
Xilinx Synopsys Interface EPLD User Guide — December, 1994 (0401289 01)

X2845

Designing with EPLDs

Compiling Your Design

Fitting Your Design

Simulating Your
Design

EPLD Architecture

Library Component
Specifications

Attributes

Xilinx
Synopsys
Interface
EPLD User
Guide

Getting Started with
Xilinx EPLDs

Xilinx Synopsys Interface EPLD User Guide

XACT Development System

, XACT, XC2064, XC3090, XC4005, and XC-DS501 are registered trademarks of Xilinx. All XC-prefix
product designations, XACT-Performance, XAPP, X-BLOX, XChecker, XDM, XDS, XEPLD, XFT, XPP, XSI, BITA,
Configurable Logic Cell, CLC, Dual Block, FastCLK, HardWire, LCA, Logic Cell, LogicProfessor, MicroVia,
PLUSASM, UIM, VectorMaze, and ZERO+ are trademarks of Xilinx. The Programmable Logic Company and The
Programmable Gate Array Company are service marks of Xilinx.

IBM is a registered trademark and PC/AT, PC/XT, PS/2 and Micro Channel are trademarks of International Business
Machines Corporation. DASH, Data I/O and FutureNet are registered trademarks and ABEL, ABEL-HDL and ABEL-
PLA are trademarks of Data I/O Corporation. SimuCad and Silos are registered trademarks and P-Silos and P/C-
Silos are trademarks of SimuCad Corporation. Microsoft is a registered trademark and MS-DOS is a trademark of
Microsoft Corporation. Centronics is a registered trademark of Centronics Data Computer Corporation. PAL and
PALASM are registered trademarks of Advanced Micro Devices, Inc. UNIX is a trademark of AT&T Technologies,
Inc. CUPL is a trademark of Logical Devices, Inc. Apollo and AEGIS are registered trademarks of Hewlett-Packard
Corporation. Mentor and IDEA are registered trademarks and NETED, Design Architect, QuickSim, QuickSim II,
and EXPAND are trademarks of Mentor Graphics, Inc. Sun is a registered trademark of Sun Microsystems, Inc.
SCHEMA II+ and SCHEMA III are trademarks of Omation Corporation. OrCAD is a registered trademark of OrCAD
Systems Corporation. Viewlogic, Viewsim, and Viewdraw are registered trademarks of Viewlogic Systems, Inc.
CASE Technology is a trademark of CASE Technology, a division of the Teradyne Electronic Design Automation
Group. DECstation is a trademark of Digital Equipment Corporation. Synopsys is a registered trademark of
Synopsys, Inc. Verilog is a registered trademark of Cadence Design Systems, Inc.

Xilinx does not assume any liability arising out of the application or use of any product described herein; nor does
it convey any license under its patents, copyrights, or maskwork rights or any rights of others. Xilinx, Inc. reserves
the right to make changes, at any time, in order to improve reliability, function or design and to supply the best
product possible. Xilinx, Inc. cannot assume responsibility for the use of any circuitry described herein other than
circuitry entirely embodied in its products. Xilinx products are protected under at least the following U.S. patent:
5,224,056. Xilinx, Inc. does not represent that Xilinx products are free from patent infringement or from any other
third-party right. Xilinx assumes no obligation to correct any errors contained herein or to advise any user of this
text of any correction if such be made. Xilinx will not be liable for the accuracy or correctness of any engineering
or software or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

R

Xilinx Synopsys Interface EPLD User Guide

X2845

Xilinx
Synopsys
Interface
EPLD User
Guide

Design Example

Fitter Reports

Glossary

XEPLD Files

Xilinx Synopsys Interface EPLD User Guide

XACT Development System

Xilinx Synopsys Interface EPLD User Guide — December, 1994 (0401289 01) i

Preface

About This Manual
The Xilinx Synopsys Interface (XSI) allows you to implement Xilinx
EPLD designs created with the Synopsys Design Compiler software.
The Synopsys HDL synthesis software creates circuit designs from
hardware description languages such as VHDL and Verilog HDL,
using component libraries supplied by Xilinx for the XC7000 EPLD
family.

This manual shows you how to use the XSI software, along with the
Synopsys Design Compiler and VSS Simulator, to create efficient
designs for Xilinx EPLDs. It is assumed that you are familiar with the
Synopsys software. Please refer to the Synopsys manuals for detailed
information on how to use the Synopsys software.

Manual Contents
The following is a brief overview of the contents of each chapter.

● Chapter 1, “Getting Started with Xilinx EPLDs,” presents the basic
EPLD design flow along with a brief example. This is a “road
map” showing you each step of the process. Each step is
explained in more detail in subsequent chapters.

● Chapter 2, “Designing with EPLDs,” shows you how to use the
architecture specific features of Xilinx EPLDs to achieve the
highest performance and logic density. You should read this
chapter before creating your design.

● Chapter 3, “Compiling Your Design,” shows you how to use
Design Compiler with the Xilinx EPLD Synopsys Interface
software.

Xilinx Synopsys Interface EPLD User Guide

 ii XACT Development System

● Chapter 4, “Fitting Your Design,” provides a description of fitter
operation and shows you how to select a target device, fit your
design into the device, create a device programming file, and save
your pinouts for design iteration.

● Chapter 5, “Simulating Your Design,” shows you how to perform
functional and timing simulation of your design using the
Synopsys VSS simulator.

● Appendix A, “EPLD Architecture,” provides an overview of the
XC7000 family along with device selection information

● Appendix B, “Library Component Specifications,” provides the
specifications of the Xilinx components including instantiated,
inferable, and scalable cells.

● Appendix C, “Attributes,” provides the specifications of the Xilinx
attributes which are used to control the fitting of your design.

● Appendix D, “XEPLD Files and Programs,” provides a descrip-
tion of each file and program used in the Xilinx software.

● Appendix E, “Design Example,” provides a thorough example
demonstrating the key capabilities of the software.

● Appendix F, “Fitter Reports,” provides example reports showing
you the type of information available for design analysis.

● Appendix G, “Glossary,” provides the definitions of terms and
phrases that may be unfamiliar to you.

Xilinx Software Features
The Xilinx Synopsis Interface (XSI) has the following features for
EPLD design development:

● Supports all EPLD devices including the XC7272 and the new
XC7336 and XC7318.

● Design synthesis using Synopsis VHDL or Verilog HDL.

● Design compilation using either Synopsys Design Compiler or
FPGA Compiler.

● High-level inferencing of +, -, <, <=, =, >=, > operators using the
EPLD high-speed arithmetic carry chain for operands of any
width.

Preface

Xilinx Synopsys Interface EPLD User Guide iii

● VHDL functional simulation of original source designs (including
all XC7000-specific library components).

● VHDL full-timing simulation (post-fitting) using device port
declarations from the original source design.

● Static Timing Report produced by the XEPLD Fitter (post-fitting).

● Attributes for controlling register initial states.

● Attributes for assigning pin locations.

● Attributes for allocating logic to EPLD Fast Function Blocks and
Fast Inputs.

● Attributes for controlling XEPLD optimization of clocks, input
pad registers, output enable signals, register initial states, and
UIM-AND functions.

Unsupported Features
XSI currently has the following limitations for EPLD design
development:

● No technology-specific optimization (for speed or density) is
performed by the Synopsys synthesizer; all such optimization is
performed by the Xilinx EPLD Translator Core Tool (XEPLD).

● No timing or area information is contained in the XC7000 library.
Therefore, no timing or area estimation is available from the
Synopsys Design Compiler. Timing and resource utilization
results are available from XEPLD after completion of fitting
(fitnet).

● The XEPLD fitter (v5.0) currently does not support timing-
constraint-driven optimization; Synopsys timing constraints have
no effect on EPLD design processing. Instead, use the F attribute
to designate EPLD Fast Function Block and Fast Input resources.

● Verilog simulation is not supported by this package.

Xilinx Synopsys Interface EPLD User Guide

 iv XACT Development System

Xilinx Synopsys Interface EPLD User Guide — December, 1994 (0401289 01) v

Conventions

The following conventions are used in this manual’s syntactical
statements:

Courier font System messages or program files appear
regular in regular Courier font.

Courier font Literal commands that you must enter in
bold syntax statements are in bold Courier font.

italic font Variables that you replace in syntax
statements are in italic font.

[] Square brackets denote optional items or
parameters. However, in bus specifications,
such as bus [7:0], they are required.

{ } Braces enclose a list of items from which
you must choose one or more.

· A vertical ellipsis indicates material that has
· been omitted.
·

. . . A horizontal ellipsis indicates that the
preceding can be repeated one or more
times.

| A vertical bar separates items in a list of
choices.

↵ This symbol denotes a carriage return.

Xilinx Synopsys Interface EPLD User Guide — December, 1994 (0401289 01) vii

Contents

Chapter 1 Getting Started with Xilinx EPLDs
Creating Synopsys Setup Files.. 1-1

The Design Compiler Setup File... 1-2
The VSS Simulator Setup File (.synopsys_vss.setup) 1-2

Verifying Your Installation .. 1-3
Verifying Synopsys Software Access 1-3
Verifying Xilinx Software Access .. 1-3
Verifying Your File Structure... 1-4

Xilinx EPLD Design Flow ... 1-5
Design Example... 1-5

Design Entry ... 1-9
Step1 — Create a Design Directory 1-9

Functional Simulation ... 1-9
Step 2 — Analyze Your Design ... 1-10
Step 3 — Analyze Your Test Bench 1-10
Step 4 — Invoke the Simulator .. 1-14
Step 5 — Run the Debugger ... 1-14
Step 6 — Trace Signals... 1-15
Step 7 — Run the Simulation .. 1-16
Step 8 — Return to UNIX .. 1-16

Synthesizing Your Design (Compiling) 1-16
Step 9 — Enter the DC Shell Environment........................ 1-16
Step 10 — Analyze Your Source Design........................... 1-17
Step 11 — Elaborate Your Design 1-17
Step 12 — Synthesize Your Design 1-18
Step 13 — Place I/O Buffer Cells 1-18
Step 14 — Specify a Target Device 1-18
Step 15 — Specify Initial Register States.......................... 1-18
Step 16 — Output the Netlist ... 1-19
Step 17 — Exit DC Shell ... 1-19

Xilinx Synopsys Interface EPLD User Guide

 viii XACT Development System

Preparing the Netlist ... 1-19
Step 18 — Create a Flattened Netlist 1-19

Fitting Your Design ... 1-20
Step 19 — Fit Your Design .. 1-20

Timing Backannotation ... 1-21
Step 20 — Create a Static Timing Report 1-21

Timing Simulation ... 1-21
Step 21 — Analyze Your Original Design.......................... 1-21
Step 22 — Analyze Your Back-Annotated Design............. 1-21
Step 23 — Analyze Your Test Bench 1-22
Step 24 — Invoke the VSS Simulator................................ 1-22
Step 25 — Open the Waveform Viewer............................. 1-23
Step 26 — Run the Simulation .. 1-24
Step 27 — Return to UNIX .. 1-24

Programming an EPLD ... 1-24
Step 28 — Program an EPLD.. 1-25

Chapter 2 Designing with EPLDs
VHDL Design File Requirements ... 2-1
Using Registers and Latches ... 2-1

Preventing Register/Latch Optimization.................................. 2-2
Using Input Pad Registers .. 2-2
Using Macrocell Registers .. 2-2
Using Input Pad Latches... 2-3
Using Macrocell Latches... 2-3
Specifying Register/Latch Initial States................................... 2-3

Specifying the Predefined Initial States 2-4
Specifying Initial States for Individual Registers/Latches .. 2-4

Using I/O Ports... 2-5
Selecting 3-State Control Sources.. 2-6

Assigning Specific Fast Output Enable Signals................. 2-6
Preventing FOE Optimization .. 2-6

Using Special Logic Functions ... 2-6
Binary Up Counters... 2-6
Binary Down Counters .. 2-7
Binary Up/Down Counters .. 2-7
State Machines ... 2-7
Registered Arithmetic Functions ... 2-8
Comparators ... 2-8

Targeting a Specific Device ... 2-9
Specifying a Device .. 2-10

Contents

Xilinx Synopsys Interface EPLD User Guide ix

Using the Synopsys Part Attribute..................................... 2-11
Using the Xilinx Syn2EPLD Command.............................. 2-11

Specifying Pin Locations... 2-11
Controlling Design Performance .. 2-12

Using High-Speed Clocks... 2-12
Assigning Specific High-Speed Clocks.............................. 2-12
Preventing FastCLK Optimization 2-13

Selecting EPLD Function Block Types 2-13
Specifying High-Speed Paths.. 2-13
Specifying High-Density Paths .. 2-13

Using EPLD FastInputs .. 2-14
Selecting Low-Power Operation ... 2-14

The Design Rule Checker.. 2-14
General Design Rule Violations.. 2-14
Pad Component Design Rule Violations................................. 2-15
FastCLK, Clock Enable, and Fast Output Enable Violations .. 2-15

Chapter 3 Compiling Your Design
Using Synopsys DC Shell .. 3-1

Step 1 — Entering the DC Shell Environment 3-2
Step 2 — Analyzing the Design .. 3-2
Step 3 — Elaborating the Design ... 3-2
Step 4 — Compiling Your Design ... 3-3
Step 5 — Defining EPLD I/O Signals...................................... 3-3
Step 6 — Specifying Attributes ... 3-4
Step 7 — Writing the Netlist.. 3-4

Chapter 4 Fitting Your Design
Fitter Overview... 4-1
Fitter Operation .. 4-2

Step 1 — Create a Flattened XNF Netlist File 4-2
Specifying a Target Device.. 4-2
Using a Target Device Specified By a Part Attribute 4-3

Step 2 — Fit Your Design ... 4-3
Options .. 4-3

Step 3 — Verify Your Design Timing 4-4
Step 4 — Create a Device Programming File......................... 4-5
Step 5 — Save Your Pinouts .. 4-5

Chapter 5 Simulating Your Design
Recommended EPLD Simulation Strategy 5-1

Xilinx Synopsys Interface EPLD User Guide

 x XACT Development System

Controlling the Initial States of Registers 5-2
Simulating Master Reset... 5-2

Preparing for Timing Simulation .. 5-3
Preparing for Functional Simulation................................... 5-3

Creating a Test Bench File... 5-4
Initializing Registers .. 5-4
Configuration Declaration ... 5-5

Functional Simulation... 5-6
Design Implementation .. 5-9
Preparing the Timing Model ... 5-10
Timing Simulation... 5-11

Appendix A EPLD Architecture
Device Selection .. A-2
The Universal Interconnect Matrix ... A-3
High-Density Function Blocks .. A-3

Shared and Private Product Terms... A-4
Arithmetic Logic Unit ... A-5
Carry Lookahead (7300 Family Only) A-6
Macrocell Flip-Flop.. A-6

Fast Function Blocks.. A-7
Product Term Expansion .. A-9
XC7336 and XC7318 Fast Function Blocks............................ A-10

Input/Output Blocks.. A-10

Appendix B Library Component Specifications
ACC.. B-3

Inferencing .. B-3
Component Instantiation ... B-3
Truth Table and Logic Symbol .. B-3

ADD.. B-4
Inferencing .. B-4
Component Instantiation ... B-4
Truth Table and Logic Symbol .. B-4

ADSU ... B-5
Inferencing .. B-5
Component Instantiation ... B-5
Truth Table and Logic Symbol .. B-5

ADSUR... B-6
Inferencing .. B-6
Component Instantiation ... B-6

Contents

Xilinx Synopsys Interface EPLD User Guide xi

Truth Table and Logic Symbol .. B-6
AND2 — AND8 .. B-7

Inferencing .. B-7
Component Instantiation... B-7
Truth Table and Logic Symbol .. B-7

BUF.. B-8
Inferencing .. B-8
Component Instantiation... B-8
Truth Table and Logic Symbol .. B-8

BUFCE... B-9
Inferencing .. B-9
Component Instantiation... B-9
Truth Table and Logic Symbol .. B-9

BUFE ... B-10
Inferencing .. B-10
Component Instantiation... B-10
Truth Table and Logic Symbol .. B-10

BUFFOE .. B-11
Inferencing .. B-11
Component Instantiation... B-11
Truth Table and Logic Symbol .. B-11

BUFG ... B-12
Inferencing .. B-12
Component Instantiation... B-12
Truth Table and Logic Symbol .. B-12

CBX1.. B-13
Inferencing .. B-13
Component Instantiation... B-13
Truth Table and Logic Symbol .. B-13

CBX2.. B-14
Inferencing .. B-14
Component Instantiation... B-14
Truth Table and Logic Symbol .. B-14

COMPEQ ... B-15
Inferencing .. B-15
Component Instantiation... B-15
Truth Table and Logic Symbol .. B-15

COMPLE_TC
COMPLE_US... B-16

Inferencing .. B-16
Component Instantiation... B-16

Xilinx Synopsys Interface EPLD User Guide

 xii XACT Development System

Truth Table and Logic Symbol .. B-16
COMPLT_TC
COMPLT_US ... B-17

Inferencing .. B-17
Component Instantiation ... B-17
Truth Table and Logic Symbol .. B-17

COMPNE ... B-18
Inferencing .. B-18
Component Instantiation ... B-18
Truth Table and Logic Symbol .. B-18

DEC.. B-19
Inferencing .. B-19
Component Instantiation ... B-19
Truth Table and Logic Symbol .. B-19

FDCP ... B-20
Inferencing .. B-20
Component Instantiation ... B-20
Truth Table and Logic Symbol .. B-20

FDCPE... B-21
Inferencing .. B-21
Component Instantiation ... B-21
Truth Table and Logic Symbol .. B-21

FDPC ... B-22
Inferencing .. B-22
Component Instantiation ... B-22
Truth Table and Logic Symbol .. B-22

IBUF... B-23
Inferencing .. B-23
Component Instantiation ... B-23
Truth Table and Logic Symbol .. B-23

IFD ... B-24
Inferencing .. B-24
Component Instantiation ... B-24
Truth Table and Logic Symbol .. B-24

IFDX1 ... B-25
Inferencing .. B-25
Component Instantiation ... B-25
Truth Table and Logic Symbol .. B-25

ILD.. B-26
Inferencing .. B-26
Component Instantiation ... B-26

Contents

Xilinx Synopsys Interface EPLD User Guide xiii

Truth Table and Logic Symbol .. B-26
INC... B-27

Inferencing .. B-27
Component Instantiation... B-27
Truth Table and Logic Symbol .. B-27

INV ... B-28
Inferencing .. B-28
Component Instantiation... B-28
Truth Table and Logic Symbol .. B-28

IOBUFE.. B-29
Inferencing .. B-29
Component Instantiation... B-29
Truth Table and Logic Symbol .. B-29

IOBUFEX1 ... B-30
Inferencing .. B-30
Component Instantiation... B-30
Truth Table and Logic Symbol .. B-30

LD .. B-31
Inferencing .. B-31
Component Instantiation... B-31
Truth Table and Logic Symbol .. B-31

OBUF ... B-32
Inferencing .. B-32
Component Instantiation... B-32
Truth Table and Logic Symbol .. B-32

OBUFE... B-33
Inferencing .. B-33
Component Instantiation... B-33
Truth Table and Logic Symbol .. B-33

OBUFEX1 .. B-34
Inferencing .. B-34
Component Instantiation... B-34
Truth Table and Logic Symbol .. B-34

OR2 — OR8... B-35
Inferencing .. B-35
Component Instantiation... B-35
Truth Table and Logic Symbol .. B-35

SUBT ... B-36
Inferencing .. B-36
Component Instantiation... B-36
Truth Table and Logic Symbol .. B-36

Xilinx Synopsys Interface EPLD User Guide

 xiv XACT Development System

XOR2 — XOR8.. B-37
Inferencing .. B-37
Component Instantiation ... B-37
Truth Table and Logic Symbol .. B-37

Appendix C Attributes
Global Attributes... C-1

LOWPWR ... C-1
MRINPUT.. C-1
NO_FOE ... C-2
NO_FCLK ... C-2
NO_IFD... C-2
PRELOAD... C-3

Signal Attributes ... C-3
F.. C-3
H ... C-4
OPT_OFF ... C-4
OPT_UIM .. C-4
SLEWRATE .. C-4

Synopsys Attributes ... C-5
Part Type .. C-5
Pin Assignment ... C-6
Register Initial State.. C-6

Appendix D XEPLD Files .. D-1

Appendix E Design Example
PCI Bus Interface Design Description.. E-1

Appendix F Fitter Reports
Resource Report .. F-2
The Static Timing Report ... F-3

Combinational Pad-to-Pad Delays.. F-3
Setup-to-Clock Time ... F-4
Clock-to-Output Delays... F-4
Cycle Time .. F-5
Example Timing Report .. F-6

Pin-List Report ... F-13

Appendix G Glossary ... G-1

Xilinx Synopsys Interface EPLD User Guide — December, 1994 (0401289 01)

Xilinx
Synopsys
Interface
EPLD User
Guide

Getting Started with
Xilinx EPLDs

X2845

Xilinx Synopsys Interface EPLD User Guide — December, 1994 (0401289 01) 1-1

Chapter 1

Getting Started with Xilinx EPLDs

This chapter shows you how to prepare your setup files and verify
your installation. It also provides a design walk-through as an
overview of the basic steps for implementing Xilinx EPLD designs
using Synopsys. The remaining chapters in this manual provide
additional detailed information on each step.

The design walk-through assumes that you have installed and
configured the Xilinx software and libraries. For installation
instructions, see the Xilinx Synopsys Interface Release Notes that
accompany this manual.

Creating Synopsys Setup Files
After you have installed the Xilinx software you must configure the
Synopsys Design Compiler and VSS simulator setup files to access
the XC7000 libraries. This section shows you how to configure the
setup files and verify that your setup is working properly.

The setup files must be located in each design directory where
XC7000 designs are processed.

Note: You will find sample setup files in the $DS401/tutorial/
synopsys/epld.vhd/scan directory. However, before using them,
you must edit the .synopsys_dc.setup file contained in the
tutorial directory by typing the actual $DS401 path into the
search_path variable.

Xilinx Synopsys Interface EPLD User Guide

1-2 XACT Development System

The Design Compiler Setup File
Your Design Compiler setup file (.synopsys_dc.setup) must
contain the following lines:

search path = { . $DS401_path/synopsys/libraries/
syn}

link_library = {xc7000.db xc7000.sldb}
target_library = {xc7000.db}
symbol_library = {xc7000.sdb}
synthetic_library = {xc7000.sldb}
bus_naming_style = "%s<%d>"
bus_dimension_seperator_style = "><"
bus_interface_style = "%s<%d>"
edifout_netlist_only = true
edifout_power_and_ground_representation = cell
edifout_ground_name = GND
edifout_ground_pin_name = GND
edifout_power_name = VCC
edifout_power_pin_name = VCC
xnfout_library_version = "2.0.0"

Where $DS401_path is the actual interface directory path specified by
the $DS401 variable.

Note: You cannot use environment variables in the
synopsys_dc.setup file.

The VSS Simulator Setup File (.synopsys_vss.setup)
Your VSS Simulator setup file, .synopsys_vss.setup , must
contain the following lines:

xc7000: $DS401/synopsys/libraries/dw/lib/epld
TIMEBASE = NS
TIME_RES_FACTOR = 0.1

Note: You may use either the $DS401 environment variable or the
actual path specification in the .synopsys_vss.setup file.

As a final verification that your XEPLD Synopsys Interface is ready to
use, we have provided a complete design example for you to run,
which is described later in this chapter. To quickly verify VHDL

Getting Started with Xilinx EPLDs

Xilinx Synopsys Interface EPLD User Guide 1-3

design entry, you can begin at design example step 9 and run
scan.script or scan.dc as described.

Verifying Your Installation
Before attempting to compile and fit a design, it is a good idea to
verify that you have access to the installed software. A simple
verification process is described below.

Verifying Synopsys Software Access
To verify that your system is correctly configured to access the
Synopsys software, enter the following UNIX commands:

which dc_shell
which vhdlan (if you are using the VSS simulator)

If you get a negative response for either command, (such as “no
vhdlan in ...”) this means that either the software is not installed
properly or that your system path is not set properly to include the
Synopsys software directories. Refer to the Synopsys documentation
for installation instructions.

Verifying Xilinx Software Access
To verify that your system is correctly configured to access the Xilinx-
supplied software, enter the following UNIX commands:

1. which fitnet

If fitnet cannot be found, the XEPLD Translator Core Tool
(DS550) is not installed or is not in your path.

2. which syn2epld

If syn2epld cannot be found, XSI is not installed or is not in
your path.

3. echo $DS401

This variable should point to the XSI directory found in Step 2.

4. echo $XACT

This variable should point to the XACT directory found in Step 1
(unless the XACT data files were installed in a different location

Xilinx Synopsys Interface EPLD User Guide

1-4 XACT Development System

than the XACT executables). The $XACT variable should also
print to your XSI (DS-401) directory if it was installed to a different
location.

Verifying Your File Structure
To verify that you have the necessary files for EPLD development,
use the file structure diagram in Figure 1-1.

Figure 1-1 XSI File Structure for EPLD Development

$DS401
sedif2xnf
lib_compile
syn2epld
vmh2vss
xnf2vss
data

synopsys
xprim_7000

*.xnf
tutorial

synopsys
epld

vhd
scan

scan.dc
scan.script
scan.vhd
scan_tb.vhd
.synopsys_dc.setup
.synopsys_vss.setup

synopsys
libraries

syn
xc7000.db
xc7000.sdb
xc7000.sldb

dw
src

epld
install_dw.dc
.synopsys_vss.setup
*.vhd.e
*.vhd.e.update

lib
epld

*.syn (Generated by running lib_compile)
*.sim (Generated by running lib_compile)
*.mra (Generated by running lib_compile)

Getting Started with Xilinx EPLDs

Xilinx Synopsys Interface EPLD User Guide 1-5

Xilinx EPLD Design Flow
Figure 1-2 shows the basic design flow for creating EPLD designs.
Each step is described in the following design example.

Figure 1-2 Basic EPLD Design Flow

Design Example
The following design example is used to demonstrate the basic EPLD
design flow. This design implements a counter with variable start
and stop values which are loaded into registers from a data input
bus. When the START input is asserted, the start value is loaded into
the counter and the counter outputs are enabled. The counter outputs

design_name.vhd

design_name.sxnf

Design Entry

Functional Simulation

Synthesis

design_name.xff

Fitting

Device Programming

design_name.prg

Timing Simulation

design_name_vss.vhd
Saving Pinouts

analyze

syn2epld

fitnet

vmh2vss

pinsave

makeprg
vhdldbx

(optional)

compile

Prepare Netlist

design_name.vmh

Timing Backannotation

design_name_vss.sdf
design_name.tim (optional)

Static Timing
 Verification

design_name.sedif
or

Xilinx Synopsys Interface EPLD User Guide

1-6 XACT Development System

increment on each clock cycle until the counter value matches the
stop value. The counter outputs are disabled on the next clock cycle.
The design is implemented in a Xilinx XC7354-10PC44 device.

To help you understand the design, an equivalent schematic is shown
in Figure 1-3.

Figure 1-3 Schematic Representation — SCAN Design

The VHDL source file (scan.vhd) for the scan example design is
shown in Figure 1-4.

OE_REG

INIT=R

QD

CLR
C

FDC

COUNT

INIT=R

TC

CEO

Q[7:0]

D[7:0]

L

CLR
C

CE

CB8CLE

AND2B1
OR2

EPLD Tutorial Design

SCAN

PART=7354-10PC44

START

IPAD

GND

GND

IPAD

IPAD

IPAD

I[7:0]

IPAD8

IBUF

IBUF

IBUF

IBUF8

INV

INV

IBUF

OBUFE8
E

B[7:0]

A[7:0]

EQ

COMP8

OBUF

IPAD
IBUF

O[7:0]

OPAD8

OPAD

WRITE_START

WRITE_END

CLOCK

CLEAR

DONE

START_REG

FD8CE

Q[7:0]

D[7:0]

CLR

CE

C

END_REG

FD8CE

Q[7:0]

D[7:0]

CLR

CE

C

DATA[7:0] START[7:0]

END[7:0]

All rights reserved
Copyright (C) Xilinx Corporation, 1994

1234

A

B

C

D

4 3 2 1

D

C

B

A

Rev:

Ver:

Title:

Comments:

Date: 6-21-1994_11:41

DONE_REG

C

D Q

FD

Q[7:0]DATA_IN_[7:0] C_OUT_[7:0]

Getting Started with Xilinx EPLDs

Xilinx Synopsys Interface EPLD User Guide 1-7

-- --
-- Xilinx EPLD Synopsys VHDL Tutorial Design --
-- --
-- File: scan.vhd --
-- --
-- Target Device: XC7354-10PC44 --
-- --
-- Author: Xilinx Corporation --
-- Copyright (C) Xilinx Corporation 1994 --
-- All rights reserved --
-- --
-- Requirements: Xilinx Synopsys Interface v3.2 --
-- Xilinx XEPLD (DS550) v5.0 --
-- Synopsys Design Compiler v3.1 --
-- --

-- Standard library configuration --
Library IEEE;
Library xc7000;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
use xc7000.components.all;

entity scan is
 port (CLOCK, CLEAR, START, WRITE_START, WRITE_END: in std_logic;
 DATA_IN: in std_logic_vector (7 downto 0);
 C_OUT: out std_logic_vector (7 downto 0);
 DONE: out std_logic;
 MRESET: in std_logic); -- MRESET used for timing simulation only --
end scan;

architecture behavior of scan is
signal START_REG: std_logic_vector (7 downto 0);
signal END_REG: std_logic_vector (7 downto 0) := "11111111";
signal COUNT: std_logic_vector (7 downto 0) := "00000000";
signal OE_REG, DONE_REG: std_logic := '0'; -- Initial states used by fn'l sim. only --

begin
-- Registers without asynchronous clear --
 process (CLOCK)
 begin
 if (CLOCK'event and CLOCK='1') then
 if (WRITE_START = '0') then
 START_REG <= DATA_IN;
 end if;

Xilinx Synopsys Interface EPLD User Guide

1-8 XACT Development System

Figure 1-4 Example Design Source File (scan.vhd)

 if (WRITE_END = '0') then
 END_REG <= DATA_IN;
 end if;

 -- Registered comparator --
 if (COUNT = END_REG) then
 DONE_REG <= '1';
 else
 DONE_REG <= '0';
 end if;
 end if;
 end process;

-- OE_REG register with asynchronous clear --
 process (CLEAR, CLOCK)
 begin
 if (CLEAR = '1') then
 OE_REG <= '0';
 elsif (CLOCK'event and CLOCK='1') then
 if (START = '1') then
 OE_REG <= '1';
 elsif (DONE_REG = '1') then
 OE_REG <= '0';
 end if;
 end if;
 end process;

-- Counter with asynchronous clear and parallel load --
 process (CLEAR, CLOCK)
 begin
 if (CLEAR = '1') then
 COUNT <= "00000000";
 elsif (CLOCK'event and CLOCK='1') then
 if (START = '1') then
 COUNT <= START_REG; -- Counter parallel load --
 elsif (OE_REG = '1') then
 COUNT <= COUNT + 1; -- Counter increment --
 end if;
 end if;
 end process;

-- Three-state counter outputs --
 C_OUT <= COUNT when (OE_REG = '1') else
 "ZZZZZZZZ";
 DONE <= DONE_REG;
end behavior;

Getting Started with Xilinx EPLDs

Xilinx Synopsys Interface EPLD User Guide 1-9

Design Entry
Typically you will enter your design in Synopsys VHDL/HDL form
by using a text editor. However, all required source, setup, and test
bench files for this design example have already been entered for you
and are contained in the $DS401/tutorial/synopsys/epld/
vhd/scan directory (see Figure 1-1).

Step1 — Create a Design Directory

Create a local copy of the scan tutorial directory as follows:

● Change your current working directory to a local, writable
location in which you will place the scan working directory.

● Copy the entire scan directory tree from the XEPLD Synopsys
Interface tutorial area into your current directory as follows:

cp -r $DS401/tutorial/synopsys/epld/vhd/scan .

● Change your current directory to the scan tutorial directory as
follows:

cd scan

● Verify that the search_path variable in your
.synopsys_dc.setup file, in your current working directory,
points to the directory path where your Xilinx EPLD Synopsys
Interface library is installed, which should be the value of your
$DS401 variable.

Note: The search_path variable must be explicitly defined;
environment variables are not allowed in the
.synopsys_dc.setup file.

If you need more information on design entry see the Synopsys
Design Compiler manuals.

Functional Simulation
Functional simulation verifies the logic of your design. This will save
you time by catching logic errors early in the development cycle. If
you are not using the VHDL System Simulator (VSS), skip this
section and continue with step 9.

Xilinx Synopsys Interface EPLD User Guide

1-10 XACT Development System

You must analyze your source design file before simulation. If you
created a test bench in VHDL/HDL for simulation, you must also
analyze it after analyzing your design.

Step 2 — Analyze Your Design

Analyze the scan design by entering the following Synopsys
command on the UNIX command line:

vhdlan scan.vhd

You will see the analyzer version number and a copyright notice. If
the analysis works properly you will be returned to the UNIX prompt
with no error messages displayed.

Step 3 — Analyze Your Test Bench

For this example a test bench is provided (scan_tb.vhd). At
the end of this file, a configuration named CFG_SCAN_TB is
declared. The test bench file is shown in Figure 1-5.

Analyze the test bench for scan by entering the following Synopsys
command on the UNIX command line:

vhdlan scan_tb.vhd

Again, you will see the analyzer version number and a copyright
notice. If the analysis works properly you will be returned to the
UNIX prompt with no error messages displayed.

Getting Started with Xilinx EPLDs

Xilinx Synopsys Interface EPLD User Guide 1-11

library IEEE;
library xc7000;
 use IEEE.std_logic_1164.all;
 use IEEE.std_logic_misc.all;
 use IEEE.std_logic_arith.all;
 use IEEE.std_logic_components.all;
 use STD.Textio.all;
 use xc7000.components.all;

entity scan_tb is
end scan_tb;

architecture test of scan_tb is

 component scan
 port (CLOCK, CLEAR, START, WRITE_START, WRITE_END: in std_logic;
 DATA_IN: in std_logic_vector (7 downto 0);
 C_OUT: out std_logic_vector (7 downto 0);
 DONE: out std_logic;
 MRESET: in std_logic);
 end component;

 signal CLOCK, CLEAR, START, WRITE_START, WRITE_END: std_logic;
 signal DATA_IN: std_logic_vector (7 downto 0);
 signal C_OUT: std_logic_vector (7 downto 0);
 signal DONE: std_logic;
 signal MRESET: std_logic;

begin

 UUT: scan
port map (CLOCK, CLEAR, START, WRITE_START, WRITE_END,

 DATA_IN, C_OUT, DONE, MRESET);

Xilinx Synopsys Interface EPLD User Guide

1-12 XACT Development System

DRIVER: process
begin

MRESET <= '0';
CLEAR <= '0';
START <= '0';
WRITE_START <= '1';
WRITE_END <= '1';
DATA_IN <= "00000000";
CLOCK <= '0';

wait for 25 ns;
MRESET <= '1';
wait for 25 ns;
CLOCK <= '1';

wait for 25 ns;
CLOCK <= '0';
DATA_IN <= "01111101";
WRITE_START <= '0';
wait for 25 ns;
CLOCK <= '1';

wait for 25 ns;
CLOCK <= '0';
DATA_IN <= "10000001";
WRITE_START <= '1';
WRITE_END <= '0';
wait for 25 ns;
CLOCK <= '1';

wait for 25 ns;
CLOCK <= '0';
WRITE_END <= '1';
START <= '1';
wait for 25 ns;
CLOCK <= '1';

for I in 1 to 6 loop
 wait for 25 ns;
 CLOCK <= '0';
 START <= '0';
 wait for 25 ns;
 CLOCK <= '1';
end loop;

Getting Started with Xilinx EPLDs

Xilinx Synopsys Interface EPLD User Guide 1-13

Figure 1-5 Test Bench File (scan_tb.vhd)

wait for 25 ns;
CLOCK <= '0';
START <= '1';
wait for 25 ns;
CLOCK <= '1';

wait for 25 ns;
CLOCK <= '0';
START <= '0';
wait for 25 ns;
CLOCK <= '1';

wait for 25 ns;
CLOCK <= '0';
CLEAR <= '1';
wait for 25 ns;
CLOCK <= '1';

wait for 25 ns;
CLOCK <= '0';
CLEAR <= '0';
wait for 25 ns;
wait;

end process;
end test;

configuration CFG_SCAN_TB of scan_tb is
 for test
 end for;
end CFG_SCAN_TB;

Xilinx Synopsys Interface EPLD User Guide

1-14 XACT Development System

Step 4 — Invoke the Simulator

Invoke the simulator by entering the following Synopsys command
on the UNIX command line:

vhdldbx

You will see the following window for selecting the analyzed
configurations:

Figure 1-6 VHDLDBX Window

Step 5 — Run the Debugger

Select CFG_SCAN_TB from the menu. This brings up the Synopsys
VHDL Debugger window as shown in Figure 1-7.

Getting Started with Xilinx EPLDs

Xilinx Synopsys Interface EPLD User Guide 1-15

Figure 1-7 Synopsys VHDL Debugger

Step 6 — Trace Signals

Click in the lower section of the Synopsys VHDL Debugger window
and enter the following command:

trace *’signal

This command selects all signals at the test bench level for display
and brings up the Dynamic Waveform Viewer (Waves).

Xilinx Synopsys Interface EPLD User Guide

1-16 XACT Development System

Step 7 — Run the Simulation

Click the RUN button in the Debugger window to run the simulation
waveform specified in the test bench. The resulting trace display is
shown in Figure 1-8.

Figure 1-8 Synopsys Dynamic Waveform Viewer (Waves)

Step 8 — Return to UNIX

Return to the UNIX environment by selecting EXECUTE-QUIT from
the VHDL Debugger menu.

If you need more information on functional simulation see the
“Simulating Your Design” chapter.

Synthesizing Your Design (Compiling)
Synthesizing your design converts the VHDL source text into a netlist
that is composed of logic primitives. The netlist is in a form that can
be read by the Xilinx fitter.

Step 9 — Enter the DC Shell Environment

Enter the Synopsys DC Shell environment by entering the following
Synopsys command on the UNIX command line:

dc_shell

Getting Started with Xilinx EPLDs

Xilinx Synopsys Interface EPLD User Guide 1-17

You will see the DC Shell license information and command-line
prompt. Verify that the software version is v3.1 or newer.

Note: The commands required to compile the scan design example
are shown in the following steps 10 through 16. These commands are
contained in compiler script files. If you have FPGA compiler, the
appropriate commands are contained in scan.script , which you
can run by entering the following Synopsys command:

include scan.script

If you have only Design Compiler, the appropriate commands are
contained in scan.dc which you can run by entering the following
Synopsys command:

include scan.dc

If you choose to use these compiler scripts, go to step 17 when
compilation is complete.

Unless otherwise specified, the commands in steps 10-16 are the same
for both FPGA Compiler and Design Compiler.

Step 10 — Analyze Your Source Design

Read and analyze your VHDL source design file by entering the
following Synopsys command:

analyze -format vhdl scan.vhd

The warning messages you see during this step are normal. The
source file contains initial signal values that are used only for
functional simulation and these values are ignored during synthesis.
Actual register initial states are set using attributes as shown in
step 15.

Step 11 — Elaborate Your Design

To build the design based on your analyzed VHDL file, entering the
following Synopsys command:

elaborate scan

This command displays each register and 3-state buffer encountered
in your design.

Xilinx Synopsys Interface EPLD User Guide

1-18 XACT Development System

Step 12 — Synthesize Your Design

To synthesize an implementation of your design based on cells in the
XC7000 technology library enter the following Synopsys command:

compile -map_effort low

The mapping effort is set to LOW to save compilation time because
the synthesizer does not perform any speed or area optimization for
EPLD designs; optimization is performed by the XEPLD fitter.

Note: For this design example, the compiler produces a warning
about a port not connected to any nets; this warning can safely be
ignored. This warning also occurs in step 13.

Step 13 — Place I/O Buffer Cells

To place I/O buffer cells on all top-level ports in the design, enter the
following Synopsys commands:

set_port_is_pad "*"
insert_pads

Step 14 — Specify a Target Device

If you are using FPGA Compiler, enter the following Synopsys
command to specify a target EPLD:

set_attribute scan part -type string 7354-10pc44

Step 15 — Specify Initial Register States

In this design we want the counter and the OE_REG flip-flop to be
initialized to zero. The states of the remaining flip-flops are
determined by the fitter to achieve the best logic optimization.

If you have FPGA Compiler, enter the following Synopsys commands
to specify the initial states:

set_attribute find(cell COUNT*)
fpga_xilinx_init_state -type string R

set_attribute find(cell OE_REG*)
fpga_xilinx_init_state -type string R

Getting Started with Xilinx EPLDs

Xilinx Synopsys Interface EPLD User Guide 1-19

Step 16 — Output the Netlist

The design database is now complete and ready to be output in
netlist form.

If you have FPGA Compiler, write an XNF-formatted netlist by
entering the following Synopsys command:

write -format xnf -hierarchy -output scan.sxnf

If you have Design Compiler, write an EDIF-formatted netlist by
entering the following Synopsys command:

write -format edif -output scan.sedif

Step 17 — Exit DC Shell

Exit DC Shell by entering the following Synopsys command:

exit

You are returned to the UNIX prompt.

If you need more information on compiling your design, see
the “Compiling Your Design” chapter.

The synthesizer creates a gate-level design with no physical device
information; the physical layout of the device is done in the next step.
No speed or area estimates are provided by the XC7000 library.
Therefore do not attempt to create a timing report or perform
estimated timing simulation at this time.

Preparing the Netlist
The Synopsys compiler produces a file named design_name.sxnf or
design_name.sedif which may contain references to macros. This
file must be translated into a flattened netlist file (design_name.xff)
for the Xilinx fitter.

Step 18 — Create a Flattened Netlist

If you are using FPGA Compiler (and created a design_name.sxnf
file), create a design_name.xff file for the fitter by entering the
following on the UNIX command line:

syn2epld scan

Xilinx Synopsys Interface EPLD User Guide

1-20 XACT Development System

If you are using Design Compiler (and created a
design_name.sedif file), create a design_name.xff file for the fitter
by entering the following on the UNIX command line:

syn2epld scan.sedif -p 7354-10pc44

When file translation is finished, you will see the message “Netlist
written to file scan.xff.”

If you need more information on preparing the netlist, see the “Fitting
Your Design” chapter.

Fitting Your Design
The XEPLD fitter translates your logical design file
(design_name.xff) into a physical device layout.

Step 19 — Fit Your Design

To fit your design into a target device, enter the following on the
UNIX command line:

fitnet -n scan

The fitter displays a series of progress messages and a resource
summary that shows how well your design fits into the target device.
During execution, fitnet produces a warning message about an
AND-gate that “does not drive anything and it is removed”; this can
safely be ignored.

When the fitter is finished you will see the message “Design
successfully mapped. Examine the following report files:...”.
Assuming there are no errors, you need only to examine the resource
summary already displayed. The Resource report is also saved in the
file design_name.res .

If you need more information on fitting, see the “Fitting Your Design”
chapter. If you need more information on interpreting reports, see the
“Fitter Reports” appendix.

Getting Started with Xilinx EPLDs

Xilinx Synopsys Interface EPLD User Guide 1-21

Timing Backannotation
After fitting, the XEPLD fitter can produce a static timing report that
shows the calculated worst case timing of the logic paths in your
design. It also creates a timing simulation file in VHDL for use with
the Synopsys VSS simulator.

Step 20 — Create a Static Timing Report

To create the Static Timing Report and create the backannotated
VHDL file for the VSS simulator, enter the following Xilinx command
on the UNIX command line:

vmh2vss scan

When file translation is finished you will see that the following files
have been written: scan.tim , scan_vss.vhd , scan_vss.sdf .

The Static Timing Report (scan.tim) for this example is provided in
the “Fitter Reports” appendix. This report shows that the critical path
for this design (clock pad to output pad delay to enable the C_OUT
pins) is 20ns. The worst case cycle time is 13ns.

Timing Simulation
Timing simulation uses the actual device delays based on the
physical layout of your design after fitting. If you are not using the
VSS simulator, skip this section and go to step 28.

Step 21 — Analyze Your Original Design

Analyze the original scan design to reuse the port declarations
contained in the entity by entering the following Synopsys command
on the UNIX command line:

vhdlan scan.vhd

Step 22 — Analyze Your Back-Annotated Design

Analyze the back-annotated design architecture, produced by the
Xilinx vmh2vss command, by entering the following Synopsys
command on the UNIX command line:

vhdlan scan_vss.vhd

Xilinx Synopsys Interface EPLD User Guide

1-22 XACT Development System

You will see the analyzer version number and a copyright notice. If
the analysis works properly you will be returned to the UNIX prompt
with no error messages displayed.

Step 23 — Analyze Your Test Bench

Analyze the simulation test bench by entering the following
Synopsys command on the UNIX command line:

vhdlan scan_tb.vhd

Again, you will see the analyzer version number and a copyright
notice. If the analysis works properly you will be returned to the
UNIX prompt with no error messages displayed.

Step 24 — Invoke the VSS Simulator

Invoke the Synopsys VSS simulator by entering the following
Synopsys command on the UNIX command line:

vhdldbx -sdf scan_vss.sdf -sdf_top /SCAN_TB/UUT
CFG_SCAN_TB &

For your convenience, this command line is contained in a script file,
which you can execute by typing the following on the UNIX
command line:

dbx_scan

This will open the simulator window as shown in Figure 1-9. The
-sdf parameter specifies the timing back-annotation file produced
by vmh2vss . The -sdf_top parameter specifies the level in the test
bench hierarchy at which the back annotation information will be
applied.

Getting Started with Xilinx EPLDs

Xilinx Synopsys Interface EPLD User Guide 1-23

Figure 1-9 Synopsys VHDL Debugger

Step 25 — Open the Waveform Viewer

Use the TRACE command to specify the same signals used during
functional simulation in step 6. Enter the following command on the
VHDL Debugger command line:

trace *'signal

This opens the Dynamic Waveform Viewer window.

Xilinx Synopsys Interface EPLD User Guide

1-24 XACT Development System

Step 26 — Run the Simulation

Run the simulation by clicking the RUN button in the lower section of
the Synopsys VHDL Debugger window.

This will run the timing simulation test bench and display the
simulation trace of your design as shown below in Figure 1-10.

Figure 1-10 Synopsys Dynamic Waveform Viewer (Waves)

Step 27 — Return to UNIX

Return to the UNIX environment by selecting EXECUTE-QUIT from
the simulator menu.

If you need more information on timing simulation, see the
Simulating Your Design” chapter.

Programming an EPLD
After you have verified your design you are ready to program an
EPLD.

Getting Started with Xilinx EPLDs

Xilinx Synopsys Interface EPLD User Guide 1-25

Step 28 — Program an EPLD

Create an EPLD programming file by entering the following on the
UNIX command line:

makeprg scan -s scan01

This creates a bit map file that can be downloaded to a device
programmer.

The -s parameter specifies a user signature string “scan01 ” that is
programmed into special EPROM cells in the device that you can
read for identification.

If you need more information on device programming, see the
documentation that accompanies your device programmer.

Xilinx Synopsys Interface EPLD User Guide

1-26 XACT Development System

Xilinx Synopsys Interface EPLD User Guide — December, 1994 (0401289 01)

Designing with EPLDs

Xilinx
Synopsys
Interface
EPLD User
Guide

X2845

Xilinx Synopsys Interface EPLD User Guide — December, 1994 (0401289 01) 2-1

Chapter 2

Designing with EPLDs

This chapter discusses how to use design techniques, library
components, and attributes to get the best performance from Xilinx
EPLDs. For more information on library components, see the
“Library Component Specifications” appendix. For more information
on attributes, see the “Attributes” appendix.

VHDL Design File Requirements
If you plan to instantiate any components from the XC7000 library or
perform any simulation you will need to declare the Xilinx
XC7000.components package in your design source file. It is gener-
ally a good idea to always declare this package in all EPLD designs.

To declare the XC7000.components package, insert the following
two lines at the top of your VHDL source file:

library xc7000;
use xc7000.components.all;

Using Registers and Latches
The Xilinx EPLD architecture allows you to implement both registers
and latches within function block macrocells and within input pads.
This section shows you how to assign logic to specific registers and
latches, and how to control their initial states after power is applied.

The Xilinx fitter uses input pad registers and latches to implement
functions whenever possible to reduce the device macrocell resource
requirements. Register functions using any control inputs, such as
clear, preset, or clock enable, will only be implemented in macrocell
registers; only simple D-type flip-flops can be optimized into input
pads.

Xilinx Synopsys Interface EPLD User Guide

2-2 XACT Development System

To be eligible for optimization into an input pad, a register’s D and C
inputs must come directly from input ports or I/O ports. The C
(clock) input signal must not be used for anything other than register
clocking, and the D (data) input signal must not be used for any other
input.

Preventing Register/Latch Optimization
To prevent the fitter from automatically assigning any registered or
latched functions to the input pads, instantiate the NO_IFD global
attribute cell in your source design as follows:

U1: NO_IFD;

where U1 is any instance name.

Note: The NO_IFD attribute does not prevent you from instantiating
specific input pad register and latch components.

Using Input Pad Registers
If you want to assign a specific register in your design to an input
pad, instantiate the IFDX1 component. The Clock input must be
driven by a BUFG component (global FastClk), and the Clock Enable
input (if used) must be driven by a BUFCE component (Global Clock
Enable). Except for signals declared as FastInputs, the D input signal
must not be used for any other input.

Using Macrocell Registers
Inferred registered functions will be placed either into macrocells or
input pads at the discretion of the fitter unless register optimization is
turned off. If register optimization is turned off (using the NO_IFD
attribute) then all inferred registers will be placed into macrocells.

The techniques used to infer registers in EPLD designs is no different
than for any other Synopsys design. For example, the following
behavioral VHDL process implements a D-type flip-flop with
asynchronous clear and clock-enable:

Designing with EPLDs

Xilinx Synopsys Interface EPLD User Guide 2-3

 process (CLEAR, CLOCK)
 begin
 if (CLEAR = '1') then
 Q <= '0';
 elsif (CLOCK'event and CLOCK='1') then
 if (CE = '1') then
 Q <= 'D';
 end if;
 end if;
 end process;

You can also instantiate the FDCP, FDPC, or FDCPE register
components. If none of the control inputs are used, the software will
attempt to optimize these registers into input pads, provided
optimization is enabled.

Using Input Pad Latches
If you want to assign a specific latch in your design to an input pad,
instantiate the ILD component. The G input must be driven by a
BUFG component (global FastClk). Except for signals declared as
FastInputs, the D input signal must not be used for any other input.

Using Macrocell Latches
Inferred latched functions will be placed into macrocells only. You
can also instantiate the LD (latch) component.

Note: The EPLD architecture does not support transparent latches
with asynchronous clear or preset using a single macrocell.

Specifying Register/Latch Initial States
When the EPLD is powered on, or when the Master Reset pin is
activated, all registers and latches are forced into an initial state. You
can control the initial state of any register or latch, or you can allow
the fitter to choose the initial state based on the most efficient usage
of resources. You can see the initial states of the registers in your
design, after fitting, by performing timing simulation.

The fitter will determine the initial states of all registers in the device,
by default, based on optimal design performance, unless you specify
initial states as described below.

Xilinx Synopsys Interface EPLD User Guide

2-4 XACT Development System

Specifying the Predefined Initial States

Each registered and latched component in the library has a defined
initial state. If you want to use these predefined states, you must
prevent the fitter from optimizing the registers/latches in any way
that would change their initial states.

To use the predefined initial states, as specified in the “Library
Component Specifications” appendix, instantiate the preload
attribute cell in your source design as follows:

U1: preload;

where U1 is any instance name.

Note: When you specify preload you may inhibit the fitter from
using certain resources in the EPLD to implement the registers in
your design. This may require more device resources and can
decrease performance.

Specifying Initial States for Individual Registers/
Latches

If you want to define the initial state of selected registers/latches, set
the initial state attribute by using the following DC Shell commands.

If you are using FPGA Compiler, enter the following:

set_attribute “ inst_name”
fpga_xilinx_init_state -type string state

where:

● inst_name is the name of a cell instance and may be evaluated by
means of the DC Shell “find” function.

● state is either R (reset to 0) or S (set to 1).

For example, to specify an initial state of “1” for the register named
QOUT_reg<2> using FPGA Compiler, enter the following:

set_attribute “QOUT_reg<2>”
fpga_xilinx_init_state -type string S

or, for all QOUT registers:

set_attribute find (cell QOUT_reg*)
fpga_xilinx_init_state -type string S

Designing with EPLDs

Xilinx Synopsys Interface EPLD User Guide 2-5

Note: This attribute overrides all other methods for specifying initial
states.

Note: You cannot change the initial state of input pad registers or
latches (IFDX1 or ILD components); their initial states are always
implemented as indicated in the “Library Component Specifications”
appendix.

For more information on using attributes, see the “Attributes”
appendix.

Using I/O Ports
Unless otherwise specified, the compiler will automatically infer
IBUF, OBUF, and IOBUFE cells for all top-level input, output, and I/O
ports. However, the Xilinx component library also includes special-
purpose I/O buffer cells that allow you to explicitly instantiate
specific I/O functions.

You will want to explicitly assign I/O buffer cells for the following
reasons:

● There are more clocks or OE signals in your design than there are
FastClock or FOE pins available on the device. The Xilinx fitter
automatically assigns the most frequently used clock signals to
FastClock pins and the most frequently used 3-state control inputs
to FOE pins. You can force specific clocks onto the global
FastClock pins by instantiating the BUFG cell. You can force
specific output enable signals onto the global FOE pins by
instantiating the BUFFOE cell.

● You do not want some clocks, output enable signals, or registers to be
optimized automatically. You can globally inhibit optimization of
these resources by instantiating the NO_FCLK, NO_FOE, and
NO_IFD attribute cells. In this case you can manually assign
selected clock or OE inputs to the global FastClock or FOE inputs
by instantiating the BUFG or BUFFOE component. Instantiate the
IFDX1 or ILD components to explicitly implement registers and
latches in input pads.

● You are generating global clock or FOE signals from within your design.
If you want to drive the global FastClock or FOE inputs from
signals within your design, you must first drive those signals onto
the corresponding device I/O pad through an output buffer and

Xilinx Synopsys Interface EPLD User Guide

2-6 XACT Development System

then back into the chip through either the BUFG component (for
FastClocks) or through the BUFFOE component (for FOE inputs).

Selecting 3-State Control Sources
Xilinx EPLDs have dedicated high-speed routing that can be used for
fast output enable signals (FOE). Any unused FOE routing is
automatically assigned by the fitter to the most used output enable
signals in your design unless you turn off optimization by using the
NO_FOE attribute.

To be eligible for optimization, an output enable signal must come
directly from an input or I/O port and not be used for any other logic
function.

Assigning Specific Fast Output Enable Signals

If you want to assign a specific output enable signal in your design to
an FOE net, instantiate the BUFFOEinput buffer to drive the Enable
input of an OBUFEX1 or IOBUFEX1 component. The signal produced
by the BUFFOE component cannot be used by any other logic,
including the OE input of ordinary OBUFE or IOBUFE components.

Preventing FOE Optimization

To prevent the fitter from automatically assigning output enable
signals to any unused FOE nets, instantiate the NO_FOE cell in your
source design as follows:

U1: NO_FOE;

where U1 is any instance name.

Using Special Logic Functions

Binary Up Counters
You can infer binary up counters by using the “+1” operation and
achieve optimal performance in the EPLD. You can also instantiate
either the CBX1 or CBX2 components and use only the up count
mode.

Designing with EPLDs

Xilinx Synopsys Interface EPLD User Guide 2-7

Binary Down Counters
You can infer binary down counters by using the “-1” operation and
achieve optimal performance. You can also instantiate either the
CBX1 or CBX2 components and use only the down count mode.

Binary Up/Down Counters
For best results, when creating up/down counters, instantiate the
CBX1 component (up/down counter with asynchronous clear) or the
CBX2 component (up/down counter with synchronous reset). These
counters are scalable for any width and they are optimized for the
Xilinx EPLD architecture.

If you infer up/down counters, your design will require more device
resources to implement and will run slower.

Note: Inferred counters will automatically wrap from all 1’s to all 0’s.
You do not need to write conditional expressions to detect terminal
count; this would create unnecessary additional logic and may cause
your counter to run slower. For example, do not write the following:

if (count = “11111111”) then
count <= “00000000”;

else
count <= count + 1;

State Machines
When you initially compile a state machine, use the binary encoding
option (the default). If the logic complexity of a binary encoded state
machine results in poor device resource utilization, you can try less
fully encoded state assignments explicitly in your VHDL design. In
general you can use a few more registers to represent state vectors to
reduce the amount of combinational logic required for each state flip-
flop.

One-hot-encoding is rarely the most efficient way to create state
machines for EPLDs (unlike Xilinx FPGA designs). Other schemes
such as Gray coding do not help in EPLD designs because the EPLD
architecture is primarily composed of D-type flip-flops.

Xilinx Synopsys Interface EPLD User Guide

2-8 XACT Development System

Registered Arithmetic Functions
When creating simple pipelined arithmetic functions (where no
register control logic is required), you can use the “+” and “-”
operators in an ordinary clocked process and achieve good results.

For example:

process (clock)
begin

if (clock’event and clock = ’1’) then
Q <= A + B;

end if;

When creating registered arithmetic functions with any register
control logic, instantiate the ACC component (Adder/Subtracter/
Accumulator) or the ADSUR component (Adder/Subtracter with
registered output) for best results. These components are scalable for
any width and they are optimized for the Xilinx EPLD architecture.

If you infer these functions, your design will require more device
resources to implement and will run slower.

Note: Register control logic includes functions such as synchronous
or asynchronous reset, clock enable, and parallel load.

Comparators
Magnitude comparators can be expressed either behaviorally, using
the "<" or ">" operators, or by instantiating the COMPLT or COMPLE
components. They are implemented essentially the same as a
subtracter, with the carry-out serving as the comparator output. 3-bit
look-ahead logic at the low-order end of the comparator saves about
2 macrocells in the EPLD over the straight subtracter solution. The
EPLD high-speed arithmetic carry chain is used for all magnitude
comparators larger than 4 bits.

Equality comparators are implemented combinatorially using XOR
gates for each operand bit. The EPLD HDFB can accommodate up to
an 8-bit equality compare in a single macrocell. Equality comparators
up to 8 bits can be expressed either behaviorally, using the "="
operator, or by instantiating the COMPEQ or COMPNE components. For
comparators larger than 8 bits, which require more than one
macrocell, you should use the COMPEQ or COMPNE components so

Designing with EPLDs

Xilinx Synopsys Interface EPLD User Guide 2-9

that the gate logic combining the macrocells’ intermediate results are
implemented in the UIM if possible (without extra delay).

Comparator outputs in high-speed applications are often pipelined
before driving other logic or passing off-chip. By breaking larger
comparators into 8-bit slices and pipelining each slice, the gate logic
combining the slices can still be implemented in the UIM (for on-chip
logic).

In the following example, a pipelined 16-bit comparator (with
Boolean-type output Q) cannot be run at the maximum frequency of
the EPLD because the logic preceding the register cannot fit a single
macrocell:

process (clock)
begin

if (clock’event and clock = ’1’) then
Q <= A(0 to 15) = B(0 to 15);

end if;
end process;

In the following example, the 16-bit comparator is broken into two 8-
bit registered comparators, joined by a UIM-based AND-gate. This
solution can be clocked at the maximum frequency of the EPLD if it
drives on-chip logic:

process (clock)
begin

if (clock’event and clock = ’1’) then
Q0 <= A(0 to 7) = B(0 to 7);
Q8 <= A(8 to 15) = B(8 to 15);

end if;
end process;
Q <= Q0 and Q8;

Targeting a Specific Device
Before fitting your design you must select a target device. You have
three key questions to consider when selecting an EPLD:

● How many signal pins are required?

● How much Logic resources are required?

● How much performance (speed) is required?

Xilinx Synopsys Interface EPLD User Guide

2-10 XACT Development System

The answers to these questions determine which device you will
choose to contain your design.

Device selection can be an iterative process, as shown in the following
steps:

1. Use the Xilinx EPLD data book to make a preliminary choice. This
choice is usually based on the number of required signal pins
because this is often the easiest question to answer. It is easiest to
begin with the largest device (XC73108); this gives you the best
chance for a successful fit. Otherwise, you can get a very rough
estimate of the number of required macrocells as follows:

[(the number of output ports)
+ (the number of internal registers not driving
output ports)]
+ [20%]

2. Run the fitter on your design using the selected device. After
fitting, the Resource Report indicates how much device resources
were required. This will help you determine the best device size. If
your design does not fit you will need to choose a larger device or
partition your design among multiple devices. If you have unused
logic resources, you may want to try a smaller device.

3. Once an optimal device size has been determined, you can create a
Static Timing Report that will indicate the calculated timing of
your design based on the device layout. You can also simulate the
timing of your design using the Synopsys simulator. This timing
information will help you select the optimal target device speed.

The “EPLD Architecture” appendix shows you a device selection
chart. The “Library Component Specifications” appendix shows you
which library components can be used with specific target devices.
See the device data sheets for more information.

Specifying a Device
There are two ways to specify a target EPLD in which to implement
your design:

● By setting the part attribute in DC Shell (using FPGA Compiler).

● By specifying a part parameter in the Xilinx syn2epld
command.

Designing with EPLDs

Xilinx Synopsys Interface EPLD User Guide 2-11

Using the Synopsys Part Attribute

If you are using FPGA Compiler, set the following Synopsys attribute
at the DC Shell prompt to specify a target device:

set_attribute design_name part -type string
part_number

For example:

set_attribute scan part -type string 7354-10PC44

This attribute is optional if you specify a part number in the Xilinx
syn2epld command, as shown below. If you are using Design
Compiler, you should always specify the part number parameter in
the syn2epld command.

Using the Xilinx Syn2EPLD Command

When flattening the netlist file for the fitter after compiling, you can
also specify a target device by entering the following Xilinx
command on the UNIX command line:

syn2epld -p part_number design_name [.sedif]

For example, at the UNIX prompt enter:

syn2epld -p 7354-10PC44 scan

Note: A valid part number specified in the syn2epld command will
override any part number specified as a DC Shell attribute.

See the “Attributes” appendix for more information on attributes. See
the “Fitting Your Design” chapter for more information on fitter
commands.

Specifying Pin Locations
Specify the device pins on which to place signals by using one of the
following Synopsys attributes in DC Shell.

If you are using FPGA Compiler, enter the following:

set_attribute port_name pad_location -type string
pin_number

Xilinx Synopsys Interface EPLD User Guide

2-12 XACT Development System

For example, to place the “start” signal on pin 23, using FPGA
Compiler:

set_attribute start pad_location -type string P23

You can use the location attribute to explicitly override any saved
pinout made with the fitter pinsave command. See the “Fitting Your
Design” chapter for more information on the pinsave command.

Note: The method of specifying pin numbers depends on the target
device package type. See the “Attributes” appendix for more
information.

Controlling Design Performance
Devices in the Xilinx EPLD family include Fast Function Blocks
(FFBs) and/or High Density Function Blocks (HDFBs). Fast Function
Blocks provide the shortest delay paths while High Density Function
Blocks provide the most logic resources. EPLDs also contain special
high speed routing for clocks, output enable signals, clock enable
signals, and logic inputs to FFBs.

You can control your design performance by using attributes to
assign specific signals in your design to the appropriate physical
EPLD resources.

Using High-Speed Clocks
Xilinx EPLDs have dedicated high-speed (FastCLK) routing that can
be used for global clock signals. Any unused FastCLK routing is
automatically assigned by the fitter to the most used clock signals in
your design (if eligible) unless you turn off optimization. To be
eligible for FastCLK optimization, an input port signal must be used
only for register clocking using the positive clock edge.

Note: EPLD Fast Function Blocks, input pad registers, and input pad
latches must use FastCLK routing; they cannot use normal signal
routing for clocks.

Assigning Specific High-Speed Clocks

If you want to assign a specific clock in your design to a FastCLK net
instantiate the BUFG buffer cell in your design.

Designing with EPLDs

Xilinx Synopsys Interface EPLD User Guide 2-13

Note: Signals driven by the BUFGbuffer always use FastCLK routing
independent of the NO_FCLK attribute.

Preventing FastCLK Optimization

To prevent the fitter from automatically assigning your clock signals
to any unused high-speed FastCLK nets, instantiate the NO_FCLK cell
in your source design as follows:

U1: NO_FCLK;

where U1 is any instance name.

Selecting EPLD Function Block Types
By assigning logic signals to specific EPLD Function Block resources,
you can control the performance of logic paths in your design.

Specifying High-Speed Paths

To assign a logical signal to a Fast Function Block (shortest delay
paths), instantiate the F attribute cell in your source design and
connect it to the intended FFB output signal as follows:

instance_name: F port map (signal_name);

For example:

U1: F port map (OE_REG);

Specifying High-Density Paths

To assign a logic signal to a High Density Function Block (normal
delay paths), instantiate the H attribute cell in your source design and
attach it to the intended HDFB output signal as follows:

instance_name: H port map (signal_name);

For example:

U1: H port map (DONE_REG);

See the “Attributes” appendix for more information.

Xilinx Synopsys Interface EPLD User Guide

2-14 XACT Development System

Using EPLD FastInputs
Some of the inputs to FFBs can be taken directly from input pins
using a high-speed FastInput path which bypasses the Universal
Interconnection Matrix. To assign input port signals to the EPLD
FastInputs, instantiate the F attribute cell in your source design and
connect it to the intended FastInput signal as follows:

instance_name: F port map (signal_name);

For example, to assign the fast_in1 signal to an EPLD Fast Input:

U1: F port map (fast_in1);

Note: An input signal declared as a FastInput can also be used as the
D input to an input pad register or latch (IFDX1 or ILD).

Selecting Low-Power Operation
Macrocells in most EPLD devices can be configured to operate in
either high-speed (default) or low-power mode. To specify that all
macrocells in the device are to operate in low-power mode,
instantiate the global LOWPWR attribute cell in your source design as
follows:

U1: LOWPWR;

where U1 is any instance name.

The Design Rule Checker
The Design Rule Checker (DRC) reads the design from the database
and checks to see if any of the design rules have been violated. The
following is a partial list of rules that are checked.

General Design Rule Violations
The DRC displays an error or warning if:

● Open (hanging) inputs are found. Unless otherwise specified, all
inputs of a library component must be connected or tied to VCC
or GND.

● Some library components can only be used for a particular target
EPLD. The DRC will generate an error if you attempt to use these

Designing with EPLDs

Xilinx Synopsys Interface EPLD User Guide 2-15

components for other EPLDs. Restrictions on the use of
components can be found in the library data sheets.

Pad Component Design Rule Violations
Pad component correct usage and applications are illustrated in the
Library data sheets. The DRC displays an error if:

● Two component outputs are connected to the same pad.

● One component output is connected to two pads.

● An input pad is connected directly to an output or I/O pad.

● Pad pins are driven by VCC or GND.

● Pad clocks are driven by VCC or GND.

● Multiple input buffers are connected to the same pad (the
exception is when an IBUF is used with an IFD , IFDX1 , or ILD to
receive a FastInput signal).

● A pad is connected to a component other than an I/O buffer, or to
another pad.

● An IPAD is connected to an OBUF-type component.

● An OPAD is connected to an input or control-input buffer (such as
IBUF, BUFG, or IFD).

FastCLK, Clock Enable, and Fast Output Enable
Violations

The DRC displays an error if:

● There are more FastCLK, CE, or FOE pins in the design than the
target EPLD can support.

● A FastCLK, CE, or FOE signal drives a component pin that is not a
clock, CE, or FOE input.

● A combination of fast clocks for logic components and I/O pads
cannot be supported by the target EPLD.

● The clocking requirement of a component is not met. Some
component clock inputs can only be driven by a fast clock and
others only by a logic clock. Component clocking requirements
are listed in the library data sheets.

Xilinx Synopsys Interface EPLD User Guide

2-16 XACT Development System

Xilinx Synopsys Interface EPLD User Guide — December, 1994 (0401289 01)

Compiling Your Design

Xilinx
Synopsys
Interface
EPLD User
Guide

X2845

Xilinx Synopsys Interface EPLD User Guide — December, 1994 (0401289 01) 3-1

Chapter 3

Compiling Your Design

XSI supports both VHDL and Verilog HDL design synthesis. Either
the Synopsys FPGA Compiler or Design Compiler can be used to
compile EPLD designs; there are no differences between the two
compilers in either features supported or in mapping efficiency. In
the following discussion, the term "compiler" refers to either FPGA
Compiler or Design Compiler.

This chapter describes how to compile your design using the
Synopsys Design Compiler shell (DC Shell). You can also use the
Synopsys graphical user interface, Design Analyzer, to process your
designs.

Before compiling you will need to develop your VHDL or Verilog
HDL source file (design_name.vhd or design_name.v). Usually it is a
good idea to perform a functional simulation of your VHDL source
design before trying to synthesize it. See the “Simulating Your
Design” chapter for information on functional simulation.

Using Synopsys DC Shell
The Synopsys compiler synthesizes your source design and creates a
netlist file composed of logic primitives that is used by the Xilinx
fitter (XEPLD) to implement your design in an EPLD. All compiler
commands are executed from within the Synopsys DC Shell
environment

Xilinx Synopsys Interface EPLD User Guide

3-2 XACT Development System

Step 1 — Entering the DC Shell Environment
Enter the Synopsys DC Shell environment by entering the following
Synopsys command on the UNIX command line:

dc_shell

You will see the DC Shell prompt.

Step 2 — Analyzing the Design
To interpret your design and verify that it is free of errors, enter the
following Synopsys command for VHDL designs:

analyze -format vhdl design_name.vhd

or, for Verilog HDL designs:

analyze -format verilog design_name.v

For example, the command used in the scan example in the “Getting
Started with Xilinx EPLDs” chapter:

analyze -format vhdl scan.vhd

If your source file contains initial signal values (which are used only
for functional simulation) they will cause warnings that can be safely
ignored; these initial signal values are not used during synthesis.
Actual register initial states are set using attributes as shown in the
“Attributes” appendix.

If the analyze command finds errors, you will need to make the
necessary corrections to your source file before continuing with
synthesis.

If the analyze command is successful, you can continue to the next
step which builds your logic design.

Step 3 — Elaborating the Design
To derive a logical design, based on your VHDL/HDL description,
enter the following Synopsys command:

elaborate design_name

Compiling Your Design

Xilinx Synopsys Interface EPLD User Guide 3-3

For example, the command used in the scan example in the “Getting
Started with Xilinx EPLDs” chapter:

elaborate scan

During this step, the compiler displays information about all
registers and 3-state buffers encountered in your design.

You are now ready to compile your design using the XC7000 target
library.

Step 4 — Compiling Your Design
When you compile your design, the Synopsys synthesizer uses the
components in the Xilinx XC7000 technology library to create an
actual implementation of your design.

To synthesize your design based on the XC7000 technology library
enter the following Synopsys command:

compile [-map_effort low]

The mapping effort parameter is optional. However, it is
recommended that you set it to LOW to save compilation time. The
synthesizer does not perform any speed or area optimization for
EPLD designs; this optimization is performed after compilation by
the XEPLD fitter.

Step 5 — Defining EPLD I/O Signals
Now you must define which signals are connected to the physical
I/O pins of the EPLD.

Use the following command to identify all ports in your design for
which the synthesizer needs to infer an I/O buffer:

set_port_is_pad port_name

Do not use this command for any ports that are already instantiated
using I/O buffer cells from the library.

To automatically place I/O buffer cells on all top-level ports in the
design, enter the following Synopsys commands:

set_port_is_pad "*"

Xilinx Synopsys Interface EPLD User Guide

3-4 XACT Development System

For the ports that were specified by set_port_is_pad , the
following command adds the appropriate I/O buffer cells to your
design:

insert_pads

Step 6 — Specifying Attributes
Attributes are used to control the physical implementation of your
design; all attributes are optional. If you are using FPGA Compiler,
the attributes that you may want to set at this time are:

● Part type (you can also set part type from the fitter command line).

● Register initial states.

● Pin assignments.

For example, the attributes used in the scan example in the “Getting
Started with Xilinx EPLDs” chapter:

set_attribute scan part -type string 7354-10pc44
set_attribute find(cell COUNT*)

fpga_xilinx_init_state -type string R
set_attribute find(cell OE_REG*)

fpga_xilinx_init_state -type string R

See the “Attributes” appendix for complete details on all supported
attributes.

The design database is now complete and you are ready to output a
netlist file for the Xilinx fitter.

Step 7 — Writing the Netlist
If you are using FPGA Compiler, write your synthesized design file in
XNF netlist format by entering the following Synopsys command:

write -format xnf -hierarchy -output
design_name.sxnf

where:

● -format xnf specifies the XNF file format.

● -hierarchy specifies that all levels of the design hierarchy are
to be written.

Compiling Your Design

Xilinx Synopsys Interface EPLD User Guide 3-5

● -output design_name.sxnf specifies your output file name,
which should be the same as your source file name, with the
extension: .sxnf .

For example, the command used in the scan example in the “Getting
Started with Xilinx EPLDs” chapter:

write -format xnf -hierarchy -output scan.sxnf

If you are using Design Compiler, you must write your synthesized
design file in EDIF netlist format by entering the following Synopsys
command:

write -format edif -output design_name.sedif

where:

● -format edif specifies the EDIF file format.

● -output design_name.sedif specifies your output file name,
which should be the same as your source file name, with the
extension: .sedif .

For example, if you have only Design Compiler, you would write the
scan design from the “Getting Started with Xilinx EPLDs” chapter
using the following command:

write -format edif -output scan.sedif

This is the end of the process in DC Shell. You usually exit DC Shell
before fitting. Before exiting you may wish to save the design
database in Synopsys db format by executing the write command.
You can exit DC Shell by entering the following Synopsys command:

exit

None of the Synopsys timing or area analysis reports are useful at
this time because the XC7000 technology library does not contain
timing or area estimation data. The Xilinx fitter provides a Static
Timing Report which shows the calculated worst case timing for each
logic path in your design.

You are now ready to begin the fitting process as described in
the next chapter.

Xilinx Synopsys Interface EPLD User Guide

3-6 XACT Development System

Xilinx Synopsys Interface EPLD User Guide — December, 1994 (0401289 01)

Fitting Your Design

Xilinx
Synopsys
Interface
EPLD User
Guide

X2845

Xilinx Synopsys Interface EPLD User Guide — December, 1994 (0401289 01) 4-1

Chapter 4

Fitting Your Design

After you have compiled your logic design using the Synopsys
compiler you are ready to implement your design in an EPLD. This
chapter shows you how to fit your design, create a device
programming file, and save your pinouts for design iteration.

Fitter Overview
XEPLD is the Xilinx EPLD fitter software. XEPLD uses the logical
design produced by the Synopsys compiler to create a physical
layout for a target EPLD.

XEPLD performs the following functions:

● Reads the netlist file (design_name.sxnf or design_name.sedif)
produced by the Synopsys compiler and reports any rule
violations to the error log file (design_name.err).

● Minimizes the combinational logic of your design so that it
requires the least number of product term resources.

● Optimizes, partitions, and maps your design to fit within the
architecture of the target device.

● Creates a pin-save file (optional) that is used to lock signal names
to device pins, allowing you to keep the device pinouts during
design iterations.

● Creates a Static Timing Report that shows the calculated worst-
case timing for all signal paths in your design.

● Creates a timing simulation files that can be used by the Synopsys
VSS simulator.

● Creates a device programming file (design_name.prg).

Xilinx Synopsys Interface EPLD User Guide

4-2 XACT Development System

● Creates detailed reports that show you information such as the
type and quantity of device resources used and device pinouts.

Fitter Operation
The following steps show you how to fit your logical design into a
target device using the XEPLD fitter.

Step 1 — Create a Flattened XNF Netlist File
The Synopsys FPGA Compiler produces a top-level XNF-formatted
file named design_name.sxnf . The Synopsys Design Compiler
produces a top-level EDIF-formatted file named design_name.sedif .
Either of these files may contain macros and must be translated into a
flattened netlist file for the Xilinx fitter by using the syn2epld
command.

If you did not specify a target device part number to the Synopsys DC
Shell (by using a part attribute) you must specify a target device
type at this time.

Specifying a Target Device

To create the flattened netlist, and specify a target device, enter the
following Xilinx command on the UNIX command line:

syn2epld -p part_number design_name [.sedif]

If you omit the .sedif extension, syn2epld looks for a
design_name.sxnf file (produced by FPGA Compiler). If you specify
the .sedif extension, syn2epld reads the EDIF netlist produced
by Design Compiler.

For example, at the UNIX prompt enter:

syn2epld -p 7354-10PC44 scan

This command creates a flattened netlist which is saved as
design_name.xff .

Note: A valid part number specified in the syn2epld command will
override any part number specified in a DC Shell attribute.

A complete list of device types is shown in the “EPLD Architecture”
appendix.

Fitting Your Design

Xilinx Synopsys Interface EPLD User Guide 4-3

Using a Target Device Specified By a Part Attribute

If you are using FPGA Compiler and you specified a part attribute in
DC Shell, you can enter the syn2epld command without the -p
parameter on the UNIX command line as follows:

syn2epld design_name

Step 2 — Fit Your Design
To invoke the fitter, enter the following Xilinx command on the UNIX
command line:

fitnet -n design_name [options]

Options

-i

Ignore the pin assignments specified by pad_location attributes.

-u

Drive all unused I/O pads to GND.

-f

Use the previously saved (frozen) pinout.

For example, to invoke the fitter for the scan design, driving all
unused EPLD I/O signals to GND, enter the following command:

fitnet -n scan -u

The fitnet command produces various reports:

● The Resource Report (design_name.res) indicates how well your
design fits in the target device. This report shows the utilization of
macrocells, Function Blocks and each type of device pin, and
indicates the amount of remaining logic and I/O resources in the
device. The Resource summary is also displayed near the end of
the fitnet process.

● The Pinlist Report (design_name.pin) shows the signals assigned
to each pin of the target device.

Xilinx Synopsys Interface EPLD User Guide

4-4 XACT Development System

● The Partitioner Report (design_name.par) and the Mapping
Report (design_name.map) show the detailed physical layout of
your design within the EPLD.

● The Equation File (design_name.eqn) contains boolean equations
representing the final implementation of your design after
minimization and optimization, and is expressed in Xilinx
PLUSASM syntax.

Step 3 — Verify Your Design Timing
Generate a Static Timing Report and timing simulation files by
entering the following Xilinx command on the UNIX command line:

vmh2vss [-b | -t] design_name

Options

-b

Allows you to use the same test bench file for timing simulation and
for functional simulation. It generates the design_name_vss.vhd file
as architecture only, using the original bus indexes matching the port
declarations in your original source design file (design_name.vhd).
The -b option is the default if you do not specify an option.

-t

Generates a new test bench file for timing simulation
(tb_ design_name_vss.vhd). It also generates the
design_name_vss.vhd file with both entity and architecture.

The Static Timing Report is saved as design_name.tim . This report
shows the calculated worst case timing for logic paths in your design.
See the “Fitter Reports” chapter for a complete description of the
Static Timing report.

The timing simulation model produced by vmh2vss is composed of
two files:

● design_name_vss.vhd — A structural VHDL design file
(for simulation only).

● design_name_vss.sdf — A Verilog-style timing back-annotation
file.

Fitting Your Design

Xilinx Synopsys Interface EPLD User Guide 4-5

If you select the -t option you will also get the following file:

● tb_ design_name_vss.vhd — A VHDL test bench for timing
simulation.

Step 4 — Create a Device Programming File
After you are satisfied that your design is functioning properly you
can create a device programming file. This file is used by an EPLD
programmer to implement your design. To create the device
programming file, enter the following Xilinx command on the UNIX
command line:

makeprg design_name [-s signature]

Where signature is an optional user-defined signature string that is
programmed into the device for identification.

This command creates a file named design_name.prg .

EPLD programmers are available from Xilinx and from third-party
developers. See your device programmer documentation for
instructions on how to download the programming file.

Step 5 — Save Your Pinouts
Modifying EPLD designs after PC board layout requires the ability to
save and re-use device pin location information.

To save your pinouts for use in future design iterations, enter the
following Xilinx command on the UNIX command line:

pinsave design_name

This command creates a pin-save file named design_name.vmf .
During a subsequent invocation of the fitnet command, you can
specify the -f option to restore pinouts saved in the .vmh file.

Note: Making major changes to your design may prevent the fitter
from achieving a successful mapping if you use the fitnet -f
option. If the fitter fails, try running without the -f option to see if a
fit is still possible. To fit a modified design into the selected device,
you may need to delete some of the pin assignments in the .vmh file,
allowing those pins to move to new locations.

Xilinx Synopsys Interface EPLD User Guide

4-6 XACT Development System

Note: You cannot use a previously saved pinout if you change the
size or package type of the target device. See the EPLD Data Book to
determine which devices in the EPLD family have compatible
pinouts across similar packages.

After a successful fit of your design you are ready to perform timing
simulation as described in the next chapter.

Xilinx Synopsys Interface EPLD User Guide — December, 1994 (0401289 01)

Simulating Your
DesignXilinx

Synopsys
Interface
EPLD User
Guide

X2845

Xilinx Synopsys Interface EPLD User Guide — December, 1994 (0401289 01) 5-1

Chapter 5

Simulating Your Design

The Xilinx EPLD Synopsys Interface supports both functional and
timing simulation of designs using the VSS simulator. This chapter
shows you how to prepare designs for simulation and how to use a
test bench.

Recommended EPLD Simulation Strategy
Because of the flexibility of the simulation environment, there are
many ways in which you can verify your design. The following steps,
which are explained in subsequent sections, show you one
recommended flow for EPLD simulation.

1. Specify The initial states of your registers. If you use attributes to
control the initial states of the registers in your actual design
implementation, you must also re-specify those initial states in
your source design file for functional simulation.

2. Create a test bench file. By following the guidelines described in
this chapter, the same test bench can be used for both functional
and timing simulation.

3. Perform functional simulation. This allows you to debug the
logic in your source design before implementing an EPLD.

4. Implement the design in an EPLD. This provides the necessary
physical resource information necessary for timing
simulation.

5. Prepare the timing model. The vmh2vss software prepares the
timing model of your design for simulation and provides a
static timing report.

Xilinx Synopsys Interface EPLD User Guide

5-2 XACT Development System

6. Perform timing simulation. By re-using the functional
simulation test bench file, you can easily compare results
and prevent errors that can be caused by accidental
differences between separate test bench files.

All of these preparation and simulation steps are demonstrated in the
design example shown in the “Getting Started with Xilinx EPLDs”
chapter.

Controlling the Initial States of Registers
This section shows you how to declare the initial states of registers in
your design for simulation. If your design does not depend on the
initial states of any registers, then you can skip this section and go to
the next section, “Creating a Test Bench File”.

The actual initial states of your registers are determined by the initial
state attributes specified in DC Shell during compilation or by the
default initial states which are specified for each registered cell in the
Xilinx component library.

Note: If preload optimization is turned OFF, the default initial states
as defined in the library, will not be changed by the Xilinx software. If
preload optimization is turned ON, then the initial states may be
changed by the fitter during optimization. See the “Attributes”
appendix for more information on preload optimization control.

The timing simulation model produced by the Xilinx software reflects
the actual register initial states that are implemented in the device,
regardless of whether they are explicitly specified or automatically
assigned by the fitter.

Simulating Master Reset
Xilinx EPLDs have a Master Reset function that initializes the device
registers either when power is applied or when the MR input pin is
pulsed. The reset signal is not physically available to your logic.
However, you must pulse the reset signal at the beginning of timing
simulation for proper register initialization.

The following sections show you how to simulate the Master Reset
function for both functional and timing simulation.

Simulating Your Design

Xilinx Synopsys Interface EPLD User Guide 5-3

Preparing for Timing Simulation

When you generate your timing simulation model, vmh2vss
automatically creates a new input port named MRESET. When
simulating, you must first pulse MRESET low, prior to exercising the
logic, to get all the registers into their initial states. If you use a test
bench to stimulate your design, you must include the MRESET signal
as one of the input ports of the EPLD in the test bench as described in
the next section “Creating A Test Bench File”.

The MRESET signal is used for timing simulation only; it is not used
for functional simulation and it cannot be used in your design.
However, if you include it in your functional simulation test bench,
that test bench can also be used later for timing simulation without
modification.

If you are using the same test bench file for both functional and
timing simulation, you must also include the MRESET port
declaration in your source design file as follows:

port (... MRESET : in std_logic ...);

MRESET is not used anywhere else in your design. During synthesis
you will get warnings about the unconnected MRESET port (during
the Compile and Insert Pads operations). The Xilinx fitter
software will also ignore the unconnected MRESET port during
implementation.

See the scan tutorial source file listing for an example of how the
MRESET input port is declared in a VHDL design.

Preparing for Functional Simulation

Simulate register initialization (Master Reset) by defining, in your
source design file, the initial values for registered signals. Use signal
declarations such as the following:

port signal_name: port_direction signal_type := initial_value;
signal signal_name: signal_type := initial_value;
variable signal_name: signal_type := initial_value;

For example:

port Nreg5 out std_logic := '0';
signal Qreg6: std_logic := '0';
variable Qreg: std_logic_vector := "00000001";

Xilinx Synopsys Interface EPLD User Guide

5-4 XACT Development System

These initial values are used only for functional simulation; they are
not used during synthesis and the synthesizer will give you a
warning that these values are being ignored. Also, these initial values
are not used by the Xilinx software for device implementation.

Note: The fitter can change the initial states of registers during
optimization (assuming that preload optimization remains enabled).
Therefore, for functional simulation, you should declare only the
initial states that will actually be implemented by the Xilinx fitter,
based on your specifications. These states are specified in your source
design file by using initial state attributes in DC Shell.

You are now ready to create a test bench file.

Creating a Test Bench File
This section shows you how to create a test bench file that can be used
for both functional and timing simulation. The example test bench
presented here consists of a VHDL file containing one instance of an
EPLD design being tested and a procedure that applies simulation
input waveforms to the EPLD.

Initializing Registers
For functional simulation, all registers are initialized before the first
simulation cycle (at time zero) by the initial values declared in your
source design file.

For timing simulation, in the test bench, include the MRESET input
port in the EPLD component declaration and in its instance port map
as shown in Figure 5-1. At the beginning of the simulation sequence,
applying an active-low pulse to MRESET initializes the registers. This
pulse is ignored during functional simulation because the MRESET
signal is not used anywhere in the source design.

During vmh2vss (after fitnet) the MRESET port is automatically
generated in the timing simulation model. Then, during timing
simulation when the test bench applies the MRESET pulse, the timing
simulation model will initialize all registers as they are actually
implemented in the EPLD.

Simulating Your Design

Xilinx Synopsys Interface EPLD User Guide 5-5

Note: In designs targeted for the XC7318, XC7336, or XC7354, if you
specify the MRINPUT attribute, the device will not have a Master
Reset pin. However, the timing model will still respond to the reset
pulse on the port in order to simulate a power-on reset function,
which is always performed by the EPLD when power is applied.

Configuration Declaration
For any design or test bench you wish to simulate, you must declare a
configuration which identifies the specific architecture you are
applying to a design. When you invoke the VSS simulator, you must
select the name of a configuration that has been previously analyzed.

Figure 5-1 shows a typical configuration declaration in a test bench
file. If the test bench is always used to simulate the design source file,
it does not need its own configuration declaration.

Figure 5-1 Simulation Test Bench — SCAN Design

After you have created a test bench file, you are ready to begin using
a VSS simulator (such as vhdldbx) for functional simulation.

library xc7000
use xc7000.components.all;... --and other packages---

entity scan_tb is
end scan_tb; --test bench has no ports--

architecture test of scan_tb is
component scan

port (CLOCK, CLEAR, ... --same as in scan.vhd--
MRESET : in std_logic);

end component;
signal CLOCK, CLEAR, ...MRESET; --same as ports of scan.vhd--

begin
UUT: scan port map (CLOCK, CLEAR, ... MRESET); --connect local signals to ports--
driver: process begin

MRESET <= '0';CLEAR <='0';... --assert initial values on all inp ports
wait for 25ns; --wait, repeat--
MRESET <= '1';... --release MRESET before applying other

input transitions--
wait; --after all inputs, suspend process--

end process;
end test;

configuration CFG_SCAN_TB of scan_tb is
for test
end for;

end CFG_SCAN_TB;

Xilinx Synopsys Interface EPLD User Guide

5-6 XACT Development System

Functional Simulation
Functional simulation is used to debug your logic before fitting your
design into an EPLD. The Xilinx EPLD Synopsys Interface fully
supports functional simulation of all cells in the XC7000 library
(including all DesignWare operators).

To prepare a test bench configuration for simulation, you must
analyze each of the design and test bench source files in the proper
bottom-up sequence.

The following procedure uses the stand-alone VHDL Analyzer
(vhdlan) and the VHDL Debugger Simulator (vhdldbx).

1. Analyze your source EPLD design file. Enter the following UNIX
command:

vhdlan design_name.vhd

For example:

vhdlan scan.vhd

2. Analyze the test bench file. Enter the following UNIX command:

vhdlan test_bench_name.vhd

For example:

vhdlan scan_tb.vhd

3. Invoke the Synopsys VSS Simulator. Enter the following UNIX
command to invoke the VHDL debugger:

vhdldbx

You are then prompted for a configuration name. Select the name
of the configuration declared in the test_bench_name.vhd file. For
example, for the scan design, select the following:

CFG_SCAN_TB

The vhdldbx selector window appears as shown in Figure 5-2.

Simulating Your Design

Xilinx Synopsys Interface EPLD User Guide 5-7

Figure 5-2 Selector Window (vhdldbx)

After you click OK, the vhdldbx user interface window appears as
shown in Figure 5-3.

Xilinx Synopsys Interface EPLD User Guide

5-8 XACT Development System

Figure 5-3 User Interface Window (vhdldbx)

To run your simulation, typically you first declare the signals you
want to display in a trace window. For example, to display all signals
appearing on the EPLD pins, you can enter the following vhdldbx
command:

trace *’signal.

Simulating Your Design

Xilinx Synopsys Interface EPLD User Guide 5-9

To run all the simulation vectors in your test bench, select the RUN
command. The resulting trace window will look similar to Figure 5-4

Figure 5-4 Functional Simulation Waveforms — SCAN Design

After functional simulation is successful, you are ready to implement
your design and create the physical layout information required for
timing simulation.

Design Implementation
After you have debugged your design using functional simulation,
you can compile it using synthesis and implement it in an EPLD
using the Xilinx fitter. Design implementation is a prerequisite for
performing timing simulation.

You can use DC Shell or you can use the Synopsys graphic interface
(Design Analyzer) to create the XNF or EDIF netlist file required by
the Xilinx fitter. This gate-level netlist file consists of cells from the
XC7000 library but does not contain timing information. The Xilinx
fitter processes the netlist file and places the logical design into the
physical architecture of a target EPLD.

After the design is implemented by the Xilinx fitter, the actual target
device timing information is available for timing simulation.

The following steps show you an overview of the EPLD
implementation procedure.

Xilinx Synopsys Interface EPLD User Guide

5-10 XACT Development System

1. Analyze the source design file. This must be repeated in the
synthesis environment (DC Shell); the results of vhdlan cannot be
used for synthesis.

2. Compile the design, targeting the XC7000 library, and create a
netlist.

3. Run the Xilinx fitter, using the fitnet command to process the
netlist.

Usually, simulation is not repeated until after fitting when all actual
timing results have been applied.

To verify that the fitting process is completed, review the error file
(design_name.err) which shows all errors and warnings that
occurred during implementation. These errors are also displayed on
screen as the process is running. You can also examine the Resource
Report (design_name.res) which is also displayed to the screen as the
process is running. The Resource Report tells you how well your
design fits into the target device. You may wish to target a smaller
device or add more functions to your design if there are remaining
unused resources.

After design implementation, you are ready to prepare the timing
model for timing simulation.

Preparing the Timing Model
When you synthesize your design, and create an XNF or EDIF netlist
file for the Xilinx fitter, all busses (such as those declared as
std_logic_vector) are decomposed into individual nets. The
original definition of your bus ports in the design entity are not
retained through the fitting process.

The vmh2vss software cannot regenerate a timing model complete
with your original bus port declarations, but it does provide two
options for preparing the timing model:

● Using vmh2vss with the -b option (the default) generates the
timing model as an architecture only, without the entity. The
external signals appearing in the design, that were originally
defined as bus ports, will then be represented within the model
architecture using subscript notation compatible with bus port
declarations. By re-using the entity from your source design with
the architecture of the timing model (produced by vmh2vss -b),

Simulating Your Design

Xilinx Synopsys Interface EPLD User Guide 5-11

you can perform timing simulation using the same test bench and
chip interface as used for functional simulation. For example:

vmh2vss scan

● Using vmh2vss with the -t option generates the timing model as
a complete VHDL design. The entity of that design will list the
individual signals that comprise the busses in the original design.
However, the original bus structure is not preserved. This
normally forces you to modify the chip interface in your
functional simulation test bench before using it for timing
simulation. This is because your original test bench interfaces to
the EPLD using bus ports and cannot interface to the timing
model. For example:

vmh2vss -t scan

The vmh2vss software also creates a static timing report which
shows you the calculated timing for the logic paths in your design.
You should review this report (design_name.tim) for satisfactory
timing, before simulation. At this point you may need to rerun the
fitter, specifying a different EPLD speed grade. Also, to achieve the
required timing, you may need to modify your design or apply
attributes to control the mapping of speed-critical paths.

When you are satisfied with your static timing results, you can
proceed to timing simulation.

Timing Simulation
Timing simulation is performed after implementing your design
(using the Xilinx fitnet command), creating the timing model
(using vmh2vss), and reviewing the static timing report.

If you prepared your test bench properly, and used the -b option
(default) of vmh2vss , you can use same test bench for timing
simulation as used for functional simulation. By using the same test
bench you can easily verify that the functionality of the device after
mapping matches the functionality of your source design. You also
eliminate any risk of errors from accidental differences between the
test bench files.

Xilinx Synopsys Interface EPLD User Guide

5-12 XACT Development System

1. Analyze your source design file to re-use the port declarations in
its entity. Enter the following UNIX command:

vhdlan design_name.vhd

For example:

vhdlan scan.vhd

2. Replace the architecture of your source design with the
timing architecture produced by vmh2vss -b :

vhdlan design_name_vss.vhd

For example:

vhdlan scan_vss.vhd

The architecture is replaced in the Synopsys data base by
analyzing the timing model file; you do not need to modify your
design source file.

3. Analyze the test bench file name as used for functional simulation.
Enter the following UNIX command:

vhdlan test_bench_name.vhd

For example:

vhdlan scan_tb.vhd

The simulation data base now contains the test bench design
which interfaces to the chip through your source design entity
read in step 1 but it contains the timing model architecture read in
step 2.

4. Invoke the Synopsys VSS Simulator. Enter the following UNIX
command:

vhdldbx

You are then prompted for the configuration named in the
test_bench_name.vhd file. For example, for the scan design, select
the following:

CFG_SCAN_TB

Before clicking “OK” you must specify the timing backannotation
file information in the Arguments box.

Simulating Your Design

Xilinx Synopsys Interface EPLD User Guide 5-13

All backannotated timing in the .sdf file is applied to various
instances within the design_name_vss.vhd file. However, if you are
simulating with a test bench, you must specify (to the simulator) the
EPLD design instance to which you want to apply the back-
annotated timing. It can then find all the referenced instances.

If you are using vhdldbx you need to specify two parameters:

● The file name of the .sdf backannotation timing file:

-sdf design_name_vss.sdf

For example:

-sdf scan_vss.sdf

● The sdf_top instance in the test bench configuration to which
the backannotated timing is applied:

-sdf_top chip_instance_name

For example:

-sdf_top /scan_tb/UUT

All backannotated timing parameters in the .sdf file are applied
relative to the chip instance.

You can specify these parameters either in the dialog box which
appears after invoking vhdldbx (as shown in Figure 5-5), or on the
UNIX command line as you invoke vhdldbx .

Xilinx Synopsys Interface EPLD User Guide

5-14 XACT Development System

Figure 5-5 Selector Window with Timing Backannotation
Parameters Entered (vhdldbx)

For convenience, you can put all parameters into a command script
file. The command line for the scan design is provided in the
dbx_scan script file in the tutorial directory.

The command line invocation format is:

vhdldbx -sdf design_name_vss.sdf -sdf_top
chip_instance_name configuration_name

For the scan design example, you should enter the following:

vhdldbx -sdf scan_vss.sdf -sdf_top /scan_tb/UUT
CFG_SCAN_TB

Simulating Your Design

Xilinx Synopsys Interface EPLD User Guide 5-15

Now you can run the same simulation vectors for timing simulation
as you ran for functional simulation. However, in timing simulation,
the registers are set to their initial states in response to the active-low
pulse on the MRESET input.

Figure 5-6 Timing Simulation Waveforms — SCAN Design

After a successful timing simulation you are ready to create a device
programming file.

Xilinx Synopsys Interface EPLD User Guide — December, 1994 (0401289 01)

EPLD Architecture

Xilinx
Synopsys
Interface
EPLD User
Guide

X2845

Xilinx Synopsys Interface EPLD User Guide — December, 1994 (0401289 01) A-1

Appendix A

EPLD Architecture

The Xilinx EPLD family uses a simple PAL-like architecture to
provide both high speed and high density in a variety of packages
and configurations. Through a unique Dual-Block architecture, High
Density Function Blocks (FBs) provide high speed and maximum
logic density for implementing complex functions while Fast
Function Blocks (FFBs) provide even higher speed for critical
decoding and ultra-fast state machine applications. For more
information see The Programmable Logic Data Book.

The EPLD architecture consists of multiple Function Blocks and
I/O blocks interconnected by the UIM as shown in Figure A-1.

Figure A-1 EPLD Architecture Block Diagram

Input

Output FFB

I/O
Block

FB

FB

UIM

FB

FB

I/O
Block

FFB Output

X3204

Xilinx Synopsys Interface EPLD User Guide

A-2 XACT Development System

Device Selection
The following table shows the Xilinx EPLD family, grouped by user
application. Use this table to select the best target device for your
design.

Package options and speed grades are always being updated. Check
the latest device data sheets for the most up to date information.

Table A-1 Device Selection Chart

Features
Fast

Functions
Dual Block Arch.

Fast and High Density
High Density

Functions

7318 7336 7354 7372 73108 7236A 7272A
22VI0 Equivalent 2 4 6 8 12 4 8

Macrocells 18 36 54 72 108 36 72

FFBs 2 4 2 2 2 0 0

FBs 0 0 4 6 10 4 8

Flip-Flops 18 36 108 126 198 68 126

Fast Inputs Supported 12 12 12 12 12 0 0

Fast Clock Inputs 2 2 3 3 3 3 2

Fast Output Enab. 2 2 2 2 2 1 0

Fast Clock Enab. 0 0 2 2 2 0 0

1 Pin-to-Pin delay (ns.) 5 5 7 7 7 25 25

1 Clock Frequency (Mhz) 167 167 100 100 80 60 60

2 Signal Pins (max) 38 38 58 74 120 36 72

Speed Grades -5
-7

-5
-7
-10
-12
-15

-7
-10
-12
-15

-7
-10
-12
-15

-7
-10
-12
-15

-16
-20

-16
-20
-25

44 Pin PLCC X X X X
44 Pin CLCC X X X X
44 Pin PQFP X X
68 Pin PLCC X X X
68 Pin CLCC X X X
84 Pin PLCC X X X
84 Pin CLCC X X X
84 Pin PGA X X X
100 Pin PQFP X
144 Pin PGA X
160 Pin PQFP X
225 Pin BGA X

EPLD Architecture

Xilinx Synopsys Interface EPLD User Guide A-3

The Universal Interconnect Matrix
The Universal Interconnect Matrix (UIM) functions as an
unrestricted crossbar switch. It guarantees complete interconnection
of all internal functions and provides constant, short interconnect
delays. It receives inputs from Macrocells, bidirectional I/O pins, and
dedicated input pins and provides 21 outputs to each High-Density
Function Block and 24 outputs to each Fast Function Block. Any UIM
input can drive one or more UIM outputs with the interconnect delay
remaining constant.

When multiple inputs are connected to the same output, this output
produces the logical AND of the input signals. By choosing the
appropriate signal inversions, this AND logic can also implement
wide NAND, OR or NOR functions. This provides an additional level
of logic with no additional delay.

A Macrocell feedback signal that is disabled by the output enable
product term represents a High input to the UIM. Programming
several such Macrocell outputs onto the same UIM output thus
emulates a 3-state bus line. When one of the Macrocell outputs is
enabled, the UIM output assumes its level.

High-Density Function Blocks
Each High Density Function Block contains nine Macrocells which
can be configured for either registered or combinatorial logic. A
detailed Function Block diagram is shown in Figure A-2.

Each FB receives 21 signals and their complements from the UIM and
an additional three inputs from the FastInput (FI) pins.

Note: The XC7272A FB architecture, including the ALU, is slightly
different. See the data sheet for details.

Xilinx Synopsys Interface EPLD User Guide

A-4 XACT Development System

Figure A-2 Function Block Schematic

Shared and Private Product Terms
Each Macrocell contains five private product terms that can be used
as the primary inputs for combinatorial functions implemented in the
Arithmetic Logic Unit (ALU), or as individual Reset, Set, Output-
Enable, and Clock logic functions for the flip-flop. Each Function
Block also provides an additional 12 shared product terms, which are
uncommitted product terms available for any of the nine Macrocells
within the FB.

Four private product terms can be ORed together with up to four
shared product terms to drive the D1 input to the ALU. The D2 input
is driven by the OR of the fifth private product term and up to eight
of the remaining shared product terms. The shared product terms

I/O
(see fig.3)

Clock
Select

Register
Trasparent

Control

Input-Pad
Register/Latch

(optional)

Pin

Feedback
Polarity

Local
Feedback

OE Control

Global
Fast OE

Arithmetic
Carry-Out to Next

Macrocell

Shift-In
from Previous MC

Shift-Out
to Next MC

To 8 More
Macrocells

* OE is forced high when P-term is not used

RESET
SET
OE*

CLOCK

5

ALU

D1

D2

Cin

C out

F
R S

QD

M
U

X

Fast
Clocks

0 1

Arithmetic Carry-In from
Previous Macrocell

1 of 9 Macrocells

Feedback
Enable
Override

Feedback to UIM
Input to UIM

8
4

21
Inputs

from
UIM

3
from
Fast

Input
Pins
(FI)

AND Array

12 Sharable
P-Terms per

Function Block

5 Private
P-Terms per

Macrocell

X1829

EPLD Architecture

Xilinx Synopsys Interface EPLD User Guide A-5

add no logic delay and each shared product term can be connected to
one or all nine Macrocells in the Function Block.

Arithmetic Logic Unit
The versatility of each Macrocell is enhanced through additional
gating and control functions available in the ALU. A detailed block
diagram of the XC7300 and XC7236A ALU is shown in Figure A-3.

The ALU has a logic mode and an arithmetic mode. In logic mode,
the ALU functions as a 2-input function generator using a 4-bit look-
up table that can be programmed to generate any Boolean function
from the D1 and D2 inputs.

The function generator can OR its inputs, widening the OR function
to a maximum of 17 inputs. It can AND them, which means that one
sum-of-products can be used to mask the other. It can also XOR them,
toggling the flip-flop or comparing the two sums of products. Either
or both of the sum-of-product inputs to the ALU can be inverted, and
either or both can be ignored. Therefore, the ALU can implement one
additional layer of logic with no speed penalty.

In arithmetic mode, the ALU can generate the arithmetic sum or
difference of the D1 and D2 inputs. Combined with the carry input
from the next lower Macrocell, the ALU operates as a 1-bit full adder
generating a carry output to the next higher Macrocell. The dedicated
carry chain propagates between adjacent Macrocells and crosses the
boundaries between Function Blocks providing very fast arithmetic
operation with no additional resource requirements.

Xilinx Synopsys Interface EPLD User Guide

A-6 XACT Development System

Figure A-3 ALU Schematic

Carry Lookahead (7300 Family Only)
Each Function Block provides a carry lookahead generator capable of
anticipating the carry across all nine Macrocells. This reduces the
ripple-carry delay of wide arithmetic functions such as add, subtract,
and magnitude compare to that of the first nine bits, plus the carry
lookahead delay of the higher-order Function Blocks.

Macrocell Flip-Flop
The ALU output drives the input of a programmable D-type flip-flop.
The flip-flop is triggered by the rising edge of the clock input, and it
can be configured as transparent, making the Q output identical to the
D input, independent of the clock.

The Macrocell clock source is programmable and can be one of the
private product terms or one of the global FastCLK signals. The
FastCLK signals are distributed to every Macrocell flip-flop with
short delay and minimal skew. The asynchronous Set and Reset
product terms override the clocked operation. If both asynchronous
inputs are active simultaneously, Reset overrides Set.

In addition to driving the chip output buffer, the Macrocell output is
routed back to the UIM. One private product term can be configured
to control the Output Enable of the output buffer and the feedback to

X3206Carry Input

D1

D2

Function
Generator To Macrocell

Flip-Flop

D1
Sum-of-

Products

D2
Sum-of-

Products

Arithmetic
Carry Control

Carry Output

0

1

Arithmetic Logic Unit (ALU)

EPLD Architecture

Xilinx Synopsys Interface EPLD User Guide A-7

the UIM. If it is configured to control UIM feedback, the Output
Enable product term forces the UIM feedback control input High
when the Macrocell output is disabled.

Fast Function Blocks
Each Fast Function Block receives 24 signals and their complements
from the UIM. The 24 inputs can be individually selected from the
UIM, the 12 FastInput pins, or the nine Macrocell feedbacks from the
FFB. The programmable AND array in each FFB generates 45 product
terms to drive the nine Macrocells, which can be configured for
registered or combinatorial logic. The FFB logic is shown in
Figure A-4.

Five product terms from the programmable AND array are allocated
to each Macrocell. Four of these product terms are ORed together and
drive the input of a programmable D-type flip-flop. The fifth product
term drives the asynchronous active-high Set Input to the Macrocell
flip-flop. The flip-flop can be configured as transparent to produce a
combinatorial output.

Xilinx Synopsys Interface EPLD User Guide

A-8 XACT Development System

Figure A-4 Fast Function Block Schematic for 7354, 7372, 73108,
and 73144

The programmable clock source is one of two global FastCLK signals
(FCLK0 or FCLK1) that are distributed with short delay and minimal
skew over the entire chip.

The FFB Macrocells drive chip outputs directly through 3-state
buffers. Each output buffer can be permanently enabled, permanently
disabled, or controlled by one of two dedicated Fast Output Enable
inputs. The Macrocell output is also routed back to the FFB and to the
UIM.The XC7300 family provides a product term expansion feature
that increases product-term flexibility without disabling Macrocell
outputs. Product term expansion transfers product terms in incre-
ments of four product terms from one Macrocell to the next.

Pin

OE Control

Global
Fast OE

Sum-of-Products
to

Succeeding Macrocell

5

QD

Fast
Clocks

0 1
1 of 9 Macrocells

Feedback
to UIM

24
Inputs from

UIM

AND Array

5 Private
P-Terms per

Macrocell

X3307

Sum-of-Products
from

Previous
Macrocell

P-Term
Assignment

Control

12 from
Fast

Input Pins 12

9
9 from FFB

Macrocell
Feedback

S

3

0

1

0 1

Register
Transparent

Control

EPLD Architecture

Xilinx Synopsys Interface EPLD User Guide A-9

Product Term Expansion
Complex logic functions requiring up to 36 product terms can be
implemented using this method. When product terms are assigned to
adjacent Macrocells, the product term normally dedicated to the Set
function becomes the D-input to the Macrocell register. Thus, the
Macrocell is still usable while product terms are transferred to
adjacent Macrocells.

Figure A-5 FFB Product Term Expansion

X3205

From Previous
Macrocell

Single-Product Term Assignment

Eight-Product Term Assignment

4
D Q

S

4

D Q

Xilinx Synopsys Interface EPLD User Guide

A-10 XACT Development System

XC7336 and XC7318 Fast Function Blocks
The Fast Function Blocks within the XC7318 and XC7336 are slightly
different from those in the rest of the Xilinx EPLD family as shown in
Figure A-6.

Figure A-6 Fast Function Block Schematic for 7318 and 7336

Input/Output Blocks
I/O blocks provide 3-state outputs and registered, latched, or direct
inputs. The I/O block registers can also implement logic equations
and therefore decrease macrocell resource requirements.

Macrocells drive chip outputs directly through 3-state output buffers,
each individually controlled by the Output Enable product term. An
additional configuration option allows the output to be disabled
permanently. Two dedicated Fast Output Enable inputs can also be

I/O
Pin

OE Control

Sum-of-Products to
Succeeding Macrocell

5

QD/T

Fast
Clocks

0 1
1 of 9 Macrocells

Feedback
to UIM

24
Inputs from

UIM

AND Array

5 Private
P-Terms per

Macrocell

X5218

Sum-of-Products
from

Previous
Macrocell

P-Term
Assignment

Control

12 from Fast
Input Pins 12

9
9 from FFB

Macrocell
Feedback

S/R

3

0

1

Register
Transparent

Control

Output
Polarity

2 Global
Fast OE

2

Pin Feedback
to UIM

I/O Block

EPLD Architecture

Xilinx Synopsys Interface EPLD User Guide A-11

configured to control any of the chip outputs instead of, or in
conjunction with, the individual Output Enable product term. See
Figure A-7 for the I/O block schematic diagram.

Each signal input to the chip is connected to a programmable input
structure that can be configured as direct, latched, or registered. The
latch and flip-flop can use the FastCLK signals as latch enable or
clock. Latches are transparent when FastCLK is High, and flip-flops
clock on the rising edge of FastCLK.

The flip-flop includes an active-low clock enable, which when High,
holds the present state of the flip-flop and inhibits response to the
input signal. The clock enable source is one of two global Clock
Enable signals (CKEN0 and CKEN1). An additional configuration
option is polarity inversion for each input signal.

Xilinx Synopsys Interface EPLD User Guide

A-12 XACT Development System

Figure A-7 Input/Output Block Schematic

The CKEN0 and CKEN1 inputs are only available in XC7300 family
devices. Also, the programmable input polarity feature is not
available in the XC7272A.

Feedback
to UIM

Macrocell

OE P-Term

From
Macrocell
Register

Pin

Fast OE0

I/O. FCLK/O, CKEN/O
and FOE/O
Pins Only

Q D

CLK

Q D

EN

FastCLK1

FastCLK2

To UIM

To Function Block
AND-Array (on

Fast Input
Pins Only)

Input and
I/O Pins Only

Input
Polarity

Output
Polarity

Pin
Driver

M
U

X
M

U
X

Global
Select

X2832

FastCLK0

CKEN0

CKEN1

Q D

CLK

EN

Fast OE1

Xilinx Synopsys Interface EPLD User Guide — December, 1994 (0401289 01)

Library Component
Specifications

Xilinx
Synopsys
Interface
EPLD User
Guide

X2845

Xilinx Synopsys Interface EPLD User Guide — December, 1994 (0401289 01) B-1

Appendix B

Library Component Specifications

This appendix describes each of the Xilinx library components which
are summarized in the following table.

Used with These Devices

Component
Name

Component Description Scalable Inferable 7272 7236
7318
7336

7354
7372

73108

ACC Adder/Subtracter/Accumulator X X X
ADD Adder X X X X X
ADSU Adder/Subtracter X X X X X
ADSUR Adder/Subtracter with Registered Outputs X X X
AND2-AND8 AND Gates X X X X X
BUF Buffer X X X X
BUFCE Clock Enable Inp. Buff. for Input Pad Reg. X
BUFE 3-State Buffer X X X X X
BUFFOE Fast Output Enable Input Buffer X X X
BUFG FastCLK Input Buffer X X X X
CBX1 Up/Down Counter with Asynchronous

Clear
X X X X X

CBX2 Up/Down Counter with Asynchronous
Reset

X X X X X

COMPEQ Equal-To Comparator X X X X X
COMPLE_TC Less-Than-Or-Equal Comparator, 2’s Comp. X X X X X
COMPLE_US Less-Than-Or-Equal Comparator, Unsigned X X X X X
COMPLT_TC Less-Than Comparator, 2’s Complement X X X X X
COMPLT_US Less-Than Comparator, Unsigned X X X X X
COMPNE Not-Equal Comparator X X X X X
DEC Decrementor X X X X X X
FDCP Edge-Triggered D-Type Flip-Flop with

Asynchronous Clear and Preset
X X X X X

FDCPE Edge-Triggered D-Type Flip-Flop with
Clock Enable, Async. Clear and Preset

X X X

FDPC Edge-Triggered D-Type Flip-Flop with
Asynchronous Clear and Preset

X X X X X

IBUF Input Buffer X X X X X
IFD Input Pad Register X X X

Xilinx Synopsys Interface EPLD User Guide

B-2 XACT Development System

IFDX1 Input Pad Register with Clock Enable X
ILD Input Pad Latch X X X
INC Incrementer X X X X X X
INV Inverter X X X X X
IOBUFE Bi-Directional I/O Buffer X X X X
IOBUFEX1 Bi-Directional I/O Buffer X X X
LD D-Type Latch X X X
OBUF Output Buffer X X X X X
OBUFE 3-State Output Buffer X X X X X
OBUFEX1 3-State Output Buffer with FOE Enable X X X
OR2-OR8 OR Gates X X X X X
SUBT Subtracter X X X X X
XOR2-XOR8 XOR Gates X X X X X

Used with These Devices

Component
Name

Component Description Scalable Inferable 7272 7236
7318
7336

7354
7372

73108

Library Component Specifications

Xilinx Synopsys Interface EPLD User Guide B-3

ACC
ACC is an adder/subtracter/accumulator.

Inferencing
The synthesizer does not use this component by inference.

Component Instantiation
U1: ACC generic map (WIDTH => wordlength)

port map (Q=>output, B=>in_operand,
C=>clock, CE=>clock_en, R=>sync_reset,
L=>load_en, SUB=>add_sub_ctl);

Truth Table and Logic Symbol

* The initial state is “0”.

R L CE C SUB Q*

1 X X ↑ X 0

0 0 0 X X Q

0 0 1 ↑ 0 Q+B

0 0 1 ↑ 1 Q-B

0 1 X ↑ X B

L

R

CE
SUB

B(width-1:0)

C

Q(width-1:0)

Q + B

Xilinx Synopsys Interface EPLD User Guide

B-4 XACT Development System

ADD
ADD is an adder and is bound to the “+” operator.

Inferencing
sum_signed <= in1_signed + in2_signed;

Component Instantiation
U1: ADD generic map (WIDTH => wordlength)

port map (S=>sum, A=>in1, B=>in2);

Truth Table and Logic Symbol

A B S

A B A+B

S(width-1:0)

A(width-1:0)

B(width-1:0)
A + B

Library Component Specifications

Xilinx Synopsys Interface EPLD User Guide B-5

ADSU
ADSU is an adder/subtracter. ADSU is bound to the “+” and “-”
operators.

Inferencing
if (sub_ctl = ’0’) then

sum_signed <= in1_signed + in2_signed;
else

sum_signed <= in1_signed - in2_signed;
end if;

Component Instantiation
U1: ADSU generic map (WIDTH => wordlength)

port map (S=>output, A=>in1, B=>in2,
SUB=>sub_ctl);

Truth Table and Logic Symbol

SUB S

0 A+B

1 A-B

S(width-1:0)

A(width-1:0)

B(width-1:0)

SUB

A + B

Xilinx Synopsys Interface EPLD User Guide

B-6 XACT Development System

ADSUR
ADSUR is a registered adder/subtracter.

Inferencing
The synthesizer does not use this component by inference.

Component Instantiation
U1: ADSUR generic map (WIDTH => wordlength)

port map (Q=>output, A=>in1, B=>in2,
C=>clock, CE=>clock_en, R=>sync_reset,
SUB=>add_sub_ctl);

Truth Table and Logic Symbol

* The initial state is “0”.

R CE C SUB Q*

1 X ↑ X 0

0 0 X X Q

0 1 ↑ 0 A+B

0 1 ↑ 1 A-B

R

SUB

C

A(width-1:0)

Q(width-1:0)
B(width-1:0)

A + B

CE

Library Component Specifications

Xilinx Synopsys Interface EPLD User Guide B-7

AND2 — AND8
AND2 through AND8 are AND gates with 2 to 8 inputs.

Inferencing
The synthesizer uses these components when creating functions that
require AND gates.

Component Instantiation
U1: AND2 port map (O=>out,I1=>in2,I0=>in1);

Truth Table and Logic Symbol

I0 I1 O

0 0 0

0 1 0

1 0 0

1 1 1

AND8

AND7

AND6

AND5

AND4

AND3

AND2

I0
I1

I2
I3

I4
I5

I6
I7

I0
I1

I2
I3

I4
I5

I6

I0
I1

I2
I3

I4
I5

I0
I1

I2
I3

I4

I0
I1

I2
I3

I0
I1

I2

I0
I1

O

O

O

O

O

O
O

Xilinx Synopsys Interface EPLD User Guide

B-8 XACT Development System

BUF
BUFis a buffer.

Inferencing
The synthesizer does not use this component by inference.

Component Instantiation
U1: BUF port map (O=>out_port, I=>in_port);

Truth Table and Logic Symbol

I O

0 0

1 1

I O

Library Component Specifications

Xilinx Synopsys Interface EPLD User Guide B-9

BUFCE
BUFCE is an input buffer used to drive the global CE signal (Chip
Enable) for EPLD input pad registers. BUFCE may only be used to
drive the CE input of IFDX1 components.

Inferencing
The synthesizer does not use this component by inference.

Component Instantiation
U1: BUFCE port map (O=>global_ce, I=>in_port);

Truth Table and Logic Symbol

I O

0 0

1 1

I O

Xilinx Synopsys Interface EPLD User Guide

B-10 XACT Development System

BUFE
BUFE is a non-inverting 3-state buffer.

Inferencing
The synthesizer uses these components when creating functions that
require 3-state buffers that drive internal signals.

Component Instantiation
U1: BUFE port map (O=>ts_out, I=>inp, E=>enable);

Truth Table and Logic Symbol

I E O

X 0 Z

0 1 0

1 1 1

I

E

O

Library Component Specifications

Xilinx Synopsys Interface EPLD User Guide B-11

BUFFOE
BUFFOE is a an input buffer used to drive the global FOE signal (Fast
Output Enable). BUFFOE may only be used to drive the E input of
OBUFEX1 and IOBUFEX1 components

Inferencing
The synthesizer does not use this component by inference.

Component Instantiation
U1: BUFFOE port map (O=>global_foe, I=>in_port);

Truth Table and Logic Symbol

I O

0 0

1 1

I O

Xilinx Synopsys Interface EPLD User Guide

B-12 XACT Development System

BUFG
BUFG is an input buffer used to drive the Global FastCLK signal.

Note: BUFG can only drive register clock inputs (including IFDX1)
and the G input of ILD components. It cannot drive the LD
component.

Inferencing
The synthesizer does not use this component by inference.

Component Instantiation
U1: BUFG port map (O=>global_clk, I=>in_port);

Truth Table and Logic Symbol

I O

0 0

1 1

I O

Library Component Specifications

Xilinx Synopsys Interface EPLD User Guide B-13

CBX1
CBX1 is a loadable up/down counter with asynchronous clear.

Inferencing
The synthesizer does not use this component by inference.

Component Instantiation
U1: CBX1 generic map (WIDTH => wordlength)

port map (Q=>output, TCU => all_ones, TCD
=> all_zeros, D=>load_data, C=>clock,

CLR=>async_clr, L=>load_ctl,
CEU=>count_up_ctl, CED=>count_down_ctl);

Truth Table and Logic Symbol

* The initial state is “0”.

CLR L CEU CED C TCU TCD Q*

1 X X X X 0 1 0

0 1 X X ↑ D=111... D=000... D

0 0 0 0 X Q=111... Q=000... Q

0 0 1 0 ↑ Q=111... Q=000... Q+1

0 0 0 1 ↑ Q=111... Q=000... Q-1

0 0 1 1 ↑ ILLEGAL CONDITION

D(width-1:0)

C

CEU
CED

L

CLR

Q(width-1:0)

Xilinx Synopsys Interface EPLD User Guide

B-14 XACT Development System

CBX2
CBX2 is a loadable up/down counter with synchronous reset.

Inferencing
The synthesizer does not use this component by inference.

Component Instantiation
U1: CBX2 generic map (WIDTH => wordlength)

port map (Q=>output, TCU => all_ones, TCD =>
all_zeros, D=>load_data, C=>clock,
R=>sync_reset, L=>load_ctl,
CEU=>count_up_ctl, CED=>count_down_ctl);

Truth Table and Logic Symbol

* The initial state is “0”.

R L CEU CED C TCU TCD Q*

1 X X X ↑ 0 1 0

0 1 X X ↑ D=11... D=00... D

0 0 0 0 X Q=11... Q=00... Q

0 0 1 0 ↑ Q=11... Q=00... Q+1

0 0 0 1 ↑ Q=11... Q=00... Q-1

0 0 1 1 ↑ ILLEGAL CONDITION

D(width-1:0)

C

CEU
CED

L

R

Q(width-1:0)

Library Component Specifications

Xilinx Synopsys Interface EPLD User Guide B-15

COMPEQ
COMPEQ is an equal-to comparator.

Inferencing
The synthesizer does not use this component by inference.

Component Instantiation
U1: COMPEQ generic map (WIDTH => wordlength)

port map (EQ=>comparison, A=>in1, B=>in2);

Truth Table and Logic Symbol

Condition EQ

A<B 0

A=B 1

A>B 0

EQ

A(width-1:0)

B(width-1:0)
A = B

Xilinx Synopsys Interface EPLD User Guide

B-16 XACT Development System

COMPLE_TC
COMPLE_US

COMPLE_US is an unsigned binary less-than-or-equal-to comparator.
COMPLE_TC is a two’s complement less-than-or-equal-to comparator.
These components are bound to the “<=“ and “>=” operators.

Inferencing
comparison <= (in1_signed <= in2_signed);

Component Instantiation
U1: COMPLE_US generic map (WIDTH => wordlength)

port map (LE=>comparison, A=>in1, B=>in2);

U1: COMPLE_TC generic map (WIDTH => wordlength)
port map (LE=>comparison, A=>in1, B=>in2);

Truth Table and Logic Symbol

Condition LE

A<B 1

A=B 1

A>B 0

LE

A(width-1:0)

B(width-1:0)
A < B

Library Component Specifications

Xilinx Synopsys Interface EPLD User Guide B-17

COMPLT_TC
COMPLT_US

COMPLT_US is an unsigned binary less-than comparator. COMPLT_TC
is a two’s complement less-than comparator. These components are
bound to the “<“ and “>” operators.

Inferencing
comparison <= (in1_unsigned < in2_unsigned);

Component Instantiation
U1: COMPLT_US generic map (WIDTH => wordlength)

port map (LT=>comparison, A=>in1, B=>in2);

U1: COMPLT_TC generic map (WIDTH => wordlength)
port map (LT=>comparison, A=>in1, B=>in2);

Truth Table and Logic Symbol

Condition LT

A<B 1

A=B 0

A>B 0

LT

A(width-1:0)

B(width-1:0)
A < B

Xilinx Synopsys Interface EPLD User Guide

B-18 XACT Development System

COMPNE
COMPNEis a not-equal-to comparator.

Inferencing
The synthesizer does not use this component by inference.

Component Instantiation
U1: COMPNE generic map (WIDTH => wordlength)

port map (NE=>comparison, A=>in1, B=>in2);

Truth Table and Logic Symbol

Condition NE

A<B 1

A=B 0

A>B 1

NE

A(width-1:0)

B(width-1:0)
A /= B

Library Component Specifications

Xilinx Synopsys Interface EPLD User Guide B-19

DEC
DEC is an decrementor. It is bound to the “-1” operation.

Inferencing
sum_signed <= in_signed - 1;

Component Instantiation
U1: DEC generic map (WIDTH => wordlength)

port map (S=>sum, A=>in);

Truth Table and Logic Symbol

A S

A A-1

I - 1
A(width-1:0) S(width-1:0)

Xilinx Synopsys Interface EPLD User Guide

B-20 XACT Development System

FDCP
FDPC is an edge-triggered D-type flip-flop with preset and clear.

Inferencing
The synthesizer uses this component for all functions that require D-
type registers or latches.

Component Instantiation
U1: FDCP port map (Q=>out, QN=>out_inv, D=>data,

C=>clock, CLR=>async_clr, PRE=>async_set);

Truth Table and Logic Symbol

* The initial state is “0”.

CLR PRE C Q* Qn

1 X X 0 1

0 1 X 1 0

0 0 ↑ D D

PRE

CLR

C

D Q

Qn

Library Component Specifications

Xilinx Synopsys Interface EPLD User Guide B-21

FDCPE
FDCPE is an edge-triggered D-type flip-flop with preset, clear, and
clock enable.

Inferencing
The synthesizer does not use this component by inference.

Component Instantiation
U1: FDCPE port map (Q=>out, D=>in, C=>clock,

CE=>clock_enab, CLR=>async_clr,
PRE=>async_set);

Truth Table and Logic Symbol

* The initial state is “0”.

CLR PRE CE C Q*

1 X X X 0

0 1 X X 1

0 0 0 X Q

0 0 1 ↑ D

PRE

CLR

C

D Q
CE

Xilinx Synopsys Interface EPLD User Guide

B-22 XACT Development System

FDPC
FDPC is an edge-triggered D-type flip-flop with preset and clear.

Inferencing
The synthesizer uses this component for all functions that require
D-type registers.

Component Instantiation
U1: FDPC port map (Q=>out, QN=>out_inv, D=>data,

C=>clock, CLR=>async_clr, PRE=>async_set);

Truth Table and Logic Symbol

* The initial state is “0”.

CLR PRE C Q* Qn

X 1 X 1 0

1 0 X 0 1

0 0 ↑ D D

PRE

CLR

C

D Q

Qn

Library Component Specifications

Xilinx Synopsys Interface EPLD User Guide B-23

IBUF
IBUF is an input buffer.

Inferencing
The synthesizer uses these components to receive inputs from device
pins.

Component Instantiation
U1: IBUF port map (O=>received_signal,

I=>in_port);

Truth Table and Logic Symbol

I O

0 0

1 1

I O

Xilinx Synopsys Interface EPLD User Guide

B-24 XACT Development System

IFD
IFD is an edge-triggered D-type flip-flop. The C input must be driven
by a BUFG component. IFD is only available for use in EPLD Input
Blocks.

Inferencing
The synthesizer does not use this component by inference.

Component Instantiation
U1: IFD port map (Q=>output, D=>in_port,

C=>global_clock);

Truth Table and Logic Symbol

* The initial state is “0”.

C Q*

X Q

↑ D

C

D Q

Library Component Specifications

Xilinx Synopsys Interface EPLD User Guide B-25

IFDX1
IFDX1 is an edge-triggered D-type flip-flop with active-low clock
enable. The C input must be driven by a BUFG component. The CE
input, if used, must be driven by a BUFCE component. IFDX1 is only
available for use in EPLD Input Blocks.

Inferencing
The synthesizer does not use this component by inference.

Component Instantiation
U1: IFDX1 port map (Q=>output, D=>in_port,

C=>global_clock, CE=>global_ce);

Truth Table and Logic Symbol

* The initial state is “0”.

CE C Q*

1 X Q

0 ↑ D

C

D Q
CE

Xilinx Synopsys Interface EPLD User Guide

B-26 XACT Development System

ILD
ILD is a D-type flip-flop available in the EPLD Input Block. The G
input must be driven by a BUFG buffer.

Inferencing
The synthesizer does not use this component by inference.

Component Instantiation
U1: ILD port map (Q=>output, D=>in_port,

G=>global_clock);

Truth Table and Logic Symbol

* The initial state is “0”.

G Q*

0 Q

1 D

G

D Q

Library Component Specifications

Xilinx Synopsys Interface EPLD User Guide B-27

INC
INC is an Incrementer. It is bound to the “+1” operator.

Inferencing
sum_signed <= in_signed + 1;

Component Instantiation
U1: INC generic map (WIDTH => wordlength)

port map (S=>sum, A=>in);

Truth Table and Logic Symbol

A S

A A+1

I + 1
A(width-1:0) S(width-1:0)

Xilinx Synopsys Interface EPLD User Guide

B-28 XACT Development System

INV
INV is an inverter.

Inferencing
The synthesizer uses this component for signal inversion.

Component Instantiation
U1: INV port map (O=>not_in1, I=>in1);

Truth Table and Logic Symbol

I O

0 1

1 0

I O

Library Component Specifications

Xilinx Synopsys Interface EPLD User Guide B-29

IOBUFE
IOBUFE is a non-inverting 3-state I/O buffer.

Inferencing
The synthesizer uses these components to create bidirectional I/O.

Component Instantiation
U1: IOBUFE port map (O=>received_signal,

IO=>inout_port, I=>driving_signal,
E=>output_enable);

Truth Table and Logic Symbol

I E IO

X 0 Z

0 1 0

1 1 1

I

E

IO

O

Xilinx Synopsys Interface EPLD User Guide

B-30 XACT Development System

IOBUFEX1
IOBUFEX1 is a bidirectional I/O buffer that uses the EPLD FOE
enable signal. The E input must be driven by a BUFFOE buffer.

Inferencing
The synthesizer does not use this component by inference.

Component Instantiation
U1: IOBUFEX1 port map (O=>received_signal,

IO=>inout_port, I=>driving_signal,
E=>global_enable);

Truth Table and Logic Symbol

I E IO O

X 0 Z Z

0 1 0 0

1 1 1 1

I

E

IO

O

Library Component Specifications

Xilinx Synopsys Interface EPLD User Guide B-31

LD
LD is a D-type latch. The G input of LD cannot be driven by a BUFG
buffer.

Inferencing
The synthesizer does not use this component by inference. Instead, it
will infer FDCP cells to implement transparent latches

Component Instantiation
U1: LD port map (Q=>out, D=>data,

G=>latch_enable);

Truth Table and Logic Symbol

* The initial state is “0”.

G Q*

0 Q

1 D

G

D Q

Xilinx Synopsys Interface EPLD User Guide

B-32 XACT Development System

OBUF
OBUF is an output buffer.

Inferencing
The synthesizer uses this component when creating external outputs
to device pins.

Component Instantiation
U1: OBUF port map (O=>out_port,

I=>driving_signal);

Truth Table and Logic Symbol

I O

0 0

1 1

Z Z

I O

Library Component Specifications

Xilinx Synopsys Interface EPLD User Guide B-33

OBUFE
OBUFE is a 3-state output buffer. (macro of BUFE and OBUF)

Inferencing
The synthesizer uses this component when creating 3-state external
outputs which connect to device pins.

Component Instantiation
U1: OBUF port map (O=>out_port,

I=>driving_signal, E=enable);

Truth Table and Logic Symbol

I E O

X 0 Z

0 1 0

1 1 1

I O

E

Xilinx Synopsys Interface EPLD User Guide

B-34 XACT Development System

OBUFEX1
OBUFEX1 is a 3-state output buffer that uses the EPLD FOE enable
signal. The E input must be driven by a BUFFOE buffer.

Inferencing
The synthesizer does not use this component by inference.

Component Instantiation
U1: OBUFEX1 port map (O=>out_port,

I=>driving_signal, E=>global_foe);

Truth Table and Logic Symbol

I E O

X 0 Z

0 1 0

1 1 1

I

E

O

Library Component Specifications

Xilinx Synopsys Interface EPLD User Guide B-35

OR2 — OR8
OR2 through OR8are OR gates with 2 to 8 inputs.

Inferencing
The synthesizer uses these components when creating functions that
require OR gates.

Component Instantiation
U1: OR2 port map (O=>out, I1=>in2, I0=>in1);

Truth Table and Logic Symbol

I0 I1 O

0 0 0

0 1 1

1 0 1

1 1 1

I0
I1

I2
I3

I4
I5

I6
I7

I0
I1

I2
I3

I4
I5

I6

I0
I1

I2
I3

I4
I5

I0
I1

I2
I3

I4

I0
I1

I2
I3

I0
I1

I2

I0
I1

OR8

OR7

OR6

OR5

OR4

OR3

OR2

O

O

O
O

O

O

O

Xilinx Synopsys Interface EPLD User Guide

B-36 XACT Development System

SUBT
SUBT is a subtracter and is bound to the “-” operator.

Inferencing
diff_signed <= in1_signed - in2_signed;

Component Instantiation
U1: SUBT generic map (WIDTH => wordlength)

port map (S=>diff, A=>in1, B=>in2);

Truth Table and Logic Symbol

A B S

A B A-B

S(width-1:0)

A(width-1:0)

B(width-1:0)
A-B

Library Component Specifications

Xilinx Synopsys Interface EPLD User Guide B-37

XOR2 — XOR8
XOR2 through XOR8 are XOR gates with 2 to 8 inputs.

Inferencing
The synthesizer uses these components when creating functions that
require XOR gates.

Component Instantiation
U1: XOR2 port map (O=>out, I1=>in2, I0=>in1);

Truth Table and Logic Symbol

I0 I1 O

0 0 0

0 1 1

1 0 1

1 1 0

I0
I1

I2
I3

I4
I5

I6
I7

I0
I1

I2
I3

I4
I5

I6

I0
I1

I2
I3

I4
I5

I0
I1

I2
I3

I4

I0
I1

I2
I3

I0
I1

I2

I0
I1

XOR8

XOR7

XOR6

XOR5

XOR4

XOR3

XOR2

O

O

O
O

O

O

O

Xilinx Synopsys Interface EPLD User Guide

B-38 XACT Development System

Xilinx Synopsys Interface EPLD User Guide — December, 1994 (0401289 01)

Attributes

Xilinx
Synopsys
Interface
EPLD User
Guide

X2845

Xilinx Synopsys Interface EPLD User Guide — December, 1994 (0401289 01) C-1

Appendix C

Attributes

Attributes are used to control how the software uses the architecture
specific features of the XC7000 EPLDs. See the device data sheets for
more information about these device features.

Global Attributes
Global attributes are applied by instantiating the following
components. These components have no ports.

LOWPWR
This attribute controls the macrocell power usage. If the LOWPWR
attribute is specified it indicates that all macrocells have low power
operation. If LOWPWR is not specified, the macrocells have standard
power operation.

To specify low power operation for all macrocells, instantiate the
LOWPWR component as follows:

U1: LOWPWR;

where U1 is any instance name.

MRINPUT
This attribute controls the use of the Master Reset pin on the XC7354
and XC7336 devices. If the MRINPUT attribute is specified it indicates
that the pin is used as a logic input. If MRINPUT is not specified, the
pin is used as the Master Reset input.

Xilinx Synopsys Interface EPLD User Guide

C-2 XACT Development System

To specify that the Master Reset pin is used as a logic input,
instantiate the MRINPUT component as follows:

U1: MRINPUT;

where U1 is any instance name.

NO_FOE
This attribute controls the automatic use of global Fast Output Enable
inputs. If the NO_FOE attribute is specified, it indicates that the
software will not automatically assign 3-state control inputs to the
global FOE inputs. If NO_FOE is not specified, the software will assign
the 3-state control signals in your design to the global FOE inputs of
the device, if possible.

To specify that no 3-state control signals will automatically be
assigned to the global FOE inputs, instantiate the NO_FOE component
as follows:

U1: NO_FOE;

where U1 is any instance name.

NO_FCLK
This attribute controls the automatic use of global FastClock inputs. If
the NO_FCLK attribute is specified, it indicates that the software will
not automatically assign clock signals to the global FastClock inputs.
If NO_FCLK is not specified, the software will assign clock signals in
your design to the dedicated FastCLK inputs of the device, if
possible.

To specify that no clock signals will automatically be assigned to the
global FastClock nets, instantiate the NO_FCLK component as follows:

U1: NO_FCLK;

where U1 is any instance name.

NO_IFD
This attribute controls the automatic usage of input pad registers. If
the NO_IFD attribute is specified, it indicates that the software will
not automatically use the registers in the input pads. If NO_IFD is not
specified, the software will assign registers in your design to the

Attributes

Xilinx Synopsys Interface EPLD User Guide C-3

input pads whenever possible, to reduce macrocell resource
requirements.

To specify that registers will not be automatically placed into the
input pads, instantiate the NO_IFD component as follows:

U1: NO_IFD;

where U1 is any instance name.

PRELOAD
This attribute controls the use of default initial state values for
registers in your design. If PRELOAD is specified, the software will
use the default initial states for each register as shown in the library
specifications. If the PRELOAD attribute is not specified, it indicates
that the software may change the initial states of registers (unless
explicitly specified) if the change allows a more efficient
implementation.

To prevent the software from changing the initial state of registers in
your design, instantiate the PRELOAD component as follows:

U1: PRELOAD;

where U1 is any instance name.

Signal Attributes
Signal attributes are applied by instantiating the following
components. Each of these components has one port (input) which
you connect to the signal that receives the attribute.

F
This attribute indicates either a Fast Function Block output signal or a
Fast Input signal. Use this attribute to assign specific functions to
EPLD Fast Function Blocks, which provide the highest performance.

To specify that a signal is driven from a Fast Function Block, use:

U1: F port map (signal_name);

Xilinx Synopsys Interface EPLD User Guide

C-4 XACT Development System

H
This attribute indicates a High Density Function Block output signal.
Use this attribute to assign specific functions to High Density
Function Blocks, which provide the most macrocell resources.

To specify that a signal is driven from a High Density Function Block,
use:

U1: H port map (signal_name);

OPT_OFF
This attribute inhibits the software from optimizing the cell that
drives the connected signal.

To specify that a signal is to remain as a macrocell output, use:

U1: OPT_OFF port map (signal_name);

OPT_UIM
This attribute forces the software to place the specified AND gate into
the UIM. It can only be connected to a signal that originates from an
AND gate.

To specify that an AND gate is to be implemented in the UIM,
instantiate the OPT_UIM component as follows:

U1: UIM_OPT port map (signal_name);

Note: The optimization of AND gates into the UIM is done
automatically by the fitter whenever possible.

SLEWRATE
This attribute controls the output buffer slew rate. The options are:

● HIGH — Slows the output signal transition time and thus reduces
internal ground-bounce noise.

● NONE — Speeds up the output signal transition time. (The
default is for fast transition times.)

The output buffers (IBUF, OBUF, and IOBUFE) default to fast
transition outputs. However, in order to reduce possible ground-
bounce problems, it is recommended that you use the fast transition

Attributes

Xilinx Synopsys Interface EPLD User Guide C-5

default only for those output signals that require maximum speed.

To set all outputs for slow slew rate, use the following command:

set_pad_type -slewrate HIGH all_outputs ()

Use this command after specifying the set_port_is_pad
command and before implementing the insert_pads command.

After you have globally changed all outputs to the HIGH option (for
slow signal transition) you can set any individual output for fast
signal transition by using the following command:

set_pad_type -slewrate NONE port_name

If you need fast transition time on most of your outputs, you can
leave the default slew rate as NONE and slow only the selected
outputs, by using the following command:

set_pad_type -slewrate HIGH port_name

Note: Synopsys and Xilinx define the slew rate using opposite terms.
The Synopsys HIGH attribute translates to a SLOW Xilinx slew rate.
The Synopsys NONE attribute translates to a FAST Xilinx slew rate.

Synopsys Attributes
The following Synopsys attributes are supported for Xilinx EPLD
designs when using FPGA Compiler. See the Synopsys Design
Compiler manual for more information on using the
set_attribute command.

Part Type
This attribute is used to specify the target EPLD device type for
FPGA Compiler only. (If you are using Design Compiler, you must
specify the part type by using the -p option of the syn2epld
command.)

The format is:

set_attribute design_name part -type string
dddd-ssppnn

where:

● design_name = the name of the top-level design entity.

Xilinx Synopsys Interface EPLD User Guide

C-6 XACT Development System

● dddd = basic device type.

● ss = speed grade.

● pp = package type.

● nn = number of package pins.

The currently supported device types are shown in the “EPLD
Architecture” appendix. For example:

set_attribute SCAN part -type string 7354-10PC44

Pin Assignment
This attribute is used to specify the pins on which to place output
signals.

The format is:

set_attribute port_name pad_location -type
string pin_number

where:

● port_name = The name of the top-level design port.

The format of pin_number is:

● Pnn for PC and PQ packages, where nn is the pin number.

● rc for PG and BG packages, where rc are the row letter and column
number.

For example, for PC and PQ packages:

set_attribute RDY pad_location -type string P23

For example, for PG and BG packages:

set_attribute RDY pad_location -type string K13

Note: The pin assignment attribute overrides previously saved
pinouts when running fitnet with the -f (pin freeze) option.

Register Initial State
This attribute is used to specify the initial (power up) state of registers
in your design.

Attributes

Xilinx Synopsys Interface EPLD User Guide C-7

The format is:

set_attribute instance_name
fpga_xilinx_init_state -type string state

where:

● instance_name is the name of a register instance

● state is either S (set) or R (reset)

For example:

set_attribute “QOUT_reg<2>”
fpga_xilinx_init_state -type string S

You can also use the Synopsys find function to specify a set of
instance names using wildcards, for example:

set_attribute find (cell QOUT*)
fpga_xilinx_init_state -type string S

Xilinx Synopsys Interface EPLD User Guide

C-8 XACT Development System

Xilinx Synopsys Interface EPLD User Guide — December, 1994 (0401289 01)

Xilinx
Synopsys
Interface
EPLD User
Guide

XEPLD Files

X2845

Xilinx Synopsys Interface EPLD User Guide — December, 1994 (0401289 01) D-1

Appendix D

XEPLD Files

This appendix describes the principal files that may be found in the
working directory.

● configuration_name.sim — Simulation model file produced by the
vhdlan command and read by the VSS simulator.

● design_name.eqn — Equation Report showing the detailed final
logic implementation (after optimization) in the EPLD, using
Xilinx PLUSASM language format.

● design_name.err — Error log showing a list of any errors and
warnings that occurred during the fitting process.

● design_name.lgc — Logic Optimizer log showing how the fitter
optimized your logic for the EPLD.

● design_name.log — Fitter log containing the details of steps
performed during fitting.

● design_name.map — Mapping Report summarizing the contents
of all function blocks and macrocells in the target EPLD.

● design_name.par — Partitioner Report showing the details of
how EPLD function block resources were allocated.

● design_name.pin — Pin-List Report showing the final pinout of
your design.

● design_name.prg — Hex formatted programming bit-map file
created by the makeprg command. This file is downloaded to a
device programmer.

● design_name.res — Resource Report showing the amount of
EPLD macrocell and I/O pin resources used and those remaining.

● design_name.sedif — EDIF-formatted logic netlist created by the

Xilinx Synopsys Interface EPLD User Guide

D-2 XACT Development System

Synopsys write command when Design Compiler is used. This
file is used by the syn2epld program.

● design_name.sxnf — XNF-formatted logic netlist used by the
syn2epld program. This file is created by the synopsys write
command when FPGA compiler is used.

● design_name.tim — Static Timing Report showing the calculated
worst-case timing for the logic paths in your design.

● design_name.v — Verilog HDL language source design file.

● design_name.vhd — VHDL language source design file.

● design_name.vmd — XEPLD design database file created by the
fitter (for XC7272 only). This file contains a complete description
of your fitted design.

● design_name.vmf — Pin-save file created by the pinsave
command. This file, if it exists, is used by the fitter to lock a
previous device pinout. See Chapter 4 for more information.

● design_name.vmh — XEPLD design database file created by the
fitter (for all devices except the XC7272). This file contains a
complete description of your fitted design.

● design_name_vss.vhd — VHDL timing simulation model created
by the vmh2vss program. This file is used by the VSS simulator.

● design_name_vss.sdf — Timing back-annotation file created by
the vmh2vss program. This file is used by the VSS simulator in
conjunction with the design_name_vss.vhd file.

● design_name.xff — Merged and flattened netlist created by the
syn2epld program. This file is primarily based on the .sxnf (or
.sedif) file and is the primary input to the fitter.

● design_name.xnf — The simulation netlist file created by the
vmh2vss command. This is an intermediate file used by vmh2vss
to create the design_name_vss.vhd timing simulation model.

● .synopsys_dc.setup — Configuration file used by the
Synopsys compiler to define the libraries and parameters for
synthesis.

● .synopsys_vss.setup — Configuration file used by the
Synopsys VSS simulator (and the vhdlan command) to define the
model library used for simulation.

Xilinx Synopsys Interface EPLD User Guide — December, 1994 (0401289 01)

Design Example

Xilinx
Synopsys
Interface
EPLD User
Guide

X2845

Xilinx Synopsys Interface EPLD User Guide — December, 1994 (0401289 01) E-1

Appendix E

Design Example

This appendix shows the VHDL source file for a PCI bus interface.

PCI Bus Interface Design Description
The PCI bus is a 32 or 64 bit interface with multiplexed address and
data lines. It is intended for use as an interconnect mechanism
between highly integrated peripheral controllers, add-in boards,
memory systems, and central processors. This bus is becoming a
fundamental building block for high-performance personal
computers and workstations.

The following VHDL source code implements a PCI bus interface
using the Xilinx XC73108 EPLD.

Note: A complete application note describing this design is available.

Xilinx Synopsys Interface EPLD User Guide

E-2 XACT Development System

-- PCI Target Interface Design for XC73108 --
-- Synopsys VHDL Solution using Xilinx XC7000 Library --

library IEEE, xc7000;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_misc.all;
use IEEE.STD_LOGIC_arith.all;
use IEEE.STD_LOGIC_components.all;
use xc7000.components.all;

entity pci_108 is
 port (

 -- PCI bus signals --
 CLK : in bit;
 FRAME, IRDY : in boolean;
 TRDY, STOP : inout std_logic;
 DEVSEL : buffer std_logic;
 AD : inout std_logic_vector (31 downto 0);
 CBE : inout std_logic_vector (3 downto 0);

 -- Target interface signals --
 TERM,READY,T_ABORT,TAR_DLY : in boolean;
 ADT : inout std_logic_vector (31 downto 0);
 CBET : inout std_logic_vector (3 downto 0);
 S0, S1 : buffer std_logic; -- registers --
 RD_WR, BRD_EN : buffer boolean; -- registers --
 PAR_OE, PERR_OE : out boolean -- registers --
);

end pci_108;

Design Example

Xilinx Synopsys Interface EPLD User Guide E-3

architecture BEHAVIOR of pci_108 is

-- Internal signals --
 -- PCI AD bus output register --
 signal PCI_AD : std_logic_vector (31 downto 0);
 -- PCI AD bus input register --
 signal ADI : std_logic_vector (31 downto 0);
 -- Target AD bus output register --
 signal TARGET_AD : std_logic_vector (31 downto 0);
 -- PCI CBE bus output register --
 signal PCI_CBE : std_logic_vector (3 downto 0);
 -- PCI CBE bus input register --
 signal CBEI : std_logic_vector (3 downto 0);
 -- Target CBE bus output register --
 signal TARGET_CBE : std_logic_vector (3 downto 0);
 signal BA : std_logic_vector (31 downto 24); -- register --
 signal AVALID, BA_WR, HIT : boolean;
 signal TRDY_OE, AD_OE, ADT_OE : boolean; -- registers --
 signal TRDY_VAL, STOP_VAL : boolean;
 signal S1_S0 : std_logic_vector (1 downto 0);
 signal COMMAND_TYPE : std_logic_vector (3 downto 1);
 signal IO_SPACE, MEMORY_SPACE, CONFIG_SPACE, MEMORY_MULT,
 MEMORY_CACHE : boolean;
 type TARGET_TYPE is (IDLE_STATE, B_BUSY_STATE, S_DATA_STATE,
 TURN_AR_STATE, BACKOFF_STATE);
 signal TARGET_SEQ : TARGET_TYPE; -- state register
 signal IDLE, B_BUSY, S_DATA, TURN_AR, BACKOFF : boolean; -- state

decoders
 -- PCI Bus Command Encoding --
 constant IO_SPACE_CMD : std_logic_vector (3 downto 1) := "001";
 constant MEMORY_SPACE_CMD : std_logic_vector (3 downto 1) := "011";
 constant CONFIG_SPACE_CMD : std_logic_vector (3 downto 1) := "101";
 constant MEMORY_MULT_CMD : std_logic_vector (3 downto 1) := "110";
 constant MEMORY_CACHE_CMD : std_logic_vector (3 downto 1) := "111";
 constant BA_AD_SEL : std_logic_vector (7 downto 2) := "000100";
 constant CFG_SPACE_00H : std_logic_vector (31 downto 0) :=
 "00000000000000000000000000000000";
 constant CFG_SPACE_04H : std_logic_vector (31 downto 0) :=
 "00000000000000000000000000000000";

Xilinx Synopsys Interface EPLD User Guide

E-4 XACT Development System

-- Re-declare attribute cells with boolean ports --

 component f
 port (I : in boolean);
 end component;

 component opt_off
 port (I : in boolean);
 end component;

begin

-- XEPLD fitter attributes --
 XU1: f port map (IRDY);
 XU2: f port map (FRAME);
 XU3: opt_off port map (HIT);
 XU4: opt_off port map (BA_WR);

-- PCI bus to Target interface data path --
-- Target interface passes address and data transfers synchronously
-- through interface.

 S1_S0 <= (S1, S0);

 DATA_PATH: process begin
 wait until (CLK'event and CLK = '1');

 if (S1_S0 = "00") then
 PCI_AD <= ADT;
 elsif (S1_S0 = "01") then
 PCI_AD <= CFG_SPACE_00H;
 elsif (S1_S0 = "10") then
 PCI_AD <= CFG_SPACE_04H;
 else
 PCI_AD <= BA (31 downto 24) & "000000000000000000000000";
 end if;

Design Example

Xilinx Synopsys Interface EPLD User Guide E-5

ADI <= AD;
 TARGET_AD <= ADI;
 PCI_CBE <= CBET;
 CBEI <= CBE;
 TARGET_CBE <= CBEI;
 end process;

 AD <= PCI_AD when AD_OE else
 "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
 CBE <= PCI_CBE when AD_OE else
 "ZZZZ";
 ADT <= TARGET_AD when ADT_OE else
 "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
 CBET <= TARGET_CBE when ADT_OE else
 "ZZZZ";

-- Configuration base address register and address comparator for
-- Target interface

 BA_WR <= (ADI (7 downto 2) = BA_AD_SEL) and (S1_S0 = "00") and
RD_WR;
 HIT <= (ADI (31 downto 24) = BA); -- 8-bit equality comparator -
-

 BASE_ADDR: process begin
 wait until (CLK'event and CLK = '1');

 if (BA_WR) then
 BA <= ADI (31 downto 24);
 end if;

 if (AVALID) then
 BRD_EN <= HIT;
 end if;
 end process;

Xilinx Synopsys Interface EPLD User Guide

E-6 XACT Development System

-- Target Interface State Machine --

 TARGET: process begin
 wait until (CLK'event and CLK = '1');
 case TARGET_SEQ is

-- IDLE -- Idle condition.
 when IDLE_STATE =>
 if (not FRAME) then
 if (not HIT) then
 TARGET_SEQ <= B_BUSY_STATE;
 elsif (not TERM or READY) then
 TARGET_SEQ <= S_DATA_STATE;
 else
 TARGET_SEQ <= BACKOFF_STATE;
 end if;
 end if;

-- B_BUSY -- Agent not involved in current transaction.
 when B_BUSY_STATE =>
 if (FRAME) then
 TARGET_SEQ <= IDLE_STATE;
 elsif (IRDY or HIT) then
 if (not IRDY and HIT and (not TERM or READY)) then
 TARGET_SEQ <= S_DATA_STATE;
 else
 TARGET_SEQ <= BACKOFF_STATE;
 end if;
 end if;

-- S_DATA -- Agent has accepted request and will respond.
 when S_DATA_STATE =>
 if (FRAME and (not TRDY_VAL or not STOP_VAL)) then
 TARGET_SEQ <= TURN_AR_STATE;
 elsif (not STOP_VAL and (TRDY_VAL or not IRDY)) then
 TARGET_SEQ <= BACKOFF_STATE;
 end if;

Design Example

Xilinx Synopsys Interface EPLD User Guide E-7

-- TURN_AR -- Completed transaction on bus.
 when TURN_AR_STATE =>
 if (FRAME) then
 TARGET_SEQ <= IDLE_STATE;
 elsif (not HIT) then
 TARGET_SEQ <= B_BUSY_STATE;
 elsif (not TERM or READY) then
 TARGET_SEQ <= S_DATA_STATE;
 else
 TARGET_SEQ <= BACKOFF_STATE;
 end if;
-- BACKOFF -- Agent busy, unable to respond at this time.
 when BACKOFF_STATE =>
 if (FRAME) then
 TARGET_SEQ <= TURN_AR_STATE;
 end if;
 end case;
 end process;
 IDLE <= (TARGET_SEQ = IDLE_STATE);
 B_BUSY <= (TARGET_SEQ = B_BUSY_STATE);
 S_DATA <= (TARGET_SEQ = S_DATA_STATE);
 TURN_AR <= (TARGET_SEQ = TURN_AR_STATE);
 BACKOFF <= (TARGET_SEQ = BACKOFF_STATE);

-- DEVSEL is asserted from address hit until either TURN_AR or T_ABORT i s
-- asserted by the Target agent.

 DEVSEL <= 'Z' when (not TRDY_OE) else
 '0' when ((BACKOFF or S_DATA) and not T_ABORT) else
 '1';

-- Target agent ready to complete current data trasaction.
-- TRDY is asserted while the Target transfers data (S_DATA)
-- and remains asserted while READY asserted and T_ABORT de-asserted.

 TRDY <= 'Z' when (not TRDY_OE) else
 '1' when (not (READY and not T_ABORT and S_DATA and TAR_DLY)) e
 '0';

 TRDY_VAL <= (TRDY = '1');

Xilinx Synopsys Interface EPLD User Guide

E-8 XACT Development System

-- Target requests Master to stop the current transaction.
-- STOP is asserted in response to T_ABORT
-- and remains asserted until entering TURN_AR.

 STOP <= 'Z' when (not TRDY_OE) else
 '1' when (not (BACKOFF or (S_DATA and (T_ABORT or TERM)
and
 TAR_DLY))) else
 '0';
 STOP_VAL <= (STOP = '1');

-- PCI Bus Command Decoder

 COMMAND_TYPE <= CBEI (3 downto 1);
 IO_SPACE <= (COMMAND_TYPE = IO_SPACE_CMD);
 MEMORY_SPACE <= (COMMAND_TYPE = MEMORY_SPACE_CMD);
 CONFIG_SPACE <= (COMMAND_TYPE = CONFIG_SPACE_CMD);
 MEMORY_MULT <= (COMMAND_TYPE = MEMORY_MULT_CMD);
 MEMORY_CACHE <= (COMMAND_TYPE = MEMORY_CACHE_CMD);

 AVALID <= (IO_SPACE or MEMORY_SPACE or CONFIG_SPACE or
MEMORY_MULT or
 MEMORY_CACHE) and BRD_EN;

 OE: process begin
 wait until (CLK'event and CLK = '1');

 TRDY_OE <= BACKOFF or S_DATA or TURN_AR;
 AD_OE <= S_DATA and TAR_DLY and RD_WR;

 ADT_OE <= (IDLE and FRAME and RD_WR and (AD(1 downto 0) =
"00")) or
 (HIT and not RD_WR) or (S_DATA and not RD_WR and not

T_ABORT);

Design Example

Xilinx Synopsys Interface EPLD User Guide E-9

Figure E-1 PCI Controller Source File

 if (IDLE) then
 RD_WR <= (CBE(0) = '0');
 end if;

 if (not S_DATA) then
 S0 <= '0'; S1 <= '0';
 if (IDLE and not FRAME) then
 if (MEMORY_SPACE or MEMORY_MULT or MEMORY_CACHE)
then
 S0 <= '1';
 end if;
 if (IO_SPACE) then
 S1 <= '1';
 end if;
 end if;
 end if;

 PAR_OE <= S_DATA and not TRDY_VAL and RD_WR;
 PERR_OE <= not IRDY and not RD_WR;
 end process;
end BEHAVIOR;

Xilinx Synopsys Interface EPLD User Guide

E-10 XACT Development System

Xilinx Synopsys Interface EPLD User Guide — December, 1994 (0401289 01)

Fitter Reports

Xilinx
Synopsys
Interface
EPLD User
Guide

X2845

Xilinx Synopsys Interface EPLD User Guide — December, 1994 (0401289 01) F-1

Appendix F

Fitter Reports

The primary fitter reports that you will use are:

● design_name.res — Resource Report showing the amount of
EPLD macrocell and pin resources remaining.

● design_name.tim — Static Timing Report showing the calculated
worst-case timing for the logic paths in your design.

● design_name.pin — Pin-List Report showing the final pinout of
your design.

Examples of these three reports are provided in the following
sections.

Xilinx Synopsys Interface EPLD User Guide

F-2 XACT Development System

Resource Report
Use this report to determine the amount of EPLD resources used by
your design, and the amount of remaining resources.

Figure F-1 The Resource Report — SCAN Design

XEPLD, Version 5.0 Xilinx Inc.
 Resource Report
 Circuit name: SCAN
Target Device: XC7354-10PC44 Integrated: 6-20-94, 12:37P

LOGIC RESOURCES

 Required Used Remaining
Function Blocks 6 6 0
Macrocells 26 26 28

PIN RESOURCES:

Type Req --------Used-------------- --------Remaining---------
 I O I/O Fclk Foe Cen Tot I O I/O Fclk Foe Cen Tot
Inputs 12 8 4 12 0 15 15
Outputs 9 0 6 1 1 1 9 0 15 0 0 0 15
I/Os 0 0 0 15 15
Fclks 1 1 1 0 0
Foes 0 0 0 0 0
Cens 0 0 0 0 0
 --- --- -- --- --- --- --- ---
 22 8 0 10 2 1 1 22

Note:The design requires 0 pins with Fast Input capability.
 This device has 11 pins with Fast Input capability.
 The design requires 0 pins with Fast Output capability.
 This device has 0 FO and 1 I/FO remaining from original 0 FO and 16 I

 End of Resource Report

Fitter Reports

Xilinx Synopsys Interface EPLD User Guide F-3

The Static Timing Report
Use this report to verify your design timing. The types of reported
timing parameters are described in the following sections.

Combinational Pad-to-Pad Delays
A combinational pad-to-pad delay is calculated from an input pad
through any combinational logic to an output pad. Combinational
paths include any asynchronous Set and Reset inputs to registered
outputs as shown below.

Figure F-2 Combinational Pad-to-Pad Delay Report Example

D Q
S

R

Comb.
Logic

A

B

C

D

...
Summary of Combinational Pad-to-Pad Delays (In Best to Worst
Order)
From To Delay(nsec)
C D 7.5
A D 15.0
B D 15.0
...

Xilinx Synopsys Interface EPLD User Guide

F-4 XACT Development System

Setup-to-Clock Time
The setup time is calculated using the fastest clock path and the
slowest data path arriving at any given register. The timing analyzer
checks all registers and reports the worst-case setup time for each
pair of clock and data signals.

Figure F-3 Setup-to-Clock Time Report Example

Clock-to-Output Delays
Clock-to-output delays are calculated from the input pad of a clock
signal to the output pad.

Figure F-4 Clock-to-Output Time Report Example

D QD Q

Comb.
Logic

A

B

C

D

...
Summary of Setup-to-Clock at the Pads (In Best to Worst Order)
Data Clock Delay(nsec)
A C 4.0
B C 8.0
...

D Q
Comb.
LogicA

B

Comb.
Logic

...
Summary of Clock Pad-to-Output Pad Delays (In Best to Worst
Order)
Clock Output Delay(nsec)
A B 5.5
...

Fitter Reports

Xilinx Synopsys Interface EPLD User Guide F-5

Cycle Time
The cycle time is calculated between two registers that share the same
clock. The timing report does not show cycle times for circuits that do
not have a register to register path.

Figure F-5 Cycle Time Report Example

Note: You should also consider the setup and clock-to-output delays
when determining the maximum device speed in your system.

D Q
D Q

Comb.
Logic

Cycle Time

...
Summary of Cycle Time Delays (In Best to Worst Order)
(See .map file for signal names)
From To Delay(nsec)
FB3_9 FB3_4 8.0
FB3_6 FB3_7 8.0
...

Xilinx Synopsys Interface EPLD User Guide

F-6 XACT Development System

Example Timing Report

XEPLD, Version 5.0E Xilinx Inc.
 Timing Report
 Circuit name: scan
Target Device: XC7354-10PC44 Report Date: 6-20-94, 13:41:24

Slowest Combinational Pad-to-Pad 28.5 nsec (Worst Case)
Slowest Setup-to-Clock at the pads 13.0 nsec (Worst Case)
Slowest Clock-to-Output(Pad-to-Pad) 20.0 nsec (Worst Case)
Maximum Clock Frequency CLOCK 76 Mhz (Worst Case)

Summary of Combinational Pad-to-Pad Delays (In Best to Worst Order)
From To Delay(nsec)
CLEAR C_OUT<7> 28.5
CLEAR C_OUT<6> 28.5
CLEAR C_OUT<5> 28.5
CLEAR C_OUT<4> 28.5
CLEAR C_OUT<3> 28.5
CLEAR C_OUT<2> 28.5
CLEAR C_OUT<1> 28.5
CLEAR C_OUT<0> 28.5

Summary of Setup-to-Clock at the Pads (In Best to Worst Order)
Data Clock Delay(nsec)
WRITE_START CLOCK 11.0
WRITE_END CLOCK 11.0
DATA_IN<7> CLOCK 11.0
DATA_IN<6> CLOCK 11.0
DATA_IN<5> CLOCK 11.0
...
DATA_IN<3> CLOCK 11.0
DATA_IN<2> CLOCK 11.0
DATA_IN<1> CLOCK 11.0
DATA_IN<0> CLOCK 11.0
START CLOCK 13.0

Fitter Reports

Xilinx Synopsys Interface EPLD User Guide F-7

Summary of Clock Pad-to-Output Pad Delays (In Best to Worst Order)
Clock Output Delay(nsec)
CLOCK DONE 10.0
CLOCK C_OUT<7> 20.0
CLOCK C_OUT<6> 20.0
CLOCK C_OUT<5> 20.0
CLOCK C_OUT<4> 20.0
CLOCK C_OUT<3> 20.0
CLOCK C_OUT<2> 20.0
CLOCK C_OUT<1> 20.0
CLOCK C_OUT<0> 20.0

Summary of Cycle Time Delays (In Best to Worst Order)
(See .map file for signal names)
From To Delay(nsec)
FB1_9 FB1_9 10.0
FB1_1 FB1_1 10.0
FB1_2 FB1_2 10.0
FB1_3 FB1_3 10.0
FB1_4 FB1_4 10.0
...
FB1_4 FB6_4 13.0
FB6_4 FB6_4 13.0
FB4_8 FB6_4 13.0
FB4_9 FB6_4 13.0
FB1_1 FB6_4 13.0

 Combinational Pad-to-Pad Delays(nsec)
 \From C
 \ L
 \ E
 \ A
 \ R
 To \------------

C_OUT<0> 28.5
C_OUT<1> 28.5
C_OUT<2> 28.5
C_OUT<3> 28.5
C_OUT<4> 28.5
C_OUT<5> 28.5
C_OUT<6> 28.5
C_OUT<7> 28.5

Xilinx Synopsys Interface EPLD User Guide

F-8 XACT Development System

 Clock Pad-to-Output Pad Delays(nsec)

 \Clock C
 \ L
 \ O
 \ C
 \ K
Output \------------

C_OUT<0> 20.0
C_OUT<1> 20.0
C_OUT<2> 20.0
C_OUT<3> 20.0
C_OUT<4> 20.0
C_OUT<5> 20.0
C_OUT<6> 20.0
C_OUT<7> 20.0
DONE 10.0

Fitter Reports

Xilinx Synopsys Interface EPLD User Guide F-9

 Register-to-Register Delays(nsec)

 \From F F F F F F F F F F
 \ B B B B B B B B B B
 \ 1 1 1 1 1 1 1 1 1 2
 \ _ _ _ _ _ _ _ _ _ _
 \ 1 2 3 4 5 6 7 8 9 1
 To \--

FB1_1 10.0
FB1_2 10.0
FB1_3 10.0
FB1_4 10.0
FB1_5 10.0
FB1_6 10.0
FB1_7 10.0
FB1_8 10.0
FB1_9 10.0
FB2_1 10.0
FB2_2
FB2_3
FB2_4
FB2_5
FB2_6
FB2_7
FB2_8
FB3_3 13.0
FB3_5 13.0
FB4_7 13.0 13.0 13.0 13.0
FB4_8 13.0
FB4_9 13.0 13.0

Xilinx Synopsys Interface EPLD User Guide

F-10 XACT Development System

 Register-to-Register Delays(nsec)

 \From F F F F F F F F F F
 \ B B B B B B B B B B
 \ 2 2 2 2 2 2 2 3 3 4
 \ _ _ _ _ _ _ _ _ _ _
 \ 2 3 4 5 6 7 8 3 5 7
 To \--

FB1_1 11.0
FB1_2
FB1_3
FB1_4
FB1_5
FB1_6
FB1_7
FB1_8
FB1_9
FB2_1
FB2_2 10.0
FB2_3 10.0
FB2_4 10.0
FB2_5 10.0
FB2_6 10.0
FB2_7 10.0
FB2_8 10.0
FB3_3 13.0 13.0 13.0
FB3_5 13.0 13.0
FB4_7 13.0 13.0 13.0 13.0 13.0 13.0
FB4_8 13.0
FB4_9
FB5_7 13.0 13.0
FB5_8 13.0 13.0
FB5_9 13.0
FB6_4

Fitter Reports

Xilinx Synopsys Interface EPLD User Guide F-11

 Register-to-Register Delays(nsec)

 \From F F F F F F
 \ B B B B B B
 \ 4 4 5 5 5 6
 \ _ _ _ _ _ _
 \ 8 9 7 8 9 4
 To \--

FB1_1
FB1_2
FB1_3
FB1_4
FB1_5
FB1_6
FB1_7
FB1_8
FB1_9
FB2_1
FB2_2
FB2_3
FB2_4
FB2_5
FB2_6
FB2_7
FB2_8
FB3_3 13.0 13.0 13.0 13.0
FB3_5 13.0 13.0 13.0
FB4_7 13.0 13.0 13.0 13.0 13.0 13.0
FB4_8 13.0 13.0
FB4_9 13.0
FB5_7 13.0 13.0 13.0 13.0 13.0 13.0
FB5_8 13.0 13.0 13.0 13.0 13.0
FB5_9 13.0 13.0 13.0 13.0
FB6_4 13.0 13.0 13.0
**

Xilinx Synopsys Interface EPLD User Guide

F-12 XACT Development System

Figure F-6 Static Timing Report Example

 Setup Delays(nsec)

 \Clock C
 \ L
 \ O
 \ C
 \ K
 Data \------------

DATA_IN<0> 11.0
DATA_IN<1> 11.0
DATA_IN<2> 11.0
DATA_IN<3> 11.0
DATA_IN<4> 11.0
DATA_IN<5> 11.0
DATA_IN<6> 11.0
DATA_IN<7> 11.0
START 13.0
WRITE_END 11.0
WRITE_START 11.0

 End of Timing Report

Fitter Reports

Xilinx Synopsys Interface EPLD User Guide F-13

Pin-List Report
Use this report to see the final EPLD pin assignments.

XEPLD, Version 5.0 Xilinx Inc.
 Pin-List Report
 Circuit name: SCAN
Target Device: XC7354-10PC44 Integrated: 6-20-94, 12:38PM

Pkg Pin Pin Pin
Pin Type Use Name
--- ---- --- ----
1 MR
2 I I DATA_IN<6>
3 I I DATA_IN<5>
4 I I DATA_IN<4>
5 CLK I CLOCK
6 CLK O C_OUT<2>
7 I I DATA_IN<3>
8 I/O I DATA_IN<2>
9 I/O I DATA_IN<1>
10 VSS
11 I/O I DATA_IN<0>
12 I/O I CLEAR
13 I/O tie (unused)
14 I/O tie (unused)
15 I/O tie (unused)
16 I/O tie (unused)
17 I/O O C_OUT<7>
18 I/O tie (unused)
19 I/O tie (unused)
20 I/O tie (unused)
21 VCC
22 I/O O C_OUT<6>
23 VSS
24 I/O O C_OUT<4>
25 I/O O DONE
26 I/O O C_OUT<1>
27 I/O O C_OUT<0>
28 I I WRITE_START
29 I/O tie (unused)
30 I/O tie (unused)
31 VSS
32 VCC

Xilinx Synopsys Interface EPLD User Guide

F-14 XACT Development System

Figure F-7 The Pin-List Report

33 I/O tie (unused)
34 I/O tie (unused)
35 I/O tie (unused)
36 I/O tie (unused)
37 I/O tie (unused)
38 I/O tie (unused)
39 CEN O C_OUT<5>
40 FOE O C_OUT<3>
41 VCC
42 I I WRITE_END
43 I I START
44 I I DATA_IN<7>

Pin Use Legend:

I - input
O - output
I/O - input/output
I-L - input uses latch
I-R - input uses register
I/O-L - input/output uses latch
I/O-R - input/output uses register
NC - not connected/not available
tie - unused pin must be tied to VCC or GND
(O) - unused pin attached to used macrocell

 End of Pin-List Report

Xilinx Synopsys Interface EPLD User Guide — December, 1994 (0401289 01)

Glossary

Xilinx
Synopsys
Interface
EPLD User
Guide

X2845

Xilinx Synopsys Interface EPLD User Guide — December, 1994 (0401289 01) G-1

Appendix G

Glossary

This appendix provides definitions of the words and terms used in
this manual and in Xilinx EPLD data sheets.

Architecture — A description of the functionality of a block of logic.

Attributes — Auxiliary information applied to individual signals or
the entire design that influences how the fitter maps the design into
an EPLD.

Backannotation (timing) — Applying timing data from the fitter to a
logic model to perform timing simulation.

Cells — Primitive library components.

Configuration — A selected architecture applied to define the
functionality of a given entity.

Entity — A description of the interface signals of a block of logic.

EPLD — Erasable Programmable Logic Device.

Fast Carry — Arithmetic carry functions using the dedicated fast
carry chain that interconnects macrocells. These signals do not pass
through the UIM.

Fast Function Block (FFB) — EPLD function blocks providing fast
pin-to-pin logic throughput for critical decoding and ultra-fast state
machine applications (XC7300 family only). The output pins
associated with Fast Function Blocks have high current drive
capability.

Fast Output Enable (FOE) — 3-state control signals that use the
dedicated high speed FOE wiring of the device, not the UIM wiring.

FastCLK — A clock signal that uses the dedicated high speed
FastCLK wiring of the device, not the UIM wiring.

Xilinx Synopsys Interface EPLD User Guide

G-2 XACT Development System

FastInput — Inputs to the device that connect directly to the function
block inputs, bypassing the UIM.

Fitter — The software that maps (fits) a logic design into a target
EPLD.

Flattening (netlist) — Reducing a netlist to its most elemental
specifications by completely expanding all contained macros.

Function Block — The High Density Function Blocks of the device,
containing nine macrocells, designed to provide the maximum logic
density and flexibility, including arithmetic carry logic.

I/O Blocks — The input/output logic of the device containing pin
drivers, registers and latches, and 3-state control functions.

Inference — The automatic selection and placement of a library cell
into a gate-level design by the synthesizer, based on a behavioral
description in the source design. For example, A + B infers an adder.

Input Pad — The input interface logic of the device containing
registers and latches.

Input Pad Registers and Latches — D Type registers located in the
I/O pad sections of the device. Input pad registers can be used
instead of macrocell registers to increase logic density and provide
shorter setup time.

Instance — A single occurrence of any specific library component.

Instantiation — Manual selection and placement of a library cell into
a gate-level design by a structural reference in the source file.

Macrocell — The basic unit of logic in the device. A macrocell can
implement both combinational and registered equations. High
Density Function Block macrocells also contain an ALU for
implementing arithmetic functions.

Minimization — The process of reducing a logic function to a sum-of
products expression consisting of the least number of product terms.

Netlist — The specification of all the instances in a design or block of
logic and the interconnections (wiring) between them.

Node — Any signal used only internally within a block of logic.

Optimization — The process of reducing your design to the minimal
required device resources. Optimization includes collapsing of

Glossary

Xilinx Synopsys Interface EPLD User Guide G-3

combinational logic nodes into device outputs and registers,
assigning signals to global FASTCLOCK and FOE nets, utilization of
I/O buffer registers, and the creation of UIM-AND functions.

Partitioning — The process of placing symbolic logic into the
physical structures of the device. The basic partition is the Function
Block or Fast Function Block.

Pin — The physical XC7000 device pins (external connections).

Pin Feedback — Specifies that the associated signal comes from the
actual device pin and not from the UIM.

PLD — Programmable Logic Device.

PLUSASM — The Xilinx native behavioral design language for
EPLD development.

Port — Any signal used as an external interface (input or output) to a
block of logic.

Product Term Cascading — The process of passing product terms (in
groups of four) from one macrocell to another for the purpose of
increasing the number of usable product terms.

Target Device — The physical device (EPLD) in which your logic
design is implemented.

Test Bench — A VHDL file used to test a VHDL logic design,
containing signal transitions, time delays, and an instance of the
device under test.

Universal Interconnection Matrix (UIM) — The primary device
resource used to interconnect macrocells. Propagation delays through
the UIM are constant and independent of the interconnections. AND
functions can also be implemented in the UIM.

UIM-AND Function — An AND gate created from the inherent
wired-AND structure of the UIM; requires no macrocell resources.

UIM Feedback — Specifies that the associated signal comes from the
macrocell and not from the device pin.

Wired-AND Functions — AND gates (and their DeMorgan
equivalents) produced by the inherent structure of the UIM.

XEPLD — Xilinx EPLD development software which includes the
fitter.

Xilinx Synopsys Interface EPLD User Guide

G-4 XACT Development System

Xilinx Synopsys Interface EPLD User Guide — December, 1994 (0401289 01)

IndexXilinx
Synopsys
Interface
EPLD User
Guide

X2845

Index

Xilinx Synopsys Interface EPLD User Guide — December, 1994 (0401289 01) i

Symbols
+ operator, 2-8, B-4, B-5
+1 operator, B-27
- operator, B-5, B-36

Numerics
-1 operator, B-19
3-state control inputs, 2-6, C-2
3-state I/O buffer, component, B-29

A
ACC, component, 2-8, B-3
ADD, component, B-4
adder, component, B-4
adder/accumulator, component, B-3
adder/subtractor, component, B-5, B-6
ADSU, component, B-5
ADSUR, component, 2-8, B-6
ALU, A-4, A-5
analyze

design, 1-10, 1-17, 1-21
test bench, 1-10, 1-22

AND gate
component, B-7
optimization, C-4

AND2-AND8, components, B-7
area estimation, iii
arithmetic functions, creating, 2-8
attributes

F, 2-14, C-3
global, C-1
H, C-4
LOWPWR, 2-14, C-1
MRINPUT, 5-5, C-1

NO_FCLK, 2-13, C-2
NO_FOE, 2-6, C-2
NO_IFD, 2-2, C-2
OPT_OFF, C-4
OPT_UIM, C-4
part type, C-5
pin assignment, C-6
PRELOAD, 2-4, C-3
register initial state, C-6
signal, C-3
slewrate, C-4
Synopsys, C-5

B
backannotation, timing, 1-21
binary counters, 2-6
BUF, component, B-8
BUFCE, component, B-9, B-25
BUFE, component, B-10
buffer

component, B-8, B-10
global CE, B-9
global clock, B-12
global FOE, B-11
I/O, B-30
input, B-12, B-23
output, B-32, B-33

BUFFOE, component, 2-5, B-11, B-30,
B-34
BUFG, component, 2-5, B-12, B-26

C
carry chain, A-5
carry lookahead, A-6

Xilinx Synopsys Interface EPLD User Guide

ii XACT Development System

CBX1, component, 2-6, B-13
CBX2, component, 2-6, B-14
clock enable, A-12
clocks, high speed, 2-12
comparator component, B-15, B-16,
B-17, B-18
comparators, using, 2-8
COMPEQ component, 2-8, B-15
compiler, 4-2
compiling designs, 3-1
COMPLE component, 2-8
COMPLE_TC component, B-16
COMPLE_US component, B-16
COMPLT component, 2-8
COMPLT_UC component, B-17
COMPLT_US component, B-17
COMPNE component, B-18
COMPNE components, 2-8
components

ACC, 2-8, B-3
ADD, B-4
ADSU, B-5
ADSUR, 2-8, B-6
AND2-AND8, B-7
BUF, B-8
BUFCE, B-9, B-25
BUFE, B-10
BUFFOE, 2-5, B-11, B-30, B-34
BUFG, 2-5, B-12, B-26
CBX1, 2-6, B-13
CBX2, 2-6, B-14
COMPEQ, 2-8, B-15
COMPLE, 2-8
COMPLE_TC, B-16
COMPLE_US, B-16
COMPLT, 2-8
COMPLT_UC, B-17
COMPLT_US, B-17
COMPNE, 2-8, B-18
DEC, B-19
device-specific, 2-14

FDCP, B-20
FDCPE, B-21
FDPC, B-22
IBUF, 2-5, B-23
IFD, 2-5, B-24
IFDX1, 2-5, B-9, B-25
ILD, B-26
INC, B-27
INV, B-28
IOBUFE, 2-5, B-29
IOBUFEX1, B-11, B-30
LD, B-31
OBUF, 2-5, B-32
OBUFE, B-33
OBUFEX1, B-11, B-34
OR2-OR8, B-35
SUBT, B-36
XOR2-XOR8, B-37

conventions, syntax, v
counters, creating, 2-6

D
D1, D2 ALU inputs, A-4
DC Shell, 1-16

using, 3-1
Debugger, VHDL, 1-14
DEC, component, B-19
decrementor, component, B-19
delay calculation

clock-to-output, F-4
cycle time, F-5
pad-to-pad, F-3
setup-to-clock, F-4

design
compilation, 1-16
entry, 1-9
example, 1-5, E-1
flow, EPLD, 1-5
implementation, 5-9
iteration, 4-1, 4-5
verification, 4-4

Design Compiler, Synopsys, i

Index

Xilinx Synopsys Interface EPLD User Guide iii

Design Rule Checker, 2-14
device

programming, 4-1, 4-5
resource estimation, 2-10
selection, 1-19, A-2
selection, chart, A-2

down counters, creating, 2-7
D-type flip-flop, B-21, B-22, B-24, B-25,
B-26, B-31

E
elaborate, Synopsys command, 1-17
EPLD

architecture, A-1
design flow, 1-5
programming, 1-24

example design, 1-5, E-1

F
F attribute, 2-14, C-3
fast carry, definition, G-1
Fast Function Block, A-7

attributes, C-3
definition, G-1

fast inputs, specifying, 2-14
Fast Output Enable, definition, G-1
FastCLK

definition, G-1
signals, A-6

FastClock
inputs, C-2
pins, 2-5

FastInput
definition, G-2
pins, A-3

FDCP, component, B-20
FDCPE, component, B-21
FDPC, component, B-22
features

unsupported, iii
Xilinx software, ii

file translation, 4-2

syn2epld, 1-19
files

.eqn, D-1

.lgc, D-1

.log, D-1

.map, D-1

.par, D-1

.pin, D-1

.res, D-1

.tim, D-1
pinsave, 4-1
used by the fitter, D-1
XFF, 4-2

fitnet, XSI command, 1-20, 4-3, 5-10
fitter

definition, G-2
operation, 4-2

fitting, 1-20
overview, 4-1

flip-flop, component, B-21, B-22, B-24,
B-25, B-26, B-31
flip-flops, EPLD architecture, A-6
FOE

input, usage, C-2
pins, 2-5

Function Blocks
EPLD architecture, A-3
specifying, 2-13

functional simulation, 1-9

G
global Chip Enable buffer, B-9
global clock, A-11

buffer, B-12
enable, A-12

global FOE buffer, B-11
global optimization, inhibiting, 2-5
Glosasry, G-1

H
H attribute, C-4
HDL, i

Xilinx Synopsys Interface EPLD User Guide

iv XACT Development System

High Density Function Block
attributes, C-4
description, A-3

I
I/O block, A-10

definition, G-2
I/O buffer cells, placing, 1-18
I/O buffer, component, B-29, B-30
I/O ports

using, 2-5
I/O signals, defining, 3-3
IBUF, component, 2-5, B-23
IFD, component, B-24
IFDX1, component, 2-5, B-9, B-25
ILD, component, 2-5, B-26
INC, component, B-27
include, Synopsys command, 1-17
incrementor, component, B-27
inference, definition, G-2
initial state specification, register, 1-18
input buffer, component, B-23
input pad registers, 2-5

usage, C-2
Inputs

fast, using, 2-14
hanging, 2-14

Inputs, 3-state control, C-2
installation, verification, 1-3
INV, component, B-28
inverter, component, B-28
IOBUFE, component, 2-5, B-29
IOBUFEX1, component, B-11, B-30

L
latches

input pad, 2-3
macrocell, 2-3
using, 2-1

LD, component, B-31
library

availability chart, B-1

declaration, 2-1
LOWPWR attribute, 2-14, C-1

M
macrocell, definition, G-2
makeprg, XSI command, 1-25, 4-5
mapping effort, 1-18
Mapping Report, 4-4
mapping, equations, 4-1
Master Reset

pin, 2-3
simulating, 5-2

Master Reset pin, C-1
minimization, equations, 4-1
MRESET input, 5-3, 5-15
MRINPUT attribute, 5-5, C-1

N
netlist

flattened, 1-19, 4-2
outputting, 1-19

NO_FCLK, attribute, 2-13, C-2
NO_FOE, attribute, 2-6, C-2
NO_IFD, attribute, 2-2, C-2
node, definition, G-2

O
OBUF, component, 2-5, B-32
OBUFE, component, B-33
OBUFEX1, component, B-11, B-34
one-hot-encoding, state machine, 2-7
operators

-, B-5, B-36
+, 2-8, B-4, B-5
+1, B-27
-1, B-19

OPT_OFF, attribute, C-4
OPT_UIM, attribute, C-4
optimization

AND gates, C-4
clock, 2-13
definition, G-2
equations, 4-1

Index

Xilinx Synopsys Interface EPLD User Guide v

inhibiting, 2-5, C-4
output enable, 2-6
register/latch, 2-2
technology specific, iii
timing-constraint-driven, iii

OR gates, B-35
OR2-OR8, components, B-35
output buffer, component, B-32, B-33,
B-34
output enable signals, 2-6

P
part type, attribute, C-5
Partitioner Report, 4-4
partitioning

definition, G-3
equations, 4-1

PCI bus example design, E-1
pin assignment, 2-11

attribute, C-6
pin feedback, definition, G-3
pin, definition, G-3
pinouts, saving, 4-1, 4-5
pins

FastClock, 2-5
FOE, 2-5

pinsave file, 4-1
pinsave, XSI command, 2-12, 4-5
pipelines, register, 2-8
PLD, definition, G-3
PLUSASM, definition, G-3
Port components

design rules, 2-15
power usage, macrocells, C-1
PRELOAD, attribute, 2-4, C-3
product term cascading, definition, G-3
product terms

expansion, A-9
shared, A-4

programming, EPLD, 1-24, 4-1, 4-5

R
register

initial state, attribute, C-6
initial state, controlling, 2-3, 5-2
initial values, C-3
input pad, 2-2, 2-5, C-2
macrocell, 2-2
pipelines, 2-8
specifying initial states, 1-18
using, 2-1

Reports
Mapping, 4-4
Partitioner, 4-4
Pin-list, F-1

example, F-13
Resource, 2-10, F-1

example, F-2
Static Timing, 2-10, 4-1, 4-4, F-1

example, F-3, F-6
Resource Report, 2-10
ripple carry delay, A-6
Rules for XEPLD designs

device-specific components, 2-14
hanging inputs, 2-14
port components, 2-15

S
set up files

creating, 1-1
Design Compiler, 1-2
VSS Simulator, 1-2

set_attribute, Synopsys command, C-5
shared product terms, A-4
simulation, 5-1

functional, 1-9, 5-6
Master Reset, 5-2
strategy, 5-1
timing, 5-11
verilog, iii

slewrate attribute, C-4
state machines, creating, 2-7

Xilinx Synopsys Interface EPLD User Guide

vi XACT Development System

Static Timing Report, 2-10, 4-1, 4-4
asynchronous set and reset, F-3
clock-to-output, F-4
cycle time, F-5
example, F-6
pad-to-pad delays, F-3
setup-to-clock, F-4

SUBT, component, B-36
subtractor, component, B-36
syn2epld, XSI command, 1-19, 1-20,
2-10, 4-2
Synopsys commands

analyze, 1-17, 3-2
compile, 1-18, 3-3
dc_shell, 1-16, 3-2
elaborate, 1-17, 3-2
exit, 1-19, 3-5
include, 1-17
insert_pads, 1-18, 3-4
set_attribute, 1-18, 2-4, 2-11, 3-4
set_port_is_pad, 1-18, 3-3
trace, 1-15, 1-23, 5-8
vhdlan, 1-10, 1-21, 5-6
vhdldbx, 1-14, 1-22, 5-6, 5-13
write, 1-19, 3-4

Synopsys Design Compiler, 4-2
synthesizing, design, 1-18

T
target device, specifying, 1-18, 2-9, 4-2
test bench

configuration declaration, 5-5
creating, 5-4
initializing registers, 5-4

timing
backannotation, 1-21
calculated, 4-1
information, iii
simulated, 4-1
simulation, 1-21

timing model preparation, 5-10

U
UIM, A-3

AND function, definition, G-3
attributes, C-4
feedback, definition, G-3

Universal Interconnection Matrix, defi-
nition, G-3
up counter, 2-6
up/down counter

component, B-13, B-14
creating, 2-7

V
verification

design timing, 4-4
file structure, 1-4
software installation, 1-3

VHDL, i
vmh2vss, XSI command, 1-21, 4-4, 5-1
VSS timing simulator, i, 4-1

W
Waves, Dynamic Waveform Viewer,
1-15
wired-AND functions, definition, G-3

X
XEPLD, 4-1

definition, G-3
XFF file, 4-2
XNF netlist, 1-19
XOR gates, B-37
XOR2-XOR8, components, B-37
XSI, 4-1
XSI commands

fitnet, 1-20, 4-3, 5-10
makeprg, 1-25, 4-5
pinsave, 2-12, 4-5
syn2epld, 1-19, 1-20, 2-10, 4-2
vmh2vss, 1-21, 4-4, 5-1

Printed in U.S.A. 42 PN 0401331 01

0401331

The Programmable Logic CompanySM

2100 Logic Drive, San Jose CA 95124-3400

Tel: (408) 559-7778 FAX: (408) 559-7114

R

	Preface
	About This Manual
	Manual Contents
	Xilinx Software Features
	Unsupported Features

	Conventions
	Contents
	Chapter 1
	Getting Started with Xilinx EPLDs
	Creating Synopsys Setup Files
	The Design Compiler Setup File
	The VSS Simulator Setup File (.synopsys_vss.setup)

	Verifying Your Installation
	Verifying Synopsys Software Access
	Verifying Xilinx Software Access
	Verifying Your File Structure

	Xilinx EPLD Design Flow
	Design Example
	Design Entry
	Step1 — Create a Design Directory

	Functional Simulation
	Step 2 — Analyze Your Design
	Step 3 — Analyze Your Test Bench
	Step 4 — Invoke the Simulator
	Step 5 — Run the Debugger
	Step 6 — Trace Signals
	Step 7 — Run the Simulation
	Step 8 — Return to UNIX

	Synthesizing Your Design (Compiling)
	Step 9 — Enter the DC Shell Environment
	Step 10 — Analyze Your Source Design
	Step 11 — Elaborate Your Design
	Step 12 — Synthesize Your Design
	Step 13 — Place I/O Buffer Cells
	Step 14 — Specify a Target Device
	Step 15 — Specify Initial Register States
	Step 16 — Output the Netlist
	Step 17 — Exit DC Shell

	Preparing the Netlist
	Step 18 — Create a Flattened Netlist

	Fitting Your Design
	Step 19 — Fit Your Design

	Timing Backannotation
	Step 20 — Create a Static Timing Report

	Timing Simulation
	Step 21 — Analyze Your Original Design
	Step 22 — Analyze Your Back-Annotated Design
	Step 23 — Analyze Your Test Bench
	Step 24 — Invoke the VSS Simulator
	Step 25 — Open the Waveform Viewer
	Step 26 — Run the Simulation
	Step 27 — Return to UNIX

	Programming an EPLD
	Step 28 — Program an EPLD

	Chapter 2
	Designing with EPLDs
	VHDL Design File Requirements
	Using Registers and Latches
	Preventing Register/Latch Optimization
	Using Input Pad Registers
	Using Macrocell Registers
	Using Input Pad Latches
	Using Macrocell Latches
	Specifying Register/Latch Initial States
	Specifying the Predefined Initial States
	Specifying Initial States for Individual Registers/ Latches

	Using I/O Ports
	Selecting 3-State Control Sources
	Assigning Specific Fast Output Enable Signals
	Preventing FOE Optimization

	Using Special Logic Functions
	Binary Up Counters
	Binary Down Counters
	Binary Up/Down Counters
	State Machines
	Registered Arithmetic Functions
	Comparators

	Targeting a Specific Device
	Specifying a Device
	Using the Synopsys Part Attribute
	Using the Xilinx Syn2EPLD Command

	Specifying Pin Locations

	Controlling Design Performance
	Using High-Speed Clocks
	Assigning Specific High-Speed Clocks
	Preventing FastCLK Optimization

	Selecting EPLD Function Block Types
	Specifying High-Speed Paths
	Specifying High-Density Paths

	Using EPLD FastInputs
	Selecting Low-Power Operation

	The Design Rule Checker
	General Design Rule Violations
	Pad Component Design Rule Violations
	FastCLK, Clock Enable, and Fast Output Enable Violations

	Chapter 3
	Compiling Your Design
	Using Synopsys DC Shell
	Step 1 — Entering the DC Shell Environment
	Step 2 — Analyzing the Design
	Step 3 — Elaborating the Design
	Step 4 — Compiling Your Design
	Step 5 — Defining EPLD I/O Signals
	Step 6 — Specifying Attributes
	Step 7 — Writing the Netlist

	Chapter 4
	Fitting Your Design
	Fitter Overview
	Fitter Operation
	Step 1 — Create a Flattened XNF Netlist File
	Specifying a Target Device
	Using a Target Device Specified By a Part Attribute

	Step 2 — Fit Your Design
	Options

	Step 3 — Verify Your Design Timing
	Step 4 — Create a Device Programming File
	Step 5 — Save Your Pinouts

	Chapter 5
	Simulating Your Design
	Recommended EPLD Simulation Strategy
	Controlling the Initial States of Registers
	Simulating Master Reset
	Preparing for Timing Simulation
	Preparing for Functional Simulation

	Creating a Test Bench File
	Initializing Registers
	Configuration Declaration

	Functional Simulation
	Design Implementation
	Preparing the Timing Model
	Timing Simulation

	Appendix A
	EPLD Architecture
	Device Selection
	The Universal Interconnect Matrix
	High-Density Function Blocks
	Shared and Private Product Terms
	Arithmetic Logic Unit
	Carry Lookahead (7300 Family Only)
	Macrocell Flip-Flop

	Fast Function Blocks
	Product Term Expansion
	XC7336 and XC7318 Fast Function Blocks

	Input/Output Blocks

	Appendix B
	Library Component Specifications
	ACC
	ADD
	ADSU
	ADSUR
	AND2 — AND8
	BUF
	BUFCE
	BUFE
	BUFFOE
	BUFG
	CBX1
	CBX2
	COMPEQ
	COMPLE_TC COMPLE_US
	COMPLT_TC COMPLT_US
	COMPNE
	DEC
	FDCP
	FDCPE
	FDPC
	IBUF
	IFD
	IFDX1
	ILD
	INC
	INV
	IOBUFE
	IOBUFEX1
	LD
	OBUF
	OBUFE
	OBUFEX1
	OR2 — OR8
	SUBT
	XOR2 — XOR8

	Appendix C
	Attributes
	Global Attributes
	LOWPWR
	MRINPUT
	NO_FOE
	NO_FCLK
	NO_IFD
	PRELOAD

	Signal Attributes
	F
	H
	OPT_OFF
	OPT_UIM
	SLEWRATE

	Synopsys Attributes
	Part Type
	Pin Assignment
	Register Initial State

	Appendix D
	XEPLD Files
	Appendix E
	Design Example
	PCI Bus Interface Design Description

	Appendix F
	Fitter Reports
	Resource Report
	The Static Timing Report
	Combinational Pad-to-Pad Delays
	Setup-to-Clock Time
	Clock-to-Output Delays
	Cycle Time
	Example Timing Report

	Pin-List Report

	Appendix G
	Glossary
	Index

