
Quick Start Guide for Xilinx Alliance Series 1.4 — 0401696 01 Printed in U.S.A.

Quick Start
Guide for
Xilinx
Alliance
Series 1.4

Introduction

Installation

Alliance Series Design
Implementation Tools Tutorial

How This Release Works

Cadence Concept and Verilog
Interface Notes

Alliance FPGA Express
Interface Notes

Mentor Graphics Interface
Notes

Synopsys Interface Notes

Viewlogic Interface Notes

LogiBLOX

Instantiated Components

Alliance Constraints



Quick Start Guide for Xilinx Alliance Series 1.4

Xilinx Development System

The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

XILINX, XACT, XC2064, XC3090, XC4005, XC5210, XC-DS501, FPGA Architect, FPGA Foundry, NeoCAD,
NeoCAD EPIC, NeoCAD PRISM, NeoROUTE, Timing Wizard, and TRACE are registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

All XC-prefix product designations, XACTstep, XACTstep Advanced, XACTstep Foundry, XACT-Floorplanner,
XACT-Performance, XAPP, XAM, X-BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, XPP, XSI, BITA,
Configurable Logic Cell, CLC, Dual Block, FastCLK, FastCONNECT, FastFLASH, FastMap, Foundation,
HardWire, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroVia, PLUSASM, Plus Logic, Plustran,
P+, PowerGuide, PowerMaze, Select-RAM, SMARTswitch, TrueMap, UIM, VectorMaze, VersaBlock, VersaRing,
WebLINX, XABEL, Xilinx Foundation Series, and ZERO+ are trademarks of Xilinx, Inc. The Programmable Logic
Company and The Programmable Gate Array Company are service marks of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown
herein; nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others.
Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any circuitry described
herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under
one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155;
4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135;
5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704; 5,329,174; 5,329,181;
5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,357,153;
5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189;
5,410,194; 5,414,377; 5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719; 5,448,181; 5,448,493; 5,450,021;
5,450,022; 5,453,706; 5,466,117; 5,469,003; 5,475,253; 5,477,414; 5,481,206; 5,483,478; 5,486,707; 5,486,776;
5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196; 5,498,979; 5,498,989; 5,499,192; 5,500,608; 5,500,609;
5,502,000; 5,502,440; 5,504,439; 5,506,518; 5,506,523; 5,506,878; 5,513,124; 5,517,135; 5,521,835; 5,521,837;
5,523,963; 5,523,971; 5,524,097; 5,526,322; 5,528,169; 5,528,176; 5,530,378; 5,530,384; 5,546,018; 5,550,839;
5,550,843; 5,552,722; 5,553,001; 5,559,751; 5,561,367; 5,561,629; 5,561,631; 5,563,527; 5,563,528; 5,563,529;
5,563,827; 5,565,792; 5,566,123; 5,570,051; 5,574,634; 5,574,655; 5,578,946; 5,581,198; 5,581,199; 5,581,738;
5,583,450; 5,583,452; 5,592,105; 5,594,367; 5,598,424; 5,600,263; 5,600,264; 5,600,271; 5,600,597; 5,608,342;
5,610,536; 5,610,790; 5,610,829; 5,612,633; 5,617,021; 5,617,041; 5,617,327; 5,617,573; 5,623,387; 5,627,480;
5,629,637; 5,629,886; 5,631,577; 5,631,583; 5,635,851; 5,636,368; 5,640,106; 5,642,058; 5,646,545; 5,646,547;
5,646,564; 5,646,903; 5,648,732; 5,648,913; 5,650,672; 5,650,946; 5,652,904; 5,654,631; 5,656,950; 5,657,290;
5,659,484; 5,661,660; 5,661,685; 5,670,897; 5,670,896; RE 34,363, RE 34,444, and RE 34,808. Other U.S. and
foreign patents pending. Xilinx, Inc. does not represent that devices shown or products described herein are free
from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to correct any errors
contained herein or to advise any user of this text of any correction if such be made. Xilinx, Inc. will not assume
any liability for the accuracy or correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-1997 Xilinx, Inc. All Rights Reserved.

R



Quick Start Guide for Xilinx Alliance Series 1.4

GlossaryQuick Start
Guide for
Xilinx
Alliance
Series 1.4



Quick Start Guide for Xilinx Alliance Series 1.4

Xilinx Development System



Quick Start Guide for Xilinx Alliance Series 1.4 — 0401696 01 i

Preface

About This Quick Start Guide
This Quick Start Guide is intended to give an overview of the features
and additions to Xilinx’s Alliance Series release version 1.4, know as
M1 Software. The primary focus of this guide is the Alliance Series
Design Implementation Tools used to implement a design.

Quick Start Guide Contents
This guide covers the following topics.

• Chapter 1, “Introduction,” introduces the various features of the
M1 software.

• Chapter 2, “Installation,” gives instructions on the installation of
the software on workstations, and PCs.

• Chapter 3, “Alliance Series Design Implementation Tools Tuto-
rial,” provides a tutorial which exercises a significant portion of
the features of the M1 design flow.

• Chapter 4, “How This Release Works,” looks in-depth at the
capability and flexibility of the Xilinx software.

• Appendix A, “Cadence Concept and Verilog Interface Notes,”
covers how to set up the Cadence Concept interface for schematic
entry, and Verilog-XL for simulation.

• Appendix B, “Alliance FPGA Express Interface Notes,” covers
how to install and start using FPGA Express, with the Xilinx Alli-
ance Series Software.

• Appendix C, “Mentor Graphics Interface Notes,” covers how to
set up the Mentor Graphics interface and associated libraries.



Quick Start Guide for Xilinx Alliance Series 1.4

ii Xilinx Development System

• Appendix D, “Synopsys Interface Notes,” covers how to set up
the Synopsys interface and associated libraries.

• Appendix E, “Viewlogic Interface Notes,” covers how to set up
the Viewlogic interface and project libraries.

• Appendix F, “LogiBLOX,” covers how to set up the LogiBLOX
interface and associated libraries

• Appendix G, “Instantiated Components,” includes a listing of the
components most frequently instantiated in synthesis designs.

• Appendix H, “Alliance Constraints,” describes the most common
constraints you can apply to your design to control the timing
and layout of a Xilinx FPGA or CPLD.

• Appendix I, “Glossary,” contains definitions and explanations for
terms used in the Quick Start Guide.

There are eight appendices, five of them devoted each to an interface,
one to LogiBLOX (including HDL), one to frequently instantiated
components, and the last features the Alliance Constraints.



Quick Start Guide for Xilinx Alliance Series 1.4 — 0401696 01 iii

Conventions

Typographical
This manual uses the following conventions. An example illustrates
each convention.

• Courier font  indicates messages, prompts, and program files
that the system displays.

speed grade: -100

• Courier bold  indicates literal commands that you enter in a
syntactical statement.

rpt_del_net=

Courier bold  also indicates commands that you select from a
menu.

File → Open

• Italic font denotes the following items.

• Variables in a syntax statement for which you must supply
values

edif2ngd design_name

• References to other manuals

See the Development System Reference Guide for more informa-
tion.

• Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the
two nets are not connected.



Quick Start Guide for Xilinx Alliance Series 1.4

iv Xilinx Development System

• Square brackets “[ ]” indicate an optional entry or parameter.
However, in bus specifications, such as bus [7:0], they are
required.

edif2ngd  [option_name] design_name

Square brackets also enclose footnotes in tables that are printed
out as hardcopy in DynaText.

• Braces “{ }” enclose a list of items from which you choose one or
more.

lowpwr ={on|off}

• A vertical bar “|” separates items in a list of choices.

symbol editor_name [bus|pins]

• A vertical ellipsis indicates repetitive material that has been
omitted.

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

• A horizontal ellipsis “. . .” indicates that an item can be repeated
one or more times.

allow block block_name loc1 loc2 ... locn;

Online Document
Xilinx has created several conventions for use within the DynaText
online documents.

• Red-underlined text indicates an interbook link, which is a cross-
reference to another book. Click on the red-underlined text to
open the specified cross-reference.

• Blue-underlined text indicates an intrabook link, which is a cross-
reference within a book. Click on the blue-underlined text to
open the specified cross-reference.

• There are several types of icons.

Iconized figures are identified by the figure icon.



Quick Start Guide for Xilinx Alliance Series 1.4 v

Iconized tables are identified by the table icon.

The Copyright icon displays in the upper left corner on the first
page of every Xilinx online document.

The DynaText footnote icon displays next to the footnoted text.

Double-click on these icons to display figures, tables, copyright
information, or footnotes in a separate window.

• Inline figures display within the text of a document. You can
display these figures in a separate window by clicking on the
figure.



Quick Start Guide for Xilinx Alliance Series 1.4

vi Xilinx Development System



Quick Start Guide for Xilinx Alliance Series 1.4  —  0401696 01 vii

Contents

Chapter 1 Introduction

M1 Software Supported Families ..................................................  1-1
Supported Netlists.........................................................................  1-2
M1 Software Instruction Volumes .................................................  1-2
Features of the M1 Software.........................................................  1-2

Design Manager.......................................................................  1-3
Flow Engine .............................................................................  1-3
LogiBLOX.................................................................................  1-3
Timing Specifications ...............................................................  1-4
Timing Analyzer .......................................................................  1-4
Multi-Pass PAR........................................................................  1-5
Re-Entrant Routing ..................................................................  1-5
Guide for Incremental Design Changes...................................  1-5
EPIC - Physical Design Editor .................................................  1-5
Hardware Debugger.................................................................  1-6
PROM File Formatter...............................................................  1-6

Third Party Interfaces....................................................................  1-6

Chapter 2 Installation

Introduction ...................................................................................  2-1
Technical Support ....................................................................  2-2

Hotline Access ....................................................................  2-2
Obtaining and Setting Up Licenses...............................................  2-2
Customer Service..........................................................................  2-4

United States and Canada.......................................................  2-4
Europe .....................................................................................  2-4
Other International Countries...................................................  2-4

Licensing from the Web ................................................................  2-4
To Generate a License Online, the Following Information
 Is Required..............................................................................  2-5



viii Xilinx Development System

Quick Start Guide for Xilinx Alliance Series 1.4

9-Digit End User ID Number (example, 1234-01-01-A) ......  2-5
Product Serial Number .......................................................  2-5
Product Type ......................................................................  2-5
Ethernet Address ................................................................  2-5
Host ID................................................................................  2-5

Xilinx Web Licensing Program ......................................................  2-6
Registering Via Telephone/Fax.....................................................  2-6

PC or Workstation....................................................................  2-6
1. What type of machine will be used as the license
 server: PC or Workstation?................................................  2-6
2. What type of machine will actually be running
the Alliance Series Design Implementation Tools
 software: PC or Workstation or both?................................  2-7
3. What type of license is needed: node-locked
 or floating? .........................................................................  2-7

Setting Up Your License File ...................................................  2-7
Workstation Users ..............................................................  2-7
PC Users ............................................................................  2-8

M1 Requirements for Workstations...............................................  2-8
M1 Installation on Workstations ....................................................  2-9

Installing the Design Implementation Tools Software ..............  2-10
Installing the CAE Interface and Libraries................................  2-10
Installing the On-line Documentation .......................................  2-10
Variable Settings for Workstations...........................................  2-10

Verifying Alliance Series Design Implementation
 Tools Software Installation—Workstations ........................  2-11
Example 1...........................................................................  2-12
Example 2...........................................................................  2-12
Example 3...........................................................................  2-12
Verifying DynaText Variable Settings—Workstation...........  2-12

Setting Up LogiBLOX for Workstations....................................  2-14
M1 Requirements for PCs.............................................................  2-14
M1 Installation on PC ....................................................................  2-15

Installing Alliance Series Design Implementation Tools
 Software, CAE Interface and Libraries....................................  2-15
Installing Workview Office Toolset ...........................................  2-15
Installing On-Line Documentation............................................  2-16
Variable Settings for PCs.........................................................  2-16
Setting Up LogiBLOX for Use with Workview Office................  2-17



Quick Start Guide for Xilinx Alliance Series 1.4 ix

Contents

Chapter 3 Alliance Series Design Implementation Tools Tutorial

Tutorial Installation ........................................................................  3-1
Step 1: Invoking Design Manager, Creating an
 Implementation Project ................................................................  3-2
Step 2: Creating Design Versions, Implementation
 Revisions......................................................................................  3-4
Step 3: Mapping a Design.............................................................  3-6
Step 4:Using Timing Analyzer to Evaluate Block Delays
After Mapping................................................................................  3-12
Step 5: How to Place and Route a Design....................................  3-14
Step 6: Evaluating With Worst Case Timing .................................  3-18
Step 7: Using the Flow Engine to Create Timing
 Simulation Data............................................................................  3-20
Step 8: Using the Flow Engine to Create Configuration Data .......  3-22
Step 9: Using the PROM File Formatter to Create PROM Files ...  3-24

Chapter 4 How This Release Works

Starting Xilinx Tools ......................................................................  4-1
Creating A Project....................................................................  4-3
Implementing a Design ............................................................  4-4
 Translate .................................................................................  4-4
Map ..........................................................................................  4-4
Place and Route ......................................................................  4-5
Configure .................................................................................  4-5
Analyzing Reports....................................................................  4-6

Translation Report ..............................................................  4-6
Map Report .........................................................................  4-6
Place and Route Report .....................................................  4-7
Pad Report..........................................................................  4-7

Selecting Options ..........................................................................  4-8
Using Constraint Files ...................................................................  4-9

Design, Netlist, User, and Physical Constraints.......................  4-9
Creating a User Constraint File................................................  4-10

Guiding an Implementation ...........................................................  4-13
Exact Guide Mode ...................................................................  4-14
Leveraged Guide Mode ...........................................................  4-14

Static Timing Analysis ...................................................................  4-14
Static Timing Analysis After Map .............................................  4-14
Static Timing Analysis After Place and Route..........................  4-15
Summary Timing Reports ........................................................  4-15
Detailed Timing Analysis..........................................................  4-16



x Xilinx Development System

Quick Start Guide for Xilinx Alliance Series 1.4

Creating Simulation Files ..............................................................  4-17
When Can Simulation Data Be Created ..................................  4-17
Creating Timing Simulation Data .............................................  4-17
Creating Functional Simulation Data .......................................  4-18

Downloading a Design ..................................................................  4-19
Creating a PROM.....................................................................  4-19
In-Circuit Debugging ................................................................  4-19
Advanced Implementation Flows .............................................  4-19
Re-Entrant Route .....................................................................  4-20

Multi-Pass Place and Route..........................................................  4-21

Appendix A Cadence Concept and Verilog Interface Notes
Documentation ..............................................................................  A-1
Setting Up the Xilinx/Cadence Interface .......................................  A-2
Cadence/Verilog and M1 Design Flow..........................................  A-4
Setting Up for Concept..................................................................  A-8

Global.cmd File ........................................................................  A-8
Master.local File.......................................................................  A-9
Cds.lib File ...............................................................................  A-9

Using HDL Direct ..........................................................................  A-10
Iterated Instances Versus Size Support........................................  A-10
Starting Up Concept......................................................................  A-11
Functional Simulation....................................................................  A-11

Testfixture: Asserting the Global Set Reset in
a Pre-NGDBuild Unified Library Functional Simulation............  A-11
Pure Concept Schematic Functional Simulation......................  A-13
Post-NGDBuild Functional Simulation .....................................  A-13

Translating a Design to Xilinx EDIF ..............................................  A-14
Timing Simulation..........................................................................  A-14
Support for Board Level Simulation ..............................................  A-15
Pin Locking....................................................................................  A-16
Timing Constraints ........................................................................  A-16

Appendix B Alliance FPGA Express Interface Notes
Installation of FPGA Express ........................................................  B-2
Design Entry With FPGA Express.................................................  B-2
Simulation With FPGA Express ....................................................  B-3
Documentation ..............................................................................  B-3
Alliance FPGA Express/M1.4 Design Flow ...................................  B-4
Timing Constraints ........................................................................  B-4
Porting Code from FPGA Compiler to FPGA Express ..................  B-4
LogiBLOX and FPGA Express ......................................................  B-5



Quick Start Guide for Xilinx Alliance Series 1.4 xi

Contents

Appendix C Mentor Graphics Interface Notes
Documentation ..............................................................................  C-1
Setting Up the Xilinx/Mentor Interface...........................................  C-2
Mentor/Alliance Software Design Flow .........................................  C-3
Translating a Design to Xilinx EDIF ..............................................  C-6
Timing Simulation..........................................................................  C-6

Generating a Timing-Annotated EDIF Netlist...........................  C-6
Generating a Timing Model......................................................  C-6
Running PLD_QuickSim ..........................................................  C-7

Mentor-Related Environment Variables ........................................  C-7
Library Locations and Sample MGC Location Map.......................  C-7
Pin Locking....................................................................................  C-8
Timing Constraints ........................................................................  C-8

Appendix D Synopsys Interface Notes
Documentation ..............................................................................  D-1
Setting Up the Xilinx/Synopsys Interface ......................................  D-2
Synopsys/M1 Software Design Flow.............................................  D-3
Examples of Synopsys Setup Files...............................................  D-3

.synopsys_dc.setup .................................................................  D-3

.synopsys_vss.setup................................................................  D-6
Example Script File ..................................................................  D-6

Timing Constraints and DC2NCF..................................................  D-9
DC2NCF Design Flow..............................................................  D-10

FPGA Compiler Users...................................................................  D-10
Entity Coding Examples ................................................................  D-11

VHDL Code..............................................................................  D-11
Verilog Code: Module Example ...............................................  D-12
Comments About Code............................................................  D-13
FPGA Compiler/Design Compiler and LogiBLOX....................  D-13

Appendix E Viewlogic Interface Notes
Documentation ..............................................................................  E-1
Setting Up Viewlogic Interface on Workstations ...........................  E-1
Setting Up Xilinx/Viewlogic Interface on the PC............................  E-3
Viewlogic/M1 Software Design Flow .............................................  E-4
Setting Up Project Libraries ..........................................................  E-6

On Workstations ......................................................................  E-6
Xilinx Commands in ViewDraw...........................................  E-7

On PCs ....................................................................................  E-7
Xilinx Commands in ViewDraw...........................................  E-8



xii Xilinx Development System

Quick Start Guide for Xilinx Alliance Series 1.4

Assigning a Pin Location...............................................................  E-9
Timing Constraints ...................................................................  E-10

Using Special XC4000EX Features ..............................................  E-10
Global Clock Buffers ................................................................  E-10
IOB Fast Capture Latches .......................................................  E-10
Output Multiplexer/2-Input Functions .......................................  E-11
CLB Latches ............................................................................  E-11

Appendix F LogiBLOX
Documentation ..............................................................................  F-2
Setting Up LogiBLOX on a Workstation ........................................  F-2

Mentor Interface Environment Variables..................................  F-2
Synopsys Interface Environment Variables .............................  F-3
Viewlogic Interface Environment Variables..............................  F-3

Setting Up LogiBLOX on a PC ......................................................  F-3
Viewlogic Interface Environment Variables..............................  F-3

Starting LogiBLOX ........................................................................  F-4
Using LogiBLOX for Schematic Design ........................................  F-4

Creating a LogiBLOX Module ..................................................  F-4
Design simulation ...............................................................  F-5
Copying Modules ................................................................  F-5

Using LogiBLOX for HDL Synthesis Design .................................  F-6
Instantiating a LogiBLOX Module ............................................  F-6

Analyzing a LogiBLOX Module .....................................................  F-7
Mentor QuickHDL ....................................................................  F-7
Synopsys VSS .........................................................................  F-7
Viewlogic Vantage ...................................................................  F-7

LogiBLOX Modules .......................................................................  F-8

Appendix G Instantiated Components
STARTUP Component..................................................................  G-1
BSCAN Component ......................................................................  G-2
READBACK Component...............................................................  G-3
RAM and ROM..............................................................................  G-4
Global Buffers ...............................................................................  G-5
Fast Output Primitives...................................................................  G-6
IOB Components...........................................................................  G-7



Quick Start Guide for Xilinx Alliance Series 1.4 xiii

Contents

Appendix H Alliance Constraints
Constraint Entry Mechanisms .......................................................  H-1
Translating and Merging Logical Designs .....................................  H-3
Constraints File Overview .............................................................  H-4

The Netlist Constraint File (NCF).............................................  H-4
The User Constraint File (UCF) ...............................................  H-5
The Physical Constraints File (PCF)........................................  H-5
Case Sensitivity .......................................................................  H-6

UCF Timing Constraints................................................................  H-6
The Period Style Timespec......................................................  H-6
The Offset Constraint...............................................................  H-8
The “From:To” Style Timespec ................................................  H-9
Using TPSYNC ........................................................................  H-11
Ignoring Paths..........................................................................  H-12
Constraint Precedence ............................................................  H-12

Layout Constraints ........................................................................  H-14
Converting a Logical Design to a Physical Design ..................  H-15
Last One Wins Resolution .......................................................  H-15
XC5200XL Constraints ............................................................  H-15

Efficient Use of Timespecs and Layout Constraints......................  H-16
The “Starter Set” of Timing Constraints ...................................  H-17

Standard Block Delay Symbols.....................................................  H-19
Table of M1-Supported Constraints ..............................................  H-20
Basic UCF Syntax Examples ........................................................  H-23

PERIOD TIMESPEC................................................................  H-23
FROM:TO TIMESPECs ...........................................................  H-23
OFFSET TIMESPEC ...............................................................  H-23
TIMING IGNORE .....................................................................  H-24
PATH EXCEPTIONS ...............................................................  H-24
MISCELLANEOUS EXAMPLES ..............................................  H-25

Constraining LogiBLOX RAM/ROM with Synopsys ......................  H-26
Referencing a LogiBLOX Module/Component in
 the FPGA/Design Compiler and FPGA Express Flow ............  H-27
Referencing the Primitives of a LogiBLOX
Module in the FPGA/Design Compiler and
 FPGA Express Flow................................................................  H-28
FPGA/Design Compiler and Express Verilog Example ...........  H-28

test.v: ..................................................................................  H-28
inside.v:...............................................................................  H-29
memory.v (FPGA/Design compiler only) ............................  H-29
runscript (FPGA/Design compiler only) ..............................  H-29



xiv Xilinx Development System

Quick Start Guide for Xilinx Alliance Series 1.4

test.ucf (FPGA/Design compiler only).................................  H-30
test.ucf (FPGA Express only) .............................................  H-30

FPGA/Design Compiler and Express VHDL Example .............  H-30
test.vhd ...............................................................................  H-30
inside.vhd............................................................................  H-31
runscript (FPGA/Design compiler only) ..............................  H-32
test.ucf (FPGA/Design compiler only).................................  H-32
test.ucf (FPGA Express only) .............................................  H-32

Appendix I Glossary
aliases ...........................................................................................  I-1
attribute .........................................................................................  I-1
AutoRoute .....................................................................................  I-1
block..............................................................................................  I-1
component ....................................................................................  I-1
constraint.......................................................................................  I-2
Implementation Tools....................................................................  I-2
DC2NCF........................................................................................  I-2
guided mapping.............................................................................  I-2
HDL ...............................................................................................  I-2
LCA file..........................................................................................  I-2
LCA2NCD .....................................................................................  I-3
LogiBLOX......................................................................................  I-3
locking ...........................................................................................  I-3
Logic Block Editor .........................................................................  I-3
macro ............................................................................................  I-3
MCS file.........................................................................................  I-3
MDF file.........................................................................................  I-3
MRP file.........................................................................................  I-4
NCD file.........................................................................................  I-4
NCF file .........................................................................................  I-4
NGDAnno......................................................................................  I-4
NGA file.........................................................................................  I-4
NGD2EDIF ....................................................................................  I-4
NGD2XNF.....................................................................................  I-5
NGD2VER.....................................................................................  I-5
NGD2VHDL...................................................................................  I-5
NGDBuild ......................................................................................  I-5
NGD file.........................................................................................  I-5
NGM file ........................................................................................  I-5
PAR (Place and Route).................................................................  I-5
path delay......................................................................................  I-6



Quick Start Guide for Xilinx Alliance Series 1.4 xv

Contents

PCF file .........................................................................................  I-6
physical Design Rule Check (DRC) ..............................................  I-6
physical macro ..............................................................................  I-6
pin .................................................................................................  I-6
pinwires .........................................................................................  I-6
route ..............................................................................................  I-7
route-through.................................................................................  I-7
states.............................................................................................  I-7
TRCE ............................................................................................  I-7
TWR file ........................................................................................  I-7
wire................................................................................................  I-8
UCF file .........................................................................................  I-8



xvi Xilinx Development System

Quick Start Guide for Xilinx Alliance Series 1.4



Quick Start Guide for Xilinx Allliance Series 1.4 — 0401696 01 1-1

Chapter 1

Introduction

Welcome to Xilinx’s Alliance Series software release, vM1.4. The
following enhancements and additions, made possible through a new
core design, provide development designers with an improved suite
of tools for implementing Programmable Logic Devices (PLDs).

Version M1.4 software will henceforth be referred to as M1 Software.
This chapter contains the following sections.

•  “M1 Software Supported Families” section

•  “Supported Netlists” section

•  “M1 Software Instruction Volumes” section

•  “Features of the M1 Software” section

•  “Third Party Interfaces” section

Note: Compatibility with previous XACT releases XNF and LCA
logical and physical design files has been preserved.

M1 Software Supported Families
M1 Software supports the following families XC3000A, XC3000L,
XC3100A, XC3100L, XC4000E, XC4000L, XC4000EX, XC4000XL,
XC4000XV, XC5200, XC9500, and Spartan. Technical information is
included in the Xilinx Programmable Logic Data Book.



Quick Start Guide for Xilinx Allliance Series 1.4

1-2 Xilinx Development System

Supported Netlists
Refer to the following table for netlists supported by the M1 Soft-
ware.

Note: All designs must be created using the Xilinx Unified Libraries.
A list of components is located in the Libraries Guide.

M1 Software Instruction Volumes
For a more detailed listing of documentation on this software release,
please refer to the on-line documentation shipped via enclosed
CDROMs, or visit our Web site at http://www.xilinx.com.

Features of the M1 Software
The following features included in the M1 Software are listed in the
order in which their descriptions appear in this section.

• Design Manager

• Flow Engine

• LogiBLOX

• Netlist Support

• Timing Specification Performance

• Timing Analyzer

• Multi-Pass PAR

• Re-Entrant Routing

• Guide for Incremental Design Changes

• EPIC—the Physical Design Editor

Netlists Variations

EDIF Multiple variations are accepted, including:

SEDIF
EDIF

EDN
EDF

XNF Multiple variations are accepted, including:

SXNF
XFF

XNF
XTF



Introduction

Quick Start Guide for Xilinx Allliance Series 1.4 1-3

• Hardware Debugger

• PROM File Formatter

Design Manager
The Xilinx Design Manager is the graphical interface which manages
the data file versions implemented during the design process. Results
of these implementations are made available in reports and may be
accessed through the Design Manager’s Report Browser.

Design Manager also provides on-screen pushbutton access to other
Xilinx tools, such as the Flow Engine, Timing Analyzer, PROM File
Formatter, EPIC, and the Report Browser, and various navigation and
information tools.

Flow Engine
The Flow Engine displays and then executes all the steps needed to
implement a Xilinx design. The Flow Engine:

• Translates the design netlist

• Maps the logic to CLBs

• Places and routes the design

• Creates a configuration file which downloads a design to a part

• Creates static timing reports and timing simulation netlists in the
following formats: VHDL (Vital), Verilog, EDIF, or XNF

LogiBLOX
LogiBLOX is new to the M1 software. The successor to X-BLOX, Logi-
BLOX can be used to create some of the following types of modules.

• ROMs

• RAMs

• Counters

• Comparators

• Decoders

• Modules for synthesis



Quick Start Guide for Xilinx Allliance Series 1.4

1-4 Xilinx Development System

• Modules for schematic capture designs

• Modules of behavioral simulation for fast functional simulation

LogiBLOX creates implementation and simulation netlists using
Xilinx Unified Libraries at the time that the modules are created.
Creating simulation or implementation netlists is faster since the
netlists do not need to be re-synthesized on every pass.

LogiBLOX can be used as a stand-alone for synthesis designs and
some schematic capture programs, or can be integrated with View-
logic or Mentor Graphics schematic capture software. Refer to the
“LogiBLOX” appendix for further details.

Timing Specifications
Xilinx M1 Software supports timing-driven placement and routing.
The timing specification capability has been enhanced to incorporate
greater precision. Features include

• New timing constraints

• Implicit and explicit overrides of conflicting constraints

• Override or overlap capability of constraints by slower or faster
constraints that are either 1) narrower or 2) have a higher priority

Timing Analyzer
The Timing Analyzer produces reports on:

• Overall design performance

• Timing specifications performance

• Specific path performance

Timing analysis can be performed on real block delays and estimate
route delays for a design that directly outputs from MAP, or on real
block and real route delays of a design already placed and routed.



Introduction

Quick Start Guide for Xilinx Allliance Series 1.4 1-5

Multi-Pass PAR
The place and route (PAR) software allows multiple place and route
iterations to be run.

• On a single machine

• On a UNIX network

• On multiple machines running in parallel

The multi-pass feature achieves optimum performance and efficiency,
utilizing CPU time, instead of your time, to achieve faster design
results.

Re-Entrant Routing
Once a place and route result is found that is close to meeting the
desired specifications, notably those of timing, or is close to being
completely routed, the implementation process can be re-entered to
continue the routing process. This allows option and specification
modifications during the routing stage of design implementation.

Guide for Incremental Design Changes
Xilinx’s Guide for Incremental Design Changes has been enhanced in the
M1 Software to support guided mapping, and guided place and route
functions.

Added to the guide capability in the M1 software is the Leverage
Guide mode. This mode was specifically designed to accommodate
the design iteration that requires more than minor changes, or the
instance where a module has changed entirely due to the re-synthesis
of an entire module of a design.

EPIC - Physical Design Editor
Editor for Programmable Integrated Circuits (EPIC) is a graphical
editor that provides a view of the physical implementation of your
Xilinx design. EPIC functionally replaces XDE/EDITLCA. Focus
features of EPIC include:

• Ability to view and/or modify CLB mapping, placement and
routing

• Timing analysis with critical paths highlighted



Quick Start Guide for Xilinx Allliance Series 1.4

1-6 Xilinx Development System

• Ability to create custom macros to be incorporated in your Xilinx
design

Hardware Debugger
The Hardware Debugger downloads a configuration file to a single
FPGA, or to a daisy chain of FPGAs through the Xchecker, Serial, or
Parallel download cables. When used with the Xchecker cable, the
Hardware Debugger can read back the state (logic levels) of the
design signals inside the FPGA, and thus enable in-circuit design
debugging.

PROM File Formatter
PROM File Formatter creates files for serial or byte-wide configura-
tion PROMs. Three formats are available: MCS, EXO, and TEK. The
HEX format is also supported for microprocessor-based configura-
tion.

Third Party Interfaces
For information on the following Xilinx supplied interface tools, refer
to:

Cadence Appendix A

FPGA Express Appendix B

Mentor Graphics Appendix C

Synopsys Appendix D

Viewlogic Appendix E



Quick Start Guide for Xilinx Alliance Series 1.4 — 0401696 01 2-1

Chapter 2

Installation

This chapter contains the following sections.

•  “Introduction” section

•  “Obtaining and Setting Up Licenses” section

•  “Customer Service” section

•  “Licensing from the Web” section

•  “Xilinx Web Licensing Program” section

•  “Registering Via Telephone/Fax” section

•  “M1 Requirements for Workstations” section

•  “M1 Installation on Workstations” section

•  “M1 Requirements for PCs” section

•  “M1 Installation on PC” section

Introduction
Optimum use and operation of your Alliance Series Design Imple-
mentation Tools is best guaranteed through correct installation of the
Xilinx Alliance Series 1.4 Software on recommended hardware, with
recommended operating memory capacity. If you experience prob-
lems with either the installation, operation, or verification of your
installation, please contact the Xilinx Technical Support hotline.



Quick Start Guide for Xilinx Alliance Series 1.4

2-2 Xilinx Development System

Technical Support

Hotline Access

Information is provided first for workstations; then, for PCs. The
following licensing information applies to both workstation and PC
users.

Obtaining and Setting Up Licenses
Before running your Alliance Software, you will need to obtain a
license from Xilinx. To obtain a license, you need to be a registered
user in the Customer Service database. New Xilinx users should fill
out their Xilinx registration card and fax or mail it to their Customer
Service location or can register online. Customer Service will e-mail
your license and authorization codes in a license.dat file.

You can obtain a license by accessing the online Web tool or by
contacting your local Xilinx Customer Service representative. If you
request your license via fax, please fill out the “Alliance Series
License Request Form” in this chapter.

Note: This form is also located in the front cover of your hardcopy
version. Also note that if you received a license for 1.3, a new one is
not necessary for 1.4.

Location Telephone Electronic Mail

U.S. and Canada 1-800-255-7778 hotline@xilinx.com

Japan 81-33-297-9163 jhotline@xilinx.com

France 33-1-3463-0100 frhelp@xlinx.com

Germany 49-89-9915-4930 dlhelp@xilinx.com

United Kingdom 44-1-932-820821 ukhelp@xilinx.com

To Contact Factory 1-408-879-5199 hotline@xilinx.com



Installation

Quick Start Guide for Xilinx Alliance Series 1.4 2-3

Figure 2-1 Alliance Series License Request Form

X8269b P/N 0401613 01Printed in U.S.A.

Alliance Series License Form
Please complete and fax this form

to your local Xilinx Customer

Service representative.

End User Name

Xilinx End User ID Number

Company

Shipping Address (Mailstop) Do not use P.O. Box

Zip/Postal CodeState/Province Country

City

Telephone FAX E-Mail

Product Type Product Serial/Key Number

Ethernet Address/C-Drive Serial Number and Network Name for PCs or  Host ID & 


Server Name for Workstation

Please select (check) one license type: Node-Lock

R

Note: This form is also available in the "Quick Start Guide for Xilinx Alliance Series 1.4" online documentation. 

Network Floating



Quick Start Guide for Xilinx Alliance Series 1.4

2-4 Xilinx Development System

Customer Service
Information for contacting your local Xilinx Customer Service repre-
sentative.

United States and Canada
Monday–Friday, 8:00 a.m. to 5:00 p.m. Pacific time
1-800-624-4782 and facsimile 408-559-0115.

Europe
Monday–Friday, 9:00 a.m. to 5:30 p.m. United Kingdom time—
English speaking only.

Other International Countries

International countries not listed, please contact your local distrib-
utor.

Licensing from the Web
You now have the ability to license your software on the Web.
Existing customers have the ability to interact with the online tool to
execute and receive a license immediately when the information
listed below is provided. If you are a new customer, you must register
your software before a license can be created. European customers

Country Telephone Facsimile

United Kingdom 01932-333550 01932-828521

Belgium 0800 73738

France 0800 918333

Germany 0130 816027

Italy 1677 90403

Netherlands 0800 0221079

Other European Locations (44) 1932-333550 (44) 1932-828521

Japan 81 3 3297 9153 81 3 3297 9189



Installation

Quick Start Guide for Xilinx Alliance Series 1.4 2-5

must contact their local distributors to register new software before a
license can be obtained.

Existing customers can interact with the online license tool and
execute and receive a license with immediate turnaround. New
customers can register online and receive a license for their product
within 24 hours from their customer service representative.

To Generate a License Online, the Following
Information Is Required

9-Digit End User ID Number (example, 1234-01-01-A)

For existing customers, this is located on the shipping box label. New
customers will receive their end user ID after their product has been
registered.

Product Serial Number

This is located on the shipping box label and/or registration card.
Update products do not include a registration card or a serial
number.

Product Type

Example, DS-ALI-STD-PC.

If you do not have the above information, please contact your
Customer Service representative or local distributor.

Ethernet Address

Ethernet address/c-drive serial number and network name for PCs.

Host ID

Host ID and server name for workstations.

Refer to the Alliance Series Install and Release document for details
on how to obtain the required information for licensing. You may also
contact your Customer Service representative or your Xilinx local
distributor.



Quick Start Guide for Xilinx Alliance Series 1.4

2-6 Xilinx Development System

Xilinx Web Licensing Program
You now have the ability to license and register your software on the
Web. Use the following instructions to locate Xilinx licensing and
registration program on the Worldwide Web.

Internet address: http://www.xilinx.com/support/support.htm

• Go to Xilinx home page (http://www.xilinx.com)

• Click on the Support hyperlink

• Click on the Software Licensing hyperlink

Registering Via Telephone/Fax
Please fill out, photocopy, and fax the “Alliance Series License
Request Form” to your local Customer Service representative in the
United States and Canada (408) 559-0115. European customers may
provide required information via email at m1license@xilinx.com, or by
fax (44) 1932-828521. International customers may also contact their
local distributor for license information.

PC or Workstation
When you telephone/fax your local Xilinx Customer Service repre-
sentative for your license, please be prepared to answer the following
questions.

1. What type of machine will be used as the license
server: PC or Workstation?

If the answer is PC, you will need to provide one of the following.

• The Ethernet Address of the PC the M1 license server will be
running on. Open an MS-DOS session and type <path_to_
xilinx>\bin\nt\lmutil lmhostid , which will return the
12 digit hexadecimal address. The path_to_Xilinx can be to an
installed location or to the Alliance Series Design Implementation
Tools CD.

If you do not have an Ethernet Address the following is a second
option.

• The Volume Serial Number of the C:\ drive of the PC the M1
license server will be running on. To find this number, open an



Installation

Quick Start Guide for Xilinx Alliance Series 1.4 2-7

MS-DOS session and type VOL C:, which will return the 8-digit
hexadecimal serial number. Please provide the C:\ drive serial
number even if the Alliance Series Design Implementation Tools
tools are to be installed to a different drive letter.

The Ethernet address is preferred over the C:\ drive Serial Number
due to its relatively greater stability.

If the answer is Workstation, you will need to provide the hostname
and hostid of the server where the license server will be running.

2. What type of machine will actually be running the
Alliance Series Design Implementation Tools
software: PC or Workstation or both?

The software may be run on the same machine as the license server,
or may be run on another machine within the same network as the
machine running the license server. They do not have to be the same
platform. Simply assign the LM_LICENSE_FILE variable to point to
the license.dat, and make sure that the license manager is running on
the server machine.

3. What type of license is needed: node-locked or
floating?

A node-locked license allows the Alliance Series Design Implementa-
tion Tools software to be run only on the local machine. A floating
license allows products to be checked out to be run on the local
machine, or to be run on a machine on the network. A floating license
may contain multiple license for each product.

Setting Up Your License File
Once you receive your license and authorization codes from
Customer Service.

Workstation Users

You can add license and authorization codes to an existing license.dat
file and restart the license server. To start a new license server, you
can also create a new license.dat file in the “data” sub-directory of the
Xilinx software tree.



Quick Start Guide for Xilinx Alliance Series 1.4

2-8 Xilinx Development System

PC Users

Place your license.dat file in the C:\flexlm directory. If you decide to
place this file in a different location, you must also modify the license
file by entering the path and file, e.g., c:\xilinx\license.dat.

The Xilinx license.dat file does not authorize the Workview Office
software. Current Workview Office users will use their existing Work-
view Office 7.2 license.dat to authorize the Workview Office 7.31
tools. Refer to the following paragraphs, “Variable Settings for PCs”,
for more information about using multiple license.dat files.

For more information on how to create or modify a license.dat file
and start or restart a license server, see the “Setting Up Security”
section of the Release Document.

M1 Requirements for Workstations
The M1 Software supports the following workstation architectures
and operating systems.

• SunOS 4.1.3 and 4.1.4

• Solaris 5.5 and 2.5

• Ultra Sparc (or equivalent)

• HP-UX HP 10.1 and 10.2

• HP715 (or equivalent)

Table 2-1 Memory Requirements

Xilinx Device RAM Swap Space

XC4000E/L
XC4028EX through
XC4036EX
XC4005XL through XC4028XL
XC4000XV
XC9500/F (small devices)

64 MB 64 MB–128 MB

XC4036XL through XC4062XL
XC4000XV
XC9500/F (large devices)

128 MB 128 MB–256 MB



Installation

Quick Start Guide for Xilinx Alliance Series 1.4 2-9

Note: The values given in the above table are for typical designs, and
include the loading of the operating system. Additional memory may
be required for certain “boundary-case” or “pathological” designs, as
well as for concurrent operation of other applications (e.g., MS Word
or Excel).

Xilinx recommends that 4000EX designs be compiled using an Ultra
Sparc, HP715, or equivalent machine type. 64MB of RAM as well as
64MB of swap space is required to compile 4000EX designs, but
Xilinx recommends that 128MB of RAM, plus corresponding swap
space, be used.

M1 Installation on Workstations
For more detailed information about Workstation Installation, refer to
the “Workstation Installation” chapter of the Release Documentation.

All workstation installations must be done while logged in with
“root” authority.

The following table applies to these workstation platforms: SunOS
4.1.3 and 4.1.4, Solaris 5.4 and 5.5, Ultra Sparc (or equivalent), HP-UX,
HP 10.1, and HP715 (or equivalent).

Step Required Installation, Verification Checklist

1
Obtain license and authorization code for each
product

2
Install Alliance Series Design Implementation Tools
software

3 Install CAE interface and Libraries

4 Install on-line documentation

5 Setup license file

6 Set environment variables

7 Verify DynaText and variable settings

8 Verify Alliance Series Design Implementation



Quick Start Guide for Xilinx Alliance Series 1.4

2-10 Xilinx Development System

Installing the Design Implementation Tools Software
Installation of Alliance Series Design Implementation Tools software
is completed in two steps.

1. Mount the CDROM labeled “Alliance Series Design
Implementation Tools.”

2. Run “install” located in the CDROM root directory.

Note: For Solaris machines, a separate “install” program is located in
a subdirectory called “cdrom0.”

For detailed information on how to mount and unmount a CDROM,
and how to run the various installation programs, see the “Installa-
tion” section of the Release Document.

Installing the CAE Interface and Libraries
Installation of the CAE interface and libraries is completed in two
steps.

1. Mount the CDROM labeled, “Alliance Series CAE Interfaces.”

2. Run install located in the CDROM root directory.

Installing the On-line Documentation
Note: If you have previously installed the Beta/Pre-release version of
the M1 software you must re-load the Dyna Text Browser Software.

Installation of On-line Documentation on workstations is completed
in two steps.

1. Mount the CDROM labeled “Alliance Series Documentation.”

2. Run “install” located in the CDROM root directory.

Variable Settings for Workstations
The M1 Software requires environment variables to be set in order to
run properly.



Installation

Quick Start Guide for Xilinx Alliance Series 1.4 2-11

The Alliance Series Design Implementation Tools software, running
on either a Sun or HP workstation requires the following variables be
set.

• XILINX

• Path

• LM_LICENSE_FILE

• LD_LIBRARY_PATH (SunOS and Solaris only)

• SHLIB_PATH (HP-UX only)

These variables should be set in the following manner.

setenv XILINX <installation_path_of_Xilinx_tools>

set path = ($XILINX/bin/ platform_name $path)

setenv LM_LICENSE_FILE $XILINX/data/license.dat

For SunOS and Solaris only:

setenv LD_LIBRARY_PATH $XILINX/bin/ platform_name:/
usr/openwin/lib

For HP-UX only:

setenv SHLIB_PATH $XILINX/bin/hp:lib:/usr/lib

For example (SunOS):

setenv XILINX /usr/xilinx

set path = ($XILINX/bin/sun $path)

setenv LM_LICENSE_FILE $XILINX/data/license.dat

setenv LD_LIBRARY_PATH $XILINX/bin/sun:/usr/
openwin/lib

Verifying Alliance Series Design Implementation
Tools Software Installation—Workstations

Once you have set up all the required environment variables, it is a
good idea to verify that they have been set correctly.

If your setup is correct, PAR will run normally and return the
command line information.



Quick Start Guide for Xilinx Alliance Series 1.4

2-12 Xilinx Development System

If a variable is incorrectly set, refer to the following examples to help
you debug your setup.

In each of the examples, the test command is:

par

Example 1

If your setup has a variable incorrectly set, you will get an error like
the following.

par: Command not found

In this case, you would need to check your “path” and “XILINX”
environment variables.

Example 2

Another error PAR may return is.

ld.so: libbasgi.so.1: not found

In this case, you would need to check the LD_LIBRARY_PATH envi-
ronment variable if running SunOS or Solaris, or the SHLIB_PATH
environment variable if running HP-UX.

Example 3

A fatal error PAR may return is.

FATAL ERROR: The XILINX environment variable must be
set. Exiting...

In this case, you need to check the XILINX environment variable.

Verifying DynaText Variable Settings—Workstation

The M1 Documentation is located in the $XILINX/data/dtext direc-
tory. The documentation must be viewed using the DynaText
browser supplied on the CDROM and installed during the Core Tech-
nologies software installation. The browser is installed in the
$XILINX/bin/platform_name directory. The DynaText environment is
defined by the $EBTRC file. There is a $EBTRC file for each environ-
ment supported by the M1 software. The environment files are
located in the $XILINX/bin/platform_name directories.



Installation

Quick Start Guide for Xilinx Alliance Series 1.4 2-13

To use the appropriate setup file, you must set the EBTRC environ-
ment variable. This variable should be set in the following manner.

setenv EBTRC $XILINX/bin/ platform_name/ebtrc

Refer to the following example.

setenv EBTRC $XILINX/bin/sol/ebtrc

In addition to the $EBTRC variable, one of the following workstation
variables needs to be set, depending on your particular platform.

• LIBPATH (for IBM RS6000)

• SHLIB_PATH (for HP/UX)

• LD_LIBRARY_PATH (for SunOS/Solaris)

setenv platform_variable $XILINX/bin/ platform_directory

Refer to the following example.

setenv LD_LIBRARY_PATH $XILINX/bin/sol:$LD_LIBRARY_PATH

To launch the DynaText browser issue the following command.

dtext

If the EBTRC or XILINX environment variables are not set correctly,
DynaText will return the following errors.

Dynatest (Reg. U.S. Pat. Off.) v3.1

#17209100, Jul 11 1997, SunOS 4.1.x

Copyright (c) 1990-1997, Inso Corporation

All Rights Reserved.

Your .ebtrc does not point to a valid DATA_DIR

To fix the above errors, verify that the environment variable is set
correctly and that the path it references can be accessed from the
machine running DynaText.

Some warning messages may be displayed on-screen. These warn-
ings are regarding missing font information and are due to the plat-
form independence of the DynaText browser. Not all fonts are
available on all platforms, as shown in the following example.

Warning: Missing charsets in String to FontSet
conversion



Quick Start Guide for Xilinx Alliance Series 1.4

2-14 Xilinx Development System

Warning: Cannot convert string
“-dt-application-bold-r-*-*-*-140-*-*-p-*-*-*,-sgi-
screen-bold-r-*-*-*-160-*-*-m-*-*-*,-*-
lucidatypewriter-bold-r-*-*-*-120-*-*-*-*-*-*” to
type FontSet

For more information on system requirements for running the Dyna-
Text browser, and how to make a local copy of the .ebtrc file for
customizing, see the “Workstation Installation” chapter of the Release
Document.

Setting Up LogiBLOX for Workstations
Refer to “LogiBLOX” appendix of this manual, and the “Setting Up
LogiBLOX on a Workstation” section.

M1 Requirements for PCs
The M1 Software supports the following PC operating systems:
Windows 95 and Windows NT 4.0.

Note: The values given in the above table are for typical designs, and
include the loading of the operating system. Additional memory may
be required for certain “boundary-case” or “pathological” designs, as
well as for concurrent operation of other applications (for example,
MS Word or Excel).

Table 2-2 Memory Requirements for PCs

Xilinx Device RAM Virtual Memory

XC4003E/L through XC4008E/L
XC4005XL through XC4008XL
XC4000XV
XC9500/F (small devices only)

32 MB 32 MB–64 MB

XC4010E/L through XC4025E/L
XC4028EX through XC4036EX
XC4010XL through XC4028XL
XC4000XV
XC9500/F (medium devices only)

64 MB 64 MB–128 MB

XC4036XL through XC4062XL
XC4000XV
XC9500/F (large devices)

128 MB 128 MB–256 MB



Installation

Quick Start Guide for Xilinx Alliance Series 1.4 2-15

M1 Installation on PC
For more detailed information about PC Installation, refer to the “PC
Installation” chapter of the Release Document. The following table
applies to Windows 95 and NT 4.0 installations.

Installing Alliance Series Design Implementation
Tools Software, CAE Interface and Libraries

Installation of the Alliance Series Design Implementation Tools soft-
ware is completed in two steps.

1. Insert the CDROM labeled “Alliance Series Design Implementa-
tion Tools” in the CDROM drive.

2. Run setup.exe located in the CDROM root directory.

Installing Workview Office Toolset
Installation of the Workview Office Toolset is completed in three
steps.

1. Insert the CDROM labeled “Workview Office 7.31” in the
CDROM drive.

2. Run wvoinst.exe located in the CDROM root directory.

Step
Required Installation, Verification

Checklist

1
Obtain license and authorization code for each
product

2
Install Alliance Series Design Implementation
Tools software, CAE interface and Libraries

3
Install Workview Office 7.31 (only if using
Viewlogic)

4 Install On-line Documentation

5 Setup license file

6 Set environment variables

7 Setup LogiBLOX for use with ViewDraw



Quick Start Guide for Xilinx Alliance Series 1.4

2-16 Xilinx Development System

3. Consult the Viewlogic Interface and Tutorial Guide for more
information on the Workview Office installation.

Installing On-Line Documentation
Installation of On-line Documentation is completed on the PC in two
steps.

1. Insert the CDROM labeled “On-line Documentation” in the
CDROM drive.

2. Run setup.exe located in the CDROM root directory.

Variable Settings for PCs
The M1 Software requires environment variables to be set in order to
run properly.

The Alliance Series Design Implementation Tools software requires
the following variables be set.

• XILINX

• PATH

• LM_LICENSE_FILE

These environment variables should be set in the following manner.

set XILINX=c:\xilinx

set PATH=c:\xilinx\bin\nt;%PATH%

set LM_LICENSE_FILE=c:\flexlm\license.dat

If Workview Office has also been installed, the following variables
must be set.

• XILINX

• PATH

• LM_LICENSE_FILE

• WDIR

• VANTAGE_VSS (ViewSynthesis only)

• VANTAGE_CC (ViewSynthesis only)



Installation

Quick Start Guide for Xilinx Alliance Series 1.4 2-17

These environment variables should be set in the following manner.

set XILINX=c:\xilinx

set PATH=c:\wvoffice;c:\xilinx\bin\nt;%PATH%

set LM_LICENSE_FILE=c:\wvoffice\standard

\license.dat,;c:\flexlm\license.dat

set WDIR=c:\wvoffice\standard

set VANTAGE_VSS=c:\wvoffice\v

set VANTAGE_CC=c:\wvoffice\cl

Note: The LM_LICENSE_FILE variable uses a comma followed by a
semicolon (,;) to separate the two paths.

For Windows NT 4.0 users only:

Select Start → Settings → Control Panel . Double click on
the System icon and select the Environment tab. Verify the
settings shown above are listed in either the System Variables
section or the User Variables section. They will not appear exactly
as shown above; the variable will be shown under the Variable
header and the path will be shown under the Value header. The
word “set” will not appear.

For Windows 95 users only:

Run SYSEDIT to open the AUTOEXEC.BAT file, and verify the
environment settings are as shown above.

The variables listed assume that the XilinxAlliance Series Design
Implementation Tools have been installed in the C:\XILINX directory
and the Workview Office tools have been installed in the C:\WVOF-
FICE directory. If these default paths have been changed, the environ-
ment settings must change accordingly.

Setting Up LogiBLOX for Use with Workview Office
The final setup procedure is needed if you plan to use the LogiBLOX
Graphical User Interface with ViewDraw, the Workview Office sche-
matic entry tool. For a complete description of this setup, please see
“Setting Up LogiBLOX on a PC” section of Appendix F.



Quick Start Guide for Xilinx Alliance Series 1.4

2-18 Xilinx Development System



Quick Start Guide for Xilinx Alliance Series 1.4 — 0401696 01 3-1

Chapter 3

Alliance Series Design Implementation Tools
Tutorial

This chapter contains the following sections.

• “Tutorial Installation”

• “Step 1: Invoking Design Manager, Creating an Implementation
Project”

• “Step 2: Creating Design Versions, Implementation Revisions”

• “Step 3: Mapping a Design”

• “Step 4:Using Timing Analyzer to Evaluate Block Delays After
Mapping”

• “Step 5: How to Place and Route a Design”

• “Step 6: Evaluating With Worst Case Timing”

• “Step 7: Using the Flow Engine to Create Timing Simulation
Data”

• “Step 8: Using the Flow Engine to Create Configuration Data”

• “Step 9: Using the PROM File Formatter to Create PROM Files”

Tutorial Installation
This tutorial demonstrates the Alliance Series Design Implementation
Tools implementation flow. The design, a simple 8-bit counter with
asynchronous clear and clock enable, was compiled using Synopsys
FPGA Compiler and is described by a Synopsys Xilinx netlist file.

In an effort to exercise the entire flow, the tutorial passes timing spec-
ifications from Synopsys to the Alliance Series Design Implementa-
tion Tools using a netlist constraints file and incorporates user



Quick Start Guide for Xilinx Alliance Series 1.4

3-2 Xilinx Development System

constraints using a user constraints file. Also included is a physical
constraints file which the tutorial uses to evaluate the timing of the
design beyond the specifications supplied by the netlist constraints
file.

The files should be copied from the following directory located on the
Alliance Series Design Implementation Tools CDROM:

/userware/tutorial/qstart/Xilinx/orig

The files you should copy to an empty working directory are:

count8.sxnf Synopsys Xilinx Netlist file

count8.ncf Netlist Constraints File

count8.ucf User Constraints File

timing.pcf Physical Constraints File

Step 1: Invoking Design Manager, Creating an
Implementation Project

The Alliance Series Design Implementation Tools are organized
under a single program called the Design Manager. The Design
Manager helps you manage the design flow process by keeping track
of design versions as well as the implementation revisions within
each version. The Design Manager also provides access to the entire
suite of M1 implementation tools used to complete a design. To begin
this tutorial, change directories to the area containing your copy of
the design files and invoke the Design Manager in the background.

1. On a workstation enter the following at the command line
prompt:

dsgnmgr &

On a PC, invoke the Design Manager by selecting Start →
Programs → Xilinx → Design Manager.

When running the Design Manager for the first time, there are no
projects available. To create an implementation project for the
tutorial design, proceed to 2 below.

2. Select File → New Project

The New Project dialog is displayed containing fields to specify
the input design, working directory, and a design comment. The



Alliance Series Design Implementation Tools Tuto-

Quick Start Guide for Xilinx Alliance Series 1.4 3-3

input design is the top level netlist file that contains the design’s
definition. The working directory is the area that will be used by
the tools to store the implementation data created as you compile
your design. The comment field is where you may enter a brief
notation about the design being processed.

3. Click on the Browse button to the right of the Input Design Field
to specify the input design.

The Browse dialog is displayed with the default file type set to
EDIF Files. The design of this tutorial was created by Synopsys
FPGA Compiler. Therefore, open an SXNF file.

4. Click on the List Files of Type pulldown list box and select XNF
Files (*.xnf, *.xtf, *.sxnf) to change the file filter to the desired file
type.

5. Select the count8.sxnf file and click on OK to accept the input
netlist.

Note: You may need to change directories to the area containing the
copied design files.

The Browse dialog is closed and the New Project dialog is
updated to include the specified input netlist. By default, the
Work Directory is set to the directory containing the input design.
This can be set to another directory if so desired. Since we will
use this we created a new directory and copied the files, we can
use the same directory to hold the implementation project and
resulting output files.

6.  Place the cursor in the Comment field and enter

-tutorial

7. Click OK. This closes the New Project dialog and updates the
Design Manager with the specified project. Refer to the  “Project
"count8 - tutorial" Begun” figure.



Quick Start Guide for Xilinx Alliance Series 1.4

3-4 Xilinx Development System

Figure 3-1 Project "count8 - tutorial" Begun

Note: None of the icons in the Toolbox on the right side of the Design
Manager are active. To use these tools, a design version and an imple-
mentation revision must be created.

Step 2: Creating Design Versions, Implementation
Revisions

Each time a change is made to the input design, a new design version
must be created in the Design Manager. You can then use the tools to
create as many implementation revisions as you like for that design
version. Remember that the Design Manager only keeps track of the
Xilinx created files; the input design is not archived with the imple-
mentation data stored in the Xilinx implementation project area.
Because you might try different implementation strategies, you may
also have several revisions for a single version.

Note: This tutorial covers the basic flow. For detailed information on
flows and implementation methodologies using the Alliance Series
Design Implementation Tools, see the Development System Reference
Guide.

1. Select Design → New Version to create the first design version.

The New Version dialog is displayed with the default version
being 'ver1'.

2. Click OK to create the new version.

The Design Manager now shows 'ver1' under the count8 design
project.

3. Select Design → New Revision to create the first implementa-
tion revision.



Alliance Series Design Implementation Tools Tuto-

Quick Start Guide for Xilinx Alliance Series 1.4 3-5

The New Revision dialog is displayed with the default revision
being 'rev1'. Notice that the Part field already contains the value
'XC4028EX-3-PG299'. This information was found by the Design
Manager in the input netlist when the version was created.

4. Click OK to create the new revision.

The Design Manager now shows 'rev1' under the initial version
of the count8 project. The status of the revision is noted in paren-
thesis as (New, OK). The first portion (i.e., new) refers to the state
of the design and will be updated throughout the tutorial as we
complete the different compilation stages. The second portion
(i.e., OK) is the status of the current state. Currently the design is
new and no errors or warnings have been generated.

At the bottom of the Design Manager is the status bar (refer to the
“Design Manager Status Bar” figure). The status bar contains
information such as the current project, target device, and
currently selected version → revision pair. The leftmost portion
of the status bar is used by the tool to give information on what is
currently selected by the cursor.

Figure 3-2 Design Manager Status Bar

The Toolbox, located on the right side of the Design Manager
becomes active with your first implementation revision. The
icons contained in the Toolbox are only active when a revision is
selected. The design is now ready to be implemented. Icons in the
Toolbox represent, top to bottom, Flow Engine, Timing Analyzer,
PROM File Formatter, Hardware Debugger, and EPIC Design
Editor. These icons are shown left to right in Figure 3-3.

Note: The Toolbar has drag-and-drop capability.

Figure 3-3 Toolbox shown in horizontal placement



Quick Start Guide for Xilinx Alliance Series 1.4

3-6 Xilinx Development System

Step 3: Mapping a Design
The Design Manager manages the files created during the implemen-
tation process while the Flow Engine controls the implementation
process itself. All the programs that run on a design are actually run
by the Flow Engine based on the settings you supply in the various
dialogs and templates.

1. Click on the Flow Engine icon in the Toolbox on the right side of
the Design Manager.

The Flow Engine is invoked using the default flow settings.
Stages or processes in a design are given graphical representation
in the upper half of the Flow Engine screen. The status, when
complete, of each stage is also depicted.

The first stage is to translate the input netlist and merge it into a
single design file. The design is then mapped into CLBs and
IOBs. The mapped design then gets placed and routed. Finally,
the configure step creates a configuration bitstream which can
then be downloaded to the target system or formatted into a
PROM programming file by the PROM formatter.

The Flow Engine gives you, the designer, complete control over
how the design is processed. Typically you will set all desired
implementation options and run through the entire flow.
However, to demonstrate the flexibility of the Flow Engine, and
best provide you with a working knowledge, this tutorial
proceeds through each stage of the flow. For reference, refer to
the flow diagram shown in Chapter 4 of this manual.

2. Select Setup → Options to open the implementation Options
dialog.

With the Options dialog you specify any guide files, user
constraints files, and optional processing targets. You can also
access the implementation and configuration templates.

3. Click on the Browse button to the right of the User Constraints
field.

The Browse dialog is displayed with the working directory
selected in the Directories field.

4. Select the count8.ucf file and click OK to accept the user
constraints.



Alliance Series Design Implementation Tools Tuto-

Quick Start Guide for Xilinx Alliance Series 1.4 3-7

The User Constraints field of the Options dialog is updated with
the specified constraints file. At this point we want to map the
design's logic and, therefore, do not need to modify the templates
or specify any additional targets.

5. Click OK to close the Options dialog.

Refer to the  “Flow Engine With “count8.ucf” Selected” figure.
The Options dialog is closed and the status bar at the bottom of
the Flow Engine is updated with the specified user constraints
file.

In this tutorial we want to stop after translating and mapping the
design. Therefore, specify that the Flow Engine stop after the
map process by setting a break point.

6. Click on the stop sign toolbar icon (refer to the  “Flow Engine
With “count8.ucf” Selected” figure).



Quick Start Guide for Xilinx Alliance Series 1.4

3-8 Xilinx Development System

Figure 3-4 Flow Engine With “count8.ucf” Selected

When you select STOP, the Stop After dialog is displayed with
the default setting of Configure. The list box will only contain
possible break points from the current state of the design.
Because we have yet to process the design, all possible break
points are available.



Alliance Series Design Implementation Tools Tuto-

Quick Start Guide for Xilinx Alliance Series 1.4 3-9

7. Select Map in the list box and click on Ok to accept the break
point.

Note: On your screen, the stop sign is now added to the flow
between the Map and Place & Route phases. This “stop” allows us to
run the flow until the break point. There are several ways to begin the
implementation process. The Flow → Run and Flow → Step
commands can be used, or their equivalent control buttons, shown in
Figure 3-5, can be selected.

Figure 3-5 Control Panel, left to right, Run, Step Forward, Step
Backward, and Stop (Press <F1> for on-line Help).

8. Click on the 'run' control button (far left on the Control Panel,
Figure 3-5) to start the process.

The Flow Engine first runs NGDBuild.

• NGDBuild converts all the input design netlists and then
writes the results into a single merged file.

• NGDBuild adds the user constraints file and any constraints
found in any netlist constraints files to the merged netlist.
This merged netlist fully describes not only the logic in the
design but also any location and timing constraints.

Note: If you want to perform a functional simulation of the design,
you can set a break point after the Translate phase and copy out the
resulting design.ngd file to your working directory. Once you have
the design.ngd file copied, you can run the appropriate NGD2
program on the file to create the desired functional simulation data.
For more information on the NGD2 programs, see the following
chapters in the Development System Reference Guide.

•  “NGD2EDIF” chapter

•  “NGD2XNF” chapter

•  “NGD2VER” chapter

•  “NGD2VHDL” chapter



Quick Start Guide for Xilinx Alliance Series 1.4

3-10 Xilinx Development System

Map is the next program run by the Flow Engine (refer to the
“Flow Engine Shows Completed Map Stage” figure).

• Map allocates CLB and IOB resources for all the basic logic
elements in the design.

• Map also processes all location and timing constraints,
performs target device optimizations, and runs a design rule
check on the resulting mapped netlist.

Figure 3-6 Flow Engine Shows Completed Map Stage



Alliance Series Design Implementation Tools Tuto-

Quick Start Guide for Xilinx Alliance Series 1.4 3-11

Once the Map phase is complete, we can review the currently
available reports using the Report Browser.

9. Select Utilities → Report Browser to access the currently avail-
able reports.

The Report Browser is invoked containing the Translation and
Map Report files. Reports that are new are denoted with a gold
star in the upper left corner of the file icon.

Figure 3-7 Report Browser shows reports available after map
stage

10. Double-click on the Map Report to review the Map process
output.

• Map Report contains information on how the target device
resources were allocated, references to trimmed logic, and
device utilization. For detailed information on the Map
report, refer to the Development System Reference Guide.

• Translation Report contains warning and error messages
from the three translation processes: conversion of the EDIF
or XNF style netlist to the Xilinx NGD netlist, timing specifi-
cation checks, and logical design rule checks.

Notice that the current version → revision now has the status
of (Mapped, OK).

11. Close the map report. Then select Flow → Close to close the Flow
Engine and the Report Browser.

The design has been mapped to the target architecture. We can
now evaluate the various paths to ensure that they do not contain
too many block delays.



Quick Start Guide for Xilinx Alliance Series 1.4

3-12 Xilinx Development System

Step 4:Using Timing Analyzer to Evaluate Block
Delays After Mapping

After the design has been mapped, the Timing Analyzer can be used
to evaluate the logical paths in the design. Because the design has not
yet been placed and routed, no net delay information is known.

This means that the timing reports created will be based only on the
logical block delays; all net delays are estimated.

Evaluating a design after the map stage gives you a preliminary look
at how realistic your timing goals are, given the design's current
logical implementation. A rough guideline (known as the 50/50 rule)
is that the block delays in any particular path will make up about 50%
of the total path delay once the design is routed. This means that a
path containing 10ns of block delay should meet a 20ns timing
constraint after it has been placed and routed.

1. To invoke the Timing Analyzer, click on the Timing Analyzer icon
in the Toolbox.

The Timing Analyzer, once invoked, automatically loads the
mapped netlist. Should the Timing Analyzer display a message
about the default physical constraints file, simply click OK to
dismiss it.

• The Timing Analyzer can be used to time paths by creating
groups within the various dialogs and windows.

• You can also read in a physical constraints file containing
timing groups and associated timing specifications to be used
to time the paths in the design.

2. Select File → Open Physical Constraints.

The Open Physical Constraints dialog is displayed with the
current version → revision selected in the Directories list box.

3. Change the directory selection in the Directories list box to the
tutorial's working directory.

The timing.pcf physical constraints file supplied with the tutorial
files should now appear in the File Name list box.

4. Select the timing.pcf file and click OK or Open to accept the phys-
ical constraints file.



Alliance Series Design Implementation Tools Tuto-

Quick Start Guide for Xilinx Alliance Series 1.4 3-13

The status bar at the bottom of the Timing Analyzer will be
updated with the specified physical constraints file.

5. Select Analyze → Timing Constraints to generate a report of the
paths covered by the timing constraints specified in the timing.pcf
physical constraints file.

The Timing Analysis In Progress dialog is displayed while the
report is being generated. Should you desire to cancel the genera-
tion of a report, simply click on the Abort button.

The report generated is called an error report. Should any of the
paths analyzed fail their corresponding timing requirement, a
timing error will be generated. The default number of timing
error(s) reported is 1. Because the timing requirements are not
overly aggressive for the count8 design, no timing errors are
generated.

Note: If a timing error is encountered when running timing analysis,
the timing constraint will be viewed as impossible to meet. If the total
block delay exceeds the timing specification for example, the total
block delay of a path is 30ns and the timing specification covering
that path is 25ns, the spec is viewed as impossible. Should you ignore
this type of error, the place and route tools will not allow you to
proceed with your implementation until the specification is relaxed
or the number of block delay is reduced.

To get a more detailed report on the worst case path we can run a
detailed (the following) report.

6. Select Analyze → All Paths to generate a detailed report on the
longest path in the design.

The resulting report, see below, contains the following worst case
path.

Path n172 to n166 contains 5 levels of logic:

Path starting from Comp: CLB.K (from n117)

To Delay type Delay(ns)Physical Logical
Resource Resource(s)

-------------------------------------------------------------------------

CLB.XQ Tcko 1.830R  n172 n172

CLB.F1 net e  1.145R  n172



Quick Start Guide for Xilinx Alliance Series 1.4

3-14 Xilinx Development System

CLB.COUT Topcy 3.900R  n172 dd_25/plus/plus/u8/S0_1/CO_2

CLB.CIN net e  1.166R dd_25/plus/plus/u8/S0_1/CO_2

CLB.COUT Tbyp 0.350R  n170 dd_25/plus/plus/u8/S0_1/CO_4

CLB.CIN net e  1.166R dd_25/plus/plus/u8/S0_1/CO_4

CLB.COUT Tbyp 0.350R  n168 dd_25/plus/plus/u8/S0_1/CO_6

CLB.CIN net e  1.166R dd_25/plus/plus/u8/S0_1/CO_6

Tsum+Tick 1.910R  n166 dd_25/plus/plus/u8/S0_1/CO_7

 ___-return55<7>

n165

-------------------------------------------------------------------------

Total (64.2% logic, 35.8% route)          12.983ns (to n117)

Once a design is mapped, we can roughly determine the perfor-
mance of the design by applying the 50/50 rule. Recall, the 50/50
rule says that about 50% of any path delay will be due to block
delays and 50% will be due to routing delays.

If we apply the 50% logic (block delays), 50% routing rule, the
worst case path should be about 16ns after routing the design,
given that the block levels currently contribute about 8ns. The net
delays listed are actually estimates of what might happen once
the design is placed and routed.

Note: Regarding the status of the speeds files, the actual numbers
displayed in your report may differ.

7. Select File → Exit to close the Timing Analyzer.

As the Timing Analyzer closes, you can choose to save the gener-
ated reports or simply discard the results.

Step 5: How to Place and Route a Design
After you have evaluated the mapped design and feel that the block
delays are reasonable given the specified timing goals, you will use
the Flow Engine now to place and route the design.

The Flow Engine can run the place and route algorithms in several
different ways.



Alliance Series Design Implementation Tools Tuto-

Quick Start Guide for Xilinx Alliance Series 1.4 3-15

• You can run with the timing constraints specified in the netlist
and user constraints files

• Or you can instruct the place and route tools to ignore them.

Note: It is recommended that timing be ignored on the initial pass of
the design in order to give you a look at what is possible in the least
amount of processing time.

1. Click on the Flow Engine icon in the Toolbox to invoke the Flow
Engine.

The Flow Engine is invoked in the mapped state. First we must
specify the desired options to run the place and route stage.

2. Select Setup → Options to display the Options dialog.

All the options for the various implementation programs can be
found in the Implementation and Configuration templates.

3. Click on the Edit Template button to the right of the Implementa-
tion template pulldown list box.

The XC4000 Implementation Options dialog is displayed. There
are four tabs that can be selected, the default tab being the Opti-
mize & Map tab (refer to the  “Implementations Options” figure).

Figure 3-8 Implementations Options

4. Click on the Place & Route tab.

This tab allows you to control how hard the place and route tools
work while implementing your design. The Overall Place and
Route Effort Level, routing passes, number of delay based clean-
up passes, and whether or not to use timing constraints can be
specified.

If you wanted the tools to ignore the timing constraints found in
the provided netlist constraints file, you could deselect the Use



Quick Start Guide for Xilinx Alliance Series 1.4

3-16 Xilinx Development System

Timing Constraints During Place and Route check box (refer to
your screen).

With the desired options set, proceed with the implementation
flow.

5. Click OK to close the XC4000 Implementation Options dialog.
Click OK to close the Options dialog.

6. Select Flow → Step to run only the Place & Route phase of the
flow.

Even though we didn't specify a break point, the Flow Engine
will stop after the Place & Route stage because we ran a single
step. Refer to the  “Place and Route Stage Completed” figure.

Figure 3-9 Place and Route Stage Completed

We will want to review the reports to make sure that the
processing is being completed as expected. Status (located in the
upper right of the Display Manager) can also be checked to make
sure that no errors were encountered.

7. Select Utilities → Report Browser to invoke the Report Browser.



Alliance Series Design Implementation Tools Tuto-

Quick Start Guide for Xilinx Alliance Series 1.4 3-17

Figure 3-10 Reports Available After Place & Route Stage

The three newly created reports are the Delay Report, Pad Report,
and Place and Route Report.

• Asynchronous Delay Report enumerates all the nets in the
design and the delays of all the loads on the net. Use this
report to help determine where you might have fanout or
other design-dependent issues.

• Pad Report contains a report of where each of the device pins
were located in the device. Use this report to lock the pins of
the design down as well as to verify that any pins locked
down were placed in the correct place.

• Place & Route Report contains the information that was
displayed in the Flow Engine log window. Use this report to
make sure that the design successfully routed and that all the
timing constraints were met.

8. Select Flow → Close to close the Flow Engine and Report
Browser.

Note: Status of the current version → revision now is: (Routed, OK).



Quick Start Guide for Xilinx Alliance Series 1.4

3-18 Xilinx Development System

Step 6: Evaluating With Worst Case Timing
With the design placed and routed, the Timing Analyzer can be used
to evaluate the logical paths to ensure that the design meets the
desired timing goals.

1. Click on the Timing Analyzer icon in the Toolbox.

The Timing Analyzer is invoked.

The Timing Analyzer automatically loads the routed netlist. By
default, the Timing Analyzer loads the current revision's physical
constraints file which contains the constraints passed by
Synopsys via the netlist constraints file.

2. Select Analyze → Timing Constraints.

The only constraint passed through the netlist constraints file is a
period constraint on the design's global clock. This constraint
specifies the following:

• All the flip-flop to flip-flop paths must be less than 50ns.

• All pad to flip-flop and flip-flop to pad paths must be less
than 25ns.

When the Timing Analyzer evaluates a period constraint, it
reports the worst path and notes any timing errors if any paths
fail to meet the desired timing. To generate a more detailed
report, we will use the timing.pcf file to evaluate the block levels
of the mapped design.

3. Select File → Open Physical Constraints. The Open Physical
Constraints dialog is displayed with the current version → revi-
sion selected in the Directories list box.

4. Change the directory selection in the Directories to the tutorial's
working directory. The timing.pcf physical constraints file
supplied with the tutorial files should now appear in the File
Name list box.

5. Select the timing.pcf file and click OK or Open to accept the phys-
ical constraints file.

The status bar at the bottom of the Timing Analyzer is updated
with the specified physical constraints file.



Alliance Series Design Implementation Tools Tuto-

Quick Start Guide for Xilinx Alliance Series 1.4 3-19

6. Select Analyze → Timing Constraints to generate a report of the
paths covered by the timing constraints specified in the timing.pcf
physical constraints file.

Using the timing.pcf physical constraints file not only tells us
what the worst case flip-flop to flip-flip path delay is, but also the
worst case pad to flip-flop and flip-flop to pad path delays. For
this implementation, the worst case pad to flip-flops path is
15.917ns and the worst case flip-flop to pad path is 7.630ns.

7. To get a more detailed report, select Analyze → All Paths. The
resulting report contains the following worst case path. Your
results will vary depending on the setting for the “overall place
and route effort level” slider that was used.

Path n172 to n166 contains 5 levels of logic:

Path starting from Comp: CLB_R32C32.K (from n117)

To Delay type Delay(ns)Physical Logical
Resource  Resource(s)

-------------------------------------------------------------------------

CLB_R32C32.XQ  Tcko  1.830R  n172  n171

CLB_R32C32.G4  net 6.563R  n171

CLB_R32C32.COUT Topcy 3.900R  n172dd_25/plus/plus/u8/S0_1/CO_2

CLB_R31C32.CIN net 1.171R dd_25/plus/plus/u8/S0_1/CO_2

CLB_R31C32.COUT Tbyp 0.350R  n170dd_25/plus/plus/u8/S0_1/CO_4

CLB_R30C32.CIN net 1.171R dd_25/plus/plus/u8/S0_1/CO_4

CLB_R30C32.COUT Tbyp 0.350R  n168dd_25/plus/plus/u8/S0_1/CO_6

CLB_R29C32.CIN net 1.171R dd_25/plus/plus/u8/S0_1/CO_6

 Tsum+Tick 1.910R  n166dd_25/plus/plus/u8/S0_1/CO_7

 ___-return55<7>

n165

-------------------------------------------------------------------

Total (45.3% logic, 54.7% route)          18.416ns (to n117)

After mapping the design, the total delay with estimated net
delays was 12.983ns. The block delays contributed about 8ns.
Simply doubling the block delays would give 16ns, which is not



Quick Start Guide for Xilinx Alliance Series 1.4

3-20 Xilinx Development System

far from what was achieved with the default place and route
effort level for this simple design.

Note: As an exercise, you can create another revision and set the
overall place and route effort level to the maximum value. As a refer-
ence, running the design with the maximum placer effort and 1 delay
based clean-up pass results in a worst case path time of under 16ns.
Given the block delays of 8ns, this is better than the 50% logic, 50%
routing rule.

8. Select File → Exit to close the Timing Analyzer.

As the Timing Analyzer closes, you can choose to save the gener-
ated reports or simply discard the results.

Step 7: Using the Flow Engine to Create Timing
Simulation Data

With the design placed and routed and the timing statically verified
using the Timing Analyzer, you can create timing simulation data.
Because the tutorial files were created using Synopsys, we will target
VHDL as the back-annotated format for the simulation data.

1. To invoke the Flow Engine, click on the Flow Engine icon in the
Toolbox.

2. The Flow Engine is invoked in the routed state to create the
desired VHDL format simulation data, we must do two things.

a) First, select timing simulation data as a target.

b) Second, select VHDL as the output format for the data
created. The first is accomplished in the Options dialog while
the second option is set in the Implementation template.

3. Select Setup → Options to open the Options dialog.

The first option we need to specify in the Options dialog is the
timing simulation data option.

4. Click on the Produce Timing Simulation Data option to select it as
a desired target.

With the target specified, we now need to specify the desired
format of the data to be created.



Alliance Series Design Implementation Tools Tuto-

Quick Start Guide for Xilinx Alliance Series 1.4 3-21

5. Click on the Edit Template button to the right of the Implementa-
tion template pulldown list box.

The XC4000 Implementation Options dialog is displayed.
Because we are creating the data for a particular interface, the
option we need to set is located in the Interface tab.

6. Click on the Interface tab at the top of the XC4000 Implementa-
tion Options dialog.

7. Select VHDL in the Format pulldown list box located in the
Simulation Data Output section.

8. Click OK to close the XC4000 Implementation Options dialog.
Click OK to close the Options dialog.

The flow is now updated to include the Timing phase. Refer to
the  “Completed Timing Stage” figure.

Note: If you had created configuration data and then selected the
Timing phase, the Flow Engine would have automatically backed up
the process to after the Place & Route phase.

Figure 3-11 Completed Timing Stage

9. Select Flow → Step to create the desired timing simulation data.

Note: The Flow Engine runs ngdanno to create a back-annotated
NGD file. The NGD file is then used as the input to one of the NGD2
programs to produce the desired simulation file format. For informa-
tion on the NGD2 programs, see the following chapters in the Devel-
opment System Reference Guide.

•  “NGD2EDIF” chapter

•  “NGD2XNF” chapter



Quick Start Guide for Xilinx Alliance Series 1.4

3-22 Xilinx Development System

•  “NGD2VER” chapter

•  “NGD2VHDL” chapter

Because we specified VHDL, the Flow Engine runs NGD2VHDL and
creates the files tim_sim.vhd and tim_sim.sdf. The first file is a struc-
tural VHDL file and the second is a Standard Delay Format file.

To make it easy to find these files for use in a third party simulation
environment, these files are automatically copied to the working
directory.

Step 8: Using the Flow Engine to Create
Configuration Data

After timing simulation has been performed and the static timing
analysis numbers reviewed, download data can be created. First, a
bitstream must be created for each device on the board. This is
accomplished by running the Configure phase in the Flow Engine.

1. If you don't already have the Flow Engine running, invoke it on
the Timed revision created in the previous step.

There are many configuration options available. As an introduc-
tion, we will set the input and output threshold levels to CMOS.

2. Select Setup → Options to open the Options dialog.

3. Click on the Edit Template button to the right of the Configura-
tion template pulldown list box.The XC4000 Configuration
Options dialog is displayed.

4. Click on the CMOS radio boxes in the Threshold Levels area for
both inputs and outputs.

5. Click OK to close the XC4000 Configuration Options dialog.

6. Click OK to close the Options dialog.

With the desired options set, we can now complete the imple-
mentation of this design revision by running the Configure
phase.

7. Select Flow → Run to run the Configure phase. The Flow Engine
runs a tool called bitgen to create the configuration data. Bitgen
creates two files, count8.bit and count8.ll. The first file (count8.bit)
is the actual configuration data while the second file (count8.11) is



Alliance Series Design Implementation Tools Tuto-

Quick Start Guide for Xilinx Alliance Series 1.4 3-23

the logical allocation file which is used during hardware debug-
ging to determine where the probable points in the design are.

The design.11 file is used for performing device readback using
the Hardware Debugger. For more information on device read-
back, see the  “Saving and Loading Readback Data” section of the
Hardware Debugger User Guide.

Figure 3-12 Completed Configure Stage

The Flow Engine saves the configuration options in the Bitgen
Report. Review the report using the Report Browser and verify
that the CMOS thresholds were in fact specified when creating
the configuration data.



Quick Start Guide for Xilinx Alliance Series 1.4

3-24 Xilinx Development System

8. Select Flow → Close to close the Flow Engine and the Report
Browser.

Step 9: Using the PROM File Formatter to Create
PROM Files

If you are only going to be programming a single device using the
Hardware Debugger, all that you need is the design.bit file. If you are
going to be programming several devices in a daisy chain configura-
tion, or will be programming your devices using a PROM, the PROM
File Formatter must be used to create a PROM file. The PROM File
Formatter takes in any number of bitstreams and creates one or more
PROM files containing one or more daisy chain configurations.

1. To invoke the PROM File Formatter, click on the PROM File
Formatter icon in the Toolbox.

The Formatter is invoked with a default PROM already created
containing the currently selected Configured version->revision.
At this point you can either add additional bitstreams to the
daisychain, create additional daisychains, remove the current
bitstream and start from scratch, or immediately save the current
PROM file configuration.

The status bar at the bottom of the PROM File Formatter (PFF)
denotes the PROM format, data format, current PROM size, and
percentage of the selected PROM used by the current PROM
configuration. The right half of the PFF is a directory structure
used to locate bitstreams. Only files with an extension of .bit are
shown in the list. For detailed information on how to use the
PROM File Formatter to create daisy chains or complex PROM
configurations, see the  “Configuring Multiple Device Daisy
Chains from One Parallel PROM” section of the PROM File
Formatter User Guide. This tutorial will show how to save the
default PROM file.

Notice that the currently selected PROM is an XC17256. Because
the target device for the tutorial was an XC4028EX, 668184 bits of
data are needed in the PROM to hold the configuration bitstream.
This means that the current device is 254% full. Obviously we
will need to split the data across several PROMs. The PROM
properties must be modified before the PROM can be saved.



Alliance Series Design Implementation Tools Tuto-

Quick Start Guide for Xilinx Alliance Series 1.4 3-25

2. Select File → PROM Properties to open the PROM Properties
dialog.

Figure 3-13 PROM Properties Dialog With Single PROM

The PROM Properties dialog can be used to select the PROM
format as well as the PROM type used and the number of
PROMS used to hold the desired data. Because we have more
data than space available in the XC17256 we need to split the data
into several individual PROMs.

3. Click on the Split PROM radio button.



Quick Start Guide for Xilinx Alliance Series 1.4

3-26 Xilinx Development System

Figure 3-14 Split PROM Dialog With Multiple PROMs

Notice that the PROM Device area is modified and now shows
multiple XC17256 devices. When the PROM configuration is
saved, three individual files will be saved. The Split PROM
Wizard button can be selected to invoke an automated wizard
which will allow you to customize the types and quantities of
PROMs used. For this tutorial, we will use the XC17256 PROMs
already displayed.

4. Click OK to accept the PROM Properties.

5. Select File → Save to save the three PROM files.

6. Specify the working directory as the area where the PROM
Description File will be saved.



Alliance Series Design Implementation Tools Tuto-

Quick Start Guide for Xilinx Alliance Series 1.4 3-27

The PROM File Formatter will save not only the PROM files, but
also a PROM Description File. This PDF file can be opened if
changes are needed.

7. Select File → Exit to close the PROM File Formatter.

This completes the tutorial.



Quick Start Guide for Xilinx Alliance Series 1.4

3-28 Xilinx Development System



Quick Start Guide for Xilinx Alliance Series 1.4 — 0401696 01 4-1

Chapter 4

How This Release Works

This chapter explains how the M1 Software release of the Xilinx tools
works.   The standard flow from netlist to PROM file will be
described, including discussions on options, reports, creating simula-
tion netlists, constraints, and guided implementations. Advanced
flows like re-entrant routing and multi-pass place and route will also
be discussed. This chapter contains the following sections.

•  “Starting Xilinx Tools” section

•  “Selecting Options” section

•  “Using Constraint Files” section

•  “Guiding an Implementation” section

•  “Static Timing Analysis” section

•  “Creating Simulation Files” section

•  “Downloading a Design” section

•  “Multi-Pass Place and Route” section

Refer during discussion to  “M1 Software Design Flow” figure and
“Detailed Design Flow” figure. The  “M1 Software Design Flow”
figure provides an overview of the M1 Software Design Flow; and the
“Detailed Design Flow” figure provides a detailed design flow.

Starting Xilinx Tools
To start the Xilinx tools double click on the Design Manager icon, or
at a command line type.

dsgnmgr



Quick Start Guide for Xilinx Alliance Series 1.4

4-2 Xilinx Development System

Figure 4-1 M1 Software Design Flow

Report Browser

Design Manager Flow Engine

X7923

Translate

MAP

PROM File Formatter Hardware Debugger

Configure

Timing Analyzer

EPIC Design Editor

Timing Simulation

Data

Functional

SImulation Data

Place and Route

Simulator

SXNFUCF

Constraints Netlists

NCF EDIF XNF

Logic-Level

Timing Report

Post-Layout

Timing Report

* Flow only supported by command line.

*

*



How This Release Works

Quick Start Guide for Xilinx Alliance Series 1.4 4-3

Figure 4-2 Detailed Design Flow

Creating A Project
From Design Manager (refer to “Design Manager Menu” figure),
select File → New Project. Click on the Browse button to select the
top level input netlist. Third party synthesis and schematic capture
tools create the netlists. Once the netlist has been selected, the
working directory is automatically set to the directory in which the
selected netlist resides.

design.v & design.sdfdesign.twr

NGDAnno, NGD2EDIF,

NGD2XNF, NGD2VER,


and NGD2VHDL
Trce

X8037

NGDBuild

MAP

design.ucf

PAR

design.ngd

design.ncd &

design.pcf

BitGen

design.ncd

design.xnf

design.vhd & design.sdf

design.bit

SXNF EDIF XNF

design.ncf

design.edn



Quick Start Guide for Xilinx Alliance Series 1.4

4-4 Xilinx Development System

For information on how to run the Xilinx supplied interface tools for
Synopsys, Viewlogic, Mentor Graphics, or Cadence designs, see the
following appropriate appendix.

•  “Cadence Concept and Verilog Interface Notes” appendix

•  “Alliance FPGA Express Interface Notes” appendix

•  “Mentor Graphics Interface Notes” appendix

•  “Synopsys Interface Notes” appendix

•  “Viewlogic Interface Notes” appendix

•  “LogiBLOX” appendix “Instantiated Components” appendix
“Alliance Constraints” appendix

Figure 4-3 Design Manager Menu

Implementing a Design
From the Design Manager menu, select Design → Implement. In the
Implement dialog select the part and click on Run. The Design
Manager automatically creates a new version and revision. Addi-
tional versions are created when the netlist is modified and re-imple-
mented. Additional revisions are created when the same netlist is re-
implemented with new options or constraints. The Design Manager
invokes the Flow Engine to process the design.

 Translate
The Flow Engine’s first step, Translate, merges all of the input
netlists. This is accomplished by running NGDBuild.

Map
The next step is Map. Map optimizes the gates and trims unused
logic in the merged NGD netlist. Map also maps the design’s logic
resources and performs a physical design rule check. Logic in the



How This Release Works

Quick Start Guide for Xilinx Alliance Series 1.4 4-5

design is mapped to resources on the silicon and a physical design
rule check is performed. The Map process is accomplished by
running the MAP executable.

Place and Route
Once the design is mapped, the Flow Engine places and routes the
design. In the place stage, all logic blocks, including the configurable
Logic Block (CLB) and input/output block (IOB) structures, are
assigned to specific locations on the die. If there are timing
constraints on particular logic components, the placer tries to mini-
mize those delays by moving the corresponding logic blocks closer
together. In the route stage, the logic blocks are assigned specific
interconnect elements on the die. If there are timing constraints on
particular logic components, the router tries to minimize those delays
by choosing a faster interconnect. The place and route (PAR) process
is accomplished by running the PAR executable. Refer to  “Flow
Engine Indicates Completion of Each Design Segment” figure.

Figure 4-4 Flow Engine Indicates Completion of Each Design
Segment

Configure
After place and route, the Flow Engine translates the physical imple-
mentation into a binary stream. The binary stream is used to program
the FPGA.The binary stream is saved as a configuration file (.BIT)
using the BitGen executable.



Quick Start Guide for Xilinx Alliance Series 1.4

4-6 Xilinx Development System

Analyzing Reports
The reports provide information on logic trimming, logic optimiza-
tion, timing constraint performance, and I/O pin assignment. To
access the reports, select from the Design Manager menu, Utilities →
Report Browser. To open a particular report, double click on its icon.
Refer to the  “Report Browser” figure.

Translation Report

The Translation Report contains warning and error messages from
the three translation processes: conversion of the EDIF or XNF style
netlist to the Xilinx NGD netlist, timing specification checks, and
logical design rule checks. The report lists the following.

• Missing or untranslatable hierarchical blocks

• Invalid or incomplete timing constraints

• Output contention, loadless outputs, and sourceless inputs.

Figure 4-5 Report Browser

Map Report

The Map Report (.MRP) contains warning and error messages
detailing logic optimization and logic mapping to physical resources.
The report lists the following.

• Removed logic — Sourceless and loadless signals can cause a
whole chain of logic to be removed. Each deleted element is listed
with progressive indentation, so the origins of removed logic
sections are easily identifiable; their deletion statements are not
indented.

• Added or expanded logic due to speed optimization.



How This Release Works

Quick Start Guide for Xilinx Alliance Series 1.4 4-7

• Design Summary lists the number and percentage of used CLBs,
IOBs, Flip-Flops, and Latches. It also lists the use of architectur-
ally specific resources like global buffers and boundary scan
logic.

Note: The Map Report can be very large. To find information, use key
word searches. To find sections, perform searches on  ‘---‘ , because
each section heading is underlined with dashes.

Place and Route Report

The Place and Route Report (.PAR) contains the following informa-
tion.

• Design Score — The Design Score measures the relative goodness
of the design. Lower is better. The score is strongly dependent on
the nature of the design and the part targeted, so meaningful
score comparisons can only be made between iterations of the
same design targeted for the same part.

• The Number of Signals Not Completely Routed should be zero
for a completely implemented design. If not, you may be able to
improve results by using the re-entrant route flow or the multi-
pass place and route flow. See the “Advanced Implementation
Flows” section at the end of this chapter.

• The timing summary at the end of the report details the designs
asynchronous delays. For information on timing constraint
performance and synchronous delays, refer to the  “Static Timing
Analysis” section later in this chapter.

Pad Report

The Pad Report lists the design’s pinout in three ways.

• Signals referenced according to pad numbers

• Pad numbers referenced according to signal names

• PCF file constraints. This section can be cut and pasted into the
.PCF file after the SCHEMATIC END; statement to preserve the
pinout for future design iterations.



Quick Start Guide for Xilinx Alliance Series 1.4

4-8 Xilinx Development System

Selecting Options
Options specify how a design is optimized, mapped, placed, routed,
and configured. Options are grouped into objects called implementa-
tion templates and configuration templates. Each template defines an
implementation or configuration style. For example, an implementa-
tion style could be Quick Evaluation, while another could be Timing
Constraint Driven.

Figure 4-6 Options Dialog



How This Release Works

Quick Start Guide for Xilinx Alliance Series 1.4 4-9

You can have multiple templates in a project. By choosing a template,
you are choosing an implementation or configuration style. To access
the options and templates:

• Select the Options button in the Implement dialog, or from the
Flow Engine menu select Setup → Options.

• In the Options Dialog, select the Edit Template button for Imple-
mentation or Configuration to access the associated template.

• From the Design Manager menu select Utilities → Template
Manager

The default options settings should accommodate most implementa-
tions. For information on the options, select Help → Contents from
the Design Manager menu.

Using Constraint Files
The M1 tools allow you to control the implementation of a design by
entering constraints. There are two types of constraints that you can
apply to a design: location constraints and timing constraints. Loca-
tion constraints are used to control the mapping and positioning of
the logic elements in the target device. The most common location
constraints are pad constraints. They are used to lock the pins of the
design to specific I/O locations so that the pin placement is consistent
from revision to revision.

Timing constraints tell the software exactly how fast a path must be to
meet the designers criteria. Both the placer and the router can be
timing constraint driven.

Design, Netlist, User, and Physical Constraints
Constraints can be entered throughout the design and implementa-
tion processes. Constraints can be entered during the design phase by
adding them to a schematic, specifying them to a synthesis tool, or
listing them in a user constraint file. Constraints entered directly in
the input design are known simply as design constraints and are ulti-
mately placed in the design netlist. Constraints specified during a
synthesis compilation result in a netlist constraints file
design_name.ncf. If you want your constraints separated from the
input design files, or if you want to modify your constraints without



Quick Start Guide for Xilinx Alliance Series 1.4

4-10 Xilinx Development System

having to completely re-synthesize your design, you can create a user
constraints file design_name.ucf.

Creating a User Constraint File
The User Constraint File (.UCF) is a user-created ASCII file that holds
timing and location constraints. It is read by NGDBuild during the
Translate process, and is combined with an EDIF or XNF netlist into
an NGD file. If a UCF file exists with the same name as the top-level
netlist then it will automatically be read. Otherwise, specify a file for
User Constraints in the Options dialog.

The following example shows how to lock I/Os to pin locations, and
how to write timespec and timegroup constraints.

X8076

IPAD OPAD

OPAD8

IBUF

FRED

JIM[7:0] JACK[7:0]

TED NED

OBUF

LOU[7:0]

IPAD8 IBUF8

IBUF8

Schematic of Hierarchy Block

Hierarchy Block

LOU[7:0] IT[7:0]



How This Release Works

Quick Start Guide for Xilinx Alliance Series 1.4 4-11

# This is a UCF comment

# The constraints below lock the I/O signals to pads.

# The net name that connects to the pad is used to
# constrain the I/O.

# The pin grid array packages use pin names like B3 or
# T1, instead of P<Pin Number>.

# Lock the input pins

NET FRED LOC = P18;
NET JIM<0> LOC = P20;
NET JIM<1> LOC = P23;
NET JIM<2> LOC = P24;
NET JIM<3> LOC = P25;
NET JIM<4> LOC = P26;
NET JIM<5> LOC = P27;
NET JIM<6> LOC = P28;
NET JIM<7> LOC = P38;

# Lock the output pins

NET NED LOC = P19;
NET HIERARCHY_BLOCK/<IT0> LOC = P44
NET HIERARCHY_BLOCK/<IT1> LOC = P45
NET HIERARCHY_BLOCK/<IT2> LOC = P46
NET HIERARCHY_BLOCK/<IT3> LOC = P47
NET HIERARCHY_BLOCK/<IT4> LOC = P48
NET HIERARCHY_BLOCK/<IT5> LOC = P49
NET HIERARCHY_BLOCK/<IT6> LOC = P50
NET HIERARCHY_BLOCK/<IT7> LOC = P462

For more information on constraint precedence, refer to the Libraries
Guide.



Quick Start Guide for Xilinx Alliance Series 1.4

4-12 Xilinx Development System

The second example shows how to specify timing constraints.

---User Constraint File (UCF):

# This is a comment

# Period specifies minimum PERIOD of CLK net. Offset
# specifies that data on MAY can arrive up to 6 ns
# before the clock edge arrives on CLK.

# NOTE: Period constraints do not apply to elements in
# output pads.

NET CLK PERIOD = 20 ns ;
NET MAY OFFSET = IN : 6ns : before : CLK_PD ;

# Groups all clocked loads of CLK2 into CLK2_LOADS
# timegroup

X8075

QD

C C

QD
MAY

CLK_PD CLK

IPAD IBUF OBUF OPAD

BUFGIPAD

TOM TIM JIM JOE

QD

A[3:0]

WE*

*

* Nets not used in timing constraints.

C

C

QD
JEN

CLK2_PD CLK2_I CLK2

IPAD OPAD

SYNCHRONOUS

RAM OFDIFD

IBUF BUFGIPAD

BOB VAL AL
QD

C



How This Release Works

Quick Start Guide for Xilinx Alliance Series 1.4 4-13

# Groups all clocked loads of VAL into VAL_LOADS
# timegroup TNM # => Timegroup Name

NET CLK2 TNM=CLK2_LOADS ;

NET VAL TNM=VAL_LOAD ;

# Specifies worst case speed of path from IPAD to CLK2
# loads.
# Includes pad, buffer, and net delays. TS0l is a
# timespec identifier; it
# can have names of the form
# TS<string>. PADS(CLK2_PD) is a
# timegroup name specified inside of a timespec.

TIMESPEC TS01=FROM:PADS(CLK2_PD):TO:CLK2_LOADS=15ns ;

# Specifies the maximum frequency for all loads
# clocked by CLK2.

TIMESPEC TS02=FROM:CLK2_LOADS:TO:CLK2_LOADS=30Mhz ;

# Specifies the minimum delay on the path from
# Synchronous

# RAM to OFD. Includes clock to Out delay, net delay,
# and setup time.

TIMESPEC TS03=FROM:CLK2_LOADS:TO:VAL_LOAD=15000ps ;

Guiding an Implementation
In a design process a design is modified and implemented many
times. The changes are such that from one implementation to the next
there are parts of the design that do not change. Guiding a design
accelerates iterative implementations by reusing the unchanged
sections from a previous implementation on current implementa-
tions. The software therefore only has to spend time generating
implementations for sections of the designs that have changed. In the
M1 tools, guiding is used during map, place, and route. Guiding a
design can significantly reduce run times, since less processing has to
occur.

To select a previous implementation to guide a current implementa-
tion, open the Options dialog. In the Guide Design dropdown box,
you can select previously implemented revisions, Project Clipboard,
Custom, or None. The Project Clipboard is used to save the guide
data of revisions that are being overwritten. Guide data can be saved
to the Project Clipboard by selecting the Copy <previous revision>



Quick Start Guide for Xilinx Alliance Series 1.4

4-14 Xilinx Development System

guide data to project clipboard button in the Implement dialog. NCD
files created outside of the project can be used for guiding by
selecting the Custom option. In the Custom dialog pop-up, be sure to
enter a mapped NCD file, and a placed and routed NCD file. If guide
files aren’t needed, select None.

Exact Guide Mode
When guiding in exact mode, the unchanged logic is not modified in
any way. This mode is fastest, but least flexible. Use this mode if the
design iteration requires only minor changes. Exact mode is the
default value. It can be selected by having the Match Guide Design
Exactly button pressed in the Options dialog.

Leveraged Guide Mode
When guiding in leveraged mode, the mapping, place, or route of the
unchanged logic can be modified if the tools need to make layout
changes to accommodate new logic. Use this mode if significant
changes have occurred, such as re-synthesis of an entire hierarchical
block.

Leveraged mode is automatically selected when the Match Guide
Design Exactly button is not selected in the Options dialog.

Static Timing Analysis
Timing analysis can be performed at several stages in the implemen-
tation flow to gauge delays. A post-map timing report can be gener-
ated to evaluate the effects of logic delays on timing constraints, clock
frequencies, and path delays. A post-place-and-route timing report,
that incorporates both logic and routing delays, can be generated as a
final evaluation of the design’s timing constraints, clock frequencies,
and path delays. Detailed timing constraint, clock, and path analysis
for post-map or post-place-and-route implementations can be accom-
plished by using the interactive Timing Analyzer tool.

Static Timing Analysis After Map
Post-map timing reports can be very useful in evaluating timing
performance. The report uses real block delays and estimates for the
route delays. Although the delays are estimates, they provide
valuable information.



How This Release Works

Quick Start Guide for Xilinx Alliance Series 1.4 4-15

If logic delays account for a significant portion (> 50 percent) for the
total allowable delay of a path, the path may not be able to meet your
timing requirements once the real routing delays are added. In fact, if
the logic-only-delays exceed the total allowable delay for a path or
constraint, then the place and route process need not be run since the
routing delays will only cause the path’s timing to degrade. Routing
delays typically account for 40 percent to 60 percent of the total path
delays. By identifying problem paths, you can mitigate potential
problems before investing time in place and route. You can redesign
the logic paths to use fewer levels of logic, tag the paths for special-
ized routing resources, move to a faster device, insert flip flops in the
path, or allocate more time for the path.

If logic-only-delays account for much less (<15 percent) than the total
allowable delay for a path or timing constraint, then very low place-
ment effort levels can be used by the place and route tool. In these
cases, reducing effort levels allow you to decrease run times while
still meeting performance requirements.

Static Timing Analysis After Place and Route
Post-PAR timing reports incorporate real block and real route delays
to provide a comprehensive timing summary. If a placed and routed
design has met all of your timing constraints, then you can proceed
by creating configuration data and downloading a device. If you
identify problems in the timing reports, you can try fixing the prob-
lems by increasing the placer effort level, using re-entrant routing, or
using multi-pass place and route. You can also redesign the logic
paths to use less levels of logic, tag the paths for specialized routing
resources, move to a faster device, insert flip flops in the path, or
allocate more time for the paths.

You can identify paths that can be ignored, or identified as slower
exceptions.

Edit the implementation template to modify the placer effort level.
For information on re-entrant routing or multi-pass place and route,
see the “Advanced Implementation Flows” section at the end of this
chapter.

Summary Timing Reports
Implementing a design in the Flow Engine can automatically
generate summary timing reports. The summary reports show timing



Quick Start Guide for Xilinx Alliance Series 1.4

4-16 Xilinx Development System

constraint performance and clock performance. To create summary
timing reports.

• Open the Options dialog

• For a post-MAP report, select the Produce Logic Level Timing
Report button

• For a post-PAR report, select the Produce Post Layout Timing
Report button

• To modify the reports to detail path delays or paths failing timing
constraints.

• Edit the template implementation

• Select the timing tab

• Select a report format

• Once MAP or PAR has completed, the respective timing reports
will appear in the report browser.

Detailed Timing Analysis
To perform detailed timing analysis, select Tools →Timing Analyzer
from the Design Manager menu. You can specify specific paths for
analysis, discover paths not covered by timing constraints, and
analyze the timing performance of the implementation based on
another speed grade. For path analysis.

• Choose sources. From the Timing Analyzer menu select Path
Filters → Path Analysis Filters → Select Sources

• Choose destinations. From the Timing Analyzer menu select Path
Filters → Path Analysis Filters → Select Destinations

• To create a report, select Analyze → All Paths

To switch speed grades.

• Select Options → Speed Grade. After a new speed grade is
selected, all new Timing Analyzer reports will be based on the
design running with new speed grade delays. The design does
not have to be re-implemented, because the new delays are read
from a data file.



How This Release Works

Quick Start Guide for Xilinx Alliance Series 1.4 4-17

Creating Simulation Files
Once the design is implemented, a timing simulation can be
performed to test the timing requirements and functionality of your
design. Timing simulation can save considerable time by reducing
time spent debugging test boards in the lab. Functional simulation
can help you to further save time by uncovering design bugs before
running Place and Route.

When Can Simulation Data Be Created
The M1 tools allow you to create simulation data after each major
processing step. This means that you can create functional simulation
netlists after the design has been merged together by NGDBuild in
the Translate process, and timing simulation netlists after the design
has been placed and routed by PAR. Additionally, you can create
simulation data after the design has been mapped, or after the design
has been placed but not routed.

Simulation data created after the design has only been mapped
contains timing data based on the CLB and IOB block delays, and
most net delays are zero.

Post-MAP simulation allows you to ensure that the design’s current
implementation will give the place and route software sufficient
margin to route the design within your timing requirements.

Simulation data created after the design has been placed but not
routed, contains accurate block delays and estimates for the net
delays. Post-place simulation can be used as an incremental simula-
tion step between post-MAP simulation and a complete post-route
timing simulation.

Creating Timing Simulation Data
To create timing simulation data.

• Open the Options dialog and select the Produce Timing Simula-
tion Data option.

• In the same dialog, click on the Edit Template button for Imple-
mentation.

• In the Implementation Template dialog, select the interface tab.



Quick Start Guide for Xilinx Alliance Series 1.4

4-18 Xilinx Development System

• Select the desired simulation netlist format: EDIF, VHDL, Verilog,
or XNF.

• If you select EDIF, choose a Vendor: Generic, ViewLogic, or
Mentor.

• Select Correlate Simulation Data to Input Design if you are using
a simulation stimulus file or test fixture that was used for func-
tional simulation, and that has signal names that were optimized
out of the design during implementation.

With these options selected, the Flow Engine will automatically
create a post-route simulation netlist of the format you have selected,
during the Timing stage. To access the simulation netlist in the Design
Manager, select the revision and from the menus choose Design →
Export. In the Export dialog, select Timing Simulation Data and the
directory you want the file exported to. When you hit OK, the listed
netlist will be copied to the selected directory. Use the netlist as an
input to your simulator to perform a timing simulation.

Note: For information see the “NGDAnno” chapter of the
Development System Reference Guide.

Creating Functional Simulation Data
Functional simulation netlists should be created using tools from the
simulation vendor (Synopsys, Viewlogic, Mentor Graphics, and
Cadence) and the Xilinx interface software. The implementation
processes do not need to be invoked to create functional simulation
netlists. However, if your design contains modules with varying
netlist formats that the Xilinx interface software is unable to process,
you can run NGDBuild on the design to create a single
design_name.ngd and then create a simulation netlist using a
translation tool: NGD2VHDL, NGD2VER, NGD2EDIF, or NGD2XNF.
The following commands create a functional simulation netlist.

ngdbuild design_name

ngd2edif design_name

NGD2XNF can be used to create a Xilinx Netlist Format file
containing version 6.0 XNF primitives. This file can then be used by
any third-party simulator, even one that does not yet support EDIF,
VHDL, or Verilog formats.



How This Release Works

Quick Start Guide for Xilinx Alliance Series 1.4 4-19

Downloading a Design
An implemented design can be downloaded directly from your PC or
workstation, using the Hardware Debugger program and the
XChecker cable.

The Hardware Debugger can download a bit file or a PROM file:
MCS, EXO, or TEK.

For more information on downloading the Hardware Debugger or
the XChecker cable, see the “Downloading Basics” section of the
Hardware Debugger Reference/User Guide.

Creating a PROM
An FPGA or daisy chain of FPGAs can be configured from serial or
parallel PROMs. The PROM File Formatter can create MCS, EXO, or
TEK style files. The files are read by a PROM programmer that turns
the image into a PROM.

A HEX file can also be used to configure an FPGA or a daisy chain of
FPGAs through a microprocessor. The file is stored as a data structure
in the microprocessor boot-up code.

In-Circuit Debugging
Once a design has been downloaded to an FPGA, snapshots of
internal signal states can be captured and read using the Hardware
Debugger program and the XChecker cable. You can display the
signal states as waveforms in the Hardware Debugger. This capa-
bility allows you to test and debug your design in a real-time envi-
ronment as it interfaces with components on your board. You can also
control the states of your state machines, by controlling when clock
edges are sent to your system clock input.

For more information on in-circuit debugging, the Hardware
Debugger, or the XChecker cable, see the “Debugging Basics” section
of the Hardware Debugger Reference/User Guide.

Advanced Implementation Flows
The place and route software, PAR, has features that allow it to
process complex designs that have tight timing requirements and/or



Quick Start Guide for Xilinx Alliance Series 1.4

4-20 Xilinx Development System

are difficult to route. PAR options can be varied in many different
ways— this section shows the most common strategies.

Re-Entrant Route
PAR can take an implemented design as an input, and use it as the
starting point for routing. If your design is placed but not routed,
PAR will use the placement and just spend time routing the design. If
your design is partially routed, PAR will use the existing placement
and routing and only spend time routing the unrouted signals. If
your design is completely placed and routed but not meeting timing
specifications, PAR can start from where it left off and continue re-
routing the design to come up with an implementation that meets
your timing specifications.

As PAR is running, it continually updates the NCD file with its
current placement and routing information. As long as an NCD file
exists that is at least placed, PAR can used it for re-entrant routing. To
execute re-entrant routing.

• In the Design Manager, select the implemented revision, and
select the Flow Engine button in the toolbox.

• In the Flow Engine, select the Setup → Advanced menu.

• In the Advanced dialog, select the Allow Re-Entrant Route
button, which enables the re-entrant route options.

• If meeting timing specifications is a critical goal for the route,
then select the Use the Timespecs button during re-entrant route.
If meeting timing specifications is not critical, then do not select
the button because timing driven route takes much longer to
process than non-timing driven route.

• You can select the number of re-entrant routing passes to be
done. If left in “Auto,” PAR will continue to perform routing iter-
ations until either it determines that it is no longer making signif-
icant progress or the design constraints have been fully met.

You can also select the number of cleanup passes to run. Two
types of clean-up routing passes can be invoked—Cost Based and
Delay Based. Cleanup passes are run after the “main” routing
passes are complete. The effectiveness of each type depends on
the design, device, and constraints of the implementation. No
predictable criteria can be suggested to choose one style over the



How This Release Works

Quick Start Guide for Xilinx Alliance Series 1.4 4-21

other. The best methodology is to select no more than three
passes for each (in most cases, a single pass for each is sufficient),
and use the PAR report to determine which was most effective
and try using more clean-up passes of that style.

• Click on OK in the Advanced dialog to submit the options. This
causes the Place and Route icon in the Flow Engine to show a
loop back arrow and the Re-Entrant route label.

• If you are specifying timing or location constraints, you may
want to relax them to give PAR more flexibility. If you modify the
UCF file, you must step the Flow Engine back and run Transla-
tion in order to incorporate the changes. Since your design is
already implemented, step back to the beginning of Place &
Route using the Step Backward button at the bottom of the Flow
Engine, and then click the button to start again.

Multi-Pass Place and Route
If a design has not completed routing or the meeting of timing
constraints, then you can use PAR to perform a more extensive search
for a solution. PAR can produce multiple placed and routed revisions,
each revision with varying implementations. PAR scores each imple-
mentation, choosing the best revisions based on the score. By
choosing the best implementation from a large population, PAR is
more likely to find a solution that meets your requirements.

If you are using the M1 software on networked UNIX workstations,
then to significantly reduce run time, the place and route passes can
be run in parallel, by executing each pass on a separate machine. To
execute Multi-Pass Place and Route.

• In the Design Manager, be sure to select a version and not a revi-
sion, and then from the menu choose Design → FPGA Multi-
Pass Place and Route.

• In the FPGA Multi-Pass Place and Route dialog, select a value for
the Initial Placement Seed (Cost Table). The Initial Placement
Seed is a value that initializes the Place and Route algorithms.
Each iteration receives an incremented value of the starting
strategy. For initial runs, set the Seed to 2, since 1 was used in
your previous single- pass run.

• Select the Place and Route passes to execute.



How This Release Works

Quick Start Guide for Xilinx Alliance Series 1.4 4-22

• Select the number of iterations to save. Based on the design score,
only the files from the best runs are saved. If you are running on
an UNIX workstation, are licensed for the Turns Engine and want
to run on multiple UNIX workstations, select a nodelist file. A
nodelist file is a user-created ASCII file that lists the names of the
workstations on which you want to run. Each name should be on
a separate line. There should not be any tabs or spaces.

• Click OK to launch the Multi-Pass Place and Route Process.



Quick Start Guide for Xilinx Alliance Series 1.4 — 0401696 01 A-1

Appendix A

Cadence Concept and Verilog Interface Notes

This appendix covers how to set up the Cadence Concept interface
for schematic entry, and Verilog-XL for simulation. Included are
recommendations on methods for locking pins and entering timing
constraints. This appendix contains the following sections.

•  “Documentation” section

•  “Setting Up the Xilinx/Cadence Interface” section

•  “Cadence/Verilog and M1 Design Flow” section

•  “Setting Up for Concept” section

•  “Using HDL Direct” section

•  “Iterated Instances Versus Size Support” section

•  “Starting Up Concept” section

•  “Functional Simulation” section

•  “Translating a Design to Xilinx EDIF” section

•  “Timing Simulation” section

•  “Support for Board Level Simulation” section

•  “Pin Locking” section

•  “Timing Constraints” section

Documentation
The following documentation is available for the Cadence interface.

• Cadence Interface/Tutorial is available on the CDROM supplied
with your software.



Quick Start Guide for Xilinx Alliance Series 1.4

A-2 Xilinx Development System

• The Cadence software documentation (for Cadence applications
such as Concept and Verilog-XL) is available only from Cadence
in Online format. It is viewable by entering “openbook” on the
UNIX command line.

• The Alliance M1.4 Software Release Notes describes current
issues regarding the use of the Cadence interface.

Setting Up the Xilinx/Cadence Interface
In addition to the environment variables discussed in the Chapter 1,
the following environment variables must be modified or added to
run the Xilinx/Cadence interface tools.

• CDS_INST_DIR (add for Concept)

• VERILOGEXE (add for Verilog-XL)

• XAPPLRESDIR (add for Verilog-XL)

• XNLSPATH (add for Verilog-XL)

• XKEYSYMDB (add for Verilog-XL)

• path (modify)

• LD_LIBRARY_PATH (modify for SunOS/Solaris))

• SHLIB_PATH (modify for HP/UX)

• LIBPATH (modify for IBM RS6000)

These variables should be set in the following manner.

setenv CDS_INST_DIR <installation_path_to_cadence>

setenv VERILOGEXE $CDS_INST_DIR/tools/verilog/bin/
verilog

setenv XAPPLRESDIR $CDS_INST_DIR/tools/verilog/etc

setenv XNLSPATH $CDS_INST_DIR/tools/verilog/etc/nls

setenv XKEYSYMDB $CDS_INST_DIR/tools/verilog/etc/
XKeysymDB

set path = ( $XILINX/cadence/bin/ <platform_name>
$CDS_INST_DIR/tools/bin $CDS_INST_DIR/tools/pic/
picdesigner/bin $CDS_INST_DIR/tools/editor/lib
$CDS_INST_DIR/tools/dfII/bin $path)



Cadence Concept and Verilog Interface Notes

Quick Start Guide for Xilinx Alliance Series 1.4 A-3

For SunOS and Solaris only.

setenv LD_LIBRARY_PATH $CDS_INST_DIR/tools/lib:
$CDS_INST_DIR/tools/verilog/lib:
<path_to_x11_libs>:
/usr/lib:$OPENWINHOME/lib:$LD_LIBRARY_PATH

For HP/UX only.

setenv SHLIB_PATH $CDS_INST_DIR/tools/lib:
$CDS_INST_DIR/tools/verilog/lib:/usr/lib:/lib:
<path_to_x11_libs>: $SHLIB_PATH

For IBM RS6000 only.

setenv LIBPATH $CDS_INST_DIR/tools/lib:$CDS_INST_DIR/
tools/verilog/lib:/usr/lib:/lib:$LIBPATH

Note: It is common for users to create a soft link called “tools” under
$CDS_INST_DIR, and to link it to the directory $CDS_INST_DIR/
tools.<platform>, where platform is “hppa” (for HP7), “sun4” (for
SunOS), “sun4v” (for Solaris), or “ibmrs” (for IBM RS6000). If your
Cadence tool directory is not set up in this way, then substitute
“tools.<platform>” where you see “tools” above.

For example:

setenv CDS_INST_DIR /products/cds.ver97a

setenv VERILOGEXE $CDS_INST_DIR/tools/verilog/bin/
verilog

setenv XAPPLRESDIR $CDS_INST_DIR/tools/verilog/etc

setenv XNLSPATH $CDS_INST_DIR/tools/verilog/etc/nls

setenv XKEYSYMDB $CDS_INST_DIR/tools/verilog/etc/
XKeysymDB

setenv LD_LIBRARY_PATH $CDS_INST_DIR/tools/lib:
$OPENWINHOME/lib : /usr/lib :/tools/x11r5/sun4/lib:
$LD_LIBRARY_PATH

set path = ( $XILINX/cadence/bin/sun \

$CDS_INST_DIR/tools/bin \

$CDS_INST_DIR/tools/pic/picdesigner/bin \

$CDS_INST_DIR/tools/editor/lib \

$CDS_INST_DIR/tools/dfII/bin \

$path)



Quick Start Guide for Xilinx Alliance Series 1.4

A-4 Xilinx Development System

Note: The previous settings assume that the XILINX and
LD_LIBRARY_PATH environment variables point to the appropriate
areas.

Cadence/Verilog and M1 Design Flow
The design flow (refer to “Cadence/Verilog Interface and M1 Design
Flow” figure) shows how Cadence Concept and Verilog-XL interact
with the Xilinx M1 Software. The design flow shows design entry,
functional simulation, implementation, and timing simulation.

• The design is first entered into Concept, using the appropriate
HDL Direct library (hdl_direct_lib) and the appropriate Xilinx
Concept library for the device architecture.

• If the design is purely schematic, it can then be passed to Verilog-
XL for functional simulation after analyzing it with Concept
2XIL.



Cadence Concept and Verilog Interface Notes

Quick Start Guide for Xilinx Alliance Series 1.4 A-5

Cadence

Figure A-1 Cadence/Verilog Interface and M1 Design Flow

SIMPRIM-Based

Functional Simulation

Recommended

X7929

Verilog-XL

Concept2XIL

NGDBuild

Design

Manager

Flow Engine

Unified Library Based

Functional Simulation

NGD2VER -tf -ulMAP

PAR

NCDMRP

BIT

Post-Implementation

Timing Simulation

Highly

Recommended

PINPKG Verilog SDF

Testbench Template

NGA

User-Specified

Verilog


Testbench

via HDL-Direct

Verilog

Unified


Simulation

Library

Verilog

*.V files

NGDAnnoBitGen

EDF

Concept2XIL  -sim_only

NGD2VER -tf -ul -pf

NGD

NCD

NGM

.V file .VF file

Verilog-XL

Edit

User-Specified

Verilog Testbench

Verilog

SIMPRIM

Library

Structural

Verilog Netlist

Edit

User-Specified

Verilog Testbench

Verilog

Verilog

SIMPRIM

Library

Verilog-XL

Testbench Template

Highly

Recommended

Schematic Entry

Design Flow

genview

Concept

LogiBLOX

To NGDBuild

Schematic

Design

Concept

Unified


Schematic

Library

Body fileNGO

.V

Refer to Figures A-2 and A-3
for enlarged versions of
this figure.



Quick Start Guide for Xilinx Alliance Series 1.4

A-6 Xilinx Development System

Figure A-2 Top Portion of Figure A-1

X7930

Verilog-XL

Concept2XIL

Unified Library Based

Functional Simulation

Highly

Recommended

User-Specified

Verilog


Testbench

via HDL-Direct

To

NGDBuild

Verilog

Unified


Simulation

Library

Verilog

*.V files

EDF

.V file .VF file

Schematic Entry

Design Flow

genview

Concept

LogiBLOX

To NGDBuild

Schematic

Design

Concept

Unified


Schematic

Library

Body fileNGO

.V

Concept2XIL  -sim_only



Cadence Concept and Verilog Interface Notes

Quick Start Guide for Xilinx Alliance Series 1.4 A-7

Figure A-3 Bottom Portion of Figure A-1

SIMPRIM-Based

Functional Simulation

Recommended

From

Concept2XIL

X7931

Design

Manager

Flow Engine

NGD2VER -tf -ul

MRP

BIT

Post-Implementation

Timing Simulation

PINPKG Verilog

NGDAnno

NGD2VER -tf -ul -pf

NGD

NCD

NGM

Verilog-XL

Edit

User-Specified

Verilog Testbench

Verilog

SIMPRIM

Library

Structural

Verilog Netlist

Edit

User-Specified

Verilog Testbench

Verilog

Verilog

SIMPRIM

Library

Verilog-XL

Testbench Template

Highly

Recommended

SDF

BitGen

PAR

NCD

MAP

NGDBuild

Testbench Template

NGA



Quick Start Guide for Xilinx Alliance Series 1.4

A-8 Xilinx Development System

• Once the design is verified, the Concept schematic is processed
by CONCEPT2XIL to create an EDIF (EDF) file.

• If the design contains non-schematic blocks, then functional
simulation may be performed after NGDBuild is completed. All
designs can be simulated at this point since non-schematic
blocks, if any exist, are merged together by NGDBuild.

• The EDF file is passed to the Xilinx Alliance Series Design Imple-
mentation Tools (Design Manager Flow Engine) for implementa-
tion.

• The Xilinx core tools create a structural back-annotated Verilog
file for timing simulation, and can optionally create a template
test fixture file.

• Simulation vectors are added to a copy of the test fixture
template, then the Verilog netlist and the test fixture are passed to
Verilog-XL for timing simulation.

Setting Up for Concept
The Xilinx/Concept interface requires that three files be present in
the design directory. The following is a brief discussion of those files
(global.cmd, master.local, and cds.lib). Refer to the Cadence Interface/User
Guide (located on the CDROM supplied with your software) for more
information.

Global.cmd File
global.cmd

You will need a global.cmd file that references the proper libraries.
Here is a sample global.cmd.

master_library "./master.local" ;

library "xce4000ex" ,

        "xcepads",

        "hdl_direct_lib",

“standard” ;

use "my_design.wrk" ;

root_drawing "my_design" ;



Cadence Concept and Verilog Interface Notes

Quick Start Guide for Xilinx Alliance Series 1.4 A-9

The entries following the “library” reference are aliases to libraries
from which you can access components for your design, in addition
to those listed in $CDS_INST_DIR/lib/master.lib.

One of the entries in the “library” reference must point to the Xilinx
family of devices you are using. In this example, the “xce4000ex”
alias points to the XC4000EX family library. The explicit path to each
library is defined in master.local. Note the presence of
“hdl_direct_lib”; this is required for HDL Direct Support. The
“xcepads” library contains the Xilinx pad symbols. The “use” line
points to a file (typically with a .wrk extension) that Concept can use
to store references to blocks which are specific to your design. If your
global.cmd file has a “use” directive specifying a .WRK file, Concept
will create the specified file for you if it does not already exist (as in
the case of a new design).

Master.local File
master.local

The master.local file contains the actual UNIX path to the libraries
referenced in global.cmd. It does not need to contain the path to
libraries that are local, or which are standard Cadence-supplied
libraries specified in $CDS_INST_DIR/lib/master.lib. The following
is an example master.local file for a 4000EX design.

file_type = master_library;

"xce4000ex" '/xilinx/cadence/data/xce4000ex/

xce4000ex.lib';

"xcepads" '/xilinx/cadence/data/xcepads/
xcepads.lib';

end.

Do not use variables (such as $XILINX) in this file; absolute path
names are required.

Cds.lib File
cds.lib

This file is required by Concept2XIL, and it must point to the location
that contains the VAN (Verilog Analyzer)-compiled Verilog library
files. As an example, here is a sample cds.lib file for a 4000EX design.



Quick Start Guide for Xilinx Alliance Series 1.4

A-10 Xilinx Development System

define xce4000ex_syn /xilinx/cadence/data/
xce4000ex_syn

The format for entries in this file is.

define <target_tech>_syn <path_to_XILINX>/cadence/data/
<target_tech>_syn

where target_tech is xce3000, xce4000e, xce4000ex, xce5200, xce7000,
or xce9000.

Using HDL Direct
The M1 Xilinx/Cadence Interface does not support SCALD method-
ology for design entry. HDL Direct design methodology is required.
HDL Direct must be enabled whenever a schematic sheet is saved.
Putting the following commands in your startup.concept file will acti-
vate HDL Direct every time Concept is invoked.

set hdl_direct on

set hdl_checks on

set check_signames on

set check_net_names_hdl_ok on

set check_port_names_hdl_ok on

set check_symbol_names_hdl_ok on

set capslock_off

runopl <installation_path_to_cadence>/tools/fet/
concept/hdl_direct/bin/autosym

When processing designs entered using SCALD methodology, refer
to “Appendix C” of the HDL Direct User Guide (from Cadence) for
complete information on converting these designs for HDL Direct
compliance.

Iterated Instances Versus Size Support
The M1 Cadence Interface and Libraries do not support the SIZE
property. Iterated instances should be used instead (which essentially
consist of adding a bus index to the PATH attribute of the symbol
body instance). Refer to the Cadence HDL Direct User Guide for more
information.



Cadence Concept and Verilog Interface Notes

Quick Start Guide for Xilinx Alliance Series 1.4 A-11

Starting Up Concept
To start the Concept editor, type.

concept &

Functional Simulation

Testfixture: Asserting the Global Set Reset in a Pre-
NGDBuild Unified Library Functional Simulation

In a netlist for a 4000E(X) design that uses STARTUP, the Global Set
and Reset (“GSR”) net that leads to every flip-flop is connected to the
STARTUP block implicitly. Toggling the signal that controls the GSR
pin is needed to begin simulation and to simulate resetting the
device. Even if your design does not utilize the STARTUP block, the
GSR line should be pulsed once at the beginning of simulation to
simulate the initial behavior of the device.

In the Unified Library functional simulation, if the design contains a
STARTUP block, you must connect the logic that controls the GSR pin
on the STARTUP block to the underlying global GSR net by using a
`define directive to specify a macro called “GSR_SIGNAL.”

`define GSR_SIGNAL testfixture.design.signal_on_GSR_pin

Here testfixture is the name of the testfixture module, design is the
instance name of the instantiated design, and signal_on_GSR_pin is
the net name that sources the STARTUP GSR pin.

The signal that actually hooks up to the STARTUP GSR pin should be
used. In your testfixture, you may proceed to assign values to the
input pin that you use as your global reset (you do not have to assign
values to the attatched to the STARTUP block GSRpin signal itself).
For example, assuming “global_reset” is the name of the port control-
ling the GSR pin on the STARTUP symbol.

module my_testfixture(input_net, output_net, global_reset);
`define GSR_SIGNAL my_testfixture.uut.signal_on_GSR_pin

.....

my_design out (.in(input_net), .out(output_net),
.global_reset(global_reset));

.....



Quick Start Guide for Xilinx Alliance Series 1.4

A-12 Xilinx Development System

initial begin

global_reset=1;
#300 global_reset=0;

//assign inputs

However, if the STARTUP block is not used, you must directly drive
the GSR. You may again use the `define directive to define a GSR
signal, even though it does not explicitly exist in the schematic or
HDL code. To do this, you would define a dummy Verilog register
"reg test.GSR" (assuming the testfixture module name is “test”, which
is a name we recommend if you want to reuse the testfixture with
post-NGDBuild simulation). You then need to use the `define to hook
it up to the verilog models, and drive “test.GSR” in your stimulus.

reg test.GSR;

`define GSR_SIGNAL test.GSR
.....
.....

initial begin

test.GSR=1;
#300 test.GSR=0;

//assign inputs now

• For the 5200 family (which has a STARTUP symbol available),
there is a global reset signal called “GR,” use.

`define GR_SIGNAL testfixture.design.signal_on_GR_pin

instead. If you are not using STARTUP, then you must define a
dummy signal, as discussed above.

• For the 9500 family, to model the global PRLD signal, use.

reg PRLD
//no 9K STARTUP, so use this dummy register value

`define PRLD_SIGNAL test.PRLD
.....
.....

initial begin

test.PRLD=1;
#300 test.PRLD=0;

//assign inputs now



Cadence Concept and Verilog Interface Notes

Quick Start Guide for Xilinx Alliance Series 1.4 A-13

• For the 3000A family, use.

reg GR; //no 3K STARTUP, use this example.

`define GR_SIGNAL test.GR

Use a similar procedure as previously described for the 9500.
(Note that GR on a 3000A is active-Low.)

Pure Concept Schematic Functional Simulation
It is possible to functionally simulate your design before translating
the design, if the design is purely schematic (if there are no “black
boxes” in the design). Assuming that HDL Direct was activated when
the schematic was saved, you should run.

concept2xil -sim_only -family target_tech design_name

This command creates a .V and .VF (Verilog configuration file) file in
your xilinx.run directory (or optionally the directory specified with
the -rundir parameter). You must create a test fixture file (.tv) manu-
ally.

An example of a complete flow is as follows.

concept2xil -sim_only -family xce4000ex
my_design

Go to the xilinx.run directory, and create a test fixture file in a text
editor, “my_testfixture.stm,” for example, then run your Verilog-XL
simulation by entering

verilog +delay_mode_unit my_testfixture.stim
my_design.v -f my_design.vf

For more information, refer to the Cadence Interface/Tutorial Guide.

Post-NGDBuild Functional Simulation
If the design has blocks that have no schematics underneath (a block
of HDL code, for instance), then it is necessary to compile each non-
schematic block to either an NGO, EDIF or XNF file and to simulate
after the Xilinx program NGDBuild has merged all the formats into
one NGD file. Briefly, the flow is as follows.

concept2xil -family  target_tech design_name

cd xilinx.run



Quick Start Guide for Xilinx Alliance Series 1.4

A-14 Xilinx Development System

ngdbuild -p part_name  design_name

ngd2ver -ul -tf design_name.ngd

verilog +delay_mode_unit test_fixture.stim design_name.v

Translating a Design to Xilinx EDIF
To translate a Concept design into an EDIF file for the Xilinx core
tools to use, enter the following command.

concept2xil -family target_tech design_name

For example, to target my_design to the XC4000EX technology:

concept2xil -family xce4000ex my_design

The Concept2XIL program will by default put its output in the direc-
tory xilinx.run (this will be created automatically if it does not exist).
You may change this to a different directory by using the -rundir
option on the Concept2xil command line.

Note: The Concept2XIL program is only compatible with the M1.0
Concept libraries (xce***) where *** = target architecture. For example
of an M1 Concept Library name: xce9000.

Timing Simulation
After implementing your design (that is, after running MAP and PAR
on your design) and generating an annotated NGA netlist (with
NGDANNO), you must use NGD2VER to generate a structural
Verilog netlist and SDF file (Standard Delay Format) that Verilog-XL
can use.

For example, for the design “my_design”, enter the following.

ngd2ver -ul -tf my_design.nga

This creates a .V, .SDF and .TV file. The -ul option causes NGD2VER
to automatically add a “uselib” directive to the .V file that references
the Xilinx-supplied Verilog SIMPRIM libraries.

The -tf option causes NGD2VER to automatically create a test fixture
template file, which is named my_design.tv. You may either edit the
.TV file to add the appropriate stimuli, or, in most cases, you should
be able to re-use your functional simulation test fixture file.



Cadence Concept and Verilog Interface Notes

Quick Start Guide for Xilinx Alliance Series 1.4 A-15

If you re-use your functional simulation test fixture file and your
design contains a STARTUP block, and the GSR, GTS or both pins on
the STARTUP block are connected to a signal, you will need to make
one modification to the test fixture--the GSR_SIGNAL,
GTS_SIGNAL, or both) macro(s) must be commented out.

// `define GSR_SIGNAL test.uut.signal_on_GSR_pin.

If you need to integrate the design into a board level schematic, you
must also specify the -pf option to NGD2VER to obtain a .pin file for
XIL2CDS.

To run the simulation, type.

verilog my_testfixture.stim my_design.v

Verilog-XL automatically reads in the .sdf file, since there will be a
reference to it in the .V file.

Support for Board Level Simulation
Cadence ships the program XIL2CDS to produce the chips_prt, and
body file needed to integrate the Xilinx FPGA or CPLD into a
Concept board level simulation.

Typical syntax.

xil2cds <routed_design> -lwbverilog
-use <name_of_.wrk_file> -r <run _directory>
-family xce4000ex -mode all

Example: (design name is “my_design_r”, .WRK file is design.wrk,
run directory is the current directory, architecture is XC4000EX, -
mode option specifies that all pins on the package be represented on
the design body file, and -pkg specifies the location of the package
pin file).

xil2cds my_design_r -lwbverilog -use design.wrk
-r .

-family xce4000ex -mode allXIL2CDS creates a
body for the FPGA/CPLD called my_design_r_1.

Contact Cadence to obtain the XIL2CDS program and additional
details on its operation.



Quick Start Guide for Xilinx Alliance Series 1.4

A-16 Xilinx Development System

Pin Locking
You may place the PADs on specific pins of your target device by
adding the “LOC” property to the IBUF or OBUF that connects to it.
If you use a “bussed” I/O buffer symbol (for example, IBUF8), you
must add the pin constraints to the UCF file instead.

Note: You cannot put the LOC property on the PAD or the net
between the PAD and I/O buffer. If you do, it will be ignored since
Concept does not support properties on pads.

To add a LOC property:

1. Enter the “Attribute” mode, and select the IBUF/OBUF you wish
to constrain.

2. Select Add, and enter LOC in the Name field, and the pin name
in the Value field.

Valid pin syntax for the quad flat packages is P#, where # is the
actual device pin number desired. For example: LOC=P11.

Valid pin syntax for the grid array packages (BGA, PGA) is RC,
where R is the actual row and C is the actual column of the device
pin. For example: LOC=A13.

3. Select Done. You may reposition the LOC property above the
PAD, if you wish, using the Move command in Concept.

Timing Constraints
Timing constraints may be placed as properties on a TIMESPEC
symbol in the design. Click on the “Attribute” button in Concept,
then select the TIMESPEC symbol to display the list of properties.
Select “Add” to add a new property. The Timespec label (the label
that begins with “TS”) is entered in the Name field, while the timing
specification (for example, “FROM:FFS:TO:FFS=30ns”) is entered in
the Value field. By default, you may only use “TS” labels “TS01”
through “TS10” with Concept. If you wish to use other labels, you
must copy the $XILINX/cadence/data/xilinx.pff file to your design
directory, and add entries for other labels. For more information on
this subject, please refer to the Cadence Interface/Tutorial Guide. For
more information on timing constraints, see the Development System
Reference Guide.



Quick Start Guide for Xilinx Alliance Series 1.4 — 0401696 01 B-1

Appendix B

Alliance FPGA Express Interface Notes

This appendix covers how to install and start using the Alliance
FPGA Express and the Xilinx Alliance Series release. Synopsys and
the Xilinx CDROM documentation are referenced to assist the user in
finding further information. The Alliance FPGA Express is FPGA
Express software purchased from Synopsys. Foundation-Express
refers to the FPGA-Express software bundled with M1.4. Foundation-
Express is purchased from Xilinx. All references to ‘FPGA-Express’
refer to the Alliance FPGA-Express. For more information on Foun-
dation-Express, please refer to the Foundation M1.4 Quick Start Guide.

FPGA Express is a Verilog/VHDL compiler designed to work with
Windows 95 and Windows NT v4.0. FPGA Express can process either
Verilog or VHDL files. FPGA Express writes out XNF which is fully
compatible with Alliance Series Design Implementation tools. Only
the core tools and a third party simulation tool are needed in addition
to FPGA Express to fully create and simulate a design. This chapter
contains the following sections.

•  “Installation of FPGA Express” section

•  “Design Entry With FPGA Express” section

•  “Simulation With FPGA Express” section

•  “Documentation” section

•  “Alliance FPGA Express/M1.4 Design Flow” section

•  “Timing Constraints” section

•  “Porting Code from FPGA Compiler to FPGA Express” section

•  “LogiBLOX and FPGA Express” section



Quick Start Guide for Xilinx Alliance Series 1.4

B-2 Xilinx Development System

Installation of FPGA Express
Insert the FPGA Express CD into your CDROM drive. Start the
Explorer and double-click on the CDROM icon. Double-clicking on
the setup.exe “application” starts the install process.

For additional instructions on how to install FPGA Express on
Windows 95 or Windows NT, refer to the FPGA Express User’s Guide
included with the FPGA Express software from Synopsys.

Design Entry With FPGA Express
To complete a design entry, proceed with the following steps.

1. Start FPGA Express. In Windows 95 and Windows NT, FPGA
Express can be started from the “Start Bar”. Click on Program →
Synopsys → FPGA Express.

2. Enter your design as Verilog or VHDL files, using a text editor of
your choice.

3. Define your project in FPGA Express. Go to File → New Project.

4. Tell FPGA Express which file in your project is the top-level file.
Select the top-level file in the “<top level design>” drop-down
list, which is in the middle of the FPGA Express toolbar.

5. Create an implementation. Go to Synthesize → Create
Implementation.

6. Optimize the design. Note: this is the actual synthesis procedure.
Go to Synthesize → Create Implementation.

7. Write out a XNF file. Go to File → Export Netlist.

The XNF file can now be given to the M1 core tools or Design
Manager.

The FPGA Express design flow takes in Verilog or VHDL and outputs
a XNF file, which can be processed directly by the M1 core tools or
the Design Manager. For details on defining projects in FPGA
Express, entering HDL code, defining constraints in FPGA Express,
supported devices, and design issues, refer to the FPGA Express User’s
Guide included with your FPGA Express software from Synopsys.



Alliance FPGA Express Interface Notes

Quick Start Guide for Xilinx Alliance Series 1.4 B-3

Simulation With FPGA Express
FPGA Express is a synthesis tool only. Simulation of designs with
FPGA Express must be done with a third party simulation tool. For
more information on simulation with FPGA Express, refer to the
documentation of your third party simulation tool.

For VHDL simulation, the Xilinx VITAL libraries are required. The
Xilinx VITAL libraries are located in the M1.4 directory $Xilinx/vhdl,
when $Xilinx is where the M1.4 software was installed. For Verilog
simulation, the Xilinx Verilog libraries are required. The Xilinx
Verilog libraries are located in the M1.4 directory $XILINX/verilog.
$XILINX is where the M1.4 software was installed.

For more information on the HDL simulation flow with FPGA
Express, refer to Chapter 4 (ngdanno), Chapter 17 (ngd2ver), and
Chapter 18 (ngd2VHDL) of the Development System Reference Guide.
For a general overview of M1 simulation, refer to Chapter 4 of the
Development System User Guide. For information on using the Design
Manager in HDL simulation, refer to Chapter 3 of the Design
Manager/Flow Engine Reference/User Guide.

Note: There are three types of simulation possible behavioral,
post-NGDBuild, and back-annotated timing simulation.

Documentation
The following documentation is available for FPGA Express and the
Alliance Series Design Implementation tools for M1.4.

• For installation of the Alliance Series Design Implementation
Tools for the M1.4 release, refer to the Alliance M1.4 Software
Release Notes.

• For installation of FPGA Express, HDL-entry flow, and mixed
entry flows, refer to the FPGA Express User’s Guide, a hard copy
document included with your FPGA Express software from
Synopsys.

• For additional information on FPGA Express and the M1 flow,
refer to the Synopsys FPGA Express Design Guide, available via
ftp://ftp.xilinx.com/pub/swhelp/synopsys/xprsgde.zip. This
file is a Word for Windows (95) version 7.0 file.



Quick Start Guide for Xilinx Alliance Series 1.4

B-4 Xilinx Development System

Alliance FPGA Express/M1.4 Design Flow
FPGA Express is intended to be the top-level design tool in the design
flow. FPGA Express writes out a XNF file which is fully compatible
with the Alliance Series Design Implementation tools for M1.4. The
XNF file written out by FPGA Express can be accepted by NGDBuild
or the Design Manager for creation of a prom file.

In designing with FPGA Express, there are four types of simulation
possible.

• Behavioral

• Post-NGDBuild

• Post-synthesis functional

• Post-synthesis post-route timing simulation

For more specific information on simulation with FPGA Express,
refer the FPGA Express Design Guide.

Refer also to “Alliance FPGA Express/M1.4 Design Flow” figure.

Timing Constraints
FPGA Express automatically inserts timespecs into the XNF file it
writes out. Optionally, the user can choose not to write out timespecs
in the XNF file from FPGA Express. Instead, the user may write the
constraints in a .UCF file. The timespecs created by FPGA Express in
the XNF file have the FROM: TO syntax.

For more information on constraints and FPGA Express, please refer
to the FPGA Express Expert Journal at http://www.xilinx.com.

Porting Code from FPGA Compiler to FPGA Express
Read only this section if you are porting a design from FPGA/Design
Compiler to FPGA Express. If you are compiling a design originally
compiled with FPGA/Design Compiler and the code is one hundred
percent behavioral, then no modification of the code is needed. But, if
you have instantiated components from the M1 XSI or XACTstep XSI
libraries, some of these components do not exist in the FPGA Express
libraries.



Alliance FPGA Express Interface Notes

Quick Start Guide for Xilinx Alliance Series 1.4 B-5

Some of the components that can be instantiated in the M1 Software
M1.x.x flow cannot be instantiated in the FPGA Express tool, since
there are slight differences in names. For example, the BUFGP_F
which exists in the XSI component library doesn’t exist in the FPGA
Express component library. In FPGA Express, the equivalent name of
the BUFGP_F is BUFGP. For a complete listing of the library cells that
can be instantiated in FPGA Express, refer to the contents of the
following.

fpgaexpress/lib/xc3000

fpgaexpress/lib/xc4000e

fpgaexpress/libxc5200

fpgaexpress is the directory where FPGA Express has been installed on
your system. Inside each of the above, there are files with the three-
character extension .dsn. The string in front of .dsn is the name of the
CELL that can be instantiated in FPGA Express.

 In general, instantiation will not be necessary. For the 4000EX FPGA
Express flow, the following five items must be instantiated.

• I/O muxes

• Fast capture latches

• RAM

• BSCAN

• LogiBLOX

For examples of instantiation of I/O muxes, fast capture latches,
RAM, and BSCAN, please refer to Entity Coding Examples in the
appendix entitled Synopsys Interface Notes, in this manual.

Note: Refer to “Alliance FPGA Express/M1.4 Design Flow” figure.
For further information on NGDBuild, Design Manager, MAP,
NGDAnno, NGD2VER, and/or NGD2VHDL, refer to the Design
Manager/Flow Engine Reference/User Guide and to the Development
System Reference Guide.

LogiBLOX and FPGA Express
For information on using LogiBLOX and FPGA Express, please refer
to the FPGA Express Expert Journal at http://www.xilinx.com.



Quick Start Guide for Xilinx Alliance Series 1.4

B-6 Xilinx Development System

Figure B-1 Alliance FPGA Express/M1.4 Design Flow

.ngd

Behavioral Simulation

NGDBuild

NGDAnno

3rd Party Simulator

3rd Party Simulators

NGD2VER or NGD2VHDL

Timing Simulation

NGDAnno

MAP

FPGA Express

.v.vhd

.xnf

.ngd

.ncd

.nga

.ucf

X7761

.sdf

.bit and/or

prom file

structural .v

or structural


.vhdl

.ncd

Design Manager

Functional Simulation


VITAL/Verilog

Simulation

Libraries

Testbench

.ngm

Unisim

Library

.ngo



Quick Start Guide for Xilinx Alliance Series 1.4 — 0401696 01 C-1

Appendix C

Mentor Graphics Interface Notes

This appendix covers how to set up the Mentor Graphics interface
and associated libraries. You will be guided through a brief illustra-
tion on how to lock pins and enter timing constraints. This chapter
contains the following sections.

•  “Documentation” section

•  “Setting Up the Xilinx/Mentor Interface” section

•  “Mentor/Alliance Software Design Flow” section

•  “Translating a Design to Xilinx EDIF” section

•  “Timing Simulation” section

•  “Mentor-Related Environment Variables” section

•  “Library Locations and Sample MGC Location Map” section

•  “Pin Locking” section

•  “Timing Constraints” section

Documentation
The following documentation is available for the Mentor Graphics
interface.

• Mentor Graphics Interface/User Guide is available on-line and
viewable with a DynaText browser.

• Mentor Graphics software documentation (for applications such
as Design Architect, QuickSim, QuickHDL, and DVE) is available
on-line and viewable with the Mentor-supplied BOLD Browser.

• M1 Software Release Notes which describe installation setup and
current issues regarding the use of the Mentor Graphics Interface.



Quick Start Guide for Xilinx Alliance Series 1.4

C-2 Xilinx Development System

Setting Up the Xilinx/Mentor Interface
In addition to the environment variables discussed in Chapter 1, the
following environment variables must be modified or added to run
the Xilinx/Mentor interface tools.

• MGC_HOME (add)

• LCA (add)

• SIMPRIMS (add)

• MGC_GENLIB (add)

• MGC_LOCATION_MAP (add)

• path (modify)

• LD_LIBRARY_PATH (modify for SunOS/Solaris)

• SHLIB_PATH (modify for HP-UX)

These variables should be set in the following manner.

setenv MGC_HOME <installation_path_to_mentor>

setenv LCA $XILINX/mentor/data

setenv MGC_GENLIB $MGC_HOME/gen_lib

setenv MGC_LOCATION_MAP<location_of_actual_map_file>

set path = ( $XILINX/mentor/bin/ <platform_name> \

$path)

For SunOS and Solaris only.

setenv LD_LIBRARY_PATH $MGC_HOME/shared/
lib:$MGC_HOME/lib:$LD_LIBRARY_PATH

For HP-UX only.

setenv SHLIB_PATH $MGC_HOME/shared/
lib:$MGC_HOME/lib:$SHLIB_PATH

For example.

setenv MGC_HOME /usr/mentor

setenv LCA $XILINX/mentor/data

setenv SIMPRIMS $LCA/simprims



Mentor Graphics Interface Notes

Quick Start Guide for Xilinx Alliance Series 1.4 — 0401696 01 C-3

setenv MGC_GENLIB $MGC_HOME/gen_lib

setenv MGC_LOCATION_MAP /usr/data/
mgc_location_map

set path = ( $XILINX/mentor/bin/sun $path)

setenv LD_LIBRARY_PATH $MGC_HOME/shared/
lib:$MGC_HOME/lib:$LD_LIBRARY_PATH

Note: The above settings assume that the Xilinx environment
variables point to the appropriate area, as described in Chapter 1 of
this manual.

Mentor/Alliance Software Design Flow
The “Mentor/M1 Software Flow” figure illustrates the design flow
between the Mentor Graphics tools and the M1 Software tool. Shown
are design entry, functional simulation, implementation, and timing
simulation.

• At the top, the design flow starts with the design being entered
into PLD_DA (the Mentor schematic design tool.

• The design is processed by PLD_DVE to generate a Xilinx-style
design viewpoint.

• The design is then passed to PLD_QuickSim for functional simu-
lation.

• Once the design logic has been verified, the Mentor schematic is
processed by PLD_MEN2EDIF to create an EDIF file.

• The EDIF file is passed to the Xilinx M1 Software Core Tools for
implementation.

• The Xilinx core tools create an EDN file which is then processed
by PLD_EDIF2TIM to get a timing-annotated EDDM netlist.

• This new netlist is processed by PLD_DVE to generate a Xilinx
style design viewpoint.

• The design is then passed to PLD_Quick Sim to run in cross-
probing mode for timing simulation.

For functional simulation, first generate a simulation viewpoint,
which can be done with PLD_DVE. For example, to generate a
viewpoint for the XC4000EX component my_design.



Quick Start Guide for Xilinx Alliance Series 1.4

C-4 Xilinx Development System

pld_dve -s my_design xc4000ex

A specific viewpoint name can optionally be given after the tech-
nology type. If one is not given, a default viewpoint is created with
the name default.

To simulate this design, run.

pld_quicksim my_design

This runs QuickSim for functional simulation without cross-probing.



Mentor Graphics Interface Notes

Quick Start Guide for Xilinx Alliance Series 1.4 — 0401696 01 C-5

Figure C-1 Mentor/M1 Software Flow

You may also use the PLD_DVE and PLD_QuickSim icons in
PLD_DMGR. For more information on functional simulation, see the

HDL

NGD2VHDL/NGD2VER

X8094

QuickSim

Design Architect

Design Viewpoint

PLD_EDIF2TIM

HDL Editor

Compiled HDL Object

QuickHDL

PLD_MEN2EDIF

QuickHDL Pro

M1 Implementation Tools

SDF

NGA/NGD

EDIF EDIF/XNF

EDDM HDL

QVHCOM/QVLCOMPLD_DVE

EDIF

EDDM

Synthesis Tool

NGD2EDIF



Quick Start Guide for Xilinx Alliance Series 1.4

C-6 Xilinx Development System

“Functional Simulation” section or the “Manual Translation”
chapter“ of the Mentor Graphics Interface/Tutorial Guide.

Translating a Design to Xilinx EDIF
To translate a design into an EDIF file for the Xilinx core tools, use the
PLD_MEN2EDIF command. For example, to target my_design to the
XC4000EX.

pld_men2edif my_design xc4000ex

You may also specify a viewpoint name after the technology type. If a
viewpoint name is not given, a default viewpoint is used with the
name default. This default viewpoint name is the same as that used by
PLD_DVE.

You may also use the pld_men2edif icon in PLD_DMGR. For more
information on PLD_MEN2EDIF, see the “Design Implementation”
section“ or the “Manual Translation” chapter of the Mentor Graphics
Interface/Tutorial Guide.

Timing Simulation
After implementing your design and generating an annotated NGA
netlist (with NGDANNO), you must use NGD2EDIF to generate a
timing-annotated EDIF netlist that Mentor can use.

Generating a Timing-Annotated EDIF Netlist
Use NGD2EDIF to generate a timing-annotated EDIF netlist. In the
case of my_design, for example, enter the following.

ngd2edif -v mentor my_design.nga my_design.edn

This creates an EDN file compatible with the Mentor interface.

Generating a Timing Model
After creating the EDN file, run PLD_EDIF2TIM to generate a timing
model with the following command.

pld_edif2tim my_design.edn

This creates an EDDM-type component under my_design_lib/
my_design, as well as a simulation viewpoint for that component.



Mentor Graphics Interface Notes

Quick Start Guide for Xilinx Alliance Series 1.4 — 0401696 01 C-7

Running PLD_QuickSim
After generating the simulation viewpoint, run PLD_QuickSim with
cross-probing on this new component. (If you do not wish to annotate
simulation values onto your original schematic, you may remove the
-cp option to run without cross-probing.)

pld_quicksim my_design_lib/my design

-cp -tim type -consm messages

QuickSim will start up and read in the new timing-annotated EDDM
netlist. DVE will also start up. Open the viewpoint and schematic
sheet for your original schematic in DVE to annotate simulation
values (from QuickSim) onto that front-end schematic.

You may also use the PLD_EDIF2TIM and PLD_QuickSim icons in
PLD_DMGR. For more information on timing simulation, including a
more detailed explanation on cross-probing, see the “Timing Simula-
tion” section or the “Manual Translation” chapter“ of the Mentor
Graphics Interface/Tutorial Guide.

Mentor-Related Environment Variables
The M1 Software Mentor Interface requires the setting of the
following environment variables.

setenv LCA $XILINX/mentor/data
setenv SIMPRIMS $LCA/simprims
set path = ( $XILINX/mentor/bin/sol $path )

(This example is for Solaris workstations. Replace “sol” with “sun”
for SunOS workstations, or with “hp” for HP-UX workstations.)
These variables are in addition to both the XILINX environment vari-
able settings required by the core tools are referenced in the “Installa-
tion” chapter of this manual. To refer to the Mentor-specific variables
such as MGC_HOME and MGC_LOCATION_MAP. See the Mentor
Graphics Interface/Tutorial Guide for more information on the latter.

Library Locations and Sample MGC Location Map
All Xilinx libraries reside under the $LCA directory as with XACT
5.x. Also underneath this directory is the “simprims” (simulation
primitives) library that QuickSim must use to simulate back-end
timing simulation models. This requires your MGC location map to



Quick Start Guide for Xilinx Alliance Series 1.4

C-8 Xilinx Development System

have the following lines in addition to any other soft names
(including MGC_GENLIB) you have included:

MGC_LOCATION_MAP_1

$LCA
(blank line)

$SIMPRIMS
(blank line)

As always, your $MGC_LOCATION_MAP file points to the location
of this file. For more information on location maps, see the Mentor
Graphics Interface/Tutorial Guide.

Pin Locking
Pad symbols (IPAD, OPAD, etc.) have generic pin-location (“LOC”)
properties already attached to them. (They appear as “PXX” on the
pad symbol.) You can place pads in specific locations on the device by
modifying these properties as required. (An example property value
for a pad symbol may be “P24”.) Note that “bused” pad symbols (for
example, IPAD8) may take a comma-separated list (in MSB to LSB
order) of locations (P24, P23, P22, . . . ). For more information on loca-
tion constraints, see the “Attributes, Constraints, and Carry Logic”
chapter of the Libraries Guide.

Timing Constraints
Timing constraints may be placed as properties on a TIMESPEC
symbol in the design. The Timespec label (the label that begins with
“TS”) is entered as the property name, while the timing specification
(for example, “FROM:FFS:TO:FFS=30NS”) is entered as the property
value. For more information on timing constraints, see the Develop-
ment System Reference Guide.



Quick Start Guide for Xilinx Alliance Series 1.4 — 0401696 01 D-1

Appendix D

Synopsys Interface Notes

This appendix covers how to set up the Synopsys interface and
associated libraries. Example files are included to help you set up the
FPGA Compiler and VSS with the M1 Software. This chapter contains
the following sections.

•  “Documentation” section

•  “Setting Up the Xilinx/Synopsys Interface” section

•  “Synopsys/M1 Software Design Flow” section

•  “Examples of Synopsys Setup Files” section

•  “Timing Constraints and DC2NCF” section

•  “FPGA Compiler Users” section

•  “Entity Coding Examples” section

Documentation
The following documentation is available for the Synopsys interface.

• The Synopsys (XSI) Interface/Tutorial Guide is available on the
CDROM included with your software package.

• The M1 Release Notes describe installation setup and current
issues regarding the use of the Synopsys interface. The “Release
Notes” is included with your software.

• For converting an XACT 5.x.x Synopsys design to M1, refer to the
Xilinx Software Conversion Guide from XACTstep v5.X.X to XACT-
step vM1.X.X.



Quick Start Guide for Xilinx Alliance Series 1.4

D-2 Xilinx Development System

Setting Up the Xilinx/Synopsys Interface
In addition to the environment variables discussed in Chapter1, the
following environment variables must be modified or added to run
the Xilinx/Synopsys interface tools.

• SYNOPSYS (add)

• PATH (modify)

• LD_LIBRARY_PATH (modify)

• SHLIB_PATH (modify)

These variables should be set in the follow manner.

setenv SYNOPSYS <installation_path_to_synopsys>

set path = ( $XILINX/bin/ <platform_name> \

$SYNOPSYS/<platform_name>/syn/bin \

$SYNOPSYS/<platform_name>/sim/bin \

$path)

For SunOS and Solaris only.

setenv LD_LIBRARY_PATH $SYNOPSYS/ <platform_name>/
sim/lib:$LD_LIBRARY_PATH

For HP/UX only.

setenv SHLIB_PATH $SYNOPSYS/ <platform_name>/sim/
lib:$SHLIB_PATH

For example.

setenv SYNOPSYS /usr/synopsys

set path = ($XILINX/bin/sun \

$SYNOPSYS/sun/syn/bin \

$SYNOPSYS/sun/sim/bin \

$path)

setenv LD_LIBRARY_PATH $SYNOPSYS/sun/sim/
lib:$LD_LIBRARY_PATH

Note: The previous settings assume that the Xilinx environment vari-
able points to the appropriate area, as described in Chapter 1.



Synopsys Interface Notes

Quick Start Guide for Xilinx Alliance Series 1.4 D-3

Synopsys/M1 Software Design Flow
The “Synopsys/M1 Software Design Flow” figure illustrates the
synthesis, implementation, and simulation design flow through
Synopsys and Xilinx M1 Software. Following is a brief description of
the flow.

Inputs to both the FPGA Compiler and the Design Compiler are.

• Synthesis Script (DC Script and FPGAC Script in Figure D-1)

• Source HDL (VHDL or Verilog)

• .synopsys_dc.setup (Synopsys setup file)

Outputs from the compilers.

• design_name.dc  timing constraints written by both compilers.
This file is used as input to DC2NCF to create a netlist constraints
file design.ncf .

• design_name.sxnf  design netlist written by the FPGA
Compiler in XNF format.

• design_name.sedif  design netlist written by the Design
Compiler in EDIF format.

• For more information, see the Synopsys (XSI) Interface/Tutorial
Guide.

Examples of Synopsys Setup Files
The following section outlines the types of Synopsys setup files
required to operate the FPGA Compiler and VSS correctly with the
M1 Software tools. These examples are for targeting an XC4000EX
device. Other FPGA and CPLD templates may be found in the Xilinx
installation path, $XILINX/synopsys/examples.

.synopsys_dc.setup
/* Template .synopsys_dc.setup file for Xilinx */

/* For targeting a XC4000EX */

XilinxInstall = get_unix_variable(XILINX);

SynopsysInstall = get_unix_variable(SYNOPSYS);



Quick Start Guide for Xilinx Alliance Series 1.4

D-4 Xilinx Development System

search_path = { . \
XilinxInstall + /synopsys/libraries/syn \
SynopsysInstall + /libraries/syn }

/* Define a work library.You must create ‘work’ */

define_design_lib WORK -path ./WORK

/* Declare the Xilinx DesignWare library */

define_design_lib xdw_4000ex -path \

XilinxInstall + /synopsys/libraries/dw/lib/xc4000ex



Synopsys Interface Notes

Quick Start Guide for Xilinx Alliance Series 1.4 D-5

Figure D-1 Synopsys/M1 Software Design Flow

X8040

M1

Implementation Tools

NGD2VHDL NGD2VER

DC2NCF

Design Compiler

V3.4b+

FPGA Compiler

V3.4b+

DC

-dc.setup

FPGAC

-dc.setup

Synopsys Interface

NGA/NGD

.NCF

.SDF.VHD .V

.DC

.UCF

DC Script Source HDL FPGAC Script

XILINX

Unified

Library

XFPGA

XDW

.SEDIF .SXNF

VSS
XILINX


Simprim

Library

VSS

XILINX

Uniprims

Library

XILINX

XDW

Sim


Library



Quick Start Guide for Xilinx Alliance Series 1.4

D-6 Xilinx Development System

/* General configuration settings. *

compile_fix_multiple_port_nets = true

xnfout_constraints_per_endpoint = 0

xnfout_library_version = "2.0.0"

bus_naming_style = "%s<%d>"

bus_dimension_separator_style = "><"

bus_inference_style = "%s<%d>"

/*     synlibs -fc 4028ex-3 >> .synopsys_dc.setup  */

.synopsys_vss.setup
/* Set any simulation preferences. *

TIMEBASE        = NS

TIME_RES_FACTOR = 0.1

/* Define a work library in the current project */

WORK    > DEFAULT

DEFAULT : ./WORK

/* Set up SIMPRIM Back-annotation
libraries */

SIMPRIM : $XILINX/synopsys/libraries/sim/lib/simprims

/* Set up LogiBLOX simulation libraries */

LOGIBLOX : $XILINX/synopsys/libraries/sim/lib/
logiblox

/* Set up example pointers to the Xilinx Unisim
functional simulation library */

UNISIM: $XILINX/synopsys/libraries/sim/lib/xc3000a/
ftgs

Example Script File
The following section describes the typical sequence of commands
used to process designs with Synopsys. The commands are intended
to be executed at the dc_shell command line, either individually or in
“batch” mode. While the specific nature of a particular design may
make some of the indicated commands unnecessary, or require the



Synopsys Interface Notes

Quick Start Guide for Xilinx Alliance Series 1.4 D-7

addition of extra processing steps, the example below represents a
good starting point for most designs.

The script file includes examples illustrating techniques such as: I/O
pin location constraints, timing constraints, setting the part-type,
controlling I/O characteristics, and controlling Synopsys mapping
and packing functions.

/* Sample Script for Synopsys to Xilinx Using */

/*  FPGA Compiler targeting a XC4000EX device */

/* Set the name of the design's top-level */

TOP = <design_name>

designer = “XSI Team”

   company  = “Xilinx, Inc”

   part     = “4028expg299-3”

/* Analyze and Elaborate the design file. */

analyze -format vhdl TOP + “.vhd”

elaborate TOP

/* Set the current design to the top level. */

current_design TOP

/* Set the synthesis design constraints. */

remove_constraint -all

   /* Some example constraints */

   create_clock <clock_port_name> -period 50

   set_input_delay 5 -clock <clock_port_name> \

     { <a_list_of_input_ports> }

   set_output_delay 5 -clock <clock_port_name> \

     { <a_list_of_output_ports> }

   set_max_delay 100 -from <source> -to <destination>

   set_false_path -from <source> -to <destination>

/* Indicate which ports are pads. */

set_port_is_pad “*”



Quick Start Guide for Xilinx Alliance Series 1.4

D-8 Xilinx Development System

   /* Some example I/O parameters */

   set_pad_type -pullup <port_name>

   set_pad_type -no_clock all_inputs()

   set_pad_type -clock <clock_port_name>

   set_pad_type -exact BUFGS_F <hi_fanout_port_name>

   set_pad_type -slewrate HIGH all_outputs()

insert_pads

/* Synthesize the design.*/

compile -boundary_optimization -map_effort med

/* Write the design report files. */

report_fpga > TOP + ".fpga"

   report_timing > TOP + ".timing"

/* Write out an intermediate DB file to save state */

write -format db -hierarchy -output TOP + "_compiled
.db"

/* Replace CLBs and IOBs primitives (XC4000E/EX/XL
only) */

replace_fpga

/* repply set_max_delay/set_false_path if using FPGA
compiler */

/* Set the part type for the output netlist. /
set_attribute TOP "part" -type string part

/* Optional attribute to remove the mapping symbols*/
set_attribute find(design,"*")\
"xnfout_write_map_ symbols" -type boolean FALSE

/* Add any I/O constraints to the design. */

set_attribute <port_name> "pad_location" \

-type string "<pad_location>"

/* Write out the intermediate DB file to save state*/

write -format db -hierarchy -output TOP + ".db"

/* Write out the timing constraints */

ungroup -all -flatter

write_script > TOP + ".dc"



Synopsys Interface Notes

Quick Start Guide for Xilinx Alliance Series 1.4 D-9

/* Save design in XNF format as <design>.sxnf */

write -format xnf -hierarchy -output TOP + ".sxnf"

/* Convert constraints to Xilinx syntax */

sh dc2ncf TOP + ".dc"

/* Exit the Compiler. */

exit

/* Now run the Xilinx design implementation tools. */

Timing Constraints and DC2NCF
Timing constraints issued to Synopsys to control the synthesis
process can be carried forward to the design implementation tools
where they similarly control the place and route process. It is impor-
tant that the constraints you apply to both the synthesis and place
and route processes are both realistic and achievable.

The Xilinx DC2NCF utility converts the timing constraints applied to
a design within the Synopsys environment to equivalent constraints
that control the Xilinx place and route process. The automatic transla-
tion of these constraints is convenient because it relieves the need to
apply the constraints twice (once for Synopsys and again for Xilinx)
and ensures that the constraints used by Xilinx are equivalent to
those applied to Synopsys.

DC2NCF supports translation of the following timing constraint
commands from within Synopsys.

• create_clock

• set_input_delay

• set_output_delay

• set_max_delay

• set_false_path

The presence of other Synopsys timing constraint commands in a
Synopsys script file will result in a warning from DC2NCF and no
translation of that unsupported constraint will occur.



Quick Start Guide for Xilinx Alliance Series 1.4

D-10 Xilinx Development System

DC2NCF Design Flow
The Synopsys user is expected to validate the timing constraints by
first constraining their design and compiling it. Having compiled
their design (and in the case of XC4000E/EX FPGA Compiler users,
performed the replace_fpga command), the design should be written
as a netlist and a corresponding script file that contains the
constraints.

Warning: Always generate timing constraints script files with the
Synopsys dc_shell write_script command or the Design Analyzer File
→ Save Info → Design Setup command sequence.

FPGA Compiler Users
Before writing either the netlist or the constraints file, any hierarchy
in the design should first be flattened. While flattening a design's
hierarchy removes hierarchy information from Synopsys's internal
database, the hierarchical net-names and instance-names assigned to
objects during compilation are retained and written into the output
netlist.

Note: The downstream Xilinx tools will reconstruct most of the
design's hierarchy from the information carried in the instance-names
and net-names.

To flatten the design's hierarchy prior to writing a netlist and
constraints file, use the following Synopsys command.

ungroup -flatten -all

To write-out the design's netlist in XNF format, use the Synopsys
command.

write -format xnf -output <output_file_name>.sxnf

To write-out the design’s constraints as a Synopsys script file, use the
command.

write_script > <output_file_name>.dc



Synopsys Interface Notes

Quick Start Guide for Xilinx Alliance Series 1.4 D-11

Entity Coding Examples

VHDL Code
library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_ARITH.all;

use IEEE.STD_LOGIC_UNSIGNED.allentity example is

port(RAMOUT:out STD_LOGIC; DIN: in STD_LOGIC;

AD4,AD3,AD2,AD1,AD0,RMWE,RMWCLK: in STD_LOGIC;

REG1OUT: out STD_LOGIC; DTA1,CLK1: in STD_LOGIC;

REG2OUT: out STD_LOGIC; DTA2,CLK2: in STD_LOGIC;

LTCHOUT: out STD_LOGIC;

LTD,LTGF,LTGE,LTCLK: in STD_LOGIC;

FASTOUT: out STD_LOGIC; FASTIN: in STD_LOGIC;

MUXOUT: out STD_LOGIC; MUXIN1,MUXIN2: in STD_LOGIC);

end example;

architecture inside of example is

component RAM32X1S

port(O: out STD_LOGIC; D: in STD_LOGIC;

A4,A3,A2,A1,A0,WE,WCLK: in STD_LOGIC);

end component;

component IFD_F

port(Q: out STD_LOGIC; D,C: in STD_LOGIC);

end component;

component OFD_F

port(Q: out STD_LOGIC; D,C: in STD_LOGIC);

end component;

component ILFFX

port(Q: out STD_LOGIC;

D,GF,CE,C: in STD_LOGIC);

end component;



Quick Start Guide for Xilinx Alliance Series 1.4

D-12 Xilinx Development System

component BUFFCLK

port(O: out STD_LOGIC; I: in STD_LOGIC);

end component;

component OAND2

port(O: out STD_LOGIC; F,I0: in STD_LOGIC);

end component;

begin

U0: RAM32X1S port map(O=>RAMOUT,D=>DIN,

A4=>AD4,A3=>AD3,A2=>AD2,A1=>AD1,A0=>AD0,WE=>RMWE,WCLK
=>RMWCLK);

U1: IFD_F port map(Q=>REG1OUT,D=>DTA1,C=>CLK1);

U2: OFD_F port map(Q=>REG2OUT,D=>DTA2,C=>CLK2);

U3: ILFFX port
map(Q=>LTCHOUT,D=>LTD,GF=>LTGF,CE=>LTGE,C=>LTCLK);

U4: BUFFCLK port map(O=>FASTOUT,I=>FASTIN);

U5: OAND2 port map(O=>MUXOUT,F=>MUXIN1,I0=>MUXIN2);

end inside;

Verilog Code: Module Example
module example ( RAMOUT,DIN,AD,RMWE,RMWCLK,
REG1OUT,DTA1,CLK1,REG2OUT,DTA2,CLK2,
LTCHOUT,LTD,LTGF,LTGE,LTCLK,
FASTOUT,FASTIN,MUXOUT,MUXIN1,MUXIN2);

input
RMWE,RMWCLK,DIN,DTA1,CLK1,DTA2,CLK2,LTD,LTGF,LTGE,LTC
LK

input FASTIN,MUXIN1,MUXIN2;

input [4:0] AD;

output RAMOUT,REG1OUT,REG2OUT,LTCHOUT,FASTOUT,MUXOUT;

RAM32X1S U0
(.O(RAMOUT),.D(DIN),.A4(AD[4]),.A3(AD[3]),.A2(AD[2]),
.A1(AD[1]),.A0(AD[0]),.WE(RMWE),.WCLK(RMWCLK));

IFD_F U1 (.Q(REG1OUT),.D(DTA1),.C(CLK1));

OFD_F U2 (.Q(REG2OUT),.D(DTA2),.C(CLK2));



Synopsys Interface Notes

Quick Start Guide for Xilinx Alliance Series 1.4 D-13

ILFFX U3
(.Q(LTCHOUT),.D(LTD),.GF(LTGF),.CE(LTGE),.C(LTCLK;

BUFFCLK U4 (.O(FASTOUT),.I(FASTIN));

OAND2 U5 (.O(MUXOUT),.F(MUXIN1),.I0(MUXIN2));

endmodule

Comments About Code
When instantiating components which are an IOB resource, like the
IFD_F, OFD_F, ILFFX, BUFFCLK, and/or OAND2, make sure that
unneeded IBUF/OBUF/OBUFTs are not inserted. Remove the
port_is_pad attribute from the pin that is directly connected to a pad,
such as the D pin of the IFD_F, or the .D pin of the ILFFX. To remove
the port_is_pad attributes, use the remove_attribute command.

FPGA Compiler/Design Compiler and LogiBLOX
For information on using LogiBLOX in the M1.4 XSI flow, refer to the
Synopsys (XSI) Interface/Tutorial Guide.



Quick Start Guide for Xilinx Alliance Series 1.4

D-14 Xilinx Development System



Quick Start Guide for Xilinx Alliance Series 1.4 — 0401696 01 E-1

Appendix E

Viewlogic Interface Notes

This appendix covers how to set up the Viewlogic interface and
project libraries. Included are examples for assigning location
constraints and for using special XC4000EX features. This chapter
contains the following sections.

•  “Documentation” section

•  “Setting Up Viewlogic Interface on Workstations” section

•  “Setting Up Xilinx/Viewlogic Interface on the PC” section

•  “Viewlogic/M1 Software Design Flow” section

•  “Setting Up Project Libraries” section

•  “Assigning a Pin Location” section

•  “Using Special XC4000EX Features” section

Documentation
The following documentation is available for the Viewlogic interface.

• “Viewlogic Interface/Tutorial Guide” is available on-line and
viewable with the DynaText browser.

• “M1 Software Release Notes”, which describes installation setup
and current issues regarding the use of the Viewlogic interface, is
available on the supplied CDROM.

Setting Up Viewlogic Interface on Workstations
In addition to the environment variables discussed in the chapter
entitled “Design Tools Setup,” the following environment variables
must be modified or added to run the Xilinx/Viewlogic interface
tools.



Quick Start Guide for Xilinx Alliance Series 1.4

E-2 Xilinx Development System

• POWERVIEW (add)

• WDIR (add)

• VANTAGE_VSS (add)

• PATH (modify)

• LM_LICENSE_FILE (modify)

• LD_LIBRARY_PATH (modify)

• SHLIB_PATH (modify)

In addition to the variables set for the Xilinx Alliance Series Design
Implementation Tools, these variables should be set in the following
manner.

setenv POWERVIEW <installation_path_to_viewlogic>

setenv WDIR $XILINX/viewlog/data/logiblox/standard:$POWERVIEW/standard

setenv VANTAGE_VSS $POWERVIEW/standard/van_vss

set path = ( $POWERVIEW \

$VANTAGE_VSS/pgm/dir \

$path)

setenv LM_LICENSE_FILE <path_to_viewlogic_license_file>:$LM_LICENSE_FILE

For SunOS and Solaris only.

setenv LD_LIBRARY_PATH $POWERVIEW/standard/fusion:$LD_LIBRARY_PATH

For HP/UX only.

setenv SHLIB_PATH $POWERVIEW/standard/fusion:$SHLIB_PATH

Note: The above settings assume that the XILINX,
LD_LIBRARY_PATH, SHLIB_PATH, and LM_LICENSE_FILE envi-
ronment variables have been previously assigned to point to the
appropriate areas, as described in Chapter 1. The POWERVIEW vari-
able is not required by Xilinx nor by Viewlogic software. It is used
only to simplify these environment variable settings.



Viewlogic Interface Notes

Quick Start Guide for Xilinx Alliance Series 1.4 E-3

Setting Up Xilinx/Viewlogic Interface on the PC
In addition to the environment variables discussed in Chapter 1, the
following environment variables must be modified or added to run
the Xilinx/Viewlogic interface tools on a PC.

• PATH(modify)

• WDIR (new)

• VANTAGE_VSS (new)

• VANTAGE_CC (new)

• LM_LICENSE_FILE (modify)

These variables are modified/added in the following manner by the
Workview Office installation software. The following examples
assume that all the software has been installed to the default locations
on the C:\ drive. If these default paths have been changed, the envi-
ronment settings must change accordingly.

PATH=C:\WVOFFICE;%PATH%

SET WDIR=C:\WVOFFICE\STANDARD

SET VANTAGE_VSS=C:\WVOFFICE\V

SET VANTAGE_CC=C:\WVOFFICE\CL

SET
LM_LICENSE_FILE=C:\WVOFFICE\STANDARD\LICENSE.DAT,;
C:XILINX\DATA\LICENCE.DAT

Note: The LM_LICENSE_FILE must be set exactly as shown, with a
comma and semicolon(,;) between the two paths if Workview Office
7.31 or older is used. This is due to the fact that Viewlogic and Xilinx
use different versions of Flex/LM licensing that use different delim-
iters in this variable. The comma is not required for Workview Office
7.4 or newer.

For Windows NT 4.0 users only, select Start → Settings →
Control Panel . Double click on the System icon and select the
Environment tab. Verify the settings shown above are listed in either
the System Variables section or the User Variables section. They will
not appear exactly as shown above; the variable will be shown under
the Variable header and the path will be shown under the Value
header. The word “set” will not appear.



Quick Start Guide for Xilinx Alliance Series 1.4

E-4 Xilinx Development System

For Windows 95 users only, run SYSEDIT to open the
AUTOEXEC.BAT file, and verify the environment settings are as
shown above.

Viewlogic/M1 Software Design Flow
Refer to “Viewlogic/M1 Software Design Flow” figure and the design
flow of Viewlogic and the Alliance Series Design Implementation
Tools. The design flow shows design entry, functional simulation,
implementation, and timing simulation.

• At the top, the design flow starts with ViewDraw using the Xilinx
Unified Library components and (optionally) LogiBLOX compo-
nents.

• When the schematics are saved, WIR files are created. EDIFNETO
translates these WIR files to EDIF 2 0 0 format to be passed to the
Xilinx M1 implementation tools for implementation.

Note: The option Xilinx must be entered as the level name for
EDIFNETO.

• A ViewSim netlist file (.VSM) must be created for simulation.
This file is created from WIR files that have come directly from
the Viewlogic design entry tools, or from the Xilinx Alliance
Series Design Implementation Tools via EDIFNETI. Only an EDIF
file from the placed and routed design provides full timing infor-
mation for your design.

• The ViewSim netlist file is then loaded into the Viewlogic
simulator for simulation.

• Digital Fusion, the Viewlogic simulation tool with VHDL simula-
tion capabilities, is required only for functional simulation of
designs containing LogiBLOX components with VHDL models;
ViewSim, Viewlogic’s gate-level simulator, will accept VSM files
for any other Xilinx simulations.



Viewlogic Interface Notes

Quick Start Guide for Xilinx Alliance Series 1.4 E-5

Figure E-1 Viewlogic/M1 Software Design Flow

ViewSim

Netlister

X8041

M1

Implementation Tools

NGD2EDIF

EDIFNETO EDIFNETI

ViewDraw
LogiBLOX

VIEWLogic Interface

XILINX

Unified

Library

NGA/NGD

EDIF

EDIF

WIR WIR

VSM

.UCF

Digital Fusion

or VIEWSim



Quick Start Guide for Xilinx Alliance Series 1.4

E-6 Xilinx Development System

Setting Up Project Libraries
This section describes project library setup for the Workstation, and
the PC.

On Workstations
The first step before creating or modifying a design in ViewDraw is to
set up the project libraries. When creating a Viewlogic design to be
processed by the Xilinx Alliance Series Design Implementation Tools,
the Unified Libraries must be used. These libraries must be defined in
the viewdraw.ini  file located in the project’s working directory.

To define a library in the viewdraw.ini , it must be added to the
search order at the end of the viewdraw.ini  file.

The Xilinx Libraries for use with Viewlogic schematic entry tools are
located in $XILINX/viewlog/data. Directories exist for all the
supported Xilinx families as well as LogiBLOX and the required
Simprims, Builtin, and Xbuiltin libraries.

The following example is a library search order needed to create an
XC4000EX design.

dir [p] . (primary)

dir [rm] /tools/xilinx/viewlog/data/xc4000x (xc4000x)

dir [r] /tools/xilinx/viewlog/data/logiblox (logiblox)

dir [rm] /tools/xilinx/viewlog/data/simprims (simprims)

dir [rm] /tools/xilinx/viewlog/data/builtin (builtin)

dir [rm] /tools/xilinx/viewlog/data/xbuiltin (xbuiltin)

Note: The XC4000X library and alias are new with M1.4. This library
is to be used for all XC4000EX/XL/XV designs. To use the M1.4
libraries with designs created with M1.3 or older.

Add the following line to the viewdraw.ini file before the LogiBLOX
line:

dir [rm] /tools/xilinx/viewlog/data/xc4000x (xc4000ex)



Viewlogic Interface Notes

Quick Start Guide for Xilinx Alliance Series 1.4 E-7

Features of this search order.

• The LogiBLOX library replaces XBLOX. This library is read-only
and not in megafile format.

• There is a new library, “Simprims,” that is used only for simula-
tion.

• Order counts; user and family libraries must appear before
Simprims, Builtin, and Xbuiltin.

• Full paths must be used; do not use $XILINX to abbreviate the
path.

Xilinx Commands in ViewDraw

Once the environment variables have been set and the libraries have
been defined, you may begin your schematic design work. The one
Xilinx feature within ViewDraw is the addition of two new
commands under the pulldown menus.

• Add → LogiBLOX is used to create a new LogiBLOX component.

• Change → LogiBLOX is used to modify an existing LogiBLOX
component.

On PCs
The first step before creating or modifying a design in ViewDraw is to
set up the project libraries. When creating a Viewlogic design to be
processed by the M1 Alliance Series Design Implementation Tools,
the M1 Libraries must be used. These libraries must be defined in the
Viewlogic project file (.VPJ), located in the project’s working direc-
tory.

Note: Use the Workview Office Project Manager to make any modifi-
cations to the project libraries. Do not directly modify the viewdraw.ini
file.

The Xilinx Libraries for use with Viewlogic schematic entry tools are
located in C:\XILINX\VIEWLOG\DATA. Directories exist for all the
supported Xilinx families as well as LogiBLOX and the required
Simprims, Builtin, and Xbuiltin libraries.

The following is the library search order needed to create an
XC4000EX design.



Quick Start Guide for Xilinx Alliance Series 1.4

E-8 Xilinx Development System

dir [p] . (primary)

dir [rm] C:\xilinx\viewlog\data\xc4000ex (xc4000ex)

dir [r] C:\xilinx\viewlog\data\logiblox (logiblox)

dir [rm] C:\xilinx\viewlog\data\simprims (simprims)

dir [rm] C:\xilinx\viewlog\data\builtin (builtin)

dir [rm] C:\xilinx\viewlog\data\xbuiltin (xbuiltin)

For information about how to use the Workview Office Project
Manager to define the project libraries, refer to the Viewlogic Interface/
Tutorial Guide.

Note: The XC4000X library and alias are new with M1.4. This library
is to be used for all XC4000EX/XL/XV designs. To use the M1.4
libraries with designs created with M1.3 or older.

Add the following line to the viewdraw.ini file before the LogiBLOX
line:

dir [rm] C:\xilinx\viewlog\data\xc4000x (xc4000ex)

Features of this search order.

• The LogiBLOX library replaces XBLOX. This library is read-only
and not in megafile format.

• There is a new library, “Simprims”, that is used only for simula-
tion.

• Order counts; user and family libraries must appear before
Simprims, Builtin, and Xbuiltin.

• Full paths must be used; do not use %XILINX% to abbreviate the
path.

Xilinx Commands in ViewDraw

Once the environment variables have been set and the libraries have
been defined, you may begin your schematic design work. The one
Xilinx feature within ViewDraw is the addition of two new
commands under the tools pulldown menu. You must initialize these
commands by entering an MS-DOS session and executing the
following command.

cust menu xilinx-path\viewlog\data\viewblox.txt



Viewlogic Interface Notes

Quick Start Guide for Xilinx Alliance Series 1.4 E-9

1. Tools → Add LogiBLOX is used to create the new LogiBLOX
component.

2. Tools → Change LogiBLOX is used to modify an existing Logi-
BLOX component.

See  “LogiBLOX” appendix for more information on the use of
LogiBLOX.

3. Tools → Write Xilinx EDIF is used to create the EDIF netlist to be
passed to the Design Manager.

4. Tools → Xilinx Functional Simulation is used to prepare a
design with uncompiled elements for a functional simulation.

5. Tools → Read Xilinx Timing EDIF is used to bring the annotated
EDIF into Workview Office for a timing simulation.

See the Viewlogic Interface/Tutorial Guide for more information on
the use of these commands.

Assigning a Pin Location
To assign the location of a pin to a specific pad location, simply add a
location constraint attribute to that pad on the schematic.

1. Select the IPAD, OPAD or IOPAD you wish to constrain.

2. For workstation users, select Change → Attr → Dialog → All.
The Change Attributes dialog box will display.

For PC users, double click on the pad.

3. Enter LOC in the Name field, and enter the pin instance in the
Component Value field.

Valid pin syntax for quad flat packages is P#, where # is the actual
device pin number desired. For example: LOC = P11.

Valid pin syntax for grid array packages is RC, where R is the
actual row and C is the column of the device pin. For example:
LOC = A13.

4. Click on OK. The LOC attribute will now be placed next to the
pad.

Bus-wide pads (that is IPAD16) must be constrained within a user
constraints file (.ucf).



Quick Start Guide for Xilinx Alliance Series 1.4

E-10 Xilinx Development System

Timing Constraints
Timing constraints may be placed via the TIMESPEC symbol in the
design. The TIMESPEC symbol is found in the Xilinx family library
(for example., XC4000X). After placing this symbol on the top level of
your design, the timespecs are added as properties of this symbol.
The Timespec label (the label that begins with “TS”) is entered in the
Name field, while the timing specification (e.g.,
“FROM:FFS:TO:FFS=30ns”) is entered in the Value field.

For more information on this subject, please refer to the Viewlogic
Interface/Tutorial Guide. For more information on timing constraints,
see the Development System Reference Guide.

Using Special XC4000EX Features
There are new components available for the XC4000EX family. This
section will explain how these components are to be added to your
schematic so you can take advantage of all the features of this family.

Global Clock Buffers
• BUFGLS — Global Low-Skew Buffers (BUFGLS) are the standard

clock buffers. They should be used for most internal clocking
whenever a large portion of the device must be driven.

• BUFGE — Global Early Buffers (BUFGE) are designed to provide
faster clock access, but CLB access is limited to one-fourth of the
device. They also facilitate a faster I/O interface.

• BUFFCLK — FastCLK Buffers (BUFFCLK) are specifically
designed to provide the fastest possible I/O clock. They have
only the standard input access to CLBs, through local intercon-
nect.

IOB Fast Capture Latches
The IOB-Fast Catch Capture Latches are used in the same manner as
other input flip-flops. Simply connect an IPAD to the D pin of an
ILFFX type component. An input buffer must not be placed between
these components and their IPAD.

ILFFX ILFFXI ILFLX



Viewlogic Interface Notes

Quick Start Guide for Xilinx Alliance Series 1.4 E-11

Output Multiplexer/2-Input Functions
The output multiplexer/2-input functions provide simple logic to be
added in the IOB before the output buffer. These components are
placed just like internal primitives, but an OBUF must immediately
follow them before connecting to an OPAD. Use the symbol pin
labeled “F” for the signal on the critical path.

CLB Latches
The CLB latches are added like any standard internal primitive or
macro.

OMUX2 OAND2 ONAND2

OOR2 ONOR2 OXOR2

OXNOR2

LD LDCE



Quick Start Guide for Xilinx Alliance Series 1.4

E-12 Xilinx Development System



Quick Start Guide for Xilinx Alliance Series 1.4 — 0401696 01 F-1

Appendix F

LogiBLOX

LogiBLOX is an onscreen design tool for creating high-level modules
such as counters, shift registers and multiplexers. LogiBLOX includes
both a library of generic modules and a set of tools for customizing
these modules.

With LogiBLOX, high-level LogiBLOX modules that will fit into your
schematic-based design, or HDL synthesis-based design can be
created and processed. These modules can be used in designs gener-
ated with schematic editors from Mentor Graphics, Viewlogic and
Xilinx Foundation Package, as well as third-party synthesis tools
such as Synopsys FPGA Compiler/FPGA Express, and Exemplar.

Note: The Xilinx products which support LogiBLOX are: XC3000A,
XC3100A, XC4000E, XC4000L, XC4000EX, XC4000XL, XC4000XV and
XC5200XL.

This chapter contains the following sections.

•  “Documentation” section

•  “Setting Up LogiBLOX on a Workstation” section

•  “Setting Up LogiBLOX on a PC” section

•  “Starting LogiBLOX” section

•  “Using LogiBLOX for Schematic Design” section

•  “Using LogiBLOX for HDL Synthesis Design” section

•  “Analyzing a LogiBLOX Module” section

•  “LogiBLOX Modules” section



Quick Start Guide for Xilinx Alliance Series 1.4

F-2 Xilinx Development System

Documentation
The following documentation is available for the LogiBLOX program.

• The LogiBLOX Reference/User Guide is available on the CDROM
supplied with your software and viewable with the DynaText
browser.

• The LogiBLOX online help can be accessed from LogiBLOX, GUI.

• The Software Release Notes describe installation setup and current
issues regarding the use of LogiBLOX.

• The Xilinx Software Conversion Guide from XACTstep v5.X.X to
XACTstep vM1.X.X compares XBLOX and LogiBLOX, and how to
convert an XBLOX design to LogiBLOX. The Xilinx Software
Conversion Guide from XACTstep v5.X.X to XACTstep vM1.X.X and
other application notes can be found in the XBBS directory of the
Xilinx M1 CD, or at the Xilinx web site.

http://www.xilinx.com

Setting Up LogiBLOX on a Workstation
This section describes the issuing commands and the file modifica-
tions required to set up your environment when using a third-party
schematic design tool on a workstation. You must set up the Xilinx
environment and interface environment as described in Chapter 1
and in the appropriate appendix in this manual.

Mentor Interface Environment Variables
To use LogiBLOX with Mentor, set the following environment vari-
able.

setenv LCA $XILINX/mentor/data

setenv SIMPRIMS $LCA/simprims

Also verify that your $MGC_LOCATION_MAPfile contains the
following entries.

$LCA

(blank)



LogiBLOX

Quick Start Guide for Xilinx Alliance Series 1.4 F-3

$SIMPRIMS

(blank)

Synopsys Interface Environment Variables
To use LogiBLOX with Synopsys, add the following entries to the
.synopsys_vss.setup file, located in the working directory.

logiblox:

$XILINX/synopsys/libraries/sim/logiblox/lib

Viewlogic Interface Environment Variables
To use LogiBLOX with Viewlogic, add the following path to the
WDIR environment variable.

${XILINX}/viewlog/data/logiblox/standard\

For example:

setenv WDIR ${XILINX}/viewlog/data/logiblox/standard:<existing-WDIR>

Verify that the following two libraries have been added to the search
order in the local viewdraw.ini  file right before the “builtin” and
“xbuiltin” libraries. Modify the file with the following entries.

DIR [r]/xilinx_path/viewlog/data/logiblox
(logiblox)

DIR [m]/xilinx_path/viewlog/data/simprims
(simprims)

Setting Up LogiBLOX on a PC
This section describes the issuing commands and the file modifica-
tions required to set up your environment when using a third-party
schematic design tool on a PC. You must set up the Xilinx environ-
ment and interface environment described in Chapter 1 of this
manual and in the appropriate appendix in this manual.

Viewlogic Interface Environment Variables
To use LogiBLOX with Workview Office, run the following command
in an MS-DOS session.



Quick Start Guide for Xilinx Alliance Series 1.4

F-4 Xilinx Development System

custmenu xilinx_path\viewlog\data\viewblox.txt

Verify the following two libraries are included in the search order in
the Viewlogic Project Manager right before the “builtin” and
“xbuiltin” libraries.

[r] <xilinx_path>\viewlog\data\logiblox
(logiblox)

[m] <xilinx_path\viewlog\data\simprims
(simprims)

Starting LogiBLOX
LogiBLOX can be started in one of three ways.

• From a third-party vendor tool by selecting the menu item that
lists LogiBLOX as a menu choice

• From a DOS or UNIX command line by entering.

lbgui

• From the LogiBLOX icon in the Xilinx program group (PC only)

Using LogiBLOX for Schematic Design
LogiBLOX modules can be created for use in schematic designs using
third-party design tools. First, the module must be created. The
module can then be added to the schematic like any other library
component with the aid of the LogiBLOX GUI.

Creating a LogiBLOX Module
To create a LogiBLOX module, proceed with the following four steps.

1. From ViewDraw or Mentor Graphics, select the appropriate
menu choice in your design tool that will launch the LogiBLOX
GUI. The LogiBLOX Module Selector dialog box displays.

• In Mentor Graphics, from Pld_da select.

Library → Xilinx Library → LogiBLOX

An intermediate dialog window called create/modify/instan-
tiate LogiBLOX symbol appears on-screen before the LogiBLOX



LogiBLOX

Quick Start Guide for Xilinx Alliance Series 1.4 F-5

GUI displays. This window replaces the LogiBLOX Setup dialog
box.

• In Viewlogic, from the ViewDraw window select,
for workstation users (on Powerview).

Add → LogiBLOX

• For PC users (on Workview Office).

Tools → Add LogiBLOX

The LogiBLOX Module Selector dialog window is displayed. If a
logiblox.ini  file is not found, the LogiBLOX Setup dialog box
displays before the Module Selector dialog box.

2. Select a base module type (for example, Counter, Memory).

3. Customize the module by selecting pins and specifying
attributes.

4. Click on OK.

LogiBLOX generates a schematic symbol and a simulation model
for the module you have selected.

Note: For either PC or workstation users, you may add existing Logi-
BLOX components by taking them from the project library.

Design simulation

You can functionally simulate your design at any time.

At this point the design is ready to be processed for both
simulation and implementation. Because LogiBLOX creates a compo-
nent with a VHDL or EDIF simulation model describing its behavior,
the simulation and implementation flow for a design containing
LogiBLOX components is no different than for a design which does
not contain LogiBLOX components. Once created, the LogiBLOX
components can be used repeatedly in any design.

Copying Modules

If you copy a module within your schematic or add repeated
instances, the original module and all of its copies share the
same.mod  file and simulation model. Subsequent modifications to
any one of these modules changes all copies of that module. If you
copy a module from another design, such as by copying an entire



Quick Start Guide for Xilinx Alliance Series 1.4

F-6 Xilinx Development System

hierarchical module, you must invoke the LogiBLOX program and
cause it to regenerate the module and create the simulation model for
that module. Alternatively, if your design includes several copied
modules, you can copy the raw HDL files into the new project direc-
tory and re-analyze them in the new environment.

Using LogiBLOX for HDL Synthesis Design
LogiBLOX modules can be instantiated in HDL designs to address
special features, such as distributed memory (4000E and 4000EX),
special I/O configurations, and other advanced silicon features that
cannot be inferred by the HDL synthesizer.

The LogiBLOX program creates a simulation netlist (VHDL, EDIF or
Verilog), an implementation netlist file (.ngo), and a template file
containing a VHDL (.vhi) or Verilog (.vei) component instantiation.

Instantiating a LogiBLOX Module
To instantiate a LogiBLOX module, proceed with the following steps.

1. Start LogiBLOX from the command line, or click on the Logi-
BLOX icon. See “Starting LogiBLOX” in this appendix.

2. Select Setup on the Module Selector dialog box. The Setup dialog
box appears on-screen.

3. The Setup dialog window displays initially if a logiblox.ini
file is not found in the home directory.

4. Select Options. The Options selections appear on-screen.

5. Select the Simulation model you require (VHDL, EDIF, or
Verilog).

6. Click on OK. The Setup dialog box will disappear.

7. Create the module you desire in the LogiBLOX Module Selector
dialog box.

8. Click on OK.

9. Instantiate the module in the top level.

With a text editor, cut and paste the contents of the VHDL (.vhi)
or verilog (.vei) design file to the top level design. Then, specify
the design names in the component instantiation section.



LogiBLOX

Quick Start Guide for Xilinx Alliance Series 1.4 F-7

Analyzing a LogiBLOX Module
Before starting behavioral simulation on an instantiated LogiBLOX
module, the LogiBLOX library has to be analyzed. The following
three sections list the commands that can be used in Mentor,
Synopsys, and Viewlogic to analyze the library.

Mentor QuickHDL
Enter the following series of commands from your workstation/PC
command line to analyze the LogiBLOX libraries.

$XILINX/mentor/data/vhdl/compile_vhdl_libs.sh (VHDL)

$XILINX/mentor/data/verilog/compile_verilog_libs.sh
(Verilog)

See the accompanying README files in the same directories for more
information on these scripts.

Synopsys VSS
Enter the following series of commands from your workstation/PC
command line to analyze the LogiBLOX libraries.

$XILINX/synopsys/libraries/sim/src/logiblox/
analyze.csh

The script analyzes the model and places the output files in the
$XILINX/synopsys/libraries/sim/lib/logiblox directory.

Viewlogic Vantage
Enter the following command from your workstation command line
to analyze the LogiBLOX libraries.

vaninit parent_ directory

This is a script provided by Xilinx. The new logiblox.lib  Vantage
library directory will be created under the specified parent_directory.
You do not need to re-analyze the LogiBLOX library for every new
project.



Quick Start Guide for Xilinx Alliance Series 1.4

F-8 Xilinx Development System

LogiBLOX Modules
LogiBLOX has many different modules that you can use in a sche-
matic or HDL synthesis design. The following is a list of the Logi-
BLOX modules.

Accumulator Adder/Subtracter Clock Divider

Comparator Constant Counter

Data Register Decoder Input/Output

Memory Multiplexer Pad

Shift Register Simple Gates Tristate



Quick Start Guide for Xilinx Alliance Series 1.4  —  0401696 01 G-1

Appendix G

Instantiated Components

This appendix lists the components most frequently instantiated in
synthesis designs. The function of each component is briefly
described and the pin names are supplied, along with a listing of the
Xilinx product families involved. Associated instantiation can be
used to include the component in an HDL design. For complete lists
of the Xilinx components, see the Dynatext online documentation
Libraries Guide or the Synopsys (XSI) Interface/Tutorial Guide. This
chapter contains the following sections.

•  “STARTUP Component” section

•  “BSCAN Component” section

•  “READBACK Component” section

•  “RAM and ROM” section

•  “Global Buffers” section

•  “Fast Output Primitives” section

•  “IOB Components” section

STARTUP Component
The STARTUP component is typically used to access the global set/
reset and global 3-state signals. STARTUP can also be used to access
the start-up sequence clock. For information on the start-up sequence
and the associated signals, see Programmable Logic Data Book and the
online manual Libraries Guide..

The startup component cannot be simulated. For Verilog GTS/GSR
simulation see the Cadence Interface/Tutorial Guide. For VHDL use



Quick Start Guide for Xilinx Alliance Series 1.4

G-2 Xilinx Development System

components in the following table and refer to the Development
System User Guide for HDL simulation information.

BSCAN Component
To use the boundary-scan (BSCAN) circuitry in a Xilinx FPGA, the
BSCAN component must be present in the input design. The TDI,
TDO, TMS, and TCK components are typically used to access the
reserved boundary-scan device pads for use with the BSCAN compo-
nent but can be connected to user logic as well. For more information
on the BSCAN component, the internal boundary-scan circuitry, and
the directional properties of the four reserved boundary-scan pads,
refer to Programmable Logic Data Book and the online manual Libraries
Guide.

1. For 5200, GSR pin is GR.

Table G-1 Startup Library Component

Name Family Description Outputs Inputs

STARTUP 4000E/L,
4000EX,
4000XL,
4000XV,
5200/XL1

Used to connect Global Set/Reset,
global 3-state control, and user
configuration clock.

Q2, Q3,
Q1Q4,
DONEIN

GSR,
GTS, CLK

Table G-2 BSCAN Library Components

Name Family Description Outputs Inputs

BSCAN 4000E/L,
4000EX,
4000XL,
4000XV,
 5200/XL1

Indicates that the boundary- scan
logic should be enabled after the
FPGA has been configured.

TDO,
DRCK,
IDLE,
SEL1,
SEL2

TDI,
TMS,
TCK,
TDO1,
TDO2

TDI 4000E/L,
4000EX,
4000XL,
4000XV,
5200/XL

Connects to the BSCAN TDI input.
Loads instructions and data on each
low-to-high TCK transition.

I —



Instantiated Components

Quick Start Guide for Xilinx Alliance Series 1.4 G-3

READBACK Component
To use the dedicated readback logic in a Xilinx FPGA the READ-
BACK component must be inserted in the input design. The MD0,
MD1, and MD2 components are typically used to access the mode
pins for use with the readback logic, but can be connected to user
logic as well. For more information on the READBACK component,
the internal readback logic, and the directional properties of the three
reserved mode pins, see the Programmable Logic Data Book and the
online manual Libraries Guide.

1. 5200 has three additional output pins: Reset, Update, Shift

TDO 4000E/L,
4000EX,
4000XL,
4000XV,
5200/XL

Connects to the BSCAN TDO
output. Provides the boundary-scan
data on each low-to-high TCK tran-
sition.

— O

TMS 4000E/L,
4000EX,
4000XL,
4000XV,
5200/XL

Connects to the BSCAN TMS input.
It determines which boundary scan
is performed.

I —

TCK 4000E/L,
4000EX,
4000XL,
4000XV,
5200/XL

Connects to the BSCAN TCK input.
Shifts the serial data and instruc-
tions into and out of the boundary-
scan data registers.

I —

Table G-3 Readback Library Components

Name Family Description Outputs Inputs

READBACK 4000E/L,
4000EX,
4000XL,
4000XV,
5200XL

Accesses the bitstream readback
function. A low-to-high transition
on the TRIG input initiates the read-
back process.

DATA, RIP CLK,
TRIG

Table G-2 BSCAN Library Components

Name Family Description Outputs Inputs



Quick Start Guide for Xilinx Alliance Series 1.4

G-4 Xilinx Development System

RAM and ROM
Some of the most frequently instantiated library components are the
RAM and ROM primitives. Because most synthesis tools are unable
to infer RAM or ROM components from the source HDL, the primi-
tives must be used to build up more complex structures. The
following list of RAM and ROM components (Table G-4) is a
complete list of the primitives available in the Xilinx library. For more
information on the components, see the Programmable Logic Data Book
and the online manual Libraries Guide.

MD0 4000E/L,
4000EX,
4000XL,
4000XV,
5200/XL

Connects to the Mode 0 (M0) input
pin, which is used to determine the
configuration mode.

I —

MD1 4000E/L,
4000EX,
4000XL,
4000XV,
5200/XL

Connects to the Mode 1 (M1) input
pin, which is used to determine the
configuration mode.

— O

MD2 4000E/L,
4000EX,
4000XL,
4000XV,
5200/XL

Connects to the Mode 2 (M2) input
pin, which is used to determine the
configuration mode.

I —

Table G-4 RAM and ROM Library Components

Name Family Description Outputs Inputs

RAM16X1 4000E/L,
4000EX,
4000XL,
4000XV

A 16-word by 1-bit static read-write
random-access memory compo-
nent.

O D, A3,
A2, A1,
A0, WE

Table G-3 Readback Library Components

Name Family Description Outputs Inputs



Instantiated Components

Quick Start Guide for Xilinx Alliance Series 1.4 G-5

Global Buffers
Each XC4000EX and XC4000XL device has 16 available global buffers:
8 BUFGLSs and 8 BUFEs. For some designs it may be necessary to use
the exact buffer desired to ensure appropriate clock distribution
delay. For most designs, the BUFG, BUFGS, and BUFGP components

RAM16X1D 4000E/L,
4000EX,
4000XL,
4000XV

A 16-word by 1-bit dual port
random access memory with
synchronous write capability and
asynchronous read capability.

SPO, DPO D, A3,
A2, A1,
A0,
DPRA3,
DPRA2,
DPRA1,
DPRA0,
WE,
WCLK

RAM16X1S 4000E/L,
4000EX,
4000XL,
4000XV

A 16-word by 1-bit static random
access memory with synchronous
write capability and asynchronous
read capability.

O D, A3,
A2, A1,
A0, WE,
WCLK

RAM32X1 4000E/L,
4000EX,
4000XL,
4000XV

A 32-word by 1-bit static read-write
random access memory.

O D, A0,
A1, A2,
A3, A4,
WE

RAM32X1S 4000E/L,
4000EX,
4000XL,
4000XV

A 32-word by 1-bit static random
access memory with synchronous
write capability and asynchronous
read capability.

O D, A4,
A3, A2,
A1, A0,
WE,
WCLK

ROM16X1 4000E/L,
4000EX,
4000XL,
4000XV

A 16-word by 1-bit read-only
memory component.

O  A3, A2,
A1, A0

ROM32X1 4000E/L,
4000EX,
4000XL,
4000XV

A 32-word by 1-bit read-only
memory component.

O A4, A3,
A2, A1,

A0

Table G-4 RAM and ROM Library Components

Name Family Description Outputs Inputs



Quick Start Guide for Xilinx Alliance Series 1.4

G-6 Xilinx Development System

can be inferred or instantiated, thus allowing the Alliance Series
Design Implementation Tools to make an appropriate physical buffer
allocation. For more information on the components, see the Program-
mable Logic Data Book.

Fast Output Primitives
One of the features added to the XC4000EX and XC4000XL architec-
tures is the fast output MUX. There is one fast output MUX located in
each IOB which can be used to multiplex between two signals on a
single device pad or can be used to implement any two input logic

1. BUFGP_F for Synopsys when connected to dedicated Pad

2. BUFGS_F for Synopsys when connected to dedicated Pad

Table G-5 Global Buffers Library Components

Name Family Description Outputs Inputs

BUFG 3000A,
3100A,
4000E/L,
4000EX,
4000XL,
4000XV,
5200/L

An architecture-independent global
buffer, distributes high fan-out
clock signals throughout a PLD
device.

O I

BUFGP1 4000E/L,
4000EX,
4000XL,
4000XV

A primary global buffer, distributes
high fan-out clock, or control
signals throughout PLD devices.

O I

BUFGS2 4000E/L,
4000EX,
4000XL,
4000XV

A secondary global buffer, distrib-
utes high fan-out clock, or control
signals throughout a PLD device.

O I

BUFGLS 4000EX,
4000XL,
4000XV

Global Low-Skew buffer. BUFGLS
components can drive all flip-flop
clock pins.

O I

BUFGE 4000EX,
4000XL,
4000XV

Global Early buffer. XC4000EX
devices have eight total, two in each
corner. BUFGE components can
drive all clock pins in their corner of
the device.

O I



Instantiated Components

Quick Start Guide for Xilinx Alliance Series 1.4 G-7

function. Each component can have zero, one, or two inverted inputs.
Because the output MUX is located in the IOB, it must be connected
to the input pin of either an OBUF or an OBUT. For more information
on the output primitives, see the Programmable Logic Data Book. For
information on how to instantiate output MUXs with inverted inputs,
see the Synopsys (XSI) Interface/Tutorial Guide.

IOB Components
Depending on the synthesis vendor being used, some IOB compo-
nents must be instantiated directly in the input design. Most
synthesis tools support IOB D-type flip-flop inferences, but may not
yet support IOB D-type flip-flop inference with clock enables.
Because there are many slew rates and delay types available, there

Table G-6 Fast Output Primitives

Name Family Description Outputs Inputs

OAND2 4000EX,
4000XL

2-input AND gate that is imple-
mented in the output multiplexer of
the XC4000EX/XL IOB

O F, I0

ONAND2 4000EX,
4000XL

2-input NAND gate that is imple-
mented in the output multiplexer of
the XC4000EX/XL IOB

O F, I0

OOR2 4000EX,
4000XL

2-input OR gate that is imple-
mented in the output multiplexer of
the XC4000EX/XL IOB.

O F, I0

ONOR2 4000EX,
4000XL

2-input NOR gate that is imple-
mented in the output multiplexer of
the XC4000EX/XL IOB.

O F, I0

OXOR2 4000EX,
4000XL

2-input exclusive OR gate that is
implemented in the output multi-
plexer of the XC4000EX/XL IOB.

O F, I0

OXNOR2 4000EX,
4000XL

2-input exclusive NOR gate that is
implemented in the output multi-
plexer of the XC4000EX/XL IOB.

O F, I0

OMUX2 4000EX,
4000XL

2 x 1 MUX implemented in the
output multiplexer of the
XC4000EX/XL IOB.

O D0, D1,
S0



Quick Start Guide for Xilinx Alliance Series 1.4

G-8 Xilinx Development System

are many derivatives of the primitives shown. For a complete list of
the IOB primitives, see the Synopsys (XSI) Interface/Tutorial Guide.

Table G-7 IOB Components

Name Family Description Outputs Inputs

IBUF 3000A,
3100A,
4000E/L,
4000EX,
4000XL,
4000XV,
5200/XL

Single input buffers. An IBUF
isolates the internal circuit from the
signals coming into a chip.

O I

OBUF 3000A,
3100A,
4000E/L,
4000EX,
4000XL,
4000XV,
5200/XL

Single output buffers. An OBUF
isolates the internal circuit and
provides drive current for signals
leaving a chip.

O I

OBUFT 3000A,
3100A,
4000E/L,
4000EX,
4000XL,
4000XV,
5200/XL

Single 3-state output buffer with
active-low output enable. (3-state
High)

O I,T

IFD 3000A,
3100A,
4000E/L,
4000EX,
4000XL,
4000XV

Single input D flip-flop. Q D, C

OFD 3000A,
3100A,
4000E/L,
4000EX,
4000XL,
4000XV

Single output D flip-flop. Q D, C



Instantiated Components

Quick Start Guide for Xilinx Alliance Series 1.4 G-9

OFDT 3000A,
3100A,
4000E/L,
4000EX
4000XL,
4000XV

Single D flip-flop with active-high
3-state active-low output enable
buffers.

O D, C,T

IFDX 4000E/L,
4000EX,
4000XL,
4000XV

Single input D flip-flop with clock
enable.

Q D, CE, C

OFDX 4000E/L,
4000EX,
4000XL,
4000XV

Single output D flip-flop with clock
enable

Q D, C, CE

OFDTX 4000E/L,
4000EX,
4000XL,
4000XV

Single D flip-flop with active-high
tristate and active-low output
enable buffers.

O D, C, CE,
T

ILD_1 4000E/L,
4000EX,
4000XL,
4000XV

Transparent input data latch with
inverted gate. (Transparent High).

Q D, G

Table G-7 IOB Components

Name Family Description Outputs Inputs



Quick Start Guide for Xilinx Alliance Series 1.4

G-10 Xilinx Development System



Quick Start Guide for Xilinx Alliance Series 1.4 —  0401696 01 H-1

Appendix H

Alliance Constraints

This appendix discusses some of the more common constraints you
can apply to your design to control the timing and layout of a Xilinx
FPGA or CPLD. For a complete listing of all supported constraints,
please refer to the  “Attributes, Constraints, and Carry Logic” chapter
of the Libraries Guide. For a more complete discussion of how timing
constraints work in M1, refer to the Development System Reference
Guide. This appendix contains the following sections.

•  “Constraint Entry Mechanisms” section

•  “Translating and Merging Logical Designs” section

•  “Constraints File Overview” section

•  “UCF Timing Constraints” section

•  “Layout Constraints” section

•  “Efficient Use of Timespecs and Layout Constraints” section

•  “Standard Block Delay Symbols” section

•  “Table of M1-Supported Constraints” section

•  “Basic UCF Syntax Examples” section

•  “Constraining LogiBLOX RAM/ROM with Synopsys” section

Constraint Entry Mechanisms
The M1 version of the Xilinx Alliance and Foundation design tools
allow users to control the implementation of a design through
constraints which affect the mapping and layout of the physical
circuit. Additionally, a user must specify the “path” timing require-
ments of the circuit to obtain the best results, and allow the imple-



Quick Start Guide for Xilinx Alliance Series 1.4

H-2 Xilinx Development System

mentation tools to determine the layout which satisfies these
requirements.

The various design constraints available for use within M1 can be
entered at design creation (i.e., the logical domain) or after the design
is mapped (i.e., the physical domain). Constraints entered in the
logical domain are either entered into the schematic, or applied to a
synthesis process and then forward annotated through the netlisting
mechanism (DC2NCF for Synopsys FPGA and Design Compiler
flows, XNF file generation for the Synopsys FPGA Express flow).

Constraints entered in the physical domain are entered directly into
the Physical Constraints File (PCF). These constraints are conceptu-
ally the same as those entered during design creation, however they
are directly related to objects within the physical design database,
and are therefore applied using the PCF syntax.

 “Constraint Entry Flow” figure illustrates the constraints entry
mechanisms of the M1 version of the Xilinx tools. The rest of this
appendix describes the steps involved in implementing a design
within the M1 tools, with specific focus on how constraints are
entered at each stage of design processing.



Alliance Constraints

Quick Start Guide for Xilinx Alliance Series 1.4 H-3

Figure H-1 Constraint Entry Flow

Translating and Merging Logical Designs
The process of implementing a design within the M1 tools starts by
constructing a logical design file (NGD) that represents the design
created by the NGDBuild application (as shown in  “Constraint Entry
Flow” figure).

The NGD file contains all of the design’s logic structures (gates) and
constraints. The NGD file is produced through the NGDBuild process

Entry Tool

Schematic Entry or HDL Tool

Only

for Synopsys

X8085

NGDBUILD

Netlist

NCD PCF

To Physical Implementation Tools

Netlist

Constraints

File

User

Constraints

File

DC2NCF

NCF

Physical

Constraints

File

MAP

UCF

NGD



Quick Start Guide for Xilinx Alliance Series 1.4

H-4 Xilinx Development System

which controls the translation and merging of all of the related logic
design files. All design files are translated from industry standard
netlists into intermediate NGO files by one of two netlist translation
programs XNF2NGD or EDIF2NGD. The exception to this rule is
logic which is created through the use of LogiBlox components. With
some tools, such as Viewlogic, LogiBLOX components may be
compiled directly in memory from within the tool, and are therefore
never written to disk as a separate intermediate NGO file. If Logi-
BLOX is invoked seperately, it will write out an NGO file.

Constraints File Overview
The following sections summarize the functions of user constraint
files.

The Netlist Constraint File (NCF)
The Netlist Constraint File was developed as an alternative means for
third party vendors to provide the M1 tools with design constraints.
Historically, these constraints are in the design netlist and are anno-
tated to the equivalent elements within the designs NGO file. In M1,
translating a logic design netlist to a NGO file includes annotating
constraints present in the NCF file to the NGO design elements. The
NCF file is local in scope and therefore must have the same root name
as the netlist being translated. In addition, the local scope of the
netlist allow entries within the NCF file to refer to specific nets or
symbols without prefixing the entire hierarchical path of the net or
symbol.

 “Constraint Entry Flow” figure illustrates the Synopsys workstation
design flow which utilizes a NCF file. The program DC2NCF
converts the Synopsys constraints into NCF syntax. Refer to the “XSI
Design Flow” section of the Synopsys (XSI) Interface /Tutorial Guide for
detailed information on using this flow.

Note: Whether or not an NGO is written to disk for a LogiBlox
component is dependent on the specific design creation technology
being used. Many synthesis flows require that an NGO file be written
to disk during component specification, while the typical schematic
flow provides for on-the-fly compilation of NGO files.



Alliance Constraints

Quick Start Guide for Xilinx Alliance Series 1.4 H-5

The User Constraint File (UCF)
The User Constraint File was developed to provide users an easy
mechanism for constraining a logical design without returning to the
design capture tools. The process of building the complete logical
design representation (NGD files) is the job of NGDBuild. In devel-
oping this complete design database, NGDBuild annotates design
constraints which are present within a UCF file. The syntax for the
UCF constraints file is identical to the syntax of the Netlist
Constraints File (NCF).

One of the main differences between the NCF and UCF files are how
the objects within the file are identified. A constraint which is being
applied via the UCF file must specify the complete hierarchical path
name for the instance or net being constrained, while an NCF
constraint need only reference the specific net or symbol within the
associated netlist. The difference in hierarchical path name require-
ments arises from the scope of the design files themselves; NCF files
have a local scope and can therefore tolerate local references, while
UCF files have a global scope and therefore require full hierarchical
path names.

Another difference is that UCF constraint file may override the NCF
constraints. Because the Netlist Constraint File (NCF) is considered
an alternative mechanisms for design creation packages to pass
constraints to the M1 implementation tools, no conflicts should occur.
In contrast, the User Constraint File (UCF) annotation includes a reso-
lution mechanism which allows for UCF constraints to over-write
constraints present in the NCF. UCF constraints are considered more
significant due to their later appearance in the design flow, and
provide a mechanism for establishing or modifying logical design
constraints without requiring the user to re-enter a schematic or
synthesis tool.

Note: Versions prior to M1.2 required the -uc switch to identify a
User Constraint File which needs to be annotated to the design.
Versions M1.2 and later allow UCF file annotation to be performed by
default if the UCF file has the same base name as the input.

The Physical Constraints File (PCF)
The NCD, or physical representation of the design, describes the
design in terms of FPGA resources. The layout and timing analysis
tools work with the NCD representation. The PCF contains the



Quick Start Guide for Xilinx Alliance Series 1.4

H-6 Xilinx Development System

constraints as they relate to the NCD. Layout and timing constraints
are written in terms of the physical design’s components (COMPs),
fractions of COMPs (BELs) and collections of COMPs (macros).
Because of this different design viewpoint, the PCF syntax is not
necessarily the same as the logical design constraint files (UCF/
NCF). Furthermore, because the PCF file is written for use by the
physical implementation tools, logical names may no longer be simi-
larly represented in the physical design. Some of the advantages of
working with constraints in the PCF file are.

• It is readily modified and immediately applicable to NCD (i.e.,
there is no need to re-run NGDBuild or MAP in order to run
layout or analysis tools).

• Implications of the mapping of logical design structures into the
physical structures of the FPGA only become obvious once the
design is evaluated using the physical tools. Altering the PCF file
for “what-if” analysis can be desirable.

If you modify the PCF file, you should be certain that you enter your
constraints after the “SCHEMATIC END;” line. Otherwise, your
constraints will be overwritten every time MAP is re-executed using
that PCF file.

Case Sensitivity
Users should be aware that the M1 constraints are case sensitive,
since EDIF is a case-sensitive format. Therefore, you should always
be sure that you specify the net names and instance names exactly as
they are in your schematic or code. You should also be consistent
when using TNMs and other user-defined names in your constraints
file; always use the same case throughout. For site names (such as
“CLB_R2C8” or “P2”), you should use upper case only.

UCF Timing Constraints
The following sections summarize the functions of timing
constraints.

The Period Style Timespec
In addition to From:To style Timespecs, there are several other forms
of Timespecs provided by the M1 tools. Of particular significance is



Alliance Constraints

Quick Start Guide for Xilinx Alliance Series 1.4 H-7

the PERIOD Timespec. The example below illustrates the use of the
PERIOD Timespec referenced to a timegroups CLK2_GRP and CLK3.

This example is for multiple clock designs. Use FROM:TO to
constrain data paths between the two clock domains.

# UCF PERIOD style Timespecs

NET CLK2 TNM = CLK2_GRP ;
NET CLK3 TNM = CLK3 ;

TIMESPEC TS03 = PERIOD CLK2_GRP 50 ;
TIMESPEC TS04 = PERIOD CLK3 TS03 * 2 ;

In addition, the example also shows how constraints and nets may be
given the same name because they occupy separate name-spaces.
Also, it shows the constraint syntax whereby one Timespec is defined
relative to another (the value of TS04 is declared to be two times that
of TS03).

The PERIOD constraint covers all timing paths which start or end at a
register, latch, or synchronous RAM which is clocked by the refer-
enced net. The only exception to this rule are paths to output pads
which are not covered by the PERIOD constraint. (Input pads, which
are the source of a “pad-to-setup” timing path for one of the specified
synchronous elements, are covered by the PERIOD constraint.)

The TIMESPEC form of the PERIOD constraint allows flexibility in
group definitions and allows you to define clock timing relative to
another TIMESPEC. The flexibility of the TIMESPEC form of the
PERIOD constraint arises from being able to modify the contents of
the TIMEGRP once the design has been mapped. By adding or
removing objects from the TIMGRP, which are listed in the PCF file,
the paths which are covered by the PERIOD constraint may be
altered.

If the flexibility of the TIMESPEC form is not required, the NET form
of the PERIOD constraint may be used. The syntax for the NET form
of the PERIOD constraint is simpler than the TIMESPEC form, while
continuing to provide the same path coverage. The following
example illustrates the syntax of the NET form of the PERIOD
constraint.

# NET form of the PERIOD timing
# constraints (no TSIdentifier)

NET CLK PERIOD = 40 ;



Quick Start Guide for Xilinx Alliance Series 1.4

H-8 Xilinx Development System

This is the recommendation of using PERIOD on a single clock
design in which data does not pass between the clock domains.

With the M1. 4 release, PERIOD will now include clockskew in the
path analysis.

The Offset Constraint
The OFFSET constraint is applied to a net connecting with a PAD (see
 “Using OFFSET Constraints” figure). It defines the delay of a signal
relative to a clock, and is only valid for registered data paths. The
OFFSET constraint specifies the signal delay external to the chip,
allowing the implementation tools to automatically adjust relevant
internal delays (CLK buffer and distribution delays) to accommodate
the external delay specified with this constraint.

# Net form of the OFFSET timing constraint

NET ADD0_IN OFFSET = IN 14 AFTER CLK ;

In analyzing OFFSET paths, the M1 timing tools adjust the PERIOD
associated with the constrained synchronous element based on both
the timing specified in the OFFSET constraint and the delay of the
referenced clock signal. In  “Using OFFSET Constraints” figure,
assume a delay of 8 ns for the signal CLK to arrive at the CLB, a 5 ns
setup time for ADD0, and a 14 ns OFFSET delay for the signal ADD0.
Assume a period of 40 ns is specified. The M1 tools allocate 29 ns for
the signal ADD0 to arrive at the CLB input pin (40ns - 14ns + 8ns -
5ns = 29ns).



Alliance Constraints

Quick Start Guide for Xilinx Alliance Series 1.4 H-9

Figure H-2 Using OFFSET Constraints

This same timing constraint may be applied using the
FROM:PADS:TO:FFS timing constraint. However, using a From:To
methodology would require the designer to know the intrinsic CLK
net delay, and the user would have to adjust the value assigned to the
From:To Timespec. The internal CLK net delay is implicit in the
OFFSET/PERIOD constraint. Furthermore, migrating the design to
another speed grade or device will require modification of the
From:To Timespec to accommodate the new intrinsic CLK net delay.
It should be noted that an alternative solution is to use the flip-flop in
the IOB of certain FPGA architectures (XC4000E/EX, for instance), as
the clock-to-setup time is specified in the Data Book.

Note: Relative Timespecs can only be applied to similar Timespecs.
For example, a PERIOD Timespec may be defined in terms of another
PERIOD Timespec, but not a FROM:TO Timespec.

The “From:To” Style Timespec
When using the From:To style of constraint, the path(s) that are
constrained are specified by declaring the start point and end point,
which must be of type pad, flip-flop, latch, RAM, or user-specified
sync point (see TPSYNC). To group a set of endpoints together, you
may attach a TNM attribute to the object being an instance or macro
(or to a net that is an input to the object). With a macro the TNM
traverses the hierarchy to tag all relevant objects. A TIMEGRP is a
mechanism for combining two or more sets of TNMs or other

D Q

p/o CLBCLK IOB

CLK

ADD0ADD0 IN

CLK IN

IOB

OFFSET of ADD0

with respect to CLK

X8086



Quick Start Guide for Xilinx Alliance Series 1.4

H-10 Xilinx Development System

TIMEGRPs together, or alternatively, to create a new group by
pattern matching (grouping a set of objects that all have output nets
that begin with a given string).

TNMs are used by the M1 tools in the same way as the XACTstep 5.2
tools—identification of a group of design objects which are to be
referenced within a Timespec. If a TNM is placed on a net, the M1
tools determine TNM membership by tracing forward from the spec-
ified net to all the valid endpoints of the net. Refer to the Development
System Reference Guide for more information on this subject.

# This is a comment line
# UCF FROM : TO style Timespecs

NET DATA_EN TNM = PIPEA ;
TIMEGRP BUSPADS = PADS(BUS*) ;
TIMESPEC TS01 = FROM:BUSPADS:TO:PIPEA:20 ;

# Spaces or colons (:) may be used as field separators

TIMESPEC TS02 = FROM FFS TO RAMS 15 ;

The first line of the above example illustrates the application of the
TNM (Timing Name) PIPEA to the net named DATA_EN. The second
line illustrates the TIMEGRP design object formed using a pattern
matching mechanism in conjunction with the pre-defined TIMEGRP
“PADS”. In this example, the TIMEGRP named BUSPADS will
include only those PADs with names that start with BUS.

Each of the user-defined Timegroups is then used to define the object
space constrained by the timing specification (Timespec) named
TS01. This timing specification states that all paths from each member
of the BUSPADS group to each member of the PIPEA group needs to
have a path delay that does not exceed 20 nanoseconds (ns are the
default units for time). The TIMESPEC TS02 constraint illustrates a
similar type of timing constraint using the predefined groups FFS
and RAMS.

It is worthwhile noting that all From:To Timespecs must be relative to
a Timegroup. The above example illustrates that Timegroups may be
defined by the user either explicitly (TIMEGRPs) or implicitly
(TNMs), or they may be predefined groups (PADS, LATCHES, FFS,
RAMS).

There is an additional keyword that can be added to the From:To spec
that allows the user to narrow the set of paths that are covered. By
using the From:Thru:To form, you may constrain only those paths



Alliance Constraints

Quick Start Guide for Xilinx Alliance Series 1.4 H-11

that go through a certain set of nets, defined by the TPTHRU
keyword, as shown in the following example.

# UCF FROM:TO Timespec using THRU

NET $1I6/thisnet TPTHRU=these ;
NET $1I6/thatnet TPTHRU=these ;

TIMEGRP sflops= FFS(DATA*) ;
TIMEGRP dflops= FFS(OUTREG*) ;

TIMESPEC TS23= FROM:sflops: THRU:these: TO:dflops:20 ;

Here, only those paths that go from the Q pin of the sflops through the
nets $1I6/thisnet and $1I6/thatnet and on to the D pin of dflops will
be controlled by TS23.

Using TPSYNC
In the XACT 5.x/6.x methodology, only flip-flops, RAMs, latches and
pads could be identified as a startpoint or endpoint for a timing spec-
ification. However, in the M1 toolset, you may now define any node
as a source or destination for a Timespec with the TPSYNC keyword.
The use of TPSYNC is similar to TPTHRU—it is a label that is
attached to a set of nets, pins, or instances in the design.

For instance, suppose a design has a PAD ENABLE_BUS that must
arrive at the enable pin of several different 3-state buffers in less than
a specified time. With the M1 tools, you can now define that 3-state
buffer as an endpoint for a timing spec. For example:

# TPSYNC example; pad to a 3-state buffer enable pin
# Note TPSYNC attached to 3-state buffer’s output NET

NET BUS3STATE TPSYNC=bus3;
TIMESPEC TSNewSpc3= FROM:PAD(ENABLE_BUS): TO:bus3:20ns;

In the NET statement shown above, the TPSYNC is attached to the
output net of a 3-state buffer called BUS3STATE. If a TPSYNC is
attached to a net, then the source of the net is considered to be the
endpoint (in this case, the 3-state buffer itself). The subsequent
TIMESPEC statement can use the TPSYNC name just as it uses a
TNM name.

The next TPSYNC example shows how you may use the keyword
PIN instead of NET if you wish to attach an attribute to a pin.

# Note TPSYNC attached to 3-state buffer’s enable PIN



Quick Start Guide for Xilinx Alliance Series 1.4

H-12 Xilinx Development System

PIN  $1I6/BUSMACRO1/TRIBUF34.T TPSYNC=bus1;
TIMESPEC TSNewSpc1= FROM:PAD(ENABLE_BUS): TO:bus1:20ns;

In this example, the instance name of the 3-state buffer is given
followed by the pin name of the enable (.T). If a TPSYNC is attached
to a primitive input pin, then the primitive’s input is considered the
startpoint or endpoint for a timing specification. If it is attached to a
output pin, then the output of the primitive is used.

The last TPSYNC example shows how you may use the keyword
INST if you wish to attach an attribute to a instance.

# Note TPSYNC attached to 3-state buffer INSTANCE

INST  $1I6/BUSMACRO2/BUFFER_2 TPSYNC=bus2;
TIMESPEC TSNewSpc2= FROM:PAD(ENABLE_BUS): TO:bus2:20ns;

If a TPSYNC is attached to an instance, then the output of the
instance is considered the startpoint or endpoint for a timing specifi-
cation.

Ignoring Paths
When a Timespec is declared that includes paths where the timing is
not important, the tools may create a less optimal route since there is
more competition for routing resources. This problem can be allievi-
ated by using a TIG (timing ignore) attribute on the non-critical nets.
TIG will cause all paths that fan out from the net or pin where it is
applied to be ignored for purposes of timing analysis.

#TIG example

NET $1I456/slow_net TIG=TS01, TS04 ;

The above syntax indicates that $1I456/slow_net  should not have
the Timespec TS01 or TS04 applied to it. All paths thru a net can be
ignored by removing any TSids.

Constraint Precedence
A user may assign a precedence to Timespecs only within a certain
class of constraints. For example, a user may specify a priority for a
particular From:To specification to be greater than another, but may
not specify a From:To constraint to have priority over a TIG
constraint. The following example illustrates the explicit assignment
of priorities between two same-class timing constraints, the lowest
number having the highest priority.



Alliance Constraints

Quick Start Guide for Xilinx Alliance Series 1.4 H-13

# Priority UCF Example

TIMESPEC TS01 = FROM GROUPATO GROUPB 40 PRIORITY 4;
TIMESPEC TS02 = FROM GROUP1 TO GROUP2 35 PRIORITY 2;

 “Precedence of Constraints” table illustrates the order of precedence
for constraint files and timing constraints.

Layout constraints also have an inherent precedence which is based
on the type of constraint and the site description provided to the
tools. If two constraints are of the same priority and cover the same
path, then the last constraint in the constraint file will override any
other constraints that overlap (unlike in XACT 5.x/6.x, where the
“tightest” specification would be used).

Table H-1 Precedence of Constraints

Across Constraint Sources

Highest Priority Physical Constraint File (PCF)

User Constraint File (UCF)

Lowest Priority
Input Netlist / Netlist
Constraint File (NCF)

Period specification

Lowest Priority “Allpaths” type constraints

Within Constraint Sources

Highest Priority TIG (Timing Ignore)

FROM:USER1:THRU:USER_T:T
O:USER2 Specification
(USER1 and USER2 are user-
defined groups)

FROM:USER1:THRU:USER_T:T
O:FFS Specification or
FROM:FFS:THRU:USER_T:TO:U
SER2 Specification
(FFS is any pre-defined group)

FROM:FFS:THRU:USER_T:TO:F
FS Specification



Quick Start Guide for Xilinx Alliance Series 1.4

H-14 Xilinx Development System

Layout Constraints
The mapping constraints in the example below illustrate some of the
capabilities for controlling the implementation process for a design.
The OPTIMIZE attribute is attached to the block of logic associated
with the instance “GLUE.”. All of the combinatorial logic within the
block GLUE will be optimized for speed (minimizing levels of logic)
while other aspects of the design will be processed by the default
mapping algorithms (assuming the design based optimization
switches are not issued).

# Mapping Constraint

INST  GLUE OPTIMIZE = SPEED ;

# Layout Constraint
# LOC a pin

NET IOBLOCK/DATA0_IN LOC = P12 ;

# Reserve a pin (Pin 24 should be unused)

CONFIG PROHIBIT  = P24 ;

The layout constraint in the example above illustrates the use of a full
hierarchical path name for the net named DATA0_IN in the applica-
tion of the I/O location constraint. In this example, IOBLOCK is a
hierarchical boundary which contains the net DATA0_IN. Location
constraints applied to “Pad nets” are used to constrain the location of
the PAD itself, in this case to site P12.

FROM:USER1:TO:USER2 Speci-
fication

FROM:USER1:TO:FFS Specifica-
tion or
FROM:FFS:TO:USER2 Specifica-
tion

FROM:FFS:TO:FFS specification

Period specification

Within Constraint Sources



Alliance Constraints

Quick Start Guide for Xilinx Alliance Series 1.4 H-15

Converting a Logical Design to a Physical Design
The process of mapping translates a design from the logical design
domain to the physical design domain. The MAP process creates both
the physical design components (CLBs, IOBs, etc.) and the physical
design constraints (layout and timing). The physical design compo-
nents are written into a Native Circuit Description (NCD) file. The
physical design constraints are written into a Physical Constraints
File (PCF).

As the design flow of  “Constraint Entry Flow” figure shows, MAP
not only writes a PCF file, but also reads a specified pre-existing PCF
file. MAP reads an existing PCF file in order to facilitate the over-
riding of constraints that are contained within another logic design
using the “last one wins” resolution mechanism provided by the PCF
file. The following paragraphs briefly describe this approach.

Last One Wins Resolution
MAP creates new physical design constraints each time it converts a
logical design into a physical design. The constraints which are
created during this process are written into the “Schematic” section of
the PCF file. This section is recreated each time MAP is run based on
the constraints that are contained within the NGD file. The schematic
section is always written at the top of the PCF file, and constraints
that are in the PCF file but outside of the Schematic section (after the
line “SCHEMATIC END”) are considered to be in the “User” section
of the PCF file. The user section is read, syntactically checked, and
rewritten each time MAP is run. Since these constraints always follow
those written into the schematic section, they will always take prece-
dence (following the “last-one-wins” rule).

Note: If the design contains a PAD, the constraint could have been
just as easily applied to it directly (some design flows do not provide
explicit I/O pads in the design netlist).

XC5200XL Constraints
There are some special considerations for constraints for the
XC5200XL family.

• The XC5200XL family requires that some constraints (such as
LOC and RLOC) specify logic cell name within the CLB. For



Quick Start Guide for Xilinx Alliance Series 1.4

H-16 Xilinx Development System

instance, the following constraint will LOC the instance ISYM52
to the lowest logic cell of the CLB in row 5 and column 2.

INST  ISYM52 LOC = CLB_R5C2.LC0 ;

If this was an XC4000 design, an extension would be optional
(the XC4000 family does not use the LCx notation; it uses FFX
and FFY to specify which flop and F and G to specify which func-
tion generator).

• The XC5200XL family does not have flip-flops in the IOB, so two
new constraints have been provided: INREG and OUTREG. PAR
will attempt to place a register with a INREG attribute near the
IOB that drives its Din pin, so it can use fast routes. OUTREG will
cause PAR to attempt to place a register near the IOB that Qout
sources.

INST  near_input_flop INREG ;
INST  near_output_flop OUTREG ;

Efficient Use of Timespecs and Layout Constraints
The previous section described the mechanisms available for
constraining a design’s timing within the M1 tools. The sections that
follow summarize each of the constraints that are available for use.
The natural question which will arise is “How should I describe my
requirements to the tools?”

The robust nature of the language enables a designer to define their
design requirements at the highest level of abstraction first, and then
fine tune the timing requirements using more specific TIMESPECs as
necessary. This is the methodology that should be followed.

The following observations help to illustrate the reasons why this
methodology should be followed (from a tool runtime perspective).

• The use of explicit Timegroups causes slower runtimes than the
use of implicit timegroups arising from the use of constraints
such as PERIOD.

• The processing of larger Timegroups takes longer than the
processing of smaller Timegroups.

• The use of many specific Timespecs results in slower runtimes
than the use of a smaller set of more general Timespecs.



Alliance Constraints

Quick Start Guide for Xilinx Alliance Series 1.4 H-17

In conclusion, overall design runtime is improved when a “qualified
global” timing methodology is employed instead of a “thorough-
detailed” timing methodology.

The “Starter Set” of Timing Constraints
The following examples clearly identify the “preferred” mechanism
for controlling the timing of your design. The preferred method
assumes a goal of getting the required results in the fastest run-time
possible. If the design has a single clock and required I/O timing
which equals the clock period, all that is needed are the three
constraints shown in the following example.

# Global UCF Example

NET CLK1 PERIOD = 40 ;
NET OUT* OFFSET = OUT 13 AFTER CLK ;

TIMESPEC TS01 = FROM PADS TO PADS 40 ;

Note: When using net name wild cards in OFFSETS, make sure that
the name is unique to valid nets otherwise processing errors will
occur.

If you need to account for extra delay external to the FPGA, then you
might add the following:

NET INPUT* OFFSET = IN  8 BEFORE CLK ;

The PERIOD constraint covers all pad-to-setup and clock-to-setup
timing paths. The OFFSET constraint covers the clock-to-pad timing
for each of the output nets beginning with OUT. The OFFSET
constraint accounts for the delay of the Clock Buffer/Net in the I/O
timing calculations.

The PCF snippet below illustrates the differences in syntax between
the NCF/UCF and PCF languages. In addition to the syntactical
changes, it is important to note that net and instance names may
change. As an example, one of the net matches resulting from the
UCF “NET OUT*” constraint is now applied to “COMP OUT1_PAD”.
The name OUT1_PAD is the name assigned to the pad instance.  In
addition to name changes, another difference to note is the verbosity
of the PCF. In the PCF there is additional syntax for “MAXDELAY”,
“TIMEGRP” and “Priority”. These are all optional qualifications of
the Timespec within the UCF, but written explicitly to the PCF file
illustrating the full flexibility of the language.



Quick Start Guide for Xilinx Alliance Series 1.4

H-18 Xilinx Development System

# Global PCF example

SCHEMATIC START;

. . .

NET PERIOD “CLK_IN” = 40 nS HIGH 50.00% ;
COMP “OUT1_PAD” OFFSET = OUT 30 ns AFTER COMP “CLK”;
COMP “OUT2_PAD” OFFSET = OUT 30 ns AFTER COMP “CLK”;
COMP “INPUT1_PAD” OFFSET = IN  28 ns BEFORE COMP “CLK”;

TS01 = MAXDELAY FROM TIMEGRP “PADS” TO TIMEGRP “PADS”
40000 pS PRIORITY 0;

SCHEMATIC END;

The next UCF example illustrates the use of both global constraints
(PERIOD, OFFSET) for generally constraining the design, and
detailed TimeSpecs (FROM:THRU:TO) for providing fast and slow
exceptions to the general timing requirements. Because the amount of
constraints placed on a design directly effect run time, it is recom-
mended that users first apply global constraints, then apply indi-
vidual constraints only to those elements of the design which require
additional constraints (or an exception to a constraint). The more
global the constraints, the better the runtime performance of the
tools.

# Sample UCF file
# Specify target device and package

CONFIG PART = XC4010e-PQ208-3;

# Global Constraints

NET CLK1 PERIOD = 40;
NET DATA_OUT* OFFSET = OUT 15 AFTER CLK1;
TIMESPEC TS01 = FROM PADS TO PADS  40;

# Layout Constraints

NET SCLINF LOC = P125;

# Detailed Constraints
# Exception to cover X_DAT and Y_DAT buses

NET ?_DAT* OFFSET = OUT 25 AFTER CLK_IN;

# Ignore timing on reset net. This is covered by
#default Path Tracing Control reg_sr_9.

NET RESET_N TIG ;



Alliance Constraints

Quick Start Guide for Xilinx Alliance Series 1.4 H-19

# Slow exception for data leaving INA FFs

TIMESPEC TS02 = FROM FFS(INA*) TO FFS  80;

# Faster timing required for data leaving RAM

TIMESPEC TS03 = FROM RAMS TO FFS 20;

# Form special time groups related to RAMs

INST  $1I64 TNM = SPDRAM;
NET RAMBUS0 TPTHRU = RAMVIA;
NET RAMBUS1 TPTHRU = RAMVIA;

# Specify timing for this special timing path

TIMESPEC TS04 = FROM SPDRAM THRU RAMVIA TO FFS 45;

Standard Block Delay Symbols
 “Timing Symbols and Their Default Values” table lists the block
delay symbols and their description. There is a one-to-many corre-
spondence between these symbol names and data book symbol
names. For those symbols listed as having a default value of disabled,
no timing analysis will be performed on paths which have segments
composed of symbol path. As an example, paths which have a set/
reset to output path will not be analyzed. Any of the block delays
(Symbol) listed in  “Timing Symbols and Their Default Values” table
may be explicitly enabled or disabled using the PCF.

The example below gives an example of the PCF syntax which would
be used to enable the path tracing for all paths which contain RAM
data to out paths. Note that this PCF directive is placed in the user
section of the PCF.

SCHEMATIC END;

// This is a PCF Comment line
// Enable RAM data to out path tracing

ENABLE = ram_d_o;



Quick Start Guide for Xilinx Alliance Series 1.4

H-20 Xilinx Development System

Table H-2 Timing Symbols and Their Default Values

Table of M1-Supported Constraints
For further explanation and examples of each of the constraints,
please see  “Attributes, Constraints, and Carry Logic” chapter of the
Libraries Guide.

Symbol Default Description

reg_sr_q Disabled Set/Reset to output propagation delay.

lat_d_q Disabled Data to output transparent latch delay.

ram_d_o Disabled RAM data to output propagation delay.

ram_we_o Enabled Ram write enable to output propagation
delay.

tbuf_t_o Enabled TBUF tri-state to output propagation
delay.

tbuf_i_o Enabled TBUF input to output propagation
delay.

io_pad_I Enabled IO pad to input propagation delay.

io_t_pad Enabled IO tri-state to pad propagation delay.

io_o_I Enabled IO output to input propagation delay.
Disabled for tri-stated IOBs.

io_o_pad Enabled IO output to pad propagation delay.

Constraint
M1.0

Schematic NCF UCF PCF

ADD Y N N N

BASE Y N N N

BLKNM Y Y Y N

BUFG Y Y Y N

COLLAPSE Y Y Y N

CONFIG Y N N N

Config. Constraints Y Y Y N

D_INVERT Y N N N



Alliance Constraints

Quick Start Guide for Xilinx Alliance Series 1.4 H-21

a.Use cautiously — while constraint is available there are syntax differences.

DECODE Y Y Y N

DIVIDE1_BY
DIVIDE2_BY

Y Y Y N

DOUBLE Y N N N

DROP_SPEC N Y Y Ya

EQUATE_F
EQUATE_G

Y N N N

FAST Y Y Y N

FILE Y N N N

HBLKNM Y Y Y N

HU_SET Y Y Y N

INIT Y Y Y N

IO Y Y Y N

KEEP Y Y Y N

LOC = Y Y Y Ya

Constraint
M1.0

Design NCF UCF PCF

LOWPWR=
(ON | OFF)

Y N N N

MAP N N N N

MAXDELAY Y Y Y Ya

MAXSKEW Y Y Y Ya

MEDDELAY Y Y Y N

MINIM Y N N N

Net Flag Attributes

F Y N N

H Y N N

P N N N Y

S Y N N N

X Y N N



Quick Start Guide for Xilinx Alliance Series 1.4

H-22 Xilinx Development System

a.Use cautiously — while constraint is available there are syntax differences.

a.Use cautiously — while constraint is available there are syntax differences.

NODELAY Y Y Y N

NOREDUCE Y Y Y N

OFFSET N Y Y Ya

OPT Y N N N

OPTIMIZE Y Y Y N

Constraint
M1.0

Design NCF UCF PCF

OPT_EFFORT Y Y Y N

PART Y Y Y N

PERIOD Y Y Y Ya

PROHIBIT Y Y Y Ya

PWR_MODE Y Y Y N

REG Y N N N

RLOC Y Y Y N

RLOC_ORIGIN Y Y Y N

RLOC_RANGE Y Y Y N

SLOW Y Y Y N

TIG Y Y Y Ya

Timegroup Attributes Y Y Y N

TNM Y Y Y Y

TPSYNC Y Y Y N

TPTHRU Y Y Y N

TSidentifier = IGNORE Y N N N

Other TSidentifier Y Y Y Ya

U_SET Y Y Y N

USE_RLOC Y Y Y N

WIREAND Y Y Y N



Alliance Constraints

Quick Start Guide for Xilinx Alliance Series 1.4 H-23

Basic UCF Syntax Examples
The following sections summarize the functions of timespecs.

PERIOD TIMESPEC
The PERIOD spec covers all timing paths that start or end at a
register, latch, or synchronous RAM which are clocked by the refer-
ence net (excluding pad destinations). Also covered is the setup
requirement of the synchronous element relative to other elements
(ex. flip flops, pads, etc...).

Note: The default unit for time is nanoseconds.

NET clk20MHz PERIOD = 50 ;
NET clk50mhz TNM = clk50mhz ;
TIMESPEC TS01 = PERIOD : clk50mhz : 20 ;

FROM:TO TIMESPECs
FROM:TO style timespecs can be used to constrain paths between
time groups.

Note: Keywords: RAMS, FFS, PADS, and LATCHES are predefined
time groups used to specify all elements of each type in a design.

TIMESPEC TS02 = FROM : PADS : TO : FFS : 36 ;
TIMESPEC TS03 = FROM : FFS : TO : PADS : 36 ns ;
TIMESPEC TS04 = FROM : PADS : TO : PADS : 66 ;
TIMESPEC TS05 = FROM : PADS : TO : RAMS : 36 ;
TIMESPEC TS06 = FROM : RAMS : TO : PADS : 35.5 ;

OFFSET TIMESPEC
To automatically include clock buffer/routing delay in your
“PADS:TO: <synchronous element> or <synchronous
element>:TO:PADS timing specifications, use OFFSET constraints
instead of FROM:TO constraints.

• For an input where the maximum clock-to-out (Tco) of the
driving device is 10 ns.

NET in_net_name OFFSET=IN:10:AFTER:clk_net ;



Quick Start Guide for Xilinx Alliance Series 1.4

H-24 Xilinx Development System

• For an output where the minimum setup time (Tsu) of the device
being driven is 5 ns.

NET out_net_name OFFSET=OUT:5:BEFORE:clk_net ;

TIMING IGNORE
If you can ignore timing of paths, use Timing Ignore (TIG).

Note: The “*” character is a wild-card which can be used for bus
names. A “?” character can be used to wild-card one character.

• Ignore timing of net reset_n:

NET : reset_n : TIG ;

• Ignore data_reg(7:0) net in instance mux_mem:

NET : mux_mem/data_reg* : TIG ;

• Ignore data_reg(7:0) net in instance mux_mem as related to a
TIMESPEC named TS01 only:

NET : mux_mem/data_reg* : TIG = TS01 ;

• Ignore data1_sig and data2_sig nets:

NET : data?_sig : TIG ;

PATH EXCEPTIONS
If your design has outputs that can be slower than others, you can
create specific timespecs similar to this example for output nets
named out_data(7:0) and irq_n.

TIMEGRP slow_outs = PADS(out_data* : irq_n) ;
TIMEGRP fast_outs = PADS : EXCEPT : slow_outs ;
TIMESPEC TS08 = FROM : FFS : TO : fast_outs : 22 ;
TIMESPEC TS09 = FROM : FFS : TO : slow_outs : 75 ;

If you have multi-cycle FF to FF paths, you can create a time group
using either the TIMEGRP or TNM statements.

Warning: Many VHDL/verilog synthesizers do not predictably
name flip flop Q output nets. Most synthesizers do assign predictable
instance names to flip flops, however.

• TIMEGRP example.



Alliance Constraints

Quick Start Guide for Xilinx Alliance Series 1.4 H-25

TIMEGRP slowffs = FFS(inst_path/ff_q_output_net1* : inst_path/
ff_q_output_net2*);

• TNM attached to instance example.

INST inst_path/ff_instance_name1_reg* TNM = slowffs ;
INST inst_path/ff_instance_name2_reg* TNM = slowffs ;

• If a FF clock-enable is used on all flip flops of a multi-cycle path,
you can attach TNM to the clock enable net.

Note: TNM attached to a net “forward traces” to any FF, LATCH,
RAM, or PAD attached to the net.

NET ff_clock_enable_net TNM = slowffs ;

• Example of using “slowffs” timegroup, in a FROM:TO timespec,
with either of the three timegroup methods shown above.

TIMESPEC TS10 = FROM : slowffs : TO : FFS : 100 ;

MISCELLANEOUS EXAMPLES
• Assign an IO pin number or place a basic element (BEL) in a

specific CLB. BEL = FF, LUT, RAM, etc...

INST io_buf_instance_name LOC = P110 ;
NET io_net_name LOC = P111 ;
INST instance_path/BEL_inst_name LOC = CLB_R17C36 ;

• Prohibit IO pin C26 or CLB_R5C3 from being used.

CONFIG PROHIBIT = C26 ;
CONFIG PROHIBIT = CLB_R5C3 ;

• Assign an OBUF to be FAST or SLOW.

INST obuf_instance_name FAST ;
INST obuf_instance_name SLOW ;

• Constrain the skew or delay associate with a net.

NET any_net_name MAXSKEW = 7 ;
NET any_net_name MAXDELAY = 20 ns;

• Declare an IOB input FF delay (default = MAXDELAY).

Note: MEDDELAY/NODELAY can be attached to a CLB FF that is
pushed into an IOB by the “map -pr i” option.



Quick Start Guide for Xilinx Alliance Series 1.4

H-26 Xilinx Development System

INST input_ff_instance_name MEDDELAY ;
INST input_ff_instance_name NODELAY ;

• Also, constraint priority in your .ucf file is as follows.

Highest

1. Timing Ignore (TIG)
2. FROM : THRU : TO specs
3. FROM : TO specs lowest
4. PERIOD specs

See the on-line documentation (dtext → Library Reference Guide)
for additional timespec features or additional information.

Constraining LogiBLOX RAM/ROM with Synopsys
In the M1 XSI HDL methodology, whenever large blocks of RAM/
ROM are needed, LogiBLOX RAM/ROM modules are instantiated in
the HDL code. With LogiBLOX RAM/ROM modules instantiated in
the HDL code, timing and/or placement constraints on these RAM/
ROM modules, and the RAM/ROM primitives that comprise these
modules, can be specified in a .ucf file. To create timing and/or place-
ment constraints for RAM/ROM LogiBLOX modules, knowledge of
how many primitives will be used and how the primitives, and/or
how the RAM/ROM LogiBLOX modules are named is needed.

How many primitives are inside a LogiBLOX RAM/ROM
module?

When a RAM/ROM is specified with LogiBLOX, the RAM/ROM
depth and width are specified. If the RAM/ROM depth is divisible
by 32, then 32x1 primitives are used. If the RAM/ROM depth is not
divisible by 32, then 16x1 primitives are used instead. In the case of
dual-port RAMs, 16x1 primitives are always used. Based on whether
32x1 or 16x1 primitives are used, the number of RAM/ROM can be
calculated.

For example, if a RAM48x4 was required for a design, RAM16x1
primitives would be used. Based on the width, there would be four
banks of RAM16x1s. Based on the depth, each bank would have three
RAM16x1s.

How are the RAM primitives inside LogiBLOX RAM/ROM
modules named?



Alliance Constraints

Quick Start Guide for Xilinx Alliance Series 1.4 H-27

Using the example of a RAM48x4, the RAM primitives inside the
LogiBLOX would be named as follows.

MEM0_0 MEM1_0 MEM2_0 MEM3_0
MEM0_1 MEM1_1 MEM2_1 MEM3_1
MEM0_2 MEM1_2 MEM2_2 MEM3_2

Each primitive in a LogiBLOX RAM/ROM module has a instance
name of MEMx_y, where y represents the primitive position in the
bank of memory, and where x represents the bit position of the RAM/
ROM output.

For the next two items, refer to the Verilog/VHDL examples included
at the end of this section. The Verilog/VHDL example instantiates a
RAM32x2S, which is in the bottom of the hierarchy. The RAM32x2S
was made with LogiBLOX. The next two items are written within the
context of the Verilog examples, but also apply to the VHDL exam-
ples as well. Note, the runscripts included were designed for FPGA
Compiler. If you want to use Design Compiler, remove the
replace_fpga step.

Referencing a LogiBLOX Module/Component in the
FPGA/Design Compiler and FPGA Express Flow

LogiBLOX RAM/ROM modules in the M1 FPGA/Design Compiler
flow are constrained via a .ucf file. LogiBLOX RAM/ROM modules
instantiated in the HDL code can be referenced by the full-hierar-
chical instance name. If a LogiBLOX RAM/ROM module is at the
top-level of the HDL code, then the instance name of the LogiBLOX
RAM/ROM module is just the instantiated instance name. In the case
of a LogiBLOX RAM/ROM, which is instantiated within the hier-
archy of the design, the instance name of the LogiBLOX RAM/ROM
module is the concatenation of all instances which contain the Logi-
BLOX RAM/ROM. For FPGA/Design Compiler, the concatenated
instance names are separated by a “/¨. In the example, the
RAM32X1S is named memory. The module memory is instantiated in
Verilog module inside with an instance name U0. The module inside is
instantiated in the top-level module test. Therefore, the RAM32X1S
can be referenced in a .ucf file as U0/U0. For example, to attach a
TNM to this block of RAM, the following line could be used in the
.ucf file.

INST  U0/U0 TNM=block1;



Quick Start Guide for Xilinx Alliance Series 1.4

H-28 Xilinx Development System

Since U0/U0 is composed of two primitives, a timegroup called
block1 would be created; block1 TNM could be used throughout the
.ucf file as a Timespec end/start point, and/or or U0/U0 could have a
LOC area constraint applied to it. If the RAM32X1S has been instanti-
ated in the top-level file, and the instance name used in the instantia-
tion was U0, then this block of RAM could just be referenced by U0.

If FPGA Express is the tool being used, then the concatenated
instance names are separated by a “_” instead.

INST  U0_U0 TNM=block1;

Referencing the Primitives of a LogiBLOX Module in
the FPGA/Design Compiler and FPGA Express Flow

Sometimes its necessary to apply constraints to the primitives that
compose the LogiBLOX RAM/ROM module. For example, if you
choose a floorplanning strategy to implement your design, it may be
necessary to apply LOC constraints to one or more primitives inside a
LogiBLOX RAM/ROM module. Consider the RAM32x2S example
above, suppose that the each of the RAM primitives had to be
constrained to a particular clb location. Based on the rules for deter-
mining the MEMx_y instance names, using the example from above,
each of RAM primitives could be referenced by concatenating the
full-hierarchical name to each of the MEMx_y names. The RAM32x2S
created by LogiBLOX would have primitives named MEM0_0 and
MEM1_0. So, for FPGA/Design Compiler, CLB constraints in a .ucf
file for each of these two items would be:

INST  U0/U0/MEM0_0 LOC=CLB_R10C10;
INST  U0/U0/MEM0_1 LOC=CLB_R11C11;

For FPGA Express, the CLB constraints would be:

INST  U0_U0/MEM0_0 LOC=CLB_R10C10;
INST  U0_U0/MEM0_1 LOC=CLB_R11C11;

FPGA/Design Compiler and Express Verilog
Example

test.v:

module test(DATA,DATAOUT,ADDR,C,ENB);



Alliance Constraints

Quick Start Guide for Xilinx Alliance Series 1.4 H-29

input [1:0] DATA;
output [1:0] DATAOUT;
input [4:0] ADDR;
input C;
input ENB;
wire [1:0] dataoutreg;
reg [1:0] datareg;
reg [1:0] DATAOUT;
reg [4:0] addrreg;

inside U0
(.MDATA(datareg),.MDATAOUT(dataoutreg),.MADDR(addrreg
),.C(C),.WE(ENB));

always@(posedge C) datareg = DATA;

always@(posedge C) DATAOUT = dataoutreg;

always@(posedge C) addrreg = ADDR; endmodule

inside.v:

module inside(MDATA,MDATAOUT,MADDR,C,WE);

input [1:0] MDATA;
output [10] MDATAOUT;
input [4:0] MADDR;
input C;
input WE;

memory U0 ( .A(MADDR), .DO(MDATAOUT), .DI(MDATA),
.WR_EN(WE), .WR_CLK(C));

endmodule

memory.v (FPGA/Design compiler only)

module memory(A, DO, DI, WR_EN, WR_CLK);

input [4:0] A;
output [1:0] DO;
input [1:0] DI;
input WR_EN;
input WR_CLK;
endmodule

runscript (FPGA/Design compiler only)

TOP=test part = “4028expg299-3”
read -f verilog “guts.v”



Quick Start Guide for Xilinx Alliance Series 1.4

H-30 Xilinx Development System

read -f verilog “inside.v”
read -f verilog “test.v”
current_design TOP
remove_constraint -all
set_port_is_pad “*”
insert_pads
compile
write -format db -hierarchy -output TOP +
“_compiled.db”
replace_fpga
set_attribute TOP “part” -type string part
write -format db -hierarchy -output TOP + “.db”
ungroup -all -flatten
write_script > TOP + “.dc” sh dc2ncf test.dc
remove_design guts
write -f xnf -h -o TOP + “.sxnf

test.ucf (FPGA/Design compiler only)

INST “U0/U0” TNM = usermem;
TIMESPEC TS_6= FROM : FFS :TO: usermem: 50;
INST “U0/U0/mem0_0” LOC=CLB_R7C2;

test.ucf (FPGA Express only)

INST “U0_U0” TNM = usermem;
TIMESPEC TS_6= FROM : FFS :TO: usermem: 50;
INST “U0_U0/mem0_0” LOC=CLB_R7C2;

FPGA/Design Compiler and Express VHDL Example

test.vhd

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;

entity test is
port( DATA: in STD_LOGIC_VECTOR(1 downto 0);

DATAOUT: out STD_LOGIC_VECTOR(1 downto 0);
ADDR: in STD_LOGIC_VECTOR(4 downto 0);
C, ENB: in STD_LOGIC);

end test;

architecture details of test is
signal dataoutreg,datareg: STD_LOGIC_VECTOR(1 downto



Alliance Constraints

Quick Start Guide for Xilinx Alliance Series 1.4 H-31

0);
signal addrreg: STD_LOGIC_VECTOR(4 downto 0);

component inside
port(MDATA: in STD_LOGIC_VECTOR(1 downto 0);

MDATAOUT: out STD_LOGIC_VECTOR(1
downto 0);

MADDR: in STD_LOGIC_VECTOR(4 downto
0);

C,WE: in STD_LOGIC);
end component;

begin
U0: inside port

map(MDATA=>datareg.,MDATAOUT=>dataoutreg.,MADDR=>addr
reg,C=>C,WE=>ENB);

process( C )
begin

if(Cevent and C=1) then
datareg <= DATA;

end if;
end process;

process( C )
begin

if(Cevent and C=1) then
DATAOUT <= dataoutreg;

end if;
end process;

process( C )
begin

if(Cevent and C=1) then
addrreg <= ADDR;

end if;
end process;

end details;

inside.vhd

entity inside is
port(MDATA: in STD_LOGIC_VECTOR(1 downto 0);

MDATAOUT: out STD_LOGIC_VECTOR(1 downto 0);
MADDR: in STD_LOGIC_VECTOR(4 downto 0);
C,WE: in STD_LOGIC); end inside;



Quick Start Guide for Xilinx Alliance Series 1.4

H-32 Xilinx Development System

architecture details of inside is component memory
port(A: in STD_LOGIC_VECTOR(4 downto 0);

DO: out STD_LOGIC_VECTOR(1 downto 0);
DI: in STD_LOGIC_VECTOR(1 downto 0);
WR_EN,WR_CLK: in STD_LOGIC);

end component;

begin
U0: memory port map(A=>MADDR,DO=>MDATAOUT,

DI=>MDATA,WR_EN=>WE,WR_CLK=>C);
end details;

runscript (FPGA/Design compiler only)

TOP=test part = “4028expg299-3”
analyze -f vhdl “guts.vhd”
analyze -f vhdl “inside.vhd”
analyze -f vhdl “test.vhd”
elaborate TOP
current_design TOP
remove_constraint -all
set_port_is_pad “*”
insert_pads
compile
write -format db -hierarchy -output TOP +
“_compiled.db”
replace_fpga
set_attribute TOP “part” -type string part
write -format db -hierarchy -output TOP + “.db”
ungroup -all -flatten
write_script > TOP + “.dc” sh dc2ncf test.dc
remove_design guts
write -f xnf -h -o TOP + “.sxnf”

test.ucf (FPGA/Design compiler only)

INST “U0/U0” TNM = usermem;
TIMESPEC TS_6= FROM : FFS :TO: usermem 50;
INST “U0/U0/mem0_0” LOC=CLB_R7C2;

test.ucf (FPGA Express only)

INST “U0_U0” TNM = usermem;
TIMESPEC TS_6= FROM : FFS :TO: usermem: 50;
INST “U0_U0/mem0_0” LOC=CLB_R7C2;



Quick Start Guide for Xilinx Alliance Series 1.4 —  0401696 01 I-1

Appendix I

Glossary

This appendix contains definitions and explanations for terms used
in the Quick Start Guide for Xilinx Alliance Series 1.4.

aliases
Aliases, or signal groups, are useful for probing specific groups of
nodes.

attribute
Attributes are instructions placed on symbols or nets in an FPGA
schematic to indicate their placement, implementation, naming,
direction, or other properties.

AutoRoute
AutoRoute automatically routes the objects you specify.

block
A group consisting of one or more logic functions.

component
A component is an instantiation or symbol reference from a library of
logic elements that can be placed on a schematic.



Quick Start Guide for Xilinx Alliance Series 1.4

I-2 Xilinx Development System

constraint
Constraints are specifications for the implementation process. There
are several categories of constraints: routing, timing, area, mapping,
and placement constraints.

Using attributes, you can force the placement of logic (macros) in
CLBs, the location of CLBs on the chip, and the maximum delay
between flip-flops. PAR does not attempt to change the location of
constrained logic.

CLBs are arranged in columns and rows on the FPGA device. The
goal is to place logic in columns on the device to attain the best
possible placement from the point of view of performance and space.

Implementation Tools
A set of tools that comprise the mainstream programs offered in the
Xilinx design implementation tools. The tools are: NGDBuild, MAP,
PAR, NGDAnno, TRCE, all the NGD2 translator tools, BitGen,
PROMGen, and EPIC.

DC2NCF
DC2NCF (design constraints to netlist constraints file) translates a
Synopsys DC file to a Netlist Constraints File (NCF). The DC file is a
Synopsys setup file containing constraints for the design.

guided mapping
An existing NCD file is used to “guide” the current MAP run. The
guide file may be used at any stage of implementation: unplaced or
placed, unrouted or routed.

HDL
HDL (Hardware Description Language).

LCA file
An LCA file is a mapped file of a Xilinx design produced by an earlier
release.



Glossary

Quick Start Guide for Xilinx Alliance Series 1.4 I-3

LCA2NCD
LCA2NCD converts an LCA file to an NCD file. The NCD file
produced by LCA2NCD can be placed and routed, viewed in EPIC,
analyzed for timing, and back-annotated.

LogiBLOX
Xilinx design tool for creating high-level modules such as counters,
shift registers, and multiplexers.

locking
Lock placement applies a constraint to all placed components in your
design. This option specifies that placed components cannot be
unplaced, moved, or deleted.

Logic Block Editor
The Logic Block Editor allows you to edit the internal logic of a
selected programmable component. Use the Edit Block command to
start the logic block editor.

macro
A macro is a component made of nets and primitives, flip-flops or
latches, that implements high-level functions, such as adders,
subtractors, and dividers. Soft macros and RPMs are types of macros.

A macro can be unplaced, partially placed or fully placed, and it can
also be unrouted, partially routed, or fully routed. See also “physical
macro.”

MCS file
An MCS file is an output from the PROMGen program in Intel’s
MCS-86 format.

MDF file
An MDF (MAP directive file) file is a file describing how logic was
decomposed when the design was originally mapped. The MDF file



Quick Start Guide for Xilinx Alliance Series 1.4

I-4 Xilinx Development System

is used for guided mapping using Xilinx Development System soft-
ware.

MRP file
An MRP (mapping report) file is an output of the MAP run. It is an
ASCII file containing information about the MAP run.

NCD file
An NCD (netlist circuit description) file is the output design file from
the MAP program, LCA2NCD, PAR, or EPIC. It is a flat physical
design database which may or may not be placed and routed

NCF file
An NCF (netlist constraints file) file is produced by a synthesis
vendor toolset, or by the DC2NCF program. This file contains
constraints specified within the toolset. EDIF2NGD and XNF2NGD
reads the constraints in this file and adds the constraints to the output
NGO file.

NGDAnno
The NGDAnno program distributes delays, setup and hold time, and
pulse widths found in the physical NCD design file back to the
logical NGD file. NGDAnno merges mapping information from the
NGM file, and timing information from the NCD file and puts all this
data in the NGA file.

NGA file
An NGA (native generic annotated) file is an output from the
NGDAnno run. An NGA file is subsequently input to the appropriate
NGD2 translation program.

NGD2EDIF
NGD2EDIF is a program that produces an EDIF 2.1.0 netlist in terms
of the Xilinx primitive set, allowing you to simulate pre- and post-
route designs.



Glossary

Quick Start Guide for Xilinx Alliance Series 1.4 I-5

NGD2XNF
NGD2XNF is a program that translates a Xilinx Development System
(NGD) format file into a Xilinx netlist (XNF) file for simulation
purposes only.

NGD2VER
NGD2VER is a program that translates your design into a Verilog
HDL file containing a netlist description of the design in terms of
Xilinx simulation primitives for simulation only.

NGD2VHDL
NGD2VHDL is a program that translates your design into a Vital 3
compliant VHDL file containing a netlist description of your design
in terms of Xilinx simulation primitives for simulation only.

NGDBuild
The NGDBuild program performs all the steps necessary to read a
netlist file in XNF or EDIF format and create and NGD file describing
the logical design.

NGD file
An NGD (native generic database) file is an output from the
NGDBuild run. An NGD file contains a logical description of the
design expressed both in terms of the hierarchy used when the design
was first created and in terms of lower-level Xilinx primitives to
which the hierarchy resolves. The NGD file is the input to MAP.

NGM file
An NGM (native generic mapping) file is an output from the MAP
run and contains mapping information for the design. The NGM file
is an input file to the NGDAnno program.

PAR (Place and Route)
PAR is a program that takes an NCD file, places and routes the
design, and outputs an NCD file. The NCD file produced by PAR can



Quick Start Guide for Xilinx Alliance Series 1.4

I-6 Xilinx Development System

be used as a guide file for reiterative placement and routing. The
NCD file can also be used by the bitstream generator, BitGen.

path delay
A path delay is the time it takes for a signal to propagate through a
path.

PCF file
The PCF file is an output file of the MAP program. It is an ASCII file
containing physical constraints created by the MAP program as well
as physical constraints entered by you. You can edit the PCF file from
within EPIC.

physical Design Rule Check (DRC)
Physical Design Rule Check (DRC) is a series of tests to discover
logical and physical errors in the design. Physical DRC is applied
from EPIC, BitGen, PAR, and Hardware Debugger. By default, results
of the DRC are written into the current working directory.

physical macro
A physical macro is a logical function that has been created from
components of a specific device family. Physical macros are stored in
files with the extension.nmc. A physical macro is created when EPIC
is in macro mode. See also “macro.”

pin
A pin can be a symbol pin or a package pin. A package pin is a phys-
ical connector on an integrated circuit package that carries signals
into and out of an integrated circuit. A symbol pin, also referred to as
an instance pin, is the connection point of an instance to a net.

pinwires
Pinwires are wires which are directly tied to the pin of a site (i.e. CLB,
IOB, etc.)



Glossary

Quick Start Guide for Xilinx Alliance Series 1.4 I-7

route
The process of assigning logical nets to physical wire segments in the
FPGA that interconnect logic cells.

route-through
A route that can pass through an occupied or an unoccupied CLB site
is called a route-through. You can manually do a route-through in
EPIC. Route-throughs provide you with routing resources that would
otherwise be unavailable.

states
The values stored in the memory elements of a device (flip-flops,
RAMs, CLB outputs, and IOBs) that represent the state of that device
for a particular readback (time). To each state there corresponds a
specific set of logical values.

TRCE
TRCE (Timing Reporter and Circuit Evaluator) “trace” is a program
that will automatically perform a timing analysis on a design using
available timing constraints. The input to TRCE is a mapped NCD file
and, optionally, a PCF file. The output from TRCE is an ASCII timing
report which indicates how well the timing constraints for your
design have been met.

(Historical note: TRCE should not be confused with the UNIX trace
command. The UNIX trace command is used to trace system calls
and signals).

TWR file
A TWR (Timing Wizard Report) file is an output from the TRCE
program. A TWR file contains a logical description of the design
expressed both in terms of the hierarchy used when the design was
first created and in terms of lower-level Xilinx primitives to which the
hierarchy resolves.



Quick Start Guide for Xilinx Alliance Series 1.4

I-8 Xilinx Development System

wire
A wire is either: 1) a net or 2) a signal.

UCF file
A UCF (user constraints file) contains user-specified logical
constraints.



Quick Start Guide for Xilinx Alliance Series 1.4 — 0401696 01 Index-1

Index

A
alias

definition, I-1
attribute

definition, I-1
autoroute

definition, I-1

B
block

definition, I-1

C
Cadence

timing simulation, A-13
Cadence Concept and Verilog Interface

board level simulation, A-15
cds.lib,, A-9
functional simulation, A-11
global.cmd, A-8
HDL direct, A-10
master.local, A-9
NGDbuild functional simulation, A-13
Pin Locking, A-16
timing contraints, A-16
timing simulation, A-14
translating to Xilinx EDIF, A-14

components
definition, I-1

constraint
definition, I-2

constraint files, 4-9
creating user, 4-10

core technology tools, I-2

D
DC2NCF

definition, I-2
DC2NCF utility, D-9
design implementation

analyzing reports, 4-6
place and route

configure, 4-5
translate

map, 4-4
Design Manager, 1-3, 4-3
design rule check

definition, I-6
design, downloading

creating PROM, 4-19
in-circuit debugging, 4-19
re-entrant route, 4-20

Documentation, E-1
documentation

installing, 2-10, 2-16

E
EBTRC environment variable, 2-13
EDIF2NGD, I-4
environment variables

check setup with PAR, 2-11



Quick Start Guide for Xilinx Alliance Series 1.4

Index-2 Xilinx Development System

for Core Technology software, 2-10, 2-
16
for LogiBLOX, F-2
for Mentor, C-2
for Synopsys, D-2
for Viewlogic, E-1

EPIC, 1-5

F
Flow Engine, 1-3
FPGA Express, B-1

design entry, B-2
installation, B-2
simulation with, B-3
timing constraints, B-4

G
global clock buffers

for Viewlogic, E-10
Guide for Incremental Design Changes, 1-5
guided mapping

definition, I-2

H
Hardware Debugger, 1-6
hardware requirements

PCs, 2-14
workstations, 2-8

HDL
definition, I-2

HP-UX
setting environment variables, 2-11

I
implementation

advanced flows, 4-19
exact guide mode

leveraged guide mode, 4-14
implementation, guiding an, 4-13
installation

CAE interface and libraries, 2-10

core technology, 2-10, 2-15
on-line documentation, 2-10, 2-16
PCs, 2-15

CAE interface and libraries, 2-15
on-line documentation, 2-16
variable settings, 2-16
Workview Office toolset, 2-15

workstations, 2-9
variable settings, 2-10
verifying core technology
software, 2-11
verifying DynaText variable
setting, 2-12

L
LCA file

definition, I-2
LCA2NCD

definition, I-3
licenses, 2-2

file, 2-7
lock placement

definition, I-3
LogiBLOX, 1-3

and Mentor, F-2
and Synopsys, F-3
and Viewlogic, F-3
definition, I-3
environment variables, F-2
modules, F-8
schematic designs, F-4
starting, F-4

Logic Block Editor
definition, I-3

M
M1 Software

design flow, 4-2
M1Software

supported families, 1-1



Index

Quick Start Guide for Xilinx Alliance Series 1.4 Index-3

macro
definition, I-3

MCS file
definition, I-3

MDF file
definition, I-3

Mentor, C-1
and LogiBLOX, F-2
design flow, C-3
documentation available, C-1
environment variables, C-2
library location, C-7
pin locking, C-8

Mentor Graphics Interface
environment variables, C-2, C-7
library locations, C-7
pin locking, C-8
timing constraints, C-8
timing simulation, C-6
translating to Xilinx EDIF, C-6

Mentor Graphics interface, C-1
Mentory Graphics Interface

design flow, C-3
MRP file

definition, I-4

N
NCD file

definition, I-4
NCF file

definition, I-4
Netlist Support, 1-3
Netlists, supported, 1-2
NGA file

definition, I-4
NGD file

definition, I-5
NGD2EDIF

definition, I-4
NGD2VER

definition, I-5
NGD2VHDL

definition, I-5
NGD2XNF

definition, I-5
NGDAnno

definition, I-4
NGDBuild

definition, I-5
NGM file

definition, I-5

O
option selection, 4-8

P
PAR, 1-5

definition, I-5
path delay

definition, I-6
PCF file

definition, I-6
physical macro

definition, I-6
pin

definition, I-6
pin location, assigning

Viewlogic Interface, E-9
pinwires

definition, I-6
place and route, multi-pass, 4-21
project libraries

for Viewlogic, E-6
PROM File Formatter, 1-6

R
RAM and ROM components, G-4
READBACK component, G-3
Re-Entrant Routing, 1-5
report

summary timing, 4-15



Quick Start Guide for Xilinx Alliance Series 1.4

Index-4 Xilinx Development System

reports
delay report, 3-17
map report, 3-11
pad report, 3-17
place & route report, 3-17
place and route report

pad report, 4-7
translation

map, 4-6
translation report, 3-11

route
definition, I-7

route-through
definition, I-7

S
SCALD methodology, A-10
schematic designs

using LogiBLOX, F-4
simulation files

creating, 4-17
SIZE property, A-10
Solaris

setting environment variables, 2-11
states

definition, I-7
SunOS

setting environment variables, 2-11
Synopsys, D-1

and LogiBLOX, F-3
code comments, D-13
DC2NCF utility, D-9
design flow, D-3
documentation available, D-1
entity coding, D-11
environment variables, D-2
FPGA Compiler Users, D-10
script file, D-6
setup files, D-3
timing constraints, D-9

Synopsys Interface, D-1

DC2NCF design flow, D-10
design flow, D-3
FPGA compiler users, D-10
timing constraints and DC2NCF, D-9,
D-9

synthesis designs, G-1
RAM and ROM components, G-4
READBACK component, G-3

T
third party synthesis, 1-6
timing analysis

detailed, 4-16
timing analysis, static, 4-14

after map, 4-14
timing analysis, timing

after place and route, 4-15
Timing Analyzer, 1-4
timing constraints

for Synopsys, D-9
timing specification performance, 1-4
TRCE

definition, I-7
TWR file

definition, I-7

U
UCF file

definition, I-8

V
Viewlogic

and LogiBLOX, F-3
assigning pin location, E-9
CONFIG symbol, E-10
global clock buffers, E-10
project libraries, E-6

Viewlogic Interface, E-1
design flow, E-4
environment variables, E-1



Index

Quick Start Guide for Xilinx Alliance Series 1.4 Index-5

libraries, E-4
on workstations, E-1

W
wire

definition, I-8
www.Xilinx.com, 1-2



Quick Start Guide for Xilinx Alliance Series 1.4

Index-6 Xilinx Development System


