
0197487805579

ISBN 978-0-557-01974-8
90000 >

OpenSPARC™ Internals
OpenSPARC T1/T2 CMT Throughput Computing

David L. Weaver, Editor
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A. 650-960-1300

Copyright 2002-2008 Sun Microsystems, Inc., 4150 Network Circle • Santa Clara, CA 950540
USA. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its
use, copying, distribution, and decompilation. No part of this product or document may be
reproduced in any form by any means without prior written authorization of Sun and its licensors,
if any. Third-party software, including font technology, is copyrighted and licensed from Sun
suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of
California. UNIX is a registered trademark in the U.S. and other countries, exclusively licensed
through X/Open Company, Ltd. For Netscape Communicator, the following notice applies:
Copyright 1995 Netscape Communications Corporation. All rights reserved.

Sun, Sun Microsystems, the Sun logo, Solaris, OpenSolaris, OpenSPARC, Java, MAJC, Sun
Fire, UltraSPARC, and VIS are trademarks, registered trademarks, or service marks of Sun
Microsystems, Inc. or its subsidiaries in the U.S. and other countries. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. in
the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture
developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun Graphical User Interface was developed by Sun Microsystems, Inc.
for its users and licensees. Sun acknowledges the pioneering efforts of Xerox in researching and
developing the concept of visual or graphical user interfaces for the computer industry. Sun holds
a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also
covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s
written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject
to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-
7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

ISBN 978-0-557-01974-8
First printing, October 2008

Contents

Preface . xiii

1 Introducing Chip Multithreaded (CMT) Processors 1

2 OpenSPARC Designs . 7
2.1 Academic Uses for OpenSPARC . 8
2.2 Commercial Uses for OpenSPARC . 8

2.2.1 FPGA Implementation. 9
2.2.2 Design Minimization . 9
2.2.3 Coprocessors . 9
2.2.4 OpenSPARC as Test Input to CAD/EDA Tools. 10

3 Architecture Overview . 11
3.1 The UltraSPARC Architecture . 12

3.1.1 Features . 12
3.1.2 Attributes. 13

3.1.2.1 Design Goals . 14
3.1.2.2 Register Windows . 14

3.1.3 System Components . 14
3.1.3.1 Binary Compatibility . 14
3.1.3.2 UltraSPARC Architecture MMU 15
3.1.3.3 Privileged Software . 15

3.2 Processor Architecture . 15
3.2.1 Integer Unit (IU) . 16
3.2.2 Floating-Point Unit (FPU) . 16

3.3 Instructions . 17
3.3.1 Memory Access . 17

3.3.1.1 Memory Alignment Restrictions 18
3.3.1.2 Addressing Conventions 18
3.3.1.3 Addressing Range . 18
3.3.1.4 Load/Store Alternate . 19
3.3.1.5 Separate Instruction and Data Memories 19
3.3.1.6 Input/Output (I/O) . 20
3.3.1.7 Memory Synchronization. 20
v

vi Contents
3.3.2 Integer Arithmetic / Logical / Shift Instructions 20
3.3.3 Control Transfer . 20
3.3.4 State Register Access . 21

3.3.4.1 Ancillary State Registers 21
3.3.4.2 PR State Registers . 21
3.3.4.3 HPR State Registers . 22

3.3.5 Floating-Point Operate . 22
3.3.6 Conditional Move . 22
3.3.7 Register Window Management . 22
3.3.8 SIMD. 22

3.4 Traps . 23
3.5 Chip-Level Multithreading (CMT) . 23

4 OpenSPARC T1 and T2 Processor Implementations 25
4.1 General Background . 25
4.2 OpenSPARC T1 Overview. 27
4.3 OpenSPARC T1 Components . 29

4.3.1 OpenSPARC T1 Physical Core . 29
4.3.2 Floating-Point Unit (FPU) . 30
4.3.3 L2 Cache . 31
4.3.4 DRAM Controller . 31
4.3.5 I/O Bridge (IOB) Unit . 31
4.3.6 J-Bus Interface (JBI) . 32
4.3.7 SSI ROM Interface . 32
4.3.8 Clock and Test Unit (CTU) . 32
4.3.9 EFuse. 33

4.4 OpenSPARC T2 Overview. 33
4.5 OpenSPARC T2 Components . 34

4.5.1 OpenSPARC T2 Physical Core . 35
4.5.2 L2 Cache . 35
4.5.3 Memory Controller Unit (MCU) . 35
4.5.4 Noncacheable Unit (NCU) . 36
4.5.5 System Interface Unit (SIU) . 36
4.5.6 SSI ROM Interface (SSI). 36

4.6 Summary of Differences Between OpenSPARC T1 and
OpenSPARC T2 . 36
4.6.1 Microarchitectural Differences . 37
4.6.2 Instruction Set Architecture (ISA) Differences 37
4.6.3 MMU Differences . 39
4.6.4 Performance Instrumentation Differences 40
4.6.5 Error Handling Differences . 40
4.6.6 Power Management Differences . 41
4.6.7 Configuration, Diagnostic, and Debug Differences 42

vii
5 OpenSPARC T2 Memory Subsystem — A Deeper Look 43
5.1 Caches . 44

5.1.1 L1 I-Cache. 44
5.1.2 L1 D-Cache . 44
5.1.3 L2 Cache . 45

5.2 Memory Controller Unit (MCU) . 47
5.3 Memory Management Unit (MMU). 50

5.3.1 Address Translation Overview . 50
5.3.2 TLB Miss Handling . 51
5.3.3 Instruction Fetching. 52
5.3.4 Hypervisor Support . 53
5.3.5 MMU Operations . 54

5.3.5.1 TLB Operation Summary. 54
5.3.5.2 Demap Operations . 54

5.4 Noncacheable Unit (NCU) . 55
5.5 System Interface Unit (SIU). 55
5.6 Data Management Unit (DMU) . 56
5.7 Memory Models . 56
5.8 Memory Transactions. 57

5.8.1 Cache Flushing . 58
5.8.2 Displacement Flushing . 58
5.8.3 Memory Accesses and Cacheability 59
5.8.4 Cacheable Accesses. 59
5.8.5 Noncacheable and Side-Effect Accesses 60
5.8.6 Global Visibility and Memory Ordering 60
5.8.7 Memory Synchronization: MEMBAR and FLUSH. 61
5.8.8 Atomic Operations . 62
5.8.9 Nonfaulting Load . 63

6 OpenSPARC Processor Configuration . 65
6.1 Selecting Compilation Options in the T1 Core 66

6.1.1 FPGA_SYN . 66
6.1.2 FPGA_SYN_1THREAD . 66
6.1.3 FPGA_SYN_NO_SPU . 66
6.1.4 FPGA_SYN_8TLB . 67
6.1.5 FPGA_SYN_16TLB . 67
6.1.6 Future Options. 67

6.2 Changing Level-1 Cache Sizes . 67
6.2.1 Doubling the Size of the I-cache . 68
6.2.2 Doubling the Number of Ways in the I-cache 69
6.2.3 Changing Data Cache Sizes. 70

6.3 Changing Number of Threads . 71
6.4 Removing the Floating-Point Front-End Unit (FFU) 71
6.5 Adding a Second Floating-Point Unit to the OpenSPARC T2 Core . 73

viii Contents
6.6 Changing Level-2 Cache Sizes . 74
6.6.1 Changing the Number of L2 Banks 75

6.7 Changing the Number of Cores on a Chip . 75
6.8 Cookbook Example 1: Integrating a New Stall Signaller Into the

T1 Thread Scheduler . 76
6.8.1 Background . 76
6.8.2 Implementation . 77
6.8.3 Updating the Monitor . 78

6.9 Cookbook Example 2: Adding a Special ASI to the
T1 Instruction Set. 79
6.9.1 Background . 79
6.9.2 Implementation . 81
6.9.3 Caveats . 83

7 OpenSPARC Design Verification Methodology 85
7.1 Verification Strategy . 86
7.2 Models . 89

7.2.1 Architectural Model . 90
7.2.2 Unit-Level Models . 90
7.2.3 Full-Chip Model . 91
7.2.4 SoC-Level Model . 92

7.3 Verification Methods . 92
7.4 Simulation Verification . 93

7.4.1 Testbench. 94
7.4.2 Assertions . 96
7.4.3 Coverage . 97
7.4.4 Directed Testing . 99
7.4.5 Random Test Generation . 99
7.4.6 Result Checking . 100

7.5 Formal Verification . 101
7.5.1 Design Comparison . 102
7.5.2 Property, or Model, Checking . 102
7.5.3 Symbolic Simulation . 103

7.6 Emulation Verification . 104
7.6.1 Emulation Platforms . 107
7.6.2 Emulation Deployment . 108

7.7 Debugging . 110
7.8 Post-Silicon Verification . 112

7.8.1 Silicon Validation . 113
7.8.2 Silicon Debugging . 116
7.8.3 Silicon Bug-Fix Verification . 117

7.9 Summary . 118

8 Operating Systems for OpenSPARC T1 . 121
8.1 Virtualization . 121

ix
8.2 sun4v Architecture . 122
8.3 SPARC Processor Extensions . 122
8.4 Operating System Porting . 123

9 Tools for Developers . 125
9.1 Compiling Code . 125

9.1.1 Compiling Applications With Sun Studio 125
9.1.2 Compiling Applications With GCC for SPARC Systems 128
9.1.3 Improving Performance With Profile Feedback 128
9.1.4 Inlining for Cross-File Optimization 130
9.1.5 Choosing TLB Page Sizes . 131

9.2 Exploring Program Execution . 132
9.2.1 Profiling With Performance Analyzer 132
9.2.2 Gathering Instruction Counts With BIT. 137
9.2.3 Evaluating Training Data Quality 142
9.2.4 Profiling With SPOT . 146
9.2.5 Debugging With dbx . 148
9.2.6 Using Discover to Locate Memory Access Errors. 151

9.3 Throughput Computing . 152
9.3.1 Measuring Processor Utilization 153
9.3.2 Using Performance Counters to Estimate Instruction

and Stall Budget Use 156
9.3.3 Collecting Instruction Count Data 159
9.3.4 Strategies for Parallelization . 159
9.3.5 Parallelizing Applications With POSIX Threads. 160
9.3.6 Parallelizing Applications With OpenMP 162
9.3.7 Using Autoparallelization to Produce Parallel Applications .

165
9.3.8 Detecting Data Races With the Thread Analyzer 165
9.3.9 Avoiding Data Races . 169
9.3.10 Considering Microparallelization 174
9.3.11 Programming for Throughput . 177

10 System Simulation, Bringup, and Verification 179
10.1 SPARC Architecture Model . 180

10.1.1 SPARC CPU Model. 181
10.1.2 VCPU Interface . 182

10.1.2.1 Control Interface . 183
10.1.2.2 System Interface . 183
10.1.2.3 Trace Interface . 184

10.1.3 Module Model Interface . 184
10.1.3.1 SAM Configuration File 185
10.1.3.2 Module Loading and Unloading 185
10.1.3.3 Module Initialization 185

x Contents
10.2 System Configuration File . 186
10.2.1 The sysconf Directive Format 186
10.2.2 Examples . 188
10.2.3 Simulated Time in SAM . 189

10.3 SAM Huron Sim Architecture . 190
10.3.1 Sample Configuration File for T2 Huron on SAM 192
10.3.2 Serial Device Module . 193
10.3.3 NCU Module . 196
10.3.4 PIU Module . 197
10.3.5 IORAM Module . 198
10.3.6 Time-of-Day Module. 200
10.3.7 PCI-E Bus Module . 201
10.3.8 PCIE-PCI Bridge Module . 202
10.3.9 PCIE-PCIE Bridge Module . 203
10.3.10 Serially Attached SCSI Module. 205
10.3.11 LLFS Module . 208

10.4 Creation of a Root Disk Image File . 208
10.5 Debugging With SAM . 210

10.5.1 Simulated State Access . 211
10.5.2 Symbol Information . 213
10.5.3 Breakpoints . 215
10.5.4 Debug Tracing . 216
10.5.5 Probes . 216

10.6 Cycle-Accurate Simulation . 217
10.6.1 Trace-Driven Approach . 217
10.6.2 Execution-Driven Approach . 218
10.6.3 Submodule Approach . 218
10.6.4 Conclusion. 219

10.7 Verification by Cosimulation . 219
10.7.1 RTL Cosimulation . 219

10.7.1.1 TLB-Sync Model . 221
10.7.1.2 LdSt-Sync Model . 223
10.7.1.3 Follow-Me Model . 225

10.7.2 RTL-SAM Cosimulation Summary 226

11 OpenSPARC Extension and Modification—Case Study 227

A Overview: OpenSPARC T1/ T2 Source Code and Environment Setup239
A.1 OpenSPARC T1 Hardware Package. 239

A.1.1 T1 Hardware Package Structure 240
A.1.2 Documentation . 240
A.1.3 Design Source Code . 241
A.1.4 Xilinx Embedded Development Kit Project 242
A.1.5 Design Libraries . 242
A.1.6 Verification Environment . 242
A.1.7 Tools . 243

xi
A.2 OpenSPARC T2 Hardware Package. 243
A.2.1 Documentation . 244
A.2.2 Design Source Code . 244
A.2.3 Design Libraries . 245
A.2.4 Verification Environment . 245
A.2.5 Tools . 246

A.3 Setup for an OpenSPARC Environment. 246

B Overview of OpenSPARC T1 Design . 249
B.1 SPARC Core . 249
B.2 L2 Cache . 251

B.2.1 L2 Cache Single Bank . 252
B.2.2 L2 Cache Instructions . 254
B.2.3 L2 Cache Pipeline . 257
B.2.4 L2 Cache Memory Coherency and Instruction Ordering . 257

B.3 Memory Controller . 258
B.4 I/O Bridge . 258

B.4.1 IOB Main Functions . 258
B.4.2 IOB Miscellaneous Functions . 259
B.4.3 IOB Interfaces . 259

B.5 Floating-Point Unit (FPU) . 260
B.5.1 Floating-Point Instructions . 262
B.5.2 Floating-Point Unit Power Management 263
B.5.3 Floating-Point Register Exceptions and Traps. 263

B.6 J-Bus Interface . 264
B.6.1 J-Bus Requests to the L2 Cache 264
B.6.2 I/O Buffer Requests to the J-Bus 265
B.6.3 J-Bus Interrupt Requests to the IOB 265

C Overview of OpenSPARC T2 Design . 267
C.1 OpenSPARC T2 Design and Features . 268
C.2 SPARC Core . 270

C.2.1 Instruction Fetch Unit (IFU) . 270
C.2.2 Execution Unit. 271
C.2.3 Load-Store Unit (LSU) . 272

C.2.3.1 Changes From OpenSPARC T1 272
C.2.3.2 Functional Units of the LSU 272
C.2.3.3 Special Memory Operation Handling. 273

C.3 L2 Cache . 275
C.3.1 L2 Functional Units . 275
C.3.2 L2 Cache Interfaces. 277
C.3.3 L2 Cache Instructions . 278

C.4 Cache Crossbar . 280
C.5 Memory Controller Unit . 280

C.5.1 Changes to the OpenSPARC T2 MCU 281
C.5.2 DDR Branch Configuration . 282

xii Contents
C.5.3 FBD Channel Configuration . 282
C.5.4 SDRAM Initialization . 282

C.6 Noncacheable Unit (NCU) . 283
C.6.1 Changes from OpenSPARC T1 I/O Bridge 284
C.6.2 NCU Interfaces . 285

C.7 Floating-Point and Graphics Unit (FGU) . 285
C.7.1 FGU Feature Comparison of OpenSPARC T2 and

OpenSPARC T1. 289
C.7.2 Performance . 290
C.7.3 FGU Interfaces . 290

C.8 Trap Logic Unit (TLU) . 293
C.9 Reliability and Serviceability . 295

C.9.1 Core Error Attribution . 296
C.9.2 Core Error Logging . 296

C.10 Reset . 297
C.11 Performance Monitor Unit (PMU) . 299
C.12 Debugging Features . 299
C.13 Test Control Unit (TCU) . 300
C.14 System Interface Unit (SIU). 301

D OpenSPARC T1 Design Verification Suites . 303
D.1 OpenSPARC T1 Verification Environment 303
D.2 Regression Tests. 305

D.2.1 The sims Command Actions . 306
D.2.2 Running Regression With Other Simulators 307

D.3 Verification Code . 307
D.3.1 Verilog Code Used for Verification 307
D.3.2 Vera Code Used for Verification 309

D.4 PLI Code Used for the Testbench. 309
D.5 Verification Test File Locations . 311
D.6 Compilation of Source Code for Tools. 312
D.7 Gate-Level Verification . 312

E OpenSPARC T2 Design Verification Suites . 315
E.1 System Requirements. 315
E.2 OpenSPARC T2 Verification Environment 316
E.3 Regression Tests. 317
E.4 PLI Code Used For the Testbench . 319
E.5 Verification Test File Locations . 320

F OpenSPARC Resources . 321

G OpenSPARC Terminology . 323

Index . 347

Preface

Open-source software? Sure, everyone has heard of that. We all take
advantage of it as we navigate through the Internet (OpenSolaris™,
Java™, Linux, Apache, Perl, etc.) and even when we sit down to relax
with TiVo (Linux) or watch a Blu-Ray disc (Java).

But open-source hardware … eh? What is open-source hardware?! Small
amounts of computer hardware Intellectual Property (IP) have been
available for many years in open-source form, typically as circuit
descriptions written in an RTL (Register Transfer Level) language such as
Verilog or VHDL. However, until now, few large hardware designs have
been available in open-source form. One of the most complex designs
imaginable is for a complete microprocessor; with the notable exception
of the LEON 32-bit SPARC® processor, none have been available in
open-source form until recently.

In March 2006, the complete design of Sun Microsystems’
UltraSPARC™ T1 microprocessor was released—in open-source form, it
was named OpenSPARC™ T1. In early 2008, its successor,
OpenSPARC™ T2, was also released in open-source form. These were
the first (and still only) 64-bit microprocessors ever open-sourced. They
were also the first (and still only) CMT (chip multithreaded)
microprocessors ever open-sourced. Both designs are freely available
from the OpenSPARC™ website, http://www.OpenSPARC.net, to
anyone. These downloads include not only the processor design source
code but also simulation tools, design verification suites, Hypervisor
source code, and other helpful tools. Variants that easily synthesize for
FPGA targets are also available.
xiii

xiv Preface
Organization of Book
This book is intended as a sort of “tour guide” for those who have
downloaded the OpenSPARC T1 or OpenSPARC T2 design, or might be
considering doing so. •
• Chapter 1, Introducing Chip Multithreaded (CMT) Processors, addresses

the question “why build a multithreaded processor?”
• Chapter 2, OpenSPARC Designs, describes some example uses for these

designs.
• Chapter 3, Architecture Overview, backs up a step and describes the

architecture on which OpenSPARC processors are based.
• Chapter 4, OpenSPARC T1 and T2 Processor Implementations, dives into

the microarchitecture of both OpenSPARC T1 and OpenSPARC T2.
• Chapter 5, OpenSPARC T2 Memory Subsystem — A Deeper Look, describes

the memory system.
• Chapter 6, OpenSPARC Processor Configuration, explains how to

configure a synthesized design from the actual RTL code and provides a
couple of examples of useful modifications to the design.

• The design verification methodology used by Sun to verify the processors
on which OpenSPARC is based is explained in Chapter 7, OpenSPARC
Design Verification Methodology.

• Chapter 8, Operating Systems for OpenSPARC T1, lists operating systems
that already run on OpenSPARC and gives an overview of how you can
port your own operating system to run on top of Hypervisor on an
OpenSPARC implementation.

• In Chapter 9, Tools for Developers, the emphasis shifts to software, as the
chapter describes the tools that are available for developing high-
performance software for OpenSPARC.

• Software is again the focus in Chapter 10, System Simulation, Bringup, and
Verification, which discusses OpenSPARC system simulation, RTL, and co-
simulation.

• Chapter 11, OpenSPARC Extension and Modification—Case Study, presents
a real-world example of getting started with the OpenSPARC RTL and
tools.

Notational Conventions xv
• Appendix A, Overview: OpenSPARC T1/ T2 Source Code and Environment
Setup, gives an overview of the source code trees for OpenSPARC T1 and
OpenSPARC T2 and describes how to set up a functional development
environment around them.

• Appendix B and Appendix C provide “deep dives” into the
OpenSPARC T1 and OpenSPARC T2 designs, respectively.

• Use of the Verification suites for OpenSPARC T1 and OpenSPARC T2 is
found, respectively, in Appendix D and Appendix E.

• Appendix F, OpenSPARC Resources, lists URLs for OpenSPARC resources
available on the World Wide Web.

• Lastly, Appendix G provides a glossary of terminology used in this book.

Notational Conventions
Fonts are used as follows:
• Italic font is used for emphasis, book titles, and the first instance of a word

that is defined.
• Italic font is also used for terms where substitution is expected, for

example, “fccn”, “virtual processor n”, or “reg_plus_imm”.
• Italic sans serif font is used for exception and trap names. For example,

“The privileged_action exception....”
• lowercase arial font is used for register field names (named bits) and

instruction field names, for example: “The rs1 field contains....”
• UPPERCASE ARIAL font is used for register names; for example, FSR.
• TYPEWRITER (Courier) font is used for literal values, such as code

(assembly language, C language, ASI names) and for state names. For
example: %f0, ASI_PRIMARY, execute_state.

• When a register field is shown along with its containing register name, they
are separated by a period (‘.’), for example, “FSR.cexc”.

Case, underscores, and hyphens are used as follows.
• UPPERCASE words are acronyms or instruction names. Some common

acronyms appear in the glossary in Appendix G, OpenSPARC Terminology.
Note: Names of some instructions contain both upper- and lower-case
letters.

xvi Preface
• An underscore character joins words in register, register field, exception,
and trap names. Note: Such words may be split across lines at the underbar
without an intervening hyphen. For example: “This is true whenever the
integer_condition_
code field....”

• A hyphen joins multiple words in a variable name; for example, “ioram-
instance-name”.

The following notational conventions are used:
• The left arrow symbol (←) is the assignment operator. For example,

“PC ← PC + 1” means that the Program Counter (PC) is incremented by 1.
• Square brackets ([]) are used in two different ways, distinguishable by

the context in which they are used:
• Square brackets indicate indexing into an array. For example, TT[TL]

means the element of the Trap Type (TT) array, as indexed by the
contents of the Trap Level (TL) register.

• Square brackets are also used to indicate optional additions/extensions
to symbol names. For example, “ST[D|Q]F” expands to all three of
“STF”, “STDF”, and “STQF”. Similarly, ASI_PRIMARY[_LITTLE]
indicates two related address space identifiers, ASI_PRIMARY and
ASI_PRIMARY_LITTLE. (Contrast with the use of angle brackets,
below)

• Angle brackets (< >) indicate mandatory additions/extensions to symbol
names. For example, “ST<D|Q>F” expands to mean “STDF” and “STQF”.
(Contrast with the second use of square brackets, above.)

• Curly braces ({ }) indicate a bit field within a register or instruction. For
example, CCR{4} refers to bit 4 in the Condition Code register.

• A consecutive set of values is indicated by specifying the upper and lower
limit of the set separated by a colon (:), for example, CCR{3:0} refers to
the set of four least significant bits of register CCR.

Notation for numbers is as follows.
• Numbers are decimal (base-10) unless otherwise indicated. Numbers in

other bases are followed by a numeric subscript indicating their base (for
example, 10012, FFFF 000016).
Long binary and hexadecimal numbers within the text have spaces inserted
every four characters to improve readability.

• Within C language or assembly language examples, numbers may be
preceded by “0x” to indicate base-16 (hexadecimal) notation (for example,
0xFFFF0000).

Acknowledgments xvii
Acknowledgments
OpenSPARC Internals is the result of collaboration among many contributors.
I would particularly like to acknowledge the following people for their key
contributions:
• Lawrence Spracklen, for contributing the text of Chapter 1
• Sreenivas Vadlapatla, for coordinating the content of Chapter 5
• Paul Jordan, for contributing portions of Chapter 5
• Tom Thatcher, for contributing the bulk of Chapter 6 and Appendix A
• Jared Smolens, for contributing the “cookbook” examples at the end of

Chapter 6
• Jai Kumar, for contributing the text of Chapter 7
• Kevin Clague, for contributions to Chapter 7
• Gopal Reddy, for contributing the text of Chapter 8
• Darryl Gove (author of the Solaris Application Programming book), for

contributing Chapter 9
• Alex Tsirfa, for contributing the text of Chapter 10
• Fabrizio Fazzino, for contributing the text of Chapter 11
• Durgam Vahia, for extracting the text of Appendix B through Appendix E

from the sources listed below

The following people contributed to the quality of this book by providing
meticulous reviews of its drafts and answers to critical questions: Paul
Jordan, Jared Smolens, Jeff Brooks, and Aaron Wynn.

Last, but far from least, thanks to Mary Lou Nohr, for pulling it all together
and making everyone else look good (yet again)

xviii Preface
Sources
I would also like to acknowledge the sources, listed in the table below, from
which Appendixes B through E were derived.

Editor’s Note
We hope you find OpenSPARC Internals accurate, readable, and stimulating.

—David Weaver
Editor, OpenSPARC Internals

Corrections and other comments regarding this book can be emailed to:
OpenSPARC-book-editor@sun.com

App. Source Part # / Date / Rev

B OpenSPARC T1 Microarchitecture
Specification

819-6650-10 Aug. 2006,
Rev. A

C OpenSPARC T2 Microarchitecture
Specification
OpenSPARC T2 System-On-Chip (SoC)
Micrarchitecture Specification

820-2545-10 July 2007,
Rev. 5
820-2620-05 July 2007,
Rev. 5

D OpenSPARC T1 Design and Verification
User's Guide (Chapter 3)

819-5019-12, Mar 2007,
Rev. A

E OpenSPARC T2 Design and Verification
User's Guide (Chapter 3)

820-2729-10, Dec 2007,
Rev. A

CHAPTER 1

Introducing Chip Multithreaded
(CMT) Processors

Much of the material in this chapter was leveraged from L. Spracklen and
S. G. Abraham, “Chip Multithreading: Opportunities and Challenges,” in
11th International Symposium on High-Performance Computer
Architecture, 2005.

Over the last few decades microprocessor performance has increased
exponentially, with processor architects successfully achieving significant
gains in single-thread performance from one processor generation to the
next. Semiconductor technology has been the main driver for this
increase, with faster transistors allowing rapid increases in clock speed to
today’s multi-GHz frequencies. In addition to these frequency increases,
each new technology generation has essentially doubled the number of
available transistors. As a result, architects have been able to aggressively
chase increased single-threaded performance by using a range of
expensive microarchitectural techniques, such as, superscalar issue, out-
of-order issue, on-chip caching, and deep pipelines supported by
sophisticated branch predictors.

However, process technology challenges, including power constraints, the
memory wall, and ever-increasing difficulties in extracting further
instruction-level parallelism (ILP), are all conspiring to limit the
performance of individual processors in the future. While recent attempts
at improving single-thread performance through even deeper pipelines
have led to impressive clock frequencies, these clock frequencies have
not translated into significantly better performance in comparison with
less aggressive designs. As a result, microprocessor frequency, which
used to increase exponentially, has now leveled off, with most processors
operating in the 2–4 GHz range.
1

2 Chapter 1 Introducing Chip Multithreaded (CMT) Processors
This combination of the limited realizable ILP, practical limits to pipelining,
and a “power ceiling” imposed by cost-effective cooling considerations have
conspired to limit future performance increases within conventional processor
cores. Accordingly, processor designers are searching for new ways to
effectively utilize their ever-increasing transistor budgets.

The techniques being embraced across the microprocessor industry are chip
multiprocessors (CMPs) and chip multithreaded (CMT) processors. CMP, as
the name implies, is simply a group of processors integrated onto the same
chip. The individual processors typically have comparable performance to
their single-core brethren, but for workloads with sufficient thread-level
parallelism (TLP), the aggregate performance delivered by the processor can
be many times that delivered by a single-core processor. Most current
processors adopt this approach and simply involve the replication of existing
single-processor processor cores on a single die.

Moving beyond these simple CMP processors, chip multithreaded (CMT)
processors go one step further and support many simultaneous hardware
strands (or threads) of execution per core by simultaneous multithreading
(SMT) techniques. SMT effectively combats increasing latencies by enabling
multiple strands to share many of the resources within the core, including the
execution resources. With each strand spending a significant portion of time
stalled waiting for off-chip misses to complete, each strand’s utilization of the
core’s execution resources is extremely low. SMT improves the utilization of
key resources and reduces the sensitivity of an application to off-chip misses.
Similarly, as with CMP, multiple cores can share chip resources such as the
memory controller, off-chip bandwidth, and the level-2/level-3 cache,
improving the utilization of these resources.

The benefits of CMT processors are apparent in a wide variety for application
spaces. For instance, in the commercial space, server workloads are broadly
characterized by high levels of TLP, low ILP, and large working sets. The
potential for further improvements in overall single-thread performance is
limited; on-chip cycles per instruction (CPI) cannot be improved significantly
because of low ILP, and off-chip CPI is large and growing because of relative
increases in memory latency. However, typical server applications
concurrently serve a large number of users or clients; for instance, a database
server may have hundreds of active processes, each associated with a different
client. Furthermore, these processes are currently multithreaded to hide disk
access latencies. This structure leads to high levels of TLP. Thus, it is
extremely attractive to couple the high TLP in the application domain with
support for multiple threads of execution on a processor chip.

Evolution of CMTs 3
Though the arguments for CMT processors are often made in the context of
overlapping memory latencies, memory bandwidth considerations also play a
significant role. New memory technologies, such as fully buffered DIMMs
(FBDs), have higher bandwidths (for example, 60 GB/s/chip), as well as
higher latencies (for example, 130 ns), pushing up their bandwidth-delay
product to 60 GB/s × 130 ns = 7800 bytes. The processor chip’s pins represent
an expensive resource, and to keep these pins fully utilized (assuming a cache
line size of 64 bytes), the processor chip must sustain 7800/64 or over 100
parallel requests. To put this in perspective, a single strand on an aggressive
out-of-order processor core generates less than two parallel requests on typical
server workloads: therefore, a large number of strands are required to sustain
a high utilization of the memory ports.

Finally, power considerations also favor CMT processors. Given the almost
cubic dependence between core frequency and power consumption, the latter
drops dramatically with reductions in frequency. As a result, for workloads
with adequate TLP, doubling the number of cores and halving the frequency
delivers roughly equivalent performance while reducing power consumption
by a factor of four.

Evolution of CMTs
Given the exponential growth in transistors per chip over time, a rule of
thumb is that a board design becomes a chip design in ten years or less. Thus,
most industry observers expected that chip-level multiprocessing would
eventually become a dominant design trend. The case for a single-chip
multiprocessor was presented as early as 1996 by Kunle Olukotun’s team at
Stanford University. Their Stanford Hydra CMP processor design called for
the integration of four MIPS-based processors on a single chip. A DEC/
Compaq research team proposed the incorporation of eight simple Alpha cores
and a two-level cache hierarchy on a single chip (code-named Piranha) and
estimated a simulated performance of three times that of a single-core, next-
generation Alpha processor for on-line transaction processing workloads.

As early as the mid-1990s, Sun recognized the problems that would soon face
processor designers as a result of the rapidly increasing clock frequencies
required to improve single-thread performance. In response, Sun defined the
MAJC architecture to target thread-level parallelism. Providing well-defined
support for both CMP and SMT processors, MAJC architecture was industry’s
first step toward general-purpose CMT processors. Shortly after publishing
the MAJC architecture, Sun announced its first MAJC-compliant processor
(MAJC-5200), a dual-core CMT processor with cores sharing an L1 data
cache.

4 Chapter 1 Introducing Chip Multithreaded (CMT) Processors
Subsequently, Sun moved its SPARC processor family toward the CMP design
point. In 2003, Sun announced two CMP SPARC processors: Gemini, a dual-
core UltraSPARC II derivative; and UltraSPARC IV. These first-generation
CMP processors were derived from earlier uniprocessor designs, and the two
cores did not share any resources other than off-chip datapaths. In most CMP
designs, it is preferable to share the outermost caches, because doing so
localizes coherency traffic between the strands and optimizes inter-strand
communication in the chip—allowing very fine-grained thread interaction
(microparallelism). In 2003, Sun also announced its second-generation CMP
processor, UltraSPARC IV+, a follow-on to the UltraSPARC IV processor, in
which the on-chip L2 and off-chip L3 caches are shared between the two
cores.

In 2006, Sun introduced a 32-way CMT SPARC processor, called
UltraSPARC T1, for which the entire design, including the cores, is optimized
for a CMT design point. UltraSPARC T1 has eight cores; each core is a four-
way SMT with its own private L1 caches. All eight cores share a 3-Mbyte, 12-
way level-2 cache,. Since UltraSPARC T1 is targeted at commercial server
workloads with high TLP, low ILP, and large working sets, the ability to
support many strands and therefore many concurrent off-chip misses is key to
overall performance. Thus, to accommodate eight cores, each core supports
single issue and has a fairly short pipeline.

Sun’s most recent CMT processor is the UltraSPARC T2 processor. The
UltraSPARC T2 processor provides double the threads of the UltraSPARC T1
processor (eight threads per core), as well as improved single-thread
performance, additional level-2 cache resources (increased size and
associativity), and improved support for floating-point operations.

Sun’s move toward the CMT design has been mirrored throughout industry. In
2001, IBM introduced the dual-core POWER-4 processor and recently
released second-generation CMT processors, the POWER-5 and POWER-6
processors, in which each core supports 2-way SMT. While this fundamental
shift in processor design was initially confined to the high-end server
processors, where the target workloads are the most thread-rich, this change
has recently begun to spread to desktop processors. AMD and Intel have also
subsequently released multicore CMP processors, starting with dual-core
CMPs and more recently quad-core CMP processors. Further, Intel has
announced that its next-generation quad-core processors will support 2-way
SMT, providing a total of eight threads per chip.

CMT is emerging as the dominant trend in general-purpose processor design,
with manufacturers discussing their multicore plans beyond their initial quad-
core offerings. Similar to the CISC-to-RISC shift that enabled an entire
processor to fit on a single chip and internalized all communication between

Future CMT Designs 5
pipeline stages to within a chip, the move to CMT represents a fundamental
shift in processor design that internalizes much of the communication between
processors to within a chip.

Future CMT Designs
An attractive proposition for future CMT design is to just double the number
of cores per chip every generation since a new process technology essentially
doubles the transistor budget. Little design effort is expended on the cores,
and performance is almost doubled every process generation on workloads
with sufficient TLP. Though reusing existing core designs is an attractive
option, this approach may not scale well beyond a couple of process
generations. Processor designs are already pushing the limits of power
dissipation. For the total power consumption to be restrained, the power
dissipation of each core must be halved in each generation. In the past, supply
voltage scaling delivered most of the required power reduction, but
indications are that voltage scaling will not be sufficient by itself. Though
well-known techniques, such as clock gating and frequency scaling, may be
quite effective in the short term, more research is needed to develop low-
power, high-performance cores for future CMT designs.

Further, given the significant area cost associated with high-performance
cores, for a fixed area and power budget, the CMP design choice is between a
small number of high-performance (high frequency, aggressive out-of-order,
large issue width) cores or multiple simple (low frequency, in-order, limited
issue width) cores. For workloads with sufficient TLP, the simpler core
solution may deliver superior chipwide performance at a fraction of the power.
However, for applications with limited TLP, unless speculative parallelism can
be exploited, CMT performance will be poor. One possible solution is to
support heterogeneous cores, potentially providing multiple simple cores for
thread-rich workloads and a single more complex core to provide robust
performance for single-threaded applications.

Another interesting opportunity for CMT processors is support for on-chip
hardware accelerators. Hardware accelerators improve performance on certain
specialized tasks and off-load work from the general-purpose processor.
Additionally, on-chip hardware accelerators may be an order of magnitude
more power efficient than the general-purpose processor and may be
significantly more efficient than off-chip accelerators (for example,
eliminating the off-chip traffic required to communicate to an off-chip
accelerator). Although high cost and low utilization typically make on-chip
hardware accelerators unattractive for traditional processors, the cost of an
accelerator can be amortized over many strands, thanks to the high degree of
resource sharing associated with CMTs. While a wide variety of hardware

accelerators can be envisaged, emerging trends make an extremely compelling
case for supporting on-chip network off-load engines and cryptographic
accelerators. The future processors will afford opportunities for accelerating
other functionality. For instance, with the increasing usage of XML-formatted
data, it may become attractive to have hardware support XML parsing and
processing.

Finally, for the same amount of off-chip bandwidth to be maintained per core,
the total off-chip bandwidth for the processor chip must also double every
process generation. Processor designers can meet the bandwidth need by
adding more pins or increasing the bandwidth per pin. However, the
maximum number of pins per package is only increasing at a rate of 10
percent per generation. Further packaging costs per pin are barely going down
with each new generation and increase significantly with pin count. As a
result, efforts have recently focused on increasing the per-pin bandwidth by
innovations in the processor chip to DRAM memory interconnect through
technologies such as double data rate and fully buffered DIMMs. Additional
benefits can be obtained by doing more with the available bandwidth; for
instance, by compressing off-chip traffic or exploiting silentness to minimize
the bandwidth required to perform write-back operations. Compression of the
on-chip caches themselves can also improve performance, but the (significant)
additional latency that is introduced as a result of the decompression overhead
must be carefully balanced against the benefits of the reduced miss rate,
favoring adaptive compression strategies.

As a result, going forward we are likely to see an ever-increasing proportion
of CMT processors designed from the ground-up in order to deliver ever-
increasing performance while satisfying these power and bandwidth
constraints.

CHAPTER 2

OpenSPARC Designs

Sun Microsystems began shipping the UltraSPARC T1 chip
multithreaded (CMT) processor in December 2005. Sun surprised the
industry by announcing that it would not only ship the processor but also
open-source that processor—a first in the industry. By March 2006,
UltraSPARC T1 had been open-sourced in a distribution called
OpenSPARC T1, available on http://OpenSPARC.net.

In 2007, Sun began shipping its newer, more advanced UltraSPARC T2
processor, and open-sourced the bulk of that design as OpenSPARC T2.

The “source code” for both designs offered on OpenSPARC.net is
comprehensive, including not just millions of lines of the hardware
description language (Verilog, a form of “register transfer logic”—RTL)
for these microprocessors, but also scripts to compile (“synthesize”) that
source code into hardware implementations, source code of processor and
full-system simulators, prepackaged operating system images to boot on
the simulators, source code to the Hypervisor software layer, a large suite
of verification software, and thousands of pages of architecture and
implementation specification documents.

This book is intended as a “getting started” companion to both
OpenSPARC T1 and OpenSPARC T2. In this chapter, we begin that
association by addressing this question: Now that Sun has open-sourced
OpenSPARC T1 and T2, what can they be used for?

One thing is certain: the real-world uses to which OpenSPARC will be
put will be infinitely more diverse and interesting than anything that
could be suggested in this book! Nonetheless, this short chapter offers a
few ideas, in the hope that they will stimulate even more creative
thinking …
7

8 Chapter 2 OpenSPARC Designs
2.1 Academic Uses for OpenSPARC
The utility of OpenSPARC in academia is limited only by students’
imaginations.

The most common academic use of OpenSPARC to date is as a complete
example processor architecture and/or implementation. It can be used in
coursework areas such as computer architecture, VLSI design, compiler code
generation/optimization, and general computer engineering.

In university lab courses, OpenSPARC provides a design that can be used as a
known-good starting point for assigned projects.

OpenSPARC can be used as a basis for compiler research, such as for code
generation/optimization for highly threaded target processors or for
experimenting with instruction set changes and additions.

OpenSPARC is already in use in multiple FPGA-based projects at universities.
For more information, visit:

http://www.opensparc.net/fpga/index.html

For more information on programs supporting academic use of OpenSPARC,
including availability of the Xilinx OpenSPARC FPGA Board, visit web page:

http://www.OpenSPARC.net/edu/university-program.html

Specific questions about university programs can be posted on the
OpenSPARC general forum at:

http://forums.sun.com/forum.jspa?forumID=837
or emailed to OpenSPARC-UniversityProgram@sun.com.

Many of the commercial applications of OpenSPARC, mentioned in the
following section, suggest corresponding academic uses.

2.2 Commercial Uses for OpenSPARC
OpenSPARC provides a springboard for design of commercial processors. By
starting from a complete, known-good design—including a full verification
suite—the time-to-market for a new custom processor can be drastically
slashed.

2.2 Commercial Uses for OpenSPARC 9
Derivative processors ranging from a simple single-core, single-thread design
all the way up through an 8-core, 64-thread design can rapidly be synthesized
from OpenSPARC T1 or T2.

2.2.1 FPGA Implementation
An OpenSPARC design can be synthesized and loaded into a field-
programmable gate array (FPGA) device. This can be used in several ways:
• An FPGA version of the processor can be used for product prototyping,

allowing rapid design iteration
• An FPGA can be used to provide a high-speed simulation engine for a

processor under development
• For extreme time-to-market needs where production cost per processor

isn’t critical, a processor could even be shipped in FPGA form. This could
also be useful if the processor itself needs to be field-upgradable via a
software download.

2.2.2 Design Minimization
Portions of a standard OpenSPARC design that are not needed for the target
application can be stripped out, to make the resulting processor smaller,
cheaper, faster, and/or with higher yield rates. For example, for a network
routing application, perhaps hardware floating-point operations are
superfluous—in which case, the FPU(s) can be removed, saving die area and
reducing verification effort.

2.2.3 Coprocessors
Specialized coprocessors can be incorporated into a processor based on
OpenSPARC. OpenSPARC T2, for example, comes with a coprocessor
containing two 10 Gbit/second Ethernet transceivers (the network interface
unit or “NIU”). Coprocessors can be added for any conceivable purpose,
including (but hardly limited to) the following:
• Network routing
• Floating-point acceleration
• Cryptographic processing
• I/O compression/decompression engines
• Audio compression/decompression (codecs)
• Video codecs
• I/O interface units for embedded devices such as displays or input sensors

10 Chapter 2 OpenSPARC Designs
2.2.4 OpenSPARC as Test Input to CAD/
EDA Tools

The OpenSPARC source code (Verilog RTL) provides a large, real-world
input dataset for CAD/EDA tools. It can be used to test the robustness of
CAD tools and simulators. Many major commercial CAD/EDA tool vendors
are already using OpenSPARC this way!

CHAPTER 3

Architecture Overview

OpenSPARC processors are based on a processor architecture named the
UltraSPARC Architecture. The OpenSPARC T1 design is based on the
UltraSPARC Architecture 2005, and OpenSPARC T2 is based on the
UltraSPARC Architecture 2007. This chapter is intended as an overview
of the architecture; more details can be found in the UltraSPARC
Architecture 2005 Specification and the UltraSPARC Architecture 2007
Specification.

The UltraSPARC Architecture is descended from the SPARC V9
architecture and complies fully with the “Level 1” (nonprivileged)
SPARC V9 specification.

The UltraSPARC Architecture supports 32-bit and 64-bit integer and 32-
bit, 64-bit, and 128-bit floating-point as its principal data types. The 32-
bit and 64-bit floating-point types conform to IEEE Std 754-1985. The
128-bit floating-point type conforms to IEEE Std 1596.5-1992. The
architecture defines general-purpose integer, floating-point, and special
state/status register instructions, all encoded in 32-bit-wide instruction
formats. The load/store instructions address a linear, 264-byte virtual
address space.

As used here, the word architecture refers to the processor features that
are visible to an assembly language programmer or to a compiler code
generator. It does not include details of the implementation that are not
visible or easily observable by software, nor those that only affect timing
(performance).

The chapter contains these sections:
• The UltraSPARC Architecture on page 12
• Processor Architecture on page 15
• Instructions on page 17
• Traps on page 23
• Chip-Level Multithreading (CMT) on page 23
11

12 Chapter 3 Architecture Overview
3.1 The UltraSPARC Architecture
This section briefly describes features, attributes, and components of the
UltraSPARC Architecture and, further, describes correct implementation of
the architecture specification and SPARC V9-compliance levels.

3.1.1 Features
The UltraSPARC Architecture, like its ancestor SPARC V9, includes the
following principal features:
• A linear 64-bit address space with 64-bit addressing.
• 32-bit wide instructions — These are aligned on 32-bit boundaries in

memory. Only load and store instructions access memory and perform I/O.
• Few addressing modes — A memory address is given as either “register +

register” or “register + immediate”.
• Triadic register addresses — Most computational instructions operate on

two register operands or one register and a constant and place the result in
a third register.

• A large windowed register file — At any one instant, a program sees 8
global integer registers plus a 24-register window of a larger register file.
The windowed registers can be used as a cache of procedure arguments,
local values, and return addresses.

• Floating point — The architecture provides an IEEE 754-compatible
floating-point instruction set, operating on a separate register file that
provides 32 single-precision (32-bit), 32 double-precision (64-bit), and 16
quad-precision (128-bit) overlayed registers.

• Fast trap handlers — Traps are vectored through a table.
• Multiprocessor synchronization instructions — Multiple variations of

atomic load-store memory operations are supported.
• Predicted branches — The branch with prediction instructions allows the

compiler or assembly language programmer to give the hardware a hint
about whether a branch will be taken.

• Branch elimination instructions — Several instructions can be used to
eliminate branches altogether (for example, Move on Condition).
Eliminating branches increases performance in superscalar and
superpipelined implementations.

3.1 The UltraSPARC Architecture 13
• Hardware trap stack — A hardware trap stack is provided to allow nested
traps. It contains all of the machine state necessary to return to the previous
trap level. The trap stack makes the handling of faults and error conditions
simpler, faster, and safer.

In addition, UltraSPARC Architecture includes the following features that
were not present in the SPARC V9 specification:
• Hyperprivileged mode— This mode simplifies porting of operating

systems, supports far greater portability of operating system (privileged)
software, supports the ability to run multiple simultaneous guest operating
systems, and provides more robust handling of error conditions.
Hyperprivileged mode is described in detail in the Hyperprivileged version
of the UltraSPARC Architecture 2005 Specification or the UltraSPARC
Architecture 2007 Specification.

• Multiple levels of global registers — Instead of the two 8-register sets of
global registers specified in the SPARC V9 architecture, the UltraSPARC
Architecture provides multiple sets; typically, one set is used at each trap
level.

• Extended instruction set — The UltraSPARC Architecture provides many
instruction set extensions, including the VIS instruction set for “vector”
(SIMD) data operations.

• More detailed, specific instruction descriptions — UltraSPARC
Architecture specifications provide many more details regarding what
exceptions can be generated by each instruction, and the specific conditions
under which those exceptions can occur, than did SPARC V9. Also,
detailed lists of valid ASIs are provided for each load/store instruction
from/to alternate space.

• Detailed MMU architecture — Although some details of the UltraSPARC
MMU architecture are necessarily implementation-specific, UltraSPARC
Architecture specifications provide a blueprint for the UltraSPARC MMU,
including software view (TTEs and TSBs) and MMU hardware control
registers.

• Chip-level multithreading (CMT) — The UltraSPARC Architecture
provides a control architecture for highly threaded processor
implementations.

3.1.2 Attributes
The UltraSPARC Architecture is a processor instruction set architecture (ISA)
derived from SPARC V8 and SPARC V9, which in turn come from a reduced
instruction set computer (RISC) lineage. As an architecture, the UltraSPARC

14 Chapter 3 Architecture Overview
Architecture allows for a spectrum of processor and system implementations
at a variety of price/performance points for a range of applications, including
scientific or engineering, programming, real-time, and commercial
applications. OpenSPARC further extends the possible breadth of design
possibilities by opening up key implementations to be studied, enhanced, or
redesigned by anyone in the community.

3.1.2.1 Design Goals
The UltraSPARC Architecture is designed to be a target for optimizing
compilers and high-performance hardware implementations. The UltraSPARC
Architecture 2005 and UltraSPARC Architecture 2007 Specification
documents provide design specs against which an implementation can be
verified, using appropriate verification software.

3.1.2.2 Register Windows
The UltraSPARC Architecture architecture is derived from the SPARC
architecture, which was formulated at Sun Microsystems in 1984 through
1987. The SPARC architecture is, in turn, based on the RISC I and II designs
engineered at the University of California at Berkeley from 1980 through
1982. The SPARC “register window” architecture, pioneered in the UC
Berkeley designs, allows for straightforward, high-performance compilers and
a reduction in memory load/store instructions.

Note that privileged software, not user programs, manages the register
windows. Privileged software can save a minimum number of registers
(approximately 24) during a context switch, thereby optimizing context-switch
latency.

3.1.3 System Components
The UltraSPARC Architecture allows for a spectrum of subarchitectures, such
as cache system, I/O, and memory management unit (MMU).

3.1.3.1 Binary Compatibility
An important mandate for the UltraSPARC Architecture is compatibility
across implementations of the architecture for application (nonprivileged)
software, down to the binary level. Binaries executed in nonprivileged mode
should behave identically on all UltraSPARC Architecture systems when those

3.2 Processor Architecture 15
systems are running an operating system known to provide a standard
execution environment. One example of such a standard environment is the
SPARC V9 Application Binary Interface (ABI).

Although different UltraSPARC Architecture systems can execute
nonprivileged programs at different rates, they will generate the same results
as long as they are run under the same memory model. See Chapter 9,
Memory, in an UltraSPARC Architecture specification for more information.

Additionally, UltraSPARC Architecture 2005 and UltraSPARC Architecture
2007 are are upward-compatible from SPARC V9 for applications running in
nonprivileged mode that conform to the SPARC V9 ABI and upward-
compatible from SPARC V8 for applications running in nonprivileged mode
that conform to the SPARC V8 ABI.

An OpenSPARC implementation may or may not maintain the same binary
compatibility, depending on how the implementation has been modified and
what software execution environment is run on it.

3.1.3.2 UltraSPARC Architecture MMU
UltraSPARC Architecture defines a common MMU architecture (see Chapter
14, Memory Management, in any UltraSPARC Architecture specification for
details). Some specifics are left implementation-dependent.

3.1.3.3 Privileged Software
UltraSPARC Architecture does not assume that all implementations must
execute identical privileged software (operating systems) or hyperprivileged
software (hypervisors). Thus, certain traits that are visible to privileged
software may be tailored to the requirements of the system.

3.2 Processor Architecture
An UltraSPARC Architecture processor—therefore an OpenSPARC
processor—logically consists of an integer unit (IU) and a floating-point unit
(FPU), each with its own registers. This organization allows for
implementations with concurrent integer and floating-point instruction
execution. Integer registers are 64 bits wide; floating-point registers are 32,
64, or 128 bits wide. Instruction operands are single registers, register pairs,
register quadruples, or immediate constants.

16 Chapter 3 Architecture Overview
A virtual processor (synonym: strand) is the hardware containing the state for
execution of a software thread. A physical core is the hardware required to
execute instructions from one or more software threads, including resources
shared among strands. A complete processor comprises one or more physical
cores and is the physical module that plugs into a system.

An OpenSPARC virtual processor can run in nonprivileged mode, privileged
mode, or hyperprivileged mode. In hyperprivileged mode, the processor can
execute any instruction, including privileged instructions. In privileged mode,
the processor can execute nonprivileged and privileged instructions. In
nonprivileged mode, the processor can only execute nonprivileged
instructions. In nonprivileged or privileged mode, an attempt to execute an
instruction requiring greater privilege than the current mode causes a trap to
hyperprivileged software.

3.2.1 Integer Unit (IU)
An OpenSPARC implementation’s integer unit contains the general-purpose
registers and controls the overall operation of the virtual processor. The IU
executes the integer arithmetic instructions and computes memory addresses
for loads and stores. It also maintains the program counters and controls
instruction execution for the FPU.

An UltraSPARC Architecture implementation may contain from 72 to 640
general-purpose 64-bit R registers. This corresponds to a grouping of the
registers into a number of sets of global R registers plus a circular stack of
N_REG_WINDOWS sets of 16 registers each, known as register windows. The
number of register windows present (N_REG_WINDOWS) is implementation
dependent, within the range of 3 to 32 (inclusive). In an unmodified
OpenSPARC T1 or T2 implementation, N_REG_WINDOWS = 8.

3.2.2 Floating-Point Unit (FPU)
An OpenSPARC FPU has thirty-two 32-bit (single-precision) floating-point
registers, thirty-two 64-bit (double-precision) floating-point registers, and
sixteen 128-bit (quad-precision) floating-point registers, some of which
overlap (as described in detail in UltraSPARC Architecture specifications).

If no FPU is present, then it appears to software as if the FPU is permanently
disabled.

3.3 Instructions 17
If the FPU is not enabled, then an attempt to execute a floating-point
instruction generates an fp_disabled trap and the fp_disabled trap handler
software must either
• Enable the FPU (if present) and reexecute the trapping instruction, or
• Emulate the trapping instruction in software.

3.3 Instructions
Instructions fall into the following basic categories:
• Memory access
• Integer arithmetic / logical / shift
• Control transfer
• State register access
• Floating-point operate
• Conditional move
• Register window management
• SIMD (single instruction, multiple data) instructions

These classes are discussed in the following subsections.

3.3.1 Memory Access
Load, store, load-store, and PREFETCH instructions are the only instructions
that access memory. They use two R registers or an R register and a signed
13-bit immediate value to calculate a 64-bit, byte-aligned memory address.
The integer unit appends an ASI to this address.

The destination field of the load/store instruction specifies either one or two R
registers or one, two, or four F registers that supply the data for a store or that
receive the data from a load.

Integer load and store instructions support byte, halfword (16-bit), word (32-
bit), and extended-word (64-bit) accesses. There are versions of integer load
instructions that perform either sign-extension or zero-extension on 8-bit, 16-
bit, and 32-bit values as they are loaded into a 64-bit destination register.
Floating-point load and store instructions support word, doubleword, and
quadword1 memory accesses.

1. OpenSPARC T1 and T2 processors do not implement the LDQF instruction in hardware; it
generates an exception and is emulated in hyperprivileged software.

18 Chapter 3 Architecture Overview
CASA, CASXA, and LDSTUB are special atomic memory access instructions
that concurrent processes use for synchronization and memory updates.

The (nonportable) LDTXA instruction supplies an atomic 128-bit (16-byte)
load that is important in certain system software applications.

3.3.1.1 Memory Alignment Restrictions
A memory access on an OpenSPARC virtual processor must typically be
aligned on an address boundary greater than or equal to the size of the datum
being accessed. An iproperly aligned address in a load, store, or load-store
instruction may trigger an exception and cause a subsequent trap. For details,
see the Memory Alignment Restrictions section in an UltraSPARC
Architecture specification.

3.3.1.2 Addressing Conventions
An unmodified OpenSPARC processor uses big-endian byte order by default:
the address of a quadword, doubleword, word, or halfword is the address of its
most significant byte. Increasing the address means decreasing the
significance of the unit being accessed. All instruction accesses are performed
using big-endian byte order.

An unmodified OpenSPARC processor also supports little-endian byte order
for data accesses only: the address of a quadword, doubleword, word, or
halfword is the address of its least significant byte. Increasing the address
means increasing the significance of the data unit being accessed.

3.3.1.3 Addressing Range
An OpenSPARC implementation supports a 64-bit virtual address space. The
supported range of virtual addresses is restricted to two equal-sized ranges at
the extreme upper and lower ends of 64-bit addresses; that is, for n-bit virtual
addresses, the valid address ranges are 0 to 2n–1 − 1 and 264 − 2n–1 to 264 − 1.
See the OpenSPARC T1 Implementation Supplement or OpenSPARC T2
Implementation Supplement for details.

Note The SWAP instruction is also specified, but it is
deprecated and should not be used in newly developed
software.

3.3 Instructions 19
3.3.1.4 Load/Store Alternate
Versions of load/store instructions, the load/store alternate instructions, can
specify an arbitrary 8-bit address space identifier for the load/store data
access.
Access to alternate spaces 0016–2F16 is restricted to privileged and
hyperprivileged software, access to alternate spaces 3016–7F16 is restricted to
hyperprivileged software, and access to alternate spaces 8016–FF16 is
unrestricted. Some of the ASIs are available for implementation-dependent
uses. Privileged and hyperprivileged software can use the implementation-
dependent ASIs to access special protected registers, such as MMU control
registers, cache control registers, virtual processor state registers, and other
processor-dependent or system-dependent values. See the Address Space
Identifiers (ASIs) chapter in an UltraSPARC Architecture specification for
more information.

Alternate space addressing is also provided for the atomic memory access
instructions LDSTUBA, CASA, and CASXA.

3.3.1.5 Separate Instruction and Data Memories
The interpretation of addresses in an unmodified OpenSPARC process is
“split”; instruction references use one caching and translation mechanism and
data references use another, although the same underlying main memory is
shared.

In such split-memory systems, the coherency mechanism may be split, so a
write1 into data memory is not immediately reflected in instruction memory.
For this reason, programs that modify their own instruction stream (self-
modifying code2) and that wish to be portable across all UltraSPARC
Architecture (and SPARC V9) processors must issue FLUSH instructions, or a
system call with a similar effect, to bring the instruction and data caches into
a consistent state.

An UltraSPARC Architecture virtual processor may or may not have coherent
instruction and data caches. Even if an implementation does have coherent
instruction and data caches, a FLUSH instruction is required for self-
modifying code—not for cache coherency, but to flush pipeline instruction
buffers that contain unmodified instructions which may have been
subsequently modified.

1. This includes use of store instructions (executed on the same or another virtual processor) that
write to instruction memory, or any other means of writing into instruction memory (for example,
DMA).

2. This is practiced, for example, by software such as debuggers and dynamic linkers.

20 Chapter 3 Architecture Overview
3.3.1.6 Input/Output (I/O)
The UltraSPARC Architecture assumes that input/output registers are accessed
through load/store alternate instructions, normal load/store instructions, or
read/write Ancillary State register instructions (RDasr, WRasr).

3.3.1.7 Memory Synchronization
Two instructions are used for synchronization of memory operations: FLUSH
and MEMBAR. Their operation is explained in Flush Instruction Memory and
Memory Barrier sections, respectively, of UltraSPARC Architecture
specifications.

3.3.2 Integer Arithmetic / Logical / Shift
Instructions

The arithmetic/logical/shift instructions perform arithmetic, tagged arithmetic,
logical, and shift operations. With one exception, these instructions compute a
result that is a function of two source operands; the result is either written into
a destination register or discarded. The exception, SETHI, can be used in
combination with other arithmetic and/or logical instructions to create a
constant in an R register.

Shift instructions shift the contents of an R register left or right by a given
number of bits (“shift count”). The shift distance is specified by a constant in
the instruction or by the contents of an R register.

3.3.3 Control Transfer
Control-transfer instructions (CTIs) include PC-relative branches and calls,
register-indirect jumps, and conditional traps. Most of the control-transfer
instructions are delayed; that is, the instruction immediately following a
control-transfer instruction in logical sequence is dispatched before the control
transfer to the target address is completed. Note that the next instruction in
logical sequence may not be the instruction following the control-transfer
instruction in memory.

The instruction following a delayed control-transfer instruction is called a
delay instruction. Setting the annul bit in a conditional delayed control-
transfer instruction causes the delay instruction to be annulled (that is, to have

3.3 Instructions 21
no effect) if and only if the branch is not taken. Setting the annul bit in an
unconditional delayed control-transfer instruction (“branch always”) causes
the delay instruction to be always annulled.

Branch and CALL instructions use PC-relative displacements. The jump and
link (JMPL) and return (RETURN) instructions use a register-indirect target
address. They compute their target addresses either as the sum of two R
registers or as the sum of an R register and a 13-bit signed immediate value.
The “branch on condition codes without prediction” instruction provides a
displacement of ±8 Mbytes; the “branch on condition codes with prediction”
instruction provides a displacement of ±1 Mbyte; the “branch on register
contents” instruction provides a displacement of ±128 Kbytes; and the CALL
instruction’s 30-bit word displacement allows a control transfer to any address
within ± 2 gigabytes (± 231 bytes).

3.3.4 State Register Access
This section describes the following state registers:
• Ancillary state registers
• Read and write privileged state registers
• Read and writer hyperprivileged state registers

3.3.4.1 Ancillary State Registers
The read and write ancillary state register instructions read and write the
contents of ancillary state registers visible to nonprivileged software (Y, CCR,
ASI, PC, TICK, and FPRS) and some registers visible only to privileged and
hyperprivileged software (PCR, SOFTINT, TICK_CMPR, and
STICK_CMPR).

3.3.4.2 PR State Registers
The read and write privileged register instructions (RDPR and WRPR) read
and write the contents of state registers visible only to privileged and
hyperprivileged software (TPC, TNPC, TSTATE, TT, TICK, TBA, PSTATE,
TL, PIL, CWP, CANSAVE, CANRESTORE, CLEANWIN, OTHERWIN, and
WSTATE).

Note The return from privileged trap instructions (DONE and
RETRY) get their target address from the appropriate
TPC or TNPC register.

22 Chapter 3 Architecture Overview
3.3.4.3 HPR State Registers
The read and write hyperprivileged register instructions (RDHPR and
WRHPR) read and write the contents of state registers visible only to
hyperprivileged software (HPSTATE, HTSTATE, HINTP, HVER, and
HSTICK_CMPR).

3.3.5 Floating-Point Operate
Floating-point operate (FPop) instructions perform all floating-point
calculations; they are register-to-register instructions that operate on the
floating-point registers. FPops compute a result that is a function of one, two,
or three source operands. The groups of instructions that are considered FPops
are listed in the Floating-Point Operate (FPop) Instructions section of
UltraSPARC Architecture specifications.

3.3.6 Conditional Move
Conditional move instructions conditionally copy a value from a source
register to a destination register, depending on an integer or floating-point
condition code or on the contents of an integer register. These instructions can
be used to reduce the number of branches in software.

3.3.7 Register Window Management
Register window instructions manage the register windows. SAVE and
RESTORE are nonprivileged and cause a register window to be pushed or
popped. FLUSHW is nonprivileged and causes all of the windows except the
current one to be flushed to memory. SAVED and RESTORED are used by
privileged software to end a window spill or fill trap handler.

3.3.8 SIMD
An unmodified OpenSPARC processor includes SIMD (single instruction,
multiple data) instructions, also known as “vector” instructions, which allow a
single instruction to perform the same operation on multiple data items,
totaling 64 bits, such as eight 8-bit, four 16-bit, or two 32-bit data items.
These operations are part of the “VIS” instruction set extensions.

3.4 Traps 23
3.4 Traps
A trap is a vectored transfer of control to privileged or hyperprivileged
software through a trap table that may contain the first 8 instructions (32 for
some frequently used traps) of each trap handler. The base address of the table
is established by software in a state register (the Trap Base Address register,
TBA, or the Hyperprivileged Trap Base register, HTBA). The displacement
within the table is encoded in the type number of each trap and the level of the
trap. Part of the trap table is reserved for hardware traps, and part of it is
reserved for software traps generated by trap (Tcc) instructions.

A trap causes the current PC and NPC to be saved in the TPC and TNPC
registers. It also causes the CCR, ASI, PSTATE, and CWP registers to be
saved in TSTATE. TPC, TNPC, and TSTATE are entries in a hardware trap
stack, where the number of entries in the trap stack is equal to the number of
supported trap levels. A trap causes hyperprivileged state to be saved in the
HTSTATE trap stack. A trap also sets bits in the PSTATE (and, in some cases,
HPSTATE) register and typically increments the GL register. Normally, the
CWP is not changed by a trap; on a window spill or fill trap, however, the
CWP is changed to point to the register window to be saved or restored.

A trap can be caused by a Tcc instruction, an asynchronous exception, an
instruction-induced exception, or an interrupt request not directly related to a
particular instruction. Before executing each instruction, a virtual processor
determines if there are any pending exceptions or interrupt requests. If any are
pending, the virtual processor selects the highest-priority exception or
interrupt request and causes a trap.

See the Traps chapter in an UltraSPARC Architecture specification for a
complete description of traps.

3.5 Chip-Level Multithreading
(CMT)

An OpenSPARC implementation may include multiple virtual processor cores
within the processor (“chip”) to provide a dense, high-throughput system. This
may be achieved by having a combination of multiple physical processor

24 Chapter 3 Architecture Overview
cores and/or multiple strands (threads) per physical processor core, referred to
as chip-level multithreaded (CMT) processors. CMT-specific hyperprivileged
registers are used for identification and configuration of CMT processors.

The CMT programming model describes a common interface between
hardware (CMT registers) and software

The common CMT registers and the CMT programming model are described
in the Chip-Level Multithreading (CMT) chapter in UltraSPARC Architecture
specifications.

CHAPTER 4

OpenSPARC T1 and T2 Processor
Implementations

This chapter introduces the OpenSPARC T1 and OpenSPARC T2 chip-
level multithreaded (CMT) processors in the following sections:
• General Background on page 25
• OpenSPARC T1 Overview on page 27
• OpenSPARC T1 Components on page 29
• OpenSPARC T2 Overview on page 33
• OpenSPARC T2 Components on page 34
• Summary of Differences Between OpenSPARC T1 and OpenSPARC T2

on page 36

4.1 General Background
OpenSPARC T1 is the first chip multiprocessor that fully implements
Sun’s Throughput Computing initiative. OpenSPARC T2 is the follow-on
chip multi-threaded (CMT) processor to the OpenSPARC T1 processor.
Throughput Computing is a technique that takes advantage of the thread-
level parallelism that is present in most commercial workloads. Unlike
desktop workloads, which often have a small number of threads
concurrently running, most commercial workloads achieve their
scalability by employing large pools of concurrent threads.

Historically, microprocessors have been designed to target desktop
workloads, and as a result have focused on running a single thread as
quickly as possible. Single-thread performance is achieved in these
microprocessors by a combination of extremely deep pipelines (over 20
stages in Pentium 4) and by execution of multiple instructions in parallel
(referred to as instruction-level parallelism, or ILP). The basic tenet
25

26 Chapter 4 OpenSPARC T1 and T2 Processor Implementations
behind Throughput Computing is that exploiting ILP and deep pipelining has
reached the point of diminishing returns and as a result, current
microprocessors do not utilize their underlying hardware very efficiently.

For many commercial workloads, the physical processor core will be idle
most of the time waiting on memory, and even when it is executing, it will
often be able to utilize only a small fraction of its wide execution width. So
rather than building a large and complex ILP processor that sits idle most of
the time, build a number of small, single-issue physical processor cores that
employ multithreading built in the same chip area. Combining multiple
physical processors cores on a single chip with multiple hardware-supported
threads (strands) per physical processor core allows very high performance for
highly threaded commercial applications. This approach is called thread-level
parallelism (TLP). The difference between TLP and ILP is shown in
FIGURE 4-1.

FIGURE 4-1 Differences Between TLP and ILP

The memory stall time of one strand can often be overlapped with execution
of other strands on the same physical processor core, and multiple physical
processor cores run their strands in parallel. In the ideal case, shown in
FIGURE 4-1, memory latency can be completely overlapped with execution of
other strands. In contrast, instruction-level parallelism simply shortens the
time to execute instructions, and does not help much in overlapping execution
with memory latency.1

1. Processors that employ out-of-order ILP can overlap some memory latency with execution.
However, this overlap is typically limited to shorter memory latency events such as L1 cache
misses that hit in the L2 cache. Longer memory latency events such as main memory accesses are
rarely overlapped to a significant degree with execution by an out-of-order processor.

Strand 1

Strand 2

Strand 3

Strand 4

Executing Stalled on Memory

TLP

ILP Single strand
executing
two

4.2 OpenSPARC T1 Overview 27
Given this ability to overlap execution with memory latency, why don’t more
processors utilize TLP? The answer is that designing processors is a mostly
evolutionary process, and the ubiquitous deeply pipelined, wide ILP physical
processor cores of today are the evolutionary outgrowth from a time when the
CPU was the bottleneck in delivering good performance.

With physical processor cores capable of multiple-GHz clocking, the
performance bottleneck has shifted to the memory and I/O subsystems and
TLP has an obvious advantage over ILP for tolerating the large I/O and
memory latency prevalent in commercial applications. Of course, every
architectural technique has its advantages and disadvantages. The one
disadvantage of employing TLP over ILP is that execution of a single strand
may be slower on a TLP processor than on an ILP processor. With physical
processor cores running at frequencies well over 1 GHz, a strand capable of
executing only a single instruction per cycle is fully capable of completing
tasks in the time required by the application, making this disadvantage a
nonissue for nearly all commercial applications.

4.2 OpenSPARC T1 Overview
OpenSPARC T1 is a single-chip multiprocessor. OpenSPARC T1 contains
eight SPARC physical processor cores. Each SPARC physical processor core
has full hardware support for four virtual processors (or “strands”). These four
strands run simultaneously, with the instructions from each of the four strands
executed round-robin by the single-issue pipeline. When a strand encounters a
long-latency event, such as a cache miss, it is marked unavailable and
instructions are not issued from that strand until the long-latency event is
resolved. Round-robin execution of the remaining available strands continues
while the long-latency event of the first strand is resolved.

Each OpenSPARC T1 physical core has a 16-Kbyte, 4-way associative
instruction cache (32-byte lines), 8-Kbyte, 4-way associative data cache (16-
byte lines), 64-entry fully associative instruction Translation Lookaside Buffer
(TLB), and 64-entry fully associative data TLB that are shared by the four
strands. The eight SPARC physical cores are connected through a crossbar to
an on-chip unified 3-Mbyte, 12-way associative L2 cache (with 64-byte lines).
The L2 cache is banked four ways to provide sufficient bandwidth for the
eight OpenSPARC T1 physical cores. The L2 cache connects to four on-chip
DRAM controllers, which directly interface to DDR2-SDRAM. In addition,

28 Chapter 4 OpenSPARC T1 and T2 Processor Implementations
an on-chip J-Bus controller and several on-chip I/O-mapped control registers
are accessible to the SPARC physical cores. Traffic from the J-Bus coherently
interacts with the L2 cache.

A block diagram of the OpenSPARC T1 chip is shown in FIGURE 4-2.

FIGURE 4-2 OpenSPARC T1 Chip Block Diagram

SPARC Core

SPARC Core

SPARC Core

SPARC Core

SPARC Core

SPARC Core

SPARC Core

SPARC Core

Cache
Crossbar

(CCX)

L2 Bank0

L2 Bank1

L2 Bank2

eFuse

CTU IOBJTAG
Port

DRAM Control
Channel 0

DDR-II

DDR-II

DDR-II

DDR-II

J-Bus
System

SSI ROM

L2 Bank3

200 MHz
J-Bus

50 MHz
SSI

156,64

156,64

156,64

156,64

124,145

32,32
32,32

32,32

32,32

32, 16,

4 or 8

Copy
for
each
block
with
CSRs

8, or 4

Notes:
(1) Blocks not scaled to physical size.
(2) Bus widths are labeled as in#,out#, where “in” is into CCX or L2.

Interface

OpenSPARC T1
FPU

Interface

DRAM Control
Channel1

DRAM Control
Channel 2

DRAM Control
Channel3

4.3 OpenSPARC T1 Components 29
4.3 OpenSPARC T1 Components
This section describes each component in OpenSPARC T1 in these
subsections.
• SPARC Physical Core on this page
• Floating-Point Unit (FPU) on page 30
• L2 Cache on page 31
• DRAM Controller on page 31
• I/O Bridge (IOB) Unit on page 31
• J-Bus Interface (JBI) on page 32
• SSI ROM Interface on page 32
• Clock and Test Unit (CTU) on page 32
• EFuse on page 33

4.3.1 OpenSPARC T1 Physical Core
Each OpenSPARC T1 physical core has hardware support for four strands.
This support consists of a full register file (with eight register windows) per
strand, with most of the ASI, ASR, and privileged registers replicated per
strand. The four strands share the instruction and data caches and TLBs. An
autodemap1 feature is included with the TLBs to allow the multiple strands to
update the TLB without locking.

The core pipeline consists of six stages: Fetch, Switch, Decode, Execute,
Memory, and Writeback. As shown in FIGURE 4-3, the Switch stage contains a
strand instruction register for each strand. One of the strands is picked by the
strand scheduler and the current instruction for that strand is issued to the
pipe. While this is done, the hardware fetches the next instruction for that
strand and updates the strand instruction register.

The scheduled instruction proceeds down the rest of the stages of the pipe,
similar to instruction execution in a single-strand RISC machine. It is decoded
in the Decode stage. The register file access also happens at this time. In the
Execute stage, all arithmetic and logical operations take place. The memory
address is calculated in this stage. The data cache is accessed in the Memory
stage and the instruction is committed in the Writeback stage. All traps are
signaled in this stage.

1. Autodemap causes an existing TLB entry to be automatically removed when a new entry is
installed with the same virtual page number (VPN) and same page size.

30 Chapter 4 OpenSPARC T1 and T2 Processor Implementations
Instructions are classified as either short or long latency instructions. Upon
encountering a long latency instruction or other stall condition in a certain
strand, the strand scheduler stops scheduling that strand for further execution.
Scheduling commences again when the long latency instruction completes or
the stall condition clears.

FIGURE 4-3 illustrates the OpenSPARC T1 physical core.

FIGURE 4-3 OpenSPARC T1 Core Block Diagram

4.3.2 Floating-Point Unit (FPU)
A single floating-point unit is shared by all eight OpenSPARC T1 physical
cores. The shared floating-point unit is sufficient for most commercial
applications, in which fewer than 1% of instructions typically involve
floating-point operations.

I-Cache
Strand

Instruction

Registers

Strand

Scheduler
Decode

ALU

D-Cache

External
Interface

Store Buffers

Register Files

4.3 OpenSPARC T1 Components 31
4.3.3 L2 Cache
The L2 cache is banked four ways, with the bank selection based on physical
address bits 7:6. The cache is 3-Mbyte, 12-way set associative with pseudo-
LRU replacement (replacement is based on a used-bit scheme), and has a line
size of 64 bytes. Unloaded access time is 23 cycles for an L1 data cache miss
and 22 cycles for an L1 instruction cache miss.

4.3.4 DRAM Controller
OpenSPARC T1’s DRAM Controller is banked four ways1, with each L2 bank
interacting with exactly one DRAM Controller bank. The DRAM Controller is
interleaved based on physical address bits 7:6, so each DRAM Controller
bank must have the same amount of memory installed and enabled.

OpenSPARC T1 uses DDR2 DIMMs and can support one or two ranks of
stacked or unstacked DIMMs. Each DRAM bank/port is two DIMMs wide
(128-bit + 16-bit ECC). All installed DIMMs on an individual bank/port must
be identical, and the same total amount of memory (number of bytes) must be
installed on each DRAM Controller port. The DRAM controller frequency is
an exact ratio of the CMP core frequency, where the CMP core frequency
must be at least 4× the DRAM controller frequency. The DDR (double data
rate) data buses, of course, transfer data at twice the frequency of the DRAM
Controller frequency.

The DRAM Controller also supports a small memory configuration mode,
using only two DRAM ports. In this mode, L2 banks 0 and 2 are serviced by
DRAM port 0, and L2 banks 1 and 3 are serviced by DRAM port 1. The
installed memory on each of these ports is still two DIMMs wide.

4.3.5 I/O Bridge (IOB) Unit
The IOB performs an address decode on I/O-addressable transactions and
directs them to the appropriate internal block or to the appropriate external
interface (J-Bus or SSI). In addition, the IOB maintains the register status for
external interrupts.

1. A two-bank option is available for cost-constrained minimal memory configurations.

32 Chapter 4 OpenSPARC T1 and T2 Processor Implementations
4.3.6 J-Bus Interface (JBI)
J-Bus is the interconnect between OpenSPARC T1 and the I/O subsystem. It is
a 200 MHz, 128-bit-wide, multiplexed address/data bus, used predominantly
for DMA traffic, plus the PIO traffic to control it.

The JBI is the block that interfaces to J-Bus, receiving and responding to
DMA requests, routing them to the appropriate L2 banks, and also issuing PIO
transactions on behalf of the strands and forwarding responses back.

4.3.7 SSI ROM Interface
OpenSPARC T1 has a 50 Mbit/s serial interface (SSI) which connects to an
external FPGA which interfaces to the BOOT ROM. In addition, the SSI
interface supports PIO accesses across the SSI, thus supporting optional CSRs
or other interfaces within the FPGA.

4.3.8 Clock and Test Unit (CTU)
The CTU contains the clock generation, reset, and JTAG circuitry.

OpenSPARC T1 has a single PLL, which takes the J-Bus clock as its input
reference, where the PLL output is divided down to generate the CMP core
clocks (for OpenSPARC T1 and caches), the DRAM clock (for the DRAM
controller and external DIMMs), and internal J-Bus clock (for IOB and JBI).
Thus, all OpenSPARC T1 clocks are ratioed. Sync pulses are generated to
control transmission of signals and data across clock domain boundaries.

The CTU has the state machines for internal reset sequencing, which includes
logic to reset the PLL and signal when the PLL is locked, updating clock
ratios on warm resets (if so programmed), enabling clocks to each block in
turn, and distributing reset so that its assertion is seen simultaneously in all
clock domains.

The CTU also contains the JTAG block, which allows access to the shadow
scan chains, plus has a CREG interface that allows the JTAG to issue reads of
any I/O-addressable register, some ASI locations, and any memory location
while OpenSPARC T1 is in operation.

4.4 OpenSPARC T2 Overview 33
4.3.9 EFuse
The eFuse (electronic fuse) block contains configuration information that is
electronically burned in as part of manufacturing, including part serial number
and strand-available information.

4.4 OpenSPARC T2 Overview
OpenSPARC T2 is a single chip multithreaded (CMT) processor.
OpenSPARC T2 contains eight SPARC physical processor cores. Each SPARC
physical processor core has full hardware support for eight processors, two
integer execution pipelines, one floating-point execution pipeline, and one
memory pipeline. The floating-point and memory pipelines are shared by all
eight strands. The eight strands are hard-partitioned into two groups of four,
and the four strands within a group share a single integer pipeline.

While all eight strands run simultaneously, at any given time at most two
strands will be active in the physical core, and those two strands will be
issuing either a pair of integer pipeline operations, an integer operation and a
floating-point operation, an integer operation and a memory operation, or a
floating-point operation and a memory operation. Strands are switched on a
cycle-by-cycle basis between the available strands within the hard-partitioned
group of four, using a least recently issued priority scheme.

When a strand encounters a long-latency event, such as a cache miss, it is
marked unavailable and instructions will not be issued from that strand until
the long-latency event is resolved. Execution of the remaining available
strands will continue while the long-latency event of the first strand is
resolved.

Each OpenSPARC T2 physical core has a 16-Kbyte, 8-way associative
instruction cache (32-byte lines), 8-Kbyte, 4-way associative data cache (16-
byte lines), 64-entry fully-associative instruction TLB, and 128-entry fully
associative data TLB that are shared by the eight strands. The eight
OpenSPARC T2 physical cores are connected through a crossbar to an on-chip
unified 4-Mbyte, 16-way associative L2 cache (64-byte lines).

The L2 cache is banked eight ways to provide sufficient bandwidth for the
eight OpenSPARC T2 physical cores. The L2 cache connects to four on-chip
DRAM Controllers, which directly interface to a pair of fully buffered DIMM

34 Chapter 4 OpenSPARC T1 and T2 Processor Implementations
(FBD) channels. In addition, two 1-Gbit/10-Gbit Ethernet MACs and several
on-chip I/O-mapped control registers are accessible to the SPARC physical
cores.

A block diagram of the OpenSPARC T2 chip is shown in FIGURE 4-4.
.

FIGURE 4-4 OpenSPARC T2 Chip Block Diagram

4.5 OpenSPARC T2 Components
This section describes the major components in OpenSPARC T2.

C ache
C ro ssbar

(C C X)

C C U

S IU

S S I R O M IntfFC R A M Intf

N IU
10 Gb MA C

eFuse

P C I-E X

L2 B ank0

L2 B ank1

M C U 0S P A R C C o re

10 Gb MA C

N ia g a ra 2

P C I-E X

Fully B uf fered
D IM M s (FB D)

TC U

M C U 1

M C U 2

M C U 3

10

14

10

10

10

L2 B ank0

L2 B ank1

L2 B ank0

L2 B ank1

L2 B ank0

L2 B ank1

64

64

128

64

64

128

64

64

128

64

64

128

1.4Ghz1.4Ghz 800M hz 4 .8Ghz

D IM M s:
Ranks:

1
1 o r 2 pe r D IMM

2 3 8

10

10

10

10

Optiona l dua l C hannel M ode

S P A R C C o re

S P A R C C o re

S P A R C C o re

S P A R C C o re

S P A R C C o re

S P A R C C o re

S P A R C C o re

10

10

10

D IM M s: 1 2 3 8

10

10

10

10

14

14

14

14

14

14

14

OpenSPARC T2

4.5 OpenSPARC T2 Components 35
4.5.1 OpenSPARC T2 Physical Core
Each OpenSPARC T2 physical core has hardware support for eight strands.
This support consists of a full register file (with eight register windows) per
strand, with most of the ASI, ASR, and privileged registers replicated per
strand. The eight strands share the instruction and data caches and TLBs. An
autodemap feature is included with the TLBs to allow the multiple strands to
update the TLB without locking.

Each OpenSPARC T2 physical core contains a floating-point unit, shared by
all eight strands. The floating-point unit performs single- and double-precision
floating-point operations, graphics operations, and integer multiply and divide
operations.

4.5.2 L2 Cache
The L2 cache is banked eight ways. To provide for better partial-die recovery,
OpenSPARC T2 can also be configured in 4-bank and 2-bank modes (with 1/
2 and 1/4 the total cache size respectively). Bank selection is based on
physical address bits 8:6 for 8 banks, 7:6 for 4 banks, and 6 for 2 banks. The
cache is 4 Mbytes, 16-way set associative, and uses index hashing. The line
size is 64 bytes.

4.5.3 Memory Controller Unit (MCU)
OpenSPARC T2 has four MCUs, one for each memory branch with a pair of
L2 banks interacting with exactly one DRAM branch. The branches are
interleaved based on physical address bits 7:6, and support 1–16 DDR2
DIMMs. Each memory branch is two FBD channels wide. A branch may use
only one of the FBD channels in a reduced power configuration.

Each DRAM branch operates independently and can have a different memory
size and a different kind of DIMM (for example, a different number of ranks
or different CAS latency). Software should not use address space larger than
four times the lowest memory capacity in a branch because the cache lines are
interleaved across branches. The DRAM Controller frequency is the same as
that of the DDR (double data rate) data buses, which is twice the DDR
frequency. The FBDIMM links run at six times the frequency of the DDR data
buses.

The OpenSPARC T2 MCU implements a DDR2 FBD design model that is
based on various JEDEC-approved DDR2 SDRAM and FBDIMM standards.
JEDEC has received information that certain patents or patent applications

36 Chapter 4 OpenSPARC T1 and T2 Processor Implementations
may be relevant to FBDIMM Advanced Memory Buffer standard (JESD82-
20) as well as other standards related to FBDIMM technology (JESD206) (For
more information, see
http://www.jedec.org/download/search/FBDIMM/Patents.xls).
Sun Microsystems does not provide any legal opinions as to the validity or
relevancy of such patents or patent applications. Sun Microsystems
encourages prospective users of the OpenSPARC T2 MCU design to review
all information assembled by JEDEC and develop their own independent
conclusion.

4.5.4 Noncacheable Unit (NCU)
The NCU performs an address decode on I/O-addressable transactions and
directs them to the appropriate block (for example, DMU, CCU). In addition,
the NCU maintains the register status for external interrupts.

4.5.5 System Interface Unit (SIU)
The SIU connects the DMU and L2 cache. SIU is the L2 cache access point
for the Network subsystem.

4.5.6 SSI ROM Interface (SSI)
OpenSPARC T2 has a 50 Mb/s serial interface (SSI), which connects to an
external boot ROM. In addition, the SSI supports PIO accesses across the SSI,
thus supporting optional Control and Status registers (CSRs) or other
interfaces attached to the SSI.

4.6 Summary of Differences
Between OpenSPARC T1 and
OpenSPARC T2

OpenSPARC T2 follows the CMT philosophy of OpenSPARC T1, but adds
more execution capability to each physical core, as well as significant system-
on-a-chip components and an enhanced L2 cache.

4.6 Summary of Differences Between OpenSPARC T1 and OpenSPARC T2 37
4.6.1 Microarchitectural Differences
The following lists the microarchitectural differences.
• Physical core consists of two integer execution pipelines and a single

floating-point pipeline. OpenSPARC T1 has a single integer execution
pipeline and all cores shared a single floating-point pipeline.

• Each physical core in OpenSPARC T2 supports eight strands, which all
share the floating-point pipeline. The eight strands are partitioned into two
groups of four strands, each of which shares an integer pipeline.
OpenSPARC T1 shares the single integer pipeline among four strands.

• Pipeline in OpenSPARC T2 is eight stages, two stages longer than
OpenSPARC T1.

• Instruction cache is 8-way associative, compared to 4-way in
OpenSPARC T1.

• The L2 cache is 4-Mbyte, 8-banked and 16-way associative, compared to
3-Mbyte, 4-banked and 12-way associative in OpenSPARC T1.

• Data TLB is 128 entries, compared to 64 entries in OpenSPARC T1.
• The memory interface in OpenSPARC T2 supports fully buffered DIMMS

(FBDs), providing higher capacity and memory clock rates.
• The OpenSPARC T2 memory channels support a single-DIMM option for

low-cost configurations.
• OpenSPARC T2 includes a network interface unit (NIU), to which network

traffic management tasks can be off-loaded.

4.6.2 Instruction Set Architecture (ISA)
Differences

There are a number of ISA differences between OpenSPARC T2 and
OpenSPARC T1, as follows:
• OpenSPARC T2 fully supports all VIS 2.0 instructions. OpenSPARC T1

supports a subset of VIS 1.0 plus the SIAM (Set Interval Arithmetic Mode)
instruction (on OpenSPARC T1, the remainder of VIS 1.0 and 2.0
instructions trap to software for emulation).

• OpenSPARC T2 supports the full CMP specification, as described in
UltraSPARC Architecture 2007. OpenSPARC T1 has its own version of
CMP control/status registers. OpenSPARC T2 consists of eight physical
cores, with eight virtual processors per physical core.

38 Chapter 4 OpenSPARC T1 and T2 Processor Implementations
• OpenSPARC T2 does not support OpenSPARC T1’s idle state or its idle,
halt, or resume messages. Instead, OpenSPARC T2 supports parking and
unparking as specified in the CMP chapter of UltraSPARC Architecture
2007 Specification. Note that parking is similar to OpenSPARC T1’s idle
state. OpenSPARC T2 does support an equivalent to the halt state, which
on OpenSPARC T1 is entered by writing to HPR 1E16. However,
OpenSPARC T2 does not support OpenSPARC T1’s STRAND_STS_REG
ASR, which holds the strand state. Halted state is not software-visible on
OpenSPARC T2.

• OpenSPARC T2 does not support the INT_VEC_DIS register (which
allows any OpenSPARC T1 strand to generate an interrupt, reset, idle, or
resume message to any strand). Instead, an alias to ASI_INTR_W is
provided, which allows only the generation of an interrupt to any strand.

• OpenSPARC T2 supports the ALLCLEAN, INVALW, NORMALW,
OTHERW, POPC, and FSQRT<s|d> instructions in hardware.

• OpenSPARC T2’s floating-point unit generates fp_unfinished_other with
FSR.ftt unfinished_FPop for most denorm cases and supports a nonstandard
mode that flushes denorms to zero. OpenSPARC T1 handles denorms in
hardware, never generates an unfinished_FPop, and does not support a
nonstandard mode.

• OpenSPARC T2 generates an illegal_instruction trap on any quad-precision
FP instruction, whereas OpenSPARC T1 generates an fp_exception_other
trap on numeric and move-FP-quad instructions. See Table 5-2 of the
UltraSPARC T2 Supplement to the “UltraSPARC Architecture 2007
Specification.”

• OpenSPARC T2 generates a privileged_action exception upon attempted
access to hyperprivileged ASIs by privileged software, whereas, in such
cases, OpenSPARC T1 takes a data_access_exception exception.

• OpenSPARC T2 supports PSTATE.tct; OpenSPARC T1 does not.
• OpenSPARC T2 implements the SAVE instruction similarly to all previous

UltraSPARC processors. OpenSPARC T1 implements a SAVE instruction
that updates the locals in the new window to be the same as the locals in
the old window, and swaps the ins (outs) of the old window with the outs
(ins) of the new window.

• PSTATE.am masking details differ between OpenSPARC T1 and
OpenSPARC T2, as described in Section 11.1.8 of the UltraSPARC T2
Supplement to the “UltraSPARC Architecture 2007 Specification.”

• OpenSPARC T2 implements PREFETCH fcn = 1816 as a prefetch
invalidate cache entry, for efficient software cache flushing.

• The Synchronous Fault register (SFSR) is eliminated in OpenSPARC T2.

4.6 Summary of Differences Between OpenSPARC T1 and OpenSPARC T2 39
• T1’s data_access_exception is replaced in OpenSPARC T2 by multiple
DAE_* exceptions.

• T1’s instruction_access_exception exception is replaced in
OpenSPARC T2 by multiple IAE_* exceptions.

4.6.3 MMU Differences
The OpenSPARC T2 and OpenSPARC T1 MMUs differ as follows:
• OpenSPARC T2 has a 128-entry DTLB, whereas OpenSPARC T1 has a 64-

entry DTLB.
• OpenSPARC T2 supports a pair of primary context registers and a pair of

secondary context registers. OpenSPARC T1 supports a single primary
context and single secondary context register.

• OpenSPARC T2 does not support a locked bit in the TLBs.
OpenSPARC T1 supports a locked bit in the TLBs.

• OpenSPARC T2 supports only the sun4v (the architected interface between
privileged software and hyperprivileged software) TTE format for I/D-TLB
Data-In and Data-Access registers. OpenSPARC T1 supports both the
sun4v and the older sun4u TTE formats.

• OpenSPARC T2 is compatible with UltraSPARC Architecture 2007 with
regard to multiple flavors of data access exception (DAE_*) and instruction
access exception (IAE_*). As per UltraSPARC Architecture 2005,
OpenSPARC T1 uses the single flavor of data_access_exception and
instruction_access_exception, indicating the “flavors” in its SFSR
register.

• OpenSPARC T2 supports a hardware Table Walker to accelerate ITLB and
DTLB miss handling.

• The number and format of translation storage buffer (TSB) configuration
and pointer registers differs between OpenSPARC T1 and OpenSPARC T2.
OpenSPARC T2 uses physical addresses for TSB pointers; OpenSPARC T1
uses virtual addresses for TSB pointers.

• OpenSPARC T1 and OpenSPARC T2 support the same four page sizes (8
Kbyte, 64 Kbyte, 4 Mbyte, 256 Mbyte). OpenSPARC T2 supports an
unsupported_page_size trap when an illegal page size is programmed into
TSB registers or attempted to be loaded into the TLB. OpenSPARC T1
forces an illegal page size being programmed into TSB registers to be 256
Mbytes and generates a data_access_exception trap when a page with an
illegal size is loaded into the TLB.

• OpenSPARC T2 adds a demap real operation, which demaps all pages with
r = 1 from the TLB.

40 Chapter 4 OpenSPARC T1 and T2 Processor Implementations
• OpenSPARC T2 supports an I-TLB probe ASI.
• Autodemapping of pages in the TLBs only demaps pages of the same size

or of a larger size in OpenSPARC T2. In OpenSPARC T1, autodemap
demaps pages of the same size, larger size, or smaller size.

• OpenSPARC T2 supports detection of multiple hits in the TLBs.

4.6.4 Performance Instrumentation
Differences

Both OpenSPARC T1 and OpenSPARC T2 provide access to hardware
performance counters through the PIC and PCR registers. However, the
events captured by the hardware differ significantly between OpenSPARC T1
and OpenSPARC T2, with OpenSPARC T2 capturing a much larger set of
events, as described in Chapter 10 of the UltraSPARC T2 Supplement to the
“UltraSPARC Architecture 2007 Specification.” OpenSPARC T2 also supports
count events in hyperprivileged mode; OpenSPARC T1 does not.

In addition, the implementation of pic_overflow differs between
OpenSPARC T1 and OpenSPARC T2. OpenSPARC T1 provides a disrupting
pic_overflow trap on the instruction following the one that caused the
overflow event. OpenSPARC T2 provides a disrupting pic_overflow on the
instruction that generates the event, but that occurs within an epsilon number
of event-generating instructions from the actual overflow.

Both OpenSPARC T2 and OpenSPARC T1 support DRAM performance
counters.

4.6.5 Error Handling Differences
Error handling differs quite a bit between OpenSPARC T1 and
OpenSPARC T2. OpenSPARC T1 primarily employs hardware correction of
errors, whereas OpenSPARC T2 primarily employs software correction of
errors.
• OpenSPARC T2 uses the following traps for error handling:

• data_access_error
• data_access_MMU_error
• hw_corrected_error
• instruction_access_error
• instruction_access_MMU_error
• internal_processor_error
• store_error
• sw_recoverable_error

4.6 Summary of Differences Between OpenSPARC T1 and OpenSPARC T2 41
OpenSPARC T1 uses the following traps:
• data_access_error
• hw_corrected_error data_error
• instruction_access_error
• internal_processor_error

• OpenSPARC T2 integer register file (IRF) and floating-point register file
(FRF) ECC errors are handled in software. OpenSPARC T1 corrects single-
bit transient errors in hardware.

• OpenSPARC T2 can disable both error reporting and error traps.
OpenSPARC T1 can disable only error traps.

• OpenSPARC T2 takes a deferred store_error trap on store buffer
uncorrectable errors. OpenSPARC T1 does not have error correction on its
store buffers.

• OpenSPARC T2 generates a trap on multiple hits in the ITLB, DTLB, I-
cache, or D-cache. OpenSPARC T1 simply uses one of the matching
entries.

• OpenSPARC T2 protects its MMU register array with parity, taking a trap
if an error is detected during a tablewalk. OpenSPARC T1 MMU registers
are not protected by parity. OpenSPARC T2 MMU error handling is
described in Section 16.7.1, ITLB Errors, Section 16.7.2, DTLB Errors, and
Section 16.7.11, MMU Register Array (MRAU) of the UltraSPARC T2
Supplement to the “UltraSPARC Architecture 2007 Specification.”

• OpenSPARC T2 protects the TICK (TICK, STICK, HSTICK) compare
registers, scratchpad registers, and trap stack registers with SECDED ECC,
taking a trap if an error is detected while accessing the registers.
OpenSPARC T1 leaves these registers unprotected by ECC.

• OpenSPARC T2 supports NotData in the L2 cache (NotData is not
supported in memory in either OpenSPARC T1 or OpenSPARC T2).

• OpenSPARC T2 protects the vuad bits by SECDED ECC. OpenSPARC T1
protects the vuad bits by parity.

4.6.6 Power Management Differences
Both OpenSPARC T2 and OpenSPARC T1 support memory access throttling.
The mechanisms for supporting CPU throttling differ between
OpenSPARC T1 and OpenSPARC T2. OpenSPARC T2 power management is
described in Chapter 18 of the UltraSPARC T2 Supplement to the
“UltraSPARC Architecture 2007 Specification.”

42 Chapter 4 OpenSPARC T1 and T2 Processor Implementations
4.6.7 Configuration, Diagnostic, and Debug
Differences

OpenSPARC T2 configuration and diagnostic support is described in
Chapter 28 and debug support is described in Chapter 29 of the UltraSPARC
T2 Supplement to the “UltraSPARC Architecture 2007 Specification.”
OpenSPARC T2 additions over OpenSPARC T1 include the following:
• OpenSPARC T2 supports instruction VA watchpoints.
• OpenSPARC T2 supports PA watchpoints.
• OpenSPARC T2 supports the control_transfer_instruction trap.
• OpenSPARC T2 implements Prefetch fcn = 1816 as a prefetch invalidate

cache entry, for efficient software L2 cache flushing. In OpenSPARC T1,
flushing of a cache line requires entering “direct-mapped replacement
mode,” where the L2 LRU is overridden by the address and then forcing
out all 12-ways in a set via a displacement with the proper address.

• OpenSPARC T2 supports diagnostic access to the integer register file, store
buffers, scratchpad, TICK (TICK, STICK, HSTICK) compare, trap stack,
and MMU register arrays.

• OpenSPARC T2 does not require the diagnostic virtual address to match a
valid tag for ASI_DCACHE_DATA.

CHAPTER 5

OpenSPARC T2 Memory
Subsystem — A Deeper Look

Much of the material in this chapter appeared in UltraSPARC T2
Supplement to the UltraSPARC Architecture 2007, Part number 950-
9556, Revision Draft 1.5, 03, Apr 2008.

Each SPARC physical core has a 16-Kbyte, 8-way associative instruction
cache (32-byte lines), 8 Kbytes, 4-way associative data cache (16-byte
lines), 64-entry fully associative instruction Translation Lookaside Buffer
(TLB), and 128-entry fully associative data TLBs, each of which is
shared by the eight strands. The eight SPARC physical cores are
connected through a crossbar to an on-chip unified 4 Mbyte, 16-way
associative L2 cache (64-byte lines). The L2 cache is banked eight ways
to provide sufficient bandwidth for the eight SPARC physical cores. The
L2 cache connects to four on-chip DRAM controllers, which directly
interface to a pair of fully buffered DIMM (FBD) channels.

The chapter contains these sections:
• Caches on page 44
• Memory Controller Unit (MCU) on page 47
• Memory Management Unit (MMU) on page 50
• Noncacheable Unit (NCU) on page 55
• System Interface Unit (SIU) on page 55
• Data Management Unit (DMU) on page 56
• Memory Models on page 56

A block diagram of OpenSPARC T2 is shown in FIGURE 4-4 on page 34.
43

44 Chapter 5 OpenSPARC T2 Memory Subsystem — A Deeper Look
5.1 Caches
This section describes the L1 instruction cache and the data cache, followed
by details of the combined instruction/data L2 cache.

5.1.1 L1 I-Cache
The L1 instruction cache is 16 Kbytes, physically tagged and indexed, with
32-byte lines, and 8-way associative with random replacement. The I-cache
direct-mapped mode works by forcing all replacements to the “way” identified
by bits 13:11 of the virtual address. Since lines already present are not
affected but only new lines brought into the cache are affected, it is safe to
turn on (or off) the direct-mapped mode at any time. Clearing the I-cache
enable bit stops all accesses to the I-cache for that strand. All fetches will
miss, and the returned data will not fill the I-cache. Invalidates are still
serviced while the I-cache is disabled.

5.1.2 L1 D-Cache
The L1 data cache is 8 Kbytes, write-through, physically tagged and indexed,
with 16-byte lines, and 4-way associative with true least-recently-used (LRU)
replacement. The D-cache replacement algorithm is true LRU. Six bits are
maintained for each cache index. In direct-mapped mode, the D-cache works
by changing the replacement algorithm from LRU to instead use two bits of
index (address 12:11) to select the way. Since lines already present are not
affected but only new lines brought into the cache are affected, it is safe to
turn on (or off) the direct-mapped mode at any time.

The D-cache may be disabled and when it is disabled, accesses to the D-cache
behave as follows. A load that hits in the D-cache ignores the cached data and
fetches the data from L2. A load that misses in the cache fetches the data from
L2 but does not allocate the line in the data cache. Stores that miss in the data
cache never allocate in the data cache (as normal). Stores that hit in the data
cache are performed in the L2, then update the data cache (as normal). Even if
the D-cache is disabled, L2 still keeps the D-cache coherent. Invalidations
caused by L2 replacements, stores from other cores, or direct memory access
(DMA) stores from I/O activity that hit data in the D-cache cause those lines
to be invalidated. For the D-cache to be fully disabled, a certain dc bit must
be off on all strands in the virtual processor, and the D-cache must be flushed
in a way that doesn’t bring new lines back in. This can be done by storing

5.1 Caches 45
(from a different core) to each line that is in the D-cache or by displacement
flushing the L2 cache so that inclusion will force all D-cache lines to be
invalidated.

5.1.3 L2 Cache
The L2 combined instruction/data cache is 4 Mbytes, write-back, physically
tagged and indexed, with 64-byte lines, 8-banked, and 16-way associative
with pseudo-LRU replacement. The L2 cache is banked eight ways. To
provide for better partial-die recovery, OpenSPARC T2 can also be configured
in 4-bank and 2-bank modes (with 1/2 and 1/4 the total cache size,
respectively). The cache is 4 Mbytes and 16-way set associative with a
pseudo-LRU replacement (replacement is based on a used-bit scheme). The
line size is 64 bytes. Unloaded access time is 26 cycles for an L1 data cache
miss and 24 cycles for an L1 instruction cache miss.

A used-bit scheme is used to implement a not recently used (NRU)
replacement. The used bit is set each time a cache line is accessed or when
initially fetched from memory. If setting the used bit causes all used bits (at an
index) to be set, the remaining used bits are cleared instead. In addition, each
line has an allocate bit (a), which is set while a line is in a multicycle
operation. This operation can be a cache fill, in which case the a bit gets set
when the location is allocated and the a bit gets cleared when the location is
filled with memory data. Alternatively, this could be a multipass operation,
either an atomic operation or a subword store (which requires read-modify-
write) whereby the a bit is set on the first pass and cleared on the second or
final pass. Any line that has the a bit set is ineligible for replacement.

Each L2 bank has a single rotating replacement pointer, which is the “starting
point” to find the way to replace. On a miss, the L2 looks for the first line at
that index with both u bit and a bit clear, starting with the way pointed at by
the replacement pointer. If all lines have the u bit or a bit set, all u bits are
cleared and the scan repeated. The replacement pointer is then rotated forward
one way. Since the replacement pointer is used by all sets of the L2,
replacement is somewhat more random than if each set or index had its own
replacement pointer. The replacement pointer is incremented on any L2 miss
that causes a cache fill (that is, not DMA reads or full-line DMA writes). The
replacement pointer is only reset (put to a known state) by power-on reset
(POR), warm reset, or debug reset. Valid bits do not affect the NRU
replacement.

The L2 cache has a directory of all L1 lines, both I-cache and D-cache,
implemented as duplicate tags. Thus, the L2 always knows exactly which
lines are in which L1 caches, and in which way of each cache. When the L1

46 Chapter 5 OpenSPARC T2 Memory Subsystem — A Deeper Look
requests a line from the L2, the virtual processor specifies whether the line
will be allocated (put into the cache), and which way it will go into. The L2-
to-virtual processor (CPX) protocol allows the L2 to issue invalidates to any
or all of the cores simultaneously, but only a single invalidation to each core.
For this reason, for a given virtual processor, an L1 line is only allowed to be
in either the I-cache or the D-cache, but not both. The invalidate transaction
includes only index, way, and L1 cache (I or D); it does not include the
address.

Since the L2 tracks which lines are in which L1 ways, just invalidating an L1
line with the address space identifier (ASI) mechanism is not safe and can
lead to stale data problems and data corruption. The problem occurs if a line
is marked invalid and a subsequent access to the L1 cache refetches the line,
but into a different way.

At this time, the L2 directory has the same line in two places in its directory.
Later, when the L2 wants to invalidate that address, it gets a double hit on its
CAM access, which the logic does not support. (To invalidate an L1 line,
inject an error into its tag and then access it. The hardware error handling will
invalidate the line and inform the L2 directory.)

The L2 cache direct-mapped mode works by changing the replacement
algorithm from NRU to instead use four bits of index (address 21:18) to select
the way. Since lines already present are not affected but only new lines
brought into the cache are affected, it is safe to turn on (or off) the direct-
mapped mode at any time.

The L2 cache disable actually disables an L2 bank. Thus, it is recommended
that the L2 be flushed first so that modified lines are written back to memory.
While an L2 bank is disabled, the cache effectively has only a single line,
which is invalidated or written back at the end of the access. Thus, a store will
miss to memory, perform the write into the one-line cache, then flush. Then,
the next cache access can be started. The L2 directory is not used while the L2
cache is disabled. Thus, all L1 caches must be disabled and emptied before
any (or all) L2 banks are disabled.

5.2 Memory Controller Unit (MCU) 47
5.2 Memory Controller Unit
(MCU)

OpenSPARC T2 has four MCUs, one for each memory branch with a pair of
L2 banks interacting with exactly one DRAM branch. The branches are
interleaved and support 1–16 DDR2 DIMMs. Each memory branch is two
FBD channels wide. A branch may use only one of the FBD channels in a
reduced power configuration. Each DRAM branch operates independently and
can have a different memory size and a different kind of DIMM (for example,
a different number of ranks or a different CAS latency). Software should not
use address space larger than four times the lowest memory capacity in a
branch because the cache lines are interleaved across branches. The DRAM
controller frequency is the same as that of the double data rate (DDR) data
buses, which is twice the DDR frequency. The FBD links run at six times the
frequency of the DDR data buses.

OpenSPARC T2 interfaces to external registered DDR2 fully buffered DIMMs
(FBDs) through unidirectional high-speed links. OpenSPARC T2 interfaces
directly to external registered DDR2 DIMMs. There are four memory
branches on OpenSPARC T2. Each memory branch services 64-byte read and
write requests from two L2 cache banks of the on-chip L2 cache unit. The
features of the OpenSPARC T2 memory controller are as follows:
• Uses 10-bit southbound and 14-bit northbound FBD channel protocols

running at 12 times the SDRAM cycle rate
• Supports 256-Mbit DRAM components for x4 data width; supports 512-

Mbit, 1-Gbit, and 2-Gbit DRAM components for x4 and x8 data widths
• Maximum memory of 128 Gbytes per branch using sixteen 8-Gbyte DDR2

FBDs
• Supports up to 16 ranks of DDR2 DIMMs per branch (8 pairs of double-

sided FBDs)
• Supports registered DDR2 DIMMs of clock frequency up to 400 MHz
• Supports 128 bits of write data and 16 bits ECC per SDRAM cycle and 256

bits of read data and 32 bits ECC per SDRAM cycle
• Supports DDR2 SDRAM burst length of 4 when using both FBD channels

in a branch, burst length of 8 when using a single channel per branch
• ECC generation, check, correction, and extended ECC
• Programmable DDR2 SDRAM power throttle control

48 Chapter 5 OpenSPARC T2 Memory Subsystem — A Deeper Look
• System peak memory bandwidth (4 branches): 50 Gbytes/s for reads, 25
Gbytes/s for writes

The MCU employs the following design requirements:
• x4 and x8 DRAM parts are supported. Extended ECC is not supported for

x8 DRAM parts.
• DIMM capacity, configuration, and timing parameters cannot be different

within a memory branch.
• DRAM banks are always closed after read or write command by issuing an

autoprecharge command.
• Burst length is 4 (bl = 4) when two channels per DDR branch are used.

Burst length is 8 (bl = 8) when a single channel per branch is used.
• There is a fixed 1 dead cycle for switching commands from one rank on a

DIMM to the other rank on the same DIMM.
• Reads, writes, and refreshes across DDR branches have no relationship to

each other. They are all independent.

Each CPU chip has four independent DDR branches, each controlled by a
separate MCU. Each branch can be configured with one or two channels and
supports up to 16 ranks of DIMMs. Each channel can be populated with up to
eight single- or dual-rank FBDs. When a branch is configured with two
channels, the two FBDs that share the same advanced memory buffer (AMB)
ID are accessed in lockstep. Data is returned 144 bits per frame for 8 frames
in single-channel mode and 288 bits per frame for 4 frames in dual-channel
mode. In either mode, the total data transfer size is 512 bits, or 64 bytes, the
cache line size for the L2 cache.

Each FBD contains four or eight internal banks that can be controlled
independently. These internal banks are controlled inside the SDRAM chips
themselves. Accesses can overlap between different internal banks. In a
normal configuration, every read and write operation to SDRAM will generate
a burst length of 4 with 16 bytes of data transferred every half memory clock
cycle. In single-channel mode, reads and writes will have a burst length of 8
with 8 bytes of data transferred every half memory cycle.

FIGURE 5-1 illustrates the DDR branch configuration.

5.2 Memory Controller Unit (MCU) 49
FIGURE 5-1 DDR Branch Configuration

The FBD specification supports two southbound channel configurations and
five northbound channel configurations. OpenSPARC T2 supports both
southbound configurations—the 10-bit and 10-bit failover modes—and two of
the northbound configurations, the 14-bit and 14-bit failover modes. These
modes support data packets of 64-bit data and 8-bit ECC. The 10-bit
southbound mode provides 22 bits of CRC, and the 10-bit failover mode has
10 bits of CRC. The 14-bit northbound mode provides 24 bits of CRC on read
data (12 bits per 72-bit data packet); the 14-bit failover mode provides 12 bits
of CRC (6 bits per 72-bit data packet). During channel initialization, software
determines if a channel can be fully utilized (10-bit southbound or 14-bit
northbound mode) or if a failover mode must be used in one of the bit lanes
that is muxed out.

The power used by the SDRAMs is a significant portion of the system power
usage. Some high-performance systems may be able to handle the maximum
power consumption rates, but low-cost systems may need to limit their power
usage because of cooling issues, etc. The power-throttling scheme of
OpenSPARC T2 limits the number of SDRAM memory access transactions
during a specified time period by counting the number of banks that are
opened (that is, active cycles) during this time. Since all of the write and read
transactions of OpenSPARC T2 use autoprecharge, the number of banks
opened is equivalent to the number of write and read transactions. If the
number of transactions during this time period exceeds a preprogrammed
limit, no more memory transactions are dispatched until the time period
expires.

MCU 0

10

14

800Mhz

10

14

200Mhz
refclk

FBD
1.0

FBD
1 .1

FB
D
1 .2

FBD
0.7

FB
D
1.7

FBD
channel 0

FBD
channel 1

FBD
branch 0

Rank 0
(front)

Rank 1
(back)

AMB ID = 0 1 2 7

FBD
0.0

4.8Ghz

FBD
0.1

FBD
0.2SERD

ES 0
SERD

ES 1

L2 cache interface

1.4Ghz

SB0

SB1

NB0

NB1

64

128

Write data

Read data

Optional dual Channel Mode

50 Chapter 5 OpenSPARC T2 Memory Subsystem — A Deeper Look
5.3 Memory Management Unit
(MMU)

The OpenSPARC T2 MMU consists of two Translation Lookaside Buffers
(TLBs), one Instruction TLB (ITLB), and one Data TLB (DTLB). Each TLB
consists of many Translation Table Entries (TTEs) which provide first-level
translation for instruction and data accesses. The TLBs are accessed in
parallel with the caches and the tags. The MMU is supported by other memory
resident software structures called translation storage buffer (TSB) and
software translation table. The following subsections describe the MMU in
greater detail:
• Address Translation Overview on page 50
• TLB Miss Handling on page 51
• Instruction Fetching on page 52
• Hypervisor Support on page 53
• MMU Operations on page 54

5.3.1 Address Translation Overview
FIGURE 5-2 illustrates the concepts and structures discussed for address
translation.

FIGURE 5-2 Concepts of Address Translation

Before details of address translation are discussed, consider the structures
illustrated in FIGURE 5-2. From right to left:

Translation
Lookaside

Buffers

Software
Translation

Table

Operating SystemMemoryMMU

Real Page

 ¨←⎯ Managed by privileged ⎯→ ←⎯ Managed by ⎯→
 hyperprivileged

 mode software

Number
to

Physical Page

Translation of

mode software

PA ← RA

Buffer

Translation

 RA ← VA

Storage

Number
(TSB)

(TLBs)

Data Structure

Translation of

5.3 Memory Management Unit (MMU) 51
• Software translation table — An arbitrary data structure in which
privileged software maintains translation information. It, in conjunction
with the translation storage buffer, will quickly reload the TLB in the event
of a TLB miss. The software translation table is likely to be large and
complex.

• TSB — The interface between the software translation table and the
underlying memory management hardware. The TSB is an array of
translation table entries (TTEs) and serves as a cache of the software
translation table. A TSB is arranged as a direct-mapped cache of TTEs.

• TLB — An MMU entity that acts as an independent cache of the software
translation table, providing appropriate concurrency for virtual-to-physical
address translation. The TLBs are small and fast.

UltraSPARC T2 TLBs store physical addresses. Privileged code manages the
VA-to-RA translations, while hyperprivileged code manages the RA-to-PA
translations. The TLBs contain VA-to-PA translations or RA-to-PA
translations (the latter are distinguished from the former by a real bit in the
TLB).

The TLB receives a virtual address or real address, a partition identifier, and
context identifier as input and produces a physical address and page attributes
as output in case of a TLB hit. A TLB miss results in an access to the TSB.
The UltraSPARC T2 MMU provides hardware tablewalk support and
precomputed pointers into the TSB(s) for both zero and nonzero contexts.

5.3.2 TLB Miss Handling
A TLB miss results in an access to the TSB also known as hardware
tablewalk. Note that hardware tablewalk can be disabled and a full software
implementation for TLB miss handling can be used. The TSB exists as a
normal data structure in memory and therefore may be cached. Indeed, the
speed of the TLB miss handler relies on the TSB accesses hitting the level-2
cache at a substantial rate. This policy may result in some conflicts with
normal instruction and data accesses, but the dynamic sharing of the L2 cache
resource should provide a better overall solution than that provided by a fixed
partitioning.

A TLB miss is handled as follows:
• With hardware tablewalk implemented and enabled, hardware processes the

TLB miss directly.
• With the hardware tablewalk unimplemented or disabled, the MMU

immediately traps to hyperprivileged software for TLB miss processing.

52 Chapter 5 OpenSPARC T2 Memory Subsystem — A Deeper Look
The following is the TLB miss and reload sequence when hardware tablewalk
is enabled:
• Hardware tablewalk uses the TSB Configuration registers and the virtual

address (VA) of the access to calculate the physical address of the TSB
TTE to examine. The TSB Configuration register provides the base address
of the TSB as well as the number of TTEs in the TSB and the size of the
pages translated by the TTEs. Hardware tablewalk uses the page size from
the TSB Configuration register to calculate the presumed virtual page
number (VPN) for the given VA. Hardware tablewalk then uses the number
of TTE entries and the presumed VPN to generate an index into the TSB.
This index is concatenated with the upper bits of the base address to
generate the TTE address.

• Hardware tablewalk compares the VPN and context ID of the request to
that from the TTE, masking the VPN based on the page size in the TTE. If
the VPN and context ID match, hardware tablewalk returns the TTE with
the real page number (RPN) translated into a physical page number (PPN).
Hardware tablewalk checks the TTE from each enabled TSB until it either
finds a match or has searched all enabled TSBs.

• If none of the TTE entries from the enabled TSBs match on page size,
VPN, and context ID, hardware generates an
instruction_access_MMU_miss or data_access_MMU_miss trap.

5.3.3 Instruction Fetching
OpenSPARC T2 speculatively fetches instructions. Under certain conditions,
this can cause the memory controller to receive an unsupported physical
address. Consider the following instruction sequence which exits
hyperprivileged mode and returns to user or privileged mode (executed with
HPSTATE.hpriv initially set to 1):

jmpl %g3 + %g0, %g0
wrhpr %g0, %g0, %hpstate

This will cause the IMMU to go from bypass (during which VA{39:0} is
passed directly to PA{39:0}) into either RA → PA or VA → PA translation.
However, since the fetch of the target of the jmpl is fetched speculatively,
the memory controller may see VA{39:0} of the target of the jmpl as a
physical address. This address may not be supported, in which case a
disrupting software_recoverable_error trap could result, even though no
real error has occurred. To avoid this disrupting trap, Hypervisor should avoid
changing translation in the delay slot of delayed control-transfer instructions.
For example, the sequence above could be replaced with the following code:

5.3 Memory Management Unit (MMU) 53
mov %tl, %g5
add %g5, 1, %g5
mov %g5, %tl
mov %g3, %tnpc
mov 0, %hpstate
done

Although the example refers to changes in HPSTATE, any instruction that
can potentially change translation should avoid being placed in the delay slot
of delayed control-transfer instructions. These include writes to PSTATE, I-
/D-TLB Data In and Data Access registers, I-/D-MMU Demap registers, and
the ASI_LSU_CONTROL_REG register.

OpenSPARC T2 fetches instructions sequentially (including delay slots).
OpenSPARC T2 fetches delay slots before the branch is resolved (before
whether the delay slot will be annulled is known). OpenSPARC T2 also
fetches the target of a delayed control-transfer instruction (DCTI) before the
delay slot executes. For both these cases, OpenSPARC T2 may fetch from a
nonexistent PA (in the case of a fetch from memory) or from an I/O address
with side effects. Hypervisor should protect against this for virtual- and real-
to-physical translations by maintaining valid mappings of sequential and
target addresses at all times. Hypervisor should protect against this for
bypassing translations by ensuring that all sequential and target addresses are
backed by memory.

5.3.4 Hypervisor Support
To support Hypervisor, a number of additions to the MMU are included:
• A 3-bit partition ID (PID) field is included in each TLB entry to allow

multiple guest OSes to share the MMU. This field is loaded with the value
of the Partition Identifier register when a TLB entry is loaded. In addition,
the PID entry of a TLB is compared with the Partition Identifier register to
determine if a TLB hit occurs.

• The MMU is designed to support both virtual-to-physical and real-to-
physical translations, using a single r (real translation) bit included in the
TLB entry. This field is loaded with bit 10 from the VA used by the store to
the I-/D-TLB Data In register or the I-/D-TLB Data Access register. The
real bit distinguishes between VA → PA translations (r = 0) and RA → PA
translations (r = 1).
If the real bit is 1, the context ID is ignored when determining a TLB hit.
TLB misses on real-to-physical translations generate a
data_real_translation_miss or inst_real_translation_miss trap instead of
fast_data_access_MMU_miss or fast_instruction_access_MMU_miss
traps, respectively.

54 Chapter 5 OpenSPARC T2 Memory Subsystem — A Deeper Look
• The translation operation performed depends on the state of
HPSTATE.hpriv, PSTATE.priv, the MMU enables, and PSTATE.red (for
IMMU).

5.3.5 MMU Operations
This section describes additional operations performed by the OpenSPARC T2
MMU.

5.3.5.1 TLB Operation Summary
The TLB supports exactly one of the following operations per clock cycle:
• Translation. The TLB receives a virtual address or real address, a partition

identifier, and context identifier as input and produces a physical address
and page attributes as output.

• Demap operation. The TLB receives a virtual address and a context
identifier as input and sets the valid bit to zero for any entry matching the
demap page or demap context criteria. This operation produces no output.

• Read operation. The TLB reads either the CAM or RAM portion of the
specified entry. (Since the TLB entry is greater than 64 bits, the CAM and
RAM portions must be returned in separate reads.)

• Write operation. The TLB simultaneously writes the CAM and RAM
portion of the specified entry, or the entry given by the replacement policy.

• No operation. The TLB performs no operation.

5.3.5.2 Demap Operations
Demap is an MMU operation whose purpose is to remove zero, one, or more
entries in the TLB. Four types of demap operations are provided:
• Demap page. Removes zero or one TLB entry that matches exactly the

specified virtual page number and real bit.
• Demap context. Removes zero, one, or many TLB entries that match the

specified context identifier and have the real bit cleared; never demaps a
real translation (r = 1).

• Demap all. Removes all pages, regardless of their context or real bit.
• Demap all pages. Removes all pages that either have their real bit set (if

the r bit in the demap address is set) or have their real bit clear (if the r bit
in the demap address is clear), regardless of their context.

5.4 Noncacheable Unit (NCU) 55
All demap operations demap only those pages whose PID matches the PID
specified in the Partition Identifier register. A demap operation does not
invalidate the TSB in memory. It is the responsibility of the software to
modify the appropriate TTEs in the TSB before initiating any demap
operation. The demap operation produces no output.

5.4 Noncacheable Unit (NCU)
The NCU performs an address decode on I/O-addressable transactions and
directs them to the appropriate block (for example, network interface unit
(NIU), DMU, clock control unit (CCU)). In addition, the NCU maintains the
register status for external interrupts.

The main functions of the NCU are to route PIO accesses from the CMP
virtual processors to the I/O subsystem and to vector interrupts from the I/O
subsystem to the CMP virtual processors. The NCU provides CSRs for NCU
management, configuration of the PCI-Express (PCIE) address space, and
mondo interrupt management. The NCU decodes the I/O physical address
space.

OpenSPARC T2 supports 40-bit physical addresses, where the MSB (bit 39) is
0 for cacheable accesses (memory system) and 1 for noncacheable accesses
(I/O subsystem). The NCU determines the destination of a PIO access by
examining the 8 MSB (bit 39:32) of the physical address. All accesses
received by the NCU have bit 39 of the physical address set to 1.

The NCU provides a unique serial number for each OpenSPARC T2 chip. In
addition, the NCU contains registers showing the eFuse, SPARC core, and L2
bank status.

5.5 System Interface Unit (SIU)
The SIU connects the NIU, DMU, and L2 cache. SIU is the L2 cache access
point for the Network and PCI-Express subsystems. The SIU-L2 cache
interface is also the ordering point for PCI-Express ordering rule.

56 Chapter 5 OpenSPARC T2 Memory Subsystem — A Deeper Look
5.6 Data Management Unit (DMU)
The DMU manages Transaction Layer Packet (TLP) to and from the PCI-
Express unit (PEU) and maintains the same ordering as from the PEU and
then to the SIU. For maintaining ordering between PEU and SIU, the DMU
requires the policy that has PIO reads pulling DMA writes to completion.
When the PEU issues complete TLP transactions to the DMU, the DMU
segments the TLP packet into multiple cache-line-oriented SIU commands
and issues them to the SIU. The DMU also queues the response cache lines
from SIU and reassembles the multiple cache lines into one TLP packet with
maximal payload size. Furthermore, the DMU accepts and queues the PIO
transactions requests from NCU and coordinates with the appropriate
destination to which the address and data will be sent.

The DMU encapsulates the functions necessary to resolve a virtual PCI-
Express packet address into an L2 cache line physical address that can be
presented on the SIU interface. The DMU also encapsulates the functions
necessary to interpret PCI-Express message signaled interrupts, emulated
INTX interrupts. The DMU also provides the functions to post interrupt
events to queues managed by software in main memory and generates the
Solaris Interrupt Mondo to notify software.

The DMU decodes INTACK and INTNACK from interrupt targets and
conveys the information to the interrupt function so that it can move on to
service the next interrupt if any (for INTACK) or replay the current interrupt
(for INTNACK).

5.7 Memory Models
SPARC V9 defines the semantics of memory operations for three memory
models. From strongest to weakest, they are Total Store Order (TSO), Partial
Store Order (PSO), and Relaxed Memory Order (RMO). The differences in
these models lie in the freedom an implementation is allowed in order to
obtain higher performance during program execution. The purpose of the
memory models is to specify any constraints placed on the ordering of
memory operations in uniprocessor and shared-memory multiprocessor
environments. OpenSPARC T2 supports only TSO, with the exception that
certain ASI accesses (such as block loads and stores) can operate under RMO.
Although a program written for a weaker memory model potentially benefits

5.8 Memory Transactions 57
from higher execution rates, it may require explicit memory synchronization
instructions to function correctly if data is shared. MEMBAR is a SPARC V9
memory synchronization primitive that enables a programmer to explicitly
control the ordering in a sequence of memory operations. Processor
consistency is guaranteed in all memory models.

The current memory model is indicated in the PSTATE.mm field. It is
unaffected by normal traps but is set to TSO (PSTATE.mm = 0) when the
virtual processor enters RED_state. OpenSPARC T2 ignores the value set in
this field and always operates under TSO. A memory location is identified by
an 8-bit ASI and a 64-bit virtual address. The 8-bit ASI may be obtained from
an ASI register or included in a memory access instruction. The ASI is used to
distinguish between and provide an attribute for different 64-bit address
spaces. For example, the ASI is used by the OpenSPARC T2 MMU and
memory access hardware to control virtual-to-physical address translations,
access to implementation-dependent control and data registers, and for access
protection. Attempts by nonprivileged software (PSTATE.priv = 0) to access
restricted ASIs (ASI{7} = 0) cause a privileged_action trap.

Memory is logically divided into real memory (cached) and I/O memory
(noncached with and without side effects) spaces, based on bit 39 of the
physical address (0 for real memory, 1 for I/O memory). Real memory spaces
can be accessed without side effects. For example, a read from real memory
space returns the information most recently written. In addition, an access to
real memory space does not result in program-visible side effects. In contrast,
a read from I/O space may not return the most recently written information
and may result in program-visible side effects.

5.8 Memory Transactions
In this section, the following memory interactions are addressed:
• Cache Flushing on page 58
• Displacement Flushing on page 58
• Memory Accesses and Cacheability on page 59
• Cacheable Accesses on page 59
• Noncacheable and Side-Effect Accesses on page 60
• Global Visibility and Memory Ordering on page 60
• Memory Synchronization: MEMBAR and FLUSH on page 61
• Atomic Operations on page 62
• Nonfaulting Load on page 63

58 Chapter 5 OpenSPARC T2 Memory Subsystem — A Deeper Look
5.8.1 Cache Flushing
Data in the level-1 (read-only or write-through) caches can be flushed by
invalidation of the entry in the cache (in a way that also leaves the L2
directory in a consistent state). Modified data in the level-2 (write-back) cache
must be written back to memory when flushed.

Cache flushing is required in these cases for the following caches:
• I-cache: Flush is needed before executing code that is modified by a local

store instruction. This is done with the FLUSH instruction. Flushing the I-
cache with ASI accesses does not work, because it leaves the I-cache and
the L2 directory inconsistent, thus breaking coherency and leading to the
possibility of data corruption.

• D-cache: Flush is needed when a physical page is changed from
(physically) cacheable to (physically) noncacheable. This is done with a
displacement flush (see “Displacement Flushing,” below).

• L2 cache: Flush is needed for stable storage. Examples of stable storage
include battery-backed memory and transaction logs. The recommended
way to perform this is with the PrefetchICE instruction. Alternatively, this
can be done by a displacement flush. Flushing the L2 cache flushes the
corresponding blocks from the I- and D-caches, because OpenSPARC T2
maintains inclusion between the L2 and L1 caches.

5.8.2 Displacement Flushing
Cache flushing of the L2 cache or the D-cache can be accomplished by a
displacement flush. One does this by placing the cache in direct-map mode
and reading a range of read-only addresses that map to the corresponding
cache line being flushed, forcing out modified entries in the local cache. Care
must be taken to ensure that the range of read-only addresses is mapped in the
MMU before a displacement flush is started; otherwise, the TLB miss handler
may put new data into the caches. In addition, the range of addresses used to
force lines out of the cache must not be present in the cache when the
displacement flush is started. (If any of the displacing lines are present before
the displacement flush is started, fetching the already present line will not
cause the proper way in the direct-mapped mode L2 to be loaded; instead, the
already present line will stay at its current location in the cache.)

5.8 Memory Transactions 59
5.8.3 Memory Accesses and Cacheability
In OpenSPARC T2, all memory accesses are cached in the L2 cache (as long
as the L2 cache is enabled). The cp bit in the TTE corresponding to the access
controls whether the memory access will be cached in the primary caches (if
cp = 1, the access is cached in the primary caches; if cp = 0 the access is not
cached in the primary caches). Atomic operations are always performed at the
L2 cache. Note that diagnostic accesses to the L2 cache can be used to
invalidate a line, but they are not an alternative to PrefetchICE or
displacement flushing. L2 diagnostic accesses do not cause invalidation of L1
lines (breaking L1 inclusion), and modified data in the L2 cache will not be
written back to memory using these ASI accesses.

Two types of memory operations are supported in OpenSPARC T2: cacheable
and noncacheable accesses, as indicated by the page translation. Cacheable
accesses are inside the coherence domain; noncacheable accesses are outside
the coherence domain. SPARC V9 does not specify memory ordering between
cacheable and noncacheable accesses. OpenSPARC T2 maintains TSO
ordering, regardless of the cacheability of the accesses, relative to other access
by processors. See The SPARC Architecture Manual-Version 9 for more
information about the SPARC V9 memory models. On OpenSPARC T2, a
MEMBAR #Lookaside is effectively a NOP and is not needed for forcing
order of stores vs. loads to noncacheable addresses.

5.8.4 Cacheable Accesses
Accesses that fall within the coherence domain are called cacheable accesses.
They are implemented in OpenSPARC T2 with the following properties:
• Data resides in real memory locations.
• The cacheable accesses observe the supported cache coherence protocol.
• The unit of coherence is 64 bytes at the system level (coherence between

the virtual processors and I/O), enforced by the L2 cache.
• The unit of coherence for the primary caches (coherence between multiple

virtual processors) is the primary cache line size (16 bytes for the data
cache, 32 bytes for the instruction cache), enforced by the L2 cache
directories.

60 Chapter 5 OpenSPARC T2 Memory Subsystem — A Deeper Look
5.8.5 Noncacheable and Side-Effect
Accesses

Accesses that are outside the coherence domain are called noncacheable
accesses. Accesses of some of these memory (or memory-mapped) locations
may result in side effects. Noncacheable accesses are implemented in
OpenSPARC T2 with the following properties:
• Data may or may not reside in real memory locations.
• Accesses may result in program-visible side effects; for example, memory-

mapped I/O control registers in a UART may change state when read.
• Accesses may not observe supported cache coherence protocol.
• The smallest unit in each transaction is a single byte.

Noncacheable accesses are all strongly ordered with respect to other
noncacheable accesses (regardless of the e bit). Speculative loads with the e
bit set cause a DAE_so_page trap.

5.8.6 Global Visibility and Memory
Ordering

To ensure the correct ordering between the cacheable and noncacheable
domains, explicit memory synchronization is needed in the form of
MEMBARs or atomic instructions. CODE EXAMPLE 5-1 illustrates the issues
involved in mixing cacheable and noncacheable accesses.

Assume that all accesses go to non-side-effect memory locations.

CODE EXAMPLE 5-1 Mixing Cacheable and Noncacheable Accesses

Process A:
while (true)
{

Store D1 // data produced
 1 MEMBAR #StoreStore // needed in PSO, RMO

Store 1 to F1 // set flag
while (F1 ≠ 0) // spin while flag is set
{

 Load F1
}

 2 MEMBAR #LoadLoad | #LoadStore // needed in RMO

Load D2

5.8 Memory Transactions 61
Due to load and store buffers implemented in OpenSPARC T2, the above code
may not work for RMO accesses without the MEMBARs shown in the
program segment. Under TSO, loads and stores (except block stores) cannot
pass earlier loads, and stores cannot pass earlier stores; therefore, no
MEMBAR is needed. Under RMO, there is no implicit ordering between
memory accesses; therefore, the MEMBARs at both #1 and #2 are needed.

5.8.7 Memory Synchronization: MEMBAR
and FLUSH

The MEMBAR (STBAR in SPARC V8) and FLUSH instructions provide for
explicit control of memory ordering in program execution. MEMBAR has
several variations; their implementations in OpenSPARC T2 are described
below. See the references to “Memory Barrier,” “The MEMBAR Instruction,”
and “Programming With the Memory Models” in The SPARC Architecture
Manual-Version 9 for more information.

}

Process B:
while (true)
{

while (F1 = 0) // spin while flag is clear
{

 Load F1
}

 2 MEMBAR #LoadLoad | #LoadStore // needed in RMO

Load D1 // data consumed

Store D2

 1 MEMBAR #StoreStore // needed in PSO, RMO

Store 0 to F1 // clear flag
}

CODE EXAMPLE 5-1 Mixing Cacheable and Noncacheable Accesses (Continued)

62 Chapter 5 OpenSPARC T2 Memory Subsystem — A Deeper Look
• MEMBAR #LoadLoad — All loads on OpenSPARC T2 switch a strand
out until the load completes. Thus, MEMBAR #LoadLoad is treated as a
NOP on OpenSPARC T2.

• MEMBAR #StoreLoad — Forces all loads after the MEMBAR to wait
until all stores before the MEMBAR have reached global visibility.
MEMBAR #StoreLoad behaves the same as MEMBAR #Sync on
OpenSPARC T2.

• MEMBAR #LoadStore — All loads on OpenSPARC T2 switch a strand
out until the load completes. Thus, MEMBAR #LoadStore is treated as
a NOP on OpenSPARC T2.

• MEMBAR #StoreStore and STBAR — Stores on OpenSPARC T2
maintain order in the store buffer. Thus, MEMBAR #StoreStore is
treated as a NOP on OpenSPARC T2.

• MEMBAR #Lookaside — Loads and stores to noncacheable addresses
are self-synchronizing on OpenSPARC T2. Thus, MEMBAR
#Lookaside is treated as a NOP on OpenSPARC T2.

• MEMBAR #MemIssue — Forces all outstanding memory accesses to be
completed before any memory access instruction after the MEMBAR is
issued. It must be used to guarantee ordering of cacheable accesses
following noncacheable accesses.

• MEMBAR #Sync (Issue Barrier) — Forces all outstanding instructions
and all deferred errors to be completed before any instructions after the
MEMBAR are issued.

• Self-modifying code (FLUSH) — The SPARC V9 instruction set
architecture does not guarantee consistency between code and data spaces.
A problem arises when code space is dynamically modified by a program
writing to memory locations containing instructions. Dynamic optimizers,
LISP programs, dynamic linking, and some types of debuggers require this
behavior. SPARC V9 provides the FLUSH instruction to synchronize
instruction and data memory after code space has been modified. In
OpenSPARC T2, FLUSH behaves like a store instruction for the purpose of
memory ordering. In addition, all instruction fetch (or prefetch) buffers are
invalidated. The issue of the FLUSH instruction is delayed until previous
(cacheable) stores are completed. Instruction fetch (or prefetch) resumes at
the instruction immediately after the FLUSH.

5.8.8 Atomic Operations
SPARC V9 provides three atomic instructions to support mutual exclusion.
These instructions behave like both a load and a store, but the operations are
carried out indivisibly. Atomic instructions may be used only in the cacheable

5.8 Memory Transactions 63
domain. An atomic access with a restricted ASI in unprivileged mode
(PSTATE.priv = 0) causes a privileged_action trap. An atomic access with a
noncacheable address causes a DAE_nc_page trap. An atomic access with an
unsupported ASI causes a DAE_invalid_ASI trap.
• SWAP instruction — SWAP atomically exchanges the lower 32 bits in an

integer register with a word in memory. This instruction is issued only after
store buffers are empty. Subsequent loads interlock on earlier SWAPs.

• LDSTUB instruction — LDSTUB behaves like SWAP, except that it loads
a byte from memory into an integer register and atomically writes all 1’s
(FF16) into the addressed byte.

• Compare and Swap (CASX) instruction — Compare-and-swap combines a
load, compare, and store into a single atomic instruction. It compares the
value in an integer register to a value in memory; if they are equal, the
value in memory is swapped with the contents of a second integer register.
All of these operations are carried out atomically; in other words, no other
memory operation may be applied to the addressed memory location until
the entire compare-and-swap sequence is completed.

5.8.9 Nonfaulting Load
A nonfaulting load behaves like a normal load except that it does not allow
side-effect access. An access with the e bit set causes a
DAE_side_effect_page trap. It can also be applied to a page with the nfo
(nonfault access only) bit set; other types of accesses cause a DAE_nfo_page
trap.

When a nonfaulting load encounters a TLB miss, the operating system should
attempt to translate the page. If the translation results in an error (for example,
address out of range), a 0 is returned and the load completes silently.

Typically, optimizers use nonfaulting loads to move loads before conditional
control structures that guard their use. This technique potentially increases the
distance between a load of data and the first use of that data, to hide latency;
it allows for more flexibility in code scheduling. It also allows for improved
performance in certain algorithms by removing address checking from the
critical code path. For example, when following a linked list, nonfaulting
loads allow the null pointer to be accessed safely in a read-ahead fashion if
the operating system can ensure that the page at virtual address 016 is accessed
with no penalty.

The nfo bit in the MMU marks pages that are mapped for safe access by
nonfaulting loads but can still cause a trap by other, normal, accesses. This
allows programmers to trap on wild pointer references (many programmers

64 Chapter 5 OpenSPARC T2 Memory Subsystem — A Deeper Look
count on an exception being generated when accessing address 016 to debug
code) while benefiting from the acceleration of nonfaulting access in
debugged library routines.

CHAPTER 6

OpenSPARC Processor
Configuration

The original UltraSPARC T1 processor was designed for high
performance in a very custom semiconductor process, and not many
parameters were placed into the code to make it flexible. In the process of
opening up the code for OpenSPARC, several compilation options for the
core were inserted into the code to allow for more flexibility.

This chapter describes processor configuration in the following sections:
• Selecting Compilation Options in the T1 Core on page 66
• Changing Level-1 Cache Sizes on page 67
• Changing Number of Threads on page 71
• Removing the Floating-Point Front-End Unit (FFU) on page 71
• Adding a Second Floating-Point Unit to the OpenSPARC T2 Core on

page 73
• Changing Level-2 Cache Sizes on page 74
• Changing the Number of L2 Banks on page 75
• Changing the Number of Cores on a Chip on page 75
• Cookbook Example 1: Integrating a New Stall Signaller Into the T1

Thread Scheduler on page 76
• Cookbook Example 2: Adding a Special ASI to the T1 Instruction Set

on page 79

The first section describes existing compilation options that are available
in the T1 core. The remaining sections describe other changes that could
be made to the core. Most of the changes are described for the T1 core,
although similar changes could be made for the T2 core. One change
described is specific to the T2 core: the addition of a second floating-
point unit. The instructions for these changes are written at a high level
and do not describe all the details that will need to be taken care of to
successfully implement these changes.
65

66 Chapter 6 OpenSPARC Processor Configuration
6.1 Selecting Compilation Options
in the T1 Core

The new compilation options and, parameters discussed in this section are
available in release 1.5 (and later releases) of OpenSPARC T1. For more
information about the use of these parameters, please see the OpenSPARC T1
Design and Verification Manual, which is included in the OpenSPARC
download package.

6.1.1 FPGA_SYN
The FPGA_SYN compiler option enables optimizations to the code for field-
programmable gate array (FPGA) synthesis. These optimizations enable the
synthesis tool to effectively use block RAM on the FPGA, to increase the
synthesis efficiency, and to replace non-synthesizable constructs with
synthesizable ones. This option is required for synthesis of the
OpenSPARC T1 core for an FPGA. It is also required to enable all the other
possible options for the core. To specify this option on a compilation
command line, use the following option.

+define+FPGA_SYN

To specify this option in a Verilog file, use the following line.

‘define FPGA_SYN

6.1.2 FPGA_SYN_1THREAD
The FPGA_SYN_1THREAD option selects a one-thread version of the
OpenSPARC T1 core. The one-thread option simplifies the operation of the
core significantly and reduces the size of the netlist by up to 40%. The
external interfaces of the chip are not affected by this change.

6.1.3 FPGA_SYN_NO_SPU
The FPGA_SYN_NO_SPU option removes the stream processing unit (SPU)
from the design. This removal reduces the size of the synthesized design. The
SPU is used to accelerate cryptographic functions. It contains a modular

6.2 Changing Level-1 Cache Sizes 67
arithmetic unit. If this functionality is not needed, then you can use this option
to remove the block. Doing so saves about 5000 lookup tables (LUTs) on the
Xilinx Virtex-4 FPGA family.

6.1.4 FPGA_SYN_8TLB
The FPGA_SYN_8TLB option reduces both the instruction TLB size and data
TLB size from 64 entries to 8 entries. Since these TLBs are fully associative,
they do not synthesize into block RAM but are implemented in logic gates.
This option reduces the size of the synthesized design by up to 8000 LUTs on
the Xilinx Virtex-4 family, but because of reduced TLB hit rates, it does
reduce performance when an operating system is running on the core.

6.1.5 FPGA_SYN_16TLB
The FPGA_SYN_16TLB option is similar to the FPGA_SYN_8TLB option.
This option reduces the TLB size from 64 entries to 16 entries. Only one of
these TLB size options may be defined.

6.1.6 Future Options
Additional compilation options may be added to the code in future versions of
the OpenSPARC T1. Here is a list of possible options:
• Afford more flexibility in selecting TLB sizes: The current design allows

for three TLB sizes: 64 entries (the default), 16, or 8 entries. Options could
be added to allow for a 32-entry TLB size.

• Remove parity checking, ECC checks, and extra columns: The code for
OpenSPARC T1 has parity checking on I-cache and D-cache, and ECC
checking on register files. It also has extra columns in many arrays to allow
remapping of bad columns. This extra circuitry could be removed to save
area on an FPGA design.

6.2 Changing Level-1 Cache Sizes
The instruction cache and data cache sizes on the OpenSPARC T1 core are not
parameterized. Here are some instructions on how to change various
parameters of the level-1 caches. The instructions here are shown for

68 Chapter 6 OpenSPARC Processor Configuration
OpenSPARC T1. The equivalent changes for OpenSPARC T2 will be similar,
although file and signal names will change.

6.2.1 Doubling the Size of the I-cache
This modification involves doubling the number of sets in the I-cache. For this
to be accomplished, one additional bit of the physical address (PA) is
allocated to the set number, and one fewer bit is needed for the tag.

Changing the cache size involves changes to the following files.
IFU files:

sparc_ifu.v IFU top level
sparc_ifu_ifqctl.v IFU cache fill queue control
sparc_ifu_ifqdp.v IFU cache fill queue datapath
bw_r_icd.v I-cache data array
bw_r_idct.v I-cache or D-cache tag array

L2 cache files:
sctag.v L2 Cache top level
sctag_dir_ctl.v Reverse L1 directory control
bw_r_dcm.v Reverse L1 directory array
sctag_dirvec_dp.v Directory vector datapath

Here is a list of changes necessary to double the I-cache size:

1. The first change is to double the size of the tag array and data array and to
increase the address for these arrays by one bit.

2. The data width of the tag array is reduced by one bit or the LSB of the tag
array is always written to zero.

3. In the L2 cache, the directory arrays that keep track of the L1 caches must
also be doubled in size.

4. Since the L1 directory arrays are doubled in size, the address signals to
those arrays must also double in size.

5. The size of the processor-to-cache (PCX) or cache-to-processor (CPX)
interfaces does not have to change, and most packet formats stay the same.
However, the CPX store acknowledge packet and the invalidation need to
change to enable reporting of the set number that must be invalidated.
Currently the set number is reported in bits 117:12 (for PA{11:6}) and bits
122:121 (for PA{5:4}). The field needs to be enlarged to allow PA{12} to
be included in the invalidation packet as well. This can be done by shifting
bits 125:118 up one (bits 127:126 are not used).

6.2 Changing Level-1 Cache Sizes 69
6.2.2 Doubling the Number of Ways in the
I-cache

Doubling the number of ways in the cache doubles the size of the cache
without affecting the address bits assigned to the tag and set. However, the
way number is passed in several packet formats to the L2 cache over the PCX
interface. This means that one extra bit is required on the PCX interface to
send this information. In addition, the way number is sent in invalidation
packets from the L2 back to the core over the CPX interface. This means that
invalidation packet formats will have to change as well, although this change
could probably be made without the need to increase the CPX packet size.
Here is a partial list of files that would be affected by this change.
IFU files:

sparc.v T1 core top level
sparc_ifu.v IFU top level
sparc_ifu_ifqctl.v IFU cache fill queue control
sparc_ifu_ifqdp.v IFU cache fill queue datapath
sparc_ifu_invctl.v IFU buffering block
sparc_ifu_errdp.v IFU error checking logic
bw_r_icd.v I-cache data array
bw_r_idct.v I-cache or D-cache tag array
bw_r_rf16x32.v I-cache or D-cache valid bit array

LSU files:
lsu.v Top-level LSU block
lsu_qctl1.v LSU Queue control
lsu_qctl2.v LSU queue control
lsu_qdp1.v LSU queue datapath

Crossbar files:

ccx.v Top-level Crossbar
pcx.v Processor-to-cache side.
pcx_*.v Various PCX files.

L2 cache files:
iop.h Top-level include file
sctag.v L2 Cache top level
sctag_dir_ctl.v Reverse L1 directory control
bw_r_dcm.v Reverse L1 directory array
sctag_dirvec_dp.v Directory vector datapath

Here is a list of changes necessary to double the number of ways in the
I-cache:

70 Chapter 6 OpenSPARC Processor Configuration
1. First, the I-cache data, tag, and valid bit arrays will need to be modified to
increase the number of ways to eight. Note that tag and valid bit array files
are shared with the data cache, so the files will need to be copied if the
same changes are not being made to the data cache.

2. With eight ways, the number of bits needed for encoding the way number
increases by one bit. This change needs to be made in all the miss buffers
for the cache. In file sparc_ifu_ifqdp.v, the way number is currently
stored as bits 41:40 of the miss buffer entry. This will need to be increased
to bits 42:40, and the tag parity bit will need to move to bit 43.

3. Since the number of ways in the cache is now eight, the tag parity checking
logic must check parity on eight ways.

4. The tags read from the I-cache tag array are fed to the ITLB. Therefore, the
ITLB must be modified to support tags for an 8-way cache.

5. I-cache miss requests are forwarded to the LSU, which then forwards the
request to the L2 cache. All files on this path will need to be modified to
add support for one more bit for the cache way number. Note that all other
packet types will need to change as well so that the packet fields remain
consistent. This could affect several more core files.

6. The PCX side of the cache crossbar will need to increase the width of the
bus by one bit.

7. The L2 cache needs to double the size of the I-cache directory. In addition,
it needs to modify the pipeline to accommodate the increased size of the
way number.

8. The invalidation vector sent from L2 to the core must increase by 4 bits.
The CPX packet may be able to accommodate this change without
increasing the size of the CPX packet. Fortunately, the L2 cache code is
parameterized, so many changes can be made by changes to the compiler
defines in file iop.h.

6.2.3 Changing Data Cache Sizes
Changing the size of the data cache is similar to changing the size of the I-
cache. In fact, the valid bit array and the tag array are implemented with the
same files as the I-cache. Here are some of the files that would need to be
changed to implement a cache size change.
LSU files:

lsu.v Top-level LSU block
lsu_dctl.v Data cache control
lsu_dctldp.v Data cache datapath

6.3 Changing Number of Threads 71
lsu_dcdp.v Data cache datapath
lsu_qctl1.v LSU Queue control
lsu_qctl2.v LSU queue control
lsu_qdp1.v LSU queue datapath

Crossbar files:
ccx.v Top-level Crossbar
pcx.v Processor-to-cache side.
pcx_*.v Various PCX files.

L2 cache files:
iop.h Top-level include file
sctag.v L2 Cache top level
sctag_dir_ctl.v Reverse L1 directory control
bw_r_dcm.v Reverse L1 directory array
sctag_dirvec_dp.v Directory vector datapath

Changes to the data cache will require the same steps as the corresponding
changes to the I-cache.

6.3 Changing Number of Threads
The OpenSPARC T1 release 1.5 (and later) code contains a compiler define to
select between a four-thread core (the original) and a reduced one-thread core.
If a different number of threads is desired (for example, a two-thread core),
the code could be modified to support this. All the places where the code
needs to change can be found by a search for the compiler define
FPGA_SYN_1THREAD in all the RTL files. Code can then be inserted in
these places to support a two-thread configuration.

6.4 Removing the Floating-Point
Front-End Unit (FFU)

In OpenSPARC T1, the floating-point unit (FPU) is external to the core.
However, the core does contain a block called the floating-point front-end unit
(FFU), which contains the floating-point register file. These registers are not
used by the floating-point software emulation code, so they are not needed if
the external FPU is not in the system. Here is the list of file that must be
edited.

sparc.v T1 core top level

72 Chapter 6 OpenSPARC Processor Configuration
The removal of the FFU requires the following steps:

1. The instance of module sparc_ffu is removed from the OpenSPARC T1
core.

2. Output signals from this module must be tied appropriately. TABLE 6-1 lists
the output signals.

TABLE 6-1 Treatment of FFU Output Signals

Signal Action

ffu_lsu_data Tie to zero

ffu_lsu_cc_vld_w2{3:0} Tie to zero

ffu_lsu_cc_w2{7:0} Tie to zero

ffu_ifu_ecc_ce_w2 Tie to zero

ffu_ifu_ecc_ue_w2 Tie to zero

ffu_ifu_err_reg_w2 Tie to zero

ffu_ifu_err_reg_w2 Tie to zero

ffu_ifu_err-synd_w2 Tie to zero

ffu_ifu_fpop_done_w2 Tie to zero

ffu_ifu_fst_ce_w Tie to zero

ffu_ifu_inj_ack Tie to zero

ffu_ifu_stallreg Tie to zero

ffu_ifu_tid_w2{1:0} Tie to zero

ffu_lsu_blk_st_e Tie to zero

ffu_lsu_blk_st_va_e{5:3} Tie to zero

ffu_lsu_fpop_rq_vld Tie to zero

ffu_lsu_kill_fst_w Tie to zero

ffu_tlu_fpu_cmplt Tie to zero

ffu_tlu_fpu_tid{1:0} Tie to zero

ffu_tlu_ill_inst_m Tie to zero

ffu_tlu_trap_ieee754 Tie to zero

ifu_tlu_trap_other Tie to zero

ffu_tlu_trap_ue Tie to zero

so Tie to zero

6.5 Adding a Second Floating-Point Unit to the OpenSPARC T2 Core 73
6.5 Adding a Second Floating-
Point Unit to the
OpenSPARC T2 Core

The OpenSPARC T2 core contains a single floating-point and graphics unit
(FGU), which is shared by all eight threads in the core. To increase floating-
point performance, a second FGU could be added so that each FGU is shared
by only four threads. This is a more advanced modification because it
involves changes to several blocks and requires understanding of the
interactions of all these blocks. The following paragraphs give a high-level
description of the different blocks that would need to be changed in order to
implement this modification.

The first step is to simply instantiate a second floating-point unit at the top
level. The floating-point unit may be instantiated as is, but to save area, some
changes could be made. Currently the FGU contains the floating-point register
file, which contains the floating point registers for all eight threads. If the
FGU is shared by only four threads, the code could be edited to reduce the
size of the register file by half. In addition, the thread ID is now reduced from
three bits to two. This can be easily accomplished by tying one bit of the
thread ID to zero.

The next step is to edit the decode block, which completes the instruction
decoding and issues instructions to the floating-point unit. It receives two
instructions from the pick unit (PKU), one for each integer pipeline. If both
instructions are floating-point operations, the decode block currently must
select one of them to be issued and stall the other for one cycle. This is
performed by an arbiter that alternately picks one thread or the other. With
two floating-point units, this arbiter is no longer necessary, since the decode
block will be able to issue two floating-point instructions in the same cycle.
Instead, the decode block will need a second floating-point interface.

Next up is the PKU. There is a special case for floating-point divides. If a
divide is active, no other floating-point instruction can be issued. The PKU
contains logic to disqualify threads from being ready to pick if the next
instruction in the thread is a floating-point instruction and a divide is currently
active. Currently, an active divide affects all eight threads. Now, with two
FGUs, an active divide affects only the four threads in its thread group. This
is a simple change, involving only some rewiring at the top level of the PKU.

74 Chapter 6 OpenSPARC Processor Configuration
Next, the interface with the execution unit (EXU) must be modified. The FGU
is used to perform several integer instructions as well as floating-point
instructions. The operands for these integer instructions come from the integer
register file, not from the FRF. Therefore, these operands must be passed
directly from the execution (integer) units to the FGU. Once the FGU has
completed the instruction, it must pass the result, as well as the condition
codes, back to the EXU. With two FGUs in the core, the EXU needs another
FGU interface.

Once the pipeline is able to issue instructions to both FGUs, the trap logic unit
(TLU) must be modified to handle exceptions from both units. Currently, the
FGU sends floating-point exception signals along with a 3-bit TID to the TLU
if an exception occurred. In addition, a floating-point trap prediction signal is
sent four cycles earlier if a trap is likely to be taken. These signals will be
duplicated because there are now two FGUs, but the thread ID will be reduced
to two bits. It’s a matter of recoding the input logic to ensure that any
incoming floating-point exceptions are reported for the correct thread.

Finally, the interface with the load-store unit (LSU) must be modified. Like
the floating-point unit, the LSU is shared by all eight threads. The FGU
interacts with the LSU for floating-point loads and stores. If we duplicate the
FGU, the LSU will need to duplicate the signals on the FGU/LSU interface. In
addition, the LSU will need to be able to handle two floating-point I/O
operations in the same cycle.

6.6 Changing Level-2 Cache Sizes
The OpenSPARC T1 level-2 cache is contained in two blocks: sctag, which
is the L2 pipeline and tag array, and scdata, which is the data array. The
OpenSPARC T1 chip has four instances of each block (four banks). Each bank
is 768 KB, with 12 ways and 1024 sets. Bits 7:6 of the physical address are
used to select the L2 bank, and bits 17:8 are used to select the L2 index.

Here is a partial list of files that would be affected by a change in the L2
cache size.
sctata files:

scdata.v
scdata_rep.v
scdata_ctl_io.v
scdata_periph_io.v
scdata_subbank.v
bw_r_l2d.v

6.7 Changing the Number of Cores on a Chip 75
sctag files:
sctag.v
sctag_tagctl.v
sctag_tagdp.v
bw_r_l2t.v
sctag_vuad_ctl.v
sctag_vuad_dpm.v
sctag_vuad_io.v
sctag_vuadcol_dp.v
sctag_vuaddp_ctl
bw_r_rf32x108.v

6.6.1 Changing the Number of L2 Banks
While changing the number of sets or ways in the L2 cache would be
contained within the L2 cache, changing the number of L2 banks would
involve changes to the core and the crossbar. This is because the core selects
the L2 bank destination by using address bits 7 and 6 to select the bank. The
core sends a 5-bit request signal to the crossbar so that the crossbar can route
the request to one of the four L2 banks or to the I/O block. If the number of
L2 banks changes, the load-store unit (LSU) of the OpenSPARC core will
need to be changed to modify the number of request bits. The cache crossbar
will then need to be changed to reduce the number of destinations.

6.7 Changing the Number of Cores
on a Chip

Changing the number of cores on the OpenSPARC T1 or OpenSPARC T2 is a
straightforward task. In the OpenSPARC T1 code, file iop.v has compiler
defines to allow for a variable number of cores in the system. These are
currently available to support reduced-size simulation environments.
However, the compiler defines can also be used to create systems with
different numbers of cores. When a chip top-level is being composed, a
variable needs to be defined for every core that will be included. For example,
for a design with two cores, the following compiler defines must be set:

// create a chip with two cores
‘define RTL_SPARC0
‘define RTL_SPARC1

76 Chapter 6 OpenSPARC Processor Configuration
6.8 Cookbook Example 1:
Integrating a New Stall
Signaller Into the T1 Thread
Scheduler

Stall signals are necessary to pause the execution of an active (schedulable)
thread during situations such as an I-cache miss, retirement queues fill, or a
pipeline resource that becomes busy.

6.8.1 Background
The OpenSPARC T1’s instruction selection stage chooses ready instructions
from a pool of active threads (see OpenSPARC T1 Microarchitecture
Specification, Sun Microsystems, August 2006, available on the OpenSPARC
website, for more information on the thread scheduler states). You are
primarily interested in transitioning a thread from Ready and Run states to
the Wait state.

The signal-level interface that must be provided comprises two signals: a
thread stall signal and a thread ready signal, called my_stall and
my_resume in this section. The thread stall signal is asserted whenever a
thread should first be placed in the Wait state. The thread ready signal is
asserted whenever the thread can be started again. The signals should not be
asserted simultaneously; however, it is acceptable for neither to be asserted in
a given cycle and the values need only be asserted for a single clock. This
section assumes that these signals contain one bit per thread (e.g., four bits
{3:0}), although a single signal that affects all threads can trivially be
substituted.

With these input signals, you will generate two signals: a wait-mask (wm)
signal and wait completion signal. These will be combined with existing wait-
masks and the completion signal such that any wait-mask can stall a thread,
but the thread can only resume when the wait-masks are clear and the
operation blocking execution has completed.

6.8 Cookbook Example 1: Integrating a New Stall Signaller Into the T1 Thread Scheduler
This logic closely follows that used for the existing instruction miss (imiss)
logic. However, because the different stall causes may become ready
independently and the thread can start only when all wait-masks have been
reset, you should create a new wait-mask instead of piggybacking on an
existing one.

TABLE 6-2 lists information about the two modules to be modified.

6.8.2 Implementation
To install a new stall signal into the thread scheduler for OpenSPARC T1:

1. Add the stall and thread ready signals to both the thread switch logic and
completion logic modules.
The wait-mask logic is generated with logic to “set” and “reset” the wait-
mask value for each thread. The wait-mask is set whenever the stall signal
is first asserted and is maintained until reset by the my_resume signal.
The signal wm_mywm is the current wait-mask for this resource.

 wire [3:0] wmf_next;

 assign wmf_nxt = my_stall | // set
 (wm_mywm & ~my_resume); // reset

2. Within the thread completion logic, add a four-bit register to store the new
wait-mask:

 dffr #(4) wmf_ff(.din (wmf_nxt),
 .q (wm_mywm),
 .clk (clk),
 .rst (reset),
 .se (se), .si(), .so());

TABLE 6-2 Modules for Installation of New Stall Signal

Module
Hierarchical
Name Description Filename

sparc_ifu_
swl

ifu.swl Switch logic
unit

design/sys/iop/sparc/
ifu/rtl/sparc_ifu_swl.v

sparc_ifu_
thrcmpl

ifu.swl.compl Stall
completion
logic

design/sys/iop/sparc/
ifu/rtl/sparc_
ifu_thrcmpl.v

78 Chapter 6 OpenSPARC Processor Configuration
3. At the end of the module, add the following logic to the completion signal:

The completion signal allows the thread to start running again. This will
only happen when all wait-masks are clear and at least one resume signal
has been asserted.

4. Route the new wait-mask signal out of the thread completion unit and into
its parent module switch logic. The individual wait-mask signals are
combined into start_thread and thaw_thread signals that control
the scheduler finite state machine (FSM). The necessary additions are as
follows:

6.8.3 Updating the Monitor
The procedure in the preceding section is sufficient for modifying the core
logic to support an additional stall signal. However, a thread scheduler
monitor that is used for verification and debugging must also be modified to
be aware of the new stall signal.

Edit the files verif/env/cmp/monitor.v and verif/env/cmp/
thrfsm_mon.v. The first file instantiates various microarchitectural
monitors and needs to route the wait-mask signal (e.g., wm_mywm) into the
thrfsm monitor. From there, simply copy the logic used for wm_imiss,
replacing wm_imiss with wm_mywm on the new lines.

 Alternatively, this monitor can be disabled with the
-sim_run_args=+turn_off_thread_monitor command-line switch
to sims.

 assign completion =((imiss_thrrdy | ~wm_imiss) &
(other_thrrdy | ~wm_other) &
(stb_retry | ~wm_stbwait) &
(my_resume | ~wm_mywm) &
(wm_imiss | wm_other | wm_stbwait | wm_mywm));

assign start_thread = resum_thread & (~wm_imiss | ifq_dtu_thrrdy) &
 (~wm_stbwait | stb_retry) &
 (~wm_mywm | my_resume);

assign thaw_thread = resum_thread & (wm_imiss & ~ifq_dtu_thrrdy |
 wm_stbwait & ~stb_retry |
 wm_mywm & ~my_resume);

6.9 Cookbook Example 2: Adding a Special ASI to the T1 Instruction Set 79
6.9 Cookbook Example 2: Adding a
Special ASI to the T1
Instruction Set

Address space identifiers (ASIs) are useful for exposing internal registers to
user-level and privileged software. Because ASI accesses take the form of 64-
bit load and store instructions, they offer a convenient and flexible way to
read and write both small and large internal structures.

6.9.1 Background
ASI accesses look very much like normal load and store instructions to the
assembly programmer. For example, the following program writes a value in
architectural register %l0 to virtual address (VA) 816 at ASI 1A16
(implemented later in this document) and then reads from the same location
into architectural register %l1:
#define ASI_EXAMPLE 0x1a

 setx 0x08, %g2, %g1
 setx 0xdeadbeef0, %g2, %l0

 stxa %l0, [%g1] ASI_EXAMPLE
 ldxa [%g1] ASI_EXAMPLE, %l1

For simplicity, this section shows how to use non-translating ASIs where the
supplied virtual address is used directly by hardware. This is simple and
generally the best choice for internal registers because of its simplicity. Other
types of ASIs that use mappings to real or physical addresses are also
available, but they require more work (see Section 10.2 in the UltraSPARC
Architecture 2005 Specification, available on the OpenSPARC website, for
more information).

In this section, you will piggyback on the existing interface to the scratchpad
registers (defined as 2016 and 4F16 for privileged and hyperprivileged
registers, respectively) to provide a read-write interface to ASI 1A16 (an
unallocated ASI that can be accessed by both privileged and hyperprivileged
programs). The load-store unit (LSU) is responsible for decoding the ASI and
routing load and store data between internal registers and the general-purpose

80 Chapter 6 OpenSPARC Processor Configuration
registers. Therefore, you can concentrate your changes within the LSU. (The
trap logic unit (TLU) contains SRAM for the actual scratchpad registers, but
you need not modify the TLU in this example.)

To process an ASI, use the existing signals listed in TABLE 6-3 (all available at
the “sparc” level of the RTL hierarchy). For simplicity, control signals from
the E pipeline stage are chosen, although signals at later stages are also
sometimes available. ASI write data is available only in the W/G stage.

You will also create a set of new signals that ASI load instructions use to
return data to the LSU. These signals are asserted in the W2 stage. Note that
if an ASI load is executed, the valid signal must be asserted. If this does not
occur, the load instruction will never complete (the RTL model will eventually
halt with a timeout)!

Note The pipeline stages generally follow this convention:
F - S - D - E - M - W/G - W2.

TABLE 6-3 Signals for Processing Sample Newly Created ASI

Name Description

ifu_lsu_alt_space_e Decode signal indicating an ASI load or store

ifu_lsu_ld_inst_e Decode signal indicating a load

ifu_lsu_st_inst_e Decode signal indicating a store

ifu_tlu_thrid_e Decode signal indicating the current thread ID

lsu_spu_asi_state_e{7:0} LSU signal specifying the ASI number

exu_lsu_ldst_va_e{47:0} Virtual address for the ASI access

lsu_tlu_rs3_data_g{63:0} Write data for ASI store instructions (to your
internal registers)

TABLE 6-4 Signals Used by ASI Load Instructions for Data Return to LSU

Name Description

myasi_lsu_ldxa_vld_w2 ASI load data valid signal

myasi_lsu_ldxa_tid_w2 ASI load’s thread ID

myasi_lsu_ldxa_data_w2{63:0} ASI load data (from your internal registers)

6.9 Cookbook Example 2: Adding a Special ASI to the T1 Instruction Set 81
6.9.2 Implementation
Now create a module (myasi_mod in this example) that pipes the control
signals to the appropriate stages and acts upon them (here, writing to the
register for the ASI store and reading from the same register for the ASI load).
Next, you must also add logic to tell the LSU that ASI 1A16 is a valid ASI and
route the loaded value through the LSU’s bypass network.

Use the above signals to interface with an example internal register in the
following simplified Verilog module, which you instantiate in the top-level
“sparc” Verilog module.

1. Create the module listed below.

CODE EXAMPLE 6-1 The myasi_mod Module

module myasi_mod (// Inputs
 clk,
 ifu_lsu_alt_space_e,
 ifu_lsu_ld_inst_e,
 ifu_lsu_st_inst_e,
 ifu_tlu_thrid_e,
 lsu_spu_asi_state_e,
 exu_lsu_ldst_va_e,
 lsu_tlu_rs3_data_g,
 // Outputs
 myasi_lsu_ldxa_vld_w2,
 myasi_lsu_ldxa_tid_w2,
 myasi_lsu_ldxa_data_w2);

 // ... [input/output/wire declarations] ...

 // Enable signals for loading/storing your ASI in the E stage
 assign asi_ld_e = ifu_lsu_alt_space_e & ifu_lsu_ld_inst_e &
 (lsu_spu_asi_state_e == 8'h1A);

 assign asi_st_e = ifu_lsu_alt_space_e & ifu_lsu_st_inst_e &
 (lsu_spu_asi_state_e == 8'h1A);

 // ... [Pipe asi_ld_e to stage W2 and asi_st_e to stage W/G] ...
 // [through stages E -> M -> W/G -> W2]
 //
 // Can also pipe the VA for special operations
 // based upon the VA.

 // Our internal register is written by the store ASI and
 // read by the load ASI instructions
 dffe #(64)

82 Chapter 6 OpenSPARC Processor Configuration
2. Tell the LSU that ASI 1A16 is now valid by editing the file sparc/lsu/
rtl/lsu_asi_decode.v and locating the assign statement for
asi_internal_d. Add a condition for the new ASI value:

 assign asi_internal_d =
 (asi_d[7:0] == 8'h1A) |
 [... remainder of original assign ...];

3. Route the new signals—
myasi_lsu_ldxa_vld_w2
myasi_lsu_ldxa_tid_w2
myasi_lsu_ldxa_vld_w2
—through the lsu module into lsu_qdp1 (data and vld signals and
lsu_dctl (vld and tid).

a. In lsu_dctl, first locate the assign statements for
lmq_byp_data_fmx_sel{3:0}.
This signal is normally asserted when the TLU processes an ASI load
instruction. It is also asserted when the module replies to an ASI load
(there is no conflict here because only one ASI load instruction can be
in each pipeline stage at a time).

b. Ensure that the final code looks like this:

 internal_ff (.clk (clk), .en (asi_st_g),
 .din (lsu_tlu_rs3_data_g),
 .q (myasi_lsu_ldxa_data_w2));

 // Valid signal and TID asserted at the appropriate stage
 assign myasi_lsu_ldxa_vld_w2 = asi_ld_w2;
 assign myasi_lsu_ldxa_tid_w2 = ifu_tlu_thrid_w2;

endmodule

assign lmq_byp_data_fmx_sel[0] = (int_ldxa_vld | myasi_lsu_ldxa_
vld_w2) & thread0_w2 ;

assign lmq_byp_data_fmx_sel[1] = (int_ldxa_vld | myasi_lsu_ldxa_
vld_w2) & thread1_w2 ;

assign lmq_byp_data_fmx_sel[2] = (int_ldxa_vld | myasi_lsu_ldxa_
vld_w2) & thread2_w2 ;

assign lmq_byp_data_fmx_sel[3] = (int_ldxa_vld | myasi_lsu_ldxa_
vld_w2) & thread3_w2 ;

CODE EXAMPLE 6-1 The myasi_mod Module (Continued)

6.9 Cookbook Example 2: Adding a Special ASI to the T1 Instruction Set 83
4. Also in lsu_dctl, locate the assign statement for
ldxa_thrid_w2{1:0} and mux the current TID from the TLU with the
new TID from your unit.

5. In lsu_qdp1, mux your load value with the TLU’s value, using your
valid signal to distinguish the two requests, and route the signal into the
existing ldbyp0_fmx mux.

6.9.3 Caveats
This procedure implements a new ASI load/store in OpenSPARC T1. This
example avoids processing the virtual address (this could, for example,
address entries in an SRAM or read from other internal registers). This
example also ignores validity checking on the VA address (this raises an
exception). This implementation also requires strict timing on responses to
ASI loads. ASIs with variable-latency responses can also be implemented.

// ldxa thread id
// assign ldxa_thrid_w2[1:0] = tlu_lsu_ldxa_tid_w2[1:0] ; //Removed

 original

 TID assign

mux2ds #(2) // Added mux
mux_ldxa_thrid (.dout (ldxa_thrid_w2),

 .in0 (tlu_lsu_ldxa_tid_w2[1:0]),
 .in1 (myasi_lsu_ldxa_tid_w2[1:0]),
 .sel0 (~myasi_lsu_ldxa_vld_w2),
 .sel1 (myasi_lsu_ldxa_vld_w2));

wire [63:0] ldxa_data_w2;

mux2ds #(64) ldbyp0_myasi (.in0 (tlu_lsu_int_ldxa_data_w2[63:0]),
 .in1 (myasi_lsu_ldxa_data_w2[63:0]),
 .sel0 (~myasi_lsu_ldxa_vld_w2),
 .sel1 (myasi_lsu_ldxa_vld_w2),
 .dout (ldxa_data_w2));

// Existing mux
mux2ds #(64) ldbyp0_fmx (
 .in0 (lmq0_bypass_misc_data[63:0]),
 .in1 (ldxa_data_w2[63:0]), // This input changed from

 tlu_lsu_int_ldxa_data_w2[63:0]
 .sel0 (~lmq_byp_data_fmx_sel[0]),
 .sel1 (lmq_byp_data_fmx_sel[0]),
 .dout (lmq0_bypass_data_in[63:0]));

CHAPTER 7

OpenSPARC Design Verification
Methodology

Verification is the process of matching design behavior with designer
intent. Commercial design verification is far from being a simple process.
It involves the following:
• Many abstraction levels, such as architectural, register transfer logic

(RTL), gate, and circuit
• Many different aspects of design, such as functionality, timing, power,

and manufacturability
• Many different design styles, such as system-on-a-chip (SoC, also

called server-on-a-chip), ASIC, custom, synchronous, and
asynchronous

As numerous publications attest, verification continues to be the long
pole in product development and more than half of time and resources are
spent in verification alone. Challenges of SoC verification are on the rise
as submicron process technology allows exponential growth in
functionality that can be included on a piece of silicon. And this is no
different for the OpenSPARC processors.

Despite the best efforts in the electronic design automation (EDA)
industry, the verification tools and technologies have not kept pace with
growth of design size and complexity of I/Os that are part of the SoCs
today. This verification challenge can be met by enhancement of
verification efficiency, adoption of aggressive changes in verification
methodology, and use of state-of-the-art verification tools and
technologies.

A robust verification methodology encompassing commercial and in-
house tools was deployed on UltraSPARC processors (open-sourced as
OpenSPARC designs) to minimize post-silicon defects and to facilitate
concurrent hardware and software engineering in order to speed up the
time-to-ramp on Sun Fire servers.
85

86 Chapter 7 OpenSPARC Design Verification Methodology
This chapter contains the following sections:
• Verification Strategy on page 86
• Models on page 89
• Verification Methods on page 92
• Simulation Verification on page 93
• Formal Verification on page 101
• Emulation Verification on page 104
• Debugging on page 110
• Post-Silicon Verification on page 112
• Summary on page 118

7.1 Verification Strategy
The design process involves transforming the product specifications into an
implementation. It is nearly impossible to go directly from specifications of
the product to an implementation description that can be used by a foundry to
transform the specification into silicon. This is largely due to the lack of a
specification language that can completely describe high-level functionality
along with timing and power targets and related tools that can synthesize this
specification into an implementation.

Before an implementation version of the design can be obtained, the high-
level specifications are transformed into a number of abstraction levels
targeted to accomplish a set of specific verification objectives. It is during this
process that a number of errors may be (and usually are) introduced. The later
the error is discovered, the costlier the impact is on both product cost and
development schedule, as depicted in Table 9.1. It is therefore critical to
deploy a verification strategy that not only minimizes errors introduced in this
process but efficiently finds errors so that they can be rooted out before they
show up as silicon defects resulting in silicon respins.

TABLE 7-1 Analysis of Generalized Cost of Show-Stopper Bug

Discovery Cost
Early in design phase Almost negligible
Close to tape-out Schedule impact
After tape-out A few silicon respins, schedule impact
Close to revenue release Loss of revenue at $1+ million per day
After revenue release Cost of recall at $50 million per day; damage to

reputation
The famous Pentium chip FDIV bug cost Intel $475 million in 1994.

7.1 Verification Strategy 87
An effective strategy incorporates an aggressive approach to finding design
errors early at the targeted abstraction levels to minimize functional issues in
silicon, with the goal of finding problems before design tape-out. Also,
reduced visibility in silicon, generally limited to latches and architectural
state, poses a significant debugging challenge. Therefore, it is critical to
devise a robust pre-silicon verification strategy from the start of a project.
Verification strategy starts with the definition of a verification plan derived
from the design specification, as shown in FIGURE 7-1.

FIGURE 7-1 Verification Strategy Flow Chart

At a high level, the verification plan details different testing objectives,
related metrics, and coverage goals, along with details of what, how-to, and
how much of this is covered. Basically, the plan mirrors the requirements
specification.

Design Specification

Design ImplementationVerification Plan

Formal Analysis

Simulation

Acceleration/Emulation

Design Tape-out

Post-Silicon Verification

Debug

no

no

no

Coverage
Goals Attained?

yes

yes

Works?

Works?

yes
Ship Product

88 Chapter 7 OpenSPARC Design Verification Methodology
The OpenSPARC processors feature a unique multicore, multithreaded design
that supports up to 64 simultaneous threads, posing new verification
challenges. The processor design along with its system-level testbench is
unusually large (approximately 35 million gates), pushing the capacity and
performance envelopes on all tools.

To battle these challenges, the OpenSPARC verification strategy employs both
divide-and-conquer and then merge-and-conquer tactics. Sun’s OpenSPARC
designs are composed of units that interact with each other in the larger
system. Due to economies of scale, it is cost effective to start by testing at the
unit level, with specially designed testbenches for the unit under test. To
augment unit-level verification, formal analysis tools are deployed early in
design phase to conquer contained complexities such as arbiters, fairness
protocols, FIFO structures, equivalency, and clock-domain crossings. As the
unit designs mature, they are integrated into large simulation models,
eventually leading to simulation of the entire design.

Testing the entire design requires tremendous compute resources. At some
point, traditional software-based simulators come to a crawl. These
simulations typically run at single-digit cycles per second (CPS) and lack the
bandwidth to run system-level simulations. This is where hardware-based
acceleration or emulation technologies are deployed to speed up the
simulation by six orders of magnitude. To extend this coverage further, a
virtual prototype of design can also be obtained by mapping the design to
FPGAs, which could be handed out as “virtual silicon” to software teams to
facilitate software development.

Since the design state space is extremely large (almost incalculable), it is
simply impossible to traverse all states to obtain exhaustive coverage even
with the best-of-breed simulation, emulation, and formal analysis tools. At
best, these tools only provide a statistical level of certainty about the
correctness of design—which is why bugs can slip past pre-silicon verification
into post-silicon verification. Therefore, a robust post-silicon verification
strategy is devised to capitalize on increased simulation bandwidth while
addressing limited design visibility. A number of systems with the SoC are
assembled and deployed 24x7 to run variety of random generators and real-
world applications to root out the last few bug escapes in the design.

7.2 Models 89
7.2 Models
As discussed in the previous section, design development warrants creation of
multiple descriptions of design that model different levels of abstraction along
with related simulation environments to support testing. These models are
created as the design specifications are transformed to an implementation that
can be sent to the foundry for manufacturing, as depicted in FIGURE 7-2.

FIGURE 7-2 Different Design Abstraction Levels and Related Verification Models

Design Specifications

Silicon Chip

Micro-architectural
Specifications

Architectural Model

Full-Chip Model

SoC Model

Gate-Level Model

Physical Design
Layout

Unit-Level ModelUnit-Level Model

English

English

C, System C, ESL

RTL

.

Architectural (PRM)
EnglishSpecifications

90 Chapter 7 OpenSPARC Design Verification Methodology
7.2.1 Architectural Model
To begin, the product specification or requirement is gathered by consultation
with potential customers and by compatibility with previously existing related
products. The specification is usually in a nonformal, English-like description.
From these specifications, a set of architectural specification is derived. This
specification, also known as Programmer Reference Manual (PRM), describes
the high-level functionality of the machine from a user’s perspective. A high-
level model that simulates the architecture (behavior) of the design is
developed in a high-level programming language such as C or C++ and is
called the Instruction-Set Simulator (ISS). This model includes only the
programmer-visible registers, simulates the effects of the execution of an
instruction sequence at high speeds, and serves as a golden reference model
during different stages of design verification. This model is only instruction
accurate and not clock-cycle accurate (does not implement an accurate timing
model). On OpenSPARC we deployed the internally developed ISS called
SPARC Architecture Model (SAM), which includes a core instruction-set
simulator, referred to as “Riesling.” Both of these tools have been open-
sourced and are described in detail in Chapter 10, System Simulation, Bringup,
and Verification.

The OpenSPARC design is composed of a number of functional units, each
with its own area of responsibilities. Many design trade-offs come into play
when defining what a unit is, how a unit is implemented, and what the
communication protocols at unit interfaces are. Breaking the design into units
is a necessary part of the design process and allows the formation of teams for
work on individual unit design and implementation in parallel with other
units. The high-level architectural model promotes exploration of possible unit
designs and configurations that eventually lead to a final solution.
Functionality of these individual units is described in detail in English, in a
document called a microarchitectural specification.

7.2.2 Unit-Level Models
With the microarchitectural specification (MAS) completed, the unit-level
interfaces are defined, and the functionality described in the RTL is defined in
Verilog language. Stand-alone testbench (SAT) environments are developed to
test these block-level designs. A SAT model comprises the device (or unit)
under test (DUT) and a testbench that applies stimulus and checks results.
This SAT-level environment is verified with software simulators. SAT
environments require an investment of engineering time and resources but are
cost effective because of economies of scale. SATs are the most cost-effective
way to find bugs.

7.2 Models 91
SAT environments contain moderately small amounts of RTL that are
observed with great detail by logic-behavior checkers. These environments are
small enough that the simulation speed is quite high. Testing starts with hand-
written diagnostics called directed tests. Basic functionality is tested first,
followed by complex behavior, and then what is called corner-case testing.
After this, pseudo-random numbers are often used to create viable stimuli in
combinations that directed coverage tests might not have considered.

For example, tests at Sun had more than 15 SAT-level environments focused
on testing specific functionality of blocks such as SPC, FGU, IFU, TLU, LSU,
SPU, PMU, MCU, PEU, TCU, NIU. These SAT environments sport a high
degree of controllability and observability required to quickly identify and fix
functional errors related to those blocks.

7.2.3 Full-Chip Model
When it is deemed that sufficient testing has been accomplished at unit-level
SAT environments, the units are put together to make up the full-chip
processor model. An environment much more elaborate than that in a SAT is
required to exercise the full-chip functionality. The full-chip model also
includes the main system memory, which is primarily a sparse memory model
for software simulation environments. The testbench provides the required
infrastructure to read in assembly language programs, execute them on the
full-chip model, and then check results in lock-step with the architectural
model, which serves as the golden reference. This model helps identify errors
due to interface assumptions, incorrect interpretation of specifications, and
issues related to functionality of the processor design.

Where possible, parts of the full design are left out of this model, including
clock trees, scan chains, hardware error protection, and detection logic. Also,
as in the SAT environments, large latch and memory arrays are implemented
behaviorally, with protocol monitors at their interfaces to be sure the arrays
are used correctly.

Although software-based simulators can simulate a model of this scale, they
do not provide enough simulation cycles in time to meet the schedule
deadlines a competitive product requires. High-speed simulation engines such
as accelerators, emulators, and FPGA prototyping (discussed in subsequent
sections) are deployed to increase simulation bandwidth on full-chip models.

92 Chapter 7 OpenSPARC Design Verification Methodology
7.2.4 SoC-Level Model
An OpenSPARC processor is truly a server-on-a-chip or system-on-a-chip
(SoC): It not only incorporates the multicore, multithreaded processor but also
integrates several I/Os such as Gigabit Ethernet and PCI-Express on the same
silicon die. This model also includes a number of Design For Test (DFT)-
related capabilities instrumented into silicon to facilitate manufacturing and
test of the part. Therefore, the SoC-level model incorporates all of these along
with an elaborate testbench that facilitates testing at this level. This model
ends up being unusually large, posing a challenge to all verification tools.

This level of modeling is simulated most cost effectively with hardware-based
simulators—accelerator/emulators, to achieve the bandwidth to meet
verification objectives defined for this model.

7.3 Verification Methods
A number of design verification methods have evolved to aid in the
accomplishment of defined verification objectives. All of these methods can
be broadly categorized as simulation, formal, and emulation verification
technologies and are described in subsequent sections.

A wide selection of tools is available from different EDA vendors. However,
verification tools have not been able to keep pace with the growing design
size and complexity of today’s processors. No one vendor can provide a
complete end-to-end tool suite that can meet the verification objectives of a
large SoC such as OpenSPARC. Instead, most users develop a number of
internal tools and utilities to fill the void. This is no different for Sun. For
effective verification of OpenSPARC SoC and to ensure first-silicon success,
state-of-the-art external and internal tools reinforced the three methods of
simulation, formal, and emulation verification.

FIGURE 7-3 shows a typical verification time line and the different classes of
verification tools that play a dominant role as the design progresses through
block, full-chip, system, and productization (silicon validation) phases.
Subsequent sections in this chapter describe these methods, related tools, and
the way they play a significant role in ensuring a high-quality silicon.

7.4 Simulation Verification 93
FIGURE 7-3 Typical Verification Time Line and Tools

7.4 Simulation Verification
Simulation verification is probably the oldest verification method but has
undergone minimal evolution as designs have rapidly grown in size and
complexity. It also continues to be the main workhorse for verification.
FIGURE 7-4 shows currently available simulation engines along with their
relative modeling effort required and their expected simulation performance.

FIGURE 7-4 RTL Simulation Engines, Modeling Effort, & Simulation Performance

Software Simulator

Block Level Full Chip System Post-Silicon

Verification Time Line Tape-out
Short, Directed Tests

Closely Coupled Golden Model Comparison Long, Random Tests
Self-Checking/Post-Simulation Analysis

Formal Verification DFT

Acceleration

Emulation

FPGA-Based Prototyping
Firmware/
Software Verification

Hardware Verification System-Level (HW/SW) Verification

Simulation
Acceleration

Emulation

FPGA Prototyping

M
od

el
in

g
Ef

fo
rt

Debug Productivity

Software Development Productivity

 1 10 100 1K 10K 100K 500K 1M 5M 10M 100M
Simulation Speed (Hz)

94 Chapter 7 OpenSPARC Design Verification Methodology
At Sun, varying combinations of these platforms are used to achieve specific
hardware and software verification objectives. It is evident that with an
increased modeling effort greater speed-ups can be obtained. However, the
debug complexity increases significantly—silicon with its limited visibility is
the hardest to debug. Simulation acceleration, while well suited to RTL
verification, lacks the performance to enable software development and test.

Simulation verification involves compiling the design under test and a
supporting testbench along with simulator software that can read and execute
this design description. The resulting program is then run on general-purpose
computers to produce the output results. The simulated output results are
compared to results derived from an architectural-level instruction-set
simulator (ISS) that serves as a golden reference model. Any deviations in the
simulated results are then debugged to identify offending design constructs.

A number of times the simulation environment contains the following: the
design under test; any behavioral models that can be substituted for large parts
of the OpenSPARC design that are not under test (this increases simulation
performance); design libraries; hardware assertion libraries; coverage
measurement instrumentation; and verification infrastructure like hardware
behavior monitors as well as the test stimuli (directed or random). These
components must be compiled together to build an executable simulation
model. These components are described in detail in following sections.

7.4.1 Testbench
Additional infrastructure or verification components are often required to
facilitate testing the device under test (DUT). The primary purpose of this
infrastructure that comprises the testbench is to stimulate the design and
capture results. Testbenches also facilitate comparison of output results with
expected results either in-sync with a simulation run or offline. Other
infrastructure, such as clock generation, monitors to watch and verify
transactions, or bus protocols, are also part of the testbench. FIGURE 7-5 shows
various components of a typical testbench.

7.4 Simulation Verification 95
FIGURE 7-5 Simple Testbench Part of Simulation Environment

Sometimes, depending on the functionality required, testbenches are more
complex and larger than the DUT itself. Therefore, complex testbenches are
relatively easier to design in higher-level languages than Verilog. Languages
such as Vera, Native Test Bench (NTB), System Verilog, and C are generally
popular in the industry for design of testbenches. For the OpenSPARC design,
Vera (from Synopsys) was extensively used in the simulation environment.
Since these testbench languages afford a high degree of flexibility in the
development of complex testing infrastructure, they are not synthesizable.

Full-chip software simulation testbenches can also include the use of an
architectural-level instruction-set simulator (ISS) (typically written in C or
C++, so it is very fast). The ISS runs the same program as the simulated
design. This ISS (OpenSPARC uses an in-house simulator named Riesling)
serves as a reference to compare all architecturally visible registers such as
program counters, and integer and floating point registers.

Building a testbench for emulation verification involves making it
synthesizable. The primary motivation for emulation verification is to run as
fast as possible. This prevents the inclusion or implementation of many of the
features available in simulation testbenches that cannot be synthesized and
placed in the emulation hardware.

Note For emulation verification, the testbenches must be
synthesizable. The fallback in this case is to use the
Verilog RTL to design simpler testbenches. This warrants
creation and maintenance of multiple testbenches to
support multiple models and verification environments.

Test
Generator Test

Golden
Reference

Model
RESULTS

Test Setup

Device
Under
Test

Device Setup

RESULTS

Monitor Comparator

TESTBENCH

Pass

Fail

96 Chapter 7 OpenSPARC Design Verification Methodology
Non-synthesizable testbenches can also be interfaced to emulation hardware in
co-simulation mode, but this approach slows down the emulator. Therefore,
this mode is used early on to boost debug productivity.

For the T2 SoC, a number of testbenches were designed and built to facilitate
target verification at different levels of design hierarchy. FIGURE 7-6 depicts a
hierarchy of testbenches developed.

FIGURE 7-6 Hierarchy of Testbenches on OpenSPARC T2

7.4.2 Assertions
Assertions are formal properties that describe design functionality or temporal
relationships in a concise, unambiguous way and that are machine executable.
Such formal semantics makes it easier to express low-level signal behaviors
such as interface protocols. Assertions can be embedded inline along with the
RTL of the design by designers or they can reside in separate files typically
written by verification engineers. Inline assertions enhance readability,
improve observability in the design, and help detect and diagnose design
issues efficiently.

Designers write assertions to capture critical assumptions and design
intentions during the implementation phase, whereas verification engineers
focus on functional checks on external interfaces based on the design
specifications. Assertions can also be leveraged as coverage metrics that in
combination with other forms of coverage such as code coverage (line, toggle,
branch, etc.) provide data about the effectiveness of verification performed on

S
PA

R
C

S
PA

R
C

S
PA

R
C

S
PA

R
C

M
C

U

S
PA

R
C

S
PA

R
C

S
PA

R
C

S
PA

R
C

Crossbar

L2B
ank

L2B
ank

L2B
ank

L2B
ank

L2B
ank

L2B
ank

L2B
ank

L2B
ank

M
C

U

M
C

U

M
C

U

SoC

NIU, PEU, MCO, SIU, DMU, …

7.4 Simulation Verification 97
the design. Thus, assertions not only contribute a mechanism to verify design
correctness but also afford a technique to simplify and ease debugging and a
measure of verification quality.

A number of assertion languages such as System Verilog Assertions (SVA),
Synopsys Vera - Open-Vera Assertions (OVA), and Mentor’s Zero-in exist.
For OpenSPARC T1 and T2 development, the Zero-in tool was benchmarked
and selected. (SVA support was not available in the majority of tools at that
time.) Zero-in was chosen for its simplistic, easy-to-learn techniques of
writing assertions as comment pragmas and for its large suite of tools to
leverage the value of assertions. A longer-term strategy was to migrate to use
of System Verilog Assertions.

A number of open source assertion libraries can be used to simplify the
writing of assertions. The OpenSPARC RTL source available for download
contains thousands of assertions. Assertions are embedded with the RTL code
and start with //0in or /*0in. The Vera code resides in testbench files that
have a suffix *.vr; this is true for both T1 and T2 packages.

While assertions are predominantly used in a simulation environment, they
also bring significant value in formal and emulation verification. In fact,
assertions can be first verified by formal verification even before the testbench
needed for simulation is ready. These assertions can also be reused from a
SAT model to an SoC model. Both emulation and formal tools require
synthesizable versions of the assertions.

7.4.3 Coverage
There is no generally accepted measure of verification coverage, which makes
it difficult to determine how much verification is enough. Several standard
approaches, however, attempt to measure verification coverage. Coverage
metrics are widely used to automatically record information and analyze it to
determine whether a particular test verified a specific feature. Coverage
metrics can quantify the verification plan accomplished so far and can
pinpoint areas that require additional verification effort.

This coupling between coverage collection and test generation, also known as
Coverage Driven Verification, is either manual or automatic. In this case, the
random stimulus generation or directed tests are tuned through coverage
measurements collected. These metrics also accord a measure of confidence
for the quality of verification.

Note It should be made clear that coverage statistic
instrumentation and collection come at a cost of
additional effort and slowdown in simulation speed.

98 Chapter 7 OpenSPARC Design Verification Methodology
Coverage metrics can be broadly classified as structural coverage and
functional coverage.

Structural coverage, also known as code coverage, provides insight into how
well the code (RTL, gate) of the design is stimulated by tests during
simulation. There are a number of different code coverage types based on
different entities of the design structure:
• Toggle coverage — Measures the number of times variables, signals, ports

and buses toggle.
• Statement coverage — Tracks different statements exercised in the design.
• Conditional (path or expression) coverage —Measures different paths of

conditional statements covered during simulation
• State (transition and sequence) coverage — Measures the number of

states visited of the total number of states encoded in a finite state machine.

The state space for structural coverage is well defined, and a number of
mature commercial solutions are therefore available in this space.

Functional coverage measures how well the operational features or functions
in the design are exercised during simulation. Unlike code coverage, which
requires minimal effort from the designer, functional coverage requires coding
additional coverage objects. These coverage objects specify functions of the
device and are derived from the functional specifications of the design. It is
important to emphasize that the quality of functional coverage depends on
completeness of the functional specifications and completeness of coverage
objects enumerated from them. No automated means to determine this
completeness is available. More often it is not possible to enumerate all
coverage objects, because specifications can be ambiguous. Functional objects
can be defined with System Verilog or vendor-specific languages such as Vera
or Zero-in.

Coverage collection mechanism are built into simulators. Coverage data can
be extracted and aggregated for analysis and reporting by simulator-specific
Application Programming Interfaces (APIs). These APIs are vendor specific
and so pose an issue of interfacing different tools. Availability of a common
set of standardized APIs will greatly help simplify ease of use.

7.4 Simulation Verification 99
7.4.4 Directed Testing
Directed tests that express a specific testing goal are manually written. Typical
directed tests consist of a set of test cases, each stimulating and possibly
checking a specific functional behavior. Directed testing is done in phases,
starting with basic testing, leading to testing of complex behaviors and corner-
case testing.

The checking of correct hardware behavior can sometimes be implemented as
part of the directed test, but typically much of the hardware function is
inaccessible to directed tests. Instead, other software, including possibly
assertions or monitors, observes the hardware cycle-by-cycle to check for
incorrect behavior.

Simple checks can be implemented with the use of assertions. However,
complex checking can be accomplished by the use of monitors in the
implementation of hardware behavior. Monitors can sometimes be
implemented as state machines that are much like the state machine under test.
Monitor state can then be used to check hardware state.

7.4.5 Random Test Generation
Computer designs are so complicated these days that it can be impossible for
humans to think through the entire testing space. At some point the people
who write directed tests run out of testing concepts to implement. This rarely
means that all the design problems have been found and fixed. Pseudo random
number generators can often push the hardware designs harder by stimulating
the logic under test in scenarios beyond the test developer’s imagination. This
testing technique depends heavily on monitors and assertions to detect
incorrect hardware behavior. Problems uncovered by random testing can
engender new concepts for increasing the directed test base.

Random test generation is first implemented in SAT unit-test environments, in
which the stimuli can be the most diverse and have the best checking. In the
full-chip environment, there are typically different random test generators that
focus on particular architectural features of a design. Some random test
generators focus on conditional branch testing, others focus on memory
coherency, yet others might focus on virtual memory address translations. For
OpenSPARC SoC, all of these test generators were implemented to effectively
verify these targeted functionalities.

Most of these generators run on the Solaris OS and produce random tests in
files. These files are then used in the simulation environment to test the
hardware. In other cases, particularly in SATs, the random numbers are

100 Chapter 7 OpenSPARC Design Verification Methodology
calculated and used to produce stimuli on the fly. Some random generators
can do both. One of Sun’s most powerful pre-silicon random testing
environments enables templatized random testing, which is a combination of
directed testing and random testing. This testing vehicle is flexible and can be
targeted at different simulation environments.

Compared with random testing, directed testing is highly quantifiable; the
number of directed tests is finite and the tests pass. With random testing, it
becomes hard to know when enough testing is done; coverage measurements
can aid in understanding if enough random testing has been done so that
suitable measures to augment verification can be taken.

7.4.6 Result Checking
Tests are run and output results are produced. This output response must be
compared with expected data to determine if the test passed or failed, as
depicted in FIGURE 7-3 on page 93. A number of mechanisms accomplish the
comparison. For directed testing, the results are embedded in the test or
complex monitors are implemented to monitor hardware behavior as the test is
run. A number of times, checking objects are spawned along with “data”
objects that check results at the output and are terminated on successful
checks.

In a system-level environment, one common strategy involves comparison
with the output from a golden reference model. The golden reference model
used in the full-chip simulation environment is an architectural-level,
multithreaded SPARC simulator developed in a high-level programming
language such as C. This is the Riesling SPARC Architectural Simulator,
available as part of the OpenSPARC download package. This architectural
model, also referred to as Instruction-Set Simulator (ISS), compares the full
architectural state after every instruction execution. The model provides
instruction-level accuracy, but since it does not model microarchitecture, it is
not cycle accurate. It does enable event synchronization.

The reference model can be closely coupled with the testbench and simulator
in a cosimulation environment. In this configuration, the results are compared
after execution of every instruction and simulation stops at the first failure.
The data logged from this simulation forms the initial basis of failure triage.

Self-checking tests embed expected result data in the tests and are compared
during test execution. Some test generators can “boot” (load themselves on
the CPU under test), generate tests, run them, and check results.

7.5 Formal Verification 101
Simulation environments in which self-checking tests either lack strict data
checking or cannot cosimulate with the reference model, the simulation results
are logged into testbench memory, which is dumped to a file and analyzed
after simulation completes. This is known as the post-simulation analysis
method.

7.5 Formal Verification
Formal verification is the use of mathematical techniques to gain 100 percent
accuracy and coverage in checking properties of functional models and in
comparing two different models. Formal methods have long been advertised
as a means to produce provably correct implementations. Formal verification
is nearing maturity to a point where it is much easier to adopt. The notion of
a Ph.D. degree being required in order for the formal tools to be deployed in
verification is long gone.

Formal tools also enhance productivity by integrating and leveraging
simulation. They promise to find tough corner-case functional issues while
providing an exhaustive proof earlier in design phase.

Formal tools don’t require a supporting testbench or test vectors to verify
design, which means they can be deployed much earlier in the design phase.
As soon as block-level RTL is ready, formal tools can be used to conform
behavior to specifications. Unfortunately, at present, formal verification
methodologies cannot prove correctness of the entire OpenSPARC chip. The
possible combinations of the state of all the memory elements in the design
make such proof incalculable.

But while commercial tools have come a long way, they still raise capacity
and performance concerns. So a generic awareness of where formal functional
verification applies is useful. Unlike other tools, it cannot be applied to all
blocks or to a full-chip model. Therefore, understanding the characteristics of
areas with high formal applicability (such as blocks, portions, or
functionalities) will yield the greatest return on the time and effort invested.

Formal tools efficiently verify a protocol, find deadlock or livelock
conditions, make sure that an arbiter never misses, ensure that priorities aren’t
violated, or make sure that a FIFO is never driven when full. They are the
only automated ways to conclusively establish the absence of bugs in design
or protocol. Design equivalency comparison and property checking are the
main applications of formal techniques.

102 Chapter 7 OpenSPARC Design Verification Methodology
7.5.1 Design Comparison
With so many levels of design abstractions created during design
development, determining functional equivalence is fundamental to the entire
verification process. For example, RTL and gate-level models of the design
must be checked against each other for functional equivalence. Formal
equivalency tools are now widely used, for example,
• To compare RTL and gate-level netlists after synthesis
• To compare two gate-level designs after technology mapping or after

manual or automated optimization
• To compare designs before and after scan insertion
• To check the correctness of EDA tools such as synthesis and language

translators

Functional equivalency tools can be classified as logic checking or sequential
design comparison. Logical equivalency can only be established when two
designs have the same storage elements. The corresponding inputs to the
storage elements and outputs of the design are compared in both designs. Both
the RTL and gate models have sequential (FF/latch) elements, and all the logic
that fans into a point of comparison is referred to as a fan-in cone or cone-of-
logic. A correspondence between the storage elements of the design is either
provided by the user or inferred by the tool. Then for each corresponding pair
of storage elements and primary outputs, the respective logic functions are
compared. If the comparison is proved to be equivalent, then the designs will
behave the same.

A presupposition for logic checking is that the storage elements of the circuit
are in the same positions of both the designs, or in other words, that the circuit
state is encoded the same way. This may not always be the case, as, for
example, with retimed logic. The same circuit state encoding is achieved by
partitioning of the design such that many sequentially equivalent points in the
design could be used to compare sequential circuits. Property checking tools
are helpful in this area.

7.5.2 Property, or Model, Checking
Property checking, also referred to as model checking, proves whether the
behavior of a design conforms to the specifications, which are expressed as a
set of property descriptions. Tools increasingly support the standard languages
such as System Verilog Assertions (SVA), which can also be leveraged in
simulation.

7.5 Formal Verification 103
There are two main approaches to property checking: Theorem Proving and
Model Checking. The Theorem Proving approach lets users state theorems in
a general way. A highly trained user then attempts to synthesize a proof-of-
theorem by using a combination of decision procedures and heuristics. This
approach is strictly limited to verification of custom specifications.

On the other hand, the Model Checking approach, which is more popular, is
based on moderately expressible logic dealing with finite state machines and
is reasonably automated. Traditionally, most model checkers use a static
formal analysis approach. Static property-checking tools give exhaustive
proofs; they prove that a specified property is either valid or invalid. They
sometimes don’t reach a conclusion in a reasonable time and end up with an
incomplete proof, in which case the user intervenes to modify the property,
increase the constraints, or repartition the design. Static checking tools are
generally severely constrained by capacity and performance.

The advent of a new class of model-checking tools that employ static analysis
in conjunction with simulation (also called dynamic or hybrid engines) has
broadened the adoption of property-checking tools. To use these tools,
engineers write properties expressed as assertions such as SVA. These
dynamic formal tools generally don’t provide exhaustive proofs but greatly
improve overall efficiency in bug hunting. Users predominantly use this tool
to track down bugs and to augment coverage by reaching state space where
simulation alone fails.

7.5.3 Symbolic Simulation
Symbolic simulation (also called symbolic trajectory evaluation) allows
simulation with three types of values: Boolean values (logic 0 or logic 1),
symbolic variables (like variables in an algebraic formula), and X values.
Such values are initially assigned to internal storage nodes of a circuit. Then,
for a finite number of clock cycles, symbolic inputs are introduced into the
circuit. Instead of just logic 0, logic 1, X being on a node (as in a traditional
simulator), a formula is computed for the node when the circuit stabilizes.
Such nodes can then be checked for correctness.

A distinguishable strength of this approach is that it does not require the
design to be synthesizable; it can therefore be used with switch-level models
as with gates or the behavioral RTL model. This technique has effectively
been used to verify the correctness of memory arrays.

104 Chapter 7 OpenSPARC Design Verification Methodology
7.6 Emulation Verification
A system-level design encompassing the RTL design of the processor,
memory sub-system, system components, and a supporting testbench results in
a massively large design that poses a limitation to all tools, particularly
simulation and formal verification. For example, the system-level model of
OpenSPARC T1 exceeded 35M gates. Traditional Verilog software simulators
come to a crawl (down to under 10 simulated cycles per second), and for
formal verification tools, the design state-space explosion prevents completion
of formal proofs. FIGURE 7-7 depicts a simplified bug-find rate graph.

FIGURE 7-7 Simplified Bug-Find Rate and Bug Depth Relative to Design Maturity

Early on in the design phase as functionally is added, the number of errors
introduced into the design rises. But since these errors can easily be found
with a short simulation, they are quickly fixed. As the design matures,
however, a significantly higher number of cycles must be run in order to find
the few remaining complex corner-case errors. There is an exponential
increase in bug depth. At this time, bug-finding is limited because design
errors cannot be found easily. Emulation technology steps in here to facilitate
prototyping design to produce virtual silicon. This virtual silicon, though
much slower than real silicon, runs at least 10,000 times faster than a design
in a software simulator.

Emulation facilitates early system integration even before the design is taped
out, thereby allowing concurrent hardware and software development and
testing. Traditionally, designers must wait for silicon before they can integrate

0

500

450

400

350

300

200

150

100

50

0 3 6 9 12 15 18 21 24 27 30 33 36
Time (months)

Debug LimitedDebug Limited

Bug-Find Limited

Bu
g R

ate
 (B

ug
s/M

on
th)

Bu
g D

ep
th

(Si
mu

lat
ion

 C
yc

les
 re

q’d
)

Bug Rate

1 Mc

100 Kc

10 Mc

1 Bc

10 Bc

10 Kc

100 Mc

100 Bc

Debug Limited

Bug Depth

TO

7.6 Emulation Verification 105
the system (hardware-software), as shown in FIGURE 7-8. High-speed
verification bandwidth made available by prototyping the design with
emulation enables concurrent engineering, as shown in FIGURE 7-8. Concurrent
engineering results in significant savings in reduced design development time
by integrating and testing hardware and software early and in cost savings by
reducing the number of silicon respins required before the final product is
shipped.

FIGURE 7-8 Concurrent Engineering Enabled by Design Prototyping With
Emulation
Top: Traditional Sequential Verification Flow. Bottom: Concurrent
Verification Flow

Acceleration and emulation are similar in concept and therefore, the terms are
often used interchangeably. However, the two are subtly different. Emulation
provides an ICE (in-circuit emulation) interface to a target system, whereas
acceleration does not and functions only as a high-speed simulator. An
accelerator also allows close coupling of a software simulation engine to the
hardware platform, so modules that are not synthesizable can be placed and
simulated outside the hardware box (this, of course, causes a slowdown). This
use mode facilitates initial model bringup and also aids design debug.

These days, however, hardware platforms are becoming more versatile and
function as both accelerator and emulator. This is especially useful because
one platform can meet varying verification needs as the design progresses. In
this chapter, emulation is used to mean acceleration as well. There are various
applications of the hardware acceleration or emulation technology, but the
primary application is to prevent functional bug escapes in design.

Start of Design Cycle Tape-out

Design Mature

Chip
Fab

Chip
FabChip Design and Verification

Chip Design and Verification

Hardware
Integration

Software
Integration

Final HW/SW
Integration

Revenue
Release

Revenue
Release

Multiple Chip Respins

System ready before chip arrives

Virtual Prototype

Software
Integration

Hardware
Integration

106 Chapter 7 OpenSPARC Design Verification Methodology
At Sun, as previously noted, the design is tested with both directed and
random tests. Hardware emulation for test cases, such as RAS (reliability,
availability, and serviceability), I/O testing, on-chip debug verification, DFT
(design for test), scan testing, reset testing, and gate-level simulation, adds
another layer of confidence about the design. To facilitate early system
integration and software testing, Hypervisor, Open Boot PROM (OBP), and
even Solaris OS are booted even before the design tapes out. These software
applications are good candidates to ensure that performance benchmarks are
met and that user applications run on the virtual silicon. Hardware
acceleration technology also aids post-silicon bring-up, rapid debug analysis,
and fix validation. Thus, emulation technology plays a key role in ensuring
functional first silicon success, thereby greatly reducing number of silicon
respins.

The adoption of an emulation-based technology definitely involves a few
changes in the verification flow—changes in RTL design, testbench design,
assertion strategy, monitor implementation, model release, regression, and
debug processes. It pays to make the team aware of requirements up front so
that everything intended for this platform is emulation friendly.

Emulation requires that the model to be emulated in the hardware platform
must be synthesizable. A typical processor design has big custom-design
blocks in addition to standard synthesizable blocks. The custom blocks are
usually modeled as behavioral RTL in a standard simulation environment. An
equivalent synthesizable RTL model must be developed for these custom
blocks and for all the custom memory in the design.

The testbench, which is never written to be synthesized in a standard
simulation environment, presents one of the biggest challenges in developing
a synthesizable equivalent. In most cases, the end result is a simplified
testbench that is made synthesizable and that is targeted for the emulation
environment.

Note: The difference between accelerators and emulators is
this: Accelerators are simply high-speed simulators,
providing a close-coupled software-simulator engine
along with a hardware-simulation engine. Thus, non-
synthesizable modules or reference models can simulate
in sync with the hardware design. Emulators, on the other
hand, require design and related verification
infrastructure to be fully synthesizable. Emulators also
provide an interface to in-circuit-emulation in real-world
target systems.

7.6 Emulation Verification 107
Some acceleration environments allow for non-synthesizable components
(design blocks or testbench) to be simulated in a closely coupled software
simulator that works in tandem with the hardware platform. Obviously, in this
case, the slowest component limits the speed (Amdahl’s Law), usually in the
range of 5 to 100 times faster, relative to a software simulator.

7.6.1 Emulation Platforms
A number of emulation platforms in the marketplace enable virtual
prototyping of design. FIGURE 7-9 shows some of them along with their
relative performance data.

FIGURE 7-9 Simulation Platforms

Also shown in FIGURE 7-9 is the relative time required to boot a typical
operating system such as Solaris (assuming ~8 billion simulation cycles are
required to boot Solaris). This speed gain is at a cost of lost flexibility in the
RTL, testbench, and verification infrastructure (monitors, assertions,
coverage) constructs supported in these platforms.

Many of the platforms illustrated in the figure are expensive and may not be a
viable prototyping option for all projects. Sometimes when the RTL model is
not available or when a high degree of accuracy afforded by the hardware
model is not required, hardware functionality can be modeled with high-level
languages such as C, System C, or ESL (Electronic System Level). These
hardware models can be cosimulated with rest of the hardware design.
TABLE 7-2 shows the trade-off analysis with respect to mainstream RTL
prototyping alternatives such as modeling in C, emulation, and FPGA-based
prototyping.

Crawl Walk Run Drive Fly

VCS Tharas Xtreme2 Palladium FPGA prototyping

15.5 years 2.7 years 1 day 15 hrs 5 hrs 19 mins
Solaris Boot Time

RTL/Testbench Modeling Construct Support

108 Chapter 7 OpenSPARC Design Verification Methodology
The marketplace reveals two distinct categories of high-performance
acceleration/emulation platforms. The first category is based on field-
programmable gate array (FPGA) technology. As the name suggests, FPGAs
are used as a medium to accelerate model simulation, and the design under
test needs to be synthesized and mapped onto FPGAs before simulation. The
simulation performance is limited primarily by the FPGA speed. The other
category is processor-based technology, by which hundreds and thousands of
custom mini-processors concurrently simulate the model. At Sun, both
platforms are used for different projects. Because of major consolidations,
only a few companies, namely, Cadence, Mentor, and Eve, remain to provide
acceleration and emulation hardware in EDA.

7.6.2 Emulation Deployment
Emulation can begin as early as the RTL is available, though it pays to wait
until the model is mature enough to run long simulation cycles without too
many quick failure interruptions.

As the full-chip model matures, acceleration is begun in cosimulation mode.
In this mode, the synthesizable part of the RTL model is mapped to the
emulation platform, while the non-synthesizable components, such as the
behavioral blocks and the testbench, reside in the software simulator that

TABLE 7-2 Hardware and Software Cosimulation Options

Abstraction
in C

FPGA
Prototyping

Hardware
Emulation

RTL verification No Yes Yes

Debugging features Good Limited Good

Bringup effort Days Weeks Days

Model turnaround Hours Days Hours

Timing concept No Yes Yes

Modeling accuracy Low High High

Runtime speed High High Low

Capacity Unlimited Low High

Real target system No Yes Yes

Cost Low Medium Very High

7.6 Emulation Verification 109
works in tandem with the hardware engine. The software simulator is also
coupled to the ISS so that cycle-by-cycle result checking is performed as the
test is run.

Once the model matures and developers are no longer debug limited for the
shorter tests, a fully synthesizable model (including the testbench) is targeted
to the emulation platform. For highest speed-up, also called targetless
emulation, everything is placed in the hardware box. Here, long random tests
generated offline are run. These tests have some form of built-in result
checking or are analyzed post-simulation for failures.

Once the bug depth (cycles-to-failure) goes up drastically, random SPARC
instruction-based generators that self-boot on the emulator generate different
random perturbations, run them, and finally self-check the results. These types
of generators run literally trillions of simulation cycles, targeting the deep
corner-case and its hard-to-find bugs. The majority of hardware verification
applications are deployed in this targetless emulation mode.

In-Circuit-Emulation (ICE) mode is also used to successfully debug and bring
up new motherboards even before silicon is received from the foundry. In this
mode, the entire design and key components are modeled in the emulation
box, which is then interfaced to an existing motherboard.

The speed gap between the fast side on the motherboard (or a target system)
and the slow side, the emulator, must be addressed, so the ICE setup described
above can be exploited to verify early firmware and the software stack in a
completely new system motherboard. This emulator can also be interfaced to
the parallel port of a workstation to run Perl scripts to manipulate the JTAG
interface on the emulator for scan verification and other DFT-style verification
tasks.

It is no surprise that emulation platforms are expensive. Therefore, to be able
to successfully deploy this technology, one must plan early to ensure its
success. Here are a few factors to which we attribute our successful emulation
deployment on OpenSPARC:
• Set up the emulation environment early. Create awareness of technology

benefits and limitations. Scope capacity and usage modes. Minimize the
learning curve by integrating into an existing simulation flow. Not
everything can be run on the emulator; therefore, prioritize and plan usage.

• Minimize modeling issues. Array/memory models need to be abstracted to
a higher level. Eliminate nonfunctional models (for example, PLL,
SerDes); abstract low-level circuit details to optimize for capacity and
performance.

110 Chapter 7 OpenSPARC Design Verification Methodology
• Reduce the time-to-model build. Emulation models have to stay in sync
with the mainstream model to be of value. Enable emulation-based RTL
checks for release enforcement.

• Simplify debugging. Implement a critical set of debug monitors. Invest in
debugging tools to improve debugging productivity in the project cycle.

• Influence paradigm change. Don’t use it as just another simulator.
Explore innovative uses of emulation models to enable concurrent
verification of software and hardware. Deploy the emulation platform to
the team at large, rather than to a selective few experts.

7.7 Debugging
Debugging is the process of identifying the root cause of a test failure. With
verification being the long-pole in the process of designing and delivering
OpenSPARC, within verification, debugging failures is the long pole.
Debugging is one of the most manually intensive processes in design
development, and not everyone is skilled in debugging a test from start to
finish. Usually, a verification team is more debug limited than bug-find
limited.

An error in the specification, RTL design, module interface, testbench,
assertions, monitors, test, other simulation artifacts and supporting tools in the
simulation environment can show up as a test failure. In a software-based
simulation environment, all wires, state elements (FF, latches) and memories
in design can be seen. Furthermore, signal trace mechanisms can track the
state of wires over the entire simulation, so signals can be viewed and
analyzed post-simulation, as with a logic analyzer. Even with powerful tracing
tools, the human ability to absorb enough information about the design and
state changes that uncover the bug will limit how quickly the root cause of
these bugs can be determined.

System-level debugging in general presents a big challenge. Many variables
related to hardware and software that play a role in the system-level
verification can go wrong. Couple this with the fact that billions of cycles
must be simulated to expose deep corner-case functional issues, and the
reasons for the complexity of system-level debugging become obvious. As the
design matures, the bug depth (which increases with design complexity)
exponentially increases. Bug depth is typically a measure of simulation cycles
required to set up and saturate design state and to expose deep corner-case
bugs.

7.7 Debugging 111
Debugging presents an even greater challenge in emulation. In part, this
challenge stems from the lack of all monitors, from assertions, and from
limited time on the emulation platform. Not all monitors or assertions can be
ported from the simulation environment, either because emulation capacity is
constrained or because non-synthesizable constructs are used in the simulation
environment. Since many tests take several days and fail after multimillion
cycles in the simulation, rerunning them is not an option. Also, generating
waveforms, a primary debugging aid, would be a time-consuming proposition
since most emulators greatly slow down during waveform generation.
Emulation users must change their perspective and adapt to innovative
techniques that improve debug efficiency.

A select class of assertions and critical debug monitors, also known as
heartbeat monitors, can either be ported from simulation or specially crafted
for the emulation environment. A limited set of $display commands should
be used to log model activity in the emulation environment, since too many of
these commands would simply slow the emulator. Instead of using $display
to print often, some users adapt the monitors to store relevant information in a
local memory and periodically dump the memory.

A debug engineer starts from a simulation log file to identify a large time
window of failure. With the waveforms on-demand feature (there is no need to
rerun the failing test), the simulation can quickly be restored to the nearest
available checkpoint and then run to a specified time to generate waveforms
for preidentified probe signals. This process is 100 times faster than
generating full-hierarchical waveforms.

The waveforms for probe signal are analyzed to identify a more narrow time
window for which a full-hierarchical signal waveform of design is obtained by
means of a process similar to probe-waveform generation. These waveforms
are then analyzed to pinpoint the failing RTL constructs. Expert emulation
users also frequently write a set of complex logic-analyzer triggers to stop the
emulation at the point of failure for interactive debugging.

All in all, debugging and uncovering design flaws require thorough overall
understanding of the complete design and the ability to visualize how the
design state changes over time.

One of the hardest debugging problems is attributing the symptoms of a
failure to software or to hardware. In a system-level environment when the
focus is a software issue, such as a Solaris OS boot debugging, debug
information from the emulator must be relied on and then used in conjunction
with the ISS to analyze the failure. Software debugging tools such as gdb or
dbx are also used to debug software code. Close collaboration across cross-
functional groups is the key to speedy analysis and resolution of a test failure.

112 Chapter 7 OpenSPARC Design Verification Methodology
7.8 Post-Silicon Verification
In general, considerable time and resources are spent during the pre-silicon
verification phase to minimize functional issues before first silicon. For
OpenSPARC T2, simulation, formal, and emulation technologies coupled with
solid methodology covered all bases, ensuring the functional success of first
silicon.

Nevertheless, a robust post-silicon verification methodology is critical to
speeding up the time-to-ramp phase to prevent loss of product revenue. At
Sun, not only are major post-silicon issues preempted before design tape-out,
but planning and preparation deal with silicon issues that revolve around
limited debug visibility, bug reproducibility, and bug-fix validation.

Reducing the time and complexity of verification during post-silicon
verification can be managed by pulling in numerous silicon bring-up and
system software and hardware verification tasks, made feasible by rapid
prototyping with hardware emulation. Hardware emulation can reproduce
silicon failures and can help debug them with higher productivity by
providing high visibility and ease of waveform generation. Hardware
emulation can also provide much-needed bandwidth (typically where
traditional simulation runs out of gas) to run billions of cycles in a matter of
hours to quickly boost confidence in the bug-fix validation. It also serves as a
training vehicle for silicon bring-up, resulting in a greatly minimized post-
silicon validation phase.

Formal verification has been used as one of the means to determine the root
cause of silicon failure due to functional error. Since the RTL fix must be
verified, it is vital that a failure observed in silicon test can effectively be
reproduced and recreated in an RTL environment. One way of quickly
recreating the RTL bug is to write the failure scenario in terms of property and
use formal tools to generate traces that lead to the failure. Random test
generators are important both in pre-silicon and post-silicon testing of chips.
A variety of random test generators are used extensively in both areas for the
verification of SPARC microprocessors and microprocessor-based systems.
Fault isolation is a crucial capability built into some of these test generators
from the ground up.

Once silicon arrives, the verification void, resulting from the range of tools
used during pre-silicon verification, can be filled. Real-world applications can
now be run on the actual server system. Reduced visibility, generally limited

7.8 Post-Silicon Verification 113
to latches and architectural state, poses a significant debugging challenge.
Repeatability of failures is also an issue. Debugging of these complex failures
involves considerable time and detailed system know-how.

7.8.1 Silicon Validation
After the chip manufacturer returns the silicon, tests are run to see if the
silicon works. First the chip testers that use scan and built-in self-test (BIST)
must confirm that the chip passes the tests. Low-level capabilities of the chip
are verified here, including the various kinds of resets, scan chains, BISTs,
JTAG access to the chip, and clocking.

Once things look good on the tester, chips are put into computer systems. The
first software that runs on the new systems is power-on self-test (POST).
POST performs cursory, as well as detailed, testing of the chip. With the use
of functional and so-called diagnostic access, the integer registers, floating-
point registers, caches, Translation Lookaside Buffers (TLBs), and other
assorted arrays should work correctly. Diagnostic access provides ways to
examine hardware state directly in order to explicitly test hardware function.
For example, from a purely application-programming level, the fact that the
system has instruction, data, and level-2 caches is completely invisible to
software. Attempts to explore cache function with very specific code and
hardware timing mechanisms can be made, but application-level software
cannot directly examine cache state.

Using diagnostic accesses, which require special software permissions to use,
POST can read cache tag valids, tags, data (or instructions), and any parity or
ECC the cache provides.

After POST runs successfully, another layer of software, called OpenBoot, is
run. OpenBoot abstracts hardware-specific implementations of memory
configuration, I/O device configuration, and other hardware system resources
an operating system would need to know about. The purpose of this level of
abstraction is to make widely different computer system implementations look
the same from the operating system perspective. This technique limits the
changes needed when moving Solaris OS from system to system.

Between POST and OpenBoot, Hypervisor (HV) software is started. HV is
code that runs at the highest permission level (hyperprivilege) the hardware
allows. The purpose of the Hypervisor is to allow an abstraction layer of
hardware behavior to again buffer Solaris OS from specific system
configurations. Unlike OpenBoot though, the Hypervisor software intercepts

114 Chapter 7 OpenSPARC Design Verification Methodology
real-time hardware events and maps them from the hardware implementation
to an interface that Solaris OS knows about and that is common on all Sun
computer systems.

One example of this kind of abstraction is how the system handles parity or
ECC errors. The implementation of a specific hardware-state-protection
mechanism, such as an I-cache having parity protection, is quite likely
different on different Sun processor designs. When hardware state errors are
detected, Hypervisor code takes a trap and executes code to examine and,
where possible, recover from the error. Hypervisor then converts this error to
an error event that it delivers to Solaris OS. The error event and its
communication mechanism are the same on all Sun systems. Like OpenBoot,
the Hypervisor code manages all hardware implementation differences on
different systems through a common interface for Solaris OS.

OpenBoot and Hypervisor exist to make Solaris OS easier to move onto new
Sun computer system designs. This also has the positive affect of minimizing
the need for engineers that are adept at both software and hardware. Once
Hypervisor and OpenBoot run, Solaris or verification software can be booted
and run on the system.

Given all the verification done in the pre-silicon phase, it might be expected
that all the system bugs had been found in that phase. While few test escapes
occur on first silicon, bugs still exist in the chips and must be exposed,
analyzed, and fixed in this post-silicon system validation phase.

Even if trillions of verification cycles were run over years of pre-silicon
verification effort, this compares to only minutes of real-time testing on an
actual server machine. Much more verification has to be performed to achieve
high-quality products. Therefore, a number of systems could be assembled
with the new chips and made available for real-time testing. These real-server
hardware platforms would open up testing opportunities and allow new testing
methods to a degree that is not possible in pre-silicon by utilizing simulation
platforms alone.

As described earlier, at Sun extensive testing of POST, OpenBoot, Hypervisor,
and Solaris OS was done in pre-silicon, but most of this verification was done
on abstracted versions of the OpenSPARC processor. These four levels of
software were run, and Solaris OS successfully booted on emulators. But even
the emulation model is an abstraction of the final chip, in that it assumes
perfectly functioning transistors providing perfectly functioning digital
function.

7.8 Post-Silicon Verification 115
A physical design team at Sun mapped the well-tested logical design to
transistors and metal interconnect to produce the real chip implementation.
Much work was done to confirm that the physical representation implemented
the logical design, yet there can be unknown electrical side effects in the
physical design that show up only when the chip returns from fabrication.

Until software that can run for long periods of time can be booted, no one can
be really sure that the chip works. Booting Solaris OS and running
applications, however, is one way to confirm that the chip works. Also, Sun’s
verification software runs as applications under Solaris OS to confirm that the
chip functions correctly. Also, like POST, OpenBoot, and Hypervisor, some
Sun tests run directly on the hardware (rather than as an application under
Solaris OS). These tests generally use random numbers to invoke various
architectural features for testing, as shown in FIGURE 7-10, which describes the
silicon validation platform used for the OpenSPARC SoC.

FIGURE 7-10 Silicon Validation Platform for OpenSPARC SoC

Solaris, its applications and tests, combined with tests that run without Solaris
OS must be run for months to be sure that new computer systems are of the
high quality that customers demand. When pre-silicon test escapes are found,
the root cause of the escape must be found and determination as to whether it
is fixable or whether it can be worked around must be made. If the root cause
can be remedied, then the fix is implemented and tested in pre-silicon. Proper
function of the fix is checked by formal methods, as well as by the classic
simulation-based methods, with new tests devised to uncover the original bug.

sun4v Partition

sun4v
Interface

Programming APIs

UltraSPARC Architecture
+ Implementation Supple-

Hypervisor Firmware

SPARC Hardware

Test Generator 2

Test Generator 1
User
App

User
App

Solaris OS
OBP

116 Chapter 7 OpenSPARC Design Verification Methodology
7.8.2 Silicon Debugging
Post-silicon debugging is needed when the combination of software and
hardware does not behave correctly. In pre-silicon simulation, every wire in
the system can be queried at any time during the simulation to analyze
problems and to determine their root cause.

This perfect visibility is not available post-silicon. Visibility into the hardware
state is extremely limited in post-silicon debugging. Mechanisms can stop
clocks and scan out the state of the chip, but in reality these mechanisms are
difficult to use in the search for a problem’s root cause. This biggest single
issue is that unlike simulators, debuggers cannot stop time. Often this means
that by the time software recognizes a problem, the specific state of the
machine that uncovers the problem is long gone.

Often the first sign of a potential problem is visible only through the side
affects of the bug. Rarely is the problem simple enough for even an expert to
know directly what is wrong with the hardware. Some hardware support
implemented in the chip can aid debugging. One primary mechanism is access
through JTAG. JTAG access allow querying of specific hardware registers. It
is not cost effective to have all hardware state accessible through JTAG, so
only registers needed for system configuration, reset, error detection enabling,
and error detection reporting are typically visible through JTAG.

Another debugging mechanism is a logic analyzer interface. Through
experience, developers probably know what units in the design can be
problematic. The interfaces of these units can be selected and routed to the
logic analyzer interface. If a problem is encountered and the units of interest
can be observed through the logic analyzer interface, then the developers are
in luck.

The most ubiquitous debugging mechanism is software itself. Typically,
software is affected by some misunderstanding of how the hardware works
and how the software is supposed to use it. Making changes to the software to
record more information in and around the issue and making the results
visible to the human debugger can resolve most of the issues.

The reality is that most of the time, issues are software problems, not
hardware problems. The reason is that often the documentation that software
coders use does not adequately describe the hardware functions. Analysis
should be done to verify how the hardware is designed to work and how
software should use it. The documentation should then be updated to express
this new understanding. At the same time, software must be modified to work
properly with the hardware design.

7.8 Post-Silicon Verification 117
A much less frequent case is that a hardware problem really does exist.
Whenever possible, software must work around hardware problems.
Sometimes the workarounds are simple, but often they are not.

If a hardware design issue is one that could be visible to the customer and
software cannot work around it, then a hardware fix must be designed and
verified and new chips made. This process can take a long time compared to
software changes and software workarounds.

One of the biggest factors contributing to the time required for post-silicon
verification is how long it takes to identify a bug and to understand the root
cause. Whenever possible, software should be designed to help recreate the
problems so that the issue can be resolved more quickly. Any design issues
discovered this late in the product development cycle can greatly impact
schedules and revenue. A reverse example is the OpenSPARC designs; they
were well engineered and effectively verified before design tape-out, so
silicon issues were minimized, resulting in faster time-to-market for the Sun
Fire servers.

7.8.3 Silicon Bug-Fix Verification
Once a hardware design flaw is analyzed and understood, potential fixes must
be explored. In some cases, fixes can be implemented with only a change to
the way in which the transistors are wired together. When there is spare area
on a chip, unused transistors often fill the spare space. Sometimes these spare
transistors, combined with new metal interconnects, can be used to fix a
problem. Fixes of this nature are one of the least expensive ways to fix the
problem.

When “metal only” fixes are not achievable, the expense of the fix increases
dramatically. Nonmetal fixes require new physical layout of the transistors on
the chip and new metal interconnects to hook them together. Furthermore, the
chip foundry must create new silicon wafers with the new transistor layouts,
which is a costly endeavor.

No matter what the form of the final fix is, a number of precautions must be
taken before the fix is implemented. First it must be confirmed that the fix
actually solves the root problem, and that is not always easy to determine. The
confirmation comes in at least two forms: detailed formal verification analysis
of the problem area; and proof by the fix that it works. Simulation of the fix
against newly written tests can also verify the fix. Precautions must be taken
to ensure that fix does not have a functional or performance impact on the
overall design.

118 Chapter 7 OpenSPARC Design Verification Methodology
Once a fix is chosen and implemented in the logical design, a full regression
of simulation is run to confirm the fix and its impacts on the system.
Additionally, high-speed emulation of billions of verification cycles must be
run in a matter of hours to establish the necessary confidence. At the same
time, the physical design team should implement the fix so that it can be
communicated to the chip manufacturer.

Often these fixes are held by the organization so that potential problems and
their fixes can be grouped into one new chip revision. Once the schedule or
problem severity mandates that a new chip version be made, the new chip
specification is communicated to the chip manufacturer. When the new chip
version is ready, the chips are shipped to the organization, and post-silicon
verification starts again.

When post-silicon verification is complete, the system is ready to be
manufactured and sold to customers.

7.9 Summary
The revolutionary OpenSPARC T1 and T2 processors implement the
industry’s most aggressive chip-level multithreading (CMT) to exploit the
processor-memory speed gap in order to provide world-class performance.
Traditional verification methodologies are not enough to meet the daunting
verification complexity of these new OpenSPARC SoCs. Implementation of a
sound verification strategy with a well-orchestrated suite of state-of-art
commercial and internal tools are critical to ensure verification success of
these designs.

It is important that the primary emphasis should be on detecting and fixing the
majority of functional verification issues, thus preempting as many post-
silicon issues as possible before design tape-out. Since it is nearly impossible
to exhaustively verify, the key is to root out enough bugs in the first level of
pre-silicon verification so as to enhance the value of first silicon and enable a
progressive second level of silicon validation in an actual target system
environment. A secondary emphasis should be on preparing to deal with
limited visibility and the debugging challenges of issues found in silicon. This
is key to reducing the time-to-ramp and the general release of the servers in
which these SoCs will function.

Because of finite resources and time available to ensure the highest-quality
products, focus must be on verification efficiency throughout the design
phase. This is even more important because verification tools have not kept

7.9 Summary 119
pace with the exponential increase in design size and complexity. Sheer size
and the complexity of these SoCs push the capacity and performance envelope
on these tools.

Simulation, formal verification, and emulation technologies play a major role.
Use of assertions improves debugging productivity, while use of coverage
objects helps improve overall verification efficiency. Both simulation and
formal tools play a major role at the block and full-chip level, but they simply
run out of gas during system integration, a critical phase in the product
development. Here, emulation technology can generate a virtual prototype that
provides the much-needed simulation bandwidth to accomplish such cycle-
intensive tasks as software and hardware integration. Emulation technology
can also perform many tasks usually possible only after the arrival of silicon.
Once silicon arrives, it is deployed in numerous systems to run real-world
applications in order to root out last few bugs before shipping a quality
product.

Numerous innovative techniques that span multiple verification platforms
were deployed to enable concurrent engineering throughout the project. The
paradigm of concurrent verification greatly reduced development cost and
shortened the product development cycle, thus helping developers get
hardware and software right the first time on our Sun Fire servers driven by
OpenSPARC Server-on-a-Chip (SoC).

CHAPTER 8

Operating Systems for
OpenSPARC T1

As low-end hardware systems become more powerful, underutilization of
the hardware system is an issue for some applications. Virtualization
technology allows consolidation of applications running on multiple
underutilized hardware systems onto one hardware system. The multiple
hardware systems that are consolidated could be running different
versions of the same operating system or different operating systems.
Virtualization technology decouples the operating system (OS) from the
hardware system and allows multiple OS environments (Solaris, Linux,
Windows, etc.) to run on one host hardware system.

This chapter presents details about virtualization in the OpenSPARC T1
OS in the following sections:
• Virtualization on page 121
• sun4v Architecture on page 122
• SPARC Processor Extensions on page 122
• Operating System Porting on page 123

8.1 Virtualization
A thin layer of software running on the hardware system presents a
virtual system to each guest OS running on the host hardware system.
The software presenting the virtual system view to the guest OS is called
the Hypervisor. The virtual system is defined by the hardware registers
and a software API to access system services provided by the Hypervisor.
The Hypervisor uses hardware virtualization extensions to provide
121

122 Chapter 8 Operating Systems for OpenSPARC T1
protection between the virtual systems. The hardware resources in the system
like memory, CPUs, and I/O devices are partitioned and allocated to virtual
systems.

8.2 sun4v Architecture
OpenSPARC T1 is the first SPARC processor to implement hardware
extensions to support the Hypervisor. The virtual system model presented to
the guest OS is referred to as the sun4v architecture. The hardware resources
in the virtual system are specified with a data structure called machine
description.

8.3 SPARC Processor Extensions
OpenSPARC, in addition to privileged mode and user mode execution,
supports hyperprivileged mode execution. Only software running in
hyperprivileged mode can access registers that manage hardware resources
like memory, CPUs, and I/O devices. The Hypervisor software runs in
hyperprivileged mode. The OS runs in privileged mode and manages
hardware resources in its virtual system by making Hypervisor API calls. The
OS cannot directly manage hardware resources bypassing the Hypervisor.

OpenSPARC extends Tcc trap instructions to allow software trap numbers
8016 and above. Similar to user-mode processes trapping into the OS to
request OS services, the OS running in privileged mode traps into the
Hypervisor to make Hypervisor API calls using the Tcc trap instruction
extensions. Only software running in privileged mode can execute the new
Tcc trap instruction extensions. Processes running on top of the OS cannot
trap into the Hypervisor from user mode.

Each virtual system is identified by a partition identifier value (PID). Each
CPU in the system has a 3-bit partition identifier register, and the Hypervisor
initializes the partition identifier register of a CPU with the PID of the virtual
system to which the CPU belongs. Therefore, at most eight virtual systems
can be supported.

8.4 Operating System Porting 123
OpenSPARC, in addition to supporting virtual addresses (VA) and physical
addresses (PA), supports real addresses (RA). The MMU supports RA-to-PA
translation in addition to VA-to-PA translation. The MMU does not support
VA-to-RA hardware translation.

The physical memory in the virtual system is described with real addresses.
The guest OS accesses memory either directly with real addresses or through
virtual addresses mapped to real addresses. When the guest OS requests the
Hypervisor to set up a VA-to-RA MMU mapping (through a Hypervisor API
call), the Hypervisor translates the RA to the physical address of the memory
allocated to the virtual system. The Hypervisor then sets up a VA-to-PA MMU
mapping. The MMU stores the PID of the virtual system in the TLB entry
along with the VA, PA, and other information. This TLB entry is now
associated with the virtual system that has inserted the mapping. When
software running in a virtual system does memory operations, the MMU
translations match only those TLB entries that have the same PID as the PID
stored in the partition identifier register of the CPU. Therefore, a virtual
system cannot access resources (memory, memory-mapped I/O device
registers, etc.) mapped by TLB entries of another virtual system.

When a virtual system becomes active, one of the CPUs allocated to the
virtual system is designated as the boot CPU and starts bringing up the guest
OS. Eventually the guest OS reads the machine description of its virtual
system and starts the other CPUs in its virtual system. The guest OS has to
request the Hypervisor through Hypervisor API calls to start a CPU allocated
to its virtual system. Before the CPU starts executing software in the virtual
system, the Hypervisor initializes the PID register of the CPU with the PID of
the virtual system. The Hypervisor API also supports a call for sending an
interrupt from one CPU to another CPU within a virtual system.

The OS can access I/O device registers by requesting the Hypervisor to set up
an MMU mapping from the virtual address of the guest OS to the physical
address of the I/O device. A device driver written to the DDI/DDK interface
need not be modified to run in an OpenSPARC system.

8.4 Operating System Porting
Porting an OS that already runs on non-sun4v SPARC systems requires
making changes to the low-level software that reads hardware system
configuration, accesses MMU registers to set up VA-to-PA translations, and
enables and disables CPUs. Currently, the Solaris, OpenSolaris, Linux, and
FreeBSD operating systems have been ported to OpenSPARC systems.

CHAPTER 9

Tools for Developers

This chapter presents an overview of some of the tools that are available
for developing applications on SPARC platforms. The chapter reveals
how to use these tools to tune performance and to debug applications.
The chapter ends with a discussion on how CMT changes the game plan
for developers.

These ideas are contained in the following sections:
• Compiling Code on page 125
• Exploring Program Execution on page 132
• Throughput Computing on page 152

9.1 Compiling Code
In this section you will learn about the following:
• Compiling Applications With Sun Studio on page 125
• Compiling Applications With GCC for SPARC Systems on page 128
• Improving Performance With Profile Feedback on page 128
• Inlining for Cross-File Optimization on page 130
• Choosing TLB Page Sizes on page 131

9.1.1 Compiling Applications With Sun
Studio

The Sun Studio suite is a free download that includes compilers for C,
C++, and Fortran. It also includes the debugger and Performance
Analyzer, as well as various libraries (such as optimized mathematical
libraries).
125

126 Chapter 9 Tools for Developers
The Sun Studio compiler supports a wide range of features and optimization.
In this text we focus on a small set of commonly used options. There are three
common scenarios for developers: compiling an application for maximal
debug, compiling an application with some optimization, and compiling an
application with aggressive optimization. The flags representing these three
different options are shown in TABLE 9-1.

The first thing to discuss is the flags that enable the generation of debug
information. The debug information is used both when debugging the
application and when the application is profiled. The debug information
enables the tools to attribute runtime to individual lines of source code.

It is recommended that debug information is always generated. The flag that
causes the compiler to generated debug information is -g. This flag will cause
only minimal difference to the generated code, except in two situations. For
code compiled with -g and no optimization flags, the compiler will produce
code that has the maximal amount of debug information; this will included
disabling some optimizations so that the resulting code is clearer. The other
situation where -g may cause a significant difference to the generated code is
for C++ applications. For C++ source files, the -g flag will disable some
function inlining. For C++ codes, it is recommended that the -g0 flag be used
instead of -g; this flag generates debug information, but also enables the
inlining optimizations.

When no optimization flags are specified, the compiler performs no
optimization; this usually results in code that runs slower than might be
expected. The -O optimization flag usually represents a good trade-off
between compile time and the performance of the new code, so is normally a
good initial level of optimization.

TABLE 9-1 Compiler Flags for Three Developer Scenarios

Scenario
Debug
Flag

Optimiza
-tion
Flag Architecture

Address
Space
Size

Debug -g None -xtarget=generic -m32 for
32-bit
code
-m64 for
64-bit
code

Optimized -g (-g0
for C++)

-O -xtarget=generic

Aggressively
optimized

-g (-g0
for C++)

-fast -xtarget=generic

9.1 Compiling Code 127
The -fast macro-flag enables a range of compiler optimizations that have
been found to deliver good performance on a wide range of applications.
However, this flag may not be appropriate for all applications since it makes
some assumptions about the behavior of the application:
• The compiler can use floating-point simplification. The flags that enable

this are -fsimple=2, which allows the compiler to reorder floating-point
expressions, and -fns, which allows the application to flush subnormal
numbers to zero. The flag will also cause the generated code not to set the
errno and matherr variables for some mathematical function calls;
typically, this happens when the compiler replaces the function call with
either an equivalent instruction (for example, replacing the call to sqrt
with the SPARC fsqrt instruction) or with a call to an optimized version
of the library. Some applications are sensitive to floating-point
optimizations, and for such, the -fast compiler flag may not be suitable.

• The -fast flag for C code includes the flag -xalias_level=basic,
which allows the compiler to assume that pointers to different variable
types (for example, pointers to ints and to floats) do not point to the same
location in memory. Code that adheres to the C standard will also conform
to this criterion, but there will be some codes for which this is not true.

• The -fast macro-flag also includes the flag -xtarget=native, which
tells the compiler to assume that the system building the application is also
the system on which the application will be run. In some cases, this
assumption can produce an executable that will run poorly (or perhaps not
at all) on other systems. This behavior is the reason for following the -
fast flag with the flag -xtarget=generic, which undoes this and
tells the compiler to build code that will run on the widest range of
platforms. The compiler evaluates flags from left to right, so flags placed
later on the command line will overrule flags that are earlier.

One way of using the -fast flag is to estimate the performance gain that
might be obtained from aggressive optimization, and then select from the
options enabled by -fast only those that are appropriate for the code and
that contribute an improvement in performance.

For more on the selection of compiler flags, see the article at
http://developers.sun.com/solaris/articles/options.html.

128 Chapter 9 Tools for Developers
9.1.2 Compiling Applications With GCC for
SPARC Systems

GCC for SPARC Systems is available as a free download from
http://cooltools.sunsource.net/gcc/. It enables the GCC
compiler to use the code generator from the Sun Studio compiler. This feature
enables developers to use GCC-specific extensions in their code while still
getting the features and performance of the Sun Studio compiler. TABLE 9-2
shows the equivalent flags for GCC for SPARC Systems.

GCC for SPARC Systems supports optimization features of the Sun Studio
compiler such as profile feedback, cross-file optimization, autoparallelization,
binary optimization, data race detection, and others. These features are
discussed later in this chapter.

9.1.3 Improving Performance With Profile
Feedback

One of the techniques that can improve application performance is profile
feedback. This technique is particularly appropriate for codes that have
complex flow control. When the compiler encounters source code which has a
branch that can be taken or not taken, the compiler either assumes that the
branch will be taken and untaken with equal probability, or in some cases may
be able to use information about the branch statement to estimate whether the
branch will be taken or untaken with greater frequency. If the compiler can
correctly determine the behavior of the branch, then it is often possible to
reduce instruction count and perform other optimizations that result in
improved performance.

TABLE 9-2 GCC Compiler Flags for Three Developer Scenarios

Scenario
Debu
g Flag

Optimiza
-tion
Flag Architecture

Address
Space
Size

Debug -g None -xtarget=generic -m32 for
32-bit
code
-m64 for
64-bit
code

Optimized -g -O -xtarget=generic

Aggressively
optimized

-g -fast -xtarget=generic

9.1 Compiling Code 129
The other situation in which knowledge of the control flow of an application
helps the compiler is in deciding about the inlining of routines. The advantage
of inlining routines is that it reduces the cost of calling the code; in some
cases it may even expose further opportunity for optimizations. However, the
disadvantage is that it can increase code size and therefore reduce the amount
of code that fits into the cache.

Compiling with profile feedback enables the compiler to gather data about the
typical code paths that an application executes and therefore give the compiler
information that helps it to schedule the code optimally.

Using profile feedback is a three-step process. The first step is to produce an
instrumented version of the application. The instrumented version is then run
on a workload that represents the actual workload on which the application
will usually be run. This training run gathers a set of data that is used in the
third step, the final compilation to produce the release version of the
application. An example is shown in CODE EXAMPLE 9-1.

Profile feedback requires that the same compiler flags (with the exception of
the -xprofile flag) are used for both the instrumented and final builds of
the application. The -xprofile flag also takes as a parameter the location
of the file where the data from the training workload is stored. It is
recommended that this file be specified; otherwise, the compiler may not be
able to locate the data file.

Several concerns about using profile feedback should be mentioned at this
point:
• The process of compiling with profile feedback means two passes through

the compiler plus a run of the application on training data. This can add to
the complexity and time required to build the application. It is best to
evaluate this cost against the performance gains realized through the
process. It may be necessary to use profile feedback only on final rather
than interim builds of the application.

• There is sometimes a question of whether the data used to train the
application really represents the work that the application usually does.
This topic is addressed in more detail in Evaluating Training Data Quality
on page 142.

CODE EXAMPLE 9-1 Process of Building an Application With Profile Feedback

$ cc -O -xprofile=collect:./profile -o test test.c
$ test training-workload
$ cc -O -xprofile=use:./profile -o test test.c

130 Chapter 9 Tools for Developers
• A similar concern is whether training the application will result in code that
performs better on one workload at the expense of a different workload.
This concern is also addressed in the later section.

For more information on using profile feedback, see
http://developers.sun.com/solaris/articles/profeedback.html.

9.1.4 Inlining for Cross-File Optimization
Cross-file optimization is the procedure by which routines from one source
file are inlined into routines that are located in a different source file. This
optimization is controlled with the compiler flag -xipo. The flag needs to be
used for both the initial compilation of the source files and also at link time in
order for the compiler to do cross-file optimization.

Cross-file optimization has the potential to effect performance gains in three
ways:
• Inlining removes the cost of the call to the inlined routine, removing a

control transfer instruction and resulting in more straight-line code.
• The compiler ends up with a larger block of instructions, and it may be

possible to better schedule these instructions.
• When a routine is inlined it may expose opportunities for further

optimizations. For example, one of the parameters passed into the routine
may be a constant at the calling site, resulting in a simplification of the
inlined code.

There are some downsides to inlining:
• The size of the code to be scheduled increases, possibly resulting in a

larger number of active registers, which may result in registers being
spilled to memory.

• The memory footprint of the routine will increase, and this may place more
pressure on the caches. If it turns out that the inlined code was not
necessary, a routine that once fitted into cache may no longer be able to fit.

Cross-file optimization is a natural fit with profile feedback since the training
data set will help the compiler identify frequently executed routines that can
appropriately be inlined.

9.1 Compiling Code 131
9.1.5 Choosing TLB Page Sizes
The compiler has options that allow the developer to select the page size for
the application at compile time. If these options are not used, Solaris will pick
what it considers to be appropriate sizes. The page size for stack and heap can
be set with the flag -xpagesize=value, where value is one of 8K, 64K,
512K, or 4M.

The rules determining appropriate the appropriate page size to select are
relatively simple:
• Larger page sizes reduce the number of TLB misses because more memory

will be mapped by a single TLB entry.
• However, it can be hard for Solaris to find the contiguous memory

necessary to allocate a large page. So although the application may request
large pages, the operating system may be unable to provide them.

The cputrack command can be used on an executable to count how many
TLB misses are occurring for a given application. This information can then
be used to see if changing the page size has any impact. An example of
counting both the instructions executed and the number of data TLB misses is
shown in CODE EXAMPLE 9-2. In this example, a total of 115 data TLB misses
occurred in over 100 million instructions.

The command pmap -xs pid can be used to examine a process and check
whether it obtained large pages or not. CODE EXAMPLE 9-3 shows the output
from this command for the executable a.out. The heap for the target
executable is mapped onto both 8-Kbyte and 64-Kbyte pages.

CODE EXAMPLE 9-2 Counting Data TLB Misses With cputrack

% cputrack -c DTLB_miss,Instr_cnt sub
 time lwp event pic0 pic1
 1.021 1 tick 98 72823692
 1.726 1 exit 115 123562685

CODE EXAMPLE 9-3 Output From pmap Showing the Page Sizes for a Process

$ pmap -xs 6772
6772: a.out

Address Kbytes RSS Anon Locked Pgsz Mode Mapped File
00010000 8 8 – – 8K r-x-- a.out
00020000 8 8 8 – 8K rwx-- a.out
00022000 56 56 56 – 8K rwx-- [heap]
00030000 24512 24512 24512 – 64K rwx-- [head]
...

132 Chapter 9 Tools for Developers
9.2 Exploring Program Execution
The following subsections explore aspects of program execution:
• Profiling With Performance Analyzer on page 132
• Gathering Instruction Counts With BIT on page 137
• Evaluating Training Data Quality on page 142
• Profiling With SPOT on page 146
• Debugging With dbx on page 148
• Using Discover to Locate Memory Access Errors on page 151

9.2.1 Profiling With Performance Analyzer
One of the most important tools for developers is Performance Analyzer,
included with Sun Studio, which generates profiles of applications showing
where the runtime is being spent. Consider the code shown in
CODE EXAMPLE 9-4.

CODE EXAMPLE 9-4 Example Program

#include <stdio.h>

double a[10*1024*1024];

void clear()
{
 for (int i=0;i<10*1024*1024;i++)
 {
 a[i]=0.0;
 }
}

double sum()
{
 double t=0;
 for (int i=0; i<10*1024*1024;i++)
 {
 t+=a[i];
 }
 return t;
}

void main()
{
 for (int i=0; i<10; i++)

9.2 Exploring Program Execution 133
The tool that gathers the profile information is called collect. This tool can
either be attached to a running process by collect -P pid or can follow
the entire run of an application with collect application parameters. The
profile data is gathered in a directory which is by default given the name
test.1.er. Two tools can display the gathered data: the command-line tool
called er_print or the GUI tool called analyzer. Either tool should be
invoked with the name of the experiment that is to be loaded. The command-
line version of the tool can also be invoked with commands to be executed or
with a script to run.

The steps necessary to build, run, and view the profile in the GUI for the code
from CODE EXAMPLE 9-4 are shown in CODE EXAMPLE 9-5.

The initial view of the profile is shown in FIGURE 9-1.

FIGURE 9-1 Profile From Performance Analyzer

 {
 clear();
 sum();
 }
}

CODE EXAMPLE 9-5 Compiling and Profiling Example Application

$ cc -g ex.9.4.c
$ collect a.out
Creating experiment database test.1.er ...
$ analyzer test.1.er

CODE EXAMPLE 9-4 Example Program (Continued)

134 Chapter 9 Tools for Developers
The first two columns in the profile show the exclusive and inclusive user
time. Exclusive time for a function is the time spent solely in that function.
Inclusive time for a function is the time spent in that function plus any
functions that it calls. For example, the function main has zero exclusive
time—meaning that negligible time was spent in that function, but it has 11
seconds of inclusive time, meaning time that was spent in routines called by
the main function. The routine sum accumulated 5.3 seconds of exclusive
time, or time spent in that routine. The inclusive time for the routine sum is
the same as the exclusive time because the routine called no other routines.

The tool also gathers call-stack information. This information allows the tool
to calculate the inclusive time. FIGURE 9-2 shows the call stack for the routine
main. The routine main is called by the routine _start, and it calls the
routines clear and sum.

FIGURE 9-2 Call Stack Information

The caller-callee chart introduces a metric called attributed time, which
breaks down the time spent in a particular routine by the routines that call it.
The attributed time, shown in the first column, represents the amount of time
attributed to a particular routine when the selected routine is in the call stack.
It is clearer to explain this concept using the data from FIGURE 9-2. The
attributed time for the routine _start is 11 seconds, meaning that the entire
11 seconds of inclusive time for the main routines is attributable to its being
called by _start. The attributed time for the routine clear is 5.7 seconds,
which is the amount of time attributable to the clear routine from being
called by the main routine. If the program were more complex and the
routine clear were called from multiple locations, the inclusive and
exclusive time for the clear routine would increase but the time attributable
to its call from the main routine would remain the same.

9.2 Exploring Program Execution 135
It is also possible to describe the attributed time as a formula—the sum of the
attributed times for the calling routines will equal the inclusive time for the
selected routine, as will the sum of the attributed time for the selected routine
and the routines that it calls.

On hardware that supports it, Performance Analyzer can profile an application
to show where the hardware counter events occur. For example, it can show
the point in the code where the largest number of data cache misses occur.
This feature is not supported on UltraSPARC T1 but is available on
UltraSPARC T2. The option is supported by passing the flag -h, together with
the list of counters to use, to collect. CODE EXAMPLE 9-6 shows the
instructions necessary to profile the application to locate the places in the code
where there are data cache misses; the data cache misses are recorded by the
DC_miss counter.

FIGURE 9-3 shows the results of profiling data cache misses for the example
code on an UltraSPARC T2 system. All the data cache misses occur in the
sum routine; this is not surprising since the sum routine is streaming through
memory, loading data. The clear routine is storing data to memory, so has
no need to perform loads and incur data cache misses.

FIGURE 9-3 Application Profiled by Location of Data Cache Misses

CODE EXAMPLE 9-6 Profiling With the Hardware Performance Counters

$ collect -h DC_miss a.out
Creating experiment database test.2.er ...
$ analyzer test.2.er

136 Chapter 9 Tools for Developers
Source and disassembly tabs in the tool show the time attributed at the source
code level (if the code has been compiled with -g) and at the disassembly
level. FIGURE 9-4 shows the source-level view of time attributed to the routines
sum and main. Once again the two columns show exclusive and inclusive
user time. The routine main has two calls to other routines, and these calls
have inclusive time attributed to them, but no exclusive time (since the call
instruction takes effectively zero time).

FIGURE 9-4 Profile at Source-Code Level

The profile can also be viewed at the disassembly level, as shown in
FIGURE 9-5. To determine where the time is being spent, Performance Analyzer
inspects the address of the next instruction to be executed. The frequency with
which it does this can be changed by the user, but the default is to do this
inspection 100 times a second. Every time this happens, the tool records an
additional quantum of time for that particular location, so a PC that is
observed 100 times at the default frequency of 100 samples per second will
end up with 1 second of time being attributed to it.

For each instruction, the compiler records the line number and source file for
the source code that caused the instruction to be generated. The source line
number is shown in square parentheses in FIGURE 9-5 next to each

9.2 Exploring Program Execution 137
disassembled instruction. To determine how much time should be attributed to
a particular line of source code, the tools sum the time attributed to all the
disassembly instructions that were generated from that source line.

FIGURE 9-5 Profile at the Disassembly Level

UltraSPARC T2 has exact traps for hardware counter overflow, which is the
mechanism that identifies where in the code the events counted by the
hardware counters occur. An exact trap means that the tools can identify the
exact instruction that caused the event. In FIGURE 9-5, the data cache misses
are identified as being due to the load at 0x10c54. Unsurprisingly, this load
corresponds to the load of the value of a[i] in the source code.

9.2.2 Gathering Instruction Counts With BIT
The BIT tool (http://cooltools.sunsource.net/bit) enables the
user to gather data about the number of times an instruction is executed, the
number of times a routine is called, the probability of a branch being taken,
and other useful metrics.

138 Chapter 9 Tools for Developers
Once BIT is installed, it can either be invoked directly or, more conveniently,
through collect -c on. For BIT to work, the application must be
compiled with optimization and compiled and linked with the compiler flag
-xbinopt=prepare for the compiler to record the necessary annotations.
CODE EXAMPLE 9-7 shows an example of compiling and gathering the
execution counts for the example program.

When invoked by collect, BIT outputs the results as an Analyzer
experiment, as shown in FIGURE 9-6.

FIGURE 9-6 Analyzer Shown Count Data From BIT

The first of the three columns of data shows the number of times that each
function was entered: the routine main was entered once, the routines sum
and clear were both entered ten times. The second column shows the total
number of instructions that were executed over the run of the code, in this
case, nearly 600 million dynamic instructions. The final column of data shows
the annulled instructions. Annulled instructions are instructions that have been
placed in the delay slot of the branch. They are executed if the branch is
taken, but if the branch is not taken, the instructions are annulled.

CODE EXAMPLE 9-7 Gathering Instruction Count Data With BIT

% cc -O -xbinopt=prepare -g ex.9.4.c
% collect -c on a.out
Creating experiment database test.3.er ...
% analyzer test.3.er

9.2 Exploring Program Execution 139
The instruction count data is also available at the disassembly level, as shown
in FIGURE 9-7. You can see that the loop at addresses 0x10cd0 to 0c10d00 is
entered 10 times and has an average trip count of about two and a half million
iterations every time it is entered. Since the code was compiled with
optimization, the compiler has unrolled the loop four times, as can be seen
from the four faddd instructions in the loop.

FIGURE 9-7 Instruction Count Data at the Disassembly Level

Since the tool has data for the execution frequency for each PC, it is also able
to calculate the execution frequency of each different type of assembly
language instruction. This data is shown on a separate tab in the Analyzer
GUI, as shown in FIGURE 9-8. The summary data shows that about a third of
the total instruction count is loads and stores, and these are all loads and
stores of floating-point data. Over half of the total instruction count is
concerned with manipulating floating-point data.

140 Chapter 9 Tools for Developers
FIGURE 9-8 Instruction Type Frequency Information From BIT

BIT can also output reports showing the probability and frequency that
branches are taken and the execution counts for basic blocks. To get this data,
invoke BIT at the command line, as shown in CODE EXAMPLE 9-8.

9.2 Exploring Program Execution 141

As can be seen in CODE EXAMPLE 9-8, BIT is first invoked to generate an
instrumented version of the application. BIT uses the annotations recorded
under -xbinopt=prepare to disassemble the application and generate a
new version of the binary containing the instrumented code. This
instrumented application is the one that must be run. At the end of the run of
the instrumented binary, a data file is created containing the results of the
instrumented run. BIT is then invoked to analyze this data file.

BIT can instrument only the parts of the code that were compiled with
-xbinopt=prepare. If an application has a mix of files with and without
this option, then the data reported by BIT is gathered only from the
instrumented parts. If the instrumented code calls into uninstrumented
libraries, then those libraries are also excluded from the analysis.

BIT can also generate coverage reports showing the code that has been
executed. It can also generate a report called an uncoverage report. The idea
of uncoverage is to examine the call stack of the routines as well as to
determine whether they are executed or not. The tool can then identify
particular routines, which if executed, also cause other unexecuted routines to
be used. With this analysis, it is possible to rapidly develop tests that will hit
particular parts of the code, knowing that those tests will inevitably execute

CODE EXAMPLE 9-8 Invoking BIT at the Command-Line to Generate Basic Block
Execution Counts

$ cc -O -xbinopt=prepare -g ex.9.4.c
$ bit instrument a.out
$ a.out.instr
$ bit analyze -a bbc a.out
Basic block counts of /a.out
==================
 Count PC #Instrs Function name
 10 0x10c00 11 clear
 10 0x10c2c 1
 26214400 0x10c30 9
 10 0x10c54 3
 0 0x10c60 1
 0 0x10c64 5
 10 0x10c78 2
 10 0x10c88 11 sum
...
$ bit analyze -a branch a.out
Branch taken/not taken report of /a.out
=============================
 PC Dir %Taken %Not Compiler Trip Taken Not Instr.
 Taken Prediction Count Taken
 Correct?
10c24 F 0.0% 100.0% Y 10 0 10 br,pn
10c4c B 100.0% 0.0% Y 26214400 26214390 10 br,pt
10c58 F 100.0% 0.0% N 10 10 0 br,pn
...

142 Chapter 9 Tools for Developers
other uncovered routines. The coverage report can be generated by BIT, as
shown in CODE EXAMPLE 9-9. An analyzer experiment, which contains both the
coverage and uncoverage reports, is also generated.

9.2.3 Evaluating Training Data Quality
When an application is compiled with profile feedback, the compiler gathers
information about branch probabilities and execution frequencies from the
training data used. It is, therefore, important that this training data be
representative of the workload that will usually be run with the production
binary. The BIT tool can generate reports on the execution frequencies of the
basic blocks of code and also on the probabilities of each branch instruction
being taken or untaken.

Reports from the training and actual workloads can be compared to see
whether individual branch instructions are taken with the same frequency and
whether the same basic blocks are important. Gove and Spracklen (2006,
2007)1 used this analysis on the SPEC CPU2006 benchmarks. One of the
important observations from that paper is that most of the training workloads
were already representative of the workloads used in the runs of the
benchmarks. The weakest agreement was seen when the training workload
was of a different problem type than the workload used in the benchmark run.

CODE EXAMPLE 9-9 Generating a Coverage Report From BIT

$ bit coverage a.out
Creating experiment database test.5.er ...
BIT Code Coverage
Total Functions: 3
Covered Functions: 3
Function Coverage: 100.0%
Total Basic Blocks: 17
Covered Basic Blocks: 15
Basic Block Coverage: 88.2%
Total Basic Block Executions: 52,428,902
Average Executions per Basic Block: 3,084,053.06
Total Instructions: 88
Covered Instructions: 81
Instruction Coverage: 92.0%
Total Instruction Executions: 576,717,224
Average Executions per Instruction: 6,553,604.82

1. ACM SIGARCH Computer Architecture News, Vol. 35, No. 1 - March 2007
http://www.spec.org/cpu2006/publications/SIGARCH-2007-03/
10_cpu2006_training.pdf

 http://www.spec.org/workshops/2006/papers/10_Darryl_Gove.pdf

9.2 Exploring Program Execution 143
The methodology is described in detail at http://developers.sun.com/
solaris/articles/coverage.html. An overview is as follows. The
binary is compiled with the flag -xbinopt=prepare. The compiled binary
is instrumented with BIT, and then reports for both the training workload and
an actual workload are generated. A simple example program that
demonstrates this is shown in CODE EXAMPLE 9-10.

The steps necessary to generate the report showing the branch probabilities
are shown in CODE EXAMPLE 9-11, together with a sample of the output from
the report. The report indicates the number of times each branch was taken
and untaken, as well as whether the compiler set the prediction bit on the
branch instruction correctly.

CODE EXAMPLE 9-10 Example Program for Demonstrating Training Workload
Quality

#include <stdio.h>

void main(int argc, char** argv)
{
 for (int i=1; i<argc; i++)
 {
 printf("%s\n",argv[i]);
 }
}

CODE EXAMPLE 9-11 Branch Probabilities

$ cc -O -xbinopt=prepare -o profile ex.9.10.c
$ bit instrument profile
$ profile.instr 1
$ bit analyze -a branch profile
Branch taken/not taken report of profile
==
 PC Dir %Taken %Not Compiler Trip Taken Not Instruction
 Taken Prediction Count Taken
 Correct?
10bec F 0.0% 100.0% Y 1 0 1 br,pn@(le),%icc
10c1c B 0.0% 100.0% N 1 0 1 br,a,pt@(le),%icc

144 Chapter 9 Tools for Developers
The steps necessary to generate the basic block execution frequency report are
shown in CODE EXAMPLE 9-12, together with a sample of the output from that
report. The report includes counts of the number of times each basic block
was executed.

Next, the test code is executed with multiple command-line parameters. The
branch and block reports for this are shown in CODE EXAMPLE 9-13.

The branch probabilities data can be used to examine to determine whether
there is a good fit between the training and real workloads. Each branch can
be classified as usually taken or usually untaken. If the branch has the same
prediction for both the training and reference workloads, then the branch is
predicted correctly. If the branch has different behavior for the training and
real workloads, then the branch is predicted incorrectly.

For a single metric that describes the quality of the training workload, the
dynamic execution count of the correctly predicted branches during the real
workload is divided by the dynamic execution count for all branches during
the real workload. This results in a value between 0 and 1. A value near 1

CODE EXAMPLE 9-12 Basic Block Counts

$ bit analyze -a bbc profile
Basic block counts of profile
=============================
 Count PC #Instrs Function name
 1 0x10be4 4 main
 1 0x10bf4 5
 1 0x10c08 7
 1 0x10c24 2

CODE EXAMPLE 9-13 Branch and Block Data for Actual Workload

$ bit instrument profile
$ profile.instr 1 2 3 4
1
2
3
4
$ bit analyze -a branch profile
Branch taken/not taken report of profile
==
 PC Dir %Taken %Not Compiler Trip Taken Not Instruction
 Taken Prediction Count Taken
 Correct?
10bec F 0.0% 100.0% Y 1 0 1 br,pn@(le),%icc
10c1c B 75.0% 25.0% Y 4 3 1 br,a,pt@(le),%icc
$ bit analyze -a bbc profile
Basic block counts of profile
=============================
 Count PC #Instrs Function name
 1 0x10be4 4 main
 1 0x10bf4 5
 4 0x10c08 7
 1 0x10c24 2

9.2 Exploring Program Execution 145
means that all the frequently executed branches were correctly predicted; a
value near 0 means that none of the frequently executed branches were
correctly predicted.

For the example, there are two branches. The first branch is predicted not
taken by the training workload and is not taken by the reference workload; it
is executed once by the reference workload. The second branch is also
predicted not taken by the training workload but is taken by the reference
workload. The second branch is encountered four times by the reference
workload. So the calculation is one correctly predicted branch executed once
by the reference workload and four incorrectly predicted branches executed by
the reference workload, so a branch prediction quality of
(1 × 1 + 0x4) ÷ 5 = 0.2. So the training workload is a poor match for the
branch behavior of the reference workload.

The calculation for the agreement between the dynamic execution frequency
of the basic blocks is slightly different. The probability of a branch being
taken has a range between 0 and 1, but there is no equivalent upper limit on
the execution frequency for a basic block. However, one metric that can be
clearly defined for basic blocks is whether the training workload covered all
the basic blocks that are important for the real workload; after all, if the
workload does not execute the block, then the compiler can obtain no
information about the block’s runtime behavior. The block is considered
covered so long as the training workload executed the block at least once. If a
block was never executed by the training workload, then the block is
considered to be uncovered.

A value between 0 and 1 can be calculated by summing the dynamic
execution count of those basic blocks in the real workload that were covered
by the training workload, and dividing this by the dynamic execution count of
all the basic blocks in the real workload. A value near 1 means that all the
frequently executed basic blocks in the real workload were also executed at
least once by the training workload. A value near 0 means that none of the
basic blocks that were frequently executed in the real workload were covered
by the training workload. In the example, the training workload executes all
four basic blocks in the reference workload, so gets a basic block coverage
quality of (1 + 1 + 4 + 1) ÷ 7 = 1.0. The training workload is a good coverage
match for the reference workload.

It is worth observing that although these metrics are a proxy for the quality of
the training workload, it is also possible to plot the agreement between the
training and real workloads on a graph. Examples of graphs together with
scripts that process the results from BIT are available in the article referred to
at
http://developers.sun.com/solaris/articles/coverage.html.

146 Chapter 9 Tools for Developers
9.2.4 Profiling With SPOT
SPOT (http://cooltools.sunsource.net/spot/) is a tool that
makes the process of locating and identifying performance issues as easy as
possible. The tool runs an application under multiple probes and generates an
HTML report showing the results of these probes plus the profile of the
application. The probes that are available depend on the features of the
hardware and operating system, so not all probes will be available on all
machines. Below are descriptions of the probes that SPOT uses:
• System information is recorded, making it easy to track the configuration

of the system on which the application was run.
• Compiler flags are extracted from the application if this information is

recorded. It also examines the libraries that are linked into the application.
• Information about the performance counter events encountered by the

application is gathered by ripc and used to estimate the amount of time
lost to various processor stall states. This information may be used by
SPOT to profile the application under those hardware performance counters
that contribute the most to the total stall time.

• Profile information that shows where the time is being spent in the
application is gathered by Performance Analyzer.

• Instruction count data is gathered by BIT if the application has been
compiled with appropriate flags.

• System-wide bandwidth utilization data and system-wide trap data are
gathered over the run of the application. Collecting this information
requires superuser privileges.

The report generated by SPOT has several advantages over running the
various tools stand-alone. The report saves a significant amount of context
information, so you can go back to a report and find out the compiler flags
used, the name of the system, as well as the source and disassembly of the
time-consuming parts of the application. The other significant advantage of
using SPOT is that you can view HTML reports remotely using a browser.
Moreover, it is trivial to share a URL indicating data of interest or a hot-point
in the source code with remote colleagues, and you can expect them to see
exactly the data you are looking at.

An application can be run under SPOT in the same way that the application is
run under collect, as shown in CODE EXAMPLE 9-14. Alternatively, SPOT
can attach to a running process with spot -P pid, although this approach is
not recommended for production systems as it potentially involves stopping
the process multiple times. SPOT defaults to gathering a short report on the

9.2 Exploring Program Execution 147
performance of an application; for situations in which there is more time, it
can gather a longer report under the -X command-line option, as shown in
CODE EXAMPLE 9-14.

The profile information SPOT gathers will already be familiar from the
previous results in this chapter. One part of the report that might be less
familiar is the hardware counter data reported by ripc. Part of this data for a
short running application is shown in CODE EXAMPLE 9-15.

The section at the start of the ripc output estimates the number of cycles lost
to each type of processor event. For this code, about a third of the runtime is
lost to data cache miss events. About 40% of the total runtime is spent in stall
cycles. ripc also tracks total times, instruction counts, and the floating-point
operations. It also tracks the number of system-wide floating-point operation
traps that occurred while the application was running. These traps are caused
when the processor needs a floating-point operation to complete in software.
The tool also tracks memory size and read bandwidth utilization.

CODE EXAMPLE 9-14 Gathering Extended Information for a.out With SPOT

$ spot -X a.out

CODE EXAMPLE 9-15 ripc Output as Displayed by SPOT

==
Analysis Of Application Stall Behavior
==
 Stall Ticks Sec %
==
ITLB-miss 7,426 0.000 0.0%
DTLB-miss 412,696 0.000 0.6%
Instr. Issue 3,894,132 0.003 5.3%
D-Cache 25,512,190 0.021 34.9%
L2-DC-miss 642,128 0.001 0.9%
L2-IC-miss 108,004 0.000 0.1%
StoreQ 421,840 0.000 0.6%
--
Total Stalltime 30,998,416 0.026 42.3%
--
Total CPU Time 0 Sec
Total Elapsed Time 0 Sec
Total Cycle Count 73,200,008
Total Instr. Count 12,301,788
FP Instructions 3,964 0.0% of Total Instr.
MIPS 201.669
--
Unfinished FPops 0

148 Chapter 9 Tools for Developers
9.2.5 Debugging With dbx
The Sun Studio debugger, called dbx, in common with most debuggers
supports the examination of core files as well as the running of applications.
The use of dbx to examine a core file is shown in CODE EXAMPLE 9-16. The
core file usually records the name of the executable that generated it, so dbx
can be started with a minus sign as the name of the executable. If this is not
the case, then the executable can be specified on the command line.

Consider the code in CODE EXAMPLE 9-17. This code has the error of memory
being used without having been allocated.

The compiler flag -g causes the compiler to generate debug information. In
Sun Studio 12, and subsequent versions, this debug information is recorded in
the executable. Prior versions of Sun Studio recorded this information in the
object files but not the binary. The program in CODE EXAMPLE 9-17 generates a
core file when run, and dbx can be used to examine what happened, as shown
in CODE EXAMPLE 9-18. The application has been compiled without
optimization in order to obtain the most debug information. dbx correctly
identifies the application from the core file and reports the error that caused
the core file to be generated.

CODE EXAMPLE 9-16 Using dbx to Examine a Core File

$ dbx application core
$ dbx - core

CODE EXAMPLE 9-17 Program With Memory Access Error

#include <stdlib.h>

void f(double *a, int b)
{
 a[b]=0;
}

void main()
{
 double *a;
 f(a,1);
 f(a,1000);
 f(a,2);
}

9.2 Exploring Program Execution 149
.

The initial display shows the source line at which the error occurred. The
command where shows the call stack at the point of error, reporting that the
routine f was called by the routine main. It also shows the parameters passed
into the routine f. You can also print the values of the parameters, using the
print statement.

If the code had been compiled with optimization, the debugger would have
been able to present less information, and it may be necessary to look at the
disassembly code to identify what happened. The process can be slightly more
tricky, as shown in CODE EXAMPLE 9-19.

CODE EXAMPLE 9-18 Using dbx on a Core File

% cc -g ex.9.17.c
% a.out
Segmentation Fault (core dumped)
% dbx - core
Corefile specified executable: "/a.out"
Reading a.out
core file header read successfully
Reading ld.so.1
Reading libc.so.1
Reading libdl.so.1
Reading libc_psr.so.1
program terminated by signal SEGV (access to address exceeded
protections)
Current function is f
 5 a[b]=0;
(dbx) where
=>[1] f(a = 0x1070c, b = 1), line 5 in "ex.9.17.c"
 [2] main(), line 11 in "ex.9.17.c"
(dbx) print b
b = 1
(dbx) print a
a = 0x1070c

150 Chapter 9 Tools for Developers
In this case, the compiler is unable to identify the exact line of source code
that causes the problem. It does identify the routine correctly. Looking at the
disassembly of the routine with the dis command shows that the problem
instruction is the clr (clear) instruction at 0x10ba8. Since the routine is
short, it is trivial to see that %o0 contains the value of a that was passed into
the routine and that %o5 contains the index into that array. The regs
command prints the current values of the registers and shows that %o1
contains the value 1, %o5 contains 8 (which is 1 multiplied by the size of the
array element, each double taking 8 bytes), and %o0 contains 0x1070c—
coincidentally the same value as in the unoptimized situation.

It is also possible to run a program under dbx. In that case, dbx must be
passed the name of the executable as a command-line parameter, as shown for
the unoptimized code in CODE EXAMPLE 9-20. If the application requires any
command-line parameters, these can be set with the runargs command to
dbx.

CODE EXAMPLE 9-19 Using dbx to Explore a Core File From Optimized Code
% cc -g -O ex.9.17.c
% a.out
Segmentation Fault (core dumped)
% dbx - core
Corefile specified executable: "/a.out"
Reading a.out
core file header read successfully
Reading ld.so.1
Reading libc.so.1
Reading libdl.so.1
Reading libc_psr.so.1
program terminated by signal SEGV (no mapping at the fault address)
Current function is f (optimized)
 4 {
(dbx) where
=>[1] f(a = ?, b = ?) (optimized), at 0x10ba8 (line ~4) in "ex.9.17.c"
 [2] main() (optimized), at 0x10bb4 (line ~11) in "ex.9.17.c"
(dbx) dis f
0x00010ba0: f : sll %o1, 3, %o5
0x00010ba4: f+0x0004: retl
0x00010ba8: f+0x0008: clrx [%o0 + %o5]
...
(dbx) regs
current frame: [1]
g0-g1 0x00000000 0x00000000 0x00000000 0x0000f000
...
o0-o1 0x00000000 0x0001070c 0x00000000 0x00000001
o2-o3 0x00000000 0x00014bd1 0x00000000 0x00014bd1
o4-o5 0x00000000 0x00018331 0x00000000 0x00000008
...
pc 0x00000000 0x00010ba8:f+0x8 clrx [%o0 + %o5]
npc 0x00000000 0x00010bbc:main+0x10 ld [%sp + 92], %o0

9.2 Exploring Program Execution 151
9.2.6 Using Discover to Locate Memory
Access Errors

Memory access errors are bugs caused when memory is accessed without
being allocated, after it has been freed, before it has been initialized, etc. Bugs
of this kind can be hard to locate because the results of the error often
manifest themselves an arbitrarily long time after execution of the code
containing the problem. The tool Discover
(http://cooltools.sunsource.net/discover/)
is designed to detect these kinds of problems. For Discover to be used, the
application must be built with optimization and the compiler option
-xbinopt=prepare. Then the discover tool can make an instrumented
version of the application, which is then run. CODE EXAMPLE 9-21 shows an
example run of the tool.

Discover can also generate the results as an HTML report. You enable this by
setting the environment variable DISCOVER_HTML before running the
instrumented binary.

CODE EXAMPLE 9-20 Running a Problem Application Under dbx

$ dbx a.out
Reading a.out
Reading ld.so.1
Reading libc.so.1
Reading libdl.so.1
Reading libc_psr.so.1
(dbx) run
Running: a.out
(process id 28372)
signal SEGV (access to address exceeded protections)
in f at line 5 in file "ex.9.17.c"
 5 a[b]=0;

152 Chapter 9 Tools for Developers
9.3 Throughput Computing
The OpenSPARC T1 and OpenSPARC T2 processors have multiple threads
sharing a core, and as such are designed for workloads that require high
throughput rather than short response time. The common way of illustrating
why multiple threads can share a single core shows the gaps that appear in the
instruction stream from events like cache misses and demonstrates that these
gaps could be used by other threads to make progress. This can be expressed
as all threads will have stall cycles, and these stall cycles are sufficient to
enable multiple threads to interleave. These subsections look at how to
develop applications that use multiple threads:
• Measuring Processor Utilization on page 153
• Using Performance Counters to Estimate Instruction and Stall Budget Use

on page 156
• Collecting Instruction Count Data on page 159
• Strategies for Parallelization on page 159
• Parallelizing Applications With POSIX Threads on page 160
• Parallelizing Applications With OpenMP on page 162
• Using Autoparallelization to Produce Parallel Applications on page 165
• Detecting Data Races With the Thread Analyzer on page 165
• Avoiding Data Races on page 169
• Considering Microparallelization on page 174
• Programming for Throughput on page 177

CODE EXAMPLE 9-21 Using Discover to Locate Memory Access Errors

% cc -g -O -xbinopt=prepare ex.9.17.c
% /opt/SUNWspro/extra/bin/discover a.out
% a.out
ERROR (UMR): accessing uninitialized data from address
0xffbffa74
(4 bytes) at:
 main() + 0x4c [/a.out:0x30088]
 <ex.9.17.c:11>:
 8: void main()
 9: {
 10: double *a;
 11:=> f(a,1);
 12: f(a,1000);
 13: f(a,2);
 14: }
 _start() + 0x108 [/a.out:0x107a8]
Segmentation Fault (core dumped)

9.3 Throughput Computing 153
9.3.1 Measuring Processor Utilization
With each core running multiple threads, the maximum throughput that can be
achieved is one instruction per core for OpenSPARC T1 and two instructions
per core for OpenSPARC T2. In this situation, each core would be achieving
the maximum number of instructions that it can achieve. Obviously, not all
workloads will manage this rate of instruction issue.

The instruction issue rate is not visible through the normal Solaris tools such
as prstat (which shows how much time the operating system has scheduled
a thread onto a virtual processor). The rate of instruction issue can be
measured for an individual process, using cputrack to read the performance
counters, or it can be measured for the entire system with cpustat. A
convenient way of viewing the system-wide issue rate is with corestat
(http://cooltools.sunsource.net/corestat/), which reports the
utilization of the integer and floating-point pipes of the processor cores.

corestat works by reporting the number of issue instructions out of the
total maximum possible number of instructions that could be issued. This
produces a value showing how much of the “instruction budget” for a
processor core is actually used. Some sample output showing an idle
UltraSPARC T2-based system is shown in CODE EXAMPLE 9-22. Only pipeline
zero of core 2 shows any significant activity.

CODE EXAMPLE 9-22 UltraSPARC T2 Integer Pipe Utilization From corestat

 Core Utilization for Integer pipeline
 Core,Int-pipe %Usr %Sys %Usr+Sys
 ------------- ----- ----- --------
 0,0 0.00 0.19 0.20
 0,1 0.00 0.01 0.01
 1,0 0.00 0.03 0.03
 1,1 0.00 0.01 0.01
 2,0 1.15 0.02 1.16
 2,1 0.00 0.01 0.01
 3,0 0.02 0.02 0.04
 3,1 0.00 0.01 0.01
 4,0 0.00 0.02 0.03
 4,1 0.00 0.01 0.01
 5,0 0.02 0.01 0.03
 5,1 0.00 0.01 0.01
 6,0 0.05 0.03 0.08
 6,1 0.00 0.01 0.01
 7,0 0.00 0.03 0.03
 7,1 0.00 0.01 0.01
 ------------- ----- ----- ------
 Avg 0.08 0.03 0.10

154 Chapter 9 Tools for Developers
corestat is essentially a convenient wrapper for cpustat, which tracks
processor events system-wide. Various hardware events can be counted, and it
is useful to discuss the information that the events can provide.
CODE EXAMPLE 9-23 shows a multithreaded program that can be used to
examine instruction issue rate.

The code uses OpenMP to parallelize a simple loop; OpenMP is introduced in
Parallelizing Applications With OpenMP on page 162. The environment
variable OMP_NUM_THREADS sets the number of threads that the application
will use in the parallel region. CODE EXAMPLE 9-24 shows compiling and
running this program on an UltraSPARC T1-based system. The compiler flag
-xopenmp causes the compiler to recognize the OpenMP directive in the
code. The flags -xloopinfo and -xvpara cause the compiler to report
more information about the parallelization of the code.

While the program is running, cpustat can be used to track the number of
instructions issued by each thread, as shown in CODE EXAMPLE 9-25. The

CODE EXAMPLE 9-23 Example Multithreaded Code

#include <stdio.h>
#include <stdlib.h>

void main()
{
 int* array=calloc(500*1000*1000,sizeof(int));
 int total=0;
 for (int j=0; j<20; j++)
 {
 #pragma omp parallel for default(__auto)
 for (int i=0; i<500*1000*1000; i++)
 {
 if (array[i]==1) {total++;}
 }
 }
 printf ("Total = %i\n",total);
}

CODE EXAMPLE 9-24 Compiling and Running an OpenMP Parallelized Code

$ cc -g -O -xopenmp -xvpara -xloopinfo ex.9.23.c
"ex.9.23.c", line 8: not parallelized, loop contains pragma loop
"ex.9.23.c", line 11: PARALLELIZED, user pragma used
$ setenv OMP_NUM_THREADS 32
$ timex a.out
Total = 0

real 15.97
user 5:28.28
sys 3.15

9.3 Throughput Computing 155
command requests that the instruction count be captured every second for ten
seconds. The columns show the time at which the sample was captured, the
virtual CPU, the type of line of text being reported (in this case, “tick”), and
the count from the hardware performance counter.

The output shows that each thread executed about 188M instructions every
second. The UltraSPARC T1-based system that generated this data has four
threads on each core. Taking virtual CPU IDs 0, 1, 2, and 3, which all reside
on the first core, the total number of instructions issued by that core is about
750M; for a 1.2 GHz processor this is 750 ÷ 1200 = 65% utilization.

CODE EXAMPLE 9-25 Using cpustat to Capture Instruction Issue Rates

$ cpustat -c Instr_cnt,sys 1 10
...
 5.010 8 tick 186368297
 5.010 9 tick 187145974
 5.010 16 tick 185612254
 5.010 26 tick 186933907
 5.010 2 tick 186923129
 5.010 25 tick 186640326
 5.010 18 tick 186967737
 5.010 10 tick 186894549
 5.010 1 tick 186611175
 5.010 3 tick 187320071
 5.010 17 tick 186536875
 5.010 27 tick 187316280
 5.010 19 tick 187204290
 5.010 24 tick 188030654
 5.010 4 tick 186343850
 5.010 11 tick 187312586
 5.010 12 tick 188903145
 5.010 5 tick 190709642
 5.010 13 tick 186474558
 5.010 28 tick 188546808
 5.010 21 tick 187561252
 5.010 20 tick 187388082
 5.010 29 tick 185464662
 5.010 6 tick 189905445
 5.010 14 tick 187142919
 5.010 22 tick 186514943
 5.010 7 tick 186904827
 5.010 15 tick 177650912
 5.010 0 tick 189722028
 5.010 23 tick 186926542
 5.020 31 tick 187765561
 5.020 30 tick 187851684
...

156 Chapter 9 Tools for Developers
For both the UltraSPARC T1 and UltraSPARC T2 processors, in ideal
circumstances one of four threads gets to issue an instruction at each cycle.
The other three threads either are waiting to issue an instruction or are stalled
on some processor event. Under an even distribution of opportunities to issue
an instruction, each thread will have three cycles during which it cannot issue
an instruction for every cycle at which it can issue an instruction. During
those three cycles it does not matter whether the thread is stalled on an event
or ready to issue, since other threads will use the instruction issue opportunity
before the current thread gets another opportunity to issue an instruction.
Consequently, each thread has what might be called a “stall budget” that is
three times the “instruction budget.” Until the number of cycles that the
thread is stalled exceeds this budget, the thread will continue issuing
instructions at its peak rate.

9.3.2 Using Performance Counters to
Estimate Instruction and Stall Budget
Use

The hardware performance counters on UltraSPARC T1 and UltraSPARC T2
can be used to capture some information about what stall events a thread has
encountered. The interesting performance counters for the two processors are
listed in TABLE 9-3.

TABLE 9-3 UltraSPARC T1 and UltraSPARC T2 Performance Counters

Event

UltraSPARC T1
Performance
Counter

UltraSPARC T2
Performance
Counter

Cycles store buffer full SB_full Not available

Floating-point instructions issued FP_instr_cnt Instr_FGU_
arithmetic

Instruction cache misses IC_miss IC_miss

Data cache misses DC_miss DC_miss

Instruction TLB misses ITLB_miss ITLB_miss

Data TLB misses DTLB_miss DTLB_miss

9.3 Throughput Computing 157
With the exception of the store buffer full counter on UltraSPARC T1, the
counters collect data on the number of events, not the number of cycles that
an event consumed. For example, a data cache miss that is satisfied by data
from the second-level cache will take about 18 cycles to complete. The way to
estimate the number of cycles lost by the condition is to multiply the number
of events by the cost of that type of event.

It is relatively easy to use cpustat or cputrack to capture the frequency
of the various events during the run of an application. These can then be
combined to produce an estimate of the total number of cycles spent in stall
conditions. The data is summarized for the example code, run on a 1.2 GHz
UltraSPARC T1-based system, in TABLE 9-4. It is important to appreciate that
the estimates for the costs of the various events are just estimates, not exact
measurements. However, this does not undermine the exercise of estimating
the costs for the various events—order-of-magnitude estimates are as useful in
this context as exact values.

Instruction cache misses that also miss
L2 cache

L2_imiss L2_imiss

Data cache load misses that also miss the
L2 cache

L2_dmiss_ld L2_dmiss_ld

Instructions issued Instr_cnt Instr_cnt

TABLE 9-4 Total Cycles Spent in Stall Events

Event

UltraSPARC
T1
Performance
Counter

Est.
Cost in
Cycles

Per
Event Events

Est.
Cost

in
Sec

Cycles store buffer full SB_full 1 185,264 0

Floating-point
instructions issued

FP_instr_cnt 30 0 0

Instruction cache misses IC_miss 20 1,683,889 0

Data cache misses DC_miss 20 5,059,778,329 84

Instruction TLB misses ITLB_miss 100 217 0

Data TLB misses DTLB_miss 100 686,278 0

TABLE 9-3 UltraSPARC T1 and UltraSPARC T2 Performance Counters

Event

UltraSPARC T1
Performance
Counter

UltraSPARC T2
Performance
Counter

158 Chapter 9 Tools for Developers
Given the number of events, the cost of each event, and the clock speed, the
number of seconds consumed by each type of event can be estimated.

When run with 32 threads, the code uses about 320 seconds of user time and
about 15 seconds of real time. Of those 320 seconds, it is estimated that 84
seconds was spent waiting for data from the second-level cache, and about the
same time again was spent waiting on data from memory. So about half the
total user time is spent stalled waiting on memory

In 320 seconds a single thread issuing an instruction every four cycles would
have issued about 96 billion instructions. The estimated runtime of a code
executing 65 billion instructions is 217 seconds. The code used about 68% of
the available instruction budget.

A single thread running for 320 seconds would have three cycles of every four
spent stalled while three other threads use the core. This represents 288 billion
cycles of potential stall, or 240 seconds. The code has ~170 seconds of total
stall due to cache misses, which corresponds to a utilization of about 71% of
the stall budget.

The conclusion for this particular code is that it is not issuing as many
instructions as it could potentially issue, but it is also not suffering from as
much memory stall as it could be. Looking at it another way, the number of
stall cycles could be increased beyond what it currently is before it would
have an impact on the runtime of the application.

In terms of optimization, reducing the stall cycles on a single thread will
cause that thread to potentially execute faster. The thread will be more
frequently ready to take available instruction slots. However, the thread will
only be able to take these instruction slots if the other threads are not using
them. So the thread will not gain the entire benefit from the reduction in stall
cycles.

Instruction cache misses
that also miss L2 cache

L2_imiss 100 1,262,433 0

Data cache load misses
that also miss L2 cache

L2_dmiss_ld 100 1,015,218,197 84

Instruction count Instr_cnt 4 65,284,655,747 217s

TABLE 9-4 Total Cycles Spent in Stall Events

Event

UltraSPARC
T1
Performance
Counter

Est.
Cost in
Cycles

Per
Event Events

Est.
Cost

in
Sec

9.3 Throughput Computing 159
Probably the most important metric to examine is the total number of
instructions executed by all threads per cycle. It will be possible to improve
throughput by avoiding stall events only if instruction slots are available. If no
instruction slots are available, then any performance improvements must come
from a reduction in instruction count.

9.3.3 Collecting Instruction Count Data
Since instruction count is probably the main metric that determines the
throughput of an application, it is important to be able to measure the
instruction frequencies for the various parts of the application. There are
multiple ways to do this:
• Use Performance Analyzer to profile the instruction count hardware

performance counter. This option is easy to perform but relies on the
hardware performance counter generating an overflow event. This
mechanism is available on UltraSPARC T2, but not on UltraSPARC T1.

• Use the BIT tool (http://cooltools.sunsource.net/bit/) to
extend Performance Analyzer in order to gather instruction count data. This
is discussed in Gathering Instruction Counts With BIT on page 137.

• Use the ifreq tool, which is shipped with the SHADE emulation library
(http://cooltools.sunsource.net/shade/). This tool can also
capture instruction frequency, but it is currently not possible to import the
output from the tool into Performance Analyzer.

• Use cpustat and cputrack to get instruction count information. The
corestat tool uses instruction counts to report the utilization of the
virtual cores.

9.3.4 Strategies for Parallelization
An application can be distributed over multiple cores in a number of ways:
• Multiprocess. A multiprocess application has a number of separate

executables that are run simultaneously to form a single “application.” The
executables typically communicate through mechanisms like signals or
messages, or perhaps through the network stack. The advantage of using
multiple processes is that each process is independent and can potentially
be restarted if it fails, so a single failure does not necessarily bring down
the whole application.

• Multithread. A multithreaded application is a single executable that
spawns a number of threads that do the work. In a Web server, each thread
might be responsible for handling a new page request that comes in. In a
more complex system, each thread may be assigned a specific task. In a

160 Chapter 9 Tools for Developers
computationally intense workload, each thread might compute part of the
problem. Since all the threads share the same memory, one concern is that
an error in a single one of those threads may cause the entire application to
crash. There are two common ways of coding multithreaded applications,
PThreads and OpenMP, both of which are discussed later.

• Multiple systems. It is possible to spread one application over multiple
systems. In some situations this can be achieved by replicating the one
executable and installing on multiple systems, then placing these systems
behind some kind of load balancing mechanism—this is typically how a
large Web site might be hosted—with many systems running an identical
software stack.
Another way of using multiple systems is an extension of multiprocess,
with the processes being placed on different machines. This is commonly
achieved with TCP/IP as an interconnect. In the high-performance
computing domain, it is usual to use the message-passing interface (MPI)
to produce an application that partitions work over multiple systems. MPI
is beyond the scope of this text. The Sun product that supports it is named
ClusterTools
(http://www.sun.com/software/products/clustertools/).

9.3.5 Parallelizing Applications With POSIX
Threads

POSIX Threads, or PThreads, is often used to produce multithreaded
applications. It has a rich API both to control the threads and to provide
various synchronization mechanisms (such as mutex locks) that are necessary
in order to develop applications that produce the correct results. A simple
example PThread application is shown in CODE EXAMPLE 9-26.

9.3 Throughput Computing 161
In the application, each call to pthread_create creates a new thread. The
new thread executes the do_work routine. A single parameter is passed into
the routine. This parameter contains the value of the variable i when the
thread was created. Although it’s tempting to pass the address of the variable
i, unfortunately this does not work since the variable may have changed value
before the thread starts.

The only thing that each thread does is print its identifier. After that, the
thread exits. The main thread calls pthread_join to wait until each
thread has completed its work. Once all the threads have completed, the
master thread prints a message before exiting.

To compile the application, you must include the compiler flags -mt and
-lpthread for versions of Solaris prior to version 10. With Solaris 10, the
threading library was combined with libc, so you no longer need to
explicitly link in libpthread. The steps of compiling and running the
application on a Solaris 10 platform are shown in CODE EXAMPLE 9-27.

CODE EXAMPLE 9-26 Simple PThread Example

#include <stdio.h>
#include <pthread.h>

void *do_work(void *var)
{
 printf("Thread number %i\n",(int)var);
}

void main()
{
 pthread_t threads[5];
 for (int i=0; i<5; i++)
 {
 pthread_create(&threads[i],0,do_work,(void*)i);
 }
 for (int i=0; i<5; i++)
 {
 pthread_join(threads[i],0);
 }
 printf("All threads completed\n");
}

162 Chapter 9 Tools for Developers
When the application is run, the threads will not run in a deterministic order.
In the case shown, the threads clearly do not run in the order in which they
were created.

9.3.6 Parallelizing Applications With
OpenMP

OpenMP is a way of parallelizing an application, using directives that are
inserted into the source code of an application. The OpenMP approach has a
number of advantages:
• The directives are relatively easy to use and hide the complexity of

managing the threads that are necessary for parallelization.
• The compiler will recognize the directives only when a particular flag

(-xopenmp) is specified. If the flag is not present, the original source is
preserved, so a single source base can produce both a serial and parallel
version of the application. This facility is very helpful in determining
whether a bug is due to the serial logic of the application or due to
something introduced during parallelization.

• The directives need be applied only to the parts of the code that are to be
parallelized, so the rest of the code can be left unchanged. That way,
developers can incrementally parallelize the application, picking only the
parts of the application that will benefit from parallelization and leaving
the rest of the application unchanged.

The principal constraint with using OpenMP to parallelize applications is that
it is most effective at being used to parallelize code containing loops.
However, the recently released OpenMP 3.0 specification does provide a task-
based approach.

CODE EXAMPLE 9-27 Compiling and Running PThread Example

$ cc ex.9.26.c -mt
$ a.out
Thread number 0
Thread number 2
Thread number 4
Thread number 3
Thread number 1
All threads completed

9.3 Throughput Computing 163
An example of using OpenMP directives to parallelize a simple application is
shown in CODE EXAMPLE 9-28

The OpenMP directive parallel for tells the compiler to produce a
parallel version of the following loop. Each thread takes a separate part of the
loop; the number of threads is controlled by the environment variable
OMP_NUM_THREADS, although there also exist API functions for the
program to discover or change the number of threads at runtime.

To compile the application, you must use the flag -xopenmp. The flags
-xvpara and -xloopinfo can be used to request the compiler to output
information about the parallelization that has been achieved. The sequence of
compiling and running the example code is shown in CODE EXAMPLE 9-29

A more complex example is shown in CODE EXAMPLE 9-30. This code contains
two parallel regions: the first is a straightforward loop that sets the contents of
the array values; the second parallel region is a reduction.

CODE EXAMPLE 9-28 Example OpenMP Code

#include <stdio.h>

void main()
{
 #pragma omp parallel for
 for (int i=0; i<4; i++)
 {
 printf("Iteration %i\n",i);
 }
}

CODE EXAMPLE 9-29 Compiling and Running Simple OpenMP Example

$ cc -xopenmp -xvpara -xloopinfo -O ex.9.28.c
"ex.9.28.c", line 6: PARALLELIZED, user pragma used
$ export OMP_NUM_THREADS=4
$ a.out
Iteration 1
Iteration 0
Iteration 3
Iteration 2

164 Chapter 9 Tools for Developers
.

A reduction is a situation in the code when a set of values is reduced to a
single value. Addition and subtraction are examples of this, but other
operations like finding the maximum value are also reductions. The problem
with reductions like addition and subtraction is that the order in which the
computation is performed in the parallel case may be different from the order
in which the computation is performed in the serial case.

For example, imagine that a program has to add a list of floating-point
numbers that happens to be sorted in order from the largest number to the
smallest number. With floating-point computation, when a very small number
is added to another number that is of much greater magnitude, the resulting
number may be identical to the original large number. So when the series of
numbers is summed, the result will not reflect the values of the small
numbers. Now, imagine in the parallel case that one thread gets to add up all
the large numbers and another thread gets to add up all the small numbers.
When all the small numbers are added together, they may become sufficiently
large to actually have an impact when added to the sum of all the large
numbers. Although this example is entirely contrived, a similar scenario can
lead to small differences in the results.

CODE EXAMPLE 9-30 Example of a Reduction With OpenMP

#include <stdio.h>

void main()
{
 double total=0;
 double values[1000000];
 int i;
 #pragma omp parallel for
 for (i=0; i<10000000; i++)
 {
 values[i]=i;
 }
 #pragma omp parallel for reduction(+: total)
 for (i=0; i<10000000; i++)
 {
 total += values[i];
 }
}

9.3 Throughput Computing 165
9.3.7 Using Autoparallelization to Produce
Parallel Applications

One final approach to parallelization is to let the compiler parallelize the
application. Two flags control this. The flag -xautopar enables automatic
parallelization. Under this flag, the compiler tries to identify blocks of code
that can be parallelized. The compiler can also parallelize code that contains
reductions. As discussed in Parallelizing Applications With OpenMP on page
162, reductions can alter the results of some floating-point computations.
Consequently, the compiler requires explicit permission from the user to
generate reduction code. The user gives permission with the flag -
xreduction. An example of code that contains a reduction is shown in
CODE EXAMPLE 9-31.

The sequence of compiling is shown in CODE EXAMPLE 9-32.

The number of threads used by an autoparallelized application is set in the
same way as for an OpenMP application, using the environment variable
OMP_NUM_THREADS.

9.3.8 Detecting Data Races With the Thread
Analyzer

A data race occurs when two (or more) threads attempt to access the same
memory location at the same time and one or more of those accesses is a
write. As a simple example, consider two threads. Both threads are going to
read, increment, and write back the same variable total. The sequence of
operations is shown in CODE EXAMPLE 9-33. Note that the variable total is

CODE EXAMPLE 9-31 Example of Code Containing Reduction

double total(double *values, int size)
{
 double t=0;
 for (int i=0; i<size; i++)
 {
 t+=values[i];
 }
 return t;
}

CODE EXAMPLE 9-32 Compiling With Automatic Parallelization
$ cc -c -O -xautopar -xreduction -xvpara -xloopinfo ex.9.31.c
"ex.9.31.c", line 4: PARALLELIZED, reduction, and serial version generated

166 Chapter 9 Tools for Developers
declared as volatile, which stops the compiler from holding the variable in
a register and ensures that the variable is loaded from memory before the
increment and stored back afterwards.

The results of compiling and running the program twice are shown in
CODE EXAMPLE 9-34. The first time the program runs, it reports a result of
63,165, but the second time the same code reports a result of 132,400. The
correct answer would be for each thread to increment the variable 100,000
times, yielding a value of 200,000.

Although both threads attempted to increment the variable, only one of the
increments was actually recorded. In common with many data corruption
bugs, this problem can be hard to detect because the result of the error will
probably be detected far from the location of the error in the code.

CODE EXAMPLE 9-33 Example of Code Containing a Data Race

#include <stdio.h>
#include <pthread.h>

volatile int total=0;

void *do_work(void *var)
{
 for (int i=0; i<100000; i++)
 {
 total+=1;
 }
}

void main()
{
 pthread_t threads[2];
 pthread_create(&threads[0],0,do_work,0);
 pthread_create(&threads[1],0,do_work,0);
 pthread_join(threads[0],0);
 pthread_join(threads[1],0);
 printf("total = %i\n",total);
}

CODE EXAMPLE 9-34 Compiling and Running Code Containing a Data Race

$ cc -O ex.9.33.c -mt -o ex.9.33
$ ex.9.33
total = 63165
$ ex.9.33
total = 132400

9.3 Throughput Computing 167
Fortunately, Sun Studio 12 includes the Thread Analyzer, which detects and
reports errors in multithreaded code. To use the tool, you must compile the
program with the compiler flag -xinstrument=datarace, which tells
the compiler to include the necessary instrumentation to record the errors. It is
recommended that you also include the debug flag -g. The code is then run
under collect with the option -r on. These steps are shown in
CODE EXAMPLE 9-35.

Once the run has completed, the resulting experiment can be examined with
the Thread Analyzer GUI, as shown in FIGURE 9-9. The initial display is a list
of all the potential data races in the code.

FIGURE 9-9 Data Races Shown in the Thread Analyzer GUI

The user can select any one of the data races and see which lines of source are
causing the problem, as shown in FIGURE 9-10. The dual-pane display shows
the source code from the two places where the same memory location is being
accessed. In this particular example, the two accesses come from the same
line of source being executed by two different threads.

CODE EXAMPLE 9-35 Compiling for Data Race Detection

$ cc -g -O -xinstrument=datarace ex.9.33.c -mt -o ex.9.33
$ collect -r on ex.9.33
Creating experiment database tha.2.er ...
total = 167277

168 Chapter 9 Tools for Developers
FIGURE 9-10 Lines of Source Containing Data Race

There are two typical solutions to data races: locking or rearchitecting.

The most obvious solution is to place some form of locking around the
problem code so that only one thread can update the memory at a time. In
code parallelized with PThreads the common form of locking is a mutex lock.
For OpenMP there exists a critical section directive that ensures that only one
thread executes a region of code at any one time.

An alternative to mutexes is the use of atomic operations. An atomic operation
is one that completes as if it were a single operation; that is, no other thread
can interrupt and corrupt the operation. Solaris 10 has code for a number of
atomic operations included in libc. The range of supported operations can be
found under man atomic_ops.

The section on Avoiding Data Races on page 169 explores the costs of these
various methods of sharing data among threads.

9.3 Throughput Computing 169
The second solution to data races is to rearchitect the code so that data is not
shared among threads. The advantage of this approach is that it avoids the
synchronization codes altogether, but this avoidance is not always possible to
achieve in practice.

9.3.9 Avoiding Data Races
The most obvious way of avoiding the data race shown in CODE EXAMPLE 9-33
is to place a mutex lock around the update of the variable. This structure
ensures that only a single thread updates the variable at any one time. Because
the majority of the work that the threads perform is the updating of the
variable protected by the mutex lock, the performance will be slower than
with the serial case. The modified code is shown in CODE EXAMPLE 9-36.

CODE EXAMPLE 9-36 Avoiding Data Races By Means of Mutex Locks

#include <stdio.h>
#include <pthread.h>

volatile int total=0;
pthread_mutex_t total_mutex;

void *do_work(void *var)
{
 for (int i=0; i<100000; i++)
 {
 pthread_mutex_acquire(&total_mutex);
 total+=1;
 pthread_mutex_release(&total_mutex);
 }
}

void main()
{
 pthread_t threads[2];
 pthread_mutex_init(&total_mutex,0);
 pthread_create(&threads[0],0,do_work,0);
 pthread_create(&threads[1],0,do_work,0);
 pthread_join(threads[0],0);
 pthread_join(threads[1],0);
 pthread_mutex_destroy(&total_mutex);
 printf("total = %i\n",total);
}

170 Chapter 9 Tools for Developers
The sequence of compiling and running the code is shown in
CODE EXAMPLE 9-37. The code produces the correct answer of 200,000.

It is interesting to compare the performance of an SMP and a CMT system on
the above code. If the code is edited so that only a single thread is created, the
timing on a 900 MHz V880 and on a 1.2 GHz T2000 is roughly the same.
However, when two threads are created, the performance is very different, as
shown in TABLE 9-5.

In both cases, having to contend for the mutex causes the application to run
slower than in the case where the mutex is uncontended. However, the V880
takes five times longer when there are two threads than the situation in which
there is a single thread, compared to the CMT T2000 which takes just over
twice as long—that is, it takes twice as long to do twice the work.

The reason for this difference in performance is that on the V880 multiple
threads have to share the mutex through memory. For this system, memory
latency is a couple of hundred cycles. In contrast, the T2000 can share the
mutex through the second-level cache, or perhaps even through the first-level
cache. Cache latency is substantially less than memory latency.

An alternative way of modifying the code is to use an atomic operation.
Atomic operations are included in libc in Solaris 10 (see man
atomic_ops). These are actually short routines that behave as if the
operation were atomic (that is, cannot be interrupted by another thread). The
modified code is shown in CODE EXAMPLE 9-38.

CODE EXAMPLE 9-37 Compiling and Running Code Containing a Mutex Lock

$ cc -O -o ex.9.36 -mt -lpthread ex.9.36.c
$ ex.9.36
total = 200000

TABLE 9-5 Comparing Single and Multiple Thread Access to Mutex

Platform Single Thread Two Threads, Twice the Work

900 MHz V880 1.8 s 10.0 s

1.2 GHz T2000 2.5 s 6.2 s

9.3 Throughput Computing 171
The difference in performance on the T2000 is impressive. The two-threaded
version of the code completes in about 0.8 s. Interestingly, the two-threaded
version completes twice as much work in the same wall time, but uses twice
the user time. The atomic operations have a much lower cost than acquiring
and releasing the mutex, which leads to much better scaling. Of course, an
SMP system would still suffer a substantial performance penalty from using
atomic operations in this way because the sharing would have to take place
through memory.

Two directives in OpenMP handle the same situation. CODE EXAMPLE 9-39
shows an OpenMP code containing a data race. This code has two loops that
are parallelized by OpenMP. The first loop sets up an array, and the second
loop calculates the sum of all the values in the array.

CODE EXAMPLE 9-38 Using Atomic Operations

#include <stdio.h>
#include <pthread.h>
#include <atomic.h>

volatile unsigned int total=0;

void *do_work(void *var)
{
 for (int i=0; i<10000000; i++)
 {
 atomic_add_32(&total,1);
 }
}

void main()
{
 pthread_t threads[2];
 pthread_create(&threads[0],0,do_work,0);
 pthread_create(&threads[1],0,do_work,0);
 pthread_join(threads[0],0);
 pthread_join(threads[1],0);
 printf("total = %i\n",total);
}

172 Chapter 9 Tools for Developers

The process of compiling and running the code with one and two threads is
shown in CODE EXAMPLE 9-40. The compiler flag -xvpara causes the
compiler to emit a warning about the potential data race in the second loop.
The compiler flag -xloopinfo causes the compiler to emit information
about the loops it has parallelized. Unsurprisingly, the code produces incorrect
results when run with more than one thread.

Two directives can be used to avoid the data race condition. The first is the
critical section directive. This directive specifies that a section of code should
be executed by only one thread at a time. The modified code is shown in
CODE EXAMPLE 9-41.

CODE EXAMPLE 9-39 OpenMP Code Containing a Data Race

#include <stdio.h>

void main()
{
 double a[100000];
 int i;
 double total=0;
 #pragma omp parallel for
 for (int i=0; i<100000; i++)
 {
 a[i]=i;
 }
 #pragma omp parallel for shared(total)
 for (int i=0; i<100000;i++)
 {
 total+=a[i];
 }
 printf("total = %f\n",total);
}

CODE EXAMPLE 9-40 Compiling and Running OpenMP Program Containing Data
Race

$ cc -O -xopenmp -xvpara -xloopinfo -o ex.9.39 ex.9.39.c
"ex.9.39.c", line 13: Warning: inappropriate scoping
 variable 'total' may be scoped inappropriately as 'shared'.
 write at line 16 and write at line 16 may cause data race

"ex.9.39.c", line 9: PARALLELIZED, user pragma used
"ex.9.39.c", line 14: PARALLELIZED, user pragma used
$ export OMP_NUM_THREADS=1
$ ex.9.39
total = 4999950000.000000
$ export OMP_NUM_THREADS=2
$ ex.9.39
total = 3749975000.000000

9.3 Throughput Computing 173

When this code is run, it produces the correct answer in both the serial and
parallel cases. This code is analogous to using a mutex lock to protect access
to the variable total. However, a more efficient directive can be used in this
situation. That is the atomic directive, which specifies that the next
operation be performed atomically. The code using this directive is shown in
CODE EXAMPLE 9-42.

CODE EXAMPLE 9-41 Avoiding Data Race With the OpenMP Critical Section
Directive

#include <stdio.h>

void main()
{
 double a[100000];
 int i;
 double total=0;
 #pragma omp parallel for
 for (int i=0; i<100000; i++)
 {
 a[i]=i;
 }
 #pragma omp parallel for shared(total)
 for (int i=0; i<100000;i++)
 {
 #pragma omp critical
 {
 total+=a[i];
 }
 }
 printf("total = %f\n",total);
}

CODE EXAMPLE 9-42 Avoiding Data Race With the OpenMP Atomic Directive

#include <stdio.h>

void main()
{
 double a[100000];
 int i;
 double total=0;
 #pragma omp parallel for
 for (int i=0; i<100000; i++)
 {
 a[i]=i;
 }
 #pragma omp parallel for shared(total)
 for (int i=0; i<100000;i++)
 {
 #pragma omp atomic
 total+=a[i];
 }
 printf("total = %f\n",total);
}

174 Chapter 9 Tools for Developers
9.3.10 Considering Microparallelization
CMT processors have two very significant advantages over more traditional
approaches. The first advantage is having a large number of threads. The
second is that these threads typically have a low cost of synchronization—the
synchronization takes place at a level of cache that is very close to the core.

The combination of these two advantages leads to the idea that it should be
possible on CMT processors to parallelize sections of code where the
synchronization costs on traditional processors outweigh the performance
gains from using multiple threads. Microparallelization is the approach where
a small quantum of work is distributed among multiple threads; the possibility
of doing this relies on the synchronization costs being kept low.

A very general framework for microparallelization can be described as
follows:
• Each thread should identify the next quantum of work that it will perform.
• Each thread checks that it is safe to perform its quantum of work.
• Once the work is completed, the thread updates status to enable dependent

threads to start.

An advantage of this framework is that it can handle the constraint that one
item of work may be unable to start until a previous item has completed. This
flexibility significantly increases the number of situations to which
microparallelization can be applied. CODE EXAMPLE 9-43 shows a code with
potential dependencies. The danger is that same element of the values array
could be pointed to by multiple indexes held in the index array. This
example happens to be a type of reduction, so an atomic add operation could
be used to avoid the potential data race. Microparallelization could also
perform the same task, although with substantially more overhead. The
objective of the example is to demonstrate the structure rather than the
potential performance gains.

CODE EXAMPLE 9-43 Code Containing Possible Dependencies Between Iterations

double calc(int *index, double *values)
{
 for (int i=0; i<10000; i++)
 {
 values[index[i]]+=i;
 }
}

9.3 Throughput Computing 175
The first thing that each thread needs to do is identify which iteration it is
responsible for calculating. One way of achieving this is shown in
CODE EXAMPLE 9-44.

The example code creates two threads. It uses the variable completed to
hold the threads until both have been created and are running. Once the two
threads are running, they work through the main loop, each attempting to get
the next iteration of work. The atomic Compare and Swap (cas) instruction
ensures that only one thread will execute each iteration. Once a thread has

CODE EXAMPLE 9-44 Identifying Iteration to Compute

#include <atomic.h>
#include <pthread.h>

volatile unsigned int next;
volatile unsigned int completed;

void *do_work(void* value)
{
 unsigned int my_iteration=0;
 unsigned int next_iteration;
 /*signal that the thread is ready*/
 atomic_add_32(&completed,-1);
 /*wait for all threads to be ready*/
 while (completed>=0){}
 /*main loop*/
 while (next<10000)
 {
 next_iteration=atomic_cas_32(&next,my_iteration,my_iteration+1);
 if (next_iteration==my_iteration)
 {
 do_iteration(my_iteration);
 }
 my_iteration=next_iteration;
 }
}

void main()
{
 pthread_t threads[2];
 next=0;
 completed=2;
 pthread_create(&threads[0],0,do_work,0);
 pthread_create(&threads[1],0,do_work,0);
 pthread_join(threads[0],0);
 pthread_join(threads[1],0);
}

176 Chapter 9 Tools for Developers
acquired the right to perform a particular iteration, it calls the
do_iteration routine to handle the work. The do_iteration routine is
shown in CODE EXAMPLE 9-45.

The code that does the work must first check that no iterations in flight will
use the value of the index for this iteration. Once this test passes, the code can
perform the calculation safe in the knowledge that no other thread will read or
modify the element being computed. Once the calculation is completed, the
thread updates the variable completed, which indicates which iterations
have been successfully computed.

One final snippet of code is necessary to initialize the arrays index and
values. This is shown in CODE EXAMPLE 9-46. The code deliberately sets up
the array index to point to only the first eight elements in the array
values.

CODE EXAMPLE 9-45 Code to Ensure Safety and Perform Work

int index[10000];
int values[10000];
...
void do_iteration(unsigned int this)
{
 int i;
 int ok;
 /*check that it is safe to start iteration*/
 do
 {
 ok=1;
 for (i=completed; i<this; i++)
 {
 if (index[i]==index[this])
 {
 ok=0;
 }
 }
 } while (ok==0);
 /*do calculation*/
 values[index[this]]+=this;
 /*Indicate work completed*/
 while (atomic_cas_32(&completed,this,this+1)!=this){}
}

CODE EXAMPLE 9-46 Code to Initialize the Arrays

 for (int i=0; i<10000; i++)
 {
 values[i]=0;
 index[i]=i&7;
 }

9.3 Throughput Computing 177
This demonstration of microparallelization proves that the work can be split
among multiple threads. However, it is a poor demonstration for performance
gains because the amount of work performed by each thread is dwarfed by the
synchronization costs. Obviously, a more complex calculation for each
iteration would lead to more time being spent in performing the work and a
correspondingly smaller proportion of the time lost to synchronization costs.

9.3.11 Programming for Throughput
CMT processors introduce a change in the way that developers should
approach application performance. The traditional approach is to produce a
serial application, tune the application by eliminating stalls such as cache
misses, then once the stall conditions have been eliminated, to consider
parallelizing the application to further improve performance. Unfortunately,
this approach leads to the situation in which the application is already very
complex by the time parallelization is considered, so parallelization is often
not a trivial task.

Collecting Instruction Count Data on page 159 discussed how, for CMT
processors, stall events are no longer the dominant factor that determine
performance and that instruction count is more likely to be the factor to
control to improve performance.

CMT processors also have the advantage, outlined in Avoiding Data Races on
page 169, that the cost of synchronizing multiple threads is much lower than
is found on a traditional SMP-type system. This observation fits well with the
fact that a large number of virtual processors are ready to execute these
threads.

These factors combine in the observation that for CMT processors (and by
extension most future processors, since almost all future processors will have
some multithread capability) the approach to obtain maximal performance is
to develop multithreaded applications, which are then subsequently tuned to
reduce instruction count (and possibly stall events). Fortunately, designing
multithreaded applications from the start avoids the situation alluded to earlier
in which the capability of using multiple threads has to be “bolted on” to an
existing serial application.

The conclusion is that CMT processors promote the design of parallel
applications. They reduce, or remove, the traditional barriers to
parallelization, such as synchronization costs, reduce the importance of
eliminating stall events, and provide a large number of threads to support the
application.

CHAPTER 10

System Simulation, Bringup, and
Verification

The SPARC Architectural Model (SAM) is a flexible, reconfigurable
virtual platform for system simulation. It allows users to model various
SPARC-based systems. The virtual platform has an important role for
system exploration, software bringup, and development when new
hardware is not ready—users can run software on the simulated system
even though hardware is not available. The virtual platform can boot
Open Boot PROM (OBP) and the Solaris operating system, and it creates
an environment very similar to that created by real hardware.

Other benefits may accrue from the use of the virtual platform: it
provides much better observability than the real hardware and it creates a
much better environment for debugging and system exploration.

SAM is intensively used for collecting architectural traces from
benchmark workloads (TPCC, SPECWeb, ICPERF, SPECJAppServer,
ICPERF, SPECJbb, SPEC CPU, and the like). It is also used for
performance modeling, system bringup, system software and device
driver development, and RTL verification.

This chapter contains the following sections:
• SPARC Architecture Model on page 180
• System Configuration File on page 186
• SAM Huron Sim Architecture on page 190
• Creation of a Root Disk Image File on page 208
• Debugging With SAM on page 210
• Cycle-Accurate Simulation on page 217
• Verification by Cosimulation on page 219
179

180 Chapter 10 System Simulation, Bringup, and Verification
10.1 SPARC Architecture Model
SAM simulates a system consisting of the following components:
• One or more SPARC CPUs
• Physical memory (RAM)
• Serial console device
• Disk subsystems (for example, SCSI, FibreChannel)
• Network cards (for example, Gigabit-Ethernet device drivers—GEM and

Cassini)

Since SAM can run the Solaris OS, most of the high-level functionality built
on top of the OS kernel is available in the simulation—TCP/IP, file systems,
kernel modules, kernel debugger, multiple users, and so forth.

SAM is organized as a collection of dynamically loaded modules that simulate
various devices. To initialize the simulator, the main module processes a
special configuration file to instantiate and configure other device modules
that constitute the simulated system. The configuration file contains a set of
general configuration parameters, for example: CPU and system clock
frequency; number of worker threads on the host machine to simulate virtual
processors; platform- and environment-specific parameters; CPU; and debug
level. It also provides names and configuration parameters of the CPU and
device modules in device tree. The specification is somewhat similar to the
Solaris device tree; each line describes a device module and contains
parameters for simulated devices.

SAM can be run in multithreaded mode. Each simulated virtual processor and
I/O device controller can be bound to a thread running on a separate host
machine processor. SAM is optimized to simulate a multiprocessor system on
a multiprocessor host machine. A configuration file maps a set of simulated
virtual processors to a set of threads on the host machine. Each simulated
virtual processor is allowed to advance independently for a very short period
of time. However, a virtual processor is never simulated by more than one
simulation thread. Device models should have an appropriate synchronization
mechanism to guarantee data integrity in a multithreaded simulation
environment.

SAM can manage simulated time across all host machines. It implements an
event queue to keep track of when the data from the simulated devices should
be processed. Typical simulation speed is approximately 6–10 MIPS.

10.1 SPARC Architecture Model 181
SAM supports system dump/restore capabilities. Simulation can be stopped at
any time to create a checkpoint. Later, simulation can be restored and resumed
from that checkpoint. This feature is useful for a quick restart after a long
warm-up run and also for debugging.

SAM has a built-in user interface (UI) based on a simple and easy-to-use
command language. It has a rich set of basic commands, for example, run
and stop to control simulation, break to set a breakpoint, read-reg to
examine register state. The UI also supports scripts written in Python.

Two internal interfaces allow the simulator to be reconfigurable:
• Virtual CPU (VCPU) interface to plug-in CPU models
• Module Model interface (MMI) for I/O models. MMI is used for loading

libraries, creating device instances, mapping device physical I/O addresses,
enabling register-module-specific user commands, and more.

The next subsections explore the following SAM features in more detail:
• SPARC CPU
• VCPU interface
• Device model interface (MMI)

10.1.1 SPARC CPU Model
SAM supports various levels of SPARC CPU models. A CPU model consists
of a number of CPU cores, each of which can contain a number of virtual
CPU (strand) models. The structure and functionality of the CPU model
tightly reflects the actual hardware. CPU and memory models could be
configured in a minimal system configuration for verification and some initial
system software development.

Note Python was chosen because it is a powerful, portable,
open-source, clear scripting language, supports object-
oriented programming, has access to a large number of
built-in and external libraries, and has an easy interface
to code written in C or C++.

Note It is important to mention that the SAM module need not
represent a real device. Some other simulator
components, for example, tracer module, additional UI
commands, timing model, and the like could well be
implemented as dynamically loaded libraries.

182 Chapter 10 System Simulation, Bringup, and Verification
The standard CPU model included in SAM does not model time. A single step
(cycle) is implemented as Fetch, Decode, Execute, Retire the architectural
state in one single operation; in other words, a CPU model is a simple
instruction-level simulator. More advanced timing models are not included in
standard SAM distribution.

Caches are not modeled because they are not required by the SPARC
specification.

10.1.2 VCPU Interface
The VCPU interface hides the details of the virtual-processor-specific
implementation. It is an abstract interface to the “virtual CPU.” For a CPU
with multiple strands, it represents each strand; for a CPU without strands, it
represents the CPU. The CPU module is built as a shared library. A few
instances of CPU objects can be created, each CPU object can have a few
CPU cores, and each core can have a few strands.

The interface hides the hierarchical nature of internal CPU structures and
presents a flat array of VCPU objects. The model could be partitioned to run
on separate threads of the host machine—interface methods should be MP
safe.

The VCPU interface has these components:
• Control interface
• System interface (memory and I/O)
• Trace interface

Note The interface to a loadable module consists of two
elements: exported and imported interfaces.
Exported interfaces are routines in CPU module that are
called from outside the module. Pointers to the routines
exposed by the CPU module are defined in the exported
interface structure.
Imported interfaces are routines that the CPU module
calls to gain access to the rest of the system. Imported
interfaces are defined by the imported interface
structure, which is a set of pointers that the CPU module
uses to send requests to the system modules.
So, the Control interface is defined in a VCPU exported
interface, and System and Trace interfaces are defined in
an imported interface.

10.1 SPARC Architecture Model 183
10.1.2.1 Control Interface
The Control interface allows users to create, destroy, reset, save, and restore
VCPU instances and to access architecture-visible state for all virtual
processors in the system.

Here is an example that creates a vcpu instance.

After the vcpu instance is created, VCPU methods can access the vcpu
instance state.

The Control interface has methods to read and write register state, advance
simulation n number of instructions or cycles, set and delete breakpoints,
translate address in the current vcpu context, and so forth.

The VCPU Control interface allows users to hook up an external source-level
debugger or user-interface front-end module.

10.1.2.2 System Interface
The CPU module imports a system interface to access the rest of the system—
a set of pointers that are passed to the VCPU at creation time. It has methods
to access memory and I/O address space.

Memory is represented by an abstract interface to model different levels of the
memory hierarchy, including L2 and L3 caches. Currently, a sparse memory
model and flat memory models are in use. For performance, the memory
model option is defined at build time instead of runtime.

Cache models are not provided.

CODE EXAMPLE 10-1 Creating a vcpu Instance

// open shared library, lib_name is the name of cpu shared library.

void *cpu_lib_handle = dlopen (lib_name, RTLD_LAZY|RTLD_
GLOBAL|RTLD_PARENT);

// extract cpu lib exported interface

VCPU_GetIntfFn get_interface = (VCPU_GetIntfFn)dlsym (cpu_
lib_handle, "get_ex_interface");

// obtain exported cpu interface

VCPU_ExInterface g_cpu_ex_int

get_interface (&g_cpu_ex_intf);

//Create a vcpu instance

Vcpu * vcpu = (Vcpu*)g_cpu_ex_intf.create(&config_info, imp_intf);

184 Chapter 10 System Simulation, Bringup, and Verification
10.1.2.3 Trace Interface
The Vtracer interface is an abstract interface for connecting different
analyzers and performance models. The CPU model calls Vtracer methods to
output complete information about architecture state changes for every
instruction.

The information for every instruction is collected in a special instruction
structure that accumulates state value changes for each VCPU. Separate
structures collect trap information and TLB update information.

10.1.3 Module Model Interface
The Module Model interface (MMI) lets users plug a device module into the
SAM simulation environment. All API function and type names are prefixed
with the mmi_ prefix. A device model is built as a shared library that is
dynamically loaded into SAM during initialization.

MMI provides a common framework for the following:
• Loading a module dynamic library
• Configuring a module, notifying module instances of certain events (such

as the addition or deletion of another module)
• Supplying a mechanism for dump and restore operations
• Registering user-interface commands
• Handling module export/import interfaces
• Supporting the event queue that models time
• Providing module information

The protocol of how SAM modules interact with one another depends on the
agreed-on interfaces they exchange through MMI.

Part of MMI is more specific to certain type of devices, for example, host bus
bridges, some other devices (like the system interface unit (SIU), ROM, TOD,
consoles) that are attached to the simulated system bus (interconnect). Actions
of that part of MMI include the following:
• Accessing memory
• Signaling an interrupt
• Mapping the portions of I/O physical address space
• Mapping some specific ASI registers

The MMI interface has global routines available to each module to access
simulated memory and to send interrupts to the destination virtual processor.

10.1 SPARC Architecture Model 185
Overall, the MMI interface is generic enough to provide a foundation for
building a flexible system simulator.

10.1.3.1 SAM Configuration File
A SAM configuration file describes all devices in the simulated system. The
sysconf directives in the configuration file specify the device module, instance
name, and its associated properties. Each sysconf line specifies the module to
be loaded, if necessary, and the name of the device node to be instantiated,
followed by the properties associated with the instance in the form of
name=value pairs. A device model built as a shared object (.so file) typically
has only one module that plugs into SAM. Internally, within the device model,
there could be a hierarchy of components.

An instance is what actually represents a device in SAM. There are generally
multiple instances of a given device module. Each instance can be referenced
with an opaque mmi_instance_t handle. The handle is used by the
module to refer to its own instance as well as to other instances to get an
exported interface. SAM keeps a list of all available loaded device modules.
The module handle can be retrieved by module name.

To properly instantiate a device node, SAM calls the instance initialization
function registered by the device module.

10.1.3.2 Module Loading and Unloading
Modules can be loaded in any order as specified in the configuration file. In
some cases (the tracer module, for example), modules can be unloaded at any
time. Each module is notified when another module changes status. To enable
interaction with other modules, each module has to obtain an exported
interface—pointers to the interface routines. When a module is unloaded,
other modules should receive the corresponding configuration change
notification and remove their interface pointers to the unloaded module.

10.1.3.3 Module Initialization
Each module has an initialization method that should be called to create an
instance of this module. So, the first thing each module should do when its
library is loaded is register with the SAM simulator a pointer to the
initialization method. The instance initialization function is called by SAM
whenever a new instance of the module is created—usually when the
corresponding line in the system configuration file is processed. An opaque
instance handler is used in MMI calls to access methods for a particular

186 Chapter 10 System Simulation, Bringup, and Verification
module instance. Normally, the instance initialization routine will parse config
parameters from the configuration line to find out which address range the
device module is supposed to be mapped to. It also registers a few other
routines to be called for the following purposes:
• To obtain module information. This function is called through the

modinfo user-interface command. It prints any important information
about the module.

• To get a module interface. Here, interface means an agreement between the
client of the interface and the provider.

• To notify modules that another module is loaded or unloaded.
• To read or write when the I/O address range to which the module is

mapped is accessed.

10.2 System Configuration File
A SAM module is a shared object (ELF file), typically containing the
implementation of a particular device model: for example, a SAS controller;
or perhaps a conceptual simulation object, for instance, a PCIE bus; or even a
completely pseudo device, for instance, an LL (Local Loopback file system)
device. Any dynamically loaded shared object that follows the semantics of
SAM’s MMI (mmi.h) can be called a SAM module.

sysconf is a module specification directive in SAM. It specifies which
module to configure in a particular simulation instance and how to instantiate
it. It also indirectly functions to create a device tree hierarchy in SAM (which
closely resembles that in Solaris). The directives are specified in a
configuration file that is processed by SAM, one per line. So, all together, the
sysconf directives specify the simulated system configuration.

Once loaded, a device module cannot be unloaded at the middle of the run.

10.2.1 The sysconf Directive Format
sysconf mod-name instance-name [arg-name[=arg-value]]* [-ddebug-level]
sysconf -p mod-path

where
• mod-name — The name of a SAM module. It is the identifier of the shared

object without the trailing .so; for example, sas is the mod-name for a
SAS controller whose implementation resides in sas.so.

10.2 System Configuration File 187
• instance-name — The unique instance name of this module in a SAM
configuration. It is possible to have multiple instances of a module in a
single configuration (if allowed by module semantics). All instance names
in a particular simulation instance (whether the same or a different module)
must be unique; otherwise, SAM flags a fatal error. Many modules
optionally support a UI command with the same name as its instance name
(run help instance-name to verify).

• arg-name — The name of a configuration parameter supported by a
module. A module can have zero or more such parameters. An argument
can be mandatory or optional. Its value can be boolean (that is, its presence
or absence sets the parameter value) or it can have an arg_value.

• arg-value — The value part of the name=value pair of a module’s
configuration parameter. The semantic and legal values of arg-value are
defined by a particular module. For example, a console module may
support a configuration parameter bg_color. A user may set the value of
this parameter to a valid value, such as black. This would appear in the
sysconf directive line as bg_color=black.
The configuration parameters and their valid values vary from module to
module and are part of the module-specific documentation. The
configuration parameters are interpreted by individual modules.

• -ddebug-level — An optional debug flag supported by a particular
module. The debug-level can be 0, 1, or 2, with 0 being debug off (the
same as when -d is not present), 1 (verbose), and 2 (verbose++).
The semantics of level and printed information varies from module to
module. Typically, a module would export a UI command that can modify
the flag value during runtime.

• mod-path — In a typical SAM installation, the modules reside in install-
dir/lib directory and the SAM binary resides in install-dir/bin. SAM by
default looks for modules in $ORIGIN/../lib. However, a user can
override the default by specifying -p mod-path, whereby SAM will first
look into the mod-path directory for modules. Each sysconf -p adds a
lookup path, searched in LIFO order, the last being the default
$ORIGIN/../lib. It is recommended that the default search path be
used but that this feature not be used under normal circumstances.

188 Chapter 10 System Simulation, Bringup, and Verification
10.2.2 Examples
This section presents examples of sysconf directives.

The following directive loads ioram.so and creates an instance of ioram
called obp. (ioram is a module that implements ROM.) The module loads
file openboot.bin in simulated ROM at PA FF F008 000016. The size of
the ROM is 8000016 bytes.

The following two examples show how a device tree hierarchy is created with
a sysconf directive. Here a SAS controller sas0 is connected to a PCIE bus
pcie_a, which is connected to host bus bridge piu.

The directive below creates an instance of pcie_bus module and names it
pcie_a. The bus is upstream. The bridge instance name is piu.

The directive below creates a SAS controller with name sas0 and connects it
to PCIE bus named pcie_a. The controller is connected as device 0,
function 0 on the PCIE bus. The targets parameter provides information
about the target SCSI disks attached to sas0.

Note The sysconf command specification for CPUs is a little
different. mod-name is always cpu. The arg-value of
arg-name cpu-type determines the CPU library to
load. For example, the T2 CPU is configured as
sysconf cpu cpu-type=riesling_n2_vcpu
name=cpu0 clock-frequency=1417000000 id=0

The CPU library is libriesling_n2_vcpu.so in this
case, loaded from $ORIGIN/../lib.

sysconf ioram obp start_pa=0xfff0080000 size=0x80000
file=openboot.bin

sysconf pcie_bus pcie_a bridge=piu

sysconf sas sas0 bus=pcie_a dev=0 fun=0 targets=sasdisk.init

10.2 System Configuration File 189
10.2.3 Simulated Time in SAM
The STICK register provides a synchronized, system-wide clock that is used
for high-resolution time-stamping. Earlier UltraSPARC processors that did not
have the STICK register used instead a counter, called the TICK register,
driven at the CPU’s clock speed. Consequently, processors operating at
different speeds would show their TICK registers incrementing at different
rates. To model the time in the simulator, we must define a policy for how and
when the value of the STICK register should be updated.

SAM has two parameters that affect how time is maintained in SAM.
• mips — Determines how often the CPU’s STICK register is incremented.

For example, if mips is set to M, SAM will increment STICK every M
instructions. If there is more than one CPU, STICK is incremented after
each CPU has executed M instructions. A typical value of mips is 1000 (1
billion instructions/CPU/sec).
The mips value is configured in the rc file at startup, using the conf
directive, for example, conf mips 1000. For benchmark runs, the
mips value is derived from cpustat counters. The mips parameter can be
changed at any time during simulation.

• stickfreq — Determines by how much the STICK register is
incremented every mips instructions. For example, if the STICK
frequency is set at 1.4 GHz (stickfreq = 1.4 billion) and mips is set at
1000, then STICK is incremented by 1400 every 1000 instructions.
The STICK frequency is set with the conf directive in the rc file at
startup, for example, conf stickfreq 1417000000. The STICK
frequency may not be changed after initialization. It should be noted that
the STICK frequency configured in SAM should match the STICK
frequency specified in the machine description to the guest OS. If they do
not match, then the simulated OS may see time progression that is different
from the user settings.

So, the smallest unit of simulated time in SAM is 1 microsecond. For
example, if mips = M and stickfreq = N, SAM executes M instructions
before incrementing the STICK register by N /106. This is 1 µsec worth of
simulation.

Simulated time can be seen on SAM through the time of the day (tod) device
model at debug level 2. This should match the uptime and date command
output in simulated Solaris.

Care should be taken to set mips and stickfreq with reasonable values
(close to reference platforms).

190 Chapter 10 System Simulation, Bringup, and Verification
10.3 SAM Huron Sim Architecture
Let’s consider an example of configuring a simulation platform called Huron.
Don’t confuse it with a production system; there is no a real product with a
configuration like that of Huron as described here.

It is important to notice that some I/O modules could physically reside on the
processor chip. Huron is just a model consisting of a collection of components
configured to form the simulated system.

FIGURE 10-1 is an overview of all major components of the T2 Huron SAM
simulation platform. Details for each major module are described later.

The Huron SAM simulation platform is a symmetric multiprocessor system
consisting of homogeneous multithreaded SPARC cores tightly coupled with a
common memory subsystem. FIGURE 10-1 shows a CPU module attached by
the VCPU interface and an I/O root complex attached by the MMI. The user
interface (UI), which is an integral part of the main SAM module, allows
users to control the simulated system.

The PCIE-to-PCI bridge can be replaced by a PCIE switch, with PCIE-PCI
bridges connected to downstream ports. Other PCIE devices (for example,
network controllers) can be connected either to the PCIE bus or directly to the
downstream switch ports.

SwitchSim models a network and also synchronizes multiple SAM simulation
environments. Network interface controller modules (GE and CE) are
included in the diagram for completeness. SAM network modeling is not
described in this chapter.

10.3 SAM Huron Sim Architecture 191
FIGURE 10-1 Overview of Major Components of the Huron SAM Simulation
Platform

User Interface

SAM

MMI

V

C

P

U

RAMT2 CPU

TODIORAM Console PIU NCU

System I/O Bus (Virtual)

PCIE Bus

PCI Bus

PCIE
Bus

PCIE Bus Interface
PCIE Device Interface

PCIE to PCI
Bridge

PCI
Bus

PCI Bus Interface

PCIE Bus Interface PCIE Device Interface

PCI Bridge Interface

PCI Bus InterfacePCI Device Interface

.
53c875

SCSI
ISP2200

FC LL GE SE

SCSI Bus FCAL

Instances SCSI
Disks

Sim Host

File Sys

SwitchSim Other Sims

192 Chapter 10 System Simulation, Bringup, and Verification
10.3.1 Sample Configuration File for T2
Huron on SAM

Here is a sample configuration file for T2 Huron system. The file starts with
configuration parameters common to the entire system: the size of simulated
memory, system performance parameters, files that should be loaded to
simulated memory, and the name of the directory where the device module
can be found. After that, each device module is configured by a separate
sysconf line. Altogether, sysconf lines describe the Huron system device tree.

CODE EXAMPLE 10-2 Sample Configuration File for the T2 Huron System

conf ramsize 256M
conf mips 1000

conf stickfreq 1200000000

number of worker-threads per physical cpu
conf cpu_per_thread 1

hypervisor partition description, size 8k
load bin hv-md.bin 0x112080000

machine description , size 8k
load bin guest-md.bin 0x112000000

nvram for obp, size 8k
load bin ./nvram.bin 0x111000000

sysconf -p ./modules

sysconf cpu name=cpu0 cpu-type=SUNW,UltraSPARC-N2 clock-
frequency=1200000000 id=0

sysconf cpu name=cpu1 cpu-type=SUNW,UltraSPARC-N2 clock-
frequency=1200000000 id=1

sysconf ioram reset start_pa=0xfff0000000 size=0x10000 file=reset.bin
sparse

sysconf ioram hv start_pa=0xfff0010000 size=0x70000 file=q.bin sparse
sysconf ioram obp start_pa=0xfff0080000 size=0x80000
file=openboot.bin sparse

hypervisor console device
sysconf serial_4v hypervisor-console base=0xfff0ca0000 size=0x100

guest console device
sysconf serial_4v guest-console base=0x9f10000000 size=0x51 pop
log=guest.log

tod device
sysconf tod_4v tod base=0xfff0c1fff8 size=0x8 tod=01010000002000 -d2

10.3 SAM Huron Sim Architecture 193
10.3.2 Serial Device Module
The Serial Device module (serial_4v) is a virtual console device used by
OBP. The implementation in based on the tip utility. The module provides
UI commands and logging capabilities.

Format The sysconf format for this module is
sysconf serial_4v instance-name base=start-addr size=map size

[log[=filename]] [pop] [fg=color] [bg=color] [font=font]
[dnkxoe]

where
• base is the starting address of the memory-mapped address of the device

CSRs.
• size is the size of the CSR space for this device.

configure NCU and PIU
sysconf n2_ncu ncu -d2
sysconf n2_piu piu bus=pciea ncu=ncu -d2

pcie bus connected to piu
sysconf pcie_bus pciea bridge=piu

pciea bus devices, pcie-pci bridge with two functions
sysconf bridge b0 bus=pciea dev=0 fun=0 secbus=pcia
sysconf bridge b2 bus=pciea dev=0 fun=2 secbus=pcib

downstream pci buses A and B connected to bridges b0 and b2
sysconf pci_bus pcia bridge=b0
sysconf pci_bus pcib bridge=b2

pciA devices
sysconf scsi scsi0 bus=pcia dev=1 fun=0 targets=scsidisk1.init
sysconf ll ll0 bus=pcia dev=2 fun=0
sysconf gem ge0 bus=pcia dev=3 fun=0

pciB devices
sysconf scsi scsi2 bus=pcib dev=1 fun=0 targets=scsidisk.init
sysconf cassini ce1 bus=pcib dev=3 fun=0
sysconf fc fc1 bus=pcib dev=2 fun=0 targets=fcdisk.init

CODE EXAMPLE 10-2 Sample Configuration File for the T2 Huron System (Continued)

194 Chapter 10 System Simulation, Bringup, and Verification
• log is an optional boolean argument that enables the logging of console
input and output. If the argument supplies a filename argument, then the
console is logged into filename. If filename is not provided, then the log file
is serial-instance-name.log. The file is opened in append mode so that
previous contents are not lost over multiple runs.

• pop is an optional boolean argument that, if supplied, causes an xterm
window, with the tip utility already running in it to pop up on start. The
DISPLAY environment variable needs to be set up properly for this to
work correctly. If pop is not present, then the user would need to “tip” into
the console from an existing xterm window.

• fg, bg, font are optional arguments to set foreground, background, and
text font of the xterm window.

• dnkxoe - optional, do not kill xterm on exit. The default is that the
window is killed.

sysconf Format Examples

UI Commands The UI format for the Serial Device module is
serial-instance-name command command-args

The module supports the following UI commands:

Note The sam -w option for the sun4u system is not
supported by this module.

Notes Users should make sure that fg, bg, font are valid
inputs to the xterm program. xterm should be kill’ed
and pop’ed (see UI below) for the new fg, bg, font
values to take effect.

Default: fg = black, bg = gray90
font = -dec-terminal-medium-r-normal-*-
14-140-*-75-c-80-iso8859-1

hypervisor console device
sysconf serial_4v hypervisor-console base=0xfff0ca0000
size=0x1000

guest console device
sysconf serial_4v guest-console base=0x9f10000000
size=0x51 pop log=guest.log fg=green bg=black

10.3 SAM Huron Sim Architecture 195
• send some-char-string — Echo the character string appended with a new
line to the console.

• sendfile filename — Echo the contents of filename to console.

• debug [level] — Set the debug level for debug to print level. If level is
not provided, print current debug level.
level = [0|1|2]

• pop — Pop up the xterm console if it is not already open.
• kill — Kill the xterm console if opened.
• fg [color] — Set the foreground color of xterm to color; otherwise,

report the current color.
• bg [color] — Set the background color of xterm to color; otherwise,

report the current color.
• font [font] — Set the font of xterm to font; otherwise, report the current

font.

UI Format Example
The following example, based on the sysconf line in the format example
above, sends “show-devs\n” to the guest console. If the instruction were
typed at the OBP ok prompt, this example would show the device tree.
run: guest-console send show-devs

Mod Info

modinfo serial-instance-name provides instance-specific information, for
example, about the tip device:
stop: modinfo guest-console
guest-console: sun4v serial module
guest-console: logfile guest.log
guest-console: for console tip /dev/pts/62
guest-console: xterm fg set to green
guest-console: xterm bg set to black
guest-console: xterm font set to -dec-terminal-medium-r-
normal-*-14-140-*-75-c-80-iso8859-1

To retrieve the above information, type help serial-instance-name at the
SAM UI prompt. Example:
help guest-console

Note The commands above simulate input from the
console; the output echoed on xterm depends on
the Solaris/OBP serial driver.

196 Chapter 10 System Simulation, Bringup, and Verification
10.3.3 NCU Module
The NCU module (n2_ncu) implements the functionality of the T2
noncacheable unit (NCU) on the T2 chip. It supplies the PCI-Express I/O,
Mem, and Config mappings, as well as the interrupt to the SAM VCPUs.

Format The sysconf format for this module is
sysconf n2_ncu ncu-instance-name [-d[0|1|2]]

where -d is the optional argument that sets the debug level to 0, 1, or 2.

sysconf Format Example sysconf n2_ncu ncu -d2

UI Commands The UI format for the NCU module is
ncu-instance-name command command-args ...

The NCU module supports the following UI commands:
• dump [filename] — Dump the CSR contents to filename. The default is

stderr. The dump format is
csr-name csr-offset csr-value

• restore filename — Restore the CSR contents from filename. The
restore file format is same as the dump file format.

• debug [level] — Set the debug level for debug. Print level. If level is not
provided, print current debug level.
level = [0|1|2]

The dump command can be used to obtain a snapshot of CSR contents at any
time. Debug level 2 shows runtime CPU accesses to this module.

Mod Info modinfo ncu-instance-name provides information about the
physical address assignment of T2 PIU’s mapping of the PCIE
IO/MEM/CONFIG space.

To retrieve the above information, type help ncu-instance-name at the SAM
UI prompt. Example:
help ncu

10.3 SAM Huron Sim Architecture 197
10.3.4 PIU Module
The PIU module (n2_piu) implements the functionality of T2 PCI-Express
interface unit (PIU) on the T2 chip. The model has been modularized with
SAM MMI and enhanced for device interrupts. Dump and restore capability
has also been added.

Format The sysconf format for this module is
sysconf n2_piu piu-instance-name bus=pcie-bus-instance-name

ncu=ncu-instance-name -d[0|1|2]

where
• bus is the instance name of SAM PCI-Express bus module connected to

the downstream port of this instance (see pcie_bus).
• ncu parameter is the name of T2 NCU model in the SAM rc file (see

n2_ncu).
• -d is the optional argument that sets the debug level to 0, 1, or 2.

sysconf Format Example sysconf n2_piu piu bus=pciea
ncu=ncu

UI Commands The UI format for the PIU module is

piu-instance-name command command-args

The module supports the following UI commands:
• dump [filename] — Dump the CSR contents to filename. Default is stderr.
• restore filename — Restore the CSR contents from filename. The

restore file format is same as the dump file format.
• debug [level] — Set the debug level for debug to print level. If level is

not provided, print current debug level.
level = [0|1|2]

The dump command can be used to obtain a snapshot of CSR contents at any
time. The debug level 2 can be set to view on-the-fly read/write accesses to
CSRs, virtual-to-physical address translations, device interrupts, and so forth.

Debug Examples The following examples are based on the sysconf line
above.

This example sets the debug message flag to 2:
piu debug 2

198 Chapter 10 System Simulation, Bringup, and Verification
This example takes a CSR content snapshot:
piu dump

Mod Info modinfo instance-name provides additional instance-specific
information such as physical address mapping of this instance into T2 I/O
address space.

To retrieve the above information, type help piu-instance-name at the SAM
UI prompt. Example:
help piu

10.3.5 IORAM Module
The IORAM module (ioram) implements RAM/ROM in the I/O address
space of the processor (for example, the boot ROM can be implemented with
this module). In the Huron setup, this module is used to load reset.bin,
q.bin (Hypervisor), and openboot.bin (T2 OBP) as instances of the
ioram device.

Format •The sysconf format for this module is
sysconf ioram ioram-instance-name start_pa=addr size=size

[file=name [addr=load-addr]] [rw|ro|wo] [sparse|flat]
[-d[0|1|2]]

where
• start_pa is the start address of the memory segment in IO space of

processor.
• size is the size of the memory segment.
• file is an optional argument that, if provided, loads the memory segment

with the contents of that file. If this argument is not provided, then the
segment is zero filled.
The file formats that are supported are .bin, .img, and .elf. The file
name must have these extensions in order for the type to recognized.

• addr is the intended load address in the case of .bin and .elf files.
.img files should not supply this argument.

• rw is an optional boolean argument that makes this segment read/write.
Only one of rw, ro, wo must be supplied. Default is rw.

• ro is an optional boolean argument that makes this segment read-only.
• wo is an optional boolean argument that makes this segment write-only.
• sparse is an optional boolean argument that makes this segment type

sparse.

10.3 SAM Huron Sim Architecture 199
• flat is an optional boolean argument that makes this segment type flat.
Only one of the two arguments above must be supplied.

• -d is the optional argument that sets the debug level to 0, 1, or 2.

sysconf Format Examples Two examples of the IORAM module format
are shown below.

UI Commands The UI format for the IORAM module is
ioram-instance-name command command-args ...

The module supports following UI commands:
• write addr value size — Write size bytes to memory at address addr

where size = [1|2|4|8]
• read addr size — Read size bytes from memory at address addr where

size = [1|2|4|8]
• dis addr [n-instr] — Disassemble n-instr instructions (default 1) starting

from address addr.
• dump addr size [format] — Dump size bytes of memory on stdout, where

format is [x|d|c|o]. The default is x.
• save filename [addr [size]] — Save the memory contents in filename

starting from addr for size bytes. If no addr and size arguments are
specified, save all. If addr is supplied but size is not, save until the end.

All numerical values are expected to be in decimal, octal, or hex. The addr
argument is an absolute physical address.

dis Example The following example, based on sysconf line above,
prints the disassembly of 256 instructions from openboot.bin, starting
from physical address FF F008 000016.
obp dis 0xfff0080000 0x100

Note Currently only the sparse model is supported.
Default is also sparse.

sysconf ioram obp start_pa=0xfff0080000 size=0x80000
file=openboot.bin sparse

sysconf ioram hv start_pa=0xfff0010000 size=0x70000 file=q.bin

200 Chapter 10 System Simulation, Bringup, and Verification
Mod Info The modinfo instance-name provides additional instance-
specific information such as physical address mapping of this instance into the
SAM I/O address space, load file name, and so forth.

For example, modinfo obp prints the following information:
obp: SAM IOMem module
start paddr <0xfff0080000, end paddr <0xfff00fffff>
loaded with file <openboot.bin> at addr <fff0080000>
s/w access <rw>, implementation <sparse model>
for UI help type obp

To retrieve the above information, type help ioram-instance-name at the
SAM UI prompt. Example:
help hv

10.3.6 Time-of-Day Module
The Time-of-Day module (tod_4v) implements the virtual time-of-day
device. The module allows optional setting of the time of day. It also
maintains correct time of day according to SAM’s global time. This means
that in a correctly configured setup, no Solaris error messages about the time
of day being stalled or the time-of-day clock jumping ahead should occur.

At debug level 2, this module prints “simulated” system time once every
simulated second (this may give an indication if the simulated system seems
sluggish—the simulated time might be moving too slowly because of
configuration parameters).

Format The sysconf format for this module is
sysconf tod_4v tod-instance-name base_pa=start-addr size=map-

size [tod=mmddHHMMSSyyyy] [-d[0|1|2]]

where
• base_pa is the start address of the memory-mapped address of the device

CSRs.
• size is the size of the CSR space.
• tod is the time of day initial value. If not present, the current host system

time is read. TOD format string semantics are
• mm – month
• dd – day
• HHMMSS – hours, minutes, seconds
• yyyy – year, should not be before 1970

• -d is the optional argument that sets the debug level to 0, 1, or 2.

10.3 SAM Huron Sim Architecture 201
sysconf Format Example The following example sets the time to 12
A.M. Jan 1, 2000.
sysconf tod_4v tod base=0xfff0c1fff8 size=0x8
tod=01010000002000 -d2

UI Commands The UI format for the Time-of-Day module is
tod-instance-name command command-args ...

The module supports following UI command:
• debug [level] — Set the debug level for debug to print level. Print

current tod every simulated second, and print total simulated time. If level
is not provided, print current debug level.
level = [0|1|2]

Mod Info modinfo tod-instance-name provides instance specific
information such as current time of day.

To retrieve the above information, type help tod-instance-name at the SAM UI
prompt. Example:
help tod

10.3.7 PCI-E Bus Module
The PCI-E Bus module (pcie_bus) implements the abstraction of a PCIE
bus. It routes the upstream/downstream accesses between the bridge and
downstream devices. It maintains the I/O, Mem, and Config space maps of the
downstream devices. It implements SAM’s PCIE bus interface and routes the
accesses by using SAM’s PCIE device interface. This is a generic
implementation of the PCIE bridge device.

Format The sysconf format for this module is
sysconf pcie_bus pcie-bus-instance-name bridge=upstream-bridge-

name [-d[0|1|2]]

where
• bridge is the name of upstream bridge device. It could be n2_piu,

hammerhead, fire, and so on.
• -d is the optional argument that sets the debug level to 0, 1, or 2.

Note Solaris sim time and tod sim time match only if the
Solaris STICK frequency is same as the SAM STICK
frequency.

202 Chapter 10 System Simulation, Bringup, and Verification
sysconf Format Example sysconf pcie_bus pciea bridge=piu

UI Commands This module currently does not support a UI. The debug
level can be set only through the sysconf line. The debug level 2 shows on-
the-fly transactions going through this bus instance.

Mod Info modinfo pcie-bus-instance-name provides the PCIE I/O, Mem,
and Config space mapping information for the downstream devices connected
to this bus.

Output Example
stop: modinfo pciea

bridge=<piu>
PCIE config::devices:
name <b2>, dev <0>, fun <2> base <2000> end <2fff>
name <b0>, dev <0>, fun <0> base <0> end <fff>
PCIE IO::devices:
name <b2>, dev <0>, fun <2> base <1000> end <1fff>
name <b0>, dev <0>, fun <0> base <0> end <fff>
PCIE MEM::devices:
name <b2>, dev <0>, fun <2> base <400000> end <7fffff>
name <b0>, dev <0>, fun <0> base <100000> end <3fffff>

10.3.8 PCIE-PCI Bridge Module
The PCIE-PCI Bridge module (bridge) is a functional model for the Intel
41210 PCIE-PCI bridge.

Format The sysconf format for this module is
sysconf bridge bridge-instance-name bus=primary-pcie-bus

dev=device fun=function secbus=secondary-pci-bus

where
• primary-pcie-bus is the instance name of the upstream PCIE bus module.
• device is the device number of bridge on upstream PCIE bus.
• function is the function number of bridge on upstream PCIE bus.
• secondary-pci-bus is the instance name of the downstream PCI bus module.

sysconf Format Example The following three lines configure an
upstream PCIE bus named pciea, a downstream PCI bus named pcia, and
a PCIE-PCI bridge named b0, respectively.
sysconf pcie_bus pciea bridge=piu

10.3 SAM Huron Sim Architecture 203
sysconf bridge b0 bus=pciea dev=0 fun=0 secbus=pcia

sysconf pci_bus pcia bridge=b0

UI Commands The UI format for PCIE-PCI Bridge module is
bridge-instance-name command command-args ...

The PCIE-PCI bridge, b0, supports the following UI commands:
• debug [level] — Set the debug level for debug to print level. If level is

not provided, print current debug level.
level = [0|1|2].

• dump [filename] — Dump the PCIE CSR contents to filename.pcie in
the current working directory; default is stderr. The dump format is
csr-pciconf-offset csr-value csr-rw-mask csr-size csr-name

• restore filename — Restore the PCIE CSR contents from filename.pci
in cwd. The restore file format is the same as the dump file format.

The debug level 2 shows CSR access and change in values in case of writes.
The dump command can be used to get a snapshot of CSR contents at any
time.

dump Example The example is based on the sysconf line above.
stop: b0 dump

0x000000000x000080860x00000000 0x2 b0-pcieaVendor ID
0x000000020x000003400x00000000 0x2 b0-pcieaDevice ID
0x000000060x000000100x0000f900 0x2 b0-pcieaPrimary device
status reg
0x000000080x000000000x00000000 0x1 b0-pciea revision id
0x000000090x000000000x00000000 0x1 b0-pcieaprog interface

<----snipped---->

Mod Info modinfo bridge-instance-name shows module specific
information.

To retrieve the above information, type help bridge-instance-name at the
SAM UI prompt. Example:
help b0

10.3.9 PCIE-PCIE Bridge Module
The PCIE-PCIE Bridge module (pcie_bridge) is a functional model for
PCIE-PCIE bridge component of PLX 8532. The switch is composed by
configuration of individual PCIE bridges connected by an internal PCIE bus
in the sysconf file. FIGURE 10-2 illustrates a sample configuration.

204 Chapter 10 System Simulation, Bringup, and Verification

FIGURE 10-2 Sample Configuration of PCIE-PCIE Bridge Module

The module shown in FIGURE 10-2 can replace the PCIE-PCI bridge in the
Huron system diagram.

Format The sysconf format for an individual PCIE bridge is
sysconf pcie_bridge instance-name bus=upstream-bus

secbus=downstream-bus dev=device-number [upstream]

where
• bus is the upstream bus for this bridge instance.
• secbus is the secondary bus of this bridge instance.
• dev is the device number on the upstream bus.
• upstream is a boolean parameter that designates the bridge as a switch

upstream port. If absent, the bridge is a downstream port.

sysconf Examples In the following examples of switch configuration,
port 0 is the upstream port, and ports 1, 2, 8, 9 are the downstream ports. Note
that the port is the same as dev here. Users can also add ports 3, 10, and 11.

Upstream port—pcie_a is the primary bus of upstream bridge:
sysconf pcie_bridge b0 bus=pcie_a dev=0 fun=0 secbus=pcie_int
upstream

Internal virtual PCIE bus:
sysconf pcie_bus pcie_int bridge=b0

Downstream ports connected at upstream to pcie_int:
sysconf pcie_bridge b1 bus=pcie_int dev=1 secbus=pcie_b
sysconf pcie_bridge b2 bus=pcie_int dev=2 secbus=pcie_c
sysconf pcie_bridge b3 bus=pcie_int dev=8 secbus=pcie_d
sysconf pcie_bridge b4 bus=pcie_int dev=9 secbus=pcie_e

Downstream PCIE buses:
sysconf pcie_bus pcie_b bridge=b1 sysconf pcie_bus pcie_c bridge=b2
sysconf pcie_bus pcie_d bridge=b3 sysconf pcie_bus pcie_e bridge=b4

PCIE Bus <0>

port0 (upstream)

Internal PCIE Bus <1>

(downstream)

PCIE Switch

PCIE Bus <2> PCIE Bus <3>

port2 portn

To PCIE Bridge (e.g., T2 PIU)

port1

To other PCI-PCI[E] Bridge or PCIE devices

(downstream) (downstream)

10.3 SAM Huron Sim Architecture 205
UI Commands The UI format of the PCIE-PCIE Bridge module is

bridge-instance-name command command-args ...

The module supports following UI commands:
• debug [level] — Set the debug level for debug to print level. If level is

not provided, print current debug level.
level = [0|1|2]

• dump [filename] — Dump the PCIE CSR contents to filename.pcie in
cwd. Default is stderr. The dump format is
csr-pciconf-offset csr-value csr-rw-mask csr-size csr-name

• restore filename — Restore the PCIE CSR contents from filename.pci
in cwd. The restore file format is the same as the dump file format.

The debug level 2 shows CSR access and change in values in the case of
writes. The dump command can be used to get a snapshot of CSR contents at
any time.

dump Example The example, based on sysconf line above, prints the
PCIE register value on stderr.
stop: b0 dump

Mod Info modinfo bridge-instance-name shows module-specific
information.

To retrieve the above information, type help bridge-instance-name at the SAM
UI prompt. Example:
help b0

10.3.10 Serially Attached SCSI Module
The Serial Attached SCSI module (sas) implements the functionality of the
Serial Attached SCSI (SAS) disk controller. It models LSI SAS1064E, the
design of which is based on the Fusion-MPT (Message Passing Technology)
architecture. The module has a PCIE interface through which the controller
can be connected to any PCIE bus. Each controller can support up to four SAS
disks (target 0~3). This implementation does not include a timing model, so
the I/O request is served and completed immediately after it is received by the
controller, assuming no simulated disk delay. The SAS disk is implemented
according to a generic disk model.

206 Chapter 10 System Simulation, Bringup, and Verification
Format The sysconf format for this module is
sysconf sas instance-name bus=bus-name dev=device-id

fun=function-number targets=init-file [-d[0|1|2]]

where
• instance-name is the name of this controller.
• bus-name is the name of PCIE bus to which this controller is to be

connected.
• device-number is the PCIE device number.
• function-number is the PCIE function number.
• init-file is the configuration file for the attached SAS disks.
• -d is the optional argument that sets the debug level to 0, 1, or 2.

sysconf Format Example

A SAS controller called sas0 is attached to the PCIE bus pcie_a as device
0, function 1. The configuration for the attached disks is in file
sasdisk.init. The debug level is set to 2.
sysconf sas sas0 bus=pcie_a dev=0 fun=1 targets=sasdisk.init
-d2

UI Commands—This Module

The UI format for this model is
instance-name command command-args

UI commands for this module are as follows:
• debug [level] — Set the debug level for debug to print level. If level is

not provided, print current debug level.
level = [0|1|2]

• disk — Show all attached disks.

To retrieve the above information, type instance-name at the SAM UI prompt.
Example:
sas0

UI Commands—Attached Disks

The UI format for attached disks is
gdisk disk-name command command-args

UI commands for attached disks are as follows:

10.3 SAM Huron Sim Architecture 207
• label — Display disk label.
• geometry — Display disk geometry.
• stat — Display any supported stats.
• partitions [number] — Display partition[number] information.

Display all partitions by default.
• vpd — Display supported disk VPD data.
• op [file] — Redirect all o/p to file. By default, print current op file.
• debug [level] — Set debug verbosity to level.

To retrieve the above information, type gdisk help at the SAM UI prompt.
Typing gdisk will list all attached disks in the system.

Configuration file for attached disks. Each controller requires a
configuration file for the attached disks. In this file, each line specifies a disk
partition that is attached to the controller. The format of this specification is
described below.

where
• In tTdDsS, T is the target ID, D is the disk ID, and S is the partition ID.

Only one disk is currently allowed for each target, so D should be always
set to 0.

• filename is the name of disk image file.
• vtoc is the disk geometry included in disk image file.
• ro specifies that the disk image file is read-only.
• rw specifies that the disk image file is writable.

Additional information related to a disk, such as vendor ID, product ID, and
revision ID, can be specified at the end of each line.

tTdDsS filename [vtoc|ro|rw] [vendor-id="vendor id"
product-id="product id" |
revision-id="revision id" |
serial-no="serial no" |
prodserial-no="product serial no" |
brdserial-no="brd serial no" |
port-wwn="port wwn" |
node-wwn="node wwn" |
bytes/sector=number of bytes per sector |
sectors/track=number of sectors per track |
tracks/cylinder=number of tracks per

cylinder |
debug-file="debug file" |
debug-level=debug level [0|1|2]]

208 Chapter 10 System Simulation, Bringup, and Verification
10.3.11 LLFS Module
The LL device allows host file system to be accessed from the simulated
system running Solaris.

The LL device is configured into the system with the following sysconf
line:

sysconf ll ll-instance-name bus=upstream-pci-bus name dev=pci-
device-number

For example,
sysconf ll ll0 bus=pcia dev=2

10.4 Creation of a Root Disk Image
File

A simulated platform can boot Solaris from the simulated disk. The easiest
way to accomplish this is to create a root disk image from the reference
system.

To create a root disk image:

1. Log in as root and run prtvtoc on the disk where the root partition
resides to get the disk configuration.
To locate the root partition, look at /etc/vfstab and find the device
logical link that is mounted at /. For example, if the root partition is
c0t1d0s0, execute prtvtoc on slice 2 of the disk, that is, c0t1d0s2.
Here is an example.

#prtvtoc /dev/rdsk/c0t1d0s2
* /dev/rdsk/c0t1d0s2 partition map
*
* Dimensions:
* 512 bytes/sector
* 248 sectors/track
* 19 tracks/cylinder
* 4712sectors/cylinder
* 7508cylinders
* 7506accessible cylinders
*
* Flags
* 1: unmountable

10.4 Creation of a Root Disk Image File 209
* 10: read-only
*
* First Sector Last Mount
* Partition Tag Flags Sector Count Sector Dir

 0 2 00 0 31273544 31273543 /
 1 3 01 31273544 4094728 35368271
 2 5 00 0 35368272 35368271

2. The preceding vtoc table shows that the root partition starts from 0 (first
sector) and totals 31273544 sector counts. Slice 2 of a disk is a special
slice that points to the entire disk, so when you execute dd, your input is
slice 2 of the disk that holds the root partition.
For example, use the following command to create a root disk image:

In general, the format is as follows:
• dd if = partition 2 of the disk within which root resides; partition 2

points to the entire disk of disk image file name
• iseek = first sector
• count =sector count

3. Follow steps 1 and 2 for the swap partition to generate swap disk image
file.

The root image can be modified to load additional drivers, for example, LL
driver. This driver gives access to the local-host file system from the SAM
simulated environment. SAM supports LLFS (local-host lookup file system),
letting users read and write files on their host machine directly from the
simulated host. Thus, the simulated machine can access /your-home-dir or
/tmp/logman on the host. More importantly, LLFS lets users run SAM as a
user program and gain access to all NFS files, where test benchmark programs
probably reside.

By mapping root directory on the host to /ll/root in the simulated host
through LLFS, users can access their home directory from /home/xyz by
going to /ll/root/home/xyz in SAM.

For convenience, symbolic links can be used to map the following directories
in the simulated host to the same directory on the underlying host machine:
/home, /net, /vol, /ws, /import, /usr/ccs, /usr/share,
/usr/shared, /usr/dist. Thus, in the simulated machine, users can
access their home directory via /home/xyz as well as via
/ll/root/home/xyz.

dd if=/dev/dsk/c0t1d0s2 of=/your/work/dir/env09-root iseek=0
count=31273544

210 Chapter 10 System Simulation, Bringup, and Verification
10.5 Debugging With SAM
It is always possible to run a debugger (kmdb for kernel debugging or dbx
for application debugging) on the simulated system. But doing that requires
the system to get through reset and the initial phases of the boot-up process. In
the early stages of development, a significant effort is required just to reach
the point at which the simulated system could load a kernel debugger.

Another option is to run a remote debugger—gdb has an option to run as a
remote debugger and to be connected to the target, the SAM simulator in this
case.

SAM has a special module that can be loaded to establish communication with
the remote gdb debugger. SAM configuration files need to load a special
module, for example,
sysconf remote port=6450

loads the interface module and waits for the connection from gdb; in this
example, it waits at the tcp connection on port 6450.

Now when gdb starts, to connect to SAM, the gdb command is executed:
target remote host-name:port

where
• host-name is the name of the host on which SAM is running.
• port is the port ID (6450 in this example), which needs to be the same as in

the sysconf command line.

Although the remote debugger could load symbol information for source-level
debugging, overall, the remote debugger approach is generally too restrictive
to debug multiprocessor/multithreaded environments.

Debugging consumes most of a developer’s energy and time, but it is one of
the least discussed tasks for software development, system bringup, and
integration projects. Usually, the basic steps for troubleshooting remain much
the same:
• Try to make the bug repeatable.
• Isolate the problem.
• Make corrections.
• Test whether the corrections fixed the problem.

10.5 Debugging With SAM 211
Certain classes of bugs are difficult to make repeatable, so some special
strategies are required. Isolating the problem involves narrowing the range of
possibilities until the bug can be correlated to a specific segment of code or
data. There are a few general approaches to this problem.

One approach to localizing the bug is to single-step through the suspect code,
trying to identify an abnormal behavior. The main problem with this approach
is that it tends to be quite tedious. For large programs containing many loops,
complex data structures, and complicated interaction between modules and
threads, it is difficult to locate the code segment where the bug could be
observed.

Another way to find a bug is to construct a hypothesis to explain how the
software could reach such a state, then modify the experiment to test the
hypothesis. This approach demands problem-solving skills very different from
those required to design the code in the first place. A trace history of executed
code if available could be most useful in localizing the bug.

The SAM user interface has convenient built-in features for debugging
software during system bringup and does not require the use of another
remote debugger. The SAM user interface can start and stop simulation at any
time, advance any virtual processor by some number of instructions, and
examine architecture state for each virtual processor, memory state, and state
of simulated devices.

It is important to note that this discussion is about machine-level debugging,
not program debugging that most software engineers are accustomed to. The
debugger is not running on a simulated system; rather, the debugger is running
on the host machine that runs simulated system. Normally, the debugger
would get significant support from the compiler, loader, and operating system
to map symbol information for the program being debugged. That luxury is
denied us owing to the disconnect between a debugger running on the host
machine and a simulated system that runs the program we are interested in.
Overall, the process is similar to cross-debugging, that is, debugging code on
a separate target system.

10.5.1 Simulated State Access
The pselect command selects a default virtual CPU ID to which other user
interface commands will be referred. Many commands that have a VPCU ID
as an argument operate on the default vcpu when the argument is omitted.

CPU registers can be read in groups or individually:

212 Chapter 10 System Simulation, Bringup, and Verification
stop: pregs
cpu[0]:
pr 0 tpc = 0xf02398a4
pr 1 tnpc = 0xf02398a8
pr 2 tstate = 0xa520001600
pr 3 tt = 0x180
pr 4 pr_tick = 0x2a8052950
pr 5 tba = 0xf0200000
pr 6 pstate = 0x10
pr 7 tl = 0x1
pr 8 pil = 0xd
pr 9 cwp = 0x0
pr 10 cansave = 0x6
pr 11 canrestore = 0x0
pr 12 cleanwin = 0x7
pr 13 otherwin = 0x0
pr 14 wstate = 0x0
pr 16 gl = 0x1
asr 0 y = 0x0
asr 2 ccr = 0x99
asr 3 asi = 0x20
asr 4 tick = 0x2a8052950
asr 5 pc = 0x42e224
asr 6 fprs = 0x4
asr16 pcr = 0x0
asr17 pic = 0x0
asr19 gsr = 0x0
asr20 softint_set = 0x0
asr21 softint_clr = 0x0
asr22 softint = 0x0
asr23 tick_cmpr = 0x8000000000000000
asr24 stick = 0x2a8052950
asr25 stick_cmpr = 0x2a8d90dd8
hpr 0 hpstate = 0x4
hpr 1 htstate = 0x0
hpr 3 hintp = 0x0
hpr 5 htba = 0x400000
hpr 6 hver = 0x3e002420030607
hpr31 hstick_cmpr = 0x2aac737d7
stop:

stop: %g1
0x28

It is possible to change register state:
stop: write-reg g1 0x1
stop: read-reg g1 cpu[0]: g1=0x1

10.5 Debugging With SAM 213
Memory can be read in binary format or it can be disassembled, for example:
stop: mem -a 0x42e224 -s 0x10 -dis
disassemble saddr=0x42e220 eaddr=0x42e230
0 : 0x42e220: 0x82102028 : or %g0, 0x28, %g1
0 : 0x42e224: 0xc2d849e0 : ldxa [%g1 + %g0]0x4f, %g1
0 : 0x42e228: 0xc2586000 : ldx [%g1 + 0], %g1
0 : 0x42e22c: 0xca086980 : ldub [%g1 + 0x980], %g5
0 : 0x42e230: 0x80a16000 : subcc %g5, 0, %g0
0 : 0x42e234: 0x267b8f1 : bpe,pn 1%xcc, 0x41c5f8
0 : 0x42e238: 0x1000000 : nop
0 : 0x42e23c: 0x80a16001 : subcc %g5, 1, %g0
stop:

Memory state can changed with the set command:
stop: set 0x10000 0x1
stop: get 0x10000
0x0000000000010000: 0x00000001

There also commands to examine registers mapped to non-translating ASIs
and TLB state for each virtual processor.

Each device module has a specific set of commands with which to access state
for that module.

10.5.2 Symbol Information
SAM can process symbol information from the modules that run on the
simulated machine. For reallocatable modules, starting text/data addresses are
required; for executable modules, addresses for text and data could be
extracted from the ELF file.

The load_symbols SAM user-interface command loads symbol
information for the ELF file, and it lets users specify the base address for text
and data sections and the context in which the module will be accessed.
Symbol information is kept on the host machine; it does not load these
modules to memory—the simulated system will load them.

SAM can look up a symbol by name or address:

load_symbols -elffile -f unix -ctx k
load_symbols -elffile -f krtld -x 0x10a6878 -d 0x18929a0 -ctx k
load_symbols -elffile -f genunix -x 0x10c1738 -d 0x1898940 -ctx k

214 Chapter 10 System Simulation, Bringup, and Verification
stop: sym -s main

genunix:main at address=0x11471d4, size=0x3fc
stop:
stop: sym -a 0x11471d4
genunix:main+0x0
at address = 0x11471d4
stop:

The kernel module unix in the preceding example cannot be re-allocated—the
load_symbols command can extract the loading address directly from the
ELF file. The same is true for the hypervisor module. Having symbol
information for unix and hypervisor modules is quite helpful in the early
stages of the bringup process. Module genunix is a relocatable ELF file; a
starting address for text and data sections (-x and -d option, respectively)
must be provided. Finding out loading addresses for the module requires extra
effort. When the kmdb debugger runs on the simulated machine, it gets base
address information from the kernel loader krtld; this information may not
be accessible from the host machine.

Starting addresses for kernel modules usually can be found on the console log
printout generated by the kernel loader when the moddebug option in the
/etc/system file on the simulated system (root image) is enabled:
moddebug 0x80000000. To enable logging load addresses for the first
five modules (unix, krtld, genunix, platmod, and SUNW), specify
boot -vV. Those five modules are always loaded by usfboot in the same
order. The moddebug flag controls log information generated by krtld to
load other modules after krtld itself was loaded. CODE EXAMPLE 10-3
presents an example.

CODE EXAMPLE 10-3 Starting Addresses for Kernel Modules

ok boot /pci@0/pci@0/pci@2/scsi@0/disk@0,0:f -vV -m verbose

Boot device: /pci@0/pci@0/pci@2/scsi@0/disk@0,0:f File and args: -vV
-m verbose

device path ’/pci@0/pci@0/pci@2/scsi@0/disk@0,0:f’

The boot filesystem is logging. The ufs log is empty and will not be
used.

standalone = ‘kernel/sparcv9/unix’, args = ‘-vm verbose’

Elf64 client

Size: 0xa6877+0x31c88+0x60d14 Bytes

modpath: /platform/SUNW,SPARC-Enterprise-T5120/kernel
/platform/sun4v/kernel /kernel /usr/kernel

module /platform/SUNW,SPARC-Enterprise-T5120/kernel/sparcv9/unix:
text at [0x1000000, 0x10a6877] data at 0x1800000

10.5 Debugging With SAM 215
Finding base addresses for processes in the user context requires more work.
A valid context ID must also be provided. LD_AUDIT and a special module
that intercepts addresses at which user modules are loaded should be used to
find out base address and context ID.

In some cases, symbol information is needed for the Java programs running
on the Java virtual machine (JVM), which in turn runs on simulated system. In
this case, the Java virtual machine should be augmented with a special agent
that outputs addresses for routines generated by JVM.

10.5.3 Breakpoints
SAM lets users set a few types of breakpoints for a particular virtual
processor: set a breakpoint on instruction virtual address, trap type, or RED
mode.

Here is an example:

To remove the breakpoint:
stop: delete 0

module misc/sparcv9/krtld: text at [0x10a6878, 0x10c1737] data at
0x18929a0

module /platform/SUNW,SPARC-Enterprise-
T5120/kernel/sparcv9/genunix: text at [0x10c1738, 0x129f7a7] data
at 0x1898940

module /platform/SUNW,SPARC-Enterprise-
T5120/kernel/misc/sparcv9/platmod: text at [0x129f7a8, 0x129f7bf]
data at 0x18ecdf0

module /platform/SUNW,SPARC-Enterprise-
T5120/kernel/cpu/sparcv9/SUNW,UltraSPARC-T2: text at [0x129f7c0,
0x12a44ff] data at 0x18ed540

To set breakpoint 0 for cpu 0
stop: break 0x11471d4
stop: run
..
cpu[0] hit a breakpoint. stop.
stop:
stop: where
cpu[0]: pc=0x11471d4 genunix:main+0x0
called from address 0x10aa358 krtld:kobj_init+0x290

CODE EXAMPLE 10-3 Starting Addresses for Kernel Modules (Continued)

216 Chapter 10 System Simulation, Bringup, and Verification
10.5.4 Debug Tracing
A special built-in tracer, vdebug, is a convenient tool for finding the time
window during which some particular problem occurs.

When symbol information is loaded, SAM will annotate a debug trace with
routine names and for data accesses with structure names if a symbol match is
found.

The trace format is
cpuid: module:routine va(context) : pa [opcode] mode instruction
cpuid: reg=value

Here is an example.

The debug tracer outputs value-change information for every executed
instruction. Tracing produces a huge amount of data, and debugging is tedious
process—no one solution can be used to approach all problems.

For further narrowing of the window to focus only on essential information
during the debug session, it is convenient to use probes.

10.5.5 Probes
A probe monitors some condition during the simulation. It separates the
notion of condition and action. Probe implementation internally is based on
breakpoints to temporarily pause the simulation and execute probe commands.

stop: vdebug -cpu 0 on
debug tracer is turned on for cpu 0
stop: stepi 4

0: unix:lgrp_root_init+0xc 1062b48(0) : 1003862b48 [f40763f4]
p lduw [%i5 + 0x3f4], %i2

0: i2=0x0

0: load 0(ffffffff) from 18607f4(0):10034607f4
unix:nlgrps+0x0

0: unix:lgrp_root_init+0x10 1062b4c(0) : 1003862b4c [b806a001]
p add %i2, 1, %i4

0: i4=0x1

0: unix:lgrp_root_init+0x14 1062b50(0) : 1003862b50 [f82763f4] p stw
%i4, [%i5 + 0x3f4]

0: store 1(ffffffff) to 18607f4(0):10034607f4 unix:nlgrps+0x0

0: unix:lgrp_root_init+0x18 1062b54(0) : 1003862b54 [3b006154]
p sethi %hi(0x1855000), %i5

0: i5=0x1855000

10.6 Cycle-Accurate Simulation 217
The following example observes cross-calls for virtual processors 0 through
15:
probe -cpu 0..15 -trap 0x7c -exec "where"

The where command prints the call stack for each virtual processor every
time the CPU mondo trap occurs. Probe commands can enable/disable debug
tracing, a feature that helps users navigate through the massive amount of
information accumulated during a debug session. Using this feature is similar
to using a logic analyzer that is connected to some probes on the system board
and could collect trace fragments to the buffer.

10.6 Cycle-Accurate Simulation
While an instruction-level model is useful for system software development,
verification, system bringup, tracing, and the like, for performance analysis a
cycle-accurate model is needed. Behavioral cycle-accurate models are used
not only for CPU microarchitecture but also for overall system-performance
exploration. A few approaches can be used to accomplish cycle-accurate
simulation; each approach has its pros and cons.

10.6.1 Trace-Driven Approach
CPU architects are accustomed to running trace-driven timing models to make
microarchitecture trade-offs on a particular set of benchmarks. A timing
model is essentially a behavioral model that implements the notion of cycles,
pipelines, caches, store/write/merge buffers, speculative/scout execution, and
so on. The model does not capture all the microarchitecture details, but
captures only the most significant ones. For example, the timing model is
commonly used when only cache tags are modeled to get cache hit/miss
behavior but cache line data is not included.

The trace-driven approach assumes that instruction traces should be collected
somehow, usually by means of instruction-level models. Traces take massive
amount of storage space, so some strategy is needed to figure out significant
trace fragments that represent the benchmark behavior. At the same time,
traces are collected and verified as to whether they could be reused to analyze
microarchitecture trade-offs. Instruction trace contains only instructions that
were committed, but the timing model also has to deal with speculatively
executed instructions to get the correct timing behavior. That is where the
postprocessing nature of the trace-based approach becomes a problem—the
accuracy that a trace-driven timing model can achieve is limited.

218 Chapter 10 System Simulation, Bringup, and Verification
10.6.2 Execution-Driven Approach
For improvement to the timing accuracy of the model, an execution-driven
approach is more often used. The timing model in an execution-driven
approach is advanced cycle by cycle and must keep architecture-committed
and speculative states. There is a reverse dependency between accuracy (how
many features are reflected in the model) and model performance. This
approach could potentially be as accurate as the RTL model, but in that case it
would be as slow as the RTL model. Microarchitecture developers try to
capture only some essential behavior in the timing model that contributes the
most to the accuracy to keep model performance at the level acceptable for
running real benchmarks.

An execution-driven, cycle-accurate model can be implemented in a few
ways. One approach would be to build it from the ground-up, keeping a notion
of cycles, pipeline, and architectural state (committed and speculative) inside
one model. With modern microarchitectures (decoupled fetch and execution
pipelines, out-of-order instruction issue and completion, and the like), it is
hard for a generic timing model to be configurable by some kind of script. For
modeling control logic in one way or another, the modules need to be written
in a high-level programming language; C or C++ is the most common choice.
The main benefit with this approach is that it provides realistic cycle
simulation for the system interface. For system performance modeling, this
approach provides the best results.

The problem with the execution-driven approach is that making changes in the
microarchitecture becomes a difficult task; changes can affect not only the
timing but also the correctness of basic instruction execution. Verification for
every update in the model became tedious; in addition to timing verification,
functional verification should be done. The CPU cycle behavioral model is
desirable for system performance modeling, but it should be done after the
CPU microarchitecture is stable.

10.6.3 Submodule Approach
Sometimes it is easier to split a timing model into a few modules: one
submodule to model a committed state, another submodule to model only
speculative state, and a main module that controls two other submodules and
deals with timing aspect of a cycle-driven model. Two instances of the
instruction-level model could be used to keep track of architecture and
speculative state correspondingly.

So, the timing module would issue fetch, execute, retire, abort calls only to
the speculative execution submodule. For mispredicted branches, some
instructions need to be aborted, but that does not affect the state of the

10.7 Verification by Cosimulation 219
submodule that keeps the committed state. That state is changed only when it
is time to commit the instruction—instruction-level simulation is advanced.

This approach works fairly well for CPU microarchitecture exploration. It is
relatively easy to make changes to explore new features in the
microarchitecture. The changes affect only the timing aspect of the model;
functional correctness remains untouched. At the same time, it is hard to
provide realistic behavior simulation for the system interface, so system-cycle
simulation could be problematic

10.6.4 Conclusion
Overall, there is no “one size fits all” approach when it comes to choosing a
cycle-accurate modeling approach. The requirements should be analyzed very
carefully to find the right solution.

10.7 Verification by Cosimulation
One important function of the SAM simulator is to provide a CPU golden
reference model with which to verify modules under development. In this
section, RTL serves as a useful paradigm of cosimulation.

10.7.1 RTL Cosimulation
During RTL development, RTL code is verified by being run in cosimulation
mode with SAM’s CPU model. The basic idea is that after an instruction is
retired on the RTL side, the golden reference model will execute the same
instruction and the two sides will then compare architecture register changes
caused by the instruction. If there is a mismatch, the cosimulation run is
terminated and an error is reported in verification log.

FIGURE 10-3 shows the interaction between the RTL module and the SAM CPU
golden reference model.

220 Chapter 10 System Simulation, Bringup, and Verification
FIGURE 10-3 Interaction Between the RTL Module and SAM CPU Reference
Model

The components are connected by a bidirectional socket, which is shown in
FIGURE 10-3 as two unidirectional arrows between the components to illustrate
their interaction across the socket. The main driver, Verification TestBench, is
linked with the RTL module (DUT = device under test), as shown in
FIGURE 10-4. TestBench probes DUT activity.

FIGURE 10-4 Models Needed for Multistrand Operation

Whenever TestBench detects that an instruction is retired, it sends a step
command to SAM through the socket connection. TestBench also collects the
DUT’s architecture register changes and keeps them in a queue (call it delta
queue) for later comparison with SAM’s architecture register changes. The
step command syntax indicates which strand should execute one instruction.

TestBench SAM

SPARC Core
Model

DUT probes
instruction retired

state
per thread

delta state
per thread

delta state
per thread

RTL Verification State Checking

step

delta state

SAM
TLB

Model

LdSt
Model

SPARC Core
Model

Follow-me
Model

TestBench

Core State
Checker

DUT DUT
Monitor

PLI Socket

DUT — device under test: RTL

RTL Verification Cosimulation

10.7 Verification by Cosimulation 221
On the SAM side, upon receiving the step command, the target strand
fetches one instruction, based on the strand’s program counter (PC) value, and
executes the instruction. After the instruction is retired, the related
architecture register changes are collected and sent over the socket to
TestBench.

When TestBench receives a set of architecture register changes, it finds the
corresponding DUT set in its delta queue and compares the two sets of data. If
there is a mismatch, TestBench terminates the execution and reports the error.

It is important to note that after TestBench sends a step command to SAM,
DUT and TestBench do not stop and wait for SAM to complete its
corresponding execution and send back architecture register changes (call it
delta set). Instead, DUT continues its execution, and TestBench monitors
DUT’s activity and continues to send cosimulation command(s) through the
socket to SAM. TestBench periodically checks socket input. When a new delta
set is available from SAM, the value is read from the socket and is compared
with the corresponding set in TestBench’s delta queue. Since DUT and
TestBench continue their operation after an instruction is retired and do not
wait for SAM to complete its operation, we call the cosimulation a loosely
lock-stepped cosimulation.

The preceding description works well for a single-strand execution, but SAM
is a functional simulator, it does not have concept of time (that is, cycle
count), and it may not have the same strand execution order as DUT’s
execution order. Because of that, when more than one strand is used in a RTL
verification run, more information exchange is needed between TestBench and
SAM. FIGURE 10-4 shows the new models that are needed for multistrand
operation.

The TLB model (TLB-sync, as it is called) maintains TLB access order
among multiple strands. The load-store model (LdSt-sync) maintains cache
and memory access order among multiple strands. The Follow-me model
synchronizes DUT architecture state that SAM cannot maintain independently.
These synchronization models are described in greater detail in the following
subsections.

10.7.1.1 TLB-Sync Model
Several factors can affect TLB access order:
• All strands in a core share the same TLB; the sequence in which the strands

access the TLB affects the TLB content received by each strand.

222 Chapter 10 System Simulation, Bringup, and Verification
• Each strand can fetch several instructions at one time and store them in the
ifetch buffer for later use, so there can be many cycles between the time
when an instruction is fetched (where TLB is referenced) and the time
when the instruction is dispatched to a pipeline for execution. Since SAM
does not maintain cycle count and does not model the pipeline in detail, it
fetches and executes an instruction in the same cycle.

• SAM does not model the TLB replacement algorithm exactly as DUT does,
so a TTE entry’s location in the TLB may be different between DUT and
SAM. For cosimulation to match every strand and every instruction’s
execution, the TLB activity must be synchronized between DUT and SAM.

One set of TLB-sync commands maintains consistent TLB state between DUT
and SAM. The commands exchange information regarding TLB read, TLB
write, and TLB hardware tablewalk. Each TLB-sync command contains a time
stamp that represents the cycle count, where DUT conducts the corresponding
operation. SAM uses the commands (with the corresponding time stamp) to
build up a TLB access history. When a SAM operation requires access to
TLB, the history provides access to the proper TLB content. A safeguard built
into SAM’s TLB-sync model ensures that if DUT and SAM have different
TLB access patterns, an error will be reported. For example, if DUT does an
ITLB hardware tablewalk and SAM does not, an error is flagged.

FIGURE 10-5 presents an example of TLB-sync usages.

FIGURE 10-5 TLB-sync Usages

Without TLB-sync
RTL SAM

T0 ifetch itlb#1 instr1 ts1
T1 replace itlb#1 with itlb#1-new ts2 → T1 replace itlb#1 with itlb#1-new
T1 ifetch itlb#1-new instr2 ts3
T1 retire instr2 → T1 exec instr2, with itlb#1-new
T0 retire instr1 → T0 exec instr?, with itlb#1-new

With TLB-sync
RTL SAM

T0 ifetch itlb#1 instr1 ts1 → T0 itlb-read ts1
T1 replace itlb#1 with itlb#1-new ts2 → T1 itlb-write itlb#1-new ts2

→ T1 replace itlb#1 with itlb#1-new
T1 ifetch itlb#1-new instr2 ts3 → T1 itlb-read ts3
T1 retire instr2 → T1 exec instr2, with itlb#1-new
T0 retire instr1 → T0 exec instr1, with itlb#1

10.7 Verification by Cosimulation 223
The top part of the figure shows the TLB discrepancy between DUT and SAM
when TLB-sync is not used. The left-hand side shows DUT activity broken
down into five operations:
1. At cycle count ts1 (time-stamp 1), strand-0 fetches instruction instr1, using

ITLB entry itlb#1.
2. At cycle count ts2, strand-1 replaces ITLB entry itlb#1 with a new entry

itlb#1-new.
3. At cycle count ts3, strand-1 fetches instruction instr2 using ITLB entry

itlb#1-new.
4. Strand-1 executes and retires instruction instr2.
5. Strand-0 executes and retires instruction instr1.

Because SAM does not model the instruction fetch buffer, it does not separate
ITLB access and instruction execution. The two operations occur together
when a step command is received. That is, when a step command arrives
from DUT, SAM accesses the ITLB, fetches the corresponding instruction,
and then executes the instruction, all in one operation. Because of that,
operations (1) and (3) are not visible to SAM. The first operation that happens
within SAM is operation (2), by which a ITLB entry is replaced. It is followed
by operation (4), by which SAM has strand-1 access ITLB, where itlb#1-new
is used; in such case, instruction instr2 is fetched and executed. In operation
(5), SAM has strand-0 access ITLB, where itlb#1-new is used, and an
instruction other than instr1 is fetched and executed, causing a mismatch
between DUT and SAM.

The bottom part of FIGURE 10-5 shows how TLB-sync resolves the problem.
Here, TLB-sync commands let DUT inform SAM of all the ITLB activities
that take place so that SAM can properly build up an ITLB access history.
When strand-0 and strand-1 come to reference ITLB in order to fetch the
proper instructions, they give the same content as the strands in DUT have, so
the same instructions (as DUTs) are fetched and executed.

10.7.1.2 LdSt-Sync Model
SAM does not model cache; all data accesses go directly to SAM’s memory
model. This behavior does not conform well to real RTLs, for which two
levels of cache and cache coherence keep track of the data access order among
all strands (of all cores). For synchronization of the data access order between
DUT and SAM, a set of cosimulation commands inform SAM when the
following DUT activities occur:

1. A load operation is committed; also reported is whether that load operation
gets its data from the L1 cache or others.

224 Chapter 10 System Simulation, Bringup, and Verification
2. A load operation’s L1 cache miss brings the data into L1 cache.

3. A store operation is committed.

4. A store operation causes cache invalidation and when the cache content
changes because of the invalidation.

SAM uses the information provided by DUT to build a data-access history
queue, complete with L1 and L2 cache behavior. FIGURE 10-6 shows a sample
LdSt-sync operation.

FIGURE 10-6 LdSt-Sync Operations

The top part of the figure shows the data access operations in DUT and in
SAM. In DUT, several operations are observed:

1. Strand-0 stores data data1 to address addr1.

2. Strand-8, which is in core 1, loads data from address addr1. At this point,
strand-8’s L1 cache is not invalidated, so the load has an L1 cache hit and
data data0 is returned.

3. The cache invalidation request is carried out in core 1, so strand-8’s L1
cache entry for address addr1 becomes invalid at this point.

Without LdSt-sync
RTL SAM

T0 store addr1 data1 → T0 exec instr store addr1 data1
T8 load addr1 l1$-hit (data0) → T8 exec instr load addr1 (data1)
C1 store-invalid addr1 →
T8 load addr1 l1$-miss (data1) → T8 exec instr load addr1 (data 1)

With LdSt-sync
RTL SAM

T0 store addr1 data1 → T0 exec instr store addr1 data1
→ T0 store-commit addr1

T8 load addr1 l1$-hit (data0) → T8 load-data addr1 l1$-hit
T8 exec instr load addr (data0)

C1 store-invalid addr1 → C1 store-invalid addr1
T8 load addr1 l1$-miss (data1) → T8 load-data addr1 l1$-miss

→ T8 load-fill addr1
T8 exec instr load addr1 (data1)

10.7 Verification by Cosimulation 225
4. Strand-8 does another load from address addr1. This time it encounters an
L1 cache miss, and the new data data1 is loaded into strand-8’s L1 cache
and returned for the load request.

Because SAM does not model cache, operation (3) is not visible to SAM since
all the load and store data go directly to SAM’s memory model. And because
SAM does not model cache, the data stored at operation (1) is returned, so the
load operation gets data data1, which is different from DUT’s data data0.
Thus, a mismatch will occur when the delta data is sent over the socket to
TestBench. At operation (4), the second load operation by strand-8 will get the
same data as its first load operation at operation (2).

The bottom part of FIGURE 10-6 demonstrates the information exchange
between TestBench and SAM when the LdSt-sync model added to SAM and
TestBench enables the related commands. What happens in this case is
described below:

1. When strand-0 stores data data1 to address addr1, the data does not go into
SAM’s memory model directly; instead, it is kept in SAM’s LdSt-sync
model, along with other load and store operations. These load and store
operations are committed to SAM’ s memory only when their predefined
condition is satisfied.

2. When strand-8 loads data from address addr1, with its resource as “L1
cache hit,” the data of the latest store by strand-0 is not used; instead, a
data entry that occurs before the store and that fits “L1 cache hit” criteria is
used.

3. When core-1 invokes cache invalidation, the corresponding entries in
SAM’s LdSt-sync model are marked accordingly.

4. When strand-8 does the next load from address addr1 with “L1 cache
miss,” TestBench issues a Load-Fill command to instruct SAM to load the
corresponding data into SAM LdSt-sync’s data-access history queue, such
that strand-8v will get the new data stored by strand-0 in operation (1).

Again, SAM’s LdSt-sync model does not blindly take information regarding
DUT’s data access from TestBench. SAM’s LdSt-sync model has a built-in
safeguard so that if TestBench gives the wrong commands (or order), SAM
detects and reports the error.

10.7.1.3 Follow-Me Model
Because SAM does not have the concept of time (or cycle count), it cannot
always raise nonprecise traps in synchronization with DUT, which in turn
triggers mismatches during cosimulation. To overcome this problem,

226 Chapter 10 System Simulation, Bringup, and Verification
TestBench sends an Interrupt Sync command to SAM whenever a nonprecise
trap is raised at DUT so that SAM can raise the same trap at the same cycle
count. A safeguard built into SAM checks a nonprecise trap’s priority and
condition before the trap is raised; thus, SAM and DUT can maintain some
degree of independence even when the Interrupt Sync command is used.

Another use of the “follow me” scheme is to maintain consistency for
architecture registers that can be changed by a hardware condition. For
example, in the case of a RAS error, the change to a register is not the result
of executing an instruction, so SAM cannot change the register at the right
moment, that is, at the same cycle count at which DUT makes the change. A
“follow me” used on the targeted register ensures that both DUT and SAM
have the same register state.

10.7.2 RTL-SAM Cosimulation Summary
In most cases, the DUT and SAM should execute instructions independently
and compare their architecture register changes after every instruction
execution. But because SAM is a functional model, it does not have the
concept of time and does not maintain cycle count. Moreover, since SAM
does not simulate cache operation, synchronization operations must be used to
synchronize TLB and data access events. For nonprecise traps and hardware-
originated register change, the follow-me model may have to be used to keep
DUT and SAM’s architecture state consistent. In those synchronization and
follow-me operations, SAM has built-in safeguards to double-check the
synchronization and follow-me action reported by DUT, to ensure that DUT
does the same thing in the first place.

Without a golden reference model, RTL verification would become a lot more
complicated. For example, more monitors and checkers would have to be built
into DUT and TestBench to check DUT state. Without a golden reference
model, test diagnostics used in the verification process would need some
degree of self-checking so that each test diagnostic could report on its own
whether or not the test passes. When cosimulation is conducted with a golden
reference model (in this case, SAM), most of the checking burden is shifted to
the golden reference model, so DUT and TestBench do not need as many
monitors and checkers, and test diagnostics do not need the complexity of
built-in self-checking.

In short, the golden reference model (SAM) plays an important role in
ensuring the correctness and efficiency of RTL verification.

CHAPTER 11

OpenSPARC Extension and
Modification—Case Study
 “Putting OpenSPARC Into an Open Core”

This chapter exemplifies how users can get started with the OpenSPARC
RTL and tools. For this chapter, we invited our Italian friends at Simply
RISC to describe how they extended and modified OpenSPARC for the
Wishbone interface. We are pleased to thank these authors for their
enthusiastic acceptance of our invitation.

Their narrative, titled “Put OpenSPARC Into an Open Core,” contains the
following sections (lightly edited):
• Starting Up the Project on page 228
• Using the PCX/CPX Protocol on page 229
• Writing the Wishbone Bridge on page 234
• Choosing the Testbench on page 236
• Simulating With Verilog Icarus on page 236
• Conclusions on page 237

About the Authors of Chapter 11
Vincenzo Catania received a degree in Electrical Engineering from the
University of Catania in 1982, when he became responsible for microprocessor
testing at STMicroelectronics. In 1985 he joined the Department of Computer
and Telecommunications Engineering (DIIT) at the University of Catania, where
his research interests included parallel/distributed architectures, dealing with
architectural issues, management, reliability, fault tolerance, and performance
evaluation; hardware/software co-design methods for VLSI systems; embedded
and low-power designs. He is now Full Professor of Computer Science and
Director of the DIIT department, he has published about 100 papers in
international journals and conference proceedings, and he holds two U.S.
patents.
Fabrizio Fazzino received a degree in Computer Engineering from the
University of Catania in 1997. Until 2001 he was responsible for the functional
verification of 32-bit lines of microprocessors at STMicroelectronics. Since 2004
he collaborates with the Department of Computer and Telecommunications
Engineering. In 2006 he founded Simply RISC LLP, where he is Managing
Director and Chief System Architect.
227

228 Chapter 11 OpenSPARC Extension and Modification—Case Study
Putting OpenSPARC Into an Open
Core

Starting Up the Project
As soon as OpenSPARC T1 was released, a group of people working at
Simply RISC and at the University of Catania started thinking about the
development of a cut-down version of OpenSPARC T1 that could be suitable
for embedded systems. But we also wanted to gain regard in the open-source
community, and to do so we tried importing the design in a GNU/Linux
environment, using only free tools. After a while we had built a SPARC core
and could simulate it on a fresh installation of Ubuntu. Moreover, developers
could download just 1 megabyte, rather the complete OpenSPARC tarball that
requires a registration and weighs in at 70 megabytes.

Project Name
We start every project by choosing a proper name. We chose to name this
project the “S1 Core,” where the initial “S” stood interchangeably for “single
core,” “Simply RISC,” the code name “Sirocco,” or just the letter preceding
the “T” of T1 in the Latin alphabet (thus being S1, a decreased version of T1).
Hereafter, we refer to this project as the S1 Core.

All the code reported in this chapter is available in the download section of
the Simply RISC website (http://www.srisc.com), and everything,
including the parts originating from Sun Microsystems, is released under the
GPL 2 license.

Project Guidelines
To start designing our own derivative project, we established some guidelines
to follow.

The first difference between the S1 Core and the T1 processor had to be the
number of cores: Usually the communities developing open-source processors
do not target the server market (of course!) but instead target the sector of
embedded systems, network appliances, and prototyping boards, where area
minimization is a key factor.

Using the PCX/CPX Protocol 229
We chose to use only one SPARC core from the eight available in T1, since
we could then execute four threads at the same time while cache misses and
other stalls waited in the pipeline.

We also tried to merge the power of the OpenSPARC community with the
efforts already existing in the field of open-source hardware design; for
instance, with the large community of designers built around the
OpenCores.org website. (Please note that the purists of the Free Software
Foundation discourage the use of the term “open source” since it focuses on
the accessibility of the code and not on the freedom of use).

Once designed, the S1 Core would have to be connected to other Internet
Protocol (IP) cores. (Please use the term ‘‘IP core’’ with caution again—
Richard Stallman, founder of the Free Software Foundation, does not approve
of this name, either!)

Then the original proprietary PCX/CPX bus interface had to be replaced with
a standard Wishbone interface, a royalty-free protocol. The protocol was
initially developed by a company named Silicore and then donated to the
OpenCores community whose site hosts the specification along with several
other cores (both masters and slaves) using the same interface. Since not all
the details of the PCX/CPX protocol were clear from the specification, we
decided to reverse-engineer Sun’s protocol by using the waveforms generated
by the sims script provided with the official OpenSPARC environment.

But to encourage the open-source community, we also decided to make it
possible to run all the activities of the newborn S1 Core environment using
only free tools (some of them free as in beer and some others free as in
speech). We also reduced the size of the tarball by a factor of 50 and removed
any kind of registration required to download, thus encouraging downloading
(we personally don’t like registrations since every site has its own rules for
choosing login names and passwords).

So here is our final list of guidelines:
• We will use only one SPARC core of the eight in the full OpenSPARC T1.
• The final design will feature a standard Wishbone interface.
• We will use only free tools to make the environment work.

Using the PCX/CPX Protocol
To interface the SPARC core of the OpenSPARC T1 project with the “external
world,” we reverse-engineered the protocol as we had decided when setting up
the guidelines.

230 Chapter 11 OpenSPARC Extension and Modification—Case Study
To generate the Value Change Dump (VCD) waveforms, we just added a line
into the testbench and ran a single sims simulation script.

We also wrote the tracan (trace analyzer) tool to convert the waveforms
into a more suitable format (similar to that of a log file).

Run on a SPARC Machine
To run the simulations inside the original OpenSPARC environment, you need
to have access to a SPARC machine (and this is quite simple) and to some
EDA tools (for example, from Synopsys). If your company cannot afford
these, you can exploit the open-source approach and ask some academic
groups working on OpenSPARC to share with you their results of the script
execution (usually even expensive licenses are provided at very cheap prices
for university programs). At the end, all they will give you back is a bunch of
VCD trace files.

Modify the Testbench
If you want to easily analyze the produced waveforms on your machine by
using a free tool, the best way to do so is to modify the testbench to dump the
simulation values in a standard format such as VCD.

The testbench inside the OpenSPARC environment does not trace in VCD
format “as is,” but all you need to do is add a few simple lines of Verilog code
into the top-level testbench.

The testbench is in the $DV_ROOT/verif/env/cmp/cmp_top.v file.
Just add the following four lines into its Verilog module cmp_top:
initial begin

$dumpfile("trace.vcd");
$dumpvars(1, cmp_top.iop.sparc0);

end

Run the Simulations
When running the smallest-possible subset of tests, always remember to add
the switch that prevents the simulation scripts from deleting the results at the
end; otherwise, for each test the VCD will be generated and then deleted
before the execution of the next test.

Use this command:
sims -sim_type=vcs -group=core1_mini -copyall

Using the PCX/CPX Protocol 231
As the Design and Verification manual pages tell us, the copyall command
“copies back all files to launch directory after passing regression run.
Normally, only failing runs cause a copy back of files.”

Now you can look at the waveforms. If you don’t have access to commercial
tools, just ask other people to lend you the trace file and use GTKWave to
show the waveforms. GTKWave is free software, and if you use a common
GNU/Linux distribution, you’ll find a ready-to-use package for it.

FIGURE 11-1 shows an example of what you would see with GTKWave.

FIGURE 11-1 Waveforms of the Official OpenSPARC T1 Simulations
The time marker is on the rising edge of the first boot of the SPARC core
(the only previous activity is the so-called wake-up packet).

Employ the PCX/CPX Protocol
As you can see in FIGURE 11-1, the protocol itself is simple and the signal
names are self-explanatory: it is a request-grant-ready protocol and most
information is contained in the packets.

The SPARC core has two packet-based interfaces, one for incoming packets
(PCX) and another for outgoing packets (CPX).

The only ports that connect the Wishbone bridge to the SPARC core are the
following:

Note PCX stands for “Processor-to-Cache Xbar,” where “Xbar” stands in
turn for “Crossbar interconnect”; CPX stands for “Cache-to-
Processor Xbar.”

232 Chapter 11 OpenSPARC Extension and Modification—Case Study
• PCX Ports
• output spc_pcx_req_pq{4:0}
• output spc_pcx_atom_pq
The 124 bits that compose the PCX packet are interpreted as a valid bit (1
bit), request type (5 bits), noncacheable (1), CPU ID (3), thread ID (2),
invalidate (1), prefetch (1), block init store (1), replace L1 way (2), size
(3), address (40), and data (64).

• CPX Ports
• input cpx_spc_data_rdy_cx2
• input cpx_spc_data_cx2{144:0}
The 145 bits that compose the CPX packet are interpreted as a valid bit (1
bit), return type (4 bits), L2 miss (1), error (2), noncacheable (1), thread ID
(2), way valid (1), cache way (2), and data (128).

Interpret the Signals
The OpenSPARC documentation explains how signals at the boundary of the
SPARC cores must be interpreted; watching the waveforms is usually much
easier than just reading a table.

The Verilog code for encoding and decoding the PCX/CPX information is
shown in EXAMPLE 11-1.

EXAMPLE 11-1 Encoding and Decoding PCX/CPX Information (Verilog)

/*
 * Encode/decode incoming info
 *
 * Legend: available constants for some of the PCX/CPX fields.
 *
 * spc2wbm_size (3 bits) is one of:
 * - PCX_SZ_1B
 * - PCX_SZ_2B
 * - PCX_SZ_4B
 * - PCX_SZ_8B
 * - PCX_SZ_16B (Read accesses only)
 *
 * spc2wbm_type (5 bits) is one of:
 * { LOAD_RQ, IMISS_RQ, STORE_RQ, CAS1_RQ, CAS2_RQ, SWAP_RQ,
STRLOAD_RQ,
 * STRST_RQ, STQ_RQ, INT_RQ, FWD_RQ, FWD_RPY, RSVD_RQ }
 *
 * wbm2spc_type (4 bits) is one of:
 * { LOAD_RET, INV_RET, ST_ACK, AT_ACK, INT_RET, TEST_RET, FP_RET,
 * IFILL_RET, EVICT_REQ, ERR_RET, STRLOAD_RET, STRST_ACK, FWD_RQ_RET,
 * FWD_RPY_RET, RSVD_RET }
 *
 */

Using the PCX/CPX Protocol 233
Convert the Waveforms
We converted the VCD trace files into a more suitable format, to simplify
counterchecking against our own log file. We wrote a simple C program to
convert the files and named it tracan, for “trace analyzer.” Using this tool to
convert a VCD trace file of the OpenSPARC T1 environment into a plain-text
log file, we obtained the result shown in EXAMPLE 11-3.

 *
// Decode info arriving from the SPC side
assign spc2wbm_req = (spc_req_i[4] | spc_req_i[3] | spc_req_i[2] |

spc_req_i[1] | spc_req_i[0]);
assign spc2wbm_valid = spc2wbm_packet[‘PCX_VLD];
assign spc2wbm_type = spc2wbm_packet[‘PCX_RQ_HI:‘PCX_RQ_LO];
assign spc2wbm_nc = spc2wbm_packet[‘PCX_NC];
assign spc2wbm_cpu_id = spc2wbm_packet[‘PCX_CP_HI:‘PCX_CP_LO];
assign spc2wbm_thread = spc2wbm_packet[‘PCX_TH_HI:‘PCX_TH_LO];
assign spc2wbm_invalidate = spc2wbm_packet[‘PCX_INVALL];
assign spc2wbm_way = spc2wbm_packet[‘PCX_WY_HI:‘PCX_WY_LO];
assign spc2wbm_size = spc2wbm_packet[‘PCX_SZ_HI:‘PCX_SZ_LO];
assign spc2wbm_addr = spc2wbm_packet[‘PCX_AD_HI:‘PCX_AD_LO];
assign spc2wbm_data = spc2wbm_packet[‘PCX_DA_HI:‘PCX_DA_LO];

// Encode info going to the SPC side assembling return packets
assign wbm2spc_packet = { wbm2spc_valid, wbm2spc_type, wbm2spc_miss,

wbm2spc_error, wbm2spc_nc, wbm2spc_thread, wbm2spc_way_valid,
wbm2spc_way, wbm2spc_boot_fetch, wbm2spc_atomic, wbm2spc_pfl,
wbm2spc_data };

EXAMPLE 11-2 Conversion of VCD Trace File to Plain-Text Log File

INFO: WBM2SPC: *** RETURN PACKET TO SPARC CORE ***
INFO: WBM2SPC: Valid bit is 1
INFO: WBM2SPC: Return Packet of Type Unknown
INFO: WBM2SPC: L2 Miss is 0
INFO: WBM2SPC: Error is 0
INFO: WBM2SPC: Non-Cacheable bit is 0
INFO: WBM2SPC: Thread is 0
INFO: WBM2SPC: Way Valid is 0
INFO: WBM2SPC: Replaced L2 Way is 0
INFO: WBM2SPC: Fetch for Boot is 0
INFO: WBM2SPC: Atomic LD/ST or 2nd IFill Packet is 0
INFO: WBM2SPC: PFL is 0
INFO: WBM2SPC: Data is 00000000000000000000000000010001
INFO: SPC2WBM: *** NEW REQUEST FROM SPARC CORE ***
INFO: SPC2WBM: Valid bit is 1
INFO: SPC2WBM: Request of Type IMISS_RQ
INFO: SPC2WBM: Non-Cacheable bit is 1
INFO: SPC2WBM: CPU-ID is 0

EXAMPLE 11-1 Encoding and Decoding PCX/CPX Information (Verilog) (Continued)

234 Chapter 11 OpenSPARC Extension and Modification—Case Study
Writing the Wishbone Bridge
Then we had to write our own bridge from the PCX/CPX protocols used by
the SPARC core to a master Wishbone interface. A schematic view of the
bridge function is shown in FIGURE 11-2. The corresponding Verilog file is
named spc2wbm.v (it stands for “SPARC core to Wishbone Master”).

FIGURE 11-2 Our Bridge Just Transforms PCX/CPX Packets Into Wishbone
Requests

INFO: SPC2WBM: Thread is 0
INFO: SPC2WBM: Invalidate All is 0
INFO: SPC2WBM: Replaced L1 Way is 3
INFO: SPC2WBM: Request size is 1 Byte
INFO: SPC2WBM: Address is fff0000020
INFO: SPC2WBM: Data is 0000000000000000
INFO: WBM2SPC: *** RETURN PACKET TO SPARC CORE ***
INFO: WBM2SPC: Valid bit is 1
INFO: WBM2SPC: Return Packet of Type IFILL_RET
INFO: WBM2SPC: L2 Miss is 0
INFO: WBM2SPC: Error is 0
INFO: WBM2SPC: Non-Cacheable bit is 1
INFO: WBM2SPC: Thread is 0
INFO: WBM2SPC: Way Valid is 0
INFO: WBM2SPC: Replaced L2 Way is 0
INFO: WBM2SPC: Fetch for Boot is 1
INFO: WBM2SPC: Atomic LD/ST or 2nd IFill Packet is 0
INFO: WBM2SPC: PFL is 0
INFO: WBM2SPC: Data is 0300000005000100821060008410a0c0

EXAMPLE 11-2 Conversion of VCD Trace File to Plain-Text Log File (Continued)

SPARC Core

Bridge

Reset Controller

PCX side
(outgoing)

CPX side
(incoming)

(SPARC Core to
Wishbone Master)

(resembles the reset
sequence of T1)

CYCLE
STROBE
SELECT
ENABLE
ADDRESS
DATAOUT

ACK

DATAIN
DATAIN

READY

GRANT

DATAOUT

ATOMIC

REQUEST

Simply RISC S1 Core

Writing the Wishbone Bridge 235
The Wishbone Protocol
The Wishbone protocol was initiated by a company named Silicore and then
donated to the open-source community. There is no longer a website for
Silicore, but all the documentation can be found at OpenCores.org.

The bridge from the PCX and CPX protocols of the SPARC core and the
Wishbone protocol has been designed as follows:
• The bridge has a Wishbone master interface that follows the Wishbone

specification revision B.3.
• In the Verilog code, signal names related to the Wishbone interface are

identified by leading wbm_ chars.
• There is no support for errors (ERR/RTY).
• The address bus is 64 bits wide (with some bits unused, since the address

bus of the SPARC core refers to 40-bit physical addresses).
• The data bus is 64 bits wide and supports 8-, 16-, 32-, and 64-bit accesses.
• Data transfer ordering is big endian.
• Single read/write cycles are supported.

The Finite State Machine
The Wishbone bridge makes use of a finite state machine (FSM) to serve the
requests coming from the SPARC core and convert them to the Wishbone
world.

At any moment the FSM can be in one of the following 12 states:
• S0 — Wake-up (the bridge sends the special interrupt packet to wake up

the core)
• S1 — Idle (stands here until a request arrives)
• S2 — Request latched
• S3 — Packet latched
• S4 — Request granted
• S5 — Begin second memory access
• S6 — Second memory access completed (if there was a request with size ≤

128 bits, can then jump to S11)
• S7 — Begin third memory access if required
• S8 — Third memory access completed
• S9 — Begin fourth memory access if required (four 64-bit Wishbone reads

can return up to 256 bits of data)

236 Chapter 11 OpenSPARC Extension and Modification—Case Study
• S10 — Fourth memory access completed
• S11 — Packet ready (and then go back to S1)

Transitions are allowed from each state to the following one; other transitions
are possible where specified.

Choosing the Testbench
All that was missing now was just a top-level testbench with a reset controller.
For the first run we chose to run the same memory images of the official
OpenSPARC environment.

Simulating With Verilog Icarus
At the end, the only requirement was the free (as in speech!) simulator Icarus
Verilog.

Compare Waveforms
When you look at the waveforms, you can see both6 the PCX/CPX and the
Wishbone protocols. Obviously, the sequence is as follows:
• The SPARC core sends a PCX packet to the bridge.
• The bridge performs one or more Wishbone accesses to read or write the

external memory.
• The bridge sends back a CPX packet to the SPARC core.

FIGURE 11-3 shows what you would see this time with GTKWave.

FIGURE 11-3 Waveforms Obtained With GTKWave Simulating S1 Core With Icarus
Verilog

Conclusions 237
Compare Log Files
You can use the tracan tool to compare the log file with the fake one
obtained from the official OpenSPARC environment. As shown in
EXAMPLE 11-3, excluding the wake-up packet, the two files are exactly the
same!!!

Conclusions
We have used the SPARC core of T1 as a black box. We did not study its
internals extensively—anyway, it works! And you can use free tools on a
“whatever” Linux box to make it run.

EXAMPLE 11-3 Comparison of Log Files

INFO: SPC2WBM: *** NEW REQUEST FROM SPARC CORE ***
INFO: SPC2WBM: Request targeted to I/O Block
INFO: SPC2WBM: Request is not atomic
INFO: SPC2WBM: Valid bit is 1
INFO: SPC2WBM: Request of Type IMISS_RQ
INFO: SPC2WBM: Non-Cacheable bit is 1
INFO: SPC2WBM: CPU-ID is 0
INFO: SPC2WBM: Thread is 0
INFO: SPC2WBM: Invalidate All is 0
INFO: SPC2WBM: Replaced L1 Way is 3
INFO: SPC2WBM: Request size is 1 Byte
INFO: SPC2WBM: Address is fff0000020
INFO: SPC2WBM: Data is 0000000000000000
INFO: WBM2SPC: *** RETURN PACKET TO SPARC CORE ***
INFO: WBM2SPC: Valid bit is 1
INFO: WBM2SPC: Return Packet of Type IFILL_RET
INFO: WBM2SPC: L2 Miss is 0
INFO: WBM2SPC: Error is 0
INFO: WBM2SPC: Non-Cacheable bit is 1
INFO: WBM2SPC: Thread is 0
INFO: WBM2SPC: Way Valid is 0
INFO: WBM2SPC: Replaced L2 Way is 0
INFO: WBM2SPC: Fetch for Boot is 1
INFO: WBM2SPC: Atomic LD/ST or 2nd IFill Packet is 0
INFO: WBM2SPC: PFL is 0
INFO: WBM2SPC: Data is 03000000050001000000000000000000

APPENDIX A

Overview: OpenSPARC T1/ T2
Source Code and Environment
Setup

This appendix gives an overview of the source code in the
OpenSPARC T1 and OpenSPARC T2 releases; it also summarizes the
requirements for setting up an OpenSPARC environment. The appendix
includes these sections:

• OpenSPARC T1 Hardware Package on page 239
• OpenSPARC T2 Hardware Package on page 243
• Setup for an OpenSPARC Environment on page 246

A.1 OpenSPARC T1 Hardware
Package

The OpenSPARC T1 hardware package contains all the source code
needed to implement an OpenSPARC T1 design. It contains the following
components:
• A complete documentation set that includes a microarchitecture

specification and a design and verification user’s guide
• Complete RTL for the entire design
• A Xilinx EDK project setup to implement a single T1 core on a field-

programmable gate array (FPGA) and an environment in which to
exercise it

• Libraries of Verilog design block descriptions
• A fully functional verification environment featuring a complete suite

of diagnostic tests that verify the design after changes have been made
• Synthesis scripts that synthesize the design into an ASIC library or an

FPGA
239

240 Appendix A Overview: OpenSPARC T1/ T2 Source Code and Environment Setup
A.1.1 T1 Hardware Package Structure
The T1 hardware package is available at www.opensparc.net. It is
distributed as a compressed tar file of the directory structure. When
uncompressed into a directory, the top-level data structure will appear as
follows:

A.1.2 Documentation
After downloading the hardware package, the user may first want to read
some of the documentation to get an overview of the design. In the doc
directory are five important documents covering various aspects of the design:
• The OpenSPARC T1 Processor Design and Verification User’s Guide is a

complete overview of how to run simulations, synthesize the design, and
run the design on an FPGA.

• The OpenSPARC T1 Processor Data Sheet describes the OpenSPARC T1
processor at a high level and describes external interfaces of this processor,
including the J-Bus interface, the DDR2 memory interface, clocking, reset,
and the reliability, availability, and serviceability (RAS) features.

• The OpenSPARC T1 Processor External Interface Specification describes
in more detail all the external interfaces of the design.

• The OpenSPARC T1 Processor Megacell Specification describes the design
and implementation of megacells within the design, including RAM or
array designs, register files, Translation Lookaside Buffers (TLBs),
content-addressable memories (CAMs), and cache structures.

• The OpenSPARC T1 Processor Microarchitecture Specification examines
the internal design structure of the processor. It describes how the various
blocks are designed and documents some of the internal interfaces within
the processor.

BINARY_SLA.txt
GPLv2_License_OpenSPARCT1.txt
OpenSPARCT1.bash
OpenSPARCT1.cshrc
README
THIRDPARTYLICENSEREADME.txt
design/
doc/
lib/
tools/
verif/

A.1 OpenSPARC T1 Hardware Package 241
A.1.3 Design Source Code
The design source code can be found in the following directory:

Each major block of the design has a directory with a standard directory
structure under it. This directory structure contains the following elements.
Not all blocks will contain every subdirectory listed here.
• The rtl directory contains the Verilog® HDL source code for the block.
• The synopsys directory contains synthesis scripts for the Design

Compiler® synthesis tool from Synopsys®.
• The synplicity directory contains synthesis scripts needed for the

Synplify® FPGA synthesis tool from Synplicity®.
• The xst directory contains synthesis scripts needed by the XST FPGA

synthesis tool from Xilinx®.
The magellan directory contains System Verilog Assertions (SVA)
properties and scripts for the Magellan™ formal verification tool from
Synopsys.
This tool formally verifies the block. Only the ccx2mb block was verified
in this manner.

• The block directory will also contain subdirectories for any of the
subblocks that it contains.
For example, the sparc directory will contain subdirectories for all of the
components of the SPARC core: ifu, lsu, exu, etc.

Following is a description of some of the important blocks of the design:
• The iop block (I/O and pads) is the top-level block of the OpenSPARC T1

processor. It contains all the I/O, pads, all eight cores, and level-2 cache.
• The iop_fpga block is the top-level block of an FPGA design. It

contains a single core. The code for this block is in the iop/rtl
directory.

• The sparc block is the top-level block of the T1 SPARC core.
• The ccx2mb block was developed for the Xilinx FPGA design. It adapts

the cache-crossbar interface of the SPARC core to the Xilinx Fast Simplex
Links (FSL) interface.

design/sys/iop

242 Appendix A Overview: OpenSPARC T1/ T2 Source Code and Environment Setup
A.1.4 Xilinx Embedded Development Kit
Project

The Xilinx Embedded Development Kit (EDK) project included in the T1
hardware package enables the operation of a single-core design on Xilinx
FPGAs. Users can download a single-core design to an FPGA on an
evaluation board, run diagnostic tests on it, bring up the hypervisor layer and
run stand-alone programs on top of it, and even boot the Solaris operating
system.

The EDK project is located in the following directory:

A.1.5 Design Libraries
Design libraries for the OpenSPARC T1 design are found in the lib
directory. These library files contain Verilog descriptions of the various
standard cell and datapath building blocks of the design.

A.1.6 Verification Environment
The complete verification environment for the OpenSPARC T1 design is
located in the verif directory. This comprehensive environment allows a
user to completely verify the processor after making changes, thus
encouraging greater exploration of design enhancements.

The verification system consists of the following components.
• The env directory contains the simulation environment files. These files

drive stimulus to the processor inputs and check its output. Three
environments are available:
• The core1 environment, which simulates a single SPARC core
• The cmp8 environment, which simulates up to eight SPARC cores
• The chip8 environment, which simulates the full processor, including

the SPARC cores, and the complete I/O subsystem
• The model directory contains models of standard components that are

used in the simulation environments.

design/sys/edk

A.2 OpenSPARC T2 Hardware Package 243
• The diag directory contains over a thousand diagnostic tests. Most of the
tests are assembly language programs that are assembled into an executable
file and then simulated on the processor. The diag directory also lists tests
for several standard regression suites.

A.1.7 Tools
The OpenSPARC T1 package comes with a set of tools and scripts to assist
with the implementation and verification of the design. These are located in
the tools directory. Here are some of the tools in the tools/bin directory.
• rsyn script — Runs synthesis on a block, using Design Compiler
• rsynp script — Synthesizes a block to an FPGA netlist, using Synplify
• rxil script — Synthesizes a block to an FPGA netlist, using XST from

Xilinx
• sims script — Sets up and runs simulation on the OpenSPARC T1 design
• midas program — Is an assembler that sets up simulations; called by the

sims script
• bas program — Is the Simics architectural simulator; runs in parallel with

the RTL simulation to verify the correct operation of the RTL
• runreg script — Calls sims to run a regression
• regreport script — Generates a report on the results of a simulation

regression run

A.2 OpenSPARC T2 Hardware
Package

The structure of the OpenSPARC T2 hardware package is similar to that of the
T1 package. It consists of documentation, design source code, a verification
environment, and a set of tools. However, OpenSPARC T2 does not yet
support FPGA.

244 Appendix A Overview: OpenSPARC T1/ T2 Source Code and Environment Setup
A.2.1 Documentation
Like OpenSPARC T1, OpenSPARC T2 contains a complete set of
documentation. In the doc directory are four important documents covering
various aspects of the design:
• The OpenSPARC T2 Processor Design and Verification User’s Guide gives

a complete overview of how to run simulations and synthesize the design.
• The OpenSPARC T2 Processor Megacell Specification describes the design

and implementation of megacells within the design, including RAM or
array designs, register files, Translation Lookaside Buffers (TLBs),
content-addressable memories (CAMs), and cache structures.

• The OpenSPARC T2 Processor Core Microarchitecture Specification
examines the internal design structure of the SPARC core. It describes how
the various blocks are designed and documents some of the internal
interfaces within the core.

• The OpenSPARC T2 Processor System-on-Chip (SOC) Microarchitecture
Specification examines the internal design structure of the OpenSPARC T2
processor. This document covers the I/O subsystem, level-2 cache, and
everything else outside of the SPARC core. It describes how the various
blocks are designed and documents some of the internal interfaces between
these blocks.

A.2.2 Design Source Code
The design source code can be found in the following directory:

Each major block of the design has a directory with a standard directory
structure under it. This directory structure contains the following elements.
Not all blocks will contain every subdirectory listed here.
• The rtl directory contains the Verilog HDL source code for the block.
• The synopsys directory contains synthesis scripts for the Design

Compiler synthesis tool from Synopsys.
• The jasper directory contains System Verilog Assertions (SVA)

properties, Verilog code, and scripts for the JasperGold® formal
verification tool from Jasper Design Automation®. JasperGold formally
verifies certain blocks.

design/sys/iop

A.2 OpenSPARC T2 Hardware Package 245
Note that this code was not in the first release of OpenSPARC T2 but will
be included in later releases.

• The magellan directory contains SVA properties and scripts for the
Magellan formal verification tool from Synopsys. Magellan is another
formal verification tool that verifies certain blocks.
Like the code in the jasper subdirectory, this code was not in the first
release of OpenSPARC T2 but will be included in later releases.

• The block directory will also contain subdirectories for any of the
subblocks that it contains.
For example, the sparc directory will contain subdirectories for all of the
components of the SPARC core: ifu, lsu, exu, etc.

Following is a description of some of the important blocks of the T2 design:
• The cpu block is the top-level block of the OpenSPARC T2 processor. It

contains all the I/O, pads, all eight cores, and level-2 cache.
• The spc (SPARC core) block is the top-level block of the T2 SPARC core.

A.2.3 Design Libraries
Design libraries for the OpenSPARC T2 design are found in the lib
directory. These library files contain Verilog descriptions of the various
standard cell and datapath building blocks of the design.

A.2.4 Verification Environment
The complete verification environment for the OpenSPARC T2 design is
located in the verif directory. This comprehensive environment allows a
user to completely verify the processor after making changes, thus
encouraging greater exploration of design enhancements.

The verification system consists of the following components.
• The env directory contains the simulation environment files. These files

drive stimulus to the processor inputs and check its output. Two
environments are available:
• The cmp1 environment, which simulates a single SPARC core, crossbar,

and level-2 cache
• The fc environment, which simulates up to eight SPARC cores,

crossbar, level-2 cache, and full I/O subsystem
• The model directory contains models of standard components that are

used in the simulation environments.

246 Appendix A Overview: OpenSPARC T1/ T2 Source Code and Environment Setup
• The diag directory contains over a thousand diagnostic tests. Most of the
tests are assembly language programs that are assembled into an executable
file and then simulated on the processor. The diag directory also lists tests
for several standard regression suites.

A.2.5 Tools
The OpenSPARC T2 hardware package comes with a set of tools and scripts
to assist with the implementation and verification of the design. These are
located in the tools directory. Note that although the OpenSPARC T2
package has many of the same tools as the OpenSPARC T1 package, there
may be different versions of these tools and the required tool options may be
different. Here are some of the tools in the tools/bin directory.
• rsyn script — Runs synthesis on a block, using Design Compiler
• sims script — Sets up and runs simulation on the OpenSPARC T2 design
• midas program — Is an assembler that sets up simulations; called by the

sims script
• nas program — Is the Riesling architectural simulator for

OpenSPARC T2; run by the sims script in parallel with the RTL
simulation to verify the correct operation of the RTL

• runreg script — Calls sims to run a regression

A.3 Setup for an OpenSPARC
Environment

The environment setup for OpenSPARC environments is the same for
OpenSPARC T1 and OpenSPARC T2. In the top-level directory of each
release is a C shell script to set the proper environment for the project. The
script can be copied and then customized to the user’s environment.

The OpenSPARC projects require the definition of the environment variables
listed below.
• The PROJECT variable is set by the script to either OpenSPARC T1 or

OpenSPARC T2.
• The DV_ROOT variable should be modified to point to the location where

the OpenSPARC project has been placed.

A.3 Setup for an OpenSPARC Environment 247
• The MODEL_DIR variable should point to the location where the user
wants to run any simulations.

• Other environment variables may have to be set to enable other third-party
tools that are needed.

For more information on setting up the environment, see the “Quick Start”
chapter of either the OpenSPARC T1 Processor Design and Verification User’s
Guide or the OpenSPARC T2 Processor Design and Verification User’s Guide.

APPENDIX B

Overview of OpenSPARC T1
Design

This appendix adds to the material presented in Chapter 4 and was
excerpted from OpenSPARC T1 Microarchitecture Specification, Part
number 819-6650-10 August 2006, Revision A. See that manual for
specific details about the material covered in this appendix. The appendix
contains these sections:
• SPARC Core on page 249
• L2 Cache on page 251
• Memory Controller on page 258
• I/O Bridge on page 258
• Floating-Point Unit (FPU) on page 260
• J-Bus Interface on page 264

See FIGURE 4-2 on page 28 for a block diagram of the OpenSPARC T1
chip.

B.1 SPARC Core
Each SPARC core has the following units:
• Instruction fetch unit (IFU) — Maintains the program counters

(PCs) of different threads and fetches the corresponding instructions.
It also includes the following pipeline stages—fetch, thread selection,
and decode—and an instruction cache complex. For every SPARC
core clock cycle, two instructions are fetched for every instruction
issued.
249

250 Appendix B Overview of OpenSPARC T1 Design
• Execution unit (EXU) — Generates the necessary select signals that
control the multiplexors, keeps track of the thread and reads of each
instruction, generates the write-enables for the integer register file (IRF),
and implements the bypass logic. It includes the execute stage of the
pipeline and contains four subunits:
• Arithmetic and logic unit (ALU)
• Shifter (SHFT)
• Integer multiplier (IMUL)
• Integer divider (IDI)

• Load-store unit (LSU) — Processes memory referencing operation codes
(opcodes) such as various types of loads, various types of stores, CAS,
SWAP, LDSTUB, FLUSH, PREFETCH, and MEMBAR instructions. The
LSU interfaces with all the SPARC core functional units and acts as the
gateway between the SPARC core units and the CPU-cache crossbar
(CCX). Through the CCX, data transfer paths can be established with the
memory subsystem and the I/O subsystem (the data transfers are done with
packets). The LSU includes memory and write-back stages and a data
cache complex. The LSU pipeline has four stages:
• E stage – Cache and TLB setup
• M stage – Cache/Tag TLB read
• W stage – Store buffer look-up, trap detection, and execution of data

bypass
• W2 stage – Generates PCX requests and write-backs to the cache

• Trap logic unit (TLU) — Supports six trap levels. A trap can be in one of the
following four modes:

• Reset-error-debug (RED) mode
• Hypervisor (HV) mode
• Supervisor (SV) mode
• User mode
Traps cause the SPARC core pipeline to be flushed and a thread-switch to
occur until the trap vector (redirect PC) has been resolved.
Software interrupts are delivered to each of the virtual cores by the
interrupt_level_n exception through the SOFTINT_REG register. I/O and
CPU cross-call interrupts are delivered to each virtual core by the
interrupt_vector exception. Up to 64 outstanding interrupts can be queued
per thread—one for each interrupt vector.

• Stream processing unit (SPU) — used for modular arithmetic functions
for crypto.

B.2 L2 Cache 251
• Memory management unit (MMU) — Maintains the contents of the
instruction Translation Lookaside Buffer (ITLB) and the data Translation
Lookaside Buffer (DTLB). The ITLB resides in the IFU, and the DTLB
resides in LSU. FIGURE 11-4 illustrates the role of the MMU in
virtualization.

FIGURE 11-4 Visualization Diagram

The Hypervisor (HV) layer virtualizes the underlying central processing
units. The multiple instances of the OS images form multiple partitions of
the underlying virtual machine. The Hypervisor ensures that failure in one
domain would not affect the operation in the other domains. The
OpenSPARC T1 processor supports up to eight partitions, and the hardware
provides three bits of partition ID to distinguish one partition from another.

• Floating-point front-end unit (FFU) — Dispatches floating-point
operations (FP ops) to the floating-point unit (FPU) through the LSU,
executes simple FP ops (MOV, ABS, NEG) and VIS instructions, and
maintains the Floating-Point State register (FSR) and the Graphics State
register (GSR).

B.2 L2 Cache
The OpenSPARC T1 processor L2 cache is 3 Mbytes in size and is composed
of four symmetrical banks that are interleaved on a 64-byte boundary. Each
bank operates independently of the others. The banks are 12-way set
associative and 768 Kbytes in size. The block (line) size is 64 bytes, and each
L2 cache bank has 1024 sets.

The L2 cache accepts requests from the SPARC CPU cores on the processor-
to-cache crossbar (PCX), responds on the cache-to-processor crossbar (CPX),
and maintains on-chip coherency across all L1 caches on the chip by keeping
a copy of all L1 tags in a directory structure. Since the OpenSPARC T1

Applications

Hypervisor

OpenSPARC T1

OS instance 1 OS instance 2

252 Appendix B Overview of OpenSPARC T1 Design
processor implements System-On-a-Chip, with single memory interface and
no L3 cache, no off-chip coherency is required for the OpenSPARC T1 L2
cache other than that the L2 cache must be coherent with main memory.

Each L2 cache bank consists of three main subblocks:
• sctag (secondary cache tag) — Contains the tag array, VUAD array, L2 cache

directory, and the cache controller
• scbuf — Contains the write-back buffer (WBB), fill buffer (FB), and DMA buffer
• scdata — Contains the scdata array

Coherency and ordering in the L2 cache are described as follows:
• Loads update directory and fill the L1 cache on return.

• Stores are nonallocating in the L1 cache.
• There are two flavors of stores: total store order (TSO) and read

memory order (RMO).
Only one outstanding TSO store to the L2 cache per thread is permitted
in order to preserve the store ordering. There is no such limitation on
RMO stores.

• No tag check is done at a store buffer insert.
• Stores check the directory and determine an L1 cache hit.
• The directory sends store acknowledgments or invalidations to the

SPARC core.
• Store updates happen to D$ on a store acknowledge.

• The crossbar orders the responses across cache banks.

B.2.1 L2 Cache Single Bank
The L2 cache is organized into four identical banks. Each bank has its own
interface with the J-Bus, the DRAM controller, and the CCX. The L2 cache
consists of the following blocks:
• Arbiter — Manages the access to the L2 cache pipeline from the various

sources that request access. Gets input from the following:
• Instructions from the CCX and from the bypass path for input queue

(IQ)
• DMA instructions from the snoop input queue
• Instructions for recycle from the fill buffer and the miss buffer
• Stall signals from the pipeline

• L2 tag — Contains the sctag array and the associated control logic. Each
22-bit tag is protected by 6 bits of SEC ECC. The state of each line is
maintained by valid (v), used (u), allocated (a), and dirty (d) bits. These
bits are stored in the L2 VUAD array.

B.2 L2 Cache 253
• L2 VUAD array — Organizes the four state bits for sctags in a dual-ported array
structure:

• Valid (v) – Set when a new line is installed in a valid way; reset when
that line is invalidated.

• Used (u) – Is a reference bit used in the replacement algorithm. Set
when there are any store/load hits (1 per way); cleared when there are
no unused or unallocated entries for that set.

• Allocated (a) – Set when a line is picked for replacement. For a load or
an ifetch, cleared when a fill happens; for a store, when the store
completes.

• Dirty (d) – (per way) Set when a store modifies the line; cleared when
the line is invalidated.

• L2 data (scdata) — Is a single-ported SRAM structure. Each L2 cache
bank is 768 Kbytes in size, with each logical line 64 bytes in size. The
bank allows read access of 16 bytes and 64 bytes, and each cache line has
16 byte-enables to allow writing into each 4-byte part. A fill updates all 64
bytes at a time.
Each 32-bit word is protected by seven bits of SEC/DED ECC. (Each line
is 32 × [32 + 7 ECC] = 1248 bits). All subword accesses require a read-
modify-write operation to be performed, referred to as partial stores.

• Input queue (IQ, a 16-entry FIFO) — Queues the packets arriving on the
PCX when they cannot be immediately accepted into the L2 cache pipe.
Each entry in the IQ is 130 bits wide. The FIFO is implemented with a
dual-ported array. The write port is used for writing into the IQ from the
PCX interface. The read port is for reading contents for issue into the L2
cache pipeline.

• Output queue (OQ, a 16-entry FIFO) — Queues operations waiting for
access to the CPX. Each entry in the OQ is 146 bits wide. The FIFO is
implemented with a dual-ported array. The write port is used for writing
into the OQ from the L2 cache pipe. The read port is used for reading
contents for issue to the CPX.

• Snoop input queue (SNPIQ, a 2-entry FIFO) — Stores DMA instructions
coming from the JBI. The nondata portion (the address) is stored in the
SNPIQ. For a partial line write (WR8), both the control and the store data
are stored in the SNPIQ.

• Miss buffer (MB) — Stores instructions that cannot be processed as a
simple cache hit; includes the following:
• True L2 cache misses (no tag match)
• Instructions that have the same cache line address as a previous miss or

an entry in the write-back buffer

254 Appendix B Overview of OpenSPARC T1 Design
• Instructions requiring multiple passes through the L2 cache pipeline
(atomics and partial stores)

• Unallocated L2 cache misses
• Accesses causing tag ECC errors
A read request is issued to the DRAM and the requesting instruction is
replayed when the critical quadword of data arrives from the DRAM. All
entries in the miss buffer that share the same cache line address are linked
in the order of insertion to preserve coherency. Instructions to the same
address are processed in age order, whereas instructions to different
addresses are not ordered and exist as a free list.

• Fill buffer (FB) — Temporarily stores data arriving from the DRAM on an
L2 cache miss request. The fill buffer is divided into a RAM portion, which
stores the data returned from the DRAM waiting for a fill to the cache, and
a CAM portion, which contains the address. The fill buffer has a read
interface with the DRAM controller.

• Write-back buffer (WBB) — Stores the 64-byte evicted dirty data line from the
L2 cache. The WBB is divided into a RAM portion, which stores evicted
data until it can be written to the DRAM, and a CAM portion, which
contains the address.The WBB has a 64-byte read interface with the scdata
array and a 64-bit write interface with the DRAM controller. The WBB
reads from the scdata array faster than it can flush data out to the DRAM
controller.

• Remote DMA write buffer (RDMA–4-entry buffer) — Accommodates
the cache line for a 64-byte DMA write. The output interface is with the
DRAM controller, which it shares with the WBB. The WBB has a direct
input interface with the JBI.

• L2 cache directory — Participates in coherency management and
maintains the inclusive property of the L2 cache. Also ensures that the
same line is not resident in both the I-cache and the D-cache (across all
CPUs).
Each L2 cache directory has 2048 entries, with one entry per L1 tag that
maps to a particular L2 cache bank. Half the entries correspond to the L1
instruction cache (I-cache), and the other half of the entries correspond to
the L1 data cache (D-cache).
The L2 cache directory is split into two directories, which are similar in
size and functionality: an I-cache directory (icdir) and a D-cache
directory (dcdir).

B.2.2 L2 Cache Instructions
The following instructions follow a skewed, rather than simple, pipeline.

B.2 L2 Cache 255
• A load instruction to the L2 cache is caused by any one of the following
conditions:
• A miss in the L1 cache (the primary cache) by a load, prefetch, block

load, or a quad load instruction
• A streaming load issued by the stream processing unit (SPU)
• A forward request read issued by the IOB
The output of the scdata array, returned by the load, is 16 bytes in size.
This size is same as the size of the L1 data cache line. An entry is created
in the D-cache directory. An I-cache directory entry is invalidated if it
exists. An I-cache directory entry is invalidated for the L1 cache of every
CPU in which it exists.
From an L2 cache perspective, a block load is the same as eight load
requests. A quad load is same as four load requests.

• An ifetch instruction is issued to the L2 cache in response to an instruction
missing the L1 I-cache. The size of I-cache is 256-bits. The L2 cache
returns the 256 bits of data in two packets over two cycles to the requesting
CPU over the CPX. The two packets are returned as an atomic. The L2
cache then creates an entry in the I-cache directory and invalidates any
existing entry in the D-cache directory.

• A store instruction to the L2 cache is caused by any of the following
conditions:
• A miss in the L1 cache by a store, block store, or a block init store

instruction
• A streaming store issued by the stream processing unit (SPU)
• A forward request write issued by the IOB
The store instruction writes (in a granularity of) 32-bits of data into the
scdata array. An acknowledgment packet is sent to the CPU that issued the
request, and an invalidate packet is sent to all other CPUs. The I-cache
directory entry for every CPU is cammed and invalidated. The D-cache
directory entry of every CPU, except the requesting CPU, is cammed and
invalidated.
Partial stores (PSTs) perform sub-32-bit writes into the scdata array. A
partial store is executed as a read-modify-write operation. In the first step,
the cache line is read and merged with the write data. It is then saved in the
miss buffer. The cache line is written into the scdata array in the second
pass of the instruction through the pipe.

• Three types of atomic instructions are processed by the L2 cache—load-
store unsigned byte (LDSTUB), SWAP, and compare and swap (CAS).
These instructions require two passes down the L2 cache pipeline.

256 Appendix B Overview of OpenSPARC T1 Design
• The following I/O instructions from the J-Bus interface (JBI) are processed
by the L2 cache:
• RD64 (block read) — Goes through the L2 cache pipe like a regular

load from the CPU. On a hit, 64 bytes of data are returned to the JBI. On
a miss, the L2 cache does not allocate but sends a nonallocating read to
the DRAM. It gets 64 bytes of data from the DRAM and sends the data
directly to the JBI (read-once data only) without installing it in the L2
cache. The CTAG (the instruction identifier) and the 64-byte data are
returned to the JBI on a 32-bit interface.

• WRI (write invalidate) — Accepts a 64-byte write request and looks up
tags as it goes through the pipe. Upon a tag hit, invalidates the entry and
all primary cache entries that match. Upon a tag miss, does nothing (it
just continues down the pipe) to maintain the order. The CTAG is
returned to the JBI when the processor sends an acknowledgment to the
cache line invalidation request sent over the CPX. After the instruction
is retired from the pipe, 64 bytes of data are written to the DRAM.

• WR8 (partial line write) — Supports the writing of any subset of eight
contiguous bytes to the scdata array by the JBI. Does a two-pass partial
store if an odd number of byte enables are active or if there is a
misaligned access; otherwise, does a regular store. On a miss, data is
written into the scdata cache and a directory entry is not created. The
CTAG is returned to the JBI when the processor sends an
acknowledgment to the cache line invalidation request sent over the
CPX.

• Eviction — Sends a request to the DRAM controller to bring the cache
line from the main memory after a load or a store instruction miss in the
L2 cache.

• Fill — Issued following an eviction after an L2 cache store or load miss.
The 64-byte data arrives from the DRAM controller and is stored in the
fill buffer. Data is read from the fill buffer and written into the L2 cache
scdata array.

• L1 cache invalidation — Invalidates the four primary cache entries as
well as the four L2 cache directory entries corresponding to each
primary cache tag entry. Is issued whenever the CPU detects a parity
error in the tags of I-cache or D-cache.

• Interrupts — When a thread wants to send an interrupt to another thread,
that interrupt is sent through the L2 cache. The L2 cache treats the
thread like a bypass. After a decode, the L2 cache sends the instruction
back to destination CPU if it is a interrupt.

B.2 L2 Cache 257
• Flush — The OpenSPARC T1 processor requires the FLUSH
instruction. Whenever a self-modifying code is performed, the first
instruction at the end of the self-modifying sequence should come from
a new stream. An interrupt with br = 1 is broadcast to all CPUs. (Such
an interrupt is issued by a CPU in response to a FLUSH instruction.) A
flush stays in the output queue until all eight receiving queues are
available. This is a total store order (TSO) requirement.

B.2.3 L2 Cache Pipeline
L2 cache pipeline — The L2 cache processes three main types of instructions:
• Requests from a CPU by way of the PCX. Instructions include load,

streaming load, ifetch, prefetch, store, streaming store, block store, block
init store, atomics, interrupt, and flush.

• Requests from the I/O by way of the JBI. Instructions include block read
(RD64), write invalidate (WRI), and partial line write (WR8).

• Requests from the IOB by way of the PCX. Instructions include forward
request load and forward request store (these instructions are used for diagnostics).

The L2 cache access pipeline has eight stages (C1 to C8). Cache miss
instructions are reissued from the miss buffer after the data returns from the
DRAM controller; reissued instructions follow the L2 cache pipeline.

B.2.4 L2 Cache Memory Coherency and
Instruction Ordering

Cache coherency is maintained by a mixture of structures in the miss buffer,
fill buffer, and the write-back buffer. The miss buffer maintains a dependency
list for the access to the 64 bytes of cache lines with the same address.
Responses are sent to the CPUs in the age order of the requests for the same
address.

The L2 cache directory maintains the cache coherency in all primary caches.
The L2 cache directory preserves the inclusion property—all valid entries in
the primary cache should reside in the L2 cache as well. It also keeps the I-
cache and D-cache exclusive for each CPU.

258 Appendix B Overview of OpenSPARC T1 Design
B.3 Memory Controller
See Section 4.3.4, DRAM Controller, on page 31.

B.4 I/O Bridge
The I/O bridge (IOB) performs an address decode on I/O-addressable
transactions and directs them to the appropriate internal block or to the
appropriate external interface (J-Bus or the serial system interface).
Additionally, the IOB maintains the register status for external interrupts.

B.4.1 IOB Main Functions
The main IOB functions include the following:
• I/O address decoding — The IOB

• maps or decodes I/O addresses to the proper internal or external
destination;

• generates control/status register (CSR) accesses to the IOB, JBI,
DRAM, and CTU clusters;

• generates programmed I/O (PIO) accesses to the external J-Bus.
• Interrupt handling — The IOB

• collects the interrupts from clusters (errors and EXT_INT_L) and
mondo interrupts from the J-Bus;

• forwards interrupts to the proper core and thread;
• wakes up a single thread at reset.

• And more — The IOB
• interfaces between the read/write/ifill to the serial system interface

(SSI);
• enables test access ports (TAPs) to access CSRs, memory, the L2 cache,

and CPU ASIs.
• provides debug port functionality (both to an external debug port and to

the JBI).

The IOB operates in both the CMP and J-Bus clock domains.

B.4 I/O Bridge 259
B.4.2 IOB Miscellaneous Functions
Other IOB functions include the following:
• Launching of one thread after reset

• Sends resume interrupt to thread 0 in the lowest available core (the EFC
sends the available cores information)

• The RSET_STAT CSR shows the RO and RW status for POR, FREQ,
and WRM

• Making eFuse data visible to software — Serial data is shifted in after a
power-on reset (POR)
• CORE_AVAIL
• PROC_SER_NUM
• IOB_EFUSE – contains parity check results from the EFC. If non-zero,

the chip is suspect with a potentially bad CORE_AVAIL or a memory
array redundancy).

• Managing power — Thermal sensor sends an idle/resume interrupt to
threads specified in the tm_stat_ctl mask.

B.4.3 IOB Interfaces
The following are the main interfaces to and from the IOB.
• Crossbar (CCX) – Interface to the PCX to the CPX (both are parallel

interfaces).
• Universal connection bus (UCB) – a common packetized interface to all

clusters for CSR accesses.
• Common width-parameterized blocks in the IOB and clusters
• Separate request and acknowledge/interrupt paths with parameterized

widths, various blocks, and widths
• IOB is master; cluster/block, slave, with the exception of the test port

access (TAP), which is both master and slave
• All interfaces visible through the debug ports

• J-Bus mondo interrupt interface:
• Sixteen-bit request interface and a valid bit
• Header with 5-bit source and target (thread) IDs
• Eight cycles of data – 128 bits (J-Bus Mondo Data 0 and 1)
• Two-bit acknowledge interface – ACK and NACK

• EFuse controller (EFC) – Serial interface:

260 Appendix B Overview of OpenSPARC T1 Design
• Shifted-in at power-on reset (POR) to make the software visible (read-
only)

• CORE_AVAIL
• PROC_SER_NUM

• Debug ports:
• Internal visibility port on each UCB interface
• L2 cache visibility port input from the L2 cache (2 × 40 bits @ CMP

clock)
• Debug port A output to the debug pads (40 bits @ J-Bus clock)
• Debug port B output to the JBI (2 × 48 bits @ J-Bus clock)

B.5 Floating-Point Unit (FPU)
The OpenSPARC T1 floating-point unit (FPU) has the following features and
supports the following functions.
• The FPU implements the SPARC V9 floating-point instruction set with the

following exceptions:
• Does not implement FSQRT<s|d> and all quad precision instructions
• Move-type instructions executed by the SPARC core floating-point

front-end unit (FFU): FMOV<s|d>, FMOV<s|d>cc, FMOV<s|d>r,
FABS<s|d>, FNEG<s|d>

• Loads and stores (the SPARC core FFU executes these operations).
• The FPU does not support the visual instruction set (VIS). (The SPARC

core FFU provides limited VIS support.)
• The FPU is a single shared resource on the OpenSPARC T1 processor.

Each of the eight SPARC cores may have a maximum of one outstanding
FPU instruction. A thread with an outstanding FPU instruction stalls
(switches out) while waiting for the FPU result.

• The floating-point register file (FRF) and floating-point state register
(FSR) are not physically located within the FPU. The SPARC core FFU
owns the register file and FSR. The SPARC core FFU also performs odd/
even single-precision address handling.

• The FPU complies with the IEEE 754 standard.
• The FPU includes three independent execution pipelines:

• Floating-point adder (FPA) – Adds, subtracts, or compares conversions
• Floating-point multiplier (FPM) – Multiplies
• Floating-point divider (FPD) – Divides

B.5 Floating-Point Unit (FPU) 261
• One instruction per cycle may be issued from the FPU input FIFO queue to
one of the three execution pipelines.

• One instruction per cycle may complete and exit the FPU.
• All IEEE 754 floating-point data types (normalized, denormalized, NaN,

zero, infinity) are supported. A denormalized operand or result will never
generate an unfinished_FPop trap to the software. The hardware provides
full support for denormalized operands and results.

• IEEE nonstandard mode (FSR.ns) is ignored by the FPU.
• The following instruction types are fully pipelined and have a fixed

latency, independent of operand values: add, subtract, compare, convert
between floating-point formats, convert floating point to integer, convert
integer to floating point.

• The following instruction types are not fully pipelined: multiply (fixed
latency, independent of operand values), divide (variable latency,
dependent on operand values).

• Divide instructions execute in a dedicated datapath and are nonblocking.
• Underflow tininess is detected before rounding. Loss of accuracy is

detected when the delivered result value differs from what would have
been computed were both the exponent range and precision unbounded
(inexact condition).

• A precise exception model is maintained. The OpenSPARC T1
implementation does not require early exception detection/prediction. A
given thread stalls (switches out) while waiting for an FPU result.

• The FPU includes three parallel pipelines and these pipelines can
simultaneously have instructions at various stages of completion.

TABLE B-1 summarizes FPU features.

TABLE B-1 OpenSPARC T1 FPU Feature Summary

Feature
OpenSPARC T1 Processor FPU
Implementation

ISA SPARC V9
VIS Not available
Issue 1
Register file In FFU
FDIV blocking No
Full hardware denorm support Yes
Hardware quad support No

262 Appendix B Overview of OpenSPARC T1 Design
B.5.1 Floating-Point Instructions
TABLE B-2 describes the floating-point instructions, including the execution
latency and the throughput for each instruction.

TABLE B-2 SPARC V9 Single- and Double-Precision FPop Instruction Set

Mnemonic Description Pipe
Execution
Latency

Through-
put

FADD<s|d> Floating-point add FPA 4 1/1
FSUB<s|d> Floating-point subtract FPA 4 1/1
FCMP<s|d> Floating-point compare FPA 4 1/1
FCMPE<s|d> Floating-point compare

(exception if unordered)
FPA 4 1/1

F<s|d>TO<d|s> Convert between floating-
point formats

FPA 4 1/1

F<s|d>TOi Convert floating point to
integer

FPA 4 1/1

F<s|d>TOx Convert floating point to 64-
bit integer

FPA 4 1/1

FiTOd Convert integer to floating
point

FPA 4 1/1

FiTOs Convert integer to floating
point

FPA 5 1/1

FxTO<s|d> Convert 64-bit integer to
floating point

FPA 5 1/1

FMUL<s|d> Floating-point multiply FPM 7 1/2
FsMULd Floating-point multiply single

to double
FPM 7 1/2

FDIV<s|d> Floating-point divide FPD 32 SP, 61 DP
(less for zero
or
denormalized
results)

29 SP, 58 DP
(less for zero
or
denormalized
results)

FSQRT<s|d> Floating-point square root Unimplemented
Executed in the SPARC core FFU

FMOV<s|d> Floating-point move
FMOV<s|d>cc Move floating-point register if

condition is satisfied
FMOV<s|d>r Move floating-point register if

integer register contents satisfy
condition

FABS<s|d> Floating-point absolute value
FNEG<s|d> Floating-point negate

B.5 Floating-Point Unit (FPU) 263
B.5.2 Floating-Point Unit Power
Management

FPU power management is accomplished by way of block-controllable clock
gating. Clocks are dynamically disabled or enabled as needed.

The FPU has independent clock control for each of the three execution
pipelines (FPA, FPM, and FPD). Clocks are gated for a given pipeline when it
is not in use, so a pipeline has its clocks enabled only under one of the
following conditions:
• The pipeline is executing a valid instruction.
• A valid instruction is issuing to the pipeline.
• The reset is active.
• The test mode is active.

The input FIFO queue and output arbitration blocks receive free running
clocks.

The FPU power-management feature automatically powers up and powers
down each of the three FPU execution pipelines, based on the contents of the
instruction stream. Also, the pipelines are clocked only when required.

B.5.3 Floating-Point Register Exceptions and
Traps

The SPARC core FFU physically contains the architected floating-point state
register (FSR). The characteristics of the FSR, as well as exceptions and
traps, are as follows:
• The FFU provides FSR.rd (IEEE rounding direction) to the FPU. IEEE

nonstandard mode (FSR.ns) is ignored by the FPU and thus is not
provided by the FFU.

• The FFU executes all floating-point move (FMOV) instructions. The FPU
does not require any conditional move information. A 2-bit FSR condition
code (fcc) field identifier (fcc0, fcc1, fcc2, fcc3) is provided to the FPU
so that the floating-point compare (FCMP) target fcc field is known when
the FPU result is returned to the FFU.

• The FPU provides IEEE exception status flags to the FFU for each
instruction completed. The FFU determines if a software trap
(fp_exception_ieee_754) is required based on the IEEE exception status
flags supplied by the FPU and the IEEE trap enable bits located in the
architected FSR.

• A denormalized operand or result will never generate an unfinished_FPop
trap to the software. The hardware provides full support for denormalized
operands and results.

• Each of the five IEEE exception status flags—invalid operation (nv),
division by zero (dz), overflow (of), underflow (uf), and inexact (nx)—
and associated trap enables are supported.

• IEEE traps enabled mode – If an instruction generates an IEEE exception
when the corresponding trap enable is set, then an
fp_exception_ieee_754 trap is generated and results are inhibited by the
FFU.
• The destination register remains unchanged.
• FSR condition codes (fcc) remain unchanged.
• FSR.aexc field remains unchanged.
• FSR.cexc field has one bit set corresponding to the IEEE exception.

• All four IEEE round modes are supported in hardware.

B.6 J-Bus Interface
The OpenSPARC T1 J-Bus interface (JBI) generates J-Bus transactions and
responds to external J-Bus transactions. In a T1 processor, the JBI interfaces
with the L2 cache, the I/O Bridge, and J-Bus I/O pads.

Two subblocks—J-Bus parser and J-Bus transaction issue—in the JBI are
specific to the J-Bus. All the other blocks are J-Bus independent. J-Bus-
independent blocks can be used for any other external bus interface
implementation.

Most of the JBI subblocks use the J-Bus clock, and the remainder run at the
CPU core clock. The data transfer between the two clock domains is by way
of queues within the two clock domains: the Request header queues and the
Return data queues. The interface to the L2 cache is through the direct
memory access (DMA) reads and DMA writes.

The IOB debug port data is stored in the debug FIFOs and sent out to the
external J-Bus.

IOB PIO requests are stored in the PIO queue, and the return data is stored in
the PIO return queue. Similarly, an interrupt queue and an interrupt ACK/
NACK queue in the JBI interface to the IOB.

B.6.1 J-Bus Requests to the L2 Cache
The J-Bus sends two types of requests to the L2 cache: read and write.

B.6 J-Bus Interface 265
A DMA read request from the J-Bus is parsed by the J-Bus parser. The
information is passed to the write decomposition queue (WDQ), which sends
the request header to the sctag of the L2 cache. Data returned from the L2
cache scbuf is then passed from the return queues to the J-Bus transaction
issue, and then to the J-Bus. Reads to the L2 cache may observe strict
ordering with respect to writes to the L2 cache (software programmable)

A DMA write request from the J-Bus is parsed by the J-Bus parser. The
information is passed to the WDQ, which sends the request header and data to
sctag of the L2 cache. Writes to the L2 cache may observe strict ordering with
respect to the other writes to the L2 cache (software programmable).

B.6.2 I/O Buffer Requests to the J-Bus
Write requests (NCWR) can be 1-, 2-, 4-, or 8-byte writes and those writes are
aligned to size. Write requests come from the I/O buffer (IOB), are stored in
the PIO request queue, and then go out on the J-Bus.

Read requests come from the IOB, are stored in the PIO request queue, and
then go out on the J-Bus. The data read from J-Bus is parsed by the J-Bus
parser and then stored in the PIO return queue, which is sent to the IOB.

The Read transactions (NCRD) can be 1-, 2-, 4-, 8-, or 16-byte reads and are
aligned to size. There is maximum support for 1 to 4 pending reads to the J-
Bus (software programmable). Read returns to the IOB may observe strict
ordering with respect to the writes to the L2 cache (software programmable).

B.6.3 J-Bus Interrupt Requests to the IOB
Interrupts to the IOB may observe strict ordering with respect to the writes to
the L2 cache (software programmable).

A J-Bus interrupt in the mondo vector format is received by the J-Bus parser
and stored in the interrupt queue before being sent to the IOB. The mondo
interrupt queue is maximally sized to 16 entries, and there is no flow control
on the queue. A modified mondo interrupt transaction is one in which only the
first data cycle is forwarded to the CPU.

An interrupt ACK/NACK received from the IOB is first stored in the interrupt
ACK/NACK queue and then sent out on the J-Bus.

APPENDIX C

Overview of OpenSPARC T2
Design

This appendix adds more detail to the overview presented in Chapter 4. It
is excerpted from OpenSPARC T2 Core Microarchitecture Specification,
Part number 820-2545-11 December 2007, Revision A, and also from
OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification,
Part number 820-2620-05 July 2007, Revision 05. See those manuals for
specific details about the material covered in this appendix. This
appendix gives the flavor of those manuals in these sections:
• OpenSPARC T2 Design and Features on page 268
• SPARC Core on page 270
• L2 Cache on page 275
• Cache Crossbar on page 280
• Memory Controller Unit on page 280
• Noncacheable Unit (NCU) on page 283
• Floating-Point and Graphics Unit (FGU) on page 285
• Floating-Point and Graphics Unit (FGU) on page 285
• Reliability and Serviceability on page 295
• Reset on page 297
• Performance Monitor Unit (PMU) on page 299
• Debugging Features on page 299

Additional overview information from OpenSPARC T2 System-On Chip
(SoC) Microarchitecture Specification is contained in the following
sections:
• Instruction Fetch Unit (IFU) on page 270
• Execution Unit on page 271
• Load-Store Unit (LSU) on page 272
• Test Control Unit (TCU) on page 300
• System Interface Unit (SIU) on page 301
267

268 Appendix C Overview of OpenSPARC T2 Design
C.1 OpenSPARC T2 Design and
Features

Key design aspects of OpenSPARC T2 are the following:
• Full implementation of the SPARC V9 instruction set except for quad

instructions including load/store; full implementation of the VIS 2.0
specification

• Support for eight threads
• Ability to sustain one FGU operation per thread every clock
• Two integer execution units (EXUs), one shared load-store unit (LSU), one

shared floating-point and graphics unit (FGU)
• Eight-way, 16-Kbyte instruction cache, four-way, 8-Kbyte data cache
• These pipelines:

• Eight-stage integer pipeline
• Extended pipeline for long latency operations
• Twelve-stage floating-point and graphics pipeline

• Instruction fetching of up to four instructions per cycle
• Data TLB of 128 entries, fully associative; instruction TLB of 64 entries,

fully associative
• Hardware tablewalk support

OpenSPARC T2 consists of the following components and functionality
• Instruction fetch unit (IFU)— Provides instructions to the rest of the

core. The IFU generates the Program Counter (PC) and maintains the
instruction cache (I-cache).

• Execution unit (EXU) — Executes all integer arithmetic and logical
operations except for integer multiplies and divides, calculates memory and
branch addresses, and handles all integer source operand bypassing.

• Load-store unit (LSU) — Handles memory references between the
SPARC core, the L1 data cache, and the L2 cache. All communication with
the L2 cache is through the crossbars (processor-to-cache and cache-to-
processor, a.k.a. PCX and CPX) via the gasket. All SPARC V9 and VIS 2.0
memory instructions are supported with the exception of quad-precision
floating-point loads and stores.

• Cache crossbar (CCX) — Connects the eight SPARC cores to the eight
banks of the L2 cache. An additional port connects the SPARC cores to the
I/O bridge. A maximum of eight load/store requests from the cores and
eight data returns/acks/invalidations from the L2 can be processed
simultaneously.

C.1 OpenSPARC T2 Design and Features 269
• Floating-point and graphics unit (FGU) — Implements the SPARC V9
floating-point instruction set; the SPARC V9 integer multiply, divide, and
population count (POPC) instructions; and the VIS 2.0 instruction set.

• Trap logic unit (TLU) — Manages exceptions, trap requests, and traps for
the SPARC core. The TLU maintains processor state related to traps as
well as the Program Counter (PC) and Next Program Counter (NPC).

• Memory management unit (MMU) — Reads translation storage buffers
(TSBs) for the Translation Lookaside Buffers (TLBs) for the instruction
and data caches. The MMU receives reload requests for the TLBs and uses
its hardware tablewalk state machine to find valid translation table entries
(TTEs) for the requested access. The TLBs use the TTEs to translate virtual
addresses (VAs) and real addresses (RAs) into physical addresses (PAs).
The TLBs also use the TTEs to validate that a request has the permission to
access the requested address.

• Reliability and serviceability (RAS) services — The expected failure-in-
time (FIT) rates of OpenSPARC T2 microarchitectural structures drive the
RAS features.

• ASI/ASR/HPR/PR access — OpenSPARC T2 conceptually has ASI
“rings”—fast, local, and global—to access registers defined in ASI space.
These registers are accessed using Load and Store alternate instructions.
Access to Ancillary State registers (ASRs), privileged registers (PRs), and
hyperprivileged registers (HPRs) via RDasr/WRasr, RDPR/WRPR, and
RDHPR/WRHPR instructions also occur over the ASI rings.

• Reset operations — Like previous SPARC processors, OpenSPARC T2
provides several flavors of resets. Resets can be activated by any of the
following:
• Side effect of an internal processor or system error, related either to

instruction execution or to an external event such as failure of a system
component

• Result of explicit instruction execution (e.g., SIR);
• Result of a processor write to an ASI register, which generates a reset
• Command over an external bus, such as the system bus or the JTAG

interface, to the test control unit (TCU)
• Result of activating a pin on the OpenSPARC T2 chip
Some resets are local to a given physical core or affect only one thread
(CMP core). Other resets affect all threads.

270 Appendix C Overview of OpenSPARC T2 Design
• Power management — Hardware power management uses clock gating
within functional units to reduce power consumed by flops, latches, and
static arrays. Since the OpenSPARC T2 core is static, there is no dynamic
logic to be power-managed. Hardware power management can be enabled
by software.

• Performance monitors — Performance monitoring is aimed at the
following:
• Enabling data collection to develop accurate modeling for OpenSPARC

T2 and future highly threaded processors
• Enabling debug of performance issues
• Minimizing hardware cost consistent with the above objectives

• Debugging features — OpenSPARC T2 hardware features for post-silicon
debuggability involve debugging any issues that interfere with early
bringup as well as debugging the difficult, complex bugs that eluded pre-
silicon verification, are unexpected, or are unusual corner cases. These
features make silicon debugging more efficient, shortening the time to
discover the root cause of complex bugs and thereby reducing time to
remove and replace such bugs.

C.2 SPARC Core
Each SPARC physical core is supported by system-on-chip (SoC) hardware
components. For a broader look at the functioning units of the
OpenSPARC T2 SOC, see the sections beginning below. For details about
them, see OpenSPARC T2 System-On Chip (SoC) Microarchitecture
Specification.

OpenSPARC T2 cores use 8-bit bytemask fields for L2 cache stores instead
of the 2-bit size field that OpenSPARC T1 cores use. The main reason for this
is to support VIS partial stores with random byte enables.

C.2.1 Instruction Fetch Unit (IFU)
The instruction fetch unit (IFU) contains three subunits: the fetch unit, pick
unit, and decode unit.

The OpenSPARC T2 IFU differs from the OpenSPARC T1 IFU in the
following ways:

C.2 SPARC Core 271
• OpenSPARC T2 has added the B pipeline stage between the M and W
stages, which in turn adds one early port to the rs1, rs2, rs3, and rcc flops
above the E stage. The new port requires an additional set of source-
destination comparators.

• The multiplier resides in the floating-point and graphics unit. The FGU, not
the execution unit, executes integer multiplies. The EXU reads the integer
register file (IRF) for integer multiplies as it does for all other integer
instructions and forwards the operands to the FGU.

• OpenSPARC T2 does not have a dedicated integer divider. The FGU
executes integer divides. The EXU reads the IRF for integer divides as it
does for all other integer instructions and forwards the operands to the
FGU.

• As part of VIS 2.0 support, the EXU executes edge instructions. The
twelve forms of the EDGE instruction include EDGE8[L]N, EDGE16[L]N,
EDGE32[L]N. These support both left and right edge, as well as big and
little-endian. A 2-bit (EDGE32), 4-bit (EDGE16), and 8-bit (EDGE8) pixel
mask is stored in the least significant bits of rd.

• As part of VIS 2.0 support, the EXU executes array instructions. These
instructions convert three-dimensional (3D), fixed-point addresses
contained in rs1 to a blocked-byte address and store the result in rd. These
instructions specify an element size of 8 (ARRAY8), 16 (ARRAY16), and
32 bits (ARRAY32). The rs2 operand specifies the power-of-two size of
the X and Y dimensions of a 3D image array.

• As part of VIS 2.0 support, the EXU executes the BMASK instruction.
BMASK adds two integer registers, rs1 and rs2, and stores the result in rd.
The least significant 32 bits of the result are stored in the GSR.mask field.

• An OpenSPARC T2 core contains two instances of the EXU. One instance
supports Thread Group 0 (threads 0 through 3); the other supports Thread
Group 1 (threads 4 through 7).

• In addition to the two EXUs, OpenSPARC T2 has a single load-store unit
(LSU) and a single floating-point and graphics unit (FGU). The FGU
executes the following integer instructions:
• Integer multiply
• Integer divide
• Multiply step (MULSCC)
• Population count (POPC)

C.2.2 Execution Unit
The EXU is composed of the following subunits:

272 Appendix C Overview of OpenSPARC T2 Design
• Arithmetic logic unit (ALU)
• Shifter (SHFT)
• Operand bypass (BYP): rs1, rs2, rs3, and rcc bypassing
• Integer register file (IRF)
• Register management logic (RML)

Differences between the T1 and T2 execution units are the same as for the
instruction fetch unit.

C.2.3 Load-Store Unit (LSU)
The load-store unit (LSU) ensures compliance with the TSO memory model
with the exception of instructions that are not required to strictly meet those
requirements (block stores, for example). Like OpenSPARC T1,
OpenSPARC T2 does not support an explicit RMO mode.

The LSU is responsible for handling all ASI operations including the decode
of the ASI and initiating transactions on the ASI ring. The LSU is also
responsible for detecting the majority of data access related exceptions.

C.2.3.1 Changes From OpenSPARC T1
• OpenSPARC T2 supports store pipelining. OpenSPARC T1 requires any

store to receive an ACK before the next store could issue to the PCX.
• The store buffer supports eight threads.
• The load miss queue supports eight threads.
• The data Translation Lookaside Buffer (DTLB) is 128 entries.
• Only load operations access the D-cache from the pipeline.This reduces

conflicts with the CPQ.
• Partial Store instructions from the VIS 2.0 ISA are supported.
• Pipeline is E/M/B/W vs. OpenSPARC T1’s E/M/W/W2. Pipeline timings

are different from those of OpenSPARC T2.
• OpenSPARC T2 has additional RAS features and enhanced error detection

and protection.

C.2.3.2 Functional Units of the LSU
The functional units of the LSU are the following:
• Data cache — An 8-Kbyte, 4-way set-associative cache with 16-byte lines.

The DCA array stores data, the DTAG array stores tags, the DVA array
stores valid bits, and the LRU array stores used bits.

C.2 SPARC Core 273
• Data Translation Lookaside Buffer (DTLB) — Specified in the MMU
specification but located in the LSU because of its physical proximity and
close linkage with the D-cache and store buffers.

• Load miss queue (LMQ) — Contains loads that have missed the D-cache
and are waiting on load return data from the L2 or NCU. All internal ASI
loads are also placed into the LMQ. The LMQ also holds loads which
RAW in the store buffer while they wait for resolution.

• Store buffer (STB) — Holds all store instructions and instructions that
have store semantics (atomics, WRSR, WRPR, WRHPR). These are
inserted into the STB after address translation through the DTLB, assuming
the stores do not generate an exception. The STB is threaded and contains
eight entries per thread.

• PCX interface (PCXIF) — In conjunction with the LMQ and STB,
arbitrates between load and store requests and manages outgoing packets.
The arbitration between loads and stores is done as follows. The goal is to
minimize load-miss latencies while avoiding store-buffer-full occurrences.
To achieve that, a weighted favor system is used.
• Loads are favored over stores by default.
• If a store has been waiting for four cycles, it is favored.
• If any thread’s store buffer is full, stores have favor every other cycle.

• CPX interface (CPXIF) — Monitors all packets from the CPX. Packets
destined for units other than the LSU are ignored by this interface. The
CPXIF receives all CPX packets that affect the D-cache. This includes load
returns, store acknowledgments, and invalidation requests.

C.2.3.3 Special Memory Operation Handling
Special memory operations are those that do not conform to the standard
pipeline or that require additional functionality beyond standard loads and
stores. The following are such instructions:
• CASA and CASXA — Compare and Swap instructions have load and store

semantics. The value in rs2 is compared with the value in memory at rs1.
If the values are the same, the value in memory is swapped with the value
in rd. If the values are not the same, the value at rs1 is loaded into rd, but
memory is not updated.

• LDSTUB, LDSTUBA, and SWAP — Load and Store Unsigned Byte and
Swap instructions have load and store semantics. A byte from memory is
loaded into rd and the memory value replaced with either all 1’s (for
LDSTUB) or the value from rd (for SWAP).

274 Appendix C Overview of OpenSPARC T2 Design
• Atomic quad loads — Atomic quad load instructions load 128 bits of data
into an even/odd register pair. Since there is no path to bypass 128 bits of
data to the IRF, atomic quads force a miss in the L1 cache. One 128-bit
load request is made to the L2 cache. The return data is written to the IRF
over two cycles, once for the lower 64 bits and once for the upper 64 bits.
Load completion is signaled on the second write. The load does not
allocate in the L1 cache.

• Block loads and stores — Block loads and stores are loads and stores of 64
bytes of data. Memory ordering of block operations is not enforced by the
hardware—that is, they are RMO. A block load requires a MEMBAR
#Sync before it to order against previous stores. A block store requires a
MEMBAR #Sync after it to order against following loads. Block loads
and stores force a miss in the L1 cache and they do not allocate.

• FLUSH — The IFU postsyncs FLUSH instructions, so no LSU
synchronization is necessary. Once all stores prior to the FLUSH
instruction have been committed, which implies all previous stores have
been acknowledged and necessary invalidations performed, the LSU
signals the TLU to redirect the thread to the instruction following the
FLUSH via a trap sync.
Because hardware enforces I-cache/D-cache exclusivity, any stores to an
address in the I-cache are automatically invalidated. Therefore, the FLUSH
instruction doesn’t actually do anything to the caches. It acts solely as a
synchronization point, much like MEMBAR.

• MEMBAR — MEMBAR (all forms) and STBAR are all executed
identically. MEMBAR instructions behave identically to FLUSH. The IFU
postsyncs the instruction, so no LSU synchronization is required. Once all
stores for that thread have been committed, the LSU signals the TLU
through a trap sync to redirect the thread to the instruction following the
MEMBAR.

• PREFETCH — Prefetch instructions load data into the L2 cache but do not
update the L1 caches. When the LSU receives a prefetch instruction, it
signals LSU synchronization to the IFU and inserts the entry into the LMQ.
A load request packet is sent to the L2 with the prefetch indicator asserted.
Once the packet is sent to the PCX, lsu_complete can be signaled and the
entry in the LMQ retired. The L2 does not return any data.
Except when used with illegal function codes, PREFETCH instructions do
not cause exceptions, including MMU miss exceptions. If the PREFETCH
encounters an exception condition, it is dropped.

C.3 L2 Cache 275
C.3 L2 Cache
The L2 cache accepts requests from the SPARC cores on the processor to the
cache crossbar (PCX) and responds on the cache to the processor crossbar
(CPX). The L2 cache also maintains on-chip coherency across all L1 caches
on the chip by keeping a copy of all L1 tags in a directory structure. Since
OpenSPARC T2 implements system-on-a-chip with single memory interface
and no L3 cache, there is no off-chip coherency requirement for the L2 cache
other than being coherent with main memory. Other L2 features:
• The L2 cache is a write-back cache and has lines in one of three states:

invalid, clean, or dirty.
• Each L2 bank has a 128-bit fill interface and a 64-bit write interface with

the DRAM controller.
• Requests arriving on the PCI-EX/Enet interface are sent to the L2 from the

system interface unit (SIU).
• The L2 cache unit works at the same frequency as the core (1.4 GHz).

C.3.1 L2 Functional Units
The L2 cache is organized into eight identical banks, each with its own
interface with the SIU, memory controller unit (MCU), and crossbar. Each L2
cache bank interfaces with the eight cores through a processor cache crossbar.
The crossbar routes the L2 request (loads, ifetches, stores, atomics, ASI
accesses) from all eight cores to the appropriate L2 bank. The crossbar also
accepts read return data, invalidation packets, and store acknowledgment
packets from each L2 bank and forwards them to the appropriate core(s).

Every two L2 cache banks interface with one MCU to issue reads and
evictions to DRAM on misses in the L2. Write-backs are issued 64 bits at a
time to MCU. Fills happen 128 bits at a time from the MCU to L2.

For 64-byte I/O writes from the SIU, L2 does not allocate, but issues the
writes to DRAM through a 64-bit interface with the MCU. Round-robin
arbitration is used between the write-back buffer and the I/O write buffer for
access to the MCU.

Each L2 cache bank also accepts RDD (read to discard), WRI (block write
invalidate) and WR8 (partial write with random byte enables) packets from
SIU over a 32-bit interface and queues the packet in the SIU queue. RDD and
WRI do not allocate in the L2. On a hit, WRI invalidates in the L2 and issues
a 64-byte block write to DRAM. On a hit, RDD gets back 64 bytes of data

276 Appendix C Overview of OpenSPARC T2 Design
from L2. On a miss, RDD fetches data from DRAM but does not install in the
L2, while WRI (on a miss) issues a 64-byte block write to DRAM. WR8
packets cause partial stores to happen in the L2 like regular CPU stores with
random byte enables.

Each L2 cache bank is composed of the following subblocks:
• Input queue (IQ – 16-entry FIFO) — Queues packets arriving on the PCX

when they cannot be immediately accepted into the L2 pipe. Each entry in
the IQ is 130 bits wide.

• Output queue (OQ – 16-entry FIFO) — Queues operations waiting for
access to the CPX. Each entry in the OQ is 146 bits wide. The FIFO is
implemented with a dual-ported array.

• SIU queue (SIUQ) — Accepts RDD, WRI, and WR8 packets from the
SIU and issues them to the pipe after arbitrating against other requests.

The following are other functional units of the L2 cache:
• Arbiter — Manages access to the L2 pipeline from the various sources that

request access. The IQ, MB, SIUQ, FB and stalled instructions in the pipe
all need access to the L2 pipe. Access to the pipe is granted according to
the following priority:
1. Access currently stalled in the pipe
2. Second packet of a CAS operation
3. SIU instruction from SIU queue
4. Miss buffer instruction
5. Fill buffer instruction
6. Instruction from the IQ
7. Background scrub request

• L2 tag — Holds the L2 tag array and associated control logic. Tag is
protected by SEC ECC.

• L2 VUAD — Contains the Valid, Dirty, Used, and Allocated bits for the
tags in L2 organized in an array structure. There is one array for Valid and
Dirty bits and a separate array for Used and Allocate bits. Each array is
protected by SEC DED ECC.

• L2 data — Contains 512 Kbytes of L2 data storage and associated control
logic. Data is protected by SEC DED ECC on a 32/7 boundary.
Each L2 data array bank is a single-ported SRAM structure capable of
performing the following operations:
• 16-byte read
• 64-byte read
• 8-byte write with any combination of word enables
• 64-byte write (with any combination of word enables). However, fills

would update all 64 bytes at a time.

C.3 L2 Cache 277
• L2 directory — Maintains a copy of the L1 tags for coherency
management and also ensures that the same line is not resident in both the
I-cache and dcache (across all cores). The directory is split into an I-cache
directory (icdir) and a dcache directory (dcdir), which are similar in
size and functionality.

• Miss buffer (MB – 32-entry) — Stores instructions that cannot be
processed as a simple cache hit. Includes the following:
• True L2 cache misses (no tag match)
• Instructions that have the same cache line address as a previous miss or

an entry in the write-back buffer
• Instructions requiring multiple passes through the L2 pipeline (atomics

and partial stores)
• Unallocated L2 misses
• Accesses causing tag ECC errors

• Fill buffer (8-entry) — Temporarily stores data arriving from DRAM on
an L2 miss request. Data arrives from DRAM in four 16-byte quad-words
starting with the critical quad-word.

• Write-back buffer (WBB – 8-entry) — Stores dirty evicted data from the
L2 on a miss. Evicted lines are opportunistically. streamed out to DRAM.
The WBB is divided into a RAM portion that stores the evicted data until it
can be written to DRAM and a CAM portion that contains the address.
I/O write buffer (IOWB – 4-entry) — Stores incoming data from the PCI-
EX interface in the case of a 64-byte write operation. Since the PCI-EX
interface bus width is only 32 bits wide, the data must be collected over 16
cycles before being written to DRAM. The IOWB is divided into a RAM
portion that stores the data from the I/O interface until it can be written to
DRAM and a CAM portion that contains the address.
The I/O interface must use a handshaking protocol to track the state of the
IOWB. The I/O interface must never issue an operation requiring the buffer
when the buffer is full.

C.3.2 L2 Cache Interfaces
The L2 cache interfaces with the following:
• Crossbar — The L2 cache receives requests from the core through the

crossbar. These requests are received, decoded and forwarded to the arbiter
logic by the Input queue (IQ), depending on the status of the arbiter block.

278 Appendix C Overview of OpenSPARC T2 Design
• SIU — Requests from I/O’s (PCI Express and Ethernet) are received by the
L2 cache through the SIU queue block. Three kinds of requests can be
received from the SIU: RDD (read 64 bytes), WRI (write 64 bytes) and
WR8 (write 8 bytes).

• MCU — L2 cache issues read and write requests to the MCU. All
instructions that do not hit in the L2 cache are recorded in the miss buffer
(MB). The MB evaluates and sets a bit (dram_pick) if it needs to be issued
to the MCU. Reads that must be dispatched to the MCU should satisfy the
following criteria:
• Win arbitration among all pending reads (with the dram_pick bit set for

reads).
• Have no pending (read or write) transactions to MCU waiting for an

ack.
• Have enough place in the fill buffer for the read data to return.
An L2 cache bank can send one read or write request at a time to the MCU.
Once a bank sends a request, it must wait for the appropriate acknowledge
before sending the next request. Three cycles must elapse from the
completion of a transaction (acknowledge for a read, last data word for a
write) until the next request can be made. A total of eight outstanding read
requests and eight outstanding write requests can be outstanding from each
L2 cache bank at any time.

C.3.3 L2 Cache Instructions
Some representative L2 operations are briefly described below.
• Load instructions — Loads always return 16 bytes of data, and lower

address bits are ignored. The 8-bit bytemask field is ignored for loads.
The instruction types that fall in the category of loads are load, prefetch,
stream load, MMU load. Out of these, prefetch, stream load, and MMU
load are noncacheable (will have the nc bit set in the PCX packet). These
loads do not cam the I$ directory and do not update the D$ directory.

• Store instructions — Eight bytes of store data are always sent to the L2.
The LSU ensures that data is properly aligned to the 8B boundary. The 8-
bit bytemask indicates which bytes are to be stored. Again, the lower
address bits are ignored. (This is different from OpenSPARC T1.
OpenSPARC T1 L2 used the lower address bits along with the size to
determine what to store.)
The instruction types that fall in the category of stores are stores and
stream stores.

C.3 L2 Cache 279
To improve the performance of stores from L1, the L2 cache in
OpenSPARC T2 sends acks to core if stores from an L1 hit to outstanding
store miss to the same line in the miss buffer. If any of the addresses it hits
is a load miss, the ack is not generated.

• Partial store instructions — Partial stores are stores (stores, stream
stores) that have any combination of byte masks other than 0000 1111,
1111 0000, and 1111 1111.
Even for partial stores, eight bytes of store data are always sent to the L2.
The LSU will ensure that the data is properly aligned to the 8-byte
boundary. The 8-bit bytemask indicates which bytes are to be stored.
Again, the lower address bits (0, 1, 2) are ignored.
Partial stores are handled as a read-modify-write operation in two passes
through the pipe.

• Instruction miss — An instruction that does not hit the L2 cache, fill
buffer, or the write-back buffer is queued in the miss buffer as a “true
miss.” Eviction is performed during the second pass of the miss operation.
This removes the hit/miss determination from the critical C1 stall signal.
To improve the performance of stores from L1, the L2 cache in
OpenSPARC T2 sends acks to core in case stores from L1 hit to
outstanding store miss to the same line in the miss buffer.

• Atomic instructions — LDSTUB and SWAP are handled the same as
loads. CAS[X]A instructions are handled as two packets. The first packet
(CAS(1)) reads the data from memory, sends the data back to the
requesting processor, and performs the comparison in C8 of the pipeline.
The second packet (CAS(2)) is inserted into the miss buffer as a store. If
the comparison result is true, the second packet proceeds like a normal
store. If the result was false, the second pass proceeds to only generate the
store acknowledgment. The data arrays are not written.
CASA/CASXA are similar, but with one difference. CASA is 32 bits,
aligned on a 4-byte boundary, and CASXA is 64 bits. The compare and
conditional store are assumed to be on an 8-byte boundary (except the load
return, which is always 16 bytes). The 8-bit bytemask indicates which
bytes to compare and conditionally store.
Prefetch ICE — L2 supports the Prefetch ICE instruction that software uses
to flush lines in L2, based on an index and a way specified as part of the
physical address in the instruction itself.

280 Appendix C Overview of OpenSPARC T2 Design
C.4 Cache Crossbar
The cache crossbar is divided into two separate pieces: the processor-to-cache
crossbar (PCX) and the cache-to-processor crossbar (CPX). Sources issue
requests to the crossbar. These requests are queued to prevent head of the line
blocking. The crossbar queues requests and data to the different targets.

Since multiple sources can request access to the same target, arbitration within
the crossbar is required. Priority is given to the oldest requestor(s) to maintain
fairness and ordering. Requests appearing to the same target from multiple
sources in the same cycle are processed in a manner that does not consistently
favor one source.

The arbitration requirements of the PCX and CPX are identical except for the
numbers of sources and targets that must be handled. The CPX must also be
able to handle multicast transactions. To facilitate reuse, the arbitration logic
is designed as a superset that can handle PCX or CPX functionality. The
arbiter performs the following functions:
• Queues transactions from each source to a depth of 2.
• Issues grants in age order, with oldest having highest priority.
• Resolves requests of the same age without persistent bias to any one

source.
• Can stall grants based on input from the target.
• Stalls the source if the queue is full.
• Handles two packet transactions atomically.

Each target has its own arbiter. All targets can arbitrate independently and
simultaneously.

C.5 Memory Controller Unit
Section 5.2, Memory Controller Unit (MCU), on page 47 neatly summarizes
the main features and functions of the OpenSPARC T2 MCU. This section
adds information about the following:
• Changes to the OpenSPARC T2 MCU on page 281
• DDR Branch Configuration on page 282
• FBD Channel Configuration on page 282
• SDRAM Initialization on page 282

C.5 Memory Controller Unit 281
C.5.1 Changes to the OpenSPARC T2 MCU
Some changes to the OpenSPARC T2 MCU are listed below.
• The OpenSPARC T2 MCU differs from the OpenSPARC T1 MCU in these

respects:
• Uses higher DDR2 SDRAM frequency: 266 MHz, 333 MHz, and 400

MHz instead of 166 MHz to 200 MHz.
• Uses FBD channels to access memories instead of direct DDR2

interface.
• Interfaces to two L2 cache banks per MCU instead of one or two L2

Cache banks interface per MCU.
• Has minimum configuration with one DIMM per MCU branch.

• Several changes to the OpenSPARC T2 MCU were made in support of
FBDs:
• A new FBD controller with channel initialization, error detection, and

frame encode and decode logic is added.
• Address decoding is updated to support up to 16 ranks of DIMMs. Can

support either one or two channels per MCU.
• Write data rate is reduced to half the DDR rate. Data is buffered in the

advanced memory buffer (AMB) to allow more flexibility in issuing
write commands.

• Read and write operations to different DIMMs can occur in parallel.
Reads and writes to a single FBD must be scheduled so that no data
collisions occur on the DIMM’s local DDR2 bus. However, since the
northbound and southbound channels are independent, read data from
one DIMM can be returning to the host at the same time that write data
is being sent to a different DIMM.

• Separate read and write schedulers communicate with each other to
ensure that no FBD bus data collisions occur.

• No dead cycle occurs when read or write commands are switched
between DIMMs; however, a dead cycle is still needed when access is
switched to the other sides of same DIMM.

• Sync frame generation to AMBs in the state machine—at least once
every 42 frames—is included.

• Support for read DQS strobe placement is removed. OCD and ODT
support is programmed through the AMBs.

• Transactions are spread over different DIMMs instead of staying in one
DIMM as long as possible. That way, thermal dissipation is better
spread across DIMMs.

• L0s power-saving mode is supported.

282 Appendix C Overview of OpenSPARC T2 Design
C.5.2 DDR Branch Configuration
A DDR branch is a minimum aggregation of DDR channels (data channels
with 72 bits of data and an address/control channel) that operate in lock-step
to support error correction. A rank spans a branch. In OpenSPARC T2, a
branch consists of one or two DDR channels.

C.5.3 FBD Channel Configuration
A channel is a port that connects the processor to a DIMM. Northbound is the
direction of signals running from the farthest DIMM toward the host.
Southbound is the direction of signals running from the host controller toward
the DIMMs.

The FBD specification supports two southbound channel configurations and
five northbound channel configurations. OpenSPARC T2 supports both
southbound configurations—the 10-bit mode and the 10-bit failover mode—
and two of the northbound configurations, the 14-bit mode and the 14-bit
failover mode. These modes support data packets of 64 bits of data and 8 bits
of ECC. The 10-bit southbound mode provides 22 bits of CRC; the 10-bit
failover mode has 10 bits of CRC. The 14-bit northbound mode provides 24
bits of CRC on read data (12-bits per 72-bit data packet), and the 14-bit
failover mode provides 12 bits of CRC (6 bits per 72-bit data packet).

During channel initialization, software determines whether a channel can be
fully utilized (10-bit southbound or 14-bit northbound mode) or whether a
failover mode, in which one of the bit lanes is multiplexed out, must be used.

Data is transmitted across the southbound and northbound channels in frames.
For the southbound channel, 10 bits of data are sent per cycle over 12 cycles.
For the northbound channel, 14 bits of data are sent per cycle over 12 cycles.

C.5.4 SDRAM Initialization
The initialization sequence within the MCU for the SDRAMs follows the
same flow as for UltraSPARC T1, which is basically the sequence from the
DDR2 SDRAM specification. However, the interface is different. The MCU
initializes the SDRAMs indirectly through registers in the AMBs. The MCU
issues a command to the AMBs and then polls status registers to determine
when the AMBs have completed issuing the command to the SDRAMs.

After SDRAM initialization is complete, the MCU begins scheduling
commands directly to the SDRAMs.

C.6 Noncacheable Unit (NCU) 283
The DDR2 SDRAMs must be powered up and initialized in a predefined
manner. Operational procedures other than those specified may result in
undefined operation. Below is the mandatory sequence:

1. Apply power to the VDD.
2. Apply power to VDDQ.
3. Apply power to VREF and to the system VTT.
4. Start clock and maintain stable condition for 200 s.
5. Apply No Operation or Deselect command and take CKE high.
6. Wait minimum of 400 ns, then issue a Precharge-all command.
7. Issue Extended Mode Register 2 Set (EMRS(2)) command.
8. Issue Extended Mode Register 3 Set (EMRS(3)) command.
9. Issue Extended Mode Register 1 Set (EMRS(1)) command to enable

DLL.
10. Issue Mode Register Set (MRS) command to reset DLL.
11. Issue Precharge-all command.
12. Issue two or more Auto-Refresh commands.
13. Issue MRS command with low on A8 to initialize device operation

(i.e., to program operating parameters without resetting the DLL).
14. At least 200 clocks after step 8, execute OCD Calibration (Off Chip

Driver Impedance adjustment). If OCD calibration is not used, EMRS
OCD Default command (A9=A8=A7=1) followed by EMRS OCD
Calibration Mode Exit command (A9=A8=A7=0) must be issued
with other parameters of EMRS.

15. The DDR2 SDRAM is now ready for normal operation.

C.6 Noncacheable Unit (NCU)
One of the main functions of the noncacheable unit (NCU) is to communicate
between the CMP cores (64 threads total) and the various blocks in the I/O
subsystem. FIGURE 11-5 shows the connectivity of NCU with various IO
subsystem blocks as well as the XBAR, which connects to the CMP core on
the other side. Traffic on the XBAR side runs at CPU clock frequency,
whereas traffic on the I/O subsystem side is at I/O clock frequency. In general,
traffic going to the NCU does not require high performance and can tolerate
high latency.

284 Appendix C Overview of OpenSPARC T2 Design
FIGURE 11-5 Connectivity of the Noncacheable Unit

C.6.1 Changes from OpenSPARC T1 I/O
Bridge

• Changed from two MCUs to four MCUs
• CTU changes made to CCU + TCU
• J-Bus changes made to SIU + DMU with different interface format
• DMU CSR support added
• DMU PIO token ID engine added to limit numbers of outstanding PIO to

DMU
• DMU PIO memory added because of OpenSPARC T2 I/OMMU changes
• Support added for Mondo Interrupt ID return for DMU
• ASI register added to comply with Sun’s CMP specification
• L2 partial bank mode support added
• Internal memories upsized to accommodate 64 threads and memory

pipelines adjustment
• XBAR packet format changes made
• Reset handling modified to comply with OpenSPARC T2’s reset scheme
• SSI (boot ROM i/f logics) integrated
• RAS logics added
• OpenSPARC T2 naming rule complied with

Note The NCU retains most of the internal block names from
OpenSPARC T1 IOB since it does not violate the
OpenSPARC T2 naming rules.

NCU

XBAR

PIO Rtn.
Mondo Int

PIO req.
Mondo

ack/nack

DBG

CCU

TCU

SSI

RST

EFU

SIU DMUMCU3MCU2MCU1MCU0

PCX CPX

C.7 Floating-Point and Graphics Unit (FGU) 285
C.6.2 NCU Interfaces
• NCU-MCU — The four MCUs on OpenSPARC T2 are all connected to the

NCU in the same manner. The downstream and upstream paths are both 4-
bit-wide data buses with two control signals. The interface protocol is a
128-bit packet spread out over 32 cycles of transactions. The NCU sends
only types READ_REQ and WRITE_REQ with 8-byte request size to the
MCU for CSR access. The MCU sends the following packet types
upstream to NCU:
• READ_ACK, with 8-byte payload in response to a successful

READ_REQ (128-bit UCB packet)
• READ_NACK, without payload in response to an unsuccessful

READ_REQ (64-bit UCB packet without payload)
• INT, for on-chip interrupt, resulting from some error conditions in the

MCU (64-bit UCB Int. packet with dev_id = 1)
• NCU-SSI (Boot ROM Interface) — The NCU has integrated the SSI

interface logics that originated from OpenSPARC T1. Here are some of the
OpenSPARC T2 differences from OpenSPARC T1:
• The ncu_mio_ssi_sck frequency is now programmable.
• Four I/O pins connect directly connect to the external pins.
• The original SSI UCB interface has become NCU internal signals and is

no longer visible from outside the NCU cluster.
• ncu_mio_ssi_sck could be programmed as iol2clk/8 or iol2clk/4,

depending on the CSR register NCU_SCKSEL. This register is
warm_reset protected. The new value programmed into NCU_SCKSEL
register cannot affect the current ncu_mio_ssi_sck until the next warm
reset.

C.7 Floating-Point and Graphics
Unit (FGU)

The OpenSPARC T2 floating-point and graphics unit (FGU) implements the
SPARC V9 floating-point instruction set, the SPARC V9 integer multiply,
divide, and population count (POPC) instructions, and the VIS 2.0 instruction
set, with the following exception: All quad-precision floating-point
instructions are unimplemented (including LDQF[A] and STQF[A]).
FIGURE 11-6 illustrates the functional block of the FGU.

286 Appendix C Overview of OpenSPARC T2 Design
FIGURE 11-6 Floating-Point and Graphics Unit

Following are OpenSPARC T2 features of note for the FGU:
• Contains one dedicated FGU per core.
• Complies with the IEEE 754 standard.
• Supports IEEE 754 single-precision (SP) and double-precision (DP) data

formats. All quad precision floating-point operations are unimplemented.

• Supports all IEEE 754 floating-point data types (normalized, denormalized,
NaN, zero, infinity). Certain denormalized operands or expected results
may generate an unfinished_FPop trap to software, indicating that the FGU
was unable to generate the correct results. The conditions that generate an
unfinished_FPop trap are consistent with UltraSPARC I/II.

• Includes three execution pipelines:
• Floating-point execution pipeline (FPX)
• Graphics execution pipeline (FGX)
• Floating-point divide and square root pipeline (FPD)

• Up to one instruction per cycle can be issued to the FGU. Instructions for a
given thread are executed in order. Floating-point register file (FRF)
bypassing is supported for FGU results having a floating-point register file
destination (excluding FDIV/FSQRT results).

Instruction
Fetch Unit

FGU Register File
256 x 64b Architected

8 Threads

Add
Mul

Div
Sqrt

VIS

Store

Load

Integer
Sources

Integer
Result

rs2rs1

2 Read Addr

FGU

C.7 Floating-Point and Graphics Unit (FGU) 287
• Maintains a precise exception model. The FGU uses an exception
prediction technique to support full floating-point, single-thread pipelining,
independent of IEEE trap enables. FGU operations are also pipelined
across threads. A maximum of two FGU instructions (from different
threads) may write back into the FRF in a given cycle (one FPX/FGX
result and one FPD result).

• Has a 256-entry × 64-bit floating-point register file (FRF) with two read
and two write ports.
• FRF supports eight-way multithreading (eight threads) by dedicating 32

entries for each thread. Each register file entry also includes 14 bits of
ECC for a total of 78 bits per entry. Correctable ECC errors (CEs), and
uncorrectable ECC errors (UEs) result in a trap if the corresponding
enables are set. CEs are never corrected by hardware but may be corrected by
software following a trap.

• One FRF write port (W2) is dedicated to floating-point loads and FPD
floating-point results. FPD results always have highest priority for W2
and are not required to arbitrate. The other FRF write port (W1) is
dedicated to FPX and FGX results. Arbitration is not necessary for the
FPX/FGX write port because of single instruction issue and fixed
execution latency constraints. FPX, FGX, and FPD pipelines never stall.

• To avoid stalling FPX or FGX, integer multiply, MULSCC, pixel
compare and POPC results are guaranteed access to the integer register
file (IRF) write port by the IFU.

• Floating-point store instructions share an FRF read port with the
execution pipelines.

• Focuses FGU pipelines on area and power reduction:
• Merges floating-point and VIS datapaths where possible (partitioned

add/subtract, partitioned compare, 8x16 multiply)
• Merges floating-point add, multiply, and divide datapaths where possible

(format, exponent)
• For integer multiply and divide implementations, utilizes the respective

floating-point datapaths
• For POPC implementation, leverages the PDIST datapath
• Simplifies floating-point adder pipeline (no independent LED/SED

organization, no dedicated i2f prenormalization)
• Eliminates OpenSPARC T1 denormalized operand and result handling
• No floating-point quad precision support
• Clock gating strategy for dynamic power management

288 Appendix C Overview of OpenSPARC T2 Design
All FGU-executed instructions have the following characteristics:
• Fully pipelined, single pass.
• Single-cycle throughput.
• Fixed six-cycle execution latency, independent of operand values, with

the exception of
– floating-point and integer divides and
– floating-point square root.
Divide and square root are not pipelined but execute in a dedicated
datapath, and are nonblocking with respect to FPX and FGX. Floating-
point divide and square root have a fixed latency. Integer divide has a
variable latency, dependent on operand values.

• Pixel distance (PDIST)
PDIST is a three-source instruction and requires two cycles to read the
sources from the FRF, which has only two read ports. No FGU executed
instruction may be issued the cycle after PDIST is issued. PDIST has a
fixed six-cycle execution latency and a throughput of one instruction
every two cycles.

• Complex instruction helpers are not used in the OpenSPARC T2 design.
Some UltraSPARC implementations use helpers to support instructions such as
pixel distance (PDIST) and floating-point block loads and stores.

• FPX uses a parallel normalize/round organization, eliminating the serial
delay of a post-normalizer followed by a post-normalization increment by
performing the normalization and round function in parallel.

• Execution pipelines are multi-precision in that SP scalar, DP scalar, VIS/
integer scalar and VIS/integer SIMD values are stored in the FRF and
interpreted by the execution pipeline as unique formats.

• Floating-point State register (FSR) for IEEE control and status.
• Graphics Status register (GSR) for VIS control.
• Underflow tininess is detected before rounding. Loss of accuracy is

detected when the delivered result value differs from what would have
been computed were both the exponent range and precision unbounded
(inexact condition).

• IEEE exception and nonstandard mode support (FSR.ns = 1) are consistent
with UltraSPARC I/II.

C.7 Floating-Point and Graphics Unit (FGU) 289
C.7.1 FGU Feature Comparison of
OpenSPARC T2 and OpenSPARC T1

TABLE C-1 compares the FGU features in OpenSPARC T2 with similar features
in OpenSPARC T1.

TABLE C-1 OpenSPARC T2 FGU Feature Summary

Feature OpenSPARC T2 OpenSPARC T1
ISA, VIS SPARC V9, VIS 2.0 SPARC V9, subset of VIS

2.0
Core multithreading 8 threads 4 threads

Core issue 1 1

Out-of-order execution (per
thread)

No No

FGU instantiations 1 per core 1 per chip

FGU issue 1 1

FGU architected register
file

256 × 64 b for 8 threads
+ 14 b ECC per entry
2R/2W ports

128 × 64 b for 4 threads
+ 14 b ECC per entry
1 port

FSQRT implemented Yes No

IMUL/IDIV execute in
FGU

Yes No

POPC executes in FGU Yes No

Number of instructions
executed in FGU

129 23

Execution latency
FADD, FSUB 6 4

FCMP 6 4

FP/integer convert types 6 4 or 5

FMOV, FABS, FNEG 6 1

FMULs 6 (1/1 throughput) 7 (1/2 throughput)

FGU IMUL, IMULScc 5 (1/1 throughput) Not applicable

FDIV 19 SP, 33 DP 32 SP, 61 DP

FGU IDIV 12–41 Not applicable

FSQRT 19 SP, 33 DP Unimplemented

FMUL 6 (1/1 throughput) Not applicable

FGU FPADD, FPSUB 6 Not applicable

PDIST 6 (1/2 throughput) Not applicable

FGU VIS other 6 Not applicable

FGU POPC 6 Not applicable

290 Appendix C Overview of OpenSPARC T2 Design
C.7.2 Performance
While the OpenSPARC T1 to OpenSPARC T2 microarchitecture evolution
offers many performance enhancements, in some cases performance may
decrease.
• Certain denormalized operands or expected results may generate an

unfinished_FPop trap to software on OpenSPARC T2 (for details, see
Section 7.10.4.5 in the OpenSPARC T2 Core Microarchitecture
Specification). Unlike on other UltraSPARC implementations, a
denormalized operand or result never generates an unfinished_FPop trap to
software on T1.

• A small set of floating-point and VIS instructions are executed by the
OpenSPARC T1 SPARC core FFU (not the off-core FPU). These include
FMOV, FABS, FNEG, partitioned add/subtract, FALIGNDATA, and logical
instructions. The OpenSPARC T2 instruction latency is equivalent to or
less than OpenSPARC T1 for these instructions.

C.7.3 FGU Interfaces
The FGU interfaces with the units shown in FIGURE 11-7 as described below:

FIGURE 11-7 FGU Interfaces

Single thread throughput
FADD, FSUB 1/1 1/27

FMUL 1/1 1/30

FDIV/FSQRT/IDIV
blocking

No No

Hardware quad
implemented

No No

Full hardware denorm
implemented

No Yes

TABLE C-1 OpenSPARC T2 FGU Feature Summary (Continued)

Feature OpenSPARC T2 OpenSPARC T1

IFU

TLU LSU

FGU

EXU0

EXU1

C.7 Floating-Point and Graphics Unit (FGU) 291
• Instruction fetch unit (IFU) — The IFU provides instruction control
information as well as rs1, rs2, and rd register address information. It can
issue up to one instruction per cycle to the FGU.
The IFU does the following:
• Sends the following flush signals to the FGU:

– Flush execution pipeline stage FX2 (transmitted during FX1/M stage)
– Flush execution pipeline stage FX3 (transmitted during FX2/B stage)

• Maintains copies of fcc for each thread.
• Provides a single FMOV valid bit to the FGU indicating whether the

appropriate icc, xcc, fcc, or ireg condition is true or false.
Correspondingly, the FGU does the following:
• Flushes the FPD based on the IFU- and trap logic unit (TLU)-initiated

flush signals. Once an FPD instruction has executed beyond FX3, it
cannot be flushed by an IFU- or TLU-initiated flush.

• Provides appropriate FSR.fcc information to the IFU during FX2 and
FX3 (including load FSR). The information includes a valid bit, the fcc
data, and thread ID (TID) and is non-speculative.

• Provides the FPRS.fef bit to the IFU for each TID (used by the IFU to
determine fp_disable).

• Trap logic unit (TLU) — The FGU provides the following trap
information to the TLU:
• unfinished_FPop
• fp_exception_ieee_754
• fp_cecc (FRF correctable ECC error)
• fp_uecc (FRF uncorrectable ECC error)
• division_by_zero (integer).
• Exception trap prediction
The FGU receives the following flush signal from the TLU:
• Flush execution pipeline stage FX3 (transmitted during FX2/B stage)

• Load-store unit (LSU) — Floating-point load instructions share an FRF
write port with FPD floating-point results, which always have priority for
the shared write port. FPD notifies the IFU and LSU when a divide or
square root is near completion to guarantee that load data does not collide
with the FPD result. Loads update the FRF or FSR directly, without
proceeding down the execution pipeline. Load FSR is a serializing
operation for a given thread (all previous FPops have completed, then load
FSR completes prior to issuing subsequent FPops).

292 Appendix C Overview of OpenSPARC T2 Design
The LSU always delivers 32-bit load data replicated on both the upper
(even) and lower (odd) 32-bit halves of the 64-bit load data bus. ECC
information is generated by the FGU prior to updating the FRF.
Floating-point store instructions share an FRF read port with the execution
pipelines. Store FSR is a serializing operation for a given thread (all
previous FPops have completed, then store FSR completes prior to issuing
subsequent FPops).
The FGU always delivers 32-bit store data on the upper (even) 32 bits of
the 64-bit store data bus. The lower (odd) 32 bits are undefined. FGU
delivers FRF ECC UE/CE information to the LSU one cycle after the data.
The FGU does not perform any byte swapping based on endianness
(handled by LSU) or load data alignment for 32-, 16-, and 8-bit loads (also
handled by LSU).

• Execution Units — Each EXU can generate the two 64-bit source
operands needed by the integer multiply, divide, POPC, SAVE, and
RESTORE instructions. The EXUs provide the appropriate sign-extended
immediate data for rs2; provide rs1 and rs2 sign extension; and provide
zero fill formatting as required. The IFU provides a destination address
(rd), which the FGU provides to the EXUs upon instruction completion.
The architected Y register for each thread is maintained within the EXUs.
MULScc and 32-bit IMUL instructions write the Y register. MULScc and
32-bit IDIV instructions read the Y register.
Each EXU provides GSR.mask and GSR.align fields, individual valid
bits for those fields, and the TID.
The FGU provides a single 64-bit result bus, along with appropriate icc and
xcc information. The same result bus provides appropriate 64-bit formatted
“gcc” information to the EXUs upon completion of the VIS FCMP (pixel
compare) instructions. The result information includes a valid bit, TID, and
destination address (rd). FGU clears the valid bit under the following
conditions:
• division_by_zero trap (IDIV only)
• Enabled FRF ECC UE/CE (VIS FCMP only)
• EXU-, IFU-, or TLU-initiated flush

C.8 Trap Logic Unit (TLU) 293
C.8 Trap Logic Unit (TLU)
Exceptions and trap requests are conditions that may cause a thread to take a
trap. A trap is a vectored transfer of control to supervisor software through a
trap table (from the SPARC Version 9 Architecture). In the event of an
exception or trap request, the trap logic unit (TLU) prevents the update of
architectural state for the instruction or instructions after an exception. In
many cases, the TLU relies on the execution units and the IFU to assist with
the preservation of architectural state.

The TLU preserves the PC and NPC for the instruction with the exception. In
some cases, the TLU must create a precise interrupt point for exceptions and
interrupt requests not directly related to the instruction stream. In all cases, the
TLU maintains the trap stack.

The TLU supports several logical functions:
• Flush logic — Generates flushes in response to exceptions to create precise

interrupt points (when possible)
• Trap stack array (TSA) — Maintains trap state for the eight threads for up

to six trap levels per thread
• Trap state machine — Holds and prioritizes trap requests for the eight

threads in two thread groups

The TLU supports the following trap categories:
• Precise trap — Caused by a specific instruction. When a precise trap

occurs, processor state reflects that all previous instructions have executed
and completed and that the excepting instruction and subsequent
instructions have not executed.
The TLU ensures that the thread has completed all instructions prior to and
no instruction subsequent to a precise trap exception so that the trap
handler accesses the correct architectural state.

• Disrupting trap — Caused by a condition, not an instruction. The TLU
services SPU exceptions, hardware exceptions, and XIR requests with
disrupting traps.
Once a disrupting trap has been serviced, the program may pick up where
it left off. The condition that causes a disrupting trap may or may not be
associated with a specific instruction. In some cases, the condition may be
or may lead to a corruption of state, and therefore a disrupting trap may
degenerate into a reset trap.

294 Appendix C Overview of OpenSPARC T2 Design
• Reset trap — Occurs when hardware or software determines that the
hardware must be reset to a known state Once a reset trap has been
serviced, the program does not resume.
On OpenSPARC T2, a POR reset can only occur after a power-on. All
other reset traps can be taken only if the thread can make forward progress.
A reset trap will not resolve a deadlock.

• Deferred trap — On OpenSPARC T2, the store_error trap is the only
deferred trap; it is implemented as though it were a deferred trap.

The TLU receives exception reports and trap requests from trapping
instructions, SPU, hardware monitors, steering registers, and the crossbar.
When the TLU receives an exception or trap request, it must first flush the
relevant thread from the machine, to ensure that the trap handler can proceed
without corruption from the thread itself.

Only instructions from the trapping thread are flushed. Instructions for other
threads continue executing or remain in instruction buffers.

In OpenSPARC T2, exceptions can be caused by the following:
• Execution unit instructions
• Load-store unit instructions
• Floating-point and graphics unit instructions
• Illegal instructions
• Invalid instructions
• Translation exceptions (MMU miss, access exception)
• Out-of-range virtual or real addresses
• Instructions with ECC errors (integer instruction, floating-point and

graphics instructions, load misses, stores, instruction cache misses)
• DONE and RETRY instructions
• SIR instructions

Each thread can generate only one trap at a time. However, since the threads
within a thread group share a trap interface to the IFU, only one thread per
thread group can trap per cycle. The TLU prioritizes trap requests for the
threads within a thread group as follows:

1. Reset trap requests
2. Disrupting trap requests
3. Exceptions on divides
4. Exceptions on load misses and long latency instructions
5. Exceptions on normal pipe FGU instructions
6. Exceptions on normal pipe EXU and LSU instructions
7. Microarchitectural redirects and ITLB reloads

Within a trap request priority level, the TLU uses a static priority from thread
0 to thread 3 to select which request to service.

C.9 Reliability and Serviceability 295
C.9 Reliability and Serviceability
Soft errors fall into one of four classes: reported corrected (RC), reported
uncorrected (RU), silent corrected (SC), and silent uncorrected (SU). The
OpenSPARC T1 design minimizes silent errors, whether corrected or
uncorrected. Most SRAMs and register files have ECC or parity protection.
OpenSPARC T2 protects more arrays or increases protection of a given array
by adding ECC or parity or by duplicating arrays to further reduce the silent
error rate and the reported uncorrected (for example, fatal) error rate.
OpenSPARC T2 cores do not support lockstep, checkpoint, or retry
operations.

The RAS design considers four major types of structures for protection:
• Six-device, single-ported SRAM cells optimized for density, such as cache

data arrays. These SRAM cells have high failure-in-time (FIT) rates (300–
400 FITs per Mb in Epic8c). SRAMs that store critical data have ECC
protection. Other SRAMs have parity protection.

• Register files, which are typically multiported. A register file cell has FIT
rates on the order of half or less of a high-density SRAM cell.
OpenSPARC T2 protects register files with parity or with ECC where a
single-bit error cannot be tolerated.

• Flip-flops or latches used in datapath or control blocks. A flop has a FIT
rate of one-third or less of a single-ported SRAM cell. In general,
OpenSPARC T2 does not protect flops or latches. Flops and latches have
parity or ECC protection where they are part of a larger datapath which is
so protected.

• A CAM cell, whose FIT rate may be half of a standard SRAM cell. CAM
cells are difficult to protect. Adding parity to a CAM cell eliminates false
CAM hits due to single-bit errors but cannot detect false misses.
OpenSPARC T1 “scrubs” large CAMs. CAM scrubbing is different from
traditional DRAM scrubbing. As in DRAM scrubbing, CAM scrubbing
reads a CAM location and checks its parity. Unlike DRAM scrubbing,
CAM scrubbing cannot correct single-bit failures in all cases: If parity is
bad and hardware cannot innocuously reload the entry, an error results.
CAM protection on OpenSPARC T2 is pending.

The FIT rates for OpenSPARC T2 structures are similar to their
OpenSPARC T1 counterparts. To improve FIT rates for the core and L2,
OpenSPARC T2 protects structures that are unprotected on OpenSPARC T1

296 Appendix C Overview of OpenSPARC T2 Design
and improves protection on structures already protected on OpenSPARC T1.
Alternatively, OpenSPARC T2 may redesign structures with a higher Qcrit to
lower the FIT rates.

OpenSPARC T2 contains error status registers (ESRs) that describe hardware
errors to software. The ESRs isolate the first error. In the case of multiple
errors, they also indicate that multiple errors have occurred. Software can read
and write the registers through ASI instructions. Software can use a software-
controlled bit in the register to emulate a parity or ECC error (to allow debug
of diagnostic software). In addition, the structures protected by parity or ECC
provide mechanisms to inject errors (for test).

C.9.1 Core Error Attribution
In the following discussion, the term “core” refers to a virtual core or a
specific thread on a physical core (for example, core 20 refers to thread 4 on
physical core 2). Since OpenSPARC T2 has eight physical cores with eight
threads each, cores are numbered from 0 to 63, inclusively.

Hardware-detected errors can either be attributed directly to a specific core or
not. An example of the former is an instruction cache tag parity error during
an instruction fetch. An example of the latter is an uncorrectable error on the
write-back of a modified L2 cache line.

An error that can be attributed to a given core can either be precise or
imprecise (disrupting). For example, an ITLB parity error is precise. An
uncorrectable error on a read of a core’s store queue data entry is imprecise.
Even though the store instruction is known, the core has updated architectural
state past the store by the time the store data is read from the store queue.

In parallel with error handling within the affected core, OpenSPARC T2 can
request traps for arbitrary cores. The ASI_CMP_ERROR_STEERING register
controls disrupting trap requests for arbitrary cores in response to corrected
and uncorrected errors.

C.9.2 Core Error Logging
OpenSPARC T2 logs errors that are attributable to a given core in an ESR
associated with that core. If enabled, these errors result in either precise,
disrupting, or deferred traps. OpenSPARC T2 logs errors that are not
attributable to a given core in a “global” ESR and, if enabled, directs a
disrupting trap to the core identified in the ASI_CMP_ERROR_STEERING
register.

C.10 Reset 297
Each major structure on the OpenSPARC T2 core with a significant FIT rate
has an error detection scheme. The scheme for each structure depends on the
way the structure is used and the effect of the scheme on the timing and
physical layout. These schemes seek to reduce the number of silent errors and
reported uncorrected errors.

The design defines specific hardware behavior for each recorded error.
Handling of each error follows a general template. Hardware corrects any
correctable errors and retries the operation (either implicitly or explicitly). If a
structure does not support ECC or if the structure detects an uncorrectable
error, the structure invalidates the corrupted data. After invalidation, the core
retries the operation (either implicitly or explicitly). If the data cannot be
invalidated or another error occurs as a result of a retry, hardware signals an
unrecoverable error and requests a trap for the affected core.

C.10 Reset
A reset is usually raised in response to a catastrophic event. Depending on the
event, it may not be possible for a core or for the entire chip to continue
execution without a full reset (POR). All resets place the processor in
RED_state.

OpenSPARC T2 provides the following resets (listed in priority order):
• POR (power-on reset) — Also known as a “hard” reset. Initiated through

an external pin. Activated when the chip is first powered-up and power and
clocks have stabilized. A hard reset completely erases the current state of
the machine and initializes all on-chip flops, latches, register files, and
memory arrays such as TLBs and caches to a known good state. If the chip
is working properly, a hard reset is guaranteed to put each processor in a
consistent state where it can begin to fetch and execute instructions.
Although called POR, the clearing of all machine state does not require
power cycling.
The default POR state is for all available cores to be enabled and the
lowest-numbered available core to be running. These values may be
changed by the system controller, if present, during reset. These values take
effect upon the deactivation or completion of POR. Caches are disabled
following POR.

• WMR (warm reset) — Also known as a “soft” reset. Only partially clears
OpenSPARC T2 state before branching to the new trap address and
executing instructions under the new machine state. A soft reset has been

298 Appendix C Overview of OpenSPARC T2 Design
used in previous SPARC processors to synchronize updating of registers
that control clock ratios for the bus and memory interfaces. It is also
defined as the synchronization point for disabling or enabling CMP cores.
Updates to clock ratio and core enable registers do not take effect until
after the next chip reset.
As with POR, the default for WMR is that all available cores are enabled
and the lowest-numbered available core is running (unparked). These
values may be changed by the SC, if present, during chip reset. The new
values take effect upon the deactivation or completion of WMR.
Depending upon the error state of the chip, it may not be possible for the
chip to continue executing instructions.

• XIR (externally initiated reset) — A SPARC V9-defined trap. An XIR
may be generated externally to OpenSPARC T2 through a chip pin. XIR
does not reset any machine state other than internal pipeline state required
to cause an OpenSPARC T2 core to take a trap and other than the V9-
required side effects of state updates for an XIR trap. An XIR may be
routed to all cores (threads) or a subset of them based upon the contents of
the CMP ASI_XIR_STEERING register. Following recognition of an
XIR, instruction fetching occurs at RSTVADDR || 6016.

• WDR (watchdog reset) — A SPARC V9-defined trap. WDR can be
initiated by an event (such as taking a trap when TL = MAXTL) that causes
an entry into the V9 error state—the processor immediately generates a
watchdog reset trap to take the core to RED_state. On OpenSPARC T2,
a WDR also can result from a fatal error condition detected by on-chip
error logic. A WDR affects only the strand that created it. When a WDR is
recognized, instruction fetching begins at RSTVADDR || 4016.

• SIR (software-initiated reset) — Occurs when privileged software on a
thread executes the SIR instruction. SIR affects only the core that executed
the SIR instruction. When an SIR is recognized, instruction fetching begins
at RSTVADDR || 8016.

RED_state is entered when any of the above resets occur. RED_state is
indicated when PSTATE.red = 1. However, setting PSTATE.red = 1 with
software does not result in a reset. In RED_state, the I-TLB, the D-TLB,
and the MMU MSA and MCM are disabled. Address translation is also
disabled; addresses are interpreted as physical addresses. Bits 63:47 of the
address are ignored. RED_state does not affect the enabling or disabling of
the caches.

C.11 Performance Monitor Unit (PMU) 299
C.11 Performance Monitor Unit
(PMU)

The performance monitor unit (PMU) consists of the PCR and PIC registers
for each thread. The PMU takes in events from the rest of the core and, based
on the configuration of the PCR registers for each thread, optionally
increments a PIC, sets an overflow bit if the PIC is within range, and
indicates a trap request to the TLU.

To save area, all threads share two 32-bit adders, one for the PICH and one
for the PICL. This means that a given thread has access only to the adders
every eighth cycle. In turn, each PIC has an associated 4-bit accumulator,
which increments each cycle an event occurred for that PIC. When the thread
is selected, each of its two PICs and their corresponding accumulators are
summed together in their corresponding 32-bit adder.

To save power, the PMU is clock-gated. It wakes up whenever an ASI read or
write is active on the ASI ring, or when at least one counter from any thread
is enabled for counting.

The PMU is divided into two parts: pmu_pct_ctl and pmu_pdp_dp. The
former contains the control logic and PCR registers; the latter contains the
PIC registers and associated adder and muxing logic, and the PMU ASI ring
interface.

C.12 Debugging Features
The following are notable features in OpenSPARC T2 that aid in debugging.
• clk/pll observability on pll_char_out[1:0] pins connected to pll_charc block

in PLL
• A 166-pin-wide debug port that serves as an observability vehicle to

promote repeatability, tester characterization, chip hang debug, and general
CPU and SOC debug.

• A high level of repeatability within OpenSPARC T2’s synchronous clock
domains. These include the CPU clock domain, the DRAM domain, and
the I/O clock domain. Thus, a group of tests can be run many times, with
slightly different starting parameters.

• Retraining of FBDs after reset deassertion.
• I/O quiescence during checkpoint, to get the chip to a quiescent state on

every checkpoint before dumping software-visible state and asserting
debug reset to get the synchronous portion of the chip to a known state.

• Implementation of debug events in SPARC cores and SoC.
• Access to debug capabilities through JTAG access.
• OpenSPARC T2 core debugging:

• Instruction breakpoints
• Instruction and data watchpoints
• control_transfer_instruction exception taken each time the T2 core

executes a taken control-transfer instruction
• Single-instruction stepping
• Overlap disabling
• Soft-stop request from TCU to core
• Shadow scan
• For each physical core, one hyperprivileged, read/write, Core Debug

Event Control register (DECR), shared by all strands.
• Interfaces with the test control unit (TCU):

• Clock interface
• Debug event interface
• Scan interface
• Single-step mode signals
• Disable-Overlap mode signals

See OpenSPARC T2 System-On Chip (SoC) Microarchitecture Specification
for details.

C.13 Test Control Unit (TCU)
The OpenSPARC T2 test control unit (TCU) provides access to the chip test
logic. It also participates in reset, eFuse programming, clock stop/start
sequencing, and chip debugging. The TCU, including JTAG, is completely
stuck-fault testable via ATPG manufacturing scan.

Features available for debugging or test, implemented in OpenSPARC T2 and
supported by the TCU, are as follows:
• ATPG or manufacturing scan — For stuck-fault testing
• TAP and boundary scan (JTAG) — Support for IEEE 1149.1 and 1149.6
• JTAG scan — For scan chain loading and unloading
• JTAG shadow scan — For inspection of specific registers while a part is

running in system
• Support for Macrotest
• JTAG UCB — For CREG access through instructions sent to the NCU

C.14 System Interface Unit (SIU) 301
• These instruction then intermix the transaction with normal requests. The
NCU passes the results back to the TCU, which then sends out TDO.

• EFuse — For control and programming
• Transition fault testing — Done on the tester while PLLs are locked;

slower domains may be directly driven through pins
• MBIST (memory built-in self-test) — Tests array bit cells and write/read

mechanisms. BISI (built-in self-initialization) allows arrays to be
initialized.

• LBIST - Logic BIST, implemented in cores
• Reset — For handshaking with RST unit to control scan flop reset and

clock stop/start sequencing.
• L2 access — With JTAG through the SIU
• Debug support
• Support for SerDes — ATPG, STCI, boundary scan

C.14 System Interface Unit (SIU)
OpenSPARC T2 has on-chip multiple system I/O subsystems. OpenSPARC T2
integrates Fire’s high-speed I/O core and connects directly to an x8 PCI-
Express channel (2 GB/s/direction). OpenSPARC T2’s integrated network I/O
unit includes two 10-Gb Ethernet MACs (2.5GB/s/direction). The SIU
provides 12 GB/s of raw bandwidth per direction and has flexible interfaces
for the network interface unit (NIU) and data management unit (DMU) to
access memory via eight secondary-level cache (L2) banks. SIU supports
Fire’s PCI-Express. For the NIU, the SIU was architected so as to allow write
traffic to bypass other posted write traffic. The SIU does not support
coherency.

The SIU also provides a data return path for reads to the peripheral I/O
subsystems. The data for these PIO reads and interrupt messages generated by
the PCI Express subsystem are ordered in the SIU before delivery to the
noncacheable unit (NCU).

The SIU is partitioned physically and logically into two parts based on flow
direction: SIU Inbound (SII) for inbound traffic and SIU Outbound (SIO) for
outbound traffic.

All inbound traffic continues inbound through the SIU until it reaches the
NCU or an L2 bank. All outbound traffic from NCU or L2 must leave SIU in
the outbound direction. The NCU and L2 banks cannot send traffic to each
other through the SIU, nor can the DMU and NIU send traffic toward each
other through the SIU. Because the L2 banks have their own paths through the

302 Appendix C Overview of OpenSPARC T2 Design
memory controllers to memory, the SIU sees each L2 bank as a slave device.
The SIU assumes that L2 never initiates requests to the SIU. Likewise,
network blocks are always seen as master devices pulling from and pushing
data to L2 only.

All traffic uses a packet transfer interface. Each packet is 1 or 2 consecutive
address/header cycles immediately followed by 0 or more consecutive data/
payload cycles. The SIU follows L2’s addressing convention: big endian
where the databytes for the lowest address are transferred first. Where
applicable, byte enables are positional where byte_enable{0} always refer to
databits{7:0} for all interfaces.

The interfaces between the SIU and L2 are in the core clock domain—1.5
GHz. The interfaces between SIU and DMU, NIU, NCU are in the I/O clock
domain—350 MHz or 1/4 core clock frequency.

APPENDIX D

OpenSPARC T1 Design
Verification Suites

This appendix was adapted from Chapter 3 of OpenSPARC T1 Design
and Verification User’s Guide, Part Number 819-5019-12, March 2007,
Revision A.

This appendix describes the following topics:
• OpenSPARC T1 Verification Environment on page 303
• Regression Tests on page 305
• Verification Code on page 307
• PLI Code Used for the Testbench on page 309
• Verification Test File Locations on page 311
• Compilation of Source Code for Tools on page 312
• Gate-Level Verification on page 312

D.1 OpenSPARC T1 Verification
Environment

The OpenSPARC T1 verification environment is a highly automated
environment. With a simple command, you can run the entire regression
suite for the OpenSPARC T1 processor, containing thousands of tests.
With a second command, you can check the results of the regression.

The OpenSPARC T1 Design/Verification package comes with two
testbench environments: core1 and chip8. Each environment can
perform either a mini-regression or a full regression. TABLE D-1 lists the
testbench environment elements.
303

304 Appendix D OpenSPARC T1 Design Verification Suites
OpenSPARC T1 Release 1.4 and later include a third regression environment
for single-thread implementation of the OpenSPARC T1 core. This regression
environment has all the components present in core1 except that it supports
only one hardware thread and removes the stream processing unit (SPU). This
implementation is primarily developed to create a core with a footprint
amenable for the FPGA map. The SPU can be added back into the design by
disablement of the FPGA_SYN_NO_SPU flag during design compile time.

The verification environment uses source code in various languages. TABLE D-
2 summarizes the types of source code and their uses.

The top-level module for the testbench is called cmp_top. The same
testbench is used for both the core1 and chip8 environments with
compilation-time options.

TABLE D-1 Testbench Environment Elements

core1 Testbench
Environment chip8 Testbench Environment

One SPARC CPU core Full OpenSPARC T1 chip, including all 8 cores

Cache Cache

Memory Memory

Crossbar Crossbar

— (No I/O subsystem) I/O subsystem

TABLE D-2 Source Code Types in the Verification Environment

Source Code
Language Used for:

Verilog Chip design, testbench drivers, and monitors

Vera Testbench drivers, monitors, and coverage objects. Use of
Vera is optional

Perl Scripts for running simulations and regressions

C and C++ PLI (Programming Language Interface) for Verilog

SPARC Assembly Verification tests

D.2 Regression Tests 305
D.2 Regression Tests
Each environment supports a mini-regression and a full regression. TABLE D-3
describes the regression groups.

To run a regression:

1. Create the $MODEL_DIR directory and change to that directory. At the
command line, type
mkdir $MODEL_DIR
cd $MODEL_DIR

2 (a). Run the sims command with chosen parameters.
For example, to run a mini-regression for the core1 environment using
the VCS simulator, from the command line, type
sims -sim_type=vcs -group=core1_mini

This command creates two directories:
• A directory called core1 under $MODEL_DIR. The regression

compiles Vera and Verilog code under the core1 directory. This is the
Vera and Verilog build directory.

• A directory named with today’s date and a serial number, such as
2006_01_07_0 (the format is YYYY_MM_DD_ID) under the current
directory where simulations will run. This is the Verilog simulation’s run
directory. Each diagnostics test has one subdirectory under this directory

By default, the simulations are run with Vera. If you do not want to use
Vera, add following option to the sims command:
-novera_build -novera_run

TABLE D-3 Details of Regression Groups

Regression Group
Name Environment

No. of
Tests

Disk Space Needed
to Run (Mbyte)

thread1_mini thread1 42 25

thread1_full thread1 605 900

core1_mini core1 68 41

core1_full core1 900 1,680

chip8_mini chip8 492 1,517

chip8_full chip8 3789 29,000

306 Appendix D OpenSPARC T1 Design Verification Suites
2 (b). To run regressions on multiple groups at one time, specify multiple
-group= parameters at the same time.

For a complete list of command-line options for the sims command, see
Appendix A of OpenSPARC T1 Design and Verification User’s Guide.

3. Run the regreport command to get a summary of the regression.
From the command line, type
regreport $PWD/2006_01_25_0 > report.log

For the core1_mini regression, results are reported for 68 tests.

D.2.1 The sims Command Actions
When running a simulation, the sims command performs the following steps:
1. Compiles the design into the $MODEL_DIR/core1 or $MODEL_DIR/

chip8 directory, depending on which environment is being used.
2. Creates a directory for regression called $PWD/DATE_ID, where $PWD is

the user’s current directory, DATE is in YYYY_MM_DD format, and ID is a
serial number starting with 0.
For example, for the first regression on Jan 25, 2006, a directory called
$PWD/2006_01_26_0 is created. For the second regression run on the
same day, the last ID is incremented to become $PWD/2006_01_26_1.

3. Creates a master_diaglist.regression-group file under the above
directory, such as master_diaglist.core1_mini for the
core1_mini regression group. This file is created based on diaglists
under the $DV_ROOT/verif/diag directory.

4. Creates a subdirectory with the test name under the regression directory
created in step 2 above.

5. Creates a sim_command file for the test based on the parameters in the
diaglist file for the group.

6. Executes sim_command to run a Verilog simulation for the test. If the -
sas option is specified for the test, sim_command also runs the SPARC
Architecture Simulator (SAS) in parallel with the Verilog simulator and
compares the results of the Verilog simulation with the SAS results after
each instruction.
The sim_command command creates many files in the test directory.
Following are the sample files in the test directory:
diag.ev diag.s l2way.log perf.log
sas.log.gz sims.log symbol.tbl sim.perf.log
diag.exe.gz efuse.img midas.log sim_command
status.log sim.log.gz

D.3 Verification Code 307
The status.log file has a summary of the status, where the first line
contains the name of the test and its status (PASS/FAIL), for example,
Diag: xor_imm_corner:model_core1:core1_full:0 PASS

7. Repeats steps 4 to 6 for each test in the regression group.

D.2.2 Running Regression With Other
Simulators

To use a Verilog simulator other than VCS or NC-Verilog, use the following
options for the sims command:
-sim_type=your-simulator-name
-sim_build_cmd=your-simulator-command-to-build-compile-RTL
-sim_run_cmd=your-simulator-command-to-run-simulations
-sim_build_args=arguments-to-build-compile
-sim_run_args=arguments-to-run-simulations

The sim_type, sim_build_cmd, and sim_run_cmd options need be
specified only once. The sim_build_args and sim_run_args can be
specified multiple times to specify multiple argument options.

D.3 Verification Code
This section outlines Verilog and Vera code structures and locations.

D.3.1 Verilog Code Used for Verification
Various testbench drivers and monitors are written in Verilog. TABLE D-4
presents a list of all Verilog modules, the location of the source code, and
descriptions. All verification Verilog files are in the $DV_ROOT/verif/env
directory..

308 Appendix D OpenSPARC T1 Design Verification Suites
TABLE D-4 OpenSPARC T1 Verification Testbench Modules

Module Name Type
of in-
stances

Instance
Names

Directory
Location
Under
$DV_ROOT/
verif/env Description

OpenSPARCT1 Chip 1 iop $DV_ROOT/
design/
sys/iop/
rtl

OpenSPARC
T1 top level

bw_sys Driver 1 bw_sys cmp SSI bus driver

cmp_clk Driver 1 cmp_clk cmp Clock driver

cmp_dram Model 1 cmp_dram cmp DRAM
modules

cmp_mem Driver 1 cmp_mem cmp Memory tasks

cpx_stall Driver 1 cpx_stall cmp CPX stall

dbg_port_
chk

Monitor 1 dbg_port_
chk

cmp Debug port
checker

dffrl_async Driver 4 flop_ddr0|1|
2|3_oe

$DV_ROOT/
design/
sys/iop/
common/
rtl

Flip-flop

err_inject Driver 1 err_inject cmp Error Injector

jbus_
monitor

Monitor 1 jbus_
monitor

iss/pli/
jbus_mon/
rtl

J-Bus Monitor

jp_sjm Driver 2 j_sjm_4,
j_sjm_5

iss/pli/
sjm/rtl

J-Bus Driver

monitor Monitor 1 monitor cmp Various
monitors

one_hot_
mux_mon

Monitor 1 one_hot_
mux_mon

cmp Hot mux
monitor

pcx_stall Driver 1 pcx_stall cmp PCX stall

sas_intf SAS 1 sas_intf cmp SAS interface

sas_tasks SAS 1 sas_tasks cmp SAS tasks

slam_init Driver 1 slam_init cmp Initialization
tasks

sparc_pipe_
flow

Monitor 1 sparc_pipe_f
low

cmp SPARC pipe
flow monitor

tap_stub Driver 1 tap_stub cmp JTAG driver

D.4 PLI Code Used for the Testbench 309
D.3.2 Vera Code Used for Verification
Two types of Vera code are included in the OpenSPARC T1 verification
environment:
• Testbench driver and monitor Vera code
• Vera object coverage Vera code

Vera code is in the $DV_ROOT/verif/env/cmp/vera directory. Each
object coverage module has a corresponding subdirectory. Following is a list
of Vera object coverage modules:
cmpmss_coverage coreccx_coverage dram_coverage
err_coverage exu_coverage ffu_coverage
fpu_coverage ifu_coverage lsu_coverage
mmu_coverage mt_coverage spu_coverage
tlu_coverage tso_coverage

Object coverage Vera code for jbi is in the $DV_ROOT/verif/env/iss/
vera/jbi_coverage directory. Object coverage Vera code is used only for
the chip8_cov regression groups.

D.4 PLI Code Used for the
Testbench

Verilog’s programming language interface (PLI) is used to drive and monitor
the simulations of the OpenSPARC T1 design. There are eight different
directories for PLI source code. Some PLI code is in C language, and some is
in C++ language. The object libraries for the VCS simulator and NC-Verilog
simulator are included for the PLI code in the $DV_ROOT/tools/SunOS/
sparc/lib directory. TABLE D-5 gives the details of PLI code directories,
VCS libraries, and NC-Verilog libraries.

310 Appendix D OpenSPARC T1 Design Verification Suites
VCS object libraries are statically linked libraries (.a files) which are linked
when VCS compiles the Verilog code to generate a simv executable. NC-
Verilog object libraries are dynamically loadable libraries (.so files) which
are linked dynamically while running the simulations.

Makefiles are provided to compile PLI code. Under each PLI directory are a
makefile file to create a static object library (.a file). There is a
makefile.ncv file under each PLI directory to create a dynamic object
library.

TABLE D-5 PLI Source Code and Object Libraries

PLI Name

Source Code
Location
Under
$DV_ROOT

VCS Object
Library Name

NC-Verilog
Object Library
Name Description

iop tools/pli/
iop

libiob.a libiob_
ncv.so

Monitors and
drivers

mem tools/pli/
mem

libmem_
pli.a

libmem_pli_
ncv.so

Memory
read/write

socket tools/pli/
socket

libsocket_
pli.a

libsocket_
pli_ncv.so

Sockets to
SAS

utility tools/pli/
utility

libutility_
pli.a

libutility_
ncv.so

Utility
functions

common verif/env/
iss/pli/
common/c

libjpcommon.a libjpcommon_
ncv.so

Common PLI
functions

jbus_mon verif/env/
iss/pli/
jbus_mon/c

libjbus_
mon.a

libjbus_mon_
ncv.so

J-Bus
monitor

monitor verif/env/
iss/pli/
monitor/c

libmonitor.a libmonitor_
ncv.so

Various

sjm verif/env/
iss/pli/
sjm/c

libsjm.a libsjm_
ncv.so

J-Bus driver

D.5 Verification Test File Locations 311
To compile all PLI libraries, run the mkplilib script. This script has three
options, as listed in TABLE D-6.

To compile PLI libraries with your chosen option, for example, to compile
PLI libraries in VCS, at the command line, type

 mkplilib vcs

Either version of this procedure, VCS or NC-Verilog, compiles C or C++
code, creates static or dynamic libraries, and copies them to the $DV_ROOT/
tools/SunOS/sparc/lib directory.

D.5 Verification Test File Locations
The verification or diagnostics tests (diags) for the OpenSPARC T1 processor
are written in SPARC assembly language (the file names have a .s
extension). Some diags require command files for a J-Bus driver. Those
command files are named sjm_4.cmd and sjm_5.cmd. Some diagnostics
test cases in SPARC assembly are automatically generated by Perl scripts.

The main diaglist for core1 is core1.diaglist. The main diaglist for
chip8 is chip8.diaglist. These main diaglists for each environment
also include many other diaglists. The locations of various verification test
files are listed in TABLE D-7.

TABLE D-6 Options for the mkplilib Script

Option Used for

vcs Compiling PLI libraries for VCS

ncverilog Compiling PLI libraries for NC-Verilog

clean Deleting all PLI libraries

312 Appendix D OpenSPARC T1 Design Verification Suites
D.6 Compilation of Source Code for
Tools

To compile source code for some Sun tools used for the OpenSPARC T1
processor, use the mktools script. The tools source code is located in the
$DV_ROOT/tools/src directory.

The mktools script compiles the source code and copies the binaries to
$DV_ROOT/tools/operating-system/processor-type directory, where:
• operating-system is defined by the uname -s command
• processor-type is defined by the uname -p command

D.7 Gate-Level Verification
OpenSPARC T1 depends heavily on cross-module references (XMRs) within
the verification environment. Therefore, dropping in a netlist in place of the
RTL core will produce a high number of XMR errors. In order to overcome
this difficulty, a simple playback support is now added.

TABLE D-7 Verification Test File Directories

Directory Contents

$DV_ROOT/verif/diag All diagnostics, various diagnostic list files
with the extension .diaglist.

$DV_ROOT/verif/diag/
assembly

Source code for SPARC assembly diagnostics.
More than 2000 assembly test files.

$DV_ROOT/verif/diag/
efuse

EFuse cluster default memory load files.

D.7 Gate-Level Verification 313
Although it is anticipated that this method will be useful primarily to verify
FPGA synthesized netlists, it could be potentially used with netlists generated
by semi-custom synthesis flows as well (for example, Synopsys).

To verify a netlist:

1. Run RTL mini or full regression to generate stimuli files for netlist
verification.
To do this, add the -vcs_build_args=$DV_ROOT/verif/env/
cmp/playback_dump.v option to the regression command.
For example, the thread1_mini regression command for the SPARC-
level driver (stimuli) generation would require the following (all on one
line):
sims -sim_type=vcs -group=thread1_mini -debussy
-vcs_build_args=$DV_ROOT/verif/env/cmp/
playback_dump.v

The preceding regression generates the stimuli.txt file under the run
directory of each diagnostic. Sample stimuli.txt files are included
under $DV_ROOT/verif/gatesim for the thread1_mini regression
(file thread1_mini_stim.tar.gz). These files are generated with the
VCS build flags: args (-vcs_build_args)FPGA_SYN,
FPGA_SYN_1THREAD, and FPGA_SYN_NO_SPU.

2. Create a Verilog file list that includes the following files:
• $DV_ROOT/verif/env/cmp/playback_driver.v
• SPARC-level-gate-netlist.v
• library-used-for-synthesis.v
A sample flist is provided under $DV_ROOT/verif/gatesim for
reference (file flist.xilinx_unisims)

3. Compile the design to build the gate-level model.
A sample compile script is provided under the $DV_ROOT/verif/
gatesim directory. To use the compile script, at the command line, type
$DV_ROOT/verif/gatesim/build_gates flist

CAUTION! Running this vector playback mechanism on RTL,
although feasible, is not recommended because of some
array initialization issues. In the gate playback mode, all
arrays are explicitly initialized to zero while in RTL and
some arrays are initialized to random values. This may
result in mismatch in playback simulation. If RTL arrays
are initialized correctly (zeroes), then this mechanism can
be used to verify the RTL netlist as well.

4. Run the simulation by including +stim_file=path-to-stim-file/
stimuli.txt
• If the playback fails, the simulation returns with Playback FAILED

with # mismatches!
• If the playback passes, the simulation returns with Playback

PASSED!

Use fsdb generation options in the compile script to debug failing runs.

A simple run_gates script is also included for reference under the
$DV_ROOT/verif/gatesim directory. To run the script, at the command
line, type

$DV_ROOT/verif/gatesim/run_gates path-to-stim-file

TABLE D-8 lists the gate netlist files and describes their content.

TABLE D-8 Gate Netlist Files

Directory/File Contents

$DV_ROOT/verif/gatesim/
build_gates

Compile script to create gate-level model
of SPARC netlist

$DV_ROOT/verif/gatesim/
run_gates

Run script to execute playback of vectors
on gate netlist

$DV_ROOT/verif/gatesim/
flist.xilinx.unisims

Sample Verilog file list with Xilinx
synthesis library

$DV_ROOT/verif/gatesim/
thread1_mini_stim.tar.gz

FOR REFERENCE ONLY: Collection of
prepackaged stimulus files for
thread1_mini regression suite

APPENDIX E

OpenSPARC T2 Design
Verification Suites

This appendix was adapted from OpenSPARC T2 Design and Verification
User’s Guide, Part Number 820-2729-10, December 2007, Revision A.

This appendix describes the following topics:
• System Requirements on page 315
• OpenSPARC T2 Verification Environment on page 316
• Regression Tests on page 317
• PLI Code Used For the Testbench on page 319
• Verification Test File Locations on page 320

E.1 System Requirements
OpenSPARC T2 regressions are currently supported to run only on
SPARC systems running the Solaris 9 or Solaris 10 Operating System.

Disk space requirements are listed in TABLE E-1.

TABLE E-1 Disk Space Requirements

Disk Space
Required Required for:

3.1 Gbyte Download, unzip or uncompress, and extract from the
tar file

0.3 Gbyte Run a mini-regression

11.5 Gbyte Run a full regression

1.1 Gbyte Run synthesis

17 Gbyte Total
315

316 Appendix E OpenSPARC T2 Design Verification Suites
E.2 OpenSPARC T2 Verification
Environment

The OpenSPARC T2 verification environment is a highly automated
environment. With a simple command, you can run the entire regression suite
for the OpenSPARC T2 processor, containing hundreds of tests. With a second
command, you can check the results of the regression.

The OpenSPARC T2 Design and Verification package comes with two
testbench environments: cmp1 and fc8. TABLE E-2 lists the testbench
environment entities.

The verification environment uses source code in various languages.
TABLE E-3 summarizes the types of source code and their uses.

To run a regression, use the sims command as described below. The
important parameters for the sims command are as follows:

TABLE E-2 Testbench Environment Elements

cmp1 Testbench
Environment fc8 Testbench Environment

One SPARC CPU core Full OpenSPARC T2 chip, including all 8 cores

Cache Cache

Memory Memory

Crossbar Crossbar

— (No I/O subsystem) I/O subsystem

TABLE E-3 Source Code Types in the Verification Environment

Source Code
Language Used for:

Verilog Chip design, testbench drivers, and monitors

Vera Testbench drivers, monitors, and coverage objects; use of
Vera is optional

Perl Scripts for running simulations and regressions

C and C++ Programming Language Interface (PLI) for Verilog

SPARC Assembly Verification tests

E.3 Regression Tests 317
• -sysSystem type. Set this to cmp1 or fc8. For example: -sys=cmp1
• -groupRegression group name. The choices for -group are

cmp1_mini_T2, cmp1_all_T2, fc8_mini_T2, and fc8_all_T2.
For example, -group=cmp1_mini_T2
• (For cmp1 only) -diaglist_cpp_args=-DT2
• (For fc8 only) -config_cpp_args=-DT2

For help, type sims -h

E.3 Regression Tests
Each environment supports a mini-regression and a full regression. TABLE E-4
describes the regression groups.

To run a regression:

1. Create the $MODEL_DIR directory and change directory to it. At the
command line, type
mkdir $MODEL_DIR
cd $MODEL_DIR

2. Run the sims command with chosen parameters.
For instance, to run a mini-regression for the cmp1 environment using the
VCS simulator, from the command line, type

sims -sys=cmp1 -group=cmp1_mini_T2 -diaglist_cpp_args=-DT2

This command creates two directories:
• A directory called cmp1 under $MODEL_DIR. The regression compiles

Vera and Verilog code under the cmp1 directory. This is the Vera and
Verilog build directory. By default, the simulations are run with Vera.

TABLE E-4 Details of Regression Groups

Regression Group
Name Environment

No. of
Tests

Disk Space Needed to
Run (Mbytes)

cmp1_mini_T2 cmp1 51 75

cmp1_all_T2 cmp1 763 2500

fc8_mini_T2 fc8 84 246

fc8_full_T2 fc8 534 9000

318 Appendix E OpenSPARC T2 Design Verification Suites
• A directory named with today’s date and a serial number, such as
2007_01_07_0 (the format is YYYY_MM_DD_ID) under the current
directory where simulations will run. This is the Verilog simulation’s run
directory. Each diagnostics test has one subdirectory under this
directory.

3. Run the regreport command to get a summary of the regression.
From the command line, type
regreport $PWD/2007_08_07_0 > report.log

When running a simulation, the sims command performs the following steps:

1. Compiles the design into the $MODEL_DIR/cmp1 or $MODEL_DIR/fc8
directory, depending on which environment is being used.

2. Creates a directory for regression called $PWD/DATE_ID, where $PWD is
the current directory, DATE is in YYYY_MM_DD format, and ID is a serial
number starting with 0. For example, for the first regression on August 7,
2007, a directory called $PWD/2007_08_07_0 is created. For the
second regression run on the same day, the last ID is incremented to
become $PWD/2007_08_07_1.

3. Creates a master_diaglist.regression-group file under the above
directory. such as master_diaglist.cmp1_mini_T2 for the
cmp1_mini_T2 regression group. This file is created based on diaglists
under the $DV_ROOT/verif/diag directory.

4. Creates a subdirectory with the test name under the regression directory
created in step 2 above.

5. Creates a sim_command file for the test based on the parameters in the
diaglist file for the group.

6. Executes sim_command to run a Verilog simulation for the test. If the -
sas option is specified for the test, sim_command also runs the SPARC
Architecture Simulator (SAS) in parallel with the Verilog simulator. The
results of the Verilog simulation are compared with the SAS results after
each instruction.
The sim_command command creates many files in the test directory.
Following are the sample files in the test directory.
diag.ev diag.s raw_coverage seeds.log
status.log vcs.log.gz diag.exe.gz midas.log
sas.log.gz sims.log symbol.tbl vcs.perf.log

E.4 PLI Code Used For the Testbench 319
The status.log file has a summary of the status, where the first line
contains the name of the test and its status (PASS/FAIL), for example,

Rundir: tlu_rand05_ind_03:cmp1_st:cmp1_mini_T2:0
PASS

7. Repeats steps 4 to 6 for each test in the regression group.

E.4 PLI Code Used For the
Testbench

Verilog’s Programming Language Interface (PLI) is used to drive and monitor
the simulations of the OpenSPARC T2 design. There are eight different
directories for PLI source code. Some PLI code is in C language, and some is
in C++ language. TABLE E-5 gives the details of PLI code directories and VCS
libraries.

VCS object libraries are statically linked libraries (.a files) that are linked
when VCS compiles the Verilog code to generate a simv executable.

A makefile file under the $DV_ROOT/tools/pli directory will compile
static executables (.a files) of the PLI code.

TABLE E-5 PLI Source Code and Object Libraries

PLI name
Source Code Location
Under $DV_ROOT

VCS Object
Library Name Description

iob verif/env/common/pli/
cache

libiob.a Cache warming
routines

mem model/infineon libbwmem_
pli.a

Memory read/
write

socket verif/env/common/pli/
socket

libsocket_
pli.a

Sockets to SAS

utility verif/env/common/pli/
utility

libbwutility_
pli.a

Utility functions

monitor verif/env/common/pli/
monitor/c

libmonitor_
pli.a

Various

global_
chkr

verif/env/common/pli/
global_chkr/

libglobal_
chkr.a

Various checkers

320 Appendix E OpenSPARC T2 Design Verification Suites
E.5 Verification Test File Locations
The verification or diagnostics tests (diags) for the OpenSPARC T2 processor
are written in SPARC assembly language (the file names have a .s
extension). Some diagnostics test cases in SPARC assembly are automatically
generated by Perl scripts.

The main diaglist for cmp1 is cmp1.diaglist. The main diaglist for fc8
is fc8.diaglist. These main diaglists for each environment also include
many other diaglists. The locations of various verification test files are listed
in TABLE E-6.

TABLE E-6 Verification Test File Directories

Directory Contents

$DV_ROOT/verif/diag All diagnostics, various diagnostic list files
with the extension .diaglist

$DV_ROOT/verif/diag/
assembly

Source code for SPARC assembly
diagnostics. More than 1400 assembly test
files

$DV_ROOT/verif/diag/efuse eFuse cluster default memory load files

APPENDIX F

OpenSPARC Resources

This appendix provides references to additional OpenSPARC resources
available on the World Wide Web.
• For general OpenSPARC information, visit:

http://OpenSPARC.net

• For information on programs supporting academic uses of
OpenSPARC, visit:
http://www.OpenSPARC.net/edu/university-
program.html
Specific questions may be sent by email to
OpenSPARC-UniversityProgram@sun.com

• For more information regarding FPGA-based OpenSPARC projects,
visit:
http://www.opensparc.net/fpga/index.html
Information regarding the Xilinx OpenSPARC FPGA Board is on
page:
http://www.OpenSPARC.net/edu/university-
program.html

• For OpenSPARC T1, UltraSPARC Architecture 2005, and T1
Hypervisor specification documents, visit:
http://www.opensparc.net/opensparc-t1/

• To download the OpenSPARC T1 processor design, verification tools,
simulation tools, and performance modeling tools, visit:
http://www.opensparc.net/opensparc-t1/
downloads.html

• For OpenSPARC T2 and UltraSPARC Architecture 2007 specification
documents, visit:
http://www.opensparc.net/opensparc-t2/

• To download the OpenSPARC T2 processor design, verification tools,
simulation tools, and performance modeling tools, visit:
http://www.opensparc.net/opensparc-t2/
downloads.html
321

322 Appendix F OpenSPARC Resources
• To read (or post to) OpenSPARC Community Forums, visit:
http://forums.sun.com/category.jspa?categoryID=120

• If you have OpenSPARC-related questions, the best way to get an answer
(and share the answer with other community members) is to post your
question in the General OpenSPARC Discussion Forum at:
http://forums.sun.com/forum.jspa?forumID=837

APPENDIX G

OpenSPARC Terminology

This appendix defines concepts and terminology applicable to
OpenSPARC T1 and OpenSPARC T2.

A

address
space

A range of 264 locations that can be addressed by instruction
fetches and load, store, or load-store instructions. See also
address space identifier (ASI).

address
space
identifier
(ASI)

An 8-bit value that identifies a particular address space. An ASI is
(implicitly or explicitly) associated with every instruction access
or data access. See also implicit ASI.

aliased Said of each of two virtual or real addresses that refer to the same
underlying memory location.

application
program

A program executed with the virtual processor in nonprivileged
mode.

ASI Address space identifier.

ASR Ancillary State register

available
(virtual
processor)

A virtual processor that is physically present and functional and
that can be enabled and used.
303

314 Appendix G OpenSPARC Terminology • B
B

big-
endian

An addressing convention. Within a multiple-byte integer, the byte
with the smallest address is the most significant; a byte’s
significance decreases as its address increases.

BIST Abbreviation for built-in self-test

BLD (Obsolete) abbreviation for Block Load instruction; replaced by
LDBLOCKF.

BST (Obsolete) abbreviation for Block Store instruction; replaced by
STBLOCKF.

byte Eight consecutive bits of data, aligned on an 8-bit boundary.

C

CAM Abbreviation for content-addressable memory.

CCR Abbreviation for Condition Codes register.

clean win-
dow

A register window in which each of the registers contain 0, a valid
address from the current address space, or valid data from the
current address space.

cleared A term applied to an error when the originating incorrect signal or
datum is set to a value that is not in error. An originating incorrect
signal that is stored in a memory (a stored error) may be cleared
automatically by hardware action or may need software action to
clear it. An originating incorrect signal that is not stored in any
memory needs no action to clear it. (For this definition, “memory”
includes caches, registers, flip-flops, latches, and any other
mechanism for storing information, and not just what is usually
considered to be system memory.)

CMT Chip-level multithreading (or, as an adjective, chip-level
multithreaded). Refers to a physical processor containing more
than one virtual processor.

C • OpenSPARC Terminology 313
coherence A set of protocols guaranteeing that all memory accesses are
globally visible to all caches on a shared-memory bus.

completed
(memory
operation)

Said of a memory transaction when an idealized memory has
executed the transaction with respect to all processors. A load is
considered completed when no subsequent memory transaction
can affect the value returned by the load. A store is considered
completed when no subsequent load can return the value that was
overwritten by the store.

context A set of translations that defines a particular address space. See
also memory management unit (MMU).

context ID A numeric value that uniquely identifies a particular context.

copyback The process of sending a copy of the data from a cache line owned
by a physical processor core, in response to a snoop request from
another device.

CPI Cycles per instruction. The number of clock cycles it takes to
execute an instruction.

core In an OpenSPARC processor, may refer to either a virtual
processor or a physical processor core.

correctable A term applied to an error when at the time the error occurs, the
error detector knows that enough information exists, either
accompanying the incorrect signal or datum or elsewhere in the
system, to correct the error. Examples include parity errors on
clean L1s, which are corrected by invalidation of the line and
refetching of the data from higher up in the memory hierarchy,
and correctable errors on L2s. See also uncorrectable.

corrected A term applied to an error when the incorrect signal or datum is
replaced by the correct signal or datum, perhaps in a downstream
location. Depending on the circuit, correcting an error may or may
not clear it.

cross-call An interprocessor call in a system containing multiple virtual
processors.

314 Appendix G OpenSPARC Terminology • D
CSR Abbreviation for Control and Status register.

CTI Abbreviation for control-transfer instruction.

current
window

The block of 24 R registers that is presently in use. The Current
Window Pointer (CWP) register points to the current window.

D

data access
(instruc-
tion)

A load, store, load-store, or FLUSH instruction.

DCTI Delayed control-transfer instruction.

demap To invalidate a mapping in the MMU.

denormal-
ized num-
ber

Synonym for subnormal number.

deprecated The term applied to an architectural feature (such as an instruction
or register) for which an OpenSPARC implementation provides
support only for compatibility with previous versions of the
architecture. Use of a deprecated feature must generate correct
results but may compromise software performance.

Deprecated features should not be used in new OpenSPARC
software and may not be supported in future versions of the
architecture.

DFT Abbreviation for Design For Test.

disable
(core)

The process of changing the state of a virtual processor to
Disabled, during which all other processor state (including
cache coherency) may be lost and all interrupts to that virtual
processor will be discarded. See also park and enable.

E • OpenSPARC Terminology 313
disabled
(core)

A virtual processor that is out of operation (not executing
instructions, not participating in cache coherency, and discarding
interrupts). See also parked and enabled.

double-
word

An 8-byte datum. Note: The definition of this term is architecture
dependent and may differ from that used in other processor
architectures.

DUT Abbreviation for device (or unit) under test.

D-SFAR Data Synchronous Fault Address register.

E

enable
(core)

The process of moving a virtual processor from Disabled to
Enabled state and preparing it for operation. See also disable
and park.

enabled
(core)

A virtual processor that is in operation (participating in cache
coherency, but not executing instructions unless it is also
Running). See also disabled and running.

error A signal or datum that is wrong. The error can be created by some
problem internal to the processor, or it can appear at inputs to the
processor. An error can propagate through fault-free circuitry and
appear as an error at the output. It can be stored in a memory,
whether program-visible or not, and can later be either read out of
the memory or overwritten.

ESR Abbreviation for Error Status register.

even parity The mode of parity checking in which each combination of data
bits plus a parity bit contains an even number of ‘1’ bits.

exception A condition that makes it impossible for the processor to continue
executing the current instruction stream. Some exceptions may be
masked (that is, trap generation disabled — for example, floating-
point exceptions masked by FSR.tem) so that the decision on
whether or not to apply special processing can be deferred and
made by software at a later time. See also trap.

314 Appendix G OpenSPARC Terminology • F
explicit
ASI

An ASI that is provided by a load, store, or load-store alternate
instruction (either from its imm_asi field or from the ASI
register).

extended
word

An 8-byte datum, nominally containing integer data. Note: The
definition of this term is architecture dependent and may differ
from that used in other processor architectures.

F

fault A physical condition that causes a device, a component, or an
element to fail to perform in a required manner; for example, a
short-circuit, a broken wire, or an intermittent connection.

fccn One of the floating-point condition code fields fcc0, fcc1, fcc2, or
fcc3.

FGU Floating-point and graphics unit (which most implementations
specify as a superset of FPU).

floating-
point ex-
ception

An exception that occurs during the execution of a floating-point
operate (FPop) instruction. The exceptions are unfinished_FPop,
unimplemented_FPop, sequence_error, hardware_error,
invalid_fp_register, or IEEE_754_exception.

F register A floating-point register. The SPARC V9 architecture includes
single-, double-, and quad-precision F registers.

floating-
point
operate in-
structions

Instructions that perform floating-point calculations. FPop
instructions do not include FBfcc instructions, loads and stores
between memory and the F registers, or non-floating-point
operations that read or write F registers.

floating-
point trap
type

The specific type of a floating-point exception, encoded in the
FSR.ftt field.

floating-
point unit

A processing unit that contains the floating-point registers and
performs floating-point operations, as defined by the specification.

G • OpenSPARC Terminology 313
FPop Abbreviation for floating-point operate (instructions).

FPRS Floating-Point Register State register.

FPU Floating-point unit.

FSR Floating-Point Status register.

G

GL Global Level register.

GSR General Status register.

H

halfword A 2-byte datum. Note: The definition of this term is architecture
dependent and may differ from that used in other processor
architectures.

hyperprivi-
leged

An adjective that describes:
(1) the state of the processor when HPSTATE.hpriv = 1, that is,
when the processor is in hyperprivileged mode;
(2) processor state that is only accessible to software while the
processor is in hyperprivileged mode; for example,
hyperprivileged registers, hyperprivileged ASRs, or, in general,
hyperprivileged state;
(3) an instruction that can be executed only when the processor is
in hyperprivileged mode.

hypervisor
(software)

A layer of software that executes in hyperprivileged processor
state. One purpose of hypervisor software (also referred to as “the
Hypervisor”) is to provide greater isolation between operating
system (“supervisor”) software and the underlying processor
implementation.

I

ICE Abbreviation for In-Circuit Emulation.

314 Appendix G OpenSPARC Terminology • I
IEEE 754 IEEE Standard 754-1985, the IEEE Standard for Binary Floating-
Point Arithmetic.

IEEE-754
exception

A floating-point exception, as specified by IEEE Std 754-1985.
Listed within the specification as IEEE_754_exception.

implemen-
tation

Hardware or software that conforms to all of the specifications of
an instruction set architecture (ISA).

implemen-
tation
dependent

An aspect of the OpenSPARC architecture that can legitimately
vary among implementations. In many cases, the permitted range
of variation is specified. When a range is specified, compliant
implementations must not deviate from that range.

implicit
ASI

An address space identifier that is implicitly supplied by the
virtual processor on all instruction accesses and on data accesses
that do not explicitly provide an ASI value (from either an
imm_asi instruction field or the ASI register).

initiated Synonym for issued.

instruction
field

A bit field within an instruction word.

instruction
group

One or more independent instructions that can be dispatched for
simultaneous execution.

instruction
set archi-
tecture

A set that defines instructions, registers, instruction and data
memory, the effect of executed instructions on the registers and
memory, and an algorithm for controlling instruction execution.
Does not define clock cycle times, cycles per instruction,
datapaths, etc. This book defines the OpenSPARC T1 and
OpenSPARC T2 instruction set architectures.

ISS Abbreviation for Instruction-Set Simulator.

integer
unit

A processing unit that performs integer and control-flow
operations and contains general-purpose integer registers and
virtual processor state registers, as defined by this specification.

L • OpenSPARC Terminology 313
interrupt
request

A request for service presented to a virtual processor by an
external device.

inter-strand Describes an operation that crosses virtual processor (strand)
boundaries.

intra-
strand

Describes an operation that occurs entirely within one virtual
processor (strand).

invalid
(ASI or
address)

Undefined, reserved, or illegal.

ISA Instruction set architecture.

issued A memory transaction (load, store, or atomic load-store) is said to
be “issued” when a virtual processor has sent the transaction to the
memory subsystem and the completion of the request is out of the
virtual processor’s control. Synonym for initiated.

IU Integer unit.

L

little-
endian

An addressing convention. Within a multiple-byte integer, the byte
with the smallest address is the least significant; a byte’s
significance increases as its address increases.

load An instruction that reads (but does not write) memory or reads
(but does not write) location(s) in an alternate address space.
Some examples of load include loads into integer or floating-point
registers, block loads, and alternate address space variants of those
instructions. See also load-store and store, the definitions of
which are mutually exclusive with load.

314 Appendix G OpenSPARC Terminology • M
load-store An instruction that explicitly both reads and writes memory or
explicitly reads and writes location(s) in an alternate address
space. Load-store includes instructions such as CASA, CASXA,
LDSTUB, and the deprecated SWAP instruction. See also load
and store, the definitions of which are mutually exclusive with
load-store.

M

MAS Abbreviation for microarchitectural specification.

may A keyword indicating flexibility of choice with no implied
preference. Note: “may” indicates that an action or operation is
allowed; “can” indicates that it is possible.

memory
manage-
ment unit

The address translation hardware in an OpenSPARC
implementation that translates 64-bit virtual address into
underlying physical addresses. The MMU is composed of the
TLBs, ASRs, and ASI registers used to manage address
translation. See also context, physical address, real address, and
virtual address.

MMI Abbreviation for Module Model interface.

MMU Abbreviation for memory management unit.

multipro-
cessor
system

A system containing more than one processor.

must A keyword indicating a mandatory requirement. Designers must
implement all such mandatory requirements to ensure
interoperability with other OpenSPARC architecture-compliant
products. Synonym for shall.

N

Next Pro-
gram
Counter

Conceptually, a register that contains the address of the instruction
to be executed next if a trap does not occur.

N • OpenSPARC Terminology 313
NFO Nonfault access only.

nonfault-
ing load

A load operation that behaves identically to a normal load
operation, except when supplied an invalid effective address by
software. In that case, a regular load triggers an exception whereas
a nonfaulting load appears to ignore the exception and loads its
destination register with a value of zero (on an OpenSPARC
processor, hardware treats regular and nonfaulting loads
identically; the distinction is made in trap handler software).
Contrast with speculative load.

nonprivi-
leged

An adjective that describes
(1) the state of the virtual processor when PSTATE.priv = 0 and
HPSTATE.hpriv = 0, that is, when it is in nonprivileged mode;
(2) virtual processor state information that is accessible to
software regardless of the current privilege mode; for example,
nonprivileged registers, nonprivileged ASRs, or, in general,
nonprivileged state;
(3) an instruction that can be executed in any privilege mode
(hyperprivileged, privileged, or nonprivileged).

nonprivi-
leged mode

The mode in which a virtual processor is operating when
executing application software (at the lowest privilege level).
Nonprivileged mode is defined by PSTATE.priv = 0 and
HSTATE.hpriv = 0. See also privileged and hyperprivileged.

non-trans-
lating ASI

An ASI that does not refer to memory (for example, refers to
control/status register(s)) and for which the MMU does not
perform address translation.

normal
trap

A trap processed in execute_state (or equivalently, a non-
RED_state trap). Contrast with RED_state trap.

NPC Next program counter.

npt Abbreviation for nonprivileged trap.

nucleus
software

Privileged software running at a trap level greater than 0 (TL> 0).

NUMA Abbreviation for nonuniform memory access.

314 Appendix G OpenSPARC Terminology • O
N-REG_
WINDOW

The number of register windows present in a particular
implementation.

O

OBP Abbreviation for Open Boot PROM.

octlet Eight bytes (64 bits) of data. Not to be confused with “octet,”
which has been commonly used to describe eight bits of data. In
this book, the term byte, rather than octet, is used to describe eight
bits of data.

odd parity The mode of parity checking in which each combination of data
bits plus a parity bit together contain an odd number of ‘1’ bits.

opcode A bit pattern that identifies a particular instruction.

optional A feature not required for UltraSPARC Architecture 2005 and
UltraSPARC Architecture 2007 compliance.

P

PA Abbreviation for physical address.

park The process of suspending a virtual processor from operation.
There may be a delay until the virtual processor is parked, but no
heavyweight operation (such as a reset) is required to complete the
parking process. See also disable and unpark.

parked Said of a virtual processor that is suspended from operation. When
parked, a virtual processor does not issue instructions for
execution but still maintains cache coherency. See also disabled,
enabled, and running.

PC Program Counter register.

PCR Performance Control register.

P • OpenSPARC Terminology 313
physical
address

An address that maps to actual physical memory or I/O device
space. See also real address and virtual address.

physical
core

The term physical processor core, or just physical core, is similar
to the term pipeline but represents a broader collection of
hardware that is required for performing the execution of
instructions from one or more software threads.
For a detailed definition of this term, see page 757 of the
UltraSPARC Architecture manual. See also pipeline, processor,
strand, thread, and virtual processor.

physical
processor

Synonym for processor; used when an explicit contrast needs to be
drawn between processor and virtual processor. See also
processor and virtual processor.

PIC Performance Instrumentation Counter.

PIL Processor Interrupt Level register.

pipeline Refers to an execution pipeline, the basic collection of hardware
needed to execute instructions. For a detailed definition of this
term, see page 757 of the UltraSPARC Architecture manual. See
also physical core, processor, strand, thread, and virtual
processor.

PIPT Physically indexed, physically tagged (cache).

PLL Abbreviation for Phase-Locked Loop.

POR Power-on reset.

POST Abbreviation for power-on self-test.

314 Appendix G OpenSPARC Terminology • P
prefetch-
able

(1) An attribute of a memory location that indicates to an MMU
that PREFETCH operations to that location may be applied.
(2) A memory location condition for which the system designer
has determined that no undesirable effects will occur if a
PREFETCH operation to that location is allowed to succeed.
Typically, normal memory is prefetchable.
Nonprefetchable locations include those that, when read, change
state or cause external events to occur. For example, some I/O
devices are designed with registers that clear on read; others have
registers that initiate operations when read. See also side effect.

privileged An adjective that describes:
(1) the state of the virtual processor when PSTATE.priv = 1 and
HPSTATE.hpriv = 0, that is, the virtual processor is in privileged
mode;
(2) processor state that is only accessible to software while the
virtual processor is in hyperprivileged or privileged mode; for
example, privileged registers, privileged ASRs, or, in general,
privileged state;
(3) an instruction that can be executed only when the virtual
processor is in hyperprivileged or privileged mode.

privileged
mode

The mode in which a processor is operating when PSTATE.priv
= 1 and HPSTATE.hpriv = 0. See also nonprivileged and
hyperprivileged.

processor The unit on which a shared interface is provided to control the
configuration and execution of a collection of strands; a physical
module that plugs into a system. Synonym for processor module.
For a detailed definition of this term, see page 758 of the
UltraSPARC Architecture manual. See also pipeline, physical
core, strand, thread, and virtual processor.

processor
core

Synonym for physical core.

processor
module

Synonym for processor.

program
counter

A register that contains the address of the instruction currently
being executed.

Q • OpenSPARC Terminology 313
Q

quadword A 16-byte datum. Note: The definition of this term is architecture
dependent and may be different from that used in other processor
architectures.

R

R register An integer register. Also called a general-purpose register or
working register.

RA Real address.

RAS Abbreviation for Reliability, Availability, and Serviceability.

RAW Abbreviation for Read After Write (hazard).

rd Rounding direction for floating-point operations.

real
address

An address produced by a virtual processor that refers to a
particular software-visible memory location, as viewed from
privileged mode. Virtual addresses are usually translated by a
combination of hardware and software to real addresses, which
can be used to access real memory. Real addresses, in turn, are
usually translated to physical addresses, which can be used to
access physical memory. See also physical address and virtual
address.

recoverable A term applied to an error when enough information exists
elsewhere in the system for software to recover from an
uncorrectable error. Examples include uncorrectable errors on
clean L2 lines, which are recovered by software, invalidating the
line, and initiating a refetch from memory. See also
unrecoverable.

RED_
state

Reset, Error, and Debug state. The virtual processor state when
HPSTATE.red = 1. A restricted execution environment used to
process resets and traps that occur when TL = MAXTL – 1.

314 Appendix G OpenSPARC Terminology • R
RED_
state trap

A trap processed in RED_state. Contrast with normal trap.

reserved Describing an instruction field, certain bit combinations within an
instruction field, or a register field that is reserved for definition
by future versions of the architecture.
A reserved instruction field must read as 0, unless the
implementation supports extended instructions within the field.
The behavior of an OpenSPARC virtual processor when it
encounters a nonzero value in a reserved instruction field is as
defined in Section 6.3.11, Reserved Opcodes and Instruction
Fields, of the UltraSPARC Architecture manual.
A reserved bit combination within an instruction field is defined in
Chapter 7, Instructions, of the UltraSPARC Architecture manual.
In all cases, an OpenSPARC processor must decode and trap on
such reserved bit combinations.
A reserved field within a register reads as 0 in current
implementations and, when written by software, should always be
written with values of that field previously read from that register
or with the value zero (as described in Section 5.1, Reserved
Register Fields, of the UltraSPARC Architecture manual).
Throughout this book, figures and tables illustrating registers and
instruction encodings indicate reserved fields and reserved bit
combinations with a wide (“em”) dash (—).

reset trap A vectored transfer of control to hyperprivileged software through
a fixed-address reset trap table. Reset traps cause entry into
RED_state.

restricted Describes an address space identifier (ASI) that may be accessed
only while the virtual processor is operating in privileged or
hyperprivileged mode.

S • OpenSPARC Terminology 313
retired An instruction is said to be “retired” when one of the following
two events has occurred:
(1) A precise trap has been taken, with TPC containing the
instruction’s address (the instruction has not changed architectural
state in this case).
(2) The instruction’s execution has progressed to a point at which
architectural state affected by the instruction has been updated
such that all three of the following are true:
• The PC has advanced beyond the instruction.
• Except for deferred trap handlers, no consumer in the same

instruction stream can see the old values and all consumers in
the same instruction stream will see the new values.

• Stores are visible to all loads in the same instruction stream,
including stores to noncacheable locations.

RMO Abbreviation for Relaxed Memory Order (a memory model).

RTO Abbreviation for Read to Own (a type of transaction, used to
request ownership of a cache line).

RTS Abbreviation for Read to Share (a type of transaction, used to
request read-only access to a cache line).

running A state of a virtual processor in which it is in operation
(maintaining cache coherency and issuing instructions for
execution) and not Parked.

S

SAT Abbreviation for stand-alone testbench.

SerDes Abbreviation for Serializer/Deserializer.

service
processor

A device external to the processor that can examine and alter
internal processor state. A service processor may be used to
control/coordinate a multiprocessor system and aid in error
recovery.

SFSR Synchronous Fault Status register.

314 Appendix G OpenSPARC Terminology • S
shall Synonym for must.

should A keyword indicating flexibility of choice with a strongly
preferred implementation. Synonym for it is recommended.

side effect The result of a memory location having additional actions beyond
the reading or writing of data. A side effect can occur when a
memory operation on that location is allowed to succeed.
Locations with side effects include those that, when accessed,
change state or cause external events to occur. For example, some
I/O devices contain registers that clear on read; others have
registers that initiate operations when read. See also prefetchable.

SIMD Abbreviation for Single Instruction/Multiple Data; a class of
instructions that perform identical operations on multiple data
contained (or “packed”) in each source operand.

SIR Abbreviation for software-initiated reset.

snooping The process of maintaining coherency between caches in a shared-
memory bus architecture. Each cache controller monitors (snoops)
the bus to determine whether it needs to copy back or invalidate
its copy of each shared cache block.

SoC Abbreviation for server-on-a-chip or system-on-a-chip.

speculative
load

A load operation that is issued by a virtual processor
speculatively, that is, before it is known whether the load will be
executed in the flow of the program. Speculative accesses are used
by hardware to speed program execution and are transparent to
code. An implementation, through a combination of hardware and
system software, must nullify speculative loads on memory
locations that have side effects; otherwise, such accesses produce
unpredictable results. Contrast with nonfaulting load.

S • OpenSPARC Terminology 313
store An instruction that writes (but does not explicitly read) memory or
writes (but does not explicitly read) location(s) in an alternate
address space. Some examples of store include stores from either
integer or floating-point registers, block stores, Partial Store, and
alternate address space variants of those instructions. See also
load and load-store, the definitions of which are mutually
exclusive with store.

strand The hardware state that must be maintained in order to execute a
software thread. For a detailed definition of this term, see page
757 of the UltraSPARC Architecture manual. See also pipeline,
physical core, processor, thread, and virtual processor.

subnormal
number

A nonzero floating-point number, the exponent of which has a
value of zero. A more complete definition is provided in IEEE
Standard 754-1985.

sun4v An architected interface between privileged and hyperprivileged
software, used for UltraSPARC Architecture processors. See the
Hypervisor API specification for details.

superscalar An implementation that allows several instructions to be issued,
executed, and committed in one clock cycle.

supervisor
software

Software that executes when the virtual processor is in privileged
mode.

suspend Synonym for park.

suspended Synonym for parked.

synchroni-
zation

An operation that causes the processor to wait until the effects of
all previous instructions are completely visible before any
subsequent instructions are executed.

system A set of virtual processors that share a common hardware memory
physical address space.

314 Appendix G OpenSPARC Terminology • T
T

taken Said of a control-transfer instruction (CTI) when the CTI writes
the target address value into NPC.
A trap is taken when the control flow changes in response to an
exception, reset, Tcc instruction, or interrupt. An exception must
be detected and recognized before it can cause a trap to be taken.

TBA Abbreviation for trap base address.

thread A software entity that can be executed on hardware. For a detailed
definition of this term, see page 757 of the UltraSPARC
Architecture manual. See also pipeline, physical core, processor,
strand, and virtual processor.

TLB Abbreviation for Translation Lookaside Buffer.

TLB hit Said when the desired translation is present in the TLB.

TLB miss Said when the desired translation is not present in the TLB.

TNPC Abbreviation for trap-saved next program counter.

TPC Abbreviation for trap-saved program counter.

Transla-
tion Looka-
side Buffer

A cache within an MMU that contains recently used Translation
Table Entries (TTEs). TLBs speed up translations by often
eliminating the need to reread TTEs from memory.

trap The action taken by a virtual processor when it changes the
instruction flow in response to the presence of an exception, reset,
a Tcc instruction, or an interrupt. The action is a vectored transfer
of control to more-privileged software through a table, the address
of which is specified by the privileged Trap Base Address (TBA)
register or the Hyperprivileged Trap Base Address (HTBA)
register. See also exception.

TSB Translation storage buffer. A table of the address translations that
is maintained by software in system memory and that serves as a
cache of virtual-to-real address mappings.

U • OpenSPARC Terminology 313
TSO Abbreviation for Total Store Order (a memory model).

TTE Translation Table Entry. Describes the virtual-to-real, virtual-to-
physical, or real-to-physical translation and page attributes for a
specific page in the page table. In some cases, this term is
explicitly used to refer to entries in the TSB.

U

unassigned A value (for example, an ASI number), the semantics of which are
not architecturally mandated and which may be determined
independently by each implementation within any guidelines
given.

uncorrect-
able

A term applied to an error when not enough information
accompanies the incorrect signal or datum to allow correction of
the error, and it is not known by the error detector whether enough
such information exists elsewhere in the system. Examples include
uncorrectable errors on L2s. Uncorrectable errors can be further
divided into two types: recoverable and unrecoverable. See also
correctable.

undefined An aspect of the architecture that has deliberately been left
unspecified. Software should have no expectation of, nor make
any assumptions about, an undefined feature or behavior. Use of
such a feature can deliver unexpected results and may or may not
cause a trap. An undefined feature may vary among
implementations and may also vary over time on a given
implementation.
Notwithstanding any of the above, undefined aspects of the
architecture shall not cause security holes (such as changing the
privilege state or allowing circumvention of normal restrictions
imposed by the privilege state), put a virtual processor into a
more-privileged mode, or put the virtual processor into an
unrecoverable state.

unimple-
mented

An architectural feature that is not directly executed in hardware
because it is optional or is emulated in software.

uniproces-
sor system

A system containing a single virtual processor.

314 Appendix G OpenSPARC Terminology • V
unpark To bring a virtual processor out of suspension. There may be a
delay until the virtual processor is unparked, but no heavyweight
operation (such as a reset) is required to complete the unparking
process. See also disable and park.

unparked Synonym for running.

unpredict-
able

Synonym for undefined.

unrecover-
able

A term applied to an error when not enough information exists
elsewhere in the system for software to recover from an
uncorrectable error. Examples include uncorrectable errors on
dirty L2 lines. See also recoverable.

unrestrict-
ed

Describes an address space identifier (ASI) that can be used in all
privileged modes; that is, regardless of the value of PSTATE.priv
and HPSTATE.hpriv.

user
application
program

Synonym for application program.

V

VA Abbreviation for virtual address.

virtual
address

An address produced by a virtual processor that refers to a
particular software-visible memory location. Virtual addresses
usually are translated by a combination of hardware and software
to physical addresses, which can be used to access physical
memory. See also physical address and real address.

virtual
core,
virtual pro-
cessor core

Synonyms for virtual processor.

W • OpenSPARC Terminology 313
virtual pro-
cessor

The term virtual processor, or virtual processor core, is used to
identify each processor in a processor. At any given time, an
operating system can have a different thread scheduled on each
virtual processor. For a detailed definition of this term, see page
758 of the UltraSPARC Architecture manual. See also pipeline,
physical core, processor, strand, and thread.

VIS™ Abbreviation for Visual Instruction Set.

VP Abbreviation for virtual processor.

W

WDR Watchdog reset.

word A 4-byte datum. Note: The definition of this term is architecture
dependent and may differ from that used in other processor
architectures.

X

XIR Abbreviation for externally initiated reset.

Index
A
address space, 12
address space identifier (ASI), 323

accesses, 79
adding to T1 instruction set,

example, 79–83
and atomic access, 63
appended to memory address, 17
considerations for creating, 83
definition, 323
exposing internal registers, 79
identifying memory location, 57
non-translating, 79
processing, 80
register access in T2, 269
registers

for implementation-dependent
uses, 19

in memory access, 17
rings, 269
signals used by load instructions, 80
uses for, 79

addressing modes, 12
alignment

data (load/store), 18
doubleword, 18
halfword, 18
instructions, 18
quadword, 18
word, 18

Alpha processor, 3
alternate space instructions, 20
ancillary state registers (ASRs), 323

I/O register access, 20
application program, 323
Arbiter, for L2 cache pipeline, 252, 276
34
arbitration between loads and stores in
T2 LSU, 273

architecture, meaning for SPARC
V9, 11

ASI, See address space identifier (ASI)
ASI_CMP_ERROR_STEERING

register, 296
assertions

availability, 97
definition, 96
languages, 97
reuse, 97
testing hardware behavior, 99
use in model-checking tools, 103
uses in simulation, 96
verifying, 97
where found, 97

atomic instructions
CASX, 63
for mutual exclusion, 62
LDSTUB, 63
quad load, special handling in

T2, 274
SWAP, 63
where used, 62

atomic operation, 168, 170
attributed time (Performance

Analyzer), 134
autodemap, 35

B
bandwidth, meeting future needs, 6
bas program, for verifying RTL

operation, 243
base address information with

kmdb, 214
7

348 Index • C
Berkeley RISCs, 14
big-endian, 324
big-endian byte order, 18
binary compatibility, 14
BIT tool

calculating execution frequency of
assembly language
instructions, 139

comparison of training and actual
workloads, 142

data used by SPOT, 146
gathering instruction count data at

disassembly level, 139
generating coverage/uncoverage

reports, 141
invoking, 138
probability/frequency that branches

taken, 140
requirements for compiling, 138

BLD, 324
block loads and stores in T2, 274
booting Solaris from simulated

disk, 208
branch

calculating probability/frequency
taken, 140

examination of probabilities
data, 144

with prediction, 12
bridge, 202
bringup, symbol information for, 214
BST, 324
burst length, T2 MCU, 48
byte, 324

order, 18
order, big-endian, 18
order, little-endian, 18

C
cache crossbar, 268, 280

adaptation of interface to FSL, 241
arbiter functions, 280
changes required by change to

number of L2 banks, 75
PCX & PCX arbitration

requirements, 280
simulated in T2 environments, 245

cache flushing, 58
cache state, examining, 113
cacheable accesses, ordering, 62
cache-to-processor interface, See CPX

interface
CALL instruction, displacement, 21
CAM, 324

cell error protection, 295
scrubbing, 295

capturing frequency of events, 157
CASA instruction

alternate space addressing, 19
handling as packets, 279
special handling in T2, 273

CASX instruction, 63
CASXA instruction

alternate space addressing, 19
handling as packets, 279
special handling in T2, 273

Catania, Vincenzo, 227
CCR (condition codes register), 324

saving after trap, 23
ccx2mb block, 241
changes necessary to double I-cache

size, 68
changes necessary to double way

number, 69–70
chip multiprocessor (CMP), 2

benefits, 2
first-generation (Sun), 4
multicore, from AMD and Intel, 4
power considerations, 3
second-generation (Sun), 4

chip multithreaded (CMT) processor
future design, 5
SPARC processor, 4
UltraSPARC T2, 4

chip testing
hardware design issues, 117
Hypervisor, 113
inadequate hardware

documentation, 116
logic analyzer interface, 116
OpenBoot, 113
real-time, 114
reducing time/complexity, 112

C • 349
role of software, 117
running verification software, 115
time factor, 117
with POST, 113

chip8 environment file, 242
clean window, 324
cleared, 324
ClusterTools, 160
cmp_top, 304
cmp1 environment file, 245
cmp8 environment file, 242
CMT, 324
CMT processor

achieving maximal
performance, 177

advantages, 174, 177
microparallelization potential, 174
and parallel applications, 177

code reduction, 164
coherence, 325
compiler defines

selecting between 4-thread and 1-
thread core, 71

setting for number of cores, 75
setting for two-core design, 75
where to change, 70

compiler options, Sun Studio
-fast macro-flag, 127

estimating performance
gain, 127

floating-point simplification
(-fsmiple=2 and -fns
flags, 127

-xalias_level=basic
flag, 127

-xtarget=generic
flag, 127

-xtarget=native flag, 127
-g debug flag, 126
-O flag, 126

completed (memory operation), 325
conditional move instructions, 22
context, 325
control_transfer_instruction

exception, 300
control-transfer instruction

and delay instruction, 20

control-transfer instruction (CTI), 20
"taken", 342

conventions
font, xv
notational, xvi

copyall command, 231
copyback, 325
core, 325

changes required by change to
number of L2 banks, 75

changing number on a chip, 75
debugging, T2, 300
enabling options, 66
future development, 5
pipeline stages in OpenSPARC

T1, 29
setting compiler defines for number

on chip, 75
Core Debug Event Control register

(DECR), 300
core1 directory, 305
core1 environment file, 242
corestat, 153
correctable, 325
corrected, 325
cosimulation

component interactions, 220
Follow-me model

checking nonprecise trap priority/
condition, 226

Interrupt Sync command, 226
maintaining architecture register

consistency, 226
LdSt-sync model

related commands for informa-
tion exchange, 225

safeguarding against wrong com-
mands/order, 225

sample operation, 224
synchronizing data access

order, 223
step command, 221
TLB-sync model

accessing TLB content, 222
commands, 222
factors affecting TLB access

order, 221
uses, 222

350 Index • D
Coverage Driven Verification, 97
coverage report, 141
CPI, 325
cpu block, 245
CPU module

accessing rest of system, 183
exported interfaces, 182
imported interfaces, 182
outputting architecture state

changes, 184
CPU registers, reading for simulated

state access, 211
CPX interface

accommodating invalidation vector
sent from L2, 70

in T2, 273
information encoding/decoding

(Verilog code), 232
packet bits, 232
packet sent from Wishbone

bridge, 236
ports connecting Wishbone

bridge, 231
store acknowledge packet bit

changes, 68
cross-call, 325
cross-file optimization

compiler flag -xipo control, 130
fit with profile feedback, 130
performance gains, 130

current window, 326
CWP (current window pointer)

register, 326
after spill/fill trap, 23

cycle-accurate model
execution-driven

implementation, 218
execution-driven problems, 218
submodule approach, advantages/

disadvantages, 218
timing in submodule approach, 218
trace-driven timing model, 217
use, 217

D
DAE_NFO_page trap, 63
DAE_so_page trap, 60, 63
data access instruction, 326
data cache

changing size, 70
disabled, 44
files involved in D-cache size

change, 70
flushing, 58
function in T2 LSU, 272
load/store miss, 44
miss, calculating cycles lost, 157

data management unit (DMU), 56
data race, 165

avoiding with mutex lock, 169
compiling for error detection

-xinstrument=datarace,
167

rearchitecting to avoid
synchronization codes, 169

sequence of operations, 165
solutions, 168

Data Translation Lookaside Buffer
(DTLB), location in T2, 273

data_access_MMU_miss trap, 52
data_real_translation_miss trap, 53
dbx

examining core files, 148
running a program, 150

DCTI instructions, 326
DDR

branch configuration, 49, 282
branches, 48
data bus transfer rate, 31
differences in T1 and T2, 281
future use in CMT processors, 6

debugging
at system level, 110
attribution of bugs, 111
failure analysis with ISS, 111
generating information with -g

flag, 148
improving efficiency with dynamic

formal tools, 103

E • 351
in emulation, 111
interactive, 111
most cost-effective way, 90
post-silicon

challenges, 113
logic analyzer interface, 116
problem visibility, 116
software assistance, 116
T2 features, 270
through JTAG, 116

software, updating for error
visibility, 116

T2 aids, 299
tools, 111
use of assertions, 97
waveform generation, 111

deferred trap, 294
delay instruction

annulling, 20
following delayed control

transfer, 20
demap, 55, 326
denormalized number, 326
deprecated, 326
design tools

Design Compiler (Synopsys), 241
formal verification of block

(Synopsys), 241
formal verification of some blocks

(Jasper Design
Automation), 244

FPGA synthesis (Synplicity), 241
design verification system, 242, 245
design/sys/iop directory for

design source code, 244
determining functional

equivalence, 102
device driver for OpenSPARC

system, 123
device module

accessing state, 213
in SAM config file, 185
multiple instances of, 185
unloading, 186

diag directory, 243, 246
diagnostic access, 113

diagnostics tests (diags)
T1, 311

location for test files, 311
main diaglist for chip8, 311
main diaglist for core1, 311

T2, 320
location for test files, 320
main diaglist for cmp1, 320
main diaglist for fc8, 320

disable (core), 326
disabled (core), 327
Discover tool

application building
requirements, 151

generating HTML results
report, 151

displacement flush, 58
DISPLAY environment variable, 194
disrupting trap, 293
divide instructions, 20
division_by_zero trap, 291
doc directory, 240
documentation

appendix sources, xviii
OpenSPARC T1 design, 240
OpenSPARC T2 design, 244

DONE instruction, getting target
address, 21

double data rate, See DDR
doubleword, 327

alignment, 18
definition, 327

DRAM Controller frequency, T2, 35
DV_ROOT environment variable, 246

E
ECC error handling, 114
edge instruction execution in T2, 271
electronic fuse (eFuse), 33, 259
ELF file

extraction of module loading
address, 214

genunix module, 214
loading symbols into, 213
text/data address extraction, 213

352 Index • F
Embedded Development Kit (EDK)
project directory, 242

emulation
debugging challenges, 111
differences from acceleration, 105
interface to workstation parallel

port, 109
requirements for model, 106
use of monitors, 111

emulation verification
changes required in verification

flow, 106
cosimulation mode, 108
non-synthesizable components, 107
producing virtual silicon, 104
targetless emulation, 109
uses, 105
when to start, 108

enable (core), 327
enabled (core), 327
enabling/disabling debug tracing, 217
enlarging physical address bit field to

increase cache size, 68
env directory, 242
environment variables

defining for OpenSPARC
projects, 246
DV_ROOT, 246
MODEL_DIR, 247
PROJECT, 246

OMP_NUM_THREADS, 154
error, 327

attributed to given core, 296
detection scheme in T2, 297
hardware-detected, 296
logging in T2, 296
types of structures protected, 295

ESR (Error Status Register), 327
even parity, 327
exception, 327

pending, 23
execution unit (EXU)

information given to FGU, 292
modifying in T2 for second

FGU, 74
result bus provided by FGU, 292

subunits in T2, 271
T1, 250
T2, 268

explicit ASI, 328
extended word, 328

F
F registers, 16, 328
fast_data_access_MMU_miss

trap, 53
fast_instruction_access_MMU_mis

s trap, 53
fault, 328
Fazzino, Fabrizio, 227
FBD

channel configurations, 49
internal banks, 48
T2 support for, 281

fc environment file, 245
fccn, 328
FCMP instruction, 292
FFU, T1, 251

address handling, 260
files to edit, 71
instructions executed, 260, 290
operations executed, 260
output signals to be tied for

removal, 72
removing from OpenSPARC T1, 72

FGU, 269
adding a second FGU in T2, 73–74
characteristics of executed

instructions, 288
clearing valid bit of result bus, 292
exception model, 287
execution pipelines, 286
execution unit interface, 292
features, 286–288
instruction fetch unit interface, 290
instructions implemented, 285
integer instructions executed, 271
load-store unit interface, 291
trap logic unit interface, 291

field-programmable gate array, See
FPGA

F • 353
fill buffer, in T2 L2 cache, 277
fill buffer. in T1 L2 cache, 254
finding loading addresses for

module, 214
finite state machine (FSM), use in

Wishbone bridge, 235
FIT rate, 295
fixing bugs in silicon

non-metal fixes, cost, 117
scheduling new chip version, 118
transistor wiring, 117
verification after

implementation, 117
verification before

implementation, 117
flip-flop/latch error protection, 295
floating point

exception, 328
operate (FPop) instructions, 22, 328
trap types, 328

floating point front-end unit, See FFU
floating-point and graphics unit, See

FGU
floating-point register file, See FRF
floating-point unit (FPU), 16, 328
floating-point unit (FPU), T1

clock control, 263
exception model, 261
execution pipelines, 260
features/functions, 260–261
fully pipelined instruction

types, 261
instruction set, 262
instructions types not fully

pipelined, 261
pipelines, 261
power-up/-down, 263

FLUSH instruction
data access, 326
special handling in T2, 274
store instruction behavior, 62

FLUSHW instruction, effect, 22
formal verification

concerns, 101
definition, 101
determining root cause of a silicon

failure, 112

logic checking assumptions, 102
property checking

approaches, 103
definition, 102
dynamic formal tools, 103
Model Checking approach, 103
Theorem Proving approach, 103

RTL, comparing logic
functions, 102

symbolic simulation approach, 103
benefits of use, 103
use of symbolic inputs, 103

tools
languages supported, 102
logic checking/model

checking, 102
usefulness, 101

fp_cecc trap, 291
fp_exception_ieee_754, 263
fp_exception_ieee_754

exception, 291
fp_exception_other exception, 291
FPGA

compile options
FPGA_SYN, 66
FPGA_SYN_16TLB, 67
FPGA_SYN_1THREAD, 66, 71
FPGA_SYN_8TLB, 67
FPGA_SYN_NO_SPU, 66

creating virtual prototype of
design, 88

OpenSPARC possibilities, 9
possible future options, 67
reducing synthesized design

size, 67
reducing TLB size to 16 entries, 67
reducing TLB size to 8 entries, 67
removing stream processing unit

from the design, 66
synthesis, 66
top-level design block, 241
use to accelerate model

simulation, 108
FPop, 329
FPRS register, 329
FPU, 328, 329

354 Index • G
FRF, location in T1, 260
FRF, T2, 287

read port, 287
write port, 287

FSR (floating-point state) register
fields

fcc (condition codes), 263, 291
ns (nonstandard mode), 261,

263
rd (rounding direction), 263

FSR (floating-point state) register
characteristics in T1, 263
physical location in T1, 260

fully buffered DIMM, See FBD

G
GCC for SPARC Systems, 128

compiler flags, 128
features, 128

gdb
as remote debugger, 210
connecting to SAM, 210

genunix module, 214
global registers, 12, 16
golden reference model, 100
GSR fields

align, 292
mask, 292

GTKWave, 231

H
halfword, 329

alignment, 18
hard reset, 297
hardware

behavior testing, 99
checking state, 99
emulation use in post-silicon

verification, 112
examining state, 113
performance counters, use to capture

thread stall event info, 156
testing function, 113
testing with random-number

generators, 99

hardware trap stack, 23
HPSTATE register fields

hpriv = 0, 333
hpriv = 1, 329

hyperprivileged, 329
mode execution, 122

Hypervisor
address mapping, 123
API, 123
definition, 121
layer in T1 MMU, 251
protecting translations, 53
request to start CPU in virtual

system, 123
T2 additions for support, 53
use of Tcc trap instruction

extensions, 122
Hypervisor (software), 113, 122, 329

I
I/O bridge (IOB), T1, 258

address decoding, 258
clock domains, 258
crossbar (CCX) interface, 259
debug port data, 264
debug port functionality, 258
eFuse controller (EFC)

interface, 259
interface to debug ports, 260
interfaces to SSI, 258
interrupt handling, 258
interrupts, 265
J-Bus mondo interrupt

interface, 259
thread launch after reset, 259
universal connection bus (UCB)

interface, 259
I/O bridge, T2

cache crossbar (CCX), 268
differences from T1, 284

I/O device registers, access by virtual
system OS, 123

I/O memory space, 57
I/O write buffer, T2, 277

I • 355
I-cache
doubling number of sets, 68
files involved in I-cache size

change, 68
files involved in way number

change, 69
flushing, 58
T1’s L2 cache, 255

IEEE 754, 330
IEEE Std 754-1985, 11, 330
IEEE_754_exception floating-point

trap type, 330
IEEE-754 exception, 330
ifreq tool, 159
implementation, 330
implementation dependent, 330
implicit ASI, 330
In-Circuit-Emulation (ICE) mode, 109
initiated, 330
inlining

downsides, 130
routines located in a different source

file., 130
routines, advantages/

disadvantages, 129
inst_real_translation_miss trap, 53
instruction budget, 156
instruction fetch unit (IFU)

T1, 249
T2, 268

interactions with FGU, 291
instruction field, 330
instruction group, 330
instruction issue, measuring with

cputrack or cpustat, 153
instruction set architecture (ISA), 13,

330, 330
Instruction Set Simulator (ISS), 100,

109
instruction_access_MMU_miss

trap, 52
instruction-level parallelism (ILP)

advantages, 27
differences from TLP, 26
in CMT processors, 2
in Throughput Computing, 25

instruction-level processor (ILP), 26
instructions

32-bit wide, 12
arithmetic, integer

division, 20
multiplication, 20
tagged, 20

conditional move, 22
control-transfer (CTIs), 20
delayed control transfer, 52
fetch, 255
fetching (T2)

from I/O address with side
effects, 53

from nonexistent PA, 53
speculative, 52
what is fetched, 53

floating point
floating-point operate

(FPop), 22
FLUSH, 257
jump and link, 21
loads

to T1’s L2 cache, 255
to T2’s L2 cache, 278

moves, on condition, 12
partial stores in T2, 279
RD64, 256
read state register, 21
register window management, 22
RWI, 256
shift, 20
SIMD, 340
stored in miss buffer, 253
stores

to T1’s L2 cache, 255
to T2’s L2 cache, 278

WR8, 256
INTACK/INTNACK decoding, 56
integer divides in T2, 271
integer instruction execution in T2’s

FGU, 271
integer multiplies in T2, 271
integer unit (IU)

definition, 330
description, 16

356 Index • J
Intel 41210 PCIE-PCI bridge,
functional model, 202

internal reset sequencing, 32
internal TI interface

documentation, 240
interrupt request, 23, 331
interrupt_level_n exception, 250
interrupt_vector exception, 250
interrupts

delivery to virtual core, 250
queue number allowed in T1, 250
thread-to-thread, 256

inter-strand operation, 331
intra-strand operation, 331
iop block, 241
iop.h file, 70
iop.v file, 75
iop/rtl directory, 241
iop_fpga block, 241
ioram, 198
IORAM module

modinfo obp output
example, 200

sysconf format, options,
args, 198–199

UI command format,
commands, 199

ISA, 331
issued, 331
ITLB, support tags for 8-way cache, 70

J
jasper directory, 244
JasperGold formal verification

tool, 244
J-Bus

clock, 32
interface with JBI, 32
T1 documentation, 240

J-Bus interface (JBI), T1, 264
clock domains, 264
I/O buffer read/write requests, 265
interface to L2 cache, 264
interrupts to IOB, 265
read/write DMA requests, 264

JMPL instruction, computing target
address, 21

JTAG
issuing reads, 32
querying specific hardware

registers, 116
support in T2 Test Control

Unit, 300

K
kmdb debugger, 214

L
L1 cache

behavior with stores, 252
data cache (D-cache), 44
directory array, changes needed

when I-cache size doubles, 68
disabling before disabling L2

bank, 46
instruction cache (I-cache), 44
invalidating a line, 46
line tracking of L2 cache, 45

L2 bank
changing number, 75
disabled, 46
in DRAM Controller for

OpenSPARC T1, 31
physical address bits for

selection, 74
replacement pointer, 45
required changes to load-store

unit, 75
T2 subblocks, 276

L2 cache
configuration, 35
diagnostic access, 59
direct-mapped mode, 46
directory, 45
flushing, 58
for OpenSPARC T1, 31
for OpenSPARC T2, 33

L2 cache bank, T1 subblocks
scbuf, 252
scdata, 252, 253
sctag, 252

M • 357
L2 cache, T1, 251
blocks, 252–254
coherency and ordering, 252, 257
directory, 254
I/O instructions processed (from

JBI), 256–257
ifetch instruction, 255
input queue, 253
instruction processing, 257
instructions, 254–257
load instruction, 255
output queue, 253

L2 cache, T2, 45
banks, 275
core requests, 277
directory, 277
features, 275
I/O requests, 278
instruction miss, 279
LDSTUB handling, 279
load instructions, 278
NRU replacement, 45
partial stores, 279
read/write requests to MCU, 278
store instructions, 278

L2 data (scdata), 253
L2 data array bank, 276
L2 tag, 252, 276
L2 VUAD, 276
L2 VUAD array, 253
LBIST, 301
LDSTUB instruction

in T2 L2 cache, 279
mutual exclusion support, 63
special handling in T2, 273

LDSTUBA instruction
alternate space addressing, 19
special handling in T2, 273

level-1 caches
changing parameters, 67
doubling way number, 69

level-2 caches
changes to make to double I-cache

way number., 70
changing cache size, 74
doubling size when L1 cache is

doubled, 68

files affected by size change, 74
lib directory, 242, 245
libpthread, in Solaris 10, 161
little-endian byte order, 18, 331
LL device, sysconf format, 208
load

from alternate space, 20
instructions, 331

load miss queue (LMQ), function in T2
LSU, 273

load_symbols, SAM UI
command, 213

load-store alignment, 18
load-store instructions

definition, 332
memory access, 17

load-store unit (LSU)
T1, 250
T2, 268, 272

modifying for second FGU, 74
local-host lookup file system

(LLFS), 209
logical equivalency, establishing, 102
lookup tables (LUT), reducing

number, 67
loosely lock-stepped cosimulation, 221
LSI SAS1064E modeling, 205

M
magellan directory, 241, 245
Magellan formal verification tool, 245
MAJC architecture, 3
MAJC-5200, 3
makefile.ncv file, 310
may (keyword), 332
MBIST, 301
MCU

criteria for reads, 278
design requirements, 48
OpenSPARC T2, 47
SDRAM power use, 49
support for fully buffered DIMMS

(FBDs), 281–282
T2 features, 47

MCU design model in OpenSPARC
T2, 35

358 Index • M
MEMBAR #LoadLoad, 62
MEMBAR #LoadStore, 62
MEMBAR #Lookaside, 59, 62
MEMBAR #MemIssue, 62
MEMBAR #StoreLoad, 62
MEMBAR #StoreStore, 62
MEMBAR #Sync (issue barrier), 62
MEMBAR instruction, special

handling in T2, 274
memory

access by guest OS, 123
access errors, 151
access instructions, 17
cacheable access properties, 59
changing state with set

command, 213
differences among TSO, PSO,

RMO, 56
disassembling, 213
latency, 26
location identification, 57
logical division, 57
mixing cacheable & noncacheable

accesses, 60
noncacheable access properties, 60
operations by software in a virtual

system, 123
program ordering control, 61–62
synchronization for correct

ordering, 60
memory controller unit See MCU
memory management unit, See MMU
microparallelization, 174

advantages, 174
demo, 174–177
framework, 174

microprocessor performance
increase, 1

midas program, for setting up
simulation, 243, 246

mips parameter
typical value, 189
use, 189

miss buffer
changes for I-cache way number

change, 70

entries sharing same cache line
address, 254

in T1 L2 cache, 253
in T2 L2 cache, 277

mkplilib script, options, 311
mktools script, 312
MMI

actions supported, 184
instance handler, 185
instance initialization routine, 186
module loading/unloading, 185
registering module with SAM, 185

MMU
definition, 332
demap operations, 54
mapping address for virtual

system, 123
storing virtual system info in

TLB, 123
T1, 251
T2, 269
translation support for virtual

system, 123
UltraSPARC architecture, 13

mode
hyperprivileged, 13
nonprivileged, 14
privileged, 16

model directory, 242, 245
MODEL_DIR environment

variable, 247
models

architectural
individual units, 90
specification, 90

checking properties, 103
full-chip processor

environment for, 91
exercising functionality, 91
identifying errors, 91
implementation of latch/memory

arrays, 91
omitted elements, 91
software-based simulators, 91

golden reference, 91
instruction-accurate, 90

N • 359
memory, 56–57
processor consistency, 57
purpose, 56
register indication, 57

SoC
best simulation, 92
elements incorporated, 92

stand-alone testing (SAT), 90
in testing, 89–92
unit-level

SAT environment, 90
testing sequence, 91

modified mondo interrupt
transaction, 265

module
base address information, 214
enabling logging load address, 214
finding loading address, 214
order of loading by usfboot, 214

Module Model interface, See MMI
monitors

"heartbeat", 111
for hardware behavior, 94
hardware behavior, 99, 100
implemented as state machines, 99
infrastructure, 94
protocol, 91
use in random-generator testing of

hw, 99
move on condition instructions, 12
multiple threads

cost of synchronizing, 177
developing applications for, 152–

177
issuing instructions, 156
maximum throughput, 153
multithreaded program

example, 154
sharing a single core, 152
V880/T2000 comparison of mutex

sharing, 170
multiple-systems application, 160
multiprocess application, 159
multiprocessor system, 332
multithreaded application, 159
multithreaded code

compiling for error detection/
reporting, 167

example, 154
running with error recording, 167

must (keyword), 332

N
N_REG_WINDOWS, 334

integer unit registers, 16
n2_ncu, 196
n2_piu, 197
nas program, RTL simulation

verification, 246
NCU, 55

connection to MCU, 285
determining destination of PIO

access, 55
function (T2), 283
functions, 36, 55

NCU module
sysconf format, options,

args, 196
UI command format,

commands, 196
NC-Verilog object libraries, 310
nested traps, 13
netlist

in place of RTL core, 312
listing for gates, 314
size reduction by

FPGA_SYN_1THREAD, 66
verifying, 313

NFO, 333
non-assertion-based checker, 99
noncacheable accesses

implementation properties, 60
mixing with cacheable accesses, 60
ordering, 60

noncacheable unit, See NCU
nonfaulting load, 63–64, 333

mapping pages for safe access, 63
nfo bit in MMU, 63
TLB miss, 63
use by optimizers, 63

nonprivileged, 333
mode, 14, 16, 333

360 Index • O
normal trap, 333
NPC (next program counter) register

control flow alteration, 342
definition, 332
saving after trap, 23

npt, 333
nucleus software, 333
NUMA, 333

O
octlet, 334
odd parity, 334
off-chip accelerators, 5
Olukotun, Kunle, 3
OMP_NUM_THREADS environment

variable, 154, 163, 165
on-chip hardware accelerator, 5
opcode, 334
OpenBoot, 113
OpenMP

advantages/disadvantages, 162
code with data race, 172
compiler flags

-xloopinfo, 154, 163, 172
-xopenmp, 154, 162, 163
-xvpara, 154, 163, 172

compiling/running simple
example, 163

directives
atomic, 173
critical section, 168, 172
parallel for, 163

examples
atomic directive, 173
avoiding data race, 173
examining instruction issue

rate, 154
parallelizing simple loop, 154
reducing code, 164

open-source hardware, definition, xiii
OpenSPARC

binary compatibility, 15
most common use, 8
potential coprocessors, 9
processor features, 88

stripping unneeded portions, 9
support for single instruction-

multiple data (SIMD)
instructions, 22

use in tests of CAD/EDA tools, 10
uses, potential, 8
verification strategy, 88
website, xiii

OpenSPARC T1, 36
address support, 123
block design directories, 241
clocks, 32
compiler defines file, 75
cross-module reference

(XMR), 312
cut-down version, 228
design documentation, 240
Design/Verification package, 303
I/O bridge (IOB), 258
important design blocks, 241
level-2 cache, 74
OS environments supported, 121
physical cores, 27
process support for partitions, 251
processor diagnostic tests, 311
testbench environments, 304
verification environment, 242

OpenSPARC T1 vs. OpenSPARC T2
determining what to store in L2

cache, 278
error protection, 295
failure-in-time (FIT) rates, 295
FGU feature comparison, 289
field size for L2 cache stores, 270
I/O bridge, 284
instruction fetch unit (IFU), 270
LSU changes, 272
MCU changes, 281
NCU-SSI interface, 285
performance decrease, 290
performance issues, 290

OpenSPARC T1/T2
background, 25
setting a project’s environment, 246

OpenSPARC T2
architecture, 33

P • 361
block design directories, 244
components/functionality, 268–270
core numbering, 296
debugging aids, 299
Design and Verification

package, 316
design aspects, 268
design documentation, 244
DRAM branches, 35
exception causes, 294
functionality implementation in

NCU module, 196
important design blocks, 245
performance monitoring goals, 270
power throttling, 49
processor diagnostic tests, 320
reset operations, 269
reset priority, 297–298
testbench environment

elements, 316
verification environment, 245, 316

optional, 334

P
packet type changes for way number

increase in I-cache, 70
page size

rules for selecting, 131
selecting at compile time, 131
setting with -

pagesize=value, 131
parallelization

by compiler, 165
code with reductions, 165
number of threads, 165
-xautopar flag, 165

strategies, 159–160
with CMT processors, 174, 177
with OpenMP directives, 162
with PThreads, 160

parity
checking logic for I-cache way

doubling, 70
even, 327

handling for post-silicon
testing, 114

odd, 334
park, 334
parked, 334
partition identifier value (PID), 122
PC (program counter) register, 336

saving after trap, 23
PCIE bridge device, generic

implementation, 201
PCI-E Bus module

modinfo pcie output
example, 202

setting debug level, 202
sysconf format, options,

args, 201
use, 201

pcie_bus, 201
PCIE-PCI Bridge module

b0 UI commands, 203
dump UI command format, 203
sysconf format, options,

args, 202
UI command format, 203
use, 202

PCIE-PCIE Bridge module
configuration, 203
sysconf format, options,

args, 204
UI command format,

commands, 205
PCR register, 299
PCX interface

in T2 LSU, 273
information encoding/decoding

(Verilog code), 232
packet bits, 232
packet for waveform

comparison, 236
passing way number to L2

cache, 69
ports connected to Wishbone

bridge, 231
PDIST instruction, 288
performance

ensuring benchmarks are met, 106
in simulation, 93, 108

362 Index • P
monitoring in T2, 270
of emulation platforms, 107
of tools, 103

Performance Analyzer
analysis in SPOT, 146
attributed time, 134
collect tool, 133
displaying gathered data, 133
extension by BIT tool, 159
gathering call-stack

information, 134
locating data cache misses in

code, 135
viewing at disassembly level, 136

performance monitor unit (PMU), 299
parts, 299
power saving, 299

performance, locating and identifying
issues, 146

physical address, 335
unsupported, 52

physical core, 16
components, 35, 270
OpenSPARC T1

microarchitecture, 27
OpenSPARC T2

microarchitecture, 33
physical processor, 335
PIC (performance instrumentation

counter) register, 299, 335
PICH/PICL adders, 299
PID matching, 55
pipeline, 335
PIPT, 335
PIU module

dump command use, 197
sysconf format, options,

args, 197
UI command format,

commands, 197
PLI

compiling libraries, 311
compiling libraries in VCS, 311
monitoring T2 simulations, 319
source code directories (T1), 309
source code directories (T2), 319

pmu_pct_ctl, part of PMU, 299
pmu_pdp_dp, part of PMU, 299
POR, 335
POR (power-on reset), 297
post-silicon verification, See chip

testing
power consumption rates, 49
power management in T2, 270
Power-On Self-Test (POST), tests

performed, 113
precise trap, 293
Prefetch ICE instruction, T2, 279
PREFETCH instruction

causing exceptions, 274
special handling in T2, 274

prefetchable, 336
PrefetchICE instruction, 58
printing call stack for virtual processor

after CPU mondo trap, 217
privileged, 336

mode, 16
software, 15

privileged mode, 336
privileged_action trap, 57
probe, for debugging, 216
processor, 16, 336
profile feedback

code with complex flow
control, 128

concerns, 129
optimal code scheduling, 129
required compiler flags, 129
steps, 129

profile information, collect
tool, 133

programming language interface
(Verilog), See PLI

PROJECT environment variable, 246
pselect command, 211
PSTATE register

results of trap, 23
saving after trap, 23

PSTATE register fields
priv, determining mode, 333, 336
red, when = 1, 298

Q • 363
PThreads
compiler flags (-mt and

lpthread), 161
compiling/running application

example, 161
example application, 160

Python scripting language, 181

Q
quadword, 337

alignment, 18
support by fp load/store

instructions, 17

R
R register, 337
RAS design for T2, 295
rd (rounding), 337
RD64 (block read) instruction, 256
RDasr instruction

access to Ancillary State
registers, 269

accessing I/O registers, 20
RDHPR instruction, 22
RDPR instruction, 21
read state register instructions, 21
real address, 337
real memory space, 57
recoverable, 337
RED_state, 337

after reset, 298
RED_state trap, 338
reduction code

generating, 165
parallelization of, 165
-xreduction flag, 165

register file error protection, 295
register transfer level, See RTL
register window management

instructions, 22
registers

changing state, 212
error status (ESR), 296
floating-point, 16

global, 12, 16
window management, 14
with VPCU ID, 211

regreport command, 306, 318
regreport script, 243
regression

obtaining summary report, 306
running for T1, 305
running multiple groups (T1), 306
T2 disk space requirements, 315

remote debugging in SAM, 210
reserved, 338
reset activation in T2, 269
reset trap, 294, 338
RESTORE instruction, register

window management, 22
RESTORED instruction, register

window management, 22
restricted, 338
RETRY instruction, target address, 21
RETURN instruction, computing

target address, 21
Riesling SPARC Architectural

Simulator, 95, 100, 246
RMO, 272, 339
root disk image, creating, 208, 209
root disk image, modifying, 209
root partition, locating, 208
rsyn script, 243, 246
rsynp script, 243
RTL

code verification by
cosimulation, 219

cosimulation with multistrand
execution, 221

custom blocks and memory, 106
defining functionality, 90
embedded assertions, 96
prototyping alternatives, 107
recreating after test failure, 112
running regression, 313
simulation verification, 243, 246
source for assertions, 97
use of symbolic simulation for

behavior, 103
verification

364 Index • S
advantages of golden
reference, 226

netlist (CAUTION), 313
rtl directory, 241, 244
RTO, 339
RTS, 339
run_gates script, 314
runreg script, 243, 246
rxil script, 243

S
S1 Core, 228

CD waveforms, 230
converting waveforms into suitable

format, 230
difference from T1, 228
testbench used, 236
tools, 229

SAM
components, 180
debugging approaches, 211
instruction execution, 222
internal interfaces, 181
multiprocessor simulation, 180
organization, 180
processing symbols, 213
registration of MMI module, 185
running as user program, 209
smallest unit of time, 189
support for LLFS, 209
time parameters, 189
time simulation, 180

SAT-level environment
advantages, 91
testing full-chip model, 91
verification testing, 90

SAVE instruction, register window
management, 22

SAVED instruction, register window
management, 22

scripts, T1
mkplilib, 311
regreport, 243
rsyn, 243
rsynp, 243
run_gates, 314

runreg, 243
rxil, 243
sims, 243

scripts, T2
location of for JasperGold tool, 244
location of for Magellan tool, 245
rsyn, 246
runreg, 246
sims, 246

selecting an application’s page
size, 131

selecting one-thread version of
OpenSPARC T1 core, 66

Serial Attached SCSI module
configuration for attached

disks, 207
implementation, 205
sysconf format, options, args, 206
UI command format & commands

for attached disks, 206
UI command format,

commands, 206
Serial Device module

implementation, 193
sysconf format, options,

args, 193
UI command format,

commands, 194
serial interface (SSI), function in

T2, 36
serial_4v, 193
server-on-a-chip, See SoC
service processor, 339
SFSR register, 339
shall (keyword), 340
shift instructions, 20
should (keyword), 340
side effect, 340
signal-level interface, 76
signals

simultaneous assertions, 76
stall signal assertion, 76
thread ready assertion, 76

silicon verification tests
built-in self-test (BIST), 113
power-on self-test (POST), 113

S • 365
sim_command command, files
created, 306, 318

SIMD, 340
Simics architectural simulator, 243
Simply RISC, 228
sims command

actions, 306, 318
directories created, 305, 318
help, 317
specifying Verilog simulator, 307
T2 parameters

-group, 317
-sys, 316

sims script, 243, 246
simulation

design diagnostic tests, 243, 246
environment files, 242, 245
full processor, including SPARC

cores and complete I/O
subsystem, 242

high-speed instruction-sequence
execution, 90

models of standard
components, 242

single SPARC core, 242
single SPARC core, cache crossbar,

and level-2 cache, 245
software-based, 88, 91
speeding up, 88
switch-level models, 103
up to eight SPARC cores, 242
up to eight SPARC cores, cache

crossbar, level-2 cache, and full
I/O subsystem, 245

simulation verification
coverage metrics

functional, 98
structural, 98

process, 94
random testing, 99
testing specific behavior, 99
use of assertions, 96

simultaneous multithreading (SMT), 2
SIR, 298, 340
SIU, 55

function, 36

interfaces, 302
partitions, 301

snoop input queue (SNPIQ), in T1 L2
cache, 253

snooping, 340
SoC

I/Os integrated, 92
simulation in model, 92
verification challenges, 85

soft reset, 297
software

nucleus, 333
role in chip testing, 117

software_recoverable_error trap,
avoiding, 52

Solaris, booting from simulated
disk, 208

SPARC Architecture Model, See SAM
sparc block, 241
SPARC core

adaptation of cache-crossbar
interface to FSL interface, 241

built in GNU/Linux
environment, 228

T2 top-level block, 245
use in S1 Core, 229

sparc directory, 241, 245
SPARC system

software changes required for
porting to OpenSPARC, 123

support for T2 regressions, 315
SPARC V9

Application Binary Interface
(ABI), 15

compliance, 334
features, 12
instruction and data memory

synchronization, 62
mutual exclusion support, 62

sparc_ffu module, removing from
T1, 72

sparc_ifu_ifqdp.v file, 70
spc (SPARC core) block, 245
spc2wbm.v(SPARC core to

Wishbone Master), 234
specifying FPGA_SYN in Verilog

file, 66

366 Index • T
specifying FPGA_SYN on command
line, 66

speculative load, 340
SPOT tool

advantages of using, 146
generated report, 146
probes, 146
running an application, 146

SRAM cells, error protection, 295
stall budget, 156
stall events

capturing information, 156
estimating total number of cycles

spent, 157
Stanford Hydra CMP processor

design, 3
STBAR instruction, 62
step command in cosimulation, 220
STICK register, incrementing, 189
stickfreq, use, 189
store buffer (STB), function in T2

LSU, 273
store instructions, 341
store_error trap, 294
stores to alternate space, 20
strand, 16, 341

in OpenSPARC T1, 27
in OpenSPARC T2

encountering long-latency
event, 33

partitioning, 33
when running, 33

overlapping memory stall time, 26
stream processing unit (SPU), 304
subnormal number, 341
Sun Studio suite, 167
superscalar, 341
supervisor software

accessing special protected
registers, 19

definition, 341
suspend, 341
suspended, 341
SWAP instruction, 18

in T2 L2 cache, 279
mutual exclusion support, 63
special handling in T2, 273

symbol lookup, 213
synchronization, 341
synchronous clock domains, T2, 299
Synchronous Fault Address register

(SFAR), 327
synopsys directory, 241, 244
synplicity directory, 241
system interface unit, See SIU
system-on-a-chip, See SoC

T
tag array

changes for doubling I-cache, 68
data width, 68

tagged arithmetic instructions, 20
TBA (trap base address) register

establishing table address, 23
trap behavior, 342

Tcc instructions, trap table space, 23
templatized random testing, 100
test control unit (TCU), 300

debugging/test features, 300
interfaces with debugging

features, 300
testbench environments

T1
elements, 304
regressions supported, 305
single-thread

implementation, 304
source code types, 304
top-level module, 304

testbenches
design language, 95
emulation verification, 106
full-chip model, 91
modified for S1 Core, 230
SAT model, 90
simulation verification, 94
SoC, 92
synthesizable, 95
T2

environments, 316
source code types, 316

unit-level testing, 88
Verilog modules, 307

T • 367
thread, 342
Thread Analyzer

compiler flag for, 167
error reporting in multithreaded

code, 167
user interface, 167

thread scheduler monitor,
modifying, 78

thread-level parallelism, 26
advantages, 27
background, 26
differences from instruction-level

parallelism, 26, 27
high levels, 2

threads, See multiple threads
Throughput Computing, 25
Time-of-Day module

sysconf format, options,
args, 200

UI command format,
commands, 201

use, 200
timing model

accuracy of, 218
use, 217

TLB, 342
definition, 342
diagnostic access, 113
hit, 342
miss, 342

counting number with cpu-
track command, 131

MMU behavior, 51
rules for selecting page size, 131
virtual system PID storage, 123

TLP, See thread-level parallelism
TNPC (trap-saved next program

counter) register, 342
tod_4v, 200
tools

BIT, 137–145
checking properties, 103
compiling source code, 312
corestat, 153
Discover, 151
formal equivalency

comparisons, 102

GCC for SPARC Systems, 128
ifreq, 159
Performance Analyzer, 132–137
SPOT, 146–147
static property checking,

constraints, 103
Sun Studio suite, 125
Thread Analyzer, 167

tools directory, 243
Total Store Order (TSO), 343

OpenSPARC T2 support, 56
tour guide, xiv
TPC (trap program counter)

register, 342
tracan tool, 233, 237
trace analyzer, 230, 233
Transaction Layer Packet (TLP), 56
transition fault testing, 301
Translation Lookaside Buffer, See TLB
translation table entry, See TTE
translations

real (r) bit, 53
VA to RA, 53

trap handler, regular/nonfaulting
loads, 333

trap logic unit (TLU), 269, 293
flush signals sent to FGU, 291
logical functions, 293
modifying in T2 for second

FGU, 74
trap categories supported, 293
trap information from FGU, 291

trap vector, 250
traps, 342

caused by undefined feature/
behavior, 343

causes, 23, 23
DAE_NFO_page, 63
DAE_so_page, 60
DAE_so_page trap, 63
data_access_MMU_miss, 52
data_real_translation_miss, 53
deferred, 294
definition, 23
disrupting, 293
fast_data_access_MMU_miss,

53

368 Index • U
fast_instruction_access_MMU_
miss, 53

hardware stack, 13
inst_real_translation_miss, 53
instruction_access_MMU_miss,

52
modes supported in T1, 250
nested, 13
normal, 333
precise, 293
privileged_action, 57
reset, 294
result of, 250
software_recoverable_error, 52
TLU priorities, 294
when taken, 342

TSB, 342
TSTATE (trap state) register, registers

saved after trap, 23
TTE, 343

cp bit, 59
modifying before demap, 55

U
UltraSPARC T1, 4
UltraSPARC T1 vs. UltraSPARC T2

debug support, 42
error handling, 40
instruction set architecture, 37
mechanisms for CPU throttling, 41
microarchitecture, 36
MMUs, 39
performance events captured by the

hardware, 40
pinpointing where hardware counter

events occur, 135
UltraSPARC T2, 4
unassigned, 343
uncorrectable, 343
uncoverage, 141
undefined, 343
underflow tininess detection, 288
unfinished_FPop trap

denormalized operand/result, 264
FGU unable to generate correct

results, 286
generation, 290

unimplemented, 343
uniprocessor system, 343
unit of coherence, 59
University of Catania, 228
unpark, 344
unrecoverable, 344
unrestricted, 344
user application program, 344

V
VA, 344
VCD trace file, converting to log

file, 233
VCPU interface

components
control interface, 182–183
system interface, 183
Vtracer interface, 184

Control interface methods, 183
Control interface, creating a vcpu

instance, 183
hiding hierarchy of internal CPU

structures, 182
System interface, memory

representation, 183
Vtracer interface, connecting

analyzers and perf models, 184
VCS object libraries, 310
vdebug

finding time window for problem
occurrence, 216

trace format, 216
Vera source code

compiling in build directory, 305
compiling in cmp1 directory, 317
compiling without Vera default (-

novera), 305
in verification environment, 305
object coverage modules, 309
where found, 97

verif directory, 242, 245
verification

See also chip testing, emulation
verification, formal verification,
simulation verification

W • 369
causes of test failure, 110
definition, 85
early firmware and the software

stack, 109
how much is enough?, 97, 100
plan, high-level, 87
post-silicon, 112
proving design behavior conforms to

specs, 102
SAT-level environment, 90
simulation coverage, 97
at unit level, 88

verifying processor after changes, 242
Verilog

See also PLI
block HDL source code

location, 241, 244
descriptions of design building

blocks, 242, 245
design code location, 244
Icarus, use in S1 Core, 236
simulation run directory for

diagnostics, 318
specifying simulator, 307
verification file location, 307

virtual address, 344
virtual core, 345
virtual processor, 16
virtual system

association with TLB entry, 123
behavior upon activation, 123
how defined, 121
number supported by T1, 122
physical memory, 123
sending interrupt from one CPU to

another, 123
software doing memory

operations, 123
virtualization technology, 121
VIS, 345

array instruction support, 271
BMASK instruction support, 271
EDGE instruction support, 271
instruction latency, 290
partial store support in T2, 270
support in T1, 260

W
waveforms

comparing, 236
examining, 231

way number
passing to L2 cache, 69
storage file, 70

WDR, 345
WDR (watchdog reset), 298
websites

http://www.srisc.com, 228
OpenCores.org, 229
OpenSPARC resources, 321

where command, 217
window fill trap handler, 22
window spill trap handler, 22
Wishbone interface, 229

design, 234
FSM states, 235
use of finite state machine, 235
viewing protocols, 236

WMR (warm reset), 297
word, 345

alignment, 18
WR8 (partial line write)

instruction, 253, 256
WRasr instruction

acces to Ancillary State
registers, 269

accessing I/O registers, 20
WRHPR instruction, 22, 273
WRI (write invalidate)

instruction, 256
write-back buffer, T1 L2 cache, 254
write-back buffer, T2 L2 cache, 277
WRPR instruction, 21, 273
WRSR instruction, 273

X
Xilinx Virtex-4 FPGA family, 67
XIR, 345
XMR errors, 312
xst directory, 241

0197487805579

ISBN 978-0-557-01974-8
90000 >

	OpenSPARC Internals
	Contents
	Preface
	Introducing Chip Multithreaded (CMT) Processors
	OpenSPARC Designs
	2.1 Academic Uses for OpenSPARC
	2.2 Commercial Uses for OpenSPARC
	2.2.1 FPGA Implementation
	2.2.2 Design Minimization
	2.2.3 Coprocessors
	2.2.4 OpenSPARC as Test Input to CAD/ EDA Tools

	Architecture Overview
	3.1 The UltraSPARC Architecture
	3.1.1 Features
	3.1.2 Attributes
	3.1.2.1 Design Goals
	3.1.2.2 Register Windows

	3.1.3 System Components
	3.1.3.1 Binary Compatibility
	3.1.3.2 UltraSPARC Architecture MMU
	3.1.3.3 Privileged Software

	3.2 Processor Architecture
	3.2.1 Integer Unit (IU)
	3.2.2 Floating-Point Unit (FPU)

	3.3 Instructions
	3.3.1 Memory Access
	3.3.1.1 Memory Alignment Restrictions
	3.3.1.2 Addressing Conventions
	3.3.1.3 Addressing Range
	3.3.1.4 Load/Store Alternate
	3.3.1.5 Separate Instruction and Data Memories
	3.3.1.6 Input/Output (I/O)
	3.3.1.7 Memory Synchronization

	3.3.2 Integer Arithmetic / Logical / Shift Instructions
	3.3.3 Control Transfer
	3.3.4 State Register Access
	3.3.4.1 Ancillary State Registers
	3.3.4.2 PR State Registers
	3.3.4.3 HPR State Registers

	3.3.5 Floating-Point Operate
	3.3.6 Conditional Move
	3.3.7 Register Window Management
	3.3.8 SIMD

	3.4 Traps
	3.5 Chip-Level Multithreading (CMT)

	OpenSPARC T1 and T2 Processor Implementations
	4.1 General Background
	4.2 OpenSPARC T1 Overview
	4.3 OpenSPARC T1 Components
	4.3.1 OpenSPARC T1 Physical Core
	4.3.2 Floating-Point Unit (FPU)
	4.3.3 L2 Cache
	4.3.4 DRAM Controller
	4.3.5 I/O Bridge (IOB) Unit
	4.3.6 J-Bus Interface (JBI)
	4.3.7 SSI ROM Interface
	4.3.8 Clock and Test Unit (CTU)
	4.3.9 EFuse

	4.4 OpenSPARC T2 Overview
	4.5 OpenSPARC T2 Components
	4.5.1 OpenSPARC T2 Physical Core
	4.5.2 L2 Cache
	4.5.3 Memory Controller Unit (MCU)
	4.5.4 Noncacheable Unit (NCU)
	4.5.5 System Interface Unit (SIU)
	4.5.6 SSI ROM Interface (SSI)

	4.6 Summary of Differences Between OpenSPARC T1 and OpenSPARC T2
	4.6.1 Microarchitectural Differences
	4.6.2 Instruction Set Architecture (ISA) Differences
	4.6.3 MMU Differences
	4.6.4 Performance Instrumentation Differences
	4.6.5 Error Handling Differences
	4.6.6 Power Management Differences
	4.6.7 Configuration, Diagnostic, and Debug Differences

	OpenSPARC T2 Memory Subsystem - A Deeper Look
	5.1 Caches
	5.1.1 L1 I-Cache
	5.1.2 L1 D-Cache
	5.1.3 L2 Cache

	5.2 Memory Controller Unit (MCU)
	5.3 Memory Management Unit (MMU)
	5.3.1 Address Translation Overview
	5.3.2 TLB Miss Handling
	5.3.3 Instruction Fetching
	5.3.4 Hypervisor Support
	5.3.5 MMU Operations
	5.3.5.1 TLB Operation Summary
	5.3.5.2 Demap Operations

	5.4 Noncacheable Unit (NCU)
	5.5 System Interface Unit (SIU)
	5.6 Data Management Unit (DMU)
	5.7 Memory Models
	5.8 Memory Transactions
	5.8.1 Cache Flushing
	5.8.2 Displacement Flushing
	5.8.3 Memory Accesses and Cacheability
	5.8.4 Cacheable Accesses
	5.8.5 Noncacheable and Side-Effect Accesses
	5.8.6 Global Visibility and Memory Ordering
	5.8.7 Memory Synchronization: MEMBAR and FLUSH
	5.8.8 Atomic Operations
	5.8.9 Nonfaulting Load

	OpenSPARC Processor Configuration
	6.1 Selecting Compilation Options in the T1 Core
	6.1.1 FPGA_SYN
	6.1.2 FPGA_SYN_1THREAD
	6.1.3 FPGA_SYN_NO_SPU
	6.1.4 FPGA_SYN_8TLB
	6.1.5 FPGA_SYN_16TLB
	6.1.6 Future Options

	6.2 Changing Level-1 Cache Sizes
	6.2.1 Doubling the Size of the I-cache
	6.2.2 Doubling the Number of Ways in the I-cache
	6.2.3 Changing Data Cache Sizes

	6.3 Changing Number of Threads
	6.4 Removing the Floating-Point Front-End Unit (FFU)
	6.5 Adding a Second Floating- Point Unit to the OpenSPARC T2 Core
	6.6 Changing Level-2 Cache Sizes
	6.6.1 Changing the Number of L2 Banks

	6.7 Changing the Number of Cores on a Chip
	6.8 Cookbook Example 1: Integrating a New Stall Signaller Into the T1 Thread Scheduler
	6.8.1 Background
	6.8.2 Implementation
	6.8.3 Updating the Monitor

	6.9 Cookbook Example 2: Adding a Special ASI to the T1 Instruction Set
	6.9.1 Background
	6.9.2 Implementation
	6.9.3 Caveats

	OpenSPARC Design Verification Methodology
	7.1 Verification Strategy
	7.2 Models
	7.2.1 Architectural Model
	7.2.2 Unit-Level Models
	7.2.3 Full-Chip Model
	7.2.4 SoC-Level Model

	7.3 Verification Methods
	7.4 Simulation Verification
	7.4.1 Testbench
	7.4.2 Assertions
	7.4.3 Coverage
	7.4.4 Directed Testing
	7.4.5 Random Test Generation
	7.4.6 Result Checking

	7.5 Formal Verification
	7.5.1 Design Comparison
	7.5.2 Property, or Model, Checking
	7.5.3 Symbolic Simulation

	7.6 Emulation Verification
	7.6.1 Emulation Platforms
	7.6.2 Emulation Deployment

	7.7 Debugging
	7.8 Post-Silicon Verification
	7.8.1 Silicon Validation
	7.8.2 Silicon Debugging
	7.8.3 Silicon Bug-Fix Verification

	7.9 Summary

	Operating Systems for OpenSPARC T1
	8.1 Virtualization
	8.2 sun4v Architecture
	8.3 SPARC Processor Extensions
	8.4 Operating System Porting

	Tools for Developers
	9.1 Compiling Code
	9.1.1 Compiling Applications With Sun Studio
	9.1.2 Compiling Applications With GCC for SPARC Systems
	9.1.3 Improving Performance With Profile Feedback
	9.1.4 Inlining for Cross-File Optimization
	9.1.5 Choosing TLB Page Sizes

	9.2 Exploring Program Execution
	9.2.1 Profiling With Performance Analyzer
	9.2.2 Gathering Instruction Counts With BIT
	9.2.3 Evaluating Training Data Quality
	9.2.4 Profiling With SPOT
	9.2.5 Debugging With dbx
	9.2.6 Using Discover to Locate Memory Access Errors

	9.3 Throughput Computing
	9.3.1 Measuring Processor Utilization
	9.3.2 Using Performance Counters to Estimate Instruction and Stall Budget Use
	9.3.3 Collecting Instruction Count Data
	9.3.4 Strategies for Parallelization
	9.3.5 Parallelizing Applications With POSIX Threads
	9.3.6 Parallelizing Applications With OpenMP
	9.3.7 Using Autoparallelization to Produce Parallel Applications
	9.3.8 Detecting Data Races With the Thread Analyzer
	9.3.9 Avoiding Data Races
	9.3.10 Considering Microparallelization
	9.3.11 Programming for Throughput

	System Simulation, Bringup, and Verification
	10.1 SPARC Architecture Model
	10.1.1 SPARC CPU Model
	10.1.2 VCPU Interface
	10.1.2.1 Control Interface
	10.1.2.2 System Interface
	10.1.2.3 Trace Interface

	10.1.3 Module Model Interface
	10.1.3.1 SAM Configuration File
	10.1.3.2 Module Loading and Unloading
	10.1.3.3 Module Initialization

	10.2 System Configuration File
	10.2.1 The sysconf Directive Format
	10.2.2 Examples
	10.2.3 Simulated Time in SAM

	10.3 SAM Huron Sim Architecture
	10.3.1 Sample Configuration File for T2 Huron on SAM
	10.3.2 Serial Device Module
	10.3.3 NCU Module
	10.3.4 PIU Module
	10.3.5 IORAM Module
	10.3.6 Time-of-Day Module
	10.3.7 PCI-E Bus Module
	10.3.8 PCIE-PCI Bridge Module
	10.3.9 PCIE-PCIE Bridge Module
	10.3.10 Serially Attached SCSI Module
	10.3.11 LLFS Module

	10.4 Creation of a Root Disk Image File
	10.5 Debugging With SAM
	10.5.1 Simulated State Access
	10.5.2 Symbol Information
	10.5.3 Breakpoints
	10.5.4 Debug Tracing
	10.5.5 Probes

	10.6 Cycle-Accurate Simulation
	10.6.1 Trace-Driven Approach
	10.6.2 Execution-Driven Approach
	10.6.3 Submodule Approach
	10.6.4 Conclusion

	10.7 Verification by Cosimulation
	10.7.1 RTL Cosimulation
	10.7.1.1 TLB-Sync Model
	10.7.1.2 LdSt-Sync Model
	10.7.1.3 Follow-Me Model

	10.7.2 RTL-SAM Cosimulation Summary

	OpenSPARC Extension and Modification-Case Study
	Overview: OpenSPARC T1/ T2 Source Code and Environment Setup
	A.1 OpenSPARC T1 Hardware Package
	A.1.1 T1 Hardware Package Structure
	A.1.2 Documentation
	A.1.3 Design Source Code
	A.1.4 Xilinx Embedded Development Kit Project
	A.1.5 Design Libraries
	A.1.6 Verification Environment
	A.1.7 Tools

	A.2 OpenSPARC T2 Hardware Package
	A.2.1 Documentation
	A.2.2 Design Source Code
	A.2.3 Design Libraries
	A.2.4 Verification Environment
	A.2.5 Tools

	A.3 Setup for an OpenSPARC Environment

	Overview of OpenSPARC T1 Design
	B.1 SPARC Core
	B.2 L2 Cache
	B.2.1 L2 Cache Single Bank
	B.2.2 L2 Cache Instructions
	B.2.3 L2 Cache Pipeline
	B.2.4 L2 Cache Memory Coherency and Instruction Ordering

	B.3 Memory Controller
	B.4 I/O Bridge
	B.4.1 IOB Main Functions
	B.4.2 IOB Miscellaneous Functions
	B.4.3 IOB Interfaces

	B.5 Floating-Point Unit (FPU)
	B.5.1 Floating-Point Instructions
	B.5.2 Floating-Point Unit Power Management
	B.5.3 Floating-Point Register Exceptions and Traps

	B.6 J-Bus Interface
	B.6.1 J-Bus Requests to the L2 Cache
	B.6.2 I/O Buffer Requests to the J-Bus
	B.6.3 J-Bus Interrupt Requests to the IOB

	Overview of OpenSPARC T2 Design
	C.1 OpenSPARC T2 Design and Features
	C.2 SPARC Core
	C.2.1 Instruction Fetch Unit (IFU)
	C.2.2 Execution Unit
	C.2.3 Load-Store Unit (LSU)
	C.2.3.1 Changes From OpenSPARC T1
	C.2.3.2 Functional Units of the LSU
	C.2.3.3 Special Memory Operation Handling

	C.3 L2 Cache
	C.3.1 L2 Functional Units
	C.3.2 L2 Cache Interfaces
	C.3.3 L2 Cache Instructions

	C.4 Cache Crossbar
	C.5 Memory Controller Unit
	C.5.1 Changes to the OpenSPARC T2 MCU
	C.5.2 DDR Branch Configuration
	C.5.3 FBD Channel Configuration
	C.5.4 SDRAM Initialization

	C.6 Noncacheable Unit (NCU)
	C.6.1 Changes from OpenSPARC T1 I/O Bridge
	C.6.2 NCU Interfaces

	C.7 Floating-Point and Graphics Unit (FGU)
	C.7.1 FGU Feature Comparison of OpenSPARC T2 and OpenSPARC T1
	C.7.2 Performance
	C.7.3 FGU Interfaces

	C.8 Trap Logic Unit (TLU)
	C.9 Reliability and Serviceability
	C.9.1 Core Error Attribution
	C.9.2 Core Error Logging

	C.10 Reset
	C.11 Performance Monitor Unit (PMU)
	C.12 Debugging Features
	C.13 Test Control Unit (TCU)
	C.14 System Interface Unit (SIU)

	OpenSPARC T1 Design Verification Suites
	D.1 OpenSPARC T1 Verification Environment
	D.2 Regression Tests
	D.2.1 The sims Command Actions
	D.2.2 Running Regression With Other Simulators

	D.3 Verification Code
	D.3.1 Verilog Code Used for Verification
	D.3.2 Vera Code Used for Verification

	D.4 PLI Code Used for the Testbench
	D.5 Verification Test File Locations
	D.6 Compilation of Source Code for Tools
	D.7 Gate-Level Verification

	OpenSPARC T2 Design Verification Suites
	E.1 System Requirements
	E.2 OpenSPARC T2 Verification Environment
	E.3 Regression Tests
	E.4 PLI Code Used For the Testbench
	E.5 Verification Test File Locations

	OpenSPARC Resources
	OpenSPARC Terminology
	Index
	Untitled

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /Palatino-Roman
 /Times-Bold
 /Times-Italic
 /Times-Roman
 /ZapfChancery-MediumItalic
 /ZapfDingbats
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [432.000 648.000]
>> setpagedevice

