
Orac
4150
Sant
U.S.A

Part No.
Release 1.0
Part No: 95
Revision: Dr
UltraSPARC Architecture 2007

One Architecture
... Multiple Innovative Implementations

Draft D0.9.4, 27 Sep 2010

Privilege Levels: Hyperprivileged,
Privileged,
and Nonprivileged

Distribution: Public
le Corporation
 Network Circle
a Clara, CA 95054
. 650-960-1300

, 2002
0-5554-15
aft D0.9.4, 27 Sep 2010

ii UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

Copyright © 2007, 2011, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel and
Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks
or registered trademarks of SPARC International, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd..

Comments and "bug reports” regarding this document are welcome; they should be submitted to email
address: UA-editor@sun.com

iv UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

Contents

Preface. i

1 Document Overview . 1

1.1 Navigating UltraSPARC Architecture 2007 . 1
1.2 Fonts and Notational Conventions . 2

1.2.1 Implementation Dependencies . 3
1.2.2 Notation for Numbers. 3
1.2.3 Informational Notes . 3

1.3 Reporting Errors in this Specification . 4

2 Definitions . 5

3 Architecture Overview. 15

3.1 The UltraSPARC Architecture 2007 . 15
3.1.1 Features . 15
3.1.2 Attributes . 16

3.1.2.1 Design Goals . 17
3.1.2.2 Register Windows . 17

3.1.3 System Components . 17
3.1.3.1 Binary Compatibility. 17
3.1.3.2 UltraSPARC Architecture 2007 MMU 17
3.1.3.3 Privileged Software . 17

3.1.4 Architectural Definition . 18
3.1.5 UltraSPARC Architecture 2007 Compliance with SPARC V9 Architecture 18
3.1.6 Implementation Compliance with UltraSPARC Architecture 2007 18

3.2 Processor Architecture . 18
3.2.1 Integer Unit (IU) . 18
3.2.2 Floating-Point Unit (FPU). 19

3.3 Instructions. 19
3.3.1 Memory Access . 19

3.3.1.1 Memory Alignment Restrictions 20
3.3.1.2 Addressing Conventions . 20
3.3.1.3 Addressing Range . 20
3.3.1.4 Load/Store Alternate . 20
3.3.1.5 Separate Instruction and Data Memories 21
3.3.1.6 Input/Output (I/O) . 21
3.3.1.7 Memory Synchronization . 21

3.3.2 Integer Arithmetic / Logical / Shift Instructions 21
3.3.3 Control Transfer . 22
3.3.4 State Register Access . 22

3.3.4.1 Ancillary State Registers . 22
3.3.4.2 PR State Registers . 22
i

3.3.4.3 HPR State Registers . 23
3.3.5 Floating-Point Operate . 23
3.3.6 Conditional Move . 23
3.3.7 Register Window Management . 23
3.3.8 SIMD. 23

3.4 Traps . 23
3.5 Chip-Level Multithreading (CMT) . 24

4 Data Formats . 25

4.1 Integer Data Formats . 26
4.1.1 Signed Integer Data Types . 26

4.1.1.1 Signed Integer Byte, Halfword, and Word. 27
4.1.1.2 Signed Integer Doubleword (64 bits) 27
4.1.1.3 Signed Integer Extended-Word (64 bits) 27

4.1.2 Unsigned Integer Data Types . 27
4.1.2.1 Unsigned Integer Byte, Halfword, and Word 28
4.1.2.2 Unsigned Integer Doubleword (64 bits). 28
4.1.2.3 Unsigned Extended Integer (64 bits) 28

4.1.3 Tagged Word (32 bits). 28
4.2 Floating-Point Data Formats . 29

4.2.1 Floating Point, Single Precision (32 bits) 29
4.2.2 Floating Point, Double Precision (64 bits) 29
4.2.3 Floating Point, Quad Precision (128 bits). 30
4.2.4 Floating-Point Data Alignment in Memory and Registers 31

4.3 SIMD Data Formats . 31
4.3.1 Uint8 SIMD Data Format . 32
4.3.2 Int16 SIMD Data Formats . 32
4.3.3 Int32 SIMD Data Format . 32

5 Registers . 33

5.1 Reserved Register Fields . 34
5.2 General-Purpose R Registers. 35

5.2.1 Global R Registers. 36
5.2.2 Windowed R Registers . 36
5.2.3 Special R Registers . 39

5.3 Floating-Point Registers . 40
5.3.1 Floating-Point Register Number Encoding 42
5.3.2 Double and Quad Floating-Point Operands 43

5.4 Floating-Point State Register (FSR) . 44
5.4.1 Floating-Point Condition Codes (fcc0, fcc1, fcc2, fcc3) 44
5.4.2 Rounding Direction (rd) . 45
5.4.3 Trap Enable Mask (tem) . 45
5.4.4 Nonstandard Floating-Point (ns) . 45
5.4.5 FPU Version (ver) . 45
5.4.6 Floating-Point Trap Type (ftt). 46
5.4.7 Accrued Exceptions (aexc) . 48
5.4.8 Current Exception (cexc) . 48
5.4.9 Floating-Point Exception Fields . 49
5.4.10 FSR Conformance . 50

5.5 Ancillary State Registers . 50
5.5.1 32-bit Multiply/Divide Register (Y) (ASR 0) 52
5.5.2 Integer Condition Codes Register (CCR) (ASR 2) 52

5.5.2.1 Condition Codes (CCR.xcc and CCR.icc) 52
5.5.3 Address Space Identifier (ASI) Register (ASR 3). 53
5.5.4 Tick (TICK) Register (ASR 4) . 54
5.5.5 Program Counters (PC, NPC) (ASR 5) . 55
ii UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

5.5.6 Floating-Point Registers State (FPRS) Register (ASR 6) 55
5.5.7 General Status Register (GSR) (ASR 19). 56
5.5.8 SOFTINTP Register (ASRs 20, 21, 22) . 57

5.5.8.1 SOFTINT_SETP Pseudo-Register (ASR 20) 58
5.5.8.2 SOFTINT_CLRP Pseudo-Register (ASR 21) 59

5.5.9 Tick Compare (TICK_CMPRP) Register (ASR 23) 59
5.5.10 System Tick (STICK) Register (ASR 24) . 59
5.5.11 System Tick Compare (STICK_CMPRP) Register (ASR 25) . . . 60

5.6 Register-Window PR State Registers . 61
5.6.1 Current Window Pointer (CWPP) Register (PR 9) 62
5.6.2 Savable Windows (CANSAVEP) Register (PR 10) 62
5.6.3 Restorable Windows (CANRESTOREP) Register (PR 11) 62
5.6.4 Clean Windows (CLEANWINP) Register (PR 12) 62
5.6.5 Other Windows (OTHERWINP) Register (PR 13) 63
5.6.6 Window State (WSTATEP) Register (PR 14) 63
5.6.7 Register Window Management . 63

5.6.7.1 Register Window State Definition 63
5.6.7.2 Register Window Traps . 64

5.7 Non-Register-Window PR State Registers . 64
5.7.1 Trap Program Counter (TPCP) Register (PR 0) 64
5.7.2 Trap Next PC (TNPCP) Register (PR 1) . 65
5.7.3 Trap State (TSTATEP) Register (PR 2) . 66
5.7.4 Trap Type (TTP) Register (PR 3) . 67
5.7.5 Trap Base Address (TBAP) Register (PR 5) 67
5.7.6 Processor State (PSTATEP) Register (PR 6) 68
5.7.7 Trap Level Register (TLP) (PR 7) . 72
5.7.8 Processor Interrupt Level (PILP) Register (PR 8) 73
5.7.9 Global Level Register (GLP) (PR 16) . 73

5.8 HPR State Registers . 75
5.8.1 Hyperprivileged State (HPSTATEH) Register (HPR 0) 75
5.8.2 Hyperprivileged Trap State (HTSTATEH) Register (HPR 1) . . . 76
5.8.3 Hyperprivileged Interrupt Pending (HINTPH) Register (HPR 3) 77
5.8.4 Hyperprivileged Trap Base Address (HTBAH) Register (HPR 5) 78
5.8.5 Hyperprivileged Implementation Version (HVERH) Register (HPR 6) 78
5.8.6 Hyperprivileged System Tick Compare (HSTICK_CMPRH) Register (HPR 31) 79

6 Instruction Set Overview. 81

6.1 Instruction Execution . 81
6.2 Instruction Formats . 82
6.3 Instruction Categories . 82

6.3.1 Memory Access Instructions . 83
6.3.1.1 Memory Alignment Restrictions 83
6.3.1.2 Addressing Conventions . 84
6.3.1.3 Address Space Identifiers (ASIs) 87
6.3.1.4 Separate Instruction Memory. 88

6.3.2 Memory Synchronization Instructions . 89
6.3.3 Integer Arithmetic and Logical Instructions 89

6.3.3.1 Setting Condition Codes . 89
6.3.3.2 Shift Instructions . 89
6.3.3.3 Set High 22 Bits of Low Word . 89
6.3.3.4 Integer Multiply/Divide. 89
6.3.3.5 Tagged Add/Subtract . 90

6.3.4 Control-Transfer Instructions (CTIs) . 90
6.3.4.1 Conditional Branches . 91
6.3.4.2 Unconditional Branches . 92
6.3.4.3 CALL and JMPL Instructions . 92
6.3.4.4 RETURN Instruction . 92
• Contents iii

6.3.4.5 DONE and RETRY Instructions 92
6.3.4.6 Trap Instruction (Tcc) . 92
6.3.4.7 DCTI Couples . 93

6.3.5 Conditional Move Instructions . 93
6.3.6 Register Window Management Instructions 94

6.3.6.1 SAVE Instruction. 94
6.3.6.2 RESTORE Instruction . 94
6.3.6.3 SAVED Instruction . 95
6.3.6.4 RESTORED Instruction . 95
6.3.6.5 Flush Windows Instruction . 95

6.3.7 Ancillary State Register (ASR) Access . 96
6.3.8 Privileged Register Access . 96
6.3.9 Floating-Point Operate (FPop) Instructions 96
6.3.10 Implementation-Dependent Instructions. 96
6.3.11 Reserved Opcodes and Instruction Fields 97

7 Instructions . 99

7.31.1 FMUL8x16 Instruction . 160
7.31.2 FMUL8x16AU Instruction . 160
7.31.3 FMUL8x16AL Instruction . 161
7.31.4 FMUL8SUx16 Instruction . 161
7.31.5 FMUL8ULx16 Instruction . 161
7.31.6 FMULD8SUx16 Instruction . 162
7.31.7 FMULD8ULx16 Instruction . 163
7.34.1 FPACK16 . 167
7.34.2 FPACK32 . 168
7.34.3 FPACKFIX . 169
7.62.1 Memory Synchronization. 218
7.62.2 Synchronization of the Virtual Processor 219
7.62.3 TSO Ordering Rules affecting Use of MEMBAR. 219
7.73.1 Exceptions . 236
7.73.2 Weak versus Strong Prefetches . 237
7.73.3 Prefetch Variants . 238

7.73.3.1 Prefetch for Several Reads (fcn = 0, 20(1416)) 238
7.73.3.2 Prefetch for One Read (fcn = 1, 21(1516)) 239
7.73.3.3 Prefetch for Several Writes (and Possibly Reads) (fcn = 2, 22(1616))239
7.73.3.4 Prefetch for One Write (fcn = 3, 23(1716)) 239
7.73.3.5 Prefetch Page (fcn = 4) . 240
7.73.3.6 Prefetch to Nearest Unified Cache (fcn = 17(1116)) . . . 240

7.73.4 Implementation-Dependent Prefetch Variants (fcn = 16, 18, 19, and 24–31) 240
7.73.5 Additional Notes. 240

8 IEEE Std 754-1985 Requirements for UltraSPARC Architecture 2007 313

8.1 Traps Inhibiting Results . 313
8.2 Underflow Behavior . 314

8.2.1 Trapped Underflow Definition (ufm = 1) 315
8.2.2 Untrapped Underflow Definition (ufm = 0). 315

8.3 Integer Overflow Definition . 315
8.4 Floating-Point Nonstandard Mode. 315
8.5 Arithmetic Result Tables . 316

8.5.1 Floating-Point Add (FADD) . 317
8.5.2 Floating-Point Subtract (FSUB) . 317
8.5.3 Floating-Point Multiply . 318
8.5.4 Floating-Point Multiply-Add (FMADD 318
8.5.5 Floating-Point Negative Multiply-Add (FNMADD) 319
8.5.6 Floating-Point Multiply-Subtract (FMSUB) 320
8.5.7 Floating-Point Negative Multiply-Subtract (FNMSUB) 321
iv UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

8.5.8 Floating-Point Divide (FDIV) . 323
8.5.9 Floating-Point Square Root (FSQRT) . 323
8.5.10 Floating-Point Compare (FCMP, FCMPE) 324
8.5.11 Floating-Point to Floating-Point Conversions (F<s|d|q>TO<s|d|q>) 324
8.5.12 Floating-Point to Integer Conversions (F<s|d|q>TO<i|x>) . . 325
8.5.13 Integer to Floating-Point Conversions (F<i|x>TO<s|d|q>) . . 326

9 Memory. 327

9.1 Memory Location Identification . 327
9.2 Memory Accesses and Cacheability . 328

9.2.1 Coherence Domains. 328
9.2.1.1 Cacheable Accesses . 328
9.2.1.2 Noncacheable Accesses . 328
9.2.1.3 Noncacheable Accesses with Side-Effect 329

9.3 Memory Addressing and Alternate Address Spaces 330
9.3.1 Memory Addressing Types. 330
9.3.2 Memory Address Spaces. 331
9.3.3 Address Space Identifiers . 331

9.4 SPARC V9 Memory Model . 333
9.4.1 SPARC V9 Program Execution Model . 333
9.4.2 Virtual Processor/Memory Interface Model 334

9.5 The UltraSPARC Architecture Memory Model — TSO 335
9.5.1 Memory Model Selection . 336
9.5.2 Programmer-Visible Properties of the UltraSPARC Architecture TSO Model 336
9.5.3 TSO Ordering Rules. 337
9.5.4 Hardware Primitives for Mutual Exclusion 338

9.5.4.1 Compare-and-Swap (CASA, CASXA). 339
9.5.4.2 Swap (SWAP) . 339
9.5.4.3 Load Store Unsigned Byte (LDSTUB) 339

9.5.5 Memory Ordering and Synchronization. 339
9.5.5.1 Ordering MEMBAR Instructions 339
9.5.5.2 Sequencing MEMBAR Instructions 340
9.5.5.3 Synchronizing Instruction and Data Memory 341

9.6 Nonfaulting Load . 342
9.7 Store Coalescing. 342

10 Address Space Identifiers (ASIs) . 345

10.1 Address Space Identifiers and Address Spaces . 345
10.2 ASI Values. 345
10.3 ASI Assignments . 346

10.3.1 Supported ASIs . 346
10.4 Special Memory Access ASIs . 357

10.4.1 ASIs 1016, 1116, 1616, 1716 and 1816 (ASI_*AS_IF_USER_*) . . 357
10.4.2 ASIs 1816, 1916, 1E16, and 1F16 (ASI_*AS_IF_USER_*_LITTLE) 358
10.4.3 ASI 1416 (ASI_REAL). 359
10.4.4 ASI 1516 (ASI_REAL_IO) . 359
10.4.5 ASI 1C16 (ASI_REAL_LITTLE) . 359
10.4.6 ASI 1D16 (ASI_REAL_IO_LITTLE) . 359
10.4.7 ASIs 2216, 2316, 2716, 2A16, 2B16, 2F16 (Privileged Load Integer Twin Extended Word)

359
10.4.8 ASIs 2616 and 2E16 (Privileged Load Integer Twin Extended Word, Real Addressing)

360
10.4.9 ASIs 3016, 3116, 3616, 3816, 3916, 3E16 (ASI_AS_IF_PRIV_*) . . 361
10.4.10 ASIs E216, E316, EA16, EB16

(Nonprivileged Load Integer Twin Extended Word) 361
10.4.11 Block Load and Store ASIs . 362
• Contents v

10.4.12 Partial Store ASIs . 362
10.4.13 Short Floating-Point Load and Store ASIs 363

10.5 ASI-Accessible Registers . 363
10.5.1 Privileged Scratchpad Registers (ASI_SCRATCHPAD) 363
10.5.2 Hyperprivileged Scratchpad Registers (ASI_HYP_SCRATCHPAD) 364
10.5.3 CMT Registers Accessed Through ASIs. 364
10.5.4 ASI Changes in the UltraSPARC Architecture 364

11 Performance Instrumentation . 367

11.1 High-Level Requirements . 367
11.1.1 Usage Scenarios. 367
11.1.2 Metrics . 368
11.1.3 Accuracy Requirements . 368

11.2 Performance Counters and Controls . 369
11.2.1 Counter Overflow . 369

12 Traps . 371

12.1 Virtual Processor Privilege Modes . 372
12.2 Virtual Processor States, Normal Traps, and RED_state Traps 373

12.2.1 RED_state . 374
12.2.1.1 RED_state Execution Environment 375
12.2.1.2 RED_state Entry Traps . 375
12.2.1.3 RED_state Software Considerations 376
12.2.1.4 Usage of Trap Levels . 376

12.2.2 error_state . 376
12.3 Trap Categories . 377

12.3.1 Precise Traps . 377
12.3.2 Deferred Traps . 377
12.3.3 Disrupting Traps . 379

12.3.3.1 Disrupting versus Precise and Deferred Traps 379
12.3.3.2 Causes of Disrupting Traps . 379
12.3.3.3 Conditioning of Disrupting Traps. 379
12.3.3.4 Trap Handler Actions for Disrupting Traps 380
12.3.3.5 Clearing Requirement for Disrupting Traps 380

12.3.4 Reset Traps. 380
12.3.5 Uses of the Trap Categories . 381

12.4 Trap Control . 381
12.4.1 PIL Control. 382
12.4.2 FSR.tem Control . 382

12.5 Trap-Table Entry Addresses . 382
12.5.1 Trap-Table Entry Address to Privileged Mode 383
12.5.2 Privileged Trap Table Organization . 383
12.5.3 Trap-Table Entry Address to Hyperprivileged Mode 383
12.5.4 Hyperprivileged Trap Table Organization. 384
12.5.5 Trap Table Entry Address to RED_state 384
12.5.6 RED_state Trap Table Organization. 385
12.5.7 Trap Type (TT) . 385

12.5.7.1 Trap Type for Spill/Fill Traps . 396
12.5.8 Trap Priorities . 396

12.6 Trap Processing . 396
12.6.1 Normal Trap Processing. 398
12.6.2 RED_state Trap Processing . 400

12.6.2.1 Nonreset Traps with TL = MAXTL – 1. 400
12.6.2.2 Power-On Reset (POR) Traps . 401
12.6.2.3 Watchdog Reset (WDR) Traps . 402
12.6.2.4 Externally Initiated Reset (XIR) Traps 403
vi UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

12.6.2.5 Software-Initiated Reset (SIR) Traps 404
12.6.2.6 Nonreset Traps When the Virtual Processor Is in RED_state404

12.7 Exception and Interrupt Descriptions . 406
12.7.1 SPARC V9 Traps Not Used in UltraSPARC Architecture 2007. 415

12.8 Register Window Traps. 416
12.8.1 Window Spill and Fill Traps . 416
12.8.2 clean_window Trap . 416
12.8.3 Vectoring of Fill/Spill Traps . 417
12.8.4 CWP on Window Traps. 417
12.8.5 Window Trap Handlers. 418

13 Interrupt Handling . 419

13.1 Interrupt Packets . 419
13.2 Software Interrupt Register (SOFTINT) . 420

13.2.1 Setting the Software Interrupt Register. 420
13.2.2 Clearing the Software Interrupt Register 420

13.3 Interrupt Queues . 420
13.3.1 Interrupt Queue Registers . 421

13.4 Interrupt Traps . 422
13.5 Strand Interrupt ID Register (STRAND_INTR_ID) . 423
13.6 Interrupt Vector Registers. 423

13.6.1 Interrupt Receive Register . 423
13.6.2 Interrupt Vector Dispatch Register . 424
13.6.3 Incoming Interrupt Vector Register . 424

14 Memory Management . 427

14.1 Virtual Address Translation . 427
14.2 Hyperprivileged Memory Management Architecture 432

14.2.1 Partition ID . 432
14.2.2 Real Address Translation . 432

14.3 Context ID. 432
14.4 TSB Translation Table Entry (TTE) . 434
14.5 Translation Storage Buffer (TSB) . 437

14.5.1 TSB Indexing Support . 437
14.5.2 TSB Cacheability and Consistency . 437
14.5.3 TSB Organization . 438
14.5.4 TSB Configuration . 438

14.6 Hardware Support for TSB Access . 439
14.6.1 Hardware Tablewalk . 439

14.6.1.1 Typical Hardware Tablewalk Sequence 439
14.6.2 Typical TLB Software Miss Sequence . 440

14.7 Faults and Traps. 441
14.8 MMU Operation Summary. 443
14.9 ASI Value, Context ID, and Endianness Selection for Translation. 445
14.10 Translation . 448

14.10.1 MMU Behavior During Reset and Upon Entering RED_state 452
14.10.1.1 MMU Bypass . 452
14.10.1.2 MMU Disabled Behavior . 452

14.11 SPARC V9 “MMU Attributes” . 453
14.12 MMU Internal Registers and ASI Operations . 453

14.12.1 Accessing MMU Registers . 454
14.12.2 Context ID Registers . 455
14.12.3 Partition ID Register . 456
14.12.4 MMU Real Range Registers . 456
14.12.5 MMU Physical Offset Registers . 457
• Contents vii

14.12.6 TSB Configuration Registers . 458
14.12.7 I/D/U TSB Pointer Registers . 459
14.12.8 Synchronous Fault Addresses . 461

14.12.8.1 DMMU Synchronous Fault Address Register 461
14.12.8.2 Instruction Synchronous Fault Address 461

14.12.9 I/D/U TLB Tag Access, Data In, Data Access, and Tag Read Registers 461
14.12.9.1 I/D/U MMU TLB Tag Access Registers 463
14.12.9.2 I/D/UMMU TLB Data In Register 464
14.12.9.3 I/D/U MMU TLB Data Access Register 465
14.12.9.4 I/D/UMMU TLB Tag Read Register 466

14.12.10 I/D/UMMU TLB Tag Target Registers 468
14.12.11 I/D/UMMU Demap. 468
14.12.12 Tablewalk Pending Registers. 470

14.12.12.1 Tablewalk Pending Control Register 470
14.12.12.2 Tablewalk Pending Status Register 471

14.13 Translation Lookaside Buffer Hardware . 472
14.13.1 TLB Operations . 472

15 Chip-Level Multithreading (CMT) . 473

15.1 Overview of CMT . 473
15.1.1 CMT Definition . 474

15.1.1.1 Background Terminology . 474
15.1.1.2 CMT Definition . 475

15.1.2 General CMT Behavior. 476
15.2 Accessing CMT Registers. 476

15.2.1 Classes of CMT Registers . 476
15.2.2 Accessing CMT Registers Through ASIs 477

15.3 CMT Registers . 478
15.3.1 Strand ID Register (STRAND_ID) . 478

15.3.1.1 Exposing Stranding . 479
15.3.2 Strand Interrupt ID Register (STRAND_INTR_ID) 480

15.3.2.1 Assigning an Interrupt ID . 480
15.3.2.2 Dispatching and Receiving Interrupts 480
15.3.2.3 Updating the Strand Interrupt ID Register 480

15.4 Disabling and Parking Virtual Processors . 481
15.4.1 Strand Available Register (STRAND_AVAILABLE) 481
15.4.2 Enabling and Disabling Virtual Processors 481

15.4.2.1 Strand Enable Status Register (STRAND_ENABLE_STATUS) 482
15.4.2.2 Strand Enable Register (STRAND_ENABLE) 482
15.4.2.3 Dynamically Enabling/Disabling Virtual Processors 483

15.4.3 Parking and Unparking Virtual Processors 483
15.4.3.1 Strand Running Register (STRAND_RUNNING) . . 484
15.4.3.2 Strand Running Status Register (STRAND_RUNNING_STATUS) 486

15.4.4 Virtual Processor Standby (or Wait) State 487
15.5 Reset and Trap Handling . 488

15.5.1 Per-Strand Resets (SIR and WDR Resets) 488
15.5.2 Full-Processor Resets (POR and WRM Resets) 488

15.5.2.1 Boot Sequence . 488
15.5.3 Partial Processor Resets (XIR Reset) . 488

15.5.3.1 XIR Steering Register (XIR_STEERING) 489
15.6 Error Handling in CMT Processors . 490

15.6.1 Virtual-Processor-Specific Error Reporting 490
15.6.2 Reporting Errors on Shared Structures 490

15.6.2.1 Error Steering . 491
15.6.2.2 Reporting Non-Virtual-Processor-Specific Errors 493

15.7 Additional CMT Software Interfaces . 493
viii UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

15.7.1 Diagnostic/RAS Registers . 493
15.7.2 Configuration Registers . 493
15.7.3 Performance Registers. 494
15.7.4 Booting Support . 494

15.8 Performance Issues for CMT Processors. 494
15.9 Recommended Subset for Single-Strand Processors . 494
15.10 Machine State Summary . 495

16 Resets . 497

16.1 Resets. 497
16.1.1 Power-on Reset (POR) . 497
16.1.2 Warm Reset (WMR) . 498
16.1.3 Externally Initiated Reset (XIR) . 499
16.1.4 Watchdog Reset (WDR) . 499
16.1.5 Software-Initiated Reset (SIR) . 499

16.2 Machine States . 499
16.2.1 Machines States for CMT . 502

17 Error Handling . 505

17.1 Error Reporting . 505
17.1.1 Precise Traps . 505
17.1.2 Deferred Traps . 506
17.1.3 Disrupting Exceptions. 506

17.1.3.1 Disrupting Traps . 507
17.1.4 Fatal Error Signaling . 507

17.2 NotData Overview . 508
17.2.1 Notdata Requirement . 508

17.3 Error Status Registers . 508
17.3.1 Elements of an Event Status Register (ESR) 509

17.4 Protection, Detection, Reporting, and Handling of Errors 511
17.4.1 L1 (Level-1) Caches . 511
17.4.2 TLB Errors. 512

17.4.2.1 Hardware-Corrected TLB Errors 512
17.4.2.2 Software-Corrected TLB Errors 513

17.4.3 Register File Errors . 513
17.4.4 Execution Unit Errors . 513
17.4.5 Other Core Errors Associated with Instruction Processing Before Instruction

Retirement 513
17.4.6 Store Errors . 514
17.4.7 Errors Not Associated with Instruction Processing. 514
17.4.8 L2 Cache Errors . 515
17.4.9 External Interface and Bus Errors . 516

17.5 Error Handling for Common Processor Errors . 516

A Opcode Maps. 519

B Implementation Dependencies . 531

B.1 Definition of an Implementation Dependency. 531
B.2 Hardware Characteristics . 532
B.3 Implementation Dependency Categories . 532
B.4 List of Implementation Dependencies. 533

C Assembly Language Syntax . 551

C.1 Notation Used . 551
C.1.1 Register Names . 551
C.1.2 Special Symbol Names . 552
C.1.3 Values . 554
• Contents ix

C.1.4 Labels . 554
C.1.5 Other Operand Syntax . 555
C.1.6 Comments. 556

C.2 Syntax Design . 556
C.3 Synthetic Instructions . 556

. Indexi
x UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

Preface

First came the 32-bit SPARC Version 7 (V7) architecture, publicly released in 1987. Shortly after, the
SPARC V8 architecture was announced and published in book form. The 64-bit SPARC V9
architecture was released in 1994. Now, the UltraSPARC Architecture specification provides the first
significant update in over 10 years to Sun’s SPARC processor architecture.

What’s New?
UltraSPARC Architecture 2007 pulls together in one document all parts of the architecture:

■ the nonprivilged (Level 1) architecture from SPARC V9

■ most of the privileged (Level 2) architecture from SPARC V9

■ more in-depth coverage of all SPARC V9 features

Plus, it includes all of Sun’s now-standard architectural extensions (beyond SPARC V9), developed
through the processor generations of UltraSPARC III, IV, IV+, and T1:

■ the VIS 1 and VIS 2 instruction set extensions and the associated GSR register

■ multiple levels of global registers, controlled by the GL register

■ Sun’s 64-bit MMU architecture

■ privileged instructions ALLCLEAN, OTHERW, NORMALW, and INVALW

■ access to the VER register is now hyperprivileged (and VER was renamed the HVER register)

■ the SIR instruction is now hyperprivileged

■ new hyperprivileged instructions RDHPR and WRHPR

■ the new Hyperprivileged mode

■ Chip-level Multithreading (CMT) architecture

UltraSPARC Architecture 2007 includes the following changes since :

■ replacement of instruction_address_exception and data_acess_exception exceptions by multiple
IAE_* and DAE_* exceptions

■ FSR.ftt = 3 (unimplemented_FPop) has been retired; all unimplemented FPops now generate the
illegal_instruction exception instead of fp_exception_other with FSR.ftt = 3
(unimplemented_FPop).
• Preface i

In addition, architectural features are now tagged with Software Classes and Implementation
Classes1. Software Classes provide a new, high-level view of the expected architectural longevity and
portability of software that references those features. Implementation Classes give an indication of
how efficiently each feature is likely to be implemented across current and future UltraSPARC
Architecture processor implementations. This information provides guidance that should be
particularly helpful to programmers who write in assembly language or those who write tools that
generate SPARC instructions. It also provides the infrastructure for defining clear procedures for
adding and removing features from the architecture over time, with minimal software disruption.

Acknowledgements
This specification builds upon all previous SPARC specifications — SPARC V7, V8, and especially,
SPARC V9. It therefore owes a debt to all the pioneers who developed those architectures.

SPARC V7 was developed by the SPARC (“Sunrise”) architecture team at Sun Microsystems, with
special assistance from Professor David Patterson of University of California at Berkeley.

The enhancements present in SPARC V8 were developed by the nine member companies of the
SPARC International Architecture Committee: Amdahl Corporation, Fujitsu Limited, ICL, LSI Logic,
Matsushita, Philips International, Ross Technology, Sun Microsystems, and Texas Instruments.

SPARC V9 was also developed by the SPARC International Architecture Committee, with key
contributions from the individuals named in the Editor’s Notes section of The SPARC Architecture
Manual-Version 9.

The voluminous enhancements and additions present in this UltraSPARC Architecture 2007
specification are the result of years of deliberation, review, and feedback from readers of earlier Sun-
internal revisions. I would particularly like to acknowledge the following people for their key
contributions:

■ The UltraSPARC Architecture working group, who reviewed dozens of drafts of this specification
and strived for the highest standards of accuracy and completeness; its active members included:
Hendrik-Jan Agterkamp, Paul Caprioli, Steve Chessin, Hunter Donahue, Greg Grohoski, John (JJ)
Johnson, Paul Jordan, Jim Laudon, Jim Lewis, Bob Maier, Wayne Mesard, Greg Onufer, Seongbae
Park, Joel Storm, David Weaver, and Tom Webber.

■ Robert (Bob) Maier, for expansion of exception descriptions in every page of the Instructions
chapter, major re-writes of 7 chapters and appendices (Memory, Memory Management, Performance
Instrumentation, Error Handling, Resets, and Interrupt Handling), significant updates to 5 other
chapters, and tireless efforts to infuse commonality wherever possible across implementations.

■ Steve Chessin and Joel Storm, “ace” reviewers — the two of them spotted more typographical
errors and small inconsistencies than all other reviewers combined

■ Jim Laudon (an UltraSPARC T1 architect and author of that processor’s implementation
specification), for numerous descriptions of new features which were merged into this
specicification

■ The working group responsible for developing the system of Software Classes and Implementation
Classes, comprising: Steve Chessin, Yuan Chou, Peter Damron, Q. Jacobson, Nicolai Kosche, Bob
Maier, Ashley Saulsbury, Lawrence Spracklen, and David Weaver.

■ Lawrence Spracklen, for his advice and numerous contributions regarding descriptions of VIS
instructions

■ Tom Webber, for providing descriptions of several new features in UltraSPARC Architecture 2007
1. although most features in this specification are already tagged with Software Classes, the full description of those Classes does not

appear in this version of the specification. Please check back
(http://opensparc.sunsource.net/nonav/opensparct1.html) for a later release of this document, which will include that
description
ii UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

I hope you find the UltraSPARC Architecture 2007 specification more complete, accurate, and readable
than its predecessors.

— David Weaver
UltraSPARC Architecture Principal Engineer and specification editor

Corrections and other comments regarding this specification can be emailed to:
UA-editor@sun.com
• Preface iii

iv UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

CHAPTER 1

Document Overview

This chapter discusses:

■ Navigating UltraSPARC Architecture 2007 on page 1.
■ Fonts and Notational Conventions on page 2.
■ Reporting Errors in this Specification on page 4.

1.1 Navigating UltraSPARC Architecture 2007
If you are new to the SPARC architecture, read Chapter 3, Architecture Overview, study the definitions
in Chapter 2, Definitions, then look into the subsequent sections and appendixes for more details in
areas of interest to you.

If you are familiar with the SPARC V9 architecture but not UltraSPARC Architecture 2007, note that
UltraSPARC Architecture 2007 conforms to the SPARC V9 Level 1 architecture (and most of Level 2),
with numerous extensions — particularly with respect to CMT features, VIS instructions, and support
for hyperprivileged-mode operation.

This specfication is structured as follows:

■ Chapter 2, Definitions, which defines key terms used throughout the specification

■ Chapter 3, Architecture Overview, provides an overview of UltraSPARC Architecture 2007

■ Chapter 4, Data Formats, describes the supported data formats

■ Chapter 5, Registers, describes the register set

■ Chapter 6, Instruction Set Overview, provides a high-level description of the UltraSPARC
Architecture 2007 instruction set

■ Chapter 7, Instructions, describes the UltraSPARC Architecture 2007 instruction set in great detail

■ Chapter 8, IEEE Std 754-1985 Requirements for UltraSPARC Architecture 2007, describes the trap
model

■ Chapter 9, Memory describes the supported memory model

■ Chapter 10, Address Space Identifiers (ASIs), provides a complete list of supported ASIs

■ Chapter 11, Performance Instrumentation describes the architecture for performance monitoring
hardware

■ Chapter 12, Traps, describes the trap model

■ Chapter 13, Interrupt Handling, describes how interrupts are handled

■ Chapter 14, Memory Management, describes MMU operation

■ Chapter 15, Chip-Level Multithreading (CMT), describes the new CMT features

■ Chapter 16, Resets, describes resets, RED_state, and error_state.

■ Chapter 17, Error Handling, describes handling of detected errors
1

■ Appendix A, Opcode Maps, provides the overall picture of how the instruction set is mapped into
opcodes

■ Appendix B, Implementation Dependencies, describes all implementation dependencies

■ Appendix C, Assembly Language Syntax, describes extensions to the SPARC assembly language
syntax; in particular, synthetic instructions are documented in this appendix

1.2 Fonts and Notational Conventions
Fonts are used as follows:

■ Italic font is used for emphasis, book titles, and the first instance of a word that is defined.

■ Italic font is also used for terms where substitution is expected, for example, “fccn”, “virtual
processor n”, or “reg_plus_imm”.

■ Italic sans serif font is used for exception and trap names. For example, “The privileged_action
exception....”

■ lowercase helvetica font is used for register field names (named bits) and instruction field names,
for example: “The rs1 field contains....”

■ UPPERCASE HELVETICA font is used for register names; for example, FSR.

■ TYPEWRITER (Courier) font is used for literal values, such as code (assembly language, C
language, ASI names) and for state names. For example: %f0, ASI_PRIMARY, execute_state.

■ When a register field is shown along with its containing register name, they are separated by a
period (’.’), for example, “FSR.cexc”.

■ UPPERCASE words are acronyms or instruction names. Some common acronyms appear in the
glossary in Chapter 2, Definitions. Note: Names of some instructions contain both upper- and
lower-case letters.

■ An underscore character joins words in register, register field, exception, and trap names. Note:
Such words may be split across lines at the underbar without an intervening hyphen. For example:
“This is true whenever the integer_condition_
code field....”

The following notational conventions are used:

■ The left arrow symbol (←) is the assignment operator. For example, “PC ← PC + 1” means that
the Program Counter (PC) is incremented by 1.

■ Square brackets ([]) are used in two different ways, distinguishable by the context in which they
are used:

■ Square brackets indicate indexing into an array. For example, TT[TL] means the element of the
Trap Type (TT) array, as indexed by the contents of the Trap Level (TL) register.

■ Square brackets are also used to indicate optional additions/extensions to symbol names. For
example, “ST[D|Q]F” expands to all three of “STF”, “STDF”, and “STQF”. Similarly,
ASI_PRIMARY[_LITTLE] indicates two related address space identifiers, ASI_PRIMARY and
ASI_PRIMARY_LITTLE. (Contrast with the use of angle brackets, below)

■ Angle brackets (< >) indicate mandatory additions/extensions to symbol names. For example,
“ST<D|Q>F” expands to mean “STDF” and “STQF”. (Contrast with the second use of square
brackets, above)

■ Curly braces ({ }) indicate a bit field within a register or instruction. For example, CCR{4} refers to
bit 4 in the Condition Code Register.

■ A consecutive set of values is indicated by specifying the upper and lower limit of the set separated
by a colon (:), for example, CCR{3:0} refers to the set of four least significant bits of register CCR.
(Contrast with the use of double periods, below)
2 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

■ A double period (..) indicates any single intermediate value between two given end values is
possible. For example, NAME[2..0] indicates four forms of NAME exist: NAME, NAME2, NAME1,
and NAME0; whereas NAME<2..0> indicates that three forms exist: NAME2, NAME1, and
NAME0. (Contrast with the use of the colon, above)

■ A vertical bar (|) separates mutually exclusive alternatives inside square brackets ([]), angle
brackets (< >), or curly braces ({ }). For example, “NAME[A|B]” expands to “NAME, NAMEA,
NAMEB” and “NAME<A|B>” expands to "NAMEA, NAMEB".

■ The asterisk (*) is used as a wild card, encompassing the full set of valid values. For example,
FCMP* refers to FCMP with all valid suffixes (in this case, FCMP<s|d|q> and FCMPE<s|d|q>).
An asterisk is typically used when the full list of valid values either is not worth listing (because it
has little or no relevance in the given context) or the valid values are too numerous to list in the
available space.

■ The slash (/) is used to separate paired or complementary values in a list, for example, “the
LDBLOCKF/STBLOCKF instruction pair”

■ The double colon (::) is an operator that indicates concatenation (typically, of bit vectors).
Concatenation strictly strings the specified component values into a single longer string, in the
order specified. The concatenation operator performs no arithmetic operation on any of the
component values.

1.2.1 Implementation Dependencies
Implementors of UltraSPARC Architecture 2007 processors are allowed to resolve some aspects of the
architecture in machine-dependent ways.

The definition of each implementation dependency is indicated by the notation “IMPL. DEP. #nn-XX:
Some descriptive text”. The number nn provides an index into the complete list of dependencies in
Appendix B, Implementation Dependencies.

A reference to (but not definition of) an implementation dependency is indicated by the notation
“(impl. dep. #nn)”.

1.2.2 Notation for Numbers
Numbers throughout this specification are decimal (base-10) unless otherwise indicated. Numbers in
other bases are followed by a numeric subscript indicating their base (for example, 10012,
FFFF 000016). Long binary and hexadecimal numbers within the text have spaces inserted every four
characters to improve readability. Within C language or assembly language examples, numbers may
be preceded by “0x” to indicate base-16 (hexadecimal) notation (for example, 0xFFFF0000).

1.2.3 Informational Notes
This guide provides several different types of information in notes, as follows:

Note General notes contain incidental information relevant to the
paragraph preceding the note.

Programming
Note

Programming notes contain incidental information about how
software can use an architectural feature.

Implementation
Note

An Implementation Note contains incidental information,
describing how an UltraSPARC Architecture 2007 processor
might implement an architectural feature.
CHAPTER 1 • Document Overview 3

1.3 Reporting Errors in this Specification
This specification has been reviewed for completeness and accuracy. Nonetheless, as with any
document this size, errors and omissions may occur, and reports of such are welcome. Please send
“bug reports” and other comments on this document to the email address: UA-editor@sun.com

V9 Compatibility
Note

Note containing information about possible differences between
UltraSPARC Architecture 2007 and SPARC V9 implementations.
Such information is relevant to UltraSPARC Architecture 2007
implementations and might not apply to other SPARC V9
implementations.

Forward
Compatibility

Note

Note containing information about how the UltraSPARC
Architecture is expected to evolve in the future. Such notes are
not intended as a guarantee that the architecture will evolve as
indicated, but as a guide to features that should not be depended
upon to remain the same, by software intended to run on both
current and future implementations.
4 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

CHAPTER 2

Definitions

This chapter defines concepts and terminology common to all implementations of UltraSPARC
Architecture 2007.

address space A range of 264 locations that can be addressed by instruction fetches and load, store, or load-store
instructions. See also address space identifier (ASI).

address space identifier
(ASI) An 8-bit value that identifies a particular address space. An ASI is (implicitly or explicitly)

associated with every instruction access or data access. See also implicit ASI.

aliased Said of each of two virtual or real addresses that refer to the same underlying memory location.

application program A program executed with the virtual processor in nonprivileged mode. Note: Statements made in
this specification regarding application programs may not be applicable to programs (for
example, debuggers) that have access to privileged virtual processor state (for example, as stored
in a memory-image dump).

ASI Address space identifier.

ASR Ancillary State register.

available (virtual
processor) A virtual processor that is physically present and functional, that can be enabled and used.

big-endian An addressing convention. Within a multiple-byte integer, the byte with the smallest address is
the most significant; a byte’s significance decreases as its address increases.

BLD (Obsolete) abbreviation for Block Load instruction; replaced by LDBLOCKFD.

BST (Obsolete) abbreviation for Block Store instruction; replaced by STBLOCKFD.

byte Eight consecutive bits of data, aligned on an 8-bit boundary.

CCR Abbreviation for Condition Codes Register.

clean window A register window in which each of the registers contain 0, a valid address from the current
address space, or valid data from the current address space.

cleared A term applied to an error when the originating incorrect signal or datum is set to a value that is
not in error. An originating incorrect signal that is stored in a memory (a stored error) may be
cleared automatically by hardware action or may need software action to clear it. An originating
incorrect signal that is not stored in any memory needs no action to clear it. (For this definition,
"memory" includes caches, registers, flip-flops, latches, and any other mechanism for storing
information, and not just what is usually considered to be system memory.)

CMT Chip-level MultiThreading (or, as an adjective, Chip-level MultiThreaded). Refers to a physical
processor containing more than one virtual processor.

coherence A set of protocols guaranteeing that all memory accesses are globally visible to all caches on a
shared-memory bus.
5

completed (memory
operation) Said of a memory transaction when an idealized memory has executed the transaction with

respect to all processors. A load is considered completed when no subsequent memory
transaction can affect the value returned by the load. A store is considered completed when no
subsequent load can return the value that was overwritten by the store.

context A set of translations that defines a particular address space. See also Memory Management Unit
(MMU).

context ID A numeric value that uniquely identifies a particular context.

copyback The process of sending a copy of the data from a cache line owned by a physical processor core,
in response to a snoop request from another device.

CPI Cycles per instruction. The number of clock cycles it takes to execute an instruction.

core In an UltraSPARC Architecture processor, may refer to either a virtual processor or a physical
processor core.

correctable A term applied to an error when at the time the error occurs, the error detector knows that
enough information exists, either accompanying the incorrect signal or datum or elsewhere in the
system, to correct the error. Examples include parity errors on clean L1s, which are corrected by
invalidation of the line and refetching of the data from higher up in the memory hierarchy, and
correctable errors on L2s. See also uncorrectable.

corrected A term applied to an error when the incorrect signal or datum is replaced by the correct signal or
datum, perhaps in a downstream location. Depending on the circuit, correcting an error may or
may not clear it.

cross-call An interprocessor call in a system containting multiple virtual processors.

CTI Abbreviation for control-transfer instruction.

current window The block of 24 R registers that is presently in use. The Current Window Pointer (CWP) register
points to the current window.

cycle The atomic unit of time in a physical implementation of a processor core. The duration of a cycle
is its period, and the inverse of the period is the physical processor core’s operating frequency
(typically measured in gigaHertz, in contemporary implementations). The physical processor
core divides the work of managing instructions and data and executing instructions into multiple
cycles. This division of processing steps into cycles is implementation-dependent. The operating
frequency is implementation-dependent and potentially varying in time for a given
implementation.

data access
(instruction) A load, store, load-store, or FLUSH instruction.

DCTI Delayed control transfer instruction.

demap To invalidate a mapping in the MMU.

denormalized number Synonym for subnormal number.

deprecated The term applied to an architectural feature (such as an instruction or register) for which an
UltraSPARC Architecture implementation provides support only for compatibility with previous
versions of the architecture. Use of a deprecated feature must generate correct results but may
compromise software performance.

Deprecated features should not be used in new UltraSPARC Architecture software and may not
be supported in future versions of the architecture.

disable (core) The process of changing the state of a virtual processor to Disabled, during which all other
processor state (including cache coheriency) may be lost and all interrupts to that virtual
processor will be discarded. See also park and enable.
6 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

disabled (core) A virtual processor that is out of operation (not executing instructions, not participating in cache
coherency, and discarding interrupts). See also parked and enabled.

doubleword An 8-byte datum. Note: The definition of this term is architecture dependent and may differ from
that used in other processor architectures.

D-SFAR Data Synchronous Fault Address register.

enable (core) The process of moving a virtual processor from Disabled to Enabled state and preparing it for
operation. See also disable and park.

enabled (core) A virtual processor that is in operation (participating in cache coherency, but not executing
instructions unless it is also Running). See also disabled and running.

error A signal or datum that is wrong. The error can be created by some problem internal to the
processor, or it can appear at inputs to the processor. An error can propagate through fault-free
circuitry and appear as an error at the output. It can be stored in a memory, whether program-
visible or not, and can later be either read out of the memory or overwritten.

ESR Abbreviation for Error Status Register.

even parity The mode of parity checking in which each combination of data bits plus a parity bit contains an
even number of ‘1’ bits.

exception A condition that makes it impossible for the processor to continue executing the current
instruction stream. Some exceptions may be masked (that is, trap generation disabled — for
example, floating-point exceptions masked by FSR.tem) so that the decision on whether or not to
apply special processing can be deferred and made by software at a later time. See also trap.

explicit ASI An ASI that that is provided by a load, store, or load-store alternate instruction (either from its
imm_asi field or from the ASI register).

extended word An 8-byte datum, nominally containing integer data. Note: The definition of this term is
architecture dependent and may differ from that used in other processor architectures.

fault A physical condition that causes a device, a component, or an element to fail to perform in a
required manner; for example, a short-circuit, a broken wire, or an intermittent connection.

fccn One of the floating-point condition code fields fcc0, fcc1, fcc2, or fcc3.

FGU Floating-point and Graphics Unit (which most implementations specify as a superset of FPU).

floating-point
exception An exception that occurs during the execution of a floating-point operate (FPop) instruction. The

exceptions are unfinished_FPop, sequence_error, hardware_error, invalid_fp_register, or
IEEE_754_exception.

F register A floating-point register. The SPARC V9 architecture includes single-, double-, and quad-
precision F registers.

floating-point operate
instructions Instructions that perform floating-point calculations, as defined in Floating-Point Operate (FPop)

Instructions on page 96. FPop instructions do not include FBfcc instructions, loads and stores
between memory and the F registers, or non-floating-point operations that read or write F
registers.

floating-point trap
type The specific type of a floating-point exception, encoded in the FSR.ftt field.

floating-point unit A processing unit that contains the floating-point registers and performs floating-point
operations, as defined by this specification.

FPop Abbreviation for floating-point operate (instructions).

FPRS Floating-Point Register State register.
CHAPTER 2 • Definitions 7

FPU Floating-Point Unit.

FSR Floating-Point Status register.

GL Global Level register.

GSR General Status register.

halfword A 2-byte datum. Note: The definition of this term is architecture dependent and may differ from
that used in other processor architectures.

hyperprivileged An adjective that describes:
(1) the state of the processor when HPSTATE.hpriv = 1, that is, when the

processor is in hyperprivileged mode;
(2) processor state that is only accessible to software while the processor is in

hyperprivileged mode; for example, hyperprivileged registers,
hyperprivileged ASRs, or, in general, hyperprivileged state;

(3) an instruction that can be executed only when the processor is in
hyperprivileged mode.

hypervisor (software) A layer of software that executes in hyperprivileged processor state. One purpose of hypervisor
software (also referred to as “the hypervisor”) is to provide greater isolation between operating
system (“supervisor”) software and the underlying processor implementation.

IEEE 754 IEEE Standard 754-1985, the IEEE Standard for Binary Floating-Point Arithmetic.

IEEE-754 exception A floating-point exception, as specified by IEEE Std 754-1985. Listed within this specification as
IEEE_754_exception.

implementation Hardware or software that conforms to all of the specifications of an instruction set architecture
(ISA).

implementation
dependent An aspect of the UltraSPARC Architecture that can legitimately vary among implementations. In

many cases, the permitted range of variation is specified. When a range is specified, compliant
implementations must not deviate from that range.

implicit ASI An address space identifier that is implicitly supplied by the virtual processor on all instruction
accesses and on data accesses that do not explicitly provide an ASI value (from either an imm_asi
instruction field or the ASI register).

initiated Synonym for issued.

instruction field A bit field within an instruction word.

instruction group One or more independent instructions that can be dispatched for simultaneous execution.

instruction set
architecture A set that defines instructions, registers, instruction and data memory, the effect of executed

instructions on the registers and memory, and an algorithm for controlling instruction execution.
Does not define clock cycle times, cycles per instruction, data paths, etc. This specification defines
the UltraSPARC Architecture 2007 instruction set architecture.

integer unit A processing unit that performs integer and control-flow operations and contains general-
purpose integer registers and virtual processor state registers, as defined by this specification.

interrupt request A request for service presented to a virtual processor by an external device.

inter-strand Describes an operation that crosses virtual processor (strand) boundaries.

intra-strand Describes an operation that occurs entirely within one virtual processor (strand).

invalid
(ASI or address) Undefined, reserved, or illegal.

ISA Instruction set architecture.
8 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

issued A memory transaction (load, store, or atomic load-store) is said to be “issued” when a virtual
processor has sent the transaction to the memory subsystem and the completion of the request is
out of the virtual processor’s control. Synonym for initiated.

IU Integer Unit.

little-endian An addressing convention. Within a multiple-byte integer, the byte with the smallest address is
the least significant; a byte’s significance increases as its address increases.

load An instruction that reads (but does not write) memory or reads (but does not write) location(s) in
an alternate address space. Some examples of Load includes loads into integer or floating-point
registers, block loads, and alternate address space variants of those instructions. See also load-
store and store, the definitions of which are mutually exclusive with load.

load-store An instruction that explicitly both reads and writes memory or explicitly reads and writes
location(s) in an alternate address space. Load-store includes instructions such as CASA, CASXA,
LDSTUB, and the deprecated SWAP instruction. See also load and store, the definitions of which
are mutually exclusive with load-store.

may A keyword indicating flexibility of choice with no implied preference. Note: “may” indicates that
an action or operation is allowed; “can” indicates that it is possible.

Memory Management
Unit The address translation hardware in an UltraSPARC Architecture implementation that translates

64-bit virtual address into underlying physical addresses. The MMU is composed of the TLBs,
ASRs, and ASI registers used to manage address translation. See also context, physical address,
real address, and virtual address.

MMU Abbreviation for Memory Management Unit.

multiprocessor system A system containing more than one processor.

must A keyword indicating a mandatory requirement. Designers must implement all such mandatory
requirements to ensure interoperability with other UltraSPARC Architecture-compliant products.
Synonym for shall.

next program counter Conceptually, a register that contains the address of the instruction to be executed next if a trap
does not occur.

NFO Nonfault access only.

nonfaulting load A load operation that behaves identically to a normal load operation, except when supplied an
invalid effective address by software. In that case, a regular load triggers an exception whereas a
nonfaulting load appears to ignore the exception and loads its destination register with a value of
zero (on an UltraSPARC Architecture processor, hardware treats regular and nonfaulting loads
identically; the distinction is made in trap handler software). Contrast with speculative load.

nonprivileged An adjective that describes
(1) the state of the virtual processor when PSTATE.priv = 0 and

HPSTATE.hpriv = 0, that is, when it is in nonprivileged mode;
(2) virtual processor state information that is accessible to software regardless

of the current privilege mode; for example, nonprivileged registers,
nonprivileged ASRs, or, in general, nonprivileged state;

(3) an instruction that can be executed in any privilege mode (hyperprivileged,
privileged, or nonprivileged).

nonprivileged mode The mode in which a virtual processor is operating when executing application software (at the
lowest privilege level). Nonprivileged mode is defined by PSTATE.priv = 0 and
HSTATE.hpriv = 0. See also privileged and hyperprivileged.

nontranslating ASI An ASI that does not refer to memory (for example, refers to control/status register(s)) and for
which the MMU does not perform address translation.

normal trap A trap processed in execute_state (or equivalently, a non-RED_state trap). Contrast with
RED_state trap.
CHAPTER 2 • Definitions 9

NPC Next program counter.

npt Nonprivileged trap.

nucleus software Privileged software running at a trap level greater than 0 (TL> 0).

NUMA Nonuniform memory access.

N_REG_WINDOWS The number of register windows present in a particular implementation.

octlet Eight bytes (64 bits) of data. Not to be confused with “octet,” which has been commonly used to
describe eight bits of data. In this document, the term byte, rather than octet, is used to describe
eight bits of data.

odd parity The mode of parity checking in which each combination of data bits plus a parity bit together
contain an odd number of ‘1’ bits.

opcode A bit pattern that identifies a particular instruction.

optional A feature not required for UltraSPARC Architecture 2007 compliance.

PA Physical address.

park The process of suspending a virtual processor from operation. There may be a delay until the
virtual processor is parked, but no heavyweight operation (such as a reset) is required to
complete the parking process. See also disable and unpark.

parked Said of a virtual processor that is suspended from operation. When parked, a virtual processor
does not issue instructions for execution but still maintains cache coherency. See also disabled,
enabled, and running.

PC Program counter.

physical address An address that maps to actual physical memory or I/O device space. See also real address and
virtual address.

physical core The term physical processor core, or just physical core, is similar to the term pipeline but represents a
broader collection of hardware that are required for performing the execution of instructions
from one or more software threads. For a detailed definition of this term, see page 474. See also
pipeline, processor, strand, thread, and virtual processor.

physical processor Synonym for processor; used when an explicit contrast needs to be drawn between processor and
virtual processor. See also processor and virtual processor.

PIL Processor Interrupt Level register.

pipeline Refers to an execution pipeline, the basic collection of hardware needed to execute instructions.
For a detailed definition of this term, see page 474. See also physical core, processor, strand,
thread, and virtual processor.

PIPT Physically indexed, physically tagged (cache).

POR Power-on reset.

prefetchable (1) An attribute of a memory location that indicates to an MMU that PREFETCH operations to
that location may be applied.
(2) A memory location condition for which the system designer has determined that no
undesirable effects will occur if a PREFETCH operation to that location is allowed to succeed.
Typically, normal memory is prefetchable.

Nonprefetchable locations include those that, when read, change state or cause external events to
occur. For example, some I/O devices are designed with registers that clear on read; others have
registers that initiate operations when read. See also side effect.

privileged An adjective that describes:
(1) the state of the virtual processor when PSTATE.priv = 1 and

HPSTATE.hpriv = 0,that is, when the virtual processor is in privileged mode;
10 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

(2) processor state that is only accessible to software while the virtual processor
is in hyperprivileged or privileged mode; for example, privileged registers,
privileged ASRs, or, in general, privileged state;

(3) an instruction that can be executed only when the virtual processor is in
hyperprivileged or privileged mode.

privileged mode The mode in which a processor is operating when PSTATE.priv = 1 and HPSTATE.hpriv = 0. See
also nonprivileged and hyperprivileged.

processor The unit on which a shared interface is provided to control the configuration and execution of a
collection of strands; a physical module that plugs into a system. Synonym for processor module.
For a detailed definition of this term, see page 474. See also pipeline, physical core, strand,
thread, and virtual processor.

processor core Synonym for physical core.

processor module Synonym for processor.

program counter A register that contains the address of the instruction currently being executed.

quadword A 16-byte datum. Note: The definition of this term is architecture dependent and may be different
from that used in other processor architectures.

R register An integer register. Also called a general-purpose register or working register.

RA Real address.

RAS Reliability, Availability, and Serviceability

RAW Read After Write (hazard)

rd Rounding direction.

real address An address produced by a virtual processor that refers to a particular software-visible memory
location, as viewed from privileged mode. Virtual addresses are usually translated by a
combination of hardware and software to real addresses, which can be used to access real
memory. Real addresses, in turn, are usually translated to physical addresses, which can be used
to access physical memory. See also physical address and virtual address.

recoverable A term applied to an error when enough information exists elsewhere in the system for software
to recover from an uncorrectable error. Examples include uncorrectable errors on clean L2 lines,
which are recovered by software invalidating the line and initiating a refetch from memory. See
also unrecoverable.

RED_state Reset, Error, and Debug state. The virtual processor state when HPSTATE.red = 1. A restricted
execution environment used to process resets and traps that occur when TL = MAXTL – 1.

RED_state trap A trap processed in RED_state. Contrast with normal trap.

reserved Describing an instruction field, certain bit combinations within an instruction field, or a register
field that is reserved for definition by future versions of the architecture.

A reserved instruction field must read as 0, unless the implementation supports extended
instructions within the field. The behavior of an UltraSPARC Architecture 2007 virtual processor
when it encounters a nonzero value in a reserved instruction field is as defined in Reserved
Opcodes and Instruction Fields on page 97.

A reserved bit combination within an instruction field is defined in Chapter 7, Instructions. In all cases,
an UltraSPARC Architecture 2007 processor must decode and trap on such reserved bit
combinations.

A reserved field within a register reads as 0 in current implementations and, when written by
software, should always be written with values of that field previously read from that register or
with the value zero (as described in Reserved Register Fields on page 34).

Throughout this specification, figures and tables illustrating registers and instruction encodings
indicate reserved fields and reserved bit combinations with a wide (“em”) dash (—).
CHAPTER 2 • Definitions 11

reset trap A vectored transfer of control to hyperprivileged software through a fixed-address reset trap
table. Reset traps cause entry into RED_state.

restricted Describes an address space identifier (ASI) that may be accessed only while the virtual processor
is operating in privileged or hyperprivileged mode.

retired An instruction is said to be “retired” when one of the following two events has occurred:
(1) A precise trap has been taken, with TPC containing the instruction's address (the instruction
has not changed architectural state in this case).
(2) The instruction's execution has progressed to a point at which architectural state affected by
the instruction has been updated such that all three of the following are true:

■ The PC has advanced beyond the instruction.
■ Except for deferred trap handlers, no consumer in the same instruction stream can see the old

values and all consumers in the same instruction stream will see the new values.
■ Stores are visible to all loads in the same instruction stream, including stores to noncacheable

locations.

RMO Abbreviation for Relaxed Memory Order (a memory model).

RTO Read to Own (a type of transaction, used to request ownership of a cache line).

RTS Read to Share (a type of transaction, used to request read-only access to a cache line).

running A state of a virtual processor in which it is in operation (maintaining cache coherency and issuing
instructions for execution) and not Parked.

service processor A device external to the processor that can examine and alter internal processor state. A service
processor may be used to control/coordinate a multiprocessor system and aid in error recovery.

shall Synonym for must.

should A keyword indicating flexibility of choice with a strongly preferred implementation. Synonym
for it is recommended.

side effect The result of a memory location having additional actions beyond the reading or writing of data.
A side effect can occur when a memory operation on that location is allowed to succeed.
Locations with side effects include those that, when accessed, change state or cause external
events to occur. For example, some I/O devices contain registers that clear on read; others have
registers that initiate operations when read. See also prefetchable.

SIMD Single Instruction/Multiple Data; a class of instructions that perform identical operations on
multiple data contained (or “packed”) in each source operand.

SIR Software-initiated reset.

snooping The process of maintaining coherency between caches in a shared-memory bus architecture. Each
cache controller monitors (snoops) the bus to determine whether it needs to copy back or
invalidate its copy of each shared cache block.

speculative load A load operation that is issued by a virtual processor speculatively, that is, before it is known
whether the load will be executed in the flow of the program. Speculative accesses are used by
hardware to speed program execution and are transparent to code. An implementation, through
a combination of hardware and system software, must nullify speculative loads on memory
locations that have side effects; otherwise, such accesses produce unpredictable results. Contrast
with nonfaulting load.

store An instruction that writes (but does not explicitly read) memory or writes (but does not explicitly
read) location(s) in an alternate address space. Some examples of Store includes stores from either
integer or floating-point registers, block stores, Partial Store, and alternate address space variants
of those instructions. See also load and load-store, the definitions of which are mutually
exclusive with store.
12 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

strand The hardware state that must be maintained in order to execute a software thread. For a detailed
definition of this term, see page 474. See also pipeline, physical core, processor, thread, and
virtual processor.

subnormal number A nonzero floating-point number, the exponent of which has a value of zero. A more complete
definition is provided in IEEE Standard 754-1985.

superscalar An implementation that allows several instructions to be issued, executed, and committed in one
clock cycle.

supervisor software Software that executes when the virtual processor is in privileged mode.

suspend Synonym for park.

suspended Synonym for parked.

synchronization An operation that causes the processor to wait until the effects of all previous instructions are
completely visible before any subsequent instructions are executed.

system A set of virtual processors that share a common physical address space.

taken A control-transfer instruction (CTI) is taken when the CTI writes the target address value into
NPC.

A trap is taken when the control flow changes in response to an exception, reset, Tcc instruction,
or interrupt. An exception must be detected and recognized before it can cause a trap to be taken.

TBA Trap base address.

thread A software entity that can be executed on hardware. For a detailed definition of this term, see
page 474. See also pipeline, physical core, processor, strand, and virtual processor.

TLB Abbreviation for Translation Lookaside Buffer.

TLB hit The desired translation is present in the TLB.

TLB miss The desired translation is not present in the TLB.

TNPC Trap-saved next program counter.

TPC Trap-saved program counter.

Translation Lookaside
Buffer A cache within an MMU that contains recently-used Translation Table Entries (TTEs). TLBs speed

up translations by often eliminating the need to reread TTEs from memory.

trap The action taken by a virtual processor when it changes the instruction flow in response to the
presence of an exception, reset, a Tcc instruction, or an interrupt. The action is a vectored transfer
of control to more-privileged software through a table, the address of which is specified by the
privileged Trap Base Address (TBA) register or the Hyperprivileged Trap Base Address (HTBA)
register. See also exception.

TSB Translation storage buffer. A table of the address translations that is maintained by software in
system memory and that serves as a cache of virtual-to-real address mappings.

TSO Total Store Order (a memory model).

TTE Translation Table Entry. Describes the virtual-to-real, virtual-to-physical, or real-to-physical
translation and page attributes for a specific page in the page table. In some cases, this term is
explicitly used to refer to entries in the TSB.

UA-2007 UltraSPARC Architecture 2007

unassigned A value (for example, an ASI number), the semantics of which are not architecturally mandated
and which may be determined independently by each implementation within any guidelines
given.
CHAPTER 2 • Definitions 13

undefined An aspect of the architecture that has deliberately been left unspecified. Software should have no
expectation of, nor make any assumptions about, an undefined feature or behavior. Use of such a
feature can deliver unexpected results and may or may not cause a trap. An undefined feature
may vary among implementations, and may also vary over time on a given implementation.

Notwithstanding any of the above, undefined aspects of the architecture shall not cause security
holes (such as changing the privilege state or allowing circumvention of normal restrictions
imposed by the privilege state), put a virtual processor into a more-privileged mode, or put the
virtual processor into an unrecoverable state.

unimplemented An architectural feature that is not directly executed in hardware because it is optional or is
emulated in software.

unpark The process of bringing a virtual processor out of suspension. There may be a delay until the
virtual processor is unparked, but no heavyweight operation (such as a reset) is required to
complete the unparking process. See also disable and park.

unparked Synonym for running.

unpredictable Synonym for undefined.

uniprocessor system A system containing a single virtual processor.

uncorrectable A term applied to an error when not enough information accompanies the incorrect signal or
datum to allow correction of the error, and it is not known by the error detector whether enough
such information exists elsewhere in the system. Examples include uncorrectable errors on L2s.
Uncorrectable errors can be further divided into two types: recoverable and unrecoverable. See
also correctable.

unrecoverable A term applied to an error when not enough information exists elsewhere in the system for
software to recover from an uncorrectable error. Examples include uncorrectable errors on dirty
L2 lines. See also recoverable.

unrestricted Describes an address space identifier (ASI) that can be used in all privileged modes; that is,
regardless of the value of PSTATE.priv and HPSTATE.hpriv.

user application
program Synonym for application program.

VA Abbreviation for virtual address.

virtual address An address produced by a virtual processor that refers to a particular software-visible memory
location. Virtual addresses usually are translated by a combination of hardware and software to
physical addresses, which can be used to access physical memory. See also physical address
and real address.

virtual core,
virtual processor core Synonyms for virtual processor.

virtual processor The term virtual processor, or virtual processor core, is used to identify each strand in a processor.
At any given time, an operating system can have a different thread scheduled on each virtual
processor. For a detailed definition of this term, see page 475. See also pipeline, physical core,
processor, strand, and thread.

VIS Abbreviation for VIS™ Instruction Set.

VP Abbreviation for virtual processor.

WDR Watchdog reset.

word A 4-byte datum. Note: The definition of this term is architecture dependent and may differ from
that used in other processor architectures.

XIR Externally initiated reset.
14 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

CHAPTER 3

Architecture Overview

The UltraSPARC Architecture supports 32-bit and 64-bit integer and 32-bit, 64-bit, and 128-bit
floating-point as its principal data types. The 32-bit and 64-bit floating-point types conform to IEEE
Std 754-1985. The 128-bit floating-point type conforms to IEEE Std 1596.5-1992. The architecture
defines general-purpose integer, floating-point, and special state/status register instructions, all
encoded in 32-bit-wide instruction formats. The load/store instructions address a linear, 264-byte
virtual address space.

The UltraSPARC Architecture 2007 specification describes a processor architecture to which Sun
Microsystem’s SPARC processor implementations (beginning with) comply. Future implementations
are expected to comply with either this document or a later revision of this document.

The UltraSPARC Architecture 2007 is a descendant of the SPARC V9 architecture and complies fully
with the “Level 1” (nonprivileged) SPARC V9 specification.

Nonprivileged (application) software that is intended to be portable across all SPARC V9 processors
should be written to adhere to The SPARC Architecture Manual-Version 9.

Material in this document specific to UltraSPARC Architecture 2007 processors may not apply to
SPARC V9 processors produced by other vendors.

In this specification, the word architecture refers to the processor features that are visible to an
assembly language programmer or to a compiler code generator. It does not include details of the
implementation that are not visible or easily observable by software, nor those that only affect timing
(performance).

3.1 The UltraSPARC Architecture 2007
This section briefly describes features, attributes, and components of the UltraSPARC Architecture
2007 and, further, describes correct implementation of the architecture specification and SPARC V9-
compliance levels.

3.1.1 Features
The UltraSPARC Architecture 2007, like its ancestor SPARC V9, includes the following principal
features:

■ A linear 64-bit address space with 64-bit addressing.

■ 32-bit wide instructions — These are aligned on 32-bit boundaries in memory. Only load and store
instructions access memory and perform I/O.

■ Few addressing modes — A memory address is given as either “register + register” or “register +
immediate”.
15

■ Triadic register addresses — Most computational instructions operate on two register operands or
one register and a constant and place the result in a third register.

■ A large windowed register file — At any one instant, a program sees 8 global integer registers plus
a 24-register window of a larger register file. The windowed registers can be used as a cache of
procedure arguments, local values, and return addresses.

■ Floating point — The architecture provides an IEEE 754-compatible floating-point instruction set,
operating on a separate register file that provides 32 single-precision (32-bit), 32 double-precision
(64-bit), and 16 quad-precision (128-bit) overlayed registers.

■ Fast trap handlers — Traps are vectored through a table.

■ Multiprocessor synchronization instructions — Multiple variations of atomic load-store memory
operations are supported.

■ Predicted branches — The branch with prediction instructions allows the compiler or assembly
language programmer to give the hardware a hint about whether a branch will be taken.

■ Branch elimination instructions — Several instructions can be used to eliminate branches
altogether (for example, Move on Condition). Eliminating branches increases performance in
superscalar and superpipelined implementations.

■ Hardware trap stack — A hardware trap stack is provided to allow nested traps. It contains all of
the machine state necessary to return to the previous trap level. The trap stack makes the handling
of faults and error conditions simpler, faster, and safer.

In addition, UltraSPARC Architecture 2007 includes the following features that were not present in the
SPARC V9 specification:

■ Hyperprivileged mode, which simplifies porting of operating systems, supports far greater
portability of operating system (privileged) software, supports the ability to run multiple
simultaneous guest operating systems, and provides more robust handling of error conditions.

■ Multiple levels of global registers — Instead of the two 8-register sets of global registers specified
in the SPARC V9 architecture, UltraSPARC Architecture 2007 provides multiple sets; typically, one
set is used at each trap level.

■ Extended instruction set — UltraSPARC Architecture 2007 provides many instruction set
extensions, including the VIS instruction set for "vector" (SIMD) data operations.

■ More detailed, specific instruction descriptions — UltraSPARC Architecture 2007 provides many
more details regarding what exceptions can be generated by each instruction and the specific
conditions under which those exceptions can occur. Also, detailed lists of valid ASIs are provided
for each load/store instruction from/to alternate space.

■ Detailed MMU architecture — Although some details of the UltraSPARC MMU architecture are
necessarily implementation-specifc, UltraSPARC Architecture 2007 provides a blueprint for the
UltraSPARC MMU, including software view (TTEs and TSBs) and MMU hardware control
registers.

■ Chip-Level Multithreading (CMT) — UltraSPARC Architecture 2007 provides a control
architecture for highly-threaded processor implementations.

3.1.2 Attributes
UltraSPARC Architecture 2007 is a processor instruction set architecture (ISA) derived from SPARC V8
and SPARC V9, which in turn come from a reduced instruction set computer (RISC) lineage. As an
architecture, UltraSPARC Architecture 2007 allows for a spectrum of processor and system
implementations at a variety of price/performance points for a range of applications, including
scientific/engineering, programming, real-time, and commercial applications.
16 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

3.1.2.1 Design Goals

The UltraSPARC Architecture 2007 architecture is designed to be a target for optimizing compilers
and high-performance hardware implementations. This specification documents the UltraSPARC
Architecture 2007 and provides a design spec against which an implementation can be verified, using
appropriate verification software.

3.1.2.2 Register Windows

The UltraSPARC Architecture 2007 architecture is derived from the SPARC architecture, which was
formulated at Sun Microsystems in 1984 through1987. The SPARC architecture is, in turn, based on
the RISC I and II designs engineered at the University of California at Berkeley from 1980 through
1982. The SPARC “register window” architecture, pioneered in the UC Berkeley designs, allows for
straightforward, high-performance compilers and a reduction in memory load/store instructions.

Note that privileged software, not user programs, manages the register windows. Privileged software
can save a minimum number of registers (approximately 24) during a context switch, thereby
optimizing context-switch latency.

3.1.3 System Components
The UltraSPARC Architecture 2007 allows for a spectrum of subarchitectures, such as cache system, I/
O, and memory management unit (MMU).

3.1.3.1 Binary Compatibility

The most important mandate for the UltraSPARC Architecture is compatibility across
implementations of the architecture for application (nonprivileged) software, down to the binary
level. Binaries executed in nonprivileged mode should behave identically on all UltraSPARC
Architecture systems when those systems are running an operating system known to provide a
standard execution environment. One example of such a standard environment is the SPARC V9
Application Binary Interface (ABI).

Although different UltraSPARC Architecture 2007 systems can execute nonprivileged programs at
different rates, they will generate the same results as long as they are run under the same memory
model. See Chapter 9, Memory, for more information.

Additionally, UltraSPARC Architecture 2007 is binary upward-compatible from SPARC V9 for
applications running in nonprivileged mode that conform to the SPARC V9 ABI and upward-
compatible from SPARC V8 for applications running in nonprivileged mode that conform to the
SPARC V8 ABI.

3.1.3.2 UltraSPARC Architecture 2007 MMU

Although the SPARC V9 architecture allows its implementations freedom in their MMU designs,
UltraSPARC Architecture 2007 defines a common MMU architecture (see Chapter 14, Memory
Management) with some specifics left to implementations (see processor implementation documents).

3.1.3.3 Privileged Software

UltraSPARC Architecture 2007 does not assume that all implementations must execute identical
privileged software (operating systems) or hyperprivileged software (hypervisors). Thus, certain traits
that are visible to privileged software may be tailored to the requirements of the system.
CHAPTER 3 • Architecture Overview 17

3.1.4 Architectural Definition
The UltraSPARC Architecture 2007 is defined by the chapters and appendixes of this specification. A
correct implementation of the architecture interprets a program strictly according to the rules and
algorithms specified in the chapters and appendixes.

UltraSPARC Architecture 2007 defines a set of implementations that conform to the SPARC V9
architecture, Level 1.

3.1.5 UltraSPARC Architecture 2007 Compliance with SPARC V9
Architecture
UltraSPARC Architecture 2007 fully complies with SPARC V9 Level 1 (nonprivileged). It partially
complies with SPARC V9 Level 2 (privileged).

3.1.6 Implementation Compliance with UltraSPARC Architecture
2007
Compliant implementations must not add to or deviate from this standard except in aspects described
as implementation dependent. Appendix B, Implementation Dependencies lists all UltraSPARC
Architecture 2007, SPARC V9, and SPARC V8 implementation dependencies. Documents for specific
UltraSPARC Architecture 2007 processor implementations describe the manner in which
implementation dependencies have been resolved in those implementations.

IMPL. DEP. #1-V8: Whether an instruction complies with UltraSPARC Architecture 2007 by being
implemented directly by hardware, simulated by software, or emulated by firmware is
implementation dependent.

3.2 Processor Architecture
An UltraSPARC Architecture processor logically consists of an integer unit (IU) and a floating-point
unit (FPU), each with its own registers. This organization allows for implementations with concurrent
integer and floating-point instruction execution. Integer registers are 64 bits wide; floating-point
registers are 32, 64, or 128 bits wide. Instruction operands are single registers, register pairs, register
quadruples, or immediate constants.

An UltraSPARC Architecture virtual processor can run in nonprivileged mode, privileged mode, or
hyperprivileged mode. In hyperprivileged mode, the processor can execute any instruction, including
privileged instructions. In privileged mode, the processor can execute nonprivileged and privileged
instructions. In nonprivileged mode, the processor can only execute nonprivileged instructions. In
nonprivileged or privileged mode, an attempt to execute an instruction requiring greater privilege
than the current mode causes a trap to hyperprivileged software.

3.2.1 Integer Unit (IU)
An UltraSPARC Architecture 2007 implementation’s integer unit contains the general-purpose
registers and controls the overall operation of the virtual processor. The IU executes the integer
arithmetic instructions and computes memory addresses for loads and stores. It also maintains the
program counters and controls instruction execution for the FPU.
18 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

IMPL. DEP. #2-V8: An UltraSPARC Architecture implementation may contain from 72 to 640 general-
purpose 64-bit R registers. This corresponds to a grouping of the registers into MAXGL + 1 sets of
global R registers plus a circular stack of N_REG_WINDOWS sets of 16 registers each, known as register
windows. The number of register windows present (N_REG_WINDOWS) is implementation dependent,
within the range of 3 to 32 (inclusive).

3.2.2 Floating-Point Unit (FPU)
An UltraSPARC Architecture 2007 implementation’s FPU has thirty-two 32-bit (single-precision)
floating-point registers, thirty-two 64-bit (double-precision) floating-point registers, and sixteen 128-
bit (quad-precision) floating-point registers, some of which overlap.

If no FPU is present, then it appears to software as if the FPU is permanently disabled.

If the FPU is not enabled, then an attempt to execute a floating-point instruction generates an
fp_disabled trap and the fp_disabled trap handler software must either

■ Enable the FPU (if present) and reexecute the trapping instruction, or
■ Emulate the trapping instruction in software.

3.3 Instructions
Instructions fall into the following basic categories:

■ Memory access
■ Integer arithmetic / logical / shift
■ Control transfer
■ State register access
■ Floating-point operate
■ Conditional move
■ Register window management
■ SIMD (single instruction, multiple data) instructions

These classes are discussed in the following subsections.

3.3.1 Memory Access
Load, store, load-store, and PREFETCH instructions are the only instructions that access memory.
They use two R registers or an R register and a signed 13-bit immediate value to calculate a 64-bit,
byte-aligned memory address. The Integer Unit appends an ASI to this address.

The destination field of the load/store instruction specifies either one or two R registers or one, two,
or four F registers that supply the data for a store or that receive the data from a load.

Integer load and store instructions support byte, halfword (16-bit), word (32-bit), and extended-word
(64-bit) accesses. There are versions of integer load instructions that perform either sign-extension or
zero-extension on 8-bit, 16-bit, and 32-bit values as they are loaded into a 64-bit destination register.
Floating-point load and store instructions support word, doubleword, and quadword1 memory
accesses.

1. No UltraSPARC Architecture processor currently implements the LDQF instruction in hardware; it generates an exception and is
emulated in hyperprivileged software.
CHAPTER 3 • Architecture Overview 19

CASA, CASXA, and LDSTUB are special atomic memory access instructions that concurrent processes
use for synchronization and memory updates.

The (nonportable) LDTXA instruction supplies an atomic 128-bit (16-byte) load that is important in
certain system software applications.

3.3.1.1 Memory Alignment Restrictions

A memory access on an UltraSPARC Architecture virtual processor must typically be aligned on an
address boundary greater than or equal to the size of the datum being accessed. An improperly
aligned address in a load, store, or load-store in instruction may trigger an exception and cause a
subsequent trap. For details, see Memory Alignment Restrictions on page 83.

3.3.1.2 Addressing Conventions

The UltraSPARC Architecture uses big-endian byte order by default: the address of a quadword,
doubleword, word, or halfword is the address of its most significant byte. Increasing the address
means decreasing the significance of the unit being accessed. All instruction accesses are performed
using big-endian byte order.

The UltraSPARC Architecture also supports little-endian byte order for data accesses only: the address
of a quadword, doubleword, word, or halfword is the address of its least significant byte. Increasing
the address means increasing the significance of the data unit being accessed.

Addressing conventions are illustrated in FIGURE 6-2 on page 85 and FIGURE 6-3 on page 87.

3.3.1.3 Addressing Range

IMPL. DEP. #405-S10: An UltraSPARC Architecture implementation may support a full 64-bit virtual
address space or a more limited range of virtual addresses. In an implementation that does not
support a full 64-bit virtual address space, the supported range of virtual addresses is restricted to
two equal-sized ranges at the extreme upper and lower ends of 64-bit addresses; that is, for n-bit
virtual addresses, the valid address ranges are 0 to 2n−1 − 1 and 264 − 2n−1 to 264 − 1.

3.3.1.4 Load/Store Alternate

Versions of load/store instructions, the load/store alternate instructions, can specify an arbitrary 8-bit
address space identifier for the load/store data access.
Access to alternate spaces 0016–2F16 is restricted to privileged and hyperprivileged software, access to
alternate spaces 3016–7F16 is restricted to hyperprivileged software, and access to alternate spaces
8016–FF16 is unrestricted. Some of the ASIs are available for implementation-dependent uses.
Privileged and hyperprivileged software can use the implementation-dependent ASIs to access special
protected registers, such as MMU control registers, cache control registers, virtual processor state
registers, and other processor-dependent or system-dependent values. See Address Space Identifiers
(ASIs) on page 87 for more information.

Alternate space addressing is also provided for the atomic memory access instructions LDSTUBA,
CASA, and CASXA.

Note The SWAP instruction is also specified, but it is deprecated and
should not be used in newly developed software.

Note The SWAPA instruction is also specified, but it is deprecated and
should not be used in newly developed software.
20 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

3.3.1.5 Separate Instruction and Data Memories

The interpretation of addresses can be unified, in which case the same translations and caching are
applied to both instructions and data. Alternatively, addresses can be “split”, in which case instruction
references use one caching and translation mechanism and data references use another, although the
same underlying main memory is shared.

In such split-memory systems, the coherency mechanism may be split, so a write1 into data memory
is not immediately reflected in instruction memory. For this reason, programs that modify their own
instruction stream (self-modifying code2) and that wish to be portable across all UltraSPARC
Architecture (and SPARC V9) processors must issue FLUSH instructions, or a system call with a
similar effect, to bring the instruction and data caches into a consistent state.

An UltraSPARC Architecture virtual processor may or may not have coherent instruction and data
caches. Even if an implementation does have coherent instruction and data caches, a FLUSH
instruction is required for self-modifying code — not for cache coherency, but to flush pipeline
instruction buffers that contain unmodified instructions which may have been subsequently modified.

3.3.1.6 Input/Output (I/O)

The UltraSPARC Architecture assumes that input/output registers are accessed through load/store
alternate instructions, normal load/store instructions, or read/write Ancillary State Register
instructions (RDasr, WRasr).

IMPL. DEP. #123-V9: The semantic effect of accessing input/output (I/O) locations is implementation
dependent.

IMPL. DEP. #6-V8: Whether the I/O registers can be accessed by nonprivileged code is
implementation dependent.

IMPL. DEP. #7-V8: The addresses and contents of I/O registers are implementation dependent.

3.3.1.7 Memory Synchronization

Two instructions are used for synchronization of memory operations: FLUSH and MEMBAR. Their
operation is explained in Flush Instruction Memory on page 146 and Memory Barrier on page 217,
respectively.

3.3.2 Integer Arithmetic / Logical / Shift Instructions
The arithmetic/logical/shift instructions perform arithmetic, tagged arithmetic, logical, and shift
operations. With one exception, these instructions compute a result that is a function of two source
operands; the result is either written into a destination register or discarded. The exception, SETHI,
can be used in combination with other arithmetic and/or logical instructions to create a constant in an
R register.

Shift instructions shift the contents of an R register left or right by a given number of bits (“shift
count”). The shift distance is specified by a constant in the instruction or by the contents of an R
register.

1. this includes use of store instructions (executed on the same or another virtual processor) that write to instruction memory, or any
other means of writing into instruction memory (for example, DMA)

2. this is practiced, for example, by software such as debuggers and dynamic linkers

Note STBAR is also available, but it is deprecated and should not be
used in newly developed software.
CHAPTER 3 • Architecture Overview 21

3.3.3 Control Transfer
Control-transfer instructions (CTIs) include PC-relative branches and calls, register-indirect jumps,
and conditional traps. Most of the control-transfer instructions are delayed; that is, the instruction
immediately following a control-transfer instruction in logical sequence is dispatched before the
control transfer to the target address is completed. Note that the next instruction in logical sequence
may not be the instruction following the control-transfer instruction in memory.

The instruction following a delayed control-transfer instruction is called a delay instruction. Setting
the annul bit in a conditional delayed control-transfer instruction causes the delay instruction to be
annulled (that is, to have no effect) if and only if the branch is not taken. Setting the annul bit in an
unconditional delayed control-transfer instruction (“branch always”) causes the delay instruction to
be always annulled.

Branch and CALL instructions use PC-relative displacements. The jump and link (JMPL) and return
(RETURN) instructions use a register-indirect target address. They compute their target addresses
either as the sum of two R registers or as the sum of an R register and a 13-bit signed immediate
value. The “branch on condition codes without prediction” instruction provides a displacement of ±8
Mbytes; the “branch on condition codes with prediction” instruction provides a displacement of ±1
Mbyte; the “branch on register contents” instruction provides a displacement of ±128 Kbytes; and the
CALL instruction’s 30-bit word displacement allows a control transfer to any address within ± 2
gigabytes (± 231 bytes).

3.3.4 State Register Access

3.3.4.1 Ancillary State Registers

The read and write ancillary state register instructions read and write the contents of ancillary state
registers visible to nonprivileged software (Y, CCR, ASI, PC, TICK, and FPRS) and some registers
visible only to privileged and hyperprivileged software (SOFTINT, TICK_CMPR, and STICK_CMPR).

IMPL. DEP. #8-V8-Cs20: Ancillary state registers (ASRs) in the range 0–27 that are not defined in
UltraSPARC Architecture 2007 are reserved for future architectural use. ASRs in the range 28–31 are
available to be used for implementation-dependent purposes.

IMPL. DEP. #9-V8-Cs20: The privilege level required to execute each of the implementation-
dependent read/write ancillary state register instructions (for ASRs 28–31) is implementation
dependent.

3.3.4.2 PR State Registers

The read and write privileged register instructions (RDPR and WRPR) read and write the contents of
state registers visible only to privileged and hyperprivileged software (TPC, TNPC, TSTATE, TT,
TICK, TBA, PSTATE, TL, PIL, CWP, CANSAVE, CANRESTORE, CLEANWIN, OTHERWIN, and
WSTATE).

Note The SPARC V8 architecture specified that the delay instruction
was always fetched, even if annulled, and that an annulled
instruction could not cause any traps. The SPARC V9
architecture does not require the delay instruction to be fetched
if it is annulled.

Note The return from privileged trap instructions (DONE and
RETRY) get their target address from the appropriate TPC or
TNPC register.
22 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

3.3.4.3 HPR State Registers

The read and write hyperprivileged register instructions (RDHPR and WRHPR) read and write the
contents of state registers visible only to hyperprivileged software (HPSTATE, HTSTATE, HINTP,
HVER, and HSTICK_CMPR).

3.3.5 Floating-Point Operate
Floating-point operate (FPop) instructions perform all floating-point calculations; they are register-to-
register instructions that operate on the floating-point registers. FPops compute a result that is a
function of one , two, or three source operands. The groups of instructions that are considered FPops
are listed in Floating-Point Operate (FPop) Instructions on page 96.

3.3.6 Conditional Move
Conditional move instructions conditionally copy a value from a source register to a destination
register, depending on an integer or floating-point condition code or on the contents of an integer
register. These instructions can be used to reduce the number of branches in software.

3.3.7 Register Window Management
Register window instructions manage the register windows. SAVE and RESTORE are nonprivileged
and cause a register window to be pushed or popped. FLUSHW is nonprivileged and causes all of the
windows except the current one to be flushed to memory. SAVED and RESTORED are used by
privileged software to end a window spill or fill trap handler.

3.3.8 SIMD
UltraSPARC Architecture 2007 includes SIMD (single instruction, multiple data) instructions, also
known as "vector" instructions, which allow a single instruction to perform the same operation on
multiple data items, totalling 64 bits, such as eight 8-bit, four 16-bit, or two 32-bit data items. These
operations are part of the “VIS” extensions.

3.4 Traps
A trap is a vectored transfer of control to privileged or hyperprivileged software through a trap table
that may contain the first 8 instructions (32 for some frequently used traps) of each trap handler. The
base address of the table is established by software in a state register (the Trap Base Address register,
TBA, or the Hyperprivileged Trap Base Register, HTBA). The displacement within the table is encoded
in the type number of each trap and the level of the trap. Part of the trap table is reserved for
hardware traps, and part of it is reserved for software traps generated by trap (Tcc) instructions.

A trap causes the current PC and NPC to be saved in the TPC and TNPC registers. It also causes the
CCR, ASI, PSTATE, and CWP registers to be saved in TSTATE. TPC, TNPC, and TSTATE are entries in
a hardware trap stack, where the number of entries in the trap stack is equal to the number of
supported trap levels. A trap causes hyperprivileged state to be saved in the HTSTATE trap stack. A
trap also sets bits in the PSTATE (and, in some cases, HPSTATE) register and typically increments the
GL register. Normally, the CWP is not changed by a trap; on a window spill or fill trap, however, the
CWP is changed to point to the register window to be saved or restored.
CHAPTER 3 • Architecture Overview 23

A trap can be caused by a Tcc instruction, an asynchronous exception, an instruction-induced
exception, or an interrupt request not directly related to a particular instruction. Before executing each
instruction, a virtual processor determines if there are any pending exceptions or interrupt requests. If
any are pending, the virtual processor selects the highest-priority exception or interrupt request and
causes a trap.

See Chapter 12, Traps, for a complete description of traps.

3.5 Chip-Level Multithreading (CMT)
An UltraSPARC Architecture implementation may include multiple virtual processor cores on the
same processor module to provide a dense, high-throughput system. This may be achieved by having
a combination of multiple physical processor cores and/or multiple strands (threads) per physical
processor core, referred to as chip-level multithreaded (CMT) processors. CMT-specific
hyperprivileged registers are used for identification and configuration of CMT processors.

The CMT programming model describes a common interface between hardware (CMT registers) and
software

The common CMT registers and the CMT programming model are described in Chapter 15, Chip-Level
Multithreading (CMT).
24 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

CHAPTER 4

Data Formats

The UltraSPARC Architecture recognizes these fundamental data types:
■ Signed integer: 8, 16, 32, and 64 bits
■ Unsigned integer: 8, 16, 32, and 64 bits
■ SIMD data formats: Uint8 SIMD (32 bits), Int16 SIMD (64 bits), and Int32 SIMD (64 bits)
■ Floating point: 32, 64, and 128 bits

The widths of the data types are as follows:
■ Byte: 8 bits
■ Halfword: 16 bits
■ Word: 32 bits
■ Tagged word: 32 bits (30-bit value plus 2-bit tag)
■ Doubleword/Extended-word: 64 bits
■ Quadword: 128 bits

The signed integer values are stored as two’s-complement numbers with a width commensurate with
their range. Unsigned integer values, bit vectors, Boolean values, character strings, and other values
representable in binary form are stored as unsigned integers with a width commensurate with their
range. The floating-point formats conform to the IEEE Standard for Binary Floating-point Arithmetic,
IEEE Std 754-1985. In tagged words, the least significant two bits are treated as a tag; the remaining 30
bits are treated as a signed integer.

Data formats are described in these sections:
■ Integer Data Formats on page 26.
■ Floating-Point Data Formats on page 29.
■ SIMD Data Formats on page 31.

Names are assigned to individual subwords of the multiword data formats as described in these
sections:
■ Signed Integer Doubleword (64 bits) on page 27.
■ Unsigned Integer Doubleword (64 bits) on page 28.
■ Floating Point, Double Precision (64 bits) on page 29.
■ Floating Point, Quad Precision (128 bits) on page 30.
25

4.1 Integer Data Formats
TABLE 4-1 describes the width and ranges of the signed, unsigned, and tagged integer data formats.

TABLE 4-2 describes the memory and register alignment for multiword integer data. All registers in the
integer register file are 64 bits wide, but can be used to contain smaller (narrower) data sizes. Note
that there is no difference between integer extended-words and doublewords in memory; the only
difference is how they are represented in registers.

The data types are illustrated in the following subsections.

4.1.1 Signed Integer Data Types
Figures in this section illustrate the following signed data types:

■ Signed integer byte
■ Signed integer halfword
■ Signed integer word
■ Signed integer doubleword
■ Signed integer extended-word

TABLE 4-1 Signed Integer, Unsigned Integer, and Tagged Format Ranges

Data Type
Width
(bits) Range

Signed integer byte 8 −27 to 27 − 1

Signed integer halfword 16 −215 to 215 − 1

Signed integer word 32 −231 to 231 − 1

Signed integer doubleword/extended-word 64 −263 to 263 − 1

Unsigned integer byte 8 0 to 28 − 1

Unsigned integer halfword 16 0 to 216 − 1

Unsigned integer word 32 0 to 232 − 1

Unsigned integer doubleword/extended-word 64 0 to 264 − 1

Integer tagged word 32 0 to 230 − 1

TABLE 4-2 Integer Doubleword/Extended-word Alignment

Subformat
Name Subformat Field

Memory Address Register Number

Required
Alignment

Address
(big-endian)1

1. The Memory Address in this table applies to big-endian memory accesses. Word and byte order are reversed when little-endian access-
es are used.

Required
Alignment

Register
Number

SD-0 signed_dbl_integer{63:32} n mod 8 = 0 n r mod 2 = 0 r

SD-1 signed_dbl_integer{31:0} (n + 4) mod 8 = 4 n + 4 (r + 1) mod 2 = 1 r + 1

SX signed_ext_integer{63:0} n mod 8 = 0 n — r

UD-0 unsigned_dbl_integer{63:32} n mod 8 = 0 n r mod 2 = 0 r

UD-1 unsigned_dbl_integer{31:0} (n + 4) mod 8 = 4 n + 4 (r + 1) mod 2 = 1 r + 1

UX unsigned_ext_integer{63:0} n mod 8 = 0 n — r
26 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

4.1.1.1 Signed Integer Byte, Halfword, and Word

FIGURE 4-1 illustrates the signed integer byte, halfword, and word data formats.

FIGURE 4-1 Signed Integer Byte, Halfword, and Word Data Formats

4.1.1.2 Signed Integer Doubleword (64 bits)

FIGURE 4-2 illustrates both components (SD-0 and SD-1) of the signed integer double data format.

FIGURE 4-2 Signed Integer Double Data Format

4.1.1.3 Signed Integer Extended-Word (64 bits)

FIGURE 4-3 illustrates the signed integer extended-word (SX) data format.

FIGURE 4-3 Signed Integer Extended-Word Data Format

4.1.2 Unsigned Integer Data Types
Figures in this section illustrate the following unsigned data types:

■ Unsigned integer byte
■ Unsigned integer halfword
■ Unsigned integer word
■ Unsigned integer doubleword
■ Unsigned integer extended-word

7 6 0

S

15 14 0

S

31 30 0

S

SB

SH

SW

31 30 0

SSD–0

SD–1

31 0

signed_int_doubleword{62:32}

signed_int_doubleword{31:0}

63 62 0

S signed_int_extendedSX
CHAPTER 4 • Data Formats 27

4.1.2.1 Unsigned Integer Byte, Halfword, and Word

FIGURE 4-4 illustrates the unsigned integer byte data format.

FIGURE 4-4 Unsigned Integer Byte, Halfword, and Word Data Formats

4.1.2.2 Unsigned Integer Doubleword (64 bits)

FIGURE 4-5 illustrates both components (UD-0 and UD-1) of the unsigned integer double data format.

FIGURE 4-5 Unsigned Integer Double Data Format

4.1.2.3 Unsigned Extended Integer (64 bits)

FIGURE 4-6 illustrates the unsigned extended integer (UX) data format.

FIGURE 4-6 Unsigned Extended Integer Data Format

4.1.3 Tagged Word (32 bits)
FIGURE 4-7 illustrates the tagged word data format.

FIGURE 4-7 Tagged Word Data Format

7 0

15 0

31 0

UB

UH

UW

31 0

UD–0

UD–1

31 0

unsigned_int_doubleword{63:32}

unsigned_int_doubleword{31:0}

63 0

unsigned_int_extendedUX

31 0

tag

2 1

TW
28 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

4.2 Floating-Point Data Formats
Single-precision, double-precision, and quad-precision floating-point data types are described below.

4.2.1 Floating Point, Single Precision (32 bits)
FIGURE 4-8 illustrates the floating-point single-precision data format, and TABLE 4-3 describes the
formats.

FIGURE 4-8 Floating-Point Single-Precision Data Format

4.2.2 Floating Point, Double Precision (64 bits)
FIGURE 4-9 illustrates both components (FD-0 and FD-1) of the floating-point double-precision data
format, and TABLE 4-4 describes the formats.

FIGURE 4-9 Floating-Point Double-Precision Data Format

TABLE 4-3 Floating-Point Single-Precision Format Definition

s = sign (1 bit)
e = biased exponent (8 bits)
f = fraction (23 bits)
u = undefined

Normalized value (0 < e < 255): (−1)s × 2e−127 × 1.f

Subnormal value (e = 0): (−1)s × 2−126 × 0.f

Zero (e = 0, f = 0) (−1)s × 0

Signalling NaN s = u; e = 255 (max); f = .0uu--uu
(At least one bit of the fraction must be nonzero)

Quiet NaN s = u; e = 255 (max); f = .1uu--uu

− ∞ (negative infinity) s = 1; e = 255 (max); f = .000--00

+ ∞ (positive infinity) s = 0; e = 255 (max); f = .000--00

31 30 0

S

2223

FS exp{7:0} fraction{22:0}

31 30 0

S

1920

FD–0

FD–1

31 0

fraction{31:0}

fraction{51:32}exp{10:0}
CHAPTER 4 • Data Formats 29

4.2.3 Floating Point, Quad Precision (128 bits)
FIGURE 4-10 illustrates all four components (FQ-0 through FQ-3) of the floating-point quad-precision
data format, and TABLE 4-5 describes the formats.

FIGURE 4-10 Floating-Point Quad-Precision Data Format

TABLE 4-4 Floating-Point Double-Precision Format Definition

s = sign (1 bit)
e = biased exponent (11 bits)
f = fraction (52 bits)
u = undefined

Normalized value (0 < e < 2047): (−1)s × 2e−1023 × 1.f

Subnormal value (e = 0): (−1)s × 2−1022 × 0.f

Zero (e = 0, f = 0) (−1)s × 0

Signalling NaN s = u; e = 2047 (max); f = .0uu--uu
(At least one bit of the fraction must be nonzero)

Quiet NaN s = u; e = 2047 (max); f = .1uu--uu

− ∞ (negative infinity) s = 1; e = 2047 (max); f = .000--00

+ ∞ (positive infinity) s = 0; e = 2047 (max); f = .000--00

TABLE 4-5 Floating-Point Quad-Precision Format Definition

s = sign (1 bit)
e = biased exponent (15 bits)
f = fraction (112 bits)
u = undefined

Normalized value (0 < e < 32767): (-1)s × 2e−16383 × 1.f

Subnormal value (e = 0): (-1)s × 2−16382 × 0.f

Zero (e = 0, f = 0) (-1)s × 0

Signalling NaN s = u; e = 32767 (max); f = .0uu--uu
(At least one bit of the fraction must be nonzero)

31 30 0

S

1516

FQ–0

FQ–1

FQ–2

FQ–3

31 0

31 0

31 0

fraction{31:0}

fraction{63:32}

fraction{95:64}

fraction{111:96}exp{14:0}
30 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

4.2.4 Floating-Point Data Alignment in Memory and Registers
TABLE 4-6 describes the address and memory alignment for floating-point data.

4.3 SIMD Data Formats
SIMD (single instruction/multiple data) instructions perform identical operations on multiple data
contained (“packed”) in each source operand. This section describes the data formats used by SIMD
instructions.

Conversion between the different SIMD data formats can be achieved through SIMD multiplication or
by the use of the SIMD data formatting instructions.

Quiet NaN s = u; e = 32767 (max); f = .1uu--uu

− ∞ (negative infinity) s = 1; e = 32767 (max); f = .000--00

+ ∞ (positive infinity) s = 0; e = 32767 (max); f = .000--00

TABLE 4-6 Floating-Point Doubleword and Quadword Alignment

Subformat
Name Subformat Field

Memory Address Register Number

Required
Alignment

Address
(big-endian)*

Required
Alignment

Register
Number

FD-0 s:exp{10:0}:fraction{51:32} 0 mod 4 † n 0 mod 2 f

FD-1 fraction{31:0} 0 mod 4 † n + 4 1 mod 2 f + 1◊

FQ-0 s:exp{14:0}:fraction{111:96} 0 mod 4 ‡ n 0 mod 4 f

FQ-1 fraction{95:64} 0 mod 4 ‡ n + 4 1 mod 4 f + 1◊

FQ-2 fraction{63:32} 0 mod 4 ‡ n + 8 2 mod 4 f + 2

FQ-3 fraction{31:0} 0 mod 4 ‡ n + 12 3 mod 4 f + 3◊

* The memory Address in this table applies to big-endian memory accesses. Word and byte order are reversed when little-endian
accesses are used.

† Although a floating-point doubleword is required only to be word-aligned in memory, it is recommended that it be double-
word-aligned (that is, the address of its FD-0 word should be 0 mod 8 so that it can be accessed with doubleword loads/stores
instead of multiple singleword loads/stores).

‡ Although a floating-point quadword is required only to be word-aligned in memory, it is recommended that it be quadword-
aligned (that is, the address of its FQ-0 word should be 0 mod 16).

◊ Note that this 32-bit floating-point register is only directly addressable in the lower half of the register file (that is, if its register
number is ≤ 31).

TABLE 4-5 Floating-Point Quad-Precision Format Definition (Continued)

s = sign (1 bit)
e = biased exponent (15 bits)
f = fraction (112 bits)
u = undefined
CHAPTER 4 • Data Formats 31

4.3.1 Uint8 SIMD Data Format
The Uint8 SIMD data format consists of four unsigned 8-bit integers contained in a 32-bit word (see
FIGURE 4-11).

FIGURE 4-11 Uint8 SIMD Data Format

4.3.2 Int16 SIMD Data Formats
The Int16 SIMD data format consists of four signed 16-bit integers contained in a 64-bit word (see
FIGURE 4-12).

FIGURE 4-12 Int16 SIMD Data Format

4.3.3 Int32 SIMD Data Format
The Int32 SIMD data format consists of two signed 32-bit integers contained in a 64-bit word (see
FIGURE 4-13).

FIGURE 4-13 Int32 SIMD Data Format

Programming
Note

The SIMD data formats can be used in graphics calculations to
represent intensity values for an image (e.g., α, B, G, R).

Intensity values are typically grouped in one of two ways, when
using SIMD data formats:

■ Band interleaved images, with the various color components
of a point in the image stored together, and

■ Band sequential images, with all of the values for one color
component stored together.

Programming
Note

The integer SIMD data formats can be used to hold fixed-point
data. The position of the binary point in a SIMD datum is
implied by the programmer and does not influence the
computations performed by instructions that operate on that
SIMD data format.

31 24 023 15 8 716

value0 value1 value3value2
Uint8 SIMD

63 48 0

s0 value0

47 32 31 16 1562

s1 value1

46

s2 value2

30

s3

14

value3
Int16
SIMD

63 032 31

s0

62

value0 s1

30

value1
Int32
SIMD
32 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

CHAPTER 5

Registers

The following registers are described in this chapter:
■ General-Purpose R Registers on page 35.
■ Floating-Point Registers on page 40.
■ Floating-Point State Register (FSR) on page 44.
■ Ancillary State Registers on page 50. The following registers are included in this category:

■ 32-bit Multiply/Divide Register (Y) (ASR 0) on page 52.
■ Integer Condition Codes Register (CCR) (ASR 2) on page 52.
■ Address Space Identifier (ASI) Register (ASR 3) on page 53.
■ Tick (TICK) Register (ASR 4) on page 54.
■ Program Counters (PC, NPC) (ASR 5) on page 55.
■ Floating-Point Registers State (FPRS) Register (ASR 6) on page 55.
■ General Status Register (GSR) (ASR 19) on page 56.
■ SOFTINTP Register (ASRs 20, 21, 22) on page 57.
■ SOFTINT_SETP Pseudo-Register (ASR 20) on page 58.
■ SOFTINT_CLRP Pseudo-Register (ASR 21) on page 59.
■ Tick Compare (TICK_CMPRP) Register (ASR 23) on page 59.
■ System Tick (STICK) Register (ASR 24) on page 59.
■ System Tick Compare (STICK_CMPRP) Register (ASR 25) on page 60.

■ Register-Window PR State Registers on page 61. The following registers are included in this
subcategory:
■ Current Window Pointer (CWPP) Register (PR 9) on page 62.
■ Savable Windows (CANSAVEP) Register (PR 10) on page 62.
■ Restorable Windows (CANRESTOREP) Register (PR 11) on page 62.
■ Clean Windows (CLEANWINP) Register (PR 12) on page 62.
■ Other Windows (OTHERWINP) Register (PR 13) on page 63.
■ Window State (WSTATEP) Register (PR 14) on page 63.

■ Non-Register-Window PR State Registers on page 64. The following registers are included in this
subcategory:
■ Trap Program Counter (TPCP) Register (PR 0) on page 64.
■ Trap Next PC (TNPCP) Register (PR 1) on page 65.
■ Trap State (TSTATEP) Register (PR 2) on page 66.
■ Trap Type (TTP) Register (PR 3) on page 67.
■ Trap Base Address (TBAP) Register (PR 5) on page 67.
■ Processor State (PSTATEP) Register (PR 6) on page 68.
■ Trap Level Register (TLP) (PR 7) on page 72.
■ Processor Interrupt Level (PILP) Register (PR 8) on page 73.
■ Global Level Register (GLP) (PR 16) on page 73.

■ HPR State Registers on page 75. The following registers are included in this category.
■ Hyperprivileged State (HPSTATEH) Register (HPR 0) on page 75.
■ Hyperprivileged Trap State (HTSTATEH) Register (HPR 1) on page 76.
■ Hyperprivileged Interrupt Pending (HINTPH) Register (HPR 3) on page 77.
■ Hyperprivileged Trap Base Address (HTBAH) Register (HPR 5) on page 78.
■ Hyperprivileged Implementation Version (HVERH) Register (HPR 6) on page 78.
■ Hyperprivileged System Tick Compare (HSTICK_CMPRH) Register (HPR 31) on page 79.
33

There are additional registers that may be accessed through ASIs; those registers are described in
Chapter 10, Address Space Identifiers (ASIs).

5.1 Reserved Register Fields
Some register bit fields in this specification are explicitly marked as "reserved". In addition, for
convenience, some registers in this chapter are illustrated as fewer than 64 bits wide. Any bits not
illustrated are implicitly reserved and treated as if they were explicitly marked as reserved.

Reserved bits, whether explicitly or implicitly reserved, may be assigned meaning in future versions
of the architecture.

To ensure that existing software will continue to operate correctly, software must take into account
that reserved register bits may be used in the future. The following Programming and
Implementation Notes support that intent.

Programming
Notes

Software should ensure that when a reserved register field is
written, it is only written with (1) the value zero or (2) a value
previously read from that field.

If software writes a reserved register field to any value other
than (1) zero or (2) a value previously read from that field, it is
considered a software error. Such an error:

• may or may not be detected or reported (for example, by a trap) by
UltraSPARC Architecture 2007 processors (and software should not
expect that it will be)

• may cause a trap or cause other unintended behavior when executed
on future UltraSPARC Architecture processors

When a register is read, software should not assume that
register fields reserved in UltraSPARC Architecture 2007 will
read as 0 or any other particular value, either now or in the
future.

Implementation
Notes

When a register is read by software, an UltraSPARC
Architecture 2007 virtual processor should return a value of zero
for any bits reserved in UltraSPARC Architecture 2007

When software attempts to change the contents of a register
field that is reserved in UltraSPARC Architecture 200x by
writing a value to that field that differs from the current
contents of that field, an UltraSPARC Architecture 200x virtual
processor will either ignore the write to that field or cause an
exception. "Current contents" means the contents that software
would observe if it read that field (nominally zero).
34 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

5.2 General-Purpose R Registers
An UltraSPARC Architecture virtual processor contains an array of general-purpose 64-bit R registers.
The array is partitioned into MAXGL + 1 sets of eight global registers, plus N_REG_WINDOWS groups of 16
registers each. The value of N_REG_WINDOWS in an UltraSPARC Architecture implementation falls
within the range 3 to 32 (inclusive).

One set of 8 global registers is always visible. At any given time, a group of 24 registers, known as a
register window, is also visible. A register window comprises the 16 registers from the current 16-
register group (referred to as 8 in registers and 8 local registers), plus half of the registers from the next
16-register group (referred to as 8 out registers). See FIGURE 5-1.

SPARC instructions use 5-bit fields to reference R registers. That is, 32 R registers are visible to
software at any moment. Which 32 out of the full set of R registers are visible is described in the
following sections. The visible 32 R registers are named R[0] through R[31], illustrated in FIGURE 5-1.

i7R[31]

i6R[30]

i5R[29]

i4R[28]

i3R[27]

i2R[26]

i1R[25]

i0R[24]

R[23]

R[22]

R[21]

R[20]

R[19]

R[18]

R[17]

R[16]

R[15]

R[14]

R[13]

R[12]

R[11]

R[10]

R[9]

R[8]

R[7]

R[6]

R[5]

R[4]

R[3]

R[2]

R[1]

R[0]

l7

l6

l5

l4

l3

l2

l1

l0

o7

o6

o5

o4

o3

o2

o1

o0

g7

g6

g5

g4

g3

g2

g1

g0

FIGURE 5-1 General-Purpose Registers (as Visible at Any Given Time)

ins

locals

outs

globals
CHAPTER 5 • Registers 35

5.2.1 Global R Registers
Registers R[0]–R[7] refer to a set of eight registers called the global registers (labelled g0 through g7).
At any time, one of MAXGL +1 sets of eight registers is enabled and can be accessed as the current set
of global registers. The currently enabled set of global registers is selected by the GL register. See
Global Level Register (GLP) (PR 16) on page 73.

Global register zero (G0) always reads as zero; writes to it have no software-visible effect.

5.2.2 Windowed R Registers
A set of 24 R registers that is visible as R[8]–R[31] at any given time is called a “register window”.
The registers that become R[8]–R[15] in a register window are called the out registers of the window.
Note that the in registers of a register window become the out registers of an adjacent register
window. See TABLE 5-1 and FIGURE 5-2.

The names in, local, and out originate from the fact that the out registers are typically used to pass
parameters from (out of) a calling routine and that the called routine receives those parameters as its
in registers.

TABLE 5-1 Window Addressing

Windowed Register Address R Register Address

in[0] – in[7] R[24] – R[31]

local[0] – local[7] R[16] – R[23]

out[0] – out[7] R[8] – R[15]

global[0] – global[7] R[0] – R[7]

V9 Compatibility
Notes

In the SPARC V9 architecture, the number of 16-register
windowed register sets, N_REG_WINDOWS, ranges from 3† to 32
(impl. dep. #2-V8).

The maximum global register set index in the UltraSPARC
Architecture, MAXGL, ranges from 2 to 15. The number of
implemented global register sets is MAXGL + 1.

The total number of R registers in a given UltraSPARC
Architecture implementation is:

(N_REG_WINDOWS × 16) + ((MAXGL + 1) × 8)
Therefore, an UltraSPARC Architecture processor may contain
from 72 to 640 R registers.

†. The controlling equation for register window operation, as described in 5.6.7.1 on page 63, is:
CANSAVE + CANRESTORE + OTHERWIN = N_REG_WINDOWS – 2

Since N_REG_WINDOWS cannot be negative, the minimum number of implemented register windows is “2”.
However, since the SAVED and RESTORED instructions increment CANSAVE and CANRESTORE, the mini-
mum value of N_REG_WINDOWS in practice increases to “3”. An implementation with N_REG_WINDOWS = 2
would not be able to support use of the SAVED and RESTORED instructions — in such an implementation, a
spill trap handler would have to emulate the SAVE instruction (the one that caused the spill trap) in its entirety
(including its addition semantics) and the spill handler would have to end with a DONE instruction instead of
RETRY .

A1

A1
36 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

The current window in the windowed portion of R registers is indicated by the current window
pointer (CWP) register. The CWP is decremented by the RESTORE instruction and incremented by the
SAVE instruction.

Overlapping Windows. Each window shares its ins with one adjacent window and its outs with
another. The outs of the CWP – 1 (modulo N_REG_WINDOWS) window are addressable as the ins of the
current window, and the outs in the current window are the ins of the CWP + 1 (modulo
N_REG_WINDOWS) window. The locals are unique to each window.

Register address o, where 8 ≤ o ≤ 15, refers to exactly the same out register before the register window
is advanced by a SAVE instruction (CWP is incremented by 1 (modulo N_REG_WINDOWS)) as does
register address o+16 after the register window is advanced. Likewise, register address i, where 24 ≤ i
≤ 31, refers to exactly the same in register before the register window is restored by a RESTORE
instruction (CWP is decremented by 1 (modulo N_REG_WINDOWS)) as does register address i−16 after
the window is restored. See FIGURE 5-2 on page 37 and FIGURE 5-3 on page 39.

To application software, the virtual processor appears to provide an infinitely-deep stack of register
windows.

Programming
Note

Since the procedure call instructions (CALL and JMPL) do not
change the CWP, a procedure can be called without changing
the window. See the section “Leaf-Procedure Optimization” in
Software Considerations, contained in the separate volume
UltraSPARC Architecture Application Notes

Window (CWP – 1)

R[31]

R[24]

ins

R[23]

R[16]

locals

R[15]

R[8]

outs

Window (CWP)

R[31]

R[24]

ins

R[23]

R[16]

locals

R[15]

R[8]

outs

Window (CWP + 1)

R[31]

R[24]

ins

R[23]

R[16]

locals

R[15]

R[8]

outs

R[7]

R[1]

globals
.
.

R[0] 0

63 0

FIGURE 5-2 Three Overlapping Windows and Eight Global Registers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

CHAPTER 5 • Registers 37

Since CWP arithmetic is performed modulo N_REG_WINDOWS, the highest-numbered implemented
window overlaps with window 0. The outs of window N_REG_WINDOWS − 1 are the ins of window 0.
Implemented windows are numbered contiguously from 0 through N_REG_WINDOWS −1.

Because the windows overlap, the number of windows available to software is 1 less than the number
of implemented windows; that is, N_REG_WINDOWS – 1. When the register file is full, the outs of the
newest window are the ins of the oldest window, which still contains valid data.

Window overflow is detected by the CANSAVE register, and window underflow is detected by the
CANRESTORE register, both of which are controlled by privileged software. A window overflow
(underflow) condition causes a window spill (fill) trap.

When a new register window is made visible through use of a SAVE instruction, the local and out
registers are guaranteed to contain either zeroes or valid data from the current context. If software
executes a RESTORE and later executes a SAVE, then the contents of the resulting window’s local and
out registers are not guaranteed to be preserved between the RESTORE and the SAVE1. Those registers
may even have been written with “dirty” data, that is, data created by software running in a different
context. However, if the clean_window protocol is being used, system software must guarantee that
registers in the current window after a SAVE always contains only zeroes or valid data from that
context. See Clean Windows (CLEANWINP) Register (PR 12) on page 62, Savable Windows (CANSAVEP)
Register (PR 10) on page 62, and Restorable Windows (CANRESTOREP) Register (PR 11) on page 62.

Register Window Management Instructions on page 94 describes how the windowed integer registers are
managed.

1. For example, any of those 16 registers might be altered due to the occurrence of a trap between the RESTORE and the SAVE, or might
be altered during the RESTORE operation due to the way that register windows are implemented. After a RESTORE instruction
executes, software must assume that the values of the affected 16 registers from before the RESTORE are unrecoverable.

Implementation
Note

An UltraSPARC Architecture virtual processor supports the
guarantee in the preceding paragraph of “either zeroes or valid
data from the current context”; it may do so either in hardware
or in a combination of hardware and system software.
38 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

FIGURE 5-3 Windowed R Registers for N_REG_WINDOWS = 8

In FIGURE 5-3, N_REG_WINDOWS = 8. The eight global registers are not illustrated. CWP = 0,
CANSAVE = 4, OTHERWIN = 1, and CANRESTORE = 1. If the procedure using window w0 executes a
RESTORE, then window w7 becomes the current window. If the procedure using window w0 executes
a SAVE, then window w1 becomes the current window.

5.2.3 Special R Registers
The use of two of the R registers is fixed, in whole or in part, by the architecture:

■ The value of R[0] is always zero; writes to it have no program-visible effect.

■ The CALL instruction writes its own address into register R[15] (out register 7).

w4 outs

w5 outs

w6 outs

w0 outs

w7 locals

w0 ins

w1 locals

w1 ins

w6 locals w6 ins

w5 locals

OTHERWIN = 1

CANRESTORE = 1

CANSAVE + CANRESTORE + OTHERWIN = N_REG_WINDOWS – 2

The current window (window 0) and the overlap window (window 5) account for the
two windows in the right side of the equation. The “overlap window” is the window
that must remain unused because its ins and outs overlap two other valid windows.

SAVE RESTORE w5 ins

CANSAVE =4

(Overlap)

w0 locals

w7 outs

w7 ins

CWP = 0
(CURRENT WINDOW POINTER)
CHAPTER 5 • Registers 39

Register-Pair Operands. LDTW, LDTWA, STTW, and STTWA instructions access a pair of words
(“twin words”) in adjacent R registers and require even-odd register alignment. The least significant
bit of an R register number in these instructions is unused and must always be supplied as 0 by
software.

When the R[0]–R[1] register pair is used as a destination in LDTW or LDTWA, only R[1] is modified.
When the R[0]–R[1] register pair is used as a source in STTW or STTWA, 0 is read from R[0], so 0 is
written to the 32-bit word at the lowest address, and the least significant 32 bits of R[1] are written to
the 32-bit word at the highest address.

An attempt to execute an LDTW, LDTWA, STTW, or STTWA instruction that refers to a misaligned
(odd) destination register number causes an illegal_instruction trap.

5.3 Floating-Point Registers
The floating-point register set consists of sixty-four 32-bit registers, which may be accessed as follows:

■ Sixteen 128-bit quad-precision registers, referenced as FQ[0], FQ[4], …, FQ[60]

■ Thirty-two 64-bit double-precision registers, referenced as FD[0], FD[2], …, FD[62]

■ Thirty-two 32-bit single-precision registers, referenced as FS[0], FS[1], …, FS[31] (only the lower
half of the floating-point register file can be accessed as single-precision registers)

The floating-point registers are arranged so that some of them overlap, that is, are aliased. The layout
and numbering of the floating-point registers are shown in TABLE 5-2. Unlike the windowed R
registers, all of the floating-point registers are accessible at any time. The floating-point registers can
be read and written by floating-point operate (FPop1/FPop2 format) instructions, by load/store
single/double/quad floating-point instructions, by VIS™ instructions, and by block load and block
store instructions.

TABLE 5-2 Floating-Point Registers, with Aliasing (1 of 3)

Single Precision
(32-bit)

Double Precision
(64-bit)

Quad Precision
(128-bit)

Register
Assembly
Language Bits Register

Assembly
Language Bits Register

Assembly
Language

FS[0] %f0 63:32
FD[0] %d0 127:64

FQ[0] %q0
FS[1] %f1 31:0

FS[2] %f2 63:32
FD[2] %d2 63:0

FS[3] %f3 31:0

FS[4] %f4 63:32
FD[4] %d4 127:64

FQ[4] %q4
FS[5] %f5 31:0

FS[6] %f6 63:32
FD[6] %d6 63:0

FS[7] %f7 31:0

FS[8]] %f8 63:32
FD[8] %d8 127:64

FQ[8] %q8
FS[9] %f9 31:0

FS[10] %f10 63:32
FD[10] %d10 63:0

FS[11] %f11 31:0

A1
40 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

FS[12] %f12 63:32
FD[12] %d12 127:64

FQ[12] %q12
FS[13] %f13 31:0

FS[14] %f14 63:32
FD[14] %d14 63:0

FS[15] %f15 31:0

FS[16] %f16 63:32
FD[16] %d16 127:64

FQ[16] %q16
FS[17] %f17 31:0

FS[18] %f18 63:32
FD[18] %d18 63:0

FS[19] %f19 31:0

FS[20] %f20 63:32
FD[20] %d20 127:64

FQ[20] %q20
FS[21] %f21 31:0

FS[22] %f22 63:32
FD[22] %d22 63:0

FS[23] %f23 31:0

FS[24] %f24 63:32
FD[24] %d24 127:64

FQ[24] %q24
FS[25] %f25 31:0

FS[26] %f26 63:32
FD[26] %d26 63:0

FS[27] %f27 31:0

FS[28] %f28 63:32
FD[28] %d28 127:64

FQ[28] %q28
FS[29] %f29 31:0

FS[30] %f30 63:32
FD[30] %d30 63:0

FS[31] %f31 31:0

63:32
FD[32] %d32 127:64

FQ[32] %q32
31:0

63:32
FD[34] %d34 63:0

31:0

63:32
FD[36] %d36 127:64

FQ[36] %q36
31:0

63:32
FD[38] %d38 63:0

31:0

63:32
FD[40] %d40 127:64

FQ[40] %q40
31:0

63:32
FD[42] %d42 63:0

31:0

63:32
FD[44] %d44 127:64

FQ[44] %q44
31:0

63:32
FD[46] %d46 63:0

31:0

TABLE 5-2 Floating-Point Registers, with Aliasing (2 of 3)

Single Precision
(32-bit)

Double Precision
(64-bit)

Quad Precision
(128-bit)

Register
Assembly
Language Bits Register

Assembly
Language Bits Register

Assembly
Language
CHAPTER 5 • Registers 41

5.3.1 Floating-Point Register Number Encoding
Register numbers for single, double, and quad registers are encoded differently in the 5-bit register
number field of a floating-point instruction. If the bits in a register number field are labelled b{4} …
b{0} (where b{4} is the most significant bit of the register number), the encoding of floating-point
register numbers into 5-bit instruction fields is as given in TABLE 5-3.

63:32
FD[48] %d48 127:64

FQ[48] %q48
31:0

63:32
FD[50] %d50 63:0

31:0

63:32
FD[52] %d52 127:64

FQ[52] %q52
31:0

63:32
FD[54] %d54 63:0

31:0

63:32
FD[56] %d56 127:64

FQ[56] %q56
31:0

63:32
FD[58] %d58 63:0

31:0

63:32
FD[60] %d60 127:64

FQ[60] %q60
31:0

63:32
FD[62] %d62 63:0

31:0

TABLE 5-3 Floating-Point Register Number Encoding

Register Operand
Type Full 6-bit Register Number

Encoding in a 5-bit Register Field in an
Instruction

Single 0 b{4} b{3} b{2} b{1} b{0} b{4} b{3} b{2} b{1} b{0}

Double b{5} b{4} b{3} b{2} b{1} 0 b{4} b{3} b{2} b{1} b{5}

Quad b{5} b{4} b{3} b{2} 0 0 b{4} b{3} b{2} 0 b{5}

SPARC V8
Compatibility

Note

In the SPARC V8 architecture, bit 0 of double and quad register
numbers encoded in instruction fields was required to be zero.
Therefore, all SPARC V8 floating-point instructions can run
unchanged on an UltraSPARC Architecture virtual processor,
using the encoding in TABLE 5-3.

TABLE 5-2 Floating-Point Registers, with Aliasing (3 of 3)

Single Precision
(32-bit)

Double Precision
(64-bit)

Quad Precision
(128-bit)

Register
Assembly
Language Bits Register

Assembly
Language Bits Register

Assembly
Language
42 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

5.3.2 Double and Quad Floating-Point Operands
A single 32-bit F register can hold one single-precision operand; a double-precision operand requires
an aligned pair of F registers, and a quad-precision operand requires an aligned quadruple of F
registers. At a given time, the floating-point registers can hold a maximum of 32 single-precision, 16
double-precision, or 8 quad-precision values in the lower half of the floating-point register file, plus
an additional 16 double-precision or 8 quad-precision values in the upper half, or mixtures of the
three sizes.

Programming
Note

The upper 16 double-precision (upper 8 quad-precision)
floating-point registers cannot be directly loaded by 32-bit load
instructions. Therefore, double- or quad-precision data that is
only word-aligned in memory cannot be directly loaded into the
upper registers with LDF[A] instructions. The following
guidelines are recommended:

1. Whenever possible, align floating-point data in memory on
proper address boundaries. If access to a datum is required to
be atomic, the datum must be properly aligned.

2. If a double- or quad-precision datum is not properly aligned
in memory or is still aligned on a 4-byte boundary, and access
to the datum in memory is not required to be atomic, then
software should attempt to allocate a register for it in the
lower half of the floating-point register file so that the datum
can be loaded with multiple LDF[A] instructions.

3. If the only available registers for such a datum are located in
the upper half of the floating-point register file and access to
the datum in memory is not required to be atomic, the word-
aligned datum can be loaded into them by one of two
methods:
■ Load the datum into an upper register by using multiple

LDF[A] instructions to first load it into a double- or quad-
precision register in the lower half of the floating-point
register file, then copy that register to the desired
destination register in the upper half.

Use an LDDF[A] or LDQF[A] instruction to perform the load
directly into the upper floating-point register, understanding
that use of these instructions on poorly aligned data can cause a
trap (LDDF_mem_not_aligned) on some implementations,
possibly slowing down program execution significantly.

Programming
Note

If an UltraSPARC Architecture 2007 implementation does not
implement a particular quad floating-point arithmetic operation
in hardware and an invalid quad register operand is specified,
the illegal_instruction trap occurs because it has higher priority.

Implementation
Note

Oracle SPARC Architecture 2011 implementations do not
implement any quad floating-point arithmetic operations in
hardware. Therefore, an attempt to execute any of them results
in a trap on the illegal_instruction exception.
CHAPTER 5 • Registers 43

5.4 Floating-Point State Register (FSR)
The Floating-Point State register (FSR) fields, illustrated in FIGURE 5-4, contain FPU mode and status
information. The lower 32 bits of the FSR are read and written by the (deprecated) STFSR and LDFSR
instructions, respectively. The 64-bit FSR register is read by the STXFSR instruction and written by
the LDXFSR instruction. The ver, ftt, qne, unimplemented (for example, ns), and reserved (“—”)
fields of FSR are not modified by either LDFSR or LDXFSR.

Bits 63–38, 29–28, 21–20, and 12 of FSR are reserved. When read by an STXFSR instruction, these bits
always read as zero

The subsections on pages 44 through 50 describe the remaining fields in the FSR.

5.4.1 Floating-Point Condition Codes (fcc0, fcc1, fcc2, fcc3)
The four sets of floating-point condition code fields are labelled fcc0, fcc1, fcc2, and fcc3 (fccn refers
to any of the floating-point condition code fields).

The fcc0 field consists of bits 11 and 10 of the FSR, fcc1 consists of bits 33 and 32, fcc2 consists of bits
35 and 34, and fcc3 consists of bits 37 and 36. Execution of a floating-point compare instruction
(FCMP or FCMPE) updates one of the fccn fields in the FSR, as selected by the compare instruction.
The fccn fields are read by STXFSR and written by LDXFSR. The fcc0 field can also be read and
written by STFSR and LDFSR, respectively. FBfcc and FBPfcc instructions base their control transfers
on the content of these fields. The MOVcc and FMOVcc instructions can conditionally copy a register,
based on the contents of these fields.

In TABLE 5-4, frs1 and frs2 correspond to the single, double, or quad values in the floating-point
registers specified by a floating-point compare instruction’s rs1 and rs2 fields. The question mark (?)
indicates an unordered relation, which is true if either frs1 or frs2 is a signalling NaN or a quiet NaN.
If FCMP or FCMPE generates an fp_exception_ieee_754 exception, then fccn is unchanged.

Programming
Note

For future compatibility, software should issue LDXFSR
instructions only with zero values in these bits or values of these
bits exactly as read by a previous STXFSR.

TABLE 5-4 Floating-Point Condition Codes (fccn) Fields of FSR

Content of fccn

0 1 2 3

Indicated Relation
(FCMP*, FCMPE*)

F[rs1] = F[rs2] F[rs1] < F[rs2] F[rs1] > F[rs2] F[rs1] ? F[rs2]
(unordered)

A1

FIGURE 5-4 FSR Fields

RW RW RW

— fcc3 fcc2 fcc1

63 38 37 36 35 34 33 32

RW RW RW R R R RW RW RW

rd — tem ns — ver ftt — — fcc0 aexc cexc

31 30 29 28 27 23 22 21 20 19 17 16 14 13 12 11 10 9 5 4 0

FSR
44 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

5.4.2 Rounding Direction (rd)
Bits 31 and 30 select the rounding direction for floating-point results according to IEEE Std 754-1985.
TABLE 5-5 shows the encodings.

If the interval mode bit of the General Status register has a value of 1 (GSR.im = 1), then the value of
FSR.rd is ignored and floating-point results are instead rounded according to GSR.irnd. See General
Status Register (GSR) (ASR 19) on page 56 for further details.

5.4.3 Trap Enable Mask (tem)
Bits 27 through 23 are enable bits for each of the five IEEE-754 floating-point exceptions that can be
indicated in the current_exception field (cexc). See FIGURE 5-6 on page 49. If a floating-point
instruction generates one or more exceptions and the tem bit corresponding to any of the exceptions is
1, then this condition causes an fp_exception_ieee_754 trap. A tem bit value of 0 prevents the
corresponding IEEE 754 exception type from generating a trap.

5.4.4 Nonstandard Floating-Point (ns)
When FSR.ns = 1, it causes a SPARC V9 virtual processor to produce implementation-defined results
that may or may not correspond to IEEE Std 754-1985 (impl. dep. #18-V8).

For an implementation in which no nonstandard floating-point mode exists, the ns bit of FSR should
always read as 0 and writes to it should be ignored.

For detailed requirements for the case when an UltraSPARC Architecture processor elects to
implement floating-point nonstandard mode, see Floating-Point Nonstandard Mode on page 315.

5.4.5 FPU Version (ver)
IMPL. DEP. #19-V8: Bits 19 through 17 identify one or more particular implementations of the FPU
architecture.

For each SPARC V9 IU implementation (as identified by its HVER.impl field), there may be one or
more FPU implementations, or none. FSR.ver identifies the particular FPU implementation present.
The value in FSR.ver for each implementation is strictly implementation dependent. Consult the
appropriate document for each implementation for its setting of FSR.ver.

FSR.ver = 7 is reserved to indicate that no hardware floating-point controller is present.

The ver field of FSR is read-only; it cannot be modified by the LDFSR or LDXFSR instructions.

TABLE 5-5 Rounding Direction (rd) Field of FSR

rd Round Toward

0 Nearest (even, if tie)

1 0

2 + ∞
3 − ∞
CHAPTER 5 • Registers 45

5.4.6 Floating-Point Trap Type (ftt)
Several conditions can cause a floating-point exception trap. When a floating-point exception trap
occurs, FSR.ftt (FSR{16:14}) identifies the cause of the exception, the “floating-point trap type.” After
a floating-point exception occurs, FSR.ftt encodes the type of the floating-point exception until it is
cleared (set to 0) by execution of an STFSR, STXFSR, or FPop that does not cause a trap due to a
floating-point exception.

The FSR.ftt field can be read by a STFSR or STXFSR instruction. The LDFSR and LDXFSR instructions
do not affect FSR.ftt.

Privileged software that handles floating-point traps must execute an STFSR (or STXFSR) to
determine the floating-point trap type. STFSR and STXFSR set FSR.ftt to zero after the store completes
without error. If the store generates an error and does not complete, FSR.ftt remains unchanged.

FSR.ftt encodes the primary condition (“floating-point trap type”) that caused the generation of an
fp_exception_other or fp_exception_ieee_754 exception. It is possible for more than one such
condition to occur simultaneously; in such a case, only the highest-priority condition will be encoded
in FSR.ftt. The conditions leading to fp_exception_other and fp_exception_ieee_754 exceptions, their
relative priorities, and the corresponding FSR.ftt values are listed in TABLE 5-6. Note that the FSR.ftt
values 4 and 5 were defined in the SPARC V9 architecture but are not currently in use, and that the
value 7 is reserved for future architectural use.

The IEEE_754_exception and unfinished_FPop conditions will likely arise occasionally in the normal
course of computation and must be recoverable by system software.

When a floating-point trap occurs, the following results are observed by user software:

1. The value of aexc is unchanged.

2. When an fp_exception_ieee_754 trap occurs, a bit corresponding to the trapping exception is set in
cexc. On other traps, the value of cexc is unchanged.

3. The source and destination registers are unchanged.

4. The value of fccn is unchanged.

The foregoing describes the result seen by a user trap handler if an IEEE exception is signalled, either
immediately from an fp_exception_ieee_754 exception or after recovery from an unfinished_FPop. In
either case, cexc as seen by the trap handler reflects the exception causing the trap.

Programming
Note

Neither LDFSR nor LDXFSR can be used for the purpose of
clearing the ftt field, since both leave ftt unchanged. However,
executing a nontrapping floating-point operate (FPop)
instruction such as “fmovs %f0,%f0” prior to returning to
nonprivileged mode will zero FSR.ftt. The ftt field remains zero
until the next FPop instruction completes execution.

TABLE 5-6 FSR Floating-Point Trap Type (ftt) Field

Condition Detected During
Execution of an FPop

Relative
Priority

(1 = highest)

Result

FSR.ftt Set
to Value Exception Generated

invalid_fp_register 20 6 fp_exception_other

unfinished_FPop 30 2 fp_exception_other

IEEE_754_exception 40 1 fp_exception_ieee_754

Reserved — 3, 4, 5, 7 —

(none detected) — 0 —
46 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

In the cases of an fp_exception_other exception with a floating-point trap type of unfinished_FPop
that does not subsequently generate an IEEE trap, the recovery software should set cexc, aexc, and
the destination register or fccn, as appropriate.

ftt = 1 (IEEE_754_exception). The IEEE_754_exception floating-point trap type indicates the
occurrence of a floating-point exception conforming to IEEE Std 754-1985. The IEEE 754 exception
type (overflow, inexact, etc.) is set in the cexc field. The aexc and fccn fields and the destination F
register are unchanged.

ftt = 2 (unfinished_FPop). The unfinished_FPop floating-point trap type indicates that the virtual
processor was unable to generate correct results or that exceptions as defined by IEEE Std 754-1985
have occurred. In cases where exceptions have occurred, the cexc field is unchanged.

IMPL. DEP. #248-U3: The conditions under which an fp_exception_other exception with floating-
point trap type of unfinished_FPop can occur are implementation dependent. An implementation may
cause fp_exception_other with FSR.ftt = unfinished_FPop under a different (but specified) set of
conditions.

ftt = 3 (Reserved).

ftt = 4 (Reserved).

ftt = 5 (Reserved).

Implementation
Note

Implementations are encouraged to support standard IEEE 754
floating-point arithmetic with reasonable performance (that is,
without generating fp_exception_other with
FSR.ftt=unfinished_FPop) in all cases, even if some cases are
slower than others.

SPARC V9
Compatibility

Note

In SPARC V9, FSR.ftt = 3 was defined to be
"unimplemented_FPop". All conditions which used to cause
cause fp_exception_other with FSR.ftt = 3 now cause an
illegal_instruction exception, instead. FSR.ftt = 3 is now reserved
and available for other future uses.

SPARC V9
Compatibility

Note

In the SPARC V9 architecture, FSR.ftt = 4 was defined to be
"sequence_error", for use with certain error conditions
associated with a floating-point queue (FQ). Since UltraSPARC
Architecture implementations generate precise (rather than
deferred) traps for floating-point operations, an FQ is not
needed; therefore sequence_error conditions cannot occur and
ftt =4 has been returned to the pool of reserved ftt values.

SPARC V9
Compatibility

Note

In the SPARC V9 architecture, FSR.ftt = 5 was defined to be
"hardware_error", for use with hardware error conditions
associated with an external floating-point unit (FPU) operating
asynchronously to the main processor (IU). Since UltraSPARC
Architecture processors are now implemented with an integral
FPU, a hardware error in the FPU can generate an exception
directly, rather than indirectly report the error through FSR.ftt
(as was required when FPUs were external to IUs). Therefore,
ftt = 5 has been returned to the pool of reserved ftt values.
CHAPTER 5 • Registers 47

ftt = 6 (invalid_fp_register). This trap type indicates that one or more F register operands of an
FPop are misaligned; that is, a quad-precision register number is not 0 mod 4. An implementation
generates an fp_exception_other trap with FSR.ftt = invalid_fp_register in this case.

5.4.7 Accrued Exceptions (aexc)
Bits 9 through 5 accumulate IEEE_754 floating-point exceptions as long as floating-point exception
traps are disabled through the tem field. See FIGURE 5-7 on page 49.

After an FPop completes with ftt = 0, the tem and cexc fields are logically anded together. If the result
is nonzero, aexc is left unchanged and an fp_exception_ieee_754 trap is generated; otherwise, the
new cexc field is ored into the aexc field and no trap is generated. Thus, while (and only while) traps
are masked, exceptions are accumulated in the aexc field.

FSR.aexc can be set to a specific value when an LDFSR or LDXFSR instruction is executed.

5.4.8 Current Exception (cexc)
FSR.cexc (FSR{4:0}) indicates whether one or more IEEE 754 floating-point exceptions were
generated by the most recently executed FPop instruction. The absence of an exception causes the
corresponding bit to be cleared (set to 0). See FIGURE 5-6 on page 49.

The cexc bits are set as described in Floating-Point Exception Fields on page 49, by the execution of an
FPop that either does not cause a trap or causes an fp_exception_ieee_754 exception with
FSR.ftt = IEEE_754_exception. An IEEE 754 exception that traps shall cause exactly one bit in
FSR.cexc to be set, corresponding to the detected IEEE Std 754-1985 exception.

Floating-point operations which cause an overflow or underflow condition may also cause an
“inexact” condition. For overflow and underflow conditions, FSR.cexc bits are set and trapping
occurs as follows:

■ If an IEEE 754 overflow condition occurs:

■ if FSR.tem.ofm = 0 and tem.nxm = 0, the FSR.cexc.ofc and FSR.cexc.nxc bits are both set to 1,
the other three bits of FSR.cexc are set to 0, and an fp_exception_ieee_754 trap does not occur.

■ if FSR.tem.ofm = 0 and tem.nxm = 1, the FSR.cexc.nxc bit is set to 1, the other four bits of
FSR.cexc are set to 0, and an fp_exception_ieee_754 trap does occur.

■ if FSR.tem.ofm = 1, the FSR.cexc.ofc bit is set to 1, the other four bits of FSR.cexc are set to 0,
and an fp_exception_ieee_754 trap does occur.

■ If an IEEE 754 underflow condition occurs:

■ if FSR.tem.ufm = 0 and FSR.tem.nxm = 0, the FSR.cexc.ufc and FSR.cexc.nxc bits are both set
to 1, the other three bits of FSR.cexc are set to 0, and an fp_exception_ieee_754 trap does not
occur.

■ if FSR.tem.ufm = 0 and FSR.tem.nxm = 1, the FSR.cexc.nxc bit is set to 1, the other four bits of
FSR.cexc are set to 0, and an fp_exception_ieee_754 trap does occur.

Implementation
Note

If an UltraSPARC Architecture 2007 processor does not
implement a particular quad FPop in hardware, that FPop
generates an illegal_instruction exception instead of
fp_exception_other with FSR.ftt = 6 (invalid_fp_register),
regardless of the specified F registers.

Programming
Note

If the FPop traps and software emulate or finish the instruction,
the system software in the trap handler is responsible for
creating a correct FSR.cexc value before returning to a
nonprivileged program.
48 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

■ if FSR.tem.ufm = 1, the FSR.cexc.ufc bit is set to 1, the other four bits of FSR.cexc are set to 0,
and an fp_exception_ieee_754 trap does occur.

The above behavior is summarized in TABLE 5-7 (where “✔ ” indicates “exception was detected” and
“x” indicates “don’t care”):

If the execution of an FPop causes a trap other than fp_exception_ieee_754, FSR.cexc is left
unchanged.

5.4.9 Floating-Point Exception Fields
The current and accrued exception fields and the trap enable mask assume the following definitions of
the floating-point exception conditions (per IEEE Std 754-1985):

TABLE 5-7 Setting of FSR.cexc Bits

Conditions Results

Exception(s)
Detected

in F.p.
operation

Trap Enable
Mask bits

(in FSR.tem) fp_exception_
ieee_754

Trap Occurs?

Current
Exception

bits (in
FSR.cexc)

of uf nx ofm ufm nxm ofc ufc nxc

- - - x x x no 0 0 0

- - ✔ x x 0 no 0 0 1

- ✔ 1 ✔ 1 x 0 0 no 0 1 1

✔ 2 - ✔ 2 0 x 0 no 1 0 1

- - ✔ x x 1 yes 0 0 1

- ✔ 1 ✔ 1 x 0 1 yes 0 0 1

- ✔ - x 1 x yes 0 1 0

- ✔ ✔ x 1 x yes 0 1 0

✔ 2 - ✔ 2 1 x x yes 1 0 0

✔ 2 - ✔ 2 0 x 1 yes 0 0 1

Notes: 1 When the underflow trap is disabled (FSR.tem.ufm = 0)
underflow is always accompanied by inexact.

2 Overflow is always accompanied by inexact.

RW RW RW RW RW

FSR.tem nvm ofm ufm dzm nxm

27 26 25 24 23

FIGURE 5-6 Trap Enable Mask (tem) Fields of FSR

RW RW RW RW RW

FSR.aexc nva ofa ufa dza nxa

9 8 7 6 5

FIGURE 5-7 Accrued Exception Bits (aexc) Fields of FSR

RW RW RW RW RW

FSR.cexc nvc ofc ufc dzc nxc

4 3 2 1 0

FIGURE 5-8 Current Exception Bits (aexc) Fields of FSR
CHAPTER 5 • Registers 49

Invalid (nvc, nva). An operand is improper for the operation to be performed. For example, 0.0 ÷
0.0 and ∞ – ∞ are invalid; 1 = invalid operand(s), 0 = valid operand(s).

Overflow (ofc, ofa). The result, rounded as if the exponent range were unbounded, would be
larger in magnitude than the destination format’s largest finite number; 1 = overflow, 0 = no overflow.

Underflow (ufc, ufa). The rounded result is inexact and would be smaller in magnitude than the
smallest normalized number in the indicated format; 1 = underflow, 0 = no underflow.

Underflow is never indicated when the correct unrounded result is 0.
Otherwise, when the correct unrounded result is not 0:

If FSR.tem.ufm = 0: Underflow occurs if a nonzero result is tiny and a loss of accuracy occurs.

If FSR.tem.ufm = 1: Underflow occurs if a nonzero result is tiny.

The SPARC V9 architecture allows tininess to be detected either before or after rounding. However, in
all cases and regardless of the setting of FSR.tem.ufm, an UltraSPARC Architecture strand detects
tininess before rounding (impl. dep. #55-V8-Cs10). See Trapped Underflow Definition (ufm = 1) on page
315 and Untrapped Underflow Definition (ufm = 0) on page 315 for additional details.

Division by zero (dzc, dza). An infinite result is produced exactly from finite operands. For
example, X ÷ 0.0, where X is subnormal or normalized; 1 = division by zero, 0 = no division by zero.

Inexact (nxc, nxa). The rounded result of an operation differs from the infinitely precise
unrounded result; 1 = inexact result, 0 = exact result.

5.4.10 FSR Conformance
An UltraSPARC Architecture implementation implements the tem, cexc, and aexc fields of FSR in
hardware, conforming to IEEE Std 754-1985 (impl. dep. #22-V8).

5.5 Ancillary State Registers
The SPARC V9 architecture defines several optional ancillary state registers (ASRs) and allows for

additional ones. Access to a particular ASR may be privileged or nonprivileged.

An ASR is read and written with the Read State Register and Write State Register instructions,
respectively. These instructions are privileged if the accessed register is privileged.

The SPARC V9 architecture left ASRs numbered 16–31 available for implementation-dependent uses.
UltraSPARC Architecture virtual processors implement the ASRs summarized in TABLE 5-8 and
defined in the following subsections.

Programming
Note

Privileged software (or a combination of privileged and
nonprivileged software) must be capable of simulating the
operation of the FPU in order to handle the fp_exception_other
(with FSR.ftt = unfinished_FPop) and IEEE_754_exception
floating-point trap types properly. Thus, a user application
program always sees an FSR that is fully compliant with IEEE
Std 754-1985.
50 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

Each virtual processor contains its own set of ASRs; ASRs are not shared among virtual processors.

TABLE 5-8 ASR Register Summary

ASR number ASR name Register
Read by
Instruction(s)

Written by
Instruction(s)

0 YD Y register (deprecated) RDYD WRYD

1 — Reserved — —

2 CCR Condition Codes register RDCCR WRCCR

3 ASI ASI register RDASI WRASI

4 TICKPnpt TICK register RDTICKPnpt,
RDPRP (TICK)

WRPRP (TICK)

5 PC Program Counter (PC) RDPC (all instructions)

6 FPRS Floating-Point Registers Status register RDFPRS WRFPRS

7–14 (7-0E16) — Reserved — —

15 (0F16) — Reserved — —

16–31 (1016-1F16) non-SPARC V9 ASRs — —

16-18 (1016- 1216) — Implementation dependent (impl. dep.
#8-V8-Cs20, 9-V8-Cs20)

— —

19 (1316) GSR General Status register (GSR) RDGSR,
FALIGNDATA,
many VIS and
floating-point
instructions

WRGSR,
BMASK, SIAM

20 (1416) SOFTINT_SETP (pseudo-register, for "Write 1s Set" to
SOFTINT register, ASR 22)

— WRSOFTINT_SETP

21 (1516) SOFTINT_CLRP (pseudo-register, for "Write 1s Clear" to
SOFTINT register, ASR 22)

— WRSOFTINT_CLRP

22 (1616) SOFTINTP per-virtual processor Soft Interrupt
register

RDSOFTINTP WRSOFTINTP

23 (1716) TICK_CMPRP Tick Compare register RDTICK_CMPRP WRTICK_CMPRP

24 (1816) STICKPnpt System Tick register RDSTICKPnpt WRSTICKH

25 (1916) STICK_CMPRP System Tick Compare register RDSTICK_CMPRP WRSTICK_CMPRP

26 (1A16) — Implementation dependent (impl. dep.
#8-V8-Cs20, 9-V8-Cs20)

— —

27 (1B16) — Implementation dependent (impl. dep.
#8-V8-Cs20, 9-V8-Cs20)

— —

28–29 (1C16-1D16) — Implementation dependent (impl. dep.
#8-V8-Cs20, 9-V8-Cs20)

— —

30 (1E16) — Reserved — —

31 (1F16) — Implementation dependent (impl. dep.
#8-V8-Cs20, 9-V8-Cs20)

— —

N− N− N−
CHAPTER 5 • Registers 51

5.5.1 32-bit Multiply/Divide Register (Y) (ASR 0)

The low-order 32 bits of the Y register, illustrated in FIGURE 5-9, contain the more significant word of
the 64-bit product of an integer multiplication, as a result of either a 32-bit integer multiply (SMUL,
SMULcc, UMUL, UMULcc) instruction or an integer multiply step (MULScc) instruction. The Y
register also holds the more significant word of the 64-bit dividend for a 32-bit integer divide (SDIV,
SDIVcc, UDIV, UDIVcc) instruction.

Although Y is a 64-bit register, its high-order 32 bits always read as 0.

The Y register may be explicitly read and written by the RDY and WRY instructions, respectively.

5.5.2 Integer Condition Codes Register (CCR) (ASR 2)
The Condition Codes Register (CCR), shown in FIGURE 5-10, contains the integer condition codes. The
CCR register may be explicitly read and written by the RDCCR and WRCCR instructions,
respectively.

5.5.2.1 Condition Codes (CCR.xcc and CCR.icc)

All instructions that set integer condition codes set both the xcc and icc fields. The xcc condition
codes indicate the result of an operation when viewed as a 64-bit operation. The icc condition codes
indicate the result of an operation when viewed as a 32-bit operation. For example, if an operation
results in the 64-bit value 0000 0000 FFFF FFFF16, the 32-bit result is negative (icc.n is set to 1) but the
64-bit result is nonnegative (xcc.n is set to 0).

Each of the 4-bit condition-code fields is composed of four 1-bit subfields, as shown in FIGURE 5-11.

The n bits indicate whether the two’s-complement ALU result was negative for the last instruction
that modified the integer condition codes; 1 = negative, 0 = not negative.

The Y register is deprecated; it is provided only for compatibility with previous
versions of the architecture. It should not be used in new SPARC V9 software.
It is recommended that all instructions that reference the Y register (that is,
SMUL, SMULcc, UMUL, UMULcc, MULScc, SDIV, SDIVcc, UDIV, UDIVcc,
RDY, and WRY) be avoided. For suitable substitute instructions, see the
following pages: for the multiply instructions, see pages 265 and page 303; for
the multiply step instruction, see page 225; for division instructions, see pages
258 and 301; for the read instruction, see page 243; and for the write
instruction, see page 306.

R RW

Y 0 product{63:32} or dividend{63:32}

63 32 31 0

FIGURE 5-9 Y Register

RW RW

CCR xcc icc

7 4 3 0

FIGURE 5-10 Condition Codes Register

RW RW RW RW

n z v c

xcc: 7 6 5 4
icc: 3 2 1 0

FIGURE 5-11 Integer Condition Codes (CCR.icc and CCR.xcc)

D2

A1
52 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

The z bits indicate whether the ALU result was zero for the last instruction that modified the integer
condition codes; 1 = zero, 0 = nonzero.

The v bits signify whether the ALU result was within the range of (was representable in) 64-bit (xcc)
or 32-bit (icc) two’s complement notation for the last instruction that modified the integer condition
codes; 1 = overflow, 0 = no overflow.

The c bits indicate whether a 2’s complement carry (or borrow) occurred during the last instruction
that modified the integer condition codes. Carry is set on addition if there is a carry out of bit 63 (xcc)
or bit 31 (icc). Carry is set on subtraction if there is a borrow into bit 63 (xcc) or bit 31 (icc);
1 = borrow, 0 = no borrow (see TABLE 5-9).

Both fields of CCR (xcc and icc) are modified by arithmetic and logical instructions, the names of
which end with the letters “cc” (for example, ANDcc), and by the WRCCR instruction. They can be
modified by a DONE or RETRY instruction, which replaces these bits with the contents of TSTATE.ccr.
The behavior of the following instructions are conditioned by the contents of CCR.icc or CCR.xcc:

■ BPcc and Tcc instructions (conditional transfer of control)

■ Bicc (conditional transfer of control, based on CCR.icc only)

■ MOVcc instruction (conditionally move the contents of an integer register)

■ FMOVcc instruction (conditionally move the contents of a floating-point register)

Extended (64-bit) integer condition codes (xcc). Bits 7 through 4 are the IU condition codes,
which indicate the results of an integer operation, with both of the operands and the result considered
to be 64 bits wide.

32-bit Integer condition codes (icc). Bits 3 through 0 are the IU condition codes, which indicate
the results of an integer operation, with both of the operands and the result considered to be 32 bits
wide.

5.5.3 Address Space Identifier (ASI) Register (ASR 3)
The Address Space Identifier register (FIGURE 5-12) specifies the address space identifier to be used for
load and store alternate instructions that use the “rs1 + simm13” addressing form.

The ASI register may be explicitly read and written by the RDASI and WRASI instructions,
respectively.

Software (executing in any privilege mode) may write any value into the ASI register. However,
values in the range 0016 to 7F16 are “restricted” ASIs; an attempt to perform an access using an ASI in
that range is restricted to software executing in a mode with sufficient privileges for the ASI. When an
instruction executing in nonprivileged mode attempts an access using an ASI in the range 0016 to 7F16
or an instruction executing in privileged mode attempts an access using an ASI the range 3016 to 7F16,
a privileged_action exception is generated. See Chapter 10, Address Space Identifiers (ASIs) for details.

TABLE 5-9 Setting of Carry (Borrow) bits for Subtraction That Sets CCs

Unsigned Comparison of Operand Values Setting of Carry bits in CCR

R[rs1]{31:0} ≥ R[rs2]{31:0} CCR.icc.c ← 0

R[rs1]{31:0} < R[rs2]{31:0} CCR.icc.c ← 1

R[rs1]{63:0} ≥ R[rs2]{63:0} CCR.xcc.c ← 0

R[rs1]{63:0} < R[rs2]{63:0} CCR.xcc.c ← 1

A1
CHAPTER 5 • Registers 53

5.5.4 Tick (TICK) Register (ASR 4)
FIGURE 5-13 illustrates the TICK register.

The counter field of the TICK register is a 63-bit counter that counts strand clock cycles.

Bit 63 of the TICK register is the nonprivileged trap (npt) bit, which controls access to the TICK
register by nonprivileged software.

Hyperprivileged software can always read the TICK register, with either the RDPR or RDTICK
instruction.

Hyperprivileged software can always write to the TICK register with the WRPR instruction (there is
no distinct WRTICK instruction).

Privileged software can always read the TICK register, with either the RDPR or RDTICK instruction.

Privileged software cannot write to the TICK register; an attempt to do so (with the WRPR instruction)
results in an illegal_instruction exception.

Nonprivileged software can read the TICK register by using the RDTICK instruction, but only when
nonprivileged access to TICK is enabled (TICK.npt = 0) by hyperprivileged software. If nonprivileged
access is disabled (TICK.npt = 1), an attempt by nonprivileged software to read the TICK register using
the RDTICK instruction causes a privileged_action exception.

An attempt by nonprivileged software at any time to read the TICK register using the privileged
RDPR instruction causes a privileged_opcode exception.

Nonprivileged software cannot write the TICK register. An attempt by nonprivileged software to
write the TICK register using the privileged WRPR instruction causes a privileged_opcode exception.

TICK.npt is set to 1 by a power-on reset trap. The value of TICK.counter is undefined after a power-on
reset trap.

After the TICK register is written, reading the TICK register returns a value incremented (by 1 or
more) from the last value written, rather than from some previous value of counter. The number of
counts between a write and a subsequent read does not accurately reflect the number of strand cycles
between the write and the read. Software may rely only on read-to-read counts of the TICK register
for accurate timing, not on write-to-read counts.

RW

ASI
7 0

FIGURE 5-12 Address Space Identifier Register

R, WH R, WH

TICKPnpt npt counter

63 62 0

FIGURE 5-13 TICK Register

Programming
Note

It is recommended that hyperprivileged software set
TICK.counter during power-on reset (POR) processing, so that
TICK overflow will not happen soon after POR.

A1

D2

D2
54 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

The difference between the values read from the TICK register on two reads is intended to reflect the
number of strand cycles executed between the reads.

IMPL. DEP. #105-V9: (a) If an accurate count cannot always be returned when TICK is read, any
inaccuracy should be small, bounded, and documented.
(b) An implementation may implement fewer than 63 bits in TICK.counter; however, the counter as
implemented must be able to count for at least 10 years without overflowing. Any upper bits not
implemented must read as zero.

5.5.5 Program Counters (PC, NPC) (ASR 5)
The PC contains the address of the instruction currently being executed. The least-significant two bits
of PC always contain zeroes.

The PC can be read directly with the RDPC instruction. PC cannot be explicitly written by any
instruction (including Write State Register), but is implicitly written by control transfer instructions. A
WRasr to ASR 5 causes an illegal_instruction exception.

The Next Program Counter, NPC, is a pseudo-register that contains the address of the next instruction
to be executed if a trap does not occur. The least-significant two bits of NPC always contain zeroes.

NPC is written implicitly by control transfer instructions. However, NPC cannot be read or written
explicitly by any instruction.

PC and NPC can be indirectly set by privileged software that writes to TPC[TL] and/or TNPC[TL]
and executes a RETRY instruction.

See Chapter 6, Instruction Set Overview, for details on how PC and NPC are used.

5.5.6 Floating-Point Registers State (FPRS) Register (ASR 6)
The Floating-Point Registers State (FPRS) register, shown in FIGURE 5-14, contains control information
for the floating-point register file; this information is readable and writable by nonprivileged software.

The FPRS register may be explicitly read and written by the RDFPRS and WRFPRS instructions,
respectively.

Enable FPU (fef). Bit 2, fef, determines whether the FPU is enabled. If it is disabled, executing a
floating-point instruction causes an fp_disabled trap. If this bit is set (FPRS.fef = 1) but the
PSTATE.pef bit is not set (PSTATE.pef = 0), then executing a floating-point instruction causes an
fp_disabled exception; that is, both FPRS.fef and PSTATE.pef must be set to 1 to enable floating-point
operations.

Programming
Note

If a single TICK register is shared among multiple virtual
processors, then the difference between subsequent reads of
TICK.counter reflects a shared cycle count, not a count specific to
the virtual processor reading the TICK register.

Programming
Note

TICK.npt may be used by a secure operating system to control
access by nonprivileged software to high-accuracy timing
information. The operation of the timer might be emulated by
the trap handler, which could read TICK.counter and “fuzz” the
value to lower accuracy.

RW RW RW

FPRS fef du dl

2 1 0

FIGURE 5-14 Floating-Point Registers State Register

A1

A1
CHAPTER 5 • Registers 55

Dirty Upper Registers (du). Bit 1 is the “dirty” bit for the upper half of the floating-point registers;
that is, F[32]–F[62]. It is set to 1 whenever any of the upper floating-point registers is modified. The
du bit is cleared only by software.

An UltraSPARC Architecture 2007 virtual processor may set FPRS.du pessimistically; that is, it may
be set whenever an FPop executes, even though an exception may occur that prevents the instruction
from completing so no destination F register was actually modified (impl. dep. #403-S10). Note that
if the FPop triggers fp_disabled, FPRS.du is not modified.

Dirty Lower Registers (dl). Bit 0 is the “dirty” bit for the lower 32 floating-point registers; that is,
F[0]–F[31]. It is set to 1 whenever any of the lower floating-point registers is modified. The dl bit is
cleared only by software.

An UltraSPARC Architecture 2007 virtual processor may set FPRS.dl pessimistically; that is, it may be
set whenever an FPop executes, even though an exception may occur that prevents the instruction
from completing so no destination F register was actually modified (impl. dep. #403-S10). Note that
if the FPop triggers fp_disabled, FPRS.dl is not modified.

5.5.7 General Status Register (GSR) (ASR 19)
The General Status Register1 (GSR) is a nonprivileged read/write register that is implicitly referenced
by many VIS instructions. The GSR can be read by the RDGSR instruction (see Read Ancillary State
Register on page 242) and written by the WRGSR instruction (see Write Ancillary State Register on page
305).

If the FPU is disabled (PSTATE.pef = 0 or FPRS.fef = 0), an attempt to access this register using an
otherwise-valid RDGSR or WRGSR instruction causes an fp_disabled trap.

The GSR is illustrated in FIGURE 5-15 and described in TABLE 5-10.

Programming
Note

FPRS.fef can be used by application software to notify system
software that the application does not require the contents of the
F registers to be preserved. Depending on system software, this
may provide some performance benefit, for example, the F
registers would not have to be saved or restored during context
switches to or from that application. Once an application sets
FPRS.fef to 0, it must assume that the values in all F registers
are volatile (may change at any time).

1. This register was (inaccurately) referred to as the "Graphics Status Register" in early UltraSPARC implementations

RW RW RW RW RW

GSRP mask — im irnd — scale align

63 32 31 28 27 26 25 24 8 7 3 2 0

FIGURE 5-15 General Status Register (GSR) (ASR 19)

TABLE 5-10 GSR Bit Description

Bit Field Description

63:32 mask This 32-bit field specifies the mask used by the BSHUFFLE instruction. The field
contents are set by the BMASK instruction.

31:28 — Reserved.

27 im Interval Mode: If GSR.im = 0, rounding is performed according to FSR.rd; if
GSR.im = 1, rounding is performed according to GSR.irnd.

A1
56 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

5.5.8 SOFTINTP Register (ASRs 20 , 21 , 22)
Software uses the privileged, read/write SOFTINT register (ASR 22) to schedule interrupts (via
interrupt_level_n exceptions).

SOFTINT can be read with a RDSOFTINT instruction (see Read Ancillary State Register on page
242) and written with a WRSOFTINT, WRSOFTINT_SET, or WRSOFTINT_CLR instruction (see Write
Ancillary State Register on page 305). An attempt to access to this register in nonprivileged mode
causes a privileged_opcode exception.

The SOFTINT register is illustrated in FIGURE 5-16 and described in TABLE 5-11.

26:25 irnd IEEE Std 754-1985 rounding direction to use in Interval Mode (GSR.im = 1), as follows:

24:8 — Reserved.

7:3 scale 5-bit shift count in the range 0–31, used by the FPACK instructions for formatting.

2:0 align Least three significant bits of the address computed by the last-executed
ALIGNADDRESS or ALIGNADDRESS_LITTLE instruction.

Programming
Note

To atomically modify the set of pending software interrupts, use
of the SOFTINT_SET and SOFTINT_CLR ASRs is
recommended.

RW RW RW

SOFTINTP — sm int_level tm

63 17 16 15 1 0

FIGURE 5-16 SOFTINT Register (ASR 22)

TABLE 5-10 GSR Bit Description (Continued)

Bit Field Description

irnd Round toward …

0 Nearest (even, if tie)

1 0

2 + ∞
3 − ∞

A2 A2 A1

A1
CHAPTER 5 • Registers 57

Setting any of SOFTINT.sm, SOFTINT.tm, or SOFTINT.int_level{13} (SOFTINT{14}) to 1 causes a
level-14 interrupt (interrupt_level_14). However, those three bits are independent; setting any one of
them does not affect the other two.

See Software Interrupt Register (SOFTINT) on page 420 for additional information regarding the
SOFTINT register.

5.5.8.1 SOFTINT_SETP Pseudo-Register (ASR 20)

A Write State register instruction to ASR 20 (WRSOFTINT_SET) atomically sets selected bits in the
privileged SOFTINT Register (ASR 22) (see page 57). That is, bits 16:0 of the write data are ored into
SOFTINT; any ‘1’ bit in the write data causes the corresponding bit of SOFTINT to be set to 1. Bits
63:17 of the write data are ignored.

Access to ASR 20 is privileged and write-only. There is no instruction to read this pseudo-register. An
attempt to write to ASR 20 in non-privileged mode, using the WRasr instruction, causes a
privileged_opcode exception.

FIGURE 5-17 illustrates the SOFTINT_SET pseudo-register.

TABLE 5-11 SOFTINT Bit Description

Bit Field Description

16 sm When the STICK_CMPR (ASR 25) register’s int_dis (interrupt disable) field is 0 (that is,
System Tick Compare is enabled) and its stick_cmpr field matches the value in the
STICK register, then SOFTINT.sm (“STICK match”) is set to 1 and a level 14 interrupt
(interrupt_level_14) is generated. See System Tick Compare (STICK_CMPRP) Register (ASR
25) on page 60 for details. SOFTINT.sm can also be directly written to 1 by software.

15:1 int_level When SOFTINT.int_level{n−1} (SOFTINT{n}) is set to 1, an interrupt_level_n exception is
generated.

0 tm When the TICK_CMPR (ASR 23) register’s int_dis (interrupt disable) field is 0 (that is,
Tick Compare is enabled) and its tick_cmpr field matches the value in the TICK register,
then the tm (“TICK match”) field in SOFTINT is set to 1 and a level-14 interrupt
(interrupt_level_14) is generated. See Tick Compare (TICK_CMPRP) Register (ASR 23) on
page 59 for details. SOFTINT.tm can also be directly written to 1 by software.

Programming
Note

There is no actual “register” (machine state) corresponding to
ASR 20; it is just a programming interface to conveniently set
selected bits to ‘1’ in the SOFTINT register, ASR 22.

W1S

SOFTINT_SETP — ASR 22 bits to be set

63 17 16 0

FIGURE 5-17 SOFTINT_SET Pseudo-Register (ASR 20)

Notes: A level-14 interrupt (interrupt_level_14) can be triggered by
SOFTINT.sm, SOFTINT.tm, or a write to SOFTINT.int_level{13}
(SOFTINT{14}).

A level-15 interrupt (interrupt_level_15) can be triggered by a write to
SOFTINT.int_level{14} (SOFTINT{15}), or possibly by other
implementation-dependent mechanisms.

An interrupt_level_n exception will only cause a trap if (PIL < n) and
(PSTATE.ie = 1) and (HPSTATE.hpriv = 0).

N2

A2
58 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

5.5.8.2 SOFTINT_CLRP Pseudo-Register (ASR 21)

A Write State register instruction to ASR 21 (WRSOFTINT_CLR) atomically clears selected bits in the
privileged SOFTINT register (ASR 22) (see page 57). That is, bits 16:0 of the write data are inverted
and anded into SOFTINT; any ‘1’ bit in the write data causes the corresponding bit of SOFTINT to be
set to 0. Bits 63:17 of the write data are ignored.

Access to ASR 21 is privileged and write-only. There is no instruction to read this pseudo-register. An
attempt to write to ASR 21 in non-privileged mode, using the WRasr instruction, causes a
privileged_opcode exception.

FIGURE 5-18 illustrates the SOFTINT_CLR pseudo-register.

5.5.9 Tick Compare (TICK_CMPRP) Register (ASR 23)
The privileged TICK_CMPR register allows system software to cause a trap when the TICK register
reaches a specified value. Nonprivileged accesses to this register cause a privileged_opcode exception
(see Exception and Interrupt Descriptions on page 406).

After a power-on reset trap, the int_dis bit is set to 1 (disabling Tick Compare interrupts) and the
value of the tick_cmpr field is undefined.

The TICK_CMPR register is illustrated in FIGURE 5-19 and described in TABLE 5-12.

5.5.10 System Tick (STICK) Register (ASR 24)
The System Tick (STICK) register provides a counter that is synchronized across a system, useful for
timestamping. The counter field of the STICK register is a 63-bit counter that increments at a rate
determined by a clock signal external to the processor.

Programming
Note

There is no actual “register” (machine state) corresponding to
ASR 21; it is just a programming interface to conveniently clear
(set to ‘0’) selected bits in the SOFTINT register, ASR 22.

W1C

SOFTINT_CLRP — ASR 22 bits to be cleared

63 17 16 0

FIGURE 5-18 SOFTINT_CLR Pseudo-Register (ASR 21))

RW RW

TICK_CMPRP int_dis tick_cmpr

63 62 0

FIGURE 5-19 TICK_CMPR Register

TABLE 5-12 TICK_CMPR Register Description

Bit Field Description

63 int_dis Interrupt Disable. If int_dis = 0, TICK compare interrupts are enabled
and if int_dis = 1, TICK compare interrupts are disabled.

62:0 tick_cmpr Tick Compare Field. When this field exactly matches the value in
TICK.counter and TICK_CMPR.int_dis = 0, SOFTINT.tm is set to 1.
This has the effect of posting a level-14 interrupt to the virtual
processor, which causes an interrupt_level_14 trap when (PIL < 14)
and (PSTATE.ie = 1 and HPSTATE.hpriv = 0). The level-14 interrupt
handler must check SOFTINT{14}, SOFTINT{0} (tm), and
SOFTINT{16} (sm) to determine the source of the level-14 interrupt.

A2

D2

A1
CHAPTER 5 • Registers 59

Bit 63 of the STICK register is the nonprivileged trap (npt) bit, which controls access to the STICK
register by nonprivileged software.

The STICK register is illustrated in FIGURE 5-20 and described below.

Hyperprivileged software can always read the STICK register with the RDSTICK instruction and
write it with the WRSTICK instruction.

Privileged software can always read the STICK register with the RDSTICK instruction.

Privileged software cannot write the STICK register; an attempt to execute the WRSTICK instruction
in privileged mode results in an illegal_instruction exception.

Nonprivileged software can read the STICK register by using the RDSTICK instruction, but only
when nonprivileged access to STICK is enabled (STICK.npt = 0) by hyperprivileged software. If
nonprivileged access is disabled (STICK.npt = 1), an attempt by nonprivileged software to read the
STICK register causes a privileged_action exception.

Nonprivileged software cannot write the STICK register; an attempt to execute the WRSTICK
instruction in nonprivileged mode results in an illegal_instruction exception.

After the STICK register is written, reading the STICK register returns a value incremented (by 1 or
more) from the last value written, rather than from some previous value of counter.

IMPL. DEP. #442-S10: (a) If an accurate count cannot always be returned when STICK is read, any
inaccuracy should be small, bounded, and documented.
(b) An implementation may implement fewer than 63 bits in STICK.counter; however, the counter as
implemented must be able to count for at least 10 years without overflowing. Any upper bits not
implemented must read as zero.

After a power-on reset trap, STICK.npt is set to 1 and the value of STICK.counter is undefined.

5.5.11 System Tick Compare (STICK_CMPRP) Register (ASR
25)
The privileged STICK_CMPR register allows system software to cause a trap when the STICK register
reaches a specified value. An attempt to accesses to this register while in nonprivileged mode causes
a privileged_opcode exception (see Exception and Interrupt Descriptions on page 406).

After a power-on reset trap, the int_dis bit is set to 1 (disabling System Tick Compare interrupts), and
the stick_cmpr field is undefined.

The System Tick Compare Register is illustrated in FIGURE 5-21 and described in TABLE 5-13.

R, WH R, WH

STICKPnpt npt counter

63 62 0

FIGURE 5-20 STICK Register

Note The STICK register is unaffected by any reset other than a
power-on reset.

RW RW

STICK_CMPRP int_dis stick_cmpr

63 62 0

FIGURE 5-21 STICK_CMPR Register

A2
60 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

5.6 Register-Window PR State Registers
The state of the register windows is determined by the contents of a set of privileged registers. These
state registers can be read/written by privileged software using the RDPR/WRPR instructions. An
attempt by nonprivileged software to execute a RDPR or WRPR instruction causes a
privileged_opcode exception. In addition, these registers are modified by instructions related to
register windows and are used to generate traps that allow supervisor software to spill, fill, and clean
register windows.

IMPL. DEP. #126-V9-Ms10: Privileged registers CWP, CANSAVE, CANRESTORE, OTHERWIN, and
CLEANWIN contain values in the range 0 to N_REG_WINDOWS − 1. An attempt to write a value greater
than N_REG_WINDOWS − 1 to any of these registers causes an implementation-dependent value
between 0 and N_REG_WINDOWS − 1 (inclusive) to be written to the register. Furthermore, an attempt
to write a value greater than N_REG_WINDOWS − 2 violates the register window state definition in
Register Window State Definition on page 63.
Although the width of each of these five registers is architecturally 5 bits, the width is implementation
dependent and shall be between  log2(N_REG_WINDOWS) and 5 bits, inclusive. If fewer than 5 bits are
implemented, the unimplemented upper bits shall read as 0 and writes to them shall have no effect.
All five registers should have the same width.
For UltraSPARC Architecture 2007 processors, N_REG_WINDOWS = 8. Therefore, each register window
state register is implemented with 3 bits, the maximum value for CWP and CLEANWIN is 7, and the
maximum value for CANSAVE, CANRESTORE, and OTHERWIN is 6. When these registers are
written by the WRPR instruction, bits 63:3 of the data written are ignored.

For details of how the window-management registers are used, see Register Window Management
Instructions on page 94.

TABLE 5-13 STICK_CMPR Register Description

Bit Field Description

63 int_dis Interrupt Disable. If set to 1, STICK_CMPR interrupts are disabled.

62:0 stick_cmpr System Tick Compare Field. When this field exactly matches
STICK.counter and STICK_CMPR.int_dis = 0, SOFTINT.sm is set to
1. This has the effect of posting a level-14 interrupt to the virtual
processor, which causes an interrupt_level_14 trap when (PIL < 14)
and (PSTATE.ie = 1). The level-14 interrupt handler must check
SOFTINT{14}, SOFTINT{0} (tm), and SOFTINT{16} (sm) to
determine the source of the level-14 interrupt.

Programming
Note

CANSAVE, CANRESTORE, OTHERWIN, and CLEANWIN must
never be set to a value greater than N_REG_WINDOWS − 2 on an
UltraSPARC Architecture virtual processor. Setting any of these
to a value greater than N_REG_WINDOWS − 2 violates the register
window state definition in Register Window State Definition on
page 63. Hardware is not required to enforce this restriction; it is
up to system software to keep the window state consistent.

Implementation
Note

A write to any privileged register, including PR state registers,
may drain the CPU pipeline.
CHAPTER 5 • Registers 61

5.6.1 Current Window Pointer (CWPP) Register (PR 9)
The privileged CWP register, shown in FIGURE 5-22, is a counter that identifies the current window
into the array of integer registers. See Register Window Management Instructions on page 94 and
Chapter 12, Traps, for information on how hardware manipulates the CWP register.

5.6.2 Savable Windows (CANSAVEP) Register (PR 10)
The privileged CANSAVE register, shown in FIGURE 5-23, contains the number of register windows
following CWP that are not in use and are, hence, available to be allocated by a SAVE instruction
without generating a window spill exception.

5.6.3 Restorable Windows (CANRESTOREP) Register (PR 11)
The privileged CANRESTORE register, shown in FIGURE 5-24, contains the number of register
windows preceding CWP that are in use by the current program and can be restored (by the
RESTORE instruction) without generating a window fill exception.

5.6.4 Clean Windows (CLEANWINP) Register (PR 12)
The privileged CLEANWIN register, shown in FIGURE 5-25, contains the number of windows that can
be used by the SAVE instruction without causing a clean_window exception.

The CLEANWIN register counts the number of register windows that are “clean” with respect to the
current program; that is, register windows that contain only zeroes, valid addresses, or valid data
from that program. Registers in these windows need not be cleaned before they can be used. The
count includes the register windows that can be restored (the value in the CANRESTORE register)
and the register windows following CWP that can be used without cleaning. When a clean window is
requested (by a SAVE instruction) and none is available, a clean_window exception occurs to cause the
next window to be cleaned.

RW RW

CWPP

4 3 2 0

FIGURE 5-22 Current Window Pointer Register

RW RW

CANSAVEP

4 3 2 0

FIGURE 5-23 CANSAVE Register, Figure 5-24, page 88

RW RW

CANRESTOREP

4 3 2 0

FIGURE 5-24 CANRESTORE Register

RW RW

CLEANWINP

4 3 2 0

FIGURE 5-25 CLEANWIN Register

A1

A1

A1

A1
62 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

5.6.5 Other Windows (OTHERWINP) Register (PR 13)
The privileged OTHERWIN register, shown in FIGURE 5-26, contains the count of register windows that
will be spilled/filled by a separate set of trap vectors based on the contents of WSTATE.other. If
OTHERWIN is zero, register windows are spilled/filled by use of trap vectors based on the contents of
WSTATE.normal.

The OTHERWIN register can be used to split the register windows among different address spaces
and handle spill/fill traps efficiently by use of separate spill/fill vectors.

5.6.6 Window State (WSTATEP) Register (PR 14)
The privileged WSTATE register, shown in FIGURE 5-27, specifies bits that are inserted into TT[TL]{4:2}
on traps caused by window spill and fill exceptions. These bits are used to select one of eight different
window spill and fill handlers. If OTHERWIN = 0 at the time a trap is taken because of a window spill
or window fill exception, then the WSTATE.normal bits are inserted into TT[TL]. Otherwise, the
WSTATE.other bits are inserted into TT[TL]. See Register Window State Definition, below, for details of
the semantics of OTHERWIN.

5.6.7 Register Window Management
The state of the register windows is determined by the contents of the set of privileged registers
described in Register-Window PR State Registers on page 61. Those registers are affected by the
instructions described in Register Window Management Instructions on page 94. Privileged software can
read/write these state registers directly by using RDPR/WRPR instructions.

5.6.7.1 Register Window State Definition

For the state of the register windows to be consistent, the following must always be true:

CANSAVE + CANRESTORE + OTHERWIN = N_REG_WINDOWS – 2

FIGURE 5-3 on page 39 shows how the register windows are partitioned to obtain the above equation.
The partitions are as follows:

■ The current window plus the window that must not be used because it overlaps two other valid
windows. In FIGURE 5-3, these are windows 0 and 5, respectively. They are always present and
account for the “2” subtracted from N_REG_WINDOWS in the right-hand side of the above equation.

■ Windows that do not have valid contents and that can be used (through a SAVE instruction)
without causing a spill trap. These windows (windows 1–4 in FIGURE 5-3) are counted in CANSAVE.

■ Windows that have valid contents for the current address space and that can be used (through the
RESTORE instruction) without causing a fill trap. These windows (window 7 in FIGURE 5-3) are
counted in CANRESTORE.

RW RW

OTHERWINP

4 3 2 0

FIGURE 5-26 OTHERWIN Register

RW RW

WSTATEP other normal

5 3 2 0

FIGURE 5-27 WSTATE Register

A1

A1
CHAPTER 5 • Registers 63

■ Windows that have valid contents for an address space other than the current address space. An
attempt to use these windows through a SAVE (RESTORE) instruction results in a spill (fill) trap to
a separate set of trap vectors, as discussed in the following subsection. These windows (window 6
in FIGURE 5-3) are counted in OTHERWIN.

In addition,

CLEANWIN ≥ CANRESTORE

since CLEANWIN is the sum of CANRESTORE and the number of clean windows following CWP.

For the window-management features of the architecture described in this section to be used, the state
of the register windows must be kept consistent at all times, except within the trap handlers for
window spilling, filling, and cleaning. While window traps are being handled, the state may be
inconsistent. Window spill/fill trap handlers should be written so that a nested trap can be taken
without destroying state.

5.6.7.2 Register Window Traps
Window traps are used to manage overflow and underflow conditions in the register windows,
support clean windows, and implement the FLUSHW instruction.

See Register Window Traps on page 416 for a detailed description of how fill, spill, and clean_window
traps support register windowing.

5.7 Non-Register-Window PR State Registers
The registers described in this section are visible only to software running in privileged or
hyperprivileged mode (that is, when PSTATE.priv = 1 or HPSTATE.hpriv = 1), and may be accessed
with the WRPR and RDPR instructions. (An attempt to execute a WRPR or RDPR instruction in
nonprivileged mode causes a privileged_opcode exception.)

Each virtual processor provides a full set of these state registers.

5.7.1 Trap Program Counter (TPCP) Register (PR 0)
The privileged Trap Program Counter register (TPC; FIGURE 5-28) contains the program counter (PC)
from the previous trap level. There are MAXTL instances of the TPC, but only one is accessible at any
time. The current value in the TL register determines which instance of the TPC[TL] register is
accessible. An attempt to read or write the TPC register when TL = 0 causes an illegal_instruction
exception.

After a power-on reset, the contents of TPC[1] through TPC[MAXTL] are undefined. During normal
operation, the value of TPC[n], where n is greater than the current trap level (n > TL), is undefined.

TABLE 5-14 lists the events that cause TPC to be read or written.

Programming
Note

System software is responsible for keeping the state of the
register windows consistent at all times. Failure to do so will
cause undefined behavior. For example, CANSAVE,
CANRESTORE, and OTHERWIN must never be greater than or
equal to N_REG_WINDOWS – 1.

Implementation
Note

A write to any privileged register, including PR state registers,
may drain the CPU pipeline.

A1
64 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

TABLE 5-14 Events that involve TPC, when executing with TL = n.

5.7.2 Trap Next PC (TNPCP) Register (PR 1)
The privileged Trap Next Program Counter register (TNPC; FIGURE 5-28) is the next program counter
(NPC) from the previous trap level. There are MAXTL instances of the TNPC, but only one is accessible
at any time. The current value in the TL register determines which instance of the TNPC register is
accessible. An attempt to read or write the TNPC register when TL = 0 causes an illegal_instruction
exception.

After a power-on reset, the contents of TNPC[1] through TNPC[MAXTL] are undefined. During normal
operation, the value of TNPC[n], where n is greater than the current trap level (n > TL), is undefined.

TABLE 5-15 lists the events that cause TNPC to be read or written.

Event Effect

Trap TPC[n + 1] ← PC

RETRY instruction PC ← TPC[n]

RDPR (TPC) R[rd] ← TPC[n]

WRPR (TPC) TPC[n] ← value

Power-on reset (POR) All TPC values are left undefined

TABLE 5-15 Events that involve TNPC, when executing with TL = n.

Event Effect

Trap TNPC[n + 1] ← NPC

DONE instruction PC ← TNPC[n]; NPC ← TNPC[n] + 4

RETRY instruction NPC ← TNPC[n]

RDPR (TNPC) R[rd] ← TNPC[n]

WRPR (TNPC) TNPC[n] ← value

Power-on reset (POR) All TNPC values are left undefined

TPC1
P

2

00

63 1 0

TPC2
P

00

TPC3
P 00

:

00

FIGURE 5-28 Trap Program Counter Register Stack

TPCMAXTL
P

pc_high62 (PC{63:2} from trap while TL = MAXTL − 1)

: :

pc_high62 (PC{63:2} from trap while TL = 0)

pc_high62 (PC{63:2} from trap while TL = 1)

pc_high62 (PC{63:2} from trap while TL = 2)

RW R

A1

TNPC1
P

2

00

63 1 0

TNPC2
P

00

TNPC3
P 00

00

FIGURE 5-29 Trap Next Program Counter Register Stack

TNPCMAXTL
P

npc_high62 (NPC{63:2} from trap while TL = MAXTL − 1)

: : :

npc_high62 (NPC{63:2} from trap while TL = 0)

npc_high62 (NPC{63:2} from trap while TL = 1)

npc_high62 (NPC{63:2} from trap while TL = 2)

RW R
CHAPTER 5 • Registers 65

5.7.3 Trap State (TSTATEP) Register (PR 2)
The privileged Trap State register (TSTATE; FIGURE 5-30) contains the state from the previous trap
level, comprising the contents of the GL, CCR, ASI, CWP, and PSTATE registers from the previous
trap level. There are MAXTL instances of the TSTATE register, but only one is accessible at a time. The
current value in the TL register determines which instance of TSTATE is accessible. An attempt to read
or write the TSTATE register when TL = 0 causes an illegal_instruction exception.

FIGURE 5-30 Trap State (TSTATE) Register Stack

After a power-on reset the contents of TSTATE[1] through TSTATE[MAXTL] are undefined. During
normal operation the value of TSTATE[n], when n is greater than the current trap level (n > TL), is
undefined.

TABLE 5-16 lists the events that cause TSTATE to be read or written.

RW RW RW R RW R RW

TSTATE1
P gl

(GL from TL = 0)

ccr
(CCR from TL = 0)

asi
(ASI from TL = 0)

— pstate
(PSTATE from TL = 0)

— cwp
(CWP from TL = 0)

TSTATE2
P gl

(GL from TL = 1)

ccr
(CCR from TL = 1)

asi
(ASI from TL = 1

— pstate
(PSTATE from TL = 1)

— cwp
(CWP from TL = 1)

TSTATE3
P gl

(GL from TL = 2)

ccr
(CCR from TL = 2)

asi
(ASI from TL = 2

— pstate
(PSTATE from TL = 2)

— cwp
(CWP from TL = 2)

: P
: : : : : : :

TSTATEMAXPTL
P

gl
(GL from

TL = MAXPTL − 1)

ccr
(CCR from

TL = MAXPTL − 1)

asi
(ASI from

TL = MAXPTL − 1)

— pstate
(PSTATE from

TL = MAXPTL − 1)

— cwp
(CWP from

TL = MAXPTL − 1)

TSTATEMAXPTL+1
H

gl
(GL from

TL = MAXPTL)

ccr
(CCR from

TL = MAXPTL)

asi
(ASI from

TL = MAXPTL)

— pstate
(PSTATE from

TL = MAXPTL)

— cwp
(CWP from

TL = MAXPTL)
: H

: : : : : : :

TSTATEMAXTL
H gl

(GL from

TL = MAXTL − 1)

ccr
(CCR from

TL = MAXTL − 1)

asi
(ASI from

TL = MAXTL − 1)

— pstate
(PSTATE from

TL = MAXTL − 1)

— cwp
(CWP from

TL = MAXTL − 1)
42 40 39 32 31 24 23 21 20 8 7 5 4 0

V9 Compatibility
Note

Because there are more bits in the UltraSPARC Architecture’s
PSTATE register than in a SPARC V9 PSTATE register, a 13-bit
PSTATE value is stored in TSTATE instead of the 10-bit value
specified in the SPARC V9 architecture.

TABLE 5-16 Events That Involve TSTATE, When Executing with TL = n

Event Effect

Trap TSTATE[n + 1] ← (registers)

DONE instruction (registers) ← TSTATE[n]

RETRY instruction (registers) ← TSTATE[n]

RDPR (TSTATE) R[rd] ← TSTATE[n]

WRPR (TSTATE) TSTATE[n] ← value

Power-on reset (POR) All TSTATE values are left undefined

A1
66 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

5.7.4 Trap Type (TTP) Register (PR 3)
The privileged Trap Type register (TT; see FIGURE 5-31) contains the trap type of the trap that caused
entry to the current trap level. On a reset trap, the TT register contains the trap type of the reset (see
TABLE 12-2 on page 376). There are MAXTL instances of the TT register, but only one is accessible at a
time. The current value in the TL register determines which instance of the TT register is accessible.
An attempt to read or write the TT register when TL = 0 causes an illegal_instruction exception.

After a power-on reset the contents of TT[1] through TT[MAXTL − 1] are undefined and TT[MAXTL] =
00116. During normal operation, the value of TT[n], where n is greater than the current trap level (n >
TL), is undefined.

TABLE 5-17 lists the events that cause TT to be read or written.

TABLE 5-17 Events that involve TT, when executing with TL = n.

5.7.5 Trap Base Address (TBAP) Register (PR 5)
The privileged Trap Base Address register (TBA), shown in FIGURE 5-32, provides the upper 49 bits
(bits 63:15) of the virtual address used to select the trap vector for a trap that is to be delivered to
privileged mode. The lower 15 bits of the TBA always read as zero, and writes to them are ignored.

Details on how the full address for a trap vector is generated, using TBA and other state, are provided
in Trap-Table Entry Address to Privileged Mode on page 383.

RW

TT1
P Trap type from trap while TL = 0

TT2
P Trap type from trap while TL = 1

:P :

TTMAXPTL
P Trap type from trap while TL = MAXPTL − 1

TTMAXPTL + 1
H Trap type from trap while TL = MAXPTL

:H :

TTMAXTL
H Trap type from trap while TL = MAXTL − 1

8 0

FIGURE 5-31 Trap Type Register Stack

Event Effect

Trap TT[n + 1] ← (trap type)

RDPR (TT) R[rd] ← TT[n]

WRPR (TT) TT[n] ← value

Power-on reset (POR) TT values TT[1] through TT[MAXTL − 1] are left undefined;
TT[MAXTL] ← 00116.

RW R

TBAP tba_high49 000 0000 0000 0000

63 15 14 0

FIGURE 5-32 Trap Base Address Register

A1

A1
CHAPTER 5 • Registers 67

5.7.6 Processor State (PSTATEP) Register (PR 6)
The privileged Processor State register (PSTATE), shown in FIGURE 5-33, contains control fields for the
current state of the virtual processor. There is only one instance of the PSTATE register per virtual
processor.

Writes to PSTATE are nondelayed; that is, new machine state written to PSTATE is visible to the next
instruction executed. The privileged RDPR and WRPR instructions are used to read and write
PSTATE, respectively.

The following subsections describe the fields of the PSTATE register.

Trap on Control Transfer (tct). PSTATE.tct enables the Trap-on-Control-Transfer feature.When
PSTATE.tct = 1, the virtual processor monitors each control transfer instruction (CTI) to determine
whether a control_transfer_instruction exception should be generated. If the virtual processor is
executing a CTI, PSTATE.tct = 1, and a successful control transfer is going to occur as a result of
execution of that CTI, the processor generates a control_transfer_instruction exception instead of
completing execution of the control transfer instruction.

When the trap is taken, the address of the CTI (the value of PC when the CTI began execution) is
saved in TPC[TL] and the value of NPC when the CTI began execution is saved in TNPC[TL].

During initial trap processing, before trap handler code is executed, the virtual processor sets
PSTATE.tct to 0 (so that control transfers within the trap handler don’t cause additional traps).

IMPL. DEP. #450-S20: Availability of the control_transfer_instruction exception feature is
implementation dependent. If not implemented, trap type 07416 is unused, PSTATE.tct always reads
as zero, and writes to PSTATE.tct are ignored.

For the purposes of the control_transfer_instruction exception, a discontinuity in instruction-fetch
addresses caused by a WRPR to PSTATE that changes the value of PSTATE.am (and thus, potentially
the more-significant 32 bits of the address of the next instruction; see page 71) is not considered a
control transfer. Only explicit CTIs can generate a control_transfer_instruction exception.

Current Little Endian (cle). This bit affects the endianness of data accesses performed using an
implicit ASI. When PSTATE.cle = 1, all data accesses using an implicit ASI are performed in little-
endian byte order. When PSTATE.cle = 0, all data accesses using an implicit ASI are performed in big-
endian byte order. Specific ASIs used are shown in TABLE 6-3 on page 87. Note that the endianness of
a data access may be further affected by TTE.ie used by the MMU.

Instruction accesses are unaffected by PSTATE.cle and are always performed in big-endian byte order.

RW RW RW RW RW RW RW RW

PSTATEP tct — cle tle mm — pef am priv ie —

12 11 10 9 8 7 6 5 4 3 2 1 0

FIGURE 5-33 PSTATE Field

Programming
Note

Trap handler software for a control_transfer_instruction trap
should take care when returning to the software that caused the
trap. Execution of DONE or RETRY causes PSTATE.tct to be
restored from TSTATE, normally setting PSTATE.tct back to 1. If
trap handler software intends for control_transfer_instruction
exceptions to be reenabled, then it must emulate the trapped
control transfer instruction.

A1
68 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

Trap Little Endian (tle). When a trap is taken, the current PSTATE register is pushed onto the trap
stack. During a virtual processor trap to privileged mode, the PSTATE.tle bit is copied into
PSTATE.cle in the new PSTATE register. This behavior allows system software to have a different
implicit byte ordering than the current process. Thus, if PSTATE.tle is set to 1, data accesses using an
implicit ASI in the trap handler are little-endian.

The original state of PSTATE.cle is restored when the original PSTATE register is restored from the
trap stack. During a virtual processor trap to hyperprivileged mode, the PSTATE.tle bit is not copied
into PSTATE.cle of the new PSTATE register and is unused.

Memory Model (mm). This 2-bit field determines the memory model in use by the virtual
processor. The defined values for an UltraSPARC Architecture virtual processor are listed in
TABLE 5-18.

The current memory model is determined by the value of PSTATE.mm. Software should refrain from
writing the values 012, 102, or 112 to PSTATE.mm because they are implementation-dependent or
reserved for future extensions to the architecture, and in any case not currently portable across
implementations.

■ Total Store Order (TSO) — Loads are ordered with respect to earlier loads. Stores are ordered with
respect to earlier loads and stores. Thus, loads can bypass earlier stores but cannot bypass earlier
loads; stores cannot bypass earlier loads or stores.

IMPL. DEP. #113-V9-Ms10: Whether memory models represented by PSTATE.mm = 102 or 112 are
supported in an UltraSPARC Architecture processor is implementation dependent. If the 102 model
is supported, then when PSTATE.mm = 102 the implementation must correctly execute software that
adheres to the RMO model described in The SPARC Architecture Manual-Version 9. If the 112 model is
supported, its definition is implementation dependent.

IMPL. DEP. #119-Ms10: The effect of writing an unimplemented memory model designation into
PSTATE.mm is implementation dependent.

Enable FPU (pef). When set to 1, the PSTATE.pef bit enables the floating-point unit. This allows
privileged software to manage the FPU. For the FPU to be usable, both PSTATE.pef and FPRS.fef
must be set to 1. Otherwise, any floating-point instruction that tries to reference the FPU causes an
fp_disabled trap.

TABLE 5-18 PSTATE.mm Encodings

mm Value Selected Memory Model

00 Total Store Order (TSO)

01 Reserved

10 Implementation dependent (impl. dep. #113-V9-Ms10)

11 Implementation dependent (impl. dep. #113-V9-Ms10)

SPARC V9
Compatibility

Notes

The PSO memory model described in SPARC V8 and SPARC V9
architecture specifications was never implemented in a SPARC
V9 implementation and is not included in the UltraSPARC
Architecture specification.

The RMO memory model described in the SPARC V9
specification was implemented in some non-Sun SPARC V9
implementations, but is not directly supported in UltraSPARC
Architecture 2007 implementations. All software written to run
correctly under RMO will run correctly under TSO on an
UltraSPARC Architecture 2007 implementation.
CHAPTER 5 • Registers 69

If an implementation does not contain a hardware FPU, PSTATE.pef always reads as 0 and writes to it
are ignored.

Address Mask (am). The PSTATE.am bit is provided to allow 32-bit SPARC software to run
correctly on a 64-bit SPARC processor. When PSTATE.am = 1, bits 63:32 of virtual addresses are
masked out (treated as 0). PSTATE.am does not affect real or physical addresses.

When PSTATE.am = 0, the full 64 bits of all instruction and data addresses are preserved at all points in
the virtual processor.

When an MMU is disabled or in bypass, PSTATE.am has no effect on (does not cause masking of)
addresses.

Instances in which the more-significant 32 bits of a virtual address are masked when PSTATE.am = 1
include:

■ Before any data virtual address is sent out of the virtual processor (notably, to the memory system,
which includes MMU, internal caches, and external caches).

■ Before any instruction virtual address is sent out of the virtual processor (notably, to the memory
system, which includes MMU, internal caches, and external caches)

■ When the value of PC is stored to a general-purpose register by a CALL, JMPL, or RDPC
instruction (closed impl.dep. #125-V9-Cs10)

■ When the values of PC and NPC are written to TPC[TL] and TNPC[TL] (respectively) during a trap
(closed impl.dep. #125-V9-Cs10)

■ Before any virtual address is sent to a watchpoint comparator

■ When an exception occurs and an address is written to the Data Synchronous Fault Address
register (D-SFAR) (impl.dep. #241-U3)

When PSTATE.am = 1, the more-significant 32 bits of a virtual address are explicitly preserved and
not masked out in the following cases:

■ When a target address is written to NPC by a control transfer instruction

Programming
Note

It is the responsibility of privileged and hyperprivileged
software to manage the setting of the PSTATE.am bit, since
hardware masks virtual addresses when PSTATE.am = 1.

Misuse of the PSTATE.am bit can result in undesirable behavior.
In particular, PSTATE.am should not be set to 1 in privileged or
hyperprivileged mode.

The PSTATE.am bit should always be set to 1 when 32-bit
nonprivileged software is executed.

Programming
Note

A 64-bit comparison is always used when performing a masked
watchpoint address comparison with the Instruction or Data VA
watchpoint register. When PSTATE.am = 1, the more significant
32 bits of the VA watchpoint register must be zero for a match
(and resulting trap) to occur.

Programming
Note

If a memory access is initiated when PSTATE.am = 1, the
memory system will only see a 32-bit memory address.
Therefore, if such a memory access causes an exception or error,
the memory system will (is only able to) report a 32-bit address
in the D-SFAR register (64-bit address with the more-significant
32 bits set to 0).
70 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

■ When NPC is incremented to NPC + 4 during execution of an instruction that is not a taken control
transfer

■ When a WRPR instruction writes to TPC[TL] or TNPC[TL]

■ When a RDPR instruction reads from TPC[TL] or TNPC[TL]

If (1) TSTATE[TL].pstate.am = 1 and (2) a DONE or RETRY instruction is executed1, it is
implementation dependent whether the DONE or RETRY instruction masks (zeroes) the more-
significant 32 bits of the values it places into PC and NPC (impl. dep. #417-S10).

Privileged Mode (priv). When PSTATE.priv = 1 and HPSTATE.hpriv = 0, the virtual processor is
operating in privileged mode.

When PSTATE.priv = 0 and HPSTATE.hpriv = 0, the processor is operating in nonprivileged mode

When HPSTATE.hpriv = 1, the virtual processor is operating in hyperprivileged mode, independent of
the state of PSTATE.priv. Hyperprivileged mode provides a superset of the capabilities of privileged
mode.

PSTATE_interrupt_enable (ie). PSTATE.ie controls when the virtual processor can take traps due
to disrupting exceptions (such as interrupts or errors unrelated to instruction processing).

Outstanding disrupting exceptions that are destined for privileged mode can only cause a trap when
the virtual processor is in nonprivileged or privileged mode and PSTATE.ie = 1. At all other times,
they are held pending. For more details, see Conditioning of Disrupting Traps on page 379.

Outstanding disrupting exceptions that are destined for hyperprivileged mode can only cause a trap
when the virtual processor is not in hyperprivileged mode, or when it is in hyperprivileged mode and
PSTATE.ie = 1. At all other times, they are held pending. For more details, see Conditioning of
Disrupting Traps on page 379

Programming
Note

Since writes to PSTATE are nondelayed (see page 68), a change
to PSTATE.am can affect which instruction is executed
immediately after the write to PSTATE.am. Specifically, if a
WRPR to the PSTATE register changes the value of PSTATE.am
from ’0’ to ’1’, and NPC{63:32} when the WRPR began execution
was nonzero, then the next instruction executed after the WRPR
will be from the address indicated in NPC{31:0} (with the more-
significant 32 address bits set to zero).

1. which sets PSTATE.am to ’1’, by restoring the value from TSTATE[TL].pstate.am to PSTATE.am

Programming
Note

Because of implementation dependency #417-S10, great care
must be taken in trap handler software if
TSTATE[TL].pstate.am = 1 and the trap handler wishes to write
a nonzero value to the more-significant 32 bits of TPC[TL] or
TNPC[TL].

Programming
Note

PSTATE.am affects the operation of the edge-handling
instructions, EDGE<8|16|32>[L]*. See Edge Handling Instructions
on page 129 and Edge Handling Instructions (no CC) on page 131.

SPARC V9
Compatibility

Note

Since the UltraSPARC Architecture provides a more general
“alternate globals” facility (through use of the GL register) than
does SPARC V9, an UltraSPARC Architecture processor does not
implement the SPARC V9 PSTATE.ag bit.
CHAPTER 5 • Registers 71

5.7.7 Trap Level Register (TLP) (PR 7)
The privileged Trap Level register (TL; FIGURE 5-34) specifies the current trap level. TL = 0 is the
normal (nontrap) level of operation. TL > 0 implies that one or more traps are being processed.

The maximum valid value that the TL register may contain is MAXTL, which is always equal to the
number of supported trap levels beyond level 0.

IMPL. DEP. #101-V9-CS10: The architectural parameter MAXPTL is a constant for each
implementation; its legal values are from 2 to 6 (supporting from 2 to 6 levels of saved trap state
visible to privileged software). In a typical implementation MAXPTL = MAXPGL (see impl. dep. #401-
S10). The architectural parameter MAXTL is a constant for each implementation; its legal values are
from 4 to 7 (supporting from 4 to 7 levels of saved trap state). Architecturally, MAXPTL must be ≥ 2,
MAXTL must be ≥ 4, and MAXTL must be > MAXPTL.

In an UltraSPARC Architecture 2007 implementation, MAXPTL = 2 and MAXTL = 6. See Chapter 12, Traps,
for more details regarding the TL register.

; see processor-specific documentation for the value of MAXTL on a particular implementationAfter a
power-on reset (POR), TL is set to MAXTL.

The effect of writing to TL with a WRPR instruction is summarized in TABLE 5-19.

Writing the TL register with a WRPR instruction does not alter any other machine state; that is, it is not
equivalent to taking a trap or returning from a trap.

RW

TLP tl

2 0

FIGURE 5-34 Trap Level Register

TABLE 5-19 Effect of WRPR of Value x to Register TL

Value x Written with WRPR

Privilege Level when Executing WRPR

Nonprivileged Privileged Hyperprivileged

x ≤ MAXPTL

privileged_opcode
exception

TL ← x
TL ← x

MAXPTL < x ≤ MAXTL TL ← MAXPTL

(no exception generated)
x > MAXTL TL ← MAXTL

(no exception generated)

Programming
Note

An UltraSPARC Architecture implementation only needs to
implement sufficient bits in the TL register to encode the
maximum trap level value. In an implementation
whereMAXTL ≤ 7, bits 63:3 of data written to the TL register using
the WRPR instruction are ignored; only the least-significant
three bits (bits 2:0) of TL are actually written. For example, if
MAXTL = 6, writing a value of 0916 to the TL register causes a
value of 116 to actually be stored in TL.

Implementation
Note

MAXPTL =2 for all UltraSPARC Architecture 2007 processors.
Writing a value between 3 and 7 to the TL register in privileged
mode causes a 2 to be stored in TL.

A1
72 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

5.7.8 Processor Interrupt Level (PILP) Register (PR 8)
The privileged Processor Interrupt Level register (PIL; see FIGURE 5-35) specifies the interrupt level
above which the virtual processor will accept an interrupt_level_n interrupt. Interrupt priorities are
mapped so that interrupt level 2 has greater priority than interrupt level 1, and so on. See TABLE 12-4
on page 387 for a list of exception and interrupt priorities.

5.7.9 Global Level Register (GLP) (PR 16)
The privileged Global Level (GL) register selects which set of global registers is visible at any given
time.

FIGURE 5-36 illustrates the Global Level register.

When a trap occurs, GL is stored in TSTATE[TL].gl, GL is incremented, and a new set of global
registers (R[1] through R[7]) becomes visible. A DONE or RETRY instruction restores the value of GL
from TSTATE[TL].

The valid range of values that the GL register may contain is MAXGL, where MAXGL is one fewer than
the number of global register sets available to the virtual processor.

IMPL. DEP. #401-S10: The architectural parameter MAXPGL is a constant for each implementation; its
legal values are from 2 to 7 (supporting from 3 to 8 sets of global registers visible to privileged
software). In a typical implementation, MAXPGL = MAXPTL (see impl. dep. #101-V9-CS10). The
architectural parameter MAXGL is a constant for each implementation; its legal values are from 3 to 7
(supporting from 4 to 8 sets of global registers). Architecturally, MAXPGL must be ≥ 2 and MAXGL must
be > MAXPGL.

Programming
Note

Although it is possible for hyperprivileged software to set
TL > MAXPTL for privileged or nonprivileged software†, an
UltraSPARC Architecture virtual processor’s behavior when
executing with TL > MAXPTL outside of hyperprivileged mode is
undefined.

Although it is possible for privileged or hyperprivileged
software to set TL > 0 for nonprivileged software†, an
UltraSPARC Architecture virtual processor’s behavior when
executing with TL > 0 in nonprivileged mode is undefined.
† by executing a WRPR to TSTATE followed by DONE instruction or RETRY

instruction or a JMPL/WRHPR instruction pair.

RW

PILP pil

3 0

FIGURE 5-35 Processor Interrupt Level Register

V9 Compatibility
Note

On SPARC V8 processors, the level 15 interrupt is considered to
be nonmaskable, so it has different semantics from other
interrupt levels. SPARC V9 processors do not treat a level 15
interrupt differently from other interrupt levels.

RW

GLP gl

2 0

FIGURE 5-36 Global Level Register, GL

A1

A1
CHAPTER 5 • Registers 73

In all UltraSPARC Architecture 2007 implementations, MAXPGL = 2 and MAXGL = 3. (impl. dep. #401-
S10).

IMPL. DEP. #400-S10: Although GL is defined as a 3-bit register, an implementation may implement
any subset of those bits sufficient to encode the values from 0 to MAXGL for that implementation. If
any bits of GL are not implemented, they read as zero and writes to them are ignored.

GL operates similarly to TL, in that it increments during entry to a trap, but the values of GL and TL
are independent. That is, TL = n does not imply that GL = n, and GL = n does not imply that TL = n.
Furthermore, there may be a different total number of global levels (register sets) than there are trap
levels; that is, MAXTL and MAXGL are not necessarily equal.

The GL register can be accessed directly with the RDPR and WRPR instructions (as privileged register
number 16). Writing the GL register directly with WRPR will change the set of global registers visible
to all instructions subsequent to the WRPR.

In privileged mode, attempting to write a value greater than MAXPGL to the GL register causes MAXPGL

to be written to GL.

In hyperprivileged mode, attempting to write a value greater than MAXGL to the GL register causes
MAXGL to be written to GL.

When a DONE or RETRY instruction is executed and HTSTATE[TL].hpstate.hpriv = 0 (which will
cause the DONE or RETRY to return the virtual processor to nonprivileged or privileged mode), the
value of GL restored from TSTATE[TL] saturates at MAXPGL. That is, if the value in TSTATE[TL].gl is
greater than MAXPGL, then MAXPGL is substituted and written to GL. This protects against non-
hyperprivileged software executing with GL > MAXPGL.

The effect of writing to GL with a WRPR instruction is summarized in TABLE 5-20.

Implementation
Note

In UltraSPARC Architecture 2007 implementations MAXGL = 3.
Since only 2 bits are required to represent the full range of
values for GL, it is implemented as a 2-bit register. When GL is
written, bits 63:4 are ignored, as specified above. Although bits
3:2 are not stored to GL, they are not strictly ignored; an attempt
to write a value with bits 3:2 nonzero to GL causes MAXGL (3) to
be written to GL. This behavior is specific to UltraSPARC
Architecture 2007 implementations.

Programming
Note

Although it is possible for hyperprivileged software to set
GL > MAXPGL for privileged or nonprivileged software†,
executing with GL > MAXPGL outside of hyperprivileged mode is
an illegal state and the behavior of a virtual processor in that
state is undefined.
† by executing a WRPR that modifies GL, followed by a JMPL/WRHPR instruction

pair (it is not possible to set GL > MAXPGL using DONE/RETRY)

TABLE 5-20 Effect of WRPR to Register GL

Value x Written with WRPR

Privilege Level when WRPR Is Executed

Nonprivileged Privileged Hyperprivileged

x ≤ MAXPGL

privileged_opcode
exception

GL ← x
GL ← x

MAXPGL < x ≤ MAXGL
GL ← MAXPGL

(no exception generated)x > MAXGL GL ← MAXGL

(no exception generated)
74 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

If MAXGL < MAXTL, then there are fewer sets of global registers than trap levels. In this case, if a trap
occurs while GL = MAXGL, GL will have the same value before the trap occurs and in the software that
handles the trap. Trap handler software must detect this case and safely save any global register
before the trap handler writes to it. The Hyperprivileged Scratchpad registers (see Privileged
Scratchpad Registers (ASI_SCRATCHPAD) on page 363) may be useful in such cases.

Since TSTATE itself is software-accessible, it is possible that when a DONE or RETRY is executed to
return from a trap handler, the value of GL restored from TSTATE[TL] will be different from that
which was saved into TSTATE[TL] when the trap occurred.

During power-on reset (POR), the value of GL is set to MAXGL. During all other resets, GL is
incremented (the same behavior as TL).

5.8 HPR State Registers
The registers described in this section can be directly accessed with the hyperprivileged WRHPR and
RDHPR instructions.

An attempt to read or write any HPR state register (using RDHPR or WRHPR) in privileged or
nonprivileged modes (that is, when HPSTATE.hpriv = 0) causes an illegal_instruction exception.

5.8.1 Hyperprivileged State (HPSTATEH) Register (HPR 0)
The Hyperprivileged State register (HPSTATE), shown in FIGURE 5-37, contains hyperprivileged
control fields for the virtual processor. There is one instance of the HPSTATE register per virtual
processor.

Writing HPSTATE is nondelayed; that is, new machine state written to HPSTATE is visible to the next
instruction executed. The hyperprivileged RDHPR and WRHPR instructions are used to read and
write HPSTATE, respectively.

Upon a reset, the contents of HPSTATE are set as described in TABLE 16-1 on page 500.

The following subsections describe the fields contained in the HPSTATE register.

Instruction Breakpoint Enable (ibe). When HPSTATE.ibe = 1, the Instruction Breakpoint feature
is enabled, allowing an instr_breakpoint exception to occur. When an instr_breakpoint exception trap
occurs, the virtual processor sets HPSTATE.ibe to 0 before entering trap handler software, to

Programming
Note

An UltraSPARC Architecture implementation only needs to
implement sufficient bits in the GL register to encode the
maximum global level value. In an implementation where
MAXGL ≤ 7, bits 63:3 of data written to the GL register using the
WRPR instruction are ignored; only the least-significant three
bits (bits 2:0) are actually written to GL. For example, if
MAXGL = 7, writing a value of 916 to the TL register causes a
value of 116 to actually be stored in GL.

RW RW RW RW

HPSTATEH — ibe — red — hpriv — tlz

63 11 10 9 6 5 4 3 2 1 0

FIGURE 5-37 HPSTATE Fields

N−
CHAPTER 5 • Registers 75

guarantee that no additional instr_breakpoint exception can occur in the instruction breakpoint trap
handler unless the trap handler explicitly reenables instruction breakpointing by setting HPSTATE.ibe
to 1.

RED_state (red). When HPSTATE.red is set to 1, the virtual processor is operating in RED_state
(Reset, Error, and Debug state). See RED_state on page 374. The virtual processor sets HPSTATE.red
when any hardware reset occurs. HPSTATE.red is also set to 1 when a trap is taken while
TL = (MAXTL − 1). Software can reliably exit RED_state by one of two methods:

1. Execute a DONE or RETRY instruction, which restores the stacked copy of HPSTATE and clears
HPSTATE.red if it was 0 in the stacked copy.

2. Write a 0 to HPSTATE.red with a WRHPR instruction.

Hyperprivileged mode (hpriv). When HPSTATE.hpriv = 1, the virtual processor is operating in
hyperprivileged mode and ignores PSTATE.priv.

When HPSTATE.hpriv = 0, the processor is operating in privileged or nonprivileged mode, as
determined by PSTATE.priv.

See the Programming Note on page 308, recommending that a WRHPR instruction that changes
HPSTATE.priv never be executed in the delay slot of a DCTI instruction.

Trap Level Zero trap enable (tlz). When HPSTATE.tlz = 0, generation of trap_level_zero
exceptions is disabled. When all three of the following conditions exist, a trap_level_zero exception is
generated:
■ HPSTATE.tlz = 1 (generation of trap_level_zero is enabled)
■ the virtual processor is in nonprivileged or privileged mode (HPSTATE.hpriv = 0)
■ the trap level (TL) register’s value is zero (TL = 0)

5.8.2 Hyperprivileged Trap State (HTSTATEH) Register (HPR
1)
The Hyperprivileged Trap State register (HTSTATE; FIGURE 5-38) contains the hyperprivileged state
from the previous trap level, comprising the contents of the HPSTATE register from the previous trap
level. There are MAXTL instances of the HTSTATE register, but only one is accessible at a time. The
current value in the TL register determines which instance of HTSTATE is accessible.

Programming
Note

Software should not write 0 to HPSTATE.red in the delay slot of
a DCTI (e.g. JMPL instruction). Exiting RED_state using a
DONE or RETRY instruction avoids this problem entirely.

Programming
Note

HPSTATE.hpriv = 0 and HPSTATE.red = 1 is an undefined
operational state. Therefore, care should be taken never to write
that combination of values to HPSTATE.

Programming
Note

The purpose of trap_level_zero is to improve efficiency when
descheduling a virtual processor. When a descheduling event
occurs and the virtual processor is executing in privileged mode
at TL > 0, hyperprivileged software can choose to enable the
trap_level_zero exception (set HPSTATE.tlz ← 1) and return to
privileged mode, enabling privileged software to complete its
TL > 0 processing. When privileged code returns to TL = 0, this
exception enables the hyperprivileged code to regain control
and deschedule the virtual processor with low overhead.

N−
76 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

FIGURE 5-38 Hyperprivileged Trap State Register

An attempt to read or write the HTSTATE register when TL = 0 causes an illegal_instruction exception.

After a power-on reset the contents of HTSTATE[1] through HTSTATE[MAXTL] are undefined. During
normal operation the value of HTSTATE[n], when n is greater than the current trap level (n > TL), is
undefined.

TABLE 5-21 lists the events that cause HTSTATE to be read or written.

5.8.3 Hyperprivileged Interrupt Pending (HINTPH) Register (HPR
3)
The hyperprivileged HINTP register provides a mechanism for hyperprivileged software to determine
that an hstick_match interrupt is pending while PSTATE.ie = 0 and to clear the interrupt without
having to first set PSTATE.ie = 1 and take a disrupting trap.

When HINTP.hsp = 1, a match between STICK and HSTICK_CMPR has occurred while match
interrupt generation was enabled (HSTICK_CMPR.int_dis = 0, see System Tick Compare
(STICK_CMPRP) Register (ASR 25) on page 60), causing an hstick_match exception to be generated.

When HINTP.hsp = 0, no interrupt is pending due to a match between STICK and HSTICK_CMPR.
Software can clear a pending hstick_match interrupt (indicated by HINTP.hsp = 1) by writing 0 to
HINTP.hsp.

The format of the HINTP register is illustrated in FIGURE 5-39.

TABLE 5-21 Events that involve HTSTATE, when executing with TL = n.

Event Effect

Trap HTSTATE[n + 1]{10:0} ← HPSTATE

DONE instruction HPSTATE ← HTSTATE[n]{10:0}

RETRY instruction HPSTATE ← HTSTATE[n]{10:0}

RDHPR (HTSTATE) R[rd] ← HTSTATE[n]

WRHPR (HTSTATE) HTSTATE[n] ← value

Power-on reset (POR) All HTSTATE values are left undefined

Programming
Note

A pending hstick_match exception can also be generated if
software directly writes a ‘1’ to HINTP.hsp.

0

HTSTATE1
H HPSTATE from TL = 0—

HTSTATE2
H HPSTATE from TL = 1—

HTSTATE3
H HPSTATE from TL = 2—

—

::

63

HTSTATEMAXTL
H

HPSTATE from TL = MAXTL − 1

11 10

N−
CHAPTER 5 • Registers 77

5.8.4 Hyperprivileged Trap Base Address (HTBAH) Register (HPR
5)
The Hyperprivileged Trap Base Address register (HTBA), shown in FIGURE 5-40, provides the most
significant 50 bits (bits 63:14) of the physical address used to select the trap vector for a trap that is to
be serviced in hyperprivileged mode. The least significant 14 bits of HTBA always read as zero, and
writes to them are ignored.

Details on how the full address for a trap vector is generated, using HTBA and other state, are
provided in Trap-Table Entry Address to Hyperprivileged Mode on page 383.

IMPL. DEP. #406-S10: It is implementation dependent whether all 50 bits of HTBA{63:14} are
implemented or if only bits n−1:14 are implemented. If the latter, writes to bits 63:n are ignored and
when HTBA is read, bits 63:n read as sign-extended copies of the most significant implemented bit,
HTBA{n − 1}.

See Chapter 12, Traps, for more details on trap vectors.

5.8.5 Hyperprivileged Implementation Version (HVERH) Register
(HPR 6)
The Hyperprivileged Implementation Version register, shown in FIGURE 5-41, specifies the fixed
parameters pertaining to a particular processor implementation and mask set. The HVER register is
read-only, readable by the RDHPR instruction in hyperprivileged mode.

IMPL. DEP. #104-V9: HVER.manuf contains a 16-bit manufacturer code. This field is optional and if
not present shall read as 0. HVER.manuf may indicate the original supplier of a second-sourced
processor. It is intended that the contents of HVER.manuf track the JEDEC semiconductor
manufacturer code as closely as possible. If the manufacturer does not have a JEDEC semiconductor
manufacturer code, SPARC International will assign a value for HVER.manuf.

IMPL. DEP. #13-V8: HVER.impl uniquely identifies an implementation or class of software-compatible
implementations of the architecture. Values FFF016–FFFF16 are reserved and are not available for
assignment.

RW

HINTPH — hsp

63 1 0

FIGURE 5-39 Hyperprivileged Interrupt Pending (HINTP) Register Format

RW R

HTBAH htba_high50 00 0000 0000 0000

63 14 13 0

FIGURE 5-40 Hyperprivileged Trap Base Address Register

R R R R R R

HVERH manuf impl mask — maxgl maxtl — maxwin

63 48 47 32 31 24 23 19 18 16 15 8 7 5 4 0

FIGURE 5-41 Hyperprivileged Implementation Version Register

N−

N−
78 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

HVER.mask specifies the current mask set revision and is chosen by the implementor. It generally
increases numerically with successive releases of the processor but does not necessarily increase by 1
for consecutive releases.

HVER.maxgl contains the maximum number of levels of global register sets supported by an
implementation (impl. dep. #401-S10), that is, MAXGL, the maximum value that the GL register may
contain.

HVER.maxtl contains the maximum number of trap levels supported by an implementation (impl.
dep. #101-V9-CS10), that is, MAXTL, the maximum value of the contents of the TL register.

HVER.maxwin contains the maximum index number available for use as a valid CWP value in an
implementation; that is, HVER.maxwin contains the value N_REG_WINDOWS − 1 (impl. dep. #2-V8).

5.8.6 Hyperprivileged System Tick Compare (HSTICK_CMPRH)
Register (HPR 31)
The Hyperprivileged System Tick Compare (HSTICK_CMPR) register allows hyperprivileged
software to set up so that an hstick_match interrupt will occur when the STICK register reaches a
specified value while HSTICK_CMPR.int_dis = 0.

The Hyperprivileged System Tick Compare Register is illustrated in FIGURE 5-42.

The fields of HSTICK_CMPR are described in TABLE 5-22.

Implementation
Note

Conventionally, this field is die-specific, with bits 31:28
indicating the major mask revision number and bits 27:24
indicating the minor mask revision number.

SPARC V9
Compatibility

Note

The SPARC V9 VER register was replaced in the UltraSPARC
Architecture by the hyperprivileged HVER register.

RW RW

HSTICK_CMPRH int_dis hstick_cmpr

63 62 0

FIGURE 5-42 HSTICK_CMPR Register

TABLE 5-22 Bit Description of HSTICK_CMPR Register

Bit(s) Field Name Description

63 int_dis If int_dis = 0, a match between HSTICK_CMPR.hstick_cmpr and
STICK will cause hardware to set HINTP.hsp to 1. If int_dis = 1, this
behavior is disabled; when a match occurs, HINTP.hsp will not be
changed.

62:0 hstick_cmpr Hyperprivileged System Tick Compare Field. When
HSTICK_CMPR.int_dis = 0 and the value in
HSTICK_CMPR.hstick_cmpr exactly matches the value in
STICK.counter, HINTP.hsp is set to 1. After that, if HINTP.hsp
remains set to 1, the next time that hyperprivileged interrupts are
unmasked (HPSTATE.hpriv = 0 or PSTATE.ie = 1), an hstick_match
exception will occur.

Programming
Note

When int_dis = 1, an hstick_match interrupt can still occur if
HINTP.hsp is set to 1 by software and the other prerequisite
conditions for triggering hstick_match are met.

N−
CHAPTER 5 • Registers 79

After a power-on reset trap, the int_dis bit is set to 1 (disabling Hyperprivileged System Tick Compare
interrupts), and the value of HSTICK_CMPR.hstick_cmpr is undefined.

Programming
Note

HINTP.hsp must be set to 0 between the time an hstick_match
trap occurs and the hstick_match trap handler returns.
Otherwise, a return from the trap handler could immediately
trigger another hstick_match trap. Refer to implementation-
specific documentation regarding whether hardware sets
HINTP.hsp to 0 when the hstick_match trap is taken or
HINTP.hsp must be set to 0 by hyperprivileged software in the
hstick_match trap handler.
80 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

CHAPTER 6

Instruction Set Overview

Instructions are fetched by the virtual processor from memory and are executed, annulled, or trapped.
Instructions are encoded in 4 major formats and partitioned into 11 general categories. Instructions are
described in the following sections:

■ Instruction Execution on page 81.
■ Instruction Formats on page 82.
■ Instruction Categories on page 82.

6.1 Instruction Execution
The instruction at the memory location specified by the program counter is fetched and then executed.
Instruction execution may change program-visible virtual processor and/or memory state. As a side
effect of its execution, new values are assigned to the program counter (PC) and the next program
counter (NPC).

An instruction may generate an exception if it encounters some condition that makes it impossible to
complete normal execution. Such an exception may in turn generate a precise trap. Other events may
also cause traps: an exception caused by a previous instruction (a deferred trap), an interrupt or
asynchronous error (a disrupting trap), or a reset request (a reset trap). If a trap occurs, control is
vectored into a trap table. See Chapter 12, Traps, for a detailed description of exception and trap
processing.

If a trap does not occur and the instruction is not a control transfer, the next program counter is
copied into the PC, and the NPC is incremented by 4 (ignoring arithmetic overflow if any). There are
two types of control-transfer instructions (CTIs): delayed and immediate. For a delayed CTI, at the
end of the execution of the instruction, NPC is copied into the PC and the target address is copied into
NPC. For an immediate CTI, at the end of execution, the target is copied to PC and target + 4 is copied
to NPC. In the SPARC instruction set, many CTIs do not transfer control until after a delay of one
instruction, hence the term “delayed CTI” (DCTI). Thus, the two program counters provide for a
delayed-branch execution model.

For each instruction access and each normal data access, an 8-bit address space identifier (ASI) is
appended to the 64-bit memory address. Load/store alternate instructions (see Address Space Identifiers
(ASIs) on page 87) can provide an arbitrary ASI with their data addresses or can use the ASI value
currently contained in the ASI register.
81

6.2 Instruction Formats
Every instruction is encoded in a single 32-bit word. The most typical 32-bit formats are shown in
FIGURE 6-1. For detailed formats for specific instructions, see individual instruction descriptions in the
Instructions chapter.

FIGURE 6-1 Summary of Instruction Formats

6.3 Instruction Categories
UltraSPARC Architecture instructions can be grouped into the following categories:

■ Memory access
■ Memory synchronization
■ Integer arithmetic
■ Control transfer (CTI)
■ Conditional moves
■ Register window management
■ State register access
■ Privileged register access
■ Floating-point operate
■ Implementation dependent
■ Reserved

These categories are described in the following subsections.

op = 012: CALL

op = 002: SETHI, Branches, and ILLTRAP

1x rd op3 rs1 i=0 imm_asi rs2

op3rd rs1 i=1 simm131x

31 24 02530 29 19 18 14 13 12 5 4

op = 102 or 112: Arithmetic, Logical, Moves, Tcc, Loads, Stores, Prefetch, and Misc

01 disp30

31 030 29 8

00 rcond op2 rs1 d16lo

31 24 02530 29 19 18 14 13

a 0

22

d16hi p

21 2028 27

00 cond op2 disp19a cc1 pcc0

00 cond op2 disp22a

00 rd op2 imm22
82 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

6.3.1 Memory Access Instructions
Load, store, load-store, and PREFETCH instructions are the only instructions that access memory. All
of the memory access instructions except CASA, CASXA, and Partial Store use either two R registers
or an R register and simm13 to calculate a 64-bit byte memory address. For example, Compare and
Swap uses a single R register to specify a 64-bit byte memory address. To this 64-bit address, an ASI
is appended that encodes address space information.

The destination field of a memory reference instruction specifies the R or F register(s) that supply the
data for a store or that receive the data from a load or LDSTUB. For SWAP, the destination register
identifies the R register to be exchanged atomically with the calculated memory location. For
Compare and Swap, an R register is specified, the value of which is compared with the value in
memory at the computed address. If the values are equal, then the destination field specifies the R
register that is to be exchanged atomically with the addressed memory location. If the values are
unequal, then the destination field specifies the R register that is to receive the value at the addressed
memory location; in this case, the addressed memory location remains unchanged. LDFSR/LDXFSR
and STFSR/STXFSR are special load and store instructions that load or store the floating-point status
register, FSR, instead of acting on an R or F register.

The destination field of a PREFETCH instruction (fcn) is used to encode the type of the prefetch.

Memory is byte (8-bit) addressable. Integer load and store instructions support byte, halfword (2
bytes), word (4 bytes), and doubleword/extended-word (8 bytes) accesses. Floating-point load and
store instructions support word, doubleword, and quadword memory accesses. LDSTUB accesses
bytes, SWAP accesses words, CASA accesses words, and CASXA accesses doublewords. The LDTXA
(load twin-extended-word) instruction accesses a quadword (16 bytes) in memory. Block loads and
stores access 64-byte aligned data. PREFETCH accesses at least 64 bytes.

6.3.1.1 Memory Alignment Restrictions
A halfword access must be aligned on a 2-byte boundary, a word access (including an instruction
fetch) must be aligned on a 4-byte boundary, an extended-word (LDX, LDXA, STX, STXA) or integer
twin word (LDTW, LDTWA, STTW, STTWA) access must be aligned on an 8-byte boundary,an
integer twin-extended-word (LDTXA) access must be aligned on a 16-byte boundary, and a Block
Load (LDBLOCKFD) or Store (STBLOCKFD) access must be aligned on a 64-byte boundary.

A floating-point doubleword access (LDDF, LDDFA, STDF, STDFA) should be aligned on an 8-byte
boundary, but is only required to be aligned on a word (4-byte) boundary. A floating-point
doubleword access to an address that is 4-byte aligned but not 8-byte aligned may result in less
efficient and nonatomic access (causes a trap and is emulated in software (impl. dep. #109-V9-Cs10)),
so 8-byte alignment is recommended.

A floating-point quadword access (LDQF, LDQFA, STQF, STQFA) should be aligned on a 16-byte
boundary, but is only required to be aligned on a word (4-byte) boundary. A floating-point quadword
access to an address that is 4-byte or 8-byte aligned but not 16-byte aligned may result in less efficient
and nonatomic access (causes a trap and is emulated in software (impl. dep. #111-V9-Cs10)), so 16-
byte alignment is recommended.

An improperly aligned address in a load, store, or load-store instruction causes a
mem_address_not_aligned exception to occur, with these exceptions:

■ An LDDF or LDDFA instruction accessing an address that is word aligned but not doubleword
aligned may cause an LDDF_mem_address_not_aligned exception (impl. dep. #109-V9-Cs10).

■ An STDF or STDFA instruction accessing an address that is word aligned but not doubleword
aligned may cause an STDF_mem_address_not_aligned exception (impl. dep. #110-V9-Cs10).

Programming
Note

For some instructions, by use of simm13, any location in the
lowest or highest 4 Kbytes of an address space can be accessed
without the use of a register to hold part of the address.
CHAPTER 6 • Instruction Set Overview 83

■ An LDQF or LDQFA instruction accessing an address that is word aligned but not quadword
aligned may cause an LDQF_mem_address_not_aligned exception (impl. dep. #111-V9-Cs10a).

■ An STQF or STQFA instruction accessing an address that is word aligned but not quadword
aligned may cause an STQF_mem_address_not_aligned exception (impl. dep. #112-V9-Cs10a).

6.3.1.2 Addressing Conventions

An UltraSPARC Architecture virtual processor uses big-endian byte order for all instruction accesses
and, by default, for data accesses. It is possible to access data in little-endian format by use of selected
ASIs. It is also possible to change the default byte order for implicit data accesses. See Processor State
(PSTATEP) Register (PR 6) on page 68 for more information.1

Big-endian Addressing Convention. Within a multiple-byte integer, the byte with the smallest
address is the most significant; a byte’s significance decreases as its address increases. The big-endian
addressing conventions are described in TABLE 6-1 and illustrated in FIGURE 6-2.

Implementation
Note

Although the architecture provides for the
LDQF_mem_address_not_aligned exception,UltraSPARC
Architecture 2007 implementations do not currently generate it.

Implementation
Note

Although the architecture provides for the
STQF_mem_address_not_aligned exception, UltraSPARC
Architecture 2007 implementations do not currently generate it.

1. Readers interested in more background information on big- vs. little-endian can also refer to Cohen, D., “On Holy Wars and a Plea for
Peace,” Computer 14:10 (October 1981), pp. 48-54.

TABLE 6-1 Big-endian Addressing Conventions

Term Definition

byte A load/store byte instruction accesses the addressed byte in both big- and
little-endian modes.

halfword For a load/store halfword instruction, two bytes are accessed. The most
significant byte (bits 15–8) is accessed at the address specified in the
instruction; the least significant byte (bits 7–0) is accessed at the
address + 1.

word For a load/store word instruction, four bytes are accessed. The most
significant byte (bits 31–24) is accessed at the address specified in the
instruction; the least significant byte (bits 7–0) is accessed at the
address + 3.

doubleword or
extended word

For a load/store extended or floating-point load/store double instruction,
eight bytes are accessed. The most significant byte (bits 63:56) is accessed
at the address specified in the instruction; the least significant byte (bits
7:0) is accessed at the address + 7.
For the deprecated integer load/store twin word instructions (LDTW,
LDTWA†, STTW, STTWA), two big-endian words are accessed. The word
at the address specified in the instruction corresponds to the even register
specified in the instruction; the word at address + 4 corresponds to the
following odd-numbered register.
†Note that the LDTXA instruction, which is not an LDTWA operation but does share

LDTWA’s opcode, is not deprecated.

quadword For a load/store quadword instruction, 16 bytes are accessed. The most
significant byte (bits 127–120) is accessed at the address specified in the
instruction; the least significant byte (bits 7–0) is accessed at the
address + 15.
84 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

Byte
7 0

Halfword
15 0

Word
31 0

Doubleword /
63 32

31 0

78

15 78162324

47 3940485556

15 78162324

0 1

00 01 10 11

Address

000 001 010 011

100 101 110 111

Quadword
127 96

95 64

111 103104112119120

79 7172808788

0000 0001 0010 0011

0100 0101 0110 0111

63 32

31 0

47 3940485556

15 78162324

1000 1001 1010 1011

1100 1101 1110 1111

Extended word

FIGURE 6-2 Big-endian Addressing Conventions

Address{0} =

Address{1:0} =

Address{2:0} =

Address{2:0} =

Address{3:0} =

Address{3:0} =

Address{3:0} =

Address{3:0} =
CHAPTER 6 • Instruction Set Overview 85

Little-endian Addressing Convention. Within a multiple-byte integer, the byte with the smallest
address is the least significant; a byte’s significance increases as its address increases. The little-endian
addressing conventions are defined in TABLE 6-2 and illustrated in FIGURE 6-3.

TABLE 6-2 Little-endian Addressing Convention

Term Definition

byte A load/store byte instruction accesses the addressed byte in both big-
and little-endian modes.

halfword For a load/store halfword instruction, two bytes are accessed. The least
significant byte (bits 7–0) is accessed at the address specified in the
instruction; the most significant byte (bits 15–8) is accessed at the
address + 1.

word For a load/store word instruction, four bytes are accessed. The least
significant byte (bits 7–0) is accessed at the address specified in the
instruction; the most significant byte (bits 31–24) is accessed at the
address + 3.

doubleword or
extended word

For a load/store extended or floating-point load/store double
instruction, eight bytes are accessed. The least significant byte (bits 7–0)
is accessed at the address specified in the instruction; the most significant
byte (bits 63–56) is accessed at the address + 7.
For the deprecated integer load/store twin word instructions (LDTW,
LDTWA†, STTW, STTWA), two little-endian words are accessed. The
word at the address specified in the instruction corresponds to the even
register in the instruction; the word at the address specified in the
instruction +4 corresponds to the following odd-numbered register. With
respect to little-endian memory, an LDTW/LDTWA (STTW/STTWA)
instruction behaves as if it is composed of two 32-bit loads (stores), each
of which is byte-swapped independently before being written into each
destination register (memory word).

†Note that the LDTXA instruction, which is not an LDTWA operation but does share
LDTWA’s opcode, is not deprecated.

quadword For a load/store quadword instruction, 16 bytes are accessed. The least
significant byte (bits 7–0) is accessed at the address specified in the
instruction; the most significant byte (bits 127–120) is accessed at the
address + 15.
86 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

6.3.1.3 Address Space Identifiers (ASIs)

Alternate-space load, store, and load-store instructions specify an explicit ASI to use for their data
access; when i = 0, the explicit ASI is provided in the instruction’s imm_asi field, and when i = 1, it is
provided in the ASI register.

Non-alternate-space load, store, and load-store instructions use an implicit ASI value that depends on
the current trap level (TL) and the value of PSTATE.cle. Instruction fetches use an implicit ASI that
depends only on the current trap level. The cases are enumerated in TABLE 6-3. Note that in
hyperprivileged mode, all accesses are performed using physical addresses, so there is no implicit ASI
in hyperprivileged mode (see ASI Value, Context ID, and Endianness Selection for Translation on page 445
for details).

TABLE 6-3 ASIs Used for Data Accesses and Instruction Fetches in Nonprivileged and Privileged Modes

Access Type TL PSTATE.cle ASI Used

Instruction Fetch = 0 any ASI_PRIMARY

> 0 any ASI_NUCLEUS*

Byte
7 0

Halfword
7 8

Word
7 24

Doubleword /

150

23 31168150

0 1

00 01 10 11

Address

000 001 010 011

100 101 110 111

Quadword 0000 0001 0010 0011

0100 0101 0110 0111

1000 1001 1010 1011

1100 1101 1110 1111

39 5655 6348404732

7 2423 31168150

39 5655 6348404732

7 2423 31168150

103 120119 12711210411196

71 8887 9580727964

Extended word

FIGURE 6-3 Little-endian Addressing Conventions

Address{0} =

Address{1:0} =

Address{2:0} =

Address{2:0} =

Address{3:0} =

Address{3:0} =

Address{3:0} =

Address{3:0} =
CHAPTER 6 • Instruction Set Overview 87

*On some early SPARC V9 implementations, ASI_PRIMARY may have been used for this case.
**On some early SPARC V9 implementations, ASI_PRIMARY_LITTLE may have been used for this case.

See also Memory Addressing and Alternate Address Spaces on page 330.

ASIs 0016-7F16 are restricted; only software with sufficient privilege is allowed to access them. ASIs
0016-2F16 are accessible by both privileged and hyperprivileged software, while ASIs 3016-7F16 are
accessible only by hyperprivileged software. An attempt to access a restricted ASI by insufficiently-
privileged software results in a privileged_action exception (impl. dep #103-V9-Ms10(6)). ASIs 8016
through FF16 are unrestricted; software is allowed to access them regardless of the virtual processor’s
privilege mode, as summarized in TABLE 6-4.

IMPL. DEP. #29-V8: Some UltraSPARC Architecture 2007 ASIs are implementation dependent. See
TABLE 10-1 on page 347 for details.

An UltraSPARC Architecture implementation decodes all 8 bits of ASI specifiers (impl. dep. #30-V8-
Cu3).

6.3.1.4 Separate Instruction Memory

A SPARC V9 implementation may choose to access instruction and data through the same address
space and use hardware to keep data and instruction memory consistent at all times. It may also
choose to overload independent address spaces for data and instructions and allow them to become
inconsistent when data writes are made to addresses shared with the instruction space.

Non-alternate-space
Load, Store, or
Load-Store |
(implicit ASI)

= 0 0 ASI_PRIMARY

1 ASI_PRIMARY_LITTLE

> 0 0 ASI_NUCLEUS*

1 ASI_NUCLEUS_LITTLE**

Alternate-space Load,
Store, or Load-Store

any any ASI explicitly specified in the instruction
(subject to privilege-level restrictions)

TABLE 6-4 Allowed Accesses to ASIs

Value Access Type

Processor Mode
(HPSTATE.hpriv,
PSTATE.priv) Result of ASI Access

0016–2F16 Restricted
(Privileged)

Nonprivileged (0,0) privileged_action exception

Privileged (0,1) Valid access

Hyperprivileged (1,x) Valid access

3016–7F16 Restricted
(Hyperprivileged)

Nonprivileged (0,0) privileged_action exception

Privileged (0,1) privileged_action exception

Hyperprivileged (1,x) Valid access

8016–FF16 Unrestricted Nonprivileged (0,0) Valid access

Privileged (0,1) Valid access

Hyperprivileged (1,x) Valid access

V9 Compatibility
Note

In SPARC V9, many ASIs were defined to be implementation
dependent.

V9 Compatibility
Note

In SPARC V9, an implementation could choose to decode only a
subset of the 8-bit ASI specifier.

TABLE 6-3 ASIs Used for Data Accesses and Instruction Fetches in Nonprivileged and Privileged Modes

Access Type TL PSTATE.cle ASI Used
88 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

6.3.2 Memory Synchronization Instructions
Two forms of memory barrier (MEMBAR) instructions allow programs to manage the order and
completion of memory references. Ordering MEMBARs induce a partial ordering between sets of
loads and stores and future loads and stores. Sequencing MEMBARs exert explicit control over
completion of loads and stores (or other instructions). Both barrier forms are encoded in a single
instruction, with subfunctions bit-encoded in cmask and mmask fields.

6.3.3 Integer Arithmetic and Logical Instructions
The integer arithmetic and logical instructions generally compute a result that is a function of two
source operands and either write the result in a third (destination) register R[rd] or discard it. The first
source operand is R[rs1]. The second source operand depends on the i bit in the instruction; if i = 0,
then the second operand is R[rs2]; if i = 1, then the second operand is the constant simm10, simm11,
or simm13 from the instruction itself, sign-extended to 64 bits.

6.3.3.1 Setting Condition Codes

Most integer arithmetic instructions have two versions: one sets the integer condition codes (icc and
xcc) as a side effect; the other does not affect the condition codes. A special comparison instruction for
integer values is not needed since it is easily synthesized with the “subtract and set condition codes”
(SUBcc) instruction. See Synthetic Instructions on page 556 for details.

6.3.3.2 Shift Instructions

Shift instructions shift an R register left or right by a constant or variable amount. None of the shift
instructions change the condition codes.

6.3.3.3 Set High 22 Bits of Low Word

The “set high 22 bits of low word of an R register” instruction (SETHI) writes a 22-bit constant from
the instruction into bits 31 through 10 of the destination register. It clears the low-order 10 bits and
high-order 32 bits, and it does not affect the condition codes. Its primary use is to construct constants
in registers.

6.3.3.4 Integer Multiply/Divide

The integer multiply instruction performs a 64 × 64 → 64-bit operation; the integer divide instructions
perform 64 ÷ 64 → 64-bit operations. For compatibility with SPARC V8 processors, 32 × 32 → 64-bit
multiply instructions, 64 ÷ 32 → 32-bit divide instructions, and the Multiply Step instruction are
provided. Division by zero causes a division_by_zero exception.

Programming
Note

A SPARC V9 program containing self-modifying code should
use FLUSH instruction(s) after executing stores to modify
instruction memory and before executing the modified
instruction(s), to ensure the consistency of program execution.

Note The value of R[0] always reads as zero, and writes to it are
ignored.
CHAPTER 6 • Instruction Set Overview 89

6.3.3.5 Tagged Add/Subtract

The tagged add/subtract instructions assume tagged-format data, in which the tag is the two low-
order bits of each operand. If either of the two operands has a nonzero tag or if 32-bit arithmetic
overflow occurs, tag overflow is detected. If tag overflow occurs, then TADDcc and TSUBcc set the
CCR.icc.v bit; if 64-bit arithmetic overflow occurs, then they set the CCR.xcc.v bit.

The trapping versions (TADDccTV, TSUBccTV) of these instructions are deprecated. See Tagged Add
on page 294 and Tagged Subtract on page 299 for details.

6.3.4 Control-Transfer Instructions (CTIs)
The basic control-transfer instruction types are as follows:

■ Conditional branch (Bicc, BPcc, BPr, FBfcc, FBPfcc)
■ Unconditional branch
■ Call and link (CALL)
■ Jump and link (JMPL, RETURN)
■ Return from trap (DONE, RETRY)
■ Trap (Tcc)
■

A control-transfer instruction functions by changing the value of the next program counter (NPC) or
by changing the value of both the program counter (PC) and the next program counter (NPC). When
only NPC is changed, the effect of the transfer of control is delayed by one instruction. Most control
transfers are of the delayed variety. The instruction following a delayed control-transfer instruction is
said to be in the delay slot of the control-transfer instruction.

Some control transfer instructions (branches) can optionally annul, that is, not execute, the instruction
in the delay slot, based on the setting of an annul bit in the instruction. The effect of the annul bit
depends upon whether the transfer is taken or not taken and whether the branch is conditional or
unconditional. Annulled delay instructions neither affect the program-visible state, nor can they
cause a trap.

TABLE 6-5 defines the value of the program counter and the value of the next program counter after
execution of each instruction. Conditional branches have two forms: branches that test a condition
(including branch-on-register), represented in the table by Bcc, and branches that are unconditional,

Programming
Note

The annul bit increases the likelihood that a compiler can find a
useful instruction to fill the delay slot after a branch, thereby
reducing the number of instructions executed by a program. For
example, the annul bit can be used to move an instruction from
within a loop to fill the delay slot of the branch that closes the
loop.

Likewise, the annul bit can be used to move an instruction from
either the “else” or “then” branch of an “if-then-else” program
block to the delay slot of the branch that selects between them.
Since a full set of conditions is provided, a compiler can arrange
the code (possibly reversing the sense of the condition) so that
an instruction from either the “else” branch or the “then” branch
can be moved to the delay slot. Use of annulled branches
provided some benefit in older, single-issue SPARC
implementations. On an UltraSPARC Architecture
implementation, the only benefit of annulled branches might be
a slight reduction in code size. Therefore, the use of annulled
branch instructions is no longer encouraged.
90 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

that is, always or never taken, represented in the table by BA and BN, respectively. The effect of an
annulled branch is shown in the table through explicit transfers of control, rather than by fetching and
annulling the instruction.

The effective address, “EA” in TABLE 6-5, specifies the target of the control-transfer instruction. The
effective address is computed in different ways, depending on the particular instruction.

■ PC-relative effective address — A PC-relative effective address is computed by sign extending the
instruction’s immediate field to 64-bits, left-shifting the word displacement by 2 bits to create a
byte displacement, and adding the result to the contents of the PC.

■ Register-indirect effective address — If i = 0, a register-indirect effective target address is R[rs1] +
R[rs2]. If i = 1, a register-indirect effective target address is R[rs1] + sign_ext(simm13).

■ Trap vector effective address — A trap vector effective address first computes the software trap
number as the least significant 7 or 8 bits of R[rs1] + R[rs2] if i = 0, or as the least significant 7 or 8
bits of R[rs1] + imm_trap# if i = 1. Whether 7 or 8 bits are used depends on the privilege level —
7 bits are used in nonprivileged mode and 8 bits are used in privileged and hyperprivileged
modes. The trap level, TL, is incremented. The hardware trap type is computed as 256 + the
software trap number and stored in TT[TL]. The effective address is generated by combining the
contents of the TBA register with the trap type and other data; see Trap Processing on page 396 for
details.

■ Trap state effective address — A trap state effective address is not computed but is taken directly
from either TPC[TL] or TNPC[TL].

6.3.4.1 Conditional Branches

A conditional branch transfers control if the specified condition is TRUE. If the annul bit is 0, the
instruction in the delay slot is always executed. If the annul bit is 1, the instruction in the delay slot is
executed only when the conditional branch is taken.

TABLE 6-5 Control-Transfer Characteristics

Instruction Group Address Form Delayed? Taken? Annul Bit? New PC New NPC

Non-CTIs — — — — NPC NPC + 4

Bcc PC-relative Yes Yes 0 NPC EA

Bcc PC-relative Yes No 0 NPC NPC + 4

Bcc PC-relative Yes Yes 1 NPC EA

Bcc PC-relative Yes No 1 NPC + 4 NPC + 8

BA PC-relative Yes Yes 0 NPC EA

BA PC-relative No Yes 1 EA EA + 4

BN PC-relative Yes No 0 NPC NPC + 4

BN PC-relative Yes No 1 NPC + 4 NPC + 8

CALL PC-relative Yes — — NPC EA

JMPL, RETURN Register-indirect Yes — — NPC EA

DONE Trap state No — — TNPC[TL] TNPC[TL] + 4

RETRY Trap state No — — TPC[TL] TNPC[TL]

Tcc Trap vector No Yes — EA EA + 4

Tcc Trap vector No No — NPC NPC + 4

SPARC V8
Compatibility

Note

The SPARC V8 architecture specified that the delay instruction
was always fetched, even if annulled, and that an annulled
instruction could not cause any traps. The SPARC V9
architecture does not require the delay instruction to be fetched
if it is annulled.
CHAPTER 6 • Instruction Set Overview 91

6.3.4.2 Unconditional Branches

An unconditional branch transfers control unconditionally if its specified condition is “always”; it
never transfers control if its specified condition is “never.” If the annul bit is 0, then the instruction in
the delay slot is always executed. If the annul bit is 1, then the instruction in the delay slot is never
executed.

6.3.4.3 CALL and JMPL Instructions

The CALL instruction writes the contents of the PC, which points to the CALL instruction itself, into
R[15] (out register 7) and then causes a delayed transfer of control to a PC-relative effective address.
The value written into R[15] is visible to the instruction in the delay slot.

The JMPL instruction writes the contents of the PC, which points to the JMPL instruction itself, into
R[rd] and then causes a register-indirect delayed transfer of control to the address given by
“R[rs1] + R[rs2]” or “R[rs1] + a signed immediate value.” The value written into R[rd] is visible to
the instruction in the delay slot.

When PSTATE.am = 1, the value of the high-order 32 bits transmitted to R[15] by the CALL
instruction or to R[rd] by the JMPL instruction is zero.

6.3.4.4 RETURN Instruction

The RETURN instruction is used to return from a trap handler executing in nonprivileged mode.
RETURN combines the control-transfer characteristics of a JMPL instruction with R[0] specified as the
destination register and the register-window semantics of a RESTORE instruction.

6.3.4.5 DONE and RETRY Instructions

The DONE and RETRY instructions are used by privileged software to return from a trap. These
instructions restore the machine state to values saved in the TSTATE register stack.

RETRY returns to the instruction that caused the trap in order to reexecute it. DONE returns to the
instruction pointed to by the value of NPC associated with the instruction that caused the trap, that is,
the next logical instruction in the program. DONE presumes that the trap handler did whatever was
requested by the program and that execution should continue.

6.3.4.6 Trap Instruction (Tcc)

The Tcc instruction initiates a trap if the condition specified by its cond field matches the current state
of the condition code specified in its cc field; otherwise, it executes as a NOP. If the trap is taken, it
increments the TL register, computes a trap type that is stored in TT[TL], and transfers to a computed
address in a trap table pointed to by a trap base address register.

Note The annuling behavior of a taken conditional branch is different
from that of an unconditional branch.

Note The annul behavior of an unconditional branch is different from
that of a taken conditional branch.
92 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

A Tcc instruction can specify one of 256 software trap types (128 when in nonprivileged mode). When
a Tcc is taken, 256 plus the 7 (in nonprivileged mode) or 8 (in privileged or hyperprivileged mode)
least significant bits of the Tcc’s second source operand are written to TT[TL]. The only visible
difference between a software trap generated by a Tcc instruction and a hardware trap is the trap
number in the TT register. See Chapter 12, Traps, for more information.

6.3.4.7 DCTI Couples

A delayed control transfer instruction (DCTI) in the delay slot of another DCTI is referred to as a
“DCTI couple”. The use of DCTI couples is deprecated in the UltraSPARC Architecture; no new
software should place a DCTI in the delay slot of another DCTI, because on future UltraSPARC
Architecture implementations DCTI couples may execute either slowly or differently than the
programmer assumes it will.

6.3.5 Conditional Move Instructions
This subsection describes two groups of instructions that copy or move the contents of any integer or
floating-point register.

MOVcc and FMOVcc Instructions. The MOVcc and FMOVcc instructions copy the contents of
any integer or floating-point register to a destination integer or floating-point register if a condition is
satisfied. The condition to test is specified in the instruction and can be any of the conditions allowed
in conditional delayed control-transfer instructions. This condition is tested against one of the six sets
of condition codes (icc, xcc, fcc0, fcc1, fcc2, and fcc3), as specified by the instruction. For example:

fmovdg %fcc2, %f20, %f22

moves the contents of the double-precision floating-point register %f20 to register %f22 if floating-
point condition code number 2 (fcc2) indicates a greater-than relation (FSR.fcc2 = 2). If fcc2 does not
indicate a greater-than relation (FSR.fcc2 ≠ 2), then the move is not performed.

The MOVcc and FMOVcc instructions can be used to eliminate some branches in programs. In most
implementations, branches will be more expensive than the MOVcc or FMOVcc instructions. For
example, the C statement:

if (A > B) X = 1; else X = 0;

can be coded as
cmp %i0, %i2 ! (A > B)
or %g0, 0, %i3 ! set X = 0
movg %xcc, 1, %i3 ! overwrite X with 1 if A > B

to eliminate the need for a branch.

Programming
Note

Tcc can be used to implement breakpointing, tracing, and calls
to privileged or hyperprivileged software. Tcc can also be used
for runtime checks, such as out-of-range array index checks or
integer overflow checks.

SPARC V8 and
SPARC V9

Compatibility
Note

The SPARC V8 architecture left behavior undefined for a DCTI
couple. The SPARC V9 architecture defined behavior in that
case, but as of UltraSPARC Architecture 2005, use of DCTI couples
was deprecated.

E2
CHAPTER 6 • Instruction Set Overview 93

MOVr and FMOVr Instructions. The MOVr and FMOVr instructions allow the contents of any
integer or floating-point register to be moved to a destination integer or floating-point register if the
contents of a register satisfy a specified condition. The conditions to test are enumerated in TABLE 6-6.

Any of the integer registers (treated as a signed value) may be tested for one of the conditions, and the
result used to control the move. For example,

movrnz %i2, %l4, %l6

moves integer register %l4 to integer register %l6 if integer register %i2 contains a nonzero value.

MOVr and FMOVr can be used to eliminate some branches in programs or can emulate multiple
unsigned condition codes by using an integer register to hold the result of a comparison.

6.3.6 Register Window Management Instructions
This subsection describes the instructions that manage register windows in the UltraSPARC
Architecture. The privileged registers affected by these instructions are described in Register-Window
PR State Registers on page 61.

6.3.6.1 SAVE Instruction

The SAVE instruction allocates a new register window and saves the caller’s register window by
incrementing the CWP register.

If CANSAVE = 0, then execution of a SAVE instruction causes a window spill exception, that is, one of
the spill_n_<normal|other> exceptions.

If CANSAVE ≠ 0 but the number of clean windows is zero, that is,
(CLEANWIN − CANRESTORE) = 0, then SAVE causes a clean_window exception.

If SAVE does not cause an exception, it performs an ADD operation, decrements CANSAVE, and
increments CANRESTORE. The source registers for the ADD operation are from the old window (the
one to which CWP pointed before the SAVE), while the result is written into a register in the new
window (the one to which the incremented CWP points).

6.3.6.2 RESTORE Instruction

The RESTORE instruction restores the previous register window by decrementing the CWP register.

If CANRESTORE = 0, execution of a RESTORE instruction causes a window fill exception, that is, one
of the fill_n_<normal|other> exceptions.

If RESTORE does not cause an exception, it performs an ADD operation, decrements CANRESTORE,
and increments CANSAVE. The source registers for the ADD are from the old window (the one to
which CWP pointed before the RESTORE), and the result is written into a register in the new window
(the one to which the decremented CWP points).

TABLE 6-6 MOVr and FMOVr Test Conditions

Condition Description

NZ Nonzero

Z Zero

GEZ Greater than or equal to zero

LZ Less than zero

LEZ Less than or equal to zero

GZ Greater than zero
94 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

6.3.6.3 SAVED Instruction

SAVED is a privileged instruction used by a spill trap handler to indicate that a window spill has
completed successfully. It increments CANSAVE and decrements either OTHERWIN or
CANRESTORE, depending on the conditions at the time SAVED is executed.

See SAVED on page 257 for details.

6.3.6.4 RESTORED Instruction

RESTORED is a privileged instruction, used by a fill trap handler to indicate that a window has been
filled successfully. It increments CANRESTORE and decrements either OTHERWIN or CANSAVE,
depending on the conditions at the time RESTORED is executed. RESTORED also manipulates
CLEANWIN, which is used to ensure that no address space’s data become visible to another address
space through windowed registers.

See RESTORED on page 250 for details.

6.3.6.5 Flush Windows Instruction

The FLUSHW instruction flushes all of the register windows, except the current window, by
performing repetitive spill traps. The FLUSHW instruction causes a spill trap if any register window
(other than the current window) has valid contents. The number of windows with valid contents is
computed as:

N_REG_WINDOWS – 2 – CANSAVE

If this number is nonzero, the FLUSHW instruction causes a spill trap. Otherwise, FLUSHW has no
effect. If the spill trap handler exits with a RETRY instruction, the FLUSHW instruction continues
causing spill traps until all the register windows except the current window have been flushed.

Programming
Note

This note describes a common convention for use of register
windows, SAVE, RESTORE, CALL, and JMPL instructions.

A procedure is invoked by execution of a CALL (or a JMPL)
instruction. If the procedure requires a register window, it
executes a SAVE instruction in its prologue code. A routine that
does not allocate a register window of its own (possibly a leaf
procedure) should not modify any windowed registers except
out registers 0 through 6. This optimization, called “Leaf-
Procedure Optimization”, is routinely performed by SPARC
compilers.

A procedure that uses a register window returns by executing
both a RESTORE and a JMPL instruction. A procedure that has
not allocated a register window returns by executing a JMPL
only. The target address for the JMPL instruction is normally 8
plus the address saved by the calling instruction, that is, the
instruction after the instruction in the delay slot of the calling
instruction.

The SAVE and RESTORE instructions can be used to atomically
establish a new memory stack pointer in an R register and
switch to a new or previous register window.
CHAPTER 6 • Instruction Set Overview 95

6.3.7 Ancillary State Register (ASR) Access
The read/write state register instructions access program-visible state and status registers. These
instructions read/write the state registers into/from R registers. A read/write Ancillary State register
instruction is privileged only if the accessed register is privileged.

The supported RDasr and WRasr instructions are described in Ancillary State Registers on page 50.

6.3.8 Privileged Register Access
The read/write privileged register instructions access state and status registers that are visible only to
privileged software. These instructions read/write privileged registers into/from R registers. The
read/write privileged register instructions are privileged.

6.3.9 Floating-Point Operate (FPop) Instructions
Floating-point operate instructions (FPops) compute a result that is a function of one , two, or three
source operands and place the result in one or more destination F registers, with one exception:
floating-point compare operations do not write to an F register but instead update one of the fccn
fields of the FSR.

The term “FPop” refers to instructions in the FPop1, FMAf, and FPop2 opcode spaces. FPop
instructions do not include FBfcc instructions, loads and stores between memory and the F registers,
or non-floating-point operations that read or write F registers.

The FMOVcc instructions function for the floating-point registers as the MOVcc instructions do for the
integer registers. See MOVcc and FMOVcc Instructions on page 93.

The FMOVr instructions function for the floating-point registers as the MOVr instructions do for the
integer registers. See MOVr and FMOVr Instructions on page 94.

If no floating-point unit is present or if PSTATE.pef = 0 or FPRS.fef = 0, then any instruction,
including an FPop instruction, that attempts to access an FPU register generates an fp_disabled
exception.

All FPop instructions clear the ftt field and set the cexc field unless they generate an exception.
Floating-point compare instructions also write one of the fccn fields. All FPop instructions that can
generate IEEE exceptions set the cexc and aexc fields unless they generate an exception.
FABS<s|d|q>, FMOV<s|d|q>, FMOVcc<s|d|q>, FMOVr<s|d|q>, and FNEG<s|d|q> cannot
generate IEEE exceptions, so they clear cexc and leave aexc unchanged.

IMPL. DEP. #3-V8: An implementation may indicate that a floating-point instruction did not produce
a correct IEEE Std 754-1985 result by generating an fp_exception_other exception with
FSR.ftt = unfinished_FPop. In this case, software running in a mode with greater privileges must
emulate any functionality not present in the hardware.

See ftt = 2 (unfinished_FPop) on page 47 to see which instructions can produce an fp_exception_other
exception (with FSR.ftt = unfinished_FPop).

6.3.10 Implementation-Dependent Instructions
The SPARC V9 architecture provided two instruction spaces that are entirely implementation
dependent: IMPDEP1 and IMPDEP2 .

In the UltraSPARC Architecture, the IMPDEP1 opcode space is used by many VIS instructions. The
remaining opcodes in IMPDEP1 and IMPDEP2 are now marked as reserved opcodes.
96 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

6.3.11 Reserved Opcodes and Instruction Fields
If a conforming UltraSPARC Architecture 2007 implementation attempts to execute an instruction bit
pattern that is not specifically defined in this specification, it behaves as follows:

■ If the instruction bit pattern encodes an implementation-specific extension to the instruction set,
that extension is executed.

■ If the instruction does not encode an extension to the instruction set, then the instruction bit pattern
is invalid and causes an illegal_instruction exception.

See Appendix A, Opcode Maps, for an enumeration of the reserved instruction bit patterns (opcodes).

Programming
Note

For software portability, software (such as assemblers, static
compilers, and dynamic compilers) that generates SPARC
instructions must always generate zeroes in instruction fields
marked “reserved” (“—”).
CHAPTER 6 • Instruction Set Overview 97

98 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

CHAPTER s 7

Instructions

UltraSPARC Architecture 2007 extends the standard SPARC V9 instruction set with additional classes
of instructions:

■ Enhanced functionality:
■ Instructions for alignment (Align Address on page 111)
■ Array handling (Three-Dimensional Array Addressing on page 114)
■ Byte-permutation instructions (Byte Mask and Shuffle on page 119)
■ Edge handling (Edge Handling Instructions on pages 129 and 131)
■ Logical operations on floating-point registers (F Register Logical Operate (1 operand) on page 176)
■ Partitioned arithmetic (Fixed-point Partitioned Add on page 171Fixed-point Partitioned Subtract (64-

bit) on page 174)
■ Pixel manipulation (FEXPAND on page 144, FPACK on page 166, and FPMERGE on page 173)
■ Access to hyperprivileged state (such asRDHPR and WRHPR instructions)

■ Efficient memory access

■ Partial store (Store Partial Floating-Point on page 279)
■ Short floating-point loads and stores (Store Short Floating-Point on page 282)
■ Block load and store (Block Load on page 192 and Block Store on page 269)

■ Efficient interval arithmetic: SIAM (Set Interval Arithmetic Mode on page 261) and all instructions
that reference GSR.im

■ Floating-point Multiply-Add and Multiply-Subtract (FMA) instructions (Floating-Point Multiply-Add
and Multiply-Subtract (fused) on page 150

TABLE 7-2 provides a quick index of instructions, alphabetically by architectural instruction name.

TABLE 7-3 summarizes the instruction set, listed within functional categories.

Within these tables and throughout the rest of this chapter, and in Appendix A, Opcode Maps, certain
opcodes are marked with mnemonic superscripts. The superscripts and their meanings are defined in
TABLE 7-1.

TABLE 7-1 Instruction Superscripts

Superscript Meaning

D Deprecated instruction (do not use in new software)

H Hyperprivileged instruction

N Nonportable instruction

P Privileged instruction

PASI Privileged action if bit 7 of the referenced ASI is 0

PASR Privileged instruction if the referenced ASR register is privileged

Pnpt Privileged action if in nonprivileged mode (PSTATE.priv = 0 and
HPSTATE.hpriv = 0) and nonprivileged access is disabled
((S)TICK.npt = 1)
99

TABLE 7-2 UltraSPARC Architecture 2007 Instruction Set - Alphabetical (1 of 2)

Page Instruction Page Instruction Page Instruction

110 ADD (ADDcc) 135 FBfccD 171 FPADD<16,32>[S]

110 ADDC (ADDCcc) 137 FBPfcc

141 FCMP<s|d|q> 173 FPMERGE

139 FCMP*<16,32>

141 FCMPE<s|d|q> 174 FPSUB<16,32>[S]

143 FDIV<s|d|q>

164 FdMULq

144 FEXPAND 164 FsMULd

111 ALIGNADDRESS[_LITTLE] 179 FSQRT<s|d|q>

112 ALLCLEAN 177 FSRC<1|2>[s]

113 AND (ANDcc) 145 FiTO<s|d|q> 183 FSUB<s|d|q>

114 ARRAY<8|16|32>

117 Bicc 146 FLUSH 178 FXNOR

119 BMASK 149 FLUSHW 178 FXOR

120 BPcc 150 FMADD(s,d) 184 FxTO<s|d|q>

122 BPr 176 FZERO

119 BSHUFFLE 152 FMOV<s|d|q>

124 CALL 153 FMOV<s|d|q>cc 185 ILLTRAP

157 FMOV<s|d|q>R 186 INVALW

150 FMSUB(s,d) 187 JMPL

164 FMUL<s|d|q>

125 CASAPASI 159 FMUL8[SU|UL]x16

125 CASXAPASI 159 FMUL8x16

159 FMUL8x16[AU|AL]

159 FMULD8[SU|UL]x16 192 LDBLOCKFD

195 LDDF

178 FNAND 197 LDDFAPASI

165 FNEG<s|d|q> 195 LDF

197 LDFAPASI

150 FNMADD 201 LDFSRD

127 DONEP 150 FNMSUB 195 LDQF

129 EDGE<8|16|32>[L]cc 197 LDQFAPASI

131 EDGE<8|16|32>[L]N 178 FNOR 188 LDSB

181 F<s|d|q>TO<s|d|q> 177 FNOT<1|2> 189 LDSBAPASI

180 F<s|d|q>TOi 188 LDSH

180 F<s|d|q>TOx 176 FONE 189 LDSHAPASI

132 FABS<s|d|q> 178 FORNOT<1|2> 203 LDSHORTF

133 FADD<s|d|q> 178 FOR 205 LDSTUB

134 FALIGNDATA 166 FPACK<16|32|FIX> 206 LDSTUBAPASI

178 FANDNOT<1|2> 188 LDSW

178 FAND 189 LDSWAPASI
100 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

213 LDTXAN 286 STTWAD, PASI

208 LDTWD 266 STW

210 LDTWAD, PASI 246 RDPRP 267 STWAPASI

205 LDUB 242 RDSOFTINTP 266 STX

189 LDUBAPASI 242 RDSTICK_CMPRP 267 STXAPASI

188 LDUH 242 RDSTICKPnpt 288 STXFSR

189 LDUHAPASI 242 RDTICK_CMPRP 290 SUB (SUBcc)

188 LDUW 242 RDTICKPnpt 290 SUBC (SUBCcc)

189 LDUWAPASI 250 RESTOREDP 292 SWAPAD, PASI

188 LDX 248 RESTOREP 291 SWAPD

189 LDXAPASI 251 RETRYP 294 TADDcc

253 RETURN 295 TADDccTVD

215 LDXFSR 257 SAVEDP 296 Tcc

255 SAVEP 299 TSUBcc

258 SDIVD (SDIVccD) 300 TSUBccTVD

217 MEMBAR 227 SDIVX 301 UDIVD (UDIVccD)

260 SETHI 227 UDIVX

303 UMULD (UMULccD)

220 MOVcc

305 WRASI

305 WRasrPASR

223 MOVr 261 SIAM 305 WRCCR

262 SIRH

225 MULSccD 263 SLL 305 WRFPRS

227 MULX 263 SLLX 305 WRGSR

228 NOP 265 SMULD (SMULccD) 308 WRHPRH

229 NORMALW 263 SRA

230 OR (ORcc) 263 SRAX

230 ORN (ORNcc) 266 STB

231 OTHERW 267 STBAPASI 308 WRPRP

305 WRSOFTINT_CLRP

232 PDIST 269 STBLOCKF 305 WRSOFTINT_SETP

272 STDF 305 WRSOFTINTP

233 POPC 274 STDFAPASI 305 WRSTICK_CMPRP

235 PREFETCH 272 STF 305 WRSTICKP

235 PREFETCHAPASI 274 STFAPASI 305 WRTICK_CMPRP

277 STFSRD 305 WRYD

242 RDASI 266 STH

242 RDasrPASR 267 STHAPASI 312 XNOR (XNORcc)

242 RDCCR 279 STPARTIALF 312 XOR (XORcc)

266 STB

242 RDFPRS 272 STQF

242 RDGSR 274 STQFAPASI

245 RDHPRH 282 STSHORTF

242 RDPC 284 STTWD

TABLE 7-2 UltraSPARC Architecture 2007 Instruction Set - Alphabetical (2 of 2)

Page Instruction Page Instruction Page Instruction
CHAPTER 7 • Instructions 101

TABLE 7-3 Instruction Set - by Functional Category (1 of 6)

Instruction Category and Function Page
Ext. to

V9?

Data Movement Operations, Between R Registers

MOVcc Move integer register if condition is satisfied 220

MOVr Move integer register on contents of integer register 223

Data Movement Operations, Between F Registers

FMOV<s|d|q> Floating-point move 152

FMOV<s|d|q>cc Move floating-point register if condition is satisfied 153

FMOV<s|d|q>R Move f-p reg. if integer reg. contents satisfy condition 157

FSRC<1|2>[s] Copy source 177 VIS 1

Data Conversion Instructions

FiTO<s|d|q> Convert 32-bit integer to floating-point 145

F<s|d|q>TOi Convert floating point to integer 180

F<s|d|q>TOx Convert floating point to 64-bit integer 180

F<s|d|q>TO<s|d|q> Convert between floating-point formats 181

FxTO<s|d|q> Convert 64-bit integer to floating-point 184

Logical Operations on R Registers

AND (ANDcc) Logical and (and modify condition codes) 113

OR (ORcc) Inclusive-or (and modify condition codes) 230

ORN (ORNcc) Inclusive-or not (and modify condition codes) 230

XNOR (XNORcc) Exclusive-nor (and modify condition codes) 312

XOR (XORcc) Exclusive-or (and modify condition codes) 312

Logical Operations on F Registers

FAND[s] Logical and operation 178 VIS 1

FANDNOT<1|2>[s] Logical and operation with one inverted source 178 VIS 1

FNAND[s] Logical nand operation 178 VIS 1

FNOR[s] Logical nor operation 178 VIS 1

FNOT<1|2>[s] Copy negated source 177 VIS 1

FONE[s] One fill 176 VIS 1

FOR[s] Logical or operation 178 VIS 1

FORNOT<1|2>[s] Logical or operation with one inverted source 178 VIS 1

FXNOR[s] Logical xnor operation 178 VIS 1

FXOR[s] Logical xor operation 178 VIS 1

FZERO[s] Zero fill 176 VIS 1

Shift Operations on R Registers

SLL Shift left logical 263

SLLX Shift left logical, extended 263

SRA Shift right arithmetic 263

SRAX Shift right arithmetic, extended 263

SRL Shift right logical 263

SRLX Shift right logical, extended 263

Special Addressing Operations

ALIGNADDRESS[_LITTLE] Calculate address for misaligned data 111 VIS 1

ARRAY<8|16|32> 3-D array addressing instructions 114 VIS 1
102 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

FALIGNDATA Perform data alignment for misaligned data 134 VIS 1

Control Transfers

Bicc Branch on integer condition codes 117

BPcc Branch on integer condition codes with prediction 120

BPr Branch on contents of integer register with prediction 122

CALL Call and link 124

DONEP Return from trap 127

FBfccD Branch on floating-point condition codes 135

FBPfcc Branch on floating-point condition codes with prediction 137

ILLTRAP Illegal instruction 185

JMPL Jump and link 187

RETRYP Return from trap and retry 251

RETURN Return 253

SIRH Software-initiated reset 262

Tcc Trap on integer condition codes 296

Byte Permutation

BMASK Set the GSR.mask field 119 VIS 2

BSHUFFLE Permute bytes as specified by GSR.mask 119 VIS 2

Data Formatting Operations on F Registers

FEXPAND Pixel expansion 144 VIS 1

FPACK<16|32|FIX> Pixel packing 166 VIS 1

FPMERGE Pixel merge 173 VIS 1

Memory Operations to/from F Registers

LDBLOCKFD Block loads 192 VIS 1

STBLOCKF Block stores 269 VIS 1

LDDF Load double floating-point 195

LDDFAPASI Load double floating-point from alternate space 197

LDF Load floating-point 195

LDFAPASI Load floating-point from alternate space 197

LDQF Load quad floating-point 195

LDQFAPASI Load quad floating-point from alternate space 197

LDSHORTF Short floating-point loads 203 VIS 1

STDF Store double floating-point 272

STDFAPASI Store double floating-point into alternate space 274

STF Store floating-point 272

STFAPASI Store floating-point into alternate space 274

STPARTIALF Partial Store instructions 279 VIS 1

STQF Store quad floating point 272

STQFAPASI Store quad floating-point into alternate space 274

STSHORTF Short floating-point stores 282 VIS 1

Memory Operations — Miscellaneous

LDFSRD Load floating-point state register (lower) 201

LDXFSR Load floating-point state register 215

TABLE 7-3 Instruction Set - by Functional Category (2 of 6)

Instruction Category and Function Page
Ext. to

V9?
CHAPTER 7 • Instructions 103

MEMBAR Memory barrier 217

PREFETCH Prefetch data 235

PREFETCHAPASI Prefetch data from alternate space 235

STFSRD Store floating-point state register (lower) 277

STXFSR Store floating-point state register 288

Atomic (Load-Store) Memory Operations to/from R Registers

CASAPASI Compare and swap word in alternate space 125

CASXAPASI Compare and swap doubleword in alternate space 125

LDSTUB Load-store unsigned byte 205

LDSTUBAPASI Load-store unsigned byte in alternate space 206

SWAPD Swap integer register with memory 291

SWAPAD, PASI Swap integer register with memory in alternate space 292

Memory Operations to/from R Registers

LDSB Load signed byte 188

LDSBAPASI Load signed byte from alternate space 189

LDSH Load signed halfword 188

LDSHAPASI Load signed halfword from alternate space 189

LDSW Load signed word 188

LDSWAPASI Load signed word from alternate space 189

LDTXAN Load integer twin extended word from alternate space 213 VIS 2+

LDTWD, PASI Load integer twin word 208

LDTWAD, PASI Load integer twin word from alternate space 210

LDUB Load unsigned byte 205

LDUBAPASI Load unsigned byte from alternate space 189

LDUH Load unsigned halfword 188

LDUHAPASI Load unsigned halfword from alternate space 189

LDUW Load unsigned word 188

LDUWAPASI Load unsigned word from alternate space 189

LDX Load extended 188

LDXAPASI Load extended from alternate space 189

STB Store byte 266

STBAPASI Store byte into alternate space 267

STTWD Store twin word 284

STTWAD, PASI Store twin word into alternate space 286

STH Store halfword 266

STHAPASI Store halfword into alternate space 267

STW Store word 266

STWAPASI Store word into alternate space 267

STX Store extended 266

STXAPASI Store extended into alternate space 267

Floating-Point Arithmetic Operations

FABS<s|d|q> Floating-point absolute value 132

FADD<s|d|q> Floating-point add 133

FDIV<s|d|q> Floating-point divide 143

TABLE 7-3 Instruction Set - by Functional Category (3 of 6)

Instruction Category and Function Page
Ext. to

V9?
104 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

FdMULq Floating-point multiply double to quad 164

FMADD(s,d) Floating-point multiply-add single/double (fused) 150

FMSUB(s,d) Floating-point multiply-subtract single/double (fused) 150

FMUL<s|d|q> Floating-point multiply 164

FNMADD(s,d) Floating-point negative multiply-add single/double (fused) 150

FNEG<s|d|q> Floating-point negate 165

FNMSUB(s,d) Floating-point negative multiply-subtract single/double (fused) 150

FsMULd Floating-point multiply single to double 164

FSQRT<s|d|q> Floating-point square root 179

FSUB<s|d|q> Floating-point subtract 183

Floating-Point Comparison Operations

FCMP*<16,32> Compare four 16-bit signed values or two 32-bit signed values 139 VIS 1

FCMP<s|d|q> Floating-point compare 141

FCMPE<s|d|q> Floating-point compare (exception if unordered) 141

Register-Window Control Operations

ALLCLEANP Mark all register window sets as “clean” 112

INVALWP Mark all register window sets as “invalid” 186

FLUSHW Flush register windows 149

NORMALWP “Other” register windows become “normal” register windows 229

OTHERWP “Normal” register windows become “other” register windows 231

RESTORE Restore caller’s window 248

RESTOREDP Window has been restored 250

SAVE Save caller’s window 255

SAVEDP Window has been saved 257

Miscellaneous Operations

FLUSH Flush instruction memory 146

NOP No operation 228

Integer SIMD Operations on F Registers

FPADD<16,32>[S] Fixed-point partitioned add 171 VIS 1

FPSUB<16,32>[S] Fixed-point partitioned subtract 174 VIS 1

Integer Arithmetic Operations on R Registers

ADD (ADDcc) Add (and modify condition codes) 110

ADDC (ADDCcc) Add with carry (and modify condition codes) 110

MULSccD Multiply step (and modify condition codes) 225

MULX Multiply 64-bit integers 227

SDIVD (SDIVccD) 32-bit signed integer divide (and modify condition codes) 258

SDIVX 64-bit signed integer divide 227

SMULD (SMULccD) Signed integer multiply (and modify condition codes) 265

SUB (SUBcc) Subtract (and modify condition codes) 290

SUBC (SUBCcc) Subtract with carry (and modify condition codes) 290

TADDcc Tagged add and modify condition codes (trap on overflow) 294

TADDccTVD Tagged add and modify condition codes (trap on overflow) 295

TABLE 7-3 Instruction Set - by Functional Category (4 of 6)

Instruction Category and Function Page
Ext. to

V9?
CHAPTER 7 • Instructions 105

TSUBcc Tagged subtract and modify condition codes (trap on overflow) 299

TSUBccTVD Tagged subtract and modify condition codes (trap on overflow) 300

UDIVD (UDIVccD) Unsigned integer divide (and modify condition codes) 301

UDIVX 64-bit unsigned integer divide 227

UMULD (UMULccD) Unsigned integer multiply (and modify condition codes) 303

Integer Arithmetic Operations on F Registers

FMUL8x16 8x16 partitioned product 159 VIS 1

FMUL8x16[AU|AL] 8x16 upper/lower α partitioned product 159 VIS 1

FMUL8[SU|UL]x16 8x16 upper/lower partitioned product 159 VIS 1

FMULD8[SU|UL]x16 8x16 upper/lower partitioned product 159 VIS 1

Miscellaneous Operations on R Registers

POPC Population count 233

SETHI Set high 22 bits of low word of integer register 260

Miscellaneous Operations on F Registers

EDGE<8|16|32>[L]cc Edge handling instructions (and modify condition codes) 129 VIS 1

EDGE<8|16|32>[L]N Edge handling instructions 131 VIS 2

PDIST Pixel component distance 232 VIS 1

Control and Status Register Access

RDASI Read ASI register 242

RDasrPASR Read ancillary state register 242

RDCCR Read Condition Codes register (CCR) 242

RDFPRS Read Floating-Point Registers State register (FPRS) 242

RDGSR Read General Status register (GSR) 242

RDPC Read Program Counter register (PC) 242

RDHPRH Read hyperprivileged register 245

RDPRP Read privileged register 246

RDSOFTINTP Read per-virtual processor Soft Interrupt register (SOFTINT) 242

RDSTICKPnpt Read System Tick register (STICK) 242

RDSTICK_CMPRP Read System Tick Compare register (STICK_CMPR) 242

RDTICKPnpt Read Tick register (TICK) 242

RDTICK_CMPRP Read Tick Compare register (TICK_CMPR) 242

RDYD Read Y register 242

SIAM Set interval arithmetic mode 261 VIS 2

WRASI Write ASI register 305

WRasrPASR Write ancillary state register 305

WRCCR Write Condition Codes register (CCR) 305

WRFPRS Write Floating-Point Registers State register (FPRS) 305

WRGSR Write General Status register (GSR) 305

WRHPRH Write hyperprivileged register 308

WRPRP Write privileged register 308

WRSOFTINTP Write per-virtual processor Soft Interrupt register (SOFTINT) 305

WRSOFTINT_CLRP Clear bits of per-virtual processor Soft Interrupt register (SOFTINT) 305

WRSOFTINT_SETP Set bits of per-virtual processor Soft Interrupt register (SOFTINT) 305

WRTICK_CMPRP Write Tick Compare register (TICK_CMPR) 305

TABLE 7-3 Instruction Set - by Functional Category (5 of 6)

Instruction Category and Function Page
Ext. to

V9?
106 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

WRSTICKP Write System Tick register (STICK) 305

WRSTICK_CMPRP Write System Tick Compare register (STICK_CMPR) 305

WRYD Write Y register 305

TABLE 7-3 Instruction Set - by Functional Category (6 of 6)

Instruction Category and Function Page
Ext. to

V9?
CHAPTER 7 • Instructions 107

In the remainder of this chapter, related instructions are grouped into subsections. Each subsection
consists of the following sets of information:

(1) Instruction Table. This section of an instruction page lists the instructions that are defined in
the subsection, including the values of the field(s) that uniquely identify the instruction(s) and its
assembly language syntax. In the rightmost column, Software (alphabetic) and Implementation
(numeric) classifications for the instructions are provided. The meaning of the alphabetic Software
Classifications is as follows:

(2) Illustration of Instruction Format(s). These illustrations show how the instruction is encoded
in a 32-bit word in memory. In them, a dash (—) indicates that the field is reserved for future versions
of the architecture and must be 0 in any instance of the instruction. If a conforming UltraSPARC
Architecture implementation encounters nonzero values in these fields, its behavior is as defined in
Reserved Opcodes and Instruction Fields on page 97.

Software
Usage Class

How this feature
may be used Attributes

A

“Use Freely”

Use freely. ■ Compilers always free to use (no option to disable use).
■ Executes well across all implementations.

B

“Use
Carefully”

Use with care/
forethought in
portable software

■ Usage is being phased in.
■ A compiler option exists to enable/disable references to this

feature; by default, use is enabled.

C

“New Feature”

Use only in
platform-specific
software
(privileged code,
DLLs, and
non-portable
applications)

■ New feature; usage is being phased in.
■ A compiler option† exists to enable/disable references to this

feature; by default, use is disabled.
■ An assembler option† exists to enable/disable references to this

feature; by default, use is disabled. If use is enabled, reference to
feature triggers a warning; if disabled, reference triggers an error
message.

D

“Deprecated”

Use in portable
software is strongly
discouraged.

■ Usage is being phased out and this feature may not perform as
well in future implementations.

■ A compiler option† exists to enable/disable use of this feature;
by default, use is disabled.

■ An assembler option† exists to enable/disable references to this
feature; by default, use is disabled. If use is enabled, reference to
feature triggers a warning; if disabled, reference triggers an error
message.

■

N

“Non-portable
(platform-
specific)”

Only use in
platform-specific
software
(privileged code,
hyperprivileged
code, DLLs, JIT
code, and [if
absolutely
necessary]
non-portable
applications)

■ A compiler option† exists to enable/disable references to this
feature; by default, use is disabled.

■ An assembler option† exists to enable/disable references to this
feature; by default, use is disabled. If use is enabled, reference to
feature triggers a warning; if disabled, reference triggers an error
message.

■

108 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

(3) Description. This subsection describes the operation of the instruction, its features, restrictions,
and exception-causing conditions.

(4) Exceptions. The exceptions that can occur as a consequence of attempting to execute the
instruction(s). Exceptions due to an IAE_*, fast_instruction_access_MMU_miss,
instruction_access_error, fast_ECC_error, ECC_error (corrected ECC_error), WDR, and interrupts are
not listed because they can occur on any instruction. An instruction not implemented in hardware
generates an illegal_instruction exception and therefore will not generate any of the other exceptions
listed. Exceptions are listed in order of trap priority (see Trap Priorities on page 396), from highest to
lowest priority.

(5) See Also. A list of related instructions (on selected pages).

Note This specification does not contain any timing information (in
either cycles or elapsed time), since timing is always
implementation dependent.
CHAPTER 7 • Instructions 109

ADD
7.1 Add

Description If i = 0, ADD and ADDcc compute “R[rs1] + R[rs2]”. If i = 1, they compute
“R[rs1] + sign_ext(simm13)”. In either case, the sum is written to R[rd].

ADDC and ADDCcc (“ADD with carry”) also add the CCR register’s 32-bit carry (icc.c) bit. That is, if
i = 0, they compute “R[rs1] + R[rs2] + icc.c” and if i = 1, they compute
“R[rs1] + sign_ext(simm13) + icc.c”. In either case, the sum is written to R[rd].

ADDcc and ADDCcc modify the integer condition codes (CCR.icc and CCR.xcc). Overflow occurs on
addition if both operands have the same sign and the sign of the sum is different from that of the
operands.

An attempt to execute an ADD, ADDcc, ADDC or ADDCcc instruction when i = 0 and reserved
instruction bits 12:5 are nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction

Instruction op3 Operation Assembly Language Syntax Class

ADD 00 0000 Add add regrs1, reg_or_imm, regrd A1

ADDcc 01 0000 Add and modify cc’s addcc regrs1, reg_or_imm, regrd A1

ADDC 00 1000 Add with 32-bit Carry addc regrs1, reg_or_imm, regrd A1

ADDCcc 01 1000 Add with 32-bit Carry and modify cc’s addccc regrs1, reg_or_imm, regrd A1

Programming
Note

ADDC and ADDCcc read the 32-bit condition codes’ carry bit
(CCR.icc.c), not the 64-bit condition codes’ carry bit (CCR.xcc.c).

SPARC V8
Compatibility

Note

ADDC and ADDCcc were previously named ADDX and
ADDXcc, respectively, in SPARC V8.

rd10 op3 —rs1 rs2i=0

31 24 02530 29 19 18 14 13 12 5 4

rd10 op3 rs1 simm13i=1
110 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

ALIGNADDRESS
7.2 Align Address

Description ALIGNADDRESS adds two integer values, R[rs1] and R[rs2], and stores the result (with the least
significant 3 bits forced to 0) in the integer register R[rd]. The least significant 3 bits of the result are
stored in the GSR.align field.

ALIGNADDRESS_LITTLE is the same as ALIGNADDRESS except that the two’s complement of the
least significant 3 bits of the result is stored in GSR.align.

A byte-aligned 64-bit load can be performed as shown below.

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an ALIGNADDRESS or ALIGNADDRESS_LITTLE instruction causes an
fp_disabled exception.

Exceptions fp_disabled

See Also Align Data on page 134

Instruction opf Operation Assembly Language Syntax Class Added

ALIGNADDRESS 0 0001 1000 Calculate address for misaligned
data access

alignaddr regrs1, regrs2, regrd A1 UA 2005

ALIGNADDRESS_
LITTLE

0 0001 1010 Calculate address for misaligned
data access, little-endian

alignaddrl regrs1, regrs2, regrd A1 UA 2005

Note ALIGNADDRESS_LITTLE generates the opposite-endian byte
ordering for a subsequent FALIGNDATA operation.

alignaddr Address, Offset, Address !set GSR.align
ldd [Address], %d0
ldd [Address + 8], %d2
faligndata %d0, %d2, %d4 !use GSR.align to select bytes

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
CHAPTER 7 • Instructions 111

ALLCLEAN
7.3 Mark All Register Window Sets “Clean”

Description The ALLCLEAN instruction marks all register window sets as “clean”; specifically, it performs the
following operation:

CLEANWIN ← (N_REG_WINDOWS − 1)

An attempt to execute an ALLCLEAN instruction when reserved instruction bits 18:0 are nonzero
causes an illegal_instruction exception.

An attempt to execute an ALLCLEAN instruction in nonprivileged mode (PSTATE.priv = 0 and
HSTATE.hpriv = 0) causes a privileged_opcode exception.

Exceptions
illegal_instruction
privileged_opcode

See Also INVALW on page 186
NORMALW on page 229
OTHERW on page 231
RESTORED on page 250
SAVED on page 257

Instruction Operation Assembly Language Syntax Class Added

ALLCLEANP Mark all register window sets as “clean” allclean A1 UA 2005

Programming
Note

ALLCLEAN is used to indicate that all register windows are
“clean”; that is, do not contain data belonging to other address
spaces. It is needed because the value of N_REG_WINDOWS is not
known to privileged software.

This instruction allows window manipulations to be atomic,
without the value of N_REG_WINDOWS being visible to privileged
software and without an assumption that N_REG_WINDOWS is
constant (since hyperprivileged software can migrate a thread
among virtual processors, across which N_REG_WINDOWS may
vary).

31 1924 18 02530 29

10 fcn = 0 0010 11 0001 —
112 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

AND, ANDN
7.4 AND Logical Operation

Description These instructions implement bitwise logical and operations. They compute “R[rs1] op R[rs2]” if i = 0,
or “R[rs1] op sign_ext(simm13)” if i = 1, and write the result into R[rd].

ANDcc and ANDNcc modify the integer condition codes (icc and xcc). They set the condition codes
as follows:

■ icc.v, icc.c, xcc.v, and xcc.c are set to 0
■ icc.n is copied from bit 31 of the result
■ xcc.n is copied from bit 63 of the result
■ icc.z is set to 1 if bits 31:0 of the result are zero (otherwise to 0)
■ xcc.z is set to 1 if all 64 bits of the result are zero (otherwise to 0)

ANDN and ANDNcc logically negate their second operand before applying the main (and) operation.

An attempt to execute an AND, ANDcc, ANDN or ANDNcc instruction when i = 0 and reserved
instruction bits 12:5 are nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction

Instruction op3 Operation Assembly Language Syntax Class

AND 00 0001 and and regrs1, reg_or_imm, regrd A1

ANDcc 01 0001 and and modify cc’s andcc regrs1, reg_or_imm, regrd A1

ANDN 00 0101 and not andn regrs1, reg_or_imm, regrd A1

ANDNcc 01 0101 and not and modify cc’s andncc regrs1, reg_or_imm, regrd A1

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
CHAPTER 7 • Instructions 113

ARRAY<8|16|32>
7.5 Three-Dimensional Array Addressing

Description These instructions convert three-dimensional (3D) fixed-point addresses contained in R[rs1] to a
blocked-byte address; they store the result in R[rd]. Fixed-point addresses typically are used for
address interpolation for planar reformatting operations. Blocking is performed at the 64-byte level to
maximize external cache block reuse, and at the 64-Kbyte level to maximize TLB entry reuse,
regardless of the orientation of the address interpolation. These instructions specify an element size of
8 bits (ARRAY8), 16 bits (ARRAY16), or 32 bits (ARRAY32).

The second operand, R[rs2], specifies the power-of-2 size of the X and Y dimensions of a 3D image
array. The legal values for R[rs2] and their meanings are shown in TABLE 7-4. Illegal values produce
undefined results in the destination register, R[rd].

The array instructions facilitate 3D texture mapping and volume rendering by computing a memory
address for data lookup based on fixed-point x, y, and z coordinates. The data are laid out in a
blocked fashion, so that points which are near one another have their data stored in nearby memory
locations.

If the texture data were laid out in the obvious fashion (the z = 0 plane, followed by the z = 1 plane,
etc.), then even small changes in z would result in references to distant pages in memory. The
resulting lack of locality would tend to result in TLB misses and poor performance. The three versions
of the array instruction, ARRAY8, ARRAY16, and ARRAY32, differ only in the scaling of the computed
memory offsets. ARRAY16 shifts its result left by one position and ARRAY32 shifts left by two in
order to handle 16- and 32-bit texture data.

When using the array instructions, a “blocked-byte” data formatting structure is imposed. The N × N
× M volume, where N = 2n × 64, M = m × 32, 0 ≤ n ≤5, 1 ≤ m ≤ 16 should be composed of 64 × 64 × 32
smaller volumes, which in turn should be composed of 4 × 4 × 2 volumes. This data structure is
optimal for 16-bit data. For 16-bit data, the 4 × 4 × 2 volume has 64 bytes of data, which is ideal for
reducing cache-line misses; the 64 × 64 × 32 volume will have 256 Kbytes of data, which is good for
improving the TLB hit rate. FIGURE 7-1 illustrates how the data has to be organized, where the origin

Instruction opf Operation Assembly Language Syntax Class Added

ARRAY8 0 0001 0000 Convert 8-bit 3D address to blocked byte address array8 regrs1, regrs2, regrd B1 UA 2005

ARRAY16 0 0001 0010 Convert 16-bit 3D address to blocked byte address array16 regrs1, regrs2, regrd B1 UA 2005

ARRAY32 0 0001 0100 Convert 32-bit 3D address to blocked byte address array32 regrs1, regrs2, regrd B1 UA 2005

TABLE 7-4 3D R[rs2] Array X and Y Dimensions
R[rs2] Value (n) Number of Elements

0 64
1 128
2 256
3 512
4 1024
5 2048

Implementation
Note

Architecturally, an illegal R[rs2] value (>5) causes the array
instructions to produce undefined results. For historic reference,
past implementations of these instructions have ignored
R[rs2]{63:3} and have treated R[rs2] values of 6 and 7 as if they
were 5.

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
114 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

ARRAY<8|16|32>

(0,0,0) is assumed to be at the lower-left front corner and the x coordinate varies faster than y than z.
That is, when traversing the volume from the origin to the upper right back, you go from left to right,
front to back, bottom to top.

FIGURE 7-1 Blocked-Byte Data Formatting Structure

The array instructions have 2 inputs:

The (x,y,z) coordinates are input via a single 64-bit integer organized in R[rs1] as shown in FIGURE 7-2.

FIGURE 7-2 Three-Dimensional Array Fixed-Point Address Format

Note that z has only 9 integer bits, as opposed to 11 for x and y. Also note that since (x,y,z) are all
contained in one 64-bit register, they can be incremented or decremented simultaneously with a single
add or subtract instruction (ADD or SUB).

So for a 512 × 512 × 32 or a 512 × 512 × 256 volume, the size value is 3. Note that the x and y size of
the volume must be the same. The z size of the volume is a multiple of 32, ranging between 32 and
512.

The array instructions generate an integer memory offset, that when added to the base address of the
volume, gives the address of the volume element (voxel) and can be used by a load instruction. The
offset is correct only if the data has been reformatted as specified above.

The integer parts of x, y, and z are converted to the following blocked-address formats as shown in
FIGURE 7-3 for ARRAY8, FIGURE 7-4 for ARRAY16, and FIGURE 7-5 for ARRAY32.

FIGURE 7-3 Three-Dimensional Array Blocked-Address Format (ARRAY8)

0 4

4

2

Y

X

Z

16 × 4 = 64

M = m × 32

N = 2
n × 64

N = 2
n × 64

16 x 2 = 32
16 × 4 = 64

0323363 55 54 44 43 22 21 11 10

X fractionX integerY fractionY integerZ fractionZ integer

04 2

XYZ

LOWER

513 9

XYZ

MIDDLE

1717 17

XYZ

UPPER

+ n+2n
20
+ 2n
CHAPTER 7 • Instructions 115

ARRAY<8|16|32>
FIGURE 7-4 Three-Dimensional Array Blocked-Address Format (ARRAY16)

FIGURE 7-5 Three Dimensional Array Blocked-Address Format (ARRAY32)

The bits above Z upper are set to 0. The number of zeroes in the least significant bits is determined by
the element size. An element size of 8 bits has no zeroes, an element size of 16 bits has one zero, and
an element size of 32 bits has two zeroes. Bits in X and Y above the size specified by R[rs2] are
ignored.

In the above description, if n = 0, there are 64 elements, so X_integer{6} and Y_integer{6} are not
defined. That is, result{20:17} equals Z_integer{8:5}.

The code fragment below shows assembly of components along an interpolated line at the rate of one
component per clock.

Exceptions None

TABLE 7-5 ARRAY8 Description

Result (R[rd]) Bits Source (R[rs1] Bits Field Information

1:0 12:11 X_integer{1:0}

3:2 34:33 Y_integer{1:0}

4 55 Z_integer{0}

8:5 16:13 X_integer{5:2}

12:9 38:35 Y_integer{5:2}

16:13 59:56 Z_integer{4:1}

17+n-1:17 17+n-1:17 X_integer{6+n-1:6}

17+2n-1:17+n 39+n-1:39 Y_integer{6+n-1:6}

20+2n:17+2n 63:60 Z_integer{8:5}

63:20+2n+1 n/a 0

Note To maximize reuse of external cache and TLB data, software
should block array references of a large image to the 64-Kbyte
level. This means processing elements within a 32 × 32 × 64
block.

add Addr, DeltaAddr, Addr
array8 Addr, %g0, bAddr
ldda [bAddr] #ASI_FL8_PRIMARY, data
faligndata data, accum, accum

15 3

XYZ

LOWER

614 10

XYZ

MIDDLE

1818 18

XYZ

UPPER

+n+2n
21

+2n

0

0

26 4

XYZ

LOWER

715 11

XYZ

MIDDLE

1919 19

XYZ

UPPER

+n+2n
22

+2n

00

0135
116 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

Bicc
7.6 Branch on Integer Condition Codes (Bicc)

Unconditional branches and icc-conditional branches are described below:

■ Unconditional branches (BA, BN) — If its annul bit is 0 (a = 0), a BN (Branch Never) instruction is
treated as a NOP. If its annul bit is 1 (a = 1), the following (delay) instruction is annulled (not
executed). In neither case does a transfer of control take place.

BA (Branch Always) causes an unconditional PC-relative, delayed control transfer to the address
“PC + (4 × sign_ext(disp22))”. If the annul (a) bit of the branch instruction is 1, the delay
instruction is annulled (not executed). If the annul bit is 0 (a = 0), the delay instruction is executed.

■ icc-conditional branches — Conditional Bicc instructions (all except BA and BN) evaluate the 32-
bit integer condition codes (icc), according to the cond field of the instruction, producing either a
TRUE or FALSE result. If TRUE, the branch is taken, that is, the instruction causes a PC-relative,
delayed control transfer to the address “PC + (4 × sign_ext(disp22))”. If FALSE, the branch is not
taken.

Opcode cond Operation icc Test
Assembly Language
Syntax Class

BA 1000 Branch Always 1 ba{,a} label A1

BN 0000 Branch Never 0 bn{,a} label A1

BNE 1001 Branch on Not Equal not Z bne†{,a} label A1

BE 0001 Branch on Equal Z be‡{,a} label A1

BG 1010 Branch on Greater not (Z or (N xor V)) bg{,a} label A1

BLE 0010 Branch on Less or Equal Z or (N xor V) ble{,a} label A1

BGE 1011 Branch on Greater or Equal not (N xor V) bge{,a} label A1

BL 0011 Branch on Less N xor V bl{,a} label A1

BGU 1100 Branch on Greater Unsigned not (C or Z) bgu{,a} label A1

BLEU 0100 Branch on Less or Equal Unsigned C or Z bleu{,a} label A1

BCC 1101 Branch on Carry Clear (Greater Than
or Equal, Unsigned)

not C bcc◊{,a} label A1

BCS 0101 Branch on Carry Set (Less Than, Unsigned) C bcs∇ {,a} label A1

BPOS 1110 Branch on Positive not N bpos{,a} label A1

BNEG 0110 Branch on Negative N bneg{,a} label A1

BVC 1111 Branch on Overflow Clear not V bvc{,a} label A1

BVS 0111 Branch on Overflow Set V bvs{,a} label A1
† synonym: bnz ‡ synonym: bz ◊ synonym: bgeu ∇ synonym: blu

Programming
Note

To set the annul (a) bit for Bicc instructions, append “,a” to the
opcode mnemonic. For example, use “bgu,a label”. In the
preceding table, braces signify that the “,a” is optional.

31 24 02530 29 28 22 21

00 a cond 010 disp22
CHAPTER 7 • Instructions 117

Bicc

If a conditional branch is taken, the delay instruction is always executed regardless of the value of
the annul field. If a conditional branch is not taken and the annul bit is 1 (a = 1), the delay
instruction is annulled (not executed).

Annulment, delay instructions, and delayed control transfers are described further in Chapter 6,
Instruction Set Overview.

If the Trap on Control Transfer feature is implemented (impl. dep. #450-S20), PSTATE.tct = 1, and the
Bicc instruction will cause a transfer of control (BA or taken conditional branch), then Bicc generates a
control_transfer_instruction exception instead of causing a control transfer. When a
control_transfer_instruction trap occurs, PC (the address of the Bicc instruction) is stored in TPC[TL]
and the value of NPC from before the Bicc was executed is stored in TNPC[TL].

Note that BN never causes a control_transfer_instruction exception.

Exceptions control_transfer_instruction (impl. dep. #450-S20)

Note The annul bit has a different effect on conditional branches than
it does on unconditional branches.
118 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

BMASK / BSHUFFLE
7.7 Byte Mask and Shuffle

Description BMASK adds two integer registers, R[rs1] and R[rs2], and stores the result in the integer register
R[rd]. The least significant 32 bits of the result are stored in the GSR.mask field.

BSHUFFLE concatenates the two 64-bit floating-point registers FD[rs1] (more significant half) and
FD[rs2] (less significant half) to form a 128-bit (16-byte) value. Bytes in the concatenated value are
numbered from most significant to least significant, with the most significant byte being byte 0.
BSHUFFLE extracts 8 of those 16 bytes and stores the result in the 64-bit floating-point register FD[rd].
Bytes in FD[rd] are also numbered from most to least significant, with the most significant being byte
0. The following table indicates which source byte is extracted from the concatenated value to
generate each byte in the destination register, FD[rd].

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute a BMASK or BSHUFFLE instruction causes an fp_disabled exception.

Exceptions fp_disabled

Instruction opf Operation Assembly Language Syntax Class Added

BMASK 0 0001 1001 Set the GSR.mask field in preparation
for a subsequent BSHUFFLE instruction

bmask regrs1, regrs2, regrd B1 UA 2007

BSHUFFLE 0 0100 1100 Permute 16 bytes as specified by GSR.mask bshuffle fregrs1, fregrs2, fregrd B1 UA 2007

Destination Byte (in F[rd]) Source Byte

0 (most significant) (FD[rs1] :: FD[[rs2]) {GSR.mask{31:28}}

1 (FD[[rs1] :: FD[[rs2]) {GSR.mask{27:24}}

2 (FD[[rs1] :: FD[[rs2]) {GSR.mask{23:20}}

3 (FD[[rs1] :: FD[[rs2]) {GSR.mask{19:16}}

4 (FD[[rs1] :: FD[[rs2]) {GSR.mask{15:12}}

5 (FD[[rs1] :: FD[[rs2]) {GSR.mask{11:8}}

6 (FD[[rs1] :: FD[[rs2]) {GSR.mask{7:4}}

7 (least significant) (FD[[rs1] :: FD[[rs2]) {GSR.mask{3:0}}

VIS 2

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
CHAPTER 7 • Instructions 119

BPcc
7.8 Branch on Integer Condition Codes with
Prediction (BPcc)

† synonym: bnz ‡ synonym: bz ◊ synonym: bgeu ∇ synonym: blu

Description Unconditional branches and conditional branches are described below.

Instruction cond Operation cc Test Assembly Language Syntax Class

BPA 1000 Branch Always 1 ba{,a}{,pt|,pn} i_or_x_cc, label A1

BPN 0000 Branch Never 0 bn{,a}{,pt|,pn} i_or_x_cc, label A1

BPNE 1001 Branch on Not Equal not Z bne†{,a}{,pt|,pn} i_or_x_cc, label A1

BPE 0001 Branch on Equal Z be‡{,a}{,pt|,pn} i_or_x_cc, label A1

BPG 1010 Branch on Greater not (Z or
(N xor V))

bg{,a}{,pt|,pn} i_or_x_cc, label A1

BPLE 0010 Branch on Less or Equal Z or (N xor V) ble{,a}{,pt|,pn} i_or_x_cc, label A1

BPGE 1011 Branch on Greater or Equal not (N xor V) bge{,a}{,pt|,pn} i_or_x_cc, label A1

BPL 0011 Branch on Less N xor V bl{,a}{,pt|,pn} i_or_x_cc, label A1

BPGU 1100 Branch on Greater Unsigned not (C or Z) bgu{,a}{,pt|,pn} i_or_x_cc, label A1

BPLEU 0100 Branch on Less or Equal Unsigned C or Z bleu{,a}{,pt|,pn} i_or_x_cc, label A1

BPCC 1101 Branch on Carry Clear
(Greater than or Equal, Unsigned)

not C bcc◊{,a}{,pt|,pn} i_or_x_cc, label A1

BPCS 0101 Branch on Carry Set
(Less than, Unsigned)

C bcs∇ {,a}{,pt|,pn} i_or_x_cc, label A1

BPPOS 1110 Branch on Positive not N bpos{,a}{,pt|,pn} i_or_x_cc, label A1

BPNEG 0110 Branch on Negative N bneg{,a}{,pt|,pn} i_or_x_cc, label A1

BPVC 1111 Branch on Overflow Clear not V bvc{,a}{,pt|,pn} i_or_x_cc, label A1

BPVS 0111 Branch on Overflow Set V bvs{,a}{,pt|,pn} i_or_x_cc, label A1

cc1 cc0 Condition Code

0 0 icc

0 1 —

1 0 xcc

1 1 —

Programming
Note

To set the annul (a) bit for BPcc instructions, append “,a” to the
opcode mnemonic. For example, use bgu,a %icc, label. Braces in
the preceding table signify that the “,a” is optional. To set the
branch prediction bit, append to an opcode mnemonic either
“,pt” for predict taken or “,pn” for predict not taken. If neither
“,pt” nor “,pn” is specified, the assembler defaults to “,pt”. To
select the appropriate integer condition code, include “%icc” or
“%xcc” before the label.

00 a cond 001 cc1 p disp19cc0

31 1924 182530 29 28 22 21 20
120 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

BPcc

■ Unconditional branches (BPA, BPN) — A BPN (Branch Never with Prediction) instruction for this

branch type (op2 = 1) may be used in the SPARC V9 architecture as an instruction prefetch; that is,
the effective address (PC + (4 × sign_ext(disp19))) specifies an address of an instruction that is
expected to be executed soon. If the Branch Never’s annul bit is 1 (a = 1), then the following (delay)
instruction is annulled (not executed). If the annul bit is 0 (a = 0), then the following instruction is
executed. In no case does a Branch Never cause a transfer of control to take place.

BPA (Branch Always with Prediction) causes an unconditional PC-relative, delayed control transfer
to the address “PC + (4 × sign_ext(disp19))”. If the annul bit of the branch instruction is 1 (a = 1),
then the delay instruction is annulled (not executed). If the annul bit is 0 (a = 0), then the delay
instruction is executed.

■ Conditional branches — Conditional BPcc instructions (except BPA and BPN) evaluate one of the
two integer condition codes (icc or xcc), as selected by cc0 and cc1, according to the cond field of
the instruction, producing either a TRUE or FALSE result. If TRUE, the branch is taken; that is, the
instruction causes a PC-relative, delayed control transfer to the address
“PC + (4 × sign_ext(disp19))”. If FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed regardless of the value of
the annul (a) bit. If a conditional branch is not taken and the annul bit is 1 (a = 1), the delay
instruction is annulled (not executed).

The predict bit (p) is used to give the hardware a hint about whether the branch is expected to be
taken. A 1 in the p bit indicates that the branch is expected to be taken; a 0 indicates that the branch
is expected not to be taken.

Annulment, delay instructions, prediction, and delayed control transfers are described further in
Chapter 6, Instruction Set Overview.

An attempt to execute a BPcc instruction with cc0 = 1 (a reserved value) causes an illegal_instruction
exception.

If the Trap on Control Transfer feature is implemented (impl. dep. #450-S20), PSTATE.tct = 1, and the
BPcc instruction will cause a transfer of control (BPA or taken conditional branch), then BPcc
generates a control_transfer_instruction exception instead of causing a control transfer. When a
control_transfer_instruction trap occurs, PC (the address of the BPcc) is stored in TPC[TL] and the
value of NPC from before the BPcc was executed is stored in TNPC[TL].

Note that BPN never causes a control_transfer_instruction exception.

Exceptions illegal_instruction
control_transfer_instruction (impl. dep. #450-S20)

See Also Branch on Integer Register with Prediction (BPr) on page 122

Note The annul bit has a different effect on conditional branches than
it does on unconditional branches.
CHAPTER 7 • Instructions 121

BPr
7.9 BranchonIntegerRegisterwithPrediction(BPr)

* Although SPARC V9 implementations should cause an illegal_instruction exception when bit 28 = 1, some early implementations
ignored the value of this bit and executed the opcode as a BPr instruction even if bit 28 = 1.

Description These instructions branch based on the contents of R[rs1]. They treat the register contents as a signed
integer value.

A BPr instruction examines all 64 bits of R[rs1] according to the rcond field of the instruction,
producing either a TRUE or FALSE result. If TRUE, the branch is taken; that is, the instruction causes a
PC-relative, delayed control transfer to the address “PC + (4 × sign_ext(d16hi :: d16lo))”. If FALSE,
the branch is not taken.

If the branch is taken, the delay instruction is always executed, regardless of the value of the annul (a)
bit. If the branch is not taken and the annul bit is 1 (a = 1), the delay instruction is annulled (not
executed).

The predict bit (p) gives the hardware a hint about whether the branch is expected to be taken. If
p = 1, the branch is expected to be taken; p = 0 indicates that the branch is expected not to be taken.

An attempt to execute a BPr instruction when instruction bit 28 = 1 or rcond is a reserved value (0002
or 1002) causes an illegal_instruction exception.

If the Trap on Control Transfer feature is implemented (impl. dep. #450-S20), PSTATE.tct = 1, and the
BPr instruction will cause a transfer of control (taken conditional branch), then BPr generates a
control_transfer_instruction exception instead of causing a control transfer.

Instruction rcond Operation

Register
Contents
Test Assembly Language Syntax Class

— 000 Reserved — —

BRZ 001 Branch on Register Zero R[rs1] = 0 brz {,a}{,pt|,pn} regrs1, label A1

BRLEZ 010 Branch on Register Less Than or Equal
to Zero

R[rs1] ≤ 0 brlez {,a}{,pt|,pn} regrs1, label A1

BRLZ 011 Branch on Register Less Than Zero R[rs1] < 0 brlz {,a}{,pt|,pn} regrs1, label A1

— 100 Reserved — —

BRNZ 101 Branch on Register Not Zero R[rs1] ≠ 0 brnz {,a}{,pt|,pn} regrs1, label A1

BRGZ 110 Branch on Register Greater Than Zero R[rs1] > 0 brgz {,a}{,pt|,pn} regrs1, label A1

BRGEZ 111 Branch on Register Greater Than or
Equal to Zero

R[rs1] ≥ 0 brgez {,a}{,pt|,pn} regrs1, label A1

Programming
Note

To set the annul (a) bit for BPr instructions, append “,a” to the
opcode mnemonic. For example, use “brz,a %i3, label.” In the
preceding table, braces signify that the “,a” is optional. To set the
branch prediction bit p, append either “,pt” for predict taken or
“,pn” for predict not taken to the opcode mnemonic. If neither
“,pt” nor “,pn” is specified, the assembler defaults to “,pt”.

31 141924 18 13 027 2530 29 28 22 21 20

00 a 0* rcond 011 d16hi p rs1 d16lo
122 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

BPr

Annulment, delay instructions, prediction, and delayed control transfers are described further in
Chapter 6, Instruction Set Overview.

Exceptions illegal_instruction
control_transfer_instruction (impl. dep. #450-S20)

See Also Branch on Integer Condition Codes with Prediction (BPcc) on page 120

Implementation
Note

If this instruction is implemented by tagging each register value
with an N (negative) bit and Z (zero) bit, the table below can be
used to determine if rcond is TRUE:

Branch Test
BRNZ not Z
BRZ Z
BRGEZ not N
BRLZ N
BRLEZ N or Z
BRGZ not (N or Z)
CHAPTER 7 • Instructions 123

CALL
7.10 Call and Link

Description The CALL instruction causes an unconditional, delayed, PC-relative control transfer to address
PC + (4 × sign_ext(disp30)). Since the word displacement (disp30) field is 30 bits wide, the target
address lies within a range of –231 to +231 – 4 bytes. The PC-relative displacement is formed by sign-
extending the 30-bit word displacement field to 62 bits and appending two low-order zeroes to obtain
a 64-bit byte displacement.

The CALL instruction also writes the value of PC, which contains the address of the CALL, into R[15]
(out register 7).

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address are masked out
(set to 0) before being sent to the memory system and in the address written into R[15]. (closed impl.
dep. #125-V9-Cs10)

If the Trap on Control Transfer feature is implemented (impl. dep. #450-S20) and PSTATE.tct = 1, then
CALL generates a control_transfer_instruction exception instead of causing a control transfer. When a
control_transfer_instruction trap occurs, PC (the address of the CALL instruction) is stored in TPC[TL]
and the value of NPC from before the CALL was executed is stored in TNPC[TL]. The full 64-bit
(nonmasked) PC and NPC values are stored in TPC[TL] and TNPC[TL], regardless of the value of
PSTATE.am.

Exceptions control_transfer_instruction (impl. dep. #450-S20)

See Also JMPL on page 187

Instruction op Operation Assembly Language Syntax Class

CALL 01 Call and Link call label A1

31 030 29

01 disp30
124 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

CASA / CASXA
7.11 Compare and Swap

Description Concurrent processes use Compare-and-Swap instructions for synchronization and memory updates.
Uses of compare-and-swap include spin-lock operations, updates of shared counters, and updates of
linked-list pointers. The last two can use wait-free (nonlocking) protocols.

The CASXA instruction compares the value in register R[rs2] with the doubleword in memory
pointed to by the doubleword address in R[rs1].

■ If the values are equal, the value in R[rd] is swapped with the doubleword pointed to by the
doubleword address in R[rs1].

■ If the values are not equal, the contents of the doubleword pointed to by R[rs1] replaces the value
in R[rd], but the memory location remains unchanged.

The CASA instruction compares the low-order 32 bits of register R[rs2] with a word in memory
pointed to by the word address in R[rs1].

■ If the values are equal, then the low-order 32 bits of register R[rd] are swapped with the contents of
the memory word pointed to by the address in R[rs1] and the high-order 32 bits of register R[rd]
are set to 0.

■ If the values are not equal, the memory location remains unchanged, but the contents of the
memory word pointed to by R[rs1] replace the low-order 32 bits of R[rd] and the high-order 32 bits
of register R[rd] are set to 0.

A compare-and-swap instruction comprises three operations: a load, a compare, and a swap. The
overall instruction is atomic; that is, no intervening interrupts or deferred traps are recognized by the
virtual processor and no intervening update resulting from a compare-and-swap, swap, load, load-
store unsigned byte, or store instruction to the doubleword containing the addressed location, or any
portion of it, is performed by the memory system.

A compare-and-swap operation behaves as if it performs a store, either of a new value from R[rd] or
of the previous value in memory. The addressed location must be writable, even if the values in
memory and R[rs2] are not equal.

If i = 0, the address space of the memory location is specified in the imm_asi field; if i = 1, the address
space is specified in the ASI register.

An attempt to execute a CASXA or CASA instruction when i = 1 and instruction bits 12:5 are nonzero
causes an illegal_instruction exception.

A mem_address_not_aligned exception is generated if the address in R[rs1] is not properly aligned.

Instruction op3 Operation Assembly Language Syntax Class

CASAPASI 11 1100 Compare and Swap Word from
Alternate Space

casa
casa

[regrs1] imm_asi, regrs2, regrd
[regrs1] %asi, regrs2, regrd

A1

CASXAPASI 11 1110 Compare and Swap Extended from
Alternate Space

casxa
casxa

[regrs1] imm_asi, regrs2, regrd
[regrs1] %asi, regrs2, regrd

A1

11 rd op3 rs1 i=0 imm_asi rs2

11 rd op3 rs1 i=1 — rs2
31 141924 18 13 12 5 4 02530 29
CHAPTER 7 • Instructions 125

CASA / CASXA

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI is 0, CASXA and
CASA cause a privileged_action exception. In privileged mode (PSTATE.priv = 1 and
HPSTATE.hpriv = 0), if the ASI is in the range 3016 to 7F16, CASXA and CASA cause a
privileged_action exception.

The compare-and-swap instructions do not affect the condition codes.

The compare-and-swap instructions can be used with any of the following ASIs, subject to the
privilege mode rules described for the privileged_action exception above. Use of any other ASI with
these instructions causes a DAE_invalid_asi exception.

Exceptions illegal_instruction
mem_address_not_aligned
privileged_action
VA_watchpoint
DAE_invalid_asi
DAE_privilege_violation
DAE_nc_page (attempted access to noncacheable page)
DAE_nfo_page (attempted access to non-faulting-only page)
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
fast_data_access_protection
PA_watchpoint
data_access_error

See Also CASA on page 125
LDSTUB on page 205
LDSTUBA on page 206
SWAP on page 291
SWAPA on page 292

Compatibility
Note

An implementation might cause an exception because of an
error during the store memory access, even though there was no
error during the load memory access.

Programming
Note

Compare and Swap (CAS) and Compare and Swap Extended
(CASX) synthetic instructions are available for “big endian”
memory accesses. Compare and Swap Little (CASL) and Compare
and Swap Extended Little (CASXL) synthetic instructions are
available for “little endian” memory accesses. See Synthetic
Instructions on page 536 for the syntax of these synthetic
instructions.

ASIs valid for CASA and CASXA instructions

ASI_AS_IF_PRIV_PRIMARY ASI_AS_IF_PRIV_PRIMARY_LITTLE

ASI_AS_IF_PRIV_SECONDARY ASI_AS_IF_PRIV_SECONDARY_LITTLE

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE
126 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

DONE
7.12 DONE

Description The DONE instruction restores the saved state from TSTATE[TL] (GL, CCR, ASI, PSTATE, and CWP),
HTSTATE[TL] (HPSTATE), sets PC and NPC, and decrements TL. DONE sets PC←TNPC[TL] and
NPC←TNPC[TL]+4 (normally, the value of NPC saved at the time of the original trap and address of
the instruction immediately after the one referenced by the NPC).

If the saved TNPC[TL] was not altered by trap handler software, DONE causes execution to resume
immediately after the instruction that originally caused the trap (as if that instruction was “done”
executing).

Execution of a DONE instruction in the delay slot of a control-transfer instruction produces undefined
results.

When a DONE instruction is executed and HTSTATE[TL].hpstate.hpriv = 0 (which will cause the
DONE to return the virtual processor to nonprivileged or privileged mode), the value of GL restored
from TSTATE[TL] saturates at MAXPGL. That is, if the value in TSTATE[TL].gl is greater than MAXPGL,
then MAXPGL is substituted and written to GL. This protects against non-hyperprivileged software
executing with GL > MAXPGL.

If software writes invalid or inconsistent state to TSTATE or HTSTATE before executing DONE, virtual
processor behavior during and after execution of the DONE instruction is undefined.

The DONE instruction does not provide an error barrier, as MEMBAR #Sync does (impl. dep. #215-
U3).

Note that since PSTATE.tct is automatically set to 0 during entry to a trap handler, execution of a
DONE instruction at the end of a trap handler will not cause a control_transfer_instruction exception
unless trap handler software has explicitly set PSTATE.tct to 1. During execution of the DONE
instruction, the value of PSTATE.tct is restored from TSTATE.

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address are masked out
(set to 0) before being sent to the memory system.

Instruction op3 Operation Assembly Language Syntax Class

DONEP 11 1110 Return from Trap (skip trapped instruction) done A1

Programming
Notes

The DONE and RETRY instructions are used to return from
privileged trap handlers.

Unlike RETRY, DONE ignores the contents of TPC[TL].

Programming
Notes

If control_transfer_instruction traps are to be re-enabled
(PSTATE.tct ← 1, restored from TSTATE[TL].pstate.tct) when trap
handler software for the control_transfer_instruction trap returns,
the trap handler must
(1) emulate the trapped CTI, setting TPC[TL] and TNPC[TL]
appropriately, remembering to compensate for annul bits) and
(2) use a DONE (not RETRY) instruction to return.

If the CTI that caused the control_transfer_instruction trap was a
DONE (RETRY) instruction, the trap handler must carefully
emulate the trapped DONE (RETRY) (decrementing TL may
suffice) before the trap handler returns using its own DONE
(RETRY) instruction.

10 11 1110fcn =0 0000 —
31 1924 18 02530 29
CHAPTER 7 • Instructions 127

DONE

IMPL. DEP. #417-S10: If (1) TSTATE[TL].pstate.am = 1 and (2) a DONE instruction is executed
(which sets PSTATE.am to ’1’ by restoring the value from TSTATE[TL].pstate.am to PSTATE.am), it is
implementation dependent whether the DONE instruction masks (zeroes) the more-significant 32 bits
of the values it places into PC and NPC.

Exceptions. In privileged mode (PSTATE.priv = 1 and HPSTATE.hpriv = 0) or hyperprivileged mode
(HPSTATE.hpriv = 1), an attempt to execute DONE while TL = 0 causes an illegal_instruction exception.
An attempt to execute DONE (in any mode) with instruction bits 18:0 nonzero causes an
illegal_instruction exception.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), an attempt to execute DONE causes
a privileged_opcode exception.

If the Trap on Control Transfer feature is implemented (impl. dep. #450-S20) and PSTATE.tct = 1, then
DONE generates a control_transfer_instruction exception instead of causing a control transfer. When a
control_transfer_instruction trap occurs, PC (the address of the DONE instruction) is stored in
TPC[TL] and the value of NPC from before the DONE was executed is stored in TNPC[TL]. The full
64-bit (nonmasked) PC and NPC values are stored in TPC[TL] and TNPC[TL], regardless of the value
of PSTATE.am.

Exceptions illegal_instruction
privileged_opcode
control_transfer_instruction (impl. dep. #450-S20)

See Also RETRY on page 251

Implementation
Note

In nonprivileged mode, illegal_instruction exception due to TL = 0
does not occur. The privileged_opcode exception occurs instead,
regardless of the current trap level (TL).

Programming
Note

Because DONE changes the TL register, it can cause a
trap_level_zero exception to occur on the next instruction to be
executed, if the following three conditions are true after DONE
has executed:

• trap_level_zero exceptions are enabled (HPSTATE.tlz = 1),
• the virtual processor is in nonprivileged or privileged mode

(HPSTATE.hpriv = 0), and
• the trap level (TL) register’s value is zero (TL = 0)
128 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

EDGE<8|16|32>{L}cc
7.13 Edge Handling Instructions

Description These instructions handle the boundary conditions for parallel pixel scan line loops, where R[rs1] is
the address of the next pixel to render and R[rs2] is the address of the last pixel in the scan line.

EDGE8Lcc, EDGE16Lcc, and EDGE32Lcc are little-endian versions of EDGE8cc, EDGE16cc, and
EDGE32cc, respectively. They produce an edge mask that is bit-reversed from their big-endian
counterparts but are otherwise identical. This makes the mask consistent with the mask produced by
the Partial Store instruction (see Partial Store on page 298) on little-endian data.

A 2-bit (EDGE32cc), 4-bit (EDGE16cc), or 8-bit (EDGE8cc) pixel mask is stored in the least significant
bits of R[rd]. The mask is computed from left and right edge masks as follows:

1. The left edge mask is computed from the 3 least significant bits of R[rs1] and the right edge mask
is computed from the 3 least significant bits of R[rs2], according to TABLE 7-6.

2. If 32-bit address masking is disabled (PSTATE.am = 0 or HPSTATE.hpriv = 1 or D/UMMU is
disabled) so 64-bit addressing is in use, and the most significant 61 bits of R[rs1] are equal to the
corresponding bits in R[rs2], R[rd] is set to the right edge mask anded with the left edge mask.

3. If 32-bit address masking is enabled (PSTATE.am = 1 and HPSTATE.hpriv = 0 and D/UMMU is
enabled) so 32-bit addressing is in use, and bits 31:3 of R[rs1] match bits 31:3 of R[rs2], R[rd] is set
to the right edge mask anded with the left edge mask.

4. Otherwise, R[rd] is set to the left edge mask.

The integer condition codes are set per the rules of the SUBcc instruction with the same operands (see
Subtract on page 303).

TABLE 7-6 lists edge mask specifications.

Instruction opf Operation Assembly Language Syntax † Class

EDGE8cc 0 0000 0000 Eight 8-bit edge boundary processing edge8cc regrs1, regrs2, regrd B1

EDGE8Lcc 0 0000 0010 Eight 8-bit edge boundary processing,
little-endian

edge8lcc regrs1, regrs2, regrd B1

EDGE16cc 0 0000 0100 Four 16-bit edge boundary processing edge16cc regrs1, regrs2, regrd B1

EDGE16Lcc 0 0000 0110 Four 16-bit edge boundary processing,
little-endian

edge16lcc regrs1, regrs2, regrd B1

EDGE32cc 0 0000 1000 Two 32-bit edge boundary processing edge32cc regrs1, regrs2, regrd B1

EDGE32Lcc 0 0000 1010 Two 32-bit edge boundary processing,
little-endian

edge32lcc regrs1, regrs2, regrd B1

† The original assembly language mnemonics for these instructions did not include the “cc” suffix, as appears in the names of all other
instructions that set the integer condition codes. The old, non-”cc” mnemonics are deprecated. Over time, assemblers will support
the new mnemonics for these instructions. In the meantime, some older assemblers may recognize only the mnemonics, without “cc”.

TABLE 7-6 Edge Mask Specification

Edge
Size

R[rsn]
{2:0}

Big Endian Little Endian

Left Edge Right Edge Left Edge Right Edge

8 000 1111 1111 1000 0000 1111 1111 0000 0001

8 001 0111 1111 1100 0000 1111 1110 0000 0011

8 010 0011 1111 1110 0000 1111 1100 0000 0111

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
CHAPTER 7 • Instructions 129

EDGE<8|16|32>{L}cc
Exceptions None

See Also EDGE<8|16|32>[L]N on page 131

8 011 0001 1111 1111 0000 1111 1000 0000 1111

8 100 0000 1111 1111 1000 1111 0000 0001 1111

8 101 0000 0111 1111 1100 1110 0000 0011 1111

8 110 0000 0011 1111 1110 1100 0000 0111 1111

8 111 0000 0001 1111 1111 1000 0000 1111 1111

16 00x 1111 1000 1111 0001

16 01x 0111 1100 1110 0011

16 10x 0011 1110 1100 0111

16 11x 0001 1111 1000 1111

32 0xx 11 10 11 01

32 1xx 01 11 10 11

TABLE 7-6 Edge Mask Specification (Continued)

Edge
Size

R[rsn]
{2:0}

Big Endian Little Endian

Left Edge Right Edge Left Edge Right Edge
130 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

EDGE<8|16|32>{L}N
7.14 Edge Handling Instructions (no CC)

Description EDGE8[L]N, EDGE16[L]N, and EDGE32[L]N operate identically to EDGE8[L]cc, EDGE16[L]cc, and
EDGE32[L]cc, respectively, but do not set the integer condition codes.

See Edge Handling Instructions on page 129 for details.

Exceptions None

See Also EDGE<8,16,32>[L]cc on page 129

Instruction opf Operation Assembly Language Syntax Class

EDGE8N 0 0000 0001 Eight 8-bit edge boundary processing, no CC edge8n regrs1, regrs2, regrd B1

EDGE8LN 0 0000 0011 Eight 8-bit edge boundary processing,
little-endian, no CC

edge8ln regrs1, regrs2, regrd B1

EDGE16N 0 0000 0101 Four 16-bit edge boundary processing, no CC edge16n regrs1, regrs2, regrd B1

EDGE16LN 0 0000 0111 Four 16-bit edge boundary processing,
little-endian, no CC

edge16ln regrs1, regrs2, regrd B1

EDGE32N 0 0000 1001 Two 32-bit edge boundary processing, no CC edge32n regrs1, regrs2, regrd B1

EDGE32LN 0 0000 1011 Two 32-bit edge boundary processing,
little-endian, no CC

edge32ln regrs1, regrs2, regrd B1

VIS 2

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
CHAPTER 7 • Instructions 131

FABS
7.15 Floating-Point Absolute Value

Description FABS copies the source floating-point register(s) to the destination floating-point register(s), with the
sign bit cleared (set to 0).

FABSs operates on single-precision (32-bit) floating-point registers, FABSd operates on double-precision
(64-bit) floating-point register pairs, and FABSq operates on quad-precision (128-bit) floating-point
register quadruples.

These instructions clear (set to 0) both FSR.cexc and FSR.ftt. They do not round, do not modify
FSR.aexc, and do not treat floating-point NaN values differently from other floating-point values.

An attempt to execute an FABS instruction when instruction bits 18:14 are nonzero causes an
illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FABS instruction causes an fp_disabled exception.

An attempt to execute an FABSq instruction when rs2{1} ≠ 0 or rd{1} ≠ 0 causes an fp_exception_other
(FSR.ftt = invalid_fp_register) exception.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = invalid_fp_register (FABSq only))

Instruction op3 opf Operation Assembly Language Syntax Class

FABSs 11 0100 0 0000 1001 Absolute Value Single fabss fregrs2, fregrd A1

FABSd 11 0100 0 0000 1010 Absolute Value Double fabsd fregrs2, fregrd A1

FABSq 11 0100 0 0000 1011 Absolute Value Quad fabsq fregrs2, fregrd C3

Note UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FABSq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

10 op3 rs2rd —
31 141924 18 13 02530 29 4

opf
5

132 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

FADD
7.16 Floating-Point Add

Description The floating-point add instructions add the floating-point register(s) specified by the rs1 field and the
floating-point register(s) specified by the rs2 field. The instructions then write the sum into the
floating-point register(s) specified by the rd field.

Rounding is performed as specified by FSR.rd.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FADD instruction causes an fp_disabled exception.

An attempt to execute an FADDq instruction when (rs1{1} ≠ 0) or (rs2{1} ≠ 0) or (rd{1:0} ≠ 0) causes
an fp_exception_other (FSR.ftt = invalid_fp_register) exception.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = invalid_fp_register (FADDq only))
fp_exception_other (FSR.ftt = unfinished_FPop)
fp_exception_ieee_754 (OF, UF, NX, NV)

See Also FMAf on page 150

Instruction op3 opf Operation Assembly Language Syntax Class

FADDs 11 0100 0 0100 0001 Add Single fadds fregrs1, fregrs2, fregrd A1

FADDd 11 0100 0 0100 0010 Add Double faddd fregrs1, fregrs2, fregrd A1

FADDq 11 0100 0 0100 0011 Add Quad faddq fregrs1, fregrs2, fregrd C3

Note UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FADDq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

Note An fp_exception_other with FSR.ftt = unfinished_FPop can occur
if the operation detects unusual, implementation-specific
conditions.

10 op3 rs2rd rs1 opf
31 141924 18 13 02530 29 45
CHAPTER 7 • Instructions 133

FALIGNDATA
7.17 Align Data

Description FALIGNDATA concatenates the two 64-bit floating-point registers specified by rs1 and rs2 to form a
128-bit (16-byte) intermediate value. The contents of the first source operand form the more-
significant 8 bytes of the intermediate value, and the contents of the second source operand form the
less significant 8 bytes of the intermediate value. Bytes in the intermediate value are numbered from
most significant (byte 0) to least significant (byte 15). Eight bytes are extracted from the intermediate
value and stored in the 64-bit floating-point destination register specified by rd. GSR.align specifies
the number of the most significant byte to extract (and, therefore, the least significant byte extracted is
numbered GSR.align+7).

GSR.align is normally set by a previous ALIGNADDRESS instruction.

FIGURE 7-6 FALIGNDATA

A byte-aligned 64-bit load can be performed as shown below.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FALIGNDATA instruction causes an fp_disabled exception.

Exceptions fp_disabled

See Also Align Address on page 111

Instruction opf Operation Assembly Language Syntax Class

FALIGNDATA 0 0100 1000 Perform data alignment for
misaligned data

faligndata fregrs1, fregrs2, fregrd A1

alignaddr Address, Offset, Address !set GSR.align
ldd [Address], %d0
ldd [Address + 8], %d2
faligndata %d0, %d2, %d4 !use GSR.align to select bytes

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

GSR.align

63 0

byte byte

101

FD[rs1] :: FD[rs2]

127 0
FD[rs1] FD[rs2]

FD[rd]
134 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

FBfcc
7.18 Branch on Floating-Point Condition Codes
(FBfcc)

† synonym: fbnz ‡ synonym: fbz

Description Unconditional and Fcc branches are described below:

■ Unconditional branches (FBA, FBN) — If its annul field is 0, an FBN (Branch Never) instruction
acts like a NOP. If its annul field is 1, the following (delay) instruction is annulled (not executed)
when the FBN is executed. In neither case does a transfer of control take place.

FBA (Branch Always) causes a PC-relative, delayed control transfer to the address
“PC + (4 × sign_ext(disp22))” regardless of the value of the floating-point condition code bits. If
the annul field of the branch instruction is 1, the delay instruction is annulled (not executed). If the
annul (a) bit is 0, the delay instruction is executed.

■ Fcc-conditional branches — Conditional FBfcc instructions (except FBA and FBN) evaluate
floating-point condition code zero (fcc0) according to the cond field of the instruction. Such
evaluation produces either a TRUE or FALSE result. If TRUE, the branch is taken, that is, the
instruction causes a PC-relative, delayed control transfer to the address
“PC + (4 × sign_ext(disp22))”. If FALSE, the branch is not taken.

Opcode cond Operation fcc Test Assembly Language Syntax Class

FBAD 1000 Branch Always 1 fba{,a} label A1

FBND 0000 Branch Never 0 fbn{,a} label A1

FBUD 0111 Branch on Unordered U fbu{,a} label A1

FBGD 0110 Branch on Greater G fbg{,a} label A1

FBUGD 0101 Branch on Unordered or Greater G or U fbug{,a} label A1

FBLD 0100 Branch on Less L fbl{,a} label A1

FBULD 0011 Branch on Unordered or Less L or U fbul{,a} label A1

FBLGD 0010 Branch on Less or Greater L or G fblg{,a} label A1

FBNED 0001 Branch on Not Equal L or G or U fbne†{,a} label A1

FBED 1001 Branch on Equal E fbe‡{,a} label A1

FBUED 1010 Branch on Unordered or Equal E or U fbue{,a} label A1

FBGED 1011 Branch on Greater or Equal E or G fbge{,a} label A1

FBUGED 1100 Branch on Unordered or Greater or Equal E or G or U fbuge{,a} label A1

FBLED 1101 Branch on Less or Equal E or L fble{,a} label A1

FBULED 1110 Branch on Unordered or Less or Equal E or L or U fbule{,a} label A1

FBOD 1111 Branch on Ordered E or L or G fbo{,a} label A1

Programming
Note

To set the annul (a) bit for FBfcc instructions, append “,a” to
the opcode mnemonic. For example, use “fbl,a label”. In the
preceding table, braces around “,a” signify that “,a” is
optional.

31 24 02530 29 28 22 21

cond00 a 110 disp22
CHAPTER 7 • Instructions 135

FBfcc

If a conditional branch is taken, the delay instruction is always executed, regardless of the value of
the annul (a) bit. If a conditional branch is not taken and the annul bit is 1 (a = 1), the delay
instruction is annulled (not executed).

Annulment, delay instructions, and delayed control transfers are described further in Chapter 6.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FBfcc instruction causes an fp_disabled exception.

If the Trap on Control Transfer feature is implemented (impl. dep. #450-S20), PSTATE.tct = 1, and the
FBfcc instruction will cause a transfer of control (FBA or taken conditional branch), then FBfcc
generates a control_transfer_instruction exception instead of causing a control transfer. When a
control_transfer_instruction trap occurs, PC (the address of the FBfcc instruction) is stored in TPC[TL]
and the value of NPC from before the FBfcc was executed is stored in TNPC[TL]. Note that FBN never
causes a control_transfer_instruction exception.

Exceptions fp_disabled
control_transfer_instruction (impl. dep. #450-S20)

Note The annul bit has a different effect on conditional branches than
it does on unconditional branches.
136 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

FBPfcc
7.19 Branch on Floating-Point Condition Codes with
Prediction (FBPfcc)

† synonym: fbnz ‡ synonym: fbz

Description Unconditional branches and Fcc-conditional branches are described below.

Instruction cond Operation fcc Test Assembly Language Syntax Class

FBPA 1000 Branch Always 1 fba {,a}{,pt|,pn} %fccn, label A1

FBPN 0000 Branch Never 0 fbn {,a}{,pt|,pn} %fccn, label A1

FBPU 0111 Branch on Unordered U fbu {,a}{,pt|,pn} %fccn, label A1

FBPG 0110 Branch on Greater G fbg {,a}{,pt|,pn} %fccn, label A1

FBPUG 0101 Branch on Unordered or Greater G or U fbug {,a}{,pt|,pn} %fccn, label A1

FBPL 0100 Branch on Less L fbl {,a}{,pt|,pn} %fccn, label A1

FBPUL 0011 Branch on Unordered or Less L or U fbul {,a}{,pt|,pn} %fccn, label A1

FBPLG 0010 Branch on Less or Greater L or G fblg {,a}{,pt|,pn} %fccn, label A1

FBPNE 0001 Branch on Not Equal L or G or U fbne†{,a}{,pt|,pn} %fccn, label A1

FBPE 1001 Branch on Equal E fbe‡{,a}{,pt|,pn} %fccn, label A1

FBPUE 1010 Branch on Unordered or Equal E or U fbue {,a}{,pt|,pn} %fccn, label A1

FBPGE 1011 Branch on Greater or Equal E or G fbge {,a}{,pt|,pn} %fccn, label A1

FBPUGE 1100 Branch on Unordered or Greater
or Equal

E or G or U fbuge {,a}{,pt|,pn} %fccn, label A1

FBPLE 1101 Branch on Less or Equal E or L fble {,a}{,pt|,pn} %fccn, label A1

FBPULE 1110 Branch on Unordered or Less or
Equal

E or L or U fbule {,a}{,pt|,pn} %fccn, label A1

FBPO 1111 Branch on Ordered E or L or G fbo {,a}{,pt|,pn} %fccn, label A1

cc1 cc0 Condition Code

0 0 fcc0

0 1 fcc1

1 0 fcc2

1 1 fcc3

Programming
Note

To set the annul (a) bit for FBPfcc instructions, append “,a” to the
opcode mnemonic. For example, use “fbl,a %fcc3, label”. In
the preceding table, braces signify that the “,a” is optional. To set
the branch prediction bit, append either “,pt” (for predict taken)
or “pn” (for predict not taken) to the opcode mnemonic. If neither
“,pt” nor “,pn” is specified, the assembler defaults to “,pt”. To
select the appropriate floating-point condition code, include
“%fcc0”, “%fcc1”, “%fcc2”, or “%fcc3” before the label.

31 1924 18 02530 29 28 22 21 20

00 a cond 101 cc1 p disp19cc0
CHAPTER 7 • Instructions 137

FBPfcc

■ Unconditional branches (FBPA, FBPN) — If its annul field is 0, an FBPN (Floating-Point Branch

Never with Prediction) instruction acts like a NOP. If the Branch Never’s annul field is 0, the
following (delay) instruction is executed; if the annul (a) bit is 1, the following instruction is
annulled (not executed). In no case does an FBPN cause a transfer of control to take place.

FBPA (Floating-Point Branch Always with Prediction) causes an unconditional PC-relative, delayed
control transfer to the address “PC + (4 × sign_ext(disp19))”. If the annul field of the branch
instruction is 1, the delay instruction is annulled (not executed). If the annul (a) bit is 0, the delay
instruction is executed.

■ Fcc-conditional branches — Conditional FBPfcc instructions (except FBPA and FBPN) evaluate one
of the four floating-point condition codes (fcc0, fcc1, fcc2, fcc3) as selected by cc0 and cc1,
according to the cond field of the instruction, producing either a TRUE or FALSE result. If TRUE, the
branch is taken, that is, the instruction causes a PC-relative, delayed control transfer to the address
“PC + (4 × sign_ext(disp19))”. If FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed, regardless of the value of
the annul (a) bit. If a conditional branch is not taken and the annul bit is 1 (a = 1), the delay
instruction is annulled (not executed).

The predict bit (p) gives the hardware a hint about whether the branch is expected to be taken. A 1
in the p bit indicates that the branch is expected to be taken. A 0 indicates that the branch is
expected not to be taken.

Annulment, delay instructions, and delayed control transfers are described further in Chapter 6,
Instruction Set Overview.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FBPfcc instruction causes an fp_disabled exception.

If the Trap on Control Transfer feature is implemented (impl. dep. #450-S20), PSTATE.tct = 1, and the
FBPfcc instruction will cause a transfer of control (FBPA or taken conditional branch), then FBPfcc
generates a control_transfer_instruction exception instead of causing a control transfer. When a
control_transfer_instruction trap occurs, PC (the address of the FBPfcc instruction) is stored in
TPC[TL] and the value of NPC from before the FBPfcc was executed is stored in TNPC[TL]. Note that
FBPN never causes a control_transfer_instruction exception.

Exceptions fp_disabled
control_transfer_instruction (impl. dep. #450-S20)

Note The annul bit has a different effect on conditional branches than it
does on unconditional branches.
138 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

FCMP*<16|32> (SIMD)
7.20 SIMD Signed Compare

Description Either four 16-bit signed values or two 32-bit signed values in FD[rs1] and FD[rs2] are compared. The
4-bit or 2-bit condition-code results are stored in the least significant bits of the integer register R[rd].
The least significant 16-bit or 32-bit compare result corresponds to bit zero of R[rd].

For FCMPGT{16,32}, each bit in the result is set to 1 if the corresponding signed value in FD[rs1] is
greater than the signed value in FD[rs2]. Less-than comparisons are made by swapping the operands.

For FCMPLE{16,32}, each bit in the result is set to 1 if the corresponding signed value in FD[rs1] is less
than or equal to the signed value in FD[rs2]. Greater-than-or-equal comparisons are made by
swapping the operands.

For FCMPEQ{16,32}, each bit in the result is set to 1 if the corresponding signed value in FD[rs1] is
equal to the signed value in FD[rs2].

For FCMPNE{16,32}, each bit in the result is set to 1 if the corresponding signed value in FD[rs1] is not
equal to the signed value in FD[rs2].

FIGURE 7-7 and FIGURE 7-8 illustrate 16-bit and 32-bit pixel comparison operations, respectively.

Instruction opf Operation s1 s2 d Assembly Language Syntax Class

FCMPLE16 0 0010 0000 Four 16-bit compare;
set R[rd] if src1 ≤ src2

f64 f64 i64 fcmple16 fregrs1, fregrs2, regrd B1

FCMPNE16 0 0010 0010 Four 16-bit compare;
set R[rd] if src1 ≠ src2

f64 f64 i64 fcmpne16 fregrs1, fregrs2, regrd B1

FCMPLE32 0 0010 0100 Two 32-bit compare;
set R[rd] if src1 ≤ src2

f64 f64 i64 fcmple32 fregrs1, fregrs2, regrd B1

FCMPNE32 0 0010 0110 Two 32-bit compare;
set R[rd] if src1 ≠ src2

f64 f64 i64 fcmpne32 fregrs1, fregrs2, regrd B1

FCMPGT16 0 0010 1000 Four 16-bit compare;
set R[rd] if src1 > src2

f64 f64 i64 fcmpgt16 fregrs1, fregrs2, regrd B1

FCMPEQ16 0 0010 1010 Four 16-bit compare;
set R[rd] if src1 = src2

f64 f64 i64 fcmpeq16 fregrs1, fregrs2, regrd B1

FCMPGT32 0 0010 1100 Two 32-bit compare;
set R[rd] if src1 > src2

f64 f64 i64 fcmpgt32 fregrs1, fregrs2, regrd B1

FCMPEQ32 0 0010 1110 Two 32-bit compare;
set R[rd] if src1 = src2

f64 f64 i64 fcmpeq32 fregrs1, fregrs2, regrd B1

Note Bits 63:4 of the destination register R[rd] are set to zero for 16-bit
compares. Bits 63:2 of the destination register R[rd] are set to
zero for 32-bit compares.

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
CHAPTER 7 • Instructions 139

FCMP*<16|32> (SIMD)
FIGURE 7-7 Four 16-bit Signed Fixed-point SIMD Comparison Operations

FIGURE 7-8 Two 32-bit Signed Fixed-point SIMD Comparison Operation

In all comparisons, if a compare condition is not true, the corresponding bit in the result is set to 0.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute a SIMD signed compare instruction causes an fp_disabled exception.

Exception fp_disabled

See Also Floating-Point Compare on page 141
STPARTIALF on page 279

Programming
Note

The results of a SIMD signed compare operation can be used
directly by both integer operations (for example, partial stores)
and partitioned conditional moves.

63

fcmp[gt, le, eq, ne, lt, ge]16

03

63 015314748 32 16

63 015314748 32 16

4

0 . . 0

FD[rs1]

FD[rs2]

R[rd]

63 0

63 031

fcmp[gt, le, eq, ne, lt ge]32

12

32

63 03132

0 . . 0

FD[rs1]

FD[rs2]

R[rd]
140 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

FCMP<s|d|q> / FCMPE<s|d|q>
7.21 Floating-Point Compare

Description These instructions compare F[rs1] with F[rs2] , and set the selected floating-point condition code
(fccn) as follows

The “?” in the preceding table means that the compared values are unordered. The unordered
condition occurs when one or both of the operands to the comparison is a signalling or quiet NaN

The “compare and cause exception if unordered” (FCMPEs, FCMPEd, and FCMPEq) instructions
cause an invalid (NV) exception if either operand is a NaN.

Instruction opf Operation Assembly Language Syntax Class

FCMPs 0 0101 0001 Compare Single fcmps %fccn, fregrs1, fregrs2 A1

FCMPd 0 0101 0010 Compare Double fcmpd %fccn, fregrs1, fregrs2 A1

FCMPq 0 0101 0011 Compare Quad fcmpq %fccn, fregrs1, fregrs2 C3

FCMPEs 0 0101 0101 Compare Single and Exception if
Unordered

fcmpes %fccn, fregrs1, fregrs2 A1

FCMPEd 0 0101 0110 Compare Double and Exception if
Unordered

fcmped %fccn, fregrs1, fregrs2 A1

FCMPEq 0 0101 0111 Compare Quad and Exception if
Unordered

fcmpeq %fccn, fregrs1, fregrs2 C3

cc1 cc0 Condition Code

0 0 fcc0

0 1 fcc1

1 0 fcc2

1 1 fcc3

Relation Resulting fcc value

fregrs1 = fregrs2 0

fregrs1 < fregrs2 1

fregrs1 > fregrs2 2

fregrs1 ? fregrs2 (unordered) 3

10 rs2— rs1
31 141924 18 13 02530 29 4

opf
52627

cc1 cc0 11 0101
CHAPTER 7 • Instructions 141

FCMP<s|d|q> / FCMPE<s|d|q>

FCMP causes an invalid (NV) exception if either operand is a signalling NaN.

An attempt to execute an FCMP instruction when instruction bits 29:27 are nonzero causes an
illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FCMP or FCMPE instruction causes an fp_disabled exception.

An attempt to execute an FCMPq or FCMPEq instruction when (rs1{1} ≠ 0) or (rs2{1} ≠ 0) causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007.

Exceptions illegal_instruction
fp_disabled
fp_exception_ieee_754 (NV)
fp_exception_other (FSR.ftt = invalid_fp_register (FCMPq, FCMPEq only))

See Also SIMD Signed Compare on page 139

V8 Compatibility
Note

Unlike the SPARC V8 architecture, SPARC V9 and the
UltraSPARC Architecture do not require an instruction between a
floating-point compare operation and a floating-point branch
(FBfcc, FBPfcc).

SPARC V8 floating-point compare instructions are required to
have rd = 0. In SPARC V9 and the UltraSPARC Architecture, bits
26 and 25 of the instruction (rd{1:0}) specify the floating-point
condition code to be set. Legal SPARC V8 code will work on
SPARC V9 and the UltraSPARC Architecture because the zeroes
in the R[rd] field are interpreted as fcc0 and the FBfcc
instruction branches based on the value of fcc0.

Note UltraSPARC Architecture 2007 processors do not implement in
hardware the instructions that refer to quad-precision floating-
point registers. An attempt to execute FCMPq or FCMPEq
generates an illegal_instruction exception, which causes a trap,
allowing privileged software to emulate the instruction.
142 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

FDIV<s|d|q>
7.22 Floating-Point Divide

Description The floating-point divide instructions divide the contents of the floating-point register(s) specified by
the rs1 field by the contents of the floating-point register(s) specified by the rs2 field. The instructions
then write the quotient into the floating-point register(s) specified by the rd field.

Rounding is performed as specified by FSR.rd.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FCMP or FCMPE instruction causes an fp_disabled exception.

An attempt to execute an FADDq instruction when (rs1{1} ≠ 0) or (rs2{1} ≠ 0) causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = invalid_fp_register (FDIVq only)
fp_exception_other (FSR.ftt = unfinished_FPop (FDIVs, FDIV))
fp_exception_ieee_754 (OF, UF, DZ, NV, NX)

Instruction op3 opf Operation Assembly Language Syntax Class

FDIVs 11 0100 0 0100 1101 Divide Single fdivs fregrs1, fregrs2, fregrd A1

FDIVd 11 0100 0 0100 1110 Divide Double fdivd fregrs1, fregrs2, fregrd A1

FDIVq 11 0100 0 0100 1111 Divide Quad fdivq fregrs1, fregrs2, fregrd C3

Note UltraSPARC Architecture 2007 processors do not implement in
hardware the instructions that refer to quad-precision floating-
point registers. An attempt to execute an FDIVq instruction
generates an illegal_instruction exception, allowing privileged
software to emulate the instruction.

Note For FDIVs and FDIVd, an fp_exception_other with
FSR.ftt = unfinished_FPop can occur if the divide unit detects
unusual, implementation-specific conditions.

10 op3 rs2rd rs1
31 141924 18 13 02530 29 4

opf
5

CHAPTER 7 • Instructions 143

FEXPAND
7.23 FEXPAND

Description FEXPAND takes four 8-bit unsigned integers from FS[rs2], converts each integer to a 16-bit fixed-
point value, and stores the four resulting 16-bit values in a 64-bit floating-point register FD[rd].
FIGURE 7-10 illustrates the operation.

FIGURE 7-9 FEXPAND Operation

This operation is carried out as follows:

1. Left-shift each 8-bit value by 4 and zero-extend each result to a 16-bit fixed value.

2. Store the result in the destination register, FD[rd].

An attempt to execute an FEXPAND instruction when instruction bits 18:14 are nonzero causes an
illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FEXPAND instruction causes an fp_disabled exception.

Exceptions illegal_instruction
fp_disabled

See Also FPMERGE on page 173
FPACK on page 166

Instruction opf Operation s1 s2 d Assembly Language Syntax Class

FEXPAND 0 0100 1101 Four 16-bit expands — f32 f64 fexpand fregrs2, fregrd B1

Programming
Note

FEXPAND performs the inverse of the FPACK16 operation.

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opf— rs2

01516313263 4748

0151631 2324 78

5960 5152 4344 3536 2728 1920 1112 34

0000 0000 0000 0000 0000 0000 0000 0000

FS[rs2]

FD[rd]
144 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

FiTO<s|d|q>
7.24 Convert 32-bit Integer to Floating Point

Description FiTOs, FiTOd, and FiTOq convert the 32-bit signed integer operand in floating-point register FS[rs2]
into a floating-point number in the destination format. All write their result into the floating-point
register(s) specified by rd.

The value of FSR.rd determines how rounding is performed by FiTOs.

An attempt to execute an FiTO<s|d|q> instruction when instruction bits 18:14 are nonzero causes an
illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FiTO<s|d|q> instruction causes an fp_disabled exception.

An attempt to execute an FiTOq instruction when rd{1} ≠ 0 causes an fp_exception_other
(FSR.ftt = invalid_fp_register) exception.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = invalid_fp_register (FiTOq))
fp_exception_ieee_754 (NX (FiTOs only))

Instruction op3 opf Operation s1 s2 d
Assembly Language
Syntax Class

FiTOs 11 0100 0 1100 0100 Convert 32-bit Integer to
Single

— f32 f32 fitos fregrs2, fregrd A1

FiTOd 11 0100 0 1100 1000 Convert 32-bit Integer to
Double

— f32 f64 fitod fregrs2, fregrd A1

FiTOq 11 0100 0 1100 1100 Convert 32-bit Integer to
Quad

— f32 f128 fitoq fregrs2, fregrd C3

Note UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FiTOq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

10 op3 rs2rd —
31 141924 18 13 02530 29 4

opf
5

CHAPTER 7 • Instructions 145

FLUSH
7.25 Flush Instruction Memory

Description FLUSH ensures that the aligned doubleword specified by the effective address is consistent across any
local caches and, in a multiprocessor system, will eventually (impl. dep. #122-V9) become consistent
everywhere.

The SPARC V9 instruction set architecture does not guarantee consistency between instruction
memory and data memory. When software writes1 to a memory location that may be executed as an
instruction (self-modifying code2), a potential memory consistency problem arises, which is addressed
by the FLUSH instruction. Use of FLUSH after instruction memory has been modified ensures that
instruction and data memory are synchronized for the processor that issues the FLUSH instruction.

The virtual processor waits until all previous (cacheable) stores have completed before issuing a
FLUSH instruction. For the purpose of memory ordering, a FLUSH instruction behaves like a store
instruction.

In the following discussion PFLUSH refers to the virtual processor that executed the FLUSH
instruction.

FLUSH causes a synchronization within a virtual processor which ensures that instruction fetches
from the specified effective address by PFLUSH appear to execute after any loads, stores, and atomic
load-stores to that address issued by PFLUSH prior to the FLUSH. In a multiprocessor system, FLUSH
also ensures that these values will eventually become visible to the instruction fetches of all other
virtual processors in the system. With respect to MEMBAR-induced orderings, FLUSH behaves as if it
is a store operation (see Memory Barrier on page 217).

Given any store SA to address A, that precedes in memory order a FLUSH FA to address A, that in
turn precedes in memory order a store SB to address B; if any instruction IB fetched from address B
executes the instruction created by store SB, then any instruction IA that fetched from address A and
that follows IB in program order cannot execute any version of the instruction from address A that
existed prior to the store SA.

The preceeding statement defines an ordering requirement to which UltraSPARC Architecture
processors comply. By using a FLUSH instruction between two stores that modify instructions,
atomicity between the two stores is guaranteed such that any virtual processor executing the
instruction modified by the later store will never fetch and/or execute the instruction before it was
modified by the earlier store.

If i = 0, the effective address operand for the FLUSH instruction is “R[rs1] + R[rs2]”; if i = 1, it is
“R[rs1] + sign_ext (simm13)”. The three least-significant bits of the effective address are ignored;
that is, the effective address always refers to an aligned doubleword.

Instruction op3 Operation Assembly Language Syntax† Class

FLUSH 11 1011 Flush Instruction Memory flush [address] A1

† The original assembly language syntax for a FLUSH instruction (“flush address”) has been deprecated be-
cause of inconsistency with other SPARC assembly language syntax. Over time, assemblers will support the
new syntax for this instruction. In the meantime, some existing assemblers may only recognize the original syn-
tax.

1. this includes use of store instructions (executed on the same or another virtual processor) that write to instruction memory, or any
other means of writing into instruction memory (for example, DMA transfer)

2. practiced, for example, by software such as debuggers and dynamic linkers

31 24 02530 29 19 18

—10 op3 —

14 13 12 5 4

rs1 rs2i=0

10 op3 rs1 simm13i=1—
146 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

FLUSH

See implementation-specific documentation for details on specific implementations of the FLUSH
instruction.

On an UltraSPARC Architecture processor:

■ A FLUSH instruction causes a synchronization within the virtual processor on which the FLUSH is
executed, which flushes its instruction pipeline to ensure that no instruction already fetched has
subsequently been modified in memory. Any other virtual processors on the same physical
processor are unaffected by a FLUSH.

■ Coherency between instruction and data memories may or may not be maintained by hardware.

IMPL. DEP. #409-S10: The implementation of the FLUSH instruction is implementation dependent. If
the implementation automatically maintains consistency between instruction and data memory,
(1) the FLUSH address is ignored and
(2) the FLUSH instruction cannot cause any data access exceptions, because

its effective address operand is not translated or used by the MMU.
On the other hand, if the implementation does not maintain consistency between instruction and data
memory, the FLUSH address is used to access the MMU and the FLUSH instruction can cause data
access exceptions.

■ If the implementation contains instruction prefetch buffers:

■ the instruction prefetch buffer(s) are invalidated

■ instruction prefetching is suspended, but may resume starting with the instruction immediately
following the FLUSH

Programming
Note

For portability across all SPARC V9 implementations, software
must always supply the target effective address in FLUSH
instructions.

Programming
Notes

1.Typically, FLUSH is used in self-modifying code.
The use of self-modifying code is discouraged.

2. If a program includes self-modifying code, to be portable it must
issue a FLUSH instruction for each modified doubleword of
instructions (or make a call to privileged software that has an
equivalent effect) after storing into the instruction stream.

3. The order in which memory is modified can be controlled by
means of FLUSH and MEMBAR instructions interspersed
appropriately between stores and atomic load-stores. FLUSH is
needed only between a store and a subsequent instruction fetch
from the modified location. When multiple processes may
concurrently modify live (that is, potentially executing) code, the
programmer must ensure that the order of update maintains the
program in a semantically correct form at all times.

4. The memory model guarantees in a uniprocessor that data loads
observe the results of the most recent store, even if there is no
intervening FLUSH.

5. FLUSH may be a time-consuming operation.
(see the Implementation Note below)

6. In a multiprocessor system, the effects of a FLUSH operation
will be globally visible before any subsequent store becomes
globally visible.
CHAPTER 7 • Instructions 147

FLUSH
An attempt to execute a FLUSH instruction when instruction bits 29:25 are nonzero causes an
illegal_instruction exception.

An attempt to execute a FLUSH instruction when i = 0 and instruction bits 12:5 are nonzero causes an
illegal_instruction exception.

Exceptions illegal_instruction
DAE_nfo_page
fast_data_access_MMU_miss (TLB miss with hardware tablewalk disabled)

(impl. dep. #409-S10)
data_access_MMU_miss (TLB miss with hardware tablewalk enabled)

(impl. dep. #409-S10)
fast_data_access_protection

7. FLUSH is designed to act on a doubleword. On some
implementations, FLUSH may trap to system software. For these
reasons, system software should provide a service routine,
callable by nonprivileged software, for flushing arbitrarily-sized
regions of memory. On some implementations, this routine
would issue a series of FLUSH instructions; on others, it might
issue a single trap to system software that would then flush the
entire region.

8. FLUSH operates using the current (implicit) context. Therefore,
a FLUSH executed in privileged or hyperprivileged mode will
use the nucleus context and will not necessarily affect instruction
cache lines containing data from a user (nonprivileged) context.

Implementation
Note

In a multiprocessor configuration, FLUSH requires all processors
that may be referencing the addressed doubleword to flush their
instruction caches, which is a potentially disruptive activity.

V9 Compatibility
Note

The effect of a FLUSH instruction as observed from the virtual
processor on which FLUSH executes is immediate. Other virtual
processors in a multiprocessor system eventually will see the
effect of the FLUSH, but the latency is implementation dependent.
148 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

FLUSHW
7.26 Flush Register Windows

Description FLUSHW causes all active register windows except the current window to be flushed to memory at
locations determined by privileged software. FLUSHW behaves as a NOP if there are no active
windows other than the current window. At the completion of the FLUSHW instruction, the only
active register window is the current one.

FLUSHW acts as a NOP if CANSAVE = N_REG_WINDOWS – 2. Otherwise, there is more than one
active window, so FLUSHW causes a spill exception. The trap vector for the spill exception is based
on the contents of OTHERWIN and WSTATE. The spill trap handler is invoked with the CWP set to
the window to be spilled (that is, (CWP + CANSAVE + 2) mod N_REG_WINDOWS). See Register Window
Management Instructions on page 94.

An attempt to execute a FLUSHW instruction when instruction bits 29:25 or 18:0 are nonzero causes
an illegal_instruction exception.

Exceptions illegal_instruction
spill_n_normal
spill_n_other

Instruction op3 Operation Assembly Language Syntax Class

FLUSHW 10 1011 Flush Register Windows flushw A1

Programming
Note

The FLUSHW instruction can be used by application software to
flush register windows to memory so that it can switch memory
stacks or examine register contents from previous stack frames.

Programming
Note

Typically, the spill handler saves a window on a memory stack
and returns to reexecute the FLUSHW instruction. Thus, FLUSHW
traps and reexecutes until all active windows other than the
current window have been spilled.

31 24 02530 29 19 18

—10 op3 —
CHAPTER 7 • Instructions 149

FMAf
7.27 Floating-Point Multiply-Add and Multiply-
Subtract (fused)

Description The fused floating-point multiply-add instructions, FMADD<s|d>, multiply the floating-point
register(s) specified by rs1 and the floating-point register(s) specified by rs2, add that product to the
register(s) specified by rs3, round the result, and write the result into the floating-point register(s)
specified by rd.

The fused floating-point multiply-subtract instructions, FMSUB<s|d>, multiply the floating-point
register(s) specified by rs1 and the floating-point register(s) specified by rs2, subtract from that
product the register(s) specified by rs3, round the result, and write the result into the floating-point
register(s) specified by rd.

The fused floating-point negative multiply-add instructions, FNMADD<s|d>, multiply the floating-
point register(s) specified by rs1 and the floating-point register(s) specified by rs2, add to the product
the register(s) specified by rs3, negate the result, round the result, and write the result into the
floating-point register(s) specified by rd.

The fused floating-point negative multiply-subtract instructions, FNMSUB<s|d>, multiply the
floating-point register(s) specified by the rs1 field and the floating-point register(s) specified by the
rs2 field, subtract from the product the register(s) specified by the rs3 field, negate the result, round
the result, and write the result into the floating-point register(s) specified by the rd field.

All of the above instructions are “fused” operations; no rounding is performed between the
multiplication operation and the subsequent addition (or subtraction). Therefore, at most one
rounding step occurs.

The negative fused multiply-add/subtract instructions (FNM*) treat NaN values as follows:

■ A source QNaN propagates with its sign bit unchanged
■ A generated (default response) QNaN result has a sign bit of zero
■ A source SNaN that is converted to a QNaN result retains the sign bit of the source SNaN

Instruction op5 Operation Assembly Language Syntax Class Added

FMADDs 00 01 Multiply-Add Single fmadds fregrs1, fregrs2, fregrs3, fregrd C3 UA 2007

FMADDd 00 10 Multiply-Add Double fmaddd fregrs1, fregrs2, fregrs3, fregrd C3 UA 2007

FMSUBs 01 01 Multiply-Subtract Single fmsubs fregrs1, fregrs2, fregrs3, fregrd C3 UA 2007

FMSUBd 01 10 Multiply-Subtract Double fmsubd fregrs1, fregrs2, fregrs3, fregrd C3 UA 2007

UA 2007

FNMSUBs 10 01 Negative Multiply-Subtract Single fnmsubs fregrs1, fregrs2, fregrs3, fregrd C3 UA 2007

FNMSUBd 10 10 Negative Multiply-Subtract Double fnmsubd fregrs1, fregrs2, fregrs3, fregrd C3 UA 2007

FNMADDs 11 01 Negative Multiply-Add Single fnmadds fregrs1, fregrs2, fregrs3, fregrd C3 UA 2007

FNMADDd 11 10 Negative Multiply-Add Double fnmaddd fregrs1, fregrs2, fregrs3, fregrd C3 UA 2007

Instruction Implementation

Multiply-Add (fused) F[rd] ← (F[rs1] x F[rs2]) + F[rs3]

Multiply-Subtract (fused) F[rd] ← (F[rs1] x F[rs2]) − F[rs3]

Negative Multiply-Add (fused) F[rd] ← − ((F[rs1] x F[rs2]) + F[rs3])

Negative Multiply-Subtract (fused) F[rd] ← − ((F[rs1] x F[rs2]) − F[rs3])

10 110111 rs2rd rs1

31 141924 18 13 02530 29 4

op5

5

rs3

9 8
150 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

FMAf

Exceptions. If an FMAf instruction is not implemented in hardware, it generates an
illegal_instruction exception, so that privileged software can emulate the instruction.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FMAf instruction causes an fp_disabled exception.

Overflow, underflow, and inexact exception bits within FSR.cexc and FSR.aexc are updated based on
the final result of the operation and not on the intermediate result of the multiplication. The invalid
operation exception bits within FSR.cexc and FSR.aexc are updated as if the multiplication and the
addition/subtraction were performed using two individual instructions. An invalid operation
exception is detected when any of the following conditions are true:

■ A source operand (F[rs1], F[rs2], or F[rs3]) is a SNaN
■ ∞ x 0
■ ∞ − ∞
If the instruction generates an IEEE-754 exception or exceptions for which the corresponding trap
enable mask (FSR.tem) bits are set, an fp_exception_ieee_754 exception and subsequent trap is
generated.

If either the multiply or the add/subtract operation detects an unfinished_FPop condition (for
example, due to a subnormal operand or final result), the Multiply-Add/Subtract instruction
generates an fp_exception_other exception with FSR.ftt = unfinished_FPop. An fp_exception_other
exception with FSR.ftt = unfinished_FPop always takes precedence over an fp_exception_ieee_754
exception. That is, if an fp_exception_other exception occurs due to an unfinished_FPop condition,
the FSR.cexc and FSR.aexc fields remain unchanged even if a floating point IEEE 754 exception
occurs during the multiply operation (regardless whether traps are enabled, via FSR.tem, for the IEEE
exception) and the unfinished_FPop condition occurs during the subsequent add/subtract operation.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007.

Semantic Definitions

Exceptions fp_disabled
fp_exception_ieee_754 (OF, UF, NX, NV)
fp_exception_other (FSR.ftt = unfinished_FPop)

See Also FMUL on page 164
FADD on page 133
FSUB on page 174

FMADD: FNMADD:
(1) tmp ← F[rs1] x F[rs2]
(2) tmp ← tmp + F[rs3]

(3) F[rd] ← round(tmp)

(1) tmp ← F[rs1] × F[rs2]
(2) tmp ← tmp + F[rs3]
(3) tmp ← − tmp
(4) F[rd] ← round(tmp)

FMSUB: FNMSUB:
(1) tmp ← F[rs1] x F[rs2]
(2) tmp ← tmp − F[rs3]

(3) F[rd] ← round(tmp)

(1) tmp ← F[rs1] × F[rs2]
(2) tmp ← tmp − F[rs3]
(3) tmp ← − tmp
(4) F[rd] ← round(tmp)
CHAPTER 7 • Instructions 151

FMOV
7.28 Floating-Point Move

Description FMOV copies the source floating-point register(s) to the destination floating-point register(s),
unaltered.

FMOVs, FMOVd, and FMOVq perform 32-bit, 64-bit, and 128-bit operations, respectively.

These instructions clear (set to 0) both FSR.cexc and FSR.ftt. They do not round, do not modify
FSR.aexc, and do not treat floating-point NaN values differently from other floating-point values.

An attempt to execute an FMOV instruction when instruction bits 18:14 are nonzero causes an
illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FMOV instruction causes an fp_disabled exception.

An attempt to execute an FMOVq instruction when rs2{1} ≠ 0 or rd{1} ≠ 0 causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007.

Exceptions illegal_instruction
fp_disabled fp_exception_other (FSR.ftt = invalid_fp_register (FMOVq only))

See Also F Register Logical Operate (2 operand) on page 177

Instruction op3 opf Operation Assembly Language Syntax Class

FMOVs 11 0100 0 0000 0001 Move (copy) Single fmovs fregrs2, fregrd A1

FMOVd 11 0100 0 0000 0010 Move (copy) Double fmovd fregrs2, fregrd A1

FMOVq 11 0100 0 0000 0011 Move (copy) Quad fmovq fregrs2, fregrd C3

Note UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FMOVq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

10 op3 rs2rd —
31 141924 18 13 02530 29 4

opf
5

152 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

FMOVcc
7.29 Move Floating-Point Register on Condition
(FMOVcc)

Instruction opf_low Operation Assembly Language Syntax Class

FMOVSicc 00 0001 Move Floating-Point Single,
based on 32-bit integer condition codes

fmovsicc %icc, fregrs2, fregrd A1

FMOVDicc 00 0010 Move Floating-Point Double,
based on 32-bit integer condition codes

fmovdicc %icc, fregrs2, fregrd A1

FMOVQicc 00 0011 Move Floating-Point Quad,
based on 32-bit integer condition codes

fmovqicc %icc, fregrs2, fregrd C3

FMOVSxcc 00 0001 Move Floating-Point Single,
based on 64-bit integer condition codes

fmovsxcc %xcc, fregrs2, fregrd A1

FMOVDxcc 00 0010 Move Floating-Point Double,
based on 64-bit integer condition codes

fmovdxcc %xcc, fregrs2, fregrd A1

FMOVQxcc 00 0011 Move Floating-Point Quad,
based on 64-bit integer condition codes

fmovqxcc %xcc, fregrs2, fregrd C3

FMOVSfcc 00 0001 Move Floating-Point Single,
based on floating-point condition codes

fmovsfcc %fccn, fregrs2, fregrd A1

FMOVDfcc 00 0010 Move Floating-Point Double,
based on floating-point condition codes

fmovdfcc %fccn, fregrs2, fregrd A1

FMOVQfcc 00 0011 Move Floating-Point Quad,
based on floating-point condition codes

fmovqfcc %fccn, fregrs2, fregrd C3

10 rd 110101 cond opf_cc opf_low rs2—
31 1924 18 1314 11 5 4 010172530 29
CHAPTER 7 • Instructions 153

FMOVcc

Encoding of the cond Field for F.P. Moves Based on Integer Condition Codes (icc or xcc)

Encoding of the cond Field for F.P. Moves Based on Floating-Point Condition Codes (fccn)

cond Operation icc / xcc Test

icc/xcc name(s) in
Assembly Language

Mnemonics

1000 Move Always 1 a

0000 Move Never 0 n

1001 Move if Not Equal not Z ne (or nz)

0001 Move if Equal Z e (or z)

1010 Move if Greater not (Z or (N xor V)) g

0010 Move if Less or Equal Z or (N xor V) le

1011 Move if Greater or Equal not (N xor V) ge

0011 Move if Less N xor V l

1100 Move if Greater Unsigned not (C or Z) gu

0100 Move if Less or Equal Unsigned (C or Z) leu

1101 Move if Carry Clear (Greater or Equal, Unsigned) not C cc (or geu)

0101 Move if Carry Set (Less than, Unsigned) C cs (or lu)

1110 Move if Positive not N pos

0110 Move if Negative N neg

1111 Move if Overflow Clear not V vc

0111 Move if Overflow Set V vs

cond Operation fccn Test
fcc name(s) in Assembly

Language Mnemonics

1000 Move Always 1 a

0000 Move Never 0 n

0111 Move if Unordered U u

0110 Move if Greater G g

0101 Move if Unordered or Greater G or U ug

0100 Move if Less L l

0011 Move if Unordered or Less L or U ul

0010 Move if Less or Greater L or G lg

0001 Move if Not Equal L or G or U ne (or nz)

1001 Move if Equal E e (or z

1010 Move if Unordered or Equal E or U ue

1011 Move if Greater or Equal E or G ge

1100 Move if Unordered or Greater or Equal E or G or U uge

1101 Move if Less or Equal E or L le

1110 Move if Unordered or Less or Equal E or L or U ule

1111 Move if Ordered E or L or G o
154 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

FMOVcc

Encoding of opf_cc Field (also see TABLE E-10 on page 484)

Description The FMOVcc instructions copy the floating-point register(s) specified by rs2 to the floating-point
register(s) specified by rd if the condition indicated by the cond field is satisfied by the selected
floating-point condition code field in FSR. The condition code used is specified by the opf_cc field of
the instruction. If the condition is FALSE, then the destination register(s) are not changed.

These instructions read, but do not modify, any condition codes.

These instructions clear (set to 0) both FSR.cexc and FSR.ftt. They do not round, do not modify
FSR.aexc, and do not treat floating-point NaN values differently from other floating-point values.

An attempt to execute an FMOVcc instruction when instruction bit 18 is nonzero or opf_cc = 1012 or
1112 causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FMOVQicc, FMOVQxcc, or FMOVQfcc instruction causes an fp_disabled exception.

An attempt to execute an FMOVQicc, FMOVQxcc, or FMOVQfcc instruction when rs2{1} ≠ 0 or
rd{1} ≠ 0 causes an fp_exception_other (FSR.ftt = invalid_fp_register) exception.

opf_cc Instruction
Condition Code
to be Tested

1002 FMOV<s|d|q>icc icc

1102 FMOV<s|d|q>xcc xcc

0002
0012
0102
0112

FMOV<s|d|q>fcc fcc0
fcc1
fcc2
fcc3

1012
1112

(illegal_instruction exception)

Note UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FMOVQicc, FMOVQxcc, or
FMOVQfcc instruction causes an illegal_instruction exception,
allowing privileged software to emulate the instruction.
CHAPTER 7 • Instructions 155

FMOVcc
Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = invalid_fp_register (FMOVQ instructions))

Programming
Note

Branches cause the performance of most implementations to
degrade significantly. Frequently, the MOVcc and FMOVcc
instructions can be used to avoid branches. For example, the
following C language segment:

double A, B, X;
if (A > B) then X = 1.03; else X = 0.0;

can be coded as

! assume A is in %f0; B is in %f2; %xx points to
! constant area

ldd [%xx+C_1.03],%f4 ! X = 1.03
fcmpd %fcc3,%f0,%f2 ! A > B
fble,a %fcc3,label
! following instructiononly executed if the
! preceding branch was taken
fsubd %f4,%f4,%f4 ! X = 0.0

label:...

This code takes four instructions including a branch.

With FMOVcc, this could be coded as

ldd [%xx+C_1.03],%f4 ! X = 1.03
fsubd %f4,%f4,%f6 ! X’ = 0.0
fcmpd %fcc3,%f0,%f2 ! A > B
fmovdle %fcc3,%f6,%f4 ! X = 0.0

This code also takes four instructions but requires no branches
and may boost performance significantly. Use MOVcc and
FMOVcc instead of branches wherever these instructions would
improve performance.
156 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

FMOVR
7.30 Move Floating-Point Register on Integer Register
Condition (FMOVR)

Instruction rcond opf_low Operation Test Class

— 000 0 0101 Reserved — —

FMOVRsZ 001 0 0101 Move Single if Register = 0 R[rs1] = 0 A1

FMOVRsLEZ 010 0 0101 Move Single if Register ≤ 0 R[rs1] ≤ 0 A1

FMOVRsLZ 011 0 0101 Move Single if Register < 0 R[rs1] < 0 A1

— 100 0 0101 Reserved — —

FMOVRsNZ 101 0 0101 Move Single if Register ≠ 0 R[rs1] ≠ 0 A1

FMOVRsGZ 110 0 0101 Move Single if Register > 0 R[rs1] > 0 A1

FMOVRsGEZ 111 0 0101 Move Single if Register ≥ 0 R[rs1] ≥ 0 A1

— 000 0 0110 Reserved — —

FMOVRdZ 001 0 0110 Move Double if Register = 0 R[rs1] = 0 A1

FMOVRdLEZ 010 0 0110 Move Double if Register ≤ 0 R[rs1] ≤ 0 A1

FMOVRdLZ 011 0 0110 Move Double if Register < 0 R[rs1] < 0 A1

— 100 0 0110 Reserved — —

FMOVRdNZ 101 0 0110 Move Double if Register ≠ 0 R[rs1] ≠ 0 A1

FMOVRdGZ 110 0 0110 Move Double if Register > 0 R[rs1] > 0 A1

FMOVRdGEZ 111 0 0110 Move Double if Register ≥ 0 R[rs1] ≥ 0 A1

— 000 0 0111 Reserved — —

FMOVRqZ 001 0 0111 Move Quad if Register = 0 R[rs1] = 0 C3

FMOVRqLEZ 010 0 0111 Move Quad if Register ≤ 0 R[rs1] ≤ 0 C3

FMOVRqLZ 011 0 0111 Move Quad if Register < 0 R[rs1] < 0 C3

— 100 0 0111 Reserved — —

FMOVRqNZ 101 0 0111 Move Quad if Register ≠ 0 R[rs1] ≠ 0 C3

FMOVRqGZ 110 0 0111 Move Quad if Register > 0 R[rs1] > 0 C3

FMOVRqGEZ 111 0 0111 Move Quad if Register ≥ 0 R[rs1] ≥ 0 C3

Assembly Language Syntax

fmovr{s,d,q}z regrs1, fregrs2, fregrd (synonym: fmovr{s,d,q}e)

fmovr{s,d,q}lez regrs1, fregrs2, fregrd

fmovr{s,d,q}lz regrs1, fregrs2, fregrd

fmovr{s,d,q}nz regrs1, fregrs2, fregrd (synonym: fmovr{s,d,q}ne)

fmovr{s,d,q}gz regrs1, fregrs2, fregrd

fmovr{s,d,q}gez regrs1, fregrs2, fregrd

31 141924 18 13 12 9 5 4 0102530 29

10 rd — rcond opf_low rs2rs1110101
CHAPTER 7 • Instructions 157

FMOVR

Description If the contents of integer register R[rs1] satisfy the condition specified in the rcond field, these

instructions copy the contents of the floating-point register(s) specified by the rs2 field to the floating-
point register(s) specified by the rd field. If the contents of R[rs1] do not satisfy the condition, the
floating-point register(s) specified by the rd field are not modified.

These instructions treat the integer register contents as a signed integer value; they do not modify any
condition codes.

These instructions clear (set to 0) both FSR.cexc and FSR.ftt. They do not round, do not modify
FSR.aexc, and do not treat floating-point NaN values differently from other floating-point values.

An attempt to execute an FMOVR instruction when instruction bit 13 is nonzero or rcond = 0002 or
1002 causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FMOVR instruction causes an fp_disabled exception.

An attempt to execute an FMOVRq instruction when rs2{1} ≠ 0 or rd{1} ≠ 0 causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.

Exceptions illegal_instruction
fp_disabled fp_exception_other (FSR.ftt = invalid_fp_register (FMOVRq instructions))

Note UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FMOVRq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

Implementation
Note

If this instruction is implemented by tagging each register value
with an N (negative) and a Z (zero) condition bit, use the
following table to determine whether rcond is TRUE:

Branch Test
FMOVRNZ not Z
FMOVRZ Z
FMOVRGEZ not N
FMOVRLZ N
FMOVRLEZ N or Z
FMOVRGZ N nor Z
158 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

FMUL (partitioned)
7.31 Partitioned Multiply Instructions

Description The following sections describe the versions of partitioned multiplies.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an partitioned multiply instruction causes an fp_disabled exception.

Exceptions fp_disabled

Instruction opf Operation s1 s2 d Assembly Language Syntax Class

FMUL8x16 0 0011 0001 Unsigned 8-bit by signed 16-bit
partitioned product

f32 f64 f64 fmul8x16 fregrs1, fregrs2, fregrd B1

FMUL8x16AU 0 0011 0011 Unsigned 8-bit by signed 16-bit
upper α partitioned product

f32 f32 f64 fmul8x16au fregrs1, fregrs2, fregrd B1

FMUL8x16AL 0 0011 0101 Unsigned 8-bit by signed 16-bit
lower α partitioned product

f32 f32 f64 fmul8x16al fregrs1, fregrs2, fregrd B1

FMUL8SUx16 0 0011 0110 Signed upper 8-bit by signed
16-bit partitioned product

f64 f64 f64 fmul8sux16 fregrs1, fregrs2, fregrd B1

FMUL8ULx16 0 0011 0111 Unsigned lower 8-bit by signed
16-bit partitioned product

f64 f64 f64 fmul8ulx16 fregrs1, fregrs2, fregrd B1

FMULD8SUx16 0 0011 1000 Signed upper 8-bit by signed
16-bit partitioned product

f32 f32 f64 fmuld8sux16 fregrs1, fregrs2, fregrd B1

FMULD8ULx16 0 0011 1001 Unsigned lower 8-bit by signed
16-bit partitioned product

f32 f32 f64 fmuld8ulx16 fregrs1, fregrs2, fregrd B1

Programming
Note

When software emulates an 8-bit unsigned by 16-bit signed
multiply, the unsigned value must be zero-extended and the 16-bit
value sign-extended before the multiplication.

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
CHAPTER 7 • Instructions 159

FMUL (partitioned)
7.31.1 FMUL8x16 Instruction
FMUL8x16 multiplies each unsigned 8-bit value (for example, a pixel component) in the 32-bit
floating-point register FS[rs1] by the corresponding (signed) 16-bit fixed-point integer in the 64-bit
floating-point register FD[rs2]. It rounds the 24-bit product (assuming binary point between bits 7 and
8) and stores the most significant 16 bits of the result into the corresponding 16-bit field in the 64-bit
floating-point destination register FD[rd]. FIGURE 7-10 illustrates the operation.

FIGURE 7-10 FMUL8x16 Operation

7.31.2 FMUL8x16AU Instruction
FMUL8x16AU is the same as FMUL8x16, except that one 16-bit fixed-point value is used as the
multiplier for all four multiplies. This multiplier is the most significant (“upper”) 16 bits of the 32-bit
register FS[rs2] (typically an α pixel component value). FIGURE 7-11 illustrates the operation.

FIGURE 7-11 FMUL8x16AU Operation

Note This instruction treats the pixel component values as fixed-point
with the binary point to the left of the most significant bit.
Typically, this operation is used with filter coefficients as the fixed-
point rs2 value and image data as the rs1 pixel value. Appropriate
scaling of the coefficient allows various fixed-point scaling to be
realized.

0151631 24 23 8 7

015163132474863

015163132474863

×MS16b ×MS16b ×MS16b ×MS16b

F[rs1]

F[rs2]

F[rd]

0151631 24 23 8 7

0151631

015163132474863

×MS16b ×MS16b ×MS16b ×MS16b

FS[rs1]

FS[rs2]

FD[rd]
160 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

FMUL (partitioned)
7.31.3 FMUL8x16AL Instruction
FMUL8x16AL is the same as FMUL8x16AU, except that the least significant (“lower”) 16 bits of the
32-bit register FS[rs2] register are used as a multiplier. FIGURE 7-12 illustrates the operation.

FIGURE 7-12 FMUL8x16AL Operation

7.31.4 FMUL8SUx16 Instruction
FMUL8SUx16 multiplies the most significant (“upper”) 8 bits of each 16-bit signed value in the 64-bit
floating-point register FD[rs1] by the corresponding signed, 16-bit, fixed-point, signed integer in the
64-bit floating-point register FD[rs2]. It rounds the 24-bit product toward the nearest representable
value and then stores the most significant 16 bits of the result into the corresponding 16-bit field of the
64-bit floating-point destination register FD[rd]. If the product is exactly halfway between two
integers, the result is rounded toward positive infinity. FIGURE 7-13 illustrates the operation.

FIGURE 7-13 FMUL8SUx16 Operation

7.31.5 FMUL8ULx16 Instruction
FMUL8ULx16 multiplies the unsigned least significant (“lower”) 8 bits of each 16-bit value in the 64-
bit floating-point register FD[rs1] by the corresponding fixed-point signed 16-bit integer in the 64-bit
floating-point register FD[rs2]. Each 24-bit product is sign-extended to 32 bits. The most significant
(“upper”) 16 bits of the sign-extended value are rounded to nearest and then stored in the
corresponding 16-bit field of the 64-bit floating-point destination register FD[rd]. If the result is exactly
halfway between two integers, the result is rounded toward positive infinity. FIGURE 7-14 illustrates the
operation; CODE EXAMPLE 7-1 exemplifies the operation.

0151631 24 23 8 7

0151631

015163132474863

×MS16b ×MS16b ×MS16b ×MS16b

FS[rs1]

FS[rs2]

FD[rd]

015163132474863

015163132474863

015163132474863 56 55 40 39 24 23 8 7

×MS16b ×MS16b ×MS16b ×MS16b

FD[rs1]

FD[rs2]

FD[rd]
CHAPTER 7 • Instructions 161

FMUL (partitioned)
FIGURE 7-14 FMUL8ULx16 Operation

7.31.6 FMULD8SUx16 Instruction
FMULD8SUx16 multiplies the most significant (“upper”) 8 bits of each 16-bit signed value in F[rs1]
by the corresponding signed 16-bit fixed-point value in F[rs2]. Each 24-bit product is shifted left by 8
bits to generate a 32-bit result, which is then stored in the 64-bit floating-point register specified by rd.
FIGURE 7-15 illustrates the operation.

FIGURE 7-15 FMULD8SUx16 Operation

CODE EXAMPLE 7-1 16-bit × 16-bit 16-bit Multiply

fmul8sux16 %f0, %f1, %f2

fmul8ulx16 %f0, %f1, %f3

fpadd16 %f2, %f3, %f4

16

× sign-extended, × sign-extended, × sign-extended, × sign-extended,

015163132474863

015163132474863 56 55 40 39 24 23 8 7

MS16b MS16b MS16b MS16b

0153132474863

MS16b

FD[rd]

FD[rs2]

FD[rs1]

0783132394063

× ×

0000000000000000

0151631

0151631 24 23 8 7

FS[rs1]

FS[rs2]

FD[rd]
162 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

FMUL (partitioned)
7.31.7 FMULD8ULx16 Instruction
FMULD8ULx16 multiplies the unsigned least significant (“lower”) 8 bits of each 16-bit value in F[rs1]
by the corresponding 16-bit fixed-point signed integer in F[rs2]. Each 24-bit product is sign-extended
to 32 bits and stored in the corresponding half of the 64-bit floating-point register specified by rd.
FIGURE 7-16 illustrates the operation; CODE EXAMPLE 7-2 exemplifies the operation.

FIGURE 7-16 FMULD8ULx16 Operation

CODE EXAMPLE 7-2 16-bit x 16-bit 32-bit Multiply

fmuld8sux16 %f0, %f1, %f2

fmuld8ulx16 %f0, %f1, %f3

fpadd32 %f2, %f3, %f4

0151631 24 23 8 7

0313263

0151631

× sign-extended × sign-extended

FS[rs1]

FS[rs2]

FD[rd]
CHAPTER 7 • Instructions 163

FMUL<s|d|q>
7.32 Floating-Point Multiply

Description The floating-point multiply instructions multiply the contents of the floating-point register(s)
specified by the rs1 field by the contents of the floating-point register(s) specified by the rs2 field. The
instructions then write the product into the floating-point register(s) specified by the rd field.

The FsMULd instruction provides the exact double-precision product of two single-precision
operands, without underflow, overflow, or rounding error. Similarly, FdMULq provides the exact
quad-precision product of two double-precision operands.

Rounding is performed as specified by FSR.rd.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute any FMUL instruction causes an fp_disabled exception.

An attempt to execute an FMULq instruction when rs1{1} ≠ 0 or rs2{1} ≠ 0 or rd{1:0} ≠ 0 causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.

An attempt to execute an FdMULq instruction when rd{1} ≠ 0 causes an fp_exception_other
(FSR.ftt = invalid_fp_register) exception.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = invalid_fp_register (FMULq and FdMULq only))
fp_exception_other (FSR.ftt = unfinished_FPop)
fp_exception_ieee_754 (any: NV; FMUL<s|d|q> only: OF, UF, NX)

See Also FMAf on page 150

Instruction op3 opf Operation Assembly Language Syntax Class

FMULs 11 0100 0 0100 1001 Multiply Single fmuls fregrs1, fregrs2, fregrd A1

FMULd 11 0100 0 0100 1010 Multiply Double fmuld fregrs1, fregrs2, fregrd A1

FMULq 11 0100 0 0100 1011 Multiply Quad fmulq fregrs1, fregrs2, fregrd C3

FsMULd 11 0100 0 0110 1001 Multiply Single to Double fsmuld fregrs1, fregrs2, fregrd A1

FdMULq 11 0100 0 0110 1110 Multiply Double to Quad fdmulq fregrs1, fregrs2, fregrd C3

Note UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FMULq or FdMULq instruction
causes an illegal_instruction exception, allowing privileged
software to emulate the instruction.

10 op3 rs2rd rs1
31 141924 18 13 02530 29 4

opf
5

164 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

FNEG
7.33 Floating-Point Negate

Description FNEG copies the source floating-point register(s) to the destination floating-point register(s), with the
sign bit complemented.

These instructions clear (set to 0) both FSR.cexc and FSR.ftt. They do not round, do not modify
FSR.aexc, and do not treat floating-point NaN values differently from other floating-point values.

An attempt to execute an FNEG instruction when instruction bits 18:14 are nonzero causes an
illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FNEG instruction causes an fp_disabled exception.

An attempt to execute an FNEGq instruction when rs2{1} ≠ 0 or rd{1} ≠ 0 causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = invalid_fp_register (FNEGq only))

Instruction op3 opf Operation Assembly Language Syntax Class

FNEGs 11 0100 0 0000 0101 Negate Single fnegs fregrs2, fregrd A1

FNEGd 11 0100 0 0000 0110 Negate Double fnegd fregrs2, fregrd A1

FNEGq 11 0100 0 0000 0111 Negate Quad fnegq fregrs2, fregrd C3

Note UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FNEGq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

10 op3 rs2rd —
31 141924 18 13 02530 29 4

opf
5

CHAPTER 7 • Instructions 165

FPACK
7.34 FPACK

Description The FPACK instructions convert multiple values in a source register to a lower-precision fixed or pixel
format and stores the resulting values in the destination register. Input values are clipped to the
dynamic range of the output format. Packing applies a scale factor from GSR.scale to allow flexible
positioning of the binary point. See the subsections on following pages for more detailed descriptions
of the operations of these instructions.

An attempt to execute an FPACK16 or FPACKFIX instruction when rs1 ≠ 0 causes an illegal_instruction
exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute any FPACK instruction causes an fp_disabled exception.

Exceptions illegal_instruction fp_disabled

See Also FEXPAND on page 144
FPMERGE on page 173

Instruction opf Operation s1 s2 d Assembly Language Syntax Class

FPACK16 0 0011 1011 Four 16-bit packs into 8
unsigned bits

— f64 f32 fpack16 fregrs2, fregrd B1

FPACK32 0 0011 1010 Two 32-bit packs into 8
unsigned bits

f64 f64 f64 fpack32 fregrs1, fregrs2, fregrd B1

FPACKFIX 0 0011 1101 Four 16-bit packs into 16
signed bits

— f64 f32 fpackfix fregrs2, fregrd B1

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
166 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

FPACK
7.34.1 FPACK16
FPACK16 takes four 16-bit fixed values from the 64-bit floating-point register FD[rs2], scales,
truncates, and clips them into four 8-bit unsigned integers, and stores the results in the 32-bit
destination register, FS[rd]. FIGURE 7-17 illustrates the FPACK16 operation.

FIGURE 7-17 FPACK16 Operation

This operation is carried out as follows:

1. Left-shift the value from FD[rs2] by the number of bits specified in GSR.scale while maintaining
clipping information.

2. Truncate and clip to an 8-bit unsigned integer starting at the bit immediately to the left of the
implicit binary point (that is, between bits 7 and 6 for each 16-bit word). Truncation converts the
scaled value into a signed integer (that is, round toward negative infinity). If the resulting value is
negative (that is, its most significant bit is set), 0 is returned as the clipped value. If the value is
greater than 255, then 255 is delivered as the clipped value. Otherwise, the scaled value is returned
as the result.

3. Store the result in the corresponding byte in the 32-bit destination register, FS[rd].

For each 16-bit partition, the sequence of operations performed is shown in the following example
pseudo-code:
tmp ← source_operand{15:0} << GSR.scale;
// Pick off the bits from bit position 15+GSR.scale to
// bit position 7 from the shifted result
trunc_signed_value ← tmp{(15+GSR.scale):7};
If (trunc_signed_value < 0)
unsigned_8bit_result ← 0;
else if (trunc_signed_value > 255)
unsigned_8bit_result ← 255;
else
unsigned_8bit_result ← trunc_signed_value{14:7};

Note FPACK16 ignores the most significant bit of GSR.scale
(GSR.scale{4}).

0367

implicit binary pt

4 0

GSR.scale × 0100

19

723 15314763

31

0

0

15 14

48 32 16

(8 bits)

(16 bits)

00 00

FD[rs2]

FS[rd]

FS[rd]

FD[rs2]

16
CHAPTER 7 • Instructions 167

FPACK
7.34.2 FPACK32
FPACK32 takes two 32-bit fixed values from the second source operand (64-bit floating-point register
FD[rs2]) and scales, truncates, and clips them into two 8-bit unsigned integers. The two 8-bit integers
are merged at the corresponding least significant byte positions of each 32-bit word in the 64-bit
floating-point register FD[rs1], left-shifted by 8 bits. The 64-bit result is stored in FD[rd]. Thus,
successive FPACK32 instructions can assemble two pixels by using three or four pairs of 32-bit fixed
values. FIGURE 7-18 illustrates the FPACK32 operation.

FIGURE 7-18 FPACK32 Operation

This operation, illustrated in FIGURE 7-18, is carried out as follows:

1. Left-shift each 32-bit value in FD[rs2] by the number of bits specified in GSR.scale, while
maintaining clipping information.

2. For each 32-bit value, truncate and clip to an 8-bit unsigned integer starting at the bit immediately
to the left of the implicit binary point (that is, between bits 23 and 22 for each 32-bit word).
Truncation is performed to convert the scaled value into a signed integer (that is, round toward
negative infinity). If the resulting value is negative (that is, the most significant bit is 1), then 0 is
returned as the clipped value. If the value is greater than 255, then 255 is delivered as the clipped
value. Otherwise, the scaled value is returned as the result.

3. Left-shift each 32-bit value from FD[rs1] by 8 bits.

4. Merge the two clipped 8-bit unsigned values into the corresponding least significant byte positions
in the left-shifted FD[rs2] value.

5. Store the result in the 64-bit destination register FD[rd].

For each 32-bit partition, the sequence of operations performed is shown in the following pseudo-
code:
tmp ← source_operand2{31:0} << GSR.scale;
// Pick off the bits from bit position 31+GSR.scale to
// bit position 23 from the shifted result
trunc_signed_value ← tmp{(31+GSR.scale):23};
if (trunc_signed_value < 0)
unsigned_8bit_value ← 0;

015163132474863

04

GSR.scale

037 2223 5

implicit binary point

0 0 0 0 0 0

0 0 1 1 0

56 55 40 39 24 23 8 7

30 6

(8 bits)

(32 bits)

FD[rs2]

FD[rs1]

FD[rd]

FD[rd]

FD[rs2]

31
168 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

FPACK

else if (trunc_signed_value > 255)
unsigned_8bit_value ← 255;
else
unsigned_8bit_value ← trunc_signed_value{30:23};
Final_32bit_Result ← (source_operand1{31:0} << 8) |

(unsigned_8bit_value{7:0});

7.34.3 FPACKFIX
FPACKFIX takes two 32-bit fixed values from the 64-bit floating-point register FD[rs2], scales,
truncates, and clips them into two 16-bit unsigned integers, and then stores the result in the 32-bit
destination register FS[rd]. FIGURE 7-19 illustrates the FPACKFIX operation.

FIGURE 7-19 FPACKFIX Operation

This operation is carried out as follows:

1. Left-shift each 32-bit value from FD[rs2]) by the number of bits specified in GSR.scale, while
maintaining clipping information.

2. For each 32-bit value, truncate and clip to a 16-bit unsigned integer starting at the bit immediately
to the left of the implicit binary point (that is, between bits 16 and 15 for each 32-bit word).
Truncation is performed to convert the scaled value into a signed integer (that is, round toward
negative infinity). If the resulting value is less than −32768, then −32768 is returned as the clipped
value. If the value is greater than 32767, then 32767 is delivered as the clipped value. Otherwise,
the scaled value is returned as the result.

3. Store the result in the 32-bit destination register FS[rd].

For each 32-bit partition, the sequence of operations performed is shown in the following pseudo-
code:
tmp ← source_operand{31:0} << GSR.scale;
// Pick off the bits from bit position 31+GSR.scale to
// bit position 16 from the shifted result
trunc_signed_value ← tmp{(31+GSR.scale):16};
if (trunc_signed_value < -32768)
signed_16bit_result ← -32768;
else if (trunc_signed_value > 32767)
signed_16bit_result ← 32767;

0151631

3263

04

GSR.scale

037 1516 5

implicit binary point

0 0 0 0 0 0

0 0 1 1 0

31 632

(16 bits)

(32 bits)

31 0

FD[rs2]

FD[rs2]

FS[rd]

FS[rd]
CHAPTER 7 • Instructions 169

FPACK

else
signed_16bit_result ← trunc_signed_value{31:16};
170 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

FPADD
7.35 Fixed-point Partitioned Add

Description FPADD16 (FPADD32) performs four 16-bit (two 32-bit) partitioned additions between the
corresponding fixed-point values contained in the source operands (FD[rs1], FD[rs2]). The result is
placed in the destination register, FD[rd].

The 32-bit versions of these instructions (FPADD16S and FPADD32S) perform two 16-bit or one 32-bit
partitioned additions.

Any carry out from each addition is discarded and a 2’s-complement arithmetic result is produced.

FIGURE 7-20 FPADD16 Operation

FIGURE 7-21 FPADD32 Operation

Instruction opf Operation s1 s2 d Assembly Language Syntax Class

FPADD16 0 0101 0000 Four 16-bit adds f64 f64 f64 fpadd16 fregrs1, fregrs2, fregrd A1

FPADD16S 0 0101 0001 Two 16-bit adds f32 f32 f32 fpadd16s fregrs1, fregrs2, fregrd A1

FPADD32 0 0101 0010 Two 32-bit adds f64 f64 f64 fpadd32 fregrs1, fregrs2, fregrd A1

FPADD32S 0 0101 0011 One 32-bit add f32 f32 f32 fpadd32s fregrs1, fregrs2, fregrd A1

VIS 1

10 110110 rs2rd rs1

31 141924 18 13 02530 29 4

opf

5

63 0153147

+ + + +

48 32 16

63 015314748 32 16

63 015314748 32 16

FD[rs1]

FD[rs2]

FD[rd] (sum)

63 031

+

+ +

32

63 03132

63 03132

FD[rs1]

FD[rs2]

FD[rd] (sum)
CHAPTER 7 • Instructions 171

FPADD
FIGURE 7-22 FPADD16S Operation

FIGURE 7-23 FPADD32S Operation

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FPADD instruction causes an fp_disabled exception.

Exceptions fp_disabled

031 15

+ +

16

031 1516

031 1516

FS[rs1]

FS[rs2]

FS[rd] (sum)

031

031

031

+

FS[rs1]

FS[rs2]

FS[rd] (sum)
172 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

FPMERGE
7.36 FPMERGE

Description FPMERGE interleaves eight 8-bit unsigned values in FS[rs1] and FS[rs2] to produce a 64-bit value in
the destination register FD[rd]. This instruction converts from packed to planar representation when it
is applied twice in succession; for example, R1G1B1A1,R3G3B3A3 → R1R3G1G3A1A3 →
R1R2R3R4G1G2G3G4.

FPMERGE also converts from planar to packed when it is applied twice in succession; for example,
R1R2R3R4,B1B2B3B4 → R1B1R2B2R3B3R4B4 → R1G1B1A1R2G2B2A2.

FIGURE 7-24 illustrates the operation.

FIGURE 7-24 FPMERGE Operation

CODE EXAMPLE 7-3 FPMERGE

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FPMERGE instruction causes an fp_disabled exception.

Exceptions fp_disabled

See Also FPACK on page 166
FEXPAND on page 144

Instruction opf Operation s1 s2 d Assembly Language Syntax Class

FPMERGE 0 0100 1011 Two 32-bit merges f32 f32 f64 fpmerge fregrs1, fregrs2, fregrd B1

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2

015163132474863 56 55 40 39 24 23 8 7

0151631 24 23 8 7

0151631 24 23 8 7

FS[rs1]

FS[rs2]

FD[rd]

fpmerge %f0, %f2, %d4
fpmerge %f1, %f3, %d6

fpmerge %f4, %f6, %d0
fpmerge %f5, %f7, %d2

R1 G1 B1 A1 R2 G2 B2 A2
R3 G3 B3 A3 R4 G4 B4 A4

!r1 R3 G1 G3 B1 B3 A1 A3
!r2 R4 G2 G4 B2 B4 A2 A4

!r1 R2 R3 R4 G1 G2 G3 G4
!B1 B2 B3 B4 A1 A2 A3 A4

 %d0
 %d2

fpmerge %f0, %f2, %d4
fpmerge %f1, %f3, %d6
fpmerge %f4, %f6, %d0
fpmerge %f5, %f7, %d2

!r1 B1 R2 B2 R3 B3 R4 B4
!G1 A1 G2 A2 G3 A3 G4 A4
!R1 G1 B1 A1 R2 G2 B2 A2
!R3 G3 B3 A3 R4 G4 B4 A4

} packed representation

} intermediate

} planar representation

} intermediate

} packed representation
CHAPTER 7 • Instructions 173

FPSUB
7.37 Fixed-point Partitioned Subtract (64-bit)

Description FPSUB16 (FPSUB32) performs four 16-bit (two 32-bit) partitioned subtractions between the
corresponding fixed-point values contained in the source operands (FD[rs1], FD[rs2]). The values in
FD[rs2] are subtracted from those in FD[rs1], and the result is placed in the destination register, FD[rd].

The 32-bit versions of these instructions (FPSUB16S and FPSUB32S) perform two 16-bit or one 32-bit
partitioned subtractions.

Any carry out from each subtraction is discarded and a 2’s-complement arithmetic result is produced.

FIGURE 7-25 FPSUB16 Operation

FIGURE 7-26 FPSUB32 Operation

Instruction opf Operation s1 s2 d Assembly Language Syntax Class

FPSUB16 0 0101 0100 Four 16-bit subtracts f64 f64 f64 fpsub16 fregrs1, fregrs2, fregrd A1

FPSUB16S 0 0101 0101 Two 16-bit subtracts f32 f32 f32 fpsub16s fregrs1, fregrs2, fregrd A1

FPSUB32 0 0101 0110 Two 32-bit subtracts f64 f64 f64 fpsub32 fregrs1, fregrs2, fregrd A1

FPSUB32S 0 0101 0111 One 32-bit subtract f32 f32 f32 fpsub32s fregrs1, fregrs2, fregrd A1

VIS 1

10 110110 rs2rd rs1

31 141924 18 13 02530 29 4

opf

5

63 0153147

– – – –

48 32 16

63 015314748 32 16

63 015314748 32 16

FD[rs1]

FD[rs2]

FD[rd]
(difference)

63 031

– –

32

63 03132

63 03132

FD[rd]
(difference)

FD[rs2]

FD[rs1]
174 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

FPSUB
FIGURE 7-27 FPSUB16S Operation

FIGURE 7-28 FPSUB32S Operation

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FPSUB instruction causes an fp_disabled exception.

Exceptions fp_disabled

031 15

– –

16

031 1516

031 1516

FS[rs1]

FS[rs2]

FS[rd]
(difference)

031

031

031

–

FS[rs1]

FS[rs2]

FS[rd]
(difference)
CHAPTER 7 • Instructions 175

F Register 1-operand Logical Ops
7.38 F Register Logical Operate (1 operand)

Description FZEROd and FONEd fill the 64-bit destination register, FD[rd], with all ‘0’ bits or all ‘1’ bits
(respectively).

FZEROs and FONEs fill the 32-bit destination register, FD[rd], with all ‘0’ bits or all ‘1’ bits
(respectively.

An attempt to execute an FZERO or FONE instruction when instruction bits 18:14 or bits 4:0 are
nonzero causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FZERO or FONE instruction causes an fp_disabled exception.

Exceptions illegal_instruction
fp_disabled

See Also F Register 2-operand Logical Operations on page 177
F Register 3-operand Logical Operations on page 178

Instruction opf Operation Assembly Language Syntax Class

FZEROd 0 0110 0000 Zero fill fzero fregrd A1

FZEROs 0 0110 0001 Zero fill, 32-bit fzeros fregrd A1

FONEd 0 0111 1110 One fill fone fregrd A1

FONEs 0 0111 1111 One fill, 32-bit fones fregrd A1

VIS 1

rd10 110110 opf— —

31 24 02530 29 19 18 14 13 5 4
176 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

F Register 2-operand Logical Ops
7.39 F Register Logical Operate (2 operand)

Description The standard 64-bit versions of these instructions perform one of four 64-bit logical operations on the
data from the 64-bit floating-point source register FD[rs1] (or FD[rs2]) and store the result in the 64-bit
floating-point destination register FD[rd].

The 32-bit (single-precision) versions of these instructions perform 32-bit logical operations on FS[rs1]
(or FS[rs2]) and store the result in FS[rd].

An attempt to execute an FSRC1 or FNOT1 instruction when instruction bits 4:0 are nonzero causes an
illegal_instruction exception. An attempt to execute an FSRC2(s) or FNOT2(s) instruction when
instruction bits 18:14 are nonzero causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FSRC1[s], FNOT1[s], FSRC1[s], or FNOT1[s] instruction causes an fp_disabled exception.

Exceptions illegal_instruction
fp_disabled

See Also Floating-Point Move on page 152
F Register 1-operand Logical Operations on page 176
F Register 3-operand Logical Operations on page 178

Instruction opf Operation Assembly Language Syntax Class

FSRC1d 0 0111 0100 Copy FD[rs1] to FD[rd] fsrc1 fregrs1, fregrd A1

FSRC1s 0 0111 0101 Copy FS[rs1] to FS[rd], 32-bit fsrc1s fregrs1, fregrd A1

FSRC2d 0 0111 1000 Copy FD[rs2] to FD[rd] fsrc2 fregrs2, fregrd A1

FSRC2s 0 0111 1001 Copy FS[rs2] to FS[rd], 32-bit fsrc2s fregrs2, fregrd A1

FNOT1d 0 0110 1010 Negate (1’s complement) FD[rs1] fnot1 fregrs1, fregrd A1

FNOT1s 0 0110 1011 Negate (1’s complement) FS[rs1], 32-bit fnot1s fregrs1, fregrd A1

FNOT2d 0 0110 0110 Negate (1’s complement) FD[rs2] fnot2 fregrs2, fregrd A1

FNOT2s 0 0110 0111 Negate (1’s complement) FS[rs2], 32-bit fnot2s fregrs2, fregrd A1

Programming
Note

FSRC1s (FSRC1) functions similarly to FMOVs (FMOVd), except
that FSRC1s (FSRC1) does not modify the FSR register while
FMOVs (FMOVd) update some fields of FSR (see Floating-Point
Move on page 152). Programmers are encouraged to use FMOVs
(FMOVd) instead of FSRC1s (FSRC1) whenever practical.

VIS 1

rd10 110110 opfrs1 —

rd10 110110 opf— rs2

31 24 02530 29 19 18 14 13 5 4
CHAPTER 7 • Instructions 177

F Register 3-operand Logical Ops
7.40 F Register Logical Operate (3 operand)

Description The standard 64-bit versions of these instructions perform one of ten 64-bit logical operations between
the 64-bit floating-point registers FD[rs1] and FD[rs2]. The result is stored in the 64-bit floating-point
destination register FD[rd].

The 32-bit (single-precision) versions of these instructions perform 32-bit logical operations between
FS[rs1] and FS[rs2], storing the result in FS[rd].

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute any 3-operand F Register Logical Operate instruction causes an fp_disabled exception.

Exceptions fp_disabled

See Also F Register 1-operand Logical Operations on page 176
F Register 2-operand Logical Operations on page 177

Instruction opf Operation Assembly Language Syntax Class

FORd 0 0111 1100 Logical or for fregrs1, fregrs2, fregrd A1
FORs 0 0111 1101 Logical or, 32-bit fors fregrs1, fregrs2, fregrd A1
FNORd 0 0110 0010 Logical nor fnor fregrs1, fregrs2, fregrd A1
FNORs 0 0110 0011 Logical nor, 32-bit fnors fregrs1, fregrs2, fregrd A1
FANDd 0 0111 0000 Logical and fand fregrs1, fregrs2, fregrd A1
FANDs 0 0111 0001 Logical and, 32-bit fands fregrs1, fregrs2, fregrd A1
FNANDd 0 0110 1110 Logical nand fnand fregrs1, fregrs2, fregrd A1
FNANDs 0 0110 1111 Logical nand, 32-bit fnands fregrs1, fregrs2, fregrd A1
FXORd 0 0110 1100 Logical xor fxor fregrs1, fregrs2, fregrd A1
FXORs 0 0110 1101 Logical xor, 32-bit fxors fregrs1, fregrs2, fregrd A1
FXNORd 0 0111 0010 Logical xnor fxnor fregrs1, fregrs2, fregrd A1
FXNORs 0 0111 0011 Logical xnor, 32-bit fxnors fregrs1, fregrs2, fregrd A1
FORNOT1d 0 0111 1010 (not FD[rs1]) or FD[rs2]\ fornot1 fregrs1, fregrs2, fregrd A1
FORNOT1s 0 0111 1011 (not FS[rs1]) or FS[rs2], 32-bit fornot1s fregrs1, fregrs2, fregrd A1
FORNOT2d 0 0111 0110 FD[rs1] or (not FD[rs2]) fornot2 fregrs1, fregrs2, fregrd A1
FORNOT2s 0 0111 0111 FS[rs1] or (not FS[rs2]), 32-bit fornot2s fregrs1, fregrs2, fregrd A1
FANDNOT1d 0 0110 1000 (not FD[rs1]) and FD[rs2] fandnot1 fregrs1, fregrs2, fregrd A1
FANDNOT1s 0 0110 1001 (not FS[rs1]) and FS[rs2], 32-bit fandnot1s fregrs1, fregrs2, fregrd A1
FANDNOT2d 0 0110 0100 FD[rs1] and (not FD[rs2]) fandnot2 fregrs1, fregrs2, fregrd A1
FANDNOT2s 0 0110 0101 FS[rs1] and (not FS[rs2]), 32-bit fandnot2s fregrs1, fregrs2, fregrd A1

VIS 1

rd10 110110 opfrs1 rs2

31 24 02530 29 19 18 14 13 5 4
178 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

FSQRT<s|d|q> Instructions
7.41 Floating-Point Square Root

Description These SPARC V9 instructions generate the square root of the floating-point operand in the floating-
point register(s) specified by the rs2 field and place the result in the destination floating-point
register(s) specified by the rd field. Rounding is performed as specified by FSR.rd.

An attempt to execute an FSQRT instruction when instruction bits 18:14 are nonzero causes an
illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FSQRT instruction causes an fp_disabled exception.

An attempt to execute an FSQRTq instruction when rs2{1} ≠ 0 or rd{1} ≠ 0 causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.

An fp_exception_other (with FSR.ftt = unfinished_FPop) can occur if the operand to the square root is
positive and subnormal. See FSR_floating-point_trap_type (ftt) on page 55 for additional details.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = invalid_fp_register (FSQRTq only))
fp_exception_other (FSR.ftt = unfinished_FPop)
fp_exception_ieee_754 (IEEE_754_exception (NV, NX))

Instruction op3 opf Operation Assembly Language Syntax Class

FSQRTs 11 0100 0 0010 1001 Square Root Single fsqrts fregrs2, fregrd A1

FSQRTd 11 0100 0 0010 1010 Square Root Double fsqrtd fregrs2, fregrd A1

FSQRTq 11 0100 0 0010 1011 Square Root Quad fsqrtq fregrs2, fregrd C3

Note UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FSQRTq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

10 op3 rs2rd —
31 141924 18 13 02530 29 4

opf
5

CHAPTER 7 • Instructions 179

F<s|d|q>TOi
7.42 Convert Floating-Point to Integer

Description FsTOx, FdTOx, and FqTOx convert the floating-point operand in the floating-point register(s)
specified by rs2 to a 64-bit integer in the floating-point register FD[rd].

FsTOi, FdTOi, and FqTOi convert the floating-point operand in the floating-point register(s) specified
by rs2 to a 32-bit integer in the floating-point register FS[rd].

The result is always rounded toward zero; that is, the rounding direction (rd) field of the FSR register
is ignored.

An attempt to execute an F<s|d|q>TO<i|x> instruction when instruction bits 18:14 are nonzero
causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an F<s|d|q>TO<i|x> instruction causes an fp_disabled exception.

An attempt to execute an FqTOi or FqTOx instruction when rs2{1} ≠ 0 causes an fp_exception_other
(FSR.ftt = invalid_fp_register) exception.

If the floating-point operand’s value is too large to be converted to an integer of the specified size or
is a NaN or infinity, then an fp_exception_ieee_754 “invalid” exception occurs. The value written into
the floating-point register(s) specified by rd in these cases is as defined in Integer Overflow Definition on
page 315.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = invalid_fp_register (FqTOx and FqTOi only))
fp_exception_other (FSR.ftt = unfinished_FPop)
fp_exception_ieee_754 (NV, NX)

Instruction opf Operation s1 s2 d Assembly Language Syntax Class

FsTOx 0 1000 0001 Convert Single to 64-bit Integer — f32 f64 fstox fregrs2, fregrd A1

FdTOx 0 1000 0010 Convert Double to 64-bit Integer — f64 f64 fdtox fregrs2, fregrd A1

FqTOx 0 1000 0011 Convert Quad to 64-bit Integer — f128 f64 fqtox fregrs2, fregrd C3

FsTOi 0 1101 0001 Convert Single to 32-bit Integer — f32 f32 fstoi fregrs2, fregrd A1

FdTOi 0 1101 0010 Convert Double to 32-bit Integer — f64 f32 fdtoi fregrs2, fregrd A1

FqTOi 0 1101 0011 Convert Quad to 32-bit Integer — f128 f32 fqtoi fregrs2, fregrd C3

Note UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FqTOx or FqTOi instruction
causes an illegal_instruction exception, allowing privileged
software to emulate the instruction.

10 op3 = 11 0100 rs2rd — opf
31 141924 18 13 02530 29 45
180 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

F<s|d|q>TO<s|d|q>
7.43 Convert Between Floating-Point Formats

Description These instructions convert the floating-point operand in the floating-point register(s) specified by rs2
to a floating-point number in the destination format. They write the result into the floating-point
register(s) specified by rd.

The value of FSR.rd determines how rounding is performed by these instructions.

An attempt to execute an F<s|d|q>TO<s|d|q> instruction when instruction bits 18:14 are nonzero
causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an F<s|d|q>TO<s|d|q> instruction causes an fp_disabled exception.

An attempt to execute an FsTOq or FdTOq instruction when rd{1} ≠ 0 causes an fp_exception_other
(FSR.ftt = invalid_fp_register) exception. An attempt to execute an FqTOs orFqTOd instruction when
rs2{1} ≠ 0 causes an fp_exception_other (FSR.ftt = invalid_fp_register) exception.

FqTOd, FqTOs, and FdTOs (the “narrowing” conversion instructions) can cause
fp_exception_ieee_754 OF, UF, and NX exceptions. FdTOq, FsTOq, and FsTOd (the “widening”
conversion instructions) cannot.

Any of these six instructions can trigger an fp_exception_ieee_754 NV exception if the source
operand is a signalling NaN.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = invalid_fp_register (FsTOq, FqTOs, FdTOq,

and FqTOd only))
fp_exception_other (FSR.ftt = unfinished_FPop)

Instruction op3 opf Operation s1 s2 d Assembly Language Syntax Class

FsTOd 11 0100 0 1100 1001 Convert Single to Double — f32 f64 fstod fregrs2, fregrd A1

FsTOq 11 0100 0 1100 1101 Convert Single to Quad — f32 f128 fstoq fregrs2, fregrd C3

FdTOs 11 0100 0 1100 0110 Convert Double to Single — f64 f32 fdtos fregrs2, fregrd A1

FdTOq 11 0100 0 1100 1110 Convert Double to Quad — f64 f128 fdtoq fregrs2, fregrd C3

FqTOs 11 0100 0 1100 0111 Convert Quad to Single — f128 f32 fqtos fregrs2, fregrd C3

FqTOd 11 0100 0 1100 1011 Convert Quad to Double — f128 f64 fqtod fregrs2, fregrd C3

Note UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FsTOq, FdTOq, FqTOs, or
FqTOd instruction causes an illegal_instruction exception, allowing
privileged software to emulate the instruction.

Note For FdTOs and FsTOd, an fp_exception_other with
FSR.ftt = unfinished_FPop can occur if implementation-dependent
conditions are detected during the conversion operation.

10 op3 rs2rd — opf
31 141924 18 13 02530 29 45
CHAPTER 7 • Instructions 181

F<s|d|q>TO<s|d|q>

fp_exception_ieee_754 (NV)
fp_exception_ieee_754 (OF, UF, NX (FqTOd, FqTOs, and FdTOs))
182 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

FSUB
7.44 Floating-Point Subtract

Description The floating-point subtract instructions subtract the floating-point register(s) specified by the rs2 field
from the floating-point register(s) specified by the rs1 field. The instructions then write the difference
into the floating-point register(s) specified by the rd field.

Rounding is performed as specified by FSR.rd.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FSUB instruction causes an fp_disabled exception.

An attempt to execute an FSUBq instruction when (rs1{1} ≠ 0) or (rs2{1} ≠ 0) or (rd{1:0} ≠ 0) causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = invalid_fp_register (FSUBq only))
fp_exception_other (FSR.ftt = unfinished_FPop)
fp_exception_ieee_754 (OF, UF, NX, NV)

See Also FMAf on page 150

Instruction op3 opf Operation Assembly Language Syntax Class

FSUBs 11 0100 0 0100 0101 Subtract Single fsubs fregrs1, fregrs2, fregrd A1

FSUBd 11 0100 0 0100 0110 Subtract Double fsubd fregrs1, fregrs2, fregrd A1

FSUBq 11 0100 0 0100 0111 Subtract Quad fsubq fregrs1, fregrs2, fregrd C3

Note UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FSUBq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

Note An fp_exception_other with FSR.ftt = unfinished_FPop can occur
if the operation detects unusual, implementation-specific
conditions (for FSUBs or FSUBd).

10 op3 rs2rd rs1 opf
31 141924 18 13 02530 29 45
CHAPTER 7 • Instructions 183

FxTO(<s|d|q>
7.45 Convert 64-bit Integer to Floating Point

Description FxTOs, FxTOd, and FxTOq convert the 64-bit signed integer operand in the floating-point register
FD[rs2] into a floating-point number in the destination format.

All write their result into the floating-point register(s) specified by rd.

The value of FSR.rd determines how rounding is performed by FxTOs and FxTOd.

An attempt to execute an FxTO<s|d|q> instruction when instruction bits 18:14 are nonzero causes an
illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FxTO<s|d|q> instruction causes an fp_disabled exception.

An attempt to execute an FxTOq instruction when rd{1} ≠ 0 causes an fp_exception_other
(FSR.ftt = invalid_fp_register) exception.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = invalid_fp_register (FxTOq))
fp_exception_ieee_754 (NX (FxTOs and FxTOd only))

Instruction op3 opf Operation s1 s2 d
Assembly Language
Syntax Class

FxTOs 11 0100 0 1000 0100 Convert 64-bit Integer to
Single

— i64 f32 fxtos fregrs2, fregrd A1

FxTOd 11 0100 0 1000 1000 Convert 64-bit Integer to
Double

— i64 f64 fxtod fregrs2, fregrd A1

FxTOq 11 0100 0 1000 1100 Convert 64-bit Integer to
Quad

— i64 f128 fxtoq fregrs2, fregrd C3

Note UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FxTOq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

10 op3 rs2rd —

31 141924 18 13 02530 29 4

opf

5

184 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

ILLTRAP
7.46 Illegal Instruction Trap

Description The ILLTRAP instruction causes an illegal_instruction exception. The const22 value in the instruction
is ignored by the virtual processor; specifically, this field is not reserved by the architecture for any
future use.

An attempt to execute an ILLTRAP instruction when reserved instruction bits 29:25 are nonzero (also)
causes an illegal_instruction exception. However, software should not rely on this behavior, because a
future version of the architecture may use nonzero values of bits 29:25 to encode other functions.

Exceptions illegal_instruction

Instruction op op2 Operation Assembly Language Syntax Class

ILLTRAP 00 000 illegal_instruction trap illtrap const22 A1

V9 Compatibility
Note

Except for its name, this instruction is identical to the SPARC V8
UNIMP instruction.

00 000 const22—

31 2124 02530 29 22
CHAPTER 7 • Instructions 185

INVALW
7.47 Mark Register Window Sets as “Invalid”

Description The INVALW instruction marks all register window sets as “invalid”; specifically, it atomically
performs the following operations:

CANSAVE ← (N_REG_WINDOWS − 2)
CANRESTORE ← 0
OTHERWIN ← 0

An attempt to execute an INVALW instruction when instruction bits 18:0 are nonzero causes an
illegal_instruction exception.

An attempt to execute an INVALW instruction in nonprivileged mode (PSTATE.priv = 0 and
HSTATE.hpriv = 0) causes a privileged_opcode exception.

Exceptions illegal_instruction
privileged_opcode

See Also ALLCLEAN on page 112
NORMALW on page 229
OTHERW on page 231
RESTORED on page 250
SAVED on page 257

Instruction Operation Assembly Language Syntax Class

INVALWP Mark all register window sets as “invalid” invalw A1

Programming
Notes

INVALW marks all windows as invalid; after executing INVALW,
N_REG_WINDOWS-2 SAVEs can be performed without generating a
spill trap. This instruction allows window manipulations to be
atomic, without the value of N_REG_WINDOWS being visible to
privileged software and without an assumption that
N_REG_WINDOWS is constant (since hyperprivileged software can
migrate a thread among virtual processors, across which
N_REG_WINDOWS may vary).

31 1924 18 02530 29

10 fcn = 0 0101 11 0001 —
186 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

JMPL
7.48 Jump and Link

Description The JMPL instruction causes a register-indirect delayed control transfer to the address given by
“R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if i = 1.

The JMPL instruction copies the PC, which contains the address of the JMPL instruction, into register
R[rd].

An attempt to execute a JMPL instruction when i = 0 and instruction bits 12:5 are nonzero causes an
illegal_instruction exception.

If either of the low-order two bits of the jump address is nonzero, a mem_address_not_aligned
exception occurs.

If the Trap on Control Transfer feature is implemented (impl. dep. #450-S20) and PSTATE.tct = 1, then
JMPL generates a control_transfer_instruction exception instead of causing a control transfer. When a
control_transfer_instruction trap occurs, PC (the address of the JMPL instruction) is stored in TPC[TL]
and the value of NPC from before the JMPL was executed is stored in TNPC[TL].

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address are masked out
(set to 0) before being sent to the memory system or being written into R[rd] (or, if a
control_transfer_instruction trap occurs, into TPC[TL]). (closed impl. dep. #125-V9-Cs10)

Exceptions illegal_instruction
mem_address_not_aligned
control_transfer_instruction (impl. dep. #450-S20)

See Also CALL on page 124
Bicc on page 117
BPCC on page 122

Instruction op3 Operation Assembly Language Syntax Class

JMPL 11 1000 Jump and Link jmpl address, regrd A1

Programming
Notes

A JMPL instruction with rd = 15 functions as a register-indirect
call using the standard link register.

JMPL with rd = 0 can be used to return from a subroutine. The
typical return address is “r[31] + 8” if a nonleaf routine (one that
uses the SAVE instruction) is entered by a CALL instruction, or
“R[15] + 8” if a leaf routine (one that does not use the SAVE
instruction) is entered by a CALL instruction or by a JMPL
instruction with rd = 15.

31 24 02530 29 19 18

rd10 op3

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

—

CHAPTER 7 • Instructions 187

LD
7.49 Load Integer

† synonym: ld

Description The load integer instructions copy a byte, a halfword, a word, or an extended word from memory. All
copy the fetched value into R[rd]. A fetched byte, halfword, or word is right-justified in the
destination register R[rd]; it is either sign-extended or zero-filled on the left, depending on whether
the opcode specifies a signed or unsigned operation, respectively.

Load integer instructions access memory using the implicit ASI (see page 87). The effective address is
“R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if i = 1.

A successful load (notably, load extended) instruction operates atomically.

An attempt to execute a load integer instruction when i = 0 and instruction bits 12:5 are nonzero
causes an illegal_instruction exception.

If the effective address is not halfword-aligned, an attempt to execute an LDUH or LDSH causes a
mem_address_not_aligned exception. If the effective address is not word-aligned, an attempt to
execute an LDUW or LDSW instruction causes a mem_address_not_aligned exception. If the effective
address is not doubleword-aligned, an attempt to execute an LDX instruction causes a
mem_address_not_aligned exception.

A load integer twin word (LDTW) instruction exists, but is deprecated; see Load Integer Twin Word on
page 208 for details.

Exceptions illegal_instruction
mem_address_not_aligned (all except LDSB, LDUB)
VA_watchpoint
DAE_privilege_violation
DAE_nfo_page
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
PA_watchpoint
data_access_error

Instruction op3 Operation Assembly Language Syntax Class

LDSB 00 1001 Load Signed Byte ldsb [address], regrd A1

LDSH 00 1010 Load Signed Halfword ldsh [address], regrd A1

LDSW 00 1000 Load Signed Word ldsw [address], regrd A1

LDUB 00 0001 Load Unsigned Byte ldub [address], regrd A1

LDUH 00 0010 Load Unsigned Halfword lduh [address], regrd A1

LDUW 00 0000 Load Unsigned Word lduw† [address], regrd A1

LDX 00 1011 Load Extended Word ldx [address], regrd A1

V8 Compatibility
Note

The SPARC V8 LD instruction was renamed LDUW in the SPARC
V9 architecture. The LDSW instruction was new in the SPARC V9
architecture.

rd11 op3 rs1 simm13i=1

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 i=0 — rs2
188 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

LDA
7.50 Load Integer from Alternate Space

† synonym: lda

Description The load integer from alternate space instructions copy a byte, a halfword, a word, or an extended
word from memory. All copy the fetched value into R[rd]. A fetched byte, halfword, or word is right-
justified in the destination register R[rd]; it is either sign-extended or zero-filled on the left, depending
on whether the opcode specifies a signed or unsigned operation, respectively.

The load integer from alternate space instructions contain the address space identifier (ASI) to be used
for the load in the imm_asi field if i = 0, or in the ASI register if i = 1. The access is privileged if bit 7
of the ASI is 0; otherwise, it is not privileged. The effective address for these instructions is
“R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if i = 1.

A successful load (notably, load extended) instruction operates atomically.

A load integer twin word from alternate space (LDTWA) instruction exists, but is deprecated; see Load
Integer Twin Word from Alternate Space on page 210 for details.

If the effective address is not halfword-aligned, an attempt to execute an LDUHA or LDSHA
instruction causes a mem_address_not_aligned exception. If the effective address is not word-aligned,
an attempt to execute an LDUWA or LDSWA instruction causes a mem_address_not_aligned
exception. If the effective address is not doubleword-aligned, an attempt to execute an LDXA
instruction causes a mem_address_not_aligned exception.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI is 0, these
instructions cause a privileged_action exception. In privileged mode (PSTATE.priv = 1 and
HPSTATE.hpriv = 0), if the ASI is in the range 3016 to 7F16, these instructions cause a privileged_action
exception.

Instruction op3 Operation Assembly Language Syntax Class

LDSBAPASI 01 1001 Load Signed Byte from Alternate
Space

ldsba
ldsba

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

A1

LDSHAPASI 01 1010 Load Signed Halfword from Alternate
Space

ldsha
ldsha

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

A1

LDSWAPASI 01 1000 Load Signed Word from Alternate
Space

ldswa
ldswa

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

A1

LDUBAPASI 01 0001 Load Unsigned Byte from Alternate
Space

lduba
lduba

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

A1

LDUHAPASI 01 0010 Load Unsigned Halfword from
Alternate Space

lduha
lduha

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

A1

LDUWAPASI 01 0000 Load Unsigned Word from Alternate
Space

lduwa†
lduwa

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

A1

LDXAPASI 01 1011 Load Extended Word from Alternate
Space

ldxa
ldxa

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

A1

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 i=1 simm13
CHAPTER 7 • Instructions 189

LDA

LDSBA, LDSHA, LDSWA, LDUBA, LDUHA, and LDUWA can be used with any of the following
ASIs, subject to the privilege mode rules described for the privileged_action exception above. Use of
any other ASI with these instructions causes a DAE_invalid_asi exception.

LDXA can be used with any ASI (including, but not limited to, the above list), unless it either (a)
violates the privilege mode rules described for the privileged_action exception above or (b) is used
with any of the following ASIs, which causes a DAE_invalid_asi exception.

Exceptions mem_address_not_aligned (all except LDSBA and LDUBA)
privileged_action
VA_watchpoint
DAE_invalid_asi
DAE_privilege_violation
DAE_nfo_page
DAE_side_effect_page
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error

ASIs valid for LDSBA, LDSHA, LDSWA, LDUBA, LDUHA, and LDUWA

ASI_AS_IF_PRIV_PRIMARY ASI_AS_IF_PRIV_PRIMARY_LITTLE

ASI_AS_IF_PRIV_SECONDARY ASI_AS_IF_PRIV_SECONDARY_LITTLE

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_REAL_IO ASI_REAL_IO_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

ASI_PRIMARY_NO_FAULT ASI_PRIMARY_NO_FAULT_LITTLE

ASI_SECONDARY_NO_FAULT ASI_SECONDARY_NO_FAULT_LITTLE

ASIs invalid for LDXA (cause DAE_invalid_asi exception)

2216 (ASI_TWINX_AIUP) 2A16 (ASI_TWINX_AIUP_L)

2316 (ASI_TWINX_AIUS) 2B16 (ASI_TWINX_AIUS_L)

2616 (ASI_TWINX_REAL) 2E16 (ASI_TWINX_REAL_L)

2716 (ASI_TWINX_N) 2F16 (ASI_TWINX_NL)

ASI_BLOCK_AS_IF_USER_PRIMARY ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE

ASI_BLOCK_AS_IF_USER_SECONDARY ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE

ASI_PST8_PRIMARY ASI_PST8_PRIMARY_LITTLE

ASI_PST8_SECONDARY ASI_PST8_SECONDARY_LITTLE

ASI_PST16_PRIMARY ASI_PST16_PRIMARY_LITTLE

ASI_PST16_SECONDARY ASI_PST16_SECONDARY_LITTLE

ASI_PST32_PRIMARY ASI_PST32_PRIMARY_LITTLE

ASI_PST32_SECONDARY ASI_PST32_SECONDARY_LITTLE

ASI_FL8_PRIMARY ASI_FL8_PRIMARY_LITTLE

ASI_FL8_SECONDARY ASI_FL8_SECONDARY_LITTLE

ASI_FL16_PRIMARY ASI_FL16_PRIMARY_LITTLE

ASI_FL16_SECONDARY ASI_FL16_SECONDARY_LITTLE

ASI_BLOCK_COMMIT_PRIMARY ASI_BLOCK_COMMIT_SECONDARY

E216 (ASI_TWINX_P) EA16 (ASI_TWINX_PL)

E316 (ASI_TWINX_S) EB16 (ASI_TWINX_SL)

ASI_BLOCK_PRIMARY ASI_BLOCK_PRIMARY_LITTLE

ASI_BLOCK_SECONDARY ASI_BLOCK_SECONDARY_LITTLE
190 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

LDA

PA_watchpoint
data_access_error

See Also LD on page 188
STA on page 267
CHAPTER 7 • Instructions 191

LDBLOCKF
7.51 Block Load

Description A block load (LDBLOCKF) instruction uses one of several special block-transfer ASIs. Block transfer
ASIs allow block loads to be performed accessing the same address space as normal loads. Little-
endian ASIs (those with an ‘L’ suffix) access data in little-endian format; otherwise, the access is
assumed to be big-endian. Byte swapping is performed separately for each of the eight 64-bit (double-
precision) F registers used by the instruction.

A block load instruction loads 64 bytes of data from a 64-byte aligned memory area into the eight
double-precision floating-point registers specified by rd. The lowest-addressed eight bytes in memory
are loaded into the lowest-numbered 64-bit (double-precision) destination F register.

A block load only guarantees atomicity for each 64-bit (8-byte) portion of the 64 bytes it accesses.

The LDBLOCKF instructions are deprecated and should not be used in new
software. A sequence of LDDF instructions should be used instead.

The LDBLOCKF instruction is intended to be a processor-specific instruction,
which may or may not be implemented in future UltraSPARC Architecture
implementations. Therefore, it should only be used in platform-specific
dynamically-linked libraries, in hyperprivileged software, or in software created
by a runtime code generator that is aware of the specific virtual processor
implementation on which it is executing.

Instruc-tion
ASI
Value Operation Assembly Language Syntax Class

LDBLOCKFD 1616 64-byte block load from primary address
space, user privilege

ldda
ldda

[regaddr] #ASI_BLK_AIUP, fregrd
[reg_plus_imm] %asi, fregrd

D2

LDBLOCKFD 1716 64-byte block load from secondary
address space, user privilege

ldda
ldda

[regaddr] #ASI_BLK_AIUS, fregrd
[reg_plus_imm] %asi, fregrd

D2

LDBLOCKFD 1E16 64-byte block load from primary address
space, little-endian, user privilege

ldda
ldda

[regaddr] #ASI_BLK_AIUPL, fregrd
[reg_plus_imm] %asi, fregrd

D2

LDBLOCKFD 1F16 64-byte block load from secondary
address space, little-endian, user privilege

ldda
ldda

[regaddr] #ASI_BLK_AIUSL, fregrd
[reg_plus_imm] %asi, fregrd

D2

LDBLOCKFD F016 64-byte block load from primary address
space

ldda
ldda

[regaddr] #ASI_BLK_P, fregrd
[reg_plus_imm] %asi, fregrd

D2

LDBLOCKFD F116 64-byte block load from secondary
address space

ldda
ldda

[regaddr] #ASI_BLK_S, fregrd
[reg_plus_imm] %asi, fregrd

D2

LDBLOCKFD F816 64-byte block load from primary address
space, little-endian

ldda
ldda

[regaddr] #ASI_BLK_PL, fregrd
[reg_plus_imm] %asi, fregrd

D2

LDBLOCKFD F916 64-byte block load from secondary
address space, little-endian

ldda
ldda

[regaddr] #ASI_BLK_SL, fregrd
[reg_plus_imm] %asi, fregrd

D2

Programming
Note

The block load instruction, LDBLOCKFD, and its companion,
STBLOCKFD, were originally defined to provide a fast
mechanism for block-copy operations. However, in modern
implementations they are rarely much faster than a sequence of
regular loads and stores, so are now deprecated.

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd11 110011 simm_13rs1 I=1

rd11 110011 imm_asirs1 rs2I=0
192 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

LDBLOCKF
IMPL. DEP. #410-S10: The following aspects of the behavior of block load (LDBLOCKF) instructions
are implementation dependent:
■ What memory ordering model is used by LDBLOCKFD (LDBLOCKFD is not required to follow TSO

memory ordering)
■ Whether LDBLOCKFD follows memory ordering with respect to stores (including block stores),

including whether the virtual processor detects read-after-write and write-after-read hazards to
overlapping addresses

■ Whether LDBLOCKFD appears to execute out of order, or follow LoadLoad ordering (with respect
to older loads, younger loads, and other LDBLOCKFs)

■ Whether LDBLOCKFD follows register-dependency interlocks, as do ordinary load instructions
■ Whether VA_watchpoint and PA_watchpoint exceptions are recognized on accesses to all 64 bytes of

a LDBLOCKFD (the recommended behavior), or only on the first eight bytes
■ Whether the MMU ignores the side-effect bit (TTE.e) for LDBLOCKFD accesses

For further restrictions on the behavior of the block load instruction, see implementation-specific
processor documentation.

Exceptions. An illegal_instruction exception occurs if LDBLOCKF’s floating-point destination
registers are not aligned on an eight-double-precision register boundary.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an LDBLOCKFD instruction causes an fp_disabled exception.

If the least significant 6 bits of the effective memory address in an LDBLOCKFD instruction are
nonzero, a mem_address_not_aligned exception occurs.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI is 0 (ASIs 1616,
1716, 1E16, and 1F16), LDBLOCKFD causes a privileged_action exception.

An access caused by LDBLOCKFD may trigger a VA_watchpoint or PA_watchpoint exception (impl.
dep. #410-S10).

Programming
Note

LDBLOCKFD is intended to be a processor-specific instruction
(see the warning at the top of page 192). If LDBLOCKFD must be
used in software intended to be portable across current and
previous processor implementations, then it must be coded to
work in the face of any implementation variation that is
permitted by implementation dependency #410-S10, described
below.

Programming
Note

If ordering with respect to earlier stores is important (for
example, a block load that overlaps a previous store) and read-
after-write hazards are not detected, there must be a MEMBAR
#StoreLoad instruction between earlier stores and a block
load.

If ordering with respect to later stores is important, there must
be a MEMBAR #LoadStore instruction between a block load
and subsequent stores.

If LoadLoad ordering with respect to older or younger loads or
other block load instructions is important and is not provided
by an implementation, an intervening MEMBAR #LoadLoad is
required.

Implementation
Note

In all UltraSPARC Architecture implementations, the MMU
ignores the side-effect bit (TTE.e) for LDBLOCKFD accesses
(impl. dep. #410-S10).
CHAPTER 7 • Instructions 193

LDBLOCKF

An attempted access by an LDBLOCKFD instruction to noncacheable memory causes an a
DAE_nc_page exception.

Exceptions illegal_instruction
fp_disabled
mem_address_not_aligned
privileged_action
VA_watchpoint (impl. dep. #410-S10)
DAE_privilege_violation
DAE_nc_page
DAE_nfo_page (attempted access to Non-Faulting-Only page of memory)
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
PA_watchpoint (impl. dep. #410-S10)
data_access_error

See Also LDDF on page 195
STBLOCKFD on page 269

Implementation
Note

LDBLOCKFD shares an opcode with LDDFA and LDSHORTF; it
is distinguished by the ASI used.
194 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

LDF / LDDF / LDQF
7.52 Load Floating-Point Register

‡ Encoded floating-point register value, as described on page 51.

Description The load single floating-point instruction (LDF) copies a word from memory into 32-bit floating-point
destination register FS [rd].

The load doubleword floating-point instruction (LDDF) copies a word-aligned doubleword from
memory into a 64-bit floating-point destination register, FD [rd]. The unit of atomicity for LDDF is 4
bytes (one word).

The load quad floating-point instruction (LDQF) copies a word-aligned quadword from memory into
a 128-bit floating-point destination register, FQ [rd]. The unit of atomicity for LDQF is 4 bytes (one
word).

These load floating-point instructions access memory using the implicit ASI (see page 87).

If i = 0, the effective address for these instructions is “R[rs1] + R[rs2]” and if i = 0, the effective address
is “R[rs1] + sign_ext(simm13)”.

Exceptions. An attempt to execute an LDF, LDDF, or LDQF instruction when i = 0 and instruction
bits 12:5 are nonzero causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an LDF, LDDF, or LDQF instruction causes an fp_disabled exception.

If the effective address is not word-aligned, an attempt to execute an LDF instruction causes a
mem_address_not_aligned exception.

LDDF requires only word alignment. However, if the effective address is word-aligned but not
doubleword-aligned, an attempt to execute an LDDF instruction causes an
LDDF_mem_address_not_aligned exception. In this case, trap handler software must emulate the
LDDF instruction and return (impl. dep. #109-V9-Cs10(a)).

LDQF requires only word alignment. However, if the effective address is word-aligned but not
quadword-aligned, an attempt to execute an LDQF instruction causes an
LDQF_mem_address_not_aligned exception. In this case, trap handler software must emulate the
LDQF instruction and return (impl. dep. #111-V9-Cs10(a)).

Instruction op3 rd Operation Assembly Language Syntax Class

LDF 10 0000 0–31 Load Floating-Point Register ld [address], fregrd A1

LDDF 10 0011 ‡ Load Double Floating-Point Register ldd [address], fregrd A1

LDQF 10 0010 ‡ Load Quad Floating-Point Register ldq [address], fregrd C3

Programming
Note

Some compilers issued sequences of single-precision loads for
SPARC V8 processor targets when the compiler could not
determine whether doubleword or quadword operands were
properly aligned. For SPARC V9 processors, since emulation of
misaligned loads is expected to be fast, compilers should issue
sets of single-precision loads only when they can determine that
doubleword or quadword operands are not properly aligned.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
CHAPTER 7 • Instructions 195

LDF / LDDF / LDQF

An attempt to execute an LDQF instruction when rd{1} ≠ 0 causes an fp_exception_other
(FSR.ftt = invalid_fp_register) exception.

Destination Register(s) when Exception Occurs. If a load floating-point instruction generates an
exception that causes a precise trap, the destination floating-point register(s) remain unchanged.

IMPL. DEP. #44-V8-Cs10(a)(1): If a load floating-point instruction generates an exception that causes
a non-precise trap, the contents of the destination floating-point register(s) remain unchanged or are
undefined.

Exceptions illegal_instruction
fp_disabled
LDDF_mem_address_not_aligned
LDQF_mem_address_not_aligned (not used in UltraSPARC Architecture 2007)
mem_address_not_aligned
fp_exception_other (FSR.ftt = invalid_fp_register (LDQF only))
VA_watchpoint
DAE_privilege_violation
DAE_nfo_page
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
PA_watchpoint
data_access_error

See Also Load Floating-Point from Alternate Space on page 197
Load Floating-Point State Register (Lower) on page 201
Store Floating-Point on page 272

Implementation
Note

Since UltraSPARC Architecture 2007 processors do not implement
in hardware instructions (including LDQF) that refer to quad-
precision floating-point registers, the
LDQF_mem_address_not_aligned and fp_exception_other (with
FSR.ftt = invalid_fp_register) exceptions do not occur in
hardware. However, their effects must be emulated by software
when the instruction causes an illegal_instruction exception and
subsequent trap.
196 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

LDFA / LDDFA / LDQFA
7.53 Load Floating-Point from Alternate Space

‡ Encoded floating-point register value, as described in Floating-Point Register Number Encoding on page 51.

Description The load single floating-point from alternate space instruction (LDFA) copies a word from memory
into 32-bit floating-point destination register FS [rd].

The load double floating-point from alternate space instruction (LDDFA) copies a word-aligned
doubleword from memory into a 64-bit floating-point destination register, FD [rd]. The unit of
atomicity for LDDFA is 4 bytes (one word).

The load quad floating-point from alternate space instruction (LDQFA) copies a word-aligned
quadword from memory into a 128-bit floating-point destination register, FQ [rd]. The unit of
atomicity for LDQFA is 4 bytes (one word).

If i = 0, these instructions contain the address space identifier (ASI) to be used for the load in the
imm_asi field and the effective address for the instruction is “R[rs1] + R[rs2]”. If i = 1, the ASI to be
used is contained in the ASI register and the effective address for the instruction is
“R[rs1] + sign_ext(simm13)”.

Exceptions. If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an LDFA, LDDFA, or LDQFA instruction causes an fp_disabled exception.

LDFA causes a mem_address_not_aligned exception if the effective memory address is not word-
aligned.

LDDFA requires only word alignment. However, if the effective address is word-aligned but not
doubleword-aligned, LDDFA causes an LDDF_mem_address_not_aligned exception. In this case, trap
handler software must emulate the LDDFA instruction and return (impl. dep. #109-V9-Cs10(b)).

LDQFA requires only word alignment. However, if the effective address is word-aligned but not
quadword-aligned, LDQFA causes an LDQF_mem_address_not_aligned exception. In this case, trap
handler software must emulate the LDQFA instruction and return (impl. dep. #111-V9-Cs10(b)).

Instruction op3 rd Operation Assembly Language Syntax Class

LDFAPASI 11 0000 0–31 Load Floating-Point Register
from Alternate Space

lda
lda

[regaddr] imm_asi, fregrd
[reg_plus_imm] %asi, fregrd

A1

LDDFAPASI 11 0011 ‡ Load Double Floating-Point
Register from Alternate Space

ldda
ldda

[regaddr] imm_asi, fregrd
[reg_plus_imm] %asi, fregrd

A1

LDQFAPASI 11 0010 ‡ Load Quad Floating-Point
Register from Alternate Space

ldqa
ldqa

[regaddr] imm_asi, fregrd
[reg_plus_imm] %asi, fregrd

C3

V9 Compatibility
Note

LDFA, LDDFA, and LDQFA cause a privileged_action exception if
PSTATE.priv = 0 and bit 7 of the ASI is 0.

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 i=1 simm13
CHAPTER 7 • Instructions 197

LDFA / LDDFA / LDQFA

An attempt to execute an LDQFA instruction when rd{1} ≠ 0 causes an fp_exception_other (with
FSR.ftt = invalid_fp_register) exception.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI is 0, this
instruction causes a privileged_action exception. In privileged mode (PSTATE.priv = 1 and
HPSTATE.hpriv = 0), if the ASI is in the range 3016 to 7F16, this instruction causes a privileged_action
exception.

LDFA and LDQFA can be used with any of the following ASIs, subject to the privilege mode rules
described for the privileged_action exception above. Use of any other ASI with these instructions
causes a DAE_invalid_asi exception.

LDDFA can be used with any of the following ASIs, subject to the privilege mode rules described for
the privileged_action exception above. Use of any other ASI with the LDDFA instruction causes a
DAE_invalid_asi exception.

Implementation
Note

Since UltraSPARC Architecture 2007 processors do not implement
in hardware instructions (including LDQFA) that refer to quad-
precision floating-point registers, the
LDQF_mem_address_not_aligned and fp_exception_other (with
FSR.ftt = invalid_fp_register) exceptions do not occur in
hardware. However, their effects must be emulated by software
when the instruction causes an illegal_instruction exception and
subsequent trap.

Programming
Note

Some compilers issued sequences of single-precision loads for
SPARC V8 processor targets when the compiler could not
determine whether doubleword or quadword operands were
properly aligned. For SPARC V9 processors, since emulation of
misaligned loads is expected to be fast, compilers should issue
sets of single-precision loads only when they can determine that
doubleword or quadword operands are not properly aligned.

ASIs valid for LDFA and LDQFA

ASI_AS_IF_PRIV_PRIMARY ASI_AS_IF_PRIV_PRIMARY_LITTLE

ASI_AS_IF_PRIV ASI_AS_IF_PRIV_SECONDARY_LITTLE

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_REAL_IO ASI_REAL_IO_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

ASI_PRIMARY_NO_FAULT ASI_PRIMARY_NO_FAULT_LITTLE

ASI_SECONDARY_NO_FAULT ASI_SECONDARY_NO_FAULT_LITTLE

ASIs valid for LDDFA

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_REAL_IO ASI_REAL_IO_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

ASI_PRIMARY_NO_FAULT ASI_PRIMARY_NO_FAULT_LITTLE

ASI_SECONDARY_NO_FAULT ASI_SECONDARY_NO_FAULT_LITTLE
198 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

LDFA / LDDFA / LDQFA

Behavior with Block-Store-with-Commit ASIs. ASIs E016 and E116 are only defined for use in
Block Store with Commit operations (see page 269). Neither ASI E016 nor E116 should be used with
LDDFA; however, if it is used, the LDDFA behaves as follows:

1. If an LDDFA opcode is used with an ASI of E016 or E116 and a destination register number rd is
specified which is not a multiple of 8 (“misaligned” rd), an UltraSPARC Architecture 2007 virtual
processor generates an illegal_instruction exception (impl. dep. #255-U3-Cs10).

2. IMPL. DEP. #256-U3: If an LDDFA opcode is used with an ASI of E016 or E116 and a memory
address is specified with less than 64-byte alignment, the virtual processor generates an exception.
It is implementation dependent whether the exception generated is DAE_invalid_asi,
mem_address_not_aligned, or LDDF_mem_address_not_aligned.

3. If both rd and the memory address are correctly aligned, a DAE_invalid_asi exception occurs.

Behavior with Partial Store ASIs. ASIs C016–C516 and C816–CD16 are only defined for use in
Partial Store operations (see page 279). None of them should be used with LDDFA; however, if any of
those ASIs is used with LDDFA, the LDDFA behaves as follows:

1. IMPL. DEP. #257-U3: If an LDDFA opcode is used with an ASI of C016–C516 or C816–CD16 (Partial
Store ASIs, which are an illegal combination with LDDFA) and a memory address is specified with
less than 8-byte alignment, the virtual processor generates an exception. It is implementation
dependent whether the generated exception is a DAE_invalid_asi, mem_address_not_aligned, or
LDDF_mem_address_not_aligned exception.

2. If the memory address is correctly aligned, the virtual processor generates a DAE_invalid_asi.

Destination Register(s) when Exception Occurs. If a load floating-point alternate instruction
generates an exception that causes a precise trap, the destination floating-point register(s) remain
unchanged.

IMPL. DEP. #44-V8-Cs10(b): If a load floating-point alternate instruction generates an exception that
causes a non-precise trap, it is implementation dependent whether the contents of the destination
floating-point register(s) are undefined or are guaranteed to remain unchanged.

Exceptions illegal_instruction
fp_disabled
LDDF_mem_address_not_aligned
LDQF_mem_address_not_aligned (not generated in UltraSPARC Architecture 2007)
mem_address_not_aligned
fp_exception_other (FSR.ftt = invalid_fp_register (LDQFA only))
privileged_action
VA_watchpoint
DAE_invalid_asi
DAE_privilege_violation
DAE_nfo_page
DAE_side_effect_page
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
PA_watchpoint
data_access_error

Implementation
Note

LDDFA shares an opcode with the LDBLOCKFD and
LDSHORTF instructions; it is distinguished by the ASI used.
CHAPTER 7 • Instructions 199

LDFA / LDDFA / LDQFA

See Also Load Floating-Point Register on page 195

Block Load on page 192
Store Short Floating-Point on page 282
Store Floating-Point into Alternate Space on page 274
200 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

LDFSR (Deprecated)
7.54 Load Floating-Point State Register (Lower)

Description The Load Floating-point State Register (Lower) instruction (LDFSR) waits for all FPop instructions
that have not finished execution to complete and then loads a word from memory into the less
significant 32 bits of the FSR. The more-significant 32 bits of FSR are unaffected by LDFSR. LDFSR
does not alter the ver, ftt, qne, reserved, or unimplemented (for example, ns) fields of FSR (see
page 44).

LDFSR accesses memory using the implicit ASI (see page 87).

An attempt to execute an LDFSR instruction when i = 0 and instruction bits 12:5 are nonzero causes an
illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an LDFSR instruction causes an fp_disabled exception.

LDFSR causes a mem_address_not_aligned exception if the effective memory address is not word-
aligned.

Exceptions illegal_instruction
fp_disabled
mem_address_not_aligned
VA_watchpoint
DAE_privilege_violation

The LDFSR instruction is deprecated and should not be used in new software.
The LDXFSR instruction should be used instead.

Opcode op3 rd Operation Assembly Language Syntax Class

LDFSRD 10 0001 0 Load Floating-Point State Register (Lower) ld [address], %fsr D2

10 0001 1-31 (see page 215)

Programming
Note

For future compatibility, software should only issue an LDFSR
instruction with a zero value (or a value previously read from
the same field) in any reserved field of FSR.

V8 Compatibility
Note

The SPARC V9 architecture supports two different instructions
to load the FSR: the (deprecated) SPARC V8 LDFSR instruction
is defined to load only the less-significant 32 bits of the FSR,
whereas LDXFSR allows SPARC V9 programs to load all 64 bits
of the FSR.

Implementation
Note

LDFSR shares an opcode with the LDXFSR instruction (and
possibly with other implementation-dependent instructions);
they are differentiated by the instruction rd field. An attempt to
execute the op = 112, op3 = 10 00012 opcode with an invalid rd
value causes an illegal_instruction exception.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
CHAPTER 7 • Instructions 201

LDFSR (Deprecated)

DAE_nfo_page
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
PA_watchpoint
data_access_error

See Also Load Floating-Point Register on page 195
Load Floating-Point State Register on page 215
Store Floating-Point on page 272
202 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

LDSHORTF
7.55 Load Short Floating-Point

Description Short floating-point load instructions allow an 8- or 16-bit value to be loaded from memory into a 64-
bit floating-point register.

An 8-bit load places the loaded value in the least significant byte of FD[rd] and zeroes in the most-
significant three bytes of FD[rd]. An 8-bit LDSHORTF can be performed from an arbitrary byte
address.

A 16-bit load places the loaded value in the least significant halfword of FD[rd] and zeroes in the
more-significant halfword of FD[rd]. A 16-bit LDSHORTF from an address that is not halfword-
aligned (an odd address) causes a mem_address_not_aligned exception.

Little-endian ASIs transfer data in little-endian format from memory; otherwise, memory is assumed
to be in big-endian byte order.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an LDSHORTF instruction causes an fp_disabled exception.

Exceptions fp_disabled
mem_address_not_aligned
VA_watchpoint

Instruction
ASI

Value Operation Assembly Language Syntax Class

LDSHORTF D016 8-bit load from primary address space ldda
ldda

[regaddr] #ASI_FL8_P, fregrd
[reg_plus_imm] %asi, fregrd

B1

LDSHORTF D116 8-bit load from secondary address
space

ldda
ldda

[regaddr] #ASI_FL8_S, fregrd
[reg_plus_imm] %asi, fregrd

B1

LDSHORTF D816 8-bit load from primary address space,
little-endian

ldda
ldda

[regaddr] #ASI_FL8_PL, fregrd
[reg_plus_imm] %asi, fregrd

B1

LDSHORTF D916 8-bit load from secondary address space,
little-endian

ldda
ldda

[regaddr] #ASI_FL8_SL, fregrd
[reg_plus_imm] %asi, fregrd

B1

LDSHORTF D216 16-bit load from primary address space ldda
ldda

[regaddr] #ASI_FL16_P, fregrd
[reg_plus_imm] %asi, fregrd

B1

LDSHORTF D316 16-bit load from secondary address
space

ldda
ldda

[regaddr] #ASI_FL16_S, fregrd
[reg_plus_imm] %asi, fregrd

B1

LDSHORTF DA16 16-bit load from primary address space,
little-endian

ldda
ldda

[regaddr] #ASI_FL16_PL, fregrd
[reg_plus_imm] %asi, fregrd

B1

LDSHORTF DB16 16-bit load from secondary address
space, little-endian

ldda
ldda

[regaddr] #ASI_FL16_SL, fregrd
[reg_plus_imm] %asi, fregrd

B1

Programming
Note

LDSHORTF is typically used with the FALIGNDATA instruction
(see Align Address on page 111) to assemble or store 64 bits from
noncontiguous components.

Implementation
Note

LDSHORTF shares an opcode with the LDBLOCKFD and
LDDFA instructions; it is distinguished by the ASI used.

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd11 110011 simm13rs1 i=1

rd11 110011 imm_asirs1 rs2i=0
CHAPTER 7 • Instructions 203

LDSHORTF

DAE_privilege_violation
DAE_nfo_page
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
PA_watchpoint
data_access_error

See Also STSHORTF on page 282
204 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

LDSTUB
7.56 Load-Store Unsigned Byte

Description The load-store unsigned byte instruction copies a byte from memory into R[rd], then rewrites the
addressed byte in memory to all 1’s. The fetched byte is right-justified in the destination register R[rd]
and zero-filled on the left.

The operation is performed atomically, that is, without allowing intervening interrupts or deferred
traps. In a multiprocessor system, two or more virtual processors executing LDSTUB, LDSTUBA,
CASA, CASXA, SWAP, or SWAPA instructions addressing all or parts of the same doubleword
simultaneously are guaranteed to execute them in an undefined, but serial, order.

LDSTUB accesses memory using the implicit ASI (see page 87). The effective address for this
instruction is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if i = 1.

The coherence and atomicity of memory operations between virtual processors and I/O DMA
memory accesses are implementation dependent (impl. dep. #120-V9).

An attempt to execute an LDSTUB instruction when i = 0 and instruction bits 12:5 are nonzero causes
an illegal_instruction exception.

Exceptions illegal_instruction
VA_watchpoint
DAE_privilege_violation
DAE_nc_page
DAE_nfo_page
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
fast_data_access_protection
PA_watchpoint
data_access_error

See Also CASA on page 125
LDSTUBA on page 206
SWAP on page 291

Instruction op3 Operation Assembly Language Syntax Class

LDSTUB 00 1101 Load-Store Unsigned Byte ldstub [address], regrd A1

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2

25
CHAPTER 7 • Instructions 205

LDSTUBA
7.57 Load-Store Unsigned Byte to Alternate Space

Description The load-store unsigned byte into alternate space instruction copies a byte from memory into R[rd],
then rewrites the addressed byte in memory to all 1’s. The fetched byte is right-justified in the
destination register R[rd] and zero-filled on the left.

The operation is performed atomically, that is, without allowing intervening interrupts or deferred
traps. In a multiprocessor system, two or more virtual processors executing LDSTUB, LDSTUBA,
CASA, CASXA, SWAP, or SWAPA instructions addressing all or parts of the same doubleword
simultaneously are guaranteed to execute them in an undefined, but serial, order.

If i = 0, LDSTUBA contains the address space identifier (ASI) to be used for the load in the imm_asi
field. If i = 1, the ASI is found in the ASI register. In nonprivileged mode (PSTATE.priv = 0 and
HPSTATE.hpriv = 0), if bit 7 of the ASI is 0, this instruction causes a privileged_action exception. In
privileged mode (PSTATE.priv = 1 and HPSTATE.hpriv = 0), if the ASI is in the range 3016 to 7F16, this
instruction causes a privileged_action exception.

LDSTUBA can be used with any of the following ASIs, subject to the privilege mode rules described
for the privileged_action exception above. Use of any other ASI with this instruction causes a
DAE_invalid_asi exception.

Exceptions privileged_action
VA_watchpoint
DAE_invalid_asi
DAE_privilege_violation
DAE_nc_page
DAE_nfo_page
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
fast_data_access_protection
PA_watchpoint
data_access_error

Instruction op3 Operation Assembly Language Syntax Class

LDSTUBAPASI 01 1101 Load-Store Unsigned Byte into
Alternate Space

ldstuba
ldstuba

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

A1

ASIs valid for LDSTUBA

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 i=1 simm13
206 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

LDSTUBA

See Also CASA on page 125

LDSTUB on page 205
SWAP on page 291
SWAPA on page 292
CHAPTER 7 • Instructions 207

LDTW (Deprecated)
7.58 Load Integer Twin Word

Description The load integer twin word instruction (LDTW) copies two words (with doubleword alignment) from
memory into a pair of R registers. The word at the effective memory address is copied into the least
significant 32 bits of the even-numbered R register. The word at the effective memory address + 4 is
copied into the least significant 32 bits of the following odd-numbered R register. The most significant
32 bits of both the even-numbered and odd-numbered R registers are zero-filled.

Load integer twin word instructions access memory using the implicit ASI (see page 87). If i = 0, the
effective address for these instructions is “R[rs1] + R[rs2]” and if i = 0, the effective address is
“R[rs1] + sign_ext(simm13)”.

With respect to little endian memory, an LDTW instruction behaves as if it comprises two 32-bit loads,
each of which is byte-swapped independently before being written into its respective destination
register.

IMPL. DEP. #107-V9a: It is implementation dependent whether LDTW is implemented in hardware. If
not, an attempt to execute an LDTW instruction will cause an unimplemented_LDTW exception.

The least significant bit of the rd field in an LDTW instruction is unused and should always be set to
0 by software. An attempt to execute an LDTW instruction that refers to a misaligned (odd-numbered)
destination register causes an illegal_instruction exception.

An attempt to execute an LDTW instruction when i = 0 and instruction bits 12:5 are nonzero causes an
illegal_instruction exception.

If the effective address is not doubleword-aligned, an attempt to execute an LDTW instruction causes
a mem_address_not_aligned exception.

The LDTW instruction is deprecated and should not be used in new software. It
is provided only for compatibility with previous versions of the architecture.The
LDX instruction should be used instead.

Instruction op3 Operation Assembly Language Syntax † Class

LDTWD 00 0011 Load Integer Twin Word ldtw [address], regrd D2

† The original assembly language syntax for this instruction used an “ldd” instruction mnemonic, which is now
deprecated. Over time, assemblers will support the new “ldtw” mnemonic for this instruction. In the mean-
time, some existing assemblers may only recognize the original “ldd” mnemonic.

Note Execution of an LDTW instruction with rd = 0 modifies only
R[1].

Programming
Note

LDTW is provided for compatibility with existing SPARC V8
software. It may execute slowly on SPARC V9 machines because
of data path and register-access difficulties.

SPARC V9
Compatibility

Note

LDTW was (inaccurately) named LDD in the SPARC V8 and
SPARC V9 specifications. It does not load a doubleword; it
loads two words (into two registers), and has been renamed
accordingly.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
208 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

LDTW (Deprecated)

A successful LDTW instruction operates atomically.

Exceptions unimplemented_LDTW (not used in UltraSPARC Architecture 2007)
illegal_instruction
mem_address_not_aligned
VA_watchpoint
DAE_privilege_violation
DAE_nfo_page
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
PA_watchpoint
data_access_error

See Also LDW/LDX on page 188
STTW on page 284

Programming
Notes

LDTW is provided for compatibility with SPARC V8. It may
execute slowly on SPARC V9 machines because of data path and
register-access difficulties. Therefore, software should avoid
using LDTW.

If LDTW is emulated in software, an LDX instruction should be
used for the memory access in the emulation code to preserve
atomicity. Emulation software should examine
TSTATE[TL].pstate.cle (and, if appropriate, TTE.ie) to determine
the endianness of the emulated memory access.

Note that the value of TTE.ie is not saved during a trap.
Therefore, if it is examined in the emulation trap handler, that
should be done as quickly as possible, to minimize the window
of time during which the value of TTE.ie could possibly be
changed from the value it had at the time of the attempted
execution of LDTW.
CHAPTER 7 • Instructions 209

LDTWA (Deprecated)
7.59 Load Integer Twin Word from Alternate Space

Description The load integer twin word from alternate space instruction (LDTWA) copies two 32-bit words from
memory (with doubleword memory alignment) into a pair of R registers. The word at the effective
memory address is copied into the least significant 32 bits of the even-numbered R register. The word
at the effective memory address + 4 is copied into the least significant 32 bits of the following odd-
numbered R register. The most significant 32 bits of both the even-numbered and odd-numbered R
registers are zero-filled.

If i = 0, the LDTWA instruction contains the address space identifier (ASI) to be used for the load in its
imm_asi field and the effective address for the instruction is “R[rs1] + R[rs2]”. If i = 1, the ASI to be
used is contained in the ASI register and the effective address for the instruction is
“R[rs1] + sign_ext(simm13)”.

With respect to little endian memory, an LDTWA instruction behaves as if it is composed of two 32-bit
loads, each of which is byte-swapped independently before being written into its respective
destination register.

IMPL. DEP. #107-V9b: It is implementation dependent whether LDTWA is implemented in hardware.
If not, an attempt to execute an LDTWA instruction will cause an unimplemented_LDTW exception so
that it can be emulated.

The LDTWA instruction is deprecated and should not be used in new software.
The LDXA instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class

LDTWAD, PASI 01 0011 Load Integer Twin Word from Alternate
Space

ldtwa
ldtwa

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

D2, Y3‡

† The original assembly language syntax for this instruction used an “ldda” instruction mnemonic, which is now deprecated. Over time,
assemblers will support the new “ldtwa” mnemonic for this instruction. In the meantime, some assemblers may only recognize the
original “ldda” mnemonic.

 ‡ Y3 for restricted ASIs (0016-7F16); D2 for unrestricted ASIs (8016-FF16)

Note Execution of an LDTWA instruction with rd = 0 modifies only
R[1].

Programming
Notes

LDTWA is provided for compatibility with SPARC V8. It may
execute slowly on SPARC V9 machines because of data path and
register-access difficulties. Therefore, software should avoid
using LDTWA.

If LDTWA is emulated in software, an LDXA instruction should
be used for the memory access in the emulation code to preserve
atomicity. Emulation software should examine
TSTATE[TL].pstate.cle (and, if appropriate, TTE.ie) to determine
the endianness of the emulated memory access.

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 i=1 simm13
210 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

LDTWA (Deprecated)
The least significant bit of the rd field in an LDTWA instruction is unused and should always be set to
0 by software. An attempt to execute an LDTWA instruction that refers to a misaligned (odd-
numbered) destination register causes an illegal_instruction exception.

If the effective address is not doubleword-aligned, an attempt to execute an LDTWA instruction
causes a mem_address_not_aligned exception.

A successful LDTWA instruction operates atomically.

LDTWA causes a mem_address_not_aligned exception if the address is not doubleword-aligned.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI is 0, these
instructions cause a privileged_action exception. In privileged mode (PSTATE.priv = 1 and
HPSTATE.hpriv = 0), if the ASI is in the range 3016 to 7F16, these instructions cause a privileged_action
exception.

LDTWA can be used with any of the following ASIs, subject to the privilege mode rules described for
the privileged_action exception above. Use of any other ASI with this instruction causes a
DAE_invalid_asi exception (impl. dep. #300-U4-Cs10).

Note that the value of TTE.ie is not saved during a trap.
Therefore, if it is examined in the emulation trap handler, that
should be done as quickly as possible, to minimize the window
of time during which the value of TTE.ie could possibly be
changed from the value it had at the time of the attempted
execution of LDTWA.

SPARC V9
Compatibility

Note

LDTWA was (inaccurately) named LDDA in the SPARC V8 and
SPARC V9 specifications.

ASIs valid for LDTWA

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_REAL_IO ASI_REAL_IO_LITTLE

2216‡ (ASI_TWINX_AIUP) 2A16‡ (ASI_TWINX_AIUP_L)

2316‡ (ASI_TWINX_AIUS) 2B16‡ (ASI_TWINX_AIUS_L)

2616‡ (ASI_TWINX_REAL) 2E16‡ (ASI_TWINX_REAL_L)

2716‡ (ASI_TWINX_N) 2F16‡ (ASI_TWINX_NL)

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

ASI_PRIMARY_NO_FAULT ASI_PRIMARY_NO_FAULT_LITTLE

ASI_SECONDARY_NO_FAULT ASI_SECONDARY_NO_FAULT_LITTLE

E216‡ (ASI_TWINX_P) EA16‡ (ASI_TWINX_PL)

E316‡ (ASI_TWINX_S) EB16‡ (ASI_TWINX_SL)

‡ If this ASI is used with the opcode for LDTWA and i = 0, the LDTXA
instruction is executed instead of LDTWA. For behavior of LDTXA,
see Load Integer Twin Extended Word from Alternate Space on page 213.
If this ASI is used with the opcode for LDTWA and i = 1, a DAE_invalid_asi
exception occurs.

Programming
Note

Nontranslating ASIs (see page 345) should only be accessed
using LDXA (not LDTWA) instructions. If an LDTWA
referencing a nontranslating ASI is executed, per the above
table, it generates a DAE_invalid_asi exception (impl. dep. #300-
U4-Cs10).
CHAPTER 7 • Instructions 211

LDTWA (Deprecated)
Exceptions unimplemented_LDTW (not used in UltraSPARC Architecture 2007)
illegal_instruction
mem_address_not_aligned
privileged_action
VA_watchpoint
DAE_invalid_asi
DAE_privilege_violation
DAE_nfo_page
DAE_side_effect_page
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
PA_watchpoint
data_access_error

See Also LDWA/LDXA on page 189
LDTXA on page 213
STTWA on page 286

Implementation
Note

The deprecated instruction LDTWA shares an opcode with
LDTXA. LDTXA is not deprecated and has different address
alignment requirements than LDTWA. See Load Integer Twin
Extended Word from Alternate Space on page 213.
212 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

LDTXA
7.60 Load Integer Twin Extended Word from
Alternate Space

Description ASIs 2616, 2E16, E216, E316, F016, and F116 are used with the LDTXA instruction to atomically read a
128-bit data item into a pair of 64-bit R registers (a “twin extended word”). The data are placed in an
even/odd pair of 64-bit registers. The lowest-address 64 bits are placed in the even-numbered register;
the highest-address 64 bits are placed in the odd-numbered register.

The LDTXA instructions are not guaranteed to be implemented on all
UltraSPARC Architecture implementations. Therefore, they should only be
used in platform-specific dynamically-linked libraries, in hyperprivileged
software, or in software created by a runtime code generator that is aware of the
specific virtual processor implementation on which it is executing.

Instruction
ASI
Value Operation Assembly Language Syntax † Class

LDTXAN 2216 Load Integer Twin Extended Word,
as if user (nonprivileged), Primary
address space

ldtxa [regaddr] #ASI_TWINX_AIUP, regrd N−

2316 Load Integer Twin Extended Word,
as if user (nonprivileged), Secondary
address space

ldtxa [regaddr] #ASI_TWINX_AIUS, regrd N−

2616 Load Integer Twin Extended Word,
real address

ldtxa [regaddr] #ASI_TWINX_REAL, regrd N−

2716 Load Integer Twin Extended Word,
nucleus context

ldtxa [regaddr] #ASI_TWINX_N, regrd N−

2A16 Load Integer Twin Extended Word,
as if user (nonprivileged), Primary
address space, little endian

ldtxa [regaddr] #ASI_TWINX_AIUP_L, regrd N−

2B16 Load Integer Twin Extended Word,
as if user (nonprivileged), Secondary
address space, little endian

ldtxa [regaddr] #ASI_TWINX_AIUS_L, regrd N−

2E16 Load Integer Twin Extended Word,
real address, little endian

ldtxa [regaddr] #ASI_TWINX_REAL_L, regrd N−

2F16 Load Integer Twin Extended Word,
nucleus context, little-endian

ldtxa [regaddr] #ASI_TWINX_NL, regrd N−

LDTXAN E216 Load Integer Twin Extended Word,
Primary address space

ldtxa [regaddr] #ASI_TWINX_P, regrd N−

E316 Load Integer Twin Extended Word,
Secondary address space

ldtxa [regaddr] #ASI_TWINX_S, regrd N−

EA16 Load Integer Twin Extended Word,
Primary address space, little endian

ldtxa [regaddr] #ASI_TWINX_PL, regrd N−

EB16 Load Integer Twin Extended Word,
Secondary address space, little-endian

ldtxa [regaddr] #ASI_TWINX_SL, regrd N−

† The original assembly language syntax for these instructions used the “ldda” instruction mnemonic. That syntax is now deprecated.
Over time, assemblers will support the new “ldtxa” mnemonic for this instruction. In the meantime, some existing assemblers may
only recognize the original “ldda” mnemonic.

Note Execution of an LDTXA instruction with rd = 0 modifies only R[1].

VIS 2+

rd11 01 0011 imm_asirs1 rs2i=0

31 24 02530 29 19 18 14 13 12 5 4
CHAPTER 7 • Instructions 213

LDTXA

ASIs E216, E316, F016, and F116 perform an access using a virtual address, while ASIs 2616 and 2E16 use
a real address.

An LDTXA instruction that performs a little-endian access behaves as if it comprises two 64-bit loads
(performed atomically), each of which is byte-swapped independently before being written into its
respective destination register.

Exceptions. An attempt to execute an LDTXA instruction with an odd-numbered destination
register (rd{0} = 1) causes an illegal_instruction exception.

An attempt to execute an LDTXA instruction with an effective memory address that is not aligned on
a 16-byte boundary causes a mem_address_not_aligned exception.

IMPL. DEP. #413-S10: It is implementation dependent whether VA_watchpoint and PA_watchpoint
exceptions are recognized on accesses to all 16 bytes of a LDTXA instruction (the recommended
behavior) or only on accesses to the first 8 bytes.

An attempted access by an LDTXA instruction to noncacheable memory causes an a DAE_nc_page
exception (impl. dep. #306-U4-Cs10).

The virtual processor MMU does not provide virtual-to-real translation for ASIs 2616 and 2E16; the
effective address provided with either of those ASIs is interpreted directly as a real address.

A mem_address_not_aligned trap is taken if the access is not aligned on a 128-byte boundary.

Exceptions illegal_instruction
mem_address_not_aligned
privileged_action
VA_watchpoint (impl. dep. #413-S10)
DAE_nc_page
DAE_nfo_page
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
PA_watchpoint (impl. dep. #413-S10)
data_access_error

See Also LDTWA on page 210

Programming
Note

A key use for this instruction is to read a full TTE entry (128 bits,
tag and data) in a TSB directly, without using software
interlocks. The “real address” variants can perform the access
using a real address, bypassing the VA-to-RA translation.

Programming
Note

In hyperprivileged mode, an access to ASI E216, E316, F016, or
F116 is performed using physical (not virtual) addressing.

Compatibility
Note

ASIs 2716, 2F16, 2616, and 2E16 are now standard ASIs that
replace (respectively) ASIs 2416, 2C16, 3416, and 3C16 that were
supported in some previous UltraSPARC implementations.

Implementation
Note

LDTXA shares an opcode with the “i = 0” variant of the
(deprecated) LDTWA instruction; they are differentiated by the
combination of the value of “i” and the ASI used in the
instruction. See Load Integer Twin Word from Alternate Space on
page 210.
214 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

LDTXA
7.61 Load Floating-Point State Register

Description A load floating-point state register instruction (LDXFSR) waits for all FPop instructions that have not
finished execution to complete and then loads a doubleword from memory into the FSR.

LDXFSR does not alter the ver, ftt, qne, reserved, or unimplemented (for example, ns) fields of FSR
(see page 44).

LDXFSR accesses memory using the implicit ASI (see page 87).

If i = 0, the effective address for these instructions is “R[rs1] + R[rs2]” and if i = 0, the effective address
is “R[rs1] + sign_ext(simm13)”.

Exceptions. An attempt to execute an instruction encoded as op = 2 and op3 = 2116 when any of the
following conditions exist causes an illegal_instruction exception:

■ i = 0 and instruction bits 12:5 are nonzero
■ (rd > 1)

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an LDXFSR instruction causes an fp_disabled exception.

If the effective address is not doubleword-aligned, an attempt to execute an LDXFSR instruction
causes a mem_address_not_aligned exception.

Destination Register(s) when Exception Occurs. If a load floating-point state register instruction
generates an exception that causes a precise trap, the destination register (FSR) remains unchanged.

IMPL. DEP. #44-V8-Cs10(a)(2): If an LDXFSR instruction generates an exception that causes a non-
precise trap, it is implementation dependent whether the contents of the destination register (FSR) is
undefined or is guaranteed to remain unchanged.

Instruction op3 rd Operation Assembly Language Syntax Class

10 0001 0 (see page 201)

LDXFSR 10 0001 1 Load Floating-Point State Register ldx [address], %fsr A1

— 10 0001 2–31 Reserved

Programming
Note

For future compatibility, software should only issue an LDXFSR
instruction with a zero value (or a value previously read from
the same field) written into any reserved field of FSR.

Implementation
Note

LDXFSR shares an opcode with the (deprecated) LDFSR
instruction (and possibly with other implementation-dependent
instructions); they are differentiated by the instruction rd field.
An attempt to execute the op = 112, op3 = 10 00012 opcode with
an invalid rd value causes an illegal_instruction exception.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
CHAPTER 7 • Instructions 215

LDTXA

Exceptions illegal_instruction

fp_disabled
mem_address_not_aligned
VA_watchpoint
DAE_privilege_violation
DAE_nfo_page
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
PA_watchpoint
data_access_error

See Also Load Floating-Point Register on page 195
Load Floating-Point State Register (Lower) on page 201
Store Floating-Point State Register on page 288
216 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

MEMBAR
7.62 Memory Barrier

Description The memory barrier instruction, MEMBAR, has two complementary functions: to express order
constraints between memory references and to provide explicit control of memory-reference
completion. The membar_mask field in the suggested assembly language is the concatenation of the
cmask and mmask instruction fields.

MEMBAR introduces an order constraint between classes of memory references appearing before the
MEMBAR and memory references following it in a program. The particular classes of memory
references are specified by the mmask field. Memory references are classified as loads (including load
instructions LDSTUB[A], SWAP[A], CASA, and CASX[A] and stores (including store instructions
LDSTUB[A], SWAP[A], CASA, CASXA, and FLUSH). The mmask field specifies the classes of memory
references subject to ordering, as described below. MEMBAR applies to all memory operations in all
address spaces referenced by the issuing virtual processor, but it has no effect on memory references
by other virtual processors. When the cmask field is nonzero, completion as well as order constraints
are imposed, and the order imposed can be more stringent than that specifiable by the mmask field
alone.

A load has been performed when the value loaded has been transmitted from memory and cannot be
modified by another virtual processor. A store has been performed when the value stored has become
visible, that is, when the previous value can no longer be read by any virtual processor. In specifying
the effect of MEMBAR, instructions are considered to be executed as if they were processed in a
strictly sequential fashion, with each instruction completed before the next has begun.

The mmask field is encoded in bits 3 through 0 of the instruction. TABLE 7-7 specifies the order
constraint that each bit of mmask (selected when set to 1) imposes on memory references appearing
before and after the MEMBAR. From zero to four mask bits may be selected in the mmask field.

Instruction op3 Operation Assembly Language Syntax Class

MEMBAR 10 1000 Memory Barrier membar membar_mask A1

TABLE 7-7 MEMBAR mmask Encodings

Mask Bit
Assembly
Language Name Description

mmask{3} #StoreStore The effects of all stores appearing prior to the MEMBAR
instruction must be visible to all virtual processors before the
effect of any stores following the MEMBAR.

mmask{2} #LoadStore All loads appearing prior to the MEMBAR instruction must
have been performed before the effects of any stores following
the MEMBAR are visible to any other virtual processor.

mmask{1} #StoreLoad The effects of all stores appearing prior to the MEMBAR
instruction must be visible to all virtual processors before loads
following the MEMBAR may be performed.

mmask{0} #LoadLoad All loads appearing prior to the MEMBAR instruction must
have been performed before any loads following the MEMBAR
may be performed.

31 141924 18 13 12 02530 29

10 0 op3 0 1111 i=1 —

4 3

mmask

67

cmask
CHAPTER 7 • Instructions 217

MEMBAR

The cmask field is encoded in bits 6 through 4 of the instruction. Bits in the cmask field, described in
TABLE 7-8, specify additional constraints on the order of memory references and the processing of
instructions. If cmask is zero, then MEMBAR enforces the partial ordering specified by the mmask
field; if cmask is nonzero, then completion and partial order constraints are applied.

A MEMBAR instruction with both mmask = 0 and cmask = 0 is functionally a NOP.

For information on the use of MEMBAR, see Memory Ordering and Synchronization on page 339 and
Programming with the Memory Models contained in the separate volume UltraSPARC Architecture
Application Notes. For additional information about the memory models themselves, see Chapter 9,
Memory.

The coherence and atomicity of memory operations between virtual processors and I/O DMA
memory accesses are implementation dependent (impl. dep. #120-V9).

An attempt to execute a MEMBAR instruction when instruction bits 12:7 are nonzero causes an
illegal_instruction exception.

7.62.1 Memory Synchronization
The UltraSPARC Architecture provides some level of software control over memory synchronization,
through use of the MEMBAR and FLUSH instructions for explicit control of memory ordering in
program execution.

IMPL. DEP. #412-S10: An UltraSPARC Architecture implementation may define the operation of each
MEMBAR variant in any manner that provides the required semantics.

TABLE 7-8 MEMBAR cmask Encodings

Mask Bit Function
Assembly
Language Name Description

cmask{2} Synchronization
barrier

#Sync All operations (including nonmemory reference
operations) appearing prior to the MEMBAR must have
been performed and the effects of any exceptions be
visible before any instruction after the MEMBAR may be
initiated.

cmask{1} Memory issue
barrier

#MemIssue All memory reference operations appearing prior to the
MEMBAR must have been performed before any memory
operation after the MEMBAR may be initiated.

cmask{0} Lookaside barrier #LookasideD (Deprecated) A store appearing prior to the MEMBAR
must complete before any load following the MEMBAR
referencing the same address can be initiated.
MEMBAR #Lookaside is deprecated and is supported only
for legacy code; it should not be used in new software. A
slightly more restrictive MEMBAR operation (such as
MEMBAR #StoreLoad) should be used, instead.
Implementation Note: Since #Lookaside is deprecated,
implementations are not expected to perform address
matching, but instead provide #Lookaside functionality
using a more restrictive MEMBAR operation (such as
#StoreLoad).

V9 Compatibility
Note

MEMBAR with mmask = 816 and cmask = 016 (MEMBAR
#StoreStore) is identical in function to the SPARC V8 STBAR
instruction, which is deprecated.

Implementation
Note

MEMBAR shares an opcode with RDasr; it is distinguished by
rs1 = 15, rd = 0, i = 1, and bit 12 = 0.
218 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

MEMBAR
7.62.2 Synchronization of the Virtual Processor
Synchronization of a virtual processor forces all outstanding instructions to be completed and any
associated hardware errors to be detected and reported before any instruction after the synchronizing
instruction is issued.

Synchronization can be explicitly caused by executing a synchronizing MEMBAR instruction
(MEMBAR #Sync) or by executing an LDXA/STXA/LDDFA/STDFA instruction with an ASI that
forces synchronization.

During synchronization, if a disrupting trap condition due to a hardware error is detected and
external interrupts are enabled, the disrupting trap will occur before the instruction after the
synchronizing instruction is executed. In this case, the PC value saved in TPC during trap entry will
be the address of the instruction after the synchronizing instruction.

7.62.3 TSO Ordering Rules affecting Use of MEMBAR
For detailed rules on use of MEMBAR to enable software to adhere to the ordering rules on a virtual
processor running with the TSO memory model, refer to TSO Ordering Rules on page 337.

Exceptions illegal_instruction

Implementation
Note

For an UltraSPARC Architecture virtual processor that only
provides TSO memory ordering semantics, three of the ordering
MEMBARs would normally be implemented as NOPs. TABLE 7-9
shows an acceptable implementation of MEMBAR for a TSO-
only UltraSPARC Architecture implementation.

If an UltraSPARC Architecture implementation provides a less
restrictive memory model than TSO (for example, RMO), the
implementation of the MEMBAR variants may be different. See
implementation-specific documentation for details.

Programming
Note

Completion of a MEMBAR #Sync instruction does not
guarantee that data previously stored has been written all the
way out to external memory (that is, that cache writebacks to
external memory have completed). Software cannot rely on
that behavior. There is no mechanism in the UltraSPARC
Architecture that allows software to wait for all previous stores
to be written to external memory (that is, for cache writebacks to
completely drain).

TABLE 7-9 MEMBAR Semantics for TSO-only implementation

MEMBAR variant Preferred Implementation

#StoreStore NOP

#LoadStore NOP

#StoreLoad #Sync

#LoadLoad NOP

#Sync #Sync

#MemIssue #Sync

#LookasideD #Sync
CHAPTER 7 • Instructions 219

MOVcc
7.63 Move Integer Register on Condition (MOVcc)

For Integer Condition Codes

† synonym: movnz ‡ synonym: movz ◊ synonym: movgeu ∇ synonym: movlu

Instruction op3 cond Operation icc / xcc Test Assembly Language Syntax Class

MOVA 10 1100 1000 Move Always 1 mova i_or_x_cc, reg_or_imm11, regrd A1

MOVN 10 1100 0000 Move Never 0 movn i_or_x_cc, reg_or_imm11, regrd A1

MOVNE 10 1100 1001 Move if Not Equal not Z movne† i_or_x_cc, reg_or_imm11, regrd A1

MOVE 10 1100 0001 Move if Equal Z move‡ i_or_x_cc, reg_or_imm11, regrd A1

MOVG 10 1100 1010 Move if Greater not (Z or
N xor V))

movg i_or_x_cc, reg_or_imm11, regrd A1

MOVLE 10 1100 0010 Move if Less or
Equal

Z or (N xor V) movle i_or_x_cc, reg_or_imm11, regrd A1

MOVGE 10 1100 1011 Move if Greater
or Equal

not (N xor V) movge i_or_x_cc, reg_or_imm11, regrd A1

MOVL 10 1100 0011 Move if Less N xor V movl i_or_x_cc, reg_or_imm11, regrd A1

MOVGU 10 1100 1100 Move if Greater,
Unsigned

not (C or Z) movgu i_or_x_cc, reg_or_imm11, regrd A1

MOVLEU 10 1100 0100 Move if Less or
Equal, Unsigned

(C or Z) movleu i_or_x_cc, reg_or_imm11, regrd A1

MOVCC 10 1100 1101 Move if Carry
Clear (Greater or
Equal, Unsigned)

not C movcc◊ i_or_x_cc, reg_or_imm11, regrd A1

MOVCS 10 1100 0101 Move if Carry Set
(Less than,
Unsigned)

C movcs∇ i_or_x_cc, reg_or_imm11, regrd A1

MOVPOS 10 1100 1110 Move if Positive not N movpos i_or_x_cc, reg_or_imm11, regrd A1

MOVNEG 10 1100 0110 Move if Negative N movneg i_or_x_cc, reg_or_imm11, regrd A1

MOVVC 10 1100 1111 Move if Overflow
Clear

not V movvc i_or_x_cc, reg_or_imm11, regrd A1

MOVVS 10 1100 0111 Move if Overflow
Set

V movvs i_or_x_cc, reg_or_imm11, regrd A1

Programming
Note

In assembly language, to select the appropriate condition code,
include %icc or %xcc before the reg_or_imm11 field.
220 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

MOVcc

For Floating-Point Condition Codes

† synonym: movnz ‡ synonym: movz

Instruction op3 cond Operation fcc Test Assembly Language Syntax Class

MOVFA 10 1100 1000 Move Always 1 mova %fccn, reg_or_imm11, regrd A1

MOVFN 10 1100 0000 Move Never 0 movn %fccn, reg_or_imm11, regrd A1

MOVFU 10 1100 0111 Move if Unordered U movu %fccn, reg_or_imm11, regrd A1

MOVFG 10 1100 0110 Move if Greater G movg %fccn, reg_or_imm11, regrd A1

MOVFUG 10 1100 0101 Move if Unordered
or Greater

G or U movug %fccn, reg_or_imm11, regrd A1

MOVFL 10 1100 0100 Move if Less L movl %fccn, reg_or_imm11, regrd A1

MOVFUL 10 1100 0011 Move if Unordered
or Less

L or U movul %fccn, reg_or_imm11, regrd A1

MOVFLG 10 1100 0010 Move if Less or
Greater

L or G movlg %fccn, reg_or_imm11, regrd A1

MOVFNE 10 1100 0001 Move if Not Equal L or G or U movne† %fccn, reg_or_imm11, regrd A1

MOVFE 10 1100 1001 Move if Equal E move‡ %fccn, reg_or_imm11, regrd A1

MOVFUE 10 1100 1010 Move if Unordered
or Equal

E or U movue %fccn, reg_or_imm11, regrd A1

MOVFGE 10 1100 1011 Move if Greater or
Equal

E or G movge %fccn, reg_or_imm11, regrd A1

MOVFUGE 10 1100 1100 Move if Unordered
or Greater or Equal

E or G or U movuge %fccn, reg_or_imm11, regrd A1

MOVFLE 10 1100 1101 Move if Less or
Equal

E or L movle %fccn, reg_or_imm11, regrd A1

MOVFULE 10 1100 1110 Move if Unordered
or Less or Equal

E or L or U movule %fccn, reg_or_imm11, regrd A1

MOVFO 10 1100 1111 Move if Ordered E or L or G movo %fccn, reg_or_imm11, regrd A1

Programming
Note

In assembly language, to select the appropriate condition code,
include %fcc0, %fcc1, %fcc2, or %fcc3 before the reg_or_imm11
field.

cc2 cc1 cc0 Condition Code

0 0 0 fcc0

0 0 1 fcc1

0 1 0 fcc2

0 1 1 fcc3

1 0 0 icc

1 0 1 Reserved (illegal_instruction)
1 1 0 xcc

1 1 1 Reserved (illegal_instruction)

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

cond rs2i=0

rd10 op3 cond simm11i=1

17

cc2

cc2

11

cc1

cc1

10

cc0

cc0
CHAPTER 7 • Instructions 221

MOVcc

Description These instructions test to see if cond is TRUE for the selected condition codes. If so, they copy the

value in R[rs2] if i field = 0, or “sign_ext(simm11)” if i = 1 into R[rd]. The condition code used is
specified by the cc2, cc1, and cc0 fields of the instruction. If the condition is FALSE, then R[rd] is not
changed.

These instructions copy an integer register to another integer register if the condition is TRUE. The
condition code that is used to determine whether the move will occur can be either integer condition
code (icc or xcc) or any floating-point condition code (fcc0, fcc1, fcc2, or fcc3).

These instructions do not modify any condition codes.

An attempt to execute a MOVcc instruction when either instruction bits 10:5 are nonzero or
(cc2 :: cc1 :: cc0) = 1012 or 1112 causes an illegal_instruction exception.

If cc2 = 0 (that is, a floating-point condition code is being referenced in the MOVcc instructions) and
either the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute a MOVcc instruction causes an fp_disabled exception.

Exceptions illegal_instruction
fp_disabled

Programming
Note

Branches cause the performance of many implementations to
degrade significantly. Frequently, the MOVcc and FMOVcc
instructions can be used to avoid branches. For example, the C
language if-then-else statement

if (A > B) then X = 1; else X = 0;

can be coded as

cmp %i0,%i2
bg,a %xcc,label
or %g0,1,%i3! X = 1
or %g0,0,%i3! X = 0

label:...

The above sequence requires four instructions, including a branch.
With MOVcc this could be coded as:

cmp %i0,%i2
or %g0,1,%i3! assume X = 1
movle %xcc,0,%i3! overwrite with X = 0

This approach takes only three instructions and no branches and
may boost performance significantly. Use MOVcc and FMOVcc
instead of branches wherever these instructions would increase
performance.
222 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

MOVr
7.64 Move Integer Register on Register Condition
(MOVr)

† synonym: movre ‡ synonym: movrne

Description If the contents of integer register R[rs1] satisfy the condition specified in the rcond field, these
instructions copy their second operand (if i = 0, R[rs2]; if i = 1, sign_ext(simm10)) into R[rd]. If the
contents of R[rs1] do not satisfy the condition, then R[rd] is not modified.

These instructions treat the register contents as a signed integer value; they do not modify any
condition codes.

An attempt to execute a MOVr instruction when either instruction bits 9:5 are nonzero or rcond = 0002
or 1002 causes an illegal_instruction exception.

Instruction op3 rcond Operation Test Assembly Language Syntax Class

— 10 1111 000 Reserved (illegal_instruction) —

MOVRZ 10 1111 001 Move if Register Zero R[rs1] = 0 movrz† regrs1, reg_or_imm10, regrd A1

MOVRLEZ 10 1111 010 Move if Register Less
Than or Equal to Zero

R[rs1] ≤ 0 movrlez regrs1, reg_or_imm10, regrd A1

MOVRLZ 10 1111 011 Move if Register Less
Than Zero

R[rs1] < 0 movrlz regrs1, reg_or_imm10, regrd A1

— 10 1111 100 Reserved (illegal_instruction) —

MOVRNZ 10 1111 101 Move if Register Not
Zero

R[rs1] ≠ 0 movrnz‡ regrs1, reg_or_imm10, regrd A1

MOVRGZ 10 1111 110 Move if Register
Greater Than Zero

R[rs1] > 0 movrgz regrs1, reg_or_imm10, regrd A1

MOVRGEZ 10 1111 111 Move if Register
Greater Than or Equal
to Zero

R[rs1] ≥ 0 movrgez regrs1, reg_or_imm10, regrd A1

Programming
Note

The MOVr instructions are “64-bit-only” instructions; there is no
version of these instructions that operates on just the less-
significant 32 bits of their source operands.

Implementation
Note

If this instruction is implemented by tagging each register value
with an n (negative) and a z (zero) bit, use the table below to
determine if rcond is TRUE.

Move Test
MOVRNZ not Z
MOVRZ Z
MOVRGEZ not N
MOVRLZ N
MOVRLEZ N or Z
MOVRGZ N nor Z

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm10i=1

rcond

rcond

10 9
CHAPTER 7 • Instructions 223

MOVr

Exceptions illegal_instruction
224 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

MULScc - Deprecated
7.65 Multiply Step

Description MULScc treats the less-significant 32 bits of R[rs1] and the less-significant 32 bits of the Y register as a
single 64-bit, right-shiftable doubleword register. The least significant bit of R[rs1] is treated as if it
were adjacent to bit 31 of the Y register. The MULScc instruction performs an addition operation,
based on the least significant bit of Y.

Multiplication assumes that the Y register initially contains the multiplier, R[rs1] contains the most
significant bits of the product, and R[rs2] contains the multiplicand. Upon completion of the
multiplication, the Y register contains the least significant bits of the product.

MULScc operates as follows:

1. If i = 0, the multiplicand is R[rs2]; if i = 1, the multiplicand is sign_ext(simm13).

2. A 32-bit value is computed by shifting the value from R[rs1] right by one bit with
“CCR.icc.n xor CCR.icc.v” replacing bit 31 of R[rs1]. (This is the proper sign for the previous
partial product.)

3. If the least significant bit of Y = 1, the shifted value from step (2) and the multiplicand are added. If
the least significant bit of the Y = 0, then 0 is added to the shifted value from step (2).

4. MULScc writes the following result values:

The MULScc instruction is deprecated and should not be used in new software.
The MULX instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class

MULSccD 10 0100 Multiply Step and modify cc’s mulscc regrs1, reg_or_imm, regrd Y3

Note In a standard MULScc instruction, rs1 = rd.

Register field Value written by MULScc

CCR.icc updated according to the result of the addition in step (3)
above

R[rd]{63:33} 0

R[rd]{32} CCR.icc.c

R[rd]{31:0} the least-significant 32 bits of the sum from step (3) above

Y the previous value of the Y register, shifted right by one
bit, with Y{31} replaced by the value of R[rs1]{0} prior to
shifting in step (2)

CCR.xcc.n 0

CCR.xcc.v 0

CCR.xcc.c 0

CCR.xcc.z if (R[rd]{63:0} = 0) then 1 else 0

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
CHAPTER 7 • Instructions 225

MULScc - Deprecated
5. The Y register is shifted right by one bit, with the least significant bit of the unshifted R[rs1]
replacing bit 31 of Y.

An attempt to execute a MULScc instruction when i = 0 and instruction bits 12:5 are nonzero causes an
illegal_instruction exception.

Exceptions illegal_instruction

See Also RDY on page 242
SDIV, SDIVcc on page 258
SMUL, SMULcc on page 265
UDIV, UDIVcc on page 301
UMUL, UMULcc on page 303

SPARC V9
Compatibility

Note

In SPARC V9, MULScc’s effect on R[rd]{63:32} and CCR.xcc
were explicitly left undefined.
226 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

MULX / SDIVX / UDIVX
7.66 Multiply and Divide (64-bit)

Description MULX computes “R[rs1] × R[rs2]” if i = 0 or “R[rs1] × sign_ext(simm13)” if i = 1, and writes the 64-
bit product into R[rd]. MULX can be used to calculate the 64-bit product for signed or unsigned
operands (the product is the same).

SDIVX and UDIVX compute “R[rs1] ÷ R[rs2]” if i = 0 or “R[rs1] ÷ sign_ext(simm13)” if i = 1, and
write the 64-bit result into R[rd]. SDIVX operates on the operands as signed integers and produces a
corresponding signed result. UDIVX operates on the operands as unsigned integers and produces a
corresponding unsigned result.

For SDIVX, if the largest negative number is divided by –1, the result should be the largest negative
number. That is:

8000 0000 0000 000016 ÷ FFFF FFFF FFFF FFFF16 = 8000 0000 0000 000016.

These instructions do not modify any condition codes.

An attempt to execute a MULX, SDIVX, or UDIVX instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction
division_by_zero

Instruction op3 Operation Assembly Language Class

MULX 00 1001 Multiply (signed or unsigned) mulx regrs1, reg_or_imm, regrd A1

SDIVX 10 1101 Signed Divide sdivx regrs1, reg_or_imm, regrd A1

UDIVX 00 1101 Unsigned Divide udivx regrs1, reg_or_imm, regrd A1

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
CHAPTER 7 • Instructions 227

NOP
7.67 No Operation

Description The NOP instruction changes no program-visible state (except that of the PC register).

NOP is a special case of the SETHI instruction, with imm22 = 0 and rd = 0.

Exceptions None

Instruction op2 Operation Assembly Language Syntax Class

NOP 100 No Operation nop A1

Programming
Note

There are many other opcodes that may execute as NOPs;
however, this dedicated NOP instruction is the only one
guaranteed to be implemented efficiently across all
implementations.

00 op2 imm22 = 0rd = 0 0 0 0 0

31 24 02530 29 22 21
228 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

NORMALW
7.68 NORMALW

Description NORMALWP is a privileged instruction that copies the value of the OTHERWIN register to the
CANRESTORE register, then sets the OTHERWIN register to zero.

An attempt to execute a NORMALW instruction when instruction bits 18:0 are nonzero causes an
illegal_instruction exception.

An attempt to execute an NORMALW instruction in nonprivileged mode (PSTATE.priv = 0 and
HSTATE.hpriv = 0) causes a privileged_opcode exception.

Exceptions illegal_instruction
privileged_opcode

See Also ALLCLEAN on page 112
INVALW on page 186
OTHERW on page 231
RESTORED on page 250
SAVED on page 257

Instruction Operation Assembly Language Syntax Class

NORMALWP “Other” register windows become “normal” register windows normalw A1

Programming
Notes

The NORMALW instruction is used when changing address
spaces. NORMALW indicates the current "other" windows are
now "normal" windows and should use the spill_n_normal and
fill_n_normal traps when they generate a trap due to window spill
or fill exceptions. The window state may become inconsistent if
NORMALW is used when CANRESTORE is nonzero.

This instruction allows window manipulations to be atomic,
without the value of N_REG_WINDOWS being visible to privileged
software and without an assumption that N_REG_WINDOWS is
constant (since hyperprivileged software can migrate a thread
among virtual processors, across which N_REG_WINDOWS may
vary).

31 1924 18 02530 29

10 fcn = 0 0100 11 0001 —
CHAPTER 7 • Instructions 229

OR
7.69 OR Logical Operation

Description These instructions implement bitwise logical or operations. They compute “R[rs1] op R[rs2]” if i = 0,
or “R[rs1] op sign_ext(simm13)” if i = 1, and write the result into R[rd].

ORcc and ORNcc modify the integer condition codes (icc and xcc). They set the condition codes as
follows:

■ icc.v, icc.c, xcc.v, and xcc.c are set to 0
■ icc.n is copied from bit 31 of the result
■ xcc.n is copied from bit 63 of the result
■ icc.z is set to 1 if bits 31:0 of the result are zero (otherwise to 0)
■ xcc.z is set to 1 if all 64 bits of the result are zero (otherwise to 0)

ORN and ORNcc logically negate their second operand before applying the main (or) operation.

An attempt to execute an OR[N][cc] instruction when i = 0 and instruction bits 12:5 are nonzero causes
an illegal_instruction exception.

Exceptions illegal_instruction

Instruction op3 Operation Assembly Language Syntax Class

OR 00 0010 Inclusive or or regrs1, reg_or_imm, regrd A1

ORcc 01 0010 Inclusive or and modify cc’s orcc regrs1, reg_or_imm, regrd A1

ORN 00 0110 Inclusive or not orn regrs1, reg_or_imm, regrd A1

ORNcc 01 0110 Inclusive or not and modify cc’s orncc regrs1, reg_or_imm, regrd A1

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
230 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

OTHERW
7.70 OTHERW

Description OTHERWP is a privileged instruction that copies the value of the CANRESTORE register to the
OTHERWIN register, then sets the CANRESTORE register to zero.

An attempt to execute an OTHERW instruction when instruction bits 18:0 are nonzero causes an
illegal_instruction exception.

An attempt to execute an OTHERW instruction in nonprivileged mode (PSTATE.priv = 0 and
HSTATE.hpriv = 0) causes a privileged_opcode exception.

Exceptions illegal_instruction
privileged_opcode

See Also ALLCLEAN on page 112
INVALW on page 186
NORMALW on page 229
RESTORED on page 250
SAVED on page 257

Instruction Operation Assembly Language Syntax Class

OTHERWP “Normal” register windows become “other”
register windows

otherw A1

Programming
Notes

The OTHERW instruction is used when changing address spaces.
OTHERW indicates the current "normal" register windows are
now "other" register windows and should use the spill_n_other
and fill_n_other traps when they generate a trap due to window
spill or fill exceptions. The window state may become inconsistent
if OTHERW is used when OTHERWIN is nonzero.

This instruction allows window manipulations to be atomic,
without the value of N_REG_WINDOWS being visible to privileged
software and without an assumption that N_REG_WINDOWS is
constant (since hyperprivileged software can migrate a thread
among virtual processors, across which N_REG_WINDOWS may
vary).

31 1924 18 02530 29

10 fcn = 0 0011 11 0001 —
CHAPTER 7 • Instructions 231

PDIST
7.71 Pixel Component Distance
(with Accumulation)

Description Eight unsigned 8-bit values are contained in the 64-bit floating-point source registers FD[rs1] and
FD[rs2]. The corresponding 8-bit values in the source registers are subtracted (that is, each byte in
FD[rs2] is subtracted from the corresponding byte in FD[rs1]). The sum of the absolute value of each
difference is added to the integer in FD[rd] and the resulting integer sum is stored in the destination
register, FD[rd].

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FPMERGE instruction causes an fp_disabled exception.

Exceptions fp_disabled

Instruction opf Operation Assembly Language Syntax Class

PDIST 0 0011 1110 Distance between eight 8-bit components,
with accumulation

pdist fregrs1, fregrs2, fregrd C2

Programming
Notes

PDIST uses FD[rd] as both a source and a destination register.

Typically, PDIST is used for motion estimation in video
compression algorithms.

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
232 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

POPC
7.72 Population Count

Description POPC counts the number of ‘1’ bits in R[rs2] if i = 0, or the number of ‘1’ bits in sign_ext(simm13) if
i = 1, and stores the count in R[rd]. This instruction does not modify the condition codes.

An attempt to execute a POPC instruction when either instruction bits 18:14 are nonzero, or i = 0 and
instruction bits 12:5 are nonzero causes an illegal_instruction exception.

Instruction op3 Operation Assembly Language Syntax Class

POPC 10 1110 Population Count popc reg_or_imm, regrd C2

V9 Compatibility
Note

Instruction bits 18 through 14 must be zero for POPC. Other
encodings of this field (rs1) may be used in future versions of the
SPARC architecture for other instructions.

Programming
Note

POPC can be used to “find first bit set” in a register.
A ‘C’-language program illustrating how POPC can be used for
this purpose follows:

int ffs(in)/* finds first 1 bit, counting from the LSB */
unsigned in;
{

return popc(in ^ (∼ (–in)));/* for nonzero zz */
}

Inline assembly language code for ffs() is:

neg %IN, %NEG_IN ! –zz(2’s complement)
xnor %IN, %NEG_IN, %TEMP! ^ ∼ –zz (exclusive nor)
popc %TEMP,%RESULT ! result = popc(zz ^ ∼ –zz)
movrz %IN,%g0,%RESULT ! %RESULT should be 0 for %IN=0

where IN, M_IN, TEMP, and RESULT are integer registers.

Example computation:
 IN = ...00101000 !1st ‘1’ bit from right is
 –IN = ...11011000 ! bit 3 (4th bit)
 ~ –IN = ...00100111
 IN ^ ~ –IN = ...00001111
popc (IN ^ ~ –IN) = 4

Programming
Note

POPC can be used to “centrifuge” all the ‘1’ bits in a register to the
least significant end of a destination register. Assembly-language
code illustrating how POPC can be used for this purpose follows:

popc %IN, %DEST
cmp %IN, -1 ! Test for pattern of all 1’s
mov -1, %TEMP ! Constant -1 -> temp register
sllx %TEMP,%DEST,%DEST ! (shift count of 64 same as 0)
not %DEST !
movcc %xcc, -1, %DEST ! If src was -1, result is -1

where IN, TEMP, and DEST are integer registers.

Programming
Note

POPC is a “64-bit-only” instruction; there is no version of this
instruction that operates on just the less-significant 32 bits of its
source operand.

rd10 op3 0 0000 simm13i=1

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

0 0000 rs2i=0
CHAPTER 7 • Instructions 233

POPC

Exceptions illegal_instruction
234 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

PREFETCH
7.73 Prefetch

PREFETCH

PREFETCHA

Description A PREFETCH[A] instruction provides a hint to the virtual processor that software expects to access a
particular address in memory in the near future, so that the virtual processor may take action to
reduce the latency of accesses near that address. Typically, execution of a prefetch instruction initiates
movement of a block of data containing the addressed byte from memory toward the virtual
processor or creates an address mapping.

Instruction op3 Operation Assembly Language Syntax Class

PREFETCH 10 1101 Prefetch Data prefetch [address],prefetch_fcn A1

PREFETCHAPASI 11 1101 Prefetch Data from
Alternate Space

prefetcha
prefetcha

[regaddr] imm_asi, prefetch_fcn
[reg_plus_imm] %asi,prefetch_fcn

A1

TABLE 7-10 Prefetch Variants, by Function Code

fcn Prefetch Variant

0 (Weak) Prefetch for several reads

1 (Weak) Prefetch for one read

2 (Weak) Prefetch for several writes and possibly reads

3 (Weak) Prefetch for one write

4 Prefetch page

5–15 (0516–0F16) Reserved (illegal_instruction)

16 (1016) Implementation dependent (NOP if not implemented)

17 (1116) Prefetch to nearest unified cache

18–19 (1216–1316) Implementation dependent (NOP if not implemented)

20 (1416) Strong Prefetch for several reads

21 (1516) Strong Prefetch for one read

22 (1616) Strong Prefetch for several writes and possibly reads

23 (1716) Strong Prefetch for one write

Implementation
Note

A PREFETCH[A] instruction may be used by software to:

• prefetch a cache line into a cache
• prefetch a valid address translation into a TLB
• invalidate a cache line that may have caused a correctable error during

a load instruction.

31 24 02530 29 19 18 14 13 12 5 4

fcn11 op3 rs1 simm13i=1

fcn11 op3 rs1 i=0 — rs2

fcn11 op3 imm_asirs1 rs2i=0

31 24 02530 29 19 18 14 13 12 5 4

fcn11 op3 rs1 simm13i=1
CHAPTER 7 • Instructions 235

PREFETCH

If i = 0, the effective address operand for the PREFETCH instruction is “R[rs1] + R[rs2]”; if i = 1, it is
“R[rs1] + sign_ext (simm13)”.

PREFETCH instructions access the primary address space (ASI_PRIMARY[_LITTLE]).

PREFETCHA instructions access an alternate address space. If i = 0, the address space identifier (ASI)
to be used for the instruction is in the imm_asi field. If i = 1, the ASI is found in the ASI register.

A prefetch operates much the same as a regular load operation (including a possible hardware
tablewalk to load a TLB entry), but with certain important differences. In particular, a PREFETCH[A]
instruction is non-blocking; subsequent instructions can continue to execute while the prefetch is in
progress.

When executed in nonprivileged or privileged mode, PREFETCH[A] has the same observable effect as
a NOP. A prefetch instruction will not cause a trap if applied to an illegal or nonexistent memory
address. (impl. dep. #103-V9-Ms10(e))

Whether a PREFETCH[A] instruction always succeeds when the MMU is disabled is implementation
dependent (impl. dep. # 117-V9).

IMPL. DEP. #103-V9-Ms10(a): The size and alignment in memory of the data block prefetched is
implementation dependent; the minimum size is 64 bytes and the minimum alignment is a 64-byte
boundary.

Variants of the prefetch instruction can be used to prepare the memory system for different types of
accesses.

IMPL. DEP. #103-V9-Ms10(b): An implementation may implement none, some, or all of the defined
PREFETCH[A] variants. It is implementation-dependent whether each variant is (1) not implemented
and executes as a NOP, (2) is implemented and supports the full semantics for that variant, or (3) is
implemented and only supports the simple common-case prefetching semantics for that variant.

7.73.1 Exceptions
Prefetch instructions PREFETCH and PREFETCHA generate exceptions under the conditions detailed
in TABLE 7-11. Only the implementation-dependent prefetch variants (see TABLE 7-10) may generate an
exception under conditions not listed in this table; the predefined variants only generate the
exceptions listed here.

Implementation
Note

A PREFETCH[A] instruction is “released” by hardware after the
TLB access, allowing subsequent instructions to continue to
execute while the virtual processor performs the hardware
tablewalk (in the case of a TLB miss for a Strong prefetch) or the
cache access in the background.

Programming
Note

Software may prefetch 64 bytes beginning at an arbitrary address
address by issuing the instructions

prefetch [address], prefetch_fcn
prefetch [address + 63], prefetch_fcn

TABLE 7-11 Behavior of PREFETCH[A] Instructions Under Exceptional Conditions (1 of 2)

fcn Instruction Condition Result

any PREFETCH i = 0 and instruction bits 12:5 are
nonzero

illegal_instruction

any PREFETCHA reference to an ASI in the range
016-7F16, while in nonprivileged
mode (privileged_action condition)

executes as NOP

any PREFETCHA reference to an ASI in range
3016..7F16, while in privileged
mode (privileged_action condition)

executes as NOP
236 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

PREFETCH
7.73.2 Weak versus Strong Prefetches
Some prefetch variants are available in two versions, “Weak” and “Strong”.

From software’s perspective, the difference between the two is the degree of certainty that the data
being prefetched will subsequently be accessed. That, in turn, affects the amount of effort (time) it’s
willing for the underlying hardware to invest to perform the prefetch. If the prefetch is speculative
(software believes the data will probably be needed, but isn’t sure), a Weak prefetch will initiate data

0-3
(weak)

PREFETCH[A] condition detected for MMU miss
(data_access_MMU_miss or
fast_data_access_MMU_miss)

executes as NOP

0-3
(weak)

PREFETCH[A] condition detected for
data_access_MMU_error

executes as NOP

0-4 PREFETCH[A] variant unimplemented executes as NOP

0-4 PREFETCHA reference to an invalid ASI
(ASI not listed in following table)

executes as NOP

0-4, 17,
20-23

PREFETCH[A] condition detected for
DAE_invalid_asi (see following
table),
DAE_privilege_violation,
DAE_nc_page ((TTE.cp = 0) or
((fcn = 0) and TTE.cv = 0)),
DAE_nfo_page, or
DAE_side_effect_page (TTE.e = 1)

executes as NOP

4, 20-23
(strong)

PREFETCH[A] prefetching the requested data
would be a very time-consuming
operation (condition detected for
data_access_MMU_miss)

executes as NOP

4, 20-23
(strong)

PREFETCH[A] prefetching the requested data
would be a time-consuming
operation (condition detected for
fast_data_access_MMU_miss)

fast_data_access_MMU_miss

4, 20-23
(strong)

PREFETCH[A] condition detected for
data_access_MMU_error,
hw_corrected_error, or
sw_recoverable_error

data_access_MMU_error,
hw_corrected_error, or
sw_recoverable_error

5–15
(0516–0F16)

PREFETCH[A] (always) illegal_instruction

ASIs valid for PREFETCHA (all others are invalid)

ASI_AS_IF_PRIV_PRIMARY ASI_AS_IF_PRIV_PRIMARY_LITTLE

ASI_AS_IF_PRIV_SECONDARY ASI_AS_IF_PRIV_SECONDARY_LITTLE

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

ASI_PRIMARY_NO_FAULT ASI_PRIMARY_NO_FAULT_LITTLE

ASI_SECONDARY_NO_FAULT ASI_SECONDARY_NO_FAULT_LITTLE

ASI_REAL ASI_REAL_LITTLE

TABLE 7-11 Behavior of PREFETCH[A] Instructions Under Exceptional Conditions (2 of 2)

fcn Instruction Condition Result
CHAPTER 7 • Instructions 237

PREFETCH

movement if the operation can be performed quickly, but abort the prefetch and behave like a NOP if
it turns out that performing the full prefetch will be time-consuming. If software has very high
confidence that data being prefetched will subsequently be accessed, then a Strong prefetch will
ensure that the prefetch operation will continue, even if the prefetch operation does become time-
consuming.

From the virtual processor’s perspective, the difference between a Weak and a Strong prefetch is
whether the prefetch is allowed to perform a time-consuming operation1 in order to complete. If a
time-consuming operation is required, a Weak prefetch will abandon the operation and behave like a
NOP while a Strong prefetch will pay the cost of performing the time-consuming operation so it can
finish initiating the requested data movement. Behavioral differences among loads, strong prefetches,
and weak prefetches are compared in TABLE 7-12.

7.73.3 Prefetch Variants
The prefetch variant is selected by the fcn field of the instruction. fcn values 5–15 are reserved for
future extensions of the architecture, and PREFETCH fcn values of 16–19 and 24–31 are
implementation dependent in UltraSPARC Architecture 2007.

Each prefetch variant reflects an intent on the part of the compiler or programmer, a “hint” to the
underlying virtual processor. This is different from other instructions (except BPN), all of which cause
specific actions to occur. An UltraSPARC Architecture implementation may implement a prefetch
variant by any technique, as long as the intent of the variant is achieved (impl. dep. #103-V9-Ms10(b)).

The prefetch instruction is designed to treat common cases well. The variants are intended to provide
scalability for future improvements in both hardware and compilers. If a variant is implemented, it
should have the effects described below. In case some of the variants listed below are implemented
and some are not, a recommended overloading of the unimplemented variants is provided in the
SPARC V9 specification. An implementation must treat any unimplemented prefetch fcn values as
NOPs (impl. dep. #103-V9-Ms10).

7.73.3.1 Prefetch for Several Reads (fcn = 0, 20(1416))

The intent of these variants is to cause movement of data into the cache nearest the virtual processor.
1. such as a hardware tablewalk or (if hardware tablewalk is disabled) a fast_data_access_MMU_miss trap, plus subsequently filling

the cache line at the requested address

TABLE 7-12 Comparative Behavior of Load and Weak Prefetch Operations

Condition

Behavior

Load Prefetch

On a µTLB miss, is an MMU access performed? Yes Yes

On an MMU miss, is a hardware tablewalk performed? Yes No

Upon detection of data_access_MMU_miss exception
(which only occurs during a hardware tablewalk) …

Traps —
(does not
occur)

Upon detection of fast_data_access_MMU_miss exception... Traps NOP‡

Upon detection of privileged_action, DAE_*,
data_access_protection, PA_watchpoint, or VA_watchpoint
exception…

Traps NOP‡

If page table entry has cp = 0, e = 1, and cv = 0 for Prefetch for
Several Reads

Traps NOP‡

If page table entry has nfo = 1 for a non-NoFault access… Traps NOP‡

If page table entry has w = 0 for any prefetch for write access
(fcn = 2, 3, 22, or 23)…

Traps NOP‡

Upon detection of fatal error or disrupting error conditions… Traps Traps

Instruction blocks until cache line filled? Yes No
238 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

PREFETCH

There are Weak and Strong versions of this prefetch variant; fcn = 0 is Weak and fcn = 20 is Strong.
The choice of Weak or Strong variant controls the degree of effort that the virtual processor may
expend to obtain the data.

7.73.3.2 Prefetch for One Read (fcn = 1, 21(1516))

The data to be read from the given address are expected to be read once and not reused (read or
written) soon after that. Use of this PREFETCH variant indicates that, if possible, the data cache
should be minimally disturbed by the data read from the given address.

There are Weak and Strong versions of this prefetch variant; fcn = 1 is Weak and fcn = 21 is Strong.
The choice of Weak or Strong variant controls the degree of effort that the virtual processor may
expend to obtain the data.

7.73.3.3 Prefetch for Several Writes (and Possibly Reads) (fcn = 2,
22(1616))

The intent of this variant is to cause movement of data in preparation for multiple writes.

There are Weak and Strong versions of this prefetch variant; fcn = 2 is Weak and fcn = 22 is Strong.
The choice of Weak or Strong variant controls the degree of effort that the virtual processor may
expend to obtain the data.

7.73.3.4 Prefetch for One Write (fcn = 3, 23(1716))

The intent of this variant is to initiate movement of data in preparation for a single write. This variant
indicates that, if possible, the data cache should be minimally disturbed by the data written to this
address, because those data are not expected to be reused (read or written) soon after they have been
written once.

There are Weak and Strong versions of this prefetch variant; fcn = 3 is Weak and fcn = 23 is Strong.
The choice of Weak or Strong variant controls the degree of effort that the virtual processor may
expend to obtain the data.

Programming
Note

The intended use of this variant is for streaming relatively small
amounts of data into the primary data cache of the virtual
processor.

Programming
Note

The intended use of this variant is in streaming medium amounts
of data into the virtual processor without disturbing the data in
the primary data cache memory.

Programming
Note

An example use of this variant is to initialize a cache line, in
preparation for a partial write.

Implementation
Note

On a multiprocessor system, this variant indicates that exclusive
ownership of the addressed data is needed. Therefore, it may
have the additional effect of obtaining exclusive ownership of the
addressed cache line.
CHAPTER 7 • Instructions 239

PREFETCH
7.73.3.5 Prefetch Page (fcn = 4)

In a virtual memory system, the intended action of this variant is for hardware (or privileged or
hyperprivileged software) to initiate asynchronous mapping of the referenced virtual address
(assuming that it is legal to do so).

In a non-virtual-memory system or if the addressed page is already mapped, this variant has no
effect.

7.73.3.6 Prefetch to Nearest Unified Cache (fcn = 17(1116))

The intent of this variant is to cause movement of data into the nearest unified (combined instruction
and data) cache. At the successful completion of this variant, the selected line from memory will be in
the unified cache in the shared state, and in caches (if any) below it in the cache hierarchy.

Prefetch to Nearest Unified Cache is a Strong prefetch variant.

7.73.4 Implementation-Dependent Prefetch Variants (fcn = 16, 18,
19, and 24–31)
IMPL. DEP. #103-V9-Ms10(c): Whether and how PREFETCH fcns 16, 18, 19 and 24-31 are
implemented are implementation dependent. If a variant is not implemented, it must execute as a
NOP.

7.73.5 Additional Notes

Programming
Note

Prefetch Page is used is to avoid a later page fault for the given
address, or at least to shorten the latency of a page fault.

Implementation
Note

The mapping required by Prefetch Page may be performed by
privileged software, hyperprivileged software, or hardware.

Programming
Note

Prefetch instructions do have some “cost to execute”. As long as
the cost of executing a prefetch instruction is well less than the
cost of a cache miss, use of prefetching provides a net gain in
performance.

It does not appear that prefetching causes a significant number of
useless fetches from memory, though it may increase the rate of
useful fetches (and hence the bandwidth), because it more
efficiently overlaps computing with fetching.

Programming
Note

A compiler that generates PREFETCH instructions should
generate each of the variants where its use is most appropriate.
That will help portable software be reasonably efficient across a
range of hardware configurations.

Implementation
Note

Any effects of a data prefetch operation in privileged or
hyperprivileged code should be reasonable (for example, in
handling ECC errors, no page prefetching is allowed within code
that handles page faults). The benefits of prefetching should be
available to most privileged code.
240 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

PREFETCH
Exceptions illegal_instruction
fast_data_access_MMU_miss
data_access_MMU_error

Implementation
Note

A prefetch from a nonprefetchable location has no effect. It is up
to memory management hardware to determine how locations
are identified as not prefetchable.
CHAPTER 7 • Instructions 241

RDasr
7.74 Read Ancillary State Register
Instruction rs1 Operation Assembly Language Syntax Class

RDYD 0 Read Y register (deprecated) rd %y, regrd D2

— 1 Reserved

RDCCR 2 Read Condition Codes register (CCR) rd %ccr, regrd A1

RDASI 3 Read ASI register rd %asi, regrd A1

RDTICKPnpt 4 Read TICK register rd %tick, regrd A1

RDPC 5 Read Program Counter (PC) rd %pc, regrd A2

RDFPRS 6 Read Floating-Point Registers Status (FPRS)
register

rd %fprs, regrd A1

— 7−14
(7-0E16)

Reserved

See text 15 (F16) MEMBAR or Reserved; see text

— 16-18
(1016-1216)

Reserved (impl. dep. #8-V8-Cs20, 9-V8-Cs20)

RDGSR 19 (1316) Read General Status register (GSR) rd %gsr, regrd A1

— 20–21
(1416-1516)

Reserved (impl. dep. #8-V8-Cs20, #9-V8-Cs20)

RDSOFTINTP 22 (1616) Read per-virtual processor Soft Interrupt register
(SOFTINT)

rd %softint, regrd A2

RDTICK_CMPRP 23 (1716) Read Tick Compare register (TICK_CMPR) rd %tick_cmpr, regrd N−
RDSTICKPnpt 24 (1816) Read System Tick Register (STICK) rd %stick†, regrd A2

RDSTICK_CMPRP 25 (1916) Read System Tick Compare register
(STICK_CMPR)

rd %stick_cmpr†, regrd A2

— 26 (2016) Reserved (impl. dep. #8-V8-Cs20, #9-V8-Cs20)

— 27 (1B16) Reserved (impl. dep. #8-V8-Cs20, 9-V8-Cs20)

— 28 (1C16) Implementation dependent
(impl. dep. #8-V8-Cs20, 9-V8-Cs20)

— 29 (1D16) Implementation dependent
(impl. dep. #8-V8-Cs20, 9-V8-Cs20)

— 30 (1E16) Implementation dependent
(impl. dep. #8-V8-Cs20, 9-V8-Cs20)

— 31 (1F16) Implementation dependent
(impl. dep. #8-V8-Cs20, 9-V8-Cs20)

† The original assembly language names for %stick and %stick_cmpr were, respectively, %sys_tick and %sys_tick_cmpr, which are
now deprecated. Over time, assemblers will support the new %stick and %stick_cmpr names for these registers (which are consistent with
%tick and %tick_cmpr). In the meantime, some existing assemblers may only recognize the original names.

31 141924 18 13 02530 29

10 rd 10 1000 rs1 —
242 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

RDasr

Description The Read Ancillary State Register (RDasr) instructions copy the contents of the state register specified

by rs1 into R[rd].

An RDasr instruction with rs1 = 0 is a (deprecated) RDY instruction (which should not be used in new
software).

RDPC copies the contents of the PC register into R[rd]. If PSTATE.am = 0, the full 64-bit address is
copied into R[rd]. If PSTATE.am = 1, only a 32-bit address is saved; PC{31:0} is copied to R[rd]{31:0}
and R[rd]{63:32} is set to 0. (closed impl. dep. #125-V9-Cs10)

RDFPRS waits for all pending FPops and loads of floating-point registers to complete before reading
the FPRS register.

The following values of rs1 are reserved for future versions of the architecture: 1, 7–14, 16-18, 20-21,
and 26-27.

IMPL. DEP. #47-V8-Cs20: RDasr instructions with rd in the range 28–31 are available for
implementation-dependent uses (impl. dep. #8-V8-Cs20). For an RDasr instruction with rs1 in the
range 28–31, the following are implementation dependent:
■ the interpretation of bits 13:0 and 29:25 in the instruction
■ whether the instruction is nonprivileged or privileged or hyperprivileged (impl. dep. #9-V8-Cs20),

and
■ whether an attempt to execute the instruction causes an illegal_instruction exception.

See Ancillary State Registers on page 50 for more detailed information regarding ASR registers.

Exceptions. An attempt to execute a RDasr instruction when any of the following conditions are
true causes an illegal_instruction exception:

■ rs1 = 15 and rd ≠ 0 (reserved for future versions of the architecture)
■ rs1 = 1, 7–14, 16-18, 20-21, or 26-27 (reserved for future versions of the architecture)
■ instruction bits 13:0 are nonzero

An attempt to execute a RDTICK_CMPR, RDSTICK_CMPR, or RDSOFTINT instruction in
nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0) causes a privileged_opcode exception
(impl. dep. #250-U3-Cs10).

Nonprivileged software can read the TICK register by using the RDTICK instruction, but only when
nonprivileged access to TICK is enabled. If nonprivileged access is disabled, an attempt by
nonprivileged software to read the TICK register using the RDTICK instruction causes a
privileged_action exception. See Tick (TICK) Register (ASR 4) on page 54 for details.

The RDY instruction is deprecated. It is recommended that all instructions that
reference the Y register be avoided.

Implementation
Note

See the section “Read/Write Ancillary State Registers (ASRs)” in
Extending the UltraSPARC Architecture, contained in the separate
volume UltraSPARC Architecture Application Notes, for a
discussion of extending the SPARC V9 instruction set using read/
write ASR instructions.

Note Ancillary state registers may include (for example) timer, counter,
diagnostic, self-test, and trap-control registers.

SPARC V8
Compatibility

Note

The SPARC V8 RDPSR, RDWIM, and RDTBR instructions do not
exist in the UltraSPARC Architecture, since the PSR, WIM, and
TBR registers do not exist.
CHAPTER 7 • Instructions 243

RDasr

Nonprivileged software can read the STICK register by using the RDSTICK instruction, but only
when nonprivileged access to STICK is enabled. If nonprivileged access is disabled, an attempt by
nonprivileged software to read the STICK register causes a privileged_action exception. See System
Tick (STICK) Register (ASR 24) on page 59 for details.

Privileged software can read the STICK register with the RDSTICK instruction, but only when
privileged access to STICK is enabled by hyperprivileged software. An attempt by privileged
software to read the STICK register when privileged access is disabled causes a privileged_action
exception. See System Tick (STICK) Register (ASR 24) on page 59 for details.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute a RDGSR instruction causes an fp_disabled exception.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), the following cause a
privileged_action exception:

■ execution of RDTICK when nonprivileged access to TICK is disabled (TICK.npt = 1)

■ execution of RDSTICK when nonprivileged access to STICK is disabled (STICK.npt = 1)

Exceptions illegal_instruction
privileged_opcode
fp_disabled
privileged_action

See Also RDHPR on page 245
RDPR on page 246
WRasr on page 305

Implementation
Note

RDasr shares an opcode with MEMBAR; it is distinguished by
rs1 = 15 or rd = 0 or (i = 0, and bit 12 = 0).
244 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

RDHPR
7.75 Read Hyperprivileged Register

Description This instruction reads the contents of the specified hyperprivileged state register into the destination
register, R[rd]. The rs1 field in the RDHPR instruction determines which hyperprivileged register is
read.

There are MAXTL copies of the HTSTATE register. A read from HTSTATE returns the value in the copy
of HTSTATE indexed by the current value in the trap level register (TL).

An attempt to execute a RDHPR instruction when any of the following conditions exist causes an
illegal_instruction exception:
■ instruction bits 13:0 are nonzero
■ rs1 = 2, rs1 = 4, or 7 ≤ rs1 ≤ 30 (reserved rs1 values)
■ HPSTATE.hpriv = 0 (the processor is not in hyperprivileged mode)
■ rs1 = 1 (attempt to read the HTSTATE register) while TL = 0 (current trap level is zero)

Exceptions illegal_instruction

See Also RDasr on page 242
RDPR on page 246
WRHPR on page 308

Instruction op3 Operation rs1 Assembly Language Syntax Class

RDHPRH 10 1001 Read hyperprivileged register
HPSTATE
HTSTATE
Reserved
HINTP
Reserved
HTBA
HVER
Reserved
HSTICK_CMPR

0
1
2
3
4
5
6
7–30
31

rdhpr
rdhpr

rdhpr

rdhpr
rdhpr

rdhpr

%hpstate, regrd
%htstate, regrd

%hintp, regrd

%htba, regrd
%hver, regrd

%hstick_cmpr, regrd

N−

31 141924 18 13 02530 29

10 rd op3 rs1 —
CHAPTER 7 • Instructions 245

RDPR
7.76 Read Privileged Register

Description The rs1 field in the instruction determines the privileged register that is read. There are MAXTL copies
of the TPC, TNPC, TT, and TSTATE registers. A read from one of these registers returns the value in
the register indexed by the current value in the trap level register (TL). A read of TPC, TNPC, TT, or
TSTATE when the trap level is zero (TL = 0) causes an illegal_instruction exception.

An attempt to execute a RDPR instruction when any of the following conditions exist causes an
illegal_instruction exception:
■ instruction bits 13:0 are nonzero
■ rs1 = 15, or 17 ≤ rs1 ≤ 31 (reserved rs1 values)
■ 0 ≤ rs1 ≤ 3 (attempt to read TPC, TNPC,TSTATE, or TT register) while TL = 0 (current trap level is

zero) and the virtual processor is in privileged or hyperprivileged mode.

An attempt to execute a RDPR instruction in nonprivileged mode (PSTATE.priv = 0 and
HSTATE.hpriv = 0) causes a privileged_opcode exception.

Instruction op3 Operation rs1 Assembly Language Syntax Class

RDPRP 10 1010 Read Privileged register
TPC
TNPC
TSTATE
TT
TICK
TBA
PSTATE
TL
PIL
CWP
CANSAVE
CANRESTORE
CLEANWIN
OTHERWIN
WSTATE
Reserved
GL
Reserved

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17–31

rdpr
rdpr
rdpr
rdpr
rdpr
rdpr
rdpr
rdpr
rdpr
rdpr
rdpr
rdpr
rdpr
rdpr
rdpr

rdpr

%tpc, regrd
%tnpc, regrd
%tstate, regrd
%tt, regrd
%tick, regrd
%tba, regrd
%pstate, regrd
%tl, regrd
%pil, regrd
%cwp, regrd
%cansave, regrd
%canrestore, regrd
%cleanwin, regrd
%otherwin, regrd
%wstate, regrd

%gl, regrd

A2?
A1?

Implementation
Note

In nonprivileged mode, illegal_instruction exception due to
0 ≤ rs1 ≤ 3 and TL = 0 does not occur; the privileged_opcode
exception occurs instead.

31 141924 18 13 02530 29

10 rd op3 rs1 —
246 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

RDPR
Exceptions illegal_instruction
privileged_opcode

See Also RDasr on page 242
RDHPR on page 245
WRPR on page 310

Historical Note On some early SPARC implementations, floating-point exceptions
could cause deferred traps. To ensure that execution could be
correctly resumed after handling a deferred trap, hardware
provided a floating-point queue (FQ), from which the address of
the trapping instruction could be obtained by the trap handler.
The front of the FQ was accessed by executing a RDPR instruction
with rs1 = 15.

On UltraSPARC Architecture implementations, all floating-point
traps are precise. When one occurs, the address of a trapping
instruction can be found by the trap handler in the TPC[TL], so no
floating-point queue (FQ) is needed or implemented (impl. dep.
#25-V8) and RDPR with rs1 = 15 generates an illegal_instruction
exception.
CHAPTER 7 • Instructions 247

RESTORE
7.77 RESTORE

Description The RESTORE instruction restores the register window saved by the last SAVE instruction executed
by the current process. The in registers of the old window become the out registers of the new
window. The in and local registers in the new window contain the previous values.

Furthermore, if and only if a fill trap is not generated, RESTORE behaves like a normal ADD
instruction, except that the source operands R[rs1] or R[rs2] are read from the old window (that is, the
window addressed by the original CWP) and the sum is written into R[rd] of the new window (that is,
the window addressed by the new CWP).

Description (Effect on Privileged State)
If a RESTORE instruction does not trap, it decrements the CWP (mod N_REG_WINDOWS) to restore the
register window that was in use prior to the last SAVE instruction executed by the current process. It
also updates the state of the register windows by decrementing CANRESTORE and incrementing
CANSAVE.

If the register window to be restored has been spilled (CANRESTORE = 0), then a fill trap is
generated. The trap vector for the fill trap is based on the values of OTHERWIN and WSTATE, as
described in Trap Type for Spill/Fill Traps on page 396. The fill trap handler is invoked with CWP set to
point to the window to be filled, that is, old CWP – 1.

An attempt to execute a RESTORE instruction when i = 0 and instruction bits 12:5 are nonzero causes
an illegal_instruction exception.

Instruction op3 Operation Assembly Language Syntax Class

RESTORE 11 1101 Restore Caller’s Window restore regrs1, reg_or_imm, regrd A1

Note CWP arithmetic is performed modulo the number of implemented
windows, N_REG_WINDOWS.

Programming
Notes

Typically, if a RESTORE instruction traps, the fill trap handler
returns to the trapped instruction to reexecute it. So, although the
ADD operation is not performed the first time (when the
instruction traps), it is performed the second time the instruction
executes. The same applies to changing the CWP.

There is a performance trade-off to consider between using SAVE/
RESTORE and saving and restoring selected registers explicitly.

Programming
Note

The vectoring of fill traps can be controlled by setting the value of
the OTHERWIN and WSTATE registers appropriately. For details,
see the section “Splitting the Register Windows” in Software
Considerations, contained in the separate volume UltraSPARC
Architecture Application Notes.

The fill handler normally will end with a RESTORED instruction
followed by a RETRY instruction.

31 24 02530 29 19 18

rd10 11 1101 —

14 13 12 5 4

rs1 rs2i=0

10 11 1101 rs1 simm13i=1rd
248 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

RESTORE

Exceptions illegal_instruction

fill_n_normal (n = 0–7)
fill_n_other (n = 0–7)

See Also SAVE on page 255
CHAPTER 7 • Instructions 249

RESTORED
7.78 RESTORED

Description RESTORED adjusts the state of the register-windows control registers.

RESTORED increments CANRESTORE.

If CLEANWIN < (N_REG_WINDOWS−1), then RESTORED increments CLEANWIN.

If OTHERWIN = 0, RESTORED decrements CANSAVE. If OTHERWIN ≠ 0, it decrements OTHERWIN.

If CANSAVE = 0 or CANRESTORE ≥ (N_REG_WINDOWS − 2) just prior to execution of a RESTORED
instruction, the subsequent behavior of the processor is undefined. In neither of these cases can
RESTORED generate a register window state that is both valid (see Register Window State Definition on
page 63) and consistent with the state prior to the RESTORED.

An attempt to execute a RESTORED instruction when instruction bits 18:0 are nonzero causes an
illegal_instruction exception.

An attempt to execute a RESTORED instruction in nonprivileged mode (PSTATE.priv = 0 and
HSTATE.hpriv = 0) causes a privileged_opcode exception.

Exceptions illegal_instruction
privileged_opcode

See Also ALLCLEAN on page 112
INVALW on page 186
NORMALW on page 229
OTHERW on page 231
SAVED on page 257

Instruction Operation Assembly Language Syntax Class

RESTOREDP Window has been restored restored A1

Programming
Notes

Trap handler software for register window fills use the
RESTORED instruction to indicate that a window has been filled
successfully. For details, see the section “Example Code for Spill
Handler” in Software Considerations, contained in the separate
volume UltraSPARC Architecture Application Notes.

Normal privileged software would probably not execute a
RESTORED instruction from trap level zero (TL = 0). However, it
is not illegal to do so and doing so does not cause a trap.

Executing a RESTORED instruction outside of a window fill trap
handler is likely to create an inconsistent window state. Hardware
will not signal an exception, however, since maintaining a
consistent window state is the responsibility of privileged
software.

31 1924 18 02530 29

10 fcn = 0 0001 11 0001 —
250 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

RETRY
7.79 RETRY

Description The RETRY instruction restores the saved state from TSTATE[TL] (GL, CCR, ASI, PSTATE, and CWP),
HTSTATE[TL] (HPSTATE), sets PC and NPC, and decrements TL. RETRY sets PC←TPC[TL] and
NPC←TNPC[TL] (normally, the values of PC and NPC saved at the time of the original trap).

If the saved TPC[TL] and TNPC[TL] were not altered by trap handler software, RETRY causes
execution to resume at the instruction that originally caused the trap (“retrying” it).

Execution of a RETRY instruction in the delay slot of a control-transfer instruction produces
undefined results.

When a RETRY instruction is executed and HTSTATE[TL].hpstate.hpriv = 0 (which will cause the
RETRY to return the virtual processor to nonprivileged or privileged mode), the value of GL restored
from TSTATE[TL] saturates at MAXPGL. That is, if the value in TSTATE[TL].gl is greater than MAXPGL,
then MAXPGL is substituted and written to GL. This protects against non-hyperprivileged software
executing with GL > MAXPGL.

If software writes invalid or inconsistent state to TSTATE or HTSTATE before executing RETRY,
virtual processor behavior during and after execution of the RETRY instruction is undefined.

The RETRY instruction does not provide an error barrier, as MEMBAR #Sync does (impl. dep. #215-
U3).

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address are masked out
(set to 0) before being sent to the memory system.

IMPL. DEP. #417-S10: If (1) TSTATE[TL].pstate.am = 1 and (2) a RETRY instruction is executed
(which sets PSTATE.am to ’1’ by restoring the value from TSTATE[TL].pstate.am to PSTATE.am), it is
implementation dependent whether the RETRY instruction masks (zeroes) the more-significant 32 bits
of the values it places into PC and NPC.

Exceptions. An attempt to execute the RETRY instruction when either of the following conditions is
true causes an illegal_instruction exception:

■ instruction bits 18:0 are nonzero
■ TL = 0 and the virtual processor is in privileged mode or hyperprivileged mode (PSTATE.priv = 1

or HPSTATE.hpriv = 1)

An attempt to execute a RETRY instruction in nonprivileged mode (PSTATE.priv = 0 and
HPSTATE.hpriv = 0) causes a privileged_opcode exception.

Instruction op3 Operation Assembly Language Syntax Class

RETRYP 11 1110 Return from Trap (retry trapped instruction) retry A1

Programming
Note

The DONE and RETRY instructions are used to return from
privileged trap handlers.

Implementation
Note

In nonprivileged mode, illegal_instruction exception due to TL = 0
does not occur. The privileged_opcode exception occurs instead,
regardless of the current trap level (TL).

10 11 1110fcn =0 0001 —
31 1924 18 02530 29
CHAPTER 7 • Instructions 251

RETRY

If the Trap on Control Transfer feature is implemented (impl. dep. #450-S20) and PSTATE.tct = 1, then
RETRY generates a control_transfer_instruction exception instead of causing a control transfer. When a
control_transfer_instruction trap occurs, PC (the address of the RETRY instruction) is stored in
TPC[TL] and the value of NPC from before the RETRY was executed is stored in TNPC[TL]. The full
64-bit (nonmasked) PC and NPC values are stored in TPC[TL] and TNPC[TL], regardless of the value
of PSTATE.am.

Note that since PSTATE.tct is automatically set to 0 during entry to a trap handler, the execution of a
RETRY instruction at the end of a trap handler will not cause a control_transfer_instruction exception
unless trap handler software has explicitly set PSTATE.tct to 1. During execution of the RETRY
instruction, the value of PSTATE.tct is restored from TSTATE.

Exceptions illegal_instruction
privileged_opcode
control_transfer_instruction (impl. dep. #450-S20)

See Also DONE on page 127

Programming
Note

RETRY should not normally be used to return from the trap
handler for the control_transfer_instruction exception itself.

See the DONE instruction on page 127 and Trap on Control
Transfer (tct) on page 68.

Programming
Note

Because RETRY changes the TL register, it can cause a
trap_level_zero exception to occur on the next instruction to be
executed, if the following three conditions are true after RETRY
has executed:

• trap_level_zero exceptions are enabled (HPSTATE.tlz = 1),
• the virtual processor is in nonprivileged or privileged mode

(HPSTATE.hpriv = 0), and
• the trap level (TL) register’s value is zero (TL = 0)
252 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

RETURN
7.80 RETURN

Description The RETURN instruction causes a register-indirect delayed transfer of control to the target address
and has the window semantics of a RESTORE instruction; that is, it restores the register window prior
to the last SAVE instruction. The target address is “R[rs1] + R[rs2]” if i = 0, or
“R[rs1] + sign_ext(simm13)” if i = 1. Registers R[rs1] and R[rs2] come from the old window.

Like other DCTIs, all effects of RETURN (including modification of CWP) are visible prior to
execution of the delay slot instruction.

An attempt to execute a RETURN instruction when bits 29:25 are nonzero causes an illegal_instruction
exception.

An attempt to execute a RETURN instruction when i = 0 and instruction bits 12:5 are nonzero causes
an illegal_instruction exception.

A RETURN instruction may cause a window_fill exception as part of its RESTORE semantics.

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address are masked out
(set to 0) before being sent to the memory system. However, if a control_transfer_instruction trap
occurs, the full 64-bit (nonmasked) address of the RETURN instruction is written into TPC[TL].

A RETURN instruction causes a mem_address_not_aligned exception if either of the two least-
significant bits of the target address is nonzero.

If the Trap on Control Transfer feature is implemented (impl. dep. #450-S20) and PSTATE.tct = 1, then
RETURN generates a control_transfer_instruction exception instead of causing a control transfer.

Instruction op3 Operation Assembly Language Syntax Class

RETURN 11 1001 Return return address A1

Programming
Note

To reexecute the trapped instruction when returning from a user trap
handler, use the RETURN instruction in the delay slot of a JMPL
instruction, for example:

jmpl %l6,%g0 !Trapped PC supplied to user trap handler
return %l7 !Trapped NPC supplied to user trap handler

Programming
Note

A routine that uses a register window may be structured either as:
save %sp,-framesize, %sp
. . .
ret ! “ret” is shorthand for “jmpl %i7 + 8,%g0”
restore ! A useful instruction in the delay slot, such as

! “restore %o2,%l2,%o0”
or as:

save %sp, -framesize, %sp
. . .
return %i7 + 8
nop ! Instead of “nop”, could do some useful work in the

! caller’s window, for example, “or %o1,%o2,%o0”

31 24 02530 29 19 18

—10 op3 —

14 13 12 5 4

rs1 rs2i=0

10 op3 rs1 simm13i=1—
CHAPTER 7 • Instructions 253

RETURN

Exceptions illegal_instruction

fill_n_normal (n = 0–7)
fill_n_other (n = 0–7)
mem_address_not_aligned
control_transfer_instruction (impl. dep. #450-S20)
254 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

SAVE
7.81 SAVE

Description The SAVE instruction provides the routine executing it with a new register window. The out registers
from the old window become the in registers of the new window. The contents of the out and the local
registers in the new window are zero or contain values from the executing process; that is, the process
sees a clean window.

Furthermore, if and only if a spill trap is not generated, SAVE behaves like a normal ADD instruction,
except that the source operands R[rs1] or R[rs2] are read from the old window (that is, the window
addressed by the original CWP) and the sum is written into R[rd] of the new window (that is, the
window addressed by the new CWP).

Description (Effect on Privileged State)
If a SAVE instruction does not trap, it increments the CWP (mod N_REG_WINDOWS) to provide a new
register window and updates the state of the register windows by decrementing CANSAVE and
incrementing CANRESTORE.

If the new register window is occupied (that is, CANSAVE = 0), a spill trap is generated. The trap
vector for the spill trap is based on the value of OTHERWIN and WSTATE. The spill trap handler is
invoked with the CWP set to point to the window to be spilled (that is, old CWP + 2).

An attempt to execute a SAVE instruction when i = 0 and instruction bits 12:5 are nonzero causes an
illegal_instruction exception.

Instruction op3 Operation Assembly Language Syntax Class

SAVE 11 1100 Save Caller’s Window save regrs1, reg_or_imm, regrd A1

Note CWP arithmetic is performed modulo the number of implemented
windows, N_REG_WINDOWS.

Programming
Notes

Typically, if a SAVE instruction traps, the spill trap handler returns
to the trapped instruction to reexecute it. So, although the ADD
operation is not performed the first time (when the instruction
traps), it is performed the second time the instruction executes.
The same applies to changing the CWP.

The SAVE instruction can be used to atomically allocate a new
window in the register file and a new software stack frame in
memory. For details, see the section “Leaf-Procedure
Optimization” in Software Considerations, contained in the
separate volume UltraSPARC Architecture Application Notes.

There is a performance trade-off to consider between using SAVE/
RESTORE and saving and restoring selected registers explicitly.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

10 op3 rs1 simm13i=1rd
CHAPTER 7 • Instructions 255

SAVE

If CANSAVE ≠ 0, the SAVE instruction checks whether the new window needs to be cleaned. It causes
a clean_window trap if the number of unused clean windows is zero, that is, (CLEANWIN –
CANRESTORE) = 0. The clean_window trap handler is invoked with the CWP set to point to the

window to be cleaned (that is, old CWP + 1).

Exceptions illegal_instruction
spill_n_normal (n = 0–7)
spill_n_other (n = 0–7)
clean_window

See Also RESTORE on page 248

Programming
Note

The vectoring of spill traps can be controlled by setting the value
of the OTHERWIN and WSTATE registers appropriately. For
details, see the section “Splitting the Register Windows” in
Software Considerations, contained in the separate volume
UltraSPARC Architecture Application Notes.

The spill handler normally will end with a SAVED instruction
followed by a RETRY instruction.
256 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

SAVED
7.82 SAVED

Description SAVED adjusts the state of the register-windows control registers.

SAVED increments CANSAVE. If OTHERWIN = 0, SAVED decrements CANRESTORE. If
OTHERWIN ≠ 0, it decrements OTHERWIN.

If CANSAVE ≥ (N_REG_WINDOWS − 2) or CANRESTORE = 0 just prior to execution of a SAVED
instruction, the subsequent behavior of the processor is undefined. In neither of these cases can
SAVED generate a register window state that is both valid (see Register Window State Definition on
page 63) and consistent with the state prior to the SAVED.

An attempt to execute a SAVED instruction when instruction bits 18:0 are nonzero causes an
illegal_instruction exception.

An attempt to execute a SAVED instruction in nonprivileged mode (PSTATE.priv = 0 and
HSTATE.hpriv = 0) causes a privileged_opcode exception.

Exceptions illegal_instruction
privileged_opcode

See Also ALLCLEAN on page 112
INVALW on page 186
NORMALW on page 229
OTHERW on page 231
RESTORED on page 250

Instruction Operation Assembly Language Syntax Class

SAVEDP Window has been saved saved A1

Programming
Notes

Trap handler software for register window spills uses the SAVED
instruction to indicate that a window has been spilled
successfully. For details, see the section “Example Code for Spill
Handler” in Software Considerations, contained in the separate
volume UltraSPARC Architecture Application Notes.

Normal privileged software would probably not execute a SAVED
instruction from trap level zero (TL = 0). However, it is not illegal
to do so and doing so does not cause a trap.

Executing a SAVED instruction outside of a window spill trap
handler is likely to create an inconsistent window state. Hardware
will not signal an exception, however, since maintaining a
consistent window state is the responsibility of privileged
software.

31 1924 18 02530 29

10 fcn = 0 0000 11 0001 —
CHAPTER 7 • Instructions 257

SDIV, SDIVcc (Deprecated)
7.83 Signed Divide (64-bit ÷ 32-bit)

Description The signed divide instructions perform 64-bit by 32-bit division, producing a 32-bit result. If i = 0, they
compute “(Y :: R[rs1]{31:0}) ÷ R[rs2]{31:0}”. Otherwise (that is, if i = 1), the divide instructions
compute “(Y :: R[rs1]{31:0}) ÷ (sign_ext(simm13){31:0})”. In either case, if overflow does not occur, the
less significant 32 bits of the integer quotient are sign- or zero-extended to 64 bits and are written into
R[rd].

The contents of the Y register are undefined after any 64-bit by 32-bit integer divide operation.

Signed Divide Signed divide (SDIV, SDIVcc) assumes a signed integer doubleword dividend
(Y :: lower 32 bits of R[rs1]) and a signed integer word divisor (lower 32 bits of R[rs2] or lower 32 bits
of sign_ext(simm13)) and computes a signed integer word quotient (R[rd]).

Signed division rounds an inexact quotient toward zero. For example, –7 ÷ 4 equals the rational
quotient of –1.75, which rounds to –1 (not –2) when rounding toward zero.

The result of a signed divide can overflow the low-order 32 bits of the destination register R[rd] under
certain conditions. When overflow occurs, the largest appropriate signed integer is returned as the
quotient in R[rd]. The conditions under which overflow occurs and the value returned in R[rd] under
those conditions are specified in TABLE 7-13.

When no overflow occurs, the 32-bit result is sign-extended to 64 bits and written into register R[rd].

The SDIV and SDIVcc instructions are deprecated and should not be used in new
software. The SDIVX instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class

SDIVD 00 1111 Signed Integer Divide sdiv regrs1, reg_or_imm, regrd D2

SDIVccD 01 1111 Signed Integer Divide and modify cc’s sdivcc regrs1, reg_or_imm, regrd D2

TABLE 7-13 SDIV / SDIVcc Overflow Detection and Value Returned

Condition Under Which Overflow Occurs Value Returned in R[rd]

Rational quotient ≥ 231 231 −1 (0000 0000 7FFF FFFF16)

Rational quotient ≤ −231 − 1 −231 (FFFF FFFF 8000 000016)

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
258 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

SDIV, SDIVcc (Deprecated)

SDIV does not affect the condition code bits. SDIVcc writes the integer condition code bits as shown
in the following table. Note that negative (N) and zero (Z) are set according to the value of R[rd] after
it has been set to reflect overflow, if any.

An attempt to execute an SDIV or SDIVcc instruction when i = 0 and instruction bits 12:5 are nonzero
causes an illegal_instruction exception.

Exceptions illegal_instruction
division_by_zero

See Also MULScc on page 225
RDY on page 242
UDIV[cc] on page 301

Bit Effect on bit of SDIVcc instruction

icc.n Set to 1 if R[rd]{31} = 1; otherwise, set to 0

icc.z Set to 1 if R[rd]{31:0} = 0; otherwise, set to 0

icc.v Set to 1 if overflow (per TABLE 7-12); otherwise set to 0

icc.c Set to 0

xcc.n Set to 1 if R[rd]{63} = 1; otherwise, set to 0

xcc.z Set to 1 if R[rd]{63:0} = 0; otherwise, set to 0

xcc.v Set to 0

xcc.c Set to 0
CHAPTER 7 • Instructions 259

SETHI
7.84 SETHI

Description SETHI zeroes the least significant 10 bits and the most significant 32 bits of R[rd] and replaces bits 31
through 10 of R[rd] with the value from its imm22 field.

SETHI does not affect the condition codes.

Some SETHI instructions with rd = 0 have special uses:

■ rd = 0 and imm22 = 0: defined to be a NOP instruction (described in No Operation)

■ rd = 0 and imm22 ≠ 0 may be used to trigger hardware performance counters in some UltraSPARC
Architecture implementations (for details, see implementation-specific documentation).

Exceptions None

Instruction op2 Operation Assembly Language Syntax Class

SETHI 100 Set High 22 Bits of Low Word sethi
sethi

const22, regrd
%hi (value), regrd

A1

Programming
Note

The most common form of 64-bit constant generation is creating
stack offsets whose magnitude is less than 232. The code below can
be used to create the constant 0000 0000 ABCD 123416:

sethi %hi(0xabcd1234),%o0
or %o0, 0x234, %o0

The following code shows how to create a negative constant. Note:
The immediate field of the xor instruction is sign extended and can
be used to place 1’s in all of the upper 32 bits. For example, to set the
negative constant FFFF FFFF ABCD 123416:

sethi %hi(0x5432edcb),%o0! note 0x5432EDCB, not 0xABCD1234
xor %o0, 0x1e34, %o0! part of imm. overlaps upper bits

31 2224 21 02530 29

00 rd op2 imm22
260 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

SIAM
7.85 Set Interval Arithmetic Mode

Description The SIAM instruction sets the GSR.im and GSR.irnd fields as follows:

GSR.im ← mode{2}

GSR.irnd ← mode{1:0}

An attempt to execute a SIAM instruction when instruction bits 29:25, 18:14, or 4:3 are nonzero causes
an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute a SIAM instruction causes an fp_disabled exception.

Exceptions illegal_instruction
fp_disabled

Instruction opf Operation Assembly Language Syntax Class

SIAM 0 1000 0001 Set the interval arithmetic mode fields in the GSR siam siam_mode B1

Note When GSR.im is set to 1, all subsequent floating-point
instructions requiring round mode settings derive rounding-
mode information from the General Status Register (GSR.irnd)
instead of the Floating-Point State Register (FSR.rd).

Note When GSR.im = 1, the processor operates in standard floating-
point mode regardless of the setting of FSR.ns.

VIS 2

31 24 02530 29 19 18 14 13 5 4

—10 110110 opf— — mode
3 2
CHAPTER 7 • Instructions 261

SIR
7.86 Software-Initiated Reset

Description SIR is a hyperprivileged instruction, used to generate a software-initiated reset (SIR). As with other
traps, a software-initiated reset performs different actions when TL = MAXTL than it does when
TL< MAXTL.

See Software-Initiated Reset (SIR) Traps on page 404 and Software-Initiated Reset (SIR) on page 499 for
more information about software-initiated resets.

When executed in nonprivileged or privileged mode (HPSTATE.hpriv = 0), SIR causes an
illegal_instruction exception (impl. dep. #116-V9).

Exceptions software_initiated_reset
illegal_instruction

See Also WRasr on page 305

Instruction op3 rd Operation Assembly Language Syntax Class

SIRH 11 0000 15 Software-Initiated Reset sir simm13 N−

Implementation
Notes

The SIR instruction shares an opcode with WRasr; they are
distinguished by the rd, rs1, and i fields (rd = 15,rs1 = 0, and i = 1
for SIR).

An instruction that uses the WRasr opcode (op1 = 102,
op3 = 11 00002) with i = 1 is not an SIR instruction; see Write
Ancillary State Register on page 305 for specification of its
behavior.

31 1924 18 02530 29

10 0 1111 op3
14 13

0 0000 simm13
12

i=1
262 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

SLL / SRL / SRA
7.87 Shift

Description These instructions perform logical or arithmetic shift operations.

When i = 0 and x = 0, the shift count is the least significant five bits of R[rs2].
When i = 0 and x = 1, the shift count is the least significant six bits of R[rs2]. When i = 1 and x = 0, the
shift count is the immediate value specified in bits 0 through 4 of the instruction.
When i = 1 and x = 1, the shift count is the immediate value specified in bits 0 through 5 of the
instruction.

TABLE 7-14 shows the shift count encodings for all values of i and x.

SLL and SLLX shift all 64 bits of the value in R[rs1] left by the number of bits specified by the shift
count, replacing the vacated positions with zeroes, and write the shifted result to R[rd].

SRL shifts the low 32 bits of the value in R[rs1] right by the number of bits specified by the shift
count. Zeroes are shifted into bit 31. The upper 32 bits are set to zero, and the result is written to R[rd].

SRLX shifts all 64 bits of the value in R[rs1] right by the number of bits specified by the shift count.
Zeroes are shifted into the vacated high-order bit positions, and the shifted result is written to R[rd].

SRA shifts the low 32 bits of the value in R[rs1] right by the number of bits specified by the shift
count and replaces the vacated positions with bit 31 of R[rs1]. The high-order 32 bits of the result are
all set with bit 31 of R[rs1], and the result is written to R[rd].

SRAX shifts all 64 bits of the value in R[rs1] right by the number of bits specified by the shift count
and replaces the vacated positions with bit 63 of R[rs1]. The shifted result is written to R[rd].

Instruction op3 x Operation Assembly Language Syntax Class

SLL 10 0101 0 Shift Left Logical – 32 bits sll regrs1, reg_or_shcnt, regrd A1

SRL 10 0110 0 Shift Right Logical – 32 bits srl regrs1, reg_or_shcnt, regrd A1

SRA 10 0111 0 Shift Right Arithmetic– 32 bits sra regrs1, reg_or_shcnt, regrd A1

SLLX 10 0101 1 Shift Left Logical – 64 bits sllx regrs1, reg_or_shcnt, regrd A1

SRLX 10 0110 1 Shift Right Logical – 64 bits srlx regrs1, reg_or_shcnt, regrd A1

SRAX 10 0111 1 Shift Right Arithmetic – 64 bits srax regrs1, reg_or_shcnt, regrd A1

TABLE 7-14 Shift Count Encodings

i x Shift Count

0 0 bits 4–0 of R[rs2]

0 1 bits 5–0 of R[rs2]

1 0 bits 4–0 of instruction

1 1 bits 5–0 of instruction

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0 x

rd10 op3 —rs1 shcnt32i=1x=0

rd10 op3 —rs1 shcnt64i=1x=1

611
CHAPTER 7 • Instructions 263

SLL / SRL / SRA

No shift occurs when the shift count is 0, but the high-order bits are affected by the 32-bit shifts as
noted above.

These instructions do not modify the condition codes.

An attempt to execute a SLL, SRL, or SRA instruction when instruction bits 11:5 are nonzero causes an
illegal_instruction exception.

An attempt to execute a SLLX, SRLX, or SRAX instruction when either of the following conditions
exist causes an illegal_instruction exception:

■ i = 0 or x = 0 and instruction bits 11:5 are nonzero
■ x = 1 and instruction bits 11:6 are nonzero

Exceptions illegal_instruction

Programming
Notes

“Arithmetic left shift by 1 (and calculate overflow)” can be
effected with the ADDcc instruction.

The instruction “sra regrs1,0,regrd” can be used to convert a 32-
bit value to 64 bits, with sign extension into the upper word. “srl
regrs1,0,regrd” can be used to clear the upper 32 bits of R[rd].
264 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

SMUL, SMULcc (Deprecated)
7.88 Signed Multiply (32-bit)

Description The signed multiply instructions perform 32-bit by 32-bit multiplications, producing 64-bit results.
They compute “R[rs1]{31:0} × R[rs2]{31:0}” if i = 0, or “R[rs1]{31:0} × sign_ext(simm13){31:0}” if i = 1.
They write the 32 most significant bits of the product into the Y register and all 64 bits of the product
into R[rd].

Signed multiply instructions (SMUL, SMULcc) operate on signed integer word operands and compute
a signed integer doubleword product.

SMUL does not affect the condition code bits. SMULcc writes the integer condition code bits, icc and
xcc, as shown below.

An attempt to execute a SMUL or SMULcc instruction when i = 0 and instruction bits 12:5 are nonzero
causes an illegal_instruction exception.

Exceptions illegal_instruction

See Also UMUL[cc] on page 303

The SMUL and SMULcc instructions are deprecated and should not be used in
new software. The MULX instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class

SMULD 00 1011 Signed Integer Multiply smul regrs1, reg_or_imm, regrd D2

SMULccD 01 1011 Signed Integer Multiply and modify cc’s smulcc regrs1, reg_or_imm, regrd D2

Bit Effect on bit by execution of SMULcc

icc.n Set to 1 if product{31} = 1; otherwise, set to 0
icc.z Set to 1 if product{31:0}= 0; otherwise, set to 0
icc.v Set to 0
icc.c Set to 0
xcc.n Set to 1 if product{63} = 1; otherwise, set to 0
xcc.z Set to 1 if product{63:0} = 0; otherwise, set to 0
xcc.v Set to 0
xcc.c Set to 0

Note 32-bit negative (icc.n) and zero (icc.z) condition codes are set
according to the less significant word of the product, not
according to the full 64-bit result.

Programming
Notes

32-bit overflow after SMUL or SMULcc is indicated by
Y ≠ (R[rd] >> 31), where “>>” indicates 32-bit arithmetic right-
shift.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
CHAPTER 7 • Instructions 265

STB / STH / STW / STX
7.89 Store Integer

† synonyms: stub, stsb ‡ synonyms: stuh, stsh ◊ synonyms: st, stuw, stsw

Description The store integer instructions (except store doubleword) copy the whole extended (64-bit) integer, the
less significant word, the least significant halfword, or the least significant byte of R[rd] into memory.

These instructions access memory using the implicit ASI (see page 87). The effective address for these
instructions is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if i = 1.

A successful store (notably, STX) integer instruction operates atomically.

An attempt to execute a store integer instruction when i = 0 and instruction bits 12:5 are nonzero
causes an illegal_instruction exception.

STH causes a mem_address_not_aligned exception if the effective address is not halfword-aligned.
STW causes a mem_address_not_aligned exception if the effective address is not word-aligned. STX
causes a mem_address_not_aligned exception if the effective address is not doubleword-aligned.

Exceptions illegal_instruction
mem_address_not_aligned
VA_watchpoint
DAE_privilege_violation
DAE_nfo_page
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
fast_data_access_protection
PA_watchpoint
data_access_error

See Also STTW on page 284

Instruction op3 Operation Assembly Language Syntax Class

STB 00 0101 Store Byte stb† regrd, [address] A1

STH 00 0110 Store Halfword sth‡ regrd, [address] A1

STW 00 0100 Store Word stw◊ regrd, [address] A1

STX 00 1110 Store Extended Word stx regrd, [address] A1

rd11 op3 rs1 simm13i=1

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 i=0 — rs2
266 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

STBA / STHA / STWA / STXA
7.90 Store Integer into Alternate Space

† synonyms: stuba, stsba ‡ synonyms: stuha, stsha ◊ synonyms: sta, stuwa, stswa

Description The store integer into alternate space instructions copy the whole extended (64-bit) integer, the less
significant word, the least significant halfword, or the least significant byte of R[rd] into memory.

Store integer to alternate space instructions contain the address space identifier (ASI) to be used for
the store in the imm_asi field if i = 0, or in the ASI register if i = 1. The access is privileged if bit 7 of
the ASI is 0; otherwise, it is not privileged. The effective address for these instructions is
“R[rs1] + R[rs2]” if i = 0, or “R[rs1]+sign_ext(simm13)” if i = 1.

A successful store (notably, STXA) instruction operates atomically.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI is 0, these
instructions cause a privileged_action exception. In privileged mode (PSTATE.priv = 1 and
HPSTATE.hpriv = 0), if the ASI is in the range 3016 to 7F16, these instructions cause a privileged_action
exception.

STHA causes a mem_address_not_aligned exception if the effective address is not halfword-aligned.
STWA causes a mem_address_not_aligned exception if the effective address is not word-aligned.
STXA causes a mem_address_not_aligned exception if the effective address is not doubleword-
aligned.

STBA, STHA, and STWA can be used with any of the following ASIs, subject to the privilege mode
rules described for the privileged_action exception above. Use of any other ASI with these instructions
causes a DAE_invalid_asi exception.

Instruction op3 Operation Assembly Language Syntax Class

STBAPASI 01 0101 Store Byte into Alternate Space stba†

stba
regrd, [regaddr] imm_asi
regrd, [reg_plus_imm] %asi

A1

STHAPASI 01 0110 Store Halfword into Alternate Space stha‡

stha
regrd, [regaddr] imm_asi
regrd, [reg_plus_imm] %asi

A1

STWAPASI 01 0100 Store Word into Alternate Space stwa◊

stwa
regrd, [regaddr] imm_asi
regrd, [reg_plus_imm] %asi

A1

STXAPASI 01 1110 Store Extended Word into Alternate
Space

stxa
stxa

regrd, [regaddr] imm_asi
regrd, [reg_plus_imm] %asi

A1

ASIs valid for STBA, STHA, and STWA

ASI_AS_IF_PRIV_PRIMARY ASI_AS_IF_PRIV_PRIMARY_LITTLE

ASI_AS_IF_PRIV_SECONDARY ASI_AS_IF_PRIV_SECONDARY_LITTLE

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_REAL_IO ASI_REAL_IO_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 simm13i=1
CHAPTER 7 • Instructions 267

STBA / STHA / STWA / STXA

STXA can be used with any ASI (including, but not limited to, the above list), unless it either (a)
violates the privilege mode rules described for the privileged_action exception above or (b) is used
with any of the following ASIs, which causes a DAE_invalid_asi exception.

Exceptions mem_address_not_aligned (all except STBA)
privileged_action
VA_watchpoint
DAE_invalid_asi
DAE_privilege_violation
DAE_nfo_page
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
fast_data_access_protection
PA_watchpoint
data_access_error

See Also LDA on page 189
STTWA on page 286

ASIs invalid for STXA (cause DAE_invalid_asi exception)

ASI_BLOCK_AS_IF_PRIV_PRIMARY ASI_BLOCK_AS_IF_PRIV_PRIMARY_LITTLE

ASI_BLOCK_AS_IF_PRIV_SECONDARY ASI_BLOCK_AS_IF_PRIV_SECONDARY_LITTLE

ASI_BLOCK_AS_IF_USER_PRIMARY ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE

ASI_BLOCK_AS_IF_USER_SECONDARY ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE

ASI_BLOCK_AS_IF_USER_PRIMARY ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE

ASI_BLOCK_AS_IF_USER_SECONDARY ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE

ASI_PST8_PRIMARY ASI_PST8_PRIMARY_LITTLE

ASI_PST8_SECONDARY ASI_PST8_SECONDARY_LITTLE

ASI_PRIMARY_NO_FAULT ASI_PRIMARY_NO_FAULT_LITTLE

ASI_SECONDARY_NO_FAULT ASI_SECONDARY_NO_FAULT_LITTLE

ASI_PST16_PRIMARY ASI_PST16_PRIMARY_LITTLE

ASI_PST16_SECONDARY ASI_PST16_SECONDARY_LITTLE

ASI_PST32_PRIMARY ASI_PST32_PRIMARY_LITTLE

ASI_PST32_SECONDARY ASI_PST32_SECONDARY_LITTLE

ASI_FL8_PRIMARY ASI_FL8_PRIMARY_LITTLE

ASI_FL8_SECONDARY ASI_FL8_SECONDARY_LITTLE

ASI_FL16_PRIMARY ASI_FL16_PRIMARY_LITTLE

ASI_FL16_SECONDARY ASI_FL16_SECONDARY_LITTLE

ASI_BLOCK_COMMIT_PRIMARY ASI_BLOCK_COMMIT_SECONDARY

ASI_BLOCK_PRIMARY ASI_BLOCK_PRIMARY_LITTLE

ASI_BLOCK_SECONDARY ASI_BLOCK_SECONDARY_LITTLE

V8 Compatibility
Note

The SPARC V8 STA instruction was renamed STWA in the
SPARC V9 architecture.
268 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

STBLOCKF (deprecated)
7.91 Block Store

Description A block store instruction references one of several special block-transfer ASIs. Block-transfer ASIs
allow block stores to be performed accessing the same address space as normal stores. Little-endian
ASIs (those with an ‘L’ suffix) access data in little-endian format; otherwise, the access is assumed to
be big-endian. Byte swapping is performed separately for each of the eight double-precision registers
accessed by the instruction.

The STBLOCKFD instructions are deprecated and should not be used in new
software. A sequence of STDF instructions should be used instead.

The STBLOCKFD instruction is intended to be a processor-specific instruction,
which may or may not be implemented in future UltraSPARC Architecture
implementations. Therefore, it should only be used in platform-specific
dynamically-linked libraries, in hyperprivileged software, or in software created
by a runtime code generator that is aware of the specific virtual processor
implementation on which it is executing.

Instruction
ASI
Value Operation Assembly Language Syntax Class

STBLOCKFD 1616 64-byte block store to primary address
space, user privilege

stda
stda

fregrd, [regaddr] #ASI_BLK_AIUP
fregrd, [reg_plus_imm] %asi

A1
D2

STBLOCKFD 1716 64-byte block store to secondary address
space, user privilege

stda
stda

fregrd, [regaddr] #ASI_BLK_AIUS
fregrd, [reg_plus_imm] %asi

A1
D2

STBLOCKFD 1E16 64-byte block store to primary address
space, little-endian, user privilege

stda
stda

fregrd, [regaddr] #ASI_BLK_AIUPL
fregrd, [reg_plus_imm] %asi

A1
D2

STBLOCKFD 1F16 64-byte block store to secondary address
space, little-endian, user privilege

stda
stda

fregrd, [regaddr] #ASI_BLK_AIUSL
fregrd, [reg_plus_imm] %asi

A1
D2

STBLOCKFD F016 64-byte block store to primary address
space

stda
stda

fregrd, [regaddr] #ASI_BLK_P
fregrd, [reg_plus_imm] %asi

A1
D2

STBLOCKFD F116 64-byte block store to secondary address
space

stda
stda

fregrd, [regaddr] #ASI_BLK_S
fregrd, [reg_plus_imm] %asi

A1
D2

STBLOCKFD F816 64-byte block store to primary address
space, little-endian

stda
stda

fregrd, [regaddr] #ASI_BLK_PL
fregrd, [reg_plus_imm] %asi

A1
D2

STBLOCKFD F916 64-byte block store to secondary address
space, little-endian

stda
stda

fregrd, [regaddr] #ASI_BLK_SL
fregrd, [reg_plus_imm] %asi

A1
D2

STBLOCKFD E016 64-byte block commit store to primary
address space

stda
stda

fregrd, [regaddr] #ASI_BLK_COMMIT_P
fregrd, [reg_plus_imm] %asi

B1
D3

STBLOCKFD E116 64-byte block commit store to secondary
address space

stda
stda

fregrd, [regaddr] #ASI_BLK_COMMIT_S
fregrd, [reg_plus_imm] %asi

B1
D3

Programming
Note

The block store instruction, STBLOCKFD, and its companion,
LDBLOCKFD, were originally defined to provide a fast
mechanism for block-copy operations. However, in modern
implementations they are rarely much faster than a sequence of
regular loads and stores, so are now deprecated.

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd11 110111 simm_13rs1 I=1

rd11 110111 imm_asirs1 rs2I=0
CHAPTER 7 • Instructions 269

STBLOCKF (deprecated)

STBLOCKFD stores data from the eight double-precision floating-point registers specified by rd to a
64-byte-aligned memory area. The lowest-addressed eight bytes in memory are stored from the
lowest-numbered double-precision rd.

While a STBLOCKFD operation is in progress, any of the following values may be observed in a
destination doubleword memory locations: (1) the old data value, (2) zero, or (3) the new data value.
When the operation is complete, only the new data values will be seen.

A Block Store only guarantees atomicity for each 64-bit (8-byte) portion of the 64 bytes that it stores.

A Block Store with Commit forces the data to be written to memory and invalidates copies in all
caches present. As a result, a Block Store with Commit maintains coherency with the I-cache1. It does
not, however, flush instructions that have already been fetched into the pipeline before executing the
modified code. If a Block Store with Commit is used to write modified instructions, a FLUSH
instruction must still be executed to guarantee that the instruction pipeline is flushed. (See
Synchronizing Instruction and Data Memory on page 341 for more information.)

ASIs E016 and E116 are only used for block store-with-commit operations; they are not available for
use by block load operations. See Block Load and Store ASIs on page 362 for more information.

Software should assume the following (where “load operation” includes load, load-store, and
LDBLOCKFD instructions and “store operation” includes store, load-store, and STBLOCKFD

instructions):

■ A STBLOCKFD does not follow memory ordering with respect to earlier or later load operations. If
there is overlap between the addresses of destination memory locations of a STBLOCKFD and the
source address of a later load operation, the load operation may receive incorrect data. Therefore, if
ordering with respect to later load operations is important, a MEMBAR #StoreLoad instruction
must be executed between the STBLOCKFD and subsequent load operations.

■ A STBLOCKFD does not follow memory ordering with respect to earlier or later store operations.
Those instructions’ data may commit to memory in a different order from the one in which those
instructions were issued. Therefore, if ordering with respect to later store operations is important, a
MEMBAR #StoreStore instruction must be executed between the STBLOCKFD and subsequent
store operations.

■ STBLOCKFs do not follow register dependency interlocks, as do ordinary stores.

IMPL. DEP. #411-S10: The following aspects of the behavior of the block store (STBLOCKFD)
instruction are implementation dependent:
■ The memory ordering model that STBLOCKFD follows (other than as constrained by the rules

outlined above).
■ Whether VA_watchpoint and PA_watchpoint exceptions are recognized on accesses to all 64 bytes of

the STBLOCKFD (the recommended behavior), or only on accesses to the first eight bytes.

Compatibility
Note

Software written for older UltraSPARC implementations that
reads data being written by STBLOCKFD instructions may or
may not allow for case (2) above. Such software should be
checked to verify that either it always waits for STBLOCKFD

to complete before reading the values written, or that it will
operate correctly if an intermediate value of zero (not the
“old” or “new” data values) is observed while the
STBLOCKFD operation is in progress.

1. Even if all data stores on a given implementation coherently update the instruction cache (see page 389), stores (other than Block Store
with Commit) on SPARC V9 implementations in general do not maintain coherency between instruction and data caches.

Programming
Note

STBLOCKFD is intended to be a processor-specific instruction
(see the warning at the top of page 269). If STBLOCKFD must be
used in software intended to be portable across current and
previous processor implementations, then it must be coded to
work in the face of any implementation variation that is
permitted by implementation dependency #411-S10, described
below.
270 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

STBLOCKF (deprecated)

■ Whether STBLOCKFs to non-cacheable (TTE.cp = 0) pages execute in strict program order or not. If

not, a STBLOCKFD to a non-cacheable page causes an illegal_instruction exception.
■ Whether STBLOCKFD follows register dependency interlocks (as ordinary stores do).
■ Whether a non-Commit STBLOCKFD forces the data to be written to memory and invalidates

copies in all caches present (as the Commit variants of STBLOCKFD do).
■ Any other restrictions on the behavior of STBLOCKFD, as described in implementation-specific

documentation.

Exceptions. An illegal_instruction exception occurs if the source floating-point registers are not
aligned on an eight-register boundary.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute a STBLOCKFD instruction causes an fp_disabled exception.

If the least significant 6 bits of the memory address are not all zero, a mem_address_not_aligned
exception occurs.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI is 0 (ASIs 1616,
1716, 1E16, and 1F16), STBLOCKFD causes a privileged_action exception.

An access caused by STBLOCKFD may trigger a VA_watchpoint or PA_watchpoint exception (impl.
dep. #411-S10).

Exceptions illegal_instruction
fp_disabled
mem_address_not_aligned
privileged_action
VA_watchpoint (impl. dep. #411-S10)
DAE_privilege_violation
DAE_nfo_page
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
fast_data_access_protection
PA_watchpoint (impl. dep. #411-S10)
data_access_error

See Also LDBLOCKFD on page 192
STDF on page 272

Implementation
Note

STBLOCKFD shares an opcode with the STDFA, STPARTIALF,
and STSHORTF instructions; it is distinguished by the ASI used.
CHAPTER 7 • Instructions 271

STF / STDF / STQF
7.92 Store Floating-Point

† Encoded floating-point register value, as described on page 51.

Description The store single floating-point instruction (STF) copies the contents of the 32-bit floating-point register
FS [rd] into memory.

The store double floating-point instruction (STDF) copies the contents of 64-bit floating-point register
FD[rd] into a word-aligned doubleword in memory. The unit of atomicity for STDF is 4 bytes (one
word).

The store quad floating-point instruction (STQF) copies the contents of 128-bit floating-point register
FQ[rd] into a word-aligned quadword in memory. The unit of atomicity for STQF is 4 bytes (one
word).

These instruction access memory using the implicit ASI (see page 87). The effective address for these
instructions is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if i = 1.

Exceptions. An attempt to execute a STF or STDF instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if the FPU is not present,
then an attempt to execute a STF or STDF instruction causes an fp_disabled exception.

STF causes a mem_address_not_aligned exception if the effective memory address is not word-
aligned.

STDF requires only word alignment in memory. However, if the effective address is word-aligned but
not doubleword-aligned, an attempt to execute an STDF instruction causes an
STDF_mem_address_not_aligned exception. In this case, trap handler software must emulate the
STDF instruction and return (impl. dep. #110-V9-Cs10(a)).

STQF requires only word alignment in memory. If the effective address is word-aligned but not
quadword-aligned, an attempt to execute an STQF instruction causes an
STQF_mem_address_not_aligned exception. In this case, trap handler software must emulate the
STQF instruction and return (impl. dep. #112-V9-Cs10(a)).

Instruction op3 rd Operation Assembly Language Class

STF 10 0100 0–31 Store Floating-Point register st fregrd, [address] A1

STDF 10 0111 † Store Double Floating-Point register std fregrd, [address] A1

STQF 10 0110 † Store Quad Floating-Point register stq fregrd, [address] C3

Programming
Note

Some compilers issued sequences of single-precision stores for
SPARC V8 processor targets when the compiler could not
determine whether doubleword or quadword operands were
properly aligned. For SPARC V9, since emulation of misaligned
stores is expected to be fast, compilers should issue sets of single-
precision stores only when they can determine that double- or
quadword operands are not properly aligned.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
272 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

STF / STDF / STQF / STXFSR

An attempt to execute an STQF instruction when rd{1} ≠ 0 causes an fp_exception_other
(FSR.ftt = invalid_fp_register) exception.

Exceptions illegal_instruction
fp_disabled
STDF_mem_address_not_aligned
STQF_mem_address_not_aligned (not used in UltraSPARC Architecture 2007)
mem_address_not_aligned
fp_exception_other (FSR.ftt = invalid_fp_register (STQF only))
VA_watchpoint
DAE_privilege_violation
DAE_nfo_page
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
fast_data_access_protection
PA_watchpoint
data_access_error

See Also Load Floating-Point Register on page 195
Block Store on page 269
Store Floating-Point into Alternate Space on page 274
Store Floating-Point State Register (Lower) on page 277
Store Short Floating-Point on page 282
Store Partial Floating-Point on page 279
Store Floating-Point State Register on page 288

Implementation
Note

Since UltraSPARC Architecture 2007 processors do not implement
in hardware instructions (including STQF) that refer to quad-
precision floating-point registers, the
STQF_mem_address_not_aligned and fp_exception_other (with
FSR.ftt = invalid_fp_register) exceptions do not occur in
hardware. However, their effects must be emulated by software
when the instruction causes an illegal_instruction exception and
subsequent trap.
CHAPTER 7 • Instructions 273

STFA / STDFA / STQFA
7.93 Store Floating-Point into Alternate Space

† Encoded floating-point register value, as described on page 51.

Description The store single floating-point into alternate space instruction (STFA) copies the contents of the 32-bit
floating-point register FS [rd] into memory.

The store double floating-point into alternate space instruction (STDFA) copies the contents of 64-bit
floating-point register FD[rd] into a word-aligned doubleword in memory. The unit of atomicity for
STDFA is 4 bytes (one word).

The store quad floating-point into alternate space instruction (STQFA) copies the contents of 128-bit
floating-point register FQ[rd] into a word-aligned quadword in memory. The unit of atomicity for
STQFA is 4 bytes (one word).

Store floating-point into alternate space instructions contain the address space identifier (ASI) to be
used for the load in the imm_asi field if i = 0 or in the ASI register if i = 1. The access is privileged if
bit 7 of the ASI is 0; otherwise, it is not privileged. The effective address for these instructions is
“R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if i = 1.

Exceptions. STFA causes a mem_address_not_aligned exception if the effective memory address is
not word-aligned.

STDFA requires only word alignment in memory. However, if the effective address is word-aligned
but not doubleword-aligned, an attempt to execute an STDFA instruction causes an
STDF_mem_address_not_aligned exception. In this case, trap handler software must emulate the
STDFA instruction and return (impl. dep. #110-V9-Cs10(b)).

STQFA requires only word alignment in memory. However, if the effective address is word-aligned
but not quadword-aligned, an attempt to execute an STQFA instruction may cause an
STQF_mem_address_not_aligned exception. In this case, the trap handler software must emulate the
STQFA instruction and return (impl. dep. #112-V9-Cs10(b)).

Instruction op3 rd Operation Assembly Language Syntax Class

STFAPASI 11 0100 0–31 Store Floating-Point Register
to Alternate Space

sta
sta

fregrd, [regaddr] imm_asi
fregrd, [reg_plus_imm] %asi

A1

STDFAPASI 11 0111 † Store Double Floating-Point
Register to Alternate Space

stda
stda

fregrd, [regaddr] imm_asi
fregrd, [reg_plus_imm] %asi

A1

STQFAPASI 11 0110 † Store Quad Floating-Point
Register to Alternate Space

stqa
stqa

fregrd, [regaddr] imm_asi
fregrd, [reg_plus_imm] %asi

C3

Programming
Note

Some compilers issued sequences of single-precision stores for
SPARC V8 processor targets when the compiler could not
determine whether doubleword or quadword operands were
properly aligned. For SPARC V9, since emulation of misaligned
stores is expected to be fast, compilers should issue sets of single-
precision stores only when they can determine that double- or
quadword operands are not properly aligned.

Implementation
Note

STDFA shares an opcode with the STBLOCKFD, STPARTIALF,
and STSHORTF instructions; it is distinguished by the ASI used.

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 simm13i=1
274 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

STFA / STDFA / STQFA

An attempt to execute an STQFA instruction when rd{1} ≠ 0 causes an fp_exception_other
(FSR.ftt = invalid_fp_register) exception.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI is 0, this
instruction causes a privileged_action exception. In privileged mode (PSTATE.priv = 1 and
HPSTATE.hpriv = 0), if the ASI is in the range 3016 to 7F16, this instruction causes a privileged_action
exception.

STFA and STQFA can be used with any of the following ASIs, subject to the privilege mode rules
described for the privileged_action exception above. Use of any other ASI with these instructions
causes a DAE_invalid_asi exception.

STDFA can be used with any of the following ASIs, subject to the privilege mode rules described for
the privileged_action exception above. Use of any other ASI with the STDFA instruction causes a
DAE_invalid_asi exception.

Implementation
Note

Since UltraSPARC Architecture 2007 processors do not implement
in hardware instructions (including STQFA) that refer to quad-
precision floating-point registers, the
STQF_mem_address_not_aligned and fp_exception_other (with
FSR.ftt = invalid_fp_register) exceptions do not occur in
hardware. However, their effects must be emulated by software
when the instruction causes an illegal_instruction exception and
subsequent trap.

ASIs valid for STFA and STQFA

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_REAL_IO ASI_REAL_IO_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

ASIs valid for STDFA

ASI_AS_IF_PRIV_PRIMARY ASI_AS_IF_PRIV_PRIMARY_LITTLE

ASI_AS_IF_PRIV_SECONDARY ASI_AS_IF_PRIV_SECONDARY_LITTLE

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_REAL_IO ASI_REAL_IO_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

ASI_BLOCK_AS_IF_USER_PRIMARY † ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE †
ASI_BLOCK_AS_IF_USER_SECONDARY † ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE †
ASI_BLOCK_PRIMARY † ASI_BLOCK_PRIMARY_LITTLE †
ASI_BLOCK_SECONDARY † ASI_BLOCK_SECONDARY_LITTLE †
ASI_BLOCK_COMMIT_PRIMARY †
ASI_BLOCK_COMMIT_SECONDARY †

ASI_FL8_PRIMARY ‡ ASI_FL8_PRIMARY_LITTLE ‡
ASI_FL8_SECONDARY ‡ ASI_FL8_SECONDARY_LITTLE ‡
ASI_FL16_PRIMARY ‡ ASI_FL16_PRIMARY_LITTLE ‡
ASI_FL16_SECONDARY ‡ ASI_FL16_SECONDARY_LITTLE ‡

ASI_PST8_PRIMARY * ASI_PST8_PRIMARY_LITTLE *
ASI_PST8_SECONDARY * ASI_PST8_SECONDARY_LITTLE *
CHAPTER 7 • Instructions 275

STFA / STDFA / STQFA
Exceptions fp_disabled
STDF_mem_address_not_aligned
STQF_mem_address_not_aligned (STQFA only) (not used in UA-2007)
mem_address_not_aligned
fp_exception_other (FSR.ftt = invalid_fp_register (STQFA only))
privileged_action
VA_watchpoint
DAE_invalid_asi
DAE_privilege_violation
DAE_nfo_page
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
fast_data_access_protection
PA_watchpoint
data_access_error

See Also Load Floating-Point from Alternate Space on page 197
Block Store on page 269
Store Floating-Point on page 272
Store Short Floating-Point on page 282
Store Partial Floating-Point on page 279

ASI_PST16_PRIMARY * ASI_PST16_PRIMARY_LITTLE *
ASI_PST16_SECONDARY * ASI_PST16_SECONDARY_LITTLE *
ASI_PST32_PRIMARY * ASI_PST32_PRIMARY_LITTLE *
ASI_PST32_SECONDARY * ASI_PST32_SECONDARY_LITTLE *

† If this ASI is used with the opcode for STDFA, the STBLOCKFD instruction is
executed instead of STFA. For behavior of STBLOCKFD, see Block Store on page 269.

‡ If this ASI is used with the opcode for STDFA, the STSHORTF instruction
is executed instead of STDFA. For behavior of STSHORTF, see
Store Short Floating-Point on page 282.

* If this ASI is used with the opcode for STDFA, the STPARTIALF instruction
is executed instead of STDFA. For behavior of STPARTIALF, see
Store Partial Floating-Point on page 279.

ASIs valid for STDFA
276 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

STFSR (Deprecated)
7.94 Store Floating-Point State Register (Lower)

Description The Store Floating-point State Register (Lower) instruction (STFSR) waits for any currently executing
FPop instructions to complete, and then it writes the less-significant 32 bits of FSR into memory.

After writing the FSR to memory, STFSR zeroes FSR.ftt

STFSR accesses memory using the implicit ASI (see page 87). The effective address for this instruction
is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if i = 1.

An attempt to execute a STFSR instruction when i = 0 and instruction bits 12:5 are nonzero causes an
illegal_instruction exception.

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if the FPU is not present,
then an attempt to execute a STFSR instruction causes an fp_disabled exception.

STFSR causes a mem_address_not_aligned exception if the effective memory address is not word-
aligned.

Exceptions illegal_instruction
fp_disabled
mem_address_not_aligned
VA_watchpoint
DAE_privilege_violation
DAE_nfo_page
fast_data_access_MMU_miss

The STFSR instruction is deprecated and should not be used in new software.
The STXFSR instruction should be used instead.

Opcode op3 rd Operation Assembly Language Syntax Class

STFSRD 10 0101 0 Store Floating-Point State Register (Lower) st %fsr, [address] D2

10 0101 1-31 (see page 288)

V9 Compatibility
Note

FSR.ftt should not be zeroed until it is known that the store will
not cause a precise trap.

V9 Compatibility
Note

Although STFSR is deprecated, UltraSPARC Architecture
implementations continue to support it for compatibility with
existing SPARC V8 software. The STFSR instruction is defined
to store only the less-significant 32 bits of the FSR into memory,
while STXFSR allows SPARC V9 software to store all 64 bits of
the FSR.

Implementation
Note

STFSR shares an opcode with the STXFSR instruction (and
possibly with other implementation-dependent instructions);
they are differentiated by the instruction rd field. An attempt to
execute the op = 102, op3 = 10 01012 opcode with an invalid rd
value causes an illegal_instruction exception.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
CHAPTER 7 • Instructions 277

STFSR (Deprecated)

data_access_MMU_miss
data_access_MMU_error
fast_data_access_protection
PA_watchpoint
data_access_error

See Also Store Floating-Point on page 272
Store Floating-Point State Register on page 288
278 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

STPARTIALF
7.95 Store Partial Floating-Point

Description The partial store instructions are selected by one of the partial store ASIs with the STDFA instruction.

Two 32-bit, four 16-bit, or eight 8-bit values from the 64-bit floating-point register FD[rd] are
conditionally stored at the address specified by R[rs1], using the mask specified in R[rs2].
STPARTIALF has the effect of merging selected data from its source register, FD[rd], into the existing
data at the corresponding destination locations.

Instruction
ASI

Value Operation Assembly Language Syntax † Class

STPARTIALF C016 Eight 8-bit conditional stores to
primary address space

stda fregrd, regrs2, [regrs1] #ASI_PST8_P B1

STPARTIALF C116 Eight 8-bit conditional stores to
secondary address space

stda fregrd, regrs2, [regrs1] #ASI_PST8_S B1

STPARTIALF C816 Eight 8-bit conditional stores to
primary address space, little-endian

stda fregrd, regrs2, [regrs1] #ASI_PST8_PL B1

STPARTIALF C916 Eight 8-bit conditional stores to
secondary address space, little-
endian

stda fregrd, regrs2, [regrs1] #ASI_PST8_SL B1

STPARTIALF C216 Four 16-bit conditional stores to
primary address space

stda fregrd, regrs2, [regrs1] #ASI_PST16_P B1

STPARTIALF C316 Four 16-bit conditional stores to
secondary address space

stda fregrd, regrs2, [regrs1] #ASI_PST16_S B1

STPARTIALF CA16 Four 16-bit conditional stores to
primary address space, little-endian

stda fregrd, regrs2, [regrs1] #ASI_PST16_PL B1

STPARTIALF CB16 Four 16-bit conditional stores to
secondary address space, little-
endian

stda fregrd, regrs2, [regrs1] #ASI_PST16_SL B1

STPARTIALF C416 Two 32-bit conditional stores to
primary address space

stda fregrd, regrs2, [regrs1] #ASI_PST32_P B1

STPARTIALF C516 Two 32-bit conditional stores to
secondary address space

stda fregrd, regrs2, [regrs1] #ASI_PST32_S B1

STPARTIALF CC16 Two 32-bit conditional stores to
primary address space, little-endian

stda fregrd, regrs2, [regrs1] #ASI_PST32_PL B1

STPARTIALF CD16 Two 32-bit conditional stores to
secondary address space, little-
endian

stda fregrd, regrs2, [regrs1] #ASI_PST32_SL B1

† The original assembly language syntax for a Partial Store instruction (“stda fregrd, [regrs1] regrs2, imm_asi”) has been dep-
recated because of inconsistency with the rest of the SPARC assembly language. Over time, assemblers will support the new syntax
for this instruction. In the meantime, some existing assemblers may only recognize the original syntax.

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd11 110111 imm_asirs1 rs2i=0
CHAPTER 7 • Instructions 279

STPARTIALF

The mask value in R[rs2] has the same format as the result specified by the pixel compare instructions
(see SIMD Signed Compare on page 139). The most significant bit of the mask (not of the entire register)
corresponds to the most significant part of FD[rd]. The data is stored in little-endian form in memory
if the ASI name has an “L” (or “_LITTLE”) suffix; otherwise, it is stored in big-endian format.

FIGURE 7-29 Mask Format for Partial Store

Exceptions. A Partial Store instruction can cause a virtual (or physical) watchpoint exception when
the following conditions are met:
■ The virtual (physical) address in R[rs1] matches the address in the VA (PA) Data Watchpoint

Register.
■ The byte store mask in R[rs2] indicates that a byte, halfword or word is to be stored.

■ The Virtual (Physical) Data Watchpoint Mask in ASI_DCU_WATCHPOINT_CONTROL_REG indicates
that one or more of the bytes to be stored at the watched address is being watched.

For data watchpoints of partial stores in UltraSPARC Architecture 2007, the byte store mask (R[rs2])
in the Partial Store instruction is ignored, and a watchpoint exception can occur even if the mask is
zero (that is, no store will take place). The ASI_DCU_WATCHPOINT_CONTROL_REG Data Watchpoint
masks are only checked for nonzero value (watchpoint enabled) (impl. dep. #249).

An attempt to execute a STPARTIALF instruction when i = 1 causes an illegal_instruction exception.

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if the FPU is not present,
then an attempt to execute a STPARTIALF instruction causes an fp_disabled exception.

STPARTIALF causes a mem_address_not_aligned exception if the effective memory address is not
word-aligned.

STPARTIALF requires only word alignment in memory for eight byte stores. If the effective address is
word-aligned but not doubleword-aligned, it generates an STDF_mem_address_not_aligned
exception. In this case, the trap handler software shall emulate the STDFA instruction and return.

32-bit partial store mask
 01

mask for bits 63:32
mask for bits 31:0

16-bit partial store mask
01

mask for bits 63:48
mask for bits 47:32

23

mask for bits 31:16
mask for bits 15:0

8-bit partial store mask

mask for bits 63:56

mask for bits 7:0

01234567

mask for bits 55:48

mask for bits 15:8

. . .

for ASI_PST8_*

for ASI_PST16_*

for ASI_PST32_*

R[rs2]

R[rs2]

R[rs2]

..

.

280 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

STPARTIALF

IMPL. DEP. #249-U3-Cs10: For an STPARTIAL instruction, the following aspects of data watchpoints
are implementation dependent: (a) whether data watchpoint logic examines the byte store mask in
R[rs2] or it conservatively behaves as if every Partial Store always stores all 8 bytes, and (b) whether
data watchpoint logic examines individual bits in the Virtual (Physical) Data Watchpoint Mask in the
LSU Control register DCUCR to determine which bytes are being watched or (when the Watchpoint
Mask is nonzero) it conservatively behaves as if all 8 bytes are being watched.

ASIs C016–C516 and C816–CD16 are only used for partial store operations. In particular, they should
not be used with the LDDFA instruction; however, if any of them is used, the resulting behavior is
specified in the LDDFA instruction description on page 199.

Exceptions illegal_instruction
fp_disabled
mem_address_not_aligned
VA_watchpoint (see text)
DAE_privilege_violation
DAE_nc_page
DAE_nfo_page
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
fast_data_access_protection
PA_watchpoint (see text)
data_access_error

Implementation
Note

STPARTIALF shares an opcode with the STBLOCKFD, STDFA,
and STSHORTF instructions; it is distinguished by the ASI used.
CHAPTER 7 • Instructions 281

STSHORTF
7.96 Store Short Floating-Point

Description The short floating-point store instruction allows 8- and 16-bit stores to be performed from the floating-
point registers. Short stores access the low-order 8 or 16 bits of the register.

Little-endian ASIs transfer data in little-endian format from memory; otherwise, memory is assumed
to be big-endian. Short stores are typically used with the FALIGNDATA instruction (see Align Data on
page 134) to assemble or store 64 bits on noncontiguous components.

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if the FPU is not present,
then an attempt to execute a STSHORTF instruction causes an fp_disabled exception.

STSHORTF causes a mem_address_not_aligned exception if the effective memory address is not
halfword-aligned.

An 8-bit STSHORTF (using ASI D016, D116, D816, or D916) can be performed to an arbitrary memory
address (no alignment requirement).

A 16-bit STSHORTF (using ASI D216, D316, DA16, or DB16) to an address that is not halfword-aligned
(an odd address) causes a mem_address_not_aligned exception.

Exceptions fp_disabled
mem_address_not_aligned
VA_watchpoint
DAE_privilege_violation
DAE_nfo_page

Instruction
ASI

Value Operation Assembly Language Syntax Class

STSHORTF D016 8-bit store to primary address space stda
stda

fregrd, [regaddr] #ASI_FL8_P
fregrd, [reg_plus_imm] %asi

B1
D2

STSHORTF D116 8-bit store to secondary address space stda
stda

fregrd, [regaddr] #ASI_FL8_S
fregrd, [reg_plus_imm] %asi

B1
D2

STSHORTF D816 8-bit store to primary address space,
little-endian

stda
stda

fregrd, [regaddr] #ASI_FL8_PL
fregrd, [reg_plus_imm] %asi

B1
D2

STSHORTF D916 8-bit store to secondary address space,
little-endian

stda
stda

fregrd, [regaddr] #ASI_FL8_SL
fregrd, [reg_plus_imm] %asi

B1
D2

STSHORTF D216 16-bit store to primary address space stda
stda

fregrd, [regaddr] #ASI_FL16_P
fregrd, [reg_plus_imm] %asi

B1
D2

STSHORTF D316 16-bit store to secondary address space stda
stda

fregrd, [regaddr] #ASI_FL16_S
fregrd, [reg_plus_imm] %asi

B1
D2

STSHORTF DA16 16-bit store to primary address space,
little-endian

stda
stda

fregrd, [regaddr] #ASI_FL16_PL
fregrd, [reg_plus_imm] %asi

B1
D2

STSHORTF DB16 16-bit store to secondary address space,
little-endian

stda
stda

fregrd, [regaddr] #ASI_FL16_SL
fregrd, [reg_plus_imm] %asi

B1
D2

Implementation
Note

STSHORTF shares an opcode with the STBLOCKFD, STDFA, and
STPARTIALF instructions; it is distinguished by the ASI used.

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd11 110111 simm_13rs1 i=1

rd11 110111 imm_asirs1 rs2i=0
282 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

STSHORTF

fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
fast_data_access_protection
PA_watchpoint
data_access_error

See Also LDSHORTF on page 203
CHAPTER 7 • Instructions 283

STTW (Deprecated)
7.97 Store Integer Twin Word

Description The store integer twin word instruction (STTW) copies two words from an R register pair into
memory. The least significant 32 bits of the even-numbered R register are written into memory at the
effective address, and the least significant 32 bits of the following odd-numbered R register are
written into memory at the “effective address + 4”.

The least significant bit of the rd field of a store twin word instruction is unused and should always be
set to 0 by software.

STTW accesses memory using the implicit ASI (see page 87). The effective address for this instruction
is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if i = 1.

A successful store twin word instruction operates atomically.

IMPL. DEP. #108-V9a: It is implementation dependent whether STTW is implemented in hardware. If
not, an attempt to execute it will cause an unimplemented_STTW exception. (STTW is implemented in
hardware in all UltraSPARC Architecture 2007 implementations.)

An attempt to execute an STTW instruction when either of the following conditions exist causes an
illegal_instruction exception:

■ destination register number rd is an odd number (is misaligned)
■ i = 0 and instruction bits 12:5 are nonzero

STTW causes a mem_address_not_aligned exception if the effective address is not doubleword-
aligned.

With respect to little-endian memory, an STTW instruction behaves as if it is composed of two 32-bit
stores, each of which is byte-swapped independently before being written into its respective
destination memory word.

The STTW instruction is deprecated and should not be used in new software.
The STX instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax † Class

STTWD 00 0111 Store Integer Twin Word sttw regrd, [address] D2

 † The original assembly language syntax for this instruction used an “std” instruction mnemonic, which is now
deprecated. Over time, assemblers will support the new “sttw” mnemonic for this instruction. In the meantime,
some existing assemblers may only recognize the original “std” mnemonic.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
284 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

STTW (Deprecated)
Exceptions unimplemented_STTW (not used in UltraSPARC Architecture 2007)
illegal_instruction
mem_address_not_aligned
VA_watchpoint
DAE_privilege_violation
DAE_nfo_page
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
fast_data_access_protection
PA_watchpoint
data_access_error

See Also STW/STX on page 266
STTWA on page 286

Programming
Notes

STTW is provided for compatibility with SPARC V8. It may
execute slowly on SPARC V9 machines because of data path and
register-access difficulties. Therefore, software should avoid
using STTW.

If STTW is emulated in software, an STX instruction should be
used for the memory access in the emulation code to preserve
atomicity. Emulation software should examine
TSTATE[TL].pstate.cle (and, if appropriate, TTE.ie) to determine
the endianness of the emulated memory access.

Note that the value of TTE.ie is not saved during a trap.
Therefore, if it is examined in the emulation trap handler, that
should be done as quickly as possible, to minimize the window
of time during which the value of TTE.ie could possibly be
changed from the value it had at the time of the attempted
execution of STTW.
CHAPTER 7 • Instructions 285

STTWA (Deprecated)
7.98 Store Integer Twin Word into Alternate Space

Description The store twin word integer into alternate space instruction (STTWA) copies two words from an R
register pair into memory. The least significant 32 bits of the even-numbered R register are written
into memory at the effective address, and the least significant 32 bits of the following odd-numbered
R register are written into memory at the “effective address + 4”.

The least significant bit of the rd field of an STTWA instruction is unused and should always be set to
0 by software.

Store integer twin word to alternate space instructions contain the address space identifier (ASI) to be
used for the store in the imm_asi field if i = 0, or in the ASI register if i = 1. The access is privileged if
bit 7 of the ASI is 0; otherwise, it is not privileged. The effective address for these instructions is
“R[rs1] + R[rs2]” if i = 0, or “R[rs1]+sign_ext(simm13)” if i = 1.

A successful store twin word instruction operates atomically.

With respect to little-endian memory, an STTWA instruction behaves as if it is composed of two 32-bit
stores, each of which is byte-swapped independently before being written into its respective
destination memory word.

IMPL. DEP. #108-V9b: It is implementation dependent whether STTWA is implemented in hardware.
If not, an attempt to execute it will cause an unimplemented_STTW exception. (STTWA is
implemented in hardware in all UltraSPARC Architecture 2007 implementations.)

An attempt to execute an STTWA instruction with a misaligned (odd) destination register number rd
causes an illegal_instruction exception.

STTWA causes a mem_address_not_aligned exception if the effective address is not doubleword-
aligned.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI is 0, this
instruction causes a privileged_action exception. In privileged mode (PSTATE.priv = 1 and
HPSTATE.hpriv = 0), if the ASI is in the range 3016 to 7F16, this instruction causes a privileged_action
exception.

The STTWA instruction is deprecated and should not be used in new software.
The STXA instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class

STTWAD, PASI 01 0111 Store Twin Word into Alternate Space sttwa
sttwa

regrd [regaddr] imm_asi
regrd [reg_plus_imm] %asi

D2, Y3‡

 † The original assembly language syntax for this instruction used an “stda” instruction mnemonic, which is now deprecated. Over
time, assemblers will support the new “sttwa” mnemonic for this instruction. In the meantime, some existing assemblers may only
recognize the original “stda” mnemonic.

 ‡ Y3 for restricted ASIs (0016-7F16); D2 for unrestricted ASIs (8016-FF16)

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 simm13i=1
286 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

STTWA (Deprecated)

STTWA can be used with any of the following ASIs, subject to the privilege mode rules described for
the privileged_action exception above. Use of any other ASI with this instruction causes a
DAE_invalid_asi exception (impl. dep. #300-U4-Cs10).

Exceptions unimplemented_STTW
illegal_instruction
mem_address_not_aligned
privileged_action
VA_watchpoint
DAE_invalid_asi
DAE_privilege_violation
DAE_nfo_page
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
fast_data_access_protection
PA_watchpoint
data_access_error

See Also STWA/STXA on page 267
STTW on page 284

ASIs valid for STTWA

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_REAL_IO ASI_REAL_IO_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

Programming
Note

Nontranslating ASIs (see page 345) may only be accessed using
STXA (not STTWA) instructions. If an STTWA referencing a
nontranslating ASI is executed, per the above table, it generates
a DAE_invalid_asi exception (impl. dep. #300-U4-Cs10).

Programming
Notes

STTWA is provided for compatibility with SPARC V8. It may
execute slowly on SPARC V9 machines because of data path and
register-access difficulties. Therefore, software should avoid
using STTWA.

If STTWA is emulated in software, an STXA instruction should
be used for the memory access in the emulation code to preserve
atomicity. Emulation software should examine
TSTATE[TL].pstate.cle (and, if appropriate, TTE.ie) to determine
the endianness of the emulated memory access.

Note that the value of TTE.ie is not saved during a trap.
Therefore, if it is examined in the emulation trap handler, that
should be done as quickly as possible, to minimize the window
of time during which the value of TTE.ie could possibly be
changed from the value it had at the time of the attempted
execution of STTWA.
CHAPTER 7 • Instructions 287

STXFSR
7.99 Store Floating-Point State Register

Description The store floating-point state register instruction (STXFSR) waits for any currently executing FPop
instructions to complete, and then it writes all 64 bits of the FSR into memory.

STXFSR zeroes FSR.ftt after writing the FSR to memory.

STXFSR accesses memory using the implicit ASI (see page 87). The effective address for this
instruction is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if i = 1.

Exceptions. An attempt to execute a STXFSR instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if the FPU is not present,
then an attempt to execute a STXFSR instruction causes an fp_disabled exception.

If the effective address is not doubleword-aligned, an attempt to execute an STXFSRinstruction causes
a mem_address_not_aligned exception.

Exceptions illegal_instruction
fp_disabled
mem_address_not_aligned
VA_watchpoint
DAE_privilege_violation
DAE_nfo_page
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
fast_data_access_protection
PA_watchpoint
data_access_error

Instruction op3 rd Operation Assembly Language Class

10 0101 0 (see page 277)

STXFSR 10 0101 1 Store Floating-Point State register stx %fsr, [address] A1

— 10 0101 2–31 Reserved

Implementation
Note

FSR.ftt should not be zeroed by STXFSR until it is known that the
store will not cause a precise trap.

Implementation
Note

STXFSR shares an opcode with the (deprecated) STFSR
instruction (and possibly with other implementation-dependent
instructions); they are differentiated by the instruction rd field.
An attempt to execute the op = 102, op3 = 10 01012 opcode with
an invalid rd value causes an illegal_instruction exception.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
288 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

STXFSR

See Also Load Floating-Point State Register on page 215

Store Floating-Point on page 272
Store Floating-Point State Register (Lower) on page 277
CHAPTER 7 • Instructions 289

SUB
7.100 Subtract

Description These instructions compute “R[rs1] – R[rs2]” if i = 0, or
“R[rs1] – sign_ext(simm13)” if i = 1, and write the difference into R[rd].

SUBC and SUBCcc (“SUBtract with carry”) also subtract the CCR register’s 32-bit carry (icc.c) bit; that
is, they compute “R[rs1] – R[rs2] – icc.c” or
“R[rs1] – sign_ext(simm13) – icc.c” and write the difference into R[rd].

SUBcc and SUBCcc modify the integer condition codes (CCR.icc and CCR.xcc). A 32-bit overflow
(CCR.icc.v) occurs on subtraction if bit 31 (the sign) of the operands differs and bit 31 (the sign) of the
difference differs from R[rs1]{31}. A 64-bit overflow (CCR.xcc.v) occurs on subtraction if bit 63 (the
sign) of the operands differs and bit 63 (the sign) of the difference differs from R[rs1]{63}.

An attempt to execute a SUB instruction when i = 0 and instruction bits 12:5 are nonzero causes an
illegal_instruction exception.

Exceptions illegal_instruction

Instruction op3 Operation Assembly Language Syntax Class

SUB 00 0100 Subtract sub regrs1, reg_or_imm, regrd A1

SUBcc 01 0100 Subtract and modify cc’s subcc regrs1, reg_or_imm, regrd A1

SUBC 00 1100 Subtract with Carry subc regrs1, reg_or_imm, regrd A1

SUBCcc 01 1100 Subtract with Carry and modify cc’s subccc regrs1, reg_or_imm, regrd A1

Programming
Notes

A SUBcc instruction with rd = 0 can be used to effect a signed or
unsigned integer comparison. See the cmp synthetic instruction in
Appendix C, Assembly Language Syntax.

SUBC and SUBCcc read the 32-bit condition codes’ carry bit
(CCR.icc.c), not the 64-bit condition codes’ carry bit (CCR.xcc.c).

rd10 op3 —rs1 rs2i=0

31 24 02530 29 19 18 14 13 12 5 4

rd10 op3 rs1 simm13i=1
290 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

SWAP (Deprecated)
7.101 Swap Register with Memory

Description SWAP exchanges the less significant 32 bits of R[rd] with the contents of the word at the addressed
memory location. The upper 32 bits of R[rd] are set to 0. The operation is performed atomically, that
is, without allowing intervening interrupts or deferred traps. In a multiprocessor system, two or more
virtual processors executing CASA, CASXA, SWAP, SWAPA, LDSTUB, or LDSTUBA instructions
addressing any or all of the same doubleword simultaneously are guaranteed to execute them in an
undefined, but serial, order.

SWAP accesses memory using the implicit ASI (see page 87). The effective address for these
instructions is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if i = 1.

An attempt to execute a SWAP instruction when i = 0 and instruction bits 12:5 are nonzero causes an
illegal_instruction exception.

If the effective address is not word-aligned, an attempt to execute a SWAP instruction causes a
mem_address_not_aligned exception.

The coherence and atomicity of memory operations between virtual processors and I/O DMA
memory accesses are implementation dependent (impl. dep. #120-V9).

Exceptions illegal_instruction
mem_address_not_aligned
VA_watchpoint
DAE_privilege_violation
DAE_nfo_page
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
fast_data_access_protection
PA_watchpoint
data_access_error

The SWAP instruction is deprecated and should not be used in new software.
The CASA or CASXA instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class

SWAPD 00 1111 Swap Register with Memory swap [address], regrd D2

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
CHAPTER 7 • Instructions 291

SWAPA (Deprecated)
7.102 Swap Register with Alternate Space Memory

Description SWAPA exchanges the less significant 32 bits of R[rd] with the contents of the word at the addressed
memory location. The upper 32 bits of R[rd] are set to 0. The operation is performed atomically, that
is, without allowing intervening interrupts or deferred traps. In a multiprocessor system, two or more
virtual processors executing CASA, CASXA, SWAP, SWAPA, LDSTUB, or LDSTUBA instructions
addressing any or all of the same doubleword simultaneously are guaranteed to execute them in an
undefined, but serial, order.

The SWAPA instruction contains the address space identifier (ASI) to be used for the load in the
imm_asi field if i = 0, or in the ASI register if i = 1. The access is privileged if bit 7 of the ASI is 0;
otherwise, it is not privileged. The effective address for this instruction is “R[rs1] + R[rs2]” if i = 0, or
“R[rs1] + sign_ext(simm13)” if i = 1.

This instruction causes a mem_address_not_aligned exception if the effective address is not word-
aligned. It causes a privileged_action exception if PSTATE.priv = 0 and bit 7 of the ASI is 0.

The coherence and atomicity of memory operations between virtual processors and I/O DMA
memory accesses are implementation dependent (impl. dep #120-V9).

If the effective address is not word-aligned, an attempt to execute a SWAPA instruction causes a
mem_address_not_aligned exception.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI is 0, this
instruction causes a privileged_action exception. In privileged mode (PSTATE.priv = 1 and
HPSTATE.hpriv = 0), if the ASI is in the range 3016 to 7F16, this instruction causes a privileged_action
exception.

SWAPA can be used with any of the following ASIs, subject to the privilege mode rules described for
the privileged_action exception above. Use of any other ASI with this instruction causes a
DAE_invalid_asi exception.

The SWAPA instruction is deprecated and should not be used in new software.
The CASXA instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class

SWAPAD, PASI 01 1111 Swap register with Alternate Space
Memory

swapa
swapa

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

D2, Y3‡

 ‡ Y3 for restricted ASIs (0016-7F16); D2 for unrestricted ASIs (8016-FF16)

ASIs valid for SWAPA

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 simm13i=1
292 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

SWAPA (Deprecated)

Exceptions mem_address_not_aligned

privileged_action
VA_watchpoint
DAE_invalid_asi
DAE_privilege_violation
DAE_nc_page
DAE_nfo_page
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
fast_data_access_protection
PA_watchpoint
data_access_error
CHAPTER 7 • Instructions 293

TADDcc
7.103 Tagged Add

Description This instruction computes a sum that is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if
i = 1.

TADDcc modifies the integer condition codes (icc and xcc).

A tag overflow condition occurs if bit 1 or bit 0 of either operand is nonzero or if the addition
generates 32-bit arithmetic overflow (that is, both operands have the same value in bit 31 and bit 31 of
the sum is different).

If a TADDcc causes a tag overflow, the 32-bit overflow bit (CCR.icc.v) is set to 1; if TADDcc does not
cause a tag overflow, CCR.icc.v is set to 0.

In either case, the remaining integer condition codes (both the other CCR.icc bits and all the CCR.xcc
bits) are also updated as they would be for a normal ADD instruction. In particular, the setting of the
CCR.xcc.v bit is not determined by the tag overflow condition (tag overflow is used only to set the 32-
bit overflow bit). CCR.xcc.v is set based on the 64-bit arithmetic overflow condition, like a normal 64-
bit add.

An attempt to execute a TADDcc instruction when i = 0 and instruction bits 12:5 are nonzero causes an
illegal_instruction exception.

Exceptions illegal_instruction

See Also TADDccTVD on page 295
TSUBcc on page 299

Instruction op3 Operation Assembly Language Syntax Class

TADDcc 10 0000 Tagged Add and modify cc’s taddcc regrs1, reg_or_imm, regrd A1

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
294 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

TADDccTV (Deprecated)
7.104 Tagged Add and Trap on Overflow

Description This instruction computes a sum that is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if
i = 1.

TADDccTV modifies the integer condition codes if it does not trap.

An attempt to execute a TADDccTV instruction when i = 0 and instruction bits 12:5 are nonzero causes
an illegal_instruction exception.

A tag overflow condition occurs if bit 1 or bit 0 of either operand is nonzero or if the addition
generates 32-bit arithmetic overflow (that is, both operands have the same value in bit 31 and bit 31 of
the sum is different).

If TADDccTV causes a tag overflow, a tag_overflow exception is generated and R[rd] and the integer
condition codes remain unchanged. If a TADDccTV does not cause a tag overflow, the sum is written
into R[rd] and the integer condition codes are updated. CCR.icc.v is set to 0 to indicate no 32-bit
overflow.

In either case, the remaining integer condition codes (both the other CCR.icc bits and all the CCR.xcc
bits) are also updated as they would be for a normal ADD instruction. In particular, the setting of the
CCR.xcc.v bit is not determined by the tag overflow condition (tag overflow is used only to set the 32-
bit overflow bit). CCR.xcc.v is set only on the basis of the normal 64-bit arithmetic overflow condition,
like a normal 64-bit add.

Exceptions illegal_instruction
tag_overflow

See Also TADDcc on page 294
TSUBccTVD on page 300

The TADDccTV instruction is deprecated and should not be used in new
software. The TADDcc instruction followed by the BPVS instruction (with
instructions to save the pre-TADDcc integer condition codes if necessary) should
be used instead.

Opcode op3 Operation Assembly Language Syntax Class

TADDccTVD 10 0010 Tagged Add and
modify cc’s or Trap on Overflow

taddcctv regrs1, reg_or_imm, regrd D2

SPARC V8
Compatibility

Note

TADDccTV traps based on the 32-bit overflow condition, just as
in the SPARC V8 architecture. Although the tagged add
instructions set the 64-bit condition codes CCR.xcc, there is no
form of the instruction that traps on the 64-bit overflow
condition.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
CHAPTER 7 • Instructions 295

Tcc
7.105 Trap on Integer Condition Codes (Tcc)

† synonym: tnz ‡ synonym: tz ◊ synonym: tgeu ∇ synonym: tlu

Instruction op3 cond Operation cc Test Assembly Language Syntax Class

TA 11 1010 1000 Trap Always 1 ta i_or_x_cc, software_trap_number A1

TN 11 1010 0000 Trap Never 0 tn i_or_x_cc, software_trap_number A1

TNE 11 1010 1001 Trap on Not Equal not Z tne† i_or_x_cc, software_trap_number A1

TE 11 1010 0001 Trap on Equal Z te‡ i_or_x_cc, software_trap_number A1

TG 11 1010 1010 Trap on Greater not (Z or (N
xor V))

tg i_or_x_cc, software_trap_number A1

TLE 11 1010 0010 Trap on Less or Equal Z or (N xor V) tle i_or_x_cc, software_trap_number A1

TGE 11 1010 1011 Trap on Greater or
Equal

not (N xor V) tge i_or_x_cc, software_trap_number A1

TL 11 1010 0011 Trap on Less N xor V tl i_or_x_cc, software_trap_number A1

TGU 11 1010 1100 Trap on Greater,
Unsigned

not (C or Z) tgu i_or_x_cc, software_trap_number A1

TLEU 11 1010 0100 Trap on Less or
Equal, Unsigned

(C or Z) tleu i_or_x_cc, software_trap_number A1

TCC 11 1010 1101 Trap on Carry Clear
(Greater than or
Equal, Unsigned)

not C tcc◊ i_or_x_cc, software_trap_number A1

TCS 11 1010 0101 Trap on Carry Set
(Less Than, Unsigned)

C tcs∇ i_or_x_cc, software_trap_number A1

TPOS 11 1010 1110 Trap on Positive or
zero

not N tpos i_or_x_cc, software_trap_number A1

TNEG 11 1010 0110 Trap on Negative N tneg i_or_x_cc, software_trap_number A1

TVC 11 1010 1111 Trap on Overflow
Clear

not V tvc i_or_x_cc, software_trap_number A1

TVS 11 1010 0111 Trap on Overflow Set V tvs i_or_x_cc, software_trap_number A1

cc1 :: cc0 Condition Codes Evaluated

00 CCR.icc

01 — (illegal_instruction)

10 CCR.xcc

11 — (illegal_instruction)

5 4

10 cond op3 rs1 i=0 — rs2

31 141924 18 13 12 02530 29

—

28 8 7

cc1cc0

11 10

10 cond op3 rs1 i=1 —— cc1cc0 imm_trap_#
296 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

Tcc

Description The Tcc instruction evaluates the selected integer condition codes (icc or xcc) according to the cond

field of the instruction, producing either a TRUE or FALSE result. If TRUE and no higher-priority
exceptions or interrupt requests are pending, then a trap_instruction or htrap_instruction exception is
generated. If FALSE, the trap_instruction (or htrap_instruction) exception does not occur and the
instruction behaves like a NOP.

For brevity, in the remainder of this section the value of the “software trap number” used by Tcc will
be referred to as “SWTN”.

In nonprivileged mode, if i = 0 the SWTN is specified by the least significant seven bits of
“R[rs1] + R[rs2]”. If i = 1, the SWTN is provided by the least significant seven bits of
“R[rs1] + imm_trap_#”. Therefore, the valid range of values for SWTN in nonprivileged mode is 0 to
127. The most significant 57 bits of SWTN are unused and should be supplied as zeroes by software.

In privileged and hyperprivileged modes, if i = 0 the SWTN is specified by the least significant eight
bits of “R[rs1] + R[rs2]”. If i = 1, the SWTN is provided by the least significant eight bits of
“R[rs1] + imm_trap_#”. Therefore, the valid range of values for SWTN in privileged and
hyperprivileged modes is 0 to 255. The most significant 56 bits of SWTN are unused an should be
supplied as zeroes by software.

Generally, values of 0 ≤ SWTN ≤ 127 are used to trap to privileged-mode software and values of 128 ≤
SWTN ≤ 255 are used to trap to hyperprivileged-mode software. The behavior of Tcc, based on the
privilege mode in effect when it is executed and the value of the supplied SWTN, is as follows:

Exceptions. An attempt to execute a Tcc instruction when any of the following conditions exist
causes an illegal_instruction exception:

■ instruction bit 29 is nonzero
■ i = 0 and instruction bits 10:5 are nonzero
■ i = 1 and instruction bits 10:8 are nonzero
■ cc0 = 1

If the Trap on Control Transfer feature is implemented (impl. dep. #450-S20) and PSTATE.tct = 1, then
Tcc generates a control_transfer_instruction exception instead of causing a control transfer. When a
control_transfer_instruction trap occurs, PC (the address of the Tcc instruction) is stored in TPC[TL]
and the value of NPC from before the Tcc was executed is stored in TNPC[TL]. The full 64-bit
(nonmasked) PC and NPC values are stored in TPC[TL] and TNPC[TL], regardless of the value of
PSTATE.am.

Behavior of Tcc instruction

Privilege Mode in effect when Tcc is executed 0 ≤ SWTN ≤ 127 128 ≤ SWTN ≤ 255

Nonprivileged
(PSTATE.priv = 0 and
HPSTATE.hpriv = 0)

trap_instruction exception
(to privileged mode)
(256 ≤ TT ≤ 383)

—
(not possible, because
SWTN is a 7-bit value in
nonprivileged mode)

Privileged
(PSTATE.priv = 1 and
HPSTATE.hpriv = 0)

trap_instruction exception
(to privileged mode)
(256 ≤ TT ≤ 383)

htrap_instruction exception
(to hyperprivileged mode)
(384 ≤ TT ≤ 511)

Hyperprivileged (HPSTATE.hpriv = 1) htrap_instruction exception
(to hyperprivileged mode)
(256 ≤ TT ≤ 383)

htrap_instruction exception
(to hyperprivileged mode)
(384 ≤ TT ≤ 511)

Programming
Note

Tcc can be used to implement breakpointing, tracing, and calls to
privileged and hyperprivileged software. It can also be used for
runtime checks, such as for out-of-range array indexes and integer
overflow.
CHAPTER 7 • Instructions 297

Tcc

If a Tcc instruction causes a trap_instruction or htrap_instruction trap, 256 plus the SWTN value is
written into TT[TL]. Then the trap is taken and the virtual processor performs the normal trap entry
procedure, as described in Trap Processing on page 396.

Exceptions illegal_instruction
control_transfer_instruction (impl. dep. #450-S20)
trap_instruction (0 ≤ SWTN ≤ 127)
htrap_instruction (128 ≤ SWTN ≤ 255)
298 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

TSUBcc
7.106 Tagged Subtract

Description This instruction computes “R[rs1] – R[rs2]” if i = 0, or
“R[rs1] – sign_ext(simm13)” if i = 1.

TSUBcc modifies the integer condition codes (icc and xcc).

A tag overflow condition occurs if bit 1 or bit 0 of either operand is nonzero or if the subtraction
generates 32-bit arithmetic overflow; that is, the operands have different values in bit 31 (the 32-bit
sign bit) and the sign of the 32-bit difference in bit 31 differs from bit 31 of R[rs1].

If a TSUBcc causes a tag overflow, the 32-bit overflow bit (CCR.icc.v) is set to 1; if TSUBcc does not
cause a tag overflow, CCR.icc.v is set to 0.

In either case, the remaining integer condition codes (both the other CCR.icc bits and all the CCR.xcc
bits) are also updated as they would be for a normal subtract instruction. In particular, the setting of
the CCR.xcc.v bit is not determined by the tag overflow condition (tag overflow is used only to set the
32-bit overflow bit). ccr.xcc.v is set based on the 64-bit arithmetic overflow condition, like a normal
64-bit subtract.

An attempt to execute a TSUBcc instruction when i = 0 and instruction bits 12:5 are nonzero causes an
illegal_instruction exception.

Exceptions illegal_instruction

See Also TADDcc on page 294
TSUBccTVD on page 300

Instruction op3 Operation Assembly Language Syntax Class

TSUBcc 10 0001 Tagged Subtract and modify cc’s tsubcc regrs1, reg_or_imm, regrd A1

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
CHAPTER 7 • Instructions 299

TSUBccTV (Deprecated)
7.107 Tagged Subtract and Trap on Overflow

Description This instruction computes “R[rs1] – R[rs2]” if i = 0, or “R[rs1] – sign_ext(simm13)” if i = 1.

TSUBccTV modifies the integer condition codes (icc and xcc) if it does not trap.

A tag overflow condition occurs if bit 1 or bit 0 of either operand is nonzero or if the subtraction
generates 32-bit arithmetic overflow; that is, the operands have different values in bit 31 (the 32-bit
sign bit) and the sign of the 32-bit difference in bit 31 differs from bit 31 of R[rs1].

An attempt to execute a TSUBccTV instruction when i = 0 and instruction bits 12:5 are nonzero causes
an illegal_instruction exception.

If TSUBccTV causes a tag overflow, then a tag_overflow exception is generated and R[rd] and the
integer condition codes remain unchanged. If a TSUBccTV does not cause a tag overflow condition,
the difference is written into R[rd] and the integer condition codes are updated. CCR.icc.v is set to 0 to
indicate no 32-bit overflow.

In either case, the remaining integer condition codes (both the other CCR.icc bits and all the CCR.xcc
bits) are also updated as they would be for a normal subtract instruction. In particular, the setting of
the CCR.xcc.v bit is not determined by the tag overflow condition (tag overflow is used only to set the
32-bit overflow bit). CCR.xcc.v is set only on the basis of the normal 64-bit arithmetic overflow
condition, like a normal 64-bit subtract.

Exceptions illegal_instruction
tag_overflow

See Also TADDccTVD on page 295
TSUBcc on page 299

The TSUBccTV instruction is deprecated and should not be used in new
software. The TSUBcc instruction followed by BPVS instead (with instructions to
save the pre-TSUBcc integer condition codes if necessary) should be used
instead.

Opcode op3 Operation Assembly Language Syntax Class

TSUBccTVD 10 0011 Tagged Subtract and
modify cc’s or Trap on Overflow

tsubcctv regrs1, reg_or_imm, regrd D2

SPARC V8
Compatibility

Note

TSUBccTV traps based on the 32-bit overflow condition, just as
in the SPARC V8 architecture. Although the tagged add
instructions set the 64-bit condition codes CCR.xcc, there is no
form of the instruction that traps on the 64-bit overflow
condition.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
300 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

UDIV, UDIVcc (Deprecated)
7.108 Unsigned Divide (64-bit ÷ 32-bit)

Description The unsigned divide instructions perform 64-bit by 32-bit division, producing a 32-bit result. If i = 0,
they compute “(Y :: R[rs1]{31:0}) ÷ R[rs2]{31:0}”. Otherwise (that is, if i = 1), the divide instructions
compute “(Y :: R[rs1]{31:0}) ÷ (sign_ext(simm13){31:0})”. In either case, if overflow does not occur, the
less significant 32 bits of the integer quotient are sign- or zero-extended to 64 bits and are written into
R[rd].

The contents of the Y register are undefined after any 64-bit by 32-bit integer divide operation.

Unsigned Divide
Unsigned divide (UDIV, UDIVcc) assumes an unsigned integer doubleword dividend
(Y :: R[rs1]{31:0}) and an unsigned integer word divisor R[rs2{31:0}] or (sign_ext(simm13){31:0}) and
computes an unsigned integer word quotient (R[rd]). Immediate values in simm13 are in the ranges 0
to 212 – 1 and 232 – 212 to 232 – 1 for unsigned divide instructions.

Unsigned division rounds an inexact rational quotient toward zero.

The result of an unsigned divide instruction can overflow the less significant 32 bits of the destination
register R[rd] under certain conditions. When overflow occurs, the largest appropriate unsigned
integer is returned as the quotient in R[rd]. The condition under which overflow occurs and the value
returned in R[rd] under this condition are specified in TABLE 7-15.

When no overflow occurs, the 32-bit result is zero-extended to 64 bits and written into register R[rd].

The UDIV and UDIVcc instructions are deprecated and should not be used in
new software. The UDIVX instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class

UDIVD 00 1110 Unsigned Integer Divide udiv regrs1, reg_or_imm, regrd D2

UDIVccD 01 1110 Unsigned Integer Divide and modify cc’s udivcc regrs1, reg_or_imm, regrd D2

Programming
Note

The rational quotient is the infinitely precise result quotient. It
includes both the integer part and the fractional part of the
result. For example, the rational quotient of 11/4 = 2.75 (integer
part = 2, fractional part = .75).

TABLE 7-15 UDIV / UDIVcc Overflow Detection and Value Returned

Condition Under Which Overflow Occurs Value Returned in R[rd]

Rational quotient ≥ 232 232 − 1
(0000 0000 FFFF FFFF16)

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
CHAPTER 7 • Instructions 301

UDIV, UDIVcc (Deprecated)

UDIV does not affect the condition code bits. UDIVcc writes the integer condition code bits as shown
in the following table. Note that negative (N) and zero (Z) are set according to the value of R[rd] after
it has been set to reflect overflow, if any.

An attempt to execute a UDIV or UDIVcc instruction when i = 0 and instruction bits 12:5 are nonzero
causes an illegal_instruction exception.

Exceptions illegal_instruction
division_by_zero

See Also RDY on page 242
SDIV[cc] on page 258,
UMUL[cc] on page 303

Bit Effect on bit of UDIVcc instruction

icc.n Set if R[rd]{31} = 1

icc.z Set if R[rd]{31:0} = 0

icc.v Set if overflow (per TABLE 7-15)

icc.c Zero

xcc.n Set if R[rd]{63} = 1

xcc.z Set if R[rd]{63:0} = 0

xcc.v Zero

xcc.c Zero
302 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

UMUL, UMULcc (Deprecated)
7.109 Unsigned Multiply (32-bit)

Description The unsigned multiply instructions perform 32-bit by 32-bit multiplications, producing 64-bit results.
They compute “R[rs1]{31:0} × R[rs2]{31:0}” if i = 0, or “R[rs1]{31:0} × sign_ext(simm13){31:0}” if i = 1.
They write the 32 most significant bits of the product into the Y register and all 64 bits of the product
into R[rd].

Unsigned multiply instructions (UMUL, UMULcc) operate on unsigned integer word operands and
compute an unsigned integer doubleword product.

UMUL does not affect the condition code bits. UMULcc writes the integer condition code bits, icc and
xcc, as shown below.

An attempt to execute a UMUL or UMULcc instruction when i = 0 and instruction bits 12:5 are nonzero
causes an illegal_instruction exception.

Exceptions illegal_instruction

The UMUL and UMULcc instructions are deprecated and should not be used in
new software. The MULX instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class

UMULD 00 1010 Unsigned Integer Multiply umul regrs1, reg_or_imm, regrd D2

UMULccD 01 1010 Unsigned Integer Multiply and modify cc’s umulcc regrs1, reg_or_imm, regrd D2

Bit Effect on bit by execution of UMULcc

icc.n Set to 1 if product{31} = 1; otherwise, set to 0
icc.z Set to 1 if product{31:0}= 0; otherwise, set to 0
icc.v Set to 0
icc.c Set to 0
xcc.n Set to 1 if product{63} = 1; otherwise, set to 0
xcc.z Set to 1 if product{63:0} = 0; otherwise, set to 0
xcc.v Set to 0
xcc.c Set to 0

Note 32-bit negative (icc.n) and zero (icc.z) condition codes are set
according to the less significant word of the product, not
according to the full 64-bit result.

Programming
Notes

32-bit overflow after UMUL or UMULcc is indicated by Y ≠ 0.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
CHAPTER 7 • Instructions 303

UMUL, UMULcc (Deprecated)

See Also MULScc on page 225

RDY on page 242
SMUL[cc] on page 265,
UDIV[cc] on page 301
304 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

WRasr
7.110 Write Ancillary State Register
Instruction rd Operation Assembly Language Syntax Class

WRYD 0 Write Y register (deprecated) wr regrs1, reg_or_imm,%y D2

— 1 Reserved

WRCCR 2 Write Condition Codes
register

wr regrs1, reg_or_imm,%ccr A1

WRASI 3 Write ASI register wr regrs1, reg_or_imm,%asi A1

— 4 Reserved (read-only ASR (TICK))

— 5 Reserved (read-only ASR (PC))

WRFPRS 6 Write Floating-Point Registers Status
register

wr regrs1, reg_or_imm,%fprs A1

— 7–14
(7-0E16)

Reserved

— 15 (0F16) Software-initiated reset (see Software-
Initiated Reset on page 262)

— 16-18
(10-1216)

Reserved (impl. dep. #8-V8-Cs20, #9-
V8-Cs20)

WRGSR 19 (1316) Write General Status register (GSR) wr regrs1, reg_or_imm,%gsr A1

WRSOFTINT_SETP 20 (1416) Set bits of per-virtual processor Soft
Interrupt register

wr regrs1, reg_or_imm, %softint_set N−

WRSOFTINT_CLRP 21 (1516) Clear bits of per-virtual processor Soft
Interrupt register

wr regrs1, reg_or_imm, %softint_clr N−

WRSOFTINTP 22 (1616) Write per-virtual processor Soft
Interrupt register

wr regrs1, reg_or_imm,%softint N−

WRTICK_CMPRP 23 (1716) Write Tick Compare register wr regrs1, reg_or_imm,%tick_cmpr N−

WRSTICKH 24 (1816) Write System Tick register wr regrs1, reg_or_imm,%stick† N−

WRSTICK_CMPRP 25 (1916) Write System Tick Compare register wr regrs1, reg_or_imm,%stick_cmpr† N−

— 26 (1A16) Reserved
(impl. dep. #8-V8-Cs20, 9-V8-Cs20)

— 26 (1A16) Reserved
(impl. dep. #8-V8-Cs20, 9-V8-Cs20)

— 27 (1B16) Reserved
(impl. dep. #8-V8-Cs20, 9-V8-Cs20)

— 28 (1C16) Implementation dependent
(impl. dep. #8-V8-Cs20, 9-V8-Cs20)

— 29 (1D16) Implementation dependent (impl.
dep. #8-V8-Cs20, 9-V8-Cs20)

— 30 (1E16) Reserved

— 31 (1F16) Implementation dependent (impl.
dep. #8-V8-Cs20, 9-V8-Cs20)

† The original assembly language names for %stick and %stick_cmpr were, respectively, %sys_tick and %sys_tick_cmpr, which are
now deprecated. Over time, assemblers will support the new %stick and %stick_cmpr names for these registers (which are consistent with
%tick and %tick_cmpr). In the meantime, some existing assemblers may only recognize the original names.
CHAPTER 7 • Instructions 305

WRasr
Description The WRasr instructions each store a value to the writable fields of the ancillary state register (ASR)
specified by rd.

The value stored by these instructions (other than the implementation-dependent variants) is as
follows: if i = 0, store the value “R[rs1] xor R[rs2]”; if i = 1, store “R[rs1] xor sign_ext(simm13)”.

The WRasr instruction with rd = 0 is a (deprecated) WRY instruction (which should not be used in
new software). WRY is not a delayed-write instruction; the instruction immediately following a WRY
observes the new value of the Y register.

WRCCR, WRFPRS, and WRASI are not delayed-write instructions. The instruction immediately
following a WRCCR, WRFPRS, or WRASI observes the new value of the CCR, FPRS, or ASI register.

WRFPRS waits for any pending floating-point operations to complete before writing the FPRS
register.

IMPL. DEP. # 48-V8-Cs20: WRasr instructions with rd of 16-18, 28, 29, or 31 are available for
implementation-dependent uses (impl. dep. #8-V8-Cs20). For a WRasr instruction using one of those
rd values, the following are implementation dependent:
■ the interpretation of bits 18:0 in the instruction
■ the operation(s) performed (for example, xor) to generate the value written to the ASR
■ whether the instruction is nonprivileged or privileged or hyperprivileged (impl. dep. #9-V8-Cs20),

and
■ whether an attempt to execute the instruction causes an illegal_instruction exception.

See Ancillary State Registers on page 50 for more detailed information regarding ASR registers.

Exceptions. An attempt to execute a WRasr instruction when any of the following conditions exist
causes an illegal_instruction exception:
■ i = 0 and instruction bits 12:5 are nonzero
■ rd = 1, 4, 5, 7–14, 18, or 26-31
■ rd = 15 and ((rs1 ≠ 0) or (i = 0))

Note The operation is exclusive-or.

The WRY instruction is deprecated. It is recommended that all instructions that
reference the Y register be avoided.

Note See the section “Read/Write Ancillary State Registers (ASRs)” in
Extending the UltraSPARC Architecture, contained in the separate
volume UltraSPARC Architecture Application Notes, for a
discussion of extending the SPARC V9 instruction set by means of
read/write ASR instructions.

V9
Compatibility

Notes

Ancillary state registers may include (for example) timer, counter,
diagnostic, self-test, and trap-control registers.

The SPARC V8 WRIER, WRPSR, WRWIM, and WRTBR
instructions do not exist in the UltraSPARC Architecture because
the IER, PSR, TBR, and WIM registers do not exist in the
UltraSPARC Architecture.

rd10 op3 = 11 0000 —rs1 rs2i=0

31 24 02530 29 19 18 14 13 12 5 4

rd10 op3 = 11 0000 rs1 simm13i=1
306 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

WRasr

■ the instruction is WRSTICK and the virtual processor is not in hyperprivileged mode

(HPSTATE.hpriv = 0)

An attempt to execute a WRSOFTINT_SET, WRSOFTINT_CLR, WRSOFTINT, WRTICK_CMPR, or
WRSTICK_CMPR instruction in nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0)
causes a privileged_opcode exception.

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if the FPU is not present,
then an attempt to execute a WRGSR instruction causes an fp_disabled exception.

Exceptions illegal_instruction
privileged_opcode
fp_disabled

See Also RDasr on page 242
WRHPR on page 308
WRPR on page 310

Implementation
Note

The SIR instruction shares an opcode with WRasr; they are
distinguished by the rd, rs1, and i fields (rd = 15,rs1 = 0, and i = 1
for SIR). See Software-Initiated Reset on page 262.
CHAPTER 7 • Instructions 307

WRHPR
7.111 Write Hyperprivileged Register

Description A WRHPR instruction stores the value “R[rs1] xor R[rs2]” if i = 0, or “R[rs1] xor sign_ext(simm13)”
if i = 1 to the writable fields of the specified hyperprivileged state register.

The rd field in the instruction determines the hyperprivileged register that is written. There are MAXTL

copies of the HTSTATE register, one for each trap level. A write to one of these registers sets the copy
of HTSTATE indexed by the current value in the trap-level register (TL).

The WRHPR instruction is a non-delayed-write instruction. The instruction immediately following the
WRHPR observes any changes made to virtual processor state made by the WRHPR.

An attempt to execute a WRHPR instruction when any of the following conditions exist causes an
illegal_instruction exception:
■ i = 0 and instruction bits 12:5 are nonzero
■ rd = 1 and TL = 0 (write to HTSTATE when the trap level is zero)
■ rd = 2, 4, or 6-30 (reserved for future versions of the architecture)
■ virtual processor is in nonprivileged or privileged mode (HPSTATE.hpriv = 0)

A trap_level_zero trap can occur upon the completion of a WRHPR instruction to HPSTATE, if the
following three conditions are true after WRHPR has executed:

■ trap_level_zero exceptions are enabled (HPSTATE.tlz = 1),
■ the virtual processor is in nonprivileged or privileged mode (HPSTATE.hpriv = 0), and
■ the trap level (TL) register’s value is zero (TL = 0)

Instruction op3 Operation rd Assembly Language Syntax Class

WRHPRH 11 0011 Write hyperprivileged register
HPSTATE
HTSTATE
Reserved
HINTP
Reserved
HTBA
Reserved
Reserved
HSTICK_CMPR

0
1
2
3
4
5
6–29
30
31

wrhpr
wrhpr

wrhpr

wrhpr

wrhpr

regrs1, reg_or_imm, %hpstate
regrs1, reg_or_imm, %htstate

regrs1, reg_or_imm, %hintp

regrs1, reg_or_imm, %htba

regrs1, reg_or_imm, %hsys_tick_cmpr

N−

Note The operation is exclusive-or.

Programming
Note

Execution of a WRHPR instruction that causes the value of
HPSTATE.hpriv to change from 1 to 0 is not guaranteed to work
if the WRHPR is in the delay slot of a DCTI instruction.
Therefore, it is recommended that WRHPR never be executed in
a delay slot, especially if it will toggle the value of
HPSTATE.hpriv to 0.

Programming
Note

For historical reasons, the WRPR instruction, not WRHPR, is used
to write to the hyperprivileged TICK register. See Write Privileged
Register on page 310.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
308 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

WRHPR

Exceptions illegal_instruction

trap_level_zero

See Also RDHPR on page 245
WRasr on page 305
WRPR on page 310
CHAPTER 7 • Instructions 309

WRPR
7.112 Write Privileged Register

Description This instruction stores the value “R[rs1] xor R[rs2]” if i = 0, or “R[rs1] xor sign_ext(simm13)” if i = 1
to the writable fields of the specified privileged state register.

The rd field in the instruction determines the privileged register that is written. There are MAXTL copies
of the TPC, TNPC, TT, and TSTATE registers, one for each trap level. A write to one of these registers
sets the register, indexed by the current value in the trap-level register (TL).

A WRPR to TL only stores a value to TL; it does not cause a trap, cause a return from a trap, or alter
any machine state other than TL and state (such as PC, NPC, TICK, etc.) that is indirectly modified by
every instruction.

The WRPR instruction is a non-delayed-write instruction. The instruction immediately following the
WRPR observes any changes made to virtual processor state made by the WRPR.

In privileged mode, MAXPTL is the maximum value that may be written by a WRPR to TL; an attempt
to write a larger value results in MAXPTL being written to TL. In hyperprivileged mode, MAXTL is the
maximum value that may be written by a WRPR to TL; an attempt to write a larger value results in
MAXTL being written to TL. For details, see TABLE 5-19 on page 72.

Instruction op3 Operation rd Assembly Language Syntax Class

WRPRP 11 0010 Write Privileged register
TPC
TNPC
TSTATE
TT
TICK
TBA
PSTATE
TL
PIL
CWP
CANSAVE
CANRESTORE
CLEANWIN
OTHERWIN
WSTATE
Reserved
GL
Reserved

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17–31

wrpr
wrpr
wrpr
wrpr
wrpr
wrpr
wrpr
wrpr
wrpr
wrpr
wrpr
wrpr
wrpr
wrpr
wrpr

wrpr

regrs1, reg_or_imm, %tpc
regrs1, reg_or_imm, %tnpc
regrs1, reg_or_imm, %tstate
regrs1, reg_or_imm, %tt
regrs1, reg_or_imm, %tick
regrs1, reg_or_imm, %tba
regrs1, reg_or_imm, %pstate
regrs1, reg_or_imm, %tl
regrs1, reg_or_imm, %pil
regrs1, reg_or_imm, %cwp
regrs1, reg_or_imm, %cansave
regrs1, reg_or_imm, %canrestore
regrs1, reg_or_imm, %cleanwin
regrs1, reg_or_imm, %otherwin
regrs1, reg_or_imm, %wstate

regrs1, reg_or_imm, %gl

A1

Note The operation is exclusive-or.

Programming
Note

A WRPR of TL can be used to read the values of TPC, TNPC, and
TSTATE for any trap level; however, software must take care that
traps do not occur while the TL register is modified.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
310 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

WRPR

In privileged mode, MAXPGL is the maximum value that may be written by a WRPR to GL; an attempt
to write a larger value results in MAXPGL being written to GL. In hyperprivileged mode, MAXGL is the
maximum value that may be written by a WRPR to GL; an attempt to write a larger value results in
MAXGL being written to GL. For details, see TABLE 5-20 on page 74.

Exceptions. An attempt to execute a WRPR instruction in nonprivileged mode (PSTATE.priv = 0
and HSTATE.hpriv = 0) causes a privileged_opcode exception.

An attempt to execute a WRPR instruction when any of the following conditions exist causes an
illegal_instruction exception:
■ i = 0 and instruction bits 12:5 are nonzero
■ (rd = 4) and (PSTATE.priv = 1 and HSTATE.hpriv = 0)

(an attempt to write to hyperprivileged register TICK while in privileged mode)
■ rd = 15, or 17-31 (reserved for future versions of the architecture)
■ 0 ≤ rd ≤ 3 (attempt to write TPC, TNPC,TSTATE, or TT register) while TL = 0 (current trap level is

zero) and the virtual processor is in privileged or hyperprivileged mode.

A trap_level_zero trap can occur upon the completion of a WRPR instruction to TL, if the following
three conditions are true after WRPR has executed:

■ trap_level_zero exceptions are enabled (HPSTATE.tlz = 1)
■ the virtual processor is in nonprivileged or privileged mode (HPSTATE.hpriv = 0), and
■ the trap level (TL) register’s value is zero (TL = 0)

Exceptions privileged_opcode
illegal_instruction
trap_level_zero

See Also RDPR on page 246
WRasr on page 305
WRHPR on page 308

Programming
Note

For historical reasons, the WRPR instruction, not WRHPR, is used
to write to the hyperprivileged TICK register.

Implementation
Note

In nonprivileged mode, illegal_instruction exception due to
0 ≤ rd ≤ 3 and TL = 0 does not occur; the privileged_opcode
exception occurs instead.
CHAPTER 7 • Instructions 311

XOR / XNOR
7.113 XOR Logical Operation

Description These instructions implement bitwise logical xor operations. They compute “R[rs1] op R[rs2]” if i = 0,
or “R[rs1] op sign_ext(simm13)” if i = 1, and write the result into R[rd].

XORcc and XNORcc modify the integer condition codes (icc and xcc). They set the condition codes as
follows:

■ icc.v, icc.c, xcc.v, and xcc.c are set to 0
■ icc.n is copied from bit 31 of the result
■ xcc.n is copied from bit 63 of the result
■ icc.z is set to 1 if bits 31:0 of the result are zero (otherwise to 0)
■ xcc.z is set to 1 if all 64 bits of the result are zero (otherwise to 0)

An attempt to execute an XOR, XORcc, XNOR, or XNORcc instruction when i = 0 and instruction bits
12:5 are nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction

Instruction op3 Operation Assembly Language Syntax Class

XOR 00 0011 Exclusive or xor regrs1, reg_or_imm, regrd A1

XORcc 01 0011 Exclusive or and modify cc’s xorcc regrs1, reg_or_imm, regrd A1

XNOR 00 0111 Exclusive nor xnor regrs1, reg_or_imm, regrd A1

XNORcc 01 0111 Exclusive nor and modify cc’s xnorcc regrs1, reg_or_imm, regrd A1

Programming
Note

XNOR (and XNORcc) is identical to the xor_not (and set condition
codes) xor_not_cc logical operation, respectively.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
312 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

CHAPTER 8

IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007

The IEEE Std 754-1985 floating-point standard contains a number of implementation dependencies.
This chapter specifies choices for these implementation dependencies, to ensure that SPARC V9
implementations are as consistent as possible.

The chapter contains these major sections:

■ Traps Inhibiting Results on page 313.
■ Underflow Behavior on page 314.
■ Integer Overflow Definition on page 315.
■ Floating-Point Nonstandard Mode on page 315.
■ Arithmetic Result Tables on page 316.

Exceptions are discussed in this chapter on the assumption that instructions are implemented in
hardware. If an instruction is implemented in software, it may not trigger hardware exceptions but its
behavior as observed by nonprivileged software (other than timing) must be the same as if it was
implemented in hardware.

8.1 Traps Inhibiting Results
As described in Floating-Point State Register (FSR) on page 44 and elsewhere, when a floating-point
trap occurs, the following conditions are true:

■ The destination floating-point register(s) (the F registers) are unchanged.

■ The floating-point condition codes (fcc0, fcc1, fcc2, and fcc3) are unchanged.

■ The FSR.aexc (accrued exceptions) field is unchanged.

■ The FSR.cexc (current exceptions) field is unchanged except for IEEE_754_exceptions; in that case,
cexc contains a bit set to 1, corresponding to the exception that caused the trap. Only one bit shall
be set in cexc.

Instructions causing an fp_exception_other trap because of unfinished FPops execute as if by
hardware; that is, such a trap is undetectable by application software, except that timing may be
affected.
313

8.2 Underflow Behavior
An UltraSPARC Architecture virtual processor detects tininess before rounding occurs. (impl. dep.
#55-V8-Cs10)

TABLE 8-1 summarizes what happens when an exact unrounded value u satisfying

0 ≤ |u| ≤ smallest normalized number

would round, if no trap intervened, to a rounded value r which might be zero, subnormal, or the
smallest normalized value.

Programming
Note

A user-mode trap handler invoked for an IEEE_754_exception,
whether as a direct result of a hardware fp_exception_ieee_754
trap or as an indirect result of privileged software handling of
an fp_exception_other trap with FSR.ftt = unfinished_FPop, can
rely on the following behavior:

■ The address of the instruction that caused the exception will
be available.

■ The destination floating-point register(s) are unchanged from
their state prior to that instruction’s execution.

■ The floating-point condition codes (fcc0, fcc1, fcc2, and
fcc3) are unchanged.

■ The FSR.aexc field is unchanged.

■ The FSR.cexc field contains exactly one bit set to 1,
corresponding to the exception that caused the trap.

■ The FSR.ftt, FSR.qne, and reserved fields of FSR are zero.

TABLE 8-1 Floating-Point Underflow Behavior (Tininess Detected Before Rounding)

Underflow trap:
Inexact trap:

ufm = 1
nxm = x

ufm = 0
nxm = 1

ufm = 0
nxm = 0

u = r

r is minimum normal None None None

r is subnormal UF None None

r is zero None None None

u ≠ r

r is minimum normal UF NX uf nx

r is subnormal UF NX uf nx

r is zero UF NX uf nx

UF = fp_exception_ieee_754 trap with cexc.ufc = 1
NX = fp_exception_ieee_754 trap with cexc.nxc = 1

uf = cexc.ufc = 1, aexc.ufa = 1, no fp_exception_ieee_754 trap
nx = cexc.nxc = 1, aexc.nxa = 1, no fp_exception_ieee_754 trap
314 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

8.2.1 Trapped Underflow Definition (ufm = 1)
Since tininess is detected before rounding, trapped underflow occurs when the exact unrounded
result has magnitude between zero and the smallest normalized number in the destination format.

8.2.2 Untrapped Underflow Definition (ufm = 0)
Untrapped underflow occurs when the exact unrounded result has magnitude between zero and the
smallest normalized number in the destination format and the correctly rounded result in the
destination format is inexact.

8.3 Integer Overflow Definition
■ F<sdq>TOi — When a NaN, infinity, large positive argument ≥ 231 or large negative argument ≤ –

(231 + 1) is converted to an integer, the invalid_current (nvc) bit of FSR.cexc is set to 1, and if the
floating-point invalid trap is enabled (FSR.tem.nvm = 1), the fp_exception_IEEE_754 exception is
raised. If the floating-point invalid trap is disabled (FSR.tem.nvm = 0), no trap occurs and a
numerical result is generated: if the sign bit of the operand is 0, the result is 231 – 1; if the sign bit
of the operand is 1, the result is –231.

■ F<sdq>TOx — When a NaN, infinity, large positive argument ≥ 263, or large negative argument ≤
–(263 + 1) is converted to an extended integer, the invalid_current (nvc) bit of FSR.cexc is set to 1,
and if the floating-point invalid trap is enabled (FSR.tem.nvm = 1), the fp_exception_IEEE_754
exception is raised. If the floating-point invalid trap is disabled (FSR.tem.nvm = 0), no trap occurs
and a numerical result is generated: if the sign bit of the operand is 0, the result is 263 – 1; if the
sign bit of the operand is 1, the result is –263.

8.4 Floating-Point Nonstandard Mode
If implemented, floating-point nonstandard mode is enabled by setting FSR.ns = 1 (see Nonstandard
Floating-Point (ns) on page 45).

An UltraSPARC Architecture 2007 processor may choose to implement nonstandard floating-point
mode in order to obtain higher performance in certain circumstances. For example, when FSR.ns = 1
an implementation that processes fully normalized operands more efficiently than subnormal
operands may convert a subnormal floating-point operand or result to zero.

Note The wrapped exponent results intended to be delivered on
trapped underflows and overflows in IEEE 754 are irrelevant to
the UltraSPARC Architecture at the hardware, hyperprivileged,
and privileged software levels. If they are created at all, it
would be by user software in a nonprivileged-mode trap
handler.

Implementation
Note

UltraSPARC Architecture virtual processors are strongly
discouraged from implementing a nonstandard floating-point
mode.

Implementations are encouraged to support standard IEEE 754
floating-point arithmetic with reasonable performance in all
cases, even if some cases are slower than others.
CHAPTER 8 • IEEE Std 754-1985 Requirements for UltraSPARC Architecture 2007 315

Assuming that nonstandard floating-point mode is implemented, the effects of FSR.ns = 1 are as
follows:

■ IMPL. DEP. #18-V8-Ms10(a): When FSR.ns = 1 and a floating-point source operand is subnormal, an
implementation may treat the subnormal operand as if it were a floating-point zero value of the
same sign.
The cases in which this replacement is performed are implementation dependent. However, if it
occurs,
(1) it should not apply to FABS, FMOV, or FNEG instructions and
(2) FADD, FSUB, and FCMP should give identical treatment to subnormal source operands.
Treating a subnormal source operand as zero may generate an IEEE 754 floating-point “inexact”,
“division by zero”, or “invalid” condition (see Current Exception (cexc) on page 48). Whether the
generated condition(s) trigger an fp_exception_ieee_754 exception or not depends on the setting of
FSR.tem.

■ IMPL. DEP. #18-V8-Ms10(b): When a floating-point operation generates a subnormal result value,
an UltraSPARC Architecture 2007 implementation may either write the result as a subnormal value
or replace the subnormal result by a floating-point zero value of the same sign and generate IEEE
754 floating-point “inexact” and “underflow” conditions. Whether these generated conditions
trigger an fp_exception_ieee_754 exception or not depends on the setting of FSR.tem.

■ IMPL. DEP. #18-V8-Ms10(c): If an FPop generates an intermediate result value, the intermediate
value is subnormal, and FSR.ns = 1, it is implementation dependent whether (1) the operation
continues, using the subnormal value (possibly with some loss of accuracy), or (2) the virtual
processor replaces the subnormal intermediate value with a floating-point zero value of the same
sign, generates IEEE 754 floating-point “inexact” and “underflow” conditions, completes the
instruction, and writes a final result (possibly with some loss of accuracy). Whether generated IEEE
conditions trigger an fp_exception_ieee_754 exception or not depends on the setting of FSR.tem.

If GSR.im = 1, then the value of FSR.ns is ignored and the processor operates as if FSR.ns = 0
(see page 56).

8.5 Arithmetic Result Tables
This section contains detailed tables, showing the results produced by various floating-point
operations, depending on their source operands.

Notes on source types:

■ Nn is a number in F[rsn], which may be normal or subnormal.

■ QNaNn and SNaNn are Quiet and Signaling Not-a-Number values in F[rsn], respectively.

Notes on result types:

■ R: (rounded) result of operation, which may be normal, subnormal, zero, or infinity. May also cause
OF, UF, NX, unfinished.

■ dQNaN is the generated default Quiet NaN (sign = 0, exponent = all 1s, fraction = all 1s). The sign
of the default Quiet NaN is zero to distinguish it from storage initialized to all ones.

■ QSNaNn is the Signalling NaN operand from F[rsn] with the Quiet bit asserted
316 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

8.5.1 Floating-Point Add (FADD)

For the FADD instructions, R may be any number; its generation may cause OF, UF, and/or NX.

Floating-point add is not commutative when both operands are NaN.

8.5.2 Floating-Point Subtract (FSUB)

For the FSUB instructions, R may be any number; its generation may cause OF, UF, and/or NX.

Note that − x ≠ 0 − x when x is zero or NaN.

TABLE 8-2 Floating-Point Add operation (F[rs1] + F[rs2])

F[rs2]

−∞ −N2 −0 +0 +N2 +∞ QNaN2 SNaN2

F[rs1]

−∞ -∞ dQNaN,
NV

QNaN2
QSNaN2,

NV

−N1 −R −N1 ±R*

−0 −N2 −0 ±0** +N2

+0 ±0** +0

+N1 ±R* +N1 +R

+∞ dQNaN,
NV

+∞

QNaN1 QNaN1

SNaN1
QSNaN1,

NV

* if N1 = -N2, then **

** result is +0 unless rounding mode is round to −∞, in which case the result is −0

TABLE 8-3 Floating-Point Subtract operation (F[rs1] − F[rs2])

F[rs2]

−∞ −N2 −0 +0 +N2 +∞ QNaN2 SNaN2

F[rs1]

−∞ dQNaN,
NV

-∞

QNaN2
QSNaN2,

NV

−N1 ±R* −N1 −R

−0 +N2 ±0** −0 −N2

+0 +0 ±0**

+N1 +R +N1 ±R*

+∞ +∞ dQNaN,
NV

QNaN1 QNaN1

SNaN1
QSNaN1,

NV

* if N1 = N2, then **

** result is +0 unless rounding mode is round to −∞, in which case the result is −0
CHAPTER 8 • IEEE Std 754-1985 Requirements for UltraSPARC Architecture 2007 317

8.5.3 Floating-Point Multiply

R may be any number; its generation may cause OF, UF, and/or NX.

Floating-point multiply is not commutative when both operands are NaN.

FsMULd (FdMULq) never causes OF, UF, or NX.

A NaN input operand to FsMULd (FdMULq) must be widened to produce a double-precision (quad-
precision) NaN output, by filling the least-significant bits of the NaN result with zeros.

8.5.4 Floating-Point Multiply-Add (FMADD
First refer to the Floating-Point Multiply table (TABLE 8-4 on page 318) to select a row in the table
below.

TABLE 8-4 Floating-Point Multiply operation (F[rs1] × F[rs2])

F[rs2]

−∞ −N2 −0 +0 +N2 +∞ QNaN2 SNaN2

F[rs1]

-∞ +∞ dQNaN,
NV

-∞

QNaN2
QSNaN2,

NV

−N1 +R −R

− 0 dQNaN,
NV

+ 0 −0 dQNaN,
NV+0 −0 +0

+ N1 −R +R

+∞ -∞ dQNaN,
NV

+∞

QNaN1 QNaN1

SNaN1
QSNaN1,

NV
318 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

In the above table, R may be any number; its generation may cause OF, UF, and/or NX

The multiply operation in fused floating-point multiply-add (FMADD) instructions cannot cause
inexact, underflow, or overflow exceptions.

See the earlier sections on Nonstandard Mode and unfinished_FPop for additional details.

8.5.5 Floating-Point Negative Multiply-Add (FNMADD)
First refer to the Floating-Point Multiply table (TABLE 8-4 on page 318) to select a row in the table
below.

TABLE 8-5 Floating-Point Multiply-Add ((F[rs1] × F[rs2]) + F[rs3])

F[rs3]

−∞ −N3 −0 +0 +N3 +∞ QNaN3 SNaN3

F[rs1]
×

F[rs2]

−∞ −∞ dQNaN,
NV

QNaN3

QSNaN3,
NV

−N −R −N ±R*

−0 −N3 −0 ±0** +N3

+0 ±0** +0

+N ±R* +N +R

+∞ dQNaN,
NV

+∞

QNaN1 QNaN1

QNaN2 QNaN2

QNaN
(±0 × ±∞)

dQNaN,
NV***

QNaN3,
NV***

QSNaN1 QSNaN1,
NV***

QSNaN2 QSNaN2,
NV***

* if N = −N3, then **

** result is +0 unless rounding mode is round to −∞, in which case the result is −0

*** if FSR.nvm = 1, FSR.nvc ← 1, the trap occurs, and FSR.aexc is left unchanged; otherwise, FSR.nvm = 0
so FSR.nva ← 1 and for FMADD FSR.nvc ← 1.
CHAPTER 8 • IEEE Std 754-1985 Requirements for UltraSPARC Architecture 2007 319

R may be any number; its generation may cause OF, UF, and/or NX

The multiply operation in fused floating-point negative multiply-add (FNMADD) instructions cannot
cause inexact, underflow, or overflow exceptions.

Note that rounding occurs after the negation. Thus, when the rounding mode is towards ±∞,
FNMADD is not equivalent to FMADD followed by FNEG.

See the earlier sections on Nonstandard Mode and unfinished_FPop for additional details.

8.5.6 Floating-Point Multiply-Subtract (FMSUB)
First refer to the Floating-Point Multiply table (TABLE 8-4 on page 318) to select a row in the table
below.

TABLE 8-6 Floating-Point Negative Multiply-Add (−(F[rs1] × F[rs2])− F[rs3])

F[rs3]

−∞ −N3 −0 +0 +N3 +∞ QNaN3 SNaN3

F[rs1]
×

F[rs2]

−∞ +∞ dQNaN,
NV

QNaN3

QSNaN3,
NV

−N +R +N ±R*

−0 +N3 +0 ±0** −N3

+0 ±0** −0

+N ±R* −N −R

+∞ dQNaN,
NV

−∞

QNaN1 QNaN1

QNaN2 QNaN2

QNaN
(±0 × ±∞)

dQNaN,
NV***

QNaN3
NV***

QSNaN1 QSNaN1,
NV***

QSNaN2 QSNaN2,
NV***

* if N = −N3, then **

** result is +0 unless rounding mode is round to −∞, in which case the result is −0

*** if FSR.nvm = 1, FSR.nvc ← 1, the trap occurs, and FSR.aexc is left unchanged; otherwise, FSR.nvm = 0 so
FSR.nva ← 1 and for FMADD FSR.nvc ← 1.
320 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

R may be any number; its generation may cause OF, UF, and/or NX.

The multiply operation in fused floating-point multiply-subtract (FMSUB) instructions cannot cause
inexact, underflow, or overflow exceptions.

See the earlier sections on Nonstandard Mode and unfinished_FPop for additional details.

8.5.7 Floating-Point Negative Multiply-Subtract (FNMSUB)
First refer to the Floating-Point Multiply table (TABLE 8-4 on page 318) to select a row in the table
below.

TABLE 8-7 Floating-Point Multiply-Subtract ((F[rs1] × F[rs2])− F[rs3])

F[rs3]

−∞ −N3 −0 +0 +N3 +∞ QNaN3 SNaN3

F[rs1]
×

F[rs2]

−∞ dQNaN,
NV − ∞

QNaN3

QSNaN3,
NV

−N ±R* −N −R
−0 +N3 ±0** −0 −N3
+0 +0 ±0**
+N +R +N ±R*

+∞ +∞ dQNaN,
NV

QNaN1 QNaN1
QNaN2 QNaN2
QNaN

(±0 × ±∞)
dQNaN,

NV***
QNaN3,

NV***

QSNaN1 QSNaN1,
NV***

QSNaN2 QSNaN2,
NV***

* if N = N3, then **

** result is +0 unless rounding mode is round to −∞, in which case the result is −0

*** if FSR.nvm = 1, FSR.nvc ← 1, the trap occurs, and FSR.aexc is left unchanged; otherwise, FSR.nvm = 0
so FSR.nva ← 1 and for FMSUB FSR.nvc ← 1.
CHAPTER 8 • IEEE Std 754-1985 Requirements for UltraSPARC Architecture 2007 321

R may be any number; its generation may cause OF, UF, and/or NX.

The multiply operation in fused floating-point negative multiply-subtract (FNMSUB) instructions
cannot cause inexact, underflow, or overflow exceptions.

Note that rounding occurs after the negation. Thus, FNMSUB is not equivalent to FMSUB followed by
FNEG when the rounding mode is towards ±∞.

See the earlier sections on Nonstandard Mode and unfinished_FPop for additional details.

TABLE 8-8 Floating-Point Negative Multiply-Subtract (− (F[rs1] × F[rs2]) + F[rs3])

F[rs3]

−∞ −N3 −0 +0 +N3 +∞ QNaN3 SNaN3

F[rs1]
×

F[rs2]

−∞ dQNaN,
NV +∞

QNaN3

QSNaN3,
NV

−N ±R* +N +R

−0 −N3 ±0** +0 +N3

+0 −0 ±0**

+N −R −N ±R*

+∞ − ∞ dQNaN,
NV

QNaN1 QNaN1

QNaN2 QNaN2

QNaN
(±0 × ±∞)

dQNaN,
NV***

QNaN3,
NV***

QSNaN1 QSNaN1,
NV***

QSNaN2 QSNaN2,
NV***

* if N = N3, then **

** result is +0 unless rounding mode is round to −∞, in which case the result is −0

*** if FSR.nvm = 1, FSR.nvc ← 1, the trap occurs, and FSR.aexc is left unchanged; otherwise, FSR.nvm = 0
so FSR.nva ← 1 and for FNMSUB FSR.nvc ← 1.
322 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

8.5.8 Floating-Point Divide (FDIV)

R may be any number; its generation may cause OF, UF, and/or NX.

8.5.9 Floating-Point Square Root (FSQRT)

R may be any number; its generation may cause NX.

Square root cannot cause DZ, OF, or UF.

TABLE 8-9 Floating-Point Divide operation (F[rs1] ÷ F[rs2])

F[rs2]

−∞ − N2 −0 + 0 + N2 +∞ QNaN2 SNaN2

F[rs1]

−∞ dQNaN,
NV

+∞ −∞ dQNaN,
NV

QNaN2
QSNaN2,

NV

−N1 +R +∞,
DZ

−∞,
DZ

−R

−0 +0 dQNaN,
NV

−0

+ 0 −0 +0

+ N1 −R −∞,
DZ

+∞,
DZ

+R

+∞ dQNaN,
NV

−∞ +∞ dQNaN,
NV

QNaN1 QNaN1

SNaN1 QSNaN1,
NV

TABLE 8-10 Floating-Point Square Root operation ()

F[rs2]

−∞ −N2 − 0 +0 + N2 +∞ QNaN2 SNaN2

dQNaN,
NV

−0 +0 +R +∞ QNaN2 QSNaN2,
NV

F rs2[]
CHAPTER 8 • IEEE Std 754-1985 Requirements for UltraSPARC Architecture 2007 323

8.5.10 Floating-Point Compare (FCMP, FCMPE)

* NV for FCMPE, but not for FCMP.

NaN is considered to be unequal to anything else, even the identical NaN bit pattern.

FCMP/FCMPE cannot cause DZ, OF, UF, NX.

8.5.11 Floating-Point to Floating-Point Conversions
(F<s|d|q>TO<s|d|q>)

For FsTOd:

■ the least-significant fraction bits of a normal number are filled with zero to fit in double-precision
format

■ the least-significant bits of a NaN result operand are filled with zero to fit in double-precision
format

For FsTOq and FdTOq:

■ the least-significant fraction bits of a normal number are filled with zero to fit in quad-precision
format

TABLE 8-11 Floating-Point Compare (FCMP, FCMPE) operation (F[rs1] ? F[rs2])

F[rs2]

−∞ −N2 −0 +0 +N2 +∞ QNaN2 SNaN2

F[rs1]

−∞ 0

−N1 0, 1, 2 1

−0
0

+0

+N1 2 0,1,2

+∞ 0

QNaN1 3,
NV*

SNaN1 3,
NV

TABLE 8-12 FSR.fcc Encoding for Result of FCMP, FCMPE

fcc result meaning

0 =

1 <

2 >

3 unordered

TABLE 8-13 Floating-Point to Float-Point Conversions (convert(F[rs2]))

F[rs2]

−SNaN2 −QNaN2 −∞ −N2 −0 +0 +N2 +∞ +QNaN2 +SNaN2

−QSNaN2,
NV

−QNaN2 −∞ −R −0 +0 +R +∞ +QNaN2 +QSNaN2,
NV
324 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

■ the least-significant bits of a NaN result operand are filled with zero to fit in quad-precision format

For FqTOs and FdTOs:

■ the fraction is rounded according to the current rounding mode
■ the lower-order bits of a NaN source are discarded to fit in single-precision format; this discarding

is not considered a rounding operation, and will not cause an NX exception

For FqTOd:

■ the fraction is rounded according to the current rounding mode
■ the least-significant bits of a NaN source are discarded to fit in double-precision format; this

discarding is not considered a rounding operation, and will not cause an NX exception

8.5.12 Floating-Point to Integer Conversions (F<s|d|q>TO<i|x>)

R may be any integer, and may cause NV, NX.

Float-to-Integer conversions are always treated as round-toward-zero (truncated).

These operations are invalid (due to integer overflow) under the conditions described in Integer
Overflow Definition on page 315.

TABLE 8-14 Floating-Point to Float-Point Conversion Exception Conditions

NV • SNaN operand

OF • FdTOs, FqTOs: the input is larger than can be expressed in single precision
• FqTOd: the input is larger than can be expressed in double precision
• does not occur during other conversion operations

UF • FdTOs, FqTOs: the input is smaller than can be expressed in single precision
• FqTOd: the input is smaller than can be expressed in double precision
• does not occur during other conversion operations

NX • FdTOs, FqTOs: the input fraction has more significant bits than can be held in a
single precision fraction

• FqTOd: the input fraction has more significant bits than can be held in a double
precision fraction

• does not occur during other conversion operations

TABLE 8-15 Floating-Point to Integer Conversions (convert(F[rs2]))

F[rs2]

−SNaN2 −QNaN2 −∞ −N2 −0 +0 +N2 +∞ +QNaN2 +SNaN2

FdTOx
FsTOx
FqTOx

−263,
NV

−263,
NV

−R 0 +R

263−1,
NV

263−1,
NV

FdTOi
FsTOi
FqTOi

−231,
NV

−231,
NV

231−1,
NV

231−1,
NV

TABLE 8-16 Floating-point to Integer Conversion Exception Conditions

NV • SNaN operand
• QNaN operand
• ±∞ operand
• integer overflow

NX • non-integer source (truncation occurred)
CHAPTER 8 • IEEE Std 754-1985 Requirements for UltraSPARC Architecture 2007 325

8.5.13 Integer to Floating-Point Conversions (F<i|x>TO<s|d|q>)

R may be any number; its generation may cause NX.

TABLE 8-17 Integer to Floating-Point Conversions (convert(F[rs2]))

F[rs2]

−int 0 +int

−R +0 +R

TABLE 8-18 Floating-Point Conversion Exception Conditions

NX • FxTOd, FxTOs, FiTOs (possible loss of precision)
• not applicable to FiTOd, FxTOq, or FiTOq (FSR.cexc will

always be cleared)
326 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

CHAPTER 9

Memory

The UltraSPARC Architecture memory models define the semantics of memory operations. The
instruction set semantics require that loads and stores behave as if they are performed in the order in
which they appear in the dynamic control flow of the program. The actual order in which they are
processed by the memory may be different. The purpose of the memory models is to specify what
constraints, if any, are placed on the order of memory operations.

The memory models apply both to uniprocessor and to shared memory multiprocessors. Formal
memory models are necessary for precise definitions of the interactions between multiple virtual
processors and input/output devices in a shared memory configuration. Programming shared
memory multiprocessors requires a detailed understanding of the operative memory model and the
ability to specify memory operations at a low level in order to build programs that can safely and
reliably coordinate their activities. For additional information on the use of the models in
programming real systems, see Programming with the Memory Models, contained in the separate volume
UltraSPARC Architecture Application Notes.

This chapter contains a great deal of theoretical information so that the discussion of the UltraSPARC
Architecture TSO memory model has sufficient background.

This chapter describes memory models in these sections:

■ Memory Location Identification on page 327.
■ Memory Accesses and Cacheability on page 328.
■ Memory Addressing and Alternate Address Spaces on page 330.
■ SPARC V9 Memory Model on page 333.
■ The UltraSPARC Architecture Memory Model — TSO on page 335.
■ Nonfaulting Load on page 342.
■ Store Coalescing on page 342.

9.1 Memory Location Identification
A memory location is identified by an 8-bit address space identifier (ASI) and a 64-bit memory
address. The 8-bit ASI can be obtained from an ASI register or included in a memory access
instruction. The ASI used for an access can distinguish among different 64-bit address spaces, such as
Primary memory space, Secondary memory space, and internal control registers. It can also apply
attributes to the access, such as whether the access should be performed in big- or little-endian byte
order, or whether the address should be taken as a virtual, real, or physical address.
327

9.2 Memory Accesses and Cacheability
Memory is logically divided into real memory (cached) and I/O memory (noncached with and
without side effects) spaces.

Real memory stores information without side effects. A load operation returns the value most recently
stored. Operations are side-effect-free in the sense that a load, store, or atomic load-store to a location
in real memory has no program-observable effect, except upon that location (or, in the case of a load
or load-store, on the destination register).

I/O locations may not behave like memory and may have side effects. Load, store, and atomic load-
store operations performed on I/O locations may have observable side effects, and loads may not
return the value most recently stored. The value semantics of operations on I/O locations are not
defined by the memory models, but the constraints on the order in which operations are performed is
the same as it would be if the I/O locations were real memory. The storage properties, contents,
semantics, ASI assignments, and addresses of I/O registers are implementation dependent.

9.2.1 Coherence Domains
Two types of memory operations are supported in the UltraSPARC Architecture: cacheable and
noncacheable accesses. The manner in which addresses are differentiated is implementation
dependent. In some implementations, it is indicated in the page translation entry (TTE.cp), while in
other implementations, it is indicated by a bit in the physical address.

Although SPARC V9 does not specify memory ordering between cacheable and noncacheable
accesses, the UltraSPARC Architecture maintains TSO ordering between memory references
regardless of their cacheability.

9.2.1.1 Cacheable Accesses
Accesses within the coherence domain are called cacheable accesses. They have these properties:

■ Data reside in real memory locations.
■ Accesses observe supported cache coherency protocol(s).
■ The cache line size is 2n bytes (where n ≥ 4), and can be different for each cache.

9.2.1.2 Noncacheable Accesses
Noncacheable accesses are outside of the coherence domain. They have the following properties:

■ Data might not reside in real memory locations. Accesses may result in programmer-visible side
effects. An example is memory-mapped I/O control registers.

■ Accesses do not observe supported cache coherency protocol(s).
■ The smallest unit in each transaction is a single byte.

The UltraSPARC Architecture MMU optionally includes an attribute bit in each page translation,
TTE.e, which when set signifies that this page has side effects.

Noncacheable accesses without side effects (TTE.e = 0) are processor-consistent and obey TSO
memory ordering. In particular, processor consistency ensures that a noncacheable load that
references the same location as a previous noncacheable store will load the data from the previous
store.

Noncacheable accesses with side effects (TTE.e = 1) are processor consistent and are strongly ordered.
These accesses are described in more detail in the following section.
328 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

9.2.1.3 Noncacheable Accesses with Side-Effect

Loads, stores, and load-stores to I/O locations might not behave with memory semantics. Loads and
stores could have side effects; for example, a read access could clear a register or pop an entry off a
FIFO. A write access could set a register address port so that the next access to that address will read
or write a particular internal register. Such devices are considered order sensitive. Also, such devices
may only allow accesses of a fixed size, so store merging of adjacent stores or stores within a 16-byte
region would cause an error (see Store Coalescing on page 342).

Noncacheable accesses (other than block loads and block stores) to pages with side effects (TTE.e = 1)
exhibit the following behavior:

■ Noncacheable accesses are strongly ordered with respect to each other. Bus protocol should
guarantee that IO transactions to the same device are delivered in the order that they are received.

■ Noncacheable loads with the TTE.e bit = 1 will not be issued to the system until all previous
instructions have completed, and the store queue is empty.

■ Noncacheable store coalescing is disabled for accesses with TTE.e = 1.

■ A MEMBAR may be needed between side-effect and non-side-effect accesses. See TABLE 9-3 on page
340.

Whether block loads and block stores adhere to the above behavior or ignore TTE.e and always
behave as if TTE.e = 0 is implementation-dependent (impl. dep. #410-S10, #411-S10).

On UltraSPARC Architecture virtual processors, noncacheable and side-effect accesses do not observe
supported cache coherency protocols (impl. dep. #120).

Non-faulting loads (using ASI_PRIMARY_NO_FAULT[_LITTLE] or
ASI_SECONDARY_NO_FAULT[_LITTLE]) with the TTE.e bit = 1 cause a DAE_side_effect_page trap.

Prefetches to noncacheable addresses result in nops.

The processor does speculative instruction memory accesses and follows branches that it predicts are
taken. Instruction addresses mapped by the MMU can be accessed even though they are not actually
executed by the program. Normally, locations with side effects or that generate timeouts or bus errors
are not mapped as instruction addresses by the MMU, so these speculative accesses will not cause
problems.

IMPL. DEP. #118-V9: The manner in which I/O locations are identified is implementation dependent.

IMPL. DEP. #120-V9: The coherence and atomicity of memory operations between virtual processors
and I/O DMA memory accesses are implementation dependent.

Systems supporting SPARC V8 applications that use memory-mapped I/O locations must ensure that
SPARC V8 sequential consistency of I/O locations can be maintained when those locations are
referenced by a SPARC V8 application. The MMU either must enforce such consistency or cooperate
with system software or the virtual processor to provide it.

IMPL. DEP. #121-V9: An implementation may choose to identify certain addresses and use an
implementation-dependent memory model for references to them.

V9 Compatibility
Note

Operations to I/O locations are not guaranteed to be
sequentially consistent among themselves, as they are in SPARC
V8.
CHAPTER 9 • Memory 329

9.3 Memory Addressing and Alternate Address
Spaces
An address in SPARC V9 is a tuple consisting of an 8-bit address space identifier (ASI) and a 64-bit
byte-address offset within the specified address space. Memory is byte-addressed, with halfword
accesses aligned on 2-byte boundaries, word accesses (which include instruction fetches) aligned on 4-
byte boundaries, extended-word and doubleword accesses aligned on 8-byte boundaries, and
quadword quantities aligned on 16-byte boundaries. With the possible exception of the cases
described in Memory Alignment Restrictions on page 83, an improperly aligned address in a load, store,
or load-store instruction always causes a trap to occur. The largest datum that is guaranteed to be
atomically read or written is an aligned doubleword1. Also, memory references to different bytes,
halfwords, and words in a given doubleword are treated for ordering purposes as references to the
same location. Thus, the unit of ordering for memory is a doubleword.

9.3.1 Memory Addressing Types
The UltraSPARC Architecture supports the following types of memory addressing:

Virtual Addresses (VA). Virtual addresses are addresses produced by a virtual processor that
maps all systemwide, program-visible memory. Virtual addresses are translated by the MMU in order
to locate data in physical memory. Virtual addresses can be presented in nonprivileged mode and
privileged mode, or in hyperprivileged mode using the ASI_AS_IF_USER* ASI variants.

Real addresses (RA). A real address is provided to privileged software to describe the underlying
physical memory allocated to it. Translation storage buffers (TSBs) maintained by privileged software
are used to translate privileged or nonprivileged mode virtual addresses into real addresses. MMU
bypass addresses in privileged mode are also real addresses.

Physical addresses (PA). A physical address is one that appears on the system bus and is the same
as the physical addresses in legacy architectures. Hyperprivileged software is responsible for
managing the translation of real addresses into physical addresses.

Nonprivileged software only uses virtual addresses. Privileged software uses virtual and real
addresses. Hyperprivileged software uses physical addresses, except when the explicit
ASI_AS_IF_USER* or ASI_*REAL* ASI variants are used for load and store alternate instructions.

1. Two exceptions to this are the special ASI_TWIN_DW_NUCLEUS[_L] and ASI_TWINX_REAL[_L]which provide hardware support
for an atomic quad load to be used for TTE loads from TSBs.

Notes The doubleword is the coherency unit for update, but
programmers should not assume that doubleword floating-point
values are updated as a unit unless they are doubleword-aligned
and always updated with double-precision loads and stores.
Some programs use pairs of single-precision operations to load
and store double-precision floating-point values when the
compiler cannot determine that they are doubleword aligned.

Also, although quad-precision operations are defined in the
SPARC V9 architecture, the granularity of loads and stores for
quad-precision floating-point values may be word or
doubleword.
330 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

9.3.2 Memory Address Spaces
The UltraSPARC Architecture supports accessing memory using virtual, real, or physical addresses.
Multiple virtual address spaces within the same real address space are distinguished by a context
identifier (context ID). Multiple real address spaces within the same physical address space are
distinguished by a partition identifier (partition ID).

Privileged software can create multiple virtual address spaces, using the primary and secondary
context registers to associate a context ID with every virtual address. Privileged software manages the
allocation of context IDs.

Hyperprivileged software can create multiple real address spaces, using the partition register to
associate a partition ID with every real address. Hyperprivileged software manages the allocation of
partition IDs.

IMPL. DEP. #___ The number of bits in the partition register is implementation dependent.

The full representation of each type of address is as follows:

real_address = context_ID :: virtual_address

physical_address = partition ID :: real_address
or
physical_address = partition ID :: context ID :: virtual_address

9.3.3 Address Space Identifiers
The virtual processor provides an address space identifier with every address. This ASI may serve
several purposes:

■ To identify which of several distinguished address spaces the 64-bit address offset is addressing

■ To provide additional access control and attribute information, for example, to specify the
endianness of the reference

■ To specify the address of an internal control register in the virtual processor, cache, or memory
management hardware

Memory management hardware can associate an independent 264-byte memory address space with
each ASI. In practice, the three independent memory address spaces (contexts) created by the MMU
are Primary, Secondary, and Nucleus.

Alternate-space load, store, load-store and prefetch instructions specify an explicit ASI to use for their
data access. The behavior of the access depends on the current privilege mode.

Non-alternate space load, store, load-store, and prefetch instructions use an implicit ASI value that is
determined by current virtual processor state (the current privilege mode, trap level (TL), and the
value of the PSTATE.cle). Instruction fetches use an implicit ASI that depends only on the current
mode and trap level.

The architecturally specified ASIs are listed in Chapter 10, Address Space Identifiers (ASIs). The
operation of each ASI in nonprivileged, privileged and hyperprivileged modes is indicated in
TABLE 10-1 on page 347.

Attempts by nonprivileged software (PSTATE.priv = 0 and HPSTATE.hpriv = 0) to access restricted
ASIs (ASI bit 7 = 0) cause a privileged_action exception. Attempts by privileged software
(PSTATE.priv = 1 and HPSTATE.hpriv = 0) to access ASIs 3016–7F16 cause a privileged_action exception.

Programming
Note

Independent address spaces, accessible through ASIs, make it
possible for system software to easily access the address space of
faulting software when processing exceptions or to implement
access to a client program’s memory space by a server program.
CHAPTER 9 • Memory 331

When TL = 0, normal accesses by the virtual processor to memory when fetching instructions and
performing loads and stores implicitly specify ASI_PRIMARY or ASI_PRIMARY_LITTLE, depending
on the setting of PSTATE.cle.

When TL = 1 or 2 (> 0 but ≤ MAXPTL), the implicit ASI in privileged mode is:

■ for instruction fetches, ASI_NUCLEUS

■ for loads and stores, ASI_NUCLEUS if PSTATE.cle = 0 or ASI_NUCLEUS_LITTLE if PSTATE.cle = 1
(impl. dep. #124-V9).

In hyperprivileged mode, all instruction fetches and loads and stores with implicit ASIs use a physical
address, regardless of the value of TL.

SPARC V9 supports the PRIMARY[_LITTLE], SECONDARY[_LITTLE], and NUCLEUS[_LITTLE]
address spaces.

Accesses to other address spaces use the load/store alternate instructions. For these accesses, the ASI
is either contained in the instruction (for the register+register addressing mode) or taken from the ASI
register (for register+immediate addressing).

ASIs are either nonrestricted, restricted-to-privileged, or restricted-to-hyperprivileged:

■ A nonrestricted ASI (ASI range 8016 – FF16) is one that may be used independently of the privilege
level (PSTATE.privand HPSTATE.hpriv) at which the virtual processor is running.

■ A restricted-to-privileged ASI (ASI range 0016 – 2F16) requires that the virtual processor be in
privileged or hyperprivileged mode for a legal access to occur.

■ A restricted-to-hyperprivileged ASI (ASI range 3016 – 7F16) requires that the virtual processor be in
hyperprivileged mode for a legal access to occur.

The relationship between virtual processor state and ASI restriction is shown in TABLE 9-1.

Some restricted ASIs are provided as mandated by SPARC V9:
ASI_AS_IF_USER_PRIMARY[_LITTLE] and ASI_AS_IF_USER_SECONDARY[_LITTLE]. The intent
of these ASIs is to give privileged software efficient, yet secure access to the memory space of
nonprivileged software.

The normal address space is primary address space, which is accessed by the unrestricted
ASI_PRIMARY[_LITTLE] ASIs. The secondary address space, which is accessed by the unrestricted
ASI_SECONDARY[_LITTLE] ASIs, is provided to allow server software to access client software’s
address space.

ASI_PRIMARY_NOFAULT[_LITTLE] and ASI_SECONDARY_NOFAULT[_LITTLE] support nonfaulting
loads. These ASIs may be used to color (that is, distinguish into classes) loads in the instruction stream
so that, in combination with a judicious mapping of low memory and a specialized trap handler, an
optimizing compiler can move loads outside of conditional control structures.

TABLE 9-1 Allowed Accesses to ASIs

ASI Value Type
Result of ASI
Access in NP Mode

Result of ASI
Access in P Mode

Result of ASI
Access in HP Mode

0016 –-
2F16

Restricted-to-
privileged

privileged_action
exception

Valid Access Valid Access

3016 – 7F16 Restricted-to-
hyperprivileged

privileged_action
exception

privileged_action
exception

Valid Access

8016 –
FF16

Nonrestricted Valid Access Valid Access Valid Access
332 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

9.4 SPARC V9 Memory Model
The SPARC V9 processor architecture specified the organization and structure of a central processing
unit but did not specify a memory system architecture. This section summarizes the MMU support
required by an UltraSPARC Architecture processor.

The memory models specify the possible order relationships between memory-reference instructions
issued by a virtual processor and the order and visibility of those instructions as seen by other virtual
processors. The memory model is intimately intertwined with the program execution model for
instructions.

9.4.1 SPARC V9 Program Execution Model
The SPARC V9 strand model of a virtual processor consists of three units: an Issue Unit, a Reorder
Unit, and an Execute Unit, as shown in FIGURE 9-1.

The Issue Unit reads instructions over the instruction path from memory and issues them in program
order to the Reorder Unit. Program order is precisely the order determined by the control flow of the
program and the instruction semantics, under the assumption that each instruction is performed
independently and sequentially.

Issued instructions are collected and potentially reordered in the Reorder Unit, and then dispatched to
the Execute Unit. Instruction reordering allows an implementation to perform some operations in
parallel and to better allocate resources. The reordering of instructions is constrained to ensure that
the results of program execution are the same as they would be if the instructions were performed in
program order. This property is called processor self-consistency.

Processor self-consistency requires that the result of execution, in the absence of any shared memory
interaction with another virtual processor, be identical to the result that would be observed if the
instructions were performed in program order. In the model in FIGURE 9-1, instructions are issued in
program order and placed in the reorder buffer. The virtual processor is allowed to reorder
instructions, provided it does not violate any of the data-flow constraints for registers or for memory.

The data-flow order constraints for register reference instructions are these:

1. An instruction that reads from or writes to a register cannot be performed until all earlier
instructions that write to that register have been performed (read-after-write hazard; write-after-
write hazard).

Memory

Data Path

Instruction Path
Issue Reorder Execute

FIGURE 9-1 Processor Model: Uniprocessor System

Unit Unit Unit
Reorder

Unit

Processor
CHAPTER 9 • Memory 333

2. An instruction cannot be performed that writes to a register until all earlier instructions that read
that register have been performed (write-after-read hazard).

The data-flow order constraints for memory-reference instructions are those for register reference
instructions, plus the following additional constraints:

1. A memory-reference instruction that uses (loads or stores) the value at a location cannot be
performed until all earlier memory-reference instructions that set (store to) that location have been
performed (read-after-write hazard, write-after-write hazard).

2. A memory-reference instruction that writes (stores to) a location cannot be performed until all
previous instructions that read (load from) that location have been performed (write-after-read
hazard).

Memory-barrier instruction (MEMBAR) and the TSO memory model also constrain the issue of
memory-reference instructions. See Memory Ordering and Synchronization on page 339 and The
UltraSPARC Architecture Memory Model — TSO on page 335 for a detailed description.

The constraints on instruction execution assert a partial ordering on the instructions in the reorder
buffer. Every one of the several possible orderings is a legal execution ordering for the program. See
Appendix D, Formal Specification of the Memory Models, for more information.

9.4.2 Virtual Processor/Memory Interface Model
Each UltraSPARC Architecture virtual processor in a multiprocessor system is modeled as shown in
FIGURE 9-2; that is, having two independent paths to memory: one for instructions and one for data.

FIGURE 9-2 Data Memory Paths: Multiprocessor System

Data caches are maintained by hardware so their contents always appear to be consistent (coherent).
Instruction caches are not required to be kept consistent with data caches and therefore require explicit
program (software) action to ensure consistency when a program modifies an executing instruction
stream. See Synchronizing Instruction and Data Memory on page 341 for details. Memory is shared in
terms of address space, but it may be nonhomogeneous and distributed in an implementation.
Mapping and caches are ignored in the model, since their functions are transparent to the memory
model1.

V9 Compatibility
Note

An implementation can avoid blocking instruction execution in
case 2 and the write-after-write hazard in case 1 by using a
renaming mechanism that provides the old value of the register
to earlier instructions and the new value to later uses.

1. The model described here is only a model; implementations of UltraSPARC Architecture systems are unconstrained as long as their
observable behaviors match those of the model.

Memory Transactions
in Memory Order

Memory

Instructions
Data

Virtual Processors

Instructions
Data

Instructions
Data
334 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

In real systems, addresses may have attributes that the virtual processor must respect. The virtual
processor executes loads, stores, and atomic load-stores in whatever order it chooses, as constrained
by program order and the memory model. The ASI-address couples it generates are translated by a
memory management unit (MMU), which associates attributes with the address and may, in some
instances, abort the memory transaction and signal an exception to the virtual processor.

For example, a region of memory may be marked as nonprefetchable, noncacheable, read-only, or
restricted. It is the MMU’s responsibility, working in conjunction with system software, to ensure that
memory attribute constraints are not violated. See implementation-specific MMU documentation for
detailed information about how this is accomplished in each UltraSPARC Architecture
implementation.

Instructions are performed in an order constrained by local dependencies. Using this dependency
ordering, an execution unit submits one or more pending memory transactions to the memory. The
memory performs transactions in memory order. The memory unit may perform transactions submitted
to it out of order; hence, the execution unit must not concurrently submit two or more transactions
that are required to be ordered, unless the memory unit can still guarantee in-order semantics.

The memory accepts transactions, performs them, and then acknowledges their completion. Multiple
memory operations may be in progress at any time and may be initiated in a nondeterministic fashion
in any order, provided that all transactions to a location preserve the per-virtual processor partial
orderings. Memory transactions may complete in any order. Once initiated, all memory operations are
performed atomically: loads from one location all see the same value, and the result of stores is visible
to all potential requestors at the same instant.

The order of memory operations observed at a single location is a total order that preserves the partial
orderings of each virtual processor’s transactions to this address. There may be many legal total
orders for a given program’s execution.

9.5 The UltraSPARC Architecture Memory Model —
TSO
The UltraSPARC Architecture is a model that specifies the behavior observable by software on
UltraSPARC Architecture systems. Therefore, access to memory can be implemented in any manner,
as long as the behavior observed by software conforms to that of the models described here.

The SPARC V9 architecture defines three different memory models: Total Store Order (TSO), Partial
Store Order (PSO), and Relaxed Memory Order (RMO).

All SPARC V9 processors must provide Total Store Order (or a more strongly ordered model, for
example, Sequential Consistency) to ensure compatibility for SPARC V8 application software.

All UltraSPARC Architecture virtual processors implement TSO ordering. The PSO and RMO models
from SPARC V9 are not described in this UltraSPARC Architecture specification. UltraSPARC
Architecture 2007 processors do not implement the PSO memory model directly, but all software
written to run under PSO will execute correctly on an UltraSPARC Architecture 2007 processor (using
the TSO model).

Whether memory models represented by PSTATE.mm = 102 or 112 are supported in an UltraSPARC
Architecture processor is implementation dependent (impl. dep. #113-V9-Ms10). If the 102 model is
supported, then when PSTATE.mm = 102 the implementation must correctly execute software that
adheres to the RMO model described in The SPARC Architecture Manual-Version 9. If the 112 model is
supported, its definition is implementation dependent and will be described in implementation-
specific documentation.
CHAPTER 9 • Memory 335

Programs written for Relaxed Memory Order will work in both Partial Store Order and Total Store
Order. Programs written for Partial Store Order will work in Total Store Order. Programs written for a
weak model, such as RMO, may execute more quickly when run on hardware directly supporting that
model, since the model exposes more scheduling opportunities, but use of that model may also
require extra instructions to ensure synchronization. Multiprocessor programs written for a stronger
model will behave unpredictably if run in a weaker model.

Machines that implement sequential consistency (also called "strong ordering" or "strong consistency")
automatically support programs written for TSO. Sequential consistency is not a SPARC V9 memory
model. In sequential consistency, the loads, stores, and atomic load-stores of all virtual processors are
performed by memory in a serial order that conforms to the order in which these instructions are
issued by individual virtual processors. A machine that implements sequential consistency may
deliver lower performance than an equivalent machine that implements TSO order. Although
particular SPARC V9 implementations may support sequential consistency, portable software must
not rely on the sequential consistency memory model.

9.5.1 Memory Model Selection
The active memory model is specified by the 2-bit value in PSTATE.mm,. The value 002 represents the
TSO memory model; increasing values of PSTATE.mm indicate increasingly weaker (less strongly
ordered) memory models.

Writing a new value into PSTATE.mm causes subsequent memory reference instructions to be
performed with the order constraints of the specified memory model.

IMPL. DEP. #119-Ms10: The effect of an attempt to write an unsupported memory model designation
into PSTATE.mm is implementation dependent; however, it should never result in a value of
PSTATE.mm value greater than the one that was written. In the case of an UltraSPARC Architecture
implementation that only supports the TSO memory model, PSTATE.mm always reads as zero and
attempts to write to it are ignored.

9.5.2 Programmer-Visible Properties of the UltraSPARC
Architecture TSO Model
Total Store Order must be provided for compatibility with existing SPARC V8 programs. Programs that
execute correctly in either RMO or PSO will execute correctly in the TSO model.

The rules for TSO, in addition to those required for self-consistency (see page 333), are:

■ Loads are blocking and ordered with respect to earlier loads

■ Stores are ordered with respect to stores.

■ Atomic load-stores are ordered with respect to loads and stores.

■ Stores cannot bypass earlier loads.

Atomic load-stores are treated as both a load and a store and can only be applied to cacheable address
spaces.

Thus, TSO ensures the following behavior:

■ Each load instruction behaves as if it were followed by a MEMBAR #LoadLoad and #LoadStore.

■ Each store instruction behaves as if it were followed by a MEMBAR #StoreStore.

■ Each atomic load-store behaves as if it were followed by a MEMBAR #LoadLoad, #LoadStore,
and #StoreStore.

Programming
Note

Loads can bypass earlier stores to other addresses, which
maintains processor self-consistency.
336 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

In addition to the above TSO rules, the following rules apply to UltraSPARC Architecture memory
models:

■ A MEMBAR #StoreLoad must be used to prevent a load from bypassing a prior store, if Strong
Sequential Order (as defined in The UltraSPARC Architecture Memory Model — TSO on page 335) is
desired.

■ Accesses that have side effects are all strongly ordered with respect to each other.

■ A MEMBAR #LookasideD is not needed between a store and a subsequent load to the same
noncacheable address.

■ Load (LDXA) and store (STXA) instructions that reference certain internal ASIs perform both an
intra-virtual processor synchronization (i.e. an implicit MEMBAR #Sync operation before the load
or store is executed) and an inter-virtual processor synchronization (that is, all active virtual
processors are brought to a point where synchronization is possible, the load or store is executed,
and all virtual processors then resume instruction fetch and execution). The model-specific PRM
should indicate which ASIs require intra-virtual processor synchronization, inter-virtual processor
synchronization, or both.

9.5.3 TSO Ordering Rules
TABLE 9-2 summarizes the cases where a MEMBAR must be inserted between two memory operations
on an UltraSPARC Architecture virtual processor running in TSO mode, to ensure that the operations
appear to complete in a particular order. Memory operation ordering is not to be confused with
processor consistency or deterministic operation; MEMBARs are required for deterministic operation
of certain ASI register updates.

TABLE 9-2 is to be read as follows: Reading from row to column, the first memory operation in program
order in a row is followed by the memory operation found in the column. Symbols used as table
entries:

■ # — No intervening operation is required.

■ M — an intervening MEMBAR #StoreLoad or MEMBAR #Sync or MEMBAR #MemIssue is
required

■ S — an intervening MEMBAR #Sync or MEMBAR #MemIssue is required

■ nc — Noncacheable

■ e — Side effect

■ ne — No side effect

Programming
Note

To ensure software portability across systems, the MEMBAR
rules in this section should be followed (which may be stronger
than the rules in SPARC V9).
CHAPTER 9 • Memory 337

Note that transitivity applies; if operation X is always ordered before operation Y ("#" in TABLE 9-2)
and operation Y is always ordered before operation Z (again, "#" in the table), then the sequence of
operations X ... Y ... Z may safely be executed with no intervening MEMBAR, even if the table shows
that a MEMBAR is normally needed between X and Z. For example, a MEMBAR is normally needed
between a store and a load ("M" in TABLE 9-2); however, the sequence "store ... atomic ... load" may be
executed safely with no intervening MEMBAR because stores are always ordered before atomics and
atomics are always ordered before loads.

9.5.4 Hardware Primitives for Mutual Exclusion
In addition to providing memory-ordering primitives that allow programmers to construct mutual-
exclusion mechanisms in software, the UltraSPARC Architecture provides three hardware primitives
for mutual exclusion:

■ Compare and Swap (CASA and CASXA)
■ Load Store Unsigned Byte (LDSTUB and LDSTUBA)
■ Swap (SWAP and SWAPA)

Each of these instructions has the semantics of both a load and a store in all three memory models.
They are all atomic, in the sense that no other store to the same location can be performed between the
load and store elements of the instruction. All of the hardware mutual-exclusion operations conform
to the TSO memory model and may require barrier instructions to ensure proper data visibility.

Atomic load-store instructions can be used only in the cacheable domains (not in noncacheable I/O
addresses). An attempt to use an atomic load-store instruction to access a noncacheable page results in
a DAE_nc_page exception.

The atomic load-store alternate instructions can use a limited set of the ASIs. See the specific
instruction descriptions for a list of the valid ASIs. An attempt to execute an atomic load-store
alternate instruction with an invalid ASI results in a DAE_invalid_asi exception.

TABLE 9-2 Summary of UltraSPARC Architecture Ordering Rules (TSO Memory Model)

To Memory Operation C (column):

From Memory
Operation R (row): lo

ad

st
o

re

at
o

m
ic

b
lo

ad

b
st

o
re

lo
ad

_n
c_

e

st
o

re
_n

c_
e

lo
ad

_n
c_

n
e

st
o

re
_n

c_
n

e

b
lo

ad
_n

c

b
st

o
re

_n
c

load # # # S S # # # # S S

store M2 # # M S M # M # M S

atomic # # # M S # # # # M S

bload S S S S S S S S S S S

bstore M S M M S M S M S M S

load_nc_e # # # S S #1 #1 #1 #1 S S

store_nc_e S # # S S #1 #1 M2 #1 M S

load_nc_ne # # # S S #1 #1 #1 #1 S S

store_nc_ne S # # S S M2 #1 M2 #1 M S

bload_nc S S S S S S S S S S S

bstore_nc S S S S S M S M S M S

1. This table assumes that both noncacheable operations access the same device.

2. When the store and subsequent load access the same location, no intervening MEMBAR is required.
338 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

9.5.4.1 Compare-and-Swap (CASA, CASXA)

Compare-and-swap is an atomic operation that compares a value in a virtual processor register to a
value in memory and, if and only if they are equal, swaps the value in memory with the value in a
second virtual processor register. Both 32-bit (CASA) and 64-bit (CASXA) operations are provided.
The compare-and-swap operation is atomic in the sense that once it begins, no other virtual processor
can access the memory location specified until the compare has completed and the swap (if any) has
also completed and is potentially visible to all other virtual processors in the system.

Compare-and-swap is substantially more powerful than the other hardware synchronization
primitives. It has an infinite consensus number; that is, it can resolve, in a wait-free fashion, an infinite
number of contending processes. Because of this property, compare-and-swap can be used to
construct wait-free algorithms that do not require the use of locks. For examples, see Programming with
the Memory Models, contained in the separate volume UltraSPARC Architecture Application Notes.

9.5.4.2 Swap (SWAP)

SWAP atomically exchanges the lower 32 bits in a virtual processor register with a word in memory.
SWAP has a consensus number of two; that is, it cannot resolve more than two contending processes
in a wait-free fashion.

9.5.4.3 Load Store Unsigned Byte (LDSTUB)

LDSTUB loads a byte value from memory to a register and writes the value FF16 into the addressed
byte atomically. LDSTUB is the classic test-and-set instruction. Like SWAP, it has a consensus number
of two and so cannot resolve more than two contending processes in a wait-free fashion.

9.5.5 Memory Ordering and Synchronization
The UltraSPARC Architecture provides some level of programmer control over memory ordering and
synchronization through the MEMBAR and FLUSH instructions.

MEMBAR serves two distinct functions in SPARC V9. One variant of the MEMBAR, the ordering
MEMBAR, provides a way for the programmer to control the order of loads and stores issued by a
virtual processor. The other variant of MEMBAR, the sequencing MEMBAR, enables the programmer
to explicitly control order and completion for memory operations. Sequencing MEMBARs are needed
only when a program requires that the effect of an operation becomes globally visible rather than
simply being scheduled.1 Because both forms are bit-encoded into the instruction, a single MEMBAR
can function both as an ordering MEMBAR and as a sequencing MEMBAR.

The SPARC V9 instruction set architecture does not guarantee consistency between instruction and
data spaces. A problem arises when instruction space is dynamically modified by a program writing
to memory locations containing instructions (Self-Modifying Code). Examples are Lisp, debuggers,
and dynamic linking. The FLUSH instruction synchronizes instruction and data memory after
instruction space has been modified.

9.5.5.1 Ordering MEMBAR Instructions

Ordering MEMBAR instructions induce an ordering in the instruction stream of a single virtual
processor. Sets of loads and stores that appear before the MEMBAR in program order are ordered
with respect to sets of loads and stores that follow the MEMBAR in program order. Atomic operations
(LDSTUB(A), SWAP(A), CASA, and CASXA) are ordered by MEMBAR as if they were both a load and
a store, since they share the semantics of both. An STBAR instruction, with semantics that are a subset

1.Sequencing MEMBARs are needed for some input/output operations, forcing stores into specialized stable storage, context
switching, and occasional other system functions. Using a sequencing MEMBAR when one is not needed may cause a degradation of
performance. See Programming with the Memory Models, contained in the separate volume UltraSPARC Architecture Application Notes,
for examples of the use of sequencing MEMBARs.
CHAPTER 9 • Memory 339

of MEMBAR, is provided for SPARC V8 compatibility. MEMBAR and STBAR operate on all pending
memory operations in the reorder buffer, independently of their address or ASI, ordering them with
respect to all future memory operations. This ordering applies only to memory-reference instructions
issued by the virtual processor issuing the MEMBAR. Memory-reference instructions issued by other
virtual processors are unaffected.

The ordering relationships are bit-encoded as shown in TABLE 9-3. For example, MEMBAR 0116,
written as “membar #LoadLoad” in assembly language, requires that all load operations appearing
before the MEMBAR in program order complete before any of the load operations following the
MEMBAR in program order complete. Store operations are unconstrained in this case. MEMBAR 0816
(#StoreStore) is equivalent to the STBAR instruction; it requires that the values stored by store
instructions appearing in program order prior to the STBAR instruction be visible to other virtual
processors before issuing any store operations that appear in program order following the STBAR.

In TABLE 9-3 these ordering relationships are specified by the “<m” symbol, which signifies memory
order. See Appendix D, Formal Specification of the Memory Models, for a formal description of the <m
relationship.

9.5.5.2 Sequencing MEMBAR Instructions

A sequencing MEMBAR exerts explicit control over the completion of operations. The three
sequencing MEMBAR options each have a different degree of control and a different application.

■ Lookaside Barrier (deprecated) — Ensures that loads following this MEMBAR are from memory
and not from a lookaside into a write buffer. Lookaside Barrier requires that pending stores issued
prior to the MEMBAR be completed before any load from that address following the MEMBAR
may be issued. A Lookaside Barrier MEMBAR may be needed to provide lock fairness and to
support some plausible I/O location semantics. See the example in “Control and Status Registers”
in Programming with the Memory Models, contained in the separate volume UltraSPARC Architecture
Application Notes.

■ Memory Issue Barrier — Ensures that all memory operations appearing in program order before
the sequencing MEMBAR complete before any new memory operation may be initiated. See the
example in “I/O Registers with Side Effects” in Programming with the Memory Models, contained in
the separate volume UltraSPARC Architecture Application Notes.

■ Synchronization Barrier — Ensures that all instructions (memory reference and others) preceding
the MEMBAR complete and that the effects of any fault or error have become visible before any
instruction following the MEMBAR in program order is initiated. A Synchronization Barrier
MEMBAR fully synchronizes the virtual processor that issues it.

TABLE 9-4 shows the encoding of these functions in the MEMBAR instruction.

TABLE 9-3 Ordering Relationships Selected by Mask

Ordering Relation,
Earlier <m Later

Assembly Language
Constant Mnemonic

Effective Behavior
in TSO model

Mask
Value

nmask
Bit #

Load <m Load #LoadLoad nop 0116 0

Store <m Load #StoreLoad #StoreLoad 0216 1

Load <m Store #LoadStore nop 0416 2

Store <m Store #StoreStore nop 0816 3

Implementation
Note

An UltraSPARC Architecture 2007 implementation that only
implements the TSO memory model may implement
MEMBAR #LoadLoad, MEMBAR #LoadStore, and
MEMBAR #StoreStore as nops and MEMBAR #Storeload
as a MEMBAR #Sync.
340 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

For more details, see the MEMBAR instruction on page 217 of Chapter 7, Instructions.

9.5.5.3 Synchronizing Instruction and Data Memory

The SPARC V9 memory models do not require that instruction and data memory images be consistent
at all times. The instruction and data memory images may become inconsistent if a program writes
into the instruction stream. As a result, whenever instructions are modified by a program in a context
where the data (that is, the instructions) in the memory and the data cache hierarchy may be
inconsistent with instructions in the instruction cache hierarchy, some special programmatic
(software) action must be taken.

The FLUSH instruction will ensure consistency between the in-flight instruction stream and the data
references in the virtual processor executing FLUSH. The programmer must ensure that the
modification sequence is robust under multiple updates and concurrent execution. Since, in general,
loads and stores may be performed out of order, appropriate MEMBAR and FLUSH instructions must
be interspersed as needed to control the order in which the instruction data are modified.

The FLUSH instruction ensures that subsequent instruction fetches from the doubleword target of the
FLUSH by the virtual processor executing the FLUSH appear to execute after any loads, stores, and
atomic load-stores issued by the virtual processor to that address prior to the FLUSH. FLUSH acts as
a barrier for instruction fetches in the virtual processor on which it executes and has the properties of
a store with respect to MEMBAR operations.

IMPL. DEP. #122-V9: The latency between the execution of FLUSH on one virtual processor and the
point at which the modified instructions have replaced outdated instructions in a multiprocessor is
implementation dependent.

On an UltraSPARC Architecture virtual processor:

■ A FLUSH instruction causes a synchronization with the virtual processor, which flushes the
instruction pipeline in the virtual processor on which the FLUSH instruction is executed.

TABLE 9-4 Sequencing Barrier Selected by Mask

Sequencing Function Assembler Tag Mask Value cmask Bit #

Lookaside Barrier (deprecated) #LookasideD 1016 0

Memory Issue Barrier #MemIssue 2016 1

Synchronization Barrier #Sync 4016 2

Implementation
Note

In UltraSPARC Architecture 2007 implementations,
MEMBAR #LookasideD and MEMBAR #MemIssue are
typically implemented as a MEMBAR #Sync.

Programming
Note

Because FLUSH is designed to act on a doubleword and
because, on some implementations, FLUSH may trap to system
software, it is recommended that system software provide a
user-callable service routine for flushing arbitrarily sized regions
of memory. On some implementations, this routine would issue
a series of FLUSH instructions; on others, it might issue a single
trap to system software that would then flush the entire region.
CHAPTER 9 • Memory 341

■ Coherency between instruction and data memories may or may not be maintained by hardware. If
it is, an UltraSPARC Architecture implementation may ignore the address in the operands of a
FLUSH instruction.

For more details, see the FLUSH instruction on page 146 of Chapter 7, Instructions.

9.6 Nonfaulting Load
A nonfaulting load behaves like a normal load, with the following exceptions:

■ A nonfaulting load from a location with side effects (TTE.e = 1) causes a DAE_side_effect_page
exception.

■ A nonfaulting load from a page marked for nonfault access only (TTE.nfo = 1) is allowed; other
types of accesses to such a page cause a DAE_nfo_page exception.

■ These loads are issued with ASI_PRIMARY_NO_FAULT[_LITTLE] or
ASI_SECONDARY_NO_FAULT[_LITTLE]. A store with a NO_FAULT ASI causes a DAE_invalid_asi
exception.

Typically, optimizers use nonfaulting loads to move loads across conditional control structures that
guard their use. This technique potentially increases the distance between a load of data and the first
use of that data, in order to hide latency. The technique allows more flexibility in instruction
scheduling and improves performance in certain algorithms by removing address checking from the
critical code path.

For example, when following a linked list, nonfaulting loads allow the null pointer to be accessed
safely in a speculative, read-ahead fashion; the page at virtual address 016 can safely be accessed with
no penalty1. The TTE.nfo bit marks pages that are mapped for safe access by nonfaulting loads but
that can still cause a trap by other, normal accesses.

Thus, programmers can trap on “wild” pointer references—many programmers count on an exception
being generated when accessing address 016 to debug software—while benefiting from the
acceleration of nonfaulting access in debugged library routines.

9.7 Store Coalescing
Cacheable stores may be coalesced with adjacent cacheable stores within an 8 byte boundary offset in
the store buffer to improve store bandwidth. Similarly non-side-effect-noncacheable stores may be
coalesced with adjacent non-side-effect noncacheable stores within an 8-byte boundary offset in the
store buffer.

Programming
Note

UltraSPARC Architecture virtual processors are not required to
maintain coherency between instruction and data caches in
hardware. Therefore, portable software must do the following:

(1) must always assume that store instructions (except Block
Store with Commit) do not coherently update instruction
cache(s);

(2) must, in every FLUSH instruction, supply the address of the
instruction or instructions that were modified.

1.Other than the impact of occupying TLB entries.
342 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

In order to maintain strong ordering for I/O accesses, stores with side-effect attribute (e bit set) will
not be combined with any other stores.

Stores that are separated by an intervening MEMBAR #Sync will not be coalesced.
CHAPTER 9 • Memory 343

344 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

CHAPTER 10

Address Space Identifiers (ASIs)

This appendix describes address space identifiers (ASIs) in the following sections:

■ Address Space Identifiers and Address Spaces on page 345.
■ ASI Values on page 345.
■ ASI Assignments on page 346.
■ Special Memory Access ASIs on page 357.

10.1 Address Space Identifiers and Address Spaces
An UltraSPARC Architecture processor provides an address space identifier (ASI) with every address
sent to memory. The ASI does the following:

■ Distinguishes between different address spaces
■ Provides an attribute that is unique to an address space
■ Maps internal control and diagnostics registers within a virtual processor

The memory management unit uses a 64-bit virtual address and an 8-bit ASI to generate a memory, I/
O, or internal register address. This physical address space can be accessed through virtual-to-
physical address mapping or through the MMU bypass mode.

10.2 ASI Values
The range of address space identifiers (ASIs) is 0016-FF16. That range is divided into restricted and
unrestricted portions. ASIs in the range 8016–FF16 are unrestricted; they may be accessed by software
running in any privilege mode.

ASIs in the range 0016–7F16 are restricted; they may only be accessed by software running in a mode
with sufficient privilege for the particular ASI. ASIs in the range 0016–2F16 may only be accessed by
software running in privileged or hyperprivileged mode and ASIs in the range 3016–7F16 may only be
accessed by software running in hyperprivileged mode.

An attempt by nonprivileged software to access a restricted (privileged or hyperprivileged) ASI (0016–
7F16) causes a privileged_action trap.

An attempt by privileged software to access a hyperprivileged ASI (3016–7F16) also causes a
privileged_action trap.

SPARC V9
Compatibility

Note

In SPARC V9, the range of ASIs was evenly divided into
restricted (0016-7F16) and unrestricted (8016-FF16) halves.
345

An ASI can be categorized based on how it affects the MMU’s treatment of the accompanying
address, into one of three categories:

■ A Virtual-Translating ASI (the most common type) causes the accompanying address to be treated as
a virtual address (which is translated by the MMU into a physical address).

■ A Non-translating ASI is not translated by the MMU; instead the address is passed through
unchanged. Nontranslating ASIs are typically used for accessing internal registers.

■ A Real-Translating ASI causes the accompanying address to be treated as a real address (which is
translated by the MMU into a physical address). An access using a Real-Translating ASI can cause
exception(s) only visible in hyperprivileged mode (such as a PA_watchpoint exception). Real-
Translating ASIs are typically used by privileged or hyperprivileged software for directly accessing
memory using real or physical (as opposed to virtual) addresses.

Implementation-dependent ASIs may or may not be translated by the MMU. See implementation-
specific documentation for detailed information about implementation-dependent ASIs.

10.3 ASI Assignments
Every load or store address in an UltraSPARC Architecture processor has an 8-bit Address Space
Identifier (ASI) appended to the virtual address (VA). The VA plus the ASI fully specify the address.

For instruction fetches and for data loads, stores, and load-stores that do not use the load or store
alternate instructions, the ASI is an implicit ASI generated by the virtual processor.

If a load alternate, store alternate, or load-store alternate instruction is used, the value of the ASI (an
"explicit ASI") can be specified in the ASI register or as an immediate value in the instruction.

In practice, ASIs are not only used to differentiate address spaces but are also used for other functions
like referencing registers in the MMU unit.

10.3.1 Supported ASIs
TABLE 10-1 lists architecturally-defined ASIs; some are in all UltraSPARC Architecture implementations
and some are only present in some implementations.

An ASI marked with a closed bullet (●) is required to be implemented on all UltraSPARC Architecture
2007 processors.

An ASI marked with an open bullet (❍) is defined by the UltraSPARC Architecture 2007 but is not
necessarily implemented in all UltraSPARC Architecture 2007 processors; its implemention is
optional. Across all implementations on which it is implemented, it appears to software to behave
identically.

Some ASIs may only be used with certain load or store instructions; see table footnotes for details.

The word “decoded” in the Virtual Address column of TABLE 10-1 indicates that the the supplied
virtual address is decoded by the virtual processor.

The “TVP / non-T / TRP” column of the table indicates whether each ASI is a Virtual-Translating
ASI(translates Virtual-to-Physical), non-Translating ASI, or-Translating (translates Real-to-Physical)
ASI, respectively.

ASIs marked "Reserved" are set aside for use in future revisions to the architecture and are not to be
used by implemenations. ASIs marked "implementation dependent" may be used for
implementation-specific purposes.
346 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

Attempting to access an address space described as “Implementation dependent” in TABLE 10-1
produces implementation-dependent results.

TABLE 10-1 UltraSPARC Architecture ASIs (1 of 10)

ASI
Value

req’d(●)
opt’l (❍) ASI Name (and Abbreviation)

Access
Type(s)

Virtual
Address
(VA)

TVP/
non-T/
TRP

Shared
/per
strand Description

0016–
0316

❍ — —2,12 — — — Implementation dependent1

0416 ● ASI_NUCLEUS (ASI_N) RW2,4 (decoded) TVP — Implicit address space,
nucleus context, TL > 0

0516–
0B16

❍ — —2,12 — — — Implementation dependent1

0C16 ● ASI_NUCLEUS_LITTLE (ASI_NL) RW2,4 (decoded) TVP — Implicit address space,
nucleus context, TL > 0,
little-endian

0D16–
0F16

❍ — —2,12 — — — Implementation dependent1

1016 ● ASI_AS_IF_USER_PRIMARY
(ASI_AIUP)

RW2,4,18 (decoded) TVP — Primary address space, as if
user (nonprivileged)

1116 ● ASI_AS_IF_USER_SECONDARY
(ASI_AIUS)

RW2,4,18 (decoded) TVP — Secondary address space, as
if user (nonprivileged)

1216–
1316

❍ — —2,12 — — — Implementation dependent1

1416 ❍ ASI_REAL RW2,4 (decoded) TRP — Real address

1516 ❍ ASI_REAL_IOD RW2,5 (decoded) TRP — Real address, noncacheable,
with side effect (deprecated)

1616 ❍ ASI_BLOCK_AS_IF_USER_PRIMARY
(ASI_BLK_AIUP)

RW2,8,14,18(decoded) TVP — Primary address space,
block load/store, as if user
(nonprivileged)

1716 ❍ ASI_BLOCK_AS_IF_USER_SECONDAR
Y
(ASI_BLK_AIUS)

RW2,8,14,18(decoded) TVP — Secondary address space,
block load/store, as if user
(nonprivileged)

1816 ● ASI_AS_IF_USER_PRIMARY_LITTLE
(ASI_AIUPL)

RW2,4,18 (decoded) TVP — Primary address space, as if
user (nonprivileged), little-
endian

1916 ● ASI_AS_IF_USER_SECONDARY_
LITTLE (ASI_AIUSL)

RW2,4,18 (decoded) TVP — Secondary address space, as
if user (nonprivileged), little-
endian

1A16–
1B16

❍ — —2,12 — — — Implementation dependent1

1C16 ❍ ASI_REAL_LITTLE
(ASI_REAL_L)

RW 2,4 (decoded) TRP — Real address, little-endian

1D16 ❍ ASI_REAL_IO_LITTLED

(ASI_REAL_IO_LD)
RW 2,5 (decoded) TRP — Real address, noncacheable,

with side effect, little-endian
(deprecated)

1E16 ❍ ASI_BLOCK_AS_IF_USER_PRIMARY_
LITTLE
(ASI_BLK_AIUPL)

RW2,8,14,18(decoded) TVP — Primary address space,
block load/store, as if user
(nonprivileged), little-endian

1F16 ❍ ASI_BLOCK_AS_IF_USER_
SECONDARY_LITTLE
(ASI_BLK_AIUS_L)

RW2,8,14,18(decoded) TVP — Secondary address space,
block load/store, as if user
(nonprivileged), little-endian
CHAPTER 10 • Address Space Identifiers (ASIs) 347

2016 ❍ ASI_SCRATCHPAD RW2,6 (decoded;
see below)

non-T per
strand

Privileged Scratchpad
registers; implementation
dependent1

❍
" 016 " " Scratchpad Register 01

❍
" 816 " " Scratchpad Register 11

❍
" 1016 " " Scratchpad Register 21

❍
" 1816 " " Scratchpad Register 31

❍ 2016 " " Scratchpad Register 41

❍
" 2816 " " Scratchpad Register 51

❍
" 3016 " " Scratchpad Register 61

❍
" 3816 " " Scratchpad Register 71

2116 ❍ ASI_MMU_CONTEXTID RW2,6 (decoded;
see below)

non-T per
strand

MMU context registers

❍ " 816 " " I/D MMU Primary
Context ID register 0

❍ " 1016 " " I/D MMU Secondary
Context ID register_0

❍ " 10816 " " I/D Primary
Context ID register 1

❍ " 11016 " " I/D MMU Secondary
Context ID register 1

2216 ❍ ASI_TWINX_AS_IF_USER_
PRIMARY
(ASI_TWINX_AIUP)

R2,7,11 (decoded) TVP — Primary address space, 128-
bit atomic load twin
extended word, as if user
(nonprivileged)

2316 ❍ ASI_TWINX_AS_IF_USER_
SECONDARY
(ASI_TWINX_AIUS)

R2,7,11 (decoded) TVP — Secondary address space,
128-bit atomic load twin
extended word, as if user
(nonprivileged)

2416 ❍ — — — — — Implementation dependent1

2516 ❍ ASI_QUEUE (see
below)

(decoded;
see below)

non-T per
strand

❍ RW2,6
3C016 " " CPU Mondo Queue Head

Pointer

❍ RW2,6,17
3C816 " " CPU Mondo Queue Tail

Pointer

❍ RW2,6
3D016 " " Device Mondo Queue Head

Pointer

❍ RW2,6,17
3D816 " " Device Mondo Queue Tail

Pointer

❍ RW2,6
3E016 " " Resumable Error Queue

Head Pointer

❍ RW2,6,17
3E816 " " Resumable Error Queue Tail

Pointer

❍ RW2,6
3F016 " " Nonresumable Error Queue

Head Pointer

❍ RW2,6,17
3F816 " " Nonresumable Error Queue

Tail Pointer

TABLE 10-1 UltraSPARC Architecture ASIs (2 of 10)

ASI
Value

req’d(●)
opt’l (❍) ASI Name (and Abbreviation)

Access
Type(s)

Virtual
Address
(VA)

TVP/
non-T/
TRP

Shared
/per
strand Description
348 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

2616 ❍ ASI_TWINX_REAL (ASI_TWINX_R)
ASI_QUAD_LDD_REALD†

R2,7,11 (decoded) TRP — 128-bit atomic twin
extended-word load from
real address

2716 ❍ ASI_TWINX_NUCLEUS
(ASI_TWINX_N)

R2,7,11 (decoded) TVP — Nucleus context, 128-bit
atomic load twin extended-
word

2816–
2916

❍ — —2,12
— — — Implementation dependent1

2A16 ❍ ASI_TWINX_AS_IF_USER_
PRIMARY_LITTLE
(ASI_TWINXAIUPL)

R2,7,11 (decoded) TVP — Primary address space, 128-
bit atomic load twin
extended-word, as if user
(nonprivileged), little-endian

2B16 ❍ ASI_TWINX_AS_IF_USER_
SECONDARY_LITTLE
(ASI_TWINX_AIUS_L)

R2,7,11 (decoded) TVP — Secondary address space,
128-bit atomic load twin
extended-word, as if user
(nonprivileged), little-endian

2C16 ❍ — —2 — — — Implementation dependent1

2D16 ❍ — —2,12 — — — Implementation dependent1

2E16 ❍ ASI_TWINX_REAL_LITTLE
(ASI_TWINX_REAL_L)
ASI_QUAD_LDD_REAL_LITTLED†

R2,7,11 (decoded) TRP — 128-bit atomic twin-
extended-word load from
real address, little-endian

2F16 ❍ ASI_TWINX_NUCLEUS_LITTLE
(ASI_TWINX_NL)

R2,7,11 (decoded) TVP — Nucleus context, 128-bit
atomic load twin extended-
word, little-endian

3016 ❍ ASI_AS_IF_PRIV_PRIMARY
(ASI_AIPP)

RW3,4 (decoded) TVP — Primary address space, as if
privileged

3116 ❍ ASI_AS_IF_PRIV_SECONDARY
(ASI_AIPS)

RW3,4 (decoded) TVP — Secondary address space, as
if privileged

3216–
3516

❍ — —3,13 — — — Implementation dependent1

3616 ❍ ASI_AS_IF_PRIV_NUCLEUS
(ASI_AIPN)

RW3,4 (decoded) TVP — Implicit address space,
nucleus context, as if
privileged

3716 ❍ — —3,13 — — — Implementation dependent1

3816 ❍ ASI_AS_IF_PRIV_PRIMARY_LITTL
E (ASI_AIPP_L)

RW3,4 (decoded) TVP — Primary address space, as if
privileged, little-endian

3916 ❍ ASI_AS_IF_PRIV_SECONDARY_LITT
LE (ASI_AIPS_L)

RW3,4 (decoded) TVP — Secondary address space, as
if privileged, little-endian

3A16–
3C16

❍ — —3,13 — — — Implementation dependent1

3D16 ❍ — —3,13 — — — Implementation dependent1

3E16 ❍ ASI_AS_IF_PRIV_NUCLEUS_LITTL
E (ASI_AIPN_L)

RW3,4 (decoded) TVP — Implicit address space,
nucleus context, as if
privileged, little-endian

3F16–
4016

❍ — —3,13 — — — Implementation dependent1

4116 ❍ ASI_CMT_SHARED (see
below)

(decoded;
see below)

non-T shared CMT control/status (shared)

❍ R3,6,11 0016 " " Virtual Processor (strand)
Available Register

TABLE 10-1 UltraSPARC Architecture ASIs (3 of 10)

ASI
Value

req’d(●)
opt’l (❍) ASI Name (and Abbreviation)

Access
Type(s)

Virtual
Address
(VA)

TVP/
non-T/
TRP

Shared
/per
strand Description
CHAPTER 10 • Address Space Identifiers (ASIs) 349

❍ R3,6,11 1016 " " Virtual Processor (strand)
Enable Status Register

❍ RW3,6 2016 " " Virtual Processor (strand)
Enable Register

❍ RW1,3,6 3016 " " XIR Steering Register
Implementation dependent1

(impl. dep. #1105)

❍ RW3,6 5016 " " Virtual Processor (strand)
Running Register, general
access

❍ R3,6,11 5816 " " Virtual Processor (strand)
Running Status Register

❍ W3,6,10 6016 " " Virtual Processor (strand)
Running Register, general
access. Write ’1’ to set bit

❍ W3,6,10 6816 " " Virtual Processor (strand)
Running Register, general
access. Write ’1’ to clear bit

4216–
4416

❍ — —3,13 — — — Implementation dependent1

4516 ❍ — —3,13 — — — Implementation dependent1

4616–
4816

❍ — —3,13 — — — Implementation dependent1

4916 ❍ — —3,13 — — — Implementation dependent1

4A16–
4B16

❍ — —3,13 — — — Implementation dependent1

4C16 ❍ Error Status and Enable Registers Implementation dependent1

4D16–
4E16

❍ — —3,13 — Implementation dependent1

4F16 ❍ ASI_HYP_SCRATCHPAD RW3,6 (decoded;
see below)

non-T per
strand

Hyperprivileged Scratchpad
registers; implementation
dependent1

❍ 016 Hyperprivileged Scratchpad
Register 01

❍ 816 Hyperprivileged Scratchpad
Register 11

❍ 1016 Hyperprivileged Scratchpad
Register 21

❍ 1816 Hyperprivileged Scratchpad
Register 31

❍ 2016 Hyperprivileged Scratchpad
Register 41

❍ 2816 Hyperprivileged Scratchpad
Register 51

❍ 3016 Hyperprivileged Scratchpad
Register 61

❍ 3816 Hyperprivileged Scratchpad
Register 71

TABLE 10-1 UltraSPARC Architecture ASIs (4 of 10)

ASI
Value

req’d(●)
opt’l (❍) ASI Name (and Abbreviation)

Access
Type(s)

Virtual
Address
(VA)

TVP/
non-T/
TRP

Shared
/per
strand Description
350 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

5016 ❍ ASI_IMMU — (decoded;
see below)

non-T per
strand

IMMU registers

❍ R3,6,11 016 non-T per
strand

IMMU tag target register

❍ RW3,6 1816 non-T per
strand

Instruction fault status
register

❍ RW3,6 3016 non-T per
strand

I TLB tag access register

5116 ❍ ASI_MRA_ACCESS RW3,6 016-3816 non-T per
strand

HWTW MMU Register
Array (MRA) access

5216 ❍ ASI_MMU_REAL RW3,6 (see below) non-T per
strand

MMU registers

❍ d 10816 " " MMU Real Range

❍ 11016 " " MMU Real Range

❍ 11816 " " MMU Real Range

❍ 12016 " " MMU Real Range

❍ 20816 " " MMU Physical Address
Offset Registers

❍ 21016 " " MMU Physical Address
Offset Registers

❍ 21816 " " MMU Physical Address
Offset Registers

❍ 22016 " " MMU Physical Address
Offset Registers

5316 ❍ — —3,13 — — — Implementation dependent1

TABLE 10-1 UltraSPARC Architecture ASIs (5 of 10)

ASI
Value

req’d(●)
opt’l (❍) ASI Name (and Abbreviation)

Access
Type(s)

Virtual
Address
(VA)

TVP/
non-T/
TRP

Shared
/per
strand Description
CHAPTER 10 • Address Space Identifiers (ASIs) 351

5416 ❍ ASI_MMU (see
below)

(decoded;
see below)

non-T per
strand

(more) MMU registers

❍ W3,6,10 016 " " I TLB data in register

❍ RW3,6 1016 " " Context Zero TSB
Configuration register 0

❍ RW3,6 1816 " " Context Zero TSB
Configuration register 1

❍ RW3,6 2016 " " Context Zero TSB
Configuration register 2

❍ RW3,6 2816 " " Context Zero TSB
Configuration register 3

❍ RW3,6 3016 " " Context Nonzero TSB
Configuration register 0

❍ RW3,6 3816 " " Context Nonzero TSB
Configuration register 1

❍ RW3,6 4016 " " Context Nonzero TSB
Configuration register 2

❍ RW3,6 4816 " " Context Nonzero TSB
Configuration register 3

❍ RW3,6 5016 " " Instruction TSB Pointer
register 0

❍ RW3,6 5816 " " Instruction TSB Pointer
register 1

❍ RW3,6 6016 " " Instruction TSB Pointer
register 2

❍ RW3,6 6816 " " Instruction TSB Pointer
register 3

❍ RW3,6 7016 " " Data/Unified TSB Pointer
register 0

❍ RW3,6 7816 " " Data/Unified TSB Pointer
register 1

❍ RW3,6 8016 " " Data/Unified TSB Pointer
register 2

❍ RW3,6 8816 " " Data/Unified TSB Pointer
register 3

❍ RW3,6 9016 " " Tablewalk Pending Control
register

❍ RW3,6 9816 " " Tablewalk Pending Status
register

5516 ❍ ASI_ITLB_DATA_ACCESS_REG RW3,6 016–3F816,
80016–
7FFF816

non-T per
strand

IMMU TLB data access
register

5616 ❍ ASI_ITLB_TAG_READ_REG R3,6,11 016–
FFFF816

non-T per
strand

IMMU TLB tag read register

5716 ❍ ASI_IMMU_DEMAP W3,6,10 016 non-T per
strand

IMMU TLB demap

5816 ❍ ASI_DMMU /ASI_UMMU (see
below)

(decoded;
see below)

non-T — Data or Unified MMU
registers

❍ R3,6,11 016 " per
strand

D/U TSB tag target register

TABLE 10-1 UltraSPARC Architecture ASIs (6 of 10)

ASI
Value

req’d(●)
opt’l (❍) ASI Name (and Abbreviation)

Access
Type(s)

Virtual
Address
(VA)

TVP/
non-T/
TRP

Shared
/per
strand Description
352 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

❍ RW3,6 1816 " per
strand

Data error status register

❍ R3,6,11 2016 " /core Data error address register
(DSFAR)

❍ RW3,6 3016 " /core D/U TLB tag access register

❍ RW3,6 3816 " per
strand

VA instruction, and PA/VA
data watchpoint register

❍ RW3,6 4016 " per
strand

I/D/U MMU hardware
tablewalk configuration
register

❍ RW3,6 8016 " per
strand

I/D/U MMU partition ID
register

5916-
5B16

❍ — —3,13 — — — Reserved

5C16 ❍ ASI_DTLB_DATA_IN_REG W3,6,10 016 non-T per
strand

D/U TLB data in register

5D16 ❍ ASI_DTLB_DATA_ACCESS_REG RW3,6 016–3F816,
80016–
7FFF816

non-T per
strand

D/U TLB data access
register

5E16 ❍ ASI_DTLB_TAG_READ_REG R3,6,11 016–
FFFF816

non-T per
strand

D/U TLB tag read register

5F16 ❍ ASI_DMMU_DEMAP W3,6,10 016 non-T per
strand

D/U TLB demap

6016–
6216

❍ — —3,13 — — — Implementation dependent1

6116–
6216

❍ — —3,13 — — — Implementation dependent1

6316 ❍ ASI_CMT_PER_STRAND,
ASI_CMT_PER_CORE†

(see
below)

(decoded;
see below)

non-T per
strand

CMT control/status
(per strand)

❍ RW3,6 0016 " " Virtual Processor (strand)
Interrupt ID

❍ R3,6,11 1016 " " Virtual Processor (strand) ID

6416–
6716

❍ — —3,13 — — — Implementation dependent1

6816–
7116

● — —3,13 — — — Reserved

7216 ❍ ASI_INTR_RECEIVE —3,7,13 — — — Interrupt Receive register
(see page 423)

7316 ❍ ASI_INTR_W —3,7,10,13 — — — Interrupt Vector Dispatch
register (see page 424)

7416 ❍ ASI_INTR_R —3,7,11,13 — — — Incoming Interrupt Vector
register (see page 424)

7516–
7F16

● — —3,13 — — — Reserved

8016 ● ASI_PRIMARY (ASI_P) RW4 (decoded) TVP — Implicit primary address
space

8116 ● ASI_SECONDARY (ASI_S) RW4 (decoded) TVP — Secondary address space

8216 ● ASI_PRIMARY_NO_FAULT (ASI_PNF) R9,11 (decoded) TVP — Primary address space, no
fault

TABLE 10-1 UltraSPARC Architecture ASIs (7 of 10)

ASI
Value

req’d(●)
opt’l (❍) ASI Name (and Abbreviation)

Access
Type(s)

Virtual
Address
(VA)

TVP/
non-T/
TRP

Shared
/per
strand Description
CHAPTER 10 • Address Space Identifiers (ASIs) 353

8316 ● ASI_SECONDARY_NO_FAULT
(ASI_SNF)

R9,11 (decoded) TVP — Secondary address space, no
fault

8416–
8716

● — —16 — — — Reserved

8816 ● ASI_PRIMARY_LITTLE (ASI_PL) RW4 (decoded) TVP — Implicit primary address
space, little-endian

8916 ● ASI_SECONDARY_LITTLE (ASI_SL) RW4 (decoded) TVP — Secondary address space,
little-endian

8A16 ● ASI_PRIMARY_NO_FAULT_LITTLE
(ASI_PNFL)

R9,11 (decoded) TVP — Primary address space, no
fault, little-endian

8B16 ● ASI_SECONDARY_NO_FAULT_LITTLE
(ASI_SNFL)

R9,11 (decoded) TVP — Seondary address space, no
fault, little-endian

8C16–
BF16

● — —16 — — — Reserved

C016 ❍ ASI_PST8_PRIMARY (ASI_PST8_P) W8,10,14 (decoded) TVP — Primary address space, 8×8-
bit partial store

C116 ❍ ASI_PST8_SECONDARY
(ASI_PST8_S)

W8,10,14 (decoded) TVP — Secondary address space,
8x8-bit partial store

C216 ❍ ASI_PST16_PRIMARY
(ASI_PST16_P)

W8,10,14 (decoded) TVP — Primary address space,
4×16-bit partial store

C316 ❍ ASI_PST16_SECONDARY
(ASI_PST16_S)

W8,10,14 (decoded) TVP — Secondary address space,
4×16-bit partial store

C416 ❍ ASI_PST32_PRIMARY
(ASI_PST32_P)

W8,10,14 (decoded) TVP — Primary address space, 2x32-
bit partial store

C516 ❍ ASI_PST32_SECONDARY
(ASI_PST32_S)

W8,10,14 (decoded) TVP — Secondary address space,
2×32-bit partial store

C616–
C716

● — —15 — — — Implementation dependent1

C816 ❍ ASI_PST8_PRIMARY_LITTLE
(ASI_PST8_PL)

W8,10,14 (decoded) TVP — Primary address space, 8x8-
bit partial store, little-endian

C916 ❍ ASI_PST8_SECONDARY_LITTLE
(ASI_PST8_SL)

W8,10,14 (decoded) TVP — Secondary address space,
8×8-bit partial store, little-
endian

CA16 ❍ ASI_PST16_PRIMARY_LITTLE
(ASI_PST16_PL)

W8,10,14 (decoded) TVP — Primary address space, 4x16-
bit partial store, little-endian

CB16 ❍ ASI_PST16_SECONDARY_LITTLE
(ASI_PST16_SL)

W8,10,14 (decoded) TVP — Secondary address space,
4×16-bit partial store, little-
endian

CC16 ❍ ASI_PST32_PRIMARY_LITTLE
(ASI_PST32_PL)

W8,10,14 (decoded) TVP — Primary address space,
2×32-bit partial store, little-
endian

CD16 ❍ ASI_PST32_SECONDARY_LITTLE
(ASI_PST32_SL)

W8,10,14 (decoded) TVP — Second address space, 2×32-
bit partial store, little-endian

CE16–
CF16

● — —15 — — — Implementation dependent1

D016 ❍ ASI_FL8_PRIMARY (ASI_FL8_P) RW8,14 (decoded) TVP — Primary address space, one
8-bit floating-point load/
store

D116 ❍ ASI_FL8_SECONDARY (ASI_FL8_S) RW8,14 (decoded) TVP — Second address space, one 8-
bit floating-point load/store

TABLE 10-1 UltraSPARC Architecture ASIs (8 of 10)

ASI
Value

req’d(●)
opt’l (❍) ASI Name (and Abbreviation)

Access
Type(s)

Virtual
Address
(VA)

TVP/
non-T/
TRP

Shared
/per
strand Description
354 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

D216 ❍ ASI_FL16_PRIMARY (ASI_FL16_P) RW8,14 (decoded) TVP — Primary address space, one
16-bit floating-point load/
store

D316 ❍ ASI_FL16_SECONDARY
(ASI_FL16_S)

RW8,14 (decoded) TVP — Second address space, one
16-bit floating-point load/
store

D416–
D716

● — —15 — — — Implementation dependent1

D816 ❍ ASI_FL8_PRIMARY_LITTLE
(ASI_FL8_PL)

RW8,14 (decoded) TVP — Primary address space, one
8-bit floating point load/
store, little-endian

D916 ❍ ASI_FL8_SECONDARY_LITTLE
(ASI_FL8_SL)

RW8,14 (decoded) TVP — Second address space, one 8-
bit floating point load/store,
little-endian

DA16 ❍ ASI_FL16_PRIMARY_LITTLE
(ASI_FL16_PL)

RW8,14 (decoded) TVP — Primary address space, one
16-bit floating-point load/
store, little-endian

DB16 ❍ ASI_FL16_SECONDARY_LITTLE
(ASI_FL16_SL)

RW8,14 (decoded) TVP — Second address space, one
16-bit floating point load/
store, little-endian

DC16
–DF16

● — —15 — — — Implementation dependent1

E016 ❍ ASI_BLOCK_COMMIT_PRIMARY
(ASI_BLK_COMMIT_P)

W8,11,14 (decoded) TVP — Primary address space,
8x8-byte block store commit
operation

E116 ❍ ASI_BLOCK_COMMIT_SECONDARY
(ASI_BLK_COMMIT_S)

W8,11,14 (decoded) TVP — Secondary address space,
8x8-byte block store commit
operation

E216 ❍ ASI_TWINX_PRIMARY
(ASI_TWINX_P)

R19 (decoded) TVP — Primary address space, 128-
bit atomic load twin
extended word

E316 ❍ ASI_TWINX_SECONDARY
(ASI_TWINX_S)

R19 (decoded) TVP — Secondary address space,
128-bit atomic load twin
extended-word

E416–
E916

● — —15 — — — Implementation dependent1

EA16 ❍ ASI_TWINX_PRIMARY_LITTLE
(ASI_TWINX_PL)

R19 (decoded) TVP — Primary address space, 128-
bit atomic load twin
extended word, little endian

EB16 ❍ ASI_TWINX_SECONDARY_LITTLE

(ASI_TWINX_SL)
R19 (decoded) TVP — Secondary address space,

128-bit atomic load twin
extended word, little endian

EC16–
EF16

❍ — —15 — — — Implementation dependent1

F016 ❍ ASI_BLOCK_PRIMARY
(ASI_BLK_P)

RW8,14 (decoded) TVP — Primary address space, 8x8-
byte block load/store

F116 ❍ ASI_BLOCK_SECONDARY
(ASI_BLK_S)

RW8,14 (decoded) TVP — Secondary address space,
8x8- byte block load/store

F216–
F516

● — —15 — — — Implementation dependent1

F616–
F716

● — — — — — Implementation dependent1

TABLE 10-1 UltraSPARC Architecture ASIs (9 of 10)

ASI
Value

req’d(●)
opt’l (❍) ASI Name (and Abbreviation)

Access
Type(s)

Virtual
Address
(VA)

TVP/
non-T/
TRP

Shared
/per
strand Description
CHAPTER 10 • Address Space Identifiers (ASIs) 355

F816 ❍ ASI_BLOCK_PRIMARY_LITTLE
(ASI_BLK_PL)

RW8,14 (decoded) TVP — Primary address space, 8x8-
byte block load/store, little
endian

F916 ❍ ASI_BLOCK_SECONDARY_LITTLE
(ASI_BLK_SL)

RW8,14 (decoded) TVP — Secondary address space,
8x8- byte block load/store,
little endian

FA16–
FD16

● — —15 — — — Implementation dependent1

FE16–
FF16

● — —15 — — — Implementation dependent1

† This ASI name has been changed, for consistency; although use of this name is
deprecated and software should use the new name, the old name is listed here for
compatibility.

‡ This ASI was named ASI_DEVICE_ID+SERIAL_ID in older documents.

1 Implementation dependent ASI (impl. dep. #29); available for use by implementors.
Software that references this ASI may not be portable.

2 An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to this ASI in nonprivileged mode causes a privileged_action exception.

3 An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to this ASI in nonprivileged mode or privileged mode causes a
privileged_action exception.

4 May be used with all load alternate, store alternate, atomic alternate and prefetch
alternate instructions (CASA, CASXA, LDSTUBA, LDTWA, LDDFA, LDFA, LDSBA,
LDSHA, LDSWA, LDUBA, LDUHA, LDUWA, LDXA, PREFETCHA, STBA, STTWA,
STDFA, STFA, STHA, STWA, STXA, SWAPA).

5 May be used with all of the following load alternate and store alternate instructions:
LDTWA, LDDFA, LDFA, LDSBA, LDSHA, LDSWA, LDUBA, LDUHA, LDUWA, LDXA,
STBA, STTWA, STDFA, STFA, STHA, STWA, STXA. Use with an atomic alternate or
prefetch alternate instruction (CASA, CASXA, LDSTUBA, SWAPA or PREFETCHA)
causes a DAE_invalid_asi exception.

6 May only be used in a LDXA or STXA instruction for RW ASIs, LDXA for read-only ASIs
and STXA for write-only ASIs. Use of LDXA for write-only ASIs, STXA for read-only
ASIs, or any other load alternate, store alternate, atomic alternate or prefetch alternate
instruction causes a DAE_invalid_asi exception.

7 May only be used in an LDTXA instruction. Use of this ASI in any other load alternate,
store alternate, atomic alternate or prefetch alternate instruction causes a DAE_invalid_asi
exception.

8 May only be used in a LDDFA or STDFA instruction for RW ASIs, LDDFA for read-only
ASIs and STDFA for write-only ASIs. Use of LDDFA for write-only ASIs, STDFA for
read-only ASIs, or any other load alternate, store alternate, atomic alternate or prefetch
alternate instruction causes a DAE_invalid_asi exception.

9 May be used with all of the following load and prefetch alternate instructions: LDTWA,
LDDFA, LDFA, LDSBA, LDSHA, LDSWA, LDUBA, LDUHA, LDUWA, LDXA,
PREFETCHA. Use with an atomic alternate or store alternate instruction causes a
DAE_invalid_asi exception.

10 Write(store)-only ASI; an attempted load alternate, atomic alternate, or prefetch alternate
instruction to this ASI causes a DAE_invalid_asi exception.

11 Read(load)-only ASI; an attempted store alternate or atomic alternate instruction to this
ASI causes a DAE_invalid_asi exception.

TABLE 10-1 UltraSPARC Architecture ASIs (10 of 10)

ASI
Value

req’d(●)
opt’l (❍) ASI Name (and Abbreviation)

Access
Type(s)

Virtual
Address
(VA)

TVP/
non-T/
TRP

Shared
/per
strand Description
356 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

10.4 Special Memory Access ASIs
This section describes special memory access ASIs that are not described in other sections.

10.4.1 ASIs 1016, 1116, 1616, 1716 and 1816
(ASI_*AS_IF_USER_*)
These ASI are intended to be used in accesses from privileged and hyperprivileged mode, but are
processed as if they were issued from nonprivileged mode. Therefore, they are subject to privilege-
related exceptions. They are distinguished from each other by the context from which the access is
made, as described in TABLE 10-2.

When one of these ASIs is specified in a load alternate or store alternate instruction, the virtual
processor behaves as follows:

■ In nonprivileged mode, a privileged_action exception occurs

■ In any other privilege mode:

■ If U/DMMU TTE.p = 1, a DAE_privilege_violation exception occurs

■ Otherwise, the access occurs and its endianness is determined by the current privileged mode
and the U/DMMU TTE.ie bit. In hyperprivileged mode, the access is always made in big-
endian byte order. In privileged mode, if U/DMMU TTE.ie = 0, the access is big-endian;
otherwise, it is little-endian.

12 An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to this ASI in privileged mode or hyperprivileged mode causes a
DAE_invalid_asi exception.

13 An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to this ASI in hyperprivileged mode causes a DAE_invalid_asi exception if
this ASI is not implemented by the specific implementation.

14 An attempted access to this ASI may cause an exception (see Special Memory Access ASIs
on page 357 for details).

15 An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to this ASI in any mode causes a DAE_invalid_asi exception if this ASI is not
implemented by the model dependent implementation.

16 An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to a reserved ASI in any mode causes a DAE_invalid_asi exception.

17 The Queue Tail Registers (ASI 2516) are read-only by privileged software and read-write
by hyperprivileged software. An attempted write to the Queue Tail Registers by
privileged software causes a DAE_invalid_asi exception

18 An access to a privileged page (TTE.p = 1) using an ASI_*AS_IF_USER* ASI causes a
DAE_privilege_violation exception.

19 May only be used in an LDTXA (load twin-extended-word) instruction (which shares an
opcode with LDTWA). Use of this ASI in any other load instruction causes a
DAE_invalid_asi exception.
CHAPTER 10 • Address Space Identifiers (ASIs) 357

10.4.2 ASIs 1816, 1916, 1E16, and 1F16
(ASI_*AS_IF_USER_*_LITTLE)
These ASIs are little-endian versions of ASIs 1016, 1116, 1616, and 1716 (ASI_AS_IF_USER_*),
described in section 10.4.1. Each operates identically to the corresponding non-little-endian ASI,
except that if an access occurs its endianness is the opposite of that for the corresponding non-little-
endian ASI.

These ASI are intended to be used in accesses from privileged and hyperprivileged mode, but are
processed as if they were issued from nonprivileged mode. Therefore, they are subject to privilege-
related exceptions. They are distinguished from each other by the context from which the access is
made, as described in TABLE 10-3.

When one of these ASIs is specified in a load alternate or store alternate instruction, the virtual
processor behaves as follows:

■ In nonprivileged mode, a privileged_action exception occurs

■ In any other privilege mode:

■ If U/DMMU TTE.p = 1, a DAE_privilege_violation exception occurs

■ Otherwise, the access occurs and its endianness is determined by the U/DMMU TTE.ie bit. If
U/DMMU TTE.ie = 0, the access is little-endian; otherwise, it is big-endian.

TABLE 10-2 Privileged ASI_*AS_IF_USER_* ASIs

ASI Names
Addressing

(Context) Endianness of Access

1016 ASI_AS_IF_USER_PRIMARY (ASI_AIUP) Virtual
(Primary) In nonprivileged or

privileged mode:
Big-endian when
U/DMMU
TTE.ie = 0;
little-endian when
U/DMMU
TTE.ie = 1

In nyperprivileged
mode: always big-
endian.

1116 ASI_AS_IF_USER_SECONDARY (ASI_AIUS) Virtual
(Secondary)

1616 ASI_BLOCK_AS_IF_USER_PRIMARY
(ASI_BLK_AIUP)

Virtual
(Primary)

1716 ASI_BLOCK_AS_IF_USER_SECONDARY
(ASI_BLK_AIUS)

Virtual
(Secondary)

TABLE 10-3 Privileged ASI_*AS_IF_USER_*_LITTLE ASIs

ASI Names
Addressing

(Context)
Endianness of

Access

1816 ASI_AS_IF_USER_PRIMARY_LITTLE
(ASI_AIUPL)

Virtual
(Primary) Little-endian

when U/
DMMU
TTE.ie = 0;
big-endian
when U/
DMMU
TTE.ie = 1

1916 ASI_AS_IF_USER_SECONDARY_LITTLE
(ASI_AIUSL)

Virtual
(Secondary)

1E16 ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE
(ASI_BLK_AIUP)

Virtual
(Primary)

1F16 ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE
(ASI_BLK_AIUSL)

Virtual
(Secondary)
358 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

10.4.3 ASI 1416 (ASI_REAL)
When ASI_REAL is specified in any load alternate, store alternate or prefetch alternate instruction,
the virtual processor behaves as follows:

■ In nonprivileged mode, a privileged_action exception occurs

■ In any other privilege mode:

■ VA is passed through to RA , but the number of bits passed through is implementation
dependent (impl. dep. #224-U3)

■ During the address translation, context values are disregarded.

■ The endianness of the access is dertermined by the U/DMMU TTE.ie bit; if U/DMMU
TTE.ie = 0, the access is big-endian, otherwise it is little-endian.

Even if data address translation is disabled, an access with this ASI is still a cacheable access.

10.4.4 ASI 1516 (ASI_REAL_IO)
Accesses with ASI_REAL_IO bypass the external cache and behave as if the side effect bit (TTE.e bit)
is set. When this ASI is specified in any load alternate or store alternate instruction, the virtual
processor behaves as follows:

■ In nonprivileged mode, a privileged_action exception occurs

■ If used with a CASA, CASXA, LDSTUBA, SWAPA, or PREFETCHA instruction, a DAE_invalid_asi
exception occurs

■ Used with any other load alternate or store alternate instuction, in privileged mode or
hyperprivileged mode:

■ VA is passed through to RA , but the number of bits passed through is implementation
dependent (impl. dep. #224-U3)

■ During the address translation, context values are disregarded.

■ The endianness of the access is dertermined by the U/DMMU TTE.ie bit; if U/DMMU
TTE.ie = 0, the access is big-endian, otherwise it is little-endian.

10.4.5 ASI 1C16 (ASI_REAL_LITTLE)
ASI_REAL_LITTLE is a little-endian version of ASI 1416 (ASI_REAL). It operates identically to
ASI_REAL, except if an access occurs, its endianness the opposite of that for ASI_REAL.

10.4.6 ASI 1D16 (ASI_REAL_IO_LITTLE)
ASI_REAL_IO_LITTLE is a little-endian version of ASI 1516 (ASI_REAL_IO). It operates identically
to ASI_REAL_IO, except if an access occurs, its endianness the opposite of that for ASI_REAL_IO.

10.4.7 ASIs 2216, 2316, 2716, 2A16, 2B16, 2F16 (Privileged Load
Integer Twin Extended Word)
ASIs 2216, 2316, 2716, 2A16, 2B16 and 2F16 exist for use with the (nonportable) LDTXA instruction as
atomic Load Integer Twin Extended Word operations (see Load Integer Twin Extended Word from
Alternate Space on page 213). These ASIs are distinguished by the context from which the access is
made and the endianness of the access, as described in TABLE 10-4.
CHAPTER 10 • Address Space Identifiers (ASIs) 359

When these ASIs are used with LDTXA, a mem_address_not_aligned exception is generated if the
operand address is not 16-byte aligned.

If these ASIs are used with any other Load Alternate, Store Alternate, Atomic Load-Store Alternate, or
PREFETCHA instruction, a DAE_invalid_asi exception is always generated and
mem_address_not_aligned is not generated.

10.4.8 ASIs 2616 and 2E16 (Privileged Load Integer Twin Extended
Word, Real Addressing)
ASIs 2616 and 2E16 exist for use with the LDTXA instruction as atomic Load Integer Twin Extended
Word operations using Real addressing (see Load Integer Twin Extended Word from Alternate Space on
page 213). These two ASIs are distinguished by the endianness of the access, as described in
TABLE 10-5.

When these ASIs are used with LDTXA, a mem_address_not_aligned exception is generated if the
operand address is not 16-byte aligned.

TABLE 10-4 Privileged Load Integer Twin Extended Word ASIs

ASI Names
Addressing

(Context)
Endianness of

Access

2216 ASI_TWINX_AS_IF_USER_PRIMARY
(ASI_TWINX_AIUP)

Virtual
(Primary)

Big-endian
when U/
DMMU
TTE.ie = 0;

little-endian
when U/
DMMU
TTE.ie = 1

2316 ASI_TWINX_AS_IF_USER_SECONDARY
(ASI_TWINX_AIUS)

Virtual
(Secondary)

2716 ASI_TWINX_NUCLEUS (ASI_TWINX_N) Virtual‡
(Nucleus)

2A16 ASI_TWINX_AS_IF_USER_PRIMARY_LITTLE
(ASI_TWINX_AIUP_L)

Virtual
(Primary)

Little-endian
when U/
DMMU
TTE.ie = 0;

big-endian
when U/
DMMU
TTE.ie = 1

2B16 ASI_TWINX_AS_IF_USER_SECONDARY_
LITTLE (ASI_TWINX_AIUS_L)

Virtual
(Secondary)

2F16 ASI_TWINX_NUCLEUS_LITTLE
(ASI_TWINX_NL)

Virtual‡
(Nucleus)

‡ In hyperprivileged mode, this ASI uses Physical addressing

Compatibility
Note

These ASIs replaced ASIs 2416 and 2C16 used in earlier
UltraSPARC implementations; see the detailed Compatibility Note
on page 365 for details.

TABLE 10-5 Load Integer Twin Extended Word (Real) ASIs

ASI Name
Addressing

(Context) Endianness of Access

2616 ASI_TWINX_REAL
(ASI_TWINX_R)

Real
(—)

Big-endian when U/DMMU
TTE.ie = 0; little-endian when U/
DMMU TTE.ie = 1

2E16 ASI_TWINX_REAL_LITTLE
(ASI_TWINX_REAL_L)

Real
(—)

Little-endian when U/DMMU
TTE.ie = 0; big-endian when U/
DMMU TTE.ie = 1
360 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

If these ASIs are used with any other Load Alternate, Store Alternate, Atomic Load-Store Alternate, or
PREFETCHA instruction, a DAE_invalid_asi exception is always generated and
mem_address_not_aligned is not generated.

10.4.9 ASIs 3016, 3116, 3616, 3816, 3916, 3E16 (ASI_AS_IF_PRIV_*)
These ASI are intended to be used in accesses from hyperprivileged mode, but are processed as if they
were issued from privileged mode These ASIs are distinguished by the context from which the access
is made and the endianness of the access, as described in TABLE 10-6.

When one of these ASIs is specified in a load alternate or store alternate instruction, the virtual
processor behaves as follows:

■ In nonprivileged or privileged mode, a privileged_action exception occurs

■ In hyperprivileged mode:

■ The endianness of the access is determined by the U/DMMU TTE.ie bit; if U/DMMU
TTE.ie = 0, the access is big-endian; otherwise, it is little-endian.

10.4.10 ASIs E216, E316, EA16, EB16
(Nonprivileged Load Integer Twin Extended Word)
ASIs E216, E316, EA16, and EB16 exist for use with the (nonportable) LDTXA instruction as atomic
Load Integer Twin Extended Word operations (see Load Integer Twin Extended Word from Alternate Space
on page 213). These ASIs are distinguished by the address space accessed (Primary or Secondary) and
the endianness of the access, as described in TABLE 10-7.

Compatibility
Note

These ASIs replaced ASIs 3416 and 3C16 used in earlier
UltraSPARC implementations; see the Compatibility Note on
page 365 for details.

TABLE 10-6 Hyperprivileged AS_IF_PRIV_* ASIs

ASI Names
Addressing

(Context)
Endianness of

Access

3016 ASI_AS_IF_PRIV_PRIMARY (ASI_AIPP) Virtual
(Primary)

Big-endian
when U/
DMMU
TTE.ie = 0;
little-endian
when U/
DMMU
TTE.ie = 1

3116 ASI_AS_IF_PRIV_SECONDARY
(ASI_AIPS)

Virtual
(Secondary)

3616 ASI_AS_IF_PRIV_NUCLEUS (ASI_AIPN)
Virtual

(Nucleus)

3816 ASI_AS_IF_PRIV_PRIMARY_LITTLE
(ASI_AIPP_L)

Virtual
(Primary)

Little-endian
when U/
DMMU
TTE.ie = 0; big-
endian when
U/DMMU
TTE.ie = 1

3916 ASI_AS_IF_PRIV_SECONDARY_LITTLE
(ASI_AIPS_L)

Virtual
(Secondary)

3E16 ASI_AS_IF_PRIV_NUCLEUS_LITTLE
(ASI_AIPN_L)

Virtual
(Nucleus)
CHAPTER 10 • Address Space Identifiers (ASIs) 361

When these ASIs are used with LDTXA, a mem_address_not_aligned exception is generated if the
operand address is not 16-byte aligned.

If these ASIs are used with any other Load Alternate, Store Alternate, Atomic Load-Store Alternate, or
PREFETCHA instruction, a DAE_invalid_asi exception is always generated and
mem_address_not_aligned is not generated.

10.4.11 Block Load and Store ASIs
ASIs 1616, 1716, 1E16, 1F16, E016, E116, F016, F116, F816, and F916 exist for use with LDDFA and STDFA
instructions as Block Load (LDBLOCKFD) and Block Store (STBLOCKFD) operations (see Block Load on
page 192 and Block Store on page 269).

When these ASIs are used with the LDDFA (STDFA) opcode for Block Load (Store), a
mem_address_not_aligned exception is generated if the operand address is not 64-byte aligned.

ASIs E016 and E116 are only defined for use in Block Store with Commit operations (see page 269).
Neither ASI E016 nor E116 should be used with the LDDFA opcode; however, if either is used, the
resulting behavior is specified in the LDDFA instruction description on page 199.

If a Block Load or Block Store ASI is used with any other Load Alternate, Store Alternate, Atomic
Load-Store Alternate, or PREFETCHA instruction, a DAE_invalid_asi exception is always generated
and mem_address_not_aligned is not generated.

10.4.12 Partial Store ASIs
ASIs C016–C516 and C816–CD16 exist for use with the STDFA instruction as Partial Store
(STPARTIALF) operations (see Store Partial Floating-Point on page 279).

When these ASIs are used with STDFA for Partial Store, a mem_address_not_aligned exception is
generated if the operand address is not 8-byte aligned and an illegal_instruction exception is generated
if i = 1 in the instruction and the ASI register contains one of the Partial Store ASIs.

If one of these ASIs is used with a Store Alternate instruction other than STDFA, a Load Alternate,
Store Alternate, Atomic Load-Store Alternate, or PREFETCHA instruction, a DAE_invalid_asi
exception is generated and mem_address_not_aligned, LDDF_mem_address_not_aligned, and
illegal_instruction (for i = 1) are not generated.

TABLE 10-7 Load Integer Twin Extended Word ASIs

ASI Names
Addressing
(Context)

Endianness of
Access

E216 ASI_TWINX_PRIMARY (ASI_TWINX_P) Virtual
(Primary)

Big-endian
when U/
DMMU
TTE.ie = 0,
little-endian
when U/
DMMU
TTE.ie = 1

E316 ASI_TWINX_SECONDARY (ASI_TWINX_S)

Virtual
(Secondary)

EA16 ASI_TWINX_PRIMARY_LITTLE
(ASI_TWINX_PL)

Virtual
(Primary)

Little-endian
when U/
DMMU
TTE.ie = 0,
big-endian
when U/
DMMU
TTE.ie = 1

EB16 ASI_TWINX_SECONDARY_LITTLE
(ASI_TWINX_SL)

Virtual
(Secondary)
362 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

ASIs C016–C516 and C816–CD16 are only defined for use in Partial Store operations (see page 279).
None of them should be used with LDDFA; however, if any of those ASIs is used with LDDFA, the
resulting behavior is specified in the LDDFA instruction description on page 199.

10.4.13 Short Floating-Point Load and Store ASIs
ASIs D016–D316 and D816–DB16 exist for use with the LDDFA and STDFA instructions as Short
Floating-point Load and Store operations (see Load Floating-Point Register on page 195 and Store
Floating-Point on page 272).

When ASI D216, D316, DA16, or DB16 is used with LDDFA (STDFA) for a 16-bit Short Floating-point
Load (Store), a mem_address_not_aligned exception is generated if the operand address is not
halfword-aligned.

If any of these ASIs are used with any other Load Alternate, Store Alternate, Atomic Load-Store
Alternate, or PREFETCHA instruction, a DAE_invalid_asi exception is always generated and
mem_address_not_aligned is not generated.

10.5 ASI-Accessible Registers
In this section the Data Watchpoint registers, scratchpad registers, and CMT registers are described.

A list of UltraSPARC Architecture 2007 ASIs is shown in TABLE 10-1 on page 347.

10.5.1 Privileged Scratchpad Registers (ASI_SCRATCHPAD)
An UltraSPARC Architecture virtual processor includes eight Scratchpad registers (64 bits each, read/
write accessible) (impl.dep. #302-U4-Cs10). The use of the Scratchpad registers is completely defined
by software.

For conventional uses of Scratchpad registers, see “Scratchpad Register Usage” in Software
Considerations, contained in the separate volume UltraSPARC Architecture Application Notes.

The Scratchpad registers are intended to be used by performance-critical trap handler code.

The addresses of the privileged scratchpad registers are defined in TABLE 10-8.

IMPL. DEP. #404-S10: The degree to which Scratchpad registers 4–7 are accessible to privileged
software is implementation dependent. Each may be
(1) fully accessible,

TABLE 10-8 Scratchpad Registers

Assembly Language ASI Name ASI # Virtual Address
Privileged Scratchpad

Register #

ASI_SCRATCHPAD 2016

0016 0

0816 1

1016 2

1816 3

2016 4

2816 5

3016 6

3816 7

D1
CHAPTER 10 • Address Space Identifiers (ASIs) 363

(2) accessible, with access much slower than to scratchpad registers 0–3 (emulated by DAE_invalid_asi
trap to hyperprivileged software), or
(3) inaccessible (cause a DAE_invalid_asi exception).

10.5.2 Hyperprivileged Scratchpad Registers
(ASI_HYP_SCRATCHPAD)
An UltraSPARC Architecture virtual processor includes eight hyperprivileged Scratchpad registers (64
bits each, read/write accessible). The use of the hyperprivileged Scratchpad registers is completely
defined by software.

The hyperprivileged Scratchpad registers are intended to be used in hyperprivileged trap handler
code.

The hyperprivileged Scratchpad registers are accessed with Load Alternate and Store Alternate
instructions, using the ASIs and addresses listed in TABLE 10-9.

IMPL. DEP. #407-S10: It is implementation dependent whether any of the hyperprivileged
Scratchpad registers are aliased to the corresponding privileged Scratchpad register or is an
independent register.

10.5.3 CMT Registers Accessed Through ASIs
All chip-level multithreading (CMT) registers are accessed through ASIs. See Accessing CMT Registers
on page 476, for descriptions of ASI registers used to control CMT functions.

10.5.4 ASI Changes in the UltraSPARC Architecture
The following Compatibility Notes summarize the UltraSPARC ASI changes in UltraSPARC
Architecture.

V9 Compatibility
Note

Privileged scratchpad registers are an UltraSPARC Architecture
extension to SPARC V9.

TABLE 10-9 Hyperprivileged Scratchpad Registers

Assembly Language ASI Name ASI # Virtual Address
Hyperprivileged

Scratchpad Register #

ASI_HYP_SCRATCHPAD 4F16

0016 0

0816 1

1016 2

1816 3

2016 4

2816 5

3016 6

3816 7

V9 Compatibility
Note

Hyperprivileged Scratchpad registers are an UltraSPARC
Architecture extension to SPARC V9.

D2

D2
364 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

Compatibility
Note

The names of several ASIs used in earlier UltraSPARC
implementations have changed in UltraSPARC Architecture. Their
functions have not changed; just their names have changed.

ASI# Previous UltraSPARC UltraSPARC Architecture

1416 ASI_PHYS_USE_EC ASI_REAL

1516 ASI_PHYS_BYPASS_EC_WITH_EBIT ASI_REAL_IO

1C16 ASI_PHYS_USE_EC_LITTLE ASI_REAL_LITTLE
(ASI_PHYS_USE_EC_L)

1D16 ASI_PHYS_BYPASS_EC_WITH_ ASI_REAL_IO_LITTLE
EBIT_LITTLE
(ASI_PHY_BYPASS_EC_WITH_EBIT_L)

Compatibility
Note

The names and ASI assignments (but not functions) changed
between earlier UltraSPARC implementations and UltraSPARC
Architecture, for the following ASIs:

Previous UltraSPARC UltraSPARC Architecture
ASI# Name ASI# Name

3416 ASI_QUAD_LDD_PHYSD 2616 ASI_TWINX_REAL
(ASI_TWINX_R)

3C16 ASI_QUAD_LDD_LITTLED 2E16 ASI_TWINX_REAL_LITTLE
(ASI_QUAD_LDD_LD) (ASI_TWINX_REAL_L)
CHAPTER 10 • Address Space Identifiers (ASIs) 365

366 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

CHAPTER 11

Performance Instrumentation

This chapter describes the architecture for performance monitoring hardware on UltraSPARC
Architecture processors. The architecture is based on the design of performance instrumentation
counters in previous UltraSPARC Architecture processors, with an extension for the selective
sampling of instructions.

11.1 High-Level Requirements

11.1.1 Usage Scenarios
The performance monitoring hardware on UltraSPARC Architecture processors addresses the needs of
various kinds of users. There are four scenarios envisioned:

■ System-wide performance monitoring. In this scenario, someone skilled in system performance
analysis (e.g, a Systems Engineer) is using analysis tools to evaluate the performance of the entire
system. An example of such a tool is cpustat. The objective is to obtain performance data relating to
the configuration and behavior of the system, e.g., the utilization of the memory system.

■ Self-monitoring of performance by the operating system. In this scenario the OS is gathering
performance data in order to tune the operation of the system. Some examples might be:

■ (a) determining whether the processors in the system should be running in single- or multi-
stranded mode.

■ (b) determining the affinity of a process to a processor by examining that process’s memory
behavior.

■ Performance analysis of an application by a developer. In this scenario a developer is trying to optimize
the performance of a specific application, by altering the source code of the application or the
compilation options. The developer needs to know the performance characteristics of the
components of the application at a coarse grain, and where these are problematic, to be able to
determine fine-grained performance information. Using this information, the developer will alter
the source or compilation parameters, re-run the application, and observe the new performance
characteristics. This process is repeated until performance is acceptable, or no further
improvements can be found.

An example might be that a loop nest is measured to be not performing well. Upon closer
inspection, the developer determines that the loop has poor cache behavior, and upon more
detailed inspection finds a specific operation which repeatedly misses the cache. Reorganizing the
code and/or data may improve the cache behavior.

■ Monitoring of an application’s performance, e.g., by a Java Virtual Machine. In this scenario the
application is not executing directly on the hardware, but its execution is being mediated by a piece
of system software, which for the purposes of this document is called a Virtual Machine. This may
367

be a Java VM, or a binary translation system running software compiled for another architecture, or
for an earlier version of the UltraSPARC Architecture. One goal of the VM is to optimize the
behavior of the application by monitoring its performance and dynamically reorganizing the
execution of the application (e.g., by selective recompilation of the application).

This scenario differs from the previous one principally in the time allowed to gather performance
data. Because the data are being gathered during the execution of the program, the measurements
must not adversely affect the performance of the application by more than, say, a few percent, and
must yield insight into the performance of the application in a relatively short time (otherwise,
optimization opportunities are deferred for too long). This implies an observation mechanism
which is of very low overhead, so that many observations can be made in a short time.

In contrast, a developer optimizing an application has the luxury of running or re-running the
application for a considerable period of time (minutes or even hours) to gather data. However, the
developer will also expect a level of precision and detail in the data which would overwhelm a
virtual machine, so the accuracy of the data required by a virtual machine need not be as high as
that supplied to the developer.

Scenarios 1 and 2 are adequately dealt with by a suitable set of performance counters capable of
counting a variety of performance-related events. Counters are ideal for these situations because they
provide low-overhead statistics without any intrusion into the behavior of the system or disruption to
the code being monitored. However, counters may not adequately address the latter two scenarios, in
which detailed and timely information is required at the level of individual instructions. Therefore,
UltraSPARC Architecture processors may also implement an instruction sampling mechanism.

11.1.2 Metrics
There are two classes of data reported by a performance instrumentation mechanism:

■ Architectural performance metrics. These are metrics related to the observable execution of code at the
architectural level (UltraSPARC Architecture). Examples include:

■ The number of instructions executed

■ The number of floating point instructions executed

■ The number of conditional branch instructions executed

■ Implementation performance metrics. These describe the behavior of the microprocessor in terms of its
implementation, and would not necessarily apply to another implementation of the architecture.

In optimizing the performance of an application or system, attention will first be paid to the first class
of metrics, and so these are more important. Only in performance-critical cases would the second class
receive attention, since using these metrics requires a fairly extensive understanding of the specific
implementation of the UltraSPARC Architecture.

11.1.3 Accuracy Requirements
Accuracy requirements for performance instrumentation vary depending on the scenario. The
requirements are complicated by the possibly speculative nature of UltraSPARC Architecture
processor implementations. For example, an implementation may include in its cache miss statistics
the misses induced by speculative executions which were subsequently flushed, or provide two
separate statistics, one for the misses induced by flushed instructions and one for misses induced by
retired instructions. Although the latter would be desirable, the additional implementation
complexity of associating events with specific instructions is significant, and so all events may be
counted without distinction. The instruction sampling mechanism may distinguish between
instructions that retired and those that were flushed, in which case sampling can be used to obtain
statistical estimates of the frequencies of operations induced by mis-speculation.
368 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

For critical performance measurements, architectural event counts must be accurate to a high degree
(1 part in 105). Which counters are considered performance-critical (and therefore accurate to 1 part in
105) are specified in implementation-specific documentation.

Implementation event counts must be accurate to 1 part in 103, not including the speculative effects
mentioned above. An upper bound on counter skew must be stated in implementation-specific
documentation.

11.2 Performance Counters and Controls
The performance instrumentation hardware provides performance instrumentation counters (PICs).
The number and size of performance counters is implementation dependent, but each performance
counter register contains at least one 32-bit counter. It is implementation dependent whether the
performance counter registers are accessed as ASRs or are accessed through ASIs.

There are one or more performance counter control registers (PCRs) associated with the counter
registers. It is implementation dependent whether the PCRs are accessed as ASRs or are accessed
through ASIs.

Each counter in a counter register can count one kind of event at a time. The number of the kinds of
events that can be counted is implementation dependent. For each performance counter register, the
corresponding control register is used to select the event type being counted. A counter is
incremented whenever an event of the matching type occurs. A counter may be incremented by an
event caused by an instruction which is subsequently flushed (for example, due to mis-speculation).
Counting of events may be controlled based on privilege mode or on the strand in which they occur.
Masking may be provided to allow counting of subgroups of events (for example, various occurrences
of different opcode groups).

A field that indicates when a counter has overflowed must be present in either each performance
instrumentation counter or in a separate performance counter control register.

Performance counters are usually provided on a per-strand basis.

11.2.1 Counter Overflow
Overflow of a counter must cause a pic_overflow disrupting trap to be generated, when enabled by a
Trap Overflow Enable bit (in an implementation-specific location). There must be a separate toe bit
for each performance counter, so that overflow traps can be enabled on a per-counter basis. Overflow
of a counter is recorded in the overflow-indication field of either a performance instrumentation
counter or a separate performance counter control register.

Counter overflow traps are provided so that large counts can be maintained in software, beyond the
range directly supported in hardware. The counters continue to count after an overflow, and software
can utilize the overflow traps to maintain additional high-order bits.

Programming
Note

Increasing the time between counter reads will mitigate the
inaccurcies that could be introduced by counter skew (due to
speculative effects).

Programming
Note

Counter overflow traps can also be used for sampling, by setting
the initial counter value so that an interrupt occurs n counts
later.
CHAPTER 11 • Performance Instrumentation 369

370 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

CHAPTER 12

Traps

A trap is a vectored transfer of control to software running in a privilege mode (see page 372) with
(typically) greater privileges. A trap in nonprivileged mode can be delivered to privileged mode or
hyperprivileged mode. A trap that occurs while executing in privileged mode can be delivered to
privileged mode or hyperprivileged mode. A trap that occurs while executing in hyperprivileged
mode can only be delivered to hyperprivileged mode.

The actual transfer of control occurs through a trap table that contains the first eight instructions (32
instructions for clean_window, fast_instruction_access_MMU_miss, fast_data_access_MMU_miss,
fast_data_access_protection, window spill, and window fill, traps) of each trap handler. The virtual
base address of the trap table for traps to be delivered in privileged mode is specified in the Trap Base
Address (TBA) register. The physical base address of the trap table for traps to be delivered in
hyperprivileged mode is specified in the Hyperprivileged Trap Base Address (HTBA) register. The
displacement within either table is determined by the trap type and the current trap level (TL). One-
half of each table is reserved for hardware traps; the other half is reserved for software traps
generated by Tcc instructions.

A trap behaves like an unexpected procedure call. It causes the hardware to do the following:

1. Save certain virtual processor state (such as program counters, CWP, ASI, CCR, PSTATE, and the
trap type) on a hardware register stack.

2. Enter privileged execution mode with a predefined PSTATE, or enter hyperprivileged mode with a
predefined PSTATE and HPSTATE.

3. Begin executing trap handler code in the trap vector.

When the trap handler has finished, it uses either a DONE or RETRY instruction to return.

A trap may be caused by a Tcc instruction, an instruction-induced exception, a reset, an asynchronous
error, or an interrupt request not directly related to a particular instruction. The virtual processor
must appear to behave as though, before executing each instruction, it determines if there are any
pending exceptions or interrupt requests. If there are pending exceptions or interrupt requests, the
virtual processor selects the highest-priority exception or interrupt request and causes a trap.

Thus, an exception is a condition that makes it impossible for the virtual processor to continue
executing the current instruction stream without software intervention. A trap is the action taken by
the virtual processor when it changes the instruction flow in response to the presence of an exception,
interrupt, reset, or Tcc instruction.

An interrupt is a request for service presented to a virtual processor by an external device.

Traps are described in these sections:

■ Virtual Processor Privilege Modes on page 372.
■ Virtual Processor States, Normal Traps, and RED_state Traps on page 373.

V9 Compatibility
Note

Exceptions referred to as “catastrophic error exceptions” in the
SPARC V9 specification do not exist in the UltraSPARC
Architecture; they are handled using normal error-reporting
exceptions. (impl. dep. #31-V8-Cs10)
371

■ Trap Categories on page 377.
■ Trap Control on page 381.
■ Trap-Table Entry Addresses on page 382.
■ Trap Processing on page 396.
■ Exception and Interrupt Descriptions on page 406.
■ Register Window Traps on page 416.

12.1 Virtual Processor Privilege Modes
An UltraSPARC Architecture virtual processor is always operating in a discrete privilege mode. The
privilege modes are listed below in order of increasing privilege:

■ Nonprivileged mode (also known as “user mode”)

■ Privileged mode, in which supervisor (operating system) software primarily operates

■ Hyperprivileged mode, in which hypervisor software operates, serving as a layer between the
supervisor software and the underlying virtual processor

The virtual processor’s operating mode is determined by the state of two mode bits, as shown in
TABLE 12-1.

A trap is delivered to the virtual processor in either privileged mode or hyperprivileged mode; in
which mode the trap is delivered depends on:

■ Its trap type
■ The trap level (TL) at the time the trap is taken
■ The privilege mode at the time the trap is taken

Traps detected in nonprivileged and privileged mode can be delivered to the virtual processor in
privileged mode or hyperprivileged mode. Traps detected in hyperprivileged mode are either
delivered to the virtual processor in hyperprivileged mode or may be masked. If masked, they are
held pending.

TABLE 12-4 on page 387 indicates in which mode each trap is processed, based on the privilege mode at
which it was detected.

A trap delivered to privileged mode uses the privileged-mode trap vector, based upon the TBA
register. See Trap-Table Entry Address to Privileged Mode on page 383 for details. A trap delivered to
hyperprivileged mode uses the hyperprivileged mode trap vector address, based upon the HTBA
register. See Trap-Table Entry Address to Hyperprivileged Mode on page 383 for details.

The maximum trap level at which privileged software may execute is MAXPTL (which, on an
UltraSPARC Architecture 2007 virtual processor, is 2). Therefore, if TL ≥ MAXPTL and a trap occurs that
would normally be delivered in privileged mode, it is instead delivered in hyperprivileged mode; the

TABLE 12-1 Virtual Processor Privilege Modes

HPSTATE.hpriv PSTATE.priv Virtual Processor Privilege Mode

0 0 Nonprivileged

0 1 Privileged

1 — Hyperprivileged
372 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

trap table offset for watchdog_reset (4016) is used, and the priority and trap type of the original
exception is retained. This is referred to as a “guest_watchdog” trap (so named because it uses
watchdog_reset’s trap table offset).

FIGURE 12-1 shows how a virtual processor transitions between privilege modes, excluding transitions
that can occur due to direct software writes to PSTATE.priv or HPSTATE.hpriv. In this figure,
indicates a “trap destined for privileged mode” and indicates a “trap destined for hyperprivileged
mode”.

FIGURE 12-1 Virtual Processor Privilege Mode Transition Diagram

12.2 Virtual Processor States, Normal Traps, and
RED_state Traps
An UltraSPARC Architecture virtual processor is always in one of three discrete states:

■ execute_state, which is the normal execution state of the virtual processor

■ RED_state (Reset, Error, and Debug state), which is a restricted execution state reserved for
processing traps that occur when TL = MAXTL – 1, and for processing hardware- and software-
initiated resets

■ error_state, which is a transient state that is entered as a result of a non-reset trap, SIR, or XIR
when TL = MAXTL

The values of TL and HPSTATE.red affect the generated trap vector address. TL also determines where
(that is, into which element of the TSTATE and HTSTATE arrays) the states are saved..

Notes Execution in nonprivileged or privileged mode with
TL > MAXPTL is an invalid condition that hyperprivileged
software should never allow to occur.

Execution in nonprivileged mode with TL > 0 is an invalid
condition that privileged and hyperprivileged software should
never allow to occur.

 PT

 HT

@ TL ≥ MAXPTL (2), or PT HT

Nonprivileged

@ TL ≥ MAXPTL (2), or PT HT

@ TL < MAXPTL (2) PT

 HT@
TL < MAXPTL (2)

 PT HyperprivilegedPrivileged

DONE2,
RETRY2

DONE1,
RETRY1

1 if ((HTSTATE[TL].HPSTATE.hpriv = 0)
and (TSTATE[TL].PSTATE.priv = 0))

2 if ((HTSTATE[TL].HPSTATE.hpriv = 0)
and (TSTATE[TL].PSTATE.priv = 1))

3 if ((HTSTATE[TL].HPSTATE.hpriv = 1)

DONE3,
RETRY3

DONE1,RETRY1

DONE2,
RETRY2
CHAPTER 12 • Traps 373

Traps processed in execute_state are called normal traps. Traps processed in RED_state are called
RED_state traps.

FIGURE 12-2 shows the virtual processor state transition diagram.

FIGURE 12-2 Virtual Processor State Diagram (“ ” = “non-reset trap”)

12.2.1 RED_state

RED_state is an acronym for Reset, Error, and Debug state. The virtual processor enters RED_state
under any one of the following conditions:

■ A non-reset trap is taken when TL = MAXTL –1.
■ A POR or WDR reset occurs.
■ An SIR reset occurs when TL < MAXTL.
■ An XIR reset occurs when TL < MAXTL.
■ System software sets HPSTATE.red = 1. For this condition, no other machine state or operation is

modified as a side-effect of the write to HPSTATE; software must set the appropriate machine state.

RED_state serves two purposes:

■ During trap processing, it indicates that no more trap levels are available; that is, while executing
in RED_state with TL = MAXTL, if another nested non-reset trap, SIR, or XIR is taken, the virtual
processor will enter error_state. RED_state provides system software with a restricted
execution environment.

■ It provides the execution environment for all reset processing.

RED_state is indicated by HPSTATE.red. When this bit is set to 1, the virtual processor is in
RED_state; when this bit is zero, the virtual processor is not in RED_state, independent of the
value of TL. Executing a DONE or RETRY instruction in RED_state restores the stacked copy of the
HPSTATE register, which zeroes the HPSTATE.red flag if it was zero in the stacked copy. System
software can also directly write 1 or 0 to HPSTATE.red with a WRHPR instruction, which forces the
virtual processor to enter or exit RED_state, respectively. In this case, the WRHPR instruction should
be placed in the delay slot of a jump instruction so that the PC can be changed in concert with the
state change.

V9 Compatibility
Note

RED_state traps were called “special traps” in the SPARC V9
specification. The name was changed to clarify the terminology.

@ NRT

(or SIR or XIR) @ NRT

RED_stateexecute_state error_state

POR,

(Including Power Off)

DONE,

Any State

SIR @

WDR

RETRY,

(or SIR) @ TL = MAXTL NRT

(or SIR or XIR) @ NRT

@ NRT

TL = MAXTL–1,

TL < MAXTL,

TL < MAXTL–1

TL = MAXTL

red ← 1

red ← 0

XIR @TL < MAXTL

TL < MAXTL

XIR @

TL = MAXTL

Any State

 NRT
374 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

When RED_state is entered due to a reset or a trap, the execution environment is altered in four
ways:

■ Address translation is disabled in the MMU, for both instruction and data references.

■ Watchpoints are disabled.

■ The trap vector for the traps occurring in RED_state is based on the RED_state Trap Table.

■ The virtual processor enters hyperprivileged mode (HPSTATE.hpriv ← 1).

The trap table organization for RED_state traps is described in RED_state Trap Table Organization
on page 385.

12.2.1.1 RED_state Execution Environment

In RED_state, the virtual processor is forced to execute in a restricted environment by overriding the
values of some virtual processor control and state registers.

The values are overridden, not set, allowing them to be switched atomically.

Some of the characteristics of RED_state include:

■ Memory accesses in RED_state are by default noncacheable, so there must be noncacheable
scratch memory somewhere in the system.

■ The D-cache watchpoints and DMMU/UMMU can be enabled by software in RED_state, but any
trap will disable them again.

■ The caches continue to snoop and maintain coherence in RED_state if DMA or other virtual
processors are still issuing cacheable accesses.

IMPL. DEP. #115-V9: A processor’s behavior in RED_state is implementation dependent.

12.2.1.2 RED_state Entry Traps

The following reset traps are processed in RED_state:

■ Power-on reset (POR) — POR causes the virtual processor to start execution at this trap table entry.

■ Watchdog reset (WDR) — While in error_state, the virtual processor automatically invokes a
watchdog reset to enter RED_state (impl. dep. #254-U3-Cs10).

■ Externally initiated reset (XIR) — This trap is typically used as a nonmaskable interrupt for
debugging purposes. If TL < MAXTL when an XIR occurs, the reset trap is processed in RED_state;
if TL = MAXTL when an XIR occurs, the virtual processor transitions directly to error_state.

Programming
Note

Setting TL ← MAXTL with a WRHPR instruction does not also set
HPSTATE.red ← 1, nor does it alter any other machine state. The
values of HPSTATE.red and TL are independent.

Setting HPSTATE.red with a WRHPR instruction causes the
virtual processor to execute in RED_state. This results in the
execution environment defined in RED_state Execution
Environment on page 375. However, it is different from a
RED_state trap in the sense that there are no trap-related
changes in the machine state (for example, TL does not change).

Programming
Note

When RED_state is entered because of component failures,
trap handler software should attempt to recover from
potentially fatal error conditions or to disable the failing
components. When RED_state is entered after a reset, the
software should create the environment necessary to restore the
system to a running state.
CHAPTER 12 • Traps 375

■ Software-initiated reset (SIR) If TL < MAXTL when an SIR occurs, the reset trap is processed in
RED_state; if TL = MAXTL when an SIR occurs, the virtual processor transitions directly to
error_state.

Non-reset traps that occur when TL = MAXTL – 1 also set HPSTATE.red = 1; that is, any non-reset trap
handler entered with TL = MAXTL runs in RED_state.

Any non-reset trap that sets HPSTATE.red = 1 or that occurs when HPSTATE.red = 1 branches to a
special entry in the RED_state trap vector at RSTVADDR + A016. Reset traps are described in Reset
Traps on page 380.

12.2.1.3 RED_state Software Considerations

In effect, RED_state reserves one level of the trap stack for recovery and reset processing.
Hyperprivileged software should be designed to require only MAXTL – 1 trap levels for normal
processing. That is, any trap that causes TL = MAXTL is an exceptional condition that should cause
entry to RED_state.

12.2.1.4 Usage of Trap Levels

If MAXPTL = 2 and MAXTL = 5 in an UltraSPARC Architecture implementation, the trap levels might be
used as shown in TABLE 12-2.

12.2.2 error_state

The virtual processor enters error_state when a trap occurs while the virtual processor is already
at its maximum supported trap level — that is, it enters error_state when a trap occurs while
TL = MAXTL. No other conditions cause entry into error_state on an UltraSPARC Architecture
virtual processor. (impl. dep. #39-V8-Cs10)

IMPL. DEP. #40-V8: Effects when error_state is entered are implementation-dependent, but it is
recommended that as much processor state as possible be preserved upon entry to error_state. In
addition, an UltraSPARC Architecture virtual processor may have other error_state entry traps
that are implementation dependent.

Upon entering error_state, a virtual processor automatically generates a watchdog_reset (WDR)
(impl. dep. #254-U3-Cs10), which causes entry into RED_state.

Programming
Note

To log the state of the virtual processor, RED_state-handler
software needs either a spare register or a preloaded pointer to a
save area. To support recovery, the operating system might
reserve one of the hyperprivileged scratchpad registers for use
in RED_state.

TABLE 12-2 Typical Usage for Trap Levels

TL
Corresponding

Execution Mode Usage

0 Nonprivileged Normal execution

1 Privileged System calls; interrupt handlers; instruction emulation

2 Privileged Window spill/fill handler

3 Hyperprivileged Real address TLB miss handler

4 Hyperprivileged Reserved for error handling

5 Hyperprivileged RED_state handler
376 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

12.3 Trap Categories
An exception, error, or interrupt request can cause any of the following trap types:

■ Precise trap
■ Deferred trap
■ Disrupting trap
■ Reset trap

12.3.1 Precise Traps
A precise trap is induced by a particular instruction and occurs before any program-visible state has
been changed by the trap-inducing instructions. When a precise trap occurs, several conditions must
be true:

■ The PC saved in TPC[TL] points to the instruction that induced the trap and the NPC saved in
TNPC[TL] points to the instruction that was to be executed next.

■ All instructions issued before the one that induced the trap have completed execution.

■ Any instructions issued after the one that induced the trap remain unexecuted.

Among the actions that trap handler software might take when processing a precise trap are:

■ Return to the instruction that caused the trap and reexecute it by executing a RETRY instruction
(PC ← old PC, NPC ← old NPC).

■ Emulate the instruction that caused the trap and return to the succeeding instruction by executing
a DONE instruction (PC ← old NPC, NPC ← old NPC + 4).

■ Terminate the program or process associated with the trap.

12.3.2 Deferred Traps
A deferred trap is also induced by a particular instruction, but unlike a precise trap, a deferred trap
may occur after program-visible state has been changed. Such state may have been changed by the
execution of either the trap-inducing instruction itself or by one or more other instructions.

There are two classes of deferred traps:

■ Termination deferred traps — The instruction (usually a store) that caused the trap has passed the
retirement point of execution (the TPC has been updated to point to an instruction beyond the one
that caused the trap). The trap condition is an error that prevents the instruction from completing
and its results becoming globally visible. A termination deferred trap has high trap priority, second
only to the priority of resets.

■ Restartable deferred traps — The program-visible state has been changed by the trap-inducing
instruction or by one or more other instructions after the trap-inducing instruction.

Programming
Note

Not enough state is saved for execution of the instruction stream
to resume with the instruction that caused the trap. Therefore,
the trap handler must terminate the process containing the
instruction that caused the trap.

SPARC V9
Compatibility

Note

A restartable deferred trap is the “deferred trap” defined in the
SPARC V9 specification.
CHAPTER 12 • Traps 377

The fundamental characteristic of a restartable deferred trap is that the state of the virtual processor on
which the trap occurred may not be consistent with any precise point in the instruction sequence
being executed on that virtual processor. When a restartable deferred trap occurs, TPC[TL] and
TNPC[TL] contain a PC value and an NPC value, respectively, corresponding to a point in the
instruction sequence being executed on the virtual processor. This PC may correspond to the trap-
inducing instruction or it may correspond to an instruction following the trap-inducing instruction.
With a restartable deferred trap, program-visible updates may be missing from instructions prior to
the instruction to which TPC[TL] refers. The missing updates are limited to instructions in the range
from (and including) the actual trap-inducing instruction up to (but not including) the instruction to
which TPC[TL] refers. By definition, the instruction to which TPC[TL] refers has not yet executed,
therefore it cannot have any updates, missing or otherwise.

With a restartable deferred trap there must exist sufficient information to report the error that caused
the deferred trap. If system software can recover from the error that caused the deferred trap, then
there must be sufficient information to generate a consistent state within the processor so that
execution can resume. Included in that information must be an indication of the mode (nonprivileged,
privileged, or hyperprivileged) in which the trap-inducing instruction was issued.

How the information necessary for repairing the state to make it consistent state is maintained and
how the state is repaired to a consistent state are implementation dependent. It is also implementation
dependent whether execution resumes at the point of the trap-inducing instruction or at an arbitrary
point between the trap-inducing instruction and the instruction pointed to by the TPC[TL],
inclusively.

Associated with a particular restartable deferred trap implementation, the following must exist:

■ An instruction that causes a potentially outstanding restartable deferred trap exception to be taken
as a trap

■ Instructions with sufficient privilege to access the state information needed by software to emulate
the restartable deferred trap-inducing instruction and to resume execution of the trapped
instruction stream.

Software should resume execution with the instruction starting at the instruction to which TPC[TL]
refers. Hardware should provide enough information for software to recreate virtual processor state
and update it to the point just before execution of the instruction to which TPC[TL] refers. After
software has updated virtual processor state up to that point, it can then resume execution by issuing
a RETRY instruction.

IMPL. DEP. #32-V8-Ms10: Whether any restartable deferred traps (and, possibly, associated deferred-
trap queues) are present is implementation dependent.

Among the actions software can take after a restartable deferred trap are these:

■ Emulate the instruction that caused the exception, emulate or cause to execute any other execution-
deferred instructions that were in an associated restartable deferred trap state queue, and use
RETRY to return control to the instruction at which the deferred trap was invoked.

■ Terminate the program or process associated with the restartable deferred trap.

A deferred trap (of either of the two classes) is always delivered to the virtual processor in
hyperprivileged mode.

Programming
Note

Resuming execution may require the emulation of instructions
that had not completed execution at the time of the restartable
deferred trap, that is, those instructions in the deferred-trap
queue.
378 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

12.3.3 Disrupting Traps

12.3.3.1 Disrupting versus Precise and Deferred Traps

A disrupting trap is caused by a condition (for example, an interrupt) rather than directly by a
particular instruction. This distinguishes it from precise and deferred traps.

When a disrupting trap has been serviced, trap handler software normally arranges for program
execution to resume where it left off. This distinguishes disrupting traps from reset traps, since a reset
trap vectors to a unique reset address and execution of the program that was running when the reset
occurred is generally not expected to resume.

When a disrupting trap occurs, the following conditions are true:

1. The PC saved in TPC[TL] points to an instruction in the disrupted program stream and the NPC
value saved in TNPC[TL] points to the instruction that was to be executed after that one.

2. All instructions issued before the instruction indicated by TPC[TL] have retired.

3. The instruction to which TPC[TL] refers and any instruction(s) that were issued after it remain
unexecuted.

A disrupting trap may be due to an interrupt request directly related to a previously-executed
instruction; for example, when a previous instruction sets a bit in the SOFTINT register.

12.3.3.2 Causes of Disrupting Traps

A disrupting trap may occur due to either an interrupt request or an error not directly related to
instruction processing. The source of an interrupt request may be either internal or external. An
interrupt request can be induced by the assertion of a signal not directly related to any particular
virtual processor or memory state, for example, the assertion of an “I/O done” signal.

A condition that causes a disrupting trap persists until the condition is cleared.

12.3.3.3 Conditioning of Disrupting Traps

How disrupting traps are conditioned is affected by:

■ The privilege mode in effect when the trap is outstanding, just before the trap is actually taken
(regardless of the privilege mode that was in effect when the exception was detected).

■ The privilege mode for which delivery of the trap is destined

Outstanding in Nonprivileged or Privileged mode, destined for delivery in Privileged
mode. An outstanding disrupting trap condition in either nonprivileged mode or privileged mode
and destined for delivery to privileged mode is held pending while the Interrupt Enable (ie) field of
PSTATE is zero (PSTATE.ie = 0). interrupt_level_n interrupts are further conditioned by the Processor
Interrupt Level (PIL) register. An interrupt is held pending while either PSTATE.ie = 0 or the
condition’s interrupt level is less than or equal to the level specified in PIL. When delivery of this
disrupting trap is enabled by PSTATE.ie = 1, it is delivered to the virtual processor in privileged mode
if TL < MAXPTL (2, in UltraSPARC Architecture 2007 implementations) or in hyperprivileged mode if
TL ≥ MAXPTL.

Outstanding in Hyperprivileged mode, destined for delivery in Privileged mode. An
outstanding disrupting trap condition detected while in hyperprivileged mode and destined for
delivery in privileged mode is held pending while in hyperprivileged mode (HPSTATE.priv = 1),
regardless of the values of TL and PSTATE.ie.
CHAPTER 12 • Traps 379

Outstanding in Nonprivileged or Privileged mode, destined for delivery in Hyperprivileged
mode. An outstanding disrupting trap condition detected while in either nonprivileged mode or
privileged mode and destined for delivery in hyperprivileged mode is never masked; it is delivered
immediately.

Outstanding in Hyperprivileged mode, destined for delivery in Hyperprivileged mode. An
outstanding disrupting trap condition detected in hyperprivileged mode and destined to be delivered
in hyperprivileged mode is masked and held pending while PSTATE.ie = 0.

The above is summarized in TABLE 12-3.

12.3.3.4 Trap Handler Actions for Disrupting Traps

Among the actions that trap-handler software might take to process a disrupting trap are:

■ Use RETRY to return to the instruction at which the trap was invoked
(PC ← old PC, NPC ← old NPC).

■ Terminate the program or process associated with the trap.

12.3.3.5 Clearing Requirement for Disrupting Traps

For each disrupting trap, a method must be provided for hyperprivileged software (or a service
processor, if present) to detect and clear the pending disrupting trap without taking its corresponding
hardware trap.

12.3.4 Reset Traps
A reset trap occurs when hyperprivileged software or the implementation’s hardware determines that
the machine must be reset to a known state. Reset traps differ from disrupting traps in that:

■ They are not maskable.

■ Trap handler software for resets is generally not expected to resume execution of the program that
was running when the reset trap occurred. After an SIR or XIR, execution of the interrupted
program may resume.

All reset traps are delivered to the virtual processor in hyperprivileged mode.

IMPL. DEP. #37-V8: Some of a virtual processor’s behavior during a reset trap is implementation
dependent. See RED_state Trap Processing on page 400 for details.

The following reset traps are defined by the SPARC V9 architecture:

TABLE 12-3 Conditioning of Disrupting Traps

Type of Disrupting
Trap Condition

Current Virtual Processor
Privilege Mode

Disposition of Disrupting Traps, based on privilege
mode in which the trap is destined to be delivered

Privileged Hyperprivileged

Interrupt_level_n

Nonprivileged or
Privileged

Held pending while
PSTATE.ie = 0 or
interrupt level ≤ PIL

—

Hyperprivileged Held pending while
HPSTATE.hpriv = 1

—

All other disrupting
traps

Nonprivileged or
Privileged

Held pending while
PSTATE.ie = 0

Delivered
immediately

Hyperprivileged Held pending while
HPSTATE.hpriv = 1

Held pending while
PSTATE.ie = 0
380 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

■ Power-on reset (POR) — Used for initialization purposes (for example, when power is applied or
reapplied to the virtual processor).

■ Watchdog reset (WDR) — Initiated when the virtual processor enters error_state (impl. dep.
#254-U3-Cs10). The WDR reset trap is taken instead of the trap request that caused entry to
error_state at TL = MAXTL. TSTATE[MAXTL], TPC[MAXTL], TNPC[MAXTL] and TT[MAXTL] observed
after a WDR reset trap are those associated with the trap request that caused entry to
error_state. The value of TT[MAXTL] indicates the trap type of this trap. Machine state is
consistent; however, software should not resume normal instruction processing at the address in
TPC[TL] after the WDR reset trap. The values in TSTATE[MAXTL], TPC[MAXTL], TNPC[MAXTL] and
TT[MAXTL] are accurate and are intended for debug purposes.

■ Externally initiated reset (XIR) — Initiated in response to a signal or event that is external to the
virtual processor. This reset trap is normally used for critical system events, such as power failure.
The XIR reset trap is treated as an interrupt and processed similarly to a disrupting trap (but
without masking). Software can resume the interrupted program at the conclusion of trap handler
execution. If the XIR reset is detected when TL = MAXTL, the virtual processor enters error_state
and triggers a WDR reset. Trap handler code for the resulting WDR reset can determine that the
original cause of the entry to error_state was an XIR reset by observing that the trap type saved
in TT[MAXTL] is 3 (indicating XIR).

■ Software-initiated reset (SIR) — Initiated by software by executing the SIR instruction in
hyperprivileged mode. In nonprivileged and privileged mode, the SIR instruction causes an
illegal_instruction exception (which results in a trap to hyperprivileged mode). The SIR reset trap
is processed similar to a precise trap. The PC saved in TPC[TL] points to the SIR instruction. If the
SIR reset is detected when TL = MAXTL, the virtual processor enters error_state and triggers a
WDR reset. Trap handler code for the resulting WDR reset can determine that the original cause of
the entry to error_state was an SIR reset by observing that the trap type saved in TT[MAXTL] is
4 (indicating SIR).

12.3.5 Uses of the Trap Categories
The SPARC V9 trap model stipulates the following:

1. Reset traps (except software_initiated_reset traps) occur asynchronously to program execution.

2. When recovery from an exception can affect the interpretation of subsequent instructions, such
exceptions shall be precise. See TABLE 12-4, TABLE 12-5, and Exception and Interrupt Descriptions on
page 406 for identification of which traps are precise.

3. In an UltraSPARC Architecture implementation, all exceptions that occur as the result of program
execution, except for errors on store instructions that occur after the store instruction that has
passed the retirement point, are precise (impl. dep. #33-V8-Cs10).

4. An error detected after the initial access of a multiple-access load instruction (for example, LDTX or
LDBLOCKFD) should be precise. Thus, a trap due to the second memory access can occur.
However, the processor state should not have been modified by the first access.

5. Exceptions caused by external events unrelated to the instruction stream, such as interrupts, are
disrupting.

A deferred trap may occur one or more instructions after the trap-inducing instruction is dispatched.

12.4 Trap Control
Several registers control how any given exception is processed, for example:
CHAPTER 12 • Traps 381

■ The interrupt enable (ie) field in PSTATE and the Processor Interrupt Level (PIL) register control
interrupt processing. See Disrupting Traps on page 379 for details.

■ The enable floating-point unit (fef) field in FPRS, the floating-point unit enable (pef) field in
PSTATE, and the trap enable mask (tem) in the FSR control floating-point traps.

■ The hyperprivileged mode bit (hpriv) field in the HPSTATE register, which can affect how a trap is
delivered. See Conditioning of Disrupting Traps on page 379 for details.

■ The TL register, which contains the current level of trap nesting, controls whether a trap causes
entry to execute_state, RED_state, or error_state. It also affects whether the trap is
processed in privileged mode or hyperprivileged mode.

■ For a trap delivered to the virtual processor in privileged mode, PSTATE.tle determines whether
implicit data accesses in the trap handler routine will be performed using big-endian or little-
endian byte order. A trap delivered to the virtual processor in hyperprivileged mode always uses a
default byte order of big-endian.

Between the execution of instructions, the virtual processor prioritizes the outstanding exceptions,
errors, and interrupt requests. At any given time, only the highest-priority exception, error, or
interrupt request is taken as a trap. When there are multiple interrupts outstanding, the interrupt with
the highest interrupt level is selected. When there are multiple outstanding exceptions, errors, and/or
interrupt requests, a trap occurs based on the exception, error, or interrupt with the highest priority
(numerically lowest priority number in TABLE 12-5). See Trap Priorities on page 396.

12.4.1 PIL Control
When an interrupt request occurs, the virtual processor compares its interrupt request level against
the value in the Processor Interrupt Level (PIL) register. If the interrupt request level is greater than
PIL and no higher-priority exception is outstanding, then the virtual processor takes a trap using the
appropriate interrupt_level_n trap vector.

12.4.2 FSR.tem Control
The occurrence of floating-point traps of type IEEE_754_exception can be controlled with the user-
accessible trap enable mask (tem) field of the FSR. If a particular bit of FSR.tem is 1, the associated
IEEE_754_exception can cause an fp_exception_ieee_754 trap.

If a particular bit of FSR.tem is 0, the associated IEEE_754_exception does not cause an
fp_exception_ieee_754 trap. Instead, the occurrence of the exception is recorded in the FSR ’s accrued
exception field (aexc).

If an IEEE_754_exception results in an fp_exception_ieee_754 trap, then the destination F register,
FSR.fccn, and FSR.aexc fields remain unchanged. However, if an IEEE_754_exception does not result
in a trap, then the F register, FSR.fccn, and FSR.aexc fields are updated to their new values.

12.5 Trap-Table Entry Addresses
Traps are delivered to the virtual processor in either privileged mode or hyperprivileged mode,
depending on the trap type, the value of TL at the time the trap is taken, and the privilege mode at the
time the exception was detected. See TABLE 12-4 on page 387 and TABLE 12-5 on page 392 for details.

Unique trap table base addresses are provided for traps being delivered in privileged mode and in
hyperprivileged mode.
382 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

12.5.1 Trap-Table Entry Address to Privileged Mode
Privileged software initializes bits 63:15 of the Trap Base Address (TBA) register (its most significant
49 bits) with bits 63:15 of the desired 64-bit privileged trap-table base address.

At the time a trap to privileged mode is taken:
■ Bits 63:15 of the trap vector address are taken from TBA{63:15}.
■ Bit 14 of the trap vector address (the “TL>0” field) is set based on the value of TL just before the

trap is taken; that is, if TL = 0 then bit 14 is set to 0 and if TL > 0 then bit 14 is set to 1.
■ Bits 13:5 of the trap vector address contain a copy of the contents of the TT register (TT[TL]).
■ Bits 4:0 of the trap vector address are always 0; hence, each trap table entry is at least 25 or 32 bytes

long. Each entry in the trap table may contain the first eight instructions of the corresponding trap
handler.

FIGURE 12-3 illustrates the trap vector address for a trap delivered to privileged mode. In FIGURE 12-3,
the “TL>0” bit is 0 if TL = 0 when the trap was taken, and 1 if TL > 0 when the trap was taken. This
implies, as detailed in the following section, that there are two trap tables for traps to privileged
mode: one for traps from TL = 0 and one for traps from TL > 0.

FIGURE 12-3 Privileged Mode Trap Vector Address

12.5.2 Privileged Trap Table Organization
The layout of the privileged-mode trap table (which is accessed using virtual addresses) is illustrated
in FIGURE 12-4.

FIGURE 12-4 Privileged-mode Trap Table Layout

The trap table for TL = 0 comprises 512 thirty-two-byte entries; the trap table for TL > 0 comprises 512
more thirty-two-byte entries. Therefore, the total size of a full privileged trap table is 2 × 512 × 32
bytes (32 Kbytes). However, if privileged software does not use software traps (Tcc instructions) at
TL > 0, the table can be made 24 Kbytes long.

12.5.3 Trap-Table Entry Address to Hyperprivileged Mode
Hyperprivileged software initializes bits 63:14 of the Hyperprivileged Trap Base Address (HTBA)
register (its most significant 50 bits) with bits 63:14 of the desired 64-bit hyperprivileged trap table
base address.

63 15 14 013 45

TL>0 0 0000from TBA{63:15} (TBA.tba_high49) TT[TL]

Trap Table
Offsetof TL

(before Contents of Trap Table
Trap Type

Hardware traps

Spill / fill traps

Software traps to Privileged level

00016–07F16

08016–0FF16

10016–17F16

18016–1FF16

Hardware traps

Spill / fill traps

Software traps to Privileged level

unassigned

unassigned

016– FE016

100016–1FE016

200016–2FE016

300016–3FE016

400016–4FE016

500016–5FE016

600016–6FE016

700016–7FE016

00016–07F16

08016–0FF16

10016–17F16

18016–1FF16

(from TBA)

Value Hardware

Type

—

—

016– 7F16

—

Trap

—

—

016– 7F16

—

trap)

Software

TL = 0

TL = 1
(TL =
MAXPTL−1)

(TT[TL])
CHAPTER 12 • Traps 383

At the time a trap to hyperprivileged mode is taken:
■ Bits 63:14 of the trap vector address are taken from HTBA{63:14}.
■ Bits 13:5 of the trap vector address contain a copy of the contents of the TT register (TT[TL]).
■ Bits 4:0 of the trap vector address are always 0; hence, each trap table entry is at least 25 or 32 bytes

long. Each entry in the trap table may contain the first eight instructions of the corresponding trap
handler.

FIGURE 12-5 illustrates the trap vector address used for a trap delivered to hyperprivileged mode.

FIGURE 12-5 Hyperprivileged Mode Trap Vector Address

12.5.4 Hyperprivileged Trap Table Organization
The layout of the hyperprivileged-mode trap table (which is accessed using physical addresses) is
illustrated in FIGURE 12-6.

FIGURE 12-6 Hyperprivileged-mode Trap Table Layout

The hyperprivileged trap table comprises 512 thirty-two-byte entries. Therefore, the total size of a full
hyperprivileged trap table is 512 × 32 bytes (16 Kbytes).

12.5.5 Trap Table Entry Address to RED_state

Traps occurring in RED_state or traps that cause the virtual processor to enter RED_state use an
abbreviated trap vector, called the RED_state trap vector.

The RED_state trap vector is located at the following address, referred to as RSTVADDR (impl. dep.
#114-V9-Cs10):

In an implementation that implements fewer than 64 bits of physical addressing, unimplemented
high-order bits of the above RSTVADDR are ignored.

FIGURE 12-7 illustrates the trap vector address used for a trap delivered to RED_state (in
hyperprivileged mode).

FIGURE 12-7 RED_state Trap Vector Address

Physical Address RSTVADDR = FFFF FFFF F000 000016
(highest 256 MB of physical address space)

14 013 45

0 0000

63

from HTBA{63:14} (HTBA.htba_high50) TT[TL]

Trap Table
OffsetTrap Type

00016–07F16

08016–0FF16

10016–17F16

18016–1FF16

016– FE016

100016–1FE016

200016–2FE016

300016–3FE016

(from HTBA)

Hardware

Type

—

—

016– 7F16

8016– FF16

Trap
Software

Contents of Trap Table

Hardware traps

Spill / fill traps

Software traps from hyperprivileged
level to hyperprivileged level

Software traps to hyperprivileged level

(TT[TL])

14 0

FFFF16

13 45

TT[TL] 0 0000

63 48

FFFF16 FFFF16

15

00

47 31 1632
384 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

12.5.6 RED_state Trap Table Organization
The RED_state trap table is constructed so that it can overlay the hyperprivileged trap table (see
FIGURE 12-6) if necessary. For a trap to RED_state, the trap table offset is added to the base address
contained in RSTVADDR to yield the RED_state trap vector. FIGURE 12-8 illustrates the layout of the
RED_state trap table.

FIGURE 12-8 RED_state Trap Table Layout

12.5.7 Trap Type (TT)
When a normal trap occurs, a value that uniquely identifies the type of the trap is written into the
current 9-bit TT register (TT[TL]) by hardware. Control is then transferred into the trap table to an
address formed by one of the following, depending on the trap’s destination privilege mode:
■ The TBA register, (TL > 0), and TT[TL] (see Trap-Table Entry Address to Privileged Mode on page 383)
■ The HTBA register and TT[TL] (see Trap-Table Entry Address to Hyperprivileged Mode on page 383)

When a RED_state trap occurs, the TT register is set as described in RED_state on page 374.
Control is then transferred into the RED_state trap table at an address formed by RSTVADDR and an
offset depending on the condition.

TT values 00016–0FF16 are reserved for hardware traps. TT values 10016–17F16 are reserved for
software traps (caused by execution of a Tcc instruction) to privileged-mode trap handlers. TT values
18016–1FF16 are used for software traps to trap handlers operating in hyperprivileged mode.

IMPL. DEP. #35-V8-Cs20: TT values 06016 to 07F16 were reserved for
implementation_dependent_exception_n exceptions in the SPARC V9 specification, but are now all
defined as standard UltraSPARC Architecture exceptions. See TABLE 12-4 for details.

Programming
Note

The spill_n_*, fill_n_*, clean_window, and MMU-related traps
(fast_instruction_access_MMU_miss,
fast_data_access_MMU_miss, and
fast_data_access_protection) are spaced such that their trap-
table entries are 128 bytes (32 instructions) long in the
UltraSPARC Architecture. This length allows the complete code
for one spill/fill routine, a clean_window routine, or a normal
MMU miss handling routine to reside in one trap-table entry.

0016

2016

4016

8016

6016

A016

Trap Type

0

1

TT†

Hardware

Contents of Trap Table

Reserved

Power-on reset (POR)

Watchdog reset (WDR)

Externally initiated reset (XIR)

Software-initiated reset (SIR)

All other exceptions in RED_state

4

TT*

Trap Table
Offset (from
RSTVADDR)

† TT = trap type of the exception that caused entry into error_state

‡ TT = 3 if an externally_initiated_reset (XIR) occurs while the virtual processor is not in
error_state; TT = trap type of the exception that caused entry into error_state if the
externally initiated reset occurs in error_state.

* TT = trap type of the exception. See TABLE 12-4 on page 387.

(TT[TL])

3 or TT‡
CHAPTER 12 • Traps 385

The assignment of TT values to traps is shown in TABLE 12-4; TABLE 12-5 provides the same list, but
sorted in order of trap priority. The key to both tables follows:

Symbol Meaning

● This trap type is associated with a feature that is architecturally required in an
implementation of UltraSPARC Architecture 2007. Hardware must detect this
exception or interrupt, trap on it (if not masked), and set the specified trap type
value in the TT register.

❍ This trap type is associated with a feature that is architecturally defined in
UltraSPARC Architecture 2007, but its implementation is optional.

P Trap is taken via the Privileged trap table, in Privileged mode (PSTATE.priv = 1)

H Trap is taken via the Hyperprivileged trap table, in Hyperprivileged mode
(HSTATE.hpriv = 1)

HU Trap is taken via the Hyperprivileged trap table, in Hyperprivileged mode
(HSTATE.hpriv = 1). However, the trap is unexpected. While hardware can
legitimately generate this trap, it should not do so unless there is a programming
error or some other error. Therefore, occurrence of this trap indicates an actual
error to hyperprivileged software.

-x- Not possible. Hardware cannot generate this trap in the indicated running mode.
For example, all privileged instructions can be executed in both privileged and
hyperprivileged modes, therefore a privileged_opcode trap cannot occur in
privileged or hyperprivileged mode.

— This trap is reserved for future use.

(am) Always Masked — when the condition occurs in this privilege mode, it is always
masked out (but remains pending).

(ie) When the outstanding disrupting trap condition occurs in this privilege mode, it
may be conditioned (masked out) by PSTATE.ie = 0 (but remains pending).

(nm) Never Masked — when the condition occurs in this running mode, it is never
masked out and the trap is always taken.

(pend) Held Pending — the condition can occur in this running mode, but can’t be
serviced in this mode. Therefore, it is held pending until the mode changes to one
in which the exception can be serviced.
386 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

TABLE 12-4 Exception and Interrupt Requests, by TT Value (1 of 5)

UA-2007
● =Req’d.
❍ =Opt’l Exception or Interrupt Request

TT
(Trap
Type)

Trap
Category

Priority
(0 =

High-
est)

Mode in which Trap is
Delivered (and

Conditioning Applied),
based on Current

Privilege Mode

NP Priv HP

— Reserved 00016 — — — — —

● power_on_reset 00116 reset 0 H
(nm)

H
(nm)

H
(nm)

● watchdog_reset TT♠ reset 1.2 H
(nm)

H
(nm)

H
(nm)

● externally_initiated_reset 00316 reset 1.1 H
(nm)

H
(nm)

H
(nm)

● software_initiated_reset 00416 reset 1.3 -x- -x- H
(nm)

— Reserved 00516 — — — — —

● RED_state_exception TT♣ precise ♣ H
(nm)

H
(nm)

H
(nm)

— implementation-dependent 00616 — — — — —

❍ store_error 00716 deferred 2.01 H
(nm)

H
(nm)

H
(nm)

● IAE_privilege_violation 00816 precise 3.1 H
(nm)

-x- -x-

● instruction_access_MMU_miss† 00916 precise 2.08 H
(nm)

H
(nm)

-x-

● instruction_access_error 00A16 precise 4 H
(nm)

H
(nm)

H
(nm)

● IAE_unauth_access 00B16 precise 3.2 H
(nm)

H
(nm)

-x-

● IAE_nfo_page 00C16 precise 3.3 H
(nm)

H
(nm)

-x-

❏ instruction_address_range 00D16 precise 2.06 H
(nm)

H
(nm)

HU

(nm)

❏ instruction_real_range 00E16 precise 2.06 H
(nm)

H
(nm)

HU

(nm)

— Reserved 00F16 — — — — —

● illegal_instruction 01016 precise 6.2 H
(nm)

H
(nm)

H
(nm)

● privileged_opcode 01116 precise 7 P
(nm)

-x- -x-

❍ unimplemented_LDTW 01216 precise 6.3 H
(nm)

H
(nm)

HU

(nm)

❍ unimplemented_STTW 01316 precise 6.3 H
(nm)

H
(nm)

HU

(nm)

● DAE_invalid_asi 01416 precise 12.01 H
(nm)

H
(nm)

HU

(nm)
CHAPTER 12 • Traps 387

● DAE_privilege_violation 01516 precise 12.04 H
(nm)

H
(nm)

HU

(nm)

● DAE_nc_page 01616 precise 12.05 H
(nm)

H
(nm)

HU

(nm)

● DAE_nfo_page 01716 precise 12.06 H
(nm)

H
(nm)

HU

(nm)

— Reserved 01816–
01F16

— — — — —

● fp_disabled 02016 precise 8 P
(nm)

P
(nm)

HU

(nm)

❍ fp_exception_ieee_754 02116 precise 11.1 P
(nm)

P
(nm)

HU

(nm)

❍ fp_exception_other 02216 precise 11.1 P
(nm)

P
(nm)

HU

(nm)

● tag_overflowD 02316 precise 14 P
(nm)

P
(nm)

HU

(nm)

● clean_window 02416
‡–

02716

precise 10.1 P
(nm)

P
(nm)

HU

(nm)

● division_by_zero 02816 precise 15 P
(nm)

P
(nm)

HU

(nm)

❍ internal_processor_error 02916 precise ♦ H
(nm)

H
(nm)

H
(nm)

❍ instruction_invalid_TSB_entry 02A16 precise 2.10 H
(nm)

H
(nm)

-x-

❍ data_invalid_TSB_entry 02B16 precise 12.03 H
(nm)

H
(nm)

H
(nm)

— Reserved 02C16 — — — — —

— implementation-dependent 02D16–
02F16

— — — — —

❏ mem_real_range 02D16 precise
11.3

H
(nm)

H
(nm)

HU

(nm)

❏ mem_address_range 02E16 precise
11.3

H
(nm)

H
(nm)

HU

(nm)

● DAE_side_effect_page 03016 precise 12.06 H
(nm)

H
(nm)

HU

(nm)

● data_access_MMU_miss† 03116 precise 12.03 H
(nm)

H
(nm)

H
(nm)

❍ data_access_error 03216 precise 12.10 H
(nm)

H
(nm)

H
(nm)

— data_access_protection
(no longer in use)

03316 precise 12.07 H
(nm)

H
(nm)

H
(nm)

● mem_address_not_aligned 03416 precise 10.2 H
(nm)

H
(nm)

HU

(nm)

TABLE 12-4 Exception and Interrupt Requests, by TT Value (2 of 5)

UA-2007
● =Req’d.
❍ =Opt’l Exception or Interrupt Request

TT
(Trap
Type)

Trap
Category

Priority
(0 =

High-
est)

Mode in which Trap is
Delivered (and

Conditioning Applied),
based on Current

Privilege Mode

NP Priv HP
388 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

● LDDF_mem_address_not_aligned 03516 precise 10.1 H
(nm)

H
(nm)

HU

(nm)

● STDF_mem_address_not_aligned 03616 precise 10.1 H
(nm)

H
(nm)

HU

(nm)

● privileged_action 03716 precise 11.1 H
(nm)

H
(nm)

-x-

❍ LDQF_mem_address_not_aligned 03816 precise 10.1 H
(nm)

H
(nm)

HU

(nm)

❍ STQF_mem_address_not_aligned 03916 precise 10.1 H
(nm)

H
(nm)

HU

(nm)

— Reserved 03A16 — — — — —

❍ unsupported_page_size 03B16 precise 13 H
(nm)

H
(nm)

H
(nm)

— Reserved 03C16–
03D16

— — — — —

● instruction_real_translation_miss 03E16 precise 2.08 H
(nm)

H
(nm)

-x-

● data_real_translation_miss 03F16 precise 12.03 H
(nm)

H
(nm)

H
(nm)

❍ sw_recoverable_error 04016 disrupting 33.1 H
(nm)

H
(nm)

H
(ie)

● interrupt_level_n (n = 1–15) 04116 –
04F16

disrupting 32-n
(31 to

17)

P
(ie)

P
(ie)

(pend)

❍ pic_overflow
(shares trap type 04F16 with
interrupt_level_15)

04F16 disrupting 16.00 P (ie) P (ie) (pend)

— Reserved 05016–
05D16

— — — — —

● hstick_match 05E16 disrupting 16.01 H
(nm)

H
(nm)

H
(ie)

● trap_level_zero 05F16 precise 2.02 H H -x-

❏ interrupt_vector 06016 disrupting 16.03 H
(nm)

H
(nm)

H
(ie)

❍ PA_watchpoint (RA_watchpoint) 06116 precise 12.09 H
(nm)

H
(nm)

H
(nm)

❍ VA_watchpoint 06216 precise 11.2 P
(nm)

P
(nm)

-x-

❍ hw_corrected_error 06316 disrupting 33.2 H
(nm)

H
(nm)

H
(ie)

● fast_instruction_access_MMU_miss 06416
‡–

06716

precise 2.08 H
(nm)

H
(nm)

-x-

TABLE 12-4 Exception and Interrupt Requests, by TT Value (3 of 5)

UA-2007
● =Req’d.
❍ =Opt’l Exception or Interrupt Request

TT
(Trap
Type)

Trap
Category

Priority
(0 =

High-
est)

Mode in which Trap is
Delivered (and

Conditioning Applied),
based on Current

Privilege Mode

NP Priv HP
CHAPTER 12 • Traps 389

● fast_data_access_MMU_miss 06816
‡–

06B16

precise 12.03 H
(nm)

H
(nm)

H
(nm)

● fast_data_access_protection 06C16
‡–

06F16

precise 12.07 H
(nm)

H
(nm)

H
(nm)

❍ implementation_dependent_exception_n
(impl. dep. #35-V8-Cs20)

07016 — ∇ — — —

● instruction_access_MMU_error 07116 precise 2.07 H
(nm)

H
(nm)

-x-

● data_access_MMU_error 07216 precise 12.02 H
(nm)

H
(nm)

HU

(nm)

❍ implementation_dependent_exception_n
(impl. dep. #35-V8-Cs20)

07316 — ∇ — — —

● control_transfer_instruction 07416 precise 11.1 P P HU

❍ instruction_VA_watchpoint 07516 precise 2.05 P
(nm)

P
(nm)

-x-

● instruction_breakpoint 07616 precise 6.1 H H H

❏ implementation_dependent_exception_n
(impl. dep. #35-V8-Cs20)

07716 –
07816

— ∇ — — —

❏ implementation_dependent_exception_n
(impl. dep. #35-V8-Cs20)

07916–
07B16

— ∇ — — —

● cpu_mondo 07C16 disrupting 16.08 P
(ie)

P
(ie)

(pend)

● dev_mondo 07D16 disrupting 16.11 P
(ie)

P
(ie)

(pend)

● resumable_error 07E16 disrupting 33.3 P
(ie)

P
(ie)

(pend)

— nonresumable_error
(generated by hyperprivileged software,
not by hardware)

07F16 — — — — —

● spill_n_normal (n = 0–7) 08016
‡–

09F16

precise 9 P
(nm)

P
(nm)

HU

(nm)

● spill_n_other (n = 0–7) 0A016
‡–

0BF16

precise 9 P
(nm)

P
(nm)

HU

(nm)

● fill_n_normal (n = 0–7) 0C016
‡–

0DF16

precise 9 P
(nm)

P
(nm)

HU

(nm)

● fill_n_other (n = 0–7) 0E016
‡–

0FF16

precise 9 P
(nm)

P
(nm)

HU

(nm)

● trap_instruction 10016–
17F16

precise 16.02 P
(nm)

P
(nm)

HU

(nm)

TABLE 12-4 Exception and Interrupt Requests, by TT Value (4 of 5)

UA-2007
● =Req’d.
❍ =Opt’l Exception or Interrupt Request

TT
(Trap
Type)

Trap
Category

Priority
(0 =

High-
est)

Mode in which Trap is
Delivered (and

Conditioning Applied),
based on Current

Privilege Mode

NP Priv HP
390 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

● htrap_instruction 18016–
1FF16

precise 16.02 -x- H
(nm)

HU

(nm)

● guest_watchdog ◊
TT◊ precise or

disrupting◊
◊ H

(nm)
H

(nm)
-x-

* Although these trap priorities are recommended, all trap priorities are implementation dependent (impl. dep. #36-V8 on page
396), including relative priorities within a given priority level.

† This exception type is only used in UltraSPARC Architecture 2007 implementations that support hardware MMU table walking.
See description of this exception in Exception and Interrupt Descriptions on page 406.

‡ The trap vector entry (32 bytes) for this trap type plus the next three trap types (total of 128 bytes) are permanently reserved for
this exception.

◊ The guest_watchdog trap is caused when TL ≥ MAXPTL and any precise or disrupting trap occurs that is destined for privileged
mode. guest_watchdog shares a trap table offset with watchdog_reset (4016), but retains the trap type (TT) value and priority
of the exception that caused the trap.

♠ watchdog_reset uses the trap vector entry for trap type 00216 (trap table offset 4016), but retains the trap type (TT) value of the
exception that caused entry into error_state .

♣ RED_state_exception uses the trap vector entry for trap type 00516 (trap table offset A016), but retains the trap type (TT) value
and priority of the exception that caused the trap.

♦ The priority of internal_processor_error is implementation dependent (impl. dep. # 402-S10)
D This exception is deprecated, because the only instructions that can generate it have been deprecated.

TABLE 12-4 Exception and Interrupt Requests, by TT Value (5 of 5)

UA-2007
● =Req’d.
❍ =Opt’l Exception or Interrupt Request

TT
(Trap
Type)

Trap
Category

Priority
(0 =

High-
est)

Mode in which Trap is
Delivered (and

Conditioning Applied),
based on Current

Privilege Mode

NP Priv HP
CHAPTER 12 • Traps 391

TABLE 12-5 Exception and Interrupt Requests, by Priority (1 of 4)

UA-2007
● =Req’d.
❍ =Opt’l
❏ .=Impl-
Specific Exception or Interrupt Request

TT
(Trap
Type)

Trap
Category

Priority
(0 =

High-
est)

Mode in which Trap is
Delivered and (and

Conditioning Applied),
based on Current

Privilege Mode

NP Priv HP

● power_on_reset 00116 reset 0 H
(nm)

H
(nm)

H
(nm)

● externally_initiated_reset 00316 reset 1.1 H
(nm)

H
(nm)

H
(nm)

● watchdog_reset TT♠ reset 1.2 H
(nm)

H
(nm)

H
(nm)

● software_initiated_reset 00416 reset 1.3 -x- -x- H
(nm)

❍ store_error 00716 deferred 2.01 H
(nm)

H
(nm)

H
(nm)

● trap_level_zero 05F16 precise 2.02 H H -x-

❍ instruction_VA_watchpoint 07516 precise 2.05 P
(nm)

P
(nm)

-x-

❏ instruction_address_range 00D16 precise

2.06

H
(nm)

H
(nm)

HU

(nm)

❏ instruction_real_range 00E16 precise H
(nm)

H
(nm)

HU

(nm)

● instruction_access_MMU_error 07116 precise 2.07 H
(nm)

H
(nm)

-x-

● instruction_real_translation_miss 03E16 precise

2.08

H
(nm)

H
(nm)

-x-

● instruction_access_MMU_miss† 00916 precise H
(nm)

H
(nm)

-x-

● fast_instruction_access_MMU_miss 06416
‡–

06716

precise H
(nm)

H
(nm)

-x-

❍ instruction_invalid_TSB_entry 02A16 precise 2.10 H
(nm)

H
(nm)

-x-

● IAE_privilege_violation 00816 precise 3.1 H
(nm)

-x- -x-

● IAE_unauth_access 00B16 precise 3.2 H
(nm)

H
(nm)

-x-

● IAE_nfo_page 00C16 precise 3.3 H
(nm)

H
(nm)

-x-

● instruction_access_error 00A16 precise 4 H
(nm)

H
(nm)

H
(nm)

● instruction_breakpoint 07616 precise 6.1 H H H

● illegal_instruction 01016 precise 6.2 H
(nm)

H
(nm)

H
(nm)
392 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

❍ unimplemented_LDTW 01216 precise

6.3

H
(nm)

H
(nm)

HU

(nm)

❍ unimplemented_STTW 01316 precise H
(nm)

H
(nm)

HU

(nm)

● privileged_opcode 01116 precise
7

P
(nm)

-x- -x-

● fp_disabled 02016 precise 8 P
(nm)

P
(nm)

HU

(nm)

● spill_n_normal (n = 0–7) 08016
‡–

09F16

precise

9

P
(nm)

P
(nm)

HU

(nm)

● spill_n_other (n = 0–7) 0A016
‡–

0BF16

precise P
(nm)

P
(nm)

HU

(nm)

● fill_n_normal (n = 0–7) 0C016
‡–

0DF16

precise P
(nm)

P
(nm)

HU

(nm)

● fill_n_other (n = 0–7) 0E016
‡–

0FF16

precise P
(nm)

P
(nm)

HU

(nm)

● clean_window 02416
‡–

02716

precise

10.1

P
(nm)

P
(nm)

HU

(nm)

● LDDF_mem_address_not_aligned 03516 precise H
(nm)

H
(nm)

HU

(nm)

● STDF_mem_address_not_aligned 03616 precise H
(nm)

H
(nm)

HU

(nm)

❍ LDQF_mem_address_not_aligned 03816 precise H
(nm)

H
(nm)

HU

(nm)

❍ STQF_mem_address_not_aligned 03916 precise H
(nm)

H
(nm)

HU

(nm)

● mem_address_not_aligned 03416 precise 10.2 H
(nm)

H
(nm)

HU

(nm)

❍ fp_exception_other 02216 precise

11.1

P
(nm)

P
(nm)

HU

(nm)

❍ fp_exception_ieee_754 02116 precise P
(nm)

P
(nm)

HU

(nm)

● privileged_action 03716 precise H
(nm)

H
(nm)

-x-

● control_transfer_instruction 07416 precise P H HU

❍ VA_watchpoint 06216 precise 11.2 P
(nm)

P
(nm)

-x-

TABLE 12-5 Exception and Interrupt Requests, by Priority (2 of 4)

UA-2007
● =Req’d.
❍ =Opt’l
❏ .=Impl-
Specific Exception or Interrupt Request

TT
(Trap
Type)

Trap
Category

Priority
(0 =

High-
est)

Mode in which Trap is
Delivered and (and

Conditioning Applied),
based on Current

Privilege Mode

NP Priv HP
CHAPTER 12 • Traps 393

❏ mem_real_range 02D16 precise

11.3

H
(nm)

H
(nm)

HU

(nm)

❏ mem_address_range 02E16 precise H
(nm)

H
(nm)

HU

(nm)

● DAE_invalid_asi 01416 precise 12.01 H
(nm)

H
(nm)

HU

(nm)

● data_access_MMU_error 07216 precise 12.02 H
(nm)

H
(nm)

HU

(nm)

● data_real_translation_miss 03F16 precise

12.03

H
(nm)

H
(nm)

H
(nm)

● data_access_MMU_miss† 03116 precise H
(nm)

H
(nm)

H
(nm)

● fast_data_access_MMU_miss 06816
‡–

06B16

precise H
(nm)

H
(nm)

H
(nm)

❍ data_invalid_TSB_entry 02B16 precise H
(nm)

H
(nm)

H
(nm)

● DAE_privilege_violation 01516 precise 12.04 H
(nm)

H
(nm)

HU

(nm)

● DAE_nc_page 01616 precise 12.05 H
(nm)

H
(nm)

HU

(nm)

● DAE_nfo_page 01716 precise

12.06

H
(nm)

H
(nm)

HU

(nm)

● DAE_side_effect_page 03016 precise H
(nm)

H
(nm)

HU

(nm)

● fast_data_access_protection 06C16
‡–

06F16

precise

12.07

H
(nm)

H
(nm)

H
(nm)

— data_access_protection
(no longer in use)

03316 precise H
(nm)

H
(nm)

H
(nm)

❍ PA_watchpoint (RA_watchpoint) 06116 precise 12.09 H
(nm)

H
(nm)

H
(nm)

❍ data_access_error 03216 precise 12.10 H
(nm)

H
(nm)

H
(nm)

● tag_overflowD 02316 precise 14 P
(nm)

P
(nm)

HU

(nm)

● division_by_zero 02816 precise 15 P
(nm)

P
(nm)

HU

(nm)

❍ pic_overflow 04F16 disrupting 16.00 P (ie) P (ie) (pend)

● hstick_match 05E16 disrupting 16.01 H
(nm)

H
(nm)

H
(ie)

TABLE 12-5 Exception and Interrupt Requests, by Priority (3 of 4)

UA-2007
● =Req’d.
❍ =Opt’l
❏ .=Impl-
Specific Exception or Interrupt Request

TT
(Trap
Type)

Trap
Category

Priority
(0 =

High-
est)

Mode in which Trap is
Delivered and (and

Conditioning Applied),
based on Current

Privilege Mode

NP Priv HP
394 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

● trap_instruction 10016–
17F16

precise

16.02

P
(nm)

P
(nm)

H
(nm)

● htrap_instruction 18016–
1FF16

precise -x- H
(nm)

HU

(nm)

❏ interrupt_vector 06016 disrupting 16.03 H
(nm)

H
(nm)

H
(ie)

● cpu_mondo 07C16 disrupting 16.08 P
(ie)

P
(ie)

(pend)

● dev_mondo 07D16 disrupting 16.11 P
(ie)

P
(ie)

(pend)

● interrupt_level_n (n = 1–15) 04116–
04F16

disrupting 32-n
(31 to

17)

P
(ie)

P
(ie)

(pend)

❍ sw_recoverable_error 04016 disrupting 33.1 H
(nm)

H
(nm)

H
(ie)

❍ hw_corrected_error 06316 disrupting 33.2 H
(nm)

H
(nm)

H
(ie)

● resumable_error 07E16 disrupting 33.3 P
(ie)

P
(ie)

(pend)

● guest_watchdog ◊
TT◊ precise or

disrupting◊
◊ H

(nm)
H

(nm)
-x-

● RED_state_exception TT♣ precise ♣ H
(nm)

H
(nm)

H
(nm)

❍ internal_processor_error 02916 precise ♦ H
(nm)

H
(nm)

H
(nm)

— nonresumable_error
(generated by hyperprivileged software,
not by hardware)

07F16 — — — — —

* Although these trap priorities are recommended, all trap priorities are implementation dependent (impl. dep. #36-V8 on
page 396), including relative priorities within a given priority level.

† This exception type is only used in UltraSPARC Architecture 2007 implementations that support hardware MMU table walk-
ing. See description of this exception in Exception and Interrupt Descriptions on page 406.

‡ The trap vector entry (32 bytes) for this trap type plus the next three trap types (total of 128 bytes) are permanently reserved
for this exception.

◊ The guest_watchdog trap is caused when TL ≥ MAXPTL and any precise or disrupting trap occurs that is destined for privi-
leged mode. guest_watchdog shares a trap table offset with watchdog_reset (4016), but retains the trap type (TT) value and
priority of the exception that caused the trap.

♠ watchdog_reset uses the trap vector entry for trap type 00216 (trap table offset 4016), but retains the trap type (TT) value of
the exception that caused entry into error_state .

♣ RED_state_exception uses the trap vector entry for trap type 00516 (trap table offset A016), but retains the trap type (TT)
value and priority of the exception that caused the trap.

♦ The priority of internal_processor_error is implementation dependent (impl. dep. # 402-S10)
D This exception is deprecated, because the only instructions that can generate it have been deprecated.

TABLE 12-5 Exception and Interrupt Requests, by Priority (4 of 4)

UA-2007
● =Req’d.
❍ =Opt’l
❏ .=Impl-
Specific Exception or Interrupt Request

TT
(Trap
Type)

Trap
Category

Priority
(0 =

High-
est)

Mode in which Trap is
Delivered and (and

Conditioning Applied),
based on Current

Privilege Mode

NP Priv HP
CHAPTER 12 • Traps 395

12.5.7.1 Trap Type for Spill/Fill Traps

The trap type for window spill/fill traps is determined on the basis of the contents of the OTHERWIN
and WSTATE registers as described below and shown in FIGURE 12-9.

FIGURE 12-9 Trap Type Encoding for Spill/Fill Traps

12.5.8 Trap Priorities
TABLE 12-4 on page 387 and TABLE 12-5 on page 392 show the assignment of traps to TT values and the
relative priority of traps and interrupt requests. A trap priority is an ordinal number, with 0 indicating
the highest priority and greater priority numbers indicating decreasing priority; that is, if x < y, a
pending exception or interrupt request with priority x is taken instead of a pending exception or
interrupt request with priority y. Traps within the same priority class (0 to 33) are listed in priority
order in TABLE 12-5 (impl. dep. #36-V8).

IMPL. DEP. #36-V8: The relative priorities of traps defined in the UltraSPARC Architecture are fixed.
However, the absolute priorities of those traps are implementation dependent (because a future
version of the architecture may define new traps). The priorities (both absolute and relative) of any
new traps are implementation dependent.

However, the TT values for the exceptions and interrupt requests shown in TABLE 12-4 and TABLE 12-5
must remain the same for every implementation.

The trap priorities given above always need to be considered within the context of how the virtual
processor actually issues and executes instructions. For example, if an instruction_access_error occurs
(priority 3), it will be taken even if the instruction is an SIR (priority 1). This situation occurs because
the virtual processor detects instruction_access_error during instruction fetch and never actually
issues or executes the instruction, so the SIR instruction is never seen by the execution units of the
virtual processor. This is an obvious case, but there are other more subtle cases.

12.6 Trap Processing
The virtual processor’s action during trap processing depends on various virtual processor states,
including the trap type, the current level of trap nesting (given in the TL register), HPSTATE, and
PSTATE. When a trap occurs, the GL register is normally incremented by one (described later in this
section), which replaces the set of eight global registers with the next consecutive set.

The following traps are processed in RED_state:

■ POR and WDR reset requests

■ SIR and XIR reset requests when TL < MAXTL

■ Non-reset traps taken when TL = MAXTL – 1

Bit Field Description

8:6 spill_or_fill 0102 for spill traps; 0112 for fill traps

5 other (OTHERWIN ≠ 0)
4:2 wtype If (other) then WSTATE.other; else WSTATE.normal

Trap Type

05 2

0spill_or_fill

1468

0wtypeother
396 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

■ Traps taken when the virtual processor is in RED_state

All other traps are handled in execute_state using normal trap processing.

During normal operation, the virtual processor is in execute_state. It processes traps in
execute_state and continues.

When a nonreset trap, externally initiated reset (XIR), or software-initiated reset (SIR) occurs with
TL = MAXTL, there are no more levels on the trap stack, so the virtual processor enters the transitory
state error_state. The virtual processor remains in error_state for an implementation-
dependent duration, then generates a WDR reset (impl. dep. #254-U3-Cs10) to effect a change from
error_state to RED_state.

Traps processed in RED_state use a special trap vector and a special trap-vectoring algorithm.
RED_state vectoring and the setting of the TT value for RED_state traps are described in
RED_state Trap Table Organization on page 385.

Traps that occur with TL = MAXTL – 1 are processed in RED_state. In addition, reset traps are also
processed in RED_state. Reset trap processing is described in RED_state Trap Processing on page
400. Finally, software can force the processor into RED_state by setting the HPSTATE.red bit to 1.

Once the virtual processor has entered RED_state, no matter how it got there, all subsequent traps
are processed in RED_state until software returns the virtual processor to execute_state or a
normal, or SIR, or XIR trap is taken with TL = MAXTL, which puts the virtual processor in
error_state.

TABLE 12-6, TABLE 12-7, and TABLE 12-8 describe the virtual processor mode and trap-level transitions
involved in handling traps.

TABLE 12-6 Trap Received While in execute_state

New State, After Receiving Trap Type

Original State
Nonreset Trap

or Interrupt
POR XIR WDR ‡ SIR

execute_state
TL < MAXTL – 1

execute_state
TL ← TL + 1

RED_state
TL = MAXTL

RED_state
TL ← TL + 1

‡ RED_state
TL ← TL + 1

execute_state
TL = MAXTL – 1

RED_state
TL = MAXTL

RED_state
TL = MAXTL

RED_state
TL = MAXTL

‡ RED_state
TL = MAXTL

execute_state†

TL = MAXTL

error_state
TL = MAXTL

RED_state
TL = MAXTL

error_state
TL = MAXTL

‡ error_state
TL = MAXTL

† This state occurs when software changes TL to MAXTL and leaves HPSTATE.red = 0, or if software sets HPSTATE.red ← 0 while
TL = MAXTL.

‡ WDR can only be generated from error_state.

TABLE 12-7 Trap Received While in RED_state

New State, After Receiving Trap Type

Original State
Nonreset Trap

or Interrupt
POR XIR WDR ‡ SIR

RED_state
TL < MAXTL – 1

RED_state
TL ← TL + 1

RED_state
TL = MAXTL

RED_state
TL ← TL + 1

‡ RED_state
TL ← TL + 1

RED_state
TL = MAXTL – 1

RED_state
TL = MAXTL

RED_state
TL = MAXTL

RED_state
TL = MAXTL

‡ RED_state
TL = MAXTL

RED_state
TL = MAXTL

error_state
TL = MAXTL

RED_state
TL = MAXTL

error_state
TL = MAXTL

‡ error_state
TL = MAXTL

‡ WDR can only be generated from error_state.
CHAPTER 12 • Traps 397

The virtual processor does not recognize interrupts while it is in error_state.

A non-reset trap causes the following state changes to occur:

■ If the virtual processor is already in RED_state, the new trap is processed in RED_state unless
TL = MAXTL. See Nonreset Traps When the Virtual Processor Is in RED_state on page 404.

■ If the virtual processor is in execute_state and the trap level is one less than its maximum
value, that is, TL = MAXTL–1, then the virtual processor enters RED_state. See RED_state on
page 374 and Nonreset Traps with TL = MAXTL – 1 on page 400.

■ If the virtual processor is in either execute_state or RED_state and the trap level is already at
its maximum value, that is, TL = MAXTL, then the virtual processor enters error_state. See
error_state on page 376.

Otherwise, the trap uses normal trap processing, described in the following section on Normal Trap
Processing.

12.6.1 Normal Trap Processing
Normal traps comprise all traps processed in execute_state; that is, all non-RED_state and non-
error_state traps.

A trap is delivered in either privileged mode or hyperprivileged mode, depending on the type of trap,
the trap level (TL), and the privilege mode in effect when the exception was detected.

During normal trap processing, the following state changes occur (conceptually, in this order):

■ The trap level is updated. This provides access to a fresh set of privileged trap-state registers used
to save the current state, in effect, pushing a frame on the trap stack.

TL ← TL + 1 // note that if TL = MAXTL − 1 before this trap,
// trap would have been processed in
// RED_state, not here using normal trap
// processing.

■ Existing state is preserved.
TSTATE[TL].gl ← GL
TSTATE[TL].ccr ← CCR
TSTATE[TL].asi ← ASI
TSTATE[TL].pstate ← PSTATE
TSTATE[TL].cwp ← CWP
TPC[TL] ← PC // (upper 32 bits zeroed if PSTATE.am = 1)
TNPC[TL] ← NPC // (upper 32 bits zeroed if PSTATE.am = 1)
HTSTATE[TL].hpstate ← HPSTATE //even for traps to privileged mode

■ The trap type is preserved.
TT[TL] ← the trap type

■ The Global Level register (GL) is updated. This normally provides access to a fresh set of global
registers:

TABLE 12-8 Reset Received While in error_state

New State, After Receiving Trap Type

Original State
Nonreset Trap

or Interrupt
POR XIR WDR SIR

error_state
TL = MAXTL

— RED_state
TL = MAXTL

RED_state
TL = MAXTL

RED_state
TL = MAXTL

—

398 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

if (the trap is being delivered in privileged mode)
then GL ← min (GL + 1, MAXPGL)
else (trap is being delivered in hyperprivileged mode)

GL ← min (GL + 1, MAXGL)
endif

■ The PSTATE register is updated to a predefined state (even for traps to hyperprivileged mode):
PSTATE.mm is unchanged
PSTATE.pef ← 1 // if an FPU is present, it is enabled
PSTATE.am ← 0 // address masking is turned off
if (the trap is being delivered in privileged mode)
then PSTATE.priv ← 1 // the virtual processor enters privileged mode

PSTATE.cle ← PSTATE.tle //set endian mode for traps
else // trap is being delivered in hyperprivileged mode

PSTATE.priv ← 0
PSTATE.cle ← 0

endif
PSTATE.ie ← 0 // interrupts are disabled
PSTATE.tle is unchanged
PSTATE.tct ← 0 // trap on CTI disabled

■ The HPSTATE register is updated:
if (the trap is to hyperprivileged mode)
then HPSTATE.red ← 0

HPSTATE.hpriv ← 1 // enter hyperprivileged mode
HPSTATE.ibe ← 0 disable instruction breakpoints
HPSTATE.tlz is unchanged

endif

■ For a register-window trap (clean_window, window spill, or window fill) only, CWP is set to point
to the register window that must be accessed by the trap-handler software, that is:

if TT[TL] = 02416 // a clean_window trap
then CWP ← CWP + 1
endif

if (08016 ≤ TT[TL] ≤ 0BF16) // window spill trap
then CWP ← CWP + CANSAVE + 2
endif

if (0C016 ≤ TT[TL] ≤ 0FF16) // window fill trap
then CWP ← CWP – 1
endif

For non-register-window traps, CWP is not changed.

■ Control is transferred into the trap table:
// Note that at this point, TL has already been incremented (above)
if ((trap is to privileged mode) and (TL ≤ MAXPTL))
then

//the trap is handled in privileged mode
//Note: The expression “(TL > 1)” below evaluates to the
//value 02 if TL was 0 just before the trap (in which
//case, TL = 1 now, since it was incremented above,
//during trap entry). “(TL > 1)” evaluates to 12 if
//TL was > 0 before the trap.

PC ← TBA{63:15} :: (TL > 1) :: TT[TL] :: 0 00002
NPC ← TBA{63:15} :: (TL > 1) :: TT[TL] :: 0 01002

else if ((trap is to privileged mode) and (TL > MAXPTL))
then // this is the guest_watchdog case; the trap is handled in

// hyperprivileged mode using trap table offset 4016.
CHAPTER 12 • Traps 399

PC ← HTBA{63:14} :: 002 :: 04016
NPC ← HTBA{63:14} :: 002 :: 04416

else { trap is handled in hyperprivileged mode }
PC ← HTBA{63:14} :: TT[TL] :: 0 00002
NPC ← HTBA{63:14} :: TT[TL] :: 0 01002

endif

Interrupts are ignored as long as PSTATE.ie = 0.

12.6.2 RED_state Trap Processing
The following conditions invoke RED_state trap processing, and cause the trap to be delivered in
hyperprivileged mode:

■ Traps taken with TL = MAXTL – 1
■ Power-on reset traps
■ Watchdog reset traps
■ Externally initiated reset traps
■ Software-initiated reset traps
■ Traps taken when the virtual processor is already in RED_state

IMPL. DEP. #38-V8: Implementation-dependent registers may or may not be affected by the various
reset traps.

12.6.2.1 Nonreset Traps with TL = MAXTL – 1
Nonreset traps that occur when TL = MAXTL – 1 are processed in RED_state.

The following state changes occur (conceptually, in this order) during a nonreset trap that occurs
when TL = MAXTL – 1:

■ The trap level is advanced.
TL ← MAXTL

■ Existing state is preserved.
TSTATE[TL].gl ← GL
TSTATE[TL].ccr ← CCR
TSTATE[TL].asi ← ASI
TSTATE[TL].pstate ← PSTATE
TSTATE[TL].cwp ← CWP
TPC[TL] ← PC // (upper 32 bits zeroed if PSTATE.am = 1)
TNPC[TL] ← NPC // (upper 32 bits zeroed if PSTATE.am = 1)

HTSTATE[TL].hpstate ← HPSTATE

■ The trap type is preserved.
TT[TL] ← the trap type

■ The Global Level register is updated.
GL ← min (GL + 1, MAXGL)

■ The PSTATE register is set as follows:
PSTATE.mm ← 002 // TSO
PSTATE.pef ← 1 // if an FPU is present, it is enabled
PSTATE.am ← 0 // address masking is turned off
PSTATE.priv ← 0 // entering hyperprivileged mode

Programming
Note

State in TPC[n], TNPC[n], TSTATE[n], and TT[n] is only changed
autonomously by the processor when a trap is taken while
TL = n –1; however, software can change any of these values
with a WRPR instruction when TL = n.
400 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

PSTATE.ie ← 0 // interrupts are disabled
PSTATE.cle ← 0 // big-endian is default for hyperprivileged mode
PSTATE.tle is unchanged // (was unspecified in SPARC V9 specification)
PSTATE.tct ← 0 // trap on CTI disabled

■ The HPSTATE register is updated:
HPSTATE.red ← 1 // enter RED_state
HPSTATE.hpriv ← 1 // enter hyperprivileged mode
HPSTATE.ibe ← 0 // disable instruction breakpoints
HPSTATE.tlz ← 0 // disable trap_level_zero exceptions

■ For a register-window trap only, CWP is set to point to the register window that must be accessed
by the trap-handler software, that is:

If TT[TL] = 02416 // a clean_window trap
then CWP ← CWP + 1
endif

If (08016 ≤ TT[TL] ≤ 0BF16) // window spill trap
then CWP ← CWP + CANSAVE + 2
endif

If (0C016 ≤ TT[TL] ≤ 0FF16) // window fill trap
then CWP ← CWP – 1
endif

For non-register-window traps, CWP is not changed.

■ Implementation-specific state changes; for example, disabling an MMU.

■ Control is transferred into the RED_state trap table. See Trap Table Entry Address to RED_state on
page 384 for further details of RSTVADDR.

PC ← RSTVADDR{63:8} :: 1010 00002
NPC ← RSTVADDR{63:8} :: 1010 01002

12.6.2.2 Power-On Reset (POR) Traps

A POR trap occurs when power is applied to the virtual processor. If the virtual processor is in
error_state, a POR brings the virtual processor out of error_state and places it in RED_state.
See Chapter 16, Resets for further details.

Virtual processor state is undefined after POR, except for the following:

■ The trap level is set.
TL ← MAXTL

■ The trap type is set.
TT[TL] ← 00116

■ The Global Level register is updated.
GL ← MAXGL

■ The PSTATE register is set as follows:
PSTATE.mm ← 002 // TSO
PSTATE.pef ← 1 // if an FPU is present, it is enabled
PSTATE.am ← 0 // address masking is turned off
PSTATE.priv ← 0 // entering hyperprivileged mode
PSTATE.ie ← 0 // interrupts are disabled
PSTATE.cle ← 0 // big-endian is default for hyperprivileged mode
PSTATE.tle ← 0 // big-endian mode for traps
PSTATE.tct ← 0 // trap on CTI disabled
CHAPTER 12 • Traps 401

■ The HPSTATE register is updated:
HPSTATE.red ← 1 // enter RED_state
HPSTATE.hpriv ← 1 // enter hyperprivileged mode
HPSTATE.ibe ← 0 // disable instruction breakpoints
HPSTATE.tlz ← 0 // disable trap_level_zero exceptions

■ The TICK register is protected.
TICK.npt ← 1 // TICK is unreadable by nonprivileged software

■ Implementation-specific state changes; for example, disabling an MMU.

■ Control is transferred into the RED_state trap table.
PC ← RSTVADDR{63:8} :: 0010 00002
NPC ← RSTVADDR{63:8} :: 0010 01002

12.6.2.3 Watchdog Reset (WDR) Traps

Entry to error_state is caused by occurrence of a trap when TL = MAXTL (impl. dep. #39-V8-Cs10).
See error_state on page 376.

To recover from error_state, the UltraSPARC Architecture provides watchdog_reset (WDR), which
causes a transition from error_state to RED_state (impl. dep. #254-U3-Cs10).

The following virtual processor state changes occur during WDR (conceptually, in this order):

■ The trap level is updated.
TL ← min (TL + 1, MAXTL)

■ Existing state is preserved.
TSTATE[TL].gl ← GL
TSTATE[TL].ccr ← CCR
TSTATE[TL].asi ← ASI
TSTATE[TL].pstate ← PSTATE
TSTATE[TL].cwp ← CWP
TPC[TL] ← PC // (upper 32 bits zeroed if PSTATE.am = 1)
TNPC[TL] ← NPC // (upper 32 bits zeroed if PSTATE.am = 1)
HTSTATE[TL].hpstate ← HPSTATE

■ The trap type is set.
TT[TL] ← the trap type that caused the WDR

■ The Global Level register is updated.
GL ← min (GL + 1, MAXGL)

■ The PSTATE register is set as follows:
PSTATE.mm ← 002 // TSO
PSTATE.pef ← 1 // if an FPU is present, it is enabled
PSTATE.am ← 0 // address masking is turned off
PSTATE.priv ← 0 // entering hyperprivileged mode
PSTATE.ie ← 0 // interrupts are disabled
PSTATE.cle ← 0 // big-endian is default for hyperprivileged mode
PSTATE.tle is unchanged // (was unspecified in SPARC V9 specification)
PSTATE.tct ← 0 // trap on CTI disabled

■ The HPSTATE register is updated:
HPSTATE.red ← 1 // enter RED_state
HPSTATE.hpriv ← 1 // enter hyperprivileged mode
HPSTATE.ibe ← 0 // disable instruction breakpoints
HPSTATE.tlz ← 0 // disable trap_level_zero exceptions

■ Implementation-specific state changes; for example, disabling an MMU.
402 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

■ Control is transferred into the RED_state trap table.
PC ← RSTVADDR{63:8} :: 0100 00002
NPC ← RSTVADDR{63:8} :: 0100 01002

12.6.2.4 Externally Initiated Reset (XIR) Traps

XIR traps are initiated by an external signal. They behave like an interrupt that cannot be masked by
PSTATE.ie = 0 or PIL. Typically, XIR is used for critical system events such as power failure, reset
button pressed, failure of external components that does not require a WDR (which aborts
operations), or systemwide reset in a multiprocessor. See Chapter 16, Resets for further details.

If TL = MAXTL, then the virtual processor enters error_state.

The following virtual processor state changes occur during XIR (conceptually, in this order):

■ The trap level is updated:
TL ← min (TL + 1, MAXTL)

■ Existing state is preserved.
TSTATE[TL].gl ← GL
TSTATE[TL].ccr ← CCR
TSTATE[TL].asi ← ASI
TSTATE[TL].pstate ← PSTATE
TSTATE[TL].cwp ← CWP
TPC[TL] ← PC // (upper 32 bits zeroed if PSTATE.am = 1)
TNPC[TL] ← NPC // (upper 32 bits zeroed if PSTATE.am = 1)
HTSTATE[TL].hpstate ← HPSTATE

■ The trap type is set.
TT[TL] ← 00316

■ The Global Level register is updated.
GL ← min (GL + 1, MAXGL)

■ The PSTATE register is set as follows:
PSTATE.mm ← 002 // TSO
PSTATE.pef ← 1 // if an FPU is present, it is enabled
PSTATE.am ← 0 // address masking is turned off
PSTATE.priv ← 0 // entering hyperprivileged mode
PSTATE.ie ← 0 // interrupts are disabled
PSTATE.cle ← 0 // big-endian is default for hyperprivileged mode
PSTATE.tle is unchanged // (was unspecified in SPARC V9 specification)
PSTATE.tct ← 0 // trap on CTI disabled

■ The HPSTATE register is updated:
HPSTATE.red ← 1 // enter RED_state
HPSTATE.hpriv ← 1 // enter hyperprivileged mode
HPSTATE.ibe ← 0 // disable instruction breakpoints
HPSTATE.tlz ← 0 // disable trap_level_zero exceptions

■ Implementation-specific state changes; for example, disabling an MMU.

■ Control is transferred into the RED_state trap table.
PC ← RSTVADDR{63:8} :: 0110 00002
NPC ← RSTVADDR{63:8} :: 0110 01002

See Externally Initiated Reset (XIR) on page 499 and the documentation for specific processor
implementations for more information.
CHAPTER 12 • Traps 403

12.6.2.5 Software-Initiated Reset (SIR) Traps

A software-initiated reset trap is initiated by execution of an SIR instruction in hyperprivileged mode.
Hyperprivileged software uses the SIR trap as a panic operation or a metahypervisor trap. See
Chapter 16, Resets for further details.

If TL = MAXTL, then the virtual processor enters error_state.

Otherwise, TL < MAXTL as trap processing begins and the following virtual processor state changes
occur (conceptually, in this order):

■ The trap level is updated.
TL ← TL + 1

■ Existing state is preserved.
TSTATE[TL].gl ← GL
TSTATE[TL].ccr ← CCR
TSTATE[TL].asi ← ASI
TSTATE[TL].pstate ← PSTATE
TSTATE[TL].cwp ← CWP
TPC[TL] ← PC // (upper 32 bits zeroed if PSTATE.am = 1)
TNPC[TL] ← NPC // (upper 32 bits zeroed if PSTATE.am = 1)
HTSTATE[TL].hpstate ← HPSTATE

■ The trap type is set.
TT[TL] ← 0416

■ The Global Level register is updated.
GL ← min (GL + 1, MAXGL)

■ The PSTATE register is set as follows:
PSTATE.mm ← 002 // TSO
PSTATE.pef ← 1 // if an FPU is present, it is enabled
PSTATE.am ← 0 // address masking is turned off
PSTATE.priv ← 0 // entering hyperprivileged mode
PSTATE.ie ← 0 // interrupts are disabled
PSTATE.cle ← 0 // big-endian is default for hyperprivileged mode
PSTATE.tle is unchanged // (was unspecified in SPARC V9 specification)
PSTATE.tct ← 0 // trap on CTI disabled

■ The HPSTATE register is updated:
HPSTATE.red ← 1 // enter RED_state
HPSTATE.hpriv ← 1 // enter hyperprivileged mode
HPSTATE.ibe ← 0 // disable instruction breakpoints
HPSTATE.tlz ← 0 // disable trap_level_zero exceptions

■ Implementation-specific state changes; for example, disabling an MMU.

■ Control is transferred into the RED_state trap table.
PC ← RSTVADDR{63:8} :: 1000 00002
NPC ← RSTVADDR{63:8} :: 1000 01002

See Software-Initiated Reset (SIR) on page 499 and the documentation for specific processor
implementations for more information.

12.6.2.6 Nonreset Traps When the Virtual Processor Is in RED_state

When a nonreset trap occurs while the virtual processor is in RED_state, if TL = MAXTL, then the
virtual processor enters error_state.

Otherwise, TL < MAXTL as trap processing begins, the virtual processor remains in RED_state, and
the following virtual processor state changes occur (conceptually, in this order):
404 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

■ The trap level is updated.
TL ← TL + 1

■ Existing state is preserved.
TSTATE[TL].gl ← GL
TSTATE[TL].ccr ← CCR
TSTATE[TL].ASI ← ASI
TSTATE[TL].pstate ← PSTATE
TSTATE[TL].cwp ← CWP
TPC[TL] ← PC // (upper 32 bits zeroed if PSTATE.am = 1)
TNPC[TL] ← NPC // (upper 32 bits zeroed if PSTATE.am = 1)
HTSTATE[TL].hpstate ← HPSTATE

■ The trap type is preserved.
TT[TL] ← trap type

■ The Global Level register is updated.
GL ← min (GL + 1, MAXGL)

■ The PSTATE register is set as follows:
PSTATE.mm ← 002 // TSO
PSTATE.pef ← 1 // if an FPU is present, it is enabled
PSTATE.am ← 0 // address masking is turned off
PSTATE.priv ← 0 // entering hyperprivileged mode
PSTATE.ie ← 0 // interrupts are disabled
PSTATE.cle ← 0 // big-endian is default for hyperprivileged mode
PSTATE.tle is unchanged // (was unspecified in SPARC V9 specification)
PSTATE.tct ← 0 // trap on CTI disabled

■ The HPSTATE register is updated:
HPSTATE.red ← 1 // enter RED_state
HPSTATE.hpriv ← 1 // enter hyperprivileged mode
HPSTATE.ibe ← 0 // disable instruction breakpoints
HPSTATE.tlz ← 0 // disable trap_level_zero exceptions

■ For a register-window trap only, CWP is set to point to the register window that must be accessed
by the trap-handler software, that is:

If TT[TL] = 02416 // a clean_window trap
then CWP ← CWP + 1
endif
If (08016 ≤ TT[TL] ≤ 0BF16) // window spill trap
then CWP ← CWP + CANSAVE + 2
endif
If (0C016 ≤ TT[TL] ≤ 0FF16) // window fill trap
then CWP ← CWP – 1
endif

■ For non-register-window traps, CWP is not changed.

■ Implementation-specific state changes; for example, disabling an MMU.

■ Control is transferred into the RED_state trap table.
PC ← RSTVADDR{63:8} :: 1010 00002
NPC ← RSTVADDR{63:8} :: 1010 01002
CHAPTER 12 • Traps 405

12.7 Exception and Interrupt Descriptions
The following sections describe the various exceptions and interrupt requests and the conditions that
cause them. Each exception and interrupt request describes the corresponding trap type as defined by
the trap model.

All other trap types are reserved.

The following traps are generally expected to be supported in all UltraSPARC Architecture 2007
implementations. A given trap is not required to be supported in an implementation in which the
conditions that cause the trap can never occur.

■ BLD_exception [TT = 03C16] (Precise) —This exception is caused by implmentation-specific
conditions that occured during execution of a block load (LDBLOCKFD) instruction. The specific
conditions under which this exception occurs can be found in each processor’s Implementation
Supplement to this specification.

■ BST_exception [TT = 03D16] (Precise) —This exception is caused by implmentation-specific
conditions that occured during execution of a block store (STBLOCKFD) instruction. The specific
conditions under which this exception occurs can be found in each processor’s Implementation
Supplement to this specification.

■ clean_window [TT = 02416–02716] (Precise) — A SAVE instruction discovered that the window
about to be used contains data from another address space; the window must be cleaned before it
can be used.

IMPL. DEP. #102-V9: An implementation may choose either to implement automatic cleaning of
register windows in hardware or to generate a clean_window trap, when needed, so that window(s)
can be cleaned by software. If an implementation chooses the latter option, then support for this
trap type is mandatory.

■ control_transfer_instruction [TT = 07416] (Precise) — This exception is generated if
PSTATE.tct = 1 and the processor determines that a successful control transfer will occur as a result
of execution of that instruction. If such a transfer will occur, the processor generates a
control_transfer_instruction precise trap (trap type = 7416) instead of completing the control
transfer. The pc stored in TPC[TL] is the address of the CTI, and the TNPC[TL] is set to the value of
NPC before the CTI is executed. (impl. dep. #450-S20). PSTATE.tct is always set to 0 as part of
normal entry into a trap handler. When this exception occurs in nonprivileged or privileged mode,
the trap is delivered in privileged mode. If it occurs in hyperprivileged mode, the trap is delivered
in hyperprivileged mode.

■ cpu_mondo [TT = 07C16] (Disrupting) — This interrupt is generated when another virtual
processor has enqueued a message for this virtual processor. It is used to deliver a trap in
privileged mode, to inform privileged software that an interrupt report has been appended to the
virtual processor’s CPU mondo queue. A direct message between virtual processors is sent via a
CPU mondo interrupt, which is generated through software calls to hyperprivileged software. The
standard software interface (API) to hyperprivileged software allows 64 bytes of data to be sent to
one or more target virtual processors. When the CPU mondo queue contains a valid entry, a
cpu_mondo exception is sent to the target virtual processor.

Note The encoding of trap types in the UltraSPARC Architecture
differs from that shown in The SPARC Architecture Manual-
Version 9. Each trap is marked as precise, deferred, disrupting, or
reset. Example exception conditions are included for each
exception type. Chapter 7, Instructions, enumerates which traps
can be generated by each instruction.
406 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

■ DAE_invalid_asi [TT = 01416] (Precise) — An attempt was made to execute an invalid
combination of instruction and ASI. See the instruction descriptions in Chapter 7 for a detailed list
of valid ASIs for each instruction that can access alternate address spaces. The following invalid
combinations of instruction, ASI, and virtual address cause a DAE_invalid_asi exception:

■ A load, store, load-store, or PREFETCHA instruction with either an invalid ASI or an invalid
virtual address for a valid ASI.

■ A disallowed combination of instruction and ASI (see Block Load and Store ASIs on page 362 and
Partial Store ASIs on page 362). This includes the following:

– an attempt to use a (deprecated) atomic quad load ASI (2416, 2C16, 3416, or 3C16) with any load
alternate opcode other than LDTXA’s (which is shared by LDDA)

– an attempt to use a nontranslating ASI value with any load or store alternate instruction other
than LDXA, LDDFA, STXA, or STDFA

– an attempt to read from a write-only ASI-accessible register, or load from a store-only ASI (for
example, a block commit store ASI, E016 or E116)

– an attempt to write to a read-only ASI-accessible register

■ DAE_nc_page [TT = 01616] (Precise) —An access to a noncacheable page (TTE.cp = 0) (including
cases with the TLB disabled) was attempted by an atomic load-store instruction (CASA, CASXA,
SWAP, SWAPA, LDSTUB, or LDSTUBA), an LDTXA instruction, a LDBLOCKFD instruction, or a
STPARTIALF instruction.

■ DAE_nfo_page [TT = 01716] (Precise) — An attempt was made to access a non-faulting-only page
(TTE.nfo = 1) by any type of load, store, load-store, or FLUSH instruction with an ASI other than a
nonfaulting ASI (PRIMARY_NO_FAULT[_LITTLE] or SECONDARY_NO_FAULT[_LITTLE]).

■ DAE_privilege_violation [TT = 01516] (Precise) — A privilege violation occurred, due to an
attempt to access a privileged page (TTE.p = 1) by any type of load, store, or load-store instruction
when executing in nonprivileged mode (PSTATE.priv = 0). This includes the special case of an
access by privileged software using one of the ASI_AS_IF_USER_PRIMARY[_LITTLE] or
ASI_AS_IF_USER_SECONDARY[_LITTLE] ASIs.

■ DAE_side_effect_page [TT = 03016] (Precise) — An attempt was made to access a page which
may cause side effects (TTE.e = 1) (including cases with the TLB disabled) by any type of load
instruction with nonfaulting ASI.

■ data_access_error [TT = 03216] (Precise) — A hardware error occurred during a data access. See
Chapter 17, Error Handling for more details.

■ data_access_MMU_error [TT = 07216] (Precise) — This exception is generated when, during a
data access, the MMU detects any of
(1) a data or tag parity error on a TLB (and/or µTLB) access, or
(2) a multiple-tag-hit error on a TLB (and/or µTLB) access, or
(3) an error during hardware tablewalk.

Programming
Note

It is possible that an implementation may occasionally cause a
cpu_mondo interrupt when the CPU Mondo queue is empty
(CPU Mondo Queue Head pointer = CPU Mondo Queue Tail
pointer). A guest operating system running in privileged mode
should handle this by ignoring any CPU Mondo interrupt with
an empty queue.

SPARC V9
Compatibility

Note

The data_access_exception exception from SPARC V9 and
UltraSPARC Architecture 2005 has been replaced by more
specific exceptions, such as DAE_invalid_asi, DAE_nc_page,
DAE_nfo_page, DAE_privilege_violation, and
DAE_side_effect_page.
CHAPTER 12 • Traps 407

■ data_access_MMU_miss [TT = 03116] (Precise) — During an attempted data access to memory,
(1) hardware tablewalk was enabled, and
(2) the MMU detects that a translation lookaside buffer did not contain a

translation for the data’s virtual address, and
(3) the required TTE was not found in the configured TSBs.

■ data_invalid_TSB _entry [TT = 02B16] (Precise) — During an attempted data access,
(1) hardware tablewalk was enabled,
(2) the MMU detected that a translation lookaside buffer did not contain a

translation for the virtual address, and
(3) the required TTE was found in the configured TSBs to be a real address,

requiring real-to-physical address translation, and
(4) the real address cannot be translated to a physical address by hardware.

■ data_real_translation_miss [TT = 03F16] (Precise) — During an attempted real address data
access, the MMU detected that a translation lookaside buffer (TLB) did not contain a translation for
the real address (that is, a TLB miss occurred).

■ dev_mondo [TT = 07D16] (Disrupting) — This interrupt causes a trap to be delivered in privileged
mode, to inform privileged software that an interrupt report has been appended to its device
mondo queue. When a virtual processor has appended a valid entry to a target virtual processor’s
device mondo queue, it sends a dev_mondo exception to the target virtual processor. The interrupt
report contents are device specific.

■ division_by_zero [TT = 02816] (Precise) — An integer divide instruction attempted to divide by
zero.

■ externally_initiated_reset (XIR) [TT = 00316] (Reset) — An external signal was asserted. This trap
is used for catastrophic events such as power failure, reset button pressed, and system-wide reset
in multiprocessor systems.

■ fast_data_access_MMU_miss [TT = 06816] (Precise) — During an attempted data access to
memory,
(1) hardware tablewalk was disabled (or is not implemented) and
(2) the MMU detected that a translation lookaside buffer did not contain a translation for the
virtual address.
Four trap vectors are allocated for this trap, allowing a TLB miss handler of up to 32 instructions to
fit within the trap vector area.

■ fast_data_access_protection [TT = 06C16] (Precise) — During an attempted data write access (by
a store or load-store instruction), the instruction had appropriate access privilege but the MMU
signalled that the location was write-protected (write to a read-only location (TTE.w = 0)). Four
trap vectors are allocated for this trap, allowing a trap handler of up to 32 instructions to fit within
the trap vector area.

Note that on an UltraSPARC Architecture virtual processor, an attempt to read or write to a
privileged location while in nonprivileged mode causes the higher-priority DAE_privilege_violation
instead of this exception.

■ fast_instruction_access_MMU_miss [TT = 06416] (Precise) — During an attempted instruction
virtual address access,
(1) hardware tablewalk was disabled (or is not implemented) and
(2) the MMU detected a TLB miss.
Four trap vectors are allocated for this trap, allowing a trap handler of up to 32 instructions to fit
within the trap vector area.

Programming
Note

It is possible that an implementation may occasionally cause a
dev_mondo interrupt when the Device Mondo queue is empty
(Device Mondo Queue Head pointer = Device Mondo Queue
Tail pointer). A guest operating system running in privileged
mode should handle this by ignoring any Device Mondo
interrupt with an empty queue.
408 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

■ fill_n_normal [TT = 0C016–0DF16] (Precise)
■ fill_n_other [TT = 0E016–0FF16] (Precise)

A RESTORE or RETURN instruction has determined that the contents of a register window must
be restored from memory.

■ fp_disabled [TT = 02016] (Precise) — An attempt was made to execute an FPop, a floating-point
branch, or a floating-point load/store instruction while an FPU was disabled (PSTATE.pef = 0 or
FPRS.fef = 0).

■ fp_exception_ieee_754 [TT = 02116] (Precise) — An FPop instruction generated an
IEEE_754_exception and its corresponding trap enable mask (FSR.tem) bit was 1. The floating-
point exception type, IEEE_754_exception, is encoded in the FSR.ftt, and specific
IEEE_754_exception information is encoded in FSR.cexc.

■ fp_exception_other [TT = 02216] (Precise) — An FPop instruction generated an exception other
than an IEEE_754_exception. Example: execution of an FPop requires software assistance to
complete. The floating-point exception type is encoded in FSR.ftt.

■ guest_watchdog [TT = (see text)] (Precise, Disrupting) — The virtual processor was in
nonprivileged or privileged mode, TL was ≥ MAXPTL, and a precise or disrupting exception to
privileged mode occurred. guest_watchdog uses the same trap table entry (table offset 04016) as
watchdog_reset. When a guest_watchdog trap occurs, the trap type (TT) value and priority of the
exception that caused the trap are retained.

■ hstick_match [TT = 05E16] (Disrupting) —This interrupt indicates that a match between the
System Tick (STICK) and the Hypervisor System Tick Compare (HSTICK_CMPR) register has
occurred (or that software has set HINTP.hsp = 1). The event is recorded in the
hstick_match_pending (hsp) bit of the Hypervisor Interrupt Pending (HINTP) register. The
hstick_match disrupting trap is recognized when HINTP.hsp = 1 and (PSTATE.ie = 1 or
HPSTATE.hpriv = 0); otherwise, it remains pending. HINTP.hsp provides a mechanism for
hyperprivileged software to determine that an hstick_match trap is pending while PSTATE.ie = 0
and to clear the condition without actually having to take the hstick_match trap.

■ htrap_instruction [TT = 18016–1FF16] (Precise) — A Tcc instruction was executed in privileged or
hyperprivileged mode, the trap condition evaluated to TRUE, and the software trap number was
greater than 127. The trap is delivered in hyperprivileged mode, using the hyperprivileged mode
trap base address (HTBA). See also trap_instruction on page 415.

■ hw_corrected_error [TT = 06316] (Disrupting) — Hardware detected an error asynchronous to
instruction execution, or requests that information be logged for the error that was detected and
corrected by the virtual processor.

■ IAE_nfo_page [TT = 00C16] (Precise) — An instruction-access exception occurred as a result of an
attempt to fetch an instruction from a memory page which was marked for access only by
nonfaulting loads (TTE.nfo = 1).

■ IAE_privilege_violation [TT = 00816] (Precise) — An instruction-access exception occurred as a
result of an attempt to fetch an instruction from a privileged memory page (TTE.p = 1) while the
virtual processor was executing in nonprivileged mode.

■ IAE_unauth_access [TT = 00B16] (Precise) — An instruction-access exception occurred as a result
of an attempt to fetch an instruction from a memory page which was missing “execute” permission
(TTE.ep = 0).

■ illegal_instruction [TT = 01016] (Precise) — An attempt was made to execute an ILLTRAP
instruction, an instruction with an unimplemented opcode, an instruction with invalid field usage,
or an instruction that would result in illegal processor state.

Examples of cases in which illegal_instruction is generated include the following:

■ An instruction encoding does not match any of the opcode map definitions (see Appendix A,
Opcode Maps).

SPARC V9
Compatibility

Note

The hw_corrected_error exception was called ECC_error in
SPARC V9.
CHAPTER 12 • Traps 409

■ An instruction is not implemented in hardware.

■ A reserved instruction field in Tcc instruction is nonzero.

If a reserved instruction field in an instruction other than Tcc is nonzero, an illegal_instruction
exception should be, but is not required to be, generated. (See Reserved Opcodes and Instruction
Fields on page 97.)

■ An illegal value is present in an instruction i field.

■ An illegal value is present in a field that is explicitly defined for an instruction, such as cc2, cc1,
cc0, fcn, impl, rcond, or opf_cc.

■ Illegal register alignment (such as odd rd value in a doubleword load instruction).

■ Illegal rd value for LDXFSR, STXFSR, or the deprecated instructions LDFSR or STFSR.

■ ILLTRAP instruction.

■ DONE or RETRY when TL = 0.

All causes of an illegal_instruction exception are described in individual instruction descriptions in
Chapter 7, Instructions.

■ instruction_access_error [TT = 00A16] (Precise) — A hardware error occurred during an
instruction access. See Chapter 17, Error Handling for more details.

■ instruction_access_MMU_miss [TT = 00916] (Precise) — During an attempted instruction access
(instruction fetch) from memory,
(1) hardware tablewalk was enabled,
(2) the MMU detected that a translation lookaside buffer did not contain a

translation for the virtual address (that is, a TLB miss occurred), and
(3) the required TTE was not found in the configured TSBs.

■ instruction_access_MMU_error [TT = 07116] (Precise) — This exception is generated when,
during an instruction access, the MMU detects any of
(1) a data or tag parity error on a TLB (and/or µTLB) access, or
(2) a multiple-tag-hit error on a TLB (and/or µTLB) access, or
(3) an error during hardware tablewalk.

■ instruction_address_range [TT = 00D16] (Precise) — The instruction_address_range exception
can only occur in implementations that do not implement full 64-bit instruction virtual addresses
(impl. dep. #451-S20).

This exception can only occur when PSTATE.am = 0, HPSTATE.hpriv = 0, HPSTATE.red = 0, and I/
UMMU enable = 1 (a state said to “enable VA hole detection”).

The instruction_address_range exception occurs upon either:

■ an instruction fetch of a virtual address within an implementation-dependent region (no larger
than 8 KB) immediately below the lowest virtual address that is not supported by the virtual
processor and/or associated I/UMMU, or

SPARC V9
Compatibility

Note

The instruction_access_exception exception from SPARC V9 has
been replaced by more specific exceptions, such as
IAE_privilege_violation and IAE_unauth_access.

Programming Note Privileged software should not execute a write of PSTATE that
changes PSTATE.am in the delay slot of a DCTI.

Programming Note Hyperprivileged software should not execute instructions that
transition between VA hole detection states in the delay slot of
a DCTI.
410 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

■ the fetch of a delayed control transfer instruction(DCTI)’s virtual address target that is not
supported by the virtual processor and/or associated I/UMMU,
VA hole detection is not enabled when the branch executes, and
VA hole detection is enabled for the target fetch.

The second case can occur by either:

■ execution of a state-changing instruction (for example,writing HPSTATE) in the delay slot of the
DCTI, or

■ an exception occuring on the delay slot of the DCTI, causing a trap, followed by state
manipulation in the trap handler, which ends in a DONE or RETRY instruction, after which the
target of the DCTI is fetched.

In the event that a trap handler modifies TPC or TNPC (via WRPR), the fetch of the instruction at
the modified TPC or TNPC (after execution of DONE or RETRY) will not result in an
instruction_address_range exception, even if the 64-bit address written to TPC or TNPC is not
supported by the virtual processor and/or associated I/UMMU and VA hole detection is enabled
when the unsupported virtual address is fetched. Instead, the unsupported bits of the address are
silently ignored.

Implementations do not store state to create an instruction_address_range exception when the
strand is executing from a PC whose 64-bit value is not supported by the virtual processor and/or
associated I/UMMU, the strand is in a state in which VA hole detection is disabled (for example,
when PSTATE.am = 1), and then software transitions the strand state to enable VA hole detection
(for example, by setting PSTATE.am = 0) while the 64-bit PC is not supported by the virtual
processor and/or associated I/UMMU. Instead, the unsupported bits of the address are silently
ignored.

■ instruction_breakpoint [TT = 07616] (Precise) — This exception is generated if HPSTATE.ibe = 1
and the processor has detected a breakpoint condition based on the values in the Instruction
Breakpoint Control register for the current instruction. As part of the trap, the HPSTATE.ibe bit is
cleared (set to 0).

■ instruction_invalid_TSB_entry [TT = 02A16] (Precise) — During an attempted instruction access
(instruction fetch),
(1) hardware tablewalk was enabled,
(2) the MMU detected that a translation lookaside buffer did not contain a translation for the
virtual address,
(3) the required TTE was found in the configured TSBs to be a real address, requiring real-to-
physical address translation, and
(4) the real address cannot be translated to a physical address by hardware.

■ instruction_real_range [TT = 00E16] (Precise) — The instruction_real_range exception can only
occur in implementations that do not implement full 56-bit instruction real addresses (impl. dep.
#452-S20).

This exception can only occur when HPSTATE.hpriv = 0, HPSTATE.red = 0, and I/UMMU
enable = 0 (a state said to “enable RA hole detection”).

The instruction_real_range exception occurs when either:

■ an instruction fetch of a real address within an implementation-dependent region (no larger than
8 KB) immediately below the lowest real address that is not supported by the virtual processor
and/or associated I/UMMU, or

■ the fetch of a delayed control transfer instruction(DCTI)’s real address target that is not
supported by the virtual processor and/or associated I/UMMU,
RA hole detection is not enabled when the branch executes, and
RA hole detection is enabled for the target fetch.

The second case can occur by either:

Programming Note Hyperprivileged software should not execute instructions that
transition between RA hole detection states in the delay slot of
a DCTI.
CHAPTER 12 • Traps 411

■ execution of a state-changing instruction (for example,writing HPSTATE) in the delay slot of the
DCTI, or

■ an exception occuring on the delay slot of the DCTI, causing a trap, followed by state
manipulation in the trap handler, which ends in a DONE or RETRY instruction, after which the
target of the DCTI is fetched.

In the event that a trap handler modifies TPC or TNPC (via WRPR), the fetch of the instruction at
the modified TPC or TNPC (after execution of DONE or RETRY) will not result in an
instruction_real_range exception, even if the 64-bit address written to TPC or TNPC is not
supported by the virtual processor and/or associated I/UMMU and RA hole detection is enabled
when the unsupported real address is fetched. Instead, the unsupported bits of the address are
silently ignored.

Implementations do not store state to create an instruction_real_range exception when the strand is
executing from a PC whose 64-bit value is not supported by the virtual processor and/or
associated I/UMMU, the strand is in a state in which RA hole detection is disabled (for example,
when HPSTATE.hpriv = 1), and then software transitions the strand state to enable RA hole
detection (for example, by setting HPSTATE.hpriv = 0) while the 64-bit PC is not supported by the
virtual processor and/or associated I/UMMU. Instead, the unsupported bits of the address are
silently ignored.

■ instruction_real_translation_miss [TT = 03E16] (Precise) — During an attempted real address
instruction access (instruction fetch), the MMU detected a TLB miss.

■ instruction_VA_watchpoint [TT = 07516] (Precise) — The virtual processor has detected that the
Program Counter (PC) matches the VA Watchpoint register, when instruction VA watchpoints are
enabled and the PC is being translated from a virtual address to a physical address. If the PC is not
being translated from a virtual address (for example, the PC is being treated as a physical address),
then an instruction_VA_watchpoint exception will not be generated, even if a match is detected
between the VA Watchpoint register and the PC.

■ internal_processor_error [TT = 02916] (Precise) — A serious internal error occurred in the virtual
processor.

IMPL. DEP. #402-S10: The trap priority of the internal_processor_error exception is
implementation dependent. Furthermore, its priority may vary within an implementation, based
on the cause of the error being reported.

■ interrupt_level_n [TT = 04116–04F16] (Disrupting) — SOFTINT{n} was set to 1 or an external
interrupt request of level n was presented to the virtual processor and n > PIL.

■ interrupt_vector [TT = 06016] (Disrupting) — The virtual processor has received an interrupt
request. See Interrupt Vector Registers on page 423 for more information.

■ LDDF_mem_address_not_aligned [TT = 03516] (Precise) — An attempt was made to execute an
LDDF or LDDFA instruction and the effective address was not doubleword aligned. (impl. dep. #109)

■ mem_address_not_aligned [TT = 03416] (Precise) — A load/store instruction generated a
memory address that was not properly aligned according to the instruction, or a JMPL or RETURN
instruction generated a non-word-aligned address. (See also Special Memory Access ASIs on page
357.)

■ mem_address_range [TT = 02E16] (Precise) — The mem_address_range exception can only occur
in implementations that do not implement full 64-bit virtual addresses (impl. dep. #451-S20).

The mem_address_range exception occurs when either:

■ a memory-access instruction (load, store, or load-store) generates a memory virtual address that
is not supported by the virtual processor and/or associated D/UMMU, or

■ a branch, JMPL, RETURN, or CALL instruction that is taken and generates a target virtual
address that is not supported by the virtual processor and/or associated I/UMMU

Implementation
Note

interrupt_level_14 can be caused by (1) setting SOFTINT{14}
to 1, (2) occurrence of a "TICK match", or (3) occurrence of a
"STICK match" (see SOFTINTP Register (ASRs 20, 21, 22) on
page 57).
412 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

This exception can only occur if PSTATE.am = 0 at the time the instruction executes.

For a memory-access instruction, this exception can only occur if the DMMU performs VA-to-PA
translation for the effective memory address referenced by this instruction.

For a branch, JMPL, RETURN, or CALL instruction, this exception can only occur if
HPSTATE.hpriv = 0, HPSTATE.red = 0, and I/UMMU enable = 1 at the time of instruction execution.

■ mem_real_range [TT = 02D16] (Precise) — The mem_real_range exception can only occur in
implementations that do not implement full 56-bit real addresses (impl. dep. #452-S20).

The mem_real_range exception occurs when either:

■ a memory-access instruction (load, store, or load-store) generates a memory real address that is
not supported by the virtual processor and/or associated D/UMMU, or

■ a branch, JMPL, RETURN, or CALL instruction that is taken and generates a target real address
that is not supported by the virtual processor and/or associated I/UMMU

For a memory-access instruction, this exception can only occur if the DMMU performs RA-to-PA
translation for the effective memory address referenced by this instruction.

For a branch, JMPL, RETURN, or CALL instruction, this exception can only occur if
HPSTATE.hpriv = 0, HPSTATE.red = 0, and I/UMMU enable = 0 at the time of instruction execution.

■ nonresumable_error [TT = 07F16] (Disrupting) — There is a valid entry in the nonresumable error
queue. This interrupt is not generated by hardware, but is used by hyperprivileged software to
inform privileged software that an error report has been appended to the nonresumable error
queue.

■ PA_watchpoint [TT = 06116] (Precise) — The virtual processor has detected a load or store to a
physical address specified by the PA Watchpoint register while PA watchpoints are enabled.
Hyperprivileged software may reflect this trap back to privileged software as a synthetic
RA_watchpoint exception.

■ pic_overflow [TT = 04F16] (Disrupting) — A performance counter has overflowed and PIL < 15.
Note that this exception shares a trap type, 04F16, with interrupt_level_15. The disrupting trap
caused by pic_overflow is conditioned by PSTATE.ie.
If PSTATE.ie = 1 and PIL < 15 when the possible counter overflow is detected and depending on

Programming Note No mem_address_range exception is triggered when control
transfer to a virtual address not supported by the virtual
processor and/or I/UMMU occurs by means not explicitly
described above, such as:

■ DONE or RETRY that enables VA hole detection and that
redirects fetch to a virtual address that is not supported by
the virtual processor and/or I/UMMU

■ a DCTI that executes with VA hole detection disabled with a
virtual target address that is not supported by the virtual
processor and/or I/UMMU, with a delay slot instruction that
enables VA hole detection

Programming Note No mem_real_range exception is triggered when control
transfer to a real address not supported by the virtual processor
and/or I/UMMU occurs by means not explicitly described
above, such as:

■ DONE or RETRY that enables RA hole detection and that
redirects fetch to a real address that is not supported by the
virtual processor and/or I/UMMU

■ a DCTI that executes with RA hole detection disabled with a
real target address that is not supported by the virtual
processor and/or I/UMMU, with a delay slot instruction that
enables RA hole detection
CHAPTER 12 • Traps 413

the event being monitored by the counter, the disrupting trap may be reported prior to retirement
of the instruction that incremented the counter to cause the possible counter overflow. Upon entry
to the trap handler, TPC points to an instruction that increments the performance counter and the
counter is within some epsilon of overflow.
If PSTATE.ie = 0 or PIL = 15 when the possible overflow is detected, the trap remains pending and
will be taken on the first instruction for which PSTATE.ie = 1 and PIL < 15. In this case, TPC may
not point to an instruction that increments the counter.

■ power_on_reset (POR) [TT = 00116] (Reset) — An external signal was asserted. This trap is issued
to bring a system reliably from the power-off to the power-on state.

■ privileged_action [TT = 03716] (Precise) — An action defined to be privileged has been attempted
while in nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), or an action defined to be
hyperprivileged has been attempted while in nonprivileged or privileged mode
(HPSTATE.hpriv = 0). Examples:
■ A data access by nonprivileged software using a restricted (privileged or hyperprivileged) ASI,

that is, an ASI in the range 0016 to 7F16 (inclusively)
■ A data access by nonprivileged or privileged software using a hyperprivileged ASI, that is, an

ASI in the range 3016 to 7F16 (inclusively)
■ Execution by nonprivileged software of an instruction with a privileged operand value
■ An attempt to read the TICK register by nonprivileged software when nonprivileged access to

TICK is disabled (TICK.npt = 1).
■ An attempt to execute a nonprivileged instruction with an operand value requiring more

privilege than available in the current privilege mode.

■ privileged_opcode [TT = 01116] (Precise) — An attempt was made to execute a privileged
instruction while in nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0).

■ RED_state_exception [TT = (see text)] (Precise) — Caused when TL = MAXTL − 1 and a trap occurs,
an event that brings the virtual processor into RED_state. Uses the trap vector entry reserved for
trap type 00516, but the trap type recorded in TT is the trap type of the original exception that
triggered RED_state_exception.

■ resumable_error [TT = 07E16] (Disrupting) — There is a valid entry in the resumable error queue.
This interrupt is used to inform privileged software that an error report has been appended to the
resumable error queue, and the current instruction stream is in a consistent state so that execution
can be resumed after the error is handled.

■ software_initiated_reset (SIR) [TT = 00416] (Precise) — Caused by the execution of the SIR
instruction. It allows system software to reset the virtual processor.

■ spill_n_normal [TT = 08016–09F16] (Precise)
■ spill_n_other [TT = 0A016–0BF16] (Precise)

A SAVE or FLUSHW instruction has determined that the contents of a register window must be
saved to memory.

■ STTW_exception [TT = 03A16] (Precise) —This exception is caused by implmentation-specific
conditions that occured during execution of a Store Twin Word (STTW) instruction. The specific
conditions under which this exception occurs can be found in each processor’s Implementation
Supplement to this specification.

■ STDF_mem_address_not_aligned [TT = 03616] (Precise) — An attempt was made to execute an
STDF or STDFA instruction and the effective address was not doubleword aligned. (impl. dep. #110)

■ store_error [TT = 00716] (Deferred) — An error has been detected on a store instruction that
prevents it from completing, but the error was detected after the store had passed its instruction
retirement point. Since the store cannot be made globally visible, the software thread that issued
the store must be terminated. Therefore, this is a termination deferred trap.

■ sw_recoverable_error [TT = 04016] (Disrupting) — Indicates that one or more potentially
recoverable errors have been detected in the virtual processor. A single sw_recoverable_error
exception may indicate multiple errors and may occur asynchronously to instruction execution.
414 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

When sw_recoverable_error causes a trap, the TPC and TNPC stacked by the trap do not
necessarily indicate the instruction or data access that caused the error. (impl. dep. #31-V8-Cs10,
#218-U3-Cs20) See Chapter 17, Error Handling for more details.

■ tag_overflow [TT = 02316] (Precise) (deprecated) — A TADDccTV or TSUBccTV instruction
was executed, and either 32-bit arithmetic overflow occurred or at least one of the tag bits of the
operands was nonzero.

■ trap_instruction [TT = 10016–17F16] (Precise) — A Tcc instruction was executed and the trap
condition evaluated to TRUE, and the software trap number operand of the instruction is 127 or
less.

■ trap_level_zero [TT = 05F16] (Precise) — This exception indicates a simultaneous existence of three
conditions as an instruction is about to be executed:
■ trap_level_zero exceptions are enabled (HPSTATE.tlz = 1),
■ the virtual processor is in nonprivileged or privileged mode (HPSTATE.hpriv = 0), and
■ the trap level (TL) register’s value is zero (TL = 0)

Upon entry to the trap handler for trap_level_zero, TPC points to the instruction that was about to
be executed after all three of these conditions were met.

■ unimplemented_LDTW [TT = 01216] (Precise) — An attempt was made to execute an LDTW
instruction that is not implemented in hardware on this implementation (impl. dep. #107-V9).

■ unimplemented_STTW [TT = 01316] (Precise) — An attempt was made to execute an STTW
instruction that is not implemented in hardware on this implementation (impl. dep. #108-V9).

■ unsupported_page_size [TT = 03B16] (Precise) —This trap is caused by a store that writes an
unsupported page size to a TSB configuration register, an MMU data_in register, or an MMU
data_access register.

■ watchdog_reset (WDR) [TT = 00216] (Reset) — This trap occurs in error_state and causes a
transition to RED_state (impl. dep. #254-U3-Cs10).

■ VA_watchpoint [TT = 06216] (Precise) — The virtual processor has detected an attempt to access
(load from or store to) a virtual address specified by the VA Watchpoint register, while VA
watchpoints are enabled and the address is being translated from a virtual address to a physical
address. If the load or store address is not being translated from a virtual address (for example, the
address is being treated as a real address), then a VA_watchpoint exception will not be generated
even if a match is detected between the VA Watchpoint register and a load or store address. This
exception is always masked in hyperprivileged mode; therefore, a VA_watchpoint trap cannot occur
in hyperprivileged mode (even if memory is accessed using ASI_AS_IF_USER_PRIMARY or
ASI_AS_IF_USER_SECONDARY).

12.7.1 SPARC V9 Traps Not Used in UltraSPARC Architecture 2007
The following traps were optional in the SPARC V9 specification and are not used in UltraSPARC
Architecture 2007:

SPARC V9
Compatibility

Note

The sw_recoverable_error exception was called
async_data_error in the SPARC V9 specification, which in turn
superseded the earlier and less general SPARC V8
data_store_error exception.

Programming
Note

The purpose of this trap is to improve efficiency when de-
scheduling a virtual processor. When a descheduling event
occurs and the virtual processor is executing in privileged mode
at TL > 0, hyperprivileged software can choose to enable the
trap_level_zero exception (set HPSTATE.tlz ← 1) and return to
privileged mode, enabling privileged software to complete its
TL > 0 processing. When privileged code returns to TL = 0, this
exception enables the hyperprivileged code to regain control
and deschedule the virtual processor with low overhead.

C2
CHAPTER 12 • Traps 415

■ async_data_error [TT = 04016] (Disrupting) — This exception was superseded by the
sw_recoverable_error exception.

■ data_access_protection [TT = 03316] (Precise or Deferred) — This exception is generally
superseded by fast_data_access_protection (see page 408).

■ fast_ECC_error [TT = 07016] (Precise) — A single-bit or multiple-bit ECC error was detected. This
exception is superseded by hw_corrected_error in UltraSPARC Architecture 2007.

IMPL. DEP. #202-U3: Whether or not a fast_ECC_error trap exists is implementation dependent. If
it does exist, it indicates that an ECC error was detected in an external cache and its trap type is
07016.

■ implementation_dependent_exception_n [TT = 07716 - 07B16] This range of implementation-
dependent exceptions has been replaced by a set of architecturally-defined exceptions. (impl.dep.
#35-V8-Cs20)

■ LDQF_mem_address_not_aligned [TT = 03816] (Precise) — An attempt was made to execute an
LDQF instruction and the effective address was word aligned but not quadword aligned. Use of
this exception is implementation dependent (impl. dep. #111-V9-Cs10). A separate trap entry for
this exception supports fast software emulation of the LDQF instruction when the effective address
is word aligned but not quadword aligned. See Load Floating-Point Register on page 195. (impl. dep.
#111)

■ STQF_mem_address_not_aligned [TT = 03916] (Precise) — An attempt was made to execute an
STQF instruction and the effective address was word aligned but not quadword aligned. Use of
this exception is implementation dependent (impl. dep. #112-V9-Cs10). A separate trap entry for
the exception supports fast software emulation of the STQF instruction when the effective address
is word aligned but not quadword aligned. See Store Floating-Point on page 272. (impl. dep. #112)

12.8 Register Window Traps
Window traps are used to manage overflow and underflow conditions in the register windows,
support clean windows, and implement the FLUSHW instruction.

12.8.1 Window Spill and Fill Traps
A window overflow occurs when a SAVE instruction is executed and the next register window is
occupied (CANSAVE = 0). An overflow causes a spill trap that allows privileged software to save the
occupied register window in memory, thereby making it available for use.

A window underflow occurs when a RESTORE instruction is executed and the previous register
window is not valid (CANRESTORE = 0). An underflow causes a fill trap that allows privileged
software to load the registers from memory.

12.8.2 clean_window Trap
The virtual processor provides the clean_window trap so that system software can create a secure
environment in which it is guaranteed that data cannot inadvertently leak through register windows
from one software program to another.

A clean register window is one in which all of the registers, including uninitialized registers, contain
either 0 or data assigned by software executing in the address space to which the window belongs. A
clean window cannot contain register values from another process, that is, from software operating in
a different address space.
416 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

Supervisor software specifies the number of windows that are clean with respect to the current
address space in the CLEANWIN register. This number includes register windows that can be restored
(the value in the CANRESTORE register) and the register windows following CWP that can be used
without cleaning. Therefore, the number of clean windows available to be used by the SAVE
instruction is

CLEANWIN − CANRESTORE

The SAVE instruction causes a clean_window exception if this value is 0. This behavior allows
supervisor software to clean a register window before it is accessed by a user.

12.8.3 Vectoring of Fill/Spill Traps
To make handling of fill and spill traps efficient, the SPARC V9 architecture provides multiple trap
vectors for the fill and spill traps. These trap vectors are determined as follows:

■ Supervisor software can mark a set of contiguous register windows as belonging to an address
space different from the current one. The count of these register windows is kept in the OTHERWIN
register. A separate set of trap vectors (fill_n_other and spill_n_other) is provided for spill and fill
traps for these register windows (as opposed to register windows that belong to the current
address space).

■ Supervisor software can specify the trap vectors for fill and spill traps by presetting the fields in the
WSTATE register. This register contains two subfields, each three bits wide. The WSTATE.normal
field determines one of eight spill (fill) vectors to be used when the register window to be spilled
(filled) belongs to the current address space (OTHERWIN = 0). If the OTHERWIN register is
nonzero, the WSTATE.other field selects one of eight fill_n_other (spill_n_other) trap vectors.

See Trap-Table Entry Addresses on page 382, for more details on how the trap address is determined.

12.8.4 CWP on Window Traps
On a window trap, the CWP is set to point to the window that must be accessed by the trap handler,
as follows.

■ If the spill trap occurs because of a SAVE instruction (when CANSAVE = 0), there is an overlap
window between the CWP and the next register window to be spilled:

CWP ← (CWP + 2) mod N_REG_WINDOWS

If the spill trap occurs because of a FLUSHW instruction, there can be unused windows
(CANSAVE) in addition to the overlap window between the CWP and the window to be spilled:

CWP ← (CWP + CANSAVE + 2) mod N_REG_WINDOWS

■ On a fill trap, the window preceding CWP must be filled:

CWP ← (CWP – 1) mod N_REG_WINDOWS

■ On a clean_window trap, the window following CWP must be cleaned. Then

CWP ← (CWP + 1) mod N_REG_WINDOWS

Note All arithmetic on CWP is done modulo N_REG_WINDOWS.

Implementation
Note

All spill traps can set CWP by using the calculation:
CWP ← (CWP + CANSAVE + 2) mod N_REG_WINDOWS

since CANSAVE is 0 whenever a trap occurs because of a SAVE
instruction.
CHAPTER 12 • Traps 417

12.8.5 Window Trap Handlers
The trap handlers for fill, spill, and clean_window traps must handle the trap appropriately and
return, by using the RETRY instruction, to reexecute the trapped instruction. The state of the register
windows must be updated by the trap handler, and the relationships among CLEANWIN, CANSAVE,
CANRESTORE, and OTHERWIN must remain consistent. Follow these recommendations:

■ A spill trap handler should execute the SAVED instruction for each window that it spills.

■ A fill trap handler should execute the RESTORED instruction for each window that it fills.

■ A clean_window trap handler should increment CLEANWIN for each window that it cleans:

CLEANWIN ← (CLEANWIN + 1)
418 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

CHAPTER 13

Interrupt Handling

Virtual processors and I/O devices can interrupt a selected virtual processor by assembling and
sending an interrupt packet. The contents of the interrupt packet are defined by software convention.
Thus, hardware interrupts and cross-calls can have the same hardware mechanism for interrupt
delivery and share a common software interface for processing.

The interrupt mechanism is a two-step process:

■ sending of an interrupt request (through an implemenation-specific hardware mechanism) to an
interrupt queue of the target virtual processor

■ receipt of the interrupt request on the target virtual processor and scheduling software handling of
the interrupt request

Privileged software running on a virtual processor can schedule interrupts to itself (typically, to
process queued interrupts at a later time) by setting bits in the privileged SOFTINT register (see
Software Interrupt Register (SOFTINT) on page 420).

In the following sections, the following aspects of interrupt handling are described:

■ Interrupt Packets on page 419.

■ Software Interrupt Register (SOFTINT) on page 420.

■ Interrupt Queues on page 420.

■ Interrupt Traps on page 422.

■ Strand Interrupt ID Register (STRAND_INTR_ID) on page 423.

■ Interrupt Receive Register on page 423.

■ Interrupt Vector Dispatch Register on page 424.

■ Incoming Interrupt Vector Register on page 424.

13.1 Interrupt Packets
Each interrupt is accompanied by data, referred to as an “interrupt packet”. An interrupt packet is 64
bytes long, consisting of eight 64-bit doublewords. The contents of these data are defined by software
convention.

Programming
Note

An interrupt request packet is sent by an interrupt source
(through an implementation-specific mechanism) and is
received by the specified target in an interrupt queue. Upon
receipt of an interrupt request packet, a special trap is invoked
on the target virtual processor. The trap handler software
invoked in the target virtual processor then schedules itself to
later handle the interrupt request by posting an interrupt in the
SOFTINT register at the desired interrupt level.
419

13.2 Software Interrupt Register (SOFTINT)
To schedule interrupt vectors for processing at a later time, privileged software running on a virtual
processor can send itself signals (interrupts) by setting bits in the privileged SOFTINT register.
Similarly, hyperprivileged software can schedule interrupt vectors for privileged software running on
the same virtual processorby setting bits in SOFTINT.

See SOFTINTP Register (ASRs 20, 21, 22) on page 57 for a detailed description of the SOFTINT register.

13.2.1 Setting the Software Interrupt Register
SOFTINT{n} is set to 1 by executing a WRSOFTINT_SETP instruction (WRasr using ASR 20) with a ‘1’
in bit n of the value written (bit n corresponds to interrupt level n). The value written to the
SOFTINT_SET register is effectively ored into the SOFTINT register. This approach allows the
interrupt handler to set one or more bits in the SOFTINT register with a single instruction.

See SOFTINT_SETP Pseudo-Register (ASR 20) on page 58 for a detailed description of the
SOFTINT_SET pseudo-register.

13.2.2 Clearing the Software Interrupt Register
When all interrupts scheduled for service at level n have been serviced, kernel software executes a
WRSOFTINT_CLRP instruction (WRasr using ASR 21) with a ‘1’ in bit n of the value written, to clear
interrupt level n (impl. dep. 34-V8a). The complement of the value written to the SOFTINT_CLR
register is effectively anded with the SOFTINT register. This approach allows the interrupt handler to
clear one or more bits in the SOFTINT register with a single instruction.

See SOFTINT_CLRP Pseudo-Register (ASR 21) on page 59 for a detailed description of the
SOFTINT_CLR pseudo-register.

13.3 Interrupt Queues
Interrupts are indicated to privileged mode via circular interrupt queues, each with an associated trap
vector. There are 4 interrupt queues, one for each of the following types of interrupts:

Programming
Note

The SOFTINT register (ASR 1616) is used for communication
from nucleus (privileged, TL > 0) software to privileged software
running with TL = 0. Interrupt packets and other service
requests can be scheduled in queues or mailboxes in memory by
the nucleus, which then sets SOFTINT{n} to cause an interrupt
at level n.

Programming
Note

The SOFTINT mechanism is independent of the “mondo”
interrupt mechanism mentioned in Interrupt Queues on page 420.
The two mechanisms do not interact.

Programming
Note

To avoid a race condition between operating system kernel
software clearing an interrupt bit and nucleus software setting
it, software should (again) examine the queue for any valid
entries after clearing the interrupt bit.
420 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

■ Device mondos1

■ CPU mondos

■ Resumable errors

■ Nonresumable errors

New interrupt entries are appended to the tail of a queue (by hardware or by hyperprivileged
software) and privileged software reads them from the head of the queue.

13.3.1 Interrupt Queue Registers
The active contents of each queue are delineated by a 64-bit head register and a 64-bit tail register.

IMPL. DEP. #421-S10: It is implementation dependent whether interrupt queue head and tail
registers (a) are datatype-agnostic “scratch registers” used for communication between privileged and
hyperprivileged software, in which case their contents are defined purely by software convention, or
(b) are maintained to some degree by virtual processor hardware, imposing a fixed meaning on their
contents.

The interrupt queue registers are accessed through ASI ASI_QUEUE (2516). The ASI and address
assignments for the interrupt queue registers are provided in TABLE 13-1.

IMPL. DEP. #422-S10: It is implementation dependent whether tail registers are writable in
privileged mode. If a tail register is read-only in privileged mode, an attempt to write to it causes a
DAE_invalid_asi exception. If a tail register is writable in privileged mode, an attempt to write to it
results in undefined behavior.

1. “mondo” is a historical term, referring to the name of the original UltraSPARC 1 bus transaction in which these interrupts were
introduced

Programming
Note

Software conventions for cooperative management of interrupt
queues and the format of queue entries are specified in the
separate Hypervisor API Specification document.

Programming
Note

If the contents of Queue Head and Tail registers are set only by
software convention in a given implementation, software could
place any type of data in them (such as addresses, address
offsets, or index values).

It is expected that Queue Head and Tail registers will typically
contain a byte offset from the base of an appropriately-aligned
queue region in memory.

TABLE 13-1 Interrupt Queue Register ASI Assignments

Register

ASI
Virtual

Address

Privileged
mode

Access

Hyper-
privileged

mode
Access

CPU Mondo Queue Head 2516 (ASI_QUEUE) 3C016 RW R/W

CPU Mondo Queue Tail 2516 (ASI_QUEUE) 3C816 R or RW† R/W

Device Mondo Queue Head 2516 (ASI_QUEUE) 3D016 RW R/W

Device Mondo Queue Tail 2516 (ASI_QUEUE) 3D816 R or RW† R/W

Resumable Error Queue Head 2516 (ASI_QUEUE) 3E016 RW R/W

Resumable Error Queue Tail 2516 (ASI_QUEUE) 3E816 R or RW† R/W

Nonresumable Error Queue Head 2516 (ASI_QUEUE) 3F016 RW R/W

Nonresumable Error Queue Tail 2516 (ASI_QUEUE) 3F816 R or RW† R/W

† see IMPL. DEP.#422-S10
CHAPTER 13 • Interrupt Handling 421

The status of each queue is reflected by its head and tail registers:

■ A Queue Head Register indicates the location of the oldest interrupt packet in the queue

■ A Queue Tail Register indicates the location where the next interrupt packet will be stored

An event that results in the insertion of a queue entry causes the tail register for that queue to refer to
the following entry in the circular queue. Privileged code is responsible for updating the head
register appropriately when it removes an entry from the queue.

A queue is empty when the contents of its head and tail registers are equal. A queue is full when the
insertion of one more entry would cause the contents of its head and tail registers to become equal.

13.4 Interrupt Traps
The following interrupt traps are defined in the UltraSPARC Architecture 2007: cpu_mondo,
dev_mondo, resumable_error, and nonresumable_error. The first three (cpu_mondo, dev_mondo, and
resumable_error) are all generated by hardware, while nonresumable_error is generated by
hyperprivileged software. See Chapter 12, Traps, for details.

UltraSPARC Architecture 2007 also supports the interrupt_level_n traps defined in the SPARC V9
specification.pt trans

How interrupts are delivered is implementation-specific; see the relevant implementation-specific
Supplement to this specification for details.

Implementation
Note

Although Queue Head and Tail registers behave as registers,
they may or may not be implemented using actual hardware
registers. For example, they may reside in memory, mapped by
a mechanism visible only to hyperprivileged software. In any
case, the means by which Queue Head and Tail registers are
implemented is not visible to privileged software.

Programming
Note

By current convention, the format of a Queue Head or Tail
register is as follows:

Under this convention:

■ updating a Queue Head register involves incrementing it by
64 (size of a queue entry, in bytes)

■ Queue Head and Tail registers are updated using modular
arithmetic (modulo the size of the circular queue, in bytes)

■ bits 5:0 always read as zeros, and attempts to write to them are
ignored

■ the maximum queue offset for an interrupt queue is
implementation dependent

■ behavior when a queue register is written with a value larger
than the maximum queue offset (queue length minus the
length of the last entry) is undefined

This is merely a convention and is subject to change.

63 6 5 0

 head/tail offset 000000
422 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

13.5 Strand Interrupt ID Register
(STRAND_INTR_ID)
The STRAND_INTR_ID per-virtual-processor register allows software to assign a 16-bit interrupt ID,
unique within the system, to a virtual processor. This is important, to enable virtual processors to
receive interrupts. See Strand Interrupt ID Register (STRAND_INTR_ID) on page 480 for details.

13.6 Interrupt Vector Registers
Associated with the interrupt_vector exception are three hyperprivileged registers, described in the
following sections.

13.6.1 Interrupt Receive Register
Each virtual processor has a hyperprivileged Interrupt Receive (ASI_INTR_RECEIVE) register,
accessed using ASI 7216 with VA{63:0} = 0.

The Interrupt Receive Register receives and stores CPU cross-call disrupting trap requests, as sent
from other strands using the Interrupt Vector Dispatch Register. When a CPU cross-call for interrupt
vector n arrives for a virtual processor, the corresponding bit (bit n) is set in the receiving strand’s
Interrupt Receive register. Interrupt vectors are implicitly prioritized, with vector number 63 having
the highest priority and vector number 0 having the lowest priority.

Software writes to the Interrupt Receive register are anded with the current register contents, and the
result is written back to the Interrupt Receive register. This allows software to selectively clear (zero)
register bits in the Interrupt Receive Register. However, normally software reads the Incoming
Interrupt Vector register (described in Section 13.6.3), which clears the bit corresponding to the
highest priority pending interrupt. When an interrupt arrives at the same time as software writes to
the Interrupt Receive register, the interrupt will take precedence over the write and the bit
corresponding to the incoming interrupt will be set.

Software can read the Interrupt Receive register to determine all pending interrupts, although
normally the Incoming Interrupt Vector register will be used to determine the highest-priority
pending interrupt.

An attempt by nonprivileged or privileged software to access this hyperprivileged register causes a
privileged_action exception.

TABLE 13-2 defines the data layout of the Interrupt Receive register.

After a power-on reset, the pending field of this register is undefined.

TABLE 13-2 Interrupt Receive Register – ASI_INTR_RECEIVE (ASI 7216, VA 016)

Bit(s) Field Initial Value R/W Description

63:0 pending X RW Pending interrupts.
CHAPTER 13 • Interrupt Handling 423

13.6.2 Interrupt Vector Dispatch Register
Each virtual processor has a hyperprivileged, write-only Interrupt Vector Dispatch (ASI_INTR_W)
register, accessed using ASI 7316 with VA{63:0} = 0.

The Interrupt Vector Dispatch register is used to send a CPU cross-call (disrupting trap request,
sometimes loosely referred to as an “interrupt”) to a virtual processor. Unlike mondo interrupts,
these interrupts cannot be NACKed by the destination and multiple interrupts that set the same
Interrupt Receive register bit before it has been cleared will only generate a single interrupt. A
disrupting trap request generated by a store to the Interrupt Vector Dispatch register will follow the
TSO memory model (no MEMBAR #Sync is required). The data stored to the Interrupt Vector
Dispatch register specifies the destination virtual processor and vector (priority of the request). The
bit corresponding to the specified vector is set in the Interrupt Receive register of the destination
virtual processor.

The data layout of the Interrupt Vector Dispatch register is illustrated in FIGURE 13-1. The strand field
contains the strand ID of the destination virtual processor for the interrupt (cross-call) and the vector
field encodes the bit number to be set in the destination virtual processor’s Interrupt Receive Register.

Note that the width of the strand field of the Interrupt Vector Dispatch register is implementation-
dependent. The width (m-8) of the strand field must be sufficient to uniquely encode every strand in
a system. For example, for a system supporting a single 64-strand processor, 6 bits (m = 14) is
sufficient to encode strand numbers in strand. For a system supporting four 128-strand processors, 9
bits (m = 17) would be needed to encode all strand numbers in the strand field.

An attempt by nonprivileged or privileged software to access the hyperprivileged Interrupt Vector
Dispatch register causes a privileged_action exception. An attempt to read from this register causes a
DAE_invalid_asi exception.

13.6.3 Incoming Interrupt Vector Register
Each virtual processor has a hyperprivileged, read-only Incoming Interrupt Vector (ASI_INTR_R)
register, accessed using ASI 7416 with VA{63:0} = 0.

When the Incoming Interrupt Vector register is read by software, a 6-bit value is returned which
encodes the number of the highest-priority pending cross-call (“interrupt”) in the Interrupt Receive
register. The pending interrupt bit for that vector (as observed in the Interrupt Receive register) is
automatically set to 0. When the Incoming Interrupt Vector register is read and at the same time
another interrupt arrives that would cause the same pending-interrupt bit to be set which the read is
about to clear, the the interrupt takes precedence and the bit will remain set to 1 (it will not be
cleared). If no pending-interrupt bits are set (the contents of the Interrupt Receive register are 0) when
the Incoming Interrupt Vector register is read, the read will return a value of zero.

An attempt by nonprivileged or privileged software to access the hyperprivileged Incoming Interrupt
Vector register causes a privileged_action exception. An attempt to write to this register causes a
DAE_invalid_asi exception.

Programming
Note

After an interrupt vector trap is taken by the destination virtual
processor, it is the responsibility of the interrupt handler to clear
the highest-priority pending bit in the interrupt register, usually
by reading the Incoming Interrupt Vector register as described in
Section 13.6.3.

RO W RO W

— strand — vector

63 m m-1 8 7 6 5 0

FIGURE 13-1 Interrupt Vector Dispatch register
424 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

The Incoming Interrupt Vector register, as observed by software, is illustrated in FIGURE 13-2.

Programming
Note

The interrupt handler will normally use the Incoming Interrupt
Vector register to determine the highest-priority pending
interrupt, while atomically clearing the “pending” bit
corresponding to that highest priority interrupt.

Is is recommended to only read the Interrupt Vector register
within the interrupt_vector trap handler. Otherwise, each read
of Interrupt Vector would cause indication of an incoming cross-
call to be cleared (and presumably lost).

Programming
Note

Note that when the Incoming Interrupt Vector register is read, if
0 is returned then software cannot distinguish between whether
no vector bits were set or only vector bit 0 was set. In the latter
case, reading the Incoming Interrupt Vector register will clear bit
0 of the Interrupt Receive Register, leaving no evidence behind
as to whether vector bit 0 had been set or not. Some options for
software to handle this include:

• do not use vector bit 0
• do not read the Incoming Interrupt Vector register; read only the

Interrupt Receive register
• before reading the Incoming Interrupt Vector register, read the

Interrupt Receive register and save that value to allow disambiguation
in case the read of the Incoming Interrupt Vector register returns 0.

Implementation
Note

The Incoming Interrupt Vector register is typically implemented
as a pseudo-register — its contents are generated dynamically,
based on the contents of the Interrupt Receive Register.

RO RO

— vector

63 6 5 0

FIGURE 13-2 Incoming Interrupt Vector register
CHAPTER 13 • Interrupt Handling 425

426 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

CHAPTER 14

Memory Management

An UltraSPARC Architecture Memory Management Unit (MMU) conforms to the requirements set
forth in the SPARC V9 Architecture Manual. In particular, it supports a 64-bit virtual address space,
simplified protection encoding, and multiple page sizes. In an UltraSPARC Architecture
implementation, TLB miss processing can be achieved either by hardware page tablewalk or by
privileged software.

IMPL. DEP. # 451-S20: The width of the virtual address supported is implementation dependent. If
fewer than 64 bits are supported, the unsupported bits must have the same value as the most
significant supported bit. For example, if the model supports 48 virtual address bits, then bits 63:48
must have the same value as bit 47.

This appendix describes the Memory Management Unit, as observed by hyperprivileged software, in
these sections:

■ Virtual Address Translation on page 427.
■ Hyperprivileged Memory Management Architecture on page 432.
■ Context ID on page 432.
■ TSB Translation Table Entry (TTE) on page 434.
■ Translation Storage Buffer (TSB) on page 437.
■ Hardware Support for TSB Access on page 439.
■ Faults and Traps on page 441.
■ MMU Operation Summary on page 443.
■ ASI Value, Context ID, and Endianness Selection for Translation on page 445.
■ Translation on page 448.
■ SPARC V9 “MMU Attributes” on page 453.
■ MMU Internal Registers and ASI Operations on page 453.
■ Translation Lookaside Buffer Hardware on page 472.

14.1 Virtual Address Translation
The MMUs may support up to eight page sizes: 8 KBytes, 64 KBytes, 512 KBytes, 4 MBytes, 32 MBytes,
256 MBytes, 2 GBytes, and 16 GBytes. 8-KByte, 64-KByte and 4- MByte page sizes must be supported;
the other page sizes are optional.

IMPL. DEP. #310-U4: Which, if any, of the following optional page sizes are supported by the MMU
in an UltraSPARC Architecture 2007 implementation is implementation dependent: 512 KBytes, 32
MBytes, 256 MBytes, 2 GBytes, and 16 GBytes.

An UltraSPARC Architecture MMU supports a 64-bit virtual address (VA) space.
427

IMPL. DEP. #452-S20: The number of real address (RA) and physical address (PA) bits supported is
implementation dependent. A minimum of 40 bits and maximum of 56 bits can be provided for both
real addresses (RA) and physical addresses (PA). See implementation-specific documentation for
details.

In each translation, the virtual page number is replaced by a physical page number, which is
concatenated with the page offset to form the full physical address, as illustrated in FIGURE 14-1 and
FIGURE 14-2.

IMPL. DEP. #453-S20: It is implementation dependent whether there is a unified MMU (UMMU) or a
separate IMMU (for instruction accesses) and DMMU (for data accesses). The UltraSPARC
Architecture supports both configurations.

Each MMU consists of one or more Translation Lookaside Buffers (TLBs), and may include micro-TLB
structures. Separate Instruction and Data MMUs (IMMU and DMMU, respectively) may be provided
to enable concurrent virtual-to-physical address translations for instruction and data.

IMPL. DEP. #222-U3: TLB organization is implementation dependent.
428 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

FIGURE 14-1 Virtual-to--Physical Address Translation for 8-Kbyte, 64-Kbyte, 512-Kbyte, and 4-Mbyte Page
Sizes

0

0

12

1213

1363

55

8-Kbyte Virtual Page Number

8-Kbyte Real Page Number (RPN)

Page Offset

Page Offset

0

0

15

1516

1663

55

64-Kbyte Virtual Page Number

64-Kbyte RPN

Page Offset

Page Offset

0

0

18

1819

1963

55

512-Kbyte Virtual Page Number

512-Kbyte PPN

Page Offset

Page Offset

VA

PA

RA

RA

VA

VA

8 Kbyte

64 Kbyte

512 Kbyte

0

0

21

2122

2263

55

4-Mbyte Virtual Page Number

4-Mbyte RPN

Page Offset

Page Offset RA

VA

4 Mbyte

MMU

MMU

MMU

MMU

0212255

4-Mbyte PPN Page Offset PA

MMU

0181955

512-Kbyte RPN Page Offset RA

MMU

0151655

64-Kbyte PPN Page Offset PA

MMU

0121355

8-Kbyte Physical Page Number (PPN) Page Offset PA

MMU
CHAPTER 14 • Memory Management 429

FIGURE 14-2 Virtual-to-Physical Address Translation for 32-Mbyte, 256-Mbyte, 2-Gbyte, and 16-Gbyte Page
Sizes

Privileged software manages virtual-to-real address translations. Hyperprivileged software manages
real-to-physical address translations.

Privileged software maintains translation information in an arbitrary data structure, called the software
translation table.

The Translation Storage Buffer (TSB) is an array of Translation Table Entries which serves as a cache of
the software translation table, used to quickly reload the TLB in the event of a TLB miss.

The MMU TLBs act as independent caches of the software translation table, providing appropriate
concurrency for virtual-to-physical address translation.

0

0

63

55

32-Mbyte RPN

0

0

63

55

0

0

63

55

VA

RA

PA

RA

VA

VA

32 Mbyte

256 Mbyte

2 Gbyte

0

0

63

55
PA

VA

16 Gbyte

32-Mbyte Virtual Page Number

MMU 25 24

Page Offset

25 24

Page Offset

MMU

256-Mbyte Virtual Page Number

256-Mbyte PPN

Page Offset

Page Offset

28 27

28 27

2-Gbyte Virtual Page Number

MMU

2-Gbyte RPN

31 30

31 30

Page Offset

Page Offset

16-Gbyte Virtual Page Number Page Offset

MMU

16-Gbyte PPN

34 33

34 33

Page Offset

055
RA

16-Gbyte RPN

34 33

Page Offset

MMU

055
PA

2-Gbyte PPN

31 30

Page Offset

MMU

055
RA

256-Mbyte RPN Page Offset

28 27MMU

055

32-Mbyte PPN PA

25 24

Page Offset

MMU
430 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

Hyperprivileged software maintains translation information for real-to-physical translations.

During a memory access, one or more TLBs are searched for a VA (or RA) translation. A TLB hit is
indicated when the virtual address, context ID, and partition ID (or real address and partition ID)
match an entry in the TLB.

A TLB miss is indicated when no such match occurs, and is handled as follows:

■ With the hardware tablewalk unimplemented or disabled, the MMU immediately traps to
hyperprivileged software for TLB miss processing. The TLB miss handler can fill the TLB by any
available means, but it is likely to take advantage of the TLB miss support features provided by the
MMU, since the TLB miss handler is time-critical code. Hardware support is described in Hardware
Support for TSB Access on page 439.

■ With hardware tablewalk implemented and enabled, hardware processes the TLB miss directly.

A conceptual view of privileged-mode memory management the MMU is shown in FIGURE 14-3. The
TLBs, which are part of the MMU hardware, are small and fast. The software translation table is likely
to be large and complex. The translation storage buffer (TSB), which acts like a direct-mapped cache,
is the interface between the software translation table and the underlying memory management
hardware. The TSB can be shared by all processes running on a virtual processor or can be process
specific; the hardware does not require any particular scheme. There can be several TSBs.

The UltraSPARC Architecture provides a memory partitioning mechanism that allows for multiple
partitions, each containing its own real address space. Hyperprivileged software provides real address
to physical address translations. See Real Address Translation on page 432.

FIGURE 14-3 Conceptual View of the MMU

Aliasing of multiple virtual addresses to the same physical address is supported. However, the
reverse case of multiple mappings from one virtual address to multiple physical addresses producing
a multiple TLB match is detected in hardware as a multiple tag hit TLB error. See Chapter 17, Error
Handling, for details.

Translation
Lookaside

Buffers

Software
Translation

Table

Operating SystemMemoryMMU

Real Page

← Managed by privileged →← Managed by →
hyperprivileged

 mode software

Number
to

Physical Page

Translation

mode software

PA ← RA

Buffer

Translation

 RA ← VA

Storage

Number (TSB)
(TLBs)

Data Structure
CHAPTER 14 • Memory Management 431

14.2 Hyperprivileged Memory Management
Architecture
The intent of the hyperprivileged memory management architecture is to provide a memory
addressing capability for a virtualized architecture, but at the same time removing the explicit
dependence on hardware mechanisms for virtual memory management. Mechanisms are provided to
allow privileged mode to manipulate the memory made available to it, and in turn to virtualize and
make that memory available to its nonprivileged mode process.

14.2.1 Partition ID
The hyperprivileged memory architecture has a partition ID, which separates the real addresses of
each partition in the same way that context IDs separate virtual address spaces within a single real
address space. Hyperprivileged mode provides the partition ID to create multiple real address spaces.
It uses the partition ID register to associate addresses with their partition ID.

The full representation of a memory address is:

virtual address: <partition ID > :: <context ID > :: <address>

real address: <partition ID > :: <address>

physical address: <address>

Nonprivileged mode only uses virtual addresses.

Privileged mode uses virtual addresses and real addresses, and manages the allocation of context IDs.

Hyperprivileged mode uses physical addresses (and explicit ASI virtual and real addresses) and
manages the allocation of partition IDs.

The partition ID field is included in each TLB entry to allow multiple guest operating systems to share
the MMU. The field is loaded with the contents of the partition ID register when the TLB entry is
loaded. In addition, the partition ID stored in each entry of a TLB is compared against the partition ID
to determine if a TLB hit occurs.

See Partition ID Register on page 456 for more details.

14.2.2 Real Address Translation
The memory system supports real addresses. TABLE 14-8 provides examples of the real addresses for
data accesses. In addition, real addresses are provided when the MMU is disabled in privileged mode.

The MMU supports both virtual-to-physical (VA → PA) and real-to-physical (RA → PA) translations.

Hyperprivileged software controls the translation mechanisms from Real Page Numbers (RPNs) to
Physical Page Numbers (PPNs).

14.3 Context ID
The MMU supports three contexts:

■ Primary Context
432 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

■ Secondary Context
■ Nucleus Context (which has a fixed Context ID value of zero)

The context used for each access depends on the type of access, the ASI used, the current privilege
mode, and the current trap level (TL). Details are provided in the following paragraphs and in
TABLE 14-1.

For instruction fetch accesses, in nonprivileged and privileged mode when TL = 0 the Primary Context
is used; when TL > 0, the Nucleus Context is used. Instruction accesses in hyperprivileged mode are
physical addresses, so no context is provided.

For data accesses using implicit ASIs, in nonprivileged and privileged mode when TL = 0 the Primary
Context is used; when TL > 0, the Nucleus Context is used. Data accesses using implicit ASIs in
hyperprivileged mode are physical addresses, so no context is provided.

For data accesses using explicit ASIs:

■ In nonprivileged mode the Primary Context is used for the ASI_PRIMARY* ASIs, and the
Secondary Context is used for the ASI_SECONDARY* ASIs.

■ In privileged mode, the Primary Context is used for the ASI_PRIMARY* and the
ASI_AS_IF_USER_PRIMARY* ASIs, the Secondary Context is used for the ASI_SECONDARY* and
the ASI_AS_IF_USER_SECONDARY* ASIs, and the Nucleus Context is used for ASI_NUCLEUS*
ASIs.

■ In hyperprivileged mode, the Primary Context is used for ASI_AS_IF_[USER|PRIV]_PRIMARY*
ASIs, and the Secondary Context for the ASI_AS_IF_[USER|PRIV]_SECONDARY* ASIs, and the
Nucleus Context for ASI_AS_IF_PRIV_NUCLEUS*.

The above paragraphs are summarized in TABLE 14-1.

TABLE 14-1 Context Usage

Access
Type Privilege Mode

Under What Conditions each Context is Used

Primary Context Secondary Context Nucleus Context

Instruction
Access

Nonprivileged
or Privileged

(when TL = 0) † (when TL > 0)

Hyperprivileged ‡ ‡ ‡

Data
access
using

implicit
ASI

Nonprivileged
or Privileged

(when TL = 0) † (when TL > 0)

Hyperprivileged
‡ ‡ ‡

Data
access
using

explicit ASI

Nonprivileged ASI_PRIMARY* ASI_SECONDARY* †

Privileged ASI_PRIMARY*
ASI_AS_IF_USER_PR

IMARY*

ASI_SECONDARY*
ASI_AS_IF_USER_SE

CONDARY*

ASI_NUCLEUS*

Hyperprivileged ASI_AS_IF_USER_PR
IMARY*

ASI_AS_IF_PRIV_PR
IMARY*

ASI_AS_IF_USER_SE
CONDARY*

ASI_AS_IF_PRIV_SE
CONDARY*

ASI_AS_IF_PRIV_
NUCLEUS*

 † no context is listed becuase this case cannot occur

 ‡ no context is provided, because physcial addresses are used in this case in hyperprivileged mode

Note The UltraSPARC Architecture provides the capability of private and
shared contexts. Multiple primary and secondary context IDs, which
allow different processes to share TTEs within the TLB, are defined.
See Context ID Registers on page 455 for details.
CHAPTER 14 • Memory Management 433

IMPL. DEP. #___: The UltraSPARC Architecture defines a 16-bit context ID. The size of the context ID
field is implementation dependent. At least 13 bits must be implemented. If fewer than 16 bits are
supported, the unused high order bits are ignored on writes to the context ID, and read as zeros.

14.4 TSB Translation Table Entry (TTE)
The Translation Storage Buffer (TSB) Translation Table Entry (TTE) is the equivalent of a page table
entry as defined in the Sun4v Architecture Specification; it holds information for a single page mapping.
The TTE is divided into two 64-bit words representing the tag and data of the translation. Just as in a
hardware cache, the tag is used to determine whether there is a hit in the TSB; if there is a hit, the data
are used by either the hardware tablewalker or privileged software.

The TTE configuration is illustrated in FIGURE 14-4 and described in TABLE 14-2.

FIGURE 14-4 Translation Storage Buffer (TSB) Translation Table Entry (TTE)

Programming
Note

Privileged software (operating sytems) intended to be portable
across all UltraSPARC Architecture implementations should
always ensure that, for memory accesses made in privileged
mode, private and shared context IDs are set to the same value.
The exception to this is privileged-mode accesses using the
ASI_AS_IF_USER* ASIs, which remain portable even if the
private and shared context IDs differ.

TABLE 14-2 TSB TTE Bit Description (1 of 4)

Bit Field Description

Tag– 63:48 context_id The 16-bit context ID associated with the TTE.

Tag– 47:42 — These bits must be zero for a tag match.

Tag– 41:0 va Bits 63:22 of the Virtual Address (the virtual page number). Bits 21:13 of the VA
are not maintained because these bits index the minimally sized, direct-mapped
TSBs.

Data – 63 v Valid. If v = 1, then the remaining fields of the TTE are meaningful, and the TTE
can be used; otherwise, the TTE cannot be used to translate a virtual address.

nfo

3 01163

epp

5 46 10 7 61 5662 8

v w

9

cv

 55 13 12

063 41424748

TTE

TTE

Tag

Data
soft szcpeiesoft2

context_id 000000 va

taddr

Programming
Note

The explicit Valid bit is (intentionally) redundant with the
software convention of encoding an invalid TTE with an
unused context ID. The encoding of the context_id field is
necessary to cause a failure in the TTE tag comparison,
while the explicit Valid bit in the TTE data simplifies the
TTE miss handler.
434 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

Data – 62 nfo No Fault Only. If nfo = 1, loads with ASI_PRIMARY_NO_FAULT{_LITTLE} or
ASI_SECONDARY_NO_FAULT{_LITTLE} are translated. Any other data access
with the D/UMMU TTE.nfo = 1 will trap with a DAE_nfo_page exception. An
instruction fetch access to a page with the IMMU TTE.nfo = 1 results in an
IAE_nfo_page exception.

Data – 61:56 soft2 Software-defined field, provided for use by the operating system. The soft2 field
can be written with any value in the TSB. Hardware is not required to maintain
this field in any TLB (or uTLB), so when it is read from the TLB (uTLB), it may
read as zero.

Data – 55:13 taddr Target address; the underlying address (Real Address {55:13} or Physical
Address {55:13}) to which the MMU will map the page.
UltraSPARC Architecture TLBs store physical addresses, not real addresses.
Hyperprivileged software is responsible for translation between real and
physical addresses. Whether this field contains a Real or Physical address is
determined by the ra_not_pa bit in the corresponding MMU TSB Configuration
register.

IMPL. DEP. #441-S10: Whether an implementation uses the most significant
physical address bit to differentiate between memory and I/O addresses is
implementation dependent. If that method is used, then the most significant bit
of the physical address (PA) = 1 designates I/O space and the most significant bit
of PA = 0 designates memory space .
IMPL. DEP. #224-U3: Physical address width support by the MMU is
implementation dependent in the UltraSPARC Architecture; minimum PA width
is 40 bits.
IMPL. DEP. #238-U3: When page offset bits for larger page sizes are stored in
the TLB, it is implementation dependent whether the data returned from those
fields by a Data Access read is zero or the data previously written to them.

Data – 12 ie Invert Endianness. If ie = 1 for a page, accesses to the page are processed with
inverse endianness from that specified by the instruction (big for little, little for
big). See page 445 for details.

IMPL. DEP. #__: The ie bit in the IMMU is ignored during ITLB operation. It is
implementation dependent if it is implemented and how it is read and written.

TABLE 14-2 TSB TTE Bit Description (2 of 4)

Bit Field Description

Programming
Notes

(1) The primary purpose of this bit is to aid in the mapping
of I/O devices (through noncacheable memory addresses)
whose registers contain and expect data in little-endian
format. Setting TTE.ie = 1 allows those registers to be
accessed correctly by big-endian programs using ordinary
loads and stores, such as those typically issued by
compilers; otherwise little-endian loads and stores would
have be issued by hand-written assembler code.

(2) This bit can also be used when mapping cacheable
memory. However, cacheable accesses to pages marked
with TTE.ie = 1 may be slower than accesses to the page
with TTE.ie = 0. For example, an access to a cacheable
page with TTE.ie = 1 may perform as if there was a miss in
the first-level data cache.

Implementation
Note

Some implementations may require cacheable accesses to
pages tagged with TTE.ie = 1 to bypass the data cache,
adding latency to those accesses.
CHAPTER 14 • Memory Management 435

Data – 11 e Side effect. If the side-effect bit is set to 1, loads with ASI_PRIMARY_NO_FAULT,
ASI_SECONDARY_NO_FAULT, and their *_LITTLE variations will trap for
addresses within the page, noncacheable memory accesses other than block
loads and stores are strongly ordered against other e-bit accesses, and
noncacheable stores are not merged. This bit should be set to 1 for pages that
map I/O devices having side effects. Note, also, that the e bit causes the prefetch
instruction to be treated as a nop, but does not prevent normal (hardware)
instruction prefetching.
Note 1: The e bit does not force a noncacheable access. It is expected, but not
required, that the cp and cv bits will be set to 0 when the e bit is set to 1. If both
the cp and cv bits are set to 1 along with the e bit, the result is undefined.
Note 2: The e bit and the nfo bit are mutually exclusive; both bits should never
be set to 1 in any TTE.

Data – 10
Data – 9

cp,
cv

The cacheable-in-physically-indexed-cache bit and cacheable-in-virtually-
indexed-cache bit determine the cacheability of the page. Given an
implementation with a physically indexed instruction cache, a virtually indexed
data cache, and a physically indexed unified second-level cache, the following
table illustrates how the cp and cv bits could be used:

The MMU does not operate on the cacheable bits but merely passes them
through to the cache subsystem. The cv bit in the IMMU is read as zero and
ignored when written.
IMPL. DEP. #226-U3: Whether the cv bit is supported in hardware is
implementation dependent in the UltraSPARC Architecture. The cv bit in
hardware should be provided if the implementation has virtually indexed
caches, and the implementation should support hardware unaliasing for the
caches.

Data – 8 p Privileged. If p = 1, only privileged and hyperprivileged software can access the
page mapped by the TTE. If p = 1 and an access to the page is attempted by
nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), then the MMU
signals anIAE_privilege_violation exception orDAE_privilege_violation exception.

Data – 7 ep Executable. If ep = 1, the page mapped by this TTE has execute permission
granted. Instructions may be fetched and executed from this page. If ep = 0, an
attempt to execute an instruction from this page results in an
IAE_unauth_access exception.
IMPL. DEP. #___: An UltraSPARC Architecture ITLB implementation may elect
to not implement the ep bit, and instead present the IAE_unauth_access
exception if there is an attempt to load an ITLB entry with ep = 0 during a
hardware tablewalk. In this case, the MMU miss trap handler software must
also detect the ep = 0 case when the IMMU miss is handled by software.

Data – 6 w Writable. If w = 1, the page mapped by this TTE has write permission granted.
Otherwise, write permission is not granted, and the MMU causes a
fast_data_access_protection trap if a write is attempted.
IMPL. DEP. #___: The w bit in the IMMU is ignored during ITLB operation. It is
implementation dependent if the bit is implemented and how it is written and
read.

Data – 5:4 soft Software-defined field, provided for use by the operating system. The soft field
can be written with any value in the TSB. Hardware is not required to maintain
this field in any TLB (or uTLB), so when it is read from the TLB (or uTLB), it may
read as zero.

TABLE 14-2 TSB TTE Bit Description (3 of 4)

Bit Field Description

Cacheable
(cp:cv)

Meaning of TTE when placed in:

I-TLB (Instruction Cache PA-indexed) D-TLB (Data Cache VA-indexed)

00, 01 Noncacheable Noncacheable
10 Cacheable L2-cache, I-cache Cacheable L2-cache
11 Cacheable L2-cache, I-cache Cacheable L2-cache, D-cache
436 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

14.5 Translation Storage Buffer (TSB)
The Translation Storage Buffer (TSB) is an array of Translation Table Entries managed entirely by
privileged software. It serves as a cache of the software translation table, used to quickly reload the
TLB in the event of a TLB miss. The discussion in this section assumes the use of the hardware
support for TSB access described in Hardware Support for TSB Access on page 439, although the
operating system is not required to make use of this support hardware.

Inclusion of the TLB entries in the TSB is not required; that is, translation information that is not
present in the TSB can exist in the TLB.

14.5.1 TSB Indexing Support
Hardware TSB indexing support via TSB pointers should be provided for the TTEs. Hardware
tablewalk uses the TSB pointers. If the hardware tablewalk is disabled, the TLB miss handler software
can use the TSB pointers.

14.5.2 TSB Cacheability and Consistency
The TSB exists as a data structure in memory and therefore can be cached. Indeed, the speed of the
TLB miss handler relies on the TSB accesses hitting the level-2 cache at a substantial rate. This policy
may result in some conflicts with normal instruction and data accesses, but the dynamic sharing of the
level-2 cache resource will provide a better overall solution than that provided by a fixed partitioning.

Data – 3:0 sz The page size of this entry, encoded as shown below.
sz Page Size
0000 8 Kbyte
0001 64 Kbyte
0010 512 Kbyte
0011 4 Mbyte
0100 32 Mbyte
0101 256 Mbyte
0110 2 Gbyte
0111 16 Gbyte
1000-1111 Reserved

Programming
Note

When software updates the TSB, it is responsible for ensuring
that the store(s) used to perform the update are made visible in
the memory system (for access by subsequent loads, stores, and
load-stores) by use of an appropriate MEMBAR instruction.
Otherwise, since hardware tablewalk is not required to examine
store buffers, a subsequent hardware tablewalk access to the TSB
could retrieve stale data from the L2 cache.

Making a TSB update visible to fetches of instructions
subsequent to the store(s) that updated the TSB may require
execution of instructions such as FLUSH, DONE, or RETRY, in
addition to the MEMBAR.

TABLE 14-2 TSB TTE Bit Description (4 of 4)

Bit Field Description
CHAPTER 14 • Memory Management 437

14.5.3 TSB Organization
The TSB is arranged as a direct-mapped cache of TTEs.

In each case, n least significant bits of the respective virtual page number are used as the offset from
the TSB base address, with n equal to log base 2 of the number of TTEs in the TSB.

The TSB organization is illustrated in FIGURE 14-5. The constant n is determined by the size field in the
TSB register; it can range from 512 to an implementation-dependent number.

FIGURE 14-5 TSB Organization

IMPL. DEP. #227-U3: The maximum number of entries in a TSB is implementation-dependent in the
UltraSPARC Architecture (to a maximum of 16 million, limited by the size of the TSB Configuration
register’s tsb_size field).

14.5.4 TSB Configuration
The MMU provides hardware tablewalk support. Precomputed pointers into the TSB are provided for
both zero and nonzero context IDs and are contained in the following ASIs:

ASI_MMU_ZERO_CONTEXT_TSB_CONFIG_0
ASI_MMU_ZERO_CONTEXT_TSB_CONFIG_1
...
ASI_MMU_ZERO_CONTEXT_TSB_CONFIG_n
ASI_MMU_NONZERO_CONTEXT_TSB_CONFIG_0
ASI_MMU_NONZERO_CONTEXT_TSB_CONFIG_1
...
ASI_MMU_NONZERO_CONTEXT_TSB_CONFIG_n

IMPL. DEP. #___: The number of TSB configuration registers is implementation dependent.

IMPL. DEP. #__: Hardware tablewalk supports an implementation dependent number of TSBs per
virtual processor for zero context IDs and for nonzero context IDs. In some configurations, hardware
tablewalk ignores the context ID match; see Multiple context IDs on page 440.

All TTEs in the TSB must have the size indicated in the TSB Configuration Register or larger. If the
TSB page size is smaller than the size in the TSB Configuration Register, such an entry will never be
matched.

Each TSB can be configured by hyperprivileged software in one of two different modes: context ID-
match or context ID-ignore. The mode determines how a TSB entry is matched when the TSB is
searched. Bits in the MMU_NONZERO_CONTEXTID_TSB_CONFIG_n registers control the mode for each
context ID register. See TABLE 14-20 on page 458 for details.

In context ID-match mode, the context_id field of the TTE tag is matched against a context ID register,
as specified by the actual or implied access ASI. This mode enables a TSB to be used for caching
translation entries belonging to different context IDs. Matching with the context_id field allows only
those translations belonging to the current context ID to be loaded into the TLB.

In context ID-ignore mode, the context_id field of a TSB is ignored when the TSB is searched. A TSB
configured in this mode should have a context_id field of each translation entry set to 0. When a valid
TSB entry is matched, it is loaded into the TLB with a context_id value provided from one of the

Tag#1 (8 bytes) Data#1 (8 bytes)

Tag#2n (8 bytes) Data#2n (8 bytes)

2n Lines in TSB
:
:

:
:

438 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

primary or secondary context ID registers. The choice of primary or secondary is determined by the
actual or implied access ASI. The index of the context ID is specified as part of the TSB configuration.
Context ID-ignore mode enables TSB entries to be used with more than one context. See Multiple
context IDs on page 440.

14.6 Hardware Support for TSB Access
The MMU hardware provides services to allow the TLB-miss handler to efficiently reload the TLB on
a TLB miss. These services include:

■ Hardware tablewalk — hardware loading of missing TTE entries

■ Formation of TSB pointers, based on the missing virtual address and address space identifier.

■ Formation of the TTE tag target used for the TSB tag comparison.

■ Efficient atomic write of a TLB entry with a single store ASI operation.

14.6.1 Hardware Tablewalk
Hardware tablewalk is a hardware state machine that services reload requests from the TLB due to
TLB misses. Hardware tablewalk accesses the TSBs to find TTEs that match the virtual address and
one of the context IDs of the request. Hardware tablewalk may access multiple separate TSBs for each
request.

Privileged code cannot access or control physical memory, so TTEs in the TSBs controlled by
privileged code contain real page numbers, not physical page numbers. TTEs in the TSBs controlled
by hyperprivileged code can contain real page numbers or physical page numbers. Hyperprivileged
code controls the RA-to-PA translation within hardware tablewalk to permit hardware tablewalk to
load privileged code TTEs into the TLB for VA-to-PA translation.

Real address requests are not translated by hardware tablewalk. In the event a real address misses in
the TLB, an instruction_real_translation_miss (for instruction accesses) or a data_real_translation_miss
(for data accesses) exception is generated for the request.

IMPL. DEP. #__: The hardware tablewalk is normally pipelined; it is provided on a virtual processor
basis. The number of possible hardware tablewalks to be processed at a given time is model
dependent. The number of simultaneous TSB accesses is also model dependent.

14.6.1.1 Typical Hardware Tablewalk Sequence

A typical TLB miss and reload sequence when hardware tablewalk is enabled is the following:

■ Hardware tablewalk uses the TSB Configuration registers and the VA of the access to calculate the
physical address of the TSB TTE to examine. The TSB Configuration register provides the base
address of the TSB as well as the number of TTEs in the TSB and the size of the pages translated by
the TTEs.1 Hardware tablewalk uses a Nonzero Context ID TSB Configuration register if the
context ID of the request is nonzero; otherwise, it uses a Zero Context ID TSB Configuration
register. The context ID used to determine zero/nonzero context ID is always the content of the
Context ID 0 register (in the event of a TLB miss on a Primary or Secondary Context access).
Hardware tablewalk uses the page size from the TSB Configuration register to calculate the
presumed VPN for the given VA. Hardware tablewalk then uses the number of TTE entries and the
presumed VPN to generate an index into the TSB. This index is concatenated with the upper bits of
the base address to generate the TTE address.

1. This implies that all TTEs within a given TSB share a common page size.
CHAPTER 14 • Memory Management 439

■ Hardware tablewalk forwards a quadword load request for the TTE address to the L2 cache. At
some later time, the L2 returns the TTE to hardware tablewalk.

■ Hardware tablewalk compares the VPN and context ID of the request to that from the TTE,
masking the VPN based on the page size in the TTE. If the VPN and context ID match, hardware
tablewalk returns the TTE with the RPN translated into a PPN (see Real Page Number To Physical
Page Number Translation on page 440). Hardware tablewalk checks the TTE from each enabled TSB
until it either finds a match or has searched all enabled TSBs.

■ If none of the TTE entries from the enabled TSBs match on page size, VPN, and context ID,
hardware generates an instruction_access_MMU_miss or data_access_MMU_miss trap.

Multiple context IDs. Multiple Primary and Secondary context IDs permit different processes to
share TTEs within the TLBs. The use_cid0 and use_cid1 bits in the TSB Configuration register disable
the context ID match for hardware tablewalk. Hardware tablewalk ignores the context IDs in the TSB
TTEs if either of these bits is set to 1 for requests with nonzero context IDs. If either bit is 1 and the
page size and VPN match, hardware tablewalk signals the TLB to write the appropriate context ID
(depending on the bit setting) as the context ID of the TTE when it is loaded (instead of the context ID
in the TTE itself). See TABLE 14-3 for details. Hardware tablewalk ignores these bits for requests with a
0 (nucleus) context ID value, and behaves as if the bits are zero (i.e. there is a context comparison).

Real Page Number To Physical Page Number Translation. When hardware tablewalk fetches a
TTE from a TSB, it can treat the taddr field as either an RA or a PA under control of the ra_not_pa
field of the TSB Configuration register. If the ra_not_pa bit = 1, hardware tablewalk will translate the
most significant bits of the real address in the TTE into the corresponding bits of the physical address.
The TLBs store this PPN. The TLBs use this PPN to translate VAs into PAs. The hypervisor controls
the RA-to-PA translation mechanism.

The RA-to-PA translation mechanism provides both range checking as well as mapping of address
ranges from one location to another. The translation mechanism uses the RPN and page size in the
TTE and calculates the starting and ending addresses for the specified real page. It then checks that
these addresses lie in one of four ranges specified by the Real Range registers. If the real page lies
completely inside one of the ranges (and the range is enabled), then the translation mechanism adds
the RPN in the TTE to the corresponding field in the Physical Offset register to create the Physical
Page Number. If the real page does not lie completely within any range, then an
instruction_invalid_TSB_entry or data_invalid_TSB_entry trap is delivered to the virtual processor that
initiated the hardware tablewalk. Each virtual processor has a model dependent number of dedicated
ranges with corresponding physical offsets. The RA to PA translation does not depend on the context
ID value being zero or nonzero.

14.6.2 Typical TLB Software Miss Sequence
A typical TLB miss sequence is the following:

TABLE 14-3 Selection Control for Multiple Nonzero Context IDs

use_cid0 use_cid1 Meaning

0 0 Hardware tablewalk compares context_id of TTE from the TSB with
context ID of request and, if they match, stores the context ID of TTE
into context_id field of TLB TTE.

0 1 Hardware tablewalk ignores context_id of TTE from the TSB and stores
value of context ID register 1 in context_id field of TLB TTE.

1 X Hardware tablewalk ignores context_id of TTE from the TSB and stores
value of context ID register 0 in context_id field of TLB TTE.

Note When the TSB Configuration register has ra_not_pa= 0, no range
checking is provided for PPNs for that TSB.
440 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

1. A TLB miss causes either a fast_instruction_access_MMU_miss or a fast_data_access_MMU_miss
exception when hardware tablewalk is disabled or unimplemented.

2. The appropriate TLB miss handler loads the TSB pointers and the TTE tag target, using ASI loads.

3. Using this information, the TLB miss handler checks to see if the desired TTE exists in the TSB. If
so, the TTE data is loaded into the TLB Data In register to initiate an atomic write of the TLB entry
chosen by the replacement algorithm.

4. If the TTE does not exist in the TSB, then the TLB-miss handler jumps to the more sophisticated,
and slower, TSB-miss handler.

The virtual address used in the formation of the pointer addresses comes from the Tag Access register,
which holds the virtual address and context ID of the load or store responsible for the MMU
exception. See TSB Translation Table Entry (TTE) on page 434.

14.7 Faults and Traps
The traps recorded by the MMU are listed in TABLE 14-4. For a detailed description of each trap, see
Chapter 12, Traps. All listed traps are precise traps.

Implementation
Note

There are no separate physical registers in hardware for the
pointer registers; rather, they are implemented through a
dynamic reordering of the data stored in the Tag Access and the
TSB registers.

Note For proper operation, translations for guest OS TSB miss
handlers must always be made available to hyperprivileged
code or to the hardware tablewalk mechanism.

TABLE 14-4 MMU Trap Types, Causes, and Stored State Register Update Policy (1 of 3)

Trap Cause

Registers Updated
(Stored State in MMU)

Trap Name

IMMU
Tag

Access SFAR

DMMU
Tag

Access

UMMU
Tag

Access

fast_instruction_access_MMU_miss I-TLB miss with hardware tablewalk
disabled or unimplemented.

X X

IAE_nfo_page instruction access to nonfaulting load page
(TTE.nfo = 1).

X X

IAE_privilege_violation Nonprivileged instruction access to
privileged page (TTE.p = 1).

X X

IAE_unauth_access Instruction access to page without
“execute” permission (TTE.ep = 0).

X X

instruction_access_error An error was detected on the access of
instruction data.

X X

instruction_access_MMU_error An error was detected on the TLB entry or
during hardware tablewalk for an
instruction access.

X X

instruction_access_MMU_miss The hardware tablewalk for an instruction
access could not find the required TTE in
the enabled TSBs.

X X
CHAPTER 14 • Memory Management 441

instruction_invalid_TSB_entry A hardware tablewalk for an instruction
access found the TTE in the enabled TSBs
to be a real address, which cannot be
translated to a physical address by
hardware.

X X

instruction_real_translation_miss I-TLB miss on an instruction access using a
real-address.

X X

instruction_address_range 1 Instruction virtual access out of range. X X

instruction_real_range2 Instruction real access out of range. X X

instruction_VA_watchpoint Virtual instruction address matches the VA
watchpoint register with VA watchpoints
enabled.

DAE_invalid_asi Invalid ASI for instruction. X

DAE_nc_page Atomic access to noncacheable page
(TTE.cp = 0).

X X X

DAE_nfo_page Data access to nonfaulting page
(TTE.nfo = 1) with ASI other than a non-
faulting ASI.

X X X

DAE_privilege_violation Nonprivileged data access to privileged
page (TTE.p = 1).

X X X

DAE_side_effect_page Non-faulting ASI data access to side-effect
page (TTE.e = 1).

X X X

data_access_error An error is detected on a data access. X

data_access_MMU_error An error was detected on the TLB entry or
during hardware tablewalk for a data
access.

impl.
dep.

data_access_MMU_miss The hardware tablewalk for a data access
could not find the required TTE in the
enabled TSBs.

X X

data_invalid_TSB_entry A hardware tablewalk for a data access
found the TTE in the enabled TSBs to be a
real address, which cannot be translated to
a physical address by hardware.

X X

data_real_translation_miss D-TLB miss on a data access using a real
address.

X X

mem_address_range1 Data or branch virtual access out of range. X

mem_real_range2 Data or branch real access out of range. X

fast_data_access_MMU_miss D-TLB miss with hardware tablewalk
disabled.

X X

fast_data_access_protection Store data access to page with write
protection (TTE.w = 1).

X X X

privileged_action Data access by nonprivileged software,
using a privileged or hyperprivileged ASI.

TABLE 14-4 MMU Trap Types, Causes, and Stored State Register Update Policy (2 of 3)

Trap Cause

Registers Updated
(Stored State in MMU)

Trap Name

IMMU
Tag

Access SFAR

DMMU
Tag

Access

UMMU
Tag

Access
442 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

IMPL. DEP. #__: It is implementation dependent whether D-SFAR is updated for MMU errors. See the
Error Handling chapter of the model-specific PRM for details.

14.8 MMU Operation Summary
The behavior of the D/UMMU for data accesses is summarized in TABLE 14-5; the behavior of the I/
UMMU for instruction accesses is summarized in TABLE 14-6. In each case and for all conditions, the
behavior of each MMU is given by one of the following abbreviations:

The ASI is indicated by one of the following abbreviations:

PA_watchpoint Data access physical address matches the
PA watchpoint register with PA
watchpoints enabled.

X

mem_address_not_aligned,
*_mem_address_not_aligned

Data access address is not properly
aligned.

(impl.
dep.
#237-
U3)

VA_watchpoint Data access virtual address matches the VA
watchpoint register with VA watchpoints
enabled.

X

1. Implementations that do not support 64-bit VAs in hardware require these exceptions. See section 12.7 of the Traps chapter for details.

2. Implementations that do not support 56 bits of real address require these exceptions. See section 12.7 of the Traps chapter for details.

Abbreviation Meaning

OK normal translation

Dmiss fast_data_access_MMU_miss or data_access_MMU_miss exception

Dasi DAE_invalid_asi exception

Dpriv DAE_privilege_violation exception

Dse DAE_side_effect_page exception

Dreal data_real_translation_miss exception

Dprot fast_data_access_protection exception

Imiss fast_instruction_access_MMU_miss or instruction_access_MMU_miss
exception

Ipriv IAE_privilege_violation exception

Abbreviation Meaning

NUC ASI_NUCLEUS*

PRI Any ASI with PRIMARY translation, except *NO_FAULT

SEC Any ASI with SECONDARY translation, except *NO_FAULT

PRI_NF ASI_PRIMARY_NO_FAULT*

TABLE 14-4 MMU Trap Types, Causes, and Stored State Register Update Policy (3 of 3)

Trap Cause

Registers Updated
(Stored State in MMU)

Trap Name

IMMU
Tag

Access SFAR

DMMU
Tag

Access

UMMU
Tag

Access
CHAPTER 14 • Memory Management 443

Other abbreviations include w for the writable bit, e for the side-effect bit, and p for the privileged bit.

The following cases are not covered in TABLE 14-5.

■ An attempt to execute an invalid combination of instruction and ASI; for example,
ASI_PRIMARY_NOFAULT for a store or atomic load-store. The MMU signals a DAE_invalid_asi
exception for these cases. For more details, see the description of this exception in Exception and
Interrupt Descriptions on page 406.

■ Attempted access using a restricted ASI in nonprivileged or privileged mode. The MMU signals a
privileged_action exception for this case.

■ An atomic instruction (including a 128-bit atomic integer load, LDTXA) issued to a memory
address marked noncacheable in a physical cache; that is, with the cp bit set to 0, including cases in
which the D/UMMU is disabled. The MMU signals a DAE_nc_page exception for this case.

■ A data access with an ASI other than “[PRIMARY,SECONDARY]_NO_FAULT [_LITTLE]” to a page
marked with the nfo bit. The MMU signals a DAE_nfo_page exception for this case.

SEC_NF ASI_SECONDARY_NO_FAULT*

AIU_PRI ASI_AS_IF_USER_PRIMARY*

AIU_SEC ASI_AS_IF_USER_SECONDARY*

AIP_PRI ASI_AS_IF_PRIV_PRIMARY*

AIP_SEC ASI_AS_IF_PRIV_SECONDARY*

AIP_NUC ASI_AS_IF_PRIV_NUCLEUS*

REAL ASI*REAL*

Note The *_LITTLE versions of the ASIs behave the same as the big-
endian versions with regard to the MMU table of operations.

TABLE 14-5 D/UMMU Operation for Translations for Data Accesses

Condition Behavior

Opcode Privilege Mode ASI
W

TLB
Miss

e = 0
p = 0

e = 0
p = 1

e = 1
p = 0

e = 1
p = 1

Load

nonprivileged
PRI, SEC — Dmiss OK Dpriv OK Dpriv

PRI_NF, SEC_NF — Dmiss OK Dpriv Dse Dpriv

privileged

PRI, SEC, NUC — Dmiss OK

PRI_NF, SEC_NF — Dmiss OK Dse

AIU_PRI, AIU_SEC — Dmiss OK Dpriv OK Dpriv

REAL — Dreal OK

hyperprivileged

PRI, SEC, NUC1 — — OK — OK —

PRI_NF, SEC_NF1 — — OK — Dse —

AIU_PRI, AIU_SEC — Dmiss OK Dpriv OK Dpriv

AIP_PRI, AIP_SEC, AIP_NUC — Dmiss OK

REAL — Dreal OK

FLUSH

nonprivileged — Dmiss2 OK

privileged — Dmiss2 OK

hyperprivileged — Dmiss2 OK

Abbreviation Meaning
444 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

The following cases are not covered in TABLE 14-6.
■ An instruction access to a page marked as nonfaulting (TTE.nfo = 1). The MMU signals an

IAE_nfo_page exception in this case.
■ An instruction access to a page not marked with execute permission (TTE.ep = 0). The MMU

signals an IAE_unauth_access exception in this case.

14.9 ASI Value, Context ID, and Endianness Selection
for Translation
The selection of the context ID for a translation is the result of a two-step process:

1. The ASI is determined (conceptually by the Integer Unit) from the instruction, ASI register, trap
level, privilege level (PSTATE.priv and HPSTATE.hpriv) and the virtual processor endian mode
(PSTATE.cle).

2. The context ID is determined directly from the ASI. The context ID value is read by the context ID
selected by the ASI.

Store or
Atomic
Load-
store

nonprivileged
PRI, SEC 0 Dmiss Dprot Dpriv Dprot Dpriv

1 Dmiss OK Dpriv OK Dpriv

privileged

PRI, SEC, NUC 0 Dmiss Dprot

1 Dmiss OK

AIU_PRI, AIU_SEC 0 Dmiss Dprot Dpriv Dprot Dpriv

1 Dmiss OK Dpriv OK Dpriv

REAL 0 Dreal Dprot

1 Dreal OK

hyperprivileged

PRI, SEC, NUC1 1 — OK — OK —

AIU_PRI, AIU_SEC 0 Dmiss Dprot Dpriv Dprot Dpriv

1 Dmiss OK Dpriv OK Dpriv

AIP_PRI, AIP_SEC, AIP_NUC 0 Dmiss Dprot

1 Dmiss OK

REAL 0 Dreal Dprot

1 Dreal OK

1. In hyperprivileged mode, the address using these ASIs is treated as a physical address and the TLB is bypassed, with the default
physical page attribute values applied. See MMU Bypass on page 452 for details.

2. The TLB miss exception is implementation dependent. .

TABLE 14-6 I/UMMU Operation for Translations for Instruction Accesses

Privilege mode

Behavior

TLB
Miss p = 0 p = 1

nonprivileged Imiss OK Ipriv

privileged Imiss OK OK

hyperprivileged — OK OK

TABLE 14-5 D/UMMU Operation for Translations for Data Accesses

Condition Behavior

Opcode Privilege Mode ASI
W

TLB
Miss

e = 0
p = 0

e = 0
p = 1

e = 1
p = 0

e = 1
p = 1
CHAPTER 14 • Memory Management 445

The ASI value and endianness (little or big) are determined for the IMMU and D/UMMU,
respectively, according to TABLE 14-7 through TABLE 14-8, assuming that the MMUs are enabled.

When using the Primary Context ID, the values stored in the Primary Context IDs are used by the
Instruction and Data (or Unified) MMUs. When using the Secondary Context ID, the values stored in
the Secondary Context IDs are used by the Data (or Unified) MMU. The Secondary Context ID is
never used by the Instruction MMU (or an instruction access to the Unified MMU).

The endianness of a data access is specified by three conditions:

■ The ASI specified in the opcode or ASI register

■ The PSTATE current little-endian bit (cle)

■ The D/UMMU “invert endianness” bit (ie). The D/UMMU ie bit inverts the endianness that is
otherwise specified for the access.

Note The D/UMMU ie bit inverts the endianness for all accesses,
including alternate space loads, stores, and atomic load-stores that
specify an ASI. For example,

ldxa [%g1]#ASI_PRIMARY_LITTLE
will be big-endian if the ie bit = 1.

Accesses to ASIs which are not translated by the MMU
(nontranslating ASIs) are not affected by the D/UMMU.ie bit.

TABLE 14-7 ASI Mapping for Instruction Access (I/UMMU Enabled)

Mode TL PSTATE.cle Endianness ASI Used
Resulting

Address Type

Nonprivileged 0 — Big ASI_PRIMARY VA

Privileged
0 — Big ASI_PRIMARY VA

1–2 — Big ASI_NUCLEUS VA

Hyperprivileged any — Big — PA

TABLE 14-8 ASI Mapping for Data Accesses (D/UMMU Enabled) (1 of 2)

Access Type

Privi-
lege

Mode TL PSTATE.cle D/UMMU.ie
Endian-

ness ASI Used

Resulting
Address

Type

Load,
Store,
Atomic Load-Store, or
Prefetch
with implicit ASI

NP

01 0
0 Big

ASI_PRIMARY VA
1 Little

01 1
0 Little

ASI_PRIMARY_LITTLE VA
1 Big

P

0 0
0 Big

ASI_PRIMARY VA
1 Little

0 1
0 Little

ASI_PRIMARY_LITTLE VA
1 Big

1-21 0
0 Big

ASI_NUCLEUS VA
1 Little

1-21 1
0 Little

ASI_NUCLEUS_LITTLE VA
1 Big

HP any
0 — Big

— PA
1 — Little
446 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

The Context ID used by the data and instruction MMUs is determined according to TABLE 14-9. The
Context ID selection is not affected by the endianness of the access. For a comprehensive list of ASI
values in the ASI map, see Chapter 10, Address Space Identifiers (ASIs).

Load,
Store,
Atomic Load-Store, or
Prefetch alternate
with ASI name not
ending in _LITTLE

NP 01 any
0 Big2 Explicitly specified in

instruction (see TABLE 14-11
on page 448))

VA
1 Little1

P

0-21 any
0 Big1

Explicitly specified in
instruction (seeTABLE 14-11)

VA
1 Little1

0-21 any
0 Big

ASI_*REAL* ASI RA
1 Little

0-21 any any Big
Nontranslating ASIs
(seeTABLE 14-11)

—

HP

any any
0 Big ASI_AS_IF_USER* or

ASI_AS_IF_PRIV*
VA

1 Little

any any
0 Big

ASI_*REAL* ASI RA
1 Little

any any any Big
Other translating ASI
(seeTABLE 14-11)

PA

any any any Big
Nontranslating ASI
(seeTABLE 14-11)

—

Load,
Store,
Atomic Load-Store, or
Prefetch alternate
with ASI name ending
in _LITTLE

NP 01 any
0 Little Explicitly specified in

instruction (seeTABLE 14-11)
VA

1 Big

P

0-21 any
0 Little Explicitly specified in

instruction (seeTABLE 14-11))
VA

1 Big

0-21 any
0 Little

ASI_*REAL* ASI RA
1 Big

HP

any any
0 Little ASI_AS_IF_USER* or

ASI_AS_IF_PRIV* ASI
VA

1 Big

any any
0 Little

ASI_*REAL* ASIs RA
1 Big

1. MAXPTL = 2 for UltraSPARC Architecture 2007 processors. Privilege mode operation is valid only for TL = 0, 1 or 2. Nonprivileged mode
operation is valid only for TL = 0. See section 5.6.7 for details.

2. Accesses to nontranslating ASIs are always made in big endian mode, regardless of the setting of D/UMMU.ie. See ASI Values on page 345
for information about nontranslating ASIs.

TABLE 14-9 IMMU, DMMU and UMMU Context ID Usage

ASI Value Context ID Register

ASI_*NUCLEUS* (any ASI name containing the string “NUCLEUS”) Nucleus (000016, hard-wired)

ASI_*PRIMARY* (any ASI name containing the string “PRIMARY”) All Primary Context IDs

ASI_*SECONDARY* (any ASI name containing the string “SECONDARY”) All Secondary Context IDs

All other ASI values (Not applicable; no translation)

TABLE 14-8 ASI Mapping for Data Accesses (D/UMMU Enabled) (2 of 2)

Access Type

Privi-
lege

Mode TL PSTATE.cle D/UMMU.ie
Endian-

ness ASI Used

Resulting
Address

Type
CHAPTER 14 • Memory Management 447

14.10 Translation
The translation operation performed by the MMU for a given access is determined by:

■ whether the access is for instruction(s) or data
■ the current privilege mode
■ whether the MMU is enabled (which in turn is determined by one or more implementation-

dependent enable bits in the MMU control register).
■ in the case of a data access, which ASI is associated with the access

TABLE 14-10 describes the operation of the IMMU.

TABLE 14-11 lists the UltraSPARC Architecture 2007-defined ASIs and the translation operation
performed when each is used, depending on the current privilege mode and whether the D/UMMU
is enabled or not. See implementation-specific documentation regarding operation with
implementation-specific ASIs.

TABLE 14-10 I/U-MMU Translation for Instruction Accesses

HPSTATE.hpriv
I/UMMU Enable bit

(x = don’t care) HPSTATE.red Resulting I/U-MMU Translation

Don’t Care x 1 PA1

1. VA{55:0} is passed directly through to PA{55:0}

1 x 0 PA

0 0 0 RA → PA2

2. VA{55:0} is passed directly through to RA{55:0} and RA{55:0} is translated by the IMMU.

0 1 0 VA → PA3

3. VA{63:0} is translated via the IMMU.

TABLE 14-11 D/UMMU Translation for Explicit ASIs (1 of 4)

Key: priv_act = privileged_action exception; inv_asi = DAE_invalid_asi exception; non-T = nontranslating ASI

DMMU disabled DMMU enabled

ASI
Value
(hex) ASI Name

Current Mode Current Mode

Non-
privileged Privileged

Hyper-
privileged

Non-
privileged Privileged

Hyper-
privileged

00-03 Implementation dependent (impl. dep. #29-V8) priv_act1 (impl. dep.) (impl. dep.) priv_act1 (impl. dep.) (impl. dep.)

04 ASI_NUCLEUS priv_act RA → PA PA priv_act VA → PA PA

05–0B Implementation dependent (impl. dep. #29-V8) priv_act1 (impl. dep.) (impl. dep.) priv_act1 (impl. dep.) (impl. dep.)

0C ASI_NUCLEUS_LITTLE priv_act RA → PA PA priv_act VA → PA PA

0D–0F Implementation dependent (impl. dep. #29-V8) priv_act1 (impl. dep.) (impl. dep.) priv_act1 (impl. dep.) (impl. dep.)

10 ASI_AS_IF_USER_PRIMARY priv_act RA → PA VA6 → PA priv_act VA → PA VA → PA

11 ASI_AS_IF_USER_SECONDARY priv_act RA → PA VA6 → PA priv_act VA → PA VA → PA

12–13 Implementation dependent (impl. dep. #29-V8) priv_act1 (impl. dep.) (impl. dep.) priv_act1 (impl. dep.) (impl. dep.)

14 ASI_REAL priv_act RA → PA RA → PA priv_act RA → PA RA → PA

15 ASI_REAL_IO priv_act RA → PA RA → PA priv_act RA → PA RA → PA

16 ASI_BLOCK_AS_IF_USER_PRIMARY priv_act RA → PA VA6 → PA priv_act VA → PA VA → PA

17 ASI_BLOCK_AS_IF_USER_SECONDARY priv_act RA → PA VA6 → PA priv_act VA → PA VA → PA

18 ASI_AS_IF_USER_PRIMARY_LITTLE priv_act RA → PA VA6 → PA priv_act VA → PA VA → PA

19 ASI_AS_IF_USER_SECONDARY_LITTLE priv_act RA → PA VA6 → PA priv_act VA → PA VA → PA

1A–1B Implementation dependent (impl. dep. #29-V8) priv_act1 (impl. dep.) (impl. dep.) priv_act1 (impl. dep.) (impl. dep.)
448 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

1C ASI_REAL_LITTLE priv_act RA → PA RA → PA priv_act RA → PA RA → PA

1D ASI_REAL_IO_LITTLE priv_act RA → PA RA → PA priv_act RA → PA RA → PA

1E ASI_BLOCK_AS_IF_USER_PRIMARY_LIT
TLE

priv_act RA → PA VA6 → PA priv_act VA → PA VA → PA

1F ASI_BLOCK_AS_IF_USER_SECONDARY_
LITTLE

priv_act RA → PA VA6 → PA priv_act VA → PA VA → PA

20 ASI_SCRATCHPAD priv_act non-T2 non-T2 priv_act non-T2 non-T2

21 ASI_MMU_CONTEXTID priv_act non-T2 non-T2 priv_act non-T2 non-T2

22 ASI_TWINX_AS_IF_USER_PRIMARY
(ASI_TWINX_AIUP)

priv_act RA → PA VA6 → PA priv_act VA → PA VA → PA

23 ASI_TWINX_AS_IF_USER_SECONDARY
(ASI_TWINX_AIUS)

priv_act RA → PA VA6 → PA priv_act VA → PA VA → PA

24 Implementation dependent (impl. dep. #29-V8) priv_act1 (impl. dep.) (impl. dep.) priv_act1 (impl. dep.) (impl. dep.)

25 ASI_QUEUE priv_act non-T2 non-T2 priv_act non-T2 non-T2

26 ASI_TWINX_REAL priv_act RA → PA RA → PA priv_act RA → PA RA → PA

27 ASI_TWINX_NUCLEUS (ASI_TWINX_N) priv_act RA → PA PA priv_act VA → PA PA

28–29 Reserved priv_act inv_asi inv_asi priv_act inv_asi inv_asi

2A ASI_TWINX_AS_IF_USER_PRIMARY_LIT
TLE (ASI_TWINX_AIUP_L)

priv_act RA → PA VA6 → PA priv_act VA → PA VA → PA

2B ASI_TWINX_AS_IF_USER_SECONDARY_
LITTLE (ASI_TWINX_AIUS_L)

priv_act RA → PA VA6 → PA priv_act VA → PA VA → PA

2C Implementation dependent (impl. dep. #29-V8) priv_act1 (impl. dep.) (impl. dep.) priv_act1 (impl. dep.) (impl. dep.)

2D Implementation dependent (impl. dep. #29-V8) priv_act1 (impl. dep.) (impl. dep.) priv_act1 (impl. dep.) (impl. dep.)

2E ASI_TWINX_REAL_LITTLE
(ASI_TWINXREAL_L)

priv_act RA → PA RA → PA priv_act RA → PA RA → PA

2F ASI_TWINX_NUCLEUS_LITTLE
(ASI_TWINXNL)

priv_act RA → PA PA priv_act VA → PA PA

30 ASI_AS_IF_PRIV_PRIMARY priv_act priv_act VA6 → PA priv_act priv_act VA → PA

31 ASI_AS_IF_PRIV_SECONDARY priv_act priv_act VA6 → PA priv_act priv_act VA → PA

32–35 Implementation dependent (impl. dep. #29-V8) priv_act3 priv_act3 (impl. dep.) priv_act3 priv_act3 (impl. dep.)

36 ASI_AS_IF_PRIV_NUCLEUS priv_act priv_act VA6 → PA priv_act priv_act VA → PA

37 Implementation dependent (impl. dep. #29-V8) priv_act3 priv_act3 (impl. dep.) priv_act3 priv_act3 (impl. dep.)

38 ASI_AS_IF_PRIV_PRIMARY_LITTLE priv_act priv_act VA6 → PA priv_act priv_act VA → PA

39 ASI_AS_IF_PRIV_SECONDARY_LITTLE priv_act priv_act VA6 → PA priv_act priv_act VA → PA

3A–3D Implementation dependent (impl. dep. #29-V8) priv_act3 priv_act3 (impl. dep.) priv_act3 priv_act3 (impl. dep.)

3E ASI_AS_IF_PRIV_NUCLEUS_LITTLE priv_act priv_act VA6 → PA priv_act priv_act VA → PA

3F Implementation dependent (impl. dep. #29-V8) priv_act3 priv_act3 (impl. dep.) priv_act3 priv_act3 (impl. dep.)

40 Implementation dependent (impl. dep. #29-V8) priv_act3 priv_act3 (impl. dep.) priv_act3 priv_act3 (impl. dep.)

41 ASI_CMP_SHARED priv_act priv_act non-T2 priv_act priv_act non-T2

42–4B Implementation dependent (impl. dep. #29-V8) priv_act3 priv_act3 (impl. dep.) priv_act3 priv_act3 (impl. dep.)

4C Error Status and Enable Registers priv_act3 priv_act3 non-T2

(impl. dep.)
priv_act3 priv_act3 non-T2

(impl. dep.)

4D–4E Implementation dependent (impl. dep. #29-V8) priv_act3 priv_act3 (impl. dep.) priv_act3 priv_act3 (impl. dep.)

TABLE 14-11 D/UMMU Translation for Explicit ASIs (2 of 4)

Key: priv_act = privileged_action exception; inv_asi = DAE_invalid_asi exception; non-T = nontranslating ASI

DMMU disabled DMMU enabled

ASI
Value
(hex) ASI Name

Current Mode Current Mode

Non-
privileged Privileged

Hyper-
privileged

Non-
privileged Privileged

Hyper-
privileged
CHAPTER 14 • Memory Management 449

4F ASI_HYP_SCRATCHPAD priv_act priv_act non-T2 priv_act priv_act non-T2

50 ASI_IMMU priv_act priv_act non-T2 priv_act priv_act non-T2

51–53 Implementation dependent (impl. dep. #29-V8) priv_act3 priv_act3 (impl. dep.) priv_act3 priv_act3 (impl. dep.)

54 ASI_MMU priv_act priv_act non-T2 priv_act priv_act non-T2

55 ASI_ITLB_DATA_ACCESS_REG priv_act priv_act non-T2 priv_act priv_act non-T2

56 ASI_ITLB_TAG_READ_REG priv_act priv_act non-T2 priv_act priv_act non-T2

57 ASI_IMMU_DEMAP priv_act priv_act non-T2 priv_act priv_act non-T2

58 ASI_DMMU (ASI_UMMU) priv_act priv_act non-T2 priv_act priv_act non-T2

59–5B Implementation dependent (impl. dep. #29-V8) priv_act3 priv_act3 (impl. dep.) priv_act3 priv_act3 (impl. dep.)

5C ASI_DTLB_DATA_IN_REG
(ASI_UTLB_DATA_IN_REG)

priv_act priv_act non-T2 priv_act priv_act non-T2

5D ASI_DTLB_DATA_ACCESS_REG
(ASI_UTLB_DATA_ACCESS_REG)

priv_act priv_act non-T2 priv_act priv_act non-T2

5E ASI_DTLB_TAG_READ_REG
(ASI_UTLB_TAG_READ_REG)

priv_act priv_act non-T2 priv_act priv_act non-T2

5F ASI_DMMU_DEMAP (ASI_UMMU_DEMAP) priv_act priv_act non-T2 priv_act priv_act non-T2

60–62 Implementation dependent (impl. dep. #29-V8) priv_act3 priv_act3 (impl. dep.) priv_act3 priv_act3 (impl. dep.)

63 ASI_CMT_PER_STRAND priv_act priv_act non-T2 priv_act priv_act non-T2

64–7F Implementation dependent (impl. dep. #29-V8) priv_act3 priv_act3 (impl. dep.) priv_act3 priv_act3 (impl. dep.)

80 ASI_PRIMARY RA → PA RA → PA PA VA → PA VA → PA PA

81 ASI_SECONDARY RA → PA RA → PA PA VA → PA VA → PA PA

82 ASI_PRIMARY_NO_FAULT RA → PA RA → PA PA VA → PA VA → PA PA

83 ASI_SECONDARY_NO_FAULT RA → PA RA → PA PA VA → PA VA → PA PA

84–87 Reserved inv_asi inv_asi inv_asi inv_asi inv_asi inv_asi

88 ASI_PRIMARY_LITTLE RA → PA RA → PA PA VA → PA VA → PA PA

89 ASI_SECONDARY_LITTLE RA → PA RA → PA PA VA → PA VA → PA PA

8A ASI_PRIMARY_NO_FAULT_LITTLE RA → PA RA → PA PA VA → PA VA → PA PA

8B ASI_SECONDARY_NO_FAULT_LITTLE RA → PA RA → PA PA VA → PA VA → PA PA

8C–BF Reserved inv_asi inv_asi inv_asi inv_asi inv_asi inv_asi

C0 ASI_PST8_PRIMARY RA → PA RA → PA PA VA → PA VA → PA PA

C1 ASI_PST8_SECONDARY RA → PA RA → PA PA VA → PA VA → PA PA

C2 ASI_PST16_PRIMARY RA → PA RA → PA PA VA → PA VA → PA PA

C3 ASI_PST16_SECONDARY RA → PA RA → PA PA VA → PA VA → PA PA

C4 ASI_PST32_PRIMARY RA → PA RA → PA PA VA → PA VA → PA PA

C5 ASI_PST32_SECONDARY RA → PA RA → PA PA VA → PA VA → PA PA

C6–C7 Implementation dependent (impl. dep. #29-V8) (impl. dep.) (impl. dep.) (impl. dep.) (impl. dep.) (impl. dep.) (impl. dep.)

C8 ASI_PST8_PRIMARY_LITTLE RA → PA RA → PA PA VA → PA VA → PA PA

C9 ASI_PST8_SECONDARY_LITTLE RA → PA RA → PA PA VA → PA VA → PA PA

CA ASI_PST16_PRIMARY_LITTLE RA → PA RA → PA PA VA → PA VA → PA PA

CB ASI_PST16_SECONDARY_LITTLE RA → PA RA → PA PA VA → PA VA → PA PA

CC ASI_PST32_PRIMARY_LITTLE RA → PA RA → PA PA VA → PA VA → PA PA

TABLE 14-11 D/UMMU Translation for Explicit ASIs (3 of 4)

Key: priv_act = privileged_action exception; inv_asi = DAE_invalid_asi exception; non-T = nontranslating ASI

DMMU disabled DMMU enabled

ASI
Value
(hex) ASI Name

Current Mode Current Mode

Non-
privileged Privileged

Hyper-
privileged

Non-
privileged Privileged

Hyper-
privileged
450 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

CD ASI_PST32_SECONDARY_LITTLE RA → PA RA → PA PA VA → PA VA → PA PA

CE–CF Implementation dependent (impl. dep. #29-V8) (impl. dep.) (impl. dep.) (impl. dep.) (impl. dep.) (impl. dep.) (impl. dep.)

D0 ASI_FL8_PRIMARY RA → PA RA → PA PA VA → PA VA → PA PA

D1 ASI_FL8_SECONDARY RA → PA RA → PA PA VA → PA VA → PA PA

D2 ASI_FL16_PRIMARY RA → PA RA → PA PA VA → PA VA → PA PA

D3 ASI_FL16_SECONDARY RA → PA RA → PA PA VA → PA VA → PA PA

D4–D7 Implementation dependent (impl. dep. #29-V8) (impl. dep.) (impl. dep.) (impl. dep.) (impl. dep.) (impl. dep.) (impl. dep.)

D8 ASI_FL8_PRIMARY_LITTLE RA → PA RA → PA PA VA → PA VA → PA PA

D9 ASI_FL8_SECONDARY_LITTLE RA → PA RA → PA PA VA → PA VA → PA PA

DA ASI_FL16_PRIMARY_LITTLE RA → PA RA → PA PA VA → PA VA → PA PA

DB ASI_FL16_SECONDARY_LITTLE RA → PA RA → PA PA VA → PA VA → PA PA

DC–
DF

Implementation dependent (impl. dep. #29-V8) (impl. dep.) (impl. dep.) (impl. dep.) (impl. dep.) (impl. dep.) (impl. dep.)

E0 ASI_BLK_COMMIT_PRIMARY RA → PA RA → PA PA VA → PA VA → PA PA

E1 ASI_BLK_COMMIT_SECONDARY RA → PA RA → PA PA VA → PA VA → PA PA

E2 ASI_TWINX_PRIMARY (ASI_TWINX_P) RA → PA RA → PA PA VA → PA VA → PA PA

E3 ASI_TWINX_SECONDARY
(ASI_TWINX_S)

RA → PA RA → PA PA VA → PA VA → PA PA

E4–E9 Implementation dependent (impl. dep. #29-V8) (impl. dep.) (impl. dep.) (impl. dep.) (impl. dep.) (impl. dep.) (impl. dep.)

EA ASI_TWINX_PRIMARY_LITTLE
(ASI_TWINX_PL)

RA → PA RA → PA PA VA → PA VA → PA PA

EB ASI_TWINX_SECONDARY_LITTLE
(ASI_TWINX_SL)

RA → PA RA → PA PA VA → PA VA → PA PA

EC–EF Implementation dependent (impl. dep. #29-V8) (impl. dep.) (impl. dep.) (impl. dep.) (impl. dep.) (impl. dep.) (impl. dep.)

F0 ASI_BLK_PRIMARY RA → PA RA → PA PA VA → PA VA → PA PA

F1 ASI_BLK_SECONDARY RA → PA RA → PA PA VA → PA VA → PA PA

F2–F7 Reserved inv_asi inv_asi inv_asi inv_asi inv_asi inv_asi

F8 ASI_BLK_PRIMARY_LITTLE RA → PA RA → PA PA VA → PA VA → PA PA

F9 ASI_BLK_SECONDARY_LITTLE RA → PA RA → PA PA VA → PA VA → PA PA

FA–FB Implementation dependent (impl. dep. #29-V8) (impl. dep.) (impl. dep.) (impl. dep.) (impl. dep.) (impl. dep.) (impl. dep.)

FC–FD Implementation dependent (impl. dep. #29-V8) (impl. dep.) (impl. dep.) (impl. dep.) (impl. dep.) (impl. dep.) (impl. dep.)

FE–FF Implementation dependent (impl. dep. #29-V8) (impl. dep.) (impl. dep.) (impl. dep.) (impl. dep.) (impl. dep.) (impl. dep.)

1. Since this is an implementation-dependent ASI, its behavior is implementation-dependent; however, an attempt in nonprivileged mode
to access an ASI in the range 0016-2F16 is normally expected to generate a privileged_action exception.

2. Nontranslating ASIs access hardware registers, not memory. The virtual address for a nontranslating ASI is the physical address; the
MMU does not perform any translation.

3. Since this is an implementation-dependent ASI, its behavior is implementation-dependent; however, an attempt in nonprivileged or
privileged mode to access an ASI in the range 3016-7F16 is normally expected to generate a privileged_action exception.

6. This translation is expected to change to “RA→ PA” in the next generation of the architecture

TABLE 14-11 D/UMMU Translation for Explicit ASIs (4 of 4)

Key: priv_act = privileged_action exception; inv_asi = DAE_invalid_asi exception; non-T = nontranslating ASI

DMMU disabled DMMU enabled

ASI
Value
(hex) ASI Name

Current Mode Current Mode

Non-
privileged Privileged

Hyper-
privileged

Non-
privileged Privileged

Hyper-
privileged
CHAPTER 14 • Memory Management 451

14.10.1 MMU Behavior During Reset and Upon Entering
RED_state

A power-on-reset of the virtual processor does not reset or initialize anything in the MMU, including
TLBs and µTLBs.

When the virtual processor enters RED_state, the IMMU, DMMU, and UMMU Enable bits are set to 0.

While in hyperprivileged mode or RED_state, all instruction accesses are passed through without
translation, using MMU bypass. See TABLE 14-10 on page 448.

While in hyperprivileged mode, all data access addresses with ASI_PRIMARY, ASI_SECONDARY or
ASI_NUCLEUS are passed through without translation (MMU bypass). See MMU Bypass on page 452
for details. For examples, see TABLE 14-11 on page 448.

14.10.1.1 MMU Bypass

In a bypass access, the MMU sets the physical address equal to the truncated virtual address; that is,
the low-order bits of the virtual address are passed through without translation as the physical
address (the width of which is defined in impl. dep. #224-U3). The physical page attribute bits are set
as shown in TABLE 14-12.

For instruction accesses, the I/UMMU truncates all instruction accesses to the physical address size of
the implementation, and passes the default physically cacheable bit (cp = 1) or implementation-
dependent Data Cache Unit Control register cp bit to the cache system. The access does not generate
an IAE_* exception.

14.10.1.2 MMU Disabled Behavior

IMPL. DEP. #__: The enable bit(s) in the MMU control register is (are) implementation dependent.

Note A power on reset or entry into RED_state does not affect the
TLB contents. Before the MMUs are enabled, the operating
system software must either explicitly demap all TLB entries, or
write each entry (either with a valid TLB entry or an entry with
the valid bit set to 0). The operation of the IMMU, DMMU, or
UMMU in enabled mode is undefined if the TLB valid bits have
not been explicitly initialized by software.

TABLE 14-12 Bypass Attribute Bits

Address Space1

1. Address Space assignment is implementation dependent.

Page Attribute Bits

cp ie cv e p w nfo ep

Memory Space 12

2. If implementation-dependent data cache control register DCUCR.cp and DCUCR.cv bits are im-
plemented, TTE.cp = DCUCR.cp, TTE.cv = DCUCR.cv and TTE.e = complement of the
DCUCR.cp; otherwise, the TTE.cp, TTE.cv, and TTE.e values are as indicated in the table.

0 02 02 0 1 0 1

I/O Space 0 0 0 1 0 1 0 1

SPARC V8
Compatibility

Note

Since a virtual address is wider than a physical address on
UltraSPARC Architecture implementations, there is no need to
use multiple ASIs to fill in the high-order physical address bits
(as was done in SPARC V8 machines).
452 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

An MMU is considered “disabled” when its enable bit in the MMU control register is set to 0.

When in nonprivileged or privileged mode:

■ If the IMMU is disabled (see TABLE 14-10 on page 448), addresses for instruction fetches are treated
as real addresses and translated to physical addresses.

■ If the DMMU is disabled (see TABLE 14-11 on page 448), addresses for data accesses are treated as
real addresses and translated to physical addresses.

When disabled, the D/UMMU correctly performs all LDXA and STXA operations, and traps are
signalled just as if the MMU were enabled. For instance, if DCUCR.cp is implemented, executing a
nonfaulting load when the D/UMMU is disabled and DCUCR.cp = 0 causes a DAE_side_effect_page
exception (since e = 1).

IMPL. DEP. #117-V9: Whether PREFETCH and nonfaulting loads always succeed when the DMMU is
disabled is implementation dependent. See the PREFETCH instruction description in the Instructions
chapter for more information. Non-faulting loads are described in section 9.6.

14.11 SPARC V9 “MMU Attributes”
The UltraSPARC Architecture MMU complies completely with the SPARC V9 “MMU Attributes” as
described in Appendix F.3.2.

With regard to Read, Write and Execute Permissions, SPARC V9 says “An MMU may allow zero or
more of read, write and execute permissions, on a per-mapping basis. Read permission is necessary
for data read accesses and atomic accesses. Write permission is necessary for data write accesses and
atomic accesses. Execute permission is necessary for instruction accesses. At a minimum, an MMU
must allow for ‘all permissions’, ‘no permissions’, and ‘no write permission’; optionally, it can provide
‘execute only’ and ‘write only’, or any combination of ‘read/write/execute’ permissions.”

TABLE 14-13 shows how various protection modes can be achieved, if necessary, through the presence
or absence of a translation in the instruction or data MMU. Note that this behavior requires
specialized TLB-miss handler code to guarantee these conditions.

14.12 MMU Internal Registers and ASI Operations
This section describes the MMU registers and how they are accessed:

TABLE 14-13 MMU SPARC V9 Appendix F.3.2 Protection Mode Compliance

Condition

Resultant Protection ModeTTE in
DMMU

TTE in
IMMU

TTE in
UMMU ep Bit

Writable
Attribute Bit

Yes No Yes 0 0 Read-only1

1. These protection modes are optional, according to SPARC V9.

No Yes N/A 1 N/A Execute-only1

Yes No Yes 0 1 Read/Write1

Yes Yes Yes 1 0 Read-only/Execute

Yes Yes Yes 1 1 Read/Write/Execute

No No No N/A N/A No Access
CHAPTER 14 • Memory Management 453

■ Context ID
■ Partition ID register
■ MMU Real Range registers
■ MMU Physical Offset registers
■ TSB Configuration registers
■ I/D/U TSB Pointer registers
■ DMMU Synchronous Fault Address register
■ I/D/U TLB Tag Access, Data In, Data Access, and Tag Read registers.
■ I/D/U MMU TLB Tag Target registers.
■ I/D/U MMU Demap
■ Tablewalk Pending Registers

14.12.1 Accessing MMU Registers
All internal MMU registers can be accessed directly by the virtual processor through defined ASIs,
using LDXA and STXA instructions. UltraSPARC Architecture-compatible processors do not require a
MEMBAR #Sync, FLUSH, DONE, or RETRY instruction after a store to an MMU register for proper
operation.

TABLE 14-14 lists the MMU registers and provides references to sections with more details.

TABLE 14-14 MMU Internal Registers and ASI Operations

IMMU ASI
D/UMMU

ASI
VA{63:0} Access Register or Operation Name

2116 816 RW Primary Context ID 0 register

— 2116 1016 RW Secondary Context ID 0 register

2116 10816 RW Primary Context ID 1 register

— 2116 11016 RW Secondary Context ID 1 register

5016

5816

016 R I-/D-TSB Tag Target registers

— 2016 R DMMU Synchronous Fault Address
register

5016 5816 3016 RW I/D/U-TLB Tag Access registers

5216 108..12016 RW MMU Real Range registers

208..22016 RW MMU Physical Offset registers

5416

10..4816 RW MMU TSB Configuration registers

50..6816(I)
70..8816(D)

RW MMU I/D/U-TSB Pointer registers

9016 RW Tablewalk Pending Control register

9816 RW Tablewalk Pending Status register

5416 5C16 016 W I/D/U-TLB Data In registers

5516 5D16 See Section 14.12.9 RW I/D/U-TLB Data Access registers

5616 5E16 See Section 14.12.9 R I/D/U-TLB Tag Read register

5716 5F16 See Section 14.12.11 W I/D/UMMU Demap Operation

5816 8016 RW Partition ID
454 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

14.12.2 Context ID Registers
The MMU architecture supports multiple primary and secondary context IDs. The address assignment
of the context IDs is shown in TABLE 14-15.

UltraSPARC Architecture processors must prevent errors or data corruption due to multiple valid
translations for a given virtual address using different contexts. TLBs may need to detect this scenario
as a multiple tag hit error and cause an instruction_access_MMU_error exception for an instruction
access or a data_access_MMU_error exception for a data access.

The UltraSPARC Architecture supports up to two primary context IDs and two secondary context IDs,
which are shared by the IMMU and D/UMMU. Primary Context ID 0 and Primary Context ID 1 are
the primary context IDs, and a TLB entry for a translating primary ASI can match the context_id field
with either Primary Context ID 0 or Primary Context ID 1 to produce a TLB hit. Secondary Context ID
0 and Secondary Context ID 1 are the Secondary Context IDs, and a TLB entry for a translating
secondary ASI can match the context_id field with either Secondary Context ID 0 or Secondary
Context ID 1 to produce a TLB hit.

The Primary Context ID 0 and Primary Context ID 1 registers are illustrated in
FIGURE 14-6, where pcontext is the context ID for the primary address space.

FIGURE 14-6 IMMU, DMMU, and UMMU Primary Context ID 0/1

TABLE 14-15 Context ID ASI Assignments

Register ASI Virtual Address

Primary Context ID 0 2116 00816

Primary Context ID 1 2116 10816

Secondary Context ID 0 2116 01016

Secondary Context ID 1 2116 11016

Programming
Note

Since only the existence of Primary Context ID 0 and Secondary
Context ID 0 is guaranteed, it is recommended that these be
used as private context IDs, with any remaining context IDs
used for possibly shared context address spaces. For platforms
that implement more than one primary context ID and one
secondary context ID, privileged code must ensure that no
more than one page translation is allowed to match at any time.
An illustration of erroneous behavior is as follows:

1. An operating system constructs a mapping for virtual
address A valid for context ID P;

2. it then constructs a mapping for address A for context ID Q.

By setting Primary Context ID 0 to P and Primary Context ID 1
to Q, both mappings would be active simultaneously, with
conflicting translations for address A. Care must be taken not
to construct such scenarios.

Compatibility
Note

To maintain backward compatibility with software designed for
a single primary and single secondary context ID, writes to
Primary (Secondary) Context ID 0 also update Primary
(Secondary) Context ID 1.

63 16 15 0

— pcontextidPrimary
Context ID
CHAPTER 14 • Memory Management 455

The Secondary Context ID 0 and Secondary Context ID 1 registers are illustrated in FIGURE 14-7, where
scontextid is the context ID for the secondary address space.

FIGURE 14-7 D/UMMU Secondary Context ID 0/1

The Nucleus Context ID register is hardwired to zero, as illustrated in FIGURE 14-6.

FIGURE 14-8 IMMU, DMMU, and UMMU Nucleus Context ID

IMPL. DEP. #415-S10: The size of context ID fields in MMU context registers is implementation-
dependent and may range from 13 to 16 bits.

14.12.3 Partition ID Register
ASI 5816 VA 8016

A partition ID is provided to allow multiple guest operating systems to share the same TLB. The
partition ID register contents are compared in all TLB operations, such as demaps and translations,
and are loaded into the PID field of the TLB tag during insertions. For more details on the partition
ID, see Real Address Translation on page 432.

IMPL. DEP. #416-S10: The size of partition ID fields in MMU partition registers is implementation-
dependent and must be large enough to uniquely encode the identities of all virtual processors that
share the TLB.

The Partition ID register is defined in FIGURE 14-9, where partition_id is the 8-bit partition ID.

FIGURE 14-9 Partition ID Register

14.12.4 MMU Real Range Registers
The Real Range registers specify the upper and lower bounds for real addresses.

■ They consist of a single Real Range register that contains both the lower and upper bounds (which
is possible if the real address field for each of the the upper and lower bounds is fewer than 32 bits)

IMPL. DEP. #500-S30: Whether each Real Range is specified in a single combined Real Range register
or in a pair of Real Range registers (Real Range Lower and Real Range Upper) is implementation
dependent.

An UltraSPARC Architecture 2007 processor must implement a minimum of four Real Range registers.

IMPL. DEP. #501-S30: The total number of (beyond the minimum of four) Real Range registers or Real
Range Lower and Real Range Upper register pairs per virtual processor is implementation dependent.

The RPN-to-PPN translation associates each Real Range register Lower and Upper pair with its
corresponding Physical Offset register. The RA-to-PA translation applies to TTEs from TSBs with the
ra_not_pa = 1 in the TSB Configuration register, regardless of zero or nonzero context ID, as described
in Typical Hardware Tablewalk Sequence on page 439.

63 16 15 0

— scontextid
Secondary
Context ID

63 0

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
Nucleus
Context ID

63 0

— partition_id

8 7
456 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

If the enable field is 0 in the Real Range register, then the corresponding range base, bounds and
offset are not used. If all are disabled, any hit in a TSB with the ra_not_pa bit = 1 in the TSB
Configuration register results in a instruction_invalid_TSB_entry or data_invalid_TSB_entry exception.

The ASI assignment for the Real Range registers is shown in TABLE 14-16.

FIGURE 14-10 and TABLE 14-17 list the fields of the MMU Real Range register.

FIGURE 14-10 MMU Real Range Register

14.12.5 MMU Physical Offset Registers
IMPL. DEP. #__: The number of Physical Offset registers per virtual processor is implementation
dependent.

The ASI assignment for the Physical Offset registers is shown in TABLE 14-18.

The RPN-to-PPN translation associates each Real Range register pair (or Real Range register) with its
corresponding Physical Offset register. The RA-to-PA translation applies to TTEs from TSBs with
ra_not_pa = 1 in the TSB Config register, regardless of zero or nonzero context ID.

Note Ranges programmed into the Range Registers must not overlap.
If overlapped, RPN to PPN translations have undefined
behavior.

TABLE 14-16 MMU Real Range Register ASI and VA Assignments

ASI Register Virtual Address

5216
ASI_MMU_REAL

MMU Real Range 0
10816

MMU Real Range 1 11016

MMU Real Range 2 11816

MMU Real Range 3 12016

TABLE 14-17 MMU Real Range Register Format

Bit Field Description

63:56 — Reserved

55:13 rpnbound RA{55:13}. Real address of the upper limit of the RPN range.

12:0 — Reserved

TABLE 14-18 MMU_PHYSICAL_OFFSET_REGISTER_n ASI and VA Assignments

ASI Register Virtual Address

5216
(ASI_MMU_REAL)

MMU_PHYSICAL_OFFSET_REGISTER_0 20816

MMU_PHYSICAL_OFFSET_REGISTER_1 21016

MMU_PHYSICAL_OFFSET_REGISTER_2 21816

MMU_PHYSICAL_OFFSET_REGISTER_3 22016

63 56 55 0

—

13 12

 rpnbound—
CHAPTER 14 • Memory Management 457

FIGURE 14-11 and TABLE 14-19 lists the fields of the MMU Physical Offset registers.

FIGURE 14-11 MMU_PHYSICAL_OFFSET_REGISTER_n

IMPL. DEP. #__: The bit positions (p and m, in FIGURE 14-11) of the ends of the po field are
implementation dependent. The width of the physical address supported by the implementation
determines p. The minimum physical offset supported determines m.

14.12.6 TSB Configuration Registers
IMPL. DEP. #__: The number of TSB Configuration registers per virtual processor is implementation
dependent.

The ASI and address assignments for the TSB Configuration registers are shown in TABLE 14-20.

The Translation Storage Buffer (TSB) Configuration registers
(MMU_[NON]ZERO_CONTEXT_ID_TSB_CONFIG_n) provide information for the hardware
tablewalk and hardware formation of TSB pointers, to assist software in quickly handling TLB misses.

The register bits are illustrated in FIGURE 14-12 and described in TABLE 14-21.

FIGURE 14-12 MMU_[NON]ZERO_TSB_CONFIG_n Register Format

TABLE 14-19 MMU_PHYSICAL_OFFSET_REGISTER_n Format

Bit Field Description

63 : p+1 — Reserved

p : m po Physical Offset.
Added to RA{p:m} of the request to generate PA{p:m}.

m−1 : 0 — Reserved

Programming
Note

Hyperprivileged software must align the contents of the
physical offset registers with a boundary of the largest page size
that it is mapping.

TABLE 14-20 MMU_[NON]ZERO_CONTEXT_ID_TSB_CONFIG_n Register ASI Assignments

ASI Register Virtual Address

5416
(ASI_MMU)

MMU_ZERO_CONTEXT_ID_TSB_CONFIG_0 1016

MMU_ZERO_CONTEXT_ID_TSB_CONFIG_1 1816

MMU_ZERO_CONTEXT_ID_TSB_CONFIG_2 2016

MMU_ZERO_CONTEXT_ID_TSB_CONFIG_3 2816

MMU_NONZERO_CONTEXT_ID_TSB_CONFIG_0 3016

MMU_NONZERO_CONTEXT_ID_TSB_CONFIG_1 3816

MMU_NONZERO_CONTEXT_ID_TSB_CONFIG_2 4016

MMU_NONZERO_CONTEXT_ID_TSB_CONFIG_3 4816

— po

63 0

—

m m − 1p + 1 p

63 62 61 60 56 55 13 12 9 8 7 4 3 0

— tsb_base — ra_not_pa page_size tsb_sizee use_cid0 use_cid1
458 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

14.12.7 I/D/U TSB Pointer Registers
The TSB Pointer registers are provided to allow software to easily access a TSB TTE given the VA that
must be translated.

IMPL. DEP. #__: The number of TSB pointers provided is directly related to the number of TSB
configuration registers. If an implementation has a unified MMU, it must provide one TSB pointer
register per TSB configuration register. If an implementation has separate instruction and data MMUs,
it must provide one instruction TSB pointer and one data TSB pointer per TSB configuration register.

The ASI assignment for the MMU I/D/U TSB Pointer registers are shown in TABLE 14-22.

TABLE 14-21 MMU_[NON]ZERO_CONTEXT_ID_TSB_CONFIG_n Register Description

Bit Field Type Description

63 e RW Enables the hardware tablewalk. If set to 1, hardware tablewalk will search
this TSB on a TLB miss.

62
61

use_cid0
use_cid1

RW Controls whether hardware tablewalk checks the context ID value in the
TTE from the TSB and what context ID value is written into the context_id
field of the TTE in the TLB. If both bits are 0, hardware tablewalk compares
the context ID in the TTE from the TSB with the context ID of the request
and stores that context ID into the context_id field in the TLB if the TTE
matches. If either bit is 1, hardware tablewalk ignores the context ID of the
TTE from the TSB. If use_cid_0 = 1, the hardware tablewalk writes the value
of Context ID register 0 into the context_id field of the TLB entry; otherwise,
if use_cid_1 = 1, the hardware tablewalk writes the value of Context ID 1
register into the context_id field of the TLB entry.
Note: When the requesting context ID is zero (nucleus), hardware tablewalk
ignores these bits.

60:56 — R Reserved

55:13 tsb_base RW Provides the base physical address of the Translation Storage Buffer.

12:9 — R Reserved

8 ra_not_pa RW If ra_not_pa = 1, RPN-to-PPN translation is enabled in hardware tablewalk.
Note: When hardware tablewalk is used for a TSB, the TSB may contain
either real addresses or physical addresses, but not both. This bit should
only be set to 1 when the TSB contains real addresses.

7:4 page_size RW Size of the pages mapped by the TTEs in the TSB. This page size is used to
generate the TSB pointer. An attempt to store a reserved page size value in
this field results in an unsupported_page_size exception. All TTEs in the
TSB must be the size indicated in the TSB Configuration Register or greater.

3:0 tsb_size RW The tsb_size field provides the size of the TSB as follows:
• The number of entries in the TSB = 512 × 2tsb_size.
• The number of entries in the TSB ranges from 512 entries at

tsb_size = 0 (8-Kbyte TSB), to 16 M entries at tsb_size = 15 (256-Mbyte
TSB).

Note Any update to the TSB Configuration register immediately
affects the value returned from later reads of the TSB Pointer
register.
CHAPTER 14 • Memory Management 459

The TSB Pointer registers are implemented as a reorder of the current data stored in the Tag Access
register and the appropriate TSB Configuration register. If the Tag Access register or the TSB
Configuration register is updated through a direct software write (via an STXA instruction), then the
Pointer registers values will be updated as well.

The I/D/U-TSB Pointer registers are illustrated in FIGURE 14-13 and described in TABLE 14-23

FIGURE 14-13 I/D/U-TSB Pointer Registers

Input Values for TSB Pointer Formation. The pointer to the TTE in the TSB is generated from the
following parameters as inputs:

■ TSB base address (tsb_base)
■ Virtual address (va)
■ tsb_size
■ page_size

The TSB base address is provided in the TSB Configuration registers. Depending on the context ID
that generated the TLB miss, an appropriate TSB Configuration register is selected. tsb_size and
page_size is also supplied in the appropriate TSB Configuration register.

The virtual page number to be used for TSB pointer formation is in the I/D Tag Access register. If the
Tag Access register holds a nonzero context, then the nonzero TSB Configuration register is used; if
the Tag Access register holds a zero context, then the zero TSB configuration register is used.

TABLE 14-22 MMU I/D/U TSB Pointer Register ASI Assignments

ASI Register Virtual Address

5416
(ASI_MMU)

IMMU TSB Pointer 0 5016

IMMU TSB Pointer 1 5816

IMMU TSB Pointer 2 6016

IMMU TSB Pointer 3 6816

DMMU TSB Pointer 0 or
UMMU TSB Pointer 0

7016

DMMU TSB Pointer 1 or
UMMU TSB Pointer 1

7816

DMMU TSB Pointer 2 or
UMMU TSB Pointer 2

8016

DMMU TSB Pointer 3 or
UMMU TSB Pointer 3

8816

TABLE 14-23 I/D/U-TSB Pointer Register Description

BIt Field Type Description

63:56 — R Reserved

55:4 pa R The full physical address of the TTE in the TSB
(PA{55:4}), as determined by the MMU hardware.

3:0 — R (always reads as 0)

63 0

—

55 4 3 56

pa 0000
460 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

The formula to generate the 56-bit pa field of the TSB Pointer register is as follows:

pa ← tsb_base {55 : (13+tsb_size)}
:: VA {(21 + tsb_size + (3 × page_size)) :: (13 + (3 × page_size))}
:: 0000

14.12.8 Synchronous Fault Addresses

14.12.8.1 DMMU Synchronous Fault Address Register

The Data Synchronous Fault Address register contains the virtual memory address of MMU
exceptions detected on a data access. See TABLE 14-4 for details on which exceptions set the D-SFAR.

The D-SFAR register is illustrated in FIGURE 14-14

FIGURE 14-14 MMU Data Synchronous Fault Address Register (D-SFAR)

The D-SFAR register is read-only; an attempt to write to the D-SFAR causes a DAE_invalid_asi
exception.

14.12.8.2 Instruction Synchronous Fault Address

There is no IMMU Synchronous Fault Address register. Instead, software can derive the fault address
for instruction access errors from the TPC register, as follows.

■ For a fast_instruction_access_MMU_miss trap, TPC contains the virtual address that was not
found in the IMMU TLB.

■ For an IAE_privilege_violation trap, TPC contains the virtual address of the instruction in the
privileged page that caused the exception.

14.12.9 I/D/U TLB Tag Access, Data In, Data Access, and Tag Read
Registers
Access to the TLB is complicated because of the following needs:

■ To provide an atomic write of a TLB entry (tag and data) that is larger than 64 bits

■ To support an automatic, internal replacement index algorithm as well as to provide direct
diagnostic access

■ To allow multiple virtual processors that share the TLB to do a lock-free TLB update

■ To have hardware assist in the TLB miss handler

Architectural
Futures Note

The TSB Pointer Registers only appear in UltraSPARC
Architecture 2007 processors; they are not expected to be
supported in future generations of the architecture.

TABLE 14-24 DMMU_SYNCHRONOUS_FAULT_ADDRESS Register ASI Assignment

Register ASI Virtual Address

DMMU_SYNCHRONOUS_FAULT_ADDRESS_REGISTER 5816 2016

Note When PSTATE.am = 1, the upper 32 bits of the VA captured in
this register will be zero.

63 0

D-SFAR fault_address (captured VA{63:0})
CHAPTER 14 • Memory Management 461

TABLE 14-25 shows the effect of loads and stores on the Tag Access register and the TLB.

An ASI load from the TLB Tag Read register initiates an internal read of the tag portion of the
specified TLB entry.

The hardware supports an autodemap function to handle the case in which two or more virtual
processors sharing a TLB try to load the same translation into the TLB (for example, due to near-
simultaneous TLB misses on the same page). A TLB replacement that attempts to add an already
existing translation will cause the existing translation to be removed from the TLB.

TABLE 14-25 MMU TLB Access Summary

Operation
to/from
Register

Effect on MMU Physical Registers

TLB tag array TLB data array Tag Access Register

Load

Tag Read No effect. Contents
returned.

No effect No effect

Tag Access No effect No effect No effect. Contents
returned

Data In No effect (Trap with
DAE_invalid_asi))

No effect (Trap with
DAE_invalid_asi))

No effect (Trap with
DAE_invalid_asi))

Data Access No effect No effect. Contents
returned.

No effect

Store

Tag Read No effect (Trap with
DAE_invalid_asi)

No effect (Trap with
DAE_invalid_asi))

No effect (Trap with
DAE_invalid_asi))

Tag Access No effect No effect Written with store data

Data In TLB entry determined by
replacement policy written
with contents of Tag Access
register

TLB entry determined by
replacement policy
written with store data

No effect

Data Access TLB entry specified by
STXA address written with
contents of Tag Access
register

TLB entry specified by
STXA address written
with store data

No effect

TLB miss — No effect No effect Written with VA and
context of access

Notes When a page is loaded into the TLB, autodemap will remove
any TTE in the TLB that has the same virtual page number
(VPN) and page size as the TTE being loaded. Autodemap will
also remove any TTE in the TLB that maps a page that is larger
than and overlaps the page of the new TTE. For example, an
insertion of a 8-Kbyte page that lies within the virtual address
range of a 64-Kbyte page will cause the 64-Kbyte page to be
autodemapped.

Autodemap may or may not remove a TTE in the TLB that maps
a page that is smaller than and is overlapped by the page of the
new TTE. For example, an insertion of a 4-Mbyte page that
overlaps the virtual address of one or more 64-Kbyte pages may
or may not autodemap the overlapping 64-Kbyte pages. A
subsequent multiple-hit error in the TLB could be generated as
the result of a programming error that inserted a larger page in
the TLB that overlapped smaller pages present in the TLB.
462 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

14.12.9.1 I/D/U MMU TLB Tag Access Registers

In each MMU, the Tag Access registers are used as a temporary buffer for writing the TLB Entry tag
information. The Tag Access registers hold the tag portion, and the Data In or Data Access register
holds the data being accessed.

The IMMU ASIs are used for the ITLB, the DMMU ASIs for the DTLB, and the UMMU ASIs for the
UTLB.

To support a 16-bit context ID value, two registers are assigned; a Lower Tag Access register and an
Upper Tag Access register. Implementations with a context_id field less than 14 bits can use a single
Tag Access register.

The Tag Access registers are updated during any of the following operations:

1. When the MMU signals a trap due to a miss, exception, or protection violation. The MMU
hardware automatically writes the missing VA and the appropriate context
(ASI_PRIMARY_CONTEXTID_0 for primary context accesses, ASI_SECONDARY_CONTEXTID_0 for
secondary context accesses, ASI_NUCLEUS_CONTEXTID for other accesses) into the Tag Access
registers to facilitate formation of the TSB Tag Target register. See TABLE 14-4 on page 441 for the
Tag Access register update policy.

2. An ASI write to the Tag Access registers. Before an ASI store to the TLB Data Access registers, the
operating system must set the Tag Access register to the values desired in the TLB Entry. Note that
an ASI store to the TLB Data In register for automatic replacement also uses the Tag Access
registers, but typically the value written into the Tag Access registers by the MMU hardware is
appropriate.

3. An I-TLB or D-TLB load by the hardware tablewalker.

The TLB Upper Tag Access register fields are illustrated in FIGURE 14-15 and defined in TABLE 14-27.

Autodemap only demaps entries that match on PID and real bit.
If the real bit of the new TTE is 0, then only entries with
matching context IDs will be demapped.

If a TLB replacement is attempted using a reserved page size
value, an unsupported_page_size exception will be signalled
instead.

If a TLB replacement is attempted with the valid bit equal to 0
(v = 0), the MMU will treat that the same as if the valid bit were
1 for purposes of allocating and overwriting a TLB entry and
autodemapping matching pages, and the entry will be written
into the TLB with the v bit set to 0.

The autodemap mechanism does not look at TTE data; it looks
only at VA or RA, partition ID, real bit (r), and context ID if r = 0.

TABLE 14-26 I/D/UMMU_TLB Tag Access Register ASI Assignments

Register ASI Virtual Address

IMMU TLB Tag Access register 5016 3016

DMMU TLB Tag Access register or
UMMU TLB Tag Access register

5816 3016

Note Any update to the Tag Access registers immediately affects the
data that are returned from subsequent reads of the TSB Tag
Target and TSB Pointer registers.
CHAPTER 14 • Memory Management 463

FIGURE 14-15 I/D MMU TLB Upper Tag Access Register

The TLB Lower Tag Access register fields are illustrated in FIGURE 14-16 and described in TABLE 14-28.

FIGURE 14-16 I/D MMU TLB Lower Tag Access Registers

An ASI store to the TLB Data Access or Data In register initiates an internal atomic write to the
specified TLB entry. The TLB entry data is obtained from the store data, and the TLB entry tag is
obtained from the current contents of the TLB Tag Access registers as well as the Partition ID register.

14.12.9.2 I/D/UMMU TLB Data In Register

The TLB Data In register is used for TLB miss and TSB-miss handler automatic replacement writes.

The TLB Data In register uses the TTE format shown in TABLE 14-2 on page 434, except that bits 55:13
(taddr) contain a physical (not real) address. Refer to the description of the TTE data in TSB TTE Bit
Description on page 434 for a complete description of the data fields.

ASI loads from the TLB Data In register are not supported and cause aDAE_invalid_asi exception. An
attempt to write to the TLB Data In register with a nonzero VA address causes a DAE_invalid_asi
exception.

TABLE 14-27 TLB Upper Tag Access Register Description

Bit Field Type Description

63 real RW Real bit. If real = 1, this entry maps real-to-physical addresses, and the
context_id field is ignored. If real = 0, this entry maps virtual-to-physical
addresses, using the context_id field.

62:16 — R Reserved

15:0 context_id RW The 16-bit context ID. This field reads 0 when there is no associated context
with the access. For real translations, the context_id field is undefined. (impl.
dep. #415-S10)

TABLE 14-28 I/D MMU TLB Lower Tag Access Register Description

Bit Field Type Description

63:13 va_or_ra RW If real = 0, this is a 51-bit virtual page number; if real = 1, this is a 43-bit real
page number and software should insure that bits 63:56 are zeroes.

12:0 — R Reserved

TABLE 14-29 I/D/U MMU TLB Data In Register ASI Assignments

Register ASI VA

IMMU_TLB_DATA_IN 5416 016

DMMU_TLB_DATA_IN 5C16 016

UMMU_TLB_DATA_IN 5C16 016

63 62 016 15

Upper Tag
Access

real context_id—

63 0

—

13 12

Lower Tag
Access

va_or_ra
464 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

An ASI store to the TLB Data In register initiates an automatic atomic replacement of the TLB entry
pointed to by an implementation-dependent replacement algorithm. The TLB entry updates its tag
with the contents of the Tag Access register, including the real bit, and the Partition ID register; the
data for the TLB entry comes from the data stored to the Data In register.

IMPL. DEP. #234-U3: The replacement algorithm of a TLB entry is implementation dependent in
UltraSPARC Architecture 2007.

14.12.9.3 I/D/U MMU TLB Data Access Register

The TLB Data Access register is used for operating system and diagnostic directed writes (writes to a
specific TLB entry). It is also used to read entries from the TLB data array.

The format of the TLB Data Access register virtual address is shown in FIGURE 14-17; the fields are
described in TABLE 14-31.

FIGURE 14-17 I/D/U MMU TLB Data Access Virtual Address Format

The TLB Data Access register uses the TTE format shown in TABLE 14-2 on page 434. Refer to the
description of the TTE data in TSB TTE Bit Description on page 434 for a complete description of the
data fields.

When the data are stored in a TLB entry, bits 55:13 contain a physical (not real) address.

An ASI load from the TLB Data Access register initiates an internal read of the data portion of the
specified TLB entry.

TABLE 14-30 I/D/U MMU TLB Data Access Register ASI Assignments

Register ASI

IMMU_TLB_DATA_ACCESS 5516

DMMU_TLB_DATA_ACCESS 5D16

UMMU_TLB_DATA_ACCESS 5D16

TABLE 14-31 I/D/U MMU TLB Data Access Register Field Description

Bit Field Description

18:16 bank The TLB Entry bank to be accessed.
IMPL. DEP. #__: Whether this field is supported is implementation
dependent; otherwise, a nonzero value causes a DAE_invalid_asi exception.

15:11 way The TLB Entry way to be accessed.
IMPL. DEP. #__: Whether this field is supported is implementation
dependent; otherwise, a nonzero value causes a DAE_invalid_asi exception.

9:3 index The TLB Entry index to be accessed.
IMPL. DEP. # Up to 128-TLB entries are supported. Implementations with
less than 128-TLB entries should take a DAE_invalid_asi exception if
unsupported bits are nonzero.

63 0

000

3 2

index0way0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0 bank

1116 1519 18 10 9
CHAPTER 14 • Memory Management 465

14.12.9.4 I/D/UMMU TLB Tag Read Register

The format for the Tag Read register virtual address is illustrated in FIGURE 14-18 and described in
TABLE 14-33.

FIGURE 14-18 I/D/U MMU TLB Tag Read Virtual Address Format

To support the full range of address, context, and partition, two registers are defined, the Upper Tag
Read register and the Lower Tag Read register. Selection is provided by bit 19 of the virtual address.

IMPL. DEP. #___: It is implementation dependent on whether the Tag Read registers are implemented
as one register or two, depending on the number of context and partition bits supported.

The data format for the Upper Tag Read register is shown in FIGURE 14-19 and described in TABLE 14-34.

TABLE 14-32 I/D/U MMU TLB Tag Read Register ASI Assignments

Register ASI

IMMU_TLB_UPPER_TAG_READ 5616

DMMU_TLB_UPPER_TAG_READ 5E16

UMMU_TLB_UPPER_TAG_READ 5E16

IMMU_TLB_LOWER_TAG_READ ?

DMMU_TLB_LOWER_TAG_READ ?

UMMU_TLB_LOWER_TAG_READ ?

IMMU_TLB_TAG_READ 5616

DMMU_TLB_TAG_READ 5E16

UMMU_TLB_TAG_READ 5E16

TABLE 14-33 I/D/U MMU TLB Tag Read Register Field Description

Bit Field Description

19 seluw Select upper tag read register; when seluw = 1, select Upper Tag
Read register; when seluw = 0, select Lower Tag Read register.
IMPL. DEP. #__: Whether this field is supported is implementation
dependent; otherwise, a nonzero value causes a DAE_invalid_asi exception.

18:16 bank The TLB Entry bank to be accessed.
IMPL. DEP. #__: Whether this field is supported is implementation
dependent; otherwise, a nonzero value causes a DAE_invalid_asi exception.

15:11 way The TLB Entry way to be accessed.
IMPL. DEP. #__: Whether this field is supported is implementation
dependent; otherwise, a nonzero value causes a DAE_invalid_asi exception.

10 ctxtsel If 0, context A is read out in the context field. If 1, context B is read out in
the context field.
Note: A model’s TLB may store duplicate copies of the context field, and
ctxtsel allows software to examine both copies.
IMPL. DEP. #__: Whether this field is supported is implementation
dependent; otherwise, a nonzero value causes a DAE_invalid_asi exception.

9:3 index The TLB Entry index to be accessed.
IMPL. DEP. #Up to 128-TLB entries are supported. Implementations with less
than 128-TLB entries should take a DAE_invalid_asi exception if unsupported
bits are nonzero.

19 18 16 15 11 10 9 0

000

3 2

indexctxtsel way00000 bank

63 20

seluw
466 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

FIGURE 14-19 I/D/U MMU TLB Upper Tag Read Register

.

The MMU TLB Lower Tag Read register fields are illustrated in FIGURE 14-20 and described in
TABLE 14-35.

FIGURE 14-20 I/D/U MMU TLB Lower Tag Read Registers

TABLE 14-35 I/D/U MMU TLB Lower Tag Read Register Field Description

Some implementations can fit the tag read information in a single Tag Read register. The data format
is shown in FIGURE 14-21 and described in TABLE 14-36.

FIGURE 14-21 Single I/D/U MMU TLB Tag Read Register

TABLE 14-34 I/D/U MMU TLB Upper Tag Read Register Field Description

Bit Field Type Description

63 real R Real bit. If real = 1, this entry maps real to physical, and the context_id field is
ignored. If real = 0, this entry maps virtual to physical, using the context_id
field.

62 p R Parity for the tag entry. Parity is generated across partition_id, real, VA, and the
context_id field.

61:40 — R Reserved

39:32 partition_id R 8-bit partition ID used for all translation matches

31:16 — R Reserved

15:0 context_id R The 16-bit context ID. This field reads 0 when there is no associated context ID
with the access.

Bit Field Type Description

63:13 va_or_ra RW If real = 0, this is a 51-bit virtual page number; if real = 1 , this is a 43-bit real
page number.

12:0 — R Reserved

TABLE 14-36 Single I/D/U MMU TLB Tag Read Bit Register Description

Bit Field Type Description

63:61 partition_id R 3-bit partition ID.

60 real R Real. If 1, identifies an RA-to-PA translation instead of a VA-to-PA translation.

59 parity R Parity for the tag entry. Parity is generated across the PID, Real, va{47:13}, and
the context field.

58 used R Used bit for replacement.

57:48 — R Reserved

47:13 va_or_ra R If real = 0, this is a 35-bit virtual page number; if real = 1, this is a 35-bit real
page number.

12:0 context_id R The 13-bit context ID.

63 62 61 40 39 32 31 016 15

Upper Tag
Read

real p — — context_idpartition_id

63 0

—

13 12

Lower Tag
Read

va_or_ra

63 013 12

partition_id real

61 5960

parity used

58 57 4748
Tag Read — va_or_ra context_id
CHAPTER 14 • Memory Management 467

14.12.10 I/D/UMMU TLB Tag Target Registers

The I/D/U MMU TLB Tag Target registers are bit-shifted versions of the data stored in the
corresponding MMU TLB Tag Access registers. Since the appropriate MMU TLB Tag Access register is
updated on I- or D-TLB misses, the appropriate MMU TLB Tag Target registers appear to software to
also be updated on an I or D TLB miss. An attempt to write to this register results in a
DAE_invalid_asi exception. The MMU TLB Tag Target registers are illustrated in FIGURE 14-22 and
described in TABLE 14-38.

FIGURE 14-22 I/D/U MMU TLB Tag Target Register format

14.12.11 I/D/UMMU Demap
Demap is an MMU operation (as opposed to an MMU register). The purpose of demap is to remove
zero or more TTE entries from TLBs.

Demap is initiated by execution of a STXA instruction using one of the ASIs indicated in TABLE 14-39.

The format of data written by the STXA instruction in an UltraSPARC Architecture 2007 demap
operation is illustrated in FIGURE 14-23 and described in TABLE 14-41.

An attempt to read (load) from a Demap ASI causes a DAE_invalid_asi exception.

Hardware should provide proper synchronization within each virtual processor. Previous memory
accesses from the same virtual processor should have completed their TLB accesses, and the result of
the demap should be visible to all instructions following (in program order) after the demap
operation.

TABLE 14-37 I/D/U MMU_Tag Target Register ASI Assignments

Register ASI VA

IMMU_TLB_TAG_TARGET 5016 016

DMMU_TLB_TAG_TARGET 5816 016

UMMU_TLB_TAG_TARGET 5816 016

TABLE 14-38 I/D/U MMU TLB Tag Target Register Description

Bit Field Type Description

63:48 context_id R The context ID associated with the missing virtual address. For real
translations, the context field is undefined.

47:42 — R Reserved

41:0 va_or_ra R VA{63:22} or RA{63:22}.

TABLE 14-39 I/D/U MMU Demap ASI Assignments

Operation ASI VA

IMMU Demap 5716 016 †

DMMU Demap 5F16 016 †

UMMU Demap 5F16 016 †

† Virtual address is zero for implementations that encode Demap parameters
in data, but nonzero for those that encode Demap parameters in the VA.
See processor-specific documentation for details.

4748 42 41 0

 context_idTag Target va_or_ra—

63
468 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

An MMU demap operation only affects TLB contents; it does not modify any other virtual processor
registers.

Four types of demap operation are provided:

■ Demap Page — There are two forms of the Demap Page operation:

■ If r = 1 in the Demap Page operation, it removes any TLB entry with TTE.r = 1 and that matches
the specified virtual page number and Partition ID (Context ID is ignored in the match).

■ If r = 0 in the Demap Page operation, it removes any TLB entry with TTE.r = 0 and that matches
the specified virtual page number, Partition ID, and Context ID.

Which virtual page offset bits participate in the TLB entry match depends on the page size; see
TABLE 14-40. (This is also true for a translation match.)

■ Demap Context — Removes any TLB entry that matches the specified context ID and partition ID,
and is a virtual-to-real translation entry (TTE.r = 0), regardless of virtual page number.

Demap Context removes zero or more TLB entries. Demap Context will never demap a real-to-
physical translation entry (r = 1).

■ Demap All — Removes any TLB entry that matches the partition ID. Context ID, real bit, and
virtual page number are ignored when matching entries during a Demap All operation.

■ Demap Real — Removes any TLB entry with its real bit (r) set to 1 that matches the partition ID,
regardless of its context ID or virtual page number. Only real-to-physical translation entries in the
TLB (TTE.r = 1) are demapped.

Programming
Note

A demap operation does not invalidate the TSB in memory.
Software must modify the appropriate TTEs in the TSB before
initiating a demap operation to remove those TTEs from TLB(s).

TABLE 14-40 Virtual Page Offset Bits

Page Size
Virtual Page Offset Bits
that participate in match

64 Kbytes 15:13

512 Kbytes 18:13

4 Mbytes 21:13

32 Mbytes 24:13

256 Mbyte 27:13

2 Gbyte 30:13

16 Gbytes 33:13

Note Each Demap Page operation removes zero, one, or more TLB
entries. If no entries match, Demap Page removes no entries. If
there is an error condition in the TLB that causes multiple TLB
entries to match, Demap Page will remove all matching entries.

Note If smaller pages are overlapped by a larger page, an attempt to
demap a TTE for the larger page may or may not demap any of
the TTEs for the smaller pages.

Note The IMMU does not support a Demap Context operation with
the context = 012 (Secondary Context 0) encoding; an attempt to
use it will cause the demap request to be ignored.
CHAPTER 14 • Memory Management 469

FIGURE 14-23 MMU Demap Operation Data Format

14.12.12 Tablewalk Pending Registers
The Tablewalk Pending registers provide in-progress bits for hardware and software TLB loaders.

14.12.12.1 Tablewalk Pending Control Register
FIGURE 14-24 Tablewalk Pending Control Register

TABLE 14-41 Demap Data Format

Bit)s) Field Type Description

63:13 page_no W The virtual or real page number of the TTE to be removed from the TLB for
Demap Page (VA{63:13} or RA {63:13}). This field is not used by the MMU for the
Demap Context, Demap All, or Demap Real operations.

12:11 — This field is ignored by the MMU and should always be supplied as zeroes by
software.

10 r W Selects between demapping real translations (r = 1) or virtual translations (r = 0).
Valid for Demap Page only.

9:8 — This field is ignored by the MMU and should always be supplied as zeroes by
software.

7:6 type W The type of demap operation:
type Demap Operation
002 Demap Page—see page 469
012 Demap Context—see page 469
102 Demap All—see page 469
112 Demap Real—see page 469

5:4 context W Context selection:
context Context Used in Demap
002 Primary 0
012 Secondary 0 (DMMU only)
102 Nucleus
112 Reserved

For Demap Real and Demap All operations, the value of context is ignored.
For an IMMU Demap Context operation, context = 012 (referencing the Secondary
Context 0 register) is not supported; using context = 012 in that situation causes
the demap operation to be ignored.
For a Demap Page or Demap Context operation, use of the reserved value
context = 112 causes the demap operation to be ignored.

3:0 — This field is ignored by the MMU and should always be supplied as zeroes by
software.

TABLE 14-42 Tablewalk Pending Register ASI Assignments

Register ASI VA

ASI_TABLEWALK_PENDING_CONTROL 5416 9016

ASI_TABLEWALK_PENDING_STATUS 5416 9816

context

 0 12 11 10 9 8 463 13

r —

 7 56

type
Demap Data

Format —page_no —
 3

63 1 0

— stp
470 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

Note that this register is maintained completely by software.

14.12.12.2 Tablewalk Pending Status Register
FIGURE 14-25 Tablewalk Pending Status Register

IMPL. DEP. #____: The number of Tablewalk Pending Status registers present is implementation
dependent, but at least one Tablewalk Pending Status register must be provided per IMMU/DMMU
pair (or per UMMU).

This register allows software to identify when in-progress tablewalks have completed. Software can
invalidate a TTE in a TSB and then poll this register to identify tablewalks that may be temporarily
caching the TTE that has been invalidated. The bits that are 1 on this initial poll indicate pending
tablewalks. A bit initially sampled as 1 and later sampled as 0 indicates an in progress tablewalk has
completed. Once each of the bits that were initially 1 have been subsequently polled as 0, all
tablewalks that were in-progress when the initial poll was taken have completed.

Because successive hardware tablewalks can set bits of htp again, it is possible for software to
undersample. That is, polling software can miss a 1-to-0 transition if hardware clears and sets the bit
between adjacent software polls.

TABLE 14-43 ASI Tablewalk Pending Control Register Description

Bit(s) Field Type Description

63:1 — RW Reserved

0 stp RW Indicates whether a software tablewalk is in progress.

Programming
Note

One Tablewalk Pending Control register is implemented per
virtual processor. This register provides a mechanism whereby
software tablewalk can record its status. Minimally, software
tablewalk should write a 1 to stp before it fetches a TTE from a
TSB, and should write a 0 to stp after it has written the TTE to
the TLB or has determined that the TTE will not be written to
the TLB.

TABLE 14-44 ASI Tablewalk Pending Status Register Description

Bit(s) Field Type Description

63:32 htp RW One bit of htp is required per supported concurrent hardware tablewalk.
These concurrent hardware tablewalks may have implementation-
dependent relationships to the strands. That is, a strand may be statically
associated with one or more htp bits, or the strand to htp bit association
may be dynamic and change over time.

31:0 stp RW Each bit corresponds to the stp bit in the Tablewalk Pending Control
register for the corresponding virtual processor.

63 32 31 0

htp stp
CHAPTER 14 • Memory Management 471

14.13 Translation Lookaside Buffer Hardware
This section briefly describes the TLB hardware. For more detailed information, refer to the processor
implementation documents or the corresponding microarchitecture specification.

14.13.1 TLB Operations
The TLB supports the following operations:

■ VA → PA translation. The TLB receives a virtual address, a partition ID, and context ID as input
and produces a physical address and page attributes as output.

■ RA → PA translation. The TLB receives a real address and a partition ID as input and produces a
physical address and page attributes as output.

■ Bypass. The TLB receives a virtual address as input and produces a physical address equal to the
truncated virtual address and default page attributes as output.

■ Demap operation. The TLB receives a virtual address or real address, a partition ID, a “real” bit, a
context ID (if the “real bit” is zero), and a demap type as input and sets the valid bit to zero for any
matching entries.

■ Read operation. The TLB reads either the Tag or Data portion of the specified entry. (Since the TLB
entry is greater than 64 bits, the Tag and Data portions must be returned in multiple reads. See I/D/
U TLB Tag Access, Data In, Data Access, and Tag Read Registers on page 461.)

■ Write operation. The TLB simultaneously writes the Tag and Data portion of the specified entry or
the entry given by the implementation-dependent replacement policy.

Implementation
Note

Hardware must ensure that software can reliably detect the 1-to-
0 transition of the htp bits. To reduce the likelihood of
undersampling, an implementation may implement more than
one htp bit per supported concurrent hardware tablewalk.
Hardware may use these extra bits in round-robin fashion (or
some other appropriate fashion) to indicate new tablewalks,
thus extending the window of time provided for a software
sample of the zeroed bits of the recently completed tablewalks.
In such an implementation, any bit position in the HTP field can
be used to indicate a hardware tablewalk. It is recommended
that the same bits not be used successively, since the barrier
determination operates only on the state change of individual
bits.
472 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

CHAPTER 15

Chip-Level Multithreading (CMT)

An UltraSPARC Architecture 2007 processor may include multiple virtual processors on the same
processor module to provide a dense, high-throughput system. This may be achieved by having a
combination of multiple physical processor cores and/or multiple strands (threads) per physical
processor core.

This chapter specifies a common interface between hardware and software for such products, referred
to here as chip-level multithreaded processors (CMTs). It addresses issues common to CMT
processors, regardless of the microarchitecture of the individual physical processor cores, in the
following sections:

■ Overview of CMT on page 473.
■ Accessing CMT Registers on page 476.
■ CMT Registers on page 478.
■ Disabling and Parking Virtual Processors on page 481.
■ Reset and Trap Handling on page 488.
■ Error Handling in CMT Processors on page 490.
■ Additional CMT Software Interfaces on page 493.
■ Performance Issues for CMT Processors on page 494.
■ Recommended Subset for Single-Strand Processors on page 494.
■ Machine State Summary on page 495.

15.1 Overview of CMT
A broad range of designs may fall under the definition of CMT. The interface specified here is
intended to provide a set of common behaviors to enable operating system software and other
privileged software to be common across UltraSPARC Architecture 2007 processors. This interface is
not complete, as a range of implementation dependent features will exist to configure and control
these processors.

The CMT programming model describes a set of privileged registers that are used for identification
and configuration of CMT processors. Equally important, the CMT programming model describes
certain behavior that is common across CMT implementations. The set of registers and the common
behavior are covered in the following sections, grouped by topic.

UltraSPARC Architecture 2007 processors that are not CMT processors (are single-threaded) should
implement a subset of the CMT interface. This enables those virtual processors to be more easily
integrated into products that may also contain CMT processors and also enables more consistent
software to be deployed across future products. See Recommended Subset for Single-Strand Processors on
page 494 for additional information on non-CMT processor implementations.
473

15.1.1 CMT Definition
An UltraSPARC Architecture 2007 CMT processor is defined by its externally-visible nature and not
by its internal organization. The following section gives some background terminology, followed by a
description of the CMT definition.

15.1.1.1 Background Terminology

The following definitions expand on the abbreviated definitions provided in Chapter 2, Definitions.

Thread. Historically, the term thread is overused and ambiguous; software and hardware have used
it differently. From a software (operating system) perspective, the term “thread” refers to an entity
that:

■ Can be executed on underlying hardware
■ Is scheduled
■ May or may not be actively running on hardware at any given time
■ May migrate around the hardware of a system.

From the hardware perspective, the term “multithreaded processor” refers to a processor that can run
multiple software threads simultaneously.

To avoid confusion, the term “thread” in UltraSPARC Architecture 2007 is used exclusively in the
manner that it is used by software (specifically, the operating system). A thread can be viewed in a
practical sense as a Solaris™ process or lightweight process (LWP).

Strand. The term strand refers to the state that hardware must maintain in order to execute a
software thread. Specifically, a “strand” is the software-visible architected state (PC, NPC, general-
purpose registers, floating-point registers, condition codes, status registers, ASRs, etc.) of a thread
plus any microarchitecture state required by hardware for its execution. “Strand” replaces the
ambiguous term “hardware thread.” The number of strands in a processor defines the number of
threads that an operating system can schedule on that processor at any given time.

Pipeline. The term pipeline refers to an execution pipeline. It is a loose term for the basic collection
of hardware needed to execute instructions. A pipeline may be used by one or more strands, in order
to execute instruction from one or more threads.Synonym: microcore.

Physical Core. The term physical processor core, or just physical core, is similar to the term “pipeline”
but represents a broader collection of hardware. A physical core includes one or more execution
pipelines and associated structures, such as caches, that are required for executing instructions from
one or more software threads. A physical core contains one or more strands. The physical core
provides the necessary resources for the threads on each strand to make forward progress at a
reasonable rate. A multistranded physical core can execute multiple software threads by time-
multiplexing resources, partitioning resources, or any combination thereof.

The delineations among the terms strand, pipeline, and physical core are not precise. Among different
microarchitecture organizations the scope of the terms may vary. In general, in a specific
microarchitecture it will be apparent what constitutes a physical core. A physical core will be a highly
integrated unit with a clearly defined interface to more distant levels of the memory hierarchy and the
system interface unit. A physical core will contain a defined number of strands, that is, a maximum
number of software threads that may be scheduled on it at any given time.

Processor. A processor is the unit on which a shared interface is provided to control the
configuration and execution of a collection of strands. A processor contains one or more physical
cores, each of which contains one or more strands. Physically, a processor is a physical module that
plugs into a system. A processor is expected to appear logically as a single agent on the system
interconnect fabric.
474 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

Therefore, a simple processor that can only execute one thread at a time (for example, an
UltraSPARC I processor) would contain a single physical core which is single-stranded. A processor
that follows the academic model of simultaneous multithreading (SMT) would contain a single
physical core, where that physical core supports multiple strands in order to execute multiple
simultaneous threads (multi-stranded physical core). A processor that follows the academic model of
a chip multi-processor (CMP) would be a processor with multiple physical cores, each supporting
only a single strand. A processor may also contain multiple physical cores, where each physical core
is multi-stranded.

Virtual Processor. The term virtual processor is used to identify each strand in a processor. Each
virtual processor corresponds to a specific strand on a specific physical core, where multiple physical
cores, each with multiple strands, may exist. In most respects a virtual processor appears to the system
and to operating system software as a processing unit equivalent to a traditional single-stranded
processor (as in UltraSPARC I). Each virtual processor is capable of having interrupts directed
specifically to it. At any given time, an operating system can have a different thread scheduled on
each virtual processor.

The UltraSPARC Architecture 2007 CMT architecture (software interface) described in this chapter is
independent of the specific method by which multiple virtual processors are implemented. The term
“virtual processor” is generally used instead of “strand” because “strand” is commonly associated
with multistranded physical cores.

CPU. The term CPU is ambiguous in reference to processors with multiple virtual processors. The
term could potentially refer to a virtual processor or to an entire processor. Therefore, the term “CPU”
is considered ambiguous and is not be used in this document.

CMT. CMT is an abbreviation for “Chip MultiThreading” or, as an adjective, “Chip
MultiThreaded”. A CMT processor is a processor containing more than one virtual processor.

15.1.1.2 CMT Definition

CMT, as defined in UltraSPARC Architecture 2007, applies to all SPARC virtual processors. A
processor containing a single virtual processor (strand) is a special case, covered in Recommended
Subset for Single-Strand Processors on page 494. The CMT interface is the same whether multiple
strands are provided by multiple physical cores, a single physical core with multiple strands, or
multiple physical cores each with multiple strands.

A virtual processor is a processing entity that can execute a software thread. A virtual processor has a
number of key characteristics and includes all the architecturally visible state, as defined elsewhere in
this specification, to execute a thread (general purpose registers, floating-point registers, process state,
status registers, condition codes, etc.). A virtual processor is the smallest unit to which an interrupt
can be delivered. The addressability of interrupts to individual virtual processors is a very important
aspect of the CMT programming interface. An UltraSPARC Architecture 2007 implementation must
provide sufficient resources so that every virtual processor within the processor makes forward
progress at a reasonable rate.

Each virtual processor contains a separate instance of all user-visible architected state; that is,
nonprivileged architected state is per-virtual processor.

The privileged and hyperprivileged architected state of a processor falls into four classes (described
in Classes of CMT Registers on page 476), based on the degree of sharing among virtual processors.

Implementation
Note

The UltraSPARC Architecture 2007 applies to a single physical
processor chip. In a multiple-chip system, the UltraSPARC
Architecture 2007 applies to each processor chip.
CHAPTER 15 • Chip-Level Multithreading (CMT) 475

15.1.2 General CMT Behavior
In general, each virtual processor of a CMT processor behaves functionally as if it was an
independent processor. This is an important aspect of CMT processors because user code running on
a virtual processor does not need to know whether or not that virtual processor is part of a CMT
processor. At a high level, most privileged code in an operating system can treat virtual processors of
a CMT processor as if each was an independent processor. Some software (for example, boot, error,
and diagnostic) must be aware that it is executing on a CMT processor. This chapter deals chiefly with
the interface between this software and a CMT processor.

Each virtual processor of a CMT processor obeys the same memory model semantics as if it was an
independent processor. All software designed to run in a multiprocessing environment, including
thread libraries, must be able to operate on a CMT processor without modification.

There are significant performance implications of CMT processors, especially when shared resources
(such as caches) exist within a CMT processor. The virtual processors’ proximity will potentially mean
drastically different costs for communicating between two virtual processors on the same CMT
processor compared to communicating between two virtual processors on different CMT processors.
This adds another degree of non-uniform memory access (NUMA) to a system. For high performance,
the operating system, and even some user applications, will want to program specifically for the
NUMA nature of CMT processors. There may also be resource contention issues between virtual
processors on the same CMT processor. Performance Issues for CMT Processors on page 494 discusses
some key performance issues related to CMT processors.

15.2 Accessing CMT Registers
A key part of the CMT programming model is a set of privileged registers. This section covers how
these registers are organized and accessed. The registers can be accessed by software running on a
virtual processor of the CMT processor.

CMT-specific registers can be accessed by privileged software running on a virtual processor, using
Load and Store Alternate (notably, LDXAs and STXAs) instructions that provide an address space
identifier value and a (virtual) address. The CMT programming model defines address space
identifiers and associated virtual addresses (VAs) for accessing the CMT-specific registers.

15.2.1 Classes of CMT Registers
Nonprivileged architected state, including registers visible to nonprivileged software, is (or at least
appears to be) per-virtual-processor.

Privileged architected state, including registers visible to privileged software, is (or at least appears to
be) per-virtual-processor.

The hyperprivileged architected state of a processor falls into four categories:

■ Per-virtual-processor (per-strand) registers, of which each virtual processor has a private (not
shared) copy

■ Subset-shared registers, where a copy of each register is shared by a non-overlapping subset of
virtual processors1.

■ Per-physical-core shared registers (a special case of subset-shared registers), where a copy of each
register is shared by all virtual processors contained within a physical core.

1. Currently, no architectural CMT registers fall into this category. It is defined here for completeness, because registers in this category
may need to exist as implementation-specific registers
476 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

■ Processor-shared CMT registers, in which a single copy of each register is shared by all virtual
processors in the processor

Registers that are read-only in privileged mode (for example, TICK) need not be strictly implemented
as per-virtual-processor registers; they may be implemented in one of the “shared” categories above,
such that their shared nature is not visible to privileged software.

CMT-specific registers of all classes can be accessed as ASI-mapped registers through hyperprivileged
software running on a virtual processor. Software running on a given virtual processor can access:

■ all the per-virtual processor registers belonging to the virtual processor on which it is running

■ the per-physical-core shared registers belonging to the physical core on which it is running

■ subset-shared registers for any group of virtual processors to which the virtual processor on which
it is running belongs

■ all processor-shared registers

In nonprivileged or privileged mode, it is normally not possible for a virtual processor on one
physical core to address (much less, read) the per-physical-core registers of another physical core. On
some implementations it may be possible for a virtual processor on one physical core to address the
per-physical-core registers of another physical core, but only in hyperprivileged mode or if
hyperprivileged software grants such privileges to software running at a lower privilege level.

The semantics for accessing the CMT registers through the ASI interface are described in Accessing
CMT Registers Through ASIs on page 477.

15.2.2 Accessing CMT Registers Through ASIs
Each CMT-specific register is accessible through a restricted ASI (accessible only in hyperprivileged
software). The ASI number and virtual address corresponding to each CMT register are described
later in this chapter.

Each virtual processor can access the per-physical-core CMT registers associated with that virtual
processor. The implementation must guarantee that accesses to per-physical-core registers follow
sequential semantics on the virtual processor with which they are associated.

Each virtual processor can access all the per-processor shared CMT registers on its processor. An
update to a per-processor shared register from one virtual processor will be visible to all other virtual
processors that share that register. The ordering of accesses to per-processor shared registers from
different virtual processors is not defined, but an implementation must guarantee that:

■ Accesses to a shared register from the same virtual processor follow sequential semantics.

■ If multiple virtual processors attempt to store to a shared CMT register at the same time, the value
observed in (readable from) the register will always be that written by one of those stores. That is,
a store to a CMT register must be performed atomically on all bits of the register. In the case of the
STRAND_RUNNING register, there is a third option — a write to the register may be dropped
(ignored) entirely in certain situations (for details, see Simultaneous Updates to the
STRAND_RUNNING Register on page 485).

There may be additional implementation-enforced restrictions on updates to some CMT registers.

All CMT registers are 64-bit registers, although some of the bits of individual registers can be reserved
or defined to contain a fixed value in a given implementation. Reserved register fields should always
be written by software with values of those fields previously read from that register or with zeroes
and they should read as zero in hardware (see Reserved Opcodes and Instruction Fields on page 97).
Software intended to run on future versions of CMTs should not assume that these fields will read as
0 or any other particular value. This convention simplifies future expansion of the CMT interface.
CHAPTER 15 • Chip-Level Multithreading (CMT) 477

A CMT register is accessed through load and store instructions, using a defined ASI number and
virtual address. CMT registers can only be accessed in hyperprivileged mode. An attempt to access
a CMT register in nonprivileged or privileged mode results in a privileged_action exception.

Only the LDXA instruction can be used to read a CMT register. Only the STXA instruction can be used
to store to a CMT register. An attempt to access a CMT register with any other instruction results in a
DAE_invalid_asi exception. An attempt to write to a read-only CMT register with a STXA instruction
results in a DAE_invalid_asi exception.

15.3 CMT Registers
In this section, the registers used to control operation of a processor in a CMT implementation are
described. For each register defined in this document, a six-column quick-reference table is provided
that specifies the key attributes of the register, as follows:

15.3.1 Strand ID Register (STRAND_ID)

STRAND_ID is a read-only, per-virtual processor register that holds the ID value assigned by hardware
to each implemented virtual processor. The ID value is unique within the CMT processor.

As shown above, the STRAND_ID register has three fields:

Column Heading Meaning of collumn contents

Register Name The name of the CMT register

ASI # (Name) The address space identifier number used for accessing the register
from software running on the CMT processor (and the recommended
ASI name for use in assembly-language hyperprivileged software)

VA The virtual address used for accessing the register from software
running on the CMT processor

Scope The scope of sharing for the register — whether the register is a “per-
virtual processor” (per-strand) register, or a single instance of a
register that is “shared” among the virtual processors within a
physical core (per-core), “shared” among a subset of virtual processors
within a physical core (per-subset), or “shared” among all the virtual
processors within a processor (per-proc).

Access Whether software access to the register is read/write (RW), read-only
(R only), write-only (W only), Write-1-to-Set (W1S), or Write-1-to-Clear
(W1C)

Note Any additional information

Register Name ASI # (Name) VA Scope Access Note

STRAND_ID 6316
(ASI_CMT_PER_STRAND)

1016 per-
strand

R only

RO W RO W RO W

STRAND_ID — max_strand_id_per_core — max_strand_id — strand_id

63 32+n-1 32 31 16+n 16+n-1 16 15 n n-1 0

FIGURE 15-1 STRAND_ID Register
478 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

1. strand_id, which represents this virtual processor’s number, as assigned by hardware. The strand
ID is encoded in 7 bits.

2. max_strand_id, which is the bit-position index (bit number) of the most significant ‘1’ bit in the
STRAND_AVAILABLE register. This is the Strand ID of the highest-numbered implemented virtual
processor in this CMT processor.

3. max_strand_id_per_core, which specifies the number of strands minus one that are implemented
on each physical core. For a single-stranded processor, max_strand_id_per_core will be 0.

Many other CMT-specific registers provide a bit mask in which each bit corresponds to an individual
virtual processor. For these registers, the strand_id field indicates which bit of a bit mask corresponds
to this specific virtual processor.

Strand Numbering Convention. The numbering of virtual processors (strands) may or may not be
contiguous; system software may only assume that each strand ID is unique within a CMT processor.
In general, virtual processors should be numbered in a sequential, contiguous series starting with
strand number 0. When numbering the virtual processors within a CMT processor, this convention
appears straightforward. There are cases, however, where this might not be so simple. This numbering
convention is recommended but not required.

In a CMT processor designed with many virtual processors, some physical cores in a manufactured
CMT processor may fail to function correctly. It is likely that there would be a desire to salvage a
partially good CMT processor (one where a subset of the virtual processors and all the common area
function correctly) and use it as a CMT processor with fewer than the maximum number of functional
virtual processors. In such a case, it would be possible that the functional strands be numbered
contiguously, starting from 0, and that the STRAND_ID.max_strand_id field be set to the highest-
numbered functional virtual processor. This requires some way to reassign the identity of individual
virtual processors after manufacturing. If this is not practical, the functioning virtual processors may
not be contiguously numbered.

15.3.1.1 Exposing Stranding

If a processor implements multiple strands per physical core, the stranding is exposed in
STRAND_ID.max_strand_id_per_core. This field encodes one less than the number of strands that are
implemented on the physical processor core; for example, on a physical core with 4 strands,
STRAND_ID.max_strand_id_per_core = 3. Every virtual processor within the physical core must
observe the same value of max_strand_id_per_core. An implementation defines and count strands
and physical processor cores as appropriate for that implementation.

When STRAND_ID.max_strand_id_per_core is nonzero, there are additional constraints on the
numbering of virtual processors. virtual processors that correspond to strands on the same physical
processor core must have contiguous STRAND_ID.strand_id values, with the lowest numbered virtual
processor on a physical core having a strand_id value that is a multiple of the number of strands on
each physical core.

It is important to expose stranding to software. From a performance standpoint, stranding must be
exposed for the operating system to understand resource sharing and contention issues and to
optimally schedule software threads on the processor. From a power management perspective,
knowledge of stranding enables the facility to park or disable all strands on a physical core to obtain
significant power savings.
CHAPTER 15 • Chip-Level Multithreading (CMT) 479

15.3.2 Strand Interrupt ID Register (STRAND_INTR_ID)

FIGURE 15-2 STRAND_INTR_ID Register

The STRAND_INTR_ID register allows software to assign a 16-bit interrupt ID, unique within a system,
to each virtual processor. This is necessary in order to enable virtual processors to receive interrupts.
The identifier in this register is used by other virtual processors (on the same and different CMT
processors) and other bus agents to address interrupts to this specific virtual processor. It can also be
used by this virtual processor to identify itself as the source of an interrupt it sends to other virtual
processors and bus agents.

This register is Read/Write, accessible only in hyperprivileged mode (HPSTATE.hpriv = 1). It is
expected that it will be modified only at boot or reconfiguration time. An attempt to access this
register in privileged mode or nonprivileged mode results in a privileged_action exception.

The STRAND_INTR_ID register has only one field, a 16-bit interrupt ID field, named int_id.

If an implementation uses fewer than 16 bits for its interrupt ID, the unused bits read as zero and
writes to them are ignored.

IMPL. DEP. #: It is implementation dependent whether any portion of the int_id field of the
STRAND_INTR_ID register is read-only (see following subsection, Assigning an Interrupt ID).

15.3.2.1 Assigning an Interrupt ID

When assigning the interrupt ID to a virtual processor, software must be aware of interrupt routing
conventions used in the system. Some portion of the interrupt ID might be required to follow a
hardware convention to enable the interrupt to be correctly routed through the system interconnect.
In some implementations, a part of the interrupt ID can be fixed by the processor to correspond to the
strand ID. This portion of the interrupt ID can be read-only in the STRAND_INTR_ID register. Such
requirements are both processor- and system-platform-specific.

Each virtual processor in the CMT processor must have an interrupt ID that is unique within the
system. If the interrupt ID of multiple virtual processors in the same system are set to the same value,
the behavior of the processor is undefined when an interrupt specifying that ID is sent or received.

15.3.2.2 Dispatching and Receiving Interrupts

The mechanisms used to dispatch and receive interrupts must work with the interrupt ID register. A
processor’s interrupt dispatch mechanism must be able to specify the interrupt ID of the destination
virtual processor to which the interrupt is to be delivered. When a destination interrupt ID is
specified, the interrupt must be delivered to the virtual processor that has the matching ID in its
STRAND_INTR_ID register.

15.3.2.3 Updating the Strand Interrupt ID Register

It is expected that the interrupt ID register of a virtual processor will be written once by software,
when a virtual processor is initially booted. It is assumed that while a virtual processor is being
booted, there will be no interrupt traffic in the system.

Register Name ASI # (Name) VA Scope Access Note

STRAND_INTR_ID 6316
(ASI_CMT_PER_STRAND)

0016 per-
strand

RW

Reserved int_id

63 16 15 0

STRAND_INTR_ID
480 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

The latency from when software writes to STRAND_INTR_ID to when the write takes effect is
implementation dependent. Use of a MEMBAR #Sync instruction after a write to STRAND_INTR_ID
will cause the write to become visible before any instructions after the MEMBAR are executed on the
virtual processor.

Updates to STRAND_INTR_ID are atomic: if STRAND_INTR_ID is written, the value observed at any
time will be either the old value or the new value; no transient value will be observed. If an interrupt
is issued to a virtual processor while its interrupt ID register is being updated (addressed either to its
old or new interrupt ID), the interrupt may or may not be received by the virtual processor. Once a
virtual processor acknowledges an interrupt using its new interrupt ID, it will not acknowledge any
interrupts addressed to the old interrupt ID.

If an interrupt is issued to a system, addressed to an interrupt ID that does not match any virtual
processors or other system agents, the interrupt will not be acknowledged and will be dropped.

15.4 Disabling and Parking Virtual Processors
The CMT programming model provides the ability to disable virtual processors and temporarily
suspend (park) virtual processors. This section describes the interface for probing what virtual
processors are available, enabled, and running (not parked). This section also describes the interface
for enabling/disabling virtual processors and parking/unparking virtual processors.

15.4.1 Strand Available Register (STRAND_AVAILABLE)

FIGURE 15-3 STRAND_AVAILABLE Register

The STRAND_AVAILABLE register is a shared (one per processor) register that indicates which virtual
processors are available for use (that is, are present and functional) in a CMT implementation.

The STRAND_AVAILABLE register is read-only, comprising a single 64-bit field. As illustrated in
FIGURE 15-3, bit n corresponds to virtual processor n; therefore up to 64 virtual processors are
supported per CMT. If a bit in the register is 1, the corresponding virtual processor is available for use
in the CMT. If a bit in the register is 0, the corresponding virtual processor is not available for use. An
“available” virtual processor is one that is present and functional, therefore can be enabled and used.

15.4.2 Enabling and Disabling Virtual Processors
The CMT programming model allows virtual processors to be enabled and disabled. Enabling or
disabling a virtual processors is a heavyweight operation that in most cases requires either a
power_on_reset (POR) or a warm_reset (WRM) for updates. A disabled virtual processor produces
no architectural effects observable by other virtual processors, and does not participate in cache
coherency. The behavior of any transaction (such as an interrupt) issued to a disabled virtual
processor is undefined.

Register Name ASI # (Name) VA Scope Access Note

STRAND_AVAILABLE 4116 (ASI_CMT_SHARED) 0016 per-proc R only

Strand-Available bits

63 0

STRAND_AVAILABLE
CHAPTER 15 • Chip-Level Multithreading (CMT) 481

IMPL. DEP. #322-U4: Whether disabling a virtual processor reduces the power used by a CMT is
implementation dependent. It is recommended that a disabled virtual processor consume a minimal
amount of power.

IMPL. DEP. #423-S10: Whether disabling a virtual processor increases the performance of other
virtual processors in the CMT is implementation dependent.

15.4.2.1 Strand Enable Status Register (STRAND_ENABLE_STATUS)

FIGURE 15-4 STRAND_ENABLE_STATUS Register

The STRAND_ENABLE_STATUS register is a shared (one per processor) register that indicates which
virtual processors are currently enabled. The register is a read-only register, in which each bit
corresponds to a virtual processor.

As shown in FIGURE 15-4, bit n corresponds to virtual processor n. If a bit in the
STRAND_ENABLE_STATUS register is 1, the corresponding virtual processor is available and
enabled. A virtual processor indicated as “not available” in the STRAND_AVAILABLE register cannot
be enabled, and its corresponding enabled bit in this register will be 0. An available, enabled virtual
processor that is parked is still considered enabled.

State After Reset. The STRAND_ENABLE_STATUS register changes due to a power_on_reset.
(POR) or a warm_reset (WRM). During a power_on_reset, the contents of its STRAND_AVAILABLE
register are copied to the STRAND_ENABLE_STATUS register. During a warm_reset reset, the
contents of the STRAND_ENABLE register are copied to the STRAND_ENABLE_STATUS register.

15.4.2.2 Strand Enable Register (STRAND_ENABLE)

FIGURE 15-5 STRAND_ENABLE Register

The STRAND_ENABLE register is a shared (one per processor) register, used by software to enable
and disable a CMT’s virtual processors. When disabled, a virtual processor and any structures private
to that virtual processor behave as though they were not present.

Register Name ASI # (Name) VA Scope Access Note

STRAND_ENABLE_STATUS 4116 (ASI_CMT_SHARED) 1016 per-proc R only

Programming
Note

Hyperprivileged software should never set bit
STRAND_ENABLE{n} to 1 if STRAND_AVAILABLE{n} = 0.

Register Name ASI # (Name) VA Scope Access Note

STRAND_ENABLE 4116
(ASI_CMT_SHARED)

2016 per-proc RW Changes take effect during reset

Programming
Note

When re-enabled, per-strand architectural state that existed
when the virtual processor was previously enabled should be
assumed to be lost. Therefore, hyperprivileged software must
initialize any needed per-strand architectural state each time a
virtual processor is enabled.

Strand Enable Status bits

63 0

STRAND_ENABLE_STATUS

Strand Enable bits

63 0

STRAND_ENABLE
482 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

Changing a bit in the STRAND_ENABLE register does not take effect (cause a virtual processor to be
enabled/disabled) immediately. Instead, it indicates a pending change to the
STRAND_ENABLE_STATUS register, which will not take effect until the next warm_reset (WRM)
reset — at which time, the contents of the STRAND_ENABLE register are copied to the
STRAND_ENABLE_STATUS register. A change in the STRAND_ENABLE register may also take
place at some other implementation-dependent time (see Dynamically Enabling/Disabling Virtual
Processors on page 483 (impl. dep. #___).

As shown in FIGURE 15-5, the STRAND_ENABLE register contains one bit per possible virtual
processor, with bit n corresponding to virtual processor n. If bit n is 1, then virtual processor n should
be enabled after the next warm reset (if that virtual processor is available). If bit n is 0, then virtual
processor n should be disabled after the next warm reset.

When bit n in the STRAND_AVAILABLE register is 0 (the virtual processor is unavailable), the
corresponding bit (bit n) in the STRAND_ENABLE register is forced to 0 and attempts to write “1” to
bit n in the STRAND_ENABLE register are ignored.

Restrictions on Updating the STRAND_ENABLE Register.

IMPL. DEP. #323-U4: Whether an implementation provides a restriction that prevents software from
writing a value of all zeroes (or zeroes corresponding to all available virtual processors) to the
STRAND_ENABLE register is implementation dependent. This restriction avoids the dangerous case
where all virtual processors become disabled and the only way to enable any virtual processor is a
hard power_on_reset (a warm reset would not suffice). If such a restriction is implemented and
software running on any virtual processor attempts to write a value of all zeroes (or zeroes
corresponding to all available virtual processors) to the STRAND_ENABLE register, hardware forces
the STRAND_ENABLE register to an implementation-dependent value which enables at least one of
the available virtual processors.

State After Reset. Upon assertion of power_on_reset, the value of the STRAND_AVAILABLE
register is copied to the STRAND_ENABLE register. The STRAND_ENABLE register does not change
during any other reset, including system (or equivalent) resets.

15.4.2.3 Dynamically Enabling/Disabling Virtual Processors

IMPL. DEP. #424-S10: Whether a CMT implementation provides the ability to dynamically enable
and disable virtual processors is implementation dependent. It is tightly coupled to the underlying
microarchitecture of a specific CMT implementation. This feature is implementation dependent
because any implementation-independent interface would be too inefficient on some
implementations.

15.4.3 Parking and Unparking Virtual Processors
Parking is a way to temporarily suspend the operation of a virtual processor, intended for use by
critical diagnostic and recovery code. A parked virtual processor can be later unparked to allow it to
resume running. A virtual processor can be parked or unparked at arbitrary times using the
STRAND_RUNNING register and a WMR or POR reset is not required for parking/unparking to
become effective. The STRAND_RUNNING_STATUS register can be used to determine whether a
virtual processor that has been directed to park has completed the process of parking.

A parked virtual processor does not execute instructions and does not initiate any transactions on its
own. If any portion of the memory system resides in a parked virtual processor, it will continue to be
updated as necessary for it to remain coherent with the rest of the memory system while the virtual
processor is parked.
CHAPTER 15 • Chip-Level Multithreading (CMT) 483

When a virtual processor is unparked, it continues execution with the instruction that was next to be
executed when the virtual processor was parked. It is transparent to software running on a virtual
processor that it was ever parked (except for observable timing considerations).

While a virtual processor is parked, the STICK register continues to count.

IMPL. DEP. #425-S10: It is implementation dependent whether the TICK register continues to count
while a virtual processor is parked.

Using the TICK or STICK counter to detect the parking of a virtual processor is not recommended.

An interrupt to a parked virtual processor behaves the same as if the virtual processor was too busy
to accept the interrupt.

IMPL. DEP. #324-U4: It is implementation dependent whether parking a virtual processor reduces the
power used by a CMT. It is recommended that a parked virtual processor use a reduced amount of
power.

Parking a virtual processor should, when appropriate, reduce the contention for shared resources and
enable other virtual processors to potentially run faster.

IMPL. DEP. #426-S10: The degree to which parking a virtual processor impacts the performance of
other virtual processors is implementation dependent.

15.4.3.1 Strand Running Register (STRAND_RUNNING)

FIGURE 15-6 STRAND_RUNNING Register

Implementation
Note

One possible way to implement virtual processor parking is to
disable instruction fetching in a parked virtual processor. In
such an implementation, after a virtual processor is parked, it
will execute the instructions currently in its pipeline, complete
pending transactions (such as draining the store queue), and
then become idle (at which time, its status in the
STRAND_RUNNING_STATUS register will change from
Running to Parked).

Architectural
Futures Note

In a future revision of this architecture, the bit in the
STRAND_RUNNING_STATUS register that indicates that the
virtual processor is parked will be required to not be set to zero
until the virtual processor actually does become idle. That is, it
must not be set to zero just when the virtual processor stops
fetching instructions, but only after all pending instructions
and transactions initiated by that virtual processor have
completed.

Register Name ASI # (Name) VA Scope Access Note

STRAND_RUNNING_RW 4116 (ASI_CMT_SHARED) 5016 per-proc RW General RW access

STRAND_RUNNING_W1S 4116 (ASI_CMT_SHARED) 6016 per-proc W1S Write 1s to set bits

STRAND_RUNNING_W1C 4116 (ASI_CMT_SHARED) 6816 per-proc W1C Write 1s to clear bits

Strand Running bits

63 0

STRAND_RUNNING
484 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

STRAND_RUNNING is a shared (one per processor) register, used by software to park and unpark
selected virtual processors in a CMT implementation. When a virtual processor is parked, the virtual
processor stops executing new instructions and will not initiate new transactions except in response to
a coherency transaction initiated by another virtual processor.

IMPL. DEP. #427-S10: There may be an arbitrarily long, but bounded, delay (“skid”) from the time
when a virtual processor is directed to park or unpark (via an update to the STRAND_RUNNING
register) until the corresponding virtual processor(s) actually park or unpark.

Multiple access methods are provided for writing bits in the STRAND_RUNNING register,
distinguished by the virtual address used (listed above):

■ STRAND_RUNNING_RW, for normal reading and writing of the entire register

■ STRAND_RUNNING_W1S (“Write 1 to Set”), where writing ‘1’ to a bit sets the destination bit to ‘1’
and writing ‘0’ to a bit leaves the destination bit unchanged

■ STRAND_RUNNING_W1C (“Write 1 to Clear”), where writing ‘1’ to a bit sets the destination bit to
‘0’ (clears it) and writing ‘0’ to a bit leaves the destination bit unchanged

A specific value can be atomically written to all bits of the STRAND_RUNNING register, using
STRAND_RUNNING_RW, or bits can be individually modified, using STRAND_RUNNING_W1S or
STRAND_RUNNING_W1C. When a virtual processor parks itself, software should write to
STRAND_RUNNING_W1C. When a virtual processor wants to become the only active virtual
processor (parking all other virtual processors in the CMT), it is more appropriate to write the desired
value directly to STRAND_RUNNING_RW. A direct write eliminates the need to perform separate set
and clear operations to write a specific value to the register.

As shown in FIGURE 15-6, the STRAND_RUNNING register contains one bit per possible virtual
processor, with bit n corresponding to virtual processor n. Writing a value of 1 to bit position n
activates (unparks) virtual processor n for normal execution, while writing a value of 0 to bit n parks
virtual processor n. If bit n in the STRAND_ENABLE_STATUS register is 0 (not enabled), hardware
forces the corresponding bit in the STRAND_RUNNING register to 0 and attempts to write to that bit
are ignored.

Updating the STRAND_RUNNING Register. When a virtual processor parks itself by updating
the STRAND_RUNNING register and follows the update with a FLUSH instruction, no instruction
after the FLUSH instruction will be executed until the virtual processor is unparked. The virtual
address specified in the FLUSH instruction is not important. The FLUSH instruction may be executed
either before parking takes effect or after the virtual processor is unparked. The FLUSH can, therefore,
enable software to bound when parking takes effect, in the case when a virtual processor parks itself.

IMPL. DEP. #428-S10: When a virtual processor writes to the STRAND_RUNNING register to park
itself, the method by which completion of parking is assured (instructions stop being issued) is
implementation dependent.

Simultaneous Updates to the STRAND_RUNNING Register. Hardware is not required to
provide a mechanism for handling simultaneous updates from different strands to the
STRAND_RUNNING register.

Programming
Note

It is the responsibility of hyperprivileged software to insure that
a livelock condition, resulting from simultaneous updates from
different strands to the STRAND_RUNNING register, does not
occur.

After writing to STRAND_RUNNING with a STXA instruction,
hyperprivileged software should check the
STRAND_RUNNING_STATUS register to verify when the
attempted parking/unparking of virtual processor(s) actually
completed.
CHAPTER 15 • Chip-Level Multithreading (CMT) 485

At Least One Virtual Processor Must Remain Unparked. Hardware enforces the restriction that
an update to the STRAND_RUNNING register by software running on one of the virtual processors
cannot cause all of the enabled virtual processors to become parked. This restriction is important to
avoid the dangerous situation where all virtual processors become parked and there is no way to
reactivate any of the virtual processors (without a warm reset or power-on reset).

IMPL. DEP. #429-S10: If an update to the STRAND_RUNNING register would cause all enabled
virtual processors to become parked, it is implementation dependent which virtual processor is
automatically unparked by hardware. The preferred implementation is that when an update to the
STRAND_RUNNING register (STXA instruction) would cause all virtual processors to become
parked, hardware silently ignores (discards) that STXA instruction.

At Least One Virtual Processor Must Remain Unparked — Multiprocessor Configuration.

When there are multiple processors (chips) in the configuration, there is still a requirement to have at
least one virtual processor unparked on each processor. However, from a testing point of view, it is
desirable to be able to unpark all but one virtual processor in the entire multiprocessor configuration.

IMPL. DEP. #430-S10: In a multiprocessor configuration, whether all but one virtual processor can be
parked is implementation dependent.

State After Reset. Upon power-on reset or warm reset, the STRAND_RUNNING register by default
is initialized such that all the virtual processors are parked except for the lowest-numbered enabled
virtual processor. This provides a default on-chip “boot master” virtual processor, reducing BootBus
contention.

15.4.3.2 Strand Running Status Register (STRAND_RUNNING_STATUS)

FIGURE 15-7 STRAND_RUNNING_STATUS Register

Implementation
Note

It is important that when a virtual processor attempts to issue an
update to the STRAND_RUNNING register that would cause all
virtual processors to become parked, that virtual processor is not
parked. A virtual processor updating the STRAND_RUNNING
register will be executing a section of software (error diagnostic
or other special code) that is aware of the behavior and
implications of parking. When an attempt is made to park all
virtual processors, automatically unparking an arbitrary virtual
processor would be problematic, because a virtual processor in
the midst of running nonprivileged code could become the only
unparked virtual processor. If this were to happen, the only
active virtual processor in the CMT would be unaware of the
state of the CMT and would not know to check the running
status of other virtual processors.

Note For systems that use a system reset pin, the value of the
STRAND_RUNNING register is updated upon assertion of the
warm reset signal.

Register Name ASI # (Name) VA Scope Access Note

STRAND_RUNNING_STATUS 4116
(ASI_CMT_SHARED)

5816 per-proc R only

Strand Running Status bits

63 0

STRAND_RUNNING_STATUS
486 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

STRAND_RUNNING_STATUS is a shared (one per processor) register. It indicates whether a virtual
processor is still active (running) or has actually become parked. It is needed because there may be a
delay between the time when a virtual processor is directed to park (via the STRAND_RUNNING
register) and the time when it actually becomes parked. The STRAND_RUNNING_STATUS register is
a shared, read-only register in which bit n indicates if strand n is active.

There is an implementation-dependent delay from the time virtual processor n is directed to park by
writing 0 to bit n of the STRAND_RUNNING register until it actually becomes parked (impl. dep.
#427-S10).

As shown in FIGURE 15-7, the STRAND_RUNNING_STATUS register has one 64-bit field (one bit per
possible virtual processor), with bit n corresponding to virtual processor n.

■ If virtual processor n is enabled (STRAND_ENABLE_STATUS{n} = 1):

■ a value of 0 in bit n of the STRAND_RUNNING_STATUS register indicates that virtual processor n
is truly parked and will not execute any additional instructions or initiate new transactions until
it is unparked.

■ A value of 1 in bit n of the STRAND_RUNNING_STATUS register indicates that a virtual processor
is active and can execute instructions and initiate transactions. All virtual processors that have a
1 in the STRAND_RUNNING register must have a 1 in the STRAND_RUNNING_STATUS register.

■ If virtual processor n is disabled (STRAND_ENABLE_STATUS{n} = 0), bit n of the
STRAND_RUNNING_STATUS register must be 0.

The STRAND_RUNNING_STATUS register indicates when a virtual processor that has been directed to
park has actually parked, that is, is no longer executing instructions or initiating any transactions
(except in response to coherency transactions generated by other virtual processors).

IMPL. DEP. #431-S10: The criteria used for determining whether a virtual processor is fully parked
(corresponding bit set to ‘1’ in the STRAND_RUNNING_STATUS register) are implementation
dependent.

After bit n in the STRAND_RUNNING register has been changed from 1 to 0, hardware must
guarantee that only a single transition from 1 to 0 in bit n of the STRAND_RUNNING_STATUS register
will be observed.

State After Reset. The value of the STRAND_RUNNING_STATUS register is the same as the value of
the STRAND_RUNNING register at the end of a system reset.

15.4.4 Virtual Processor Standby (or Wait) State
IMPL. DEP. #432-S10: Whether an implementation implements a Standby (or Wait) state for virtual
processors, how that state is controlled, and how that state is observed are implementation-
dependent.

In a Standby state, the virtual processor is suspended for a predetermined period of time and/or
until an external interrupt is received. A Standby state may appear similar to a Parked state, but
virtual processor Standby state (if implemented) must be completely orthogonal to parking. The
details of the software interface to and implementation of Standby/Wait state is beyond the scope of
this specification.

With respect to parking, the virtual processor is either Running or not running (Parked), as
indicated in the STRAND_RUNNING_STATUS register. With respect to standby, the virtual processor is
either in Standby or Normal state. Since these features are independent, the virtual processor can be
in any of the four possible combinations of these states. A virtual processor is still considered running
if it is in a Standby mode but is not Parked. If a virtual processor is in a Standby mode and
becomes Parked, it will remain Parked even if an event causes it to change from Standby to
Normal mode; it will not execute instructions until it is later unparked.
CHAPTER 15 • Chip-Level Multithreading (CMT) 487

Implementing a Standby mode may provide performance and/or power-consumption benefits. A
virtual processor in Standby mode may cause less resource contention with other running virtual
processors and may consume less power.

15.5 Reset and Trap Handling
In a CMT, some resets apply globally to all virtual processors, some apply to an individual virtual
processor, and some apply to an arbitrary subset of virtual processors. The following sections address
how each type of reset affects the virtual processors in a CMT.

The reset nomenclature used in this section is generally consistent with that used for UltraSPARC
Architecture 2007 processors. If future processors classify resets differently, this model should be
extended appropriately to the new classifications.

Traps (as opposed to resets) apply to individual virtual processors and are discussed in Traps on page
371.

15.5.1 Per-Strand Resets (SIR and WDR Resets)
The only resets that affect only a single virtual processor are those that are internally generated by a
virtual processor, such as software initiated reset (SIR) and watchdog reset (WDR). These resets are
generated by an individual virtual processor and are not propagated to the other virtual processors in
a CMT.

15.5.2 Full-Processor Resets (POR and WRM Resets)
There is a class of resets that are generated by an external agent and apply to all the virtual processors
within a processor. This class includes all resets associated with fundamental CMT reconfigurations.

power_on_reset (POR) is one case of full-processor reset. Warm reset is another example of such a
reset (warm reset may be either processor or physical strand-specific, depending on the
implementation). Full-processor reset is required for certain reconfigurations of the processor.

Power-on reset and warm reset (or their equivalents in future processors) are global resets, sent to all
strands in a CMT processor.

15.5.2.1 Boot Sequence

As discussed in Strand Running Register (STRAND_RUNNING) on page 484, the default boot sequence
is for all virtual processors except one (nominally, the lowest-numbered enabled virtual processor) to
be set to Parked state at the beginning of full-processor reset. The single unparked virtual processor
is the master virtual processor, which should arbitrate for the BootBus (if multiple CMT processors
share the same BootBus). The master virtual processor (or service processor) should unpark the other
virtual processors in the processor at the appropriate time in the booting process.

15.5.3 Partial Processor Resets (XIR Reset)
There is a class of resets, referred to here as “partial-processor resets,” that are generated by an
external agent and affect an arbitrary subset of virtual processors within a processor. The subset may
be anything from all virtual processors to no virtual processors (impl. dep. #433-S10).
488 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

Externally-initiated reset (XIR) is a partial-processor reset. XIR is intended to reset a specific virtual
processor in a system, primarily for diagnostic and recovery purposes.

IMPL. DEP. #433-S10: A mechanism must exist to specify which subset of virtual processors in a
processor should be reset when a partial-processor reset (for example, XIR) occurs. The specific
mechanism is implementation-dependent.

Possible methods of specifying the subset include the following:

1. Before the partial-processor reset occurs, set up a steering register that specifies the subset of
virtual processors that should be affected. For systems using an XIR reset, the XIR Steering register
described in XIR Steering Register (XIR_STEERING) on page 489 should be used.

2. Specify the subset of virtual processors concurrently with the reset request, across the same
interface used for communicating the reset. This method would require that the interface used for
communicating resets supports sending packets of information along with the resets.

In an implementation that replaces the XIR reset with a different set of resets, the following rules
apply for extending this CMT programming interface:

■ Each partial-processor reset may use an interface where the set of virtual processors to reset is
communicated along with the reset request.

■ For partial-processor resets for which the set of virtual processors to be reset is not communicated
along with the reset request:

■ The highest priority virtual processor will use the XIR_STEERING register to determine the
subset of virtual processors to be reset.

■ Each subsequent lower-priority virtual processor can either use the XIR_STEERING register or
use an additional steering register (comparable to XIR_STEERING), specifically associated with
that reset. Each additional steering register will be accessed using the same ASI number (4116) as
the XIR_STEERING register but with a distinct virtual address.

15.5.3.1 XIR Steering Register (XIR_STEERING)

FIGURE 15-8 XIR_STEERING Register

An externally initiated reset (XIR) can be steered to an arbitrary subset of virtual processors, using the
XIR_STEERING register. The XIR_STEERING register is shared across virtual processors and is used
by software to control which virtual processor(s) within a processor will receive the XIR reset signal
when XIR is asserted for the processor module.

As shown in FIGURE 15-8, the XIR_STEERING register has one 64-bit field (one bit per possible virtual
processor), in which bit n corresponds to virtual processor n.

When an external reset is asserted for the CMT, if bit n in the XIR_STEERING register is 1, virtual
processor n receives an XIR reset; if bit n in the XIR_STEERING register is 0, virtual processor n
continues execution, unaware of the external reset asserted for the CMT.

A virtual processor that is parked when it receives an XIR reset remains parked and will handle the
XIR reset immediately after being unparked.

Register Name ASI # (Name) VA Scope Access Note

XIR_STEERING 4116 (ASI_CMT_SHARED) 3016 per-proc RW General access

XIR Steering bits

63 0

XIR_STEERING
CHAPTER 15 • Chip-Level Multithreading (CMT) 489

IMPL. DEP. #325-U4a: Whether XIR_STEERING{n} is a read-only bit or a read/write bit is
implementation dependent. If XIR_STEERING{n} is read-only, then (1) writes to XIR_STEERING{n}
are ignored and (2) XIR_STEERING{n} is set to 1 if virtual processor n is available and to 0 if it is not
available (that is, XIR_STEERING{n} reads the same as STRAND_AVAILABLE{n}.

It may be desirable for an XIR to effectively unpark and reset all virtual processors in a CMT. If so,
that effect can be generated by having the first action of software on virtual processor receiving an
XIR to unpark all other virtual processors in the CMT.

State After Reset.

During power_on_reset, the contents of the STRAND_AVAILABLE register are copied to the
XIR_STEERING register. During a warm reset, the contents of the STRAND_ENABLE register are
copied to the XIR_STEERING register. This provides for a default condition in which all enabled
virtual processors receive an XIR reset when an external reset is asserted for the processor. (impl. dep.
#325-U4b)

15.6 Error Handling in CMT Processors
Errors in a structure private to a virtual processor are considered virtual-processor(strand)-specific and
are reported to that virtual processor using its error-reporting mechanism.

When an error in a structure shared among virtual processors occurs:

■ If the virtual processor initiating the request that caused or detected the error can be identified, the
error is considered virtual-processor-specific and is reported back to the originating virtual
processor.

■ If the virtual processor initiating the request that caused or detected the error cannot be identified,
the error is considered non-virtual-processor-specific.

■ All virtual processors that share a structure are considered to be part of the error-handling group for
that structure. This implies that any virtual processor in the group can be assigned to handle error
traps associated with the structure and have diagnostic access to the structure for error recovery.

The following sections describe how a CMT processor handles both virtual-processor-specific and
non-virtual-processor-specific errors.

15.6.1 Virtual-Processor-Specific Error Reporting
Errors specific to a particular virtual processor are reported to the virtual processor associated with
the error, using the virtual processor’s error reporting mechanism. A virtual-processor-specific error
can be either synchronous or asynchronous. It may be an error that occurred in a shared structure but
is traceable to the originating virtual processor. It is the responsibility of error handling software to
recognize the implication of errors in shared structures and take appropriate action.

15.6.2 Reporting Errors on Shared Structures
Errors in shared structures are more complicated than virtual-processor-specific errors. When a non-
virtual-processor-specific error occurs, it must be recorded and an exception must be generated on
one of the virtual processors within the CMP to deal with the error. More precisely, the virtual
processor that reports the exception must be part of the error-handling group for the shared structure
in which the error was detected. The following subsections describe where the error should be
recorded and in which virtual processor the exception should be generated.
490 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

15.6.2.1 Error Steering

When an error occurs in a shared resource, the error must be reported to a virtual processor that
shares that resource and is part of its error-handling group. That virtual processor has the capability
of issuing diagnostic reads and writes to the structure for diagnosis, correction, and error-clearing
purposes. Error steering registers are used to determine which virtual processor will handle the error.
Software configures an error steering register to specify which virtual processor should handle the
error(s) associated with that error steering register. That is, an error steering register defines in which
virtual processor an exception will be generated, to report and handle the error.

A given CMT implementation may contain resources shared by all the virtual processors of the CMT
processor or shared by a subset of two or more virtual processors.

IMPL. DEP. #434-S10: Because of the range of implementation, the number of, organization of, and
ASI assignments for error steering registers in a CMT processor are implementation dependent.

Error steering registers may be provided per shared resource or per level of sharing. In the case that
all shared resources are shared by all virtual processors, it is recommended that a single error steering
register be used and that error steering register should follow the behavior of the ERROR_STEERING
register defined in Error Steering Register (ERROR_STEERING) on page 492. If a mechanism is used
where error steering registers are used per level of sharing, it is recommended that the
ERROR_STEERING register be used for the level at which all virtual processors share and provide
error-handling groups.

General Guidelines for Error Steering Registers. An error steering register controls which
virtual processor handles non-virtual-processor-specific errors. Such an error is recorded using the
virtual processor’s asynchronous error reporting mechanism (as relevant to the error) and generates
an appropriate exception.

An error steering register is accessed through an ASI or a memory-mapped address. It must be
accessible for both reading and writing by software (using load and store alternate instructions).

A processor contains one or more error steering registers. The number of error steering registers
needed depends on how resources are shared and the ability of a virtual processor to diagnose errors
in a resource it does not share.

An error steering register specifies a virtual processor by an encoded field, target_id, that corresponds
to the strand_id of the targeted virtual processor. Use of an encoded representation guarantees that
only one virtual processor can be specified. An error steering register should contain only one field,
the target_id field, that encodes the strand_id of the virtual processor that should be informed of non-
virtual-processor-specific errors in its sharing group.

IMPL. DEP. #326-U4-Cs10a: The number of implemented bits of ERROR_STEERING.target_id is
nominally six, but is implementation dependent and must be sufficient to encode the highest
implemented virtual processor ID.

It is the responsibility of software to ensure that an error steering register identifies an appropriate
virtual processor for handling the error(s) assigned to it. If an error steering register identifies a
virtual processor that is not available (per STRAND_AVAILABLE) or is disabled (per
STRAND_ENABLE_STATUS), none of the enabled virtual processors in the error-handling group will
be affected by the reporting of a non-virtual-processor-specific error to the disabled virtual processor.
However, the behavior of the specified disabled virtual processor is undefined; for example, the error
status register in the disabled virtual processor may or may not be observed to have been updated.

If an error steering register identifies a virtual processor that is not part of the error-handling group,
operation is also undefined. An example would be if the error steering register identifies a virtual
processor in another error-handling group for a virtual-processor-specific error. To avoid this case, an
error steering register should be assigned on a core basis for core errors that are non-virtual-
processor-specific.
CHAPTER 15 • Chip-Level Multithreading (CMT) 491

If an error steering register identifies a virtual processor that is parked, the non-virtual-processor-
specific error is reported to that virtual processor and the virtual processor will observe the
appropriate exception, but not until after it is unparked.

When an error steering register is written by software, the update becomes visible after an unspecified
delay. If a store to the register is followed by a MEMBAR synchronization barrier instruction, it is
guaranteed that the write to the error steering register will complete by the time the execution of the
MEMBAR instruction completes.

When a non-virtual-processor-specific error occurs, the corresponding error steering register is
consulted. The error is reported to and an exception is generated in the virtual processor indicated by
the error steering register.

If a non-virtual-processor-specific error occurs and at the same time target_id is being changed in the
corresponding error steering register, the subsequent error report and the generated exception will
occur together on the same virtual processor, either the virtual processor indicated by the old value in
the error steering register or the one indicated by the new value. That is, for non-virtual-processor-
specific errors, the generation of an error report plus an exception is atomic with respect to changes
to the contents of the error steering register.

State of Error Steering Register After Reset.

The target_id field of an error steering register is initialized during a power-on-reset and warm reset.
After a power-on-reset, the value in the target_id field of an error steering register should refer to the
lowest-numbered available virtual processor (as indicated by the STRAND_AVAILABLE register) that
corresponds to the resource(s) covered by the steering register. After a warm reset, the value in the
target_id field of an error steering register should refer to the lowest-numbered enabled virtual
processor (as indicated by the STRAND_ENABLE register) that corresponds to the resource(s) covered
by the steering register.

Error Steering Register (ERROR_STEERING). The ERROR_STEERING register is the
recommended mechanism for specifying which virtual processor in an error-handling group should
handle non-virtual-processor-specific errors in resources shared by all virtual processors of the error-
handling group. ERROR_STEERING is a shared register, accessible from all virtual processors in the
error-handling group.

When a non-virtual-processor-specific error occurs, the error is recorded using the asynchronous error
reporting mechanism in the virtual processor indicated by ERROR_STEERING. The appropriate
exception is generated in that same virtual processor.

The Error Steering register has only one field that encodes the strand ID of the strand that should be
informed of non-virtual-processor-specific errors. When an error is detected that cannot be traced
back to a specific virtual processor, the error is recorded in, and a trap is sent to, the virtual processor
identified by the Error Steering register.

FIGURE 15-9 ERROR_STEERING Register

IMPL. DEP. #435-S10: Although the ERROR_STEERING register is the recommended mechanism for
steering non-virtual-processor-specific errors to a virtual processor for handling, the actual
mechanism used in a given implementation is implementation dependent.

The ERROR_STEERING register contains one field, target_id, that encodes the virtual processor ID of
the virtual processor that should be informed of non-virtual-processor-specific errors (see FIGURE 15-9).

Register Name ASI # (Name) VA Scope Access Note

ERROR_STEERING per-proc RW

0

target_idReservedERROR_STEERING
n n - 163
492 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

IMPL. DEP. #436-S10: The width of the target_id field of the ERROR_STEERING register is
implementation dependent.

The target_id field (refer to FIGURE 15-9) must be wide enough to encode the strand ID of the highest-
numbered implemented virtual processor. If n bits of this field are implemented, the unused most-
significant bits numbered 5 to 6-n read as zero and writes to those bits are ignored.

IMPL. DEP. #437-S10: An implementation may provide multiple target_id fields in an
ERROR_STEERING register for different types of non-virtual-processor-specific errors.

15.6.2.2 Reporting Non-Virtual-Processor-Specific Errors

Before an exception can be generated for a non-virtual-processor-specific error, the error must be
recorded. Non-virtual-processor-specific errors are recorded using the asynchronous error reporting
mechanism of the virtual processor specified by the ERROR_STEERING register. The mechanism
used is the same as that for reporting vitual processor-specific errors.

Each asynchronous error is defined as either virtual-processor-specific or non-virtual-processor-
specific. If the same error can occur as either a virtual-processor-specific error or a non-virtual-
processor-specific error, the two cases must be reported as two identifiably distinct errors.

IMPL. DEP. #438-S10: It is implementation dependent whether the error-reporting structures for
errors in shared resources appear within a virtual processor in per-virtual-processor registers or are
contained within shared registers associated with the shared structures in which the errors may occur.

IMPL. DEP. #439-S10: The type of exception generated in a virtual processor to handle each type of
non-virtual-processor-specific error is implementation dependent. A virtual processor can choose to
use the same exceptions used for corresponding virtual-processor-specific asynchronous errors or it
can choose to generate different exceptions.

15.7 Additional CMT Software Interfaces

15.7.1 Diagnostic/RAS Registers
The CMT software interface defines how virtual processors are disabled or parked (for diagnostic and
error recovery) and how errors are reported in a CMT processor. It is up to the implementation to
provide appropriate diagnostic and recovery mechanisms, which are not specified here.

A future extension of the CMT programming model may include more common features for
diagnostics and RAS. Increasing commonality without significantly limiting the implementation
options is best.

15.7.2 Configuration Registers
Given the broad range of possible implementations, no common configuration interface is defined
here.

At this time the CMT programming model does not specify any common configuration registers. A
future extension of the CMT programming model may include some. Increasing commonality without
significantly limiting the implementation options is best.
CHAPTER 15 • Chip-Level Multithreading (CMT) 493

15.7.3 Performance Registers
At this time, no common performance registers are specified. A future extension of the CMT
programming model may include some.

This is a specifically important area to have common features. A range of software tools rely on the
performance registers and common features will enable software tools to be more quickly deployed
on new architectures with less work.

15.7.4 Booting Support
Some of the registers previously described can be used by firmware for booting support. See Strand
Running Register (STRAND_RUNNING) on page 484 for an example of such a register.

During a power-on-reset, only one enabled virtual processor per processor will be unparked. Only
this virtual processor will begin fetching instructions after the reset.

IMPL. DEP. #440-S10: Which virtual processor is unparked during POR and whether it is unparked
by processor hardware or by a service processor is implementation dependent. Conventionally, the
virtual processor with the lowest-numbered strand_id is unparked.

In a recommended booting sequence, software determines when virtual processors become unparked
after reset. The default behavior is for only one virtual processor to be unparked when the system
reset signal is removed. That virtual processor, in turn, configures common registers and then unparks
other virtual processors one at a time. This is only one possible boot sequence; software is free to
implement other boot sequences.

15.8 Performance Issues for CMT Processors
Which resources are shared among which virtual processors in a CMT processor is implementation-
dependent. Resources such as caches, TLBs, and even execution pipelines may be shared by virtual
processors. From a performance perspective, there are significant issues that result from this sharing.
In this section, hyperprivileged software issues of thread scheduling and configuration of inactive
virtual processors is discussed. Issues of how to develop algorithms and approaches to take
advantage of the low communication latencies between virtual processors are not covered here.

To understand and take advantage of performance issues in a CMT processor requires some
knowledge of the underlying implementation. The existence of implementation dependencies is
unavoidable, but hopefully abstract representations and general approaches can reduce the degree of
implementation dependence in hyperprivileged software.

15.9 Recommended Subset for Single-Strand
Processors
It is recommended that single-strand UltraSPARC Architecture 2007 processors implement a subset of
the CMT interface. This enables them to more easily integrate into systems that may also contain CMT
processors and enables more consistent software to be deployed across those and other future
systems.
494 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

Single-strand UltraSPARC Architecture 2007 processors should implement all of the CMT registers
described in this chapter, as follows:

■ The Strand Interrupt ID register (STRAND_INTR_ID) should be fully implemented.

■ All other registers can be implemented as read-only registers containing fixed values, writes to
which are ignored.

TABLE 15-1 summarizes the recommended implementation of CMT registers for a single-strand
processor implementation:

15.10 Machine State Summary
TABLE 15-2 describes the ASI extensions that support CMT registers. The states of CMT registers after
resets are enumerated in TABLE 16-2 on page 502.

TABLE 15-1 Recommended CMT Register Set for Single-Strand Processors

ASI VA Register Name Type Note

4116 0016 STRAND_AVAILABLE R only Read value of 0116

1016 STRAND_ENABLE_STATUS R only Read value of 0116

2016 STRAND_ENABLE R only Read value of 0116

3016 XIR_STEERING R only Read value of 0116

5016 STRAND_RUNNING_RW R only Read value of 0116

5816 STRAND_RUNNING_STATUS R only Read value of 0116

6016 STRAND_RUNNING_W1S W only (ignored) Access (write) ignored

6816 STRAND_RUNNING_W1C W only (ignored) Access (write) ignored

6316 0016 STRAND_INTR_ID RW Software assigned unique interrupt ID
for virtual processor (read/write)

1016 STRAND_ID R only Read value of 0016

TABLE 15-2 ASI Extensions

ASI VA Register Name Scope Type Description

4116 0016 STRAND_AVAILABLE per-proc R Bit mask of implemented virtual
processors

1016 STRAND_ENABLE_STATUS per-proc R Bit mask of enabled virtual processors

2016 STRAND_ENABLE per-proc RW Bit mask of virtual processors to enable
after next reset (read/write)

3016 XIR_STEERING per-proc RW Bit mask of virtual processors to
propagate XIR to (read/write)

5016 STRAND_RUNNING_RW per-proc RW Bit mask to control which virtual
processors are active and which are
parked (read/write): 1= active, 0 =
parked

5816 STRAND_RUNNING_STATUS per-proc R Bit mask of virtual processors that are
currently active: 1 = active, 0 = parked

6016 STRAND_RUNNING_W1S per-proc W1S Pseudo-register for write-one-to-set
access to STRAND_RUNNING

6816 STRAND_RUNNING_W1C per-proc W1C Pseudo-register for write-one-to-clear
access to STRAND_RUNNING
CHAPTER 15 • Chip-Level Multithreading (CMT) 495

6316 0016 STRAND_INTR_ID per-
strand

RW Software assigned unique interrupt ID
for virtual processor (read/write)

1016 STRAND_ID per-
strand

R Hardware assigned ID for virtual
processor (read-only)

4016 and
greater

Reserved per-
strand

Impl.
Dep.

Reserved for implementation-specific
per-strand registers

TABLE 15-2 ASI Extensions

ASI VA Register Name Scope Type Description
496 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

CHAPTER 16

Resets

16.1 Resets
The UltraSPARC Architecture 2007 defines 5 types of resets. Reset priorities, listed in order from
highest to lowest, are as follows:

■ power-on reset (POR)

■ warm reset (WMR)

■ externally initiated reset (XIR)

■ watchdog reset (WDR), and

■ software-initiated reset (SIR)

POR, WMR, and XIR resets are initiated external to the processor (chip). WDR and SIR resets are
initiated by the virtual processor itself, in response to specific conditions.

POR resets are processor-wide (affect all virtual processors on the chip). WDR and SIR resets are
directed to a specific virtual processor. XIR resets are directed to the virtual processor(s) indicated by
the XIR_STEERING register. WMR resets are implementation dependent and may be either processor-
wide or directed to specific virtual processor(s).

Resets are used to initialize a virtual processor and place it in an operating state, to attempt recovery
of a failing or stuck virtual processor, to attempt recovery of failing operating system privileged
software, and for debug purposes. The defined states for each reset show an increasing amount of
resource reset, such that, for example, a XIR, WDR or SIR reset will leave most architectural and
memory resources unchanged, while a WMR reset will leave most memory resources unchanged but
reset certain architectural resources, and a POR reset will initialize all processor resources.

All resets are processed as traps and place the virtual processor in RED_state. RED_state (Reset,
Error, and Debug state) is a restricted execution state reserved for processing hardware- and software-
initiated resets. Please refer to Reset Traps on page 380 and the subsections regarding reset traps in
RED_state Trap Processing, which begins on page 400.

16.1.1 Power-on Reset (POR)
A POR reset occurs when the assigned POR pin is asserted and deasserted. During this time, all other
resets and traps are ignored. POR reset has the highest trap priority. POR causes any pending
external transactions to be cancelled.

The POR reset is a processor-wide reset. It affects all virtual processors on the chip, as well as all IO,
cache, and DRAM subsystems.
497

During a POR reset, hardware sets registers to a known state (see Machine States on page 499). All
hardware-based initialization functions are performed, all logic (including the pipeline) is initialized,
all architectural registers are placed in their reset state (as defined in TABLE 16-1 on page 500), and all
entries in caches and TLBs are invalidated.

A service processor may also participate in the POR reset process. The POR reset functions provided
by a service processor are documented in the relevant Service Processor specification.

After a POR reset is complete:

■ The first available1 virtual processor begins executing at physical address RSTVADDR + 2016
(RED_state trap vector base address plus the POR offset of 2016), with a trap type of 0116.

■ All other virtual processors are in "parked" state (see Parking and Unparking Virtual Processors on
page 483)

16.1.2 Warm Reset (WMR)
A Warm Reset (WMR) occurs when software writes into a particular implementation-dependent reset
register or when an implementation-dependent reset input pin is asserted and then deasserted. When
a WMR reset is received, all other resets and traps except POR are ignored.

The extent to which the processor is reset by a WMR reset is implementation dependent. A WMR
reset may be chip-wide or it may be core-wide (reseting all virtual processors on the core, but
allowing virtual processors on other cores to continue processing and maintaining cache coherency).

A WMR, even if it is chip-wide, will not alter the contents of external memory. It may, however, alter
on-chip portions of the memory system (for example, store queues or cache(s)).

Warm reset has the same trap type (116) and trap vector offset (2016) as a POR reset. By what means
hyperprivileged software can distinguish between WMR and POR resets is implementation
dependent.

IMPL. DEP. #420-S10: The following aspects of Warm Reset (WMR) are implemenation dependent:
(a) by what means WMR can be applied (for example, write to reset register or assertion/deassertion
of an input pin)
(b) the extent to which a processor is reset by WMR (for example, single physical core, entire
processor (chip), and how the on-chip memory system is affected),
(c) by what means hyperprivileged software can distinguish between WMR and POR resets

1. per the Strand Available register (see Strand Available Register (STRAND_AVAILABLE) on page 481)

Implementation
Note

From the perspective of this specification, which describes a
processor architecture, after a Power-On Reset (POR) execution
begins on one strand of the processor. However, in a
multiprocessor system, after POR a service processor might
arrange for execution to initially occur on only one strand per
system. If and how that that occurs is beyond the scope of this
specification and would be described in system-level
documentation.

Programming
Note

After a POR reset, software must initialize values that are
specified as “undefined” in TABLE 16-1. In particular, I-cache
tags, D-cache tags and L2 cache tags must be initialized before
enabling the caches. The ITLB, DTLB and UTLB also must be
initialized before enabling memory management. If a service
processor participates in the reset, software should also
reference the Service Processor Specification to determine which
machine state has been reset by the service processor.
498 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

16.1.3 Externally Initiated Reset (XIR)
An externally initiated reset (XIR) is sent by asserting and deasserting an input pin, setting and
clearing a bit in a reset register, or both.

An XIR reset is sent to all virtual processors specified in the XIR_STEERING register (impl. dep. #304-
U4-Cs10). It causes an XIR reset trap in each affected virtual processor. An XIR reset trap has trap
type 316 and uses a trap vector with a physical address offset of 6016.

Memory state, cache state, and most architectural state (see TABLE 16-1) are unchanged by an XIR reset.
System coherency is guaranteed to be maintained during an XIR reset. The PC (NPC) saved in TPC
(TNPC) observed after an XIR will be mutually consistent, such that execution could resume using the
saved PC and NPC. In effect, XIR behaves like a non-maskable interrupt.

16.1.4 Watchdog Reset (WDR)
An UltraSPARC Architecture virtual processor enters error_state when a non-reset trap, SIR reset,
or XIR reset occurs at TL = MAXTL.

The virtual processor signals itself internally to take a watchdog reset (WDR) and sets TT to the trap
type of the trap that caused entry to error_state. The WDR causes a trap using a trap vector with
a physical address offset of 4016. WDR only affects the virtual processor on which it occurs; no other
virtual processors are affected.

On a watchdog reset trap caused by a register window-related trap, CWP register is updated the same
as if a WDR had not occurred.

16.1.5 Software-Initiated Reset (SIR)
A software-initiated reset is initiated by an SIR instruction executing on a virtual processor. This
virtual processor reset has a trap type 4 and uses a trap vector with a physical address offset of 8016.
SIR affects only the virtual processor on which it executes; all other virtual processors are unaffected.

16.2 Machine States
Machine state changes when a trap is taken at TL = MAXTL − 1 or when a reset occurs.

TABLE 16-1 specifies the machine states observed by software after a trap is taken at TL = MAXTL − 1 or
after a reset occurs. For details of how those machine states are set, see processor-specific
documentation and/or relevant Service Processor documentation.

The UltraSPARC Architecture specifies the machine state that must be obeserved by software after
reset.

In the following tables, a value marked as "Undefined" may or may not be set to a known value by
hardware (and/or a service processor) after reset.

Implemenatation
Note

For the POR reset (and possibly the WMR reset), the change in
machine state may be accomplished directly by processor
hardware or with support from a service processor.

Programming
Note

Virtual processor states are only updated according to TABLE 16-1
if RED_state is entered because of a trap at TL = MAXTL − 1 or a
reset. If RED_state is entered because the HPSTATE.red bit
was explicitly set to 1 by software, then software is responsible
for setting the appropriate machine state.
CHAPTER 16 • Resets 499

Programming
Note

Values marked as "Undefined" after POR in the following tables
should be initialized by software after the power-on reset.

TABLE 16-1 Machine State After Reset or a Trap @ TL = MAXTL − 1 (1 of 3)

Name
Fields

POR WMR WDR XIR SIR
Traps taken
@TL=MAXTL-1

Integer registers Undefined1
Unchanged

Floating-point registers Undefined

RSTVADDR

VA = FFFF FFFF F000 000016
PA = 0000 7FFF F000 000016

(impl. dep. #114)

PC RSTVADDR | 2016
RSTVADDR |

4016

RSTVADDR |
6016

RSTVADDR |
8016

RSTVADDR |
A016

NPC RSTVADDR | 2416
RSTVADDR |

4416

RSTVADDR |
6416

RSTVADDR |
8416

RSTVADDR |
A416

PSTATE

tct 0 (Trap on control transfer disabled)
mm 002 (TSO)
pef 1 (FPU on)
am 0 (Full 64-bit address)
priv 0
ie 0 (Disable interrupts)
cle 0 (Current not little-endian)
tle 0 (Trap little-endian) Unchanged

HPSTATE

ibe 0 (Instruction breakpoint disabled)
red 1 (RED_state)
hpriv 1 (Hyperprivileged mode)
tlz 0 (trap_level_zero traps disabled)

TBA<63:15> tba_high49 Undefined Unchanged
HTBA<63:14> htba_high50 Undefined Unchanged
Y Undefined Unchanged
PIL Undefined Unchanged
CWP Undefined Unchanged except for register window traps
TT[TL] 1 1 trap type 3 4 trap type
CCR Undefined Unchanged
ASI Undefined Unchanged
TL MAXTL min(TL+1, MAXTL)
GL MAXGL min(GL+1, MAXGL)

TPC[TL] Undefined
(impl.dep.#
419-S10)‡

PC

TNPC[TL] Undefined
(impl.dep.#
419-S10)‡

NPC

TSTATE[TL]

gl

Undefined
(impl.dep.#
419-S10)‡

GL

ccr CCR

asi ASI

pstate PSTATE

cwp CWP

HTSTATE[TL]

ibe

Undefined
(impl.dep.#
419-S10)‡

HPSTATE.ibe

red HPSTATE.red

hpriv HPSTATE.hpriv

tlz HPSTATE.tlz

TICK
counter Undefined Count
npt 1 1 Unchanged
500 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

CANSAVE Undefined Unchanged
CANRESTORE Undefined Unchanged
OTHERWIN Undefined Unchanged
CLEANWIN Undefined Unchanged

WSTATE
other

Undefined Unchanged
normal

HVER

manuf Implementation dependent (impl. dep. #104-V9)
impl Implementation dependent (impl. dep. # 13-V8)
mask Mask dependent
maxgl MAXGL

maxtl MAXTL

maxwin N_REG_WINDOWS − 1
FSR all Undefined Unchanged
generaGSR all Undefined Unchanged

FPRS

fef

Undefined Unchangeddu

dl

SOFTINT Undefined Unchanged
HINTP hsp Undefined Unchanged

TICK_CMPR
int_dis

Undefined Unchanged
tick_cmpr

STICK
counter

Undefined
Count

npt Unchanged

STICK_CMPR
int_dis 1 Unchanged
stick_cmpr Undefined Unchanged

HSTICK_CMPR
int_dis 1 Unchanged
hstick_cmpr Undefined Unchanged

SCRATCHPAD_n Undefined Unchanged
HYP_SCRATCHPAD_n Undefined† Unchanged† Unchanged Unchanged† Unchanged
D_SFAR Undefined Unchanged

I-cache controls enable(s) 0 (disable I$) Unchanged
I-cache entries Invalidated Unchanged
I-cache data Undefined Unchanged
D-cache controls enable(s) 0 (disable D$) Unchanged
D-cache entries Invalidated Unchanged
D-cache data Undefined Unchanged

MMU controls /Demap enable(s)
0 (disable

MMU)
Unchanged

MMU registers
(TABLE 14-14)

all Undefined Unchanged

ITLB/DTLB/UTLB entries Invalidated Unchanged
store queue entries Invalidated Unchanged
L2 cache controls eanble(s) 1 (enable L2$) Unchanged
L2 cache entries Invalidated Unchanged
L2 cache directory Invalidated Unchanged
L2 cache data Undefined Unchanged
Error enable registers Undefined Unchanged
Error Trap enable
registers

Undefined
Unchanged

Error Status registers error events Undefined2 Unchanged

TABLE 16-1 Machine State After Reset or a Trap @ TL = MAXTL − 1 (2 of 3)

Name
Fields

POR WMR WDR XIR SIR
Traps taken
@TL=MAXTL-1
CHAPTER 16 • Resets 501

16.2.1 Machines States for CMT
TABLE 16-2 shows the CMT machine state set by hardware as a result of a trap taken at TL = MAXTL − 1
or when a reset occurs.

Watchpoint Controls enables 0 (disabled) Unchanged
Interrupt Queue pointers all Undefined Unchanged
Error Queue pointers all Undefined Unchanged
Interrupt Receive register pending Undefined Unchanged
† If a service processor is present, it may change the value of hyperprivileged scratchpad register(s) before execution of the reset trap handler

begins

‡ IMPL. DEP. #419-S10: It is implementation dependent whether, after a Warm Reset (WMR), the contents of TPC[TL], TNPC[TL],
TSTATE[TL], and HTSTATE[TL] (a) are unchanged from their values before the WMR, (b) are zeroed, or (c) contain the same
values saved as during a WDR, XIR, or SIR reset. Implementation (c) is preferred.

1. After POR, integer register R[0] must read as zero (with good ECC/parity). The value to which all other integer and all floating-
point registers are set during a Power-On Reset (POR) is Undefined. For an implementation that protect these registers with ECC/
parity, the registers must be initialized with good ECC/parity as part of a POR reset, either by hardware or software.

2. For a POR reset, the Error Status register(s) can be set either by hardware or by a service processor.

TABLE 16-2 Machine State After Reset and in RED_state for CMT Registers

Name Fields POR WMR WDR XIR SIR

Traps
taken
@TL=

MAXTL-1

Registers shared among Virtual Processors (Strands)

STRAND_AVAILABL
E

Unchanged
(Predefined value, set at time of manufacture)

STRAND_ENABLE_
STATUS Copied from

STRAND_AVAILABLE†
(but may be changed by a
service processor during
reset)

Copied from
STRAND_ENABLE†
(but may be changed by a
service processor during
reset)

Unchanged

STRAND_ENABLE Unchanged

XIR_STEERING Copied from
STRAND_AVAILABLE†
(impl. dep. #325-U4(b))
(but may be changed by a
service processor during
reset)

Copied from
STRAND_ENABLE†
(but may be changed by a
service processor during
reset)

Unchanged

TABLE 16-1 Machine State After Reset or a Trap @ TL = MAXTL − 1 (3 of 3)

Name
Fields

POR WMR WDR XIR SIR
Traps taken
@TL=MAXTL-1
502 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

STRAND_RUNNING
and

STRAND_RUNNING
_STATUS

Set to 0†, then during the
reset either
(1) virtual processor
hardware sets to 1 the bit
in the position
corresponding to lowest-
numbered implemented and
available virtual processor
(as specified by
STRAND_AVAILABLE), or
(2) this register is
initialized by a service
processor.

Set to 0†, then during the
reset either
(1) virtual processor
hardware sets to 1 the bit
in the position
corresponding to lowest-
numbered enabled virtual
processor (as specified by
the value of
STRAND_ENABLE before
the reset), or
(2) this register is
initialized by a service
processor.

Unchanged

Per-Strand Registers (not shared)

STRAND_ID max_stra
nd_id

max strand ID †

Unchanged
max_core
_id

max core ID †

core_id core ID † of this core

CORE_INTR_ID core_intr_
id

interrupt ID † of this core

† if the implementation is always paired with a service processor and the service processor always initializes
this register during reset, processor hardware can leave this register unchanged (or set it to 0) and allow
the service processor to perform the initialization

TABLE 16-2 Machine State After Reset and in RED_state for CMT Registers (Continued)

Name Fields POR WMR WDR XIR SIR

Traps
taken
@TL=

MAXTL-1
CHAPTER 16 • Resets 503

504 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

CHAPTER 17

Error Handling

When a virtual processor detects an error, it must capture the error information in one or more
registers, called Error Status registers (ESRs). The virtual processor then reports the event via a
precise trap, a deferred trap, disrupting exception, or fatal error signal. A single error can cause
multiple traps.

Error reporting, error information and ESRs, and error handling are described in these sections:

■ Error Reporting on page 505.
■ Error Status Registers on page 508.
■ Protection, Detection, Reporting, and Handling of Errors on page 511.
■ Error Handling for Common Processor Errors on page 516.

17.1 Error Reporting
Virtual processors report detected errors by means of the following:

■ Precise traps. See also Precise Traps on page 377.
■ Deferred traps. See also Deferred Traps on page 377.
■ Deferred exceptions.
■ Deferred traps. See also Disrupting Traps on page 379.
■ Fatal error signal.

17.1.1 Precise Traps
Precise traps are generated for errors that require software intervention before normal execution can
be resumed. Precise traps associated with errors are always generated on the virtual processor that
issued the instruction that induced the error and are reported to hyperprivileged mode.

An implementation-dependent, trap-enable bit may control the taking of a precise trap. If masked off,
the trap is not taken and does not remain pending. Note that the error information in the appropriate
ESR may be lost when the trap is masked off.

Implementation
Note

Every attempt must be made to make forward progress through
a stuck-at fault condition (both bits and signals). No stuck-at
fault that creates a correctable error should cause the processor
to hang. For example, if a stuck bit in an L2 cache is causing a
software-correctable error and software has to correct it by
flushing the cache line and retrying the operation, then on
refetch, the critical packet of data must bypass the L2 cache and
fill the L1 cache directly.
505

Note that operation is unpredictable if the trap is masked off, because the processor may be executing
with uncorrected data or instructions.

An implementation-dependent, error-recording enable bit may control the recording of the error
information in the appropriate ESR; if masked off, the error information is not recorded in the ESR,
and the error is ignored.

17.1.2 Deferred Traps
All deferred traps associated with errors are reported to hyperprivileged mode.

An implementation-dependent, trap-enable bit may control the taking of a deferred trap. If masked
off, the trap is not taken and does not remain pending. Note that the error information in the
appropriate ESR may be lost when the trap is masked off.

Note that operation is unpredictable if the trap is masked off, because the processor may be executing
with uncorrected data or instructions.

An implementation-dependent, error-recording-enable bit may control the recording of the error
information in the appropriate ESR. If the ESR is masked off, the error information is not recorded in
the ESR, and the error is ignored.

There are two classes of deferred traps: termination deferred traps and restartable deferred traps.

Termination deferred traps are reported for errors when an instruction cannot be retried, completed, or
recovered and the application on the virtual processor must be terminated. One example is a store
buffer tag parity error or control parity error that is detected after the store instruction retires. The
store cannot be completed because of the error (for a tag parity error, the address is unknown). The
store instruction cannot be retried since it is beyond the retirement point. In this case, the termination
deferred trap is taken on the virtual processor that executed the trap-inducing instruction.

Restartable deferred traps are reported for errors when the hardware provides enough information for
software to recover from the error and resume execution. They are taken on the virtual processor that
executed the trap-inducing instruction.

17.1.3 Disrupting Exceptions
A disrupting exception causes an interrupt directed toward a service processor, or a disrupting trap
directed towards the appropriate virtual processor. In the context of error handling, a disrupting
exception directs software to log the error and, if both necessary and possible, to clear any stored
error. Service processor interrupts are outside the scope of this document. Disrupting traps are
discussed in the next section.

Programming
Note

The precise trap handler should correct the error if it is
correctable, recover from it if it is uncorrectable but recoverable,
log the error if no separate disrupting exception does so, and
return control to the running program. In the case where the
error is neither correctable nor recoverable, the handler should
deal with the running program as it sees fit, for example,
signaling it, terminating it, or gracefully rebooting the system.

Programming
Note

The termination deferred trap handlers should terminate the
program.

Programming
Note

The restartable deferred trap handlers attempt to resume
operation, based on the information provided by the hardware.
506 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

An implementation-dependent, trap-enable bit may control the taking of a disrupting trap. If masked
off, the trap is not taken, but remains pending. Note that the error information in the appropriate ESR
is still valid while the trap is masked off.

An implementation-dependent, error-recording enable bit may control the recording of the error
information in the appropriate ESR. If masked off, the error information is not recorded in the ESR,
and the error is ignored.

17.1.3.1 Disrupting Traps

In nonprivileged mode and privileged mode, all disrupting traps associated with errors are presented
unmasked to hyperprivileged mode.

In hyperprivileged mode, all disrupting traps associated with errors are enabled by the PSTATE.ie bit.
If masked off, the disrupting trap is not taken but remains pending. The associated error information
is captured in an ESR even when the trap is masked off. If the ESR is cleared while the trap is
masked off, then the pending trap is also cleared and no longer remains pending.

Two classes of disrupting traps are associated with disrupting exceptions: hw_corrected_error
disrupting traps and sw_recoverable_error disrupting traps.

The hw_corrected_error disrupting trap should be used for hardware-corrected and hardware-cleared
errors. All other disrupting exceptions cause sw_recoverable_error disrupting traps. Implementations
may create additional classes of disrupting traps.

17.1.4 Fatal Error Signaling
By its nature, a fatal error indicates a serious situation wherein there is a loss of system coherency and
it is imperative to cease operation as soon as possible to prevent further breach of data integrity. The
standard signaling mechanism of generating an ERROR signal to induce a system reset could be too
coarse-grained and not precise. There may be significant delay in the system response to effect a reset
or halt. A virtual processor encountering a fatal error may potentially continue to execute and
propagate corrupted data for many cycles before being reset by the system.

All SPARC processors must provide some guarantee that upon detecting a fatal error, the processor
can reach a known safe state in a bounded time. This is not to say that a processor cannot rely on the
ERROR signal mechanism. In fact, for certain system designs, the ERROR signal mechanism may be
sufficient. The requirement is for processor designers to validate it and if found insufficient, provide
additional mechanisms to ensure that data integrity is maintained in the event of fatal errors.

Examples of additional mechanisms used in the past include generating Service Processor interrupts,
“nonmaskable” traps, use of a special “cease operation” mode by which processor transactions are
prevented from going out to the system bus, or combinations of these mechanisms.

Programming
Notes

The hw_corrected_error disrupting trap handler routine should
log the error.

The sw_recoverable_error disrupting trap handler routine
should try to correct, clear, and log the error condition. If
correction is not possible, the trap handler provides recovery
and then logs the error condition.
CHAPTER 17 • Error Handling 507

17.2 NotData Overview

17.2.1 Notdata Requirement
Notdata is a signaling method to avoid superfluous reports from error detectors and thus simplify
diagnosis. Notdata signals absence of data, not incorrect data. Error detectors (as opposed to notdata
detectors) observing notdata should not report a hardware error. Error correctors observing notdata
should pass on notdata.

When some error corrector observes a UE, it must report the UE. Propagating and possibly storing
the UE elsewhere in the memory subsystem might cause confusion later, as the stored UE might be
interpreted as implying the storage itself has a fault. Notdata avoids this issue. When an error
corrector observes a UE, it reports the UE, but propagates notdata instead.

The bit pattern used to represent notdata is implementation-dependent. It is also implementation-
dependent whether the notdata indication affects just the correction block that contained the UE, the
entire containing cache line, or some number of bytes in between the two.

Processors and I/O devices reading notdata must react in whatever way is provided for dealing with
the absence of data, such as a data access exception or an instruction access exception, when notdata
is encountered in normal execution. However, the exception handler is not required to undertake
diagnosis. Diagnosis would have been triggered by the original report of the UE.

A notdata implementations must provide the same error protection to notdata that is applied to
regular data. If regular data is protected against single-bit errors, then so must notdata. Spurious
transformations to or from notdata because of bit errors are highly undesirable.

Systems making use of notdata must provide a method to clear notdata from stores (that is, memory
and caches). As notdata covers multiple bytes, attempting to write a smaller unit than this into the
block will not clear the notdata. Notdata merged with a valid byte still produces notdata. The entire
notdata block must be overwritten at once to clear notdata, in an implementation-dependent fashion.

17.3 Error Status Registers
Each functional block reports the error status in an Error Status register (ESR) for each class of errors
it detects.

Programming
Note

The exception handler is merely required to manage the absence
of data, which may include marking the page containing the
notdata as toxic, to avoid further use of the page until it is
scrubbed or taken out of service. The address of notdata
encountered while fetching instructions can be found from the
TPC. The address of notdata encounted while fetching data can
be found by disassembling the instruction pointed to by TPC, or
from an implementation-dependent register provided for this
purpose.

Implementation
Note

An implementation may provide a register to capture the
virtual, real, or physical address of notdata encountered while
fetching data.
508 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

Each type of error is reported in a corresponding ESR. There are at least two ways to organize this;
the exact organization is implementation dependent.

■ One way is to have each type of error reported in its own ESR, called an error-type ESR. That is,
errors that cause precise traps are reported in precise ESRs, errors that cause deferred traps are
reported in deferred ESRs, disrupting exceptions are reported in disrupting ESRs, and fatal error
conditions are reported in fatal ESRs.

■ The other method of organization is by logical block, called a block-type ESR, where there is one
ESR per block and a single ESR can contain error reports of different types. This method of
organization usually requires the ESR to accumulate reports of errors and be paired with a First
ESR (FESR) that latches a report of the first detected error irrespective of type.

In a multiple-core processor with several virtual processors per core, it may be more practical to treat
each virtual processor as a functional block, such that there is one precise ESR and one disrupting
ESR (for correctable and uncorrectable errors) per virtual processor. The disrupting ESR captures
errors as they are detected, sets the f bit, and presents the disrupting trap immediately if enabled.
Errors that result in precise traps are staged through the pipeline and are presented at retirement. The
precise ESR is architecturally visible at the end of the pipeline. Since normal program exceptions
must be maintained on a virtual processor basis for precise traps, it is desirable that errors causing
precise traps are handled in the same way.

There are four kinds of error-type ESRs:

■ Precise ESRs — Errors that require software correction and clearing and result in a precise trap are
reported in a precise ESR. Precise ESRs are provided for each virtual processor.

■ Deferred ESRs — Errors that result in deferred traps are reported in a deferred ESR. Deferred
ESRs are provided for each virtual processor.

■ Disrupting ESRs — Hardware-corrected and clear errors that result in an hw_corrected_error
disrupting trap are reported in a disrupting ESR. Software-correctable errors that result in a
sw_recoverable_error disrupting trap are also reported in disrupting ESRs. Disrupting ESRs are
provided for each virtual processor.

■ Fatal ESRs — Fatal error conditions associated with the storage system are reported in fatal ESRs.
Blocks provide one fatal ESR for all virtual processors.

17.3.1 Elements of an Event Status Register (ESR)
The first two bits of an ESR are the same for all ESRs: the Full bit and the Multiple Event bit. The
remaining bits are associated with the specific errors detected by the functional block, and contain
such information as address and ECC syndrome. ESR bits are illustrated in FIGURE 17-1 and described
in TABLE 17-1.

FIGURE 17-1 Functional Block Error Status Register (ESR) Format

TABLE 17-1 Error Status Register f and me Bit Description

Bit Field Description

63 f Full. Each ESR contains an f bit that is set to 1 by hardware the first time an error is detected for
the specified ESR. Once the f bit is set to 1, it prevents further clocking by the hardware of all
other bits in the register, except the me bit. The f bit must be written to 0 by software once the
condition reported in the ESR has been handled.

62 me Multiple Event. When hardware detects an error that would normally result in status being
reported in an ESR but the f bit of that ESR is already 1, hardware makes no change to the ESR
except writing 1 to the me bit.

f me

63 62 61

—

0

CHAPTER 17 • Error Handling 509

In general, hardware will write into the ESR only when it detects an error associated with that ESR.
If the f bit is 0, hardware will set the f bit to 1, reset the me bit to 0, and update the rest of the status
register with the error information. If the f bit is 1, hardware will just write the me bit to 1 and not
modify any other bits in the register.

The setting of the f and me bits is shown in TABLE 17-2.

Note that in a processor that treats each virtual processor as a functional block, errors causing precise
traps are staged to the end of instruction processing and presented at instruction retirement. Also, if
multiple errors that cause precise traps are detected for the same instruction as it processes down the
pipeline, the first error is reported, since it has the highest priority. This includes both errors and all
other exception conditions associated with the instruction execution. The priority of all precise traps is
listed in TABLE 12-5 on page 392.

Except for the specific case mentioned in the previous paragraph, if multiple errors are detected
simultaneously, multiple bits may be set to 1 in the register. The additional error information reported
in the ESR is for the highest-priority error and may or may not be correct for the other reported
errors. The me bit is not set to 1 in this case. The precise behavior of a specific ESR in the event of
multiple errors detected simultaneously must be documented. This does not apply to precise errors.

There is a small time window during which the me information may be lost. While servicing a
reported first error, software needs to clear the f bit by writing a 0 to it. If a second error occurs and is
reported by setting the me bit to 1 in the time window between software reading the ESR and writing
the f bit to 0, the information that the me bit was set is lost. This can be fixed by providing "write one
to clear" (W1C) access to the f and me bits. Software would have to read the ESR after clearing the f
bit (but not the me bit, if it weren’t set to begin with); if the f bit were 0 but the me bit were 1, then
another error occurred before the f bit was cleared.

Error-type tables are part of the detailed ESR descriptions in the model-specific Programmer’s Reference
Manual. TABLE 17-3 depicts an example. The table column headings are explained below the table.

■ Priority: The relative priority of error conditions, in case multiple errors are detected in the same
clock cycle.
■ 0 indicates the highest, 2 (in the example above) indicates the lowest priority.
■ -- indicates that there are no relative priorities (not shown above).

Several error conditions may be listed with the same relative priority. This implies either that these
error conditions are mutually exclusive, or error information reported in overlapping fields is
relevant to all indicated error conditions. For some ESRs, additional priority information must be
provided. In those cases, this information can be found in the Priorities section just following the
Error Types section.

■ Access: The access type (if any), such as load, store, atomic.

TABLE 17-2 Block Error Status Register’s f and me Bit State Transitions

State Before Detection of Hardware Error

→

State After Detection of Hardware Error

f me Error data f me Error data

0 X1

1. ‘X’ stands for either 0 or 1.

Don’t care → 1 0 Capture error data

1 X1 First error data → 1 1 First error data

TABLE 17-3 Example of an Error-Type Table

Priority Access Error FlagA FlagB FlagC FieldX FieldY FieldZ Corrected Cleared

0 Access A Error condition 1 1 X 0 ✔ --- --- N N

1 Access A Error condition 2 X 1 0 ✔ ✔ --- Y N

2 Access B Error condition 3 0 0 1 --- --- ✔ Y Y
510 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

■ Error: The error condition that is detected, for example, parity errors, ECC errors.

■ Flags: The flags in the ESR that are updated for that particular error condition, such as data parity
error, tag ECC error.
■ 1 indicates that this flag is set; 0 indicates that this flag is cleared.
■ X indicates that this flag may be set or cleared.

In the example above, Error Conditions 1 and 2 may be detected and reported at the same time.
However, Error Conditions 1/2 and Error Condition 3 are mutually exclusive.

■ Fields: Supplemental error information fields in the ESR that report additional information about
the error detected, such as data syndrome, way information, address.
■ ✔ indicates that this field reports relevant error information for this particular error condition.
■ --- indicates that this field does not contain relevant error information for this particular error

condition and is unpredictable.

In the example above, if Error Conditions 1 and 2 are detected at the same time, the supplemental
error information reported in field X is the one for the higher-priority error condition. The relative
priorities of error conditions, if any, are described as part of the detailed ESR definitions.

■ Corrected: Indicates whether this error condition or notdata condition is corrected in hardware,
such as by refetching a cache line in a clean cache which detected an error.
■ Y indicates that the error is corrected in hardware.
■ N indicates that the error is not corrected in hardware and requires software intervention.

■ Cleared: Indicates whether this error condition or notdata condition is cleared in hardware, such as
by overwriting the erroneous cache line in a cache, etc.
■ Y indicates that the error is cleared in hardware.
■ N indicates that the error is not cleared in hardware and may be reported multiple times if not

cleared by software.

All unimplemented bits of the ESRs read as 0.

For power_on_reset, all bits of every ESR are reset to 0. For all other resets, the ESRs are not affected.

17.4 Protection, Detection, Reporting, and Handling
of Errors
This section describes examples of hardware-software interfaces for common errors detected by the
hardware for various areas of instruction processing. It is beyond the scope of this document to
provide all of the cases of errors detected by each implementation of UltraSPARC Architecture
processors. For a complete list of detected errors and the formats for associated Error Status registers,
please refer to implementation-specific documentation.

17.4.1 L1 (Level-1) Caches
The L1 caches consist of the instruction cache and the data cache. There are generally three arrays of
interest for the L1 caches: data, tag, and valid bits. Tag and data arrays are normally parity protected.
Double-bit errors are normally not detected for the L1 caches. The Valid bit of each line is normally
protected through duplication and matching of the two copies of the bit. A Valid bit error is indicated
when the Valid bits have a different value.

For an L1 cache implemented with multiple associativities (ways), hardware also checks all the ways
of the L1 cache index for multiple tag matches. If there are multiple clean (no tag parity/ECC error)
tag matches and this is not an allowable condition for the cache (some cache designs allow multiple
entries for the same tag), they should be reported as errors and all the ways of the index that match
should be invalidated.
CHAPTER 17 • Error Handling 511

It is desirable that if there is no tag match but a tag parity error is found in one of the ways, a tag
parity error is reported for the way (or ways) in error.

Error checking is provided for normal L1 cache accesses (instruction fetch to instruction cache, and
data cache access for loads and stores), but not on diagnostic accesses. Diagnostic accesses must
return associated parity or ECC bits.

If a tag parity/ECC error, data parity/ECC error, valid bit error, or multiple tag match error is
detected, hardware should invalidate the L1 cache line (or lines), and force a cache miss. The missing
cache line can be reaccessed and moved into the appropriate L1 cache from the L2 cache, L3 cache (if
implemented) or memory.

The associated error information (data parity error, tag parity error, Valid bit error, multiple tag
match, L1 cache index, and way) is captured in the virtual processor disrupting ESR, and a
hw_corrected_error disrupting trap is reported, if enabled.

Alternatively, hardware can present a precise trap and allow software to invalidate the cache entry. In
this case, hardware must provide a mechanism for software to invalidate the cache entry (entries) in
error.

A preferred hardware implementation would be to include the valid bit and tag protection in the tag
match. This would make all tag matches clean, that is, free of single-bit errors. A mechanism should
then be provided to report errors in cache entries that do not match. Reporting errors on the entry to
be replaced is a good choice.

17.4.2 TLB Errors
Processors generally provide a TLB for storage accesses when address translation is required. The TLB
can either be unified, or there can be an instruction TLB (ITLB) for instruction accesses and a data TLB
(DTLB) for data accesses. A micro-TLB containing local translations can also be maintained for
instruction fetches (IµTLB) and data accesses (DµTLB) to improve performance. The TLB maintains
address translations for the most recently used pages. There are normally one or more array structures
for holding the translated addresses. Addresses can be translated either by software or by a hardware-
assisted mechanism, called hardware tablewalk.

The TLB tag and data arrays are normally parity protected. The Valid bit is normally duplicated and
checked.

Hardware normally checks for multiple clean (no tag parity error) tag matches. In some processor
designs, this may be an allowable condition, and the processor can select the appropriate entry
without reporting an error. Otherwise, the multiple hit error should be reported.

A preferred hardware implementation would be to include the valid bit and tag protection in the tag
match. This would make all tag matches clean, that is, free of single-bit errors.

Error checking is provided for normal TLB accesses, but not on diagnostic TLB accesses. Diagnostic
accesses must return associated parity.

Hardware has the option of correcting and clearing the errors or allowing software to do the
correction and clearing.

17.4.2.1 Hardware-Corrected TLB Errors

If hardware does the correction and clearing, it forces a TLB miss, and clears the error condition by
invalidating the TLB entry. If hardware tablewalk is enabled, hardware does the table lookup. If
hardware tablewalk is disabled, hardware posts a fast_instruction_access_MMU_miss exception for
instruction accesses, and a fast_data_access_MMU_miss exception for data accesses.
512 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

Hardware then reports a hw_corrected_error disrupting trap for logging the error, with the associated
error information (data parity error, tag parity error, valid bit error, and memory address, if possible)
captured in the virtual processor disrupting ESR.

17.4.2.2 Software-Corrected TLB Errors

If software does the correction and clearing, a tag parity error, data parity error, or multiple tag match
detected on a TLB access results in either an instruction_access_MMU_error (for instruction accesses)
or data_access_MMU_error (for data accesses) exception being reported. There is no hardware
correction or clearing. The associated error information (data parity error, tag parity error, multiple
tag match, associated index or address, if possible) is captured in the virtual processor’s precise ESR.
The trap handler logs the error information and clears the error condition, using a mechanism
provided by hardware (demap page or context register write, for example). The instruction at the
failing address is then retried and the TLB entry is reloaded.

If other structures are associated with the TLB (such as the MMU register array or tablewalk
registers), hardware detects correctable and uncorrectable errors and reports an
instruction_access_MMU_error (for instruction accesses) or data_access_MMU_error (for data
accesses) trap, with error information (such as the failing index) in the virtual processor’s precise ESR.

17.4.3 Register File Errors
The integer register file (IRF) and the floating-point register file (FRF) are normally protected by a
correctable error code. Hardware checks each operand’s ECC. Hardware does not have to do the
correction. See the model-specific Implementation Supplement to this specification for more details

If hardware does not do the correction and clearing, and an IRF correctable ECC error, IRF
uncorrectable ECC error, FRF correctable ECC error, or FRF uncorrectable ECC error is detected, an
internal_processor_error precise trap should be reported. The associated error information (IRF/FRF
correctable/uncorrectable error, window (for IRF), index and ECC bits) should be captured in the
precise ESR for the virtual processor. The trap handler should correct the IRF/FRF correctable ECC
errors, based on the error information, using ASI accesses. For IRF/FRF uncorrectable ECC errors, the
trap handler should take appropriate recovery actions. In both cases, the error should be logged.

If hardware does the correction and clearing, an hw_corrected_error disrupting trap is reported.

17.4.4 Execution Unit Errors
Execution units should be protected, either through replication or through internal arithmetic
checking such as residue checking. Execution unit errors should cause an internal_processor_error
precise trap. The associated error information should include the unique ID or IDs of the failing
execution unit, or execution units if replication is used. Software should retry the instruction and
ensure that forward progress is being made.

17.4.5 Other Core Errors Associated with Instruction Processing
Before Instruction Retirement
Errors that are associated with instruction processing before the instruction retires and that require
software correction should be reported as special precise error types. Error information should be
provided in the precise ESR for the virtual processor.
CHAPTER 17 • Error Handling 513

Examples include the Store Buffer Data bypass error for loads, where the store data can have
correctable or uncorrectable data ECC errors. Either an internal_processor_error or data_access_error
precise trap is presented for the load. In the case of the correctable error, the trap handler can issue a
MEMBAR #Sync to flush the store buffer and to allow hardware correction of the data prior to
reissuing the load.

17.4.6 Store Errors
Store errors are errors associated with the processing of the store instruction after the store instruction
has retired but before it has completed. The store data and associated address and control fields are
held in buffers, waiting to be stored into the L2 cache. For large multithreaded processors, these store
buffers are sufficiently large that parity or (preferably) ECC checking must be provided on the data,
tag, and control fields. (If possible, SEC/DED ECC should be provided on tag, control, and data.)

Since the instruction has already retired, these errors cannot be reported as precise traps. Depending
on the error condition and the hardware design, these errors can be fatal, disrupting, or deferred.

For correctable store buffer data or tag ECC errors, hardware does the correction and reports an
hw_corrected_error disrupting trap. The error information should include the store buffer (SB) index
containing the faulty data. For uncorrectable store buffer data ECC errors, hardware writes the store
into the L2 cache with the notdata bit being set, and reports a sw_recoverable_error disrupting trap,
with the associated error information (syndrome).

For store buffer tag parity or control parity errors, there are two error reporting options: fatal error or
terminating deferred trap. The fatal error is the least desirable since it brings down all virtual
processors. If the terminating deferred trap option is selected, hardware must ensure that subsequent
stores following the failing store are cancelled. If any subsequent store is stored into the L2 cache,
cache coherency is compromised and hardware must signal a fatal error. Also, there should be no side
effects to the store cancellation, such as lines remaining locked in the L2 cache for an atomic load/
store.

The store_error terminating deferred trap is presented to the virtual processor with the failing store in
this case. Hardware must provide a mechanism for purging the remaining store buffer entries without
writing them to storage. Software terminates the virtual processor and other virtual processors in the
partition in the trap handler. Software must ensure that the store buffers for the failing virtual
processor are functional before reusing that virtual processor. This implies that the hyperprivileged
code for the store_error trap handler is not run on the same virtual processor that detected the error.

17.4.7 Errors Not Associated with Instruction Processing
Errors not associated with instruction processing should be reported either as hw_corrected_error
disrupting traps (if hardware does the correction and clearing), or sw_recoverable_error disrupting
traps, with the associated error information (syndrome). Errors associated with coprocessors or with
asynchronous functions are included in this category.

Implementations may choose to create other classes of disrupting traps to handle special cases.

Programming
Note

Software should mark the page as toxic but not terminate the
process at the time of the trap. If the toxic line is accessed and
the appropriate trap occurs, software should take the
appropriate action at that time.

If data parity is provided instead of SEC/DED for the store data
buffer, all store data parity errors are treated the same as
uncorrectable store buffer data ECC errors, as described in the
previous paragraph.
514 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

Software can correct or reload these registers as part of the trap handler routine, and log the errors.
Since these cases are unique to the processor, they must be clearly documented in the processor
Implementation Supplement to this specification.

17.4.8 L2 Cache Errors
The L2 cache is normally a large, dirty (containing owned lines) cache and is normally the central
point of coherency for the processor. The L2 cache services all memory requests from the L1 caches of
each core and interfaces to an L3 cache, memory (controller), or both. The L2 cache contains the line
state information (valid, modified, owned, shared, notdata, etc.).

The L2 cache tag array should be SEC/DED ECC protected for stores and snoops. For data to the L1
caches, DED ECC protection should be provided. If hardware also provides correction and clearing
for L1 cache data, SEC is needed with a mechanism such as a cache scrubber for clearing the error
from the L2 cache.

L2 cache data should be SEC/DED ECC protected for all writebacks and copybacks to memory. In-
line correction is required on evictions. The line state should also be either SEC/DED ECC protected
or replicated.

Uncorrectable tag and state errors normally result in fatal errors, which bring the processor down.
Multiple “clean” tag matches also result in fatal errors. (A clean tag match is a tag match with no tag
error in the matching way.) The error information (type, ECC syndrome, L2 cache index, and way)
associated with the fatal error should be captured in the L2 cache fatal ESR. Some uncorrectable tag
and state errors are recoverable. For example, uncorrectable tag errors on a clean line are recoverable.
Uncorrectable state errors can be recoverable if a dual directory is provided. The degree of
recoverability for uncorrectable tag and state errors is model dependent.

Hardware has the option of providing hardware correction and hardware clearing logic for
correctable tag ECC errors for loads, instruction fetches, and TTE accesses. If hardware does the
correction, it should also do the clearing; otherwise, software must be involved to clear the error.

A preferred hardware implementation would be to include the valid bit and tag protection in the tag
match. This would make all tag matches clean. If there is no tag match on an L2-cache access but a
correctable tag error is detected, the preferred hardware implementation would correct the tag or tags
in error for the given index and then do the tag comparison again. Corrected tags should cause a
hw_corrected_error disrupting trap being reported for logging with the associated error information
(l2 $ index, way, syndrome).

Hardware can also allow software to correct and clear correctable tag and data ECC errors. If
hardware does not provide the correction, correctable tag errors should be reported as a
data_access_error precise trap for loads, an instruction_access_error precise trap for instruction
fetches, a data_access_MMU_error precise trap for a TTE access for loads and an
instruction_access_MMU_error for a TTE access for an instruction fetch. The trap is reported 1) if
there was a correctable tag error on the matching way, or 2) if there is no match, but there is a tag
error in a nonmatching way for the same L2 cache index. In the latter case, the line will eventually be
replaced through LRU replacement, but there is the exposure that a second cosmic event could make
the tag error uncorrectable and result in a fatal error condition.

Hardware has the option of providing hardware correction and hardware clearing logic for
correctable data ECC errors for loads, instruction fetches, and TTE accesses. If hardware does the
correction, it should also do the clearing; otherwise, software must be involved to clear the error. If in-
line ECC correction is provided from the L2-cache to the cores, the L2-cache should also provide an
error-clearing mechanism, such as a scrubber.

Hardware can allow software to recover from uncorrectable or correctable data ECC errors. For these
L2 cache errors, hardware reports either a data_access_error precise trap for loads, an
instruction_access_error precise trap for instruction fetches, a data_access_MMU_error precise trap
for a TTE access for loads with hardware tablewalk enabled, and an instruction_access_MMU_error
CHAPTER 17 • Error Handling 515

for a TTE access for an instruction fetch with hardware tablewalk enabled. The appropriate error
information (correctable data, uncorrectable data, notdata, L2 cache index and way, ECC syndrome) is
captured in ESRS.

In the trap handler for the data_access_error and the instruction_access_error, software uses the
prefetch invalidate variant (or equivalent) to invalidate the line from the L2 cache. If the line is clean,
it is invalidated without a writeback. If the line is dirty, the writeback process causes the correctable
tag and data errors to be corrected and cleared. When the instruction is reissued, the L2 cache is
updated with a clean copy from memory. In the case of an uncorrectable data ECC error, if the line is
dirty, the writeback causes the notdata bit to be set in memory. If software cannot recover from this
condition, it terminates the user. It does not affect other virtual processors unless they are part of the
same partition.

L2 cache errors are detected for operations asynchronous to instruction processing, such as snoops,
copybacks, and writebacks. These errors include correctable store or snoop tag ECC error, correctable
writeback and copyback data ECC error, and uncorrectable writeback and copyback data ECC error. If
the hardware corrects and clears the error, it posts an hw_corrected_error disrupting trap. Software
logs the error for this trap handler. If software participates in the correction or clearing, a
sw_recoverable_error disrupting trap is reported. In this trap handler, software clears and also may
correct the error by invalidating the line in the L2 cache. The error is then logged. The error
information (error type, syndrome, virtual processor, L2 cache index, and way) is captured in the L2
cache disrupting ESR.

17.4.9 External Interface and Bus Errors
Errors detected on the external interface that result in system data coherency being compromised are
captured in the External Interface Unit fatal ESR. The processor signals a fatal error. In a multiple
processor configuration, the error may cause the processor to stop sending new packets on the
interface and also to stop picking new bus transactions. The processor will subsequently stall, waiting
for data, and become isolated from the system, thereby preventing the propagation of the error to
other processors in the configuration.

Uncorrectable data errors detected on data accesses in the External Interface Unit may require unique
disrupting trap types to report the termination of the access. See the model-specific PRM for details.

17.5 Error Handling for Common Processor Errors
TABLE 17-4 provides the error handling process for the most common core and processor errors. A
model’s Implementation Supplement to this specification should contain a detailed list of all precise
traps and the other information contained in this table.
516 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

TABLE 17-4 Error Handling Table (1 of 2)

ERROR TRAP VECTOR ESR INFO
HW
Corr

HW
Clr Trap Handler Action

Icache Valid bit hw_corrected_error
disrupting

index, set Y Y log error

Icache tag parity/ECC hw_corrected_error
disrupting

index, set Y Y log error

Icache multiple hit hw_corrected_error
disrupting

index, set Y Y log error

Icache data parity/ECC;
Option#1

hw_corrected_error
disrupting

index, set Y Y log error

Icache data parity/ECC;
Option#2

inst_access__error
precise

index, set N N SW invalidates line in
Icache

ITLB Valid bit: Option #1 inst_access_MMU_error
precise

valid N N SW demaps page

ITLB Valid bit: Option #2 hw_corrected_error
disrupting

valid,
instr address

Y Y log error

ITLB tag parity: Option #1 inst_access_MMU_error
precise

tag parity N N SW demaps page

ITLB tag parity: Option #2 hw_corrected_error
disrupting

tag parity,
instr address

Y Y log error

ITLB multiple tag hit:
Option #1

inst_access_MMU_error
precise

multiple hit,
way

N N SW demaps all

ITLB multiple tag hit:
Option #2

hw_corrected_error
disrupting

multiple hit,
way, instr addr

Y Y log error

ITLB data parity:
Option #1

inst_access_MMU_error
precise

data parity N N SW demaps page

ITLB data parity:
Option #2

hw_corrected_error
disrupting

data parity,
instr addr

Y Y log error

Data cache Valid bit hw_corrected_error
disrupting

valid, index,
set

Y Y SW logs error

Data cache tag parity hw_corrected_error
disrupting

tag parity,
index, set

Y Y SW logs error

Data cache multiple hit hw_corrected_error
disrupting

multiple hit,
way, index,

Y Y SW logs error

Data cache data parity/
ECC; Option#1

hw_corrected_error
disrupting

data parity,
index, set

Y Y SW logs error

Data cache data parity/
ECC; Option#2

data_access__error
precise

index, set N N SW invalidates line in Data
cache

DTLB Valid bit:
Option #1

data_access_MMU_error
precise

valid, data
address

N N SW demaps page

DTLB Valid bit:
Option #2

hw_corrected_error
disrupting

valid, data
address

Y Y SW log error

DTLB tag parity:
Option #1

data_access_MMU_error
precise

tag parity,
data address

N N SW demaps page

DTLB tag parity:
Option #2

hw_corrected_error
disrupting

tag parity,
data address

Y Y SW log error

DTLB multiple tag hit:
Option #1

data_access_MMU_error
precise

Multiple hit,
way, data addr

N N SW demaps all

DTLB multiple tag hit:
Option #2

hw_corrected_error
disrupting

Multiple hit,
way, data addr

Y Y SW log error

DTLB data parity:
Option #1

data_access_MMU_error
precise

data parity,
data address

N N SW demaps page

DTLB data parity:
Option #2

hw_corrected_error
disrupting

data parity,
data address

Y Y SW log error

Integer RF correctable ECC internal_processor_error
precise

window, index,
ECC bits

N N SW should correct

Integer RF uncorrectable
ECC Option#1

internal_processor_error
precise

window, index,
ECC bits

N N SW should retry and, if
unsuccessful, terminate user

Integer RF uncorrectable
ECC Option#2

hw_corrected_error
disrupting

window, index,
ECC bits

Y Y SW log error
CHAPTER 17 • Error Handling 517

Floating Point RF
correctable ECC

internal_processor_error
precise

index, ECC bits N N SW should correct

Floating Point RF
uncorrectable ECC

internal_processor_error
precise

index, ECC bits N N SW should terminate user

Integer residue error/
Integer result mismatch

internal_processor_error
precise

integer unit
ID/coreID

N N SW should retry the failing
instruction one or more
times

Floating Point residue error internal_processor_error
precise

FP unit ID/
coreID

N N SW should retry the failing
instruction

Correctable Store Buffer
data ECC Error

hw_corrected_error
disrupting

SB corr ECC,
SB index

Y Y SW logs error

Uncorrectable Store Buffer
data Parity/ECC Error

sw_recoverable_error
disrupting

SB uncorr ECC,
SB index

N N SW logs the error and marks
the page as toxic

Store Buffer tag/control
parity/ECC error: Option #1

store_error
deferred

SB tag/ctrl
parity, SB index

N N SW terminates user

Store Buffer tag/control
parity/ECC error: Option #2

fatal error SB tag/ctrl
parity, SB index

N N fatal signal

L2 cache correctable ECC
tag/data on ifetch:Option #1

inst_access_error
precise

index, way,
syndrome

N N SW invalidates line in L2$,
and retries instruction.

L2 cache correctable ECC
tag/data on ifetch:Option #2

hw_corrected_error
disrupting

index, way,
syndrome

Y Y SW log error

L2 cache uncorrectable ECC
data on ifetch

inst_access_error
precise

index, way,
syndrome

N N SW invalidates line in L2$
and tries to recover

L2 cache notdata on ifetch inst_access_error
precise

index, way,
syndrome

N N SW invalidates line in L2$
and tries to recover

L2 cache TTE correctable
ECC tag/data on
ifetch:Option #1

inst_access_MMU_error
precise

index, way,
syndrome

N N SW attempts to refill the
TLB and retry

L2 cache TTE correctable
ECC tag/data on
ifetch:Option #2

hw_corrected_error
disrupting

index, way,
syndrome

Y Y SW log error

L2 cache TTE uncorrectable
ECC data on ifetch

inst_access_MMU_error
precise

index, way,
syndrome

N N SW attempts to refill the
TLB and retry

L2 cache TTE notdata on
ifetch

inst_access_MMU_error
precise

index, way,
syndrome

N N SW attempts to refill the
TLB, and retry

L2 cache correctable ECC
tag/data on load: Option #1

data_access_error
precise

index, way,
syndrome

N N SW invalidates line in L2$
and retries instruction

L2 cache correctable ECC
tag/data on load: Option #2

hw_corrected_error
disrupting

index, way,
syndrome

Y Y SW log error

L2 cache uncorrectable ECC
data on load:

data_access_error
precise

index, way,
syndrome

N N SW invalidates line in L2$
and tries to recover

L2 cache notdata on load: data_access_error
precise

index, way,
syndrome

N N SW invalidates line in L2$
and tries to recover

L2 cache TTE correctable
ECC tag/data on

load:Option #1

data_access_MMU_error
precise if hardware tablewalk
enabled

index, way,
syndrome

N N SW attempts to refill the
TLB, retries instruction

L2 cache TTE correctable
ECC tag on load: Option #2

hw_corrected_error
disrupting

index, way,
syndrome

Y Y SW log error

L2 cache TTE
uncorrectable ECC data on

load

data_access_MMU_error
precise if hardware tablewalk
enabled

index, way,
syndrome

N N SW attempts to refill the
TLB, retries instruction

L2 cache TTE notdata on
load

data_access_MMU_error
precise

index, way,
syndrome

N N SW terminates user

TABLE 17-4 Error Handling Table (2 of 2)

ERROR TRAP VECTOR ESR INFO
HW
Corr

HW
Clr Trap Handler Action
518 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

APPENDIX A

Opcode Maps

This appendix contains the UltraSPARC Architecture 2007 instruction opcode maps.

In this appendix and in Chapter 7, Instructions, certain opcodes are marked with mnemonic
superscripts. These superscripts and their meanings are defined in TABLE 7-1 on page 99. For preferred
substitute instructions for deprecated opcodes, see the individual opcodes in Chapter 7 that are
labeled “Deprecated”.

In the tables in this appendix, reserved (—) and shaded entries (as defined below) indicate opcodes
that are not implemented in UltraSPARC Architecture 2007 strands.

An attempt to execute a reserved opcode behaves as defined in Reserved Opcodes and Instruction Fields
on page 97.

Shading Meaning

An attempt to execute opcode will cause an illegal_instruction exception.

TABLE A-1 op{1:0}

op {1:0}
0 1 2 3

Branches and SETHI
(See TABLE A-2)

CALL Arithmetic & Miscellaneous
(See TABLE A-3)

Loads/Stores
(See TABLE A-4)

TABLE A-2 op2{2:0} (op = 0)

op2 {2:0}
0 1 2 3 4 5 6 7

ILLTRAP
(bits
29:25 = 0) BPcc (See

TABLE A-7)
BiccD(See
TABLE A-7)

BPr (bit 28 = 0)
(See TABLE A-8) SETHI,

NOP2

2. rd = 0, imm22 = 0

FBPfcc
(See TABLE A-7)

FBfccD

(See TABLE A-7)
—

— (bits
29:25 ≠ 0)

— (bit 28 = 1)1

1. See the footnote regarding bit 28 on page 122.
519

TABLE A-3 op3{5:0} (op = 102) (1 of 2)

op3{5:4}

0 1 2 3

op3
{3:0}

0 ADD ADDcc TADDcc WRYD (rd = 0)
— (rd = 1)
WRCCR (rd = 2
WRASI (rd = 3)
— (rd = 4, 5)
SIRH (rd = 15, rs1 = 0, i = 1)
— (rd = 15) and (rs1 ≠ 0 or i ≠ 1))
— (rd = 7 − 14)
WRFPRS (rd = 6)
WRasrPASR (7 ≤ rd ≤ 14)
WRPCRP (rd = 16)
WRPIC (rd = 17)
— (rd = 18)
WRGSR (rd = 19)
WRSOFTINT_SETP (rd = 20)
WRSOFTINT_CLRP (rd = 21)
WRSOFTINTP (rd = 22)
WRTICK_CMPRP (rd = 23)
WRSTICKH (rd = 24)
WRSTICK_CMPRP (rd = 25)
— (rd = 26)
— (rd = 27)
— (rd = 28 - 31)

1 AND ANDcc TSUBcc SAVEDP (fcn = 0)
RESTOREDP (fcn = 1)
ALLCLEANP (fcn = 2)
OTHERWP (fcn = 3)
NORMALWP (fcn = 4)
INVALWP (fcn = 5)
— (fcn ≥ 6)

2 OR ORcc TADDccTVD WRPRP (rd = 0-14 or 16)
— (rd = 15 or 17−31)

3 XOR XORcc TSUBccTVD WRHPRH

4 SUB SUBcc MULSccD FPop1 (See TABLE A-5)
5 ANDN ANDNcc SLL (x = 0), SLLX (x = 1) FPop2 (See TABLE A-6)
6 ORN ORNcc SRL (x = 0), SRLX (x = 1) (VIS) (See TABLE A-12)
7 XNOR XNORcc SRA (x = 0), SRAX (x = 1)
520 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

op3
{3:0}

8 ADDC ADDCcc RDYD (rs1 = 0, i = 0) JMPL
— (rs1 = 1, i = 0)
RDCCR (rs1= 2, i = 0)
RDASI (rs1 = 3, i = 0)
RDTICKPnpt (rs1 = 4, i = 0)
RDPC (rs1 = 5, i = 0)
RDFPRS (rs1 = 6, i = 0)
RDasrPASR (7 ≤ rd ≤ 14, i = 0)
MEMBAR (rs1 = 15, rd = 0, i = 1,

instruction bit 12 = 0)
— (rs1 = 15, rd = 0, i = 1,

instruction bit 12 = 1)
— (i = 1, (rs1 ≠ 15 or rd ≠ 0))
— (rs1 = 15, rd = 0, i = 0)
— (rs1 = 15 and rd > 0 and i = 0)
RDPCRP (rs1 = 16 and i = 0)
RDPIC (rs1 = 17 and i = 0)
— (rs1 = 18 and i = 0)
RDGSR (rs1 = 19 and i = 0)
— (rs1 = 20 or 21) and (i = 0))
RDSOFTINTP (rs1 = 22 and i = 0)
RDTICK_CMPRP (rs1 = 23 and i = 0)
RDSTICK (rs1 = 24 and i = 0)
RDSTICK_CMPRP

(rs1 = 25 and i = 0)
— ((rs1 = 26) and (i = 0))
— ((rs1 = 27 – 31) and (i = 0))

9 MULX — RDHPRH RETURN
A UMULD UMULccD RDPRP (rs1 = 1–14 or 16) Tcc ((i = 0 and inst{10:5} = 0) or

((i = 1) and (inst{10:8} = 0)))
(See TABLE A-7)

— (rs1 = 15 or 17 – 31) — ((i = 0 and (inst{10:5} ≠ 0)) or
(i = 1 and (inst{10:8} ≠ 0))

— (bit 29 = 1)

op3
{3:0}

B SMULD SMULccD FLUSHW FLUSH
C SUBC SUBCcc MOVcc SAVE
D UDIVX — SDIVX RESTORE
E UDIVD UDIVccD POPC (rs1 = 0) DONEP (fcn = 0)

— (rs1= 1,2,3) RETRYP (fcn = 1)
— (rs1 > 3) — (fcn = 2..14)

— (fcn = 15)
— (fcn = 16..31)

F SDIVD SDIVccD MOVr (See TABLE A-8) —

TABLE A-3 op3{5:0} (op = 102) (2 of 2)

op3{5:4}

0 1 2 3
APPENDIX A • Opcode Maps 521

TABLE A-4 op3{5:0} (op = 112)

op3{5:4}

0 1 2 3

op3
{3:0}

0 LDUW LDUWAPASI LDF LDFAPASI

1
LDUB LDUBAPASI (rd = 0) LDFSRD

(rd = 1) LDXFSR Reserved

— (rd > 1)

2 LDUH LDUHAPASI LDQF LDQFAPASI

3 LDTWD LDTWAD, PASI LDDF LDDFAPASI

— (rd odd) LDTXA LDBLOCKFD

— (rd odd) LDSHORTF

4 STW STWAPASI STF STFAPASI

5
STB STBAPASI (rd = 0) STFSRD

(rd = 1) STXFSR
Reserved

— (rd > 1)

6 STH STHAPASI STQF STQFAPASI

7 STTWD STTWAPASI STDF STDFAPASI

— (rd odd) — (rd odd) STLBLOCKFD

STPARTIALF

STSHORTF

8 LDSW LDSWAPASI Reserved Reserved
9 LDSB LDSBAPASI Reserved Reserved
A LDSH LDSHAPASI Reserved Reserved
B LDX LDXAPASI Reserved Reserved
C Reserved Reserved Reserved CASAPASI

D LDSTUB LDSTUBAPASI PREFETCH PREFETCHAPASI

— (fcn = 5 − 15) — (fcn = 5 − 15)

E STX STXAPASI Reserved CASXAPASI

F SWAPD SWAPAD, PASI Reserved Reserved
522 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

TABLE A-5 opf{8:0} (op = 102,op3 = 3416 = FPop1)

opf{3:0}

opf{8:4} 0 1 2 3 4 5 6 7

0016 — FMOVs FMOVd FMOVq — FNEGs FNEGd FNEGq

0116 — — — — — — — —

0216 — — — — — — — —

0316 — — — — — — — —

0416 — FADDs FADDd FADDq — FSUBs FSUBd FSUBq

0516 — — — — — — — —

0616 — — — — — — — —

0716 — — — — — — — —

0816 — FsTOx FdTOx FqTOx FxTOs — — —

0916 — — — — — — — —

0A16 — — — — — — — —

0B16 — — — — — — — —

0C16 — — — — FiTOs — FdTOs FqTOs

0D16 — FsTOi FdTOi FqTOi — — — —

0E16–1F16 — — — — — — — —

8 9 A B C D E F

0016 — FABSs FABSd FABSq — — — —

0116 — — — — — — — —

0216 — FSQRTs FSQRTd FSQRTq — — — —

0316 — — — — — — — —

0416 — FMULs FMULd FMULq — FDIVs FDIVd FDIVq

0516 — — — — — — — —

0616 — FsMULd — — — — FdMULq —

0716 — — — — — — — —

0816 FxTOd — — — FxTOq — — —

0916 — — — — — — — —

0A16 — — — — — — — —

0B16 — — — — — — — —

0C16 FiTOd FsTOd — FqTOd FiTOq FsTOq FdTOq —

0D16 — — — — — — — —

0E16–1F16 — — — — — — — —
APPENDIX A • Opcode Maps 523

† Reserved variation of FMOVR ‡ bit 13 of instruction = 0

TABLE A-6 opf{8:0} (op = 102, op3 = 3516 = FPop2)

opf{3:0}

opf{8:4} 0 1 2 3 4 5 6 7 8–F

0016 — FMOVs
(fcc0)

FMOVd
(fcc0)

FMOVq (fcc0) — † ‡ † ‡ † ‡ —

0116 — — — — — — — — —

0216 — — — — — FMOVRsZ ‡ FMOVRdZ ‡ FMOVRqZ ‡ —

0316 — — — — — — — — —

0416 — FMOVs
(fcc1)

FMOVd
(fcc1)

FMOVq (fcc1) — FMOVRsLEZ ‡ FMOVRdLEZ ‡ FMOVRqLEZ ‡ —

0516 — FCMPs FCMPd FCMPq — FCMPEs ‡ FCMPEd ‡ FCMPEq ‡ —

0616 — — — — — FMOVRsLZ ‡ FMOVRdLZ ‡ FMOVRqLZ ‡ —

0716 — — — — — — — — —

0816 — FMOVs
(fcc2)

FMOVd
(fcc2)

FMOVq (fcc2) — † † † —

0916 — — — — — — — — —

0A16 — — — — — FMOVRsNZ ‡ FMOVRdNZ ‡ FMOVRqNZ ‡ —

0B16 — — — — — — — — —

0C16 — FMOVs
(fcc3)

FMOVd
(fcc3)

FMOVq (fcc3) — FMOVRsGZ ‡ FMOVRdGZ ‡ FMOVRqGZ ‡ —

0D16 — — — — — — — — —

0E16 — — — — — FMOVRsGEZ ‡ FMOVRdGEZ ‡ FMOVRqGEZ ‡ —

0F16 — — — — — — — — —

1016 — FMOVs
(icc)

FMOVd
(icc)

FMOVq (icc) — — — — —

1116–1716 — — — — — — — — —

1816 — FMOVs
(xcc)

FMOVd
(xcc)

FMOVq (xcc) — — — — —

1916–1F16 — — — — — — — — —
524 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

TABLE A-7 cond{3:0}

BPcc
op = 0
op2 = 1

bit 28 = 0

Bicc
op = 0
op2 = 2

FBPfcc
op = 0
op2 = 5

FBfccD

op = 0
op2 = 6

Tcc
op = 2

op3 = 3A16

cond
{3:0}

0 BPN BND FBPN FBND TN

1 BPE BED FBPNE FBNED TE

2 BPLE BLED FBPLG FBLGD TLE

3 BPL BLD FBPUL FBULD TL

4 BPLEU BLEUD FBPL FBLD TLEU

5 BPCS BCSD FBPUG FBUGD TCS

6 BPNEG BNEGD FBPG FBGD TNEG

7 BPVS BVSD FBPU FBUD TVS

8 BPA BAD FBPA FBAD TA

9 BPNE BNED FBPE FBED TNE

A BPG BGD FBPUE FBUED TG

B BPGE BGED FBPGE FBGED TGE

C BPGU BGUD FBPUGE FBUGED TGU

D BPCC BCCD FBPLE FBLED TCC

E BPPOS BPOSD FBPULE FBULED TPOS

F BPVC BVCD FBPO FBOD TVC

TABLE A-8 Encoding of rcond{2:0} Instruction Field

BPr
op = 0
op2 = 3

MOVr
op = 2

op3 = 2F16

FMOVr
op = 2

op3 = 3516

rcond
{2:0}

0 — — —

1 BRZ MOVRZ FMOVR<s|d|q>Z

2 BRLEZ MOVRLEZ FMOVR<s|d|q>LEZ

3 BRLZ MOVRLZ FMOVR<s|d|q>LZ

4 — — —

5 BRNZ MOVRNZ FMOVR<s|d|q>NZ

6 BRGZ MOVRGZ FMOVR<s|d|q>GZ

7 BRGEZ MOVRGEZ FMOVR<s|d|q>GEZ

TABLE A-9 cc / opf_cc Fields (MOVcc and FMOVcc)

opf_cc Condition Code
Selectedcc2 cc1 cc0

0 0 0 fcc0

0 0 1 fcc1

0 1 0 fcc2

0 1 1 fcc3

1 0 0 icc
APPENDIX A • Opcode Maps 525

1 0 1 —

1 1 0 xcc

1 1 1 —

TABLE A-10 cc Fields (FBPfcc, FCMP, and FCMPE)

cc1 cc0
Condition Code

Selected

0 0 fcc0

0 1 fcc1

1 0 fcc2

1 1 fcc3

TABLE A-11 cc Fields (BPcc and Tcc)

cc1 cc0
Condition Code

Selected

0 0 icc

0 1 —

1 0 xcc

1 1 —

TABLE A-9 cc / opf_cc Fields (MOVcc and FMOVcc)
526 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

TABLE A-12 opf{8:0} for VIS opcodes (op = 102, op3 = 3616)

opf {8:4}

00 01 02 03 04 05 06 07 08 09
0A-
0B

0C-
0F

opf
{3:0}

0 EDGE8cc ARRAY8 FCMPLE16 — — FPADD16 FZERO FAND —

Rese
rved

0 EDGE8cc ARRAY8 FCMPLE16 — FPADD16 FZERO FAND —

1
EDGE8N — — FMUL

8x16
— FPADD16S FZEROS FANDS SIAM

2 EDGE8Lcc ARRAY16 FCMPNE16 — — FPADD32 FNOR FXNOR —

3
EDGE8LN — — FMUL

8x16AU
— FPADD32S FNORS FXNORS —

4 EDGE16cc ARRAY32 FCMPLE32 — FPSUB16 FANDNOT2 FSRC1 —

5
EDGE16N — — FMUL

8x16AL
— FPSUB16S FANDNOT2S FSRC1S —

6
EDGE16Lcc — FCMPNE32 FMUL

8SUx16
— FPSUB32 FNOT2 FORNOT2 —

7
EDGE16LN — — FMUL

8ULx16
— FPSUB32S FNOT2S FORNOT2S —

8
EDGE32cc ALIGN

ADDRESS
FCMPGT16 FMULD

8SUx16
FALIGN
DATA

— FANDNOT1 FSRC2

—

9
EDGE32N BMASK — FMULD

8ULx16
— — FANDNOT1S FSRC2S

A
EDGE32Lcc ALIGNADDRESS

_LITTLE
FCMPEQ16 FPACK32 — — FNOT1 FORNOT1

B EDGE32LN — — FPACK16 FPMERGE — FNOT1S FORNOT1S

C — — FCMPGT32 — BSHUFFLE — FXOR FOR —

D — — — FPACKFIX FEXPAND — FXORS FORS —

E — — FCMPEQ32 PDIST — — FNAND FONE —

F — — — — — — FNANDS FONES —
APPENDIX A • Opcode Maps 527

TABLE A-14 opf{8:0} for VIS opcodes (op = 102, op3 = 3616) (3 of 3)

opf {8:4}

10 11 12 13 14 15 16 17 18–1F

opf
{3:0} —

Reserved

0

Reser
ved

— — — — — —
1 — — — — — —
2 — — — — — —
3 — — — — — —
4 — — — — — —
5 — — — — — —
6 — — — — — —
7 — — — — — —
8 — — — — — —
9 — — — — —
A — — — — —
B — — — — —
C — — — — —
D — — — — —
E — — — — —
F — — — — —
528 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

TABLE A-13 op5{3:0} (op = 102, op3 = 3716 = FMAf

op5{1:0}

0 1 2 3

op5{3:2}

0 — FMADDs FMADDd —

1 — FMSUBs FMSUBd —

2 — FNMSUBs FNMSUBd —

3 — FNMADDs FNMADDd —
APPENDIX A • Opcode Maps 529

530 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

APPENDIX B

Implementation Dependencies

This appendix summarizes implementation dependencies in the SPARC V9 standard. In SPARC V9,
the notation “IMPL. DEP. #nn:” identifies the definition of an implementation dependency; the
notation “(impl. dep. #nn)” identifies a reference to an implementation dependency. These
dependencies are described by their number nn in TABLE B-1 on page 533.

The appendix contains these sections:

■ Definition of an Implementation Dependency on page 531.
■ Hardware Characteristics on page 532.
■ Implementation Dependency Categories on page 532.
■ List of Implementation Dependencies on page 533.

B.1 Definition of an Implementation Dependency
The SPARC V9 architecture is a model that specifies unambiguously the behavior observed by software
on SPARC V9 systems. Therefore, it does not necessarily describe the operation of the hardware of any
actual implementation.

An implementation is not required to execute every instruction in hardware. An attempt to execute a
SPARC V9 instruction that is not implemented in hardware generates a trap. Whether an instruction is
implemented directly by hardware, simulated by software, or emulated by firmware is
implementation dependent.

The two levels of SPARC V9 compliance are described in UltraSPARC Architecture 2007 Compliance with
SPARC V9 Architecture on page 18.

Some elements of the architecture are defined to be implementation dependent. These elements
include certain registers and operations that may vary from implementation to implementation; they
are explicitly identified as such in this appendix.

Implementation elements (such as instructions or registers) that appear in an implementation but are
not defined in this document (or its updates) are not considered to be SPARC V9 elements of that
implementation.

Note: This chapter is undergoing final review; please check
back later for a copy of UltraSPARC Architecture
2007 containing the final version of this chapter.
531

B.2 Hardware Characteristics
Hardware characteristics that do not affect the behavior observed by software on SPARC V9 systems
are not considered architectural implementation dependencies. A hardware characteristic may be
relevant to the user system design (for example, the speed of execution of an instruction) or may be
transparent to the user (for example, the method used for achieving cache consistency). The SPARC
International document, Implementation Characteristics of Current SPARC V9-based Products, Revision 9.x,
provides a useful list of these hardware characteristics, along with the list of implementation-
dependent design features of SPARC V9-compliant implementations.

In general, hardware characteristics deal with

■ Instruction execution speed

■ Whether instructions are implemented in hardware

■ The nature and degree of concurrency of the various hardware units constituting a SPARC V9
implementation

B.3 Implementation Dependency Categories
Many of the implementation dependencies can be grouped into four categories, abbreviated by their
first letters throughout this appendix:
■ Value (v)

The semantics of an architectural feature are well defined, except that a value associated with the
feature may differ across implementations. A typical example is the number of implemented
register windows (impl. dep. #2-V8).

■ Assigned Value (a)
The semantics of an architectural feature are well defined, except that a value associated with the
feature may differ across implementations and the actual value is assigned by SPARC International.
Typical examples are the impl field of the Version register (VER) (impl. dep. #13-V8) and the
FSR.ver field (impl. dep. #19-V8).

■ Functional Choice (f)
The SPARC V9 architecture allows implementors to choose among several possible semantics
related to an architectural function. A typical example is the treatment of a catastrophic error
exception, which may cause either a deferred or a disrupting trap (impl. dep. #31-V8-Cs10).

■ Total Unit (t)
The existence of the architectural unit or function is recognized, but details are left to each
implementation. Examples include the handling of I/O registers (impl. dep. #7-V8) and some
alternate address spaces (impl. dep. #29-V8).
532 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

B.4 List of Implementation Dependencies
TABLE B-1 provides a complete list of the SPARC V9 implementation dependencies. The Page column
lists the page for the context in which the dependency is defined; bold face indicates the main page on
which the implementation dependency is described.

TABLE B-1 SPARC V9 Implementation Dependencies (1 of 8)

Nbr Category Description Page

1-V8 f Software emulation of instructions
Whether an instruction complies with UltraSPARC Architecture 2007 by being
implemented directly by hardware, simulated by software, or emulated by firmware is
implementation dependent.

18

2-V8 v Number of IU registers
An UltraSPARC Architecture implementation may contain from 72 to 640 general-
purpose 64-bit R registers. This corresponds to a grouping of the registers into
MAXGL + 1 sets of global R registers plus a circular stack of N_REG_WINDOWS sets of 16
registers each, known as register windows. The number of register windows present
(N_REG_WINDOWS) is implementation dependent, within the range of 3 to 32
(inclusive).

19, 36

3-V8 f Incorrect IEEE Std 754-1985 results
An implementation may indicate that a floating-point instruction did not produce a
correct IEEE Std 754-1985 result by generating an fp_exception_other exception with
FSR.ftt = unfinished_FPop. In this case, software running in a higher privilege mode
shall emulate any functionality not present in the hardware.

96

4, 5 Reserved.

6-V8 f I/O registers privileged status
Whether I/O registers can be accessed by nonprivileged code is implementation
dependent.

21

7-V8 t I/O register definitions
The contents and addresses of I/O registers are implementation dependent.

21

8-V8-
Cs20

t RDasr/WRasr target registers
Ancillary state registers (ASRs) in the range 0–27 that are not defined in UltraSPARC
Architecture 2007 are reserved for future architectural use. ASRs in the range 28–31 are
available to be used for implementation-dependent purposes.

22, 50,
242, 305

9-V8-
Cs20

f RDasr/WRasr privileged status
The privilege level required to execute each of the implementation-dependent read/
write ancillary state register instructions (for ASRs 28–31) is implementation
dependent.

22, 50,
242, 305

10-V8–12-V8 Reserved.

13-V8 a HVER.impl
HVER.impl uniquely identifies an implementation or class of software-compatible
implementations of the architecture. Values FFF016–FFFF16 are reserved and are not
available for assignment.

78

14-V8–15-V8 Reserved.

16-V8-Cu3 Reserved.

17-V8 Reserved.
APPENDIX B • Implementation Dependencies 533

18-
V8-
Ms10

f Nonstandard IEEE 754-1985 results
When FSR.ns = 1, the FPU produces implementation-dependent results that may not
correspond to IEEE Standard 754-1985.

a: When FSR.ns = 1 and a floating-point source operand is subnormal, an
implementation may treat the subnormal operand as if it were a floating-point zero
value of the same sign.
The cases in which this replacement is performed are implementation dependent.
However, if it occurs,
(1) it should not apply to FABS, FMOV, or FNEG instructions and
(2) FADD, FSUB, and FCMP should give identical treatment to subnormal source
operands.
Treating a subnormal source operand as zero may generate an IEEE 754 floating-point
“inexact”, “division by zero”, or “invalid” condition (see Current Exception (cexc) on
page 48). Whether the generated condition(s) trigger an fp_exception_ieee_754
exception or not depends on the setting of FSR.tem.

316

b: When a floating-point operation generates a subnormal result value, an UltraSPARC
Architecture implementation may either write the result as a subnormal value or
replace the subnormal result by a floating-point zero value of the same sign and
generate IEEE 754 floating-point “inexact” and “underflow” conditions. Whether these
generated conditions trigger an fp_exception_ieee_754 exception or not depends on
the setting of FSR.tem.

316

c: If an FPop generates an intermediate result value, the intermediate value is
subnormal, and FSR.ns = 1, it is implementation dependent whether (1) the operation
continues, using the subnormal value (possibly with some loss of accuracy), or (2) the
virtual processor replaces the subnormal intermediate value with a floating-point zero
value of the same sign, generates IEEE 754 floating-point “inexact” and “underflow”
conditions, completes the instruction, and writes a final result (possibly with some loss
of accuracy). Whether generated IEEE conditions trigger an fp_exception_ieee_754
exception or not depends on the setting of FSR.tem.

316

19-V8 a FPU version, FSR.ver
Bits 19:17 of the FSR, FSR.ver, identify one or more implementations of the FPU
architecture.

45

20-V8–21-V8 Reserved.

22-V8 f FPU tem, cexc, and aexc
An UltraSPARC Architecture implementation implements the tem, cexc, and aexc
fields in hardware, conformant to IEEE Std 754-1985.

50

23-V8 Reserved.

24-V8 Reserved.

25-V8 f RDPR of FQ with nonexistent FQ
An UltraSPARC Architecture implementation does not contain a floating-point queue
(FQ). Therefore, FSR.ftt = 4 (sequence_error) does not occur, and an attempt to read
the FQ with the RDPR instruction causes an illegal_instruction exception.

47, 247

26-V8–28-V8 Reserved.

29-V8 t Address space identifier (ASI) definitions
In SPARC V9, many ASIs were defined to be implementation dependent. Some of
those ASIs have been allocated for standard uses in the UltraSPARC Architecture.
Others remain implementation dependent in the UltraSPARC Architecture. See ASI
Assignments on page 346 and Block Load and Store ASIs on page 362 for details.

88

30-
V8-
Cu3

f ASI address decoding
In SPARC V9, an implementation could choose to decode only a subset of the 8-bit ASI
specifier. In UltraSPARC Architecture implementations, all 8 bits of each ASI specifier
must be decoded. Refer to Chapter 10, Address Space Identifiers (ASIs), of this
specification for details.

88

TABLE B-1 SPARC V9 Implementation Dependencies (2 of 8)

Nbr Category Description Page
534 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

31-
V8-
Cs10

f This implementation dependency is no longer used in the UltraSPARC Architecture,
since “catastrophic” errors are now handled using normal error-reporting
mechanisms.

—

32-
V8-
Ms10

t Restartable deferred traps
Whether any restartable deferred traps (and associated deferred-trap queues) are
present is implementation dependent.

378

33-
V8-
Cs10

f Trap precision
In an UltraSPARC Architecture implementation, all exceptions that occur as the result
of program execution, except for store_error, are precise.

381

34-V8 f Interrupt clearing
a: The method by which an interrupt is removed is now defined in the UltraSPARC
Architecture (see Clearing the Software Interrupt Register on page 420).
b: How quickly a virtual processor responds to an interrupt request, like all timing-
related issues, is implementation dependent.

420

35-
V8-
Cs20

t Implementation-dependent traps
Trap type (TT) values 06016–07F16 were reserved for
implementation_dependent_exception_n exceptions in SPARC V9 but are now all
defined as standard UltraSPARC Architecture exceptions.

385

36-V8 f Trap priorities
The relative priorities of traps defined in the UltraSPARC Architecture are fixed.
However, the absolute priorities of those traps are implementation dependent (because
a future version of the architecture may define new traps). The priorities (both
absolute and relative) of any new traps are implementation dependent.

396

37-V8 f Reset trap
Some of a virtual processor’s behavior during a reset trap is implementation
dependent.

380

38-V8 f Effect of reset trap on implementation-dependent registers
Implementation-dependent registers may or may not be affected by the various reset
traps.

400

39-
V8-
Cs10

f Entering error_state on implementation-dependent errors
The virtual processor enters error_state when a trap occurs while the virtual
processor is already at its maximum supported trap level — that is, it enters
error_state when a trap occurs while TL = MAXTL. No other conditions cause entry
into error_state on an UltraSPARC Architecture virtual processor.

376, 402

40-V8 f error_state virtual processor state
Effects when error_state is entered are implementation dependent, but it is
recommended that as much virtual processor state as possible be preserved upon
entry to error_state. In addition, an UltraSPARC Architecture virtual processor
may have other error_state entry traps that are implementation dependent.

376

41-V8 Reserved.

42-
V8-
Cs10

t, f, v FLUSH instruction
FLUSH is implemented in hardware in all UltraSPARC Architecture 2007
implementations, so never causes a trap as an unimplemented instruction.

43-V8 Reserved.

44-
V8-
Cs10

f Data access FPU trap
a: If a load floating-point instruction generates an exception that causes a non-precise

trap, it is implementation dependent whether the contents of the destination
floating-point register(s) or floating-point state register are undefined or are
guaranteed to remain unchanged.

b: If a load floating-point alternate instruction generates an exception that causes a
non-precise trap, it is implementation dependent whether the contents of the
destination floating-point register(s) are undefined or are guaranteed to remain
unchanged.

196, 215

199

TABLE B-1 SPARC V9 Implementation Dependencies (3 of 8)

Nbr Category Description Page
APPENDIX B • Implementation Dependencies 535

45-V8–46-V8 Reserved.

47-
V8-
Cs20

t RDasr
RDasr instructions with rd in the range 28–31 are available for implementation-
dependent uses (impl. dep. #8-V8-Cs20). For an RDasr instruction with rs1 in the
range 28–31, the following are implementation dependent:
• the interpretation of bits 13:0 and 29:25 in the instruction
• whether the instruction is nonprivileged or privileged or hyperprivileged (impl.

dep. #9-V8-Cs20)
• whether an attempt to execute the instruction causes an illegal_instruction exception

243

48-
V8-
Cs20

t WRasr
WRasr instructions with rd of 16-18, 28, 29, or 31 are available for implementation-
dependent uses (impl. dep. #8-V8-Cs20). For a WRasr instruction using one of those rd
values, the following are implementation dependent:
• the interpretation of bits 18:0 in the instruction
• the operation(s) performed (for example, xor) to generate the value written to the

ASR
• whether the instruction is nonprivileged or privileged or hyperprivileged (impl.

dep. #9-V8-Cs20)
• whether an attempt to execute the instruction causes an illegal_instruction exception

306

49-V8–54-V8 Reserved.

55-
V8-
Cs10

f Tininess detection
In SPARC V9, it is implementation-dependent whether “tininess” (an IEEE 754 term) is
detected before or after rounding. In all UltraSPARC Architecture implementations,
tininess is detected before rounding.

50

56–100 Reserved.

101-
V9-
CS10

Maximum trap level (MAXPTL, MAXTL)
The architectural parameter MAXPTL is a constant for each implementation; its legal
values are from 2 to 6 (supporting from 2 to 6 levels of saved trap state visible to
privileged software). In a typical implementation MAXPTL = MAXPGL (see impl. dep.
#401-S10).
The architectural parameter MAXTL is a constant for each implementation; its legal
values are from 3 to 7 (supporting from 3 to 7 levels of saved trap state).
Architecturally, MAXPTL must be ≥ 2, MAXTL must be ≥ 4, and MAXTL must be > MAXPTL.

72, 73

102-
V9

f Clean windows trap
An implementation may choose either to implement automatic “cleaning” of register
windows in hardware or to generate a clean_window trap, when needed, for
window(s) to be cleaned by software.

406

TABLE B-1 SPARC V9 Implementation Dependencies (4 of 8)

Nbr Category Description Page
536 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

103-
V9-
Ms10

f Prefetch instructions
The following aspects of the PREFETCH and PREFETCHA instructions are
implementation dependent:
a: the attributes of the block of memory prefetched: its size (minimum = 64 bytes)

and its alignment (minimum = 64-byte alignment)
b: whether each defined prefetch variant is implemented (1) as a NOP, (2) with its

full semantics, or (3) with common-case prefetching semantics
c: whether and how variants 16, 18, 19 and 24–31 are implemented; if not

implemented, a variant must execute as a NOP

236

236, 238

240C

The following aspects of the PREFETCH and PREFETCHA instructions used to be (but
are no longer) implementation dependent:
d: while in nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), an attempt

to reference an ASI in the range 016..7F16 by a PREFETCHA instruction executes
as a NOP; specifically, it does not cause a privileged_action exception.

e: PREFETCH and PREFETCHA have no observable effect in privileged code
f: In UltraSPARC Architecture 2007, PREFETCH and PREFETCHA can cause a

data_access_MMU_miss exception on a Strong prefetch operation
g: while in privileged mode (PSTATE.priv = 1 and HPSTATE.hpriv = 0), an attempt to

reference an ASI in the range 3016..7F16 by a PREFETCHA instruction executes as a
NOP (specifically, it does not cause a privileged_action exception)

—

—
—

—

104-
V9

a HVER.manuf
HVER.manuf contains a 16-bit semiconductor manufacturer code. This field is optional
and, if not present, reads as zero. VER.manuf may indicate the original supplier of a
second-sourced processor in cases involving mask-level second-sourcing. It is
intended that the contents of HVER.manuf track the JEDEC semiconductor
manufacturer code as closely as possible. If the manufacturer does not have a JEDEC
semiconductor manufacturer code, then SPARC International will assign a
HVER.manuf value.

78

105-
V9

f TICK register
a: If an accurate count cannot always be returned when TICK is read, any inaccuracy

should be small, bounded, and documented.
b: An implementation may implement fewer than 63 bits in TICK.counter; however,

the counter as implemented must be able to count for at least 10 years without
overflowing. Any upper bits not implemented must read as 0.

55

106-
V9cS
10

f IMPDEP2A instructions
The IMPDEP2A instructions were defined to be completely implementation
dependent in SPARC V9. The opcodes that have not been used in this space are now
just documented as reserved opcodes.

107-
V9

f Unimplemented LDTW(A) trap
a: It is implementation dependent whether LDTW is implemented in hardware. If

not, an attempt to execute an LDTW instruction will cause an
unimplemented_LDTW exception.

b: It is implementation dependent whether LDTWA is implemented in hardware. If
not, an attempt to execute an LDTWA instruction will cause an
unimplemented_LDTW exception.

208

210

108-
V9

f Unimplemented STTW(A) trap
a: It is implementation dependent whether STTW is implemented in hardware. If not,

an attempt to execute an STTW instruction will cause an unimplemented_STTW
exception.

b: It is implementation dependent whether STDA is implemented in hardware. If not,
an attempt to execute an STTWA instruction will cause an unimplemented_STTW
exception.

284

286

TABLE B-1 SPARC V9 Implementation Dependencies (5 of 8)

Nbr Category Description Page
APPENDIX B • Implementation Dependencies 537

109-
V9-
Cs10

f LDDF(A)_mem_address_not_aligned
a: LDDF requires only word alignment. However, if the effective address is word-

aligned but not doubleword-aligned, an attempt to execute a valid (i = 1 or
instruction bits 12:5 = 0) LDDF instruction may cause an
LDDF_mem_address_not_aligned exception. In this case, the trap handler software
shall emulate the LDDF instruction and return.
(In an UltraSPARC Architecture processor, the LDDF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the LDDF
instruction)

83, 83,
195, 412

b: LDDFA requires only word alignment. However, if the effective address is word-
aligned but not doubleword-aligned, an attempt to execute a valid (i = 1 or
instruction bits 12:5 = 0) LDDFA instruction may cause an
LDDF_mem_address_not_aligned exception. In this case, the trap handler software
shall emulate the LDDFA instruction and return.
(In an UltraSPARC Architecture processor, the LDDF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the LDDFA
instruction)

197

110-
V9-
Cs10

f STDF(A)_mem_address_not_aligned
a: STDF requires only word alignment in memory. However, if the effective address is

word-aligned but not doubleword-aligned, an attempt to execute a valid (i = 1 or
instruction bits 12:5 = 0) STDF instruction may cause an
STDF_mem_address_not_aligned exception. In this case, the trap handler software
must emulate the STDF instruction and return.
(In an UltraSPARC Architecture processor, the STDF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the STDF
instruction)

83,
272, 414

b: STDFA requires only word alignment in memory. However, if the effective address
is word-aligned but not doubleword-aligned, an attempt to execute a valid (i = 1 or
instruction bits 12:5 = 0) STDFA instruction may cause an
STDF_mem_address_not_aligned exception. In this case, the trap handler software
must emulate the STDFA instruction and return.
(In an UltraSPARC Architecture processor, the STDF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the STDFA
instruction)

274

111-
V9-
Cs10

f LDQF(A)_mem_address_not_aligned
a: LDQF requires only word alignment. However, if the effective address is word-

aligned but not quadword-aligned, an attempt to execute an LDQF instruction may
cause an LDQF_mem_address_not_aligned exception. In this case, the trap handler
software must emulate the LDQF instruction and return.
(In an UltraSPARC Architecture processor, the LDQF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the LDQF
instruction)
(this exception does not occur in hardware on UltraSPARC Architecture 2007
implementations, because they do not implement the LDQF instruction in
hardware)

84, 83,
195, 416

b: LDQFA requires only word alignment. However, if the effective address is word-
aligned but not quadword-aligned, an attempt to execute an LDQFA instruction
may cause an LDQF_mem_address_not_aligned exception. In this case, the trap
handler software must emulate the LDQF instruction and return.
(In an UltraSPARC Architecture processor, the LDQF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the LDQFA
instruction)
(this exception does not occur in hardware on UltraSPARC Architecture 2007
implementations, because they do not implement the LDQFA instruction in
hardware)

197

TABLE B-1 SPARC V9 Implementation Dependencies (6 of 8)

Nbr Category Description Page
538 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

112-
V9-
Cs10

f STQF(A)_mem_address_not_aligned
a: STQF requires only word alignment in memory. However, if the effective address is

word aligned but not quadword aligned, an attempt to execute an STQF instruction
may cause an STQF_mem_address_not_aligned exception. In this case, the trap
handler software must emulate the STQF instruction and return.
(In an UltraSPARC Architecture processor, the STQF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the STQF
instruction)
(this exception does not occur in hardware on UltraSPARC Architecture 2007
implementations, because they do not implement the STQF instruction in
hardware)

84,
272, 416

b: STQFA requires only word alignment in memory. However, if the effective address
is word aligned but not quadword aligned, an attempt to execute an STQFA
instruction may cause an STQF_mem_address_not_aligned exception. In this case,
the trap handler software must emulate the STQFA instruction and return.
(In an UltraSPARC Architecture processor, the STQF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the STQFA
instruction)
(this exception does not occur in hardware on UltraSPARC Architecture 2007
implementations, because they do not implement the STQFA instruction in
hardware)

274

113-
V9-
Ms10

f Implemented memory models
Whether memory models represented by PSTATE.mm = 102 or 112 are supported in an
UltraSPARC Architecture processor is implementation dependent. If the 102 model is
supported, then when PSTATE.mm = 102 the implementation must correctly execute
software that adheres to the RMO model described in The SPARC Architecture Manual-
Version 9. If the 112 model is supported, its definition is implementation dependent.

69, 335

114-
V9-
Cs10

f RED_state trap vector address (RSTVADDR)
The RED_state trap vector is located at an address referred to as RSTVADDR. In thr
UltraSPARC Architecture, RSTVADDR is bound to the following address:

In an implementation that implements fewer than 64 bits of physical addressing,
unimplemented high-order bits of the above RSTVADDR are ignored.

384, 500

115-
V9

f RED_state
What occurs after the processor enters RED_state is implementation dependent.

375

116-
V9

f SIR_enable control flag
SPARC V9 states that the location of the SIR_enable control flag and the means by
which it is accessed are implementation dependent. In UltraSPARC Architecture
virtual processors, the SIR_enable control flag does not explicitly exist; the SIR
instruction always generated an illegal_instruction exception in nonprivileged and
privileged modes. SIR only causes a software_initiated_reset trap when executed in
hyperprivleged mode.

262

117-
V9

f MMU disabled prefetch/nonfaulting load behavior
Whether PREFETCH[A] and nonfaulting loads always succeed when the DMMU is
disabled is implementation dependent.

236, 453

118-
V9

f Identifying I/O locations
The manner in which I/O locations are identified is implementation dependent.

329

119-
Ms10

f Unimplemented values for PSTATE.mm
The effect of an attempt to write an unsupported memory model designation into
PSTATE.mm is implementation dependent; however, it should never result in a value
of PSTATE.mm value greater than the one that was written. In the case of an
UltraSPARC Architecture implementation that only supports the TSO memory model,
PSTATE.mm always reads as zero and attempts to write to it are ignored.

69, 336

TABLE B-1 SPARC V9 Implementation Dependencies (7 of 8)

Nbr Category Description Page

Physical Address FFFF FFFF F000 000016
(the highest 256MB of physical address space)
APPENDIX B • Implementation Dependencies 539

TABLE B-2 provides a list of implementation dependencies that, in addition to those in TABLE B-1, apply
to UltraSPARC Architecture processors. Bold face indicates the main page on which the
implementation dependency is described. See Appendix C in the Extensions Documents for further
information.

120-
V9

f Coherence and atomicity of memory operations
The coherence and atomicity of memory operations between virtual processors and
I/O DMA memory accesses are implementation dependent.

329

121-
V9

f Implementation-dependent memory model
An implementation may choose to identify certain addresses and use an
implementation-dependent memory model for references to them.

329

122-
V9

f FLUSH latency
The latency between the execution of FLUSH on one virtual processor and the point at
which the modified instructions have replaced outdated instructions in a
multiprocessor is implementation dependent.

146, 341

123-
V9

f Input/output (I/O) semantics
The semantic effect of accessing I/O registers is implementation dependent.

21

124-
V9

v Implicit ASI when TL > 0
In SPARC V9, when TL > 0, the implicit ASI for instruction fetches, loads, and stores is
implementation dependent. In all UltraSPARC Architecture implementations, when
TL > 0, the implicit ASI for instruction fetches is ASI_NUCLEUS; loads and stores will
use ASI_NUCLEUS if PSTATE.cle = 0 or ASI_NUCLEUS_LITTLE if PSTATE.cle = 1.

332

125-
V9-
Cs10

f Address masking
(1) When PSTATE.am = 1, only the less-significant 32 bits of the PC register are stored
in the specified destination register(s) in CALL, JMPL, and RDPC instructions, while
the more-significant 32 bits of the destination registers(s) are set to 0.
((2) When PSTATE.am = 1, during a trap, only the less-significant 32 bits of the PC and
NPC are stored (respectively) to TPC[TL] and TNPC[TL]; the more-significant 32 bits
of TPC[TL] and TNPC[TL] are set to 0.

70, 70,
124, 187,
243, 398

126-
V9-
Ms10

Register Windows State registers width
Privileged registers CWP, CANSAVE, CANRESTORE, OTHERWIN, and CLEANWIN
contain values in the range 0 to N_REG_WINDOWS − 1. An attempt to write a value
greater than N_REG_WINDOWS − 1 to any of these registers causes an implementation-
dependent value between 0 and N_REG_WINDOWS − 1 (inclusive) to be written to the
register. Furthermore, an attempt to write a value greater than N_REG_WINDOWS − 2
violates the register window state definition in Register Window Management
Instructions on page 94.
Although the width of each of these five registers is architecturally 5 bits, the width is
implementation dependent and shall be between  log2(N_REG_WINDOWS) and 5 bits,
inclusive. If fewer than 5 bits are implemented, the unimplemented upper bits shall
read as 0 and writes to them shall have no effect. All five registers should have the
same width.
For UltraSPARC Architecture 2007 processors, = 8. Therefore, each register window
state register is implemented with 3 bits, the maximum value for CWP and
CLEANWIN is 7, and the maximum value for CANSAVE, CANRESTORE, and
OTHERWIN is 6. When these registers are written by the WRPR instruction, bits 63:3 of
the data written are ignored.

61

127–199 Reserved. —

TABLE B-1 SPARC V9 Implementation Dependencies (8 of 8)

Nbr Category Description Page
540 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

TABLE B-2 UltraSPARC Architecture Implementation Dependencies (1 of 10)

Nbr Description Page

200–201 Reserved. —

202-U3 fast_ECC_error trap
Whether or not a fast_ECC_error trap exists is implementation dependent. If it does exist,
it indicates that an ECC error was detected in an external cache and its trap type is 07016.

416

203-U3-
Cs10

Dispatch Control register (DCR) bits 13:6 and 1
This implementation dependency no longer applies, as of UltraSPARC Architecture 2005.

204-U3-
CS10

DCR bits 5:3 and 0
This implementation dependency no longer applies, as of UltraSPARC Architecture 2005.

205-U3-
Cs10

Instruction Trap Register
This implementation dependency no longer applies, as of UltraSPARC Architecture 2005.

206-U3-
Cs10

SHUTDOWN instruction

208-U3 Ordering of errors captured in instruction execution
The order in which errors are captured in instruction execution is implementation
dependent. Ordering may be in program order or in order of detection.

—

209-U3 Software intervention after instruction-induced error
Precision of the trap to signal an instruction-induced error of which recovery requires
software intervention is implementation dependent.

—

210-U3 ERROR output signal
The following aspects of the ERROR output signal are implementation dependent in the
UltraSPARC Architecture:
• The causes of the ERROR signal
• Whether each of the causes of the ERROR signal, when it generates the ERROR signal,

halts the virtual processor or allows the virtual processor to continue running
• The exact semantics of the ERROR signal

—

211-U3 Error logging registers’ information
The information that the error logging registers preserves beyond the reset induced by an
ERROR signal is implementation dependent.

—

212-U3-
Cs10

Trap with fatal error
This implementation dependency no longer applies, as of UltraSPARC Architecture 2005.

—

213-U3 AFSR.priv
The existence of the AFSR.priv bit is implementation dependent. If AFSR.priv is
implemented, it is implementation dependent whether the logged AFSR.priv indicates the
privileged state upon the detection of an error or upon the execution of an instruction that
induces the error. For the former implementation to be effective, operating software must
provide error barriers appropriately.

—

214-U3 Enable/disable control for deferred traps
Whether an implementation provides an enable/disable control feature for deferred traps
is implementation dependent.

—

215-U3 Error barrier
DONE and RETRY instructions may implicitly provide an error barrier function as
MEMBAR #Sync. Whether DONE and RETRY instructions provide an error barrier is
implementation dependent.

—

216-U3 data_access_error trap precision
The precision of a data_access_error trap is implementation dependent.

—

217-U3 instruction_access_error trap precision
The precision of an instruction_access_error trap is implementation dependent.

—

218-U3-
Cs20

async_data_error
The async_data_error exception has been superseded by sw_recoverable_error, so this
implementation dependency no longer applies.

—

APPENDIX B • Implementation Dependencies 541

219-U3 Asynchronous Fault Address register (AFAR) allocation
Allocation of Asynchronous Fault Address register (AFAR) is implementation dependent.
There may be one instance or multiple instances of AFAR. Although the ASI for AFAR is
defined as 4D16, the virtual address of AFAR if there are multiple AFARs is implementation
dependent.

—

220-U3 Addition of logging and control registers for error handling
Whether the implementation supports additional logging and control registers for error
handling is implementation dependent.

—

221-U3 Special/signalling ECCs
The method to generate “special” or “signalling” ECCs and whether a processor ID is
embedded into the data associated with special/signalling ECCs is implementation
dependent.

—

222-U3 TLB organization
TLB organization is implementation dependent in UltraSPARC Architecture processors.

428

223-U3 TLB multiple-hit detection
Whether TLB multiple-hit detection is supported in an UltraSPARC Architecture
implementation is implementation dependent.

—

224-U3 MMU physical address width
Physical address width support by the MMU is implementation dependent in the
UltraSPARC Architecture; minimum PA width is 40 bits.

359, 359,
435

225-U3 TLB locking of entries
The mechanism by which entries in TLB are locked is implementation dependent in
UltraSPARC Architecture implementations.

—

226-U3 TTE support for cv bit
Whether the cv bit is supported in TTE is implementation dependent in the UltraSPARC
Architecture. When the cv bit in TTE is not provided and the implementation has virtually
indexed caches, the implementation should support hardware unaliasing for the caches.

436

227-U3 TSB number of entries
The maximum number of entries in a TSB is implementation dependent in the UltraSPARC
Architecture (to a maximum of 16 million, limited by the size of the TSB Configuration
register’s tsb_size field).

438

228-U3-
Cs10

This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

229-U3-
Cs10

This implementation dependency no longer applies, as of UltraSPARC Architecture 2005.TSB
Base address generation
Whether the implementation generates the TSB Base address by exclusive-ORing the TSB
Base register and a TSB register or by taking the tsb_base field directly from a TSB register
is implementation dependent in UltraSPARC Architecture. This implementation
dependency existed for UltraSPARC III/IV, only to maintain compatibility with the TLB
miss handling software of UltraSPARC I/II.

—

230 Reserved. —

230-U3-
Cs20

This implementation dependency no longer applies, in UltraSPARC Architecture 2007 —

231-U3-
Cs10

This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

232-U3-
Cs10

This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

233-U3-
Cs10

This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

234-U3 TLB replacement algorithm
The replacement algorithm for a TLB entry is implementation dependent in UltraSPARC
Architecture 2007.

465

TABLE B-2 UltraSPARC Architecture Implementation Dependencies (2 of 10)

Nbr Description Page
542 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

235-U3-
Cs10

This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

236-U3-
Cs10

This implementation dependency no longer applies, as of UltraSPARC Architecture 2005.t —

237-U3 This implementation dependency no longer applies, as of UltraSPARC Architecture 2007. ——

238-U3 TLB page offset for large page sizes
When page offset bits for larger page sizes (pa{15:13}, pa{18:13}, and pa{21:13} for 64-Kbyte,
512-Kbyte, and 4-Mbyte pages, respectively) are stored in the TLB, it is implementation
dependent whether the data returned from those fields by a Data Access read are zero or
the data previously written to them.

435

239-U3-
Cs10

This implementation dependency no longer applies, as of UltraSPARC Architecture 2005.

240-U3-
Cs10

Reserved. —

241-U3 Address Masking and D-SFAR
When PSTATE.am = 1 and an exception occurs, the value written to the more-significant 32
bits of the Data Synchronous Fault Address Register (D-SFAR) is implementation
dependent.

70

242-U3-
Cs10

This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

243-U3 This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

244-U3-
Cs10

Data Watchpoint Reliability
Data Watchpoint traps are completely implementation-dependent in UltraSPARC
Architecture processors.

—

245-U3-
Cs10

This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

246-U3 This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

247-U3 This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

248-U3 Conditions for fp_exception_other with unfinished_FPop
The conditions under which an fp_exception_other exception with floating-point trap type
of unfinished_FPop can occur are implementation dependent. An implementation may
cause fp_exception_other with unfinished_FPop under a different (but specified) set of
conditions.

47

249-U3-
Cs10

Data Watchpoint for Partial Store Instruction
For an STPARTIAL instruction, the following aspects of data watchpoints are
implementation dependent: (a) whether data watchpoint logic examines the byte store
mask in R[rs2] or it conservatively behaves as if every Partial Store always stores all 8
bytes, and (b) whether data watchpoint logic examines individual bits in the Virtual
(Physical) Data Watchpoint Mask in DCUCR to determine which bytes are being watched
or (when the Watchpoint Mask is nonzero) it conservatively behaves as if all 8 bytes are
being watched.

281

250-U3-
Cs10

Thisimplementation dependency no longer applies, as of UltraSPARC Architecture 2007. —

251 Reserved.

252-U3-
Cs10

Thisimplementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

TABLE B-2 UltraSPARC Architecture Implementation Dependencies (3 of 10)

Nbr Description Page
APPENDIX B • Implementation Dependencies 543

253-U3-
Cs10

Thisimplementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

254-U3-
Cs10

Means of exiting error_state
A virtual processor, upon entering error_state, automatically generates a
watchdog_reset (WDR).

376, 381,
402, 415,
499

255-U3-
Cs10

LDDFA with ASI E016 or E116 and misaligned destination register number
If an LDDFA opcode is used with an ASI of E016 or E116 (Block Store Commit ASI, an
illegal combination with LDDFA) and a destination register number rd is specified which is
not a multiple of 8 (“misaligned” rd), an UltraSPARC Architecture virtual processor
generates an illegal_instruction exception.

199

256-U3 LDDFA with ASI E016 or E116 and misaligned memory address
If an LDDFA opcode is used with an ASI of E016 or E116 (Block Store Commit ASI, an
illegal combination with LDDFA) and a memory address is specified with less than 64-byte
alignment, the virtual processor generates an exception. It is implementation dependent
whether the exception generated is DAE_invalid_asi, mem_address_not_aligned, or
LDDF_mem_address_not_aligned.

199

257-U3 LDDFA with ASI C016–C516 or C816–CD16 and misaligned memory address
If an LDDFA opcode is used with an ASI of C016–C516 or C816–CD16 (Partial Store ASIs,
which are an illegal combination with LDDFA) and a memory address is specified with
less than 8-byte alignment, the virtual processor generates n exception. It is
implementation dependent whether the exception generated is DAE_invalid_asi,
mem_address_not_aligned, or LDDF_mem_address_not_aligned.

199

258-U3-
Cs10

ASI_SERIAL_ID
(This register is not defined in the UltraSPARC Architecture, so this implementation
dependency does not apply to UltraSPARC Architecture 2007.)

—

259–299 Reserved. —

300-U4-
Cs10

Attempted access to ASI registers with LDTWA
If an LDTWA instruction referencing a non-memory ASI is executed, it generates a
DAE_invalid_asi exception.

211

301-U4-
Cs10

Attempted access to ASI registers with STTWA
If an STTWA instruction referencing a non-memory ASI is executed, it generates a
DAE_invalid_asi exception.

287

302-U4-
Cs10

Scratchpad registers
An UltraSPARC Architecture processor includes eight privileged Scratchpad registers (64
bits each, read/write accessible).

363

303-U4-
CS10

This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

304-U4-
Cs10

XIR
XIR affects only the virtual processors identified in the XIR_STEERING register (not a
whole system).

499

305-U4-
Cs10

Thisimplementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

306-U4-
Cs10

Trap type generated upon attempted access to noncacheable page with LDTXA
When an LDTXA instruction attempts access from an address that is not mapped to
cacheable memory space, a DAE_nc_page exception is generated.

214

307-U4-
Cs10

Thisimplementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

308-U3-
Cs10

Thisimplementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

309-U4-
Cs10

Reserved. —

TABLE B-2 UltraSPARC Architecture Implementation Dependencies (4 of 10)

Nbr Description Page
544 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

310-U4 Large page sizes
Which, if any, of the following optional page sizes are supported by the MMU in an
UltraSPARC Architecture implementation is implementation dependent: 512 KBytes, 32
MBytes, 256 MBytes, 2 GBytes, and 16 GBytes.

427

311–319 Reserved.

Strand Interrupt ID register
Whether any portion of the int_id field of the Strand Interrupt ID register is read-only is
implementation dependent.

480

321-U4 This implementation dependency no longer applies, as of UltraSPARC Architecture 2005.

322-U4 Power used by CMT
Whether disabling a virtual processor reduces the power used by a CMT processor is
implementation dependent.

482

323-U4 Updating Strand Enable Register
Whether an implementation provides a restriction that prevents software from writing a
value of all zeroes (or zeroes corresponding to all available virtual processors) to the
STRAND_ENABLE register is implementation dependent. This restriction avoids the
dangerous case where all virtual processors become disabled and the only way to enable
any virtual processor is a hard power_on_reset (a warm reset would not suffice). If such a
restriction is implemented and software running on any virtual processor attempts to write
a value of all zeroes (or zeroes corresponding to all available virtual processors) to the
STRAND_ENABLE register, hardware forces the STRAND_ENABLE register to an
implementation-dependent value which enables at least one of the available virtual
processors.

483

324-U4 Parking a virtual processor
Whether parking a virtual processor reduces the power used by a CMT processor is
implementation dependent.

484

325-U4 XIR Steering register (XIR Reset)
a: Whether XIR_STEERING{n} is a read-only bit or a read/write bit is implementation
dependent. If XIR_STEERING{n} is read-only, then (1) writes to XIR_STEERING{n} are
ignored and (2) XIR_STEERING{n} is set to 1 if virtual processor n is available and to 0 if
it is not available (that is, XIR_STEERING{n} reads the same as STRAND_AVAILABLE{n}.
b: If XIR_STEERING{n} is read/write, upon de-assertion of reset the value of
STRAND_AVAILABLE{n} is copied to XIR_STEERING{n} for all UltraSPARC Architecture
implementations.

490

490, 502

326-U4-
Cs10

Thisimplementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

327–399 Reserved

400-S10 Global Level register (GL) implementation
Although GL is defined as a 4-bit register, an implementation may implement any subset
of those bits sufficient to encode the values from 0 to MAXGL for that implementation. If
any bits of GL are not implemented, they read as zero and writes to them are ignored.

74

401-S10 Maximum Global Level (MAXPGL, MAXGL)
The architectural parameter MAXPGL is a constant for each implementation; its legal values
are from 2 to 15 (supporting from 3 to 16 sets of global registers visible to privileged
software). In a typical implementation MAXPGL = MAXPTL (see impl. dep. #101-V9-CS10).
The architectural parameter MAXGL is a constant for each implementation; its legal values
are from 4 to 15 (supporting from 5 to 16 sets of global registers).
Architecturally, MAXPTL must be ≥ 2 and MAXGL must be > MAXPGL.

72, 73, 74

402-S10 Priority of internal_processor_error
The trap priority of the internal_processor_error exception is implementation dependent.
Furthermore, its priority may vary within an implementation, based on the cause of the
error being reported.

391, 395,
412

TABLE B-2 UltraSPARC Architecture Implementation Dependencies (5 of 10)

Nbr Description Page
APPENDIX B • Implementation Dependencies 545

403-S10 Setting of “dirty” bits in FPRS
A “dirty” bit (du or dl) in the FPRS register must be set to ‘1’ if any of its corresponding F
registers is actually modified. If an instruction that normally writes to an F register is
executed and causes an fp_disabled exception, FPRS.du and FPRS.dl are unchanged.
Beyond that, the specific conditions under which a dirty bit is set are implementation
dependent.

56, 56

404-S10 Privileged Scratchpad registers 4 through 7
The degree to which Scratchpad registers 4–7 are accessible to privileged software is
implementation dependent. Each may be (1) fully accessible, (2) accessible, with access
much slower than to scratchpad register 0–3(emulated by DAE_invalid_ASI trap to
hyperprivileged software), or (3) inaccessible (cause a DAE_invalid_asi exception).

363

405-S10 Virtual address range
An UltraSPARC Architecture implementation may support a full 64-bit virtual address
space or a more limited range of virtual addresses. In an implementation that does not
support a full 64-bit virtual address space, the supported range of virtual addresses is
restricted to two equal-sized ranges at the extreme upper and lower ends of 64-bit
addresses; that is, for n-bit virtual addresses, the valid address ranges are 0 to 2n−1 − 1 and
264 − 2n−1 to 264 − 1. (see also impl. dep. #451-S20)

20

406-S10 HTBA high-order bits
It is implementation dependent whether all 50 bits of HTBA{63:14} are implemented or if
only bits n-1:0 are implemented. If the latter, writes to bits 63:n are ignored and when
HTBA is read, bits 63:n read as sign-extended copies of the most significant implemented
bit, HTBA{n − 1}.

78

407-S10 Hyperprivileged Scratchpad register aliasing
It is implementation dependent whether any of the hyperprivileged Scratchpad registers
are aliased to the corresponding privileged Scratchpad register or is an independent
register.

364

409-S10 FLUSH instruction and memory consistency
The implementation of the FLUSH instruction is implementation dependent.
If the implementation automatically maintains consistency between instruction and data
memory,
(1) the FLUSH address is ignored and
(2) the FLUSH instruction cannot cause any data access exceptions, because its effective

address operand is not translated or used by the MMU.
On the other hand, if the implementation does not maintain consistency between
instruction and data memory, the FLUSH address is used to access the MMU and the
FLUSH instruction can cause data access exceptions.

147, 148,
148

410-S10 Block Load behavior
The following aspects of the behavior of block load (LDBLOCKFD) instructions are
implementation dependent:
• What memory ordering model is used by LDBLOCKFD (LDBLOCKFD is not required to

follow TSO memory ordering)
• Whether LDBLOCKFD follows memory ordering with respect to stores (including block

stores), including whether the virtual processor detects read-after-write and write-after-
read hazards to overlapping addresses

• Whether LDBLOCKFD appears to execute out of order, or follow LoadLoad ordering
(with respect to older loads, younger loads, and other LDBLOCKFs)

• Whether LDBLOCKFD follows register-dependency interlocks, as do ordinary load
instructions

•

193

• Whether the MMU ignores the side-effect bit (TTE.e) for LDBLOCKFD accesses
(in which case, LDBLOCKFs behave as if TTE.e = 0)

329

• Whether VA_watchpoint and PA_watchpoint exceptions are recognized on accesses to all
64 bytes of a LDBLOCKFD (the recommended behavior), or only on accesses to the first
eight bytes

193, 194,
194

TABLE B-2 UltraSPARC Architecture Implementation Dependencies (6 of 10)

Nbr Description Page
546 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

411-S10 Block Store behavior
The following aspects of the behavior of block store (STBLOCKFD) instructions are
implementation dependent:
• The memory ordering model that STBLOCKFD follows (other than as constrained by the

rules outlined on page 270).
• Whether VA_watchpoint and PA_watchpoint exceptions are recognized on accesses to all

64 bytes of a STBLOCKFD (the recommended behavior), or only on accesses to the first
eight bytes.

• Whether STBLOCKFs to non-cacheable (TTE.cp = 0) pages execute in strict program
order or not. If not, a STBLOCKFD to a non-cacheable page causes a DAE_nc_page
exception.

• Whether STBLOCKFD follows register dependency interlocks (as ordinary stores do).
• Whether a non-Commit STBLOCKFD forces the data to be written to memory and

invalidates copies in all caches present (as the Commit variants of STBLOCKF do).

270, 271

• Whether the MMU ignores the side-effect bit (TTE.e) for STBLOCKFD accesses
(in which case, STBLOCKFs behave as if TTE.e = 0)

329

• Any other restrictions on the behavior of STBLOCKFD, as described in implementation-
specific documentation.

412-S10 MEMBAR behavior
An UltraSPARC Architecture implementation may define the operation of each MEMBAR
variant in any manner that provides the required semantics.

218

413-S10 Load Twin Extended Word behavior
It is implementation dependent whether VA_watchpoint and PA_watchpoint exceptions are
recognized on accesses to all 16 bytes of a LDTXA instruction (the recommended behavior)
or only on accesses to the first 8 bytes.

214

414 Reserved. —

415-S10 Size of ContextID fields
The size of context ID fields in MMU context registers is implementation-dependent and
may range from 13 to 16 bits.

456

416-S10 Size of PartitionID fields
The size of partition ID fields in MMU partition registers is implementation-dependent
and must be large enough to uniquely encode the identities of all virtual processors that
share the TLB.

456

417-S10 Behavior of DONE and RETRY when TSTATE[TL].pstate.am = 1
If (1) TSTATE[TL].pstate.am = 1 and (2) a DONE or RETRY instruction is executed (which
sets PSTATE.am to ’1’ by restoring the value from TSTATE[TL].pstate.am to PSTATE.am),
it is implementation dependent whether the DONE or RETRY instruction masks (zeroes)
the more-significant 32 bits of the values it places into PC and NPC.

71, 128251

418 —— unsused —— ,

419-S10 Contents of TPC[TL], TNPC[TL], TSTATE[TL], and HTSTATE[TL] after a Warm Reset
(WMR)
It is implementation dependent whether, after a Warm Reset (WMR), the contents of
TPC[TL], TNPC[TL], TSTATE[TL], and HTSTATE[TL]
(a) are unchanged from their values before the WMR,
(b) are zeroed, or
(c) contain the same values saved as during a WDR, XIR, or SIR reset.
Implementation (c) is preferred.

502

TABLE B-2 UltraSPARC Architecture Implementation Dependencies (7 of 10)

Nbr Description Page
APPENDIX B • Implementation Dependencies 547

420-S10 Implementation Dependent Aspects of a Warm Reset (WMR)
The following aspects of Warm Reset (WMR) are implemenation dependent:
(a) by what means WMR can be applied (for example, write to reset register or assertion/
deassertion of an input pin)
(b) the extent to which a processor is reset by WMR (for example, single physical core,
entire processor (chip), and how the on-chip memory system is affected),
(c) by what means hyperprivileged software can distinguish between WMR and POR
resets

498

421-S10 Interrupt Queue Head and Tail Register Contents
It is implementation dependent whether interrupt queue head and tail registers (a) are
datatype-agnostic “scratch registers” used for communication between privileged and
hyperprivileged software, in which case their contents are defined purely by software
convention, or (b) are maintained to some degree by virtual processor hardware, imposing
a fixed meaning on their contents.

421

422-S10 Interrupt Queue Tail Register Writability
It is implementation dependent whether tail registers are writable in privileged mode. If
a tail register is read-only in privileged mode, an attempt to write to it causes a
DAE_invalid_asi exception. If a tail register is writable in privileged mode, an attempt to
write to it results in undefined behavior.

421, 421

423-S10 Performance Impact of Disabling a Virtual Processor
Whether disabling a virtual processor increases the performance of other virtual processors
in the CMT is implementation dependent.

482

424-S10 Ability to Dynamically Enable/Disable a Virtual Processor
Whether a CMT implementation provides the ability to dynamically enable and disable
virtual processors is implementation dependent. It is tightly coupled to the underlying
microarchitecture of a specific CMT implementation. This feature is implementation
dependent because any implementation-independent interface would be too inefficient on
some implementations.

483

425-S10 TICK Register Counting While a Virtual Processor is Parked
It is implementation dependent whether the TICK register continues to count

while a virtual processor is parked.

484

426-S10 Performance Impact of Parking a Virtual Processor
The degree to which parking a virtual processor impacts the performance of other virtual
processors is implementation dependent.

484

427-S10 Latency to Park or Unpark a aVirtual Processor
There may be an arbitrarily long, but bounded, delay (“skid”) from the time when a virtual
processor is directed to park or unpark (via an update to the STRAND_RUNNING register)
until the corresponding virtual processor(s) actually park or unpark.

485, 487

428-S10 Method by Which Self-Parking is Assured
When a virtual processor writes to the STRAND_RUNNING register to park itself, the
method by which completion of parking is assured (instructions stop being issued) is
implementation dependent.

485

429-S10 Which Virtual Processor is Automatically Unparked

If an update to the STRAND_RUNNING register would cause all enabled virtual processors
to become parked, it is implementation dependent which virtual processor is automatically
unparked by hardware. The preferred implementation is that when an update to the
STRAND_RUNNING register (STXA instruction) would cause all virtual processors to
become parked, hardware silently ignores (discards) that STXA instruction.

486

430-S10 Parking All But One Virtual Processor in a Multiprocessor Configuration
In a multi‘fio
configuration, whether all but one virtual processor can be parked is implementation

dependent.

486

TABLE B-2 UltraSPARC Architecture Implementation Dependencies (8 of 10)

Nbr Description Page
548 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

431-S10 Criteria for Completion of Park/Unpark
The criteria used for determining whether a virtual processor is fully parked
(corresponding bit set to ‘1’ in the STRAND_RUNNING_STATUS register) are
implementation dependent.

487

432-S10 Standby/Wait state
Whether an implementation implements a Standby (or Wait) state for virtual processors,
how that state is controlled, and how that state is observed are implementation-dependent.

487

433-S10 Partial-Processor Reset Subsetting Mechanism
A mechanism must exist to specify which subset of virtual processors in a processor
should be reset when a partial-processor reset (for example, XIR) occurs. The specific
mechanism is implementation-dependent.

488

434-S10 Error Steering Register(s)
Because of the range of implementation, the number of, organization of, and ASI
assignments for error steering registers in a CMT processor are implementation dependent.

491

435-S10 Error Steering Register Alternatives
Although the ERROR_STEERING register is the recommended mechanism for steering
non-virtual-processor-specific errors to a virtual processor for handling, the actual
mechanism used in a given implementation is implementation dependent.

492

436-S10 Error Steering Register
The width of the target_id field of the ERROR_STEERING register is implementation
dependent.

493

437-S10 Error Steering Register targetid Field Plurality
An implementation may provide multiple target_id fields in an ERROR_STEERING
register for different types of non-virtual-processor-specific errors.

493

438-S10 Non-Virtual Processor-Specific Errors in Shared Resources
It is implementation dependent whether the error-reporting structures for errors in shared
resources appear within a virtual processor in per-virtual-processor registers or are
contained within shared registers associated with the shared structures in which the errors
may occur.

493

439-S10 Exception Generated for Each Non-Virtual Processor-Specific Error
The type of exception generated in a virtual processor to handle each type of non-virtual-
processor-specific error is implementation dependent. A virtual processor can choose to
use the same exceptions used for corresponding virtual-processor-specific asynchronous
errors or it can choose to generate different exceptions.

493

440-S10 Which Virtual Processor Unparked During Power-on-Reset (POR)
Which virtual processor is unparked during POR and whether it is unparked by processor
hardware or by a service processor is implementation dependent. Conventionally, the
virtual processor with the lowest-numbered strand_id is unparked

494

441-S10 Use of Physical Address Bit to Distinguish Memory from I/O Addresses
Whether an implementation uses the most significant physical address bit to differentiate
between memory and I/O addresses is implementation dependent. If that method is
used, then the most significant bit of the physical address (PA) = 1 designates I/O space
and the most significant bit of PA = 0 designates memory space .

435

442-S10 STICK register
a: If an accurate count cannot always be returned when STICK is read, any inaccuracy

should be small, bounded, and documented.
b: An implementation may implement fewer than 63 bits in STICK.counter; however, the
counter as implemented must be able to count for at least 10 years without overflowing.
Any high-order bits not implemented must read as 0.

60

443-S10 (this implementation dependency is not in use) —

444–449 Reserved for UltraSPARC Architecture 2005

TABLE B-2 UltraSPARC Architecture Implementation Dependencies (9 of 10)

Nbr Description Page
APPENDIX B • Implementation Dependencies 549

450-S20 Availability of control_transfer_instruction exception feature
Availability of the control_transfer_instruction exception feature is implementation
dependent. If not implemented, trap type 07416 is unused, PSTATE.tct always reads as
zero, and writes to PSTATE.tct are ignored.

68,406

451-S20 Width of Virtual Addresses supported
The width of the virtual address supported is implementation dependent. If fewer than 64
bits are supported, the unsupported bits must have the same value as the most significant
supported bit. For example, if the model supports 48 virtual address bits, then bits 63:48
must have the same value as bit 47. (see also impl. dep. #405-S10)

427, 410,
412

452-S20 Width of Real and Physical Addresses supported
The number of real address (RA) and physical address (PA) bits supported is
implementation dependent. A minimum of 40 bits and maximum of 56 bits can be
provided for both real addresses (RA) and physical addresses (PA). See implementation-
specific documentation for details.

428, 411,
413

453-S20 Unified vs. Split Instruction and Data MMUs
It is implementation dependent whether there is a unified MMU (UMMU) or a separate
IMMU (for instruction accesses) and DMMU (for data accesses). The UltraSPARC
Architecture supports both configurations.

428

453-S20 Unified vs. Split Instruction and Data MMUs
It is implementation dependent whether there is a unified MMU (UMMU) or a separate
IMMU (for instruction accesses) and DMMU (for data accesses). The UltraSPARC
Architecture supports both configurations.

428

454-499 Reserved for UltraSPARC Architecture 2007

500
and up

Reserved for future use

TABLE B-2 UltraSPARC Architecture Implementation Dependencies (10 of 10)

Nbr Description Page
550 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

APPENDIX C

Assembly Language Syntax

This appendix supports Chapter 7, Instructions. Each instruction description in Chapter 7 includes a
table that describes the suggested assembly language format for that instruction. This appendix
describes the notation used in those assembly language syntax descriptions and lists some synthetic
instructions provided by UltraSPARC Architecture assemblers for the convenience of assembly
language programmers.

The appendix contains these sections:

■ Notation Used on page 551.
■ Syntax Design on page 556.
■ Synthetic Instructions on page 556.

C.1 Notation Used
The notations defined here are also used in the assembly language syntax descriptions in Chapter 7,
Instructions.

Items in typewriter font are literals to be written exactly as they appear. Items in italic font are
metasymbols that are to be replaced by numeric or symbolic values in actual SPARC V9 assembly
language code. For example, “imm_asi” would be replaced by a number in the range 0 to 255 (the
value of the imm_asi bits in the binary instruction) or by a symbol bound to such a number.

Subscripts on metasymbols further identify the placement of the operand in the generated binary
instruction. For example, regrs2 is a reg (register name) whose binary value will be placed in the rs2
field of the resulting instruction.

C.1.1 Register Names

reg. A reg is an intveger register name. It can have any of the following values:1

%r0–%r31
%g0–%g7 (global registers; same as %r0–%r7)
%o0–%o7 (out registers; same as %r8–%r15)
%l0–%l7 (local registers; same as %r16–%r23)
%i0–%i7 (in registers; same as %r24–%r31)
%fp (frame pointer; conventionally same as %i6)
%sp (stack pointer; conventionally same as %o6)

Subscripts identify the placement of the operand in the binary instruction as one of the following:

1. In actual usage, the %sp, %fp, %gn, %on, %ln, and %in forms are preferred over %rn.
551

regrs1 (rs1 field)
regrs2 (rs2 field)
regrd (rd field)

freg. An freg is a floating-point register name. It may have the following values:
%f0, %f1, %f2, ... %f31
%f32, %f34, ... %f60, %f62 (even-numbered only, from %f32 to %f62)
%d0, %d2, %d4, ... %d60, %d62 (%dn, where n mod 2 = 0, only)
%q0, %q4, %q8, ... %q56, %q60 (%qn, where n mod 4 = 0, only)

See Floating-Point Registers on page 40 for a detailed description of how the single-precision,
double-precision, and quad-precision floating-point registers overlap.

Subscripts further identify the placement of the operand in the binary instruction as one of the
following:

fregrs1 (rs1 field)
fregrs2 (rs2 field)
fregrs3 (rs3 field)
fregrd (rd field)

asr_reg. An asr_reg is an Ancillary State Register name. It may have one of the following values:
%asr16–%asr31

Subscripts further identify the placement of the operand in the binary instruction as one of the
following:

asr_regrs1 (rs1 field)
asr_regrd (rd field)

i_or_x_cc. An i_or_x_cc specifies a set of integer condition codes, those based on either the 32-bit
result of an operation (icc) or on the full 64-bit result (xcc). It may have either of the following
values:

%icc
%xcc

fccn. An fccn specifies a set of floating-point condition codes. It can have any of the following
values:

%fcc0
%fcc1
%fcc2
%fcc3

C.1.2 Special Symbol Names
Certain special symbols appear in the syntax table in typewriter font. They must be written exactly as
they are shown, including the leading percent sign (%).

The symbol names and the registers or operators to which they refer are as follows:

%asi Address Space Identifier (ASI) register
%canrestore Restorable Windows register
%cansave Savable Windows register
%ccr Condition Codes register
%cleanwin Clean Windows register
%cwp Current Window Pointer (CWP) register
552 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

%fprs Floating-Point Registers State (FPRS) register
%fsr Floating-Point State register
%gsr General Status Register (GSR)
%hintp Hyperprivileged Interrupt Pending (HINTP) register
%hpstate Hyperprivileged State (HSTATE) register
%hstick_cmpr Hyperprivileged System Tick Compare (HSTICK_CMPR) register
%htba Hyperprivileged Trap Base Address (HTBA) register
%htstate Hyperprivileged Trap State (HTSTATE) register
%hver Hyperprivileged Version (HVER) register
%otherwin Other Windows (OTHERWIN) register
%pc Program Counter (PC) register
%pil Processor Interrupt Level register
%pstate Processor State register
%softint Soft Interrupt register
%softint_clr Soft Interrupt register (clear selected bits)
%softint_set Soft Interrupt register (set selected bits)
%stick † System Timer (STICK) register
%stick_cmpr † System Timer Compare (STICK_CMPR) register
%tba Trap Base Address (TBA) register
%tick Cycle count (TICK) register
%tick_cmpr Timer Compare (TICK_CMPR) register
%tl Trap Level (TL) register
%tnpc Trap Next Program Counter (TNPC) register
%tpc Trap Program Counter (TPC) register
%tstate Trap State (TSTATE) register
%tt Trap Type (TT) register
%wstate Window State register
%y Y register

† The original assembly language names for %stick and %stick_cmpr were, respectively, %sys_tick and %sys_tick_cmpr,
which are now deprecated. Over time, assemblers will support the new %stick and %stick_cmpr names for these registers (which
are consistent with %tick %tick_cmpr, and %hstick_cmpr). In the meantime, some existing assemblers may only recognize the
original names.

The following special symbol names are prefix unary operators that perform the functions described,
on an argument that is a constant, symbol, or expression that evaluates to a constant offset from a
symbol:

%hh Extracts bits 63:42 (high 22 bits of upper word) of its operand
%hm Extracts bits 41:32 (low-order 10 bits of upper word) of its operand
%hi or %lm Extracts bits 31:10 (high-order 22 bits of low-order word) of its operand
%lo Extracts bits 9:0 (low-order 10 bits) of its operand

For example, the value of "%lo(symbol)" is the least-significant 10 bits of symbol.

Certain predefined value names appear in the syntax table in typewriter font. They must be
written exactly as they are shown, including the leading sharp sign (#). The value names and the
constant values to which they are bound are listed in TABLE C-1.

TABLE C-1 Value Names and Values (1 of 2)

Value Name in Assembly Language Value Comments

for PREFETCH instruction “fcn” field

#n_reads 0

#one_read 1
APPENDIX C • Assembly Language Syntax 553

C.1.3 Values
Some instructions use operand values as follows:

const4 A constant that can be represented in 4 bits
const22 A constant that can be represented in 22 bits
imm_asi An alternate address space identifier (0–255)
siam_mode A 3-bit mode value for the SIAM instruction
simm7 A signed immediate constant that can be represented in 7 bits
simm8 A signed immediate constant that can be represented in 8 bits
simm10 A signed immediate constant that can be represented in 10 bits
simm11 A signed immediate constant that can be represented in 11 bits
simm13 A signed immediate constant that can be represented in 13 bits
value Any 64-bit value
shcnt32 A shift count from 0–31
shcnt64 A shift count from 0–63

C.1.4 Labels
A label is a sequence of characters that comprises alphabetic letters (a–z, A–Z [with upper and lower
case distinct]), underscores (_), dollar signs ($), periods (.), and decimal digits (0-9). A label may
contain decimal digits, but it may not begin with one. A local label contains digits only.

#n_writes 2

#one_write 3

#page 4

#unified 17 (1116)

#n_reads_strong 20 (1416)

#one_read_strong 21 (1516)

#n_writes_strong 22 (1616)

#one_write_strong 23 (1716)

for MEMBAR instruction “mmask” field

#LoadLoad 0116

#StoreLoad 0216

#LoadStore 0416

for MEMBAR instruction “cmask” field

#StoreStore 0816

#LookasideD 1016 Use of #Lookaside is deprecated and only supported for
legacy software. New software should use a slightly more
restritive MEMBAR operation (such as #StoreLoad) instead.

#MemIssue 2016

#Sync 4016

TABLE C-1 Value Names and Values (2 of 2)

Value Name in Assembly Language Value Comments
554 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

C.1.5 Other Operand Syntax
Some instructions allow several operand syntaxes, as follows:

reg_plus_imm Can be any of the following:

regrs1 (equivalent to regrs1 + %g0)
regrs1 + simm13
regrs1 – simm13
simm13 (equivalent to %g0 + simm13)
simm13 + regrs1(equivalent to regrs1 + simm13)

address Can be any of the following:

regrs1 (equivalent to regrs1 + %g0)
regrs1 + simm13
regrs1 – simm13
simm13 (equivalent to %g0 + simm13)
simm13 + regrs1(equivalent to regrs1 + simm13)
regrs1 + regrs2

membar_mask Is the following:

const7 A constant that can be represented in 7 bits. Typically, this is an expression
involving the logical OR of some combination of #LookasideD, #MemIssue,
#Sync, #StoreStore, #LoadStore, #StoreLoad, and #LoadLoad (see TABLE 7-7
and TABLE 7-8 on page 218 for a complete list of mnemonics).

prefetch_fcn (prefetch function) Can be any of the following:
0–31

Predefined constants (the values of which fall in the 0-31 range) useful as prefetch_fcn values can
be found in TABLE C-1 on page 553.

regaddr (register-only address) Can be any of the following:

regrs1 (equivalent to regrs1 + %g0)
regrs1 + regrs2

reg_or_imm (register or immediate value) Can be either of:

regrs2
simm13

reg_or_imm5 (register or immediate value) Can be either of:

regrs2
simm5

reg_or_imm10 (register or immediate value) Can be either of:

regrs2
simm10
APPENDIX C • Assembly Language Syntax 555

reg_or_imm11 (register or immediate value) Can be either of:

regrs2
simm11

reg_or_shcnt (register or shift count value) Can be any of:

regrs2
shcnt32
shcnt64

software_trap_number Can be any of the following:

regrs1 (equivalent to regrs1 + %g0)
regrs1 + regrs2

regrs1 + simm8
regrs1 – simm8
simm8 (equivalent to %g0 + simm8)
simm8 + regrs1 (equivalent to regrs1 + simm8)

The resulting operand value (software trap number) must be in the range 0–255, inclusive.

C.1.6 Comments
Two types of comments are accepted by the SPARC V9 assembler: C-style “/*...*/” comments,
which may span multiple lines, and “!...” comments, which extend from the “!” to the end of the
line.

C.2 Syntax Design
The SPARC V9 assembly language syntax is designed so that the following statements are true:

■ The destination operand (if any) is consistently specified as the last (rightmost) operand in an
assembly language instruction.

■ A reference to the contents of a memory location (for example, in a load, store, or load-store
instruction) is always indicated by square brackets ([]); a reference to the address of a memory
location (such as in a JMPL, CALL, or SETHI) is specified directly, without square brackets.

The follow additional syntax constraints have been adopted for UltraSPARC Architecture:

■ Instruction mnemonics should be limited to a maximum of 15 characters.

C.3 Synthetic Instructions
TABLE C-2 describes the mapping of a set of synthetic (or “pseudo”) instructions to actual instructions.
These synthetic instructions are provided by the SPARC V9 assembler for the convenience of assembly
language programmers.
556 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

Note: Synthetic instructions should not be confused with “pseudo ops,” which typically provide
information to the assembler but do not generate instructions. Synthetic instructions always generate
instructions; they provide more mnemonic syntax for standard SPARC V9 instructions.

TABLE C-2 Mapping Synthetic to SPARC V9 Instructions (1 of 2)

Synthetic Instruction SPARC V9 Instruction(s) Comment

cmp regrs1, reg_or_imm subcc regrs1, reg_or_imm, %g0 Compare.

jmp address jmpl address, %g0

call address jmpl address, %o7

iprefetch label bn,a,pt %xcc,label Originally envisioned as an
encoding for an "instruction
prefetch" operation, but
functions as a NOP on all
UltraSPARC Architecture
implementations. (See
PREFETCH function 17 on
page 235 for an alternative
method of prefetching
instructions.)

tst regrs1 orcc %g0, regrs1, %g0 Test.

ret jmpl %i7+8, %g0 Return from subroutine.

retl jmpl %o7+8, %g0 Return from leaf subroutine.

restore restore %g0, %g0, %g0 Trivial RESTORE.

save save %g0, %g0, %g0 Trivial SAVE.
(Warning: trivial SAVE should
only be used in kernel code!)

setuw value,regrd sethi %hi(value), regrd (When ((value&3FF16) == 0).)

— or —

or %g0, value, regrd (When 0 ≤ value ≤ 4095).

— or —

sethi %hi(value), regrd; (Otherwise)

or regrd, %lo(value), regrd Warning: do not use setuw in
the delay slot of a DCTI.

set value,regrd synonym for setuw.

setsw value,regrd sethi %hi(value), regrd (When (value> = 0) and
((value & 3FF16) == 0).)

— or —

or %g0, value, regrd (When 4096 ≤ value ≤ 4095).

— or —

sethi %hi(value), regrd (Otherwise, if (value < 0) and
((value & 3FF16) = = 0))

sra regrd, %g0, regrd

— or —

sethi %hi(value), regrd; (Otherwise, if value 0)

or regrd, %lo(value), regrd

— or —

sethi %hi(value), regrd; (Otherwise, if value < 0)

or regrd, %lo(value), regrd

sra regrd, %g0, regrd Warning: do not use setsw in
the delay slot of a CTI.

setx value, reg, regrd sethi %hh(value), reg Create 64-bit constant.

or reg, %hm(value), reg (“reg” is used as a temporary
register.)sllx reg,32,reg
APPENDIX C • Assembly Language Syntax 557

sethi %hi(value), regrd Note: setx optimizations are
possible but not enumerated
here. The worst case is shown.
Warning: do not use setx in the
delay slot of a CTI.

or regrd, reg, regrd

or regrd, %lo(value), regrd

signx regrs1, regrd sra regrs1, %g0, regrd Sign-extend 32-bit value to
64 bits.signx regrd sra regrd, %g0, regrd

not regrs1, regrd xnor regrs1, %g0, regrd One’s complement.

not regrd xnor regrd, %g0, regrd One’s complement.

neg regrs2, regrd sub %g0, regrs2, regrd Two’s complement.

neg regrd sub %g0, regrd, regrd Two’s complement.

cas [regrs1], regrs2, regrd casa [regrs1]#ASI_P, regrs2, regrd Compare and swap.

casl [regrs1], regrs2, regrd casa [regrs1]#ASI_P_L, regrs2, regrd Compare and swap, little-endian.

casx [regrs1], regrs2, regrd casxa [regrs1]#ASI_P, regrs2, regrd Compare and swap extended.

casxl [regrs1], regrs2, regrd casxa [regrs1]#ASI_P_L, regrs2, regrd Compare and swap extended,
little-endian.

inc regrd add regrd, 1, regrd Increment by 1.

inc const13,regrd add regrd, const13, regrd Increment by const13.

inccc regrd addcc regrd, 1, regrd Increment by 1; set icc & xcc.

inccc const13,regrd addcc regrd, const13, regrd Incr by const13; set icc & xcc.

dec regrd sub regrd, 1, regrd Decrement by 1.

dec const13, regrd sub regrd, const13, regrd Decrement by const13.

deccc regrd subcc regrd, 1, regrd Decrement by 1; set icc & xcc.

deccc const13, regrd subcc regrd, const13, regrd Decr by const13; set icc & xcc.

btst reg_or_imm, regrs1 andcc regrs1, reg_or_imm, %g0 Bit test.

bset reg_or_imm, regrd or regrd, reg_or_imm, regrd Bit set.

bclr reg_or_imm, regrd andn regrd, reg_or_imm, regrd Bit clear.

btog reg_or_imm, regrd xor regrd, reg_or_imm, regrd Bit toggle.

clr regrd or %g0, %g0, regrd Clear (zero) register.

clrb [address] stb %g0, [address] Clear byte.

clrh [address] sth %g0, [address] Clear half-word.

clr [address] stw %g0, [address] Clear word.

clrx [address] stx %g0, [address] Clear extended word.

clruw regrs1, regrd srl regrs1, %g0, regrd Copy and clear upper word.

clruw regrd srl regrd, %g0, regrd Clear upper word.

mov reg_or_imm, regrd or %g0, reg_or_imm, regrd

mov %y, regrd rd %y, regrd

mov %asrn, regrd rd %asrn, regrd

mov reg_or_imm, %y wr %g0, reg_or_imm, %y

mov reg_or_imm, %asrn wr %g0, reg_or_imm, %asrn

TABLE C-2 Mapping Synthetic to SPARC V9 Instructions (2 of 2)

Synthetic Instruction SPARC V9 Instruction(s) Comment
558 UltraSPARC Architecture 2007 • Draft D0.9.4, 27 Sep 2010

Index
A
a (annul) instruction field

branch instructions, 117, 120, 122, 135, 138
accesses

cacheable, 328
I/O, 329
restricted ASI, 331
with side effects, 329, 337

accrued exception (aexc) field of FSR register, 48, 382, 534
ADD instruction, 110
ADDC instruction, 110
ADDcc instruction, 110, 264
ADDCcc instruction, 110
address

aliasing, 431
operand syntax, 555
separation of virtual and real, 432
space identifier (ASI), 345

address mask (am) field of PSTATE register
description, 70

address space, 5, 15
address space identifier (ASI), 5, 327

accessing MMU registers, 454
appended to memory address, 19, 81
architecturally specified, 331
changed in UA

ASI_REAL, 365
ASI_REAL_IO, 365
ASI_REAL_IO_LITTLE, 365
ASI_REAL_LITTLE, 365
ASI_TWINX_R, 365
ASI_TWINX_REAL, 365
ASI_TWINX_REAL_L, 365
ASI_TWINX_REAL_LITTLE, 365

definition, 5
encoding address space information, 83
explicit, 87
explicitly specified in instruction, 88
implicit, See implicit ASIs
load from TLB Data Access register, 465
load from TLB Tag Read register, 462
nontranslating, 9, 211, 287
nontranslating ASI, 346
operations, 453
with prefetch instructions, 236

real ASI, 346
real-translating ASIs, 346
restricted, 331, 345, 444

hyperprivileged, 332
privileged, 332

restriction indicator, 53
SPARC V9 address, 330
translating ASI, 346
unrestricted, 332, 345
virtual-translating ASI, 346

address space identifier (ASI) register
for load/store alternate instructions, 53
address for explicit ASI, 87
and LDDA instruction, 197, 210
and LDSTUBA instruction, 206
load integer from alternate space instructions, 189
with prefetch instructions, 236
for register-immediate addressing, 332
restoring saved state, 127, 251
saving state, 371
and STDA instruction, 286
store floating-point into alternate space instructions, 274
store integer to alternate space instructions, 267
and SWAPA instruction, 292
after trap, 23
and TSTATE register, 66
and write state register instructions, 306

addressing modes, 15
ADDX instruction (SPARC V8), 110
ADDXcc instruction (SPARC V8), 110
AFAR, See Asynchronous Fault Address register (AFAR)
AFSR, See Asynchronous Fault Status register (AFSR)
alias

floating-point registers, 40
aliased, 5
ALIGNADDRESS instruction, 111
ALIGNADDRESS_LITTLE instruction, 111
alignment

data (load/store), 20, 83, 330
doubleword, 20, 83, 330
extended-word, 83
halfword, 20, 83, 330
instructions, 20, 83, 330
integer registers, 199, 208, 211
memory, 330, 412
i

quadword, 20, 83, 330
word, 20, 83, 330

ALLCLEAN instruction, 112
alternate space instructions, 21, 53
ancillary state registers (ASRs)

access, 50
assembly language syntax, 552
I/O register access, 21
possible registers included, 243, 306
privileged, 22, 533
reading/writing implementation-dependent processor

registers, 22, 533
writing to, 306

AND instruction, 113
ANDcc instruction, 113
ANDN instruction, 113
ANDNcc instruction, 113
annul bit

in branch instructions, 122
in conditional branches, 136

annulled branches, 122
application program, 5, 50
architectural direction note, 4
architecture, meaning for SPARC V9, 15
arithmetic overflow, 53
ARRAY16 instruction, 114
ARRAY32 instruction, 114
ARRAY8 instruction, 114
ASI, 5

for IMMU, DMMU, UMMU, 463
invalid, and DAE_invalid_asi, 407
write to Tag Access register, 463

ASI register, 51
ASI, See address space identifier (ASI)
ASI_*REAL* ASIs, 330
ASI_AIPN, 349, 361
ASI_AIPN_L, 349, 361
ASI_AIPP, 349, 361
ASI_AIPP_L, 349, 361
ASI_AIPS, 349, 361
ASI_AIPS_L, 349, 361
ASI_AIUP, 347, 358
ASI_AIUPL, 347, 358
ASI_AIUS, 347, 358
ASI_AIUS_L, 213
ASI_AIUSL, 347, 358
ASI_AS_IF_PRIV_NUCLEUS, 349, 361, 433
ASI_AS_IF_PRIV_NUCLEUS_LITTLE, 349, 361
ASI_AS_IF_PRIV_PRIMARY, 349, 361, 433
ASI_AS_IF_PRIV_PRIMARY_LITTLE, 349, 361
ASI_AS_IF_PRIV_SECONDARY, 349, 361, 433
ASI_AS_IF_PRIV_SECONDARY_LITTLE, 349, 361
ASI_AS_IF_USER*, 70, 330, 434
ASI_AS_IF_USER* ASIs, 330
ASI_AS_IF_USER_NONFAULT_LITTLE, 332
ASI_AS_IF_USER_PRIMARY, 347, 358, 407, 415, 433
ASI_AS_IF_USER_PRIMARY_LITTLE, 332, 347, 358, 407
ASI_AS_IF_USER_SECONDARY, 332, 347, 358, 407, 415, 433
ASI_AS_IF_USER_SECONDARY_LITTLE, 332, 347, 358,

407

ASI_AS_IF_USER_SECONDARY_NOFAULT_LITTLE, 332
ASI_BLK_AIUP, 347, 358
ASI_BLK_AIUPL, 347, 358
ASI_BLK_AIUS, 347, 358
ASI_BLK_AIUSL, 347, 358
ASI_BLK_COMMIT_P, 355
ASI_BLK_COMMIT_S, 355
ASI_BLK_P, 355
ASI_BLK_PL, 356
ASI_BLK_S, 355
ASI_BLK_SL, 356
ASI_BLOCK_AS_IF_USER_PRIMARY, 347, 358
ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE, 347, 358
ASI_BLOCK_AS_IF_USER_SECONDARY, 347, 358
ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE, 347, 358
ASI_BLOCK_COMMIT_PRIMARY, 355
ASI_BLOCK_COMMIT_SECONDARY, 355
ASI_BLOCK_PRIMARY, 355
ASI_BLOCK_PRIMARY_LITTLE, 356
ASI_BLOCK_SECONDARY, 355
ASI_BLOCK_SECONDARY_LITTLE, 356
ASI_CMT_PER_CORE, 353, 450
ASI_CMT_PER_STRAND, 353, 450, 478, 480
ASI_CMT_SHARED, 349, 481, 482, 484, 486, 489
ASI_DEVICE_ID+SERIAL_ID, 356
ASI_DMMU, 352
ASI_DMMU_DEMAP, 353
ASI_DTLB_DATA_ACCESS_REG, 353
ASI_DTLB_DATA_IN_REG, 353
ASI_DTLB_TAG_READ_REG, 353
ASI_FL16_P, 355
ASI_FL16_PL, 355
ASI_FL16_PRIMARY, 355
ASI_FL16_PRIMARY_LITTLE, 355
ASI_FL16_S, 355
ASI_FL16_SECONDARY, 355
ASI_FL16_SECONDARY_LITTLE, 355
ASI_FL16_SL, 355
ASI_FL8_P, 354
ASI_FL8_PL, 355
ASI_FL8_PRIMARY, 354
ASI_FL8_PRIMARY_LITTLE, 355
ASI_FL8_S, 354
ASI_FL8_SECONDARY, 354
ASI_FL8_SECONDARY_LITTLE, 355
ASI_FL8_SL, 355
ASI_IMMU, 351
ASI_IMMU_DEMAP, 352
ASI_INTR_R, 353, 424
ASI_INTR_RECEIVE, 353, 423
ASI_INTR_W, 353, 424
ASI_ITLB_DATA_ACCESS_REG, 352
ASI_ITLB_TAG_READ_REG, 352
ASI_MMU, 352, 458
ASI_MMU_CONTEXTID, 348, 449
ASI_MMU_NONZERO_CONTEXT_TSB_CONFIG_0/1, 438
ASI_MMU_REAL, 351, 457
ASI_MMU_ZERO_CONTEXT_TSB_CONFIG_n, 438
ASI_MMU_ZERO_CONTEXTID_TSB_CONFIG_0/1, 438
ASI_MRA_ACCESS, 351
Index ii

ASI_N, 347
ASI_NL, 347
ASI_NUCLEUS, 87, 88, 347, 433
ASI_NUCLEUS_LITTLE, 88, 347
ASI_P, 353
ASI_PHY_BYPASS_EC_WITH_EBIT_L, 365
ASI_PHYS_BYPASS_EC_WITH_EBIT, 365
ASI_PHYS_BYPASS_EC_WITH_EBIT_LITTLE, 365
ASI_PHYS_USE_EC, 365
ASI_PHYS_USE_EC_L, 365
ASI_PHYS_USE_EC_LITTLE, 365
ASI_PL, 354
ASI_PNF, 353
ASI_PNFL, 354
ASI_PRIMARY, 87, 332, 353
ASI_PRIMARY_LITTLE, 88, 332, 354, 446
ASI_PRIMARY_NO_FAULT, 329, 342, 353
ASI_PRIMARY_NO_FAULT_LITTLE, 329, 342, 354, 407
ASI_PRIMARY_NOFAULT_LITTLE, 332
ASI_PST16_P, 279, 354
ASI_PST16_PL, 279, 354
ASI_PST16_PRIMARY, 354
ASI_PST16_PRIMARY_LITTLE, 354
ASI_PST16_S, 279, 354
ASI_PST16_SECONDARY, 354
ASI_PST16_SECONDARY_LITTLE, 354
ASI_PST16_SL, 279
ASI_PST32_P, 279, 354
ASI_PST32_PL, 279, 354
ASI_PST32_PRIMARY, 354
ASI_PST32_PRIMARY_LITTLE, 354
ASI_PST32_S, 279, 354
ASI_PST32_SECONDARY, 354
ASI_PST32_SECONDARY_LITTLE, 354
ASI_PST32_SL, 279, 354
ASI_PST8_P, 354
ASI_PST8_PL, 354
ASI_PST8_PRIMARY, 354
ASI_PST8_PRIMARY_LITTLE, 354
ASI_PST8_S, 354
ASI_PST8_SECONDARY, 354
ASI_PST8_SECONDARY_LITTLE, 354
ASI_PST8_SL, 279, 354
ASI_QUAD_LDD_L (deprecated), 365
ASI_QUAD_LDD_LITTLE (deprecated), 365
ASI_QUAD_LDD_PHYS (deprecated), 365
ASI_QUAD_LDD_REAL (deprecated), 349
ASI_QUAD_LDD_REAL_LITTLE (deprecated), 349
ASI_REAL, 347, 359, 365
ASI_REAL_IO, 347, 359, 365
ASI_REAL_IO_L, 347
ASI_REAL_IO_LITTLE, 347, 359, 365
ASI_REAL_L, 347
ASI_REAL_LITTLE, 347, 359, 365
ASI_S, 353
ASI_SECONDARY, 353, 433
ASI_SECONDARY_LITTLE, 354
ASI_SECONDARY_NO_FAULT, 342, 354, 407
ASI_SECONDARY_NO_FAULT_LITTLE, 342, 354, 407
ASI_SECONDARY_NOFAULT, 332

ASI_SL, 354
ASI_SNF, 354
ASI_SNFL, 354
ASI_TABLEWALK_PENDING_CONTROL, 470
ASI_TABLEWALK_PENDING_STATUS, 470
ASI_TWINX_AIUP, 213, 348, 360, 449
ASI_TWINX_AIUP_L, 213, 360
ASI_TWINX_AIUPL, 349
ASI_TWINX_AIUS, 213, 360, 449
ASI_TWINX_AIUS_L, 349, 360, 449
ASI_TWINX_AS_IF_USER_PRIMARY, 348, 360, 449
ASI_TWINX_AS_IF_USER_PRIMARY_LITTLE, 349, 360
ASI_TWINX_AS_IF_USER_SECONDARY, 348, 360, 449
ASI_TWINX_AS_IF_USER_SECONDARY_LITTLE, 349, 360,

449
ASI_TWINX_N, 213, 349
ASI_TWINX_NL, 213, 349, 360
ASI_TWINX_NUCLEUS, 349, 360, 449
ASI_TWINX_NUCLEUS[_L], 330
ASI_TWINX_NUCLEUS_LITTLE, 349, 360
ASI_TWINX_P, 213, 355
ASI_TWINX_PL, 213, 355
ASI_TWINX_PRIMARY, 355, 362, 451
ASI_TWINX_PRIMARY_LITTLE, 355, 362, 451
ASI_TWINX_R, 349, 360, 365
ASI_TWINX_REAL, 213, 349, 360, 365
ASI_TWINX_REAL[_L], 330
ASI_TWINX_REAL_L, 349, 360, 365
ASI_TWINX_REAL_LITTLE, 349, 360, 365
ASI_TWINX_S, 213, 355
ASI_TWINX_SECONDARY, 355, 362, 451
ASI_TWINX_SECONDARY_LITTLE, 355, 362, 451
ASI_TWINX_SL, 213, 355
ASI_UMMU, 352
ASR, 5
asr_reg, 552
async_data_error exception, 416
async_data_error exception (superseded), 415, 541
atomic

memory operations, 213, 338, 339
store doubleword instruction, 284, 286
store instructions, 266, 267

atomic load-store instructions
compare and swap, 125
load-store unsigned byte, 205, 292
load-store unsigned byte to alternate space, 206
simultaneously addressing doublewords, 291
swap R register with alternate space memory, 292
swap R register with memory, 125, 291

atomicity, 329, 540
autodemap function, 462
available (core), 5

B
BA instruction, 117, 525
BCC instruction, 117, 525
bclrg synthetic instruction, 558
BCS instruction, 117, 525
BE instruction, 117, 525
Index iii

Berkeley RISCs, 17
BG instruction, 117, 525
BGE instruction, 117, 525
BGU instruction, 117, 525
Bicc instructions, 117, 519
big-endian, 5
big-endian byte order, 20, 68, 84

in hyperprivileged mode, 382
binary compatibility, 17
BL instruction, 117, 525
BLD, 5
BLD, See LDBLOCKF instruction
BLD_exception exception, 406
BLE instruction, 117, 525
BLEU instruction, 117, 525
block load instructions, 40, 192, 362
block store instructions, 40, 269, 362

with commit, 199, 270, 362
blocked byte formatting, 114
block-type ESR, 509
BMASK instruction, 119
BN instruction, 117, 525
BNE instruction, 117, 525
BNEG instruction, 117, 525
BP instructions, 525
BPA instruction, 120, 525
BPCC instruction, 120, 525
BPcc instructions, 53, 120, 526
BPCS instruction, 120, 525
BPE instruction, 120, 525
BPG instruction, 120, 525
BPGE instruction, 120, 525
BPGU instruction, 120, 525
BPL instruction, 120, 525
BPLE instruction, 120, 525
BPLEU instruction, 120, 525
BPN instruction, 120, 525
BPNE instruction, 120, 525
BPNEG instruction, 120, 525
BPOS instruction, 117, 525
BPPOS instruction, 120, 525
BPr instructions, 122, 525
BPVC instruction, 120, 525
BPVS instruction, 120, 525
branch

annulled, 122
delayed, 81
elimination, 93, 94
fcc-conditional, 135, 138
icc-conditional, 117
instructions

on floating-point condition codes, 135
on floating-point condition codes with prediction, 137
on integer condition codes with prediction (BPcc), 120
on integer condition codes, See Bicc instructions
when contents of integer register match condition, 122

prediction bit, 122
unconditional, 117, 121, 135, 138
with prediction, 16

BRGEZ instruction, 122

BRGZ instruction, 122
BRLEZ instruction, 122
BRLZ instruction, 122
BRNZ instruction, 122
BRZ instruction, 122
bset synthetic instruction, 558
BSHUFFLE instruction, 119
BST, 5
BST, See STBLOCKF instruction
BST_exception exception, 406
btog synthetic instruction, 558
btst synthetic instruction, 558
BVC instruction, 117, 525
BVS instruction, 117, 525
byte, 5

addressing, 87
data format, 25
order, 20
order, big-endian, 20
order, little-endian, 20

byte order
big-endian, 68

in hyperprivileged mode, 382
implicit, 69
in trap handlers, 382
little-endian, 68

C
cache

coherency protocol, 328
data, 334
instruction, 334
miss, 240
nonconsistent instruction cache, 334

cacheable accesses, 328
caching, TSB, 437
CALL instruction

description, 124
displacement, 22
does not change CWP, 37
and JMPL instruction, 187
writing address into R[15], 39

call synthetic instruction, 557
CANRESTORE (restorable windows) register, 62

and clean_window exception, 94
and CLEANWIN register, 62, 64, 417
counting windows, 63
decremented by RESTORE instruction, 248
decremented by SAVED instruction, 257
detecting window underflow, 38
if registered window was spilled, 248
incremented by SAVE instruction, 255
modified by NORMALW instruction, 229
modified by OTHERW instruction, 231
range of values, 61, 540
RESTORE instruction, 94
specification for RDPR instruction, 246
specification for WRPR instruction, 310
state after reset, 501
Index iv

window underflow, 416
CANSAVE (savable windows) register, 62

decremented by SAVE instruction, 255
detecting window overflow, 38
FLUSHW instruction, 149
if equals zero, 94
incremented by RESTORE, 248
incremented by SAVED instruction, 257
range of values, 61, 540
SAVE instruction, 417
specification for RDPR instruction, 246
specification for WRPR instruction, 310
state after reset, 501
window overflow, 416

CAS synthetic instruction, 339
CASA instruction, 125

32-bit compare-and-swap, 339
alternate space addressing, 20
and DAE_nc_page exception, 407
atomic operation, 205
hardware primitives for mutual exclusion of CASXA, 338
in multiprocessor system, 206, 291, 292
R register use, 83
word access (memory), 83

casn synthetic instructions, 558
CASX synthetic instruction, 339
CASXA instruction, 125

64-bit compare-and-swap, 339
alternate space addressing, 20
and DAE_nc_page exception, 407
atomic operation, 206
doubleword access (memory), 83
hardware primitives for mutual exclusion of CASA, 338
in multiprocessor system, 205, 206, 291, 292
R register use, 83

catastrophic error exception, 371
cc0 instruction field

branch instructions, 120, 138
floating point compare instructions, 141
move instructions, 221, 525

cc1 instruction field
branch instructions, 120, 138
floating point compare instructions, 141
move instructions, 221, 525

cc2 instruction field
move instructions, 221, 525

CCR (condition codes register), 5
CCR (condition codes) register, 52

32-bit operation (icc) bit of condition field, 52, 53
64-bit operation (xcc) bit of condition field, 52, 53
ADD instructions, 110
ASR for, 51
carry (c) bit of condition fields, 53
icc field, See CCR.icc field
MULScc instruction, 225
negative (n) bit of condition fields, 52
overflow bit (v) in condition fields, 53
restored by RETRY instruction, 127, 251
saved after trap, 371
saving after trap, 23

state after reset, 500
TSTATE register, 66
write instructions, 306
xcc field, See CCR.xcc field
zero (z) bit of condition fields, 53

CCR.icc field
add instructions, 110, 294
bit setting for signed division, 259
bit setting for signed/unsigned multiply, 265, 303
bit setting for unsigned division, 302
branch instructions, 117, 121, 222
integer subtraction instructions, 290
logical operation instructions, 113, 230, 312
MULScc instruction, 225
Tcc instruction, 297

CCR.xcc field
add instructions, 110, 294
bit setting for signed/unsigned divide, 259, 302
bit setting for signed/unsigned multiply, 265, 303
branch instructions, 121, 222
logical operation instructions, 113, 230, 312
subtract instructions, 290
Tcc instruction, 297

clean register window, 255, 406
clean tag match, 515
clean window, 5

and window traps, 64, 416
CLEANWIN register, 64
definition, 416
number is zero, 94
trap handling, 418

clean_window exception, 62, 94, 256, 385, 406, 417, 536
CLEANWIN (clean windows) register, 62

CANSAVE instruction, 94
clean window counting, 62
incremented by trap handler, 418
range of values, 61, 540
specification for RDPR instruction, 246
specification for WRPR instruction, 310
specifying number of available clean windows, 417
state after reset, 501
value calculation, 64

cleared, 5, 511
clock cycle, counts for virtual processor, 54
clock tick registers, See TICK and STICK registers
clock-tick register (TICK), 414
clrn synthetic instructions, 558
CMP

disabling a core, 481
parking a core, 483

cmp synthetic instruction, 290, 557
CMT, 5, 473, 475

enabling a core, 481
ERROR_STEERING register, 491, 492
Programming Model, 473
registers, 478
STRAND_AVAILABLE register, 479, 481
STRAND_ENABLE register, 482
STRAND_ENABLE_STATUS register, 482
STRAND_ID register, 478
Index v

STRAND_INTR_ID register, 423, 480
STRAND_RUNNING register

simultaneous updates, 485
STRAND_RUNNING register, 484
STRAND_RUNNING_STATUS, 486
unparking a core, 483
XIR_STEERING register, 489

code
self-modifying, 339

coherence, 5
between processors, 540
data cache, 334
domain, 328
memory, 329
unit, memory, 330

compare and swap instructions, 125
comparison instruction, 89, 290
compatibility note, 4
completed (memory operation), 6
compliance

SPARC V9, 453
compliant SPARC V9 implementation, 18
cond instruction field

branch instructions, 117, 120, 135, 138
floating point move instructions, 153
move instructions, 221

condition codes
adding, 294
effect of compare-and-swap instructions, 126
extended integer (xcc), 53
floating-point, 135
icc field, 52
integer, 52
results of integer operation (icc), 53
subtracting, 290, 299
trapping on, 297
xcc field, 52

condition codes register, See CCR register
conditional branches, 117, 135, 138
conditional move instructions, 23
conforming SPARC V9 implementation, 18
consistency

between instruction and data spaces, 339
processor, 334, 337
processor self-consistency, 336
sequential, 329, 335, 336
strong, 336

const22 instruction field of ILLTRAP instruction, 185
constants, generating, 260
context, 6

during TLB miss, 441, 460
nucleus, 148
selection for translation, 445

context identifier, 331
Context register

determination of, 445
Nucleus, 456
Primary, 455
Secondary, 456

control transfer

pseudo-control-transfer via WRPR to PSTATE.am, 71
control_transfer_instruction exception, 406

CALL/JMPL instructions, 124, 187
DONE/RETRY instructions, 128, 252, 297
RETURN, 253
and Tcc instruction, 298
with branch instructions, 118, 121, 122, 136, 138

control-transfer instructions, 22
control-transfer instructions (CTIs), 22, 127, 251
conventions

font, 2
notational, 2

conversion
between floating-point formats instructions, 181
floating-point to integer instructions, 180, 315
integer to floating-point instructions, 145, 184
planar to packed, 173

copyback, 6
core, 6
correctable, 6
corrected, 6, 511
CPI, 6
CPU, pipeline draining, 61, 64
cpu_mondo exception, 406
cross-call, 6
CTI, 6, 13
current exception (cexc) field of FSR register, 48, 96, 534
current window, 6
current window pointer register, See CWP register
current_little_endian (cle) field of PSTATE register, 68, 332
CWP (current window pointer) register

and instructions
CALL and JMPL instructions, 37
FLUSHW instruction, 149
RDPR instruction, 246
RESTORE instruction, 94, 248
SAVE instruction, 94, 248, 255
WRPR instruction, 310

and traps
after spill trap, 417
after spill/fill trap, 23
on window trap, 417
saved by hardware, 371

CWP (current window pointer) register, 62
clean windows, 62
definition, 6
incremented/decremented, 37, 248, 255
overlapping windows, 37
range of values, 61, 540
restored during RETRY, 127, 251
specifying windows for use without cleaning, 417
state after reset, 500
and TSTATE register, 66
updated during a WDR reset, 499

cycle, 6

D
D superscript on instruction name, 99
d16hi instruction field
Index vi

branch instructions, 122
d16lo instruction field

branch instructions, 122
DAE_invalid_ASI exception

with load instructions and ASIs, 199, 360, 362, 363, 364
with store instructions and ASIs, 199, 360, 361, 362, 363,

364
DAE_invalid_asi exception, 407, 424

accessing noncacheable page, 338
ASI loads from TLB Data In register, 464
MMU operation summary, 443
register update policy, 442
signaled by MMU, 444
SWAP/SWAPA, 293
TLB Data Access register fields, 465, 466
with compare-and-swap instructions, 126
with load alternate instructions, 126, 190, 198, 206, 211,

267, 268, 275, 287, 292
with load instructions, 199, 206, 212
with load instructions and ASIs, 199
with nonfaulting load, 342
with store instructions, 206, 268, 276, 287
write to D-SFAR register, 461

DAE_invalid_ASI exception (replacing SPARC V9
data_access_exception), 407

DAE_invalid_ASIn exception
with load instructions and ASIs, 361

DAE_nc_page exception, 407
accessing noncacheable page, 338
register update policy, 442
signaled by MMU, 444
with compare-and-swap instructions, 126
with load instructions, 194, 205, 206, 214
with store instructions, 206
with SWAP instructions, 293

DAE_nc_page exception (replacing SPARC V9
data_access_exception), 407

DAE_nfo_page exception, 407
and TTE.nfo, 435
register update policy, 442
signaled by MMU, 444
with compare-and-swap instructions, 126
with FLUSH instructions, 148
with LDTXA instructions, 214
with load alternate instructions, 190
with load instructions, 188, 194, 196, 199, 202, 204, 205,

206, 209, 212, 216, 285
with nonfaulting load, 342
with store instructions, 206, 266, 268, 271, 273, 276, 277,

281, 282, 287, 288
with SWAP instruction, 291
with SWAP instructions, 293

DAE_nfo_page exception (replacing SPARC V9
data_access_exception), 407

DAE_noncacheable_page exception
with LDTXA instructions, 214
with LDXFSR instructions, 202, 216

DAE_privilege_violation exception, 407
and TTE.p, 436
MMU operation summary, 443

read/write to privileged location, 408
register update policy, 442
with load alternate instructions, 190
with load instructions, 194, 199, 201, 206, 209, 212, 271,

285
with store instructions, 206, 266, 268, 273, 276, 277, 281,

282, 287, 288, 291
with SWAP instructions, 126, 188, 293

DAE_privilege_violation exception (replacing SPARC V9
data_access_exception), 407

DAE_side_effect_page
with nonfaulting loads, 329

DAE_side_effect_page exception, 407
load from MMU Data In register, 462
MMU operation summary, 443, 453
register update policy, 442
with load alternate instructions, 190
with load instructions, 194, 199, 212
with nonfaulting load, 342

DAE_side_effect_page exception (replacing SPARC V9
data_access_exception), 407

data
access, 6
cache coherence, 334
conversion between SIMD formats, 31
flow order constraints

memory reference instructions, 334
register reference instructions, 333

formats
byte, 25
doubleword, 25
halfword, 25
Int16 SIMD, 32
Int32 SIMD, 32
quadword, 25
tagged word, 25
Uint8 SIMD, 32
word, 25

memory, 341
types

floating-point, 25
signed integer, 25
unsigned integer, 25
width, 25

watchpoint exception, 280
Data Cache Unit Control register, See DCUCR

data cache, error detecting/reporting, 511
Data Synchronous Fault Address register, See D-SFAR
data_access_error exception, 407

correctable tag errors, 515
L2 cache, hardware reported, 515
register update policy, 442
with compare-and-swap instructions, 126
with load instructions, 194, 196, 204, 205, 206, 209, 214,

216
with store instructions, 206, 266, 271, 273, 276, 278, 281,

283, 285, 287, 288
data_access_exception exception (SPARC V9), 407
data_access_MMU_error exception, 407

detection by hardware, 513
Index vii

multiple-tag hit error, 455
on PREFETCH, 237, 241
register update policy, 442
software correction, 513
with CASA instruction, 126
with load instructions, 188, 190, 194, 196, 199, 202, 204,

205, 206, 209, 212, 214, 216
with store instructions, 266, 268, 271, 273, 276, 278, 281,

283, 285, 287, 288
with SWAP instruction, 291, 293

data_access_MMU_miss exception
register update policy, 442
TTE entries, 440
with integer load instructions, 188
with load alternate instructions, 190
with load instructions, 194
with PREFETCH instruction, 237
with store instructions, 266

data_access_MMU_miss exception (superseded), 408
data_access_protection exception (superseded), 416
data_invalid_TSB_entry exception, 408, 440, 442, 457
data_real_translation_miss exception, 408, 439, 442
data_store_error exception (SPARC V8), 415
DCTI couple, 93
DCTI instructions, 6

behavior, 81
RETURN instruction effects, 253

dec synthetic instructions, 558
deccc synthetic instructions, 558
deferred ESR, 509
deferred trap, 377, 506

distinguishing from disrupting trap, 379
floating-point, 247
handler, 506
restartable, 506

implementation dependency, 378
software actions, 378
termination, 506

delay instruction
and annul field of branch instruction, 135
annulling, 22
conditional branches, 138
DONE instruction, 127
executed after branch taken, 122
following delayed control transfer, 22
RETRY instruction, 251
RETURN instruction, 253
unconditional branches, 138
with conditional branch, 121

delayed branch, 81
delayed control transfer, 122
delayed CTI, See DCTI
demap, 6

DMMU, 468
IMMU, 468
UMMU, 468

demap operation, 468
Demap All, 469
Demap Context, 469
Demap Page, 469

Demap Real, 469
denormalized number, 6
deprecated, 6
deprecated exceptions

tag_overflow, 415
deprecated instructions

FBA, 135
FBE, 135
FBG, 135
FBGE, 135
FBL, 135
FBLE, 135
FBLG, 135
FBN, 135
FBNE, 135
FBO, 135
FBU, 135
FBUE, 135
FBUGE, 135
FBUL, 135
FBULE, 135
LDFSR, 201
LDTW, 208
LDTWA, 210
MULScc, 52, 225
RDY, 51, 52, 242
SDIV, 52, 258
SDIVcc, 52, 258
SMUL, 52, 265
SMULcc, 52, 265
STFSR, 277
STTW, 284
STTWA, 286
SWAP, 291
SWAPA, 292
TADDccTV, 295
TSUBccTV, 300
UDIV, 52, 301
UDIVcc, 52, 301
UMUL, 52, 303
UMULcc, 52, 303
WRY, 51, 52, 305

dev_mondo exception, 408
diagnostic access

L1 cache, 512
disable (core), 6
disabled (core), 7
disabling CMP core, 481
disp19 instruction field

branch instructions, 120, 138
disp22 instruction field

branch instructions, 117, 135
disp30 instruction field

word displacement (CALL), 124
disrupting ESR, 509

and hardware-corrected TLB error, 513
associated error infor for L1 cache, 512
and error info for L2 cache, 516

disrupting exception, 506
disrupting trap, 379
Index viii

differences from reset trap, 380
enabling, 507
hardware correction, 513
hyperprivileged mode, 507
types, 507

divide instructions, 22, 227, 258, 301
division_by_zero exception, 89, 227, 408
division-by-zero bits of FSR.aexc/FSR.cexc fields, 50
DMMU

ASIs, 463
context register usage, 447
determining ASI value and endianness, 446
Enable bit, 452
memory operation summary, 443
Secondary Context register, 455, 456

DMMU demap, 468
DMMU Tag Access register

when updatable, 463
DMMU TLB Tag Access register, 463
DMMU_SYNCHRONOUS_FAULT_ADDRESS_REGISTER, 461
DMMU_TLB_DATA_ACCESS, 465
DMMU_TLB_DATA_IN, 464
DMMU_TLB_LOWER_TAG_READ, 466
DMMU_TLB_TAG_READ, 466
DMMU_TLB_TAG_TARGET, 468
DMMU_TLB_UPPER_TAG_READ, 466
DONE instruction, 127

effect on HTSTATE, 77
effect on TNPC register, 65
effect on TSTATE register, 66
executed in RED_state, 374
generating illegal_instruction exception, 410
modifying CCR.xcc condition codes, 53
return from trap, 371
return from trap handler with different GL value, 75
target address, 22

doubleword, 7
addressing, 86
alignment, 20, 83, 330
data format, 25
definition, 7

D-SFAR
Fault Address field, 461
illustrated, 461
state after reset, 501

DuTLB, disabled, 407

E
ECC_error exception, 409
EDGE16 instruction, 129
EDGE16L instruction, 129
EDGE16LN instruction, 131
EDGE16N instruction, 131
EDGE32 instruction, 129
EDGE32L instruction, 129
EDGE32LN instruction, 131
EDGE32N instruction, 131
EDGE8 instruction, 129
EDGE8L instruction, 129

EDGE8LN instruction, 131
EDGE8N instruction, 131
emulating multiple unsigned condition codes, 94
enable (core), 7
enable floating-point

See FPRS register, fef field
See PSTATE register, pef field

enabled (core), 7
enabling CMP core, 481
error, 7

access type, 510
condition detected, 511
priority, 510
reporting multiple errors, 510

error handling
by software, 507
fatal error conditions, 507
instructions, 514
power_on_reset

effect on ESR registers, 511
precise traps, 509
register files, 513
stores, 514
TLB errors, 513

ERROR signal, 507
error_state, 376

definition, 373
effects when entering, 535
entering, 397, 398, 403, 404
exiting, 397
recognizing interrupts, 398
and RED_state, 374

ERROR_STEERING register, 492
errors

detecting, 505
fatal, 507
reporting, 506, 509
status reporting, 508
store errors, 514

error-type ESR, 509
ESR (Error Status Register), 7
ESR (error status) register, 505

after power_on_reset, 511
bit state transitions, 510
block type, 509
error info for register file errors, 513
error information fields, 511
error types, 509
errors reported, organization, 509
f field, 509, 510
flags updated for error condition, 511
information loss, 505
me field, 509, 510
reading by software, 510
unimplemented bits, 511
writing to by hardware, 510

ESRs
deferred, 509
disrupting, 509
fatal, 509
Index ix

precise, 509
even parity, 7
exception, 7
exceptions

See also individual exceptions
async_data_error, 416
async_data_error (superseded), 415
BLD_exception, 406
BST_exception, 406
catastrophic error, 371
causing traps, 371
clean_window, 385, 406, 536
control_transfer_instruction, 406
cpu_mondo, 406
DAE_invalid_asi, 407
DAE_invalid_ASI (replacing SPARC V9

data_access_exception), 407
DAE_nc_page, 407
DAE_nc_page (replacing SPARC V9

data_access_exception), 407
DAE_nfo_page, 407
DAE_nfo_page (replacing SPARC V9

data_access_exception), 407
DAE_privilege_violation, 407, 408
DAE_privilege_violation (replacing SPARC V9

data_access_exception), 407
DAE_side_effect_page, 407
DAE_side_effect_page (replacing SPARC V9

data_access_exception), 407
data_access_error, 407
data_access_exception (SPARC V9), 407
data_access_MMU_error

on PREFETCH, 237
on PREFETCH, 237

data_access_MMU_error, 126, 188, 190, 194, 196, 199, 202,
204, 205, 206, 209, 212, 214, 216, 241, 266, 268, 271, 273,
276, 278, 281, 283, 285, 287, 288, 291, 407

data_access_MMU_miss, 237
data_access_MMU_miss (superseded), 408
data_access_protection (superseded), 416
data_invalid_TSB_entry, 408
data_real_translation_miss, 408
data_store_error (SPARC V8), 415
definition, 371
dev_mondo, 408
division_by_zero, 408
ECC_error, 409
fast_data_access_MMU_miss, 237, 408
fast_data_access_protection, 408
fast_ECC_error, 416
fill_n_normal, 409
fill_n_other, 409
fp_disabled

and GSR, 56
fp_disabled, 409
fp_exception_ieee_754, 409
fp_exception_other, 409
guest_watchdog, 409
hstick_match, 77, 79, 409
htrap_instruction, 409

hw_corrected_error, 409, 416
IAE_privilege_violation, 409
illegal_instruction

and SIR instruction, 381
illegal_instruction, 75, 409
instruction_access_error, 410
instruction_access_exception (SPARC V9), 410
instruction_access_MMU_error, 410
instruction_access_MMU_miss, 410
instruction_address_range, 410
instruction_breakpoint, 411
instruction_invalid_TSB_entry, 411
instruction_real_range, 411
instruction_real_translation_miss, 411, 412
instruction_VA_watchpoint, 412
internal_processor_error, 412
interrupt_level_14

and SOFTINT.int_level, 58
and STICK_CMPR.stick_cmpr, 61
and TICK_CMPR.tick_cmpr, 59

interrupt_level_14, 412
interrupt_level_15

and SOFTINT.int_level, 58
interrupt_level_15, 413
interrupt_level_n

and SOFTINT register, 57
and SOFTINT.int_level, 58

interrupt_level_n, 379, 412
interrupt_vector, 412, 423
LDDF_mem_address_not_aligned, 412
LDQF_mem_address_not_aligned, 416
mem_address_not_aligned, 412
mem_address_range, 412
mem_real_range, 413
nonresumable_error, 413
PA_watchpoint, 413
pending, 24
pic_overflow, 413
power_on_reset, 414
privileged_action, 414
privileged_opcode

and access to register-window PR state registers, 61, 64,
72, 74

and access to SOFTINT, 57
and access to SOFTINT_CLR, 59
and access to SOFTINT_SET, 58
and access to STICK_CMPR, 60
and access to TICK_CMPR, 59

privileged_opcode, 414
RA_watchpoint, 389, 394
RED_state_exception, 414
resumable_error, 414
software_initiated_reset, 414
spill_n_normal, 256, 414
spill_n_other, 256, 414
STDF_mem_address_not_aligned, 414
store_error, 414
STQF_mem_address_not_aligned, 416
STTW_exception, 414
sw_recoverable_error, 414, 416
Index x

tag_overflow (deprecated), 415
trap_instruction, 415
trap_level_zero

state after reset, 500
trap_level_zero, 415
unimplemented_LDTW, 415
unimplemented_STTW, 415
unsupported_page_size, 415
VA_watchpoint, 415
watchdog_reset

and guest_watchdog, 373
watchdog_reset, 415
window fill, 385
window spill, 385

execute unit, 333
execute_state

and error_state, 398
and RED_state, 398
returning to, 397
trap processing, 373, 397

execution unit, error protection/checking, 513
explicit ASI, 7, 87, 346
extended word, 7

addressing, 86
externally_initiated_reset (XIR), 403, 408, 499

causing entry into RED_state, 374
entering error_state, 373
and error_state, 385
for critical system events, 381
for debugging, 375
partial-processor, 488
RED_state trap processing, 400
to virtual processor, 499
virtual processor trap processing, 397
when TL = MAXTL, 397

F
F registers, 7, 19, 96, 313, 382
FABSd instruction, 132, 523, 524
FABSq instruction, 132, 132, 523, 524
FABSs instruction, 132
FADD, 133
FADDd instruction, 133
FADDq instruction, 133, 133, 143
FADDs instruction, 133
FALIGNDATA instruction, 134
FAND instruction, 178
FANDNOT1 instruction, 178
FANDNOT1S instruction, 178
FANDNOT2 instruction, 178
FANDNOT2S instruction, 178
FANDS instruction, 178
fast_data_access_MMU_miss exception, 408

hardware-corrected, 512
MMU operation summary, 443
register update policy, 442
TLB miss-and-refill step, 441
with integer load instructions, 188
with load alternate instructions, 190

with PREFETCH instruction, 237
with store instructions, 266

fast_data_access_protection exception, 408
MMU operation summary, 443
register update policy, 442
with store instructions, 271
write permission not granted, 436

fast_ECC_error exception, 416
fast_instruction_access_MMU_miss exception

hardware-corrected, 512
MMU operation summary, 443
register update policy, 441
TLB miss, 441
TTE access for instruction fetch, 515

fatal error
causes, 515
detecting, 507
in external interface or bus, 516
store buffer tag/control parity, 514

fatal ESR, 509
associated error info for L2 cache, 515
external interface or bus error, 516

fault, 7
fault, stuck-at, 505
FBA instruction, 135, 525
FBE instruction, 135, 525
FBfcc instructions, 44, 135, 409, 519, 525
FBG instruction, 135, 525
FBGE instruction, 135, 525
FBL instruction, 135, 525
FBLE instruction, 135, 525
FBLG instruction, 135, 525
FBN instruction, 135, 525
FBNE instruction, 135, 525
FBO instruction, 135, 525
FBPA instruction, 137, 138, 525
FBPE instruction, 137, 525
FBPfcc instructions, 44, 137, 519, 525, 526
FBPG instruction, 137, 525
FBPGE instruction, 137, 525
FBPL instruction, 137, 525
FBPLE instruction, 137, 525
FBPLG instruction, 137, 525
FBPN instruction, 137, 138, 525
FBPNE instruction, 137, 525
FBPO instruction, 137, 525
FBPU instruction, 137, 525
FBPUE instruction, 137, 525
FBPUG instruction, 137, 525
FBPUGE instruction, 137, 525
FBPUL instruction, 137, 525
FBPULE instruction, 137, 525
FBU instruction, 135, 525
FBUE instruction, 135, 525
FBUG instruction, 135, 525
FBUGE instruction, 135, 525
FBUL instruction, 135, 525
FBULE instruction, 135, 525
fcc-conditional branches, 135, 138
fccn, 7
Index xi

FCMP instructions, 526
FCMP* instructions, 44, 141
FCMPd instruction, 141, 524
FCMPE instructions, 526
FCMPE* instructions, 44, 141
FCMPEd instruction, 141, 524
FCMPEq instruction, 141, 142, 524
FCMPEQ16 instruction, 139
FCMPEQ32 instruction, 139
FCMPEs instruction, 141, 524
FCMPGT instruction, 139
FCMPGT16 instruction, 139
FCMPGT32 instruction, 139
FCMPLE16 instruction, 139
FCMPLE16 instruction, 139
FCMPLE32 instruction, 139
FCMPLE32 instruction, 139
FCMPNE16 instruction, 139
FCMPNE32 instruction, 139
FCMPq instruction, 141, 142, 524
FCMPs instruction, 141, 524
fcn instruction field

DONE instruction, 127
PREFETCH, 235
RETRY instruction, 251

FDIVd instruction, 143
FDIVq instruction, 143
FDIVs instructions, 143
FdMULq instruction, 164, 164
FdTOi instruction, 180, 315
FdTOq instruction, 181, 181
FdTOs instruction, 181
FdTOx instruction, 180, 524
fef field of FPRS register, 55

and access to GSR, 56
and fp_disabled exception, 409
branch operations, 136, 138
byte permutation, 119
comparison operations, 140, 142
component distance, 232
data formatting operations, 144, 166, 173
data movement operations, 222
enabling FPU, 69
floating-point operations, 132, 133, 143, 145, 151, 152, 155,

158, 164, 165, 179, 180, 181, 183, 184, 195, 197, 201, 203,
215

integer arithmetic operations, 159, 172, 175
logical operations, 176, 177, 178
memory operations, 193
read operations, 244, 261, 271
special addressing operations, 111, 134, 272, 277, 280, 282,

288, 307
fef, See FPRS register, fef field
FEXPAND instruction, 144
FEXPAND operation, 144
fill handler, 248
fill register window, 409

overflow/underflow, 38
RESTORE instruction, 64, 248, 416
RESTORED instruction, 95, 250, 418

RETRY instruction, 417
selection of, 417
trap handling, 417, 418
trap vectors, 248
window state, 63

fill_n_normal exception, 249, 254, 409, 409
fill_n_other exception, 249, 254, 409
FiTOd instruction, 145
FiTOq instruction, 145, 145, 184
FiTOs instruction, 145
fixed-point scaling, 160
floating point

absolute value instructions, 132
add instructions, 133
compare instructions, 44, 141, 141
condition code bits, 135
condition codes (fcc) fields of FSR register, 46, 135, 138,

141
data type, 25
deferred-trap queue (FQ), 247
divide instructions, 143
exception, 7
exception, encoding type, 46
FPRS register, 306
FSR condition codes, 44
move instructions, 152
multiply instructions, 164
multiply-add/subtract, 150
negate instructions, 165
operate (FPop) instructions, 7, 23, 46, 48, 96, 201
registers

destination F, 313
FPRS, See FPRS register
FSR, See FSR register
programming, 43

rounding direction, 45
square root instructions, 179
subtract instructions, 183
trap types, 7

IEEE_754_exception, 46, 47, 48, 50, 313, 314
invalid_fp_register, 183
unfinished_FPop, 46, 47, 50, 133, 143, 164, 179, 181, 183,

313
results after recovery, 46

unimplemented_FPop, 50, 158, 314
traps

deferred, 247
precise, 247

floating-point condition codes (fcc) fields of FSR register, 382
floating-point operate (FPop) instructions, 409
floating-point register file (FRF), 513
floating-point trap types

IEEE_754_exception, 382, 409
floating-point unit (FPU), 7, 19
FLUSH instruction, 147

memory ordering control, 218
FLUSH instruction

memory/instruction synchronization, 146
FLUSH instruction, 146, 341

data access, 6
Index xii

immediacy of effect, 148
in multiprocessor system, 146
in self-modifying code, 147
latency, 540

flush instruction memory, See FLUSH instruction
flush register windows instruction, 149
FLUSHW instruction, 149, 414

effect, 23
management by window traps, 64, 416
spill exception, 95, 149, 417

FMA instructions
fused, 150

FMADDd instruction, 150
FMADDs instruction, 150
FMOVcc instructions

conditionally moving floating-point register contents, 53
conditions for copying floating-point register contents, 93
copying a register, 44
encoding of opf<84> bits, 524
encoding of opf_cc instruction field, 525
encoding of rcond instruction field, 525
floating-point moves, 153
FPop instruction, 96
used to avoid branches, 156, 222

FMOVccd instruction, 524
FMOVccq instruction, 524
FMOVd instruction, 152, 523, 524
FMOVDfcc instructions, 153
FMOVdGEZ instruction, 157
FMOVdGZ instruction, 157
FMOVDicc instructions, 153
FMOVdLEZ instruction, 157
FMOVdLZ instruction, 157
FMOVdNZ instruction, 157
FMOVdZ instruction, 157
FMOVq instruction, 152, 152, 523, 524
FMOVQfcc instructions, 153, 155
FMOVqGEZ instruction, 157
FMOVqGZ instruction, 157
FMOVQicc instructions, 153, 155
FMOVqLEZ instruction, 157
FMOVqLZ instruction, 157
FMOVqNZ instruction, 157
FMOVqZ instruction, 157
FMOVr instructions, 96, 525
FMOVRq instructions, 158
FMOVRsGZ instruction, 157
FMOVRsLEZ instruction, 157
FMOVRsLZ instruction, 157
FMOVRsNZ instruction, 157
FMOVRsZ instruction, 157
FMOVs instruction, 152
FMOVScc instructions, 155
FMOVSfcc instructions, 153
FMOVsGEZ instruction, 157
FMOVSicc instructions, 153
FMOVSxcc instructions, 153
FMOVxcc instructions, 153, 155
FMSUBd instruction, 150
FMSUBs instruction, 150

FMUL8SUx16 instruction, 159, 161
FMUL8ULx16 instruction, 159, 161
FMUL8x16 instruction, 159, 160
FMUL8x16AL instruction, 159, 161
FMUL8x16AU instruction, 159, 160
FMULd instruction, 164
FMULD8SUx16 instruction, 159, 162
FMULD8ULx16 instruction, 159, 163
FMULq instruction, 164, 164
FMULs instruction, 164
FNAND instruction, 178
FNANDS instruction, 178
FNEG instructions, 165
FNEGd instruction, 165, 523, 524
FNEGq instruction, 165, 165, 523, 524
FNEGs instruction, 165
FNMADDd instruction, 150
FNMADDs instruction, 150
FNMSUBd instruction, 150
FNMSUBs instruction, 150
FNOR instruction, 178
FNORS instruction, 178
FNOT1 instruction, 177
FNOT1S instruction, 177
FNOT2 instruction, 177
FNOT2S instruction, 177
FONE instruction, 176
FONES instruction, 176
FOR instruction, 178
formats, instruction, 82
FORNOT1 instruction, 178
FORNOT1S instruction, 178
FORNOT2 instruction, 178
FORNOT2S instruction, 178
FORS instruction, 178
fp_disabled exception, 409

absolute value instructions, 132, 133, 183
and GSR, 56
FPop instructions, 96
FPRS.fef disabled, 55
PSTATE.pef not set, 55, 56, 546
with branch instructions, 136, 138
with compare instructions, 140
with conversion instructions, 145, 180, 181, 184
with floating-point arithmetic instructions, 143, 151, 164,

172, 175
with FMOV instructions, 152
with load instructions, 199, 203
with move instructions, 156, 158, 222
with negate instructions, 165
with store instructions, 272, 273, 276, 277, 280, 282, 288,

307
fp_exception exception, 48
fp_exception_ieee_754 "invalid" exception, 180
fp_exception_ieee_754 exception, 409

and tem bit of FSR, 45
cause encoded in FSR.ftt, 46
FSR.aexc, 48
FSR.cexc, 49
FSR.ftt, 48
Index xiii

generated by FCMP or FCMPE, 44
and IEEE 754 overflow/underflow conditions, 48, 49
trap handler, 314
when FSR.ns = 1, 316, 534
when FSR.tem = 0, 382
when FSR.tem =1, 382
with floating-point arithmetic instructions, 133, 143, 151,

164, 183
fp_exception_other exception, 50, 409

cause encoded in FSR.ftt, 46
FSUBq instruction, 183
incorrect IEEE Std 754-1985 result, 96, 533
supervisor handling, 314
trap type of unfinished_FPop, 47
when quad FPop unimplemented in hardware, 48
with floating-point arithmetic instructions, 143, 151, 164

FPACK instruction, 57
FPACK instructions, 166–169
FPACK16 instruction, 166, 167
FPACK16 operation, 167
FPACK32 instruction, 166, 168
FPACK32 operation, 168
FPACKFIX instruction, 166, 169
FPACKFIX operation, 169
FPADD16 instruction, 171
FPADD16S instruction, 171
FPADD32 instruction, 171
FPADD32S instruction, 171
FPMERGE instruction, 173
FPop, 7
FPop, See floating-point operate (FPop) instructions
FPRS register

See also floating-point registers state (FPRS) register
FPRS register, 55

ASR summary, 51
definition, 7
fef field, 96, 382
RDFPRS instruction, 243
state after reset, 501

FPRS register fields
dl (dirty lower fp registers), 56
du (dirty upper fp registers, 56
fef, 55
fef, See also fef field of FPRS register

FPSUB16 instruction, 174
FPSUB16S instruction, 174
FPSUB32 instruction, 174
FPSUB32S instruction, 174
FPU, 7, 8
FqTOd instruction, 181, 181
FqTOi instruction, 180, 180, 315
FqTOs instruction, 181, 181
FqTOx instruction, 180, 180, 523, 524
freg, 552
FsMULd instruction, 164
FSQRTd instruction, 179
FSQRTq instruction, 179, 179
FSQRTs instruction, 179
FSR (floating-point state) register

fields

aexc (accrued exception), 46, 47, 48, 48, 313
aexc (accrued exceptions), 151

in user-mode trap handler, 314
-- dza (division by zero) bit of aexc, 50
-- nxa (rounding) bit of aexc, 50
cexc (current exception), 45, 46, 47, 48, 48, 49, 313, 409
cexc (current exceptions), 151

in user-mode trap handler, 314
-- dzc (division by zero) bit of cexc, 50
-- nxc (rounding) bit of cexc, 50
fcc (condition codes), 44, 46, 47, 314, 552
fccn, 44
ftt (floating-point trap type), 44, 46, 48, 96, 215, 277, 288,

409
in user-mode trap handler, 314

not modified by LDFSR/LDXFSR instructions, 44
ns (nonstandard mode), 44, 201, 215
qne (queue not empty), 44, 201, 215

in user-mode trap handler, 314
rd (rounding), 45
tem (trap enable mask), 45, 48, 49, 151, 315, 409
ver, 45
ver (version), 44, 215

FSR (floating-point state) register, 44
after floating-point trap, 313
compliance with IEEE Std 754-1985, 50
LDFSR instruction, 201
reading/writing, 44
state after reset, 501
values in ftt field, 46
writing to memory, 277, 288

FSRC1 instruction, 177
FSRC1S instruction, 177
FSRC2 instruction, 177
FSRC2S instruction, 177
FsTOd instruction, 181
FsTOi instruction, 180, 315
FsTOq instruction, 181, 181
FsTOx instruction, 180, 523, 524
FSUBd instruction, 183
FSUBq instruction, 183, 183
FSUBs instruction, 183
functional choice, implementation-dependent, 532
fused FMA instructions, 150
FXNOR instruction, 178
FXNORS instruction, 178
FXOR instruction, 178
FXORS instruction, 178
FxTOd instruction, 184, 524
FxTOq instruction, 184, 524
FxTOs instruction, 184, 524
FZERO instruction, 176
FZEROS instruction, 176

G
general status register, See GSR (general status) register
generating constants, 260
GL register, 73

access, 74
Index xiv

during resets, 75
during trap processing, 396
function, 73
reading with RDPR instruction, 246, 310
relationship to TL, 74
restored during RETRY, 127, 251
SPARC V9 compatibility, 71
and TSTATE register, 66
value restored from TSTATE[TL], 75
value restored from TSTATE[TL], 74, 127, 251
and VER.maxgl, 79
writing to, 74

global level register, See GL register
global registers, 16, 19, 35, 36, 36, 533
graphics status register, See GSR (general status) register
GSR (general status) register

fields
align, 57
im (interval mode) field, 56
irnd (rounding), 57
mask, 56
scale, 57

GSR (general status) register
ASR summary, 51

guest_watchdog exception, 409

H
H superscript on instruction name, 99
halfword, 8

alignment, 20, 83, 330
data format, 25

hardware
correcting ECC errors, 515
correcting L2 cache errors, 515
correcting TLB errors, 512
dependency, 532
error correction, 511
hardware-corrected error, 507
L2 cache errors reported, 515
restartable deferred traps, 506
setting ESR bits, 509
signalling fatal error in L2 cache, 514
TLB, 472
TLB error checking, 512
traps, 385

hardware tablewalk, 439, 512
disabled, 437, 441
enabled, 516
handling multiple context IDs, 440
loading of missing TTE entries, 439
loading privileged code, 439
MMU support for, 438
and ra field of TTE, 440
real address requests, 439
and software tablewalk, 471
TLB miss/reload sequence, 439–440
and TSB pointers, 437

hardware trap stack, 23
HINTP register, 77

HPR state registers (ASRs), 75–80
hpriv field of HPSTATE register, 375
HPSTATE register, 75

entering hyperprivileged execution mode, 371
hpriv field, 76
hpriv field, See also hyperprivileged (hpriv) field of HPSTATE

register
and HTSTATE register, 76
ibe field, 411
ibe field, 75
red field, 76, 374
state after reset, 500
tlz field, 76
tlz field, and trap_level_zero exception, 76, 415

HPSTATE register fields
hpriv

determining mode, 9
hsp (hstick_match pending) field of HINTP register, 77, 79
HSTICK_CMPR register, 79, 409

and HINTP, 77
hstick_match exception, 77, 79, 409
hstick_match pending (hsp) field of HINTP register, 77, 79
HTBA (hyperprivileged trap base address) register, 78, 372,

409
establishing table address, 371
initialization, 383
state after reset, 500

htrap_instruction exception, 298, 409
HTSTATE (hyperprivileged trap state) register, 76

number of copies for reading, 245
number of copies for writing, 308
reading, 245
writing to, 308

HVER (version) register
fields

maxtl, 79
maxwin, 79

HVER (version) register, 78
state after reset, 501

HVER (version) register fields
impl, 45, 78
manuf, 78
mask, 79
maxgl, 79
maxwin, 79

hw_corrected_error exception, 409, 416, 515
hw_corrected_error trap, 507

disrupting traps, 514
for correctable store buffer data, 514
handler routine, 507
L1 caches, 512
L2 cache errors, 516
logging, 513
reporting, 509

hyperprivileged, 8
mode, 64
registers, 75

hyperprivileged (hpriv) field of HPSTATE register, 244, 286
access to register-window PR state registers, 64
and trap control, 382
Index xv

compare and swap instructions, 126, 292, 414
disrupting trap condition detected, 379
load instructions, 189, 193, 198, 206, 211, 271
privileged_action exception, 331
store instructions, 267, 275, 286
trap_level_zero exception, 128, 252, 308, 311, 415

hyperprivileged mode
byte order, 382

hyperprivileged scratchpad registers
state after reset, 501

hypervisor (software), 8

I
i (integer) instruction field

arithmetic instructions, 225, 227, 230, 258, 265, 301, 303
floating point load instructions, 195, 197, 201, 215
flush memory instruction, 146
flush register instruction, 149
jump-and-link instruction, 187
load instructions, 188, 205, 206, 208, 210
logical operation instructions, 113, 230, 312
move instructions, 221, 223
POPC, 233
PREFETCH, 235
RETURN, 253

I/O
access, 329
memory, 328
memory-mapped, 328

IAE_* exception exception
when IMMU is disabled, 452

IAE_nfo_page exception, 441
IAE_privilege_violation exception, 409

and TTE.p, 436
register update policy, 441

IAE_unauth_access exception, 436, 441
IEEE 754, 8
IEEE Std 754-1985, 8, 15, 45, 47, 49, 50, 96, 313, 533
IEEE_754_exception floating-point trap type, 8, 46, 47, 48, 50,

313, 314, 382, 409
IEEE-754 exception, 8
IER register (SPARC V8), 306
illegal_instruction exception, 149, 409

and SIR instruction, 381
attempt to write in nonprivileged mode, 60
DONE/RETRY, 128, 252, 253
HTSTATE register, reading/writing, 75, 77
ILLTRAP, 185
not implemented in hardware, 109
POPC, 234
PREFETCH, 241
RETURN, 254
with BPr instruction, 122
with branch instructions, 121, 123
with CASA and CASXA instructions, 125, 230
with CASXA instruction, 126
with DONE instruction, 128
with FMOV instructions, 152
with FMOVcc instructions, 156

with FMOVR instructions, 158
with load instructions, 40, 194, 196, 208, 211, 216, 362
with move instructions, 222, 224
with RDHPR instructions, 245
with read hyperprivileged register instructions, 245, 246
with read instructions, 243, 245, 246, 311, 536
with store instructions, 199, 273, 277, 284, 285, 286, 287,

288
with Tcc instructions, 298
with TPC register, 64
with TSTATE register, 66
with write instructions, 306, 308, 309, 311
write to ASR 5, 55
write to STICK register, 60
write to TICK register, 54

ILLTRAP instruction, 185, 409
imm_asi instruction field

explicit ASI, providing, 87
floating point load instructions, 197
load instructions, 206, 208, 210
PREFETCH, 235

immediate CTI, 81
I-MMU

and instruction prefetching, 329
IMMU

ASIs, 463
context register usage, 447
determining ASI value and endianness, 446
Enable bit, 452
memory operation summary, 443

IMMU demap, 468
IMMU TLB Tag Access register, 463
IMMU_TLB_DATA_ACCESS, 465
IMMU_TLB_DATA_IN, 464
IMMU_TLB_LOWER_TAG_READ, 466
IMMU_TLB_TAG_READ, 466
IMMU_TLB_TAG_TARGET, 468
IMMU_TLB_UPPER_TAG_READ, 466
IMPDEP1 instructions, 96
IMPDEP2 instructions, 96
IMPDEP2A instructions, 537
IMPDEP2B instructions, 96
implementation, 8
implementation (impl) field of HVER register, 45, 78
implementation dependency, 531
implementation dependent, 8
implementation note, 3, 4
implementation-dependent functional choice, 532
implicit ASI, 8, 87, 346
implicit ASI memory access

LDFSR, 201
LDSTUB, 205
load fp instructions, 195, 215
load integer doubleword instructions, 208
load integer instructions, 188
STD, 284
STFSR, 277
store floating-point instructions, 272, 288
store integer instructions, 266
SWAP, 291
Index xvi

implicit byte order, 69
in registers, 35, 37, 255
inccc synthetic instructions, 558
Incoming Interrupt Vector register, 423, 424, 424, 425
inexact accrued (nxa) bit of aexc field of FSR register, 314
inexact current (nxc) bit of cexc field of FSR register, 314
inexact mask (nxm) field of FSR.tem, 49
inexact quotient, 258, 301
infinity, 315
initiated, 8
input/output (I/O) locations

access by nonprivileged code, 533
behavior, 328
contents and addresses, 533
identifying, 539
order, 328
semantics, 540
value semantics, 328

instruction cache
error detection, 511
error reporting (L1), 511

instruction fields, 8
See also individual instruction fields
definition, 8

instruction group, 8
instruction MMU, See I-MMU
instruction prefetch buffer, invalidation, 147
instruction set architecture (ISA), 8, 8, 16
instruction_access_error exception, 410, 441, 515
instruction_access_exception exception (SPARC V9), 410
instruction_access_MMU_error exception, 410, 441, 513

multiple-tag hit error, 455
instruction_access_MMU_miss exception, 410

register update policy, 441
TTE entries, 440

instruction_address_range exception, 410
register update policy, 442

instruction_breakpoint exception, 411
instruction_invalid_TSB_entry exception, 411, 440, 442, 457
instruction_real_range exception, 411
instruction_real_range exception, register update policy, 442
instruction_real_translation_miss exception, 411, 412, 439,

442
instruction_VA_watchpoint exception, 412, 442
instructions

32-bit wide, 15
alignment, 83
alignment, 20, 111, 330
arithmetic, integer

addition, 110, 294
division, 22, 227, 258, 301
multiplication, 22, 225, 227, 265, 303
subtraction, 290, 299
tagged, 22

array addressing, 114
atomic

CASA/CASXA, 125
load twin extended word from alternate space, 213
load-store, 83, 125, 205, 206, 291, 292
load-store unsigned byte, 205, 206

successful loads, 188, 189, 209, 211
successful stores, 266, 267

branch
branch if contents of integer register match

condition, 122
branch on floating-point condition codes, 135, 137
branch on integer condition codes, 117, 120

cache, 334
causing illegal instruction, 185
compare and swap, 125
comparison, 89, 290
conditional move, 23
control-transfer (CTIs), 22, 127, 251
conversion

convert between floating-point formats, 181
convert floating-point to integer, 180
convert integer to floating-point, 145, 184
floating-point to integer, 315

count of number of bits, 233
edge handling, 129
fetches, 83
floating point

compare, 44, 141
floating-point add, 133
floating-point divide, 143
floating-point load, 83, 195
floating-point load from alternate space, 197
floating-point load state register, 195, 215
floating-point move, 152, 153, 157
floating-point operate (FPop), 23, 201
floating-point square root, 179
floating-point store, 83, 272
floating-point store to alternate space, 274
floating-point subtract, 183
operate (FPop), 46, 48
short floating-point load, 203
short floating-point store, 282
status of floating-point load, 201

flush instruction memory, 146
flush register windows, 149
formats, 82
generate software-initiated reset, 262
jump and link, 22, 187
loads

block load, 192
floating point, See instructions: floating point
integer, 83
integer from alternate space, 476
simultaneously addressing doublewords, 291
unsigned byte, 125, 205
unsigned byte to alternate space, 206

logical operations
64-bit/32-bit, 177, 178
AND, 113
logical 1-operand ops on F registers, 176
logical 2-operand ops on F registers, 177
logical 3-operand ops on F registers, 178
logical XOR, 312
OR, 230

memory, 341
Index xvii

moves
floating point, See instructions: floating point
move integer register, 220, 223
on condition, 16

ordering MEMBAR, 89
permuting bytes specified by GSR.mask, 119
pixel component distance, 232, 232
pixel formatting (PACK), 166
prefetch data, 235
read hyperprivileged register, 245
read privileged register, 246
read state register, 22, 242
register window management, 23
reordering, 333
reserved, 97
reserved fields, 108
RETRY

and restartable deferred traps, 378
RETURN vs. RESTORE, 253
sequencing MEMBAR, 89
set high bits of low word, 260
set interval arithmetic mode, 261
setting GSR.mask field, 119
shift, 21
shift, 263
shift count, 263
SIMD, 12
simultaneous addressing of doublewords, 292
SIR, 262
software-initiated reset, 262
stores

block store, 269
floating point, See instructions: floating point
integer, 83, 266
integer (except doubleword), 266
integer into alternate space, 267, 476
partial, 279
unsigned byte, 125
unsigned byte to alternate space, 206
unsigned bytes, 205

swap R register, 291, 292
synthetic (for assembly language programmers), 556–558
tagged addition, 294
test-and-set, 339
timing, 109
trap on integer condition codes, 296
write hyperprivileged register, 308
write privileged register, 310
write state register, 306

integer register file (IRF), 513
integer unit (IU)

condition codes, 53
definition, 8
description, 18

internal_processor_error exception, 412, 513, 514
interrupt

CPU, handling, 423
enable (ie) field of PSTATE register, 379, 382
level, 73
request, 8, 24, 371

Interrupt Receive register, 423, 424, 425
Interrupt Vector Dispatch register, 424
interrupt_level_14 exception, 58, 412

and SOFTINT.int_level, 58
and STICK_CMPR.stick_cmpr, 61
and TICK_CMPR.tick_cmpr, 59

interrupt_level_15 exception, 413
and SOFTINT.int_level, 58

interrupt_level_n exception, 379, 412
and SOFTINT register, 57
and SOFTINT.int_level, 58

interrupt_vector exception, 412, 423
inter-strand operation, 8
INTR_DISPATCH, See Interrupt Vector Dispatch Status

register
INTR_RECEIVE, See Interrupt Vector Receive register
intra-strand operation, 8
invalid accrued (nva) bit of aexc field of FSR register, 50
invalid ASI

and DAE_invalid_asi, 407
DAE_invalid_asi exception, 462

invalid current (nvc) bit of cexc field of FSR register, 50, 315
invalid mask (nvm) field of FSR.tem, 49, 315
invalid_exception exception, 180
invalid_fp_register floating-point trap type, 158, 165, 183
INVALW instruction, 186
iprefetch synthetic instruction, 557
ISA, 8
ISA, See instruction set architecture
issue unit, 333, 333
issued, 9
italic font, in assembly language syntax, 551
IU, 9
ixc synthetic instructions, 558

J
jmp synthetic instruction, 557
JMPL instruction, 187

computing target address, 22
does not change CWP, 37
mem_address_not_aligned exception, 412
reexecuting trapped instruction, 253

jump and link, See JMPL instruction

L
L1 cache

bit protection, 511
diagnostic access error checking, 512
error checking for accesses, 512
error handling by hardware, 512

L2 cache, 515
and uncorrectable ECC errors, 514
error reporting, 515
errors detected, 516
invalidating line, 516
recoverable errors, 515
SEC/DED ECC protection, 515

LD instruction (SPARC V8), 188
Index xviii

LDBLOCKF instruction, 192, 362
LDBLOCKF instruction, DAE_nc_page exception, 407
LDD instruction (SPARC V8 and V9), 208
LDDA instruction, 361
LDDA instruction (SPARC V8 and V9), 211
LDDF instruction, 83, 195, 412
LDDF_mem_address_not_aligned exception, 412

address not doubleword aligned, 538
address not quadword aligned, 538, 539
LDDF/LDDFA instruction, 83
load instruction with partial store ASI and misaligned

address, 199
with load instructions, 195, 197, 362
with store instructions, 274, 362

LDDF_mem_not_aligned exception, 43
LDDFA instruction, 197, 281

alignment, 83
ASIs for fp load operations, 363
behavior with block store with Commit ASIs, 199
behavior with partial store ASIs, 196–??, 199, 199–??, 215–

??, 363–??
causing LDDF_mem_address_not_aligned exception, 83,

412
for block load operations, 362
used with ASIs, 362

LDF instruction, 43, 195
LDFA instruction, 43, 197
LDFSR instruction, 44, 46, 201, 410
LDQF instruction, 195, 416
LDQF_mem_address_not_aligned exception, 416

address not quadword aligned, 538
LDQF/LDQFA instruction, 84
with load instructions, 197

LDQFA instruction, 197
LDSB instruction, 188
LDSBA instruction, 189
LDSH instruction, 188
LDSHA instruction, 189
LDSHORTF instruction, 203
LDSTUB instruction, 83, 205, 206, 339

and DAE_nc_page exception, 407
hardware primitives for mutual exclusion of

LDSTUB, 338
LDSTUBA instruction, 205, 206

alternate space addressing, 20
and DAE_nc_page exception, 407
hardware primitives for mutual exclusion of

LDSTUBA, 338
LDSW instruction, 188
LDSWA instruction, 189
LDTW instruction, 40, 83
LDTW instruction (deprecated), 208
LDTWA instruction, 40, 83
LDTWA instruction (deprecated), 210
LDTX instruction, 359
LDTX instruction, DAE_nc_page exception, 407
LDTXA instruction, 84, 86, 213, 360

access alignment, 83
access size, 83

LDUB instruction, 188

LDUBA instruction, 189
LDUH instruction, 188
LDUHA instruction, 189
LDUW instruction, 188
LDUWA instruction, 189
LDX instruction, 188
LDXA instruction, 189, 211, 337, 476

reading from a CMP register, 478
LDXFSR instruction, 44, 46, 201, 215, 257, 410
leaf procedure

modifying windowed registers, 95
little-endian byte order, 9, 20, 68
load

block, See block load instructions
floating-point from alternate space instructions, 197
floating-point instructions, 195, 201
floating-point state register instructions, 195, 215
from alternate space, 21, 53, 87, 476
instructions, 9
instructions accessing memory, 83
nonfaulting, 332, 453
short floating-point, See short floating-point load

instructions
load short floating-point instructions, 203
LoadLoad MEMBAR relationship, 217
LoadLoad MEMBAR relationship, 340
LoadLoad predefined constant, 555
loads

nonfaulting, 342
load-store alignment, 20, 83, 330
load-store instructions

compare and swap, 125
definition, 9
and fast_data_access_protection exception, 408
load-store unsigned byte, 125, 205, 291, 292
load-store unsigned byte to alternate space, 206
memory access, 19
swap R register with alternate space memory, 292
swap R register with memory, 125, 291

LoadStore MEMBAR relationship, 217, 340
LoadStore predefined constant, 555
local registers, 35, 37, 248
logical XOR instructions, 312
Lookaside predefined constant, 555
LSTPARTIALF instruction, 362

M
machine state

after reset, 499, 502
in RED_state, 499, 502

manufacturer (manuf) field of HVER register, 78
manufacturer (manuf) field of VER register, 537
mask number (mask) field of HVER register, 79
masked-off trap

deferred trap, 506
disrupting trap, 507
precise trap, 505

MAXGL, 19, 35, 36, 72, 73, 74
maximum global levels maxgl field of HVER register, 79
Index xix

maximum trap levels maxtl field of HVER register, 79
MAXPGL, 72, 73
MAXTL

and error_state, 398
and MAXGL, 74
and RED_state, 398
instances of HTSTATE register, 76
instances of TNPC register, 65
instances of TPC register, 64
instances of TSTATE register, 66
instances of TT register, 67
non-reset trap, 374

may (keyword), 9
mem_address_not_aligned exception, 412

generated by virtual processor, 199
JMPL instruction, 187
LDTXA, 360, 362
load instruction with partial store ASI and misaligned

address, 199
register update policy, 443
RETURN, 253, 254
when recognized, 126
with CASA instruction, 125
with compare instructions, 126
with load instructions, 83–84, 188, 189, 195, 199, 201, 203,

208, 209, 211, 212, 215, 288, 362, 363
with store instructions, 83–84, 199, 266, 267, 268, 276, 277,

282, 285, 287, 362, 363
with swap instructions (deprecated), 291, 293

mem_address_range exception, 412, 442
mem_real_range exception, 413, 442
MEMBAR

#Sync
semantics, 219

instruction
#Sync to allow hardware correction of data, 514
#Sync to flush store buffer, 514
atomic operation ordering, 339
FLUSH instruction, 146, 341
functions, 217, 339–340
memory ordering, 218
memory synchronization, 89
side-effect accesses, 329
STBAR instruction, 218
write to error steering register, 492

mask encodings
#LoadLoad, 217, 340
#LoadStore, 217, 340
#Lookaside, 341
#Lookaside (deprecated), 218
#MemIssue, 218, 341
#StoreLoad, 217, 340
#StoreStore, 217, 340
#Sync, 218, 341

predefined constants
#LoadLoad, 555
#LoadStore, 555
#Lookaside (deprecated), 555
#MemIssue, 555
#StoreLoad, 555

#StoreStore, 555
#Sync, 555

MEMBAR
#Lookaside, 337
#StoreLoad, 337

membar_mask, 555
MemIssue predefined constant, 555
memory

access instructions, 19, 83
alignment, 330
atomic operations, 338
atomicity, 540
cached, 328
coherence, 329, 540
coherency unit, 330
data, 341
instruction, 341
location, 327
models, 327
ordering unit, 330
real, 328
reference instructions, data flow order constraints, 334
synchronization, 218
virtual address, 327
virtual address 0, 342

memory management architecture (hyperprivileged), 432
address translation, 432
allocation of partition IDs, 432
separation of real and virtual addresses, 432

Memory Management Unit
definition, 9

Memory Management Unit, See MMU
memory model

mode control, 336
partial store order (PSO), 335
relaxed memory order (RMO), 219, 335
sequential consistency, 336
strong, 336
total store order (TSO), 219, 335, 336
weak, 336

memory model (mm) field of PSTATE register, 69
memory order

pending transactions, 335
program order, 333

memory_model (mm) field of PSTATE register, 336
memory-mapped I/O, 328
metrics

for architectural performance, 368
for implementation performance, 368
See also performance monitoring hardware

MMU
accessing registers, 454
bypass, 345, 452
contexts, 432
definition, 9
demap, 468

context operation, 469
operation syntax, 470
page operation, 469

dTLB Tag Access Register illustrated, 456, 457, 458
Index xx

I/D Tag Access registers, 464, 467
iTLB Tag Access Register illustrated, 456, 457, 458
page sizes, 427
SPARC V9 compliance, 453
Synchronous Fault Address registers, 461

MMU_NONZERO_CONTEXTID_TSB_CONFIG_n, 438
mode

hyperprivileged, 64, 332
MMU bypass, 345
nonprivileged, 17
privileged, 18, 64, 332

motion estimation, 232
MOVA instruction, 220
MOVCC instruction, 220
MOVcc instructions, 220

conditionally moving integer register contents, 53
conditions for copying integer register contents, 93
copying a register, 44
encoding of cond field, 525
encoding of opf_cc instruction field, 525
used to avoid branches, 156, 222

MOVCS instruction, 220
move floating-point register if condition is true, 153
move floating-point register if contents of integer register

satisfy condition, 157
MOVE instruction, 220
move integer register if condition is satisfied

instructions, 220
move integer register if contents of integer register satisfies

condition instructions, 223
move on condition instructions, 16
MOVFA instruction, 221
MOVFE instruction, 221
MOVFG instruction, 221
MOVFGE instruction, 221
MOVFL instruction, 221
MOVFLE instruction, 221
MOVFLG instruction, 221
MOVFN instruction, 221
MOVFNE instruction, 221
MOVFO instruction, 221
MOVFU instruction, 221
MOVFUE instruction, 221
MOVFUG instruction, 221
MOVFUGE instruction, 221
MOVFUL instruction, 221
MOVFULE instruction, 221
MOVG instruction, 220
MOVGE instruction, 220
MOVGU instruction, 220
MOVL instruction, 220
MOVLE instruction, 220
MOVLEU instruction, 220
MOVN instruction, 220
movn synthetic instructions, 558
MOVNE instruction, 220
MOVNEG instruction, 220
MOVPOS instruction, 220
MOVr instructions, 94, 223, 525
MOVRGEZ instruction, 223

MOVRGZ instruction, 223
MOVRLEZ instruction, 223
MOVRLZ instruction, 223
MOVRNZ instruction, 223
MOVRZ instruction, 223
MOVVC instruction, 220
MOVVS instruction, 220
multiple processors, fatal error, 516
multiple unsigned condition codes, emulating, 94
multiply instructions, 227, 265, 303
multiply-add instructions (fused), 150
multiply-subtract instructions (fused), 150
multiprocessor synchronization instructions, 125, 291, 292
multiprocessor system, 9, 146, 239, 291, 292, 334, 540
MULX instruction, 227
must (keyword), 9

N
N superscript on instruction name, 99
N_REG_WINDOWS, 10

integer unit registers, 19, 533
RESTORE instruction, 248
SAVE instruction, 255
value of, 35, 61

NaN (not-a-number)
conversion to integer, 315
converting floating-point to integer, 180
signalling, 44, 141, 181

neg synthetic instructions, 558
negative infinity, 315
negative multiply-add instructions (fused), 150
negative multiply-subtract instructions (fused), 150
nested traps, 16
next program counter register, See NPC register
NFO, 9
noncacheable

accesses, 328
nonfaulting load, 9, 332, 453
nonfaulting loads

behavior, 342
use by optimizer, 342

non-faulting-only page
illegal access to, 407

non-faulting-only page, illegal access to
and TTE.nfo, 435

nonleaf routine, 187
nonprivileged, 9

mode, 5, 9, 17, 18, 46
software, 55

nonprivileged trap (npt) field of TICK register, 55, 244
nonresumable_error exception, 413
nonstandard floating-point, See floating-point status register

(FSR) NS field
nontranslating ASI, 9, 211, 287, 346
nonvirtual memory, 240
NOP instruction, 117, 135, 138, 228, 236, 297
normal trap, 9
normal traps, 374, 385, 398, 400
NORMALW instruction, 229
Index xxi

not synthetic instructions, 558
notdata bit, setting, 516
note

architectural direction, 4
compatibility, 4
general, 3
implementation, 3
programming, 3

NPC (next program counter) register, 55
and PSTATE.tct, 68
control flow alteration, 13
definition, 9
DONE instruction, 127
instruction execution, 81
relation to TNPC register, 65
RETURN instruction, 251
saving after trap, 23
state after reset, 500

npt, 10
nucleus context, 148
Nucleus Context register, 456
nucleus software, 10
NUMA, 10, 476
nvm (invalid mask) field of FSR.tem, 49, 315
NWIN, See N_REG_WINDOWS

nxm (inexact mask) field of FSR.tem, 49

O
octlet, 10
odd parity, 10
ofm (overflow mask) field of FSR.tem, 49
op3 instruction field

arithmetic instructions, 110, 121, 122, 125, 225, 227, 258,
265, 301, 303

floating point load instructions, 195, 197, 201, 215
flush instructions, 146, 149
jump-and-link instruction, 187
load instructions, 188, 205, 206, 208, 210
logical operation instructions, 113, 230, 312
PREFETCH, 235
RETURN, 253

opcode
definition, 10

opf instruction field
floating point arithmetic instructions, 133, 143, 164, 179
floating point compare instructions, 141
floating point conversion instructions, 180, 181, 184
floating point instructions, 132
floating point integer conversion, 145
floating point move instructions, 152
floating point negate instructions, 165

opf_cc instruction field
floating point move instructions, 153
move instructions, 525

opf_low instruction field, 153
optional, 10
OR instruction, 230
ORcc instruction, 230
ordering MEMBAR instructions, 89

ordering unit, memory, 330
ORN instruction, 230
ORNcc instruction, 230
OTHERW instruction, 231
OTHERWIN (other windows) register, 63

FLUSHW instruction, 149
keeping consistent state, 64
modified by OTHERW instruction, 231
partitioned, 64
range of values, 61, 540
rd designation for WRPR instruction, 310
rs1 designation for RDPR instruction, 246
SAVE instruction, 255
state after reset, 501
zeroed by INVALW instruction, 186
zeroed by NORMALW instruction, 229

OTHERWIN register trap vectors
fill/spill traps, 417
handling spill/fill traps, 417
selecting spill/fill vectors, 417

out register #7, 39
out registers, 35, 37, 255
overflow

bits
(v) in condition fields of CCR, 90
accrued (ofa) in aexc field of FSR register, 50
current (ofc) in cexc field of FSR register, 50

causing spill trap, 416
tagged add/subtract instructions, 90

overflow mask (ofm) field of FSR.tem, 49

P
p (predict) instruction field of branch instructions, 120, 122,

138
P superscript on instruction name, 99
PA_watchpoint, 283
PA_watchpoint exception, 346, 413
packed-to-planar conversion, 173
packing instructions, See FPACK instructions
page fault, 240
page table entry (PTE), See translation table entry (TTE)
parity, even, 7
parity, odd, 10
park, 10
parked, 10
parking CMP core, 483
partial store instructions, 279, 362
partial store order (PSO) memory model, 335, 336
Partition ID register

memory address representation, 432
and TLB entries, 432

partition identifier, 331, 432
partitioned

additions, 171
subtracts, 174

PASI superscript on instruction name, 99
PASR superscript on instruction name, 99
PC (program counter) register, 11, 51, 55

after instruction execution, 81
Index xxii

and PSTATE.tct, 68
CALL instruction, 124
changed by NOP instruction, 228
copied by JMPL instruction, 187
saving after trap, 23
set by DONE instruction, 127
set by RETRY instruction, 251
state after reset, 500
Trap Program Counter register, 64

PDIST instruction, 232
pef field of PSTATE register

and access to GSR, 56
and fp_disabled exception, 409
and FPop instructions, 96
branch operations, 136, 138
byte permutation, 119
comparison operations, 140, 142
component distance, 232
data formatting operations, 144, 166, 173
data movement operations, 222
enabling FPU, 55
floating-point operations, 132, 133, 143, 145, 151, 152, 155,

158, 164, 165, 179, 180, 181, 183, 184, 195, 197, 201, 203,
215

integer arithmetic operations, 159, 172, 175
logical operations, 176, 177, 178
memory operations, 193
read operations, 244, 261, 271
special addressing operations, 111, 134, 272, 277, 280, 282,

288, 307
trap control, 382

pef, See PSTATE, pef field
pending field of ASI_INTR_RECEIVE register, 423
performance monitoring hardware

accuracy requirements, 368
classes of data reported, 368
counters and controls, 369
high-level requirements, 367
kinds of user needs, 367
See also instruction sampling

physical address, 10
physical core, 10
physical processor, 10
pic_overflow exception, 413
PIL (processor interrupt level) register, 73

interrupt conditioning, 379
interrupt request level, 382
interrupt_level_n, 412
specification of register to read, 246
specification of register to write, 310
state after reset, 500
trap processing control, 382

pipeline, 10
pipeline draining of CPU, 61, 64
PIPT, 10
pixel instructions

compare, 139
component distance, 232, 232
formatting, 166

planar-to-packed conversion, 173

Pnpt superscript on instruction name, 99
pointer registers, implementation, 441
POPC instruction, 233
POR, 10
POR (power_on_reset), 497

machine state changes, 499
POR, See power_on_reset (POR)
positive infinity, 315
power failure, 381, 403
power_on_reset (POR)

hard reset when POR pin activated, 497
power_on_reset (POR), 414, 497

effect on HTSTATE, 77
effect on STICK register fields, 60
effect on TNPC register, 65
effect on TPC, 65
effect on TT register, 66
enabling/disabling virtual processors, 481, 482
full-processor reset, 488
hard reset, 483, 545
machine state changes, 499
and RED_state, 374, 375, 400
STRAND_ENABLE_STATUS register, 490
system reset, 488
when initiated, 381

precise ESR, 509
associated error info for register files, 513
associated error info for SW correction, 513
and SFSR, 509

precise floating-point traps, 247
precise trap, 377

conditions for, 377
generation of, 505
handling, 506
software actions, 377
vs. disrupting trap, 379

predefined constants
LoadLoad, 555
lookaside (deprecated), 555
MemIssue, 555
StoreLoad, 555
StoreStore, 555
Sync, 555

predict bit, 122
prefetch

for one read, 239
for one write, 239
for several reads, 238
for several writes, 239
page, 240
to nearest unified cache, 240

prefetch data instruction, 235
PREFETCH instruction, 83, 235, 236, 453, 537
prefetch_fcn, 555
PREFETCHA instruction, 235, 537

and invalid ASI or VA, 407
prefetchable, 10
Primary Context ID 0, 455
Primary Context ID 1, 455
Primary Context register, 455
Index xxiii

priority of traps, 382, 396
priveleged_action exception

read from TICK register when access disabled, 54
privilege violation, and DAE_privilege_violation

exception, 407
privileged, 10

mode, 18, 64, 332
registers, 64
software, 17, 38, 46, 69, 88, 149, 383, 537

privileged (priv) field of PSTATE register, 71, 76, 126, 128, 189,
193, 197, 198, 206, 211, 243, 267, 271, 275, 286, 292, 307, 332,
414

privileged mode, 11
privileged_action exception, 414

accessing restricted ASIs, 331
and ASI_INTR_RECEIVE register, 423
and ASI_INTR_RECEIVED register, 424
read from TICK register when access disabled, 54, 243
register update policy, 442
restricted ASI access attempt, 88, 345, 444
TICK register access attempt, 53
with CASA instruction, 126
with compare instructions, 126
with load alternate instructions, 189, 193, 198, 206, 211,

267, 271, 275, 286, 292
with load instructions, 197
with RDasr instructions, 244
with read instructions, 244
with store instructions, 276
with swap instructions, 293

privileged_opcode exception, 414
DONE instruction, 128
RETRY instruction, 252
SAVED instruction, 257
with DONE instruction, 128, 246, 251, 311
with write instructions, 311
WRPR in nonprivileged mode, 54

processor, 11
execute unit, 333
issue unit, 333, 333
privilege-mode transition diagram, 373
reorder unit, 333
self-consistency, 333
state diagram, 374

processor cluster, See processor module
processor consistency, 334, 337
processor interrupt level register, See PIL register
processor self-consistency, 333, 336
processor state register, See PSTATE register
processor states

error_state, 374, 376, 397, 398
entering, 403, 404

execute_state, 397, 398
RED_state, 374, 375, 376, 385, 397, 398, 400, 401, 404

processor states, See error_state, execute_state, and
RED_state

program counter register, See PC register
program counters, saving, 371
program order, 333, 333
programming note, 3

PSO, See partial store order (PSO) memory model
PSR register (SPARC V8), 306
PSTATE register

entering privileged execution mode, 371
restored by RETRY instruction, 127, 251
saved after trap, 371
saving after trap, 23
specification for RDPR instruction, 246
specification for WRPR instruction, 310
state after reset, 500
and TSTATE register, 66

PSTATE register fields
ag

unimplemented, 71
am

CALL instruction, 124
description, 70
masked/unmasked address, 127, 187, 251, 253

cle
and implicit ASIs, 87
and PSTATE.tle, 69
description, 68

ie
description, 71
enabling disrupting traps, 379, 507
interrupt conditioning, 379
masking disrupting trap, 386

mm
description, 69
implementation dependencies, 69, 335, 539
reserved values, 69

pef
and FPRS.fef, 69
description, 69
See also pef field of PSTATE register

priv
access to register-window PR state registers, 64
accessing restricted ASIs, 331
description, 71
determining mode, 9, 10, 436
when processor in privileged mode, 76

tct
branch instructions, 118, 121, 122, 136, 138
CALL instruction, 124
description, 68
DONE instruction, 128
JMPL instruction, 187
RETRY instruction, 252, 297
RETURN instruction, 253

tle
and PSTATE.cle, 69
description, 69

PTE (page table entry), See translation table entry (TTE)

Q
quadword, 11

alignment, 20, 83, 330
data format, 25

quiet NaN (not-a-number), 44, 141
Index xxiv

R
R register, 11

#15, 39
special-purpose, 39
alignment, 208, 211

ra_not_pa field of TSB Config register, 435, 440, 456, 457, 459,
459

RA_watchpoint exception, 389, 394
rational quotient, 301
RA-to-PA translation, 440
R-A-W, See read-after-write memory hazard
rcond instruction field

branch instructions, 122
encoding of, 525
move instructions, 223

rd (rounding), 11
rd instruction field

arithmetic instructions, 110, 121, 122, 125, 225, 227, 258,
265, 301, 303

floating point arithmetic, 133
floating point arithmetic instructions, 143, 164, 179
floating point conversion instructions, 180, 181, 184
floating point integer conversion, 145
floating point load instructions, 195, 197, 201, 215
floating point move instructions, 152, 153
floating point negate instructions, 165
floating-point instructions, 132
jump-and-link instruction, 187
load instructions, 188, 205, 206, 208, 210
logical operation instructions, 113, 230, 312
move instructions, 221, 223
POPC, 233

RDASI instruction, 51, 53, 242
RDasr instruction, 242

accessing I/O registers, 21
implementation dependencies, 243, 536
reading ASRs, 50

RDCCR instruction, 51, 52, 242, 242
RDFPRS instruction, 51, 55, 242
RDGSR instruction, 51, 56, 242
RDHPR instruction, 75, 77, 78, 245

hyperprivileged registers read, 245
RDPC instruction, 51, 242

reading PC register, 55
RDPR instruction, 51, 246

accessing GL register, 74
accessing non-register-window PR state registers, 64
accessing register-window PR state registers, 61
and register-window PR state registers, 61
effect on TNPC register, 65
effect on TPC register, 65
effect on TSTATE register, 66
effect on TT register, 67
reading privileged registers, 64
reading PSTATE register, 68
reading the TICK register, 54
registers read, 246

RDSOFTINT instruction, 51, 57, 242
RDSTICK instruction, 51, 60, 242, 244
RDSTICK_CMPR instruction, 51, 242

RDTICK instruction, 51, 54, 242, 243
RDTICK_CMPR instruction, 51, 242
RDY instruction, 52
read ancillary state register (RDasr) instructions, 242
read state register instructions, 22
read-after-write memory hazard, 333, 334
real address, 11
real ASI, 346
real memory, 328
Real Range registers, 456

fields, 457
real-translating ASIs, 346
recoverable, 11
RED_state, 11

catastrophic failure avoidance, 397
description, 373
entering, 375, 376, 401, 539
entry conditions, 374
exiting, 76
MMU behavior, 452
red field of HPSTATE register, 374, 376, 397
reset of TLB, 452
restricted environment, 375
special trap processing, 400
trap processing, 375, 397, 398
trap table, 385
trap vector, 384, 539

RED_state trap, 11
RED_state_exception exception, 414
reference MMU, 551
reg, 551
reg_or_imm, 555, 556
reg_plus_imm, 555
regaddr, 555
register reference instructions, data flow order

constraints, 333
register window, 35, 36
register window management instructions, 23
register windows

clean, 62, 64, 94, 406, 416, 418
fill, 38, 63, 64, 94, 95, 248, 250, 257, 409, 416, 417, 418
management of, 17
overlapping, 37–39
spill, 38, 63, 64, 94, 95, 255, 257, 414, 416, 417, 418

registers
See also individual register (common) names
accessing MMU registers, 454
address space identifier (ASI), 332
ASI (address space identifier), 53
chip-level multithreading, See CMT
clean windows (CLEANWIN), 62
clock-tick (TICK), 414
current window pointer (CWP), 62
error status (ESR), 508
F (floating point), 313, 382
floating-point, 19

programming, 43
floating-point registers state (FPRS), 55
floating-point state (FSR), 44
general status (GSR), 56
Index xxv

GL (global level), 79
global, 16, 19, 35, 36, 36, 533
global level (GL), 73
HSTICK_CMPR

and HINTP, 77
HSTICK_CMPR, 79
HTSTATE (hyperprivileged trap state), 76
HVER (version register), 78
hyperprivileged, 75
IER (SPARC V8), 306
in, 35, 37, 255
local, 35, 37
next program counter (NPC)

and PSTATE.tct, 68
next program counter (NPC), 55
other windows (OTHERWIN), 63
out, 35, 37, 255
out #7, 39
processor interrupt level (PIL)

and SOFTINT, 58
and STICK_CMPR, 61
and TICK_CMPR, 59

processor interrupt level (PIL), 73
program counter (PC)

and PSTATE.tct, 68
program counter (PC), 55
PSR (SPARC V8), 306
R register #15, 39
renaming mechanism, 334
restorable windows (CANRESTORE), 62, 62
savable windows (CANSAVE), 62
scratchpad

hyperprivileged, 364
privileged, 363

SOFTINT, 51
SOFTINT_CLR pseudo-register, 51, 59
SOFTINT_SET pseudo-register, 51, 58
STICK, 59
STICK_CMPR

and HINTP, 77
ASR summary, 51
int_dis field, 58, 61
stick_cmpr field, 61
and system software trapping, 60

TBR (SPARC V8), 306
TICK, 54
TICK_CMPR

int_dis field, 58, 59
tick_cmpr field, 59

TICK_CMPR, 51, 59
TL (trap level), 79
trap base address (TBA), 67
trap base address, See registers: TBA

trap level (TL), 72
trap level, See registers: TL

trap next program counter (TNPC), 65
trap next program counter, See registers: TNPC

trap program counter (TPC), 64
trap program counter, See registers: TPC

trap state (TSTATE), 66

trap state, See registers: TSTATE

trap type (TT), 67, 385
trap type, See registers: TT

VA_WATCHPOINT, 412, 415
visible to software in privileged mode, 64–75
WIM (SPARC V8), 306
window state (WSTATE), 63
window state, See registers: WSTATE

Y (32-bit multiply/divide), 52
relaxed memory order (RMO) memory model, 219, 335
renaming mechanism, register, 334
reorder unit, 333
reordering instruction, 333
reserved, 11

fields in instructions, 108
register field, 34

reset
after fatal error, 507
externally_initiated_reset (XIR), 373, 374, 375, 381, 385,

397, 400, 403, 403, 408, 488, 499
power_on_reset (POR)

enabling/disabling virtual processors, 481, 482
machine state changes, 499
STRAND_ENABLE_STATUS register, 490

power_on_reset (POR), 374, 375, 381, 400, 414, 488, 497
power-on, 54
processing, 374, 375
request, 414
reset trap, 54, 67, 379, 380
software_initiated_reset (SIR), 373, 374, 376, 380, 381, 385,

397, 404, 414, 488, 499
trap, 535
trap vector address, See RSTVaddr
warm_reset (WMR)

and STRAND_ENABLE register, 483
enabling/disabling virtual processors, 481, 482
machine state changes, 499

warm_reset (WMR), 498
watchdog (WDR), 488
watchdog_reset (POR), 375
watchdog_reset (WDR)

and guest_watchdog, 373
watchdog_reset (WDR), 400, 403, 415, 488, 499
XIR, 489

reset trap, 12
Reset, Error, and Debug state, See RED_state
restartable deferred trap, 377
restorable windows register, See CANRESTORE register
RESTORE instruction, 37, 248–249

actions, 94
and current window, 39
decrementing CWP register, 37
fill trap, 409, 416
followed by SAVE instruction, 38
managing register windows, 23
operation, 248
performance trade-off, 248, 255
and restorable windows (CANRESTORE) register, 62
restoring register window, 248
role in register state partitioning, 63, 64
Index xxvi

restore synthetic instruction, 557
RESTORED instruction, 95, 250

creating inconsistent window state, 250
fill handler, 248
fill trap handler, 95, 418
register window management, 23

restricted, 12
restricted address space identifier, 88
restricted ASI, 331, 345, 444
resumable_error exception, 414
ret/ret1 synthetic instructions, 557
RETRY instruction, 251

and restartable deferred traps, 378
effect on HTSTATE, 77
effect on TNPC register, 65
effect on TPC register, 65
effect on TSTATE register, 66
executed in RED_state, 374
generating illegal_instruction exception, 410
modifying CCR.xcc, 53
reexecuting trapped instruction, 418
restoring gl value in GL, 75
return from trap, 371
returning to instruction after trap, 380
target address, return from privileged traps, 22

RETURN instruction, 253–254
computing target address, 22
fill trap, 409
mem_address_not_aligned exception, 412
operation, 253
reexecuting trapped instruction, 253

RETURN vs. RESTORE instructions, 253
RMO, 12
RMO, See relaxed memory order (RMO) memory model
rounding

for floating-point results, 45
in signed division, 258

rounding direction (rd) field of FSR register, 133, 143, 164,
179, 180, 181, 183, 184

routine, nonleaf, 187
rs1 instruction field

arithmetic instructions, 110, 121, 122, 125, 225, 227, 258,
265, 301, 303

branch instructions, 122
floating point arithmetic instructions, 133, 143, 164
floating point compare instructions, 141
floating point load instructions, 195, 197, 201, 215
flush memory instruction, 146
jump-and-link instruction, 187
load instructions, 188, 205, 206, 208, 210
logical operation instructions, 113, 230, 312
move instructions, 223
PREFETCH, 235
RETURN, 253

rs2 instruction field
arithmetic instructions, 110, 121, 122, 125, 225, 227, 230,

258, 265, 301, 303
floating point arithmetic instructions, 133, 143, 164, 179
floating point compare instructions, 141
floating point conversion instructions, 180, 181, 184

floating point instructions, 132
floating point integer conversion, 145
floating point load instructions, 195, 197, 201, 215
floating point move instructions, 152, 153
floating point negate instructions, 165
flush memory instruction, 146
jump-and-link instruction, 187
load instructions, 188, 208, 210
logical operation instructions, 113, 312
move instructions, 221, 223
POPC, 233
PREFETCH, 235

RSTVADDR, 376, 384, 385, 401, 402, 403, 404, 405, 500, 539
RTO, 12
RTS, 12

S
savable windows register, See CANSAVE register
SAVE instruction, 37, 255

actions, 94
after RESTORE instruction, 253
clean_window exception, 406, 417
and current window, 39
decrementing CWP register, 37
effect on privileged state, 255
leaf procedure, 187
and local/out registers of register window, 38
managing register windows, 23
no clean window available, 62
number of usable windows, 62
operation, 255
performance trade-off, 255
role in register state partitioning, 63, 64
and savable windows (CANSAVE) register, 62
spill trap, 414, 416, 417

save synthetic instruction, 557
SAVED instruction, 95, 257

creating inconsistent window state, 257
register window management, 23
spill handler, 256, 257
spill trap handler, 95, 418

scaling of the coefficient, 160
scratchpad registers

hyperprivileged, 364
privileged, 363
state after reset, 501

SDIV instruction, 52, 258
SDIVcc instruction, 52, 258
SDIVX instruction, 227
Secondary Context ID 0, 455
Secondary Context ID 1, 455
Secondary Context register, 456
self-consistency, processor, 333
self-modifying code, 146, 147, 339
sequencing MEMBAR instructions, 89
sequential consistency, 329, 335, 336
sequential consistency memory model, 336
service processor, 12
SETHI instruction, 89, 260
Indexxxvii

creating 32-bit constant in R register, 21
and NOP instruction, 228
with rd = 0, 260

setn synthetic instructions, 557
SFSR register

error handling, 510
shall (keyword), 12
shared memory, 327
shift count encodings, 263
shift instructions, 21
shift instructions, 89, 263
short floating-point load and store instructions, 363
short floating-point load instructions, 203
short floating-point store instructions, 282
should (keyword), 12
SIAM instruction, 261
side effect

accesses, 329
definition, 12
I/O locations, 328
instruction prefetching, 329
real memory storage, 328
visible, 328

side-effect page, illegal access to, 407
signalling NaN (not-a-number), 44, 181
signed integer data type, 25
signx synthetic instructions, 558
SIMD, 12

instruction data formats, 31–32
simm10 instruction field

move instructions, 223
simm11 instruction field

move instructions, 221
simm13 instruction field

floating point
load instructions, 195, 215

simm13 instruction field
arithmetic instructions, 225, 227, 230, 258, 265, 301, 303
floating point load instructions, 197, 201
flush memory instruction, 146
jump-and-link instruction, 187
load instructions, 188, 205, 206, 208, 210
logical operation instructions, 113, 312
POPC, 233
PREFETCH, 235
RETURN, 253

single instruction/multiple data, See SIMD
SIR, 12
SIR (software_initiated_reset), 499
SIR instruction, 262

affecting virtual processor, 499
causing software_initiated_reset exception, 381, 414
and trap priority, 396
use by supervisor software, 404

SIR, See software_initiated_reset (SIR)
SLL instruction, 263
SLLX instruction, 263
SMUL instruction, 52, 265
SMULcc instruction, 52, 265
snooping, 12

SOFTINT register, 51, 57
clearing, 420
clearing of selected bits, 59
communication from nucleus code to kernel code, 420
scheduling interrupt vectors, 419, 420
setting, 420
state after reset, 501

SOFTINT register fields
int_level, 58
sm (stick_int), 58
tm (tick_int), 58
tm (tm), 59

SOFTINT_CLR pseudo-register, 51, 59
SOFTINT_SET pseudo-register, 51, 58, 58
software

nucleus, 10
software tablewalk, 471
software translation table, 430
software trap, 297, 383, 385
software trap number (SWTN), 297
software, nonprivileged, 55
software_initiated_reset (SIR), 404, 414, 499

entering error_state, 373
entering RED_state, 374
and MAXTL, 376
per-strand reset, 488
RED_state trap processing, 400
RED_state trap vector, 385
SIR instruction, 262, 380
and virtual processor, 499
virtual processor trap processing, 397
when TL = MAXTL, 397

software_trap_number, 556
source operands, 171, 174
SPARC V8 compatibility

LD, LDUW instructions, 188
operations to I/O locations, 329
read state register instructions, 243
STA instruction renamed, 268
STBAR instruction, 218
STD instruction, 209, 210, 285, 287
tagged subtract instructions, 300
UNIMP instruction renamed, 185
window_overflow exception superseded, 409
write state register instructions, 306

SPARC V9
compliance, 10, 453
features, 15

SPARC V9 Application Binary Interface (ABI), 17
special trap, renamed, 374
special traps, 374, 385
speculative load, 12
spill register window, 414

FLUSH instruction, 95
overflow/underflow, 38
RESTORE instruction, 94
SAVE instruction, 64, 94, 255, 416
SAVED instruction, 95, 257, 418
selection of, 417
trap handling, 418
Indexxxviii

trap vectors, 255, 417
window state, 63

spill_n_normal exception, 256, 414
and FLUSHW instruction, 149

spill_n_other exception, 256, 414
and FLUSHW instruction, 149

SRA instruction, 263
SRAX instruction, 263
SRL instruction, 263
SRLX instruction, 263
stack frame, 255
state registers (ASRs), 50–61
STB instruction, 266
STBA instruction, 267
STBAR instruction, 243, 306, 334, 340
STBLOCKF instruction, 269, 362
STDF instruction, 83, 272, 414
STDF_mem_address_not_aligned exception, 414

and store instructions, 273, 276
STDF/STDFA instruction, 83

STDFA instruction, 274
alignment, 83
ASIs for fp store operations, 363
causing DAE_invalid_ASI exception, 362
causing mem_address_not_aligned or illegal_instruction

exception, 362
causing STDF_mem_address_not_aligned exception, 83,

414
for block load operations, 362
for partial store operations, 362
used with ASIs, 362

STF instruction, 272
STFA instruction, 274
STFSR instruction, 44, 46, 410
STH instruction, 266
STHA instruction, 267
STICK register, 51, 54, 60

and hstick_match exception, 409
counter field, 59, 60
fields after power-on reset trap, 60
npt field, 54, 60
RDSTICK instruction, 242
state after reset, 501
while virtual processor is parked, 484

STICK_CMPR register, 51, 60
and HINTP, 77
int_dis field, 58, 61
RDSTICK_CMPR instruction, 242
state after reset, 501
stick_cmpr field, 61

store
block, See block store instructions
partial, See partial store instructions
short floating-point, See short floating-point store

instructions
store buffer

merging, 329
store floating-point into alternate space instructions, 274
store instructions, 12, 83, 408
store short floating-point instructions, 282

store_error exception, 414
StoreLoad MEMBAR relationship, 217, 340
StoreLoad predefined constant, 555
stores to alternate space, 21, 53, 87
StoreStore MEMBAR relationship, 217, 340
StoreStore predefined constant, 555
STPARTIALF instruction, 279
STPARTIALF instruction, DAE_nc_page exception, 407
STQF instruction, 84, 272, 416
STQF_mem_address_not_aligned exception, 416

STQF/STQFA instruction, 84
STQFA instruction, 84, 274
strand, 13
STRAND_AVAILABLE register, 479, 481, 481, 483

state after reset, 502
STRAND_ENABLE register, 482

state after reset, 502
STRAND_ENABLE_STATUS register, 482

state after reset, 502
STRAND_ID register, 478

state after reset, 503
STRAND_INTR_ID register, 423, 480, 495

state after reset, 503
STRAND_RUNNING register, 483, 484, 485

simultaneous updates, 485
state after reset, 503

STRAND_RUNNING_RW pseudo-register, 484, 485
STRAND_RUNNING_STATUS register, 483, 486

Parked or Unparked status, 487
state after reset, 503

STRAND_RUNNING_W1C pseudo-register, 484, 485
STRAND_RUNNING_W1S pseudo-register, 484, 485
strong consistency memory model, 336
strong ordering, 336
Strong Sequential Order, 337
STSHORTF instruction, 282
STTW instruction, 40, 83
STTW instruction (deprecated), 284
STTW_exception exception, 414
STTWA instruction, 40, 83
STTWA instruction (deprecated), 286
stuck-at fault, 505
STW instruction, 266
STWA instruction, 267
STX instruction, 266
STXA instruction, 267

accessing CMP-specific registers, 476
accessing nontranslating ASIs, 287
initiating demap operation, 468
mem_address_not_aligned exception, 267
referencing internal ASIs, 337
writing to a CMP register, 478

STXFSR instruction, 44, 46, 288, 410
SUB instruction, 290, 290
SUBC instruction, 290, 290
SUBcc instruction, 89, 290, 290
SUBCcc instruction, 290, 290
subnormal number, 13
subtract instructions, 290
superscalar, 13
Index xxix

supervisor software
accessing special protected registers, 20
definition, 13
forcing processing into RED_state, 397
use of SIR trap, 404

suspend, 13
suspended, 13
sw_recoverable_error exception, 414, 416
sw_recoverable_error trap, 507

clearing in L2 cache, 516
disrupting traps, 514
handler routine, 507
reporting, 509

SWAP instruction, 20, 291
accessing doubleword simultaneously with other

instructions, 292
and DAE_nc_page exception, 407
hardware primitive for mutual exclusion, 338, 339
identification of R register to be exchanged, 83
in multiprocessor system, 205, 206
memory accessing, 291
ordering by MEMBAR, 339

swap R register
bit contents, 125
with alternate space memory instructions, 292
with memory instructions, 291

SWAPA instruction, 292
accessing doubleword simultaneously with other

instructions, 292
alternate space addressing, 20
and DAE_nc_page exception, 407
hardware primitive for mutual exclusion, 338
in multiprocessor system, 205, 206
ordering by MEMBAR, 339

SWTN (software trap number), 297
Sync predefined constant, 555
synchonization, 219
synchronization, 13
Synchronous Fault Address register (SFAR), 7, 461
Synchronous Fault Address Register (SFAR),, See Data

Synchronous Fault Address Register (D-SFAR)
synthetic instructions

mapping to SPARC V9 instructions, 557–558
for assembly language programmers, 556
mapping

bclrg, 558
bset, 558
btog, 558
btst, 558
call, 557
casn, 558
clrn, 558
cmp, 557
dec, 558
deccc, 558
inc, 558
inccc, 558
iprefetch, 557
jmp, 557
movn, 558

neg, 558
not, 558
restore, 557
ret/ret1, 557
save, 557
setn, 557
signx, 558
tst, 557

vs. pseudo ops, 557
system clock-tick register (STICK), 59
system software, 414

accessing memory space by server program, 331
ASIs allowing access to memory space, 332
FLUSH instruction, 148, 341
processing exceptions, 331
trap types from which software must recover, 46

System Tick Compare register, See STICK_CMPR register
System Tick register, See STICK register

T
TA instruction, 296, 525
Tablewalk Pending Control register, 470, 471
Tablewalk Pending Status register, 471
TADDcc instruction, 90, 294
TADDccTV instruction, 90, 415
Tag Access registers, 463

effect of loads and stores, 462
and formation of pointer address, 441
Lower Tag Access, 464
updating, 463
Upper Tag Access register, 463

tag overflow, 90
tag_overflow exception, 90, 294, 295, 299, 300
tag_overflow exception (deprecated), 415
tagged arithmetic, 90
tagged arithmetic instructions, 22
tagged word data format, 25
tagged words, 25
TBA (trap base address) register, 67, 372

establishing table address, 23, 371
initialization, 383
specification for RDPR instruction, 246
specification for WRPR instruction, 310
state after reset, 500
trap behavior, 13

TBR register (SPARC V8), 306
TCC instruction, 296
Tcc instructions, 296

at TL > 0, 383
causing trap, 371
causing trap to privileged trap handler, 385
CCR register bits, 53
generating htrap_instruction exception, 409
generating illegal_instruction exception, 410
generating trap_instruction exception, 415
opcode maps, 521, 525, 526
programming uses, 297
trap table space, 23
vector through trap table, 371
Index xxx

TCS instruction, 296, 525
TE instruction, 296, 525
terminating deferred trap, 514
termination deferred trap, 377
test-and-set instruction, 339
TG instruction, 296, 525
TGE instruction, 296, 525
TGU instruction, 296, 525
thread, 13
TICK register, 51

controlling access to timing information, 55
counter field, 54, 537, 549
fields after power-on reset trap, 54
inaccuracies between two readings of, 537, 549
npt field, 55
specification for RDPR instruction, 246
specification for WRPR instruction, 310
state after reset, 500
while virtual processor is parked, 484, 548

TICK_CMPR register, 51, 59
int_dis field, 58, 59
state after reset, 501
tick_cmpr field, 59

timer registers, See TICK register and STICK register
timing of instructions, 109
tininess (floating-point), 50
TL (trap level) register, 72, 372

affect on privilege level to which a trap is delivered, 382
and implicit ASIs, 87
displacement in trap table, 371
executing RESTORED instruction, 250
executing SAVED instruction, 257
indexing for WRHPR instruction, 308
indexing for WRPR instruction, 310
indexing hyperprivileged register after RDHPR, 245
indexing privileged register after RDPR, 246
setting register value after WRHPR, 308
setting register value after WRPR, 310
specification for RDPR instruction, 246
specification for WRPR instruction, 310
state after reset, 500
and TBA register, 383
and TPC register, 64
and TSTATE register, 66, 76
and TT register, 67
use in calculating privileged trap vector address, 383
and VER.maxtl, 79
and WSTATE register, 63

TL instruction, 296, 525
TLB, 13

and 3-dimensional arrays, 116
bypass operation, 472
Data Access register, 465
Data In register, 441
definition, 13
demap operation, 472
error checking, 512
errors, 512–513
hardware, 472
hit, 13

Lower Tag Access register fields, 464
miss, 13

handler, 431, 439
MMU behavior, 431
reloading TLB, 430, 437

miss/refill sequence, 440
operations, 472
page loading, 462
partition IDs, 432
read operation, 472
replacement attempts, 463
software-corrected errors, 513
specialized miss handler code, 453
Tag Access registers, 463, 464, 467
translation operation, 472
v field, 463
write operation, 472

TLB Upper Tag Access register fields, 463
TLE instruction, 296, 525
TLEU instruction, 296, 525
TN instruction, 296, 525
TNE instruction, 296, 525
TNEG instruction, 296, 525
TNPC (trap next program counter) register, 65

after async_data_error disrupting trap, 415
saving NPC, 377
specification for RDPR instruction, 246
specification for WRPR instruction, 310
state after reset, 500

TNPC (trap-saved next program counter) register, 13
total order, 335
total store order (TSO) memory model, 69, 219, 328, 335, 336,

336
TPC (trap program counter) register, 13, 64

address of trapping instruction, 247
after async_data_error disrupting trap, 415
number of instances, 64
specification for RDPR instructions, 246
specification for WRPR instruction, 310
state after reset, 500

TPOS instruction, 296, 525
translating ASI, 346
Translation Lookaside Buffer, See TLB
Translation Table Entry, See TTE
trap

See also exceptions and traps
noncacheable accesses, 329
when taken, 13

trap enable mask (tem) field of FSR register, 382, 534
trap handler

for global registers, 75
hyperprivileged mode, 385
privileged mode, 385
regular/nonfaulting loads, 9
returning from, 127, 251
user, 46, 315

trap level register, See TL register
trap next program counter register, See TNPC register
Trap on Control Transfer

and instructions
Index xxxi

Bicc, 118
BPcc, 121
BPr, 122
CALL, 124
DONE, 128, 252, 297
FBfcc, 136, 138
JMPL, 187

tct field of PSTATE register, 68
trap on integer condition codes instructions, 296
Trap Overflow Enable bit, 369
trap program counter register, See TPC register
trap state register, See TSTATE register
trap type (TT) register, 385
trap type register, See TT register
trap_instruction (ISA) exception, 297, 298, 415
trap_level_zero exception, 76, 415

state after reset, 500
with WRHPR instructions, 309
with write instructions, 311

trap_little_endian (tle) field of PSTATE register, 69
traps, 13

See also exceptions and individual trap names
categories

deferred, 377, 377, 379
disrupting, 377, 379, 380
precise, 377, 377, 379
priority, 382, 396
reset, 67, 377, 379, 380, 380, 397, 535
restartable

implementation dependency, 378
restartable deferred, 377
termination deferred, 377

caused by undefined feature/behavior, 14
causes, 24, 24
deferred, 506
definition, 23, 371
disrupting, 507
ECC_error, 409
hardware, 385
hardware stack, 16
level specification, 72
model stipulations, 381
nested, 16
normal, 9, 374, 385, 398, 400
precise, 505
processing, 396
software, 297, 383, 385
software_initiated_reset (SIR), 400
special, 374, 385
stack, 398
vector address, specifying, 67, 78
vector, RED_state, 384

TSB, 13, 437
cacheability, 437
caching, 437
configuration, 438
demap operation, 469
Direct Pointer registers, 459
I/D Translation Storage Buffer register, 458
indexing support, 437

miss handler, 441
organization, 438
pointer generation for TTE, 460
Pointer register, 460
ra_not_pa field, 440
range checking, 440

TSB Config
e field, 459
page_size field, 459
ra_not_pa field, 435, 440, 456, 457, 459, 459
tsb_base field, 459
tsb_size field, 459, 460
use_cid<0|1> fields, 459

TSO, 13
TSO, See total store order (TSO) memory model
tst synthetic instruction, 557
TSTATE (trap state) register, 66

DONE instruction, 127, 251
registers saved after trap, 23
restoring GL value, 75
specification for RDPR instruction, 246
specification for WRPR instruction, 310
state after reset, 500

tstate, See trap state (TSTATE) register
TSUBcc instruction, 90, 299
TSUBccTV instruction, 90, 415
TT (trap type) register, 67

and privileged trap vector address, 383, 384
reserved values, 535
specification for RDPR instruction, 246
specification for WRPR instruction, 310
state after reset, 500
and Tcc instructions, 298
transferring trap control, 385
trap type recorded after RED_state_exception, 414
window spill/fill exceptions, 63
WRHPR instruction, 308
WRPR instruction, 310

TTE, 13
context ID field, 434, 438
cp (cacheability) field, 328
cp field, 407, 436, 436
cv field, 436, 436
e field, 328, 342, 407, 436
ie field, 435
indexing support, 437
nfo field, 342, 407, 435, 436
p field, 407, 436
privileged code numbers, 439
ra field, 440
size field, 437
soft2 field, 435
SPARC V8 equivalence, 434
taddr field, 435, 464
v field, 434
va_tag field, 434
w field, 436

TVC instruction, 296, 525
TVS instruction, 296, 525
typewriter font, in assembly language syntax, 551
Indexxxxii

U
UDIV instruction, 52, 301
UDIVcc instruction, 52, 301
UDIVX instruction, 227
ufm (underflow mask) field of FSR.tem, 49
UltraSPARC, previous ASIs

ASI_PHY_BYPASS_EC_WITH_EBIT_L, 365
ASI_PHYS_BYPASS_EC_WITH_EBIT, 365
ASI_PHYS_BYPASS_EC_WITH_EBIT_LITTLE, 365
ASI_PHYS_USE_EC, 365
ASI_PHYS_USE_EC_L, 365
ASI_PHYS_USE_EC_LITTLE, 365
ASI_QUAD_LDD_L (deprecated), 365
ASI_QUAD_LDD_LITTLE (deprecated), 365
ASI_QUAD_LDD_PHYS (deprecated), 365

UMMU demap, 468
UMMU TLB Tag Access register, 463
UMMU, ASIs, 463
UMMU_TLB_DATA_ACCESS, 465
UMMU_TLB_DATA_IN, 464
UMMU_TLB_LOWER_TAG_READ, 466
UMMU_TLB_TAG_READ, 466
UMMU_TLB_TAG_TARGET, 468
UMMU_TLB_UPPER_TAG_READ, 466
UMUL instruction, 52
UMUL instruction (deprecated), 303
UMULcc instruction, 52
UMULcc instruction (deprecated), 303
unassigned, 13
unconditional branches, 117, 121, 135, 138
uncorrectable, 14
undefined, 14
underflow

bits of FSR register
accrued (ufa) bit of aexc field, 50, 314
current (ufc) bit of cexc, 50
current (ufc) bit of cexc field, 314
mask (ufm) bit of FSR.tem, 50
mask (ufm) bit of tem field, 315

detection, 38
occurrence, 416

underflow mask (ufm) field of FSR.tem, 49
unfinished_FPop floating-point trap type, 47, 133, 143, 164,

179, 181, 183, 313
handling, 50
in normal computation, 46
results after recovery, 46

UNIMP instruction (SPARC V8), 185
unimplemented, 14
unimplemented_FPop floating-point trap type, 314

handling, 50
unimplemented_LDTW exception, 209, 415
unimplemented_STTW exception, 285, 415
uniprocessor system, 14
unpark, 14
unparking CMP core, 483
unrecoverable, 14
unrestricted, 14
unrestricted ASI, 345
unsigned integer data type, 25

unsupported_page_size exception, 415, 463
user application program, 14
user trap handler, 46, 315

V
VA, 14
VA_watchpoint exception, 415
VA_WATCHPOINT register, 412, 415
value clipping, See FPACK instructions
value semantics of input/output (I/O) locations, 328
VER (version) register (SPARC V9), 79
virtual

address, 327
address 0, 342

virtual address, 14
virtual core, 14
virtual memory, 240
virtual-translating ASI, 346
VIS, 14
VIS instructions

encoding, 527, 528
implicitly referencing GSR register, 56

Visual Instruction Set, See VIS instructions

W
W-A-R, See write-after-read memory hazard
warm_reset (WMR), 498

and STRAND_ENABLE register, 483
enabling/disabling virtual processors, 481, 482
machine state changes, 499

watchdog_reset (POR)
and RED_state, 375

watchdog_reset (WDR), 415
entering error_state, 376
exiting error_state, 499, 544
full-processor reset, 488
invoking RED_state trap processing, 400
per-strand reset, 488
and XIR traps, 403

watchdog_reset (WDR), and guest_watchdog, 373
watchdog_reset (WMR), 499
watchpoint comparator, 70
watchpoints

trap, 443
W-A-W, See write-after-write memory hazard
WDR, 14
WDR (watchdog_reset), 499
WDR, See watchdog_reset (WDR)
WIM register (SPARC V8), 306
window fill exception, See also fill_n_normal exception
window fill trap handler, 23
window overflow, 38, 416
window spill exception, See also spill_n_normal exception
window spill trap handler, 23
window state register, See WSTATE register
window underflow, 416
window, clean, 255
window_fill exception, 63, 94, 385
Indexxxxiii

RETURN, 253
window_spill exception, 63, 385
WMR (warm_reset), 498

machine state changes, 499
word, 14

alignment, 20, 83, 330
data format, 25

WRASI instruction, 51, 53, 305
WRasr instruction, 305

accessing I/O registers, 21
attempt to write to ASR 5 (PC), 55
cannot write to PC register, 55
implementation dependencies, 536
writing ASRs, 50

WRCCR instruction, 51, 52, 53, 305
WRFPRS instruction, 51, 55, 305
WRGSR instruction, 51, 56, 305
WRHPR instruction, 75, 77, 308
WRIER instruction (SPARC V8), 306
write ancillary state register (WRasr) instructions, 305
write ancillary state register instructions, See WRasr

instruction
write hyperprivileged register instruction, 308
write privileged register instruction, 310
write-after-read memory hazard, 334
write-after-write memory hazard, 333, 334
WRPR instruction, 374

accessing non-register-window PR state registers, 64
accessing register-window PR state registers, 61
and register-window PR state registers, 61
effect on TNPC register, 65
effect on TPC register, 65
effect on TSTATE register, 66
effect on TT register, 67
writing the TICK register, 54
writing to GL register, 74
writing to PSTATE register, 68
writing to TICK register, 54

WRPSR instruction (SPARC V8), 306
WRSOFTINT instruction, 51, 57, 305
WRSOFTINT_CLR instruction, 51, 57, 59, 305, 420
WRSOFTINT_SET instruction, 51, 57, 58, 305, 420
WRSTICK instruction, 51, 60, 305
WRSTICK_CMPR instruction, 51, 305
WRTBR instruction (SPARC V8), 306
WRTICK_CMP instruction, 51, 305
WRWIM instruction (SPARC V8), 306
WRY instruction, 51, 52, 305
WSTATE (window state) register

description, 63
and fill/spill exceptions, 417
normal field, 417
other field, 417
overview, 61
reading with RDPR instruction, 246
spill exception, 149
spill trap, 255
state after reset, 501
writing with WRPR instruction, 310

X
XIR, 14
XIR (externally_initiated_reset), 499
XIR reset, 489
XIR, See externally_initiated_reset (XIR)
XIR_STEERING register, 489

state after reset, 502
XNOR instruction, 312
XNORcc instruction, 312
XOR instruction, 312
XORcc instruction, 312

Y
Y register, 51, 52

after multiplication completed, 225
content after divide operation, 258, 301
divide operation, 258, 301
multiplication, 225
state after reset, 500
unsigned multiply results, 265, 303
WRY instruction, 306

Y register (deprecated), 52

Z
zero virtual address, 342
Indexxxxiv

	UltraSPARC Architecture 2007
	Contents
	Preface
	Document Overview
	1.1 Navigating UltraSPARC Architecture 2007
	1.2 Fonts and Notational Conventions
	1.2.1 Implementation Dependencies
	1.2.2 Notation for Numbers
	1.2.3 Informational Notes

	1.3 Reporting Errors in this Specification

	Definitions
	Architecture Overview
	3.1 The UltraSPARC Architecture 2007
	3.1.1 Features
	3.1.2 Attributes
	3.1.2.1 Design Goals
	3.1.2.2 Register Windows

	3.1.3 System Components
	3.1.3.1 Binary Compatibility
	3.1.3.2 UltraSPARC Architecture 2007 MMU
	3.1.3.3 Privileged Software

	3.1.4 Architectural Definition
	3.1.5 UltraSPARC Architecture 2007 Compliance with SPARC V9 Architecture
	3.1.6 Implementation Compliance with UltraSPARC Architecture 2007

	3.2 Processor Architecture
	3.2.1 Integer Unit (IU)
	3.2.2 Floating-Point Unit (FPU)

	3.3 Instructions
	3.3.1 Memory Access
	3.3.1.1 Memory Alignment Restrictions
	3.3.1.2 Addressing Conventions
	3.3.1.3 Addressing Range
	3.3.1.4 Load/Store Alternate
	3.3.1.5 Separate Instruction and Data Memories
	3.3.1.6 Input/Output (I/O)
	3.3.1.7 Memory Synchronization

	3.3.2 Integer Arithmetic / Logical / Shift Instructions
	3.3.3 Control Transfer
	3.3.4 State Register Access
	3.3.4.1 Ancillary State Registers
	3.3.4.2 PR State Registers
	3.3.4.3 HPR State Registers

	3.3.5 Floating-Point Operate
	3.3.6 Conditional Move
	3.3.7 Register Window Management
	3.3.8 SIMD

	3.4 Traps
	3.5 Chip-Level Multithreading (CMT)

	Data Formats
	4.1 Integer Data Formats
	4.1.1 Signed Integer Data Types
	4.1.1.1 Signed Integer Byte, Halfword, and Word
	4.1.1.2 Signed Integer Doubleword (64 bits)
	4.1.1.3 Signed Integer Extended-Word (64 bits)

	4.1.2 Unsigned Integer Data Types
	4.1.2.1 Unsigned Integer Byte, Halfword, and Word
	4.1.2.2 Unsigned Integer Doubleword (64 bits)
	4.1.2.3 Unsigned Extended Integer (64 bits)

	4.1.3 Tagged Word (32 bits)

	4.2 Floating-Point Data Formats
	4.2.1 Floating Point, Single Precision (32 bits)
	4.2.2 Floating Point, Double Precision (64 bits)
	4.2.3 Floating Point, Quad Precision (128 bits)
	4.2.4 Floating-Point Data Alignment in Memory and Registers

	4.3 SIMD Data Formats
	4.3.1 Uint8 SIMD Data Format
	4.3.2 Int16 SIMD Data Formats
	4.3.3 Int32 SIMD Data Format

	Registers
	5.1 Reserved Register Fields
	5.2 General-Purpose R Registers
	5.2.1 Global r Registers
	5.2.2 Windowed r Registers
	5.2.3 Special r Registers

	5.3 Floating-Point Registers
	5.3.1 Floating-Point Register Number Encoding
	5.3.2 Double and Quad Floating-Point Operands

	5.4 Floating-Point State Register (FSR)
	5.4.1 Floating-Point Condition Codes (fcc0, fcc1, fcc2, fcc3)
	5.4.2 Rounding Direction (rd)
	5.4.3 Trap Enable Mask (tem)
	5.4.4 Nonstandard Floating-Point (ns)
	5.4.5 FPU Version (ver)
	5.4.6 Floating-Point Trap Type (ftt)
	5.4.7 Accrued Exceptions (aexc)
	5.4.8 Current Exception (cexc)
	5.4.9 Floating-Point Exception Fields
	5.4.10 fsr Conformance

	5.5 Ancillary State Registers
	5.5.1 32-bit Multiply/Divide Register (y) (ASR 0)
	5.5.2 Integer Condition Codes Register (ccr) (ASR 2)
	5.5.2.1 Condition Codes (ccr.xcc and ccr.icc)

	5.5.3 Address Space Identifier (asi) Register (ASR 3)
	5.5.4 Tick (tick) Register (ASR 4)
	5.5.5 Program Counters (pc, npc) (ASR 5)
	5.5.6 Floating-Point Registers State (fprs) Register (ASR 6)
	5.5.7 General Status Register (gsr) (ASR 19)
	5.5.8 softintP Register (ASRs 20, 21, 22)
	5.5.8.1 softint_setP Pseudo-Register (ASR 20)
	5.5.8.2 softint_clrP Pseudo-Register (ASR 21)

	5.5.9 Tick Compare (tick_cmprP) Register (ASR 23)
	5.5.10 System Tick (stick) Register (ASR 24)
	5.5.11 System Tick Compare (stick_cmprP) Register (ASR 25)

	5.6 Register-Window PR State Registers
	5.6.1 Current Window Pointer (cwpP) Register (PR 9)
	5.6.2 Savable Windows (cansaveP) Register (PR 10)
	5.6.3 Restorable Windows (canrestoreP) Register (PR 11)
	5.6.4 Clean Windows (cleanwinP) Register (PR 12)
	5.6.5 Other Windows (otherwinP) Register (PR 13)
	5.6.6 Window State (wstateP) Register (PR 14)
	5.6.7 Register Window Management
	5.6.7.1 Register Window State Definition
	5.6.7.2 Register Window Traps

	5.7 Non-Register-Window PR State Registers
	5.7.1 Trap Program Counter (tpcP) Register (PR 0)
	5.7.2 Trap Next PC (tnpcP) Register (PR 1)
	5.7.3 Trap State (tstateP) Register (PR 2)
	5.7.4 Trap Type (ttP) Register (PR 3)
	5.7.5 Trap Base Address (tbaP) Register (PR 5)
	5.7.6 Processor State (pstateP) Register (PR 6)
	5.7.7 Trap Level Register (tlP) (PR 7)
	5.7.8 Processor Interrupt Level (pilP) Register (PR 8)
	5.7.9 Global Level Register (glP) (PR 16)

	5.8 HPR State Registers
	5.8.1 Hyperprivileged State (hpstateH) Register (HPR 0)
	5.8.2 Hyperprivileged Trap State (hTstateH) Register (HPR 1)
	5.8.3 Hyperprivileged Interrupt Pending (hintpH) Register (HPR 3)
	5.8.4 Hyperprivileged Trap Base Address (htbaH) Register (HPR 5)
	5.8.5 Hyperprivileged Implementation Version (hverH) Register (HPR 6)
	5.8.6 Hyperprivileged System Tick Compare (hstick_cmprH) Register (HPR 31)

	Instruction Set Overview
	6.1 Instruction Execution
	6.2 Instruction Formats
	6.3 Instruction Categories
	6.3.1 Memory Access Instructions
	6.3.1.1 Memory Alignment Restrictions
	6.3.1.2 Addressing Conventions
	6.3.1.3 Address Space Identifiers (ASIs)
	6.3.1.4 Separate Instruction Memory

	6.3.2 Memory Synchronization Instructions
	6.3.3 Integer Arithmetic and Logical Instructions
	6.3.3.1 Setting Condition Codes
	6.3.3.2 Shift Instructions
	6.3.3.3 Set High 22 Bits of Low Word
	6.3.3.4 Integer Multiply/Divide
	6.3.3.5 Tagged Add/Subtract

	6.3.4 Control-Transfer Instructions (CTIs)
	6.3.4.1 Conditional Branches
	6.3.4.2 Unconditional Branches
	6.3.4.3 CALL and JMPL Instructions
	6.3.4.4 RETURN Instruction
	6.3.4.5 DONE and RETRY Instructions
	6.3.4.6 Trap Instruction (Tcc)
	6.3.4.7 DCTI Couples

	6.3.5 Conditional Move Instructions
	6.3.6 Register Window Management Instructions
	6.3.6.1 SAVE Instruction
	6.3.6.2 RESTORE Instruction
	6.3.6.3 SAVED Instruction
	6.3.6.4 RESTORED Instruction
	6.3.6.5 Flush Windows Instruction

	6.3.7 Ancillary State Register (ASR) Access
	6.3.8 Privileged Register Access
	6.3.9 Floating-Point Operate (FPop) Instructions
	6.3.10 Implementation-Dependent Instructions
	6.3.11 Reserved Opcodes and Instruction Fields

	Instructions
	TABLE 72 UltraSPARC Architecture 2007 Instruction Set - Alphabetical (2 of 2)
	7.1 Add
	7.2 Align Address
	7.3 Mark All Register Window Sets “Clean”
	7.4 AND Logical Operation
	7.5 Three-Dimensional Array Addressing
	7.6 Branch on Integer Condition Codes (Bicc)
	7.7 Byte Mask and Shuffle
	7.8 Branch on Integer Condition Codes with Prediction (BPcc)
	7.9 Branch on Integer Register with Prediction (BPr)
	7.10 Call and Link
	7.11 Compare and Swap
	7.12 DONE
	7.13 Edge Handling Instructions
	7.14 Edge Handling Instructions (no CC)
	7.15 Floating-Point Absolute Value
	7.16 Floating-Point Add
	7.17 Align Data
	7.18 Branch on Floating-Point Condition Codes (FBfcc)
	7.19 Branch on Floating-Point Condition Codes with Prediction (FBPfcc)
	7.20 SIMD Signed Compare
	7.21 Floating-Point Compare
	7.22 Floating-Point Divide
	7.23 FEXPAND
	7.24 Convert 32-bit Integer to Floating Point
	7.25 Flush Instruction Memory
	7.26 Flush Register Windows
	7.27 Floating-Point Multiply-Add and Multiply- Subtract (fused)
	7.28 Floating-Point Move
	7.29 Move Floating-Point Register on Condition (FMOVcc)
	7.30 Move Floating-Point Register on Integer Register Condition (FMOVR)
	7.31 Partitioned Multiply Instructions
	7.31.1 FMUL8x16 Instruction
	7.31.2 FMUL8x16AU Instruction
	7.31.3 FMUL8x16AL Instruction
	7.31.4 FMUL8SUx16 Instruction
	7.31.5 FMUL8ULx16 Instruction
	7.31.6 FMULD8SUx16 Instruction
	7.31.7 FMULD8ULx16 Instruction

	7.32 Floating-Point Multiply
	7.33 Floating-Point Negate
	7.34 FPACK
	7.34.1 FPACK16
	7.34.2 FPACK32
	7.34.3 FPACKFIX

	7.35 Fixed-point Partitioned Add
	7.36 FPMERGE
	7.37 Fixed-point Partitioned Subtract (64-bit)
	7.38 f Register Logical Operate (1 operand)
	7.39 f Register Logical Operate (2 operand)
	7.40 f Register Logical Operate (3 operand)
	7.41 Floating-Point Square Root
	7.42 Convert Floating-Point to Integer
	7.43 Convert Between Floating-Point Formats
	7.44 Floating-Point Subtract
	7.45 Convert 64-bit Integer to Floating Point
	7.46 Illegal Instruction Trap
	7.47 Mark Register Window Sets as “Invalid”
	7.48 Jump and Link
	7.49 Load Integer
	7.50 Load Integer from Alternate Space
	7.51 Block Load
	7.52 Load Floating-Point Register
	7.53 Load Floating-Point from Alternate Space
	7.54 Load Floating-Point State Register (Lower)
	7.55 Load Short Floating-Point
	7.56 Load-Store Unsigned Byte
	7.57 Load-Store Unsigned Byte to Alternate Space
	7.58 Load Integer Twin Word
	7.59 Load Integer Twin Word from Alternate Space
	7.60 Load Integer Twin Extended Word from Alternate Space
	7.61 Load Floating-Point State Register
	7.62 Memory Barrier
	7.62.1 Memory Synchronization
	7.62.2 Synchronization of the Virtual Processor
	7.62.3 TSO Ordering Rules affecting Use of MEMBAR

	7.63 Move Integer Register on Condition (MOVcc)
	7.64 Move Integer Register on Register Condition (MOVr)
	7.65 Multiply Step
	7.66 Multiply and Divide (64-bit)
	7.67 No Operation
	7.68 NORMALW
	7.69 OR Logical Operation
	7.70 OTHERW
	7.71 Pixel Component Distance (with Accumulation)
	7.72 Population Count
	7.73 Prefetch
	7.73.1 Exceptions
	7.73.2 Weak versus Strong Prefetches
	7.73.3 Prefetch Variants
	7.73.3.1 Prefetch for Several Reads (fcn = 0, 20(1416))
	7.73.3.2 Prefetch for One Read (fcn = 1, 21(1516))
	7.73.3.3 Prefetch for Several Writes (and Possibly Reads) (fcn = 2, 22(1616))
	7.73.3.4 Prefetch for One Write (fcn = 3, 23(1716))
	7.73.3.5 Prefetch Page (fcn = 4)
	7.73.3.6 Prefetch to Nearest Unified Cache (fcn = 17(1116))

	7.73.4 Implementation-Dependent Prefetch Variants (fcn = 16, 18, 19, and 24-31)
	7.73.5 Additional Notes

	7.74 Read Ancillary State Register
	7.75 Read Hyperprivileged Register
	7.76 Read Privileged Register
	7.77 RESTORE
	7.78 RESTORED
	7.79 RETRY
	7.80 RETURN
	7.81 SAVE
	7.82 SAVED
	7.83 Signed Divide (64-bit ¸ 32-bit)
	7.84 SETHI
	7.85 Set Interval Arithmetic Mode
	7.86 Software-Initiated Reset
	7.87 Shift
	7.88 Signed Multiply (32-bit)
	7.89 Store Integer
	7.90 Store Integer into Alternate Space
	7.91 Block Store
	7.92 Store Floating-Point
	7.93 Store Floating-Point into Alternate Space
	7.94 Store Floating-Point State Register (Lower)
	7.95 Store Partial Floating-Point
	7.96 Store Short Floating-Point
	7.97 Store Integer Twin Word
	7.98 Store Integer Twin Word into Alternate Space
	7.99 Store Floating-Point State Register
	7.100 Subtract
	7.101 Swap Register with Memory
	7.102 Swap Register with Alternate Space Memory
	7.103 Tagged Add
	7.104 Tagged Add and Trap on Overflow
	7.105 Trap on Integer Condition Codes (Tcc)
	7.106 Tagged Subtract
	7.107 Tagged Subtract and Trap on Overflow
	7.108 Unsigned Divide (64-bit ¸ 32-bit)
	7.109 Unsigned Multiply (32-bit)
	7.110 Write Ancillary State Register
	7.111 Write Hyperprivileged Register
	7.112 Write Privileged Register
	7.113 XOR Logical Operation

	IEEE Std 754-1985 Requirements for UltraSPARC Architecture 2007
	8.1 Traps Inhibiting Results
	8.2 Underflow Behavior
	8.2.1 Trapped Underflow Definition (ufm = 1)
	8.2.2 Untrapped Underflow Definition (ufm = 0)

	8.3 Integer Overflow Definition
	8.4 Floating-Point Nonstandard Mode
	8.5 Arithmetic Result Tables
	8.5.1 Floating-Point Add (FADD)
	8.5.2 Floating-Point Subtract (FSUB)
	8.5.3 Floating-Point Multiply
	8.5.4 Floating-Point Multiply-Add (FMADD
	8.5.5 Floating-Point Negative Multiply-Add (FNMADD)
	8.5.6 Floating-Point Multiply-Subtract (FMSUB)
	8.5.7 Floating-Point Negative Multiply-Subtract (FNMSUB)
	8.5.8 Floating-Point Divide (FDIV)
	8.5.9 Floating-Point Square Root (FSQRT)
	8.5.10 Floating-Point Compare (FCMP, FCMPE)
	8.5.11 Floating-Point to Floating-Point Conversions (F<s|d|q>TO<s|d|q>)
	8.5.12 Floating-Point to Integer Conversions (F<s|d|q>TO<i|x>)
	8.5.13 Integer to Floating-Point Conversions (F<i|x>TO<s|d|q>)

	Memory
	9.1 Memory Location Identification
	9.2 Memory Accesses and Cacheability
	9.2.1 Coherence Domains
	9.2.1.1 Cacheable Accesses
	9.2.1.2 Noncacheable Accesses
	9.2.1.3 Noncacheable Accesses with Side-Effect

	9.3 Memory Addressing and Alternate Address Spaces
	9.3.1 Memory Addressing Types
	9.3.2 Memory Address Spaces
	9.3.3 Address Space Identifiers

	9.4 SPARC V9 Memory Model
	9.4.1 SPARC V9 Program Execution Model
	9.4.2 Virtual Processor/Memory Interface Model

	9.5 The UltraSPARC Architecture Memory Model - TSO
	9.5.1 Memory Model Selection
	9.5.2 Programmer-Visible Properties of the UltraSPARC Architecture TSO Model
	9.5.3 TSO Ordering Rules
	9.5.4 Hardware Primitives for Mutual Exclusion
	9.5.4.1 Compare-and-Swap (CASA, CASXA)
	9.5.4.2 Swap (SWAP)
	9.5.4.3 Load Store Unsigned Byte (LDSTUB)

	9.5.5 Memory Ordering and Synchronization
	9.5.5.1 Ordering MEMBAR Instructions
	9.5.5.2 Sequencing MEMBAR Instructions
	9.5.5.3 Synchronizing Instruction and Data Memory

	9.6 Nonfaulting Load
	9.7 Store Coalescing

	Address Space Identifiers (ASIs)
	10.1 Address Space Identifiers and Address Spaces
	10.2 ASI Values
	10.3 ASI Assignments
	10.3.1 Supported ASIs

	10.4 Special Memory Access ASIs
	10.4.1 ASIs 1016, 1116, 1616, 1716 and 1816 (ASI_*AS_IF_USER_*)
	10.4.2 ASIs 1816, 1916, 1E16, and 1F16 (ASI_*AS_IF_USER_*_LITTLE)
	10.4.3 ASI 1416 (ASI_REAL)
	10.4.4 ASI 1516 (ASI_REAL_IO)
	10.4.5 ASI 1C16 (ASI_REAL_LITTLE)
	10.4.6 ASI 1D16 (ASI_REAL_IO_LITTLE)
	10.4.7 ASIs 2216, 2316, 2716, 2A16, 2B16, 2F16 (Privileged Load Integer Twin Extended Word)
	10.4.8 ASIs 2616 and 2E16 (Privileged Load Integer Twin Extended Word, Real Addressing)
	10.4.9 ASIs 3016, 3116, 3616, 3816, 3916, 3E16 (ASI_AS_IF_PRIV_*)
	10.4.10 ASIs E216, E316, EA16, EB16 (Nonprivileged Load Integer Twin Extended Word)
	10.4.11 Block Load and Store ASIs
	10.4.12 Partial Store ASIs
	10.4.13 Short Floating-Point Load and Store ASIs

	10.5 ASI-Accessible Registers
	10.5.1 Privileged Scratchpad Registers (ASI_SCRATCHPAD)
	10.5.2 Hyperprivileged Scratchpad Registers (ASI_HYP_SCRATCHPAD)
	10.5.3 CMT Registers Accessed Through ASIs
	10.5.4 ASI Changes in the UltraSPARC Architecture

	Performance Instrumentation
	11.1 High-Level Requirements
	11.1.1 Usage Scenarios
	11.1.2 Metrics
	11.1.3 Accuracy Requirements

	11.2 Performance Counters and Controls
	11.2.1 Counter Overflow

	Traps
	12.1 Virtual Processor Privilege Modes
	12.2 Virtual Processor States, Normal Traps, and RED_state Traps
	12.2.1 RED_state
	12.2.1.1 RED_state Execution Environment
	12.2.1.2 RED_state Entry Traps
	12.2.1.3 RED_state Software Considerations
	12.2.1.4 Usage of Trap Levels

	12.2.2 error_state

	12.3 Trap Categories
	12.3.1 Precise Traps
	12.3.2 Deferred Traps
	12.3.3 Disrupting Traps
	12.3.3.1 Disrupting versus Precise and Deferred Traps
	12.3.3.2 Causes of Disrupting Traps
	12.3.3.3 Conditioning of Disrupting Traps
	12.3.3.4 Trap Handler Actions for Disrupting Traps
	12.3.3.5 Clearing Requirement for Disrupting Traps

	12.3.4 Reset Traps
	12.3.5 Uses of the Trap Categories

	12.4 Trap Control
	12.4.1 pil Control
	12.4.2 fsr.tem Control

	12.5 Trap-Table Entry Addresses
	12.5.1 Trap-Table Entry Address to Privileged Mode
	12.5.2 Privileged Trap Table Organization
	12.5.3 Trap-Table Entry Address to Hyperprivileged Mode
	12.5.4 Hyperprivileged Trap Table Organization
	12.5.5 Trap Table Entry Address to RED_state
	12.5.6 RED_state Trap Table Organization
	12.5.7 Trap Type (tt)
	12.5.7.1 Trap Type for Spill/Fill Traps

	12.5.8 Trap Priorities

	12.6 Trap Processing
	12.6.1 Normal Trap Processing
	12.6.2 RED_state Trap Processing
	12.6.2.1 Nonreset Traps with tl = maxtl - 1
	12.6.2.2 Power-On Reset (POR) Traps
	12.6.2.3 Watchdog Reset (WDR) Traps
	12.6.2.4 Externally Initiated Reset (XIR) Traps
	12.6.2.5 Software-Initiated Reset (SIR) Traps
	12.6.2.6 Nonreset Traps When the Virtual Processor Is in RED_state

	12.7 Exception and Interrupt Descriptions
	12.7.1 SPARC V9 Traps Not Used in UltraSPARC Architecture 2007

	12.8 Register Window Traps
	12.8.1 Window Spill and Fill Traps
	12.8.2 clean_window Trap
	12.8.3 Vectoring of Fill/Spill Traps
	12.8.4 cwp on Window Traps
	12.8.5 Window Trap Handlers

	Interrupt Handling
	13.1 Interrupt Packets
	13.2 Software Interrupt Register (softint)
	13.2.1 Setting the Software Interrupt Register
	13.2.2 Clearing the Software Interrupt Register

	13.3 Interrupt Queues
	13.3.1 Interrupt Queue Registers

	13.4 Interrupt Traps
	13.5 Strand Interrupt ID Register (strand_intr_id)
	13.6 Interrupt Vector Registers
	13.6.1 Interrupt Receive Register
	13.6.2 Interrupt Vector Dispatch Register
	13.6.3 Incoming Interrupt Vector Register

	Memory Management
	14.1 Virtual Address Translation
	14.2 Hyperprivileged Memory Management Architecture
	14.2.1 Partition ID
	14.2.2 Real Address Translation

	14.3 Context ID
	14.4 TSB Translation Table Entry (TTE)
	14.5 Translation Storage Buffer (TSB)
	14.5.1 TSB Indexing Support
	14.5.2 TSB Cacheability and Consistency
	14.5.3 TSB Organization
	14.5.4 TSB Configuration

	14.6 Hardware Support for TSB Access
	14.6.1 Hardware Tablewalk
	14.6.1.1 Typical Hardware Tablewalk Sequence

	14.6.2 Typical TLB Software Miss Sequence

	14.7 Faults and Traps
	14.8 MMU Operation Summary
	14.9 ASI Value, Context ID, and Endianness Selection for Translation
	14.10 Translation
	14.10.1 MMU Behavior During Reset and Upon Entering RED_state
	14.10.1.1 MMU Bypass
	14.10.1.2 MMU Disabled Behavior

	14.11 SPARC V9 “MMU Attributes”
	14.12 MMU Internal Registers and ASI Operations
	14.12.1 Accessing MMU Registers
	14.12.2 Context ID Registers
	14.12.3 Partition ID Register
	14.12.4 MMU Real Range Registers
	14.12.5 MMU Physical Offset Registers
	14.12.6 TSB Configuration Registers
	14.12.7 I/D/U TSB Pointer Registers
	14.12.8 Synchronous Fault Addresses
	14.12.8.1 DMMU Synchronous Fault Address Register
	14.12.8.2 Instruction Synchronous Fault Address

	14.12.9 I/D/U TLB Tag Access, Data In, Data Access, and Tag Read Registers
	14.12.9.1 I/D/U MMU TLB Tag Access Registers
	14.12.9.2 I/D/UMMU TLB Data In Register
	14.12.9.3 I/D/U MMU TLB Data Access Register
	14.12.9.4 I/D/UMMU TLB Tag Read Register

	14.12.10 I/D/UMMU TLB Tag Target Registers
	14.12.11 I/D/UMMU Demap
	14.12.12 Tablewalk Pending Registers
	14.12.12.1 Tablewalk Pending Control Register
	14.12.12.2 Tablewalk Pending Status Register

	14.13 Translation Lookaside Buffer Hardware
	14.13.1 TLB Operations

	Chip-Level Multithreading (CMT)
	15.1 Overview of CMT
	15.1.1 CMT Definition
	15.1.1.1 Background Terminology
	15.1.1.2 CMT Definition

	15.1.2 General CMT Behavior

	15.2 Accessing CMT Registers
	15.2.1 Classes of CMT Registers
	15.2.2 Accessing CMT Registers Through ASIs

	15.3 CMT Registers
	15.3.1 Strand ID Register (strand_id)
	15.3.1.1 Exposing Stranding

	15.3.2 Strand Interrupt ID Register (strand_intr_id)
	15.3.2.1 Assigning an Interrupt ID
	15.3.2.2 Dispatching and Receiving Interrupts
	15.3.2.3 Updating the Strand Interrupt ID Register

	15.4 Disabling and Parking Virtual Processors
	15.4.1 Strand Available Register (strand_available)
	15.4.2 Enabling and Disabling Virtual Processors
	15.4.2.1 Strand Enable Status Register (strand_enable_status)
	15.4.2.2 Strand Enable Register (strand_enable)
	15.4.2.3 Dynamically Enabling/Disabling Virtual Processors

	15.4.3 Parking and Unparking Virtual Processors
	15.4.3.1 Strand Running Register (strand_running)
	15.4.3.2 Strand Running Status Register (strand_running_status)

	15.4.4 Virtual Processor Standby (or Wait) State

	15.5 Reset and Trap Handling
	15.5.1 Per-Strand Resets (SIR and WDR Resets)
	15.5.2 Full-Processor Resets (POR and WRM Resets)
	15.5.2.1 Boot Sequence

	15.5.3 Partial Processor Resets (XIR Reset)
	15.5.3.1 XIR Steering Register (XIR_STEERING)

	15.6 Error Handling in CMT Processors
	15.6.1 Virtual-Processor-Specific Error Reporting
	15.6.2 Reporting Errors on Shared Structures
	15.6.2.1 Error Steering
	15.6.2.2 Reporting Non-Virtual-Processor-Specific Errors

	15.7 Additional CMT Software Interfaces
	15.7.1 Diagnostic/RAS Registers
	15.7.2 Configuration Registers
	15.7.3 Performance Registers
	15.7.4 Booting Support

	15.8 Performance Issues for CMT Processors
	15.9 Recommended Subset for Single-Strand Processors
	15.10 Machine State Summary

	Resets
	16.1 Resets
	16.1.1 Power-on Reset (POR)
	16.1.2 Warm Reset (WMR)
	16.1.3 Externally Initiated Reset (XIR)
	16.1.4 Watchdog Reset (WDR)
	16.1.5 Software-Initiated Reset (SIR)

	16.2 Machine States
	16.2.1 Machines States for CMT

	Error Handling
	17.1 Error Reporting
	17.1.1 Precise Traps
	17.1.2 Deferred Traps
	17.1.3 Disrupting Exceptions
	17.1.3.1 Disrupting Traps

	17.1.4 Fatal Error Signaling

	17.2 NotData Overview
	17.2.1 Notdata Requirement

	17.3 Error Status Registers
	17.3.1 Elements of an Event Status Register (esr)

	17.4 Protection, Detection, Reporting, and Handling of Errors
	17.4.1 L1 (Level-1) Caches
	17.4.2 TLB Errors
	17.4.2.1 Hardware-Corrected TLB Errors
	17.4.2.2 Software-Corrected TLB Errors

	17.4.3 Register File Errors
	17.4.4 Execution Unit Errors
	17.4.5 Other Core Errors Associated with Instruction Processing Before Instruction Retirement
	17.4.6 Store Errors
	17.4.7 Errors Not Associated with Instruction Processing
	17.4.8 L2 Cache Errors
	17.4.9 External Interface and Bus Errors

	17.5 Error Handling for Common Processor Errors

	Opcode Maps
	Implementation Dependencies
	B.1 Definition of an Implementation Dependency
	B.2 Hardware Characteristics
	B.3 Implementation Dependency Categories
	B.4 List of Implementation Dependencies

	Assembly Language Syntax
	C.1 Notation Used
	C.1.1 Register Names
	C.1.2 Special Symbol Names
	C.1.3 Values
	C.1.4 Labels
	C.1.5 Other Operand Syntax
	C.1.6 Comments

	C.2 Syntax Design
	C.3 Synthetic Instructions

	Index

