer Condition Codes

MOVcc

Move Integer Register on Condition (MOVcc)

Instruction op3 cond Operation icc / xcc Test Assembly Language Syntax Class
MOVA 101100 1000 Move Always 1 nova i_or_x_cc, reg_or_immll, regyq Al
MOVN 101100 0000 Move Never 0 nmovn  i_or_x_cc, reg_or_immll, regyq Al
MOVNE 101100 1001 Move if Not Equal not Z nmovne® i_or_x_cc, reg_or_immll, regyq Al
MOVE 101100 0001 Move if Equal zZ movet ior x_ce, reg or_immll, regyq Al
MOVG 101100 1010 Move if Greater not (Z or novg  i_or_x_cc, reg_or_immll, reg.q Al
N xor V))
MOVLE 101100 0010 Move if Less or Zor (N xorV) novle ior_x_cc reg_or_immll, regyy Al
Equal
MOVGE 101100 1011 Move if Greater not (N xor V) novge i_or_x_cc, reg_or_immll, regyq Al
or Equal
MOVL 101100 0011 Move if Less N xor V novl i_or_x_cc, reg_or_immll, reggyq Al
MOVGU 101100 1100 Move if Greater, not (C or Z) novgu i_or_x_cc, reg_or_immll, regq Al
Unsigned
MOVLEU 101100 0100 Move if Less or (Cor2) novl eu i_or_x_cc, reg_or_immll, regq Al
Equal, Unsigned
MOVCC 101100 1101 Move if Carry not C movee? i_or_x_cc, reg_or_immll, reg.y Al
Clear (Greater or
Equal, Unsigned)
MOVCS 101100 0101 Move if Carry Set C nmoves® ior_x_cc, reg_or_immll, regyq Al
(Less than,
Unsigned)
MOVPOS 101100 1110 Move if Positive not N NoVpPOS i_or_x_cc, reg_or_immll, regq Al
MOVNEG 101100 0110 Move if Negative N novneg i_or_x_cc, reg_or_immll, reggyq Al
MOVVC 101100 1111 Move if Overflow  notV novvc i_or_x_cc, reg_or_immll, regq Al
Clear
MOVVS 101100 0111 Move if Overflow V novvs i_or_x_cc, reg_or_immll, regq Al

Set

' synonym: movnz

¥ synonym: movz

© synonym: novgeu

U synonym: movl u

Programming | In assembly language, to select the appropriate condition code,
Note | include % cc or % cc before the reg_or_imm11 field.
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For Floating-Point Condition Codes

Instruction op3 cond Operation fcc Test Assembly Language Syntax Class

MOVFA 101100 1000 Move Always 1 nmova % ccn, reg_or_immll, regyq Al

MOVEN 101100 0000 Move Never 0 movn 9% ccn, reg_or_immll, reg.y Al

MOVFU 101100 0111 Move if Unordered U nmovu % ccn, reg_or_immll, regyq Al

MOVFG 101100 0110 Move if Greater G novg % ccn, reg_or_immll, reg. Al

MOVFUG 101100 0101 Move if Unordered G or U movug 9% ccn, reg_or_immll, reg.y Al
or Greater

MOVFL 101100 0100 Move if Less L nmov| 9% ccn, reg_or_immll, reg.y Al

MOVFUL 101100 0011 Move if Unordered L orU movul % ccn, reg_or_immll, reg.y Al
or Less

MOVEFLG 101100 0010 Move if Less or LorG movl g 9% ccn, reg_or_immll, reg.y Al
Greater

MOVENE 101100 0001 Move if Not Equal L or G or U movne® 9% ccn, reg or_immil, reg.q Al

MOVFE 101100 1001 Move if Equal E movel % ccn, reg_or_imm1l, reg.q Al

MOVFUE 101100 1010 Move if Unordered E or U nmovue 9% ccn, reg_or_immll, reg.y Al
or Equal

MOVFGE 101100 1011 Move if Greater or E or G nmovge 9% ccn, reg_or_immll, reg.y Al
Equal

MOVFUGE 101100 1100 Move if Unordered E or G or U novuge % ccn, reg_or_immll, regyq Al
or Greater or Equal

MOVFLE 101100 1101 Move if Less or EorL novle 9% ccn, reg_or_immll, regyq Al
Equal

MOVFULE 101100 1110 Move if Unordered E orL or U nmovul e % ccn, reg_or_immll, regyy Al
or Less or Equal

MOVFO 101100 1111 Move if Ordered EorL orG novo % ccn, reg_or_immll, regyy Al

Y synonym: movnz  synonym: movz

Programming | In assembly language, to select the appropriate condition code,
Note | include % ccO, % cc1, % cc2, or % cc3 before the reg_or_imm11

field.
10 rd op3 icc cond i=0fcc1lccO — rs2
10 rd op3 cc2l  cond i=1|cc cco simm11
31 30 29 25 24 19 18 17 14 13 12 11 10 5 4 0
cc2 ccl ccO Condition Code
0 0 0 fccO
0 0 1 fecl
0 1 0 fcc2
0 1 1 fcc3
1 0 0 icc
1 0 1 Reserved (illegal_instruction)
1 1 0 xcc
1 1 1 Reserved (illegal_instruction)
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Description

Exceptions

MOVcc

These instructions test to see if cond is TRUE for the selected condition codes. If so, they copy the
value in R[rs2] if i field = 0, or “sign_ext(simm11)” if i = 1 into R[rd]. The condition code used is
specified by the cc2, ccl, and ccO fields of the instruction. If the condition is FALSE, then R[rd] is not
changed.

These instructions copy an integer register to another integer register if the condition is TRUE. The
condition code that is used to determine whether the move will occur can be either integer condition
code (icc or xcc) or any floating-point condition code (fccO, fccl, fec2, or fce3).

These instructions do not modify any condition codes.

Programming | Branches cause the performance of many implementations to
Note | degrade significantly. Frequently, the MOVcc and FMOVce
instructions can be used to avoid branches. For example, the C
language if-then-else statement
if (A>B) then X = 1; else X = 0;
can be coded as
cnmp % 0, % 2
bg,a %cc, | abel
or %90, 1, % 3! X
or %90, 0,% 3! X
| abel : . ..

1
0

The above sequence requires four instructions, including a branch.
With MOVcc this could be coded as:
cnmp % 0, % 2

or %90, 1,% 3! assune X = 1

movl e 9cc,0,% 3! overwite with X =10
This approach takes only three instructions and no branches and
may boost performance significantly. Use MOVcc and FMOVcc
instead of branches wherever these instructions would increase
performance.

An attempt to execute a MOVcc instruction when either instruction bits 10:5 are nonzero or
(cc2 :: ccl = cc0) = 101, or 111, causes an illegal_instruction exception.

If cc2 = 0 (that is, a floating-point condition code is being referenced in the MOVcc instructions) and
either the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute a MOVcc instruction causes an fp_disabled exception.

illegal_instruction
fp_disabled
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7.64

Move Integer Register on Register Condition
(MOVr)

Instruction op3 rcond Operation Test Assembly Language Syntax Class

— 101111 000 Reserved (illegal_instruction) —
MOVRZ 101111 001 Move if Register Zero RIs11=0 novrzt  regy, reg or_imml0, regq Al

MOVRLEZ 101111 010 Move if Register Less Rlrs1]<0 novrl ez reggy, reg_or_imml0, reggyq Al
Than or Equal to Zero

MOVRLZ 101111 011 Move if Register Less Rrs1]<0 nmovrlz reg.sp, reg_or_imml0, regyy Al
Than Zero

— 101111 100 Reserved (illegal_instruction) —
MOVRNZ 101111 101 Move if Register Not RIrs11#20  novr nzt regrs1, reg_or_imml0, regy Al

Zero
MOVRGZ 101111 110 Move if Register RIrsl]>0 novrgz regws1, reg_or_imml0, regyy Al
Greater Than Zero
MOVRGEZ 101111 111 Move if Register Rlrs1]=20 novrgez regygy, reg_or_imml0, regyq Al
Greater Than or Equal
to Zero
t synonym: movr e ¥ synonym: movr ne
10 rd op3 | rsl i=0| rcond — rs2
10 rd op3 rsl i=1| rcond simm10
31 30 29 25 24 19 18 14 13 12 10 9 5 4 0

Description If the contents of integer register R[rs1] satisfy the condition specified in the rcond field, these

instructions copy their second operand (if i = 0, R[rs2]; if i = 1, sign_ext(simm10)) into R[rd]. If the
contents of R[rs1] do not satisfy the condition, then R[rd] is not modified.

These instructions treat the register contents as a signed integer value; they do not modify any
condition codes.

Programming | The MOVr instructions are “64-bit-only” instructions; there is no
Note | version of these instructions that operates on just the less-
significant 32 bits of their source operands.

Implementation | If this instruction is implemented by tagging each register value
Note | with an n (negative) and a z (zero) bit, use the table below to
determine if rcond is TRUE.
Move Test
MOVRNZ not Z
MOVRZ Z
MOVRGEZ not N
MOVRLZ N
MOVRLEZ NorZ
MOVRGZ N nor Z

An attempt to execute a MOVr instruction when either instruction bits 9:5 are nonzero or rcond = 000,
or 100, causes an illegal_instruction exception.
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Exceptions illegal_instruction

224 UltraSPARC Architecture 2007 « Draft D0.9.4, 27 Sep 2010



MULScc - Deprecated

7.65

Multiply Step

The MULScc instruction is deprecated and should not be used in new software.
The MULX instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class
MULScc? 100100 Multiply Step and modify cc’s mul scc  regygp, reg_or_imm, regy Y3
10 rd op3 rsl i=0) — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description ~ MULScc treats the less-significant 32 bits of R[rs1] and the less-significant 32 bits of the Y register as a

single 64-bit, right-shiftable doubleword register. The least significant bit of R[rs1] is treated as if it
were adjacent to bit 31 of the Y register. The MULScc instruction performs an addition operation,
based on the least significant bit of .

Multiplication assumes that the Y register initially contains the multiplier, R[rs1] contains the most
significant bits of the product, and R[rs2] contains the multiplicand. Upon completion of the
multiplication, the Y register contains the least significant bits of the product.

Note | In a standard MULScc instruction, rsl = rd.

MULScc operates as follows:
1. If i = 0, the multiplicand is R[rs2]; if i = 1, the multiplicand is sign_ext( simm13).

2. A 32-bit value is computed by shifting the value from R[rs1] right by one bit with
“CCRu.cc.n xor CCR.icc.v” replacing bit 31 of R[rs1]. (This is the proper sign for the previous
partial product.)

3. If the least significant bit of Y = 1, the shifted value from step (2) and the multiplicand are added. If

the least significant bit of the Y =0, then 0 is added to the shifted value from step (2).

4. MULScc writes the following result values:

Register field Value written by MULScc

CCRucc updated according to the result of the addition in step (3)
above

R[rd]{63:33} 0

R[rd]{32} CCRuicc.c

R[rd]{31:0} the least-significant 32 bits of the sum from step (3) above

Y the previous value of the Y register, shifted right by one

bit, with Y{31} replaced by the value of R[rs1]{0} prior to
shifting in step (2)

CCR.xcc.n 0
CCR.xcc.v 0
CCR.xcc.c 0
CCR.xcc.z if (R[rd]{63:0} = 0) then 1 else 0
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SPARC V9 | In SPARC V9, MULScc’s effect on R[rd]{63:32} and CCR.xcc
Compatibility | were explicitly left undefined.

Note
5. The Y register is shifted right by one bit, with the least significant bit of the unshifted R[rs1]
replacing bit 31 of Y.

An attempt to execute a MULScc instruction when i = 0 and instruction bits 12:5 are nonzero causes an
illegal_instruction exception.

Exceptions illegal_instruction

See Also RDY on page 242
SDIV, SDIVcc on page 258
SMUL, SMULcc on page 265
UDIV, UDIVcc on page 301
UMUL, UMULcc on page 303
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MULX / SDIVX / UDIVX

7.66  Multiply and Divide (64-bit)

Instruction op3 Operation Assembly Language Class
MULX 00 1001 Multiply (signed or unsigned) mul x regrs1, reg_or_imm, regq Al
SDIVX 10 1101 Signed Divide sdi vx regys1, reg_or_imm, regyy Al
UDIVX 00 1101 Unsigned Divide udi vx regrs1, reg_or_imm, regyy Al
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description ~ MULX computes “R[rs1] x R[rs2]” if i = 0 or “R[rs1] x sign_ext( simm13)” if i = 1, and writes the 64-
bit product into R[rd]. MULX can be used to calculate the 64-bit product for signed or unsigned
operands (the product is the same).

SDIVX and UDIVX compute “R[rs1] + R[rs2]” if i = 0 or “R[rs1] + sign_ext( simm13)” if i = 1, and
write the 64-bit result into R[rd]. SDIVX operates on the operands as signed integers and produces a
corresponding signed result. UDIVX operates on the operands as unsigned integers and produces a
corresponding unsigned result.

For SDIVX, if the largest negative number is divided by -1, the result should be the largest negative
number. That is:

8000 0000 0000 00001 ¢ + FFFF FFFF FFFF FFFF;4 = 8000 0000 0000 00004¢.

These instructions do not modify any condition codes.

An attempt to execute a MULX, SDIVX, or UDIVX instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction
division_by_zero
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7.67  No Operation

Instruction op2 Operation Assembly Language Syntax Class
NOP 100 No Operation nop Al
00 ([rd=00000 op2 imm22=0000000000000000000000
31 30 29 25 24 22 21

Description The NOP instruction changes no program-visible state (except that of the PC register).

NOP is a special case of the SETHI instruction, with imm22 =0 and rd = 0.

Programming | There are many other opcodes that may execute as NOPs;
Note | however, this dedicated NOP instruction is the only one
guaranteed to be implemented efficiently across all
implementations.

Exceptions None
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7.68  NORMALW

Instruction Operation Assembly Language Syntax Class
NORMALW?  “Other” register windows become “normal” register windows nor mal w Al
10 | fcn =0 0100 11 0001 —
31 30 29 25 24 19 18 0

Description NORMALWY is a privileged instruction that copies the value of the OTHERWIN register to the
CANRESTORE register, then sets the OTHERWIN register to zero.

Programming | The NORMALW instruction is used when changing address
Notes | spaces. NORMALW indicates the current "other" windows are
now "normal" windows and should use the spill_n_normal and
fill_n_normal traps when they generate a trap due to window spill
or fill exceptions. The window state may become inconsistent if
NORMALW is used when CANRESTORE is nonzero.

This instruction allows window manipulations to be atomic,
without the value of N_REG_WINDOWS being visible to privileged
software and without an assumption that N_REG_WINDOWS is
constant (since hyperprivileged software can migrate a thread
among virtual processors, across which N_REG_WINDOWS may
vary).

An attempt to execute a NORMALW instruction when instruction bits 18:0 are nonzero causes an
illegal_instruction exception.

An attempt to execute an NORMALW instruction in nonprivileged mode (PSTATE.priv = 0 and
HSTATE.hpriv = 0) causes a privileged_opcode exception.

Exceptions illegal_instruction
privileged_opcode

See Also ALLCLEAN on page 112
INVALW on page 186
OTHERW on page 231
RESTORED on page 250
SAVED on page 257
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7.69

OR Logical Operation

Instruction op3 Operation Assembly Language Syntax Class
OR 00 0010 Inclusive or or regrs1, reg_or_imm, regyq Al
ORcc 01 0010 Inclusive or and modify cc’s orcc regrs1, reg_or_imm, regyq Al
ORN 000110 Inclusive or not orn regrs1, reg_or_imm, regyq Al
ORNCcc 01 0110 Inclusive or not and modify cc’s  orncc  reg.gp, reg_or_imm, reg.g Al
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description These instructions implement bitwise logical or operations. They compute “R[rs1] op R[rs2]” if i = 0,
or “R[rs1] op sign_ext( simm13)” if i = 1, and write the result into R[rd].
ORcc and ORNcc modify the integer condition codes (icc and xcc). They set the condition codes as
follows:
» icc.y, icc.c, xcc.v, and xcc.c are set to 0
» icc.n is copied from bit 31 of the result
= Xcc.n is copied from bit 63 of the result
= icc.z is set to 1 if bits 31:0 of the result are zero (otherwise to 0)
= Xcc.z is set to 1 if all 64 bits of the result are zero (otherwise to 0)
ORN and ORNCcc logically negate their second operand before applying the main (or) operation.
An attempt to execute an OR[N][cc] instruction when i = 0 and instruction bits 12:5 are nonzero causes
an illegal_instruction exception.
Exceptions illegal_instruction
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770  OTHERW

Instruction Operation Assembly Language Syntax Class

OTHERW? “Normal” register windows become “other” ot herw Al
register windows

10 | fen=00011 110001 —
31 30 29 25 24 19 18 0

Description OTHERW? is a privileged instruction that copies the value of the CANRESTORE  register to the
OTHERWIN register, then sets the CANRESTORE register to zero.

Programming | The OTHERW instruction is used when changing address spaces.

Notes | OTHERW indicates the current "normal" register windows are
now "other" register windows and should use the spill_n_other
and fill_n_other traps when they generate a trap due to window
spill or fill exceptions. The window state may become inconsistent
if OTHERW is used when OTHERWIN is nonzero.

This instruction allows window manipulations to be atomic,
without the value of N_REG_WINDOWS being visible to privileged
software and without an assumption that N_REG_WINDOWS is
constant (since hyperprivileged software can migrate a thread
among virtual processors, across which N_REG_WINDOWS may
vary).

An attempt to execute an OTHERW instruction when instruction bits 18:0 are nonzero causes an
illegal_instruction exception.

An attempt to execute an OTHERW instruction in nonprivileged mode (PSTATE.priv = 0 and
HSTATE.hpriv = 0) causes a privileged_opcode exception.

Exceptions illegal_instruction
privileged_opcode

See Also ALLCLEAN on page 112
INVALW on page 186
NORMALW on page 229
RESTORED on page 250
SAVED on page 257
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7.71  Pixel Component Distance
(with Accumulation)

Instruction  opf Operation Assembly Language Syntax Class

PDIST 00011 1110 Distance between eight 8-bit components, pdi st  fregs1, fregso, fregrg  C2
with accumulation

10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description Eight unsigned 8-bit values are contained in the 64-bit floating-point source registers Fp[rs1] and
Fplrs2]. The corresponding 8-bit values in the source registers are subtracted (that is, each byte in
Fplrs2] is subtracted from the corresponding byte in Fp[rs1]). The sum of the absolute value of each
difference is added to the integer in Fp[rd] and the resulting integer sum is stored in the destination
register, Fp[rd].
Programming | PDIST uses Fp[rd] as both a source and a destination register.

Notes Typically, PDIST is used for motion estimation in video

compression algorithms.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FPMERGE instruction causes an fp_disabled exception.

Exceptions fp_disabled
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7.72  Population Count

Instruction op3 Operation Assembly Language Syntax Class
POPC 10 1110 Population Count popc reg_or_imm, regyq Cc2
10 rd op3 0 0000 i=0 — rs2
10 rd op3 0 0000 i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description ~ POPC counts the number of ‘1’ bits in R[rs2] if i = 0, or the number of ‘1’ bits in sign_ext( simm13) if
i =1, and stores the count in R[rd]. This instruction does not modify the condition codes.

V9 Compatibility | Instruction bits 18 through 14 must be zero for POPC. Other

Note | encodings of this field (rs1) may be used in future versions of the
SPARC architecture for other instructions.

Programming | POPC can be used to “find first bit set” in a register.
Note | A ‘C’-language program illustrating how POPC can be used for

this purpose follows:

int ffs(in)/* finds first 1 bit, counting fromthe LSB */
unsi gned in;

{
return popc(in ~ (4-in)));/* for nonzero zz */
}
Inline assembly language code for f f s() is:
neg %N, YNEG_IN I —zz(2' s conpl enent)
xnor %N, 9UNEG_IN, 9WCEMP! ~ [0 —zz (exclusive nor)
popc YEMP, YRESULT ! result = popc(zz » O -zz)
novrz %N, %90, YRESULT ! 9RESULT should be 0 for % N=0

where IN, M_IN, TEMP, and RESULT are integer registers.

Example computation:

IN = ...00101000 !1st ‘1" bit fromright is

-IN = ...11011000 '! bit 3 (4th bit)
~—IN=...00100111
IN~N ~—IN= . 00001111

popc IN ~ ~ —IN) 4

Programming | POPC can be used to “centrifuge” all the ‘1’ bits in a register to the
Note | least significant end of a destination register. Assembly-language
code illustrating how POPC can be used for this purpose follows:

popc %N, YDEST

cnp %N, -1 ! Test for pattern of all 1's
nov -1, WEMP ! Constant -1 -> tenp register
sl x YdEMP, YDEST, YDEST ! (shift count of 64 sane as 0)
not YDEST !

novcc  W%cc, -1, YDEST ' If src was -1, result is -1

where IN, TEMP, and DEST are integer registers.

Programming | POPC is a “64-bit-only” instruction; there is no version of this
Note | instruction that operates on just the less-significant 32 bits of its
source operand.

An attempt to execute a POPC instruction when either instruction bits 18:14 are nonzero, or i = 0 and
instruction bits 12:5 are nonzero causes an illegal_instruction exception.
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Exceptions illegal_instruction
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7.73 Prefetch

Instruction op3 Operation Assembly Language Syntax Class
PREFETCH 101101 Prefetch Data prefetch [address], prefetch_fcn Al
PREFETCHAP 111101 Prefetch Data from prefetcha [regaddr] imm_asi, prefetch_fcn Al
Alternate Space prefetcha [ reg_plus_imm] Y@si, prefetch_fcn
PREFETCH
11 fcn op3 rsl i=0 — rs2
11 fen op3 rsl |i= simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
PREFETCHA
11 fcn op3 rsl i=0 imm_asi rs2
11 fcn op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

TABLE 7-10  Prefetch Variants, by Function Code

fcn Prefetch Variant

0 (Weak) Prefetch for several reads

1 (Weak) Prefetch for one read

2 (Weak) Prefetch for several writes and possibly reads
3 (Weak) Prefetch for one write

4 Prefetch page

5-15 (0514—0F14) Reserved (illegal_instruction)

16 (1044) Implementation dependent (NOP if not implemented)
17 (114¢) Prefetch to nearest unified cache

18-19 (1214-1314)  Implementation dependent (NOP if not implemented)

20 (1444) Strong Prefetch for several reads

21 (1514) Strong Prefetch for one read

22 (161¢) Strong Prefetch for several writes and possibly reads
23 (1714) Strong Prefetch for one write

Description A PREFETCHIJA] instruction provides a hint to the virtual processor that software expects to access a
particular address in memory in the near future, so that the virtual processor may take action to
reduce the latency of accesses near that address. Typically, execution of a prefetch instruction initiates
movement of a block of data containing the addressed byte from memory toward the virtual
processor or creates an address mapping.

Implementation | A PREFETCHIJA] instruction may be used by software to:

Note |, prefetch a cache line into a cache

e prefetch a valid address translation into a TLB
e invalidate a cache line that may have caused a correctable error during
a load instruction.
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If i = 0, the effective address operand for the PREFETCH instruction is “R[rs1] + R[rs2]”; if i =1, it is
“R[rs1] + sign_ext (simm13)”.

PREFETCH instructions access the primary address space (ASI _PRI MARY[_LI| TTLE]).

PREFETCHA instructions access an alternate address space. If i = 0, the address space identifier (ASI)
to be used for the instruction is in the imm_asi field. If i = 1, the ASI is found in the ASI register.

A prefetch operates much the same as a regular load operation (including a possible hardware
tablewalk to load a TLB entry), but with certain important differences. In particular, a PREFETCH[A]
instruction is non-blocking; subsequent instructions can continue to execute while the prefetch is in
progress.
Implementation | A PREFETCHIJA] instruction is “released” by hardware after the
Note | TLB access, allowing subsequent instructions to continue to

execute while the virtual processor performs the hardware

tablewalk (in the case of a TLB miss for a Strong prefetch) or the

cache access in the background.

When executed in nonprivileged or privileged mode, PREFETCH[A] has the same observable effect as
a NOP. A prefetch instruction will not cause a trap if applied to an illegal or nonexistent memory
address. (impl. dep. #103-V9-Ms10(e))

Whether a PREFETCH[A] instruction always succeeds when the MMU is disabled is implementation
dependent (impl. dep. # 117-V9).

IMPL. DEP. #103-V9-Ms10(a): The size and alignment in memory of the data block prefetched is
implementation dependent; the minimum size is 64 bytes and the minimum alignment is a 64-byte
boundary.
Programming | Software may prefetch 64 bytes beginning at an arbitrary address
Note | address by issuing the instructions

prefetch [address], prefetch_fcn
prefetch [address + 63], prefetch_fcn

Variants of the prefetch instruction can be used to prepare the memory system for different types of
accesses.

IMPL. DEP. #103-V9-Ms10(b): An implementation may implement none, some, or all of the defined
PREFETCH[A] variants. It is implementation-dependent whether each variant is (1) not implemented
and executes as a NOP, (2) is implemented and supports the full semantics for that variant, or (3) is
implemented and only supports the simple common-case prefetching semantics for that variant.

Exceptions

Prefetch instructions PREFETCH and PREFETCHA generate exceptions under the conditions detailed
in TABLE 7-11. Only the implementation-dependent prefetch variants (see TABLE 7-10) may generate an
exception under conditions not listed in this table; the predefined variants only generate the
exceptions listed here.

TABLE 7-11  Behavior of PREFETCHIJA] Instructions Under Exceptional Conditions (1 of 2)

fcn Instruction Condition Result

any PREFETCH i =0 and instruction bits 12:5 are illegal_instruction
nonzero

any PREFETCHA  reference to an ASI in the range executes as NOP

016-7F1¢, while in nonprivileged
mode (privileged_action condition)
any PREFETCHA  reference to an ASI in range executes as NOP
301¢..7F14, while in privileged
mode (privileged_action condition)
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TABLE 7-11  Behavior of PREFETCHJA] Instructions Under Exceptional Conditions (2 of 2)

fcn Instruction Condition Result
0-3 PREFETCH[A] condition detected for MMU miss executes as NOP
(weak) (data_access_MMU_miss or
fast_data_access_MMU_miss )
0-3 PREFETCH[A] condition detected for executes as NOP
(weak) data_access_MMU_error
0-4 PREFETCH[A] variant unimplemented executes as NOP
0-4 PREFETCHA reference to an invalid ASI executes as NOP
(ASI not listed in following table)
0-4,17, PREFETCHJ[A] condition detected for executes as NOP
20-23 DAE_invalid_asi (see following
table),

DAE_privilege_violation,
DAE_nc_page ((TTE.cp = 0) or
((fcn = 0) and TTE.cv = 0)),
DAE_nfo_page, or
DAE_side_effect_page (TTE.e = 1)

4,20-23  PREFETCH[A] prefetching the requested data executes as NOP
(strong) would be a very time-consuming
operation (condition detected for
data_access_MMU_miss )

4,20-23  PREFETCH[A] prefetching the requested data fast_data_access_MMU_miss
(strong) would be a time-consuming

operation (condition detected for

fast_data_access_MMU_miss )

4,20-23 PREFETCHJ[A] condition detected for data_access_MMU_error,

(strong) data_access_MMU_error, hw_corrected_error, or
hw_corrected_error, or sw_recoverable_error
sw_recoverable_error

5-15 PREFETCH[A] (always) illegal_instruction

(0516—0F15)

ASiIs valid for PREFETCHA (all others are invalid)

ASI _AS_| F_PRI V_PRI MARY ASl _AS_| F_PRI V_PRI MARY_LI TTLE
ASI _AS_| F_PRI V_SECONDARY ASl _AS_| F_PRI V_SECONDARY_ LI TTLE
AS| _NUCLEUS ASI _NUCLEUS LI TTLE

ASI _AS_| F_USER PRI MARY ASl _AS_| F_USER PRI MARY LI TTLE
AS| _AS_| F_USER SECONDARY AS| _AS_| F_USER _SECONDARY_ LI TTLE
AS| PRI MARY AS| _PRI MARY_LI TTLE

AS| _SECONDARY AS| _SECONDARY_LI TTLE

ASI PRI MARY_NO FAULT AS| _PRI MARY_NO FAULT LI TTLE

AS| _SECONDARY_NO_FAULT AS| _SECONDARY_NO FAULT LI TTLE
AS| _REAL ASl _REAL_LI TTLE

7.73.2  Weak versus Strong Prefetches

Some prefetch variants are available in two versions, “Weak” and “Strong”.

From software’s perspective, the difference between the two is the degree of certainty that the data
being prefetched will subsequently be accessed. That, in turn, affects the amount of effort (time) it’s
willing for the underlying hardware to invest to perform the prefetch. If the prefetch is speculative
(software believes the data will probably be needed, but isn’t sure), a Weak prefetch will initiate data
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movement if the operation can be performed quickly, but abort the prefetch and behave like a NOP if
it turns out that performing the full prefetch will be time-consuming. If software has very high
confidence that data being prefetched will subsequently be accessed, then a Strong prefetch will
ensure that the prefetch operation will continue, even if the prefetch operation does become time-
consuming,.

From the virtual processor’s perspective, the difference between a Weak and a Strong prefetch is
whether the prefetch is allowed to perform a time-consuming operation! in order to complete. If a
time-consuming operation is required, a Weak prefetch will abandon the operation and behave like a
NOP while a Strong prefetch will pay the cost of performing the time-consuming operation so it can
finish initiating the requested data movement. Behavioral differences among loads, strong prefetches,
and weak prefetches are compared in TABLE 7-12.

TABLE 7-12 Comparative Behavior of Load and Weak Prefetch Operations

Behavior
Condition Load Prefetch
On a PTLB miss, is an MMU access performed? Yes Yes
On an MMU miss, is a hardware tablewalk performed? Yes No
Upon detection of data_access_MMU_miss exception Traps —
(which only occurs during a hardware tablewalk) ... (does not
occur)
Upon detection of fast_data_access_MMU_miss exception... Traps NOPt
Upon detection of privileged_action, DAE_*, Traps NOPf
data_access_protection, PA_watchpoint, or VA_watchpoint
exception...

If page table entry has cp =0, e = 1, and cv = 0 for Prefetch for Traps NOPt
Several Reads

If page table entry has nfo = 1 for a non-NoFault access... Traps NOPt

If page table entry has w = 0 for any prefetch for write access Traps NOPf
(fcn =2, 3, 22, or 23)...

Upon detection of fatal error or disrupting error conditions... Traps Traps

Instruction blocks until cache line filled? Yes No

7.73.3 Prefetch Variants

The prefetch variant is selected by the fcn field of the instruction. fcn values 5-15 are reserved for
future extensions of the architecture, and PREFETCH fcn values of 16-19 and 24-31 are
implementation dependent in UltraSPARC Architecture 2007.

Each prefetch variant reflects an intent on the part of the compiler or programmer, a “hint” to the
underlying virtual processor. This is different from other instructions (except BPN), all of which cause
specific actions to occur. An UltraSPARC Architecture implementation may implement a prefetch
variant by any technique, as long as the intent of the variant is achieved (impl. dep. #103-V9-Ms10(b)).

The prefetch instruction is designed to treat common cases well. The variants are intended to provide
scalability for future improvements in both hardware and compilers. If a variant is implemented, it
should have the effects described below. In case some of the variants listed below are implemented
and some are not, a recommended overloading of the unimplemented variants is provided in the
SPARC V9 specification. An implementation must treat any unimplemented prefetch fcn values as
NOPs (impl. dep. #103-V9-Ms10).

7.73.3.1 Prefetch for Several Reads (fcn =0, 20(144¢))

The intent of these variants is to cause movement of data into the cache nearest the virtual processor.

1 such as a hardware tablewalk or (if hardware tablewalk is disabled) a fast_data_access_MMU_miss trap, plus subsequently filling
the cache line at the requested address
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There are Weak and Strong versions of this prefetch variant; fcn = 0 is Weak and fcn = 20 is Strong.
The choice of Weak or Strong variant controls the degree of effort that the virtual processor may
expend to obtain the data.

Programming | The intended use of this variant is for streaming relatively small
Note | amounts of data into the primary data cache of the virtual
processor.

7.73.3.2 Prefetch for One Read (fcn =1, 21(154¢))

The data to be read from the given address are expected to be read once and not reused (read or
written) soon after that. Use of this PREFETCH variant indicates that, if possible, the data cache
should be minimally disturbed by the data read from the given address.

There are Weak and Strong versions of this prefetch variant; fcn = 1 is Weak and fcn = 21 is Strong.
The choice of Weak or Strong variant controls the degree of effort that the virtual processor may
expend to obtain the data.

Programming | The intended use of this variant is in streaming medium amounts
Note | of data into the virtual processor without disturbing the data in
the primary data cache memory.

7.73.3.3 Prefetch for Several Writes (and Possibly Reads) (fcn = 2,
22(164¢))

The intent of this variant is to cause movement of data in preparation for multiple writes.

There are Weak and Strong versions of this prefetch variant; fcn = 2 is Weak and fcn = 22 is Strong.
The choice of Weak or Strong variant controls the degree of effort that the virtual processor may
expend to obtain the data.

Programming | An example use of this variant is to initialize a cache line, in
Note | preparation for a partial write.

Implementation | On a multiprocessor system, this variant indicates that exclusive

Note | ownership of the addressed data is needed. Therefore, it may
have the additional effect of obtaining exclusive ownership of the
addressed cache line.

7.73.3.4 Prefetch for One Write (fcn = 3, 23(174¢))

The intent of this variant is to initiate movement of data in preparation for a single write. This variant
indicates that, if possible, the data cache should be minimally disturbed by the data written to this
address, because those data are not expected to be reused (read or written) soon after they have been
written once.

There are Weak and Strong versions of this prefetch variant; fcn = 3 is Weak and fcn = 23 is Strong.
The choice of Weak or Strong variant controls the degree of effort that the virtual processor may
expend to obtain the data.
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7.73.3.5 Prefetch Page (fcn = 4)

In a virtual memory system, the intended action of this variant is for hardware (or privileged or
hyperprivileged software) to initiate asynchronous mapping of the referenced virtual address
(assuming that it is legal to do so).

Programming
Note

Prefetch Page is used is to avoid a later page fault for the given
address, or at least to shorten the latency of a page fault.

In a non-virtual-memory system or if the addressed page is already mapped, this variant has no
effect.

Implementation
Note

The mapping required by Prefetch Page may be performed by
privileged software, hyperprivileged software, or hardware.

7.73.3.6 Prefetch to Nearest Unified Cache (fcn = 17(114¢))

The intent of this variant is to cause movement of data into the nearest unified (combined instruction
and data) cache. At the successful completion of this variant, the selected line from memory will be in
the unified cache in the shared state, and in caches (if any) below it in the cache hierarchy.

Prefetch to Nearest Unified Cache is a Strong prefetch variant.

7734  Implementation-Dependent Prefetch Variants (fcn = 16, 18,
19, and 24-31)

IMPL. DEP. #103-V9-Ms10(c): Whether and how PREFETCH fcns 16, 18, 19 and 24-31 are
implemented are implementation dependent. If a variant is not implemented, it must execute as a
NOP.

7.73.5 Additional Notes

Programming | Prefetch instructions do have some “cost to execute”. As long as

Note | the cost of executing a prefetch instruction is well less than the
cost of a cache miss, use of prefetching provides a net gain in
performance.

It does not appear that prefetching causes a significant number of
useless fetches from memory, though it may increase the rate of
useful fetches (and hence the bandwidth), because it more
efficiently overlaps computing with fetching.

Programming | A compiler that generates PREFETCH instructions should

Note | generate each of the variants where its use is most appropriate.
That will help portable software be reasonably efficient across a
range of hardware configurations.

Implementation | Any effects of a data prefetch operation in privileged or
Note | hyperprivileged code should be reasonable (for example, in
handling ECC errors, no page prefetching is allowed within code
that handles page faults). The benefits of prefetching should be
available to most privileged code.
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Implementation | A prefetch from a nonprefetchable location has no effect. It is up
Note | to memory management hardware to determine how locations
are identified as not prefetchable.

Exceptions illegal_instruction
fast_data_access_MMU_miss
data_access_MMU_error
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7.74

10

Read Ancillary State Register

Instruction rsl Operation Assembly Language Syntax Class
RDYP 0 Read Y register (deprecated) rd %, regyq D2
— 1 Reserved
RDCCR 2 Read Condition Codes register (CCR) rd %cr, regyq Al
RDASI 3 Read ASI register rd 9@si, regyq Al
RDTICKPmt 4 Read TICK register rd %ick, regyqy Al
RDPC 5 Read Program Counter (PC) rd %c, regyq A2
RDFPRS 6 Read Floating-Point Registers Status (FPRS) rd % prs, regy Al

register
— 7-14  Reserved

(7-0E16)
See text 15 (F14) MEMBAR or Reserved; see text
— 16-18  Reserved (impl. dep. #8-V8-Cs20, 9-V8-Cs20)
(1016-1216)
RDGSR 19 (1314) Read General Status register (GSR) rd %gsr, regq Al
— 2021  Reserved (impl. dep. #8-V8-Cs20, #9-V8-Cs20)
(1416-1516)

RDSOFTINT? 22 (1616) Read per-virtual processor Soft Interrupt register rd %sof tint, regyq A2

(SOFTINT)
RDTICK_CMPR? 23 (174¢) Read Tick Compare register (TICK_CMPR) rd %ick_cnpr, regyqy N-
RDSTICK et 24 (1814) Read System Tick Register (STICK) rd 9%tickf, regyq A2
RDSTICK_CMPRP 25 (19;¢) Read System Tick Compare register rd 9tick_cnprt, regy A2

(STICK_CMPR)

— 26 (2014) Reserved (impl. dep. #8-V8-Cs20, #9-V8-Cs20)
— 27 (1Byg) Reserved (impl. dep. #8-V8-Cs20, 9-V8-Cs20)

— 28 (1Cq¢) Implementation dependent

(impl. dep. #8-V8-Cs20, 9-V8-Cs20)

— 29 (1D4) Implementation dependent

(impl. dep. #8-V8-Cs20, 9-V8-Cs20)

— 30 (1E14) Implementation dependent

(impl. dep. #8-V8-Cs20, 9-V8-Cs20)

— 31 (1F¢) Implementation dependent

(impl. dep. #8-V8-Cs20, 9-V8-Cs20)

t The original assembly language names for %st i ck and %st i ck_cnpr were, respectively, %sys_ti ck and ¥%sys_t i ck_cnpr, which are
now deprecated. Over time, assemblers will support the new %t i ck and %t i ck_cnpr names for these registers (which are consistent with
% ick and % i ck_cnpr). In the meantime, some existing assemblers may only recognize the original names.

rd 10 1000

rsl

31 30 29 25 24 19 18

242 UltraSPARC Architecture 2007 « Draft D0.9.4, 27 Sep 2010

1413



Description

RDasr

The Read Ancillary State Register (RDasr) instructions copy the contents of the state register specified
by rs1 into R[rd].

An RDasr instruction with rsl = 0 is a (deprecated) RDY instruction (which should not be used in new
software).

The RDY instruction is deprecated. It is recommended that all instructions that

reference the Y register be avoided.

RDPC copies the contents of the PC register into R[rd]. If PSTATE.am = 0, the full 64-bit address is
copied into R[rd]. If PSTATE.am =1, only a 32-bit address is saved; PC{31:0} is copied to R[rd]{31:0}
and R[rd]{63:32} is set to 0. (closed impl. dep. #125-V9-Cs10)

RDEFPRS waits for all pending FPops and loads of floating-point registers to complete before reading
the FPRS register.

The following values of rs1 are reserved for future versions of the architecture: 1, 7-14, 16-18, 20-21,
and 26-27.

IMPL. DEP. #47-V8-Cs20: RDasr instructions with rd in the range 28-31 are available for

implementation-dependent uses (impl. dep. #8-V8-Cs20). For an RDasr instruction with rsl in the

range 28-31, the following are implementation dependent:

» the interpretation of bits 13:0 and 29:25 in the instruction

= whether the instruction is nonprivileged or privileged or hyperprivileged (impl. dep. #9-V8-Cs20),
and

= whether an attempt to execute the instruction causes an illegal_instruction exception.

Implementation | See the section “Read/Write Ancillary State Registers (ASRs)” in

Note | Extending the UltraSPARC Architecture, contained in the separate
volume UltraSPARC Architecture Application Notes, for a
discussion of extending the SPARC V9 instruction set using read/
write ASR instructions.

Note | Ancillary state registers may include (for example) timer, counter,
diagnostic, self-test, and trap-control registers.

SPARC V8 | The SPARC V8 RDPSR, RDWIM, and RDTBR instructions do not
Compatibility | exist in the UltraSPARC Architecture, since the PSR, WIM, and
Note | TBR registers do not exist.

See Ancillary State Registers on page 50 for more detailed information regarding ASR registers.

Exceptions. An attempt to execute a RDasr instruction when any of the following conditions are
true causes an illegal_instruction exception:

= rsl=15and rd # 0 (reserved for future versions of the architecture)
= rsl=1,7-14, 16-18, 20-21, or 26-27 (reserved for future versions of the architecture)
= instruction bits 13:0 are nonzero

An attempt to execute a RDTICK_CMPR, RDSTICK_CMPR, or RDSOFTINT instruction in
nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0) causes a privileged_opcode exception
(impl. dep. #250-U3-Cs10).

Nonprivileged software can read the TICK register by using the RDTICK instruction, but only when
nonprivileged access to TICK is enabled. If nonprivileged access is disabled, an attempt by
nonprivileged software to read the TICK register using the RDTICK instruction causes a
privileged_action exception. See Tick (TICK) Register (ASR 4) on page 54 for details.
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Nonprivileged software can read the STICK register by using the RDSTICK instruction, but only
when nonprivileged access to STICK is enabled. If nonprivileged access is disabled, an attempt by
nonprivileged software to read the STICK register causes a privileged_action exception. See System
Tick (STICK) Register (ASR 24) on page 59 for details.

Privileged software can read the STICK register with the RDSTICK instruction, but only when
privileged access to STICK is enabled by hyperprivileged software. An attempt by privileged
software to read the STICK register when privileged access is disabled causes a privileged_action
exception. See System Tick (STICK) Register (ASR 24) on page 59 for details.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute a RDGSR instruction causes an fp_disabled exception.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), the following cause a
privileged_action exception:

» execution of RDTICK when nonprivileged access to TICK is disabled (TICK.npt = 1)
» execution of RDSTICK when nonprivileged access to STICK is disabled (STICK.npt = 1)

Implementation | RDasr shares an opcode with MEMBAR; it is distinguished by
Note [rs1 =15 or rd =0 or (i = 0, and bit 12 = 0).

illegal_instruction
privileged_opcode
fp_disabled
privileged_action

RDHPR on page 245
RDPR on page 246
WRasr on page 305
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7.75  Read Hyperprivileged Register

Instruction op3 Operation rsl Assembly Language Syntax Class

RDHPRH 101001  Read hyperprivileged register N-
HPSTATE 0 rdhpr Yhpstate, regyq
HTSTATE 1 rdhpr Yhtstate, regy
Reserved 2
HINTP 3 rdhpr  %hintp, regyq
Reserved 4
HTBA 5 rdhpr %t ba, regyq
HVER 6 rdhpr  Yhwver, regyq
Reserved 7-30
HSTICK_CMPR 31 rdhpr  %hstick_cnpr, regyq

10 | rd op3 rsi —
31 30 29 25 24 19 18 14 13 0

Description This instruction reads the contents of the specified hyperprivileged state register into the destination
register, R[rd]. The rs1 field in the RDHPR instruction determines which hyperprivileged register is
read.

There are MAXTL copies of the HTSTATE register. A read from HTSTATE returns the value in the copy
of HTSTATE indexed by the current value in the trap level register (TL).

An attempt to execute a RDHPR instruction when any of the following conditions exist causes an
illegal_instruction exception:

» instruction bits 13:0 are nonzero

s rs1=2,rs1=4,or7<rsl< 30 (reserved rsl values)

» HPSTATE.hpriv = 0 (the processor is not in hyperprivileged mode)

s rsl =1 (attempt to read the HTSTATE register) while TL = 0 (current trap level is zero)

Exceptions illegal_instruction

See Also RDasr on page 242
RDPR on page 246
WRHPR on page 308
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7.76

Read Privileged Register

Instruction Operation rsl Assembly Language Syntax Class
RDPR" 101010  Read Privileged register A2?
TPC 0 rdpr % pc, regq A1?
TNPC 1 rdpr % npc, regyy
TSTATE 2 rdpr % st ate, regyq
TT 3 rdpr %t, regyq
TICK 4 rdpr %ick, regyg
TBA 5 rdpr % ba, regq
PSTATE 6 rdpr Ypst ate, regyq
TL 7 rdpr %1, regyq
PIL 8 rdpr Yoi |, regrq
CWP 9 r dpr Yewp, regrg
CANSAVE 10 rdpr Ycansave, regy
CANRESTORE 1 rdpr Ycanrestore, regy
CLEANWIN 12 rdpr Y%l eanwin, reggq
OTHERWIN 13 rdpr Y%t herwi n, regy
WSTATE 14 rdpr  Y%wtate, regyq
Reserved 15
GL 16 rdpr Y%yl , regq
Reserved 17-31
10 | rd op3 rsl —
31 30 29 25 24 19 18 14 13 0
Description The rsl field in the instruction determines the privileged register that is read. There are MAXTL copies

of the TPC, TNPC, TT, and TSTATE registers. A read from one of these registers returns the value in
the register indexed by the current value in the trap level register (TL). A read of TPC, TNPC, TT, or
TSTATE when the trap level is zero (TL = 0) causes an illegal_instruction exception.

An attempt to execute a RDPR instruction when any of the following conditions exist causes an

illegal_instruction exception:

= instruction bits 13:0 are nonzero

s rs1 =15, or 17 <rsl < 31 (reserved rsl values)

s 0<rsl< 3 (attempt to read TPC, TNPC, TSTATE, or TT register) while TL = 0 (current trap level is
zero) and the virtual processor is in privileged or hyperprivileged mode.

Implementation | In nonprivileged mode, illegal_instruction exception due to
Note [0 <rsl < 3 and TL =0 does not occur; the privileged_opcode
exception occurs instead.

An attempt to execute a RDPR instruction in nonprivileged mode (PSTATE.priv = 0 and
HSTATE.hpriv = 0) causes a privileged_opcode exception.
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Historical Note

Exceptions illegal_instruction
privileged_opcode

RDPR

On some early SPARC implementations, floating-point exceptions
could cause deferred traps. To ensure that execution could be
correctly resumed after handling a deferred trap, hardware
provided a floating-point queue (FQ), from which the address of
the trapping instruction could be obtained by the trap handler.
The front of the FQ was accessed by executing a RDPR instruction
with rsl = 15.

On UltraSPARC Architecture implementations, all floating-point
traps are precise. When one occurs, the address of a trapping
instruction can be found by the trap handler in the TPC[TL], so no
floating-point queue (FQ) is needed or implemented (impl. dep.
#25-V8) and RDPR with rs1 = 15 generates an illegal_instruction
exception.

See Also RDasr on page 242
RDHPR on page 245
WRPR on page 310
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7.77  RESTORE

Instruction op3 Operation Assembly Language Syntax Class
RESTORE 111101 Restore Caller’s Window restore reggy, reg_or_imm, regyqy Al
10 rd 11 1101 rsi i= — rs2
10 rd 11 1101 rsl i= simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description The RESTORE instruction restores the register window saved by the last SAVE instruction executed
by the current process. The in registers of the old window become the out registers of the new
window. The in and local registers in the new window contain the previous values.

Furthermore, if and only if a fill trap is not generated, RESTORE behaves like a normal ADD
instruction, except that the source operands R[rs1] or R[rs2] are read from the o/d window (that is, the
window addressed by the original CWP) and the sum is written into R[rd] of the new window (that is,
the window addressed by the new CWP).

Note | CWP arithmetic is performed modulo the number of implemented
windows, N_REG_WINDOWS.

Programming | Typically, if a RESTORE instruction traps, the fill trap handler

Notes | returns to the trapped instruction to reexecute it. So, although the
ADD operation is not performed the first time (when the
instruction traps), it is performed the second time the instruction
executes. The same applies to changing the CWP.

There is a performance trade-off to consider between using SAVE/
RESTORE and saving and restoring selected registers explicitly.

Description (Effect on Privileged State)
If a RESTORE instruction does not trap, it decrements the CWP (mod N_REG_WINDOWS) to restore the
register window that was in use prior to the last SAVE instruction executed by the current process. It

also updates the state of the register windows by decrementing CANRESTORE and incrementing
CANSAVE.

If the register window to be restored has been spilled (CANRESTORE = 0), then a fill trap is
generated. The trap vector for the fill trap is based on the values of OTHERWIN and WSTATE, as
described in Trap Type for Spill/Fill Traps on page 396. The fill trap handler is invoked with CWP set to
point to the window to be filled, that is, old CWP —1.

Programming | The vectoring of fill traps can be controlled by setting the value of

Note | the OTHERWIN and WSTATE registers appropriately. For details,
see the section “Splitting the Register Windows” in Software
Considerations, contained in the separate volume UltraSPARC
Architecture Application Notes.

The fill handler normally will end with a RESTORED instruction
followed by a RETRY instruction.

An attempt to execute a RESTORE instruction when i = 0 and instruction bits 12:5 are nonzero causes
an illegal_instruction exception.
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Exceptions

See Also

RESTORE

illegal_instruction
fill_n_normal (n = 0-7)
fill_n_other (n = 0-7)

SAVE on page 255
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7.78  RESTORED

Instruction Operation Assembly Language Syntax Class
RESTORED”  Window has been restored restored Al
10 | fcn =0 0001 11 0001 —
31 30 29 25 24 19 18 0

Description RESTORED adjusts the state of the register-windows control registers.
RESTORED increments CANRESTORE.
If CLEANWIN < (N_REG_WINDOWS—1), then RESTORED increments CLEANWIN.

If OTHERWIN = 0, RESTORED decrements CANSAVE. If OTHERWIN # 0, it decrements OTHERWIN.

Programming | Trap handler software for register window fills use the

Notes | RESTORED instruction to indicate that a window has been filled
successfully. For details, see the section “Example Code for Spill
Handler” in Software Considerations, contained in the separate
volume UltraSPARC Architecture Application Notes.

Normal privileged software would probably not execute a
RESTORED instruction from trap level zero (TL = 0). However, it
is not illegal to do so and doing so does not cause a trap.

Executing a RESTORED instruction outside of a window fill trap
handler is likely to create an inconsistent window state. Hardware
will not signal an exception, however, since maintaining a
consistent window state is the responsibility of privileged
software.

If CANSAVE = 0 or CANRESTORE 2= (N_REG_WINDOWS - 2) just prior to execution of a RESTORED
instruction, the subsequent behavior of the processor is undefined. In neither of these cases can
RESTORED generate a register window state that is both valid (see Register Window State Definition on
page 63) and consistent with the state prior to the RESTORED.

An attempt to execute a RESTORED instruction when instruction bits 18:0 are nonzero causes an
illegal_instruction exception.

An attempt to execute a RESTORED instruction in nonprivileged mode (PSTATE.priv = 0 and
HSTATE.hpriv = 0) causes a privileged_opcode exception.

Exceptions illegal_instruction
privileged_opcode

See Also ALLCLEAN on page 112
INVALW on page 186
NORMALW on page 229
OTHERW on page 231
SAVED on page 257
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7.79 RETRY

Instruction  op3 Operation Assembly Language Syntax Class
RETRY’ 111110  Return from Trap (retry trapped instruction) retry Al
10 | fcn =0 0001 11 1110 —
31 30 29 25 24 19 18 0

Description The RETRY instruction restores the saved state from TSTATE[TL] (GL, CCR, ASI, PSTATE, and CWP),
HTSTATE[TL] (HPSTATE), sets PC and NPC, and decrements TL. RETRY sets PC — TPC[TL] and
NPC — TNPC[TL](normally, the values of PC and NPC saved at the time of the original trap).

Programming | The DONE and RETRY instructions are used to return from
Note | privileged trap handlers.

If the saved TPC[TL] and TNPC[TL] were not altered by trap handler software, RETRY causes
execution to resume at the instruction that originally caused the trap (“retrying” it).

Execution of a RETRY instruction in the delay slot of a control-transfer instruction produces
undefined results.

When a RETRY instruction is executed and HTSTATE[TL].hpstate.hpriv = 0 (which will cause the
RETRY to return the virtual processor to nonprivileged or privileged mode), the value of GL restored
from TSTATE[TL] saturates at MAXPGL. That is, if the value in TSTATE[TL].gl is greater than MAXPGL,
then MAXPGL is substituted and written to GL. This protects against non-hyperprivileged software
executing with GL > MAXPGL.

If software writes invalid or inconsistent state to TSTATE or HTSTATE before executing RETRY,
virtual processor behavior during and after execution of the RETRY instruction is undefined.

The RETRY instruction does not provide an error barrier, as MEMBAR #Sync does (impl. dep. #215-
us).

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address are masked out
(set to 0) before being sent to the memory system.

IMPL. DEP. #417-S10: If (1) TSTATE[TL].pstate.am =1 and (2) a RETRY instruction is executed
(which sets PSTATE.am to '1” by restoring the value from TSTATE[TL].pstate.am to PSTATE.am), it is
implementation dependent whether the RETRY instruction masks (zeroes) the more-significant 32 bits
of the values it places into PC and NPC.

Exceptions. An attempt to execute the RETRY instruction when either of the following conditions is
true causes an illegal_instruction exception:

» instruction bits 18:0 are nonzero
» TL =0 and the virtual processor is in privileged mode or hyperprivileged mode (PSTATE.priv =1
or HPSTATE.hpriv = 1)

An attempt to execute a RETRY instruction in nonprivileged mode (PSTATE.priv =0 and
HPSTATE.hpriv = 0) causes a privileged_opcode exception.

Implementation | In nonprivileged mode, illegal_instruction exception due to TL =0
Note | does not occur. The privileged_opcode exception occurs instead,
regardless of the current trap level (TL).
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If the Trap on Control Transfer feature is implemented (impl. dep. #450-520) and PSTATE.tct = 1, then
RETRY generates a control_transfer_instruction exception instead of causing a control transfer. When a
control_transfer_instruction trap occurs, PC (the address of the RETRY instruction) is stored in
TPCJ[TL] and the value of NPC from before the RETRY was executed is stored in TNPC[TL]. The full
64-bit (nonmasked) PC and NPC values are stored in TPC[TL] and TNPC[TL], regardless of the value
of PSTATE.am.

Note that since PSTATE.tct is automatically set to 0 during entry to a trap handler, the execution of a
RETRY instruction at the end of a trap handler will not cause a control_transfer_instruction exception
unless trap handler software has explicitly set PSTATE.tct to 1. During execution of the RETRY
instruction, the value of PSTATE.tct is restored from TSTATE.

Programming | RETRY should not normally be used to return from the trap
Note | handler for the control_transfer_instruction exception itself.

See the DONE instruction on page 127 and Trap on Control
Transfer (tct) on page 68.

Programming | Because RETRY changes the TL register, it can cause a

Note | trap_level_zero exception to occur on the next instruction to be
executed, if the following three conditions are true after RETRY
has executed:

o trap_level_zero exceptions are enabled (HPSTATE.tlz = 1),

e the virtual processor is in nonprivileged or privileged mode
(HPSTATE.hpriv = 0), and

o the trap level (TL) register’s value is zero (TL = 0)

Exceptions illegal_instruction
privileged_opcode
control_transfer_instruction (impl. dep. #450-520)

See Also DONE on page 127
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7.80

RETURN

Instruction op3 Operation Assembly Language Syntax Class
RETURN 111001 Return return address Al
— op3 rsi |i=0| — rs2
— op3 rsl i= simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description

The RETURN instruction causes a register-indirect delayed transfer of control to the target address
and has the window semantics of a RESTORE instruction; that is, it restores the register window prior
to the last SAVE instruction. The target address is “R[rs1] + R[rs2]” if i =0, or

“R[rs1] + sign_ext( simm13)” if i = 1. Registers R[rs1] and R[rs2] come from the old window.

Like other DCTIs, all effects of RETURN (including modification of CWP) are visible prior to
execution of the delay slot instruction.

Programming | To reexecute the trapped instruction when returning from a user trap
Note | handler, use the RETURN instruction in the delay slot of a JMPL
instruction, for example:

j mpl % 6, Yg0 1 Trapped PC supplied to user trap handler
PP PP p

return %7 t Trapped NPC supplied to user trap handler
Programming | A routine that uses a register window may be structured either as:
Note save Usp, - framesize, %p
ret ! “r et ” is shorthand for “j npl % 7 + 8, %g0”
restore ! A useful instruction in the delay slot, such as

! “restore %02, % 2, %00”
or as:
save Yp, -framesize, %sp

return %7 +8
nop I Instead of “nop”, could do some useful work in the
! caller’s window, for example, “or %1, %2, %©0”

An attempt to execute a RETURN instruction when bits 29:25 are nonzero causes an illegal_instruction
exception.

An attempt to execute a RETURN instruction when i = 0 and instruction bits 12:5 are nonzero causes
an illegal_instruction exception.

A RETURN instruction may cause a window_fill exception as part of its RESTORE semantics.

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address are masked out
(set to 0) before being sent to the memory system. However, if a control_transfer_instruction trap
occurs, the full 64-bit (nonmasked) address of the RETURN instruction is written into TPC[TL].

A RETURN instruction causes a mem_address_not_aligned exception if either of the two least-
significant bits of the target address is nonzero.

If the Trap on Control Transfer feature is implemented (impl. dep. #450-520) and PSTATE.tct = 1, then
RETURN generates a control_transfer_instruction exception instead of causing a control transfer.
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Exceptions illegal_instruction
fill_n_normal (n = 0-7)
fill_n_other (n = 0-7)
mem_address_not_aligned
control_transfer_instruction (impl. dep. #450-520)
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7.81 SAVE

Instruction op3 Operation Assembly Language Syntax Class
SAVE 11 1100 Save Caller’s Window save regrs1, reg_or_imm, regyq Al
10 rd op3 rsl i= — rs2
10 rd op3 rsl i= simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description The SAVE instruction provides the routine executing it with a new register window. The out registers
from the old window become the in registers of the new window. The contents of the out and the local
registers in the new window are zero or contain values from the executing process; that is, the process
sees a clean window.

Furthermore, if and only if a spill trap is not generated, SAVE behaves like a normal ADD instruction,
except that the source operands R[rs1] or R[rs2] are read from the old window (that is, the window
addressed by the original CWP) and the sum is written into R[rd] of the new window (that is, the
window addressed by the new CWP).

Note | CWP arithmetic is performed modulo the number of implemented
windows, N_REG_WINDOWS.

Programming | Typically, if a SAVE instruction traps, the spill trap handler returns

Notes | to the trapped instruction to reexecute it. So, although the ADD
operation is not performed the first time (when the instruction
traps), it is performed the second time the instruction executes.
The same applies to changing the CWP.

The SAVE instruction can be used to atomically allocate a new
window in the register file and a new software stack frame in
memory. For details, see the section “Leaf-Procedure
Optimization” in Software Considerations, contained in the
separate volume UltraSPARC Architecture Application Notes.

There is a performance trade-off to consider between using SAVE/
RESTORE and saving and restoring selected registers explicitly.

Description (Effect on Privileged State)
If a SAVE instruction does not trap, it increments the CWP (mod N_REG_WINDOWS) to provide a new
register window and updates the state of the register windows by decrementing CANSAVE and
incrementing CANRESTORE.

If the new register window is occupied (that is, CANSAVE = 0), a spill trap is generated. The trap
vector for the spill trap is based on the value of OTHERWIN and WSTATE. The spill trap handler is
invoked with the CWP set to point to the window to be spilled (that is, old CWP + 2).

An attempt to execute a SAVE instruction when i = 0 and instruction bits 12:5 are nonzero causes an
illegal_instruction exception.
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If CANSAVE # 0, the SAVE instruction checks whether the new window needs to be cleaned. It causes
a clean_window trap if the number of unused clean windows is zero, that is, (CLEANWIN —
CANRESTORE) = 0. The clean_window trap handler is invoked with the CWP set to point to the
window to be cleaned (that is, old CWP +1).

Programming
Note

Exceptions illegal_instruction

The vectoring of spill traps can be controlled by setting the value
of the OTHERWIN and WSTATE registers appropriately. For
details, see the section “Splitting the Register Windows” in
Software Considerations, contained in the separate volume
UltraSPARC Architecture Application Notes.

The spill handler normally will end with a SAVED instruction
followed by a RETRY instruction.

spill_n_normal (n = 0-7)
spill_n_other (n = 0-7)

clean_window

See Also RESTORE on page 248
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7.82  SAVED

Instruction Operation Assembly Language Syntax Class
SAVED? Window has been saved saved Al
10 | fcn =0 0000 11 0001 —
31 30 29 25 24 19 18 0

Description SAVED adjusts the state of the register-windows control registers.

SAVED increments CANSAVE. If OTHERWIN = 0, SAVED decrements CANRESTORE. If
OTHERWIN # 0, it decrements OTHERWIN.

Programming | Trap handler software for register window spills uses the SAVED

Notes | instruction to indicate that a window has been spilled
successfully. For details, see the section “Example Code for Spill
Handler” in Software Considerations, contained in the separate
volume UltraSPARC Architecture Application Notes.

Normal privileged software would probably not execute a SAVED
instruction from trap level zero (TL = 0). However, it is not illegal
to do so and doing so does not cause a trap.

Executing a SAVED instruction outside of a window spill trap
handler is likely to create an inconsistent window state. Hardware
will not signal an exception, however, since maintaining a
consistent window state is the responsibility of privileged
software.

If CANSAVE = (N_REG_WINDOWS — 2) or CANRESTORE = 0 just prior to execution of a SAVED
instruction, the subsequent behavior of the processor is undefined. In neither of these cases can
SAVED generate a register window state that is both valid (see Register Window State Definition on
page 63) and consistent with the state prior to the SAVED.

An attempt to execute a SAVED instruction when instruction bits 18:0 are nonzero causes an
illegal_instruction exception.

An attempt to execute a SAVED instruction in nonprivileged mode (PSTATE.priv = 0 and
HSTATE.hpriv = 0) causes a privileged_opcode exception.

Exceptions illegal_instruction
privileged_opcode

See Also ALLCLEAN on page 112
INVALW on page 186
NORMALW on page 229
OTHERW on page 231
RESTORED on page 250
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7.83

Signed Divide (64-bit + 32-bit)

The SDIV and SDIVcc instructions are deprecated and should not be used in new

software. The SDIVX instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class
SDIVP 001111  Signed Integer Divide sdiv regrs1, 1€g_or_imm, regq D2
SDIVccP 011111  Signed Integer Divide and modify cc’s sdivce  regygy, reg_or_imm, regyy D2
10 rd op3 rsl i= — rs2
10 rd op3 rsl i= simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description The signed divide instructions perform 64-bit by 32-bit division, producing a 32-bit result. If i = 0, they

Signed Divide

compute “(Y :: R[rs1]{31:0}) + R[rs2]{31:0}". Otherwise (that is, if i = 1), the divide instructions
compute “(Y :: R[rs1]{31:0}) + (sign_ext(simm13){31:0})”. In either case, if overflow does not occur, the
less significant 32 bits of the integer quotient are sign- or zero-extended to 64 bits and are written into
R[rd].

The contents of the Y register are undefined after any 64-bit by 32-bit integer divide operation.

Signed divide (SDIV, SDIVcc) assumes a signed integer doubleword dividend
(Y :: lower 32 bits of R[rs1]) and a signed integer word divisor (lower 32 bits of R[rs2] or lower 32 bits
of sign_ext(simm13)) and computes a signed integer word quotient (R[rd]).

Signed division rounds an inexact quotient toward zero. For example, -7 + 4 equals the rational
quotient of —1.75, which rounds to -1 (not —2) when rounding toward zero.

The result of a signed divide can overflow the low-order 32 bits of the destination register R[rd] under
certain conditions. When overflow occurs, the largest appropriate signed integer is returned as the
quotient in R[rd]. The conditions under which overflow occurs and the value returned in R[rd] under
those conditions are specified in TABLE 7-13.

TABLE 7-13  SDIV / SDIVcc Overflow Detection and Value Returned

Condition Under Which Overflow Occurs Value Returned in R[rd]
Rational quotient > 23! 231 -1 (0000 0000 7FFF FFFF;4)
Rational quotient < 231~ 1 -231 (FFFF FFFF 8000 00004 4)

When no overflow occurs, the 32-bit result is sign-extended to 64 bits and written into register R[rd].
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Exceptions

See Also

SDIV does not affect the condition code bits. SDIVcc writes the integer condition code bits as shown
in the following table. Note that negative (N) and zero (Z) are set according to the value of R[rd] after

SDIV, SDIVcc (Deprecated)

it has been set to reflect overflow, if any.

Bit Effect on bit of SDIVcc instruction

icc.n Set to 1 if R[rd]{31} = 1; otherwise, set to 0

icc.z Set to 1 if R[rd]{31:0} = 0; otherwise, set to 0

icc.v Set to 1 if overflow (per TABLE 7-12); otherwise set to 0
icc.c Setto 0

xcc.n Set to 1 if R[rd]{63} = 1; otherwise, set to 0

Xcc.z Set to 1 if R[rd]{63:0} = 0; otherwise, set to 0

XCC.V Setto 0

Xcc.c Set to 0

An attempt to execute an SDIV or SDIVcc instruction when i = 0 and instruction bits 12:5 are nonzero

causes an illegal_instruction exception.

illegal_instruction
division_by_zero

MULScc on page 225
RDY on page 242
UDIV]cc] on page 301
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7.84  SETHI

Instruction op2 Operation Assembly Language Syntax Class

SETHI 100  Set High 22 Bits of Low Word sethi  const22, reg.yq Al
sethi Wi (value), regyq

00 rd op2 imm22
31 30 29 25 24 22 21 0

Description SETHI zeroes the least significant 10 bits and the most significant 32 bits of R[rd] and replaces bits 31
through 10 of R[rd] with the value from its imm22 field.

SETHI does not affect the condition codes.

Some SETHI instructions with rd = 0 have special uses:
« rd =0 and imm22 = 0: defined to be a NOP instruction (described in No Operation)

» rd =0 and imm22 # 0 may be used to trigger hardware performance counters in some UltraSPARC
Architecture implementations (for details, see implementation-specific documentation).

Programming | The most common form of 64-bit constant generation is creating
Note | stack offsets whose magnitude is less than 2%2. The code below can

be used to create the constant 0000 0000 ABCD 1234:

set hi %i (Oxabcd1234), %00

or %0, 0x234, %0
The following code shows how to create a negative constant. Note:
The immediate field of the xor instruction is sign extended and can
be used to place 1’s in all of the upper 32 bits. For example, to set the
negative constant FFFF FFFF ABCD 12344:

set hi %i (0x5432edch), %00! not e 0x5432EDCB, not OxABCD1234
xor %0, Ox1e34, %0! part of imm overlaps upper bits

Exceptions None
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7.85 Set Interval Arithmetic Mode

Instruction  opf Operation Assembly Language Syntax  Class

SIAM 0 1000 0001 Set the interval arithmetic mode fields in the GSR si am  siam_mode Bl
| 10 — 110110 — opf — mode|
31 30 29 25 24 19 18 14 13 5 4 3 2 0

Description ~ The SIAM instruction sets the GSR.im and GSR.irnd fields as follows:
GSR.im —~ mode{2}
GSR.irnd — mode{1:0}
Note | When GSR.im is set to 1, all subsequent floating-point
instructions requiring round mode settings derive rounding-

mode information from the General Status Register (GSR.irnd)
instead of the Floating-Point State Register (FSR.rd).

Note | When GSR.im =1, the processor operates in standard floating-
point mode regardless of the setting of FSR.ns.

An attempt to execute a SIAM instruction when instruction bits 29:25, 18:14, or 4:3 are nonzero causes
an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute a SIAM instruction causes an fp_disabled exception.

Exceptions illegal_instruction
fp_disabled
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7.86

Software-Initiated Reset

Instruction op3 rd Operation Assembly Language Syntax  Class
SIRH 110000 15 Software-Initiated Reset sir simm13 N-
10 01111 op3 0 0000 i= simm13
31 30 29 25 24 19 18 14 13 12 0
Description SIR is a hyperprivileged instruction, used to generate a software-initiated reset (SIR). As with other

Exceptions

See Also

traps, a software-initiated reset performs different actions when TL = MAXTL than it does when
TL< MAXTL.

See Software-Initiated Reset (SIR) Traps on page 404 and Software-Initiated Reset (SIR) on page 499 for
more information about software-initiated resets.

When executed in nonprivileged or privileged mode (HPSTATE.hpriv = 0), SIR causes an
illegal_instruction exception (impl. dep. #116-V9).

Implementation | The SIR instruction shares an opcode with WRasr; they are
Notes | distinguished by the rd, rs1, and i fields (rd = 15,rs1 =0, and i = 1
for SIR).

An instruction that uses the WRasr opcode (op1 = 105,

op3 =11 0000,) with i =1 is not an SIR instruction; see Write
Ancillary State Register on page 305 for specification of its
behavior.

software_initiated_reset
illegal_instruction

WRasr on page 305
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7.87  Shift

Instruction op3 X Operation Assembly Language Syntax Class

SLL 10 0101 0 Shift Left Logical — 32 bits sl regrs1, teg_or_shent, regpy Al

SRL 10 0110 0 Shift Right Logical — 32 bits srl regys1, reg_or_shcnt, regyy Al

SRA 10 0111 0 Shift Right Arithmetic— 32 bits sra regrs1, teg_or_shent, regyy Al

SLLX 10 0101 1 Shift Left Logical — 64 bits slIx  regs1, reg_or_shent, regyy Al

SRLX 10 0110 1 Shift Right Logical — 64 bits srlx  regsy, reg_or_shent, regyqy Al

SRAX 10 0111 1 Shift Right Arithmetic — 64 bits srax  regys1, reg_or_shcnt, regyy Al
10 rd op3 rsl i=0] x — rs2
10 rd op3 rsl i=1[x= — shcnt32
10 rd op3 rsl i=1jx= — shcnt64

31 30 29 25 24 19 18 14 13 12 11 6 5 4 0

Description ~ These instructions perform logical or arithmetic shift operations.

When i = 0 and x = 0, the shift count is the least significant five bits of R[rs2].

When i = 0 and x = 1, the shift count is the least significant six bits of R[rs2]. When i =1 and x = 0, the
shift count is the immediate value specified in bits 0 through 4 of the instruction.

When i =1 and x = 1, the shift count is the immediate value specified in bits 0 through 5 of the
instruction.

TABLE 7-14 shows the shift count encodings for all values of i and x.

TABLE 7-14  Shift Count Encodings

i X Shift Count
bits 4-0 of R[rs2]
bits 5-0 of R[rs2]

0 0
0 1
1 0 bits 4-0 of instruction
1 1

bits 5-0 of instruction

SLL and SLLX shift all 64 bits of the value in R[rs1] left by the number of bits specified by the shift
count, replacing the vacated positions with zeroes, and write the shifted result to R[rd].

SRL shifts the low 32 bits of the value in R[rs1] right by the number of bits specified by the shift
count. Zeroes are shifted into bit 31. The upper 32 bits are set to zero, and the result is written to R[rd].

SRLX shifts all 64 bits of the value in R[rs1] right by the number of bits specified by the shift count.
Zeroes are shifted into the vacated high-order bit positions, and the shifted result is written to R[rd].

SRA shifts the low 32 bits of the value in R[rs1] right by the number of bits specified by the shift
count and replaces the vacated positions with bit 31 of R[rs1]. The high-order 32 bits of the result are
all set with bit 31 of R[rs1], and the result is written to R[rd].

SRAX shifts all 64 bits of the value in R[rs1] right by the number of bits specified by the shift count
and replaces the vacated positions with bit 63 of R[rs1]. The shifted result is written to R[rd].
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No shift occurs when the shift count is 0, but the high-order bits are affected by the 32-bit shifts as
noted above.

These instructions do not modify the condition codes.

Programming | “Arithmetic left shift by 1 (and calculate overflow)” can be
Notes | effected with the ADDcc instruction.

The instruction “sra reg,g1, 0, reg,q” can be used to convert a 32-
bit value to 64 bits, with sign extension into the upper word. “sr |
regrs1, 0, regrq” can be used to clear the upper 32 bits of R[rd].

An attempt to execute a SLL, SRL, or SRA instruction when instruction bits 11:5 are nonzero causes an
illegal_instruction exception.

An attempt to execute a SLLX, SRLX, or SRAX instruction when either of the following conditions
exist causes an illegal_instruction exception:

= i=0 or x =0 and instruction bits 11:5 are nonzero
= X =1 and instruction bits 11:6 are nonzero

Exceptions illegal_instruction
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SMUL, SMULcc (Deprecated)

7.88

Signed Multiply (32-bit)

The SMUL and SMULcc instructions are deprecated and should not be used in
new software. The MULX instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class
SMULP 001011 Signed Integer Multiply smul regrs1, reg_or_imm, regyg D2
SMULccP 011011  Signed Integer Multiply and modify cc’s ~ smul cc regus1, reg_or_imm, regyq D2
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description The signed multiply instructions perform 32-bit by 32-bit multiplications, producing 64-bit results.

Exceptions

See Also

They compute “R[rs1]{31:0} x R[rs2]{31:0}” if i = 0, or “R[rs1]{31:0} x sign_ext( simm13){31:0}” if i = 1.
They write the 32 most significant bits of the product into the Y register and all 64 bits of the product
into R[rd].

Signed multiply instructions (SMUL, SMULcc) operate on signed integer word operands and compute
a signed integer doubleword product.

SMUL does not affect the condition code bits. SMULcc writes the integer condition code bits, icc and
xcc, as shown below.

Bit Effect on bit by execution of SMULcc

icc.n Set to 1 if product{31} = 1; otherwise, set to 0
icc.z Set to 1 if product{31:0}= 0; otherwise, set to 0
icc.v Set to 0

icc.c Set to 0

xcc.n Set to 1 if product{63} = 1; otherwise, set to 0
Xxcc.z Set to 1 if product{63:0} = 0; otherwise, set to 0
Xcc.v Set to 0

Xcc.c Set to 0

Note | 32-bit negative (icc.n) and zero (icc.z) condition codes are set
according to the less significant word of the product, not
according to the full 64-bit result.

Programming | 32-bit overflow after SMUL or SMULcc is indicated by
Notes | Y # (R[rd] >> 31), where “>>" indicates 32-bit arithmetic right-
shift.

An attempt to execute a SMUL or SMULcc instruction when i = 0 and instruction bits 12:5 are nonzero
causes an illegal_instruction exception.

illegal_instruction

UMUL[cc] on page 303
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7.89

Store Integer

Instruction op3 Operation Assembly Language Syntax  Class
STB 00 0101 Store Byte stb®  regq, [ address] Al
STH 000110 Store Halfword sth  reg.y, [ address] Al
STW 00 0100 Store Word stw’ regrq, [ address) Al
STX 00 1110 Store Extended Word StX  regyq, [ address] Al
 synonyms: st ub, st sb ¥ synonyms: st uh, st sh © synonyms: st , st uw st sw
rd op3 rsl i=0 — rs2
rd op3 rsl i=1] simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description The store integer instructions (except store doubleword) copy the whole extended (64-bit) integer, the
less significant word, the least significant halfword, or the least significant byte of R[rd] into memory.
These instructions access memory using the implicit ASI (see page 87). The effective address for these
instructions is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext( simm13)” if i = 1.
A successful store (notably, STX) integer instruction operates atomically.
An attempt to execute a store integer instruction when i = 0 and instruction bits 12:5 are nonzero
causes an illegal_instruction exception.
STH causes a mem_address_not_aligned exception if the effective address is not halfword-aligned.
STW causes a mem_address_not_aligned exception if the effective address is not word-aligned. STX
causes a mem_address_not_aligned exception if the effective address is not doubleword-aligned.
Exceptions illegal_instruction
mem_address_not_aligned
VA_watchpoint
DAE_privilege_violation
DAE_nfo_page
fast_data_access_MMU_miss
data_access_ MMU_miss
data_access_ MMU_error
fast_data_access_protection
PA_watchpoint
data_access_error
See Also STTW on page 284
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7.90

Store Integer into Alternate Space

Instruction Operation Assembly Language Syntax Class
STBAPsst 010101  Store Byte into Alternate Space stba  regq, [ regaddr] imm_asi Al
stba  regq, [ reg_plus_imm] Y@si
STHAPs! 010110  Store Halfword into Alternate Space st hat reg.q, [ regaddr] imm_asi Al
stha  regq, [ reg_plus_imm] Y@si
STWAPast 010100  Store Word into Alternate Space stwa®  regyy, [ regaddr] imm_asi Al
stwa  reguq, [ reg_plus_imm] Y@si
STXAPas 011110 Store Extended Word into Alternate  stxa  regq, [ regaddr] imm_asi Al
Space stxa  reguq, [ reg_plus_imm] Y@si
T synonyms: st uba, st sba ¥ synonyms: st uha, st sha © synonyms: st a, st uwa, st swa
rd op3 rsl i= imm_asi rs2
rd op3 rsl i= simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description The store integer into alternate space instructions copy the whole extended (64-bit) integer, the less

significant word, the least significant halfword, or the least significant byte of R[rd] into memory.

Store integer to alternate space instructions contain the address space identifier (ASI) to be used for
the store in the imm_asi field if i = 0, or in the ASI register if i = 1. The access is privileged if bit 7 of
the ASI is 0; otherwise, it is not privileged. The effective address for these instructions is

“R[rs1] + R[rs2]” if i = 0, or “R[rs1]+sign_ext( simm13)” if i = 1.

A successful store (notably, STXA) instruction operates atomically.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI is 0, these
instructions cause a privileged_action exception. In privileged mode (PSTATE.priv =1 and
HPSTATE.hpriv = 0), if the ASI is in the range 304 to 7Fy¢, these instructions cause a privileged_action
exception.

STHA causes a mem_address_not_aligned exception if the effective address is not halfword-aligned.
STWA causes a mem_address_not_aligned exception if the effective address is not word-aligned.
STXA causes a mem_address_not_aligned exception if the effective address is not doubleword-
aligned.

STBA, STHA, and STWA can be used with any of the following ASIs, subject to the privilege mode
rules described for the privileged_action exception above. Use of any other ASI with these instructions
causes a DAE_invalid_asi exception.

ASls valid for STBA, STHA, and STWA
ASI _AS | F_PRI V_PRI VARY ASI _AS | F_PRIV_PRI MARY_LI TTLE
ASI _AS | F_PRI V_SECONDARY ASI _AS | F_PRIV_SECONDARY_ LI TTLE

AS| _NUCLEUS ASI _NUCLEUS LI TTLE
ASI _AS | F_USER PRI MARY  ASI _AS | F_USER PRI MARY_ LI TTLE
ASI _AS | F_USER SECONDARY ASI _AS | F_USER SECONDARY LI TTLE

ASl _REAL ASI _REAL_LI TTLE
ASI_REAL_|O ASI _REAL_1 0O LI TTLE
ASl _PRI MARY AS| _PRI MARY_ LI TTLE
AS| _SECONDARY AS| _SECONDARY LI TTLE
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STXA can be used with any ASI (including, but not limited to, the above list), unless it either (a)
violates the privilege mode rules described for the privileged_action exception above or (b) is used
with any of the following ASIs, which causes a DAE_invalid_asi exception.

ASls invalid for STXA
ASI _BLOCK_AS | F_PRI V_PRI MARY
ASI _BLOCK_AS | F_PRI V_SECONDARY

ASI _BLOCK_AS_| F_USER PRI MARY
ASI _BLOCK_AS_| F_USER_SECONDARY

ASI _BLOCK_AS_| F_USER PRI MARY
ASI _BLOCK_AS_| F_USER_SECONDARY

AS| _PST8_PRI MARY

AS| _PST8_SECONDARY

AS| _PRI MARY_NO FAULT
AS| _SECONDARY_NO FAULT
AS|I _PST16_PRI MARY

AS| _PST16_SECONDARY
AS| _PST32_PRI MARY

AS| _PST32_SECONDARY
AS| _FL8_PRI MARY

AS| _FL8_SECONDARY

AS| _FL16_PRI MARY

AS| _FL16_SECONDARY

AS| _BLOCK_COMM T_PRI MARY
AS| _BLOCK_PRI MARY

AS| _BLOCK_SECONDARY

(cause DAE_invalid_asi exception)
ASI _BLOCK_AS_| F_PRIV_PRI MARY_LI TTLE
ASI _BLOCK_AS_| F_PRI V_SECONDARY_LI TTLE

ASI _BLOCK_AS_| F_USER_PRI MARY_ LI TTLE
ASI _BLOCK_AS_| F_USER_SECONDARY_LI TTLE

ASI _BLOCK_AS_| F_USER_PRI MARY_ LI TTLE
ASI _BLOCK_AS | F_USER_SECONDARY LI TTLE

AS| _PST8_PRI MARY_LI TTLE

AS| _PST8_SECONDARY_LI TTLE
ASI _PRI MARY_NO FAULT LI TTLE
AS|I _SECONDARY_NO FAULT LI TTLE
ASl _PST16_PRI MARY_LI TTLE
ASl _PST16_SECONDARY_ LI TTLE
ASl _PST32_PRI MARY_LI TTLE
AS| _PST32_SECONDARY_LI TTLE
AS| _FL8_PRI MARY_LI TTLE

AS| _FL8_SECONDARY_LI TTLE
AS| _FL16_PRI MARY_LI TTLE

AS| _FL16_SECONDARY_LI TTLE
AS| _BLOCK_COVM T_SECONDARY
AS| _BLOCK_PRI MARY_LI TTLE
AS| _BLOCK_SECONDARY_ LI TTLE

V8 Compatibility | The SPARC V8 STA instruction was renamed STWA in the

Note | SPARC V9 architecture.

Exceptions mem_address_not_aligned (all except STBA)
privileged_action
VA_watchpoint
DAE_invalid_asi
DAE_privilege_violation
DAE_nfo_page
fast_data_access_ MMU_miss
data_access_ MMU_miss
data_access_ MMU_error
fast_data_access_protection
PA_watchpoint
data_access_error

See Also LDA on page 189
STTWA on page 286
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STBLOCKF (deprecated)

7.91 Block Store

The STBLOCKFP instructions are deprecated and should not be used in new
software. A sequence of STDF instructions should be used instead.

The STBLOCKFP instruction is intended to be a processor-specific instruction,
which may or may not be implemented in future UltraSPARC Architecture
implementations. Therefore, it should only be used in platform-specific
dynamically-linked libraries, in hyperprivileged software, or in software created
by a runtime code generator that is aware of the specific virtual processor
implementation on which it is executing.

ASI
Instruction Value Operation Assembly Language Syntax Class
STBLOCKEFP 161¢ 64-byte block store to primary address stda freg,y, [regaddr] #ASI _BLK_Al UP Al
space, user privilege stda fregy, [reg_plus_imm] Yasi D2
STBLOCKFP 17, 64-byte block store to secondary address stda fregy, [ regaddr] #ASI _BLK_Al US Al
16 y y 8rd 8
space, user privilege stda fregy, [reg_plus_imm] Yasi D2
STBLOCKFP 1E;¢ 64-byte block store to primary address stda freg.q, [reqaddr] #ASI _BLK_AlI UPL Al
16 y p y 8rd 8
space, little-endian, user privilege stda fregy, [reg_plus_imm] Y@si D2
STBLOCKFP 1F;. 64-byte block store to secondary address st da fregy, [ regaddr] #ASI _BLK_Al USL Al
16 y y 8rd 8
space, little-endian, user privilege stda fregy, [reg_plus_imm] Y@si D2
STBLOCKFP F01¢ 64-byte block store to primary address stda freg.y, [regaddr] #ASI _BLK_P Al
space stda fregy, [reg_plus_imm] Yasi D2
STBLOCKFP Fl,4 64-byte block store to secondary address  stda freg,y, [regaddr] #ASI _BLK_S Al
space stda fregy, [reg_plus_imm] Yasi D2
STBLOCKFP F81¢ 64-byte block store to primary address stda freg,y, [reqaddr] #ASI _BLK_PL Al
space, little-endian stda fregyq, [reg_plus_imm] Yasi D2
STBLOCKFP F9, 64-byte block store to secondary address  stda freg,y, [ regaddr] #ASI _BLK_SL Al
16 y y
space, little-endian stda fregyq, [reg_plus_imm] Yasi D2

STBLOCKFP E0y4 64-byte block commit store to primary stda freg,y, [regaddr] #ASI_BLK COM T_P Bl

address space stda freg.y, [req_plus_imm] %asi D3
STBLOCKFP Ely 64-byte block commit store to secondary  stda fregq, [regaddr] #ASI_BLK_COM T_S Bl
address space stda freg.y, [req_plus_imm] %asi D3
11 rd 110111 | rsl 1=0 imm_asi rs2
11 rd 110111 rsl =1 simm_13
31 30 29 25 24 19 18 14 13 5 4 0
Description A block store instruction references one of several special block-transfer ASIs. Block-transfer ASIs

allow block stores to be performed accessing the same address space as normal stores. Little-endian
ASIs (those with an ‘L’ suffix) access data in little-endian format; otherwise, the access is assumed to
be big-endian. Byte swapping is performed separately for each of the eight double-precision registers
accessed by the instruction.
Programming | The block store instruction, STBLOCKFP, and its companion,
Note | LDBLOCKEP, were originally defined to provide a fast

mechanism for block-copy operations. However, in modern

implementations they are rarely much faster than a sequence of

regular loads and stores, so are now deprecated.
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STBLOCKFP stores data from the eight double-precision floating-point registers specified by rd to a
64-byte-aligned memory area. The lowest-addressed eight bytes in memory are stored from the
lowest-numbered double-precision rd.

While a STBLOCKEP operation is in progress, any of the following values may be observed in a
destination doubleword memory locations: (1) the old data value, (2) zero, or (3) the new data value.
When the operation is complete, only the new data values will be seen.

Compatibility | Software written for older UltraSPARC implementations that

Note | reads data being written by STBLOCKFP instructions may or

may not allow for case (2) above. Such software should be
checked to verify that either it always waits for STBLOCKFP
to complete before reading the values written, or that it will
operate correctly if an intermediate value of zero (not the
“old” or “new” data values) is observed while the
STBLOCKFP operation is in progress.

A Block Store only guarantees atomicity for each 64-bit (8-byte) portion of the 64 bytes that it stores.

A Block Store with Commit forces the data to be written to memory and invalidates copies in all
caches present. As a result, a Block Store with Commit maintains coherency with the I-cache!. It does
not, however, flush instructions that have already been fetched into the pipeline before executing the
modified code. If a Block Store with Commit is used to write modified instructions, a FLUSH
instruction must still be executed to guarantee that the instruction pipeline is flushed. (See
Synchronizing Instruction and Data Memory on page 341 for more information.)

ASIs E0q4 and El;4 are only used for block store-with-commit operations; they are not available for
use by block load operations. See Block Load and Store ASIs on page 362 for more information.

Software should assume the following (where “load operation” includes load, load-store, and
LDBLOCKEP instructions and “store operation” includes store, load-store, and STBLOCKEFP
instructions):

= A STBLOCKEFP does not follow memory ordering with respect to earlier or later load operations. If
there is overlap between the addresses of destination memory locations of a STBLOCKFP and the
source address of a later load operation, the load operation may receive incorrect data. Therefore, if
ordering with respect to later load operations is important, a MEMBAR #St or eLoad instruction
must be executed between the STBLOCKFP and subsequent load operations.

= A STBLOCKFP does not follow memory ordering with respect to earlier or later store operations.
Those instructions” data may commit to memory in a different order from the one in which those
instructions were issued. Therefore, if ordering with respect to later store operations is important, a
MEMBAR #St or eSt or e instruction must be executed between the STBLOCKFP and subsequent
store operations.

» STBLOCKFs do not follow register dependency interlocks, as do ordinary stores.

Programming | STBLOCKEP is intended to be a processor-specific instruction

Note | (see the warning at the top of page 269). If STBLOCKFP must be
used in software intended to be portable across current and
previous processor implementations, then it must be coded to
work in the face of any implementation variation that is
permitted by implementation dependency #411-S10, described
below.

IMPL. DEP. #411-S10: The following aspects of the behavior of the block store (STBLOCKEFP)

instruction are implementation dependent:

» The memory ordering model that STBLOCKEP follows (other than as constrained by the rules
outlined above).

» Whether VA_watchpoint and PA_watchpoint exceptions are recognized on accesses to all 64 bytes of
the STBLOCKEP (the recommended behavior), or only on accesses to the first eight bytes.

1 Even if all data stores on a given implementation coherently update the instruction cache (see page 389), stores (other than Block Store
with Commit) on SPARC V9 implementations in general do 7ot maintain coherency between instruction and data caches.
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»  Whether STBLOCKEFs to non-cacheable (TTE.cp = 0) pages execute in strict program order or not. If
not, a STBLOCKEFP to a non-cacheable page causes an illegal_instruction exception.

» Whether STBLOCKFP follows register dependency interlocks (as ordinary stores do).

« Whether a non-Commit STBLOCKFP forces the data to be written to memory and invalidates
copies in all caches present (as the Commit variants of STBLOCKFP do).

= Any other restrictions on the behavior of STBLOCKFP, as described in implementation-specific
documentation.

Exceptions. An illegal_instruction exception occurs if the source floating-point registers are not
aligned on an eight-register boundary.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute a STBLOCKEP instruction causes an fp_disabled exception.

If the least significant 6 bits of the memory address are not all zero, a mem_address_not_aligned
exception occurs.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI is 0 (ASIs 1644,
1714, 1E14, and 1F;¢), STBLOCKFY causes a privileged_action exception.

An access caused by STBLOCKFP may trigger a VA_watchpoint or PA_watchpoint exception (impl.
dep. #411-510).

Implementation | STBLOCKFP shares an opcode with the STDFA, STPARTIALF,
Note | and STSHORTF instructions; it is distinguished by the ASI used.

Exceptions illegal_instruction
fp_disabled
mem_address_not_aligned
privileged_action
VA_watchpoint (impl. dep. #411-510)
DAE_privilege_violation
DAE_nfo_page
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
fast_data_access_protection
PA_watchpoint (impl. dep. #411-510)
data_access_error

See Also LDBLOCKF® on page 192
STDF on page 272
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7.92

Store Floating-Point

Instruction  op3 rd Operation Assembly Language Class
STF 10 0100 0-31  Store Floating-Point register st fregq, [ address] Al
STDF 10 0111 t Store Double Floating-Point register st d fregeq, [ address] Al
STQF 10 0110 ¥ Store Quad Floating-Point register ~ stq fregq, [ address] C3

* Encoded floating-point register value, as described on page 51.

11 rd op3 rsl i=0 — rs2
11 rd op3 rsl i=1] simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description

The store single floating-point instruction (STF) copies the contents of the 32-bit floating-point register
Fglrd] into memory.

The store double floating-point instruction (STDF) copies the contents of 64-bit floating-point register
Fplrd] into a word-aligned doubleword in memory. The unit of atomicity for STDF is 4 bytes (one
word).

The store quad floating-point instruction (STQF) copies the contents of 128-bit floating-point register
Folrd] into a word-aligned quadword in memory. The unit of atomicity for STQF is 4 bytes (one
word).

These instruction access memory using the implicit ASI (see page 87). The effective address for these
instructions is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext( simm13)” if i = 1.

Exceptions. An attempt to execute a STF or STDF instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if the FPU is not present,
then an attempt to execute a STF or STDF instruction causes an fp_disabled exception.

STF causes a mem_address_not_aligned exception if the effective memory address is not word-
aligned.

STDF requires only word alignment in memory. However, if the effective address is word-aligned but
not doubleword-aligned, an attempt to execute an STDF instruction causes an
STDF_mem_address_not_aligned exception. In this case, trap handler software must emulate the
STDF instruction and return (impl. dep. #110-V9-Cs10(a)).

STQF requires only word alignment in memory. If the effective address is word-aligned but not
quadword-aligned, an attempt to execute an STQF instruction causes an
STQF_mem_address_not_aligned exception. In this case, trap handler software must emulate the
STQF instruction and return (impl. dep. #112-V9-Cs10(a)).

Programming | Some compilers issued sequences of single-precision stores for

Note | SPARC V8 processor targets when the compiler could not
determine whether doubleword or quadword operands were
properly aligned. For SPARC V9, since emulation of misaligned
stores is expected to be fast, compilers should issue sets of single-
precision stores only when they can determine that double- or
quadword operands are not properly aligned.
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Exceptions

See Also

STF/STDF / STQF / STXFSR

An attempt to execute an STQF instruction when rd{1} # O causes an fp_exception_other
(FSR.ftt = invalid_fp_register) exception.

Implementation | Since UltraSPARC Architecture 2007 processors do not implement

Note | in hardware instructions (including STQF) that refer to quad-
precision floating-point registers, the
STQF_mem_address_not_aligned and fp_exception_other (with
FSR.ftt = invalid_fp_register) exceptions do not occur in
hardware. However, their effects must be emulated by software
when the instruction causes an illegal_instruction exception and
subsequent trap.

illegal_instruction

fp_disabled

STDF_mem_address_not_aligned
STQF_mem_address_not_aligned (not used in UltraSPARC Architecture 2007)
mem_address_not_aligned

fp_exception_other (FSR.ftt = invalid_fp_register (STQF only))
VA_watchpoint

DAE_privilege_violation

DAE_nfo_page

fast_data_access_MMU_miss

data_access_ MMU_miss

data_access_ MMU_error

fast_data_access_protection

PA_watchpoint

data_access_error

Load Floating-Point Register on page 195

Block Store on page 269

Store Floating-Point into Alternate Space on page 274
Store Floating-Point State Register (Lower) on page 277
Store Short Floating-Point on page 282

Store Partial Floating-Point on page 279

Store Floating-Point State Register on page 288
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7.93  Store Floating-Point into Alternate Space

Instruction op3 rd Operation Assembly Language Syntax Class
STFAPast 110100 0-31 Store Floating-Point Register sta  fregy, [ regaddr] imm_asi Al
to Alternate Space sta  freguq, [ reg_plus_imm] %@si
STDEAPast 110111 F Store Double Floating-Point  stda fregq, [ regaddr] imm_asi Al
Register to Alternate Space  stda freqq, [ reg_plus_imm] %@si
STQFAP»s 110110 Store Quad Floating-Point stqa fregyg, [ regaddr] imm_asi C3

Register to Alternate Space  stqa fregq, [ reg_plus_imm] %@si

* Encoded floating-point register value, as described on page 51.

11 rd op3 rsl i=0 imm_asi rs2
11 rd op3 rsl i=1] simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description The store single floating-point into alternate space instruction (STFA) copies the contents of the 32-bit
floating-point register Fg[rd] into memory.

The store double floating-point into alternate space instruction (STDFA) copies the contents of 64-bit
floating-point register Fp[rd] into a word-aligned doubleword in memory. The unit of atomicity for
STDFA is 4 bytes (one word).

The store quad floating-point into alternate space instruction (STQFA) copies the contents of 128-bit
floating-point register Fg[rd] into a word-aligned quadword in memory. The unit of atomicity for
STQFA is 4 bytes (one word).

Store floating-point into alternate space instructions contain the address space identifier (ASI) to be
used for the load in the imm_asi field if i = 0 or in the ASI register if i = 1. The access is privileged if
bit 7 of the ASI is 0; otherwise, it is not privileged. The effective address for these instructions is
“R[rs1] + R[rs2]” if i =0, or “R[rs1] + sign_ext( Simm13)” if i = 1.

Programming | Some compilers issued sequences of single-precision stores for

Note | SPARC V8 processor targets when the compiler could not
determine whether doubleword or quadword operands were
properly aligned. For SPARC V9, since emulation of misaligned
stores is expected to be fast, compilers should issue sets of single-
precision stores only when they can determine that double- or
quadword operands are not properly aligned.

Exceptions. STFA causes a mem_address_not_aligned exception if the effective memory address is
not word-aligned.

STDFA requires only word alignment in memory. However, if the effective address is word-aligned
but not doubleword-aligned, an attempt to execute an STDFA instruction causes an
STDF_mem_address_not_aligned exception. In this case, trap handler software must emulate the
STDFA instruction and return (impl. dep. #110-V9-Cs10(b)).

STQFA requires only word alignment in memory. However, if the effective address is word-aligned
but not quadword-aligned, an attempt to execute an STQFA instruction may cause an
STQF_mem_address_not_aligned exception. In this case, the trap handler software must emulate the
STQFA instruction and return (impl. dep. #112-V9-Cs10(b)).

Implementation | STDFA shares an opcode with the STBLOCKEFP, STPARTIALF,
Note | and STSHORTF instructions; it is distinguished by the ASI used.
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An attempt to execute an STQFA instruction when rd{1} # O causes an fp_exception_other

(FSR.ftt = invalid_fp_register) exception.

Implementation
Note

subsequent trap.

Since UltraSPARC Architecture 2007 processors do not implement
in hardware instructions (including STQFA) that refer to quad-
precision floating-point registers, the
STQF_mem_address_not_aligned and fp_exception_other (with
FSR.ftt = invalid_fp_register) exceptions do not occur in
hardware. However, their effects must be emulated by software
when the instruction causes an illegal_instruction exception and

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI is 0, this
instruction causes a privileged_action exception. In privileged mode (PSTATE.priv =1 and
HPSTATE.hpriv = 0), if the ASI is in the range 3074 to 7F¢, this instruction causes a privileged_action

exception.

STFA and STQFA can be used with any of the following ASIs, subject to the privilege mode rules
described for the privileged_action exception above. Use of any other ASI with these instructions

causes a DAE_invalid_asi exception.

ASls valid for STFA and STQFA

AS| _NUCLEUS
AS| _AS_| F_USER PRI MARY
AS| _AS_| F_USER SECONDARY
AS| _REAL

ASI _REAL | O

ASI _PRI MARY
AS| _SECONDARY

ASI _NUCLEUS_LI TTLE

ASI _AS_| F_USER PRI MARY_ LI TTLE
ASI _AS_| F_USER SECONDARY_ LI TTLE
ASl _REAL_LI TTLE

ASI _REAL_1 O LI TTLE

ASI _PRI MARY_LI TTLE
ASI _SECONDARY_LI TTLE

STDFA can be used with any of the following ASIs, subject to the privilege mode rules described for
the privileged_action exception above. Use of any other ASI with the STDFA instruction causes a

DAE_invalid_asi exception.

ASls valid for STDFA

ASI _AS | F_PRI V_PRI MARY
ASI _AS_| F_PRI V_SECONDARY

AS| _NUCLEUS

ASI _AS_| F_USER PRI MARY
ASl _AS | F_USER SECONDARY
ASl _REAL

ASI_REAL_|1O

AS| PRI MARY
AS| _SECONDARY

ASI _BLOCK_AS | F_USER PRI MARY t

ASI _AS | F_PRI'V_PRI MARY_LI TTLE
ASI _AS_| F_PRI V_SECONDARY_LI TTLE

ASI _NUCLEUS_LI TTLE

ASI _AS_| F_USER PRI MARY_LI TTLE
AS| _AS | F_USER SECONDARY_ LI TTLE
ASl _REAL_LI TTLE

ASI_REAL_| O LI TTLE

AS| PRI MARY_LI TTLE
AS| _SECONDARY_ LI TTLE

ASlI _BLOCK_AS_| F_USER PRI MARY_ LI TTLE+

ASI _BLOCK_AS | F_USER SECONDARY 1 ASI BLOCK_AS_| F_USER _SECONDARY_ LI TTLE t

ASlI _BLOCK_PRI MARY t

ASI _BLOCK_SECONDARY t

ASI _BLOCK_COMM T_PRI MARY +
ASI _BLOCK_COMM T_SECONDARY t

ASI _FL8_PRI MARY

AS| _FL8_SECONDARY
ASl _FL16_PRI MARY }
AS| _FL16_SECONDARY }

ASI _PST8_PRI MARY *
ASI _PST8_SECONDARY *

ASI _BLOCK_PRI MARY_LI TTLE t
AS|I _BLOCK_SECONDARY LI TTLE +

AS| _FL8_PRI MARY_LI TTLE }
AS| _FL8_SECONDARY_LI TTLE }
AS| _FL16_PRI MARY_ LI TTLE }
ASl _FL16_SECONDARY LI TTLE}

AS| _PST8_PRI MARY_LI TTLE*
AS| _PST8_SECONDARY_LI TTLE*
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See Also

STFA / STDFA /| STQFA

ASiIs valid for STDFA

ASI _PST16_PRI MARY * AS| _PST16_PRI MARY_LI TTLE*
AS| _PST16_SECONDARY * AS| _PST16_SECONDARY_LI TTLE*
ASI _PST32_PRI MARY * AS| _PST32_PRI MARY_LI TTLE*
ASI _PST32_SECONDARY * ASI _PST32_SECONDARY_LI TTLE*

t If this ASI is used with the opcode for STDFA, the STBLOCKFP instruction is
executed instead of STFA. For behavior of STBLOCKFP, see Block Store on page 269.
1 If this ASI is used with the opcode for STDFA, the STSHORTF instruction
is executed instead of STDFA. For behavior of STSHORTF, see
Store Short Floating-Point on page 282.
* If this ASI is used with the opcode for STDFA, the STPARTIALF instruction
is executed instead of STDFA. For behavior of STPARTIALF, see
Store Partial Floating-Point on page 279.

fp_disabled

STDF_mem_address_not_aligned
STQF_mem_address_not_aligned (STQFA only) (not used in UA-2007)
mem_address_not_aligned

fp_exception_other (FSR.ftt = invalid_fp_register (STQFA only))
privileged_action

VA_watchpoint

DAE_invalid_asi

DAE_privilege_violation

DAE_nfo_page

fast_data_access_ MMU_miss

data_access_ MMU_miss

data_access_ MMU_error

fast_data_access_protection

PA_watchpoint

data_access_error

Load Floating-Point from Alternate Space on page 197
Block Store on page 269

Store Floating-Point on page 272

Store Short Floating-Point on page 282

Store Partial Floating-Point on page 279
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7.94  Store Floating-Point State Register (Lower)

The STFSR instruction is deprecated and should not be used in new software.
The STXFSR instruction should be used instead.

Opcode op3 rd Operation Assembly Language Syntax Class
STFSRP 100101 0 Store Floating-Point State Register (Lower) st % sr, [address] D2
10 0101 1-31  (see page 288)

11 rd op3 rsl i=0) — rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description The Store Floating-point State Register (Lower) instruction (STFSR) waits for any currently executing
FPop instructions to complete, and then it writes the less-significant 32 bits of FSR into memory.

After writing the FSR to memory, STFSR zeroes FSR fit

V9 Compatibility | FSR.ftt should not be zeroed until it is known that the store will
Note | not cause a precise trap.

STFSR accesses memory using the implicit ASI (see page 87). The effective address for this instruction

is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext( simm13)” if i = 1.

An attempt to execute a STFSR instruction when i = 0 and instruction bits 12:5 are nonzero causes an

illegal_instruction exception.

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if the FPU is not present,

then an attempt to execute a STFSR instruction causes an fp_disabled exception.

STFSR causes a mem_address_not_aligned exception if the effective memory address is not word-

aligned.

V9 Compatibility | Although STFSR is deprecated, UltraSPARC Architecture

Note [ implementations continue to support it for compatibility with
existing SPARC V8 software. The STFSR instruction is defined
to store only the less-significant 32 bits of the FSR into memory,
while STXFSR allows SPARC V9 software to store all 64 bits of
the FSR.

Implementation | STFSR shares an opcode with the STXFSR instruction (and

Note | possibly with other implementation-dependent instructions);
they are differentiated by the instruction rd field. An attempt to
execute the op = 10,, op3 = 10 0101, opcode with an invalid rd
value causes an illegal_instruction exception.

Exceptions illegal_instruction
fp_disabled
mem_address_not_aligned
VA_watchpoint
DAE_privilege_violation
DAE_nfo_page
fast_data_access_MMU_miss
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data_access_ MMU_miss
data_access_MMU_error
fast_data_access_protection
PA_watchpoint
data_access_error

See Also Store Floating-Point on page 272
Store Floating-Point State Register on page 288
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7.95  Store Partial Floating-Point

ASI
Instruction Value Operation Assembly Language Syntax T Class
STPARTIALF CO0q¢ Eight 8-bit conditional stores to stda fregyg, regrsos [ regrsi] #ASI _PST8_P Bl
primary address space
STPARTIALF Cl,4 Eight 8-bit conditional stores to stda fregyg, regrsos [ regs1] #ASI _PST8_S B1

secondary address space

STPARTIALF C8;¢ Eight 8-bit conditional stores to stda fregy, regrsa, [1egrs1] #ASI _PST8_PL B1
primary address space, little-endian

STPARTIALF C9;¢ Eight 8-bit conditional stores to stda fregyqy, regrsp, [ regrs1] #ASI _PST8_SL Bl
secondary address space, little-
endian

STPARTIALF C2;4 Four 16-bit conditional stores to stda fregyq, regrso, [ regs1] #ASI_PST16_P B1
primary address space

STPARTIALF C3y¢ Four 16-bit conditional stores to ~ stda fregyg, regrs2. [ regrs1] #ASI _PST16_S B1
secondary address space

STPARTIALF CA;¢ Four 16-bit conditional stores to stda fregg, regrsp, [ regrsi] #ASI _PST16_PL B1
primary address space, little-endian

STPARTIALF CB;q Four 16-bit conditional stores to st da fregrg, regrsa, [ 7egrs1] #ASI _PST16_SL B1
secondary address space, little-
endian

STPARTIALF C4;¢ Two 32-bit conditional stores to stda fregyg, regrso [ regrsi] #ASI_PST32_P B1
primary address space

STPARTIALF C5;¢ Two 32-bit conditional stores to stda fregyg, regrso, [ regrsi] #ASI_PST32_S Bl
secondary address space

STPARTIALF CCy¢ Two 32-bit conditional stores to stda fregiq, regrsos [ regrs1] #ASI _PST32_PL B1
primary address space, little-endian

STPARTIALF CD;q Two 32-bit conditional stores to stda fregyy, regrsa. [ regrsi]l #ASI _PST32_SL B1
secondary address space, little-
endian

t The original assembly language syntax for a Partial Store instruction (“st dafreg,q, [regi] reg,, imm_asi” ) has been dep-
recated because of inconsistency with the rest of the SPARC assembly language. Over time, assemblers will support the new syntax
for this instruction. In the meantime, some existing assemblers may only recognize the original syntax.

11 rd 110111 rsl i=0 imm_asi rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description The partial store instructions are selected by one of the partial store ASIs with the STDFA instruction.

Two 32-bit, four 16-bit, or eight 8-bit values from the 64-bit floating-point register Fp[rd] are
conditionally stored at the address specified by R[rs1], using the mask specified in R[rs2].
STPARTIALF has the effect of merging selected data from its source register, Fp[rd], into the existing
data at the corresponding destination locations.
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The mask value in R[rs2] has the same format as the result specified by the pixel compare instructions
(see SIMD Signed Compare on page 139). The most significant bit of the mask (not of the entire register)
corresponds to the most significant part of Fp[rd]. The data is stored in little-endian form in memory
if the ASI name has an “L” (or “_LITTLE”) suffix; otherwise, it is stored in big-endian format.

R[rs2]
8-bit partial store mask
for ASI _PST8_* 76 543 210
mask for bits 63:56 4Af
mask for bits 55:48
mask for bits 15:8
mask for bits  7:0
R[rs2]

16-bit partial store mask
for ASI _PST16_*

mask for bits 63:48
mask for bits 47:32
mask for bits 31:16
mask for bits 15:0

L w0
— N

——P» o

R[rs2]
32-bit partial store mask
for ASI _PST32_*

mask for bits 63:32
mask for bits 31:0

-
— P o

FIGURE 7-29 Mask Format for Partial Store

Exceptions. A Partial Store instruction can cause a virtual (or physical) watchpoint exception when
the following conditions are met:

s The virtual (physical) address in R[rs1] matches the address in the VA (PA) Data Watchpoint
Register.
= The byte store mask in R[rs2] indicates that a byte, halfword or word is to be stored.

» The Virtual (Physical) Data Watchpoint Mask in ASI _DCU_WATCHPOI NT_CONTROL_REG indicates
that one or more of the bytes to be stored at the watched address is being watched.

For data watchpoints of partial stores in UltraSPARC Architecture 2007, the byte store mask (R[rs2])
in the Partial Store instruction is ignored, and a watchpoint exception can occur even if the mask is
zero (that is, no store will take place). The ASI _DCU_WATCHPO NT_CONTROL_ _REG Data Watchpoint
masks are only checked for nonzero value (watchpoint enabled) (impl. dep. #249).

An attempt to execute a STPARTIALF instruction when i = 1 causes an illegal_instruction exception.

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if the FPU is not present,
then an attempt to execute a STPARTIALF instruction causes an fp_disabled exception.

STPARTIALF causes a mem_address_not_aligned exception if the effective memory address is not
word-aligned.

STPARTIALF requires only word alignment in memory for eight byte stores. If the effective address is
word-aligned but not doubleword-aligned, it generates an STDF_mem_address_not_aligned
exception. In this case, the trap handler software shall emulate the STDFA instruction and return.
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IMPL. DEP. #249-U3-Cs10: For an STPARTIAL instruction, the following aspects of data watchpoints
are implementation dependent: (a) whether data watchpoint logic examines the byte store mask in
R[rs2] or it conservatively behaves as if every Partial Store always stores all 8 bytes, and (b) whether
data watchpoint logic examines individual bits in the Virtual (Physical) Data Watchpoint Mask in the
LSU Control register DCUCR to determine which bytes are being watched or (when the Watchpoint
Mask is nonzero) it conservatively behaves as if all 8 bytes are being watched.

ASIs C074-C57¢ and C814—CD4 are only used for partial store operations. In particular, they should
not be used with the LDDFA instruction; however, if any of them is used, the resulting behavior is
specified in the LDDFA instruction description on page 199.

Implementation | STPARTIALF shares an opcode with the STBLOCKEFP, STDFA,
Note | and STSHORTF instructions; it is distinguished by the ASI used.

illegal_instruction
fp_disabled
mem_address_not_aligned
VA_watchpoint (see text)
DAE_privilege_violation
DAE_nc_page
DAE_nfo_page
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
fast_data_access_protection
PA_watchpoint (see text)
data_access_error
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7.96  Store Short Floating-Point

ASI

Instruction Value Operation Assembly Language Syntax Class
STSHORTF D0y 8-bit store to primary address space stda  fregyq, [regaddr] #AS| _FL8_P B1
stda  fregu, [reg_plus_imm] %asi D2
STSHORTF D1y, 8-bit store to secondary address space  stda  freg,y, [ regaddr] #ASI _FL8_S B1
stda  fregu, [reg_plus_imm] %asi D2
STSHORTEF D8  8-bit store to primary address space, stda  fregyy, [regaddr] #ASI _FL8_PL B1
little-endian stda  fregyg, [ reg_plus_imm] %asi D2
STSHORTF D9;¢  8-bit store to secondary address space, stda fregy, [ regaddr] #ASI _FL8_SL B1
little-endian stda  fregyg, [reg_plus_imm] Yasi D2
STSHORTF D2y, 16-bit store to primary address space stda  fregyy, [regaddr] #AS|I _FL16_P B1
stda  fregyg, [reg_plus_imm] %asi D2
STSHORTF D3¢  16-bit store to secondary address space stda  fregyy, [regaddr] #ASI _FL16_S B1
stda  fregyg, [reg_plus_imm] Yasi D2
STSHORTF DAy, 16-bit store to primary address space, stda  fregy, [regaddr] #ASI _FL16_PL B1
little-endian stda  fregyg, [reg_plus_imm] Y@asi D2
STSHORTF DBy 16-bit store to secondary address space, stda  freg,y, [regaddr] #ASI _FL16_SL B1
little-endian stda  fregu, [reg_plus_imm] Yasi D2

11 rd 110111 rsl i=0 imm_asi rs2
11 rd 110111 rsl i=1 simm_13
31 30 29 25 24 19 18 14 13 5 4 0

Description The short floating-point store instruction allows 8- and 16-bit stores to be performed from the floating-
point registers. Short stores access the low-order 8 or 16 bits of the register.

Little-endian ASIs transfer data in little-endian format from memory; otherwise, memory is assumed
to be big-endian. Short stores are typically used with the FALIGNDATA instruction (see Align Data on
page 134) to assemble or store 64 bits on noncontiguous components.

Implementation | STSHORTF shares an opcode with the STBLOCKFP, STDFA, and
Note | STPARTIALF instructions; it is distinguished by the ASI used.

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if the FPU is not present,
then an attempt to execute a STSHORTF instruction causes an fp_disabled exception.

STSHORTF causes a mem_address_not_aligned exception if the effective memory address is not
halfword-aligned.

An 8-bit STSHORTF (using ASI D04, D114, D814, or D944) can be performed to an arbitrary memory
address (no alignment requirement).

A 16-bit STSHORTF (using ASI D21¢, D314, DA14, or DByg) to an address that is not halfword-aligned
(an odd address) causes a mem_address_not_aligned exception.

Exceptions fp_disabled
mem_address_not_aligned
VA_watchpoint
DAE_privilege_violation
DAE_nfo_page
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fast_data_access_ MMU_miss
data_access_MMU_miss
data_access_MMU_error
fast_data_access_protection
PA_watchpoint
data_access_error

See Also LDSHORTF on page 203
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7.97  Store Integer Twin Word

The STTW instruction is deprecated and should not be used in new software.
The STX instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax T Class
STTWP 000111 Store Integer Twin Word sttw regrq, laddress] D2

t The original assembly language syntax for this instruction used an “st d” instruction mnemonic, which is now
deprecated. Over time, assemblers will support the new “st t W’ mnemonic for this instruction. In the meantime,
some existing assemblers may only recognize the original “st d” mnemonic.

11 rd op3 rsl i=0 — rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description ~ The store integer twin word instruction (STTW) copies two words from an R register pair into
memory. The least significant 32 bits of the even-numbered R register are written into memory at the
effective address, and the least significant 32 bits of the following odd-numbered R register are
written into memory at the “effective address + 4”.

The least significant bit of the rd field of a store twin word instruction is unused and should always be
set to 0 by software.

STTW accesses memory using the implicit ASI (see page 87). The effective address for this instruction
is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext( sSimm13)” if i = 1.

A successful store twin word instruction operates atomically.

IMPL. DEP. #108-V9a: It is implementation dependent whether STTW is implemented in hardware. If
not, an attempt to execute it will cause an unimplemented_STTW exception. (STTW is implemented in
hardware in all UltraSPARC Architecture 2007 implementations.)

An attempt to execute an STTW instruction when either of the following conditions exist causes an
illegal_instruction exception:
= destination register number rd is an odd number (is misaligned)

» i =0 and instruction bits 12:5 are nonzero

STTW causes a mem_address_not_aligned exception if the effective address is not doubleword-
aligned.

With respect to little-endian memory, an STTW instruction behaves as if it is composed of two 32-bit
stores, each of which is byte-swapped independently before being written into its respective
destination memory word.
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See Also

STTW (Deprecated)

Programming | STTW is provided for compatibility with SPARC V8. It may

Notes | execute slowly on SPARC V9 machines because of data path and
register-access difficulties. Therefore, software should avoid
using STTW.

If STTW is emulated in software, an STX instruction should be
used for the memory access in the emulation code to preserve
atomicity. Emulation software should examine
TSTATE[TL].pstate.cle (and, if appropriate, TTE.ie) to determine
the endianness of the emulated memory access.

Note that the value of TTE.ie is not saved during a trap.
Therefore, if it is examined in the emulation trap handler, that
should be done as quickly as possible, to minimize the window
of time during which the value of TTE.ie could possibly be
changed from the value it had at the time of the attempted
execution of STTW.

unimplemented_STTW  (not used in UltraSPARC Architecture 2007)
illegal_instruction
mem_address_not_aligned
VA_watchpoint
DAE_privilege_violation
DAE_nfo_page
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
fast_data_access_protection
PA_watchpoint
data_access_error

STW/STX on page 266
STTWA on page 286
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7.98

Store Integer Twin Word into Alternate Space

The STTWA instruction is deprecated and should not be used in new software.
The STXA instruction should be used instead.

Opcode

op3

Operation Assembly Language Syntax Class

STTWAP PASI 01 0111 Store Twin Word into Alternate Space  sttwa regq [regaddr] imm_asi D2, Y3%

sttwa regyg [reg_plus_imm] Y@si

t The original assembly language syntax for this instruction used an “st da” instruction mnemonic, which is now deprecated. Over
time, assemblers will support the new “st t wa” mnemonic for this instruction. In the meantime, some existing assemblers may only
recognize the original “st da” mnemonic.

T Y3 for restricted ASIs (00,4-7F¢); D2 for unrestricted ASIs (80,4-FFq4)

11 rd op3 rsl i= imm_asi rs2
11 rd op3 rsl i= simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description The store twin word integer into alternate space instruction (STTWA) copies two words from an R

register pair into memory. The least significant 32 bits of the even-numbered R register are written
into memory at the effective address, and the least significant 32 bits of the following odd-numbered
R register are written into memory at the “effective address + 4”.

The least significant bit of the rd field of an STTWA instruction is unused and should always be set to
0 by software.

Store integer twin word to alternate space instructions contain the address space identifier (ASI) to be
used for the store in the imm_asi field if i = 0, or in the ASI register if i = 1. The access is privileged if
bit 7 of the ASI is 0; otherwise, it is not privileged. The effective address for these instructions is
“R[rsl1] + R[rs2]” if i = 0, or “R[rs1]+sign_ext( Simm13)” if i = 1.

A successful store twin word instruction operates atomically.

With respect to little-endian memory, an STTWA instruction behaves as if it is composed of two 32-bit
stores, each of which is byte-swapped independently before being written into its respective
destination memory word.

IMPL. DEP. #108-V9b: It is implementation dependent whether STTWA is implemented in hardware.
If not, an attempt to execute it will cause an unimplemented_STTW exception. (STTWA is
implemented in hardware in all UltraSPARC Architecture 2007 implementations.)

An attempt to execute an STTWA instruction with a misaligned (odd) destination register number rd
causes an illegal_instruction exception.

STTWA causes a mem_address_not_aligned exception if the effective address is not doubleword-
aligned.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI is 0, this
instruction causes a privileged_action exception. In privileged mode (PSTATE.priv =1 and
HPSTATE.hpriv = 0), if the ASI is in the range 3074 to 7F¢, this instruction causes a privileged_action
exception.
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Exceptions

See Also

STTWA (Deprecated)

STTWA can be used with any of the following ASIs, subject to the privilege mode rules described for
the privileged_action exception above. Use of any other ASI with this instruction causes a

DAE_invalid_asi exception (impl. dep. #300-U4-Cs10).

ASils valid for STTWA

AS| _NUCLEUS ASI _NUCLEUS_LI TTLE
ASl _AS | F_USER PRIMARY  ASI_AS | F_USER PRI MARY LI TTLE
AS| _AS_| F_USER _SECONDARY ASI AS | F_USER SECONDARY_ LI TTLE

ASl _REAL AS| _REAL_LI TTLE
ASI_REAL_1O ASI _REAL_1 0O LI TTLE
ASl _PRI MARY AS| PRI MARY_LI TTLE
AS| _SECONDARY AS| _SECONDARY LI TTLE

Programming
Note

Programming
Notes

Nontranslating ASIs (see page 345) may only be accessed using
STXA (not STTWA) instructions. If an STTWA referencing a
nontranslating ASI is executed, per the above table, it generates
a DAE_invalid_asi exception (impl. dep. #300-U4-Cs10).

STTWA is provided for compatibility with SPARC V8. It may
execute slowly on SPARC V9 machines because of data path and
register-access difficulties. Therefore, software should avoid
using STTWA.

If STTWA is emulated in software, an STXA instruction should
be used for the memory access in the emulation code to preserve
atomicity. Emulation software should examine
TSTATE[TL].pstate.cle (and, if appropriate, TTE.ie) to determine
the endianness of the emulated memory access.

Note that the value of TTE.ie is not saved during a trap.
Therefore, if it is examined in the emulation trap handler, that
should be done as quickly as possible, to minimize the window
of time during which the value of TTE.ie could possibly be
changed from the value it had at the time of the attempted
execution of STTWA.

unimplemented_STTW

illegal_instruction

mem_address_not_aligned

privileged_action

VA_watchpoint

DAE_invalid_asi

DAE_privilege_violation

DAE_nfo_page

fast_data_access_ MMU_miss

data_access_ MMU_miss
data_access_MMU_error

fast_data_access_protection
PA_watchpoint
data_access_error

STWA/STXA on page 267
STTW on page 284
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STXFSR

7.99  Store Floating-Point State Register

Instruction  op3 rd Operation Assembly Language Class
10 0101 0 (see page 277)
STXFSR 100101 1 Store Floating-Point State register st X % sr, [ address] Al

— 10 0101 2-31 Reserved

11 rd op3 rsl i=0 — rs2
11 rd op3 rsl i=1] simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description The store floating-point state register instruction (STXFSR) waits for any currently executing FPop
instructions to complete, and then it writes all 64 bits of the FSR into memory.

STXFSR zeroes FSRftt after writing the FSR to memory.

Implementation | FSR.ftt should not be zeroed by STXFSR until it is known that the
Note | store will not cause a precise trap.

STXFSR accesses memory using the implicit ASI (see page 87). The effective address for this
instruction is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext( sSimm13)” if i = 1.

Exceptions. An attempt to execute a STXFSR instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if the FPU is not present,
then an attempt to execute a STXFSR instruction causes an fp_disabled exception.

If the effective address is not doubleword-aligned, an attempt to execute an STXFSRinstruction causes
a mem_address_not_aligned exception.

Implementation | STXFSR shares an opcode with the (deprecated) STFSR
Note | instruction (and possibly with other implementation-dependent
instructions); they are differentiated by the instruction rd field.
An attempt to execute the op = 10,, op3 =10 0101, opcode with
an invalid rd value causes an illegal_instruction exception.

Exceptions illegal_instruction
fp_disabled
mem_address_not_aligned
VA_watchpoint
DAE_privilege_violation
DAE_nfo_page
fast_data_access_MMU_miss
data_access_ MMU_miss
data_access_MMU_error
fast_data_access_protection
PA_watchpoint
data_access_error
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STXFSR

See Also Load Floating-Point State Register on page 215
Store Floating-Point on page 272
Store Floating-Point State Register (Lower) on page 277
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SUB

7.100 Subtract

Instruction op3 Operation Assembly Language Syntax Class
SUB 000100  Subtract sub regrs1, 1eg_or_imm, regy Al
SUBcc 010100  Subtract and modify cc’s subcc  regsy, reg_or_imm, regyy Al
SUBC 00 1100 Subtract with Carry subc regrs1, reg_or_imm, regyy Al
SUBCcc 011100 Subtract with Carry and modify cc’s subccc  regrg1, reg_or_imm, regyy Al

10 rd op3 rsl i= — rs2

10 rd op3 rsl i= simm13

31 30 29 25 24 19 18 14 13 12 5 4 0

Description These instructions compute “R[rs1] - R[rs2]” if i = 0, or
“R[rs1] - sign_ext( simm13)” if i = 1, and write the difference into R[rd].

SUBC and SUBCcc (“SUBtract with carry”) also subtract the CCR register’s 32-bit carry (icc.c) bit; that
is, they compute “R[rs1] — R[rs2] —icc.c” or
“R[rs1] - sign_ext( simm13) — icc.c” and write the difference into R[rd].

SUBcc and SUBCcc modify the integer condition codes (CCR.icc and CCR.xcc). A 32-bit overflow
(CCRuicc.v) occurs on subtraction if bit 31 (the sign) of the operands differs and bit 31 (the sign) of the
difference differs from R[rs1]{31}. A 64-bit overflow (CCR.xcc.v) occurs on subtraction if bit 63 (the
sign) of the operands differs and bit 63 (the sign) of the difference differs from R[rs1]{63}.

Programming | A SUBcc instruction with rd = 0 can be used to effect a signed or
Notes | unsigned integer comparison. See the cnp synthetic instruction in
Appendix C, Assembly Language Syntax.

SUBC and SUBCcc read the 32-bit condition codes” carry bit
(CCRu.cc.c), not the 64-bit condition codes’ carry bit (CCR.xcc.c).

An attempt to execute a SUB instruction when i = 0 and instruction bits 12:5 are nonzero causes an

illegal_instruction exception.

Exceptions illegal_instruction
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SWAP (Deprecated)

7.101

Swap Register with Memory

The SWAP instruction is deprecated and should not be used in new software.
The CASA or CASXA instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class
SWAPP 001111 Swap Register with Memory swap [address], regq D2

rd op3 rsl i=0 — rs2

rd op3 rsl i=1 simm13

31 30 29 25 24 19 18 14 13 12 5 4 0

Description

Exceptions

SWAP exchanges the less significant 32 bits of R[rd] with the contents of the word at the addressed
memory location. The upper 32 bits of R[rd] are set to 0. The operation is performed atomically, that
is, without allowing intervening interrupts or deferred traps. In a multiprocessor system, two or more
virtual processors executing CASA, CASXA, SWAP, SWAPA, LDSTUB, or LDSTUBA instructions
addressing any or all of the same doubleword simultaneously are guaranteed to execute them in an
undefined, but serial, order.

SWAP accesses memory using the implicit ASI (see page 87). The effective address for these
instructions is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext( simm13)” if i = 1.

An attempt to execute a SWAP instruction when i = 0 and instruction bits 12:5 are nonzero causes an
illegal_instruction exception.

If the effective address is not word-aligned, an attempt to execute a SWAP instruction causes a
mem_address_not_aligned exception.

The coherence and atomicity of memory operations between virtual processors and 1/O DMA
memory accesses are implementation dependent (impl. dep. #120-V9).

illegal_instruction
mem_address_not_aligned
VA_watchpoint
DAE_privilege_violation
DAE_nfo_page
fast_data_access_MMU_miss
data_access_ MMU_miss
data_access_MMU_error
fast_data_access_protection
PA_watchpoint
data_access_error
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SWAPA (Deprecated)

7.102  Swap Register with Alternate Space Memory

The SWAPA instruction is deprecated and should not be used in new software.
The CASXA instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class
SWAPAD Past 011111  Swap register with Alternate Space swapa  [regaddr] imm_asi, reg,q D2, Y3t
Memory swapa [reg_plus_imm] Y@si, regq

f Y3 for restricted ASIs (0014-7F¢); D2 for unrestricted ASIs (80,4-FFq4)

11 rd op3 rsl i=0 imm_asi rs2
11 rd op3 rsi i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description SWAPA exchanges the less significant 32 bits of R[rd] with the contents of the word at the addressed
memory location. The upper 32 bits of R[rd] are set to 0. The operation is performed atomically, that
is, without allowing intervening interrupts or deferred traps. In a multiprocessor system, two or more
virtual processors executing CASA, CASXA, SWAP, SWAPA, LDSTUB, or LDSTUBA instructions
addressing any or all of the same doubleword simultaneously are guaranteed to execute them in an
undefined, but serial, order.

The SWAPA instruction contains the address space identifier (ASI) to be used for the load in the
imm_asi field if i = 0, or in the ASI register if i = 1. The access is privileged if bit 7 of the ASI is 0;
otherwise, it is not privileged. The effective address for this instruction is “R[rs1] + R[rs2]” if i = 0, or
“R[rs1] + sign_ext( simm13)” if i = 1.

This instruction causes a mem_address_not_aligned exception if the effective address is not word-
aligned. It causes a privileged_action exception if PSTATE.priv = 0 and bit 7 of the ASI is 0.

The coherence and atomicity of memory operations between virtual processors and I/O DMA
memory accesses are implementation dependent (impl. dep #120-V9).

If the effective address is not word-aligned, an attempt to execute a SWAPA instruction causes a
mem_address_not_aligned exception.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI is 0, this
instruction causes a privileged_action exception. In privileged mode (PSTATE.priv =1 and
HPSTATE.hpriv = 0), if the ASI is in the range 304 to 7Fy4, this instruction causes a privileged_action
exception.

SWAPA can be used with any of the following ASIs, subject to the privilege mode rules described for
the privileged_action exception above. Use of any other ASI with this instruction causes a
DAE_invalid_asi exception.

ASls valid for SWAPA

ASI _NUCLEUS ASI _NUCLEUS LI TTLE
ASl _AS | F_USER PRI MARY ASlI _AS | F_USER PRI MARY LI TTLE
ASl _AS | F_USER_SECONDARY ASl _AS | F_USER SECONDARY_ LI TTLE
ASl _PRI MARY AS| _PRI MARY_ LI TTLE

AS| _SECONDARY AS| _SECONDARY_ LI TTLE

AS| _REAL ASI _REAL_LITTLE
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SWAPA (Deprecated)

Exceptions mem_address_not_aligned
privileged_action
VA_watchpoint
DAE_invalid_asi
DAE_privilege_violation
DAE_nc_page
DAE_nfo_page
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
fast_data_access_protection
PA_watchpoint
data_access_error
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TADDcc

7.103

Tagged Add

Instruction op3 Operation Assembly Language Syntax Class

TADDcc 100000 Tagged Add and modify cc’s taddcc  regs;, reg_or_imm, regyq Al

rd op3 rsl i= — rs2

rd op3 rsl i= simm13

31 30 29 25 24 19 18 14 13 12 5 4 0

Description

Exceptions

See Also

This instruction computes a sum that is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext( Simm13)” if
i=1.

TADDcc modifies the integer condition codes (i cc and xcc).

A tag overflow condition occurs if bit 1 or bit O of either operand is nonzero or if the addition
generates 32-bit arithmetic overflow (that is, both operands have the same value in bit 31 and bit 31 of
the sum is different).

If a TADDcc causes a tag overflow, the 32-bit overflow bit (CCR.icc.v) is set to 1; if TADDcc does not
cause a tag overflow, CCR.icc.v is set to 0.

In either case, the remaining integer condition codes (both the other CCR.icc bits and all the CCR.xcc
bits) are also updated as they would be for a normal ADD instruction. In particular, the setting of the
CCR.xcc.v bit is not determined by the tag overflow condition (tag overflow is used only to set the 32-
bit overflow bit). CCR.xcc.v is set based on the 64-bit arithmetic overflow condition, like a normal 64-
bit add.

An attempt to execute a TADDcc instruction when i = 0 and instruction bits 12:5 are nonzero causes an
illegal_instruction exception.

illegal_instruction

TADDccTVP on page 295
TSUBcc on page 299
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TADDccTV (Deprecated)

7.104

Tagged Add and Trap on Overflow

The TADDccTV instruction is deprecated and should not be used in new
software. The TADDcc instruction followed by the BPVS instruction (with
instructions to save the pre-TADDcc integer condition codes if necessary) should
be used instead.

Opcode

op3

Operation Assembly Language Syntax Class

TADDccTVP 100010  Tagged Add and taddcctv  reg.gy, reg_or_imm, regyy D2

modify cc’s or Trap on Overflow

rd op3 rsl i=0) — rs2

rd op3 rsl i=1 simm13

31 30 29 25 24 19 18 14 13 12 5 4 0

Description

Exceptions

See Also

This instruction computes a sum that is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext( Simm13)” if
i=1.

TADDccTV modifies the integer condition codes if it does not trap.

An attempt to execute a TADDccTV instruction when i = 0 and instruction bits 12:5 are nonzero causes
an illegal_instruction exception.

A tag overflow condition occurs if bit 1 or bit 0 of either operand is nonzero or if the addition
generates 32-bit arithmetic overflow (that is, both operands have the same value in bit 31 and bit 31 of
the sum is different).

If TADDccTV causes a tag overflow, a tag_overflow exception is generated and R[rd] and the integer
condition codes remain unchanged. If a TADDccTV does not cause a tag overflow, the sum is written
into R[rd] and the integer condition codes are updated. CCR.icc.v is set to 0 to indicate no 32-bit
overflow.

In either case, the remaining integer condition codes (both the other CCR.icc bits and all the CCR.xcc
bits) are also updated as they would be for a normal ADD instruction. In particular, the setting of the
CCR.xcc.v bit is not determined by the tag overflow condition (tag overflow is used only to set the 32-
bit overflow bit). CCR.xcc.v is set only on the basis of the normal 64-bit arithmetic overflow condition,
like a normal 64-bit add.

SPARC V8 | TADDccTV traps based on the 32-bit overflow condition, just as
Compatibility | in the SPARC V8 architecture. Although the tagged add
Note | instructions set the 64-bit condition codes CCR.xcc, there is no
form of the instruction that traps on the 64-bit overflow
condition.

illegal_instruction
tag_overflow

TADDcc on page 294
TSUBccTVP on page 300
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Tcc

7.105 Trap on Integer Condition Codes (Tcc)

Instruction op3 cond Operation cc TestAssembly Language Syntax Class

TA 111010 1000 Trap Always 1 ta i_or_x_cc, software_trap_number Al

TN 111010 0000 Trap Never 0 tn i_or_x_cc, software_trap_number Al

TNE 111010 1001 Trap on Not Equal not Z tnet i_or_x_cc, software_trap_number Al

TE 111010 0001 Trap on Equal V4 tet  ior_x_cc, software_trap_number Al

TG 111010 1010 Trap on Greater not(Zor(N tg i_or_x_cc, software_trap_number Al

xor V))

TLE 111010 0010 Trap on Less or Equal Z or (N xor V)tl e i_or_x_cc, software_trap_number Al

TGE 111010 1011 Trap on Greater or not (N xor V) tge i_or_x_cc, software_trap_number Al
Equal

TL 111010 0011 Trap on Less N xor V tl i_or_x_cc, software_trap_number Al

TGU 111010 1100 Trap on Greater, not (CorZ) tgu i_or_x_cc, software_trap_number Al
Unsigned

TLEU 111010 0100 Trap on Less or (CorZ2) tleu i_or_x_cc, software_trap_number Al
Equal, Unsigned

TCC 111010 1101 Trap on Carry Clear not C tcc® i_or_x_cc, software_trap_number Al
(Greater than or
Equal, Unsigned)

TCS 111010 0101 Trap on Carry Set C tcsY ior_x_ce, software_trap_number Al
(Less Than, Unsigned)

TPOS 111010 1110 Trap on Positive or not N tpos i_or_x_cc, software_trap_number Al
Zero

TNEG 111010 0110 Trap on Negative N tneg i_or_x_cc, software_trap_number Al

TVC 111010 1111  Trap on Overflow not V tve i_or_x_cc, software_trap_number Al
Clear

TVS 111010 0111 Trap on Overflow Set V tvs i_or_x_cc, software_trap_number Al

¥ synonym: t nz

¥ synonym: 1 z

© synonym: t geu

Y synonym: t1u

10 |[— cond op3 rsl i=0|ccliccO) — rs2
10 |[— cond op3 rsl i=1|cclccO) — imm_trap_#
3130 29 28 25 24 19 18 14 13 12 11 10 8 7 5 4 0
ccl :: ccO Condition Codes Evaluated
00 CCR.icc
01 — (illegal_instruction)
10 CCR.xcc
11 — (illegal_instruction)
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Description

Tcc

The Tcc instruction evaluates the selected integer condition codes (icc or xcc) according to the cond
field of the instruction, producing either a TRUE or FALSE result. If TRUE and no higher-priority
exceptions or interrupt requests are pending, then a trap_instruction or htrap_instruction exception is
generated. If FALSE, the trap_instruction (or htrap_instruction) exception does not occur and the
instruction behaves like a NOP.

For brevity, in the remainder of this section the value of the “software trap number” used by Tec will
be referred to as “SWTN".

In nonprivileged mode, if i = 0 the SWTN is specified by the least significant seven bits of

“R[rsl1] + R[rs2]”. If i = 1, the SWTN is provided by the least significant seven bits of

“R[rs1] + imm_trap_#". Therefore, the valid range of values for SWTN in nonprivileged mode is 0 to
127. The most significant 57 bits of SWTN are unused and should be supplied as zeroes by software.

In privileged and hyperprivileged modes, if i = 0 the SWTN is specified by the least significant eight
bits of “R[rs1] + R[rs2]”. If i = 1, the SWTN is provided by the least significant eight bits of

“R[rs1] + imm_trap_#". Therefore, the valid range of values for SWTN in privileged and
hyperprivileged modes is 0 to 255. The most significant 56 bits of SWTN are unused an should be
supplied as zeroes by software.

Generally, values of 0 < SWTN < 127 are used to trap to privileged-mode software and values of 128 <
SWTN < 255 are used to trap to hyperprivileged-mode software. The behavior of Tcc, based on the
privilege mode in effect when it is executed and the value of the supplied SWTN, is as follows:

Behavior of Tec instruction

Privilege Mode in effect when Tcc is executed 0 < SWTN < 127 128 < SWTN < 255
Nonprivileged trap_instruction exception = —
(PSTATE.priv =0 and (to privileged mode) (not possible, because
HPSTATE.hpriv = 0) (256 < TT < 383) SWTN is a 7-bit value in
nonprivileged mode)
Privileged trap_instruction exception  htrap_instruction exception
(PSTATE.priv=1 and (to privileged mode) (to hyperprivileged mode)
HPSTATE.hpriv = 0) (256 < TT < 383) (384 < TT < 511)

Hyperprivileged (HPSTATE.hpriv = 1) htrap_instruction exception htrap_instruction exception
(to hyperprivileged mode)  (to hyperprivileged mode)
(256 < TT < 383) (384 < TT < 511)

Programming | Tcc can be used to implement breakpointing, tracing, and calls to
Note | privileged and hyperprivileged software. It can also be used for
runtime checks, such as for out-of-range array indexes and integer
overflow.

Exceptions. An attempt to execute a Tcc instruction when any of the following conditions exist
causes an illegal_instruction exception:

= instruction bit 29 is nonzero

= i =0 and instruction bits 10:5 are nonzero
= i=1 and instruction bits 10:8 are nonzero
= ccO=1

If the Trap on Control Transfer feature is implemented (impl. dep. #450-520) and PSTATE.tct = 1, then
Tec generates a control_transfer_instruction exception instead of causing a control transfer. When a
control_transfer_instruction trap occurs, PC (the address of the Tcc instruction) is stored in TPC[TL]
and the value of NPC from before the Tcc was executed is stored in TNPC[TL]. The full 64-bit
(nonmasked) PC and NPC values are stored in TPC[TL] and TNPC[TL], regardless of the value of
PSTATE.am.

CHAPTER 7 ¢ Instructions 297



Tcc

If a Tec instruction causes a trap_instruction or htrap_instruction trap, 256 plus the SWTN value is
written into TT[TL]. Then the trap is taken and the virtual processor performs the normal trap entry
procedure, as described in Trap Processing on page 396.

Exceptions illegal_instruction
control_transfer_instruction (impl. dep. #450-520)
trap_instruction (0 < SWTN < 127)
htrap_instruction (128 < SWTN < 255)
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TSUBcc

7.106 Tagged Subtract

Instruction op3 Operation Assembly Language Syntax Class
TSUBcc 100001  Tagged Subtract and modify cc’s  tsubcc  regusy, reg_or_imm, regy Al
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1] simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description This instruction computes “R[rs1] — R[rs2]” if i = 0, or
“R[rs1] - sign_ext( simm13)” if i = 1.
TSUBcc modifies the integer condition codes (icc and xcc).
A tag overflow condition occurs if bit 1 or bit 0 of either operand is nonzero or if the subtraction
generates 32-bit arithmetic overflow; that is, the operands have different values in bit 31 (the 32-bit
sign bit) and the sign of the 32-bit difference in bit 31 differs from bit 31 of R[rs1].
If a TSUBcc causes a tag overflow, the 32-bit overflow bit (CCR.icc.v) is set to 1; if TSUBcc does not
cause a tag overflow, CCR.icc.v is set to 0.
In either case, the remaining integer condition codes (both the other CCR.icc bits and all the CCR.xcc
bits) are also updated as they would be for a normal subtract instruction. In particular, the setting of
the CCR.xcc.v bit is not determined by the tag overflow condition (tag overflow is used only to set the
32-bit overflow bit). ccr.xcc.v is set based on the 64-bit arithmetic overflow condition, like a normal
64-bit subtract.
An attempt to execute a TSUBcc instruction when i = 0 and instruction bits 12:5 are nonzero causes an
illegal_instruction exception.
Exceptions illegal_instruction
See Also TADDcc on page 294

TSUBccTVP on page 300
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TSUBccTV (Deprecated)

7.107 Tagged Subtract and Trap on Overflow

The TSUBccTV instruction is deprecated and should not be used in new
software. The TSUBcc instruction followed by BPVS instead (with instructions to
save the pre-TSUBcc integer condition codes if necessary) should be used

instead.
Opcode op3 Operation Assembly Language Syntax Class
TSUBccTVP 100011 Tagged Subtract and tsubcctv reg.gy, reg_or_imm, regyy D2

modify cc’s or Trap on Overflow

10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
3T 30 29 25 24 19 18 14 13 12 5 4 0

Description This instruction computes “R[rs1] — R[rs2]” if i = 0, or “R[rs1] - sign_ext( simm13)” if i = 1.
TSUBccTV modifies the integer condition codes (icc and xcc) if it does not trap.

A tag overflow condition occurs if bit 1 or bit 0 of either operand is nonzero or if the subtraction
generates 32-bit arithmetic overflow; that is, the operands have different values in bit 31 (the 32-bit
sign bit) and the sign of the 32-bit difference in bit 31 differs from bit 31 of R[rs1].

An attempt to execute a TSUBccTV instruction when i = 0 and instruction bits 12:5 are nonzero causes
an illegal_instruction exception.

If TSUBccTV causes a tag overflow, then a tag_overflow exception is generated and R[rd] and the
integer condition codes remain unchanged. If a TSUBccTV does not cause a tag overflow condition,
the difference is written into R[rd] and the integer condition codes are updated. CCR.icc.v is set to 0 to
indicate no 32-bit overflow.

In either case, the remaining integer condition codes (both the other CCRu.icc bits and all the CCR.xcc
bits) are also updated as they would be for a normal subtract instruction. In particular, the setting of
the CCR.xcc.v bit is not determined by the tag overflow condition (tag overflow is used only to set the
32-bit overflow bit). CCR.xcc.v is set only on the basis of the normal 64-bit arithmetic overflow
condition, like a normal 64-bit subtract.

SPARC V8| TSUBccTV traps based on the 32-bit overflow condition, just as
Compatibility | in the SPARC V8 architecture. Although the tagged add
Note | instructions set the 64-bit condition codes CCR.xcc, there is no
form of the instruction that traps on the 64-bit overflow

condition.
Exceptions illegal_instruction
tag_overflow
See Also TADDccTVP on page 295

TSUBcc on page 299
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UDIV, UDIVcc (Deprecated)

7.108

Unsigned Divide (64-bit + 32-bit)

The UDIV and UDIVcc instructions are deprecated and should not be used in
new software. The UDIVX instruction should be used instead.

Opcode Operation Assembly Language Syntax Class
UDIVP 001110  Unsigned Integer Divide udi v regrs1, 1€g_0Or_imm, regq D2
UDIVccP 011110  Unsigned Integer Divide and modify cc’s udi vcc reg.g1, reg_or_imm, reg g D2
rd op3 rsl i= — rs2
rd op3 rsl i= simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description The unsigned divide instructions perform 64-bit by 32-bit division, producing a 32-bit result. If i = 0,

they compute “(Y :: R[rs1]{31:0}) + R[rs2]{31:0}". Otherwise (that is, if i = 1), the divide instructions
compute “(Y :: R[rs1]{31:0}) + (sign_ext(simm13){31:0})”. In either case, if overflow does not occur, the
less significant 32 bits of the integer quotient are sign- or zero-extended to 64 bits and are written into
R[rd].

The contents of the Y register are undefined after any 64-bit by 32-bit integer divide operation.

Unsigned Divide

Unsigned divide (UDIV, UDIVcc) assumes an unsigned integer doubleword dividend

(Y = R[rs1]{31:0}) and an unsigned integer word divisor R[rs2{31:0}] or (sign_ext( simm13){31:0}) and
computes an unsigned integer word quotient (R[rd]). Immediate values in simm13 are in the ranges 0
to 2121 and 2%2-212 to 232-1 for unsigned divide instructions.

Unsigned division rounds an inexact rational quotient toward zero.

Programming | The rational quotient is the infinitely precise result quotient. It
Note | includes both the integer part and the fractional part of the
result. For example, the rational quotient of 11/4 =2.75 (integer
part =2, fractional part =.75).

The result of an unsigned divide instruction can overflow the less significant 32 bits of the destination
register R[rd] under certain conditions. When overflow occurs, the largest appropriate unsigned
integer is returned as the quotient in R[rd]. The condition under which overflow occurs and the value
returned in R[rd] under this condition are specified in TABLE 7-15.

TABLE 7-15 UDIV / UDIVcc Overflow Detection and Value Returned

Condition Under Which Overflow Occurs Value Returned in R[rd]
Rational quotient > 232 2%2 -1
(0000 0000 FFEF FFFF,¢)

When no overflow occurs, the 32-bit result is zero-extended to 64 bits and written into register R[rd].
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UDIV does not affect the condition code bits. UDIVcc writes the integer condition code bits as shown
in the following table. Note that negative (N) and zero (Z) are set according to the value of R[rd] after
it has been set to reflect overflow, if any.

Bit Effect on bit of UDIVcc instruction
icc.n Set if R[rd]{31} =1

icc.z Set if R[rd]{31:0} =0

icc.v Set if overflow (per TABLE 7-15)
icc.c Zero

Xxcc.n Set if R[rd]{63} =1

XcC.z Set if R[rd]{63:0} =0

XCC.V Zero

Xcc.c Zero

An attempt to execute a UDIV or UDIVcc instruction when i = 0 and instruction bits 12:5 are nonzero
causes an illegal_instruction exception.

Exceptions illegal_instruction
division_by_zero

See Also RDY on page 242

SDIV][cc] on page 258,
UMUL][cc] on page 303
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UMUL, UMULcc (Deprecated)

7.109 Unsigned Multiply (32-bit)

The UMUL and UMULcc instructions are deprecated and should not be used in
new software. The MULX instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class
UMULP 001010 Unsigned Integer Multiply urrul regrs1, reg_or_imm, regyg D2
UMULccP 011010 Unsigned Integer Multiply and modify cc’s umul cc regs1, reg_or_imm, regyq D2
10 rd op3 rsl i=0) — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description The unsigned multiply instructions perform 32-bit by 32-bit multiplications, producing 64-bit results.
They compute “R[rs1]{31:0} x R[rs2]{31:0}” if i = 0, or “R[rs1]{31:0} x sign_ext( simm13){31:0}” if i = 1.
They write the 32 most significant bits of the product into the Y register and all 64 bits of the product
into R[rd].

Unsigned multiply instructions (UMUL, UMULcc) operate on unsigned integer word operands and
compute an unsigned integer doubleword product.

UMUL does not affect the condition code bits. UMULcc writes the integer condition code bits, icc and
xcc, as shown below.

Bit Effect on bit by execution of UMULcc

icc.n Set to 1 if product{31} = 1; otherwise, set to 0
icc.z Set to 1 if product{31:0}= 0; otherwise, set to 0
icc.v Set to 0

icc.c Set to 0

xcc.n Set to 1 if product{63} = 1; otherwise, set to 0
Xxcc.z Set to 1 if product{63:0} = 0; otherwise, set to 0
Xcc.v Set to 0

Xcc.c Set to 0

Note | 32-bit negative (icc.n) and zero (icc.z) condition codes are set
according to the less significant word of the product, not
according to the full 64-bit result.

Programming | 32-bit overflow after UMUL or UMULcc is indicated by Y # 0.
Notes
An attempt to execute a UMUL or UMULcc instruction when i = 0 and instruction bits 12:5 are nonzero

causes an illegal_instruction exception.

Exceptions illegal_instruction
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See Also MULScc on page 225
RDY on page 242
SMUL]cc] on page 265,
UDIV]cc] on page 301
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7.110

WRasr

Write Ancillary State Register

Instruction rd Operation Assembly Language Syntax Class
WRYP 0 Write Y register (deprecated) W regg1, reg_or_imm, Yy D2
— 1 Reserved
WRCCR 2 Write Condition Codes W regg1, reg_or_imm, ¥€Cr Al
register
WRASI 3 Write ASI register W regrgy, reg_or_imm, Y@Si Al
— 4 Reserved (read-only ASR (TICK))
— 5 Reserved (read-only ASR (PC))
WRFPRS 6 Write Floating-Point Registers Status W reg,g1, reg_or_imm, % prs Al
register
— 7-14  Reserved
(7-0Eq6)
— 15 (0F;4) Software-initiated reset (see Software-
Initiated Reset on page 262)
— 16-18 Reserved (impl. dep. #8-V8-Cs20, #9-
(10-1244) V8-Cs20)
WRGSR 19 (13y4) Write General Status register (GSR) wr reg.s1, reg_or_imm, Y%gsr Al
WRSOFTINT_SETF 20 (14;¢) Set bits of per-virtual processor Soft wWr regys1, reg_or_imm, ¥softint_set N-
Interrupt register
WRSOFTINT_CLRF 21 (15;4) Clear bits of per-virtual processor Soft W regys1, reg_or_imm, %sof tint_clr N-
Interrupt register
WRSOFTINT? 22 (1614) Write per-virtual processor Soft W regis1, reg_or_imm, ¥sof tint N-
Interrupt register
WRTICK_CMPR? 23 (17;4) Write Tick Compare register W regys1, reg_or_imm, % i ck_cnpr N-
WRSTICKH 24 (1844) Write System Tick register W regys1, reg_or_imm, ¥%stickt N-
WRSTICK_CMPR? 25 (19;4) Write System Tick Compare register W reg.g1, reg_or_imm, %sti ck_cnprf N-

26 (1A1¢) Reserved

(impl. dep. #8-V8-Cs20, 9-V8-Cs20)

26 (1Aq¢) Reserved

(impl. dep. #8-V8-Cs20, 9-V8-Cs20)

27 (1Byg) Reserved

(impl. dep. #8-V8-Cs20, 9-V8-Cs20)

28 (1Cy4) Implementation dependent

(impl. dep. #8-V8-Cs20, 9-V8-Cs20)

29 (1D44) Implementation dependent (impl.

dep. #8-V8-Cs20, 9-V8-Cs20)

30 (1Eq4) Reserved

31 (1F;¢) Implementation dependent (impl.

dep. #8-V8-Cs20, 9-V8-Cs20)

t The original assembly language names for %st i ck and %st i ck_cnpr were, respectively, %ys_t i ck and %sys_ti ck_cnpr, which are
now deprecated. Over time, assemblers will support the new %st i ck and %st i ck_cnpr names for these registers (which are consistent with

% ickand % i ck_cnpr). In the meantime, some existing assemblers may only recognize the original names.
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10 rd op3 =11 0000 rsl i=0| — rs2
10 rd op3 =11 0000 rsl i=1] simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description The WRasr instructions each store a value to the writable fields of the ancillary state register (ASR)

specified by rd.

The value stored by these instructions (other than the implementation-dependent variants) is as
follows: if i = 0, store the value “R[rs1] xor R[rs2]”; if i = 1, store “R[rs1] xor sign_ext( simm13)”.

Note | The operation is exclusive-or.

The WRasr instruction with rd = 0 is a (deprecated) WRY instruction (which should not be used in
new software). WRY is not a delayed-write instruction; the instruction immediately following a WRY
observes the new value of the Y register.

The WRY instruction is deprecated. It is recommended that all instructions that

reference the Y register be avoided.

WRCCR, WRFPRS, and WRASI are not delayed-write instructions. The instruction immediately
following a WRCCR, WRFPRS, or WRASI observes the new value of the CCR, FPRS, or ASI register.

WREFPRS waits for any pending floating-point operations to complete before writing the FPRS
register.

IMPL. DEP. # 48-V8-Cs20: WRasr instructions with rd of 16-18, 28, 29, or 31 are available for

implementation-dependent uses (impl. dep. #8-V8-Cs20). For a WRasr instruction using one of those

rd values, the following are implementation dependent:

» the interpretation of bits 18:0 in the instruction

» the operation(s) performed (for example, xor) to generate the value written to the ASR

» whether the instruction is nonprivileged or privileged or hyperprivileged (impl. dep. #9-V8-Cs20),
and

» whether an attempt to execute the instruction causes an illegal_instruction exception.

Note | See the section “Read/Write Ancillary State Registers (ASRs)” in
Extending the UltraSPARC Architecture, contained in the separate
volume UltraSPARC Architecture Application Notes, for a
discussion of extending the SPARC V9 instruction set by means of
read/write ASR instructions.

V9 | Ancillary state registers may include (for example) timer, counter,
Compatibility | diagnostic, self-test, and trap-control registers.

NOteS | T« SPARC V8 WRIER, WRPSR, WRWIM, and WRTBR
instructions do not exist in the UltraSPARC Architecture because
the IER, PSR, TBR, and WIM registers do not exist in the
UltraSPARC Architecture.

See Ancillary State Registers on page 50 for more detailed information regarding ASR registers.

Exceptions. An attempt to execute a WRasr instruction when any of the following conditions exist
causes an illegal_instruction exception:

» i=0 and instruction bits 12:5 are nonzero

» rd=1,4,5,7-14, 18, or 26-31

= rd=15and ((rs1 #0) or (i = 0))
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» the instruction is WRSTICK and the virtual processor is not in hyperprivileged mode
(HPSTATE hpriv = 0)

An attempt to execute a WRSOFTINT_SET, WRSOFTINT_CLR, WRSOFTINT, WRTICK_CMPR, or
WRSTICK_CMPR instruction in nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0)
causes a privileged_opcode exception.

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if the FPU is not present,
then an attempt to execute a WRGSR instruction causes an fp_disabled exception.

Implementation | The SIR instruction shares an opcode with WRasr; they are
Note | distinguished by the rd, rs1, and i fields (rd = 15,rs1 =0, and i = 1
for SIR). See Software-Initiated Reset on page 262.

illegal_instruction
privileged_opcode
fp_disabled

RDasr on page 242
WRHPR on page 308
WRPR on page 310
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WRHPR

7.111

Write Hyperprivileged Register

Instruction op3 Operation rd Assembly Language Syntax Class
WRHPRY 110011 Write hyperprivileged register N-
HPSTATE 0 wrhpr  reg.g1, reg_or_imm, Ypstate
HTSTATE 1 wr hpr  reg.q,, reg_or_imm, Ymtstate
Reserved 2
HINTP 3 wr hpr  reg.s1, reg_or_imm, %intp
Reserved 4
HTBA 5 wr hpr  reg.qq, reg_or_imm, %t ba
Reserved 6-29
Reserved 30
HSTICK_CMPR 31  wrhpr reggy, reg_or_imm, Yhsys_tick_cnpr
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1] simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description

A WRHPR instruction stores the value “R[rs1] xor R[rs2]” if i = 0, or “R[rs1] xor sign_ext( Simm13)”
if i =1 to the writable fields of the specified hyperprivileged state register.

Note | The operation is exclusive-or.

The rd field in the instruction determines the hyperprivileged register that is written. There are MAXTL
copies of the HTSTATE register, one for each trap level. A write to one of these registers sets the copy
of HTSTATE indexed by the current value in the trap-level register (TL).

The WRHPR instruction is a non-delayed-write instruction. The instruction immediately following the
WRHPR observes any changes made to virtual processor state made by the WRHPR.

An attempt to execute a WRHPR instruction when any of the following conditions exist causes an
illegal_instruction exception:

» i=0 and instruction bits 12:5 are nonzero

» rd=1and TL =0 (write to HTSTATE when the trap level is zero)

= rd=2,4, or 6-30 (reserved for future versions of the architecture)

» virtual processor is in nonprivileged or privileged mode (HPSTATE.hpriv = 0)

A trap_level_zero trap can occur upon the completion of a WRHPR instruction to HPSTATE, if the
following three conditions are true after WRHPR has executed:

= trap_level_zero exceptions are enabled (HPSTATE.tlz = 1),

= the virtual processor is in nonprivileged or privileged mode (HPSTATE.hpriv = 0), and

= the trap level (TL) register’s value is zero (TL = 0)

Programming | Execution of a WRHPR instruction that causes the value of
Note | HPSTATE.hpriv to change from 1 to 0 is not guaranteed to work
if the WRHPR is in the delay slot of a DCTI instruction.
Therefore, it is recommended that WRHPR never be executed in
a delay slot, especially if it will toggle the value of
HPSTATE.hpriv to 0.

Programming | For historical reasons, the WRPR instruction, not WRHPR, is used
Note | to write to the hyperprivileged TICK register. See Write Privileged
Register on page 310.
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illegal_instruction
trap_level_zero

RDHPR on page 245
WRasr on page 305
WRPR on page 310
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WRPR

7.112

Write Privileged Register

Instruction op3 Operation rd Assembly Language Syntax Class
WRPRF 110010  Write Privileged register Al

TPC 0 wWr pr regrs1, reg_or_imm, % pc

TNPC 1 wr pr regis1, reg_or_imm, % npc

TSTATE 2 wr pr regys1, reg_or_imm, % state

T 3 wWr pr regrsy, reg_or_imm, %t

TICK 4 wr pr regrs1, reg_or_imm, % i ck

TBA 5 wr pr regrs1, reg_or_imm, % ba

PSTATE 6 wr pr regys1, reg_or_imm, %pstate

TL 7 wr pr regrs1, reg_or_imm, % |

PIL 8 wr pr regrs1, reg_or_imm, Uil

Cwp 9 wr pr regys1, reg_or_imm, YEWP

CANSAVE 10 wr pr regys1, reg_or_imm, Ygansave

CANRESTORE 11 wr pr regrs1, reg_or_imm, %canrestore

CLEANWIN 12 wr pr regrs1, reg_or_imm, %l eanwi n

OTHERWIN 13 wr pr regis1, reg_or_imm, %ot herw n

WSTATE 14 wr pr regys1, reg_or_imm, Ywmstate

Reserved 15

GL 16 wr pr regrs1, reg_or_imm, %gl

Reserved 17-31

10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1] simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description This instruction stores the value “R[rs1] xor R[rs2]” if i = 0, or “R[rs1] xor sign_ext( simm13)” if i =1

to the writable fields of the specified privileged state register.

Note | The operation is exclusive-or.

The rd field in the instruction determines the privileged register that is written. There are MAXTL copies
of the TPC, TNPC, TT, and TSTATE registers, one for each trap level. A write to one of these registers
sets the register, indexed by the current value in the trap-level register (TL).

A WRPR to TL only stores a value to TL; it does not cause a trap, cause a return from a trap, or alter
any machine state other than TL and state (such as PC, NPC, TICK, etc.) that is indirectly modified by
every instruction.

Programming | A WRPR of TL can be used to read the values of TPC, TNPC, and
Note | TSTATE for any trap level; however, software must take care that
traps do not occur while the TL register is modified.

The WRPR instruction is a non-delayed-write instruction. The instruction immediately following the
WRPR observes any changes made to virtual processor state made by the WRPR.

In privileged mode, MaxpTL is the maximum value that may be written by a WRPR to TL; an attempt
to write a larger value results in MAXPTL being written to TL. In hyperprivileged mode, maxTL is the
maximum value that may be written by a WRPR to TL; an attempt to write a larger value results in
MAXTL being written to TL. For details, see TABLE 5-19 on page 72.

310 UltraSPARC Architecture 2007 « Draft D0.9.4, 27 Sep 2010



Exceptions

See Also

WRPR

In privileged mode, MAxPGL is the maximum value that may be written by a WRPR to GL; an attempt
to write a larger value results in MAXPGL being written to GL. In hyperprivileged mode, maxcL is the
maximum value that may be written by a WRPR to GL; an attempt to write a larger value results in
MAXGL being written to GL. For details, see TABLE 5-20 on page 74.

Programming | For historical reasons, the WRPR instruction, not WRHPR, is used
Note | to write to the hyperprivileged TICK register.

Exceptions. An attempt to execute a WRPR instruction in nonprivileged mode (PSTATE.priv =0
and HSTATE.hpriv = 0) causes a privileged_opcode exception.

An attempt to execute a WRPR instruction when any of the following conditions exist causes an

illegal_instruction exception:

» i=0and instruction bits 12:5 are nonzero

= (rd =4) and (PSTATE.priv =1 and HSTATE.hpriv = 0)
(an attempt to write to hyperprivileged register TICK while in privileged mode)

= rd =15, or 17-31 (reserved for future versions of the architecture)

» 0<rd< 3 (attempt to write TPC, TNPC,TSTATE, or TT register) while TL = 0 (current trap level is
zero) and the virtual processor is in privileged or hyperprivileged mode.

Implementation | In nonprivileged mode, illegal_instruction exception due to
Note [0 <rd < 3 and TL =0 does not occur; the privileged_opcode
exception occurs instead.

A trap_level_zero trap can occur upon the completion of a WRPR instruction to TL, if the following
three conditions are true after WRPR has executed:

= trap_level_zero exceptions are enabled (HPSTATE.tlz = 1)

= the virtual processor is in nonprivileged or privileged mode (HPSTATE.hpriv = 0), and

= the trap level (TL) register’s value is zero (TL = 0)

privileged_opcode
illegal_instruction
trap_level_zero

RDPR on page 246
WRasr on page 305
WRHPR on page 308
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XOR / XNOR

7.113  XOR Logical Operation

Instruction op3 Operation Assembly Language Syntax Class
XOR 00 0011 Exclusive or xor regrs1, reg_or_imm, regyy Al
XORcc 01 0011 Exclusive or and modify cc’s XOrcc  regrg1, reg_or_imm, regyq Al
XNOR 00 0111 Exclusive nor xnor regrs1, reg_or_imm, regyg Al
XNORcc 010111 Exclusive nor and modify cc’s XNOr CC  regrgy, reg_or_imm, regyy Al

10 rd op3 rsl i=0 — rs2

10 rd op3 rsl i=1 simm13

31 30 29 25 24 19 18 14 13 12 5 4 0

Description These instructions implement bitwise logical xor operations. They compute “R[rs1] op R[rs2]” if i = 0,

or “R[rs1] op sign_ext( simm13)” if i = 1, and write the result into R[rd].

XORcc and XNORcce modify the integer condition codes (icc and xcc). They set the condition codes as

follows:

= icc.y, icc.c, xcc.v, and xcc.c are set to 0
» icc.n is copied from bit 31 of the result
= Xcc.n is copied from bit 63 of the result

= icc.z is set to 1 if bits 31:0 of the result are zero (otherwise to 0)

= XCC.zZ is set to 1 if all 64 bits of the result are zero (otherwise to 0)

Programming | XNOR (and XNORCcc) is identical to the xor_not (and set condition

Note | codes) xor_not_cc logical operation, respectively.

An attempt to execute an XOR, XORcc, XNOR, or XNORcc instruction when i = 0 and instruction bits
12:5 are nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction
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CHAPTER 8

IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007

The IEEE Std 754-1985 floating-point standard contains a number of implementation dependencies.
This chapter specifies choices for these implementation dependencies, to ensure that SPARC V9
implementations are as consistent as possible.

The chapter contains these major sections:

Traps Inhibiting Results on page 313.
Underflow Behavior on page 314.

Integer Overflow Definition on page 315.
Floating-Point Nonstandard Mode on page 315.
= Arithmetic Result Tables on page 316.

Exceptions are discussed in this chapter on the assumption that instructions are implemented in
hardware. If an instruction is implemented in software, it may not trigger hardware exceptions but its
behavior as observed by nonprivileged software (other than timing) must be the same as if it was
implemented in hardware.

8.1

Traps Inhibiting Results

As described in Floating-Point State Register (FSR) on page 44 and elsewhere, when a floating-point
trap occurs, the following conditions are true:

» The destination floating-point register(s) (the F registers) are unchanged.
s The floating-point condition codes (f ccO, f ccl, f cc2, and f cc3) are unchanged.
» The FSR.aexc (accrued exceptions) field is unchanged.

» The FSR.cexc (current exceptions) field is unchanged except for IEEE_754_exceptions; in that case,
cexc contains a bit set to 1, corresponding to the exception that caused the trap. Only one bit shall
be set in cexc.

Instructions causing an fp_exception_other trap because of unfinished FPops execute as if by
hardware; that is, such a trap is undetectable by application software, except that timing may be
affected.
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Programming | A user-mode trap handler invoked for an IEEE_754_exception,

Note | whether as a direct result of a hardware fp_exception_ieee_754
trap or as an indirect result of privileged software handling of
an fp_exception_other trap with FSR ftt = unfinished_FPop, can
rely on the following behavior:

» The address of the instruction that caused the exception will
be available.

» The destination floating-point register(s) are unchanged from
their state prior to that instruction’s execution.

» The floating-point condition codes (f ccO, fcc1, fcc2, and
f cc3) are unchanged.

» The FSR.aexc field is unchanged.

» The FSR.cexc field contains exactly one bit set to 1,
corresponding to the exception that caused the trap.

» The FSRftt, FSR.gne, and reserved fields of FSR are zero.

I
An UltraSPARC Architecture virtual processor detects tininess before rounding occurs. (impl. dep.

#55-V8-Cs10)

TABLE 8-1 summarizes what happens when an exact unrounded value u satisfying

0 < u| < smallest normalized number

would round, if no trap intervened, to a rounded value r which might be zero, subnormal, or the
smallest normalized value.

TABLE8-1  Floating-Point Underflow Behavior (Tininess Detected Before Rounding)

Underflow trap: [ufm =1 ufm =0 ufm =0
Inexact trap: |nxm =X nxm=1 nxm =0
r is minimum normal None None None
u=r |rissubnormal UF None None
r is zero None None None
r is minimum normal UF NX uf nx
u#r |rissubnormal UF NX uf nx
r is zero UF NX uf nx
UF = fp_exception_ieee_754 trap with cexc.ufc =1
NX = fp_exception_ieee_754 trap with cexc.nxc =1
uf = cexc.ufc =1, aexc.ufa = 1, no fp_exception_ieee_754 trap
nx = cexc.nxc = 1, aexc.nxa = 1, no fp_exception_ieee_754 trap
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8.2.1

8.2.2

Trapped Underflow Definition (ufm =1)

Since tininess is detected before rounding, trapped underflow occurs when the exact unrounded
result has magnitude between zero and the smallest normalized number in the destination format.

Note | The wrapped exponent results intended to be delivered on
trapped underflows and overflows in IEEE 754 are irrelevant to
the UltraSPARC Architecture at the hardware, hyperprivileged,
and privileged software levels. If they are created at all, it
would be by user software in a nonprivileged-mode trap
handler.

Untrapped Underflow Definition (ufm = 0)

Untrapped underflow occurs when the exact unrounded result has magnitude between zero and the
smallest normalized number in the destination format and the correctly rounded result in the
destination format is inexact.

8.3

Integer Overflow Definition

» F<sdq>TOi — When a NaN, infinity, large positive argument = 28 or large negative argument < —
(231 + 1) is converted to an integer, the invalid_current (nvc) bit of FSR.cexc is set to 1, and if the
floating-point invalid trap is enabled (FSR.tem.nvm = 1), the fp_exception_IEEE_754 exception is
raised. If the floating-point invalid trap is disabled (FSR.tem.nvm = 0), no trap occurs and a
numerical result is generated: if the sign bit of the operand is 0, the result is 231 _1; if the sign bit
of the operand is 1, the result is 31

» F<sdq>TOx — When a NaN, infinity, large positive argument = 293, or large negative argument <
—(263 + 1) is converted to an extended integer, the invalid_current (nvc) bit of FSR.cexc is set to 1,
and if the floating-point invalid trap is enabled (FSR.tem.nvm = 1), the fp_exception_IEEE_754
exception is raised. If the floating-point invalid trap is disabled (FSR.tem.nvm = 0), no trap occurs

and a numerical result is generated: if the s §n bit of the operand is 0, the result is 203 _1 ; if the
sign bit of the operand is 1, the result is 263,

8.4

Floating-Point Nonstandard Mode

If implemented, floating-point nonstandard mode is enabled by setting FSR.ns = 1 (see Nonstandard
Floating-Point (ns) on page 45).

An UltraSPARC Architecture 2007 processor may choose to implement nonstandard floating-point
mode in order to obtain higher performance in certain circumstances. For example, when FSR.ns =1
an implementation that processes fully normalized operands more efficiently than subnormal
operands may convert a subnormal floating-point operand or result to zero.

Implementation | UltraSPARC Architecture virtual processors are strongly
Note | discouraged from implementing a nonstandard floating-point
mode.

Implementations are encouraged to support standard IEEE 754
floating-point arithmetic with reasonable performance in all
cases, even if some cases are slower than others.
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Assuming that nonstandard floating-point mode is implemented, the effects of FSR.ns =1 are as
follows:

» IMPL. DEP. #18-V8-Ms10(a): When FSR.ns = 1 and a floating-point source operand is subnormal, an
implementation may treat the subnormal operand as if it were a floating-point zero value of the
same sign.

The cases in which this replacement is performed are implementation dependent. However, if it
occurs,

(1) it should not apply to FABS, FMOV, or FNEG instructions and

(2) FADD, FSUB, and FCMP should give identical treatment to subnormal source operands.
Treating a subnormal source operand as zero may generate an IEEE 754 floating-point “inexact”,
“division by zero”, or “invalid” condition (see Current Exception (cexc) on page 48). Whether the
generated condition(s) trigger an fp_exception_ieee_754 exception or not depends on the setting of
FSR.tem.

» IMPL. DEP. #18-V8-Ms10(b): When a floating-point operation generates a subnormal result value,
an UltraSPARC Architecture 2007 implementation may either write the result as a subnormal value
or replace the subnormal result by a floating-point zero value of the same sign and generate IEEE
754 floating-point “inexact” and “underflow” conditions. Whether these generated conditions
trigger an fp_exception_ieee_754 exception or not depends on the setting of FSR.tem.

» IMPL. DEP. #18-V8-Ms10(c): If an FPop generates an intermediate result value, the intermediate
value is subnormal, and FSR.ns =1, it is implementation dependent whether (1) the operation
continues, using the subnormal value (possibly with some loss of accuracy), or (2) the virtual
processor replaces the subnormal intermediate value with a floating-point zero value of the same
sign, generates IEEE 754 floating-point “inexact” and “underflow” conditions, completes the
instruction, and writes a final result (possibly with some loss of accuracy). Whether generated IEEE
conditions trigger an fp_exception_ieee_754 exception or not depends on the setting of FSR.tem.

If GSR.im =1, then the value of FSR.ns is ignored and the processor operates as if FSR.ns =0
(see page 56).

8.5 Arithmetic Result Tables

This section contains detailed tables, showing the results produced by various floating-point
operations, depending on their source operands.

Notes on source types:

» Nn is a number in F[rsn], which may be normal or subnormal.

» QNaN#n and SNaNn are Quiet and Signaling Not-a-Number values in F[rsn], respectively.

Notes on result types:

» R: (rounded) result of operation, which may be normal, subnormal, zero, or infinity. May also cause
OF, UFE, NX, unfinished.

» dQNaN is the generated default Quiet NaN (sign = 0, exponent = all 1s, fraction = all 1s). The sign
of the default Quiet NaN is zero to distinguish it from storage initialized to all ones.

» QSNaNn is the Signalling NaN operand from F[rsn] with the Quiet bit asserted
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8.5.1 Floating-Point Add (FADD)

TABLE 8-2 Floating-Point Add operation (F[rs1] + F[rs2])

Firs2)
-0 | -N2 | -0 | +0 | +N2 +00 ONaN2 | SNaN2
o o dQNaN,
NV
-N1 -R -N1 +R*
-0 N2 | -0 | 0 | +N2
+0 +0** +0 QNaN2 SNaN2
Firs1) +N1 +R* +N1 +R Q Nz\iz '
oo dQNaN, oo
NV
QNaN1 QNaN1
QSNaN1,
SNaN1 NV

* if N1 =-N2, then **

**  result is +0 unless rounding mode is round to -0, in which case the result is -0

For the FADD instructions, R may be any number; its generation may cause OF, UF, and/or NX.

Floating-point add is not commutative when both operands are NaN.

8.5.2 Floating-Point Subtract (FSUB)

TABLE 8-3 Floating-Point Subtract operation (F[rs1] — F[rs2])

Firs2)
—0 -N2 | -0 | +0 | +N2 | +00 ONaN2 | SNaN2
o faQnaN, N
NV
-N1 +R* -N1 -R
-0 +N2 +0** -0 -N2
+0 +0 +0** QNaN2
Firs1 QSNaN2,
(rsij +N1 +R +N1 +R* NV
+00 +00 dQ]i]\T\?N,
ONaN1 QNaN1
QSNaN1,
SNaN1 NV

*  ifN1=N2, then **

** result is +0 unless rounding mode is round to =09, in which case the result is -0

For the FSUB instructions, R may be any number; its generation may cause OF, UF, and/or NX.

Note that —x # 0-x when x is zero or NaN.
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8.5.3 Floating-Point Multiply

TABLE 8-4 Floating-Point Multiply operation (F[rs1] x F[rs2])

Firs2]
—o0 N2 -0 | +0 +N2 | +o0 ONaN2 | SNaN2
o o0 dQNaN, .
NV
-N1 +R -R
-0 dQNaN, +0 -0 dQNaN,
+0 NV -0 +0 NV 1 oNan2 QNaN2
a 7
F[rS]-] + N1 -R +R NV
+00 -00 dQliI\I\jN, +00
QNaN1 QNaN1
QSNaN1,
SNaN1 NV

R may be any number; its generation may cause OF, UF, and/or NX.

Floating-point multiply is not commutative when both operands are NaN.

FsMULd (FAMULq) never causes OF, UF, or NX.

A NaN input operand to FsMULd (FAMULq) must be widened to produce a double-precision (quad-
precision) NaN output, by filling the least-significant bits of the NaN result with zeros.

8.5.4 Floating-Point Multiply-Add (FMADD

First refer to the Floating-Point Multiply table (TABLE 8-4 on page 318) to select a row in the table

below.
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8.5.5

TABLE 8-5 Floating-Point Multiply-Add ((F[rs1] x F[rs2]) + F[rs3])
Firs3)
—0 | -N3 | -0 | +0 | +N3 +00 ONaN3 | SNaN3
-0 o0 dQNaN,
NV
-N -R -N +R*
-0 -N3 -0 +0** +N3
+0 +(0** +0
QNaN3
+N +R* +N +R
. dQNaN, +00
sy ™ NV QSNaN3,
FIrs2] | QNaN1 QNaN1 NV
QNaN2 QNaN?2
QNaN dQNaN, QNaN3,
(0 x *00) NV#* NV
QSNaN1 QSNaN1,
NV***
QSNaN2 QSNaN2,
NV***

*  if N =-N3, then *

*

** result is +0 unless rounding mode is round to —oo, in which case the result is -0

% jif FSR.nvm = 1, FSR.NvC « 1, the trap occurs, and FSR.aexc is left unchanged; otherwise, FSR.nvm = 0
so FSR.nva « 1 and for FMADD FSR.nvc « 1.

In the above table, R may be any number; its generation may cause OF, UF, and/or NX

The multiply operation in fused floating-point multiply-add (FMADD) instructions cannot cause

inexact, underflow, or overflow exceptions.

See the earlier sections on Nonstandard Mode and unfinished_FPop for additional details.

Floating-Point Negative Multiply-Add (FNMADD)

First refer to the Floating-Point Multiply table (TABLE 8-4 on page 318) to select a row in the table

below.
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8.5.6

TABLE 8-6 Floating-Point Negative Multiply-Add (—(F[rs1] x F[rs2])— F[rs3])

Firs3)
—0 | -N3 | -0 | +0 | +N3 +00 ONaN3 | SNan3
oo +00 dQNaN,
NV
-N +R +N +R*
-0 +N3 +0 +0** -N3
+0 0" | -0
QNaN3
+N +R* -N -R
oo dQNaN, oo
Firsh) NV QSNaN3,
Firs2] QNaN1 QNaN1 NV
QNaN2 QNaN?2
QNaN dQNaN, QNaN3
(0 x *00) NV##* NV
QSNaN1 QSNaN1,
NV#**
QSNaN2 QSNaN2,
NV***
* if N = -N3, then **
3 result is +0 unless rounding mode is round to —, in which case the result is -0

** if FSR.nvm =1, FSR.nvc « 1, the trap occurs, and FSR.aexc is left unchanged; otherwise, FSR.nvm =0 so
FSR.nva — 1 and for FMADD FSR.nvc - 1.

R may be any number; its generation may cause OF, UF, and/or NX

The multiply operation in fused floating-point negative multiply-add (FNMADD) instructions cannot
cause inexact, underflow, or overflow exceptions.

Note that rounding occurs after the negation. Thus, when the rounding mode is towards *oo,
FNMADD is not equivalent to FMADD followed by FNEG.

See the earlier sections on Nonstandard Mode and unfinished_FPop for additional details.

Floating-Point Multiply-Subtract (FMSUB)

First refer to the Floating-Point Multiply table (TABLE 8-4 on page 318) to select a row in the table
below.
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TABLE 8-7 Floating-Point Multiply-Subtract ((F[rs1] x F[rs2])— F[rs3])

Firs3j
—00 -N3 | -0 | +0 | +N3 | +00 QNaN3 SNaN3
— |dQNaN, o
NV
-N +R* -N -R
-0 +N3 +0** -0 -N3
0 +0 | 0%
N +R +N R QNaNS
oo +00 dQNaN,
Firsly NV QSNaNs3,
ONaN2 QNaN2
QNaN dQNaN, QNaN3,
(20 x +00) NV NV %
QSNaN1 QSNaNT1,
NV***
QSNaN2 QSNaN2,
NV***

* if N = N3, then **
**  result is +0 unless rounding mode is round to -, in which case the result is -0

% if FSR.nvm =1, FSR.nvc « 1, the trap occurs, and FSR.aexc is left unchanged; otherwise, FSR.nvm =0
so FSR.nva ~ 1 and for FMSUB FSR.nvc ~ 1.

R may be any number; its generation may cause OF, UF, and/or NX.

The multiply operation in fused floating-point multiply-subtract (FMSUB) instructions cannot cause
inexact, underflow, or overflow exceptions.

See the earlier sections on Nonstandard Mode and unfinished_FPop for additional details.

8.5.7 Floating-Point Negative Multiply-Subtract (FNMSUB)

First refer to the Floating-Point Multiply table (TABLE 8-4 on page 318) to select a row in the table
below.
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TABLE 8-8 Floating-Point Negative Multiply-Subtract ( — (F[rs1] x F[rs2]) + F[rs3] )

Firs3)
—0 -N3 | -0 | +0 | +N3 +00 ONaN3 | SNaN3
~ dQNaN,
* NV +o0
-N +R* +N +R
-0 -N3 +0** +0 +N3
+0 -0 | 0%
QNaN3
+N -R -N +R*
oo -0 dQNaN,
F[rxs 1] NV QSNaN3,
Firs2] | QNaN1 QNaN1 NV
QNaN2 QNaN2
QNaN dQNaN, QNaN3,
(0 x +00) NV NV k%
QSNaN1 QSNaN1,
NV***
QSNaN2 QSNaN2,
NV***

* if N = N3, then **

*3%

result is +0 unless rounding mode is round to —, in which case the result is -0

*** if FSR.nvm =1, FSR.nvCc — 1, the trap occurs, and FSR.aexc is left unchanged; otherwise, FSR.nvm =0
so FSR.nva ~ 1 and for FNMSUB FSR.nvc — 1.

R may be any number; its generation may cause OF, UF, and/or NX.

The multiply operation in fused floating-point negative multiply-subtract (FNMSUB) instructions
cannot cause inexact, underflow, or overflow exceptions.

Note that rounding occurs after the negation. Thus, FNMSUB is not equivalent to FMSUB followed by

FNEG when the rounding mode is towards *c.

See the earlier sections on Nonstandard Mode and unfinished_FPop for additional details.
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8.5.8 Floating-Point Divide (FDIV)

TABLE 8-9 Floating-Point Divide operation (F[rs1] + F[rs2])
Firs2)
-0 -N2 -0 +0 | + N2 +00 QNaN2 SNaN2
-0 dQNaN, +00 —00 dQNaN,
NV NV
-N1 +R +00, —00, -R
DZ DZ
-0 +0 dQNaN, -0
\Y%
+0 -0 N +0 QNaN2
SNaN2,
Firsll | +na R 00, +00, +R . NV
DZ DZ
+00 dQNaN, —c0 +00 dQNaN,
NV NV
QNaN1 QNaN1
SNaN1 QSNaNT1,
NV

R may be any number; its generation may cause OF, UF, and/or NX.

8.5.9 Floating-Point Square Root (FSQRT)

TABLE8-10  Floating-Point Square Root operation (J/F[rs2] )
Firs2
-00 -N2 -0 +0 +N2 +00 QNaN2 SNaN2
dQNaN, -0 +0 +R +00 QNaN2 [QSNaN2,
NV NV

R may be any number; its generation may cause NX.

Square root cannot cause DZ, OF, or UF.

CHAPTER 8 « |IEEE Std 754-1985 Requirements for UltraSPARC Architecture 2007 323




8.5.10  Floating-Point Compare (FCMP, FCMPE)

TABLE8-11  Floating-Point Compare (FCMP, FCMPE) operation (F[rs1] ? F[rs2])

Firs2]
-00 -N2 | -0 | +0 | +N2 | +00 QNaN2 SNaN2
—00 O
-N1 0,1,2 1
-0
0
+0
F[I’Sl] +N1 2 0,1,2
+00 0
QNaN1 3,
NV*
SNaN1 3,
NV

* NV for FCMPE, but not for FCMP.

TABLE8-12  FSR.fcc Encoding for Result of FCMP, FCMPE

fcc result meaning
0 =
1 <
2 >
3 unordered

NaN is considered to be unequal to anything else, even the identical NaN bit pattern.

FCMP /FCMPE cannot cause DZ, OF, UF, NX.

8.5.11 Floating-Point to Floating-Point Conversions
(F<s1d1g>TO<s|dIq>)

TABLE 8-13  Floating-Point to Float-Point Conversions (convert(F[rs2]))

Firs2]
-SNaN2 | -QNaN2 | -co -N2 -0 +0 +N2 +00 | +QNaN2 | +SNaN2
—-QSNaN2,|-QNaN2| - -R -0 +0 +R +o00  |+QNaN2|+QSNaN2,
NV NV

For FsTOd:
» the least-significant fraction bits of a normal number are filled with zero to fit in double-precision

format
» the least-significant bits of a NaN result operand are filled with zero to fit in double-precision

format

For FsTOq and FdTOgq:

» the least-significant fraction bits of a normal number are filled with zero to fit in quad-precision
format
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» the least-significant bits of a NaN result operand are filled with zero to fit in quad-precision format

For FqTOs and FdTOs:

= the fraction is rounded according to the current rounding mode

» the lower-order bits of a NaN source are discarded to fit in single-precision format; this discarding

is not considered a rounding operation, and will not cause an NX exception

For FqTOd:

» the fraction is rounded according to the current rounding mode

» the least-significant bits of a NaN source are discarded to fit in double-precision format; this
discarding is not considered a rounding operation, and will not cause an NX exception

TABLE 8-14  Floating-Point to Float-Point Conversion Exception Conditions

NV

SNaN operand

OF

FdTOs, FqTOs: the input is larger than can be expressed in single precision
FqTOd: the input is larger than can be expressed in double precision
does not occur during other conversion operations

UF

FdTOs, FqTOs: the input is smaller than can be expressed in single precision
FqTOd: the input is smaller than can be expressed in double precision
does not occur during other conversion operations

NX

8.5.12 Floating-Point to Integer Conversions (F<s|d | g>TO<ilx>)

FdTOs, FqTOs: the input fraction has more significant bits than can be held in a
single precision fraction

FqTOd: the input fraction has more significant bits than can be held in a double
precision fraction

does not occur during other conversion operations

TABLE 8-15  Floating-Point to Integer Conversions (convert(F[rs2]))
Firs2)
-SNaN2 | -QNaN2 | -0 -N2 -0 | +0 +N2 +00 | +QNaN2 | +SNaN2
FdTOX 963 963 2631 263_1
Eggi NV NV NV NV
FATOI 31 31 R 0 R 21, 2311
Egg; NV NV NV NV

R may be any integer, and may cause NV, NX.

Float-to-Integer conversions are always treated as round-toward-zero (truncated).

These operations are invalid (due to integer overflow) under the conditions described in Infeger

Owerflow Definition on page 315.

TABLE8-16  Floating-point to Integer Conversion Exception Conditions

NV | ¢ SNaN operand
QNaN operand
oo operand
integer overflow

NX | » non-integer source (truncation occurred)

CHAPTER 8 « |IEEE Std 754-1985 Requirements for UltraSPARC Architecture 2007 325




8.5.13  Integer to Floating-Point Conversions (F<ilx>TO<s|d|qg>)

TABLE 8-17  Integer to Floating-Point Conversions (convert(F[rs2]))

Firs2)

—int 0 +int

-R +0 +R

R may be any number; its generation may cause NX.

TABLE 8-18  Floating-Point Conversion Exception Conditions

NX |  FxTOd, FxTOs, FiTOs (possible loss of precision)
* not applicable to FiTOd, FxTOq, or FiTOq (FSR.cexc will
always be cleared)
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CHAPTER 9

Memory

The UltraSPARC Architecture memory models define the semantics of memory operations. The
instruction set semantics require that loads and stores behave as if they are performed in the order in
which they appear in the dynamic control flow of the program. The actual order in which they are
processed by the memory may be different. The purpose of the memory models is to specify what
constraints, if any, are placed on the order of memory operations.

The memory models apply both to uniprocessor and to shared memory multiprocessors. Formal
memory models are necessary for precise definitions of the interactions between multiple virtual
processors and input/output devices in a shared memory configuration. Programming shared
memory multiprocessors requires a detailed understanding of the operative memory model and the
ability to specify memory operations at a low level in order to build programs that can safely and
reliably coordinate their activities. For additional information on the use of the models in
programming real systems, see Programming with the Memory Models, contained in the separate volume
UltraSPARC Architecture Application Notes.

This chapter contains a great deal of theoretical information so that the discussion of the UltraSPARC
Architecture TSO memory model has sufficient background.

This chapter describes memory models in these sections:

» Memory Location Identification on page 327.

= Memory Accesses and Cacheability on page 328.

» Memory Addressing and Alternate Address Spaces on page 330.

= SPARC V9 Memory Model on page 333.

s The UltraSPARC Architecture Memory Model — TSO on page 335.
» Nonfaulting Load on page 342.

s Store Coalescing on page 342.

9.1

Memory Location Identification

A memory location is identified by an 8-bit address space identifier (ASI) and a 64-bit memory
address. The 8-bit ASI can be obtained from an ASI register or included in a memory access
instruction. The ASI used for an access can distinguish among different 64-bit address spaces, such as
Primary memory space, Secondary memory space, and internal control registers. It can also apply
attributes to the access, such as whether the access should be performed in big- or little-endian byte
order, or whether the address should be taken as a virtual, real, or physical address.
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9.2

9.2.1

Memory Accesses and Cacheability

Memory is logically divided into real memory (cached) and I/O memory (noncached with and
without side effects) spaces.

Real memory stores information without side effects. A load operation returns the value most recently
stored. Operations are side-effect-free in the sense that a load, store, or atomic load-store to a location
in real memory has no program-observable effect, except upon that location (or, in the case of a load
or load-store, on the destination register).

I/O locations may not behave like memory and may have side effects. Load, store, and atomic load-
store operations performed on I/O locations may have observable side effects, and loads may not
return the value most recently stored. The value semantics of operations on I/O locations are not
defined by the memory models, but the constraints on the order in which operations are performed is
the same as it would be if the I/O locations were real memory. The storage properties, contents,
semantics, ASI assignments, and addresses of 1/O registers are implementation dependent.

Coherence Domains

Two types of memory operations are supported in the UltraSPARC Architecture: cacheable and
noncacheable accesses. The manner in which addresses are differentiated is implementation
dependent. In some implementations, it is indicated in the page translation entry (TTE.cp), while in
other implementations, it is indicated by a bit in the physical address.

Although SPARC V9 does not specify memory ordering between cacheable and noncacheable
accesses, the UltraSPARC Architecture maintains TSO ordering between memory references
regardless of their cacheability.

9.2.1.1 Cacheable Accesses

Accesses within the coherence domain are called cacheable accesses. They have these properties:

» Data reside in real memory locations.
» Accesses observe supported cache coherency protocol(s).
= The cache line size is 2" bytes (where 1 2 4), and can be different for each cache.

9.2.1.2 Noncacheable Accesses

Noncacheable accesses are outside of the coherence domain. They have the following properties:

= Data might not reside in real memory locations. Accesses may result in programmer-visible side
effects. An example is memory-mapped I/O control registers.

» Accesses do not observe supported cache coherency protocol(s).

s The smallest unit in each transaction is a single byte.

The UltraSPARC Architecture MMU optionally includes an attribute bit in each page translation,
TTE.e, which when set signifies that this page has side effects.

Noncacheable accesses without side effects (TTE.e = 0) are processor-consistent and obey TSO
memory ordering. In particular, processor consistency ensures that a noncacheable load that
references the same location as a previous noncacheable store will load the data from the previous
store.

Noncacheable accesses with side effects (TTE.e = 1) are processor consistent and are strongly ordered.
These accesses are described in more detail in the following section.
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9.2.1.3 Noncacheable Accesses with Side-Effect

Loads, stores, and load-stores to I/O locations might not behave with memory semantics. Loads and
stores could have side effects; for example, a read access could clear a register or pop an entry off a
FIFO. A write access could set a register address port so that the next access to that address will read
or write a particular internal register. Such devices are considered order sensitive. Also, such devices
may only allow accesses of a fixed size, so store merging of adjacent stores or stores within a 16-byte
region would cause an error (see Store Coalescing on page 342).

Noncacheable accesses (other than block loads and block stores) to pages with side effects (TTE.e = 1)
exhibit the following behavior:

» Noncacheable accesses are strongly ordered with respect to each other. Bus protocol should
guarantee that IO transactions to the same device are delivered in the order that they are received.

= Noncacheable loads with the TTE.e bit = 1 will not be issued to the system until all previous
instructions have completed, and the store queue is empty.

» Noncacheable store coalescing is disabled for accesses with TTE.e = 1.

» A MEMBAR may be needed between side-effect and non-side-effect accesses. See TABLE 9-3 on page
340.

Whether block loads and block stores adhere to the above behavior or ignore TTE.e and always
behave as if TTE.e = 0 is implementation-dependent (impl. dep. #410-510, #411-510).

On UltraSPARC Architecture virtual processors, noncacheable and side-effect accesses do not observe
supported cache coherency protocols (impl. dep. #120).

Non-faulting loads (using ASI _PRI MARY_NO_FAULT[_LI TTLE] or
AS| _SECONDARY_NO _FAULT[_LI TTLE]) with the TTE.e bit =1 cause a DAE_side_effect_page trap.

Prefetches to noncacheable addresses result in nops.

The processor does speculative instruction memory accesses and follows branches that it predicts are
taken. Instruction addresses mapped by the MMU can be accessed even though they are not actually
executed by the program. Normally, locations with side effects or that generate timeouts or bus errors
are not mapped as instruction addresses by the MMU, so these speculative accesses will not cause
problems.

IMPL. DEP. #118-V9: The manner in which I/O locations are identified is implementation dependent.

IMPL. DEP. #120-V9: The coherence and atomicity of memory operations between virtual processors
and I/O DMA memory accesses are implementation dependent.

V9 Compatibility | Operations to I/O locations are not guaranteed to be
Note | sequentially consistent among themselves, as they are in SPARC
V8.

Systems supporting SPARC V8 applications that use memory-mapped I/0O locations must ensure that
SPARC V8 sequential consistency of I/O locations can be maintained when those locations are
referenced by a SPARC V8 application. The MMU either must enforce such consistency or cooperate
with system software or the virtual processor to provide it.

IMPL. DEP. #121-V9: An implementation may choose to identify certain addresses and use an
implementation-dependent memory model for references to them.
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9.3

9.3.1

Memory Addressing and Alternate Address
Spaces

An address in SPARC V9 is a tuple consisting of an 8-bit address space identifier (ASI) and a 64-bit
byte-address offset within the specified address space. Memory is byte-addressed, with halfword
accesses aligned on 2-byte boundaries, word accesses (which include instruction fetches) aligned on 4-
byte boundaries, extended-word and doubleword accesses aligned on 8-byte boundaries, and
quadword quantities aligned on 16-byte boundaries. With the possible exception of the cases
described in Memory Alignment Restrictions on page 83, an improperly aligned address in a load, store,
or load-store instruction always causes a trap to occur. The largest datum that is guaranteed to be
atomically read or written is an aligned doubleword!. Also, memory references to different bytes,
halfwords, and words in a given doubleword are treated for ordering purposes as references to the
same location. Thus, the unit of ordering for memory is a doubleword.

Notes | The doubleword is the coherency unit for update, but
programmers should not assume that doubleword floating-point
values are updated as a unit unless they are doubleword-aligned
and always updated with double-precision loads and stores.
Some programs use pairs of single-precision operations to load
and store double-precision floating-point values when the
compiler cannot determine that they are doubleword aligned.

Also, although quad-precision operations are defined in the
SPARC V9 architecture, the granularity of loads and stores for
quad-precision floating-point values may be word or
doubleword.

Memory Addressing Types

The UltraSPARC Architecture supports the following types of memory addressing:

Virtual Addresses (VA). Virtual addresses are addresses produced by a virtual processor that
maps all systemwide, program-visible memory. Virtual addresses are translated by the MMU in order
to locate data in physical memory. Virtual addresses can be presented in nonprivileged mode and
privileged mode, or in hyperprivileged mode using the ASI _AS_| F_USER* ASI variants.

Real addresses (RA). A real address is provided to privileged software to describe the underlying
physical memory allocated to it. Translation storage buffers (TSBs) maintained by privileged software
are used to translate privileged or nonprivileged mode virtual addresses into real addresses. MMU
bypass addresses in privileged mode are also real addresses.

Physical addresses (PA). A physical address is one that appears on the system bus and is the same
as the physical addresses in legacy architectures. Hyperprivileged software is responsible for
managing the translation of real addresses into physical addresses.

Nonprivileged software only uses virtual addresses. Privileged software uses virtual and real
addresses. Hyperprivileged software uses physical addresses, except when the explicit
ASI _AS | F_USER* or ASI _* REAL* ASI variants are used for load and store alternate instructions.

I Two exceptions to this are the special ASI _TW N_DW NUCLEUS[ _L] and ASI _TW NX_REAL[ _L] which provide hardware support
for an atomic quad load to be used for TTE loads from TSBs.
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9.3.2

9.3.3

Memory Address Spaces

The UltraSPARC Architecture supports accessing memory using virtual, real, or physical addresses.
Multiple virtual address spaces within the same real address space are distinguished by a context
identifier (context ID). Multiple real address spaces within the same physical address space are
distinguished by a partition identifier (partition ID).

Privileged software can create multiple virtual address spaces, using the primary and secondary
context registers to associate a context ID with every virtual address. Privileged software manages the
allocation of context IDs.

Hyperprivileged software can create multiple real address spaces, using the partition register to
associate a partition ID with every real address. Hyperprivileged software manages the allocation of
partition IDs.

IMPL. DEP. #___ The number of bits in the partition register is implementation dependent.

The full representation of each type of address is as follows:
real_address = context_ID :: virtual_address

physical_address = partition ID :: real_address
or
physical_address = partition ID :: context ID :: virtual_address

Address Space Identifiers

The virtual processor provides an address space identifier with every address. This ASI may serve
several purposes:

» To identify which of several distinguished address spaces the 64-bit address offset is addressing

» To provide additional access control and attribute information, for example, to specify the
endianness of the reference

» To specify the address of an internal control register in the virtual processor, cache, or memory
management hardware

Memory management hardware can associate an independent 2°4-byte memory address space with

each ASI. In practice, the three independent memory address spaces (contexts) created by the MMU
are Primary, Secondary, and Nucleus.

Programming | Independent address spaces, accessible through ASIs, make it
Note | possible for system software to easily access the address space of

faulting software when processing exceptions or to implement
access to a client program’s memory space by a server program.

Alternate-space load, store, load-store and prefetch instructions specify an explicit ASI to use for their
data access. The behavior of the access depends on the current privilege mode.

Non-alternate space load, store, load-store, and prefetch instructions use an implicit ASI value that is
determined by current virtual processor state (the current privilege mode, trap level (TL), and the
value of the PSTATE.cle). Instruction fetches use an implicit ASI that depends only on the current
mode and trap level.

The architecturally specified ASIs are listed in Chapter 10, Address Space Identifiers (ASIs). The
operation of each ASI in nonprivileged, privileged and hyperprivileged modes is indicated in
TABLE 10-1 on page 347.

Attempts by nonprivileged software (PSTATE.priv = 0 and HPSTATE.hpriv = 0) to access restricted
ASIs (ASI bit 7 = 0) cause a privileged_action exception. Attempts by privileged software
(PSTATE.priv =1 and HPSTATE.hpriv = 0) to access ASIs 30;¢—7F;4 cause a privileged_action exception.
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When TL = 0, normal accesses by the virtual processor to memory when fetching instructions and

performing loads and stores implicitly specify ASI _PRI MARY or ASI _PRI MARY_LI TTLE, depending

on the setting of PSTATE.cle.

When TL =1 or 2 (> 0 but < MAXPTL), the implicit ASI in privileged mode is:

» for instruction fetches, ASI _NUCLEUS

» for loads and stores, ASI _NUCLEUS if PSTATE.cle = 0 or ASI _NUCLEUS_LI TTLE if PSTATE.cle =1
(impl. dep. #124-V9).

In hyperprivileged mode, all instruction fetches and loads and stores with implicit ASIs use a physical
address, regardless of the value of TL.

SPARC V9 supports the PRI MARY[_LI TTLE], SECONDARY[_LI TTLE], and NUCLEUS[_LI TTLE]
address spaces.

Accesses to other address spaces use the load/store alternate instructions. For these accesses, the ASI
is either contained in the instruction (for the register+register addressing mode) or taken from the ASI
register (for register+immediate addressing).

ASIs are either nonrestricted, restricted-to-privileged, or restricted-to-hyperprivileged:

» A nonrestricted ASI (ASI range 8014 — FFy¢) is one that may be used independently of the privilege
level (PSTATE.privand HPSTATE.hpriv) at which the virtual processor is running.

» A restricted-to-privileged ASI (ASI range 00,4 — 2F¢4) requires that the virtual processor be in
privileged or hyperprivileged mode for a legal access to occur.

» A restricted-to-hyperprivileged ASI (ASI range 3014 — 7F1¢) requires that the virtual processor be in
hyperprivileged mode for a legal access to occur.

The relationship between virtual processor state and ASI restriction is shown in TABLE 9-1.

TABLE9-1  Allowed Accesses to ASIs

Result of ASI Result of ASI Result of ASI
ASI Value Type Access in NP Mode Access in P Mode Access in HP Mode
0016 — Restricted-to- privileged_action Valid Access Valid Access
2F14 privileged exception
3016 — 7F1¢ Restricted-to- privileged_action  privileged_action ~ Valid Access
hyperprivileged  exception exception
8016 — Nonrestricted Valid Access Valid Access Valid Access

FF1q

Some restricted ASIs are provided as mandated by SPARC V9:

ASI _AS_| F_USER_PRI MARY[ LI TTLE] and ASI _AS_| F_USER_SECONDARY|[ LI TTLE]. The intent
of these ASIs is to give privileged software efficient, yet secure access to the memory space of
nonprivileged software.

The normal address space is primary address space, which is accessed by the unrestricted

ASI| _PRI MARY[_LI TTLE] ASIs. The secondary address space, which is accessed by the unrestricted
AS| _SECONDARY[_LI TTLE] ASIs, is provided to allow server software to access client software’s
address space.

AS| _PRI MARY_NOFAULT[_LI TTLE] and ASI _ SECONDARY_NOFAULT[_LI TTLE] support nonfaulting
loads. These ASIs may be used to color (that is, distinguish into classes) loads in the instruction stream
so that, in combination with a judicious mapping of low memory and a specialized trap handler, an
optimizing compiler can move loads outside of conditional control structures.
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9.4

9.4.1

SPARC V9 Memory Model

The SPARC V9 processor architecture specified the organization and structure of a central processing
unit but did not specify a memory system architecture. This section summarizes the MMU support
required by an UltraSPARC Architecture processor.

The memory models specify the possible order relationships between memory-reference instructions
issued by a virtual processor and the order and visibility of those instructions as seen by other virtual
processors. The memory model is intimately intertwined with the program execution model for
instructions.

SPARC V9 Program Execution Model

The SPARC V9 strand model of a virtual processor consists of three units: an Issue Unit, a Reorder
Unit, and an Execute Unit, as shown in FIGURE 9-1.

Processor
Data Path
Issue | | Reorder [ | Execute
Unit Unit Unit Instruction Path Memory

FIGURE 9-1 Processor Model: Uniprocessor System

The Issue Unit reads instructions over the instruction path from memory and issues them in program
order to the Reorder Unit. Program order is precisely the order determined by the control flow of the
program and the instruction semantics, under the assumption that each instruction is performed
independently and sequentially.

Issued instructions are collected and potentially reordered in the Reorder Unit, and then dispatched to
the Execute Unit. Instruction reordering allows an implementation to perform some operations in
parallel and to better allocate resources. The reordering of instructions is constrained to ensure that
the results of program execution are the same as they would be if the instructions were performed in
program order. This property is called processor self-consistency.

Processor self-consistency requires that the result of execution, in the absence of any shared memory
interaction with another virtual processor, be identical to the result that would be observed if the
instructions were performed in program order. In the model in FIGURE 9-1, instructions are issued in
program order and placed in the reorder buffer. The virtual processor is allowed to reorder
instructions, provided it does not violate any of the data-flow constraints for registers or for memory.

The data-flow order constraints for register reference instructions are these:

1. An instruction that reads from or writes to a register cannot be performed until all earlier
instructions that write to that register have been performed (read-after-write hazard; write-after-
write hazard).
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2. An instruction cannot be performed that writes to a register until all earlier instructions that read
that register have been performed (write-after-read hazard).

V8 Compatibility | An implementation can avoid blocking instruction execution in
Note | case 2 and the write-after-write hazard in case 1 by using a
renaming mechanism that provides the old value of the register
to earlier instructions and the new value to later uses.

The data-flow order constraints for memory-reference instructions are those for register reference
instructions, plus the following additional constraints:

1. A memory-reference instruction that uses (loads or stores) the value at a location cannot be
performed until all earlier memory-reference instructions that set (store to) that location have been
performed (read-after-write hazard, write-after-write hazard).

2. A memory-reference instruction that writes (stores to) a location cannot be performed until all
previous instructions that read (load from) that location have been performed (write-after-read
hazard).

Memory-barrier instruction (MEMBAR) and the TSO memory model also constrain the issue of
memory-reference instructions. See Memory Ordering and Synchronization on page 339 and The
UltraSPARC Architecture Memory Model — TSO on page 335 for a detailed description.

The constraints on instruction execution assert a partial ordering on the instructions in the reorder
buffer. Every one of the several possible orderings is a legal execution ordering for the program. See
Appendix D, Formal Specification of the Memory Models, for more information.

Virtual Processor/Memory Interface Model

Each UltraSPARC Architecture virtual processor in a multiprocessor system is modeled as shown in
FIGURE 9-2; that is, having two independent paths to memory: one for instructions and one for data.
Memory Transactions

Virtual Processors in Memory Order

Instructions
M M Data

Instructions
Data

Memory

Instructions
1 M Data

FIGURE 9-2 Data Memory Paths: Multiprocessor System

Data caches are maintained by hardware so their contents always appear to be consistent (coherent).
Instruction caches are not required to be kept consistent with data caches and therefore require explicit
program (software) action to ensure consistency when a program modifies an executing instruction
stream. See Synchronizing Instruction and Data Memory on page 341 for details. Memory is shared in
terms of address space, but it may be nonhomogeneous and distributed in an implementation.
Mappilng and caches are ignored in the model, since their functions are transparent to the memory
model".

1 The model described here is only a model; implementations of UltraSPARC Architecture systems are unconstrained as long as their
observable behaviors match those of the model.
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In real systems, addresses may have attributes that the virtual processor must respect. The virtual
processor executes loads, stores, and atomic load-stores in whatever order it chooses, as constrained
by program order and the memory model. The ASI-address couples it generates are translated by a
memory management unit (MMU), which associates attributes with the address and may, in some
instances, abort the memory transaction and signal an exception to the virtual processor.

For example, a region of memory may be marked as nonprefetchable, noncacheable, read-only, or
restricted. It is the MMU's responsibility, working in conjunction with system software, to ensure that
memory attribute constraints are not violated. See implementation-specific MMU documentation for
detailed information about how this is accomplished in each UltraSPARC Architecture
implementation.

Instructions are performed in an order constrained by local dependencies. Using this dependency
ordering, an execution unit submits one or more pending memory transactions to the memory. The
memory performs transactions in memory order. The memory unit may perform transactions submitted
to it out of order; hence, the execution unit must not concurrently submit two or more transactions
that are required to be ordered, unless the memory unit can still guarantee in-order semantics.

The memory accepts transactions, performs them, and then acknowledges their completion. Multiple
memory operations may be in progress at any time and may be initiated in a nondeterministic fashion
in any order, provided that all transactions to a location preserve the per-virtual processor partial
orderings. Memory transactions may complete in any order. Once initiated, all memory operations are
performed atomically: loads from one location all see the same value, and the result of stores is visible
to all potential requestors at the same instant.

The order of memory operations observed at a single location is a total order that preserves the partial
orderings of each virtual processor’s transactions to this address. There may be many legal total
orders for a given program’s execution.

9.5

The UltraSPARC Architecture Memory Model —
TSO

The UltraSPARC Architecture is a model that specifies the behavior observable by software on
UltraSPARC Architecture systems. Therefore, access to memory can be implemented in any manner,
as long as the behavior observed by software conforms to that of the models described here.

The SPARC V9 architecture defines three different memory models: Total Store Order (TSO), Partial
Store Order (PSO), and Relaxed Memory Order (RMO).

All SPARC V9 processors must provide Total Store Order (or a more strongly ordered model, for
example, Sequential Consistency) to ensure compatibility for SPARC V8 application software.

All UltraSPARC Architecture virtual processors implement TSO ordering. The PSO and RMO models
from SPARC V9 are not described in this UltraSPARC Architecture specification. UltraSPARC
Architecture 2007 processors do not implement the PSO memory model directly, but all software
written to run under PSO will execute correctly on an UltraSPARC Architecture 2007 processor (using
the TSO model).

Whether memory models represented by PSTATE.mm = 10, or 11, are supported in an UltraSPARC
Architecture processor is implementation dependent (impl. dep. #113-V9-Ms10). If the 10, model is
supported, then when PSTATE.mm = 10, the implementation must correctly execute software that
adheres to the RMO model described in The SPARC Architecture Manual-Version 9. If the 11, model is
supported, its definition is implementation dependent and will be described in implementation-
specific documentation.
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Programs written for Relaxed Memory Order will work in both Partial Store Order and Total Store
Order. Programs written for Partial Store Order will work in Total Store Order. Programs written for a
weak model, such as RMO, may execute more quickly when run on hardware directly supporting that
model, since the model exposes more scheduling opportunities, but use of that model may also
require extra instructions to ensure synchronization. Multiprocessor programs written for a stronger
model will behave unpredictably if run in a weaker model.

Machines that implement sequential consistency (also called "strong ordering" or "strong consistency")
automatically support programs written for TSO. Sequential consistency is not a SPARC V9 memory
model. In sequential consistency, the loads, stores, and atomic load-stores of all virtual processors are
performed by memory in a serial order that conforms to the order in which these instructions are
issued by individual virtual processors. A machine that implements sequential consistency may
deliver lower performance than an equivalent machine that implements TSO order. Although
particular SPARC V9 implementations may support sequential consistency, portable software must
not rely on the sequential consistency memory model.

Memory Model Selection

The active memory model is specified by the 2-bit value in PSTATE.mm,. The value 00, represents the
TSO memory model; increasing values of PSTATE.mm indicate increasingly weaker (less strongly
ordered) memory models.

Writing a new value into PSTATE.mm causes subsequent memory reference instructions to be
performed with the order constraints of the specified memory model.

IMPL. DEP. #119-Ms10: The effect of an attempt to write an unsupported memory model designation
into PSTATE.mm is implementation dependent; however, it should never result in a value of
PSTATE.mm value greater than the one that was written. In the case of an UltraSPARC Architecture
implementation that only supports the TSO memory model, PSTATE.mm always reads as zero and
attempts to write to it are ignored.

Programmer-Visible Properties of the UltraSPARC
Architecture TSO Model

Total Store Order must be provided for compatibility with existing SPARC V8 programs. Programs that
execute correctly in either RMO or PSO will execute correctly in the TSO model.

The rules for TSO, in addition to those required for self-consistency (see page 333), are:

» Loads are blocking and ordered with respect to earlier loads

» Stores are ordered with respect to stores.

» Atomic load-stores are ordered with respect to loads and stores.

= Stores cannot bypass earlier loads.

Programming | Loads can bypass earlier stores to other addresses, which
Note | maintains processor self-consistency.

Atomic load-stores are treated as both a load and a store and can only be applied to cacheable address
spaces.

Thus, TSO ensures the following behavior:

» Each load instruction behaves as if it were followed by a MEMBAR #LoadLoad and #LoadStore.
» Each store instruction behaves as if it were followed by a MEMBAR #St or eSt or e.

» Each atomic load-store behaves as if it were followed by a MEMBAR #LoadLoad, #LoadSt or e,
and #St or eSt or e.
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In addition to the above TSO rules, the following rules apply to UltraSPARC Architecture memory
models:

» A MEMBAR #St or eLoad must be used to prevent a load from bypassing a prior store, if Strong
Sequential Order (as defined in The UltraSPARC Architecture Memory Model — TSO on page 335) is
desired.

= Accesses that have side effects are all strongly ordered with respect to each other.

« A MEMBAR #Lookasi deP is not needed between a store and a subsequent load to the same
noncacheable address.

» Load (LDXA) and store (STXA) instructions that reference certain internal ASIs perform both an
intra-virtual processor synchronization (i.e. an implicit MEMBAR #Sync operation before the load
or store is executed) and an inter-virtual processor synchronization (that is, all active virtual
processors are brought to a point where synchronization is possible, the load or store is executed,
and all virtual processors then resume instruction fetch and execution). The model-specific PRM
should indicate which ASIs require intra-virtual processor synchronization, inter-virtual processor
synchronization, or both.

TSO Ordering Rules

TABLE 9-2 summarizes the cases where a MEMBAR must be inserted between two memory operations
on an UltraSPARC Architecture virtual processor running in TSO mode, to ensure that the operations
appear to complete in a particular order. Memory operation ordering is not to be confused with
processor consistency or deterministic operation; MEMBARs are required for deterministic operation
of certain ASI register updates.

Programming | To ensure software portability across systems, the MEMBAR
Note | rules in this section should be followed (which may be stronger
than the rules in SPARC V9).

TABLE 9-2 is to be read as follows: Reading from row to column, the first memory operation in program
order in a row is followed by the memory operation found in the column. Symbols used as table
entries:

» #— No intervening operation is required.

» M — an intervening MEMBAR #St or eLoad or MEMBAR #Sync or MEMBAR #Mem ssue is
required

» S — an intervening MEMBAR #Sync or MEMBAR #Mem ssue is required
= nc — Noncacheable
» e — Side effect

= ne — No side effect
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TABLE9-2  Summary of UltraSPARC Architecture Ordering Rules (TSO Memory Model)

To Memory Operation C (column):
[5)
Q

CI.)I CI')| Cl C| o [}
o |2 |le|2|csg |5
L o c 1| < I I o
s| 2| E|R S Ul o -csl o | B S
From Memory 8| o| ol o 2 I o a o o =
OperationR(fow): | 2 [ | |2 |2 |2 | @ |2 | & |2 | 2
load # # # S S # # # # S S
store M2 # # M S M # M # M S
atomic # # # M S # # # # M S
bload S S S S S S S S S S S
bstore M S M M S M S M S M S
load_nc_e # # # s s # # # # s s
store_nc_e s # # s s # # M2 # ™M s
load_nc_ne # # # s s # # # # s s
store_nc_ne s # # S s M2 # M2 #£ M s
bload_nc S S S s S S S S S S S
bstore_nc S S S s S M S M S M S

1. This table assumes that both noncacheable operations access the same device.

2. When the store and subsequent load access the same location, no intervening MEMBAR is required.

Note that transitivity applies; if operation X is always ordered before operation Y ("#" in TABLE 9-2)
and operation Y is always ordered before operation Z (again, "#" in the table), then the sequence of
operations X ... Y ... Z may safely be executed with no intervening MEMBAR, even if the table shows
that a MEMBAR is normally needed between X and Z. For example, a MEMBAR is normally needed
between a store and a load ("M" in TABLE 9-2); however, the sequence "store ... atomic ... load" may be
executed safely with no intervening MEMBAR because stores are always ordered before atomics and
atomics are always ordered before loads.

Hardware Primitives for Mutual Exclusion

In addition to providing memory-ordering primitives that allow programmers to construct mutual-
exclusion mechanisms in software, the UltraSPARC Architecture provides three hardware primitives
for mutual exclusion:

» Compare and Swap (CASA and CASXA)
» Load Store Unsigned Byte (LDSTUB and LDSTUBA)
= Swap (SWAP and SWAPA)

Each of these instructions has the semantics of both a load and a store in all three memory models.
They are all atomic, in the sense that no other store to the same location can be performed between the
load and store elements of the instruction. All of the hardware mutual-exclusion operations conform
to the TSO memory model and may require barrier instructions to ensure proper data visibility.

Atomic load-store instructions can be used only in the cacheable domains (not in noncacheable I/O
addresses). An attempt to use an atomic load-store instruction to access a noncacheable page results in
a DAE_nc_page exception.

The atomic load-store alternate instructions can use a limited set of the ASIs. See the specific
instruction descriptions for a list of the valid ASIs. An attempt to execute an atomic load-store
alternate instruction with an invalid ASI results in a DAE_invalid_asi exception.
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9.5.4.1 Compare-and-Swap (CASA, CASXA)

Compare-and-swap is an atomic operation that compares a value in a virtual processor register to a
value in memory and, if and only if they are equal, swaps the value in memory with the value in a
second virtual processor register. Both 32-bit (CASA) and 64-bit (CASXA) operations are provided.
The compare-and-swap operation is atomic in the sense that once it begins, no other virtual processor
can access the memory location specified until the compare has completed and the swap (if any) has
also completed and is potentially visible to all other virtual processors in the system.

Compare-and-swap is substantially more powerful than the other hardware synchronization
primitives. It has an infinite consensus number; that is, it can resolve, in a wait-free fashion, an infinite
number of contending processes. Because of this property, compare-and-swap can be used to
construct wait-free algorithms that do not require the use of locks. For examples, see Programming with
the Memory Models, contained in the separate volume UltraSPARC Architecture Application Notes.

9542 Swap (SWAP)

SWAP atomically exchanges the lower 32 bits in a virtual processor register with a word in memory.
SWAP has a consensus number of two; that is, it cannot resolve more than two contending processes
in a wait-free fashion.

9.5.4.3 Load Store Unsigned Byte (LDSTUB)

LDSTUB loads a byte value from memory to a register and writes the value FF;¢ into the addressed
byte atomically. LDSTUB is the classic test-and-set instruction. Like SWAP, it has a consensus number
of two and so cannot resolve more than two contending processes in a wait-free fashion.

Memory Ordering and Synchronization

The UltraSPARC Architecture provides some level of programmer control over memory ordering and
synchronization through the MEMBAR and FLUSH instructions.

MEMBAR serves two distinct functions in SPARC V9. One variant of the MEMBAR, the ordering
MEMBAR, provides a way for the programmer to control the order of loads and stores issued by a
virtual processor. The other variant of MEMBAR, the sequencing MEMBAR, enables the programmer
to explicitly control order and completion for memory operations. Sequencing MEMBARs are needed
only when a program requires that the effect of an operation becomes globally visible rather than
simply being scheduled.! Because both forms are bit-encoded into the instruction, a single MEMBAR
can function both as an ordering MEMBAR and as a sequencing MEMBAR.

The SPARC V9 instruction set architecture does not guarantee consistency between instruction and
data spaces. A problem arises when instruction space is dynamically modified by a program writing
to memory locations containing instructions (Self-Modifying Code). Examples are Lisp, debuggers,
and dynamic linking. The FLUSH instruction synchronizes instruction and data memory after
instruction space has been modified.

9.5.5.1 Ordering MEMBAR Instructions

Ordering MEMBAR instructions induce an ordering in the instruction stream of a single virtual
processor. Sets of loads and stores that appear before the MEMBAR in program order are ordered
with respect to sets of loads and stores that follow the MEMBAR in program order. Atomic operations
(LDSTUB(A), SWAP(A), CASA, and CASXA) are ordered by MEMBAR as if they were both a load and

a store, since they share the semantics of both. An STBAR instruction, with semantics that are a subset
1-Sequencing MEMBARs are needed for some input/output operations, forcing stores into specialized stable storage, context
switching, and occasional other system functions. Using a sequencing MEMBAR when one is not needed may cause a degradation of
performance. See Programming with the Memory Models, contained in the separate volume UltraSPARC Architecture Application Notes,
for examples of the use of sequencing MEMBARSs.
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of MEMBAR, is provided for SPARC V8 compatibility. MEMBAR and STBAR operate on all pending
memory operations in the reorder buffer, independently of their address or ASI, ordering them with
respect to all future memory operations. This ordering applies only to memory-reference instructions
issued by the virtual processor issuing the MEMBAR. Memory-reference instructions issued by other
virtual processors are unaffected.

The ordering relationships are bit-encoded as shown in TABLE 9-3. For example, MEMBAR 01,4,
written as “nmenbar #LoadlLoad” in assembly language, requires that all load operations appearing
before the MEMBAR in program order complete before any of the load operations following the
MEMBAR in program order complete. Store operations are unconstrained in this case. MEMBAR 08¢
(#St or eSt or e) is equivalent to the STBAR instruction; it requires that the values stored by store
instructions appearing in program order prior to the STBAR instruction be visible to other virtual
processors before issuing any store operations that appear in program order following the STBAR.

In TABLE 9-3 these ordering relationships are specified by the “<m” symbol, which signifies memory
order. See Appendix D, Formal Specification of the Memory Models, for a formal description of the <m
relationship.

TABLE9-3  Ordering Relationships Selected by Mask

Ordering Relation, Assembly Language Effective Behavior Mask nmask
Earlier <m Later Constant Mnemonic  in TSO model Value Bit #
Load <m Load #LoadLoad nop 0144 0
Store <m Load #St or eLoad #StoreLoad 024 1
Load <m Store #LoadSt ore nop 0414 2
Store <m Store #StoreStore nop 0816 3

Implementation | An UltraSPARC Architecture 2007 implementation that only
Note | implements the TSO memory model may implement
MEMBAR #LoadlLoad, MEMBAR #LoadSt or e, and
MEMBAR #8St or eSt or e as nops and MEMBAR #St or el oad
as a MEMBAR #Sync.

9.55.2 Sequencing MEMBAR Instructions

A sequencing MEMBAR exerts explicit control over the completion of operations. The three
sequencing MEMBAR options each have a different degree of control and a different application.

» Lookaside Barrier (deprecated) — Ensures that loads following this MEMBAR are from memory
and not from a lookaside into a write buffer. Lookaside Barrier requires that pending stores issued
prior to the MEMBAR be completed before any load from that address following the MEMBAR
may be issued. A Lookaside Barrier MEMBAR may be needed to provide lock fairness and to
support some plausible I/O location semantics. See the example in “Control and Status Registers”
in Programming with the Memory Models, contained in the separate volume UltraSPARC Architecture
Application Notes.

= Memory Issue Barrier — Ensures that all memory operations appearing in program order before
the sequencing MEMBAR complete before any new memory operation may be initiated. See the
example in “I/O Registers with Side Effects” in Programming with the Memory Models, contained in
the separate volume UltraSPARC Architecture Application Notes.

» Synchronization Barrier — Ensures that all instructions (memory reference and others) preceding
the MEMBAR complete and that the effects of any fault or error have become visible before any
instruction following the MEMBAR in program order is initiated. A Synchronization Barrier
MEMBAR fully synchronizes the virtual processor that issues it.

TABLE 9-4 shows the encoding of these functions in the MEMBAR instruction.
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TABLE9-4  Sequencing Barrier Selected by Mask

Sequencing Function Assembler Tag Mask Value cmask Bit #
Lookaside Barrier (deprecated) #Lookasi deP 1044 0
Memory Issue Barrier #Menl ssue 2044 1
Synchronization Barrier #Sync 4014 2

Implementation | In UltraSPARC Architecture 2007 implementations,
Note | MEMBAR #Lookasi deP and MEMBAR #Mem ssue are
typically implemented as a MEMBAR #Sync.

For more details, see the MEMBAR instruction on page 217 of Chapter 7, Instructions.

9.5.5.3 Synchronizing Instruction and Data Memory

The SPARC V9 memory models do not require that instruction and data memory images be consistent
at all times. The instruction and data memory images may become inconsistent if a program writes
into the instruction stream. As a result, whenever instructions are modified by a program in a context
where the data (that is, the instructions) in the memory and the data cache hierarchy may be
inconsistent with instructions in the instruction cache hierarchy, some special programmatic
(software) action must be taken.

The FLUSH instruction will ensure consistency between the in-flight instruction stream and the data
references in the virtual processor executing FLUSH. The programmer must ensure that the
modification sequence is robust under multiple updates and concurrent execution. Since, in general,
loads and stores may be performed out of order, appropriate MEMBAR and FLUSH instructions must
be interspersed as needed to control the order in which the instruction data are modified.

The FLUSH instruction ensures that subsequent instruction fetches from the doubleword target of the
FLUSH by the virtual processor executing the FLUSH appear to execute after any loads, stores, and
atomic load-stores issued by the virtual processor to that address prior to the FLUSH. FLUSH acts as
a barrier for instruction fetches in the virtual processor on which it executes and has the properties of
a store with respect to MEMBAR operations.

IMPL. DEP. #122-V9: The latency between the execution of FLUSH on one virtual processor and the
point at which the modified instructions have replaced outdated instructions in a multiprocessor is
implementation dependent.

Programming | Because FLUSH is designed to act on a doubleword and

Note | because, on some implementations, FLUSH may trap to system
software, it is recommended that system software provide a
user-callable service routine for flushing arbitrarily sized regions
of memory. On some implementations, this routine would issue
a series of FLUSH instructions; on others, it might issue a single
trap to system software that would then flush the entire region.

On an UltraSPARC Architecture virtual processor:

» A FLUSH instruction causes a synchronization with the virtual processor, which flushes the
instruction pipeline in the virtual processor on which the FLUSH instruction is executed.

CHAPTER 9 « Memory 341



» Coherency between instruction and data memories may or may not be maintained by hardware. If
it is, an UltraSPARC Architecture implementation may ignore the address in the operands of a
FLUSH instruction.

Programming | UltraSPARC Architecture virtual processors are not required to
Note | maintain coherency between instruction and data caches in
hardware. Therefore, portable software must do the following:

(1) must always assume that store instructions (except Block
Store with Commit) do not coherently update instruction
cache(s);

(2) must, in every FLUSH instruction, supply the address of the
instruction or instructions that were modified.

For more details, see the FLUSH instruction on page 146 of Chapter 7, Instructions.

9.6

Nonfaulting Load

A nonfaulting load behaves like a normal load, with the following exceptions:

» A nonfaulting load from a location with side effects (TTE.e = 1) causes a DAE_side_effect_page
exception.

» A nonfaulting load from a page marked for nonfault access only (TTE.nfo = 1) is allowed; other
types of accesses to such a page cause a DAE_nfo_page exception.

= These loads are issued with ASI _PRI MARY_NO_FAULT[_LI TTLE] or
ASI _SECONDARY_NO _FAULT[_LI TTLE]. A store with a NO_FAULT ASI causes a DAE_invalid_asi
exception.

Typically, optimizers use nonfaulting loads to move loads across conditional control structures that
guard their use. This technique potentially increases the distance between a load of data and the first
use of that data, in order to hide latency. The technique allows more flexibility in instruction
scheduling and improves performance in certain algorithms by removing address checking from the
critical code path.

For example, when following a linked list, nonfaulting loads allow the null pointer to be accessed
safely in a speculative, read-ahead fashion; the page at virtual address 0,4 can safely be accessed with
no penalty!. The TTE.nfo bit marks pages that are mapped for safe access by nonfaulting loads but
that can still cause a trap by other, normal accesses.

Thus, programmers can trap on “wild” pointer references—many programmers count on an exception
being generated when accessing address 0,4 to debug software—while benefiting from the
acceleration of nonfaulting access in debugged library routines.

9.7

Store Coalescing

Cacheable stores may be coalesced with adjacent cacheable stores within an 8 byte boundary offset in
the store buffer to improve store bandwidth. Similarly non-side-effect-noncacheable stores may be
coalesced with adjacent non-side-effect noncacheable stores within an 8-byte boundary offset in the
store buffer.

L-Other than the impact of occupying TLB entries.
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In order to maintain strong ordering for I/O accesses, stores with side-effect attribute (e bit set) will
not be combined with any other stores.

Stores that are separated by an intervening MEMBAR #Sync will not be coalesced.
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CHAPTER 10

Address Space Identifiers (ASIs)

This appendix describes address space identifiers (ASIs) in the following sections:

Address Space Identifiers and Address Spaces on page 345.
ASI Values on page 345.

ASI Assignments on page 346.

Special Memory Access ASIs on page 357.

10.1

Address Space Identifiers and Address Spaces

An UltraSPARC Architecture processor provides an address space identifier (ASI) with every address
sent to memory. The ASI does the following:

» Distinguishes between different address spaces
» Provides an attribute that is unique to an address space
» Maps internal control and diagnostics registers within a virtual processor

The memory management unit uses a 64-bit virtual address and an 8-bit ASI to generate a memory, I/
O, or internal register address. This physical address space can be accessed through virtual-to-
physical address mapping or through the MMU bypass mode.

10.2

ASI Values

The range of address space identifiers (ASIs) is 00;5-FF4. That range is divided into restricted and
unrestricted portions. ASIs in the range 80,4—FF;4 are unrestricted; they may be accessed by software
running in any privilege mode.

ASIs in the range 0014—7F;¢ are restricted; they may only be accessed by software running in a mode
with sufficient privilege for the particular ASI. ASIs in the range 00;,—2F;4 may only be accessed by
software running in privileged or hyperprivileged mode and ASIs in the range 30;,—7F;¢ may only be
accessed by software running in hyperprivileged mode.

SPARC V9 | In SPARC V9, the range of ASIs was evenly divided into
Compatibility | restricted (004-7F;4) and unrestricted (80;4-FF;4) halves.
Note

An attempt by nonprivileged software to access a restricted (privileged or hyperprivileged) ASI (00—
7F1¢) causes a privileged_action trap.

An attempt by privileged software to access a hyperprivileged ASI (3014—7F;¢) also causes a
privileged_action trap.
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An ASI can be categorized based on how it affects the MMU'’s treatment of the accompanying
address, into one of three categories:

» A Virtual-Translating ASI (the most common type) causes the accompanying address to be treated as
a virtual address (which is translated by the MMU into a physical address).

» A Non-translating ASI is not translated by the MMU; instead the address is passed through
unchanged. Nontranslating ASIs are typically used for accessing internal registers.

» A Real-Translating ASI causes the accompanying address to be treated as a real address (which is
translated by the MMU into a physical address). An access using a Real-Translating ASI can cause
exception(s) only visible in hyperprivileged mode (such as a PA_watchpoint exception). Real-
Translating ASIs are typically used by privileged or hyperprivileged software for directly accessing
memory using real or physical (as opposed to virtual) addresses.

Implementation-dependent ASIs may or may not be translated by the MMU. See implementation-
specific documentation for detailed information about implementation-dependent ASIs.

10.3 ASI Assignments

Every load or store address in an UltraSPARC Architecture processor has an 8-bit Address Space
Identifier (ASI) appended to the virtual address (VA). The VA plus the ASI fully specify the address.

For instruction fetches and for data loads, stores, and load-stores that do not use the load or store
alternate instructions, the ASI is an implicit ASI generated by the virtual processor.

If a load alternate, store alternate, or load-store alternate instruction is used, the value of the ASI (an
"explicit ASI") can be specified in the ASI register or as an immediate value in the instruction.

In practice, ASIs are not only used to differentiate address spaces but are also used for other functions
like referencing registers in the MMU unit.

10.3.1 Supported ASIs

TABLE 10-1 lists architecturally-defined ASIs; some are in all UltraSPARC Architecture implementations
and some are only present in some implementations.

An ASI marked with a closed bullet (e ) is required to be implemented on all UltraSPARC Architecture
2007 processors.

An ASI marked with an open bullet (0) is defined by the UltraSPARC Architecture 2007 but is not
necessarily implemented in all UltraSPARC Architecture 2007 processors; its implemention is
optional. Across all implementations on which it is implemented, it appears to software to behave
identically.

Some ASIs may only be used with certain load or store instructions; see table footnotes for details.

The word “decoded” in the Virtual Address column of TABLE 10-1 indicates that the the supplied
virtual address is decoded by the virtual processor.

The “TVP / non-T / TRP” column of the table indicates whether each ASI is a Virtual-Translating
ASI(translates Virtual-to-Physical), non-Translating ASI, or-Translating (translates Real-to-Physical)
AS], respectively.

ASIs marked "Reserved" are set aside for use in future revisions to the architecture and are not to be
used by implemenations. ASIs marked "implementation dependent” may be used for
implementation-specific purposes.
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Attempting to access an address space described as “Implementation dependent” in TABLE 10-1
produces implementation-dependent results.

TABLE10-1  UltraSPARC Architecture ASIs (1 of 10)
Virtual TVP/ |Shared
ASI  reqg'd(e) Access |Address non-T/ |/per
Value jopt’l (O)|ASI Name (and Abbreviation) Type(s) (VA) TRP strand |[Description
0016~ O — _212 — — __ Implementation dependent’
0314
0444 e ASI_NUCLEUS (ASI _N) RW**  (decoded) TvP _ Implicit address space,
nucleus context, TL > 0
0516~ O — _212 — — __ Implementation dependent’
0Cy4 e ASI_NUCLEUS_LITTLE (ASI _NL) RW**  (decoded) TvP — Implicit address space,
nucleus context, TL > 0,
little-endian
0D~ O — —212 — — _ Implementation dependent’
0F1¢
1044 e ASI_AS | F_USER PRI MARY RW2%18 (decoded) Tvp —  Primary address space, as if
(ASI _Al UP) user (nonprivileged)
1114 e ASI_AS | F_USER_SECONDARY RW?*1® (decoded) TvP _ Secondary address space, as
(ASI _Al US) if user (nonprivileged)
12— 0O — —212 — — _  Implementation dependent’
1316
1444 0 ASI_REAL RW?%*  (decoded) TRP __  Real address
1544 O ASI_REAL I P RW?°  (decoded) TRP __  Real address, noncacheable,
with side effect (deprecated)
1614 O ASI_BLOCK _AS_I| F_USER PRI MARY RW?31418(decoded) Tvp _ Primary address space,
(ASI _BLK_AI UP) block load/store, as if user
(nonprivileged)
1716 O ASlI_BLOCK_AS_| F_USER SECONDAR RWZ?¥1418(decoded) TvpP — Secondary address space,
Y block load/store, as if user
(ASI _BLK_AI US) (nonprivileged)
1814 e ASI_AS_|F_USER PRI MARY_LI TTLE RW%*™® (decoded) TvP — Primary address space, as if
(ASI _Al UPL) user (nonprivileged), little-
endian
1944 e ASI_AS | F_USER_SECONDARY_ RW#*1 (decoded) TvP — Secondary address space, as
LI TTLE (ASI _Al USL) if user (nonprivileged), little-
endian
1A~ 0O — 212 — — — Implementation dependent’
1B1¢
1Cq4 0 ASI_REAL_LITTLE RW %% (decoded) TRP — Real address, little-endian
(ASI _REAL_L)
1Dq¢ O ASI_REAL | O LITTLEP RW %°  (decoded) TRP —  Real address, noncacheable,
(ASI_REAL_10 LD with side effect, little-endian
(deprecated)
1Eq4 O ASI_BLOCK_AS_| F_USER PRI MARY_ RW?31418(decoded) Tvp — Primary address space,
LI TTLE block load/store, as if user
(ASI _BLK_AI UPL) (nonprivileged), little-endian
1F6 0 ASI_BLOCK_AS | F_USER_ RW281418(decoded) TvP — Secondary address space,

SECONDARY_LI TTLE
(ASI _BLK_AI US_L)

block load/store, as if user
(nonprivileged), little-endian
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TABLE10-1  UltraSPARC Architecture ASIs (2 of 10)
Virtual TVP/ [Shared
ASI  feqg'd(e) Access [Address non-T/ |/per
Value jopt’l (O)|ASI Name (and Abbreviation) Type(s) (VA) TRP strand |[Description
2014 0 ASl _SCRATCHPAD RW?®  (decoded; non-T per Privileged Scratchpad
see below) strand registers; implementation
dependent!
0 016 Scratchpad Register 0
O 816 Scratchpad Register 1!
0 1046 " " Scratchpad Register 2!
0 1846 " " Scratchpad Register 3!
0 2014 " " Scratchpad Register 4!
0 2814 Scratchpad Register 5!
0 3014 Scratchpad Register 6!
O 3814 Scratchpad Register 7!
2144 0 ASlI_MVJ_CONTEXTI D RW%®  (decoded; non-T per MMU context registers
see below) strand
0 816 1I/D MMU Primary
Context ID register 0
0 1044 I/D MMU Secondary
Context ID register_0
0 10814 I/D Primary
Context ID register 1
0 11044 I/D MMU Secondary
Context ID register 1
2244 0 ASI _TW NX_AS | F_USER_ R%7HM " (decoded) TVP —  Primary address space, 128-
PRI MARY bit atomic load twin
(ASI _TW NX_AI UP) extended word, as if user
(nonprivileged)
2344 O ASI_TWNX_AS | F_USER_ R%7M " (decoded) TVP _ Secondary address space,
SECONDARY 128-bit atomic load twin
(ASI _TW NX_AI US) extended word, as if user
(nonprivileged)
2444 0 — — — — __ Implementation dependent’
2514 0 ASI _QUEUE (see (decoded; non-T  per
below) see below) strand
] RW20 3C046 CPU Mondo Queue Head
Pointer
] RW2617 3C86 CPU Mondo Queue Tail
Pointer
] RW20 3D044 Device Mondo Queue Head
Pointer
] RW2617 3D84 Device Mondo Queue Tail
Pointer
] RW20 3E0q¢ Resumable Error Queue
Head Pointer
] RW2617 3E84¢ Resumable Error Queue Tail
Pointer
] RW20 3F044 Nonresumable Error Queue
Head Pointer
] RW2617 3F84 Nonresumable Error Queue

Tail Pointer
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TABLE10-1  UltraSPARC Architecture ASIs (3 of 10)
Virtual TVP/ |Shared
ASI  eqg'd(e) Access |Address non-T/ |/per
Value jopt’l (O)|ASI Name (and Abbreviation) Type(s) (VA) TRP strand |[Description
2614 0 ASI_TWNX_REAL (ASI _TW NX_R) R*”!'  (decoded) TRP —  128-bit atomic twin
AS|I _QUAD_LDD_REAL extended-word load from
real address
2716 0 ASI _TW NX_NUCLEUS R*7M " (decoded) TVP —  Nucleus context, 128-bit
(ASI _TW NX_N) atomic load twin extended-
word
281 O — 212 _ — — Implementation dependent’
2946
2A14 O ASI_TW NX_AS | F_USER_ R%/ " (decoded) TVP  _ Primary address space, 128-
PRI MARY_LI TTLE bit atomic load twin
(ASI _TW NXAI UPL) extended-word, as if user
(nonprivileged), little-endian
2B1¢ 0 ASI _TW NX_AS | F_USER_ R*7M " (decoded) TVP —  Secondary address space,
SECONDARY_LI TTLE 128-bit atomic load twin
(ASI _TW NX_AI US_L) extended-word, as if user
(nonprivileged), little-endian
2Cq4 0 — _2 — — __ Implementation dependent’
2Dy O _ _212 — — — Implementation dependent’
2Eq4 0 ASI _TW NX_REAL_LI TTLE R%>/M (decoded) TRP — 128-bit atomic twin-
(ASI _TW NX_REAL L) extended-word load from
ASI _QUAD_LDD REAL_LI TTLEP real address, little-endian
2Fi4 0 ASI_TW NX_NUCLEUS LI TTLE R*7M (decoded) TVP _ Nucleus context, 128-bit
(ASI _TW NX_NL) atomic load twin extended-
word, little-endian
3014 0 ASI_AS | F_PRI V_PRI MARY RW>*  (decoded) TVP __  Primary address space, as if
(ASI _Al PP) privileged
3144 0 ASI _AS | F_PRI V_SECONDARY RW>*  (decoded) TVP __  Secondary address space, as
(ASI _Al PS) if privileged
321~ O _ _313 — — — Implementation dependent’
3516
3616 0 ASI_AS_ | F_PRI V_NUCLEUS RW>*  (decoded) TVP _ Implicit address space,
(ASI _Al PN) nucleus context, as if
privileged
3716 O — 313 — — _ Implementation dependent’
3816 O ASI_AS_|IF_PRIV_PRIMARY_LI TTLRW’*  (decoded) TvpP _ Primary address space, as if
E (ASI _AIPP_L) privileged, little-endian
396 O ASI_AS_ | F_PRIV_SECONDARY_LITT RW*  (decoded) TvP _ Secondary address space, as
LE (ASI _AIPS L) if privileged, little-endian
3A16- O — 31 — — — Implementation dependent’
3Cy4
3D1¢ 0 — 31 — — — Implementation dependent’
3E6 O ASI_AS_|F_PRIV_NUCLEUS_LI TTLRW®*  (decoded) TvP _ Implicit address space,
E (ASI _AIPN_L) nucleus context, as if
privileged, little-endian
3Fe O _ _31 — — — Implementation dependent
4144 0  ASI _CMI_SHARED (see (decoded; non-T shared CMT control/status (shared)
below) see below)
0 R3611 0044 " " Virtual Processor (strand)

Available Register
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TABLE10-1  UltraSPARC Architecture ASIs (4 of 10)
Virtual TVP/ [Shared
ASI  feqg'd(e) Access [Address non-T/ |/per
Value jopt’l (O)|ASI Name (and Abbreviation) Type(s) (VA) TRP strand |[Description

O R34 104 Virtual Processor (strand)
Enable Status Register

0 RW3® 204, Virtual Processor (strand)
Enable Register

0 RWL36 3044 XIR Steering Register
Implementation dependent!
(impl. dep. #1105)

0 RW3® 5044 Virtual Processor (strand)
Running Register, general
access

O R¥6M1 58, " " Virtual Processor (strand)
Running Status Register

O W3610 60, " " Virtual Processor (strand)
Running Register, general
access. Write "1’ to set bit

O w3610 68, " " Virtual Processor (strand)
Running Register, general
access. Write "1’ to clear bit

2~ O _ _313 — — — Implementation dependent’
44

4514 0 — 31 — — — Implementation dependent’
46— O — _313 — — — Implementation dependent?
484

4914 0 — _313 — — — Implementation dependent?
4A16- O — —313 — — — Implementation dependent’
4Cqq 0  Error Status and Enable Registers Implementation dependent’
4D~ O — —313 — Implementation dependent’
4E¢

4F ¢ 0 AS|I_HYP_SCRATCHPAD RW3®  (decoded; non-T per Hyperprivileged Scratchpad

see below) strand registers; implementation
dependent!

O 016 Hyperprivileged Scratchpad
Register 0!

O 816 Hyperprivileged Scratchpad
Register 1!

0 1046 Hyperprivileged Scratchpad
Register 21

0 1846 Hyperprivileged Scratchpad
Register 3!

0 2044 Hyperprivileged Scratchpad
Register 4!

0 2814 Hyperprivileged Scratchpad
Register 51

O 3014 Hyperprivileged Scratchpad
Register 6!

O 3814 Hyperprivileged Scratchpad
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TABLE10-1  UltraSPARC Architecture ASIs (5 of 10)
Virtual TVP/ |Shared
ASI  eqg'd(e) Access |Address non-T/ |/per
Value jopt’l (O)|ASI Name (and Abbreviation) Type(s) (VA) TRP strand |[Description
5014 0o ASI_ImMmw — (decoded; non-T per IMMU registers
see below) strand
O R36IL 040 non-T per IMMU tag target register
strand
0 RW3® 1844 non-T per Instruction fault status
strand register
0 RW3® 3044 non-T per 1TLB tag access register
strand
5116 O ASI_MRA_ACCESS RW3  014-384¢ non-T per HWTW MMU Register
strand Array (MRA) access
5216 0O ASl _MW_REAL RW?3°  (see below) non-T per MMU registers
strand
] d 10844 MMU Real Range
0 11044 MMU Real Range
0 11844 MMU Real Range
O 12044 " " MMU Real Range
0 20814 " " MMU Physical Address
Offset Registers
0 21044 " " MMU Physical Address
Offset Registers
0 21844 " " MMU Physical Address
Offset Registers
0 22044 " " MMU Physical Address
Offset Registers
5316 O — _31 — — — Implementation dependent’
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TABLE10-1  UltraSPARC Architecture ASIs (6 of 10)
Virtual TVP/ |Shared
ASI  feqg'd(e) Access [Address non-T/ |/per
Value jopt’l (O)|ASI Name (and Abbreviation) Type(s) (VA) TRP strand |[Description
5444 0o ASI_Mmw (see (decoded; non-T per (more) MMU registers
below) see below) strand
0 w3610 o, . »  ITLB data in register
0 RW36 1044 " »  Context Zero TSB
Configuration register 0
O RW3® 1844 " v Context Zero TSB
Configuration register 1
0 RW36 2044 " »  Context Zero TSB
Configuration register 2
O RW3¢ 28, " v Context Zero TSB
Configuration register 3
0 RW36 3044 " " Context Nonzero TSB
Configuration register 0
O RW3¢ 38, " v Context Nonzero TSB
Configuration register 1
0 RW36 4044 " »  Context Nonzero TSB
Configuration register 2
O RW36 48, " v Context Nonzero TSB
Configuration register 3
O RW36 5046 . »  Instruction TSB Pointer
register 0
O RW3¢ 58, " v Instruction TSB Pointer
register 1
O RW36 6046 . »  Instruction TSB Pointer
register 2
O RW3® 6844 " »  Instruction TSB Pointer
register 3
O RW36 7046 . » Data/Unified TSB Pointer
register 0
O RW3¢ 78, " v Data/Unified TSB Pointer
register 1
O RW36 8046 . » Data/Unified TSB Pointer
register 2
O RW36 88 . » Data/Unified TSB Pointer
register 3
O RW36 9046 . »  Tablewalk Pending Control
register
O RW3¢ 98, " »  Tablewalk Pending Status
register
5516 O ASI_I TLB_DATA ACCESS REG RW3  016-3F816, non-T per IMMU TLB data access
80014— strand register
7FFF8;¢
5614 O ASI_I TLB_TAG READ REG R30I 0 non-T per IMMU TLB tag read register
FFFF8¢ strand
5716 O ASI _| MVU_DENAP W3’6/]0 016 non-T per IMMU TLB demap
strand
5816 0o ASI_DvWJ /ASI _UvWJ (see (decoded; non-T — Data or Unified MMU
below) see below) registers
0 R3O 044 per D/U TSB tag target register
strand
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TABLE10-1  UltraSPARC Architecture ASIs (7 of 10)
Virtual TVP/ [Shared
ASI  eqg'd(e) Access |Address non-T/ |/per
Value jopt’l (O)|ASI Name (and Abbreviation) Type(s) (VA) TRP strand |[Description
0 RW3° 18, per Data error status register
strand
O R36IL 20, " /core Data error address register
(DSFAR)
0 RW36 3044 " Jcore D/U TLB tag access register
0 RW36 384 " per VA instruction, and PA/VA
strand data watchpoint register
0 RW36 4044 " per 1/D/U MMU hardware
strand tablewalk configuration
register
O RW36 8044 " per 1/D/U MMU partition ID
strand register
5916. 0 — —313 — _ _ Reserved
5B16
5C16 0 ASI_DTLB_DATA I N_REG W3610 g, non-T per D/U TLB data in register
strand
5Dy 0 ASI_DTLB_DATA ACCESS REG RW3®  016-3F815, non-T per D/U TLB data access
80014— strand register
7FFF814
5E16 0 ASI_DTLB_TAG READ_REG R36I 0y~ non-T per D/U TLB tag read register
FFFF8:¢ strand
5F4 0 ASI_DVMJ_DEMAP W3610 0, non-T per D/U TLB demap
strand
6016~ 0O — 31 — — — Implementation dependent’
6216
6lig- 0O — 31 — — — Implementation dependent’
6216
6316 0 ASI _CMI_PER_STRAND, (see (decoded; non-T per CMT control/status
ASI _CMI_PER_CORE' below) see below) strand (per strand)
0 RW3® 0044 i " Virtual Processor (strand)
Interrupt ID
0 R3611 1016 " " Virtual Processor (strand) ID
6416~ O — 313 — — _ Implementation dependent’
6716
6816~ o — 313 — — —  Reserved
7146
7216 0 ASI _I NTR_RECEI VE _ 3713 — — — Interrupt Receive register
(see page 423)
7316 O ASI_INTR. W 37,1013 — — Interrupt Vector Dispatch
register (see page 424)
744¢ 0o ASI_INTR_R — 371113 — — Incoming Interrupt Vector
register (see page 424)
7516~ o — 313 — — —  Reserved
7F14
8014 e ASI_PRIMARY (ASI_P) RwW* (decoded) TvVvP — Implicit primary address
space
8144 e ASI_SECONDARY (ASI _S) RW* (decoded) TVP —  Secondary address space
8216 e ASI_PRI MARY_NO FAULT (ASI _PNF) R (decoded) TvP — Primary address space, no

fault
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TABLE10-1  UltraSPARC Architecture ASIs (8 of 10)
Virtual TVP/ |Shared
ASI  feqg'd(e) Access [Address non-T/ |/per
Value jopt’l (O)|ASI Name (and Abbreviation) Type(s) (VA) TRP strand |[Description
8314 e ASI _SECONDARY_NO FAULT R>1 (decoded) TvP — Secondary address space, no
(ASl _SNF) fault
8416~ @ — _16 — — — Reserved
8716
8816 e ASI_PRIMARY_LI TTLE (ASI _PL) RW* (decoded) TVP —  Implicit primary address
space, little-endian
8916 e ASI_SECONDARY_LI TTLE (ASI_SL) RW* (decoded) TVP —  Secondary address space,
little-endian
8A14 e ASI_PRI MARY_NO FAULT LITTLE R (decoded) Tvp  — Primary address space, no
(ASI _PNFL) fault, little-endian
8B e ASI _SECONDARY_NO FAULT LI TTLE R (decoded) TvP — Seondary address space, no
(ASI _SNFL) fault, little-endian
8Cis— o — _16 — — — Reserved
BFi¢
CO44 O ASlI_PST8_PRI MARY (ASI _PST8_P) W84 (decoded) Tvp — Primary address space, 8x8-
bit partial store
Clyg 0 ASI_PST8_SECONDARY W84 (decoded) TvP — Secondary address space,
(ASI _PST8_S) 8x8-bit partial store
C246 0 ASI_PST16_PRI MARY W84 (decoded) TvpP — Primary address space,
(ASI _PST16_P) 4x16-bit partial store
C346 0 ASI_PST16_SECONDARY W84 (decoded) TvP — Secondary address space,
(ASI _PST16_5S) 4x16-bit partial store
C4qq 0 ASI_PST32_PRI MARY W84 (decoded) TvP — Primary address space, 2x32-
(ASI _PST32_P) bit partial store
C5¢4 0 ASI_PST32_SECONDARY W84 (decoded) TvP — Secondary address space,
(ASI _PST32_5S) 2x32-bit partial store
Cbi6— o — _15 — — — Implementation dependent
C716
C846 0 ASI_PST8_PRI MARY_LI TTLE W81014  (decoded) TvP — Primary address space, 8x8-
(ASI _PST8_PL) bit partial store, little-endian
C96 0 ASlI_PST8_SECONDARY_LI TTLE W84 (decoded) TVvP — Secondary address space,
(ASI _PST8_SL) 8x8-bit partial store, little-
endian
CAig O ASI_PST16_PRI MARY_LI TTLE W81014 " (decoded) TVP —  Primary address space, 4x16-
(ASI _PST16_PL) bit partial store, little-endian
CBijy O ASI_PST16_SECONDARY_LI TTLE W8I0 (decoded) TVP — Secondary address space,
(ASI _PST16_SL) 4x16-bit partial store, little-
endian
CCis O ASI_PST32_PRI MARY_LI TTLE W8I0 (decoded) Tvp — Primary address space,
(ASI _PST32_PL) 2x32-bit partial store, little-
endian
CDys [ ASI_PST32_SECONDARY_LI TTLE W8I0 (decoded) TvP — Second address space, 2x32-
(ASI _PST32_SL) bit partial store, little-endian
CEij5~ o — 15 — — — Implementation dependent’
D044 O ASI_FL8_PRI MARY (ASI _FL8_P) RW¥4  (decoded) Tvp — Primary address space, one
8-bit floating-point load/
store
D144 O ASlI_FL8_SECONDARY (ASI _FL8_S) RW®%! (decoded) TvP — Second address space, one 8-

bit floating-point load/store
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TABLE10-1  UltraSPARC Architecture ASIs (9 of 10)
Virtual TVP/ |Shared
ASI  eqg'd(e) Access |Address non-T/ |/per
Value jopt’l (O)|ASI Name (and Abbreviation) Type(s) (VA) TRP strand |[Description
D244 O ASlI_FL16_PRI MARY (ASI _FL16_P) RW®%4 (decoded) Typ — Primary address space, one
16-bit floating-point load/
store
D34 0 ASlI_FL16_SECONDARY RW84  (decoded) TvP — Second address space, one
(ASI _FL16_9) 16-bit floating-point load/
store
Ddig— o —_ _15 — — — Implementation dependent’
D716
D84 0 ASI_FL8_PRIMARY_LI TTLE RW¥*  (decoded) TvPp _— Primary address space, one
(ASI _FL8_PL) 8-bit floating point load/
store, little-endian
D944 O ASI_FL8_SECONDARY_LI TTLE RW¥4  (decoded) TvP — Second address space, one 8-
(ASI _FL8_sSL) bit floating point load/store,
little-endian
DAj;, O ASI_FL16_PRI MARY_LITTLE RW¥4  (decoded) Tvp — Primary address space, one
(ASI _FL16_PL) 16-bit floating-point load/
store, little-endian
DBy, O ASI_FL16_SECONDARY_LI TTLE RW8  (decoded) TvP — Second address space, one
(ASI _FL16_SL) 16-bit floating point load/
store, little-endian
DCy ° —_ _15 — — — Implementation dependent’
-DFq4
E0¢ 0 ASI_BLOCK_COWM T_PRI MARY W8I (decoded) TvP — Primary address space,
(ASI _BLK_COW T_P) 8x8-byte block store commit
operation
Elyg O ASI_BLOCK_COVM T_SECONDARY W% (decoded) TvP — Secondary address space,
(ASI _BLK_COW T_S) 8x8-byte block store commit
operation
E244 0  ASI_TW NX_PRI MARY RY (decoded) TVP —  Primary address space, 128-
(ASI _TW NX_P) bit atomic load twin
extended word
E346 O ASI_TW NX_SECONDARY RY (decoded) TvP — Secondary address space,
(ASI _TW NX_S) 128-bit atomic load twin
extended-word
Edic— o —_ _15 — — — Implementation dependent’
E96
EAjs, 0O ASI_TWNX_PRIMARY_LITTLE RV (decoded) Tvp — Primary address space, 128-
(ASI _TW NX_PL) bit atomic load twin
extended word, little endian
EBy4 0  ASI _TW NX_SECONDARY_LI TTLE R™ (decoded) TvP — Secondary address space,
(ASI _TW NX_SL) 128-bit atomic load twin
extended word, little endian
ECis—- O — _15 — — — Implementation dependent’
EFq¢
FOq4 0 ASI_BLOCK_PRI MARY RW¥H4  (decoded) Tvp — Primary address space, 8x8-
(ASI _BLK_P) byte block load/store
Flyg 0 ASI_BLOCK_SECONDARY RW4  (decoded) TvP — Secondary address space,
(ASI _BLK_S) 8x8- byte block load/store
F216- . _ _15 — — — Implementation depench—zntl
F516
F6i16~ o — — — — — Implementation dependent’
F716
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TABLE10-1  UltraSPARC Architecture ASIs (10 of 10)
Virtual TVP/ |Shared
ASI  feqg'd(e) Access [Address non-T/ |/per
Value jopt’l (O)|ASI Name (and Abbreviation) Type(s) (VA) TRP strand |[Description
F814 0 ASI_BLOCK PRI MARY_LI TTLE RW¥H4  (decoded) Tvp — Primary address space, 8x8-
(ASI _BLK_PL) byte block load/store, little
endian
F944 0 ASI_BLOCK_SECONDARY_LI TTLE RW8%  (decoded) TvP — Secondary address space,
(ASI _BLK_SL) 8x8- byte block load/store,
little endian
FAig- o — 15 — — — Implementation dependent’
FDy¢
FEic— o — _15 — — — Implementation dependent
FFy6

10

11

This ASI name has been changed, for consistency; although use of this name is
deprecated and software should use the new name, the old name is listed here for
compatibility.

This ASI was named ASI _DEVI CE_| D+SERI AL_I| D in older documents.

Implementation dependent ASI (impl. dep. #29); available for use by implementors.
Software that references this ASI may not be portable.

An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to this ASI in nonprivileged mode causes a privileged_action exception.

An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to this ASI in nonprivileged mode or privileged mode causes a
privileged_action exception.

May be used with all load alternate, store alternate, atomic alternate and prefetch
alternate instructions (CASA, CASXA, LDSTUBA, LDTWA, LDDFA, LDFA, LDSBA,
LDSHA, LDSWA, LDUBA, LDUHA, LDUWA, LDXA, PREFETCHA, STBA, STTWA,
STDFA, STFA, STHA, STWA, STXA, SWAPA).

May be used with all of the following load alternate and store alternate instructions:
LDTWA, LDDFA, LDFA, LDSBA, LDSHA, LDSWA, LDUBA, LDUHA, LDUWA, LDXA,
STBA, STTWA, STDFA, STFA, STHA, STWA, STXA. Use with an atomic alternate or
prefetch alternate instruction (CASA, CASXA, LDSTUBA, SWAPA or PREFETCHA)
causes a DAE_invalid_asi exception.

May only be used in a LDXA or STXA instruction for RW ASIs, LDXA for read-only ASIs
and STXA for write-only ASIs. Use of LDXA for write-only ASIs, STXA for read-only
ASIs, or any other load alternate, store alternate, atomic alternate or prefetch alternate
instruction causes a DAE_invalid_asi exception.

May only be used in an LDTXA instruction. Use of this ASI in any other load alternate,
store alternate, atomic alternate or prefetch alternate instruction causes a DAE_invalid_asi
exception.

May only be used in a LDDFA or STDFA instruction for RW ASIs, LDDFA for read-only
ASIs and STDFA for write-only ASIs. Use of LDDFA for write-only ASIs, STDFA for
read-only ASIs, or any other load alternate, store alternate, atomic alternate or prefetch
alternate instruction causes a DAE_invalid_asi exception.

May be used with all of the following load and prefetch alternate instructions: LDTWA,
LDDFA, LDFA, LDSBA, LDSHA, LDSWA, LDUBA, LDUHA, LDUWA, LDXA,
PREFETCHA. Use with an atomic alternate or store alternate instruction causes a
DAE_invalid_asi exception.

Write(store)-only ASI; an attempted load alternate, atomic alternate, or prefetch alternate
instruction to this ASI causes a DAE_invalid_asi exception.

Read(load)-only ASI; an attempted store alternate or atomic alternate instruction to this
ASI causes a DAE_invalid_asi exception.
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12 An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to this ASI in privileged mode or hyperprivileged mode causes a
DAE_invalid_asi exception.

13 An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to this ASI in hyperprivileged mode causes a DAE_invalid_asi exception if
this ASI is not implemented by the specific implementation.

14 An attempted access to this ASI may cause an exception (see Special Memory Access ASIs
on page 357 for details).

15 An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to this ASI in any mode causes a DAE_invalid_asi exception if this ASI is not
implemented by the model dependent implementation.

16 An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to a reserved ASI in any mode causes a DAE_invalid_asi exception.

17 The Queue Tail Registers (ASI 25;¢) are read-only by privileged software and read-write
by hyperprivileged software. An attempted write to the Queue Tail Registers by
privileged software causes a DAE_invalid_asi exception

18 An access to a privileged page (TTE.p = 1) using an ASI _*AS_| F_USER* ASI causes a
DAE_privilege_violation exception.

19 May only be used in an LDTXA (load twin-extended-word) instruction (which shares an
opcode with LDTWA). Use of this ASI in any other load instruction causes a
DAE_invalid_asi exception.

10.4

10.4.1

Special Memory Access ASIs

This section describes special memory access ASIs that are not described in other sections.

ASIs 1016' 1116/ 1616/ 1716 and 1816
(ASI _*AS_| F_USER *)

These ASI are intended to be used in accesses from privileged and hyperprivileged mode, but are
processed as if they were issued from nonprivileged mode. Therefore, they are subject to privilege-
related exceptions. They are distinguished from each other by the context from which the access is
made, as described in TABLE 10-2.

When one of these ASIs is specified in a load alternate or store alternate instruction, the virtual
processor behaves as follows:
» In nonprivileged mode, a privileged_action exception occurs
» In any other privilege mode:
« If U/DMMU TTE.p =1, a DAE_privilege_violation exception occurs

= Otherwise, the access occurs and its endianness is determined by the current privileged mode
and the U/DMMU TTE.ie bit. In hyperprivileged mode, the access is always made in big-
endian byte order. In privileged mode, if U/DMMU TTE.ie = 0, the access is big-endian;
otherwise, it is little-endian.
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TABLE 10-2 Privileged ASI _*AS | F_USER * ASIs

Addressing
ASI Names (Context) Endianness of Access
1014 ASI _AS_| F_USER_PRI MARY (' ASI _Al UP) Virtual
(Primary) In nonprivileged or

privileged mode:

Big-endian when
113, ASI _AS_| F_USER_SECONDARY ( ASI _Al US) Virtual U/DMMU

(Secondary) |TTE.ie = 0;
little-endian when

16 ASI _BLOCK_AS_| F_USER_PRI MARY Virtual ~|U/DMMU
(ASI _BLK_Al UP) (Primary) |TTEie=1
In nyperprivileged
mode: always big-
17136 ASI _BLOCK_AS_| F_USER_SECONDARY Virtual | endian.
(ASI _BLK_AI US) (Secondary)

10.4.2 ASIs 1816’ 1916' 1E16’ and 1F16
(ASI _*AS | F_USER * LI TTLE)

These ASIs are little-endian versions of ASIs 1044, 1114, 1614, and 1714 (ASI _AS_I F_USER _*),
described in section 10.4.1. Each operates identically to the corresponding non-little-endian ASI,
except that if an access occurs its endianness is the opposite of that for the corresponding non-little-
endian ASI.

These ASI are intended to be used in accesses from privileged and hyperprivileged mode, but are
processed as if they were issued from nonprivileged mode. Therefore, they are subject to privilege-
related exceptions. They are distinguished from each other by the context from which the access is
made, as described in TABLE 10-3.

When one of these ASIs is specified in a load alternate or store alternate instruction, the virtual
processor behaves as follows:
» In nonprivileged mode, a privileged_action exception occurs
» In any other privilege mode:
« If U/DMMU TTE.p =1, a DAE_privilege_violation exception occurs
= Otherwise, the access occurs and its endianness is determined by the U/DMMU TTE.ie bit. If
U/DMMU TTE.ie = 0, the access is little-endian; otherwise, it is big-endian.

TABLE 103 Privileged ASI _*AS_| F_USER * LI TTLE ASs

Addressing Endianness of
ASI Names (Context) Access
18,4 AS|_AS | F_USER PRI MARY_LI TTLE Virtual . .
(ASI _Al UPL) (Primary) |Little-endian
when U/
1914 ASI _AS | F_USER_SECONDARY_LI TTLE Virtual  |pMMU
(ASI _Al USL) (Secondary) |TTE.ie = 0;
1E;4 AS|_BLOCK_AS_| F_USER PRI MARY_LI TTLE Virtual ~ |big-endian
(ASI _BLK_Al UP) (Primary) |When U/
DMMU
1F;  ASI_BLOCK_AS_| F_USER_SECONDARY_LI TTLE  Virtual |TTE.e <1
(ASI _BLK_AI USL) (Secondary)
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10.4.3

10.4.4

10.4.5

10.4.6

10.4.7

ASI 14, (ASl _REAL)

When AS| _REAL is specified in any load alternate, store alternate or prefetch alternate instruction,
the virtual processor behaves as follows:

» In nonprivileged mode, a privileged_action exception occurs
» In any other privilege mode:

= VA is passed through to RA , but the number of bits passed through is implementation
dependent (impl. dep. #224-U3)

= During the address translation, context values are disregarded.
= The endianness of the access is dertermined by the U/DMMU TTE.ie bit; if U/DMMU
TTE.ie = 0, the access is big-endian, otherwise it is little-endian.

Even if data address translation is disabled, an access with this ASI is still a cacheable access.

ASI 15,4 (ASI _REAL_| O)

Accesses with ASI _REAL_| Obypass the external cache and behave as if the side effect bit (TTE.e bit)
is set. When this ASI is specified in any load alternate or store alternate instruction, the virtual
processor behaves as follows:

» In nonprivileged mode, a privileged_action exception occurs

= If used with a CASA, CASXA, LDSTUBA, SWAPA, or PREFETCHA instruction, a DAE_invalid_asi
exception occurs

» Used with any other load alternate or store alternate instuction, in privileged mode or
hyperprivileged mode:

= VA is passed through to RA , but the number of bits passed through is implementation
dependent (impl. dep. #224-U3)

= During the address translation, context values are disregarded.

= The endianness of the access is dertermined by the U/DMMU TTE.ie bit; if U/DMMU
TTE.ie = 0, the access is big-endian, otherwise it is little-endian.

ASI 1Cq4 (ASI _REAL_LI TTLE)

AS| _REAL_LI TTLE is a little-endian version of ASI 14,4 (ASI _REAL). It operates identically to
ASI _REAL, except if an access occurs, its endianness the opposite of that for ASI _REAL.

ASI 1D;¢ (ASI _REAL_| O LI TTLE)

AS|I _REAL_I O LI TTLE is a little-endian version of ASI 1514 (ASI _REAL_I| O). It operates identically
to ASI _REAL_| O, except if an access occurs, its endianness the opposite of that for ASI _REAL_I O

ASIs 2216’ 2316’ 2716’ 2A16’ 2B16’ 2F16 (Privileged Load
Integer Twin Extended Word)

ASIs 2214, 2314, 2716, 2A1¢, 2B1¢ and 2F;4 exist for use with the (nonportable) LDTXA instruction as
atomic Load Integer Twin Extended Word operations (see Load Integer Twin Extended Word from
Alternate Space on page 213). These ASIs are distinguished by the context from which the access is
made and the endianness of the access, as described in TABLE 10-4.

CHAPTER 10 + Address Space Identifiers (ASls) 359



TABLE 10-4 Privileged Load Integer Twin Extended Word ASIs

Addressing Endianness of
ASI Names (Context) Access
221 ASI _TW NX_AS_| F_USER_PRI MARY Virtual Big-endian
(ASI _TW NX_Al UP) (Primary) when U/
. DMMU
2314 ASI _TW NX_AS_| F_USER_SECONDARY Virtual TTEie = 0:
(ASI _TW NX_AI US) (Secondary) B
2716 ASI _TW NX_NUCLEUS (ASI _TW NX_N) Virtual}  little-endian
(Nucleus) when U/
DMMU
TTE.ie=1
2A14 ASI_TWNX_AS | F_USER PRI MARY_LI TTLE Virtual Little-endian
(ASI _TW NX_AI UP_L) (Primary) when U/
2By ASI _TW NX_AS_| F_USER_SECONDARY_ Virtual _II?_II}/IIEI\:[U_ 0;
LI TTLE (ASI _TW NX_Al US_L) (Secondary) le==5
2F¢  ASI _TW NX_NUCLEUS_LI TTLE Virtualf  big-endian
(ASI _TW NX_NL) (Nucleus) when U/
DMMU
TTE.ie=1

f In hyperprivileged mode, this ASI uses Physical addressing

When these ASIs are used with LDTXA, a mem_address_not_aligned exception is generated if the
operand address is not 16-byte aligned.

If these ASIs are used with any other Load Alternate, Store Alternate, Atomic Load-Store Alternate, or
PREFETCHA instruction, a DAE_invalid_asi exception is always generated and
mem_address_not_aligned is not generated.

Compatibility | These ASIs replaced ASIs 24,4 and 2C;4 used in earlier
Note | UltraSPARC implementations; see the detailed Compatibility Note
on page 365 for details.

10.4.8  ASIs 2614 and 2E4 (Privileged Load Integer Twin Extended
Word, Real Addressing)

ASIs 2614 and 2Eq4 exist for use with the LDTXA instruction as atomic Load Integer Twin Extended
Word operations using Real addressing (see Load Integer Twin Extended Word from Alternate Space on
page 213). These two ASIs are distinguished by the endianness of the access, as described in

TABLE 10-5.

TABLE 10-5 Load Integer Twin Extended Word (Real) ASIs

Addressing
ASI Name (Context) Endianness of Access
261 ASI _TW NX_REAL Real Big-endian when U/DMMU

(ASI _TW NX_R) TTE.ie = 0; little-endian when U/

=) DMMU TTE.ie = 1

Real Little-endian when U/DMMU
) TTE.ie = 0; big-endian when U/
DMMU TTE.ie=1

2E;s ASI_TW NX_REAL_LI TTLE
(ASI _TW NX_REAL_L)

When these ASIs are used with LDTXA, a mem_address_not_aligned exception is generated if the
operand address is not 16-byte aligned.
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10.4.9

10.4.10

If these ASIs are used with any other Load Alternate, Store Alternate, Atomic Load-Store Alternate, or
PREFETCHA instruction, a DAE_invalid_asi exception is always generated and
mem_address_not_aligned is not generated.

Compatibility | These ASIs replaced ASIs 34,4 and 3C;4 used in earlier
Note | UltraSPARC implementations; see the Compatibility Note on
page 365 for details.

ASIs 3016, 3116, 3616, 3816, 3916, 3E16 (ASI_AS I F PRIV *)

These ASI are intended to be used in accesses from hyperprivileged mode, but are processed as if they
were issued from privileged mode These ASIs are distinguished by the context from which the access
is made and the endianness of the access, as described in TABLE 10-6.

When one of these ASIs is specified in a load alternate or store alternate instruction, the virtual
processor behaves as follows:
» In nonprivileged or privileged mode, a privileged_action exception occurs
» In hyperprivileged mode:
= The endianness of the access is determined by the U/DMMU TTE.ie bit; if U/DMMU

TTE.ie =0, the access is big-endian; otherwise, it is little-endian.

TABLE 10-6  Hyperprivileged AS_| F_PRI V_* ASIs

Addressing Endianness of
ASI Names (Context) Access

30,6 ASI_AS | F_PRIV_PRI MARY (ASI Al PP) Virtual  Big-endian
(Primary) when U/

3134 ASI _AS_| F_PRI V_SECONDARY Virtual ~ PMMU
(ASI _Al PS) (Secondary) TTE.ie =0;
- little-endian
3616 ASI _AS_I F_PRI V_NUCLEUS (ASI_Al PN) Virtual when U/
(Nucleus) DMMU
TTE.ie=1
381 ASI_AS | F_PRIV_PRI MARY_LI TTLE Virtual Little-endian
(ASI _AlPP_L) (Primary) when U/
. DMMU
3916 ASI _AS_| F_PRI V_SECONDARY_LI TTLE Virtual . .
(ASI _AlPS_L) (Secondary) TTE e =0; big-
- - endian when
3E1 ASI _AS_I F_PRI V_NUCLEUS_LI TTLE Virtual U/DMMU
(ASI _Al PN_L) (Nucleus) TTE.ie=1

ASIs E216/ E316’ EA16, EB16
(Nonprivileged Load Integer Twin Extended Word)

ASIs E244, E314, EA14, and EBy4 exist for use with the (nonportable) LDTXA instruction as atomic
Load Integer Twin Extended Word operations (see Load Integer Twin Extended Word from Alternate Space
on page 213). These ASIs are distinguished by the address space accessed (Primary or Secondary) and
the endianness of the access, as described in TABLE 10-7.
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10.4.11

10.4.12

TABLE 10-7 Load Integer Twin Extended Word ASIs

Addressing Endianness of
ASI Names (Context) Access
E21, ASI _TW NX_PRI MARY (ASI _TW NX_P) Virtual Big-endian
(Primary) when U/
DMMU
E314 ASI _TW NX_SECONDARY ( ASI _TW NX_S) TTE.e = 0,
Virtual little-endian
(Secondary) when U/
DMMU
TTE.ie=1
EAi¢ ASI _TW NX_PRI MARY_LI TTLE Virtual Little-endian
(ASI _TW NX_PL) (Primary) when U/
EB1g ASI _TW NX_SECONDARY_LI TTLE 'I]:')'Il}/IIEI\i/IeU— 0
(ASI _TW NX_SL) Lo
Virtual big-endian
(Secondary) when U/
DMMU
TTE.ie=1

When these ASIs are used with LDTXA, a mem_address_not_aligned exception is generated if the
operand address is not 16-byte aligned.

If these ASIs are used with any other Load Alternate, Store Alternate, Atomic Load-Store Alternate, or
PREFETCHA instruction, a DAE_invalid_asi exception is always generated and
mem_address_not_aligned is not generated.

Block Load and Store ASIs

ASIS 1616’ 1716/ 1E16’ 1F16' E016/ E116' F016' F116' F816, and F916 exist fOI' use Wlth LDDFA and STDFA
instructions as Block Load (LDBLOCKFP) and Block Store (STBLOCKFP) operations (see Block Load on
page 192 and Block Store on page 269).

When these ASIs are used with the LDDFA (STDFA) opcode for Block Load (Store), a
mem_address_not_aligned exception is generated if the operand address is not 64-byte aligned.

ASIs E0q4 and El;4 are only defined for use in Block Store with Commit operations (see page 269).
Neither ASI E0q4 nor El;4 should be used with the LDDFA opcode; however, if either is used, the
resulting behavior is specified in the LDDFA instruction description on page 199.

If a Block Load or Block Store ASI is used with any other Load Alternate, Store Alternate, Atomic
Load-Store Alternate, or PREFETCHA instruction, a DAE_invalid_asi exception is always generated
and mem_address_not_aligned is not generated.

Partial Store ASlIs

ASIs C014-C514 and C8;,—CDq4 exist for use with the STDFA instruction as Partial Store
(STPARTIALF) operations (see Store Partial Floating-Point on page 279).

When these ASIs are used with STDFA for Partial Store, a mem_address_not_aligned exception is
generated if the operand address is not 8-byte aligned and an illegal_instruction exception is generated
if i =1 in the instruction and the ASI register contains one of the Partial Store ASIs.

If one of these ASIs is used with a Store Alternate instruction other than STDFA, a Load Alternate,
Store Alternate, Atomic Load-Store Alternate, or PREFETCHA instruction, a DAE_invalid_asi
exception is generated and mem_address_not_aligned, LDDF_mem_address_not_aligned, and
illegal_instruction (for i = 1) are not generated.
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10.4.13

ASIs C014-C57¢ and C814—CD4 are only defined for use in Partial Store operations (see page 279).
None of them should be used with LDDFA; however, if any of those ASIs is used with LDDFA, the
resulting behavior is specified in the LDDFA instruction description on page 199.

Short Floating-Point Load and Store ASIs

ASIs D016-D314 and D81¢-DB4 exist for use with the LDDFA and STDFA instructions as Short
Floating-point Load and Store operations (see Load Floating-Point Register on page 195 and Store
Floating-Point on page 272).

When ASI D214, D314, DA+, or DByg4 is used with LDDFA (STDFA) for a 16-bit Short Floating-point
Load (Store), a mem_address_not_aligned exception is generated if the operand address is not
halfword-aligned.

If any of these ASIs are used with any other Load Alternate, Store Alternate, Atomic Load-Store
Alternate, or PREFETCHA instruction, a DAE_invalid_asi exception is always generated and
mem_address_not_aligned is not generated.

10.5

10.5.1

ASI-Accessible Registers

In this section the Data Watchpoint registers, scratchpad registers, and CMT registers are described.

A list of UltraSPARC Architecture 2007 ASIs is shown in TABLE 10-1 on page 347.

Privileged Scratchpad Registers (ASI _SCRATCHPAD)

An UltraSPARC Architecture virtual processor includes eight Scratchpad registers (64 bits each, read/
write accessible) (impl.dep. #302-U4-Cs10). The use of the Scratchpad registers is completely defined
by software.

For conventional uses of Scratchpad registers, see “Scratchpad Register Usage” in Software
Considerations, contained in the separate volume UltraSPARC Architecture Application Notes.

The Scratchpad registers are intended to be used by performance-critical trap handler code.

The addresses of the privileged scratchpad registers are defined in TABLE 10-8.

TABLE 10-8  Scratchpad Registers

Privileged Scratchpad
Assembly Language ASI Name ASI #  Virtual Address Register #

00, 0
0816
1016
1844
2046
2816
3016
3816

AS| _SCRATCHPAD 2046

N O G W

IMPL. DEP. #404-S10: The degree to which Scratchpad registers 4-7 are accessible to privileged
software is implementation dependent. Each may be
(1) fully accessible,
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(2) accessible, with access much slower than to scratchpad registers 0-3 (emulated by DAE_invalid_asi
trap to hyperprivileged software), or
(3) inaccessible (cause a DAE_invalid_asi exception).

V9 Compatibility | Privileged scratchpad registers are an UltraSPARC Architecture
Note | extension to SPARC V9.

10.5.2  Hyperprivileged Scratchpad Registers
(ASI _HYP_SCRATCHPAD)

An UltraSPARC Architecture virtual processor includes eight hyperprivileged Scratchpad registers (64
bits each, read /write accessible). The use of the hyperprivileged Scratchpad registers is completely
defined by software.

The hyperprivileged Scratchpad registers are intended to be used in hyperprivileged trap handler
code.

The hyperprivileged Scratchpad registers are accessed with Load Alternate and Store Alternate
instructions, using the ASIs and addresses listed in TABLE 10-9.

IMPL. DEP. #407-S10: It is implementation dependent whether any of the hyperprivileged
Scratchpad registers are aliased to the corresponding privileged Scratchpad register or is an
independent register.

TABLE 10-9 Hyperprivileged Scratchpad Registers

Hyperprivileged
Assembly Language ASI Name  ASI#  Virtual Address Scratchpad Register #

0016 0
0816
1044
1814
2016
2816
3046
3816

ASI _HYP_SCRATCHPAD 4F ¢

N O G o W N

V9 Compatibility
Note

Hyperprivileged Scratchpad registers are an UltraSPARC
Architecture extension to SPARC V9.

10.5.3  CMT Registers Accessed Through ASIs

All chip-level multithreading (CMT) registers are accessed through ASIs. See Accessing CMT Registers
on page 476, for descriptions of ASI registers used to control CMT functions.

10.5.4  ASI Changes in the UltraSPARC Architecture

The following Compatibility Notes summarize the UltraSPARC ASI changes in UltraSPARC
Architecture.
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Compatibility | The names of several ASIs used in earlier UltraSPARC
Note | implementations have changed in UltraSPARC Architecture. Their
functions have not changed; just their names have changed.

ASI# Previous UltraSPARC UltraSPARC Architecture
141, ASI _PHYS_USE_EC AS| _REAL
1514 ASI _PHYS_BYPASS_EC WTH EBI T ASI _REAL_I O
1Cy¢ ASI _PHYS USE_EC LI TTLE ASI _REAL_LI TTLE
(ASI _PHYS _USE_EC L)
1Dy ASI _PHYS BYPASS EC W TH_ ASI _REAL 1O LI TTLE
EBI T_LITTLE

(ASI _PHY_BYPASS EC W TH EBI T_L)

Compatibility | The names and ASI assignments (but not functions) changed
Note | between earlier UltraSPARC implementations and UltraSPARC
Architecture, for the following ASIs:

Previous UltraSPARC UltraSPARC Architecture
ASI# Name ASI# Name
3444 ASI _QJAD_LDD_PHYSD 2616 ASI _TW NX_REAL
(ASI _TW NX_R)
3C1¢ ASI _QUAD LDD LI TTLEP 2E1¢ ASI _TW NX_REAL_LI TTLE
(ASI _QUAD_L DD_LD) (ASI _TW NX_REAL_L)
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CHAPTER 11

Performance Instrumentation

This chapter describes the architecture for performance monitoring hardware on UltraSPARC
Architecture processors. The architecture is based on the design of performance instrumentation
counters in previous UltraSPARC Architecture processors, with an extension for the selective
sampling of instructions.

11.1  High-Level Requirements

11.1.1 Usage Scenarios

The performance monitoring hardware on UltraSPARC Architecture processors addresses the needs of
various kinds of users. There are four scenarios envisioned:

» System-wide performance monitoring. In this scenario, someone skilled in system performance

analysis (e.g, a Systems Engineer) is using analysis tools to evaluate the performance of the entire
system. An example of such a tool is cpustat. The objective is to obtain performance data relating to
the configuration and behavior of the system, e.g., the utilization of the memory system.

Self-monitoring of performance by the operating system. In this scenario the OS is gathering
performance data in order to tune the operation of the system. Some examples might be:

= (a) determining whether the processors in the system should be running in single- or multi-
stranded mode.

= (b) determining the affinity of a process to a processor by examining that process’s memory
behavior.

Performance analysis of an application by a developer. In this scenario a developer is trying to optimize
the performance of a specific application, by altering the source code of the application or the
compilation options. The developer needs to know the performance characteristics of the
components of the application at a coarse grain, and where these are problematic, to be able to
determine fine-grained performance information. Using this information, the developer will alter
the source or compilation parameters, re-run the application, and observe the new performance
characteristics. This process is repeated until performance is acceptable, or no further
improvements can be found.

An example might be that a loop nest is measured to be not performing well. Upon closer
inspection, the developer determines that the loop has poor cache behavior, and upon more
detailed inspection finds a specific operation which repeatedly misses the cache. Reorganizing the
code and/or data may improve the cache behavior.

» Monitoring of an application’s performance, e.g., by a Java Virtual Machine. In this scenario the

application is not executing directly on the hardware, but its execution is being mediated by a piece
of system software, which for the purposes of this document is called a Virtual Machine. This may
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be a Java VM, or a binary translation system running software compiled for another architecture, or
for an earlier version of the UltraSPARC Architecture. One goal of the VM is to optimize the
behavior of the application by monitoring its performance and dynamically reorganizing the
execution of the application (e.g., by selective recompilation of the application).

This scenario differs from the previous one principally in the time allowed to gather performance
data. Because the data are being gathered during the execution of the program, the measurements
must not adversely affect the performance of the application by more than, say, a few percent, and
must yield insight into the performance of the application in a relatively short time (otherwise,
optimization opportunities are deferred for too long). This implies an observation mechanism
which is of very low overhead, so that many observations can be made in a short time.

In contrast, a developer optimizing an application has the luxury of running or re-running the
application for a considerable period of time (minutes or even hours) to gather data. However, the
developer will also expect a level of precision and detail in the data which would overwhelm a
virtual machine, so the accuracy of the data required by a virtual machine need not be as high as
that supplied to the developer.

Scenarios 1 and 2 are adequately dealt with by a suitable set of performance counters capable of
counting a variety of performance-related events. Counters are ideal for these situations because they
provide low-overhead statistics without any intrusion into the behavior of the system or disruption to
the code being monitored. However, counters may not adequately address the latter two scenarios, in
which detailed and timely information is required at the level of individual instructions. Therefore,
UltraSPARC Architecture processors may also implement an instruction sampling mechanism.

11.1.2 Metrics

There are two classes of data reported by a performance instrumentation mechanism:

» Architectural performance metrics. These are metrics related to the observable execution of code at the
architectural level (UltraSPARC Architecture). Examples include:

« The number of instructions executed
= The number of floating point instructions executed
« The number of conditional branch instructions executed

» Implementation performance metrics. These describe the behavior of the microprocessor in terms of its
implementation, and would not necessarily apply to another implementation of the architecture.

In optimizing the performance of an application or system, attention will first be paid to the first class
of metrics, and so these are more important. Only in performance-critical cases would the second class
receive attention, since using these metrics requires a fairly extensive understanding of the specific
implementation of the UltraSPARC Architecture.

11.1.3 Accuracy Requirements

Accuracy requirements for performance instrumentation vary depending on the scenario. The
requirements are complicated by the possibly speculative nature of UltraSPARC Architecture
processor implementations. For example, an implementation may include in its cache miss statistics
the misses induced by speculative executions which were subsequently flushed, or provide two
separate statistics, one for the misses induced by flushed instructions and one for misses induced by
retired instructions. Although the latter would be desirable, the additional implementation
complexity of associating events with specific instructions is significant, and so all events may be
counted without distinction. The instruction sampling mechanism may distinguish between
instructions that retired and those that were flushed, in which case sampling can be used to obtain
statistical estimates of the frequencies of operations induced by mis-speculation.
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For critical ];;erformance measurements, architectural event counts must be accurate to a high degree
(1 part in 10°). Which counters are considered performance-critical (and therefore accurate to 1 part in
10°) are specified in implementation-specific documentation.

Implementation event counts must be accurate to 1 part in 10%, not including the speculative effects
mentioned above. An upper bound on counter skew must be stated in implementation-specific
documentation.

Programming | Increasing the time between counter reads will mitigate the
Note | inaccurcies that could be introduced by counter skew (due to
speculative effects).

11.2

11.2.1

Performance Counters and Controls

The performance instrumentation hardware provides performance instrumentation counters (PICs).
The number and size of performance counters is implementation dependent, but each performance
counter register contains at least one 32-bit counter. It is implementation dependent whether the
performance counter registers are accessed as ASRs or are accessed through ASIs.

There are one or more performance counter control registers (PCRs) associated with the counter
registers. It is implementation dependent whether the PCRs are accessed as ASRs or are accessed
through ASIs.

Each counter in a counter register can count one kind of event at a time. The number of the kinds of
events that can be counted is implementation dependent. For each performance counter register, the
corresponding control register is used to select the event type being counted. A counter is
incremented whenever an event of the matching type occurs. A counter may be incremented by an
event caused by an instruction which is subsequently flushed (for example, due to mis-speculation).
Counting of events may be controlled based on privilege mode or on the strand in which they occur.
Masking may be provided to allow counting of subgroups of events (for example, various occurrences
of different opcode groups).

A field that indicates when a counter has overflowed must be present in either each performance
instrumentation counter or in a separate performance counter control register.

Performance counters are usually provided on a per-strand basis.

Counter Overflow

Overflow of a counter must cause a pic_overflow disrupting trap to be generated, when enabled by a
Trap Overflow Enable bit (in an implementation-specific location). There must be a separate toe bit
for each performance counter, so that overflow traps can be enabled on a per-counter basis. Overflow
of a counter is recorded in the overflow-indication field of either a performance instrumentation
counter or a separate performance counter control register.

Programming | Counter overflow traps can also be used for sampling, by setting
Note | the initial counter value so that an interrupt occurs n counts
later.

Counter overflow traps are provided so that large counts can be maintained in software, beyond the
range directly supported in hardware. The counters continue to count after an overflow, and software
can utilize the overflow traps to maintain additional high-order bits.
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CHAPTER 12

Traps

A trap is a vectored transfer of control to software running in a privilege mode (see page 372) with
(typically) greater privileges. A trap in nonprivileged mode can be delivered to privileged mode or
hyperprivileged mode. A trap that occurs while executing in privileged mode can be delivered to
privileged mode or hyperprivileged mode. A trap that occurs while executing in hyperprivileged
mode can only be delivered to hyperprivileged mode.

The actual transfer of control occurs through a trap table that contains the first eight instructions (32
instructions for clean_window, fast_instruction_access_ MMU_miss, fast_data_access_MMU_miss,
fast_data_access_protection, window spill, and window fill, traps) of each trap handler. The virtual
base address of the trap table for traps to be delivered in privileged mode is specified in the Trap Base
Address (TBA) register. The physical base address of the trap table for traps to be delivered in
hyperprivileged mode is specified in the Hyperprivileged Trap Base Address (HTBA) register. The
displacement within either table is determined by the trap type and the current trap level (TL). One-
half of each table is reserved for hardware traps; the other half is reserved for software traps
generated by Tcc instructions.

A trap behaves like an unexpected procedure call. It causes the hardware to do the following:

1. Save certain virtual processor state (such as program counters, CWP, ASI, CCR, PSTATE, and the
trap type) on a hardware register stack.

2. Enter privileged execution mode with a predefined PSTATE, or enter hyperprivileged mode with a
predefined PSTATE and HPSTATE.

3. Begin executing trap handler code in the trap vector.
When the trap handler has finished, it uses either a DONE or RETRY instruction to return.

A trap may be caused by a Tcc instruction, an instruction-induced exception, a reset, an asynchronous
error, or an interrupt request not directly related to a particular instruction. The virtual processor
must appear to behave as though, before executing each instruction, it determines if there are any
pending exceptions or interrupt requests. If there are pending exceptions or interrupt requests, the
virtual processor selects the highest-priority exception or interrupt request and causes a trap.

Thus, an exception is a condition that makes it impossible for the virtual processor to continue
executing the current instruction stream without software intervention. A frap is the action taken by
the virtual processor when it changes the instruction flow in response to the presence of an exception,
interrupt, reset, or Tcc instruction.

V9 Compatibility | Exceptions referred to as “catastrophic error exceptions” in the
Note | SPARC V9 specification do not exist in the UltraSPARC
Architecture; they are handled using normal error-reporting
exceptions. (impl. dep. #31-V8-Cs10)

An interrupt is a request for service presented to a virtual processor by an external device.

Traps are described in these sections:

» Virtual Processor Privilege Modes on page 372.
» Virtual Processor States, Normal Traps, and RED_st at e Traps on page 373.
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» Trap Categories on page 377.

» Trap Control on page 381.

s Trap-Table Entry Addresses on page 382.

s Trap Processing on page 396.

= Exception and Interrupt Descriptions on page 406.
= Register Window Traps on page 416.

12.1  Virtual Processor Privilege Modes

An UltraSPARC Architecture virtual processor is always operating in a discrete privilege mode. The
privilege modes are listed below in order of increasing privilege:

» Nonprivileged mode (also known as “user mode”)
» Privileged mode, in which supervisor (operating system) software primarily operates
» Hyperprivileged mode, in which hypervisor software operates, serving as a layer between the

supervisor software and the underlying virtual processor

The virtual processor’s operating mode is determined by the state of two mode bits, as shown in
TABLE 12-1.

TABLE 12-1 Virtual Processor Privilege Modes

HPSTATE.hpriv.  PSTATE .priv Virtual Processor Privilege Mode

0 0 Nonprivileged
0 1 Privileged
1 — Hyperprivileged

A trap is delivered to the virtual processor in either privileged mode or hyperprivileged mode; in
which mode the trap is delivered depends on:

= [ts trap type
s The trap level (TL) at the time the trap is taken
» The privilege mode at the time the trap is taken

Traps detected in nonprivileged and privileged mode can be delivered to the virtual processor in
privileged mode or hyperprivileged mode. Traps detected in hyperprivileged mode are either
delivered to the virtual processor in hyperprivileged mode or may be masked. If masked, they are
held pending.

TABLE 12-4 on page 387 indicates in which mode each trap is processed, based on the privilege mode at
which it was detected.

A trap delivered to privileged mode uses the privileged-mode trap vector, based upon the TBA
register. See Trap-Table Entry Address to Privileged Mode on page 383 for details. A trap delivered to
hyperprivileged mode uses the hyperprivileged mode trap vector address, based upon the HTBA
register. See Trap-Table Entry Address to Hyperprivileged Mode on page 383 for details.

The maximum trap level at which privileged software may execute is MAXPTL (which, on an
UltraSPARC Architecture 2007 virtual processor, is 2). Therefore, if TL 2 MAXPTL and a trap occurs that
would normally be delivered in privileged mode, it is instead delivered in hyperprivileged mode; the
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trap table offset for watchdog_reset (404¢) is used, and the priority and trap type of the original
exception is retained. This is referred to as a “guest_watchdog” trap (so named because it uses
watchdog_reset’s trap table offset).

Notes | Execution in nonprivileged or privileged mode with
TL > MAXPTL is an invalid condition that hyperprivileged
software should never allow to occur.

Execution in nonprivileged mode with TL > 0 is an invalid
condition that privileged and hyperprivileged software should
never allow to occur.

FIGURE 12-1 shows how a virtual processor transitions between privilege modes, excluding transitions
that can occur due to direct software writes to PSTATE.priv or HPSTATE.hpriv. In this figure,
indicates a “trap destined for privileged mode” and [n1] indicates a “trap destined for hyperprivileged
mode”.

@ TL = MAXPTL (2), or

@ TL = MAXPTL (2), or &9

@ TL < MAXPTL (2)

Nonprivileged

Hyperprivileged

Privileged

1 if ((HTSTATE[TL].HPSTATE.hpriv = 0) 2 if ((HTSTATE[TL].HPSTATE.hpriv = 0) 3 if ((HTSTATEITLLHPSTATE.hpriv=1)
and (TSTATE[TL].PSTATE.priv = 0) ) and (TSTATE[TL].PSTATE.priv = 1))

FIGURE 12-1 Virtual Processor Privilege Mode Transition Diagram

12.2 Virtual Processor States, Normal Traps, and
RED_st at e Traps

An UltraSPARC Architecture virtual processor is always in one of three discrete states:
= execut e_st at e, which is the normal execution state of the virtual processor

» RED_ st at e (Reset, Error, and Debug state), which is a restricted execution state reserved for
processing traps that occur when TL = MAXTL — 1, and for processing hardware- and software-
initiated resets

» error_state, which is a transient state that is entered as a result of a non-reset trap, SIR, or XIR
when TL = MAXTL

The values of TL and HPSTATE.red affect the generated trap vector address. TL also determines where
(that is, into which element of the TSTATE and HTSTATE arrays) the states are saved..
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Traps processed in execut e_st at e are called normal traps. Traps processed in RED_st at e are called
RED_st at e traps.

V9 Compatibility | RED_st at e traps were called “special traps” in the SPARC V9
Note | specification. The name was changed to clarify the terminology.

FIGURE 12-2 shows the virtual processor state transition diagram.

([nrT] or SIR) @ TL = MAXTL

@ ([nrT] or SIR or XIR) @
TL = MAXTL-1, TL = MAXTL

SIR @
TL < MAXTL,

red « 1

execute_state RED state error_state

DONE,

RETRY,
red -« 0

or SIR or XIR) @
TL < MAXTL

XIR @
@ POR, TL = MAXTL
TL < MAXTL—1 XIR @TL < MAXTL
Any State Any State

(Including Power Off)

FIGURE 12-2 Virtual Processor State Diagram (“[NRT]” = “non-reset trap”)

12.2.1 RED state

RED_st at e is an acronym for Reset, Error, and Debug state. The virtual processor enters RED_st at e
under any one of the following conditions:

» A non-reset trap is taken when TL = MAXTL -1.

= A POR or WDR reset occurs.

= An SIR reset occurs when TL < MAXTL.

» An XIR reset occurs when TL < MAXTL.

s System software sets HPSTATE.red = 1. For this condition, no other machine state or operation is
modified as a side-effect of the write to HPSTATE; software must set the appropriate machine state.

RED_st at e serves two purposes:

» During trap processing, it indicates that no more trap levels are available; that is, while executing
in RED_st at e with TL = MAXTL, if another nested non-reset trap, SIR, or XIR is taken, the virtual
processor will enter er r or _st at e. RED_st at e provides system software with a restricted
execution environment.

» [t provides the execution environment for all reset processing.

RED_st at e is indicated by HPSTATE.red. When this bit is set to 1, the virtual processor is in
RED_st at e; when this bit is zero, the virtual processor is not in RED_st at e, independent of the
value of TL. Executing a DONE or RETRY instruction in RED_st at e restores the stacked copy of the
HPSTATE register, which zeroes the HPSTATE.red flag if it was zero in the stacked copy. System
software can also directly write 1 or 0 to HPSTATE.red with a WRHPR instruction, which forces the
virtual processor to enter or exit RED_st at e, respectively. In this case, the WRHPR instruction should
be placed in the delay slot of a jump instruction so that the PC can be changed in concert with the
state change.
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When RED_st at e is entered due to a reset or a trap, the execution environment is altered in four
ways:

= Address translation is disabled in the MMU, for both instruction and data references.

= Watchpoints are disabled.

» The trap vector for the traps occurring in RED_st at e is based on the RED_st at e Trap Table.
» The virtual processor enters hyperprivileged mode (HPSTATE.hpriv — 1).

Programming | Setting TL — MAXTL with a WRHPR instruction does not also set
Note | HPSTATE.red — 1, nor does it alter any other machine state. The
values of HPSTATE.red and TL are independent.

Setting HPSTATE.red with a WRHPR instruction causes the
virtual processor to execute in RED_st at e. This results in the
execution environment defined in RED_st at e Execution
Environment on page 375. However, it is different from a
RED_st at e trap in the sense that there are no trap-related
changes in the machine state (for example, TL does not change).

The trap table organization for RED_st at e traps is described in RED_st at e Trap Table Organization
on page 385.

12.2.1.1 RED_st at e Execution Environment

In RED_st at e, the virtual processor is forced to execute in a restricted environment by overriding the
values of some virtual processor control and state registers.

The values are overridden, not set, allowing them to be switched atomically.

Some of the characteristics of RED_st at e include:

» Memory accesses in RED_st at e are by default noncacheable, so there must be noncacheable
scratch memory somewhere in the system.

s The D-cache watchpoints and DMMU/UMMU can be enabled by software in RED_st at e, but any
trap will disable them again.

» The caches continue to snoop and maintain coherence in RED_st at e if DMA or other virtual
processors are still issuing cacheable accesses.

IMPL. DEP. #115-V9: A processor’s behavior in RED_st at e is implementation dependent.

Programming | When RED_st at e is entered because of component failures,
Note | trap handler software should attempt to recover from
potentially fatal error conditions or to disable the failing
components. When RED_st at e is entered after a reset, the
software should create the environment necessary to restore the
system to a running state.

12.2.1.2 RED_st at e Entry Traps

The following reset traps are processed in RED_st at e:
» Power-on reset (POR) — POR causes the virtual processor to start execution at this trap table entry.

= Watchdog reset (WDR) — While in err or _st at e, the virtual processor automatically invokes a
watchdog reset to enter RED_st at e (impl. dep. #254-U3-Cs10).

» Externally initiated reset (XIR) — This trap is typically used as a nonmaskable interrupt for
debugging purposes. If TL < MAXTL when an XIR occurs, the reset trap is processed in RED_st at e;
if TL = MAXTL when an XIR occurs, the virtual processor transitions directly to error_st ate.
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12.2.2

» Software-initiated reset (SIR) If TL < MAXTL when an SIR occurs, the reset trap is processed in
RED_st at e; if TL = MAXTL when an SIR occurs, the virtual processor transitions directly to
error_state.

Non-reset traps that occur when TL = MAXTL — 1 also set HPSTATE.red = 1; that is, any non-reset trap
handler entered with TL = MAXTL runs in RED_st at e.

Any non-reset trap that sets HPSTATE.red = 1 or that occurs when HPSTATE.red = 1 branches to a
special entry in the RED_st at e trap vector at RSTVADDR + A0q4. Reset traps are described in Reset
Traps on page 380.

12.2.1.3 RED_st at e Software Considerations

In effect, RED_st at e reserves one level of the trap stack for recovery and reset processing.
Hyperprivileged software should be designed to require only MAXTL — 1 trap levels for normal
processing. That is, any trap that causes TL = MAXTL is an exceptional condition that should cause
entry to RED_st at e.

Programming | To log the state of the virtual processor, RED_st at e-handler
Note | software needs either a spare register or a preloaded pointer to a
save area. To support recovery, the operating system might
reserve one of the hyperprivileged scratchpad registers for use
in RED state.

12.2.1.4 Usage of Trap Levels

If MAXPTL = 2 and MAXTL = 5 in an UltraSPARC Architecture implementation, the trap levels might be
used as shown in TABLE 12-2.

TABLE 12-2 Typical Usage for Trap Levels

Corresponding

TL Execution Mode Usage
0 Nonprivileged = Normal execution
1 Privileged System calls; interrupt handlers; instruction emulation
2 Privileged Window spill/fill handler
3 Hyperprivileged Real address TLB miss handler
4 Hyperprivileged Reserved for error handling
5 Hyperprivileged RED_st at e handler

error_state

The virtual processor enters err or _st at € when a trap occurs while the virtual processor is already
at its maximum supported trap level — that is, it enters er r or _st at e when a trap occurs while

TL = MAXTL. No other conditions cause entry into err or _st at e on an UltraSPARC Architecture
virtual processor. (impl. dep. #39-V8-Cs10)

IMPL. DEP. #40-V8: Effects when er r or _st at e is entered are implementation-dependent, but it is
recommended that as much processor state as possible be preserved upon entry to error _state. In
addition, an UltraSPARC Architecture virtual processor may have other error _st at e entry traps
that are implementation dependent.

Upon entering er r or _st at e, a virtual processor automatically generates a watchdog_reset (WDR)
(impl. dep. #254-U3-Cs10), which causes entry into RED_st at e.
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12.3

12.3.1

12.3.2

Trap Categories

An exception, error, or interrupt request can cause any of the following trap types:

= Precise trap

s Deferred trap

» Disrupting trap
= Reset trap

Precise Traps

A precise trap is induced by a particular instruction and occurs before any program-visible state has
been changed by the trap-inducing instructions. When a precise trap occurs, several conditions must
be true:

» The PC saved in TPC[TL] points to the instruction that induced the trap and the NPC saved in
TNPC[TL] points to the instruction that was to be executed next.

» All instructions issued before the one that induced the trap have completed execution.

» Any instructions issued after the one that induced the trap remain unexecuted.

Among the actions that trap handler software might take when processing a precise trap are:

» Return to the instruction that caused the trap and reexecute it by executing a RETRY instruction
(PC « old PC, NPC - old NPC).

» Emulate the instruction that caused the trap and return to the succeeding instruction by executing
a DONE instruction (PC — old NPC, NPC — old NPC + 4).

» Terminate the program or process associated with the trap.

Deferred Traps

A deferred trap is also induced by a particular instruction, but unlike a precise trap, a deferred trap
may occur after program-visible state has been changed. Such state may have been changed by the
execution of either the trap-inducing instruction itself or by one or more other instructions.

There are two classes of deferred traps:

» Termination deferred traps — The instruction (usually a store) that caused the trap has passed the
retirement point of execution (the TPC has been updated to point to an instruction beyond the one
that caused the trap). The trap condition is an error that prevents the instruction from completing
and its results becoming globally visible. A termination deferred trap has high trap priority, second
only to the priority of resets.

Programming | Not enough state is saved for execution of the instruction stream
Note | to resume with the instruction that caused the trap. Therefore,
the trap handler must terminate the process containing the
instruction that caused the trap.

» Restartable deferred traps — The program-visible state has been changed by the trap-inducing
instruction or by one or more other instructions after the trap-inducing instruction.

SPARC V9 | A restartable deferred trap is the “deferred trap” defined in the

Compatibility | SPARC V9 specification.
Note
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The fundamental characteristic of a restartable deferred trap is that the state of the virtual processor on
which the trap occurred may not be consistent with any precise point in the instruction sequence
being executed on that virtual processor. When a restartable deferred trap occurs, TPC[TL] and
TNPC[TL] contain a PC value and an NPC value, respectively, corresponding to a point in the
instruction sequence being executed on the virtual processor. This PC may correspond to the trap-
inducing instruction or it may correspond to an instruction following the trap-inducing instruction.
With a restartable deferred trap, program-visible updates may be missing from instructions prior to
the instruction to which TPC[TL] refers. The missing updates are limited to instructions in the range
from (and including) the actual trap-inducing instruction up to (but not including) the instruction to
which TPCI[TL] refers. By definition, the instruction to which TPC[TL] refers has not yet executed,
therefore it cannot have any updates, missing or otherwise.

With a restartable deferred trap there must exist sufficient information to report the error that caused
the deferred trap. If system software can recover from the error that caused the deferred trap, then
there must be sufficient information to generate a consistent state within the processor so that
execution can resume. Included in that information must be an indication of the mode (nonprivileged,
privileged, or hyperprivileged) in which the trap-inducing instruction was issued.

How the information necessary for repairing the state to make it consistent state is maintained and
how the state is repaired to a consistent state are implementation dependent. It is also implementation
dependent whether execution resumes at the point of the trap-inducing instruction or at an arbitrary
point between the trap-inducing instruction and the instruction pointed to by the TPC[TL],
inclusively.

Associated with a particular restartable deferred trap implementation, the following must exist:

» An instruction that causes a potentially outstanding restartable deferred trap exception to be taken
as a trap

» Instructions with sufficient privilege to access the state information needed by software to emulate
the restartable deferred trap-inducing instruction and to resume execution of the trapped
instruction stream.

Programming | Resuming execution may require the emulation of instructions
Note | that had not completed execution at the time of the restartable
deferred trap, that is, those instructions in the deferred-trap
queue.

Software should resume execution with the instruction starting at the instruction to which TPC[TL]
refers. Hardware should provide enough information for software to recreate virtual processor state
and update it to the point just before execution of the instruction to which TPC[TL] refers. After
software has updated virtual processor state up to that point, it can then resume execution by issuing
a RETRY instruction.

IMPL. DEP. #32-V8-Ms10: Whether any restartable deferred traps (and, possibly, associated deferred-
trap queues) are present is implementation dependent.
Among the actions software can take after a restartable deferred trap are these:

» Emulate the instruction that caused the exception, emulate or cause to execute any other execution-
deferred instructions that were in an associated restartable deferred trap state queue, and use
RETRY to return control to the instruction at which the deferred trap was invoked.

» Terminate the program or process associated with the restartable deferred trap.

A deferred trap (of either of the two classes) is always delivered to the virtual processor in
hyperprivileged mode.
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12.3.3

Disrupting Traps

12.3.3.1 Disrupting versus Precise and Deferred Traps

A disrupting trap is caused by a condition (for example, an interrupt) rather than directly by a
particular instruction. This distinguishes it from precise and deferred traps.

When a disrupting trap has been serviced, trap handler software normally arranges for program
execution to resume where it left off. This distinguishes disrupting traps from reset traps, since a reset
trap vectors to a unique reset address and execution of the program that was running when the reset
occurred is generally not expected to resume.

When a disrupting trap occurs, the following conditions are true:

1. The PC saved in TPC[TL] points to an instruction in the disrupted program stream and the NPC
value saved in TNPC[TL] points to the instruction that was to be executed after that one.

2. All instructions issued before the instruction indicated by TPC[TL] have retired.

3. The instruction to which TPC[TL] refers and any instruction(s) that were issued after it remain
unexecuted.

A disrupting trap may be due to an interrupt request directly related to a previously-executed
instruction; for example, when a previous instruction sets a bit in the SOFTINT register.

12.3.3.2 Causes of Disrupting Traps

A disrupting trap may occur due to either an interrupt request or an error not directly related to
instruction processing. The source of an interrupt request may be either internal or external. An
interrupt request can be induced by the assertion of a signal not directly related to any particular
virtual processor or memory state, for example, the assertion of an “I/O done” signal.

A condition that causes a disrupting trap persists until the condition is cleared.

12.3.3.3 Conditioning of Disrupting Traps

How disrupting traps are conditioned is affected by:

s The privilege mode in effect when the trap is outstanding, just before the trap is actually taken
(regardless of the privilege mode that was in effect when the exception was detected).

» The privilege mode for which delivery of the trap is destined

Outstanding in Nonprivileged or Privileged mode, destined for delivery in Privileged

mode. An outstanding disrupting trap condition in either nonprivileged mode or privileged mode
and destined for delivery to privileged mode is held pending while the Interrupt Enable (ie) field of
PSTATE is zero (PSTATE.ie = 0). interrupt_level_n interrupts are further conditioned by the Processor
Interrupt Level (PIL) register. An interrupt is held pending while either PSTATE.ie = 0 or the
condition’s interrupt level is less than or equal to the level specified in PIL. When delivery of this
disrupting trap is enabled by PSTATE.ie = 1, it is delivered to the virtual processor in privileged mode
if TL < MAXPTL (2, in UltraSPARC Architecture 2007 implementations) or in hyperprivileged mode if
TL = MAXPTL.

Outstanding in Hyperprivileged mode, destined for delivery in Privileged mode. An
outstanding disrupting trap condition detected while in hyperprivileged mode and destined for
delivery in privileged mode is held pending while in hyperprivileged mode (HPSTATE.priv = 1),
regardless of the values of TL and PSTATE.ie.
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Outstanding in Nonprivileged or Privileged mode, destined for delivery in Hyperprivileged
mode. An outstanding disrupting trap condition detected while in either nonprivileged mode or
privileged mode and destined for delivery in hyperprivileged mode is never masked; it is delivered
immediately.

Outstanding in Hyperprivileged mode, destined for delivery in Hyperprivileged mode. An
outstanding disrupting trap condition detected in hyperprivileged mode and destined to be delivered
in hyperprivileged mode is masked and held pending while PSTATE.ie = 0.

The above is summarized in TABLE 12-3.

TABLE 12-3 Conditioning of Disrupting Traps

Disposition of Disrupting Traps, based on privilege

Type of Disrupting  Current Virtual Processor mode in which the trap is destined to be delivered

Trap Condition Privilege Mode

Privileged Hyperprivileged

Nonprivileged or

Held pending while = —
Privileged

PSTATE.ie =0 or

interrupt level < PIL

Interrupt_level_n

Hyperprivileged Held pending while —

HPSTATE.hpriv =1
Delivered

All other disrupting| Nonprivileged or Held pending while

traps Privileged

Hyperprivileged

PSTATE.ie =0

Held pending while
HPSTATE.hpriv =1

immediately

Held pending while
PSTATE.ie =0

12.3.4

12.3.3.4 Trap Handler Actions for Disrupting Traps

Among the actions that trap-handler software might take to process a disrupting trap are:

s Use RETRY to return to the instruction at which the trap was invoked
(PC ~ old PC, NPC « old NPC).

» Terminate the program or process associated with the trap.

12.3.3.5 Clearing Requirement for Disrupting Traps

For each disrupting trap, a method must be provided for hyperprivileged software (or a service
processor, if present) to detect and clear the pending disrupting trap without taking its corresponding
hardware trap.

Reset Traps

A reset trap occurs when hyperprivileged software or the implementation’s hardware determines that
the machine must be reset to a known state. Reset traps differ from disrupting traps in that:

» They are not maskable.

» Trap handler software for resets is generally not expected to resume execution of the program that
was running when the reset trap occurred. After an SIR or XIR, execution of the interrupted
program may resume.

All reset traps are delivered to the virtual processor in hyperprivileged mode.

IMPL. DEP. #37-V8: Some of a virtual processor’s behavior during a reset trap is implementation
dependent. See RED_st at e Trap Processing on page 400 for details.

The following reset traps are defined by the SPARC V9 architecture:
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12.3.5

Power-on reset (POR) — Used for initialization purposes (for example, when power is applied or
reapplied to the virtual processor).

Watchdog reset (WDR) — Initiated when the virtual processor enters er r or _st at e (impl. dep.
#254-U3-Cs10). The WDR reset trap is taken instead of the trap request that caused entry to
error_state at TL = MAXTL. TSTATE[MAXTL], TPC[MAXTL], TNPC[MAXTL] and TT[MAXTL] observed
after a WDR reset trap are those associated with the trap request that caused entry to
error_state. The value of TT[MAXTL] indicates the trap type of this trap. Machine state is
consistent; however, software should not resume normal instruction processing at the address in
TPC[TL] after the WDR reset trap. The values in TSTATE[MAXTL], TPC[MAXTL], TNPC[MAXTL] and
TT[MAXTL] are accurate and are intended for debug purposes.

Externally initiated reset (XIR) — Initiated in response to a signal or event that is external to the
virtual processor. This reset trap is normally used for critical system events, such as power failure.
The XIR reset trap is treated as an interrupt and processed similarly to a disrupting trap (but
without masking). Software can resume the interrupted program at the conclusion of trap handler
execution. If the XIR reset is detected when TL = MAXTL, the virtual processor enters er r or _st at e
and triggers a WDR reset. Trap handler code for the resulting WDR reset can determine that the
original cause of the entry to er r or _st at e was an XIR reset by observing that the trap type saved
in TT[MAXTL] is 3 (indicating XIR).

Software-initiated reset (SIR) — Initiated by software by executing the SIR instruction in
hyperprivileged mode. In nonprivileged and privileged mode, the SIR instruction causes an
illegal_instruction exception (which results in a trap to hyperprivileged mode). The SIR reset trap
is processed similar to a precise trap. The PC saved in TPC[TL] points to the SIR instruction. If the
SIR reset is detected when TL = MAXTL, the virtual processor enters err or _st at e and triggers a
WDR reset. Trap handler code for the resulting WDR reset can determine that the original cause of
the entry to error _st at e was an SIR reset by observing that the trap type saved in TT[MAXTL] is
4 (indicating SIR).

Uses of the Trap Categories

The SPARC V9 trap model stipulates the following:

1.
2.

Reset traps (except software_initiated_reset traps) occur asynchronously to program execution.

When recovery from an exception can affect the interpretation of subsequent instructions, such
exceptions shall be precise. See TABLE 12-4, TABLE 12-5, and Exception and Interrupt Descriptions on
page 406 for identification of which traps are precise.

. In an UltraSPARC Architecture implementation, all exceptions that occur as the result of program

execution, except for errors on store instructions that occur after the store instruction that has
passed the retirement point, are precise (impl. dep. #33-V8-Cs10).

. An error detected after the initial access of a multiple-access load instruction (for example, LDTX or

LDBLOCKFP) should be precise. Thus, a trap due to the second memory access can occur.
However, the processor state should not have been modified by the first access.

. Exceptions caused by external events unrelated to the instruction stream, such as interrupts, are

disrupting.

A deferred trap may occur one or more instructions after the trap-inducing instruction is dispatched.

12.4

Trap Control

Several registers control how any given exception is processed, for example:
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12.4.1

12.4.2

» The interrupt enable (ie) field in PSTATE and the Processor Interrupt Level (PIL) register control
interrupt processing. See Disrupting Traps on page 379 for details.

s The enable floating-point unit (fef) field in FPRS, the floating-point unit enable (pef) field in
PSTATE, and the trap enable mask (tem) in the FSR control floating-point traps.

» The hyperprivileged mode bit (hpriv) field in the HPSTATE register, which can affect how a trap is
delivered. See Conditioning of Disrupting Traps on page 379 for details.

» The TL register, which contains the current level of trap nesting, controls whether a trap causes
entry to execut e_state, RED _state, or error_st at e. It also affects whether the trap is
processed in privileged mode or hyperprivileged mode.

» For a trap delivered to the virtual processor in privileged mode, PSTATE.tle determines whether
implicit data accesses in the trap handler routine will be performed using big-endian or little-
endian byte order. A trap delivered to the virtual processor in hyperprivileged mode always uses a
default byte order of big-endian.

Between the execution of instructions, the virtual processor prioritizes the outstanding exceptions,
errors, and interrupt requests. At any given time, only the highest-priority exception, error, or
interrupt request is taken as a trap. When there are multiple interrupts outstanding, the interrupt with
the highest interrupt level is selected. When there are multiple outstanding exceptions, errors, and/or
interrupt requests, a trap occurs based on the exception, error, or interrupt with the highest priority
(numerically lowest priority number in TABLE 12-5). See Trap Priorities on page 396.

PIL Control

When an interrupt request occurs, the virtual processor compares its interrupt request level against
the value in the Processor Interrupt Level (PIL) register. If the interrupt request level is greater than
PIL and no higher-priority exception is outstanding, then the virtual processor takes a trap using the
appropriate interrupt_level_n trap vector.

FSR.tem Control

The occurrence of floating-point traps of type IEEE_754_exception can be controlled with the user-
accessible trap enable mask (tem) field of the FSR. If a particular bit of FSR.tem is 1, the associated
IEEE_754_exception can cause an fp_exception_ieee_754 trap.

If a particular bit of FSR.tem is 0, the associated IEEE_754_exception does not cause an
fp_exception_ieee_754 trap. Instead, the occurrence of the exception is recorded in the FSR’s accrued
exception field (aexc).

If an IEEE_754_exception results in an fp_exception_ieee_754 trap, then the destination F register,
FSR.fcen, and FSR.aexc fields remain unchanged. However, if an IEEE_754_exception does not result
in a trap, then the F register, FSR.fccn, and FSR.aexc fields are updated to their new values.

12.5

Trap-Table Entry Addresses

Traps are delivered to the virtual processor in either privileged mode or hyperprivileged mode,
depending on the trap type, the value of TL at the time the trap is taken, and the privilege mode at the
time the exception was detected. See TABLE 12-4 on page 387 and TABLE 12-5 on page 392 for details.

Unique trap table base addresses are provided for traps being delivered in privileged mode and in
hyperprivileged mode.
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12.5.1

12.5.2

12.5.3

Trap-Table Entry Address to Privileged Mode

Privileged software initializes bits 63:15 of the Trap Base Address (TBA) register (its most significant
49 bits) with bits 63:15 of the desired 64-bit privileged trap-table base address.

At the time a trap to privileged mode is taken:

» Bits 63:15 of the trap vector address are taken from TBA{63:15}.

» Bit 14 of the trap vector address (the “TL>0" field) is set based on the value of TL just before the
trap is taken; that is, if TL = 0 then bit 14 is set to 0 and if TL > 0 then bit 14 is set to 1.

» Bits 13:5 of the trap vector address contain a copy of the contents of the TT register (TT[TL]).

= Bits 4:0 of the trap vector address are always 0; hence, each trap table entry is at least 2° or 32 bytes
long. Each entry in the trap table may contain the first eight instructions of the corresponding trap
handler.

FIGURE 12-3 illustrates the trap vector address for a trap delivered to privileged mode. In FIGURE 12-3,
the “TL>0" bit is 0 if TL = 0 when the trap was taken, and 1 if TL > 0 when the trap was taken. This
implies, as detailed in the following section, that there are two trap tables for traps to privileged
mode: one for traps from TL = 0 and one for traps from TL > 0.

from TBA{63:15} (TBA.tba_high49) | T|_>o| TT[TL]| 0 0000 |
63 15 14 13 54 0

FIGURE 12-3 Privileged Mode Trap Vector Address

Privileged Trap Table Organization

The layout of the privileged-mode trap table (which is accessed using virtual addresses) is illustrated
in FIGURE 12-4.

Value Software Hardware Trap Table

of TL Trap Trap Type Offset
(t:efo;e Type (TTLTLD) (from TBA)  Contents of Trap Table
rap
— 000,6—07F16 0,6— FEO,5 | Hardware traps

— 080,—0FF;  1000,6—1FEOQ.¢ | Spill/ fill traps
016— 7F16 100,-17F¢ 20004—2FEO0;¢ | Software traps to Privileged level
— 180,6-1FF;  3000,6-3FE04¢ | unassigned

— 000,—07F1¢  4000,6—4FEQ;5 | Hardware traps
TL =1 — 08046—0FF;5  5000,5—5FEOQ,¢ | Spill / fill traps
(TL = 016— 7F16 10046-17F 15 6000,5—6FEO;¢ | Software traps to Privileged level
wwer) 180,5-1FFy;  7000;4~7FEO¢ | unassigned

FIGURE 12-4 Privileged-mode Trap Table Layout

The trap table for TL = 0 comprises 512 thirty-two-byte entries; the trap table for TL > 0 comprises 512
more thirty-two-byte entries. Therefore, the total size of a full privileged trap table is 2 x 512 x 32
bytes (32 Kbytes). However, if privileged software does not use software traps (Tcc instructions) at
TL > 0, the table can be made 24 Kbytes long.

Trap-Table Entry Address to Hyperprivileged Mode

Hyperprivileged software initializes bits 63:14 of the Hyperprivileged Trap Base Address (HTBA)
register (its most significant 50 bits) with bits 63:14 of the desired 64-bit hyperprivileged trap table
base address.
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At the time a trap to hyperprivileged mode is taken:

= Bits 63:14 of the trap vector address are taken from HTBA{63:14}.

» Bits 13:5 of the trap vector address contain a copy of the contents of the TT register (TT[TL]).

» Bits 4:0 of the trap vector address are always 0; hence, each trap table entry is at least 2° or 32 bytes
long. Each entry in the trap table may contain the first eight instructions of the corresponding trap
handler.

FIGURE 12-5 illustrates the trap vector address used for a trap delivered to hyperprivileged mode.

from HTBA{63:14} (HTBA.htba_high50) |TT[TL]| 0 0000 |
63 14 13 54 0

FIGURE 12-5 Hyperprivileged Mode Trap Vector Address

12.5.4  Hyperprivileged Trap Table Organization

The layout of the hyperprivileged-mode trap table (which is accessed using physical addresses) is
illustrated in FIGURE 12-6.

Software Hardware Trap Table
Trap Trap Type Offset
Type (TTITL] (from HTBA) Contents of Trap Table

— 00016_07':16 016_ FEOlG Hardware traps
— 08016—0FF15  100016—1FEO16 | Spill / fill traps

Software traps from hyperprivileged
O16- 7F16 10056-17F16 200016-2FED6 level to hyperzrivileged Ig\?el i °

80,6— FF15 180,6-1FF;  3000,4—3FEQ;¢ | Software traps to hyperprivileged level

FIGURE 12-6 Hyperprivileged-mode Trap Table Layout

The hyperprivileged trap table comprises 512 thirty-two-byte entries. Therefore, the total size of a full
hyperprivileged trap table is 512 x 32 bytes (16 Kbytes).

12.5.5  Trap Table Entry Address to RED_st at e

Traps occurring in RED_st at e or traps that cause the virtual processor to enter RED_st at e use an
abbreviated trap vector, called the RED_st at e trap vector.

The RED_st at e trap vector is located at the following address, referred to as RSTVADDR (impl. dep.
#114-V9-Cs10):
Physical Address RSTVADDR = FFFF FFFF F000 000044
(highest 256 MB of physical address space)

In an implementation that implements fewer than 64 bits of physical addressing, unimplemented
high-order bits of the above RSTVADDR are ignored.

FIGURE 12-7 illustrates the trap vector address used for a trap delivered to RED_st at e (in
hyperprivileged mode).

FFFF1g | FFFF1g FFFF1g | 00 [rT{TLI| 00000 |
63 48 47 32 31 16 1514 13 5 4 0

FIGURE 12-7 RED_st at e Trap Vector Address
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12.5.6

12.5.7

RED_st at e Trap Table Organization

The RED_st at e trap table is constructed so that it can overlay the hyperprivileged trap table (see
FIGURE 12-6) if necessary. For a trap to RED_st at e, the trap table offset is added to the base address
contained in RSTVADDR to yield the RED_st at e trap vector. FIGURE 12-8 illustrates the layout of the
RED_st at e trap table.

Trap Table
Hardware Offset (from

Trap Type
(TT[TLB RSTVADDR)  contents of Trap Table

0 006 Reserved
1 2016 Power-on reset (POR)
TTH 4044 Watchdog reset (WDR)
3or TTH 6016 Externally initiated reset (XIR)
4 8046 Software-initiated reset (SIR)
T AO4g All other exceptions in RED_st at e

1t TT = trap type of the exception that caused entry intoerror_state

1 TT =3 if an externally_initiated_reset (XIR) occurs while the virtual processor is not in
error_state; TT = trap type of the exception that caused entry into error_state if the
externally initiated reset occursin error _st at e.

* TT = trap type of the exception. See TABLE 12-4 on page 387.

FIGURE 12-8 RED_st at e Trap Table Layout

Trap Type (TT)

When a normal trap occurs, a value that uniquely identifies the type of the trap is written into the

current 9-bit TT register (TT[TL]) by hardware. Control is then transferred into the trap table to an

address formed by one of the following, depending on the trap’s destination privilege mode:

s The TBA register, (TL > 0), and TT[TL] (see Trap-Table Entry Address to Privileged Mode on page 383)
» The HTBA register and TT[TL] (see Trap-Table Entry Address to Hyperprivileged Mode on page 383)

Programming | The spill_n_*, fill_n_*, clean_window, and MMU-related traps
Note | (fast_instruction_access_MMU_miss,
fast_data_access_MMU_miss, and
fast_data_access_protection) are spaced such that their trap-
table entries are 128 bytes (32 instructions) long in the
UltraSPARC Architecture. This length allows the complete code
for one spill/fill routine, a clean_window routine, or a normal
MMU miss handling routine to reside in one trap-table entry.

When a RED_st at e trap occurs, the TT register is set as described in RED_st at e on page 374.
Control is then transferred into the RED_st at e trap table at an address formed by RSTVADDR and an
offset depending on the condition.

TT values 000;4—0FF;4 are reserved for hardware traps. TT values 100,,—17F4 are reserved for
software traps (caused by execution of a Tcc instruction) to privileged-mode trap handlers. TT values
18014—1FF;4 are used for software traps to trap handlers operating in hyperprivileged mode.

IMPL. DEP. #35-V8-Cs20: TT values 06014 to 07F;4 were reserved for
implementation_dependent_exception_n exceptions in the SPARC V9 specification, but are now all
defined as standard UltraSPARC Architecture exceptions. See TABLE 12-4 for details.
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The assignment of TT values to traps is shown in TABLE 12-4; TABLE 12-5 provides the same list, but
sorted in order of trap priority. The key to both tables follows:

Symbol Meaning

. This trap type is associated with a feature that is architecturally required in an
implementation of UltraSPARC Architecture 2007. Hardware must detect this
exception or interrupt, trap on it (if not masked), and set the specified trap type
value in the TT register.

O This trap type is associated with a feature that is architecturally defined in
UltraSPARC Architecture 2007, but its implementation is optional.

p Trap is taken via the Privileged trap table, in Privileged mode (PSTATE.priv = 1)

H Trap is taken via the Hyperprivileged trap table, in Hyperprivileged mode
(HSTATE.hpriv = 1)

HY Trap is taken via the Hyperprivileged trap table, in Hyperprivileged mode
(HSTATE.hpriv = 1). However, the trap is unexpected. While hardware can
legitimately generate this trap, it should not do so unless there is a programming
error or some other error. Therefore, occurrence of this trap indicates an actual
error to hyperprivileged software.

-X- Not possible. Hardware cannot generate this trap in the indicated running mode.
For example, all privileged instructions can be executed in both privileged and
hyperprivileged modes, therefore a privileged_opcode trap cannot occur in
privileged or hyperprivileged mode.

— This trap is reserved for future use.

(am)  Always Masked — when the condition occurs in this privilege mode, it is always
masked out (but remains pending).

(ie) When the outstanding disrupting trap condition occurs in this privilege mode, it
may be conditioned (masked out) by PSTATE.ie = 0 (but remains pending).

(nm) Never Masked — when the condition occurs in this running mode, it is never
masked out and the trap is always taken.

(pend) Held Pending — the condition can occur in this running mode, but can’t be
serviced in this mode. Therefore, it is held pending until the mode changes to one
in which the exception can be serviced.
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TABLE 12-4

Exception and Interrupt Requests, by TT Value (1 of 5)

Mode in which Trap is
Delivered (and
Conditioning Applied),

Priority based on Current

UA-2007 T (0= Privilege Mode

® =Req’d. (Trap Trap High-

O=Opt’l Exception or Interrupt Request Type) Category est) NP Priv HP
— Reserved 00016 — — — — —
. power_on_reset 00144 reset 0 H H H

(nm) (nm) (nm)
° watchdog_reset TT* reset 1.2 H H H
(nm) (nm) (nm)
° externally_initiated_reset 00316 reset 1.1 H H H
(nm) (nm) (nm)
. software_initiated_reset 00414 reset 1.3 -X- -X- H
(nm)
— Reserved 00514 — — — — —
. RED_state_exception TT* precise & H H H
(m)  (m)  (nm)
— implementation-dependent 00616 — — — — —
0 store_error 00716 deferred 2.01 H H H
(nm) (nm) (nm)
U IAE_privilege_violation 0081¢ precise 3.1 H -X- -X-
(nm)
. instruction_access_MMU_miss’ 00916 precise 2.08 H H -X-
(nm)  (nm)
. instruction_access_error 00A14 precise 4 H H H
(nm) (nm) (nm)
. IAE_unauth_access 00Bq¢ precise 32 H H -X-
(nm) (nm)
U IAE_nfo_page 00C1¢ precise 3.3 H H -X-
(nm) (nm)
a instruction_address_range 00D14 precise 2.06 H H HY
(nm) (nm) (nm)
O instruction_real_range 00E4 precise 2.06 H H HY
(nm) (nm) (nm)
— Reserved 00Fq¢4 — — — — —
. illegal_instruction 010416 precise 6.2 H H H
(nm) (nm) (nm)
o privileged_opcode 01144 precise 7 P -X- -X-
(nm)
O unimplemented_LDTW 01244 precise 6.3 H H HY
(m)  (m)  (nm)
u] unimplemented_STTW 01314 precise 6.3 H H HY
(nm) (nm) (nm)
. DAE_invalid_asi 01444 precise 12.01 H H HY
(nm) (nm) (nm)
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TABLE 12-4  Exception and Interrupt Requests, by TT Value (2 of 5)

Mode in which Trap is
Delivered (and
Conditioning Applied),

Priority based on Current
UA-2007 T (0= Privilege Mode
® =Req’d. (Trap Trap High-
[0=0pt’l Exception or Interrupt Request Type) Category est) NP Priv HP
o DAE_privilege_violation 01514 precise 12.04 H H HY
(nm) (nm) (nm)
. DAE_nc_page 01616 precise 1205 H H HY
(nm) (nm) (nm)
o DAE_nfo_page 01714 precise 12.06 H H HY
(nm) (nm) (nm)
— Reserved 01816 — — — — —
01Fq4
e  fp_disabled 02016 precise 8 P P HY
(nm) (nm) (nm)
O fp_exception_ieee_754 02144 precise 111 P P HY
(nm) (nm) (nm)
O fp_exception_other 02214 precise 11.1 P P HY
(nm) (nm) (nm)
. tag_overflow? 02314 precise 14 P P HY
(nm) (nm) (nm)
. clean_window 02416%-  precise  10.1 P P HY
02716 (nm) (nm) (nm)
o division_by_zero 02814 precise 15 P P HY
(nm) (nm) (nm)
a internal_processor_error 02914 precise . H H H
(nm) (nm) (nm)
O instruction_invalid_TSB_entry 02A14 precise 2.10 H H -X-
(nm) (nm)
O data_invalid_TSB_entry 02B14 precise 12.03 H H H
(nm) (nm) (nm)
— Reserved 02Cq¢ — — — — —
— implementation-dependent 02Dq4- — — — — —
02F1¢
O  mem_real_range 02Dy precise H H HY
11.3
(nm)  (nm)  (nm)
O mem_address_range 02E14 precise H H HY
11.3
(nm) (nm) (nm)
° DAE_side_effect_page 03016 precise 12.06 H H HY
(nm)  (nm)  (nm)
o data_access_MMU_miss’ 03116 precise 1203 H H H
(nm) (nm) (nm)
0 data_access_error 03214 precise 12.10 H H H
(nm)  (nm)  (nm)
— data_access_protection 03316 precise 12.07 H H H
(no longer in use) (nm) (nm) (nm)
° mem_address_not_aligned 03414 precise 10.2 H H HY

(nm)  (m)  (nm)
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TABLE 12-4  Exception and Interrupt Requests, by TT Value (3 of 5)

Mode in which Trap is
Delivered (and
Conditioning Applied),

Priority based on Current
UA-2007 T (0= Privilege Mode
® =Req’d. (Trap Trap High-
[0=0pt’l Exception or Interrupt Request Type) Category est) NP Priv HP
° LDDF_mem_address_not_aligned 03514 precise 10.1 H H HY
(nm) (nm) (nm)
. STDF_mem_address_not_aligned 03616 precise 10.1 H H HY
(nm) (nm)  (nm)
U privileged_action 03716 precise 1.1 H H -X-
(nm) (nm)
O LDQF_mem_address_not_aligned 03816 precise 10.1 H H HY
(nm) (nm) (nm)
O STQF_mem_address_not_aligned 03914 precise 10.1 H H HY
(nm) (nm) (nm)
— Reserved 03A14 — — — — —
O unsupported_page_size 03B1g precise 13 H H H
(nm) (nm) (nm)
— Reserved 03Cq6- — — — — —
03D+
. instruction_real_translation_miss 03Eqg precise 2.08 H H -X-
(nm) (nm)
. data_real_translation_miss 03F1¢4 precise 12.03 H H H
(nm) (nm) (nm)
a sw_recoverable_error 04014 disrupting  33.1 H H H
(nm) (nm) (ie)
o interrupt_level_n (n = 1-15) 04114—  disrupting 32-n P P (pend)
04Fq¢ (31to (ie) (ie)
17)
O pic_overflow 04F¢ disrupting 16.00 P (ie) P (ie) (pend)
(shares trap type 04F;4 with
interrupt_level_15)
— Reserved 05016~ — — — — —
05D14
. hstick_match 05Eq¢ disrupting  16.01 H H H
(nm) (nm) (ie)
o trap_level_zero 05Fq¢ precise 2.02 H H -X-
a interrupt_vector 06016 disrupting  16.03 H H H
(nm) (nm) (ie)
O PA_watchpoint (RA_watchpoint) 06114 precise 12.09 H H H
(nm) (nm) (nm)
a VA_watchpoint 06214 precise 11.2 p p -X-
(nm) (nm)
O hw_corrected_error 06316 disrupting  33.2 H H H
(nm) (nm) (ie)
° fast_instruction_access_MMU_miss 064141 precise 2.08 H H -X-
0671¢ (nm) (nm)
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TABLE 12-4  Exception and Interrupt Requests, by TT Value (4 of 5)

Mode in which Trap is
Delivered (and
Conditioning Applied),

Priority based on Current
UA-2007 T (0= Privilege Mode
® =Req’d. (Trap Trap High-
[0=0pt’l Exception or Interrupt Request Type) Category est) NP Priv HP
o fast_data_access_MMU_miss 068141 precise 12.03 H H H
06B1¢ (nm) (nm) (nm)
. fast_data_access_protection 06Cq6+— precise 12.07 H H H
06F14 (nm) (nm) (nm)
O implementation_dependent_exception_n 07014 — 0 — — —
(impl. dep. #35-V8-Cs20)
. instruction_access_MMU_error 07144 precise 2.07 H H -X-
(nm) (nm)
o data_access_MMU_error 07214 precise 12.02 H H HY
(nm) (nm) (nm)
O implementation_dependent_exception_n 07314 — O — — —
(impl. dep. #35-V8-Cs20)
. control_transfer_instruction 07444 precise 1.1 p p HY
a instruction_VA_watchpoint 0751¢ precise 2.05 p p -X-
(nm) (nm)
U instruction_breakpoint 07614 precise 6.1 H H H
O implementation_dependent_exception_n 07714 — — O — — —
(impl. dep. #35-V8-Cs20) 07816
O implementation_dependent_exception_n 07914 — O — — —
(impl. dep. #35-V8-Cs20) 07B1¢
. cpu_mondo 07Cq¢ disrupting  16.08 p P (pend)
(ie) (ie)
. dev_mondo 07D14 disrupting  16.11 P P (pend)
(ie) (ie)
. resumable_error 07E1¢ disrupting  33.3 p P (pend)
(ie) (ie)
— nonresumable_error 07F1¢ — — — — —
(generated by hyperprivileged software,
not by hardware)
. spill_n_normal (n = 0-7) 080141 precise 9 P P HY
09F1¢ (nm) (nm) (nm)
. spill_n_other (n = 0-7) 0A076H- precise 9 P P HY
0BFq¢ (nm) (nm) (nm)
. fill_n_normal (n = 0-7) 0C05-  precise 9 P P HY
0DFq¢4 (nm) (nm) (nm)
. fill_n_other (n = 0-7) 0EO14* precise 9 P P HY
0FF14 (nm) (nm) (nm)
. trap_instruction 10014- precise  16.02 P P HY
17F1¢ (nm) (nm) (nm)
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TABLE 12-4  Exception and Interrupt Requests, by TT Value (5 of 5)

Mode in which Trap is
Delivered (and
Conditioning Applied),

Priority based on Current
UA-2007 T (0= Privilege Mode
® =Req’d. (Trap Trap High-
[0=0pt’l Exception or Interrupt Request Type) Category est) NP Priv HP
U htrap_instruction 18014— precise 16.02  -x- H HY
1FFq¢ (nm) (nm)
. guest_watchdog ¢ T precise or o H H -X-

disrupting®

(nm)  (nm)

" Although these trap priorities are recommended, all trap priorities are implementation dependent (impl. dep. #36-V8 on page
396), including relative priorities within a given priority level.

¥ This exception type is only used in UltraSPARC Architecture 2007 implementations that support hardware MMU table walking.
See description of this exception in Exception and Interrupt Descriptions on page 406.

The trap vector entry (32 bytes) for this trap type plus the next three trap types (total of 128 bytes) are permanently reserved for

this exception.

¢ The guest_watchdog trap is caused when TL = MAXPTL and any precise or disrupting trap occurs that is destined for privileged
mode. guest_watchdog shares a trap table offset with watchdog_reset (40;¢), but retains the trap type (TT) value and priority

of the exception that caused the trap.

+ watchdog_reset uses the trap vector entry for trap type 002;4 (trap table offset 404), but retains the trap type (TT) value of the

exception that caused entry into error_state .

# RED_state_exception uses the trap vector entry for trap type 0054 (trap table offset A0;¢), but retains the trap type (TT) value

and priority of the exception that caused the trap.

¢ The priority of internal_processor_error is implementation dependent (impl. dep. # 402-510)

D This exception is deprecated, because the only instructions that can generate it have been deprecated.
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TABLE 12-5  Exception and Interrupt Requests, by Priority (1 of 4)

Mode in which Trap is
Delivered and (and

UA-2007 o Conditioning Applied),
® =Req'd. Priority based on Current
O=0pt’l T (0= Privilege Mode
O.=Impl- (Trap Trap High-
Specific Exception or Interrupt Request Type) Category est) NP Priv HP
. power_on_reset 00144 reset 0 H H H
(nm) (nm) (nm)
° externally_initiated_reset 00314 reset 1.1 H H H
(nm) (nm) (nm)
o watchdog_reset TT* reset 1.2 H H H
(nm) (nm) (nm)
° software_initiated_reset 00414 reset 1.3 -X- -X- H
(nm)
0 store_error 00716 deferred  2.01 H H H
(nm) (nm) (nm)
° trap_level_zero 05F14 precise 2.02 H H -X-
O instruction_VA_watchpoint 07514 precise 2.05 P P -X-
(nm) (nm)
O instruction_address_range 00D14 precise H H HY
(nm) (nm) (nm)
) ] 2.06
O  instruction_real_range 00E14 precise H H HY
(nm) (nm) (nm)
. instruction_access_MMU_error 07144 precise 2.07 H H -X-
(nm) (nm)
. instruction_real_translation_miss 03E14 precise H H -X-
(nm) (nm)
. instruction_access_MMU_miss’ 0091¢ precise 508 H H -X-
’ (nm) (nm)
. fast_instruction_access_ MMU_miss 06416+ precise H H -X-
06714 (nm) (nm)
O instruction_invalid_TSB_entry 02A14 precise 2.10 H H -X-
(nm) (nm)
. IAE_privilege_violation 00814 precise 3.1 H -X- -X-
(nm)
. IAE_unauth_access 00B1¢ precise 3.2 H H -X-
(nm) (nm)
. IAE_nfo_page 00Cq¢ precise 3.3 H H -X-
(nm) (nm)
. instruction_access_error 00A14 precise 4 H H H
(nm) (nm) (nm)
. instruction_breakpoint 07614 precise 6.1 H H H
. illegal_instruction 01014 precise 6.2 H H H
(nm) (nm) (nm)
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TABLE 12-5

Exception and Interrupt Requests, by Priority (2 of 4)

Mode in which Trap is
Delivered and (and

UA-2007 ~ Conditioning Applied),
® =Req'd. Priority  pased on Current
O=0pt'l T (0= Privilege Mode
O.=Impl- (Trap Trap High-
Specific Exception or Interrupt Request Type) Category est) NP Priv HP
O unimplemented_LDTW 01214 precise H H HY
(nm) (nm) (nm)
0O unimplemented_STTW 01314 precise H H HY
6.3 (nm) (nm) (nm)
o privileged_opcode 01144 precise 7 P -X- -X-
(nm)
e  fp_disabled 02014 precise 8 P P HY
(nm) (nm) (nm)
. spill_n_normal (n = 0-7) 08014+ precise P P HY
09F14 (nm) (nm) (nm)
. spill_n_other (n = 0-7) 0A016-  precise P P HY
0BF14 (nm) (nm) (nm)
9
. fill_n_normal (n = 0-7) 0C01 6+ precise P P HY
0DFq¢ (nm) (nm) (nm)
. fill_n_other (n = 0-7) 0EO16+ precise p p HY
OFF1¢ (nm) (nm) (nm)
e clean_window 02416t precise P P HY
02714 (nm) (nm) (nm)
. LDDF_mem_address_not_aligned 03514 precise H H HY
(nm) (nm) (nm)
. STDF_mem_address_not_aligned 03614 precise 101 H H HY
’ (nm) (nm) (nm)
O LDQF_mem_address_not_aligned 03814 precise H H HY
(nm) (nm) (nm)
O STQF_mem_address_not_aligned 03916 precise H H HY
(nm) (nm) (nm)
° mem_address_not_aligned 03414 precise 10.2 H H HY
(nm) (nm) (nm)
0 fp_exception_other 02244 precise P P HY
(nm) (nm) (nm)
O fp_exception_ieee_754 02144 precise P P HY
11.1 | @m) (nm) (nm)
. privileged_action 03714 precise H H -X-
(nm) (nm)
e control_transfer_instruction 07414 precise P H HY
d VA_watchpoint 06214 precise 11.2 p p -X-
(nm) (nm)
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TABLE 12-5

Exception and Interrupt Requests, by Priority (3 of 4)

Mode in which Trap is
Delivered and (and

UA-2007 ~ Conditioning Applied),
® =Req'd. Priority based on Current
O=0pt'l T 0= Privilege Mode
O.=Impl- (Trap Trap High-
Specific Exception or Interrupt Request Type) Category est) NP Priv HP
0  mem_real _range 02D1¢ precise H H HY
(nm) (nm) (nm)
11.3
0  mem_address_range 02E14 precise H H HY
(nm) (nm) (nm)
. DAE_invalid_asi 01414 precise 1201 H H HY
(nm) (nm) (nm)
° data_access_MMU_error 07214 precise 12.02 H H HY
(nm) (nm) (nm)
. data_real_translation_miss 03F14 precise H H H
(nm) (nm) (nm)
. data_access. MMU_miss’ 03144 precise H H H
(nm) (nm) (nm)
12.03
° fast_data_access_MMU_miss 068141 precise H H H
06B1¢ (nm) (nm) (nm)
O data_invalid_TSB_entry 02B1¢ precise H H H
(nm) (nm) (nm)
o DAE_privilege_violation 01514 precise 12.04 H H HY
(nm) (nm) (nm)
e DAE_nc_page 01614 precise 1205 H H HY
(nm) (nm) (nm)
. DAE_nfo_page 01714 precise H H HY
(nm) (nm) (nm)
12.06
e DAE_side_effect_page 03014 precise H H HY
(nm) (nm) (nm)
. fast_data_access_protection 06C1gt- precise H H H
06F1¢ (nm) (nm) (nm)
12.07
— data_access_protection 03314 precise H H H
(no longer in use) (nm) (nm) (nm)
O PA_watchpoint (RA_watchpoint) 06114 precise 12.09 H H H
(nm) (nm) (nm)
O data_access_error 03214 precise 1210 H H H
(nm) (nm) (nm)
e tag_overflowP 02314 precise 14 P r  HY
(nm) (nm) (nm)
. division_by_zero 02814 precise 15 P P HY
(nm) (nm) (nm)
O pic_overflow 04F1¢ disrupting 16.00 P (ie) P (ie) (pend)
. hstick_match 05Eq¢ disrupting 16.01 H H H
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TABLE 125  Exception and Interrupt Requests, by Priority (4 of 4)

Mode in which Trap is
Delivered and (and

UA-2007 ~ Conditioning Applied),
® =Req'd. Priority  pased on Current
O=0pt'l T (0= Privilege Mode
O.=Impl- (Trap Trap High-
Specific Exception or Interrupt Request Type) Category est) NP Priv HP
. trap_instruction 10014- precise p p H
17F1¢ (nm) (nm) (nm)
16.02
e htrap_instruction 18014 precise x- H HY
1FFq¢ (nm) (nm)
ad interrupt_vector 06014 disrupting 16.03 H H H
(nm) (nm) (ie)
. cpu_mondo 07Cq¢ disrupting 16.08 P P (pend)
(ie)  (ie)
. dev_mondo 07D1¢ disrupting 16.11 p P (pend)
(ie)  (ie)
° interrupt_level_n (n = 1-15) 04114~ disrupting 32-n P P (pend)
04F 14 (Blto (i) (ie)
17)
O sw_recoverable_error 04014 disrupting  33.1 H H H
(nm) (nm) (ie)
d hw_corrected_error 06314 disrupting  33.2 H H H
(nm) (nm)  (ie)
. resumable_error 07Eq1¢ disrupting  33.3 P P (pend)
(ie) (ie)
° guest_watchdog ° o precise or o H H -X-
TT . .0
disrupting (nm) (nm)
o RED_state_exception TT* precise *» H H H

(nm) (nm) (nm)

O internal_processor_error 02914 precise . H H H
(nm) (nm) (nm)

— nonresumable_error 07F1¢ — — — — —
(generated by hyperprivileged software,
not by hardware)

" Although these trap priorities are reccommended, all trap priorities are implementation dependent (impl. dep. #36-V8 on
page 396), including relative priorities within a given priority level.

¥ This exception type is only used in UltraSPARC Architecture 2007 implementations that support hardware MMU table walk-
ing. See description of this exception in Exception and Interrupt Descriptions on page 406.

The trap vector entry (32 bytes) for this trap type plus the next three trap types (total of 128 bytes) are permanently reserved
for this exception.

¢ The guest_watchdog trap is caused when TL = MAXPTL and any precise or disrupting trap occurs that is destined for privi-
leged mode. guest_watchdog shares a trap table offset with watchdog_reset (40¢), but retains the trap type (TT) value and
priority of the exception that caused the trap.

« watchdog_reset uses the trap vector entry for trap type 002¢4 (trap table offset 40;4), but retains the trap type (TT) value of
the exception that caused entry into error_state .

# RED_state_exception uses the trap vector entry for trap type 0054 (trap table offset AO;¢), but retains the trap type (TT)
value and priority of the exception that caused the trap.

4 The priority of internal_processor_error is implementation dependent (impl. dep. # 402-510)

D This exception is deprecated, because the only instructions that can generate it have been deprecated.

CHAPTER 12 « Traps 395



12.5.8

12.5.7.1 Trap Type for Spill/Fill Traps

The trap type for window spill /fill traps is determined on the basis of the contents of the OTHERWIN
and WSTATE registers as described below and shown in FIGURE 12-9.

Bit Field Description
8:6 spill_or_fill 010, for spill traps; 011, for fill traps
5 other (OTHERWIN # 0)
4:2 wtype If (other) then WSTATE.other; else WSTATE.normal
Trap Type spill_or_fill other wtype 0 0
8 6 5 4 2 1 0

FIGURE 12-9 Trap Type Encoding for Spill/Fill Traps

Trap Priorities

TABLE 12-4 on page 387 and TABLE 12-5 on page 392 show the assignment of traps to TT values and the
relative priority of traps and interrupt requests. A trap priority is an ordinal number, with 0 indicating
the highest priority and greater priority numbers indicating decreasing priority; that is, if x <y, a
pending exception or interrupt request with priority x is taken instead of a pending exception or
interrupt request with priority y. Traps within the same priority class (0 to 33) are listed in priority
order in TABLE 12-5 (impl. dep. #36-V8).

IMPL. DEP. #36-V8: The relative priorities of traps defined in the UltraSPARC Architecture are fixed.
However, the absolute priorities of those traps are implementation dependent (because a future
version of the architecture may define new traps). The priorities (both absolute and relative) of any
new traps are implementation dependent.

However, the TT values for the exceptions and interrupt requests shown in TABLE 12-4 and TABLE 12-5
must remain the same for every implementation.

The trap priorities given above always need to be considered within the context of how the virtual
processor actually issues and executes instructions. For example, if an instruction_access_error occurs
(priority 3), it will be taken even if the instruction is an SIR (priority 1). This situation occurs because
the virtual processor detects instruction_access_error during instruction fetch and never actually
issues or executes the instruction, so the SIR instruction is never seen by the execution units of the
virtual processor. This is an obvious case, but there are other more subtle cases.

12.6

Trap Processing

The virtual processor’s action during trap processing depends on various virtual processor states,
including the trap type, the current level of trap nesting (given in the TL register), HPSTATE, and
PSTATE. When a trap occurs, the GL register is normally incremented by one (described later in this
section), which replaces the set of eight global registers with the next consecutive set.

The following traps are processed in RED_st at e:

= POR and WDR reset requests

» SIR and XIR reset requests when TL < MAXTL

» Non-reset traps taken when TL = MAXTL -1
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TABLE 12-6

» Traps taken when the virtual processor is in RED_st at e

All other traps are handled in execut e_st at e using normal trap processing.

During normal operation, the virtual processor is in execut e_st at e. It processes traps in
execut e_st at e and continues.

When a nonreset trap, externally initiated reset (XIR), or software-initiated reset (SIR) occurs with
TL = MAXTL, there are no more levels on the trap stack, so the virtual processor enters the transitory
state error _st at e. The virtual processor remains in er r or _st at e for an implementation-
dependent duration, then generates a WDR reset (impl. dep. #254-U3-Cs10) to effect a change from
error_state to RED_state.

Traps processed in RED_st at e use a special trap vector and a special trap-vectoring algorithm.
RED_st at e vectoring and the setting of the TT value for RED_st at e traps are described in
RED_st at e Trap Table Organization on page 385.

Traps that occur with TL = MAXTL — 1 are processed in RED_st at e. In addition, reset traps are also
processed in RED_st at e. Reset trap processing is described in RED_st at e Trap Processing on page
400. Finally, software can force the processor into RED_st at e by setting the HPSTATE.red bit to 1.

Once the virtual processor has entered RED_st at e, no matter how it got there, all subsequent traps
are processed in RED_st at e until software returns the virtual processor to execut e_state or a
normal, or SIR, or XIR trap is taken with TL = MAXTL, which puts the virtual processor in

error_state.

TABLE 12-6, TABLE 12-7, and TABLE 12-8 describe the virtual processor mode and trap-level transitions
involved in handling traps.

Trap Received While in execut e_st at e

New State, After Receiving Trap Type

Original State Nonreset Trap POR XIR WDR SIR
or Interrupt
execute_state execute_state RED_state RED st ate ¥ RED st ate
TL < MAXTL-1 TL - TL+1 TL = MAXTL TL -~ TL+1 TL -~ TL+1
execute_state RED_ st at e RED_st at e RED st at e ¥ RED st at e
TL =MAXTL-1 TL = MAXTL TL = MAXTL TL = MAXTL TL = MAXTL
execut e_st at et error_state RED_state error_state ¥ error_state
TL = MAXTL TL = MAXTL TL = MAXTL TL = MAXTL TL = MAXTL

* This state occurs when software changes TL to MAXTL and leaves HPSTATE.red = 0, or if software sets HPSTATE.red « 0 while

TL = MAXTL.

f WDR can only be generated from er r or _st at e.

TABLE 12-7 Trap Received While in RED_st at e

New State, After Receiving Trap Type

Nonreset Trap

Original State POR XIR WDR t SIR
or Interrupt
RED st ate RED st ate RED state RED st ate 1 RED st ate
TL < MAXTL-1 TL « TL+1 TL = MAXTL TL « TL+1 TL -« TL+1
RED_st at e RED_st ate RED state RED st ate ¥ RED st ate
TL = MAXTL-1 TL = MAXTL TL = MAXTL TL = MAXTL TL = MAXTL
RED st ate error_state RED state error_state 1 error_state
TL = MAXTL TL = MAXTL TL = MAXTL TL = MAXTL TL = MAXTL

f WDR can only be generated from er r or _st at e.
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TABLE 12-8 Reset Received While in error _st at e

New State, After Receiving Trap Type

Original State Nonreset Trap POR XIR WDR SIR
or Interrupt
error_state — RED st ate RED state RED_ st ate —
TL = MAXTL TL = MAXTL TL = MAXTL TL = MAXTL

The virtual processor does not recognize interrupts while it is in err or _st at e.

A non-reset trap causes the following state changes to occur:

» If the virtual processor is already in RED_st at e, the new trap is processed in RED_st at e unless
TL = MAXTL. See Nonreset Traps When the Virtual Processor Is in RED_st at e on page 404.

» If the virtual processor is in execut e_st at e and the trap level is one less than its maximum
value, that is, TL = MAXTL-1, then the virtual processor enters RED_st at e. See RED_st at e on
page 374 and Nonreset Traps with TL = MAXTL — 1 on page 400.

» If the virtual processor is in either execut e_st at e or RED_st at e and the trap level is already at
its maximum value, that is, TL = MAXTL, then the virtual processor enters err or _st at e. See
error_state on page 376.

Otherwise, the trap uses normal trap processing, described in the following section on Normal Trap
Processing.

12.6.1 Normal Trap Processing

Normal traps comprise all traps processed in execut e_st at e; that is, all non-RED_st at e and non-
error_stat e traps.

A trap is delivered in either privileged mode or hyperprivileged mode, depending on the type of trap,
the trap level (TL), and the privilege mode in effect when the exception was detected.

During normal trap processing, the following state changes occur (conceptually, in this order):

s The trap level is updated. This provides access to a fresh set of privileged trap-state registers used
to save the current state, in effect, pushing a frame on the trap stack.
TL ~TL+1 // note that if TL = MAXTL — 1 before this trap,
// trap would have been processed in
// RED_st at e, not here using normal trap
// processing.

» Existing state is preserved.

TSTATE[TL].gl ~ GL

TSTATE[TL].ccr — CCR

TSTATE[TL].asi — ASI

TSTATE[TL].pstate — PSTATE

TSTATE[TL].cwp ~ CWP

TPC[TL] ~ PC // (upper 32 bits zeroed if PSTATE.am = 1)
TNPC[TL] « NPC // (upper 32 bits zeroed if PSTATE.am = 1)
HTSTATE[TL].hpstate — HPSTATE //even for traps to privileged mode

» The trap type is preserved.
TT[TL] « the trap type

» The Global Level register (GL) is updated. This normally provides access to a fresh set of global
registers:

398 UltraSPARC Architecture 2007 « Draft D0.9.4, 27 Sep 2010



if (the trap is being delivered in privileged mode)

then GL « min (GL + 1, MAXPGL)

else (trap is being delivered in hyperprivileged mode)
GL ~ min (GL + 1, MAXGL)

endif

» The PSTATE register is updated to a predefined state (even for traps to hyperprivileged mode):

PSTATE.mm is unchanged

PSTATE.pef — 1 // if an FPU is present, it is enabled

PSTATE.am «~ 0 // address masking is turned off

if (the trap is being delivered in privileged mode)

then PSTATE.priv — 1 // the virtual processor enters privileged mode
PSTATE.cle ~ PSTATE.tle //set endian mode for traps

else // trap is being delivered in hyperprivileged mode
PSTATE.priv — 0
PSTATE.cle ~ 0

endif

PSTATE.ie «~ 0 // interrupts are disabled
PSTATE.tle  is unchanged
PSTATE.tct ~ 0 // trap on CTI disabled

» The HPSTATE register is updated:
if (the trap is to hyperprivileged mode)
then HPSTATE.red — 0
HPSTATE.hpriv — 1 // enter hyperprivileged mode
HPSTATE.ibe  « 0 disable instruction breakpoints
HPSTATE.tlz is unchanged
endif

» For a register-window trap (clean_window, window spill, or window fill) only, CWP is set to point
to the register window that must be accessed by the trap-handler software, that is:

if TT[TL] = 02444 // a clean_window trap
then CWP ~ CWP +1
endif

if (08014 < TT[TL] < OBFy¢) // window spill trap
then CWP ~ CWP + CANSAVE + 2
endif

if (0C0q4 < TT[TL] < OFF4¢) // window fill trap
then CWP ~ CWP -1
endif

For non-register-window traps, CWP is not changed.

» Control is transferred into the trap table:

// Note that at this point, TL has already been incremented (above)
if ( (trap is to privileged mode) and (TL < MAXPTL) )
then
//the trap is handled in privileged mode
/ /Note: The expression “(TL > 1)” below evaluates to the
//value 0, if TL was 0 just before the trap (in which
//case, TL = 1 now, since it was incremented above,
//during trap entry). “(TL > 1)” evaluates to 1, if
//TL was > 0 before the trap.
PC — TBA{63:15} :: (TL > 1) =z TT[TL] :: 0 0000,
NPC — TBA{63:15} :: (TL > 1) :: TT[TL] :: 0 0100,
else if ( (trap is to privileged mode) and (TL > MAXPTL) )
then // this is the guest_watchdog case; the trap is handled in
// hyperprivileged mode using trap table offset 404.
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PC — HTBA{63:14} :: 00, :: 04044
NPC — HTBA{63:14} :: 00, :: 04444
else { trap is handled in hyperprivileged mode }
PC — HTBA{63:14} :: TT[TL] :: 0 0000,
NPC — HTBA{63:14} :: TT[TL] :: 0 0100,
endif

Interrupts are ignored as long as PSTATE.ie = 0.

Programming | State in TPC[n], TNPC[n], TSTATE[n], and TT[#] is only changed
Note | autonomously by the processor when a trap is taken while
TL = n -1; however, software can change any of these values
with a WRPR instruction when TL = n.

12.6.2 RED_st at e Trap Processing

The following conditions invoke RED_st at e trap processing, and cause the trap to be delivered in
hyperprivileged mode:

» Traps taken with TL = MAXTL -1

= Power-on reset traps

Watchdog reset traps

Externally initiated reset traps

Software-initiated reset traps

Traps taken when the virtual processor is already in RED_st at e

IMPL. DEP. #38-V8: Implementation-dependent registers may or may not be affected by the various
reset traps.

12.6.2.1 Nonreset Traps with TL = MAXTL -1
Nonreset traps that occur when TL = MAXTL — 1 are processed in RED_st at e.

The following state changes occur (conceptually, in this order) during a nonreset trap that occurs
when TL = MAXTL - 1:
s The trap level is advanced.

TL « MAXTL

» Existing state is preserved.
TSTATE[TL].gl ~ GL
TSTATE[TL].ccr ~ CCR
TSTATE[TL].asi ~ ASI
TSTATE[TL].pstate — PSTATE
TSTATE[TL].cwp ~ CWP
TPC[TL] ~ PC // (upper 32 bits zeroed if PSTATE.am = 1)
TNPC[TL] « NPC // (upper 32 bits zeroed if PSTATE.am = 1)

HTSTATE[TL].hpstate ~ HPSTATE
» The trap type is preserved.

TT[TL] « the trap type
= The Global Level register is updated.

GL ~ min (GL + 1, MAXGL)
» The PSTATE register is set as follows:

PSTATE.mm  ~ 00, // TSO

PSTATE.pef « 1 // if an FPU is present, it is enabled
PSTATE.am ~ 0 // address masking is turned off
PSTATE.priv  — 0 // entering hyperprivileged mode
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PSTATE.ie ~ 0 // interrupts are disabled
PSTATE.cle ~ 0 // big-endian is default for hyperprivileged mode
PSTATE.tle  is unchanged // (was unspecified in SPARC V9 specification)
PSTATE.tct ~ 0 // trap on CTI disabled
s The HPSTATE register is updated:
HPSTATE.red ~ 1 // enter RED st ate
HPSTATE.hpriv — 1 // enter hyperprivileged mode
HPSTATE.ibe ~ 0 // disable instruction breakpoints
HPSTATE.tlz  ~ 0 // disable trap_level_zero exceptions

» For a register-window trap only, CWP is set to point to the register window that must be accessed
by the trap-handler software, that is:

If TT[TL] = 02444 // a clean_window trap
then CWP - CWP +1
endif

If (08014 < TT[TL] < 0BFy4) // window spill trap
then CWP ~ CWP + CANSAVE + 2
endif

If (0C046 < TT[TL] < OFFq4) // window fill trap
then CWP ~ CWP -1
endif

For non-register-window traps, CWP is not changed.
» Implementation-specific state changes; for example, disabling an MMU.

» Control is transferred into the RED_st at e trap table. See Trap Table Entry Address to RED_st at e on
page 384 for further details of RSTVADDR.

PC ~ RSTVADDR({63:8} :: 1010 0000,
NPC ~ RSTVADDR{63:8} :: 1010 0100,

12.6.2.2 Power-On Reset (POR) Traps

A POR trap occurs when power is applied to the virtual processor. If the virtual processor is in
error_state, a POR brings the virtual processor out of err or _st at e and places it in RED_st at e.
See Chapter 16, Resets for further details.

Virtual processor state is undefined after POR, except for the following:

» The trap level is set.

TL «— MAXTL

» The trap type is set.
TT[TL] ~ 00144

» The Global Level register is updated.
GL < MAXGL

» The PSTATE register is set as follows:

PSTATE.mm ~ 00, // TSO

PSTATE.pef ~ 1 // if an FPU is present, it is enabled

PSTATE.am — 0 // address masking is turned off

PSTATE.priv.  ~ 0 // entering hyperprivileged mode

PSTATE.ie ~ 0 // interrupts are disabled

PSTATE.cle ~ 0 // big-endian is default for hyperprivileged mode
PSTATE.tle ~ 0 // big-endian mode for traps

PSTATE.tct « 0 // trap on CTI disabled
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» The HPSTATE register is updated:
HPSTATE.red ~ 1 // enter RED state
HPSTATE.hpriv — 1 // enter hyperprivileged mode
HPSTATE.ibe ~ 0 // disable instruction breakpoints
HPSTATE.tlz  ~ 0 // disable trap_level_zero exceptions
» The TICK register is protected.
TICK.npt ~ 1 // TICK is unreadable by nonprivileged software

» Implementation-specific state changes; for example, disabling an MMU.

» Control is transferred into the RED_st at e trap table.
PC ~ RSTVADDR({63:8} :: 0010 0000,
NPC ~ RSTVADDR({63:8} :: 0010 0100,

12.6.2.3 Watchdog Reset (WDR) Traps

Entry to er r or _st at e is caused by occurrence of a trap when TL = MAXTL (impl. dep. #39-V8-Cs10).
See error _st at e on page 376.

To recover from er r or _st at e, the UltraSPARC Architecture provides watchdog_reset (WDR), which
causes a transition from error _st at e to RED_st at e (impl. dep. #254-U3-Cs10).

The following virtual processor state changes occur during WDR (conceptually, in this order):

s The trap level is updated.
TL « min (TL + 1, MAXTL)

» Existing state is preserved.
TSTATE[TL].gl ~ GL
TSTATE[TL].ccr — CCR
TSTATE[TL].asi — ASI
TSTATE[TL].pstate — PSTATE
TSTATE[TL].cwp ~ CWP
TPC[TL] ~ PC // (upper 32 bits zeroed if PSTATE.am = 1)
TNPC[TL] « NPC // (upper 32 bits zeroed if PSTATE.am = 1)
HTSTATE[TL].hpstate — HPSTATE

» The trap type is set.

TT[TL] « the trap type that caused the WDR
» The Global Level register is updated.
GL « min (GL + 1, MAXGL)

» The PSTATE register is set as follows:

PSTATEmm 00, // TSO

PSTATE.pef ~ 1 // if an FPU is present, it is enabled

PSTATE.am ~ 0 // address masking is turned off

PSTATE.priv.  ~ 0 // entering hyperprivileged mode

PSTATE.ie ~ 0 // interrupts are disabled

PSTATE.cle «~ 0 // big-endian is default for hyperprivileged mode
PSTATE.tle  is unchanged // (was unspecified in SPARC V9 specification)
PSTATE.tct ~ 0 // trap on CTI disabled

» The HPSTATE register is updated:

HPSTATE.red ~ 1 // enter RED state

HPSTATE.hpriv — 1 // enter hyperprivileged mode
HPSTATE.ibe ~ 0 // disable instruction breakpoints
HPSTATE.tlz ~ O // disable trap_level_zero exceptions

» Implementation-specific state changes; for example, disabling an MMU.
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» Control is transferred into the RED_st at e trap table.
PC ~ RSTVADDR({63:8} :: 0100 0000,
NPC ~ RSTVADDR({63:8} :: 0100 0100,

12.6.2.4 Externally Initiated Reset (XIR) Traps

XIR traps are initiated by an external signal. They behave like an interrupt that cannot be masked by
PSTATE.ie = 0 or PIL. Typically, XIR is used for critical system events such as power failure, reset
button pressed, failure of external components that does not require a WDR (which aborts
operations), or systemwide reset in a multiprocessor. See Chapter 16, Resets for further details.

If TL = MAXTL, then the virtual processor enters err or _st at e.

The following virtual processor state changes occur during XIR (conceptually, in this order):
s The trap level is updated:
TL < min (TL + 1, MAXTL)

» Existing state is preserved.
TSTATE[TL].gl ~ GL
TSTATE[TL].ccr -~ CCR
TSTATE[TL].asi ~ ASI
TSTATE[TL].pstate — PSTATE
TSTATE[TL].cwp ~ CWP
TPC[TL] ~ PC // (upper 32 bits zeroed if PSTATE.am = 1)
TNPC[TL] « NPC // (upper 32 bits zeroed if PSTATE.am = 1)
HTSTATE[TL].hpstate — HPSTATE

» The trap type is set.

TT[TL] ~ 00314
» The Global Level register is updated.
GL « min (GL + 1, MAXGL)

» The PSTATE register is set as follows:
PSTATE.mm  ~ 00, // TSO
PSTATE.pef ~ 1 // if an FPU is present, it is enabled
PSTATE.am — 0 // address masking is turned off
PSTATE.priv.  ~ 0 // entering hyperprivileged mode
PSTATE.ie ~ 0 // interrupts are disabled
PSTATE.cle ~ 0 // big-endian is default for hyperprivileged mode
PSTATE.tle  is unchanged // (was unspecified in SPARC V9 specification)
PSTATE.tct « 0 // trap on CTI disabled

» The HPSTATE register is updated:

HPSTATE.red ~ 1 // enter RED_state

HPSTATE.hpriv — 1 // enter hyperprivileged mode
HPSTATE.ibe ~ 0 // disable instruction breakpoints
HPSTATE.tlz  ~ 0 // disable trap_level_zero exceptions

» Implementation-specific state changes; for example, disabling an MMU.

» Control is transferred into the RED_st at e trap table.
PC ~ RSTVADDR({63:8} :: 0110 0000,
NPC ~ RSTVADDR{63:8} :: 0110 0100,

See Externally Initiated Reset (XIR) on page 499 and the documentation for specific processor
implementations for more information.
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12.6.2.5 Software-Initiated Reset (SIR) Traps

A software-initiated reset trap is initiated by execution of an SIR instruction in hyperprivileged mode.
Hyperprivileged software uses the SIR trap as a panic operation or a metahypervisor trap. See
Chapter 16, Resets for further details.

If TL = MAXTL, then the virtual processor enters err or _st at e.

Otherwise, TL < MAXTL as trap processing begins and the following virtual processor state changes
occur (conceptually, in this order):

» The trap level is updated.
TL ~TL+1

» Existing state is preserved.
TSTATE[TL].gl ~ GL
TSTATE[TL].ccr — CCR
TSTATE[TL].asi ~ ASI
TSTATE[TL].pstate — PSTATE
TSTATE[TL].cwp ~ CWP
TPC[TL] « PC // (upper 32 bits zeroed if PSTATE.am = 1)
TNPC[TL] ~ NPC // (upper 32 bits zeroed if PSTATE.am = 1)
HTSTATE[TL].hpstate ~ HPSTATE

s The trap type is set.

TT[TL] — 0444
» The Global Level register is updated.
GL ~ min (GL + 1, MAXGL)

» The PSTATE register is set as follows:

PSTATE.mm ~ 00, // TSO

PSTATE.pef ~ 1 // if an FPU is present, it is enabled

PSTATE.am ~ 0 // address masking is turned off

PSTATE.priv.  ~ 0 // entering hyperprivileged mode

PSTATE.ie «~ 0 // interrupts are disabled

PSTATE.cle — 0 // big-endian is default for hyperprivileged mode
PSTATE.tle  is unchanged // (was unspecified in SPARC V9 specification)
PSTATE.tct ~ 0 // trap on CTI disabled

s The HPSTATE register is updated:

HPSTATE.red ~ 1 // enter RED state

HPSTATE.hpriv — 1 // enter hyperprivileged mode
HPSTATE.ibe ~ 0 // disable instruction breakpoints
HPSTATE.tlz ~ O // disable trap_level_zero exceptions

» Implementation-specific state changes; for example, disabling an MMU.

» Control is transferred into the RED_st at e trap table.
PC ~ RSTVADDR({63:8} :: 1000 0000,
NPC ~ RSTVADDR({63:8} :: 1000 0100,

See Software-Initiated Reset (SIR) on page 499 and the documentation for specific processor
implementations for more information.

12.6.2.6 Nonreset Traps When the Virtual Processor Is in RED_st at e

When a nonreset trap occurs while the virtual processor is in RED_st at e, if TL = MAXTL, then the
virtual processor enters er r or _st at e.

Otherwise, TL < MAXTL as trap processing begins, the virtual processor remains in RED_st at e, and
the following virtual processor state changes occur (conceptually, in this order):
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s The trap level is updated.
TL «TL+1
» Existing state is preserved.
TSTATE[TL].gl — GL
TSTATE[TL].ccr — CCR
TSTATE[TL].ASI — ASI
TSTATE[TL].pstate — PSTATE
TSTATE[TL].cwp — CWP
TPC[TL] ~ PC // (upper 32 bits zeroed if PSTATE.am = 1)
TNPCITL] ~ NPC // (upper 32 bits zeroed if PSTATE.am = 1)
HTSTATE[TL].hpstate ~ HPSTATE

= The trap type is preserved.
TT[TL] ~ trap type
» The Global Level register is updated.
GL ~ min (GL + 1, MAXGL)
» The PSTATE register is set as follows:
PSTATE.mm ~ 00, // TSO
PSTATE.pef ~ 1 // if an FPU is present, it is enabled
PSTATE.am «~ 0 // address masking is turned off
PSTATE.priv.  — 0 // entering hyperprivileged mode
PSTATE.ie ~ 0 // interrupts are disabled
PSTATE.cle ~ 0 // big-endian is default for hyperprivileged mode
PSTATE.tle  is unchanged // (was unspecified in SPARC V9 specification)
PSTATE.tct ~ 0 // trap on CTI disabled
» The HPSTATE register is updated:

HPSTATE.red 1 // enter RED st ate

HPSTATE.hpriv — 1 // enter hyperprivileged mode
HPSTATE.ibe ~ 0 // disable instruction breakpoints
HPSTATE.tlz ~ 0 // disable trap_level_zero exceptions

» For a register-window trap only, CWP is set to point to the register window that must be accessed

by the trap-handler software, that is:

If TT[TL] = 02444 // a clean_window trap
then CWP ~ CWP +1
endif

If (08016 < TT[TL] < OBFy¢) // window spill trap
then CWP ~ CWP + CANSAVE +2
endif

If (0C014 < TT[TL] < 0FFq4) // window fill trap
then CWP ~ CWP -1
endif

» For non-register-window traps, CWP is not changed.
» Implementation-specific state changes; for example, disabling an MMU.
» Control is transferred into the RED_st at e trap table.

PC ~ RSTVADDR({63:8} :: 1010 0000,

NPC ~ RSTVADDR{63:8} :: 1010 0100,
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12.7  Exception and Interrupt Descriptions

The following sections describe the various exceptions and interrupt requests and the conditions that
cause them. Each exception and interrupt request describes the corresponding trap type as defined by
the trap model.

All other trap types are reserved.

Note | The encoding of trap types in the UltraSPARC Architecture
differs from that shown in The SPARC Architecture Manual-
Version 9. Each trap is marked as precise, deferred, disrupting, or
reset. Example exception conditions are included for each
exception type. Chapter 7, Instructions, enumerates which traps
can be generated by each instruction.

The following traps are generally expected to be supported in all UltraSPARC Architecture 2007
implementations. A given trap is not required to be supported in an implementation in which the
conditions that cause the trap can never occur.

» BLD_exception [TT =03C;¢] (Precise) —This exception is caused by implmentation-specific
conditions that occured during execution of a block load (LDBLOCKFP) instruction. The specific
conditions under which this exception occurs can be found in each processor’s Implementation
Supplement to this specification.

» BST_exception [TT =03D;¢] (Precise) —This exception is caused by implmentation-specific
conditions that occured during execution of a block store (STBLOCKFP) instruction. The specific
conditions under which this exception occurs can be found in each processor’s Implementation
Supplement to this specification.

» clean_window [TT = 024,,—027;¢] (Precise) — A SAVE instruction discovered that the window
about to be used contains data from another address space; the window must be cleaned before it
can be used.

IMPL. DEP. #102-V9: An implementation may choose either to implement automatic cleaning of
register windows in hardware or to generate a clean_window trap, when needed, so that window(s)
can be cleaned by software. If an implementation chooses the latter option, then support for this
trap type is mandatory.

» control_transfer_instruction [TT = 074;¢] (Precise) — This exception is generated if
PSTATE.tct = 1 and the processor determines that a successful control transfer will occur as a result
of execution of that instruction. If such a transfer will occur, the processor generates a
control_transfer_instruction precise trap (trap type = 744) instead of completing the control
transfer. The pc stored in TPC[TL] is the address of the CTI, and the TNPC[TL] is set to the value of
NPC before the CTI is executed. (impl. dep. #450-520). PSTATE.tct is always set to 0 as part of
normal entry into a trap handler. When this exception occurs in nonprivileged or privileged mode,
the trap is delivered in privileged mode. If it occurs in hyperprivileged mode, the trap is delivered
in hyperprivileged mode.

» cpu_mondo [TT = 07Cy¢] (Disrupting) — This interrupt is generated when another virtual
processor has enqueued a message for this virtual processor. It is used to deliver a trap in
privileged mode, to inform privileged software that an interrupt report has been appended to the
virtual processor’s CPU mondo queue. A direct message between virtual processors is sent via a
CPU mondo interrupt, which is generated through software calls to hyperprivileged software. The
standard software interface (API) to hyperprivileged software allows 64 bytes of data to be sent to
one or more target virtual processors. When the CPU mondo queue contains a valid entry, a
cpu_mondo exception is sent to the target virtual processor.
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Programming | It is possible that an implementation may occasionally cause a

Note | cpu_mondo interrupt when the CPU Mondo queue is empty
(CPU Mondo Queue Head pointer = CPU Mondo Queue Tail
pointer). A guest operating system running in privileged mode
should handle this by ignoring any CPU Mondo interrupt with
an empty queue.

SPARC V9 | The data_access_exception exception from SPARC V9 and
Compatibility | UltraSPARC Architecture 2005 has been replaced by more
Note | specific exceptions, such as DAE_invalid_asi, DAE_nc_page,
DAE_nfo_page, DAE_privilege_violation, and
DAE_side_effect_page.

DAE_invalid_asi [TT = 0144] (Precise) — An attempt was made to execute an invalid
combination of instruction and ASI. See the instruction descriptions in Chapter 7 for a detailed list
of valid ASIs for each instruction that can access alternate address spaces. The following invalid
combinations of instruction, ASI, and virtual address cause a DAE_invalid_asi exception:

« A load, store, load-store, or PREFETCHA instruction with either an invalid ASI or an invalid
virtual address for a valid ASI.

= A disallowed combination of instruction and ASI (see Block Load and Store ASIs on page 362 and
Partial Store ASIs on page 362). This includes the following;:

— an attempt to use a (deprecated) atomic quad load ASI (2444, 2C14, 3414, or 3C4) with any load
alternate opcode other than LDTXA’s (which is shared by LDDA)

— an attempt to use a nontranslating ASI value with any load or store alternate instruction other
than LDXA, LDDFA, STXA, or STDFA

— an attempt to read from a write-only ASl-accessible register, or load from a store-only ASI (for
example, a block commit store ASI, E0y4 or Ely¢)

— an attempt to write to a read-only ASI-accessible register

DAE_nc_page [TT = 0164¢4] (Precise) —An access to a noncacheable page (TTE.cp = 0) (including
cases with the TLB disabled) was attempted by an atomic load-store instruction (CASA, CASXA,
SWAP, SWAPA, LDSTUB, or LDSTUBA), an LDTXA instruction, a LDBLOCKFP instruction, or a
STPARTIALF instruction.

DAE_nfo_page [TT =0174] (Precise) — An attempt was made to access a non-faulting-only page
(TTE.nfo = 1) by any type of load, store, load-store, or FLUSH instruction with an ASI other than a
nonfaulting ASI (PRI MARY_NO_FAULT[_LI TTLE] or SECONDARY_NO_FAULT[_LI TTLE]).

DAE_privilege_violation [TT = 0154] (Precise) — A privilege violation occurred, due to an
attempt to access a privileged page (TTE.p = 1) by any type of load, store, or load-store instruction
when executing in nonprivileged mode (PSTATE.priv = 0). This includes the special case of an
access by privileged software using one of the ASI _AS | F_USER_PRI MARY[_L| TTLE] or

AS| _AS | F_USER SECONDARY[ LI TTLE] ASIs.

DAE_side_effect_page [TT =0304] (Precise) — An attempt was made to access a page which
may cause side effects (TTE.e = 1) (including cases with the TLB disabled) by any type of load
instruction with nonfaulting ASI.

data_access_error [TT = 0324] (Precise) — A hardware error occurred during a data access. See
Chapter 17, Error Handling for more details.

data_access_MMU_error [TT = 0724¢] (Precise) — This exception is generated when, during a
data access, the MMU detects any of

(1) a data or tag parity error on a TLB (and/or WTLB) access, or

(2) a multiple-tag-hit error on a TLB (and/or WTLB) access, or

(3) an error during hardware tablewalk.
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» data_access_MMU_miss [TT = 031y4] (Precise) — During an attempted data access to memory,
(1) hardware tablewalk was enabled, and
(2) the MMU detects that a translation lookaside buffer did not contain a
translation for the data’s virtual address, and
(3) the required TTE was not found in the configured TSBs.

» data_invalid_TSB _entry [TT = 02By4] (Precise) — During an attempted data access,
(1) hardware tablewalk was enabled,
(2) the MMU detected that a translation lookaside buffer did not contain a
translation for the virtual address, and
(3) the required TTE was found in the configured TSBs to be a real address,
requiring real-to-physical address translation, and
(4) the real address cannot be translated to a physical address by hardware.

» data_real_translation_miss [TT = 03F;4] (Precise) — During an attempted real address data
access, the MMU detected that a translation lookaside buffer (TLB) did not contain a translation for
the real address (that is, a TLB miss occurred).

» dev_mondo [TT = 07Dy4] (Disrupting) — This interrupt causes a trap to be delivered in privileged
mode, to inform privileged software that an interrupt report has been appended to its device
mondo queue. When a virtual processor has appended a valid entry to a target virtual processor’s
device mondo queue, it sends a dev_mondo exception to the target virtual processor. The interrupt
report contents are device specific.

Programming | It is possible that an implementation may occasionally cause a

Note | dev_mondo interrupt when the Device Mondo queue is empty
(Device Mondo Queue Head pointer = Device Mondo Queue
Tail pointer). A guest operating system running in privileged
mode should handle this by ignoring any Device Mondo
interrupt with an empty queue.

» division_by_zero [TT = 02844] (Precise) — An integer divide instruction attempted to divide by
Zero.

« externally_initiated_reset (XIR) [TT = 00314] (Reset) — An external signal was asserted. This trap
is used for catastrophic events such as power failure, reset button pressed, and system-wide reset
in multiprocessor systems.

« fast_data_access_MMU_miss [TT = 068¢] (Precise) — During an attempted data access to
memory,
(1) hardware tablewalk was disabled (or is not implemented) and
(2) the MMU detected that a translation lookaside buffer did not contain a translation for the
virtual address.
Four trap vectors are allocated for this trap, allowing a TLB miss handler of up to 32 instructions to
fit within the trap vector area.

» fast_data_access_protection [TT = 06Cy¢] (Precise) — During an attempted data write access (by
a store or load-store instruction), the instruction had appropriate access privilege but the MMU
signalled that the location was write-protected (write to a read-only location (TTE.w = 0)). Four
trap vectors are allocated for this trap, allowing a trap handler of up to 32 instructions to fit within
the trap vector area.

Note that on an UltraSPARC Architecture virtual processor, an attempt to read or write to a
privileged location while in nonprivileged mode causes the higher-priority DAE_privilege_violation
instead of this exception.

» fast_instruction_access_MMU_miss [TT = 064;¢] (Precise) — During an attempted instruction
virtual address access,
(1) hardware tablewalk was disabled (or is not implemented) and
(2) the MMU detected a TLB miss.
Four trap vectors are allocated for this trap, allowing a trap handler of up to 32 instructions to fit
within the trap vector area.
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fill_n_normal [TT = 0C04,—0DF;4] (Precise)
fill_n_other [TT = 0E0;¢—0FF;¢] (Precise)

A RESTORE or RETURN instruction has determined that the contents of a register window must
be restored from memory.

fp_disabled [TT = 020¢¢] (Precise) — An attempt was made to execute an FPop, a floating-point
branch, or a floating-point load/store instruction while an FPU was disabled (PSTATE.pef =0 or
FPRS.fef = 0).

fp_exception_ieee_754 [TT = 021;¢] (Precise) — An FPop instruction generated an
IEEE_754_exception and its corresponding trap enable mask (FSR.tem) bit was 1. The floating-
point exception type, IEEE_754_exception, is encoded in the FSRftt, and specific
IEEE_754_exception information is encoded in FSR.cexc.

fp_exception_other [TT = 022¢4] (Precise) — An FPop instruction generated an exception other
than an IEEE_754_exception. Example: execution of an FPop requires software assistance to
complete. The floating-point exception type is encoded in FSRAfit.

guest_watchdog [TT = (see text)] (Precise, Disrupting) — The virtual processor was in
nonprivileged or privileged mode, TL was = MAXPTL, and a precise or disrupting exception to
privileged mode occurred. guest_watchdog uses the same trap table entry (table offset 040,4) as
watchdog_reset. When a guest_watchdog trap occurs, the trap type (TT) value and priority of the
exception that caused the trap are retained.

hstick_match [TT = 05E;¢] (Disrupting) —This interrupt indicates that a match between the
System Tick (STICK) and the Hypervisor System Tick Compare (HSTICK_CMPR) register has
occurred (or that software has set HINTP.hsp = 1). The event is recorded in the
hstick_match_pending (hsp) bit of the Hypervisor Interrupt Pending (HINTP) register. The
hstick_match disrupting trap is recognized when HINTP.hsp =1 and (PSTATE.ie =1 or
HPSTATE.hpriv = 0); otherwise, it remains pending. HINTP.hsp provides a mechanism for
hyperprivileged software to determine that an hstick_match trap is pending while PSTATE.ie =0
and to clear the condition without actually having to take the hstick_match trap.

htrap_instruction [TT = 180,4—1FF4] (Precise) — A Tcc instruction was executed in privileged or
hyperprivileged mode, the trap condition evaluated to TRUE, and the software trap number was
greater than 127. The trap is delivered in hyperprivileged mode, using the hyperprivileged mode
trap base address (HTBA). See also trap_instruction on page 415.

hw_corrected_error [TT = 06314] (Disrupting) — Hardware detected an error asynchronous to
instruction execution, or requests that information be logged for the error that was detected and
corrected by the virtual processor.

SPARC V9 | The hw_corrected_error exception was called ECC_error in

Compatibility | SPARC V9.
Note

IAE_nfo_page [TT = 00C;¢] (Precise) — An instruction-access exception occurred as a result of an
attempt to fetch an instruction from a memory page which was marked for access only by
nonfaulting loads (TTE.nfo = 1).

IAE_privilege_violation [TT = 0084] (Precise) — An instruction-access exception occurred as a
result of an attempt to fetch an instruction from a privileged memory page (TTE.p = 1) while the
virtual processor was executing in nonprivileged mode.

IAE_unauth_access [TT = 00B4¢4] (Precise) — An instruction-access exception occurred as a result
of an attempt to fetch an instruction from a memory page which was missing “execute” permission
(TTE.ep =0).

illegal_instruction [TT = 0104¢] (Precise) — An attempt was made to execute an ILLTRAP
instruction, an instruction with an unimplemented opcode, an instruction with invalid field usage,
or an instruction that would result in illegal processor state.

Examples of cases in which illegal_instruction is generated include the following:

= An instruction encoding does not match any of the opcode map definitions (see Appendix A,
Opcode Maps).
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= An instruction is not implemented in hardware.
« A reserved instruction field in Tcc instruction is nonzero.

If a reserved instruction field in an instruction other than Tcc is nonzero, an illegal_instruction
exception should be, but is not required to be, generated. (See Reserved Opcodes and Instruction
Fields on page 97.)

= An illegal value is present in an instruction i field.

= Anillegal value is present in a field that is explicitly defined for an instruction, such as cc2, ccl,
ccO, fcn, impl, rcond, or opf_cc.

= Illegal register alignment (such as odd rd value in a doubleword load instruction).

= Illegal rd value for LDXFSR, STXFSR, or the deprecated instructions LDFSR or STFSR.
= ILLTRAP instruction.

= DONE or RETRY when TL = 0.

All causes of an illegal_instruction exception are described in individual instruction descriptions in
Chapter 7, Instructions.

» instruction_access_error [TT = 00Aq¢4] (Precise) — A hardware error occurred during an
instruction access. See Chapter 17, Error Handling for more details.

» instruction_access_MMU_miss [TT = 0091¢] (Precise) — During an attempted instruction access
(instruction fetch) from memory,
(1) hardware tablewalk was enabled,
(2) the MMU detected that a translation lookaside buffer did not contain a
translation for the virtual address (that is, a TLB miss occurred), and
(3) the required TTE was not found in the configured TSBs.

SPARC V9 | The instruction_access_exception exception from SPARC V9 has
Compatibility | been replaced by more specific exceptions, such as
Note [ IAE_privilege_violation and IAE_unauth_access.

» instruction_access_MMU_error [TT = 07114] (Precise) — This exception is generated when,
during an instruction access, the MMU detects any of
(1) a data or tag parity error on a TLB (and/or WTLB) access, or
(2) a multiple-tag-hit error on a TLB (and/or HTLB) access, or
(3) an error during hardware tablewalk.

» instruction_address_range [TT = 00D¢¢4] (Precise) — The instruction_address_range exception
can only occur in implementations that do not implement full 64-bit instruction virtual addresses
(impl. dep. #451-520).

This exception can only occur when PSTATE.am = 0, HPSTATE.hpriv = 0, HPSTATE.red = 0, and 1/
UMMU enable =1 (a state said to “enable VA hole detection”).

Programming Note | Privileged software should not execute a write of PSTATE that
changes PSTATE.am in the delay slot of a DCTL

Programming Note | Hyperprivileged software should not execute instructions that
transition between VA hole detection states in the delay slot of
a DCTL

The instruction_address_range exception occurs upon either:

= an instruction fetch of a virtual address within an implementation-dependent region (no larger
than 8 KB) immediately below the lowest virtual address that is not supported by the virtual
processor and/or associated I/UMMU, or
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= the fetch of a delayed control transfer instruction(DCTI)’s virtual address target that is not
supported by the virtual processor and/or associated I/UMMU,
VA hole detection is not enabled when the branch executes, and
VA hole detection is enabled for the target fetch.

The second case can occur by either:

= execution of a state-changing instruction (for example,writing HPSTATE) in the delay slot of the
DCTI, or

= an exception occuring on the delay slot of the DCTI, causing a trap, followed by state
manipulation in the trap handler, which ends in a DONE or RETRY instruction, after which the
target of the DCTI is fetched.

In the event that a trap handler modifies TPC or TNPC (via WRPR), the fetch of the instruction at
the modified TPC or TNPC (after execution of DONE or RETRY) will not result in an
instruction_address_range exception, even if the 64-bit address written to TPC or TNPC is not
supported by the virtual processor and/or associated I/UMMU and VA hole detection is enabled
when the unsupported virtual address is fetched. Instead, the unsupported bits of the address are
silently ignored.

Implementations do not store state to create an instruction_address_range exception when the
strand is executing from a PC whose 64-bit value is not supported by the virtual processor and/or
associated I/UMMLU, the strand is in a state in which VA hole detection is disabled (for example,
when PSTATE.am = 1), and then software transitions the strand state to enable VA hole detection
(for example, by setting PSTATE.am = 0) while the 64-bit PC is not supported by the virtual
processor and/or associated I/UMMU. Instead, the unsupported bits of the address are silently
ignored.

» instruction_breakpoint [TT = 07644] (Precise) — This exception is generated if HPSTATE.ibe =1
and the processor has detected a breakpoint condition based on the values in the Instruction
Breakpoint Control register for the current instruction. As part of the trap, the HPSTATE.ibe bit is
cleared (set to 0).

» instruction_invalid_TSB_entry [TT = 02A¢4] (Precise) — During an attempted instruction access
(instruction fetch),
(1) hardware tablewalk was enabled,
(2) the MMU detected that a translation lookaside buffer did not contain a translation for the
virtual address,
(3) the required TTE was found in the configured TSBs to be a real address, requiring real-to-
physical address translation, and
(4) the real address cannot be translated to a physical address by hardware.

» instruction_real_range [TT = 00E 4] (Precise) — The instruction_real_range exception can only

occur in implementations that do not implement full 56-bit instruction real addresses (impl. dep.
#452-520).

This exception can only occur when HPSTATE.hpriv = 0, HPSTATE.red = 0, and I/UMMU
enable = 0 (a state said to “enable RA hole detection”).

Programming Note | Hyperprivileged software should not execute instructions that
transition between RA hole detection states in the delay slot of
a DCTL

The instruction_real_range exception occurs when either:

= an instruction fetch of a real address within an implementation-dependent region (no larger than
8 KB) immediately below the lowest real address that is not supported by the virtual processor
and/or associated I/UMMU, or

= the fetch of a delayed control transfer instruction(DCTI)’s real address target that is not
supported by the virtual processor and/or associated I/UMMU,
RA hole detection is not enabled when the branch executes, and
RA hole detection is enabled for the target fetch.

The second case can occur by either:
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= execution of a state-changing instruction (for example,writing HPSTATE) in the delay slot of the
DCTI, or

= an exception occuring on the delay slot of the DCTI, causing a trap, followed by state
manipulation in the trap handler, which ends in a DONE or RETRY instruction, after which the
target of the DCTI is fetched.

In the event that a trap handler modifies TPC or TNPC (via WRPR), the fetch of the instruction at
the modified TPC or TNPC (after execution of DONE or RETRY) will not result in an
instruction_real_range exception, even if the 64-bit address written to TPC or TNPC is not
supported by the virtual processor and/or associated I/UMMU and RA hole detection is enabled
when the unsupported real address is fetched. Instead, the unsupported bits of the address are
silently ignored.

Implementations do not store state to create an instruction_real_range exception when the strand is
executing from a PC whose 64-bit value is not supported by the virtual processor and/or
associated I/UMMU, the strand is in a state in which RA hole detection is disabled (for example,
when HPSTATE.hpriv = 1), and then software transitions the strand state to enable RA hole
detection (for example, by setting HPSTATE.hpriv = 0) while the 64-bit PC is not supported by the
virtual processor and/or associated I/UMMU. Instead, the unsupported bits of the address are
silently ignored.

» instruction_real_translation_miss [TT = 03E;4] (Precise) — During an attempted real address
instruction access (instruction fetch), the MMU detected a TLB miss.

» instruction_VA_watchpoint [TT = 075:4] (Precise) — The virtual processor has detected that the
Program Counter (PC) matches the VA Watchpoint register, when instruction VA watchpoints are
enabled and the PC is being translated from a virtual address to a physical address. If the PC is not
being translated from a virtual address (for example, the PC is being treated as a physical address),
then an instruction_VA_watchpoint exception will not be generated, even if a match is detected
between the VA Watchpoint register and the PC.

= internal_processor_error [TT = 02914] (Precise) — A serious internal error occurred in the virtual
processor.

IMPL. DEP. #402-S10: The trap priority of the internal_processor_error exception is
implementation dependent. Furthermore, its priority may vary within an implementation, based
on the cause of the error being reported.
» interrupt_level_n [TT = 04115-04F;¢] (Disrupting) — SOFTINT{rn} was set to 1 or an external
interrupt request of level n was presented to the virtual processor and n > PIL.
Implementation | interrupt_level_14 can be caused by (1) setting SOFTINT{14}
Note | to 1, (2) occurrence of a "TICK match", or (3) occurrence of a
"STICK match" (see SOFTINT? Register (ASRs 20, 21, 22) on
page 57).

» interrupt_vector [TT = 060;4] (Disrupting) — The virtual processor has received an interrupt
request. See Interrupt Vector Registers on page 423 for more information.

« LDDF_mem_address_not_aligned [TT = 035;¢] (Precise) — An attempt was made to execute an
LDDF or LDDFA instruction and the effective address was not doubleword aligned. (impl. dep. #109)

« mem_address_not_aligned [TT = 034;4] (Precise) — A load/store instruction generated a
memory address that was not properly aligned according to the instruction, or a JMPL or RETURN
instruction generated a non-word-aligned address. (See also Special Memory Access ASIs on page
357.)

« mem_address_range [TT = 02E;¢] (Precise) — The mem_address_range exception can only occur
in implementations that do not implement full 64-bit virtual addresses (impl. dep. #451-520).

The mem_address_range exception occurs when either:

= a memory-access instruction (load, store, or load-store) generates a memory virtual address that
is not supported by the virtual processor and/or associated D/UMMU, or

= abranch, JMPL, RETURN, or CALL instruction that is taken and generates a target virtual
address that is not supported by the virtual processor and/or associated I/ UMMU
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This exception can only occur if PSTATE.am = 0 at the time the instruction executes.

For a memory-access instruction, this exception can only occur if the DMMU performs VA-to-PA
translation for the effective memory address referenced by this instruction.

For a branch, JMPL, RETURN, or CALL instruction, this exception can only occur if
HPSTATE.hpriv = 0, HPSTATE.red = 0, and I/UMMU enable = 1 at the time of instruction execution.

Programming Note | No mem_address_range exception is triggered when control
transfer to a virtual address not supported by the virtual
processor and/or I/UMMU occurs by means not explicitly
described above, such as:

= DONE or RETRY that enables VA hole detection and that
redirects fetch to a virtual address that is not supported by
the virtual processor and/or I/UMMU

» a DCTI that executes with VA hole detection disabled with a
virtual target address that is not supported by the virtual
processor and/or I/UMMU, with a delay slot instruction that
enables VA hole detection

« mem_real_range [TT = 02D¢¢] (Precise) — The mem_real_range exception can only occur in
implementations that do not implement full 56-bit real addresses (impl. dep. #452-520).

The mem_real_range exception occurs when either:

= a memory-access instruction (load, store, or load-store) generates a memory real address that is
not supported by the virtual processor and/or associated D/UMMU, or

= abranch, JMPL, RETURN, or CALL instruction that is taken and generates a target real address
that is not supported by the virtual processor and/or associated I/UMMU

For a memory-access instruction, this exception can only occur if the DMMU performs RA-to-PA
translation for the effective memory address referenced by this instruction.

For a branch, JMPL, RETURN, or CALL instruction, this exception can only occur if
HPSTATE.hpriv = 0, HPSTATE.red = 0, and I/UMMU enable = 0 at the time of instruction execution.

Programming Note | No mem_real_range exception is triggered when control
transfer to a real address not supported by the virtual processor
and/or I/UMMU occurs by means not explicitly described
above, such as:

» DONE or RETRY that enables RA hole detection and that
redirects fetch to a real address that is not supported by the
virtual processor and/or I/UMMU

= a DCTI that executes with RA hole detection disabled with a
real target address that is not supported by the virtual
processor and/or I/UMMU, with a delay slot instruction that
enables RA hole detection

»« nonresumable_error [TT = 07F4] (Disrupting) — There is a valid entry in the nonresumable error
queue. This interrupt is not generated by hardware, but is used by hyperprivileged software to
inform privileged software that an error report has been appended to the nonresumable error
queue.

» PA_watchpoint [TT = 0614] (Precise) — The virtual processor has detected a load or store to a
physical address specified by the PA Watchpoint register while PA watchpoints are enabled.
Hyperprivileged software may reflect this trap back to privileged software as a synthetic
RA_watchpoint exception.

» pic_overflow [TT = 04F;¢] (Disrupting) — A performance counter has overflowed and PIL < 15.
Note that this exception shares a trap type, 04F;4, with interrupt_level_15. The disrupting trap
caused by pic_overflow is conditioned by PSTATE.ie.

If PSTATE.ie = 1 and PIL < 15 when the possible counter overflow is detected and depending on
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the event being monitored by the counter, the disrupting trap may be reported prior to retirement
of the instruction that incremented the counter to cause the possible counter overflow. Upon entry
to the trap handler, TPC points to an instruction that increments the performance counter and the
counter is within some epsilon of overflow.

If PSTATE.ie = 0 or PIL = 15 when the possible overflow is detected, the trap remains pending and
will be taken on the first instruction for which PSTATE.ie = 1 and PIL < 15. In this case, TPC may
not point to an instruction that increments the counter.

» power_on_reset (POR) [TT = 001;¢] (Reset) — An external signal was asserted. This trap is issued
to bring a system reliably from the power-off to the power-on state.

» privileged_action [TT = 037;4] (Precise) — An action defined to be privileged has been attempted
while in nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), or an action defined to be
hyperprivileged has been attempted while in nonprivileged or privileged mode
(HPSTATE.hpriv = 0). Examples:
= A data access by nonprivileged software using a restricted (privileged or hyperprivileged) ASI,
that is, an ASI in the range 0014 to 7F;¢ (inclusively)

= A data access by nonprivileged or privileged software using a hyperprivileged AS], that is, an
ASI in the range 3014 to 7F4 (inclusively)

= Execution by nonprivileged software of an instruction with a privileged operand value

= An attempt to read the TICK register by nonprivileged software when nonprivileged access to
TICK is disabled (TICK.npt = 1).

= An attempt to execute a nonprivileged instruction with an operand value requiring more
privilege than available in the current privilege mode.

» privileged_opcode [TT = 01144] (Precise) — An attempt was made to execute a privileged
instruction while in nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0).

» RED_state_exception [TT = (see text)] (Precise) — Caused when TL = MAXTL — 1 and a trap occurs,
an event that brings the virtual processor into RED_st at e. Uses the trap vector entry reserved for
trap type 005q¢, but the trap type recorded in TT is the trap type of the original exception that
triggered RED_state_exception.

»« resumable_error [TT = 07E4] (Disrupting) — There is a valid entry in the resumable error queue.
This interrupt is used to inform privileged software that an error report has been appended to the
resumable error queue, and the current instruction stream is in a consistent state so that execution
can be resumed after the error is handled.

» software_initiated_reset (SIR) [TT = 004;¢] (Precise) — Caused by the execution of the SIR
instruction. It allows system software to reset the virtual processor.

« spill_n_normal [TT = 08074—09F4] (Precise)
» spill_n_other [TT = 0A0;,—0BF;¢] (Precise)

A SAVE or FLUSHW instruction has determined that the contents of a register window must be
saved to memory.

» STTW_exception [TT =03Aq4] (Precise) —This exception is caused by implmentation-specific
conditions that occured during execution of a Store Twin Word (STTW) instruction. The specific
conditions under which this exception occurs can be found in each processor’s Implementation
Supplement to this specification.

» STDF_mem_address_not_aligned [TT = 03644] (Precise) — An attempt was made to execute an
STDF or STDFA instruction and the effective address was not doubleword aligned. (impl. dep. #110)

» store_error [TT = 00714] (Deferred) — An error has been detected on a store instruction that
prevents it from completing, but the error was detected after the store had passed its instruction
retirement point. Since the store cannot be made globally visible, the software thread that issued
the store must be terminated. Therefore, this is a termination deferred trap.

» sw_recoverable_error [TT = 0404¢] (Disrupting) — Indicates that one or more potentially
recoverable errors have been detected in the virtual processor. A single sw_recoverable_error
exception may indicate multiple errors and may occur asynchronously to instruction execution.
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12.7.1

When sw_recoverable_error causes a trap, the TPC and TNPC stacked by the trap do not
necessarily indicate the instruction or data access that caused the error. (impl. dep. #31-V8-Cs10,
#218-U3-Cs20) See Chapter 17, Error Handling for more details.

SPARC V8 | The sw_recoverable_error exception was called
Compatibility | async_data_error in the SPARC V9 specification, which in turn
Note | superseded the earlier and less general SPARC V8
data_store_error exception.

tag_overflow [TT = 023;4] (Precise) (deprecated ) — A TADDccTV or TSUBccTV instruction
was executed, and either 32-bit arithmetic overflow occurred or at least one of the tag bits of the
operands was nonzero.

trap_instruction [TT = 10074-17F;4] (Precise) — A Tcc instruction was executed and the trap
condition evaluated to TRUE, and the software trap number operand of the instruction is 127 or
less.

trap_level_zero [TT = 05F;¢] (Precise) — This exception indicates a simultaneous existence of three
conditions as an instruction is about to be executed:

= trap_level_zero exceptions are enabled (HPSTATE.tlz = 1),

= the virtual processor is in nonprivileged or privileged mode (HPSTATE.hpriv = 0), and

« the trap level (TL) register’s value is zero (TL = 0)

Upon entry to the trap handler for trap_level_zero, TPC points to the instruction that was about to
be executed after all three of these conditions were met.

Programming | The purpose of this trap is to improve efficiency when de-

Note | scheduling a virtual processor. When a descheduling event
occurs and the virtual processor is executing in privileged mode
at TL > 0, hyperprivileged software can choose to enable the
trap_level_zero exception (set HPSTATE.tlz — 1) and return to
privileged mode, enabling privileged software to complete its
TL > 0 processing. When privileged code returns to TL = 0, this
exception enables the hyperprivileged code to regain control
and deschedule the virtual processor with low overhead.

unimplemented_LDTW [TT = 012¢4] (Precise) — An attempt was made to execute an LDTW
instruction that is not implemented in hardware on this implementation (impl. dep. #107-V9).

unimplemented_STTW [TT = 01344] (Precise) — An attempt was made to execute an STTW
instruction that is not implemented in hardware on this implementation (impl. dep. #108-V9).

unsupported_page_size [TT =03Bq¢] (Precise) —This trap is caused by a store that writes an
unsupported page size to a TSB configuration register, an MMU data_in register, or an MMU
data_access register.

watchdog_reset (WDR) [TT = 00214] (Reset) — This trap occurs in er r or _st at e and causes a
transition to RED_st at e (impl. dep. #254-U3-Cs10).

VA_watchpoint [TT = 06214] (Precise) — The virtual processor has detected an attempt to access
(load from or store to) a virtual address specified by the VA Watchpoint register, while VA
watchpoints are enabled and the address is being translated from a virtual address to a physical
address. If the load or store address is not being translated from a virtual address (for example, the
address is being treated as a real address), then a VA_watchpoint exception will not be generated
even if a match is detected between the VA Watchpoint register and a load or store address. This
exception is always masked in hyperprivileged mode; therefore, a VA_watchpoint trap cannot occur
in hyperprivileged mode (even if memory is accessed using ASI _AS_| F_USER_PRI MARY or

AS|I _AS | F_USER_SECONDARY).

SPARC V9 Traps Not Used in UltraSPARC Architecture 2007

The following traps were optional in the SPARC V9 specification and are not used in UltraSPARC
Architecture 2007:
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» async_data_error [TT = 040;¢] (Disrupting) — This exception was superseded by the
sw_recoverable_error exception.

» data_access_protection [TT = 033;4] (Precise or Deferred) — This exception is generally
superseded by fast_data_access_protection (see page 408).

» fast_ECC_error [TT = 07014] (Precise) — A single-bit or multiple-bit ECC error was detected. This
exception is superseded by hw_corrected_error in UltraSPARC Architecture 2007.

IMPL. DEP. #202-U3: Whether or not a fast_ECC_error trap exists is implementation dependent. If
it does exist, it indicates that an ECC error was detected in an external cache and its trap type is
0704¢.

« implementation_dependent_exception_n [TT = 0774 - 07B;¢] This range of implementation-
dependent exceptions has been replaced by a set of architecturally-defined exceptions. (impl.dep.
#35-V8-Cs20)

» LDQF_mem_address_not_aligned [TT = 038;4] (Precise) — An attempt was made to execute an
LDQF instruction and the effective address was word aligned but not quadword aligned. Use of
this exception is implementation dependent (impl. dep. #111-V9-Cs10). A separate trap entry for
this exception supports fast software emulation of the LDQF instruction when the effective address
is word aligned but not quadword aligned. See Load Floating-Point Register on page 195. (impl. dep.
#111)

» STQF_mem_address_not_aligned [TT = 039;4] (Precise) — An attempt was made to execute an
STQF instruction and the effective address was word aligned but not quadword aligned. Use of
this exception is implementation dependent (impl. dep. #112-V9-Cs10). A separate trap entry for
the exception supports fast software emulation of the STQF instruction when the effective address
is word aligned but not quadword aligned. See Store Floating-Point on page 272. (impl. dep. #112)

12.8

12.8.1

12.8.2

Register Window Traps

Window traps are used to manage overflow and underflow conditions in the register windows,
support clean windows, and implement the FLUSHW instruction.

Window Spill and Fill Traps

A window overflow occurs when a SAVE instruction is executed and the next register window is
occupied (CANSAVE = 0). An overflow causes a spill trap that allows privileged software to save the
occupied register window in memory, thereby making it available for use.

A window underflow occurs when a RESTORE instruction is executed and the previous register
window is not valid (CANRESTORE = 0). An underflow causes a fill trap that allows privileged
software to load the registers from memory.

clean_window Trap

The virtual processor provides the clean_window trap so that system software can create a secure
environment in which it is guaranteed that data cannot inadvertently leak through register windows
from one software program to another.

A clean register window is one in which all of the registers, including uninitialized registers, contain
either 0 or data assigned by software executing in the address space to which the window belongs. A
clean window cannot contain register values from another process, that is, from software operating in
a different address space.

416 UltraSPARC Architecture 2007 « Draft D0.9.4, 27 Sep 2010



12.8.3

12.8.4

Supervisor software specifies the number of windows that are clean with respect to the current
address space in the CLEANWIN register. This number includes register windows that can be restored
(the value in the CANRESTORE register) and the register windows following CWP that can be used
without cleaning. Therefore, the number of clean windows available to be used by the SAVE
instruction is

CLEANWIN - CANRESTORE

The SAVE instruction causes a clean_window exception if this value is 0. This behavior allows
supervisor software to clean a register window before it is accessed by a user.

Vectoring of Fill/Spill Traps

To make handling of fill and spill traps efficient, the SPARC V9 architecture provides multiple trap
vectors for the fill and spill traps. These trap vectors are determined as follows:

» Supervisor software can mark a set of contiguous register windows as belonging to an address
space different from the current one. The count of these register windows is kept in the OTHERWIN
register. A separate set of trap vectors (fill_n_other and spill_n_other) is provided for spill and fill
traps for these register windows (as opposed to register windows that belong to the current
address space).

» Supervisor software can specify the trap vectors for fill and spill traps by presetting the fields in the
WSTATE register. This register contains two subfields, each three bits wide. The WSTATE.normal
field determines one of eight spill (fill) vectors to be used when the register window to be spilled
(filled) belongs to the current address space (OTHERWIN = 0). If the OTHERWIN register is
nonzero, the WSTATE.other field selects one of eight fill_n_other (spill_n_other) trap vectors.

See Trap-Table Entry Addresses on page 382, for more details on how the trap address is determined.

CWP on Window Traps

On a window trap, the CWP is set to point to the window that must be accessed by the trap handler,
as follows.

Note | All arithmetic on CWP is done modulo N_REG_WINDOWS.
» If the spill trap occurs because of a SAVE instruction (when CANSAVE = 0), there is an overlap
window between the CWP and the next register window to be spilled:
CWP ~ (CWP + 2) mod N_REG_WINDOWS

If the spill trap occurs because of a FLUSHW instruction, there can be unused windows
(CANSAVE) in addition to the overlap window between the CWP and the window to be spilled:

CWP ~ (CWP + CANSAVE + 2) mod N_REG_WINDOWS

Implementation | All spill traps can set CWP by using the calculation:
Note | CWP — (CWP + CANSAVE + 2) mod N_REG_WINDOWS
since CANSAVE is 0 whenever a trap occurs because of a SAVE
instruction.
» On a fill trap, the window preceding CWP must be filled:
CWP ~ (CWP - 1) mod N_REG_WINDOWS
= On a clean_window trap, the window following CWP must be cleaned. Then
CWP ~ (CWP + 1) mod N_REG_WINDOWS
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12.8.5  Window Trap Handlers

The trap handlers for fill, spill, and clean_window traps must handle the trap appropriately and
return, by using the RETRY instruction, to reexecute the trapped instruction. The state of the register
windows must be updated by the trap handler, and the relationships among CLEANWIN, CANSAVE,
CANRESTORE, and OTHERWIN must remain consistent. Follow these recommendations:

» A spill trap handler should execute the SAVED instruction for each window that it spills.

» A fill trap handler should execute the RESTORED instruction for each window that it fills.

» A clean_window trap handler should increment CLEANWIN for each window that it cleans:
CLEANWIN ~ (CLEANWIN + 1)
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CHAPTER 13

Interrupt Handling

Virtual processors and 1/O devices can interrupt a selected virtual processor by assembling and
sending an interrupt packet. The contents of the interrupt packet are defined by software convention.
Thus, hardware interrupts and cross-calls can have the same hardware mechanism for interrupt
delivery and share a common software interface for processing.

The interrupt mechanism is a two-step process:

» sending of an interrupt request (through an implemenation-specific hardware mechanism) to an
interrupt queue of the target virtual processor

» receipt of the interrupt request on the target virtual processor and scheduling software handling of
the interrupt request

Privileged software running on a virtual processor can schedule interrupts to itself (typically, to
process queued interrupts at a later time) by setting bits in the privileged SOFTINT register (see
Software Interrupt Register (SOFTINT) on page 420).

Programming | An interrupt request packet is sent by an interrupt source

Note | (through an implementation-specific mechanism) and is
received by the specified target in an interrupt queue. Upon
receipt of an interrupt request packet, a special trap is invoked
on the target virtual processor. The trap handler software
invoked in the target virtual processor then schedules itself to
later handle the interrupt request by posting an interrupt in the
SOFTINT register at the desired interrupt level.

In the following sections, the following aspects of interrupt handling are described:
» Interrupt Packets on page 419.

» Software Interrupt Register (SOFTINT) on page 420.

= Interrupt Queues on page 420.

= Interrupt Traps on page 422.

» Strand Interrupt ID Register (STRAND_INTR_ID) on page 423.

= Interrupt Receive Register on page 423.

= Interrupt Vector Dispatch Register on page 424.

= Incoming Interrupt Vector Register on page 424.

13.1

Interrupt Packets
Each interrupt is accompanied by data, referred to as an “interrupt packet”. An interrupt packet is 64

bytes long, consisting of eight 64-bit doublewords. The contents of these data are defined by software
convention.
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13.2

13.2.1

13.2.2

Software Interrupt Register (SOFTINT)

To schedule interrupt vectors for processing at a later time, privileged software running on a virtual
processor can send itself signals (interrupts) by setting bits in the privileged SOFTINT register.
Similarly, hyperprivileged software can schedule interrupt vectors for privileged software running on
the same virtual processorby setting bits in SOFTINT.

See SOFTINT? Register (ASRs 20, 21, 22) on page 57 for a detailed description of the SOFTINT register.

Programming | The SOFTINT register (ASR 164¢4) is used for communication

Note | from nucleus (privileged, TL > 0) software to privileged software
running with TL = 0. Interrupt packets and other service
requests can be scheduled in queues or mailboxes in memory by
the nucleus, which then sets SOFTINT{#n} to cause an interrupt
at level n.

Programming | The SOFTINT mechanism is independent of the “mondo”
Note | interrupt mechanism mentioned in Interrupt Queues on page 420.
The two mechanisms do not interact.

Setting the Software Interrupt Register

SOFTINT{n} is set to 1 by executing a WRSOFTINT_SETY instruction (WRasr using ASR 20) with a ‘1’
in bit n of the value written (bit n corresponds to interrupt level n). The value written to the
SOFTINT_SET register is effectively ored into the SOFTINT register. This approach allows the
interrupt handler to set one or more bits in the SOFTINT register with a single instruction.

See SOFTINT_SET? Pseudo-Register (ASR 20) on page 58 for a detailed description of the
SOFTINT_SET pseudo-register.

Clearing the Software Interrupt Register

When all interrupts scheduled for service at level n have been serviced, kernel software executes a
WRSOFTINT_CLRY instruction (WRasr using ASR 21) with a ‘1’ in bit n of the value written, to clear
interrupt level n (impl. dep. 34-V8a). The complement of the value written to the SOFTINT_CLR
register is effectively anded with the SOFTINT register. This approach allows the interrupt handler to
clear one or more bits in the SOFTINT register with a single instruction.

Programming | To avoid a race condition between operating system kernel
Note | software clearing an interrupt bit and nucleus software setting
it, software should (again) examine the queue for any valid
entries after clearing the interrupt bit.

See SOFTINT_CLR” Pseudo-Register (ASR 21) on page 59 for a detailed description of the
SOFTINT_CLR pseudo-register.

13.3

Interrupt Queues

Interrupts are indicated to privileged mode via circular interrupt queues, each with an associated trap
vector. There are 4 interrupt queues, one for each of the following types of interrupts:
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13.3.1

» Device mondos!
= CPU mondos
= Resumable errors

= Nonresumable errors

New interrupt entries are appended to the tail of a queue (by hardware or by hyperprivileged
software) and privileged software reads them from the head of the queue.

Programming | Software conventions for cooperative management of interrupt
Note | queues and the format of queue entries are specified in the
separate Hypervisor API Specification document.

Interrupt Queue Registers

The active contents of each queue are delineated by a 64-bit head register and a 64-bit tail register.

IMPL. DEP. #421-S10: It is implementation dependent whether interrupt queue head and tail
registers (a) are datatype-agnostic “scratch registers” used for communication between privileged and
hyperprivileged software, in which case their contents are defined purely by software convention, or
(b) are maintained to some degree by virtual processor hardware, imposing a fixed meaning on their
contents.

Programming | If the contents of Queue Head and Tail registers are set only by

Note | software convention in a given implementation, software could
place any type of data in them (such as addresses, address
offsets, or index values).

It is expected that Queue Head and Tail registers will typically
contain a byte offset from the base of an appropriately-aligned
queue region in memory.

The interrupt queue registers are accessed through ASI ASI _QUEUE (25:4). The ASI and address
assignments for the interrupt queue registers are provided in TABLE 13-1.

TABLE 13-1 Interrupt Queue Register ASI Assignments

ASI Virtual Prxgz%ed pr?\)/ifeeg:zd

_ Address AcCCESS mode
Register Access
CPU Mondo Queue Head 2514 (ASI _QUEUE) 3C0¢¢ RW R/W
CPU Mondo Queue Tail 2514 (ASI _QUEUE) 3C8 RorRWt R/W
Device Mondo Queue Head 2514 (ASI _QUEUE) 3D044 RW R/W
Device Mondo Queue Tail 2516 (ASI _QUEUE) 3D8;, RorRWt R/W
Resumable Error Queue Head 2516 (ASI _QUEUE) 3E0¢¢ RW R/W
Resumable Error Queue Tail 2514 (ASI _QUEUE) 3E81y Ror RWt R/W
Nonresumable Error Queue Head 2514 (ASI _QUEUE) 3F046 RW R/W

Nonresumable Error Queue Tail 2514 (ASI _QUEUE) 3F81¢ RorRWt R/W

1 seeIMPL.DEP.#422-510

IMPL. DEP. #422-S10: It is implementation dependent whether tail registers are writable in
privileged mode. If a tail register is read-only in privileged mode, an attempt to write to it causes a
DAE_invalid_asi exception. If a tail register is writable in privileged mode, an attempt to write to it
results in undefined behavior.

1 “mondo” is a historical term, referring to the name of the original UltraSPARC 1 bus transaction in which these interrupts were

introduced
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Implementation | Although Queue Head and Tail registers behave as registers,
Note | they may or may not be implemented using actual hardware
registers. For example, they may reside in memory, mapped by
a mechanism visible only to hyperprivileged software. In any
case, the means by which Queue Head and Tail registers are
implemented is not visible to privileged software.

The status of each queue is reflected by its head and tail registers:

» A Queue Head Register indicates the location of the oldest interrupt packet in the queue

s A Queue Tail Register indicates the location where the next interrupt packet will be stored

An event that results in the insertion of a queue entry causes the tail register for that queue to refer to

the following entry in the circular queue. Privileged code is responsible for updating the head
register appropriately when it removes an entry from the queue.

A queue is empty when the contents of its head and tail registers are equal. A queue is full when the
insertion of one more entry would cause the contents of its head and tail registers to become equal.

Programming | By current convention, the format of a Queue Head or Tail
Note | register is as follows:

head/tail offset \ 000000 |
63 6 5 0

Under this convention:

» updating a Queue Head register involves incrementing it by
64 (size of a queue entry, in bytes)

» Queue Head and Tail registers are updated using modular
arithmetic (modulo the size of the circular queue, in bytes)

s bits 5:0 always read as zeros, and attempts to write to them are
ignored

» the maximum queue offset for an interrupt queue is
implementation dependent

» behavior when a queue register is written with a value larger
than the maximum queue offset (queue length minus the
length of the last entry) is undefined

This is merely a convention and is subject to change.

13.4  Interrupt Traps

The following interrupt traps are defined in the UltraSPARC Architecture 2007: cpu_mondo,
dev_mondo, resumable_error, and nonresumable_error. The first three (cpu_mondo, dev_mondo, and
resumable_error) are all generated by hardware, while nonresumable_error is generated by
hyperprivileged software. See Chapter 12, Traps, for details.

UltraSPARC Architecture 2007 also supports the interrupt_level_n traps defined in the SPARC V9
specification.pt trans

How interrupts are delivered is implementation-specific; see the relevant implementation-specific
Supplement to this specification for details.
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13.5  Strand Interrupt ID Register
(STRAND_INTR_ID)

The STRAND_INTR_ID per-virtual-processor register allows software to assign a 16-bit interrupt ID,
unique within the system, to a virtual processor. This is important, to enable virtual processors to
receive interrupts. See Strand Interrupt ID Register (STRAND_INTR_ID) on page 480 for details.

13.6  Interrupt Vector Registers

Associated with the interrupt_vector exception are three hyperprivileged registers, described in the
following sections.

13.6.1 Interrupt Receive Register

Each virtual processor has a hyperprivileged Interrupt Receive (ASI _| NTR_RECEI VE) register,
accessed using ASI 72,4 with VA{63:0} = 0.

The Interrupt Receive Register receives and stores CPU cross-call disrupting trap requests, as sent
from other strands using the Interrupt Vector Dispatch Register. When a CPU cross-call for interrupt
vector n arrives for a virtual processor, the corresponding bit (bit n) is set in the receiving strand’s
Interrupt Receive register. Interrupt vectors are implicitly prioritized, with vector number 63 having
the highest priority and vector number 0 having the lowest priority.

Software writes to the Interrupt Receive register are anded with the current register contents, and the
result is written back to the Interrupt Receive register. This allows software to selectively clear (zero)
register bits in the Interrupt Receive Register. However, normally software reads the Incoming
Interrupt Vector register (described in Section 13.6.3), which clears the bit corresponding to the
highest priority pending interrupt. When an interrupt arrives at the same time as software writes to
the Interrupt Receive register, the interrupt will take precedence over the write and the bit
corresponding to the incoming interrupt will be set.

Software can read the Interrupt Receive register to determine all pending interrupts, although
normally the Incoming Interrupt Vector register will be used to determine the highest-priority
pending interrupt.

An attempt by nonprivileged or privileged software to access this hyperprivileged register causes a
privileged_action exception.

TABLE 13-2 defines the data layout of the Interrupt Receive register.

TABLE 13-2  Interrupt Receive Register — ASI _I NTR_RECEI VE (ASI 7214, VA 014)

Bit(s) Field Initial Value R/W Description

63:0 pending X RW  Pending interrupts.

After a power-on reset, the pending field of this register is undefined.
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13.6.2 Interrupt Vector Dispatch Register

Each virtual processor has a hyperprivileged, write-only Interrupt Vector Dispatch (ASI _I NTR_W
register, accessed using ASI 73,4 with VA{63:0} = 0.

The Interrupt Vector Dispatch register is used to send a CPU cross-call (disrupting trap request,
sometimes loosely referred to as an “interrupt”) to a virtual processor. Unlike mondo interrupts,
these interrupts cannot be NACKed by the destination and multiple interrupts that set the same
Interrupt Receive register bit before it has been cleared will only generate a single interrupt. A
disrupting trap request generated by a store to the Interrupt Vector Dispatch register will follow the
TSO memory model (no MEMBAR #Sync is required). The data stored to the Interrupt Vector
Dispatch register specifies the destination virtual processor and vector (priority of the request). The
bit corresponding to the specified vector is set in the Interrupt Receive register of the destination
virtual processor.

Programming | After an interrupt vector trap is taken by the destination virtual
Note | processor, it is the responsibility of the interrupt handler to clear
the highest-priority pending bit in the interrupt register, usually
by reading the Incoming Interrupt Vector register as described in
Section 13.6.3.

The data layout of the Interrupt Vector Dispatch register is illustrated in FIGURE 13-1. The strand field
contains the strand ID of the destination virtual processor for the interrupt (cross-call) and the vector
field encodes the bit number to be set in the destination virtual processor’s Interrupt Receive Register.

RO W RO W

— strand |—| vector

63 m m-1 8 76 5 0
FIGURE 13-1 Interrupt Vector Dispatch register

Note that the width of the strand field of the Interrupt Vector Dispatch register is implementation-
dependent. The width (m-8) of the strand field must be sufficient to uniquely encode every strand in
a system. For example, for a system supporting a single 64-strand processor, 6 bits (m = 14) is
sufficient to encode strand numbers in strand. For a system supporting four 128-strand processors, 9
bits (m = 17) would be needed to encode all strand numbers in the strand field.

An attempt by nonprivileged or privileged software to access the hyperprivileged Interrupt Vector
Dispatch register causes a privileged_action exception. An attempt to read from this register causes a
DAE_invalid_asi exception.

13.6.3 Incoming Interrupt Vector Register

Each virtual processor has a hyperprivileged, read-only Incoming Interrupt Vector (ASI _| NTR_R)
register, accessed using ASI 741, with VA{63:0} = 0.

When the Incoming Interrupt Vector register is read by software, a 6-bit value is returned which
encodes the number of the highest-priority pending cross-call (“interrupt”) in the Interrupt Receive
register. The pending interrupt bit for that vector (as observed in the Interrupt Receive register) is
automatically set to 0. When the Incoming Interrupt Vector register is read and at the same time
another interrupt arrives that would cause the same pending-interrupt bit to be set which the read is
about to clear, the the interrupt takes precedence and the bit will remain set to 1 (it will not be
cleared). If no pending-interrupt bits are set (the contents of the Interrupt Receive register are 0) when
the Incoming Interrupt Vector register is read, the read will return a value of zero.

An attempt by nonprivileged or privileged software to access the hyperprivileged Incoming Interrupt
Vector register causes a privileged_action exception. An attempt to write to this register causes a
DAE_invalid_asi exception.
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Programming
Note

Programming
Note

Implementation
Note

The interrupt handler will normally use the Incoming Interrupt
Vector register to determine the highest-priority pending
interrupt, while atomically clearing the “pending” bit
corresponding to that highest priority interrupt.

Is is recommended to only read the Interrupt Vector register
within the interrupt_vector trap handler. Otherwise, each read
of Interrupt Vector would cause indication of an incoming cross-
call to be cleared (and presumably lost).

Note that when the Incoming Interrupt Vector register is read, if
0 is returned then software cannot distinguish between whether
no vector bits were set or only vector bit 0 was set. In the latter
case, reading the Incoming Interrupt Vector register will clear bit
0 of the Interrupt Receive Register, leaving no evidence behind
as to whether vector bit 0 had been set or not. Some options for
software to handle this include:

* do not use vector bit 0

* do not read the Incoming Interrupt Vector register; read only the
Interrupt Receive register

e before reading the Incoming Interrupt Vector register, read the
Interrupt Receive register and save that value to allow disambiguation
in case the read of the Incoming Interrupt Vector register returns 0.

The Incoming Interrupt Vector register is typically implemented
as a pseudo-register — its contents are generated dynamically,
based on the contents of the Interrupt Receive Register.

The Incoming Interrupt Vector register, as observed by software, is illustrated in FIGURE 13-2.

RO RO

—_— vector

63

FIGURE 13-2 Incoming Interrupt Vector register
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CHAPTER 14

Memory Management

An UltraSPARC Architecture Memory Management Unit (MMU) conforms to the requirements set
forth in the SPARC V9 Architecture Manual. In particular, it supports a 64-bit virtual address space,
simplified protection encoding, and multiple page sizes. In an UltraSPARC Architecture
implementation, TLB miss processing can be achieved either by hardware page tablewalk or by
privileged software.

IMPL. DEP. # 451-S20: The width of the virtual address supported is implementation dependent. If
fewer than 64 bits are supported, the unsupported bits must have the same value as the most
significant supported bit. For example, if the model supports 48 virtual address bits, then bits 63:48
must have the same value as bit 47.

This appendix describes the Memory Management Unit, as observed by hyperprivileged software, in
these sections:

» Virtual Address Translation on page 427.

» Hyperprivileged Memory Management Architecture on page 432.
= Context ID on page 432.

= TSB Translation Table Entry (TTE) on page 434.

» Translation Storage Buffer (TSB) on page 437.

» Hardware Support for TSB Access on page 439.

» Faults and Traps on page 441.

» MMU Operation Summary on page 443.

= ASI Value, Context ID, and Endianness Selection for Translation on page 445.
= Translation on page 448.

= SPARC V9 “MMU Attributes” on page 453.

= MMU Internal Registers and ASI Operations on page 453.

» Translation Lookaside Buffer Hardware on page 472.

14.1

Virtual Address Translation

The MMUs may support up to eight page sizes: 8 KBytes, 64 KBytes, 512 KBytes, 4 MBytes, 32 MBytes,
256 MBytes, 2 GBytes, and 16 GBytes. 8-KByte, 64-KByte and 4- MByte page sizes must be supported;
the other page sizes are optional.

IMPL. DEP. #310-U4: Which, if any, of the following optional page sizes are supported by the MMU
in an UltraSPARC Architecture 2007 implementation is implementation dependent: 512 KBytes, 32
MBytes, 256 MBytes, 2 GBytes, and 16 GBytes.

An UltraSPARC Architecture MMU supports a 64-bit virtual address (VA) space.
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IMPL. DEP. #452-520: The number of real address (RA) and physical address (PA) bits supported is
implementation dependent. A minimum of 40 bits and maximum of 56 bits can be provided for both
real addresses (RA) and physical addresses (PA). See implementation-specific documentation for
details.

In each translation, the virtual page number is replaced by a physical page number, which is
concatenated with the page offset to form the full physical address, as illustrated in FIGURE 14-1 and
FIGURE 14-2.

IMPL. DEP. #453-520: It is implementation dependent whether there is a unified MMU (UMMU) or a
separate IMMU (for instruction accesses) and DMMU (for data accesses). The UltraSPARC
Architecture supports both configurations.

Each MMU consists of one or more Translation Lookaside Buffers (TLBs), and may include micro-TLB
structures. Separate Instruction and Data MMUs (IMMU and DMMU, respectively) may be provided
to enable concurrent virtual-to-physical address translations for instruction and data.

IMPL. DEP. #222-U3: TLB organization is implementation dependent.
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8-Kbyte Virtual Page Number Page Offset VA
63 13 12
* MMU 3 * 0 8 Kbyte
8-Kbyte Real Page Number (RPN) Page Offset RA
55 13 12 0
* MMU +
8-Kbyte Physical Page Number (PPN) Page Offset PA
55 13 12 0
64-Kbyte Virtual Page Number Page Offset VA
63 16 15 0
*MMU * 64 Kbyte
64-Kbyte RPN Page Offset RA
55 + MMU 16 15 + 0
64-Kbyte PPN Page Offset PA
55 16 15 0
512-Kbyte Virtual Page Number Page Offset VA
63 *MMU 19 18 * 0 512 Kbyte
512-Kbyte RPN Page Offset RA
55 v MMU 19 18 v 0
512-Kbyte PPN Page Offset PA
55 19 18 0
4-Mbyte Virtual Page Number Page Offset VA
63 22 21 0
*MMU * 4 Mbyte
4-Mbyte RPN Page Offset RA
55 22 21 0
MMU
4-Mbyte PPN Page Offset PA
55 22 21 0

FIGURE 14-1 Virtual-to--Physical Address Translation for 8-Kbyte, 64-Kbyte, 512-Kbyte, and 4-Mbyte Page

Sizes
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32-Mbyte Virtual Page Number Page Offset VA
63 * MMU 25 24 v 0 32 Mbyte
32-Mbyte RPN Page Offset RA
55 * MMU 25 24 + 0
32-Mbyte PPN Page Offset A
55 25 24 0
256-Mbyte Virtual Page Number Page Offset VA
63 * MMU 28 27 + 0 256 Mbyte
256-Mbyte RPN Page é)ﬁset RA
55 * MMU 28 27 + 0
256-Mbyte PPN Page Offset A
55 28 27 0
2-Gbhyte Virtual Page Number Page Offset VA
63 * MMU 31 30 * 0 2 Gbyte
2-Ghyte RPN Page Offset RA
55 * MMU 31 30 * 0
2-Gbyte PPN Page Offset PA
55 31 30 0
16-Gbyte Virtual Page Number Page Offset VA
63 *MMU 34 33 * 0 16 Gbyte
16-Gbyte RPN Page Offset ”
55 * MMU 34 33 * 0
16-Gbyte PPN Page Offset A
55 34 33 0

FIGURE 14-2 Virtual-to-Physical Address Translation for 32-Mbyte, 256-Mbyte, 2-Gbyte, and 16-Gbyte Page
Sizes

Privileged software manages virtual-to-real address translations. Hyperprivileged software manages
real-to-physical address translations.

Privileged software maintains translation information in an arbitrary data structure, called the software
translation table.

The Translation Storage Buffer (TSB) is an array of Translation Table Entries which serves as a cache of
the software translation table, used to quickly reload the TLB in the event of a TLB miss.

The MMU TLBs act as independent caches of the software translation table, providing appropriate
concurrency for virtual-to-physical address translation.
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Hyperprivileged software maintains translation information for real-to-physical translations.

During a memory access, one or more TLBs are searched for a VA (or RA) translation. A TLB hit is
indicated when the virtual address, context ID, and partition ID (or real address and partition ID)
match an entry in the TLB.

A TLB miss is indicated when no such match occurs, and is handled as follows:

» With the hardware tablewalk unimplemented or disabled, the MMU immediately traps to
hyperprivileged software for TLB miss processing. The TLB miss handler can fill the TLB by any
available means, but it is likely to take advantage of the TLB miss support features provided by the
MMU, since the TLB miss handler is time-critical code. Hardware support is described in Hardware
Support for TSB Access on page 439.

» With hardware tablewalk implemented and enabled, hardware processes the TLB miss directly.

A conceptual view of privileged-mode memory management the MMU is shown in FIGURE 14-3. The
TLBs, which are part of the MMU hardware, are small and fast. The software translation table is likely
to be large and complex. The translation storage buffer (TSB), which acts like a direct-mapped cache,
is the interface between the software translation table and the underlying memory management
hardware. The TSB can be shared by all processes running on a virtual processor or can be process
specific; the hardware does not require any particular scheme. There can be several TSBs.

The UltraSPARC Architecture provides a memory partitioning mechanism that allows for multiple
partitions, each containing its own real address space. Hyperprivileged software provides real address
to physical address translations. See Real Address Translation on page 432.

PA « RA RA « VA
Translation Real Page lati Software
LooI(f?S|de P a— NurS)ber Trgtr:)sraaélgn <@——{ Translation
Buffers :
(TLBs) Ph}ﬁLCnilLZ?ge Buffer Table
- (TSB)
Translation
MMU Memory Operating System

Data Structure

~ [ Managed by - ~ [ Managed by privileged -
hyperprivileged mode software
mode software

FIGURE 14-3 Conceptual View of the MMU

Aliasing of multiple virtual addresses to the same physical address is supported. However, the
reverse case of multiple mappings from one virtual address to multiple physical addresses producing
a multiple TLB match is detected in hardware as a multiple tag hit TLB error. See Chapter 17, Error
Handling, for details.
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14.2

14.2.1

14.2.2

Hyperprivileged Memory Management
Architecture

The intent of the hyperprivileged memory management architecture is to provide a memory
addressing capability for a virtualized architecture, but at the same time removing the explicit
dependence on hardware mechanisms for virtual memory management. Mechanisms are provided to
allow privileged mode to manipulate the memory made available to it, and in turn to virtualize and
make that memory available to its nonprivileged mode process.

Partition ID

The hyperprivileged memory architecture has a partition ID, which separates the real addresses of
each partition in the same way that context IDs separate virtual address spaces within a single real
address space. Hyperprivileged mode provides the partition ID to create multiple real address spaces.
It uses the partition ID register to associate addresses with their partition ID.
The full representation of a memory address is:

virtual address: <partition ID > :: <context ID > :: <address>

real address: <partition ID > :: <address>

physical address: <address>
Nonprivileged mode only uses virtual addresses.
Privileged mode uses virtual addresses and real addresses, and manages the allocation of context IDs.

Hyperprivileged mode uses physical addresses (and explicit ASI virtual and real addresses) and
manages the allocation of partition IDs.

The partition ID field is included in each TLB entry to allow multiple guest operating systems to share
the MMU. The field is loaded with the contents of the partition ID register when the TLB entry is
loaded. In addition, the partition ID stored in each entry of a TLB is compared against the partition ID
to determine if a TLB hit occurs.

See Partition ID Register on page 456 for more details.

Real Address Translation

The memory system supports real addresses. TABLE 14-8 provides examples of the real addresses for
data accesses. In addition, real addresses are provided when the MMU is disabled in privileged mode.

The MMU supports both virtual-to-physical (VA - PA) and real-to-physical (RA - PA) translations.

Hyperprivileged software controls the translation mechanisms from Real Page Numbers (RPNs) to
Physical Page Numbers (PPNs).

14.3

Context ID

The MMU supports three contexts:

» Primary Context
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» Secondary Context
s Nucleus Context (which has a fixed Context ID value of zero)

The context used for each access depends on the type of access, the ASI used, the current privilege
mode, and the current trap level (TL). Details are provided in the following paragraphs and in
TABLE 14-1.

For instruction fetch accesses, in nonprivileged and privileged mode when TL = 0 the Primary Context
is used; when TL > 0, the Nucleus Context is used. Instruction accesses in hyperprivileged mode are
physical addresses, so no context is provided.

For data accesses using implicit ASls, in nonprivileged and privileged mode when TL = 0 the Primary
Context is used; when TL > 0, the Nucleus Context is used. Data accesses using implicit ASIs in
hyperprivileged mode are physical addresses, so no context is provided.

For data accesses using explicit ASls:

» In nonprivileged mode the Primary Context is used for the ASI _PRI MARY* ASlIs, and the
Secondary Context is used for the ASI _ SECONDARY* ASIs.

» In privileged mode, the Primary Context is used for the ASI _PRI MARY* and the
ASI _AS_I F_USER PRI MARY* ASlIs, the Secondary Context is used for the ASI _ SECONDARY* and
the ASI _AS_| F_USER_SECONDARY* ASIs, and the Nucleus Context is used for ASI _ NUCLEUS*
ASIs.

» In hyperprivileged mode, the Primary Context is used for ASlI _AS_| F_[USERI PRI V]_PRI MARY*
ASIs, and the Secondary Context for the ASI _AS_I| F_[USERI PRI V]_SECONDARY* ASIs, and the
Nucleus Context for ASI _AS_| F_PRI V_NUCLEUS*.

The above paragraphs are summarized in TABLE 14-1.

TABLE 14-1  Context Usage
Under What Conditions each Context is Used
Access
Type Privilege Mode Primary Context Secondary Context Nucleus Context
Nonprivileged
Instruction |y Privileged (when TL = 0) t (when TL > 0)
Access
Hyperprivileged by i i
Data — Nonprivileged (when TL = 0) + (when TL > 0)
access or Privileged
using ..
implicit Hyperprivileged + i i
ASI
Nonprivileged AS| _PRI MARY* AS| _SECONDARY* t
Privileged ASI _PRI MARY* AS| _SECONDARY* ASI _NUCLEUS*
Data ASI _AS_| F_USER PR [ASI_AS | F_USER _SE
access | MARY* CONDARY*
it [Hyperprivileged | ASI_AS_I F_USER_PR |ASI _AS_I F_USER SE |ASI_AS_I F_PRIV_
b | MARY* CONDARY* NUCLEUS*
ASI _AS_IF_PRIV_PR [ASI_AS |F_PRIV_SE
| MARY* CONDARY*

1 no context is listed becuase this case cannot occur

1 no context is provided, because physcial addresses are used in this case in hyperprivileged mode

Note | The UltraSPARC Architecture provides the capability of private and
shared contexts. Multiple primary and secondary context |Ds, which
alow different processes to share TTEs within the TLB, are defined.
See Context ID Registers on page 455 for details.
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Programming | Privileged software (operating sytems) intended to be portable

Note | across all UltraSPARC Architecture implementations should
always ensure that, for memory accesses made in privileged
mode, private and shared context IDs are set to the same value.
The exception to this is privileged-mode accesses using the
ASI _AS_I F_USER* ASIs, which remain portable even if the
private and shared context IDs differ.

IMPL. DEP. # ___: The UltraSPARC Architecture defines a 16-bit context ID. The size of the context ID
field is implementation dependent. At least 13 bits must be implemented. If fewer than 16 bits are
supported, the unused high order bits are ignored on writes to the context ID, and read as zeros.

144  TSB Translation Table Entry (TTE)

The Translation Storage Buffer (TSB) Translation Table Entry (TTE) is the equivalent of a page table
entry as defined in the Sun4v Architecture Specification; it holds information for a single page mapping.
The TTE is divided into two 64-bit words representing the tag and data of the translation. Just as in a
hardware cache, the tag is used to determine whether there is a hit in the TSB; if there is a hit, the data
are used by either the hardware tablewalker or privileged software.

The TTE configuration is illustrated in FIGURE 14-4 and described in TABLE 14-2.

TTE context_id 000000 va
Tag

63 48 47 42 41 0
TTE v | nfo soft2 taddr ie | e |cp cv|p ep | w | soft sz
Data

63 62 61 56 55 13 12 11 10 9 8 7 6 5 43 0

FIGURE 14-4 Translation Storage Buffer (TSB) Translation Table Entry (TTE)

TABLE 142  TSB TTE Bit Description (1 of 4)

Bit Field Description

Tag- 63:48  context_id The 16-bit context ID associated with the TTE.

Tag-47:42 — These bits must be zero for a tag match.

Tag- 41:0 va Bits 63:22 of the Virtual Address (the virtual page number). Bits 21:13 of the VA
are not maintained because these bits index the minimally sized, direct-mapped
TSBs.

Data - 63 % Valid. If v = 1, then the remaining fields of the TTE are meaningful, and the TTE

can be used; otherwise, the TTE cannot be used to translate a virtual address.

Programming | The explicit Valid bit is (intentionally) redundant with the
Note | software convention of encoding an invalid TTE with an
unused context ID. The encoding of the context_id field is
necessary to cause a failure in the TTE tag comparison,
while the explicit Valid bit in the TTE data simplifies the
TTE miss handler.
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TABLE 142  TSB TTE Bit Description (2 of 4)

Bit Field Description

Data - 62 nfo No Fault Only. If nfo = 1, loads with ASI _PRI MARY_NO FAULT{ _LI TTLE} or
AS| _SECONDARY_NO _FAULT{ _LI TTLE} are translated. Any other data access
with the D/UMMU TTE.nfo = 1 will trap with a DAE_nfo_page exception. An
instruction fetch access to a page with the IMMU TTE.nfo = 1 results in an
IAE_nfo_page exception.

Data — 61:56 soft2 Software-defined field, provided for use by the operating system. The soft2 field
can be written with any value in the TSB. Hardware is not required to maintain
this field in any TLB (or uTLB), so when it is read from the TLB (uTLB), it may
read as zero.

Data — 55:13 taddr Target address; the underlying address (Real Address {55:13} or Physical
Address {55:13}) to which the MMU will map the page.
UltraSPARC Architecture TLBs store physical addresses, not real addresses.
Hyperprivileged software is responsible for translation between real and
physical addresses. Whether this field contains a Real or Physical address is
determined by the ra_not_pa bit in the corresponding MMU TSB Configuration
register.

IMPL. DEP. #441-S10: Whether an implementation uses the most significant
physical address bit to differentiate between memory and I/O addresses is
implementation dependent. If that method is used, then the most significant bit
of the physical address (PA) = 1 designates I/O space and the most significant bit
of PA = 0 designates memory space .

IMPL. DEP. #224-U3: Physical address width support by the MMU is
implementation dependent in the UltraSPARC Architecture; minimum PA width
is 40 bits.

IMPL. DEP. #238-U3: When page offset bits for larger page sizes are stored in
the TLB, it is implementation dependent whether the data returned from those
fields by a Data Access read is zero or the data previously written to them.

Data — 12 ie Invert Endianness. If ie =1 for a page, accesses to the page are processed with
inverse endianness from that specified by the instruction (big for little, little for
big). See page 445 for details.

Programming | (1) The primary purpose of this bit is to aid in the mapping

Notes | of I/O devices (through noncacheable memory addresses)
whose registers contain and expect data in little-endian
format. Setting TTE.ie = 1 allows those registers to be
accessed correctly by big-endian programs using ordinary
loads and stores, such as those typically issued by
compilers; otherwise little-endian loads and stores would
have be issued by hand-written assembler code.

(2) This bit can also be used when mapping cacheable
memory. However, cacheable accesses to pages marked
with TTE.ie = 1 may be slower than accesses to the page
with TTE.ie =0. For example, an access to a cacheable
page with TTE.ie = 1 may perform as if there was a miss in
the first-level data cache.

Implementation | Some implementations may require cacheable accesses to
Note | pages tagged with TTE.ie = 1 to bypass the data cache,
adding latency to those accesses.

IMPL. DEP. #__: The ie bit in the IMMU is ignored during ITLB operation. It is
implementation dependent if it is implemented and how it is read and written.
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TABLE 142  TSB TTE Bit Description (3 of 4)

Bit Field Description

Data — 11 e Side effect. If the side-effect bit is set to 1, loads with ASI _PRI MARY_NO_FAULT,
AS| _SECONDARY_NO_FAULT, and their * _LI TTLE variations will trap for
addresses within the page, noncacheable memory accesses other than block
loads and stores are strongly ordered against other e-bit accesses, and
noncacheable stores are not merged. This bit should be set to 1 for pages that
map I/0O devices having side effects. Note, also, that the e bit causes the prefetch
instruction to be treated as a nop, but does not prevent normal (hardware)
instruction prefetching.

Note 1: The e bit does not force a noncacheable access. It is expected, but not
required, that the cp and cv bits will be set to 0 when the e bit is set to 1. If both
the cp and cv bits are set to 1 along with the e bit, the result is undefined.

Note 2: The e bit and the nfo bit are mutually exclusive; both bits should never
be set to 1 in any TTE.

Data - 10 cp, The cacheable-in-physically-indexed-cache bit and cacheable-in-virtually-

Data -9 cv indexed-cache bit determine the cacheability of the page. Given an
implementation with a physically indexed instruction cache, a virtually indexed
data cache, and a physically indexed unified second-level cache, the following
table illustrates how the cp and cv bits could be used:

Meaning of TTE when placed in:

Cacheable

(cp:cv) I-TLB (Instruction Cache PA-indexed) D-TLB (Data Cache VA-indexed)
00, 01 Noncacheable Noncacheable

10 Cacheable L2-cache, I-cache Cacheable L2-cache

11 Cacheable L2-cache, I-cache Cacheable L2-cache, D-cache

The MMU does not operate on the cacheable bits but merely passes them
through to the cache subsystem. The cv bit in the IMMU is read as zero and
ignored when written.

IMPL. DEP. #226-U3: Whether the cv bit is supported in hardware is
implementation dependent in the UltraSPARC Architecture. The cv bit in
hardware should be provided if the implementation has virtually indexed
caches, and the implementation should support hardware unaliasing for the
caches.

Data - 8 p Privileged. If p = 1, only privileged and hyperprivileged software can access the
page mapped by the TTE. If p =1 and an access to the page is attempted by
nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), then the MMU
signals anlAE_privilege_violation exception orDAE_privilege_violation exception.

Data - 7 ep Executable. If ep = 1, the page mapped by this TTE has execute permission
granted. Instructions may be fetched and executed from this page. If ep =0, an
attempt to execute an instruction from this page results in an
IAE_unauth_access exception.

IMPL. DEP. #___: An UltraSPARC Architecture ITLB implementation may elect
to not implement the ep bit, and instead present the IAE_unauth_access
exception if there is an attempt to load an ITLB entry with ep = 0 during a
hardware tablewalk. In this case, the MMU miss trap handler software must
also detect the ep = 0 case when the IMMU miss is handled by software.

Data - 6 w Writable. If w = 1, the page mapped by this TTE has write permission granted.
Otherwise, write permission is not granted, and the MMU causes a
fast_data_access_protection trap if a write is attempted.

IMPL. DEP. #___: The w bit in the IMMU is ignored during ITLB operation. It is
implementation dependent if the bit is implemented and how it is written and
read.

Data — 5:4 soft Software-defined field, provided for use by the operating system. The soft field
can be written with any value in the TSB. Hardware is not required to maintain
this field in any TLB (or uTLB), so when it is read from the TLB (or uTLB), it may
read as zero.
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TABLE 14-2

TSB TTE Bit Description (4 of 4)

Bit Field Description

Data — 3:0 sz The page size of this entry, encoded as shown below.
sz Page Size
0000 8 Kbyte
0001 64 Kbyte
0010 512 Kbyte
0011 4 Mbyte
0100 32 Mbyte
0101 256 Mbyte
0110 2 Gbyte
0111 16 Gbyte

1000-1111  Reserved

14.5

14.5.1

14.5.2

Translation Storage Buffer (TSB)

The Translation Storage Buffer (TSB) is an array of Translation Table Entries managed entirely by
privileged software. It serves as a cache of the software translation table, used to quickly reload the
TLB in the event of a TLB miss. The discussion in this section assumes the use of the hardware
support for TSB access described in Hardware Support for TSB Access on page 439, although the
operating system is not required to make use of this support hardware.

Inclusion of the TLB entries in the TSB is not required; that is, translation information that is not
present in the TSB can exist in the TLB.

TSB Indexing Support

Hardware TSB indexing support via TSB pointers should be provided for the TTEs. Hardware
tablewalk uses the TSB pointers. If the hardware tablewalk is disabled, the TLB miss handler software
can use the TSB pointers.

TSB Cacheability and Consistency

The TSB exists as a data structure in memory and therefore can be cached. Indeed, the speed of the
TLB miss handler relies on the TSB accesses hitting the level-2 cache at a substantial rate. This policy
may result in some conflicts with normal instruction and data accesses, but the dynamic sharing of the
level-2 cache resource will provide a better overall solution than that provided by a fixed partitioning.
Programming | When software updates the TSB, it is responsible for ensuring

Note | that the store(s) used to perform the update are made visible in
the memory system (for access by subsequent loads, stores, and
load-stores) by use of an appropriate MEMBAR instruction.
Otherwise, since hardware tablewalk is not required to examine
store buffers, a subsequent hardware tablewalk access to the TSB
could retrieve stale data from the L2 cache.

Making a TSB update visible to fetches of instructions
subsequent to the store(s) that updated the TSB may require
execution of instructions such as FLUSH, DONE, or RETRY, in
addition to the MEMBAR.
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14.5.3 TSB Organization

The TSB is arranged as a direct-mapped cache of TTEs.

In each case, n least significant bits of the respective virtual page number are used as the offset from
the TSB base address, with n equal to log base 2 of the number of TTEs in the TSB.

The TSB organization is illustrated in FIGURE 14-5. The constant 1 is determined by the size field in the
TSB register; it can range from 512 to an implementation-dependent number.

Tag#1 (8 bytes) A Data#1 (8 bytes)

2" Lines in TSB

Tag#2" (8 bytes) v Data#2" (8 bytes)

FIGURE 14-5 TSB Organization

IMPL. DEP. #227-U3: The maximum number of entries in a TSB is implementation-dependent in the
UltraSPARC Architecture (to a maximum of 16 million, limited by the size of the TSB Configuration
register’s tsh_size field).

14.54  TSB Configuration

The MMU provides hardware tablewalk support. Precomputed pointers into the TSB are provided for
both zero and nonzero context IDs and are contained in the following ASIs:

ASI _MVIJ_ZERO CONTEXT_TSB_CONFI G 0
ASI _MVIJ_ZERO CONTEXT_TSB_CONFI G 1

ASI _MVUU_ZERO CONTEXT_TSB_CONFI G n
ASI _MMJ_NONZERO CONTEXT_TSB_CONFI G 0
ASI _MMJ_NONZERO CONTEXT_TSB_CONFI G 1

ASI _MMU_NONZERO CONTEXT_TSB_CONFI G_n
IMPL. DEP. #___: The number of TSB configuration registers is implementation dependent.

IMPL. DEP. #__: Hardware tablewalk supports an implementation dependent number of TSBs per
virtual processor for zero context IDs and for nonzero context IDs. In some configurations, hardware
tablewalk ignores the context ID match; see Multiple context IDs on page 440.

All TTEs in the TSB must have the size indicated in the TSB Configuration Register or larger. If the
TSB page size is smaller than the size in the TSB Configuration Register, such an entry will never be
matched.

Each TSB can be configured by hyperprivileged software in one of two different modes: context ID-
match or context ID-ignore. The mode determines how a TSB entry is matched when the TSB is
searched. Bits in the MMU_NONZERO_CONTEXTI D_TSB_CONFI G_n registers control the mode for each
context ID register. See TABLE 14-20 on page 458 for details.

In context ID-match mode, the context_id field of the TTE tag is matched against a context ID register,
as specified by the actual or implied access ASI. This mode enables a TSB to be used for caching
translation entries belonging to different context IDs. Matching with the context_id field allows only
those translations belonging to the current context ID to be loaded into the TLB.

In context ID-ignore mode, the context_id field of a TSB is ignored when the TSB is searched. A TSB
configured in this mode should have a context_id field of each translation entry set to 0. When a valid
TSB entry is matched, it is loaded into the TLB with a context_id value provided from one of the
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primary or secondary context ID registers. The choice of primary or secondary is determined by the
actual or implied access ASI. The index of the context ID is specified as part of the TSB configuration.
Context ID-ignore mode enables TSB entries to be used with more than one context. See Multiple
context IDs on page 440.

14.6

14.6.1

Hardware Support for TSB Access

The MMU hardware provides services to allow the TLB-miss handler to efficiently reload the TLB on
a TLB miss. These services include:

» Hardware tablewalk — hardware loading of missing TTE entries
» Formation of TSB pointers, based on the missing virtual address and address space identifier.
» Formation of the TTE tag target used for the TSB tag comparison.

» Efficient atomic write of a TLB entry with a single store ASI operation.

Hardware Tablewalk

Hardware tablewalk is a hardware state machine that services reload requests from the TLB due to
TLB misses. Hardware tablewalk accesses the TSBs to find TTEs that match the virtual address and
one of the context IDs of the request. Hardware tablewalk may access multiple separate TSBs for each
request.

Privileged code cannot access or control physical memory, so TTEs in the TSBs controlled by
privileged code contain real page numbers, not physical page numbers. TTEs in the TSBs controlled
by hyperprivileged code can contain real page numbers or physical page numbers. Hyperprivileged
code controls the RA-to-PA translation within hardware tablewalk to permit hardware tablewalk to
load privileged code TTEs into the TLB for VA-to-PA translation.

Real address requests are not translated by hardware tablewalk. In the event a real address misses in
the TLB, an instruction_real_translation_miss (for instruction accesses) or a data_real_translation_miss
(for data accesses) exception is generated for the request.

IMPL. DEP. #__: The hardware tablewalk is normally pipelined; it is provided on a virtual processor
basis. The number of possible hardware tablewalks to be processed at a given time is model
dependent. The number of simultaneous TSB accesses is also model dependent.

14.6.1.1 Typical Hardware Tablewalk Sequence

A typical TLB miss and reload sequence when hardware tablewalk is enabled is the following:

» Hardware tablewalk uses the TSB Configuration registers and the VA of the access to calculate the
physical address of the TSB TTE to examine. The TSB Configuration register provides the base
address of the TSB as well as the number of TTEs in the TSB and the size of the pages translated by
the TTEs.! Hardware tablewalk uses a Nonzero Context ID TSB Configuration register if the
context ID of the request is nonzero; otherwise, it uses a Zero Context ID TSB Configuration
register. The context ID used to determine zero/nonzero context ID is always the content of the
Context ID 0 register (in the event of a TLB miss on a Primary or Secondary Context access).
Hardware tablewalk uses the page size from the TSB Configuration register to calculate the
presumed VPN for the given VA. Hardware tablewalk then uses the number of TTE entries and the
presumed VPN to generate an index into the TSB. This index is concatenated with the upper bits of
the base address to generate the TTE address.

L Thisimpliesthat all TTEswithin agiven TSB shareacommon pagesize.
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» Hardware tablewalk forwards a quadword load request for the TTE address to the L2 cache. At
some later time, the L2 returns the TTE to hardware tablewalk.

» Hardware tablewalk compares the VPN and context ID of the request to that from the TTE,
masking the VPN based on the page size in the TTE. If the VPN and context ID match, hardware
tablewalk returns the TTE with the RPN translated into a PPN (see Real Page Number To Physical
Page Number Translation on page 440). Hardware tablewalk checks the TTE from each enabled TSB
until it either finds a match or has searched all enabled TSBs.

» If none of the TTE entries from the enabled TSBs match on page size, VPN, and context ID,
hardware generates an instruction_access_MMU_miss or data_access_MMU_miss trap.

Multiple context IDs. Multiple Primary and Secondary context IDs permit different processes to
share TTEs within the TLBs. The use_cid0 and use_cid1 bits in the TSB Configuration register disable
the context ID match for hardware tablewalk. Hardware tablewalk ignores the context IDs in the TSB
TTEs if either of these bits is set to 1 for requests with nonzero context IDs. If either bit is 1 and the
page size and VPN match, hardware tablewalk signals the TLB to write the appropriate context ID
(depending on the bit setting) as the context ID of the TTE when it is loaded (instead of the context ID
in the TTE itself). See TABLE 14-3 for details. Hardware tablewalk ignores these bits for requests with a
0 (nucleus) context ID value, and behaves as if the bits are zero (i.e. there is a context comparison).

TABLE 14-3  Selection Control for Multiple Nonzero Context IDs

use_cid0 use_cidl Meaning

0 0 Hardware tablewalk compares context_id of TTE from the TSB with
context ID of request and, if they match, stores the context ID of TTE
into context_id field of TLB TTE.

0 1 Hardware tablewalk ignores context_id of TTE from the TSB and stores
value of context ID register 1 in context_id field of TLB TTE.

1 X Hardware tablewalk ignores context_id of TTE from the TSB and stores
value of context ID register 0 in context_id field of TLB TTE.

Real Page Number To Physical Page Number Translation. When hardware tablewalk fetches a
TTE from a TSB, it can treat the taddr field as either an RA or a PA under control of the ra_not_pa
field of the TSB Configuration register. If the ra_not_pa bit = 1, hardware tablewalk will translate the
most significant bits of the real address in the TTE into the corresponding bits of the physical address.
The TLBs store this PPN. The TLBs use this PPN to translate VAs into PAs. The hypervisor controls
the RA-to-PA translation mechanism.

The RA-to-PA translation mechanism provides both range checking as well as mapping of address
ranges from one location to another. The translation mechanism uses the RPN and page size in the
TTE and calculates the starting and ending addresses for the specified real page. It then checks that
these addresses lie in one of four ranges specified by the Real Range registers. If the real page lies
completely inside one of the ranges (and the range is enabled), then the translation mechanism adds
the RPN in the TTE to the corresponding field in the Physical Offset register to create the Physical
Page Number. If the real page does not lie completely within any range, then an
instruction_invalid_TSB_entry or data_invalid_TSB_entry trap is delivered to the virtual processor that
initiated the hardware tablewalk. Each virtual processor has a model dependent number of dedicated
ranges with corresponding physical offsets. The RA to PA translation does not depend on the context
ID value being zero or nonzero.

Note | When the TSB Configuration register has ra_not_pa= 0, no range
checking is provided for PPNs for that TSB.

14.6.2  Typical TLB Software Miss Sequence

A typical TLB miss sequence is the following:
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1. A TLB miss causes either a fast_instruction_access_ MMU_miss or a fast_data_access_ MMU_miss
exception when hardware tablewalk is disabled or unimplemented.

2. The appropriate TLB miss handler loads the TSB pointers and the TTE tag target, using ASI loads.

3. Using this information, the TLB miss handler checks to see if the desired TTE exists in the TSB. If
so, the TTE data is loaded into the TLB Data In register to initiate an atomic write of the TLB entry
chosen by the replacement algorithm.

4. If the TTE does not exist in the TSB, then the TLB-miss handler jumps to the more sophisticated,
and slower, TSB-miss handler.

The virtual address used in the formation of the pointer addresses comes from the Tag Access register,
which holds the virtual address and context ID of the load or store responsible for the MMU
exception. See TSB Translation Table Entry (TTE) on page 434.

Implementation | There are no separate physical registers in hardware for the

Note | pointer registers; rather, they are implemented through a
dynamic reordering of the data stored in the Tag Access and the
TSB registers.

Note | For proper operation, translations for guest OS TSB miss
handlers must always be made available to hyperprivileged
code or to the hardware tablewalk mechanism.

14.7  Faults and Traps

The traps recorded by the MMU are listed in TABLE 14-4. For a detailed description of each trap, see
Chapter 12, Traps. All listed traps are precise traps.

TABLE 14-4  MMU Trap Types, Causes, and Stored State Register Update Policy (1 of 3)

Registers Updated
(Stored State in MMU)
IMMU DMMU | UMMU
Tag Tag Tag

Trap Name Trap Cause Access| SFAR |Access| Access

fast_instruction_access_MMU_miss |I-TLB miss with hardware tablewalk X X
disabled or unimplemented.

IAE_nfo_page instruction access to nonfaulting load page| X X
(TTE.nfo =1).

IAE_privilege_violation Nonprivileged instruction access to X X
privileged page (TTE.p =1).

IAE_unauth_access Instruction access to page without X X
“execute” permission (TTE.ep =0).

instruction_access_error An error was detected on the access of X X
instruction data.

instruction_access_MMU_error An error was detected on the TLB entry or| X X
during hardware tablewalk for an
instruction access.

instruction_access_MMU_miss The hardware tablewalk for an instruction | X X
access could not find the required TTE in
the enabled TSBs.
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TABLE 14-4  MMU Trap Types, Causes, and Stored State Register Update Policy (2 of 3)

Registers Updated
(Stored State in MMU)

protection (TTE.w = 1).

IMMU DMMU | UMMU
Tag Tag Tag
Trap Name Trap Cause Access| SFAR |Access| Access
instruction_invalid_TSB_entry A hardware tablewalk for an instruction X X
access found the TTE in the enabled TSBs
to be a real address, which cannot be
translated to a physical address by
hardware.
instruction_real_translation_miss I-TLB miss on an instruction access using a| X X
real-address.
instruction_address_range 1 Instruction virtual access out of range. X X
instruction_real_range? Instruction real access out of range. X X
instruction_VA_watchpoint Virtual instruction address matches the VA
watchpoint register with VA watchpoints
enabled.
DAE_invalid_asi Invalid ASI for instruction. X
DAE_nc_page Atomic access to noncacheable page X X X
(TTE.cp =0).
DAE_nfo_page Data access to nonfaulting page X X X
(TTE.nfo = 1) with ASI other than a non-
faulting ASI.
DAE_privilege_violation Nonprivileged data access to privileged X X X
page (TTE.p=1).
DAE_side_effect_page Non-faulting ASI data access to side-effect X X X
page (TTE.e =1).
data_access_error An error is detected on a data access. X
data_access_MMU_error An error was detected on the TLB entry or impl.
during hardware tablewalk for a data dep.
access.
data_access_MMU_miss The hardware tablewalk for a data access X X
could not find the required TTE in the
enabled TSBs.
data_invalid_TSB_entry A hardware tablewalk for a data access X X
found the TTE in the enabled TSBs to be a
real address, which cannot be translated to
a physical address by hardware.
data_real_translation_miss D-TLB miss on a data access using a real X X
address.
mem_address_range! Data or branch virtual access out of range. X
mem_real_range2 Data or branch real access out of range. X
fast_data_access_MMU_miss D-TLB miss with hardware tablewalk X X
disabled.
fast_data_access_protection Store data access to page with write X X X

privileged_action

Data access by nonprivileged software,
using a privileged or hyperprivileged ASI.

442 UltraSPARC Architecture 2007 « Draft D0.9.4, 27 Sep 2010




TABLE 14-4  MMU Trap Types, Causes, and Stored State Register Update Policy (3 of 3)

Registers Updated
(Stored State in MMU)
IMMU DMMU | UMMU
Tag Tag Tag
Trap Name Trap Cause Access| SFAR |Access| Access
PA_watchpoint Data access physical address matches the X
PA watchpoint register with PA
watchpoints enabled.
mem_address_not_aligned, Data access address is not properly (impl.
_mem_address_not_aligned aligned. dep.
#237-
U3)
VA_watchpoint Data access virtual address matches the VA X
watchpoint register with VA watchpoints
enabled.

1. Implementations that do not support 64-bit VAs in hardware require these exceptions. See section 12.7 of the Traps chapter for details.

2. Implementations that do not support 56 bits of real address require these exceptions. See section 12.7 of the Traps chapter for details.

IMPL. DEP. #__: It is implementation dependent whether D-SFAR is updated for MMU errors. See the
Error Handling chapter of the model-specific PRM for details.

14.8  MMU Operation Summary

The behavior of the D/UMMU for data accesses is summarized in TABLE 14-5; the behavior of the I/
UMMU for instruction accesses is summarized in TABLE 14-6. In each case and for all conditions, the
behavior of each MMU is given by one of the following abbreviations:

Abbreviation Meaning

OK normal translation

Dmiss fast_data_access_MMU_miss or data_access_MMU_miss exception

Dasi DAE_invalid_asi exception

Dpriv DAE_privilege_violation exception

Dse DAE_side_effect_page exception

Dreal data_real_translation_miss exception

Dprot fast_data_access_protection exception

Imiss fast_instruction_access_MMU_miss or instruction_access_MMU_miss
exception

Ipriv IAE_privilege_violation exception

The ASI is indicated by one of the following abbreviations:

Abbreviation Meaning

NUC AS| _NUCLEUS*

PRI Any ASI with PRIMARY translation, except * NO_FAULT
SEC Any ASI with SECONDARY translation, except * NO_FAULT
PRI_NF AS| _PRI MARY_NO_FAULT*
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Abbreviation

Meaning

SEC_NF
AIU_PRI
AIU_SEC
AIP_PRI
AIP_SEC
AIP_NUC
REAL

AS| _SECONDARY_NO_FAULT*
ASI _AS_| F_USER PRI MARY*
ASI _AS_| F_USER SECONDARY*
ASI _AS_| F_PRI V_PRI MARY*
ASl _AS_| F_PRI V_SECONDARY*
ASI _AS_| F_PRI V_NUCLEUS*

AS| * REAL*

Note | The * _LI TTLE versions of the ASIs behave the same as the big-
endian versions with regard to the MMU table of operations.

Other abbreviations include w for the writable bit, e for the side-effect bit, and p for the privileged bit.

The following cases are not covered in TABLE 14-5.

» An attempt to execute an invalid combination of instruction and ASI; for example,
ASI| _PRI MARY_NOFAULT for a store or atomic load-store. The MMU signals a DAE_invalid_asi
exception for these cases. For more details, see the description of this exception in Exception and
Interrupt Descriptions on page 406.

» Attempted access using a restricted ASI in nonprivileged or privileged mode. The MMU signals a
privileged_action exception for this case.

» An atomic instruction (including a 128-bit atomic integer load, LDTXA) issued to a memory
address marked noncacheable in a physical cache; that is, with the cp bit set to 0, including cases in
which the D/UMMU is disabled. The MMU signals a DAE_nc_page exception for this case.

» A data access with an ASI other than “[PRI MARY, SECONDARY]_NO_FAULT [_LI TTLE]” to a page
marked with the nfo bit. The MMU signals a DAE_nfo_page exception for this case.

TABLE 14-5  D/UMMU Operation for Translations for Data Accesses
Condition Behavior
TLB e=0 e=0 e=1 e=1
Opcode Privilege Mode ASI Miss p=0 p=1 p=0 p=1
PRI, SEC Dmiss OK Dpriv OK Dpriv
nonprivileged - - -
PRI_NF, SEC_NF Dmiss OK Dpriv Dse Dpriv
PRI, SEC, NUC Dmiss OK
PRI_NF, SEC_NF Dmiss OK Dse
privileged - - :
AIU_PRI, AIU_SEC Dmiss OK Dpriv OK Dpriv
Load REAL Dreal OK
PRI, SEC, NUC! — OK — OK —
PRI_NF, SEC_NF' — OK — Dse | —
hyperprivileged | AIU_PRI, AIU_SEC Dmiss| OK Dpriv OK Dpriv
AIP_PRI, AIP_SEC, AIP_NUC Dmiss OK
REAL Dreal OK
nonprivileged Dmiss? OK
FLUSH | privileged Dmiss? OK
hyperprivileged Dmiss? OK
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TABLE 14-5

D/UMMU Operation for Translations for Data Accesses

Condition Behavior
" TLB e=0 e=0 e=1 e=1
Opcode Privilege Mode ASI Miss p=0 p=1 p=0 p=1
o PRI, SEC O | Dmiss| Dprot | Dpriv | Dprot | Dpriv
nonprivileged - - -
1 Dmiss OK Dpriv OK Dpriv
PRI, SEC, NUC 0 Dmiss Dprot
1 Dmiss OK
. AIU_PRI, AIU_SEC 0 | Dmiss| Dprot Dpriv | Dprot | Dpriv
privileged - - -
1 Dmiss OK Dpriv OK Dpriv
Store or REAL 0 | Dredl Dprot
Atomic
Load- 1 Dreal OK
store PRI, SEC, NUC! 1 — oK — oK —
AIU_PRI, AIU_SEC 0 Dmiss | Dprot Dpriv | Dprot | Dpriv
1 Dmiss OK Dpriv OK Dpriv
hyperprivileged | AIP_PRI, AIP_SEC, AIP_NUC 0 Dmiss Dprot
1 Dmiss OK
REAL 0 Dred Dprot
1 Dreal OK

1. In hyperprivileged mode, the address using these ASIs is treated as a physical address and the TLB is bypassed, with the default
physical page attribute values applied. See MMU Bypass on page 452 for details.

2. The TLB miss exception is implementation dependent. .

The following cases are not covered in TABLE 14-6.

An instruction access to a page marked as nonfaulting (TTE.nfo = 1). The MMU signals an
IAE_nfo_page exception in this case.

An instruction access to a page not marked with execute permission (TTE.ep = 0). The MMU
signals an |IAE_unauth_access exception in this case.

TABLE 14-6  I/UMMU Operation for Translations for Instruction Accesses

14.9

Behavior
TLB
Privilege mode Miss p=0 p=1
nonprivileged Imiss OK Ipriv
privileged Imiss OK OK
hyperprivileged — OK OK

ASI Value, Context ID, and Endianness Selection
for Translation

The selection of the context ID for a translation is the result of a two-step process:

1.

The ASI is determined (conceptually by the Integer Unit) from the instruction, ASI register, trap
level, privilege level (PSTATE.priv and HPSTATE.hpriv) and the virtual processor endian mode
(PSTATE.cle).

. The context ID is determined directly from the ASI. The context ID value is read by the context ID

selected by the ASI.
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The ASI value and endianness (little or big) are determined for the IMMU and D/UMMU,
respectively, according to TABLE 14-7 through TABLE 14-8, assuming that the MMUs are enabled.

When using the Primary Context ID, the values stored in the Primary Context IDs are used by the
Instruction and Data (or Unified) MMUs. When using the Secondary Context ID, the values stored in
the Secondary Context IDs are used by the Data (or Unified) MMU. The Secondary Context ID is
never used by the Instruction MMU (or an instruction access to the Unified MMU).

The endianness of a data access is specified by three conditions:
s The ASI specified in the opcode or ASI register
= The PSTATE current little-endian bit (cle)

= The D/UMMU “invert endianness” bit (ie). The D/UMMU ie bit inverts the endianness that is
otherwise specified for the access.

Note | The D/UMMU ie bit inverts the endianness for all accesses,
including alternate space loads, stores, and atomic load-stores that
specify an ASI. For example,

| dxa [%gl] #ASI PRI MARY_LI TTLE
will be big-endian if the ie bit = 1.

Accesses to ASIs which are not translated by the MMU
(nontranslating ASIs) are not affected by the D/JUMMU.ie bit.

TABLE 14-7  ASI Mapping for Instruction Access (I/UMMU Enabled)

Resulting
Mode TL PSTATE.cle| Endianness |ASI Used Address Type
Nonprivileged 0 — Big AS| _PRI MARY VA
0 — Big ASI _PRI MARY VA
Privileged
1-2 — Big ASI _NUCLEUS| VA
Hyperprivileged any — Big — PA
TABLE 14-8  ASI Mapping for Data Accesses (D/UMMU Enabled) (1 of 2)
Privi- Resulting
lege Endian- Address
Access Type Mode TL PSTATE.cle | D/JUMMU.ie ness |ASI Used Type
0 Big
0! 0 ASI _PRI MARY VA
1 Little
NP
0 Little
0! 1 ASI PRI MARY_LI TTLE VA
1 Big
0 Big
0 0 - ASI _PRI MARY VA
Load, 1 Little
Store, 0 Little
Atomic Load-Store, or 0 1 - ASI PRI MARY_LI TTLE VA
Prefetch p 1 Big
with implicit ASI 0 Big
1-21 0 ASI _NUCLEUS VA
1 Little
0 Little
1-21 1 ASI _NUCLEUS LI TTLE VA
1 Big
0 — Big
HP any — PA
1 — Little
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TABLE 14-8  ASI Mapping for Data Accesses (D/UMMU Enabled) (2 of 2)

Privi- Resulting
lege Endian- Address
Access Type Mode TL PSTATE.cle | D/UMMU.ie ness |ASI Used Type
0 Big? |Explicitly specified in
NP 0! any 1 1 instruction (see TABLE 14-11 VA
Little™ |on page 448))
-1
001 an 0 Big™ | Explicitly specified in VA
Y 1 Little! |instruction (seeTABLE 14-11)
0 Big
P 0-2! any AS| _*REAL* ASI RA
Load 1 Little
Store, 1 . |Nontranslating ASIs
Atomic Load-Store, or 0-2 any any Big (seeTABLE 14-11) —
Prefetch alternate -
with ASI name not . . 0 Big |ASI _AS | F_USER* or VA
ending in _LI TTLE y y 1 Little |ASI _AS_I F_PRI V*
0 Big
any any ASI _*REAL* ASI RA
HP 1 Little
. Other translating ASI
any any any Big | (seeTABLE 14-11) PA
an an an Bi Nontranslating ASI .
Y y y & | (seeTABLE 14-11)
0 Litte |Eyplici fied i
1 xplicitly specified in
NP 0 any 1 Big instruction (seeTABLE 14-11) VA
001 an 0 Little |Explicitly specified in VA
Load, Y 1 Big |instruction (seeTABLE 14-11)
Store, p 0 il
: N ittle
Atomic Load-Store, or 021 any ASI_*REAL* ASI RA
Prefetch alternate 1 Big
with ASI name ending
in LI TTLE . . 0 Little |as| AS | F_USER* or VA
Y Y 1 Big |ASI _AS_I F_PRIV* ASI
HP
0 Little
any any ASI _*REAL* ASIs RA
1 Big

1. MAXPTL = 2 for UltraSPARC Architecture 2007 processors. Privilege mode operation is valid only for TL = 0, 1 or 2. Nonprivileged mode
operation is valid only for TL = 0. See section 5.6.7 for details.

2. Accesses to nontranslating ASIs are always made in big endian mode, regardless of the setting of D/JUMMU.ie. See ASI Values on page 345
for information about nontranslating ASIs.

The Context ID used by the data and instruction MMUs is determined according to TABLE 14-9. The
Context ID selection is not affected by the endianness of the access. For a comprehensive list of ASI
values in the ASI map, see Chapter 10, Address Space Identifiers (ASIs).

TABLE 14-9  IMMU, DMMU and UMMU Context ID Usage

ASI Value Context ID Register
AS| _*NUCLEUS* (any ASI name containing the string “ NUCLEUS" ) Nucleus (000044, hard-wired)
AS| _* PRI MARY* (any ASI name containing the string “ PRI MARY") All Primary Context IDs

AS| _* SECONDARY* (any ASI name containing the string “* SECONDARY” ) All Secondary Context IDs

All other ASI values (Not applicable; no translation)
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14.10 Translation

The tranglation operation performed by the MMU for a given access is determined by:

= whether the access is for instruction(s) or data

» the current privilege mode

» whether the MMU is enabled (which in turn is determined by one or more implementation-
dependent enable bits in the MMU control register).

= in the case of a data access, which ASI is associated with the access

TABLE 14-10 describes the operation of the IMMU.

TABLE 14-10 I/U-MMU Translation for Instruction Accesses

I/UMMU Enable bit
HPSTATE.hpriv (x = don’t care) HPSTATE.red Resulting I/U-MMU Translation

Don’t Care X 1 PA!
1 X 0 PA
0 0 0 RA - PA?
0 1 0 VA - PA3

1. VA{55:0} is passed directly through to PA{55:0}
2. VA{55:0} is