
Sun
4150
Sant
U.S.A

Part No. 8xx
Release 1.0
Part No: 95
Revision: Dr
UltraSPARC Architecture 2007

One Architecture
... Multiple Innovative Implementations

Draft D0.9.3b, 20 Oct 2009

Privilege Levels: Privileged
and Nonprivileged

Distribution: Public
Microsystems, Inc.
 Network Circle
a Clara, CA 95054
. 650-960-1300

-xxxx-xx
, 2002
0-5554-14
aft D0.9.3b, 20 Oct 2009

ii UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

Copyright 2002-2005 Sun Microsystems, Inc., 4150 Network Circle • Santa Clara, CA 950540 USA. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,
if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. For Netscape Communicator™, the following notice applies:
Copyright 1995 Netscape Communications Corporation. All rights reserved.

Sun, Sun Microsystems, the Sun logo, Solaris, UltraSPARC, and VIS are trademarks, registered trademarks, or service marks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by
Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID

.

Copyright 2002–2005 Sun Microsystems, Inc., 4150 Network Circle • Santa Clara, CA 950540 Etats-Unis. Tous droits réservés.

Des parties de ce document est protégé par un copyright 1994 SPARC International, Inc.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Solaris, UltraSPARC et VIS sont des marques de fabrique ou des marques déposées, ou marques de service,
de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de
fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC
sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS
DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

.

Comments and "bug reports” regarding this document are welcome; they should be submitted to email
address: UA-editor@sun.com

iv UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

Contents

Preface. i

1 Document Overview . 1

1.1 Navigating UltraSPARC Architecture 2007 . 1
1.2 Fonts and Notational Conventions . 2

1.2.1 Implementation Dependencies . 3
1.2.2 Notation for Numbers. 3
1.2.3 Informational Notes . 3

1.3 Reporting Errors in this Specification . 4

2 Definitions . 5

3 Architecture Overview. 13

3.1 The UltraSPARC Architecture 2007 . 13
3.1.1 Features . 13
3.1.2 Attributes . 14

3.1.2.1 Design Goals . 15
3.1.2.2 Register Windows . 15

3.1.3 System Components . 15
3.1.3.1 Binary Compatibility. 15
3.1.3.2 UltraSPARC Architecture 2007 MMU 15
3.1.3.3 Privileged Software . 15

3.1.4 Architectural Definition . 16
3.1.5 UltraSPARC Architecture 2007 Compliance with SPARC V9 Architecture 16
3.1.6 Implementation Compliance with UltraSPARC Architecture 2007 16

3.2 Processor Architecture . 16
3.2.1 Integer Unit (IU) . 16
3.2.2 Floating-Point Unit (FPU). 17

3.3 Instructions. 17
3.3.1 Memory Access . 17

3.3.1.1 Memory Alignment Restrictions 18
3.3.1.2 Addressing Conventions . 18
3.3.1.3 Addressing Range . 18
3.3.1.4 Load/Store Alternate . 18
3.3.1.5 Separate Instruction and Data Memories 19
3.3.1.6 Input/Output (I/O) . 19
3.3.1.7 Memory Synchronization . 19

3.3.2 Integer Arithmetic / Logical / Shift Instructions 19
3.3.3 Control Transfer . 20
3.3.4 State Register Access . 20

3.3.4.1 Ancillary State Registers . 20
3.3.4.2 PR State Registers . 20
i

3.3.5 Floating-Point Operate . 21
3.3.6 Conditional Move . 21
3.3.7 Register Window Management . 21
3.3.8 SIMD. 21

3.4 Traps . 21

4 Data Formats . 23

4.1 Integer Data Formats . 24
4.1.1 Signed Integer Data Types . 24

4.1.1.1 Signed Integer Byte, Halfword, and Word. 25
4.1.1.2 Signed Integer Doubleword (64 bits) 25
4.1.1.3 Signed Integer Extended-Word (64 bits) 25

4.1.2 Unsigned Integer Data Types . 25
4.1.2.1 Unsigned Integer Byte, Halfword, and Word 26
4.1.2.2 Unsigned Integer Doubleword (64 bits). 26
4.1.2.3 Unsigned Extended Integer (64 bits) 26

4.1.3 Tagged Word (32 bits). 26
4.2 Floating-Point Data Formats . 27

4.2.1 Floating Point, Single Precision (32 bits) 27
4.2.2 Floating Point, Double Precision (64 bits) 27
4.2.3 Floating Point, Quad Precision (128 bits). 28
4.2.4 Floating-Point Data Alignment in Memory and Registers 29

4.3 SIMD Data Formats . 29
4.3.1 Uint8 SIMD Data Format . 30
4.3.2 Int16 SIMD Data Formats . 30
4.3.3 Int32 SIMD Data Format . 30

5 Registers . 31

5.1 Reserved Register Fields . 32
5.2 General-Purpose R Registers. 32

5.2.1 Global R Registers. 33
5.2.2 Windowed R Registers . 34
5.2.3 Special R Registers . 37

5.3 Floating-Point Registers . 38
5.3.1 Floating-Point Register Number Encoding 40
5.3.2 Double and Quad Floating-Point Operands 41

5.4 Floating-Point State Register (FSR) . 42
5.4.1 Floating-Point Condition Codes (fcc0, fcc1, fcc2, fcc3) 42
5.4.2 Rounding Direction (rd) . 43
5.4.3 Trap Enable Mask (tem) . 43
5.4.4 Nonstandard Floating-Point (ns) . 43
5.4.5 FPU Version (ver) . 43
5.4.6 Floating-Point Trap Type (ftt). 44
5.4.7 Accrued Exceptions (aexc) . 46
5.4.8 Current Exception (cexc) . 46
5.4.9 Floating-Point Exception Fields . 47
5.4.10 FSR Conformance . 48

5.5 Ancillary State Registers . 48
5.5.1 32-bit Multiply/Divide Register (Y) (ASR 0) 50
5.5.2 Integer Condition Codes Register (CCR) (ASR 2) 50

5.5.2.1 Condition Codes (CCR.xcc and CCR.icc) 50
5.5.3 Address Space Identifier (ASI) Register (ASR 3). 51
5.5.4 Tick (TICK) Register (ASR 4) . 52
5.5.5 Program Counters (PC, NPC) (ASR 5) 52
5.5.6 Floating-Point Registers State (FPRS) Register (ASR 6) 53
5.5.7 General Status Register (GSR) (ASR 19) 54
ii UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

5.5.8 SOFTINTP Register (ASRs 20, 21, 22) . 54
5.5.8.1 SOFTINT_SETP Pseudo-Register (ASR 20) 55
5.5.8.2 SOFTINT_CLRP Pseudo-Register (ASR 21) 56

5.5.9 Tick Compare (TICK_CMPRP) Register (ASR 23) 56
5.5.10 System Tick (STICK) Register (ASR 24) . 57
5.5.11 System Tick Compare (STICK_CMPRP) Register (ASR 25) . . . 57

5.6 Register-Window PR State Registers . 58
5.6.1 Current Window Pointer (CWPP) Register (PR 9) 59
5.6.2 Savable Windows (CANSAVEP) Register (PR 10) 59
5.6.3 Restorable Windows (CANRESTOREP) Register (PR 11) 59
5.6.4 Clean Windows (CLEANWINP) Register (PR 12) 59
5.6.5 Other Windows (OTHERWINP) Register (PR 13) 60
5.6.6 Window State (WSTATEP) Register (PR 14) 60
5.6.7 Register Window Management . 60

5.6.7.1 Register Window State Definition 60
5.6.7.2 Register Window Traps . 61

5.7 Non-Register-Window PR State Registers . 61
5.7.1 Trap Program Counter (TPCP) Register (PR 0) 61
5.7.2 Trap Next PC (TNPCP) Register (PR 1) . 62
5.7.3 Trap State (TSTATEP) Register (PR 2) . 63
5.7.4 Trap Type (TTP) Register (PR 3) . 64
5.7.5 Trap Base Address (TBAP) Register (PR 5) 64
5.7.6 Processor State (PSTATEP) Register (PR 6) 64
5.7.7 Trap Level Register (TLP) (PR 7) . 68
5.7.8 Processor Interrupt Level (PILP) Register (PR 8) 69
5.7.9 Global Level Register (GLP) (PR 16) . 69

6 Instruction Set Overview. 71

6.1 Instruction Execution . 71
6.2 Instruction Formats . 72
6.3 Instruction Categories . 72

6.3.1 Memory Access Instructions . 73
6.3.1.1 Memory Alignment Restrictions 73
6.3.1.2 Addressing Conventions . 74
6.3.1.3 Address Space Identifiers (ASIs) 76
6.3.1.4 Separate Instruction Memory. 78

6.3.2 Memory Synchronization Instructions . 78
6.3.3 Integer Arithmetic and Logical Instructions 79

6.3.3.1 Setting Condition Codes . 79
6.3.3.2 Shift Instructions . 79
6.3.3.3 Set High 22 Bits of Low Word . 79
6.3.3.4 Integer Multiply/Divide. 79
6.3.3.5 Tagged Add/Subtract . 79

6.3.4 Control-Transfer Instructions (CTIs) . 79
6.3.4.1 Conditional Branches . 81
6.3.4.2 Unconditional Branches . 81
6.3.4.3 CALL and JMPL Instructions . 81
6.3.4.4 RETURN Instruction . 82
6.3.4.5 DONE and RETRY Instructions 82
6.3.4.6 Trap Instruction (Tcc). 82
6.3.4.7 DCTI Couples. 82

6.3.5 Conditional Move Instructions . 83
6.3.6 Register Window Management Instructions 83

6.3.6.1 SAVE Instruction . 84
6.3.6.2 RESTORE Instruction . 84
6.3.6.3 SAVED Instruction. 84
6.3.6.4 RESTORED Instruction . 85
• Contents iii

6.3.6.5 Flush Windows Instruction . 85
6.3.7 Ancillary State Register (ASR) Access . 85
6.3.8 Privileged Register Access . 85
6.3.9 Floating-Point Operate (FPop) Instructions 85
6.3.10 Implementation-Dependent Instructions. 86
6.3.11 Reserved Opcodes and Instruction Fields 86

7 Instructions . 87

7.31.1 FMUL8x16 Instruction . 147
7.31.2 FMUL8x16AU Instruction . 147
7.31.3 FMUL8x16AL Instruction . 148
7.31.4 FMUL8SUx16 Instruction . 148
7.31.5 FMUL8ULx16 Instruction . 148
7.31.6 FMULD8SUx16 Instruction . 149
7.31.7 FMULD8ULx16 Instruction . 150
7.34.1 FPACK16 . 154
7.34.2 FPACK32 . 155
7.34.3 FPACKFIX . 156
7.62.1 Memory Synchronization. 202
7.62.2 Synchronization of the Virtual Processor 203
7.62.3 TSO Ordering Rules affecting Use of MEMBAR. 203
7.73.1 Exceptions . 220
7.73.2 Weak versus Strong Prefetches . 221
7.73.3 Prefetch Variants . 222

7.73.3.1 Prefetch for Several Reads (fcn = 0, 20(1416)) 222
7.73.3.2 Prefetch for One Read (fcn = 1, 21(1516)) 222
7.73.3.3 Prefetch for Several Writes (and Possibly Reads) (fcn = 2, 22(1616))223
7.73.3.4 Prefetch for One Write (fcn = 3, 23(1716)) 223
7.73.3.5 Prefetch Page (fcn = 4) . 223
7.73.3.6 Prefetch to Nearest Unified Cache (fcn = 17(1116)) . . . 223

7.73.4 Implementation-Dependent Prefetch Variants (fcn = 16, 18, 19, and 24–31) 224
7.73.5 Additional Notes. 224

8 IEEE Std 754-1985 Requirements for UltraSPARC Architecture 2007 291

8.1 Traps Inhibiting Results . 291
8.2 Underflow Behavior . 292

8.2.1 Trapped Underflow Definition (ufm = 1) 293
8.2.2 Untrapped Underflow Definition (ufm = 0). 293

8.3 Integer Overflow Definition . 293
8.4 Floating-Point Nonstandard Mode. 293
8.5 Arithmetic Result Tables . 294

8.5.1 Floating-Point Add (FADD) . 295
8.5.2 Floating-Point Subtract (FSUB) . 295
8.5.3 Floating-Point Multiply . 296
8.5.4 Floating-Point Multiply-Add (FMADD 296
8.5.5 Floating-Point Negative Multiply-Add (FNMADD) 297
8.5.6 Floating-Point Multiply-Subtract (FMSUB) 298
8.5.7 Floating-Point Negative Multiply-Subtract (FNMSUB) 299
8.5.8 Floating-Point Divide (FDIV) . 301
8.5.9 Floating-Point Square Root (FSQRT) . 301
8.5.10 Floating-Point Compare (FCMP, FCMPE) 302
8.5.11 Floating-Point to Floating-Point Conversions (F<s|d|q>TO<s|d|q>) 302
8.5.12 Floating-Point to Integer Conversions (F<s|d|q>TO<i|x>) . 303
8.5.13 Integer to Floating-Point Conversions (F<i|x>TO<s|d|q>) . 304

9 Memory . 305

9.1 Memory Location Identification . 305
iv UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

9.2 Memory Accesses and Cacheability . 306
9.2.1 Coherence Domains. 306

9.2.1.1 Cacheable Accesses . 306
9.2.1.2 Noncacheable Accesses . 306
9.2.1.3 Noncacheable Accesses with Side-Effect 307

9.3 Memory Addressing and Alternate Address Spaces 308
9.3.1 Memory Addressing Types. 308
9.3.2 Memory Address Spaces. 308
9.3.3 Address Space Identifiers . 309

9.4 SPARC V9 Memory Model . 310
9.4.1 SPARC V9 Program Execution Model . 310
9.4.2 Virtual Processor/Memory Interface Model 312

9.5 The UltraSPARC Architecture Memory Model — TSO 313
9.5.1 Memory Model Selection . 313
9.5.2 Programmer-Visible Properties of the UltraSPARC Architecture TSO Model 314
9.5.3 TSO Ordering Rules. 315
9.5.4 Hardware Primitives for Mutual Exclusion 316

9.5.4.1 Compare-and-Swap (CASA, CASXA). 316
9.5.4.2 Swap (SWAP) . 316
9.5.4.3 Load Store Unsigned Byte (LDSTUB) 316

9.5.5 Memory Ordering and Synchronization. 316
9.5.5.1 Ordering MEMBAR Instructions 317
9.5.5.2 Sequencing MEMBAR Instructions 318
9.5.5.3 Synchronizing Instruction and Data Memory 318

9.6 Nonfaulting Load . 319
9.7 Store Coalescing. 320

10 Address Space Identifiers (ASIs) . 321

10.1 Address Space Identifiers and Address Spaces . 321
10.2 ASI Values. 321
10.3 ASI Assignments . 322

10.3.1 Supported ASIs . 322
10.4 Special Memory Access ASIs . 329

10.4.1 ASIs 1016, 1116, 1616, 1716 and 1816 (ASI_*AS_IF_USER_*) . . 329
10.4.2 ASIs 1816, 1916, 1E16, and 1F16 (ASI_*AS_IF_USER_*_LITTLE) 329
10.4.3 ASI 1416 (ASI_REAL). 330
10.4.4 ASI 1516 (ASI_REAL_IO) . 330
10.4.5 ASI 1C16 (ASI_REAL_LITTLE) . 330
10.4.6 ASI 1D16 (ASI_REAL_IO_LITTLE) . 331
10.4.7 ASIs 2216, 2316, 2716, 2A16, 2B16, 2F16 (Privileged Load Integer Twin Extended Word)

331
10.4.8 ASIs 2616 and 2E16 (Privileged Load Integer Twin Extended Word, Real Addressing)

331
10.4.9 ASIs E216, E316, EA16, EB16

(Nonprivileged Load Integer Twin Extended Word) 332
10.4.10 Block Load and Store ASIs . 333
10.4.11 Partial Store ASIs . 333
10.4.12 Short Floating-Point Load and Store ASIs 333

10.5 ASI-Accessible Registers . 333
10.5.1 Privileged Scratchpad Registers (ASI_SCRATCHPAD) 334
10.5.2 ASI Changes in the UltraSPARC Architecture 334

11 Performance Instrumentation . 337

11.1 High-Level Requirements. 337
11.1.1 Usage Scenarios . 337
11.1.2 Metrics. 338
• Contents v

11.1.3 Accuracy Requirements . 338
11.2 Performance Counters and Controls . 339

11.2.1 Counter Overflow . 339

12 Traps . 341

12.1 Virtual Processor Privilege Modes . 342
12.2 Virtual Processor States and Traps . 343

12.2.0.1 Usage of Trap Levels . 343
12.3 Trap Categories . 343

12.3.1 Precise Traps . 344
12.3.2 Deferred Traps . 344
12.3.3 Disrupting Traps . 345

12.3.3.1 Disrupting versus Precise and Deferred Traps 345
12.3.3.2 Causes of Disrupting Traps . 346
12.3.3.3 Conditioning of Disrupting Traps. 346
12.3.3.4 Trap Handler Actions for Disrupting Traps 347

12.3.4 Uses of the Trap Categories . 347
12.4 Trap Control . 347

12.4.1 PIL Control. 348
12.4.2 FSR.tem Control . 348

12.5 Trap-Table Entry Addresses . 348
12.5.1 Trap-Table Entry Address to Privileged Mode 348
12.5.2 Privileged Trap Table Organization . 349
12.5.3 Trap Type (TT) . 349

12.5.3.1 Trap Type for Spi ll/Fill Traps. 355
12.5.4 Trap Priorities . 356

12.6 Trap Processing . 356
12.6.1 Normal Trap Processing. 356

12.7 Exception and Interrupt Descriptions . 358
12.7.1 SPARC V9 Traps Not Used in UltraSPARC Architecture 2007 362

12.8 Register Window Traps . 362
12.8.1 Window Spill and Fill Traps . 363
12.8.2 clean_window Trap . 363
12.8.3 Vectoring of Fill/Spill Traps . 363
12.8.4 CWP on Window Traps . 363
12.8.5 Window Trap Handlers . 364

13 Interrupt Handling . 365

13.1 Interrupt Packets. 365
13.2 Software Interrupt Register (SOFTINT). 366

13.2.1 Setting the Software Interrupt Register 366
13.2.2 Clearing the Software Interrupt Register 366

13.3 Interrupt Queues. 366
13.3.1 Interrupt Queue Registers . 367

13.4 Interrupt Traps . 368

14 Memory Management . 369

14.1 Virtual Address Translation. 369
14.2 Context ID . 372
14.3 TSB Translation Table Entry (TTE) . 373
14.4 Translation Storage Buffer (TSB). 376

14.4.1 TSB Indexing Support . 376
14.4.2 TSB Cacheability and Consistency . 377
14.4.3 TSB Organization . 377

14.5 ASI Value, Context ID, and Endianness Selection for Translation 377
vi UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

14.6 SPARC V9 “MMU Attributes” . 379
14.6.1 Accessing MMU Registers . 380
14.6.2 Context ID Registers . 380

A Opcode Maps. 383

B Implementation Dependencies . 395

B.1 Definition of an Implementation Dependency. 395
B.2 Hardware Characteristics . 396
B.3 Implementation Dependency Categories . 396
B.4 List of Implementation Dependencies. 397

C Assembly Language Syntax . 409

C.1 Notation Used . 409
C.1.1 Register Names . 409
C.1.2 Special Symbol Names . 410
C.1.3 Values . 412
C.1.4 Labels . 412
C.1.5 Other Operand Syntax . 412
C.1.6 Comments . 414

C.2 Syntax Design. 414
C.3 Synthetic Instructions . 414

 . Index1
• Contents vii

viii UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

Preface

First came the 32-bit SPARC Version 7 (V7) architecture, publicly released in 1987. Shortly after, the
SPARC V8 architecture was announced and published in book form. The 64-bit SPARC V9
architecture was released in 1994. Now, the UltraSPARC Architecture specification provides the first
significant update in over 10 years to Sun’s SPARC processor architecture.

What’s New?
UltraSPARC Architecture 2007 pulls together in one document all parts of the architecture:

■ the nonprivilged (Level 1) architecture from SPARC V9

■ most of the privileged (Level 2) architecture from SPARC V9

■ more in-depth coverage of all SPARC V9 features

Plus, it includes all of Sun’s now-standard architectural extensions (beyond SPARC V9), developed
through the processor generations of UltraSPARC III, IV, IV+, and T1:

■ the VIS 1 and VIS 2 instruction set extensions and the associated GSR register

■ multiple levels of global registers, controlled by the GL register

■ Sun’s 64-bit MMU architecture

■ privileged instructions ALLCLEAN, OTHERW, NORMALW, and INVALW

■ access to the VER register is now hyperprivileged

■ the SIR instruction is now hyperprivileged

UltraSPARC Architecture 2007 includes the following changes since :

■ replacement of instruction_address_exception and data_acess_exception exceptions by multiple
IAE_* and DAE_* exceptions

■ FSR.ftt = 3 (unimplemented_FPop) has been retired; all unimplemented FPops now generate the
illegal_instruction exception instead of fp_exception_other with FSR.ftt = 3
(unimplemented_FPop).

In addition, architectural features are now tagged with Software Classes and Implementation
Classes1. Software Classes provide a new, high-level view of the expected architectural longevity and
portability of software that references those features. Implementation Classes give an indication of
how efficiently each feature is likely to be implemented across current and future UltraSPARC
Architecture processor implementations. This information provides guidance that should be
1. although most features in this specification are already tagged with Software Classes, the full description of those Classes does not

appear in this version of the specification. Please check back
(http://opensparc.sunsource.net/nonav/opensparct1.html) for a later release of this document, which will include that
description
• Preface i

particularly helpful to programmers who write in assembly language or those who write tools that
generate SPARC instructions. It also provides the infrastructure for defining clear procedures for
adding and removing features from the architecture over time, with minimal software disruption.

Acknowledgements
This specification builds upon all previous SPARC specifications — SPARC V7, V8, and especially,
SPARC V9. It therefore owes a debt to all the pioneers who developed those architectures.

SPARC V7 was developed by the SPARC (“Sunrise”) architecture team at Sun Microsystems, with
special assistance from Professor David Patterson of University of California at Berkeley.

The enhancements present in SPARC V8 were developed by the nine member companies of the
SPARC International Architecture Committee: Amdahl Corporation, Fujitsu Limited, ICL, LSI Logic,
Matsushita, Philips International, Ross Technology, Sun Microsystems, and Texas Instruments.

SPARC V9 was also developed by the SPARC International Architecture Committee, with key
contributions from the individuals named in the Editor’s Notes section of The SPARC Architecture
Manual-Version 9.

The voluminous enhancements and additions present in this UltraSPARC Architecture 2007
specification are the result of years of deliberation, review, and feedback from readers of earlier Sun-
internal revisions. I would particularly like to acknowledge the following people for their key
contributions:

■ The UltraSPARC Architecture working group, who reviewed dozens of drafts of this specification
and strived for the highest standards of accuracy and completeness; its active members included:
Hendrik-Jan Agterkamp, Paul Caprioli, Steve Chessin, Hunter Donahue, Greg Grohoski, John (JJ)
Johnson, Paul Jordan, Jim Laudon, Jim Lewis, Bob Maier, Wayne Mesard, Greg Onufer, Seongbae
Park, Joel Storm, David Weaver, and Tom Webber.

■ Robert (Bob) Maier, for expansion of exception descriptions in every page of the Instructions
chapter, major re-writes of several chapters and appendices (including Memory, Memory
Management, Performance Instrumentation, and Interrupt Handling), significant updates to 5 other
chapters, and tireless efforts to infuse commonality wherever possible across implementations.

■ Steve Chessin and Joel Storm, “ace” reviewers — the two of them spotted more typographical
errors and small inconsistencies than all other reviewers combined

■ Jim Laudon (an UltraSPARC T1 architect and author of that processor’s implementation
specification), for numerous descriptions of new features which were merged into this
specicification

■ The working group responsible for developing the system of Software Classes and Implementation
Classes, comprising: Steve Chessin, Yuan Chou, Peter Damron, Q. Jacobson, Nicolai Kosche, Bob
Maier, Ashley Saulsbury, Lawrence Spracklen, and David Weaver.

■ Lawrence Spracklen, for his advice and numerous contributions regarding descriptions of VIS
instructions

■ Tom Webber, for providing descriptions of several new features in UltraSPARC Architecture 2007

I hope you find the UltraSPARC Architecture 2007 specification more complete, accurate, and readable
than its predecessors.

— David Weaver
UltraSPARC Architecture Principal Engineer and specification editor
ii UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

Corrections and other comments regarding this specification can be emailed to:
UA-editor@sun.com
• Preface iii

iv UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

CHAPTER 1

Document Overview

This chapter discusses:

■ Navigating UltraSPARC Architecture 2007 on page 1.
■ Fonts and Notational Conventions on page 2.
■ Reporting Errors in this Specification on page 4.

1.1 Navigating UltraSPARC Architecture 2007
If you are new to the SPARC architecture, read Chapter 3, Architecture Overview, study the definitions
in Chapter 2, Definitions, then look into the subsequent sections and appendixes for more details in
areas of interest to you.

If you are familiar with the SPARC V9 architecture but not UltraSPARC Architecture 2007, note that
UltraSPARC Architecture 2007 conforms to the SPARC V9 Level 1 architecture (and most of Level 2),
with numerous extensions — particularly with respect toVIS instructions.

This specfication is structured as follows:

■ Chapter 2, Definitions, which defines key terms used throughout the specification

■ Chapter 3, Architecture Overview, provides an overview of UltraSPARC Architecture 2007

■ Chapter 4, Data Formats, describes the supported data formats

■ Chapter 5, Registers, describes the register set

■ Chapter 6, Instruction Set Overview, provides a high-level description of the UltraSPARC
Architecture 2007 instruction set

■ Chapter 7, Instructions, describes the UltraSPARC Architecture 2007 instruction set in great detail

■ Chapter 8, IEEE Std 754-1985 Requirements for UltraSPARC Architecture 2007, describes the trap
model

■ Chapter 9, Memory describes the supported memory model

■ Chapter 10, Address Space Identifiers (ASIs), provides a complete list of supported ASIs

■ Chapter 11, Performance Instrumentation describes the architecture for performance monitoring
hardware

■ Chapter 12, Traps, describes the trap model

■ Chapter 13, Interrupt Handling, describes how interrupts are handled

■ Chapter 14, Memory Management, describes MMU operation

■ Appendix A, Opcode Maps, provides the overall picture of how the instruction set is mapped into
opcodes

■ Appendix B, Implementation Dependencies, describes all implementation dependencies
1

■ Appendix C, Assembly Language Syntax, describes extensions to the SPARC assembly language
syntax; in particular, synthetic instructions are documented in this appendix

1.2 Fonts and Notational Conventions
Fonts are used as follows:

■ Italic font is used for emphasis, book titles, and the first instance of a word that is defined.

■ Italic font is also used for terms where substitution is expected, for example, “fccn”, “virtual
processor n”, or “reg_plus_imm”.

■ Italic sans serif font is used for exception and trap names. For example, “The privileged_action
exception....”

■ lowercase helvetica font is used for register field names (named bits) and instruction field names,
for example: “The rs1 field contains....”

■ UPPERCASE HELVETICA font is used for register names; for example, FSR.

■ TYPEWRITER (Courier) font is used for literal values, such as code (assembly language, C
language, ASI names) and for state names. For example: %f0, ASI_PRIMARY, execute_state.

■ When a register field is shown along with its containing register name, they are separated by a
period (’.’), for example, “FSR.cexc”.

■ UPPERCASE words are acronyms or instruction names. Some common acronyms appear in the
glossary in Chapter 2, Definitions. Note: Names of some instructions contain both upper- and
lower-case letters.

■ An underscore character joins words in register, register field, exception, and trap names. Note:
Such words may be split across lines at the underbar without an intervening hyphen. For example:
“This is true whenever the integer_condition_
code field....”

The following notational conventions are used:

■ The left arrow symbol (←) is the assignment operator. For example, “PC ← PC + 1” means that
the Program Counter (PC) is incremented by 1.

■ Square brackets ([]) are used in two different ways, distinguishable by the context in which they
are used:

■ Square brackets indicate indexing into an array. For example, TT[TL] means the element of the
Trap Type (TT) array, as indexed by the contents of the Trap Level (TL) register.

■ Square brackets are also used to indicate optional additions/extensions to symbol names. For
example, “ST[D|Q]F” expands to all three of “STF”, “STDF”, and “STQF”. Similarly,
ASI_PRIMARY[_LITTLE] indicates two related address space identifiers, ASI_PRIMARY and
ASI_PRIMARY_LITTLE. (Contrast with the use of angle brackets, below)

■ Angle brackets (< >) indicate mandatory additions/extensions to symbol names. For example,
“ST<D|Q>F” expands to mean “STDF” and “STQF”. (Contrast with the second use of square
brackets, above)

■ Curly braces ({ }) indicate a bit field within a register or instruction. For example, CCR{4} refers to
bit 4 in the Condition Code Register.

■ A consecutive set of values is indicated by specifying the upper and lower limit of the set separated
by a colon (:), for example, CCR{3:0} refers to the set of four least significant bits of register CCR.
(Contrast with the use of double periods, below)
2 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

■ A double period (..) indicates any single intermediate value between two given end values is
possible. For example, NAME[2..0] indicates four forms of NAME exist: NAME, NAME2, NAME1,
and NAME0; whereas NAME<2..0> indicates that three forms exist: NAME2, NAME1, and
NAME0. (Contrast with the use of the colon, above)

■ A vertical bar (|) separates mutually exclusive alternatives inside square brackets ([]), angle
brackets (< >), or curly braces ({ }). For example, “NAME[A|B]” expands to “NAME, NAMEA,
NAMEB” and “NAME<A|B>” expands to "NAMEA, NAMEB".

■ The asterisk (*) is used as a wild card, encompassing the full set of valid values. For example,
FCMP* refers to FCMP with all valid suffixes (in this case, FCMP<s|d|q> and FCMPE<s|d|q>).
An asterisk is typically used when the full list of valid values either is not worth listing (because it
has little or no relevance in the given context) or the valid values are too numerous to list in the
available space.

■ The slash (/) is used to separate paired or complementary values in a list, for example, “the
LDBLOCKF/STBLOCKF instruction pair”

■ The double colon (::) is an operator that indicates concatenation (typically, of bit vectors).
Concatenation strictly strings the specified component values into a single longer string, in the
order specified. The concatenation operator performs no arithmetic operation on any of the
component values.

1.2.1 Implementation Dependencies
Implementors of UltraSPARC Architecture 2007 processors are allowed to resolve some aspects of the
architecture in machine-dependent ways.

The definition of each implementation dependency is indicated by the notation “IMPL. DEP. #nn-XX:
Some descriptive text”. The number nn provides an index into the complete list of dependencies in
Appendix B, Implementation Dependencies.

A reference to (but not definition of) an implementation dependency is indicated by the notation
“(impl. dep. #nn)”.

1.2.2 Notation for Numbers
Numbers throughout this specification are decimal (base-10) unless otherwise indicated. Numbers in
other bases are followed by a numeric subscript indicating their base (for example, 10012,
FFFF 000016). Long binary and hexadecimal numbers within the text have spaces inserted every four
characters to improve readability. Within C language or assembly language examples, numbers may
be preceded by “0x” to indicate base-16 (hexadecimal) notation (for example, 0xFFFF0000).

1.2.3 Informational Notes
This guide provides several different types of information in notes, as follows:

Note General notes contain incidental information relevant to the
paragraph preceding the note.

Programming
Note

Programming notes contain incidental information about how
software can use an architectural feature.

Implementation
Note

An Implementation Note contains incidental information,
describing how an UltraSPARC Architecture 2007 processor
might implement an architectural feature.
CHAPTER 1 • Document Overview 3

1.3 Reporting Errors in this Specification
This specification has been reviewed for completeness and accuracy. Nonetheless, as with any
document this size, errors and omissions may occur, and reports of such are welcome. Please send
“bug reports” and other comments on this document to the email address: UA-editor@sun.com

V9 Compatibility
Note

Note containing information about possible differences between
UltraSPARC Architecture 2007 and SPARC V9 implementations.
Such information is relevant to UltraSPARC Architecture 2007
implementations and might not apply to other SPARC V9
implementations.

Forward
Compatibility

Note

Note containing information about how the UltraSPARC
Architecture is expected to evolve in the future. Such notes are
not intended as a guarantee that the architecture will evolve as
indicated, but as a guide to features that should not be depended
upon to remain the same, by software intended to run on both
current and future implementations.
4 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

CHAPTER 2

Definitions

This chapter defines concepts and terminology common to all implementations of UltraSPARC
Architecture 2007.

address space A range of 264 locations that can be addressed by instruction fetches and load, store, or load-store
instructions. See also address space identifier (ASI).

address space identifier
(ASI) An 8-bit value that identifies a particular address space. An ASI is (implicitly or explicitly)

associated with every instruction access or data access. See also implicit ASI.

aliased Said of each of two virtual or real addresses that refer to the same underlying memory location.

application program A program executed with the virtual processor in nonprivileged mode. Note: Statements made in
this specification regarding application programs may not be applicable to programs (for
example, debuggers) that have access to privileged virtual processor state (for example, as stored
in a memory-image dump).

ASI Address space identifier.

ASR Ancillary State register.

big-endian An addressing convention. Within a multiple-byte integer, the byte with the smallest address is
the most significant; a byte’s significance decreases as its address increases.

BLD (Obsolete) abbreviation for Block Load instruction; replaced by LDBLOCKF.

BST (Obsolete) abbreviation for Block Store instruction; replaced by STBLOCKF.

byte Eight consecutive bits of data, aligned on an 8-bit boundary.

CCR Abbreviation for Condition Codes Register.

clean window A register window in which each of the registers contain 0, a valid address from the current
address space, or valid data from the current address space.

coherence A set of protocols guaranteeing that all memory accesses are globally visible to all caches on a
shared-memory bus.

completed (memory
operation) Said of a memory transaction when an idealized memory has executed the transaction with

respect to all processors. A load is considered completed when no subsequent memory
transaction can affect the value returned by the load. A store is considered completed when no
subsequent load can return the value that was overwritten by the store.

context A set of translations that defines a particular address space. See also Memory Management Unit
(MMU).

context ID A numeric value that uniquely identifies a particular context.

copyback The process of sending a copy of the data from a cache line owned by a physical processor core,
in response to a snoop request from another device.
5

CPI Cycles per instruction. The number of clock cycles it takes to execute an instruction.

cross-call An interprocessor call in a system containting multiple virtual processors.

CTI Abbreviation for control-transfer instruction.

current window The block of 24 R registers that is presently in use. The Current Window Pointer (CWP) register
points to the current window.

cycle The atomic unit of time in a physical implementation of a processor core. The duration of a cycle
is its period, and the inverse of the period is the physical processor core’s operating frequency
(typically measured in gigaHertz, in contemporary implementations). The physical processor
core divides the work of managing instructions and data and executing instructions into multiple
cycles. This division of processing steps into cycles is implementation-dependent. The operating
frequency is implementation-dependent and potentially varying in time for a given
implementation.

data access
(instruction) A load, store, load-store, or FLUSH instruction.

DCTI Delayed control transfer instruction.

denormalized number Synonym for subnormal number.

deprecated The term applied to an architectural feature (such as an instruction or register) for which an
UltraSPARC Architecture implementation provides support only for compatibility with previous
versions of the architecture. Use of a deprecated feature must generate correct results but may
compromise software performance.

Deprecated features should not be used in new UltraSPARC Architecture software and may not
be supported in future versions of the architecture.

doubleword An 8-byte datum. Note: The definition of this term is architecture dependent and may differ from
that used in other processor architectures.

even parity The mode of parity checking in which each combination of data bits plus a parity bit contains an
even number of ‘1’ bits.

exception A condition that makes it impossible for the processor to continue executing the current
instruction stream. Some exceptions may be masked (that is, trap generation disabled — for
example, floating-point exceptions masked by FSR.tem) so that the decision on whether or not to
apply special processing can be deferred and made by software at a later time. See also trap.

explicit ASI An ASI that that is provided by a load, store, or load-store alternate instruction (either from its
imm_asi field or from the ASI register).

extended word An 8-byte datum, nominally containing integer data. Note: The definition of this term is
architecture dependent and may differ from that used in other processor architectures.

fccn One of the floating-point condition code fields fcc0, fcc1, fcc2, or fcc3.

FGU Floating-point and Graphics Unit (which most implementations specify as a superset of FPU).

floating-point
exception An exception that occurs during the execution of a floating-point operate (FPop) instruction. The

exceptions are unfinished_FPop, sequence_error, hardware_error, invalid_fp_register, or
IEEE_754_exception.

F register A floating-point register. The SPARC V9 architecture includes single-, double-, and quad-
precision F registers.

floating-point operate
instructions Instructions that perform floating-point calculations, as defined in Floating-Point Operate (FPop)

Instructions on page 85. FPop instructions do not include FBfcc instructions, loads and stores
between memory and the F registers, or non-floating-point operations that read or write F
registers.
6 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

floating-point trap
type The specific type of a floating-point exception, encoded in the FSR.ftt field.

floating-point unit A processing unit that contains the floating-point registers and performs floating-point
operations, as defined by this specification.

FPop Abbreviation for floating-point operate (instructions).

FPRS Floating-Point Register State register.

FPU Floating-Point Unit.

FSR Floating-Point Status register.

GL Global Level register.

GSR General Status register.

halfword A 2-byte datum. Note: The definition of this term is architecture dependent and may differ from
that used in other processor architectures.

hyperprivileged An adjective that describes:
(1) the state of the processor when theprocessor is in hyperprivileged mode;
(2) processor state that is only accessible to software while the processor is in

hyperprivileged mode

IEEE 754 IEEE Standard 754-1985, the IEEE Standard for Binary Floating-Point Arithmetic.

IEEE-754 exception A floating-point exception, as specified by IEEE Std 754-1985. Listed within this specification as
IEEE_754_exception.

implementation Hardware or software that conforms to all of the specifications of an instruction set architecture
(ISA).

implementation
dependent An aspect of the UltraSPARC Architecture that can legitimately vary among implementations. In

many cases, the permitted range of variation is specified. When a range is specified, compliant
implementations must not deviate from that range.

implicit ASI An address space identifier that is implicitly supplied by the virtual processor on all instruction
accesses and on data accesses that do not explicitly provide an ASI value (from either an imm_asi
instruction field or the ASI register).

initiated Synonym for issued.

instruction field A bit field within an instruction word.

instruction group One or more independent instructions that can be dispatched for simultaneous execution.

instruction set
architecture A set that defines instructions, registers, instruction and data memory, the effect of executed

instructions on the registers and memory, and an algorithm for controlling instruction execution.
Does not define clock cycle times, cycles per instruction, data paths, etc. This specification defines
the UltraSPARC Architecture 2007 instruction set architecture.

integer unit A processing unit that performs integer and control-flow operations and contains general-
purpose integer registers and virtual processor state registers, as defined by this specification.

interrupt request A request for service presented to a virtual processor by an external device.

inter-strand Describes an operation that crosses virtual processor (strand) boundaries.

intra-strand Describes an operation that occurs entirely within one virtual processor (strand).

invalid
(ASI or address) Undefined, reserved, or illegal.
CHAPTER 2 • Definitions 7

ISA Instruction set architecture.

issued A memory transaction (load, store, or atomic load-store) is said to be “issued” when a virtual
processor has sent the transaction to the memory subsystem and the completion of the request is
out of the virtual processor’s control. Synonym for initiated.

IU Integer Unit.

little-endian An addressing convention. Within a multiple-byte integer, the byte with the smallest address is
the least significant; a byte’s significance increases as its address increases.

load An instruction that reads (but does not write) memory or reads (but does not write) location(s) in
an alternate address space. Some examples of Load includes loads into integer or floating-point
registers, block loads, and alternate address space variants of those instructions. See also load-
store and store, the definitions of which are mutually exclusive with load.

load-store An instruction that explicitly both reads and writes memory or explicitly reads and writes
location(s) in an alternate address space. Load-store includes instructions such as CASA, CASXA,
LDSTUB, and the deprecated SWAP instruction. See also load and store, the definitions of which
are mutually exclusive with load-store.

may A keyword indicating flexibility of choice with no implied preference. Note: “may” indicates that
an action or operation is allowed; “can” indicates that it is possible.

Memory Management
Unit The address translation hardware in an UltraSPARC Architecture implementation that translates

64-bit virtual address into underlying hardware addresses. The MMU is composed of the ASRs
and ASI registers used to manage address translation. See also context real address, and virtual
address.

MMU Abbreviation for Memory Management Unit.

multiprocessor system A system containing more than one processor.

must A keyword indicating a mandatory requirement. Designers must implement all such mandatory
requirements to ensure interoperability with other UltraSPARC Architecture-compliant products.
Synonym for shall.

next program counter Conceptually, a register that contains the address of the instruction to be executed next if a trap
does not occur.

NFO Nonfault access only.

nonfaulting load A load operation that behaves identically to a normal load operation, except when supplied an
invalid effective address by software. In that case, a regular load triggers an exception whereas a
nonfaulting load appears to ignore the exception and loads its destination register with a value of
zero (on an UltraSPARC Architecture processor, hardware treats regular and nonfaulting loads
identically; the distinction is made in trap handler software). Contrast with speculative load.

nonprivileged An adjective that describes
(1) the state of the virtual processor when PSTATE.priv = 0, that is, when

it is in nonprivileged mode;
(2) virtual processor state information that is accessible to software regardless

of the current privilege mode; for example, nonprivileged registers,
nonprivileged ASRs, or, in general, nonprivileged state;

(3) an instruction that can be executed in any privilege mode (privileged
or nonprivileged).

nonprivileged mode The mode in which a virtual processor is operating when executing application software (at the
lowest privilege level). Nonprivileged mode is defined by PSTATE.priv = 0. See also privileged
and hyperprivileged.

nontranslating ASI An ASI that does not refer to memory (for example, refers to control/status register(s)) and for
which the MMU does not perform address translation.
8 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

NPC Next program counter.

npt Nonprivileged trap.

nucleus software Privileged software running at a trap level greater than 0 (TL> 0).

NUMA Nonuniform memory access.

N_REG_WINDOWS The number of register windows present in a particular implementation.

octlet Eight bytes (64 bits) of data. Not to be confused with “octet,” which has been commonly used to
describe eight bits of data. In this document, the term byte, rather than octet, is used to describe
eight bits of data.

odd parity The mode of parity checking in which each combination of data bits plus a parity bit together
contain an odd number of ‘1’ bits.

opcode A bit pattern that identifies a particular instruction.

optional A feature not required for UltraSPARC Architecture 2007 compliance.

PC Program counter.

physical processor Synonym for processor; used when an explicit contrast needs to be drawn between processor and
virtual processor. See also processor and virtual processor.

PIL Processor Interrupt Level register.

pipeline Refers to an execution pipeline, the basic collection of hardware needed to execute instructions.
See also processor, strand, thread, and virtual processor.

prefetchable (1) An attribute of a memory location that indicates to an MMU that PREFETCH operations to
that location may be applied.
(2) A memory location condition for which the system designer has determined that no
undesirable effects will occur if a PREFETCH operation to that location is allowed to succeed.
Typically, normal memory is prefetchable.

Nonprefetchable locations include those that, when read, change state or cause external events to
occur. For example, some I/O devices are designed with registers that clear on read; others have
registers that initiate operations when read. See also side effect.

privileged An adjective that describes:
(1) the state of the virtual processor when PSTATE.priv = 1,

that is, when the virtual processor is in privileged mode;
(2) processor state that is only accessible to software while the virtual processor

is in privileged mode; for example, privileged registers,privileged ASRs,
or, in general, privileged state;

(3) an instruction that can be executed only when the virtual processor is in
privileged mode.

privileged mode The mode in which a processor is operating when PSTATE.priv = 1. See also nonprivileged and
hyperprivileged.

processor The unit on which a shared interface is provided to control the configuration and execution of a
collection of strands; a physical module that plugs into a system. Synonym for processor module.
See also pipeline, strand, thread, and virtual processor.

processor core Synonym for physical core.

processor module Synonym for processor.

program counter A register that contains the address of the instruction currently being executed.

quadword A 16-byte datum. Note: The definition of this term is architecture dependent and may be different
from that used in other processor architectures.

R register An integer register. Also called a general-purpose register or working register.
CHAPTER 2 • Definitions 9

RA Real address.

RAS Reliability, Availability, and Serviceability

RAW Read After Write (hazard)

rd Rounding direction.

real address An address produced by a virtual processor that refers to a particular software-visible memory
location, as viewed from privileged mode. Virtual addresses are usually translated by a
combination of hardware and software to real addresses, which can be used to access real
memory. See also virtual address.

reserved Describing an instruction field, certain bit combinations within an instruction field, or a register
field that is reserved for definition by future versions of the architecture.

A reserved instruction field must read as 0, unless the implementation supports extended
instructions within the field. The behavior of an UltraSPARC Architecture 2007 virtual processor
when it encounters a nonzero value in a reserved instruction field is as defined in Reserved
Opcodes and Instruction Fields on page 86.

A reserved bit combination within an instruction field is defined in Chapter 7, Instructions. In all cases,
an UltraSPARC Architecture 2007 processor must decode and trap on such reserved bit
combinations.

A reserved field within a register reads as 0 in current implementations and, when written by
software, should always be written with values of that field previously read from that register or
with the value zero (as described in Reserved Register Fields on page 32).

Throughout this specification, figures and tables illustrating registers and instruction encodings
indicate reserved fields and reserved bit combinations with a wide (“em”) dash (—).

restricted Describes an address space identifier (ASI) that may be accessed only while the virtual processor
is operating in privileged mode.

retired An instruction is said to be “retired” when one of the following two events has occurred:
(1) A precise trap has been taken, with TPC containing the instruction's address (the instruction
has not changed architectural state in this case).
(2) The instruction's execution has progressed to a point at which architectural state affected by
the instruction has been updated such that all three of the following are true:

■ The PC has advanced beyond the instruction.
■ Except for deferred trap handlers, no consumer in the same instruction stream can see the old

values and all consumers in the same instruction stream will see the new values.
■ Stores are visible to all loads in the same instruction stream, including stores to noncacheable

locations.

RMO Abbreviation for Relaxed Memory Order (a memory model).

RTO Read to Own (a type of transaction, used to request ownership of a cache line).

RTS Read to Share (a type of transaction, used to request read-only access to a cache line).

shall Synonym for must.

should A keyword indicating flexibility of choice with a strongly preferred implementation. Synonym
for it is recommended.

side effect The result of a memory location having additional actions beyond the reading or writing of data.
A side effect can occur when a memory operation on that location is allowed to succeed.
Locations with side effects include those that, when accessed, change state or cause external
events to occur. For example, some I/O devices contain registers that clear on read; others have
registers that initiate operations when read. See also prefetchable.

SIMD Single Instruction/Multiple Data; a class of instructions that perform identical operations on
multiple data contained (or “packed”) in each source operand.
10 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

speculative load A load operation that is issued by a virtual processor speculatively, that is, before it is known
whether the load will be executed in the flow of the program. Speculative accesses are used by
hardware to speed program execution and are transparent to code. An implementation, through
a combination of hardware and system software, must nullify speculative loads on memory
locations that have side effects; otherwise, such accesses produce unpredictable results. Contrast
with nonfaulting load.

store An instruction that writes (but does not explicitly read) memory or writes (but does not explicitly
read) location(s) in an alternate address space. Some examples of Store includes stores from either
integer or floating-point registers, block stores, Partial Store, and alternate address space variants
of those instructions. See also load and load-store, the definitions of which are mutually
exclusive with store.

strand The hardware state that must be maintained in order to execute a software thread. See also
pipeline, processor, thread, and virtual processor.

subnormal number A nonzero floating-point number, the exponent of which has a value of zero. A more complete
definition is provided in IEEE Standard 754-1985.

superscalar An implementation that allows several instructions to be issued, executed, and committed in one
clock cycle.

supervisor software Software that executes when the virtual processor is in privileged mode.

synchronization An operation that causes the processor to wait until the effects of all previous instructions are
completely visible before any subsequent instructions are executed.

system A set of virtual processors that share a common hardware memory address space.

taken A control-transfer instruction (CTI) is taken when the CTI writes the target address value into
NPC.

A trap is taken when the control flow changes in response to an exception, reset, Tcc instruction,
or interrupt. An exception must be detected and recognized before it can cause a trap to be taken.

TBA Trap base address.

thread A software entity that can be executed on hardware. See also pipeline, processor, strand, and
virtual processor.

TNPC Trap-saved next program counter.

TPC Trap-saved program counter.

trap The action taken by a virtual processor when it changes the instruction flow in response to the
presence of an exception, reset, a Tcc instruction, or an interrupt. The action is a vectored transfer
of control to more-privileged software through a table, the address of which is specified by the
privileged Trap Base Address (TBA) register. See also exception.

TSB Translation storage buffer. A table of the address translations that is maintained by software in
system memory and that serves as a cache of virtual-to-real address mappings.

TSO Total Store Order (a memory model).

TTE Translation Table Entry. Describes the virtual-to-real translation and page attributes for a specific
page in the page table. In some cases, this term is explicitly used to refer to entries in the TSB.

UA-2007 UltraSPARC Architecture 2007

unassigned A value (for example, an ASI number), the semantics of which are not architecturally mandated
and which may be determined independently by each implementation within any guidelines
given.
CHAPTER 2 • Definitions 11

undefined An aspect of the architecture that has deliberately been left unspecified. Software should have no
expectation of, nor make any assumptions about, an undefined feature or behavior. Use of such a
feature can deliver unexpected results and may or may not cause a trap. An undefined feature
may vary among implementations, and may also vary over time on a given implementation.

Notwithstanding any of the above, undefined aspects of the architecture shall not cause security
holes (such as changing the privilege state or allowing circumvention of normal restrictions
imposed by the privilege state), put a virtual processor into a more-privileged mode, or put the
virtual processor into an unrecoverable state.

unimplemented An architectural feature that is not directly executed in hardware because it is optional or is
emulated in software.

unpredictable Synonym for undefined.

uniprocessor system A system containing a single virtual processor.

unrestricted Describes an address space identifier (ASI) that can be used in all privileged modes; that is,
regardless of the value of PSTATE.priv.

user application
program Synonym for application program.

VA Abbreviation for virtual address.

virtual address An address produced by a virtual processor that refers to a particular software-visible memory
location. Virtual addresses usually are translated by a combination of hardware and software to
real addresses, which can be used to access real memory. See also real address.

virtual core,
virtual processor core Synonyms for virtual processor.

virtual processor The term virtual processor, or virtual processor core, is used to identify each strand in a processor.
At any given time, an operating system can have a different thread scheduled on each virtual
processor. See also pipeline, processor, strand, and thread.

VIS Abbreviation for VIS™ Instruction Set.

VP Abbreviation for virtual processor.

word A 4-byte datum. Note: The definition of this term is architecture dependent and may differ from
that used in other processor architectures.
12 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

CHAPTER 3

Architecture Overview

The UltraSPARC Architecture supports 32-bit and 64-bit integer and 32-bit, 64-bit, and 128-bit
floating-point as its principal data types. The 32-bit and 64-bit floating-point types conform to IEEE
Std 754-1985. The 128-bit floating-point type conforms to IEEE Std 1596.5-1992. The architecture
defines general-purpose integer, floating-point, and special state/status register instructions, all
encoded in 32-bit-wide instruction formats. The load/store instructions address a linear, 264-byte
virtual address space.

The UltraSPARC Architecture 2007 specification describes a processor architecture to which Sun
Microsystem’s SPARC processor implementations (beginning with UltraSPARC T1) comply. Future
implementations are expected to comply with either this document or a later revision of this
document.

The UltraSPARC Architecture 2007 is a descendant of the SPARC V9 architecture and complies fully
with the “Level 1” (nonprivileged) SPARC V9 specification.

Nonprivileged (application) software that is intended to be portable across all SPARC V9 processors
should be written to adhere to The SPARC Architecture Manual-Version 9.

Material in this document specific to UltraSPARC Architecture 2007 processors may not apply to
SPARC V9 processors produced by other vendors.

In this specification, the word architecture refers to the processor features that are visible to an
assembly language programmer or to a compiler code generator. It does not include details of the
implementation that are not visible or easily observable by software, nor those that only affect timing
(performance).

3.1 The UltraSPARC Architecture 2007
This section briefly describes features, attributes, and components of the UltraSPARC Architecture
2007 and, further, describes correct implementation of the architecture specification and SPARC V9-
compliance levels.

3.1.1 Features
The UltraSPARC Architecture 2007, like its ancestor SPARC V9, includes the following principal
features:

■ A linear 64-bit address space with 64-bit addressing.

■ 32-bit wide instructions — These are aligned on 32-bit boundaries in memory. Only load and store
instructions access memory and perform I/O.
13

■ Few addressing modes — A memory address is given as either “register + register” or “register +
immediate”.

■ Triadic register addresses — Most computational instructions operate on two register operands or
one register and a constant and place the result in a third register.

■ A large windowed register file — At any one instant, a program sees 8 global integer registers plus
a 24-register window of a larger register file. The windowed registers can be used as a cache of
procedure arguments, local values, and return addresses.

■ Floating point — The architecture provides an IEEE 754-compatible floating-point instruction set,
operating on a separate register file that provides 32 single-precision (32-bit), 32 double-precision
(64-bit), and 16 quad-precision (128-bit) overlayed registers.

■ Fast trap handlers — Traps are vectored through a table.

■ Multiprocessor synchronization instructions — Multiple variations of atomic load-store memory
operations are supported.

■ Predicted branches — The branch with prediction instructions allows the compiler or assembly
language programmer to give the hardware a hint about whether a branch will be taken.

■ Branch elimination instructions — Several instructions can be used to eliminate branches
altogether (for example, Move on Condition). Eliminating branches increases performance in
superscalar and superpipelined implementations.

■ Hardware trap stack — A hardware trap stack is provided to allow nested traps. It contains all of
the machine state necessary to return to the previous trap level. The trap stack makes the handling
of faults and error conditions simpler, faster, and safer.

In addition, UltraSPARC Architecture 2007 includes the following features that were not present in the
SPARC V9 specification:

■ Hyperprivileged mode, which simplifies porting of operating systems, supports far greater
portability of operating system (privileged) software, and supports the ability to run multiple
simultaneous guest operating systems. (hyperprivileged mode is described in detail in the
Hyperprivileged version of this specification)

■ Multiple levels of global registers — Instead of the two 8-register sets of global registers specified
in the SPARC V9 architecture, UltraSPARC Architecture 2007 provides multiple sets; typically, one
set is used at each trap level.

■ Extended instruction set — UltraSPARC Architecture 2007 provides many instruction set
extensions, including the VIS instruction set for "vector" (SIMD) data operations.

■ More detailed, specific instruction descriptions — UltraSPARC Architecture 2007 provides many
more details regarding what exceptions can be generated by each instruction and the specific
conditions under which those exceptions can occur. Also, detailed lists of valid ASIs are provided
for each load/store instruction from/to alternate space.

■ Detailed MMU architecture — UltraSPARC Architecture 2007 provides a blueprint for the
software view of the UltraSPARC MMU (TTEs and TSBs).

3.1.2 Attributes
UltraSPARC Architecture 2007 is a processor instruction set architecture (ISA) derived from SPARC V8
and SPARC V9, which in turn come from a reduced instruction set computer (RISC) lineage. As an
architecture, UltraSPARC Architecture 2007 allows for a spectrum of processor and system
implementations at a variety of price/performance points for a range of applications, including
scientific/engineering, programming, real-time, and commercial applications.
14 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

3.1.2.1 Design Goals

The UltraSPARC Architecture 2007 architecture is designed to be a target for optimizing compilers
and high-performance hardware implementations. This specification documents the UltraSPARC
Architecture 2007 and provides a design spec against which an implementation can be verified, using
appropriate verification software.

3.1.2.2 Register Windows

The UltraSPARC Architecture 2007 architecture is derived from the SPARC architecture, which was
formulated at Sun Microsystems in 1984 through1987. The SPARC architecture is, in turn, based on
the RISC I and II designs engineered at the University of California at Berkeley from 1980 through
1982. The SPARC “register window” architecture, pioneered in the UC Berkeley designs, allows for
straightforward, high-performance compilers and a reduction in memory load/store instructions.

Note that privileged software, not user programs, manages the register windows. Privileged software
can save a minimum number of registers (approximately 24) during a context switch, thereby
optimizing context-switch latency.

3.1.3 System Components
The UltraSPARC Architecture 2007 allows for a spectrum of subarchitectures, such as cache system.

3.1.3.1 Binary Compatibility

The most important mandate for the UltraSPARC Architecture is compatibility across
implementations of the architecture for application (nonprivileged) software, down to the binary
level. Binaries executed in nonprivileged mode should behave identically on all UltraSPARC
Architecture systems when those systems are running an operating system known to provide a
standard execution environment. One example of such a standard environment is the SPARC V9
Application Binary Interface (ABI).

Although different UltraSPARC Architecture 2007 systems can execute nonprivileged programs at
different rates, they will generate the same results as long as they are run under the same memory
model. See Chapter 9, Memory, for more information.

Additionally, UltraSPARC Architecture 2007 is binary upward-compatible from SPARC V9 for
applications running in nonprivileged mode that conform to the SPARC V9 ABI and upward-
compatible from SPARC V8 for applications running in nonprivileged mode that conform to the
SPARC V8 ABI.

3.1.3.2 UltraSPARC Architecture 2007 MMU

Although the SPARC V9 architecture allows its implementations freedom in their MMU designs,
UltraSPARC Architecture 2007 defines a common MMU architecture (see Chapter 14, Memory
Management) with some specifics left to implementations (see processor implementation documents).

3.1.3.3 Privileged Software

UltraSPARC Architecture 2007 does not assume that all implementations must execute identical
privileged software (operating systems). Thus, certain traits that are visible to privileged software
may be tailored to the requirements of the system.
CHAPTER 3 • Architecture Overview 15

3.1.4 Architectural Definition
The UltraSPARC Architecture 2007 is defined by the chapters and appendixes of this specification. A
correct implementation of the architecture interprets a program strictly according to the rules and
algorithms specified in the chapters and appendixes.

UltraSPARC Architecture 2007 defines a set of implementations that conform to the SPARC V9
architecture, Level 1.

3.1.5 UltraSPARC Architecture 2007 Compliance with SPARC V9
Architecture
UltraSPARC Architecture 2007 fully complies with SPARC V9 Level 1 (nonprivileged). It partially
complies with SPARC V9 Level 2 (privileged).

3.1.6 Implementation Compliance with UltraSPARC Architecture
2007
Compliant implementations must not add to or deviate from this standard except in aspects described
as implementation dependent. Appendix B, Implementation Dependencies lists all UltraSPARC
Architecture 2007, SPARC V9, and SPARC V8 implementation dependencies. Documents for specific
UltraSPARC Architecture 2007 processor implementations describe the manner in which
implementation dependencies have been resolved in those implementations.

IMPL. DEP. #1-V8: Whether an instruction complies with UltraSPARC Architecture 2007 by being
implemented directly by hardware, simulated by software, or emulated by firmware is
implementation dependent.

3.2 Processor Architecture
An UltraSPARC Architecture processor logically consists of an integer unit (IU) and a floating-point
unit (FPU), each with its own registers. This organization allows for implementations with concurrent
integer and floating-point instruction execution. Integer registers are 64 bits wide; floating-point
registers are 32, 64, or 128 bits wide. Instruction operands are single registers, register pairs, register
quadruples, or immediate constants.

An UltraSPARC Architecture virtual processor can run in nonprivileged mode, privileged mode, or in
mode(s) of greater privilege. In privileged mode, the processor can execute nonprivileged and
privileged instructions. In nonprivileged mode, the processor can only execute nonprivileged
instructions. In nonprivileged or privileged mode, an attempt to execute an instruction requiring
greater privilege than the current mode causes a trap.

3.2.1 Integer Unit (IU)
An UltraSPARC Architecture 2007 implementation’s integer unit contains the general-purpose
registers and controls the overall operation of the virtual processor. The IU executes the integer
arithmetic instructions and computes memory addresses for loads and stores. It also maintains the
program counters and controls instruction execution for the FPU.
16 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

IMPL. DEP. #2-V8: An UltraSPARC Architecture implementation may contain from 72 to 640 general-
purpose 64-bit R registers. This corresponds to a grouping of the registers into MAXPGL + 1 sets of
global R registers plus a circular stack of N_REG_WINDOWS sets of 16 registers each, known as register
windows. The number of register windows present (N_REG_WINDOWS) is implementation dependent,
within the range of 3 to 32 (inclusive).

3.2.2 Floating-Point Unit (FPU)
An UltraSPARC Architecture 2007 implementation’s FPU has thirty-two 32-bit (single-precision)
floating-point registers, thirty-two 64-bit (double-precision) floating-point registers, and sixteen 128-
bit (quad-precision) floating-point registers, some of which overlap.

If no FPU is present, then it appears to software as if the FPU is permanently disabled.

If the FPU is not enabled, then an attempt to execute a floating-point instruction generates an
fp_disabled trap and the fp_disabled trap handler software must either

■ Enable the FPU (if present) and reexecute the trapping instruction, or
■ Emulate the trapping instruction in software.

3.3 Instructions
Instructions fall into the following basic categories:

■ Memory access
■ Integer arithmetic / logical / shift
■ Control transfer
■ State register access
■ Floating-point operate
■ Conditional move
■ Register window management
■ SIMD (single instruction, multiple data) instructions

These classes are discussed in the following subsections.

3.3.1 Memory Access
Load, store, load-store, and PREFETCH instructions are the only instructions that access memory.
They use two R registers or an R register and a signed 13-bit immediate value to calculate a 64-bit,
byte-aligned memory address. The Integer Unit appends an ASI to this address.

The destination field of the load/store instruction specifies either one or two R registers or one, two,
or four F registers that supply the data for a store or that receive the data from a load.

Integer load and store instructions support byte, halfword (16-bit), word (32-bit), and extended-word
(64-bit) accesses. There are versions of integer load instructions that perform either sign-extension or
zero-extension on 8-bit, 16-bit, and 32-bit values as they are loaded into a 64-bit destination register.
Floating-point load and store instructions support word, doubleword, and quadword1 memory
accesses.

1. No UltraSPARC Architecture processor currently implements the LDQF instruction in hardware; it generates an exception and is
emulated in software running at a higher privilege level.
CHAPTER 3 • Architecture Overview 17

CASA, CASXA, and LDSTUB are special atomic memory access instructions that concurrent processes
use for synchronization and memory updates.

The (nonportable) LDTXA instruction supplies an atomic 128-bit (16-byte) load that is important in
certain system software applications.

3.3.1.1 Memory Alignment Restrictions

A memory access on an UltraSPARC Architecture virtual processor must typically be aligned on an
address boundary greater than or equal to the size of the datum being accessed. An improperly
aligned address in a load, store, or load-store in instruction may trigger an exception and cause a
subsequent trap. For details, see Memory Alignment Restrictions on page 73.

3.3.1.2 Addressing Conventions

The UltraSPARC Architecture uses big-endian byte order by default: the address of a quadword,
doubleword, word, or halfword is the address of its most significant byte. Increasing the address
means decreasing the significance of the unit being accessed. All instruction accesses are performed
using big-endian byte order.

The UltraSPARC Architecture also supports little-endian byte order for data accesses only: the address
of a quadword, doubleword, word, or halfword is the address of its least significant byte. Increasing
the address means increasing the significance of the data unit being accessed.

Addressing conventions are illustrated in FIGURE 6-2 on page 75 and FIGURE 6-3 on page 77.

3.3.1.3 Addressing Range

IMPL. DEP. #405-S10: An UltraSPARC Architecture implementation may support a full 64-bit virtual
address space or a more limited range of virtual addresses. In an implementation that does not
support a full 64-bit virtual address space, the supported range of virtual addresses is restricted to
two equal-sized ranges at the extreme upper and lower ends of 64-bit addresses; that is, for n-bit
virtual addresses, the valid address ranges are 0 to 2n−1 − 1 and 264 − 2n−1 to 264 − 1.

3.3.1.4 Load/Store Alternate

Versions of load/store instructions, the load/store alternate instructions, can specify an arbitrary 8-bit
address space identifier for the load/store data access.
Access to alternate spaces 0016–2F16 is restricted to privileged software, access to alternate spaces
3016–7F16 is restricted to hyperprivileged software, and access to alternate spaces 8016–FF16 is
unrestricted. Some of the ASIs are available for implementation-dependent uses. Privileged software
can use the implementation-dependent ASIs to access special protected registers, such as cache control
registers, virtual processor state registers, and other processor-dependent or system-dependent
values. See Address Space Identifiers (ASIs) on page 76 for more information.

Alternate space addressing is also provided for the atomic memory access instructions LDSTUBA,
CASA, and CASXA.

Note The SWAP instruction is also specified, but it is deprecated and
should not be used in newly developed software.

Note The SWAPA instruction is also specified, but it is deprecated and
should not be used in newly developed software.
18 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

3.3.1.5 Separate Instruction and Data Memories

The interpretation of addresses can be unified, in which case the same translations and caching are
applied to both instructions and data. Alternatively, addresses can be “split”, in which case instruction
references use one caching and translation mechanism and data references use another, although the
same underlying main memory is shared.

In such split-memory systems, the coherency mechanism may be split, so a write1 into data memory
is not immediately reflected in instruction memory. For this reason, programs that modify their own
instruction stream (self-modifying code2) and that wish to be portable across all UltraSPARC
Architecture (and SPARC V9) processors must issue FLUSH instructions, or a system call with a
similar effect, to bring the instruction and data caches into a consistent state.

An UltraSPARC Architecture virtual processor may or may not have coherent instruction and data
caches. Even if an implementation does have coherent instruction and data caches, a FLUSH
instruction is required for self-modifying code — not for cache coherency, but to flush pipeline
instruction buffers that contain unmodified instructions which may have been subsequently modified.

3.3.1.6 Input/Output (I/O)

The UltraSPARC Architecture assumes that input/output registers are accessed through load/store
alternate instructions, normal load/store instructions, or read/write Ancillary State Register
instructions (RDasr, WRasr).

IMPL. DEP. #123-V9: The semantic effect of accessing input/output (I/O) locations is implementation
dependent.

IMPL. DEP. #6-V8: Whether the I/O registers can be accessed by nonprivileged code is
implementation dependent.

IMPL. DEP. #7-V8: The addresses and contents of I/O registers are implementation dependent.

3.3.1.7 Memory Synchronization

Two instructions are used for synchronization of memory operations: FLUSH and MEMBAR. Their
operation is explained in Flush Instruction Memory on page 133 and Memory Barrier on page 201,
respectively.

3.3.2 Integer Arithmetic / Logical / Shift Instructions
The arithmetic/logical/shift instructions perform arithmetic, tagged arithmetic, logical, and shift
operations. With one exception, these instructions compute a result that is a function of two source
operands; the result is either written into a destination register or discarded. The exception, SETHI,
can be used in combination with other arithmetic and/or logical instructions to create a constant in an
R register.

Shift instructions shift the contents of an R register left or right by a given number of bits (“shift
count”). The shift distance is specified by a constant in the instruction or by the contents of an R
register.

1. this includes use of store instructions (executed on the same or another virtual processor) that write to instruction memory, or any
other means of writing into instruction memory (for example, DMA)

2. this is practiced, for example, by software such as debuggers and dynamic linkers

Note STBAR is also available, but it is deprecated and should not be
used in newly developed software.
CHAPTER 3 • Architecture Overview 19

3.3.3 Control Transfer
Control-transfer instructions (CTIs) include PC-relative branches and calls, register-indirect jumps,
and conditional traps. Most of the control-transfer instructions are delayed; that is, the instruction
immediately following a control-transfer instruction in logical sequence is dispatched before the
control transfer to the target address is completed. Note that the next instruction in logical sequence
may not be the instruction following the control-transfer instruction in memory.

The instruction following a delayed control-transfer instruction is called a delay instruction. Setting
the annul bit in a conditional delayed control-transfer instruction causes the delay instruction to be
annulled (that is, to have no effect) if and only if the branch is not taken. Setting the annul bit in an
unconditional delayed control-transfer instruction (“branch always”) causes the delay instruction to
be always annulled.

Branch and CALL instructions use PC-relative displacements. The jump and link (JMPL) and return
(RETURN) instructions use a register-indirect target address. They compute their target addresses
either as the sum of two R registers or as the sum of an R register and a 13-bit signed immediate
value. The “branch on condition codes without prediction” instruction provides a displacement of ±8
Mbytes; the “branch on condition codes with prediction” instruction provides a displacement of ±1
Mbyte; the “branch on register contents” instruction provides a displacement of ±128 Kbytes; and the
CALL instruction’s 30-bit word displacement allows a control transfer to any address within ± 2
gigabytes (± 231 bytes).

3.3.4 State Register Access

3.3.4.1 Ancillary State Registers

The read and write ancillary state register instructions read and write the contents of ancillary state
registers visible to nonprivileged software (Y, CCR, ASI, PC, TICK, and FPRS) and some registers
visible only to privileged software (SOFTINT, TICK_CMPR, and STICK_CMPR).

IMPL. DEP. #8-V8-Cs20: Ancillary state registers (ASRs) in the range 0–27 that are not defined in
UltraSPARC Architecture 2007 are reserved for future architectural use. ASRs in the range 28–31 are
available to be used for implementation-dependent purposes.

IMPL. DEP. #9-V8-Cs20: The privilege level required to execute each of the implementation-
dependent read/write ancillary state register instructions (for ASRs 28–31) is implementation
dependent.

3.3.4.2 PR State Registers

The read and write privileged register instructions (RDPR and WRPR) read and write the contents of
state registers visible only to privileged software (TPC, TNPC, TSTATE, TT, TICK, TBA, PSTATE, TL,
PIL, CWP, CANSAVE, CANRESTORE, CLEANWIN, OTHERWIN, and WSTATE).

Note The SPARC V8 architecture specified that the delay instruction
was always fetched, even if annulled, and that an annulled
instruction could not cause any traps. The SPARC V9
architecture does not require the delay instruction to be fetched
if it is annulled.

Note The return from privileged trap instructions (DONE and
RETRY) get their target address from the appropriate TPC or
TNPC register.
20 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

3.3.5 Floating-Point Operate
Floating-point operate (FPop) instructions perform all floating-point calculations; they are register-to-
register instructions that operate on the floating-point registers. FPops compute a result that is a
function of one , two, or three source operands. The groups of instructions that are considered FPops
are listed in Floating-Point Operate (FPop) Instructions on page 85.

3.3.6 Conditional Move
Conditional move instructions conditionally copy a value from a source register to a destination
register, depending on an integer or floating-point condition code or on the contents of an integer
register. These instructions can be used to reduce the number of branches in software.

3.3.7 Register Window Management
Register window instructions manage the register windows. SAVE and RESTORE are nonprivileged
and cause a register window to be pushed or popped. FLUSHW is nonprivileged and causes all of the
windows except the current one to be flushed to memory. SAVED and RESTORED are used by
privileged software to end a window spill or fill trap handler.

3.3.8 SIMD
UltraSPARC Architecture 2007 includes SIMD (single instruction, multiple data) instructions, also
known as "vector" instructions, which allow a single instruction to perform the same operation on
multiple data items, totalling 64 bits, such as eight 8-bit, four 16-bit, or two 32-bit data items. These
operations are part of the “VIS” extensions.

3.4 Traps
A trap is a vectored transfer of control to privileged software through a trap table that may contain the
first 8 instructions (32 for some frequently used traps) of each trap handler. The base address of the
table is established by software in a state register (the Trap Base Address register, TBA. The
displacement within the table is encoded in the type number of each trap and the level of the trap.
Part of the trap table is reserved for hardware traps, and part of it is reserved for software traps
generated by trap (Tcc) instructions.

A trap causes the current PC and NPC to be saved in the TPC and TNPC registers. It also causes the
CCR, ASI, PSTATE, and CWP registers to be saved in TSTATE. TPC, TNPC, and TSTATE are entries in
a hardware trap stack, where the number of entries in the trap stack is equal to the number of
supported trap levels. A trap also sets bits in the PSTATE register and typically increments the GL
register. Normally, the CWP is not changed by a trap; on a window spill or fill trap, however, the
CWP is changed to point to the register window to be saved or restored.

A trap can be caused by a Tcc instruction, an asynchronous exception, an instruction-induced
exception, or an interrupt request not directly related to a particular instruction. Before executing each
instruction, a virtual processor determines if there are any pending exceptions or interrupt requests. If
any are pending, the virtual processor selects the highest-priority exception or interrupt request and
causes a trap.

See Chapter 12, Traps, for a complete description of traps.
CHAPTER 3 • Architecture Overview 21

22 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

CHAPTER 4

Data Formats

The UltraSPARC Architecture recognizes these fundamental data types:
■ Signed integer: 8, 16, 32, and 64 bits
■ Unsigned integer: 8, 16, 32, and 64 bits
■ SIMD data formats: Uint8 SIMD (32 bits), Int16 SIMD (64 bits), and Int32 SIMD (64 bits)
■ Floating point: 32, 64, and 128 bits

The widths of the data types are as follows:
■ Byte: 8 bits
■ Halfword: 16 bits
■ Word: 32 bits
■ Tagged word: 32 bits (30-bit value plus 2-bit tag)
■ Doubleword/Extended-word: 64 bits
■ Quadword: 128 bits

The signed integer values are stored as two’s-complement numbers with a width commensurate with
their range. Unsigned integer values, bit vectors, Boolean values, character strings, and other values
representable in binary form are stored as unsigned integers with a width commensurate with their
range. The floating-point formats conform to the IEEE Standard for Binary Floating-point Arithmetic,
IEEE Std 754-1985. In tagged words, the least significant two bits are treated as a tag; the remaining 30
bits are treated as a signed integer.

Data formats are described in these sections:
■ Integer Data Formats on page 24.
■ Floating-Point Data Formats on page 27.
■ SIMD Data Formats on page 29.

Names are assigned to individual subwords of the multiword data formats as described in these
sections:
■ Signed Integer Doubleword (64 bits) on page 25.
■ Unsigned Integer Doubleword (64 bits) on page 26.
■ Floating Point, Double Precision (64 bits) on page 27.
■ Floating Point, Quad Precision (128 bits) on page 28.
23

4.1 Integer Data Formats
TABLE 4-1 describes the width and ranges of the signed, unsigned, and tagged integer data formats.

TABLE 4-2 describes the memory and register alignment for multiword integer data. All registers in the
integer register file are 64 bits wide, but can be used to contain smaller (narrower) data sizes. Note
that there is no difference between integer extended-words and doublewords in memory; the only
difference is how they are represented in registers.

The data types are illustrated in the following subsections.

4.1.1 Signed Integer Data Types
Figures in this section illustrate the following signed data types:

■ Signed integer byte
■ Signed integer halfword
■ Signed integer word
■ Signed integer doubleword
■ Signed integer extended-word

TABLE 4-1 Signed Integer, Unsigned Integer, and Tagged Format Ranges

Data Type
Width
(bits) Range

Signed integer byte 8 −27 to 27 − 1

Signed integer halfword 16 −215 to 215 − 1

Signed integer word 32 −231 to 231 − 1

Signed integer doubleword/extended-word 64 −263 to 263 − 1

Unsigned integer byte 8 0 to 28 − 1

Unsigned integer halfword 16 0 to 216 − 1

Unsigned integer word 32 0 to 232 − 1

Unsigned integer doubleword/extended-word 64 0 to 264 − 1

Integer tagged word 32 0 to 230 − 1

TABLE 4-2 Integer Doubleword/Extended-word Alignment

Subformat
Name Subformat Field

Memory Address Register Number

Required
Alignment

Address
(big-endian)1

1. The Memory Address in this table applies to big-endian memory accesses. Word and byte order are reversed when little-endian access-
es are used.

Required
Alignment

Register
Number

SD-0 signed_dbl_integer{63:32} n mod 8 = 0 n r mod 2 = 0 r

SD-1 signed_dbl_integer{31:0} (n + 4) mod 8 = 4 n + 4 (r + 1) mod 2 = 1 r + 1

SX signed_ext_integer{63:0} n mod 8 = 0 n — r

UD-0 unsigned_dbl_integer{63:32} n mod 8 = 0 n r mod 2 = 0 r

UD-1 unsigned_dbl_integer{31:0} (n + 4) mod 8 = 4 n + 4 (r + 1) mod 2 = 1 r + 1

UX unsigned_ext_integer{63:0} n mod 8 = 0 n — r
24 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

4.1.1.1 Signed Integer Byte, Halfword, and Word

FIGURE 4-1 illustrates the signed integer byte, halfword, and word data formats.

FIGURE 4-1 Signed Integer Byte, Halfword, and Word Data Formats

4.1.1.2 Signed Integer Doubleword (64 bits)

FIGURE 4-2 illustrates both components (SD-0 and SD-1) of the signed integer double data format.

FIGURE 4-2 Signed Integer Double Data Format

4.1.1.3 Signed Integer Extended-Word (64 bits)

FIGURE 4-3 illustrates the signed integer extended-word (SX) data format.

FIGURE 4-3 Signed Integer Extended-Word Data Format

4.1.2 Unsigned Integer Data Types
Figures in this section illustrate the following unsigned data types:

■ Unsigned integer byte
■ Unsigned integer halfword
■ Unsigned integer word
■ Unsigned integer doubleword
■ Unsigned integer extended-word

7 6 0

S

15 14 0

S

31 30 0

S

SB

SH

SW

31 30 0

SSD–0

SD–1

31 0

signed_int_doubleword{62:32}

signed_int_doubleword{31:0}

63 62 0

S signed_int_extendedSX
CHAPTER 4 • Data Formats 25

4.1.2.1 Unsigned Integer Byte, Halfword, and Word

FIGURE 4-4 illustrates the unsigned integer byte data format.

FIGURE 4-4 Unsigned Integer Byte, Halfword, and Word Data Formats

4.1.2.2 Unsigned Integer Doubleword (64 bits)

FIGURE 4-5 illustrates both components (UD-0 and UD-1) of the unsigned integer double data format.

FIGURE 4-5 Unsigned Integer Double Data Format

4.1.2.3 Unsigned Extended Integer (64 bits)

FIGURE 4-6 illustrates the unsigned extended integer (UX) data format.

FIGURE 4-6 Unsigned Extended Integer Data Format

4.1.3 Tagged Word (32 bits)
FIGURE 4-7 illustrates the tagged word data format.

FIGURE 4-7 Tagged Word Data Format

7 0

15 0

31 0

UB

UH

UW

31 0

UD–0

UD–1

31 0

unsigned_int_doubleword{63:32}

unsigned_int_doubleword{31:0}

63 0

unsigned_int_extendedUX

31 0

tag

2 1

TW
26 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

4.2 Floating-Point Data Formats
Single-precision, double-precision, and quad-precision floating-point data types are described below.

4.2.1 Floating Point, Single Precision (32 bits)
FIGURE 4-8 illustrates the floating-point single-precision data format, and TABLE 4-3 describes the
formats.

FIGURE 4-8 Floating-Point Single-Precision Data Format

4.2.2 Floating Point, Double Precision (64 bits)
FIGURE 4-9 illustrates both components (FD-0 and FD-1) of the floating-point double-precision data
format, and TABLE 4-4 describes the formats.

FIGURE 4-9 Floating-Point Double-Precision Data Format

TABLE 4-3 Floating-Point Single-Precision Format Definition

s = sign (1 bit)
e = biased exponent (8 bits)
f = fraction (23 bits)
u = undefined

Normalized value (0 < e < 255): (−1)s × 2e−127 × 1.f

Subnormal value (e = 0): (−1)s × 2−126 × 0.f

Zero (e = 0, f = 0) (−1)s × 0

Signalling NaN s = u; e = 255 (max); f = .0uu--uu
(At least one bit of the fraction must be nonzero)

Quiet NaN s = u; e = 255 (max); f = .1uu--uu

− ∞ (negative infinity) s = 1; e = 255 (max); f = .000--00

+ ∞ (positive infinity) s = 0; e = 255 (max); f = .000--00

31 30 0

S

2223

FS exp{7:0} fraction{22:0}

31 30 0

S

1920

FD–0

FD–1

31 0

fraction{31:0}

fraction{51:32}exp{10:0}
CHAPTER 4 • Data Formats 27

4.2.3 Floating Point, Quad Precision (128 bits)
FIGURE 4-10 illustrates all four components (FQ-0 through FQ-3) of the floating-point quad-precision
data format, and TABLE 4-5 describes the formats.

FIGURE 4-10 Floating-Point Quad-Precision Data Format

TABLE 4-4 Floating-Point Double-Precision Format Definition

s = sign (1 bit)
e = biased exponent (11 bits)
f = fraction (52 bits)
u = undefined

Normalized value (0 < e < 2047): (−1)s × 2e−1023 × 1.f

Subnormal value (e = 0): (−1)s × 2−1022 × 0.f

Zero (e = 0, f = 0) (−1)s × 0

Signalling NaN s = u; e = 2047 (max); f = .0uu--uu
(At least one bit of the fraction must be nonzero)

Quiet NaN s = u; e = 2047 (max); f = .1uu--uu

− ∞ (negative infinity) s = 1; e = 2047 (max); f = .000--00

+ ∞ (positive infinity) s = 0; e = 2047 (max); f = .000--00

TABLE 4-5 Floating-Point Quad-Precision Format Definition

s = sign (1 bit)
e = biased exponent (15 bits)
f = fraction (112 bits)
u = undefined

Normalized value (0 < e < 32767): (-1)s × 2e−16383 × 1.f

Subnormal value (e = 0): (-1)s × 2−16382 × 0.f

Zero (e = 0, f = 0) (-1)s × 0

Signalling NaN s = u; e = 32767 (max); f = .0uu--uu
(At least one bit of the fraction must be nonzero)

31 30 0

S

1516

FQ–0

FQ–1

FQ–2

FQ–3

31 0

31 0

31 0

fraction{31:0}

fraction{63:32}

fraction{95:64}

fraction{111:96}exp{14:0}
28 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

4.2.4 Floating-Point Data Alignment in Memory and Registers
TABLE 4-6 describes the address and memory alignment for floating-point data.

4.3 SIMD Data Formats
SIMD (single instruction/multiple data) instructions perform identical operations on multiple data
contained (“packed”) in each source operand. This section describes the data formats used by SIMD
instructions.

Conversion between the different SIMD data formats can be achieved through SIMD multiplication or
by the use of the SIMD data formatting instructions.

Quiet NaN s = u; e = 32767 (max); f = .1uu--uu

− ∞ (negative infinity) s = 1; e = 32767 (max); f = .000--00

+ ∞ (positive infinity) s = 0; e = 32767 (max); f = .000--00

TABLE 4-6 Floating-Point Doubleword and Quadword Alignment

Subformat
Name Subformat Field

Memory Address Register Number

Required
Alignment

Address
(big-endian)*

Required
Alignment

Register
Number

FD-0 s:exp{10:0}:fraction{51:32} 0 mod 4 † n 0 mod 2 f

FD-1 fraction{31:0} 0 mod 4 † n + 4 1 mod 2 f + 1◊

FQ-0 s:exp{14:0}:fraction{111:96} 0 mod 4 ‡ n 0 mod 4 f

FQ-1 fraction{95:64} 0 mod 4 ‡ n + 4 1 mod 4 f + 1◊

FQ-2 fraction{63:32} 0 mod 4 ‡ n + 8 2 mod 4 f + 2

FQ-3 fraction{31:0} 0 mod 4 ‡ n + 12 3 mod 4 f + 3◊

* The memory Address in this table applies to big-endian memory accesses. Word and byte order are reversed when little-endian
accesses are used.

† Although a floating-point doubleword is required only to be word-aligned in memory, it is recommended that it be double-
word-aligned (that is, the address of its FD-0 word should be 0 mod 8 so that it can be accessed with doubleword loads/stores
instead of multiple singleword loads/stores).

‡ Although a floating-point quadword is required only to be word-aligned in memory, it is recommended that it be quadword-
aligned (that is, the address of its FQ-0 word should be 0 mod 16).

◊ Note that this 32-bit floating-point register is only directly addressable in the lower half of the register file (that is, if its register
number is ≤ 31).

TABLE 4-5 Floating-Point Quad-Precision Format Definition (Continued)

s = sign (1 bit)
e = biased exponent (15 bits)
f = fraction (112 bits)
u = undefined
CHAPTER 4 • Data Formats 29

4.3.1 Uint8 SIMD Data Format
The Uint8 SIMD data format consists of four unsigned 8-bit integers contained in a 32-bit word (see
FIGURE 4-11).

FIGURE 4-11 Uint8 SIMD Data Format

4.3.2 Int16 SIMD Data Formats
The Int16 SIMD data format consists of four signed 16-bit integers contained in a 64-bit word (see
FIGURE 4-12).

FIGURE 4-12 Int16 SIMD Data Format

4.3.3 Int32 SIMD Data Format
The Int32 SIMD data format consists of two signed 32-bit integers contained in a 64-bit word (see
FIGURE 4-13).

FIGURE 4-13 Int32 SIMD Data Format

Programming
Note

The SIMD data formats can be used in graphics calculations to
represent intensity values for an image (e.g., α, B, G, R).

Intensity values are typically grouped in one of two ways, when
using SIMD data formats:

■ Band interleaved images, with the various color components
of a point in the image stored together, and

■ Band sequential images, with all of the values for one color
component stored together.

Programming
Note

The integer SIMD data formats can be used to hold fixed-point
data. The position of the binary point in a SIMD datum is
implied by the programmer and does not influence the
computations performed by instructions that operate on that
SIMD data format.

31 24 023 15 8 716

value0 value1 value3value2
Uint8 SIMD

63 48 0

s0 value0

47 32 31 16 1562

s1 value1

46

s2 value2

30

s3

14

value3
Int16
SIMD

63 032 31

s0

62

value0 s1

30

value1
Int32
SIMD
30 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

CHAPTER 5

Registers

The following registers are described in this chapter:
■ General-Purpose R Registers on page 32.
■ Floating-Point Registers on page 38.
■ Floating-Point State Register (FSR) on page 42.
■ Ancillary State Registers on page 48. The following registers are included in this category:

■ 32-bit Multiply/Divide Register (y) (ASR 0) on page 50.
■ Integer Condition Codes Register (ccr) (ASR 2) on page 50.
■ Address Space Identifier (asi) Register (ASR 3) on page 51.
■ Tick (tick) Register (ASR 4) on page 52.
■ Program Counters (pc, npc) (ASR 5) on page 52.
■ Floating-Point Registers State (fprs) Register (ASR 6) on page 53.
■ General Status Register (gsr) (ASR 19) on page 54.
■ softintP Register (ASRs 20, 21, 22) on page 54.
■ softint_setP Pseudo-Register (ASR 20) on page 55.
■ softint_clrP Pseudo-Register (ASR 21) on page 56.
■ Tick Compare (tick_cmprP) Register (ASR 23) on page 56.
■ System Tick (stick) Register (ASR 24) on page 57.
■ System Tick Compare (stick_cmprP) Register (ASR 25) on page 57.

■ Register-Window PR State Registers on page 58. The following registers are included in this
subcategory:
■ Current Window Pointer (cwpP) Register (PR 9) on page 59.
■ Savable Windows (cansaveP) Register (PR 10) on page 59.
■ Restorable Windows (canrestoreP) Register (PR 11) on page 59.
■ Clean Windows (cleanwinP) Register (PR 12) on page 59.
■ Other Windows (otherwinP) Register (PR 13) on page 60.
■ Window State (wstateP) Register (PR 14) on page 60.

■ Non-Register-Window PR State Registers on page 61. The following registers are included in this
subcategory:
■ Trap Program Counter (tpcP) Register (PR 0) on page 61.
■ Trap Next PC (tnpcP) Register (PR 1) on page 62.
■ Trap State (tstateP) Register (PR 2) on page 63.
■ Trap Type (ttP) Register (PR 3) on page 64.
■ Trap Base Address (tbaP) Register (PR 5) on page 64.
■ Processor State (pstateP) Register (PR 6) on page 64.
■ Trap Level Register (tlP) (PR 7) on page 68.
■ Processor Interrupt Level (pilP) Register (PR 8) on page 69.
■ Global Level Register (glP) (PR 16) on page 69.

There are additional registers that may be accessed through ASIs; those registers are described in
Chapter 10, Address Space Identifiers (ASIs).
31

5.1 Reserved Register Fields
Some register bit fields in this specification are explicitly marked as "reserved". In addition, for
convenience, some registers in this chapter are illustrated as fewer than 64 bits wide. Any bits not
illustrated are implicitly reserved and treated as if they were explicitly marked as reserved.

Reserved bits, whether explicitly or implicitly reserved, may be assigned meaning in future versions
of the architecture.

To ensure that existing software will continue to operate correctly, software must take into account
that reserved register bits may be used in the future. The following Programming and
Implementation Notes support that intent.

5.2 General-Purpose R Registers
An UltraSPARC Architecture virtual processor contains an array of general-purpose 64-bit R registers.
The array is partitioned into MAXPGL + 1 sets of eight global registers, plus N_REG_WINDOWS groups of
16 registers each. The value of N_REG_WINDOWS in an UltraSPARC Architecture implementation falls
within the range 3 to 32 (inclusive).

Programming
Notes

Software should ensure that when a reserved register field is
written, it is only written with (1) the value zero or (2) a value
previously read from that field.

If software writes a reserved register field to any value other
than (1) zero or (2) a value previously read from that field, it is
considered a software error. Such an error:

• may or may not be detected or reported (for example, by a trap) by
UltraSPARC Architecture 2007 processors (and software should not
expect that it will be)

• may cause a trap or cause other unintended behavior when executed
on future UltraSPARC Architecture processors

When a register is read, software should not assume that
register fields reserved in UltraSPARC Architecture 2007 will
read as 0 or any other particular value, either now or in the
future.

Implementation
Notes

When a register is read by software, an UltraSPARC
Architecture 2007 virtual processor should return a value of zero
for any bits reserved in UltraSPARC Architecture 2007

When software attempts to change the contents of a register
field that is reserved in UltraSPARC Architecture 200x by
writing a value to that field that differs from the current
contents of that field, an UltraSPARC Architecture 200x virtual
processor will either ignore the write to that field or cause an
exception. "Current contents" means the contents that software
would observe if it read that field (nominally zero).
32 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

One set of 8 global registers is always visible. At any given time, a group of 24 registers, known as a
register window, is also visible. A register window comprises the 16 registers from the current 16-
register group (referred to as 8 in registers and 8 local registers), plus half of the registers from the next
16-register group (referred to as 8 out registers). See FIGURE 5-1.

SPARC instructions use 5-bit fields to reference R registers. That is, 32 R registers are visible to
software at any moment. Which 32 out of the full set of R registers are visible is described in the
following sections. The visible 32 R registers are named R[0] through R[31], illustrated in FIGURE 5-1.

5.2.1 Global R Registers
Registers R[0]–R[7] refer to a set of eight registers called the global registers (labelled g0 through g7).
At any time, one of MAXPGL +1 sets of eight registers is enabled and can be accessed as the current set
of global registers. The currently enabled set of global registers is selected by the GL register. See
Global Level Register (glP) (PR 16) on page 69.

Global register zero (G0) always reads as zero; writes to it have no software-visible effect.

i7R[31]

i6R[30]

i5R[29]

i4R[28]

i3R[27]

i2R[26]

i1R[25]

i0R[24]

R[23]

R[22]

R[21]

R[20]

R[19]

R[18]

R[17]

R[16]

R[15]

R[14]

R[13]

R[12]

R[11]

R[10]

R[9]

R[8]

R[7]

R[6]

R[5]

R[4]

R[3]

R[2]

R[1]

R[0]

l7

l6

l5

l4

l3

l2

l1

l0

o7

o6

o5

o4

o3

o2

o1

o0

g7

g6

g5

g4

g3

g2

g1

g0

FIGURE 5-1 General-Purpose Registers (as Visible at Any Given Time)

ins

locals

outs

globals

A1
CHAPTER 5 • Registers 33

5.2.2 Windowed R Registers
A set of 24 R registers that is visible as R[8]–R[31] at any given time is called a “register window”.
The registers that become R[8]–R[15] in a register window are called the out registers of the window.
Note that the in registers of a register window become the out registers of an adjacent register
window. See TABLE 5-1 and FIGURE 5-2.

The names in, local, and out originate from the fact that the out registers are typically used to pass
parameters from (out of) a calling routine and that the called routine receives those parameters as its
in registers.

TABLE 5-1 Window Addressing

Windowed Register Address R Register Address

in[0] – in[7] R[24] – R[31]

local[0] – local[7] R[16] – R[23]

out[0] – out[7] R[8] – R[15]

global[0] – global[7] R[0] – R[7]

V9 Compatibility
Note

In the SPARC V9 architecture, the number of 16-register
windowed register sets, N_REG_WINDOWS, ranges from 3 to 32
(impl. dep. #2-V8). The maximum global register set index in the
UltraSPARC Architecture, MAXPGL, ranges from 2 to 15. The
number of implemented global register sets is MAXPGL + 1. The
total number of R registers in a given UltraSPARC Architecture
implementation is:

(N_REG_WINDOWS × 16) + ((MAXPGL + 1) × 8)
Therefore, an UltraSPARC Architecture processor may contain
from 72 to 640 R registers.

A1
34 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

The current window in the windowed portion of R registers is indicated by the current window
pointer (CWP) register. The CWP is decremented by the RESTORE instruction and incremented by the
SAVE instruction.

Overlapping Windows. Each window shares its ins with one adjacent window and its outs with
another. The outs of the CWP – 1 (modulo N_REG_WINDOWS) window are addressable as the ins of the
current window, and the outs in the current window are the ins of the CWP + 1 (modulo
N_REG_WINDOWS) window. The locals are unique to each window.

Register address o, where 8 ≤ o ≤ 15, refers to exactly the same out register before the register window
is advanced by a SAVE instruction (CWP is incremented by 1 (modulo N_REG_WINDOWS)) as does
register address o+16 after the register window is advanced. Likewise, register address i, where 24 ≤ i
≤ 31, refers to exactly the same in register before the register window is restored by a RESTORE
instruction (CWP is decremented by 1 (modulo N_REG_WINDOWS)) as does register address i−16 after
the window is restored. See FIGURE 5-2 on page 35 and FIGURE 5-3 on page 37.

To application software, the virtual processor appears to provide an infinitely-deep stack of register
windows.

Programming
Note

Since the procedure call instructions (CALL and JMPL) do not
change the CWP, a procedure can be called without changing
the window. See the section “Leaf-Procedure Optimization” in
Software Considerations, contained in the separate volume
UltraSPARC Architecture Application Notes

Window (CWP – 1)

R[31]

R[24]

ins

R[23]

R[16]

locals

R[15]

R[8]

outs

Window (CWP)

R[31]

R[24]

ins

R[23]

R[16]

locals

R[15]

R[8]

outs

Window (CWP + 1)

R[31]

R[24]

ins

R[23]

R[16]

locals

R[15]

R[8]

outs

R[7]

R[1]

globals
.
.

R[0] 0

63 0

FIGURE 5-2 Three Overlapping Windows and Eight Global Registers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

CHAPTER 5 • Registers 35

Since CWP arithmetic is performed modulo N_REG_WINDOWS, the highest-numbered implemented
window overlaps with window 0. The outs of window N_REG_WINDOWS − 1 are the ins of window 0.
Implemented windows are numbered contiguously from 0 through N_REG_WINDOWS −1.

Because the windows overlap, the number of windows available to software is 1 less than the number
of implemented windows; that is, N_REG_WINDOWS – 1. When the register file is full, the outs of the
newest window are the ins of the oldest window, which still contains valid data.

Window overflow is detected by the CANSAVE register, and window underflow is detected by the
CANRESTORE register, both of which are controlled by privileged software. A window overflow
(underflow) condition causes a window spill (fill) trap.

When a new register window is made visible through use of a SAVE instruction, the local and out
registers are guaranteed to contain either zeroes or valid data from the current context. If software
executes a RESTORE and later executes a SAVE, then the contents of the resulting window’s local and
out registers are not guaranteed to be preserved between the RESTORE and the SAVE1. Those registers
may even have been written with “dirty” data, that is, data created by software running in a different
context. However, if the clean_window protocol is being used, system software must guarantee that
registers in the current window after a SAVE always contains only zeroes or valid data from that
context. See Clean Windows (cleanwinP) Register (PR 12) on page 59, Savable Windows (cansaveP) Register
(PR 10) on page 59, and Restorable Windows (canrestoreP) Register (PR 11) on page 59.

Register Window Management Instructions on page 83 describes how the windowed integer registers are
managed.

1. For example, any of those 16 registers might be altered due to the occurrence of a trap between the RESTORE and the SAVE, or might
be altered during the RESTORE operation due to the way that register windows are implemented. After a RESTORE instruction
executes, software must assume that the values of the affected 16 registers from before the RESTORE are unrecoverable.

Implementation
Note

An UltraSPARC Architecture virtual processor supports the
guarantee in the preceding paragraph of “either zeroes or valid
data from the current context”; it may do so either in hardware
or in a combination of hardware and system software.
36 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

FIGURE 5-3 Windowed R Registers for N_REG_WINDOWS = 8

In FIGURE 5-3, N_REG_WINDOWS = 8. The eight global registers are not illustrated. CWP = 0,
CANSAVE = 4, OTHERWIN = 1, and CANRESTORE = 1. If the procedure using window w0 executes a
RESTORE, then window w7 becomes the current window. If the procedure using window w0 executes
a SAVE, then window w1 becomes the current window.

5.2.3 Special R Registers
The use of two of the R registers is fixed, in whole or in part, by the architecture:

■ The value of R[0] is always zero; writes to it have no program-visible effect.

■ The CALL instruction writes its own address into register R[15] (out register 7).

w4 outs

w5 outs

w6 outs

w0 outs

w7 locals

w0 ins

w1 locals

w1 ins

w6 locals w6 ins

w5 locals

OTHERWIN = 1

CANRESTORE = 1

CANSAVE + CANRESTORE + OTHERWIN = N_REG_WINDOWS – 2

The current window (window 0) and the overlap window (window 5) account for the
two windows in the right side of the equation. The “overlap window” is the window
that must remain unused because its ins and outs overlap two other valid windows.

SAVE RESTORE w5 ins

CANSAVE =4

(Overlap)

w0 locals

w7 outs

w7 ins

CWP = 0
(CURRENT WINDOW POINTER)
CHAPTER 5 • Registers 37

Register-Pair Operands. LDTW, LDTWA, STTW, and STTWA instructions access a pair of words
(“twin words”) in adjacent R registers and require even-odd register alignment. The least significant
bit of an R register number in these instructions is unused and must always be supplied as 0 by
software.

When the R[0]–R[1] register pair is used as a destination in LDTW or LDTWA, only R[1] is modified.
When the R[0]–R[1] register pair is used as a source in STTW or STTWA, 0 is read from R[0], so 0 is
written to the 32-bit word at the lowest address, and the least significant 32 bits of R[1] are written to
the 32-bit word at the highest address.

An attempt to execute an LDTW, LDTWA, STTW, or STTWA instruction that refers to a misaligned
(odd) destination register number causes an illegal_instruction trap.

5.3 Floating-Point Registers
The floating-point register set consists of sixty-four 32-bit registers, which may be accessed as follows:

■ Sixteen 128-bit quad-precision registers, referenced as FQ[0], FQ[4], …, FQ[60]

■ Thirty-two 64-bit double-precision registers, referenced as FD[0], FD[2], …, FD[62]

■ Thirty-two 32-bit single-precision registers, referenced as FS[0], FS[1], …, FS[31] (only the lower
half of the floating-point register file can be accessed as single-precision registers)

The floating-point registers are arranged so that some of them overlap, that is, are aliased. The layout
and numbering of the floating-point registers are shown in TABLE 5-2. Unlike the windowed R
registers, all of the floating-point registers are accessible at any time. The floating-point registers can
be read and written by floating-point operate (FPop1/FPop2 format) instructions, by load/store
single/double/quad floating-point instructions, by VIS™ instructions, and by block load and block
store instructions.

TABLE 5-2 Floating-Point Registers, with Aliasing (1 of 3)

Single Precision
(32-bit)

Double Precision
(64-bit)

Quad Precision
(128-bit)

Register
Assembly
Language Bits Register

Assembly
Language Bits Register

Assembly
Language

FS[0] %f0 63:32
FD[0] %d0 127:64

FQ[0] %q0
FS[1] %f1 31:0

FS[2] %f2 63:32
FD[2] %d2 63:0

FS[3] %f3 31:0

FS[4] %f4 63:32
FD[4] %d4 127:64

FQ[4] %q4
FS[5] %f5 31:0

FS[6] %f6 63:32
FD[6] %d6 63:0

FS[7] %f7 31:0

FS[8]] %f8 63:32
FD[8] %d8 127:64

FQ[8] %q8
FS[9] %f9 31:0

FS[10] %f10 63:32
FD[10] %d10 63:0

FS[11] %f11 31:0

A1
38 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

FS[12] %f12 63:32
FD[12] %d12 127:64

FQ[12] %q12
FS[13] %f13 31:0

FS[14] %f14 63:32
FD[14] %d14 63:0

FS[15] %f15 31:0

FS[16] %f16 63:32
FD[16] %d16 127:64

FQ[16] %q16
FS[17] %f17 31:0

FS[18] %f18 63:32
FD[18] %d18 63:0

FS[19] %f19 31:0

FS[20] %f20 63:32
FD[20] %d20 127:64

FQ[20] %q20
FS[21] %f21 31:0

FS[22] %f22 63:32
FD[22] %d22 63:0

FS[23] %f23 31:0

FS[24] %f24 63:32
FD[24] %d24 127:64

FQ[24] %q24
FS[25] %f25 31:0

FS[26] %f26 63:32
FD[26] %d26 63:0

FS[27] %f27 31:0

FS[28] %f28 63:32
FD[28] %d28 127:64

FQ[28] %q28
FS[29] %f29 31:0

FS[30] %f30 63:32
FD[30] %d30 63:0

FS[31] %f31 31:0

63:32
FD[32] %d32 127:64

FQ[32] %q32
31:0

63:32
FD[34] %d34 63:0

31:0

63:32
FD[36] %d36 127:64

FQ[36] %q36
31:0

63:32
FD[38] %d38 63:0

31:0

63:32
FD[40] %d40 127:64

FQ[40] %q40
31:0

63:32
FD[42] %d42 63:0

31:0

63:32
FD[44] %d44 127:64

FQ[44] %q44
31:0

63:32
FD[46] %d46 63:0

31:0

TABLE 5-2 Floating-Point Registers, with Aliasing (2 of 3)

Single Precision
(32-bit)

Double Precision
(64-bit)

Quad Precision
(128-bit)

Register
Assembly
Language Bits Register

Assembly
Language Bits Register

Assembly
Language
CHAPTER 5 • Registers 39

5.3.1 Floating-Point Register Number Encoding
Register numbers for single, double, and quad registers are encoded differently in the 5-bit register
number field of a floating-point instruction. If the bits in a register number field are labelled b{4} …
b{0} (where b{4} is the most significant bit of the register number), the encoding of floating-point
register numbers into 5-bit instruction fields is as given in TABLE 5-3.

63:32
FD[48] %d48 127:64

FQ[48] %q48
31:0

63:32
FD[50] %d50 63:0

31:0

63:32
FD[52] %d52 127:64

FQ[52] %q52
31:0

63:32
FD[54] %d54 63:0

31:0

63:32
FD[56] %d56 127:64

FQ[56] %q56
31:0

63:32
FD[58] %d58 63:0

31:0

63:32
FD[60] %d60 127:64

FQ[60] %q60
31:0

63:32
FD[62] %d62 63:0

31:0

TABLE 5-3 Floating-Point Register Number Encoding

Register Operand
Type Full 6-bit Register Number

Encoding in a 5-bit Register Field in an
Instruction

Single 0 b{4} b{3} b{2} b{1} b{0} b{4} b{3} b{2} b{1} b{0}

Double b{5} b{4} b{3} b{2} b{1} 0 b{4} b{3} b{2} b{1} b{5}

Quad b{5} b{4} b{3} b{2} 0 0 b{4} b{3} b{2} 0 b{5}

SPARC V8
Compatibility

Note

In the SPARC V8 architecture, bit 0 of double and quad register
numbers encoded in instruction fields was required to be zero.
Therefore, all SPARC V8 floating-point instructions can run
unchanged on an UltraSPARC Architecture virtual processor,
using the encoding in TABLE 5-3.

TABLE 5-2 Floating-Point Registers, with Aliasing (3 of 3)

Single Precision
(32-bit)

Double Precision
(64-bit)

Quad Precision
(128-bit)

Register
Assembly
Language Bits Register

Assembly
Language Bits Register

Assembly
Language
40 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

5.3.2 Double and Quad Floating-Point Operands
A single 32-bit F register can hold one single-precision operand; a double-precision operand requires
an aligned pair of F registers, and a quad-precision operand requires an aligned quadruple of F
registers. At a given time, the floating-point registers can hold a maximum of 32 single-precision, 16
double-precision, or 8 quad-precision values in the lower half of the floating-point register file, plus
an additional 16 double-precision or 8 quad-precision values in the upper half, or mixtures of the
three sizes.

Programming
Note

The upper 16 double-precision (upper 8 quad-precision)
floating-point registers cannot be directly loaded by 32-bit load
instructions. Therefore, double- or quad-precision data that is
only word-aligned in memory cannot be directly loaded into the
upper registers with LDF[A] instructions. The following
guidelines are recommended:

1. Whenever possible, align floating-point data in memory on
proper address boundaries. If access to a datum is required to
be atomic, the datum must be properly aligned.

2. If a double- or quad-precision datum is not properly aligned
in memory or is still aligned on a 4-byte boundary, and access
to the datum in memory is not required to be atomic, then
software should attempt to allocate a register for it in the
lower half of the floating-point register file so that the datum
can be loaded with multiple LDF[A] instructions.

3. If the only available registers for such a datum are located in
the upper half of the floating-point register file and access to
the datum in memory is not required to be atomic, the word-
aligned datum can be loaded into them by one of two
methods:
■ Load the datum into an upper register by using multiple

LDF[A] instructions to first load it into a double- or quad-
precision register in the lower half of the floating-point
register file, then copy that register to the desired
destination register in the upper half.

Use an LDDF[A] or LDQF[A] instruction to perform the load
directly into the upper floating-point register, understanding
that use of these instructions on poorly aligned data can cause a
trap (LDDF_mem_not_aligned) on some implementations,
possibly slowing down program execution significantly.

Programming
Note

If an UltraSPARC Architecture 2007 implementation does not
implement a particular quad floating-point arithmetic operation
in hardware and an invalid quad register operand is specified,
the illegal_instruction trap occurs because it has higher priority.

Implementation
Note

UltraSPARC Architecture 2011 implementations do not
implement any quad floating-point arithmetic operations in
hardware. Therefore, an attempt to execute any of them results
in a trap on the illegal_instruction exception.
CHAPTER 5 • Registers 41

5.4 Floating-Point State Register (FSR)
The Floating-Point State register (FSR) fields, illustrated in FIGURE 5-4, contain FPU mode and status
information. The lower 32 bits of the FSR are read and written by the (deprecated) STFSR and LDFSR
instructions, respectively. The 64-bit FSR register is read by the STXFSR instruction and written by
the LDXFSR instruction. The ver, ftt, qne, unimplemented (for example, ns), and reserved (“—”)
fields of FSR are not modified by either LDFSR or LDXFSR.

Bits 63–38, 29–28, 21–20, and 12 of FSR are reserved. When read by an STXFSR instruction, these bits
always read as zero

The subsections on pages 42 through 48 describe the remaining fields in the FSR.

5.4.1 Floating-Point Condition Codes (fcc0, fcc1, fcc2, fcc3)
The four sets of floating-point condition code fields are labelled fcc0, fcc1, fcc2, and fcc3 (fccn refers
to any of the floating-point condition code fields).

The fcc0 field consists of bits 11 and 10 of the FSR, fcc1 consists of bits 33 and 32, fcc2 consists of bits
35 and 34, and fcc3 consists of bits 37 and 36. Execution of a floating-point compare instruction
(FCMP or FCMPE) updates one of the fccn fields in the FSR, as selected by the compare instruction.
The fccn fields are read by STXFSR and written by LDXFSR. The fcc0 field can also be read and
written by STFSR and LDFSR, respectively. FBfcc and FBPfcc instructions base their control transfers
on the content of these fields. The MOVcc and FMOVcc instructions can conditionally copy a register,
based on the contents of these fields.

In TABLE 5-4, frs1 and frs2 correspond to the single, double, or quad values in the floating-point
registers specified by a floating-point compare instruction’s rs1 and rs2 fields. The question mark (?)
indicates an unordered relation, which is true if either frs1 or frs2 is a signalling NaN or a quiet NaN.
If FCMP or FCMPE generates an fp_exception_ieee_754 exception, then fccn is unchanged.

Programming
Note

For future compatibility, software should issue LDXFSR
instructions only with zero values in these bits or values of these
bits exactly as read by a previous STXFSR.

TABLE 5-4 Floating-Point Condition Codes (fccn) Fields of FSR

Content of fccn

0 1 2 3

Indicated Relation
(FCMP*, FCMPE*)

F[rs1] = F[rs2] F[rs1] < F[rs2] F[rs1] > F[rs2] F[rs1] ? F[rs2]
(unordered)

A1

FIGURE 5-4 FSR Fields

RW RW RW

— fcc3 fcc2 fcc1

63 38 37 36 35 34 33 32

RW RW RW R R R RW RW RW

rd — tem ns — ver ftt — — fcc0 aexc cexc

31 30 29 28 27 23 22 21 20 19 17 16 14 13 12 11 10 9 5 4 0

FSR
42 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

5.4.2 Rounding Direction (rd)
Bits 31 and 30 select the rounding direction for floating-point results according to IEEE Std 754-1985.
TABLE 5-5 shows the encodings.

If the interval mode bit of the General Status register has a value of 1 (GSR.im = 1), then the value of
FSR.rd is ignored and floating-point results are instead rounded according to GSR.irnd. See General
Status Register (gsr) (ASR 19) on page 54 for further details.

5.4.3 Trap Enable Mask (tem)
Bits 27 through 23 are enable bits for each of the five IEEE-754 floating-point exceptions that can be
indicated in the current_exception field (cexc). See FIGURE 5-6 on page 47. If a floating-point
instruction generates one or more exceptions and the tem bit corresponding to any of the exceptions is
1, then this condition causes an fp_exception_ieee_754 trap. A tem bit value of 0 prevents the
corresponding IEEE 754 exception type from generating a trap.

5.4.4 Nonstandard Floating-Point (ns)
When FSR.ns = 1, it causes a SPARC V9 virtual processor to produce implementation-defined results
that may or may not correspond to IEEE Std 754-1985 (impl. dep. #18-V8).

For an implementation in which no nonstandard floating-point mode exists, the ns bit of FSR should
always read as 0 and writes to it should be ignored.

For detailed requirements for the case when an UltraSPARC Architecture processor elects to
implement floating-point nonstandard mode, see Floating-Point Nonstandard Mode on page 293.

5.4.5 FPU Version (ver)
IMPL. DEP. #19-V8: Bits 19 through 17 identify one or more particular implementations of the FPU
architecture.

For each SPARC V9 IU implementation, there may be one or more FPU implementations, or none.
FSR.ver identifies the particular FPU implementation present. The value in FSR.ver for each
implementation is strictly implementation dependent. Consult the appropriate document for each
implementation for its setting of FSR.ver.

FSR.ver = 7 is reserved to indicate that no hardware floating-point controller is present.

The ver field of FSR is read-only; it cannot be modified by the LDFSR or LDXFSR instructions.

TABLE 5-5 Rounding Direction (rd) Field of FSR

rd Round Toward

0 Nearest (even, if tie)

1 0

2 + ∞
3 − ∞
CHAPTER 5 • Registers 43

5.4.6 Floating-Point Trap Type (ftt)
Several conditions can cause a floating-point exception trap. When a floating-point exception trap
occurs, FSR.ftt (FSR{16:14}) identifies the cause of the exception, the “floating-point trap type.” After
a floating-point exception occurs, FSR.ftt encodes the type of the floating-point exception until it is
cleared (set to 0) by execution of an STFSR, STXFSR, or FPop that does not cause a trap due to a
floating-point exception.

The FSR.ftt field can be read by a STFSR or STXFSR instruction. The LDFSR and LDXFSR instructions
do not affect FSR.ftt.

Privileged software that handles floating-point traps must execute an STFSR (or STXFSR) to
determine the floating-point trap type. STFSR and STXFSR set FSR.ftt to zero after the store completes
without error. If the store generates an error and does not complete, FSR.ftt remains unchanged.

FSR.ftt encodes the primary condition (“floating-point trap type”) that caused the generation of an
fp_exception_other or fp_exception_ieee_754 exception. It is possible for more than one such
condition to occur simultaneously; in such a case, only the highest-priority condition will be encoded
in FSR.ftt. The conditions leading to fp_exception_other and fp_exception_ieee_754 exceptions, their
relative priorities, and the corresponding FSR.ftt values are listed in TABLE 5-6. Note that the FSR.ftt
values 4 and 5 were defined in the SPARC V9 architecture but are not currently in use, and that the
value 7 is reserved for future architectural use.

The IEEE_754_exception and unfinished_FPop conditions will likely arise occasionally in the normal
course of computation and must be recoverable by system software.

When a floating-point trap occurs, the following results are observed by user software:

1. The value of aexc is unchanged.

2. When an fp_exception_ieee_754 trap occurs, a bit corresponding to the trapping exception is set in
cexc. On other traps, the value of cexc is unchanged.

3. The source and destination registers are unchanged.

4. The value of fccn is unchanged.

The foregoing describes the result seen by a user trap handler if an IEEE exception is signalled, either
immediately from an fp_exception_ieee_754 exception or after recovery from an unfinished_FPop. In
either case, cexc as seen by the trap handler reflects the exception causing the trap.

Programming
Note

Neither LDFSR nor LDXFSR can be used for the purpose of
clearing the ftt field, since both leave ftt unchanged. However,
executing a nontrapping floating-point operate (FPop)
instruction such as “fmovs %f0,%f0” prior to returning to
nonprivileged mode will zero FSR.ftt. The ftt field remains zero
until the next FPop instruction completes execution.

TABLE 5-6 FSR Floating-Point Trap Type (ftt) Field

Condition Detected During
Execution of an FPop

Relative
Priority

(1 = highest)

Result

FSR.ftt Set
to Value Exception Generated

invalid_fp_register 20 6 fp_exception_other

unfinished_FPop 30 2 fp_exception_other

IEEE_754_exception 40 1 fp_exception_ieee_754

Reserved — 3, 4, 5, 7 —

(none detected) — 0 —
44 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

In the cases of an fp_exception_other exception with a floating-point trap type of unfinished_FPop
that does not subsequently generate an IEEE trap, the recovery software should set cexc, aexc, and
the destination register or fccn, as appropriate.

ftt = 1 (IEEE_754_exception). The IEEE_754_exception floating-point trap type indicates the
occurrence of a floating-point exception conforming to IEEE Std 754-1985. The IEEE 754 exception
type (overflow, inexact, etc.) is set in the cexc field. The aexc and fccn fields and the destination F
register are unchanged.

ftt = 2 (unfinished_FPop). The unfinished_FPop floating-point trap type indicates that the virtual
processor was unable to generate correct results or that exceptions as defined by IEEE Std 754-1985
have occurred. In cases where exceptions have occurred, the cexc field is unchanged.

IMPL. DEP. #248-U3: The conditions under which an fp_exception_other exception with floating-
point trap type of unfinished_FPop can occur are implementation dependent. An implementation may
cause fp_exception_other with FSR.ftt = unfinished_FPop under a different (but specified) set of
conditions.

ftt = 3 (Reserved).

ftt = 4 (Reserved).

ftt = 5 (Reserved).

Implementation
Note

Implementations are encouraged to support standard IEEE 754
floating-point arithmetic with reasonable performance (that is,
without generating fp_exception_other with
FSR.ftt=unfinished_FPop) in all cases, even if some cases are
slower than others.

SPARC V9
Compatibility

Note

In SPARC V9, FSR.ftt = 3 was defined to be
"unimplemented_FPop". All conditions which used to cause
cause fp_exception_other with FSR.ftt = 3 now cause an
illegal_instruction exception, instead. FSR.ftt = 3 is now reserved
and available for other future uses.

SPARC V9
Compatibility

Note

In the SPARC V9 architecture, FSR.ftt = 4 was defined to be
"sequence_error", for use with certain error conditions
associated with a floating-point queue (FQ). Since UltraSPARC
Architecture implementations generate precise (rather than
deferred) traps for floating-point operations, an FQ is not
needed; therefore sequence_error conditions cannot occur and
ftt =4 has been returned to the pool of reserved ftt values.

SPARC V9
Compatibility

Note

In the SPARC V9 architecture, FSR.ftt = 5 was defined to be
"hardware_error", for use with hardware error conditions
associated with an external floating-point unit (FPU) operating
asynchronously to the main processor (IU). Since UltraSPARC
Architecture processors are now implemented with an integral
FPU, a hardware error in the FPU can generate an exception
directly, rather than indirectly report the error through FSR.ftt
(as was required when FPUs were external to IUs). Therefore,
ftt = 5 has been returned to the pool of reserved ftt values.
CHAPTER 5 • Registers 45

ftt = 6 (invalid_fp_register). This trap type indicates that one or more F register operands of an
FPop are misaligned; that is, a quad-precision register number is not 0 mod 4. An implementation
generates an fp_exception_other trap with FSR.ftt = invalid_fp_register in this case.

5.4.7 Accrued Exceptions (aexc)
Bits 9 through 5 accumulate IEEE_754 floating-point exceptions as long as floating-point exception
traps are disabled through the tem field. See FIGURE 5-7 on page 47.

After an FPop completes with ftt = 0, the tem and cexc fields are logically anded together. If the result
is nonzero, aexc is left unchanged and an fp_exception_ieee_754 trap is generated; otherwise, the
new cexc field is ored into the aexc field and no trap is generated. Thus, while (and only while) traps
are masked, exceptions are accumulated in the aexc field.

FSR.aexc can be set to a specific value when an LDFSR or LDXFSR instruction is executed.

5.4.8 Current Exception (cexc)
FSR.cexc (FSR{4:0}) indicates whether one or more IEEE 754 floating-point exceptions were
generated by the most recently executed FPop instruction. The absence of an exception causes the
corresponding bit to be cleared (set to 0). See FIGURE 5-6 on page 47.

The cexc bits are set as described in Floating-Point Exception Fields on page 47, by the execution of an
FPop that either does not cause a trap or causes an fp_exception_ieee_754 exception with
FSR.ftt = IEEE_754_exception. An IEEE 754 exception that traps shall cause exactly one bit in
FSR.cexc to be set, corresponding to the detected IEEE Std 754-1985 exception.

Floating-point operations which cause an overflow or underflow condition may also cause an
“inexact” condition. For overflow and underflow conditions, FSR.cexc bits are set and trapping
occurs as follows:

■ If an IEEE 754 overflow condition occurs:

■ if FSR.tem.ofm = 0 and tem.nxm = 0, the FSR.cexc.ofc and FSR.cexc.nxc bits are both set to 1,
the other three bits of FSR.cexc are set to 0, and an fp_exception_ieee_754 trap does not occur.

■ if FSR.tem.ofm = 0 and tem.nxm = 1, the FSR.cexc.nxc bit is set to 1, the other four bits of
FSR.cexc are set to 0, and an fp_exception_ieee_754 trap does occur.

■ if FSR.tem.ofm = 1, the FSR.cexc.ofc bit is set to 1, the other four bits of FSR.cexc are set to 0,
and an fp_exception_ieee_754 trap does occur.

■ If an IEEE 754 underflow condition occurs:

■ if FSR.tem.ufm = 0 and FSR.tem.nxm = 0, the FSR.cexc.ufc and FSR.cexc.nxc bits are both set
to 1, the other three bits of FSR.cexc are set to 0, and an fp_exception_ieee_754 trap does not
occur.

■ if FSR.tem.ufm = 0 and FSR.tem.nxm = 1, the FSR.cexc.nxc bit is set to 1, the other four bits of
FSR.cexc are set to 0, and an fp_exception_ieee_754 trap does occur.

Implementation
Note

If an UltraSPARC Architecture 2007 processor does not
implement a particular quad FPop in hardware, that FPop
generates an illegal_instruction exception instead of
fp_exception_other with FSR.ftt = 6 (invalid_fp_register),
regardless of the specified F registers.

Programming
Note

If the FPop traps and software emulate or finish the instruction,
the system software in the trap handler is responsible for
creating a correct FSR.cexc value before returning to a
nonprivileged program.
46 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

■ if FSR.tem.ufm = 1, the FSR.cexc.ufc bit is set to 1, the other four bits of FSR.cexc are set to 0,
and an fp_exception_ieee_754 trap does occur.

The above behavior is summarized in TABLE 5-7 (where “✔ ” indicates “exception was detected” and
“x” indicates “don’t care”):

If the execution of an FPop causes a trap other than fp_exception_ieee_754, FSR.cexc is left
unchanged.

5.4.9 Floating-Point Exception Fields
The current and accrued exception fields and the trap enable mask assume the following definitions of
the floating-point exception conditions (per IEEE Std 754-1985):

TABLE 5-7 Setting of FSR.cexc Bits

Conditions Results

Exception(s)
Detected

in F.p.
operation

Trap Enable
Mask bits

(in FSR.tem) fp_exception_
ieee_754

Trap Occurs?

Current
Exception

bits (in
FSR.cexc)

of uf nx ofm ufm nxm ofc ufc nxc

- - - x x x no 0 0 0

- - ✔ x x 0 no 0 0 1

- ✔ 1 ✔ 1 x 0 0 no 0 1 1

✔ 2 - ✔ 2 0 x 0 no 1 0 1

- - ✔ x x 1 yes 0 0 1

- ✔ 1 ✔ 1 x 0 1 yes 0 0 1

- ✔ - x 1 x yes 0 1 0

- ✔ ✔ x 1 x yes 0 1 0

✔ 2 - ✔ 2 1 x x yes 1 0 0

✔ 2 - ✔ 2 0 x 1 yes 0 0 1

Notes: 1 When the underflow trap is disabled (FSR.tem.ufm = 0)
underflow is always accompanied by inexact.

2 Overflow is always accompanied by inexact.

RW RW RW RW RW

FSR.tem nvm ofm ufm dzm nxm

27 26 25 24 23

FIGURE 5-6 Trap Enable Mask (tem) Fields of FSR

RW RW RW RW RW

FSR.aexc nva ofa ufa dza nxa

9 8 7 6 5

FIGURE 5-7 Accrued Exception Bits (aexc) Fields of FSR

RW RW RW RW RW

FSR.cexc nvc ofc ufc dzc nxc

4 3 2 1 0

FIGURE 5-8 Current Exception Bits (aexc) Fields of FSR
CHAPTER 5 • Registers 47

Invalid (nvc, nva). An operand is improper for the operation to be performed. For example, 0.0 ÷
0.0 and ∞ – ∞ are invalid; 1 = invalid operand(s), 0 = valid operand(s).

Overflow (ofc, ofa). The result, rounded as if the exponent range were unbounded, would be
larger in magnitude than the destination format’s largest finite number; 1 = overflow, 0 = no overflow.

Underflow (ufc, ufa). The rounded result is inexact and would be smaller in magnitude than the
smallest normalized number in the indicated format; 1 = underflow, 0 = no underflow.

Underflow is never indicated when the correct unrounded result is 0.
Otherwise, when the correct unrounded result is not 0:

If FSR.tem.ufm = 0: Underflow occurs if a nonzero result is tiny and a loss of accuracy occurs.

If FSR.tem.ufm = 1: Underflow occurs if a nonzero result is tiny.

The SPARC V9 architecture allows tininess to be detected either before or after rounding. However, in
all cases and regardless of the setting of FSR.tem.ufm, an UltraSPARC Architecture strand detects
tininess before rounding (impl. dep. #55-V8-Cs10). See Trapped Underflow Definition (ufm = 1) on page
293 and Untrapped Underflow Definition (ufm = 0) on page 293 for additional details.

Division by zero (dzc, dza). An infinite result is produced exactly from finite operands. For
example, X ÷ 0.0, where X is subnormal or normalized; 1 = division by zero, 0 = no division by zero.

Inexact (nxc, nxa). The rounded result of an operation differs from the infinitely precise
unrounded result; 1 = inexact result, 0 = exact result.

5.4.10 FSR Conformance
An UltraSPARC Architecture implementation implements the tem, cexc, and aexc fields of FSR in
hardware, conforming to IEEE Std 754-1985 (impl. dep. #22-V8).

5.5 Ancillary State Registers
The SPARC V9 architecture defines several optional ancillary state registers (ASRs) and allows for

additional ones. Access to a particular ASR may be privileged or nonprivileged.

An ASR is read and written with the Read State Register and Write State Register instructions,
respectively. These instructions are privileged if the accessed register is privileged.

The SPARC V9 architecture left ASRs numbered 16–31 available for implementation-dependent uses.
UltraSPARC Architecture virtual processors implement the ASRs summarized in TABLE 5-8 and
defined in the following subsections.

Programming
Note

Privileged software (or a combination of privileged and
nonprivileged software) must be capable of simulating the
operation of the FPU in order to handle the fp_exception_other
(with FSR.ftt = unfinished_FPop) and IEEE_754_exception
floating-point trap types properly. Thus, a user application
program always sees an FSR that is fully compliant with IEEE
Std 754-1985.
48 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

Each virtual processor contains its own set of ASRs; ASRs are not shared among virtual processors.

TABLE 5-8 ASR Register Summary

ASR number ASR name Register
Read by
Instruction(s)

Written by
Instruction(s)

0 YD Y register (deprecated) RDYD WRYD

1 — Reserved — —

2 CCR Condition Codes register RDCCR WRCCR

3 ASI ASI register RDASI WRASI

4 TICKPnpt TICK register RDTICKPnpt,
RDPRP (TICK)

WRPRP (TICK)

5 PC Program Counter (PC) RDPC (all instructions)

6 FPRS Floating-Point Registers Status register RDFPRS WRFPRS

7–14 (7-0E16) — Reserved — —

15 (0F16) — Reserved — —

16–31 (1016-1F16) non-SPARC V9 ASRs — —

16-18 (1016- 1216) — Implementation dependent (impl. dep.
#8-V8-Cs20, 9-V8-Cs20)

— —

19 (1316) GSR General Status register (GSR) RDGSR,
FALIGNDATA,
many VIS and
floating-point
instructions

WRGSR,
BMASK, SIAM

20 (1416) SOFTINT_SETP (pseudo-register, for "Write 1s Set" to
SOFTINT register, ASR 22)

— WRSOFTINT_SETP

21 (1516) SOFTINT_CLRP (pseudo-register, for "Write 1s Clear" to
SOFTINT register, ASR 22)

— WRSOFTINT_CLRP

22 (1616) SOFTINTP per-virtual processor Soft Interrupt
register

RDSOFTINTP WRSOFTINTP

23 (1716) TICK_CMPRP Tick Compare register RDTICK_CMPRP WRTICK_CMPRP

24 (1816) STICKPnpt System Tick register RDSTICKPnpt —

25 (1916) STICK_CMPRP System Tick Compare register RDSTICK_CMPRP WRSTICK_CMPRP

26 (1A16) — Implementation dependent (impl. dep.
#8-V8-Cs20, 9-V8-Cs20)

— —

27 (1B16) — Implementation dependent (impl. dep.
#8-V8-Cs20, 9-V8-Cs20)

— —

28–29 (1C16-1D16) — Implementation dependent (impl. dep.
#8-V8-Cs20, 9-V8-Cs20)

— —

30 (1E16) — Reserved — —

31 (1F16) — Implementation dependent (impl. dep.
#8-V8-Cs20, 9-V8-Cs20)

— —

N− N− N−
CHAPTER 5 • Registers 49

5.5.1 32-bit Multiply/Divide Register (Y) (ASR 0)

The low-order 32 bits of the Y register, illustrated in FIGURE 5-9, contain the more significant word of
the 64-bit product of an integer multiplication, as a result of either a 32-bit integer multiply (SMUL,
SMULcc, UMUL, UMULcc) instruction or an integer multiply step (MULScc) instruction. The Y
register also holds the more significant word of the 64-bit dividend for a 32-bit integer divide (SDIV,
SDIVcc, UDIV, UDIVcc) instruction.

Although Y is a 64-bit register, its high-order 32 bits always read as 0.

The Y register may be explicitly read and written by the RDY and WRY instructions, respectively.

5.5.2 Integer Condition Codes Register (CCR) (ASR 2)
The Condition Codes Register (CCR), shown in FIGURE 5-10, contains the integer condition codes. The
CCR register may be explicitly read and written by the RDCCR and WRCCR instructions,
respectively.

5.5.2.1 Condition Codes (CCR.xcc and CCR.icc)

All instructions that set integer condition codes set both the xcc and icc fields. The xcc condition
codes indicate the result of an operation when viewed as a 64-bit operation. The icc condition codes
indicate the result of an operation when viewed as a 32-bit operation. For example, if an operation
results in the 64-bit value 0000 0000 FFFF FFFF16, the 32-bit result is negative (icc.n is set to 1) but the
64-bit result is nonnegative (xcc.n is set to 0).

Each of the 4-bit condition-code fields is composed of four 1-bit subfields, as shown in FIGURE 5-11.

The n bits indicate whether the two’s-complement ALU result was negative for the last instruction
that modified the integer condition codes; 1 = negative, 0 = not negative.

The Y register is deprecated; it is provided only for compatibility with previous
versions of the architecture. It should not be used in new SPARC V9 software.
It is recommended that all instructions that reference the Y register (that is,
SMUL, SMULcc, UMUL, UMULcc, MULScc, SDIV, SDIVcc, UDIV, UDIVcc,
RDY, and WRY) be avoided. For suitable substitute instructions, see the
following pages: for the multiply instructions, see pages 246 and page 283; for
the multiply step instruction, see page 209; for division instructions, see pages
240 and 281; for the read instruction, see page 226; and for the write
instruction, see page 286.

R RW

Y 0 product{63:32} or dividend{63:32}

63 32 31 0

FIGURE 5-9 Y Register

RW RW

CCR xcc icc

7 4 3 0

FIGURE 5-10 Condition Codes Register

RW RW RW RW

n z v c

xcc: 7 6 5 4
icc: 3 2 1 0

FIGURE 5-11 Integer Condition Codes (CCR.icc and CCR.xcc)

D2

A1
50 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

The z bits indicate whether the ALU result was zero for the last instruction that modified the integer
condition codes; 1 = zero, 0 = nonzero.

The v bits signify whether the ALU result was within the range of (was representable in) 64-bit (xcc)
or 32-bit (icc) two’s complement notation for the last instruction that modified the integer condition
codes; 1 = overflow, 0 = no overflow.

The c bits indicate whether a 2’s complement carry (or borrow) occurred during the last instruction
that modified the integer condition codes. Carry is set on addition if there is a carry out of bit 63 (xcc)
or bit 31 (icc). Carry is set on subtraction if there is a borrow into bit 63 (xcc) or bit 31 (icc);
1 = borrow, 0 = no borrow (see TABLE 5-9).

Both fields of CCR (xcc and icc) are modified by arithmetic and logical instructions, the names of
which end with the letters “cc” (for example, ANDcc), and by the WRCCR instruction. They can be
modified by a DONE or RETRY instruction, which replaces these bits with the contents of
TSTATE.ccr. The behavior of the following instructions are conditioned by the contents of CCR.icc or
CCR.xcc:

■ BPcc and Tcc instructions (conditional transfer of control)

■ Bicc (conditional transfer of control, based on CCR.icc only)

■ MOVcc instruction (conditionally move the contents of an integer register)

■ FMOVcc instruction (conditionally move the contents of a floating-point register)

Extended (64-bit) integer condition codes (xcc). Bits 7 through 4 are the IU condition codes,
which indicate the results of an integer operation, with both of the operands and the result considered
to be 64 bits wide.

32-bit Integer condition codes (icc). Bits 3 through 0 are the IU condition codes, which indicate
the results of an integer operation, with both of the operands and the result considered to be 32 bits
wide.

5.5.3 Address Space Identifier (ASI) Register (ASR 3)
The Address Space Identifier register (FIGURE 5-12) specifies the address space identifier to be used for
load and store alternate instructions that use the “rs1 + simm13” addressing form.

The ASI register may be explicitly read and written by the RDASI and WRASI instructions,
respectively.

Software (executing in any privilege mode) may write any value into the ASI register. However,
values in the range 0016 to 7F16 are “restricted” ASIs; an attempt to perform an access using an ASI in
that range is restricted to software executing in a mode with sufficient privileges for the ASI. When an
instruction executing in nonprivileged mode attempts an access using an ASI in the range 0016 to 7F16
or an instruction executing in privileged mode attempts an access using an ASI the range 3016 to 7F16,
a privileged_action exception is generated. See Chapter 10, Address Space Identifiers (ASIs) for details.

TABLE 5-9 Setting of Carry (Borrow) bits for Subtraction That Sets CCs

Unsigned Comparison of Operand Values Setting of Carry bits in CCR

R[rs1]{31:0} ≥ R[rs2]{31:0} CCR.icc.c ← 0

R[rs1]{31:0} < R[rs2]{31:0} CCR.icc.c ← 1

R[rs1]{63:0} ≥ R[rs2]{63:0} CCR.xcc.c ← 0

R[rs1]{63:0} < R[rs2]{63:0} CCR.xcc.c ← 1

A1
CHAPTER 5 • Registers 51

5.5.4 Tick (TICK) Register (ASR 4)
FIGURE 5-13 illustrates the TICK register.

The counter field of the TICK register is a 63-bit counter that counts strand clock cycles.

Bit 63 of the TICK register is the nonprivileged trap (npt) bit, which controls access to the TICK
register by nonprivileged software.

Privileged software can always read the TICK register, with either the RDPR or RDTICK instruction.

Privileged software cannot write to the TICK register; an attempt to do so (with the WRPR instruction)
results in an illegal_instruction exception.

Nonprivileged software can read the TICK register by using the RDTICK instruction, but only when
nonprivileged access to TICK is enabled by hyperprivileged software. If nonprivileged access is
disabled, an attempt by nonprivileged software to read the TICK register using the RDTICK
instruction causes a privileged_action exception.

An attempt by nonprivileged software at any time to read the TICK register using the privileged
RDPR instruction causes a privileged_opcode exception.

Nonprivileged software cannot write the TICK register. An attempt by nonprivileged software to
write the TICK register using the privileged WRPR instruction causes a privileged_opcode exception.

The difference between the values read from the TICK register on two reads is intended to reflect the
number of strand cycles executed between the reads.

IMPL. DEP. #105-V9: (a) If an accurate count cannot always be returned when TICK is read, any
inaccuracy should be small, bounded, and documented.
(b) An implementation may implement fewer than 63 bits in TICK.counter; however, the counter as
implemented must be able to count for at least 10 years without overflowing. Any upper bits not
implemented must read as zero.

5.5.5 Program Counters (PC, NPC) (ASR 5)
The PC contains the address of the instruction currently being executed. The least-significant two bits
of PC always contain zeroes.

The PC can be read directly with the RDPC instruction. PC cannot be explicitly written by any
instruction (including Write State Register), but is implicitly written by control transfer instructions. A
WRasr to ASR 5 causes an illegal_instruction exception.

RW

ASI
7 0

FIGURE 5-12 Address Space Identifier Register

R R

TICKPnpt npt counter

63 62 0

FIGURE 5-13 TICK Register

Programming
Note

If a single TICK register is shared among multiple virtual
processors, then the difference between subsequent reads of
TICK.counter reflects a shared cycle count, not a count specific to
the virtual processor reading the TICK register.

A1

D2

D2

A1
52 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

The Next Program Counter, NPC, is a pseudo-register that contains the address of the next instruction
to be executed if a trap does not occur. The least-significant two bits of NPC always contain zeroes.

NPC is written implicitly by control transfer instructions. However, NPC cannot be read or written
explicitly by any instruction.

PC and NPC can be indirectly set by privileged software that writes to TPC[TL] and/or TNPC[TL]
and executes a RETRY instruction.

See Chapter 6, Instruction Set Overview, for details on how PC and NPC are used.

5.5.6 Floating-Point Registers State (FPRS) Register (ASR 6)
The Floating-Point Registers State (FPRS) register, shown in FIGURE 5-14, contains control information
for the floating-point register file; this information is readable and writable by nonprivileged software.

The FPRS register may be explicitly read and written by the RDFPRS and WRFPRS instructions,
respectively.

Enable FPU (fef). Bit 2, fef, determines whether the FPU is enabled. If it is disabled, executing a
floating-point instruction causes an fp_disabled trap. If this bit is set (FPRS.fef = 1) but the
PSTATE.pef bit is not set (PSTATE.pef = 0), then executing a floating-point instruction causes an
fp_disabled exception; that is, both FPRS.fef and PSTATE.pef must be set to 1 to enable floating-point
operations.

Dirty Upper Registers (du). Bit 1 is the “dirty” bit for the upper half of the floating-point registers;
that is, F[32]–F[62]. It is set to 1 whenever any of the upper floating-point registers is modified. The
du bit is cleared only by software.

An UltraSPARC Architecture 2007 virtual processor may set FPRS.du pessimistically; that is, it may
be set whenever an FPop executes, even though an exception may occur that prevents the instruction
from completing so no destination F register was actually modified (impl. dep. #403-S10). Note that
if the FPop triggers fp_disabled, FPRS.du is not modified.

Dirty Lower Registers (dl). Bit 0 is the “dirty” bit for the lower 32 floating-point registers; that is,
F[0]–F[31]. It is set to 1 whenever any of the lower floating-point registers is modified. The dl bit is
cleared only by software.

An UltraSPARC Architecture 2007 virtual processor may set FPRS.dl pessimistically; that is, it may be
set whenever an FPop executes, even though an exception may occur that prevents the instruction
from completing so no destination F register was actually modified (impl. dep. #403-S10). Note that
if the FPop triggers fp_disabled, FPRS.dl is not modified.

RW RW RW

FPRS fef du dl

2 1 0

FIGURE 5-14 Floating-Point Registers State Register

Programming
Note

FPRS.fef can be used by application software to notify system
software that the application does not require the contents of the
F registers to be preserved. Depending on system software, this
may provide some performance benefit, for example, the F
registers would not have to be saved or restored during context
switches to or from that application. Once an application sets
FPRS.fef to 0, it must assume that the values in all F registers
are volatile (may change at any time).

A1
CHAPTER 5 • Registers 53

5.5.7 General Status Register (GSR) (ASR 19)
The General Status Register1 (GSR) is a nonprivileged read/write register that is implicitly referenced
by many VIS instructions. The GSR can be read by the RDGSR instruction (see Read Ancillary State
Register on page 225) and written by the WRGSR instruction (see Write Ancillary State Register on page
285).

If the FPU is disabled (PSTATE.pef = 0 or FPRS.fef = 0), an attempt to access this register using an
otherwise-valid RDGSR or WRGSR instruction causes an fp_disabled trap.

The GSR is illustrated in FIGURE 5-15 and described in TABLE 5-10.

5.5.8 SOFTINTP Register (ASRs 20 , 21 , 22)
Software uses the privileged, read/write SOFTINT register (ASR 22) to schedule interrupts (via
interrupt_level_n exceptions).

SOFTINT can be read with a RDSOFTINT instruction (see Read Ancillary State Register on page
225) and written with a WRSOFTINT, WRSOFTINT_SET, or WRSOFTINT_CLR instruction (see Write
Ancillary State Register on page 285). An attempt to access to this register in nonprivileged mode
causes a privileged_opcode exception.

The SOFTINT register is illustrated in FIGURE 5-16 and described in TABLE 5-11.

1. This register was (inaccurately) referred to as the "Graphics Status Register" in early UltraSPARC implementations

RW RW RW RW RW

GSRP mask — im irnd — scale align

63 32 31 28 27 26 25 24 8 7 3 2 0

FIGURE 5-15 General Status Register (GSR) (ASR 19)

TABLE 5-10 GSR Bit Description

Bit Field Description

63:32 mask This 32-bit field specifies the mask used by the BSHUFFLE instruction. The field
contents are set by the BMASK instruction.

31:28 — Reserved.

27 im Interval Mode: If GSR.im = 0, rounding is performed according to FSR.rd; if
GSR.im = 1, rounding is performed according to GSR.irnd.

26:25 irnd IEEE Std 754-1985 rounding direction to use in Interval Mode (GSR.im = 1), as follows:

24:8 — Reserved.

7:3 scale 5-bit shift count in the range 0–31, used by the FPACK instructions for formatting.

2:0 align Least three significant bits of the address computed by the last-executed
ALIGNADDRESS or ALIGNADDRESS_LITTLE instruction.

Programming
Note

To atomically modify the set of pending software interrupts, use
of the SOFTINT_SET and SOFTINT_CLR ASRs is
recommended.

A1

irnd Round toward …

0 Nearest (even, if tie)

1 0

2 + ∞
3 − ∞

A2 A2 A1

A1
54 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

Setting any of SOFTINT.sm, SOFTINT.tm, or SOFTINT.int_level{13} (SOFTINT{14}) to 1 causes a
level-14 interrupt (interrupt_level_14). However, those three bits are independent; setting any one of
them does not affect the other two.

See Software Interrupt Register (softint) on page 366 for additional information regarding the SOFTINT
register.

5.5.8.1 SOFTINT_SETP Pseudo-Register (ASR 20)

A Write State register instruction to ASR 20 (WRSOFTINT_SET) atomically sets selected bits in the
privileged SOFTINT Register (ASR 22) (see page 54). That is, bits 16:0 of the write data are ored into
SOFTINT; any ‘1’ bit in the write data causes the corresponding bit of SOFTINT to be set to 1. Bits
63:17 of the write data are ignored.

Access to ASR 20 is privileged and write-only. There is no instruction to read this pseudo-register. An
attempt to write to ASR 20 in non-privileged mode, using the WRasr instruction, causes a
privileged_opcode exception.

FIGURE 5-17 illustrates the SOFTINT_SET pseudo-register.

RW RW RW

SOFTINTP — sm int_level tm

63 17 16 15 1 0

FIGURE 5-16 SOFTINT Register (ASR 22)

TABLE 5-11 SOFTINT Bit Description

Bit Field Description

16 sm When the STICK_CMPR (ASR 25) register’s int_dis (interrupt disable) field is 0 (that is,
System Tick Compare is enabled) and its stick_cmpr field matches the value in the
STICK register, then SOFTINT.sm (“STICK match”) is set to 1 and a level 14 interrupt
(interrupt_level_14) is generated. See System Tick Compare (stick_cmprP) Register (ASR 25)
on page 57 for details. SOFTINT.sm can also be directly written to 1 by software.

15:1 int_level When SOFTINT.int_level{n−1} (SOFTINT{n}) is set to 1, an interrupt_level_n exception is
generated.

0 tm When the TICK_CMPR (ASR 23) register’s int_dis (interrupt disable) field is 0 (that is,
Tick Compare is enabled) and its tick_cmpr field matches the value in the TICK register,
then the tm (“TICK match”) field in SOFTINT is set to 1 and a level-14 interrupt
(interrupt_level_14) is generated. See Tick Compare (tick_cmprP) Register (ASR 23) on page
56 for details. SOFTINT.tm can also be directly written to 1 by software.

Programming
Note

There is no actual “register” (machine state) corresponding to
ASR 20; it is just a programming interface to conveniently set
selected bits to ‘1’ in the SOFTINT register, ASR 22.

Notes: A level-14 interrupt (interrupt_level_14) can be triggered by
SOFTINT.sm, SOFTINT.tm, or a write to SOFTINT.int_level{13}
(SOFTINT{14}).

A level-15 interrupt (interrupt_level_15) can be triggered by a write to
SOFTINT.int_level{14} (SOFTINT{15}), or possibly by other
implementation-dependent mechanisms.

An interrupt_level_n exception will only cause a trap if (PIL < n) and
(PSTATE.ie = 1).

N2

A2
CHAPTER 5 • Registers 55

5.5.8.2 SOFTINT_CLRP Pseudo-Register (ASR 21)

A Write State register instruction to ASR 21 (WRSOFTINT_CLR) atomically clears selected bits in the
privileged SOFTINT register (ASR 22) (see page 54). That is, bits 16:0 of the write data are inverted
and anded into SOFTINT; any ‘1’ bit in the write data causes the corresponding bit of SOFTINT to be
set to 0. Bits 63:17 of the write data are ignored.

Access to ASR 21 is privileged and write-only. There is no instruction to read this pseudo-register. An
attempt to write to ASR 21 in non-privileged mode, using the WRasr instruction, causes a
privileged_opcode exception.

FIGURE 5-18 illustrates the SOFTINT_CLR pseudo-register.

5.5.9 Tick Compare (TICK_CMPRP) Register (ASR 23)
The privileged TICK_CMPR register allows system software to cause a trap when the TICK register
reaches a specified value. Nonprivileged accesses to this register cause a privileged_opcode exception
(see Exception and Interrupt Descriptions on page 358).

The TICK_CMPR register is illustrated in FIGURE 5-19 and described in TABLE 5-12.

W1S

SOFTINT_SETP — ASR 22 bits to be set

63 17 16 0

FIGURE 5-17 SOFTINT_SET Pseudo-Register (ASR 20)

Programming
Note

There is no actual “register” (machine state) corresponding to
ASR 21; it is just a programming interface to conveniently clear
(set to ‘0’) selected bits in the SOFTINT register, ASR 22.

W1C

SOFTINT_CLRP — ASR 22 bits to be cleared

63 17 16 0

FIGURE 5-18 SOFTINT_CLR Pseudo-Register (ASR 21))

RW RW

TICK_CMPRP int_dis tick_cmpr

63 62 0

FIGURE 5-19 TICK_CMPR Register

TABLE 5-12 TICK_CMPR Register Description

Bit Field Description

63 int_dis Interrupt Disable. If int_dis = 0, TICK compare interrupts are enabled
and if int_dis = 1, TICK compare interrupts are disabled.

62:0 tick_cmpr Tick Compare Field. When this field exactly matches the value in
TICK.counter and TICK_CMPR.int_dis = 0, SOFTINT.tm is set to 1.
This has the effect of posting a level-14 interrupt to the virtual
processor, which causes an interrupt_level_14 trap when (PIL < 14)
and (PSTATE.ie = 1). The level-14 interrupt handler must check
SOFTINT{14}, SOFTINT{0} (tm), and SOFTINT{16} (sm) to determine
the source of the level-14 interrupt.

A2

D2
56 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

5.5.10 System Tick (STICK) Register (ASR 24)
The System Tick (STICK) register provides a counter that is synchronized across a system, useful for
timestamping. The counter field of the STICK register is a 63-bit counter that increments at a rate
determined by a clock signal external to the processor.

Bit 63 of the STICK register is the nonprivileged trap (npt) bit, which controls access to the STICK
register by nonprivileged software.

The STICK register is illustrated in FIGURE 5-20 and described below.

Privileged software can always read the STICK register with the RDSTICK instruction.

Privileged software cannot write the STICK register; an attempt to execute the WRSTICK instruction
in privileged mode results in an illegal_instruction exception.

Nonprivileged software can read the STICK register by using the RDSTICK instruction, but only
when nonprivileged access to STICK is enabled by hyperprivileged software. If nonprivileged access
is disabled, an attempt by nonprivileged software to read the STICK register causes a
privileged_action exception.

Nonprivileged software cannot write the STICK register; an attempt to execute the WRSTICK
instruction in nonprivileged mode results in an illegal_instruction exception.

IMPL. DEP. #442-S10: (a) If an accurate count cannot always be returned when STICK is read, any
inaccuracy should be small, bounded, and documented.
(b) An implementation may implement fewer than 63 bits in STICK.counter; however, the counter as
implemented must be able to count for at least 10 years without overflowing. Any upper bits not
implemented must read as zero.

5.5.11 System Tick Compare (STICK_CMPRP) Register (ASR
25)
The privileged STICK_CMPR register allows system software to cause a trap when the STICK register
reaches a specified value. An attempt to accesses to this register while in nonprivileged mode causes
a privileged_opcode exception (see Exception and Interrupt Descriptions on page 358).

The System Tick Compare Register is illustrated in FIGURE 5-21 and described in TABLE 5-13.

R R

STICKPnpt npt counter

63 62 0

FIGURE 5-20 STICK Register

RW RW

STICK_CMPRP int_dis stick_cmpr

63 62 0

FIGURE 5-21 STICK_CMPR Register

A1

A2
CHAPTER 5 • Registers 57

5.6 Register-Window PR State Registers
The state of the register windows is determined by the contents of a set of privileged registers. These
state registers can be read/written by privileged software using the RDPR/WRPR instructions. An
attempt by nonprivileged software to execute a RDPR or WRPR instruction causes a
privileged_opcode exception. In addition, these registers are modified by instructions related to
register windows and are used to generate traps that allow supervisor software to spill, fill, and clean
register windows.

IMPL. DEP. #126-V9-Ms10: Privileged registers CWP, CANSAVE, CANRESTORE, OTHERWIN, and
CLEANWIN contain values in the range 0 to N_REG_WINDOWS − 1. An attempt to write a value greater
than N_REG_WINDOWS − 1 to any of these registers causes an implementation-dependent value
between 0 and N_REG_WINDOWS − 1 (inclusive) to be written to the register. Furthermore, an attempt
to write a value greater than N_REG_WINDOWS − 2 violates the register window state definition in
Register Window State Definition on page 60.
Although the width of each of these five registers is architecturally 5 bits, the width is implementation
dependent and shall be between log2(N_REG_WINDOWS) and 5 bits, inclusive. If fewer than 5 bits are
implemented, the unimplemented upper bits shall read as 0 and writes to them shall have no effect.
All five registers should have the same width.
For UltraSPARC Architecture 2007 processors, N_REG_WINDOWS = 8. Therefore, each register window
state register is implemented with 3 bits, the maximum value for CWP and CLEANWIN is 7, and the
maximum value for CANSAVE, CANRESTORE, and OTHERWIN is 6. When these registers are
written by the WRPR instruction, bits 63:3 of the data written are ignored.

For details of how the window-management registers are used, see Register Window Management
Instructions on page 83.

TABLE 5-13 STICK_CMPR Register Description

Bit Field Description

63 int_dis Interrupt Disable. If set to 1, STICK_CMPR interrupts are disabled.

62:0 stick_cmpr System Tick Compare Field. When this field exactly matches
STICK.counter and STICK_CMPR.int_dis = 0, SOFTINT.sm is set to
1. This has the effect of posting a level-14 interrupt to the virtual
processor, which causes an interrupt_level_14 trap when (PIL < 14)
and (PSTATE.ie = 1). The level-14 interrupt handler must check
SOFTINT{14}, SOFTINT{0} (tm), and SOFTINT{16} (sm) to
determine the source of the level-14 interrupt.

Programming
Note

CANSAVE, CANRESTORE, OTHERWIN, and CLEANWIN must
never be set to a value greater than N_REG_WINDOWS − 2 on an
UltraSPARC Architecture virtual processor. Setting any of these
to a value greater than N_REG_WINDOWS − 2 violates the register
window state definition in Register Window State Definition on
page 60. Hardware is not required to enforce this restriction; it is
up to system software to keep the window state consistent.

Implementation
Note

A write to any privileged register, including PR state registers,
may drain the CPU pipeline.
58 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

5.6.1 Current Window Pointer (CWPP) Register (PR 9)
The privileged CWP register, shown in FIGURE 5-22, is a counter that identifies the current window
into the array of integer registers. See Register Window Management Instructions on page 83 and
Chapter 12, Traps, for information on how hardware manipulates the CWP register.

5.6.2 Savable Windows (CANSAVEP) Register (PR 10)
The privileged CANSAVE register, shown in FIGURE 5-23, contains the number of register windows
following CWP that are not in use and are, hence, available to be allocated by a SAVE instruction
without generating a window spill exception.

5.6.3 Restorable Windows (CANRESTOREP) Register (PR 11)
The privileged CANRESTORE register, shown in FIGURE 5-24, contains the number of register
windows preceding CWP that are in use by the current program and can be restored (by the
RESTORE instruction) without generating a window fill exception.

5.6.4 Clean Windows (CLEANWINP) Register (PR 12)
The privileged CLEANWIN register, shown in FIGURE 5-25, contains the number of windows that can
be used by the SAVE instruction without causing a clean_window exception.

The CLEANWIN register counts the number of register windows that are “clean” with respect to the
current program; that is, register windows that contain only zeroes, valid addresses, or valid data
from that program. Registers in these windows need not be cleaned before they can be used. The
count includes the register windows that can be restored (the value in the CANRESTORE register)
and the register windows following CWP that can be used without cleaning. When a clean window is
requested (by a SAVE instruction) and none is available, a clean_window exception occurs to cause the
next window to be cleaned.

RW RW

CWPP

4 3 2 0

FIGURE 5-22 Current Window Pointer Register

RW RW

CANSAVEP

4 3 2 0

FIGURE 5-23 CANSAVE Register, Figure 5-24, page 88

RW RW

CANRESTOREP

4 3 2 0

FIGURE 5-24 CANRESTORE Register

RW RW

CLEANWINP

4 3 2 0

FIGURE 5-25 CLEANWIN Register

A1

A1

A1

A1
CHAPTER 5 • Registers 59

5.6.5 Other Windows (OTHERWINP) Register (PR 13)
The privileged OTHERWIN register, shown in FIGURE 5-26, contains the count of register windows that
will be spilled/filled by a separate set of trap vectors based on the contents of WSTATE.other. If
OTHERWIN is zero, register windows are spilled/filled by use of trap vectors based on the contents of
WSTATE.normal.

The OTHERWIN register can be used to split the register windows among different address spaces
and handle spill/fill traps efficiently by use of separate spill/fill vectors.

5.6.6 Window State (WSTATEP) Register (PR 14)
The privileged WSTATE register, shown in FIGURE 5-27, specifies bits that are inserted into TT[TL]{4:2}
on traps caused by window spill and fill exceptions. These bits are used to select one of eight different
window spill and fill handlers. If OTHERWIN = 0 at the time a trap is taken because of a window spill
or window fill exception, then the WSTATE.normal bits are inserted into TT[TL]. Otherwise, the
WSTATE.other bits are inserted into TT[TL]. See Register Window State Definition, below, for details of
the semantics of OTHERWIN.

5.6.7 Register Window Management
The state of the register windows is determined by the contents of the set of privileged registers
described in Register-Window PR State Registers on page 58. Those registers are affected by the
instructions described in Register Window Management Instructions on page 83. Privileged software can
read/write these state registers directly by using RDPR/WRPR instructions.

5.6.7.1 Register Window State Definition

For the state of the register windows to be consistent, the following must always be true:

CANSAVE + CANRESTORE + OTHERWIN = N_REG_WINDOWS – 2

FIGURE 5-3 on page 37 shows how the register windows are partitioned to obtain the above equation.
The partitions are as follows:

■ The current window plus the window that must not be used because it overlaps two other valid
windows. In FIGURE 5-3, these are windows 0 and 5, respectively. They are always present and
account for the “2” subtracted from N_REG_WINDOWS in the right-hand side of the above equation.

■ Windows that do not have valid contents and that can be used (through a SAVE instruction)
without causing a spill trap. These windows (windows 1–4 in FIGURE 5-3) are counted in CANSAVE.

■ Windows that have valid contents for the current address space and that can be used (through the
RESTORE instruction) without causing a fill trap. These windows (window 7 in FIGURE 5-3) are
counted in CANRESTORE.

RW RW

OTHERWINP

4 3 2 0

FIGURE 5-26 OTHERWIN Register

RW RW

WSTATEP other normal

5 3 2 0

FIGURE 5-27 WSTATE Register

A1

A1
60 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

■ Windows that have valid contents for an address space other than the current address space. An
attempt to use these windows through a SAVE (RESTORE) instruction results in a spill (fill) trap to
a separate set of trap vectors, as discussed in the following subsection. These windows (window 6
in FIGURE 5-3) are counted in OTHERWIN.

In addition,

CLEANWIN ≥ CANRESTORE

since CLEANWIN is the sum of CANRESTORE and the number of clean windows following CWP.

For the window-management features of the architecture described in this section to be used, the state
of the register windows must be kept consistent at all times, except within the trap handlers for
window spilling, filling, and cleaning. While window traps are being handled, the state may be
inconsistent. Window spill/fill trap handlers should be written so that a nested trap can be taken
without destroying state.

5.6.7.2 Register Window Traps
Window traps are used to manage overflow and underflow conditions in the register windows,
support clean windows, and implement the FLUSHW instruction.

See Register Window Traps on page 362 for a detailed description of how fill, spill, and clean_window
traps support register windowing.

5.7 Non-Register-Window PR State Registers
The registers described in this section are visible only to software running in privileged mode (that is,
when PSTATE.priv = 1), and may be accessed with the WRPR and RDPR instructions. (An attempt to
execute a WRPR or RDPR instruction in nonprivileged mode causes a privileged_opcode exception.)

Each virtual processor provides a full set of these state registers.

5.7.1 Trap Program Counter (TPCP) Register (PR 0)
The privileged Trap Program Counter register (TPC; FIGURE 5-28) contains the program counter (PC)
from the previous trap level. There are MAXPTL instances of the TPC, but only one is accessible at any
time. The current value in the TL register determines which instance of the TPC[TL] register is
accessible. An attempt to read or write the TPC register when TL = 0 causes an illegal_instruction
exception.

During normal operation, the value of TPC[n], where n is greater than the current trap level (n > TL),
is undefined.

TABLE 5-14 lists the events that cause TPC to be read or written.

Programming
Note

System software is responsible for keeping the state of the
register windows consistent at all times. Failure to do so will
cause undefined behavior. For example, CANSAVE,
CANRESTORE, and OTHERWIN must never be greater than or
equal to N_REG_WINDOWS – 1.

Implementation
Note

A write to any privileged register, including PR state registers,
may drain the CPU pipeline.

A1
CHAPTER 5 • Registers 61

TABLE 5-14 Events that involve TPC, when executing with TL = n.

5.7.2 Trap Next PC (TNPCP) Register (PR 1)
The privileged Trap Next Program Counter register (TNPC; FIGURE 5-28) is the next program counter
(NPC) from the previous trap level. There are MAXPTL instances of the TNPC, but only one is accessible
at any time. The current value in the TL register determines which instance of the TNPC register is
accessible. An attempt to read or write the TNPC register when TL = 0 causes an illegal_instruction
exception.

During normal operation, the value of TNPC[n], where n is greater than the current trap level (n > TL),
is undefined.

TABLE 5-15 lists the events that cause TNPC to be read or written.

Event Effect

Trap TPC[n + 1] ← PC

RETRY instruction PC ← TPC[n]

RDPR (TPC) R[rd] ← TPC[n]

WRPR (TPC) TPC[n] ← value

TABLE 5-15 Events that involve TNPC, when executing with TL = n.

Event Effect

Trap TNPC[n + 1] ← NPC

DONE instruction PC ← TNPC[n]; NPC ← TNPC[n] + 4

RETRY instruction NPC ← TNPC[n]

RDPR (TNPC) R[rd] ← TNPC[n]

WRPR (TNPC) TNPC[n] ← value

TPC1
P

2

00

63 1 0

TPC2
P

00

TPC3
P 00

:

00

FIGURE 5-28 Trap Program Counter Register Stack

TPCMAXPTL
P

pc_high62 (PC{63:2} from trap while TL = MAXPTL − 1)

: :

pc_high62 (PC{63:2} from trap while TL = 0)

pc_high62 (PC{63:2} from trap while TL = 1)

pc_high62 (PC{63:2} from trap while TL = 2)

RW R

A1

TNPC1
P

2

00

63 1 0

TNPC2
P

00

TNPC3
P 00

00

FIGURE 5-29 Trap Next Program Counter Register Stack

TNPCMAXPTL
P

npc_high62 (NPC{63:2} from trap while TL = MAXPTL − 1)

: : :

npc_high62 (NPC{63:2} from trap while TL = 0)

npc_high62 (NPC{63:2} from trap while TL = 1)

npc_high62 (NPC{63:2} from trap while TL = 2)

RW R
62 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

5.7.3 Trap State (TSTATEP) Register (PR 2)
The privileged Trap State register (TSTATE; FIGURE 5-30) contains the state from the previous trap
level, comprising the contents of the GL, CCR, ASI, CWP, and PSTATE registers from the previous
trap level. There are MAXPTL instances of the TSTATE register, but only one is accessible at a time. The
current value in the TL register determines which instance of TSTATE is accessible. An attempt to read
or write the TSTATE register when TL = 0 causes an illegal_instruction exception.

FIGURE 5-30 Trap State (TSTATE) Register Stack

During normal operation the value of TSTATE[n], when n is greater than the current trap level (n >
TL), is undefined.

TABLE 5-16 lists the events that cause TSTATE to be read or written.

RW RW RW R RW R RW

TSTATE1
P gl

(GL from TL = 0)

ccr
(CCR from TL = 0)

asi
(ASI from TL = 0)

— pstate
(PSTATE from TL = 0)

— cwp
(CWP from TL = 0)

TSTATE2
P gl

(GL from TL = 1)

ccr
(CCR from TL = 1)

asi
(ASI from TL = 1

— pstate
(PSTATE from TL = 1)

— cwp
(CWP from TL = 1)

TSTATE3
P gl

(GL from TL = 2)

ccr
(CCR from TL = 2)

asi
(ASI from TL = 2

— pstate
(PSTATE from TL = 2)

— cwp
(CWP from TL = 2)

: P
: : : : : : :

TSTATEMAXPTL
P

gl
(GL from

TL = MAXPTL − 1)

ccr
(CCR from

TL = MAXPTL − 1)

asi
(ASI from

TL = MAXPTL − 1)

— pstate
(PSTATE from

TL = MAXPTL − 1)

— cwp
(CWP from

TL = MAXPTL − 1)
42 40 39 32 31 24 23 21 20 8 7 5 4 0

V9 Compatibility
Note

Because there are more bits in the UltraSPARC Architecture’s
PSTATE register than in a SPARC V9 PSTATE register, a 13-bit
PSTATE value is stored in TSTATE instead of the 10-bit value
specified in the SPARC V9 architecture.

TABLE 5-16 Events That Involve TSTATE, When Executing with TL = n

Event Effect

Trap TSTATE[n + 1] ← (registers)

DONE instruction (registers) ← TSTATE[n]

RETRY instruction (registers) ← TSTATE[n]

RDPR (TSTATE) R[rd] ← TSTATE[n]

WRPR (TSTATE) TSTATE[n] ← value

A1
CHAPTER 5 • Registers 63

5.7.4 Trap Type (TTP) Register (PR 3)
The privileged Trap Type register (TT; see FIGURE 5-31) contains the trap type of the trap that caused
entry to the current trap level. There are MAXPTL instances of the TT register, but only one is accessible
at a time. The current value in the TL register determines which instance of the TT register is
accessible. An attempt to read or write the TT register when TL = 0 causes an illegal_instruction
exception.

During normal operation, the value of TT[n], where n is greater than the current trap level (n > TL), is
undefined.

TABLE 5-17 lists the events that cause TT to be read or written.

TABLE 5-17 Events that involve TT, when executing with TL = n.

5.7.5 Trap Base Address (TBAP) Register (PR 5)
The privileged Trap Base Address register (TBA), shown in FIGURE 5-32, provides the upper 49 bits
(bits 63:15) of the virtual address used to select the trap vector for a trap that is to be delivered to
privileged mode. The lower 15 bits of the TBA always read as zero, and writes to them are ignored.

Details on how the full address for a trap vector is generated, using TBA and other state, are provided
in Trap-Table Entry Address to Privileged Mode on page 348.

5.7.6 Processor State (PSTATEP) Register (PR 6)
The privileged Processor State register (PSTATE), shown in FIGURE 5-33, contains control fields for the
current state of the virtual processor. There is only one instance of the PSTATE register per virtual
processor.

RW

TT1
P Trap type from trap while TL = 0

TT2
P Trap type from trap while TL = 1

:P :

TTMAXPTL
P Trap type from trap while TL = MAXPTL − 1

8 0

FIGURE 5-31 Trap Type Register Stack

Event Effect

Trap TT[n + 1] ← (trap type)

RDPR (TT) R[rd] ← TT[n]

WRPR (TT) TT[n] ← value

RW R

TBAP tba_high49 000 0000 0000 0000

63 15 14 0

FIGURE 5-32 Trap Base Address Register

RW RW RW RW RW RW RW RW

PSTATEP tct — cle tle mm — pef am priv ie —

12 11 10 9 8 7 6 5 4 3 2 1 0

FIGURE 5-33 PSTATE Field

A1

A1

A1
64 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

Writes to PSTATE are nondelayed; that is, new machine state written to PSTATE is visible to the next
instruction executed. The privileged RDPR and WRPR instructions are used to read and write
PSTATE, respectively.

The following subsections describe the fields of the PSTATE register.

Trap on Control Transfer (tct). PSTATE.tct enables the Trap-on-Control-Transfer feature.When
PSTATE.tct = 1, the virtual processor monitors each control transfer instruction (CTI) to determine
whether a control_transfer_instruction exception should be generated. If the virtual processor is
executing a CTI, PSTATE.tct = 1, and a successful control transfer is going to occur as a result of
execution of that CTI, the processor generates a control_transfer_instruction exception instead of
completing execution of the control transfer instruction.

When the trap is taken, the address of the CTI (the value of PC when the CTI began execution) is
saved in TPC[TL] and the value of NPC when the CTI began execution is saved in TNPC[TL].

During initial trap processing, before trap handler code is executed, the virtual processor sets
PSTATE.tct to 0 (so that control transfers within the trap handler don’t cause additional traps).

IMPL. DEP. #450-S20: Availability of the control_transfer_instruction exception feature is
implementation dependent. If not implemented, trap type 07416 is unused, PSTATE.tct always reads
as zero, and writes to PSTATE.tct are ignored.

For the purposes of the control_transfer_instruction exception, a discontinuity in instruction-fetch
addresses caused by a WRPR to PSTATE that changes the value of PSTATE.am (and thus, potentially
the more-significant 32 bits of the address of the next instruction; see page 67) is not considered a
control transfer. Only explicit CTIs can generate a control_transfer_instruction exception.

Current Little Endian (cle). This bit affects the endianness of data accesses performed using an
implicit ASI. When PSTATE.cle = 1, all data accesses using an implicit ASI are performed in little-
endian byte order. When PSTATE.cle = 0, all data accesses using an implicit ASI are performed in big-
endian byte order. Specific ASIs used are shown in TABLE 6-3 on page 76. Note that the endianness of
a data access may be further affected by TTE.ie used by the MMU.

Instruction accesses are unaffected by PSTATE.cle and are always performed in big-endian byte
order.

Trap Little Endian (tle). When a trap is taken, the current PSTATE register is pushed onto the trap
stack. During a virtual processor trap to privileged mode, the PSTATE.tle bit is copied into
PSTATE.cle in the new PSTATE register. This behavior allows system software to have a different
implicit byte ordering than the current process. Thus, if PSTATE.tle is set to 1, data accesses using an
implicit ASI in the trap handler are little-endian.

The original state of PSTATE.cle is restored when the original PSTATE register is restored from the
trap stack.

Programming
Note

Trap handler software for a control_transfer_instruction trap
should take care when returning to the software that caused the
trap. Execution of DONE or RETRY causes PSTATE.tct to be
restored from TSTATE, normally setting PSTATE.tct back to 1. If
trap handler software intends for control_transfer_instruction
exceptions to be reenabled, then it must emulate the trapped
control transfer instruction.
CHAPTER 5 • Registers 65

Memory Model (mm). This 2-bit field determines the memory model in use by the virtual
processor. The defined values for an UltraSPARC Architecture virtual processor are listed in
TABLE 5-18.

The current memory model is determined by the value of PSTATE.mm. Software should refrain from
writing the values 012, 102, or 112 to PSTATE.mm because they are implementation-dependent or
reserved for future extensions to the architecture, and in any case not currently portable across
implementations.

■ Total Store Order (TSO) — Loads are ordered with respect to earlier loads. Stores are ordered with
respect to earlier loads and stores. Thus, loads can bypass earlier stores but cannot bypass earlier
loads; stores cannot bypass earlier loads or stores.

IMPL. DEP. #113-V9-Ms10: Whether memory models represented by PSTATE.mm = 102 or 112 are
supported in an UltraSPARC Architecture processor is implementation dependent. If the 102 model
is supported, then when PSTATE.mm = 102 the implementation must correctly execute software that
adheres to the RMO model described in The SPARC Architecture Manual-Version 9. If the 112 model is
supported, its definition is implementation dependent.

IMPL. DEP. #119-Ms10: The effect of writing an unimplemented memory model designation into
PSTATE.mm is implementation dependent.

Enable FPU (pef). When set to 1, the PSTATE.pef bit enables the floating-point unit. This allows
privileged software to manage the FPU. For the FPU to be usable, both PSTATE.pef and FPRS.fef
must be set to 1. Otherwise, any floating-point instruction that tries to reference the FPU causes an
fp_disabled trap.

If an implementation does not contain a hardware FPU, PSTATE.pef always reads as 0 and writes to it
are ignored.

Address Mask (am). The PSTATE.am bit is provided to allow 32-bit SPARC software to run
correctly on a 64-bit SPARC processor. When PSTATE.am = 1, bits 63:32 of virtual addresses are
masked out (treated as 0). PSTATE.am does not affect real addresses.

When PSTATE.am = 0, the full 64 bits of all instruction and data addresses are preserved at all points in
the virtual processor.

When an MMU is disabled, PSTATE.am has no effect on (does not cause masking of) addresses.

TABLE 5-18 PSTATE.mm Encodings

mm Value Selected Memory Model

00 Total Store Order (TSO)

01 Reserved

10 Implementation dependent (impl. dep. #113-V9-Ms10)

11 Implementation dependent (impl. dep. #113-V9-Ms10)

SPARC V9
Compatibility

Notes

The PSO memory model described in SPARC V8 and SPARC V9
architecture specifications was never implemented in a SPARC
V9 implementation and is not included in the UltraSPARC
Architecture specification.

The RMO memory model described in the SPARC V9
specification was implemented in some non-Sun SPARC V9
implementations, but is not directly supported in UltraSPARC
Architecture 2007 implementations. All software written to run
correctly under RMO will run correctly under TSO on an
UltraSPARC Architecture 2007 implementation.
66 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

Instances in which the more-significant 32 bits of a virtual address are masked when PSTATE.am = 1
include:

■ Before any data virtual address is sent out of the virtual processor (notably, to the memory system,
which includes MMU, internal caches, and external caches).

■ Before any instruction virtual address is sent out of the virtual processor (notably, to the memory
system, which includes MMU, internal caches, and external caches)

■ When the value of PC is stored to a general-purpose register by a CALL, JMPL, or RDPC
instruction (closed impl.dep. #125-V9-Cs10)

■ When the values of PC and NPC are written to TPC[TL] and TNPC[TL] (respectively) during a trap
(closed impl.dep. #125-V9-Cs10)

■ Before any virtual address is sent to a watchpoint comparator

When PSTATE.am = 1, the more-significant 32 bits of a virtual address are explicitly preserved and
not masked out in the following cases:

■ When a target address is written to NPC by a control transfer instruction

■ When NPC is incremented to NPC + 4 during execution of an instruction that is not a taken control
transfer

■ When a WRPR instruction writes to TPC[TL] or TNPC[TL]

■ When a RDPR instruction reads from TPC[TL] or TNPC[TL]

Programming
Note

It is the responsibility of privileged software to manage the
setting of the PSTATE.am bit, since hardware masks virtual
addresses when PSTATE.am = 1.

Misuse of the PSTATE.am bit can result in undesirable behavior.
PSTATE.am should not be set to 1 in privileged mode.

The PSTATE.am bit should always be set to 1 when 32-bit
nonprivileged software is executed.

Programming
Note

A 64-bit comparison is always used when performing a masked
watchpoint address comparison with the Instruction or Data VA
watchpoint register. When PSTATE.am = 1, the more significant
32 bits of the VA watchpoint register must be zero for a match
(and resulting trap) to occur.

Forward
Compatibility

Note

This behavior is expected to change in the next revision of the
architecture, such that implementations will explicitly mask out
(not preserve) the more-significant 32 bits, in this case.

Forward
Compatibility

Note

This behavior is expected to change in the next revision of the
architecture, such that implementations will explicitly mask out
(not preserve) the more-significant 32 bits, in this case.

Programming
Note

Since writes to PSTATE are nondelayed (see page 65), a change
to PSTATE.am can affect which instruction is executed
immediately after the write to PSTATE.am. Specifically, if a
WRPR to the PSTATE register changes the value of PSTATE.am
from ’0’ to ’1’, and NPC{63:32} when the WRPR began execution
was nonzero, then the next instruction executed after the WRPR
will be from the address indicated in NPC{31:0} (with the more-
significant 32 address bits set to zero).
CHAPTER 5 • Registers 67

If (1) TSTATE[TL].pstate.am = 1 and (2) a DONE or RETRY instruction is executed1, it is
implementation dependent whether the DONE or RETRY instruction masks (zeroes) the more-
significant 32 bits of the values it places into PC and NPC (impl. dep. #417-S10).

Privileged Mode (priv). When PSTATE.priv = 1, the virtual processor is operating in privileged
mode.

When PSTATE.priv = 0, the processor is operating in nonprivileged mode

PSTATE_interrupt_enable (ie). PSTATE.ie controls when the virtual processor can take traps due
to disrupting exceptions (such as interrupts or errors unrelated to instruction processing).

Outstanding disrupting exceptions that are destined for privileged mode can only cause a trap when
the virtual processor is in nonprivileged or privileged mode and PSTATE.ie = 1. At all other times,
they are held pending. For more details, see Conditioning of Disrupting Traps on page 346.

5.7.7 Trap Level Register (TLP) (PR 7)
The privileged Trap Level register (TL; FIGURE 5-34) specifies the current trap level. TL = 0 is the
normal (nontrap) level of operation. TL > 0 implies that one or more traps are being processed.

The maximum valid value that the TL register may contain is MAXPTL, which is always equal to the
number of supported trap levels beyond level 0.

IMPL. DEP. #101-V9-CS10: The architectural parameter MAXPTL is a constant for each
implementation; its legal values are from 2 to 6 (supporting from 2 to 6 levels of saved trap state). In
a typical implementation MAXPTL = MAXPGL (see impl. dep. #401-S10). Architecturally, MAXPTL must be
≥ 2.

In an UltraSPARC Architecture 2007 implementation, MAXPTL = 2. See Chapter 12, Traps, for more
details regarding the TL register.

1. which sets PSTATE.am to ’1’, by restoring the value from TSTATE[TL].pstate.am to PSTATE.am

Programming
Note

Because of implementation dependency #417-S10, great care
must be taken in trap handler software if
TSTATE[TL].pstate.am = 1 and the trap handler wishes to write
a nonzero value to the more-significant 32 bits of TPC[TL] or
TNPC[TL].

Programming
Note

PSTATE.am affects the operation of the edge-handling
instructions, EDGE<8|16|32>[L]*. See Edge Handling Instructions
on page 116 and Edge Handling Instructions (no CC) on page 118.

SPARC V9
Compatibility

Note

Since the UltraSPARC Architecture provides a more general
“alternate globals” facility (through use of the GL register) than
does SPARC V9, an UltraSPARC Architecture processor does not
implement the SPARC V9 PSTATE.ag bit.

RW

TLP tl

2 0

FIGURE 5-34 Trap Level Register

A1
68 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

The effect of writing to TL with a WRPR instruction is summarized in TABLE 5-19.

Writing the TL register with a WRPR instruction does not alter any other machine state; that is, it is not
equivalent to taking a trap or returning from a trap.

5.7.8 Processor Interrupt Level (PILP) Register (PR 8)
The privileged Processor Interrupt Level register (PIL; see FIGURE 5-35) specifies the interrupt level
above which the virtual processor will accept an interrupt_level_n interrupt. Interrupt priorities are
mapped so that interrupt level 2 has greater priority than interrupt level 1, and so on. See TABLE 12-4
on page 351 for a list of exception and interrupt priorities.

5.7.9 Global Level Register (GLP) (PR 16)
The privileged Global Level (GL) register selects which set of global registers is visible at any given
time.

TABLE 5-19 Effect of WRPR of Value x to Register TL

Value x Written with WRPR

Privilege Level when Executing WRPR

Nonprivileged Privileged

x ≤ MAXPTL
privileged_opcode

exception

TL ← x

x > MAXPTL TL ← MAXPTL

(no exception generated)

Programming
Note

An UltraSPARC Architecture implementation only needs to
implement sufficient bits in the TL register to encode the
maximum trap level value. In an implementation
whereMAXPTL ≤ 3, bits 63:2 of data written to the TL register
using the WRPR instruction are ignored; only the least-
significant two bits (bits 1:0) of TL are actually written. For
example, if MAXPTL = 2, writing a value of 0516 to the TL register
causes a value of 116 to actually be stored in TL.

Implementation
Note

MAXPTL =2 for all UltraSPARC Architecture 2007 processors.
Writing a value between 3 and 7 to the TL register in privileged
mode causes a 2 to be stored in TL.

Programming
Note

Although it is possible for privileged software to set TL > 0 for
nonprivileged software†, an UltraSPARC Architecture virtual
processor’s behavior when executing with TL > 0 in
nonprivileged mode is undefined.
† by executing a WRPR to TSTATE followed by DONE instruction or RETRY

instruction.

RW

PILP pil

3 0

FIGURE 5-35 Processor Interrupt Level Register

V9 Compatibility
Note

On SPARC V8 processors, the level 15 interrupt is considered to
be nonmaskable, so it has different semantics from other
interrupt levels. SPARC V9 processors do not treat a level 15
interrupt differently from other interrupt levels.

A1

A1
CHAPTER 5 • Registers 69

FIGURE 5-36 illustrates the Global Level register.

When a trap occurs, GL is stored in TSTATE[TL].gl, GL is incremented, and a new set of global
registers (R[1] through R[7]) becomes visible. A DONE or RETRY instruction restores the value of GL
from TSTATE[TL].

The valid range of values that the GL register may contain is 0 to MAXPGL, where MAXPGL is one fewer
than the number of global register sets available to the virtual processor.

IMPL. DEP. #401-S10: The architectural parameter MAXPGL is a constant for each implementation; its
legal values are from 2 to 7 (supporting from 3 to 8 sets of global registers). In a typical
implementation, MAXPGL = MAXPTL (see impl. dep. #101-V9-CS10). Architecturally, MAXPGL must be ≥ 2.

In all UltraSPARC Architecture 2007 implementations, MAXPGL = 2 (impl. dep. #401-S10).

IMPL. DEP. #400-S10: Although GL is defined as a 3-bit register, an implementation may implement
any subset of those bits sufficient to encode the values from 0 to MAXPGL for that implementation. If
any bits of GL are not implemented, they read as zero and writes to them are ignored.

GL operates similarly to TL, in that it increments during entry to a trap, but the values of GL and TL
are independent. That is, TL = n does not imply that GL = n, and GL = n does not imply that TL = n.
Furthermore, there may be a different total number of global levels (register sets) than there are trap
levels; that is, MAXPTL and MAXPGL are not necessarily equal.

The GL register can be accessed directly with the RDPR and WRPR instructions (as privileged register
number 16). Writing the GL register directly with WRPR will change the set of global registers visible
to all instructions subsequent to the WRPR.

In privileged mode, attempting to write a value greater than MAXPGL to the GL register causes MAXPGL

to be written to GL.

The effect of writing to GL with a WRPR instruction is summarized in TABLE 5-20.

Since TSTATE itself is software-accessible, it is possible that when a DONE or RETRY is executed to
return from a trap handler, the value of GL restored from TSTATE[TL] will be different from that
which was saved into TSTATE[TL] when the trap occurred.

RW

GLP gl

2 0

FIGURE 5-36 Global Level Register, GL

TABLE 5-20 Effect of WRPR to Register GL

Value x Written with WRPR

Privilege Level when WRPR Is Executed

Nonprivileged Privileged

x ≤ MAXPGL

privileged_opcode
exception

GL ← x

x > MAXPGL

GL ← MAXPGL

(no exception generated)
70 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

CHAPTER 6

Instruction Set Overview

Instructions are fetched by the virtual processor from memory and are executed, annulled, or trapped.
Instructions are encoded in 4 major formats and partitioned into 11 general categories. Instructions are
described in the following sections:

■ Instruction Execution on page 71.
■ Instruction Formats on page 72.
■ Instruction Categories on page 72.

6.1 Instruction Execution
The instruction at the memory location specified by the program counter is fetched and then executed.
Instruction execution may change program-visible virtual processor and/or memory state. As a side
effect of its execution, new values are assigned to the program counter (PC) and the next program
counter (NPC).

An instruction may generate an exception if it encounters some condition that makes it impossible to
complete normal execution. Such an exception may in turn generate a precise trap. Other events may
also cause traps: an exception caused by a previous instruction (a deferred trap), an interrupt or
asynchronous error (a disrupting trap), or a reset request (a reset trap). If a trap occurs, control is
vectored into a trap table. See Chapter 12, Traps, for a detailed description of exception and trap
processing.

If a trap does not occur and the instruction is not a control transfer, the next program counter is
copied into the PC, and the NPC is incremented by 4 (ignoring arithmetic overflow if any). There are
two types of control-transfer instructions (CTIs): delayed and immediate. For a delayed CTI, at the
end of the execution of the instruction, NPC is copied into the PC and the target address is copied into
NPC. For an immediate CTI, at the end of execution, the target is copied to PC and target + 4 is copied
to NPC. In the SPARC instruction set, many CTIs do not transfer control until after a delay of one
instruction, hence the term “delayed CTI” (DCTI). Thus, the two program counters provide for a
delayed-branch execution model.

For each instruction access and each normal data access, an 8-bit address space identifier (ASI) is
appended to the 64-bit memory address. Load/store alternate instructions (see Address Space Identifiers
(ASIs) on page 76) can provide an arbitrary ASI with their data addresses or can use the ASI value
currently contained in the ASI register.
71

6.2 Instruction Formats
Every instruction is encoded in a single 32-bit word. The most typical 32-bit formats are shown in
FIGURE 6-1. For detailed formats for specific instructions, see individual instruction descriptions in the
Instructions chapter.

FIGURE 6-1 Summary of Instruction Formats

6.3 Instruction Categories
UltraSPARC Architecture instructions can be grouped into the following categories:

■ Memory access
■ Memory synchronization
■ Integer arithmetic
■ Control transfer (CTI)
■ Conditional moves
■ Register window management
■ State register access
■ Privileged register access
■ Floating-point operate
■ Implementation dependent
■ Reserved

These categories are described in the following subsections.

op = 012: CALL

op = 002: SETHI, Branches, and ILLTRAP

1x rd op3 rs1 i=0 imm_asi rs2

op3rd rs1 i=1 simm131x

31 24 02530 29 19 18 14 13 12 5 4

op = 102 or 112: Arithmetic, Logical, Moves, Tcc, Loads, Stores, Prefetch, and Misc

01 disp30

31 030 29 8

00 rcond op2 rs1 d16lo

31 24 02530 29 19 18 14 13

a 0

22

d16hi p

21 2028 27

00 cond op2 disp19a cc1 pcc0

00 cond op2 disp22a

00 rd op2 imm22
72 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

6.3.1 Memory Access Instructions
Load, store, load-store, and PREFETCH instructions are the only instructions that access memory. All
of the memory access instructions except CASA, CASXA, and Partial Store use either two R registers
or an R register and simm13 to calculate a 64-bit byte memory address. For example, Compare and
Swap uses a single R register to specify a 64-bit byte memory address. To this 64-bit address, an ASI
is appended that encodes address space information.

The destination field of a memory reference instruction specifies the R or F register(s) that supply the
data for a store or that receive the data from a load or LDSTUB. For SWAP, the destination register
identifies the R register to be exchanged atomically with the calculated memory location. For
Compare and Swap, an R register is specified, the value of which is compared with the value in
memory at the computed address. If the values are equal, then the destination field specifies the R
register that is to be exchanged atomically with the addressed memory location. If the values are
unequal, then the destination field specifies the R register that is to receive the value at the addressed
memory location; in this case, the addressed memory location remains unchanged. LDFSR/LDXFSR
and STFSR/STXFSR are special load and store instructions that load or store the floating-point status
register, FSR, instead of acting on an R or F register.

The destination field of a PREFETCH instruction (fcn) is used to encode the type of the prefetch.

Memory is byte (8-bit) addressable. Integer load and store instructions support byte, halfword (2
bytes), word (4 bytes), and doubleword/extended-word (8 bytes) accesses. Floating-point load and
store instructions support word, doubleword, and quadword memory accesses. LDSTUB accesses
bytes, SWAP accesses words, CASA accesses words, and CASXA accesses doublewords. The LDTXA
(load twin-extended-word) instruction accesses a quadword (16 bytes) in memory. Block loads and
stores access 64-byte aligned data. PREFETCH accesses at least 64 bytes.

6.3.1.1 Memory Alignment Restrictions
A halfword access must be aligned on a 2-byte boundary, a word access (including an instruction
fetch) must be aligned on a 4-byte boundary, an extended-word (LDX, LDXA, STX, STXA) or integer
twin word (LDTW, LDTWA, STTW, STTWA) access must be aligned on an 8-byte boundary,an
integer twin-extended-word (LDTXA) access must be aligned on a 16-byte boundary, and a Block
Load (LDBLOCKF) or Store (STBLOCKF) access must be aligned on a 64-byte boundary.

A floating-point doubleword access (LDDF, LDDFA, STDF, STDFA) should be aligned on an 8-byte
boundary, but is only required to be aligned on a word (4-byte) boundary. A floating-point
doubleword access to an address that is 4-byte aligned but not 8-byte aligned may result in less
efficient and nonatomic access (causes a trap and is emulated in software (impl. dep. #109-V9-Cs10)),
so 8-byte alignment is recommended.

A floating-point quadword access (LDQF, LDQFA, STQF, STQFA) should be aligned on a 16-byte
boundary, but is only required to be aligned on a word (4-byte) boundary. A floating-point quadword
access to an address that is 4-byte or 8-byte aligned but not 16-byte aligned may result in less efficient
and nonatomic access (causes a trap and is emulated in software (impl. dep. #111-V9-Cs10)), so 16-
byte alignment is recommended.

An improperly aligned address in a load, store, or load-store instruction causes a
mem_address_not_aligned exception to occur, with these exceptions:

■ An LDDF or LDDFA instruction accessing an address that is word aligned but not doubleword
aligned may cause an LDDF_mem_address_not_aligned exception (impl. dep. #109-V9-Cs10).

■ An STDF or STDFA instruction accessing an address that is word aligned but not doubleword
aligned may cause an STDF_mem_address_not_aligned exception (impl. dep. #110-V9-Cs10).

Programming
Note

For some instructions, by use of simm13, any location in the
lowest or highest 4 Kbytes of an address space can be accessed
without the use of a register to hold part of the address.
CHAPTER 6 • Instruction Set Overview 73

■ An LDQF or LDQFA instruction accessing an address that is word aligned but not quadword
aligned may cause an LDQF_mem_address_not_aligned exception (impl. dep. #111-V9-Cs10a).

■ An STQF or STQFA instruction accessing an address that is word aligned but not quadword
aligned may cause an STQF_mem_address_not_aligned exception (impl. dep. #112-V9-Cs10a).

6.3.1.2 Addressing Conventions

An UltraSPARC Architecture virtual processor uses big-endian byte order for all instruction accesses
and, by default, for data accesses. It is possible to access data in little-endian format by use of selected
ASIs. It is also possible to change the default byte order for implicit data accesses. See Processor State
(pstateP) Register (PR 6) on page 64 for more information.1

Big-endian Addressing Convention. Within a multiple-byte integer, the byte with the smallest
address is the most significant; a byte’s significance decreases as its address increases. The big-endian
addressing conventions are described in TABLE 6-1 and illustrated in FIGURE 6-2.

Implementation
Note

Although the architecture provides for the
LDQF_mem_address_not_aligned exception,UltraSPARC
Architecture 2007 implementations do not currently generate it.

Implementation
Note

Although the architecture provides for the
STQF_mem_address_not_aligned exception, UltraSPARC
Architecture 2007 implementations do not currently generate it.

1. Readers interested in more background information on big- vs. little-endian can also refer to Cohen, D., “On Holy Wars and a Plea for
Peace,” Computer 14:10 (October 1981), pp. 48-54.

TABLE 6-1 Big-endian Addressing Conventions

Term Definition

byte A load/store byte instruction accesses the addressed byte in both big- and
little-endian modes.

halfword For a load/store halfword instruction, two bytes are accessed. The most
significant byte (bits 15–8) is accessed at the address specified in the
instruction; the least significant byte (bits 7–0) is accessed at the
address + 1.

word For a load/store word instruction, four bytes are accessed. The most
significant byte (bits 31–24) is accessed at the address specified in the
instruction; the least significant byte (bits 7–0) is accessed at the
address + 3.

doubleword or
extended word

For a load/store extended or floating-point load/store double instruction,
eight bytes are accessed. The most significant byte (bits 63:56) is accessed
at the address specified in the instruction; the least significant byte (bits
7:0) is accessed at the address + 7.
For the deprecated integer load/store twin word instructions (LDTW,
LDTWA†, STTW, STTWA), two big-endian words are accessed. The word
at the address specified in the instruction corresponds to the even register
specified in the instruction; the word at address + 4 corresponds to the
following odd-numbered register.
†Note that the LDTXA instruction, which is not an LDTWA operation but does share

LDTWA’s opcode, is not deprecated.

quadword For a load/store quadword instruction, 16 bytes are accessed. The most
significant byte (bits 127–120) is accessed at the address specified in the
instruction; the least significant byte (bits 7–0) is accessed at the
address + 15.
74 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

Byte
7 0

Halfword
15 0

Word
31 0

Doubleword /
63 32

31 0

78

15 78162324

47 3940485556

15 78162324

0 1

00 01 10 11

Address

000 001 010 011

100 101 110 111

Quadword
127 96

95 64

111 103104112119120

79 7172808788

0000 0001 0010 0011

0100 0101 0110 0111

63 32

31 0

47 3940485556

15 78162324

1000 1001 1010 1011

1100 1101 1110 1111

Extended word

FIGURE 6-2 Big-endian Addressing Conventions

Address{0} =

Address{1:0} =

Address{2:0} =

Address{2:0} =

Address{3:0} =

Address{3:0} =

Address{3:0} =

Address{3:0} =
CHAPTER 6 • Instruction Set Overview 75

Little-endian Addressing Convention. Within a multiple-byte integer, the byte with the smallest
address is the least significant; a byte’s significance increases as its address increases. The little-endian
addressing conventions are defined in TABLE 6-2 and illustrated in FIGURE 6-3.

6.3.1.3 Address Space Identifiers (ASIs)

Alternate-space load, store, and load-store instructions specify an explicit ASI to use for their data
access; when i = 0, the explicit ASI is provided in the instruction’s imm_asi field, and when i = 1, it is
provided in the ASI register.

Non-alternate-space load, store, and load-store instructions use an implicit ASI value that depends on
the current trap level (TL) and the value of PSTATE.cle. Instruction fetches use an implicit ASI that
depends only on the current trap level. The cases are enumerated in TABLE 6-3.

TABLE 6-2 Little-endian Addressing Convention

Term Definition

byte A load/store byte instruction accesses the addressed byte in both big-
and little-endian modes.

halfword For a load/store halfword instruction, two bytes are accessed. The least
significant byte (bits 7–0) is accessed at the address specified in the
instruction; the most significant byte (bits 15–8) is accessed at the
address + 1.

word For a load/store word instruction, four bytes are accessed. The least
significant byte (bits 7–0) is accessed at the address specified in the
instruction; the most significant byte (bits 31–24) is accessed at the
address + 3.

doubleword or
extended word

For a load/store extended or floating-point load/store double
instruction, eight bytes are accessed. The least significant byte (bits 7–0)
is accessed at the address specified in the instruction; the most significant
byte (bits 63–56) is accessed at the address + 7.
For the deprecated integer load/store twin word instructions (LDTW,
LDTWA†, STTW, STTWA), two little-endian words are accessed. The
word at the address specified in the instruction corresponds to the even
register in the instruction; the word at the address specified in the
instruction +4 corresponds to the following odd-numbered register. With
respect to little-endian memory, an LDTW/LDTWA (STTW/STTWA)
instruction behaves as if it is composed of two 32-bit loads (stores), each
of which is byte-swapped independently before being written into each
destination register (memory word).

†Note that the LDTXA instruction, which is not an LDTWA operation but does share
LDTWA’s opcode, is not deprecated.

quadword For a load/store quadword instruction, 16 bytes are accessed. The least
significant byte (bits 7–0) is accessed at the address specified in the
instruction; the most significant byte (bits 127–120) is accessed at the
address + 15.

TABLE 6-3 ASIs Used for Data Accesses and Instruction Fetches

Access Type TL PSTATE.cle ASI Used

Instruction Fetch = 0 any ASI_PRIMARY

> 0 any ASI_NUCLEUS*
76 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

*On some early SPARC V9 implementations, ASI_PRIMARY may have been used for this case.
**On some early SPARC V9 implementations, ASI_PRIMARY_LITTLE may have been used for this case.

Non-alternate-space
Load, Store, or
Load-Store

= 0 0 ASI_PRIMARY

1 ASI_PRIMARY_LITTLE

> 0 0 ASI_NUCLEUS*

1 ASI_NUCLEUS_LITTLE**

Alternate-space Load,
Store, or Load-Store

any any ASI explicitly specified in the instruction
(subject to privilege-level restrictions)

TABLE 6-3 ASIs Used for Data Accesses and Instruction Fetches

Access Type TL PSTATE.cle ASI Used

Byte
7 0

Halfword
7 8

Word
7 24

Doubleword /

150

23 31168150

0 1

00 01 10 11

Address

000 001 010 011

100 101 110 111

Quadword 0000 0001 0010 0011

0100 0101 0110 0111

1000 1001 1010 1011

1100 1101 1110 1111

39 5655 6348404732

7 2423 31168150

39 5655 6348404732

7 2423 31168150

103 120119 12711210411196

71 8887 9580727964

Extended word

FIGURE 6-3 Little-endian Addressing Conventions

Address{0} =

Address{1:0} =

Address{2:0} =

Address{2:0} =

Address{3:0} =

Address{3:0} =

Address{3:0} =

Address{3:0} =
CHAPTER 6 • Instruction Set Overview 77

See also Memory Addressing and Alternate Address Spaces on page 308.

ASIs 0016-7F16 are restricted; only software with sufficient privilege is allowed to access them. An
attempt to access a restricted ASI by insufficiently-privileged software results in a privileged_action
exception (impl. dep #103-V9-Ms10(6)). ASIs 8016 through FF16 are unrestricted; software is allowed to
access them regardless of the virtual processor’s privilege mode, as summarized in TABLE 6-4.

IMPL. DEP. #29-V8: Some UltraSPARC Architecture 2007 ASIs are implementation dependent. See
TABLE 10-1 on page 323 for details.

An UltraSPARC Architecture implementation decodes all 8 bits of ASI specifiers (impl. dep. #30-V8-
Cu3).

6.3.1.4 Separate Instruction Memory

A SPARC V9 implementation may choose to access instruction and data through the same address
space and use hardware to keep data and instruction memory consistent at all times. It may also
choose to overload independent address spaces for data and instructions and allow them to become
inconsistent when data writes are made to addresses shared with the instruction space.

6.3.2 Memory Synchronization Instructions
Two forms of memory barrier (MEMBAR) instructions allow programs to manage the order and
completion of memory references. Ordering MEMBARs induce a partial ordering between sets of
loads and stores and future loads and stores. Sequencing MEMBARs exert explicit control over
completion of loads and stores (or other instructions). Both barrier forms are encoded in a single
instruction, with subfunctions bit-encoded in cmask and mmask fields.

TABLE 6-4 Allowed Accesses to ASIs

Value Access Type
Processor Mode
(PSTATE.priv) Result of ASI Access

0016–7F16 Restricted Nonprivileged (0) privileged_action exception

Privileged (1) Valid access

8016–FF16 Unrestricted Nonprivileged (0) Valid access

Privileged (1) Valid access

V9 Compatibility
Note

In SPARC V9, many ASIs were defined to be implementation
dependent.

V9 Compatibility
Note

In SPARC V9, an implementation could choose to decode only a
subset of the 8-bit ASI specifier.

Programming
Note

A SPARC V9 program containing self-modifying code should
use FLUSH instruction(s) after executing stores to modify
instruction memory and before executing the modified
instruction(s), to ensure the consistency of program execution.
78 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

6.3.3 Integer Arithmetic and Logical Instructions
The integer arithmetic and logical instructions generally compute a result that is a function of two
source operands and either write the result in a third (destination) register R[rd] or discard it. The first
source operand is R[rs1]. The second source operand depends on the i bit in the instruction; if i = 0,
then the second operand is R[rs2]; if i = 1, then the second operand is the constant simm10, simm11,
or simm13 from the instruction itself, sign-extended to 64 bits.

6.3.3.1 Setting Condition Codes

Most integer arithmetic instructions have two versions: one sets the integer condition codes (icc and
xcc) as a side effect; the other does not affect the condition codes. A special comparison instruction for
integer values is not needed since it is easily synthesized with the “subtract and set condition codes”
(SUBcc) instruction. See Synthetic Instructions on page 414 for details.

6.3.3.2 Shift Instructions

Shift instructions shift an R register left or right by a constant or variable amount. None of the shift
instructions change the condition codes.

6.3.3.3 Set High 22 Bits of Low Word

The “set high 22 bits of low word of an R register” instruction (SETHI) writes a 22-bit constant from
the instruction into bits 31 through 10 of the destination register. It clears the low-order 10 bits and
high-order 32 bits, and it does not affect the condition codes. Its primary use is to construct constants
in registers.

6.3.3.4 Integer Multiply/Divide

The integer multiply instruction performs a 64 × 64 → 64-bit operation; the integer divide instructions
perform 64 ÷ 64 → 64-bit operations. For compatibility with SPARC V8 processors, 32 × 32 → 64-bit
multiply instructions, 64 ÷ 32 → 32-bit divide instructions, and the Multiply Step instruction are
provided. Division by zero causes a division_by_zero exception.

6.3.3.5 Tagged Add/Subtract

The tagged add/subtract instructions assume tagged-format data, in which the tag is the two low-
order bits of each operand. If either of the two operands has a nonzero tag or if 32-bit arithmetic
overflow occurs, tag overflow is detected. If tag overflow occurs, then TADDcc and TSUBcc set the
CCR.icc.v bit; if 64-bit arithmetic overflow occurs, then they set the CCR.xcc.v bit.

The trapping versions (TADDccTV, TSUBccTV) of these instructions are deprecated. See Tagged Add
on page 274 and Tagged Subtract on page 279 for details.

6.3.4 Control-Transfer Instructions (CTIs)
The basic control-transfer instruction types are as follows:

■ Conditional branch (Bicc, BPcc, BPr, FBfcc, FBPfcc)
■ Unconditional branch
■ Call and link (CALL)
■ Jump and link (JMPL, RETURN)

Note The value of R[0] always reads as zero, and writes to it are
ignored.
CHAPTER 6 • Instruction Set Overview 79

■ Return from trap (DONE, RETRY)
■ Trap (Tcc)
■

A control-transfer instruction functions by changing the value of the next program counter (NPC) or
by changing the value of both the program counter (PC) and the next program counter (NPC). When
only NPC is changed, the effect of the transfer of control is delayed by one instruction. Most control
transfers are of the delayed variety. The instruction following a delayed control-transfer instruction is
said to be in the delay slot of the control-transfer instruction.

Some control transfer instructions (branches) can optionally annul, that is, not execute, the instruction
in the delay slot, based on the setting of an annul bit in the instruction. The effect of the annul bit
depends upon whether the transfer is taken or not taken and whether the branch is conditional or
unconditional. Annulled delay instructions neither affect the program-visible state, nor can they
cause a trap.

TABLE 6-5 defines the value of the program counter and the value of the next program counter after
execution of each instruction. Conditional branches have two forms: branches that test a condition
(including branch-on-register), represented in the table by Bcc, and branches that are unconditional,
that is, always or never taken, represented in the table by BA and BN, respectively. The effect of an
annulled branch is shown in the table through explicit transfers of control, rather than by fetching and
annulling the instruction.

Programming
Note

The annul bit increases the likelihood that a compiler can find a
useful instruction to fill the delay slot after a branch, thereby
reducing the number of instructions executed by a program. For
example, the annul bit can be used to move an instruction from
within a loop to fill the delay slot of the branch that closes the
loop.

Likewise, the annul bit can be used to move an instruction from
either the “else” or “then” branch of an “if-then-else” program
block to the delay slot of the branch that selects between them.
Since a full set of conditions is provided, a compiler can arrange
the code (possibly reversing the sense of the condition) so that
an instruction from either the “else” branch or the “then” branch
can be moved to the delay slot. Use of annulled branches
provided some benefit in older, single-issue SPARC
implementations. On an UltraSPARC Architecture
implementation, the only benefit of annulled branches might be
a slight reduction in code size. Therefore, the use of annulled
branch instructions is no longer encouraged.

TABLE 6-5 Control-Transfer Characteristics (1 of 2)

Instruction Group Address Form Delayed? Taken? Annul Bit? New PC New NPC

Non-CTIs — — — — NPC NPC + 4

Bcc PC-relative Yes Yes 0 NPC EA

Bcc PC-relative Yes No 0 NPC NPC + 4

Bcc PC-relative Yes Yes 1 NPC EA

Bcc PC-relative Yes No 1 NPC + 4 NPC + 8

BA PC-relative Yes Yes 0 NPC EA

BA PC-relative No Yes 1 EA EA + 4

BN PC-relative Yes No 0 NPC NPC + 4

BN PC-relative Yes No 1 NPC + 4 NPC + 8

CALL PC-relative Yes — — NPC EA
80 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

The effective address, “EA” in TABLE 6-5, specifies the target of the control-transfer instruction. The
effective address is computed in different ways, depending on the particular instruction.

■ PC-relative effective address — A PC-relative effective address is computed by sign extending the
instruction’s immediate field to 64-bits, left-shifting the word displacement by 2 bits to create a
byte displacement, and adding the result to the contents of the PC.

■ Register-indirect effective address — If i = 0, a register-indirect effective target address is R[rs1] +
R[rs2]. If i = 1, a register-indirect effective target address is R[rs1] + sign_ext(simm13).

■ Trap vector effective address — A trap vector effective address first computes the software trap
number as the least significant 7 or 8 bits of R[rs1] + R[rs2] if i = 0, or as the least significant 7 or 8
bits of R[rs1] + imm_trap# if i = 1. Whether 7 or 8 bits are used depends on the privilege level —
7 bits are used in nonprivileged mode and 8 bits are used in privileged mode. The trap level, TL,
is incremented. The hardware trap type is computed as 256 + the software trap number and stored
in TT[TL]. The effective address is generated by combining the contents of the TBA register with
the trap type and other data; see Trap Processing on page 356 for details.

■ Trap state effective address — A trap state effective address is not computed but is taken directly
from either TPC[TL] or TNPC[TL].

6.3.4.1 Conditional Branches

A conditional branch transfers control if the specified condition is TRUE. If the annul bit is 0, the
instruction in the delay slot is always executed. If the annul bit is 1, the instruction in the delay slot is
executed only when the conditional branch is taken.

6.3.4.2 Unconditional Branches

An unconditional branch transfers control unconditionally if its specified condition is “always”; it
never transfers control if its specified condition is “never.” If the annul bit is 0, then the instruction in
the delay slot is always executed. If the annul bit is 1, then the instruction in the delay slot is never
executed.

6.3.4.3 CALL and JMPL Instructions

The CALL instruction writes the contents of the PC, which points to the CALL instruction itself, into
R[15] (out register 7) and then causes a delayed transfer of control to a PC-relative effective address.
The value written into R[15] is visible to the instruction in the delay slot.

JMPL, RETURN Register-indirect Yes — — NPC EA

DONE Trap state No — — TNPC[TL] TNPC[TL] + 4

RETRY Trap state No — — TPC[TL] TNPC[TL]

Tcc Trap vector No Yes — EA EA + 4

Tcc Trap vector No No — NPC NPC + 4

SPARC V8
Compatibility

Note

The SPARC V8 architecture specified that the delay instruction
was always fetched, even if annulled, and that an annulled
instruction could not cause any traps. The SPARC V9
architecture does not require the delay instruction to be fetched
if it is annulled.

Note The annuling behavior of a taken conditional branch is different
from that of an unconditional branch.

Note The annul behavior of an unconditional branch is different from
that of a taken conditional branch.

TABLE 6-5 Control-Transfer Characteristics (Continued) (2 of 2)

Instruction Group Address Form Delayed? Taken? Annul Bit? New PC New NPC
CHAPTER 6 • Instruction Set Overview 81

The JMPL instruction writes the contents of the PC, which points to the JMPL instruction itself, into
R[rd] and then causes a register-indirect delayed transfer of control to the address given by
“R[rs1] + R[rs2]” or “R[rs1] + a signed immediate value.” The value written into R[rd] is visible to
the instruction in the delay slot.

When PSTATE.am = 1, the value of the high-order 32 bits transmitted to R[15] by the CALL
instruction or to R[rd] by the JMPL instruction is zero.

6.3.4.4 RETURN Instruction

The RETURN instruction is used to return from a trap handler executing in nonprivileged mode.
RETURN combines the control-transfer characteristics of a JMPL instruction with R[0] specified as the
destination register and the register-window semantics of a RESTORE instruction.

6.3.4.5 DONE and RETRY Instructions

The DONE and RETRY instructions are used by privileged software to return from a trap. These
instructions restore the machine state to values saved in the TSTATE register stack.

RETRY returns to the instruction that caused the trap in order to reexecute it. DONE returns to the
instruction pointed to by the value of NPC associated with the instruction that caused the trap, that is,
the next logical instruction in the program. DONE presumes that the trap handler did whatever was
requested by the program and that execution should continue.

6.3.4.6 Trap Instruction (Tcc)

The Tcc instruction initiates a trap if the condition specified by its cond field matches the current state
of the condition code specified in its cc field; otherwise, it executes as a NOP. If the trap is taken, it
increments the TL register, computes a trap type that is stored in TT[TL], and transfers to a computed
address in a trap table pointed to by a trap base address register.

A Tcc instruction can specify one of 256 software trap types (128 when in nonprivileged mode). When
a Tcc is taken, 256 plus the 7 (in nonprivileged mode) or 8 (in privileged mode) least significant bits of
the Tcc’s second source operand are written to TT[TL]. The only visible difference between a software
trap generated by a Tcc instruction and a hardware trap is the trap number in the TT register. See
Chapter 12, Traps, for more information.

6.3.4.7 DCTI Couples

A delayed control transfer instruction (DCTI) in the delay slot of another DCTI is referred to as a
“DCTI couple”. The use of DCTI couples is deprecated in the UltraSPARC Architecture; no new
software should place a DCTI in the delay slot of another DCTI, because on future UltraSPARC
Architecture implementations DCTI couples may execute either slowly or differently than the
programmer assumes it will.

Programming
Note

Tcc can be used to implement breakpointing, tracing, and calls
to privileged or hyperprivileged software. Tcc can also be used
for runtime checks, such as out-of-range array index checks or
integer overflow checks.

SPARC V8 and
SPARC V9

Compatibility
Note

The SPARC V8 architecture left behavior undefined for a DCTI
couple. The SPARC V9 architecture defined behavior in that
case, but as of UltraSPARC Architecture 2005, use of DCTI couples
was deprecated.

E2
82 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

6.3.5 Conditional Move Instructions
This subsection describes two groups of instructions that copy or move the contents of any integer or
floating-point register.

MOVcc and FMOVcc Instructions. The MOVcc and FMOVcc instructions copy the contents of
any integer or floating-point register to a destination integer or floating-point register if a condition is
satisfied. The condition to test is specified in the instruction and can be any of the conditions allowed
in conditional delayed control-transfer instructions. This condition is tested against one of the six sets
of condition codes (icc, xcc, fcc0, fcc1, fcc2, and fcc3), as specified by the instruction. For example:

fmovdg %fcc2, %f20, %f22

moves the contents of the double-precision floating-point register %f20 to register %f22 if floating-
point condition code number 2 (fcc2) indicates a greater-than relation (FSR.fcc2 = 2). If fcc2 does not
indicate a greater-than relation (FSR.fcc2 ≠ 2), then the move is not performed.

The MOVcc and FMOVcc instructions can be used to eliminate some branches in programs. In most
implementations, branches will be more expensive than the MOVcc or FMOVcc instructions. For
example, the C statement:

if (A > B) X = 1; else X = 0;

can be coded as
cmp %i0, %i2 ! (A > B)
or %g0, 0, %i3 ! set X = 0
movg %xcc, 1, %i3 ! overwrite X with 1 if A > B

to eliminate the need for a branch.

MOVr and FMOVr Instructions. The MOVr and FMOVr instructions allow the contents of any
integer or floating-point register to be moved to a destination integer or floating-point register if the
contents of a register satisfy a specified condition. The conditions to test are enumerated in TABLE 6-6.

Any of the integer registers (treated as a signed value) may be tested for one of the conditions, and the
result used to control the move. For example,

movrnz %i2, %l4, %l6

moves integer register %l4 to integer register %l6 if integer register %i2 contains a nonzero value.

MOVr and FMOVr can be used to eliminate some branches in programs or can emulate multiple
unsigned condition codes by using an integer register to hold the result of a comparison.

6.3.6 Register Window Management Instructions
This subsection describes the instructions that manage register windows in the UltraSPARC
Architecture. The privileged registers affected by these instructions are described in Register-Window
PR State Registers on page 58.

TABLE 6-6 MOVr and FMOVr Test Conditions

Condition Description

NZ Nonzero

Z Zero

GEZ Greater than or equal to zero

LZ Less than zero

LEZ Less than or equal to zero

GZ Greater than zero
CHAPTER 6 • Instruction Set Overview 83

6.3.6.1 SAVE Instruction

The SAVE instruction allocates a new register window and saves the caller’s register window by
incrementing the CWP register.

If CANSAVE = 0, then execution of a SAVE instruction causes a window spill exception, that is, one of
the spill_n_<normal|other> exceptions.

If CANSAVE ≠ 0 but the number of clean windows is zero, that is,
(CLEANWIN − CANRESTORE) = 0, then SAVE causes a clean_window exception.

If SAVE does not cause an exception, it performs an ADD operation, decrements CANSAVE, and
increments CANRESTORE. The source registers for the ADD operation are from the old window (the
one to which CWP pointed before the SAVE), while the result is written into a register in the new
window (the one to which the incremented CWP points).

6.3.6.2 RESTORE Instruction

The RESTORE instruction restores the previous register window by decrementing the CWP register.

If CANRESTORE = 0, execution of a RESTORE instruction causes a window fill exception, that is, one
of the fill_n_<normal|other> exceptions.

If RESTORE does not cause an exception, it performs an ADD operation, decrements CANRESTORE,
and increments CANSAVE. The source registers for the ADD are from the old window (the one to
which CWP pointed before the RESTORE), and the result is written into a register in the new window
(the one to which the decremented CWP points).

6.3.6.3 SAVED Instruction

SAVED is a privileged instruction used by a spill trap handler to indicate that a window spill has
completed successfully. It increments CANSAVE and decrements either OTHERWIN or
CANRESTORE, depending on the conditions at the time SAVED is executed.

See SAVED on page 239 for details.

Programming
Note

This note describes a common convention for use of register
windows, SAVE, RESTORE, CALL, and JMPL instructions.

A procedure is invoked by execution of a CALL (or a JMPL)
instruction. If the procedure requires a register window, it
executes a SAVE instruction in its prologue code. A routine that
does not allocate a register window of its own (possibly a leaf
procedure) should not modify any windowed registers except
out registers 0 through 6. This optimization, called “Leaf-
Procedure Optimization”, is routinely performed by SPARC
compilers.

A procedure that uses a register window returns by executing
both a RESTORE and a JMPL instruction. A procedure that has
not allocated a register window returns by executing a JMPL
only. The target address for the JMPL instruction is normally 8
plus the address saved by the calling instruction, that is, the
instruction after the instruction in the delay slot of the calling
instruction.

The SAVE and RESTORE instructions can be used to atomically
establish a new memory stack pointer in an R register and
switch to a new or previous register window.
84 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

6.3.6.4 RESTORED Instruction

RESTORED is a privileged instruction, used by a fill trap handler to indicate that a window has been
filled successfully. It increments CANRESTORE and decrements either OTHERWIN or CANSAVE,
depending on the conditions at the time RESTORED is executed. RESTORED also manipulates
CLEANWIN, which is used to ensure that no address space’s data become visible to another address
space through windowed registers.

See RESTORED on page 232 for details.

6.3.6.5 Flush Windows Instruction

The FLUSHW instruction flushes all of the register windows, except the current window, by
performing repetitive spill traps. The FLUSHW instruction causes a spill trap if any register window
(other than the current window) has valid contents. The number of windows with valid contents is
computed as:

N_REG_WINDOWS – 2 – CANSAVE

If this number is nonzero, the FLUSHW instruction causes a spill trap. Otherwise, FLUSHW has no
effect. If the spill trap handler exits with a RETRY instruction, the FLUSHW instruction continues
causing spill traps until all the register windows except the current window have been flushed.

6.3.7 Ancillary State Register (ASR) Access
The read/write state register instructions access program-visible state and status registers. These
instructions read/write the state registers into/from R registers. A read/write Ancillary State register
instruction is privileged only if the accessed register is privileged.

The supported RDasr and WRasr instructions are described in Ancillary State Registers on page 48.

6.3.8 Privileged Register Access
The read/write privileged register instructions access state and status registers that are visible only to
privileged software. These instructions read/write privileged registers into/from R registers. The
read/write privileged register instructions are privileged.

6.3.9 Floating-Point Operate (FPop) Instructions
Floating-point operate instructions (FPops) compute a result that is a function of one , two, or three
source operands and place the result in one or more destination F registers, with one exception:
floating-point compare operations do not write to an F register but instead update one of the fccn
fields of the FSR.

The term “FPop” refers to instructions in the FPop1, FMAf, and FPop2 opcode spaces. FPop
instructions do not include FBfcc instructions, loads and stores between memory and the F registers,
or non-floating-point operations that read or write F registers.

The FMOVcc instructions function for the floating-point registers as the MOVcc instructions do for the
integer registers. See MOVcc and FMOVcc Instructions on page 83.

The FMOVr instructions function for the floating-point registers as the MOVr instructions do for the
integer registers. See MOVr and FMOVr Instructions on page 83.

If no floating-point unit is present or if PSTATE.pef = 0 or FPRS.fef = 0, then any instruction,
including an FPop instruction, that attempts to access an FPU register generates an fp_disabled
exception.
CHAPTER 6 • Instruction Set Overview 85

All FPop instructions clear the ftt field and set the cexc field unless they generate an exception.
Floating-point compare instructions also write one of the fccn fields. All FPop instructions that can
generate IEEE exceptions set the cexc and aexc fields unless they generate an exception.
FABS<s|d|q>, FMOV<s|d|q>, FMOVcc<s|d|q>, FMOVr<s|d|q>, and FNEG<s|d|q> cannot
generate IEEE exceptions, so they clear cexc and leave aexc unchanged.

IMPL. DEP. #3-V8: An implementation may indicate that a floating-point instruction did not produce
a correct IEEE Std 754-1985 result by generating an fp_exception_other exception with
FSR.ftt = unfinished_FPop. In this case, software running in a mode with greater privileges must
emulate any functionality not present in the hardware.

See ftt = 2 (unfinished_FPop) on page 45 to see which instructions can produce an fp_exception_other
exception (with FSR.ftt = unfinished_FPop).

6.3.10 Implementation-Dependent Instructions
The SPARC V9 architecture provided two instruction spaces that are entirely implementation
dependent: IMPDEP1 and IMPDEP2 .

In the UltraSPARC Architecture, the IMPDEP1 opcode space is used by many VIS instructions. The
remaining opcodes in IMPDEP1 and IMPDEP2 are now marked as reserved opcodes.

6.3.11 Reserved Opcodes and Instruction Fields
If a conforming UltraSPARC Architecture 2007 implementation attempts to execute an instruction bit
pattern that is not specifically defined in this specification, it behaves as follows:

■ If the instruction bit pattern encodes an implementation-specific extension to the instruction set,
that extension is executed.

■ If the instruction does not encode an extension to the instruction set, then the instruction bit pattern
is invalid and causes an illegal_instruction exception.

See Appendix A, Opcode Maps, for an enumeration of the reserved instruction bit patterns (opcodes).

Programming
Note

For software portability, software (such as assemblers, static
compilers, and dynamic compilers) that generates SPARC
instructions must always generate zeroes in instruction fields
marked “reserved” (“—”).
86 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

CHAPTER 7

Instructions

UltraSPARC Architecture 2007 extends the standard SPARC V9 instruction set with additional classes
of instructions:

■ Enhanced functionality:
■ Instructions for alignment (Align Address on page 98)
■ Array handling (Three-Dimensional Array Addressing on page 101)
■ Byte-permutation instructions (Byte Mask and Shuffle on page 106)
■ Edge handling (Edge Handling Instructions on pages 116 and 118)
■ Logical operations on floating-point registers (f Register Logical Operate (1 operand) on page 163)
■ Partitioned arithmetic (Fixed-point Partitioned Add on page 158Fixed-point Partitioned Subtract (64-

bit) on page 161)
■ Pixel manipulation (FEXPAND on page 131, FPACK on page 153, and FPMERGE on page 160)
■

■ Efficient memory access

■ Partial store (Store Partial Floating-Point on page 260)
■ Short floating-point loads and stores (Store Short Floating-Point on page 263)
■ Block load and store (Block Load on page 178 and Block Store on page 250)

■ Efficient interval arithmetic: SIAM (Set Interval Arithmetic Mode on page 243) and all instructions
that reference GSR.im

■ Floating-point Multiply-Add and Multiply-Subtract (FMA) instructions (Floating-Point Multiply-Add
and Multiply-Subtract (fused) on page 137

TABLE 7-2 provides a quick index of instructions, alphabetically by architectural instruction name.

TABLE 7-3 summarizes the instruction set, listed within functional categories.

Within these tables and throughout the rest of this chapter, and in Appendix A, Opcode Maps, certain
opcodes are marked with mnemonic superscripts. The superscripts and their meanings are defined in
TABLE 7-1.

TABLE 7-1 Instruction Superscripts

Superscript Meaning

D Deprecated instruction (do not use in new software)

N Nonportable instruction

P Privileged instruction

PASI Privileged action if bit 7 of the referenced ASI is 0

PASR Privileged instruction if the referenced ASR register is privileged

Pnpt Privileged action if in nonprivileged mode (PSTATE.priv = 0) and
nonprivileged access is disabled
87

TABLE 7-2 UltraSPARC Architecture 2007Instruction Set - Alphabetical (1 of 3)

Page Instruction

97 ADD (ADDcc) 151 FdMULq 161 FPSUB<16,32>[S]

97 ADDC (ADDCcc) 131 FEXPAND

132 FiTO<s|d|q>

98 ALIGNADDRESS[_LITTLE] 151 FsMULd

99 ALLCLEAN 133 FLUSH 166 FSQRT<s|d|q>

100 AND (ANDcc) 136 FLUSHW 164 FSRC<1|2>[s]

101 ARRAY<8|16|32> 137 FMADD(s,d) 170 FSUB<s|d|q>

104 Bicc

106 BMASK 139 FMOV<s|d|q> 165 FXNOR[s]

107 BPcc 140 FMOV<s|d|q>cc 165 FXOR[s]

109 BPr 144 FMOV<s|d|q>R 171 FxTO<s|d|q>

106 BSHUFFLE 137 FMSUB(s,d) 163 FZERO[s]

111 CALL 151 FMUL<s|d|q>

112 CASAPASI 146 FMUL8[SU|UL]x16 172 ILLTRAP

112 CASXAPASI 146 FMUL8x16 173 INVALW

146 FMUL8x16[AU|AL] 174 JMPL

146 FMULD8[SU|UL]x16

178 LDBLOCKF

114 DONEP 165 FNAND[s] 181 LDDF

116 EDGE<8|16|32>[L]cc 152 FNEG<s|d|q> 183 LDDFAPASI

118 EDGE<8|16|32>[L]N 181 LDF

168 F<s|d|q>TO<s|d|q> 137 FNMADD 183 LDFAPASI

167 F<s|d|q>TOi 137 FNMSUB 186 LDFSRD

167 F<s|d|q>TOx 181 LDQF

119 FABS<s|d|q> 165 FNOR[s] 183 LDQFAPASI

120 FADD<s|d|q> 164 FNOT<1|2>[s] 175 LDSB

121 FALIGNDATA 176 LDSBAPASI

165 FANDNOT<1|2>[s] 163 FONE[s] 175 LDSH

165 FAND[s] 165 FORNOT<1|2>[s] 176 LDSHAPASI

122 FBfccD 165 FOR[s] 188 LDSHORTF

124 FBPfcc 153 FPACK<16|32|FIX> 190 LDSTUB

191 LDSTUBAPASI

128 FCMP<s|d|q> 158 FPADD<16,32>[S] 175 LDSW

126 FCMP*<16,32> 176 LDSWAPASI

128 FCMPE<s|d|q> 160 FPMERGE 197 LDTXAN

130 FDIV<s|d|q>
88 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

192 LDTWD 258 STFSRD

194 LDTWAD, PASI 225 RDPC 247 STH

190 LDUB 248 STHAPASI

176 LDUBAPASI 260 STPARTIALF

175 LDUH 228 RDPRP 253 STQF

176 LDUHAPASI 225 RDSOFTINTP 255 STQFAPASI

175 LDUW 225 RDSTICK_CMPRP 263 STSHORTF

176 LDUWAPASI 225 RDSTICKPnpt 265 STTWD

175 LDX 225 RDTICK_CMPRP 267 STTWAD, PASI

176 LDXAPASI 225 RDTICKPnpt 247 STW

232 RESTOREDP 248 STWAPASI

199 LDXFSR 230 RESTOREP 247 STX

233 RETRYP 248 STXAPASI

201 MEMBAR 235 RETURN 269 STXFSR

204 MOVcc 239 SAVEDP 270 SUB (SUBcc)

237 SAVEP 270 SUBC (SUBCcc)

240 SDIVD (SDIVccD) 272 SWAPAD, PASI

207 MOVr 211 SDIVX 271 SWAPD

209 MULSccD 242 SETHI 274 TADDcc

211 MULX 275 TADDccTVD

212 NOP 243 SIAM 276 Tcc

213 NORMALW 279 TSUBcc

214 OR (ORcc) 244 SLL 280 TSUBccTVD

214 ORN (ORNcc) 244 SLLX 281 UDIVD (UDIVccD)

215 OTHERW 246 SMULD (SMULccD) 211 UDIVX

244 SRA 283 UMULD (UMULccD)

216 PDIST 244 SRAX

244 SRL 285 WRASI

217 POPC 244 SRLX 285 WRasrPASR

219 PREFETCH 247 STB 285 WRCCR

219 PREFETCHAPASI 248 STBAPASI 285 WRFPRS

285 WRGSR

225 RDASI 250 STBLOCKF

225 RDasrPASR 253 STDF

225 RDCCR 255 STDFAPASI

225 RDFPRS 253 STF 288 WRPRP

225 RDGSR 255 STFAPASI

TABLE 7-2 UltraSPARC Architecture 2007Instruction Set - Alphabetical (2 of 3)

Page Instruction
CHAPTER 7 • Instructions 89

285 WRSOFTINT_CLRP 285 WRSTICKP 290 XNOR (XNORcc)

285 WRSOFTINT_SETP 285 WRTICK_CMPRP 290 XOR (XORcc)

285 WRSOFTINTP 285 WRYD

285 WRSTICK_CMPRP

TABLE 7-2 UltraSPARC Architecture 2007Instruction Set - Alphabetical (3 of 3)

Page Instruction
90 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

TABLE 7-3 Instruction Set - by Functional Category (1 of 5)

Instruction Category and Function Page
Ext. to
V9?

Data Movement Operations, Between R Registers

MOVcc Move integer register if condition is satisfied 204

MOVr Move integer register on contents of integer register 207
Data Movement Operations, Between F Registers

FMOV<s|d|q> Floating-point move 139

FMOV<s|d|q>cc Move floating-point register if condition is satisfied 140

FMOV<s|d|q>R Move f-p reg. if integer reg. contents satisfy condition 144

FSRC<1|2>[s] Copy source 164 VIS 1

Data Conversion Instructions

FiTO<s|d|q> Convert 32-bit integer to floating-point 132

F<s|d|q>TOi Convert floating point to integer 167

F<s|d|q>TOx Convert floating point to 64-bit integer 167

F<s|d|q>TO<s|d|q> Convert between floating-point formats 168

FxTO<s|d|q> Convert 64-bit integer to floating-point 171
Logical Operations on R Registers

AND (ANDcc) Logical and (and modify condition codes) 100

OR (ORcc) Inclusive-or (and modify condition codes) 214

ORN (ORNcc) Inclusive-or not (and modify condition codes) 214

XNOR (XNORcc) Exclusive-nor (and modify condition codes) 290

XOR (XORcc) Exclusive-or (and modify condition codes) 290
Logical Operations on F Registers

FAND[s] Logical and operation 165 VIS 1

FANDNOT<1|2>[s] Logical and operation with one inverted source 165 VIS 1

FNAND[s] Logical nand operation 165 VIS 1

FNOR[s] Logical nor operation 165 VIS 1

FNOT<1|2>[s] Copy negated source 164 VIS 1

FONE[s] One fill 163 VIS 1

FOR[s] Logical or operation 165 VIS 1

FORNOT<1|2>[s] Logical or operation with one inverted source 165 VIS 1

FXNOR[s] Logical xnor operation 165 VIS 1

FXOR[s] Logical xor operation 165 VIS 1

FZERO[s] Zero fill 163 VIS 1

Shift Operations on R Registers

SLL Shift left logical 244

SLLX Shift left logical, extended 244

SRA Shift right arithmetic 244

SRAX Shift right arithmetic, extended 244

SRL Shift right logical 244

SRLX Shift right logical, extended 244
Special Addressing Operations

ALIGNADDRESS[_LITTLE] Calculate address for misaligned data 98 VIS 1

ARRAY<8|16|32> 3-D array addressing instructions 101 VIS 1

FALIGNDATA Perform data alignment for misaligned data 121 VIS 1

Control Transfers

Bicc Branch on integer condition codes 104

BPcc Branch on integer condition codes with prediction 107
CHAPTER 7 • Instructions 91

BPr Branch on contents of integer register with prediction 109

CALL Call and link 111

DONEP Return from trap 114

FBfccD Branch on floating-point condition codes 122

FBPfcc Branch on floating-point condition codes with prediction 124

ILLTRAP Illegal instruction 172

JMPL Jump and link 174

RETRYP Return from trap and retry 233

RETURN Return 235

Tcc Trap on integer condition codes 276
Byte Permutation

BMASK Set the GSR.mask field 106 VIS 2

BSHUFFLE Permute bytes as specified by GSR.mask 106 VIS 2

Data Formatting Operations on F Registers

FEXPAND Pixel expansion 131 VIS 1

FPACK<16|32|FIX> Pixel packing 153 VIS 1

FPMERGE Pixel merge 160 VIS 1

Memory Operations to/from F Registers

LDBLOCKF Block loads 178 VIS 1

STBLOCKF Block stores 250 VIS 1

LDDF Load double floating-point 181

LDDFAPASI Load double floating-point from alternate space 183

LDF Load floating-point 181

LDFAPASI Load floating-point from alternate space 183

LDQF Load quad floating-point 181

LDQFAPASI Load quad floating-point from alternate space 183

LDSHORTF Short floating-point loads 188 VIS 1

STDF Store double floating-point 253

STDFAPASI Store double floating-point into alternate space 255

STF Store floating-point 253

STFAPASI Store floating-point into alternate space 255

STPARTIALF Partial Store instructions 260 VIS 1

STQF Store quad floating point 253

STQFAPASI Store quad floating-point into alternate space 255

STSHORTF Short floating-point stores 263 VIS 1

Memory Operations — Miscellaneous

LDFSRD Load floating-point state register (lower) 186

LDXFSR Load floating-point state register 199

MEMBAR Memory barrier 201

PREFETCH Prefetch data 219

PREFETCHAPASI Prefetch data from alternate space 219

STFSRD Store floating-point state register (lower) 258

STXFSR Store floating-point state register 269
Atomic (Load-Store) Memory Operations to/from R Registers

CASAPASI Compare and swap word in alternate space 112

CASXAPASI Compare and swap doubleword in alternate space 112

TABLE 7-3 Instruction Set - by Functional Category (2 of 5)

Instruction Category and Function Page
Ext. to
V9?
92 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

LDSTUB Load-store unsigned byte 190

LDSTUBAPASI Load-store unsigned byte in alternate space 191

SWAPD Swap integer register with memory 271

SWAPAD, PASI Swap integer register with memory in alternate space 272
Memory Operations to/from R Registers

LDSB Load signed byte 175

LDSBAPASI Load signed byte from alternate space 176

LDSH Load signed halfword 175

LDSHAPASI Load signed halfword from alternate space 176

LDSW Load signed word 175

LDSWAPASI Load signed word from alternate space 176

LDTXAN Load integer twin extended word from alternate space 197 VIS 2+

LDTWD, PASI Load integer twin word 192

LDTWAD, PASI Load integer twin word from alternate space 194

LDUB Load unsigned byte 190

LDUBAPASI Load unsigned byte from alternate space 176

LDUH Load unsigned halfword 175

LDUHAPASI Load unsigned halfword from alternate space 176

LDUW Load unsigned word 175

LDUWAPASI Load unsigned word from alternate space 176

LDX Load extended 175

LDXAPASI Load extended from alternate space 176

STB Store byte 247

STBAPASI Store byte into alternate space 248

STTWD Store twin word 265

STTWAD, PASI Store twin word into alternate space 267

STH Store halfword 247

STHAPASI Store halfword into alternate space 248

STW Store word 247

STWAPASI Store word into alternate space 248

STX Store extended 247

STXAPASI Store extended into alternate space 248
Floating-Point Arithmetic Operations

FABS<s|d|q> Floating-point absolute value 119

FADD<s|d|q> Floating-point add 120

FDIV<s|d|q> Floating-point divide 130

FdMULq Floating-point multiply double to quad 151

FMADD(s,d) Floating-point multiply-add single/double (fused) 137

FMSUB(s,d) Floating-point multiply-subtract single/double (fused) 137

FMUL<s|d|q> Floating-point multiply 151

FNMADD(s,d) Floating-point negative multiply-add single/double (fused) 137

FNEG<s|d|q> Floating-point negate 152

FNMSUB(s,d) Floating-point negative multiply-subtract single/double (fused) 137

FsMULd Floating-point multiply single to double 151

FSQRT<s|d|q> Floating-point square root 166

FSUB<s|d|q> Floating-point subtract 170

TABLE 7-3 Instruction Set - by Functional Category (3 of 5)

Instruction Category and Function Page
Ext. to
V9?
CHAPTER 7 • Instructions 93

Floating-Point Comparison Operations

FCMP*<16,32> Compare four 16-bit signed values or two 32-bit signed values 126 VIS 1

FCMP<s|d|q> Floating-point compare 128

FCMPE<s|d|q> Floating-point compare (exception if unordered) 128
Register-Window Control Operations

ALLCLEAN Mark all register window sets as “clean” 99

INVALW Mark all register window sets as “invalid” 173

FLUSHW Flush register windows 136

NORMALW “Other” register windows become “normal” register windows 213

OTHERW “Normal” register windows become “other” register windows 215

RESTORE Restore caller’s window 230

RESTOREDP Window has been restored 232

SAVE Save caller’s window 237

SAVEDP Window has been saved 239
Miscellaneous Operations

FLUSH Flush instruction memory 133

NOP No operation 212
Integer SIMD Operations on F Registers

FPADD<16,32>[S] Fixed-point partitioned add 158 VIS 1

FPSUB<16,32>[S] Fixed-point partitioned subtract 161 VIS 1

Integer Arithmetic Operations on R Registers

ADD (ADDcc) Add (and modify condition codes) 97

ADDC (ADDCcc) Add with carry (and modify condition codes) 97

MULSccD Multiply step (and modify condition codes) 209

MULX Multiply 64-bit integers 211

SDIVD (SDIVccD) 32-bit signed integer divide (and modify condition codes) 240

SDIVX 64-bit signed integer divide 211

SMULD (SMULccD) Signed integer multiply (and modify condition codes) 246

SUB (SUBcc) Subtract (and modify condition codes) 270

SUBC (SUBCcc) Subtract with carry (and modify condition codes) 270

TADDcc Tagged add and modify condition codes (trap on overflow) 274

TADDccTVD Tagged add and modify condition codes (trap on overflow) 275

TSUBcc Tagged subtract and modify condition codes (trap on overflow) 279

TSUBccTVD Tagged subtract and modify condition codes (trap on overflow) 280

UDIVD (UDIVccD) Unsigned integer divide (and modify condition codes) 281

UDIVX 64-bit unsigned integer divide 211

UMULD (UMULccD) Unsigned integer multiply (and modify condition codes) 283
Integer Arithmetic Operations on F Registers

FMUL8x16 8x16 partitioned product 146 VIS 1

FMUL8x16[AU|AL] 8x16 upper/lower α partitioned product 146 VIS 1

FMUL8[SU|UL]x16 8x16 upper/lower partitioned product 146 VIS 1

FMULD8[SU|UL]x16 8x16 upper/lower partitioned product 146 VIS 1

Miscellaneous Operations on R Registers

POPC Population count 217

SETHI Set high 22 bits of low word of integer register 242
Miscellaneous Operations on F Registers

TABLE 7-3 Instruction Set - by Functional Category (4 of 5)

Instruction Category and Function Page
Ext. to
V9?
94 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

EDGE<8|16|32>[L]cc Edge handling instructions (and modify condition codes) 116 VIS 1

EDGE<8|16|32>[L]N Edge handling instructions 118 VIS 2

PDIST Pixel component distance 216 VIS 1

Control and Status Register Access

RDASI Read ASI register 225

RDasrPASR Read ancillary state register 225

RDCCR Read Condition Codes register (CCR) 225

RDFPRS Read Floating-Point Registers State register (FPRS) 225

RDGSR Read General Status register (GSR) 225

RDPC Read Program Counter register (PC) 225

RDPRP Read privileged register 228

RDSOFTINTP Read per-virtual processor Soft Interrupt register (SOFTINT) 225

RDSTICKPnpt Read System Tick register (STICK) 225

RDSTICK_CMPRP Read System Tick Compare register (STICK_CMPR) 225

RDTICKPnpt Read Tick register (TICK) 225

RDTICK_CMPRP Read Tick Compare register (TICK_CMPR) 225

SIAM Set interval arithmetic mode 243 VIS 2

WRASI Write ASI register 285

WRasrPASR Write ancillary state register 285

WRCCR Write Condition Codes register (CCR) 285

WRFPRS Write Floating-Point Registers State register (FPRS) 285

WRGSR Write General Status register (GSR) 285

WRPRP Write privileged register 288

WRSOFTINTP Write per-virtual processor Soft Interrupt register (SOFTINT) 285

WRSOFTINT_CLRP Clear bits of per-virtual processor Soft Interrupt register
(SOFTINT)

285

WRSOFTINT_SETP Set bits of per-virtual processor Soft Interrupt register (SOFTINT) 285

WRTICK_CMPRP Write Tick Compare register (TICK_CMPR) 285

WRSTICKP Write System Tick register (STICK) 285

WRSTICK_CMPRP Write System Tick Compare register (STICK_CMPR) 285

WRYD Write Y register 285

TABLE 7-3 Instruction Set - by Functional Category (5 of 5)

Instruction Category and Function Page
Ext. to
V9?
CHAPTER 7 • Instructions 95

In the remainder of this chapter, related instructions are grouped into subsections. Each subsection
consists of the following sets of information:

(1) Instruction Table. This lists the instructions that are defined in the subsection, including the
values of the field(s) that uniquely identify the instruction(s), assembly language syntax, and software
and implementation classifications for the instructions. (description of the Software Classes [letters] and
Implementation Classes [digits] will be provided in a later update to this specification)

(2) Illustration of Instruction Format(s). These illustrations show how the instruction is encoded
in a 32-bit word in memory. In them, a dash (—) indicates that the field is reserved for future versions
of the architecture and must be 0 in any instance of the instruction. If a conforming UltraSPARC
Architecture implementation encounters nonzero values in these fields, its behavior is as defined in
Reserved Opcodes and Instruction Fields on page 86.

(3) Description. This subsection describes the operation of the instruction, its features, restrictions,
and exception-causing conditions.

(4) Exceptions. The exceptions that can occur as a consequence of attempting to execute the
instruction(s). Exceptions due to an IAE_*,, and interrupts are not listed because they can occur on any
instruction. An instruction not implemented in hardware generates an illegal_instruction exception
and therefore will not generate any of the other exceptions listed. Exceptions are listed in order of trap
priority (see Trap Priorities on page 356), from highest to lowest priority.

(5) See Also. A list of related instructions (on selected pages).

Note Instruction classes will be defined in a later draft of this document
and in the meantime are subject to change.

Note This specification does not contain any timing information (in
either cycles or elapsed time), since timing is always
implementation dependent.
96 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

ADD
7.1 Add

Description If i = 0, ADD and ADDcc compute “R[rs1] + R[rs2]”. If i = 1, they compute
“R[rs1] + sign_ext(simm13)”. In either case, the sum is written to R[rd].

ADDC and ADDCcc (“ADD with carry”) also add the CCR register’s 32-bit carry (icc.c) bit. That is, if
i = 0, they compute “R[rs1] + R[rs2] + icc.c” and if i = 1, they compute
“R[rs1] + sign_ext(simm13) + icc.c”. In either case, the sum is written to R[rd].

ADDcc and ADDCcc modify the integer condition codes (CCR.icc and CCR.xcc). Overflow occurs on
addition if both operands have the same sign and the sign of the sum is different from that of the
operands.

An attempt to execute an ADD, ADDcc, ADDC or ADDCcc instruction when i = 0 and reserved
instruction bits 12:5 are nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction

Instruction op3 Operation Assembly Language Syntax Class

ADD 00 0000 Add add regrs1, reg_or_imm, regrd A1

ADDcc 01 0000 Add and modify cc’s addcc regrs1, reg_or_imm, regrd A1

ADDC 00 1000 Add with 32-bit Carry addc regrs1, reg_or_imm, regrd A1

ADDCcc 01 1000 Add with 32-bit Carry and modify cc’s addccc regrs1, reg_or_imm, regrd A1

Programming
Note

ADDC and ADDCcc read the 32-bit condition codes’ carry bit
(CCR.icc.c), not the 64-bit condition codes’ carry bit (CCR.xcc.c).

SPARC V8
Compatibility

Note

ADDC and ADDCcc were previously named ADDX and
ADDXcc, respectively, in SPARC V8.

rd10 op3 —rs1 rs2i=0

31 24 02530 29 19 18 14 13 12 5 4

rd10 op3 rs1 simm13i=1
CHAPTER 7 • Instructions 97

ALIGNADDRESS
7.2 Align Address

Description ALIGNADDRESS adds two integer values, R[rs1] and R[rs2], and stores the result (with the least
significant 3 bits forced to 0) in the integer register R[rd]. The least significant 3 bits of the result are
stored in the GSR.align field.

ALIGNADDRESS_LITTLE is the same as ALIGNADDRESS except that the two’s complement of the
least significant 3 bits of the result is stored in GSR.align.

A byte-aligned 64-bit load can be performed as shown below.

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an ALIGNADDRESS or ALIGNADDRESS_LITTLE instruction causes an
fp_disabled exception.

Exceptions fp_disabled

See Also Align Data on page 121

Instruction opf Operation Assembly Language Syntax Class Added

ALIGNADDRESS 0 0001 1000 Calculate address for misaligned
data access

alignaddr regrs1, regrs2, regrd A1 UA 2005

ALIGNADDRESS_
LITTLE

0 0001 1010 Calculate address for misaligned
data access, little-endian

alignaddrl regrs1, regrs2, regrd A1 UA 2005

Note ALIGNADDRESS_LITTLE generates the opposite-endian byte
ordering for a subsequent FALIGNDATA operation.

alignaddr Address, Offset, Address !set GSR.align
ldd [Address], %d0
ldd [Address + 8], %d2
faligndata %d0, %d2, %d4 !use GSR.align to select bytes

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
98 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

ALLCLEAN
7.3 Mark All Register Window Sets “Clean”

Description The ALLCLEAN instruction marks all register window sets as “clean”; specifically, it performs the
following operation:

CLEANWIN ← (N_REG_WINDOWS − 1)

An attempt to execute an ALLCLEAN instruction when reserved instruction bits 18:0 are nonzero
causes an illegal_instruction exception.

An attempt to execute an ALLCLEAN instruction in nonprivileged mode (PSTATE.priv = 0) causes a
privileged_opcode exception.

Exceptions
illegal_instruction
privileged_opcode

See Also INVALW on page 173
NORMALW on page 213
OTHERW on page 215
RESTORED on page 232
SAVED on page 239

Instruction Operation Assembly Language Syntax Class Added

ALLCLEANP Mark all register window sets as “clean” allclean A1 UA 2005

Programming
Note

ALLCLEAN is used to indicate that all register windows are
“clean”; that is, do not contain data belonging to other address
spaces. It is needed because the value of N_REG_WINDOWS is not
known to privileged software.

31 1924 18 02530 29

10 fcn = 0 0010 11 0001 —
CHAPTER 7 • Instructions 99

AND, ANDN
7.4 AND Logical Operation

Description These instructions implement bitwise logical and operations. They compute “R[rs1] op R[rs2]” if i = 0,
or “R[rs1] op sign_ext(simm13)” if i = 1, and write the result into R[rd].

ANDcc and ANDNcc modify the integer condition codes (icc and xcc). They set the condition codes
as follows:

■ icc.v, icc.c, xcc.v, and xcc.c are set to 0
■ icc.n is copied from bit 31 of the result
■ xcc.n is copied from bit 63 of the result
■ icc.z is set to 1 if bits 31:0 of the result are zero (otherwise to 0)
■ xcc.z is set to 1 if all 64 bits of the result are zero (otherwise to 0)

ANDN and ANDNcc logically negate their second operand before applying the main (and) operation.

An attempt to execute an AND, ANDcc, ANDN or ANDNcc instruction when i = 0 and reserved
instruction bits 12:5 are nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction

Instruction op3 Operation Assembly Language Syntax Class

AND 00 0001 and and regrs1, reg_or_imm, regrd A1

ANDcc 01 0001 and and modify cc’s andcc regrs1, reg_or_imm, regrd A1

ANDN 00 0101 and not andn regrs1, reg_or_imm, regrd A1

ANDNcc 01 0101 and not and modify cc’s andncc regrs1, reg_or_imm, regrd A1

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
100 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

ARRAY<8|16|32>
7.5 Three-Dimensional Array Addressing

Description These instructions convert three-dimensional (3D) fixed-point addresses contained in R[rs1] to a
blocked-byte address; they store the result in R[rd]. Fixed-point addresses typically are used for
address interpolation for planar reformatting operations. Blocking is performed at the 64-byte level to
maximize external cache block reuse, and at the 64-Kbyte level to maximize TLB entry reuse,
regardless of the orientation of the address interpolation. These instructions specify an element size of
8 bits (ARRAY8), 16 bits (ARRAY16), or 32 bits (ARRAY32).

The second operand, R[rs2], specifies the power-of-2 size of the X and Y dimensions of a 3D image
array. The legal values for R[rs2] and their meanings are shown in TABLE 7-4. Illegal values produce
undefined results in the destination register, R[rd].

The array instructions facilitate 3D texture mapping and volume rendering by computing a memory
address for data lookup based on fixed-point x, y, and z coordinates. The data are laid out in a
blocked fashion, so that points which are near one another have their data stored in nearby memory
locations.

If the texture data were laid out in the obvious fashion (the z = 0 plane, followed by the z = 1 plane,
etc.), then even small changes in z would result in references to distant pages in memory. The
resulting lack of locality would tend to result in TLB misses and poor performance. The three versions
of the array instruction, ARRAY8, ARRAY16, and ARRAY32, differ only in the scaling of the computed
memory offsets. ARRAY16 shifts its result left by one position and ARRAY32 shifts left by two in
order to handle 16- and 32-bit texture data.

When using the array instructions, a “blocked-byte” data formatting structure is imposed. The N × N
× M volume, where N = 2n × 64, M = m × 32, 0 ≤ n ≤5, 1 ≤ m ≤ 16 should be composed of 64 × 64 × 32
smaller volumes, which in turn should be composed of 4 × 4 × 2 volumes. This data structure is
optimal for 16-bit data. For 16-bit data, the 4 × 4 × 2 volume has 64 bytes of data, which is ideal for
reducing cache-line misses; the 64 × 64 × 32 volume will have 256 Kbytes of data, which is good for
improving the TLB hit rate. FIGURE 7-1 illustrates how the data has to be organized, where the origin

Instruction opf Operation Assembly Language Syntax Class Added

ARRAY8 0 0001 0000 Convert 8-bit 3D address to blocked byte address array8 regrs1, regrs2, regrd B1 UA 2005

ARRAY16 0 0001 0010 Convert 16-bit 3D address to blocked byte address array16 regrs1, regrs2, regrd B1 UA 2005

ARRAY32 0 0001 0100 Convert 32-bit 3D address to blocked byte address array32 regrs1, regrs2, regrd B1 UA 2005

TABLE 7-4 3D R[rs2] Array X and Y Dimensions
R[rs2] Value (n) Number of Elements

0 64
1 128
2 256
3 512
4 1024
5 2048

Implementation
Note

Architecturally, an illegal R[rs2] value (>5) causes the array
instructions to produce undefined results. For historic reference,
past implementations of these instructions have ignored
R[rs2]{63:3} and have treated R[rs2] values of 6 and 7 as if they
were 5.

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
CHAPTER 7 • Instructions 101

ARRAY<8|16|32>

(0,0,0) is assumed to be at the lower-left front corner and the x coordinate varies faster than y than z.
That is, when traversing the volume from the origin to the upper right back, you go from left to right,
front to back, bottom to top.

FIGURE 7-1 Blocked-Byte Data Formatting Structure

The array instructions have 2 inputs:

The (x,y,z) coordinates are input via a single 64-bit integer organized in R[rs1] as shown in FIGURE 7-2.

FIGURE 7-2 Three-Dimensional Array Fixed-Point Address Format

Note that z has only 9 integer bits, as opposed to 11 for x and y. Also note that since (x,y,z) are all
contained in one 64-bit register, they can be incremented or decremented simultaneously with a single
add or subtract instruction (ADD or SUB).

So for a 512 × 512 × 32 or a 512 × 512 × 256 volume, the size value is 3. Note that the x and y size of
the volume must be the same. The z size of the volume is a multiple of 32, ranging between 32 and
512.

The array instructions generate an integer memory offset, that when added to the base address of the
volume, gives the address of the volume element (voxel) and can be used by a load instruction. The
offset is correct only if the data has been reformatted as specified above.

The integer parts of x, y, and z are converted to the following blocked-address formats as shown in
FIGURE 7-3 for ARRAY8, FIGURE 7-4 for ARRAY16, and FIGURE 7-5 for ARRAY32.

FIGURE 7-3 Three-Dimensional Array Blocked-Address Format (ARRAY8)

0 4

4

2

Y

X

Z

16 × 4 = 64

M = m × 32

N = 2
n × 64

N = 2
n × 64

16 x 2 = 32
16 × 4 = 64

0323363 55 54 44 43 22 21 11 10

X fractionX integerY fractionY integerZ fractionZ integer

04 2

XYZ

LOWER

513 9

XYZ

MIDDLE

1717 17

XYZ

UPPER

+ n+2n
20
+ 2n
102 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

ARRAY<8|16|32>
FIGURE 7-4 Three-Dimensional Array Blocked-Address Format (ARRAY16)

FIGURE 7-5 Three Dimensional Array Blocked-Address Format (ARRAY32)

The bits above Z upper are set to 0. The number of zeroes in the least significant bits is determined by
the element size. An element size of 8 bits has no zeroes, an element size of 16 bits has one zero, and
an element size of 32 bits has two zeroes. Bits in X and Y above the size specified by R[rs2] are
ignored.

In the above description, if n = 0, there are 64 elements, so X_integer{6} and Y_integer{6} are not
defined. That is, result{20:17} equals Z_integer{8:5}.

The code fragment below shows assembly of components along an interpolated line at the rate of one
component per clock.

Exceptions None

TABLE 7-5 ARRAY8 Description

Result (R[rd]) Bits Source (R[rs1] Bits Field Information

1:0 12:11 X_integer{1:0}

3:2 34:33 Y_integer{1:0}

4 55 Z_integer{0}

8:5 16:13 X_integer{5:2}

12:9 38:35 Y_integer{5:2}

16:13 59:56 Z_integer{4:1}

17+n-1:17 17+n-1:17 X_integer{6+n-1:6}

17+2n-1:17+n 39+n-1:39 Y_integer{6+n-1:6}

20+2n:17+2n 63:60 Z_integer{8:5}

63:20+2n+1 n/a 0

Note To maximize reuse of external cache and TLB data, software
should block array references of a large image to the 64-Kbyte
level. This means processing elements within a 32 × 32 × 64
block.

add Addr, DeltaAddr, Addr
array8 Addr, %g0, bAddr
ldda [bAddr] #ASI_FL8_PRIMARY, data
faligndata data, accum, accum

15 3

XYZ

LOWER

614 10

XYZ

MIDDLE

1818 18

XYZ

UPPER

+n+2n
21

+2n

0

0

26 4

XYZ

LOWER

715 11

XYZ

MIDDLE

1919 19

XYZ

UPPER

+n+2n
22

+2n

00

0135
CHAPTER 7 • Instructions 103

Bicc
7.6 Branch on Integer Condition Codes (Bicc)

Unconditional branches and icc-conditional branches are described below:

■ Unconditional branches (BA, BN) — If its annul bit is 0 (a = 0), a BN (Branch Never) instruction is
treated as a NOP. If its annul bit is 1 (a = 1), the following (delay) instruction is annulled (not
executed). In neither case does a transfer of control take place.

BA (Branch Always) causes an unconditional PC-relative, delayed control transfer to the address
“PC + (4 × sign_ext(disp22))”. If the annul (a) bit of the branch instruction is 1, the delay
instruction is annulled (not executed). If the annul bit is 0 (a = 0), the delay instruction is executed.

■ icc-conditional branches — Conditional Bicc instructions (all except BA and BN) evaluate the 32-
bit integer condition codes (icc), according to the cond field of the instruction, producing either a
TRUE or FALSE result. If TRUE, the branch is taken, that is, the instruction causes a PC-relative,
delayed control transfer to the address “PC + (4 × sign_ext(disp22))”. If FALSE, the branch is not
taken.

Opcode cond Operation icc Test
Assembly Language
Syntax Class

BA 1000 Branch Always 1 ba{,a} label A1

BN 0000 Branch Never 0 bn{,a} label A1

BNE 1001 Branch on Not Equal not Z bne†{,a} label A1

BE 0001 Branch on Equal Z be‡{,a} label A1

BG 1010 Branch on Greater not (Z or (N xor V)) bg{,a} label A1

BLE 0010 Branch on Less or Equal Z or (N xor V) ble{,a} label A1

BGE 1011 Branch on Greater or Equal not (N xor V) bge{,a} label A1

BL 0011 Branch on Less N xor V bl{,a} label A1

BGU 1100 Branch on Greater Unsigned not (C or Z) bgu{,a} label A1

BLEU 0100 Branch on Less or Equal Unsigned C or Z bleu{,a} label A1

BCC 1101 Branch on Carry Clear (Greater Than
or Equal, Unsigned)

not C bcc◊{,a} label A1

BCS 0101 Branch on Carry Set (Less Than, Unsigned) C bcs∇ {,a} label A1

BPOS 1110 Branch on Positive not N bpos{,a} label A1

BNEG 0110 Branch on Negative N bneg{,a} label A1

BVC 1111 Branch on Overflow Clear not V bvc{,a} label A1

BVS 0111 Branch on Overflow Set V bvs{,a} label A1
† synonym: bnz ‡ synonym: bz ◊ synonym: bgeu ∇ synonym: blu

Programming
Note

To set the annul (a) bit for Bicc instructions, append “,a” to the
opcode mnemonic. For example, use “bgu,a label”. In the
preceding table, braces signify that the “,a” is optional.

31 24 02530 29 28 22 21

00 a cond 010 disp22
104 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

Bicc

If a conditional branch is taken, the delay instruction is always executed regardless of the value of
the annul field. If a conditional branch is not taken and the annul bit is 1 (a = 1), the delay
instruction is annulled (not executed).

Annulment, delay instructions, and delayed control transfers are described further in Chapter 6,
Instruction Set Overview.

If the Trap on Control Transfer feature is implemented (impl. dep. #450-S20), PSTATE.tct = 1, and the
Bicc instruction will cause a transfer of control (BA or taken conditional branch), then Bicc generates a
control_transfer_instruction exception instead of causing a control transfer. When a
control_transfer_instruction trap occurs, PC (the address of the Bicc instruction) is stored in TPC[TL]
and the value of NPC from before the Bicc was executed is stored in TNPC[TL].

Note that BN never causes a control_transfer_instruction exception.

Exceptions control_transfer_instruction (impl. dep. #450-S20)

Note The annul bit has a different effect on conditional branches than
it does on unconditional branches.
CHAPTER 7 • Instructions 105

BMASK / BSHUFFLE
7.7 Byte Mask and Shuffle

Description BMASK adds two integer registers, R[rs1] and R[rs2], and stores the result in the integer register
R[rd]. The least significant 32 bits of the result are stored in the GSR.mask field.

BSHUFFLE concatenates the two 64-bit floating-point registers FD[rs1] (more significant half) and
FD[rs2] (less significant half) to form a 128-bit (16-byte) value. Bytes in the concatenated value are
numbered from most significant to least significant, with the most significant byte being byte 0.
BSHUFFLE extracts 8 of those 16 bytes and stores the result in the 64-bit floating-point register FD[rd].
Bytes in FD[rd] are also numbered from most to least significant, with the most significant being byte
0. The following table indicates which source byte is extracted from the concatenated value to
generate each byte in the destination register, FD[rd].

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute a BMASK or BSHUFFLE instruction causes an fp_disabled exception.

Exceptions fp_disabled

Instruction opf Operation Assembly Language Syntax Class Added

BMASK 0 0001 1001 Set the GSR.mask field in preparation
for a subsequent BSHUFFLE instruction

bmask regrs1, regrs2, regrd B1 UA 2007

BSHUFFLE 0 0100 1100 Permute 16 bytes as specified by GSR.mask bshuffle fregrs1, fregrs2, fregrd B1 UA 2007

Destination Byte (in F[rd]) Source Byte

0 (most significant) (FD[rs1] :: FD[[rs2]) {GSR.mask{31:28}}

1 (FD[[rs1] :: FD[[rs2]) {GSR.mask{27:24}}

2 (FD[[rs1] :: FD[[rs2]) {GSR.mask{23:20}}

3 (FD[[rs1] :: FD[[rs2]) {GSR.mask{19:16}}

4 (FD[[rs1] :: FD[[rs2]) {GSR.mask{15:12}}

5 (FD[[rs1] :: FD[[rs2]) {GSR.mask{11:8}}

6 (FD[[rs1] :: FD[[rs2]) {GSR.mask{7:4}}

7 (least significant) (FD[[rs1] :: FD[[rs2]) {GSR.mask{3:0}}

VIS 2

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
106 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

BPcc
7.8 Branch on Integer Condition Codes with
Prediction (BPcc)

† synonym: bnz ‡ synonym: bz ◊ synonym: bgeu ∇ synonym: blu

Description Unconditional branches and conditional branches are described below.

Instruction cond Operation cc Test Assembly Language Syntax Class

BPA 1000 Branch Always 1 ba{,a}{,pt|,pn} i_or_x_cc, label A1

BPN 0000 Branch Never 0 bn{,a}{,pt|,pn} i_or_x_cc, label A1

BPNE 1001 Branch on Not Equal not Z bne†{,a}{,pt|,pn} i_or_x_cc, label A1

BPE 0001 Branch on Equal Z be‡{,a}{,pt|,pn} i_or_x_cc, label A1

BPG 1010 Branch on Greater not (Z or
(N xor V))

bg{,a}{,pt|,pn} i_or_x_cc, label A1

BPLE 0010 Branch on Less or Equal Z or (N xor V) ble{,a}{,pt|,pn} i_or_x_cc, label A1

BPGE 1011 Branch on Greater or Equal not (N xor V) bge{,a}{,pt|,pn} i_or_x_cc, label A1

BPL 0011 Branch on Less N xor V bl{,a}{,pt|,pn} i_or_x_cc, label A1

BPGU 1100 Branch on Greater Unsigned not (C or Z) bgu{,a}{,pt|,pn} i_or_x_cc, label A1

BPLEU 0100 Branch on Less or Equal Unsigned C or Z bleu{,a}{,pt|,pn} i_or_x_cc, label A1

BPCC 1101 Branch on Carry Clear
(Greater than or Equal, Unsigned)

not C bcc◊{,a}{,pt|,pn} i_or_x_cc, label A1

BPCS 0101 Branch on Carry Set
(Less than, Unsigned)

C bcs∇ {,a}{,pt|,pn} i_or_x_cc, label A1

BPPOS 1110 Branch on Positive not N bpos{,a}{,pt|,pn} i_or_x_cc, label A1

BPNEG 0110 Branch on Negative N bneg{,a}{,pt|,pn} i_or_x_cc, label A1

BPVC 1111 Branch on Overflow Clear not V bvc{,a}{,pt|,pn} i_or_x_cc, label A1

BPVS 0111 Branch on Overflow Set V bvs{,a}{,pt|,pn} i_or_x_cc, label A1

cc1 cc0 Condition Code

0 0 icc

0 1 —

1 0 xcc

1 1 —

Programming
Note

To set the annul (a) bit for BPcc instructions, append “,a” to the
opcode mnemonic. For example, use bgu,a %icc, label. Braces in
the preceding table signify that the “,a” is optional. To set the
branch prediction bit, append to an opcode mnemonic either
“,pt” for predict taken or “,pn” for predict not taken. If neither
“,pt” nor “,pn” is specified, the assembler defaults to “,pt”. To
select the appropriate integer condition code, include “%icc” or
“%xcc” before the label.

00 a cond 001 cc1 p disp19cc0

31 1924 182530 29 28 22 21 20
CHAPTER 7 • Instructions 107

BPcc

■ Unconditional branches (BPA, BPN) — A BPN (Branch Never with Prediction) instruction for this

branch type (op2 = 1) may be used in the SPARC V9 architecture as an instruction prefetch; that is,
the effective address (PC + (4 × sign_ext(disp19))) specifies an address of an instruction that is
expected to be executed soon. If the Branch Never’s annul bit is 1 (a = 1), then the following (delay)
instruction is annulled (not executed). If the annul bit is 0 (a = 0), then the following instruction is
executed. In no case does a Branch Never cause a transfer of control to take place.

BPA (Branch Always with Prediction) causes an unconditional PC-relative, delayed control transfer
to the address “PC + (4 × sign_ext(disp19))”. If the annul bit of the branch instruction is 1 (a = 1),
then the delay instruction is annulled (not executed). If the annul bit is 0 (a = 0), then the delay
instruction is executed.

■ Conditional branches — Conditional BPcc instructions (except BPA and BPN) evaluate one of the
two integer condition codes (icc or xcc), as selected by cc0 and cc1, according to the cond field of
the instruction, producing either a TRUE or FALSE result. If TRUE, the branch is taken; that is, the
instruction causes a PC-relative, delayed control transfer to the address
“PC + (4 × sign_ext(disp19))”. If FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed regardless of the value of
the annul (a) bit. If a conditional branch is not taken and the annul bit is 1 (a = 1), the delay
instruction is annulled (not executed).

The predict bit (p) is used to give the hardware a hint about whether the branch is expected to be
taken. A 1 in the p bit indicates that the branch is expected to be taken; a 0 indicates that the branch
is expected not to be taken.

Annulment, delay instructions, prediction, and delayed control transfers are described further in
Chapter 6, Instruction Set Overview.

An attempt to execute a BPcc instruction with cc0 = 1 (a reserved value) causes an illegal_instruction
exception.

If the Trap on Control Transfer feature is implemented (impl. dep. #450-S20), PSTATE.tct = 1, and the
BPcc instruction will cause a transfer of control (BPA or taken conditional branch), then BPcc
generates a control_transfer_instruction exception instead of causing a control transfer. When a
control_transfer_instruction trap occurs, PC (the address of the BPcc) is stored in TPC[TL] and the
value of NPC from before the BPcc was executed is stored in TNPC[TL].

Note that BPN never causes a control_transfer_instruction exception.

Exceptions illegal_instruction
control_transfer_instruction (impl. dep. #450-S20)

See Also Branch on Integer Register with Prediction (BPr) on page 109

Note The annul bit has a different effect on conditional branches than
it does on unconditional branches.
108 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

BPr
7.9 BranchonIntegerRegisterwithPrediction(BPr)

* Although SPARC V9 implementations should cause an illegal_instruction exception when bit 28 = 1, some early implementations
ignored the value of this bit and executed the opcode as a BPr instruction even if bit 28 = 1.

Description These instructions branch based on the contents of R[rs1]. They treat the register contents as a signed
integer value.

A BPr instruction examines all 64 bits of R[rs1] according to the rcond field of the instruction,
producing either a TRUE or FALSE result. If TRUE, the branch is taken; that is, the instruction causes a
PC-relative, delayed control transfer to the address “PC + (4 × sign_ext(d16hi :: d16lo))”. If FALSE,
the branch is not taken.

If the branch is taken, the delay instruction is always executed, regardless of the value of the annul (a)
bit. If the branch is not taken and the annul bit is 1 (a = 1), the delay instruction is annulled (not
executed).

The predict bit (p) gives the hardware a hint about whether the branch is expected to be taken. If
p = 1, the branch is expected to be taken; p = 0 indicates that the branch is expected not to be taken.

An attempt to execute a BPr instruction when instruction bit 28 = 1 or rcond is a reserved value (0002
or 1002) causes an illegal_instruction exception.

If the Trap on Control Transfer feature is implemented (impl. dep. #450-S20), PSTATE.tct = 1, and the
BPr instruction will cause a transfer of control (taken conditional branch), then BPr generates a
control_transfer_instruction exception instead of causing a control transfer.

Instruction rcond Operation

Register
Contents
Test Assembly Language Syntax Class

— 000 Reserved — —

BRZ 001 Branch on Register Zero R[rs1] = 0 brz {,a}{,pt|,pn} regrs1, label A1

BRLEZ 010 Branch on Register Less Than or Equal
to Zero

R[rs1] ≤ 0 brlez {,a}{,pt|,pn} regrs1, label A1

BRLZ 011 Branch on Register Less Than Zero R[rs1] < 0 brlz {,a}{,pt|,pn} regrs1, label A1

— 100 Reserved — —

BRNZ 101 Branch on Register Not Zero R[rs1] ≠ 0 brnz {,a}{,pt|,pn} regrs1, label A1

BRGZ 110 Branch on Register Greater Than Zero R[rs1] > 0 brgz {,a}{,pt|,pn} regrs1, label A1

BRGEZ 111 Branch on Register Greater Than or
Equal to Zero

R[rs1] ≥ 0 brgez {,a}{,pt|,pn} regrs1, label A1

Programming
Note

To set the annul (a) bit for BPr instructions, append “,a” to the
opcode mnemonic. For example, use “brz,a %i3, label.” In the
preceding table, braces signify that the “,a” is optional. To set the
branch prediction bit p, append either “,pt” for predict taken or
“,pn” for predict not taken to the opcode mnemonic. If neither
“,pt” nor “,pn” is specified, the assembler defaults to “,pt”.

31 141924 18 13 027 2530 29 28 22 21 20

00 a 0* rcond 011 d16hi p rs1 d16lo
CHAPTER 7 • Instructions 109

BPr

Annulment, delay instructions, prediction, and delayed control transfers are described further in
Chapter 6, Instruction Set Overview.

Exceptions illegal_instruction
control_transfer_instruction (impl. dep. #450-S20)

See Also Branch on Integer Condition Codes with Prediction (BPcc) on page 107

Implementation
Note

If this instruction is implemented by tagging each register value
with an N (negative) bit and Z (zero) bit, the table below can be
used to determine if rcond is TRUE:

Branch Test
BRNZ not Z
BRZ Z
BRGEZ not N
BRLZ N
BRLEZ N or Z
BRGZ not (N or Z)
110 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

CALL
7.10 Call and Link

Description The CALL instruction causes an unconditional, delayed, PC-relative control transfer to address
PC + (4 × sign_ext(disp30)). Since the word displacement (disp30) field is 30 bits wide, the target
address lies within a range of –231 to +231 – 4 bytes. The PC-relative displacement is formed by sign-
extending the 30-bit word displacement field to 62 bits and appending two low-order zeroes to obtain
a 64-bit byte displacement.

The CALL instruction also writes the value of PC, which contains the address of the CALL, into R[15]
(out register 7).

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address are masked out
(set to 0) before being sent to the memory system and in the address written into R[15]. (closed impl.
dep. #125-V9-Cs10)

If the Trap on Control Transfer feature is implemented (impl. dep. #450-S20) and PSTATE.tct = 1, then
CALL generates a control_transfer_instruction exception instead of causing a control transfer. When a
control_transfer_instruction trap occurs, PC (the address of the CALL instruction) is stored in TPC[TL]
and the value of NPC from before the CALL was executed is stored in TNPC[TL]. The full 64-bit
(nonmasked) PC and NPC values are stored in TPC[TL] and TNPC[TL], regardless of the value of
PSTATE.am.

Exceptions control_transfer_instruction (impl. dep. #450-S20)

See Also JMPL on page 174

Instruction op Operation Assembly Language Syntax Class

CALL 01 Call and Link call label A1

31 030 29

01 disp30
CHAPTER 7 • Instructions 111

CASA / CASXA
7.11 Compare and Swap

Description Concurrent processes use Compare-and-Swap instructions for synchronization and memory updates.
Uses of compare-and-swap include spin-lock operations, updates of shared counters, and updates of
linked-list pointers. The last two can use wait-free (nonlocking) protocols.

The CASXA instruction compares the value in register R[rs2] with the doubleword in memory
pointed to by the doubleword address in R[rs1].

■ If the values are equal, the value in R[rd] is swapped with the doubleword pointed to by the
doubleword address in R[rs1].

■ If the values are not equal, the contents of the doubleword pointed to by R[rs1] replaces the value
in R[rd], but the memory location remains unchanged.

The CASA instruction compares the low-order 32 bits of register R[rs2] with a word in memory
pointed to by the word address in R[rs1].

■ If the values are equal, then the low-order 32 bits of register R[rd] are swapped with the contents of
the memory word pointed to by the address in R[rs1] and the high-order 32 bits of register R[rd]
are set to 0.

■ If the values are not equal, the memory location remains unchanged, but the contents of the
memory word pointed to by R[rs1] replace the low-order 32 bits of R[rd] and the high-order 32 bits
of register R[rd] are set to 0.

A compare-and-swap instruction comprises three operations: a load, a compare, and a swap. The
overall instruction is atomic; that is, no intervening interrupts or deferred traps are recognized by the
virtual processor and no intervening update resulting from a compare-and-swap, swap, load, load-
store unsigned byte, or store instruction to the doubleword containing the addressed location, or any
portion of it, is performed by the memory system.

A compare-and-swap operation behaves as if it performs a store, either of a new value from R[rd] or
of the previous value in memory. The addressed location must be writable, even if the values in
memory and R[rs2] are not equal.

If i = 0, the address space of the memory location is specified in the imm_asi field; if i = 1, the address
space is specified in the ASI register.

An attempt to execute a CASXA or CASA instruction when i = 1 and instruction bits 12:5 are nonzero
causes an illegal_instruction exception.

A mem_address_not_aligned exception is generated if the address in R[rs1] is not properly aligned.

Instruction op3 Operation Assembly Language Syntax Class

CASAPASI 11 1100 Compare and Swap Word from
Alternate Space

casa
casa

[regrs1] imm_asi, regrs2, regrd
[regrs1] %asi, regrs2, regrd

A1

CASXAPASI 11 1110 Compare and Swap Extended from
Alternate Space

casxa
casxa

[regrs1] imm_asi, regrs2, regrd
[regrs1] %asi, regrs2, regrd

A1

11 rd op3 rs1 i=0 imm_asi rs2

11 rd op3 rs1 i=1 — rs2
31 141924 18 13 12 5 4 02530 29
112 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

CASA / CASXA

In nonprivileged mode (PSTATE.priv = 0), if bit 7 of the ASI is 0, CASXA and CASA cause a
privileged_action exception. In privileged mode (PSTATE.priv = 1), if the ASI is in the range 3016 to
7F16, CASXA and CASA cause a privileged_action exception.

The compare-and-swap instructions do not affect the condition codes.

The compare-and-swap instructions can be used with any of the following ASIs, subject to the
privilege mode rules described for the privileged_action exception above. Use of any other ASI with
these instructions causes a DAE_invalid_asi exception.

Exceptions illegal_instruction
mem_address_not_aligned
privileged_action
VA_watchpoint
DAE_invalid_asi
DAE_privilege_violation
DAE_nc_page (attempted access to noncacheable page)
DAE_nfo_page (attempted access to non-faulting-only page)

Compatibility
Note

An implementation might cause an exception because of an
error during the store memory access, even though there was no
error during the load memory access.

Programming
Note

Compare and Swap (CAS) and Compare and Swap Extended
(CASX) synthetic instructions are available for “big endian”
memory accesses. Compare and Swap Little (CASL) and Compare
and Swap Extended Little (CASXL) synthetic instructions are
available for “little endian” memory accesses. See Synthetic
Instructions on page 536 for the syntax of these synthetic
instructions.

ASIs valid for CASA and CASXA instructions

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE
CHAPTER 7 • Instructions 113

DONE
7.12 DONE

Description The DONE instruction restores the saved state from TSTATE[TL] (GL, CCR, ASI, PSTATE, and CWP),
sets PC and NPC, and decrements TL. DONE sets PC←TNPC[TL] and NPC←TNPC[TL]+4
(normally, the value of NPC saved at the time of the original trap and address of the instruction
immediately after the one referenced by the NPC).

If the saved TNPC[TL] was not altered by trap handler software, DONE causes execution to resume
immediately after the instruction that originally caused the trap (as if that instruction was “done”
executing).

Execution of a DONE instruction in the delay slot of a control-transfer instruction produces undefined
results.

If software writes invalid or inconsistent state to TSTATE before executing DONE, virtual processor
behavior during and after execution of the DONE instruction is undefined.

Note that since PSTATE.tct is automatically set to 0 during entry to a trap handler, execution of a
DONE instruction at the end of a trap handler will not cause a control_transfer_instruction exception
unless trap handler software has explicitly set PSTATE.tct to 1. During execution of the DONE
instruction, the value of PSTATE.tct is restored from TSTATE.

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address are masked out
(set to 0) before being sent to the memory system.

IMPL. DEP. #417-S10: If (1) TSTATE[TL].pstate.am = 1 and (2) a DONE instruction is executed
(which sets PSTATE.am to ’1’ by restoring the value from TSTATE[TL].pstate.am to PSTATE.am), it is
implementation dependent whether the DONE instruction masks (zeroes) the more-significant 32 bits
of the values it places into PC and NPC.

Instruction op3 Operation Assembly Language Syntax Class

DONEP 11 1110 Return from Trap (skip trapped instruction) done A1

Programming
Notes

The DONE and RETRY instructions are used to return from
privileged trap handlers.

Unlike RETRY, DONE ignores the contents of TPC[TL].

Programming
Notes

If control_transfer_instruction traps are to be re-enabled
(PSTATE.tct ← 1, restored from TSTATE[TL].pstate.tct) when trap
handler software for the control_transfer_instruction trap returns,
the trap handler must
(1) emulate the trapped CTI, setting TPC[TL] and TNPC[TL]
appropriately, remembering to compensate for annul bits) and
(2) use a DONE (not RETRY) instruction to return.

If the CTI that caused the control_transfer_instruction trap was a
DONE (RETRY) instruction, the trap handler must carefully
emulate the trapped DONE (RETRY) (decrementing TL may
suffice) before the trap handler returns using its own DONE
(RETRY) instruction.

10 11 1110fcn =0 0000 —
31 1924 18 02530 29
114 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

DONE

Exceptions. In privileged mode (PSTATE.priv = 1), an attempt to execute DONE while TL = 0 causes
an illegal_instruction exception. An attempt to execute DONE (in any mode) with instruction bits 18:0
nonzero causes an illegal_instruction exception.

In nonprivileged mode (PSTATE.priv = 0), an attempt to execute DONE causes a privileged_opcode
exception.

If the Trap on Control Transfer feature is implemented (impl. dep. #450-S20) and PSTATE.tct = 1, then
DONE generates a control_transfer_instruction exception instead of causing a control transfer. When a
control_transfer_instruction trap occurs, PC (the address of the DONE instruction) is stored in
TPC[TL] and the value of NPC from before the DONE was executed is stored in TNPC[TL]. The full
64-bit (nonmasked) PC and NPC values are stored in TPC[TL] and TNPC[TL], regardless of the value
of PSTATE.am.

Exceptions illegal_instruction
privileged_opcode
control_transfer_instruction (impl. dep. #450-S20)

See Also RETRY on page 233

Implementation
Note

In nonprivileged mode, illegal_instruction exception due to TL = 0
does not occur. The privileged_opcode exception occurs instead,
regardless of the current trap level (TL).
CHAPTER 7 • Instructions 115

EDGE<8|16|32>{L}cc
7.13 Edge Handling Instructions

Description These instructions handle the boundary conditions for parallel pixel scan line loops, where R[rs1] is
the address of the next pixel to render and R[rs2] is the address of the last pixel in the scan line.

EDGE8Lcc, EDGE16Lcc, and EDGE32Lcc are little-endian versions of EDGE8cc, EDGE16cc, and
EDGE32cc, respectively. They produce an edge mask that is bit-reversed from their big-endian
counterparts but are otherwise identical. This makes the mask consistent with the mask produced by
the Partial Store instruction (see Partial Store on page 298) on little-endian data.

A 2-bit (EDGE32cc), 4-bit (EDGE16cc), or 8-bit (EDGE8cc) pixel mask is stored in the least significant
bits of R[rd]. The mask is computed from left and right edge masks as follows:

1. The left edge mask is computed from the 3 least significant bits of R[rs1] and the right edge mask
is computed from the 3 least significant bits of R[rs2], according to TABLE 7-6.

2. If 32-bit address masking is disabled (PSTATE.am = 0) so 64-bit addressing is in use, and the most
significant 61 bits of R[rs1] are equal to the corresponding bits in R[rs2], R[rd] is set to the right
edge mask anded with the left edge mask.

3. If 32-bit address masking is enabled (PSTATE.am = 1) so 32-bit addressing is in use, and bits 31:3 of
R[rs1] match bits 31:3 of R[rs2], R[rd] is set to the right edge mask anded with the left edge mask.

4. Otherwise, R[rd] is set to the left edge mask.

The integer condition codes are set per the rules of the SUBcc instruction with the same operands (see
Subtract on page 303).

TABLE 7-6 lists edge mask specifications.

Instruction opf Operation Assembly Language Syntax † Class

EDGE8cc 0 0000 0000 Eight 8-bit edge boundary processing edge8cc regrs1, regrs2, regrd B1

EDGE8Lcc 0 0000 0010 Eight 8-bit edge boundary processing,
little-endian

edge8lcc regrs1, regrs2, regrd B1

EDGE16cc 0 0000 0100 Four 16-bit edge boundary processing edge16cc regrs1, regrs2, regrd B1

EDGE16Lcc 0 0000 0110 Four 16-bit edge boundary processing,
little-endian

edge16lcc regrs1, regrs2, regrd B1

EDGE32cc 0 0000 1000 Two 32-bit edge boundary processing edge32cc regrs1, regrs2, regrd B1

EDGE32Lcc 0 0000 1010 Two 32-bit edge boundary processing,
little-endian

edge32lcc regrs1, regrs2, regrd B1

† The original assembly language mnemonics for these instructions did not include the “cc” suffix, as appears in the names of all other
instructions that set the integer condition codes. The old, non-”cc” mnemonics are deprecated. Over time, assemblers will support
the new mnemonics for these instructions. In the meantime, some older assemblers may recognize only the mnemonics, without “cc”.

TABLE 7-6 Edge Mask Specification

Edge
Size

R[rsn]
{2:0}

Big Endian Little Endian

Left Edge Right Edge Left Edge Right Edge

8 000 1111 1111 1000 0000 1111 1111 0000 0001

8 001 0111 1111 1100 0000 1111 1110 0000 0011

8 010 0011 1111 1110 0000 1111 1100 0000 0111

8 011 0001 1111 1111 0000 1111 1000 0000 1111

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
116 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

EDGE<8|16|32>{L}cc
Exceptions None

See Also EDGE<8|16|32>[L]N on page 118

8 100 0000 1111 1111 1000 1111 0000 0001 1111

8 101 0000 0111 1111 1100 1110 0000 0011 1111

8 110 0000 0011 1111 1110 1100 0000 0111 1111

8 111 0000 0001 1111 1111 1000 0000 1111 1111

16 00x 1111 1000 1111 0001

16 01x 0111 1100 1110 0011

16 10x 0011 1110 1100 0111

16 11x 0001 1111 1000 1111

32 0xx 11 10 11 01

32 1xx 01 11 10 11

TABLE 7-6 Edge Mask Specification (Continued)

Edge
Size

R[rsn]
{2:0}

Big Endian Little Endian

Left Edge Right Edge Left Edge Right Edge
CHAPTER 7 • Instructions 117

EDGE<8|16|32>{L}N
7.14 Edge Handling Instructions (no CC)

Description EDGE8[L]N, EDGE16[L]N, and EDGE32[L]N operate identically to EDGE8[L]cc, EDGE16[L]cc, and
EDGE32[L]cc, respectively, but do not set the integer condition codes.

See Edge Handling Instructions on page 116 for details.

Exceptions None

See Also EDGE<8,16,32>[L]cc on page 116

Instruction opf Operation Assembly Language Syntax Class

EDGE8N 0 0000 0001 Eight 8-bit edge boundary processing, no CC edge8n regrs1, regrs2, regrd B1

EDGE8LN 0 0000 0011 Eight 8-bit edge boundary processing,
little-endian, no CC

edge8ln regrs1, regrs2, regrd B1

EDGE16N 0 0000 0101 Four 16-bit edge boundary processing, no CC edge16n regrs1, regrs2, regrd B1

EDGE16LN 0 0000 0111 Four 16-bit edge boundary processing,
little-endian, no CC

edge16ln regrs1, regrs2, regrd B1

EDGE32N 0 0000 1001 Two 32-bit edge boundary processing, no CC edge32n regrs1, regrs2, regrd B1

EDGE32LN 0 0000 1011 Two 32-bit edge boundary processing,
little-endian, no CC

edge32ln regrs1, regrs2, regrd B1

VIS 2

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
118 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

FABS
7.15 Floating-Point Absolute Value

Description FABS copies the source floating-point register(s) to the destination floating-point register(s), with the
sign bit cleared (set to 0).

FABSs operates on single-precision (32-bit) floating-point registers, FABSd operates on double-precision
(64-bit) floating-point register pairs, and FABSq operates on quad-precision (128-bit) floating-point
register quadruples.

These instructions clear (set to 0) both FSR.cexc and FSR.ftt. They do not round, do not modify
FSR.aexc, and do not treat floating-point NaN values differently from other floating-point values.

An attempt to execute an FABS instruction when instruction bits 18:14 are nonzero causes an
illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FABS instruction causes an fp_disabled exception.

An attempt to execute an FABSq instruction when rs2{1} ≠ 0 or rd{1} ≠ 0 causes an fp_exception_other
(FSR.ftt = invalid_fp_register) exception.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = invalid_fp_register (FABSq only))

Instruction op3 opf Operation Assembly Language Syntax Class

FABSs 11 0100 0 0000 1001 Absolute Value Single fabss fregrs2, fregrd A1

FABSd 11 0100 0 0000 1010 Absolute Value Double fabsd fregrs2, fregrd A1

FABSq 11 0100 0 0000 1011 Absolute Value Quad fabsq fregrs2, fregrd C3

Note UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FABSq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

10 op3 rs2rd —
31 141924 18 13 02530 29 4

opf
5

CHAPTER 7 • Instructions 119

FADD
7.16 Floating-Point Add

Description The floating-point add instructions add the floating-point register(s) specified by the rs1 field and the
floating-point register(s) specified by the rs2 field. The instructions then write the sum into the
floating-point register(s) specified by the rd field.

Rounding is performed as specified by FSR.rd.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FADD instruction causes an fp_disabled exception.

An attempt to execute an FADDq instruction when (rs1{1} ≠ 0) or (rs2{1} ≠ 0) or (rd{1:0} ≠ 0) causes
an fp_exception_other (FSR.ftt = invalid_fp_register) exception.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = invalid_fp_register (FADDq only))
fp_exception_other (FSR.ftt = unfinished_FPop)
fp_exception_ieee_754 (OF, UF, NX, NV)

See Also FMAf on page 137

Instruction op3 opf Operation Assembly Language Syntax Class

FADDs 11 0100 0 0100 0001 Add Single fadds fregrs1, fregrs2, fregrd A1

FADDd 11 0100 0 0100 0010 Add Double faddd fregrs1, fregrs2, fregrd A1

FADDq 11 0100 0 0100 0011 Add Quad faddq fregrs1, fregrs2, fregrd C3

Note UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FADDq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

Note An fp_exception_other with FSR.ftt = unfinished_FPop can occur
if the operation detects unusual, implementation-specific
conditions.

10 op3 rs2rd rs1 opf
31 141924 18 13 02530 29 45
120 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

FALIGNDATA
7.17 Align Data

Description FALIGNDATA concatenates the two 64-bit floating-point registers specified by rs1 and rs2 to form a
128-bit (16-byte) intermediate value. The contents of the first source operand form the more-
significant 8 bytes of the intermediate value, and the contents of the second source operand form the
less significant 8 bytes of the intermediate value. Bytes in the intermediate value are numbered from
most significant (byte 0) to least significant (byte 15). Eight bytes are extracted from the intermediate
value and stored in the 64-bit floating-point destination register specified by rd. GSR.align specifies
the number of the most significant byte to extract (and, therefore, the least significant byte extracted is
numbered GSR.align+7).

GSR.align is normally set by a previous ALIGNADDRESS instruction.

FIGURE 7-6 FALIGNDATA

A byte-aligned 64-bit load can be performed as shown below.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FALIGNDATA instruction causes an fp_disabled exception.

Exceptions fp_disabled

See Also Align Address on page 98

Instruction opf Operation Assembly Language Syntax Class

FALIGNDATA 0 0100 1000 Perform data alignment for
misaligned data

faligndata fregrs1, fregrs2, fregrd A1

alignaddr Address, Offset, Address !set GSR.align
ldd [Address], %d0
ldd [Address + 8], %d2
faligndata %d0, %d2, %d4 !use GSR.align to select bytes

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

GSR.align

63 0

byte byte

101

FD[rs1] :: FD[rs2]

127 0
FD[rs1] FD[rs2]

FD[rd]
CHAPTER 7 • Instructions 121

FBfcc
7.18 Branch on Floating-Point Condition Codes
(FBfcc)

† synonym: fbnz ‡ synonym: fbz

Description Unconditional and Fcc branches are described below:

■ Unconditional branches (FBA, FBN) — If its annul field is 0, an FBN (Branch Never) instruction
acts like a NOP. If its annul field is 1, the following (delay) instruction is annulled (not executed)
when the FBN is executed. In neither case does a transfer of control take place.

FBA (Branch Always) causes a PC-relative, delayed control transfer to the address
“PC + (4 × sign_ext(disp22))” regardless of the value of the floating-point condition code bits. If
the annul field of the branch instruction is 1, the delay instruction is annulled (not executed). If the
annul (a) bit is 0, the delay instruction is executed.

■ Fcc-conditional branches — Conditional FBfcc instructions (except FBA and FBN) evaluate
floating-point condition code zero (fcc0) according to the cond field of the instruction. Such
evaluation produces either a TRUE or FALSE result. If TRUE, the branch is taken, that is, the
instruction causes a PC-relative, delayed control transfer to the address
“PC + (4 × sign_ext(disp22))”. If FALSE, the branch is not taken.

Opcode cond Operation fcc Test Assembly Language Syntax Class

FBAD 1000 Branch Always 1 fba{,a} label A1

FBND 0000 Branch Never 0 fbn{,a} label A1

FBUD 0111 Branch on Unordered U fbu{,a} label A1

FBGD 0110 Branch on Greater G fbg{,a} label A1

FBUGD 0101 Branch on Unordered or Greater G or U fbug{,a} label A1

FBLD 0100 Branch on Less L fbl{,a} label A1

FBULD 0011 Branch on Unordered or Less L or U fbul{,a} label A1

FBLGD 0010 Branch on Less or Greater L or G fblg{,a} label A1

FBNED 0001 Branch on Not Equal L or G or U fbne†{,a} label A1

FBED 1001 Branch on Equal E fbe‡{,a} label A1

FBUED 1010 Branch on Unordered or Equal E or U fbue{,a} label A1

FBGED 1011 Branch on Greater or Equal E or G fbge{,a} label A1

FBUGED 1100 Branch on Unordered or Greater or Equal E or G or U fbuge{,a} label A1

FBLED 1101 Branch on Less or Equal E or L fble{,a} label A1

FBULED 1110 Branch on Unordered or Less or Equal E or L or U fbule{,a} label A1

FBOD 1111 Branch on Ordered E or L or G fbo{,a} label A1

Programming
Note

To set the annul (a) bit for FBfcc instructions, append “,a” to
the opcode mnemonic. For example, use “fbl,a label”. In the
preceding table, braces around “,a” signify that “,a” is
optional.

31 24 02530 29 28 22 21

cond00 a 110 disp22
122 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

FBfcc

If a conditional branch is taken, the delay instruction is always executed, regardless of the value of
the annul (a) bit. If a conditional branch is not taken and the annul bit is 1 (a = 1), the delay
instruction is annulled (not executed).

Annulment, delay instructions, and delayed control transfers are described further in Chapter 6.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FBfcc instruction causes an fp_disabled exception.

If the Trap on Control Transfer feature is implemented (impl. dep. #450-S20), PSTATE.tct = 1, and the
FBfcc instruction will cause a transfer of control (FBA or taken conditional branch), then FBfcc
generates a control_transfer_instruction exception instead of causing a control transfer. When a
control_transfer_instruction trap occurs, PC (the address of the FBfcc instruction) is stored in TPC[TL]
and the value of NPC from before the FBfcc was executed is stored in TNPC[TL]. Note that FBN never
causes a control_transfer_instruction exception.

Exceptions fp_disabled
control_transfer_instruction (impl. dep. #450-S20)

Note The annul bit has a different effect on conditional branches than
it does on unconditional branches.
CHAPTER 7 • Instructions 123

FBPfcc
7.19 Branch on Floating-Point Condition Codes with
Prediction (FBPfcc)

† synonym: fbnz ‡ synonym: fbz

Description Unconditional branches and Fcc-conditional branches are described below.

Instruction cond Operation fcc Test Assembly Language Syntax Class

FBPA 1000 Branch Always 1 fba {,a}{,pt|,pn} %fccn, label A1

FBPN 0000 Branch Never 0 fbn {,a}{,pt|,pn} %fccn, label A1

FBPU 0111 Branch on Unordered U fbu {,a}{,pt|,pn} %fccn, label A1

FBPG 0110 Branch on Greater G fbg {,a}{,pt|,pn} %fccn, label A1

FBPUG 0101 Branch on Unordered or Greater G or U fbug {,a}{,pt|,pn} %fccn, label A1

FBPL 0100 Branch on Less L fbl {,a}{,pt|,pn} %fccn, label A1

FBPUL 0011 Branch on Unordered or Less L or U fbul {,a}{,pt|,pn} %fccn, label A1

FBPLG 0010 Branch on Less or Greater L or G fblg {,a}{,pt|,pn} %fccn, label A1

FBPNE 0001 Branch on Not Equal L or G or U fbne†{,a}{,pt|,pn} %fccn, label A1

FBPE 1001 Branch on Equal E fbe‡{,a}{,pt|,pn} %fccn, label A1

FBPUE 1010 Branch on Unordered or Equal E or U fbue {,a}{,pt|,pn} %fccn, label A1

FBPGE 1011 Branch on Greater or Equal E or G fbge {,a}{,pt|,pn} %fccn, label A1

FBPUGE 1100 Branch on Unordered or Greater
or Equal

E or G or U fbuge {,a}{,pt|,pn} %fccn, label A1

FBPLE 1101 Branch on Less or Equal E or L fble {,a}{,pt|,pn} %fccn, label A1

FBPULE 1110 Branch on Unordered or Less or
Equal

E or L or U fbule {,a}{,pt|,pn} %fccn, label A1

FBPO 1111 Branch on Ordered E or L or G fbo {,a}{,pt|,pn} %fccn, label A1

cc1 cc0 Condition Code

0 0 fcc0

0 1 fcc1

1 0 fcc2

1 1 fcc3

Programming
Note

To set the annul (a) bit for FBPfcc instructions, append “,a” to the
opcode mnemonic. For example, use “fbl,a %fcc3, label”. In
the preceding table, braces signify that the “,a” is optional. To set
the branch prediction bit, append either “,pt” (for predict taken)
or “pn” (for predict not taken) to the opcode mnemonic. If neither
“,pt” nor “,pn” is specified, the assembler defaults to “,pt”. To
select the appropriate floating-point condition code, include
“%fcc0”, “%fcc1”, “%fcc2”, or “%fcc3” before the label.

31 1924 18 02530 29 28 22 21 20

00 a cond 101 cc1 p disp19cc0
124 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

FBPfcc

■ Unconditional branches (FBPA, FBPN) — If its annul field is 0, an FBPN (Floating-Point Branch

Never with Prediction) instruction acts like a NOP. If the Branch Never’s annul field is 0, the
following (delay) instruction is executed; if the annul (a) bit is 1, the following instruction is
annulled (not executed). In no case does an FBPN cause a transfer of control to take place.

FBPA (Floating-Point Branch Always with Prediction) causes an unconditional PC-relative, delayed
control transfer to the address “PC + (4 × sign_ext(disp19))”. If the annul field of the branch
instruction is 1, the delay instruction is annulled (not executed). If the annul (a) bit is 0, the delay
instruction is executed.

■ Fcc-conditional branches — Conditional FBPfcc instructions (except FBPA and FBPN) evaluate one
of the four floating-point condition codes (fcc0, fcc1, fcc2, fcc3) as selected by cc0 and cc1,
according to the cond field of the instruction, producing either a TRUE or FALSE result. If TRUE, the
branch is taken, that is, the instruction causes a PC-relative, delayed control transfer to the address
“PC + (4 × sign_ext(disp19))”. If FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed, regardless of the value of
the annul (a) bit. If a conditional branch is not taken and the annul bit is 1 (a = 1), the delay
instruction is annulled (not executed).

The predict bit (p) gives the hardware a hint about whether the branch is expected to be taken. A 1
in the p bit indicates that the branch is expected to be taken. A 0 indicates that the branch is
expected not to be taken.

Annulment, delay instructions, and delayed control transfers are described further in Chapter 6,
Instruction Set Overview.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FBPfcc instruction causes an fp_disabled exception.

If the Trap on Control Transfer feature is implemented (impl. dep. #450-S20), PSTATE.tct = 1, and the
FBPfcc instruction will cause a transfer of control (FBPA or taken conditional branch), then FBPfcc
generates a control_transfer_instruction exception instead of causing a control transfer. When a
control_transfer_instruction trap occurs, PC (the address of the FBPfcc instruction) is stored in
TPC[TL] and the value of NPC from before the FBPfcc was executed is stored in TNPC[TL]. Note that
FBPN never causes a control_transfer_instruction exception.

Exceptions fp_disabled
control_transfer_instruction (impl. dep. #450-S20)

Note The annul bit has a different effect on conditional branches than it
does on unconditional branches.
CHAPTER 7 • Instructions 125

FCMP*<16|32> (SIMD)
7.20 SIMD Signed Compare

Description Either four 16-bit signed values or two 32-bit signed values in FD[rs1] and FD[rs2] are compared. The
4-bit or 2-bit condition-code results are stored in the least significant bits of the integer register R[rd].
The least significant 16-bit or 32-bit compare result corresponds to bit zero of R[rd].

For FCMPGT{16,32}, each bit in the result is set to 1 if the corresponding signed value in FD[rs1] is
greater than the signed value in FD[rs2]. Less-than comparisons are made by swapping the operands.

For FCMPLE{16,32}, each bit in the result is set to 1 if the corresponding signed value in FD[rs1] is less
than or equal to the signed value in FD[rs2]. Greater-than-or-equal comparisons are made by
swapping the operands.

For FCMPEQ{16,32}, each bit in the result is set to 1 if the corresponding signed value in FD[rs1] is
equal to the signed value in FD[rs2].

For FCMPNE{16,32}, each bit in the result is set to 1 if the corresponding signed value in FD[rs1] is not
equal to the signed value in FD[rs2].

FIGURE 7-7 and FIGURE 7-8 illustrate 16-bit and 32-bit pixel comparison operations, respectively.

Instruction opf Operation s1 s2 d Assembly Language Syntax Class

FCMPLE16 0 0010 0000 Four 16-bit compare;
set R[rd] if src1 ≤ src2

f64 f64 i64 fcmple16 fregrs1, fregrs2, regrd B1

FCMPNE16 0 0010 0010 Four 16-bit compare;
set R[rd] if src1 ≠ src2

f64 f64 i64 fcmpne16 fregrs1, fregrs2, regrd B1

FCMPLE32 0 0010 0100 Two 32-bit compare;
set R[rd] if src1 ≤ src2

f64 f64 i64 fcmple32 fregrs1, fregrs2, regrd B1

FCMPNE32 0 0010 0110 Two 32-bit compare;
set R[rd] if src1 ≠ src2

f64 f64 i64 fcmpne32 fregrs1, fregrs2, regrd B1

FCMPGT16 0 0010 1000 Four 16-bit compare;
set R[rd] if src1 > src2

f64 f64 i64 fcmpgt16 fregrs1, fregrs2, regrd B1

FCMPEQ16 0 0010 1010 Four 16-bit compare;
set R[rd] if src1 = src2

f64 f64 i64 fcmpeq16 fregrs1, fregrs2, regrd B1

FCMPGT32 0 0010 1100 Two 32-bit compare;
set R[rd] if src1 > src2

f64 f64 i64 fcmpgt32 fregrs1, fregrs2, regrd B1

FCMPEQ32 0 0010 1110 Two 32-bit compare;
set R[rd] if src1 = src2

f64 f64 i64 fcmpeq32 fregrs1, fregrs2, regrd B1

Note Bits 63:4 of the destination register R[rd] are set to zero for 16-bit
compares. Bits 63:2 of the destination register R[rd] are set to
zero for 32-bit compares.

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
126 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

FCMP*<16|32> (SIMD)
FIGURE 7-7 Four 16-bit Signed Fixed-point SIMD Comparison Operations

FIGURE 7-8 Two 32-bit Signed Fixed-point SIMD Comparison Operation

In all comparisons, if a compare condition is not true, the corresponding bit in the result is set to 0.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute a SIMD signed compare instruction causes an fp_disabled exception.

Exception fp_disabled

See Also Floating-Point Compare on page 128
STPARTIALF on page 260

Programming
Note

The results of a SIMD signed compare operation can be used
directly by both integer operations (for example, partial stores)
and partitioned conditional moves.

63

fcmp[gt, le, eq, ne, lt, ge]16

03

63 015314748 32 16

63 015314748 32 16

4

0 . . 0

FD[rs1]

FD[rs2]

R[rd]

63 0

63 031

fcmp[gt, le, eq, ne, lt ge]32

12

32

63 03132

0 . . 0

FD[rs1]

FD[rs2]

R[rd]
CHAPTER 7 • Instructions 127

FCMP<s|d|q> / FCMPE<s|d|q>
7.21 Floating-Point Compare

Description These instructions compare F[rs1] with F[rs2] , and set the selected floating-point condition code
(fccn) as follows

The “?” in the preceding table means that the compared values are unordered. The unordered
condition occurs when one or both of the operands to the comparison is a signalling or quiet NaN

The “compare and cause exception if unordered” (FCMPEs, FCMPEd, and FCMPEq) instructions
cause an invalid (NV) exception if either operand is a NaN.

Instruction opf Operation Assembly Language Syntax Class

FCMPs 0 0101 0001 Compare Single fcmps %fccn, fregrs1, fregrs2 A1

FCMPd 0 0101 0010 Compare Double fcmpd %fccn, fregrs1, fregrs2 A1

FCMPq 0 0101 0011 Compare Quad fcmpq %fccn, fregrs1, fregrs2 C3

FCMPEs 0 0101 0101 Compare Single and Exception if
Unordered

fcmpes %fccn, fregrs1, fregrs2 A1

FCMPEd 0 0101 0110 Compare Double and Exception if
Unordered

fcmped %fccn, fregrs1, fregrs2 A1

FCMPEq 0 0101 0111 Compare Quad and Exception if
Unordered

fcmpeq %fccn, fregrs1, fregrs2 C3

cc1 cc0 Condition Code

0 0 fcc0

0 1 fcc1

1 0 fcc2

1 1 fcc3

Relation Resulting fcc value

fregrs1 = fregrs2 0

fregrs1 < fregrs2 1

fregrs1 > fregrs2 2

fregrs1 ? fregrs2 (unordered) 3

10 rs2— rs1
31 141924 18 13 02530 29 4

opf
52627

cc1 cc0 11 0101
128 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

FCMP<s|d|q> / FCMPE<s|d|q>

FCMP causes an invalid (NV) exception if either operand is a signalling NaN.

An attempt to execute an FCMP instruction when instruction bits 29:27 are nonzero causes an
illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FCMP or FCMPE instruction causes an fp_disabled exception.

An attempt to execute an FCMPq or FCMPEq instruction when (rs1{1} ≠ 0) or (rs2{1} ≠ 0) causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007.

Exceptions illegal_instruction
fp_disabled
fp_exception_ieee_754 (NV)
fp_exception_other (FSR.ftt = invalid_fp_register (FCMPq, FCMPEq only))

See Also SIMD Signed Compare on page 126

V8 Compatibility
Note

Unlike the SPARC V8 architecture, SPARC V9 and the
UltraSPARC Architecture do not require an instruction between a
floating-point compare operation and a floating-point branch
(FBfcc, FBPfcc).

SPARC V8 floating-point compare instructions are required to
have rd = 0. In SPARC V9 and the UltraSPARC Architecture, bits
26 and 25 of the instruction (rd{1:0}) specify the floating-point
condition code to be set. Legal SPARC V8 code will work on
SPARC V9 and the UltraSPARC Architecture because the zeroes
in the R[rd] field are interpreted as fcc0 and the FBfcc
instruction branches based on the value of fcc0.

Note UltraSPARC Architecture 2007 processors do not implement in
hardware the instructions that refer to quad-precision floating-
point registers. An attempt to execute FCMPq or FCMPEq
generates an illegal_instruction exception, which causes a trap,
allowing privileged software to emulate the instruction.
CHAPTER 7 • Instructions 129

FDIV<s|d|q>
7.22 Floating-Point Divide

Description The floating-point divide instructions divide the contents of the floating-point register(s) specified by
the rs1 field by the contents of the floating-point register(s) specified by the rs2 field. The instructions
then write the quotient into the floating-point register(s) specified by the rd field.

Rounding is performed as specified by FSR.rd.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FCMP or FCMPE instruction causes an fp_disabled exception.

An attempt to execute an FADDq instruction when (rs1{1} ≠ 0) or (rs2{1} ≠ 0) causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = invalid_fp_register (FDIVq only)
fp_exception_other (FSR.ftt = unfinished_FPop (FDIVs, FDIV))
fp_exception_ieee_754 (OF, UF, DZ, NV, NX)

Instruction op3 opf Operation Assembly Language Syntax Class

FDIVs 11 0100 0 0100 1101 Divide Single fdivs fregrs1, fregrs2, fregrd A1

FDIVd 11 0100 0 0100 1110 Divide Double fdivd fregrs1, fregrs2, fregrd A1

FDIVq 11 0100 0 0100 1111 Divide Quad fdivq fregrs1, fregrs2, fregrd C3

Note UltraSPARC Architecture 2007 processors do not implement in
hardware the instructions that refer to quad-precision floating-
point registers. An attempt to execute an FDIVq instruction
generates an illegal_instruction exception, allowing privileged
software to emulate the instruction.

Note For FDIVs and FDIVd, an fp_exception_other with
FSR.ftt = unfinished_FPop can occur if the divide unit detects
unusual, implementation-specific conditions.

10 op3 rs2rd rs1
31 141924 18 13 02530 29 4

opf
5

130 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

FEXPAND
7.23 FEXPAND

Description FEXPAND takes four 8-bit unsigned integers from FS[rs2], converts each integer to a 16-bit fixed-
point value, and stores the four resulting 16-bit values in a 64-bit floating-point register FD[rd].
FIGURE 7-10 illustrates the operation.

FIGURE 7-9 FEXPAND Operation

This operation is carried out as follows:

1. Left-shift each 8-bit value by 4 and zero-extend each result to a 16-bit fixed value.

2. Store the result in the destination register, FD[rd].

An attempt to execute an FEXPAND instruction when instruction bits 18:14 are nonzero causes an
illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FEXPAND instruction causes an fp_disabled exception.

Exceptions illegal_instruction
fp_disabled

See Also FPMERGE on page 160
FPACK on page 153

Instruction opf Operation s1 s2 d Assembly Language Syntax Class

FEXPAND 0 0100 1101 Four 16-bit expands — f32 f64 fexpand fregrs2, fregrd B1

Programming
Note

FEXPAND performs the inverse of the FPACK16 operation.

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opf— rs2

01516313263 4748

0151631 2324 78

5960 5152 4344 3536 2728 1920 1112 34

0000 0000 0000 0000 0000 0000 0000 0000

FS[rs2]

FD[rd]
CHAPTER 7 • Instructions 131

FiTO<s|d|q>
7.24 Convert 32-bit Integer to Floating Point

Description FiTOs, FiTOd, and FiTOq convert the 32-bit signed integer operand in floating-point register FS[rs2]
into a floating-point number in the destination format. All write their result into the floating-point
register(s) specified by rd.

The value of FSR.rd determines how rounding is performed by FiTOs.

An attempt to execute an FiTO<s|d|q> instruction when instruction bits 18:14 are nonzero causes an
illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FiTO<s|d|q> instruction causes an fp_disabled exception.

An attempt to execute an FiTOq instruction when rd{1} ≠ 0 causes an fp_exception_other
(FSR.ftt = invalid_fp_register) exception.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = invalid_fp_register (FiTOq))
fp_exception_ieee_754 (NX (FiTOs only))

Instruction op3 opf Operation s1 s2 d
Assembly Language
Syntax Class

FiTOs 11 0100 0 1100 0100 Convert 32-bit Integer to
Single

— f32 f32 fitos fregrs2, fregrd A1

FiTOd 11 0100 0 1100 1000 Convert 32-bit Integer to
Double

— f32 f64 fitod fregrs2, fregrd A1

FiTOq 11 0100 0 1100 1100 Convert 32-bit Integer to
Quad

— f32 f128 fitoq fregrs2, fregrd C3

Note UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FiTOq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

10 op3 rs2rd —
31 141924 18 13 02530 29 4

opf
5

132 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

FLUSH
7.25 Flush Instruction Memory

Description FLUSH ensures that the aligned doubleword specified by the effective address is consistent across any
local caches and, in a multiprocessor system, will eventually (impl. dep. #122-V9) become consistent
everywhere.

The SPARC V9 instruction set architecture does not guarantee consistency between instruction
memory and data memory. When software writes1 to a memory location that may be executed as an
instruction (self-modifying code2), a potential memory consistency problem arises, which is addressed
by the FLUSH instruction. Use of FLUSH after instruction memory has been modified ensures that
instruction and data memory are synchronized for the processor that issues the FLUSH instruction.

The virtual processor waits until all previous (cacheable) stores have completed before issuing a
FLUSH instruction. For the purpose of memory ordering, a FLUSH instruction behaves like a store
instruction.

In the following discussion PFLUSH refers to the virtual processor that executed the FLUSH
instruction.

FLUSH causes a synchronization within a virtual processor which ensures that instruction fetches
from the specified effective address by PFLUSH appear to execute after any loads, stores, and atomic
load-stores to that address issued by PFLUSH prior to the FLUSH. In a multiprocessor system, FLUSH
also ensures that these values will eventually become visible to the instruction fetches of all other
virtual processors in the system. With respect to MEMBAR-induced orderings, FLUSH behaves as if it
is a store operation (see Memory Barrier on page 201).

Given any store SA to address A, that precedes in memory order a FLUSH FA to address A, that in
turn precedes in memory order a store SB to address B; if any instruction IB fetched from address B
executes the instruction created by store SB, then any instruction IA that fetched from address A and
that follows IB in program order cannot execute any version of the instruction from address A that
existed prior to the store SA.

The preceeding statement defines an ordering requirement to which UltraSPARC Architecture
processors comply. By using a FLUSH instruction between two stores that modify instructions,
atomicity between the two stores is guaranteed such that any virtual processor executing the
instruction modified by the later store will never fetch and/or execute the instruction before it was
modified by the earlier store.

If i = 0, the effective address operand for the FLUSH instruction is “R[rs1] + R[rs2]”; if i = 1, it is
“R[rs1] + sign_ext (simm13)”. The three least-significant bits of the effective address are ignored;
that is, the effective address always refers to an aligned doubleword.

Instruction op3 Operation Assembly Language Syntax† Class

FLUSH 11 1011 Flush Instruction Memory flush [address] A1

† The original assembly language syntax for a FLUSH instruction (“flush address”) has been deprecated be-
cause of inconsistency with other SPARC assembly language syntax. Over time, assemblers will support the
new syntax for this instruction. In the meantime, some existing assemblers may only recognize the original syn-
tax.

1. this includes use of store instructions (executed on the same or another virtual processor) that write to instruction memory, or any
other means of writing into instruction memory (for example, DMA transfer)

2. practiced, for example, by software such as debuggers and dynamic linkers

31 24 02530 29 19 18

—10 op3 —

14 13 12 5 4

rs1 rs2i=0

10 op3 rs1 simm13i=1—
CHAPTER 7 • Instructions 133

FLUSH

See implementation-specific documentation for details on specific implementations of the FLUSH
instruction.

On an UltraSPARC Architecture processor:

■ A FLUSH instruction causes a synchronization within the virtual processor on which the FLUSH is
executed, which flushes its instruction pipeline to ensure that no instruction already fetched has
subsequently been modified in memory. Any other virtual processors on the same physical
processor are unaffected by a FLUSH.

■ Coherency between instruction and data memories may or may not be maintained by hardware.

IMPL. DEP. #409-S10: The implementation of the FLUSH instruction is implementation dependent. If
the implementation automatically maintains consistency between instruction and data memory,
(1) the FLUSH address is ignored and
(2) the FLUSH instruction cannot cause any data access exceptions, because

its effective address operand is not translated or used by the MMU.
On the other hand, if the implementation does not maintain consistency between instruction and data
memory, the FLUSH address is used to access the MMU and the FLUSH instruction can cause data
access exceptions.

■ If the implementation contains instruction prefetch buffers:

■ the instruction prefetch buffer(s) are invalidated

■ instruction prefetching is suspended, but may resume starting with the instruction immediately
following the FLUSH

Programming
Note

For portability across all SPARC V9 implementations, software
must always supply the target effective address in FLUSH
instructions.

Programming
Notes

1.Typically, FLUSH is used in self-modifying code.
The use of self-modifying code is discouraged.

2. If a program includes self-modifying code, to be portable it must
issue a FLUSH instruction for each modified doubleword of
instructions (or make a call to privileged software that has an
equivalent effect) after storing into the instruction stream.

3. The order in which memory is modified can be controlled by
means of FLUSH and MEMBAR instructions interspersed
appropriately between stores and atomic load-stores. FLUSH is
needed only between a store and a subsequent instruction fetch
from the modified location. When multiple processes may
concurrently modify live (that is, potentially executing) code, the
programmer must ensure that the order of update maintains the
program in a semantically correct form at all times.

4. The memory model guarantees in a uniprocessor that data loads
observe the results of the most recent store, even if there is no
intervening FLUSH.

5. FLUSH may be a time-consuming operation.
(see the Implementation Note below)

6. In a multiprocessor system, the effects of a FLUSH operation
will be globally visible before any subsequent store becomes
globally visible.
134 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

FLUSH
An attempt to execute a FLUSH instruction when instruction bits 29:25 are nonzero causes an
illegal_instruction exception.

An attempt to execute a FLUSH instruction when i = 0 and instruction bits 12:5 are nonzero causes an
illegal_instruction exception.

Exceptions illegal_instruction
DAE_nfo_page

7. FLUSH is designed to act on a doubleword. On some
implementations, FLUSH may trap to system software. For these
reasons, system software should provide a service routine,
callable by nonprivileged software, for flushing arbitrarily-sized
regions of memory. On some implementations, this routine
would issue a series of FLUSH instructions; on others, it might
issue a single trap to system software that would then flush the
entire region.

8. FLUSH operates using the current (implicit) context. Therefore,
a FLUSH executed in privileged mode will use the nucleus
context and will not necessarily affect instruction cache lines
containing data from a user (nonprivileged) context.

Implementation
Note

In a multiprocessor configuration, FLUSH requires all processors
that may be referencing the addressed doubleword to flush their
instruction caches, which is a potentially disruptive activity.

V9 Compatibility
Note

The effect of a FLUSH instruction as observed from the virtual
processor on which FLUSH executes is immediate. Other virtual
processors in a multiprocessor system eventually will see the
effect of the FLUSH, but the latency is implementation dependent.
CHAPTER 7 • Instructions 135

FLUSHW
7.26 Flush Register Windows

Description FLUSHW causes all active register windows except the current window to be flushed to memory at
locations determined by privileged software. FLUSHW behaves as a NOP if there are no active
windows other than the current window. At the completion of the FLUSHW instruction, the only
active register window is the current one.

FLUSHW acts as a NOP if CANSAVE = N_REG_WINDOWS – 2. Otherwise, there is more than one
active window, so FLUSHW causes a spill exception. The trap vector for the spill exception is based
on the contents of OTHERWIN and WSTATE. The spill trap handler is invoked with the CWP set to
the window to be spilled (that is, (CWP + CANSAVE + 2) mod N_REG_WINDOWS). See Register Window
Management Instructions on page 83.

An attempt to execute a FLUSHW instruction when instruction bits 29:25, 18:14, or 12:0 are nonzero
causes an illegal_instruction exception.

Exceptions illegal_instruction
spill_n_normal
spill_n_other

Instruction op3 Operation Assembly Language Syntax Class

FLUSHW 10 1011 Flush Register Windows flushw A1

Programming
Note

The FLUSHW instruction can be used by application software to
flush register windows to memory so that it can switch memory
stacks or examine register contents from previous stack frames.

Programming
Note

Typically, the spill handler saves a window on a memory stack
and returns to reexecute the FLUSHW instruction. Thus, FLUSHW
traps and reexecutes until all active windows other than the
current window have been spilled.

31 24 02530 29 19 18

—10 op3 —
14 13 12

— i=0
136 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

FMAf
7.27 Floating-Point Multiply-Add and Multiply-
Subtract (fused)

Description The fused floating-point multiply-add instructions, FMADD<s|d>, multiply the floating-point
register(s) specified by rs1 and the floating-point register(s) specified by rs2, add that product to the
register(s) specified by rs3, round the result, and write the result into the floating-point register(s)
specified by rd.

The fused floating-point multiply-subtract instructions, FMSUB<s|d>, multiply the floating-point
register(s) specified by rs1 and the floating-point register(s) specified by rs2, subtract from that
product the register(s) specified by rs3, round the result, and write the result into the floating-point
register(s) specified by rd.

The fused floating-point negative multiply-add instructions, FNMADD<s|d>, multiply the floating-
point register(s) specified by rs1 and the floating-point register(s) specified by rs2, add to the product
the register(s) specified by rs3, negate the result, round the result, and write the result into the
floating-point register(s) specified by rd.

The fused floating-point negative multiply-subtract instructions, FNMSUB<s|d>, multiply the
floating-point register(s) specified by the rs1 field and the floating-point register(s) specified by the
rs2 field, subtract from the product the register(s) specified by the rs3 field, negate the result, round
the result, and write the result into the floating-point register(s) specified by the rd field.

All of the above instructions are “fused” operations; no rounding is performed between the
multiplication operation and the subsequent addition (or subtraction). Therefore, at most one
rounding step occurs.

The negative fused multiply-add/subtract instructions (FNM*) treat NaN values as follows:

■ A source QNaN propagates with its sign bit unchanged
■ A generated (default response) QNaN result has a sign bit of zero
■ A source SNaN that is converted to a QNaN result retains the sign bit of the source SNaN

Instruction op5 Operation Assembly Language Syntax Class Added

FMADDs 00 01 Multiply-Add Single fmadds fregrs1, fregrs2, fregrs3, fregrd C3 UA 2007

FMADDd 00 10 Multiply-Add Double fmaddd fregrs1, fregrs2, fregrs3, fregrd C3 UA 2007

FMSUBs 01 01 Multiply-Subtract Single fmsubs fregrs1, fregrs2, fregrs3, fregrd C3 UA 2007

FMSUBd 01 10 Multiply-Subtract Double fmsubd fregrs1, fregrs2, fregrs3, fregrd C3 UA 2007

UA 2007

FNMSUBs 10 01 Negative Multiply-Subtract Single fnmsubs fregrs1, fregrs2, fregrs3, fregrd C3 UA 2007

FNMSUBd 10 10 Negative Multiply-Subtract Double fnmsubd fregrs1, fregrs2, fregrs3, fregrd C3 UA 2007

FNMADDs 11 01 Negative Multiply-Add Single fnmadds fregrs1, fregrs2, fregrs3, fregrd C3 UA 2007

FNMADDd 11 10 Negative Multiply-Add Double fnmaddd fregrs1, fregrs2, fregrs3, fregrd C3 UA 2007

Instruction Implementation

Multiply-Add (fused) F[rd] ← (F[rs1] x F[rs2]) + F[rs3]

Multiply-Subtract (fused) F[rd] ← (F[rs1] x F[rs2]) − F[rs3]

Negative Multiply-Add (fused) F[rd] ← − ((F[rs1] x F[rs2]) + F[rs3])

Negative Multiply-Subtract (fused) F[rd] ← − ((F[rs1] x F[rs2]) − F[rs3])

10 110111 rs2rd rs1

31 141924 18 13 02530 29 4

op5

5

rs3

9 8
CHAPTER 7 • Instructions 137

FMAf

Exceptions. If an FMAf instruction is not implemented in hardware, it generates an
illegal_instruction exception, so that privileged software can emulate the instruction.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FMAf instruction causes an fp_disabled exception.

Overflow, underflow, and inexact exception bits within FSR.cexc and FSR.aexc are updated based on
the final result of the operation and not on the intermediate result of the multiplication. The invalid
operation exception bits within FSR.cexc and FSR.aexc are updated as if the multiplication and the
addition/subtraction were performed using two individual instructions. An invalid operation
exception is detected when any of the following conditions are true:

■ A source operand (F[rs1], F[rs2], or F[rs3]) is a SNaN
■ ∞ x 0
■ ∞ − ∞
If the instruction generates an IEEE-754 exception or exceptions for which the corresponding trap
enable mask (FSR.tem) bits are set, an fp_exception_ieee_754 exception and subsequent trap is
generated.

If either the multiply or the add/subtract operation detects an unfinished_FPop condition (for
example, due to a subnormal operand or final result), the Multiply-Add/Subtract instruction
generates an fp_exception_other exception with FSR.ftt = unfinished_FPop. An fp_exception_other
exception with FSR.ftt = unfinished_FPop always takes precedence over an fp_exception_ieee_754
exception. That is, if an fp_exception_other exception occurs due to an unfinished_FPop condition,
the FSR.cexc and FSR.aexc fields remain unchanged even if a floating point IEEE 754 exception
occurs during the multiply operation (regardless whether traps are enabled, via FSR.tem, for the IEEE
exception) and the unfinished_FPop condition occurs during the subsequent add/subtract operation.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007.

Semantic Definitions

Exceptions fp_disabled
fp_exception_ieee_754 (OF, UF, NX, NV)
fp_exception_other (FSR.ftt = unfinished_FPop)

See Also FMUL on page 151
FADD on page 120
FSUB on page 161

FMADD: FNMADD:
(1) tmp ← F[rs1] x F[rs2]
(2) tmp ← tmp + F[rs3]

(3) F[rd] ← round(tmp)

(1) tmp ← F[rs1] × F[rs2]
(2) tmp ← tmp + F[rs3]
(3) tmp ← − tmp
(4) F[rd] ← round(tmp)

FMSUB: FNMSUB:
(1) tmp ← F[rs1] x F[rs2]
(2) tmp ← tmp − F[rs3]

(3) F[rd] ← round(tmp)

(1) tmp ← F[rs1] × F[rs2]
(2) tmp ← tmp − F[rs3]
(3) tmp ← − tmp
(4) F[rd] ← round(tmp)
138 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

FMOV
7.28 Floating-Point Move

Description FMOV copies the source floating-point register(s) to the destination floating-point register(s),
unaltered.

FMOVs, FMOVd, and FMOVq perform 32-bit, 64-bit, and 128-bit operations, respectively.

These instructions clear (set to 0) both FSR.cexc and FSR.ftt. They do not round, do not modify
FSR.aexc, and do not treat floating-point NaN values differently from other floating-point values.

An attempt to execute an FMOV instruction when instruction bits 18:14 are nonzero causes an
illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FMOV instruction causes an fp_disabled exception.

An attempt to execute an FMOVq instruction when rs2{1} ≠ 0 or rd{1} ≠ 0 causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007.

Exceptions illegal_instruction
fp_disabled fp_exception_other (FSR.ftt = invalid_fp_register (FMOVq only))

See Also f Register Logical Operate (2 operand) on page 164

Instruction op3 opf Operation Assembly Language Syntax Class

FMOVs 11 0100 0 0000 0001 Move (copy) Single fmovs fregrs2, fregrd A1

FMOVd 11 0100 0 0000 0010 Move (copy) Double fmovd fregrs2, fregrd A1

FMOVq 11 0100 0 0000 0011 Move (copy) Quad fmovq fregrs2, fregrd C3

Note UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FMOVq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

10 op3 rs2rd —
31 141924 18 13 02530 29 4

opf
5

CHAPTER 7 • Instructions 139

FMOVcc
7.29 Move Floating-Point Register on Condition
(FMOVcc)

Instruction opf_low Operation Assembly Language Syntax Class

FMOVSicc 00 0001 Move Floating-Point Single,
based on 32-bit integer condition codes

fmovsicc %icc, fregrs2, fregrd A1

FMOVDicc 00 0010 Move Floating-Point Double,
based on 32-bit integer condition codes

fmovdicc %icc, fregrs2, fregrd A1

FMOVQicc 00 0011 Move Floating-Point Quad,
based on 32-bit integer condition codes

fmovqicc %icc, fregrs2, fregrd C3

FMOVSxcc 00 0001 Move Floating-Point Single,
based on 64-bit integer condition codes

fmovsxcc %xcc, fregrs2, fregrd A1

FMOVDxcc 00 0010 Move Floating-Point Double,
based on 64-bit integer condition codes

fmovdxcc %xcc, fregrs2, fregrd A1

FMOVQxcc 00 0011 Move Floating-Point Quad,
based on 64-bit integer condition codes

fmovqxcc %xcc, fregrs2, fregrd C3

FMOVSfcc 00 0001 Move Floating-Point Single,
based on floating-point condition codes

fmovsfcc %fccn, fregrs2, fregrd A1

FMOVDfcc 00 0010 Move Floating-Point Double,
based on floating-point condition codes

fmovdfcc %fccn, fregrs2, fregrd A1

FMOVQfcc 00 0011 Move Floating-Point Quad,
based on floating-point condition codes

fmovqfcc %fccn, fregrs2, fregrd C3

10 rd 110101 cond opf_cc opf_low rs2—
31 1924 18 1314 11 5 4 010172530 29
140 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

FMOVcc

Encoding of the cond Field for F.P. Moves Based on Integer Condition Codes (icc or xcc)

Encoding of the cond Field for F.P. Moves Based on Floating-Point Condition Codes (fccn)

cond Operation icc / xcc Test

icc/xcc name(s) in
Assembly Language

Mnemonics

1000 Move Always 1 a

0000 Move Never 0 n

1001 Move if Not Equal not Z ne (or nz)

0001 Move if Equal Z e (or z)

1010 Move if Greater not (Z or (N xor V)) g

0010 Move if Less or Equal Z or (N xor V) le

1011 Move if Greater or Equal not (N xor V) ge

0011 Move if Less N xor V l

1100 Move if Greater Unsigned not (C or Z) gu

0100 Move if Less or Equal Unsigned (C or Z) leu

1101 Move if Carry Clear (Greater or Equal, Unsigned) not C cc (or geu)

0101 Move if Carry Set (Less than, Unsigned) C cs (or lu)

1110 Move if Positive not N pos

0110 Move if Negative N neg

1111 Move if Overflow Clear not V vc

0111 Move if Overflow Set V vs

cond Operation fccn Test
fcc name(s) in Assembly

Language Mnemonics

1000 Move Always 1 a

0000 Move Never 0 n

0111 Move if Unordered U u

0110 Move if Greater G g

0101 Move if Unordered or Greater G or U ug

0100 Move if Less L l

0011 Move if Unordered or Less L or U ul

0010 Move if Less or Greater L or G lg

0001 Move if Not Equal L or G or U ne (or nz)

1001 Move if Equal E e (or z

1010 Move if Unordered or Equal E or U ue

1011 Move if Greater or Equal E or G ge

1100 Move if Unordered or Greater or Equal E or G or U uge

1101 Move if Less or Equal E or L le

1110 Move if Unordered or Less or Equal E or L or U ule

1111 Move if Ordered E or L or G o
CHAPTER 7 • Instructions 141

FMOVcc

Encoding of opf_cc Field (also see TABLE E-10 on page 484)

Description The FMOVcc instructions copy the floating-point register(s) specified by rs2 to the floating-point
register(s) specified by rd if the condition indicated by the cond field is satisfied by the selected
floating-point condition code field in FSR. The condition code used is specified by the opf_cc field of
the instruction. If the condition is FALSE, then the destination register(s) are not changed.

These instructions read, but do not modify, any condition codes.

These instructions clear (set to 0) both FSR.cexc and FSR.ftt. They do not round, do not modify
FSR.aexc, and do not treat floating-point NaN values differently from other floating-point values.

An attempt to execute an FMOVcc instruction when instruction bit 18 is nonzero or opf_cc = 1012 or
1112 causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FMOVQicc, FMOVQxcc, or FMOVQfcc instruction causes an fp_disabled exception.

An attempt to execute an FMOVQicc, FMOVQxcc, or FMOVQfcc instruction when rs2{1} ≠ 0 or
rd{1} ≠ 0 causes an fp_exception_other (FSR.ftt = invalid_fp_register) exception.

opf_cc Instruction
Condition Code
to be Tested

1002 FMOV<s|d|q>icc icc

1102 FMOV<s|d|q>xcc xcc

0002
0012
0102
0112

FMOV<s|d|q>fcc fcc0
fcc1
fcc2
fcc3

1012
1112

(illegal_instruction exception)

Note UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FMOVQicc, FMOVQxcc, or
FMOVQfcc instruction causes an illegal_instruction exception,
allowing privileged software to emulate the instruction.
142 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

FMOVcc
Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = invalid_fp_register (FMOVQ instructions))

Programming
Note

Branches cause the performance of most implementations to
degrade significantly. Frequently, the MOVcc and FMOVcc
instructions can be used to avoid branches. For example, the
following C language segment:

double A, B, X;
if (A > B) then X = 1.03; else X = 0.0;

can be coded as

! assume A is in %f0; B is in %f2; %xx points to
! constant area

ldd [%xx+C_1.03],%f4 ! X = 1.03
fcmpd %fcc3,%f0,%f2 ! A > B
fble,a %fcc3,label
! following instructiononly executed if the
! preceding branch was taken
fsubd %f4,%f4,%f4 ! X = 0.0

label:...

This code takes four instructions including a branch.

With FMOVcc, this could be coded as

ldd [%xx+C_1.03],%f4 ! X = 1.03
fsubd %f4,%f4,%f6 ! X’ = 0.0
fcmpd %fcc3,%f0,%f2 ! A > B
fmovdle %fcc3,%f6,%f4 ! X = 0.0

This code also takes four instructions but requires no branches
and may boost performance significantly. Use MOVcc and
FMOVcc instead of branches wherever these instructions would
improve performance.
CHAPTER 7 • Instructions 143

FMOVR
7.30 Move Floating-Point Register on Integer Register
Condition (FMOVR)

Instruction rcond opf_low Operation Test Class

— 000 0 0101 Reserved — —

FMOVRsZ 001 0 0101 Move Single if Register = 0 R[rs1] = 0 A1

FMOVRsLEZ 010 0 0101 Move Single if Register ≤ 0 R[rs1] ≤ 0 A1

FMOVRsLZ 011 0 0101 Move Single if Register < 0 R[rs1] < 0 A1

— 100 0 0101 Reserved — —

FMOVRsNZ 101 0 0101 Move Single if Register ≠ 0 R[rs1] ≠ 0 A1

FMOVRsGZ 110 0 0101 Move Single if Register > 0 R[rs1] > 0 A1

FMOVRsGEZ 111 0 0101 Move Single if Register ≥ 0 R[rs1] ≥ 0 A1

— 000 0 0110 Reserved — —

FMOVRdZ 001 0 0110 Move Double if Register = 0 R[rs1] = 0 A1

FMOVRdLEZ 010 0 0110 Move Double if Register ≤ 0 R[rs1] ≤ 0 A1

FMOVRdLZ 011 0 0110 Move Double if Register < 0 R[rs1] < 0 A1

— 100 0 0110 Reserved — —

FMOVRdNZ 101 0 0110 Move Double if Register ≠ 0 R[rs1] ≠ 0 A1

FMOVRdGZ 110 0 0110 Move Double if Register > 0 R[rs1] > 0 A1

FMOVRdGEZ 111 0 0110 Move Double if Register ≥ 0 R[rs1] ≥ 0 A1

— 000 0 0111 Reserved — —

FMOVRqZ 001 0 0111 Move Quad if Register = 0 R[rs1] = 0 C3

FMOVRqLEZ 010 0 0111 Move Quad if Register ≤ 0 R[rs1] ≤ 0 C3

FMOVRqLZ 011 0 0111 Move Quad if Register < 0 R[rs1] < 0 C3

— 100 0 0111 Reserved — —

FMOVRqNZ 101 0 0111 Move Quad if Register ≠ 0 R[rs1] ≠ 0 C3

FMOVRqGZ 110 0 0111 Move Quad if Register > 0 R[rs1] > 0 C3

FMOVRqGEZ 111 0 0111 Move Quad if Register ≥ 0 R[rs1] ≥ 0 C3

Assembly Language Syntax

fmovr{s,d,q}z regrs1, fregrs2, fregrd (synonym: fmovr{s,d,q}e)

fmovr{s,d,q}lez regrs1, fregrs2, fregrd

fmovr{s,d,q}lz regrs1, fregrs2, fregrd

fmovr{s,d,q}nz regrs1, fregrs2, fregrd (synonym: fmovr{s,d,q}ne)

fmovr{s,d,q}gz regrs1, fregrs2, fregrd

fmovr{s,d,q}gez regrs1, fregrs2, fregrd

31 141924 18 13 12 9 5 4 0102530 29

10 rd — rcond opf_low rs2rs1110101
144 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

FMOVR

Description If the contents of integer register R[rs1] satisfy the condition specified in the rcond field, these

instructions copy the contents of the floating-point register(s) specified by the rs2 field to the floating-
point register(s) specified by the rd field. If the contents of R[rs1] do not satisfy the condition, the
floating-point register(s) specified by the rd field are not modified.

These instructions treat the integer register contents as a signed integer value; they do not modify any
condition codes.

These instructions clear (set to 0) both FSR.cexc and FSR.ftt. They do not round, do not modify
FSR.aexc, and do not treat floating-point NaN values differently from other floating-point values.

An attempt to execute an FMOVR instruction when instruction bit 13 is nonzero or rcond = 0002 or
1002 causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FMOVR instruction causes an fp_disabled exception.

An attempt to execute an FMOVRq instruction when rs2{1} ≠ 0 or rd{1} ≠ 0 causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.

Exceptions illegal_instruction
fp_disabled fp_exception_other (FSR.ftt = invalid_fp_register (FMOVRq instructions))

Note UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FMOVRq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

Implementation
Note

If this instruction is implemented by tagging each register value
with an N (negative) and a Z (zero) condition bit, use the
following table to determine whether rcond is TRUE:

Branch Test
FMOVRNZ not Z
FMOVRZ Z
FMOVRGEZ not N
FMOVRLZ N
FMOVRLEZ N or Z
FMOVRGZ N nor Z
CHAPTER 7 • Instructions 145

FMUL (partitioned)
7.31 Partitioned Multiply Instructions

Description The following sections describe the versions of partitioned multiplies.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an partitioned multiply instruction causes an fp_disabled exception.

Exceptions fp_disabled

Instruction opf Operation s1 s2 d Assembly Language Syntax Class

FMUL8x16 0 0011 0001 Unsigned 8-bit by signed 16-bit
partitioned product

f32 f64 f64 fmul8x16 fregrs1, fregrs2, fregrd B1

FMUL8x16AU 0 0011 0011 Unsigned 8-bit by signed 16-bit
upper α partitioned product

f32 f32 f64 fmul8x16au fregrs1, fregrs2, fregrd B1

FMUL8x16AL 0 0011 0101 Unsigned 8-bit by signed 16-bit
lower α partitioned product

f32 f32 f64 fmul8x16al fregrs1, fregrs2, fregrd B1

FMUL8SUx16 0 0011 0110 Signed upper 8-bit by signed
16-bit partitioned product

f64 f64 f64 fmul8sux16 fregrs1, fregrs2, fregrd B1

FMUL8ULx16 0 0011 0111 Unsigned lower 8-bit by signed
16-bit partitioned product

f64 f64 f64 fmul8ulx16 fregrs1, fregrs2, fregrd B1

FMULD8SUx16 0 0011 1000 Signed upper 8-bit by signed
16-bit partitioned product

f32 f32 f64 fmuld8sux16 fregrs1, fregrs2, fregrd B1

FMULD8ULx16 0 0011 1001 Unsigned lower 8-bit by signed
16-bit partitioned product

f32 f32 f64 fmuld8ulx16 fregrs1, fregrs2, fregrd B1

Programming
Note

When software emulates an 8-bit unsigned by 16-bit signed
multiply, the unsigned value must be zero-extended and the 16-bit
value sign-extended before the multiplication.

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
146 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

FMUL (partitioned)
7.31.1 FMUL8x16 Instruction
FMUL8x16 multiplies each unsigned 8-bit value (for example, a pixel component) in the 32-bit
floating-point register FS[rs1] by the corresponding (signed) 16-bit fixed-point integer in the 64-bit
floating-point register FD[rs2]. It rounds the 24-bit product (assuming binary point between bits 7 and
8) and stores the most significant 16 bits of the result into the corresponding 16-bit field in the 64-bit
floating-point destination register FD[rd]. FIGURE 7-10 illustrates the operation.

FIGURE 7-10 FMUL8x16 Operation

7.31.2 FMUL8x16AU Instruction
FMUL8x16AU is the same as FMUL8x16, except that one 16-bit fixed-point value is used as the
multiplier for all four multiplies. This multiplier is the most significant (“upper”) 16 bits of the 32-bit
register FS[rs2] (typically an α pixel component value). FIGURE 7-11 illustrates the operation.

FIGURE 7-11 FMUL8x16AU Operation

Note This instruction treats the pixel component values as fixed-point
with the binary point to the left of the most significant bit.
Typically, this operation is used with filter coefficients as the fixed-
point rs2 value and image data as the rs1 pixel value. Appropriate
scaling of the coefficient allows various fixed-point scaling to be
realized.

0151631 24 23 8 7

015163132474863

015163132474863

×MS16b ×MS16b ×MS16b ×MS16b

F[rs1]

F[rs2]

F[rd]

0151631 24 23 8 7

0151631

015163132474863

×MS16b ×MS16b ×MS16b ×MS16b

FS[rs1]

FS[rs2]

FD[rd]
CHAPTER 7 • Instructions 147

FMUL (partitioned)
7.31.3 FMUL8x16AL Instruction
FMUL8x16AL is the same as FMUL8x16AU, except that the least significant (“lower”) 16 bits of the
32-bit register FS[rs2] register are used as a multiplier. FIGURE 7-12 illustrates the operation.

FIGURE 7-12 FMUL8x16AL Operation

7.31.4 FMUL8SUx16 Instruction
FMUL8SUx16 multiplies the most significant (“upper”) 8 bits of each 16-bit signed value in the 64-bit
floating-point register FD[rs1] by the corresponding signed, 16-bit, fixed-point, signed integer in the
64-bit floating-point register FD[rs2]. It rounds the 24-bit product toward the nearest representable
value and then stores the most significant 16 bits of the result into the corresponding 16-bit field of the
64-bit floating-point destination register FD[rd]. If the product is exactly halfway between two
integers, the result is rounded toward positive infinity. FIGURE 7-13 illustrates the operation.

FIGURE 7-13 FMUL8SUx16 Operation

7.31.5 FMUL8ULx16 Instruction
FMUL8ULx16 multiplies the unsigned least significant (“lower”) 8 bits of each 16-bit value in the 64-
bit floating-point register FD[rs1] by the corresponding fixed-point signed 16-bit integer in the 64-bit
floating-point register FD[rs2]. Each 24-bit product is sign-extended to 32 bits. The most significant
(“upper”) 16 bits of the sign-extended value are rounded to nearest and then stored in the
corresponding 16-bit field of the 64-bit floating-point destination register FD[rd]. If the result is exactly
halfway between two integers, the result is rounded toward positive infinity. FIGURE 7-14 illustrates the
operation; CODE EXAMPLE 7-1 exemplifies the operation.

0151631 24 23 8 7

0151631

015163132474863

×MS16b ×MS16b ×MS16b ×MS16b

FS[rs1]

FS[rs2]

FD[rd]

015163132474863

015163132474863

015163132474863 56 55 40 39 24 23 8 7

×MS16b ×MS16b ×MS16b ×MS16b

FD[rs1]

FD[rs2]

FD[rd]
148 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

FMUL (partitioned)
FIGURE 7-14 FMUL8ULx16 Operation

7.31.6 FMULD8SUx16 Instruction
FMULD8SUx16 multiplies the most significant (“upper”) 8 bits of each 16-bit signed value in F[rs1]
by the corresponding signed 16-bit fixed-point value in F[rs2]. Each 24-bit product is shifted left by 8
bits to generate a 32-bit result, which is then stored in the 64-bit floating-point register specified by rd.
FIGURE 7-15 illustrates the operation.

FIGURE 7-15 FMULD8SUx16 Operation

CODE EXAMPLE 7-1 16-bit × 16-bit 16-bit Multiply

fmul8sux16 %f0, %f1, %f2

fmul8ulx16 %f0, %f1, %f3

fpadd16 %f2, %f3, %f4

16

× sign-extended, × sign-extended, × sign-extended, × sign-extended,

015163132474863

015163132474863 56 55 40 39 24 23 8 7

MS16b MS16b MS16b MS16b

0153132474863

MS16b

FD[rd]

FD[rs2]

FD[rs1]

0783132394063

× ×

0000000000000000

0151631

0151631 24 23 8 7

FS[rs1]

FS[rs2]

FD[rd]
CHAPTER 7 • Instructions 149

FMUL (partitioned)
7.31.7 FMULD8ULx16 Instruction
FMULD8ULx16 multiplies the unsigned least significant (“lower”) 8 bits of each 16-bit value in F[rs1]
by the corresponding 16-bit fixed-point signed integer in F[rs2]. Each 24-bit product is sign-extended
to 32 bits and stored in the corresponding half of the 64-bit floating-point register specified by rd.
FIGURE 7-16 illustrates the operation; CODE EXAMPLE 7-2 exemplifies the operation.

FIGURE 7-16 FMULD8ULx16 Operation

CODE EXAMPLE 7-2 16-bit x 16-bit 32-bit Multiply

fmuld8sux16 %f0, %f1, %f2

fmuld8ulx16 %f0, %f1, %f3

fpadd32 %f2, %f3, %f4

0151631 24 23 8 7

0313263

0151631

× sign-extended × sign-extended

FS[rs1]

FS[rs2]

FD[rd]
150 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

FMUL<s|d|q>
7.32 Floating-Point Multiply

Description The floating-point multiply instructions multiply the contents of the floating-point register(s)
specified by the rs1 field by the contents of the floating-point register(s) specified by the rs2 field. The
instructions then write the product into the floating-point register(s) specified by the rd field.

The FsMULd instruction provides the exact double-precision product of two single-precision
operands, without underflow, overflow, or rounding error. Similarly, FdMULq provides the exact
quad-precision product of two double-precision operands.

Rounding is performed as specified by FSR.rd.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute any FMUL instruction causes an fp_disabled exception.

An attempt to execute an FMULq instruction when rs1{1} ≠ 0 or rs2{1} ≠ 0 or rd{1:0} ≠ 0 causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.

An attempt to execute an FdMULq instruction when rd{1} ≠ 0 causes an fp_exception_other
(FSR.ftt = invalid_fp_register) exception.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = invalid_fp_register (FMULq and FdMULq only))
fp_exception_other (FSR.ftt = unfinished_FPop)
fp_exception_ieee_754 (any: NV; FMUL<s|d|q> only: OF, UF, NX)

See Also FMAf on page 137

Instruction op3 opf Operation Assembly Language Syntax Class

FMULs 11 0100 0 0100 1001 Multiply Single fmuls fregrs1, fregrs2, fregrd A1

FMULd 11 0100 0 0100 1010 Multiply Double fmuld fregrs1, fregrs2, fregrd A1

FMULq 11 0100 0 0100 1011 Multiply Quad fmulq fregrs1, fregrs2, fregrd C3

FsMULd 11 0100 0 0110 1001 Multiply Single to Double fsmuld fregrs1, fregrs2, fregrd A1

FdMULq 11 0100 0 0110 1110 Multiply Double to Quad fdmulq fregrs1, fregrs2, fregrd C3

Note UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FMULq or FdMULq instruction
causes an illegal_instruction exception, allowing privileged
software to emulate the instruction.

10 op3 rs2rd rs1
31 141924 18 13 02530 29 4

opf
5

CHAPTER 7 • Instructions 151

FNEG
7.33 Floating-Point Negate

Description FNEG copies the source floating-point register(s) to the destination floating-point register(s), with the
sign bit complemented.

These instructions clear (set to 0) both FSR.cexc and FSR.ftt. They do not round, do not modify
FSR.aexc, and do not treat floating-point NaN values differently from other floating-point values.

An attempt to execute an FNEG instruction when instruction bits 18:14 are nonzero causes an
illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FNEG instruction causes an fp_disabled exception.

An attempt to execute an FNEGq instruction when rs2{1} ≠ 0 or rd{1} ≠ 0 causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = invalid_fp_register (FNEGq only))

Instruction op3 opf Operation Assembly Language Syntax Class

FNEGs 11 0100 0 0000 0101 Negate Single fnegs fregrs2, fregrd A1

FNEGd 11 0100 0 0000 0110 Negate Double fnegd fregrs2, fregrd A1

FNEGq 11 0100 0 0000 0111 Negate Quad fnegq fregrs2, fregrd C3

Note UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FNEGq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

10 op3 rs2rd —
31 141924 18 13 02530 29 4

opf
5

152 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

FPACK
7.34 FPACK

Description The FPACK instructions convert multiple values in a source register to a lower-precision fixed or pixel
format and stores the resulting values in the destination register. Input values are clipped to the
dynamic range of the output format. Packing applies a scale factor from GSR.scale to allow flexible
positioning of the binary point. See the subsections on following pages for more detailed descriptions
of the operations of these instructions.

An attempt to execute an FPACK16 or FPACKFIX instruction when rs1 ≠ 0 causes an illegal_instruction
exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute any FPACK instruction causes an fp_disabled exception.

Exceptions illegal_instruction fp_disabled

See Also FEXPAND on page 131
FPMERGE on page 160

Instruction opf Operation s1 s2 d Assembly Language Syntax Class

FPACK16 0 0011 1011 Four 16-bit packs into 8
unsigned bits

— f64 f32 fpack16 fregrs2, fregrd B1

FPACK32 0 0011 1010 Two 32-bit packs into 8
unsigned bits

f64 f64 f64 fpack32 fregrs1, fregrs2, fregrd B1

FPACKFIX 0 0011 1101 Four 16-bit packs into 16
signed bits

— f64 f32 fpackfix fregrs2, fregrd B1

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
CHAPTER 7 • Instructions 153

FPACK
7.34.1 FPACK16
FPACK16 takes four 16-bit fixed values from the 64-bit floating-point register FD[rs2], scales,
truncates, and clips them into four 8-bit unsigned integers, and stores the results in the 32-bit
destination register, FS[rd]. FIGURE 7-17 illustrates the FPACK16 operation.

FIGURE 7-17 FPACK16 Operation

This operation is carried out as follows:

1. Left-shift the value from FD[rs2] by the number of bits specified in GSR.scale while maintaining
clipping information.

2. Truncate and clip to an 8-bit unsigned integer starting at the bit immediately to the left of the
implicit binary point (that is, between bits 7 and 6 for each 16-bit word). Truncation converts the
scaled value into a signed integer (that is, round toward negative infinity). If the resulting value is
negative (that is, its most significant bit is set), 0 is returned as the clipped value. If the value is
greater than 255, then 255 is delivered as the clipped value. Otherwise, the scaled value is returned
as the result.

3. Store the result in the corresponding byte in the 32-bit destination register, FS[rd].

For each 16-bit partition, the sequence of operations performed is shown in the following example
pseudo-code:
tmp ← source_operand{15:0} << GSR.scale;
// Pick off the bits from bit position 15+GSR.scale to
// bit position 7 from the shifted result
trunc_signed_value ← tmp{(15+GSR.scale):7};
If (trunc_signed_value < 0)

unsigned_8bit_result ← 0;
else if (trunc_signed_value > 255)

unsigned_8bit_result ← 255;
else

unsigned_8bit_result ← trunc_signed_value{14:7};

Note FPACK16 ignores the most significant bit of GSR.scale
(GSR.scale{4}).

0367

implicit binary pt

4 0

GSR.scale × 0100

19

723 15314763

31

0

0

15 14

48 32 16

(8 bits)

(16 bits)

00 00

FD[rs2]

FS[rd]

FS[rd]

FD[rs2]

16
154 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

FPACK
7.34.2 FPACK32
FPACK32 takes two 32-bit fixed values from the second source operand (64-bit floating-point register
FD[rs2]) and scales, truncates, and clips them into two 8-bit unsigned integers. The two 8-bit integers
are merged at the corresponding least significant byte positions of each 32-bit word in the 64-bit
floating-point register FD[rs1], left-shifted by 8 bits. The 64-bit result is stored in FD[rd]. Thus,
successive FPACK32 instructions can assemble two pixels by using three or four pairs of 32-bit fixed
values. FIGURE 7-18 illustrates the FPACK32 operation.

FIGURE 7-18 FPACK32 Operation

This operation, illustrated in FIGURE 7-18, is carried out as follows:

1. Left-shift each 32-bit value in FD[rs2] by the number of bits specified in GSR.scale, while
maintaining clipping information.

2. For each 32-bit value, truncate and clip to an 8-bit unsigned integer starting at the bit immediately
to the left of the implicit binary point (that is, between bits 23 and 22 for each 32-bit word).
Truncation is performed to convert the scaled value into a signed integer (that is, round toward
negative infinity). If the resulting value is negative (that is, the most significant bit is 1), then 0 is
returned as the clipped value. If the value is greater than 255, then 255 is delivered as the clipped
value. Otherwise, the scaled value is returned as the result.

3. Left-shift each 32-bit value from FD[rs1] by 8 bits.

4. Merge the two clipped 8-bit unsigned values into the corresponding least significant byte positions
in the left-shifted FD[rs2] value.

5. Store the result in the 64-bit destination register FD[rd].

For each 32-bit partition, the sequence of operations performed is shown in the following pseudo-
code:
tmp ← source_operand2{31:0} << GSR.scale;
// Pick off the bits from bit position 31+GSR.scale to
// bit position 23 from the shifted result
trunc_signed_value ← tmp{(31+GSR.scale):23};
if (trunc_signed_value < 0)

unsigned_8bit_value ← 0;

015163132474863

04

GSR.scale

037 2223 5

implicit binary point

0 0 0 0 0 0

0 0 1 1 0

56 55 40 39 24 23 8 7

30 6

(8 bits)

(32 bits)

FD[rs2]

FD[rs1]

FD[rd]

FD[rd]

FD[rs2]

31
CHAPTER 7 • Instructions 155

FPACK

else if (trunc_signed_value > 255)

unsigned_8bit_value ← 255;
else

unsigned_8bit_value ← trunc_signed_value{30:23};
Final_32bit_Result ← (source_operand1{31:0} << 8) |

(unsigned_8bit_value{7:0});

7.34.3 FPACKFIX
FPACKFIX takes two 32-bit fixed values from the 64-bit floating-point register FD[rs2], scales,
truncates, and clips them into two 16-bit unsigned integers, and then stores the result in the 32-bit
destination register FS[rd]. FIGURE 7-19 illustrates the FPACKFIX operation.

FIGURE 7-19 FPACKFIX Operation

This operation is carried out as follows:

1. Left-shift each 32-bit value from FD[rs2]) by the number of bits specified in GSR.scale, while
maintaining clipping information.

2. For each 32-bit value, truncate and clip to a 16-bit unsigned integer starting at the bit immediately
to the left of the implicit binary point (that is, between bits 16 and 15 for each 32-bit word).
Truncation is performed to convert the scaled value into a signed integer (that is, round toward
negative infinity). If the resulting value is less than −32768, then −32768 is returned as the clipped
value. If the value is greater than 32767, then 32767 is delivered as the clipped value. Otherwise,
the scaled value is returned as the result.

3. Store the result in the 32-bit destination register FS[rd].

For each 32-bit partition, the sequence of operations performed is shown in the following pseudo-
code:
tmp ← source_operand{31:0} << GSR.scale;
// Pick off the bits from bit position 31+GSR.scale to
// bit position 16 from the shifted result
trunc_signed_value ← tmp{(31+GSR.scale):16};
if (trunc_signed_value < -32768)

signed_16bit_result ← -32768;
else if (trunc_signed_value > 32767)

signed_16bit_result ← 32767;

0151631

3263

04

GSR.scale

037 1516 5

implicit binary point

0 0 0 0 0 0

0 0 1 1 0

31 632

(16 bits)

(32 bits)

31 0

FD[rs2]

FD[rs2]

FS[rd]

FS[rd]
156 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

FPACK

else

signed_16bit_result ← trunc_signed_value{31:16};
CHAPTER 7 • Instructions 157

FPADD
7.35 Fixed-point Partitioned Add

Description FPADD16 (FPADD32) performs four 16-bit (two 32-bit) partitioned additions between the
corresponding fixed-point values contained in the source operands (FD[rs1], FD[rs2]). The result is
placed in the destination register, FD[rd].

The 32-bit versions of these instructions (FPADD16S and FPADD32S) perform two 16-bit or one 32-bit
partitioned additions.

Any carry out from each addition is discarded and a 2’s-complement arithmetic result is produced.

FIGURE 7-20 FPADD16 Operation

FIGURE 7-21 FPADD32 Operation

Instruction opf Operation s1 s2 d Assembly Language Syntax Class

FPADD16 0 0101 0000 Four 16-bit adds f64 f64 f64 fpadd16 fregrs1, fregrs2, fregrd A1

FPADD16S 0 0101 0001 Two 16-bit adds f32 f32 f32 fpadd16s fregrs1, fregrs2, fregrd A1

FPADD32 0 0101 0010 Two 32-bit adds f64 f64 f64 fpadd32 fregrs1, fregrs2, fregrd A1

FPADD32S 0 0101 0011 One 32-bit add f32 f32 f32 fpadd32s fregrs1, fregrs2, fregrd A1

VIS 1

10 110110 rs2rd rs1

31 141924 18 13 02530 29 4

opf

5

63 0153147

+ + + +

48 32 16

63 015314748 32 16

63 015314748 32 16

FD[rs1]

FD[rs2]

FD[rd] (sum)

63 031

+

+ +

32

63 03132

63 03132

FD[rs1]

FD[rs2]

FD[rd] (sum)
158 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

FPADD
FIGURE 7-22 FPADD16S Operation

FIGURE 7-23 FPADD32S Operation

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FPADD instruction causes an fp_disabled exception.

Exceptions fp_disabled

031 15

+ +

16

031 1516

031 1516

FS[rs1]

FS[rs2]

FS[rd] (sum)

031

031

031

+

FS[rs1]

FS[rs2]

FS[rd] (sum)
CHAPTER 7 • Instructions 159

FPMERGE
7.36 FPMERGE

Description FPMERGE interleaves eight 8-bit unsigned values in FS[rs1] and FS[rs2] to produce a 64-bit value in
the destination register FD[rd]. This instruction converts from packed to planar representation when it
is applied twice in succession; for example, R1G1B1A1,R3G3B3A3 → R1R3G1G3A1A3 →
R1R2R3R4G1G2G3G4.

FPMERGE also converts from planar to packed when it is applied twice in succession; for example,
R1R2R3R4,B1B2B3B4 → R1B1R2B2R3B3R4B4 → R1G1B1A1R2G2B2A2.

FIGURE 7-24 illustrates the operation.

FIGURE 7-24 FPMERGE Operation

CODE EXAMPLE 7-3 FPMERGE

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FPMERGE instruction causes an fp_disabled exception.

Exceptions fp_disabled

See Also FPACK on page 153
FEXPAND on page 131

Instruction opf Operation s1 s2 d Assembly Language Syntax Class

FPMERGE 0 0100 1011 Two 32-bit merges f32 f32 f64 fpmerge fregrs1, fregrs2, fregrd B1

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2

015163132474863 56 55 40 39 24 23 8 7

0151631 24 23 8 7

0151631 24 23 8 7

FS[rs1]

FS[rs2]

FD[rd]

fpmerge %f0, %f2, %d4
fpmerge %f1, %f3, %d6

fpmerge %f4, %f6, %d0
fpmerge %f5, %f7, %d2

R1 G1 B1 A1 R2 G2 B2 A2
R3 G3 B3 A3 R4 G4 B4 A4

!r1 R3 G1 G3 B1 B3 A1 A3
!r2 R4 G2 G4 B2 B4 A2 A4

!r1 R2 R3 R4 G1 G2 G3 G4
!B1 B2 B3 B4 A1 A2 A3 A4

 %d0
 %d2

fpmerge %f0, %f2, %d4
fpmerge %f1, %f3, %d6
fpmerge %f4, %f6, %d0
fpmerge %f5, %f7, %d2

!r1 B1 R2 B2 R3 B3 R4 B4
!G1 A1 G2 A2 G3 A3 G4 A4
!R1 G1 B1 A1 R2 G2 B2 A2
!R3 G3 B3 A3 R4 G4 B4 A4

} packed representation

} intermediate

} planar representation

} intermediate

} packed representation
160 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

FPSUB
7.37 Fixed-point Partitioned Subtract (64-bit)

Description FPSUB16 (FPSUB32) performs four 16-bit (two 32-bit) partitioned subtractions between the
corresponding fixed-point values contained in the source operands (FD[rs1], FD[rs2]). The values in
FD[rs2] are subtracted from those in FD[rs1], and the result is placed in the destination register, FD[rd].

The 32-bit versions of these instructions (FPSUB16S and FPSUB32S) perform two 16-bit or one 32-bit
partitioned subtractions.

Any carry out from each subtraction is discarded and a 2’s-complement arithmetic result is produced.

FIGURE 7-25 FPSUB16 Operation

FIGURE 7-26 FPSUB32 Operation

Instruction opf Operation s1 s2 d Assembly Language Syntax Class

FPSUB16 0 0101 0100 Four 16-bit subtracts f64 f64 f64 fpsub16 fregrs1, fregrs2, fregrd A1

FPSUB16S 0 0101 0101 Two 16-bit subtracts f32 f32 f32 fpsub16s fregrs1, fregrs2, fregrd A1

FPSUB32 0 0101 0110 Two 32-bit subtracts f64 f64 f64 fpsub32 fregrs1, fregrs2, fregrd A1

FPSUB32S 0 0101 0111 One 32-bit subtract f32 f32 f32 fpsub32s fregrs1, fregrs2, fregrd A1

VIS 1

10 110110 rs2rd rs1

31 141924 18 13 02530 29 4

opf

5

63 0153147

– – – –

48 32 16

63 015314748 32 16

63 015314748 32 16

FD[rs1]

FD[rs2]

FD[rd]
(difference)

63 031

– –

32

63 03132

63 03132

FD[rd]
(difference)

FD[rs2]

FD[rs1]
CHAPTER 7 • Instructions 161

FPSUB
FIGURE 7-27 FPSUB16S Operation

FIGURE 7-28 FPSUB32S Operation

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FPSUB instruction causes an fp_disabled exception.

Exceptions fp_disabled

031 15

– –

16

031 1516

031 1516

FS[rs1]

FS[rs2]

FS[rd]
(difference)

031

031

031

–

FS[rs1]

FS[rs2]

FS[rd]
(difference)
162 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

F Register 1-operand Logical Ops
7.38 F Register Logical Operate (1 operand)

Description FZERO and FONE fill the 64-bit destination register, FD[rd], with all ‘0’ bits or all ‘1’ bits
(respectively).

FZEROs and FONEs fill the 32-bit destination register, FD[rd], with all ‘0’ bits or all ‘1’ bits
(respectively.

An attempt to execute an FZERO or FONE instruction when instruction bits 18:14 or bits 4:0 are
nonzero causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FZERO[s] or FONE[s] instruction causes an fp_disabled exception.

Exceptions illegal_instruction
fp_disabled

See Also F Register 2-operand Logical Operations on page 164
F Register 3-operand Logical Operations on page 165

Instruction opf Operation Assembly Language Syntax Class

FZEROd 0 0110 0000 Zero fill fzero fregrd A1

FZEROs 0 0110 0001 Zero fill, 32-bit fzeros fregrd A1

FONEd 0 0111 1110 One fill fone fregrd A1

FONEs 0 0111 1111 One fill, 32-bit fones fregrd A1

VIS 1

rd10 110110 opf— —

31 24 02530 29 19 18 14 13 5 4
CHAPTER 7 • Instructions 163

F Register 2-operand Logical Ops
7.39 F Register Logical Operate (2 operand)

Description The standard 64-bit versions of these instructions perform one of four 64-bit logical operations on the
data from the 64-bit floating-point source register FD[rs1] (or FD[rs2]) and store the result in the 64-bit
floating-point destination register FD[rd].

The 32-bit (single-precision) versions of these instructions perform 32-bit logical operations on FS[rs1]
(or FS[rs2]) and store the result in FS[rd].

An attempt to execute an FSRC1(s) or FNOT1(s) instruction when instruction bits 4:0 are nonzero
causes an illegal_instruction exception. An attempt to execute an FSRC2(s) or FNOT2(s) instruction
when instruction bits 18:14 are nonzero causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FSRC1[s], FNOT1[s], FSRC1[s], or FNOT1[s] instruction causes an fp_disabled exception.

Exceptions illegal_instruction
fp_disabled

See Also Floating-Point Move on page 139
F Register 1-operand Logical Operations on page 163
F Register 3-operand Logical Operations on page 165

Instruction opf Operation Assembly Language Syntax Class

FSRC1d 0 0111 0100 Copy FD[rs1] to FD[rd] fsrc1 fregrs1, fregrd A1

FSRC1s 0 0111 0101 Copy FS[rs1] to FS[rd], 32-bit fsrc1s fregrs1, fregrd A1

FSRC2d 0 0111 1000 Copy FD[rs2] to FD[rd] fsrc2 fregrs2, fregrd A1

FSRC2s 0 0111 1001 Copy FS[rs2] to FS[rd], 32-bit fsrc2s fregrs2, fregrd A1

FNOT1d 0 0110 1010 Negate (1’s complement) FD[rs1] fnot1 fregrs1, fregrd A1

FNOT1s 0 0110 1011 Negate (1’s complement) FS[rs1], 32-bit fnot1s fregrs1, fregrd A1

FNOT2d 0 0110 0110 Negate (1’s complement) FD[rs2] fnot2 fregrs2, fregrd A1

FNOT2s 0 0110 0111 Negate (1’s complement) FS[rs2], 32-bit fnot2s fregrs2, fregrd A1

Programming
Note

FSRC1s (FSRC1) functions similarly to FMOVs (FMOVd), except
that FSRC1s (FSRC1) does not modify the FSR register while
FMOVs (FMOVd) update some fields of FSR (see Floating-Point
Move on page 139). Programmers are encouraged to use FMOVs
(FMOVd) instead of FSRC1s (FSRC1) whenever practical.

VIS 1

rd10 110110 opfrs1 —

rd10 110110 opf— rs2

31 24 02530 29 19 18 14 13 5 4
164 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

F Register 3-operand Logical Ops
7.40 F Register Logical Operate (3 operand)

Description The standard 64-bit versions of these instructions perform one of ten 64-bit logical operations between
the 64-bit floating-point registers FD[rs1] and FD[rs2]. The result is stored in the 64-bit floating-point
destination register FD[rd].

The 32-bit (single-precision) versions of these instructions perform 32-bit logical operations between
FS[rs1] and FS[rs2], storing the result in FS[rd].

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute any 3-operand F Register Logical Operate instruction causes an fp_disabled exception.

Exceptions fp_disabled

See Also F Register 1-operand Logical Operations on page 163
F Register 2-operand Logical Operations on page 164

Instruction opf Operation Assembly Language Syntax Class

FORd 0 0111 1100 Logical or for fregrs1, fregrs2, fregrd A1
FORs 0 0111 1101 Logical or, 32-bit fors fregrs1, fregrs2, fregrd A1
FNORd 0 0110 0010 Logical nor fnor fregrs1, fregrs2, fregrd A1
FNORs 0 0110 0011 Logical nor, 32-bit fnors fregrs1, fregrs2, fregrd A1
FANDd 0 0111 0000 Logical and fand fregrs1, fregrs2, fregrd A1
FANDs 0 0111 0001 Logical and, 32-bit fands fregrs1, fregrs2, fregrd A1
FNANDd 0 0110 1110 Logical nand fnand fregrs1, fregrs2, fregrd A1
FNANDs 0 0110 1111 Logical nand, 32-bit fnands fregrs1, fregrs2, fregrd A1
FXORd 0 0110 1100 Logical xor fxor fregrs1, fregrs2, fregrd A1
FXORs 0 0110 1101 Logical xor, 32-bit fxors fregrs1, fregrs2, fregrd A1
FXNORd 0 0111 0010 Logical xnor fxnor fregrs1, fregrs2, fregrd A1
FXNORs 0 0111 0011 Logical xnor, 32-bit fxnors fregrs1, fregrs2, fregrd A1
FORNOT1d 0 0111 1010 (not FD[rs1]) or FD[rs2] fornot1 fregrs1, fregrs2, fregrd A1
FORNOT1s 0 0111 1011 (not FS[rs1]) or FS[rs2], 32-bit fornot1s fregrs1, fregrs2, fregrd A1
FORNOT2d 0 0111 0110 FD[rs1] or (not FD[rs2]) fornot2 fregrs1, fregrs2, fregrd A1
FORNOT2s 0 0111 0111 FS[rs1] or (not FS[rs2]), 32-bit fornot2s fregrs1, fregrs2, fregrd A1
FANDNOT1d 0 0110 1000 (not FD[rs1]) and FD[rs2] fandnot1 fregrs1, fregrs2, fregrd A1
FANDNOT1s 0 0110 1001 (not FS[rs1]) and FS[rs2], 32-bit fandnot1s fregrs1, fregrs2, fregrd A1
FANDNOT2d 0 0110 0100 FD[rs1] and (not FD[rs2]) fandnot2 fregrs1, fregrs2, fregrd A1
FANDNOT2s 0 0110 0101 FS[rs1] and (not FS[rs2]), 32-bit fandnot2s fregrs1, fregrs2, fregrd A1

VIS 1

rd10 110110 opfrs1 rs2

31 24 02530 29 19 18 14 13 5 4
CHAPTER 7 • Instructions 165

FSQRT<s|d|q> Instructions
7.41 Floating-Point Square Root

Description These SPARC V9 instructions generate the square root of the floating-point operand in the floating-
point register(s) specified by the rs2 field and place the result in the destination floating-point
register(s) specified by the rd field. Rounding is performed as specified by FSR.rd.

An attempt to execute an FSQRT instruction when instruction bits 18:14 are nonzero causes an
illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FSQRT instruction causes an fp_disabled exception.

An attempt to execute an FSQRTq instruction when rs2{1} ≠ 0 or rd{1} ≠ 0 causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.

An fp_exception_other (with FSR.ftt = unfinished_FPop) can occur if the operand to the square root is
positive and subnormal. See FSR_floating-point_trap_type (ftt) on page 55 for additional details.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = invalid_fp_register (FSQRTq only))
fp_exception_other (FSR.ftt = unfinished_FPop)
fp_exception_ieee_754 (IEEE_754_exception (NV, NX))

Instruction op3 opf Operation Assembly Language Syntax Class

FSQRTs 11 0100 0 0010 1001 Square Root Single fsqrts fregrs2, fregrd A1

FSQRTd 11 0100 0 0010 1010 Square Root Double fsqrtd fregrs2, fregrd A1

FSQRTq 11 0100 0 0010 1011 Square Root Quad fsqrtq fregrs2, fregrd C3

Note UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FSQRTq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

10 op3 rs2rd —
31 141924 18 13 02530 29 4

opf
5

166 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

F<s|d|q>TOi
7.42 Convert Floating-Point to Integer

Description FsTOx, FdTOx, and FqTOx convert the floating-point operand in the floating-point register(s)
specified by rs2 to a 64-bit integer in the floating-point register FD[rd].

FsTOi, FdTOi, and FqTOi convert the floating-point operand in the floating-point register(s) specified
by rs2 to a 32-bit integer in the floating-point register FS[rd].

The result is always rounded toward zero; that is, the rounding direction (rd) field of the FSR register
is ignored.

An attempt to execute an F<s|d|q>TO<i|x> instruction when instruction bits 18:14 are nonzero
causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an F<s|d|q>TO<i|x> instruction causes an fp_disabled exception.

An attempt to execute an FqTOi or FqTOx instruction when rs2{1} ≠ 0 causes an fp_exception_other
(FSR.ftt = invalid_fp_register) exception.

If the floating-point operand’s value is too large to be converted to an integer of the specified size or
is a NaN or infinity, then an fp_exception_ieee_754 “invalid” exception occurs. The value written into
the floating-point register(s) specified by rd in these cases is as defined in Integer Overflow Definition on
page 293.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = invalid_fp_register (FqTOx and FqTOi only))
fp_exception_other (FSR.ftt = unfinished_FPop)
fp_exception_ieee_754 (NV, NX)

Instruction opf Operation s1 s2 d Assembly Language Syntax Class

FsTOx 0 1000 0001 Convert Single to 64-bit Integer — f32 f64 fstox fregrs2, fregrd A1

FdTOx 0 1000 0010 Convert Double to 64-bit Integer — f64 f64 fdtox fregrs2, fregrd A1

FqTOx 0 1000 0011 Convert Quad to 64-bit Integer — f128 f64 fqtox fregrs2, fregrd C3

FsTOi 0 1101 0001 Convert Single to 32-bit Integer — f32 f32 fstoi fregrs2, fregrd A1

FdTOi 0 1101 0010 Convert Double to 32-bit Integer — f64 f32 fdtoi fregrs2, fregrd A1

FqTOi 0 1101 0011 Convert Quad to 32-bit Integer — f128 f32 fqtoi fregrs2, fregrd C3

Note UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FqTOx or FqTOi instruction
causes an illegal_instruction exception, allowing privileged
software to emulate the instruction.

10 op3 = 11 0100 rs2rd — opf
31 141924 18 13 02530 29 45
CHAPTER 7 • Instructions 167

F<s|d|q>TO<s|d|q>
7.43 Convert Between Floating-Point Formats

Description These instructions convert the floating-point operand in the floating-point register(s) specified by rs2
to a floating-point number in the destination format. They write the result into the floating-point
register(s) specified by rd.

The value of FSR.rd determines how rounding is performed by these instructions.

An attempt to execute an F<s|d|q>TO<s|d|q> instruction when instruction bits 18:14 are nonzero
causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an F<s|d|q>TO<s|d|q> instruction causes an fp_disabled exception.

An attempt to execute an FsTOq or FdTOq instruction when rd{1} ≠ 0 causes an fp_exception_other
(FSR.ftt = invalid_fp_register) exception. An attempt to execute an FqTOs orFqTOd instruction when
rs2{1} ≠ 0 causes an fp_exception_other (FSR.ftt = invalid_fp_register) exception.

FqTOd, FqTOs, and FdTOs (the “narrowing” conversion instructions) can cause
fp_exception_ieee_754 OF, UF, and NX exceptions. FdTOq, FsTOq, and FsTOd (the “widening”
conversion instructions) cannot.

Any of these six instructions can trigger an fp_exception_ieee_754 NV exception if the source
operand is a signalling NaN.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = invalid_fp_register (FsTOq, FqTOs, FdTOq,

and FqTOd only))
fp_exception_other (FSR.ftt = unfinished_FPop)

Instruction op3 opf Operation s1 s2 d Assembly Language Syntax Class

FsTOd 11 0100 0 1100 1001 Convert Single to Double — f32 f64 fstod fregrs2, fregrd A1

FsTOq 11 0100 0 1100 1101 Convert Single to Quad — f32 f128 fstoq fregrs2, fregrd C3

FdTOs 11 0100 0 1100 0110 Convert Double to Single — f64 f32 fdtos fregrs2, fregrd A1

FdTOq 11 0100 0 1100 1110 Convert Double to Quad — f64 f128 fdtoq fregrs2, fregrd C3

FqTOs 11 0100 0 1100 0111 Convert Quad to Single — f128 f32 fqtos fregrs2, fregrd C3

FqTOd 11 0100 0 1100 1011 Convert Quad to Double — f128 f64 fqtod fregrs2, fregrd C3

Note UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FsTOq, FdTOq, FqTOs, or
FqTOd instruction causes an illegal_instruction exception, allowing
privileged software to emulate the instruction.

Note For FdTOs and FsTOd, an fp_exception_other with
FSR.ftt = unfinished_FPop can occur if implementation-dependent
conditions are detected during the conversion operation.

10 op3 rs2rd — opf
31 141924 18 13 02530 29 45
168 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

F<s|d|q>TO<s|d|q>

fp_exception_ieee_754 (NV)
fp_exception_ieee_754 (OF, UF, NX (FqTOd, FqTOs, and FdTOs))
CHAPTER 7 • Instructions 169

FSUB
7.44 Floating-Point Subtract

Description The floating-point subtract instructions subtract the floating-point register(s) specified by the rs2 field
from the floating-point register(s) specified by the rs1 field. The instructions then write the difference
into the floating-point register(s) specified by the rd field.

Rounding is performed as specified by FSR.rd.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FSUB instruction causes an fp_disabled exception.

An attempt to execute an FSUBq instruction when (rs1{1} ≠ 0) or (rs2{1} ≠ 0) or (rd{1:0} ≠ 0) causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = invalid_fp_register (FSUBq only))
fp_exception_other (FSR.ftt = unfinished_FPop)
fp_exception_ieee_754 (OF, UF, NX, NV)

See Also FMAf on page 137

Instruction op3 opf Operation Assembly Language Syntax Class

FSUBs 11 0100 0 0100 0101 Subtract Single fsubs fregrs1, fregrs2, fregrd A1

FSUBd 11 0100 0 0100 0110 Subtract Double fsubd fregrs1, fregrs2, fregrd A1

FSUBq 11 0100 0 0100 0111 Subtract Quad fsubq fregrs1, fregrs2, fregrd C3

Note UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FSUBq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

Note An fp_exception_other with FSR.ftt = unfinished_FPop can occur
if the operation detects unusual, implementation-specific
conditions (for FSUBs or FSUBd).

10 op3 rs2rd rs1 opf
31 141924 18 13 02530 29 45
170 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

FxTO(<s|d|q>
7.45 Convert 64-bit Integer to Floating Point

Description FxTOs, FxTOd, and FxTOq convert the 64-bit signed integer operand in the floating-point register
FD[rs2] into a floating-point number in the destination format.

All write their result into the floating-point register(s) specified by rd.

The value of FSR.rd determines how rounding is performed by FxTOs and FxTOd.

An attempt to execute an FxTO<s|d|q> instruction when instruction bits 18:14 are nonzero causes an
illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FxTO<s|d|q> instruction causes an fp_disabled exception.

An attempt to execute an FxTOq instruction when rd{1} ≠ 0 causes an fp_exception_other
(FSR.ftt = invalid_fp_register) exception.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = invalid_fp_register (FxTOq))
fp_exception_ieee_754 (NX (FxTOs and FxTOd only))

Instruction op3 opf Operation s1 s2 d
Assembly Language
Syntax Class

FxTOs 11 0100 0 1000 0100 Convert 64-bit Integer to
Single

— i64 f32 fxtos fregrs2, fregrd A1

FxTOd 11 0100 0 1000 1000 Convert 64-bit Integer to
Double

— i64 f64 fxtod fregrs2, fregrd A1

FxTOq 11 0100 0 1000 1100 Convert 64-bit Integer to
Quad

— i64 f128 fxtoq fregrs2, fregrd C3

Note UltraSPARC Architecture 2007 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FxTOq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

10 op3 rs2rd —

31 141924 18 13 02530 29 4

opf

5

CHAPTER 7 • Instructions 171

ILLTRAP
7.46 Illegal Instruction Trap

Description The ILLTRAP instruction causes an illegal_instruction exception. The const22 value in the instruction
is ignored by the virtual processor; specifically, this field is not reserved by the architecture for any
future use.

An attempt to execute an ILLTRAP instruction when reserved instruction bits 29:25 are nonzero (also)
causes an illegal_instruction exception. However, software should not rely on this behavior, because a
future version of the architecture may use nonzero values of bits 29:25 to encode other functions.

Exceptions illegal_instruction

Instruction op op2 Operation Assembly Language Syntax Class

ILLTRAP 00 000 illegal_instruction trap illtrap const22 A1

V9 Compatibility
Note

Except for its name, this instruction is identical to the SPARC V8
UNIMP instruction.

00 000 const22—

31 2124 02530 29 22
172 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

INVALW
7.47 Mark Register Window Sets as “Invalid”

Description The INVALW instruction marks all register window sets as “invalid”; specifically, it atomically
performs the following operations:

CANSAVE ← (N_REG_WINDOWS − 2)
CANRESTORE ← 0
OTHERWIN ← 0

An attempt to execute an INVALW instruction when instruction bits 18:0 are nonzero causes an
illegal_instruction exception.

An attempt to execute an INVALW instruction in nonprivileged mode (PSTATE.priv = 0) causes a
privileged_opcode exception.

Exceptions illegal_instruction
privileged_opcode

See Also ALLCLEAN on page 99
NORMALW on page 213
OTHERW on page 215
RESTORED on page 232
SAVED on page 239

Instruction Operation Assembly Language Syntax Class

INVALWP Mark all register window sets as “invalid” invalw A1

Programming
Notes

INVALW marks all windows as invalid; after executing INVALW,
N_REG_WINDOWS-2 SAVEs can be performed without generating a
spill trap.

31 1924 18 02530 29

10 fcn = 0 0101 11 0001 —
CHAPTER 7 • Instructions 173

JMPL
7.48 Jump and Link

Description The JMPL instruction causes a register-indirect delayed control transfer to the address given by
“R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if i = 1.

The JMPL instruction copies the PC, which contains the address of the JMPL instruction, into register
R[rd].

An attempt to execute a JMPL instruction when i = 0 and instruction bits 12:5 are nonzero causes an
illegal_instruction exception.

If either of the low-order two bits of the jump address is nonzero, a mem_address_not_aligned
exception occurs.

If the Trap on Control Transfer feature is implemented (impl. dep. #450-S20) and PSTATE.tct = 1, then
JMPL generates a control_transfer_instruction exception instead of causing a control transfer. When a
control_transfer_instruction trap occurs, PC (the address of the JMPL instruction) is stored in TPC[TL]
and the value of NPC from before the JMPL was executed is stored in TNPC[TL].

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address are masked out
(set to 0) before being sent to the memory system or being written into R[rd] (or, if a
control_transfer_instruction trap occurs, into TPC[TL]). (closed impl. dep. #125-V9-Cs10)

Exceptions illegal_instruction
mem_address_not_aligned
control_transfer_instruction (impl. dep. #450-S20)

See Also CALL on page 111
Bicc on page 104
BPCC on page 109

Instruction op3 Operation Assembly Language Syntax Class

JMPL 11 1000 Jump and Link jmpl address, regrd A1

Programming
Notes

A JMPL instruction with rd = 15 functions as a register-indirect
call using the standard link register.

JMPL with rd = 0 can be used to return from a subroutine. The
typical return address is “r[31] + 8” if a nonleaf routine (one that
uses the SAVE instruction) is entered by a CALL instruction, or
“R[15] + 8” if a leaf routine (one that does not use the SAVE
instruction) is entered by a CALL instruction or by a JMPL
instruction with rd = 15.

31 24 02530 29 19 18

rd10 op3

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

—

174 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

LD
7.49 Load Integer

† synonym: ld

Description The load integer instructions copy a byte, a halfword, a word, or an extended word from memory. All
copy the fetched value into R[rd]. A fetched byte, halfword, or word is right-justified in the
destination register R[rd]; it is either sign-extended or zero-filled on the left, depending on whether
the opcode specifies a signed or unsigned operation, respectively.

Load integer instructions access memory using the implicit ASI (see page 76). The effective address is
“R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if i = 1.

A successful load (notably, load extended) instruction operates atomically.

An attempt to execute a load integer instruction when i = 0 and instruction bits 12:5 are nonzero
causes an illegal_instruction exception.

If the effective address is not halfword-aligned, an attempt to execute an LDUH or LDSH causes a
mem_address_not_aligned exception. If the effective address is not word-aligned, an attempt to
execute an LDUW or LDSW instruction causes a mem_address_not_aligned exception. If the effective
address is not doubleword-aligned, an attempt to execute an LDX instruction causes a
mem_address_not_aligned exception.

A load integer twin word (LDTW) instruction exists, but is deprecated; see Load Integer Twin Word on
page 192 for details.

Exceptions illegal_instruction
mem_address_not_aligned (all except LDSB, LDUB)
VA_watchpoint
DAE_privilege_violation
DAE_nfo_page

Instruction op3 Operation Assembly Language Syntax Class

LDSB 00 1001 Load Signed Byte ldsb [address], regrd A1

LDSH 00 1010 Load Signed Halfword ldsh [address], regrd A1

LDSW 00 1000 Load Signed Word ldsw [address], regrd A1

LDUB 00 0001 Load Unsigned Byte ldub [address], regrd A1

LDUH 00 0010 Load Unsigned Halfword lduh [address], regrd A1

LDUW 00 0000 Load Unsigned Word lduw† [address], regrd A1

LDX 00 1011 Load Extended Word ldx [address], regrd A1

V8 Compatibility
Note

The SPARC V8 LD instruction was renamed LDUW in the SPARC
V9 architecture. The LDSW instruction was new in the SPARC V9
architecture.

rd11 op3 rs1 simm13i=1

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 i=0 — rs2
CHAPTER 7 • Instructions 175

LDA
7.50 Load Integer from Alternate Space

† synonym: lda

Description The load integer from alternate space instructions copy a byte, a halfword, a word, or an extended
word from memory. All copy the fetched value into R[rd]. A fetched byte, halfword, or word is right-
justified in the destination register R[rd]; it is either sign-extended or zero-filled on the left, depending
on whether the opcode specifies a signed or unsigned operation, respectively.

The load integer from alternate space instructions contain the address space identifier (ASI) to be used
for the load in the imm_asi field if i = 0, or in the ASI register if i = 1. The access is privileged if bit 7
of the ASI is 0; otherwise, it is not privileged. The effective address for these instructions is
“R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if i = 1.

A successful load (notably, load extended) instruction operates atomically.

A load integer twin word from alternate space (LDTWA) instruction exists, but is deprecated; see Load
Integer Twin Word from Alternate Space on page 194 for details.

If the effective address is not halfword-aligned, an attempt to execute an LDUHA or LDSHA
instruction causes a mem_address_not_aligned exception. If the effective address is not word-aligned,
an attempt to execute an LDUWA or LDSWA instruction causes a mem_address_not_aligned
exception. If the effective address is not doubleword-aligned, an attempt to execute an LDXA
instruction causes a mem_address_not_aligned exception.

In nonprivileged mode (PSTATE.priv = 0), if bit 7 of the ASI is 0, these instructions cause a
privileged_action exception. In privileged mode (PSTATE.priv = 1), if the ASI is in the range 3016 to
7F16, these instructions cause a privileged_action exception.

Instruction op3 Operation Assembly Language Syntax Class

LDSBAPASI 01 1001 Load Signed Byte from Alternate
Space

ldsba
ldsba

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

A1

LDSHAPASI 01 1010 Load Signed Halfword from Alternate
Space

ldsha
ldsha

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

A1

LDSWAPASI 01 1000 Load Signed Word from Alternate
Space

ldswa
ldswa

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

A1

LDUBAPASI 01 0001 Load Unsigned Byte from Alternate
Space

lduba
lduba

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

A1

LDUHAPASI 01 0010 Load Unsigned Halfword from
Alternate Space

lduha
lduha

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

A1

LDUWAPASI 01 0000 Load Unsigned Word from Alternate
Space

lduwa†
lduwa

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

A1

LDXAPASI 01 1011 Load Extended Word from Alternate
Space

ldxa
ldxa

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

A1

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 i=1 simm13
176 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

LDA

LDSBA, LDSHA, LDSWA, LDUBA, LDUHA, and LDUWA can be used with any of the following
ASIs, subject to the privilege mode rules described for the privileged_action exception above. Use of
any other ASI with these instructions causes a DAE_invalid_asi exception.

LDXA can be used with any ASI (including, but not limited to, the above list), unless it either (a)
violates the privilege mode rules described for the privileged_action exception above or (b) is used
with any of the following ASIs, which causes a DAE_invalid_asi exception.

Exceptions mem_address_not_aligned (all except LDSBA and LDUBA)
privileged_action
VA_watchpoint
DAE_invalid_asi
DAE_privilege_violation
DAE_nfo_page
DAE_side_effect_page

See Also LD on page 175
STA on page 248

ASIs valid for LDSBA, LDSHA, LDSWA, LDUBA, LDUHA, and LDUWA

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_REAL_IO ASI_REAL_IO_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

ASI_PRIMARY_NO_FAULT ASI_PRIMARY_NO_FAULT_LITTLE

ASI_SECONDARY_NO_FAULT ASI_SECONDARY_NO_FAULT_LITTLE

ASIs invalid for LDXA (cause DAE_invalid_asi exception)

2216 (ASI_TWINX_AIUP) 2A16 (ASI_TWINX_AIUP_L)

2316 (ASI_TWINX_AIUS) 2B16 (ASI_TWINX_AIUS_L)

2616 (ASI_TWINX_REAL) 2E16 (ASI_TWINX_REAL_L)

2716 (ASI_TWINX_N) 2F16 (ASI_TWINX_NL)

ASI_BLOCK_AS_IF_USER_PRIMARY ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE

ASI_BLOCK_AS_IF_USER_SECONDARY ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE

ASI_PST8_PRIMARY ASI_PST8_PRIMARY_LITTLE

ASI_PST8_SECONDARY ASI_PST8_SECONDARY_LITTLE

ASI_PST16_PRIMARY ASI_PST16_PRIMARY_LITTLE

ASI_PST16_SECONDARY ASI_PST16_SECONDARY_LITTLE

ASI_PST32_PRIMARY ASI_PST32_PRIMARY_LITTLE

ASI_PST32_SECONDARY ASI_PST32_SECONDARY_LITTLE

ASI_FL8_PRIMARY ASI_FL8_PRIMARY_LITTLE

ASI_FL8_SECONDARY ASI_FL8_SECONDARY_LITTLE

ASI_FL16_PRIMARY ASI_FL16_PRIMARY_LITTLE

ASI_FL16_SECONDARY ASI_FL16_SECONDARY_LITTLE

ASI_BLOCK_COMMIT_PRIMARY ASI_BLOCK_COMMIT_SECONDARY

E216 (ASI_TWINX_P) EA16 (ASI_TWINX_PL)

E316 (ASI_TWINX_S) EB16 (ASI_TWINX_SL)

ASI_BLOCK_PRIMARY ASI_BLOCK_PRIMARY_LITTLE

ASI_BLOCK_SECONDARY ASI_BLOCK_SECONDARY_LITTLE
CHAPTER 7 • Instructions 177

LDBLOCKF
7.51 Block Load

Description A block load (LDBLOCKF) instruction uses one of several special block-transfer ASIs. Block transfer
ASIs allow block loads to be performed accessing the same address space as normal loads. Little-
endian ASIs (those with an ‘L’ suffix) access data in little-endian format; otherwise, the access is
assumed to be big-endian. Byte swapping is performed separately for each of the eight 64-bit (double-
precision) F registers used by the instruction.

A block load instruction loads 64 bytes of data from a 64-byte aligned memory area into the eight
double-precision floating-point registers specified by rd. The lowest-addressed eight bytes in memory
are loaded into the lowest-numbered 64-bit (double-precision) destination F register.

A block load only guarantees atomicity for each 64-bit (8-byte) portion of the 64 bytes it accesses.

The block load instruction is intended to support fast block-copy operations.

The LDBLOCKF instructions are deprecated and should not be used in new
software. A sequence of LDX instructions should be used instead.

The LDBLOCKF instruction is intended to be a processor-specific instruction,
which may or may not be implemented in future UltraSPARC Architecture
implementations. Therefore, it should only be used in platform-specific
dynamically-linked libraries or in software created by a runtime code generator
that is aware of the specific virtual processor implementation on which it is
executing.

Instruc-tion
ASI
Value Operation Assembly Language Syntax Class

LDBLOCKFD 1616 64-byte block load from primary address
space, user privilege

ldda
ldda

[regaddr] #ASI_BLK_AIUP, fregrd
[reg_plus_imm] %asi, fregrd

D2

LDBLOCKFD 1716 64-byte block load from secondary
address space, user privilege

ldda
ldda

[regaddr] #ASI_BLK_AIUS, fregrd
[reg_plus_imm] %asi, fregrd

D2

LDBLOCKFD 1E16 64-byte block load from primary address
space, little-endian, user privilege

ldda
ldda

[regaddr] #ASI_BLK_AIUPL, fregrd
[reg_plus_imm] %asi, fregrd

D2

LDBLOCKFD 1F16 64-byte block load from secondary
address space, little-endian, user privilege

ldda
ldda

[regaddr] #ASI_BLK_AIUSL, fregrd
[reg_plus_imm] %asi, fregrd

D2

LDBLOCKFD F016 64-byte block load from primary address
space

ldda
ldda

[regaddr] #ASI_BLK_P, fregrd
[reg_plus_imm] %asi, fregrd

D2

LDBLOCKFD F116 64-byte block load from secondary
address space

ldda
ldda

[regaddr] #ASI_BLK_S, fregrd
[reg_plus_imm] %asi, fregrd

D2

LDBLOCKFD F816 64-byte block load from primary address
space, little-endian

ldda
ldda

[regaddr] #ASI_BLK_PL, fregrd
[reg_plus_imm] %asi, fregrd

D2

LDBLOCKFD F916 64-byte block load from secondary
address space, little-endian

ldda
ldda

[regaddr] #ASI_BLK_SL, fregrd
[reg_plus_imm] %asi, fregrd

D2

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd11 110011 simm_13rs1 I=1

rd11 110011 imm_asirs1 rs2I=0
178 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

LDBLOCKF
IMPL. DEP. #410-S10: The following aspects of the behavior of block load (LDBLOCKF) instructions
are implementation dependent:
■ What memory ordering model is used by LDBLOCKF (LDBLOCKF is not required to follow TSO

memory ordering)
■ Whether LDBLOCKF follows memory ordering with respect to stores (including block stores),

including whether the virtual processor detects read-after-write and write-after-read hazards to
overlapping addresses

■ Whether LDBLOCKF appears to execute out of order, or follow LoadLoad ordering (with respect to
older loads, younger loads, and other LDBLOCKFs)

■ Whether LDBLOCKF follows register-dependency interlocks, as do ordinary load instructions
■ Whether VA_watchpoint exceptions are recognized on accesses to all 64 bytes of a LDBLOCKF (the

recommended behavior), or only on the first eight bytes
■ Whether the MMU ignores the side-effect bit (TTE.e) for LDBLOCKF accesses

For further restrictions on the behavior of the block load instruction, see implementation-specific
processor documentation.

Exceptions. An illegal_instruction exception occurs if LDBLOCKF’s floating-point destination
registers are not aligned on an eight-double-precision register boundary.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an LDBLOCKF instruction causes an fp_disabled exception.

If the least significant 6 bits of the effective memory address in an LDBLOCKF instruction are
nonzero, a mem_address_not_aligned exception occurs.

In nonprivileged mode (PSTATE.priv = 0), if bit 7 of the ASI is 0 (ASIs 1616, 1716, 1E16, and 1F16),
LDBLOCKF causes a privileged_action exception.

An access caused by LDBLOCKF may trigger a VA_watchpoint exception (impl. dep. #410-S10).

An attempted access by an LDBLOCKF instruction to noncacheable memory causes an a
DAE_nc_page exception.

Programming
Note

LDBLOCKF is intended to be a processor-specific instruction
(see the warning at the top of page 178). If LDBLOCKF must be
used in software intended to be portable across current and
previous processor implementations, then it must be coded to
work in the face of any implementation variation that is
permitted by implementation dependency #410-S10, described
below.

Programming
Note

If ordering with respect to earlier stores is important (for
example, a block load that overlaps a previous store) and read-
after-write hazards are not detected, there must be a MEMBAR
#StoreLoad instruction between earlier stores and a block
load.

If ordering with respect to later stores is important, there must
be a MEMBAR #LoadStore instruction between a block load
and subsequent stores.

If LoadLoad ordering with respect to older or younger loads or
other block load instructions is important and is not provided
by an implementation, an intervening MEMBAR #LoadLoad is
required.

Implementation
Note

In all UltraSPARC Architecture implementations, the MMU
ignores the side-effect bit (TTE.e) for LDBLOCKF accesses (impl.
dep. #410-S10).
CHAPTER 7 • Instructions 179

LDBLOCKF
Exceptions illegal_instruction
fp_disabled
mem_address_not_aligned
privileged_action
VA_watchpoint (impl. dep. #410-S10)
DAE_privilege_violation
DAE_nc_page
DAE_nfo_page (attempted access to Non-Faulting-Only page of memory)

See Also STBLOCKF on page 250

Implementation
Note

LDBLOCKF shares an opcode with LDDFA and LDSHORTF; it
is distinguished by the ASI used.
180 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

LDF / LDDF / LDQF
7.52 Load Floating-Point Register

‡ Encoded floating-point register value, as described on page 51.

Description The load single floating-point instruction (LDF) copies a word from memory into 32-bit floating-point
destination register FS [rd].

The load doubleword floating-point instruction (LDDF) copies a word-aligned doubleword from
memory into a 64-bit floating-point destination register, FD [rd]. The unit of atomicity for LDDF is 4
bytes (one word).

The load quad floating-point instruction (LDQF) copies a word-aligned quadword from memory into
a 128-bit floating-point destination register, FQ [rd]. The unit of atomicity for LDQF is 4 bytes (one
word).

These load floating-point instructions access memory using the implicit ASI (see page 76).

If i = 0, the effective address for these instructions is “R[rs1] + R[rs2]” and if i = 0, the effective address
is “R[rs1] + sign_ext(simm13)”.

Exceptions. An attempt to execute an LDF, LDDF, or LDQF instruction when i = 0 and instruction
bits 12:5 are nonzero causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an LDF, LDDF, or LDQF instruction causes an fp_disabled exception.

If the effective address is not word-aligned, an attempt to execute an LDF instruction causes a
mem_address_not_aligned exception.

LDDF requires only word alignment. However, if the effective address is word-aligned but not
doubleword-aligned, an attempt to execute an LDDF instruction causes an
LDDF_mem_address_not_aligned exception. In this case, trap handler software must emulate the
LDDF instruction and return (impl. dep. #109-V9-Cs10(a)).

LDQF requires only word alignment. However, if the effective address is word-aligned but not
quadword-aligned, an attempt to execute an LDQF instruction causes an
LDQF_mem_address_not_aligned exception. In this case, trap handler software must emulate the
LDQF instruction and return (impl. dep. #111-V9-Cs10(a)).

Instruction op3 rd Operation Assembly Language Syntax Class

LDF 10 0000 0–31 Load Floating-Point Register ld [address], fregrd A1

LDDF 10 0011 ‡ Load Double Floating-Point Register ldd [address], fregrd A1

LDQF 10 0010 ‡ Load Quad Floating-Point Register ldq [address], fregrd C3

Programming
Note

Some compilers issued sequences of single-precision loads for
SPARC V8 processor targets when the compiler could not
determine whether doubleword or quadword operands were
properly aligned. For SPARC V9 processors, since emulation of
misaligned loads is expected to be fast, compilers should issue
sets of single-precision loads only when they can determine that
doubleword or quadword operands are not properly aligned.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
CHAPTER 7 • Instructions 181

LDF / LDDF / LDQF

An attempt to execute an LDQF instruction when rd{1} ≠ 0 causes an fp_exception_other
(FSR.ftt = invalid_fp_register) exception.

Destination Register(s) when Exception Occurs. If a load floating-point instruction generates an
exception that causes a precise trap, the destination floating-point register(s) remain unchanged.

IMPL. DEP. #44-V8-Cs10(a)(1): If a load floating-point instruction generates an exception that causes
a non-precise trap, the contents of the destination floating-point register(s) remain unchanged or are
undefined.

Exceptions illegal_instruction
fp_disabled
LDDF_mem_address_not_aligned
LDQF_mem_address_not_aligned (not used in UltraSPARC Architecture 2007)
mem_address_not_aligned
fp_exception_other (FSR.ftt = invalid_fp_register (LDQF only))
VA_watchpoint
DAE_privilege_violation
DAE_nfo_page

See Also Load Floating-Point from Alternate Space on page 183
Load Floating-Point State Register (Lower) on page 186
Store Floating-Point on page 253

Implementation
Note

Since UltraSPARC Architecture 2007 processors do not implement
in hardware instructions (including LDQF) that refer to quad-
precision floating-point registers, the
LDQF_mem_address_not_aligned and fp_exception_other (with
FSR.ftt = invalid_fp_register) exceptions do not occur in
hardware. However, their effects must be emulated by software
when the instruction causes an illegal_instruction exception and
subsequent trap.
182 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

LDFA / LDDFA / LDQFA
7.53 Load Floating-Point from Alternate Space

‡ Encoded floating-point register value, as described in Floating-Point Register Number Encoding on page 51.

Description The load single floating-point from alternate space instruction (LDFA) copies a word from memory
into 32-bit floating-point destination register FS [rd].

The load double floating-point from alternate space instruction (LDDFA) copies a word-aligned
doubleword from memory into a 64-bit floating-point destination register, FD [rd]. The unit of
atomicity for LDDFA is 4 bytes (one word).

The load quad floating-point from alternate space instruction (LDQFA) copies a word-aligned
quadword from memory into a 128-bit floating-point destination register, FQ [rd]. The unit of
atomicity for LDQFA is 4 bytes (one word).

If i = 0, these instructions contain the address space identifier (ASI) to be used for the load in the
imm_asi field and the effective address for the instruction is “R[rs1] + R[rs2]”. If i = 1, the ASI to be
used is contained in the ASI register and the effective address for the instruction is
“R[rs1] + sign_ext(simm13)”.

Exceptions. If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an LDFA, LDDFA, or LDQFA instruction causes an fp_disabled exception.

LDFA causes a mem_address_not_aligned exception if the effective memory address is not word-
aligned.

LDDFA requires only word alignment. However, if the effective address is word-aligned but not
doubleword-aligned, LDDFA causes an LDDF_mem_address_not_aligned exception. In this case, trap
handler software must emulate the LDDFA instruction and return (impl. dep. #109-V9-Cs10(b)).

LDQFA requires only word alignment. However, if the effective address is word-aligned but not
quadword-aligned, LDQFA causes an LDQF_mem_address_not_aligned exception. In this case, trap
handler software must emulate the LDQFA instruction and return (impl. dep. #111-V9-Cs10(b)).

Instruction op3 rd Operation Assembly Language Syntax Class

LDFAPASI 11 0000 0–31 Load Floating-Point Register
from Alternate Space

lda
lda

[regaddr] imm_asi, fregrd
[reg_plus_imm] %asi, fregrd

A1

LDDFAPASI 11 0011 ‡ Load Double Floating-Point
Register from Alternate Space

ldda
ldda

[regaddr] imm_asi, fregrd
[reg_plus_imm] %asi, fregrd

A1

LDQFAPASI 11 0010 ‡ Load Quad Floating-Point
Register from Alternate Space

ldqa
ldqa

[regaddr] imm_asi, fregrd
[reg_plus_imm] %asi, fregrd

C3

V9 Compatibility
Note

LDFA, LDDFA, and LDQFA cause a privileged_action exception if
PSTATE.priv = 0 and bit 7 of the ASI is 0.

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 i=1 simm13
CHAPTER 7 • Instructions 183

LDFA / LDDFA / LDQFA

An attempt to execute an LDQFA instruction when rd{1} ≠ 0 causes an fp_exception_other (with
FSR.ftt = invalid_fp_register) exception.

In nonprivileged mode (PSTATE.priv = 0), if bit 7 of the ASI is 0, this instruction causes a
privileged_action exception. In privileged mode (PSTATE.priv = 1), if the ASI is in the range 3016 to
7F16, this instruction causes a privileged_action exception.

LDFA and LDQFA can be used with any of the following ASIs, subject to the privilege mode rules
described for the privileged_action exception above. Use of any other ASI with these instructions
causes a DAE_invalid_asi exception.

LDDFA can be used with any of the following ASIs, subject to the privilege mode rules described for
the privileged_action exception above. Use of any other ASI with the LDDFA instruction causes a
DAE_invalid_asi exception.

Behavior with Block-Store-with-Commit ASIs. ASIs E016 and E116 are only defined for use in
Block Store with Commit operations (see page 250). Neither ASI E016 nor E116 should be used with
LDDFA; however, if it is used, the LDDFA behaves as follows:

Implementation
Note

Since UltraSPARC Architecture 2007 processors do not implement
in hardware instructions (including LDQFA) that refer to quad-
precision floating-point registers, the
LDQF_mem_address_not_aligned and fp_exception_other (with
FSR.ftt = invalid_fp_register) exceptions do not occur in
hardware. However, their effects must be emulated by software
when the instruction causes an illegal_instruction exception and
subsequent trap.

Programming
Note

Some compilers issued sequences of single-precision loads for
SPARC V8 processor targets when the compiler could not
determine whether doubleword or quadword operands were
properly aligned. For SPARC V9 processors, since emulation of
misaligned loads is expected to be fast, compilers should issue
sets of single-precision loads only when they can determine that
doubleword or quadword operands are not properly aligned.

ASIs valid for LDFA and LDQFA

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_REAL_IO ASI_REAL_IO_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

ASI_PRIMARY_NO_FAULT ASI_PRIMARY_NO_FAULT_LITTLE

ASI_SECONDARY_NO_FAULT ASI_SECONDARY_NO_FAULT_LITTLE

ASIs valid for LDDFA

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_REAL_IO ASI_REAL_IO_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

ASI_PRIMARY_NO_FAULT ASI_PRIMARY_NO_FAULT_LITTLE

ASI_SECONDARY_NO_FAULT ASI_SECONDARY_NO_FAULT_LITTLE
184 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

LDFA / LDDFA / LDQFA

1. If an LDDFA opcode is used with an ASI of E016 or E116 and a destination register number rd is

specified which is not a multiple of 8 (“misaligned” rd), an UltraSPARC Architecture 2007 virtual
processor generates an illegal_instruction exception (impl. dep. #255-U3-Cs10).

2. IMPL. DEP. #256-U3: If an LDDFA opcode is used with an ASI of E016 or E116 and a memory
address is specified with less than 64-byte alignment, the virtual processor generates an exception.
It is implementation dependent whether the exception generated is DAE_invalid_asi,
mem_address_not_aligned, or LDDF_mem_address_not_aligned.

3. If both rd and the memory address are correctly aligned, a DAE_invalid_asi exception occurs.

Behavior with Partial Store ASIs. ASIs C016–C516 and C816–CD16 are only defined for use in
Partial Store operations (see page 260). None of them should be used with LDDFA; however, if any of
those ASIs is used with LDDFA, the LDDFA behaves as follows:

1. IMPL. DEP. #257-U3: If an LDDFA opcode is used with an ASI of C016–C516 or C816–CD16 (Partial
Store ASIs, which are an illegal combination with LDDFA) and a memory address is specified with
less than 8-byte alignment, the virtual processor generates an exception. It is implementation
dependent whether the generated exception is a DAE_invalid_asi, mem_address_not_aligned, or
LDDF_mem_address_not_aligned exception.

2. If the memory address is correctly aligned, the virtual processor generates a DAE_invalid_asi.

Destination Register(s) when Exception Occurs. If a load floating-point alternate instruction
generates an exception that causes a precise trap, the destination floating-point register(s) remain
unchanged.

IMPL. DEP. #44-V8-Cs10(b): If a load floating-point alternate instruction generates an exception that
causes a non-precise trap, it is implementation dependent whether the contents of the destination
floating-point register(s) are undefined or are guaranteed to remain unchanged.

Exceptions illegal_instruction
fp_disabled
LDDF_mem_address_not_aligned
LDQF_mem_address_not_aligned (not generated in UltraSPARC Architecture 2007)
mem_address_not_aligned
fp_exception_other (FSR.ftt = invalid_fp_register (LDQFA only))
privileged_action
VA_watchpoint
DAE_invalid_asi
DAE_privilege_violation
DAE_nfo_page
DAE_side_effect_page

See Also Load Floating-Point Register on page 181
Block Load on page 178
Store Short Floating-Point on page 263
Store Floating-Point into Alternate Space on page 255

Implementation
Note

LDDFA shares an opcode with the LDBLOCKF and LDSHORTF
instructions; it is distinguished by the ASI used.
CHAPTER 7 • Instructions 185

LDFSR (Deprecated)
7.54 Load Floating-Point State Register (Lower)

Description The Load Floating-point State Register (Lower) instruction (LDFSR) waits for all FPop instructions
that have not finished execution to complete and then loads a word from memory into the less
significant 32 bits of the FSR. The more-significant 32 bits of FSR are unaffected by LDFSR. LDFSR
does not alter the ver, ftt, qne, reserved, or unimplemented (for example, ns) fields of FSR (see
page 42).

LDFSR accesses memory using the implicit ASI (see page 76).

An attempt to execute an LDFSR instruction when i = 0 and instruction bits 12:5 are nonzero causes an
illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an LDFSR instruction causes an fp_disabled exception.

LDFSR causes a mem_address_not_aligned exception if the effective memory address is not word-
aligned.

Exceptions illegal_instruction
fp_disabled
mem_address_not_aligned
VA_watchpoint

The LDFSR instruction is deprecated and should not be used in new software.
The LDXFSR instruction should be used instead.

Opcode op3 rd Operation Assembly Language Syntax Class

LDFSRD 10 0001 0 Load Floating-Point State Register (Lower) ld [address], %fsr D2

10 0001 1-31 (see page 199)

Programming
Note

For future compatibility, software should only issue an LDFSR
instruction with a zero value (or a value previously read from
the same field) in any reserved field of FSR.

V8 Compatibility
Note

The SPARC V9 architecture supports two different instructions
to load the FSR: the (deprecated) SPARC V8 LDFSR instruction
is defined to load only the less-significant 32 bits of the FSR,
whereas LDXFSR allows SPARC V9 programs to load all 64 bits
of the FSR.

Implementation
Note

LDFSR shares an opcode with the LDXFSR instruction (and
possibly with other implementation-dependent instructions);
they are differentiated by the instruction rd field. An attempt to
execute the op = 112, op3 = 10 00012 opcode with an invalid rd
value causes an illegal_instruction exception.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
186 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

LDFSR (Deprecated)

DAE_privilege_violation
DAE_nfo_page

See Also Load Floating-Point Register on page 181
Load Floating-Point State Register on page 199
Store Floating-Point on page 253
CHAPTER 7 • Instructions 187

LDSHORTF
7.55 Short Floating-Point Load

Description Short floating-point load instructions allow an 8- or 16-bit value to be loaded from memory into a 64-
bit floating-point register.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an LDSHORTF instruction causes an fp_disabled exception.

An 8-bit load places the loaded value in the least significant byte of FD[rd] and zeroes in the most-
significant three bytes of FD[rd]. An 8-bit LDSHORTF can be performed from an arbitrary byte
address.

A 16-bit load places the loaded value in the least significant halfword of FD[rd] and zeroes in the
more-significant halfword of FD[rd]. A 16-bit LDSHORTF from an address that is not halfword-
aligned (an odd address) causes a mem_address_not_aligned exception.

Little-endian ASIs transfer data in little-endian format from memory; otherwise, memory is assumed
to be in big-endian byte order.

Exceptions fp_disabled
mem_address_not_aligned
VA_watchpoint

Instruction
ASI

Value Operation Assembly Language Syntax Class

LDSHORTF D016 8-bit load from primary address space ldda
ldda

[regaddr] #ASI_FL8_P, fregrd
[reg_plus_imm] %asi, fregrd

B1

LDSHORTF D116 8-bit load from secondary address
space

ldda
ldda

[regaddr] #ASI_FL8_S, fregrd
[reg_plus_imm] %asi, fregrd

B1

LDSHORTF D816 8-bit load from primary address space,
little-endian

ldda
ldda

[regaddr] #ASI_FL8_PL, fregrd
[reg_plus_imm] %asi, fregrd

B1

LDSHORTF D916 8-bit load from secondary address space,
little-endian

ldda
ldda

[regaddr] #ASI_FL8_SL, fregrd
[reg_plus_imm] %asi, fregrd

B1

LDSHORTF D216 16-bit load from primary address space ldda
ldda

[regaddr] #ASI_FL16_P, fregrd
[reg_plus_imm] %asi, fregrd

B1

LDSHORTF D316 16-bit load from secondary address
space

ldda
ldda

[regaddr] #ASI_FL16_S, fregrd
[reg_plus_imm] %asi, fregrd

B1

LDSHORTF DA16 16-bit load from primary address space,
little-endian

ldda
ldda

[regaddr] #ASI_FL16_PL, fregrd
[reg_plus_imm] %asi, fregrd

B1

LDSHORTF DB16 16-bit load from secondary address
space, little-endian

ldda
ldda

[regaddr] #ASI_FL16_SL, fregrd
[reg_plus_imm] %asi, fregrd

B1

Programming
Note

LDSHORTF is typically used with the FALIGNDATA instruction
(see Align Address on page 98) to assemble or store 64 bits from
noncontiguous components.

Implementation
Note

LDSHORTF shares an opcode with the LDBLOCKF and LDDFA
instructions; it is distinguished by the ASI used.

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd11 110011 simm_13rs1 i=1

rd11 110011 imm_asirs1 rs2i=0
188 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

LDSHORTF

DAE_privilege_violation
DAE_nfo_page
CHAPTER 7 • Instructions 189

LDSTUB
7.56 Load-Store Unsigned Byte

Description The load-store unsigned byte instruction copies a byte from memory into R[rd], then rewrites the
addressed byte in memory to all 1’s. The fetched byte is right-justified in the destination register R[rd]
and zero-filled on the left.

The operation is performed atomically, that is, without allowing intervening interrupts or deferred
traps. In a multiprocessor system, two or more virtual processors executing LDSTUB, LDSTUBA,
CASA, CASXA, SWAP, or SWAPA instructions addressing all or parts of the same doubleword
simultaneously are guaranteed to execute them in an undefined, but serial, order.

LDSTUB accesses memory using the implicit ASI (see page 76). The effective address for this
instruction is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if i = 1.

The coherence and atomicity of memory operations between virtual processors and I/O DMA
memory accesses are implementation dependent (impl. dep. #120-V9).

An attempt to execute an LDSTUB instruction when i = 0 and instruction bits 12:5 are nonzero causes
an illegal_instruction exception.

Exceptions illegal_instruction
VA_watchpoint
DAE_privilege_violation
DAE_nc_page
DAE_nfo_page

Instruction op3 Operation Assembly Language Syntax Class

LDSTUB 00 1101 Load-Store Unsigned Byte ldstub [address], regrd A1

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2

25
190 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

LDSTUBA
7.57 Load-Store Unsigned Byte to Alternate Space

Description The load-store unsigned byte into alternate space instruction copies a byte from memory into R[rd],
then rewrites the addressed byte in memory to all 1’s. The fetched byte is right-justified in the
destination register R[rd] and zero-filled on the left.

The operation is performed atomically, that is, without allowing intervening interrupts or deferred
traps. In a multiprocessor system, two or more virtual processors executing LDSTUB, LDSTUBA,
CASA, CASXA, SWAP, or SWAPA instructions addressing all or parts of the same doubleword
simultaneously are guaranteed to execute them in an undefined, but serial, order.

If i = 0, LDSTUBA contains the address space identifier (ASI) to be used for the load in the imm_asi
field. If i = 1, the ASI is found in the ASI register. In nonprivileged mode (PSTATE.priv = 0), if bit 7 of
the ASI is 0, this instruction causes a privileged_action exception. In privileged mode
(PSTATE.priv = 1), if the ASI is in the range 3016 to 7F16, this instruction causes a privileged_action
exception.

LDSTUBA can be used with any of the following ASIs, subject to the privilege mode rules described
for the privileged_action exception above. Use of any other ASI with this instruction causes a
DAE_invalid_asi exception.

Exceptions privileged_action
VA_watchpoint
DAE_invalid_asi
DAE_privilege_violation
DAE_nc_page
DAE_nfo_page

Instruction op3 Operation Assembly Language Syntax Class

LDSTUBAPASI 01 1101 Load-Store Unsigned Byte into
Alternate Space

ldstuba
ldstuba

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

A1

ASIs valid for LDSTUBA

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 i=1 simm13
CHAPTER 7 • Instructions 191

LDTW (Deprecated)
7.58 Load Integer Twin Word

Description The load integer twin word instruction (LDTW) copies two words (with doubleword alignment) from
memory into a pair of R registers. The word at the effective memory address is copied into the least
significant 32 bits of the even-numbered R register. The word at the effective memory address + 4 is
copied into the least significant 32 bits of the following odd-numbered R register. The most significant
32 bits of both the even-numbered and odd-numbered R registers are zero-filled.

Load integer twin word instructions access memory using the implicit ASI (see page 76). If i = 0, the
effective address for these instructions is “R[rs1] + R[rs2]” and if i = 0, the effective address is
“R[rs1] + sign_ext(simm13)”.

With respect to little endian memory, an LDTW instruction behaves as if it comprises two 32-bit loads,
each of which is byte-swapped independently before being written into its respective destination
register.

IMPL. DEP. #107-V9a: It is implementation dependent whether LDTW is implemented in hardware. If
not, an attempt to execute an LDTW instruction will cause an unimplemented_LDTW exception.

The least significant bit of the rd field in an LDTW instruction is unused and should always be set to
0 by software. An attempt to execute an LDTW instruction that refers to a misaligned (odd-numbered)
destination register causes an illegal_instruction exception.

An attempt to execute an LDTW instruction when i = 0 and instruction bits 12:5 are nonzero causes an
illegal_instruction exception.

If the effective address is not doubleword-aligned, an attempt to execute an LDTW instruction causes
a mem_address_not_aligned exception.

The LDTW instruction is deprecated and should not be used in new software. It
is provided only for compatibility with previous versions of the architecture.The
LDX instruction should be used instead.

Instruction op3 Operation Assembly Language Syntax † Class

LDTWD 00 0011 Load Integer Twin Word ldtw [address], regrd D2

† The original assembly language syntax for this instruction used an “ldd” instruction mnemonic, which is now
deprecated. Over time, assemblers will support the new “ldtw” mnemonic for this instruction. In the mean-
time, some existing assemblers may only recognize the original “ldd” mnemonic.

Note Execution of an LDTW instruction with rd = 0 modifies only
R[1].

Programming
Note

LDTW is provided for compatibility with existing SPARC V8
software. It may execute slowly on SPARC V9 machines because
of data path and register-access difficulties.

SPARC V9
Compatibility

Note

LDTW was (inaccurately) named LDD in the SPARC V8 and
SPARC V9 specifications. It does not load a doubleword; it
loads two words (into two registers), and has been renamed
accordingly.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
192 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

LDTW (Deprecated)

A successful LDTW instruction operates atomically.

Exceptions unimplemented_LDTW (not used in UltraSPARC Architecture 2007)
illegal_instruction
mem_address_not_aligned
VA_watchpoint
DAE_privilege_violation
DAE_nfo_page

See Also LDW/LDX on page 175
STTW on page 265
CHAPTER 7 • Instructions 193

LDTWA (Deprecated)
7.59 Load Integer Twin Word from Alternate Space

Description The load integer twin word from alternate space instruction (LDTWA) copies two 32-bit words from
memory (with doubleword memory alignment) into a pair of R registers. The word at the effective
memory address is copied into the least significant 32 bits of the even-numbered R register. The word
at the effective memory address + 4 is copied into the least significant 32 bits of the following odd-
numbered R register. The most significant 32 bits of both the even-numbered and odd-numbered R
registers are zero-filled.

If i = 0, the LDTWA instruction contains the address space identifier (ASI) to be used for the load in its
imm_asi field and the effective address for the instruction is “R[rs1] + R[rs2]”. If i = 1, the ASI to be
used is contained in the ASI register and the effective address for the instruction is
“R[rs1] + sign_ext(simm13)”.

With respect to little endian memory, an LDTWA instruction behaves as if it is composed of two 32-bit
loads, each of which is byte-swapped independently before being written into its respective
destination register.

IMPL. DEP. #107-V9b: It is implementation dependent whether LDTWA is implemented in hardware.
If not, an attempt to execute an LDTWA instruction will cause an unimplemented_LDTW exception so
that it can be emulated.

The LDTWA instruction is deprecated and should not be used in new software.
The LDXA instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class

LDTWAD, PASI 01 0011 Load Integer Twin Word from Alternate
Space

ldtwa
ldtwa

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

D2, Y3‡

† The original assembly language syntax for this instruction used an “ldda” instruction mnemonic, which is now deprecated. Over time,
assemblers will support the new “ldtwa” mnemonic for this instruction. In the meantime, some assemblers may only recognize the
original “ldda” mnemonic.

 ‡ Y3 for restricted ASIs (0016-7F16); D2 for unrestricted ASIs (8016-FF16)

Note Execution of an LDTWA instruction with rd = 0 modifies only
R[1].

Programming
Note

LDTWA is provided for compatibility with existing SPARC V8
software. It may execute slowly on SPARC V9 machines because
of data path and register-access difficulties.

If LDTWA is emulated in software, an LDXA instruction
instruction should be used for the memory access in the
emulation code in order to preserve atomicity.

SPARC V9
Compatibility

Note

LDTWA was (inaccurately) named LDDA in the SPARC V8 and
SPARC V9 specifications.

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 i=1 simm13
194 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

LDTWA (Deprecated)

The least significant bit of the rd field in an LDTWA instruction is unused and should always be set to
0 by software. An attempt to execute an LDTWA instruction that refers to a misaligned (odd-
numbered) destination register causes an illegal_instruction exception.

If the effective address is not doubleword-aligned, an attempt to execute an LDTWA instruction
causes a mem_address_not_aligned exception.

A successful LDTWA instruction operates atomically.

LDTWA causes a mem_address_not_aligned exception if the address is not doubleword-aligned.

In nonprivileged mode (PSTATE.priv = 0), if bit 7 of the ASI is 0, these instructions cause a
privileged_action exception. In privileged mode (PSTATE.priv = 1), if the ASI is in the range 3016 to
7F16, these instructions cause a privileged_action exception.

LDTWA can be used with any of the following ASIs, subject to the privilege mode rules described for
the privileged_action exception above. Use of any other ASI with this instruction causes a
DAE_invalid_asi exception (impl. dep. #300-U4-Cs10).

Exceptions unimplemented_LDTW (not used in UltraSPARC Architecture 2007)
illegal_instruction
mem_address_not_aligned
privileged_action
VA_watchpoint

ASIs valid for LDTWA

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_REAL_IO ASI_REAL_IO_LITTLE

2216‡ (ASI_TWINX_AIUP) 2A16‡ (ASI_TWINX_AIUP_L)

2316‡ (ASI_TWINX_AIUS) 2B16‡ (ASI_TWINX_AIUS_L)

2616‡ (ASI_TWINX_REAL) 2E16‡ (ASI_TWINX_REAL_L)

2716‡ (ASI_TWINX_N) 2F16‡ (ASI_TWINX_NL)

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

ASI_PRIMARY_NO_FAULT ASI_PRIMARY_NO_FAULT_LITTLE

ASI_SECONDARY_NO_FAULT ASI_SECONDARY_NO_FAULT_LITTLE

E216‡ (ASI_TWINX_P) EA16‡ (ASI_TWINX_PL)

E316‡ (ASI_TWINX_S) EB16‡ (ASI_TWINX_SL)

‡ If this ASI is used with the opcode for LDTWA and i = 0, the LDTXA
instruction is executed instead of LDTWA. For behavior of LDTXA,
see Load Integer Twin Extended Word from Alternate Space on page 197.
If this ASI is used with the opcode for LDTWA and i = 1, a DAE_invalid_asi
exception occurs.

Programming
Note

Nontranslating ASIs (see page 321) should only be accessed
using LDXA (not LDTWA) instructions. If an LDTWA
referencing a nontranslating ASI is executed, per the above
table, it generates a DAE_invalid_asi exception (impl. dep. #300-
U4-Cs10).

Implementation
Note

The deprecated instruction LDTWA shares an opcode with
LDTXA. LDTXA is not deprecated and has different address
alignment requirements than LDTWA. See Load Integer Twin
Extended Word from Alternate Space on page 197.
CHAPTER 7 • Instructions 195

LDTWA (Deprecated)

DAE_invalid_asi
DAE_privilege_violation
DAE_nfo_page
DAE_side_effect_page

See Also LDWA/LDXA on page 176
LDTXA on page 197
STTWA on page 267
196 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

LDTXA
7.60 Load Integer Twin Extended Word from
Alternate Space

The LDTXA instructions are not guaranteed to be implemented on all
UltraSPARC Architecture implementations. Therefore, they should only be
used in platform-specific dynamically-linked libraries or in software created by a
runtime code generator that is aware of the specific virtual processor
implementation on which it is executing.

Instruction
ASI
Value Operation Assembly Language Syntax † Class

LDTXAN 2216 Load Integer Twin Extended Word,
as if user (nonprivileged), Primary
address space

ldtxa [regaddr] #ASI_TWINX_AIUP, regrd N−

2316 Load Integer Twin Extended Word,
as if user (nonprivileged), Secondary
address space

ldtxa [regaddr] #ASI_TWINX_AIUS, regrd N−

2616 Load Integer Twin Extended Word,
real address

ldtxa [regaddr] #ASI_TWINX_REAL, regrd N−

2716 Load Integer Twin Extended Word,
nucleus context

ldtxa [regaddr] #ASI_TWINX_N, regrd N−

2A16 Load Integer Twin Extended Word,
as if user (nonprivileged), Primary
address space, little endian

ldtxa [regaddr] #ASI_TWINX_AIUP_L, regrd N−

2B16 Load Integer Twin Extended Word,
as if user (nonprivileged), Secondary
address space, little endian

ldtxa [regaddr] #ASI_TWINX_AIUS_L, regrd N−

2E16 Load Integer Twin Extended Word,
real address, little endian

ldtxa [regaddr] #ASI_TWINX_REAL_L, regrd N−

2F16 Load Integer Twin Extended Word,
nucleus context, little-endian

ldtxa [regaddr] #ASI_TWINX_NL, regrd N−

LDTXAN E216 Load Integer Twin Extended Word,
Primary address space

ldtxa [regaddr] #ASI_TWINX_P, regrd N−

E316 Load Integer Twin Extended Word,
Secondary address space

ldtxa [regaddr] #ASI_TWINX_S, regrd N−

EA16 Load Integer Twin Extended Word,
Primary address space, little endian

ldtxa [regaddr] #ASI_TWINX_PL, regrd N−

EB16 Load Integer Twin Extended Word,
Secondary address space, little-endian

ldtxa [regaddr] #ASI_TWINX_SL, regrd N−

† The original assembly language syntax for these instructions used the “ldda” instruction mnemonic. That syntax is now deprecated.
Over time, assemblers will support the new “ldtxa” mnemonic for this instruction. In the meantime, some existing assemblers may
only recognize the original “ldda” mnemonic.

VIS 2+

rd11 01 0011 imm_asirs1 rs2i=0

31 24 02530 29 19 18 14 13 12 5 4
CHAPTER 7 • Instructions 197

LDTXA

Description ASIs 2616, 2E16, E216, E316, F016, and F116 are used with the LDTXA instruction to atomically read a

128-bit data item into a pair of 64-bit R registers (a “twin extended word”). The data are placed in an
even/odd pair of 64-bit registers. The lowest-address 64 bits are placed in the even-numbered register;
the highest-address 64 bits are placed in the odd-numbered register.

ASIs E216, E316, F016, and F116 perform an access using a virtual address, while ASIs 2616 and 2E16 use
a real address.

An LDTXA instruction that performs a little-endian access behaves as if it comprises two 64-bit loads
(performed atomically), each of which is byte-swapped independently before being written into its
respective destination register.

Exceptions. An attempt to execute an LDTXA instruction with an odd-numbered destination
register (rd{0} = 1) causes an illegal_instruction exception.

An attempt to execute an LDTXA instruction with an effective memory address that is not aligned on
a 16-byte boundary causes a mem_address_not_aligned exception.

IMPL. DEP. #413-S10: It is implementation dependent whether VA_watchpointexceptions are
recognized on accesses to all 16 bytes of a LDTXA instruction (the recommended behavior) or only on
accesses to the first 8 bytes.

An attempted access by an LDTXA instruction to noncacheable memory causes an a DAE_nc_page
exception (impl. dep. #306-U4-Cs10).

The virtual processor MMU does not provide virtual-to-real translation for ASIs 2616 and 2E16; the
effective address provided with either of those ASIs is interpreted directly as a real address.

A mem_address_not_aligned trap is taken if the access is not aligned on a 128-byte boundary.

Exceptions illegal_instruction
mem_address_not_aligned
privileged_action
VA_watchpoint (impl. dep. #413-S10)
DAE_nc_page
DAE_nfo_page

See Also LDTWA on page 194

Note Execution of an LDTXA instruction with rd = 0 modifies only
R[1].

Programming
Note

A key use for this instruction is to read a full TTE entry (128 bits,
tag and data) in a TSB directly, without using software
interlocks. The “real address” variants can perform the access
using a real address, bypassing the VA-to-RA translation.

Compatibility
Note

ASIs 2716, 2F16, 2616, and 2E16 are now standard ASIs that
replace (respectively) ASIs 2416, 2C16, 3416, and 3C16 that were
supported in some previous UltraSPARC implementations.

Implementation
Note

LDTXA shares an opcode with the “i = 0” variant of the
(deprecated) LDTWA instruction; they are differentiated by the
combination of the value of “i” and the ASI used in the
instruction. See Load Integer Twin Word from Alternate Space on
page 194.
198 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

LDTXA
7.61 Load Floating-Point State Register

Description A load floating-point state register instruction (LDXFSR) waits for all FPop instructions that have not
finished execution to complete and then loads a doubleword from memory into the FSR.

LDXFSR does not alter the ver, ftt, qne, reserved, or unimplemented (for example, ns) fields of FSR
(see page 42).

LDXFSR accesses memory using the implicit ASI (see page 76).

If i = 0, the effective address for these instructions is “R[rs1] + R[rs2]” and if i = 0, the effective address
is “R[rs1] + sign_ext(simm13)”.

Exceptions. An attempt to execute an instruction encoded as op = 2 and op3 = 2116 when any of the
following conditions exist causes an illegal_instruction exception:

■ i = 0 and instruction bits 12:5 are nonzero
■ (rd > 1)

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an LDXFSR instruction causes an fp_disabled exception.

If the effective address is not doubleword-aligned, an attempt to execute an LDXFSR instruction
causes a mem_address_not_aligned exception.

Destination Register(s) when Exception Occurs. If a load floating-point state register instruction
generates an exception that causes a precise trap, the destination register (FSR) remains unchanged.

IMPL. DEP. #44-V8-Cs10(a)(2): If an LDXFSR instruction generates an exception that causes a non-
precise trap, it is implementation dependent whether the contents of the destination register (FSR) is
undefined or is guaranteed to remain unchanged.

Instruction op3 rd Operation Assembly Language Syntax Class

10 0001 0 (see page 186)

LDXFSR 10 0001 1 Load Floating-Point State Register ldx [address], %fsr A1

— 10 0001 2–31 Reserved

Programming
Note

For future compatibility, software should only issue an LDXFSR
instruction with a zero value (or a value previously read from
the same field) written into any reserved field of FSR.

Implementation
Note

LDXFSR shares an opcode with the (deprecated) LDFSR
instruction (and possibly with other implementation-dependent
instructions); they are differentiated by the instruction rd field.
An attempt to execute the op = 112, op3 = 10 00012 opcode with
an invalid rd value causes an illegal_instruction exception.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
CHAPTER 7 • Instructions 199

LDTXA

Exceptions illegal_instruction

fp_disabled
mem_address_not_aligned
VA_watchpoint
DAE_privilege_violation
DAE_nfo_page

See Also Load Floating-Point Register on page 181
Load Floating-Point State Register (Lower) on page 186
Store Floating-Point State Register on page 269
200 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

MEMBAR
7.62 Memory Barrier

Description The memory barrier instruction, MEMBAR, has two complementary functions: to express order
constraints between memory references and to provide explicit control of memory-reference
completion. The membar_mask field in the suggested assembly language is the concatenation of the
cmask and mmask instruction fields.

MEMBAR introduces an order constraint between classes of memory references appearing before the
MEMBAR and memory references following it in a program. The particular classes of memory
references are specified by the mmask field. Memory references are classified as loads (including load
instructions LDSTUB[A], SWAP[A], CASA, and CASX[A] and stores (including store instructions
LDSTUB[A], SWAP[A], CASA, CASXA, and FLUSH). The mmask field specifies the classes of memory
references subject to ordering, as described below. MEMBAR applies to all memory operations in all
address spaces referenced by the issuing virtual processor, but it has no effect on memory references
by other virtual processors. When the cmask field is nonzero, completion as well as order constraints
are imposed, and the order imposed can be more stringent than that specifiable by the mmask field
alone.

A load has been performed when the value loaded has been transmitted from memory and cannot be
modified by another virtual processor. A store has been performed when the value stored has become
visible, that is, when the previous value can no longer be read by any virtual processor. In specifying
the effect of MEMBAR, instructions are considered to be executed as if they were processed in a
strictly sequential fashion, with each instruction completed before the next has begun.

The mmask field is encoded in bits 3 through 0 of the instruction. TABLE 7-7 specifies the order
constraint that each bit of mmask (selected when set to 1) imposes on memory references appearing
before and after the MEMBAR. From zero to four mask bits may be selected in the mmask field.

Instruction op3 Operation Assembly Language Syntax Class

MEMBAR 10 1000 Memory Barrier membar membar_mask A1

TABLE 7-7 MEMBAR mmask Encodings

Mask Bit
Assembly
Language Name Description

mmask{3} #StoreStore The effects of all stores appearing prior to the MEMBAR
instruction must be visible to all virtual processors before the
effect of any stores following the MEMBAR.

mmask{2} #LoadStore All loads appearing prior to the MEMBAR instruction must
have been performed before the effects of any stores following
the MEMBAR are visible to any other virtual processor.

mmask{1} #StoreLoad The effects of all stores appearing prior to the MEMBAR
instruction must be visible to all virtual processors before loads
following the MEMBAR may be performed.

mmask{0} #LoadLoad All loads appearing prior to the MEMBAR instruction must
have been performed before any loads following the MEMBAR
may be performed.

31 141924 18 13 12 02530 29

10 0 op3 0 1111 i=1 —

4 3

mmask

67

cmask
CHAPTER 7 • Instructions 201

MEMBAR

The cmask field is encoded in bits 6 through 4 of the instruction. Bits in the cmask field, described in
TABLE 7-8, specify additional constraints on the order of memory references and the processing of
instructions. If cmask is zero, then MEMBAR enforces the partial ordering specified by the mmask
field; if cmask is nonzero, then completion and partial order constraints are applied.

A MEMBAR instruction with both mmask = 0 and cmask = 0 is functionally a NOP.

For information on the use of MEMBAR, see Memory Ordering and Synchronization on page 316 and
Programming with the Memory Models contained in the separate volume UltraSPARC Architecture
Application Notes. For additional information about the memory models themselves, see Chapter 9,
Memory.

The coherence and atomicity of memory operations between virtual processors and I/O DMA
memory accesses are implementation dependent (impl. dep. #120-V9).

An attempt to execute a MEMBAR instruction when instruction bits 12:7 are nonzero causes an
illegal_instruction exception.

7.62.1 Memory Synchronization
The UltraSPARC Architecture provides some level of software control over memory synchronization,
through use of the MEMBAR and FLUSH instructions for explicit control of memory ordering in
program execution.

IMPL. DEP. #412-S10: An UltraSPARC Architecture implementation may define the operation of each
MEMBAR variant in any manner that provides the required semantics.

TABLE 7-8 MEMBAR cmask Encodings

Mask Bit Function
Assembly
Language Name Description

cmask{2} Synchronization
barrier

#Sync All operations (including nonmemory
reference operations) appearing prior to the
MEMBAR must have been performed and
the effects of any exceptions be visible before
any instruction after the MEMBAR may be
initiated.

cmask{1} Memory issue
barrier

#MemIssue All memory reference operations appearing
prior to the MEMBAR must have been
performed before any memory operation
after the MEMBAR may be initiated.

cmask{0} Lookaside barrier #Lookaside A store appearing prior to the MEMBAR
must complete before any load following the
MEMBAR referencing the same address can
be initiated.

V9 Compatibility
Note

MEMBAR with mmask = 816 and cmask = 016 (MEMBAR
#StoreStore) is identical in function to the SPARC V8 STBAR
instruction, which is deprecated.

Implementation
Note

MEMBAR shares an opcode with RDasr; it is distinguished by
rs1 = 15, rd = 0, i = 1, and bit 12 = 0.
202 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

MEMBAR
7.62.2 Synchronization of the Virtual Processor
Synchronization of a virtual processor forces all outstanding instructions to be completed and any
associated hardware errors to be detected and reported before any instruction after the synchronizing
instruction is issued.

Synchronization can be explicitly caused by executing a synchronizing MEMBAR instruction
(MEMBAR #Sync) or by executing an LDXA/STXA/LDDFA/STDFA instruction with an ASI that
forces synchronization.

7.62.3 TSO Ordering Rules affecting Use of MEMBAR
For detailed rules on use of MEMBAR to enable software to adhere to the ordering rules on a virtual
processor running with the TSO memory model, refer to TSO Ordering Rules on page 315.

Exceptions illegal_instruction

Implementation
Note

For an UltraSPARC Architecture virtual processor that only
provides TSO memory ordering semantics, three of the ordering
MEMBARs would normally be implemented as NOPs. TABLE 7-9
shows an acceptable implementation of MEMBAR for a TSO-
only UltraSPARC Architecture implementation.

If an UltraSPARC Architecture implementation provides a less
restrictive memory model than TSO (for example, RMO), the
implementation of the MEMBAR variants may be different. See
implementation-specific documentation for details.

Programming
Note

Completion of a MEMBAR #Sync instruction does not
guarantee that data previously stored has been written all the
way out to external memory. Software cannot rely on that
behavior. There is no mechanism in the UltraSPARC
Architecture that allows software to wait for all previous stores
to be written to external memory.

TABLE 7-9 MEMBAR Semantics for TSO-only implementation

MEMBAR variant Preferred Implementation

#StoreStore NOP

#LoadStore NOP

#StoreLoad #Sync

#LoadLoad NOP

#Sync #Sync

#MemIssue #Sync

#Lookaside #Sync
CHAPTER 7 • Instructions 203

MOVcc
7.63 Move Integer Register on Condition (MOVcc)

For Integer Condition Codes

† synonym: movnz ‡ synonym: movz ◊ synonym: movgeu ∇ synonym: movlu

Instruction op3 cond Operation icc / xcc Test Assembly Language Syntax Class

MOVA 10 1100 1000 Move Always 1 mova i_or_x_cc, reg_or_imm11, regrd A1

MOVN 10 1100 0000 Move Never 0 movn i_or_x_cc, reg_or_imm11, regrd A1

MOVNE 10 1100 1001 Move if Not Equal not Z movne† i_or_x_cc, reg_or_imm11, regrd A1

MOVE 10 1100 0001 Move if Equal Z move‡ i_or_x_cc, reg_or_imm11, regrd A1

MOVG 10 1100 1010 Move if Greater not (Z or
N xor V))

movg i_or_x_cc, reg_or_imm11, regrd A1

MOVLE 10 1100 0010 Move if Less or
Equal

Z or (N xor V) movle i_or_x_cc, reg_or_imm11, regrd A1

MOVGE 10 1100 1011 Move if Greater
or Equal

not (N xor V) movge i_or_x_cc, reg_or_imm11, regrd A1

MOVL 10 1100 0011 Move if Less N xor V movl i_or_x_cc, reg_or_imm11, regrd A1

MOVGU 10 1100 1100 Move if Greater,
Unsigned

not (C or Z) movgu i_or_x_cc, reg_or_imm11, regrd A1

MOVLEU 10 1100 0100 Move if Less or
Equal, Unsigned

(C or Z) movleu i_or_x_cc, reg_or_imm11, regrd A1

MOVCC 10 1100 1101 Move if Carry
Clear (Greater or
Equal, Unsigned)

not C movcc◊ i_or_x_cc, reg_or_imm11, regrd A1

MOVCS 10 1100 0101 Move if Carry Set
(Less than,
Unsigned)

C movcs∇ i_or_x_cc, reg_or_imm11, regrd A1

MOVPOS 10 1100 1110 Move if Positive not N movpos i_or_x_cc, reg_or_imm11, regrd A1

MOVNEG 10 1100 0110 Move if Negative N movneg i_or_x_cc, reg_or_imm11, regrd A1

MOVVC 10 1100 1111 Move if Overflow
Clear

not V movvc i_or_x_cc, reg_or_imm11, regrd A1

MOVVS 10 1100 0111 Move if Overflow
Set

V movvs i_or_x_cc, reg_or_imm11, regrd A1

Programming
Note

In assembly language, to select the appropriate condition code,
include %icc or %xcc before the reg_or_imm11 field.
204 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

MOVcc

For Floating-Point Condition Codes

† synonym: movnz ‡ synonym: movz

Instruction op3 cond Operation fcc Test Assembly Language Syntax Class

MOVFA 10 1100 1000 Move Always 1 mova %fccn, reg_or_imm11, regrd A1

MOVFN 10 1100 0000 Move Never 0 movn %fccn, reg_or_imm11, regrd A1

MOVFU 10 1100 0111 Move if Unordered U movu %fccn, reg_or_imm11, regrd A1

MOVFG 10 1100 0110 Move if Greater G movg %fccn, reg_or_imm11, regrd A1

MOVFUG 10 1100 0101 Move if Unordered
or Greater

G or U movug %fccn, reg_or_imm11, regrd A1

MOVFL 10 1100 0100 Move if Less L movl %fccn, reg_or_imm11, regrd A1

MOVFUL 10 1100 0011 Move if Unordered
or Less

L or U movul %fccn, reg_or_imm11, regrd A1

MOVFLG 10 1100 0010 Move if Less or
Greater

L or G movlg %fccn, reg_or_imm11, regrd A1

MOVFNE 10 1100 0001 Move if Not Equal L or G or U movne† %fccn, reg_or_imm11, regrd A1

MOVFE 10 1100 1001 Move if Equal E move‡ %fccn, reg_or_imm11, regrd A1

MOVFUE 10 1100 1010 Move if Unordered
or Equal

E or U movue %fccn, reg_or_imm11, regrd A1

MOVFGE 10 1100 1011 Move if Greater or
Equal

E or G movge %fccn, reg_or_imm11, regrd A1

MOVFUGE 10 1100 1100 Move if Unordered
or Greater or Equal

E or G or U movuge %fccn, reg_or_imm11, regrd A1

MOVFLE 10 1100 1101 Move if Less or
Equal

E or L movle %fccn, reg_or_imm11, regrd A1

MOVFULE 10 1100 1110 Move if Unordered
or Less or Equal

E or L or U movule %fccn, reg_or_imm11, regrd A1

MOVFO 10 1100 1111 Move if Ordered E or L or G movo %fccn, reg_or_imm11, regrd A1

Programming
Note

In assembly language, to select the appropriate condition code,
include %fcc0, %fcc1, %fcc2, or %fcc3 before the reg_or_imm11
field.

cc2 cc1 cc0 Condition Code

0 0 0 fcc0

0 0 1 fcc1

0 1 0 fcc2

0 1 1 fcc3

1 0 0 icc

1 0 1 Reserved (illegal_instruction)
1 1 0 xcc

1 1 1 Reserved (illegal_instruction)

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

cond rs2i=0

rd10 op3 cond simm11i=1

17

cc2

cc2

11

cc1

cc1

10

cc0

cc0
CHAPTER 7 • Instructions 205

MOVcc

Description These instructions test to see if cond is TRUE for the selected condition codes. If so, they copy the

value in R[rs2] if i field = 0, or “sign_ext(simm11)” if i = 1 into R[rd]. The condition code used is
specified by the cc2, cc1, and cc0 fields of the instruction. If the condition is FALSE, then R[rd] is not
changed.

These instructions copy an integer register to another integer register if the condition is TRUE. The
condition code that is used to determine whether the move will occur can be either integer condition
code (icc or xcc) or any floating-point condition code (fcc0, fcc1, fcc2, or fcc3).

These instructions do not modify any condition codes.

An attempt to execute a MOVcc instruction when either instruction bits 10:5 are nonzero or
(cc2 :: cc1 :: cc0) = 1012 or 1112 causes an illegal_instruction exception.

If cc2 = 0 (that is, a floating-point condition code is being referenced in the MOVcc instructions) and
either the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute a MOVcc instruction causes an fp_disabled exception.

Exceptions illegal_instruction
fp_disabled

Programming
Note

Branches cause the performance of many implementations to
degrade significantly. Frequently, the MOVcc and FMOVcc
instructions can be used to avoid branches. For example, the C
language if-then-else statement

if (A > B) then X = 1; else X = 0;

can be coded as

cmp %i0,%i2
bg,a %xcc,label
or %g0,1,%i3! X = 1
or %g0,0,%i3! X = 0

label:...

The above sequence requires four instructions, including a branch.
With MOVcc this could be coded as:

cmp %i0,%i2
or %g0,1,%i3! assume X = 1
movle %xcc,0,%i3! overwrite with X = 0

This approach takes only three instructions and no branches and
may boost performance significantly. Use MOVcc and FMOVcc
instead of branches wherever these instructions would increase
performance.
206 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

MOVr
7.64 Move Integer Register on Register Condition
(MOVr)

† synonym: movre ‡ synonym: movrne

Description If the contents of integer register R[rs1] satisfy the condition specified in the rcond field, these
instructions copy their second operand (if i = 0, R[rs2]; if i = 1, sign_ext(simm10)) into R[rd]. If the
contents of R[rs1] do not satisfy the condition, then R[rd] is not modified.

These instructions treat the register contents as a signed integer value; they do not modify any
condition codes.

An attempt to execute a MOVr instruction when either instruction bits 9:5 are nonzero or rcond = 0002
or 1002 causes an illegal_instruction exception.

Instruction op3 rcond Operation Test Assembly Language Syntax Class

— 10 1111 000 Reserved (illegal_instruction) —

MOVRZ 10 1111 001 Move if Register Zero R[rs1] = 0 movrz† regrs1, reg_or_imm10, regrd A1

MOVRLEZ 10 1111 010 Move if Register Less
Than or Equal to Zero

R[rs1] ≤ 0 movrlez regrs1, reg_or_imm10, regrd A1

MOVRLZ 10 1111 011 Move if Register Less
Than Zero

R[rs1] < 0 movrlz regrs1, reg_or_imm10, regrd A1

— 10 1111 100 Reserved (illegal_instruction) —

MOVRNZ 10 1111 101 Move if Register Not
Zero

R[rs1] ≠ 0 movrnz‡ regrs1, reg_or_imm10, regrd A1

MOVRGZ 10 1111 110 Move if Register
Greater Than Zero

R[rs1] > 0 movrgz regrs1, reg_or_imm10, regrd A1

MOVRGEZ 10 1111 111 Move if Register
Greater Than or Equal
to Zero

R[rs1] ≥ 0 movrgez regrs1, reg_or_imm10, regrd A1

Programming
Note

The MOVr instructions are “64-bit-only” instructions; there is no
version of these instructions that operates on just the less-
significant 32 bits of their source operands.

Implementation
Note

If this instruction is implemented by tagging each register value
with an n (negative) and a z (zero) bit, use the table below to
determine if rcond is TRUE.

Move Test
MOVRNZ not Z
MOVRZ Z
MOVRGEZ not N
MOVRLZ N
MOVRLEZ N or Z
MOVRGZ N nor Z

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm10i=1

rcond

rcond

10 9
CHAPTER 7 • Instructions 207

MOVr

Exceptions illegal_instruction
208 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

MULScc - Deprecated
7.65 Multiply Step

Description MULScc treats the less-significant 32 bits of R[rs1] and the less-significant 32 bits of the Y register as a
single 64-bit, right-shiftable doubleword register. The least significant bit of R[rs1] is treated as if it
were adjacent to bit 31 of the Y register. The MULScc instruction performs an addition operation,
based on the least significant bit of Y.

Multiplication assumes that the Y register initially contains the multiplier, R[rs1] contains the most
significant bits of the product, and R[rs2] contains the multiplicand. Upon completion of the
multiplication, the Y register contains the least significant bits of the product.

MULScc operates as follows:

1. If i = 0, the multiplicand is R[rs2]; if i = 1, the multiplicand is sign_ext(simm13).

2. A 32-bit value is computed by shifting the value from R[rs1] right by one bit with
“CCR.icc.n xor CCR.icc.v” replacing bit 31 of R[rs1]. (This is the proper sign for the previous
partial product.)

3. If the least significant bit of Y = 1, the shifted value from step (2) and the multiplicand are added. If
the least significant bit of the Y = 0, then 0 is added to the shifted value from step (2).

4. MULScc writes the following result values:

The MULScc instruction is deprecated and should not be used in new software.
The MULX instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class

MULSccD 10 0100 Multiply Step and modify cc’s mulscc regrs1, reg_or_imm, regrd Y3

Note In a standard MULScc instruction, rs1 = rd.

Register field Value written by MULScc

CCR.icc updated according to the result of the addition in step (3)
above

R[rd]{63:33} 0

R[rd]{32} CCR.icc.c

R[rd]{31:0} the least-significant 32 bits of the sum from step (3) above

Y the previous value of the Y register, shifted right by one
bit, with Y{31} replaced by the value of R[rs1]{0} prior to
shifting in step (2)

CCR.xcc.n 0

CCR.xcc.v 0

CCR.xcc.c 0

CCR.xcc.z if (R[rd]{63:0} = 0) then 1 else 0

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
CHAPTER 7 • Instructions 209

MULScc - Deprecated
5. The Y register is shifted right by one bit, with the least significant bit of the unshifted R[rs1]
replacing bit 31 of Y.

An attempt to execute a MULScc instruction when i = 0 and instruction bits 12:5 are nonzero causes an
illegal_instruction exception.

Exceptions illegal_instruction

See Also RDY on page 225
SDIV, SDIVcc on page 240
SMUL, SMULcc on page 246
UDIV, UDIVcc on page 281
UMUL, UMULcc on page 283

SPARC V9
Compatibility

Note

In SPARC V9, MULScc’s effect on R[rd]{63:32} and CCR.xcc
were explicitly left undefined.
210 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

MULX / SDIVX / UDIVX
7.66 Multiply and Divide (64-bit)

Description MULX computes “R[rs1] × R[rs2]” if i = 0 or “R[rs1] × sign_ext(simm13)” if i = 1, and writes the 64-
bit product into R[rd]. MULX can be used to calculate the 64-bit product for signed or unsigned
operands (the product is the same).

SDIVX and UDIVX compute “R[rs1] ÷ R[rs2]” if i = 0 or “R[rs1] ÷ sign_ext(simm13)” if i = 1, and
write the 64-bit result into R[rd]. SDIVX operates on the operands as signed integers and produces a
corresponding signed result. UDIVX operates on the operands as unsigned integers and produces a
corresponding unsigned result.

For SDIVX, if the largest negative number is divided by –1, the result should be the largest negative
number. That is:

8000 0000 0000 000016 ÷ FFFF FFFF FFFF FFFF16 = 8000 0000 0000 000016.

These instructions do not modify any condition codes.

An attempt to execute a MULX, SDIVX, or UDIVX instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction
division_by_zero

Instruction op3 Operation Assembly Language Class

MULX 00 1001 Multiply (signed or unsigned) mulx regrs1, reg_or_imm, regrd A1

SDIVX 10 1101 Signed Divide sdivx regrs1, reg_or_imm, regrd A1

UDIVX 00 1101 Unsigned Divide udivx regrs1, reg_or_imm, regrd A1

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
CHAPTER 7 • Instructions 211

NOP
7.67 No Operation

Description The NOP instruction changes no program-visible state (except that of the PC register).

NOP is a special case of the SETHI instruction, with imm22 = 0 and rd = 0.

Exceptions None

Instruction op2 Operation Assembly Language Syntax Class

NOP 100 No Operation nop A1

Programming
Note

There are many other opcodes that may execute as NOPs;
however, this dedicated NOP instruction is the only one
guaranteed to be implemented efficiently across all
implementations.

00 op2 imm22 = 0rd = 0 0 0 0 0

31 24 02530 29 22 21
212 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

NORMALW
7.68 NORMALW

Description NORMALWP is a privileged instruction that copies the value of the OTHERWIN register to the
CANRESTORE register, then sets the OTHERWIN register to zero.

An attempt to execute a NORMALW instruction when instruction bits 18:0 are nonzero causes an
illegal_instruction exception.

An attempt to execute an NORMALW instruction in nonprivileged mode (PSTATE.priv = 0) causes a
privileged_opcode exception.

Exceptions illegal_instruction
privileged_opcode

See Also ALLCLEAN on page 99
INVALW on page 173
OTHERW on page 215
RESTORED on page 232
SAVED on page 239

Instruction Operation Assembly Language Syntax Class

NORMALWP “Other” register windows become “normal” register windows normalw A1

Programming
Notes

The NORMALW instruction is used when changing address
spaces. NORMALW indicates the current "other" windows are
now "normal" windows and should use the spill_n_normal and
fill_n_normal traps when they generate a trap due to window spill
or fill exceptions. The window state may become inconsistent if
NORMALW is used when CANRESTORE is nonzero.

31 1924 18 02530 29

10 fcn = 0 0100 11 0001 —
CHAPTER 7 • Instructions 213

OR
7.69 OR Logical Operation

Description These instructions implement bitwise logical or operations. They compute “R[rs1] op R[rs2]” if i = 0,
or “R[rs1] op sign_ext(simm13)” if i = 1, and write the result into R[rd].

ORcc and ORNcc modify the integer condition codes (icc and xcc). They set the condition codes as
follows:

■ icc.v, icc.c, xcc.v, and xcc.c are set to 0
■ icc.n is copied from bit 31 of the result
■ xcc.n is copied from bit 63 of the result
■ icc.z is set to 1 if bits 31:0 of the result are zero (otherwise to 0)
■ xcc.z is set to 1 if all 64 bits of the result are zero (otherwise to 0)

ORN and ORNcc logically negate their second operand before applying the main (or) operation.

An attempt to execute an OR[N][cc] instruction when i = 0 and instruction bits 12:5 are nonzero causes
an illegal_instruction exception.

Exceptions illegal_instruction

Instruction op3 Operation Assembly Language Syntax Class

OR 00 0010 Inclusive or or regrs1, reg_or_imm, regrd A1

ORcc 01 0010 Inclusive or and modify cc’s orcc regrs1, reg_or_imm, regrd A1

ORN 00 0110 Inclusive or not orn regrs1, reg_or_imm, regrd A1

ORNcc 01 0110 Inclusive or not and modify cc’s orncc regrs1, reg_or_imm, regrd A1

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
214 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

OTHERW
7.70 OTHERW

Description OTHERWP is a privileged instruction that copies the value of the CANRESTORE register to the
OTHERWIN register, then sets the CANRESTORE register to zero.

An attempt to execute an OTHERW instruction when instruction bits 18:0 are nonzero causes an
illegal_instruction exception.

An attempt to execute an OTHERW instruction in nonprivileged mode (PSTATE.priv = 0) causes a
privileged_opcode exception.

Exceptions illegal_instruction
privileged_opcode

See Also ALLCLEAN on page 99
INVALW on page 173
NORMALW on page 213
RESTORED on page 232
SAVED on page 239

Instruction Operation Assembly Language Syntax Class

OTHERWP “Normal” register windows become “other”
register windows

otherw A1

Programming
Notes

The OTHERW instruction is used when changing address spaces.
OTHERW indicates the current "normal" register windows are
now "other" register windows and should use the spill_n_other
and fill_n_other traps when they generate a trap due to window
spill or fill exceptions. The window state may become inconsistent
if OTHERW is used when OTHERWIN is nonzero.

31 1924 18 02530 29

10 fcn = 0 0011 11 0001 —
CHAPTER 7 • Instructions 215

PDIST
7.71 Pixel Component Distance
(with Accumulation)

Description Eight unsigned 8-bit values are contained in the 64-bit floating-point source registers FD[rs1] and
FD[rs2]. The corresponding 8-bit values in the source registers are subtracted (that is, each byte in
FD[rs2] is subtracted from the corresponding byte in FD[rs1]). The sum of the absolute value of each
difference is added to the integer in FD[rd] and the resulting integer sum is stored in the destination
register, FD[rd].

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute an FPMERGE instruction causes an fp_disabled exception.

Exceptions fp_disabled

Instruction opf Operation Assembly Language Syntax Class

PDIST 0 0011 1110 Distance between eight 8-bit components,
with accumulation

pdist fregrs1, fregrs2, fregrd C2

Programming
Notes

PDIST uses FD[rd] as both a source and a destination register.

Typically, PDIST is used for motion estimation in video
compression algorithms.

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
216 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

POPC
7.72 Population Count

Description POPC counts the number of ‘1’ bits in R[rs2] if i = 0, or the number of ‘1’ bits in sign_ext(simm13) if
i = 1, and stores the count in R[rd]. This instruction does not modify the condition codes.

An attempt to execute a POPC instruction when either instruction bits 18:14 are nonzero, or i = 0 and
instruction bits 12:5 are nonzero causes an illegal_instruction exception.

Instruction op3 Operation Assembly Language Syntax Class

POPC 10 1110 Population Count popc reg_or_imm, regrd C2

V9 Compatibility
Note

Instruction bits 18 through 14 must be zero for POPC. Other
encodings of this field (rs1) may be used in future versions of the
SPARC architecture for other instructions.

Programming
Note

POPC can be used to “find first bit set” in a register.
A ‘C’-language program illustrating how POPC can be used for
this purpose follows:

int ffs(in)/* finds first 1 bit, counting from the LSB */
unsigned in;
{

return popc(in ^ (∼ (–in)));/* for nonzero zz */
}

Inline assembly language code for ffs() is:

neg %IN, %NEG_IN ! –zz(2’s complement)
xnor %IN, %NEG_IN, %TEMP! ^ ∼ –zz (exclusive nor)
popc %TEMP,%RESULT ! result = popc(zz ^ ∼ –zz)
movrz %IN,%g0,%RESULT ! %RESULT should be 0 for %IN=0

where IN, M_IN, TEMP, and RESULT are integer registers.

Example computation:
 IN = ...00101000 !1st ‘1’ bit from right is
 –IN = ...11011000 ! bit 3 (4th bit)
 ~ –IN = ...00100111
 IN ^ ~ –IN = ...00001111
popc (IN ^ ~ –IN) = 4

Programming
Note

POPC can be used to “centrifuge” all the ‘1’ bits in a register to the
least significant end of a destination register. Assembly-language
code illustrating how POPC can be used for this purpose follows:

popc %IN, %DEST
cmp %IN, -1 ! Test for pattern of all 1’s
mov -1, %TEMP ! Constant -1 -> temp register
sllx %TEMP,%DEST,%DEST ! (shift count of 64 same as 0)
not %DEST !
movcc %xcc, -1, %DEST ! If src was -1, result is -1

where IN, TEMP, and DEST are integer registers.

Programming
Note

POPC is a “64-bit-only” instruction; there is no version of this
instruction that operates on just the less-significant 32 bits of its
source operand.

rd10 op3 0 0000 simm13i=1

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

0 0000 rs2i=0
CHAPTER 7 • Instructions 217

POPC

Exceptions illegal_instruction
218 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

PREFETCH
7.73 Prefetch

PREFETCH

PREFETCHA

Description A PREFETCH[A] instruction provides a hint to the virtual processor that software expects to access a
particular address in memory in the near future, so that the virtual processor may take action to
reduce the latency of accesses near that address. Typically, execution of a prefetch instruction initiates
movement of a block of data containing the addressed byte from memory toward the virtual
processor or creates an address mapping.

Instruction op3 Operation Assembly Language Syntax Class

PREFETCH 10 1101 Prefetch Data prefetch [address],prefetch_fcn A1

PREFETCHAPASI 11 1101 Prefetch Data from
Alternate Space

prefetcha
prefetcha

[regaddr] imm_asi, prefetch_fcn
[reg_plus_imm] %asi,prefetch_fcn

A1

TABLE 7-10 Prefetch Variants, by Function Code

fcn Prefetch Variant

0 (Weak) Prefetch for several reads

1 (Weak) Prefetch for one read

2 (Weak) Prefetch for several writes and possibly reads

3 (Weak) Prefetch for one write

4 Prefetch page

5–15 (0516–0F16) Reserved (illegal_instruction)

16 (1016) Implementation dependent (NOP if not implemented)

17 (1116) Prefetch to nearest unified cache

18–19 (1216–1316) Implementation dependent (NOP if not implemented)

20 (1416) Strong Prefetch for several reads

21 (1516) Strong Prefetch for one read

22 (1616) Strong Prefetch for several writes and possibly reads

23 (1716) Strong Prefetch for one write

24-31 (1816–1F16) Implementation dependent (NOP if not implemented)

Implementation
Note

A PREFETCH[A] instruction may be used by software to:

• prefetch a cache line into a cache
• prefetch a valid address translation into a TLB
•

31 24 02530 29 19 18 14 13 12 5 4

fcn11 op3 rs1 simm13i=1

fcn11 op3 rs1 i=0 — rs2

fcn11 op3 imm_asirs1 rs2i=0

31 24 02530 29 19 18 14 13 12 5 4

fcn11 op3 rs1 simm13i=1
CHAPTER 7 • Instructions 219

PREFETCH

If i = 0, the effective address operand for the PREFETCH instruction is “R[rs1] + R[rs2]”; if i = 1, it is
“R[rs1] + sign_ext (simm13)”.

PREFETCH instructions access the primary address space (ASI_PRIMARY[_LITTLE]).

PREFETCHA instructions access an alternate address space. If i = 0, the address space identifier (ASI)
to be used for the instruction is in the imm_asi field. If i = 1, the ASI is found in the ASI register.

A prefetch operates much the same as a regular load operation, but with certain important
differences. In particular, a PREFETCH[A] instruction is non-blocking; subsequent instructions can
continue to execute while the prefetch is in progress.

When executed in nonprivileged or privileged mode, PREFETCH[A] has the same observable effect as
a NOP. A prefetch instruction will not cause a trap if applied to an illegal or nonexistent memory
address. (impl. dep. #103-V9-Ms10(e))

IMPL. DEP. #103-V9-Ms10(a): The size and alignment in memory of the data block prefetched is
implementation dependent; the minimum size is 64 bytes and the minimum alignment is a 64-byte
boundary.

Variants of the prefetch instruction can be used to prepare the memory system for different types of
accesses.

IMPL. DEP. #103-V9-Ms10(b): An implementation may implement none, some, or all of the defined
PREFETCH[A] variants. It is implementation-dependent whether each variant is (1) not implemented
and executes as a NOP, (2) is implemented and supports the full semantics for that variant, or (3) is
implemented and only supports the simple common-case prefetching semantics for that variant.

7.73.1 Exceptions
Prefetch instructions PREFETCH and PREFETCHA generate exceptions under the conditions detailed
in TABLE 7-11. Only the implementation-dependent prefetch variants (see TABLE 7-10) may generate an
exception under conditions not listed in this table; the predefined variants only generate the
exceptions listed here.

Implementation
Note

A PREFETCH[A] instruction is “released” by hardware after the
TLB access, allowing subsequent instructions to continue to
execute while the virtual processor performs the hardware
tablewalk (in the case of a TLB miss for a Strong prefetch) or the
cache access in the background.

Programming
Note

Software may prefetch 64 bytes beginning at an arbitrary address
address by issuing the instructions

prefetch [address], prefetch_fcn
prefetch [address + 63], prefetch_fcn

TABLE 7-11 Behavior of PREFETCH[A] Instructions Under Exceptional Conditions (1 of 2)

fcn Instruction Condition Result

any PREFETCH i = 0 and instruction bits 12:5 are
nonzero

illegal_instruction

any PREFETCHA reference to an ASI in the range
016-7F16, while in nonprivileged
mode (privileged_action condition)

executes as NOP

any PREFETCHA reference to an ASI in range
3016..7F16, while in privileged
mode (privileged_action condition)

executes as NOP

0-3
(weak)

PREFETCH[A] condition detected for MMU miss executes as NOP

0-4 PREFETCH[A] variant unimplemented executes as NOP
220 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

PREFETCH
7.73.2 Weak versus Strong Prefetches
Some prefetch variants are available in two versions, “Weak” and “Strong”.

From software’s perspective, the difference between the two is the degree of certainty that the data
being prefetched will subsequently be accessed. That, in turn, affects the amount of effort (time) it’s
willing for the underlying hardware to invest to perform the prefetch. If the prefetch is speculative
(software believes the data will probably be needed, but isn’t sure), a Weak prefetch will initiate data
movement if the operation can be performed quickly, but abort the prefetch and behave like a NOP if
it turns out that performing the full prefetch will be time-consuming. If software has very high
confidence that data being prefetched will subsequently be accessed, then a Strong prefetch will
ensure that the prefetch operation will continue, even if the prefetch operation does become time-
consuming.

From the virtual processor’s perspective, the difference between a Weak and a Strong prefetch is
whether the prefetch is allowed to perform a time-consuming operation in order to complete. If a
time-consuming operation is required, a Weak prefetch will abandon the operation and behave like a

0-4 PREFETCHA reference to an invalid ASI
(ASI not listed in following table)

executes as NOP

0-4, 17,
20-23

PREFETCH[A] condition detected for
DAE_invalid_asi (see following
table),
DAE_privilege_violation,
DAE_nc_page ((TTE.cp = 0) or
((fcn = 0) and TTE.cv = 0)),
DAE_nfo_page, or
DAE_side_effect_page (TTE.e = 1)

executes as NOP

4, 20-23
(strong)

PREFETCH[A] prefetching the requested data
would be a very time-consuming
operation

executes as NOP

5–15
(0516–0F16)

PREFETCH[A] (always) illegal_instruction

16-31
(1816–1F16)

PREFETCH[A] variant unimplemented executes as NOP

ASIs valid for PREFETCHA (all others are invalid)

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

ASI_PRIMARY_NO_FAULT ASI_PRIMARY_NO_FAULT_LITTLE

ASI_SECONDARY_NO_FAULT ASI_SECONDARY_NO_FAULT_LITTLE

ASI_REAL ASI_REAL_LITTLE

TABLE 7-11 Behavior of PREFETCH[A] Instructions Under Exceptional Conditions (2 of 2)

fcn Instruction Condition Result
CHAPTER 7 • Instructions 221

PREFETCH

NOP while a Strong prefetch will pay the cost of performing the time-consuming operation so it can
finish initiating the requested data movement. Behavioral differences among loads, strong prefetches,
and weak prefetches are compared in TABLE 7-12.

7.73.3 Prefetch Variants
The prefetch variant is selected by the fcn field of the instruction. fcn values 5–15 are reserved for
future extensions of the architecture, and PREFETCH fcn values of 16–19 and 24–31 are
implementation dependent in UltraSPARC Architecture 2007.

Each prefetch variant reflects an intent on the part of the compiler or programmer, a “hint” to the
underlying virtual processor. This is different from other instructions (except BPN), all of which cause
specific actions to occur. An UltraSPARC Architecture implementation may implement a prefetch
variant by any technique, as long as the intent of the variant is achieved (impl. dep. #103-V9-Ms10(b)).

The prefetch instruction is designed to treat common cases well. The variants are intended to provide
scalability for future improvements in both hardware and compilers. If a variant is implemented, it
should have the effects described below. In case some of the variants listed below are implemented
and some are not, a recommended overloading of the unimplemented variants is provided in the
SPARC V9 specification. An implementation must treat any unimplemented prefetch fcn values as
NOPs (impl. dep. #103-V9-Ms10).

7.73.3.1 Prefetch for Several Reads (fcn = 0, 20(1416))

The intent of these variants is to cause movement of data into the cache nearest the virtual processor.

There are Weak and Strong versions of this prefetch variant; fcn = 0 is Weak and fcn = 20 is Strong.
The choice of Weak or Strong variant controls the degree of effort that the virtual processor may
expend to obtain the data.

7.73.3.2 Prefetch for One Read (fcn = 1, 21(1516))

The data to be read from the given address are expected to be read once and not reused (read or
written) soon after that. Use of this PREFETCH variant indicates that, if possible, the data cache
should be minimally disturbed by the data read from the given address.

TABLE 7-12 Comparative Behavior of Load and Weak Prefetch Operations

Condition

Behavior

Load Prefetch

Upon detection of privileged_action, DAE_* or VA_watchpoint
exception…

Traps NOP‡

If page table entry has cp = 0, e = 1, and cv = 0 for Prefetch for
Several Reads

Traps NOP‡

If page table entry has nfo = 1 for a non-NoFault access… Traps NOP‡

If page table entry has w = 0 for any prefetch for write access
(fcn = 2, 3, 22, or 23)…

Traps NOP‡

Instruction blocks until cache line filled? Yes No

Programming
Note

The intended use of this variant is for streaming relatively small
amounts of data into the primary data cache of the virtual
processor.
222 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

PREFETCH

There are Weak and Strong versions of this prefetch variant; fcn = 1 is Weak and fcn = 21 is Strong.
The choice of Weak or Strong variant controls the degree of effort that the virtual processor may
expend to obtain the data.

7.73.3.3 Prefetch for Several Writes (and Possibly Reads) (fcn = 2,
22(1616))

The intent of this variant is to cause movement of data in preparation for multiple writes.

There are Weak and Strong versions of this prefetch variant; fcn = 2 is Weak and fcn = 22 is Strong.
The choice of Weak or Strong variant controls the degree of effort that the virtual processor may
expend to obtain the data.

7.73.3.4 Prefetch for One Write (fcn = 3, 23(1716))

The intent of this variant is to initiate movement of data in preparation for a single write. This variant
indicates that, if possible, the data cache should be minimally disturbed by the data written to this
address, because those data are not expected to be reused (read or written) soon after they have been
written once.

There are Weak and Strong versions of this prefetch variant; fcn = 3 is Weak and fcn = 23 is Strong.
The choice of Weak or Strong variant controls the degree of effort that the virtual processor may
expend to obtain the data.

7.73.3.5 Prefetch Page (fcn = 4)

In a virtual memory system, the intended action of this variant is for hardware (or privileged or
hyperprivileged software) to initiate asynchronous mapping of the referenced virtual address
(assuming that it is legal to do so).

In a non-virtual-memory system or if the addressed page is already mapped, this variant has no
effect.

7.73.3.6 Prefetch to Nearest Unified Cache (fcn = 17(1116))

The intent of this variant is to cause movement of data into the nearest unified (combined instruction
and data) cache. At the successful completion of this variant, the selected line from memory will be in
the unified cache in the shared state, and in caches (if any) below it in the cache hierarchy.

Prefetch to Nearest Unified Cache is a Strong prefetch variant.

Programming
Note

The intended use of this variant is in streaming medium amounts
of data into the virtual processor without disturbing the data in
the primary data cache memory.

Programming
Note

An example use of this variant is to initialize a cache line, in
preparation for a partial write.

Implementation
Note

On a multiprocessor system, this variant indicates that exclusive
ownership of the addressed data is needed. Therefore, it may
have the additional effect of obtaining exclusive ownership of the
addressed cache line.

Programming
Note

Prefetch Page is used is to avoid a later page fault for the given
address, or at least to shorten the latency of a page fault.

Implementation
Note

The mapping required by Prefetch Page may be performed by
privileged software, hyperprivileged software, or hardware.
CHAPTER 7 • Instructions 223

PREFETCH
7.73.4 Implementation-Dependent Prefetch Variants (fcn = 16, 18,
19, and 24–31)
IMPL. DEP. #103-V9-Ms10(c): Whether and how PREFETCH fcns 16, 18, 19 and 24-31 are
implemented are implementation dependent. If a variant is not implemented, it must execute as a
NOP.

7.73.5 Additional Notes

Exceptions illegal_instruction

Programming
Note

Prefetch instructions do have some “cost to execute”. As long as
the cost of executing a prefetch instruction is well less than the
cost of a cache miss, use of prefetching provides a net gain in
performance.

It does not appear that prefetching causes a significant number of
useless fetches from memory, though it may increase the rate of
useful fetches (and hence the bandwidth), because it more
efficiently overlaps computing with fetching.

Programming
Note

A compiler that generates PREFETCH instructions should
generate each of the variants where its use is most appropriate.
That will help portable software be reasonably efficient across a
range of hardware configurations.

Implementation
Note

Any effects of a data prefetch operation in privileged code should
be reasonable (for example, no page prefetching is allowed within
code that handles page faults). The benefits of prefetching should
be available to most privileged code.

Implementation
Note

A prefetch from a nonprefetchable location has no effect. It is up
to memory management hardware to determine how locations
are identified as not prefetchable.
224 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

RDasr
7.74 Read Ancillary State Register
Instruction rs1 Operation Assembly Language Syntax Class

RDYD 0 Read Y register (deprecated) rd %y, regrd D2

— 1 Reserved

RDCCR 2 Read Condition Codes register (CCR) rd %ccr, regrd A1

RDASI 3 Read ASI register rd %asi, regrd A1

RDTICKPnpt 4 Read TICK register rd %tick, regrd A1

RDPC 5 Read Program Counter (PC) rd %pc, regrd A2

RDFPRS 6 Read Floating-Point Registers Status (FPRS)
register

rd %fprs, regrd A1

— 7−14
(7-0E16)

Reserved

See text 15 (F16) MEMBAR or Reserved; see text

— 16-18
(1016-1216)

Reserved (impl. dep. #8-V8-Cs20, 9-V8-Cs20)

RDGSR 19 (1316) Read General Status register (GSR) rd %gsr, regrd A1

— 20–21
(1416-1516)

Reserved (impl. dep. #8-V8-Cs20, #9-V8-Cs20)

RDSOFTINTP 22 (1616) Read per-virtual processor Soft Interrupt register
(SOFTINT)

rd %softint, regrd A2

RDTICK_CMPRP 23 (1716) Read Tick Compare register (TICK_CMPR) rd %tick_cmpr, regrd N−
RDSTICKPnpt 24 (1816) Read System Tick Register (STICK) rd %stick†, regrd A2

RDSTICK_CMPRP 25 (1916) Read System Tick Compare register
(STICK_CMPR)

rd %stick_cmpr†, regrd A2

— 26 (2016) Reserved (impl. dep. #8-V8-Cs20, #9-V8-Cs20)

— 27 (1B16) Reserved (impl. dep. #8-V8-Cs20, 9-V8-Cs20)

— 28 (1C16) Implementation dependent
(impl. dep. #8-V8-Cs20, 9-V8-Cs20)

— 29 (1D16) Implementation dependent
(impl. dep. #8-V8-Cs20, 9-V8-Cs20)

— 30 (1E16) Implementation dependent
(impl. dep. #8-V8-Cs20, 9-V8-Cs20)

— 31 (1F16) Implementation dependent
(impl. dep. #8-V8-Cs20, 9-V8-Cs20)

† The original assembly language names for %stick and %stick_cmpr were, respectively, %sys_tick and %sys_tick_cmpr, which are
now deprecated. Over time, assemblers will support the new %stick and %stick_cmpr names for these registers (which are consistent with
%tick and %tick_cmpr). In the meantime, some existing assemblers may only recognize the original names.

31 141924 18 13 02530 29

10 rd 10 1000 rs1 —
12

i=0
CHAPTER 7 • Instructions 225

RDasr

Description The Read Ancillary State Register (RDasr) instructions copy the contents of the state register specified

by rs1 into R[rd].

An RDasr instruction with rs1 = 0 is a (deprecated) RDY instruction (which should not be used in new
software).

RDPC copies the contents of the PC register into R[rd]. If PSTATE.am = 0, the full 64-bit address is
copied into R[rd]. If PSTATE.am = 1, only a 32-bit address is saved; PC{31:0} is copied to R[rd]{31:0}
and R[rd]{63:32} is set to 0. (closed impl. dep. #125-V9-Cs10)

RDFPRS waits for all pending FPops and loads of floating-point registers to complete before reading
the FPRS register.

The following values of rs1 are reserved for future versions of the architecture: 1, 7–14, 16-18, 20-21,
and 26-27.

IMPL. DEP. #47-V8-Cs20: RDasr instructions with rd in the range 28–31 are available for
implementation-dependent uses (impl. dep. #8-V8-Cs20). For an RDasr instruction with rs1 in the
range 28–31, the following are implementation dependent:
■ the interpretation of bits 13:0 and 29:25 in the instruction
■ whether the instruction is nonprivileged or privileged (impl. dep. #9-V8-Cs20), and
■ whether an attempt to execute the instruction causes an illegal_instruction exception.

See Ancillary State Registers on page 48 for more detailed information regarding ASR registers.

Exceptions. An attempt to execute a RDasr instruction when any of the following conditions are
true causes an illegal_instruction exception:

■ rs1 = 15 and rd ≠ 0 (reserved for future versions of the architecture)
■ rs1 = 1, 7–14, 16-18, 20-21, or 26-27 (reserved for future versions of the architecture)
■ instruction bits 13:0 are nonzero

An attempt to execute a RDTICK_CMPR, RDSTICK_CMPR, or RDSOFTINT instruction in
nonprivileged mode (PSTATE.priv = 0) causes a privileged_opcode exception (impl. dep. #250-U3-
Cs10).

Nonprivileged software can read the TICK register by using the RDTICK instruction, but only when
nonprivileged access to TICK is enabled. If nonprivileged access is disabled, an attempt by
nonprivileged software to read the TICK register using the RDTICK instruction causes a
privileged_action exception. See Tick (tick) Register (ASR 4) on page 52 for details.

The RDY instruction is deprecated. It is recommended that all instructions that
reference the Y register be avoided.

Implementation
Note

See the section “Read/Write Ancillary State Registers (ASRs)” in
Extending the UltraSPARC Architecture, contained in the separate
volume UltraSPARC Architecture Application Notes, for a
discussion of extending the SPARC V9 instruction set using read/
write ASR instructions.

Note Ancillary state registers may include (for example) timer, counter,
diagnostic, self-test, and trap-control registers.

SPARC V8
Compatibility

Note

The SPARC V8 RDPSR, RDWIM, and RDTBR instructions do not
exist in the UltraSPARC Architecture, since the PSR, WIM, and
TBR registers do not exist.
226 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

RDasr

Nonprivileged software can read the STICK register by using the RDSTICK instruction, but only
when nonprivileged access to STICK is enabled. If nonprivileged access is disabled, an attempt by
nonprivileged software to read the STICK register causes a privileged_action exception. See System
Tick (stick) Register (ASR 24) on page 57 for details.

Privileged software can read the STICK register with the RDSTICK instruction, but only when
privileged access to STICK is enabled by hyperprivileged software. An attempt by privileged
software to read the STICK register when privileged access is disabled causes a privileged_action
exception. See System Tick (stick) Register (ASR 24) on page 57 for details.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute a RDGSR instruction causes an fp_disabled exception.

In nonprivileged mode (PSTATE.priv = 0), the following cause a privileged_action exception:

■ execution of RDTICK when nonprivileged access to TICK is disabled

■ execution of RDSTICK when nonprivileged access to STICK is disabled

Exceptions illegal_instruction
privileged_opcode
fp_disabled
privileged_action

See Also RDPR on page 228
WRasr on page 285

Implementation
Note

RDasr shares an opcode with MEMBAR; it is distinguished by
rs1 = 15 or rd = 0 or (i = 0, and bit 12 = 0).
CHAPTER 7 • Instructions 227

RDPR
7.75 Read Privileged Register

Description The rs1 field in the instruction determines the privileged register that is read. There are MAXPTL copies
of the TPC, TNPC, TT, and TSTATE registers. A read from one of these registers returns the value in
the register indexed by the current value in the trap level register (TL). A read of TPC, TNPC, TT, or
TSTATE when the trap level is zero (TL = 0) causes an illegal_instruction exception.

An attempt to execute a RDPR instruction when any of the following conditions exist causes an
illegal_instruction exception:
■ instruction bits 13:0 are nonzero
■ rs1 = 15, or 17 ≤ rs1 ≤ 31 (reserved rs1 values)
■ 0 ≤ rs1 ≤ 3 (attempt to read TPC, TNPC,TSTATE, or TT register) while TL = 0 (current trap level is

zero) and the virtual processor is in privileged mode.

An attempt to execute a RDPR instruction in nonprivileged mode (PSTATE.priv = 0) causes a
privileged_opcode exception.

Instruction op3 Operation rs1 Assembly Language Syntax Class

RDPRP 10 1010 Read Privileged register
TPC
TNPC
TSTATE
TT
TICK
TBA
PSTATE
TL
PIL
CWP
CANSAVE
CANRESTORE
CLEANWIN
OTHERWIN
WSTATE
Reserved
GL
Reserved

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17–31

rdpr
rdpr
rdpr
rdpr
rdpr
rdpr
rdpr
rdpr
rdpr
rdpr
rdpr
rdpr
rdpr
rdpr
rdpr

rdpr

%tpc, regrd
%tnpc, regrd
%tstate, regrd
%tt, regrd
%tick, regrd
%tba, regrd
%pstate, regrd
%tl, regrd
%pil, regrd
%cwp, regrd
%cansave, regrd
%canrestore, regrd
%cleanwin, regrd
%otherwin, regrd
%wstate, regrd

%gl, regrd

A2?
A1?

Implementation
Note

In nonprivileged mode, illegal_instruction exception due to
0 ≤ rs1 ≤ 3 and TL = 0 does not occur; the privileged_opcode
exception occurs instead.

31 141924 18 13 02530 29

10 rd op3 rs1 —
228 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

RDPR
Exceptions illegal_instruction
privileged_opcode

See Also RDasr on page 225
WRPR on page 288

Historical Note On some early SPARC implementations, floating-point exceptions
could cause deferred traps. To ensure that execution could be
correctly resumed after handling a deferred trap, hardware
provided a floating-point queue (FQ), from which the address of
the trapping instruction could be obtained by the trap handler.
The front of the FQ was accessed by executing a RDPR instruction
with rs1 = 15.

On UltraSPARC Architecture implementations, all floating-point
traps are precise. When one occurs, the address of a trapping
instruction can be found by the trap handler in the TPC[TL], so no
floating-point queue (FQ) is needed or implemented (impl. dep.
#25-V8) and RDPR with rs1 = 15 generates an illegal_instruction
exception.
CHAPTER 7 • Instructions 229

RESTORE
7.76 RESTORE

Description The RESTORE instruction restores the register window saved by the last SAVE instruction executed
by the current process. The in registers of the old window become the out registers of the new
window. The in and local registers in the new window contain the previous values.

Furthermore, if and only if a fill trap is not generated, RESTORE behaves like a normal ADD
instruction, except that the source operands R[rs1] or R[rs2] are read from the old window (that is, the
window addressed by the original CWP) and the sum is written into R[rd] of the new window (that is,
the window addressed by the new CWP).

Description (Effect on Privileged State)
If a RESTORE instruction does not trap, it decrements the CWP (mod N_REG_WINDOWS) to restore the
register window that was in use prior to the last SAVE instruction executed by the current process. It
also updates the state of the register windows by decrementing CANRESTORE and incrementing
CANSAVE.

If the register window to be restored has been spilled (CANRESTORE = 0), then a fill trap is
generated. The trap vector for the fill trap is based on the values of OTHERWIN and WSTATE, as
described in Trap Type for Spi ll/Fill Traps on page 355. The fill trap handler is invoked with CWP set to
point to the window to be filled, that is, old CWP – 1.

An attempt to execute a RESTORE instruction when i = 0 and instruction bits 12:5 are nonzero causes
an illegal_instruction exception.

Instruction op3 Operation Assembly Language Syntax Class

RESTORE 11 1101 Restore Caller’s Window restore regrs1, reg_or_imm, regrd A1

Note CWP arithmetic is performed modulo the number of implemented
windows, N_REG_WINDOWS.

Programming
Notes

Typically, if a RESTORE instruction traps, the fill trap handler
returns to the trapped instruction to reexecute it. So, although the
ADD operation is not performed the first time (when the
instruction traps), it is performed the second time the instruction
executes. The same applies to changing the CWP.

There is a performance trade-off to consider between using SAVE/
RESTORE and saving and restoring selected registers explicitly.

Programming
Note

The vectoring of fill traps can be controlled by setting the value of
the OTHERWIN and WSTATE registers appropriately. For details,
see the section “Splitting the Register Windows” in Software
Considerations, contained in the separate volume UltraSPARC
Architecture Application Notes.

The fill handler normally will end with a RESTORED instruction
followed by a RETRY instruction.

31 24 02530 29 19 18

rd10 11 1101 —

14 13 12 5 4

rs1 rs2i=0

10 11 1101 rs1 simm13i=1rd
230 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

RESTORE

Exceptions illegal_instruction

fill_n_normal (n = 0–7)
fill_n_other (n = 0–7)

See Also SAVE on page 237
CHAPTER 7 • Instructions 231

RESTORED
7.77 RESTORED

Description RESTORED adjusts the state of the register-windows control registers.

RESTORED increments CANRESTORE.

If CLEANWIN < (N_REG_WINDOWS−1), then RESTORED increments CLEANWIN.

If OTHERWIN = 0, RESTORED decrements CANSAVE. If OTHERWIN ≠ 0, it decrements OTHERWIN.

If CANSAVE = 0 or CANRESTORE ≥ (N_REG_WINDOWS − 2) just prior to execution of a RESTORED
instruction, the subsequent behavior of the processor is undefined. In neither of these cases can
RESTORED generate a register window state that is both valid (see Register Window State Definition on
page 60) and consistent with the state prior to the RESTORED.

An attempt to execute a RESTORED instruction when instruction bits 18:0 are nonzero causes an
illegal_instruction exception.

An attempt to execute a RESTORED instruction in nonprivileged mode (PSTATE.priv = 0) causes a
privileged_opcode exception.

Exceptions illegal_instruction
privileged_opcode

See Also ALLCLEAN on page 99
INVALW on page 173
NORMALW on page 213
OTHERW on page 215
SAVED on page 239

Instruction Operation Assembly Language Syntax Class

RESTOREDP Window has been restored restored A1

Programming
Notes

Trap handler software for register window fills use the
RESTORED instruction to indicate that a window has been filled
successfully. For details, see the section “Example Code for Spill
Handler” in Software Considerations, contained in the separate
volume UltraSPARC Architecture Application Notes.

Normal privileged software would probably not execute a
RESTORED instruction from trap level zero (TL = 0). However, it
is not illegal to do so and doing so does not cause a trap.

Executing a RESTORED instruction outside of a window fill trap
handler is likely to create an inconsistent window state. Hardware
will not signal an exception, however, since maintaining a
consistent window state is the responsibility of privileged
software.

31 1924 18 02530 29

10 fcn = 0 0001 11 0001 —
232 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

RETRY
7.78 RETRY

Description The RETRY instruction restores the saved state from TSTATE[TL] (GL, CCR, ASI, PSTATE, and CWP),
sets PC and NPC, and decrements TL. RETRY sets PC←TPC[TL] and NPC←TNPC[TL] (normally, the
values of PC and NPC saved at the time of the original trap).

If the saved TPC[TL] and TNPC[TL] were not altered by trap handler software, RETRY causes
execution to resume at the instruction that originally caused the trap (“retrying” it).

Execution of a RETRY instruction in the delay slot of a control-transfer instruction produces
undefined results.

If software writes invalid or inconsistent state to TSTATE before executing RETRY, virtual processor
behavior during and after execution of the RETRY instruction is undefined.

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address are masked out
(set to 0) before being sent to the memory system.

IMPL. DEP. #417-S10: If (1) TSTATE[TL].pstate.am = 1 and (2) a RETRY instruction is executed
(which sets PSTATE.am to ’1’ by restoring the value from TSTATE[TL].pstate.am to PSTATE.am), it is
implementation dependent whether the RETRY instruction masks (zeroes) the more-significant 32 bits
of the values it places into PC and NPC.

Exceptions. An attempt to execute the RETRY instruction when either of the following conditions is
true causes an illegal_instruction exception:

■ instruction bits 18:0 are nonzero
■ TL = 0 and the virtual processor is in privileged mode (PSTATE.priv = 1)

An attempt to execute a RETRY instruction in nonprivileged mode (PSTATE.priv = 0) causes a
privileged_opcode exception.

If the Trap on Control Transfer feature is implemented (impl. dep. #450-S20) and PSTATE.tct = 1, then
RETRY generates a control_transfer_instruction exception instead of causing a control transfer. When a
control_transfer_instruction trap occurs, PC (the address of the RETRY instruction) is stored in
TPC[TL] and the value of NPC from before the RETRY was executed is stored in TNPC[TL]. The full
64-bit (nonmasked) PC and NPC values are stored in TPC[TL] and TNPC[TL], regardless of the value
of PSTATE.am.

Note that since PSTATE.tct is automatically set to 0 during entry to a trap handler, the execution of a
RETRY instruction at the end of a trap handler will not cause a control_transfer_instruction exception
unless trap handler software has explicitly set PSTATE.tct to 1. During execution of the RETRY
instruction, the value of PSTATE.tct is restored from TSTATE.

Instruction op3 Operation Assembly Language Syntax Class

RETRYP 11 1110 Return from Trap (retry trapped instruction) retry A1

Programming
Note

The DONE and RETRY instructions are used to return from
privileged trap handlers.

Implementation
Note

In nonprivileged mode, illegal_instruction exception due to TL = 0
does not occur. The privileged_opcode exception occurs instead,
regardless of the current trap level (TL).

10 11 1110fcn =0 0001 —
31 1924 18 02530 29
CHAPTER 7 • Instructions 233

RETRY
Exceptions illegal_instruction
privileged_opcode
control_transfer_instruction (impl. dep. #450-S20)

See Also DONE on page 114

Programming
Note

RETRY should not normally be used to return from the trap
handler for the control_transfer_instruction exception itself.

See the DONE instruction on page 114 and Trap on Control
Transfer (tct) on page 65.
234 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

RETURN
7.79 RETURN

Description The RETURN instruction causes a register-indirect delayed transfer of control to the target address
and has the window semantics of a RESTORE instruction; that is, it restores the register window prior
to the last SAVE instruction. The target address is “R[rs1] + R[rs2]” if i = 0, or
“R[rs1] + sign_ext(simm13)” if i = 1. Registers R[rs1] and R[rs2] come from the old window.

Like other DCTIs, all effects of RETURN (including modification of CWP) are visible prior to
execution of the delay slot instruction.

An attempt to execute a RETURN instruction when bits 29:25 are nonzero causes an illegal_instruction
exception.

An attempt to execute a RETURN instruction when i = 0 and instruction bits 12:5 are nonzero causes
an illegal_instruction exception.

A RETURN instruction may cause a window_fill exception as part of its RESTORE semantics.

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address are masked out
(set to 0) before being sent to the memory system. However, if a control_transfer_instruction trap
occurs, the full 64-bit (nonmasked) address of the RETURN instruction is written into TPC[TL].

A RETURN instruction causes a mem_address_not_aligned exception if either of the two least-
significant bits of the target address is nonzero.

If the Trap on Control Transfer feature is implemented (impl. dep. #450-S20) and PSTATE.tct = 1, then
RETURN generates a control_transfer_instruction exception instead of causing a control transfer.

Instruction op3 Operation Assembly Language Syntax Class

RETURN 11 1001 Return return address A1

Programming
Note

To reexecute the trapped instruction when returning from a user trap
handler, use the RETURN instruction in the delay slot of a JMPL
instruction, for example:

jmpl %l6,%g0 !Trapped PC supplied to user trap handler
return %l7 !Trapped NPC supplied to user trap handler

Programming
Note

A routine that uses a register window may be structured either as:
save %sp,-framesize, %sp
. . .
ret ! “ret” is shorthand for “jmpl %i7 + 8,%g0”
restore ! A useful instruction in the delay slot, such as

! “restore %o2,%l2,%o0”
or as:

save %sp, -framesize, %sp
. . .
return %i7 + 8
nop ! Instead of “nop”, could do some useful work in the

! caller’s window, for example, “or %o1,%o2,%o0”

31 24 02530 29 19 18

—10 op3 —

14 13 12 5 4

rs1 rs2i=0

10 op3 rs1 simm13i=1—
CHAPTER 7 • Instructions 235

RETURN

Exceptions illegal_instruction

fill_n_normal (n = 0–7)
fill_n_other (n = 0–7)
mem_address_not_aligned
control_transfer_instruction (impl. dep. #450-S20)
236 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

SAVE
7.80 SAVE

Description The SAVE instruction provides the routine executing it with a new register window. The out registers
from the old window become the in registers of the new window. The contents of the out and the local
registers in the new window are zero or contain values from the executing process; that is, the process
sees a clean window.

Furthermore, if and only if a spill trap is not generated, SAVE behaves like a normal ADD instruction,
except that the source operands R[rs1] or R[rs2] are read from the old window (that is, the window
addressed by the original CWP) and the sum is written into R[rd] of the new window (that is, the
window addressed by the new CWP).

Description (Effect on Privileged State)
If a SAVE instruction does not trap, it increments the CWP (mod N_REG_WINDOWS) to provide a new
register window and updates the state of the register windows by decrementing CANSAVE and
incrementing CANRESTORE.

If the new register window is occupied (that is, CANSAVE = 0), a spill trap is generated. The trap
vector for the spill trap is based on the value of OTHERWIN and WSTATE. The spill trap handler is
invoked with the CWP set to point to the window to be spilled (that is, old CWP + 2).

An attempt to execute a SAVE instruction when i = 0 and instruction bits 12:5 are nonzero causes an
illegal_instruction exception.

Instruction op3 Operation Assembly Language Syntax Class

SAVE 11 1100 Save Caller’s Window save regrs1, reg_or_imm, regrd A1

Note CWP arithmetic is performed modulo the number of implemented
windows, N_REG_WINDOWS.

Programming
Notes

Typically, if a SAVE instruction traps, the spill trap handler returns
to the trapped instruction to reexecute it. So, although the ADD
operation is not performed the first time (when the instruction
traps), it is performed the second time the instruction executes.
The same applies to changing the CWP.

The SAVE instruction can be used to atomically allocate a new
window in the register file and a new software stack frame in
memory. For details, see the section “Leaf-Procedure
Optimization” in Software Considerations, contained in the
separate volume UltraSPARC Architecture Application Notes.

There is a performance trade-off to consider between using SAVE/
RESTORE and saving and restoring selected registers explicitly.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

10 op3 rs1 simm13i=1rd
CHAPTER 7 • Instructions 237

SAVE

If CANSAVE ≠ 0, the SAVE instruction checks whether the new window needs to be cleaned. It causes
a clean_window trap if the number of unused clean windows is zero, that is, (CLEANWIN –
CANRESTORE) = 0. The clean_window trap handler is invoked with the CWP set to point to the

window to be cleaned (that is, old CWP + 1).

Exceptions illegal_instruction
spill_n_normal (n = 0–7)
spill_n_other (n = 0–7)
clean_window

See Also RESTORE on page 230

Programming
Note

The vectoring of spill traps can be controlled by setting the value
of the OTHERWIN and WSTATE registers appropriately. For
details, see the section “Splitting the Register Windows” in
Software Considerations, contained in the separate volume
UltraSPARC Architecture Application Notes.

The spill handler normally will end with a SAVED instruction
followed by a RETRY instruction.
238 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

SAVED
7.81 SAVED

Description SAVED adjusts the state of the register-windows control registers.

SAVED increments CANSAVE. If OTHERWIN = 0, SAVED decrements CANRESTORE. If
OTHERWIN ≠ 0, it decrements OTHERWIN.

If CANSAVE ≥ (N_REG_WINDOWS − 2) or CANRESTORE = 0 just prior to execution of a SAVED
instruction, the subsequent behavior of the processor is undefined. In neither of these cases can
SAVED generate a register window state that is both valid (see Register Window State Definition on
page 60) and consistent with the state prior to the SAVED.

An attempt to execute a SAVED instruction when instruction bits 18:0 are nonzero causes an
illegal_instruction exception.

An attempt to execute a SAVED instruction in nonprivileged mode (PSTATE.priv = 0) causes a
privileged_opcode exception.

Exceptions illegal_instruction
privileged_opcode

See Also ALLCLEAN on page 99
INVALW on page 173
NORMALW on page 213
OTHERW on page 215
RESTORED on page 232

Instruction Operation Assembly Language Syntax Class

SAVEDP Window has been saved saved A1

Programming
Notes

Trap handler software for register window spills uses the SAVED
instruction to indicate that a window has been spilled
successfully. For details, see the section “Example Code for Spill
Handler” in Software Considerations, contained in the separate
volume UltraSPARC Architecture Application Notes.

Normal privileged software would probably not execute a SAVED
instruction from trap level zero (TL = 0). However, it is not illegal
to do so and doing so does not cause a trap.

Executing a SAVED instruction outside of a window spill trap
handler is likely to create an inconsistent window state. Hardware
will not signal an exception, however, since maintaining a
consistent window state is the responsibility of privileged
software.

31 1924 18 02530 29

10 fcn = 0 0000 11 0001 —
CHAPTER 7 • Instructions 239

SDIV, SDIVcc (Deprecated)
7.82 Signed Divide (64-bit ÷ 32-bit)

Description The signed divide instructions perform 64-bit by 32-bit division, producing a 32-bit result. If i = 0, they
compute “(Y :: R[rs1]{31:0}) ÷ R[rs2]{31:0}”. Otherwise (that is, if i = 1), the divide instructions
compute “(Y :: R[rs1]{31:0}) ÷ (sign_ext(simm13){31:0})”. In either case, if overflow does not occur, the
less significant 32 bits of the integer quotient are sign- or zero-extended to 64 bits and are written into
R[rd].

The contents of the Y register are undefined after any 64-bit by 32-bit integer divide operation.

Signed Divide Signed divide (SDIV, SDIVcc) assumes a signed integer doubleword dividend
(Y :: lower 32 bits of R[rs1]) and a signed integer word divisor (lower 32 bits of R[rs2] or lower 32 bits
of sign_ext(simm13)) and computes a signed integer word quotient (R[rd]).

Signed division rounds an inexact quotient toward zero. For example, –7 ÷ 4 equals the rational
quotient of –1.75, which rounds to –1 (not –2) when rounding toward zero.

The result of a signed divide can overflow the low-order 32 bits of the destination register R[rd] under
certain conditions. When overflow occurs, the largest appropriate signed integer is returned as the
quotient in R[rd]. The conditions under which overflow occurs and the value returned in R[rd] under
those conditions are specified in TABLE 7-13.

When no overflow occurs, the 32-bit result is sign-extended to 64 bits and written into register R[rd].

The SDIV and SDIVcc instructions are deprecated and should not be used in new
software. The SDIVX instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class

SDIVD 00 1111 Signed Integer Divide sdiv regrs1, reg_or_imm, regrd D2

SDIVccD 01 1111 Signed Integer Divide and modify cc’s sdivcc regrs1, reg_or_imm, regrd D2

TABLE 7-13 SDIV / SDIVcc Overflow Detection and Value Returned

Condition Under Which Overflow Occurs Value Returned in R[rd]

Rational quotient ≥ 231 231 −1 (0000 0000 7FFF FFFF16)

Rational quotient ≤ −231 − 1 −231 (FFFF FFFF 8000 000016)

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
240 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

SDIV, SDIVcc (Deprecated)

SDIV does not affect the condition code bits. SDIVcc writes the integer condition code bits as shown
in the following table. Note that negative (N) and zero (Z) are set according to the value of R[rd] after
it has been set to reflect overflow, if any.

An attempt to execute an SDIV or SDIVcc instruction when i = 0 and instruction bits 12:5 are nonzero
causes an illegal_instruction exception.

Exceptions illegal_instruction
division_by_zero

See Also MULScc on page 209
RDY on page 225
UDIV[cc] on page 281

Bit Effect on bit of SDIVcc instruction

icc.n Set to 1 if R[rd]{31} = 1; otherwise, set to 0

icc.z Set to 1 if R[rd]{31:0} = 0; otherwise, set to 0

icc.v Set to 1 if overflow (per TABLE 7-12); otherwise set to 0

icc.c Set to 0

xcc.n Set to 1 if R[rd]{63} = 1; otherwise, set to 0

xcc.z Set to 1 if R[rd]{63:0} = 0; otherwise, set to 0

xcc.v Set to 0

xcc.c Set to 0
CHAPTER 7 • Instructions 241

SETHI
7.83 SETHI

Description SETHI zeroes the least significant 10 bits and the most significant 32 bits of R[rd] and replaces bits 31
through 10 of R[rd] with the value from its imm22 field.

SETHI does not affect the condition codes.

Some SETHI instructions with rd = 0 have special uses:

■ rd = 0 and imm22 = 0: defined to be a NOP instruction (described in No Operation)

■ rd = 0 and imm22 ≠ 0 may be used to trigger hardware performance counters in some UltraSPARC
Architecture implementations (for details, see implementation-specific documentation).

Exceptions None

Instruction op2 Operation Assembly Language Syntax Class

SETHI 100 Set High 22 Bits of Low Word sethi
sethi

const22, regrd
%hi (value), regrd

A1

Programming
Note

The most common form of 64-bit constant generation is creating
stack offsets whose magnitude is less than 232. The code below can
be used to create the constant 0000 0000 ABCD 123416:

sethi %hi(0xabcd1234),%o0
or %o0, 0x234, %o0

The following code shows how to create a negative constant. Note:
The immediate field of the xor instruction is sign extended and can
be used to place 1’s in all of the upper 32 bits. For example, to set the
negative constant FFFF FFFF ABCD 123416:

sethi %hi(0x5432edcb),%o0! note 0x5432EDCB, not 0xABCD1234
xor %o0, 0x1e34, %o0! part of imm. overlaps upper bits

31 2224 21 02530 29

00 rd op2 imm22
242 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

SIAM
7.84 Set Interval Arithmetic Mode

Description The SIAM instruction sets the GSR.im and GSR.irnd fields as follows:

GSR.im ← mode{2}

GSR.irnd ← mode{1:0}

An attempt to execute a SIAM instruction when instruction bits 29:25, 18:14, or 4:3 are nonzero causes
an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute a SIAM instruction causes an fp_disabled exception.

Exceptions illegal_instruction
fp_disabled

Instruction opf Operation Assembly Language Syntax Class

SIAM 0 1000 0001 Set the interval arithmetic mode fields in the GSR siam siam_mode B1

Note When GSR.im is set to 1, all subsequent floating-point
instructions requiring round mode settings derive rounding-
mode information from the General Status Register (GSR.irnd)
instead of the Floating-Point State Register (FSR.rd).

Note When GSR.im = 1, the processor operates in standard floating-
point mode regardless of the setting of FSR.ns.

VIS 2

31 24 02530 29 19 18 14 13 5 4

—10 110110 opf— — mode
3 2
CHAPTER 7 • Instructions 243

SLL / SRL / SRA
7.85 Shift

Description These instructions perform logical or arithmetic shift operations.

When i = 0 and x = 0, the shift count is the least significant five bits of R[rs2].
When i = 0 and x = 1, the shift count is the least significant six bits of R[rs2]. When i = 1 and x = 0, the
shift count is the immediate value specified in bits 0 through 4 of the instruction.
When i = 1 and x = 1, the shift count is the immediate value specified in bits 0 through 5 of the
instruction.

TABLE 7-14 shows the shift count encodings for all values of i and x.

SLL and SLLX shift all 64 bits of the value in R[rs1] left by the number of bits specified by the shift
count, replacing the vacated positions with zeroes, and write the shifted result to R[rd].

SRL shifts the low 32 bits of the value in R[rs1] right by the number of bits specified by the shift
count. Zeroes are shifted into bit 31. The upper 32 bits are set to zero, and the result is written to R[rd].

SRLX shifts all 64 bits of the value in R[rs1] right by the number of bits specified by the shift count.
Zeroes are shifted into the vacated high-order bit positions, and the shifted result is written to R[rd].

SRA shifts the low 32 bits of the value in R[rs1] right by the number of bits specified by the shift
count and replaces the vacated positions with bit 31 of R[rs1]. The high-order 32 bits of the result are
all set with bit 31 of R[rs1], and the result is written to R[rd].

SRAX shifts all 64 bits of the value in R[rs1] right by the number of bits specified by the shift count
and replaces the vacated positions with bit 63 of R[rs1]. The shifted result is written to R[rd].

Instruction op3 x Operation Assembly Language Syntax Class

SLL 10 0101 0 Shift Left Logical – 32 bits sll regrs1, reg_or_shcnt, regrd A1

SRL 10 0110 0 Shift Right Logical – 32 bits srl regrs1, reg_or_shcnt, regrd A1

SRA 10 0111 0 Shift Right Arithmetic– 32 bits sra regrs1, reg_or_shcnt, regrd A1

SLLX 10 0101 1 Shift Left Logical – 64 bits sllx regrs1, reg_or_shcnt, regrd A1

SRLX 10 0110 1 Shift Right Logical – 64 bits srlx regrs1, reg_or_shcnt, regrd A1

SRAX 10 0111 1 Shift Right Arithmetic – 64 bits srax regrs1, reg_or_shcnt, regrd A1

TABLE 7-14 Shift Count Encodings

i x Shift Count

0 0 bits 4–0 of R[rs2]

0 1 bits 5–0 of R[rs2]

1 0 bits 4–0 of instruction

1 1 bits 5–0 of instruction

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0 x

rd10 op3 —rs1 shcnt32i=1x=0

rd10 op3 —rs1 shcnt64i=1x=1

611
244 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

SLL / SRL / SRA

No shift occurs when the shift count is 0, but the high-order bits are affected by the 32-bit shifts as
noted above.

These instructions do not modify the condition codes.

An attempt to execute a SLL, SRL, or SRA instruction when instruction bits 11:5 are nonzero causes an
illegal_instruction exception.

An attempt to execute a SLLX, SRLX, or SRAX instruction when either of the following conditions
exist causes an illegal_instruction exception:

■ i = 0 or x = 0 and instruction bits 11:5 are nonzero
■ x = 1 and instruction bits 11:6 are nonzero

Exceptions illegal_instruction

Programming
Notes

“Arithmetic left shift by 1 (and calculate overflow)” can be
effected with the ADDcc instruction.

The instruction “sra regrs1,0,regrd” can be used to convert a 32-
bit value to 64 bits, with sign extension into the upper word. “srl
regrs1,0,regrd” can be used to clear the upper 32 bits of R[rd].
CHAPTER 7 • Instructions 245

SMUL, SMULcc (Deprecated)
7.86 Signed Multiply (32-bit)

Description The signed multiply instructions perform 32-bit by 32-bit multiplications, producing 64-bit results.
They compute “R[rs1]{31:0} × R[rs2]{31:0}” if i = 0, or “R[rs1]{31:0} × sign_ext(simm13){31:0}” if i = 1.
They write the 32 most significant bits of the product into the Y register and all 64 bits of the product
into R[rd].

Signed multiply instructions (SMUL, SMULcc) operate on signed integer word operands and compute
a signed integer doubleword product.

SMUL does not affect the condition code bits. SMULcc writes the integer condition code bits, icc and
xcc, as shown below.

An attempt to execute a SMUL or SMULcc instruction when i = 0 and instruction bits 12:5 are nonzero
causes an illegal_instruction exception.

Exceptions illegal_instruction

See Also UMUL[cc] on page 283

The SMUL and SMULcc instructions are deprecated and should not be used in
new software. The MULX instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class

SMULD 00 1011 Signed Integer Multiply smul regrs1, reg_or_imm, regrd D2

SMULccD 01 1011 Signed Integer Multiply and modify cc’s smulcc regrs1, reg_or_imm, regrd D2

Bit Effect on bit by execution of SMULcc

icc.n Set to 1 if product{31} = 1; otherwise, set to 0
icc.z Set to 1 if product{31:0}= 0; otherwise, set to 0
icc.v Set to 0
icc.c Set to 0
xcc.n Set to 1 if product{63} = 1; otherwise, set to 0
xcc.z Set to 1 if product{63:0} = 0; otherwise, set to 0
xcc.v Set to 0
xcc.c Set to 0

Note 32-bit negative (icc.n) and zero (icc.z) condition codes are set
according to the less significant word of the product, not
according to the full 64-bit result.

Programming
Notes

32-bit overflow after SMUL or SMULcc is indicated by
Y ≠ (R[rd] >> 31), where “>>” indicates 32-bit arithmetic right-
shift.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
246 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

STB / STH / STW / STX
7.87 Store Integer

† synonyms: stub, stsb ‡ synonyms: stuh, stsh ◊ synonyms: st, stuw, stsw

Description The store integer instructions (except store doubleword) copy the whole extended (64-bit) integer, the
less significant word, the least significant halfword, or the least significant byte of R[rd] into memory.

These instructions access memory using the implicit ASI (see page 76). The effective address for these
instructions is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if i = 1.

A successful store (notably, STX) integer instruction operates atomically.

An attempt to execute a store integer instruction when i = 0 and instruction bits 12:5 are nonzero
causes an illegal_instruction exception.

STH causes a mem_address_not_aligned exception if the effective address is not halfword-aligned.
STW causes a mem_address_not_aligned exception if the effective address is not word-aligned. STX
causes a mem_address_not_aligned exception if the effective address is not doubleword-aligned.

Exceptions illegal_instruction
mem_address_not_aligned
VA_watchpoint

See Also STTW on page 265

Instruction op3 Operation Assembly Language Syntax Class

STB 00 0101 Store Byte stb† regrd, [address] A1

STH 00 0110 Store Halfword sth‡ regrd, [address] A1

STW 00 0100 Store Word stw◊ regrd, [address] A1

STX 00 1110 Store Extended Word stx regrd, [address] A1

rd11 op3 rs1 simm13i=1

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 i=0 — rs2
CHAPTER 7 • Instructions 247

STBA / STHA / STWA / STXA
7.88 Store Integer into Alternate Space

† synonyms: stuba, stsba ‡ synonyms: stuha, stsha ◊ synonyms: sta, stuwa, stswa

Description The store integer into alternate space instructions copy the whole extended (64-bit) integer, the less
significant word, the least significant halfword, or the least significant byte of R[rd] into memory.

Store integer to alternate space instructions contain the address space identifier (ASI) to be used for
the store in the imm_asi field if i = 0, or in the ASI register if i = 1. The access is privileged if bit 7 of
the ASI is 0; otherwise, it is not privileged. The effective address for these instructions is
“R[rs1] + R[rs2]” if i = 0, or “R[rs1]+sign_ext(simm13)” if i = 1.

A successful store (notably, STXA) instruction operates atomically.

In nonprivileged mode (PSTATE.priv = 0), if bit 7 of the ASI is 0, these instructions cause a
privileged_action exception. In privileged mode (PSTATE.priv = 1), if the ASI is in the range 3016 to
7F16, these instructions cause a privileged_action exception.

STHA causes a mem_address_not_aligned exception if the effective address is not halfword-aligned.
STWA causes a mem_address_not_aligned exception if the effective address is not word-aligned.
STXA causes a mem_address_not_aligned exception if the effective address is not doubleword-
aligned.

STBA, STHA, and STWA can be used with any of the following ASIs, subject to the privilege mode
rules described for the privileged_action exception above. Use of any other ASI with these instructions
causes a DAE_invalid_asi exception.

Instruction op3 Operation Assembly Language Syntax Class

STBAPASI 01 0101 Store Byte into Alternate Space stba†

stba
regrd, [regaddr] imm_asi
regrd, [reg_plus_imm] %asi

A1

STHAPASI 01 0110 Store Halfword into Alternate Space stha‡

stha
regrd, [regaddr] imm_asi
regrd, [reg_plus_imm] %asi

A1

STWAPASI 01 0100 Store Word into Alternate Space stwa◊

stwa
regrd, [regaddr] imm_asi
regrd, [reg_plus_imm] %asi

A1

STXAPASI 01 1110 Store Extended Word into Alternate
Space

stxa
stxa

regrd, [regaddr] imm_asi
regrd, [reg_plus_imm] %asi

A1

ASIs valid for STBA, STHA, and STWA

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_REAL_IO ASI_REAL_IO_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 simm13i=1
248 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

STBA / STHA / STWA / STXA

STXA can be used with any ASI (including, but not limited to, the above list), unless it either (a)
violates the privilege mode rules described for the privileged_action exception above or (b) is used
with any of the following ASIs, which causes a DAE_invalid_asi exception.

Exceptions mem_address_not_aligned (all except STBA)
privileged_action
VA_watchpoint
DAE_invalid_asi
DAE_privilege_violation
DAE_nfo_page

See Also LDA on page 176
STTWA on page 267

ASIs invalid for STXA (cause DAE_invalid_asi exception)

ASI_BLOCK_AS_IF_USER_PRIMARY ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE

ASI_BLOCK_AS_IF_USER_SECONDARY ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE

ASI_BLOCK_AS_IF_USER_PRIMARY ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE

ASI_BLOCK_AS_IF_USER_SECONDARY ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE

ASI_PST8_PRIMARY ASI_PST8_PRIMARY_LITTLE

ASI_PST8_SECONDARY ASI_PST8_SECONDARY_LITTLE

ASI_PRIMARY_NO_FAULT ASI_PRIMARY_NO_FAULT_LITTLE

ASI_SECONDARY_NO_FAULT ASI_SECONDARY_NO_FAULT_LITTLE

ASI_PST16_PRIMARY ASI_PST16_PRIMARY_LITTLE

ASI_PST16_SECONDARY ASI_PST16_SECONDARY_LITTLE

ASI_PST32_PRIMARY ASI_PST32_PRIMARY_LITTLE

ASI_PST32_SECONDARY ASI_PST32_SECONDARY_LITTLE

ASI_FL8_PRIMARY ASI_FL8_PRIMARY_LITTLE

ASI_FL8_SECONDARY ASI_FL8_SECONDARY_LITTLE

ASI_FL16_PRIMARY ASI_FL16_PRIMARY_LITTLE

ASI_FL16_SECONDARY ASI_FL16_SECONDARY_LITTLE

ASI_BLOCK_COMMIT_PRIMARY ASI_BLOCK_COMMIT_SECONDARY

ASI_BLOCK_PRIMARY ASI_BLOCK_PRIMARY_LITTLE

ASI_BLOCK_SECONDARY ASI_BLOCK_SECONDARY_LITTLE

V8 Compatibility
Note

The SPARC V8 STA instruction was renamed STWA in the
SPARC V9 architecture.
CHAPTER 7 • Instructions 249

STBLOCKF
7.89 Block Store

Description A block store instruction references one of several special block-transfer ASIs. Block-transfer ASIs
allow block stores to be performed accessing the same address space as normal stores. Little-endian
ASIs (those with an ‘L’ suffix) access data in little-endian format; otherwise, the access is assumed to
be big-endian. Byte swapping is performed separately for each of the eight double-precision registers
accessed by the instruction.

The STBLOCKF instruction is intended to be a processor-specific instruction,
which may or may not be implemented in future UltraSPARC Architecture
implementations. Therefore, it should only be used in platform-specific
dynamically-linked libraries or in software created by a runtime code generator
that is aware of the specific virtual processor implementation on which it is
executing.

Instruction
ASI
Value Operation Assembly Language Syntax Class

STBLOCKF 1616 64-byte block store to primary address
space, user privilege

stda
stda

fregrd, [regaddr] #ASI_BLK_AIUP
fregrd, [reg_plus_imm] %asi

A1
D2

STBLOCKF 1716 64-byte block store to secondary address
space, user privilege

stda
stda

fregrd, [regaddr] #ASI_BLK_AIUS
fregrd, [reg_plus_imm] %asi

A1
D2

STBLOCKF 1E16 64-byte block store to primary address
space, little-endian, user privilege

stda
stda

fregrd, [regaddr] #ASI_BLK_AIUPL
fregrd, [reg_plus_imm] %asi

A1
D2

STBLOCKF 1F16 64-byte block store to secondary address
space, little-endian, user privilege

stda
stda

fregrd, [regaddr] #ASI_BLK_AIUSL
fregrd, [reg_plus_imm] %asi

A1
D2

STBLOCKF F016 64-byte block store to primary address
space

stda
stda

fregrd, [regaddr] #ASI_BLK_P
fregrd, [reg_plus_imm] %asi

A1
D2

STBLOCKF F116 64-byte block store to secondary address
space

stda
stda

fregrd, [regaddr] #ASI_BLK_S
fregrd, [reg_plus_imm] %asi

A1
D2

STBLOCKF F816 64-byte block store to primary address
space, little-endian

stda
stda

fregrd, [regaddr] #ASI_BLK_PL
fregrd, [reg_plus_imm] %asi

A1
D2

STBLOCKF F916 64-byte block store to secondary address
space, little-endian

stda
stda

fregrd, [regaddr] #ASI_BLK_SL
fregrd, [reg_plus_imm] %asi

A1
D2

STBLOCKF E016 64-byte block commit store to primary
address space

stda
stda

fregrd, [regaddr] #ASI_BLK_COMMIT_P
fregrd, [reg_plus_imm] %asi

B1
D3

STBLOCKF E116 64-byte block commit store to secondary
address space

stda
stda

fregrd, [regaddr] #ASI_BLK_COMMIT_S
fregrd, [reg_plus_imm] %asi

B1
D3

Programming
Note

The block store instruction, STBLOCKF, and its companion,
LDBLOCKF, were originally defined to provide a fast
mechanism for block-copy operations.

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd11 110111 simm_13rs1 I=1

rd11 110111 imm_asirs1 rs2I=0
250 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

STBLOCKF

STBLOCKF stores data from the eight double-precision floating-point registers specified by rd to a 64-
byte-aligned memory area. The lowest-addressed eight bytes in memory are stored from the lowest-
numbered double-precision rd.

While a STBLOCKF operation is in progress, any of the following values may be observed in a
destination doubleword memory locations: (1) the old data value, (2) zero, or (3) the new data value.
When the operation is complete, only the new data values will be seen.

A Block Store only guarantees atomicity for each 64-bit (8-byte) portion of the 64 bytes that it stores.

A Block Store with Commit forces the data to be written to memory and invalidates copies in all
caches present. As a result, a Block Store with Commit maintains coherency with the I-cache1. It does
not, however, flush instructions that have already been fetched into the pipeline before executing the
modified code. If a Block Store with Commit is used to write modified instructions, a FLUSH
instruction must still be executed to guarantee that the instruction pipeline is flushed. (See
Synchronizing Instruction and Data Memory on page 318 for more information.)

ASIs E016 and E116 are only used for block store-with-commit operations; they are not available for
use by block load operations. See Block Load and Store ASIs on page 333 for more information.

Software should assume the following (where “load operation” includes load, load-store, and
LDBLOCKF instructions and “store operation” includes store, load-store, and STBLOCKF
instructions):

■ A STBLOCKF does not follow memory ordering with respect to earlier or later load operations. If
there is overlap between the addresses of destination memory locations of a STBLOCKF and the
source address of a later load operation, the load operation may receive incorrect data. Therefore, if
ordering with respect to later load operations is important, a MEMBAR #StoreLoad instruction
must be executed between the STBLOCKF and subsequent load operations.

■ A STBLOCKF does not follow memory ordering with respect to earlier or later store operations.
Those instructions’ data may commit to memory in a different order from the one in which those
instructions were issued. Therefore, if ordering with respect to later store operations is important, a
MEMBAR #StoreStore instruction must be executed between the STBLOCKF and subsequent
store operations.

■ STBLOCKFs do not follow register dependency interlocks, as do ordinary stores.

IMPL. DEP. #411-S10: The following aspects of the behavior of the block store (STBLOCKF)
instruction are implementation dependent:
■ The memory ordering model that STBLOCKF follows (other than as constrained by the rules

outlined above).
■ Whether VA_watchpoint exceptions are recognized on accesses to all 64 bytes of the STBLOCKF (the

recommended behavior), or only on accesses to the first eight bytes.

Compatibility
Note

Software written for older UltraSPARC implementations that
reads data being written by STBLOCKF instructions may or
may not allow for case (2) above. Such software should be
checked to verify that either it always waits for STBLOCKF to
complete before reading the values written, or that it will
operate correctly if an intermediate value of zero (not the
“old” or “new” data values) is observed while the STBLOCKF
operation is in progress.

1. Even if all data stores on a given implementation coherently update the instruction cache (see page 389), stores (other than Block Store
with Commit) on SPARC V9 implementations in general do not maintain coherency between instruction and data caches.

Programming
Note

STBLOCKF is intended to be a processor-specific instruction (see
the warning at the top of page 250). If STBLOCKF must be used
in software intended to be portable across current and previous
processor implementations, then it must be coded to work in the
face of any implementation variation that is permitted by
implementation dependency #411-S10, described below.
CHAPTER 7 • Instructions 251

STBLOCKF

■ Whether STBLOCKFs to non-cacheable (TTE.cp = 0) pages execute in strict program order or not. If

not, a STBLOCKF to a non-cacheable page causes an illegal_instruction exception.
■ Whether STBLOCKF follows register dependency interlocks (as ordinary stores do).
■ Whether a non-Commit STBLOCKF forces the data to be written to memory and invalidates copies

in all caches present (as the Commit variants of STBLOCKF do).
■ Any other restrictions on the behavior of STBLOCKF, as described in implementation-specific

documentation.

Exceptions. An illegal_instruction exception occurs if the source floating-point registers are not
aligned on an eight-register boundary.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an attempt to
execute a STBLOCKF instruction causes an fp_disabled exception.

If the least significant 6 bits of the memory address are not all zero, a mem_address_not_aligned
exception occurs.

In nonprivileged mode (PSTATE.priv = 0), if bit 7 of the ASI is 0 (ASIs 1616, 1716, 1E16, and 1F16),
STBLOCKF causes a privileged_action exception.

An access caused by STBLOCKF may trigger a VA_watchpoint exception (impl. dep. #411-S10).

Exceptions illegal_instruction
fp_disabled
mem_address_not_aligned
privileged_action
VA_watchpoint (impl. dep. #411-S10)
DAE_privilege_violation
DAE_nfo_page

See Also LDBLOCKF on page 178

Implementation
Note

STBLOCKF shares an opcode with the STDFA, STPARTIALF,
and STSHORTF instructions; it is distinguished by the ASI used.
252 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

STF / STDF / STQF
7.90 Store Floating-Point

† Encoded floating-point register value, as described on page 51.

Description The store single floating-point instruction (STF) copies the contents of the 32-bit floating-point register
FS [rd] into memory.

The store double floating-point instruction (STDF) copies the contents of 64-bit floating-point register
FD[rd] into a word-aligned doubleword in memory. The unit of atomicity for STDF is 4 bytes (one
word).

The store quad floating-point instruction (STQF) copies the contents of 128-bit floating-point register
FQ[rd] into a word-aligned quadword in memory. The unit of atomicity for STQF is 4 bytes (one
word).

These instruction access memory using the implicit ASI (see page 76). The effective address for these
instructions is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if i = 1.

Exceptions. An attempt to execute a STF or STDF instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if the FPU is not present,
then an attempt to execute a STF or STDF instruction causes an fp_disabled exception.

STF causes a mem_address_not_aligned exception if the effective memory address is not word-
aligned.

STDF requires only word alignment in memory. However, if the effective address is word-aligned but
not doubleword-aligned, an attempt to execute an STDF instruction causes an
STDF_mem_address_not_aligned exception. In this case, trap handler software must emulate the
STDF instruction and return (impl. dep. #110-V9-Cs10(a)).

STQF requires only word alignment in memory. If the effective address is word-aligned but not
quadword-aligned, an attempt to execute an STQF instruction causes an
STQF_mem_address_not_aligned exception. In this case, trap handler software must emulate the
STQF instruction and return (impl. dep. #112-V9-Cs10(a)).

Instruction op3 rd Operation Assembly Language Class

STF 10 0100 0–31 Store Floating-Point register st fregrd, [address] A1

STDF 10 0111 † Store Double Floating-Point register std fregrd, [address] A1

STQF 10 0110 † Store Quad Floating-Point register stq fregrd, [address] C3

Programming
Note

Some compilers issued sequences of single-precision stores for
SPARC V8 processor targets when the compiler could not
determine whether doubleword or quadword operands were
properly aligned. For SPARC V9, since emulation of misaligned
stores is expected to be fast, compilers should issue sets of single-
precision stores only when they can determine that double- or
quadword operands are not properly aligned.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
CHAPTER 7 • Instructions 253

STF / STDF / STQF / STXFSR

An attempt to execute an STQF instruction when rd{1} ≠ 0 causes an fp_exception_other
(FSR.ftt = invalid_fp_register) exception.

Exceptions illegal_instruction
fp_disabled
STDF_mem_address_not_aligned
STQF_mem_address_not_aligned (not used in UltraSPARC Architecture 2007)
mem_address_not_aligned
fp_exception_other (FSR.ftt = invalid_fp_register (STQF only))
VA_watchpoint
DAE_privilege_violation
DAE_nfo_page

See Also Load Floating-Point Register on page 181
Block Store on page 250
Store Floating-Point into Alternate Space on page 255
Store Floating-Point State Register (Lower) on page 258
Store Short Floating-Point on page 263
Store Partial Floating-Point on page 260
Store Floating-Point State Register on page 269

Implementation
Note

Since UltraSPARC Architecture 2007 processors do not implement
in hardware instructions (including STQF) that refer to quad-
precision floating-point registers, the
STQF_mem_address_not_aligned and fp_exception_other (with
FSR.ftt = invalid_fp_register) exceptions do not occur in
hardware. However, their effects must be emulated by software
when the instruction causes an illegal_instruction exception and
subsequent trap.
254 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

STFA / STDFA / STQFA
7.91 Store Floating-Point into Alternate Space

† Encoded floating-point register value, as described on page 51.

Description The store single floating-point into alternate space instruction (STFA) copies the contents of the 32-bit
floating-point register FS [rd] into memory.

The store double floating-point into alternate space instruction (STDFA) copies the contents of 64-bit
floating-point register FD[rd] into a word-aligned doubleword in memory. The unit of atomicity for
STDFA is 4 bytes (one word).

The store quad floating-point into alternate space instruction (STQFA) copies the contents of 128-bit
floating-point register FQ[rd] into a word-aligned quadword in memory. The unit of atomicity for
STQFA is 4 bytes (one word).

Store floating-point into alternate space instructions contain the address space identifier (ASI) to be
used for the load in the imm_asi field if i = 0 or in the ASI register if i = 1. The access is privileged if
bit 7 of the ASI is 0; otherwise, it is not privileged. The effective address for these instructions is
“R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if i = 1.

Exceptions. STFA causes a mem_address_not_aligned exception if the effective memory address is
not word-aligned.

STDFA requires only word alignment in memory. However, if the effective address is word-aligned
but not doubleword-aligned, an attempt to execute an STDFA instruction causes an
STDF_mem_address_not_aligned exception. In this case, trap handler software must emulate the
STDFA instruction and return (impl. dep. #110-V9-Cs10(b)).

STQFA requires only word alignment in memory. However, if the effective address is word-aligned
but not quadword-aligned, an attempt to execute an STQFA instruction may cause an
STQF_mem_address_not_aligned exception. In this case, the trap handler software must emulate the
STQFA instruction and return (impl. dep. #112-V9-Cs10(b)).

Instruction op3 rd Operation Assembly Language Syntax Class

STFAPASI 11 0100 0–31 Store Floating-Point Register
to Alternate Space

sta
sta

fregrd, [regaddr] imm_asi
fregrd, [reg_plus_imm] %asi

A1

STDFAPASI 11 0111 † Store Double Floating-Point
Register to Alternate Space

stda
stda

fregrd, [regaddr] imm_asi
fregrd, [reg_plus_imm] %asi

A1

STQFAPASI 11 0110 † Store Quad Floating-Point
Register to Alternate Space

stqa
stqa

fregrd, [regaddr] imm_asi
fregrd, [reg_plus_imm] %asi

C3

Programming
Note

Some compilers issued sequences of single-precision stores for
SPARC V8 processor targets when the compiler could not
determine whether doubleword or quadword operands were
properly aligned. For SPARC V9, since emulation of misaligned
stores is expected to be fast, compilers should issue sets of single-
precision stores only when they can determine that double- or
quadword operands are not properly aligned.

Implementation
Note

STDFA shares an opcode with the STBLOCKF, STPARTIALF,
and STSHORTF instructions; it is distinguished by the ASI used.

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 simm13i=1
CHAPTER 7 • Instructions 255

STFA / STDFA / STQFA

An attempt to execute an STQFA instruction when rd{1} ≠ 0 causes an fp_exception_other
(FSR.ftt = invalid_fp_register) exception.

In nonprivileged mode (PSTATE.priv = 0), if bit 7 of the ASI is 0, this instruction causes a
privileged_action exception. In privileged mode (PSTATE.priv = 1), if the ASI is in the range 3016 to
7F16, this instruction causes a privileged_action exception.

STFA and STQFA can be used with any of the following ASIs, subject to the privilege mode rules
described for the privileged_action exception above. Use of any other ASI with these instructions
causes a DAE_invalid_asi exception.

STDFA can be used with any of the following ASIs, subject to the privilege mode rules described for
the privileged_action exception above. Use of any other ASI with the STDFA instruction causes a
DAE_invalid_asi exception.

Implementation
Note

Since UltraSPARC Architecture 2007 processors do not implement
in hardware instructions (including STQFA) that refer to quad-
precision floating-point registers, the
STQF_mem_address_not_aligned and fp_exception_other (with
FSR.ftt = invalid_fp_register) exceptions do not occur in
hardware. However, their effects must be emulated by software
when the instruction causes an illegal_instruction exception and
subsequent trap.

ASIs valid for STFA and STQFA

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_REAL_IO ASI_REAL_IO_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

ASIs valid for STDFA

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_REAL_IO ASI_REAL_IO_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

ASI_BLOCK_AS_IF_USER_PRIMARY † ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE †
ASI_BLOCK_AS_IF_USER_SECONDARY † ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE †
ASI_BLOCK_PRIMARY † ASI_BLOCK_PRIMARY_LITTLE †
ASI_BLOCK_SECONDARY † ASI_BLOCK_SECONDARY_LITTLE †
ASI_BLOCK_COMMIT_PRIMARY †
ASI_BLOCK_COMMIT_SECONDARY †

ASI_FL8_PRIMARY ‡ ASI_FL8_PRIMARY_LITTLE ‡
ASI_FL8_SECONDARY ‡ ASI_FL8_SECONDARY_LITTLE ‡
ASI_FL16_PRIMARY ‡ ASI_FL16_PRIMARY_LITTLE ‡
ASI_FL16_SECONDARY ‡ ASI_FL16_SECONDARY_LITTLE ‡

ASI_PST8_PRIMARY * ASI_PST8_PRIMARY_LITTLE *
ASI_PST8_SECONDARY * ASI_PST8_SECONDARY_LITTLE *
ASI_PST16_PRIMARY * ASI_PST16_PRIMARY_LITTLE *
ASI_PST16_SECONDARY * ASI_PST16_SECONDARY_LITTLE *
ASI_PST32_PRIMARY * ASI_PST32_PRIMARY_LITTLE *
256 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

STFA / STDFA / STQFA
Exceptions fp_disabled
STDF_mem_address_not_aligned
STQF_mem_address_not_aligned (STQFA only) (not used in UA-2007)
mem_address_not_aligned
fp_exception_other (FSR.ftt = invalid_fp_register (STQFA only))
privileged_action
VA_watchpoint
DAE_invalid_asi
DAE_privilege_violation
DAE_nfo_page

See Also Load Floating-Point from Alternate Space on page 183
Block Store on page 250
Store Floating-Point on page 253
Store Short Floating-Point on page 263
Store Partial Floating-Point on page 260

ASI_PST32_SECONDARY * ASI_PST32_SECONDARY_LITTLE *

† If this ASI is used with the opcode for STDFA, the STBLOCKF instruction is
executed instead of STFA. For behavior of STBLOCKF, see Block Store on page 250.

‡ If this ASI is used with the opcode for STDFA, the STSHORTF instruction
is executed instead of STDFA. For behavior of STSHORTF, see
Store Short Floating-Point on page 263.

* If this ASI is used with the opcode for STDFA, the STPARTIALF instruction
is executed instead of STDFA. For behavior of STPARTIALF, see
Store Partial Floating-Point on page 260.

ASIs valid for STDFA
CHAPTER 7 • Instructions 257

STFSR (Deprecated)
7.92 Store Floating-Point State Register (Lower)

Description The Store Floating-point State Register (Lower) instruction (STFSR) waits for any currently executing
FPop instructions to complete, and then it writes the less-significant 32 bits of FSR into memory.

After writing the FSR to memory, STFSR zeroes FSR.ftt

STFSR accesses memory using the implicit ASI (see page 76). The effective address for this instruction
is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if i = 1.

An attempt to execute a STFSR instruction when i = 0 and instruction bits 12:5 are nonzero causes an
illegal_instruction exception.

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if the FPU is not present,
then an attempt to execute a STFSR instruction causes an fp_disabled exception.

STFSR causes a mem_address_not_aligned exception if the effective memory address is not word-
aligned.

Exceptions illegal_instruction
fp_disabled
mem_address_not_aligned
VA_watchpoint
DAE_privilege_violation
DAE_nfo_page

The STFSR instruction is deprecated and should not be used in new software.
The STXFSR instruction should be used instead.

Opcode op3 rd Operation Assembly Language Syntax Class

STFSRD 10 0101 0 Store Floating-Point State Register (Lower) st %fsr, [address] D2

10 0101 1-31 (see page 269)

V9 Compatibility
Note

FSR.ftt should not be zeroed until it is known that the store will
not cause a precise trap.

V9 Compatibility
Note

Although STFSR is deprecated, UltraSPARC Architecture
implementations continue to support it for compatibility with
existing SPARC V8 software. The STFSR instruction is defined
to store only the less-significant 32 bits of the FSR into memory,
while STXFSR allows SPARC V9 software to store all 64 bits of
the FSR.

Implementation
Note

STFSR shares an opcode with the STXFSR instruction (and
possibly with other implementation-dependent instructions);
they are differentiated by the instruction rd field. An attempt to
execute the op = 102, op3 = 10 01012 opcode with an invalid rd
value causes an illegal_instruction exception.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
258 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

STFSR (Deprecated)

See Also Store Floating-Point on page 253

Store Floating-Point State Register on page 269
CHAPTER 7 • Instructions 259

STPARTIALF
7.93 Store Partial Floating-Point

Description The partial store instructions are selected by one of the partial store ASIs with the STDFA instruction.

Two 32-bit, four 16-bit, or eight 8-bit values from the 64-bit floating-point register FD[rd] are
conditionally stored at the address specified by R[rs1], using the mask specified in R[rs2].
STPARTIALF has the effect of merging selected data from its source register, FD[rd], into the existing
data at the corresponding destination locations.

Instruction
ASI

Value Operation Assembly Language Syntax † Class

STPARTIALF C016 Eight 8-bit conditional stores to
primary address space

stda fregrd, regrs2, [regrs1] #ASI_PST8_P B1

STPARTIALF C116 Eight 8-bit conditional stores to
secondary address space

stda fregrd, regrs2, [regrs1] #ASI_PST8_S B1

STPARTIALF C816 Eight 8-bit conditional stores to
primary address space, little-endian

stda fregrd, regrs2, [regrs1] #ASI_PST8_PL B1

STPARTIALF C916 Eight 8-bit conditional stores to
secondary address space, little-
endian

stda fregrd, regrs2, [regrs1] #ASI_PST8_SL B1

STPARTIALF C216 Four 16-bit conditional stores to
primary address space

stda fregrd, regrs2, [regrs1] #ASI_PST16_P B1

STPARTIALF C316 Four 16-bit conditional stores to
secondary address space

stda fregrd, regrs2, [regrs1] #ASI_PST16_S B1

STPARTIALF CA16 Four 16-bit conditional stores to
primary address space, little-endian

stda fregrd, regrs2, [regrs1] #ASI_PST16_PL B1

STPARTIALF CB16 Four 16-bit conditional stores to
secondary address space, little-
endian

stda fregrd, regrs2, [regrs1] #ASI_PST16_SL B1

STPARTIALF C416 Two 32-bit conditional stores to
primary address space

stda fregrd, regrs2, [regrs1] #ASI_PST32_P B1

STPARTIALF C516 Two 32-bit conditional stores to
secondary address space

stda fregrd, regrs2, [regrs1] #ASI_PST32_S B1

STPARTIALF CC16 Two 32-bit conditional stores to
primary address space, little-endian

stda fregrd, regrs2, [regrs1] #ASI_PST32_PL B1

STPARTIALF CD16 Two 32-bit conditional stores to
secondary address space, little-
endian

stda fregrd, regrs2, [regrs1] #ASI_PST32_SL B1

† The original assembly language syntax for a Partial Store instruction (“stda fregrd, [regrs1] regrs2, imm_asi”) has been dep-
recated because of inconsistency with the rest of the SPARC assembly language. Over time, assemblers will support the new syntax
for this instruction. In the meantime, some existing assemblers may only recognize the original syntax.

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd11 110111 imm_asirs1 rs2i=0
260 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

STPARTIALF

The mask value in R[rs2] has the same format as the result specified by the pixel compare instructions
(see SIMD Signed Compare on page 126). The most significant bit of the mask (not of the entire register)
corresponds to the most significant part of FD[rd]. The data is stored in little-endian form in memory
if the ASI name has an “L” (or “_LITTLE”) suffix; otherwise, it is stored in big-endian format.

FIGURE 7-29 Mask Format for Partial Store

Exceptions. A Partial Store instruction can cause a virtual watchpoint exception when the following
conditions are met:
■ The virtual address in R[rs1] matches the address in the VA Data Watchpoint Register.
■ The byte store mask in R[rs2] indicates that a byte, halfword or word is to be stored.

■ The Virtual (Physical) Data Watchpoint Mask in ASI_DCU_WATCHPOINT_CONTROL_REG indicates
that one or more of the bytes to be stored at the watched address is being watched.

For data watchpoints of partial stores in UltraSPARC Architecture 2007, the byte store mask (R[rs2])
in the Partial Store instruction is ignored, and a watchpoint exception can occur even if the mask is
zero (that is, no store will take place). The ASI_DCU_WATCHPOINT_CONTROL_REG Data Watchpoint
masks are only checked for nonzero value (watchpoint enabled) (impl. dep. #249).

An attempt to execute a STPARTIALF instruction when i = 1 causes an illegal_instruction exception.

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if the FPU is not present,
then an attempt to execute a STPARTIALF instruction causes an fp_disabled exception.

STPARTIALF causes a mem_address_not_aligned exception if the effective memory address is not
word-aligned.

STPARTIALF requires only word alignment in memory for eight byte stores. If the effective address is
word-aligned but not doubleword-aligned, it generates an STDF_mem_address_not_aligned
exception. In this case, the trap handler software shall emulate the STDFA instruction and return.

32-bit partial store mask
 01

mask for bits 63:32
mask for bits 31:0

16-bit partial store mask
01

mask for bits 63:48
mask for bits 47:32

23

mask for bits 31:16
mask for bits 15:0

8-bit partial store mask

mask for bits 63:56

mask for bits 7:0

01234567

mask for bits 55:48

mask for bits 15:8

. . .

for ASI_PST8_*

for ASI_PST16_*

for ASI_PST32_*

R[rs2]

R[rs2]

R[rs2]

..

.

CHAPTER 7 • Instructions 261

STPARTIALF

IMPL. DEP. #249-U3-Cs10: For an STPARTIAL instruction, the following aspects of data watchpoints
are implementation dependent: (a) whether data watchpoint logic examines the byte store mask in
R[rs2] or it conservatively behaves as if every Partial Store always stores all 8 bytes, and (b) whether
data watchpoint logic examines individual bits in the Virtual (Physical) Data Watchpoint Mask in the
LSU Control register DCUCR to determine which bytes are being watched or (when the Watchpoint
Mask is nonzero) it conservatively behaves as if all 8 bytes are being watched.

ASIs C016–C516 and C816–CD16 are only used for partial store operations. In particular, they should
not be used with the LDDFA instruction; however, if any of them is used, the resulting behavior is
specified in the LDDFA instruction description on page 185.

Exceptions illegal_instruction
fp_disabled
mem_address_not_aligned
VA_watchpoint (see text)
DAE_privilege_violation
DAE_nc_page
DAE_nfo_page

Implementation
Note

STPARTIALF shares an opcode with the STBLOCKF, STDFA,
and STSHORTF instructions; it is distinguished by the ASI used.
262 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

STSHORTF
7.94 Store Short Floating-Point

Description The short floating-point store instruction allows 8- and 16-bit stores to be performed from the floating-
point registers. Short stores access the low-order 8 or 16 bits of the register.

Little-endian ASIs transfer data in little-endian format from memory; otherwise, memory is assumed
to be big-endian. Short stores are typically used with the FALIGNDATA instruction (see Align Data on
page 121) to assemble or store 64 bits on noncontiguous components.

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if the FPU is not present,
then an attempt to execute a STSHORTF instruction causes an fp_disabled exception.

STSHORTF causes a mem_address_not_aligned exception if the effective memory address is not
halfword-aligned.

An 8-bit STSHORTF (using ASI D016, D116, D816, or D916) can be performed to an arbitrary memory
address (no alignment requirement).

A 16-bit STSHORTF (using ASI D216, D316, DA16, or DB16) to an address that is not halfword-aligned
(an odd address) causes a mem_address_not_aligned exception.

Exceptions fp_disabled
mem_address_not_aligned
VA_watchpoint

Instruction
ASI

Value Operation Assembly Language Syntax Class

STSHORTF D016 8-bit store to primary address space stda
stda

fregrd, [regaddr] #ASI_FL8_P
fregrd, [reg_plus_imm] %asi

B1
D2

STSHORTF D116 8-bit store to secondary address space stda
stda

fregrd, [regaddr] #ASI_FL8_S
fregrd, [reg_plus_imm] %asi

B1
D2

STSHORTF D816 8-bit store to primary address space,
little-endian

stda
stda

fregrd, [regaddr] #ASI_FL8_PL
fregrd, [reg_plus_imm] %asi

B1
D2

STSHORTF D916 8-bit store to secondary address space,
little-endian

stda
stda

fregrd, [regaddr] #ASI_FL8_SL
fregrd, [reg_plus_imm] %asi

B1
D2

STSHORTF D216 16-bit store to primary address space stda
stda

fregrd, [regaddr] #ASI_FL16_P
fregrd, [reg_plus_imm] %asi

B1
D2

STSHORTF D316 16-bit store to secondary address space stda
stda

fregrd, [regaddr] #ASI_FL16_S
fregrd, [reg_plus_imm] %asi

B1
D2

STSHORTF DA16 16-bit store to primary address space,
little-endian

stda
stda

fregrd, [regaddr] #ASI_FL16_PL
fregrd, [reg_plus_imm] %asi

B1
D2

STSHORTF DB16 16-bit store to secondary address space,
little-endian

stda
stda

fregrd, [regaddr] #ASI_FL16_SL
fregrd, [reg_plus_imm] %asi

B1
D2

Implementation
Note

STSHORTF shares an opcode with the STBLOCKF, STDFA, and
STPARTIALF instructions; it is distinguished by the ASI used.

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd11 110111 simm_13rs1 i=1

rd11 110111 imm_asirs1 rs2i=0
CHAPTER 7 • Instructions 263

STSHORTF

DAE_privilege_violation
DAE_nfo_page
264 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

STTW (Deprecated)
7.95 Store Integer Twin Word

Description The store integer twin word instruction (STTW) copies two words from an R register pair into
memory. The least significant 32 bits of the even-numbered R register are written into memory at the
effective address, and the least significant 32 bits of the following odd-numbered R register are
written into memory at the “effective address + 4”.

The least significant bit of the rd field of a store twin word instruction is unused and should always be
set to 0 by software.

STTW accesses memory using the implicit ASI (see page 76). The effective address for this instruction
is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if i = 1.

A successful store twin word instruction operates atomically.

IMPL. DEP. #108-V9a: It is implementation dependent whether STTW is implemented in hardware. If
not, an attempt to execute it will cause an unimplemented_STTW exception. (STTW is implemented in
hardware in all UltraSPARC Architecture 2007 implementations.)

An attempt to execute an STTW instruction when either of the following conditions exist causes an
illegal_instruction exception:

■ destination register number rd is an odd number (is misaligned)
■ i = 0 and instruction bits 12:5 are nonzero

STTW causes a mem_address_not_aligned exception if the effective address is not doubleword-
aligned.

With respect to little-endian memory, an STTW instruction behaves as if it is composed of two 32-bit
stores, each of which is byte-swapped independently before being written into its respective
destination memory word.

The STTW instruction is deprecated and should not be used in new software.
The STX instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax † Class

STTWD 00 0111 Store Integer Twin Word sttw regrd, [address] D2

 † The original assembly language syntax for this instruction used an “std” instruction mnemonic, which is now
deprecated. Over time, assemblers will support the new “sttw” mnemonic for this instruction. In the meantime,
some existing assemblers may only recognize the original “std” mnemonic.

Programming
Notes

STTW is provided for compatibility with SPARC V8. It may
execute slowly on SPARC V9 machines because of data path and
register-access difficulties. Therefore, software should avoid
using STTW.

If STTW is emulated in software, STX instruction should be
used for the memory access in the emulation code to preserve
atomicity.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
CHAPTER 7 • Instructions 265

STTW (Deprecated)

Exceptions unimplemented_STTW (not used in UltraSPARC Architecture 2007)

illegal_instruction
mem_address_not_aligned
VA_watchpoint
DAE_privilege_violation
DAE_nfo_page

See Also STW/STX on page 247
STTWA on page 267
266 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

STTWA (Deprecated)
7.96 Store Integer Twin Word into Alternate Space

Description The store twin word integer into alternate space instruction (STTWA) copies two words from an R
register pair into memory. The least significant 32 bits of the even-numbered R register are written
into memory at the effective address, and the least significant 32 bits of the following odd-numbered
R register are written into memory at the “effective address + 4”.

The least significant bit of the rd field of an STTWA instruction is unused and should always be set to
0 by software.

Store integer twin word to alternate space instructions contain the address space identifier (ASI) to be
used for the store in the imm_asi field if i = 0, or in the ASI register if i = 1. The access is privileged if
bit 7 of the ASI is 0; otherwise, it is not privileged. The effective address for these instructions is
“R[rs1] + R[rs2]” if i = 0, or “R[rs1]+sign_ext(simm13)” if i = 1.

A successful store twin word instruction operates atomically.

With respect to little-endian memory, an STTWA instruction behaves as if it is composed of two 32-bit
stores, each of which is byte-swapped independently before being written into its respective
destination memory word.

IMPL. DEP. #108-V9b: It is implementation dependent whether STTWA is implemented in hardware.
If not, an attempt to execute it will cause an unimplemented_STTW exception. (STTWA is
implemented in hardware in all UltraSPARC Architecture 2007 implementations.)

An attempt to execute an STTWA instruction with a misaligned (odd) destination register number rd
causes an illegal_instruction exception.

STTWA causes a mem_address_not_aligned exception if the effective address is not doubleword-
aligned.

In nonprivileged mode (PSTATE.priv = 0), if bit 7 of the ASI is 0, this instruction causes a
privileged_action exception. In privileged mode (PSTATE.priv = 1), if the ASI is in the range 3016 to
7F16, this instruction causes a privileged_action exception.

The STTWA instruction is deprecated and should not be used in new software.
The STXA instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class

STTWAD, PASI 01 0111 Store Twin Word into Alternate Space sttwa
sttwa

regrd [regaddr] imm_asi
regrd [reg_plus_imm] %asi

D2, Y3‡

 † The original assembly language syntax for this instruction used an “stda” instruction mnemonic, which is now deprecated. Over
time, assemblers will support the new “sttwa” mnemonic for this instruction. In the meantime, some existing assemblers may only
recognize the original “stda” mnemonic.

 ‡ Y3 for restricted ASIs (0016-7F16); D2 for unrestricted ASIs (8016-FF16)

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 simm13i=1
CHAPTER 7 • Instructions 267

STTWA (Deprecated)

STTWA can be used with any of the following ASIs, subject to the privilege mode rules described for
the privileged_action exception above. Use of any other ASI with this instruction causes a
DAE_invalid_asi exception (impl. dep. #300-U4-Cs10).

Exceptions unimplemented_STTW
illegal_instruction
mem_address_not_aligned
privileged_action
VA_watchpoint
DAE_invalid_asi
DAE_privilege_violation
DAE_nfo_page

See Also STWA/STXA on page 248
STTW on page 265

ASIs valid for STTWA

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_REAL_IO ASI_REAL_IO_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

Programming
Note

Nontranslating ASIs (see page 321) may only be accessed using
STXA (not STTWA) instructions. If an STTWA referencing a
nontranslating ASI is executed, per the above table, it generates
a DAE_invalid_asi exception (impl. dep. #300-U4-Cs10).

Programming
Note

STTWA is provided for compatibility with existing SPARC V8
software. It may execute slowly on SPARC V9 machines because
of data path and register-access difficulties. Therefore, software
should avoid using STTWA.

If STTWA is emulated in software, the STXA instruction should
be used for the memory access in the emulation code to preserve
atomicity.
268 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

STXFSR
7.97 Store Floating-Point State Register

Description The store floating-point state register instruction (STXFSR) waits for any currently executing FPop
instructions to complete, and then it writes all 64 bits of the FSR into memory.

STXFSR zeroes FSR.ftt after writing the FSR to memory.

STXFSR accesses memory using the implicit ASI (see page 76). The effective address for this
instruction is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if i = 1.

Exceptions. An attempt to execute a STXFSR instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if the FPU is not present,
then an attempt to execute a STXFSR instruction causes an fp_disabled exception.

If the effective address is not doubleword-aligned, an attempt to execute an STXFSRinstruction causes
a mem_address_not_aligned exception.

Exceptions illegal_instruction
fp_disabled
mem_address_not_aligned
VA_watchpoint
DAE_privilege_violation
DAE_nfo_page

See Also Load Floating-Point State Register on page 199
Store Floating-Point on page 253
Store Floating-Point State Register (Lower) on page 258

Instruction op3 rd Operation Assembly Language Class

10 0101 0 (see page 258)

STXFSR 10 0101 1 Store Floating-Point State register stx %fsr, [address] A1

— 10 0101 2–31 Reserved

Implementation
Note

FSR.ftt should not be zeroed by STXFSR until it is known that the
store will not cause a precise trap.

Implementation
Note

STXFSR shares an opcode with the (deprecated) STFSR
instruction (and possibly with other implementation-dependent
instructions); they are differentiated by the instruction rd field.
An attempt to execute the op = 102, op3 = 10 01012 opcode with
an invalid rd value causes an illegal_instruction exception.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
CHAPTER 7 • Instructions 269

SUB
7.98 Subtract

Description These instructions compute “R[rs1] – R[rs2]” if i = 0, or
“R[rs1] – sign_ext(simm13)” if i = 1, and write the difference into R[rd].

SUBC and SUBCcc (“SUBtract with carry”) also subtract the CCR register’s 32-bit carry (icc.c) bit; that
is, they compute “R[rs1] – R[rs2] – icc.c” or
“R[rs1] – sign_ext(simm13) – icc.c” and write the difference into R[rd].

SUBcc and SUBCcc modify the integer condition codes (CCR.icc and CCR.xcc). A 32-bit overflow
(CCR.icc.v) occurs on subtraction if bit 31 (the sign) of the operands differs and bit 31 (the sign) of the
difference differs from R[rs1]{31}. A 64-bit overflow (CCR.xcc.v) occurs on subtraction if bit 63 (the
sign) of the operands differs and bit 63 (the sign) of the difference differs from R[rs1]{63}.

An attempt to execute a SUB instruction when i = 0 and instruction bits 12:5 are nonzero causes an
illegal_instruction exception.

Exceptions illegal_instruction

Instruction op3 Operation Assembly Language Syntax Class

SUB 00 0100 Subtract sub regrs1, reg_or_imm, regrd A1

SUBcc 01 0100 Subtract and modify cc’s subcc regrs1, reg_or_imm, regrd A1

SUBC 00 1100 Subtract with Carry subc regrs1, reg_or_imm, regrd A1

SUBCcc 01 1100 Subtract with Carry and modify cc’s subccc regrs1, reg_or_imm, regrd A1

Programming
Notes

A SUBcc instruction with rd = 0 can be used to effect a signed or
unsigned integer comparison. See the cmp synthetic instruction in
Appendix C, Assembly Language Syntax.

SUBC and SUBCcc read the 32-bit condition codes’ carry bit
(CCR.icc.c), not the 64-bit condition codes’ carry bit (CCR.xcc.c).

rd10 op3 —rs1 rs2i=0

31 24 02530 29 19 18 14 13 12 5 4

rd10 op3 rs1 simm13i=1
270 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

SWAP (Deprecated)
7.99 Swap Register with Memory

Description SWAP exchanges the less significant 32 bits of R[rd] with the contents of the word at the addressed
memory location. The upper 32 bits of R[rd] are set to 0. The operation is performed atomically, that
is, without allowing intervening interrupts or deferred traps. In a multiprocessor system, two or more
virtual processors executing CASA, CASXA, SWAP, SWAPA, LDSTUB, or LDSTUBA instructions
addressing any or all of the same doubleword simultaneously are guaranteed to execute them in an
undefined, but serial, order.

SWAP accesses memory using the implicit ASI (see page 76). The effective address for these
instructions is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if i = 1.

An attempt to execute a SWAP instruction when i = 0 and instruction bits 12:5 are nonzero causes an
illegal_instruction exception.

If the effective address is not word-aligned, an attempt to execute a SWAP instruction causes a
mem_address_not_aligned exception.

The coherence and atomicity of memory operations between virtual processors and I/O DMA
memory accesses are implementation dependent (impl. dep. #120-V9).

Exceptions illegal_instruction
mem_address_not_aligned
VA_watchpoint
DAE_privilege_violation
DAE_nfo_page

The SWAP instruction is deprecated and should not be used in new software.
The CASA or CASXA instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class

SWAPD 00 1111 Swap Register with Memory swap [address], regrd D2

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
CHAPTER 7 • Instructions 271

SWAPA (Deprecated)
7.100 Swap Register with Alternate Space Memory

Description SWAPA exchanges the less significant 32 bits of R[rd] with the contents of the word at the addressed
memory location. The upper 32 bits of R[rd] are set to 0. The operation is performed atomically, that
is, without allowing intervening interrupts or deferred traps. In a multiprocessor system, two or more
virtual processors executing CASA, CASXA, SWAP, SWAPA, LDSTUB, or LDSTUBA instructions
addressing any or all of the same doubleword simultaneously are guaranteed to execute them in an
undefined, but serial, order.

The SWAPA instruction contains the address space identifier (ASI) to be used for the load in the
imm_asi field if i = 0, or in the ASI register if i = 1. The access is privileged if bit 7 of the ASI is 0;
otherwise, it is not privileged. The effective address for this instruction is “R[rs1] + R[rs2]” if i = 0, or
“R[rs1] + sign_ext(simm13)” if i = 1.

This instruction causes a mem_address_not_aligned exception if the effective address is not word-
aligned. It causes a privileged_action exception if PSTATE.priv = 0 and bit 7 of the ASI is 0.

The coherence and atomicity of memory operations between virtual processors and I/O DMA
memory accesses are implementation dependent (impl. dep #120-V9).

If the effective address is not word-aligned, an attempt to execute a SWAPA instruction causes a
mem_address_not_aligned exception.

In nonprivileged mode (PSTATE.priv = 0), if bit 7 of the ASI is 0, this instruction causes a
privileged_action exception. In privileged mode (PSTATE.priv = 1), if the ASI is in the range 3016 to
7F16, this instruction causes a privileged_action exception.

SWAPA can be used with any of the following ASIs, subject to the privilege mode rules described for
the privileged_action exception above. Use of any other ASI with this instruction causes a
DAE_invalid_asi exception.

The SWAPA instruction is deprecated and should not be used in new software.
The CASXA instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class

SWAPAD, PASI 01 1111 Swap register with Alternate Space
Memory

swapa
swapa

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

D2, Y3‡

 ‡ Y3 for restricted ASIs (0016-7F16); D2 for unrestricted ASIs (8016-FF16)

ASIs valid for SWAPA

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 simm13i=1
272 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

SWAPA (Deprecated)

Exceptions mem_address_not_aligned

privileged_action
VA_watchpoint
DAE_invalid_asi
DAE_privilege_violation
DAE_nc_page
DAE_nfo_page
CHAPTER 7 • Instructions 273

TADDcc
7.101 Tagged Add

Description This instruction computes a sum that is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if
i = 1.

TADDcc modifies the integer condition codes (icc and xcc).

A tag overflow condition occurs if bit 1 or bit 0 of either operand is nonzero or if the addition
generates 32-bit arithmetic overflow (that is, both operands have the same value in bit 31 and bit 31 of
the sum is different).

If a TADDcc causes a tag overflow, the 32-bit overflow bit (CCR.icc.v) is set to 1; if TADDcc does not
cause a tag overflow, CCR.icc.v is set to 0.

In either case, the remaining integer condition codes (both the other CCR.icc bits and all the CCR.xcc
bits) are also updated as they would be for a normal ADD instruction. In particular, the setting of the
CCR.xcc.v bit is not determined by the tag overflow condition (tag overflow is used only to set the 32-
bit overflow bit). CCR.xcc.v is set based on the 64-bit arithmetic overflow condition, like a normal 64-
bit add.

An attempt to execute a TADDcc instruction when i = 0 and instruction bits 12:5 are nonzero causes an
illegal_instruction exception.

Exceptions illegal_instruction

See Also TADDccTVD on page 275
TSUBcc on page 279

Instruction op3 Operation Assembly Language Syntax Class

TADDcc 10 0000 Tagged Add and modify cc’s taddcc regrs1, reg_or_imm, regrd A1

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
274 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

TADDccTV (Deprecated)
7.102 Tagged Add and Trap on Overflow

Description This instruction computes a sum that is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if
i = 1.

TADDccTV modifies the integer condition codes if it does not trap.

An attempt to execute a TADDccTV instruction when i = 0 and instruction bits 12:5 are nonzero causes
an illegal_instruction exception.

A tag overflow condition occurs if bit 1 or bit 0 of either operand is nonzero or if the addition
generates 32-bit arithmetic overflow (that is, both operands have the same value in bit 31 and bit 31 of
the sum is different).

If TADDccTV causes a tag overflow, a tag_overflow exception is generated and R[rd] and the integer
condition codes remain unchanged. If a TADDccTV does not cause a tag overflow, the sum is written
into R[rd] and the integer condition codes are updated. CCR.icc.v is set to 0 to indicate no 32-bit
overflow.

In either case, the remaining integer condition codes (both the other CCR.icc bits and all the CCR.xcc
bits) are also updated as they would be for a normal ADD instruction. In particular, the setting of the
CCR.xcc.v bit is not determined by the tag overflow condition (tag overflow is used only to set the 32-
bit overflow bit). CCR.xcc.v is set only on the basis of the normal 64-bit arithmetic overflow condition,
like a normal 64-bit add.

Exceptions illegal_instruction
tag_overflow

See Also TADDcc on page 274
TSUBccTVD on page 280

The TADDccTV instruction is deprecated and should not be used in new
software. The TADDcc instruction followed by the BPVS instruction (with
instructions to save the pre-TADDcc integer condition codes if necessary) should
be used instead.

Opcode op3 Operation Assembly Language Syntax Class

TADDccTVD 10 0010 Tagged Add and
modify cc’s or Trap on Overflow

taddcctv regrs1, reg_or_imm, regrd D2

SPARC V8
Compatibility

Note

TADDccTV traps based on the 32-bit overflow condition, just as
in the SPARC V8 architecture. Although the tagged add
instructions set the 64-bit condition codes CCR.xcc, there is no
form of the instruction that traps on the 64-bit overflow
condition.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
CHAPTER 7 • Instructions 275

Tcc
7.103 Trap on Integer Condition Codes (Tcc)

† synonym: tnz ‡ synonym: tz ◊ synonym: tgeu ∇ synonym: tlu

Instruction op3 cond Operation cc Test Assembly Language Syntax Class

TA 11 1010 1000 Trap Always 1 ta i_or_x_cc, software_trap_number A1

TN 11 1010 0000 Trap Never 0 tn i_or_x_cc, software_trap_number A1

TNE 11 1010 1001 Trap on Not Equal not Z tne† i_or_x_cc, software_trap_number A1

TE 11 1010 0001 Trap on Equal Z te‡ i_or_x_cc, software_trap_number A1

TG 11 1010 1010 Trap on Greater not (Z or (N
xor V))

tg i_or_x_cc, software_trap_number A1

TLE 11 1010 0010 Trap on Less or Equal Z or (N xor V) tle i_or_x_cc, software_trap_number A1

TGE 11 1010 1011 Trap on Greater or
Equal

not (N xor V) tge i_or_x_cc, software_trap_number A1

TL 11 1010 0011 Trap on Less N xor V tl i_or_x_cc, software_trap_number A1

TGU 11 1010 1100 Trap on Greater,
Unsigned

not (C or Z) tgu i_or_x_cc, software_trap_number A1

TLEU 11 1010 0100 Trap on Less or
Equal, Unsigned

(C or Z) tleu i_or_x_cc, software_trap_number A1

TCC 11 1010 1101 Trap on Carry Clear
(Greater than or
Equal, Unsigned)

not C tcc◊ i_or_x_cc, software_trap_number A1

TCS 11 1010 0101 Trap on Carry Set
(Less Than, Unsigned)

C tcs∇ i_or_x_cc, software_trap_number A1

TPOS 11 1010 1110 Trap on Positive or
zero

not N tpos i_or_x_cc, software_trap_number A1

TNEG 11 1010 0110 Trap on Negative N tneg i_or_x_cc, software_trap_number A1

TVC 11 1010 1111 Trap on Overflow
Clear

not V tvc i_or_x_cc, software_trap_number A1

TVS 11 1010 0111 Trap on Overflow Set V tvs i_or_x_cc, software_trap_number A1

cc1 :: cc0 Condition Codes Evaluated

00 CCR.icc

01 — (illegal_instruction)

10 CCR.xcc

11 — (illegal_instruction)

5 4

10 cond op3 rs1 i=0 — rs2

31 141924 18 13 12 02530 29

—

28 8 7

cc1cc0

11 10

10 cond op3 rs1 i=1 —— cc1cc0 imm_trap_#
276 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

Tcc

Description The Tcc instruction evaluates the selected integer condition codes (icc or xcc) according to the cond

field of the instruction, producing either a TRUE or FALSE result. If TRUE and no higher-priority
exceptions or interrupt requests are pending, then a trap_instruction or htrap_instruction exception is
generated. If FALSE, the trap_instruction (or htrap_instruction) exception does not occur and the
instruction behaves like a NOP.

For brevity, in the remainder of this section the value of the “software trap number” used by Tcc will
be referred to as “SWTN”.

In nonprivileged mode, if i = 0 the SWTN is specified by the least significant seven bits of
“R[rs1] + R[rs2]”. If i = 1, the SWTN is provided by the least significant seven bits of
“R[rs1] + imm_trap_#”. Therefore, the valid range of values for SWTN in nonprivileged mode is 0 to
127. The most significant 57 bits of SWTN are unused and should be supplied as zeroes by software.

In privileged mode, if i = 0 the SWTN is specified by the least significant eight bits of
“R[rs1] + R[rs2]”. If i = 1, the SWTN is provided by the least significant eight bits of
“R[rs1] + imm_trap_#”. Therefore, the valid range of values for SWTN in privileged mode is 0 to 255.
The most significant 56 bits of SWTN are unused an should be supplied as zeroes by software.

Generally, values of 0 ≤ SWTN ≤ 127 are used to trap to privileged-mode software and values of 128 ≤
SWTN ≤ 255 are used to trap to hyperprivileged-mode software. The behavior of Tcc, based on the
privilege mode in effect when it is executed and the value of the supplied SWTN, is as follows:

Exceptions. An attempt to execute a Tcc instruction when any of the following conditions exist
causes an illegal_instruction exception:

■ instruction bit 29 is nonzero
■ i = 0 and instruction bits 10:5 are nonzero
■ i = 1 and instruction bits 10:8 are nonzero
■ cc0 = 1

If the Trap on Control Transfer feature is implemented (impl. dep. #450-S20) and PSTATE.tct = 1, then
Tcc generates a control_transfer_instruction exception instead of causing a control transfer. When a
control_transfer_instruction trap occurs, PC (the address of the Tcc instruction) is stored in TPC[TL]
and the value of NPC from before the Tcc was executed is stored in TNPC[TL]. The full 64-bit
(nonmasked) PC and NPC values are stored in TPC[TL] and TNPC[TL], regardless of the value of
PSTATE.am.

If a Tcc instruction causes a trap_instruction trap, 256 plus the SWTN value is written into TT[TL].
Then the trap is taken and the virtual processor performs the normal trap entry procedure, as
described in Trap Processing on page 356.

Behavior of Tcc instruction

Privilege Mode in effect when Tcc is executed 0 ≤ SWTN ≤ 127 128 ≤ SWTN ≤ 255

Nonprivileged
(PSTATE.priv = 0)

trap_instruction exception
(to privileged mode)
(256 ≤ TT ≤ 383)

—
(not possible, because
SWTN is a 7-bit value in
nonprivileged mode)

Privileged
(PSTATE.priv = 1)

trap_instruction exception
(to privileged mode)
(256 ≤ TT ≤ 383)

htrap_instruction exception
(to hyperprivileged mode)
(384 ≤ TT ≤ 511)

Programming
Note

Tcc can be used to implement breakpointing, tracing, and calls to
privileged and hyperprivileged software. It can also be used for
runtime checks, such as for out-of-range array indexes and integer
overflow.
CHAPTER 7 • Instructions 277

Tcc

Exceptions illegal_instruction

control_transfer_instruction (impl. dep. #450-S20)
trap_instruction (0 ≤ SWTN ≤ 127)
htrap_instruction (128 ≤ SWTN ≤ 255)
278 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

TSUBcc
7.104 Tagged Subtract

Description This instruction computes “R[rs1] – R[rs2]” if i = 0, or
“R[rs1] – sign_ext(simm13)” if i = 1.

TSUBcc modifies the integer condition codes (icc and xcc).

A tag overflow condition occurs if bit 1 or bit 0 of either operand is nonzero or if the subtraction
generates 32-bit arithmetic overflow; that is, the operands have different values in bit 31 (the 32-bit
sign bit) and the sign of the 32-bit difference in bit 31 differs from bit 31 of R[rs1].

If a TSUBcc causes a tag overflow, the 32-bit overflow bit (CCR.icc.v) is set to 1; if TSUBcc does not
cause a tag overflow, CCR.icc.v is set to 0.

In either case, the remaining integer condition codes (both the other CCR.icc bits and all the CCR.xcc
bits) are also updated as they would be for a normal subtract instruction. In particular, the setting of
the CCR.xcc.v bit is not determined by the tag overflow condition (tag overflow is used only to set the
32-bit overflow bit). ccr.xcc.v is set based on the 64-bit arithmetic overflow condition, like a normal
64-bit subtract.

An attempt to execute a TSUBcc instruction when i = 0 and instruction bits 12:5 are nonzero causes an
illegal_instruction exception.

Exceptions illegal_instruction

See Also TADDcc on page 274
TSUBccTVD on page 280

Instruction op3 Operation Assembly Language Syntax Class

TSUBcc 10 0001 Tagged Subtract and modify cc’s tsubcc regrs1, reg_or_imm, regrd A1

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
CHAPTER 7 • Instructions 279

TSUBccTV (Deprecated)
7.105 Tagged Subtract and Trap on Overflow

Description This instruction computes “R[rs1] – R[rs2]” if i = 0, or “R[rs1] – sign_ext(simm13)” if i = 1.

TSUBccTV modifies the integer condition codes (icc and xcc) if it does not trap.

A tag overflow condition occurs if bit 1 or bit 0 of either operand is nonzero or if the subtraction
generates 32-bit arithmetic overflow; that is, the operands have different values in bit 31 (the 32-bit
sign bit) and the sign of the 32-bit difference in bit 31 differs from bit 31 of R[rs1].

An attempt to execute a TSUBccTV instruction when i = 0 and instruction bits 12:5 are nonzero causes
an illegal_instruction exception.

If TSUBccTV causes a tag overflow, then a tag_overflow exception is generated and R[rd] and the
integer condition codes remain unchanged. If a TSUBccTV does not cause a tag overflow condition,
the difference is written into R[rd] and the integer condition codes are updated. CCR.icc.v is set to 0 to
indicate no 32-bit overflow.

In either case, the remaining integer condition codes (both the other CCR.icc bits and all the CCR.xcc
bits) are also updated as they would be for a normal subtract instruction. In particular, the setting of
the CCR.xcc.v bit is not determined by the tag overflow condition (tag overflow is used only to set the
32-bit overflow bit). CCR.xcc.v is set only on the basis of the normal 64-bit arithmetic overflow
condition, like a normal 64-bit subtract.

Exceptions illegal_instruction
tag_overflow

See Also TADDccTVD on page 275
TSUBcc on page 279

The TSUBccTV instruction is deprecated and should not be used in new
software. The TSUBcc instruction followed by BPVS instead (with instructions to
save the pre-TSUBcc integer condition codes if necessary) should be used
instead.

Opcode op3 Operation Assembly Language Syntax Class

TSUBccTVD 10 0011 Tagged Subtract and
modify cc’s or Trap on Overflow

tsubcctv regrs1, reg_or_imm, regrd D2

SPARC V8
Compatibility

Note

TSUBccTV traps based on the 32-bit overflow condition, just as
in the SPARC V8 architecture. Although the tagged add
instructions set the 64-bit condition codes CCR.xcc, there is no
form of the instruction that traps on the 64-bit overflow
condition.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
280 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

UDIV, UDIVcc (Deprecated)
7.106 Unsigned Divide (64-bit ÷ 32-bit)

Description The unsigned divide instructions perform 64-bit by 32-bit division, producing a 32-bit result. If i = 0,
they compute “(Y :: R[rs1]{31:0}) ÷ R[rs2]{31:0}”. Otherwise (that is, if i = 1), the divide instructions
compute “(Y :: R[rs1]{31:0}) ÷ (sign_ext(simm13){31:0})”. In either case, if overflow does not occur, the
less significant 32 bits of the integer quotient are sign- or zero-extended to 64 bits and are written into
R[rd].

The contents of the Y register are undefined after any 64-bit by 32-bit integer divide operation.

Unsigned Divide
Unsigned divide (UDIV, UDIVcc) assumes an unsigned integer doubleword dividend
(Y :: R[rs1]{31:0}) and an unsigned integer word divisor R[rs2{31:0}] or (sign_ext(simm13){31:0}) and
computes an unsigned integer word quotient (R[rd]). Immediate values in simm13 are in the ranges 0
to 212 – 1 and 232 – 212 to 232 – 1 for unsigned divide instructions.

Unsigned division rounds an inexact rational quotient toward zero.

The result of an unsigned divide instruction can overflow the less significant 32 bits of the destination
register R[rd] under certain conditions. When overflow occurs, the largest appropriate unsigned
integer is returned as the quotient in R[rd]. The condition under which overflow occurs and the value
returned in R[rd] under this condition are specified in TABLE 7-15.

When no overflow occurs, the 32-bit result is zero-extended to 64 bits and written into register R[rd].

The UDIV and UDIVcc instructions are deprecated and should not be used in
new software. The UDIVX instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class

UDIVD 00 1110 Unsigned Integer Divide udiv regrs1, reg_or_imm, regrd D2

UDIVccD 01 1110 Unsigned Integer Divide and modify cc’s udivcc regrs1, reg_or_imm, regrd D2

Programming
Note

The rational quotient is the infinitely precise result quotient. It
includes both the integer part and the fractional part of the
result. For example, the rational quotient of 11/4 = 2.75 (integer
part = 2, fractional part = .75).

TABLE 7-15 UDIV / UDIVcc Overflow Detection and Value Returned

Condition Under Which Overflow Occurs Value Returned in R[rd]

Rational quotient ≥ 232 232 − 1
(0000 0000 FFFF FFFF16)

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
CHAPTER 7 • Instructions 281

UDIV, UDIVcc (Deprecated)

UDIV does not affect the condition code bits. UDIVcc writes the integer condition code bits as shown
in the following table. Note that negative (N) and zero (Z) are set according to the value of R[rd] after
it has been set to reflect overflow, if any.

An attempt to execute a UDIV or UDIVcc instruction when i = 0 and instruction bits 12:5 are nonzero
causes an illegal_instruction exception.

Exceptions illegal_instruction
division_by_zero

See Also RDY on page 225
SDIV[cc] on page 240,
UMUL[cc] on page 283

Bit Effect on bit of UDIVcc instruction

icc.n Set if R[rd]{31} = 1

icc.z Set if R[rd]{31:0} = 0

icc.v Set if overflow (per TABLE 7-15)

icc.c Zero

xcc.n Set if R[rd]{63} = 1

xcc.z Set if R[rd]{63:0} = 0

xcc.v Zero

xcc.c Zero
282 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

UMUL, UMULcc (Deprecated)
7.107 Unsigned Multiply (32-bit)

Description The unsigned multiply instructions perform 32-bit by 32-bit multiplications, producing 64-bit results.
They compute “R[rs1]{31:0} × R[rs2]{31:0}” if i = 0, or “R[rs1]{31:0} × sign_ext(simm13){31:0}” if i = 1.
They write the 32 most significant bits of the product into the Y register and all 64 bits of the product
into R[rd].

Unsigned multiply instructions (UMUL, UMULcc) operate on unsigned integer word operands and
compute an unsigned integer doubleword product.

UMUL does not affect the condition code bits. UMULcc writes the integer condition code bits, icc and
xcc, as shown below.

An attempt to execute a UMUL or UMULcc instruction when i = 0 and instruction bits 12:5 are nonzero
causes an illegal_instruction exception.

Exceptions illegal_instruction

The UMUL and UMULcc instructions are deprecated and should not be used in
new software. The MULX instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class

UMULD 00 1010 Unsigned Integer Multiply umul regrs1, reg_or_imm, regrd D2

UMULccD 01 1010 Unsigned Integer Multiply and modify cc’s umulcc regrs1, reg_or_imm, regrd D2

Bit Effect on bit by execution of UMULcc

icc.n Set to 1 if product{31} = 1; otherwise, set to 0
icc.z Set to 1 if product{31:0}= 0; otherwise, set to 0
icc.v Set to 0
icc.c Set to 0
xcc.n Set to 1 if product{63} = 1; otherwise, set to 0
xcc.z Set to 1 if product{63:0} = 0; otherwise, set to 0
xcc.v Set to 0
xcc.c Set to 0

Note 32-bit negative (icc.n) and zero (icc.z) condition codes are set
according to the less significant word of the product, not
according to the full 64-bit result.

Programming
Notes

32-bit overflow after UMUL or UMULcc is indicated by Y ≠ 0.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
CHAPTER 7 • Instructions 283

UMUL, UMULcc (Deprecated)

See Also MULScc on page 209

RDY on page 225
SMUL[cc] on page 246,
UDIV[cc] on page 281
284 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

WRasr
7.108 Write Ancillary State Register
Instruction rd Operation Assembly Language Syntax Class

WRYD 0 Write Y register (deprecated) wr regrs1, reg_or_imm,%y D2

— 1 Reserved

WRCCR 2 Write Condition Codes
register

wr regrs1, reg_or_imm,%ccr A1

WRASI 3 Write ASI register wr regrs1, reg_or_imm,%asi A1

— 4 Reserved (read-only ASR (TICK))

— 5 Reserved (read-only ASR (PC))

WRFPRS 6 Write Floating-Point Registers Status
register

wr regrs1, reg_or_imm,%fprs A1

— 7–14
(7-0E16)

Reserved

— 15 (0F16) used at higher privilege level

— 16-18
(10-1216)

Reserved (impl. dep. #8-V8-Cs20, #9-
V8-Cs20)

WRGSR 19 (1316) Write General Status register (GSR) wr regrs1, reg_or_imm,%gsr A1

WRSOFTINT_SETP 20 (1416) Set bits of per-virtual processor Soft
Interrupt register

wr regrs1, reg_or_imm, %softint_set N−

WRSOFTINT_CLRP 21 (1516) Clear bits of per-virtual processor Soft
Interrupt register

wr regrs1, reg_or_imm, %softint_clr N−

WRSOFTINTP 22 (1616) Write per-virtual processor Soft
Interrupt register

wr regrs1, reg_or_imm,%softint N−

WRTICK_CMPRP 23 (1716) Write Tick Compare register wr regrs1, reg_or_imm,%tick_cmpr N−

— 24 (1816) used at higher privilege level

WRSTICK_CMPRP 25 (1916) Write System Tick Compare register wr regrs1, reg_or_imm,%stick_cmpr† N−

— 26 (1A16) Reserved
(impl. dep. #8-V8-Cs20, 9-V8-Cs20)

— 26 (1A16) Reserved
(impl. dep. #8-V8-Cs20, 9-V8-Cs20)

— 27 (1B16) Reserved
(impl. dep. #8-V8-Cs20, 9-V8-Cs20)

— 28 (1C16) Implementation dependent
(impl. dep. #8-V8-Cs20, 9-V8-Cs20)

— 29 (1D16) Implementation dependent (impl.
dep. #8-V8-Cs20, 9-V8-Cs20)

— 30 (1E16) Reserved

— 31 (1F16) Implementation dependent (impl.
dep. #8-V8-Cs20, 9-V8-Cs20)

† The original assembly language names for %stick and %stick_cmpr were, respectively, %sys_tick and %sys_tick_cmpr, which are
now deprecated. Over time, assemblers will support the new %stick and %stick_cmpr names for these registers (which are consistent with
%tick and %tick_cmpr). In the meantime, some existing assemblers may only recognize the original names.

rd10 op3 = 11 0000 —rs1 rs2i=0

31 24 02530 29 19 18 14 13 12 5 4

rd10 op3 = 11 0000 rs1 simm13i=1
CHAPTER 7 • Instructions 285

WRasr

Description The WRasr instructions each store a value to the writable fields of the ancillary state register (ASR)

specified by rd.

The value stored by these instructions (other than the implementation-dependent variants) is as
follows: if i = 0, store the value “R[rs1] xor R[rs2]”; if i = 1, store “R[rs1] xor sign_ext(simm13)”.

The WRasr instruction with rd = 0 is a (deprecated) WRY instruction (which should not be used in
new software). WRY is not a delayed-write instruction; the instruction immediately following a WRY
observes the new value of the Y register.

WRCCR, WRFPRS, and WRASI are not delayed-write instructions. The instruction immediately
following a WRCCR, WRFPRS, or WRASI observes the new value of the CCR, FPRS, or ASI register.

WRFPRS waits for any pending floating-point operations to complete before writing the FPRS
register.

IMPL. DEP. # 48-V8-Cs20: WRasr instructions with rd of 16-18, 28, 29, or 31 are available for
implementation-dependent uses (impl. dep. #8-V8-Cs20). For a WRasr instruction using one of those
rd values, the following are implementation dependent:
■ the interpretation of bits 18:0 in the instruction
■ the operation(s) performed (for example, xor) to generate the value written to the ASR
■ whether the instruction is nonprivileged or privileged (impl. dep. #9-V8-Cs20), and
■ whether an attempt to execute the instruction causes an illegal_instruction exception.

See Ancillary State Registers on page 48 for more detailed information regarding ASR registers.

Exceptions. An attempt to execute a WRasr instruction when any of the following conditions exist
causes an illegal_instruction exception:
■ i = 0 and instruction bits 12:5 are nonzero
■ rd = 1, 4, 5, 7–14, 18, or 26-31
■ rd = 15 and ((rs1 ≠ 0) or (i = 0))

An attempt to execute a WRSOFTINT_SET, WRSOFTINT_CLR, WRSOFTINT, WRTICK_CMPR, or
WRSTICK_CMPR instruction in nonprivileged mode (PSTATE.priv = 0) causes a privileged_opcode
exception.

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if the FPU is not present,
then an attempt to execute a WRGSR instruction causes an fp_disabled exception.

Note The operation is exclusive-or.

The WRY instruction is deprecated. It is recommended that all instructions that
reference the Y register be avoided.

Note See the section “Read/Write Ancillary State Registers (ASRs)” in
Extending the UltraSPARC Architecture, contained in the separate
volume UltraSPARC Architecture Application Notes, for a
discussion of extending the SPARC V9 instruction set by means of
read/write ASR instructions.

V9
Compatibility

Notes

Ancillary state registers may include (for example) timer, counter,
diagnostic, self-test, and trap-control registers.

The SPARC V8 WRIER, WRPSR, WRWIM, and WRTBR
instructions do not exist in the UltraSPARC Architecture because
the IER, PSR, TBR, and WIM registers do not exist in the
UltraSPARC Architecture.
286 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

WRasr

Exceptions illegal_instruction

privileged_opcode
fp_disabled

See Also RDasr on page 225
WRPR on page 288
CHAPTER 7 • Instructions 287

WRPR
7.109 Write Privileged Register

Description This instruction stores the value “R[rs1] xor R[rs2]” if i = 0, or “R[rs1] xor sign_ext(simm13)” if i = 1
to the writable fields of the specified privileged state register.

The rd field in the instruction determines the privileged register that is written. There are MAXPTL

copies of the TPC, TNPC, TT, and TSTATE registers, one for each trap level. A write to one of these
registers sets the register, indexed by the current value in the trap-level register (TL).

A WRPR to TL only stores a value to TL; it does not cause a trap, cause a return from a trap, or alter
any machine state other than TL and state (such as PC, NPC, TICK, etc.) that is indirectly modified by
every instruction.

The WRPR instruction is a non-delayed-write instruction. The instruction immediately following the
WRPR observes any changes made to virtual processor state made by the WRPR.

MAXPTL is the maximum value that may be written by a WRPR to TL; an attempt to write a larger value
results in MAXPTL being written to TL. For details, see TABLE 5-19 on page 69.

MAXPGL is the maximum value that may be written by a WRPR to GL; an attempt to write a larger
value results in MAXPGL being written to GL. For details, see TABLE 5-20 on page 70.

Instruction op3 Operation rd Assembly Language Syntax Class

WRPRP 11 0010 Write Privileged register
TPC
TNPC
TSTATE
TT
(illegal_instruction)
TBA
PSTATE
TL
PIL
CWP
CANSAVE
CANRESTORE
CLEANWIN
OTHERWIN
WSTATE
Reserved
GL
Reserved

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17–31

wrpr
wrpr
wrpr
wrpr

wrpr
wrpr
wrpr
wrpr
wrpr
wrpr
wrpr
wrpr
wrpr
wrpr

wrpr

regrs1, reg_or_imm, %tpc
regrs1, reg_or_imm, %tnpc
regrs1, reg_or_imm, %tstate
regrs1, reg_or_imm, %tt

regrs1, reg_or_imm, %tba
regrs1, reg_or_imm, %pstate
regrs1, reg_or_imm, %tl
regrs1, reg_or_imm, %pil
regrs1, reg_or_imm, %cwp
regrs1, reg_or_imm, %cansave
regrs1, reg_or_imm, %canrestore
regrs1, reg_or_imm, %cleanwin
regrs1, reg_or_imm, %otherwin
regrs1, reg_or_imm, %wstate

regrs1, reg_or_imm, %gl

A1

Note The operation is exclusive-or.

Programming
Note

A WRPR of TL can be used to read the values of TPC, TNPC, and
TSTATE for any trap level; however, software must take care that
traps do not occur while the TL register is modified.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
288 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

WRPR

Exceptions. An attempt to execute a WRPR instruction in nonprivileged mode (PSTATE.priv = 0)
causes a privileged_opcode exception.

An attempt to execute a WRPR instruction when any of the following conditions exist causes an
illegal_instruction exception:
■ i = 0 and instruction bits 12:5 are nonzero
■ rd = 4
■ rd = 15, or 17-31 (reserved for future versions of the architecture)
■ 0 ≤ rd ≤ 3 (attempt to write TPC, TNPC,TSTATE, or TT register) while TL = 0 (current trap level is

zero) and the virtual processor is in privileged mode.

Exceptions privileged_opcode
illegal_instruction

See Also RDPR on page 228
WRasr on page 285

Implementation
Note

In nonprivileged mode, illegal_instruction exception due to
0 ≤ rd ≤ 3 and TL = 0 does not occur; the privileged_opcode
exception occurs instead.
CHAPTER 7 • Instructions 289

XOR / XNOR
7.110 XOR Logical Operation

Description These instructions implement bitwise logical xor operations. They compute “R[rs1] op R[rs2]” if i = 0,
or “R[rs1] op sign_ext(simm13)” if i = 1, and write the result into R[rd].

XORcc and XNORcc modify the integer condition codes (icc and xcc). They set the condition codes as
follows:

■ icc.v, icc.c, xcc.v, and xcc.c are set to 0
■ icc.n is copied from bit 31 of the result
■ xcc.n is copied from bit 63 of the result
■ icc.z is set to 1 if bits 31:0 of the result are zero (otherwise to 0)
■ xcc.z is set to 1 if all 64 bits of the result are zero (otherwise to 0)

An attempt to execute an XOR, XORcc, XNOR, or XNORcc instruction when i = 0 and instruction bits
12:5 are nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction

Instruction op3 Operation Assembly Language Syntax Class

XOR 00 0011 Exclusive or xor regrs1, reg_or_imm, regrd A1

XORcc 01 0011 Exclusive or and modify cc’s xorcc regrs1, reg_or_imm, regrd A1

XNOR 00 0111 Exclusive nor xnor regrs1, reg_or_imm, regrd A1

XNORcc 01 0111 Exclusive nor and modify cc’s xnorcc regrs1, reg_or_imm, regrd A1

Programming
Note

XNOR (and XNORcc) is identical to the xor_not (and set condition
codes) xor_not_cc logical operation, respectively.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
290 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

CHAPTER 8

IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2007

The IEEE Std 754-1985 floating-point standard contains a number of implementation dependencies.
This chapter specifies choices for these implementation dependencies, to ensure that SPARC V9
implementations are as consistent as possible.

The chapter contains these major sections:

■ Traps Inhibiting Results on page 291.
■ Underflow Behavior on page 292.
■ Integer Overflow Definition on page 293.
■ Floating-Point Nonstandard Mode on page 293.
■ Arithmetic Result Tables on page 294.

Exceptions are discussed in this chapter on the assumption that instructions are implemented in
hardware. If an instruction is implemented in software, it may not trigger hardware exceptions but its
behavior as observed by nonprivileged software (other than timing) must be the same as if it was
implemented in hardware.

8.1 Traps Inhibiting Results
As described in Floating-Point State Register (FSR) on page 42 and elsewhere, when a floating-point
trap occurs, the following conditions are true:

■ The destination floating-point register(s) (the F registers) are unchanged.

■ The floating-point condition codes (fcc0, fcc1, fcc2, and fcc3) are unchanged.

■ The FSR.aexc (accrued exceptions) field is unchanged.

■ The FSR.cexc (current exceptions) field is unchanged except for IEEE_754_exceptions; in that case,
cexc contains a bit set to 1, corresponding to the exception that caused the trap. Only one bit shall
be set in cexc.

Instructions causing an fp_exception_other trap because of unfinished FPops execute as if by
hardware; that is, such a trap is undetectable by application software, except that timing may be
affected.
291

8.2 Underflow Behavior
An UltraSPARC Architecture virtual processor detects tininess before rounding occurs. (impl. dep.
#55-V8-Cs10)

TABLE 8-1 summarizes what happens when an exact unrounded value u satisfying

0 ≤ |u| ≤ smallest normalized number

would round, if no trap intervened, to a rounded value r which might be zero, subnormal, or the
smallest normalized value.

Programming
Note

A user-mode trap handler invoked for an IEEE_754_exception,
whether as a direct result of a hardware fp_exception_ieee_754
trap or as an indirect result of privileged software handling of
an fp_exception_other trap with FSR.ftt = unfinished_FPop, can
rely on the following behavior:

■ The address of the instruction that caused the exception will
be available.

■ The destination floating-point register(s) are unchanged from
their state prior to that instruction’s execution.

■ The floating-point condition codes (fcc0, fcc1, fcc2, and
fcc3) are unchanged.

■ The FSR.aexc field is unchanged.

■ The FSR.cexc field contains exactly one bit set to 1,
corresponding to the exception that caused the trap.

■ The FSR.ftt, FSR.qne, and reserved fields of FSR are zero.

TABLE 8-1 Floating-Point Underflow Behavior (Tininess Detected Before Rounding)

Underflow trap:
Inexact trap:

ufm = 1
nxm = x

ufm = 0
nxm = 1

ufm = 0
nxm = 0

u = r

r is minimum normal None None None

r is subnormal UF None None

r is zero None None None

u ≠ r

r is minimum normal UF NX uf nx

r is subnormal UF NX uf nx

r is zero UF NX uf nx

UF = fp_exception_ieee_754 trap with cexc.ufc = 1
NX = fp_exception_ieee_754 trap with cexc.nxc = 1

uf = cexc.ufc = 1, aexc.ufa = 1, no fp_exception_ieee_754 trap
nx = cexc.nxc = 1, aexc.nxa = 1, no fp_exception_ieee_754 trap
292 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

8.2.1 Trapped Underflow Definition (ufm = 1)
Since tininess is detected before rounding, trapped underflow occurs when the exact unrounded
result has magnitude between zero and the smallest normalized number in the destination format.

8.2.2 Untrapped Underflow Definition (ufm = 0)
Untrapped underflow occurs when the exact unrounded result has magnitude between zero and the
smallest normalized number in the destination format and the correctly rounded result in the
destination format is inexact.

8.3 Integer Overflow Definition
■ F<sdq>TOi — When a NaN, infinity, large positive argument ≥ 231 or large negative argument ≤ –

(231 + 1) is converted to an integer, the invalid_current (nvc) bit of FSR.cexc is set to 1, and if the
floating-point invalid trap is enabled (FSR.tem.nvm = 1), the fp_exception_IEEE_754 exception is
raised. If the floating-point invalid trap is disabled (FSR.tem.nvm = 0), no trap occurs and a
numerical result is generated: if the sign bit of the operand is 0, the result is 231 – 1; if the sign bit
of the operand is 1, the result is –231.

■ F<sdq>TOx — When a NaN, infinity, large positive argument ≥ 263, or large negative argument ≤
–(263 + 1) is converted to an extended integer, the invalid_current (nvc) bit of FSR.cexc is set to 1,
and if the floating-point invalid trap is enabled (FSR.tem.nvm = 1), the fp_exception_IEEE_754
exception is raised. If the floating-point invalid trap is disabled (FSR.tem.nvm = 0), no trap occurs
and a numerical result is generated: if the sign bit of the operand is 0, the result is 263 – 1; if the
sign bit of the operand is 1, the result is –263.

8.4 Floating-Point Nonstandard Mode
If implemented, floating-point nonstandard mode is enabled by setting FSR.ns = 1 (see Nonstandard
Floating-Point (ns) on page 43).

An UltraSPARC Architecture 2007 processor may choose to implement nonstandard floating-point
mode in order to obtain higher performance in certain circumstances. For example, when FSR.ns = 1
an implementation that processes fully normalized operands more efficiently than subnormal
operands may convert a subnormal floating-point operand or result to zero.

Note The wrapped exponent results intended to be delivered on
trapped underflows and overflows in IEEE 754 are irrelevant to
the UltraSPARC Architecture at the hardware, and privileged
software levels. If they are created at all, it would be by user
software in a nonprivileged-mode trap handler.

Implementation
Note

UltraSPARC Architecture virtual processors are strongly
discouraged from implementing a nonstandard floating-point
mode.

Implementations are encouraged to support standard IEEE 754
floating-point arithmetic with reasonable performance in all
cases, even if some cases are slower than others.
CHAPTER 8 • IEEE Std 754-1985 Requirements for UltraSPARC Architecture 2007 293

Assuming that nonstandard floating-point mode is implemented, the effects of FSR.ns = 1 are as
follows:

■ IMPL. DEP. #18-V8-Ms10(a): When FSR.ns = 1 and a floating-point source operand is subnormal, an
implementation may treat the subnormal operand as if it were a floating-point zero value of the
same sign.
The cases in which this replacement is performed are implementation dependent. However, if it
occurs,
(1) it should not apply to FABS, FMOV, or FNEG instructions and
(2) FADD, FSUB, and FCMP should give identical treatment to subnormal source operands.
Treating a subnormal source operand as zero may generate an IEEE 754 floating-point “inexact”,
“division by zero”, or “invalid” condition (see Current Exception (cexc) on page 46). Whether the
generated condition(s) trigger an fp_exception_ieee_754 exception or not depends on the setting of
FSR.tem.

■ IMPL. DEP. #18-V8-Ms10(b): When a floating-point operation generates a subnormal result value,
an UltraSPARC Architecture 2007 implementation may either write the result as a subnormal value
or replace the subnormal result by a floating-point zero value of the same sign and generate IEEE
754 floating-point “inexact” and “underflow” conditions. Whether these generated conditions
trigger an fp_exception_ieee_754 exception or not depends on the setting of FSR.tem.

■ IMPL. DEP. #18-V8-Ms10(c): If an FPop generates an intermediate result value, the intermediate
value is subnormal, and FSR.ns = 1, it is implementation dependent whether (1) the operation
continues, using the subnormal value (possibly with some loss of accuracy), or (2) the virtual
processor replaces the subnormal intermediate value with a floating-point zero value of the same
sign, generates IEEE 754 floating-point “inexact” and “underflow” conditions, completes the
instruction, and writes a final result (possibly with some loss of accuracy). Whether generated IEEE
conditions trigger an fp_exception_ieee_754 exception or not depends on the setting of FSR.tem.

If GSR.im = 1, then the value of FSR.ns is ignored and the processor operates as if FSR.ns = 0
(see page 54).

8.5 Arithmetic Result Tables
This section contains detailed tables, showing the results produced by various floating-point
operations, depending on their source operands.

Notes on source types:

■ Nn is a number in F[rsn], which may be normal or subnormal.

■ QNaNn and SNaNn are Quiet and Signaling Not-a-Number values in F[rsn], respectively.

Notes on result types:

■ R: (rounded) result of operation, which may be normal, subnormal, zero, or infinity. May also cause
OF, UF, NX, unfinished.

■ dQNaN is the generated default Quiet NaN (sign = 0, exponent = all 1s, fraction = all 1s). The sign
of the default Quiet NaN is zero to distinguish it from storage initialized to all ones.

■ QSNaNn is the Signalling NaN operand from F[rsn] with the Quiet bit asserted
294 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

8.5.1 Floating-Point Add (FADD)

For the FADD instructions, R may be any number; its generation may cause OF, UF, and/or NX.

Floating-point add is not commutative when both operands are NaN.

8.5.2 Floating-Point Subtract (FSUB)

For the FSUB instructions, R may be any number; its generation may cause OF, UF, and/or NX.

Note that − x ≠ 0 − x when x is zero or NaN.

TABLE 8-2 Floating-Point Add operation (F[rs1] + F[rs2])

F[rs2]

−∞ −N2 −0 +0 +N2 +∞ QNaN2 SNaN2

F[rs1]

−∞ -∞ dQNaN,
NV

QNaN2
QSNaN2,

NV

−N1 −R −N1 ±R*

−0 −N2 −0 ±0** +N2

+0 ±0** +0

+N1 ±R* +N1 +R

+∞ dQNaN,
NV

+∞

QNaN1 QNaN1

SNaN1
QSNaN1,

NV

* if N1 = -N2, then **

** result is +0 unless rounding mode is round to −∞, in which case the result is −0

TABLE 8-3 Floating-Point Subtract operation (F[rs1] − F[rs2])

F[rs2]

−∞ −N2 −0 +0 +N2 +∞ QNaN2 SNaN2

F[rs1]

−∞ dQNaN,
NV

-∞

QNaN2
QSNaN2,

NV

−N1 ±R* −N1 −R

−0 +N2 ±0** −0 −N2

+0 +0 ±0**

+N1 +R +N1 ±R*

+∞ +∞ dQNaN,
NV

QNaN1 QNaN1

SNaN1
QSNaN1,

NV

* if N1 = N2, then **

** result is +0 unless rounding mode is round to −∞, in which case the result is −0
CHAPTER 8 • IEEE Std 754-1985 Requirements for UltraSPARC Architecture 2007 295

8.5.3 Floating-Point Multiply

R may be any number; its generation may cause OF, UF, and/or NX.

Floating-point multiply is not commutative when both operands are NaN.

FsMULd (FdMULq) never causes OF, UF, or NX.

A NaN input operand to FsMULd (FdMULq) must be widened to produce a double-precision (quad-
precision) NaN output, by filling the least-significant bits of the NaN result with zeros.

8.5.4 Floating-Point Multiply-Add (FMADD
First refer to the Floating-Point Multiply table (TABLE 8-4 on page 296) to select a row in the table
below.

TABLE 8-4 Floating-Point Multiply operation (F[rs1] × F[rs2])

F[rs2]

−∞ −N2 −0 +0 +N2 +∞ QNaN2 SNaN2

F[rs1]

-∞ +∞ dQNaN,
NV

-∞

QNaN2
QSNaN2,

NV

−N1 +R −R

− 0 dQNaN,
NV

+ 0 −0 dQNaN,
NV+0 −0 +0

+ N1 −R +R

+∞ -∞ dQNaN,
NV

+∞

QNaN1 QNaN1

SNaN1
QSNaN1,

NV
296 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

In the above table, R may be any number; its generation may cause OF, UF, and/or NX

The multiply operation in fused floating-point multiply-add (FMADD) instructions cannot cause
inexact, underflow, or overflow exceptions.

See the earlier sections on Nonstandard Mode and unfinished_FPop for additional details.

8.5.5 Floating-Point Negative Multiply-Add (FNMADD)
First refer to the Floating-Point Multiply table (TABLE 8-4 on page 296) to select a row in the table
below.

TABLE 8-5 Floating-Point Multiply-Add ((F[rs1] × F[rs2]) + F[rs3])

F[rs3]

−∞ −N3 −0 +0 +N3 +∞ QNaN3 SNaN3

F[rs1]
×

F[rs2]

−∞ −∞ dQNaN,
NV

QNaN3

QSNaN3,
NV

−N −R −N ±R*

−0 −N3 −0 ±0** +N3

+0 ±0** +0

+N ±R* +N +R

+∞ dQNaN,
NV

+∞

QNaN1 QNaN1

QNaN2 QNaN2

QNaN
(±0 × ±∞)

dQNaN,
NV***

QNaN3,
NV***

QSNaN1 QSNaN1,
NV***

QSNaN2 QSNaN2,
NV***

* if N = −N3, then **

** result is +0 unless rounding mode is round to −∞, in which case the result is −0

*** if FSR.nvm = 1, FSR.nvc ← 1, the trap occurs, and FSR.aexc is left unchanged; otherwise, FSR.nvm = 0
so FSR.nva ← 1 and for FMADD FSR.nvc ← 1.
CHAPTER 8 • IEEE Std 754-1985 Requirements for UltraSPARC Architecture 2007 297

R may be any number; its generation may cause OF, UF, and/or NX

The multiply operation in fused floating-point negative multiply-add (FNMADD) instructions cannot
cause inexact, underflow, or overflow exceptions.

Note that rounding occurs after the negation. Thus, when the rounding mode is towards ±∞,
FNMADD is not equivalent to FMADD followed by FNEG.

See the earlier sections on Nonstandard Mode and unfinished_FPop for additional details.

8.5.6 Floating-Point Multiply-Subtract (FMSUB)
First refer to the Floating-Point Multiply table (TABLE 8-4 on page 296) to select a row in the table
below.

TABLE 8-6 Floating-Point Negative Multiply-Add (−(F[rs1] × F[rs2])− F[rs3])

F[rs3]

−∞ −N3 −0 +0 +N3 +∞ QNaN3 SNaN3

F[rs1]
×

F[rs2]

−∞ +∞ dQNaN,
NV

QNaN3

QSNaN3,
NV

−N +R +N ±R*

−0 +N3 +0 ±0** −N3

+0 ±0** −0

+N ±R* −N −R

+∞ dQNaN,
NV

−∞

QNaN1 QNaN1

QNaN2 QNaN2

QNaN
(±0 × ±∞)

dQNaN,
NV***

QNaN3
NV***

QSNaN1 QSNaN1,
NV***

QSNaN2 QSNaN2,
NV***

* if N = −N3, then **

** result is +0 unless rounding mode is round to −∞, in which case the result is −0

*** if FSR.nvm = 1, FSR.nvc ← 1, the trap occurs, and FSR.aexc is left unchanged; otherwise, FSR.nvm = 0 so
FSR.nva ← 1 and for FMADD FSR.nvc ← 1.
298 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

R may be any number; its generation may cause OF, UF, and/or NX.

The multiply operation in fused floating-point multiply-subtract (FMSUB) instructions cannot cause
inexact, underflow, or overflow exceptions.

See the earlier sections on Nonstandard Mode and unfinished_FPop for additional details.

8.5.7 Floating-Point Negative Multiply-Subtract (FNMSUB)
First refer to the Floating-Point Multiply table (TABLE 8-4 on page 296) to select a row in the table
below.

TABLE 8-7 Floating-Point Multiply-Subtract ((F[rs1] × F[rs2])− F[rs3])

F[rs3]

−∞ −N3 −0 +0 +N3 +∞ QNaN3 SNaN3

F[rs1]
×

F[rs2]

−∞ dQNaN,
NV − ∞

QNaN3

QSNaN3,
NV

−N ±R* −N −R
−0 +N3 ±0** −0 −N3
+0 +0 ±0**
+N +R +N ±R*

+∞ +∞ dQNaN,
NV

QNaN1 QNaN1
QNaN2 QNaN2
QNaN

(±0 × ±∞)
dQNaN,

NV***
QNaN3,

NV***

QSNaN1 QSNaN1,
NV***

QSNaN2 QSNaN2,
NV***

* if N = N3, then **

** result is +0 unless rounding mode is round to −∞, in which case the result is −0

*** if FSR.nvm = 1, FSR.nvc ← 1, the trap occurs, and FSR.aexc is left unchanged; otherwise, FSR.nvm = 0
so FSR.nva ← 1 and for FMSUB FSR.nvc ← 1.
CHAPTER 8 • IEEE Std 754-1985 Requirements for UltraSPARC Architecture 2007 299

R may be any number; its generation may cause OF, UF, and/or NX.

The multiply operation in fused floating-point negative multiply-subtract (FNMSUB) instructions
cannot cause inexact, underflow, or overflow exceptions.

Note that rounding occurs after the negation. Thus, FNMSUB is not equivalent to FMSUB followed by
FNEG when the rounding mode is towards ±∞.

See the earlier sections on Nonstandard Mode and unfinished_FPop for additional details.

TABLE 8-8 Floating-Point Negative Multiply-Subtract (− (F[rs1] × F[rs2]) + F[rs3])

F[rs3]

−∞ −N3 −0 +0 +N3 +∞ QNaN3 SNaN3

F[rs1]
×

F[rs2]

−∞ dQNaN,
NV +∞

QNaN3

QSNaN3,
NV

−N ±R* +N +R

−0 −N3 ±0** +0 +N3

+0 −0 ±0**

+N −R −N ±R*

+∞ − ∞ dQNaN,
NV

QNaN1 QNaN1

QNaN2 QNaN2

QNaN
(±0 × ±∞)

dQNaN,
NV***

QNaN3,
NV***

QSNaN1 QSNaN1,
NV***

QSNaN2 QSNaN2,
NV***

* if N = N3, then **

** result is +0 unless rounding mode is round to −∞, in which case the result is −0

*** if FSR.nvm = 1, FSR.nvc ← 1, the trap occurs, and FSR.aexc is left unchanged; otherwise, FSR.nvm = 0
so FSR.nva ← 1 and for FNMSUB FSR.nvc ← 1.
300 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

8.5.8 Floating-Point Divide (FDIV)

R may be any number; its generation may cause OF, UF, and/or NX.

8.5.9 Floating-Point Square Root (FSQRT)

R may be any number; its generation may cause NX.

Square root cannot cause DZ, OF, or UF.

TABLE 8-9 Floating-Point Divide operation (F[rs1] ÷ F[rs2])

F[rs2]

−∞ − N2 −0 + 0 + N2 +∞ QNaN2 SNaN2

F[rs1]

−∞ dQNaN,
NV

+∞ −∞ dQNaN,
NV

QNaN2
QSNaN2,

NV

−N1 +R +∞,
DZ

−∞,
DZ

−R

−0 +0 dQNaN,
NV

−0

+ 0 −0 +0

+ N1 −R −∞,
DZ

+∞,
DZ

+R

+∞ dQNaN,
NV

−∞ +∞ dQNaN,
NV

QNaN1 QNaN1

SNaN1 QSNaN1,
NV

TABLE 8-10 Floating-Point Square Root operation ()

F[rs2]

−∞ −N2 − 0 +0 + N2 +∞ QNaN2 SNaN2

dQNaN,
NV

−0 +0 +R +∞ QNaN2 QSNaN2,
NV

F rs2[]
CHAPTER 8 • IEEE Std 754-1985 Requirements for UltraSPARC Architecture 2007 301

8.5.10 Floating-Point Compare (FCMP, FCMPE)

* NV for FCMPE, but not for FCMP.

NaN is considered to be unequal to anything else, even the identical NaN bit pattern.

FCMP/FCMPE cannot cause DZ, OF, UF, NX.

8.5.11 Floating-Point to Floating-Point Conversions
(F<s|d|q>TO<s|d|q>)

For FsTOd:

■ the least-significant fraction bits of a normal number are filled with zero to fit in double-precision
format

■ the least-significant bits of a NaN result operand are filled with zero to fit in double-precision
format

For FsTOq and FdTOq:

■ the least-significant fraction bits of a normal number are filled with zero to fit in quad-precision
format

TABLE 8-11 Floating-Point Compare (FCMP, FCMPE) operation (F[rs1] ? F[rs2])

F[rs2]

−∞ −N2 −0 +0 +N2 +∞ QNaN2 SNaN2

F[rs1]

−∞ 0

−N1 0, 1, 2 1

−0
0

+0

+N1 2 0,1,2

+∞ 0

QNaN1 3,
NV*

SNaN1 3,
NV

TABLE 8-12 FSR.fcc Encoding for Result of FCMP, FCMPE

fcc result meaning

0 =

1 <

2 >

3 unordered

TABLE 8-13 Floating-Point to Float-Point Conversions (convert(F[rs2]))

F[rs2]

−SNaN2 −QNaN2 −∞ −N2 −0 +0 +N2 +∞ +QNaN2 +SNaN2

−QSNaN2,
NV

−QNaN2 −∞ −R −0 +0 +R +∞ +QNaN2 +QSNaN2,
NV
302 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

■ the least-significant bits of a NaN result operand are filled with zero to fit in quad-precision format

For FqTOs and FdTOs:

■ the fraction is rounded according to the current rounding mode
■ the lower-order bits of a NaN source are discarded to fit in single-precision format; this discarding

is not considered a rounding operation, and will not cause an NX exception

For FqTOd:

■ the fraction is rounded according to the current rounding mode
■ the least-significant bits of a NaN source are discarded to fit in double-precision format; this

discarding is not considered a rounding operation, and will not cause an NX exception

8.5.12 Floating-Point to Integer Conversions (F<s|d|q>TO<i|x>)

R may be any integer, and may cause NV, NX.

Float-to-Integer conversions are always treated as round-toward-zero (truncated).

These operations are invalid (due to integer overflow) under the conditions described in Integer
Overflow Definition on page 293.

TABLE 8-14 Floating-Point to Float-Point Conversion Exception Conditions

NV • SNaN operand

OF • FdTOs, FqTOs: the input is larger than can be expressed in single precision
• FqTOd: the input is larger than can be expressed in double precision
• does not occur during other conversion operations

UF • FdTOs, FqTOs: the input is smaller than can be expressed in single precision
• FqTOd: the input is smaller than can be expressed in double precision
• does not occur during other conversion operations

NX • FdTOs, FqTOs: the input fraction has more significant bits than can be held in a
single precision fraction

• FqTOd: the input fraction has more significant bits than can be held in a double
precision fraction

• does not occur during other conversion operations

TABLE 8-15 Floating-Point to Integer Conversions (convert(F[rs2]))

F[rs2]

−SNaN2 −QNaN2 −∞ −N2 −0 +0 +N2 +∞ +QNaN2 +SNaN2

FdTOx
FsTOx
FqTOx

−263,
NV

−263,
NV

−R 0 +R

263−1,
NV

263−1,
NV

FdTOi
FsTOi
FqTOi

−231,
NV

−231,
NV

231−1,
NV

231−1,
NV

TABLE 8-16 Floating-point to Integer Conversion Exception Conditions

NV • SNaN operand
• QNaN operand
• ±∞ operand
• integer overflow

NX • non-integer source (truncation occurred)
CHAPTER 8 • IEEE Std 754-1985 Requirements for UltraSPARC Architecture 2007 303

8.5.13 Integer to Floating-Point Conversions (F<i|x>TO<s|d|q>)

R may be any number; its generation may cause NX.

TABLE 8-17 Integer to Floating-Point Conversions (convert(F[rs2]))

F[rs2]

−int 0 +int

−R +0 +R

TABLE 8-18 Floating-Point Conversion Exception Conditions

NX • FxTOd, FxTOs, FiTOs (possible loss of precision)
• not applicable to FiTOd, FxTOq, or FiTOq (FSR.cexc will

always be cleared)
304 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

CHAPTER 9

Memory

The UltraSPARC Architecture memory models define the semantics of memory operations. The
instruction set semantics require that loads and stores behave as if they are performed in the order in
which they appear in the dynamic control flow of the program. The actual order in which they are
processed by the memory may be different. The purpose of the memory models is to specify what
constraints, if any, are placed on the order of memory operations.

The memory models apply both to uniprocessor and to shared memory multiprocessors. Formal
memory models are necessary for precise definitions of the interactions between multiple virtual
processors and input/output devices in a shared memory configuration. Programming shared
memory multiprocessors requires a detailed understanding of the operative memory model and the
ability to specify memory operations at a low level in order to build programs that can safely and
reliably coordinate their activities. For additional information on the use of the models in
programming real systems, see Programming with the Memory Models, contained in the separate volume
UltraSPARC Architecture Application Notes.

This chapter contains a great deal of theoretical information so that the discussion of the UltraSPARC
Architecture TSO memory model has sufficient background.

This chapter describes memory models in these sections:

■ Memory Location Identification on page 305.
■ Memory Accesses and Cacheability on page 306.
■ Memory Addressing and Alternate Address Spaces on page 308.
■ SPARC V9 Memory Model on page 310.
■ The UltraSPARC Architecture Memory Model — TSO on page 313.
■ Nonfaulting Load on page 319.
■ Store Coalescing on page 320.

9.1 Memory Location Identification
A memory location is identified by an 8-bit address space identifier (ASI) and a 64-bit memory
address. The 8-bit ASI can be obtained from an ASI register or included in a memory access
instruction. The ASI used for an access can distinguish among different 64-bit address spaces, such as
Primary memory space, Secondary memory space, and internal control registers. It can also apply
attributes to the access, such as whether the access should be performed in big- or little-endian byte
order, or whether the address should be taken as a virtual or real.
305

9.2 Memory Accesses and Cacheability
Memory is logically divided into real memory (cached) and I/O memory (noncached with and
without side effects) spaces.

Real memory stores information without side effects. A load operation returns the value most recently
stored. Operations are side-effect-free in the sense that a load, store, or atomic load-store to a location
in real memory has no program-observable effect, except upon that location (or, in the case of a load
or load-store, on the destination register).

I/O locations may not behave like memory and may have side effects. Load, store, and atomic load-
store operations performed on I/O locations may have observable side effects, and loads may not
return the value most recently stored. The value semantics of operations on I/O locations are not
defined by the memory models, but the constraints on the order in which operations are performed is
the same as it would be if the I/O locations were real memory. The storage properties, contents,
semantics, ASI assignments, and addresses of I/O registers are implementation dependent.

9.2.1 Coherence Domains
Two types of memory operations are supported in the UltraSPARC Architecture: cacheable and
noncacheable accesses. The manner in which addresses are differentiated is implementation
dependent. In some implementations, it is indicated in the page translation entry (TTE.cp).

Although SPARC V9 does not specify memory ordering between cacheable and noncacheable
accesses, the UltraSPARC Architecture maintains TSO ordering between memory references
regardless of their cacheability.

9.2.1.1 Cacheable Accesses
Accesses within the coherence domain are called cacheable accesses. They have these properties:

■ Data reside in real memory locations.
■ Accesses observe supported cache coherency protocol(s).
■ The cache line size is 2n bytes (where n ≥ 4), and can be different for each cache.

9.2.1.2 Noncacheable Accesses
Noncacheable accesses are outside of the coherence domain. They have the following properties:

■ Data might not reside in real memory locations. Accesses may result in programmer-visible side
effects. An example is memory-mapped I/O control registers.

■ Accesses do not observe supported cache coherency protocol(s).
■ The smallest unit in each transaction is a single byte.

The UltraSPARC Architecture MMU optionally includes an attribute bit in each page translation,
TTE.e, which when set signifies that this page has side effects.

Noncacheable accesses without side effects (TTE.e = 0) are processor-consistent and obey TSO
memory ordering. In particular, processor consistency ensures that a noncacheable load that
references the same location as a previous noncacheable store will load the data from the previous
store.

Noncacheable accesses with side effects (TTE.e = 1) are processor consistent and are strongly ordered.
These accesses are described in more detail in the following section.
306 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

9.2.1.3 Noncacheable Accesses with Side-Effect

Loads, stores, and load-stores to I/O locations might not behave with memory semantics. Loads and
stores could have side effects; for example, a read access could clear a register or pop an entry off a
FIFO. A write access could set a register address port so that the next access to that address will read
or write a particular internal register. Such devices are considered order sensitive. Also, such devices
may only allow accesses of a fixed size, so store merging of adjacent stores or stores within a 16-byte
region would cause an error (see Store Coalescing on page 320).

Noncacheable accesses (other than block loads and block stores) to pages with side effects (TTE.e = 1)
exhibit the following behavior:

■ Noncacheable accesses are strongly ordered with respect to each other. Bus protocol should
guarantee that IO transactions to the same device are delivered in the order that they are received.

■ Noncacheable loads with the TTE.e bit = 1 will not be issued to the system until all previous
instructions have completed, and the store queue is empty.

■ Noncacheable store coalescing is disabled for accesses with TTE.e = 1.

■ A MEMBAR may be needed between side-effect and non-side-effect accesses. See TABLE 9-3 on page
317.

Whether block loads and block stores adhere to the above behavior or ignore TTE.e and always
behave as if TTE.e = 0 is implementation-dependent (impl. dep. #410-S10, #411-S10).

On UltraSPARC Architecture virtual processors, noncacheable and side-effect accesses do not observe
supported cache coherency protocols (impl. dep. #120).

Non-faulting loads (using ASI_PRIMARY_NO_FAULT[_LITTLE] or
ASI_SECONDARY_NO_FAULT[_LITTLE]) with the TTE.e bit = 1 cause a DAE_side_effect_page trap.

Prefetches to noncacheable addresses result in nops.

The processor does speculative instruction memory accesses and follows branches that it predicts are
taken. Instruction addresses mapped by the MMU can be accessed even though they are not actually
executed by the program. Normally, locations with side effects or that generate timeouts or bus errors
are not mapped as instruction addresses by the MMU, so these speculative accesses will not cause
problems.

IMPL. DEP. #118-V9: The manner in which I/O locations are identified is implementation dependent.

IMPL. DEP. #120-V9: The coherence and atomicity of memory operations between virtual processors
and I/O DMA memory accesses are implementation dependent.

Systems supporting SPARC V8 applications that use memory-mapped I/O locations must ensure that
SPARC V8 sequential consistency of I/O locations can be maintained when those locations are
referenced by a SPARC V8 application. The MMU either must enforce such consistency or cooperate
with system software or the virtual processor to provide it.

IMPL. DEP. #121-V9: An implementation may choose to identify certain addresses and use an
implementation-dependent memory model for references to them.

V9 Compatibility
Note

Operations to I/O locations are not guaranteed to be
sequentially consistent among themselves, as they are in SPARC
V8.
CHAPTER 9 • Memory 307

9.3 Memory Addressing and Alternate Address
Spaces
An address in SPARC V9 is a tuple consisting of an 8-bit address space identifier (ASI) and a 64-bit
byte-address offset within the specified address space. Memory is byte-addressed, with halfword
accesses aligned on 2-byte boundaries, word accesses (which include instruction fetches) aligned on 4-
byte boundaries, extended-word and doubleword accesses aligned on 8-byte boundaries, and
quadword quantities aligned on 16-byte boundaries. With the possible exception of the cases
described in Memory Alignment Restrictions on page 73, an improperly aligned address in a load, store,
or load-store instruction always causes a trap to occur. The largest datum that is guaranteed to be
atomically read or written is an aligned doubleword1. Also, memory references to different bytes,
halfwords, and words in a given doubleword are treated for ordering purposes as references to the
same location. Thus, the unit of ordering for memory is a doubleword.

9.3.1 Memory Addressing Types
The UltraSPARC Architecture supports the following types of memory addressing:

Virtual Addresses (VA). Virtual addresses are addresses produced by a virtual processor that
maps all systemwide, program-visible memory. Virtual addresses can be presented in nonprivileged
mode and privileged mode

Real addresses (RA). A real address is provided to privileged software to describe the underlying
physical memory allocated to it. Translation storage buffers (TSBs) maintained by privileged software
are used to translate privileged or nonprivileged mode virtual addresses into real addresses. MMU
bypass addresses in privileged mode are also real addresses.

Nonprivileged software only uses virtual addresses. Privileged software uses virtual and real
addresses.

9.3.2 Memory Address Spaces
The UltraSPARC Architecture supports accessing memory using virtual or real addresses. Multiple
virtual address spaces within the same real address space are distinguished by a context identifier
(context ID).

1. Two exceptions to this are the special ASI_TWIN_DW_NUCLEUS[_L] and ASI_TWINX_REAL[_L]which provide hardware support
for an atomic quad load to be used for TTE loads from TSBs.

Notes The doubleword is the coherency unit for update, but
programmers should not assume that doubleword floating-point
values are updated as a unit unless they are doubleword-aligned
and always updated with double-precision loads and stores.
Some programs use pairs of single-precision operations to load
and store double-precision floating-point values when the
compiler cannot determine that they are doubleword aligned.

Also, although quad-precision operations are defined in the
SPARC V9 architecture, the granularity of loads and stores for
quad-precision floating-point values may be word or
doubleword.
308 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

Privileged software can create multiple virtual address spaces, using the primary and secondary
context registers to associate a context ID with every virtual address. Privileged software manages the
allocation of context IDs.

The full representation of a real address is as follows:

real_address = context_ID :: virtual_address

9.3.3 Address Space Identifiers
The virtual processor provides an address space identifier with every address. This ASI may serve
several purposes:

■ To identify which of several distinguished address spaces the 64-bit address offset is addressing

■ To provide additional access control and attribute information, for example, to specify the
endianness of the reference

■ To specify the address of an internal control register in the virtual processor, cache, or memory
management hardware

Memory management hardware can associate an independent 264-byte memory address space with
each ASI. In practice, the three independent memory address spaces (contexts) created by the MMU
are Primary, Secondary, and Nucleus.

Alternate-space load, store, load-store and prefetch instructions specify an explicit ASI to use for their
data access. The behavior of the access depends on the current privilege mode.

Non-alternate space load, store, load-store, and prefetch instructions use an implicit ASI value that is
determined by current virtual processor state (the current privilege mode, trap level (TL), and the
value of the PSTATE.cle). Instruction fetches use an implicit ASI that depends only on the current
mode and trap level.

The architecturally specified ASIs are listed in Chapter 10, Address Space Identifiers (ASIs). The
operation of each ASI in nonprivileged and privileged modes is indicated in TABLE 10-1 on page 323.

Attempts by nonprivileged software (PSTATE.priv = 0) to access restricted ASIs (ASI bit 7 = 0) cause a
privileged_action exception. Attempts by privileged software (PSTATE.priv = 1) to access ASIs 3016–
7F16 cause a privileged_action exception.

When TL = 0, normal accesses by the virtual processor to memory when fetching instructions and
performing loads and stores implicitly specify ASI_PRIMARY or ASI_PRIMARY_LITTLE, depending
on the setting of PSTATE.cle.

When TL = 1 or 2 (> 0 but ≤ MAXPTL), the implicit ASI in privileged mode is:

■ for instruction fetches, ASI_NUCLEUS

■ for loads and stores, ASI_NUCLEUS if PSTATE.cle = 0 or ASI_NUCLEUS_LITTLE if PSTATE.cle = 1
(impl. dep. #124-V9).

SPARC V9 supports the PRIMARY[_LITTLE], SECONDARY[_LITTLE], and NUCLEUS[_LITTLE]
address spaces.

Accesses to other address spaces use the load/store alternate instructions. For these accesses, the ASI
is either contained in the instruction (for the register+register addressing mode) or taken from the ASI
register (for register+immediate addressing).

ASIs are either nonrestricted or restricted-to-privileged:

Programming
Note

Independent address spaces, accessible through ASIs, make it
possible for system software to easily access the address space of
faulting software when processing exceptions or to implement
access to a client program’s memory space by a server program.
CHAPTER 9 • Memory 309

■ A nonrestricted ASI (ASI range 8016 – FF16) is one that may be used independently of the privilege
level (PSTATE.priv) at which the virtual processor is running.

■ A restricted-to-privileged ASI (ASI range 0016 – 2F16) requires that the virtual processor be in
privileged mode for a legal access to occur.

The relationship between virtual processor state and ASI restriction is shown in TABLE 9-1.

Some restricted ASIs are provided as mandated by SPARC V9:
ASI_AS_IF_USER_PRIMARY[_LITTLE] and ASI_AS_IF_USER_SECONDARY[_LITTLE]. The intent
of these ASIs is to give privileged software efficient, yet secure access to the memory space of
nonprivileged software.

The normal address space is primary address space, which is accessed by the unrestricted
ASI_PRIMARY[_LITTLE] ASIs. The secondary address space, which is accessed by the unrestricted
ASI_SECONDARY[_LITTLE] ASIs, is provided to allow server software to access client software’s
address space.

ASI_PRIMARY_NOFAULT[_LITTLE] and ASI_SECONDARY_NOFAULT[_LITTLE] support nonfaulting
loads. These ASIs may be used to color (that is, distinguish into classes) loads in the instruction stream
so that, in combination with a judicious mapping of low memory and a specialized trap handler, an
optimizing compiler can move loads outside of conditional control structures.

9.4 SPARC V9 Memory Model
The SPARC V9 processor architecture specified the organization and structure of a central processing
unit but did not specify a memory system architecture. This section summarizes the MMU support
required by an UltraSPARC Architecture processor.

The memory models specify the possible order relationships between memory-reference instructions
issued by a virtual processor and the order and visibility of those instructions as seen by other virtual
processors. The memory model is intimately intertwined with the program execution model for
instructions.

9.4.1 SPARC V9 Program Execution Model
The SPARC V9 strand model of a virtual processor consists of three units: an Issue Unit, a Reorder
Unit, and an Execute Unit, as shown in FIGURE 9-1.

The Issue Unit reads instructions over the instruction path from memory and issues them in program
order to the Reorder Unit. Program order is precisely the order determined by the control flow of the
program and the instruction semantics, under the assumption that each instruction is performed
independently and sequentially.

TABLE 9-1 Allowed Accesses to ASIs

ASI Value Type
Result of ASI
Access in NP Mode

Result of ASI
Access in P Mode

0016 –-
2F16

Restricted-to-
privileged

privileged_action
exception

Valid Access

8016 –
FF16

Nonrestricted Valid Access Valid Access
310 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

Issued instructions are collected and potentially reordered in the Reorder Unit, and then dispatched to
the Execute Unit. Instruction reordering allows an implementation to perform some operations in
parallel and to better allocate resources. The reordering of instructions is constrained to ensure that
the results of program execution are the same as they would be if the instructions were performed in
program order. This property is called processor self-consistency.

Processor self-consistency requires that the result of execution, in the absence of any shared memory
interaction with another virtual processor, be identical to the result that would be observed if the
instructions were performed in program order. In the model in FIGURE 9-1, instructions are issued in
program order and placed in the reorder buffer. The virtual processor is allowed to reorder
instructions, provided it does not violate any of the data-flow constraints for registers or for memory.

The data-flow order constraints for register reference instructions are these:

1. An instruction that reads from or writes to a register cannot be performed until all earlier
instructions that write to that register have been performed (read-after-write hazard; write-after-
write hazard).

2. An instruction cannot be performed that writes to a register until all earlier instructions that read
that register have been performed (write-after-read hazard).

The data-flow order constraints for memory-reference instructions are those for register reference
instructions, plus the following additional constraints:

1. A memory-reference instruction that uses (loads or stores) the value at a location cannot be
performed until all earlier memory-reference instructions that set (store to) that location have been
performed (read-after-write hazard, write-after-write hazard).

2. A memory-reference instruction that writes (stores to) a location cannot be performed until all
previous instructions that read (load from) that location have been performed (write-after-read
hazard).

Memory-barrier instruction (MEMBAR) and the TSO memory model also constrain the issue of
memory-reference instructions. See Memory Ordering and Synchronization on page 316 and The
UltraSPARC Architecture Memory Model — TSO on page 313 for a detailed description.

The constraints on instruction execution assert a partial ordering on the instructions in the reorder
buffer. Every one of the several possible orderings is a legal execution ordering for the program. See
Appendix D, Formal Specification of the Memory Models, for more information.

V9 Compatibility
Note

An implementation can avoid blocking instruction execution in
case 2 and the write-after-write hazard in case 1 by using a
renaming mechanism that provides the old value of the register
to earlier instructions and the new value to later uses.

Memory

Data Path

Instruction Path
Issue Reorder Execute

FIGURE 9-1 Processor Model: Uniprocessor System

Unit Unit Unit
Reorder

Unit

Processor
CHAPTER 9 • Memory 311

9.4.2 Virtual Processor/Memory Interface Model
Each UltraSPARC Architecture virtual processor in a multiprocessor system is modeled as shown in
FIGURE 9-2; that is, having two independent paths to memory: one for instructions and one for data.

FIGURE 9-2 Data Memory Paths: Multiprocessor System

Data caches are maintained by hardware so their contents always appear to be consistent (coherent).
Instruction caches are not required to be kept consistent with data caches and therefore require explicit
program (software) action to ensure consistency when a program modifies an executing instruction
stream. See Synchronizing Instruction and Data Memory on page 318 for details. Memory is shared in
terms of address space, but it may be nonhomogeneous and distributed in an implementation.Caches
are ignored in the model, since their functions are transparent to the memory model1.

In real systems, addresses may have attributes that the virtual processor must respect. The virtual
processor executes loads, stores, and atomic load-stores in whatever order it chooses, as constrained
by program order and the memory model.

Instructions are performed in an order constrained by local dependencies. Using this dependency
ordering, an execution unit submits one or more pending memory transactions to the memory. The
memory performs transactions in memory order. The memory unit may perform transactions submitted
to it out of order; hence, the execution unit must not concurrently submit two or more transactions
that are required to be ordered, unless the memory unit can still guarantee in-order semantics.

The memory accepts transactions, performs them, and then acknowledges their completion. Multiple
memory operations may be in progress at any time and may be initiated in a nondeterministic fashion
in any order, provided that all transactions to a location preserve the per-virtual processor partial
orderings. Memory transactions may complete in any order. Once initiated, all memory operations are
performed atomically: loads from one location all see the same value, and the result of stores is visible
to all potential requestors at the same instant.

The order of memory operations observed at a single location is a total order that preserves the partial
orderings of each virtual processor’s transactions to this address. There may be many legal total
orders for a given program’s execution.

1. The model described here is only a model; implementations of UltraSPARC Architecture systems are unconstrained as long as their
observable behaviors match those of the model.

Memory Transactions
in Memory Order

Memory

Instructions
Data

Virtual Processors

Instructions
Data

Instructions
Data
312 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

9.5 The UltraSPARC Architecture Memory Model —
TSO
The UltraSPARC Architecture is a model that specifies the behavior observable by software on
UltraSPARC Architecture systems. Therefore, access to memory can be implemented in any manner,
as long as the behavior observed by software conforms to that of the models described here.

The SPARC V9 architecture defines three different memory models: Total Store Order (TSO), Partial
Store Order (PSO), and Relaxed Memory Order (RMO).

All SPARC V9 processors must provide Total Store Order (or a more strongly ordered model, for
example, Sequential Consistency) to ensure compatibility for SPARC V8 application software.

All UltraSPARC Architecture virtual processors implement TSO ordering. The PSO and RMO models
from SPARC V9 are not described in this UltraSPARC Architecture specification. UltraSPARC
Architecture 2007 processors do not implement the PSO memory model directly, but all software
written to run under PSO will execute correctly on an UltraSPARC Architecture 2007 processor (using
the TSO model).

Whether memory models represented by PSTATE.mm = 102 or 112 are supported in an UltraSPARC
Architecture processor is implementation dependent (impl. dep. #113-V9-Ms10). If the 102 model is
supported, then when PSTATE.mm = 102 the implementation must correctly execute software that
adheres to the RMO model described in The SPARC Architecture Manual-Version 9. If the 112 model is
supported, its definition is implementation dependent and will be described in implementation-
specific documentation.

Programs written for Relaxed Memory Order will work in both Partial Store Order and Total Store
Order. Programs written for Partial Store Order will work in Total Store Order. Programs written for a
weak model, such as RMO, may execute more quickly when run on hardware directly supporting that
model, since the model exposes more scheduling opportunities, but use of that model may also
require extra instructions to ensure synchronization. Multiprocessor programs written for a stronger
model will behave unpredictably if run in a weaker model.

Machines that implement sequential consistency (also called "strong ordering" or "strong consistency")
automatically support programs written for TSO. Sequential consistency is not a SPARC V9 memory
model. In sequential consistency, the loads, stores, and atomic load-stores of all virtual processors are
performed by memory in a serial order that conforms to the order in which these instructions are
issued by individual virtual processors. A machine that implements sequential consistency may
deliver lower performance than an equivalent machine that implements TSO order. Although
particular SPARC V9 implementations may support sequential consistency, portable software must
not rely on the sequential consistency memory model.

9.5.1 Memory Model Selection
The active memory model is specified by the 2-bit value in PSTATE.mm,. The value 002 represents the
TSO memory model; increasing values of PSTATE.mm indicate increasingly weaker (less strongly
ordered) memory models.

Writing a new value into PSTATE.mm causes subsequent memory reference instructions to be
performed with the order constraints of the specified memory model.
CHAPTER 9 • Memory 313

IMPL. DEP. #119-Ms10: The effect of an attempt to write an unsupported memory model designation
into PSTATE.mm is implementation dependent; however, it should never result in a value of
PSTATE.mm value greater than the one that was written. In the case of an UltraSPARC Architecture
implementation that only supports the TSO memory model, PSTATE.mm always reads as zero and
attempts to write to it are ignored.

9.5.2 Programmer-Visible Properties of the UltraSPARC
Architecture TSO Model
Total Store Order must be provided for compatibility with existing SPARC V8 programs. Programs that
execute correctly in either RMO or PSO will execute correctly in the TSO model.

The rules for TSO, in addition to those required for self-consistency (see page 311), are:

■ Loads are blocking and ordered with respect to earlier loads

■ Stores are ordered with respect to stores.

■ Atomic load-stores are ordered with respect to loads and stores.

■ Stores cannot bypass earlier loads.

Atomic load-stores are treated as both a load and a store and can only be applied to cacheable address
spaces.

Thus, TSO ensures the following behavior:

■ Each load instruction behaves as if it were followed by a MEMBAR #LoadLoad and #LoadStore.

■ Each store instruction behaves as if it were followed by a MEMBAR #StoreStore.

■ Each atomic load-store behaves as if it were followed by a MEMBAR #LoadLoad, #LoadStore,
and #StoreStore.

In addition to the above TSO rules, the following rules apply to UltraSPARC Architecture memory
models:

■ A MEMBAR #StoreLoad must be used to prevent a load from bypassing a prior store, if Strong
Sequential Order (as defined in The UltraSPARC Architecture Memory Model — TSO on page 313) is
desired.

■ Accesses that have side effects are all strongly ordered with respect to each other.

■ A MEMBAR #Lookaside is not needed between a store and a subsequent load to the same
noncacheable address.

■ Load (LDXA) and store (STXA) instructions that reference certain internal ASIs perform both an
intra-virtual processor synchronization (i.e. an implicit MEMBAR #Sync operation before the load
or store is executed) and an inter-virtual processor synchronization (that is, all active virtual
processors are brought to a point where synchronization is possible, the load or store is executed,
and all virtual processors then resume instruction fetch and execution). The model-specific PRM
should indicate which ASIs require intra-virtual processor synchronization, inter-virtual processor
synchronization, or both.

Programming
Note

Loads can bypass earlier stores to other addresses, which
maintains processor self-consistency.
314 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

9.5.3 TSO Ordering Rules
TABLE 9-2 summarizes the cases where a MEMBAR must be inserted between two memory operations
on an UltraSPARC Architecture virtual processor running in TSO mode, to ensure that the operations
appear to complete in a particular order. Memory operation ordering is not to be confused with
processor consistency or deterministic operation; MEMBARs are required for deterministic operation
of certain ASI register updates.

TABLE 9-2 is to be read as follows: Reading from row to column, the first memory operation in program
order in a row is followed by the memory operation found in the column. Symbols used as table
entries:

■ # — No intervening operation is required.

■ M — an intervening MEMBAR #StoreLoad or MEMBAR #Sync or MEMBAR #MemIssue is
required

■ S — an intervening MEMBAR #Sync or MEMBAR #MemIssue is required

■ nc — Noncacheable

■ e — Side effect

■ ne — No side effect

Note that transitivity applies; if operation X is always ordered before operation Y ("#" in TABLE 9-2)
and operation Y is always ordered before operation Z (again, "#" in the table), then the sequence of
operations X ... Y ... Z may safely be executed with no intervening MEMBAR, even if the table shows
that a MEMBAR is normally needed between X and Z. For example, a MEMBAR is normally needed
between a store and a load ("M" in TABLE 9-2); however, the sequence "store ... atomic ... load" may be
executed safely with no intervening MEMBAR because stores are always ordered before atomics and
atomics are always ordered before loads.

Programming
Note

To ensure software portability across systems, the MEMBAR
rules in this section should be followed (which may be stronger
than the rules in SPARC V9).

TABLE 9-2 Summary of UltraSPARC Architecture Ordering Rules (TSO Memory Model)

To Memory Operation C (column):

From Memory
Operation R (row): lo

ad

st
o

re

at
o

m
ic

b
lo

ad

b
st

o
re

lo
ad

_n
c_

e

st
o

re
_n

c_
e

lo
ad

_n
c_

n
e

st
o

re
_n

c_
n

e

b
lo

ad
_n

c

b
st

o
re

_n
c

load # # # S S # # # # S S

store M2 # # M S M # M # M S

atomic # # # M S # # # # M S

bload S S S S S S S S S S S

bstore M S M M S M S M S M S

load_nc_e # # # S S #1 #1 #1 #1 S S

store_nc_e S # # S S #1 #1 M2 #1 M S

load_nc_ne # # # S S #1 #1 #1 #1 S S

store_nc_ne S # # S S M2 #1 M2 #1 M S

bload_nc S S S S S S S S S S S

bstore_nc S S S S S M S M S M S

1. This table assumes that both noncacheable operations access the same device.

2. When the store and subsequent load access the same location, no intervening MEMBAR is required.
CHAPTER 9 • Memory 315

9.5.4 Hardware Primitives for Mutual Exclusion
In addition to providing memory-ordering primitives that allow programmers to construct mutual-
exclusion mechanisms in software, the UltraSPARC Architecture provides three hardware primitives
for mutual exclusion:

■ Compare and Swap (CASA and CASXA)
■ Load Store Unsigned Byte (LDSTUB and LDSTUBA)
■ Swap (SWAP and SWAPA)

Each of these instructions has the semantics of both a load and a store in all three memory models.
They are all atomic, in the sense that no other store to the same location can be performed between the
load and store elements of the instruction. All of the hardware mutual-exclusion operations conform
to the TSO memory model and may require barrier instructions to ensure proper data visibility.

Atomic load-store instructions can be used only in the cacheable domains (not in noncacheable I/O
addresses). An attempt to use an atomic load-store instruction to access a noncacheable page results in
a DAE_nc_page exception.

The atomic load-store alternate instructions can use a limited set of the ASIs. See the specific
instruction descriptions for a list of the valid ASIs. An attempt to execute an atomic load-store
alternate instruction with an invalid ASI results in a DAE_invalid_asi exception.

9.5.4.1 Compare-and-Swap (CASA, CASXA)

Compare-and-swap is an atomic operation that compares a value in a virtual processor register to a
value in memory and, if and only if they are equal, swaps the value in memory with the value in a
second virtual processor register. Both 32-bit (CASA) and 64-bit (CASXA) operations are provided.
The compare-and-swap operation is atomic in the sense that once it begins, no other virtual processor
can access the memory location specified until the compare has completed and the swap (if any) has
also completed and is potentially visible to all other virtual processors in the system.

Compare-and-swap is substantially more powerful than the other hardware synchronization
primitives. It has an infinite consensus number; that is, it can resolve, in a wait-free fashion, an infinite
number of contending processes. Because of this property, compare-and-swap can be used to
construct wait-free algorithms that do not require the use of locks. For examples, see Programming with
the Memory Models, contained in the separate volume UltraSPARC Architecture Application Notes.

9.5.4.2 Swap (SWAP)

SWAP atomically exchanges the lower 32 bits in a virtual processor register with a word in memory.
SWAP has a consensus number of two; that is, it cannot resolve more than two contending processes
in a wait-free fashion.

9.5.4.3 Load Store Unsigned Byte (LDSTUB)

LDSTUB loads a byte value from memory to a register and writes the value FF16 into the addressed
byte atomically. LDSTUB is the classic test-and-set instruction. Like SWAP, it has a consensus number
of two and so cannot resolve more than two contending processes in a wait-free fashion.

9.5.5 Memory Ordering and Synchronization
The UltraSPARC Architecture provides some level of programmer control over memory ordering and
synchronization through the MEMBAR and FLUSH instructions.
316 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

MEMBAR serves two distinct functions in SPARC V9. One variant of the MEMBAR, the ordering
MEMBAR, provides a way for the programmer to control the order of loads and stores issued by a
virtual processor. The other variant of MEMBAR, the sequencing MEMBAR, enables the programmer
to explicitly control order and completion for memory operations. Sequencing MEMBARs are needed
only when a program requires that the effect of an operation becomes globally visible rather than
simply being scheduled.1 Because both forms are bit-encoded into the instruction, a single MEMBAR
can function both as an ordering MEMBAR and as a sequencing MEMBAR.

The SPARC V9 instruction set architecture does not guarantee consistency between instruction and
data spaces. A problem arises when instruction space is dynamically modified by a program writing
to memory locations containing instructions (Self-Modifying Code). Examples are Lisp, debuggers,
and dynamic linking. The FLUSH instruction synchronizes instruction and data memory after
instruction space has been modified.

9.5.5.1 Ordering MEMBAR Instructions

Ordering MEMBAR instructions induce an ordering in the instruction stream of a single virtual
processor. Sets of loads and stores that appear before the MEMBAR in program order are ordered
with respect to sets of loads and stores that follow the MEMBAR in program order. Atomic operations
(LDSTUB(A), SWAP(A), CASA, and CASXA) are ordered by MEMBAR as if they were both a load and
a store, since they share the semantics of both. An STBAR instruction, with semantics that are a subset
of MEMBAR, is provided for SPARC V8 compatibility. MEMBAR and STBAR operate on all pending
memory operations in the reorder buffer, independently of their address or ASI, ordering them with
respect to all future memory operations. This ordering applies only to memory-reference instructions
issued by the virtual processor issuing the MEMBAR. Memory-reference instructions issued by other
virtual processors are unaffected.

The ordering relationships are bit-encoded as shown in TABLE 9-3. For example, MEMBAR 0116,
written as “membar #LoadLoad” in assembly language, requires that all load operations appearing
before the MEMBAR in program order complete before any of the load operations following the
MEMBAR in program order complete. Store operations are unconstrained in this case. MEMBAR 0816
(#StoreStore) is equivalent to the STBAR instruction; it requires that the values stored by store
instructions appearing in program order prior to the STBAR instruction be visible to other virtual
processors before issuing any store operations that appear in program order following the STBAR.

In TABLE 9-3 these ordering relationships are specified by the “<m” symbol, which signifies memory
order. See Appendix D, Formal Specification of the Memory Models, for a formal description of the <m
relationship.

1.Sequencing MEMBARs are needed for some input/output operations, forcing stores into specialized stable storage, context
switching, and occasional other system functions. Using a sequencing MEMBAR when one is not needed may cause a degradation of
performance. See Programming with the Memory Models, contained in the separate volume UltraSPARC Architecture Application Notes,
for examples of the use of sequencing MEMBARs.

TABLE 9-3 Ordering Relationships Selected by Mask

Ordering Relation,
Earlier <m Later

Assembly Language
Constant Mnemonic

Effective Behavior
in TSO model

Mask
Value

nmask
Bit #

Load <m Load #LoadLoad nop 0116 0

Store <m Load #StoreLoad #StoreLoad 0216 1

Load <m Store #LoadStore nop 0416 2

Store <m Store #StoreStore nop 0816 3

Implementation
Note

An UltraSPARC Architecture 2007 implementation that only
implements the TSO memory model may implement
MEMBAR #LoadLoad, MEMBAR #LoadStore, and
MEMBAR #StoreStore as nops and MEMBAR #Storeload
as a MEMBAR #Sync.
CHAPTER 9 • Memory 317

9.5.5.2 Sequencing MEMBAR Instructions

A sequencing MEMBAR exerts explicit control over the completion of operations. The three
sequencing MEMBAR options each have a different degree of control and a different application.

■ Lookaside Barrier — Ensures that loads following this MEMBAR are from memory and not from a
lookaside into a write buffer. Lookaside Barrier requires that pending stores issued prior to the
MEMBAR be completed before any load from that address following the MEMBAR may be issued.
A Lookaside Barrier MEMBAR may be needed to provide lock fairness and to support some
plausible I/O location semantics. See the example in “Control and Status Registers” in Programming
with the Memory Models, contained in the separate volume UltraSPARC Architecture Application
Notes.

■ Memory Issue Barrier — Ensures that all memory operations appearing in program order before
the sequencing MEMBAR complete before any new memory operation may be initiated. See the
example in “I/O Registers with Side Effects” in Programming with the Memory Models, contained in
the separate volume UltraSPARC Architecture Application Notes.

■ Synchronization Barrier — Ensures that all instructions (memory reference and others) preceding
the MEMBAR complete and that the effects of any fault or error have become visible before any
instruction following the MEMBAR in program order is initiated. A Synchronization Barrier
MEMBAR fully synchronizes the virtual processor that issues it.

TABLE 9-4 shows the encoding of these functions in the MEMBAR instruction.

For more details, see the MEMBAR instruction on page 201 of Chapter 7, Instructions.

9.5.5.3 Synchronizing Instruction and Data Memory

The SPARC V9 memory models do not require that instruction and data memory images be consistent
at all times. The instruction and data memory images may become inconsistent if a program writes
into the instruction stream. As a result, whenever instructions are modified by a program in a context
where the data (that is, the instructions) in the memory and the data cache hierarchy may be
inconsistent with instructions in the instruction cache hierarchy, some special programmatic
(software) action must be taken.

The FLUSH instruction will ensure consistency between the in-flight instruction stream and the data
references in the virtual processor executing FLUSH. The programmer must ensure that the
modification sequence is robust under multiple updates and concurrent execution. Since, in general,
loads and stores may be performed out of order, appropriate MEMBAR and FLUSH instructions must
be interspersed as needed to control the order in which the instruction data are modified.

The FLUSH instruction ensures that subsequent instruction fetches from the doubleword target of the
FLUSH by the virtual processor executing the FLUSH appear to execute after any loads, stores, and
atomic load-stores issued by the virtual processor to that address prior to the FLUSH. FLUSH acts as
a barrier for instruction fetches in the virtual processor on which it executes and has the properties of
a store with respect to MEMBAR operations.

TABLE 9-4 Sequencing Barrier Selected by Mask

Sequencing Function Assembler Tag Mask Value cmask Bit #

Lookaside Barrier #Lookaside 1016 0

Memory Issue Barrier #MemIssue 2016 1

Synchronization Barrier #Sync 4016 2

Implementation
Note

In UltraSPARC Architecture 2007 implementations,
MEMBAR #Lookaside and MEMBAR #MemIssue are
typically implemented as a MEMBAR #Sync.
318 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

IMPL. DEP. #122-V9: The latency between the execution of FLUSH on one virtual processor and the
point at which the modified instructions have replaced outdated instructions in a multiprocessor is
implementation dependent.

On an UltraSPARC Architecture virtual processor:

■ A FLUSH instruction causes a synchronization with the virtual processor, which flushes the
instruction pipeline in the virtual processor on which the FLUSH instruction is executed.

■ Coherency between instruction and data memories may or may not be maintained by hardware. If
it is, an UltraSPARC Architecture implementation may ignore the address in the operands of a
FLUSH instruction.

For more details, see the FLUSH instruction on page 133 of Chapter 7, Instructions.

9.6 Nonfaulting Load
A nonfaulting load behaves like a normal load, with the following exceptions:

■ A nonfaulting load from a location with side effects (TTE.e = 1) causes a DAE_side_effect_page
exception.

■ A nonfaulting load from a page marked for nonfault access only (TTE.nfo = 1) is allowed; other
types of accesses to such a page cause a DAE_nfo_page exception.

■ These loads are issued with ASI_PRIMARY_NO_FAULT[_LITTLE] or
ASI_SECONDARY_NO_FAULT[_LITTLE]. A store with a NO_FAULT ASI causes a DAE_invalid_asi
exception.

Typically, optimizers use nonfaulting loads to move loads across conditional control structures that
guard their use. This technique potentially increases the distance between a load of data and the first
use of that data, in order to hide latency. The technique allows more flexibility in instruction
scheduling and improves performance in certain algorithms by removing address checking from the
critical code path.

For example, when following a linked list, nonfaulting loads allow the null pointer to be accessed
safely in a speculative, read-ahead fashion; the page at virtual address 016 can safely be accessed with
no penalty. The TTE.nfo bit marks pages that are mapped for safe access by nonfaulting loads but
that can still cause a trap by other, normal accesses.

Programming
Note

Because FLUSH is designed to act on a doubleword and
because, on some implementations, FLUSH may trap to system
software, it is recommended that system software provide a
user-callable service routine for flushing arbitrarily sized regions
of memory. On some implementations, this routine would issue
a series of FLUSH instructions; on others, it might issue a single
trap to system software that would then flush the entire region.

Programming
Note

UltraSPARC Architecture virtual processors are not required to
maintain coherency between instruction and data caches in
hardware. Therefore, portable software must do the following:

(1) must always assume that store instructions (except Block
Store with Commit) do not coherently update instruction
cache(s);

(2) must, in every FLUSH instruction, supply the address of the
instruction or instructions that were modified.
CHAPTER 9 • Memory 319

Thus, programmers can trap on “wild” pointer references—many programmers count on an exception
being generated when accessing address 016 to debug software—while benefiting from the
acceleration of nonfaulting access in debugged library routines.

9.7 Store Coalescing
Cacheable stores may be coalesced with adjacent cacheable stores within an 8 byte boundary offset in
the store buffer to improve store bandwidth. Similarly non-side-effect-noncacheable stores may be
coalesced with adjacent non-side-effect noncacheable stores within an 8-byte boundary offset in the
store buffer.

In order to maintain strong ordering for I/O accesses, stores with side-effect attribute (e bit set) will
not be combined with any other stores.

Stores that are separated by an intervening MEMBAR #Sync will not be coalesced.
320 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

CHAPTER 10

Address Space Identifiers (ASIs)

This appendix describes address space identifiers (ASIs) in the following sections:

■ Address Space Identifiers and Address Spaces on page 321.
■ ASI Values on page 321.
■ ASI Assignments on page 322.
■ Special Memory Access ASIs on page 329.

10.1 Address Space Identifiers and Address Spaces
An UltraSPARC Architecture processor provides an address space identifier (ASI) with every address
sent to memory. The ASI does the following:

■ Distinguishes between different address spaces
■ Provides an attribute that is unique to an address space
■ Maps internal control and diagnostics registers within a virtual processor

The memory management unit uses a 64-bit virtual address and an 8-bit ASI to generate a memory, I/
O, or internal register address.

10.2 ASI Values
The range of address space identifiers (ASIs) is 0016-FF16. That range is divided into restricted and
unrestricted portions. ASIs in the range 8016–FF16 are unrestricted; they may be accessed by software
running in any privilege mode.

ASIs in the range 0016–7F16 are restricted; they may only be accessed by software running in a mode
with sufficient privilege for the particular ASI. ASIs in the range 0016–2F16 may only be accessed by
software running in privileged or hyperprivileged mode and ASIs in the range 3016–7F16 may only be
accessed by software running in hyperprivileged mode.

An attempt by nonprivileged software to access a restricted (privileged or hyperprivileged) ASI (0016–
7F16) causes a privileged_action trap.

An attempt by privileged software to access a hyperprivileged ASI (3016–7F16) also causes a
privileged_action trap.

SPARC V9
Compatibility

Note

In SPARC V9, the range of ASIs was evenly divided into
restricted (0016-7F16) and unrestricted (8016-FF16) halves.
321

An ASI can be categorized based on how it affects the MMU’s treatment of the accompanying
address, into one of three categories:

■ A Translating ASI (the most common type) causes the accompanying address to be treated as a
virtual address (which is translated by the MMU).

■ A Non-translating ASI is not translated by the MMU; instead the address is passed through
unchanged. Nontranslating ASIs are typically used for accessing internal registers.

■ A Real ASI causes the accompanying address to be treated as a real address. An access using a Real
ASI can cause exception(s) only visible in hyperprivileged mode. Real ASIs are typically used by
privileged software for directly accessing memory using real (as opposed to virtual) addresses.

Implementation-dependent ASIs may or may not be translated by the MMU. See implementation-
specific documentation for detailed information about implementation-dependent ASIs.

10.3 ASI Assignments
Every load or store address in an UltraSPARC Architecture processor has an 8-bit Address Space
Identifier (ASI) appended to the virtual address (VA). The VA plus the ASI fully specify the address.

For instruction fetches and for data loads, stores, and load-stores that do not use the load or store
alternate instructions, the ASI is an implicit ASI generated by the virtual processor.

If a load alternate, store alternate, or load-store alternate instruction is used, the value of the ASI (an
"explicit ASI") can be specified in the ASI register or as an immediate value in the instruction.

In practice, ASIs are not only used to differentiate address spaces but are also used for other functions
like referencing registers in the MMU unit.

10.3.1 Supported ASIs
TABLE 10-1 lists architecturally-defined ASIs; some are in all UltraSPARC Architecture implementations
and some are only present in some implementations.

An ASI marked with a closed bullet (●) is required to be implemented on all UltraSPARC Architecture
2007 processors.

An ASI marked with an open bullet (❍) is defined by the UltraSPARC Architecture 2007 but is not
necessarily implemented in all UltraSPARC Architecture 2007 processors; its implemention is
optional. Across all implementations on which it is implemented, it appears to software to behave
identically.

Some ASIs may only be used with certain load or store instructions; see table footnotes for details.

The word “decoded” in the Virtual Address column of TABLE 10-1 indicates that the the supplied
virtual address is decoded by the virtual processor.

The “V / non-T / R” column of the table indicates whether each ASI is a Translating ASI(translates
from Virtual), non-Translating ASI, or Real ASI, respectively.

ASIs marked "Reserved" are set aside for use in future revisions to the architecture and are not to be
used by implemenations. ASIs marked "implementation dependent" may be used for
implementation-specific purposes.
322 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

Attempting to access an address space described as “Implementation dependent” in TABLE 10-1
produces implementation-dependent results.

TABLE 10-1 UltraSPARC Architecture ASIs (1 of 5)

ASI
Value

req’d(●)
opt’l (❍) ASI Name (and Abbreviation)

Access
Type(s)

Virtual
Address
(VA)

V/
non-T/
R

Shared
/per
strand Description

0016–
0316

❍ — —2,12 — — — Implementation dependent1

0416 ● ASI_NUCLEUS (ASI_N) RW2,4 (decoded) V — Implicit address space,
nucleus context, TL > 0

0516–
0B16

❍ — —2,12 — — — Implementation dependent1

0C16 ● ASI_NUCLEUS_LITTLE (ASI_NL) RW2,4 (decoded) V — Implicit address space,
nucleus context, TL > 0,
little-endian

0D16–
0F16

❍ — —2,12 — — — Implementation dependent1

1016 ● ASI_AS_IF_USER_PRIMARY
(ASI_AIUP)

RW2,4,18 (decoded) V — Primary address space, as if
user (nonprivileged)

1116 ● ASI_AS_IF_USER_SECONDARY
(ASI_AIUS)

RW2,4,18 (decoded) V — Secondary address space, as
if user (nonprivileged)

1216–
1316

❍ — —2,12 — — — Implementation dependent1

1416 ❍ ASI_REAL RW2,4 (decoded) R — Real address

1516 ❍ ASI_REAL_IOD RW2,5 (decoded) R — Real address, noncacheable,
with side effect (deprecated)

1616 ❍ ASI_BLOCK_AS_IF_USER_PRIMARY
(ASI_BLK_AIUP)

RW2,8,14,18(decoded) V — Primary address space,
block load/store, as if user
(nonprivileged)

1716 ❍ ASI_BLOCK_AS_IF_USER_SECONDAR
Y
(ASI_BLK_AIUS)

RW2,8,14,18(decoded) V — Secondary address space,
block load/store, as if user
(nonprivileged)

1816 ● ASI_AS_IF_USER_PRIMARY_LITTLE
(ASI_AIUPL)

RW2,4,18 (decoded) V — Primary address space, as if
user (nonprivileged), little-
endian

1916 ● ASI_AS_IF_USER_SECONDARY_
LITTLE (ASI_AIUSL)

RW2,4,18 (decoded) V — Secondary address space, as
if user (nonprivileged), little-
endian

1A16–
1B16

❍ — —2,12 — — — Implementation dependent1

1C16 ❍ ASI_REAL_LITTLE
(ASI_REAL_L)

RW 2,4 (decoded) R — Real address, little-endian

1D16 ❍ ASI_REAL_IO_LITTLED

(ASI_REAL_IO_LD)
RW 2,5 (decoded) R — Real address, noncacheable,

with side effect, little-endian
(deprecated)

1E16 ❍ ASI_BLOCK_AS_IF_USER_PRIMARY_
LITTLE
(ASI_BLK_AIUPL)

RW2,8,14,18(decoded) V — Primary address space,
block load/store, as if user
(nonprivileged), little-endian

1F16 ❍ ASI_BLOCK_AS_IF_USER_
SECONDARY_LITTLE
(ASI_BLK_AIUS_L)

RW2,8,14,18(decoded) V — Secondary address space,
block load/store, as if user
(nonprivileged), little-endian
CHAPTER 10 • Address Space Identifiers (ASIs) 323

2016 ❍ ASI_SCRATCHPAD RW2,6 (decoded;
see below)

non-T per
strand

Privileged Scratchpad
registers; implementation
dependent1

❍
" 016 " " Scratchpad Register 01

❍
" 816 " " Scratchpad Register 11

❍
" 1016 " " Scratchpad Register 21

❍
" 1816 " " Scratchpad Register 31

❍ 2016 " " Scratchpad Register 41

❍
" 2816 " " Scratchpad Register 51

❍
" 3016 " " Scratchpad Register 61

❍
" 3816 " " Scratchpad Register 71

2116 ❍ ASI_MMU_CONTEXTID RW2,6 (decoded;
see below)

non-T per
strand

MMU context registers

❍ " 816 " " I/D MMU Primary
Context ID register 0

❍ " 1016 " " I/D MMU Secondary
Context ID register_0

❍ " 10816 " " I/D Primary
Context ID register 1

❍ " 11016 " " I/D MMU Secondary
Context ID register 1

2216 ❍ ASI_TWINX_AS_IF_USER_
PRIMARY
(ASI_TWINX_AIUP)

R2,7,11 (decoded) V — Primary address space, 128-
bit atomic load twin
extended word, as if user
(nonprivileged)

2316 ❍ ASI_TWINX_AS_IF_USER_
SECONDARY
(ASI_TWINX_AIUS)

R2,7,11 (decoded) V — Secondary address space,
128-bit atomic load twin
extended word, as if user
(nonprivileged)

2416 ❍ — — — — — Implementation dependent1

2516 ❍ ASI_QUEUE (see
below)

(decoded;
see below)

non-T per
strand

❍ RW2,6
3C016 " " CPU Mondo Queue Head

Pointer

❍ RW2,6,17
3C816 " " CPU Mondo Queue Tail

Pointer

❍ RW2,6
3D016 " " Device Mondo Queue Head

Pointer

❍ RW2,6,17
3D816 " " Device Mondo Queue Tail

Pointer

❍ RW2,6
3E016 " " Resumable Error Queue

Head Pointer

❍ RW2,6,17
3E816 " " Resumable Error Queue Tail

Pointer

❍ RW2,6
3F016 " " Nonresumable Error Queue

Head Pointer

❍ RW2,6,17
3F816 " " Nonresumable Error Queue

Tail Pointer

TABLE 10-1 UltraSPARC Architecture ASIs (2 of 5)

ASI
Value

req’d(●)
opt’l (❍) ASI Name (and Abbreviation)

Access
Type(s)

Virtual
Address
(VA)

V/
non-T/
R

Shared
/per
strand Description
324 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

2616 ❍ ASI_TWINX_REAL (ASI_TWINX_R)
ASI_QUAD_LDD_REALD†

R2,7,11 (decoded) R — 128-bit atomic twin
extended-word load from
real address

2716 ❍ ASI_TWINX_NUCLEUS
(ASI_TWINX_N)

R2,7,11 (decoded) V — Nucleus context, 128-bit
atomic load twin extended-
word

2816–
2916

❍ — —2,12
— — — Implementation dependent1

2A16 ❍ ASI_TWINX_AS_IF_USER_
PRIMARY_LITTLE
(ASI_TWINXAIUPL)

R2,7,11 (decoded) V — Primary address space, 128-
bit atomic load twin
extended-word, as if user
(nonprivileged), little-endian

2B16 ❍ ASI_TWINX_AS_IF_USER_
SECONDARY_LITTLE
(ASI_TWINX_AIUS_L)

R2,7,11 (decoded) V — Secondary address space,
128-bit atomic load twin
extended-word, as if user
(nonprivileged), little-endian

2C16 ❍ — —2 — — — Implementation dependent1

2D16 ❍ — —2,12 — — — Implementation dependent1

2E16 ❍ ASI_TWINX_REAL_LITTLE
(ASI_TWINX_REAL_L)
ASI_QUAD_LDD_REAL_LITTLED†

R2,7,11 (decoded) R — 128-bit atomic twin-
extended-word load from
real address, little-endian

2F16 ❍ ASI_TWINX_NUCLEUS_LITTLE
(ASI_TWINX_NL)

R2,7,11 (decoded) V — Nucleus context, 128-bit
atomic load twin extended-
word, little-endian

3016–
7F16

● — —3 — — — Reserved for use in
hyperprivilege mode

4516 ❍ — —3,13 — — — Implementation dependent1

4616–
4816

❍ — —3,13 — — — Implementation dependent1

4916 ❍ — —3,13 — — — Implementation dependent1

4A16–
4B16

❍ — —3,13 — — — Implementation dependent1

4C16 ❍ Error Status and Enable Registers Implementation dependent1

7516–
7F16

● — —3,13 — — — Reserved

8016 ● ASI_PRIMARY (ASI_P) RW4 (decoded) V — Implicit primary address
space

8116 ● ASI_SECONDARY (ASI_S) RW4 (decoded) V — Secondary address space

8216 ● ASI_PRIMARY_NO_FAULT (ASI_PNF) R9,11 (decoded) V — Primary address space, no
fault

8316 ● ASI_SECONDARY_NO_FAULT
(ASI_SNF)

R9,11 (decoded) V — Secondary address space, no
fault

8416–
8716

● — —16 — — — Reserved

8816 ● ASI_PRIMARY_LITTLE (ASI_PL) RW4 (decoded) V — Implicit primary address
space, little-endian

8916 ● ASI_SECONDARY_LITTLE (ASI_SL) RW4 (decoded) V — Secondary address space,
little-endian

8A16 ● ASI_PRIMARY_NO_FAULT_LITTLE
(ASI_PNFL)

R9,11 (decoded) V — Primary address space, no
fault, little-endian

TABLE 10-1 UltraSPARC Architecture ASIs (3 of 5)

ASI
Value

req’d(●)
opt’l (❍) ASI Name (and Abbreviation)

Access
Type(s)

Virtual
Address
(VA)

V/
non-T/
R

Shared
/per
strand Description
CHAPTER 10 • Address Space Identifiers (ASIs) 325

8B16 ● ASI_SECONDARY_NO_FAULT_LITTLE
(ASI_SNFL)

R9,11 (decoded) V — Seondary address space, no
fault, little-endian

8C16–
BF16

● — —16 — — — Reserved

C016 ❍ ASI_PST8_PRIMARY (ASI_PST8_P) W8,10,14 (decoded) V — Primary address space, 8×8-
bit partial store

C116 ❍ ASI_PST8_SECONDARY
(ASI_PST8_S)

W8,10,14 (decoded) V — Secondary address space,
8x8-bit partial store

C216 ❍ ASI_PST16_PRIMARY
(ASI_PST16_P)

W8,10,14 (decoded) V — Primary address space,
4×16-bit partial store

C316 ❍ ASI_PST16_SECONDARY
(ASI_PST16_S)

W8,10,14 (decoded) V — Secondary address space,
4×16-bit partial store

C416 ❍ ASI_PST32_PRIMARY
(ASI_PST32_P)

W8,10,14 (decoded) V — Primary address space, 2x32-
bit partial store

C516 ❍ ASI_PST32_SECONDARY
(ASI_PST32_S)

W8,10,14 (decoded) V — Secondary address space,
2×32-bit partial store

C616–
C716

● — —15 — — — Implementation dependent1

C816 ❍ ASI_PST8_PRIMARY_LITTLE
(ASI_PST8_PL)

W8,10,14 (decoded) V — Primary address space, 8x8-
bit partial store, little-endian

C916 ❍ ASI_PST8_SECONDARY_LITTLE
(ASI_PST8_SL)

W8,10,14 (decoded) V — Secondary address space,
8×8-bit partial store, little-
endian

CA16 ❍ ASI_PST16_PRIMARY_LITTLE
(ASI_PST16_PL)

W8,10,14 (decoded) V — Primary address space, 4x16-
bit partial store, little-endian

CB16 ❍ ASI_PST16_SECONDARY_LITTLE
(ASI_PST16_SL)

W8,10,14 (decoded) V — Secondary address space,
4×16-bit partial store, little-
endian

CC16 ❍ ASI_PST32_PRIMARY_LITTLE
(ASI_PST32_PL)

W8,10,14 (decoded) V — Primary address space,
2×32-bit partial store, little-
endian

CD16 ❍ ASI_PST32_SECONDARY_LITTLE
(ASI_PST32_SL)

W8,10,14 (decoded) V — Second address space, 2×32-
bit partial store, little-endian

CE16–
CF16

● — —15 — — — Implementation dependent1

D016 ❍ ASI_FL8_PRIMARY (ASI_FL8_P) RW8,14 (decoded) V — Primary address space, one
8-bit floating-point load/
store

D116 ❍ ASI_FL8_SECONDARY (ASI_FL8_S) RW8,14 (decoded) V — Second address space, one 8-
bit floating-point load/store

D216 ❍ ASI_FL16_PRIMARY (ASI_FL16_P) RW8,14 (decoded) V — Primary address space, one
16-bit floating-point load/
store

D316 ❍ ASI_FL16_SECONDARY
(ASI_FL16_S)

RW8,14 (decoded) V — Second address space, one
16-bit floating-point load/
store

D416–
D716

● — —15 — — — Implementation dependent1

D816 ❍ ASI_FL8_PRIMARY_LITTLE
(ASI_FL8_PL)

RW8,14 (decoded) V — Primary address space, one
8-bit floating point load/
store, little-endian

TABLE 10-1 UltraSPARC Architecture ASIs (4 of 5)

ASI
Value

req’d(●)
opt’l (❍) ASI Name (and Abbreviation)

Access
Type(s)

Virtual
Address
(VA)

V/
non-T/
R

Shared
/per
strand Description
326 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

D916 ❍ ASI_FL8_SECONDARY_LITTLE
(ASI_FL8_SL)

RW8,14 (decoded) V — Second address space, one 8-
bit floating point load/store,
little-endian

DA16 ❍ ASI_FL16_PRIMARY_LITTLE
(ASI_FL16_PL)

RW8,14 (decoded) V — Primary address space, one
16-bit floating-point load/
store, little-endian

DB16 ❍ ASI_FL16_SECONDARY_LITTLE
(ASI_FL16_SL)

RW8,14 (decoded) V — Second address space, one
16-bit floating point load/
store, little-endian

DC16
–DF16

● — —15 — — — Implementation dependent1

E016 ❍ ASI_BLOCK_COMMIT_PRIMARY
(ASI_BLK_COMMIT_P)

W8,11,14 (decoded) V — Primary address space,
8x8-byte block store commit
operation

E116 ❍ ASI_BLOCK_COMMIT_SECONDARY
(ASI_BLK_COMMIT_S)

W8,11,14 (decoded) V — Secondary address space,
8x8-byte block store commit
operation

E216 ❍ ASI_TWINX_PRIMARY
(ASI_TWINX_P)

R19 (decoded) V — Primary address space, 128-
bit atomic load twin
extended word

E316 ❍ ASI_TWINX_SECONDARY
(ASI_TWINX_S)

R19 (decoded) V — Secondary address space,
128-bit atomic load twin
extended-word

E416–
E916

● — —15 — — — Implementation dependent1

EA16 ❍ ASI_TWINX_PRIMARY_LITTLE
(ASI_TWINX_PL)

R19 (decoded) V — Primary address space, 128-
bit atomic load twin
extended word, little endian

EB16 ❍ ASI_TWINX_SECONDARY_LITTLE

(ASI_TWINX_SL)
R19 (decoded) V — Secondary address space,

128-bit atomic load twin
extended word, little endian

EC16–
EF16

❍ — —15 — — — Implementation dependent1

F016 ❍ ASI_BLOCK_PRIMARY
(ASI_BLK_P)

RW8,14 (decoded) V — Primary address space, 8x8-
byte block load/store

F116 ❍ ASI_BLOCK_SECONDARY
(ASI_BLK_S)

RW8,14 (decoded) V — Secondary address space,
8x8- byte block load/store

F216–
F516

● — —15 — — — Implementation dependent1

F616–
F716

● — — — — — Implementation dependent1

F816 ❍ ASI_BLOCK_PRIMARY_LITTLE
(ASI_BLK_PL)

RW8,14 (decoded) V — Primary address space, 8x8-
byte block load/store, little
endian

F916 ❍ ASI_BLOCK_SECONDARY_LITTLE
(ASI_BLK_SL)

RW8,14 (decoded) V — Secondary address space,
8x8- byte block load/store,
little endian

FA16–
FD16

● — —15 — — — Implementation dependent1

FE16–
FF16

● — —15 — — — Implementation dependent1

TABLE 10-1 UltraSPARC Architecture ASIs (5 of 5)

ASI
Value

req’d(●)
opt’l (❍) ASI Name (and Abbreviation)

Access
Type(s)

Virtual
Address
(VA)

V/
non-T/
R

Shared
/per
strand Description
CHAPTER 10 • Address Space Identifiers (ASIs) 327

† This ASI name has been changed, for consistency; although use of this name is
deprecated and software should use the new name, the old name is listed here for
compatibility.

1 Implementation dependent ASI (impl. dep. #29); available for use by implementors.
Software that references this ASI may not be portable.

2 An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to this ASI in nonprivileged mode causes a privileged_action exception.

3 An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to this ASI in nonprivileged mode or privileged mode causes a
privileged_action exception.

4 May be used with all load alternate, store alternate, atomic alternate and prefetch
alternate instructions (CASA, CASXA, LDSTUBA, LDTWA, LDDFA, LDFA, LDSBA,
LDSHA, LDSWA, LDUBA, LDUHA, LDUWA, LDXA, PREFETCHA, STBA, STTWA,
STDFA, STFA, STHA, STWA, STXA, SWAPA).

5 May be used with all of the following load alternate and store alternate instructions:
LDTWA, LDDFA, LDFA, LDSBA, LDSHA, LDSWA, LDUBA, LDUHA, LDUWA, LDXA,
STBA, STTWA, STDFA, STFA, STHA, STWA, STXA. Use with an atomic alternate or
prefetch alternate instruction (CASA, CASXA, LDSTUBA, SWAPA or PREFETCHA)
causes a DAE_invalid_asi exception.

6 May only be used in a LDXA or STXA instruction for RW ASIs, LDXA for read-only ASIs
and STXA for write-only ASIs. Use of LDXA for write-only ASIs, STXA for read-only
ASIs, or any other load alternate, store alternate, atomic alternate or prefetch alternate
instruction causes a DAE_invalid_asi exception.

7 May only be used in an LDTXA instruction. Use of this ASI in any other load alternate,
store alternate, atomic alternate or prefetch alternate instruction causes a DAE_invalid_asi
exception.

8 May only be used in a LDDFA or STDFA instruction for RW ASIs, LDDFA for read-only
ASIs and STDFA for write-only ASIs. Use of LDDFA for write-only ASIs, STDFA for
read-only ASIs, or any other load alternate, store alternate, atomic alternate or prefetch
alternate instruction causes a DAE_invalid_asi exception.

9 May be used with all of the following load and prefetch alternate instructions: LDTWA,
LDDFA, LDFA, LDSBA, LDSHA, LDSWA, LDUBA, LDUHA, LDUWA, LDXA,
PREFETCHA. Use with an atomic alternate or store alternate instruction causes a
DAE_invalid_asi exception.

10 Write(store)-only ASI; an attempted load alternate, atomic alternate, or prefetch alternate
instruction to this ASI causes a DAE_invalid_asi exception.

11 Read(load)-only ASI; an attempted store alternate or atomic alternate instruction to this
ASI causes a DAE_invalid_asi exception.

12 An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to this ASI in privileged mode causes a DAE_invalid_asi exception.

14 An attempted access to this ASI may cause an exception (see Special Memory Access ASIs
on page 329 for details).

15 An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to this ASI in any mode causes a DAE_invalid_asi exception if this ASI is not
implemented by the model dependent implementation.

16 An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to a reserved ASI in any mode causes a DAE_invalid_asi exception.

17 The Queue Tail Registers (ASI 2516) are read-only. An attempted write to the Queue Tail
Registers causes a DAE_invalid_asi exception

19 May only be used in an LDTXA (load twin-extended-word) instruction (which shares an
opcode with LDTWA). Use of this ASI in any other load instruction causes a
DAE_invalid_asi exception.
328 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

10.4 Special Memory Access ASIs
This section describes special memory access ASIs that are not described in other sections.

10.4.1 ASIs 1016, 1116, 1616, 1716 and 1816
(ASI_*AS_IF_USER_*)
These ASI are intended to be used in accesses from privileged mode, but are processed as if they were
issued from nonprivileged mode. Therefore, they are subject to privilege-related exceptions. They are
distinguished from each other by the context from which the access is made, as described in
TABLE 10-2.

When one of these ASIs is specified in a load alternate or store alternate instruction, the virtual
processor behaves as follows:

■ In nonprivileged mode, a privileged_action exception occurs

■ In any other privilege mode:

■ If U/DMMU TTE.p = 1, a DAE_privilege_violation exception occurs

■ Otherwise, the access occurs and its endianness is determined by the U/DMMU TTE.ie bit. If
U/DMMU TTE.ie = 0, the access is big-endian; otherwise, it is little-endian.

10.4.2 ASIs 1816, 1916, 1E16, and 1F16
(ASI_*AS_IF_USER_*_LITTLE)
These ASIs are little-endian versions of ASIs 1016, 1116, 1616, and 1716 (ASI_AS_IF_USER_*),
described in section 10.4.1. Each operates identically to the corresponding non-little-endian ASI,
except that if an access occurs its endianness is the opposite of that for the corresponding non-little-
endian ASI.

These ASI are intended to be used in accesses from privileged mode, but are processed as if they were
issued from nonprivileged mode. Therefore, they are subject to privilege-related exceptions. They are
distinguished from each other by the context from which the access is made, as described in
TABLE 10-3.

When one of these ASIs is specified in a load alternate or store alternate instruction, the virtual
processor behaves as follows:

■ In nonprivileged mode, a privileged_action exception occurs

■ In any other privilege mode:

TABLE 10-2 Privileged ASI_*AS_IF_USER_* ASIs

ASI Names
Addressing

(Context) Endianness of Access

1016 ASI_AS_IF_USER_PRIMARY (ASI_AIUP) Virtual
(Primary) Big-endian when

U/DMMU
TTE.ie = 0;
little-endian when
U/DMMU
TTE.ie = 1

1116 ASI_AS_IF_USER_SECONDARY (ASI_AIUS) Virtual
(Secondary)

1616 ASI_BLOCK_AS_IF_USER_PRIMARY
(ASI_BLK_AIUP)

Virtual
(Primary)

1716 ASI_BLOCK_AS_IF_USER_SECONDARY
(ASI_BLK_AIUS)

Virtual
(Secondary)
CHAPTER 10 • Address Space Identifiers (ASIs) 329

■ If U/DMMU TTE.p = 1, a DAE_privilege_violation exception occurs

■ Otherwise, the access occurs and its endianness is determined by the U/DMMU TTE.ie bit. If
U/DMMU TTE.ie = 0, the access is little-endian; otherwise, it is big-endian.

10.4.3 ASI 1416 (ASI_REAL)
When ASI_REAL is specified in any load alternate, store alternate or prefetch alternate instruction,
the virtual processor behaves as follows:

■ In nonprivileged mode, a privileged_action exception occurs

■ In any other privilege mode:

■ VA is passed through to RA

■ During the address translation, context values are disregarded.

■ The endianness of the access is dertermined by the U/DMMU TTE.ie bit; if U/DMMU
TTE.ie = 0, the access is big-endian, otherwise it is little-endian.

Even if data address translation is disabled, an access with this ASI is still a cacheable access.

10.4.4 ASI 1516 (ASI_REAL_IO)
Accesses with ASI_REAL_IO bypass the external cache and behave as if the side effect bit (TTE.e bit)
is set. When this ASI is specified in any load alternate or store alternate instruction, the virtual
processor behaves as follows:

■ In nonprivileged mode, a privileged_action exception occurs

■ If used with a CASA, CASXA, LDSTUBA, SWAPA, or PREFETCHA instruction, a DAE_invalid_asi
exception occurs

■ Used with any other load alternate or store alternate instuction, in privileged mode:

■ VA is passed through to RA

■ During the address translation, context values are disregarded.

■ The endianness of the access is dertermined by the U/DMMU TTE.ie bit; if U/DMMU
TTE.ie = 0, the access is big-endian, otherwise it is little-endian.

10.4.5 ASI 1C16 (ASI_REAL_LITTLE)
ASI_REAL_LITTLE is a little-endian version of ASI 1416 (ASI_REAL). It operates identically to
ASI_REAL, except if an access occurs, its endianness the opposite of that for ASI_REAL.

TABLE 10-3 Privileged ASI_*AS_IF_USER_*_LITTLE ASIs

ASI Names
Addressing

(Context)
Endianness of

Access

1816 ASI_AS_IF_USER_PRIMARY_LITTLE
(ASI_AIUPL)

Virtual
(Primary) Little-endian

when U/
DMMU
TTE.ie = 0;
big-endian
when U/
DMMU
TTE.ie = 1

1916 ASI_AS_IF_USER_SECONDARY_LITTLE
(ASI_AIUSL)

Virtual
(Secondary)

1E16 ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE
(ASI_BLK_AIUP)

Virtual
(Primary)

1F16 ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE
(ASI_BLK_AIUSL)

Virtual
(Secondary)
330 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

10.4.6 ASI 1D16 (ASI_REAL_IO_LITTLE)
ASI_REAL_IO_LITTLE is a little-endian version of ASI 1516 (ASI_REAL_IO). It operates identically
to ASI_REAL_IO, except if an access occurs, its endianness the opposite of that for ASI_REAL_IO.

10.4.7 ASIs 2216, 2316, 2716, 2A16, 2B16, 2F16 (Privileged Load
Integer Twin Extended Word)
ASIs 2216, 2316, 2716, 2A16, 2B16 and 2F16 exist for use with the (nonportable) LDTXA instruction as
atomic Load Integer Twin Extended Word operations (see Load Integer Twin Extended Word from
Alternate Space on page 197). These ASIs are distinguished by the context from which the access is
made and the endianness of the access, as described in TABLE 10-4.

When these ASIs are used with LDTXA, a mem_address_not_aligned exception is generated if the
operand address is not 16-byte aligned.

If these ASIs are used with any other Load Alternate, Store Alternate, Atomic Load-Store Alternate, or
PREFETCHA instruction, a DAE_invalid_asi exception is always generated and
mem_address_not_aligned is not generated.

10.4.8 ASIs 2616 and 2E16 (Privileged Load Integer Twin Extended
Word, Real Addressing)
ASIs 2616 and 2E16 exist for use with the LDTXA instruction as atomic Load Integer Twin Extended
Word operations using Real addressing (see Load Integer Twin Extended Word from Alternate Space on
page 197). These two ASIs are distinguished by the endianness of the access, as described in
TABLE 10-5.

TABLE 10-4 Privileged Load Integer Twin Extended Word ASIs

ASI Names
Addressing

(Context)
Endianness of

Access

2216 ASI_TWINX_AS_IF_USER_PRIMARY
(ASI_TWINX_AIUP)

Virtual
(Primary)

Big-endian
when U/
DMMU
TTE.ie = 0;
little-endian
when U/
DMMU
TTE.ie = 1

2316 ASI_TWINX_AS_IF_USER_SECONDARY
(ASI_TWINX_AIUS)

Virtual
(Secondary)

2716 ASI_TWINX_NUCLEUS (ASI_TWINX_N) Virtual
(Nucleus)

2A16 ASI_TWINX_AS_IF_USER_PRIMARY_LITTLE
(ASI_TWINX_AIUP_L)

Virtual
(Primary)

Little-endian
when U/
DMMU
TTE.ie = 0;
big-endian
when U/
DMMU
TTE.ie = 1

2B16 ASI_TWINX_AS_IF_USER_SECONDARY_
LITTLE (ASI_TWINX_AIUS_L)

Virtual
(Secondary)

2F16 ASI_TWINX_NUCLEUS_LITTLE
(ASI_TWINX_NL)

Virtual
(Nucleus)

Compatibility
Note

These ASIs replaced ASIs 2416 and 2C16 used in earlier
UltraSPARC implementations; see the detailed Compatibility Note
on page 335 for details.
CHAPTER 10 • Address Space Identifiers (ASIs) 331

When these ASIs are used with LDTXA, a mem_address_not_aligned exception is generated if the
operand address is not 16-byte aligned.

If these ASIs are used with any other Load Alternate, Store Alternate, Atomic Load-Store Alternate, or
PREFETCHA instruction, a DAE_invalid_asi exception is always generated and
mem_address_not_aligned is not generated.

10.4.9 ASIs E216, E316, EA16, EB16
(Nonprivileged Load Integer Twin Extended Word)
ASIs E216, E316, EA16, and EB16 exist for use with the (nonportable) LDTXA instruction as atomic
Load Integer Twin Extended Word operations (see Load Integer Twin Extended Word from Alternate Space
on page 197). These ASIs are distinguished by the address space accessed (Primary or Secondary) and
the endianness of the access, as described in TABLE 10-6.

When these ASIs are used with LDTXA, a mem_address_not_aligned exception is generated if the
operand address is not 16-byte aligned.

If these ASIs are used with any other Load Alternate, Store Alternate, Atomic Load-Store Alternate, or
PREFETCHA instruction, a DAE_invalid_asi exception is always generated and
mem_address_not_aligned is not generated.

TABLE 10-5 Load Integer Twin Extended Word (Real) ASIs

ASI Name
Addressing

(Context) Endianness of Access

2616 ASI_TWINX_REAL
(ASI_TWINX_R)

Real
(—)

Big-endian when U/DMMU
TTE.ie = 0; little-endian when U/
DMMU TTE.ie = 1

2E16 ASI_TWINX_REAL_LITTLE
(ASI_TWINX_REAL_L)

Real
(—)

Little-endian when U/DMMU
TTE.ie = 0; big-endian when U/
DMMU TTE.ie = 1

Compatibility
Note

These ASIs replaced ASIs 3416 and 3C16 used in earlier
UltraSPARC implementations; see the Compatibility Note on
page 335 for details.

TABLE 10-6 Load Integer Twin Extended Word ASIs

ASI Names
Addressing
(Context)

Endianness of
Access

E216 ASI_TWINX_PRIMARY (ASI_TWINX_P) Virtual
(Primary)

Big-endian
when U/
DMMU
TTE.ie = 0,
little-endian
when U/
DMMU
TTE.ie = 1

E316 ASI_TWINX_SECONDARY (ASI_TWINX_S)

Virtual
(Secondary)

EA16 ASI_TWINX_PRIMARY_LITTLE
(ASI_TWINX_PL)

Virtual
(Primary)

Little-endian
when U/
DMMU
TTE.ie = 0,
big-endian
when U/
DMMU
TTE.ie = 1

EB16 ASI_TWINX_SECONDARY_LITTLE
(ASI_TWINX_SL)

Virtual
(Secondary)
332 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

10.4.10 Block Load and Store ASIs
ASIs 1616, 1716, 1E16, 1F16, E016, E116, F016, F116, F816, and F916 exist for use with LDDFA and STDFA
instructions as Block Load (LDBLOCKF) and Block Store (STBLOCKF) operations (see Block Load on
page 178 and Block Store on page 250).

When these ASIs are used with the LDDFA (STDFA) opcode for Block Load (Store), a
mem_address_not_aligned exception is generated if the operand address is not 64-byte aligned.

ASIs E016 and E116 are only defined for use in Block Store with Commit operations (see page 250).
Neither ASI E016 nor E116 should be used with the LDDFA opcode; however, if either is used, the
resulting behavior is specified in the LDDFA instruction description on page 184.

If a Block Load or Block Store ASI is used with any other Load Alternate, Store Alternate, Atomic
Load-Store Alternate, or PREFETCHA instruction, a DAE_invalid_asi exception is always generated
and mem_address_not_aligned is not generated.

10.4.11 Partial Store ASIs
ASIs C016–C516 and C816–CD16 exist for use with the STDFA instruction as Partial Store
(STPARTIALF) operations (see Store Partial Floating-Point on page 260).

When these ASIs are used with STDFA for Partial Store, a mem_address_not_aligned exception is
generated if the operand address is not 8-byte aligned and an illegal_instruction exception is generated
if i = 1 in the instruction and the ASI register contains one of the Partial Store ASIs.

If one of these ASIs is used with a Store Alternate instruction other than STDFA, a Load Alternate,
Store Alternate, Atomic Load-Store Alternate, or PREFETCHA instruction, a DAE_invalid_asi
exception is generated and mem_address_not_aligned, LDDF_mem_address_not_aligned, and
illegal_instruction (for i = 1) are not generated.

ASIs C016–C516 and C816–CD16 are only defined for use in Partial Store operations (see page 260).
None of them should be used with LDDFA; however, if any of those ASIs is used with LDDFA, the
resulting behavior is specified in the LDDFA instruction description on page 185.

10.4.12 Short Floating-Point Load and Store ASIs
ASIs D016–D316 and D816–DB16 exist for use with the LDDFA and STDFA instructions as Short
Floating-point Load and Store operations (see Load Floating-Point Register on page 181 and Store
Floating-Point on page 253).

When ASI D216, D316, DA16, or DB16 is used with LDDFA (STDFA) for a 16-bit Short Floating-point
Load (Store), a mem_address_not_aligned exception is generated if the operand address is not
halfword-aligned.

If any of these ASIs are used with any other Load Alternate, Store Alternate, Atomic Load-Store
Alternate, or PREFETCHA instruction, a DAE_invalid_asi exception is always generated and
mem_address_not_aligned is not generated.

10.5 ASI-Accessible Registers
In this section the Data Watchpoint registers, and scratchpad registers are described.

A list of UltraSPARC Architecture 2007 ASIs is shown in TABLE 10-1 on page 323.
CHAPTER 10 • Address Space Identifiers (ASIs) 333

10.5.1 Privileged Scratchpad Registers (ASI_SCRATCHPAD)
An UltraSPARC Architecture virtual processor includes eight Scratchpad registers (64 bits each, read/
write accessible) (impl.dep. #302-U4-Cs10). The use of the Scratchpad registers is completely defined
by software.

For conventional uses of Scratchpad registers, see “Scratchpad Register Usage” in Software
Considerations, contained in the separate volume UltraSPARC Architecture Application Notes.

The Scratchpad registers are intended to be used by performance-critical trap handler code.

The addresses of the privileged scratchpad registers are defined in TABLE 10-7.

IMPL. DEP. #404-S10: The degree to which Scratchpad registers 4–7 are accessible to privileged
software is implementation dependent. Each may be
(1) fully accessible,
(2) accessible, with access much slower than to scratchpad registers 0–3, or
(3) inaccessible (cause a DAE_invalid_asi exception).

10.5.2 ASI Changes in the UltraSPARC Architecture
The following Compatibility Note summarize the UltraSPARC ASI changes in UltraSPARC
Architecture.

TABLE 10-7 Scratchpad Registers

Assembly Language ASI Name ASI # Virtual Address
Privileged Scratchpad

Register #

ASI_SCRATCHPAD 2016

0016 0

0816 1

1016 2

1816 3

2016 4

2816 5

3016 6

3816 7

V9 Compatibility
Note

Privileged scratchpad registers are an UltraSPARC Architecture
extension to SPARC V9.

Compatibility
Note

The names of several ASIs used in earlier UltraSPARC
implementations have changed in UltraSPARC Architecture. Their
functions have not changed; just their names have changed.

ASI# Previous UltraSPARC UltraSPARC Architecture

1416 ASI_PHYS_USE_EC ASI_REAL

1516 ASI_PHYS_BYPASS_EC_WITH_EBIT ASI_REAL_IO

1C16 ASI_PHYS_USE_EC_LITTLE ASI_REAL_LITTLE
(ASI_PHYS_USE_EC_L)

1D16 ASI_PHYS_BYPASS_EC_WITH_ ASI_REAL_IO_LITTLE
EBIT_LITTLE
(ASI_PHY_BYPASS_EC_WITH_EBIT_L)

D1
334 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

Compatibility
Note

The names and ASI assignments (but not functions) changed
between earlier UltraSPARC implementations and UltraSPARC
Architecture, for the following ASIs:

Previous UltraSPARC UltraSPARC Architecture
ASI# Name ASI# Name

2416 ASI_NUCLEUS_QUAD_LDDD 2716 ASI_TWINX_NUCLEUS
(ASI_TWINX_N)

2C16 ASI_NUCLEUS_QUAD_LDD_ 2F16 ASI_TWINX_NUCLEUS_
LITTLED LITTLE
(ASI_NUCLEUS_QUAD_LDD_LD) (ASI_TWINX_NL)

DDD
CHAPTER 10 • Address Space Identifiers (ASIs) 335

336 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

CHAPTER 11

Performance Instrumentation

This chapter describes the architecture for performance monitoring hardware on UltraSPARC
Architecture processors. The architecture is based on the design of performance instrumentation
counters in previous UltraSPARC Architecture processors, with an extension for the selective
sampling of instructions.

11.1 High-Level Requirements

11.1.1 Usage Scenarios
The performance monitoring hardware on UltraSPARC Architecture processors addresses the needs of
various kinds of users. There are four scenarios envisioned:

■ System-wide performance monitoring. In this scenario, someone skilled in system performance
analysis (e.g, a Systems Engineer) is using analysis tools to evaluate the performance of the entire
system. An example of such a tool is cpustat. The objective is to obtain performance data relating to
the configuration and behavior of the system, e.g., the utilization of the memory system.

■ Self-monitoring of performance by the operating system. In this scenario the OS is gathering
performance data in order to tune the operation of the system. Some examples might be:

■ (a) determining whether the processors in the system should be running in single- or multi-
stranded mode.

■ (b) determining the affinity of a process to a processor by examining that process’s memory
behavior.

■ Performance analysis of an application by a developer. In this scenario a developer is trying to optimize
the performance of a specific application, by altering the source code of the application or the
compilation options. The developer needs to know the performance characteristics of the
components of the application at a coarse grain, and where these are problematic, to be able to
determine fine-grained performance information. Using this information, the developer will alter
the source or compilation parameters, re-run the application, and observe the new performance
characteristics. This process is repeated until performance is acceptable, or no further
improvements can be found.

An example might be that a loop nest is measured to be not performing well. Upon closer
inspection, the developer determines that the loop has poor cache behavior, and upon more
detailed inspection finds a specific operation which repeatedly misses the cache. Reorganizing the
code and/or data may improve the cache behavior.

■ Monitoring of an application’s performance, e.g., by a Java Virtual Machine. In this scenario the
application is not executing directly on the hardware, but its execution is being mediated by a piece
of system software, which for the purposes of this document is called a Virtual Machine. This may
337

be a Java VM, or a binary translation system running software compiled for another architecture, or
for an earlier version of the UltraSPARC Architecture. One goal of the VM is to optimize the
behavior of the application by monitoring its performance and dynamically reorganizing the
execution of the application (e.g., by selective recompilation of the application).

This scenario differs from the previous one principally in the time allowed to gather performance
data. Because the data are being gathered during the execution of the program, the measurements
must not adversely affect the performance of the application by more than, say, a few percent, and
must yield insight into the performance of the application in a relatively short time (otherwise,
optimization opportunities are deferred for too long). This implies an observation mechanism
which is of very low overhead, so that many observations can be made in a short time.

In contrast, a developer optimizing an application has the luxury of running or re-running the
application for a considerable period of time (minutes or even hours) to gather data. However, the
developer will also expect a level of precision and detail in the data which would overwhelm a
virtual machine, so the accuracy of the data required by a virtual machine need not be as high as
that supplied to the developer.

Scenarios 1 and 2 are adequately dealt with by a suitable set of performance counters capable of
counting a variety of performance-related events. Counters are ideal for these situations because they
provide low-overhead statistics without any intrusion into the behavior of the system or disruption to
the code being monitored. However, counters may not adequately address the latter two scenarios, in
which detailed and timely information is required at the level of individual instructions. Therefore,
UltraSPARC Architecture processors may also implement an instruction sampling mechanism.

11.1.2 Metrics
There are two classes of data reported by a performance instrumentation mechanism:

■ Architectural performance metrics. These are metrics related to the observable execution of code at the
architectural level (UltraSPARC Architecture). Examples include:

■ The number of instructions executed

■ The number of floating point instructions executed

■ The number of conditional branch instructions executed

■ Implementation performance metrics. These describe the behavior of the microprocessor in terms of its
implementation, and would not necessarily apply to another implementation of the architecture.

In optimizing the performance of an application or system, attention will first be paid to the first class
of metrics, and so these are more important. Only in performance-critical cases would the second class
receive attention, since using these metrics requires a fairly extensive understanding of the specific
implementation of the UltraSPARC Architecture.

11.1.3 Accuracy Requirements
Accuracy requirements for performance instrumentation vary depending on the scenario. The
requirements are complicated by the possibly speculative nature of UltraSPARC Architecture
processor implementations. For example, an implementation may include in its cache miss statistics
the misses induced by speculative executions which were subsequently flushed, or provide two
separate statistics, one for the misses induced by flushed instructions and one for misses induced by
retired instructions. Although the latter would be desirable, the additional implementation
complexity of associating events with specific instructions is significant, and so all events may be
counted without distinction. The instruction sampling mechanism may distinguish between
instructions that retired and those that were flushed, in which case sampling can be used to obtain
statistical estimates of the frequencies of operations induced by mis-speculation.
338 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

For critical performance measurements, architectural event counts must be accurate to a high degree
(1 part in 105). Which counters are considered performance-critical (and therefore accurate to 1 part in
105) are specified in implementation-specific documentation.

Implementation event counts must be accurate to 1 part in 103, not including the speculative effects
mentioned above. An upper bound on counter skew must be stated in implementation-specific
documentation.

11.2 Performance Counters and Controls
The performance instrumentation hardware provides performance instrumentation counters (PICs).
The number and size of performance counters is implementation dependent, but each performance
counter register contains at least one 32-bit counter. It is implementation dependent whether the
performance counter registers are accessed as ASRs or are accessed through ASIs.

There are one or more performance counter control registers (PCRs) associated with the counter
registers. It is implementation dependent whether the PCRs are accessed as ASRs or are accessed
through ASIs.

Each counter in a counter register can count one kind of event at a time. The number of the kinds of
events that can be counted is implementation dependent. For each performance counter register, the
corresponding control register is used to select the event type being counted. A counter is
incremented whenever an event of the matching type occurs. A counter may be incremented by an
event caused by an instruction which is subsequently flushed (for example, due to mis-speculation).
Counting of events may be controlled based on privilege mode or on the strand in which they occur.
Masking may be provided to allow counting of subgroups of events (for example, various occurrences
of different opcode groups).

A field that indicates when a counter has overflowed must be present in either each performance
instrumentation counter or in a separate performance counter control register.

Performance counters are usually provided on a per-strand basis.

11.2.1 Counter Overflow
Overflow of a counter must cause a disrupting trap to be generated, when enabled by a Trap
Overflow Enable bit (in an implementation-specific location). There must be a separate toe bit for
each performance counter, so that overflow traps can be enabled on a per-counter basis. Overflow of
a counter is recorded in the overflow-indication field of either a performance instrumentation counter
or a separate performance counter control register.

Counter overflow traps are provided so that large counts can be maintained in software, beyond the
range directly supported in hardware. The counters continue to count after an overflow, and software
can utilize the overflow traps to maintain additional high-order bits.

Programming
Note

Increasing the time between counter reads will mitigate the
inaccurcies that could be introduced by counter skew (due to
speculative effects).

Programming
Note

Counter overflow traps can also be used for sampling, by setting
the initial counter value so that an interrupt occurs n counts
later.
CHAPTER 11 • Performance Instrumentation 339

340 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

CHAPTER 12

Traps

A trap is a vectored transfer of control to software running in a privilege mode (see page 342) with
(typically) greater privileges. A trap in nonprivileged mode can be delivered to privileged mode or
hyperprivileged mode. A trap that occurs while executing in privileged mode can be delivered to
privileged mode or hyperprivileged mode.

The actual transfer of control occurs through a trap table that contains the first eight instructions (32
instructions for clean_window, window spill, and window fill, traps) of each trap handler. The virtual
base address of the trap table for traps to be delivered in privileged mode is specified in the Trap Base
Address (TBA) register. The displacement within the table is determined by the trap type and the
current trap level (TL). One-half of each table is reserved for hardware traps; the other half is reserved
for software traps generated by Tcc instructions.

A trap behaves like an unexpected procedure call. It causes the hardware to do the following:

1. Save certain virtual processor state (such as program counters, CWP, ASI, CCR, PSTATE, and the
trap type) on a hardware register stack.

2. Enter privileged execution mode with a predefined PSTATE.

3. Begin executing trap handler code in the trap vector.

When the trap handler has finished, it uses either a DONE or RETRY instruction to return.

A trap may be caused by a Tcc instruction, an instruction-induced exception, a reset, an asynchronous
error, or an interrupt request not directly related to a particular instruction. The virtual processor
must appear to behave as though, before executing each instruction, it determines if there are any
pending exceptions or interrupt requests. If there are pending exceptions or interrupt requests, the
virtual processor selects the highest-priority exception or interrupt request and causes a trap.

Thus, an exception is a condition that makes it impossible for the virtual processor to continue
executing the current instruction stream without software intervention. A trap is the action taken by
the virtual processor when it changes the instruction flow in response to the presence of an exception,
interrupt, reset, or Tcc instruction.

An interrupt is a request for service presented to a virtual processor by an external device.

Traps are described in these sections:

■ Virtual Processor Privilege Modes on page 342.
■ Virtual Processor States and Traps on page 343.
■ Trap Categories on page 343.
■ Trap Control on page 347.
■ Trap-Table Entry Addresses on page 348.
■ Trap Processing on page 356.
■ Exception and Interrupt Descriptions on page 358.

V9 Compatibility
Note

Exceptions referred to as “catastrophic error exceptions” in the
SPARC V9 specification do not exist in the UltraSPARC
Architecture; they are handled using normal error-reporting
exceptions. (impl. dep. #31-V8-Cs10)
341

■ Register Window Traps on page 362.

12.1 Virtual Processor Privilege Modes
An UltraSPARC Architecture virtual processor is always operating in a discrete privilege mode. The
privilege modes are listed below in order of increasing privilege:

■ Nonprivileged mode (also known as “user mode”)

■ Privileged mode, in which supervisor (operating system) software primarily operates

■ Hyperprivileged mode (not described in this document)

The virtual processor’s operating mode is determined by the state of two mode bits, as shown in
TABLE 12-1.

A trap is delivered to the virtual processor in either privileged mode or hyperprivileged mode; in
which mode the trap is delivered depends on:

■ Its trap type
■ The trap level (TL) at the time the trap is taken
■ The privilege mode at the time the trap is taken

Traps detected in nonprivileged and privileged mode can be delivered to the virtual processor in
privileged mode or hyperprivileged mode.

TABLE 12-4 on page 351 indicates in which mode each trap is processed, based on the privilege mode at
which it was detected.

A trap delivered to privileged mode uses the privileged-mode trap vector, based upon the TBA
register. See Trap-Table Entry Address to Privileged Mode on page 348 for details.

The maximum trap level at which privileged software may execute is MAXPTL (which, on an
UltraSPARC Architecture 2007 virtual processor, is 2)..

TABLE 12-1 Virtual Processor Privilege Modes

PSTATE.priv Virtual Processor Privilege Mode

0 Nonprivileged

1 Privileged

Notes Execution in nonprivileged mode with TL > 0 is an invalid
condition that privileged software should never allow to occur.
342 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

FIGURE 12-1 shows how a virtual processor transitions between privilege modes, excluding transitions
that can occur due to direct software writes to PSTATE.priv. In this figure, indicates a “trap
destined for privileged mode” and indicates a “trap destined for hyperprivileged mode”.

FIGURE 12-1 Virtual Processor Privilege Mode Transition Diagram

12.2 Virtual Processor States and Traps
The value of TL affects the generated trap vector address. TL also determines where (that is, into
which element of the TSTATE array) the states are saved.

12.2.0.1 Usage of Trap Levels

If MAXPTL = 2 in an UltraSPARC Architecture implementation, the trap levels might be used as shown
in TABLE 12-2.

12.3 Trap Categories
An exception, error, or interrupt request can cause any of the following trap types:

■ Precise trap
■ Deferred trap
■ Disrupting trap

TABLE 12-2 Typical Usage for Trap Levels

TL
Corresponding

Execution Mode Usage

0 Nonprivileged Normal execution

1 Privileged System calls; interrupt handlers; instruction emulation

2 Privileged Window spill/fill handler

 PT

 HT

 HT

Nonprivileged

 HT

@ TL < MAXPTL (2) PT

 HT@
TL < MAXPTL (2)

 PT HyperprivilegedPrivileged

DONE2,
RETRY2

DONE1,
RETRY1

1 if (TSTATE[TL].PSTATE.priv = 0) 2 if (TSTATE[TL].PSTATE.priv = 1)
CHAPTER 12 • Traps 343

■ Reset trap

12.3.1 Precise Traps
A precise trap is induced by a particular instruction and occurs before any program-visible state has
been changed by the trap-inducing instructions. When a precise trap occurs, several conditions must
be true:

■ The PC saved in TPC[TL] points to the instruction that induced the trap and the NPC saved in
TNPC[TL] points to the instruction that was to be executed next.

■ All instructions issued before the one that induced the trap have completed execution.

■ Any instructions issued after the one that induced the trap remain unexecuted.

Among the actions that trap handler software might take when processing a precise trap are:

■ Return to the instruction that caused the trap and reexecute it by executing a RETRY instruction
(PC ← old PC, NPC ← old NPC).

■ Emulate the instruction that caused the trap and return to the succeeding instruction by executing
a DONE instruction (PC ← old NPC, NPC ← old NPC + 4).

■ Terminate the program or process associated with the trap.

12.3.2 Deferred Traps
A deferred trap is also induced by a particular instruction, but unlike a precise trap, a deferred trap
may occur after program-visible state has been changed. Such state may have been changed by the
execution of either the trap-inducing instruction itself or by one or more other instructions.

There are two classes of deferred traps:

■ Termination deferred traps — The instruction (usually a store) that caused the trap has passed the
retirement point of execution (the TPC has been updated to point to an instruction beyond the one
that caused the trap). The trap condition is an error that prevents the instruction from completing
and its results becoming globally visible. A termination deferred trap has high trap priority, second
only to the priority of resets.

■ Restartable deferred traps — The program-visible state has been changed by the trap-inducing
instruction or by one or more other instructions after the trap-inducing instruction.

The fundamental characteristic of a restartable deferred trap is that the state of the virtual processor on
which the trap occurred may not be consistent with any precise point in the instruction sequence
being executed on that virtual processor. When a restartable deferred trap occurs, TPC[TL] and
TNPC[TL] contain a PC value and an NPC value, respectively, corresponding to a point in the
instruction sequence being executed on the virtual processor. This PC may correspond to the trap-
inducing instruction or it may correspond to an instruction following the trap-inducing instruction.
With a restartable deferred trap, program-visible updates may be missing from instructions prior to
the instruction to which TPC[TL] refers. The missing updates are limited to instructions in the range
from (and including) the actual trap-inducing instruction up to (but not including) the instruction to
which TPC[TL] refers. By definition, the instruction to which TPC[TL] refers has not yet executed,
therefore it cannot have any updates, missing or otherwise.

Programming
Note

Not enough state is saved for execution of the instruction stream
to resume with the instruction that caused the trap. Therefore,
the trap handler must terminate the process containing the
instruction that caused the trap.

SPARC V9
Compatibility

Note

A restartable deferred trap is the “deferred trap” defined in the
SPARC V9 specification.
344 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

With a restartable deferred trap there must exist sufficient information to report the error that caused
the deferred trap. If system software can recover from the error that caused the deferred trap, then
there must be sufficient information to generate a consistent state within the processor so that
execution can resume. Included in that information must be an indication of the mode (nonprivileged,
privileged, or hyperprivileged) in which the trap-inducing instruction was issued.

How the information necessary for repairing the state to make it consistent state is maintained and
how the state is repaired to a consistent state are implementation dependent. It is also implementation
dependent whether execution resumes at the point of the trap-inducing instruction or at an arbitrary
point between the trap-inducing instruction and the instruction pointed to by the TPC[TL],
inclusively.

Associated with a particular restartable deferred trap implementation, the following must exist:

■ An instruction that causes a potentially outstanding restartable deferred trap exception to be taken
as a trap

■ Instructions with sufficient privilege to access the state information needed by software to emulate
the restartable deferred trap-inducing instruction and to resume execution of the trapped
instruction stream.

Software should resume execution with the instruction starting at the instruction to which TPC[TL]
refers. Hardware should provide enough information for software to recreate virtual processor state
and update it to the point just before execution of the instruction to which TPC[TL] refers. After
software has updated virtual processor state up to that point, it can then resume execution by issuing
a RETRY instruction.

IMPL. DEP. #32-V8-Ms10: Whether any restartable deferred traps (and, possibly, associated deferred-
trap queues) are present is implementation dependent.

Among the actions software can take after a restartable deferred trap are these:

■ Emulate the instruction that caused the exception, emulate or cause to execute any other execution-
deferred instructions that were in an associated restartable deferred trap state queue, and use
RETRY to return control to the instruction at which the deferred trap was invoked.

■ Terminate the program or process associated with the restartable deferred trap.

A deferred trap (of either of the two classes) is always delivered to the virtual processor in
hyperprivileged mode.

12.3.3 Disrupting Traps

12.3.3.1 Disrupting versus Precise and Deferred Traps

A disrupting trap is caused by a condition (for example, an interrupt) rather than directly by a
particular instruction. This distinguishes it from precise and deferred traps.

When a disrupting trap has been serviced, trap handler software normally arranges for program
execution to resume where it left off. This distinguishes disrupting traps from reset traps, since a reset
trap vectors to a unique reset address and execution of the program that was running when the reset
occurred is generally not expected to resume.

When a disrupting trap occurs, the following conditions are true:

Programming
Note

Resuming execution may require the emulation of instructions
that had not completed execution at the time of the restartable
deferred trap, that is, those instructions in the deferred-trap
queue.
CHAPTER 12 • Traps 345

1. The PC saved in TPC[TL] points to an instruction in the disrupted program stream and the NPC
value saved in TNPC[TL] points to the instruction that was to be executed after that one.

2. All instructions issued before the instruction indicated by TPC[TL] have retired.

3. The instruction to which TPC[TL] refers and any instruction(s) that were issued after it remain
unexecuted.

A disrupting trap may be due to an interrupt request directly related to a previously-executed
instruction; for example, when a previous instruction sets a bit in the SOFTINT register.

12.3.3.2 Causes of Disrupting Traps

A disrupting trap may occur due to either an interrupt request or an error not directly related to
instruction processing. The source of an interrupt request may be either internal or external. An
interrupt request can be induced by the assertion of a signal not directly related to any particular
virtual processor or memory state, for example, the assertion of an “I/O done” signal.

A condition that causes a disrupting trap persists until the condition is cleared.

12.3.3.3 Conditioning of Disrupting Traps

How disrupting traps are conditioned is affected by:

■ The privilege mode in effect when the trap is outstanding, just before the trap is actually taken
(regardless of the privilege mode that was in effect when the exception was detected).

■ The privilege mode for which delivery of the trap is destined

Outstanding in Nonprivileged or Privileged mode, destined for delivery in Privileged
mode. An outstanding disrupting trap condition in either nonprivileged mode or privileged mode
and destined for delivery to privileged mode is held pending while the Interrupt Enable (ie) field of
PSTATE is zero (PSTATE.ie = 0). interrupt_level_n interrupts are further conditioned by the Processor
Interrupt Level (PIL) register. An interrupt is held pending while either PSTATE.ie = 0 or the
condition’s interrupt level is less than or equal to the level specified in PIL. When delivery of this
disrupting trap is enabled by PSTATE.ie = 1, it is delivered to the virtual processor in privileged mode
if TL < MAXPTL (2, in UltraSPARC Architecture 2007 implementations).

Outstanding in Nonprivileged or Privileged mode, destined for delivery in Hyperprivileged
mode. An outstanding disrupting trap condition detected while in either nonprivileged mode or
privileged mode and destined for delivery in hyperprivileged mode is never masked; it is delivered
immediately.

The above is summarized in TABLE 12-3.

TABLE 12-3 Conditioning of Disrupting Traps

Type of Disrupting
Trap Condition

Current Virtual Processor
Privilege Mode

Disposition of Disrupting Traps, based on privilege
mode in which the trap is destined to be delivered

Privileged Hyperprivileged

Interrupt_level_n

Nonprivileged or
Privileged

Held pending while
PSTATE.ie = 0 or
interrupt level ≤ PIL

—

All other disrupting
traps

Nonprivileged or
Privileged

Held pending while
PSTATE.ie = 0

Delivered
immediately
346 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

12.3.3.4 Trap Handler Actions for Disrupting Traps

Among the actions that trap-handler software might take to process a disrupting trap are:

■ Use RETRY to return to the instruction at which the trap was invoked
(PC ← old PC, NPC ← old NPC).

■ Terminate the program or process associated with the trap.

12.3.4 Uses of the Trap Categories
The SPARC V9 trap model stipulates the following:

1. Reset traps occur asynchronously to program execution.

2. When recovery from an exception can affect the interpretation of subsequent instructions, such
exceptions shall be precise. See TABLE 12-4, TABLE 12-5, and Exception and Interrupt Descriptions on
page 358 for identification of which traps are precise.

3. In an UltraSPARC Architecture implementation, all exceptions that occur as the result of program
execution are precise (impl. dep. #33-V8-Cs10).

4. An error detected after the initial access of a multiple-access load instruction (for example, LDTX or
LDBLOCKF) should be precise. Thus, a trap due to the second memory access can occur. However,
the processor state should not have been modified by the first access.

5. Exceptions caused by external events unrelated to the instruction stream, such as interrupts, are
disrupting.

A deferred trap may occur one or more instructions after the trap-inducing instruction is dispatched.

12.4 Trap Control
Several registers control how any given exception is processed, for example:

■ The interrupt enable (ie) field in PSTATE and the Processor Interrupt Level (PIL) register control
interrupt processing. See Disrupting Traps on page 345 for details.

■ The enable floating-point unit (fef) field in FPRS, the floating-point unit enable (pef) field in
PSTATE, and the trap enable mask (tem) in the FSR control floating-point traps.

■ The TL register, which contains the current level of trap nesting, affects whether the trap is
processed in privileged mode or hyperprivileged mode.

■ PSTATE.tle determines whether implicit data accesses in the trap handler routine will be
performed using big-endian or little-endian byte order.

Between the execution of instructions, the virtual processor prioritizes the outstanding exceptions,
errors, and interrupt requests. At any given time, only the highest-priority exception, error, or
interrupt request is taken as a trap. When there are multiple interrupts outstanding, the interrupt with
the highest interrupt level is selected. When there are multiple outstanding exceptions, errors, and/or
interrupt requests, a trap occurs based on the exception, error, or interrupt with the highest priority
(numerically lowest priority number in TABLE 12-5). See Trap Priorities on page 356.
CHAPTER 12 • Traps 347

12.4.1 PIL Control
When an interrupt request occurs, the virtual processor compares its interrupt request level against
the value in the Processor Interrupt Level (PIL) register. If the interrupt request level is greater than
PIL and no higher-priority exception is outstanding, then the virtual processor takes a trap using the
appropriate interrupt_level_n trap vector.

12.4.2 FSR.tem Control
The occurrence of floating-point traps of type IEEE_754_exception can be controlled with the user-
accessible trap enable mask (tem) field of the FSR. If a particular bit of FSR.tem is 1, the associated
IEEE_754_exception can cause an fp_exception_ieee_754 trap.

If a particular bit of FSR.tem is 0, the associated IEEE_754_exception does not cause an
fp_exception_ieee_754 trap. Instead, the occurrence of the exception is recorded in the FSR ’s accrued
exception field (aexc).

If an IEEE_754_exception results in an fp_exception_ieee_754 trap, then the destination F register,
FSR.fccn, and FSR.aexc fields remain unchanged. However, if an IEEE_754_exception does not result
in a trap, then the F register, FSR.fccn, and FSR.aexc fields are updated to their new values.

12.5 Trap-Table Entry Addresses
Traps are delivered to the virtual processor in either privileged mode or hyperprivileged mode,
depending on the trap type, the value of TL at the time the trap is taken, and the privilege mode at the
time the exception was detected. See TABLE 12-4 on page 351 and TABLE 12-5 on page 354 for details.

Unique trap table base addresses are provided for traps being delivered in privileged mode and in
hyperprivileged mode.

12.5.1 Trap-Table Entry Address to Privileged Mode
Privileged software initializes bits 63:15 of the Trap Base Address (TBA) register (its most significant
49 bits) with bits 63:15 of the desired 64-bit privileged trap-table base address.

At the time a trap to privileged mode is taken:
■ Bits 63:15 of the trap vector address are taken from TBA{63:15}.
■ Bit 14 of the trap vector address (the “TL>0” field) is set based on the value of TL just before the

trap is taken; that is, if TL = 0 then bit 14 is set to 0 and if TL > 0 then bit 14 is set to 1.
■ Bits 13:5 of the trap vector address contain a copy of the contents of the TT register (TT[TL]).
■ Bits 4:0 of the trap vector address are always 0; hence, each trap table entry is at least 25 or 32 bytes

long. Each entry in the trap table may contain the first eight instructions of the corresponding trap
handler.

FIGURE 12-2 illustrates the trap vector address for a trap delivered to privileged mode. In FIGURE 12-2,
the “TL>0” bit is 0 if TL = 0 when the trap was taken, and 1 if TL > 0 when the trap was taken. This
implies, as detailed in the following section, that there are two trap tables for traps to privileged
mode: one for traps from TL = 0 and one for traps from TL > 0.

FIGURE 12-2 Privileged Mode Trap Vector Address

63 15 14 013 45

TL>0 0 0000from TBA{63:15} (TBA.tba_high49) TT[TL]
348 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

12.5.2 Privileged Trap Table Organization
The layout of the privileged-mode trap table (which is accessed using virtual addresses) is illustrated
in FIGURE 12-3.

FIGURE 12-3 Privileged-mode Trap Table Layout

The trap table for TL = 0 comprises 512 thirty-two-byte entries; the trap table for TL > 0 comprises 512
more thirty-two-byte entries. Therefore, the total size of a full privileged trap table is 2 × 512 × 32
bytes (32 Kbytes). However, if privileged software does not use software traps (Tcc instructions) at
TL > 0, the table can be made 24 Kbytes long.

12.5.3 Trap Type (TT)
When a normal trap occurs, a value that uniquely identifies the type of the trap is written into the
current 9-bit TT register (TT[TL]) by hardware. Control is then transferred into the trap table to an
address formed by the trap’s destination privilege mode:
■ The TBA register, (TL > 0), and TT[TL] (see Trap-Table Entry Address to Privileged Mode on page 348)

TT values 00016–0FF16 are reserved for hardware traps. TT values 10016–17F16 are reserved for
software traps (caused by execution of a Tcc instruction) to privileged-mode trap handlers.

IMPL. DEP. #35-V8-Cs20: TT values 06016 to 07F16 were reserved for
implementation_dependent_exception_n exceptions in the SPARC V9 specification, but are now all
defined as standard UltraSPARC Architecture exceptions. See TABLE 12-4 for details.

Trap Table
Offsetof TL

(before Contents of Trap Table
Trap Type

Hardware traps

Spill / fill traps

Software traps to Privileged level

00016–07F16

08016–0FF16

10016–17F16

18016–1FF16

Hardware traps

Spill / fill traps

Software traps to Privileged level

unassigned

unassigned

016– FE016

100016–1FE016

200016–2FE016

300016–3FE016

400016–4FE016

500016–5FE016

600016–6FE016

700016–7FE016

00016–07F16

08016–0FF16

10016–17F16

18016–1FF16

(from TBA)

Value Hardware

Type

—

—

016– 7F16

—

Trap

—

—

016– 7F16

—

trap)

Software

TL = 0

TL = 1
(TL =
MAXPTL−1)

(TT[TL])
CHAPTER 12 • Traps 349

The assignment of TT values to traps is shown in TABLE 12-4; TABLE 12-5 provides the same list, but
sorted in order of trap priority. The key to both tables follows:

Symbol Meaning

● This trap type is associated with a feature that is architecturally required in an
implementation of UltraSPARC Architecture 2007. Hardware must detect this
exception or interrupt, trap on it (if not masked), and set the specified trap type
value in the TT register.

❍ This trap type is associated with a feature that is architecturally defined in
UltraSPARC Architecture 2007, but its implementation is optional.

P Trap is taken via the Privileged trap table, in Privileged mode (PSTATE.priv = 1)

H Trap is taken in Hyperprivileged mode

-x- Not possible. Hardware cannot generate this trap in the indicated running mode.
For example, all privileged instructions can be executed in privileged mode,
therefore a privileged_opcode trap cannot occur in privileged mode.

— This trap is reserved for future use.

(ie) When the outstanding disrupting trap condition occurs in this privilege mode, it
may be conditioned (masked out) by PSTATE.ie = 0 (but remains pending).

(nm) Never Masked — when the condition occurs in this running mode, it is never
masked out and the trap is always taken.

(pend) Held Pending — the condition can occur in this running mode, but can’t be
serviced in this mode. Therefore, it is held pending until the mode changes to one
in which the exception can be serviced.
350 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

TABLE 12-4 Exception and Interrupt Requests, by TT Value (1 of 3)

UA-2007
● =Req’d.
❍ =Opt’l Exception or Interrupt Request

TT
(Trap
Type)

Trap
Category

Priority
(0 =

High-
est)

Mode in which Trap is
Delivered (and

Conditioning Applied),
based on Current

Privilege Mode

NP Priv

— Reserved 00016 — — — —

● (used at higher privilege levels) 00116–
00516

— — — —

— Reserved 00516 — — — —

— implementation-dependent 00616 — — — —

● IAE_privilege_violation 00816 precise 3.1 H -x-

● (used at higher privilege levels) 00916 — — — —

● (used at higher privilege levels) 00A16 — — — —

● IAE_unauth_access 00B16 precise 3.2 H H

● IAE_nfo_page 00C16 precise 3.3 H H

— Reserved 00F16 — — — —

● illegal_instruction 01016 precise 6.2 H H

● privileged_opcode 01116 precise 7 P
(nm)

-x-

❍ unimplemented_LDTW 01216 precise 6.3 H H

❍ unimplemented_STTW 01316 precise 6.3 H H

● DAE_invalid_asi 01416 precise 12.01 H H

● DAE_privilege_violation 01516 precise 12.04 H H

● DAE_nc_page 01616 precise 12.05 H H

● DAE_nfo_page 01716 precise 12.06 H H

— Reserved 01816–
01F16

— — — —

● fp_disabled 02016 precise 8 P
(nm)

P
(nm)

❍ fp_exception_ieee_754 02116 precise 11.1 P
(nm)

P
(nm)

❍ fp_exception_other 02216 precise 11.1 P
(nm)

P
(nm)

● tag_overflowD 02316 precise 14 P
(nm)

P
(nm)

● clean_window 02416
‡–

02716

precise 10.1 P
(nm)

P
(nm)

● division_by_zero 02816 precise 15 P
(nm)

P
(nm)

— Reserved 02C16 — — — —

● DAE_side_effect_page 03016 precise 12.06 H H

— Reserved 03216 — — — —
CHAPTER 12 • Traps 351

● mem_address_not_aligned 03416 precise 10.2 H H

● LDDF_mem_address_not_aligned 03516 precise 10.1 H H

● STDF_mem_address_not_aligned 03616 precise 10.1 H H

● privileged_action 03716 precise 11.1 H H

❍ LDQF_mem_address_not_aligned 03816 precise 10.1 H H

❍ STQF_mem_address_not_aligned 03916 precise 10.1 H H

— Reserved 03A16 — — — —

— Reserved 03B16 — — — —

— Reserved 03C16–
03D16

— — — —

❍ (used at higher privilege levels) 040116 — — — —

● interrupt_level_n (n = 1–15) 04116 –
04F16

disrupting 32-n
(31 to

17)

P
(ie)

P
(ie)

— Reserved 05016–
05D16

— — — —

● (used at higher privilege levels) 05F16–
06116

— — — —

❍ (used at higher privilege levels) 06016 — — — —

❍ VA_watchpoint 06216 precise 11.2 P
(nm)

P
(nm)

● (used at higher privilege levels) 06316–
06C16

— — — —

❍ implementation_dependent_exception_n
(impl. dep. #35-V8-Cs20)

07016 — ∇ — —

● (used at higher privilege levels) 07116–
07216

— — — —

❍ implementation_dependent_exception_n
(impl. dep. #35-V8-Cs20)

07316 — ∇ — —

● control_transfer_instruction 07416 precise 11.1 P P

❍ instruction_VA_watchpoint 07516 precise 2.05 P
(nm)

P
(nm)

❏ implementation_dependent_exception_n
(impl. dep. #35-V8-Cs20)

07716 –
07816

— ∇ — —

❏ implementation_dependent_exception_n
(impl. dep. #35-V8-Cs20)

07916–
07B16

— ∇ — —

● cpu_mondo 07C16 disrupting 16.08 P
(ie)

P
(ie)

● dev_mondo 07D16 disrupting 16.11 P
(ie)

P
(ie)

TABLE 12-4 Exception and Interrupt Requests, by TT Value (2 of 3)

UA-2007
● =Req’d.
❍ =Opt’l Exception or Interrupt Request

TT
(Trap
Type)

Trap
Category

Priority
(0 =

High-
est)

Mode in which Trap is
Delivered (and

Conditioning Applied),
based on Current

Privilege Mode

NP Priv
352 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

● resumable_error 07E16 disrupting 33.3 P
(ie)

P
(ie)

— nonresumable_error 07F16 — — — —

● spill_n_normal (n = 0–7) 08016
‡–

09F16

precise 9 P
(nm)

P
(nm)

● spill_n_other (n = 0–7) 0A016
‡–

0BF16

precise 9 P
(nm)

P
(nm)

● fill_n_normal (n = 0–7) 0C016
‡–

0DF16

precise 9 P
(nm)

P
(nm)

● fill_n_other (n = 0–7) 0E016
‡–

0FF16

precise 9 P
(nm)

P
(nm)

● trap_instruction 10016–
17F16

precise 16.02 P
(nm)

P
(nm)

● htrap_instruction 18016–
1FF16

precise 16.02 -x-

* Although these trap priorities are recommended, all trap priorities are implementation dependent (impl. dep. #36-V8 on page
356), including relative priorities within a given priority level.

‡ The trap vector entry (32 bytes) for this trap type plus the next three trap types (total of 128 bytes) are permanently reserved for
this exception.

D This exception is deprecated, because the only instructions that can generate it have been deprecated.

TABLE 12-4 Exception and Interrupt Requests, by TT Value (3 of 3)

UA-2007
● =Req’d.
❍ =Opt’l Exception or Interrupt Request

TT
(Trap
Type)

Trap
Category

Priority
(0 =

High-
est)

Mode in which Trap is
Delivered (and

Conditioning Applied),
based on Current

Privilege Mode

NP Priv
CHAPTER 12 • Traps 353

TABLE 12-5 Exception and Interrupt Requests, by Priority (1 of 2)

UA-2007
● =Req’d.
❍ =Opt’l
❏ .=Impl-
Specific Exception or Interrupt Request

TT
(Trap
Type)

Trap
Category

Priority
(0 =

High-
est)

Mode in which Trap is
Delivered and (and

Conditioning Applied),
based on Current

Privilege Mode

NP Priv

❍ instruction_VA_watchpoint 07516 precise 2.05 P
(nm)

P
(nm)

● IAE_privilege_violation 00816 precise 3.1 H -x-

● IAE_unauth_access 00B16 precise 3.2 H H

● IAE_nfo_page 00C16 precise 3.3 H H

● illegal_instruction 01016 precise 6.2 H H

❍ unimplemented_LDTW 01216 precise
6.3

H H

❍ unimplemented_STTW 01316 precise H H

● privileged_opcode 01116 precise
7

P
(nm)

-x-

● fp_disabled 02016 precise 8 P
(nm)

P
(nm)

● spill_n_normal (n = 0–7) 08016
‡–

09F16

precise

9

P
(nm)

P
(nm)

● spill_n_other (n = 0–7) 0A016
‡–

0BF16

precise P
(nm)

P
(nm)

● fill_n_normal (n = 0–7) 0C016
‡–

0DF16

precise P
(nm)

P
(nm)

● fill_n_other (n = 0–7) 0E016
‡–

0FF16

precise P
(nm)

P
(nm)

● clean_window 02416
‡–

02716

precise

10.1

P
(nm)

P
(nm)

● LDDF_mem_address_not_aligned 03516 precise H H

● STDF_mem_address_not_aligned 03616 precise H H

❍ LDQF_mem_address_not_aligned 03816 precise H H

❍ STQF_mem_address_not_aligned 03916 precise H H

● mem_address_not_aligned 03416 precise 10.2 H H

❍ fp_exception_other 02216 precise

11.1

P
(nm)

P
(nm)

❍ fp_exception_ieee_754 02116 precise P
(nm)

P
(nm)

● privileged_action 03716 precise H H

● control_transfer_instruction 07416 precise P H
354 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

12.5.3.1 Trap Type for Spill/Fill Traps

The trap type for window spill/fill traps is determined on the basis of the contents of the OTHERWIN
and WSTATE registers as described below and shown in FIGURE 12-4.

❍ VA_watchpoint 06216 precise 11.2 P
(nm)

P
(nm)

● DAE_invalid_asi 01416 precise 12.01 H H

● DAE_privilege_violation 01516 precise 12.04 H H

● DAE_nc_page 01616 precise 12.05 H H

● DAE_nfo_page 01716 precise
12.06

H H

● DAE_side_effect_page 03016 precise H H

● tag_overflowD 02316 precise 14 P
(nm)

P
(nm)

● division_by_zero 02816 precise 15 P
(nm)

P
(nm)

● trap_instruction 10016–
17F16

precise

16.02

P
(nm)

P
(nm)

● htrap_instruction 18016–
1FF16

precise -x-

● cpu_mondo 07C16 disrupting 16.08 P
(ie)

P
(ie)

● dev_mondo 07D16 disrupting 16.11 P
(ie)

P
(ie)

● interrupt_level_n (n = 1–15) 04116–
04F16

disrupting 32-n
(31 to

17)

P
(ie)

P
(ie)

● resumable_error 07E16 disrupting 33.3 P
(ie)

P
(ie)

— nonresumable_error 07F16 — — — —

* Although these trap priorities are recommended, all trap priorities are implementation dependent (impl. dep. #36-V8 on
page 356), including relative priorities within a given priority level.

‡ The trap vector entry (32 bytes) for this trap type plus the next three trap types (total of 128 bytes) are permanently reserved
for this exception.

D This exception is deprecated, because the only instructions that can generate it have been deprecated.

Bit Field Description

8:6 spill_or_fill 0102 for spill traps; 0112 for fill traps

5 other (OTHERWIN ≠ 0)
4:2 wtype If (other) then WSTATE.other; else WSTATE.normal

TABLE 12-5 Exception and Interrupt Requests, by Priority (2 of 2)

UA-2007
● =Req’d.
❍ =Opt’l
❏ .=Impl-
Specific Exception or Interrupt Request

TT
(Trap
Type)

Trap
Category

Priority
(0 =

High-
est)

Mode in which Trap is
Delivered and (and

Conditioning Applied),
based on Current

Privilege Mode

NP Priv
CHAPTER 12 • Traps 355

FIGURE 12-4 Trap Type Encoding for Spill/Fill Traps

12.5.4 Trap Priorities
TABLE 12-4 on page 351 and TABLE 12-5 on page 354 show the assignment of traps to TT values and the
relative priority of traps and interrupt requests. A trap priority is an ordinal number, with 0 indicating
the highest priority and greater priority numbers indicating decreasing priority; that is, if x < y, a
pending exception or interrupt request with priority x is taken instead of a pending exception or
interrupt request with priority y. Traps within the same priority class (0 to 33) are listed in priority
order in TABLE 12-5 (impl. dep. #36-V8).

IMPL. DEP. #36-V8: The relative priorities of traps defined in the UltraSPARC Architecture are fixed.
However, the absolute priorities of those traps are implementation dependent (because a future
version of the architecture may define new traps). The priorities (both absolute and relative) of any
new traps are implementation dependent.

However, the TT values for the exceptions and interrupt requests shown in TABLE 12-4 and TABLE 12-5
must remain the same for every implementation.

The trap priorities given above always need to be considered within the context of how the virtual
processor actually issues and executes instructions.

12.6 Trap Processing
The virtual processor’s action during trap processing depends on various virtual processor states,
including the trap type, the current level of trap nesting (given in the TL register), and PSTATE. When
a trap occurs, the GL register is normally incremented by one (described later in this section), which
replaces the set of eight global registers with the next consecutive set.

During normal operation, the virtual processor is in execute_state. It processes traps in
execute_state and continues.

TABLE 12-6 describes the virtual processor mode and trap-level transitions involved in handling traps.

12.6.1 Normal Trap Processing
A trap is delivered in either privileged mode or hyperprivileged mode, depending on the type of trap,
the trap level (TL), and the privilege mode in effect when the exception was detected.

During normal trap processing, the following state changes occur (conceptually, in this order):

■ The trap level is updated. This provides access to a fresh set of privileged trap-state registers used
to save the current state, in effect, pushing a frame on the trap stack.

TABLE 12-6 Trap Received While in execute_state

Original State
New State, After Receiving Trap

or Interrupt

execute_state
TL < MAXPTL – 1

execute_state
TL ← TL + 1

Trap Type

05 2

0spill_or_fill

1468

0wtypeother
356 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

TL ← TL + 1

■ Existing state is preserved.
TSTATE[TL].gl ← GL
TSTATE[TL].ccr ← CCR
TSTATE[TL].asi ← ASI
TSTATE[TL].pstate ← PSTATE
TSTATE[TL].cwp ← CWP
TPC[TL] ← PC // (upper 32 bits zeroed if PSTATE.am = 1)
TNPC[TL] ← NPC // (upper 32 bits zeroed if PSTATE.am = 1)

■ The trap type is preserved.
TT[TL] ← the trap type

■ The Global Level register (GL) is updated. This normally provides access to a fresh set of global
registers:

GL ← min (GL + 1, MAXPGL)

■ The PSTATE register is updated to a predefined state:
PSTATE.mm is unchanged
PSTATE.pef ← 1 // if an FPU is present, it is enabled
PSTATE.am ← 0 // address masking is turned offPSTATE.priv ← 1 // the virtual
processor enters privileged mode

PSTATE.cle ← PSTATE.tle //set endian mode for traps
endif
PSTATE.ie ← 0 // interrupts are disabled
PSTATE.tle is unchanged
PSTATE.tct ← 0 // trap on CTI disabled

■ For a register-window trap (clean_window, window spill, or window fill) only, CWP is set to point
to the register window that must be accessed by the trap-handler software, that is:

if TT[TL] = 02416 // a clean_window trap
then CWP ← CWP + 1
endif

if (08016 ≤ TT[TL] ≤ 0BF16) // window spill trap
then CWP ← CWP + CANSAVE + 2
endif

if (0C016 ≤ TT[TL] ≤ 0FF16) // window fill trap
then CWP ← CWP – 1
endif

For non-register-window traps, CWP is not changed.

■ Control is transferred into the trap table:
// Note that at this point, TL has already been incremented (above)
if ((trap is to privileged mode) and (TL ≤ MAXPTL))
then

//the trap is handled in privileged mode
//Note: The expression “(TL > 1)” below evaluates to the
//value 02 if TL was 0 just before the trap (in which
//case, TL = 1 now, since it was incremented above,
//during trap entry). “(TL > 1)” evaluates to 12 if
//TL was > 0 before the trap.

PC ← TBA{63:15} :: (TL > 1) :: TT[TL] :: 0 00002
NPC ← TBA{63:15} :: (TL > 1) :: TT[TL] :: 0 01002

else { trap is handled in hyperprivileged mode }
endif
CHAPTER 12 • Traps 357

Interrupts are ignored as long as PSTATE.ie = 0.

12.7 Exception and Interrupt Descriptions
The following sections describe the various exceptions and interrupt requests and the conditions that
cause them. Each exception and interrupt request describes the corresponding trap type as defined by
the trap model.

All other trap types are reserved.

The following traps are generally expected to be supported in all UltraSPARC Architecture 2007
implementations. A given trap is not required to be supported in an implementation in which the
conditions that cause the trap can never occur.

■ clean_window [TT = 02416–02716] (Precise) — A SAVE instruction discovered that the window
about to be used contains data from another address space; the window must be cleaned before it
can be used.

IMPL. DEP. #102-V9: An implementation may choose either to implement automatic cleaning of
register windows in hardware or to generate a clean_window trap, when needed, so that window(s)
can be cleaned by software. If an implementation chooses the latter option, then support for this
trap type is mandatory.

■ control_transfer_instruction [TT = 07416] (Precise) — This exception is generated if
PSTATE.tct = 1 and the processor determines that a successful control transfer will occur as a result
of execution of that instruction. If such a transfer will occur, the processor generates a
control_transfer_instruction precise trap (trap type = 7416) instead of completing the control
transfer. The pc stored in TPC[TL] is the address of the CTI, and the TNPC[TL] is set to the value of
NPC before the CTI is executed. (impl. dep. #450-S20). PSTATE.tct is always set to 0 as part of
normal entry into a trap handler. When this exception occurs in nonprivileged or privileged mode,
the trap is delivered in privileged mode. If it occurs in hyperprivileged mode, the trap is delivered
in hyperprivileged mode.

■ cpu_mondo [TT = 07C16] (Disrupting) — This interrupt is generated when another virtual
processor has enqueued a message for this virtual processor. It is used to deliver a trap in
privileged mode, to inform privileged software that an interrupt report has been appended to the
virtual processor’s CPU mondo queue. A direct message between virtual processors is sent via a
CPU mondo interrupt. When the CPU mondo queue contains a valid entry, a cpu_mondo exception
is sent to the target virtual processor.

Programming
Note

State in TPC[n], TNPC[n], TSTATE[n], and TT[n] is only changed
autonomously by the processor when a trap is taken while
TL = n –1; however, software can change any of these values
with a WRPR instruction when TL = n.

Note The encoding of trap types in the UltraSPARC Architecture
differs from that shown in The SPARC Architecture Manual-
Version 9. Each trap is marked as precise, deferred, disrupting, or
reset. Example exception conditions are included for each
exception type. Chapter 7, Instructions, enumerates which traps
can be generated by each instruction.
358 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

■ DAE_invalid_asi [TT = 01416] (Precise) — An attempt was made to execute an invalid
combination of instruction and ASI. See the instruction descriptions in Chapter 7 for a detailed list
of valid ASIs for each instruction that can access alternate address spaces. The following invalid
combinations of instruction, ASI, and virtual address cause a DAE_invalid_asi exception:

■ A load, store, load-store, or PREFETCHA instruction with either an invalid ASI or an invalid
virtual address for a valid ASI.

■ A disallowed combination of instruction and ASI (see Block Load and Store ASIs on page 333 and
Partial Store ASIs on page 333). This includes the following:

– an attempt to use a (deprecated) atomic quad load ASI (2416, 2C16, 3416, or 3C16) with any load
alternate opcode other than LDTXA’s (which is shared by LDDA)

– an attempt to use a nontranslating ASI value with any load or store alternate instruction other
than LDXA, LDDFA, STXA, or STDFA

– an attempt to read from a write-only ASI-accessible register, or load from a store-only ASI (for
example, a block commit store ASI, E016 or E116)

– an attempt to write to a read-only ASI-accessible register

■ DAE_nc_page [TT = 01616] (Precise) —An access to a noncacheable page (TTE.cp = 0) was
attempted by an atomic load-store instruction (CASA, CASXA, SWAP, SWAPA, LDSTUB, or
LDSTUBA), an LDTXA instruction, a LDBLOCKF instruction, or a STPARTIALF instruction.

■ DAE_nfo_page [TT = 01716] (Precise) — An attempt was made to access a non-faulting-only page
(TTE.nfo = 1) by any type of load, store, load-store, or FLUSH instruction with an ASI other than a
nonfaulting ASI (PRIMARY_NO_FAULT[_LITTLE] or SECONDARY_NO_FAULT[_LITTLE]).

■ DAE_privilege_violation [TT = 01516] (Precise) — A privilege violation occurred, due to an
attempt to access a privileged page (TTE.p = 1) by any type of load, store, or load-store instruction
when executing in nonprivileged mode (PSTATE.priv = 0). This includes the special case of an
access by privileged software using one of the ASI_AS_IF_USER_PRIMARY[_LITTLE] or
ASI_AS_IF_USER_SECONDARY[_LITTLE] ASIs.

■ DAE_side_effect_page [TT = 03016] (Precise) — An attempt was made to access a page which
may cause side effects (TTE.e = 1) by any type of load instruction with nonfaulting ASI.

■ dev_mondo [TT = 07D16] (Disrupting) — This interrupt causes a trap to be delivered in privileged
mode, to inform privileged software that an interrupt report has been appended to its device
mondo queue. When a virtual processor has appended a valid entry to a target virtual processor’s
device mondo queue, it sends a dev_mondo exception to the target virtual processor. The interrupt
report contents are device specific.

Programming
Note

It is possible that an implementation may occasionally cause a
cpu_mondo interrupt when the CPU Mondo queue is empty
(CPU Mondo Queue Head pointer = CPU Mondo Queue Tail
pointer). A guest operating system running in privileged mode
should handle this by ignoring any CPU Mondo interrupt with
an empty queue.

SPARC V9
Compatibility

Note

The data_access_exception exception from SPARC V9 and
UltraSPARC Architecture 2005 has been replaced by more
specific exceptions, such as DAE_invalid_asi, DAE_nc_page,
DAE_nfo_page, DAE_privilege_violation, and
DAE_side_effect_page.
CHAPTER 12 • Traps 359

■ division_by_zero [TT = 02816] (Precise) — An integer divide instruction attempted to divide by
zero.

■ fill_n_normal [TT = 0C016–0DF16] (Precise)
■ fill_n_other [TT = 0E016–0FF16] (Precise)

A RESTORE or RETURN instruction has determined that the contents of a register window must
be restored from memory.

■ fp_disabled [TT = 02016] (Precise) — An attempt was made to execute an FPop, a floating-point
branch, or a floating-point load/store instruction while an FPU was disabled (PSTATE.pef = 0 or
FPRS.fef = 0).

■ fp_exception_ieee_754 [TT = 02116] (Precise) — An FPop instruction generated an
IEEE_754_exception and its corresponding trap enable mask (FSR.tem) bit was 1. The floating-
point exception type, IEEE_754_exception, is encoded in the FSR.ftt, and specific
IEEE_754_exception information is encoded in FSR.cexc.

■ fp_exception_other [TT = 02216] (Precise) — An FPop instruction generated an exception other
than an IEEE_754_exception. Example: execution of an FPop requires software assistance to
complete. The floating-point exception type is encoded in FSR.ftt.

■ htrap_instruction [TT = 18016–1FF16] (Precise) — A Tcc instruction was executed in privileged
mode, the trap condition evaluated to TRUE, and the software trap number was greater than 127.
The trap is delivered in hyperprivileged mode. See also trap_instruction on page 362.

■ IAE_nfo_page [TT = 00C16] (Precise) — An instruction-access exception occurred as a result of an
attempt to fetch an instruction from a memory page which was marked for access only by
nonfaulting loads (TTE.nfo = 1).

■ IAE_privilege_violation [TT = 00816] (Precise) — An instruction-access exception occurred as a
result of an attempt to fetch an instruction from a privileged memory page (TTE.p = 1) while the
virtual processor was executing in nonprivileged mode.

■ IAE_unauth_access [TT = 00B16] (Precise) — An instruction-access exception occurred as a result
of an attempt to fetch an instruction from a memory page which was missing “execute” permission
(TTE.ep = 0).

■ illegal_instruction [TT = 01016] (Precise) — An attempt was made to execute an ILLTRAP
instruction, an instruction with an unimplemented opcode, an instruction with invalid field usage,
or an instruction that would result in illegal processor state.

Examples of cases in which illegal_instruction is generated include the following:

■ An instruction encoding does not match any of the opcode map definitions (see Appendix A,
Opcode Maps).

■ An instruction is not implemented in hardware.

■ A reserved instruction field in Tcc instruction is nonzero.

If a reserved instruction field in an instruction other than Tcc is nonzero, an illegal_instruction
exception should be, but is not required to be, generated. (See Reserved Opcodes and Instruction
Fields on page 86.)

■ An illegal value is present in an instruction i field.

■ An illegal value is present in a field that is explicitly defined for an instruction, such as cc2, cc1,
cc0, fcn, impl, rcond, or opf_cc.

■ Illegal register alignment (such as odd rd value in a doubleword load instruction).

Programming
Note

It is possible that an implementation may occasionally cause a
dev_mondo interrupt when the Device Mondo queue is empty
(Device Mondo Queue Head pointer = Device Mondo Queue
Tail pointer). A guest operating system running in privileged
mode should handle this by ignoring any Device Mondo
interrupt with an empty queue.
360 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

■ Illegal rd value for LDXFSR, STXFSR, or the deprecated instructions LDFSR or STFSR.

■ ILLTRAP instruction.

■ DONE or RETRY when TL = 0.

All causes of an illegal_instruction exception are described in individual instruction descriptions in
Chapter 7, Instructions.

■ instruction_VA_watchpoint [TT = 07516] (Precise) — The virtual processor has detected that the
Program Counter (PC) matches the VA Watchpoint register, when instruction VA watchpoints are
enabled and the PC is being translated from a virtual address to a hardware address. If the PC is
not being translated from a virtual address (for example, the PC is being treated as a hardware
address), then an instruction_VA_watchpoint exception will not be generated, even if a match is
detected between the VA Watchpoint register and the PC.

■ interrupt_level_n [TT = 04116–04F16] (Disrupting) — SOFTINT{n} was set to 1 or an external
interrupt request of level n was presented to the virtual processor and n > PIL.

■ LDDF_mem_address_not_aligned [TT = 03516] (Precise) — An attempt was made to execute an
LDDF or LDDFA instruction and the effective address was not doubleword aligned. (impl. dep. #109)

■ mem_address_not_aligned [TT = 03416] (Precise) — A load/store instruction generated a
memory address that was not properly aligned according to the instruction, or a JMPL or RETURN
instruction generated a non-word-aligned address. (See also Special Memory Access ASIs on page
329.)

■ nonresumable_error [TT = 07F16] (Disrupting) — There is a valid entry in the nonresumable error
queue. This interrupt is not generated by hardware, but is used by hyperprivileged software to
inform privileged software that an error report has been appended to the nonresumable error
queue.

■ privileged_action [TT = 03716] (Precise) — An action defined to be privileged has been attempted
while in nonprivileged mode (PSTATE.priv = 0), or an action defined to be hyperprivileged has
been attempted while in nonprivileged or privileged mode. Examples:
■ A data access by nonprivileged software using a restricted (privileged or hyperprivileged) ASI,

that is, an ASI in the range 0016 to 7F16 (inclusively)
■ A data access by nonprivileged or privileged software using a hyperprivileged ASI, that is, an

ASI in the range 3016 to 7F16 (inclusively)
■ Execution by nonprivileged software of an instruction with a privileged operand value
■ An attempt to read the TICK register by nonprivileged software when nonprivileged access to

TICK is disabled (TICK.npt = 1).
■ An attempt to execute a nonprivileged instruction with an operand value requiring more

privilege than available in the current privilege mode.

■ privileged_opcode [TT = 01116] (Precise) — An attempt was made to execute a privileged
instruction while in nonprivileged mode (PSTATE.priv = 0).

■ resumable_error [TT = 07E16] (Disrupting) — There is a valid entry in the resumable error queue.
This interrupt is used to inform privileged software that an error report has been appended to the
resumable error queue, and the current instruction stream is in a consistent state so that execution
can be resumed after the error is handled.

■ spill_n_normal [TT = 08016–09F16] (Precise)
■ spill_n_other [TT = 0A016–0BF16] (Precise)

SPARC V9
Compatibility

Note

The instruction_access_exception exception from SPARC V9 has
been replaced by more specific exceptions, such as
IAE_privilege_violation and IAE_unauth_access.

Implementation
Note

interrupt_level_14 can be caused by (1) setting SOFTINT{14}
to 1, (2) occurrence of a "TICK match", or (3) occurrence of a
"STICK match" (see SOFTINTP Register (ASRs 20, 21, 22) on
page 54).
CHAPTER 12 • Traps 361

A SAVE or FLUSHW instruction has determined that the contents of a register window must be
saved to memory.

■ STDF_mem_address_not_aligned [TT = 03616] (Precise) — An attempt was made to execute an
STDF or STDFA instruction and the effective address was not doubleword aligned. (impl. dep. #110)

■ tag_overflow [TT = 02316] (Precise) (deprecated) — A TADDccTV or TSUBccTV instruction
was executed, and either 32-bit arithmetic overflow occurred or at least one of the tag bits of the
operands was nonzero.

■ trap_instruction [TT = 10016–17F16] (Precise) — A Tcc instruction was executed and the trap
condition evaluated to TRUE, and the software trap number operand of the instruction is 127 or
less.

■ unimplemented_LDTW [TT = 01216] (Precise) — An attempt was made to execute an LDTW
instruction that is not implemented in hardware on this implementation (impl. dep. #107-V9).

■ unimplemented_STTW [TT = 01316] (Precise) — An attempt was made to execute an STTW
instruction that is not implemented in hardware on this implementation (impl. dep. #108-V9).

■ VA_watchpoint [TT = 06216] (Precise) — The virtual processor has detected an attempt to access
(load from or store to) a virtual address specified by the VA Watchpoint register, while VA
watchpoints are enabled and the address is being translated from a virtual address to a hardware
address. If the load or store address is not being translated from a virtual address (for example, the
address is being treated as a real address), then a VA_watchpoint exception will not be generated
even if a match is detected between the VA Watchpoint register and a load or store address.

12.7.1 SPARC V9 Traps Not Used in UltraSPARC Architecture 2007
The following traps were optional in the SPARC V9 specification and are not used in UltraSPARC
Architecture 2007:

■ implementation_dependent_exception_n [TT = 07716 - 07B16] This range of implementation-
dependent exceptions has been replaced by a set of architecturally-defined exceptions. (impl.dep.
#35-V8-Cs20)

■ LDQF_mem_address_not_aligned [TT = 03816] (Precise) — An attempt was made to execute an
LDQF instruction and the effective address was word aligned but not quadword aligned. Use of
this exception is implementation dependent (impl. dep. #111-V9-Cs10). A separate trap entry for
this exception supports fast software emulation of the LDQF instruction when the effective address
is word aligned but not quadword aligned. See Load Floating-Point Register on page 181. (impl. dep.
#111)

■ STQF_mem_address_not_aligned [TT = 03916] (Precise) — An attempt was made to execute an
STQF instruction and the effective address was word aligned but not quadword aligned. Use of
this exception is implementation dependent (impl. dep. #112-V9-Cs10). A separate trap entry for
the exception supports fast software emulation of the STQF instruction when the effective address
is word aligned but not quadword aligned. See Store Floating-Point on page 253. (impl. dep. #112)

12.8 Register Window Traps
Window traps are used to manage overflow and underflow conditions in the register windows,
support clean windows, and implement the FLUSHW instruction.

C2
362 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

12.8.1 Window Spill and Fill Traps
A window overflow occurs when a SAVE instruction is executed and the next register window is
occupied (CANSAVE = 0). An overflow causes a spill trap that allows privileged software to save the
occupied register window in memory, thereby making it available for use.

A window underflow occurs when a RESTORE instruction is executed and the previous register
window is not valid (CANRESTORE = 0). An underflow causes a fill trap that allows privileged
software to load the registers from memory.

12.8.2 clean_window Trap
The virtual processor provides the clean_window trap so that system software can create a secure
environment in which it is guaranteed that data cannot inadvertently leak through register windows
from one software program to another.

A clean register window is one in which all of the registers, including uninitialized registers, contain
either 0 or data assigned by software executing in the address space to which the window belongs. A
clean window cannot contain register values from another process, that is, from software operating in
a different address space.

Supervisor software specifies the number of windows that are clean with respect to the current
address space in the CLEANWIN register. This number includes register windows that can be restored
(the value in the CANRESTORE register) and the register windows following CWP that can be used
without cleaning. Therefore, the number of clean windows available to be used by the SAVE
instruction is

CLEANWIN − CANRESTORE

The SAVE instruction causes a clean_window exception if this value is 0. This behavior allows
supervisor software to clean a register window before it is accessed by a user.

12.8.3 Vectoring of Fill/Spill Traps
To make handling of fill and spill traps efficient, the SPARC V9 architecture provides multiple trap
vectors for the fill and spill traps. These trap vectors are determined as follows:

■ Supervisor software can mark a set of contiguous register windows as belonging to an address
space different from the current one. The count of these register windows is kept in the OTHERWIN
register. A separate set of trap vectors (fill_n_other and spill_n_other) is provided for spill and fill
traps for these register windows (as opposed to register windows that belong to the current
address space).

■ Supervisor software can specify the trap vectors for fill and spill traps by presetting the fields in the
WSTATE register. This register contains two subfields, each three bits wide. The WSTATE.normal
field determines one of eight spill (fill) vectors to be used when the register window to be spilled
(filled) belongs to the current address space (OTHERWIN = 0). If the OTHERWIN register is
nonzero, the WSTATE.other field selects one of eight fill_n_other (spill_n_other) trap vectors.

See Trap-Table Entry Addresses on page 348, for more details on how the trap address is determined.

12.8.4 CWP on Window Traps
On a window trap, the CWP is set to point to the window that must be accessed by the trap handler,
as follows.

Note All arithmetic on CWP is done modulo N_REG_WINDOWS.
CHAPTER 12 • Traps 363

■ If the spill trap occurs because of a SAVE instruction (when CANSAVE = 0), there is an overlap
window between the CWP and the next register window to be spilled:

CWP ← (CWP + 2) mod N_REG_WINDOWS

If the spill trap occurs because of a FLUSHW instruction, there can be unused windows
(CANSAVE) in addition to the overlap window between the CWP and the window to be spilled:

CWP ← (CWP + CANSAVE + 2) mod N_REG_WINDOWS

■ On a fill trap, the window preceding CWP must be filled:

CWP ← (CWP – 1) mod N_REG_WINDOWS

■ On a clean_window trap, the window following CWP must be cleaned. Then

CWP ← (CWP + 1) mod N_REG_WINDOWS

12.8.5 Window Trap Handlers
The trap handlers for fill, spill, and clean_window traps must handle the trap appropriately and
return, by using the RETRY instruction, to reexecute the trapped instruction. The state of the register
windows must be updated by the trap handler, and the relationships among CLEANWIN, CANSAVE,
CANRESTORE, and OTHERWIN must remain consistent. Follow these recommendations:

■ A spill trap handler should execute the SAVED instruction for each window that it spills.

■ A fill trap handler should execute the RESTORED instruction for each window that it fills.

■ A clean_window trap handler should increment CLEANWIN for each window that it cleans:

CLEANWIN ← (CLEANWIN + 1)

Implementation
Note

All spill traps can set CWP by using the calculation:
CWP ← (CWP + CANSAVE + 2) mod N_REG_WINDOWS

since CANSAVE is 0 whenever a trap occurs because of a SAVE
instruction.
364 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

CHAPTER 13

Interrupt Handling

Virtual processors and I/O devices can interrupt a selected virtual processor by assembling and
sending an interrupt packet. The contents of the interrupt packet are defined by software convention.
Thus, hardware interrupts and cross-calls can have the same hardware mechanism for interrupt
delivery and share a common software interface for processing.

The interrupt mechanism is a two-step process:

■ sending of an interrupt request (through an implemenation-specific hardware mechanism) to an
interrupt queue of the target virtual processor

■ receipt of the interrupt request on the target virtual processor and scheduling software handling of
the interrupt request

Privileged software running on a virtual processor can schedule interrupts to itself (typically, to
process queued interrupts at a later time) by setting bits in the privileged SOFTINT register (see
Software Interrupt Register (softint) on page 366).

In the following sections, the following aspects of interrupt handling are described:

■ Interrupt Packets on page 365.

■ Software Interrupt Register (softint) on page 366.

■ Interrupt Queues on page 366.

■ Interrupt Traps on page 368.

13.1 Interrupt Packets
Each interrupt is accompanied by data, referred to as an “interrupt packet”. An interrupt packet is 64
bytes long, consisting of eight 64-bit doublewords. The contents of these data are defined by software
convention.

Programming
Note

An interrupt request packet is sent by an interrupt source and is
received by the specified target in an interrupt queue. Upon
receipt of an interrupt request packet, a special trap is invoked
on the target virtual processor. The trap handler software
invoked in the target virtual processor then schedules itself to
later handle the interrupt request by posting an interrupt in the
SOFTINT register at the desired interrupt level.
365

13.2 Software Interrupt Register (SOFTINT)
To schedule interrupt vectors for processing at a later time, privileged software running on a virtual
processor can send itself signals (interrupts) by setting bits in the privileged SOFTINT register.

See softintP Register (ASRs 20, 21, 22) on page 54 for a detailed description of the SOFTINT register.

13.2.1 Setting the Software Interrupt Register
SOFTINT{n} is set to 1 by executing a WRSOFTINT_SETP instruction (WRasr using ASR 20) with a ‘1’
in bit n of the value written (bit n corresponds to interrupt level n). The value written to the
SOFTINT_SET register is effectively ored into the SOFTINT register. This approach allows the
interrupt handler to set one or more bits in the SOFTINT register with a single instruction.

See softint_setP Pseudo-Register (ASR 20) on page 55 for a detailed description of the SOFTINT_SET
pseudo-register.

13.2.2 Clearing the Software Interrupt Register
When all interrupts scheduled for service at level n have been serviced, kernel software executes a
WRSOFTINT_CLRP instruction (WRasr using ASR 21) with a ‘1’ in bit n of the value written, to clear
interrupt level n (impl. dep. 34-V8a). The complement of the value written to the SOFTINT_CLR
register is effectively anded with the SOFTINT register. This approach allows the interrupt handler to
clear one or more bits in the SOFTINT register with a single instruction.

See softint_clrP Pseudo-Register (ASR 21) on page 56 for a detailed description of the SOFTINT_CLR
pseudo-register.

13.3 Interrupt Queues
Interrupts are indicated to privileged mode via circular interrupt queues, each with an associated trap
vector. There are 4 interrupt queues, one for each of the following types of interrupts:

■ Device mondos1

Programming
Note

The SOFTINT register (ASR 1616) is used for communication
from nucleus (privileged, TL > 0) software to privileged software
running with TL = 0. Interrupt packets and other service
requests can be scheduled in queues or mailboxes in memory by
the nucleus, which then sets SOFTINT{n} to cause an interrupt
at level n.

Programming
Note

The SOFTINT mechanism is independent of the “mondo”
interrupt mechanism mentioned in Interrupt Queues on page 366.
The two mechanisms do not interact.

Programming
Note

To avoid a race condition between operating system kernel
software clearing an interrupt bit and nucleus software setting
it, software should (again) examine the queue for any valid
entries after clearing the interrupt bit.
366 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

■ CPU mondos

■ Resumable errors

■ Nonresumable errors

New interrupt entries are appended to the tail of a queue and privileged software reads them from
the head of the queue.

13.3.1 Interrupt Queue Registers
The active contents of each queue are delineated by a 64-bit head register and a 64-bit tail register.

The interrupt queue registers are accessed through ASI ASI_QUEUE (2516). The ASI and address
assignments for the interrupt queue registers are provided in TABLE 13-1.

The status of each queue is reflected by its head and tail registers:

■ A Queue Head Register indicates the location of the oldest interrupt packet in the queue

■ A Queue Tail Register indicates the location where the next interrupt packet will be stored

An event that results in the insertion of a queue entry causes the tail register for that queue to refer to
the following entry in the circular queue. Privileged code is responsible for updating the head
register appropriately when it removes an entry from the queue.

A queue is empty when the contents of its head and tail registers are equal. A queue is full when the
insertion of one more entry would cause the contents of its head and tail registers to become equal.

1. “mondo” is a historical term, referring to the name of the original UltraSPARC 1 bus transaction in which these interrupts were
introduced

Programming
Note

Software conventions for cooperative management of interrupt
queues and the format of queue entries are specified in the
separate Hypervisor API Specification document.

TABLE 13-1 Interrupt Queue Register ASI Assignments

Register
ASI

Virtual
Address

Privileged
mode

Access

CPU Mondo Queue Head 2516 (ASI_QUEUE) 3C016 RW

CPU Mondo Queue Tail 2516 (ASI_QUEUE) 3C816 R or RW†

Device Mondo Queue Head 2516 (ASI_QUEUE) 3D016 RW

Device Mondo Queue Tail 2516 (ASI_QUEUE) 3D816 R or RW†

Resumable Error Queue Head 2516 (ASI_QUEUE) 3E016 RW

Resumable Error Queue Tail 2516 (ASI_QUEUE) 3E816 R or RW†

Nonresumable Error Queue Head 2516 (ASI_QUEUE) 3F016 RW

Nonresumable Error Queue Tail 2516 (ASI_QUEUE) 3F816 R or RW†

† see IMPL. DEP.#422-S10
CHAPTER 13 • Interrupt Handling 367

13.4 Interrupt Traps
The following interrupt traps are defined in the UltraSPARC Architecture 2007: cpu_mondo,
dev_mondo, resumable_error, and nonresumable_error. See Chapter 12, Traps, for details.

UltraSPARC Architecture 2007 also supports the interrupt_level_n traps defined in the SPARC V9
specification.pt trans

How interrupts are delivered is implementation-specific; see the relevant implementation-specific
Supplement to this specification for details.

Programming
Note

By current convention, the format of a Queue Head or Tail
register is as follows:

Under this convention:

■ updating a Queue Head register involves incrementing it by
64 (size of a queue entry, in bytes)

■ Queue Head and Tail registers are updated using modular
arithmetic (modulo the size of the circular queue, in bytes)

■ bits 5:0 always read as zeros, and attempts to write to them are
ignored

■ the maximum queue offset for an interrupt queue is
implementation dependent

■ behavior when a queue register is written with a value larger
than the maximum queue offset (queue length minus the
length of the last entry) is undefined

This is merely a convention and is subject to change.

63 6 5 0

 head/tail offset 000000
368 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

CHAPTER 14

Memory Management

An UltraSPARC Architecture Memory Management Unit (MMU) conforms to the requirements set
forth in the SPARC V9 Architecture Manual. In particular, it supports a 64-bit virtual address space,
simplified protection encoding, and multiple page sizes.

IMPL. DEP. # 451-S20: The width of the virtual address supported is implementation dependent. If
fewer than 64 bits are supported, the unsupported bits must have the same value as the most
significant supported bit. For example, if the model supports 48 virtual address bits, then bits 63:48
must have the same value as bit 47.

This appendix describes the Memory Management Unit, as observed by privileged software, in these
sections:

■ Virtual Address Translation on page 369.
■ Context ID on page 372.
■ TSB Translation Table Entry (TTE) on page 373.
■ Translation Storage Buffer (TSB) on page 376.

14.1 Virtual Address Translation
The MMUs may support up to eight page sizes: 8 KBytes, 64 KBytes, 512 KBytes, 4 MBytes, 32 MBytes,
256 MBytes, 2 GBytes, and 16 GBytes. 8-KByte, 64-KByte and 4- MByte page sizes must be supported;
the other page sizes are optional.

IMPL. DEP. #310-U4: Which, if any, of the following optional page sizes are supported by the MMU
in an UltraSPARC Architecture 2007 implementation is implementation dependent: 512 KBytes, 32
MBytes, 256 MBytes, 2 GBytes, and 16 GBytes.

An UltraSPARC Architecture MMU supports a 64-bit virtual address (VA) space.

IMPL. DEP. #452-S20: The number of real address (RA) bits supported is implementation dependent.
A minimum of 40 bits and maximum of 56 bits can be provided for real addresses (RA). See
implementation-specific documentation for details.

In each translation, the virtual page number is replaced by a physical page number, which is
concatenated with the page offset to form the full hardware address, as illustrated in FIGURE 14-1 and
FIGURE 14-2.

IMPL. DEP. #453-S20: It is implementation dependent whether there is a unified MMU (UMMU) or a
separate IMMU (for instruction accesses) and DMMU (for data accesses). The UltraSPARC
Architecture supports both configurations.
369

FIGURE 14-1 Virtual-to--Real Address Translation for 8-Kbyte, 64-Kbyte, 512-Kbyte, and 4-Mbyte Page Sizes

0

0

12

1213

1363

55

8-Kbyte Virtual Page Number

8-Kbyte Real Page Number (RPN)

Page Offset

Page Offset

0

0

15

1516

1663

55

64-Kbyte Virtual Page Number

64-Kbyte RPN

Page Offset

Page Offset

0181963

512-Kbyte Virtual Page Number Page Offset

VA

RA

RA

VA

VA

8 Kbyte

64 Kbyte

512 Kbyte

0

0

21

2122

2263

55

4-Mbyte Virtual Page Number

4-Mbyte RPN

Page Offset

Page Offset RA

VA

4 Mbyte

MMU

MMU

MMU

MMU

0181955

512-Kbyte RPN Page Offset RA
370 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

FIGURE 14-2 Virtual-Real Address Translation for 32-Mbyte, 256-Mbyte, 2-Gbyte, and 16-Gbyte Page Sizes

Privileged software manages virtual-to-real address translations.

Privileged software maintains translation information in an arbitrary data structure, called the software
translation table.

The Translation Storage Buffer (TSB) is an array of Translation Table Entries which serves as a cache of
the software translation table, used to quickly reload the TLB in the event of a TLB miss.

A conceptual view of privileged-mode memory management the MMU is shown in FIGURE 14-3. The
software translation table is likely to be large and complex. The translation storage buffer (TSB),
which acts like a direct-mapped cache, is the interface between the software translation table and the
underlying memory management hardware. The TSB can be shared by all processes running on a
virtual processor or can be process specific; the hardware does not require any particular scheme.
There can be several TSBs.

0

0

63

55

32-Mbyte RPN

063

0

0

63

55

VA

RA

RA

VA

VA

32 Mbyte

256 Mbyte

2 Gbyte

063
VA

16 Gbyte

32-Mbyte Virtual Page Number

MMU 25 24

Page Offset

25 24

Page Offset

MMU

256-Mbyte Virtual Page Number Page Offset

28 27

2-Gbyte Virtual Page Number

MMU

2-Gbyte RPN

31 30

31 30

Page Offset

Page Offset

16-Gbyte Virtual Page Number Page Offset

MMU 34 33

055
RA

16-Gbyte RPN

34 33

Page Offset

055
RA

256-Mbyte RPN Page Offset

28 27
CHAPTER 14 • Memory Management 371

FIGURE 14-3 Conceptual View of the MMU

14.2 Context ID
The MMU supports three contexts:

■ Primary Context
■ Secondary Context
■ Nucleus Context (which has a fixed Context ID value of zero)

The context used for each access depends on the type of access, the ASI used, the current privilege
mode, and the current trap level (TL). Details are provided in the following paragraphs and in
TABLE 14-1.

For instruction fetch accesses, in nonprivileged and privileged mode when TL = 0 the Primary Context
is used; when TL > 0, the Nucleus Context is used.

For data accesses using implicit ASIs, in nonprivileged and privileged mode when TL = 0 the Primary
Context is used; when TL > 0, the Nucleus Context is used.

For data accesses using explicit ASIs:

■ In nonprivileged mode the Primary Context is used for the ASI_PRIMARY* ASIs, and the
Secondary Context is used for the ASI_SECONDARY* ASIs.

■ In privileged mode, the Primary Context is used for the ASI_PRIMARY* and the
ASI_AS_IF_USER_PRIMARY* ASIs, the Secondary Context is used for the ASI_SECONDARY* and
the ASI_AS_IF_USER_SECONDARY* ASIs, and the Nucleus Context is used for ASI_NUCLEUS*
ASIs.

Software
Translation

Table

Operating SystemMemory

← Managed by privileged →
mode software

Buffer

Translation

 RA ← VA

Storage

(TSB)

Data Structure
372 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

The above paragraphs are summarized in TABLE 14-1.

IMPL. DEP. #___: The UltraSPARC Architecture defines a 16-bit context ID. The size of the context ID
field is implementation dependent. At least 13 bits must be implemented. If fewer than 16 bits are
supported, the unused high order bits are ignored on writes to the context ID, and read as zeros.

14.3 TSB Translation Table Entry (TTE)
The Translation Storage Buffer (TSB) Translation Table Entry (TTE) is the equivalent of a page table
entry as defined in the Sun4v Architecture Specification; it holds information for a single page mapping.
The TTE is divided into two 64-bit words representing the tag and data of the translation. Just as in a
hardware cache, the tag is used to determine whether there is a hit in the TSB; if there is a hit, the data
are used by either the hardware tablewalker or privileged software.

The TTE configuration is illustrated in FIGURE 14-4 and described in TABLE 14-2.

TABLE 14-1 Context Usage

Access
Type Privilege Mode

Under What Conditions each Context is Used

Primary Context Secondary Context Nucleus Context

Instruction
Access

Nonprivileged
or Privileged

(when TL = 0) † (when TL > 0)

Data
access
using

implicit
ASI

Nonprivileged
or Privileged

(when TL = 0) † (when TL > 0)

Data
access
using

explicit ASI

Nonprivileged ASI_PRIMARY* ASI_SECONDARY* †

Privileged ASI_PRIMARY*
ASI_AS_IF_USER_PR

IMARY*

ASI_SECONDARY*
ASI_AS_IF_USER_SE

CONDARY*

ASI_NUCLEUS*

 † no context is listed becuase this case cannot occur

Note The UltraSPARC Architecture provides the capability of private and
shared contexts. Multiple primary and secondary context IDs, which
allow different processes to share TTEs, are defined. See Context ID
Registers on page 380 for details.

Programming
Note

Privileged software (operating sytems) intended to be portable
across all UltraSPARC Architecture implementations should
always ensure that, for memory accesses made in privileged
mode, private and shared context IDs are set to the same value.
The exception to this is privileged-mode accesses using the
ASI_AS_IF_USER* ASIs, which remain portable even if the
private and shared context IDs differ.
CHAPTER 14 • Memory Management 373

FIGURE 14-4 Translation Storage Buffer (TSB) Translation Table Entry (TTE)

TABLE 14-2 TSB TTE Bit Description (1 of 3)

Bit Field Description

Tag– 63:48 context_id The 16-bit context ID associated with the TTE.

Tag– 47:42 — These bits must be zero for a tag match.

Tag– 41:0 va Bits 63:22 of the Virtual Address (the virtual page number). Bits 21:13 of the VA
are not maintained because these bits index the minimally sized, direct-mapped
TSBs.

Data – 63 v Valid. If v = 1, then the remaining fields of the TTE are meaningful, and the TTE
can be used; otherwise, the TTE cannot be used to translate a virtual address.

Data – 62 nfo No Fault Only. If nfo = 1, loads with ASI_PRIMARY_NO_FAULT{_LITTLE} or
ASI_SECONDARY_NO_FAULT{_LITTLE} are translated. Any other data access
with the D/UMMU TTE.nfo = 1 will trap with a DAE_nfo_page exception. An
instruction fetch access to a page with the IMMU TTE.nfo = 1 results in an
IAE_nfo_page exception.

Data – 61:56 soft2 Software-defined field, provided for use by the operating system. The soft2 field
can be written with any value in the TSB. Hardware is not required to maintain
this field in any TLB (or uTLB), so when it is read from the TLB (uTLB), it may
read as zero.

Data – 55:13 taddr Target address; the underlying address (Real Address {55:13}) to which the MMU
will map the page.
IMPL. DEP. # 238-U3: When page offset bits for larger page sizes are stored in
the TLB, it is implementation dependent whether the data returned from those
fields by a Data Access read is zero or the data previously written to them.

nfo

3 01163

epp

5 46 10 7 61 5662 8

v w

9

cv

 55 13 12

063 41424748

TTE

TTE

Tag

Data
soft szcpeiesoft2

context_id 000000 va

taddr

Programming
Note

The explicit Valid bit is (intentionally) redundant with the
software convention of encoding an invalid TTE with an
unused context ID. The encoding of the context_id field is
necessary to cause a failure in the TTE tag comparison,
while the explicit Valid bit in the TTE data simplifies the
TTE miss handler.
374 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

Data – 12 ie Invert Endianness. If ie = 1 for a page, accesses to the page are processed with
inverse endianness from that specified by the instruction (big for little, little for
big). See page 377 for details.

IMPL. DEP. #__: The ie bit in the IMMU is ignored during ITLB operation. It is
implementation dependent if it is implemented and how it is read and written.

Data – 11 e Side effect. If the side-effect bit is set to 1, loads with ASI_PRIMARY_NO_FAULT,
ASI_SECONDARY_NO_FAULT, and their *_LITTLE variations will trap for
addresses within the page, noncacheable memory accesses other than block
loads and stores are strongly ordered against other e-bit accesses, and
noncacheable stores are not merged. This bit should be set to 1 for pages that
map I/O devices having side effects. Note, also, that the e bit causes the prefetch
instruction to be treated as a nop, but does not prevent normal (hardware)
instruction prefetching.
Note 1: The e bit does not force a noncacheable access. It is expected, but not
required, that the cp and cv bits will be set to 0 when the e bit is set to 1. If both
the cp and cv bits are set to 1 along with the e bit, the result is undefined.
Note 2: The e bit and the nfo bit are mutually exclusive; both bits should never
be set to 1 in any TTE.

Data – 10
Data – 9

cp,
cv

The cacheable-in-physically-indexed-cache bit and cacheable-in-virtually-
indexed-cache bit determine the cacheability of the page. Given an
implementation with a physically indexed instruction cache, a virtually indexed
data cache, and a physically indexed unified second-level cache, the following
table illustrates how the cp and cv bits could be used:

The MMU does not operate on the cacheable bits but merely passes them
through to the cache subsystem. The cv bit in the IMMU is read as zero and
ignored when written.
IMPL. DEP. #226-U3: Whether the cv bit is supported in hardware is
implementation dependent in the UltraSPARC Architecture. The cv bit in
hardware should be provided if the implementation has virtually indexed
caches, and the implementation should support hardware unaliasing for the
caches.

TABLE 14-2 TSB TTE Bit Description (2 of 3)

Bit Field Description

Programming
Notes

(1) The primary purpose of this bit is to aid in the mapping
of I/O devices (through noncacheable memory addresses)
whose registers contain and expect data in little-endian
format. Setting TTE.ie = 1 allows those registers to be
accessed correctly by big-endian programs using ordinary
loads and stores, such as those typically issued by
compilers; otherwise little-endian loads and stores would
have be issued by hand-written assembler code.

(2) This bit can also be used when mapping cacheable
memory. However, cacheable accesses to pages marked
with TTE.ie = 1 may be slower than accesses to the page
with TTE.ie = 0. For example, an access to a cacheable
page with TTE.ie = 1 may perform as if there was a miss in
the first-level data cache.

Implementation
Note

Some implementations may require cacheable accesses to
pages tagged with TTE.ie = 1 to bypass the data cache,
adding latency to those accesses.

Cacheable
(cp:cv)

Meaning of TTE when placed in:

I-TLB (Instruction Cache PA-indexed) D-TLB (Data Cache VA-indexed)

00, 01 Noncacheable Noncacheable
10 Cacheable L2-cache, I-cache Cacheable L2-cache
11 Cacheable L2-cache, I-cache Cacheable L2-cache, D-cache
CHAPTER 14 • Memory Management 375

14.4 Translation Storage Buffer (TSB)
The Translation Storage Buffer (TSB) is an array of Translation Table Entries managed entirely by
privileged software. It serves as a cache of the software translation table, used to quickly reload the
TLB in the event of a TLB miss.

14.4.1 TSB Indexing Support
Hardware TSB indexing support via TSB pointers should be provided for the TTEs.

Data – 8 p Privileged. If p = 1, only privileged software can access the page mapped by the
TTE. If p = 1 and an access to the page is attempted by nonprivileged mode
(PSTATE.priv = 0), then the MMU signals anIAE_privilege_violation exception
orDAE_privilege_violation exception.

Data – 7 ep Executable. If ep = 1, the page mapped by this TTE has execute permission
granted. Instructions may be fetched and executed from this page. If ep = 0, an
attempt to execute an instruction from this page results in an
IAE_unauth_access exception.
IMPL. DEP. #___: An UltraSPARC Architecture ITLB implementation may elect
to not implement the ep bit, and instead present the IAE_unauth_access
exception if there is an attempt to load an ITLB entry with ep = 0 during a
hardware tablewalk. In this case, the MMU miss trap handler software must
also detect the ep = 0 case when the IMMU miss is handled by software.

Data – 6 w IMPL. DEP. #Writable. If w = 1, the page mapped by this TTE has write
permission granted. Otherwise, write permission is not granted

Data – 5:4 soft Software-defined field, provided for use by the operating system. The soft field
can be written with any value in the TSB. Hardware is not required to maintain
this field in any TLB (or uTLB), so when it is read from the TLB (or uTLB), it may
read as zero.

Data – 3:0 sz The page size of this entry, encoded as shown below.
sz Page Size
0000 8 Kbyte
0001 64 Kbyte
0010 512 Kbyte
0011 4 Mbyte
0100 32 Mbyte
0101 256 Mbyte
0110 2 Gbyte
0111 16 Gbyte
1000-1111 Reserved

TABLE 14-2 TSB TTE Bit Description (3 of 3)

Bit Field Description
376 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

14.4.2 TSB Cacheability and Consistency
The TSB exists as a data structure in memory and therefore can be cached. Indeed, the speed of the
TLB miss handler relies on the TSB accesses hitting the level-2 cache at a substantial rate. This policy
may result in some conflicts with normal instruction and data accesses, but the dynamic sharing of the
level-2 cache resource will provide a better overall solution than that provided by a fixed partitioning.

14.4.3 TSB Organization
The TSB is arranged as a direct-mapped cache of TTEs.

In each case, n least significant bits of the respective virtual page number are used as the offset from
the TSB base address, with n equal to log base 2 of the number of TTEs in the TSB.

The TSB organization is illustrated in FIGURE 14-5. The constant n can range from 512 to an
implementation-dependent number.

FIGURE 14-5 TSB Organization

IMPL. DEP. #227-U3: The maximum number of entries in a TSB is implementation-dependent in the
UltraSPARC Architecture (to a maximum of 16 million).

14.5 ASI Value, Context ID, and Endianness Selection
for Translation
The selection of the context ID for a translation is the result of a two-step process:

1. The ASI is determined (conceptually by the Integer Unit) from the instruction, ASI register, trap
level, privilege level (PSTATE.priv) and the virtual processor endian mode (PSTATE.cle).

2. The context ID is determined directly from the ASI. The context ID value is read by the context ID
selected by the ASI.

The ASI value and endianness (little or big) are determined, according to TABLE 14-3 through
TABLE 14-4.

When using the Primary Context ID, the values stored in the Primary Context IDs are used by the
Data (or Unified) MMU. The Secondary Context ID is never used for instruction accesses.

Programming
Note

When software updates the TSB, it is responsible for ensuring
that the store(s) used to perform the update are made visible in
the memory system (for access by subsequent loads, stores, and
load-stores) by use of an appropriate MEMBAR instruction.

Making a TSB update visible to fetches of instructions
subsequent to the store(s) that updated the TSB may require
execution of instructions such as FLUSH, DONE, or RETRY, in
addition to the MEMBAR.

Tag#1 (8 bytes) Data#1 (8 bytes)

Tag#2n (8 bytes) Data#2n (8 bytes)

2n Lines in TSB
:
:

:
:

CHAPTER 14 • Memory Management 377

The endianness of a data access is specified by three conditions:

■ The ASI specified in the opcode or ASI register

■ The PSTATE current little-endian bit (cle)

■ The TTE “invert endianness” bit (ie). The TTEbit inverts the endianness that is otherwise specified
for the access.

Note The D/UMMU ie bit inverts the endianness for all accesses,
including alternate space loads, stores, and atomic load-stores
that specify an ASI. For example,

ldxa [%g1]#ASI_PRIMARY_LITTLE
will be big-endian if the ie bit = 1.

Accesses to ASIs which are not translated by the MMU
(nontranslating ASIs) are not affected by the TTE.ie bit.

TABLE 14-3 ASI Mapping for Instruction Access

Mode TL PSTATE.cle Endianness ASI Used
Resulting

Address Type

Nonprivileged 0 — Big ASI_PRIMARY VA

Privileged
0 — Big ASI_PRIMARY VA

1–2 — Big ASI_NUCLEUS VA

TABLE 14-4 ASI Mapping for Data Accesses (1 of 2)

Access Type

Privi-
lege

Mode TL PSTATE.cle

TTE
.ie Endian-

ness ASI Used

Resulting
Address

Type

Load,
Store,
Atomic Load-Store, or
Prefetch
with implicit ASI

NP

01 0
0 Big

ASI_PRIMARY VA
1 Little

01 1
0 Little

ASI_PRIMARY_LITTLE VA
1 Big

P

0 0
0 Big

ASI_PRIMARY VA
1 Little

0 1
0 Little

ASI_PRIMARY_LITTLE VA
1 Big

1-21 0
0 Big

ASI_NUCLEUS VA
1 Little

1-21 1
0 Little

ASI_NUCLEUS_LITTLE VA
1 Big

Load,
Store,
Atomic Load-Store, or
Prefetch alternate
with ASI name not

NP 01 any
0 Big2

Explicitly specified in
instruction

VA
1 Little1

P

0-21 any
0 Big1

Explicitly specified in
instruction

VA
1 Little1

0-21 any
0 Big

ASI_*REAL* ASI RA
1 Little

0-21 any any Big
Nontranslating ASIs

—

378 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009
ending in _LITTLE

The Context ID used by the data and instruction MMUs is determined according to TABLE 14-5. The
Context ID selection is not affected by the endianness of the access. For a comprehensive list of ASI
values in the ASI map, see Chapter 10, Address Space Identifiers (ASIs).

14.6 SPARC V9 “MMU Attributes”
The UltraSPARC Architecture MMU complies completely with the SPARC V9 “MMU Attributes” as
described in Appendix F.3.2.

With regard to Read, Write and Execute Permissions, SPARC V9 says “An MMU may allow zero or
more of read, write and execute permissions, on a per-mapping basis. Read permission is necessary
for data read accesses and atomic accesses. Write permission is necessary for data write accesses and
atomic accesses. Execute permission is necessary for instruction accesses. At a minimum, an MMU
must allow for ‘all permissions’, ‘no permissions’, and ‘no write permission’; optionally, it can provide
‘execute only’ and ‘write only’, or any combination of ‘read/write/execute’ permissions.”

Load,
Store,
Atomic Load-Store, or
Prefetch alternate
with ASI name ending
in _LITTLE

NP 01 any
0 Little Explicitly specified in

instruction
VA

1 Big

P

0-21 any
0 Little Explicitly specified in

instruction)
VA

1 Big

0-21 any
0 Little

ASI_*REAL* ASI RA
1 Big

1. MAXPTL = 2 for UltraSPARC Architecture 2007 processors. Privilege mode operation is valid only for TL = 0, 1 or 2. Nonprivileged mode
operation is valid only for TL = 0. See section 5.6.7 for details.

2. Accesses to nontranslating ASIs are always made in big endian mode, regardless of the setting of TTE.ie. See ASI Values on page 321 for
information about nontranslating ASIs.

TABLE 14-5 IMMU, DMMU and UMMU Context ID Usage

ASI Value Context ID Register

ASI_*NUCLEUS* (any ASI name containing the string “NUCLEUS”) Nucleus (000016, hard-wired)

ASI_*PRIMARY* (any ASI name containing the string “PRIMARY”) All Primary Context IDs

ASI_*SECONDARY* (any ASI name containing the string “SECONDARY”) All Secondary Context IDs

All other ASI values (Not applicable; no translation)

TABLE 14-4 ASI Mapping for Data Accesses (2 of 2)

Access Type

Privi-
lege

Mode TL PSTATE.cle

TTE
.ie Endian-

ness ASI Used

Resulting
Address

Type
CHAPTER 14 • Memory Management 379

TABLE 14-6 shows how various protection modes can be achieved, if necessary, through the presence or
absence of a translation in the instruction or data MMU. Note that this behavior requires specialized
TLB-miss handler code to guarantee these conditions.

14.6.1 Accessing MMU Registers
All internal MMU registers can be accessed directly by the virtual processor through defined ASIs,
using LDXA and STXA instructions. UltraSPARC Architecture-compatible processors do not require a
MEMBAR #Sync, FLUSH, DONE, or RETRY instruction after a store to an MMU register for proper
operation.

TABLE 14-7 lists the MMU registers and provides references to sections with more details.

14.6.2 Context ID Registers
The MMU architecture supports multiple primary and secondary context IDs. The address assignment
of the context IDs is shown in TABLE 14-8.

TABLE 14-6 MMU SPARC V9 Appendix F.3.2 Protection Mode Compliance

Condition

Resultant Protection ModeTTE in
DMMU

TTE in
IMMU

TTE in
UMMU ep Bit

Writable
Attribute Bit

Yes No Yes 0 0 Read-only1

1. These protection modes are optional, according to SPARC V9.

No Yes N/A 1 N/A Execute-only1

Yes No Yes 0 1 Read/Write1

Yes Yes Yes 1 0 Read-only/Execute

Yes Yes Yes 1 1 Read/Write/Execute

No No No N/A N/A No Access

TABLE 14-7 MMU Internal Registers and ASI Operations

IMMU ASI
D/UMMU

ASI
VA{63:0} Access Register or Operation Name

2116 816 RW Primary Context ID 0 register

— 2116 1016 RW Secondary Context ID 0 register

2116 10816 RW Primary Context ID 1 register

— 2116 11016 RW Secondary Context ID 1 register

TABLE 14-8 Context ID ASI Assignments

Register ASI Virtual Address

Primary Context ID 0 2116 00816

Primary Context ID 1 2116 10816

Secondary Context ID 0 2116 01016

Secondary Context ID 1 2116 11016
380 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

UltraSPARC Architecture processors must prevent errors or data corruption due to multiple valid
translations for a given virtual address using different contexts. TLBs may need to detect this scenario
as a multiple tag hit error and cause an exception for such an access.

The Primary Context ID register is illustrated in
FIGURE 14-6, where pcontext is the context ID for the primary address space.

FIGURE 14-6 IMMU, DMMU, and UMMU Primary Context ID

The Secondary Context ID register is illustrated in FIGURE 14-7, where scontextid is the context ID for
the secondary address space.

FIGURE 14-7 D/UMMU Secondary Context ID

The Nucleus Context ID register is hardwired to zero, as illustrated in FIGURE 14-6.

FIGURE 14-8 IMMU, DMMU, and UMMU Nucleus Context ID

IMPL. DEP. #415-S10: The size of context ID fields in MMU context registers is implementation-
dependent and may range from 13 to 16 bits.

Programming
Note

For platforms that implement more than one primary context
ID and one secondary context ID, privileged code must ensure
that no more than one page translation is allowed to match at
any time. An illustration of erroneous behavior is as follows:

1. An operating system constructs a mapping for virtual
address A valid for context ID P;

2. it then constructs a mapping for address A for context ID Q.

By setting Primary Context ID 0 to P and Primary Context ID 1
to Q, both mappings would be active simultaneously, with
conflicting translations for address A. Care must be taken not
to construct such scenarios.

63 16 15 0

— pcontextidPrimary
Context ID

63 16 15 0

— scontextid
Secondary
Context ID

63 0

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
Nucleus
Context ID
CHAPTER 14 • Memory Management 381

382 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

APPENDIX A

Opcode Maps

This appendix contains the UltraSPARC Architecture 2007 instruction opcode maps.

In this appendix and in Chapter 7, Instructions, certain opcodes are marked with mnemonic
superscripts. These superscripts and their meanings are defined in TABLE 7-1 on page 87. For preferred
substitute instructions for deprecated opcodes, see the individual opcodes in Chapter 7 that are
labeled “Deprecated”.

In the tables in this appendix, reserved (—) and shaded entries (as defined below) indicate opcodes
that are not implemented in UltraSPARC Architecture 2007 strands.

An attempt to execute a reserved opcode behaves as defined in Reserved Opcodes and Instruction Fields
on page 86.

Shading Meaning

An attempt to execute opcode will cause an illegal_instruction exception.

TABLE A-1 op{1:0}

op {1:0}
0 1 2 3

Branches and SETHI
(See TABLE A-2)

CALL Arithmetic & Miscellaneous
(See TABLE A-3)

Loads/Stores
(See TABLE A-4)

TABLE A-2 op2{2:0} (op = 0)

op2 {2:0}
0 1 2 3 4 5 6 7

ILLTRAP
BPcc (See
TABLE A-7)

BiccD(See
TABLE A-7)

BPr (bit 28 = 0)
(See TABLE A-8) SETHI,

NOP2

2. rd = 0, imm22 = 0

FBPfcc
(See TABLE A-7)

FBfccD

(See TABLE A-7)
—

— (bit 28 = 1)1

1. See the footnote regarding bit 28 on page 109.
383

TABLE A-3 op3{5:0} (op = 102) (1 of 2)

op3{5:4}

0 1 2 3

op3
{3:0}

0 ADD ADDcc TADDcc WRYD (rd = 0)
— (rd = 1)
WRCCR (rd = 2
WRASI (rd = 3)
— (rd = 4, 5)
— (rd = 15, rs1 = 0, i = 1)
— (rd = 15) and (rs1 ≠ 0 or i ≠ 1))
— (rd = 7 − 14)
WRFPRS (rd = 6)
WRasrPASR (7 ≤ rd ≤ 14)
WRPCRP (rd = 16)
WRPIC (rd = 17)
— (rd = 18)
WRGSR (rd = 19)
WRSOFTINT_SETP (rd = 20)
WRSOFTINT_CLRP (rd = 21)
WRSOFTINTP (rd = 22)
WRTICK_CMPRP (rd = 23)
WRSTICK_CMPRP (rd = 25)
— (rd = 26)
— (rd = 27)
— (rd = 28 - 31)

1 AND ANDcc TSUBcc SAVEDP (fcn = 0)
RESTOREDP (fcn = 1)
ALLCLEANP (fcn = 2)
OTHERWP (fcn = 3)
NORMALWP (fcn = 4)
INVALWP (fcn = 5)
— (fcn ≥ 6)

2 OR ORcc TADDccTVD —
2 OR ORcc TADDccTVD WRPRP (rd = 0-14 or 16)

— (rd = 15 or 17−31)
3 XOR XORcc TSUBccTVD —
4 SUB SUBcc MULSccD FPop1 (See TABLE A-5)
5 ANDN ANDNcc SLL (x = 0), SLLX (x = 1) FPop2 (See TABLE A-6)
6 ORN ORNcc SRL (x = 0), SRLX (x = 1) (VIS) (See TABLE A-12)
7 XNOR XNORcc SRA (x = 0), SRAX (x = 1)
384 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

op3
{3:0}

8 ADDC ADDCcc RDYD (rs1 = 0, i = 0) JMPL
— (rs1 = 1, i = 0)
RDCCR (rs1= 2, i = 0)
RDASI (rs1 = 3, i = 0)
RDTICKPnpt (rs1 = 4, i = 0)
RDPC (rs1 = 5, i = 0)
RDFPRS (rs1 = 6, i = 0)
RDasrPASR (7 ≤ rd ≤ 14, i = 0)
MEMBAR (rs1 = 15, rd = 0, i = 1,

instruction bit 12 = 0)
— (rs1 = 15, rd = 0, i = 1,

instruction bit 12 = 1)
— (i = 1, (rs1 ≠ 15 or rd ≠ 0))
— (rs1 = 15, rd = 0, i = 0)
— (rs1 = 15 and rd > 0 and i = 0)
RDPCRP (rs1 = 16 and i = 0)
RDPIC (rs1 = 17 and i = 0)
— (rs1 = 18 and i = 0)
RDGSR (rs1 = 19 and i = 0)
— (rs1 = 20 or 21) and (i = 0))
RDSOFTINTP (rs1 = 22 and i = 0)
RDTICK_CMPRP (rs1 = 23 and i = 0)
RDSTICK (rs1 = 24 and i = 0)
RDSTICK_CMPRP

(rs1 = 25 and i = 0)
— ((rs1 = 26) and (i = 0))
— ((rs1 = 27 – 31) and (i = 0))

A UMULD UMULccD RDPRP (rs1 = 1–14 or 16) Tcc ((i = 0 and inst{10:5} = 0) or
((i = 1) and (inst{10:8} = 0)))
(See TABLE A-7)

— (rs1 = 15 or 17 – 31) — (bit 29 = 1)
— ((i = 0 and (inst{10:5} ≠ 0)) or

(i = 1 and (inst{10:8} ≠ 0))
B SMULD SMULccD FLUSHW FLUSH

op3
{3:0}

C SUBC SUBCcc MOVcc SAVE
D UDIVX — SDIVX RESTORE
E UDIVD UDIVccD POPC (rs1 = 0) DONEP (fcn = 0)

— (rs1 > 0) RETRYP (fcn = 1)
— (fcn = 16..31)

F SDIVD SDIVccD MOVr (See TABLE A-8) —

TABLE A-3 op3{5:0} (op = 102) (2 of 2)

op3{5:4}

0 1 2 3
APPENDIX A • Opcode Maps 385

TABLE A-4 op3{5:0} (op = 112)

op3{5:4}

0 1 2 3

op3
{3:0}

0 LDUW LDUWAPASI LDF LDFAPASI

1
LDUB LDUBAPASI (rd = 0) LDFSRD

(rd = 1) LDXFSR Reserved

— (rd > 1)

2 LDUH LDUHAPASI LDQF LDQFAPASI

3 LDTWD LDTWAD, PASI LDDF LDDFAPASI

— (rd odd) LDTXA LDBLOCKF

— (rd odd) LDSHORTF

4 STW STWAPASI STF STFAPASI

5 STB STBAPASI STFSRD, STXFSR Reserved
— (rd > 1)

6 STH STHAPASI STQF STQFAPASI

7 STTWD STTWAPASI STDF STDFAPASI

— (rd odd) — (rd odd) STLBLOCKF

STPARTIALF

STSHORTF

8 LDSW LDSWAPASI Reserved Reserved
9 LDSB LDSBAPASI Reserved Reserved
A LDSH LDSHAPASI Reserved Reserved
B LDX LDXAPASI Reserved Reserved
C Reserved Reserved Reserved CASAPASI

D LDSTUB LDSTUBAPASI PREFETCH PREFETCHAPASI

— (fcn = 5 − 15) — (fcn = 5 − 15)

E STX STXAPASI Reserved CASXAPASI

F SWAPD SWAPAD, PASI Reserved Reserved
386 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

TABLE A-5 opf{8:0} (op = 102,op3 = 3416 = FPop1)

opf{3:0}

opf{8:4} 0 1 2 3 4 5 6 7

0016 — FMOVs FMOVd FMOVq — FNEGs FNEGd FNEGq

0116 — — — — — — — —

0216 — — — — — — — —

0316 — — — — — — — —

0416 — FADDs FADDd FADDq — FSUBs FSUBd FSUBq

0516 — — — — — — — —

0616 — — — — — — — —

0716 — — — — — — — —

0816 — FsTOx FdTOx FqTOx FxTOs — — —

0916 — — — — — — — —

0A16 — — — — — — — —

0B16 — — — — — — — —

0C16 — — — — FiTOs — FdTOs FqTOs

0D16 — FsTOi FdTOi FqTOi — — — —

0E16–1F16 — — — — — — — —

8 9 A B C D E F

0016 — FABSs FABSd FABSq — — — —

0116 — — — — — — — —

0216 — FSQRTs FSQRTd FSQRTq — — — —

0316 — — — — — — — —

0416 — FMULs FMULd FMULq — FDIVs FDIVd FDIVq

0516 — — — — — — — —

0616 — FsMULd — — — — FdMULq —

0716 — — — — — — — —

0816 FxTOd — — — FxTOq — — —

0916 — — — — — — — —

0A16 — — — — — — — —

0B16 — — — — — — — —

0C16 FiTOd FsTOd — FqTOd FiTOq FsTOq FdTOq —

0D16 — — — — — — — —

0E16–1F16 — — — — — — — —
APPENDIX A • Opcode Maps 387

† Reserved variation of FMOVR ‡ bit 13 of instruction = 0

TABLE A-6 opf{8:0} (op = 102, op3 = 3516 = FPop2)

opf{3:0}

opf{8:4} 0 1 2 3 4 5 6 7 8–F

0016 — FMOVs
(fcc0)

FMOVd
(fcc0)

FMOVq (fcc0) — † ‡ † ‡ † ‡ —

0116 — — — — — — — — —

0216 — — — — — FMOVRsZ ‡ FMOVRdZ ‡ FMOVRqZ ‡ —

0316 — — — — — — — — —

0416 — FMOVs
(fcc1)

FMOVd
(fcc1)

FMOVq (fcc1) — FMOVRsLEZ ‡ FMOVRdLEZ ‡ FMOVRqLEZ ‡ —

0516 — FCMPs FCMPd FCMPq — FCMPEs ‡ FCMPEd ‡ FCMPEq ‡ —

0616 — — — — — FMOVRsLZ ‡ FMOVRdLZ ‡ FMOVRqLZ ‡ —

0716 — — — — — — — — —

0816 — FMOVs
(fcc2)

FMOVd
(fcc2)

FMOVq (fcc2) — † † † —

0916 — — — — — — — — —

0A16 — — — — — FMOVRsNZ ‡ FMOVRdNZ ‡ FMOVRqNZ ‡ —

0B16 — — — — — — — — —

0C16 — FMOVs
(fcc3)

FMOVd
(fcc3)

FMOVq (fcc3) — FMOVRsGZ ‡ FMOVRdGZ ‡ FMOVRqGZ ‡ —

0D16 — — — — — — — — —

0E16 — — — — — FMOVRsGEZ ‡ FMOVRdGEZ ‡ FMOVRqGEZ ‡ —

0F16 — — — — — — — — —

1016 — FMOVs
(icc)

FMOVd
(icc)

FMOVq (icc) — — — — —

1116–1716 — — — — — — — — —

1816 — FMOVs
(xcc)

FMOVd
(xcc)

FMOVq (xcc) — — — — —

1916–1F16 — — — — — — — — —
388 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

TABLE A-7 cond{3:0}

BPcc
op = 0
op2 = 1

bit 28 = 0

Bicc
op = 0
op2 = 2

FBPfcc
op = 0
op2 = 5

FBfccD

op = 0
op2 = 6

Tcc
op = 2

op3 = 3A16

cond
{3:0}

0 BPN BND FBPN FBND TN

1 BPE BED FBPNE FBNED TE

2 BPLE BLED FBPLG FBLGD TLE

3 BPL BLD FBPUL FBULD TL

4 BPLEU BLEUD FBPL FBLD TLEU

5 BPCS BCSD FBPUG FBUGD TCS

6 BPNEG BNEGD FBPG FBGD TNEG

7 BPVS BVSD FBPU FBUD TVS

8 BPA BAD FBPA FBAD TA

9 BPNE BNED FBPE FBED TNE

A BPG BGD FBPUE FBUED TG

B BPGE BGED FBPGE FBGED TGE

C BPGU BGUD FBPUGE FBUGED TGU

D BPCC BCCD FBPLE FBLED TCC

E BPPOS BPOSD FBPULE FBULED TPOS

F BPVC BVCD FBPO FBOD TVC

TABLE A-8 Encoding of rcond{2:0} Instruction Field

BPr
op = 0
op2 = 3

MOVr
op = 2

op3 = 2F16

FMOVr
op = 2

op3 = 3516

rcond
{2:0}

0 — — —

1 BRZ MOVRZ FMOVR<s|d|q>Z

2 BRLEZ MOVRLEZ FMOVR<s|d|q>LEZ

3 BRLZ MOVRLZ FMOVR<s|d|q>LZ

4 — — —

5 BRNZ MOVRNZ FMOVR<s|d|q>NZ

6 BRGZ MOVRGZ FMOVR<s|d|q>GZ

7 BRGEZ MOVRGEZ FMOVR<s|d|q>GEZ

TABLE A-9 cc / opf_cc Fields (MOVcc and FMOVcc)

opf_cc Condition Code
Selectedcc2 cc1 cc0

0 0 0 fcc0

0 0 1 fcc1

0 1 0 fcc2

0 1 1 fcc3

1 0 0 icc
APPENDIX A • Opcode Maps 389

1 0 1 —

1 1 0 xcc

1 1 1 —

TABLE A-10 cc Fields (FBPfcc, FCMP, and FCMPE)

cc1 cc0
Condition Code

Selected

0 0 fcc0

0 1 fcc1

1 0 fcc2

1 1 fcc3

TABLE A-11 cc Fields (BPcc and Tcc)

cc1 cc0
Condition Code

Selected

0 0 icc

0 1 —

1 0 xcc

1 1 —

TABLE A-9 cc / opf_cc Fields (MOVcc and FMOVcc)
390 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

TABLE A-12 opf{8:0} for VIS opcodes (op = 102, op3 = 3616)

opf {8:4}

00 01 02 03 04 05 06 07 08 09-0F

opf
{3:0}

0 EDGE8cc ARRAY8 FCMPLE16 — — FPADD16 FZERO FAND —

Reserved

0 EDGE8cc ARRAY8 FCMPLE16 — FPADD16 FZERO FAND —

1
EDGE8N — — FMUL

8x16
— FPADD16S FZEROS FANDS SIAM

2 EDGE8Lcc ARRAY16 FCMPNE16 — — FPADD32 FNOR FXNOR —

3
EDGE8LN — — FMUL

8x16AU
— FPADD32S FNORS FXNORS —

4 EDGE16cc ARRAY32 FCMPLE32 — FPSUB16 FANDNOT2 FSRC1 —

5
EDGE16N — — FMUL

8x16AL
— FPSUB16S FANDNOT2S FSRC1S —

6
EDGE16Lcc — FCMPNE32 FMUL

8SUx16
— FPSUB32 FNOT2 FORNOT2 —

7
EDGE16LN — — FMUL

8ULx16
— FPSUB32S FNOT2S FORNOT2S —

8
EDGE32cc ALIGN

ADDRESS
FCMPGT16 FMULD

8SUx16
FALIGN
DATA

— FANDNOT1 FSRC2 —

9
EDGE32N BMASK — FMULD

8ULx16
— — FANDNOT1S FSRC2S —

A
EDGE32Lcc ALIGNADDRESS

_LITTLE
FCMPEQ16 FPACK32 — — FNOT1 FORNOT1 —

B EDGE32LN — — FPACK16 FPMERGE — FNOT1S FORNOT1S —

C — — FCMPGT32 — BSHUFFLE — FXOR FOR —

D — — — FPACKFIX FEXPAND — FXORS FORS —

E — — FCMPEQ32 PDIST — — FNAND FONE —

F — — — — — — FNANDS FONES —
APPENDIX A • Opcode Maps 391

ed
TABLE A-14 opf{8:0} for VIS opcodes (op = 102, op3 = 3616) (3 of 3)

opf {8:4}

10 11 12 13 14 15 16 17 18–1F

opf
{3:0}

0 — — — — — —

—

—

Reserv

1 — — — — — — —
2 — — — — — — —
3 — — — — — — —
4 — — — — — — —
5 — — — — — — —
6 — — — — — — —
7 — — — — — — —
8 — — — — — — —

9 — — — — — —
A — — — — — —
B — — — — — —
C — — — — — —
D — — — — — —
E — — — — — —
F — — — — — —
392 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

TABLE A-13 op5{3:0} (op = 102, op3 = 3716 = FMAf

op5{1:0}

0 1 2 3

op5{3:2}

0 — FMADDs FMADDd —

1 — FMSUBs FMSUBd —

2 — FNMSUBs FNMSUBd —

3 — FNMADDs FNMADDd —
APPENDIX A • Opcode Maps 393

394 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

APPENDIX B

Implementation Dependencies

This appendix summarizes implementation dependencies in the SPARC V9 standard. In SPARC V9,
the notation “IMPL. DEP. #nn:” identifies the definition of an implementation dependency; the
notation “(impl. dep. #nn)” identifies a reference to an implementation dependency. These
dependencies are described by their number nn in TABLE B-1 on page 397.

The appendix contains these sections:

■ Definition of an Implementation Dependency on page 395.
■ Hardware Characteristics on page 396.
■ Implementation Dependency Categories on page 396.
■ List of Implementation Dependencies on page 397.

B.1 Definition of an Implementation Dependency
The SPARC V9 architecture is a model that specifies unambiguously the behavior observed by software
on SPARC V9 systems. Therefore, it does not necessarily describe the operation of the hardware of any
actual implementation.

An implementation is not required to execute every instruction in hardware. An attempt to execute a
SPARC V9 instruction that is not implemented in hardware generates a trap. Whether an instruction is
implemented directly by hardware, simulated by software, or emulated by firmware is
implementation dependent.

The two levels of SPARC V9 compliance are described in UltraSPARC Architecture 2007 Compliance with
SPARC V9 Architecture on page 16.

Some elements of the architecture are defined to be implementation dependent. These elements
include certain registers and operations that may vary from implementation to implementation; they
are explicitly identified as such in this appendix.

Implementation elements (such as instructions or registers) that appear in an implementation but are
not defined in this document (or its updates) are not considered to be SPARC V9 elements of that
implementation.

Note: This chapter is undergoing final review; please check
back later for a copy of UltraSPARC Architecture
2007 containing the final version of this chapter.
395

B.2 Hardware Characteristics
Hardware characteristics that do not affect the behavior observed by software on SPARC V9 systems
are not considered architectural implementation dependencies. A hardware characteristic may be
relevant to the user system design (for example, the speed of execution of an instruction) or may be
transparent to the user (for example, the method used for achieving cache consistency). The SPARC
International document, Implementation Characteristics of Current SPARC V9-based Products, Revision 9.x,
provides a useful list of these hardware characteristics, along with the list of implementation-
dependent design features of SPARC V9-compliant implementations.

In general, hardware characteristics deal with

■ Instruction execution speed

■ Whether instructions are implemented in hardware

■ The nature and degree of concurrency of the various hardware units constituting a SPARC V9
implementation

B.3 Implementation Dependency Categories
Many of the implementation dependencies can be grouped into four categories, abbreviated by their
first letters throughout this appendix:
■ Value (v)

The semantics of an architectural feature are well defined, except that a value associated with the
feature may differ across implementations. A typical example is the number of implemented
register windows (impl. dep. #2-V8).

■ Assigned Value (a)
The semantics of an architectural feature are well defined, except that a value associated with the
feature may differ across implementations and the actual value is assigned by SPARC International.
Typical examples are the impl field of the Version register (VER) (impl. dep. #13-V8) and the
FSR.ver field (impl. dep. #19-V8).

■ Functional Choice (f)
The SPARC V9 architecture allows implementors to choose among several possible semantics
related to an architectural function. A typical example is the treatment of a catastrophic error
exception, which may cause either a deferred or a disrupting trap (impl. dep. #31-V8-Cs10).

■ Total Unit (t)
The existence of the architectural unit or function is recognized, but details are left to each
implementation. Examples include the handling of I/O registers (impl. dep. #7-V8) and some
alternate address spaces (impl. dep. #29-V8).
396 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

B.4 List of Implementation Dependencies
TABLE B-1 provides a complete list of the SPARC V9 implementation dependencies. The Page column
lists the page for the context in which the dependency is defined; bold face indicates the main page on
which the implementation dependency is described.

TABLE B-1 SPARC V9 Implementation Dependencies (1 of 7)

Nbr Category Description Page

1-V8 f Software emulation of instructions
Whether an instruction complies with UltraSPARC Architecture 2007 by being
implemented directly by hardware, simulated by software, or emulated by firmware is
implementation dependent.

16

2-V8 v Number of IU registers
An UltraSPARC Architecture implementation may contain from 72 to 640 general-
purpose 64-bit R registers. This corresponds to a grouping of the registers into
MAXPGL + 1 sets of global R registers plus a circular stack of N_REG_WINDOWS sets of 16
registers each, known as register windows. The number of register windows present
(N_REG_WINDOWS) is implementation dependent, within the range of 3 to 32
(inclusive).

17, 34

3-V8 f Incorrect IEEE Std 754-1985 results
An implementation may indicate that a floating-point instruction did not produce a
correct IEEE Std 754-1985 result by generating an fp_exception_other exception with
FSR.ftt = unfinished_FPop. In this case, software running in a higher privilege mode
shall emulate any functionality not present in the hardware.

86

4, 5 Reserved.

6-V8 f I/O registers privileged status
Whether I/O registers can be accessed by nonprivileged code is implementation
dependent.

19

7-V8 t I/O register definitions
The contents and addresses of I/O registers are implementation dependent.

19

8-V8-
Cs20

t RDasr/WRasr target registers
Ancillary state registers (ASRs) in the range 0–27 that are not defined in UltraSPARC
Architecture 2007 are reserved for future architectural use. ASRs in the range 28–31 are
available to be used for implementation-dependent purposes.

20, 48,
225, 285

9-V8-
Cs20

f RDasr/WRasr privileged status
The privilege level required to execute each of the implementation-dependent read/
write ancillary state register instructions (for ASRs 28–31) is implementation
dependent.

20, 48,
225, 285

10-V8–12-V8 Reserved.

13-V8 a (this implementation dependency applies to execution modes with greater privileges)

14-V8–15-V8 Reserved.

16-V8-Cu3 Reserved.

17-V8 Reserved.
APPENDIX B • Implementation Dependencies 397

18-
V8-
Ms10

f Nonstandard IEEE 754-1985 results
When FSR.ns = 1, the FPU produces implementation-dependent results that may not
correspond to IEEE Standard 754-1985.

a: When FSR.ns = 1 and a floating-point source operand is subnormal, an
implementation may treat the subnormal operand as if it were a floating-point zero
value of the same sign.
The cases in which this replacement is performed are implementation dependent.
However, if it occurs,
(1) it should not apply to FABS, FMOV, or FNEG instructions and
(2) FADD, FSUB, and FCMP should give identical treatment to subnormal source
operands.
Treating a subnormal source operand as zero may generate an IEEE 754 floating-point
“inexact”, “division by zero”, or “invalid” condition (see Current Exception (cexc) on
page 46). Whether the generated condition(s) trigger an fp_exception_ieee_754
exception or not depends on the setting of FSR.tem.

294

b: When a floating-point operation generates a subnormal result value, an UltraSPARC
Architecture implementation may either write the result as a subnormal value or
replace the subnormal result by a floating-point zero value of the same sign and
generate IEEE 754 floating-point “inexact” and “underflow” conditions. Whether these
generated conditions trigger an fp_exception_ieee_754 exception or not depends on
the setting of FSR.tem.

294

c: If an FPop generates an intermediate result value, the intermediate value is
subnormal, and FSR.ns = 1, it is implementation dependent whether (1) the operation
continues, using the subnormal value (possibly with some loss of accuracy), or (2) the
virtual processor replaces the subnormal intermediate value with a floating-point zero
value of the same sign, generates IEEE 754 floating-point “inexact” and “underflow”
conditions, completes the instruction, and writes a final result (possibly with some loss
of accuracy). Whether generated IEEE conditions trigger an fp_exception_ieee_754
exception or not depends on the setting of FSR.tem.

294

19-V8 a FPU version, FSR.ver
Bits 19:17 of the FSR, FSR.ver, identify one or more implementations of the FPU
architecture.

43

20-V8–21-V8 Reserved.

22-V8 f FPU tem, cexc, and aexc
An UltraSPARC Architecture implementation implements the tem, cexc, and aexc
fields in hardware, conformant to IEEE Std 754-1985.

48

23-V8 Reserved.

24-V8 Reserved.

25-V8 f RDPR of FQ with nonexistent FQ
An UltraSPARC Architecture implementation does not contain a floating-point queue
(FQ). Therefore, FSR.ftt = 4 (sequence_error) does not occur, and an attempt to read
the FQ with the RDPR instruction causes an illegal_instruction exception.

45, 229

26-V8–28-V8 Reserved.

29-V8 t Address space identifier (ASI) definitions
In SPARC V9, many ASIs were defined to be implementation dependent. Some of
those ASIs have been allocated for standard uses in the UltraSPARC Architecture.
Others remain implementation dependent in the UltraSPARC Architecture. See ASI
Assignments on page 322 and Block Load and Store ASIs on page 333 for details.

78

30-
V8-
Cu3

f ASI address decoding
In SPARC V9, an implementation could choose to decode only a subset of the 8-bit ASI
specifier. In UltraSPARC Architecture implementations, all 8 bits of each ASI specifier
must be decoded. Refer to Chapter 10, Address Space Identifiers (ASIs), of this
specification for details.

78

TABLE B-1 SPARC V9 Implementation Dependencies (2 of 7)

Nbr Category Description Page
398 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

31-
V8-
Cs10

f This implementation dependency is no longer used in the UltraSPARC Architecture,
since “catastrophic” errors are now handled using normal error-reporting
mechanisms.

—

32-
V8-
Ms10

t Restartable deferred traps
Whether any restartable deferred traps (and associated deferred-trap queues) are
present is implementation dependent.

345

33-
V8-
Cs10

f Trap precision
In an UltraSPARC Architecture implementation, all exceptions that occur as the result
of program execution are precise.

347

34-V8 f Interrupt clearing
a: The method by which an interrupt is removed is now defined in the UltraSPARC
Architecture (see Clearing the Software Interrupt Register on page 366).
b: How quickly a virtual processor responds to an interrupt request, like all timing-
related issues, is implementation dependent.

366

35-
V8-
Cs20

t Implementation-dependent traps
Trap type (TT) values 06016–07F16 were reserved for
implementation_dependent_exception_n exceptions in SPARC V9 but are now all
defined as standard UltraSPARC Architecture exceptions.

349

36-V8 f Trap priorities
The relative priorities of traps defined in the UltraSPARC Architecture are fixed.
However, the absolute priorities of those traps are implementation dependent (because
a future version of the architecture may define new traps). The priorities (both
absolute and relative) of any new traps are implementation dependent.

356

41-V8 Reserved.

42-
V8-
Cs10

t, f, v FLUSH instruction
FLUSH is implemented in hardware in all UltraSPARC Architecture 2007
implementations, so never causes a trap as an unimplemented instruction.

43-V8 Reserved.

44-
V8-
Cs10

f Data access FPU trap
a: If a load floating-point instruction generates an exception that causes a non-precise

trap, it is implementation dependent whether the contents of the destination
floating-point register(s) or floating-point state register are undefined or are
guaranteed to remain unchanged.

b: If a load floating-point alternate instruction generates an exception that causes a
non-precise trap, it is implementation dependent whether the contents of the
destination floating-point register(s) are undefined or are guaranteed to remain
unchanged.

182, 199

185

45-V8–46-V8 Reserved.

47-
V8-
Cs20

t RDasr
RDasr instructions with rd in the range 28–31 are available for implementation-
dependent uses (impl. dep. #8-V8-Cs20). For an RDasr instruction with rs1 in the
range 28–31, the following are implementation dependent:
• the interpretation of bits 13:0 and 29:25 in the instruction
• whether the instruction is nonprivileged or privileged (impl. dep. #9-V8-Cs20)
• whether an attempt to execute the instruction causes an illegal_instruction exception

226

48-
V8-
Cs20

t WRasr
WRasr instructions with rd of 16-18, 28, 29, or 31 are available for implementation-
dependent uses (impl. dep. #8-V8-Cs20). For a WRasr instruction using one of those rd
values, the following are implementation dependent:
• the interpretation of bits 18:0 in the instruction
• the operation(s) performed (for example, xor) to generate the value written to the

ASR
• whether the instruction is nonprivileged or privileged (impl. dep. #9-V8-Cs20)
• whether an attempt to execute the instruction causes an illegal_instruction exception

286

TABLE B-1 SPARC V9 Implementation Dependencies (3 of 7)

Nbr Category Description Page
APPENDIX B • Implementation Dependencies 399

49-V8–54-V8 Reserved.

55-
V8-
Cs10

f Tininess detection
In SPARC V9, it is implementation-dependent whether “tininess” (an IEEE 754 term) is
detected before or after rounding. In all UltraSPARC Architecture implementations,
tininess is detected before rounding.

48

56–100 Reserved.

101-
V9-
CS10

v Maximum trap level (MAXPTL)
The architectural parameter MAXPTL is a constant for each implementation; its legal
values are from 2 to 6 (supporting from 2 to 6 levels of saved trap state). In a typical
implementation MAXPTL = MAXPGL (see impl. dep. #401-S10).
Architecturally, MAXPTL must be ≥ 2.

68, 70

102-
V9

f Clean windows trap
An implementation may choose either to implement automatic “cleaning” of register
windows in hardware or to generate a clean_window trap, when needed, for
window(s) to be cleaned by software.

358

103-
V9-
Ms10

f Prefetch instructions
The following aspects of the PREFETCH and PREFETCHA instructions are
implementation dependent:
a: the attributes of the block of memory prefetched: its size (minimum = 64 bytes)

and its alignment (minimum = 64-byte alignment)
b: whether each defined prefetch variant is implemented (1) as a NOP, (2) with its

full semantics, or (3) with common-case prefetching semantics
c: whether and how variants 16, 18, 19 and 24–31 are implemented; if not

implemented, a variant must execute as a NOP

220

220, 222

224C

The following aspects of the PREFETCH and PREFETCHA instructions used to be (but
are no longer) implementation dependent:
d: while in nonprivileged mode (PSTATE.priv = 0), an attempt to reference an ASI in

the range 016..7F16 by a PREFETCHA instruction executes as a NOP; specifically,
it does not cause a privileged_action exception.

e: PREFETCH and PREFETCHA have no observable effect in privileged code
g: while in privileged mode (PSTATE.priv = 1), an attempt to reference an ASI in the

range 3016..7F16 by a PREFETCHA instruction executes as a NOP (specifically, it
does not cause a privileged_action exception)

—

—
—

105-
V9

f TICK register
a: If an accurate count cannot always be returned when TICK is read, any inaccuracy

should be small, bounded, and documented.
b: An implementation may implement fewer than 63 bits in TICK.counter; however,

the counter as implemented must be able to count for at least 10 years without
overflowing. Any upper bits not implemented must read as 0.

52

106-
V9cS
10

f IMPDEP2A instructions
The IMPDEP2A instructions were defined to be completely implementation
dependent in SPARC V9. The opcodes that have not been used in this space are now
just documented as reserved opcodes.

107-
V9

f Unimplemented LDTW(A) trap
a: It is implementation dependent whether LDTW is implemented in hardware. If

not, an attempt to execute an LDTW instruction will cause an
unimplemented_LDTW exception.

b: It is implementation dependent whether LDTWA is implemented in hardware. If
not, an attempt to execute an LDTWA instruction will cause an
unimplemented_LDTW exception.

192

194

TABLE B-1 SPARC V9 Implementation Dependencies (4 of 7)

Nbr Category Description Page
400 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

108-
V9

f Unimplemented STTW(A) trap
a: It is implementation dependent whether STTW is implemented in hardware. If not,

an attempt to execute an STTW instruction will cause an unimplemented_STTW
exception.

b: It is implementation dependent whether STDA is implemented in hardware. If not,
an attempt to execute an STTWA instruction will cause an unimplemented_STTW
exception.

265

267

109-
V9-
Cs10

f LDDF(A)_mem_address_not_aligned
a: LDDF requires only word alignment. However, if the effective address is word-

aligned but not doubleword-aligned, an attempt to execute a valid (i = 1 or
instruction bits 12:5 = 0) LDDF instruction may cause an
LDDF_mem_address_not_aligned exception. In this case, the trap handler software
shall emulate the LDDF instruction and return.
(In an UltraSPARC Architecture processor, the LDDF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the LDDF
instruction)

73, 73,
181, 361

b: LDDFA requires only word alignment. However, if the effective address is word-
aligned but not doubleword-aligned, an attempt to execute a valid (i = 1 or
instruction bits 12:5 = 0) LDDFA instruction may cause an
LDDF_mem_address_not_aligned exception. In this case, the trap handler software
shall emulate the LDDFA instruction and return.
(In an UltraSPARC Architecture processor, the LDDF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the LDDFA
instruction)

183

110-
V9-
Cs10

f STDF(A)_mem_address_not_aligned
a: STDF requires only word alignment in memory. However, if the effective address is

word-aligned but not doubleword-aligned, an attempt to execute a valid (i = 1 or
instruction bits 12:5 = 0) STDF instruction may cause an
STDF_mem_address_not_aligned exception. In this case, the trap handler software
must emulate the STDF instruction and return.
(In an UltraSPARC Architecture processor, the STDF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the STDF
instruction)

73,
253, 362

b: STDFA requires only word alignment in memory. However, if the effective address
is word-aligned but not doubleword-aligned, an attempt to execute a valid (i = 1 or
instruction bits 12:5 = 0) STDFA instruction may cause an
STDF_mem_address_not_aligned exception. In this case, the trap handler software
must emulate the STDFA instruction and return.
(In an UltraSPARC Architecture processor, the STDF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the STDFA
instruction)

255

TABLE B-1 SPARC V9 Implementation Dependencies (5 of 7)

Nbr Category Description Page
APPENDIX B • Implementation Dependencies 401

111-
V9-
Cs10

f LDQF(A)_mem_address_not_aligned
a: LDQF requires only word alignment. However, if the effective address is word-

aligned but not quadword-aligned, an attempt to execute an LDQF instruction may
cause an LDQF_mem_address_not_aligned exception. In this case, the trap handler
software must emulate the LDQF instruction and return.
(In an UltraSPARC Architecture processor, the LDQF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the LDQF
instruction)
(this exception does not occur in hardware on UltraSPARC Architecture 2007
implementations, because they do not implement the LDQF instruction in
hardware)

74, 73,
181, 362

b: LDQFA requires only word alignment. However, if the effective address is word-
aligned but not quadword-aligned, an attempt to execute an LDQFA instruction
may cause an LDQF_mem_address_not_aligned exception. In this case, the trap
handler software must emulate the LDQF instruction and return.
(In an UltraSPARC Architecture processor, the LDQF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the LDQFA
instruction)
(this exception does not occur in hardware on UltraSPARC Architecture 2007
implementations, because they do not implement the LDQFA instruction in
hardware)

183

112-
V9-
Cs10

f STQF(A)_mem_address_not_aligned
a: STQF requires only word alignment in memory. However, if the effective address is

word aligned but not quadword aligned, an attempt to execute an STQF instruction
may cause an STQF_mem_address_not_aligned exception. In this case, the trap
handler software must emulate the STQF instruction and return.
(In an UltraSPARC Architecture processor, the STQF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the STQF
instruction)
(this exception does not occur in hardware on UltraSPARC Architecture 2007
implementations, because they do not implement the STQF instruction in
hardware)

74,
253, 362

b: STQFA requires only word alignment in memory. However, if the effective address
is word aligned but not quadword aligned, an attempt to execute an STQFA
instruction may cause an STQF_mem_address_not_aligned exception. In this case,
the trap handler software must emulate the STQFA instruction and return.
(In an UltraSPARC Architecture processor, the STQF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the STQFA
instruction)
(this exception does not occur in hardware on UltraSPARC Architecture 2007
implementations, because they do not implement the STQFA instruction in
hardware)

255

113-
V9-
Ms10

f Implemented memory models
Whether memory models represented by PSTATE.mm = 102 or 112 are supported in an
UltraSPARC Architecture processor is implementation dependent. If the 102 model is
supported, then when PSTATE.mm = 102 the implementation must correctly execute
software that adheres to the RMO model described in The SPARC Architecture Manual-
Version 9. If the 112 model is supported, its definition is implementation dependent.

66, 313

118-
V9

f Identifying I/O locations
The manner in which I/O locations are identified is implementation dependent.

307

119-
Ms10

f Unimplemented values for PSTATE.mm
The effect of an attempt to write an unsupported memory model designation into
PSTATE.mm is implementation dependent; however, it should never result in a value
of PSTATE.mm value greater than the one that was written. In the case of an
UltraSPARC Architecture implementation that only supports the TSO memory model,
PSTATE.mm always reads as zero and attempts to write to it are ignored.

66, 314

TABLE B-1 SPARC V9 Implementation Dependencies (6 of 7)

Nbr Category Description Page
402 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

TABLE B-2 provides a list of implementation dependencies that, in addition to those in TABLE B-1, apply
to UltraSPARC Architecture processors. Bold face indicates the main page on which the
implementation dependency is described. See Appendix C in the Extensions Documents for further
information.

120-
V9

f Coherence and atomicity of memory operations
The coherence and atomicity of memory operations between virtual processors and
I/O DMA memory accesses are implementation dependent.

307

121-
V9

f Implementation-dependent memory model
An implementation may choose to identify certain addresses and use an
implementation-dependent memory model for references to them.

307

122-
V9

f FLUSH latency
The latency between the execution of FLUSH on one virtual processor and the point at
which the modified instructions have replaced outdated instructions in a
multiprocessor is implementation dependent.

133, 319

123-
V9

f Input/output (I/O) semantics
The semantic effect of accessing I/O registers is implementation dependent.

19

124-
V9

v Implicit ASI when TL > 0
In SPARC V9, when TL > 0, the implicit ASI for instruction fetches, loads, and stores is
implementation dependent. In all UltraSPARC Architecture implementations, when
TL > 0, the implicit ASI for instruction fetches is ASI_NUCLEUS; loads and stores will
use ASI_NUCLEUS if PSTATE.cle = 0 or ASI_NUCLEUS_LITTLE if PSTATE.cle = 1.

309

125-
V9-
Cs10

f Address masking
(1) When PSTATE.am = 1, only the less-significant 32 bits of the PC register are stored
in the specified destination register(s) in CALL, JMPL, and RDPC instructions, while
the more-significant 32 bits of the destination registers(s) are set to 0.
((2) When PSTATE.am = 1, during a trap, only the less-significant 32 bits of the PC and
NPC are stored (respectively) to TPC[TL] and TNPC[TL]; the more-significant 32 bits
of TPC[TL] and TNPC[TL] are set to 0.

67, 67,
111, 174,
226, 357

126-
V9-
Ms10

Register Windows State registers width
Privileged registers CWP, CANSAVE, CANRESTORE, OTHERWIN, and CLEANWIN
contain values in the range 0 to N_REG_WINDOWS − 1. An attempt to write a value
greater than N_REG_WINDOWS − 1 to any of these registers causes an implementation-
dependent value between 0 and N_REG_WINDOWS − 1 (inclusive) to be written to the
register. Furthermore, an attempt to write a value greater than N_REG_WINDOWS − 2
violates the register window state definition in Register Window Management
Instructions on page 83.
Although the width of each of these five registers is architecturally 5 bits, the width is
implementation dependent and shall be between log2(N_REG_WINDOWS) and 5 bits,
inclusive. If fewer than 5 bits are implemented, the unimplemented upper bits shall
read as 0 and writes to them shall have no effect. All five registers should have the
same width.
For UltraSPARC Architecture 2007 processors, = 8. Therefore, each register window
state register is implemented with 3 bits, the maximum value for CWP and
CLEANWIN is 7, and the maximum value for CANSAVE, CANRESTORE, and
OTHERWIN is 6. When these registers are written by the WRPR instruction, bits 63:3 of
the data written are ignored.

58

127–199 Reserved. —

TABLE B-1 SPARC V9 Implementation Dependencies (7 of 7)

Nbr Category Description Page
APPENDIX B • Implementation Dependencies 403

TABLE B-2 UltraSPARC Architecture Implementation Dependencies (1 of 5)

Nbr Description Page

200–201 Reserved. —

203-U3-
Cs10

Dispatch Control register (DCR) bits 13:6 and 1
This implementation dependency no longer applies, as of UltraSPARC Architecture 2005.

204-U3-
CS10

DCR bits 5:3 and 0
This implementation dependency no longer applies, as of UltraSPARC Architecture 2005.

205-U3-
Cs10

Instruction Trap Register
This implementation dependency no longer applies, as of UltraSPARC Architecture 2005.

206-U3-
Cs10

SHUTDOWN instruction

208-U3 Ordering of errors captured in instruction execution
The order in which errors are captured in instruction execution is implementation
dependent. Ordering may be in program order or in order of detection.

—

209-U3 Software intervention after instruction-induced error
Precision of the trap to signal an instruction-induced error of which recovery requires
software intervention is implementation dependent.

—

211-U3 Error logging registers’ information
The information that the error logging registers preserves beyond the reset induced by an
ERROR signal is implementation dependent.

—

212-U3-
Cs10

Trap with fatal error
This implementation dependency no longer applies, as of UltraSPARC Architecture 2005.

—

213-U3 AFSR.priv
The existence of the AFSR.priv bit is implementation dependent. If AFSR.priv is
implemented, it is implementation dependent whether the logged AFSR.priv indicates the
privileged state upon the detection of an error or upon the execution of an instruction that
induces the error. For the former implementation to be effective, operating software must
provide error barriers appropriately.

—

226-U3 TTE support for cv bit
Whether the cv bit is supported in TTE is implementation dependent in the UltraSPARC
Architecture. When the cv bit in TTE is not provided and the implementation has virtually
indexed caches, the implementation should support hardware unaliasing for the caches.

375

227-U3 TSB number of entries
The maximum number of entries in a TSB is implementation dependent in the UltraSPARC
Architecture (to a maximum of 16 million).

377

228-U3-
Cs10

This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

229-U3-
Cs10

This implementation dependency no longer applies, as of UltraSPARC Architecture 2005.TSB
Base address generation
Whether the implementation generates the TSB Base address by exclusive-ORing the TSB
Base register and a TSB register or by taking the tsb_base field directly from a TSB register
is implementation dependent in UltraSPARC Architecture. This implementation
dependency existed for UltraSPARC III/IV, only to maintain compatibility with the TLB
miss handling software of UltraSPARC I/II.

—

230 Reserved. —

230-U3-
Cs20

This implementation dependency no longer applies, in UltraSPARC Architecture 2007 —

232-U3-
Cs10

This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

233-U3-
Cs10

This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

235-U3-
Cs10

This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —
404 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

236-U3-
Cs10

This implementation dependency no longer applies, as of UltraSPARC Architecture 2005.t —

239-U3-
Cs10

This implementation dependency no longer applies, as of UltraSPARC Architecture 2005.

240-U3-
Cs10

Reserved. —

243-U3 This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

244-U3-
Cs10

Data Watchpoint Reliability
Data Watchpoint traps are completely implementation-dependent in UltraSPARC
Architecture processors.

—

245-U3-
Cs10

This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

248-U3 Conditions for fp_exception_other with unfinished_FPop
The conditions under which an fp_exception_other exception with floating-point trap type
of unfinished_FPop can occur are implementation dependent. An implementation may
cause fp_exception_other with unfinished_FPop under a different (but specified) set of
conditions.

45

249-U3-
Cs10

Data Watchpoint for Partial Store Instruction
For an STPARTIAL instruction, the following aspects of data watchpoints are
implementation dependent: (a) whether data watchpoint logic examines the byte store
mask in R[rs2] or it conservatively behaves as if every Partial Store always stores all 8
bytes, and (b) whether data watchpoint logic examines individual bits in the Virtual
(Physical) Data Watchpoint Mask in DCUCR to determine which bytes are being watched
or (when the Watchpoint Mask is nonzero) it conservatively behaves as if all 8 bytes are
being watched.

262

250-U3-
Cs10

Thisimplementation dependency no longer applies, as of UltraSPARC Architecture 2007. —

251 Reserved.

252-U3-
Cs10

Thisimplementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

253-U3-
Cs10

Thisimplementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

255-U3-
Cs10

LDDFA with ASI E016 or E116 and misaligned destination register number
If an LDDFA opcode is used with an ASI of E016 or E116 (Block Store Commit ASI, an
illegal combination with LDDFA) and a destination register number rd is specified which is
not a multiple of 8 (“misaligned” rd), an UltraSPARC Architecture virtual processor
generates an illegal_instruction exception.

185

256-U3 LDDFA with ASI E016 or E116 and misaligned memory address
If an LDDFA opcode is used with an ASI of E016 or E116 (Block Store Commit ASI, an
illegal combination with LDDFA) and a memory address is specified with less than 64-byte
alignment, the virtual processor generates an exception. It is implementation dependent
whether the exception generated is DAE_invalid_asi, mem_address_not_aligned, or
LDDF_mem_address_not_aligned.

185

257-U3 LDDFA with ASI C016–C516 or C816–CD16 and misaligned memory address
If an LDDFA opcode is used with an ASI of C016–C516 or C816–CD16 (Partial Store ASIs,
which are an illegal combination with LDDFA) and a memory address is specified with
less than 8-byte alignment, the virtual processor generates n exception. It is
implementation dependent whether the exception generated is DAE_invalid_asi,
mem_address_not_aligned, or LDDF_mem_address_not_aligned.

185

259–299 Reserved. —

TABLE B-2 UltraSPARC Architecture Implementation Dependencies (2 of 5)

Nbr Description Page
APPENDIX B • Implementation Dependencies 405

300-U4-
Cs10

Attempted access to ASI registers with LDTWA
If an LDTWA instruction referencing a non-memory ASI is executed, it generates a
DAE_invalid_asi exception.

195

301-U4-
Cs10

Attempted access to ASI registers with STTWA
If an STTWA instruction referencing a non-memory ASI is executed, it generates a
DAE_invalid_asi exception.

268

302-U4-
Cs10

Scratchpad registers
An UltraSPARC Architecture processor includes eight privileged Scratchpad registers (64
bits each, read/write accessible).

334

303-U4-
CS10

This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

305-U4-
Cs10

Thisimplementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

306-U4-
Cs10

Trap type generated upon attempted access to noncacheable page with LDTXA
When an LDTXA instruction attempts access from an address that is not mapped to
cacheable memory space, a DAE_nc_page exception is generated.

198

307-U4-
Cs10

Thisimplementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

308-U3-
Cs10

Thisimplementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

309-U4-
Cs10

Reserved. —

310-U4 Large page sizes
Which, if any, of the following optional page sizes are supported by the MMU in an
UltraSPARC Architecture implementation is implementation dependent: 512 KBytes, 32
MBytes, 256 MBytes, 2 GBytes, and 16 GBytes.

369

311–319 Reserved.

327–399 Reserved

400-S10 Global Level register (GL) implementation
Although GL is defined as a 4-bit register, an implementation may implement any subset
of those bits sufficient to encode the values from 0 to MAXPGL for that implementation. If
any bits of GL are not implemented, they read as zero and writes to them are ignored.

70

401-S10 Maximum Global Level (MAXPGL)
The architectural parameter MAXPGL is a constant for each implementation; its legal values
are from 2 to 15 (supporting from 3 to 16 sets of global registers). In a typical
implementation MAXPGL = MAXPTL (see impl. dep. #101-V9-CS10).
Architecturally, MAXPTL must be ≥ 2.

68, 70

403-S10 Setting of “dirty” bits in FPRS
A “dirty” bit (du or dl) in the FPRS register must be set to ‘1’ if any of its corresponding F
registers is actually modified. If an instruction that normally writes to an F register is
executed and causes an fp_disabled exception, FPRS.du and FPRS.dl are unchanged.
Beyond that, the specific conditions under which a dirty bit is set are implementation
dependent.

53, 53

404-S10 Scratchpad registers 4 through 7
The degree to which Scratchpad registers 4–7 are accessible to privileged software is
implementation dependent. Each may be (1) fully accessible, (2) accessible, with access
much slower than to scratchpad register 0–3, or (3) inaccessible (cause a DAE_invalid_asi
exception).

334

TABLE B-2 UltraSPARC Architecture Implementation Dependencies (3 of 5)

Nbr Description Page
406 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

405-S10 Virtual address range
An UltraSPARC Architecture implementation may support a full 64-bit virtual address
space or a more limited range of virtual addresses. In an implementation that does not
support a full 64-bit virtual address space, the supported range of virtual addresses is
restricted to two equal-sized ranges at the extreme upper and lower ends of 64-bit
addresses; that is, for n-bit virtual addresses, the valid address ranges are 0 to 2n−1 − 1 and
264 − 2n−1 to 264 − 1. (see also impl. dep. #451-S20)

18

409-S10 FLUSH instruction and memory consistency
The implementation of the FLUSH instruction is implementation dependent.
If the implementation automatically maintains consistency between instruction and data
memory,
(1) the FLUSH address is ignored and
(2) the FLUSH instruction cannot cause any data access exceptions, because its effective

address operand is not translated or used by the MMU.
On the other hand, if the implementation does not maintain consistency between
instruction and data memory, the FLUSH address is used to access the MMU and the
FLUSH instruction can cause data access exceptions.

134

410-S10 Block Load behavior
The following aspects of the behavior of block load (LDBLOCKF) instructions are
implementation dependent:
• What memory ordering model is used by LDBLOCKF (LDBLOCKF is not required to

follow TSO memory ordering)
• Whether LDBLOCKF follows memory ordering with respect to stores (including block

stores), including whether the virtual processor detects read-after-write and write-after-
read hazards to overlapping addresses

• Whether LDBLOCKF appears to execute out of order, or follow LoadLoad ordering
(with respect to older loads, younger loads, and other LDBLOCKFs)

• Whether LDBLOCKF follows register-dependency interlocks, as do ordinary load
instructions

•

179

• Whether the MMU ignores the side-effect bit (TTE.e) for LDBLOCKF accesses
(in which case, LDBLOCKFs behave as if TTE.e = 0)

307

• Whether VA_watchpoint exceptions are recognized on accesses to all 64 bytes of a
LDBLOCKF (the recommended behavior), or only on accesses to the first eight bytes

179, 180

411-S10 Block Store behavior
The following aspects of the behavior of block store (STBLOCKF) instructions are
implementation dependent:
• The memory ordering model that STBLOCKF follows (other than as constrained by the

rules outlined on page 251).
• Whether VA_watchpoint exceptions are recognized on accesses to all 64 bytes of a

STBLOCKF (the recommended behavior), or only on accesses to the first eight bytes.
• Whether STBLOCKFs to non-cacheable pages execute in strict program order or not. If

not, a STBLOCKF to a non-cacheable page causes a DAE_nc_page exception.
• Whether STBLOCKF follows register dependency interlocks (as ordinary stores do).
• Whether a non-Commit STBLOCKF forces the data to be written to memory and

invalidates copies in all caches present (as the Commit variants of STBLOCKF do).

251, 252

• Whether the MMU ignores the side-effect bit (TTE.e) for STBLOCKF accesses
(in which case, STBLOCKFs behave as if TTE.e = 0)

307

• Any other restrictions on the behavior of STBLOCKF, as described in implementation-
specific documentation.

412-S10 MEMBAR behavior
An UltraSPARC Architecture implementation may define the operation of each MEMBAR
variant in any manner that provides the required semantics.

202

TABLE B-2 UltraSPARC Architecture Implementation Dependencies (4 of 5)

Nbr Description Page
APPENDIX B • Implementation Dependencies 407

413-S10 Load Twin Extended Word behavior
It is implementation dependent whether VA_watchpoint exceptions are recognized on
accesses to all 16 bytes of a LDTXA instruction (the recommended behavior) or only on
accesses to the first 8 bytes.

198

414 Reserved. —

415-S10 Size of ContextID fields
The size of context ID fields in MMU context registers is implementation-dependent and
may range from 13 to 16 bits.

381

417-S10 Behavior of DONE and RETRY when TSTATE[TL].pstate.am = 1
If (1) TSTATE[TL].pstate.am = 1 and (2) a DONE or RETRY instruction is executed (which
sets PSTATE.am to ’1’ by restoring the value from TSTATE[TL].pstate.am to PSTATE.am),
it is implementation dependent whether the DONE or RETRY instruction masks (zeroes)
the more-significant 32 bits of the values it places into PC and NPC.

68, 114233

442-S10 STICK register
a: If an accurate count cannot always be returned when STICK is read, any inaccuracy

should be small, bounded, and documented.
b: An implementation may implement fewer than 63 bits in STICK.counter; however, the
counter as implemented must be able to count for at least 10 years without overflowing.
Any high-order bits not implemented must read as 0.

57

444–449 Reserved for UltraSPARC Architecture 2005

450-S20 Availability of control_transfer_instruction exception feature
Availability of the control_transfer_instruction exception feature is implementation
dependent. If not implemented, trap type 07416 is unused, PSTATE.tct always reads as
zero, and writes to PSTATE.tct are ignored.

65,358

451-S20 Width of Virtual Addresses supported
The width of the virtual address supported is implementation dependent. If fewer than 64
bits are supported, the unsupported bits must have the same value as the most significant
supported bit. For example, if the model supports 48 virtual address bits, then bits 63:48
must have the same value as bit 47. (see also impl. dep. #405-S10)

369,

452-S20 Width of Real Addresses supported
The number of real address (RA) bits supported is implementation dependent. A
minimum of 40 bits and maximum of 56 bits can be provided for real addresses (RA). See
implementation-specific documentation for details.

369

453-S20 Unified vs. Split Instruction and Data MMUs
It is implementation dependent whether there is a unified MMU (UMMU) or a separate
IMMU (for instruction accesses) and DMMU (for data accesses). The UltraSPARC
Architecture supports both configurations.

369

453-S20 Unified vs. Split Instruction and Data MMUs
It is implementation dependent whether there is a unified MMU (UMMU) or a separate
IMMU (for instruction accesses) and DMMU (for data accesses). The UltraSPARC
Architecture supports both configurations.

369

454-499 Reserved for UltraSPARC Architecture 2007

500
and up

Reserved for future use

TABLE B-2 UltraSPARC Architecture Implementation Dependencies (5 of 5)

Nbr Description Page
408 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

APPENDIX C

Assembly Language Syntax

This appendix supports Chapter 7, Instructions. Each instruction description in Chapter 7 includes a
table that describes the suggested assembly language format for that instruction. This appendix
describes the notation used in those assembly language syntax descriptions and lists some synthetic
instructions provided by UltraSPARC Architecture assemblers for the convenience of assembly
language programmers.

The appendix contains these sections:

■ Notation Used on page 409.
■ Syntax Design on page 414.
■ Synthetic Instructions on page 414.

C.1 Notation Used
The notations defined here are also used in the assembly language syntax descriptions in Chapter 7,
Instructions.

Items in typewriter font are literals to be written exactly as they appear. Items in italic font are
metasymbols that are to be replaced by numeric or symbolic values in actual SPARC V9 assembly
language code. For example, “imm_asi” would be replaced by a number in the range 0 to 255 (the
value of the imm_asi bits in the binary instruction) or by a symbol bound to such a number.

Subscripts on metasymbols further identify the placement of the operand in the generated binary
instruction. For example, regrs2 is a reg (register name) whose binary value will be placed in the rs2
field of the resulting instruction.

C.1.1 Register Names

reg. A reg is an intveger register name. It can have any of the following values:1

%r0–%r31
%g0–%g7 (global registers; same as %r0–%r7)
%o0–%o7 (out registers; same as %r8–%r15)
%l0–%l7 (local registers; same as %r16–%r23)
%i0–%i7 (in registers; same as %r24–%r31)
%fp (frame pointer; conventionally same as %i6)
%sp (stack pointer; conventionally same as %o6)

Subscripts identify the placement of the operand in the binary instruction as one of the following:

1. In actual usage, the %sp, %fp, %gn, %on, %ln, and %in forms are preferred over %rn.
409

regrs1 (rs1 field)
regrs2 (rs2 field)
regrd (rd field)

freg. An freg is a floating-point register name. It may have the following values:
%f0, %f1, %f2, ... %f31
%f32, %f34, ... %f60, %f62 (even-numbered only, from %f32 to %f62)
%d0, %d2, %d4, ... %d60, %d62 (%dn, where n mod 2 = 0, only)
%q0, %q4, %q8, ... %q56, %q60 (%qn, where n mod 4 = 0, only)

See Floating-Point Registers on page 38 for a detailed description of how the single-precision,
double-precision, and quad-precision floating-point registers overlap.

Subscripts further identify the placement of the operand in the binary instruction as one of the
following:

fregrs1 (rs1 field)
fregrs2 (rs2 field)
fregrs3 (rs3 field)
fregrd (rd field)

asr_reg. An asr_reg is an Ancillary State Register name. It may have one of the following values:
%asr16–%asr31

Subscripts further identify the placement of the operand in the binary instruction as one of the
following:

asr_regrs1 (rs1 field)
asr_regrd (rd field)

i_or_x_cc. An i_or_x_cc specifies a set of integer condition codes, those based on either the 32-bit
result of an operation (icc) or on the full 64-bit result (xcc). It may have either of the following
values:

%icc
%xcc

fccn. An fccn specifies a set of floating-point condition codes. It can have any of the following
values:

%fcc0
%fcc1
%fcc2
%fcc3

C.1.2 Special Symbol Names
Certain special symbols appear in the syntax table in typewriter font. They must be written exactly as
they are shown, including the leading percent sign (%).

The symbol names and the registers or operators to which they refer are as follows:

%asi Address Space Identifier (ASI) register
%canrestore Restorable Windows register
%cansave Savable Windows register
%ccr Condition Codes register
%cleanwin Clean Windows register
%cwp Current Window Pointer (CWP) register
410 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

%fprs Floating-Point Registers State (FPRS) register
%fsr Floating-Point State register
%gsr General Status Register (GSR)
%otherwin Other Windows (OTHERWIN) register
%pc Program Counter (PC) register
%pil Processor Interrupt Level register
%pstate Processor State register
%softint Soft Interrupt register
%softint_clr Soft Interrupt register (clear selected bits)
%softint_set Soft Interrupt register (set selected bits)
%stick † System Timer (STICK) register
%stick_cmpr † System Timer Compare (STICK_CMPR) register
%tba Trap Base Address (TBA) register
%tick Cycle count (TICK) register
%tick_cmpr Timer Compare (TICK_CMPR) register
%tl Trap Level (TL) register
%tnpc Trap Next Program Counter (TNPC) register
%tpc Trap Program Counter (TPC) register
%tstate Trap State (TSTATE) register
%tt Trap Type (TT) register
%wstate Window State register
%y Y register

† The original assembly language names for %stick and %stick_cmpr were, respectively, %sys_tick and %sys_tick_cmpr,
which are now deprecated. Over time, assemblers will support the new %stick and %stick_cmpr names for these registers (which
are consistent with %tick and %tick_cmpr). In the meantime, some existing assemblers may only recognize the original names.

The following special symbol names are prefix unary operators that perform the functions described,
on an argument that is a constant, symbol, or expression that evaluates to a constant offset from a
symbol:

%hh Extracts bits 63:42 (high 22 bits of upper word) of its operand
%hm Extracts bits 41:32 (low-order 10 bits of upper word) of its operand
%hi or %lm Extracts bits 31:10 (high-order 22 bits of low-order word) of its operand
%lo Extracts bits 9:0 (low-order 10 bits) of its operand

For example, the value of "%lo(symbol)" is the least-significant 10 bits of symbol.

Certain predefined value names appear in the syntax table in typewriter font. They must be
written exactly as they are shown, including the leading sharp sign (#). The value names and the
constant values to which they are bound are listed in TABLE C-1.

TABLE C-1 Value Names and Values (1 of 2)

Value Name in Assembly Language Value Comments

for PREFETCH instruction “fcn” field

#n_reads 0

#one_read 1

#n_writes 2

#one_write 3

#page 4

#unified 17 (1116)

#n_reads_strong 20 (1416)
APPENDIX C • Assembly Language Syntax 411

C.1.3 Values
Some instructions use operand values as follows:

const4 A constant that can be represented in 4 bits
const22 A constant that can be represented in 22 bits
imm_asi An alternate address space identifier (0–255)
siam_mode A 3-bit mode value for the SIAM instruction
simm7 A signed immediate constant that can be represented in 7 bits
simm8 A signed immediate constant that can be represented in 8 bits
simm10 A signed immediate constant that can be represented in 10 bits
simm11 A signed immediate constant that can be represented in 11 bits
simm13 A signed immediate constant that can be represented in 13 bits
value Any 64-bit value
shcnt32 A shift count from 0–31
shcnt64 A shift count from 0–63

C.1.4 Labels
A label is a sequence of characters that comprises alphabetic letters (a–z, A–Z [with upper and lower
case distinct]), underscores (_), dollar signs ($), periods (.), and decimal digits (0-9). A label may
contain decimal digits, but it may not begin with one. A local label contains digits only.

C.1.5 Other Operand Syntax
Some instructions allow several operand syntaxes, as follows:

reg_plus_imm Can be any of the following:

regrs1 (equivalent to regrs1 + %g0)
regrs1 + simm13

#one_read_strong 21 (1516)

#n_writes_strong 22 (1616)

#one_write_strong 23 (1716)

for MEMBAR instruction “mmask” field

#LoadLoad 0116

#StoreLoad 0216

#LoadStore 0416

for MEMBAR instruction “cmask” field

#StoreStore 0816

#Lookaside 1016

#MemIssue 2016

#Sync 4016

TABLE C-1 Value Names and Values (2 of 2)

Value Name in Assembly Language Value Comments
412 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

regrs1 – simm13
simm13 (equivalent to %g0 + simm13)
simm13 + regrs1(equivalent to regrs1 + simm13)

address Can be any of the following:

regrs1 (equivalent to regrs1 + %g0)
regrs1 + simm13
regrs1 – simm13
simm13 (equivalent to %g0 + simm13)
simm13 + regrs1(equivalent to regrs1 + simm13)
regrs1 + regrs2

membar_mask Is the following:

const7 A constant that can be represented in 7 bits. Typically, this is an expression
involving the logical OR of some combination of #Lookaside, #MemIssue,
#Sync, #StoreStore, #LoadStore, #StoreLoad, and #LoadLoad (see TABLE 7-7
and TABLE 7-8 on page 202 for a complete list of mnemonics).

prefetch_fcn (prefetch function) Can be any of the following:
0–31

Predefined constants (the values of which fall in the 0-31 range) useful as prefetch_fcn values can
be found in TABLE C-1 on page 411.

regaddr (register-only address) Can be any of the following:

regrs1 (equivalent to regrs1 + %g0)
regrs1 + regrs2

reg_or_imm (register or immediate value) Can be either of:

regrs2
simm13

reg_or_imm5 (register or immediate value) Can be either of:

regrs2
simm5

reg_or_imm10 (register or immediate value) Can be either of:

regrs2
simm10

reg_or_imm11 (register or immediate value) Can be either of:

regrs2
simm11

reg_or_shcnt (register or shift count value) Can be any of:

regrs2
APPENDIX C • Assembly Language Syntax 413

shcnt32
shcnt64

software_trap_number Can be any of the following:

regrs1 (equivalent to regrs1 + %g0)
regrs1 + regrs2

regrs1 + simm8
regrs1 – simm8
simm8 (equivalent to %g0 + simm8)
simm8 + regrs1 (equivalent to regrs1 + simm8)

The resulting operand value (software trap number) must be in the range 0–255, inclusive.

C.1.6 Comments
Two types of comments are accepted by the SPARC V9 assembler: C-style “/*...*/” comments,
which may span multiple lines, and “!...” comments, which extend from the “!” to the end of the
line.

C.2 Syntax Design
The SPARC V9 assembly language syntax is designed so that the following statements are true:

■ The destination operand (if any) is consistently specified as the last (rightmost) operand in an
assembly language instruction.

■ A reference to the contents of a memory location (for example, in a load, store, or load-store
instruction) is always indicated by square brackets ([]); a reference to the address of a memory
location (such as in a JMPL, CALL, or SETHI) is specified directly, without square brackets.

The follow additional syntax constraints have been adopted for UltraSPARC Architecture:

■ Instruction mnemonics should be limited to a maximum of 15 characters.

C.3 Synthetic Instructions
TABLE C-2 describes the mapping of a set of synthetic (or “pseudo”) instructions to actual instructions.
These synthetic instructions are provided by the SPARC V9 assembler for the convenience of assembly
language programmers.

Note: Synthetic instructions should not be confused with “pseudo ops,” which typically provide
information to the assembler but do not generate instructions. Synthetic instructions always generate
instructions; they provide more mnemonic syntax for standard SPARC V9 instructions.

TABLE C-2 Mapping Synthetic to SPARC V9 Instructions (1 of 3)

Synthetic Instruction SPARC V9 Instruction(s) Comment

cmp regrs1, reg_or_imm subcc regrs1, reg_or_imm, %g0 Compare.

jmp address jmpl address, %g0

call address jmpl address, %o7
414 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

iprefetch label bn,a,pt %xcc,label Originally envisioned as an
encoding for an "instruction
prefetch" operation, but
functions as a NOP on all
UltraSPARC Architecture
implementations. (See
PREFETCH function 17 on
page 219 for an alternative
method of prefetching
instructions.)

tst regrs1 orcc %g0, regrs1, %g0 Test.

ret jmpl %i7+8, %g0 Return from subroutine.

retl jmpl %o7+8, %g0 Return from leaf subroutine.

restore restore %g0, %g0, %g0 Trivial RESTORE.

save save %g0, %g0, %g0 Trivial SAVE.
(Warning: trivial SAVE should
only be used in kernel code!)

setuw value,regrd sethi %hi(value), regrd (When ((value&3FF16) == 0).)

— or —

or %g0, value, regrd (When 0 ≤ value ≤ 4095).

— or —

sethi %hi(value), regrd; (Otherwise)

or regrd, %lo(value), regrd Warning: do not use setuw in
the delay slot of a DCTI.

set value,regrd synonym for setuw.

setsw value,regrd sethi %hi(value), regrd (When (value> = 0) and
((value & 3FF16) == 0).)

— or —

or %g0, value, regrd (When 4096 ≤ value ≤ 4095).

— or —

sethi %hi(value), regrd (Otherwise, if (value < 0) and
((value & 3FF16) = = 0))

sra regrd, %g0, regrd

— or —

sethi %hi(value), regrd; (Otherwise, if value 0)

or regrd, %lo(value), regrd

— or —

sethi %hi(value), regrd; (Otherwise, if value < 0)

or regrd, %lo(value), regrd

sra regrd, %g0, regrd Warning: do not use setsw in
the delay slot of a CTI.

setx value, reg, regrd sethi %hh(value), reg Create 64-bit constant.

or reg, %hm(value), reg (“reg” is used as a temporary
register.)sllx reg,32,reg

sethi %hi(value), regrd Note: setx optimizations are
possible but not enumerated
here. The worst case is shown.
Warning: do not use setx in the
delay slot of a CTI.

or regrd, reg, regrd

or regrd, %lo(value), regrd

signx regrs1, regrd sra regrs1, %g0, regrd Sign-extend 32-bit value to
64 bits.signx regrd sra regrd, %g0, regrd

TABLE C-2 Mapping Synthetic to SPARC V9 Instructions (2 of 3)

Synthetic Instruction SPARC V9 Instruction(s) Comment
APPENDIX C • Assembly Language Syntax 415

not regrs1, regrd xnor regrs1, %g0, regrd One’s complement.

not regrd xnor regrd, %g0, regrd One’s complement.

neg regrs2, regrd sub %g0, regrs2, regrd Two’s complement.

neg regrd sub %g0, regrd, regrd Two’s complement.

cas [regrs1], regrs2, regrd casa [regrs1]#ASI_P, regrs2, regrd Compare and swap.

casl [regrs1], regrs2, regrd casa [regrs1]#ASI_P_L, regrs2, regrd Compare and swap, little-endian.

casx [regrs1], regrs2, regrd casxa [regrs1]#ASI_P, regrs2, regrd Compare and swap extended.

casxl [regrs1], regrs2, regrd casxa [regrs1]#ASI_P_L, regrs2, regrd Compare and swap extended,
little-endian.

inc regrd add regrd, 1, regrd Increment by 1.

inc const13,regrd add regrd, const13, regrd Increment by const13.

inccc regrd addcc regrd, 1, regrd Increment by 1; set icc & xcc.

inccc const13,regrd addcc regrd, const13, regrd Incr by const13; set icc & xcc.

dec regrd sub regrd, 1, regrd Decrement by 1.

dec const13, regrd sub regrd, const13, regrd Decrement by const13.

deccc regrd subcc regrd, 1, regrd Decrement by 1; set icc & xcc.

deccc const13, regrd subcc regrd, const13, regrd Decr by const13; set icc & xcc.

btst reg_or_imm, regrs1 andcc regrs1, reg_or_imm, %g0 Bit test.

bset reg_or_imm, regrd or regrd, reg_or_imm, regrd Bit set.

bclr reg_or_imm, regrd andn regrd, reg_or_imm, regrd Bit clear.

btog reg_or_imm, regrd xor regrd, reg_or_imm, regrd Bit toggle.

clr regrd or %g0, %g0, regrd Clear (zero) register.

clrb [address] stb %g0, [address] Clear byte.

clrh [address] sth %g0, [address] Clear half-word.

clr [address] stw %g0, [address] Clear word.

clrx [address] stx %g0, [address] Clear extended word.

clruw regrs1, regrd srl regrs1, %g0, regrd Copy and clear upper word.

clruw regrd srl regrd, %g0, regrd Clear upper word.

mov reg_or_imm, regrd or %g0, reg_or_imm, regrd

mov %y, regrd rd %y, regrd

mov %asrn, regrd rd %asrn, regrd

mov reg_or_imm, %y wr %g0, reg_or_imm, %y

mov reg_or_imm, %asrn wr %g0, reg_or_imm, %asrn

TABLE C-2 Mapping Synthetic to SPARC V9 Instructions (3 of 3)

Synthetic Instruction SPARC V9 Instruction(s) Comment
416 UltraSPARC Architecture 2007 • Draft D0.9.3b, 20 Oct 2009

Index
A
a (annul) instruction field

branch instructions, 104, 107, 109, 122, 125
accesses

cacheable, 306
I/O, 307
restricted ASI, 309
with side effects, 307, 314

accrued exception (aexc) field of FSR register, 46, 348, 398
ADD instruction, 97
ADDC instruction, 97
ADDcc instruction, 97, 245
ADDCcc instruction, 97
address

operand syntax, 413
space identifier (ASI), 321

address mask (am) field of PSTATE register
description, 66

address space, 5, 13
address space identifier (ASI), 5, 305

accessing MMU registers, 380
appended to memory address, 17, 71
architecturally specified, 309
changed in, 335
changed in UA

ASI_REAL, 334
ASI_REAL_IO, 334
ASI_REAL_IO_LITTLE, 334
ASI_REAL_LITTLE, 334
ASI_TWINX_N, 335
ASI_TWINX_NL, 335
ASI_TWINX_NUCLEUS_LITTLE, 335

definition, 5
encoding address space information, 73
explicit, 76
explicitly specified in instruction, 77
implicit, See implicit ASIs
nontranslating, 8, 195, 268
nontranslating ASI, 322
with prefetch instructions, 220
real ASI, 322
restricted, 309, 321

privileged, 310
restriction indicator, 51
SPARC V9 address, 308

translating ASI, 322
unrestricted, 310, 321

address space identifier (ASI) register
for load/store alternate instructions, 51
address for explicit ASI, 76
and LDDA instruction, 183, 194
and LDSTUBA instruction, 191
load integer from alternate space instructions, 176
with prefetch instructions, 220
for register-immediate addressing, 309
restoring saved state, 114, 233
saving state, 341
and STDA instruction, 267
store floating-point into alternate space instructions, 255
store integer to alternate space instructions, 248
and SWAPA instruction, 272
after trap, 21
and TSTATE register, 63
and write state register instructions, 286

addressing modes, 14
ADDX instruction (SPARC V8), 97
ADDXcc instruction (SPARC V8), 97
alias

floating-point registers, 38
aliased, 5
ALIGNADDRESS instruction, 98
ALIGNADDRESS_LITTLE instruction, 98
alignment

data (load/store), 18, 73, 308
doubleword, 18, 73, 308
extended-word, 73
halfword, 18, 73, 308
instructions, 18, 73, 308
integer registers, 185, 192, 195
memory, 308, 361
quadword, 18, 73, 308
word, 18, 73, 308

ALLCLEAN instruction, 99
alternate space instructions, 19, 51
ancillary state registers (ASRs)

access, 48
assembly language syntax, 410
I/O register access, 19
possible registers included, 226, 286
privileged, 20, 397
1

reading/writing implementation-dependent processor
registers, 20, 397

writing to, 286
AND instruction, 100
ANDcc instruction, 100
ANDN instruction, 100
ANDNcc instruction, 100
annul bit

in branch instructions, 109
in conditional branches, 123

annulled branches, 109
application program, 5, 48
architectural direction note, 4
architecture, meaning for SPARC V9, 13
arithmetic overflow, 51
ARRAY16 instruction, 101
ARRAY32 instruction, 101
ARRAY8 instruction, 101
ASI, 5

invalid, and DAE_invalid_asi, 359
ASI register, 49
ASI, See address space identifier (ASI)
ASI_AIUP, 323, 329
ASI_AIUPL, 323, 330
ASI_AIUS, 323, 329
ASI_AIUS_L, 197
ASI_AIUSL, 323, 330
ASI_AS_IF_USER*, 67, 373
ASI_AS_IF_USER_NONFAULT_LITTLE, 310
ASI_AS_IF_USER_PRIMARY, 323, 329, 359, 372
ASI_AS_IF_USER_PRIMARY_LITTLE, 310, 323, 330, 359
ASI_AS_IF_USER_SECONDARY, 310, 323, 329, 359, 372
ASI_AS_IF_USER_SECONDARY_LITTLE, 310, 323, 330,

359
ASI_AS_IF_USER_SECONDARY_NOFAULT_LITTLE, 310
ASI_BLK_AIUP, 323, 329
ASI_BLK_AIUPL, 323, 330
ASI_BLK_AIUS, 323, 329
ASI_BLK_AIUSL, 323, 330
ASI_BLK_COMMIT_P, 327
ASI_BLK_COMMIT_S, 327
ASI_BLK_P, 327
ASI_BLK_PL, 327
ASI_BLK_S, 327
ASI_BLK_SL, 327
ASI_BLOCK_AS_IF_USER_PRIMARY, 323, 329
ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE, 323, 330
ASI_BLOCK_AS_IF_USER_SECONDARY, 323, 329
ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE, 323, 330
ASI_BLOCK_COMMIT_PRIMARY, 327
ASI_BLOCK_COMMIT_SECONDARY, 327
ASI_BLOCK_PRIMARY, 327
ASI_BLOCK_PRIMARY_LITTLE, 327
ASI_BLOCK_SECONDARY, 327
ASI_BLOCK_SECONDARY_LITTLE, 327
ASI_FL16_P, 326
ASI_FL16_PL, 327
ASI_FL16_PRIMARY, 326
ASI_FL16_PRIMARY_LITTLE, 327
ASI_FL16_S, 326

ASI_FL16_SECONDARY, 326
ASI_FL16_SECONDARY_LITTLE, 327
ASI_FL16_SL, 327
ASI_FL8_P, 326
ASI_FL8_PL, 326
ASI_FL8_PRIMARY, 326
ASI_FL8_PRIMARY_LITTLE, 326
ASI_FL8_S, 326
ASI_FL8_SECONDARY, 326
ASI_FL8_SECONDARY_LITTLE, 327
ASI_FL8_SL, 327
ASI_MMU_CONTEXTID, 324
ASI_N, 323
ASI_NL, 323
ASI_NUCLEUS, 76, 77, 323, 372
ASI_NUCLEUS_LITTLE, 77, 323
ASI_NUCLEUS_QUAD_LDD (deprecated), 335
ASI_NUCLEUS_QUAD_LDD_L (deprecated), 335
ASI_NUCLEUS_QUAD_LDD_LITTLE (deprecated), 335
ASI_P, 325
ASI_PHY_BYPASS_EC_WITH_EBIT_L, 334
ASI_PHYS_BYPASS_EC_WITH_EBIT, 334
ASI_PHYS_BYPASS_EC_WITH_EBIT_LITTLE, 334
ASI_PHYS_USE_EC, 334
ASI_PHYS_USE_EC_L, 334
ASI_PHYS_USE_EC_LITTLE, 334
ASI_PL, 325
ASI_PNF, 325
ASI_PNFL, 325
ASI_PRIMARY, 76, 309, 310, 325
ASI_PRIMARY_LITTLE, 77, 309, 325, 378
ASI_PRIMARY_NO_FAULT, 307, 319, 325
ASI_PRIMARY_NO_FAULT_LITTLE, 307, 319, 325, 359
ASI_PRIMARY_NOFAULT_LITTLE, 310
ASI_PST16_P, 260, 326
ASI_PST16_PL, 260, 326
ASI_PST16_PRIMARY, 326
ASI_PST16_PRIMARY_LITTLE, 326
ASI_PST16_S, 260, 326
ASI_PST16_SECONDARY, 326
ASI_PST16_SECONDARY_LITTLE, 326
ASI_PST16_SL, 260
ASI_PST32_P, 260, 326
ASI_PST32_PL, 260, 326
ASI_PST32_PRIMARY, 326
ASI_PST32_PRIMARY_LITTLE, 326
ASI_PST32_S, 260, 326
ASI_PST32_SECONDARY, 326
ASI_PST32_SECONDARY_LITTLE, 326
ASI_PST32_SL, 260, 326
ASI_PST8_P, 326
ASI_PST8_PL, 326
ASI_PST8_PRIMARY, 326
ASI_PST8_PRIMARY_LITTLE, 326
ASI_PST8_S, 326
ASI_PST8_SECONDARY, 326
ASI_PST8_SECONDARY_LITTLE, 326
ASI_PST8_SL, 260, 326
ASI_QUAD_LDD_REAL (deprecated), 325
ASI_QUAD_LDD_REAL_LITTLE (deprecated), 325
Index 2

ASI_REAL, 323, 330, 334
ASI_REAL_IO, 323, 330, 334
ASI_REAL_IO_L, 323
ASI_REAL_IO_LITTLE, 323, 331, 334
ASI_REAL_L, 323
ASI_REAL_LITTLE, 323, 330, 334
ASI_S, 325
ASI_SECONDARY, 325, 372
ASI_SECONDARY_LITTLE, 325
ASI_SECONDARY_NO_FAULT, 319, 325, 359
ASI_SECONDARY_NO_FAULT_LITTLE, 319, 326, 359
ASI_SECONDARY_NOFAULT, 310
ASI_SL, 325
ASI_SNF, 325
ASI_SNFL, 326
ASI_TWINX_AIUP, 197, 324, 331
ASI_TWINX_AIUP_L, 197, 331
ASI_TWINX_AIUPL, 325
ASI_TWINX_AIUS, 197, 331
ASI_TWINX_AIUS_L, 325, 331
ASI_TWINX_AS_IF_USER_PRIMARY, 324, 331
ASI_TWINX_AS_IF_USER_PRIMARY_LITTLE, 325, 331
ASI_TWINX_AS_IF_USER_SECONDARY, 324, 331
ASI_TWINX_AS_IF_USER_SECONDARY_LITTLE, 325, 331
ASI_TWINX_N, 197, 325, 335
ASI_TWINX_NL, 197, 325, 331, 335
ASI_TWINX_NUCLEUS, 325, 331, 335
ASI_TWINX_NUCLEUS[_L], 308
ASI_TWINX_NUCLEUS_LITTLE, 325, 331, 335
ASI_TWINX_P, 197, 327
ASI_TWINX_PL, 197, 327
ASI_TWINX_PRIMARY, 327, 332
ASI_TWINX_PRIMARY_LITTLE, 327, 332
ASI_TWINX_R, 325, 332
ASI_TWINX_REAL, 197, 325, 332
ASI_TWINX_REAL[_L], 308
ASI_TWINX_REAL_L, 325, 332
ASI_TWINX_REAL_LITTLE, 325, 332
ASI_TWINX_S, 197, 327
ASI_TWINX_SECONDARY, 327, 332
ASI_TWINX_SECONDARY_LITTLE, 327, 332
ASI_TWINX_SL, 197, 327
ASR, 5
asr_reg, 410
atomic

memory operations, 198, 316, 317
store doubleword instruction, 265, 267
store instructions, 247, 248

atomic load-store instructions
compare and swap, 112
load-store unsigned byte, 190, 272
load-store unsigned byte to alternate space, 191
simultaneously addressing doublewords, 271
swap R register with alternate space memory, 272
swap R register with memory, 112, 271

atomicity, 307, 403

B
BA instruction, 104, 389

BCC instruction, 104, 389
bclrg synthetic instruction, 416
BCS instruction, 104, 389
BE instruction, 104, 389
Berkeley RISCs, 15
BG instruction, 104, 389
BGE instruction, 104, 389
BGU instruction, 104, 389
Bicc instructions, 104, 383
big-endian, 5
big-endian byte order, 18, 65, 74
binary compatibility, 15
BL instruction, 104, 389
BLD, 5
BLD, See LDBLOCKF instruction
BLE instruction, 104, 389
BLEU instruction, 104, 389
block load instructions, 38, 178, 333
block store instructions, 38, 250, 333

with commit, 184, 251, 333
blocked byte formatting, 101
BMASK instruction, 106
BN instruction, 104, 389
BNE instruction, 104, 389
BNEG instruction, 104, 389
BP instructions, 389
BPA instruction, 107, 389
BPCC instruction, 107, 389
BPcc instructions, 51, 107, 390
BPCS instruction, 107, 389
BPE instruction, 107, 389
BPG instruction, 107, 389
BPGE instruction, 107, 389
BPGU instruction, 107, 389
BPL instruction, 107, 389
BPLE instruction, 107, 389
BPLEU instruction, 107, 389
BPN instruction, 107, 389
BPNE instruction, 107, 389
BPNEG instruction, 107, 389
BPOS instruction, 104, 389
BPPOS instruction, 107, 389
BPr instructions, 109, 389
BPVC instruction, 107, 389
BPVS instruction, 107, 389
branch

annulled, 109
delayed, 71
elimination, 83
fcc-conditional, 122, 125
icc-conditional, 104
instructions

on floating-point condition codes, 122
on floating-point condition codes with prediction, 124
on integer condition codes with prediction (BPcc), 107
on integer condition codes, See Bicc instructions
when contents of integer register match condition, 109

prediction bit, 109
unconditional, 104, 108, 122, 125
with prediction, 14
Index 3

BRGEZ instruction, 109
BRGZ instruction, 109
BRLEZ instruction, 109
BRLZ instruction, 109
BRNZ instruction, 109
BRZ instruction, 109
bset synthetic instruction, 416
BSHUFFLE instruction, 106
BST, 5
BST, See STBLOCKF instruction
btog synthetic instruction, 416
btst synthetic instruction, 416
BVC instruction, 104, 389
BVS instruction, 104, 389
byte, 5

addressing, 76
data format, 23
order, 18
order, big-endian, 18
order, little-endian, 18

byte order
big-endian, 65
implicit, 65
in trap handlers, 347
little-endian, 65

C
cache

coherency protocol, 306
data, 312
instruction, 312
miss, 224
nonconsistent instruction cache, 312

cacheable accesses, 306
caching, TSB, 377
CALL instruction

description, 111
displacement, 20
does not change CWP, 35
and JMPL instruction, 174
writing address into R[15], 37

call synthetic instruction, 414
CANRESTORE (restorable windows) register, 59

and clean_window exception, 84
and CLEANWIN register, 59, 61, 363
counting windows, 60
decremented by RESTORE instruction, 230
decremented by SAVED instruction, 239
detecting window underflow, 36
if registered window was spilled, 230
incremented by SAVE instruction, 237
modified by NORMALW instruction, 213
modified by OTHERW instruction, 215
range of values, 58, 403
RESTORE instruction, 84
specification for RDPR instruction, 228
specification for WRPR instruction, 288
window underflow, 363

CANSAVE (savable windows) register, 59

decremented by SAVE instruction, 237
detecting window overflow, 36
FLUSHW instruction, 136
if equals zero, 84
incremented by RESTORE, 230
incremented by SAVED instruction, 239
range of values, 58, 403
SAVE instruction, 364
specification for RDPR instruction, 228
specification for WRPR instruction, 288
window overflow, 363

CAS synthetic instruction, 317
CASA instruction, 112

32-bit compare-and-swap, 316
alternate space addressing, 18
and DAE_nc_page exception, 359
atomic operation, 190
hardware primitives for mutual exclusion of CASXA, 316
in multiprocessor system, 191, 271, 272
R register use, 73
word access (memory), 73

casn synthetic instructions, 416
CASX synthetic instruction, 316, 317
CASXA instruction, 112

64-bit compare-and-swap, 316
alternate space addressing, 18
and DAE_nc_page exception, 359
atomic operation, 191
doubleword access (memory), 73
hardware primitives for mutual exclusion of CASA, 316
in multiprocessor system, 190, 191, 271, 272
R register use, 73

catastrophic error exception, 341
cc0 instruction field

branch instructions, 107, 125
floating point compare instructions, 128
move instructions, 205, 389

cc1 instruction field
branch instructions, 107, 125
floating point compare instructions, 128
move instructions, 205, 389

cc2 instruction field
move instructions, 205, 389

CCR (condition codes register), 5
CCR (condition codes) register, 50

32-bit operation (icc) bit of condition field, 50, 51
64-bit operation (xcc) bit of condition field, 50, 51
ADD instructions, 97
ASR for, 49
carry (c) bit of condition fields, 51
icc field, See CCR.icc field
MULScc instruction, 209
negative (n) bit of condition fields, 50
overflow bit (v) in condition fields, 51
restored by RETRY instruction, 114, 233
saved after trap, 341
saving after trap, 21
TSTATE register, 63
write instructions, 286
xcc field, See CCR.xcc field
Index 4

zero (z) bit of condition fields, 51
CCR.icc field

add instructions, 97, 274
bit setting for signed division, 241
bit setting for signed/unsigned multiply, 246, 283
bit setting for unsigned division, 282
branch instructions, 104, 108, 206
integer subtraction instructions, 270
logical operation instructions, 100, 214, 290
MULScc instruction, 209
Tcc instruction, 277

CCR.xcc field
add instructions, 97, 274
bit setting for signed/unsigned divide, 241, 282
bit setting for signed/unsigned multiply, 246, 283
branch instructions, 108, 206
logical operation instructions, 100, 214, 290
subtract instructions, 270
Tcc instruction, 277

clean register window, 237, 358
clean window, 5

and window traps, 61, 362
CLEANWIN register, 61
definition, 363
number is zero, 84
trap handling, 364

clean_window exception, 59, 84, 238, 358, 363, 400
CLEANWIN (clean windows) register, 59

CANSAVE instruction, 84
clean window counting, 59
incremented by trap handler, 364
range of values, 58, 403
specification for RDPR instruction, 228
specification for WRPR instruction, 288
specifying number of available clean windows, 363
value calculation, 61

clock cycle, counts for virtual processor, 52
clock tick registers, See TICK and STICK registers
clock-tick register (TICK), 361
clrn synthetic instructions, 416
cmp synthetic instruction, 270, 414
code

self-modifying, 317
coherence, 5

between processors, 403
data cache, 312
domain, 306
memory, 307
unit, memory, 308

compare and swap instructions, 112
comparison instruction, 79, 270
compatibility note, 4
completed (memory operation), 5
compliance

SPARC V9, 379
compliant SPARC V9 implementation, 16
cond instruction field

branch instructions, 104, 107, 122, 125
floating point move instructions, 140
move instructions, 205

condition codes
adding, 274
effect of compare-and-swap instructions, 113
extended integer (xcc), 51
floating-point, 122
icc field, 50
integer, 50
results of integer operation (icc), 51
subtracting, 270, 279
trapping on, 277
xcc field, 50

condition codes register, See CCR register
conditional branches, 104, 122, 125
conditional move instructions, 21
conforming SPARC V9 implementation, 16
consistency

between instruction and data spaces, 317
processor, 312, 315
processor self-consistency, 314
sequential, 307, 313
strong, 313

const22 instruction field of ILLTRAP instruction, 172
constants, generating, 242
context, 5

nucleus, 135
selection for translation, 377

context identifier, 308
Context register

determination of, 377
Nucleus, 381
Primary, 381
Secondary, 381

control transfer
pseudo-control-transfer via WRPR to PSTATE.am, 67

control_transfer_instruction exception, 358
CALL/JMPL instructions, 111, 174
DONE/RETRY instructions, 115, 233, 277
RETURN, 235
and Tcc instruction, 278
with branch instructions, 105, 108, 109, 123, 125

control-transfer instructions, 20
control-transfer instructions (CTIs), 20, 114, 233
conventions

font, 2
notational, 2

conversion
between floating-point formats instructions, 168
floating-point to integer instructions, 167, 293
integer to floating-point instructions, 132, 171
planar to packed, 160

copyback, 5
CPI, 6
CPU, pipeline draining, 58, 61
cpu_mondo exception, 358
cross-call, 6
CTI, 6, 11
current exception (cexc) field of FSR register, 46, 86, 398
current window, 6
current window pointer register, See CWP register
current_little_endian (cle) field of PSTATE register, 65, 309
Index 5

CWP (current window pointer) register
and instructions

CALL and JMPL instructions, 35
FLUSHW instruction, 136
RDPR instruction, 228
RESTORE instruction, 84, 230
SAVE instruction, 84, 230, 237
WRPR instruction, 288

and traps
after spill trap, 364
after spill/fill trap, 21
on window trap, 363
saved by hardware, 341

CWP (current window pointer) register, 59
clean windows, 59
definition, 6
incremented/decremented, 35, 230, 237
overlapping windows, 35
range of values, 58, 403
restored during RETRY, 114, 233
specifying windows for use without cleaning, 363
and TSTATE register, 63

cycle, 6

D
D superscript on instruction name, 87
d16hi instruction field

branch instructions, 109
d16lo instruction field

branch instructions, 109
DAE_invalid_ASI exception

with load instructions and ASIs, 185, 331, 332, 333, 334
with store instructions and ASIs, 185, 331, 332, 333, 334

DAE_invalid_asi exception, 359
accessing noncacheable page, 316
SWAP/SWAPA, 273
with compare-and-swap instructions, 113
with load alternate instructions, 113, 177, 184, 191, 195,

248, 249, 256, 268, 272
with load instructions, 185, 191, 196
with load instructions and ASIs, 185
with nonfaulting load, 319
with store instructions, 191, 249, 257, 268

DAE_invalid_ASI exception (replacing SPARC V9
data_access_exception), 359

DAE_invalid_ASIn exception
with load instructions and ASIs, 332

DAE_nc_page exception, 359
accessing noncacheable page, 316
with compare-and-swap instructions, 113
with load instructions, 179, 190, 191, 198
with store instructions, 191
with SWAP instructions, 273

DAE_nc_page exception (replacing SPARC V9
data_access_exception), 359

DAE_nfo_page exception, 359
and TTE.nfo, 374
with compare-and-swap instructions, 113
with FLUSH instructions, 135

with LDTXA instructions, 198
with load alternate instructions, 177
with load instructions, 175, 180, 182, 185, 187, 189, 190,

191, 193, 196, 200, 266
with nonfaulting load, 319
with store instructions, 191, 249, 252, 254, 257, 258, 262,

264, 268, 269
with SWAP instruction, 271
with SWAP instructions, 273

DAE_nfo_page exception (replacing SPARC V9
data_access_exception), 359

DAE_noncacheable_page exception
with LDTXA instructions, 198
with LDXFSR instructions, 187, 200

DAE_privilege_violation exception, 359
and TTE.p, 376
with load alternate instructions, 177
with load instructions, 180, 185, 187, 191, 193, 196, 252,

266
with store instructions, 191, 249, 254, 257, 258, 262, 264,

268, 269, 271
with SWAP instructions, 113, 175, 273

DAE_privilege_violation exception (replacing SPARC V9
data_access_exception), 359

DAE_side_effect_page
with nonfaulting loads, 307

DAE_side_effect_page exception, 359
with load alternate instructions, 177
with load instructions, 180, 185, 196
with nonfaulting load, 319

DAE_side_effect_page exception (replacing SPARC V9
data_access_exception), 359

data
access, 6
cache coherence, 312
conversion between SIMD formats, 29
flow order constraints

memory reference instructions, 311
register reference instructions, 311

formats
byte, 23
doubleword, 23
halfword, 23
Int16 SIMD, 30
Int32 SIMD, 30
quadword, 23
tagged word, 23
Uint8 SIMD, 30
word, 23

memory, 318
types

floating-point, 23
signed integer, 23
unsigned integer, 23
width, 23

watchpoint exception, 261
Data Cache Unit Control register, See DCUCR

data_access_exception exception (SPARC V9), 359
DCTI couple, 82
DCTI instructions, 6
Index 6

behavior, 71
RETURN instruction effects, 235

dec synthetic instructions, 416
deccc synthetic instructions, 416
deferred trap, 344

distinguishing from disrupting trap, 345
floating-point, 229
restartable

implementation dependency, 345
software actions, 345

delay instruction
and annul field of branch instruction, 122
annulling, 20
conditional branches, 125
DONE instruction, 114
executed after branch taken, 109
following delayed control transfer, 20
RETRY instruction, 233
RETURN instruction, 235
unconditional branches, 125
with conditional branch, 108

delayed branch, 71
delayed control transfer, 109
delayed CTI, See DCTI
denormalized number, 6
deprecated, 6
deprecated exceptions

tag_overflow, 362
deprecated instructions

FBA, 122
FBE, 122
FBG, 122
FBGE, 122
FBL, 122
FBLE, 122
FBLG, 122
FBN, 122
FBNE, 122
FBO, 122
FBU, 122
FBUE, 122
FBUGE, 122
FBUL, 122
FBULE, 122
LDFSR, 186
LDTW, 192
LDTWA, 194
MULScc, 50, 209
RDY, 49, 50, 225
SDIV, 50, 240
SDIVcc, 50, 240
SMUL, 50, 246
SMULcc, 50, 246
STFSR, 258
STTW, 265
STTWA, 267
SWAP, 271
SWAPA, 272
TADDccTV, 275
TSUBccTV, 280

UDIV, 50, 281
UDIVcc, 50, 281
UMUL, 50, 283
UMULcc, 50, 283
WRY, 49, 50, 285

dev_mondo exception, 359
disp19 instruction field

branch instructions, 107, 125
disp22 instruction field

branch instructions, 104, 122
disp30 instruction field

word displacement (CALL), 111
disrupting trap, 345
divide instructions, 20, 211, 240, 281
division_by_zero exception, 79, 211, 360
division-by-zero bits of FSR.aexc/FSR.cexc fields, 48
DMMU

context register usage, 379
Secondary Context register, 381

DONE instruction, 114
effect on TNPC register, 62
effect on TSTATE register, 63
generating illegal_instruction exception, 361
modifying CCR.xcc condition codes, 51
return from trap, 341
return from trap handler with different GL value, 70
target address, 20

doubleword, 6
addressing, 76
alignment, 18, 73, 308
data format, 23
definition, 6

E
EDGE16 instruction, 116
EDGE16L instruction, 116
EDGE16LN instruction, 118
EDGE16N instruction, 118
EDGE32 instruction, 116
EDGE32L instruction, 116
EDGE32LN instruction, 118
EDGE32N instruction, 118
EDGE8 instruction, 116
EDGE8L instruction, 116
EDGE8LN instruction, 118
EDGE8N instruction, 118
emulating multiple unsigned condition codes, 83
enable floating-point

See FPRS register, fef field
See PSTATE register, pef field

even parity, 6
exception, 6
exceptions

See also individual exceptions
catastrophic error, 341
causing traps, 341
clean_window, 358, 400
control_transfer_instruction, 358
cpu_mondo, 358
Index 7

DAE_invalid_asi, 359
DAE_invalid_ASI (replacing SPARC V9

data_access_exception), 359
DAE_nc_page, 359
DAE_nc_page (replacing SPARC V9

data_access_exception), 359
DAE_nfo_page, 359
DAE_nfo_page (replacing SPARC V9

data_access_exception), 359
DAE_privilege_violation, 359
DAE_privilege_violation (replacing SPARC V9

data_access_exception), 359
DAE_side_effect_page, 359
DAE_side_effect_page (replacing SPARC V9

data_access_exception), 359
data_access_exception (SPARC V9), 359
definition, 341
dev_mondo, 359
division_by_zero, 360
fill_n_normal, 360
fill_n_other, 360
fp_disabled

and GSR, 54
fp_disabled, 360
fp_exception_ieee_754, 360
fp_exception_other, 360
htrap_instruction, 360
IAE_privilege_violation, 360
illegal_instruction, 360
instruction_access_exception (SPARC V9), 361
instruction_VA_watchpoint, 361
interrupt_level_14

and SOFTINT.int_level, 55
and STICK_CMPR.stick_cmpr, 58
and TICK_CMPR.tick_cmpr, 56

interrupt_level_14, 361
interrupt_level_15

and SOFTINT.int_level, 55
interrupt_level_n

and SOFTINT register, 54
and SOFTINT.int_level, 55

interrupt_level_n, 346, 361
LDDF_mem_address_not_aligned, 361
LDQF_mem_address_not_aligned, 362
mem_address_not_aligned, 361
nonresumable_error, 361
pending, 21
privileged_action, 361
privileged_opcode

and access to register-window PR state registers, 58, 61,
69, 70

and access to SOFTINT, 54
and access to SOFTINT_CLR, 56
and access to SOFTINT_SET, 55
and access to STICK_CMPR, 57
and access to TICK_CMPR, 56

privileged_opcode, 361
resumable_error, 361
spill_n_normal, 238, 362
spill_n_other, 238, 362

STDF_mem_address_not_aligned, 362
STQF_mem_address_not_aligned, 362
tag_overflow (deprecated), 362
trap_instruction, 362
unimplemented_LDTW, 362
unimplemented_STTW, 362
VA_watchpoint, 362

execute unit, 310
execute_state

trap processing, 356
explicit ASI, 6, 76, 322
extended word, 6

addressing, 76

F
F registers, 6, 17, 85, 291, 348
FABSd instruction, 119, 387, 388
FABSq instruction, 119, 119, 387, 388
FABSs instruction, 119
FADD, 120
FADDd instruction, 120
FADDq instruction, 120, 120, 130
FADDs instruction, 120
FALIGNDATA instruction, 121
FAND instruction, 165
FANDNOT1 instruction, 165
FANDNOT1S instruction, 165
FANDNOT2 instruction, 165
FANDNOT2S instruction, 165
FANDS instruction, 165
FBA instruction, 122, 389
FBE instruction, 122, 389
FBfcc instructions, 42, 122, 360, 383, 389
FBG instruction, 122, 389
FBGE instruction, 122, 389
FBL instruction, 122, 389
FBLE instruction, 122, 389
FBLG instruction, 122, 389
FBN instruction, 122, 389
FBNE instruction, 122, 389
FBO instruction, 122, 389
FBPA instruction, 124, 125, 389
FBPE instruction, 124, 389
FBPfcc instructions, 42, 124, 383, 389, 390
FBPG instruction, 124, 389
FBPGE instruction, 124, 389
FBPL instruction, 124, 389
FBPLE instruction, 124, 389
FBPLG instruction, 124, 389
FBPN instruction, 124, 125, 389
FBPNE instruction, 124, 389
FBPO instruction, 124, 389
FBPU instruction, 124, 389
FBPUE instruction, 124, 389
FBPUG instruction, 124, 389
FBPUGE instruction, 124, 389
FBPUL instruction, 124, 389
FBPULE instruction, 124, 389
FBU instruction, 122, 389
Index 8

FBUE instruction, 122, 389
FBUG instruction, 122, 389
FBUGE instruction, 122, 389
FBUL instruction, 122, 389
FBULE instruction, 122, 389
fcc-conditional branches, 122, 125
fccn, 6
FCMP instructions, 390
FCMP* instructions, 42, 128
FCMPd instruction, 128, 388
FCMPE instructions, 390
FCMPE* instructions, 42, 128
FCMPEd instruction, 128, 388
FCMPEq instruction, 128, 129, 388
FCMPEQ16 instruction, 126
FCMPEQ32 instruction, 126
FCMPEs instruction, 128, 388
FCMPGT instruction, 126
FCMPGT16 instruction, 126
FCMPGT32 instruction, 126
FCMPLE16 instruction, 126
FCMPLE16 instruction, 126
FCMPLE32 instruction, 126
FCMPLE32 instruction, 126
FCMPNE16 instruction, 126
FCMPNE32 instruction, 126
FCMPq instruction, 128, 129, 388
FCMPs instruction, 128, 388
fcn instruction field

DONE instruction, 114
PREFETCH, 219
RETRY instruction, 233

FDIVd instruction, 130
FDIVq instruction, 130
FDIVs instructions, 130
FdMULq instruction, 151, 151
FdTOi instruction, 167, 293
FdTOq instruction, 168, 168
FdTOs instruction, 168
FdTOx instruction, 167, 388
fef field of FPRS register, 53

and access to GSR, 54
and fp_disabled exception, 360
branch operations, 123, 125
byte permutation, 106
comparison operations, 127, 129
component distance, 216
data formatting operations, 131, 153, 160
data movement operations, 206
enabling FPU, 66
floating-point operations, 119, 120, 130, 132, 138, 139, 142,

145, 151, 152, 166, 167, 168, 170, 171, 181, 183, 186, 188,
199

integer arithmetic operations, 146, 159, 162
logical operations, 163, 164, 165
memory operations, 179
read operations, 227, 243, 252
special addressing operations, 98, 121, 253, 258, 261, 263,

269, 286
fef, See FPRS register, fef field

FEXPAND instruction, 131
FEXPAND operation, 131
fill handler, 230
fill register window, 360

overflow/underflow, 36
RESTORE instruction, 61, 230, 363
RESTORED instruction, 85, 232, 364
RETRY instruction, 364
selection of, 363
trap handling, 363, 364
trap vectors, 230
window state, 60

fill_n_normal exception, 231, 236, 360, 360
fill_n_other exception, 231, 236, 360
FiTOd instruction, 132
FiTOq instruction, 132, 132, 171
FiTOs instruction, 132
fixed-point scaling, 147
floating point

absolute value instructions, 119
add instructions, 120
compare instructions, 42, 128, 128
condition code bits, 122
condition codes (fcc) fields of FSR register, 44, 122, 125,

128
data type, 23
deferred-trap queue (FQ), 229
divide instructions, 130
exception, 6
exception, encoding type, 44
FPRS register, 286
FSR condition codes, 42
move instructions, 139
multiply instructions, 151
multiply-add/subtract, 137
negate instructions, 152
operate (FPop) instructions, 6, 21, 44, 46, 85, 186
registers

destination F, 291
FPRS, See FPRS register
FSR, See FSR register
programming, 41

rounding direction, 43
square root instructions, 166
subtract instructions, 170
trap types, 7

IEEE_754_exception, 44, 45, 46, 48, 291, 292
invalid_fp_register, 170
unfinished_FPop, 44, 45, 48, 120, 130, 151, 166, 168, 170,

291
results after recovery, 44

unimplemented_FPop, 48, 145, 292
traps

deferred, 229
precise, 229

floating-point condition codes (fcc) fields of FSR register, 348
floating-point operate (FPop) instructions, 360
floating-point trap types

IEEE_754_exception, 348, 360
floating-point unit (FPU), 7, 17
Index 9

FLUSH instruction, 134
memory ordering control, 202

FLUSH instruction
memory/instruction synchronization, 133

FLUSH instruction, 133, 318
data access, 6
immediacy of effect, 135
in multiprocessor system, 133
in self-modifying code, 134
latency, 403

flush instruction memory, See FLUSH instruction
flush register windows instruction, 136
FLUSHW instruction, 136, 362

effect, 21
management by window traps, 61, 362
spill exception, 85, 136, 364

FMA instructions
fused, 137

FMADDd instruction, 137
FMADDs instruction, 137
FMOVcc instructions

conditionally moving floating-point register contents, 51
conditions for copying floating-point register contents, 83
copying a register, 42
encoding of opf<84> bits, 388
encoding of opf_cc instruction field, 389
encoding of rcond instruction field, 389
floating-point moves, 140
FPop instruction, 85
used to avoid branches, 143, 206

FMOVccd instruction, 388
FMOVccq instruction, 388
FMOVd instruction, 139, 387, 388
FMOVDfcc instructions, 140
FMOVdGEZ instruction, 144
FMOVdGZ instruction, 144
FMOVDicc instructions, 140
FMOVdLEZ instruction, 144
FMOVdLZ instruction, 144
FMOVdNZ instruction, 144
FMOVdZ instruction, 144
FMOVq instruction, 139, 139, 387, 388
FMOVQfcc instructions, 140, 142
FMOVqGEZ instruction, 144
FMOVqGZ instruction, 144
FMOVQicc instructions, 140, 142
FMOVqLEZ instruction, 144
FMOVqLZ instruction, 144
FMOVqNZ instruction, 144
FMOVqZ instruction, 144
FMOVr instructions, 85, 389
FMOVRq instructions, 145
FMOVRsGZ instruction, 144
FMOVRsLEZ instruction, 144
FMOVRsLZ instruction, 144
FMOVRsNZ instruction, 144
FMOVRsZ instruction, 144
FMOVs instruction, 139
FMOVScc instructions, 142
FMOVSfcc instructions, 140

FMOVsGEZ instruction, 144
FMOVSicc instructions, 140
FMOVSxcc instructions, 140
FMOVxcc instructions, 140, 142
FMSUBd instruction, 137
FMSUBs instruction, 137
FMUL8SUx16 instruction, 146, 148
FMUL8ULx16 instruction, 146, 148
FMUL8x16 instruction, 146, 147
FMUL8x16AL instruction, 146, 148
FMUL8x16AU instruction, 146, 147
FMULd instruction, 151
FMULD8SUx16 instruction, 146, 149
FMULD8ULx16 instruction, 146, 150
FMULq instruction, 151, 151
FMULs instruction, 151
FNAND instruction, 165
FNANDS instruction, 165
FNEG instructions, 152
FNEGd instruction, 152, 387, 388
FNEGq instruction, 152, 152, 387, 388
FNEGs instruction, 152
FNMADDd instruction, 137
FNMADDs instruction, 137
FNMSUBd instruction, 137
FNMSUBs instruction, 137
FNOR instruction, 165
FNORS instruction, 165
FNOT1 instruction, 164
FNOT1S instruction, 164
FNOT2 instruction, 164
FNOT2S instruction, 164
FONE instruction, 163
FONES instruction, 163
FOR instruction, 165
formats, instruction, 72
FORNOT1 instruction, 165
FORNOT1S instruction, 165
FORNOT2 instruction, 165
FORNOT2S instruction, 165
FORS instruction, 165
fp_disabled exception, 360

absolute value instructions, 119, 120, 170
and GSR, 54
FPop instructions, 85
FPRS.fef disabled, 53
PSTATE.pef not set, 53, 406
with branch instructions, 123, 125
with compare instructions, 127
with conversion instructions, 132, 167, 168, 171
with floating-point arithmetic instructions, 130, 138, 151,

159, 162
with FMOV instructions, 139
with load instructions, 185, 188
with move instructions, 143, 145, 206
with negate instructions, 152
with store instructions, 253, 254, 257, 258, 261, 263, 269,

286
fp_exception exception, 46
fp_exception_ieee_754 "invalid" exception, 167
Index 10

fp_exception_ieee_754 exception, 360
and tem bit of FSR, 43
cause encoded in FSR.ftt, 44
FSR.aexc, 46
FSR.cexc, 47
FSR.ftt, 46
generated by FCMP or FCMPE, 42
and IEEE 754 overflow/underflow conditions, 46, 47
trap handler, 292
when FSR.ns = 1, 294, 398
when FSR.tem = 0, 348
when FSR.tem =1, 348
with floating-point arithmetic instructions, 120, 130, 138,

151, 170
fp_exception_other exception, 48, 360

cause encoded in FSR.ftt, 44
FSUBq instruction, 170
incorrect IEEE Std 754-1985 result, 86, 397
supervisor handling, 292
trap type of unfinished_FPop, 45
when quad FPop unimplemented in hardware, 46
with floating-point arithmetic instructions, 130, 138, 151

FPACK instruction, 54
FPACK instructions, 153–156
FPACK16 instruction, 153, 154
FPACK16 operation, 154
FPACK32 instruction, 153, 155
FPACK32 operation, 155
FPACKFIX instruction, 153, 156
FPACKFIX operation, 156
FPADD16 instruction, 158
FPADD16S instruction, 158
FPADD32 instruction, 158
FPADD32S instruction, 158
FPMERGE instruction, 160
FPop, 7
FPop, See floating-point operate (FPop) instructions
FPRS register

See also floating-point registers state (FPRS) register
FPRS register, 53

ASR summary, 49
definition, 7
fef field, 85, 347
RDFPRS instruction, 226

FPRS register fields
dl (dirty lower fp registers), 53
du (dirty upper fp registers, 53
fef, 53
fef, See also fef field of FPRS register

FPSUB16 instruction, 161
FPSUB16S instruction, 161
FPSUB32 instruction, 161
FPSUB32S instruction, 161
FPU, 6, 7
FqTOd instruction, 168, 168
FqTOi instruction, 167, 167, 293
FqTOs instruction, 168, 168
FqTOx instruction, 167, 167, 387, 388
freg, 410
FsMULd instruction, 151

FSQRTd instruction, 166
FSQRTq instruction, 166, 166
FSQRTs instruction, 166
FSR (floating-point state) register

fields
aexc (accrued exception), 44, 45, 46, 46, 291
aexc (accrued exceptions), 138

in user-mode trap handler, 292
-- dza (division by zero) bit of aexc, 48
-- nxa (rounding) bit of aexc, 48
cexc (current exception), 43, 44, 45, 46, 46, 47, 291, 360
cexc (current exceptions), 138

in user-mode trap handler, 292
-- dzc (division by zero) bit of cexc, 48
-- nxc (rounding) bit of cexc, 48
fcc (condition codes), 42, 44, 45, 292, 410
fccn, 42
ftt (floating-point trap type), 42, 44, 46, 86, 199, 258, 269,

360
in user-mode trap handler, 292

not modified by LDFSR/LDXFSR instructions, 42
ns (nonstandard mode), 42, 186, 199
qne (queue not empty), 42, 186, 199

in user-mode trap handler, 292
rd (rounding), 43
tem (trap enable mask), 43, 46, 47, 138, 293, 360
ver, 43
ver (version), 42, 199

FSR (floating-point state) register, 42
after floating-point trap, 291
compliance with IEEE Std 754-1985, 48
LDFSR instruction, 186
reading/writing, 42
values in ftt field, 44
writing to memory, 258, 269

FSRC1 instruction, 164
FSRC1S instruction, 164
FSRC2 instruction, 164
FSRC2S instruction, 164
FsTOd instruction, 168
FsTOi instruction, 167, 293
FsTOq instruction, 168, 168
FsTOx instruction, 167, 387, 388
FSUBd instruction, 170
FSUBq instruction, 170, 170
FSUBs instruction, 170
functional choice, implementation-dependent, 396
fused FMA instructions, 137
FXNOR instruction, 165
FXNORS instruction, 165
FXOR instruction, 165
FXORS instruction, 165
FxTOd instruction, 171, 388
FxTOq instruction, 171, 388
FxTOs instruction, 171, 388
FZERO instruction, 163
FZEROS instruction, 163
Index 11

G
general status register, See GSR (general status) register
generating constants, 242
GL register, 69

access, 70
during trap processing, 356
function, 69
reading with RDPR instruction, 228, 288
relationship to TL, 70
restored during RETRY, 114, 233
SPARC V9 compatibility, 68
and TSTATE register, 63
value restored from TSTATE[TL], 70
writing to, 70

global level register, See GL register
global registers, 14, 17, 32, 33, 33, 397
graphics status register, See GSR (general status) register
GSR (general status) register

fields
align, 54
im (interval mode) field, 54
irnd (rounding), 54
mask, 54
scale, 54

GSR (general status) register
ASR summary, 49

H
halfword, 7

alignment, 18, 73, 308
data format, 23

hardware
dependency, 396
traps, 349

hardware trap stack, 21
htrap_instruction exception, 278, 360
hyperprivileged, 7

I
i (integer) instruction field

arithmetic instructions, 209, 211, 214, 240, 246, 281, 283
floating point load instructions, 181, 183, 186, 199
flush memory instruction, 133
flush register instruction, 136
jump-and-link instruction, 174
load instructions, 175, 190, 191, 192, 194
logical operation instructions, 100, 214, 290
move instructions, 205, 207
POPC, 217
PREFETCH, 219
RETURN, 235

I/O
access, 307
memory, 306
memory-mapped, 306

IAE_privilege_violation exception, 360
and TTE.p, 376

IAE_unauth_access exception, 376

IEEE 754, 7
IEEE Std 754-1985, 7, 13, 43, 45, 47, 48, 86, 291, 397
IEEE_754_exception floating-point trap type, 7, 44, 45, 46, 48,

291, 292, 348, 360
IEEE-754 exception, 7
IER register (SPARC V8), 286
illegal_instruction exception, 136, 360

attempt to write in nonprivileged mode, 57
DONE/RETRY, 115, 234, 235
ILLTRAP, 172
not implemented in hardware, 96
POPC, 218
PREFETCH, 224
RETURN, 236
with BPr instruction, 109
with branch instructions, 108, 110
with CASA and CASXA instructions, 112, 214
with CASXA instruction, 113
with DONE instruction, 115
with FMOV instructions, 139
with FMOVcc instructions, 143
with FMOVR instructions, 145
with load instructions, 38, 180, 182, 192, 195, 200, 333
with move instructions, 206, 208
with read hyperprivileged register instructions, 228
with read instructions, 226, 228, 289, 399
with store instructions, 185, 254, 258, 265, 266, 267, 268,

269
with Tcc instructions, 278
with TPC register, 61
with TSTATE register, 63
with write instructions, 286, 289
write to ASR 5, 52
write to STICK register, 57
write to TICK register, 52

ILLTRAP instruction, 172, 360
imm_asi instruction field

explicit ASI, providing, 76
floating point load instructions, 183
load instructions, 191, 192, 194
PREFETCH, 219

immediate CTI, 71
I-MMU

and instruction prefetching, 307
IMMU

context register usage, 379
IMPDEP1 instructions, 86
IMPDEP2 instructions, 86
IMPDEP2A instructions, 400
IMPDEP2B instructions, 86
implementation, 7
implementation dependency, 395
implementation dependent, 7
implementation note, 3, 4
implementation-dependent functional choice, 396
implicit ASI, 7, 76, 322
implicit ASI memory access

LDFSR, 186
LDSTUB, 190
load fp instructions, 181, 199
Index 12

load integer doubleword instructions, 192
load integer instructions, 175
STD, 265
STFSR, 258
store floating-point instructions, 253, 269
store integer instructions, 247
SWAP, 271

implicit byte order, 65
in registers, 33, 35, 237
inccc synthetic instructions, 416
inexact accrued (nxa) bit of aexc field of FSR register, 292
inexact current (nxc) bit of cexc field of FSR register, 292
inexact mask (nxm) field of FSR.tem, 47
inexact quotient, 240, 281
infinity, 293
initiated, 7
input/output (I/O) locations

access by nonprivileged code, 397
behavior, 306
contents and addresses, 397
identifying, 402
order, 306
semantics, 403
value semantics, 306

instruction fields, 7
See also individual instruction fields
definition, 7

instruction group, 7
instruction MMU, See I-MMU
instruction prefetch buffer, invalidation, 134
instruction set architecture (ISA), 7, 7, 14
instruction_access_exception exception (SPARC V9), 361
instruction_VA_watchpoint exception, 361
instructions

32-bit wide, 13
alignment, 73
alignment, 18, 98, 308
arithmetic, integer

addition, 97, 274
division, 20, 211, 240, 281
multiplication, 20, 209, 211, 246, 283
subtraction, 270, 279
tagged, 20

array addressing, 101
atomic

CASA/CASXA, 112
load twin extended word from alternate space, 197
load-store, 73, 112, 190, 191, 271, 272
load-store unsigned byte, 190, 191
successful loads, 175, 176, 193, 195
successful stores, 247, 248

branch
branch if contents of integer register match

condition, 109
branch on floating-point condition codes, 122, 124
branch on integer condition codes, 104, 107

cache, 312
causing illegal instruction, 172
compare and swap, 112
comparison, 79, 270

conditional move, 21
control-transfer (CTIs), 20, 114, 233
conversion

convert between floating-point formats, 168
convert floating-point to integer, 167
convert integer to floating-point, 132, 171
floating-point to integer, 293

count of number of bits, 217
edge handling, 116
fetches, 73
floating point

compare, 42, 128
floating-point add, 120
floating-point divide, 130
floating-point load, 73, 181
floating-point load from alternate space, 183
floating-point load state register, 181, 199
floating-point move, 139, 140, 144
floating-point operate (FPop), 21, 186
floating-point square root, 166
floating-point store, 73, 253
floating-point store to alternate space, 255
floating-point subtract, 170
operate (FPop), 44, 46
short floating-point load, 188
short floating-point store, 263
status of floating-point load, 186

flush instruction memory, 133
flush register windows, 136
formats, 72
jump and link, 20, 174
loads

block load, 178
floating point, See instructions: floating point
integer, 73
simultaneously addressing doublewords, 271
unsigned byte, 112, 190
unsigned byte to alternate space, 191

logical operations
64-bit/32-bit, 164, 165
AND, 100
logical 1-operand ops on F registers, 163
logical 2-operand ops on F registers, 164
logical 3-operand ops on F registers, 165
logical XOR, 290
OR, 214

memory, 318
moves

floating point, See instructions: floating point
move integer register, 204, 207
on condition, 14

ordering MEMBAR, 78
permuting bytes specified by GSR.mask, 106
pixel component distance, 216, 216
pixel formatting (PACK), 153
prefetch data, 219
read privileged register, 228
read state register, 20, 225
register window management, 21
reordering, 311
Index 13

reserved, 86
reserved fields, 96
RETRY

and restartable deferred traps, 345
RETURN vs. RESTORE, 235
sequencing MEMBAR, 78
set high bits of low word, 242
set interval arithmetic mode, 243
setting GSR.mask field, 106
shift, 19
shift, 244
shift count, 244
SIMD, 10
simultaneous addressing of doublewords, 272
stores

block store, 250
floating point, See instructions: floating point
integer, 73, 247
integer (except doubleword), 247
integer into alternate space, 248
partial, 260
unsigned byte, 112
unsigned byte to alternate space, 191
unsigned bytes, 190

swap R register, 271, 272
synthetic (for assembly language programmers), 414–416
tagged addition, 274
test-and-set, 316
timing, 96
trap on integer condition codes, 276
write privileged register, 288
write state register, 286

integer unit (IU)
condition codes, 51
definition, 7
description, 16

interrupt
enable (ie) field of PSTATE register, 346, 347
level, 69
request, 7, 21, 341

interrupt_level_14 exception, 55, 361
and SOFTINT.int_level, 55
and STICK_CMPR.stick_cmpr, 58
and TICK_CMPR.tick_cmpr, 56

interrupt_level_15 exception
and SOFTINT.int_level, 55

interrupt_level_n exception, 346, 361
and SOFTINT register, 54
and SOFTINT.int_level, 55

inter-strand operation, 7
intra-strand operation, 7
invalid accrued (nva) bit of aexc field of FSR register, 48
invalid ASI

and DAE_invalid_asi, 359
invalid current (nvc) bit of cexc field of FSR register, 48, 293
invalid mask (nvm) field of FSR.tem, 47, 293
invalid_exception exception, 167
invalid_fp_register floating-point trap type, 145, 152, 170
INVALW instruction, 173
iprefetch synthetic instruction, 415

ISA, 8
ISA, See instruction set architecture
issue unit, 310, 310
issued, 8
italic font, in assembly language syntax, 409
IU, 8
ixc synthetic instructions, 416

J
jmp synthetic instruction, 414
JMPL instruction, 174

computing target address, 20
does not change CWP, 35
mem_address_not_aligned exception, 361
reexecuting trapped instruction, 235

jump and link, See JMPL instruction

L
LD instruction (SPARC V8), 175
LDBLOCKF instruction, 178, 333
LDBLOCKF instruction, DAE_nc_page exception, 359
LDD instruction (SPARC V8 and V9), 192
LDDA instruction, 332
LDDA instruction (SPARC V8 and V9), 194
LDDF instruction, 73, 181, 361
LDDF_mem_address_not_aligned exception, 361

address not doubleword aligned, 401
address not quadword aligned, 402
LDDF/LDDFA instruction, 73
load instruction with partial store ASI and misaligned

address, 185
with load instructions, 181, 183, 333
with store instructions, 255, 333

LDDF_mem_not_aligned exception, 41
LDDFA instruction, 183, 262

alignment, 73
ASIs for fp load operations, 333
behavior with block store with Commit ASIs, 184
behavior with partial store ASIs, 182–??, 185, 185–??, 199–

??, 333–??
causing LDDF_mem_address_not_aligned exception, 73,

361
for block load operations, 333
used with ASIs, 333

LDF instruction, 41, 181
LDFA instruction, 41, 183
LDFSR instruction, 42, 44, 186, 361
LDQF instruction, 181, 362
LDQF_mem_address_not_aligned exception, 362

address not quadword aligned, 402
LDQF/LDQFA instruction, 74
with load instructions, 183

LDQFA instruction, 183
LDSB instruction, 175
LDSBA instruction, 176
LDSH instruction, 175
LDSHA instruction, 176
LDSHORTF instruction, 188
Index 14

LDSTUB instruction, 73, 190, 191, 316, 317
and DAE_nc_page exception, 359
hardware primitives for mutual exclusion of

LDSTUB, 316
LDSTUBA instruction, 190, 191

alternate space addressing, 18
and DAE_nc_page exception, 359
hardware primitives for mutual exclusion of

LDSTUBA, 316
LDSW instruction, 175
LDSWA instruction, 176
LDTW instruction, 38, 73
LDTW instruction (deprecated), 192
LDTWA instruction, 38, 73
LDTWA instruction (deprecated), 194
LDTX instruction, 331
LDTX instruction, DAE_nc_page exception, 359
LDTXA instruction, 74, 76, 197, 331

access alignment, 73
access size, 73

LDUB instruction, 175
LDUBA instruction, 176
LDUH instruction, 175
LDUHA instruction, 176
LDUW instruction, 175
LDUWA instruction, 176
LDX instruction, 175
LDXA instruction, 176, 195, 314
LDXFSR instruction, 42, 44, 186, 199, 239, 361
leaf procedure

modifying windowed registers, 84
little-endian byte order, 8, 18, 65
load

block, See block load instructions
floating-point from alternate space instructions, 183
floating-point instructions, 181, 186
floating-point state register instructions, 181, 199
from alternate space, 19, 51, 76
instructions, 8
instructions accessing memory, 73
nonfaulting, 310
short floating-point, See short floating-point load

instructions
LoadLoad MEMBAR relationship, 201
LoadLoad MEMBAR relationship, 317
LoadLoad predefined constant, 413
loads

nonfaulting, 319
load-store alignment, 18, 73, 308
load-store instructions

compare and swap, 112
definition, 8
load-store unsigned byte, 112, 190, 271, 272
load-store unsigned byte to alternate space, 191
memory access, 17
swap R register with alternate space memory, 272
swap R register with memory, 112, 271

LoadStore MEMBAR relationship, 201, 317
LoadStore predefined constant, 413
local registers, 33, 35, 230

logical XOR instructions, 290
Lookaside predefined constant, 413
LSTPARTIALF instruction, 333

M
MAXPGL, 17, 32, 33, 68, 70, 70, 406
MAXPTL

and MAXPGL, 70
instances of TNPC register, 62
instances of TPC register, 61
instances of TSTATE register, 63
instances of TT register, 64

may (keyword), 8
mem_address_not_aligned exception, 361

generated by virtual processor, 185
JMPL instruction, 174
LDTXA, 331, 332
load instruction with partial store ASI and misaligned

address, 185
RETURN, 235, 236
when recognized, 113
with CASA instruction, 112
with compare instructions, 113
with load instructions, 73–74, 175, 176, 181, 185, 186, 188,

192, 193, 195, 199, 269, 333
with store instructions, 73–74, 185, 247, 248, 249, 257, 258,

263, 266, 268, 333
with swap instructions (deprecated), 271, 273

MEMBAR
#Sync

semantics, 203
instruction

atomic operation ordering, 317
FLUSH instruction, 133, 318
functions, 201, 316–318
memory ordering, 202
memory synchronization, 78
side-effect accesses, 307
STBAR instruction, 202

mask encodings
#LoadLoad, 201, 317
#LoadStore, 201, 317
#Lookaside, 202, 318
#MemIssue, 202, 318
#StoreLoad, 201, 317
#StoreStore, 201, 317
#Sync, 202, 318

predefined constants
#LoadLoad, 413
#LoadStore, 413
#Lookaside, 413
#MemIssue, 413
#StoreLoad, 413
#StoreStore, 413
#Sync, 413

MEMBAR
#Lookaside, 314
#StoreLoad, 314

membar_mask, 413
Index 15

MemIssue predefined constant, 413
memory

access instructions, 17, 73
alignment, 308
atomic operations, 316
atomicity, 403
cached, 306
coherence, 307, 403
coherency unit, 308
data, 318
instruction, 318
location, 305
models, 305
ordering unit, 308
real, 306
reference instructions, data flow order constraints, 311
synchronization, 202
virtual address, 305
virtual address 0, 319

Memory Management Unit
definition, 8

Memory Management Unit, See MMU
memory model

mode control, 313
partial store order (PSO), 313
relaxed memory order (RMO), 203, 313
sequential consistency, 313
strong, 313
total store order (TSO), 203, 313, 314
weak, 313

memory model (mm) field of PSTATE register, 66
memory order

pending transactions, 312
program order, 310

memory_model (mm) field of PSTATE register, 313
memory-mapped I/O, 306
metrics

for architectural performance, 338
for implementation performance, 338
See also performance monitoring hardware

MMU
accessing registers, 380
contexts, 372
definition, 8
page sizes, 369
SPARC V9 compliance, 379

mode
nonprivileged, 15
privileged, 16, 61, 310

motion estimation, 216
MOVA instruction, 204
MOVCC instruction, 204
MOVcc instructions, 204

conditionally moving integer register contents, 51
conditions for copying integer register contents, 83
copying a register, 42
encoding of cond field, 389
encoding of opf_cc instruction field, 389
used to avoid branches, 143, 206

MOVCS instruction, 204

move floating-point register if condition is true, 140
move floating-point register if contents of integer register

satisfy condition, 144
MOVE instruction, 204
move integer register if condition is satisfied

instructions, 204
move integer register if contents of integer register satisfies

condition instructions, 207
move on condition instructions, 14
MOVFA instruction, 205
MOVFE instruction, 205
MOVFG instruction, 205
MOVFGE instruction, 205
MOVFL instruction, 205
MOVFLE instruction, 205
MOVFLG instruction, 205
MOVFN instruction, 205
MOVFNE instruction, 205
MOVFO instruction, 205
MOVFU instruction, 205
MOVFUE instruction, 205
MOVFUG instruction, 205
MOVFUGE instruction, 205
MOVFUL instruction, 205
MOVFULE instruction, 205
MOVG instruction, 204
MOVGE instruction, 204
MOVGU instruction, 204
MOVL instruction, 204
MOVLE instruction, 204
MOVLEU instruction, 204
MOVN instruction, 204
movn synthetic instructions, 416
MOVNE instruction, 204
MOVNEG instruction, 204
MOVPOS instruction, 204
MOVr instructions, 83, 207, 389
MOVRGEZ instruction, 207
MOVRGZ instruction, 207
MOVRLEZ instruction, 207
MOVRLZ instruction, 207
MOVRNZ instruction, 207
MOVRZ instruction, 207
MOVVC instruction, 204
MOVVS instruction, 204
multiple unsigned condition codes, emulating, 83
multiply instructions, 211, 246, 283
multiply-add instructions (fused), 137
multiply-subtract instructions (fused), 137
multiprocessor synchronization instructions, 112, 271, 272
multiprocessor system, 8, 133, 223, 271, 272, 312, 403
MULX instruction, 211
must (keyword), 8

N
N superscript on instruction name, 87
N_REG_WINDOWS, 9

integer unit registers, 17, 397
RESTORE instruction, 230
Index 16

SAVE instruction, 237
value of, 32, 58

NaN (not-a-number)
conversion to integer, 293
converting floating-point to integer, 167
signalling, 42, 128, 168

neg synthetic instructions, 416
negative infinity, 293
negative multiply-add instructions (fused), 137
negative multiply-subtract instructions (fused), 137
nested traps, 14
next program counter register, See NPC register
NFO, 8
noncacheable

accesses, 306
nonfaulting load, 8, 310
nonfaulting loads

behavior, 319
use by optimizer, 319

non-faulting-only page
illegal access to, 359

non-faulting-only page, illegal access to
and TTE.nfo, 374

nonleaf routine, 174
nonprivileged, 8

mode, 5, 8, 15, 16, 44
software, 53

nonresumable_error exception, 361
nonstandard floating-point, See floating-point status register

(FSR) NS field
nontranslating ASI, 8, 195, 268, 322
nonvirtual memory, 223
NOP instruction, 104, 122, 125, 212, 220, 277
normal traps, 349
NORMALW instruction, 213
not synthetic instructions, 416
note

architectural direction, 4
compatibility, 4
general, 3
implementation, 3
programming, 3

NPC (next program counter) register, 53
and PSTATE.tct, 65
control flow alteration, 11
definition, 8
DONE instruction, 114
instruction execution, 71
relation to TNPC register, 62
RETURN instruction, 233
saving after trap, 21

npt, 9
nucleus context, 135
Nucleus Context register, 381
nucleus software, 9
NUMA, 9
nvm (invalid mask) field of FSR.tem, 47, 293
NWIN, See N_REG_WINDOWS

nxm (inexact mask) field of FSR.tem, 47

O
octlet, 9
odd parity, 9
ofm (overflow mask) field of FSR.tem, 47
op3 instruction field

arithmetic instructions, 97, 108, 109, 112, 209, 211, 240,
246, 281, 283

floating point load instructions, 181, 183, 186, 199
flush instructions, 133, 136
jump-and-link instruction, 174
load instructions, 175, 190, 191, 192, 194
logical operation instructions, 100, 214, 290
PREFETCH, 219
RETURN, 235

opcode
definition, 9

opf instruction field
floating point arithmetic instructions, 120, 130, 151, 166
floating point compare instructions, 128
floating point conversion instructions, 167, 168, 171
floating point instructions, 119
floating point integer conversion, 132
floating point move instructions, 139
floating point negate instructions, 152

opf_cc instruction field
floating point move instructions, 140
move instructions, 389

opf_low instruction field, 140
optional, 9
OR instruction, 214
ORcc instruction, 214
ordering MEMBAR instructions, 78
ordering unit, memory, 308
ORN instruction, 214
ORNcc instruction, 214
OTHERW instruction, 215
OTHERWIN (other windows) register, 60

FLUSHW instruction, 136
keeping consistent state, 61
modified by OTHERW instruction, 215
partitioned, 61
range of values, 58, 403
rd designation for WRPR instruction, 288
rs1 designation for RDPR instruction, 228
SAVE instruction, 237
zeroed by INVALW instruction, 173
zeroed by NORMALW instruction, 213

OTHERWIN register trap vectors
fill/spill traps, 363
handling spill/fill traps, 363
selecting spill/fill vectors, 363

out register #7, 37
out registers, 33, 35, 237
overflow

bits
(v) in condition fields of CCR, 79
accrued (ofa) in aexc field of FSR register, 48
current (ofc) in cexc field of FSR register, 48

causing spill trap, 363
tagged add/subtract instructions, 79
Index 17

overflow mask (ofm) field of FSR.tem, 47

P
p (predict) instruction field of branch instructions, 107, 109,

125
P superscript on instruction name, 87
packed-to-planar conversion, 160
packing instructions, See FPACK instructions
page fault, 223
page table entry (PTE), See translation table entry (TTE)
parity, even, 6
parity, odd, 9
partial store instructions, 260, 333
partial store order (PSO) memory model, 313, 313
partitioned

additions, 158
subtracts, 161

PASI superscript on instruction name, 87
PASR superscript on instruction name, 87
PC (program counter) register, 9, 49, 52

after instruction execution, 71
and PSTATE.tct, 65
CALL instruction, 111
changed by NOP instruction, 212
copied by JMPL instruction, 174
saving after trap, 21
set by DONE instruction, 114
set by RETRY instruction, 233
Trap Program Counter register, 61

PDIST instruction, 216
pef field of PSTATE register

and access to GSR, 54
and fp_disabled exception, 360
and FPop instructions, 85
branch operations, 123, 125
byte permutation, 106
comparison operations, 127, 129
component distance, 216
data formatting operations, 131, 153, 160
data movement operations, 206
enabling FPU, 53
floating-point operations, 119, 120, 130, 132, 138, 139, 142,

145, 151, 152, 166, 167, 168, 170, 171, 181, 183, 186, 188,
199

integer arithmetic operations, 146, 159, 162
logical operations, 163, 164, 165
memory operations, 179
read operations, 227, 243, 252
special addressing operations, 98, 121, 253, 258, 261, 263,

269, 286
trap control, 347

pef, See PSTATE, pef field
performance monitoring hardware

accuracy requirements, 338
classes of data reported, 338
counters and controls, 339
high-level requirements, 337
kinds of user needs, 337
See also instruction sampling

physical processor, 9
PIL (processor interrupt level) register, 69

interrupt conditioning, 346
interrupt request level, 348
interrupt_level_n, 361
specification of register to read, 228
specification of register to write, 288
trap processing control, 347

pipeline, 9
pipeline draining of CPU, 58, 61
pixel instructions

compare, 126
component distance, 216, 216
formatting, 153

planar-to-packed conversion, 160
Pnpt superscript on instruction name, 87
POPC instruction, 217
positive infinity, 293
precise floating-point traps, 229
precise trap, 344

conditions for, 344
software actions, 344
vs. disrupting trap, 345

predefined constants
LoadLoad, 413
lookaside, 413
MemIssue, 413
StoreLoad, 413
StoreStore, 413
Sync, 413

predict bit, 109
prefetch

for one read, 222
for one write, 223
for several reads, 222
for several writes, 223
page, 223
to nearest unified cache, 223

prefetch data instruction, 219
PREFETCH instruction, 73, 219, 400
prefetch_fcn, 413
PREFETCHA instruction, 219, 400

and invalid ASI or VA, 359
prefetchable, 9
Primary Context ID 0, 380
Primary Context ID 1, 380
Primary Context register, 381
priority of traps, 347, 356
priveleged_action exception

read from TICK register when access disabled, 52
privilege violation, and DAE_privilege_violation

exception, 359
privileged, 9

mode, 16, 61
registers, 61
software, 15, 36, 44, 66, 78, 136, 349, 400

privileged (priv) field of PSTATE register, 68, 113, 115, 176, 179,
183, 184, 191, 195, 248, 252, 256, 267, 272, 310, 361

privileged mode, 9
privileged_action exception, 361
Index 18

accessing restricted ASIs, 309
read from TICK register when access disabled, 52, 226
restricted ASI access attempt, 78, 321
TICK register access attempt, 51
with CASA instruction, 113
with compare instructions, 113
with load alternate instructions, 176, 179, 184, 191, 195,

248, 252, 256, 267, 272
with load instructions, 183
with RDasr instructions, 227
with read instructions, 227
with store instructions, 257
with swap instructions, 273

privileged_opcode exception, 361
DONE instruction, 115
RETRY instruction, 234
SAVED instruction, 239
with DONE instruction, 115, 228, 233, 289
with write instructions, 289
WRPR in nonprivileged mode, 52

processor, 9
execute unit, 310
issue unit, 310, 310
privilege-mode transition diagram, 343
reorder unit, 310
self-consistency, 311

processor cluster, See processor module
processor consistency, 312, 315
processor interrupt level register, See PIL register
processor self-consistency, 311, 314
processor state register, See PSTATE register
processor states

execute_state, 356
program counter register, See PC register
program counters, saving, 341
program order, 310, 311
programming note, 3
PSO, See partial store order (PSO) memory model
PSR register (SPARC V8), 286
PSTATE register

entering privileged execution mode, 341
restored by RETRY instruction, 114, 233
saved after trap, 341
saving after trap, 21
specification for RDPR instruction, 228
specification for WRPR instruction, 288
and TSTATE register, 63

PSTATE register fields
ag

unimplemented, 68
am

CALL instruction, 111
description, 66
masked/unmasked address, 114, 174, 233, 235

cle
and implicit ASIs, 76
and PSTATE.tle, 65
description, 65

ie
description, 68

enabling disrupting traps, 346
interrupt conditioning, 346
masking disrupting trap, 350

mm
description, 66
implementation dependencies, 66, 313, 402
reserved values, 66

pef
and FPRS.fef, 66
description, 66
See also pef field of PSTATE register

priv
access to register-window PR state registers, 61
accessing restricted ASIs, 309
description, 68
determining mode, 8, 9, 376

tct
branch instructions, 105, 108, 109, 123, 125
CALL instruction, 111
description, 65
DONE instruction, 115
JMPL instruction, 174
RETRY instruction, 233, 277
RETURN instruction, 235

tle
description, 65

PTE (page table entry), See translation table entry (TTE)

Q
quadword, 9

alignment, 18, 73, 308
data format, 23

quiet NaN (not-a-number), 42, 128

R
R register, 9

#15, 37
special-purpose, 37
alignment, 192, 195

rational quotient, 281
R-A-W, See read-after-write memory hazard
rcond instruction field

branch instructions, 109
encoding of, 389
move instructions, 207

rd (rounding), 10
rd instruction field

arithmetic instructions, 97, 108, 109, 112, 209, 211, 240,
246, 281, 283

floating point arithmetic, 120
floating point arithmetic instructions, 130, 151, 166
floating point conversion instructions, 167, 168, 171
floating point integer conversion, 132
floating point load instructions, 181, 183, 186, 199
floating point move instructions, 139, 140
floating point negate instructions, 152
floating-point instructions, 119
jump-and-link instruction, 174
Index 19

load instructions, 175, 190, 191, 192, 194
logical operation instructions, 100, 214, 290
move instructions, 205, 207
POPC, 217

RDASI instruction, 49, 51, 225
RDasr instruction, 225

accessing I/O registers, 19
implementation dependencies, 226, 399
reading ASRs, 48

RDCCR instruction, 49, 50, 225, 225
RDFPRS instruction, 49, 53, 225
RDGSR instruction, 49, 54, 225
RDPC instruction, 49, 225

reading PC register, 52
RDPR instruction, 49, 228

accessing GL register, 70
accessing non-register-window PR state registers, 61
accessing register-window PR state registers, 58
and register-window PR state registers, 58
effect on TNPC register, 62
effect on TPC register, 62
effect on TSTATE register, 63
effect on TT register, 64
reading privileged registers, 61
reading PSTATE register, 65
reading the TICK register, 52
registers read, 228

RDSOFTINT instruction, 49, 54, 225
RDSTICK instruction, 49, 57, 225, 227
RDSTICK_CMPR instruction, 49, 225
RDTICK instruction, 49, 52, 225, 226
RDTICK_CMPR instruction, 49, 225
RDY instruction, 50
read ancillary state register (RDasr) instructions, 225
read state register instructions, 20
read-after-write memory hazard, 311
real address, 10
real ASI, 322
real memory, 306
reference MMU, 409
reg, 409
reg_or_imm, 413
reg_plus_imm, 412
regaddr, 413
register reference instructions, data flow order

constraints, 311
register window, 33, 34
register window management instructions, 21
register windows

clean, 59, 61, 84, 358, 362, 363, 364
fill, 36, 60, 61, 84, 85, 230, 232, 239, 360, 363, 364
management of, 15
overlapping, 35–37
spill, 36, 60, 61, 84, 85, 237, 239, 362, 363, 364

registers
See also individual register (common) names
accessing MMU registers, 380
address space identifier (ASI), 309
ASI (address space identifier), 51
chip-level multithreading, See CMT

clean windows (CLEANWIN), 59
clock-tick (TICK), 361
current window pointer (CWP), 59
F (floating point), 291, 348
floating-point, 17

programming, 41
floating-point registers state (FPRS), 53
floating-point state (FSR), 42
general status (GSR), 54
global, 14, 17, 32, 33, 33, 397
global level (GL), 69
IER (SPARC V8), 286
in, 33, 35, 237
local, 33, 35
next program counter (NPC)

and PSTATE.tct, 65
next program counter (NPC), 53
other windows (OTHERWIN), 60
out, 33, 35, 237
out #7, 37
processor interrupt level (PIL)

and SOFTINT, 55
and STICK_CMPR, 58
and TICK_CMPR, 56

processor interrupt level (PIL), 69
program counter (PC)

and PSTATE.tct, 65
program counter (PC), 52
PSR (SPARC V8), 286
R register #15, 37
renaming mechanism, 311
restorable windows (CANRESTORE), 59, 59
savable windows (CANSAVE), 59
scratchpad

privileged, 334
SOFTINT, 49
SOFTINT_CLR pseudo-register, 49, 56
SOFTINT_SET pseudo-register, 49, 55
STICK, 57
STICK_CMPR

ASR summary, 49
int_dis field, 55, 58
stick_cmpr field, 58
and system software trapping, 57

TBR (SPARC V8), 286
TICK, 52
TICK_CMPR

int_dis field, 55, 56
tick_cmpr field, 56

TICK_CMPR, 49, 56
trap base address (TBA), 64
trap base address, See registers: TBA

trap level (TL), 68
trap level, See registers: TL

trap next program counter (TNPC), 62
trap next program counter, See registers: TNPC

trap program counter (TPC), 61
trap program counter, See registers: TPC

trap state (TSTATE), 63
trap state, See registers: TSTATE
Index 20

trap type (TT), 64, 349
trap type, See registers: TT

VA_WATCHPOINT, 361, 362
visible to software in privileged mode, 61–70
WIM (SPARC V8), 286
window state (WSTATE), 60
window state, See registers: WSTATE

Y (32-bit multiply/divide), 50
relaxed memory order (RMO) memory model, 203, 313
renaming mechanism, register, 311
reorder unit, 310
reordering instruction, 311
reserved, 10

fields in instructions, 96
register field, 32

reset
reset trap, 345

restartable deferred trap, 344
restorable windows register, See CANRESTORE register
RESTORE instruction, 35, 230–231

actions, 84
and current window, 37
decrementing CWP register, 35
fill trap, 360, 363
followed by SAVE instruction, 36
managing register windows, 21
operation, 230
performance trade-off, 230, 237
and restorable windows (CANRESTORE) register, 59
restoring register window, 230
role in register state partitioning, 60, 61

restore synthetic instruction, 415
RESTORED instruction, 85, 232

creating inconsistent window state, 232
fill handler, 230
fill trap handler, 85, 364
register window management, 21

restricted, 10
restricted address space identifier, 78
restricted ASI, 309, 321
resumable_error exception, 361
ret/ret1 synthetic instructions, 415
RETRY instruction, 233

and restartable deferred traps, 345
effect on TNPC register, 62
effect on TPC register, 62
effect on TSTATE register, 63
generating illegal_instruction exception, 361
modifying CCR.xcc, 51
reexecuting trapped instruction, 364
restoring gl value in GL, 70
return from trap, 341
returning to instruction after trap, 347
target address, return from privileged traps, 20

RETURN instruction, 235–236
computing target address, 20
fill trap, 360
mem_address_not_aligned exception, 361
operation, 235
reexecuting trapped instruction, 235

RETURN vs. RESTORE instructions, 235
RMO, 10
RMO, See relaxed memory order (RMO) memory model
rounding

for floating-point results, 43
in signed division, 240

rounding direction (rd) field of FSR register, 120, 130, 151,
166, 167, 168, 170, 171

routine, nonleaf, 174
rs1 instruction field

arithmetic instructions, 97, 108, 109, 112, 209, 211, 240,
246, 281, 283

branch instructions, 109
floating point arithmetic instructions, 120, 130, 151
floating point compare instructions, 128
floating point load instructions, 181, 183, 186, 199
flush memory instruction, 133
jump-and-link instruction, 174
load instructions, 175, 190, 191, 192, 194
logical operation instructions, 100, 214, 290
move instructions, 207
PREFETCH, 219
RETURN, 235

rs2 instruction field
arithmetic instructions, 97, 108, 109, 112, 209, 211, 214,

240, 246, 281, 283
floating point arithmetic instructions, 120, 130, 151, 166
floating point compare instructions, 128
floating point conversion instructions, 167, 168, 171
floating point instructions, 119
floating point integer conversion, 132
floating point load instructions, 181, 183, 186, 199
floating point move instructions, 139, 140
floating point negate instructions, 152
flush memory instruction, 133
jump-and-link instruction, 174
load instructions, 175, 192, 194
logical operation instructions, 100, 290
move instructions, 205, 207
POPC, 217
PREFETCH, 219

RTO, 10
RTS, 10

S
savable windows register, See CANSAVE register
SAVE instruction, 35, 237

actions, 84
after RESTORE instruction, 235
clean_window exception, 358, 363
and current window, 37
decrementing CWP register, 35
effect on privileged state, 237
leaf procedure, 174
and local/out registers of register window, 36
managing register windows, 21
no clean window available, 59
number of usable windows, 59
operation, 237
Index 21

performance trade-off, 237
role in register state partitioning, 60, 61
and savable windows (CANSAVE) register, 59
spill trap, 362, 363, 364

save synthetic instruction, 415
SAVED instruction, 84, 239

creating inconsistent window state, 239
register window management, 21
spill handler, 238, 239
spill trap handler, 84, 364

scaling of the coefficient, 147
scratchpad registers

privileged, 334
SDIV instruction, 50, 240
SDIVcc instruction, 50, 240
SDIVX instruction, 211
Secondary Context ID 0, 380
Secondary Context ID 1, 380
Secondary Context register, 381
self-consistency, processor, 311
self-modifying code, 133, 134, 317
sequencing MEMBAR instructions, 78
sequential consistency, 307, 313
sequential consistency memory model, 313
SETHI instruction, 79, 242

creating 32-bit constant in R register, 19
and NOP instruction, 212
with rd = 0, 242

setn synthetic instructions, 415
shall (keyword), 10
shared memory, 305
shift count encodings, 244
shift instructions, 19
shift instructions, 79, 244
short floating-point load and store instructions, 333
short floating-point load instructions, 188
short floating-point store instructions, 263
should (keyword), 10
SIAM instruction, 243
side effect

accesses, 307
definition, 10
I/O locations, 306
instruction prefetching, 307
real memory storage, 306
visible, 306

side-effect page, illegal access to, 359
signalling NaN (not-a-number), 42, 168
signed integer data type, 23
signx synthetic instructions, 415
SIMD, 10

instruction data formats, 29–30
simm10 instruction field

move instructions, 207
simm11 instruction field

move instructions, 205
simm13 instruction field

floating point
load instructions, 181, 199

simm13 instruction field

arithmetic instructions, 209, 211, 214, 240, 246, 281, 283
floating point load instructions, 183, 186
flush memory instruction, 133
jump-and-link instruction, 174
load instructions, 175, 190, 191, 192, 194
logical operation instructions, 100, 290
POPC, 217
PREFETCH, 219
RETURN, 235

single instruction/multiple data, See SIMD
SLL instruction, 244
SLLX instruction, 244
SMUL instruction, 50, 246
SMULcc instruction, 50, 246
SOFTINT register, 49, 54

clearing, 366
clearing of selected bits, 56
communication from nucleus code to kernel code, 366
scheduling interrupt vectors, 365, 366
setting, 366

SOFTINT register fields
int_level, 55
sm (stick_int), 55
tm (tick_int), 55
tm (tm), 56

SOFTINT_CLR pseudo-register, 49, 56
SOFTINT_SET pseudo-register, 49, 55, 55
software

nucleus, 9
software translation table, 371
software trap, 277, 349
software trap number (SWTN), 277
software, nonprivileged, 53
software_trap_number, 414
source operands, 158, 161
SPA

ASI_TWIN_DW_NUCLEUS, 335
SPARC V8 compatibility

LD, LDUW instructions, 175
operations to I/O locations, 307
read state register instructions, 226
STA instruction renamed, 249
STBAR instruction, 202
STD instruction, 265
STDA instruction, 268
tagged subtract instructions, 280
UNIMP instruction renamed, 172
window_overflow exception superseded, 360
write state register instructions, 286

SPARC V9
compliance, 9, 379
features, 13

SPARC V9 Application Binary Interface (ABI), 15
speculative load, 11
spill register window, 362

FLUSH instruction, 85
overflow/underflow, 36
RESTORE instruction, 84
SAVE instruction, 61, 84, 237, 363
SAVED instruction, 84, 239, 364
Index 22

selection of, 363
trap handling, 364
trap vectors, 237, 364
window state, 60

spill_n_normal exception, 238, 362
and FLUSHW instruction, 136

spill_n_other exception, 238, 362
and FLUSHW instruction, 136

SRA instruction, 244
SRAX instruction, 244
SRL instruction, 244
SRLX instruction, 244
stack frame, 237
state registers (ASRs), 48–58
STB instruction, 247
STBA instruction, 248
STBAR instruction, 226, 286, 311, 317
STBLOCKF instruction, 250, 333
STDF instruction, 73, 253, 362
STDF_mem_address_not_aligned exception, 362

and store instructions, 254, 257
STDF/STDFA instruction, 73

STDFA instruction, 255
alignment, 73
ASIs for fp store operations, 333
causing DAE_invalid_ASI exception, 333
causing mem_address_not_aligned or illegal_instruction

exception, 333
causing STDF_mem_address_not_aligned exception, 73,

362
for block load operations, 333
for partial store operations, 333
used with ASIs, 333

STF instruction, 253
STFA instruction, 255
STFSR instruction, 42, 44, 361
STH instruction, 247
STHA instruction, 248
STICK register, 49, 52, 57

counter field, 57
npt field, 52, 57
RDSTICK instruction, 225

STICK_CMPR register, 49, 57
int_dis field, 55, 58
RDSTICK_CMPR instruction, 225
stick_cmpr field, 58

store
block, See block store instructions
partial, See partial store instructions
short floating-point, See short floating-point store

instructions
store buffer

merging, 307
store floating-point into alternate space instructions, 255
store instructions, 11, 73
StoreLoad MEMBAR relationship, 201, 317
StoreLoad predefined constant, 413
stores to alternate space, 19, 51, 76
StoreStore MEMBAR relationship, 201, 317
StoreStore predefined constant, 413

STPARTIALF instruction, 260
STPARTIALF instruction, DAE_nc_page exception, 359
STQF instruction, 74, 253, 362
STQF_mem_address_not_aligned exception, 362

STQF/STQFA instruction, 74
STQFA instruction, 74, 255
strand, 11
strong consistency memory model, 313
strong ordering, 313
Strong Sequential Order, 314
STSHORTF instruction, 263
STTW instruction, 38, 73
STTW instruction (deprecated), 265
STTWA instruction, 38, 73
STTWA instruction (deprecated), 267
STW instruction, 247
STWA instruction, 248
STX instruction, 247
STXA instruction, 248

accessing nontranslating ASIs, 268
mem_address_not_aligned exception, 248
referencing internal ASIs, 314

STXFSR instruction, 42, 44, 269, 361
SUB instruction, 270, 270
SUBC instruction, 270, 270
SUBcc instruction, 79, 270, 270
SUBCcc instruction, 270, 270
subnormal number, 11
subtract instructions, 270
superscalar, 11
supervisor software

accessing special protected registers, 18
definition, 11

SWAP instruction, 18, 271
accessing doubleword simultaneously with other

instructions, 272
and DAE_nc_page exception, 359
hardware primitive for mutual exclusion, 316
identification of R register to be exchanged, 73
in multiprocessor system, 190, 191
memory accessing, 271
ordering by MEMBAR, 317

swap R register
bit contents, 112
with alternate space memory instructions, 272
with memory instructions, 271

SWAPA instruction, 272
accessing doubleword simultaneously with other

instructions, 272
alternate space addressing, 18
and DAE_nc_page exception, 359
hardware primitive for mutual exclusion, 316
in multiprocessor system, 190, 191
ordering by MEMBAR, 317

SWTN (software trap number), 277
Sync predefined constant, 413
synchonization, 203
synchronization, 11
synthetic instructions

mapping to SPARC V9 instructions, 414–416
Index 23

for assembly language programmers, 414
mapping

bclrg, 416
bset, 416
btog, 416
btst, 416
call, 414
casn, 416
clrn, 416
cmp, 414
dec, 416
deccc, 416
inc, 416
inccc, 416
iprefetch, 415
jmp, 414
movn, 416
neg, 416
not, 416
restore, 415
ret/ret1, 415
save, 415
setn, 415
signx, 415
tst, 415

vs. pseudo ops, 414
system clock-tick register (STICK), 57
system software

accessing memory space by server program, 309
ASIs allowing access to memory space, 310
FLUSH instruction, 135, 319
processing exceptions, 309
trap types from which software must recover, 44

System Tick Compare register, See STICK_CMPR register
System Tick register, See STICK register

T
TA instruction, 276, 389
TADDcc instruction, 79, 274
TADDccTV instruction, 79, 362
tag overflow, 79
tag_overflow exception, 79, 274, 275, 279, 280
tag_overflow exception (deprecated), 362
tagged arithmetic, 79
tagged arithmetic instructions, 20
tagged word data format, 23
tagged words, 23
TBA (trap base address) register, 64, 342

establishing table address, 21, 341
initialization, 348
specification for RDPR instruction, 228
specification for WRPR instruction, 288
trap behavior, 11

TBR register (SPARC V8), 286
TCC instruction, 276
Tcc instructions, 276

at TL > 0, 349
causing trap, 341
causing trap to privileged trap handler, 349

CCR register bits, 51
generating htrap_instruction exception, 360
generating illegal_instruction exception, 360
generating trap_instruction exception, 362
opcode maps, 385, 389, 390
programming uses, 277
trap table space, 21
vector through trap table, 341

TCS instruction, 276, 389
TE instruction, 276, 389
termination deferred trap, 344
test-and-set instruction, 316
TG instruction, 276, 389
TGE instruction, 276, 389
TGU instruction, 276, 389
thread, 11
TICK register, 49

counter field, 52, 400, 408
inaccuracies between two readings of, 400, 408
specification for RDPR instruction, 228

TICK_CMPR register, 49, 56
int_dis field, 55, 56
tick_cmpr field, 56

timer registers, See TICK register and STICK register
timing of instructions, 96
tininess (floating-point), 48
TL (trap level) register, 68, 342

affect on privilege level to which a trap is delivered, 348
and implicit ASIs, 76
displacement in trap table, 341
executing RESTORED instruction, 232
executing SAVED instruction, 239
indexing for WRPR instruction, 288
indexing privileged register after RDPR, 228
setting register value after WRPR, 288
specification for RDPR instruction, 228
specification for WRPR instruction, 288
and TBA register, 348
and TPC register, 61
and TSTATE register, 63
and TT register, 64
use in calculating privileged trap vector address, 348
and WSTATE register, 60

TL instruction, 276, 389
TLB

and 3-dimensional arrays, 103
miss

reloading TLB, 371, 376
specialized miss handler code, 380

TLE instruction, 276, 389
TLEU instruction, 276, 389
TN instruction, 276, 389
TNE instruction, 276, 389
TNEG instruction, 276, 389
TNPC (trap next program counter) register, 62

saving NPC, 344
specification for RDPR instruction, 228
specification for WRPR instruction, 288

TNPC (trap-saved next program counter) register, 11
total order, 312
Index 24

total store order (TSO) memory model, 66, 203, 306, 313, 313,
314

TPC (trap program counter) register, 11, 61
address of trapping instruction, 229
number of instances, 61
specification for RDPR instructions, 228
specification for WRPR instruction, 288

TPOS instruction, 276, 389
translating ASI, 322
Translation Table Entry, See TTE
trap

See also exceptions and traps
noncacheable accesses, 307
when taken, 11

trap enable mask (tem) field of FSR register, 347, 348, 398
trap handler

privileged mode, 349
regular/nonfaulting loads, 8
returning from, 114, 233
user, 44, 293

trap level register, See TL register
trap next program counter register, See TNPC register
Trap on Control Transfer

and instructions
Bicc, 105
BPcc, 108
BPr, 109
CALL, 111
DONE, 115, 233, 277
FBfcc, 123, 125
JMPL, 174

tct field of PSTATE register, 65
trap on integer condition codes instructions, 276
Trap Overflow Enable bit, 339
trap program counter register, See TPC register
trap state register, See TSTATE register
trap type (TT) register, 349
trap type register, See TT register
trap_instruction (ISA) exception, 277, 278, 362
trap_little_endian (tle) field of PSTATE register, 65
traps, 11

See also exceptions and individual trap names
categories

deferred, 343, 344, 345
disrupting, 343, 345
precise, 343, 344, 345
priority, 347, 356
reset, 344, 345
restartable

implementation dependency, 345
restartable deferred, 344
termination deferred, 344

caused by undefined feature/behavior, 12
causes, 21, 21
definition, 21, 341
hardware, 349
hardware stack, 14
level specification, 68
model stipulations, 347
nested, 14

normal, 349
processing, 356
software, 277, 349
stack, 356
vector address, specifying, 64

TSB, 11, 376
cacheability, 377
caching, 377
indexing support, 376
organization, 377

TSO, 11
TSO, See total store order (TSO) memory model
tst synthetic instruction, 415
TSTATE (trap state) register, 63

DONE instruction, 114, 233
registers saved after trap, 21
restoring GL value, 70
specification for RDPR instruction, 228
specification for WRPR instruction, 288

tstate, See trap state (TSTATE) register
TSUBcc instruction, 79, 279
TSUBccTV instruction, 79, 362
TT (trap type) register, 64

and privileged trap vector address, 348
reserved values, 399
specification for RDPR instruction, 228
specification for WRPR instruction, 288
and Tcc instructions, 277
transferring trap control, 349
window spill/fill exceptions, 60
WRPR instruction, 288

TTE, 11
context ID field, 374
cp (cacheability) field, 306
cp field, 359, 375, 375
cv field, 375, 375
e field, 306, 319, 359, 375
ie field, 375
indexing support, 376
nfo field, 319, 359, 374, 375
p field, 359, 376
size field, 376
soft2 field, 374
SPARC V8 equivalence, 373
taddr field, 374
v field, 374
va_tag field, 374
w field, 376

TVC instruction, 276, 389
TVS instruction, 276, 389
typewriter font, in assembly language syntax, 409

U
UDIV instruction, 50, 281
UDIVcc instruction, 50, 281
UDIVX instruction, 211
ufm (underflow mask) field of FSR.tem, 47
UltraSPARC, previous ASIs

ASI_NUCLEUS_QUAD_LDD (deprecated), 335
Index 25

ASI_NUCLEUS_QUAD_LDD_L (deprecated), 335
ASI_NUCLEUS_QUAD_LDD_LITTLE (deprecated), 335
ASI_PHY_BYPASS_EC_WITH_EBIT_L, 334
ASI_PHYS_BYPASS_EC_WITH_EBIT, 334
ASI_PHYS_BYPASS_EC_WITH_EBIT_LITTLE, 334
ASI_PHYS_USE_EC, 334
ASI_PHYS_USE_EC_L, 334
ASI_PHYS_USE_EC_LITTLE, 334

UMUL instruction, 50
UMUL instruction (deprecated), 283
UMULcc instruction, 50
UMULcc instruction (deprecated), 283
unassigned, 11
unconditional branches, 104, 108, 122, 125
undefined, 12
underflow

bits of FSR register
accrued (ufa) bit of aexc field, 48, 292
current (ufc) bit of cexc, 48
current (ufc) bit of cexc field, 292
mask (ufm) bit of FSR.tem, 48
mask (ufm) bit of tem field, 293

detection, 36
occurrence, 363

underflow mask (ufm) field of FSR.tem, 47
unfinished_FPop floating-point trap type, 45, 120, 130, 151,

166, 168, 170, 291
handling, 48
in normal computation, 44
results after recovery, 44

UNIMP instruction (SPARC V8), 172
unimplemented, 12
unimplemented_FPop floating-point trap type, 292

handling, 48
unimplemented_LDTW exception, 193, 362
unimplemented_STTW exception, 266, 362
uniprocessor system, 12
unrestricted, 12
unrestricted ASI, 321
unsigned integer data type, 23
user application program, 12
user trap handler, 44, 293

V
VA, 12
VA_watchpoint exception, 362
VA_WATCHPOINT register, 361, 362
value clipping, See FPACK instructions
value semantics of input/output (I/O) locations, 306
virtual

address, 305
address 0, 319

virtual address, 12
virtual core, 12
virtual memory, 223
VIS, 12
VIS instructions

encoding, 391, 392
implicitly referencing GSR register, 54

Visual Instruction Set, See VIS instructions

W
W-A-R, See write-after-read memory hazard
watchpoint comparator, 67
W-A-W, See write-after-write memory hazard
WIM register (SPARC V8), 286
window fill exception, See also fill_n_normal exception
window fill trap handler, 21
window overflow, 36, 363
window spill exception, See also spill_n_normal exception
window spill trap handler, 21
window state register, See WSTATE register
window underflow, 363
window, clean, 237
window_fill exception, 60, 84

RETURN, 235
window_spill exception, 60
word, 12

alignment, 18, 73, 308
data format, 23

WRASI instruction, 49, 51, 285
WRasr instruction, 285

accessing I/O registers, 19
attempt to write to ASR 5 (PC), 52
cannot write to PC register, 52
implementation dependencies, 399
writing ASRs, 48

WRCCR instruction, 49, 50, 51, 285
WRFPRS instruction, 49, 53, 285
WRGSR instruction, 49, 54, 285
WRIER instruction (SPARC V8), 286
write ancillary state register (WRasr) instructions, 285
write ancillary state register instructions, See WRasr

instruction
write privileged register instruction, 288
write-after-read memory hazard, 311
write-after-write memory hazard, 311
WRPR instruction

accessing non-register-window PR state registers, 61
accessing register-window PR state registers, 58
and register-window PR state registers, 58
effect on TNPC register, 62
effect on TPC register, 62
effect on TSTATE register, 63
effect on TT register, 64
writing the TICK register, 52
writing to GL register, 70
writing to PSTATE register, 65
writing to TICK register, 52

WRPSR instruction (SPARC V8), 286
WRSOFTINT instruction, 49, 54, 285
WRSOFTINT_CLR instruction, 49, 54, 56, 285, 366
WRSOFTINT_SET instruction, 49, 54, 55, 285, 366
WRSTICK_CMPR instruction, 49, 285
WRTBR instruction (SPARC V8), 286
WRTICK_CMP instruction, 49, 285
WRWIM instruction (SPARC V8), 286
WRY instruction, 49, 50, 285
Index 26

WSTATE (window state) register
description, 60
and fill/spill exceptions, 363
normal field, 363
other field, 363
overview, 58
reading with RDPR instruction, 228
spill exception, 136
spill trap, 237
writing with WRPR instruction, 288

X
XNOR instruction, 290
XNORcc instruction, 290
XOR instruction, 290
XORcc instruction, 290

Y
Y register, 49, 50

after multiplication completed, 209
content after divide operation, 240, 281
divide operation, 240, 281
multiplication, 209
unsigned multiply results, 246, 283
WRY instruction, 286

Y register (deprecated), 50

Z
zero virtual address, 319
Index 27

Index 28

	UltraSPARC Architecture 2007
	Contents
	Preface
	Document Overview
	1.1 Navigating UltraSPARC Architecture 2007
	1.2 Fonts and Notational Conventions
	1.2.1 Implementation Dependencies
	1.2.2 Notation for Numbers
	1.2.3 Informational Notes

	1.3 Reporting Errors in this Specification

	Definitions
	Architecture Overview
	3.1 The UltraSPARC Architecture 2007
	3.1.1 Features
	3.1.2 Attributes
	3.1.2.1 Design Goals
	3.1.2.2 Register Windows

	3.1.3 System Components
	3.1.3.1 Binary Compatibility
	3.1.3.2 UltraSPARC Architecture 2007 MMU
	3.1.3.3 Privileged Software

	3.1.4 Architectural Definition
	3.1.5 UltraSPARC Architecture 2007 Compliance with SPARC V9 Architecture
	3.1.6 Implementation Compliance with UltraSPARC Architecture 2007

	3.2 Processor Architecture
	3.2.1 Integer Unit (IU)
	3.2.2 Floating-Point Unit (FPU)

	3.3 Instructions
	3.3.1 Memory Access
	3.3.1.1 Memory Alignment Restrictions
	3.3.1.2 Addressing Conventions
	3.3.1.3 Addressing Range
	3.3.1.4 Load/Store Alternate
	3.3.1.5 Separate Instruction and Data Memories
	3.3.1.6 Input/Output (I/O)
	3.3.1.7 Memory Synchronization

	3.3.2 Integer Arithmetic / Logical / Shift Instructions
	3.3.3 Control Transfer
	3.3.4 State Register Access
	3.3.4.1 Ancillary State Registers
	3.3.4.2 PR State Registers

	3.3.5 Floating-Point Operate
	3.3.6 Conditional Move
	3.3.7 Register Window Management
	3.3.8 SIMD

	3.4 Traps

	Data Formats
	4.1 Integer Data Formats
	4.1.1 Signed Integer Data Types
	4.1.1.1 Signed Integer Byte, Halfword, and Word
	4.1.1.2 Signed Integer Doubleword (64 bits)
	4.1.1.3 Signed Integer Extended-Word (64 bits)

	4.1.2 Unsigned Integer Data Types
	4.1.2.1 Unsigned Integer Byte, Halfword, and Word
	4.1.2.2 Unsigned Integer Doubleword (64 bits)
	4.1.2.3 Unsigned Extended Integer (64 bits)

	4.1.3 Tagged Word (32 bits)

	4.2 Floating-Point Data Formats
	4.2.1 Floating Point, Single Precision (32 bits)
	4.2.2 Floating Point, Double Precision (64 bits)
	4.2.3 Floating Point, Quad Precision (128 bits)
	4.2.4 Floating-Point Data Alignment in Memory and Registers

	4.3 SIMD Data Formats
	4.3.1 Uint8 SIMD Data Format
	4.3.2 Int16 SIMD Data Formats
	4.3.3 Int32 SIMD Data Format

	Registers
	5.1 Reserved Register Fields
	5.2 General-Purpose R Registers
	5.2.1 Global r Registers
	5.2.2 Windowed r Registers
	5.2.3 Special r Registers

	5.3 Floating-Point Registers
	5.3.1 Floating-Point Register Number Encoding
	5.3.2 Double and Quad Floating-Point Operands

	5.4 Floating-Point State Register (FSR)
	5.4.1 Floating-Point Condition Codes (fcc0, fcc1, fcc2, fcc3)
	5.4.2 Rounding Direction (rd)
	5.4.3 Trap Enable Mask (tem)
	5.4.4 Nonstandard Floating-Point (ns)
	5.4.5 FPU Version (ver)
	5.4.6 Floating-Point Trap Type (ftt)
	5.4.7 Accrued Exceptions (aexc)
	5.4.8 Current Exception (cexc)
	5.4.9 Floating-Point Exception Fields
	5.4.10 fsr Conformance

	5.5 Ancillary State Registers
	5.5.1 32-bit Multiply/Divide Register (y) (ASR 0)
	5.5.2 Integer Condition Codes Register (ccr) (ASR 2)
	5.5.2.1 Condition Codes (ccr.xcc and ccr.icc)

	5.5.3 Address Space Identifier (asi) Register (ASR 3)
	5.5.4 Tick (tick) Register (ASR 4)
	5.5.5 Program Counters (pc, npc) (ASR 5)
	5.5.6 Floating-Point Registers State (fprs) Register (ASR 6)
	5.5.7 General Status Register (gsr) (ASR 19)
	5.5.8 softintP Register (ASRs 20, 21, 22)
	5.5.8.1 softint_setP Pseudo-Register (ASR 20)
	5.5.8.2 softint_clrP Pseudo-Register (ASR 21)

	5.5.9 Tick Compare (tick_cmprP) Register (ASR 23)
	5.5.10 System Tick (stick) Register (ASR 24)
	5.5.11 System Tick Compare (stick_cmprP) Register (ASR 25)

	5.6 Register-Window PR State Registers
	5.6.1 Current Window Pointer (cwpP) Register (PR 9)
	5.6.2 Savable Windows (cansaveP) Register (PR 10)
	5.6.3 Restorable Windows (canrestoreP) Register (PR 11)
	5.6.4 Clean Windows (cleanwinP) Register (PR 12)
	5.6.5 Other Windows (otherwinP) Register (PR 13)
	5.6.6 Window State (wstateP) Register (PR 14)
	5.6.7 Register Window Management
	5.6.7.1 Register Window State Definition
	5.6.7.2 Register Window Traps

	5.7 Non-Register-Window PR State Registers
	5.7.1 Trap Program Counter (tpcP) Register (PR 0)
	5.7.2 Trap Next PC (tnpcP) Register (PR 1)
	5.7.3 Trap State (tstateP) Register (PR 2)
	5.7.4 Trap Type (ttP) Register (PR 3)
	5.7.5 Trap Base Address (tbaP) Register (PR 5)
	5.7.6 Processor State (pstateP) Register (PR 6)
	5.7.7 Trap Level Register (tlP) (PR 7)
	5.7.8 Processor Interrupt Level (pilP) Register (PR 8)
	5.7.9 Global Level Register (glP) (PR 16)

	Instruction Set Overview
	6.1 Instruction Execution
	6.2 Instruction Formats
	6.3 Instruction Categories
	6.3.1 Memory Access Instructions
	6.3.1.1 Memory Alignment Restrictions
	6.3.1.2 Addressing Conventions
	6.3.1.3 Address Space Identifiers (ASIs)
	6.3.1.4 Separate Instruction Memory

	6.3.2 Memory Synchronization Instructions
	6.3.3 Integer Arithmetic and Logical Instructions
	6.3.3.1 Setting Condition Codes
	6.3.3.2 Shift Instructions
	6.3.3.3 Set High 22 Bits of Low Word
	6.3.3.4 Integer Multiply/Divide
	6.3.3.5 Tagged Add/Subtract

	6.3.4 Control-Transfer Instructions (CTIs)
	6.3.4.1 Conditional Branches
	6.3.4.2 Unconditional Branches
	6.3.4.3 CALL and JMPL Instructions
	6.3.4.4 RETURN Instruction
	6.3.4.5 DONE and RETRY Instructions
	6.3.4.6 Trap Instruction (Tcc)
	6.3.4.7 DCTI Couples

	6.3.5 Conditional Move Instructions
	6.3.6 Register Window Management Instructions
	6.3.6.1 SAVE Instruction
	6.3.6.2 RESTORE Instruction
	6.3.6.3 SAVED Instruction
	6.3.6.4 RESTORED Instruction
	6.3.6.5 Flush Windows Instruction

	6.3.7 Ancillary State Register (ASR) Access
	6.3.8 Privileged Register Access
	6.3.9 Floating-Point Operate (FPop) Instructions
	6.3.10 Implementation-Dependent Instructions
	6.3.11 Reserved Opcodes and Instruction Fields

	Instructions
	TABLE 72 UltraSPARC Architecture 2007Instruction Set - Alphabetical (3 of 3)
	7.1 Add
	7.2 Align Address
	7.3 Mark All Register Window Sets “Clean”
	7.4 AND Logical Operation
	7.5 Three-Dimensional Array Addressing
	7.6 Branch on Integer Condition Codes (Bicc)
	7.7 Byte Mask and Shuffle
	7.8 Branch on Integer Condition Codes with Prediction (BPcc)
	7.9 Branch on Integer Register with Prediction (BPr)
	7.10 Call and Link
	7.11 Compare and Swap
	7.12 DONE
	7.13 Edge Handling Instructions
	7.14 Edge Handling Instructions (no CC)
	7.15 Floating-Point Absolute Value
	7.16 Floating-Point Add
	7.17 Align Data
	7.18 Branch on Floating-Point Condition Codes (FBfcc)
	7.19 Branch on Floating-Point Condition Codes with Prediction (FBPfcc)
	7.20 SIMD Signed Compare
	7.21 Floating-Point Compare
	7.22 Floating-Point Divide
	7.23 FEXPAND
	7.24 Convert 32-bit Integer to Floating Point
	7.25 Flush Instruction Memory
	7.26 Flush Register Windows
	7.27 Floating-Point Multiply-Add and Multiply- Subtract (fused)
	7.28 Floating-Point Move
	7.29 Move Floating-Point Register on Condition (FMOVcc)
	7.30 Move Floating-Point Register on Integer Register Condition (FMOVR)
	7.31 Partitioned Multiply Instructions
	7.31.1 FMUL8x16 Instruction
	7.31.2 FMUL8x16AU Instruction
	7.31.3 FMUL8x16AL Instruction
	7.31.4 FMUL8SUx16 Instruction
	7.31.5 FMUL8ULx16 Instruction
	7.31.6 FMULD8SUx16 Instruction
	7.31.7 FMULD8ULx16 Instruction

	7.32 Floating-Point Multiply
	7.33 Floating-Point Negate
	7.34 FPACK
	7.34.1 FPACK16
	7.34.2 FPACK32
	7.34.3 FPACKFIX

	7.35 Fixed-point Partitioned Add
	7.36 FPMERGE
	7.37 Fixed-point Partitioned Subtract (64-bit)
	7.38 f Register Logical Operate (1 operand)
	7.39 f Register Logical Operate (2 operand)
	7.40 f Register Logical Operate (3 operand)
	7.41 Floating-Point Square Root
	7.42 Convert Floating-Point to Integer
	7.43 Convert Between Floating-Point Formats
	7.44 Floating-Point Subtract
	7.45 Convert 64-bit Integer to Floating Point
	7.46 Illegal Instruction Trap
	7.47 Mark Register Window Sets as “Invalid”
	7.48 Jump and Link
	7.49 Load Integer
	7.50 Load Integer from Alternate Space
	7.51 Block Load
	7.52 Load Floating-Point Register
	7.53 Load Floating-Point from Alternate Space
	7.54 Load Floating-Point State Register (Lower)
	7.55 Short Floating-Point Load
	7.56 Load-Store Unsigned Byte
	7.57 Load-Store Unsigned Byte to Alternate Space
	7.58 Load Integer Twin Word
	7.59 Load Integer Twin Word from Alternate Space
	7.60 Load Integer Twin Extended Word from Alternate Space
	7.61 Load Floating-Point State Register
	7.62 Memory Barrier
	7.62.1 Memory Synchronization
	7.62.2 Synchronization of the Virtual Processor
	7.62.3 TSO Ordering Rules affecting Use of MEMBAR

	7.63 Move Integer Register on Condition (MOVcc)
	7.64 Move Integer Register on Register Condition (MOVr)
	7.65 Multiply Step
	7.66 Multiply and Divide (64-bit)
	7.67 No Operation
	7.68 NORMALW
	7.69 OR Logical Operation
	7.70 OTHERW
	7.71 Pixel Component Distance (with Accumulation)
	7.72 Population Count
	7.73 Prefetch
	7.73.1 Exceptions
	7.73.2 Weak versus Strong Prefetches
	7.73.3 Prefetch Variants
	7.73.3.1 Prefetch for Several Reads (fcn = 0, 20(1416))
	7.73.3.2 Prefetch for One Read (fcn = 1, 21(1516))
	7.73.3.3 Prefetch for Several Writes (and Possibly Reads) (fcn = 2, 22(1616))
	7.73.3.4 Prefetch for One Write (fcn = 3, 23(1716))
	7.73.3.5 Prefetch Page (fcn = 4)
	7.73.3.6 Prefetch to Nearest Unified Cache (fcn = 17(1116))

	7.73.4 Implementation-Dependent Prefetch Variants (fcn = 16, 18, 19, and 24-31)
	7.73.5 Additional Notes

	7.74 Read Ancillary State Register
	7.75 Read Privileged Register
	7.76 RESTORE
	7.77 RESTORED
	7.78 RETRY
	7.79 RETURN
	7.80 SAVE
	7.81 SAVED
	7.82 Signed Divide (64-bit ¸ 32-bit)
	7.83 SETHI
	7.84 Set Interval Arithmetic Mode
	7.85 Shift
	7.86 Signed Multiply (32-bit)
	7.87 Store Integer
	7.88 Store Integer into Alternate Space
	7.89 Block Store
	7.90 Store Floating-Point
	7.91 Store Floating-Point into Alternate Space
	7.92 Store Floating-Point State Register (Lower)
	7.93 Store Partial Floating-Point
	7.94 Store Short Floating-Point
	7.95 Store Integer Twin Word
	7.96 Store Integer Twin Word into Alternate Space
	7.97 Store Floating-Point State Register
	7.98 Subtract
	7.99 Swap Register with Memory
	7.100 Swap Register with Alternate Space Memory
	7.101 Tagged Add
	7.102 Tagged Add and Trap on Overflow
	7.103 Trap on Integer Condition Codes (Tcc)
	7.104 Tagged Subtract
	7.105 Tagged Subtract and Trap on Overflow
	7.106 Unsigned Divide (64-bit ¸ 32-bit)
	7.107 Unsigned Multiply (32-bit)
	7.108 Write Ancillary State Register
	7.109 Write Privileged Register
	7.110 XOR Logical Operation

	IEEE Std 754-1985 Requirements for UltraSPARC Architecture 2007
	8.1 Traps Inhibiting Results
	8.2 Underflow Behavior
	8.2.1 Trapped Underflow Definition (ufm = 1)
	8.2.2 Untrapped Underflow Definition (ufm = 0)

	8.3 Integer Overflow Definition
	8.4 Floating-Point Nonstandard Mode
	8.5 Arithmetic Result Tables
	8.5.1 Floating-Point Add (FADD)
	8.5.2 Floating-Point Subtract (FSUB)
	8.5.3 Floating-Point Multiply
	8.5.4 Floating-Point Multiply-Add (FMADD
	8.5.5 Floating-Point Negative Multiply-Add (FNMADD)
	8.5.6 Floating-Point Multiply-Subtract (FMSUB)
	8.5.7 Floating-Point Negative Multiply-Subtract (FNMSUB)
	8.5.8 Floating-Point Divide (FDIV)
	8.5.9 Floating-Point Square Root (FSQRT)
	8.5.10 Floating-Point Compare (FCMP, FCMPE)
	8.5.11 Floating-Point to Floating-Point Conversions (F<s|d|q>TO<s|d|q>)
	8.5.12 Floating-Point to Integer Conversions (F<s|d|q>TO<i|x>)
	8.5.13 Integer to Floating-Point Conversions (F<i|x>TO<s|d|q>)

	Memory
	9.1 Memory Location Identification
	9.2 Memory Accesses and Cacheability
	9.2.1 Coherence Domains
	9.2.1.1 Cacheable Accesses
	9.2.1.2 Noncacheable Accesses
	9.2.1.3 Noncacheable Accesses with Side-Effect

	9.3 Memory Addressing and Alternate Address Spaces
	9.3.1 Memory Addressing Types
	9.3.2 Memory Address Spaces
	9.3.3 Address Space Identifiers

	9.4 SPARC V9 Memory Model
	9.4.1 SPARC V9 Program Execution Model
	9.4.2 Virtual Processor/Memory Interface Model

	9.5 The UltraSPARC Architecture Memory Model - TSO
	9.5.1 Memory Model Selection
	9.5.2 Programmer-Visible Properties of the UltraSPARC Architecture TSO Model
	9.5.3 TSO Ordering Rules
	9.5.4 Hardware Primitives for Mutual Exclusion
	9.5.4.1 Compare-and-Swap (CASA, CASXA)
	9.5.4.2 Swap (SWAP)
	9.5.4.3 Load Store Unsigned Byte (LDSTUB)

	9.5.5 Memory Ordering and Synchronization
	9.5.5.1 Ordering MEMBAR Instructions
	9.5.5.2 Sequencing MEMBAR Instructions
	9.5.5.3 Synchronizing Instruction and Data Memory

	9.6 Nonfaulting Load
	9.7 Store Coalescing

	Address Space Identifiers (ASIs)
	10.1 Address Space Identifiers and Address Spaces
	10.2 ASI Values
	10.3 ASI Assignments
	10.3.1 Supported ASIs

	10.4 Special Memory Access ASIs
	10.4.1 ASIs 1016, 1116, 1616, 1716 and 1816 (ASI_*AS_IF_USER_*)
	10.4.2 ASIs 1816, 1916, 1E16, and 1F16 (ASI_*AS_IF_USER_*_LITTLE)
	10.4.3 ASI 1416 (ASI_REAL)
	10.4.4 ASI 1516 (ASI_REAL_IO)
	10.4.5 ASI 1C16 (ASI_REAL_LITTLE)
	10.4.6 ASI 1D16 (ASI_REAL_IO_LITTLE)
	10.4.7 ASIs 2216, 2316, 2716, 2A16, 2B16, 2F16 (Privileged Load Integer Twin Extended Word)
	10.4.8 ASIs 2616 and 2E16 (Privileged Load Integer Twin Extended Word, Real Addressing)
	10.4.9 ASIs E216, E316, EA16, EB16 (Nonprivileged Load Integer Twin Extended Word)
	10.4.10 Block Load and Store ASIs
	10.4.11 Partial Store ASIs
	10.4.12 Short Floating-Point Load and Store ASIs

	10.5 ASI-Accessible Registers
	10.5.1 Privileged Scratchpad Registers (ASI_SCRATCHPAD)
	10.5.2 ASI Changes in the UltraSPARC Architecture

	Performance Instrumentation
	11.1 High-Level Requirements
	11.1.1 Usage Scenarios
	11.1.2 Metrics
	11.1.3 Accuracy Requirements

	11.2 Performance Counters and Controls
	11.2.1 Counter Overflow

	Traps
	12.1 Virtual Processor Privilege Modes
	12.2 Virtual Processor States and Traps
	12.2.0.1 Usage of Trap Levels

	12.3 Trap Categories
	12.3.1 Precise Traps
	12.3.2 Deferred Traps
	12.3.3 Disrupting Traps
	12.3.3.1 Disrupting versus Precise and Deferred Traps
	12.3.3.2 Causes of Disrupting Traps
	12.3.3.3 Conditioning of Disrupting Traps
	12.3.3.4 Trap Handler Actions for Disrupting Traps

	12.3.4 Uses of the Trap Categories

	12.4 Trap Control
	12.4.1 pil Control
	12.4.2 fsr.tem Control

	12.5 Trap-Table Entry Addresses
	12.5.1 Trap-Table Entry Address to Privileged Mode
	12.5.2 Privileged Trap Table Organization
	12.5.3 Trap Type (tt)
	12.5.3.1 Trap Type for Spill/Fill Traps

	12.5.4 Trap Priorities

	12.6 Trap Processing
	12.6.1 Normal Trap Processing

	12.7 Exception and Interrupt Descriptions
	12.7.1 SPARC V9 Traps Not Used in UltraSPARC Architecture 2007

	12.8 Register Window Traps
	12.8.1 Window Spill and Fill Traps
	12.8.2 clean_window Trap
	12.8.3 Vectoring of Fill/Spill Traps
	12.8.4 cwp on Window Traps
	12.8.5 Window Trap Handlers

	Interrupt Handling
	13.1 Interrupt Packets
	13.2 Software Interrupt Register (softint)
	13.2.1 Setting the Software Interrupt Register
	13.2.2 Clearing the Software Interrupt Register

	13.3 Interrupt Queues
	13.3.1 Interrupt Queue Registers

	13.4 Interrupt Traps

	Memory Management
	14.1 Virtual Address Translation
	14.2 Context ID
	14.3 TSB Translation Table Entry (TTE)
	14.4 Translation Storage Buffer (TSB)
	14.4.1 TSB Indexing Support
	14.4.2 TSB Cacheability and Consistency
	14.4.3 TSB Organization

	14.5 ASI Value, Context ID, and Endianness Selection for Translation
	14.6 SPARC V9 “MMU Attributes”
	14.6.1 Accessing MMU Registers
	14.6.2 Context ID Registers

	Opcode Maps
	Implementation Dependencies
	B.1 Definition of an Implementation Dependency
	B.2 Hardware Characteristics
	B.3 Implementation Dependency Categories
	B.4 List of Implementation Dependencies

	Assembly Language Syntax
	C.1 Notation Used
	C.1.1 Register Names
	C.1.2 Special Symbol Names
	C.1.3 Values
	C.1.4 Labels
	C.1.5 Other Operand Syntax
	C.1.6 Comments

	C.2 Syntax Design
	C.3 Synthetic Instructions

	Index

