
HDL SYNTHESIS

FOR FPGAs

  ™

DESIGN GUIDE

ONLINER

0401294

TABLE OF CONTENTS

INDEX

GO TO OTHER BOOKS



Contents

Copyright 1995 Xilinx Inc. All Rights Reserved.
Chapter 1 Getting Started
Understanding HDL Design Flow for FPGAs...............................  1-1

Entering Your Design..............................................................  1-2
Verifying Your Design .............................................................  1-3
Floorplanning Your Design .....................................................  1-3
Placing and Routing Your Design...........................................  1-3

Advantages of Using HDLs to Design FPGAs .............................  1-3
Designing FPGAs with HDLs .......................................................  1-5

Using VHDL ............................................................................  1-5
Comparing ASICs and FPGAs ...............................................  1-5
Using Synthesis Tools ............................................................  1-5
Using FPGA System Features................................................  1-6
Designing Hierarchy ...............................................................  1-6
Specifying Speed Requirements ............................................  1-6

Installing Design Examples and Tactical Software ......................  1-6
Software Requirements ..........................................................  1-7
SPARC and HP-PA Requirements .........................................  1-8
Disk Space Requirements ......................................................  1-8

Xilinx Internet Site..............................................................  1-8
Xilinx Technical Bulletin Board ..........................................  1-9

Retrieving Tactical Software and Design Examples ...............  1-9
From Xilinx Internet FTP Site ............................................  1-10
From Xilinx Technical Bulletin Board.................................  1-11

Extracting the Files .................................................................  1-11
Directory Tree Structure .........................................................  1-12

Synopsys Startup File and Library Setup.....................................  1-14
Technical Support ........................................................................  1-14
Important Issues ..........................................................................  1-14

Instantiating XNF Files in Verilog Designs..............................  1-15
Block Names are Not Written by Default in Synopsys
FPGA Compiler V3.3b ............................................................  1-16
Creating MAP Files.................................................................  1-16
HDL Synthesis for FPGAs Design Guide — 0401294 01 i



HDL Synthesis for FPGAs Design Guide
Chapter 2 HDL Coding Hints
Comparing Synthesis and Simulation Results .............................  2-2

Omit the Wait for XX ns Statement .........................................  2-2
Omit the ...After XX ns Statement...........................................  2-2
Use Case and If-Else Statements...........................................  2-2
Order and Group Arithmetic Functions ...................................  2-3
Omit Initial Values ...................................................................  2-3

Selecting VHDL Coding Styles.....................................................  2-3
Selecting a Capitalization Style...............................................  2-4
Using Xilinx Naming Conventions...........................................  2-4
Naming Identifiers, Types, and Packages ..............................  2-5
Using Labels ...........................................................................  2-5
Using Variables for Constants ................................................  2-6
Using Named and Positional Association ...............................  2-6
Managing Your Design ...........................................................  2-7
Creating Readable Code ........................................................  2-7

Indenting Your Code..........................................................  2-7
Using Empty Lines.............................................................  2-7
Using Spaces.....................................................................  2-8
Breaking Long Lines of Code ............................................  2-8
Adding Comments .............................................................  2-8

Using Std_logic Data Type .....................................................  2-8
Declaring Ports ..................................................................  2-9
Minimizing the Use of Ports Declared as Buffers ..............  2-9

Comparing Signals and Variables...........................................  2-10
Using Schematic Design Hints with HDL Designs .......................  2-12

Barrel Shifter Design...............................................................  2-12
Implementing Latches and Registers......................................  2-16
Resource Sharing ...................................................................  2-20
Gate Reduction .......................................................................  2-25
Preset Pin or Clear Pin ...........................................................  2-27

Using Clock Enable Pin .....................................................  2-30
Using If Statements.................................................................  2-31
Using Case Statements ..........................................................  2-32
Using Nested_If Statements ...................................................  2-33
Comparing If Statement and Case Statement ........................  2-37

Chapter 3 HDL Coding for FPGAs
Using Global Low-skew Clock Buffers .........................................  3-2

Inserting Clock Buffers............................................................  3-4
ii Xilinx Development System



Contents
Instantiating Internal Global Clock Buffers..............................  3-4
Using Dedicated Global Set/Reset Resource ..............................  3-4

Startup State...........................................................................  3-5
Preset vs. Clear ......................................................................  3-5
Increasing Performance with the GSR Net.............................  3-6

Design Example without Dedicated GSR Resource..........  3-6
Design Example with Dedicated GSR Resource...............  3-8
Design Example with Dedicated GSR Resource and
Additional Preset Signal ....................................................  3-11

Encoding State Machines ............................................................  3-13
Using Binary Encoding ...........................................................  3-14
Using Enumerated Type Encoding .........................................  3-16
Using One-Hot Encoding ........................................................  3-17
Summary of Encoding Styles..................................................  3-18
Comparing Synthesis Results for Encoding Styles.................  3-19
Initializing the State Machine ..................................................  3-20

Using Dedicated I/O Decoders ....................................................  3-21
Instantiating X-BLOX Modules.....................................................  3-25

Using X-BLOXGen..................................................................  3-26
Syntax................................................................................  3-27
Options ..............................................................................  3-28
Output Files .......................................................................  3-28
X-BLOXGen Example........................................................  3-28

Using RPMs .................................................................................  3-32
Instantiating an RPM ..............................................................  3-34

Implementing Memory .................................................................  3-36
Implementing XC4000 RAMs .................................................  3-36
Implementing XC4000 ROMs .................................................  3-36
Using MemGen.......................................................................  3-38

Implementing Boundary Scan (JTAG 1149.1) .............................  3-40
Instantiating the Boundary Scan Symbol................................  3-40

Implementing Logic with IOBs .....................................................  3-42
XC4000/A/D IOBs...................................................................  3-43

Inputs.................................................................................  3-43
Outputs ..............................................................................  3-43
XC4000/D Slew Rate.........................................................  3-43
XC4000A Slew Rate..........................................................  3-44

XC4000H IOBs .......................................................................  3-44
Inputs.................................................................................  3-44
Outputs ..............................................................................  3-44
XC4000H Slew Rate..........................................................  3-45
HDL Synthesis for FPGAs Design Guide iii



HDL Synthesis for FPGAs Design Guide
Instantiating Bidirectional I/O ..................................................  3-45
Moving Registers into the IOB ................................................  3-46
Using Unbonded IOBs (XC4000/A/D Only) ............................  3-48

Implementing Multiplexers with Tristate Buffers...........................  3-50
Setting Timing Constraints ...........................................................  3-53

Using the Synthesis Tool ........................................................  3-53
Using PPR Command Line Options........................................  3-54
Using A Constraints File .........................................................  3-55

Using TIMESPEC and TIMEGRP Commands ..................  3-55
Using TIMESPEC and TIMEGRP Constraints File
Statements.........................................................................  3-56
Using MakeTNM and AddTNM..........................................  3-57
Adding TNMs .....................................................................  3-57
Creating A TNM Control File Without Using MakeTNM.....  3-65
Adding TNMs to Signals ....................................................  3-66

Chapter 4 Floorplanning Your Design
Using the Floorplanner.................................................................  4-2

Creating a MAP File................................................................  4-2
Using XMake .....................................................................  4-2
Using PPR .........................................................................  4-2
Using Prep for Floorplanner Command .............................  4-2

Overview of Floorplanner Windows ........................................  4-3
Task Window .....................................................................  4-3
Design Window..................................................................  4-3
Floorplan Window ..............................................................  4-4

Deciding What Elements to Floorplan.....................................  4-5
Running the Floorplanner and Opening a File ........................  4-6

Using the Command Line ..................................................  4-6
Using the Floorplanner Task Window................................  4-6

Setting Boundaries in the Floorplan Window ..........................  4-8
Floorplanning RPMs, RAMs, and ROMs......................................  4-9

RPM and RAM/ROM Example................................................  4-10
Floorplanning Tristate Buffers ......................................................  4-13

BUFT Example........................................................................  4-14
Floorplanning BUFT Example............................................  4-16

Comparing Hierarchical and Flat Designs....................................  4-20
Method 1: Compiling Flat without X-BLOX .............................  4-24
Method 2: Compiling Flat with X-BLOX ..................................  4-26
Method 3: Compiling with Hierarchy and without
X-BLOX...................................................................................  4-26
iv Xilinx Development System



Contents
Method 4: Compiling with Hierarchy and X-BLOX..................  4-27
Floorplanning to Reduce Routing Congestion .............................  4-28

Positioning and Aligning Buses ..............................................  4-29
Aligning Structures Along Buses .......................................  4-29

Floorplanning RAMs to Reduce Routing Congestion .............  4-34

Chapter 5 Building Design Hierarchy
Using the Synthesis Tool .............................................................  5-2
Modifying Design Hierarchy for PPR ...........................................  5-3
Top Design Example....................................................................  5-4

Compiling Top Design as One Flat Module ............................  5-7
Compiling Top Design Using Original Hierarchy ....................  5-8

Floorplanning RPMs ..........................................................  5-8
Meeting Speed Requirements ...........................................  5-10

Compiling Top Design After Modifying the Hierarchy .............  5-11
Evaluating A New Hierarchy..............................................  5-15
Defining and Compiling the New Hierarchy.......................  5-15
Setting Boundaries and Floorplanning the Modules..........  5-19
Floorplanning Structured Cells ..........................................  5-21
Placing and Routing the Top Design .................................  5-22

Adding Probe Points to Debug a Design ................................  5-23
Comparing Top Design Methodologies ..................................  5-24

Flat Design ........................................................................  5-24
Original Design Hierarchy..................................................  5-24
Modified Hierarchy.............................................................  5-24

Chapter 6 Understanding High-Density Design Flow
Step 1: Estimating Your Design Size ...........................................  6-4

Determining Device Utilization................................................  6-5
Step 2: Evaluating Your Design for Coding Style and
System Features..........................................................................  6-7
Step 3: Modifying Your Design Hierarchy ....................................  6-8

Estimating Area Utilization......................................................  6-9
Creating a New Hierarchy.......................................................  6-11

Step 4: Synthesizing and Optimizing Your Design ......................  6-11
Step 5: Translating Your Design and Adding Group TimeSpecs.  6-12

Translating Your Design .........................................................  6-12
Adding Timing Specifications..................................................  6-13

Using the Synthesis Tool...................................................  6-13
Using PPR Command Line Options ..................................  6-13
Using A Constraints File ....................................................  6-13
HDL Synthesis for FPGAs Design Guide v



HDL Synthesis for FPGAs Design Guide
Step 6: Building Your Design Hierarchy.......................................  6-15
Step 7: Floorplanning Your Design ..............................................  6-15

Creating a MAP File................................................................  6-15
Using XMake .....................................................................  6-16
Using PPR .........................................................................  6-16
Using Prep for Floorplanner Option ...................................  6-16

Floorplanning Design Components.........................................  6-16
Writing a Constraints File........................................................  6-17

Step 8: Placing and Routing Your Design....................................  6-17
Using PPR Options .................................................................  6-18
Determining If PPR Can Route Your Design ..........................  6-19

Step 9: Evaluating the Results .....................................................  6-19
Evaluating Module Placement with the Floorplanner ...................  6-20

Modifying Design Placement ..................................................  6-25
Using Guided Design ...................................................................  6-26

Using Iterative Guided Design ................................................  6-27
Using Incremental Guided Design ..........................................  6-27
Using XDE ..............................................................................  6-27
Effectively Using Guided Design.............................................  6-28
Understanding Guided Design for XC4000 Designs...............  6-28

Adding a New Module to Your Design...............................  6-28
Making a Design Change to a Module...............................  6-29

Appendix A Accelerate FPGA Macros with One-Hot Approach

Appendix B Top Design Scripts
VHDL Script Files.........................................................................  B-1
Verilog Script Files .......................................................................  B-6

Appendix C Tactical Software and Design Examples
Tactical Software..........................................................................  C-1
Design Examples .........................................................................  C-2

Index ................................................................................................................... i

Trademark Information
vi Xilinx Development System



Chapter 1
HDL Synthesis for FPGAs Design Guide — 0401294 01 1-1

Getting Started

Hardware Description Languages (HDLs) are used to describe the
behavior and structure of system and circuit designs. This chapter
provides a general overview of designing FPGAs with HDLs. It also
includes design hints for the novice HDL user and for the
experienced user who is designing FPGAs for the first time. System
requirements and installation instructions are also provided.

To learn more about designing FPGAs with HDLs, Xilinx
recommends that you enroll in the appropriate training classes
offered by Xilinx and by the vendors of synthesis software.
Understanding FPGA architecture allows you to create HDL code
that effectively uses FPGA system features.

Understanding HDL Design Flow for FPGAs
Application Specific Integrated Circuit (ASIC) designs or sections of
these designs that are targeted for FPGAs are often created with
HDLs. However, the design flow for processing ASIC HDL code is
slightly different from the flow used to process HDL code written
specifically for FPGAs.

Figure 1-1 shows the design flow for an FPGA design. This design
flow includes the following steps.

1. Creating your FPGA design with an HDL.

2. Performing a Register Transfer Level (RTL) simulation of your
design.

3. Synthesizing your design.

4. Creating a Xilinx Netlist File (XNF) file.

5. Performing a functional simulation of your design.



HDL Synthesis for FPGAs Design Guide
6. Floorplanning your design. This step is optional.

7. Placing and routing (implementing) your design.

8. Performing a timing simulation of your design.

Figure 1-1 HDL Flow Diagram for a New Design

The design flow for ASICs differs depending on the quality of the
existing code. You must analyze the ASIC design to determine if the
code meets speed and area requirements for FPGAs. Additionally,
you should structure the design hierarchy for FPGA implementation.

Entering Your Design
When coding in HDL, you should create efficient code that utilizes
FPGA system features and is structured into hierarchical blocks.
These topics are described in detail in this manual.

HDL Synthesis

Floorplanning

Work Flow

RTL

HDL


Simulation

Functional

Gate-level

Simulation

Timing

Gate-level

Simulation

X4915

Structured

VHDL or Verilog

Hierarchical

design.xnf

Place and Route
1-2 Xilinx Development System



Getting Started
Verifying Your Design
You can behaviorally simulate your HDL designs to test system and
device functionality before synthesis. After simulation, your design is
synthesized and optimized for the target device. The hierarchical
HDL code is then written as XNF files. After placement and routing,
the design is simulated with the actual gate and wire delays.

Xilinx recommends that you perform an RTL or functional simulation
of your design before floorplanning the cells (CLBs, IOBs, BUFTs)
into the FPGA. If you find functional errors during a simulation
performed after floorplanning, you must correct your code,
resynthesize your design, and repeat the floorplanning process. The
Xilinx Floorplanner builds a constraints file that includes the cell
names in your design. If the cell names change, as they might if you
resynthesize your design, the names in the constraints file are no
longer correct.

Floorplanning Your Design
Floorplanning is an optional step in the design flow. You can improve
device density and increase the speed of critical paths by
floorplanning parts or all of your design with the Xilinx Floorplanner.
You can generate a constraints file that is read by PPR. Refer to the
“Floorplanning Your Design” chapter in this manual for more
information on floorplanning.

Placing and Routing Your Design
After floorplanning, run PPR to place and route your design. PPR
reads the constraints file generated by the Floorplanner and places
logic that is not floorplanned. After your design is placed and routed,
perform a timing simulation. You can back-annotate timing
information to the Synopsys timing analysis tool.

Advantages of Using HDLs to Design FPGAs
Using HDLs to design high-density FPGAs is advantageous for the
following reasons.

● Top-Down Approach for Large Projects

HDLs are used to create complex designs. The top-down
HDL Synthesis for FPGAs Design Guide 1-3



HDL Synthesis for FPGAs Design Guide
approach to system design supported by HDLs is advantageous
for large projects that require many designers working together.
Once the overall design plan is determined, designers can work
independently on separate sections of the code.

● Functional Simulation Early in the Design Flow

You can verify the functionality of your design early in the design
flow by simulating the HDL description. Testing your design
decisions before the design is implemented at the gate level allows
you to make any necessary changes early in the design process.

● Automatic Conversion of HDL Code to Gates

You can automatically convert your hardware description to a
design implemented with gates. This step decreases design time
by eliminating the traditional gate-level bottleneck. This
automatic conversion to gates also reduces the number of errors
that may be introduced during a manual translation of a hardware
description to a schematic design. Additionally, you can apply the
techniques used by the synthesis tool during the optimization of
your design to the original HDL code, resulting in greater
efficiency.

● Type Checking

HDLs provide type checking. For example, you cannot connect a
3- or 5-bit wide signal to a component that requires a 4-bit wide
signal type. Additionally, if the range of a bus is 1 to 15, you
cannot assign the bus a value of 0. Using incorrect types is a major
source of errors in HDL descriptions. Type checking eliminates
these errors in the description before a design is generated.

● Early Testing of Various Design Implementations

HDLs allow you to test different implementations of your design
early in the design flow. You can then use the synthesis tool to
perform the logic synthesis and optimization into gates.
Additionally, Xilinx FPGAs allow you to implement your design
at your computer. Since the synthesis time is short, you have more
time to explore different architectural possibilities at the Register
Transfer Level (RTL). You can reprogram Xilinx FPGAs to test
several implementations of your design.
1-4 Xilinx Development System



Getting Started
Designing FPGAs with HDLs
If you are more familiar with schematic design entry, you may find it
difficult at first to create HDL designs. You must make the transition
from graphical concepts, such as block diagrams, state machines,
flow diagrams and truth tables, to abstract representations of design
components. You can ease this transition by not losing sight of your
overall design plan as you code in HDL. To effectively use an HDL,
you must understand the language syntax, the synthesis tool, the
architecture of the target device, and the implementation tools. This
section gives you some design hints to help you create FPGAs with
HDLs.

Using VHDL
VHSIC Hardware Description Language (VHDL) is a hardware
description language for designing Integrated Circuits (ICs). It was
not originally intended as an input to synthesis, and many VHDL
constructs are not supported by synthesis software. In addition, the
various synthesis tools use different subsets of the VHDL language.
The examples provided in this manual are written in VHDL. The
coding strategies presented in the remaining chapters of this manual
can help you create HDL descriptions that can be synthesized.

Comparing ASICs and FPGAs
Methods used to design ASICs do not always apply to FPGA designs.
ASICs have more gate and routing resources than FPGAs. Since
ASICs have a large number of available resources, you can easily
create inefficient code that results in a large number of gates. When
designing FPGAs, you must create efficient code.

Using Synthesis Tools
Synthesis tools, such as the Synopsys FPGA Compiler, have special
optimization algorithms for Xilinx FPGAs. Constraints and
compiling options perform differently depending on the target
device. There are some commands and constraints that do not apply
to FPGAs and, if used, may adversely impact your results. You
should understand how your synthesis tool processes designs before
creating FPGA designs.
HDL Synthesis for FPGAs Design Guide 1-5



HDL Synthesis for FPGAs Design Guide
Using FPGA System Features
You can improve device performance and area utilization by creating
HDL code that uses FPGA system features, such as global reset, wide
I/O decoders, and memory. FPGA system features are described in
this manual.

Designing Hierarchy
Current HDL design methods are specifically written for ASIC
designs. You can use some of these ASIC design methods when
designing FPGAs, however, certain techniques can greatly increase
the number of gates.

Design hierarchy is important in the implementation of an FPGA and
also during incremental or interactive changes. You should partition
large designs (greater than 5,000 gates) into modules. The size and
content of the modules influence synthesis results and design
implementation. How to create effective design hierarchy is
described in this manual.

Specifying Speed Requirements
To meet timing requirements, you should understand how to set
timing constraints in both the synthesis and placement/routing tools.
You should also know how to manually place critical paths and
structured modules with the Xilinx Floorplanner. See the Floorplanner
Reference/User Guide for more information.

Installing Design Examples and Tactical Software
The information in this section supplements the information in the
Xilinx Synopsys Interface Version 3.3 Release Document. Read and
follow the instructions in the Release Documents for Xilinx Synopsys
Interface V3.3 or V5.1.

Three tactical software programs are required for the HDL examples
in this manual. The three programs are X-BLOXGen, MakeTNM, and
AddTNM. These programs are not included in the Xilinx Synopsys
Interface or the XACTstep Development System.

AddTNM and MakeTNM were created with Perl 4.0. To run these
programs, you must have either Perl 4.0 or 5.0.
1-6 Xilinx Development System



Getting Started
This manual includes numerous HDL design examples. These
designs were created with VHDL, however, Xilinx equally endorses
both Verilog and VHDL. VHDL may be more difficult to learn than
Verilog and usually requires more explanation. You can obtain
Verilog versions of many of the design examples either from the
Xilinx Internet Site or the Xilinx Technical Bulletin Board, as
described below.

Note: See “Appendix C” for a complete listing of tactical software
and design examples.

Software Requirements
To synthesize, simulate, floorplan, and implement the design
examples in this manual, you should have the following versions of
software installed on your system.

Table 1-1 Software Versions

* XACTstep Foundry v7 does not support the Xilinx Floorplanner.

Note: The design examples in this manual were compiled with
Synopsys V3.3a and XACTstep V5.2.0 (pre-release), however, all
programs, scripts, and design examples are compatible with the
versions in Table 1-1.

Software Version

Xilinx Synopsys Interface (XSI) 3.2.0 or later

XACTstep 5.1.0 or later

XACTstep Foundry* 7.0 or later

Synopsys FPGA Compiler 3.2 or later

Xilinx Floorplanner Contact Xilinx sales representa-
tive for copy of Floorplanner.

XC4025 die files Contact Xilinx sales representa-
tive.
HDL Synthesis for FPGAs Design Guide 1-7



HDL Synthesis for FPGAs Design Guide
SPARC and HP-PA Requirements
The system requirements for the SPARC and HP-PA are identical to
those described in Xilinx Synopsys Interface Release Document V3.3
or V5.1. Refer to this release documentation for more information.

Disk Space Requirements
Before you install the programs and files, verify that your system
meets the requirements listed in the tables below for the various
options. The disk space requirements listed are an approximation and
may not exactly match the actual numbers.

Xilinx Internet Site

To download the programs and files from the Xilinx Internet Site, you
need to meet the disk requirements listed in Table 1-2.

Table 1-2  Internet Files

The XSI_files directory contains tactical software, XNF files for RPMs,
and a default XC4000 FPGA Compiler setup file.

Directory Description
Compressed

File
Directory

Size

XSI_files • Tactical Code
• XNF files for RPMs
• Default Synopsys setup file

83 K 344 K

XSI_vhdl VHDL Examples with SIM,
SYN and MRA files in Work
directory

5.1 MB 13 MB

XSI_vhdl_no_work VHDL Examples without
SIM, SYN and MRA files in
Work directory

3.3 MB 10.2 MB

XSI_verilog Verilog Examples 3 MB 9.2 MB
1-8 Xilinx Development System



Getting Started
The XSI_vhdl_no_work directory is smaller than the XSI_vhdl
directory because it does not contain the contents of the Work
directory. The Work directory contains the analyzed files, SYN, MRA,
and SIM for each VHDL design file. You can create these files by
analyzing the VHDL design files or by running the design script files.
Copy one of these directories only; it is not necessary to copy both. If
you want to decrease the download time, copy the
XSI_VHDL_no_work directory.

Xilinx Technical Bulletin Board

To download the programs and files from the Xilinx Technical
Bulletin Board (XTBB), you need to meet the disk space requirements
listed in Table 1-3. Due to file size restrictions on the XTBB, the VHDL
and Verilog directories listed in Table 1-3 do not contain the entire set
of files that are available via the Internet. However, you can generate
the complete set of files by running the design scripts and invoking
the Xilinx tools.

Table 1-3  XTBB Files

Retrieving Tactical Software and Design Examples
You can retrieve the tactical software and the HDL design examples
from the Xilinx Internet Site or the XTBB. If you need assistance

Directory Description
Compressed

File
Directory

Size

tactical.uu • Tactical Code
• XNF files for RPMs
• Default Synopsys setup file

115 K 344 K

vhdl_ex.uu design.vhd, design.log, design.rpt,
design.prp, design.lca, design.timing,
design.fpga, design.sxnf, design.db,
design.map, design.script

2.6 MB 5.1 MB

ver_ex.uu design.v, design.log, design.rpt,
design.prp, design.lca, design.timing,
design.fpga, design.sxnf, design.db,
design.map, design.script

2.5 MB 4.7 MB
HDL Synthesis for FPGAs Design Guide 1-9



HDL Synthesis for FPGAs Design Guide
retrieving the files, use the information listed in the “Technical
Support” section of this chapter to contact the Xilinx Hotline.

You must install the retrieved files on the same system as
XSI DS-401 and the Synopsys tools. Do not install the files into the XSI
DS-401 or XACTstep DS-502 directories since the files may be
overwritten when the next version of XSI or XACTstep software is
installed.

From Xilinx Internet FTP Site

You can retrieve the programs and files from the Xilinx Internet FTP
(File Transfer Protocol) Site. To access the Xilinx Internet FTP Site, you
must have FTP available on your machine. For UNIX users, FTP is a
UNIX utility. You can obtain the PC version of the FTP utility through
third-party vendors.

To use FTP, your machine must be connected to the Internet and you
must have permission to use FTP on remote sites. If you need more
information on this procedure, contact your system administrator.

To retrieve the programs and files from the Xilinx Internet FTP Site,
use the following procedure:

1. Go to the directory on your local machine where you want to
download the files:

cd directory

2. Invoke the FTP utility:

UNIX users, type: ftp
PC users: contact your system administrator for assistance

3. Connect to the Xilinx Internet machine, www.xilinx.com:

ftp>  open xilinx.www.com

4. Log into a guest account. This account gives you download
privileges.

Name ( machine:user-name ) : ftp
Guest login ok, send your complete e-mail address
as the password.
Password:  your_email_address
1-10 Xilinx Development System



Getting Started
5. Go to the pub/XSI_HDL directory:

ftp>  cd pub/XSI_HDL

6. Retrieve the appropriate design files as follows:

ftp>  get design_files.tar.Z

7. Extract the files as described in the “Extracting the Files” section
below.

From Xilinx Technical Bulletin Board

The Xilinx Technical Bulletin Board (XTBB) is a 24-hour electronic
bulletin board available to all registered XACTstep customers. XTBB
includes application notes, utility programs, bug fixes, and updated
data files such as package and speed files. If you have full XTBB
privileges, you can read and retrieve files on the bulletin board,
including the design examples in this manual. You can also upload
files and leave messages for Xilinx personnel or other XTBB users.
Refer to the 1994 version of The Xilinx Programmable Logic Data Book
for a complete description of the XTBB, including how to locate and
download files.

To retrieve the programs and files from the XTBB:

1. Go to the directory on your local machine where you want to
download the files:

cd directory

2. Access the XTBB.

3. Locate the files in the application area of the XTBB. The directory
names are listed in Table 1-3.

4. Retrieve the uuencoded files.

5. Extract the files as described below.

Extracting the Files
You must install the retrieved files on the same system as
XSI DS-401 and the Synopsys tools. However, do not install the files
into the XSI DS-401 or XACTstep DS-502 directories since the files
may be overwritten when the next version of XSI or XACTstep
software is installed.
HDL Synthesis for FPGAs Design Guide 1-11



HDL Synthesis for FPGAs Design Guide
To extract the files, use the following procedure.

Note: The first step only applies to files retrieved from the XTBB.

1. Undecode the files:

uudecode design.uu

2. Uncompress the files:

uncompress design.tar.Z

3. Extract the files:

tar xvf design.tar

4. Copy the tactical programs, AddTNM, MakeTNM, and
X-BLOXGen, into a directory in your search path or into your
working directory.

Directory Tree Structure
After you have completed the installation, you should have the
following directory tree structure and files:

XSI_files/
xbloxgen
addtnm
maketnm
fc4k.synopsys_db.setup
rpm_xnf/

acc16/
acc4/
acc8/
add16/
add4/
add8/
adsu16/
adsu4/
adsu8/
cc16ce/
cc16cle/
cc16cled/
cc16re/
cc8ce/
cc8cle/
cc8cled/
cc8re/
compc16/
compmc8/
1-12 Xilinx Development System



Getting Started
XSI_verilog/
alarm/
align_str/
barrel/
bidi_reg/
bnd_scan/
bufts/
clock_enable/
clr_pre/
d_latch/
d_register/
ff_example/
gate_clock/
gate_reduce/
gsr/
io_decoder/
mux_vs_3state/
res_sharing/
rom16x4/
rom_memgen/
rpm_example/
rpm_ram/
state_machine/
top_hier/
unbonded_io/
xbloxgen_ex/

XSI_vhdl/ or XSI_vhdl_no_wk/
alarm/
align_str/
barrel/
bidi_reg/
bnd_scan/
bufts/
case_vs_if/
clock_enable/
clr_pre/
d_latch/
d_register/
ff_example/
gate_clock/
gate_reduce/
gsr/
io_decoder/
mux_vs_3state/
nested_if/
res_sharing/
rom16x4/
rom_memgen/
rpm_example/
HDL Synthesis for FPGAs Design Guide 1-13



HDL Synthesis for FPGAs Design Guide
rpm_ram/
sig_vs_var/
state_machine/
unbonded_io/
xbloxgen_ex/

Synopsys Startup File and Library Setup
Follow the procedures in the “Getting Started” chapter of the
Synopsys (XSI) for FPGAs Interface/Tutorial Guide for instructions on
setting up the Synopsys start-up file for XC4000 designs using the
Synopsys FPGA Compiler.

Technical Support
This manual and associated files come with free technical and
product information telephone support (toll-free in the U.S. and
Canada). You can also fax or email your questions to Xilinx.

● United States and Canada

Technical Support Hotline 1-800-255-7778

Technical Support FAX (24 hours/7 days) 1-408-879-4442

Technical Support Bulletin Board 1-408-559-9327
(24 hours/7 days)

Internet E-mail Address (24 hours/7 days) hotline@xilinx.com

● International

Technical Support Hotline 1-408-879-5199

Technical Support FAX (24 hours/7 days) 1-408-879-4442

Technical Support Bulletin Board 1-408-559-9327
(24 hours/7 days)

Internet E-mail Address (24 hours/7 days) hotline@xilinx.com

Important Issues
This section includes important issues that are not covered in the
remaining chapters of this manual.
1-14 Xilinx Development System



Getting Started
Instantiating XNF Files in Verilog Designs
To instantiate a module that is not in one of the target libraries, such
as an XNF file created using MemGen or X-BLOXGen, you must
create an additional module-endmodule statement for the XNF file in
your Verilog code. The XNF file for the module must exist in the
working directory (or in the search path for XNFMerge).

For example, use the following procedure to instantiate the acc4.xnf
file in the rpm_example.v design. Acc4.xnf was created with
X-BLOXGen.

1. Create an additional module-endmodule statement for acc4.xnf in
rpm_example.v as follows:

module rpm_example(B_IN3, B_IN2, B_IN1, B_IN0, D_IN3,
D_IN2, D_IN1, D_IN0, CI_IN, L_IN, ADD_IN,
CE_OUT, CLK_IN, Q_OUT3, Q_OUT2, Q_OUT1, Q_OUT0,
CO_OUT, OFL_OUT);

input B_IN3, B_IN2, B_IN1, B_IN0, D_IN3, D_IN2, D_IN1, D_IN0,
CI_IN, L_IN, ADD_IN, CE_OUT, CLK_IN;

output Q_OUT3, Q_OUT2, Q_OUT1, Q_OUT0, CO_OUT,
OFL_OUT;

acc4 U1 (.B3(B_IN3), .B2(B_IN2), .B1(B_IN1), .B0(B_IN0),
.D3(D_IN3), .D2(D_IN2), .D1(D_IN1), .D0(D_IN0),
.CI(CI_IN), .L(L_IN), .ADD(ADD_IN), .CE(CE_OUT),
.C(CLK_IN), .Q3(Q_OUT3), .Q2(Q_OUT2), .Q1(Q_OUT1),
.Q0(Q_OUT0), .CO(CO_OUT), .OFL(OFL_OUT));

endmodule

module  acc4 (B3, B2, B1, B0, D3, D2, D1, D0, CI, L, ADD, CE,
C, Q3, Q2, Q1, Q0, CO, OFL);

input B3, B2, B1, B0, D3, D2, D1, D0, CI, L, ADD, CE, C;
output Q3, Q2, Q1, Q0, CO, OFL;

endmodule

2. In your Synopsys script file, immediately before you write the
SXNF file, enter this command:

remove_design acc4

3. Run XMake on the top level file:

xmake rpm_example
HDL Synthesis for FPGAs Design Guide 1-15



HDL Synthesis for FPGAs Design Guide
Block Names are Not Written by Default in Synopsys
FPGA Compiler V3.3b

In Synopsys FPGA Compiler V3.3b, block names for CLBs mapped
with registers are not written to the SXNF file by default. If your
script file contains the following statement, you can remove it.

set_attribute find(design, “*”) “xnfout_use_blknames” \
-type boolean FALSE

The design examples in this manual do not contain this statement in
the example script file. However, the example scripts in the Xilinx
Synopsys Interface V3.2 and V3.3 include this statement. If you are
using Synopsys V3.2 or earlier, you should set this attribute to FALSE
and include the statement in your script file. If you are using
Synopsys V3.3b or later, you can remove this statement because the
attribute version is set to FALSE by default.

Creating MAP Files
Do not use the outfile= option when creating a MAP file.
1-16 Xilinx Development System



Chapter 2
HDL Synthesis for FPGAs Design Guide — 0401294 01 2-1

HDL Coding Hints

HDLs contain many complex constructs that can be difficult to
understand at first. Additionally, the methods and examples
included in HDL manuals do not always apply to designing FPGAs.
If you currently use HDLs to design ASICs, your established coding
style may increase the number of gates in FPGA designs. ASICs have
more gates and routing resources than FPGAs, therefore, a design
that fits an ASIC device may be unroutable in an FPGA.

HDL synthesis tools implement logic based on the coding style of
your design. To learn how to efficiently code with HDLs, you can
attend training classes, read reference and methodology notes, and
refer to synthesis guidelines and templates available from Xilinx and
the synthesis vendors. When coding your designs, remember that
HDLs are mainly hardware description languages. You should try to
find a balance between the quality of the end hardware results and
the speed of simulation.

The coding hints and examples included in this chapter are not
intended to teach you every aspect of VHDL, but they should help
you develop an efficient coding style.

The following topics are included in this chapter:

● Comparing Synthesis and Simulation Results

● Selecting VHDL Coding Styles

● Using Schematic Design Hints with HDL Designs



HDL Synthesis for FPGAs Design Guide
Comparing Synthesis and Simulation Results
VHDL is a hardware description and simulation language and was
not originally intended as an input to synthesis. Therefore, many
hardware description and simulation constructs are not supported by
synthesis tools. In addition, the various synthesis tools use different
subsets of the VHDL language. VHDL semantics are well defined for
design simulation. The synthesis tools must adhere to these semantics
to ensure that designs simulate the same way before and after
synthesis. Follow the guidelines presented below to create code that
simulates the same way before and after synthesis.

Omit the Wait for XX ns Statement
Do not use the Wait for XX ns statement in your code. XX specifies the
number of nanoseconds that must pass before a condition is
executed. This statement does not synthesize to a component. In
designs that include this statement, the functionality of the simulated
design does not match the functionality of the synthesized design.

Omit the ...After XX ns Statement
Do not use the ...After XX ns statement in your code. An example of
this statement is:

(Q <=0 after XX ns)

XX specifies the number of nanoseconds that must pass before a
condition is executed. This statement is usually ignored by the
synthesis tool. In this case, the functionality of the simulated design
does not match the functionality of the synthesized design.

Use Case and If-Else Statements
You can use either If-Else statements or Case statements to create
state machines. Synthesis tools that support both types of statements
implement the functions differently, however, the simulated designs
are identical. The If-Else statement specifies priority-encoded logic
and the Case statement specifies parallel behavior. The If-Else
statement can result in a slower circuit overall. Refer to the
“Comparing If Statement and Case Statement” section of this chapter
for more information.
2-2 Xilinx Development System



HDL Coding Hints
Order and Group Arithmetic Functions
The ordering and grouping of arithmetic functions influences design
performance. For example, the following two statements are not
equivalent:

ADD <= A1 + A2 + A3 + A4;

ADD <= (A1 + A2) + (A3 + A4);

The first statement cascades three adders in series. The second
statement creates two adders in parallel: A1 + A2 and A3 + A4. In the
second statement, the two additions are evaluated in parallel and the
results are combined with a third adder. RTL simulation results are
the same for both statements, however, the second statement results
in a faster circuit after synthesis (depending on the bit width of the
input signals).

Omit Initial Values
Do not assign signals and variables initial values because initial
values are ignored by most synthesis tools. The functionality of the
simulated design may not match the functionality of the synthesized
design.

For example, do not use initialization statements such as the
following:

variable SUM:INTEGER:=0;

Selecting VHDL Coding Styles
Because VHDL designs are often created by design teams, Xilinx
recommends that you agree on a coding style at the beginning of
your project. An established coding style allows you to read and
understand code written by your fellow team members. Also,
inefficient coding styles can adversely impact synthesis and
simulation, which can result in slow circuits. Additionally, because
portions of existing VHDL designs are often used in new designs,
you should follow coding standards that are understood by the
majority of HDL designers. This section of the manual provides a list
of suggested coding styles that you should establish before you begin
your designs.
HDL Synthesis for FPGAs Design Guide 2-3



HDL Synthesis for FPGAs Design Guide
Selecting a Capitalization Style
Select a capitalization style for your code. In Xilinx FPGA designs,
entity names must be in lowercase letters because the XACTstep
Development System does not recognize names in uppercase letters.
Based on this restriction, you may want to specify that VHDL
reserved words are in lowercase letters and other keywords are in
uppercase letters.

The following capitalization style is used for the examples in this
manual.

● Use lowercase letters for entity names and VHDL reserved words

● Use uppercase letters for the following:

● Keywords that are not entity names and VHDL reserved
words

● Variable, signal, instance, and module names

● Labels

● Libraries, packages, and data types

● For the names of standard or vendor packages, follow the style
used by the vendor or use uppercase letters as shown for IEEE in
the following example:

library IEEE;
use IEEE.std_logic_1164.all;

signal SIG: UNSIGNED (5 downto 0);

Using Xilinx Naming Conventions
Use the Xilinx naming conventions listed in this section for naming
signals, variables, and instances that are translated into nets, buses,
and symbols.

Note: Most synthesis tools convert illegal characters to legal ones.

● User-defined names can contain A-Z, a-z, $, _, -, <, and >. A “/” is
also valid, however, it is not recommended since it is used as a
hierarchy separator

● Names must contain at least one non-numeric character
2-4 Xilinx Development System



HDL Coding Hints
● Names cannot be more than 1024 characters long

The following FPGA resource names are reserved and should not be
used to name nets or components.

● Configurable Logic Blocks (CLBs), Input/Output Blocks (IOBs),
clock buffers, tristate buffers (BUFTs), oscillators, package pin
names, CCLK, DP, GND, VCC, and RST

● CLB names such as AA, AB, and R1C2

● Primitive names such as TD0, BSCAN, M0, M1, M2, or STARTUP

● Do not use pin names such as P1 and P2 for component names

● Do not use pad names such as PAD1 for component names

Note: See the “Floorplanning Your Design” chapter for additional
naming conventions that are important when using the Floorplanner.

Naming Identifiers, Types, and Packages
You can use long (1024 characters maximum) identifier names with
underscores and embedded punctuation in your code. Use
meaningful names for signals and variables, such as
CONTROL_REGISTER. Use meaningful names when defining
VHDL types and packages as shown in the following examples:

type LOCATION_TYPE is ...;
package STRING_IO_PKG is

Using Labels
Use labels to group logic. Label all processes, functions, and
procedures as shown in the following example:

ASYNC_FF: process (CLK,RST)

You can use optional labels on flow control constructs to make the
code structure more obvious, as shown in Figure 2-1. However, you
should note that these labels are not translated to gate or register
names in your implemented design.
HDL Synthesis for FPGAs Design Guide 2-5



HDL Synthesis for FPGAs Design Guide
Figure 2-1 Labeling Flow Control Constructs

Using Variables for Constants
Do not use variables for constants in your code. Define constant
numeric values in your code as constants and use them by name. This
coding convention allows you to easily determine if several
occurrences of the same literal value have the same meaning. In the
code example in Figure 2-2, you should specify the seven as a
constant and refer to it by name in your code.

procedure FLOP
for I in 0 to 7 loop

FIELD(I) := FIELD(7-I);
end loop;

end procedure;

Figure 2-2 Defining Constants

Using Named and Positional Association
Use positional association in function and procedure calls and in port
lists only when you assign all items in the list. Use named association
when you assign only some of the items in the list. Do not combine
positional and named association in the same statement as illustrated
in the following line of code:

CLK_1: BUFGS port map (I=>CLOCK_IN,CLOCK_OUT);
2-6 Xilinx Development System



HDL Coding Hints
The correct coding style is:

CLK_1: BUFGS port map
(I=>CLOCK_IN,O=>CLOCK_OUT);

Managing Your Design
As part of your coding specifications, you should include rules for
naming, organizing, and distributing your files. Also, use explicit
configurations to control the selection of components and
architectures that you want to compile, simulate, or synthesize.

Creating Readable Code
Use the recommendations in this section to create code that is easy to
read.

Indenting Your Code

Indent blocks of code to align related statements. You should define
the number of spaces for each indentation level and specify whether
the Begin statement is placed on a line by itself. In the examples in
this manual, each level of indentation is four spaces and the Begin
statement is on a separate line that is not indented from the previous
line of code. The example in Figure 2-3 illustrates the indentation
style used in this manual.

architecture BEHAV of dlatch
begin

LATCH_P: process (A,B)
begin

if CONDITION then
STATEMENT;

else CONDITION
STATEMENT;

end if;
end process;--End LATCH_P

end BEHAV;

Figure 2-3 Indenting Your Code

Using Empty Lines

Use empty lines to separate top-level constructs, designs,
architectures, configurations, processes, subprograms, and packages.
HDL Synthesis for FPGAs Design Guide 2-7



HDL Synthesis for FPGAs Design Guide
Using Spaces

Use spaces to make your code easier to read. The following
conventions are used for the examples in this manual.

● You can omit or use spaces between signal names as shown in the
following lines of code:

process (RST,CLOCK,LOAD,CE)

process (RST, CLOCK, LOAD, CE)

● Use a space after colons as shown in the following lines of code:

signal QOUT: STD_LOGIC_VECTOR (3 downto 0);

CLK_1: BUFGS port map (I=>CLOCK_IN,O=>CLOCK_OUT);

Breaking Long Lines of Code

Break long lines of code at an appropriate point, such as a comma or a
colon, to make your code easier to read, as illustrated in the following
code fragment.

U1: load_reg port map (INX=>A,LOAD=>LD,
CLK=>SCLK,OUTX=>B);

Adding Comments

Add comments to your code to improve readability, debugging, and
maintenance.

Using Std_logic Data Type
Note: This section is an edited excerpt from a document in the
Synopsys SOLV-IT! knowledge base. For more information on
SOLV-IT, send e-mail to solvit@synopsys.com with the word help in
the message body.

It is important to select the correct logic type for your VHDL designs.
If you use the Synopsys compiler, the Std_logic (IEEE 1164) type is
recommended for synthesis. This type is effective for hardware
descriptions because it has nine different values. Additionally, the
Std_logic type is automatically initialized to an unknown value. This
automatic initialization is important for HDL designs because it
forces you to initialize your design to a known state, which is similar
2-8 Xilinx Development System



HDL Coding Hints
to what is required in a schematic design. Do not override this feature
by initializing signals and variables to a known value when they are
declared because the result may be a gate-level circuit that cannot be
initialized to a known value.

Declaring Ports

Xilinx recommends that you use the Std_logic package for all entity
port declarations. This package makes it easier to integrate the
synthesized netlist back into the design hierarchy without requiring
conversion functions for the ports. An example of using the Std_logic
package for port declarations is shown in Figure 2-4.

Entity alu is
port( A : in STD_LOGIC_VECTOR(3 downto 0);

B : in STD_LOGIC_VECTOR(3 downto 0);
CLK : in STD_LOGIC;
C : out STD_LOGIC_VECTOR(3 downto 0) );

end alu;

Figure 2-4 Using Std_logic Package for Port Declaration

Minimizing the Use of Ports Declared as Buffers

Declare a buffer when a signal is used internally and as an output
port. In the example in Figure 2-5, signal C is used internally and it is
used as an output port.

Entity alu is
port( A : in STD_LOGIC_VECTOR(3 downto 0);

B : in STD_LOGIC_VECTOR(3 downto 0);
CLK : in STD_LOGIC;
C : buffer STD_LOGIC_VECTOR(3 downto 0) );

end alu;

architecture BEHAVIORAL of alu is
begin

process begin
wait until CLK'event and CLK='1';

C <= UNSIGNED(A) + UNSIGNED(B) + UNSIGNED(C);
end process;

end BEHAVIORAL;

Figure 2-5 Example of Buffer Output Signal
HDL Synthesis for FPGAs Design Guide 2-9



HDL Synthesis for FPGAs Design Guide
Because signal C is used both internally and as an output port, every
level of hierarchy in your design that connects to port C must be
declared as a buffer. To reduce the amount of coding in hierarchical
designs, you may want to insert a dummy signal and declare port C
as an output, as shown in Figure 2-6.

Entity alu is
port( A : in STD_LOGIC_VECTOR(3 downto 0);

B : in STD_LOGIC_VECTOR(3 downto 0);
CLK : in STD_LOGIC;
C : out STD_LOGIC_VECTOR(3 downto 0));

end alu;

architecture BEHAVIORAL of alu is
-- dummy signal
signal C_INT : STD_LOGIC_VECTOR(3 downto 0);
begin

C <= C_INT;
process begin

wait until CLK'event and CLK='1';
C_INT < =UNSIGNED(A) + UNSIGNED(B) +

UNSIGNED(C_INT);
end process;

end BEHAVIORAL;

Figure 2-6 Replacing Buffer Ports with a Dummy Signal

Comparing Signals and Variables
Note: This section is an edited excerpt from a document in the
Synopsys SOLV-IT! knowledge base. For more information on
SOLV-IT, send e-mail to solvit@synopsys.com with the word help in
the message body.

You can use signals and variables in your designs. Signals are similar
to hardware and are not updated until the end of a process. Variables
are immediately updated and, as a result, they can mask glitches that
may impact how your design functions. Because of this potential
masking problem, Xilinx recommends that you use signals for
hardware descriptions, however, variables allow quick simulation.
Figure 2-7 shows a synthesized design that uses signals and
Figure 2-8 shows a synthesized design that uses variables. These
examples are shown implemented with gates in Figure 2-9 and
Figure 2-10.
2-10 Xilinx Development System



HDL Coding Hints
Note: If you assign several values to a signal in one process, only the
final value is used. When you assign a value to a variable, the
assignment takes place immediately. A variable maintains its value
until you specify a new value.

Figure 2-7 Using Signals

Figure 2-8 Using Variables
HDL Synthesis for FPGAs Design Guide 2-11



HDL Synthesis for FPGAs Design Guide
Figure 2-9 Gate implementation of Xor_Sig

Figure 2-10 Gate Implementation of Xor_Var

Using Schematic Design Hints with HDL Designs
This section describes how you can apply schematic entry design
strategies to HDL designs.

Barrel Shifter Design
The schematic version of the barrel shifter design is included in the
“Multiplexers and Barrel Shifters in XC3000/XC3100” application
note (XAPP 026.001) in the 1994 version of The Xilinx Programmable
Logic Data Book. In this example, two levels of multiplexers are used
to increase the speed of a 16-bit barrel shifter. This design is for
XC3000 and XC3100 devices; however, it can also be used for XC4000
devices. This section includes two VHDL versions of the barrel shifter
design.

Note: In the 16-bit barrel shifter example in the XAPP 026.001
application note, the select lines are registered to take advantage of
the CLB DIN pin. You do not need to register the select lines in your
HDL design because most synthesis tools do not use the DIN pin.

Figure 2-11 is a VHDL design of a 16-bit barrel shifter. The barrel
shifter is implemented using sixteen 16-to-1 multiplexers, one for
each output. A 16-to-1 multiplexer is a 20-input function with 16 data
inputs and four select inputs. When targeting an FPGA device based
2-12 Xilinx Development System



HDL Coding Hints
on 4-input lookup tables (such as XC4000 and XC3000 devices), a
20-input function requires at least five logic blocks. Therefore, the
minimum design size is 80 (16 x 5) logic blocks.
HDL Synthesis for FPGAs Design Guide 2-13



HDL Synthesis for FPGAs Design Guide
Figure 2-11 16-bit Barrel Shifter

The modified VHDL design in Figure 2-12 uses two levels of
multiplexers and is twice as fast as the design in Figure 2-11.This
design is implemented using 32 4-to-1 multiplexers arranged in two
levels of sixteen. The first level rotates the input data by 0, 1, 2, or 3
bits and the second level rotates the data by 0, 4, 8, or 12 bits. Since
you can build a 4-to-1 multiplexer with a single logic block, the
minimum size of this version of the design is 32 (32 x 1) logic blocks.
2-14 Xilinx Development System



HDL Coding Hints
HDL Synthesis for FPGAs Design Guide 2-15



HDL Synthesis for FPGAs Design Guide
Figure 2-12 16-bit Barrel Shifter with Two Levels of Multiplexers

When these two designs are implemented in an XC4005-5 device
using the Synopsys FPGA compiler, there is a 54% improvement in
the gate count (91 occupied CLBs reduced to 36 occupied CLBs) in the
design in Figure 2-12 as compared to the design in Figure 2-11.
Additionally, there is a 25% improvement in speed from 54.2 ns
(4 CLB block levels) to 46.4 ns (3 CLB block levels).

Implementing Latches and Registers
HDL compilers infer latches from incomplete specifications of
conditional expressions. Latch primitives are not available in CLBs,
however, the IOBs contain input latches. Latches described in RTL
HDL are implemented with gates in the CLB function generators. For
example, the D latch shown in Figure 2-13 is implemented with one
function generator. The D latch implemented with gates is shown in
Figure 2-14.
2-16 Xilinx Development System



HDL Coding Hints
Figure 2-13 D Latch Inference

Figure 2-14 D Latch Implemented with Gates

In this example, a combinatorial loop results in a hold-time
requirement on DATA with respect to GATE. Since most synthesis
tools do not process hold-time requirements because of the
uncertainty of routing delays, Xilinx does not recommend
implementing latches with combinatorial feedback loops. A
recommended method for implementing latches is described in this
section.

NAND2
INV

AND2

AND2

SET

RESET

OR2

Q
DATA

D Latch

GATE

LQ

X4975
HDL Synthesis for FPGAs Design Guide 2-17



HDL Synthesis for FPGAs Design Guide
When you run the Partition, Place, and Route (PPR) program on the
example in Figure , the following warning message appears.

** Warning: [tspec: COMBINATIONAL_LOOPS]
This design has 1 purely combinational loop. Such
loops should be avoided. If at all possible,
please modify the design to eliminate all
unclocked feedback paths.

To eliminate this warning message, use D registers instead of latches.
For example, in the code example in Figure 2-13, to convert the
D latch to a D register, use an Else statement, a Wait Until statement,
or modify the code to resemble the code in Figure 2-15.

In the example in Figure 2-15, you can use a Wait Until statement
instead of an If statement, however, use an If statement when possible
because it gives you more control over the inferred register’s
capabilities. For more information on latches and registers, refer to
the Synopsys VHDL compiler documentation.

Figure 2-15 Converting a D Latch to a D Register

If you are using the Synopsys Design Compiler or FPGA Compiler,
you can determine the number of latches that are implemented when
your design is read with the following command:

hdlin_check_no_latch = “TRUE”
2-18 Xilinx Development System



HDL Coding Hints
When you set this command to true, a warning message is issued
when a latch is inferred from a design. Use this command to verify
that a combinatorial design does not contain latches. The default
value for this command is false.

You should convert all If statements without corresponding Else
statements and without a clock edge to registers. Use the
recommended register coding styles in the synthesis tool
documentation to complete this conversion.

In XC4000 devices, you can implement a D latch by instantiating a
RAM 16x1 primitive, as illustrated in Figure 2-16.

Figure 2-16 D Latch Implemented by Instantiating a RAM

In all other cases (such as latches with reset/set or enable), use a D
flip-flop instead of a latch. This rule also applies to JK and SR
flip-flops.

Table 2-1 provides a comparison of area and speed for a D latch
implemented with gates, a 16x1 RAM primitive, and a D flip-flop.

X6220

RAM 16X1

A3

A2

A1
A0

WE

DD Q

G

GND

O

HDL Synthesis for FPGAs Design Guide 2-19



HDL Synthesis for FPGAs Design Guide
Table 2-1 D Latch Implementation Comparison

1Area is the number of function generators and registers required. Each CLB has
two function generators and two registers in XC4000 devices.
2Speed is the number of CLB logic levels required.

Resource Sharing
Resource sharing is an optimization technique that uses a single
functional block (such as an adder or comparator) to implement
several operators in the HDL code. Use resource sharing to improve
design performance by reducing the gate count and the routing
congestion. If you do not use resource sharing, each HDL operation is
built with separate circuitry. However, you may want to disable
resource sharing for speed critical paths in your design.

The following operators can be shared either with instances of the
same operator or with the operator on the same line.

*
+ -
> >= < <=

For example, a + operator can be shared with instances of other
+ operators or with - operators.

You can implement arithmetic functions (+, -, magnitude
comparators) with gates, Synopsys DesignWare functions, or Xilinx

Comparison D Latch
XC4000 RAM 16x1

Primitive
D Flip-Flop

Advantages/
Disadvantages

RTL HDL that infers
D latch implemented
with gates. Combina-
torial feed-back loop
results in hold-time
requirement.

Structural HDL.
Instantiated RAM 16x1
primitive.
No hold time or com-
binatorial loop.

Requires change to the
RTL HDL to convert D
latches to D flip-flops.
No hold time or com-
binatorial loop.

Area1 1 Function Generator 1 Function Generator 1 Register

Speed2 1 Logic Level;
combinatorial feed-
back loop.

1 Logic Level; no com-
binatorial loop.

1 Logic Level; no com-
binatorial loop.
2-20 Xilinx Development System



HDL Coding Hints
DesignWare functions. The Xilinx DesignWare functions use
X-BLOX modules that take advantage of the carry logic in XC4000
CLBs. XC4000 carry logic and its dedicated routing increase the
speed of arithmetic functions that are larger than 4-bits. To increase
speed, use the Xilinx X-BLOX DesignWare library if your design
contains arithmetic functions that are larger than 4-bits or if your
design contains only one arithmetic function. Resource sharing of the
Xilinx DesignWare library automatically occurs if the arithmetic
functions are in the same process.

Resource sharing adds additional logic levels to multiplex the inputs
to implement more than one function. Therefore, you may not want
to use it for arithmetic functions that are part of your design’s critical
path.

Since resource sharing allows you to reduce the number of design
resources, the device area required for your design is also decreased.
The area that is used for a shared resource depends on the type and
bit width of the shared operation. You should create a shared
resource to accommodate the largest bit width and to perform all
operations.

If you use resource sharing in your designs, you may want to use
multiplexers to transfer values from different sources to a common
resource input. In designs that have shared operations with the same
output target, the number of multiplexers is reduced as illustrated in
Figure 2-17. The HDL example in Figure 2-17 is shown implemented
with gates in Figure 2-18.
HDL Synthesis for FPGAs Design Guide 2-21



HDL Synthesis for FPGAs Design Guide
Figure 2-17 Resource Sharing
2-22 Xilinx Development System



HDL Coding Hints
Figure 2-18 Implementation of Resource Sharing

If you disable resource sharing with the Hdl_resource_allocation =
none command or if you code the design with the adders in separate
processes, the design is implemented using two X-BLOX modules as
shown in Figure 2-19.
HDL Synthesis for FPGAs Design Guide 2-23



HDL Synthesis for FPGAs Design Guide
Figure 2-19 Implementation of No Resource Sharing
2-24 Xilinx Development System



HDL Coding Hints
Table 2-2 provides a comparison of the number of CLBs used and the
delay for the design in Figure 2-17 with and without resource
sharing. The last column in Table 2-2 provides CLB and delay
information for the same design with resource sharing and without
X-BLOX modules.

Table 2-2  Resource Sharing/No Resource Sharing Comparison

Note: You can manually specify resource sharing with pragmas.
Refer to the appropriate Synopsys reference manual for more
information on resource sharing.

Gate Reduction
Use the Synopsys DesignWare library components to reduce the
number of gates in your designs. Gate reduction occurs when
arithmetic functions are compiled with modules that contain similar
functions. Gate reduction does not occur with the X-BLOX
DesignWare library because the underlying logic of the components
is not available when the design is compiled. The component logic is
created later when the X-BLOX program is run.

In the design shown in Figure 2-20, two instances of the xblox_dw
function are called. To reduce the gate count, the two instances (I_0
and I_1) are grouped together and compiled with the
-ungroup_all option. This option allows both instances to be
evaluated and optimized together.

Comparison
Resource

Sharing with
Xilinx DesignWare

No Resource
Sharing with

Xilinx DesignWare

Resource
Sharing without

Xilinx DesignWare

F/G Functions 24 24 28

Fast Carry Logic CLBs 5 10 0

Longest Delay 53.2 ns 46.0 ns 92.6 ns

Advantages/
Disadvantages

Potential for area
reduction

Potential for
decreased critical
path delay

No carry logic
increases CLB
count; longer path
delays
HDL Synthesis for FPGAs Design Guide 2-25



HDL Synthesis for FPGAs Design Guide
Figure 2-20 Gate Reduction

Table 2-3 provides a comparison of the number of CLBs used and the
delay for the design in Figure 2-20 using the Synopsys DesignWare
library and the X-BLOX DesignWare library. Fewer CLBs are used
when the Synopsys DesignWare library is used because the gates are
reduced by flattening and compiling the two instances together.
2-26 Xilinx Development System



HDL Coding Hints
Table 2-3  Synopsys DesignWare/X-Blox DesignWare

1ClockToSetup
2PadToSetup
3ClockToPad

Note: Use the following Synopsys commands to reduce the compile
time when compiling to reduce area.

dc_shell> set_resource_implementation=area_only

dc_shell> set_resource_allocation=area_only

These commands reduce the compile time when optimizing for area
without changing the results.

Preset Pin or Clear Pin
Xilinx FPGAs consist of CLBs that contain function generators and
flip-flops. The XC4000 flip-flops have a dedicated clock enable pin
and either a clear (asynchronous reset) pin or a preset (asynchronous
set) pin. All non-register functions and latches are implemented with
combinatorial logic in the function generators.

You can configure XC4000 CLB registers to have either a preset pin or
a clear pin. You cannot configure the CLB for both pins. You must
modify any process that requires both pins to use only one pin or you
must use two registers to implement the process. An XC4000 CLB is
shown in Figure 2-21.

DesignWare
Library

Synopsys
FPGA Report

PPR Report
XDelay

(CLB Levels)

Synopsys
DesignWare
Library

48 CLBs 61 Occupied C2S1: 33.7 (4)
P2S2: 53.0 (6)
C2P3: 16.4 (0)

X-BLOX
DesignWare
Library

71 CLBs 82 Occupied C2S1: 48.9 (8)
P2S2: 32.1 (3)
C2P3: 15.8 (0)
HDL Synthesis for FPGAs Design Guide 2-27



HDL Synthesis for FPGAs Design Guide
Figure 2-21 XC4000 Configurable Logic Block

The HDL design in Figure 2-22 shows how to describe a register with
a clock enable and either a preset or a clear.

LOGIC

FUNCTION


OF

G1-G4

G4

G3

G2

G1

G'

LOGIC

FUNCTION


OF

F1-F4

F4

F3

F2

F1

F'

LOGIC

FUNCTION


OF

F', G',

AND

H1

H'

DIN

F'

G'

H'

DIN

F'

G'

H'

G'

H'

H'

F'

S/R

CONTROL

D

EC
RD

SD
Q XQ

S/R

CONTROL

D

EC
RD

SD
Q YQ

1

1

K

(CLOCK)

X

Y

H1 DIN S/R EC

C1 C2 C3 C4

X4913

CLB
2-28 Xilinx Development System



HDL Coding Hints
Figure 2-22 Register Inference
HDL Synthesis for FPGAs Design Guide 2-29



HDL Synthesis for FPGAs Design Guide
Using Clock Enable Pin

Use the CLB clock enable pin instead of gated clocks in your designs.
Figure 2-23 illustrates a design that uses a gated clock and Figure 2-24
shows the design implemented with gates. Figure 2-25 shows how
you can modify this design to use the clock enable pin of the CLB and
Figure 2-26 shows this design implemented with gates.

Figure 2-23 Gated Clock

Figure 2-24 Implementation of Gated Clock

D
DATA

LOAD

IN1

IN2

CLK
NAND3

GATECLK

OUT1
DFF

CE

C

Q

X4973
2-30 Xilinx Development System



HDL Coding Hints
Figure 2-25 Gated Clock Modified to Use Clock Enable Pin

Figure 2-26 Implementation of Clock Enable

Using If Statements
The VHDL syntax for If statements is as follows:

if condition then
sequence_of_statements;

{elsif condition then
sequence_of_statements;}

else
sequence_of_statements;

end if;

D

DATA

IN1

IN2

LOAD

CLOCK

ENABLE
AND3

OUT1
DFF

CE

C

Q

X4976
HDL Synthesis for FPGAs Design Guide 2-31



HDL Synthesis for FPGAs Design Guide
Use If statements to execute a sequence of statements based on the
value of a condition. The If statement checks each condition in order
until the first true condition is found and then executes the
statements associated with that condition. Once a true condition is
found and the statements associated with that condition are executed,
the rest of the If statement is ignored. If none of the conditions are
true, and an Else clause is present, the statements associated with the
Else are executed. If none of the conditions are true, and an Else
clause is not present, none of the statements are executed.

If the conditions are not completely specified (as shown below), a
latch is inferred to hold the value of the target signal.

If (L = ‘1’) then
Q <= D;

end if;

To avoid a latch inference, specify all conditions, as shown here.

If (L = ‘1’) then
Q <= D;

else
Q <= ‘0’;

end if;

Using Case Statements
The VHDL syntax for Case statements is as follows:

case expression is
when choices =>

{sequence_of_statements;}
{when choices =>

{sequence_of_statements;}}
when others =>

{sequence_of_statements;}
end case;

Use Case statements to execute one of several sequences of
statements, depending on the value of the expression. When the Case
statement is executed, the given expression is compared to each
choice until a match is found. The statements associated with the
matching choice are executed. The statements associated with the
Others clause are executed when the given expression does not match
2-32 Xilinx Development System



HDL Coding Hints
any of the choices. The Others clause is optional, however, if you do
not use it, you must include all possible values for expression. Also,
each When statement must have a unique value for the expression.

Using Nested_If Statements
Improper use of the Nested_If statement can result in an increase in
area and longer delays in your designs. Each If keyword specifies
priority-encoded logic. To avoid long path delays, do not use
extremely long Nested_If constructs as shown in Figure 2-27. This
description is shown implemented in gates in Figure 2-28. The same
example is shown in Figure 2-29, however, the Case construct is used
with the Nested_If to more effectively describe the same function.
The Case construct reduces the delay by approximately 10 ns (using
an XC4005-5 part). The implementation of this description is shown
in Figure 2-30.
HDL Synthesis for FPGAs Design Guide 2-33



HDL Synthesis for FPGAs Design Guide
Figure 2-27 Inefficient Use of Nested_If Statement
2-34 Xilinx Development System



HDL Coding Hints
Figure 2-28 Implementation of Nested_If
HDL Synthesis for FPGAs Design Guide 2-35



HDL Synthesis for FPGAs Design Guide
Figure 2-29 Nested-If Example Modified to Use If-Case
2-36 Xilinx Development System



HDL Coding Hints
Figure 2-30 Implementation of If-Case

Comparing If Statement and Case Statement
The If statement produces priority-encoded logic and the Case
statement creates parallel logic. An If statement can contain a set of
different expressions while a Case statement is evaluated against a
common controlling expression. In general, use the Case statement
for complex decoding and use the If statement for speed critical
paths.

The code example in Figure 2-31 uses an If construct in a 4-to-1
multiplexer design. Figure 2-32 shows the implementation of this
design. The code example in Figure 2-33 uses a Case construct for the
HDL Synthesis for FPGAs Design Guide 2-37



HDL Synthesis for FPGAs Design Guide
same multiplexer. Figure 2-34 shows the implementation of this
design. In these examples, the Case implementation requires only one
XC4000 CLB while the If construct requires two CLBs (using the
Synopsys FPGA compiler). In this case, design the multiplexer using
the Case construct because fewer resources are used and the delay
path is shorter.

Figure 2-31 4-to-1 Multiplexer Design with If Construct
2-38 Xilinx Development System



HDL Coding Hints
Figure 2-32 If_Ex Implementation

Figure 2-33 4-to-1 Multiplexer Design with Case Construct
HDL Synthesis for FPGAs Design Guide 2-39



HDL Synthesis for FPGAs Design Guide
Figure 2-34 Case_Ex Implementation

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

SEL [1:0]

A

B

C

D

logic_0

logic_0

U42_f

U42_g U42_h
OBUF_F

MUX_OUT

SEL [1]

SEL [0]

X6196

One CLB
2-40 Xilinx Development System



Chapter 3
HDL Synthesis for FPGAs Design Guide — 0401294 01 3-1

HDL Coding for FPGAs

Xilinx FPGAs provide the benefits of custom CMOS VLSI and allow
you to avoid the initial cost, time delay, and risk of conventional
masked gate array devices. In addition to the logic in the CLBs and
IOBs, XC4000 FPGAs contain system-oriented features such as the
following.

● Global low-skew clock or signal distribution network

● Wide edge decoders

● On-chip RAM and ROM

● IEEE 1149.1 — compatible boundary scan logic support

● Flexible I/O with Adjustable Slew-rate Control and
Pull-up/Pull-down Resistors

● 12-mA sink current per output and 24-mA sink per output pair

● Dedicated high-speed carry-propagation circuit

You can use these device characteristics to improve resource
utilization and enhance the speed of critical paths in your HDL
designs. The examples in this chapter are provided to help you
incorporate these system features into your HDL designs.

This chapter also provides information on implementing the
following in your designs:

● State machines

● X-BLOX modules

● Relationally Placed Modules (RPMs)

● XACT-Performance Timing Constraints



HDL Synthesis for FPGAs Design Guide
Using Global Low-skew Clock Buffers
XC4000 devices have four primary (BUFGP) and four secondary
(BUFGS) global clock buffers that share four global routing lines, as
shown in Figure 3-1.

Figure 3-1 Global Buffer Routing Resources

These global routing resources are only available for the eight global
buffers. The eight global nets run horizontally across the middle of
the device and can be connected to one of the four vertical longlines
that distribute signals to the CLBs in a column. Because of this
arrangement only four of the eight global signals are available to the
CLBs in a column. These routing resources are “free” resources
because they are outside of the normal routing channels. Use these
resources whenever possible. You may want to use the secondary
buffers first because they have more flexible routing capabilities.

You should use the global buffer routing resources primarily for
high-fanout clocks that require low skew, however, you can use them
to drive certain CLB pins, as shown in Figure 3-2. In addition, you can
use these routing resources to drive high-fanout clock enables, clear
lines, and the clock pins (K) of CLBs and IOBs.

BUFGS

BUFGP

BUFGS

BUFGP

BUFGP

BUFGS

BUFGP

BUFGS

PGCK2

SGCK1

PGCK4

SGCK2

BUFGS

BUFGP PGCK3

SGCK3

PGCK1

SGCK4

X4987
3-2 Xilinx Development System



HDL Coding for FPGAs
In Figure 3-2, the C pins drive the input to the H function generator,
Direct Data-in, Preset, Clear, or Clock Enable pins. The F and G pins
are the inputs to the F and G function generators, respectively.

Figure 3-2 Global Longlines Resource CLB Connections

If your design does not contain four high-fanout clocks, use these
routing resources for signals with the next highest fanout. To reduce
routing congestion, use the global buffers to route high-fanout
signals. These high-fanout signals include clock enables and reset
signals (not global reset signals). Use global buffer routing resources
to reduce routing congestion; enable routing of an otherwise
unroutable design; and ensure that routing resources are available for
critical nets.

Xilinx recommends that you assign up to four secondary global clock
buffers to the four signals in your design with the highest fanout
(such as clock nets, clock enables, and reset signals). Clock signals
that require low skew have priority over low-fanout non-clock
signals. You can source the signals with an input buffer or a gate
internal to the design. Generate internally sourced clock signals with
a register to avoid unwanted glitches. The synthesis tool can insert
global clock buffers or you can instantiate them in your HDL code.

Note: Use Global Set/Reset resources when applicable. Refer to the
“Using Dedicated Global Set/Reset Resource” section in this chapter
for more information.

F4 C4 G4 YQ

G1

C1

K

F1

X

XQ F2 C2 G2

F3

C3

G3

Y

CLB

“Global”

Long Lines

X5520

“Global”

Long Lines
HDL Synthesis for FPGAs Design Guide 3-3



HDL Synthesis for FPGAs Design Guide
Inserting Clock Buffers
Most synthesis tools can automatically insert global clock buffers.
Synopsys tools automatically insert a secondary global clock buffer
on all input ports that drive a register’s clock pin or a gated clock
signal. To disable the automatic insertion of clock buffers and specify
the ports that should have a clock buffer, perform the following steps.

1. In the Synopsys Design Compiler, ports that drive gated clocks or
a register’s clock pin are assigned a clock attribute. Remove this
attribute from ports tagged with the clock attribute by typing:

set_pad_type -no_clock “*”

2. Assign a clock attribute to the input ports that should have a
BUFGS as follows:

set_pad_type -clock { input ports}

3. Enter the following commands:

set_port_is_pad “*”

insert_pads

The Insert_pads command causes the FPGA Compiler to
automatically insert a generic BUFG clock buffer to ports tagged
with a clock attribute. At a later stage in the place and route
process, the XNFPrep program replaces the BUFG with the
appropriate clock buffer.

Note: Refer to the Synopsys (XSI) for FPGAs Interface/Tutorial Guide for
more information on inserting I/O buffers and clock buffers.

Instantiating Internal Global Clock Buffers
If a high-fanout signal is sourced internally, you must instantiate the
BUFGS in your HDL code in order to use the dedicated routing
resource. It is easier to change the name of the signal that drives the
buffer rather than the lines that are driven by this signal.

Using Dedicated Global Set/Reset Resource
XC4000 devices have a dedicated Global Set/Reset (GSR) net that you
can use to initialize all CLBs and IOBs. When the GSR is asserted,
3-4 Xilinx Development System



HDL Coding for FPGAs
every flip-flop in the FPGA is simultaneously preset or cleared. You
can access the GSR net from the GSR pin on the STARTUP block.

Since the GSR net has dedicated routing resources that connect to the
Preset or Clear pin of the flip-flops, you do not need to use general
purpose routing resources to connect to these pins. If your design has
a Preset or Clear signal that effects every flip-flop in your design, use
the GSR net to increase design performance and reduce routing
congestion. After performing an RTL simulation of your design,
remove the Preset or Clear signal from the synthesized design and
connect the Clear signal to the GSR pin of the STARTUP block.

Startup State
The GSR pin on the STARTUP block drives the GSR net and connects
to each flip-flop’s Preset and Clear pin. When you connect a signal
from a pad to the STARTUP block’s GSR pin, the GSR net is activated.
Since the GSR net is built into the silicon it does not appear in the
pre-routed XNF file. When the GSR signal is asserted High (the
default), all flip-flops and latches are set to the state they were in at
the end of configuration. When you simulate the routed design, the
gate simulator translation program correctly models the GSR
function.

Note: For XC3000 devices, all flip-flops and latches are reset to zero
after configuration.

Preset vs. Clear
XC4000 flip-flops are configured as either preset (asynchronous set)
or clear (asynchronous reset). Automatic assertion of the GSR net
presets or clears each flip-flop. You can assert the GSR pin at any time
to produce this global effect. You can also preset or clear individual
flip-flops with the flip-flop’s dedicated Preset or Clear pin. When a
Preset or Clear pin on a flip-flop is connected to an active signal, the
state of that signal controls the startup state of the flip-flop. For
example, if you connect an active signal to the Preset pin, the flip-flop
starts up in the preset state. If you do not connect the Clear or Preset
pin, the default startup state is a clear state. To change the default to
preset, assign an INIT=S attribute to the flip-flop.
HDL Synthesis for FPGAs Design Guide 3-5



HDL Synthesis for FPGAs Design Guide
I/O flip-flops and latches do not have individual Preset or Clear pins.
The default value of these flip-flops and latches is clear. To change the
default value to preset, assign an INIT=S attribute.

Note: Refer to the Synopsys (XSI) for FPGAs Interface/Tutorial Guide for
information on changing the initial state of registers that do not use
the Preset or Clear pins.

Increasing Performance with the GSR Net
Many designs contain a net that initializes most of the flip-flops in the
design. If this signal can initialize all the flip-flops, you can use the
GSR net. You should always include a net that initializes your design
to a known state.

To ensure that your HDL simulation results at the RTL level match
the synthesis results, modify your code so that every flip-flop and
latch is preset or cleared when the GSR signal is asserted. The
Synthesis tool cannot infer the GSR net from HDL code. To utilize the
GSR net, you must instantiate the STARTUP block, as shown in
Figure 3-5.

Design Example without Dedicated GSR Resource

In the No_GSR design shown in Figure 3-3, the signal RESET
initializes all the registers in the design. This design includes two
4-bit counters. One counter counts up and is reset to all zeros on
assertion of RESET and the other counter counts down and is reset to
all ones on assertion of RESET. Figure 3-4 shows the No_GSR design
implemented with gates.
3-6 Xilinx Development System



HDL Coding for FPGAs
Figure 3-3 Design without Dedicated GSR Resource
HDL Synthesis for FPGAs Design Guide 3-7



HDL Synthesis for FPGAs Design Guide
Figure 3-4 No_GSR Implemented with Gates

Design Example with Dedicated GSR Resource

To reduce routing congestion and improve the overall performance of
the reset net in the No_GSR design, use the dedicated GSR net
instead of the general purpose routing. Instantiate the STARTUP
block in your design and use the GSR pin on the block to access the
global reset net. The modified design (Use_GSR) is shown in
Figure 3-5. The Use_GSR design implemented with gates is shown in
Figure 3-6.

On assertion of the GSR net, flip-flops return to a clear (or Low) state
by default. You can override this default by using the flip-flop's preset
pin or by adding the INIT=S attribute to the flip-flop (described
below).

The Use_GSR design explicitly states that the down-counter resets to
all ones, therefore, asserting the reset net causes this counter to reset
to a default of all zeros. You can use one of the following two
methods to prevent this reset to zeros.

● Remove the comment characters from the last few lines of code in
the Use_GSR design. These lines of code correctly describe the
behavior of the design (in response to the assertion of reset).
However, when you synthesize the design, the Preset pins on the
flip-flops that form the down-counter are used and the Clear pins
on the flip-flops that form the up-counter are used. Using these
pins defeats the purpose of using the GSR net.
3-8 Xilinx Development System



HDL Coding for FPGAs
● Attach the INIT=S attribute to the down-counter flip-flops as
follows:

set_attribute cell name fpga_xilinx_init_state\
-type string “S”

Note: The “\” character represents a continuation marker.

This command allows you to override the default clear (or Low)
state when your code does not specify a preset condition.
However, since attributes are assigned outside the HDL code, the
code no longer accurately represents the behavior of the design.

Note: Refer to the Synopsys (XSI) for FPGAs Interface/Tutorial Guide for
more information on assigning attributes.

Xilinx recommends removing the comment characters from the last
few lines of the Use_GSR code when you perform an RTL simulation
and attaching the INIT=S attribute to the relevant flip-flops when you
synthesize the design.

The STARTUP block must not be optimized during the synthesis
process. Add a Don’t Touch attribute to the STARTUP block before
compiling the design as follows:

dont_touch cell_name

The Xilinx X-BLOX architecture optimizer automatically uses the
GSR net if each flip-flop and IOB latch in your design uses a common
signal to drive the Preset or Clear pins.
HDL Synthesis for FPGAs Design Guide 3-9



HDL Synthesis for FPGAs Design Guide
Figure 3-5 Design with Dedicated GSR Resource
3-10 Xilinx Development System



HDL Coding for FPGAs
Figure 3-6 Use_GSR Implemented with Gates

Design Example with Dedicated GSR Resource and
Additional Preset Signal

The Use_GSR design is modified to allow a reset of the down-counter
to all ones by either asserting the global reset net or by asserting an
additional preset signal. A port designated “preset” is added to the
design. This new port only effects the down-counter. The new design,
Use_GSR_PRE, is shown in Figure 3-7. Figure 3-8 shows this design
implemented with gates.
HDL Synthesis for FPGAs Design Guide 3-11



HDL Synthesis for FPGAs Design Guide
Figure 3-7 Design with Dedicated GSR Resource and Additional
Preset Signal
3-12 Xilinx Development System



HDL Coding for FPGAs
Figure 3-8 Use_GSR_PRE Implemented with Gates

Encoding State Machines
The traditional methods used to generate state machine logic result in
highly-encoded states. State machines with highly-encoded state
variables typically have a minimum number of flip-flops and wide
combinatorial functions. These characteristics are acceptable for PAL
and gate array architectures. However, because FPGAs have many
flip-flops and narrow function generators, highly-encoded state
variables can result in inefficient implementation in terms of speed
and density.

One-hot encoding allows you to create state machine
implementations that are more efficient for FPGA architectures. You
can create state machines with one flip-flop per state and decreased
width of combinatorial logic. One-hot encoding is usually the
preferred method for large FPGA-based state machine
implementation. For small state machines (fewer than 8 states),
binary encoding may be more efficient. To improve design
performance, you can divide large (greater than 32 states) state
machines into several small state machines and use the appropriate
encoding style for each.

Three design examples are provided in this section to illustrate the
three coding methods (binary, enumerated type, and one-hot) you
can use to create state machines. All three examples contain an
identical Case statement. To conserve space, the complete Case
HDL Synthesis for FPGAs Design Guide 3-13



HDL Synthesis for FPGAs Design Guide
statement is only included in Figure 3-10; refer to this figure when
reviewing Figure 3-11 and Figure 3-12.

Note: The angle bracket in each of the three examples indicates the
portion of the code that varies depending on the method used to
encode the state machine.

Using Binary Encoding
The state machine bubble diagram in Figure 3-9 shows the operation
of a seven-state machine that reacts to inputs A through E as well as
previous-state conditions. The binary encoded method of coding this
state machine is shown in Figure 3-10. This design example shows
you how to take a design that has been previously encoded (for
example, binary encoded) and synthesize it to the appropriate
decoding logic and registers. This design uses three flip-flops to
implement seven states.

Figure 3-9 State Machine Bubble Diagram

X6102

State1

A•B•C

State2

Multi

State3

Contig

State7

Contig

State5

Multi

State6

Contig,Single

State4

Multi, Contig

A+D

A•B•C

E

E

D

D
A•B•C
3-14 Xilinx Development System



HDL Coding for FPGAs
{

HDL Synthesis for FPGAs Design Guide 3-15



HDL Synthesis for FPGAs Design Guide
Figure 3-10 Binary Encoded State Machine

Using Enumerated Type Encoding
The recommended encoding style for state machines depends on
which synthesis tool you are using. If you use the Synopsys synthesis
tool, you can explicitly declare state vectors or you can allow the tool
to determine the vectors. Synopsys recommends that you use
enumerated type encoding to specify the states and use the Finite
State Machine (FSM) extraction commands to extract and encode the
state machine as well as to perform state minimization and
optimization algorithms. The enumerated type method of encoding
the seven-state machine is shown in Figure 3-11. The encoding style is
not defined in the code, but can be specified later with the FSM
extraction commands. Alternatively, you can allow the Synopsys
compiler to select the encoding style that results in the lowest gate
count when the design is synthesized.
3-16 Xilinx Development System



HDL Coding for FPGAs
Note: Refer to Figure 3-10 for the complete Case statement portion of
the code.

Figure 3-11 Enumerated Type Encoded State Machine

Using One-Hot Encoding
The example in Figure 3-12 shows a one-hot encoded state machine.
Use this method to control the state vector specification or when you
want to specify the names of the state registers. This example uses
one flip-flop for each of the seven states.

Note: Refer to Figure 3-10 for the complete Case statement portion of
the code. See “Appendix A” of this manual for a detailed description
of one-hot encoding and its applications.

{

HDL Synthesis for FPGAs Design Guide 3-17



HDL Synthesis for FPGAs Design Guide
Figure 3-12 One-hot Encoded State Machine

Summary of Encoding Styles
In the three previous examples, the state machine’s possible states are
defined by an enumeration type. Use the following syntax to define
an enumeration type.

type type_name is (enumeration_literal {, enumeration_literal} );

{

3-18 Xilinx Development System



HDL Coding for FPGAs
After you have defined an enumeration type, declare the signal
representing the states as the enumeration type as follows:

type STATE_TYPE is (S1, S2, S3, S4, S5, S6, S7);
signal CS, NS: STATE_TYPE;

The state machine described in the three previous examples has
seven states. The possible values of the signals CS (Current_State)
and NS (Next_State) are S1, S2, ... , S6, S7.

To select an encoding style for a state machine, specify the state
vectors. Alternatively, you can specify the encoding style when the
state machine is compiled. Xilinx recommends that you specify an
encoding style. If you do not specify a style, the Synopsys Compiler
selects a style that minimizes the gate count. For the state machine
shown in the three previous examples, the compiler selected the
binary encoded style: S1=“000”, S2=”001”, S3=”010”, S4=”011”,
S5=”100”, S6=”101”, and S7=”110”.

You can use the FSM extraction tool to change the encoding style of a
state machine. For example, use this tool to convert a binary-encoded
state machine to a one-hot encoded state machine. The Synopsys
enum.script file contains the commands you need to convert an
enumerated types encoded state machine to a one-hot encoded state
machine.

Note: Refer to the Synopsys documentation for instructions on how
to extract the state machine and change the encoding style.

Comparing Synthesis Results for Encoding Styles
Table 3-1 summarizes the synthesis results from the different
methods used to encode the state machine in Figure 3-10, Figure 3-11,
and Figure 3-12. The results are for an XC4005PC84-5 device.
HDL Synthesis for FPGAs Design Guide 3-19



HDL Synthesis for FPGAs Design Guide
Table 3-1  State Machine Encoding Styles Comparison
(XC4005-5)

*The number in parentheses represents the CLB block level delay.

The binary-encoded state machine has the longest ClockToSetup
delay. Generally, the FSM extraction tool provides the best results
because the Synopsys Compiler reduces any redundant states and
optimizes the state machine after the extraction.

Note: XDelay was used to obtain the timing results in Table 3-1.

Initializing the State Machine
When you use one-hot encoding, assign an INIT=S attribute to the
initial state register to ensure that the FPGA is initialized to a Set
state. If you use the FPGA Compiler, use the following command to
specify your design’s start-up state.

set_attribute “CS_reg<0>”\
fpga_xilinx_init_state -type string “S”

Note: The “\” character in this command represents a continuation
marker.

Alternatively, you can add the following lines of code to your design
to specify the initial state.

SYNC_PROC: process (CLOCK, RESET)

begin

if (RESET=’1’) then

CS <= s1;

Comparison One-Hot Binary
Enum

(One-hot)

Occupied CLBs 15 17 11
CLB Flip-flops 7 3 7
PadToSetup 33.8 ns (2*) 42.8 ns (4) 27.6 ns (2)
ClockToPad 23.9 ns (1) 24.6 ns (1) 22.1 ns (1)
ClockToSetup 19.9 ns (1) 29.3 ns (3) 15.8 ns (1)
3-20 Xilinx Development System



HDL Coding for FPGAs
In the example shown in Figure 3-10, the signal RESET forces the S1
flip-flop to be preset (initialized to 1) while the other flip-flops are
cleared (initialized to 0).

Using Dedicated I/O Decoders
The periphery of the XC4000 device has four wide decoder circuits at
each edge (two in XC4000A devices). The inputs to each decoder are
any of the IOB signals on that edge plus one local interconnect per
CLB row or column. Each decoder generates a High output (using a
pull-up resistor) when the AND condition of the selected inputs or
their complements is true. The decoder outputs drive CLB inputs so
they can be combined with other logic or can be routed directly to the
chip outputs.

To implement XC4000 edge decoders in HDL, you must instantiate
edge decoder primitives. The primitive names you can use vary with
the synthesis tool you are using. If you use Synopsys tools, you can
instantiate the following primitives: DECODE1_IO, DECODE1_INT,
DECODE4, DECODE8, and DECODE16. These primitives are
implemented using the dedicated I/O edge decoders. The XC4000
wide decoder outputs are effectively open-drain and require a
pull-up resistor to take the output High when the specified pattern is
detected on the decoder inputs. To attach the pull-up resistor to the
output signal, you must instantiate a PULLUP component.

The example in Figure 3-13 shows you how to use the I/O edge
decoders by instantiating the decode primitives from the XSI library.
Each decoder output is a function of ADR (IOB inputs) and CLB_INT
(local interconnects). The AND function of each DECODE output and
Chip Select (CS) serves as the source of a flip-flop Clock Enable pin.
The four edge decoders in this design are placed on the same device
edge. Figure 3-14 shows the schematic block diagram representation
of this I/O decoder design.
HDL Synthesis for FPGAs Design Guide 3-21



HDL Synthesis for FPGAs Design Guide
3-22 Xilinx Development System



HDL Coding for FPGAs
HDL Synthesis for FPGAs Design Guide 3-23



HDL Synthesis for FPGAs Design Guide
Figure 3-13 Using Dedicated I/O Decoders
3-24 Xilinx Development System



HDL Coding for FPGAs
Figure 3-14 Schematic Block Representation of I/O Decoder

Note: In Figure 3-14, the pull-up resistors are inside the Decoder
blocks.

Instantiating X-BLOX Modules
This section describes how to instantiate X-BLOX modules in your
HDL code. Most synthesis tools can infer arithmetic X-BLOX
modules from VHDL or Verilog arithmetic operators (+ , -, <, <=, >,
>=, +1, and -1). These X-BLOX modules use the XC4000 dedicated
carry logic to improve the area and speed of designs. For bus widths
greater than four, X-BLOX modules are generally faster unless
multiple instances of the same function are compiled together.

CLK

CLK

CLK

CLK

CLK

DATA0

DATA1

QOUT0

QOUT1

QOUT2

QOUT3

CLOCK

ADR4

ADR2

ADR1

ADR0

OBUF

FDCE

QD

CLR

CE

C

OBUF

FDCE

QD

CLR

CE

C

OBUF

FDCE

QD

CLR

CE

C

BUFG

FDCE

QD

CLR

CE

C

OBUF

IBUF

IBUF

IBUF

IBUF

IBUF

CLOCK

CLB_INT[3:0]

COUNT4

OA[8:0]

OA[8:0]

OA[8:0]

IPAD

IPAD

IPAD

IPADADR3

IPAD

IPAD

OPAD

OPAD

OPAD

OPAD

IBUF

IBUF

IBUF

IBUF

IPAD

IPAD

IPAD

IPAD

DATA3

DATA2

DECODER_D

OA[8:0]

DECODER_C

DECODER_B

DECODER_A
HDL Synthesis for FPGAs Design Guide 3-25



HDL Synthesis for FPGAs Design Guide
Note: Refer to the “Resource Sharing” and “Gate Reduction” sections
in the “HDL Coding Hints” chapter for more information.

The synthesis tool automatically infers the ADD_SUB, INC_DEC, and
COMPARE modules. Xilinx X-BLOX modules include additional
functions that cannot be automatically inferred by the synthesis tool.
You must explicitly instantiate these X-BLOX functions.

Using X-BLOXGen
X-BLOXGen is a program that allows you to instantiate X-BLOX
modules in your HDL code. You can use X-BLOXGen to instantiate
the X-BLOX modules listed in Table 3-2.

Table 3-2  X-BLOX Modules Instantiated with X-BLOXGen

X-BLOXGen prompts you for the name of the X-BLOX module and
for the size and values of the attributes for that module. X-BLOXGen
does not check the validity of the information that you enter in
response to the screen prompts. Any data input errors are reported by
X-BLOX in the X-BLOX log file (design.blx).

Copy the component declaration and template of the instantiation
into your HDL code. Complete the instantiation by assigning the

X-BLOX Modules Description

ACCUM Universal accumulator

ADD_SUB Adder and subtracter

COMPARE Compares the magnitude and equality of two
values

COUNTER Universal counter

DATA_REG Universal register

DECODE Translates data from any encoding to one-hot
encoding

INC_DEC Increments and decrements by a constant

SHIFT Register that loads and shifts data in parallel or
serially; also shifts data out

CLK_DIV Clock divider
3-26 Xilinx Development System



HDL Coding for FPGAs
signals that are connected to the X-BLOX module. Figure 3-15 shows
the design flow for X-BLOXGen.

Note: Refer to the X-BLOX Reference/User Guide for information on
X-BLOX modules and attributes.

Figure 3-15 X-BLOXGen Flow Diagram

Syntax

To use X-BLOXGen, enter the following on the command line.

xbloxgen X-BLOX module name -options

Specify the X-BLOX module you want to generate in lower case, such
as accum, add_sub, compare, counter, compare, data_reg, decode,
inc_dec, shift, or clk_div. If you do not specify a module name, you
are prompted for a name.

Synthesize and
Optimize

X-BLOXGen Module Name
-vhdl or -verilog

X6040

Interactive User
Input

design.xnf

top.sxnf

top.lca

XMake

design.vhd
or design.v

top.vhd
or top.v

design.xbg design.blx
HDL Synthesis for FPGAs Design Guide 3-27



HDL Synthesis for FPGAs Design Guide
Options

If you do not specify an option, you are prompted for one.

-vhdl

Creates an XNF file and an output file that contains the VHDL
component declaration and template for the component instantiation.
Copy the declaration and template into your HDL code. The default
data types are Std_logic and Std_logic_vector.

-verilog

Creates an XNF file and an output file that contains the Verilog
component declaration and template for the component instantiation.
Copy the declaration and template into your HDL code.

Output Files

X-BLOXGen creates the output files shown in Table 3-3.

Table 3-3  X-BLOXGen Output Files

X-BLOXGen Example

To instantiate a 16-bit accumulator X-BLOX module using
X-BLOXGen, follow the steps in this section.

Note: The example in this section is for a VHDL design.

1. Enter the following command:

xbloxgen accum -vhdl

The following information is displayed on your screen.

Output File Description

design.xnf XNF file for the instantiated X-BLOX module. XMake
merges this file into your top-level design.

design.xbg Log file.

design.blx Report file.

design.vhd
or

VHDL template file for the X-BLOX module.

design.v Verilog template file for the X-BLOX module.
3-28 Xilinx Development System



HDL Coding for FPGAs
XBLOXGEN Version 1.12

Looking for XBLOX...XBLOX found.

Looking for data files:
partlist.xct found.
4002p100.pkg found.
4003p100.pkg found.
4004p160.pkg found.
4005p208.pkg found.
4006p208.pkg found.
4008p208.pkg found.
4001p208.pkg found.
4013p240.pkg found.
4025g299.pkg found.

The following questions will define the characteristics of
the ACCUM to be generated.

2. Respond to the screen prompts appropriately as follows:

Note: The bold text indicates your response to the screen prompts.

Enter the name of the ACCUM: alu

Enter the number of bits of the ACCUM
(or 'q' to quit): 16

The available arithmetic bus encodings are:

1)  UBIN
2)  TWO_COMP

Enter the number of the desired encoding
(or 'q' to quit): 1

The available ACCUM arithmetic operations are:

1)  ADD (default)
2)  SUB
3)  ADD/SUB

Enter the number of the desired operation (return for
default)
(or 'q' to quit): 3

Will the c_in input be needed?
Enter 'y' or 'n' (or 'q' to quit): y

Will the ACCUM be loadable?
Enter 'y' or 'n' (or 'q' to quit): n

Will the clk_en input be needed?
Enter 'y' or 'n' (or 'q' to quit): y
HDL Synthesis for FPGAs Design Guide 3-29



HDL Synthesis for FPGAs Design Guide
Will an asynchronous control be needed?
Enter 'y' or 'n' (or 'q' to quit): y

Enter the asynchronous value (return for default 0)
(or 'q' to quit): 2#1001111111101011#

Will a synchronous control be needed?
Enter 'y' or 'n' (or 'q' to quit): n

Will the q_out parallel output be needed?
Enter 'y' or 'n' (or 'q' to quit): y

Will the c_out output be needed?
Enter 'y' or 'n' (or 'q' to quit): y

Will the ovfl output be needed?
Enter 'y' or 'n' (or 'q' to quit):  n

The available ACCUM implementation styles are:
1)  ALIGNED (default)
2)  UNALIGNED
3)  RIPPLE

Enter the number of the desired style (return for default)
(or 'q' to quit): 1

Should an RLOC be generated?
Enter 'y' or 'n' (or 'q' to quit): y

The following is a list of device types
that have been found in your system:

4002
4003
4004
4005
4006
4008
4010
4013

What is the SMALLEST device the ACCUM
‘alu’ will be used in?
Enter device number (or 'q' to quit): 4005

Note: Specify the smallest XC4000 device in which the accumulator
will be used. If you select a device that is smaller than the specified
device, XNFPrep may fail.

Generating ACCUM with the following characteristics:

smallest device:4005
size: 16-bit
encoding: UBIN
3-30 Xilinx Development System



HDL Coding for FPGAs
style: ALIGNED
create rpm: TRUE
async_val: 2#1001111111101011#
async_ctrl: yes
sync_ctrl: no
operation: ADD_SUB
b input used: yes
clk: yes
carry-in: yes
load: no
clk_ena: yes
q_out: yes
carry-out: yes
overflow: no

X-BLOXGen builds the accumulator by running X-BLOX. The files
alu.xnf, alu.vhd, alu.xbg, and alu.blx are generated as follows:

Running X-BLOX to create 'alu.xnf'.

The file 'alu.xnf' has been successfully created.

Generating VHDL example in file 'alu.vhd'.

-- The following code is a VHDL example of how to instantiate
-- the ACCUM 'alu' you have created.
--
-- The component declaration:
--

component alu
port (

ASYNC_CTRL:  in  STD_LOGIC;
ADD_SUB:  in  STD_LOGIC;
B:  in  STD_LOGIC_VECTOR (15 downto 0);
CLOCK:  in  STD_LOGIC;
C_IN:  in  STD_LOGIC;
CLK_EN:  in  STD_LOGIC;
Q_OUT:  out  STD_LOGIC_VECTOR (15 downto 0);
C_OUT:  out  STD_LOGIC
);

end component;
--
-- The component instantiation:
--

U0:  alu port map(
ASYNC_CTRL=>ASYNC_CTRL_SIG,
ADD_SUB=>ADD_SUB_SIG,
B=>B_BUS,
CLOCK=>CLOCK_SIG,
C_IN=>C_IN_SIG,
HDL Synthesis for FPGAs Design Guide 3-31



HDL Synthesis for FPGAs Design Guide
CLK_EN=>CLK_EN_SIG,
Q_OUT=>Q_OUT_BUS,
C_OUT=>C_OUT_SIG
);

Saving log file 'xbloxgen.log' to file 'alu.xbg'.

Would you like to create another component?
Enter 'y' or 'n' (or 'q' to quit): n

Cleaning.................DONE
Goodbye

3. Cut and paste the VHDL code from the alu.vhd file into your top-
level design. Replace the names async_ctrl_sig, add_sub_sig,
b_bus, clock_sig, c_in_sig, clk_en_sig, q_out_bus, and c_out_sig
with the actual signal names.

4. Synthesize your design.

5. Run XMake on the output from the synthesis tool.

XMake automatically merges the XNF file for the X-BLOX module
into your top-level design.

Using RPMs
The Xilinx Libraries include Relationally Placed Modules (RPMs).
These modules are XC4000 functions that use the XC4000 carry logic.
Additionally, RPMs are soft macros that contain logic symbols with
Relative Location (RLOC) parameters. Use RLOC parameters to
define the spatial relationship between logic symbols. PPR maintains
these spatial relationships as it searches for the best absolute
placement of the logic in the device. RLOCs do not define the
absolute placement of the logic in the device. Optionally, you can
define absolute placement with an RLOC_ORIGIN parameter on an
RPM.

Note: RPMs replace all Xilinx-supplied hard macros. Do not use
pre-Unified Libraries hard macros in new designs.

In addition to the RPMs listed in the Libraries Guide, you can create
your own RPMs with schematic entry tools as follows:

1. Place logic on your schematic and assign RLOC parameters where
applicable.
3-32 Xilinx Development System



HDL Coding for FPGAs
2. Translate your RPMs to an XNF file with a schematic-to-XNF
translator.

3. Copy the XNF file for the RPM to your working directory.

4. Instantiate the RPM in your HDL design as described in the next
section.

The XNF files for the RPMs in the Libraries Guide are provided with
this manual or they can be obtained from the Xilinx hotline or
bulletin board. Table 3-4 lists the RPMs in the Libraries Guide.

Note: Refer to your schematic entry tool documentation for more
information on creating RPMs.

Table 3-4  RPMs in the Libraries Guide

RPM Description

acc16 16-bit Loadable Cascadable Accumulator with
Carry-in, Carry-out, and Synchronous Reset

acc4 16-bit Loadable Cascadable Accumulator with
Carry-in, Carry-out, and Synchronous Reset

acc8 8-bit Loadable Cascadable Accumulator with
Carry-in, Carry-out, and Synchronous Reset

add16 16-bit Cascadable Full Adder with Carry-in, Carry-
out, and Overflow

add4 4-bit Cascadable Full Adder with Carry-in, Carry-
out, and Overflow

add8 8-bit Cascadable Full Adder with Carry-in, Carry-
out, and Overflow

adsu16 16-bit Cascadable Adder/Subtracter with Carry-in,
Carry-out, and Overflow

adsu4 4-bit Cascadable Adder/Subtracter with Carry-in,
Carry-out, and Overflow

adsu8 8-bit Cascadable Adder/Subtracter with Carry-in,
Carry-out, and Overflow

cc16ce 16-bit Cascadable Binary Counter with Clock
Enable and Clear
HDL Synthesis for FPGAs Design Guide 3-33



HDL Synthesis for FPGAs Design Guide
Instantiating an RPM
This section describes a procedure for instantiating an RPM from the
Libraries Guide in your HDL design. The RPM in the example
provided is an ACC4 (4-bit loadable cascadable accumulator with
carry-in, carry-out, and synchronous reset). This example is targeted
for Synopsys compilers. To instantiate the ACC4 RPM, follow the
steps listed here.

1. Go to the acc4 directory.

If you created the RPM with a schematic entry tool, generate an
XNF file with the schematic-to-XNF translator. Save the XNF file
in the same directory as the HDL code that will contain the RPM.

2. Instantiate the RPM in your code as shown in Figure 3-16.

You must list the individual signals for each bus to prevent
warnings and errors from XNFMerge and XNFPrep. For example,
in Figure 3-16, B_IN bus is declared as signals B_IN3, B_IN2,
B_IN1, and B_IN0.

cc16cle 16-bit Loadable Cascadable Binary Counter with
Clock Enable and Clear

cc16cled 16-bit Cascadable Bidirectional Binary Counter
with Clock Enable and Clear

cc16re 16-bit Cascadable Binary Counter with Clock
Enable and Synchronous Reset

cc8ce 8-bit Cascadable Binary Counter with Clock Enable
and Clear

cc8cle 8-bit Loadable Cascadable Binary Counter with
Clock Enable and Clear

cc8cled 8-bit Cascadable Bidirectional Binary Counter with
Clock Enable and Clear

cc8re 8-bit Cascadable Binary Counter with Clock Enable
and Synchronous Reset

compmc16 16-bit Magnitude Comparator

compmc8 8-bit Magnitude Comparator

RPM Description
3-34 Xilinx Development System



HDL Coding for FPGAs
Note: Refer to the Libraries Guide for the pin names of the RPM you
want to instantiate.

Figure 3-16 Instantiating an RPM in VHDL

3. Before you compile the design, set the Don’t Touch attribute on
the instantiated RPM using the Synopsys tools.

4. Compile your design using either the FPGA Compiler or the
Design Compiler.

The compilers do not synthesize or optimize the RPM; the RPM is
categorized as a “black box”.

5. Synthesize your design and save it as an SXNF file.

6. Run XMake on the SXNF file. XMake merges in the RPM XNF files
(acc4.xnf, adsu4.xnf, and m2_1.xnf) in your working directory.
HDL Synthesis for FPGAs Design Guide 3-35



HDL Synthesis for FPGAs Design Guide
Implementing Memory
You can use on-chip RAM for status registers, index registers, counter
storage, distributed shift registers, LIFO stacks, and FIFO buffers.

XC4000 devices can efficiently implement RAM and ROM using CLB
function generators. XC4000 libraries include 16 x 1 (deep x wide)
and 32 x 1 RAM and ROM primitives that you can instantiate in your
code.

You can also implement memory using the MemGen program, which
is included in the XACTstep Development System. Use MemGen to
create RAMs and ROMs that are between 1 to 32 bits wide and 2 to
256 bits deep. See the “Using MemGen” section below for more
information.

Note: Refer to the Development System Reference Guide for detailed
information on MemGen.

Implementing XC4000 RAMs
Note: Do not use RTL descriptions of RAMs in your VHDL code
because compiling creates combinatorial loops.

You can implement RAMs in your HDL code as follows:

● Instantiate 16 x 1 and 32 x 1 RAM primitives

● Use MemGen to implement any other RAM size

Implementing XC4000 ROMs
You can implement ROMs in your HDL code as follows:

● Use RTL descriptions of ROMs

● Instantiate 16 x 1 and 32 x 1 ROM primitives

● Use MemGen to implement any other ROM size

An RTL description of a ROM is shown in Figure 3-17.
3-36 Xilinx Development System



HDL Coding for FPGAs
Figure 3-17 RTL Description of 16 x 4 ROM

The synthesis tool creates ROMs from random logic gates that are
implemented using function generators. Alternatively, you can
implement ROMs using MemGen as shown in Figure 3-18 and Figure
3-19

To instantiate the 16 x 1 and 32 x 1 ROM primitives in your HDL
design, use the Set Attribute command to define the ROM value as
follows:

set_attribute “instance_name” xnf_init “rom_value”\
type string
HDL Synthesis for FPGAs Design Guide 3-37



HDL Synthesis for FPGAs Design Guide
Note: Refer to the appropriate Xilinx interface documentation for
more information on defining the ROM value.

Instantiating ROMs or RAMs does not allow you to functionally
simulate your design or easily migrate between FPGA families;
however, instantiation is the most efficient way to implement
memory in XC4000 devices.

Using MemGen
Follow these steps to use MemGen to instantiate a ROM in your HDL
code:

1. Create a memory description file filename.mem. Figure 3-18 shows
an example of a memory description file with the name
promdata.mem.

Note: Refer to the Development System Reference Guide for more
information on MemGen.

Figure 3-18 Memory Description File (Promdata.mem)

2. Run MemGen on the filename.mem file to create an XNF file:

memgen promdata.mem
3-38 Xilinx Development System



HDL Coding for FPGAs
3. Instantiate the memory module in your HDL design, as shown in
the rom_memgen design in Figure 3-19.

The address lines must be named A0 – A3 and the output data
lines must be named O0 – O3. When the rom_memgen design is
compiled in the FPGA Compiler, the following warning occurs:

Warning: Unable to resolve reference ‘promdata’
in ‘ROM_INT’ (LINK–5)

You can safely ignore this message.

Figure 3-19 Instantiating a 16 x 4 ROM

4. Save the design as an SXNF file, for example, rom_memgen.sxnf.

5. Translate the SXNF output file to an XNF file using the
appropriate translation program. For example, if you are using
Synopsys tools, run the Syn2XNF program.

Note: The Syn2XNF translator automatically merges in the XNF file
for the memory, for example, promdata.xnf. Refer to the Synopsys
(XSI) for FPGAs Interface/Tutorial Guide for more information on
Syn2XNF.
HDL Synthesis for FPGAs Design Guide 3-39



HDL Synthesis for FPGAs Design Guide
Implementing Boundary Scan (JTAG 1149.1)
Note: Refer to the Development System User Guide for a detailed
description of the XC4000 boundary scan capabilities.

XC4000 FPGAs contain boundary scan facilities that are compatible
with IEEE Standard 1149.1. Xilinx devices support external (I/O and
interconnect) testing and have limited support for internal self-test.

You can access the built-in boundary scan logic between power-up
and the start of configuration. Optionally, the built-in logic is
available after configuration if you specify boundary scan in your
design. During configuration, a reduced boundary scan capability
(sample/preload and bypass instructions) is available.

In a configured FPGA device, the boundary scan logic is enabled or
disabled by a specific set of bits in the configuration bitstream. To
access the boundary scan logic after configuration in HDL designs,
you must instantiate the boundary scan symbol, BSCAN, and the
boundary scan I/O pins, TDI, TMS, TCK, and TDO.

Note: Do not use the FPGA Compiler boundary scan commands such
as set_jtag_implementation, set_jtag_instruction, and set_jtag_port
with FPGA devices.

Instantiating the Boundary Scan Symbol
To incorporate the XC4000 boundary scan capability in a configured
FPGA using Synopsys tools, you must manually instantiate
boundary scan library primitives at the source code level. These
primitives include TDI, TMS, TCK, TDO, and BSCAN. The example
in Figure 3-20 shows how to instantiate the boundary scan symbol,
BSCAN, into your HDL code. In this example, the four TAP pins are
declared as ports. The schematic for this design is shown in
Figure 3-21.

You must assign a Synopsys Don’t Touch attribute to the net
connected to the TDO pad before you use the Insert_pads and
Compile commands. Otherwise, the TDO pad is removed by the
compiler. In addition, you do not need IBUFs or OBUFs for the TDI,
TMS, TCK, and TDO pads. These special pads connect directly to the
Xilinx boundary scan module.
3-40 Xilinx Development System



HDL Coding for FPGAs
Figure 3-20 Boundary Scan Design (Bnd_scan)
HDL Synthesis for FPGAs Design Guide 3-41



HDL Synthesis for FPGAs Design Guide
Figure 3-21 Bnd_scan Schematic

Implementing Logic with IOBs
You can move logic that is normally implemented with CLBs to IOBs.
By moving logic from CLBs to IOBs, additional logic can be
implemented in the available CLBs. Using IOBs also improves design
performance by increasing the number of available routing resources.

The XC4000 family devices have different IOB functions. The
following sections provide a general description of the IOB function
in XC4000/A/D/H devices. A description of how to manually
implement additional I/O features is also provided.

Note: For specific information on implementing IOB functions, refer
to the appropriate Xilinx interface document for the Synthesis tool
you are using to process your designs.
3-42 Xilinx Development System



HDL Coding for FPGAs
XC4000/A/D IOBs
You can configure XC4000/A/D IOBs as input, output, or
bidirectional signals. You can also specify pull-up or pull-down
resistors, independent of the pin usage.

Inputs

The buffered input signal that drives the data input of a storage
element can be configured as either a flip-flop or a latch.
Additionally, the buffered signal can be used in conjunction with the
input flip-flop or latch.

To avoid external hold-time requirements, IOB input flip-flops and
latches have a delay block between the external pin and the D input.
You can remove this default delay by instantiating a flip-flop or latch
with a NODELAY attribute. The NODELAY attribute decreases the
setup-time requirement and introduces a small hold time.

Note: Registers that connect to an input or output pad and require a
Clock Enable, Direct Clear, or Preset pin are not implemented by the
FPGA or Design Compiler in the IOB.

Outputs

The output signal that drives the programmable tristate output buffer
can be a registered or a direct output. The register is a positive-edge
triggered flip-flop and the clock polarity can be inverted inside the
IOB. (PPR automatically optimizes any inverters into the IOB.) The
XC4000 output buffers can sink 12 mA. The XC4000A output buffers
can sink 24 mA.

Note: The FPGA Compiler and Design Compiler can optimize flip-
flops attached to output pads into the IOB. However, these compilers
cannot optimize flip-flops into an IOB configured as a bidirectional
pad.

XC4000/D Slew Rate

XC4000/D output buffers have a default slow slew rate that
alleviates many ground bounce problems. Optionally, these output
buffers can have a fast slew rate that reduces the output delay. The
slow slew rate increases the transition time and reduces the noise
HDL Synthesis for FPGAs Design Guide 3-43



HDL Synthesis for FPGAs Design Guide
level. The fast slew rate decreases the transition time and increases
the noise level.

XC4000A Slew Rate

XC4000A devices have output slew rate control options for each
output drive. These options are fast, medium fast, medium slow, and
slow. Slew control can alleviate ground bounce problems when
multiple outputs switch simultaneously. It can also reduce or
eliminate cross-talk and transmission-line effects on printed circuit
boards.

XC4000H IOBs
XC4000H FPGAs are designed for I/O-intensive applications.
Compared to the XC4000, the XC4000H has almost twice as many
IOBs and I/O pins. The XC4000H allows you to select either
CMOS- or TTL-level output and input thresholds (selectable per pin).
The output from this device sinks 24 mA and provides improved
tristate and slew-rate control.

Inputs

Note: XC4000H devices do not have input flip-flops.

To individually configure the inputs with TTL or CMOS thresholds,
you must set the threshold level for each input. If you do not specify
the threshold, the Synopsys tools assign a random input threshold for
each input. Set the input threshold after compiling your design to
prevent the optimization of the registers into the IOBs.

Note: Refer to the Synopsys (XSI) for FPGAs Interface/Tutorial Guide for
information on setting the input threshold values.

Outputs

Note: XC4000H devices do not have output flip-flops.

To individually configure the outputs as either TTL or CMOS
compatible, select TTL-level outputs for systems that use TTL-level
input thresholds and select CMOS for systems that use CMOS input
thresholds. If you use Synopsys tools, you must set the threshold
level for each output. If you do not specify the threshold, the tools
assign a random output threshold for each output. Set the output
3-44 Xilinx Development System



HDL Coding for FPGAs
threshold after compiling your design. Also, to prevent the tools from
placing flip-flops in the IOBs, insert pads after compiling your
design.

XC4000H Slew Rate

XC4000H devices have a capacitive and a resistive slew rate and the
outputs sink 24 mA. You can configure each output for either of the
two slew rate options.

A resistive load has a pull-down transistor that is driven hard,
resulting in an almost constant on-resistance of about 10 ohms. A
resistive load provides the fastest High-to-Low transition and the
ability to sink 24 mA with a voltage drop of 500 mV. You may get
excessive ground bounce when too many outputs switch
High-to-Low simultaneously.

When you configure the output for a capacitive load (or soft edge),
the High-to-Low transition starts as described in the previous
paragraph, but the drive to the pull-down transistor is reduced as
soon as the output voltage reaches a value close to 1V. A capacitive
load provides higher resistance in the pull-down transistor, slowing
down of the falling edge, and decreased ground bounce.

Note: Refer to the 1994 version of The Xilinx Programmable Logic Data
Book for more information.

Instantiating Bidirectional I/O
This section includes an HDL example that shows you how to
instantiate bidirectional I/Os using the FPGA Compiler or Design
Compiler. The I/O cell names depend on which synthesis tool you
are using.

The VHDL design, bidi_reg.vhd, shown in Figure 3-22 is a top-level
design that instantiates the reg4.vhd core design. In this example,
two clock buffers, CLOCK1 and CLOCK2, automatically infer a
BUFG buffer. The reset and load signals, RST and LOADA,
automatically infer an IBUF when you run the Set_port_is_pad,
Set_pad_type, and Insert_pads commands. However, the FPGA
Compiler cannot automatically infer tristate IOB flip-flop (OFDT_F in
Figure 3-22) cells in bidirectional I/Os. Therefore, these cells and the
IBUF are instantiated in the top-level design.
HDL Synthesis for FPGAs Design Guide 3-45



HDL Synthesis for FPGAs Design Guide
Figure 3-22 Instantiating Bidirectional I/O

Moving Registers into the IOB
Note: XC4000H devices do not have input and output flip-flops.

IOBs contain an input register or latch and an output register. IOB
inputs can be register or latch inputs as well as direct inputs to the
device array. Registers without a clock enable, reset direct, or set
direct function can be moved into IOBs. Moving registers or latches
into IOBs reduces the number of CLBs used and decreases the routing
3-46 Xilinx Development System



HDL Coding for FPGAs
congestion. In addition, moving input registers and latches into the
IOB reduces the external setup time, as shown in Figure 3-23.

Figure 3-23 Moving Registers into the IOB

Although moving output registers into the IOB may increase the
internal setup time, it may reduce the clock-to-output delay, as
shown in Figure 3-23.

The Design Compiler automatically moves registers into IOBs if the
Preset, Clear, and Clock Enable pins are not used. You can also utilize
the IOB registers and latches in your HDL code as follows:

D

C

FDE
IBUF

IOB

Before

Input Register

After

IOBCLB

IN_SIG

Routing Delay

Q D

C

IFD

IN_SIG
Q

Routing
DelayRouting Delay

(No additional
setup time)

D

C

FDE
OBUF_F

IOB

X4974

Before

Output Register

After

IOBCLB

OUT_SIG
Q D

C

OFD_F

OUT_SIG
Q

HDL Synthesis for FPGAs Design Guide 3-47



HDL Synthesis for FPGAs Design Guide
● Run X-BLOX on the output XNF file from Syn2XNF. X-BLOX
moves registers without a clock enable, reset direct, or set direct
pin connected to an I/O into IOBs.

Note: X-BLOX may not merge OUTFFs into the IOB if there is
internal feedback.

or

● You can instantiate primitives in your HDL code. Refer to the
Synopsys (XSI) for FPGAs Interface/Tutorial Guide for more
information.

Using Unbonded IOBs (XC4000/A/D Only)
In some package/device pairs, not all pads are bonded to a package
pin. You can use these unbonded IOBs and the flip-flops inside them
in your design by instantiating them in the HDL code. You can
implement shift registers with these unbonded IOBs. The HDL
example in Figure 3-24 shows how to instantiate unbonded IOB
flip-flops in a 4-bit shift register in an XC4000 device.

Note: The Synopsys compilers cannot infer unbonded primitives.
Refer to the Synopsys (XSI) for FPGAs Interface/Tutorial Guide for a list
of library primitives that can be used for instantiations.
3-48 Xilinx Development System



HDL Coding for FPGAs
Figure 3-24 4-bit Shift Register Using Unbonded I/O
HDL Synthesis for FPGAs Design Guide 3-49



HDL Synthesis for FPGAs Design Guide
Implementing Multiplexers with Tristate Buffers
A 4-to-1 multiplexer is efficiently implemented in a single XC4000
CLB. The six input signals (four inputs, two select lines) use the F, G,
and H function generators. Multiplexers that are larger than 4-to-1
exceed the capacity of one CLB. For example, a 16-to-1 multiplexer
requires five CLBs and has two logic levels. These additional CLBs
increase area and delay. Xilinx recommends that you use internal
tristate buffers (BUFTs) to implement multiplexers larger than 4-to-1.

Multiplexers (larger than 4-to-1) built with BUFTs have the following
advantages:

● Can vary in width with only minimal impact on area and delay

● Can have as many inputs as there are tristate buffers per
horizontal longline in the target device

● Have one-hot encoded selector inputs

This last point is illustrated in the following examples. A VHDL
design of a 5-to-1 multiplexer built with gates is shown in
Figure 3-25. Typically, the gate version of this multiplexer has binary
encoded selector inputs and requires three select inputs (SEL<2:0>).
The schematic representation of this design is shown in Figure 3-26.

The VHDL design shown in Figure 3-27 is a 5-to-1 multiplexer built
with tristate buffers. The tristate buffer version of this multiplexer has
one-hot encoded selector inputs and requires five select inputs
(SEL<4:0>). The schematic representation of this design is shown in
Figure 3-28.
3-50 Xilinx Development System



HDL Coding for FPGAs
Figure 3-25 Implementing 5-to-1 MUX with Gates

Figure 3-26 5-to-1 MUX Implemented with Gates

SIG

A
B
C
D
E

SEL<0>

SEL<2>
SEL<1>

X6229
HDL Synthesis for FPGAs Design Guide 3-51



HDL Synthesis for FPGAs Design Guide
Figure 3-27 Implementing 5-to-1 MUX with BUFTs

Figure 3-28 5-to-1 MUX Implemented with BUFTs

SEL<0>

SEL<1>

SEL<2>

SEL<3>

SEL<4>

A

B

C

D

E

SIG

X6228
3-52 Xilinx Development System



HDL Coding for FPGAs
A comparison of timing and area for a 5-to-1 multiplexer built with
gates and tristate buffers in an XC4005APC84-5 device is provided in
Table 3-5. When the multiplexer is implemented with tristate buffers,
no CLBs are used and the delay is smaller.

Table 3-5  Timing/Area for 5-to-1 MUX (XC4005APC84-5)

Setting Timing Constraints
The XACT-Performance tool is part of the XACTstep Development
System. XACT-Performance allows you to specify precise timing
requirements for your design. You can also specify the maximum
allowable delay on any given set of paths in your design. To specify a
set of paths, you must identify a group of start and end points. The
start and end points can be flip-flops, I/O pads, IOB latches, or
RAMs. You can control worse-case timing on the set of paths by
specifying a single delay requirement for all paths in the set.

You can specify XACT-Performance timing constraints in the
following ways:

● Set timing constraints in the synthesis tool (FPGA Compiler only).
The synthesis tool passes the constraints to the XNF file.

● Specify default timing constraints on the PPR command line.

● Specify timing constraints for groups of logic in a constraints file.

Timing constraints specified on the command line have precedence
over constraints specified in a constraints file. Timing constraints
specified in a constraints file have precedence over constraints in the
XNF file created by the synthesis tool.

Using the Synthesis Tool
Note: To set timing constraints in the synthesis tool, you must be
using the FPGA Compiler.

Timing/Area Using BUFTs Using Gates

Timing 30.3 ns
(1 block level)

31.1 ns
(2 block levels)

Area 0 CLBs, 5 BUFTs 2 CLBs
HDL Synthesis for FPGAs Design Guide 3-53



HDL Synthesis for FPGAs Design Guide
Use the following Synopsys commands to create timing specifications
for your designs.

create_clock
set_input_delay
set_output_delay
set_max_delay
max_period

These commands allow you to specify optimization goals and
provide timing information for the Synopsys tools. These constraints
are passed to PPR through XACT-Performance specifications that are
written to the netlist.

XACT-Performance timing specifications generated by Synopsys
tools may create a large number of constraints. Too many constraints
can increase PPR run time. To decrease the number of constraints, use
the following command from the FPGA Compiler:

xnfout_constraints_per_endpoint=5

You can also decrease the number of constraints by specifying timing
constraints for groups of logic in a constraints file (described below).

Note: Refer to the Synopsys documentation and the Synopsys (XSI)
for FPGAs Interface/Tutorial Guide for more information on setting
XACT-Performance constraints from the synthesis tool.

Using PPR Command Line Options
You can specify default timing constraints on the PPR command line.
These command line options do not give you as much control as the
synthesis tool or the constraints file. For maximum flexibility, use a
constraints file to specify timing constraints; however, for a simple
one clock design, you can set basic timing requirements on the PPR
command line. The default clock-to-setup, clock-to-pad,
pad-to-setup, and pad-to-pad constraints can be set using the PPR
options: Dc2s, Dc2p, Dp2s, and Dp2p.

Note: Refer to the Development System Reference Guide for more PPR
command line options.
3-54 Xilinx Development System



HDL Coding for FPGAs
Using A Constraints File
XACT-Performance timing specifications generated by Synopsys
tools may create a large number of constraints. To decrease the
number of constraints, specify timing constraints for groups of logic
in a constraints file.

Create timing requirements by specifying a set of paths and the
maximum allowable delay on these paths. Specify the set of paths by
grouping start and end points in one of the following ways.

● Refer to a predefined group by specifying one of the
corresponding keywords — FFS, PADS, LATCHES, or RAMS.

● Create your own groups within a predefined group by tagging
symbols with TNM (pronounced tee-name) attributes.

● Create groups that are combinations of existing groups using
TIMEGRPs.

● Create groups by pattern matching on signal names.

Note: Although you can use end point specifications (using groups)
in the same design with existing path-type specifications, Xilinx does
not recommend combining the two methods.

A TNM (timing name) is a flag that you can use to group specific
pads, latches, RAMS, or flip-flops. Symbols tagged with the same
TNM identifier are considered a group. When schematic entry tools
are used to create designs, TNMs are added to the schematic. Because
synthesis tools (such as the FPGA Compiler) do not contain
primitives and symbols for adding timing groups to HDL code, you
cannot add TNMs to your HDL designs.

Note: Refer to the XACT-Performance chapter in the Development
System Reference Guide for more information on using TNMs.

Using TIMESPEC and TIMEGRP Commands

Note: TIMESPEC and TIMEGRP primitives and flags cannot be used
in HDL code. Use the AddTNM and MakeTNM programs, which are
described in a subsequent section of this chapter.

To specify timing requirements for groups of logic, use the following
procedure.
HDL Synthesis for FPGAs Design Guide 3-55



HDL Synthesis for FPGAs Design Guide
1. Define the groups in a TNM control file.

2. Specify the requirements with the TIMESPEC or TIMEGRP
command in a PPR constraints file.

3. Use the TIMESPEC command to serve as a placeholder for the TS
attribute timing specifications as follows:

TIMESPEC = “<timespec-parameter>”;

The spaces in the command syntax are optional; the double quotes
around the parameter text are required. TS attributes must be
defined in a TIMESPEC command. These attributes begin with the
letters “TS” and end with a unique identifier that can consist of
letters, numbers, or the underscore character (_).

4. Use the TIMEGRP command to create groups that are
combinations of existing groups as follows:

TIMEGRP = “<timegrp-parameter>”;

The spaces in the command syntax are optional; the double quotes
around the parameter text are required.

Note: Refer to the XACT-Performance chapter in the Development
System Reference Guide for more information on these parameters.

Using TIMESPEC and TIMEGRP Constraints File
Statements

This section includes examples of TIMESPEC and TIMEGRP
constraints file statements.

Use the following statement to group pads with names that begin
with “updata” into a group called “updata_io”. The asterisk (“*”)
denotes a wildcard.

TIMEGRP = “updata_io=PADS (updata<*>)”;

Use the following statement to specify a delay of 50 ns for all paths
from the group “LATCHES” to the group “updata_io”. Since the
predefined group “LATCHES” contains all the latches in the design,
this statement specifies that all paths from all latches to all pads
defined by the group “updata_io” are constrained to 50 ns.

TIMESPEC = “TS04=FROM:LATCHES:TO:updata_io=50ns”;
3-56 Xilinx Development System



HDL Coding for FPGAs
Additional examples of TIMESPEC and TIMEGRP statements are as
follows:

TIMEGRP = “CLK40_POS=RISING:CLK40”;
TIMEGRP = “CLK40_NEG=FALLING:CLK40”;
TIMESPEC = “TS02=FROM:CLK40_POS:TO:CLK40_POS=20MHz”;
TIMESPEC = “TS03=FROM:CLK40_POS:TO:CLK40_NEG=40MHz”;

Using MakeTNM and AddTNM

The MakeTNM and AddTNM programs allow you to use TNMs. Use
these programs to create a control file for defining the timing groups
and to add the appropriate primitives and flags to your design file.

MakeTNM and AddTNM were created with Perl V4.0 (programs are
compatible with Perl V5.0). You must have Perl loaded on your
system to run these programs. Perl is usually located at
/usr/local/bin on your system. If Perl is not at this location, you
must modify the first line of each program to point to the Perl
executable. Alternatively, you can invoke Perl directly by executing
the programs with the keyword “perl”, as shown in the following
example.

perl addtnm arguments

Adding TNMs

Figure 3-29 shows the design flow for adding TNMs using
MakeTNM and AddTNM.
HDL Synthesis for FPGAs Design Guide 3-57



HDL Synthesis for FPGAs Design Guide
Figure 3-29 Design Flow Diagram for Adding TNMs

design.xff

design.txff

design.xtf

X4986

Syn2XNF

MakeTNM

design.tt
(template)

design.tnm
(user modified template)

design.cst
(constraints file)

AddTNM

XNFPrep

PPR

mv design.txff design.xff
3-58 Xilinx Development System



HDL Coding for FPGAs
To add TNMs, use the following procedure.

1. To prevent the FPGA Compiler from writing timing specifications
to the SXNF file, enter the following command at the DC shell or
Design Analyzer prompt:

xnfout_constraints_per_endpoint = 0

2. Create an XFF (flattened XNF file) file by running Syn2XNF on the
output from the compiler.

3. Run MakeTNM on the XFF file to create a template control file,
design.tt, by entering one of the following commands:

maketnm design.xff
or
perl maketnm design.xff

The template control file lists all flip-flops, RAMs, I/O pads, and
latches in your design by instance name. X-BLOX modules that
expand to include flip-flops are also listed; they are prefaced by
the FFS keyword. Each line of the file contains one symbol. If the
symbols have similar names, a wildcard character is used. A
template control file is shown in Figure 3-30.
HDL Synthesis for FPGAs Design Guide 3-59



HDL Synthesis for FPGAs Design Guide
3-60 Xilinx Development System



HDL Coding for FPGAs
HDL Synthesis for FPGAs Design Guide 3-61



HDL Synthesis for FPGAs Design Guide
Figure 3-30 Template Control File Created by MakeTNM

4. Modify the design.tt file to create a TNM file that includes timing
groups.

To create the TNM file, add the desired group names to the
appropriate instances. You can use wildcard characters in instance
names to simplify the file. Use the asterisk (“*”) to represent an
arbitrary string and a question mark to represent a single
character. Statements without group names are ignored by
AddTNM.

5. After modifying the template file, change the design.tt file name to
design.tnm.

This file is the input file to AddTNM. A TNM file created from the
template control file in Figure 3-30 is shown in Figure 3-31. The
instances that were not tagged with a TNM have been deleted.
You can retain the untagged instances in the file, however, they are
ignored by AddTNM.
3-62 Xilinx Development System



HDL Coding for FPGAs
Figure 3-31 TNM File

6. Run AddTNM on design.tnm as follows:

addtnm design.tnm

or

perl addtnm design.tnm

AddTNM adds the timing group information from design.tnm to
the flattened XFF file. AddTNM includes a debug mode that
allows you to examine the group name assigned to an instance. To
run AddTNM with this verbose output, use the following
command:

addtnm -d design

or

perl addtnm -d design

The output from AddTNM is written to a file with a .txff extension
to prevent overwriting the source XFF file.
HDL Synthesis for FPGAs Design Guide 3-63



HDL Synthesis for FPGAs Design Guide
7. Immediately after running AddTNM, change the name of
design.txff to design.xff.

8. After the timing groups are created, use the TIMESPEC and
TIMEGRP commands to specify timing constraints.

Place these commands in a PPR constraints file with a .cst
extension. The constraints file contains the actual timing
constraints using the group names defined in the TNM file. The
constraints file is read by XNFPrep and PPR. Figure 3-32 shows a
constraints file.

Note: Refer to the Development System Reference Guide for PPR
constraints file syntax.

Figure 3-32 Constraints File

9. Run XNFPrep on the design.xff file to create an XTF or XTG (if
design has X-BLOX modules) file:

xnfprep design.xff

XNFPrep reads the constraints file and the XFF file with the TNMs
included and writes an XTF (or XTG) file with timing information.

10. Run PPR on the XTF (or XTG) file to create a Logic Cell Array
(LCA) file. The timing specifications are include in a PPR
constraints file. Run PPR as follows:

ppr design.xtf cstfile= design.cst

Note: The constraints file can have any name.

11. Look at the report file created by PPR.

This file contains information on the XACT-Performance
specifications and indicates if the timing constraints were met.

12. Run XDelay to obtain accurate timing information. Figure 3-33
shows a section of an XDelay report file.
3-64 Xilinx Development System



HDL Coding for FPGAs
Figure 3-33 XDelay Report File

Creating A TNM Control File Without Using MakeTNM

If you know the names of the registers, pads, RAMs, or latches that
you want to group, you can create your own TNM file, instead of
generating one with MakeTNM.

The TNM control file should have the same prefix as the XFF file
(output from XNFMerge) with a .tnm extension. The syntax for
creating your own TNM file is as follows:

endpoint-type instance-name : group [ group2 ...]

An example of a TNM control file is shown in Figure 3-34.
HDL Synthesis for FPGAs Design Guide 3-65



HDL Synthesis for FPGAs Design Guide
# example design.tnm file
#
FFS REG_3A/* : reg_3a_group
FFS REG_3?/Q0 : bit0_group
FFS REG_3C/Q7: 3c7_group other_group
PADS ENA : enable_input
SIG CLOCK40 : mainclk

Figure 3-34 TNM Control File

Endpoint-type is either FFS, RAMS, or PADS. IOB latches and
X-BLOX modules are grouped together with the FFS type by
AddTNM.

Use the instance-name variable to specify the names of the symbols
that you want to group. You can use the wildcards “?” (single
character) and “*” (multiple character) to specify multiple symbols.
The symbols must be the same type specified by the endpoint-type
variable.

Use the group variable to specify the name of the group for the
selected instance(s). You can use this name as end points in the
From-To TIMESPEC statements or as a building block in TIMEGRP
statements (both can be specified via the constraints file). You can
assign more than one name to an instance and you should separate
group names by spaces or tabs.

Follow these rules when creating your own control file.

● Use a pound (#) character for comments

● Do not include comments on the same line as a statement

● Do not use a semicolon at the end of a statement

● Text in the file is not case-sensitive

Adding TNMs to Signals

AddTNM allows you to place TNMs on signals. Because synthesis
tools usually generate random signal names, the ability to add TNMs
to signals is not always advantageous. However, in some cases you
may want to add a TNM to a device input signal. For example, if your
design has an external clock signal, you can place a TNM on this
signal to allow AddTNM to group the flip-flops that this signal
3-66 Xilinx Development System



HDL Coding for FPGAs
controls. Adding a TNM is an easy way to group flip-flops that have
a common clock or enable signal.

Note: Refer to the XACT-Performance chapter in the Development
System Reference Guide for more information on adding TNMs.

Add a TNM to a signal by adding the following line to your TNM
control file:

SIG signal-name : group [ group2 ... ]

Specify the external signal you want to add the TNM to with the
signal-name variable. You can use “*” and “?” as wildcards. Use the
group variable to specify the name of the group for the selected
signal.
HDL Synthesis for FPGAs Design Guide 3-67



HDL Synthesis for FPGAs Design Guide
3-68 Xilinx Development System



Chapter 4
HDL Synthesis for FPGAs Design Guide — 0401294 01 4-1

Floorplanning Your Design

Xilinx gives you two design implementation options. The XACTstep
Foundry v7 software provides automatic implementation of your
designs and does not support the Xilinx Floorplanner. Alternatively,
if you want to control part of the implementation process, use the
XACTstep v5.2 software with the Floorplanner.

For high-density devices, Xilinx recommends that you floorplan
specific parts of your design to improve PPR performance. Due to the
complexity and size of larger designs, PPR is limited in its ability to
recognize structure. Your design may not route or meet timing
constraints without structured placement. Based on your knowledge
of a design’s structure, you can create a floorplan that significantly
improves the placement of the design. Generally, you should
floorplan the parts of your designs that are timing critical or heavily
congested.

This chapter provides examples of HDL designs that facilitate
floorplanning. This chapter does not provide a complete description
of the Xilinx Floorplanner tool. Refer to the Floorplanner Reference/
User Guide, High-Density Design Guide application note, and the
Floorplanner online tutorial for complete information on using the
Floorplanner.

The following topics are included in this chapter:

● Creating MAP files

● Using the Floorplanner tool

● Floorplanning RPMs, RAMs/ROMs, and BUFTs

● Floorplanning hierarchical and flat designs

● Floorplanning to reduce routing congestion



HDL Synthesis for FPGAs Design Guide
Using the Floorplanner
This section describes creating a MAP file, using the Floorplanner,
and selecting design elements for floorplanning.

Creating a MAP File
The Floorplanner requires a MAP file as input. Before creating a MAP
file, you must synthesize your design and save it as an SXNF or an
EDIF file. Use one of the following procedures to create a MAP file.

Using XMake

Specify a MAP file as the target file with XMake as follows:

xmake [options] design design.map

Using PPR

1. Follow the XC4000 design flow (includes Syn2XNF, XNFPrep,
X-BLOX) to create an XTF file.

2. Create a MAP file at the command line with the following PPR
options:

ppr design.xtf map_fgs=true place=false
route=false report=false lca=false
run_pic2map=true

Using Prep for Floorplanner Command

Use the Prep for Floorplanner option in the XACT Design Manager
(XDM) to create a MAP file.

1. Invoke XDM.

2. Choose the XMake command from the Translate menu.

3. Select the -X option (Use XNF files only) from the XMake pop-up
menu and press Done.

4. Select the appropriate XNF file from the pop-up menu.

5. Select Prep for Floorplanner from the pop-up menu.

XMake generates a MAP file.
4-2 Xilinx Development System



Floorplanning Your Design
Overview of Floorplanner Windows
The Floorplanner has three windows; Task, Design, and Floorplan.
Each window is described below.

Task Window

The Task window is shown in Figure 4-1. This window appears at the
top of your screen and is the initial Floorplanner screen. The File and
Help menus allow you to open a file for the Floorplanner, exit the
application, and open the online help.

Figure 4-1 Task Window

Design Window

The Design window and Floorplan window are shown in Figure 4-2.

Figure 4-2 Design Window and Floorplan Window
HDL Synthesis for FPGAs Design Guide 4-3



HDL Synthesis for FPGAs Design Guide
The Floorplanner generates a hierarchical representation of the
design from the MAP file input. The Design window displays a fully
expandable and annotated hierarchy. The design hierarchy represents
the mapped design hierarchy that is created by the synthesis tool
from your HDL design. A section of the Design window is shown in
Figure 4-3.

The various colors in the hierarchy display distinguish the macros,
which are annotated with the instance name from the MAP file. The
black hierarchy structure lines indicate the hierarchical level of each
macro. Each macro has a gray box with a minus sign, “–”, or a plus
sign, “+”. The “–” indicates that the macro is expanded. The “+”
indicates that the macro is collapsed. The icon next to the gray box
represents the type of macro. For example, RAMs are represented by
overlapping squares, as shown in Figure 4-3.

Figure 4-3 Section of the Design Window

Floorplan Window

The upper left corner of the Floorplan window is shown in
Figure 4-4. The Floorplan window displays the die for a selected part
type, such as XC4005PC84. This window is a scrollable, scalable view
of a resource map of the device that is specified in the design. You
place the selected logic from the Design window into this window.
4-4 Xilinx Development System



Floorplanning Your Design
Figure 4-4 Upper Left Corner of the Floorplan Window

Deciding What Elements to Floorplan
To obtain optimal design performance, floorplan the following
structured items.

● Large objects such as RPMs, registers, counters, and RAMs

● Buses (place all BUFTs and bus elements)

● BUFTs with I/O or RPM inputs

● Multiple BUFTs (except VCC or GND) with identical source pin
inputs

You can floorplan elements other than those listed, but constraining
too many elements, especially those without any specific structure,
can decrease design performance.

Note: Generally, you do not have to floorplan state machines because
they are efficiently placed and routed by PPR.
HDL Synthesis for FPGAs Design Guide 4-5



HDL Synthesis for FPGAs Design Guide
Xilinx recommends that you create hierarchical designs because the
various design modules are hierarchically displayed in the
Floorplanner, making it easier to identify each module. If your design
is not hierarchical, the logic is displayed as a large, flat group that is
difficult to floorplan. For information on building hierarchical
designs, see the “Comparing Hierarchical and Flat Designs” section
in this chapter and the “Building Design Hierarchy” chapter.

You should label all symbols, nets, processes, procedures, functions,
and blocks in your HDL code. However, because synthesis tools
optimize the logic in your code, not all component names are
preserved in the MAP file. Component names that are preserved
include those for registers, I/Os, and instantiated cells. Labeling
design components makes it easier to floorplan your design because
you can identify the individual components in the Floorplanner.

Running the Floorplanner and Opening a File
To run the Floorplanner and open a file, use one of the following
procedures.

Using the Command Line

1. At the command line, type:

fplan design.map &

Use the “&” character to run the Floorplanner in the background.

2. The Floorplanner reads the MAP file, loads the correct device
(part type), opens the Design window, and opens the Floorplan
window with the appropriate FPGA die.

Using the Floorplanner Task Window

1. At the command line, type:

fplan &

Use the “&” character to run the Floorplanner in the background.
The Task window appears at the top of your screen as shown in
Figure 4-5.
4-6 Xilinx Development System



Floorplanning Your Design
Figure 4-5 Task Window

2. Select File ➝ Open.

The File Open dialog box appears, as shown in Figure 4-6.

Figure 4-6 File Open Dialog Box

3. Select the MAP file in the Files field and double-click to open it.
HDL Synthesis for FPGAs Design Guide 4-7



HDL Synthesis for FPGAs Design Guide
4. The Floorplanner reads the MAP file, loads the correct device
(part type), opens the Design window, and opens the Floorplan
window with the appropriate FPGA die.

Setting Boundaries in the Floorplan Window
Use the following procedure to define an area in the Floorplan
window in which to place selected logic. See Figure 4-7 for an
example of setting boundaries in the Floorplan window.

1. From the design hierarchy, select the logic that you want to place
in the Floorplan window.

2. Move the pointer to the Floorplan window and click on the
Allocate Area toolbar button.

After clicking on the Allocate Area toolbar button, the pointer
changes to a large plus sign (+).

3. Move the pointer to the Floorplan window, then press and hold
the left mouse button, dragging out a rectangular area.

4. Place the selected logic into the newly created boundary by
releasing the left mouse button.

5. Select the Check Floorplan command from the process menu.

If you have allocated an area in the floorplan large enough to
accommodate the logic, a dialog box appears indicating that the
floorplan passes all basic placement checks.

If you have not defined an area large enough, the Check Floorplan
Warnings dialog box appears and indicates that more logic
resources are needed in the boundary to accommodate the
selected logic.
4-8 Xilinx Development System



Floorplanning Your Design
Figure 4-7 Floorplanning Modules into Areas

Floorplanning RPMs, RAMs, and ROMs
Note: RPMs replace all Xilinx-supplied hard macros. Do not use
pre-Unified Libraries hard macros in new designs.

X-BLOX modules are usually inferred by the synthesis tool.
Arithmetic X-BLOX modules use RPMs to take advantage of fast-
carry logic. In addition to arithmetic functions, other X-BLOX
modules can be instantiated in your HDL code. You can instantiate
16 x 1 and 32 x 1 RAMs/ROMs from the Xilinx Synopsys Interface
(XSI) primitive libraries. You can also implement any other
HDL Synthesis for FPGAs Design Guide 4-9



HDL Synthesis for FPGAs Design Guide
RAM/ROM size using the MemGen program, which is included in
the XACTstep Development System. You can also behaviorally
describe ROMs in your code.

Warning: Do not behaviorally describe RAMs in your HDL code
because compiling creates combinatorial loops.

For more information on RAMs/ROMs, refer to the Synopsys (XSI) for
FPGAs Interface/Tutorial Guide. To obtain optimal design performance,
use the Floorplanner to place all RPMs, RAMs, and ROMs.

The RPM icon appears in the Design window as three adjacent
squares in an “L” shape, as shown in Figure 4-8.

Figure 4-8 RPM Icon

RAMs are grouped according to hierarchy and are represented in the
Design window by three overlapping squares, as shown in
Figure 4-9. The Floorplanner usually places the related RAMs/ROMs
together in one group. To improve the design timing, place the
RAMs/ROMs according to width and depth, depending on the
number of address lines, data lines, and the desired module shape.

Figure 4-9 RAM, ROM, or Non-RPM Counter Icon

RPM and RAM/ROM Example
Note: Before completing the following steps, make sure you have
retrieved the necessary design files from the Xilinx Internet Site or the
Xilinx Technical Bulletin Board as described in the “Getting Started”
chapter of this manual.

To floorplan an RPM, perform the following steps.

1. Run the Floorplanner and select File ➝ Open as described in the
“Using the Floorplanner” section.

X4885.6

X4885.5
4-10 Xilinx Development System



Floorplanning Your Design
2. Go to the rpm_ram directory.

3. Select the rpm_ram.map file in the Files field and double-click on
this file to open it.

The Floorplanner reads the MAP file, loads the correct device,
opens the Design window, and opens the Floorplan window with
the correct FPGA die. The design is displayed in the Design
window, as shown in Figure 4-10.

Figure 4-10 Section of Design Window

4. Click on the Expand button (“+” sign) for the RAM block pointed
to by the arrow in Figure 4-10.

The next level of hierarchy is displayed, as shown in Figure 4-11.

Figure 4-11 Design Window with RAM Expanded

5. Click on the Collapse button (“–” sign) to collapse the RAM block
and return to the level of hierarchy shown in Figure 4-10.

6. To floorplan the RAM block, click on the RAM block icon in the
Design window.

The RAM icon changes to a ghost image that moves with the
mouse.

RAM Block

RPM Block
HDL Synthesis for FPGAs Design Guide 4-11



HDL Synthesis for FPGAs Design Guide
7. Move the cursor to the Floorplan window.

8. Place the RAM by clicking in the area shown in Figure 4-12.

Figure 4-12 Floorplanned RAM

9. To floorplan the RPM block, click on the RPM block icon pointed
to by the arrow in Figure 4-10.

The RPM icon changes to a ghost image that moves with the
mouse.

10. Move the cursor to the Floorplan window.

11. Place the RPM by clicking in the area shown in Figure 4-13.
4-12 Xilinx Development System



Floorplanning Your Design
Figure 4-13 Floorplanned RPM and RAM

Floorplanning Tristate Buffers
Designs with large multiplexers and bidirectional buses can be
difficult to route. You can implement these multiplexers and buses
with internal tristate buffers (BUFTs) to improve the routability of the
design and conserve CLB resources. BUFTs are aligned with each
CLB and the IOBs on the left and right edges of the chip, as shown in
a section of the Floorplan window in Figure 4-14.
HDL Synthesis for FPGAs Design Guide 4-13



HDL Synthesis for FPGAs Design Guide
Figure 4-14 Device Resources in Floorplan Window

BUFT Example
The BUFT design (buft_ex) in Figure 4-15 is a simple behavioral
description of an internal tristate bus. This design has two external
buses, DATAIN0 and DATAIN1, that are multiplexed to the
DATAOUT bus. The ADD3_STATE process places DATAIN0 on the
bus when the SEL signal is low. The ADD3_STATE2 process places
DATAIN1 on the bus when SEL is high. The tristate bus is then
registered and placed on the DATAOUT output.

IOBBUFGS

BUFGP

CLBBUFT

Function
Generators
FG
H

Flip-flops
4-14 Xilinx Development System



Floorplanning Your Design
Figure 4-15 VHDL Inference of Tristate Buffers
HDL Synthesis for FPGAs Design Guide 4-15



HDL Synthesis for FPGAs Design Guide
Floorplanning BUFT Example

Note: Before you perform the following steps, make sure you have
retrieved the necessary design files from the Xilinx Internet Site or the
Xilinx Technical Bulletin Board as described in the “Getting Started”
chapter of this manual.

To floorplan the tristate buffers, follow these steps.

1. Run the Floorplanner and Select File ➝ Open as described in the
“Using the Floorplanner” section.

2. Go to the bufts directory.

3. Find the buft.map file in the Files field and double-click on this file
to open it.

The Floorplanner reads the MAP file, loads the correct device
(part type), opens the Design window with a hierarchical design,
and opens the Floorplan window with the correct FPGA die. A
section of the Design window is shown in Figure 4-16.

The BUFT design contains 1 FG, 13 IOBs, 8 BUFTs, and 1 BUFG.
The 8 BUFTs are located in the “U” macro.

Note: Because the Synopsys compiler generates symbol names, these
names do not always correspond to the names in your design and
may change with each run of the synthesis tool. However, you can
use the net names to help you correctly floorplan the BUFTs because
the Floorplanner net names correspond to the names in your HDL
code.

Figure 4-16 Section of the Design Window
4-16 Xilinx Development System



Floorplanning Your Design
4. Click on the Expand button (“+” sign) to expand the U block and
display the next level of hierarchy.

BUFT symbols and names (U75 to U82) are displayed, as shown in
Figure 4-17.

Note: The BUFT and BUFGS labels may not exactly match the labels
shown in Figure 4-17.

Figure 4-17 Expanded Stack of BUFTs

5. To view the device resources in the Floorplan window, click on the
Resources button in the Toolbar or select View ➝ Resources.

6. If you select View ➝ Resources, the Resources dialog box is
displayed, as shown in Figure 4-18.

To display the device resources, select each field in the Resource
Graphics area of the dialog box. Click OK to display the available
device resources in the Floorplan window.
HDL Synthesis for FPGAs Design Guide 4-17



HDL Synthesis for FPGAs Design Guide
Figure 4-18 Resources Dialog Box

7. Click on the U82 BUFT icon in the Design window.

The BUFT icon changes to a ghost image that moves with the
mouse.

8. Move the cursor to the Floorplan window.

9. Place U82 in the top tristate buffer resource in Row 1, Column 1 by
clicking in that area.

10. Continue placing BUFTs U81, U79, and U77 in the same column
directly beneath U82, as shown in Figure 4-19.

Note: Xilinx recommends that you order the bits with the MSB at the
top and the LSB at the bottom because RPMs with carry logic follow
this convention.
4-18 Xilinx Development System



Floorplanning Your Design
Figure 4-19 Placing BUFTs in the Floorplan Window

11. Place U75 in Row1, Column 2.

12. Place the remaining BUFTs in the same column directly beneath
U75, as shown in Figure 4-20.

BUFT outputs are driven onto horizontal longlines. There are
special fast connections from the horizontal longlines to the IOB
output pins on both vertical edges of the device. Therefore, locate
I/Os that connect to horizontal longlines, such as bused I/Os, on
the left or the right side near the fast connection. PPR may not be
able to completely route your design if you randomly lock the
pins at the beginning of the design entry process or lock I/Os that
connect to bidirectional buses to the top or bottom of the device.
HDL Synthesis for FPGAs Design Guide 4-19



HDL Synthesis for FPGAs Design Guide
Figure 4-20 Aligning BUFTs

Comparing Hierarchical and Flat Designs
Hierarchical designs are easier to floorplan because the various
design modules are hierarchically displayed in the Floorplanner. You
can easily identify and place each module. If your design is not
hierarchical, the logic is displayed as a large, flat group that is
difficult to identify for floorplanning. Structured logic, such as RPMs
and RAMs, are easy to identify in the Design window for
floorplanning. This section of the manual compares floorplanning the
same design (Alarm design) using the following design
methodologies.

● Design is compiled as one flat module without X-BLOX
DesignWare modules

● Design is compiled as one flat module using X-BLOX DesignWare
modules

● Design is compiled using the design’s original hierarchy without
X-BLOX DesignWare modules
4-20 Xilinx Development System



Floorplanning Your Design
● Design is compiled using the design’s original hierarchy with
X-BLOX DesignWare modules

The Alarm design example is a digital display alarm clock consisting
of six blocks, as shown in Figure 4-21. There are three levels of
hierarchy in this design, as shown in Figure 4-22.

Figure 4-21 Digital Display Alarm Clock Design

ALARM

CLK

HRS

MINS

SET_TIME

ALARM_BLOCK

TIME_BLOCK

MUX

COMPARATOR

OUTBUS[1:10]

AM_PM_DISPLAY

CONVERTOR_CKT

ALARM_SM_2

SPEAKER_OUT

DISP1[13:0]

DISP2[13:0]




TOGGLE_SWITCH

X6163
HDL Synthesis for FPGAs Design Guide 4-21



HDL Synthesis for FPGAs Design Guide
Figure 4-22 Digital Display Alarm Clock Design Hierarchy

The Alarm VHDL design is shown in Figure 4-23. The arrows point to
the instantiation of the six blocks in the code. You should use distinct
labels that are easy to recognize when instantiating blocks of logic in
your code because these labels are used in the Floorplanner Design
window to distinguish the levels of hierarchy. In the Alarm design,
the labels U1-U6 are used for the six logic blocks.

Alarm

Alarm_Block Mux Convertor_Ckt Comparator Alarm_Sm_2 Time_Block

Alarm_Counter Alarm_State_Machine Convertor(2) Hours_Filter Time_State_Machine Time_Counter

X6162
4-22 Xilinx Development System



Floorplanning Your Design
HDL Synthesis for FPGAs Design Guide 4-23



HDL Synthesis for FPGAs Design Guide
Figure 4-23 Alarm Design

Method 1: Compiling Flat without X-BLOX
The Alarm design is initially compiled as one flat module without
using X-BLOX DesignWare modules. The hierarchical representation
of the design in the Design window is shown in Figure 4-24. The logic
is separated into the three blocks U, U1 and U2. Most of the logic is
contained in the U block. The U1 and U2 blocks contain only flip-
flops. The U block is expanded by clicking on the Expand button
(“+” sign) and the next level of hierarchy is displayed, as shown in
Figure 4-25.

Figure 4-24 Alarm Design Compiled Flat without X-BLOX
4-24 Xilinx Development System



Floorplanning Your Design
Figure 4-25 Expanded “U” Block

The U block contains 160 4-input function generators, 38 FGH
function generators, 1 flip-flop, and 1 BUFGS. Since the function
generator names do not provide hierarchical information, the logic
cannot be identified and placed in the Floorplan window. Flattening
large designs can reduce the number of CLBs or improve the design
HDL Synthesis for FPGAs Design Guide 4-25



HDL Synthesis for FPGAs Design Guide
speed, however, these designs are difficult to floorplan. Method 1
should only be used for very simple designs.

Method 2: Compiling Flat with X-BLOX
Next, the Alarm design is compiled flat with X-BLOX DesignWare
modules. This library contains arithmetic functions that are
implemented with RPMs. The hierarchical representation of the
design in the Design window is shown in Figure 4-26. Compared to
the design created by Method 1, this design methodology produces a
design that is easier to floorplan because the RPMs are structured
logic that are easy to identify and place. However, since the original
design hierarchy is not preserved, the remaining logic cannot be
identified and placed in the Floorplan window. Method 2 should only
be used for very simple designs.

Figure 4-26 Alarm Design Compiled Flat with X-BLOX

Method 3: Compiling with Hierarchy and without
X-BLOX

The Alarm design is compiled with the original design hierarchy and
without X-BLOX modules. The hierarchical representation of the
design in the Design window is shown in Figure 4-27. Compared to
Methods 1 and 2, this design methodology produces a design that can
be floorplanned because the original design hierarchy is preserved in
the Design window.
4-26 Xilinx Development System



Floorplanning Your Design
Figure 4-27 Alarm Design Compiled with Hierarchy and Without
X-BLOX

Method 4: Compiling with Hierarchy and X-BLOX
The Alarm design is compiled with the original design hierarchy and
X-BLOX DesignWare modules. The hierarchical representation of the
design in the Design window is shown in Figure 4-28. The dashed
arrows point to the RPMs and the solid arrows point to the
hierarchical blocks. This design methodology produces a design that
is easier to floorplan than the three previous designs because it
contains the original hierarchy as well as RPMs.
HDL Synthesis for FPGAs Design Guide 4-27



HDL Synthesis for FPGAs Design Guide
Figure 4-28 Alarm Design Compiled with Hierarchy and X-BLOX

Floorplanning to Reduce Routing Congestion
When creating your HDL designs, you should understand the
architecture of the targeted device. You should know what device
resources are available as well as how device limitations influence
PPR results. This section describes how you can write your code to
make floorplanning easier and improve PPR results. In addition, the
examples in this section show how routing resources can become a
limiting factor if you do not consider the device architecture when
creating your designs.
4-28 Xilinx Development System



Floorplanning Your Design
Positioning and Aligning Buses
Position the major buses in your design first because they are usually
the largest design components. Once you have positioned the buses,
you can place the registers, counters, and other structured elements
along the buses.

Aligning Structures Along Buses

During floorplanning you should consider the placement of
resources within the FPGA. Good resource placement can reduce
PPR processing time as well as improve the speed and routability of
your design. The design example in Figure 4-29 consists of two 8-bit
registers (labeled A[7:0] and B[7:0]), two 8-bit counters (labeled C[7:0]
and D[7:0]), and an 8-bit bidirectional bus (labeled X[7:0]). The
counters are multiplexed (using tristate buffers) to the data bus,
which also connects to I/O pins.
HDL Synthesis for FPGAs Design Guide 4-29



HDL Synthesis for FPGAs Design Guide
4-30 Xilinx Development System



Floorplanning Your Design
Figure 4-29 Orienting Structure Along Buses

This design is placed, routed, and loaded into the Floorplanner. The
placement results are displayed in the Floorplan window, as shown
in Figure 4-30. The registers and RPMs are horizontally aligned
across the device and share the same horizontal longlines. However,
this placement does not conserve resources because the RPMs,
registers, and I/Os are too widely dispersed in the chip.
HDL Synthesis for FPGAs Design Guide 4-31



HDL Synthesis for FPGAs Design Guide
Figure 4-30 Floorplan Window with Ratsnest Option On

Because this design is highly structured, you should floorplan the
design first and then run PPR. The 8-bit counters and the X[7:0] I/O
bus should be floorplanned, as shown in Figure 4-31.
4-32 Xilinx Development System



Floorplanning Your Design
Figure 4-31 Floorplanned Constraints

After the design is floorplanned, PPR is run, and the design is loaded
into the Floorplanner. The new placement is shown in Figure 4-32.
PPR placed the logic that was not floorplanned around the counters
and horizontally placed the bidirectional buses to align with the
logic. The logic is contained in the upper left quadrant to conserve
longline resources.
HDL Synthesis for FPGAs Design Guide 4-33



HDL Synthesis for FPGAs Design Guide
Figure 4-32 Placed Design in Floorplan Window

Floorplanning RAMs to Reduce Routing Congestion
You can floorplan RAMs in vertical columns or in horizontal rows.
For example, a 16 x 8 RAM can fit into four CLBs in a column since
two 16 x 1 RAMs fit into one CLB. However, larger RAMs (over 32
words deep) require additional logic to form output multiplexers and
write-enable strobes (decoders). For example, a 128 x 4 RAM requires
four 32 x 4 RAM banks (DA[3:0]-DD[3:0]), as shown in Figure 4-33. In
this case, each RAM bank consists of four 32 x 1 RAMs aligned
vertically. Each RAM will occupy one CLB. The 4-to-1 output
multiplexers (O[3:0]) can be efficiently implemented with CLBs since
a 4-to-1 multiplexer fits in one CLB.

Deeper RAMs require larger output multiplexers. For example, a
256 x 4 RAM requires eight 32 x 4 RAM banks and four 8-to-1
multiplexers. Implementing these multiplexers with gates results in
an inefficient use of CLBs and produces slower RAMs. Larger
multiplexers are more efficiently implemented using BUFTs. It is
important to organize the RAM banks so that the “n” bit appears in
the same row for each bank. This allows efficient routing between the
RAM CLBs, BUFTs, and horizontal longlines. Also, placing this
4-34 Xilinx Development System



Floorplanning Your Design
rectangular structure in any of the four quadrants of the device (to
avoid straddling the device center lines) allows the half-longlines in
the three other quadrants to be used for other signals.

Figure 4-33 Rectangular Placement of RAM

X6107

WS WS

DA0

DA1

DA2

DA3

DB0

DB1

DB2

DB3

O0

O1

O2

O3

DC0

DC1

DC2

DC3

DD0

DD1

DD2

DD3
HDL Synthesis for FPGAs Design Guide 4-35



HDL Synthesis for FPGAs Design Guide
4-36 Xilinx Development System



Chapter 5
HDL Synthesis for FPGAs Design Guide — 0401294 01 5-1

Building Design Hierarchy

Large HDL designs (more than 5,000 gates) for FPGAs are usually
synthesized as either one flat module or as many small modules. Flat
designs can be difficult to route if the logic is placed in one region of
the device. Many small modules can increase the gate count, which
can result in a design that does not fit the target device. Although
these design methodologies are effective for implementing ASIC
devices, usually they are not the most efficient strategies for
implementing high-density FPGAs such as the XC4010, XC4013, and
XC4025. Effective design partitioning provides the following benefits:

● Allows you to efficiently manage the design flow

● Reduces design time by allowing you to use existing design
modules more than once

● Allows you to produce designs that are easy to understand

This chapter describes how you should partition your designs to
improve synthesis results and reduce routing congestion. The same
design is synthesized using three different design methodologies and
a comparison of the results is provided

Gate counts are not an accurate representation of FPGA device
utilization because you cannot determine the number of gates
mapped to one CLB. Therefore, the gate counts in this chapter are
provided to give you only an estimate of CLB utilization. An
approximate gate to CLB ratio is 800 gates per 100 CLBs.



HDL Synthesis for FPGAs Design Guide
Using the Synthesis Tool
By effectively partitioning your designs, you can significantly reduce
compile time and improve synthesis results. This section provides
recommendations for partitioning your designs.

● Restrict Shared Resources to Same Hierarchy Level

Resources that can be shared should be on the same level of
hierarchy. If these resources are not on the same level of hierarchy,
the synthesis tool cannot determine if these resources should be
shared.

● Compile Multiple Instances Together

You may want to compile multiple occurrences of the same
instance together to reduce the gate count. However, to increase
design speed, do not compile a module in a critical path with
other instances.

● Restrict Related Combinatorial Logic to Same Hierarchy Level

Keep related combinatorial logic in the same hierarchical level to
allow the synthesis tool to optimize an entire critical path in a
single operation. Boolean optimization does not operate across
hierarchical boundaries. Therefore, if a critical path is partitioned
across boundaries, logic optimization is restricted. In addition,
constraining modules is difficult if combinatorial logic is not
restricted to the same level of hierarchy.

● Separate Speed Critical Paths from Non-critical Paths

To achieve satisfactory synthesis results, locate design modules
with different functions at different levels of the hierarchy. Design
speed is the first priority of optimization algorithms. To achieve a
design that efficiently utilizes device area, remove timing
constraints from design modules.

● Restrict Combinatorial Logic that Drives a Register to Same
Hierarchy Level

To reduce the number of CLBs used, restrict combinatorial logic
that drives a register to the same hierarchical block.
5-2 Xilinx Development System



Building Design Hierarchy
● Restrict Module Size

Restrict module size to 100 - 200 CLBs. This range varies based on
your computer configuration; the time required to complete each
optimization run; if the design is worked on by a design team; and
the target FPGA routing resources.

Although smaller blocks give you more control, you may not
always obtain the most efficient design. For XC4000 designs, do
not exceed 5,000 gates for any module because designs with more
than this number of gates may not route. For XC3000 and XC3100
devices, do not exceed 4,000 gates for each module. These gate
counts are slightly smaller for I/O intensive designs,
asynchronous designs, and designs that are difficult to route.

● Register All Outputs

Arrange your design hierarchy so that registers drive the module
output in each hierarchical block. Registering outputs makes your
design easier to constrain because you only need to constrain the
clock period and the ClockToSetup of the previous module. If you
have multiple combinatorial blocks at different levels of the
hierarchy, you must manually calculate the delay for each
module.

● Restrict One Clock to Each Module or to Entire Design

By restricting one clock to each module, you only need to describe
the relationship between the clock at the top level of the design
hierarchy and each module clock. By restricting one clock to the
entire design, you only need to describe the clock at the top level
of the design hierarchy.

Modifying Design Hierarchy for PPR
Complex designs are easier to create with HDL than with traditional
schematic entry methods. As you create larger designs, it is
important that you add structure to your designs. Structured designs
make the design process more manageable and are easier to route.
For example, you can floorplan a large design that consists of
medium-sized modules (approximately 5,000 gates each) into
separate regions of the device. Adding structure to your design by
HDL Synthesis for FPGAs Design Guide 5-3



HDL Synthesis for FPGAs Design Guide
floorplanning allows PPR to divide the logic evenly throughout the
device. Structure provides the following benefits:

● Reduces Gate Count

Optimization reduces the number of gates by combining logic into
function generators and combining similar functions. For
example, if a design contains several small 4-bit incrementers,
resource sharing occurs if these incrementers are in the same
VHDL process. If they are not in the same process and are
implemented in gates (using the Synopsys DesignWare Library),
they are combined by the optimizer to further reduce the gate
count.

● Improves Routability

When you group modules and constrain them to a region of the
device according to your design’s hierarchy and data flow, you are
adding structural information to your design that PPR uses.
Constraining design modules into different regions of the device
evenly divides the logic and improves routability.

● Reduces Routing Time

When you constrain modules to certain regions of the device, you
reduce the routing time by specifying a smaller area for PPR to
evaluate.

● Reduces Time Required for Small Design Changes

You can easily modify the logic in a module without effecting
other modules by using the PPR Guide option. Since designs
usually require several changes, this is an important benefit of
structured design.

● Reduces Debugging Time

Debugging your design is easier because the various modules are
isolated to specific regions of the device. In addition, module
content and location are defined by you.

Top Design Example
This section provides an example of a design that is implemented in a
Xilinx XC4025pg299-5 device. This design is synthesized with the
5-4 Xilinx Development System



Building Design Hierarchy
Synopsys FPGA Compiler using three different design
methodologies:

Note: The Top design VHDL code is not included in this manual,
however, the script files used to run the Synopsys FPGA Compiler
are provided in “Appendix B”.

● Design is compiled as one flat module.

● Design is compiled using the design’s original hierarchial
structure.

● Design is compiled in several mid-size modules (Recommended).

A comparison of the results from the three different methods used to
process the Top design is provided in Table 5-3 at the end of this
chapter. This table also includes ClockToSetup and PadToSetup
requirements for this design.

The original Top design hierarchy consists of four main blocks at the
core level, as shown in Figure 5-1. The core level of this design
contains two large modules, R0 and X0, and two small modules, UP0
and DD0. The two large modules contain approximately 30
sub-modules ranging in size from four CLBs to 591 CLBs.

Figure 5-1 Original Hierarchy of Top Design

Table 5-1 provides the resource statistics for the Top design with the
original hierarchy.

TOP

CORE

R0

X6019

DD0 UP0 X0

N1 N2 N13 M1 M7 M8 M9 M11• •

NN1 NN5• • MM1 MM2

• •• •




HDL Synthesis for FPGAs Design Guide 5-5



HDL Synthesis for FPGAs Design Guide
Table 5-1  Top Design’s Resource Statistics

Module Name
RPMs CLBs  Flip-flops

Tristate
Buffers

TOP 50 962 958 14

X0 16 342 335 0

R0 34 591 582 0

UP0 0 25 37 0

DD0 0 4 4 0

N1 8 130 174 0

N2 0 33 0 0

N3 3 80 89 0

N4 0 19 3 0

N5 4 63 55 0

N6 6 112 113 0

N7 0 15 10 0

N8 2 18 18 0

N9 7 53 56 0

N10 0 14 9 0

N11 2 26 23 0

N12 0 7 9 0

N13 2 24 24 0

M1 0 34 0 0

M2 4 21 13 0

M3 0 19 34 0

M4 0 41 27 0

M5 1 37 52 0

M6 0 14 21 0

M7 0 38 33 0

M8 0 23 35 0

M9 9 77 83 0

M10 2 27 27 0

M11 0 15 10 0
5-6 Xilinx Development System



Building Design Hierarchy
Compiling Top Design as One Flat Module
The Top design is compiled as one flat module using the Synopsys
Compile -ungroup_all command on the core level. Although this
design utilizes only 71% of the XC4025 device, it is unroutable
because the logic is densely placed in one region of the device, as
shown in Figure 5-2.

Figure 5-2 Ratsnest of Top Design Compiled Flat
HDL Synthesis for FPGAs Design Guide 5-7



HDL Synthesis for FPGAs Design Guide
Compiling Top Design Using Original Hierarchy
The Top design is compiled using the original hierarchy and the
X-BLOX DesignWare library. This library contains arithmetic
functions that are implemented with RPMs. RPMs contain RLOCs to
align the logic within the RPM. Arithmetic functions that are 8-bits or
larger and implemented with X-BLOX DesignWare modules are
usually faster and easier to route. However, for large designs with
several small arithmetic functions (smaller than 8-bits), use the
Synopsys DesignWare libraries to take advantage of the synthesis
tool’s ability to reduce the gate count. This decrease in the number of
gates occurs when arithmetic functions are compiled with modules
that contain similar functions. Gate reduction does not occur with the
X-BLOX DesignWare library because the underlying logic of the
components is not available when the design is compiled. The
component logic is created later when the X-BLOX program is run. If
you use the Synopsys FPGA Compiler or Design Compiler, use the
Synopsys DesignWare library instead of the X-BLOX DesignWare
library for arithmetic functions.

Note: Refer to the “Resource Sharing” and “Gate Reduction” sections
in the “HDL Coding Hints” chapter for more information.

Compiling the Top design with the original hierarchy increases the
number of packed CLBs by 12% compared to compiling the design as
one flat module. This increase in CLB utilization occurs because the
design hierarchy prevents the synthesis tool from fully optimizing
the design.

This design methodology allows PPR to place unconstrained cells at
any location in the device making it difficult to debug critical paths. If
any changes are made to the design, PPR must be run again. Also, the
placement and routing information from the previous design
iteration cannot be used to guide the modified design. A design
change may result in an unroutable design that requires additional
floorplanning.

Floorplanning RPMs

PPR is run on this design before and after floorplanning the RPMs.
This design is unroutable when the RPMs are not floorplanned. Local
routing congestion similar to that shown in Figure 5-2 occurs because
the logic is placed in one region of the device. Floorplanning the
5-8 Xilinx Development System



Building Design Hierarchy
RPMs forces PPR to evenly place the logic in the device. The RPM
floorplan is shown in Figure 5-3 and the placed and routed design is
shown in Figure 5-4. Compare Figure 5-2 and Figure 5-4. Although
the routing is not shown in Figure 5-4, it is apparent that the
floorplanned design is evenly placed with less routing congestion.

Figure 5-3 RPM Floorplan for Top Design Compiled Using the
Original Hierarchy
HDL Synthesis for FPGAs Design Guide 5-9



HDL Synthesis for FPGAs Design Guide
Figure 5-4 Placement of Top Design with Original Hierarchy

Meeting Speed Requirements

The Top design requires an 8 MHz internal clock speed. Using the
original hierarchy with the X-BLOX DesignWare modules, the longest
constrained ClockToSetup delay is 143.5 ns; this exceeds the 125 ns
requirement. All constrained PadToClock delays meet the
requirements shown in Table 5-3.
5-10 Xilinx Development System



Building Design Hierarchy
Compiling Top Design After Modifying the Hierarchy
To obtain fast, routable designs, Xilinx recommends that you divide
large designs into medium-sized modules. The original Top design
hierarchy consists of four main blocks at the core level.

The Synopsys FPGA Compiler’s Report_fpga command is used to
determine the CLB utilization in the original Top design. The results
are as follows:

● R0 block uses approximately 591 CLBs

● X0 block uses approximately 342 CLBs

● UP0 block uses approximately 25 CLBs

● DD0 block uses approximately four CLBs

Note: Table 5-1 also lists these numbers.

The Top design is modified to create a more efficient hierarchy in
which the design modules use approximately 100 to 200 CLBs. For
example, in the original design hierarchy, the R0 module uses 591
CLBs. This module is separated into four modules as shown in Figure
5-5. The X0 module uses 342 CLBs in the original design hierarchy.
This module is separated into two modules as shown in Figure 5-6.
The new design hierarchy is shown in Figure 5-7.

You may find it difficult to divide some designs into modules with
the recommended number of CLBs. This can occur if the routing is
not contained within the modules or if there are numerous
interconnects between modules. If you do not modify your design’s
hierarchy and the design does not route, divide the design into
modules with a CLB count as close as possible to the ideal size.
HDL Synthesis for FPGAs Design Guide 5-11



HDL Synthesis for FPGAs Design Guide
Figure 5-5 R0 Module Divided into Four Sub-modules

N4

N6

N12

N3

N8

N9

N10

N5

N13

N7

N11

N1

N2
5-12 Xilinx Development System



Building Design Hierarchy
Figure 5-6 X0 Module Divided into Two Sub-modules

M2

M4
M3

M5
M1

M11
M9

M10

M7

M6
M8
HDL Synthesis for FPGAs Design Guide 5-13



HDL Synthesis for FPGAs Design Guide
Figure 5-7 Modified Hierarchy for Top Design

The new hierarchy is based on the original module size and the
interconnect between modules. An ideal hierarchy should result in
fewer gates and less routing congestion between modules. Table 5-2
provides an estimate of the new module size based on the CLB
numbers in Table 5-1. The actual number of CLBs used per module
when the Top design is compiled with and without the X-BLOX
DesignWare modules is also provided in Table 5-2. These numbers
are usually smaller than the estimated number because further gate
reduction occurs.

M6

M7

M8

M9

M10

M11

TOP

CORE

R1 R2

X6047

N6

R3

N1

R4 DD0 UP0 X1 X2

N2

N3

N4

N5

N7

N8

N9

N10

N11

N12

N13

M1

M2

M3

M4

M5
5-14 Xilinx Development System



Building Design Hierarchy
Table 5-2  Estimated and Actual CLB Utilization

Evaluating A New Hierarchy

You can evaluate the effectiveness of a new hierarchy by verifying the
following:

● The number of RPMs, CLBs, and flip-flops should decrease or
remain the same.

● The design modules should use between 100-200 CLBs.

● The total number of modules should be approximately 5-8 for an
XC4025 design (this does not include the two small modules, UP0
and DD0.)

The two smaller modules, UP0 and DD0, are not combined with
other modules because these modules have a significant amount of
interconnect with the X1, X2, and R1-R4 modules.

Defining and Compiling the New Hierarchy

The HDL code is not changed to modify the hierarchy. The Synopsys
Group command is used to define the new hierarchy. Next, each
module is compiled together using the Compile -ungroup_all
command. Figure 5-8 shows the Synopsys script file that is used to
process the core module using the FPGA Compiler. This script file

New
Module
Name

Sub-Modules in Group
Estimate

CLB
Number

Actual CLB
Number

with
X-BLOX

Actual CLB
Number
without
X-BLOX

X1 M1, M2, M3, M4, M5 152 102 90

X2 M6, M7, M8, M9, M10, M11 194 174 151

R1 N7, N8, N9, N10, N11, N12, N13 157 132 106

R2 N2, N3, N4, N5 195 153 144

R3 N6 130 120 103

R4 N1 112 109 102

UP0 25 25 24

DD0 4 4 4
HDL Synthesis for FPGAs Design Guide 5-15



HDL Synthesis for FPGAs Design Guide
defines the new hierarchical groups, compiles these groups, and
creates the XNF file for the core level. The lowest level modules are
compiled before this script is run and are saved as .db files (such as
N1.db). The script (not shown) used to process the top level modules
reads in the top level, reads in the core level, assigns the
I/Os, and writes the design to the top.sxnf file.

By compiling larger groups of logic together, the gate count is
reduced by 30 CLBs. An additional gate reduction of 85 CLBs is
achieved when Synopsys DesignWare modules are used instead of
RPMS with small bit widths (the RPMs in the Top design are 4 - 6 bits
wide).
5-16 Xilinx Development System



Building Design Hierarchy
HDL Synthesis for FPGAs Design Guide 5-17



HDL Synthesis for FPGAs Design Guide
5-18 Xilinx Development System



Building Design Hierarchy
Figure 5-8 Script File for Compiling Core Modules

Setting Boundaries and Floorplanning the Modules

Note: Refer to the “Floorplanning Your Design” chapter in this
manual and the Floorplanner Reference/User Guide for more
information on floorplanning.

The modules are constrained to specific device areas in the
Floorplanner. Boundaries are selected and the modules are placed as
described in the “Setting Boundaries in the Floorplan Window”
section in the “Floorplanning Your Design” chapter. The modules are
floorplanned as shown in Figure 5-9 and Figure 5-10. Figure 5-9
illustrates where the various modules are located and Figure 5-10
shows the actual placement of the modules in the Floorplanner.

The area size must be large enough to accommodate a module as well
as provide enough space for PPR to add feed-throughs to route the
design. The height of an area must accommodate the tallest structure
in the module. For example, in an XC4000 device, an 8-bit adder
requires an area that is five CLBs high. The location of the areas is
determined by the data flow.

In the Top design, the two smaller blocks, UP0 and DD0, have many
interconnects to all the modules and, therefore, are not constrained to
a specific area of the device. As shown in Figure 5-9, the cells in these
modules “float” to allow PPR to calculate the best placement. Any
unused CLBs are placed in the center of the device for these modules.
HDL Synthesis for FPGAs Design Guide 5-19



HDL Synthesis for FPGAs Design Guide
Figure 5-9 Overview of Floorplanned Modules

X6046

X1

UP0 & DD0

"Float"

X2 R4

R1 R3 R2
5-20 Xilinx Development System



Building Design Hierarchy
Figure 5-10 Floorplanning Modules into Areas

Floorplanning Structured Cells

After the design modules are floorplanned to specific device areas,
any structured cells within the modules are floorplanned.
Floorplanning structured elements improves design routability and
timing. Structured cells include RPMs, registers, BUFTs, and memory.
These cells are placed in the same area as the modules that contain
them. After the design is floorplanned, a constraints file is written.
HDL Synthesis for FPGAs Design Guide 5-21



HDL Synthesis for FPGAs Design Guide
Placing and Routing the Top Design

PPR uses the constraints file to place and route the Top design. PPR is
run on this design as follows:

ppr top placer_effort=4 router_effort=3 cstfile=top

Note: Refer to the “Understanding High-Density Design Flow”
chapter for more PPR options.

Figure 5-11 shows the Top design after it has been placed by PPR.
Floorplanning the RPMs and registers helps PPR evenly divide the
logic in the device. Compare Figure 5-2 and Figure 5-11. Although the
routing is not shown in Figure 5-11, it is apparent that the
floorplanned design is evenly placed with less routing congestion.

The PPR runtime for the modified design hierarchy is approximately
6.5 hours less than the runtime for the original design hierarchy. The
ClockToSetup time is reduced from 143.2 ns to 106.7 ns (with
X-BLOX). The PadToSetup time slightly increases by 6 ns.
5-22 Xilinx Development System



Building Design Hierarchy
Figure 5-11 Placement of Top Design After Modifying the
Hierarchy

Adding Probe Points to Debug a Design
To debug a design, internal signals are routed to unused I/O. If the
I/O pins are constrained, it can be difficult to make design changes.
Use the XACT Design Editor’s (XDE) Defineprobe and Assignprobe
commands to select an unused IOB for a probe point and to route an
internal net to the selected point.
HDL Synthesis for FPGAs Design Guide 5-23



HDL Synthesis for FPGAs Design Guide
For the Top design, two probe points are defined for the original
design and for the design after the hierarchy is modified. In the
design with the original hierarchy, the probe points are unroutable. In
the design with the new hierarchy, the probe points are easy to route
because the unused logic in the center of the device contains unused
interconnects that are used to route the probe points.

Comparing Top Design Methodologies
This section compares the three methodologies used to compile the
Top design. A summary of the results is provided in Table 5-3.

Flat Design

When the Top design is compiled as one flat module, the fewest
device resources are used, however, the design is densely packed and
is unroutable.

Original Design Hierarchy

When the Top design is compiled using the original design hierarchy,
the RPMs must be floorplanned to force PPR to evenly place the logic
in the device. This design utilizes 72% (packed CLBs) of an XC4025
device. The longest constrained ClockToSetup delay is 143.2 ns and
the longest constrained PadToClock delay is 100.1 ns. Any small
changes to this design may make the design unroutable.

Modified Hierarchy

When the Top design is compiled after the original hierarchy is
modified, floorplanning individual cells is not required because the
new hierarchy assists PPR in placing the logic. This design uses 63%
of an XC4025 device. The longest ClockToSetup delay is reduced to
106.7 ns. When a small change is made to this design, only the
module in which the change is made is processed. PPR runtime is
reduced because the PPR Guide option is used to retain the
placement and routing of the unchanged modules. The new
hierarchy makes it easy to modify the design and place any unused
CLBs in the center of the device.
5-24 Xilinx Development System



Building Design Hierarchy
Table 5-3  Comparison of Design Methodologies

*The flat design did not route and was not floorplanned. No PPR runtime is
provided.

Design
Methodology

XC4025pg299-5
PPR V5.1.0

Occupied
CLBs

Packed
CLBs

RPMs
Flip-
flops

Clock
ToSetup
Rising
Edge

Pad
ToSetup

PPR Run Time
(CPU Time)

Flat Design
(no X-BLOX)

737
71%

619
60%

0 958
46%

n/a* n/a* n/a* n/a*

Original Design
Hierarchy; no Floor-
planning

1024
100%

745
72%

50 958
46%

n/a* n/a* n/a* n/a*

Original Design
Hierarchy;
with Floorplanning

1024
100%

745
72%

50 958
46%

143.2 ns 100.1 ns Partition
Placement
Routing
Total

01:13
02:05
12:53
16:14

Re-Group
Design Hierarchy
with X-BLOX

1015
99%

715
69%

46 958
46%

106.7 ns 108.8 ns Partition
Placement
Routing
Total

01:05
01:34
08:07
10:49

Re-Group
Design Hierarchy
without X-BLOX

957
93%

630
61%

0 958
46%

113.4 ns 107.6 ns Partition
Placement
Routing
Total

01:02
05:39
04:29
11:12
HDL Synthesis for FPGAs Design Guide 5-25



HDL Synthesis for FPGAs Design Guide
5-26 Xilinx Development System



Chapter 6
HDL Synthesis for FPGAs Design Guide — 0401294 01 6-1

Understanding High-Density Design Flow

This chapter describes the design flow for high-density HDL designs
that you should follow when analyzing and modifying your designs
to improve design performance. A summary of the steps in the flow
is illustrated in Figure 6-1. If your design does not route or meet
speed requirements, you can evaluate the design’s hierarchy, test
various synthesis options, modify timing specifications, floorplan
design elements, or select different PPR options.

The design example used in this chapter is the Top design described
in the “Building Design Hierarchy” chapter. This design is
implemented in an XC4025pg299-5 FPGA. The Top design VHDL
code is not included in this manual, however, the script files used to
run the Synopsys FPGA Compiler are provided in “Appendix B”.
The Top design contains approximately 31 sub-modules that range in
size from 7 - 113 CLBs. The detailed design flow, including files and
programs, for implementing the Top design in an XC4025 FPGA is
shown in Figure 6-2.

This chapter also includes information on using guided design with
your high-density HDL designs.

Note: Most of the information in this chapter is described in detail in
the previous chapters of this manual. When applicable, you are
referred to the appropriate chapter for more information.



HDL Synthesis for FPGAs Design Guide
Figure 6-1 High-Density Design Flow

Entering your Design

Estimating your Design Size

Evaluating your Design for Coding Style

               and System Features

Modifying your Design 

          Hierarchy

Synthesizing and Optimizing your Design

Translating your Design and

  Adding Group TimeSpecs

Building your Design Hierarchy

Floorplanning your Design

Placing and Routing your Design

Evaluating the Results

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9
X6155
6-2 Xilinx Development System



Understanding High-Density Design Flow
top.sxnf

top.sxnf

Syn2XNF

top.xff

top.xtf/top.xtg

top.txff

XNFPrep

top.xtf/top.xtg

Syn2XNF

top.xff

top.tnm

PPR estimate=true

top.rpt

X-BLOX

top.xg

X-BLOX

top.xg

STEP 1: Estimate Design Size

Synopsys FPGA Compiler
compile -ungroup_all 

report_fpga

Synopsys FPGA Compiler
compile  

report_fpga

top.vhd

top.script

STEP 2: Evaluate Design

STEPS 3 & 4: Modify Hierarchy, Synthesize, & Optimize Design

AddTNM

mv top.txff top.xff

XNFPrep

STEP 5: Translate Design & Add TimeSpecs

X6156
HDL Synthesis for FPGAs Design Guide 6-3



HDL Synthesis for FPGAs Design Guide
Figure 6-2 High-Density Design Flow with Programs and Files

Step 1: Estimating Your Design Size
Generally, the first step in implementing a high-density HDL design
is determining if your design fits in the target device. Designs that are
compiled as one flat module are usually the smallest designs.
However, these designs can be difficult to route, debug, and modify.

To determine how difficult it is to route a flat design, run PPR on your
design after compiling it as one flat module. If PPR can route your
design, it should route easily after it is compiled with hierarchy.

To compile your design as one flat module, use the following
command:

compile -ungroup_all

PPR -nolca ....

top.map

top.xtf/top.xtg

Fplan

top.cst

STEPS 6 & 7: Build Design 

Hierarchy and Floorplan

PPR

top.lca

Add TimeSpec Group Timing

Add Area Placement for Groups

top.rpt

STEP 8: Place and Route Design

STEP 9: Evaluate Results

X6157
6-4 Xilinx Development System



Understanding High-Density Design Flow
To obtain a report of device resource utilization after compiling, use
the following command:

report_fpga

Figure 6-3 shows a sample report file generated by the Report FPGA
command for the Top design.

Figure 6-3 Area Utilization Report

Note: For more information on the Report FPGA command, refer to
the Synopsys (XSI) for FPGAs Interface/Tutorial Guide.

Determining Device Utilization
To determine if your design fits the targeted device, perform the
following steps.

Note: You can substitute your design name and part type in the
following steps.

1. Translate your design as follows:

syn2xnf -p 4025pg299-5 top.sxnf

xnfprep top.xff
HDL Synthesis for FPGAs Design Guide 6-5



HDL Synthesis for FPGAs Design Guide
2. If your design contains X-BLOX modules, run X-BLOX to
synthesize these modules:

Note: If you used the X-BLOXGen program to instantiate an X-BLOX
module, you do not need to run X-BLOX because X-BLOXGen runs
this program automatically.

xblox top.xtg

Run XNFPrep again on the output from X-BLOX (XG file):

xnfprep top.xg

3. Run PPR:

ppr top.xtg estimate=true

The PPR screen output appears as shown in Figure 6-4. A
preliminary estimate of device utilization for the Top design is
listed. PPR may use additional CLBs as feedthroughs to help route
the design.

Figure 6-4 PPR Screen Output

4. Use the report file generated by PPR to determine if your design
fits the targeted device. The utilization statistics for the Top design
are shown in Figure 6-5.

If the percentage (% Used column) of packed CLBs, bonded I/O
pins, or CLB flip-flops exceeds 100, your design does not fit the
device. In this case, select a larger device or remove some logic.

If the percentage of packed CLBs, bonded I/O pins, or CLB flip-
flops is below 50%, your design will most likely fit the device and
meet timing requirements.
6-6 Xilinx Development System



Understanding High-Density Design Flow
If the percentage of packed CLBs, bonded I/O pins, or CLB flip-
flops is greater than 50% and less than 100%, successful routing
depends on the type of logic implemented, the synthesis strategy,
use of hierarchy, and coding styles.

Figure 6-5 PPR Report File ( top .rpt)

Highly structured, pipelined, or synchronous designs are usually
easy to route. For designs that contain many interconnects and are
not completely structured, you may need extra CLBs to route the
design or meet timing requirements. I/O-intensive designs can also
be difficult to route. Generally, this method of determining if your
design fits the targeted device is accurate if your designs are partly or
completely structured and if they utilize 60 - 80% of the device.

Step 2: Evaluating Your Design for Coding Style and
System Features

Note: Refer to the “HDL Coding Hints” and the “HDL Coding for
FPGAs” chapters for more information on the topics included in this
section.
HDL Synthesis for FPGAs Design Guide 6-7



HDL Synthesis for FPGAs Design Guide
The next step in the design flow is evaluating your design for poor
coding styles or coding styles that are difficult to implement in an
XC4000 FPGA.

After correcting any coding style problems, incorporate FPGA system
features into your design to improve resource utilization and enhance
the speed of critical paths. A few ways of incorporating FPGA system
features are listed below.

● Use the global clock buffers and global set/reset net to reduce
routing congestion and improve design performance.

● Place the four highest fanout signals on the BUFGS.

● Modify large multiplexers to use tristate buffers.

● Use one-hot encoding for large or complex state machines.

● Use I/O registers where possible.

● Use I/O decoders where possible.

● Use the STARTUP block.

Step 3: Modifying Your Design Hierarchy
Note: Refer to the “Building Design Hierarchy” chapter for more
information on the topics included in this section.

Large HDL designs (more than 5,000 gates) for FPGAs are usually
synthesized as either one flat module or as many small modules. Flat
designs can be difficult to route because the logic is always placed in
one region of the device, which can result in routing congestion.
Many small modules can cause an increase in the number of gates,
which can result in a design that does not fit the target device.
Although these design methodologies are used to implement ASIC
devices, they are usually not the most effective methodologies for
implementing high-density FPGAs.

To efficiently use high-density FPGAs, structure your design
hierarchy to guide the placement and routing of the device. Effective
design hierarchy can reduce routing congestion and improve timing.
In addition, hierarchical designs are easier to debug and modify. This
section describes how to modify your design hierarchy to reduce
routing congestion.
6-8 Xilinx Development System



Understanding High-Density Design Flow
Estimating Area Utilization
For large designs, Xilinx recommends that you divide your design
into mid-sized modules. To determine the most efficient way to
group existing modules, you can estimate the area utilization for each
module with the following procedure.

1. Separately synthesize each module in your design; do not use the
ungroup command. Refer to the Synopsys (XSI) for FPGAs
Interface/Tutorial Guide or Synopsys manuals for more information.

2. Run the following command on each module:

report_fpga

This command generates an area utilization report for each
module.

3. Complete the worksheet in Table 6-1 using the values from the
report file generated by the Report FPGA command. The resource
statistics for the Top design from the “Building Design Hierarchy”
chapter are shown in Table 6-2. Use this example as a guide for
completing the worksheet in Table 6-1.

Table 6-1  Worksheet for Design Module Resource Statistics

Module Name RPMs CLBs Flip-flops
Tristate
Buffers
HDL Synthesis for FPGAs Design Guide 6-9



HDL Synthesis for FPGAs Design Guide
Table 6-2  Top Design’s Resource Statistics

Module Name
RPMs CLBs  Flip-flops

Tristate
Buffers

TOP 50 962 958 14

X0 16 342 335 0

R0 34 591 582 0

UP0 0 25 37 0

DD0 0 4 4 0

N1 8 130 174 0

N2 0 33 0 0

N3 3 80 89 0

N4 0 19 3 0

N5 4 63 55 0

N6 6 112 113 0

N7 0 15 10 0

N8 2 18 18 0

N9 7 53 56 0

N10 0 14 9 0

N11 2 26 23 0

N12 0 7 9 0

N13 2 24 24 0

M1 0 34 0 0

M2 4 21 13 0

M3 0 19 34 0

M4 0 41 27 0

M5 1 37 52 0

M6 0 14 21 0

M7 0 38 33 0

M8 0 23 35 0

M9 9 77 83 0

M10 2 27 27 0

M11 0 15 10 0
6-10 Xilinx Development System



Understanding High-Density Design Flow
Creating a New Hierarchy
Note: See the “Top Design Example” section in the “Building Design
Hierarchy” chapter for more information on modifying your design
hierarchy.

The core level of the original Top design contains two large modules,
R0 and X0, and two small modules, UP0 and DD0. The R0 block has
591 CLBs; the X0 block has 342 CLBs; the UP0 block has 25 CLBs; and
the DD0 block has 4 CLBs. To create a more efficient hierarchical
structure for the placement and routing tools, each design module
should use approximately 100 to 200 CLBs. To obtain this ideal size
for the modules in your design, create a new hierarchy as follows:

1. Use the Synopsys Design Analyzer to view the interconnect
between the modules in your design.

2. Separate large modules into modules that have approximately
100 - 200 CLBs.

Step 4: Synthesizing and Optimizing Your Design
Note: Refer to the “Building Design Hierarchy” chapter for more
information on the topics covered in this section.

Next, perform the following steps to synthesize and optimize your
design.

1. Use the Synopsys Group command to define the new hierarchy.
For the Top design, the following groups are defined.

Note: The “\” character represents a continuation marker.

group {M1,M2,M3,M4,M5} -design_name X1 -cell_name X1

group {M6,M7,M8,M9,M10,M11} -design_name X2 \
-cell_name X2

group {N7,N8,N9,N10,N11,N12,N13} -design_name R1 \
-cell_name R1

group {N2,N3,N4,N5} -design_name R2 -cell_name R2

group {N6} -design_name R3 -cell_name R3

group {N1} -design_name R4 -cell_name R4
HDL Synthesis for FPGAs Design Guide 6-11



HDL Synthesis for FPGAs Design Guide
2. Compile the modules together as follows:

compile -ungroup_all

The Synopsys script file for compiling the Top design’s core modules
is included in the “Building Design Hierarchy” chapter. This file
defines the new hierarchical groups, compiles these groups, and
creates the XNF file for the core level. The lowest level modules are
compiled before this script is run and are saved as .db files. The Top
level modules are processed by a separate script. This script reads in
the Top level, reads in the core level, assigns the I/Os, and writes the
design to the top.sxnf file.

Note: The Top design VHDL code is not included in this manual,
however, the script files used to run the Synopsys FPGA Compiler are
provided in “Appendix B”.

Step 5: Translating Your Design and Adding Group
TimeSpecs

Note: Refer to the “HDL Coding for FPGAs” chapter for more
information on the topics in this section.

This section describes how to translate the SXNF file created in the
previous step to an XNF file as well as how to add timing
specifications to your design.

Translating Your Design
To translate your design to an XNF file, follow the applicable
instructions in your synthesis tool documentation. If you are using
the Synopsys FPGA Compiler, perform the following step to translate
your design.

Enter the following command:

syn2xnf -p 4025pg299-5 top.sxnf

An XFF file is generated.

Note: For more information on Syn2XNF, refer to the Synopsys (XSI)
for FPGAs Interface/Tutorial Guide.
6-12 Xilinx Development System



Understanding High-Density Design Flow
Adding Timing Specifications
You can specify XACT-Performance timing constraints in the
following ways.

● Set timing constraints in the synthesis tool (FPGA Compiler only).
The synthesis tool passes the constraints to the XNF file.

● Specify default timing constraints using PPR command line
options.

● Specify timing constraints for groups of logic in a constraints file.

Using the Synthesis Tool

Path timing specifications (added by the Synopsys XNF Writer)
generate a TimeSpec line in the XNF file for every constrained
endpoint, which results in a very large XNF file.

Note: Not all Synopsys timing specification commands are translated
to XNF. For increased accuracy, use the following Synopsys
command before writing the XNF file, and use one of the methods
described below.

xnfout_constraints_per_endpoint=0

Using PPR Command Line Options

If your design contains one clock or multiple clocks with the same
timing requirements, Xilinx recommends that you specify default
timing constraints using PPR command line options. You can set the
default clock-to-setup, clock-to-pad, pad-to-setup, and pad-to-pad
constraints with the PPR options: Dc2s, Dc2p, Dp2s, and Dp2p.

Note: For more information on PPR, refer to the “PPR” chapter in the
Development System Reference Guide.

Using A Constraints File

The Xilinx tools allow you to specify timing constraints for groups of
logic in a constraints file. You can specify a set of paths and the
maximum allowable delay on these paths. You can refer to a
predefined group by specifying one of the corresponding keywords
— FFS, PADS, LATCHES, or RAMS.
HDL Synthesis for FPGAs Design Guide 6-13



HDL Synthesis for FPGAs Design Guide
To specify timing constraints for designs that are more complex, use
the MakeTNM and AddTNM programs after running Syn2XNF.

Note: Refer to the “HDL Coding for FPGAs” chapter for more
information on MakeTNM and AddTNM.

1. Use MakeTNM to create a TNM file:

maketnm top.xff

2. MakeTNM creates a template top.tnm file called top.tt. Edit this file
to reflect the desired time groups and save the file as top.tnm.

3. Use AddTNM to add timing group information from the TNM file
to the XFF file.:

addtnm top.tnm

4. After the timing groups are created, use the TIMESPEC and
TIMEGRP commands to specify timing constraints.

Place these commands in a PPR constraints file with a .cst
extension. The constraints file is read by XNFPrep and PPR.

5. Run XNFPrep to check for design errors:

xnfprep top.xff

XNFPrep reads the constraints file and the XFF file with the TNMs
included and writes an XTF (or XTG) file with timing information.
If the top.xff file already contains timing specifications (such as
those generated automatically by Synopsys), they can be ignored
with the following command.

ignore_timespec= top

6. If your design contains X-BLOX modules, run X-BLOX to
synthesize these modules:

Note: If you used the X-BLOXGen program to instantiate an X-BLOX
module, you do not need to run X-BLOX because
X-BLOXGen runs this program automatically.

xblox top.xtg

Run XNFPrep again on the output from X-BLOX (XG file):

xnfprep top.xg
6-14 Xilinx Development System



Understanding High-Density Design Flow
Step 6: Building Your Design Hierarchy
Note: Refer to the “Floorplanning Your Design” and “Building
Design Hierarchy” chapters for more information on the topics
included in this section.

Next, constrain your design modules to specific device areas in the
Floorplanner. Define boundaries in the Floorplan window and place
the selected modules within the specified boundaries. The area size
must be large enough to accommodate a module as well as provide
enough space for PPR to add feed-throughs to route the design. The
height of an area must accommodate the tallest structure in the
module.

Step 7: Floorplanning Your Design
Note: Refer to the “Floorplanning Your Design” chapter in this
manual and the Floorplanner Reference/User Guide for more
information on the topics included in this section.

Xilinx gives you two design implementation options. The XACTstep
Foundry v7 software provides automatic implementation of your
designs and does not support the Xilinx Floorplanner. Alternatively,
if you want to control part of the implementation process, use the
XACTstep v5.2 software with the Floorplanner.

For high-density devices, Xilinx recommends that you floorplan
specific parts of your design to improve PPR performance. Due to the
complexity and size of larger designs, PPR is limited in its ability to
recognize structure. Your design may not route or meet timing
constraints without structured placement. Based on your knowledge
of a design’s structure, you can create a floorplan that significantly
improves the placement of the design. Generally, you should
floorplan the parts of your designs that are timing critical or heavily
congested.

Creating a MAP File
The Floorplanner requires a MAP file as input. Before creating a MAP
file, you must synthesize your design and save it as an SXNF or an
EDIF file. Use one of the following procedures to create a MAP file.
HDL Synthesis for FPGAs Design Guide 6-15



HDL Synthesis for FPGAs Design Guide
Using XMake

Specify a MAP file as the target file with XMake as follows:

xmake [options] top.sxnf top.map

Using PPR

1. Follow the XC4000 design flow (includes Syn2XNF, XNFPrep,
X-BLOX) to create an XTF file.

2. Create a MAP file at the command line with the following PPR
options:

ppr top.xtf map_fgs=true place=false route=false
report=false lca=false run_pic2map=true

Using Prep for Floorplanner Option

Use the Prep for Floorplanner option in the XACT Design Manager
(XDM) to create a MAP file as follows:

1. Invoke XDM.

2. Choose the XMake command from the Translate menu.

3. Select the appropriate SXNF file from the pop-up menu.

4. Select Prep for Floorplanner from the pop-up menu.

XMake generates a MAP file.

Floorplanning Design Components
Floorplan the following structured items in your design.

● Large objects such as RPMs, registers, counters, and RAMs

● Buses (place all BUFTs and bus elements)

● BUFTs with I/O or RPM inputs

● Multiple BUFTs (except VCC or GND) with identical source pin
inputs

You can floorplan elements other than those listed, but constraining
too many elements, especially those without any specific structure,
can decrease design performance.
6-16 Xilinx Development System



Understanding High-Density Design Flow
Writing a Constraints File
Use the Write Constraints command in the Floorplanner to create a
constraints file, such as top.cst. This file is read by PPR to place and
route your design.

Step 8: Placing and Routing Your Design
Note: Refer to the “Building Design Hierarchy” chapter and the
Floorplanner Reference/User Guide for more information on the topics
in this section.

After floorplanning, run PPR to place and route your design. An
example PPR command with various options set is as follows:

ppr top.xtf placer_effort=4 router_effort=3

Alternatively, you can run PPR from the Process menu in the
Floorplanner.

For large devices, such as the XC4025, Xilinx recommends that you
set placer_effort to 4 or 5 and router_effort to 3. However, if your
design includes floorplanned RPMs, set placer_effort to 2.

Optionally, you can ignore the mapping generated by Synopsys by
specifying ignore_maps=true. You may want to run PPR with this
option set both ways and evaluate the results. Generally, use the PPR
options that generate the fewest CLBs.

You can observe PPR’s progress on your screen as it processes your
design, as shown in Figure 6-6. If you want to terminate PPR, press
control-c. You are prompted to either save the LCA and report (RPT)
file or to quit without saving. If PPR is having problems routing your
design, save the LCA design file. Load the LCA file into the
Floorplanner and evaluate routing congestion using the Ratsnest or
Congestion commands in the View menu.
HDL Synthesis for FPGAs Design Guide 6-17



HDL Synthesis for FPGAs Design Guide
Figure 6-6 PPR Screen Output

Using PPR Options
The following is a list of PPR command line options that you may
want to use when processing your designs.

● Ignore_maps=true

Use this option to ignore the mapping of combinatorial logic into
function generators that is generated by the Synopsys FPGA
Compiler. This option may result in a more efficient mapping of
the logic.

● Placer_effort=4

Do not use this option if you floorplanned any RPMs. Use the
default value of 2 if you have specified many placement
constraints.

● Router_effort=3

Use Router_effort=3 for designs that are large or difficult to route.
The default value is 2.

● Ignore_rlocs=true

Use this option to override any RLOCs in the XTF file.

● Outfile=new_name

Use this option to redirect PPR output to a file with a name that is
different from the input XTF file name. This option is useful for
multiple runs of PPR.
6-18 Xilinx Development System



Understanding High-Density Design Flow
Determining If PPR Can Route Your Design
To determine if PPR can route your design, observe your computer
screen while PPR is running. The routing percentage should quickly
increase from 0 to 98-99%. If the routing percentage stops at a number
below 95% and does not progress after a few passes, it is unlikely that
your design will route. The PPR screen output for an unroutable
design is shown in Figure 6-7. PPR screen output for a design that can
be routed is shown in Figure 6-8. If the PPR screen output indicates
that your design cannot be routed, stop PPR by pressing control-c
and save the LCA file for evaluation.

ppr: Routing signals...

+ Suspension enabled: cntl_c/cntl_Break to save current
routing.
1994/12//06 06:11:36 .... 0% routed.
1994/12//06 08:11:00 .... 12% routed.
1994/12//06 09:11:00 .... 12% routed.
1994/12//06 10:00:00 .... 84% routed.
1994/12//06 10:05:00 .... 85% routed.
1994/12//06 10:11:30 .....84% routed.
1994/12//06 10:17:00 .... 85% routed.

Figure 6-7 PPR Screen Output for an Unroutable Design

ppr: Routing signals ...

+ Suspension enabled: cntl_c/cntl_Break to save current
routing.
1994/12//06 06:11:36 .... 0% routed.
1994/12//06 08:11:00 .... 12% routed.
1994/12//06 09:11:00 .... 12% routed.
1994/12//06 10:00:00 .... 98% routed.
1994/12//06 10:05:00 .... 99% routed.
1994/12//06 10:11:30 .....99% routed.
1994/12//06 10:17:00 .... 99% routed.

Figure 6-8 PPR Screen Output for a Routable Design

Step 9: Evaluating the Results
PPR generates a report file that lists unrouted nets and summarizes
whether or not the timing specifications were met.
HDL Synthesis for FPGAs Design Guide 6-19



HDL Synthesis for FPGAs Design Guide
If your design routed, use XDelay to further evaluate the path timing.
To simulate your design, you can use any HDL or gate simulator that
supports the targeted Xilinx device.

If your design does not route or does not meet the timing
specifications, evaluate the floorplan as described in the next section.

Evaluating Module Placement with the Floorplanner
Note: Refer to the “Floorplanning Your Design” chapter in this
manual and the Floorplanner Reference/User Guide for more
information on the topics included in this section.

This section describes how you can evaluate your design in the
Floorplanner. An efficiently placed design has the following
characteristics.

● Logic is evenly distributed throughout the device

● Most of the interconnects are within the modules

● A few interconnects join adjacent modules

● A very small number of interconnnects join non-adjacent modules

● High-fanout clocks, clock enables, and reset nets are routed using
the global clock buffer routing resources or the global set/reset
routing resources

An inefficient placement of the Top design is shown in Figure 6-9.
6-20 Xilinx Development System



Understanding High-Density Design Flow
Figure 6-9 Inefficient Placement of Top Design

After running PPR and determining that your design cannot be
routed, perform the following steps.

1. Load your design into the Floorplanner.

The floorplan of the Top design is shown in Figure 6-10. Observe
that the logic is not evenly distributed in the device. Logic is
densely packed in the upper right-hand corner, which is the
location of the R1 and R4 modules. The device areas allocated for
these modules are too small.

X6161

1
1 32

32

X1 X2

R1 R4

R2

R3

UPO
HDL Synthesis for FPGAs Design Guide 6-21



HDL Synthesis for FPGAs Design Guide
Figure 6-10 Floorplan of Top Design

2. To evaluate the module interconnections, use the Find Nets
command in the Edit menu in the Floorplan window.

The Find Nets dialog box and the Ratsnest dialog box appear. The
Ratsnest dialog box is shown in Figure 6-11.

Bad Location for UP0 Module

Area is too small for R1 and R4 Modules
6-22 Xilinx Development System



Understanding High-Density Design Flow
Figure 6-11 Ratsnest Dialog Box

3. In the Available Nets field, select the nets that correspond to one
of your design modules.

For example, in Figure 6-11, the nets associated with the R4
(CORE0/RECEIVER0/RECEIVER4) module are selected.

4. Select Add in the Ratsnest dialog box to add the selected nets to
the Displayed Nets list.

5. Select the Close command to close the dialog boxes.

6. Figure 6-12 shows the R4 module interconnects displayed in the
Floorplan window.
HDL Synthesis for FPGAs Design Guide 6-23



HDL Synthesis for FPGAs Design Guide
Figure 6-12 R4 Module Ratsnest

7. Repeat the previous steps to display the ratsnest for other
modules in your design.

Figure 6-13 shows the X1 module interconnects displayed in the
Floorplan window. Both modules (R4 and X1) have numerous
interconnects to the UP0 module. The ratsnest display for
modules X2, R1, R2, and R3 also have numerous interconnects to
UP0. These interconnections indicate that UP0 is poorly placed.
6-24 Xilinx Development System



Understanding High-Density Design Flow
Figure 6-13 X1 Module Ratsnest

Modifying Design Placement
When constraining design modules to specific device areas, the
following recommendations can help you produce a design that PPR
can route. Alternatively, you can use the Congestion command in the
Floorplanner View menu to evaluate routing congestion.
HDL Synthesis for FPGAs Design Guide 6-25



HDL Synthesis for FPGAs Design Guide
● Make sure that the device area is large enough to accommodate a
specific module and provides enough space for PPR to add feed-
throughs to route the design.

● Allow modules that have many interconnects to other modules to
“float” to allow PPR to calculate the best placement. For example,
in the Top design, the two smaller blocks, UP0 and DD0, have
many interconnects to all the modules and, therefore, are not
constrained to a specific area of the device. Any unused CLBs are
placed in the center of the device for these modules.

An efficient placement of the Top design is shown in Figure 6-14.

Figure 6-14 Efficient Placement of Top Design

Using Guided Design
The term guided design refers to the process in which a previously
implemented design — also known as a guide file — is used to guide
mapping, placement, and routing. Guided design allows you to
modify or add logic to a design while preserving the layout and
performance from a previous run of PPR. You can reduce the number
of timing changes between iterations of PPR as well as decrease PPR

X6046

X1

UP0 & DD0

"Float"

X2 R4

R1 R3 R2
6-26 Xilinx Development System



Understanding High-Density Design Flow
run time with guided design. The three ways of performing guided
design are iterative design, incremental design, and using XDE.

Note: For more information on PPR and guided design, refer to the
“PPR” chapter in the Development System Reference Guide.

Using Iterative Guided Design
If you need to make logic changes in your design after it has been
verified for timing, use iterative guided design to minimize the
impact of the changes on the new layout. Iterative design simplifies
the mapping, placement, and routing process, as well as verifies the
design timing.

In iterative design, your original design is specified as the guide file.
PPR copies as much of your guide file’s mapping, placement, and
routing as possible. PPR implements logic that has not changed by
copying the LCA resources in your guide file, ensuring identical
timing. For logic that is changed, PPR uses the standard mapping,
placement, and routing process.

Using Incremental Guided Design
You can implement and verify your design in stages using
incremental guided design as follows:

1. Run PPR on a single functional block.

2. Verify the timing internal to the block.

3. Add a second functional block to your design.

4. Run PPR.

PPR maps, places, and routes your design using the results from
the initial PPR run as a guide file.

5. Verify the timing of the new logic.

6. Repeat this process to build and verify your design piece by piece.

Using XDE
Guided design is also useful when you manually place and route
critical paths using the EditLCA program in XDE. Using the edited
design as a guide design allows you to specify exactly how your
HDL Synthesis for FPGAs Design Guide 6-27



HDL Synthesis for FPGAs Design Guide
critical paths are routed while still allowing PPR to place and route
less timing-critical logic. Generally, critical paths are difficult to
manually route in HDL designs because these designs usually have
random net and block names. If you can determine the critical paths,
you can use XDE to manually route these paths.

Effectively Using Guided Design
Guided design uses signal names to match logic between the guide
file and the input design netlist. For this reason, do not re-synthesize
design modules that have not been modified. Although you have not
made any changes to the HDL code for these modules, optimization
changes the signal names. Guided design requires minimal signal
name changes.

Xilinx recommends that you use the guide option only with
synthesized designs that have been hierarchically grouped and
floorplanned, as described in the “Building Design Hierarchy”
chapter. You can make small changes to a design module and run
PPR again. Modules that have not been changed are guided by the
previous run of PPR.

Do not use guided design if you have made extensive design changes
or have made changes at a high level in your design’s hierarchy.
These type of changes generally result in a large number of signal
name changes. In addition, you should synthesize your design again
after extensive design changes.

Understanding Guided Design for XC4000 Designs
For XC4000 designs, the guided design process is controlled by PPR.
The guide file is an LCA file generated by a previous run of PPR.

Adding a New Module to Your Design

The Top design is used to illustrate how you can add a new module
to your HDL design.

1. Modify your HDL code by adding a new sub-module to your
design.

2. Compile only the new module and the top level module that
connects the new module to the other modules in the design. Do
not repeat the compilation process for any other sub-modules.
6-28 Xilinx Development System



Understanding High-Density Design Flow
3. Modify the PPR constraints file to specify the device region for the
new sub-module.

4. Run PPR as follows:

ppr top.xtf lock_routing=none guide= top.lca
router_effort=3 placer_effort=4 outfile= top_2

The Lock Routing option is set to none to allow PPR to unroute
the guide file routing on a signal and reroute that signal to
improve the timing. It is important to note that PPR does not
automatically discard the guide routing when the Lock Routing
option is set to none. PPR starts with the guided routing, but if it
cannot route a signal because a path is blocked by guided routing,
the Lock Routing option specifies whether the guide routing can
be rerouted.

Making a Design Change to a Module

The following steps use the Top design to illustrate how you can
make a small change to a design module.

1. The X1 module is modified in the HDL code.

2. The modified module as well as any modules further up in the
design hierarchy that use the X1 module are re-synthesized.

3. The specified device area is verified to be large enough to
accommodate the modified module. If extensive changes are
made to X1, XDE is used to unroute X1 from the guide design.
This allows PPR to process the entire X1 module and not just the
modified section.

4. PPR is run using an earlier LCA file or the edited LCA file as a
guide.
HDL Synthesis for FPGAs Design Guide 6-29



HDL Synthesis for FPGAs Design Guide
6-30 Xilinx Development System



Appendix A
HDL Synthesis for FPGAs Design Guide — 0401294 01 A-1

Accelerate FPGA Macros with One-Hot
Approach

ELECTRONIC DESIGN
                                                                            September 13, 1990

Steven K. Knapp
Xilinx Inc.,
2100 Logic Dr.,
San Jose, CA 95124

Reprinted with permission from Electronic Design September 13, 1990.
© Penton Publications.

State machines — one of the most commonly implemented functions
with programmable logic — are employed in various digital
applications, particularly controllers. However, the limited number
of flip-flops and the wide combinatorial logic of a PAL device favors
state machines that are based on a highly encoded state sequence. For
example, each state within a 16-state machine would be encoded
using four flip-flops as the binary values between 0000 and 1111.

A more flexible scheme — called one-hot encoding (OHE) —
employs one flip-flop per state for building state machines. Although
it can be used with PAL-type programmable-logic devices (PLDs),
OHE is better suited for use with the fan-in limited and flip-flop-rich
architectures of the higher-gate-count filed-programmable gate
arrays (FPGAs), such as offered by Xilinx, Actel, and others. This is
because OHE requires a larger number of flip-flops. It offers a simple
and easy-to-use method of generating performance-optimized state-
machine designs because there are few levels of logic between flip-
flops.



HDL Synthesis for FPGAs Design Guide
A state machine implemented with a highly encoded state sequence
will generally have many, wide-input logic functions to interpret the
inputs and decode the states. Furthermore, incorporating a highly
encoded state machine in an FPGA requires several levels of logic
between clock edges because multiple logic blocks will be needed for
decoding the states. A better way to implement state machines in
FPGAs is to match the state-machine architecture to the device
architecture.

LIMITING FAN-IN

A good state-machine approach for FPGAs limits the amount of fan-
in into one logic block. While the one-hot method is best for most
FPGA applications, binary encoding is still more efficient in certain
cases, such as for small state machines. It’s up to the designer to
evaluate all approaches before settling on one for a particular
application.

FPGAs are high-density programmable chips that contain a large
array of user-configurable logic blocks surrounded by user-
programmable interconnects. Generally, the logic blocks in an FPGA
have a limited number of inputs. The logic block in the Xilinx XC-
3000 series, for instance, can implement any function of five or less
inputs. In contrast, a PAL macrocell is fed by each input to the chip
and all of the flip-flops. This difference in logic structure between
PALs and FPGAs is important for functions with many inputs: where
a PAL could implement a many-input logic function in one level of
logic, an FPGA might require multiple logic layers due to the limited
number of inputs.

The OHE scheme is named so because only one state flip-flop is
asserted, or “hot”, at a time. Using the one-hot encoding method for
FPGAs was originally conceived by High-Gate Design — a Saratoga,
Calif.-based consulting firm specializing in FPGA designs.

The OHE state machine’s basic structure is simple — first assign an
individual flip-flop to each state, and then permit only one state to be
active at any time. A state machine with 16 states would require 16
flip-flops using the OHE approach; a highly encoded state machine
would need just four flip-flops. At first glance, OHE may seem
counter-intuitive. For designers accustomed to using PLDs, more flip-
flops typically indicates either using a larger PLD or even multiple
devices.
A-2 Xilinx Development System



Accelerate FPGA Macros with One-Hot Approach
In an FPGA, however, OHE yields a state machine that generally
requires fewer resources and has higher performance than a binary-
encoded implementation. OHE has definite advantages for FPGA
designs because it exploits the strengths of the FPGA architecture. It
usually requires two or less levels of logic between clock edges than
binary encoding. That translates into faster operation. Logic circuits
are also simplified because OHE removes much of the state-decoding
logic — a one-hot-encoded state machine is already fully decoded.

OHE requires only one input to decode a state, making the next-state
logic simple and well-suited to the limited fan-in architecture of
FPGAs. In addition, the resulting collection of flip-flops is similar to a
shift-register-like structure, which can be placed and routed
efficiently inside an FPGA device. The speed of an OHE state
machine remains fairly constant even as the number of states grows.
In contrast, a highly encoded state machine’s performance drops as
the states grow because of the wider and deeper decoding logic that’s
required.

To build the next-state logic for OHE state machine is simple, lending
itself to a “cookbook” approach. At first glance, designers familiar
with PAL-type devices may be concerned by the number of potential
illegal states due to the sparse state encoding. This issue, to be
discussed later, can be solved easily.

A typical, simple state machine might contain seven distinct states
that can be described with the commonly used circle-and-arc bubble
diagrams (Fig. 1). The label above the line in each “bubble” is the
state‘s name. The labels below the line are the outputs asserted while
the state is active. In the example, there are seven states labeled State
1-7. The “arcs” that feed back into the same state are the default
paths. These will be true only if no other conditional paths are true.

 Each conditional path is labeled with the appropriate logical
condition that must exist before moving to the next state. All of the
logic inputs are labeled as variables A through E. The outputs from
the state machine are called Single, Multi, and Contig. For this
example, State 1, which must be asserted at power-on, has a doubl-
inverted flip-flop structure (shaded region of Fig.2)
HDL Synthesis for FPGAs Design Guide A-3



HDL Synthesis for FPGAs Design Guide
1. HERE, A TYPICAL STATE MACHINE BUBBLE diagram shows the
operation of a seven-state state machine that reacts to inputs A through E as
well as previous-state conditions.

.

2. INVERTERS ARE REQUIRED at the D input and the Q output of the
state flip-flop to ensure that it powers on in the proper state. Combinatorial
logic decodes the operations based on the input conditions and the state
feedback signals. The flip-flop will remain in State 1 as long as the conditional
paths out of the states are not  valid.

State 1 State 2 State 3 State 7

State 4 State 5 State 6

Multi Contig Contig

Contig, 

Multi

Contig Contig, 

Single

A+D

A*B*C
_

A*B*C
_

A*B*C
_

_
D

D

E

E

X6467

D Q

AND-3

State 1

Clock
State 7

E AND-2

A

B

C

A

B

C

OR-1

X6468
A-4 Xilinx Development System



Accelerate FPGA Macros with One-Hot Approach
The state machine in the example was built twice, once using OHE
and again with the highly encoded approach employed in most PAL
designs. A Xilinx XC3020-100 2000-gate FPGA was the target for both
implementations. Though the OHE circuit required slightly more
logic than the highly-encoded state machine, the one-hot state
machine operated 17% faster (see the table). Intuitively, the one-hot
method might seem to employ many more logic blocks than the
highly encoded approach. But the highly encoded state machine
needs more combinatorial logic to decode the encoded state values.

The OHE approach produces a state machine with a shift-register
structure that almost always outperforms a highly encoded state
machine in FPGAs. The one-state design had only two layers of logic
between flip-flops, while the highly encoded design had three. For
other applications, the results can be far more dramatic. In many
cases, the one-hot method yields a state machine with one layer of
logic between clock edges. With one layer of logic, a one-hot state
machine can operate at 50 to 60 MHz.

The initial or power-on condition in a state machine must be
examined carefully. At power-on, a state machine should always
enter an initial, known state. For the Xilinx FPGA family, all flip-flops
are reset at power-on automatically. To assert an initial state at power-
on, the output from the initial-state flip-flop is inverted. To maintain
logical consistency, the input to flip-flop also is inverted.

All other states use a standard, D-type flip-flop with an asynchronous
reset input. The purpose of the asynchronous reset input will be
discussed later when illegal states are covered.

Once the start-up conditions are set up, the next-state transition logic

ONE-STATE VS.
BINARY ENCODING METHODS

Method
Number of

logic blocks
Worst-case

performance

One-hot 7.5 40 MHz

Binary encoding 7.0 34 MHz
HDL Synthesis for FPGAs Design Guide A-5



HDL Synthesis for FPGAs Design Guide
can be configured. To do that, first examine an individual state. Then
count the number of conditional paths leading into the state and add
an extra path if the default condition is to remain in the same state.
Second, build an OR-gate with the number of inputs equal to the
number of conditional paths that were determined in the first step.

Third, for each input of the OR-gate, build an AND-gate of the
previous state and its conditional logic. Finally, if the default should
remain in the same state, build an AND-gate of the present state and
the inverse of all possible conditional paths leaving the present state.

To determine the number of conditional paths feeding State 1,
examine the state diagram — State 1 has one path from State 7
whenever the variable E is true. Another path is the default condition,
which stays in State 1. As a result, there are two conditional paths
feeding State 1. Next, build a 2-input OR-gate — one input for the
conditional path from State 7, the other for the default path to stay in
State 1 (shown as OR-1 in Fig. 2).

The next step is to build the conditional logic feeding the OR-gate.
Each input into the OR-gate is the logical AND of the previous state
and its conditional logic feeding into State 1. State 7, for example,
feeds State 1 whenever E is true and is implemented using the gate
called AND-2 (Fig.2, again). The second input into the OR-gate is the
default transition that’s to remain in State 1. In other words, if the
current state is State 1, and no conditional paths leaving State 1 are
valid, then the state machine should remain in State 1. Note in the
state diagram that two conditional paths are leaving State 1 (Fig 1,
again).

The first path is valid whenever (A*B*C) is true, which leads into
State 2. The second path is valid whenever (A*B*C) is true, leading
into State 4. To build the default logic, State 1 is ANDed with the
inverse of all the conditional paths leaving State 1. The logic to
perform this function is implemented in the gate labeled AND-3 and
the logic elements that feed into the inverting input of AND-3 (Fig. 2,
again).

State 4 is the most complex state in the state-machine example.
However, creating the logic for its next-state control follows the same
basic method as described earlier. To begin with, State 4 isn’t the
initial state, so it uses a normal D-type flip-flop without the inverters.
It does, however, have an asynchronous reset input, three paths into
the state, and a default condition that stays in State 4. Therefore,  four-
input OR-gate feeds the flip-flop (OR-1 in Fig. 3)
A-6 Xilinx Development System



Accelerate FPGA Macros with One-Hot Approach
.

3. OF THE SEVEN STATES, the state-transition logic required for State 4
is the most complex, requiring inputs from three other state outputs as well
as four of the five condition signals (A - D).

The first conditional path comes from State 3. Following the methods
established earlier, an AND of State 3 and the conditional logic,
which is A ORed with D, must be implemented (AND-2 and OR-3 in
Fig.3). The next conditional path is from State 2, which requires an
AND of State 2 and variable D (AND-4 in Fig.3). Lastly, the final
conditional path leading into State 4 is from State 1. Again, the State-
1 output must be ANDed with its conditional path logic — the logical
product, A*B*C (AND-5 and AND-6 in Fig.3).

Now, all that must be done is to build the logic that remains in State 4
when none of the conditional paths away from State 4 are true. The
path leading away from State 4 is valid whenever the product,
A*B*C, is true. Consequently, State 4 must be ANDed with the
inverse of the product, A*B*C. In other words, “keep loading the flip-
flop with a high until a valid transfer to the next state occurs.” The
default path logic uses AND-7and shares the output of AND-6.

Configuring the logic to handle the remaining states is very simple.
State 2, for example, has only one conditional path, which comes

AND-5

AND-6

AND-7

OR1
Clock

Reset

State 4

AND-4

AND-2

D Q

A

C

B

State 2

State 1
D

State 3

A

D 


X6469
HDL Synthesis for FPGAs Design Guide A-7



HDL Synthesis for FPGAs Design Guide
from State 1 whenever the product A*B*C is true. However, the state
machine will immediately branch in one of two ways from State 2,
depending on the value of D. There’s no default logic to remain in
State 2 (Fig. 4, top). State 3, like States 1 and 4 has a default state, and
combines the A, D, State 2, and State 3 feedback to control the flop-
flop’s D input (Fig 4, bottom).

4. ONLY A FEW GATES are required by States 2 and 3 to form simple
state-transition logic decoding. Just two gates are needed by State 2 (top) ,
while four simple gates are used by State 3 (bottom).

State 5 feeds State 6 unconditionally. Note that the state machine
waits until variable E is low in State 6 before proceeding to State 7.
Again, while in State 7, the state machine waits for variable E to
return to true before moving to State 1 (Fig 5.)

D Q

RD

A

A

D

D

State 2

State 2

State 3

Clock

Clock

B

C

State 1

D

RD

Q

X6470
A-8 Xilinx Development System



Accelerate FPGA Macros with One-Hot Approach
5. LOOKING NEARLY THE SAME as a simple shift register, the logic
for States 5, 6, and 7 is very simple. This is because the OHE scheme
eliminates almost all decoding logic that precedes each flip-flop.

OUTPUT DEFINITIONS

After defining all of the state transition logic, the next step is to define
the output logic. The three output signals — Single, Multi, and
Contig — each fall into one of three primary output types:

1. Outputs asserted during one state, which is the simplest case. The
output signal Single, asserted only during State 6, is an example.

2. Outputs asserted during multiple contiguous states. This appears
simple at first glance, but a few techniques exist that reduce logic
complexity. One example is Contig. It’s asserted from State 3 to State
7, even though there’s a branch at State 2.

3. Outputs asserted during multiple, non-contiguous states. The best
solution is usually brute-force decoding of the active states. One such
example is Multi, which is asserted during State 2 and State 4.

OHE makes defining outputs easy. In many cases, the state flip-flop is
the output. For example, the Single output also is the flip-flop output
for State 6; no additional logic is required. The Contig output is
asserted throughout States 3 through 7. Though the paths between
these states may vary, the state machine will always traverse from
State 2 to a point where Contig is active in either State 3 or State 4.

There are many ways to implement the output logic for the Contig

D

RD

Q

D

RD

Q
D

RD

Q

A

C

B

E

E

State 4

State 7

State 6
State 5

Clock

X6471
HDL Synthesis for FPGAs Design Guide A-9



HDL Synthesis for FPGAs Design Guide
output. The easiest method is to decode States 3, 4, 5, 6, and 7 with a
5-input OR gate. Any time the state machine is in one of these states,
Contig will be active. Simple decoding works best for this state
machine example. Decoding five states won’t exceed the input
capability of the FPGA logic block.

ADDITIONAL LOGIC

However, when an output must be asserted over a longer sequence of
states (six or more), additional layers of decoding logic would be
required. Those additional logic layers reduce the state machine’s
performance.

Employing S-R flip-flops gives designers another option when
decoding outputs over multiple, contiguous states.Though the basic
FPGA architecture may not have physical S-R flip-flops, most
macrocell libraries contain one built from logic and D-type flip-flops.
Using S-R flip-flops is especially valuable when an output is active
for six or more contiguous states.

The S-R flip-flop is set when entering the contiguous states, and reset
when leaving. It usually requires extra logic to look at the state just
prior to the beginning and ending state. This approach is handy when
an output covers multiple, non-contiguous states, assuming there are
enough logic savings to justify its use.

In the example, States 3 through 7 can be considered contiguous.
Contig is set after leaving State 2 for either States 3 or 4, and is reset
after leaving State 7 for State 1. There are no conditional jumps to
states where Contig isn‘t asserted as it traverses from State 3 or 4 to
State 7. Otherwise, these states would not be contiguous for the
Contig output.

The Contig output logic, built from an S-R flip-flop, will be set with
State 2 and reset when leaving State 7 (Fig.6). As an added benefit, the
Contig output is synchronized to the master clock. Obvious logic
reduction techniques shouldn’t be overlooked either. For example,
the Contig output is active in all states except for States 1 and 2.
Decoding the states where Contig isn’t true, and then asserting the
inverse, is another way to specify Contig.

The Multi output is asserted during multiple, non-contiguous states
—exclusively during States 2 and 4. Though States 2 and 4 are
contiguous in some cases, the state machine may traverse from State 2
A-10 Xilinx Development System



Accelerate FPGA Macros with One-Hot Approach
to State 4 via State 3, where the Multi output is unasserted. Simple
decoding of the active states is generally best for non-contiguous
states. If the output is active is active during multiple, non-
contiguous states over long sequences, the S-R flip-flop approach
described earlier may be useful.

6. S-R FLIP-FLOPS OFFER ANOTHER approach to decoding the
Contig output. They can also save logic blocks, especially when an output is
asserted for a long sequence of contiguous states.

One common issue in state-machine construction deals with
preventing illegal states from corrupting system operation. Illegal
states exist in areas where the state machine’s functionality is
undefined or invalid. For state machines implemented in PAL
devices, the state-machine compiler software usually generates logic
to prevent or to recover from illegal conditions.

In the OHE approach, an illegal condition will occur whenever two
or more states are active simultaneously. By definition, the one-hot
method makes it possible for the state machine to be in only one state
at a time. The logic must either prevent multiple, simultaneous states
or avoid the situation entirely.

Synchronizing all of the state-machine inputs to the master clock
signal is one way to prevent illegal states. “Strange” transitions won’t
occur when an asynchronous input changes too closely to a clock
edge. Though extra synchronization would be costly in PAL devices,
the flip-flop-rich architecture of an FPGA is ideal.

R

S
State 2

State 7

E

Clock

Q
Contig

X6472
HDL Synthesis for FPGAs Design Guide A-11



HDL Synthesis for FPGAs Design Guide
Even off-chip inputs can be synchronized in the available input flip-
flops. And internal signals can be synchronized using the logic
block’s flip-flops (in the case of the Xilinx LCAs). The extra
synchronization logic is free, especially in the Xilinx FPGA family
where every block has an optional flip-flop in the logic path.

RESETTING STATE BITS

Resetting the state machine to a legal state, either periodically or
when an illegal state is detected, give designers yet another choice.
The Reset Direct (RD) inputs to the flip-flops are useful in this case.
Because only one state bit should be set at any time, the output of a
state can reset other state bits. For example, State 4 can reset State 3.

If the state machine did fall into an illegal condition, eventually State
4 would be asserted, clearing State 3. However, State 4 can’t be used
to reset State 5, otherwise the state machine won’t operate correctly.
To be specific, it will never transfer to State 5; it will always be held
reset by State 4. Likewise, State 3 can reset State 2, State 5 can reset
State 4, etc. — as long as one state doesn’t reset a state that it feeds.

This technique guarantees a periodic, valid condition for the state
machine with little additional overhead. Notice, however, that State 1
is never reset. If State 1 were “reset”, it would force the output of State
1 high, causing two states to be active simultaneously (which, by
definition, is illegal).
A-12 Xilinx Development System



Appendix B
HDL Synthesis for FPGAs Design Guide — 0401294 01 B-1

Top Design Scripts

This appendix includes the three script files that are used to compile
the Top design described in this manual. Script files for compiling the
Top design created with VHDL as well as with Verilog are included.
The script files for the VHDL design use the elaborate and analyze
commands, while the Verilog script files use the read command.

VHDL Script Files
This section includes the three script files for the Top design created
with VHDL.



HDL Synthesis for FPGAs Design Guide
B-2 Xilinx Development System



Top Design Scripts
Figure B-1  Core Script (VHDL)
HDL Synthesis for FPGAs Design Guide B-3



HDL Synthesis for FPGAs Design Guide
Figure B-2  M1 Script (VHDL)
B-4 Xilinx Development System



Top Design Scripts
Figure B-3  Top Script (VHDL)
HDL Synthesis for FPGAs Design Guide B-5



HDL Synthesis for FPGAs Design Guide
Verilog Script Files
This section includes the three Verilog script files for the Top design.
B-6 Xilinx Development System



Top Design Scripts
HDL Synthesis for FPGAs Design Guide B-7



HDL Synthesis for FPGAs Design Guide
Figure B-4  Core Script (Verilog)

Figure B-5  M1 Script (Verilog)
B-8 Xilinx Development System



Top Design Scripts
Figure B-6  Top Script (Verilog)
HDL Synthesis for FPGAs Design Guide B-9



HDL Synthesis for FPGAs Design Guide
B-10 Xilinx Development System



Appendix C
HDL Synthesis for FPGAs Design Guide — 0401294 01 C-1

Tactical Software and Design Examples

This appendix lists the tactical software and design examples that are
described in this manual. Refer to the “Getting Started” chapter for
information on retrieving and installing the files listed in this
appendix.

Tactical Software
The three programs in Table C-1 are provided to help you utilize the
new design methodologies described in this manual.

Table C-1  Tactical Programs

These programs are not included in the Xilinx Synopsys Interface or
the XACTstep Development System.

AddTNM and MakeTNM were created with Perl 4.0. To run these
programs, you must have either Perl 4.0 or 5.0.

Program
Name

Description Chapter

X-BLOXGen Allows you to instantiate X-BLOX
modules in your HDL code

Chapters 3
and 6

MakeTNM Allows you to create a template control
file for defining timing groups

Chapters 3
and 6

AddTNM Allows you to add timing group infor-
mation to XFF file

Chapters 3
and 6



HDL Synthesis for FPGAs Design Guide
Design Examples
The tables in this section include the design example directory names,
the design examples in each directory, and whether the design or the
chapter section applies to Verilog.

Table C-2  Chapter 1 Files

Table C-3  Chapter 2 Files

Chapter Section
Design

Example
Directory

Design
Example

Applies to
Verilog?

Understanding HDL Design Flow for
FPGAs

None None Yes

Advantages of Using HDLs to Design
FPGAs

None None Yes

Designing FPGAs with HDLs
- Using VHDL

None
None

None
None

Yes
No

Chapter Section
Design

Example
Directory

Design
Example

Applies to
Verilog?

Comparing Synthesis and Simulation
Results

None None No

Selecting VHDL Coding Styles None alu No

- Comparing Signals and Variables sig_vs_var xor_sig No

xor_var No

Using Schematic Design Hints with
HDL Designs

barrel barrel Yes

barrel_org Yes

- Implementing Latches and Registers d_latch d_latch Yes

d_register d_register Yes

- Resource Sharing res_sharing res_sharing Yes

- Gate Reduction gate_reduce gate_reduce No
C-2 Xilinx Development System



Tactical Software and Design Examples
* There is no noticeable difference between CASE vs. IF for Verilog as described for
VHDL

Table C-4  Chapter 3 Files

- Preset or Clear Pin ff_example ff_example Yes

gate_clock gate_clock Yes

clock_enable clock_enable Yes

- Using If Statements None None Yes

- Using Case Statements None None Yes

- Using Nested_IF Statements* nested_if nested_if No

if_case No

- Comparing If Statement and Case
Statement*

case_vs_if if_ex No

case_ex No

Chapter Section
Design

Example
Directory

Design
Example

Applies to
Verilog?

Using Global Low-skew Clock Buffers None None Yes

Using Dedicated Global Set/Reset
Resource

gsr no_gsr Yes

use_gsr Yes

use_gsr_pre Yes

Encoding State Machines state_machine binary Yes

enum Yes

one_hot Yes

Using Dedicated I/O Decoders io_decoder io_decoder Yes

Instantiating X-BLOX Modules None None Yes

Using RPMs rpm_example rpm_example Yes

Implementing Memory rom16x4 rom16x4 Yes

rom_memgen rom_memgen Yes

Chapter Section
Design

Example
Directory

Design
Example

Applies to
Verilog?
HDL Synthesis for FPGAs Design Guide C-3



HDL Synthesis for FPGAs Design Guide
Table C-5  Chapter 4 Files

Table C-6  Chapter 5 Files

Implementing Boundary Scan bnd_scan bnd_scan Yes

Implementing Logic with IOBs bidi_reg bidi_reg Yes

unbonded_io unbonded_io Yes

Implementing Multiplexers with
Tristate Buffers

mux_vs_3state mux_gate Yes

mux_tbuf Yes

Setting Timing Constraints None None Yes

Chapter Section
Design

Example
Directory

Design
Example

Applies to
Verilog?

Using the Floorplanner None None Yes

Floorplanning RPMs, RAMS, and
ROMs

rpm_ram rpm_ram Yes

Floorplanning Tristate Buffers bufts buft_ex Yes

Comparing Hierarchical and Flat
Designs

alarm alarm (and sub-
modules)

Yes

Floorplanning to Reduce Routing Con-
gestion

align_str align_str Yes

Chapter Section
Design

Example
Directory

Design
Example

Applies to
Verilog?

The entire chapter applies to Verilog
and there are no design examples.

Top script file
available

Top script avail-
able

Yes

Chapter Section
Design

Example
Directory

Design
Example

Applies to
Verilog?
C-4 Xilinx Development System



Tactical Software and Design Examples
Table C-7  Chapter 6 Files

Chapter Section
Design

Example
Directory

Design
Example

Applies to
Verilog?

The entire chapter applies to Verilog
and there are no design examples.

None None Yes
HDL Synthesis for FPGAs Design Guide C-5



HDL Synthesis for FPGAs Design Guide
C-6 Xilinx Development System



Index

A
ACCUM module, 3-26
ADD_SUB module, 3-26

BUFGS, 3-2, 3-4
BUFT see tristate buffer

C

HDL Synthesis for FPGAs Design Guide— 0401294 01 i

AddTNM, 3-55
definition, 3-57, 3-66
flow diagram, 3-58
running, 3-63, 6-14

after xx ns statement, 2-2
Alarm design also see floorplanning, 4-21
arithmetic functions

gate reduction, 2-25
ordering and grouping, 2-3
resource sharing, 2-21
X-BLOX DesignWare, 5-8

ASIC
comparing to FPGA, 1-5, 2-1

assignprobe command, 5-23
asynchronous reset pin, 2-27
asynchronous set pin, 2-27

B
back-annotation, 1-3
barrel shifter design, 2-12
behavioral simulation, 1-3
bidirectional I/O, 3-45

design example, 3-46
binary encoded state machine, 3-14
boolean optimization, 5-2
boundary scan, 3-40

design example, 3-41
instantiating in HDL, 3-40

BSCAN, 3-40
BUFG, 3-4
BUFGP, 3-2

carry logic, 2-21, 3-25, 3-32, 4-9
case statement, 2-2

comparing to if statement, 2-37
design example, 2-39
syntax, 2-32
when to use, 2-32

CLB
initializing, 3-4
XC4000, 2-28

clear pin, 2-27, 3-5, 3-8
CLK_DIV module, 3-26
clock enable pin, 2-27, 2-30
CMOS thresholds, 3-44
combinatorial feedback loop, 2-17
combinatorial logic, 5-2
comments in code, 2-8
COMPARE module, 3-26
compile ungroup_all command, 5-15, 6-4,
6-12
conditional expression, 2-16
congestion command, 6-17
constants, 2-6
constraints file, 1-3

example, 3-64
floorplanning, 1-3, 5-21
PPR, 3-56
using, 3-55, 6-13
writing, 6-17

COUNTER module, 3-26
create_clock command, 3-54



HDL Synthesis for FPGAs Design Guide
critical paths, 5-2
cstfile option, 3-64

D
D latch, 2-17
D register, 2-18

design, 2-6
DATA_REG module, 3-26
debugging a design, 5-23
DECODE module, 3-26
decoders, 3-21
defineprobe command, 5-23
Design compiler

also see FPGA compiler
arithmetic functions, 5-8

design examples
installing, 1-6

design partitioning, 5-2
DesignWare, 5-8, 5-16

also see X-BLOX
gate reduction, 2-25
resource sharing, 2-20

directory tree structure, 1-12
disk space requirements, 1-8
don’t touch attribute, 3-9, 3-35, 3-40
downloading files, 1-8, 1-9

E
EditLCA, 6-27
else statement, 2-18
enumerated type encoded state machine,
3-16
extracting downloaded files, 1-11

F
Field Programmable Gate Array see FPGA
file transfer protocol, 1-10
find nets command, 6-22
Finite State Machine, 3-16, 3-20

changing encoding style, 3-19
extraction commands, 3-16

flip-flop, 2-19
floorplanning, 1-3, 4-1

constraints file, 5-21
deciding what to floorplan, 4-5
design hierarchy, 5-3
Floorplanner, 1-6, 4-1, 4-2, 6-15

Alarm design, 4-21
aligning structure, 4-30
aligning tristate buffers, 4-20
check floorplan command, 4-8
collapse button, 4-11
congestion command, 6-17, 6-25
creating a MAP file, 4-2, 6-15
design hierarchy with X-BLOX,

4-27
design hierarchy without X-BLOX,

4-26
Design window, 4-3
device resources, 4-14, 4-17
evaluating designs, 6-20
expand button, 4-11
file open dialog box, 4-7
find nets command, 6-22
flat design with X-BLOX, 4-26
flat design without X-BLOX, 4-24
flat designs, 4-20
Floorplan window, 4-4
fplan command, 4-6
hierarchy, 4-4, 4-6, 4-20
labeling elements, 4-6
positioning and aligning buses,

4-29
PPR results, 4-28
prep for floorplanning command,

4-2
process menu, 6-17
RAM, 4-34
RAM example, 4-10
ii Xilinx Development System



Index
ratsnest command, 6-17
ratsnest dialog box, 6-23
ratsnest option, 4-32
resources dialog box, 4-17
routing congestion, 4-28
RPM example, 4-10
RPM, RAM, ROM, 4-9
running, 4-6
setting boundaries, 4-8, 5-19
software requirements, 1-7
Task window, 4-3, 4-6
translate menu, 4-2
tristate buffer example, 4-13, 4-16
windows, 4-3

HDL design flow, 1-2
high-density designs, 4-1
MAP file

creating, 1-16
RPM, 5-8
state machines, 4-5
structured cells, 5-21
Top design, 5-19

FPGA
comparing to ASIC, 1-5, 2-1
creating with HDLs, 3-1
global clock buffer, 3-2
system features, 1-6, 3-1

FPGA compiler, 1-5, 5-8
CLB block names, 1-16
software requirements, 1-7

fplan command, 4-6
FSM see Finite State Machine
functional simulation, 1-3, 1-4

comparing to synthesis, 2-2
HDL design flow, 1-1

G
gate count, 5-1, 5-4, 5-8
gate reduction

CLB count, 2-27
definition, 2-25
delay, 2-27
design example, 2-26

gated clocks, 2-30
global buffer routing resources, 3-2
global clock buffer, 3-2

inserting, 3-4
instantiating, 3-4

global set/reset, 3-4
no_gsr design, 3-7
STARTUP block, 3-5
use_gsr design, 3-10
use_gsr_pre design, 3-12

group command, 5-15, 6-11
GSR see global set/reset
guided design, 6-26

incremental, 6-27
iterative, 6-27

H
hardware description language see HDL
HDL

also see VHDL
behavioral simulation, 1-3
coding for FPGAs, 3-1
coding hints, 2-1
converting to gates, 1-4
definition, 1-1
design entry, 1-2
designing FPGAs, 1-3, 1-5
FPGA design flow, 1-1, 1-2
FPGA system features, 3-1

boundary scan, 3-40
global clock buffer, 3-2
global set/reset, 3-4
I/O decoders, 3-21
implementing logic with IOBs,

3-42
on-chip RAM, 3-36
HDL Synthesis for FPGAs Design Guide iii



HDL Synthesis for FPGAs Design Guide
guided design, 6-28
high-density design flow, 6-1
implementing latches, 2-16
implementing registers, 2-16
schematic entry design hints, 2-12
state machine

binary encoded, 3-15
enumerated type encoded, 3-17
one-hot encoded, 3-18

type checking, 1-4
hdl_resource_allocation command, 2-23
hdlin_check_no_latch command, 2-18
hierarchy in designs, 1-6, 5-1, 5-15

also see Top design
defining, 5-15
improving routability, 5-4
module size, 5-3, 5-11
PPR, 5-3
reducing debugging time, 5-4
reducing gate count, 5-4
reducing routing time, 5-4
small design changes, 5-4
Top design, 5-4

high-density design flow, 6-1, 6-4
high-density designs

adding group TimeSpecs, 6-12
building design hierarchy, 6-15
coding style, 6-7
estimating area utilization, 6-9
estimating design size, 6-4
evaluating results, 6-19
floorplanning design, 6-15
modifying hierarchy, 6-8
optimizing, 6-11
placing and routing, 6-17
synthesizing, 6-11
system features, 6-7
translating, 6-12

hold-time requirement, 2-17, 3-43
HP-PA requirements, 1-8

I
I/O decoder, 3-21

design example, 3-22
if statement, 2-18, 2-19

comparing to case statement, 2-37
design example, 2-38
registers, 2-19
syntax, 2-31
when to use, 2-32

if-case statement
design example, 2-36

if-else statement, 2-2, 2-31
ignore_maps option, 6-17, 6-18
ignore_rlocs option, 6-18
INC_DEC module, 3-26
incremental design, 6-27
indenting HDL code, 2-7
INIT=S attribute, 3-5, 3-8, 3-9, 3-20
initialization statement, 2-3
insert_pads command, 3-4
installation

design examples, 1-6
directory tree structure, 1-12
disk space requirements, 1-8
downloading files, 1-8, 1-9
extracting downloaded files, 1-11
file transfer protocol, 1-10
HP-PA requirements, 1-8
internet site, 1-7, 1-8, 1-10
known issues, 1-14
Perl, 1-6
software requirements

Floorplanner, 1-7
Foundry, 1-7
Synopsys FPGA compiler, 1-7
XACTstep, 1-7
XC4025 die files, 1-7
XSI, 1-7

SPARC requirements, 1-8
Synopsys startup file, 1-14
iv Xilinx Development System



Index
tactical software, 1-6
AddTNM, 1-6
MakeTNM, 1-6
X-BLOXGen, 1-6

technical bulletin board, 1-7, 1-9, 1-11
technical support, 1-14
XSI release notes, 1-6, 1-8
XTBB, 1-7

internet site, 1-8
IOB

implementing logic, 3-42
initializing, 3-4
moving registers, 3-46, 3-47
unbonded, 3-48
unbonded design example, 3-49

iterative design, 6-27

J
JTAG 1149.1, 3-40

K
known issues, 1-14

L
latch

combinatorial feedback loop, 2-17
comparing speed and area, 2-20
converting to register, 2-18
D flip-flop, 2-19
D latch, 2-16
D latch design, 2-17
D latch implemented with gates, 2-17
hdlin_check_no_latch command, 2-18
implementing in HDL, 2-16
inference, 2-32
latch count, 2-18
PPR, 2-18
RAM primitives, 2-19

LCA file, 6-17
lock_routing option, 6-29

M
macro

hard, 3-32, 4-9
soft, 3-32

MakeTNM, 3-55, 3-57, 6-14
flow diagram, 3-58

MAP file, 1-16, 6-15
creating, 4-2
outfile option, 1-16

max_period command, 3-54
MemGen, 3-36, 3-38, 4-10
memory description file, 3-38
module-endmodule statement, 1-15
multiplexer

comparing gates and tristate buffer,
3-53
implementing with gates, 3-51
implementing with tristate buffer, 3-50,
3-52
resource sharing, 2-21

N
named association, 2-6
naming conventions, 2-4, 2-5
nested if statement

design example, 2-34
when to use, 2-33

no_gsr design, 3-7
NODELAY attribute, 3-43

O
one-hot encoded state machine, 3-17
outfile option, 1-16, 6-18

P
parallel logic, 2-37
Partition, Place, and Route see PPR
partitioning designs, 5-2
Perl, 1-6, 3-57, 3-63
placer_effort option, 6-17, 6-18
port declarations, 2-9
positional association, 2-6
PPR, 1-3, 2-18

constraints file, 3-56, 3-64, 6-29
creating a MAP file, 4-2
HDL Synthesis for FPGAs Design Guide v



HDL Synthesis for FPGAs Design Guide
cstfile option, 3-64
design hierarchy, 5-3
floorplanning RPMs, 5-8
guided design, 6-26
HDL design flow, 1-2
improving performance, 4-1
LCA file, 6-17
lock_routing option, 6-29
options, 6-13, 6-18
report file, 6-6, 6-7, 6-17, 6-19
routing designs, 6-19
screen output, 6-6, 6-18, 6-19
terminating, 6-17
timing constraints, 3-64
Top design, 5-8, 5-22

prep for floorplanner command, 4-2, 6-16
preset pin, 2-27, 3-5, 3-8
preset signal, 3-11
priority-encoded logic, 2-33, 2-37

R
RAM

behavioral description, 4-10
floorplanning, 4-34

RAM/ROM
implementing in HDL, 3-36

ratsnest command, 6-17
ratsnest dialog box, 6-23
ratsnest option, 4-32
register

clear pin, 2-27
converting latch to register, 2-18
D register, 2-18
D register design, 2-18
if statement, 2-19
implementing in HDL, 2-16, 2-29
preset pin, 2-27

register transfer level see RTL
relationally placed module see RPM
relative location parameter see RLOC
remove_design command, 1-15
report_fpga command, 5-11, 6-9

report file, 6-5
resource sharing

CLB count, 2-25
definition, 2-20
delay, 2-25
design example, 2-21
disabling, 2-23
hdl_resource_allocation command,
2-23
hierarchy, 5-2

RLOC, 3-32, 5-8
RLOC_ORIGIN parameter, 3-32
ROM

instantiating in HDL, 3-37, 3-39
router_effort option, 6-17, 6-18
RPM, 3-32, 4-9, 5-8

creating, 3-32
design example, 3-35
floorplanning, 4-26, 4-27, 5-8
instantiating, 3-34
library, 3-33

RTL description of ROM, 3-37
RTL simulation, 3-5, 3-6, 3-9

before floorplanning, 1-3
definition, 1-4
FPGA design flow, 1-1

S
schematic entry design hints, 2-12
set_attribute command, 3-9, 3-20, 3-37
set_input_delay command, 3-54
set_max_delay command, 3-54
set_output_delay command, 3-54
set_pad_type command, 3-4
set_port_is_pad command, 3-4
set_resource_allocation command, 2-27
set_resource_implementation command,
2-27
SHIFT module, 3-26
signals, 2-10
software requirements, 1-7
SOLV_IT knowledge base, 2-8, 2-10
vi Xilinx Development System



Index
SPARC requirements, 1-8
STARTUP block, 3-5, 3-9
state machine, 3-13

binary encoded, 3-14
design example, 3-15

bubble diagram, 3-14
comparing encoding styles, 3-20
encoding style summary, 3-18
enumerated type encoded, 3-16

design example, 3-17
enumeration type, 3-18
initializing, 3-20
one-hot encoded, 3-17

design example, 3-18
std_logic data type, 2-8
structured cells

floorplanning, 5-21
SXNF file, 6-12, 6-15
Syn2XNF, 3-39, 3-48, 3-59, 6-5, 6-12, 6-14
Synopsys

Design analyzer, 6-11
Design compiler, 5-8
DesignWare, 2-20, 2-25, 5-8, 5-16
FPGA compiler, 5-8

CLB block names, 1-16
software requirements, 1-7

startup file, 1-14
timing analysis tool, 1-3

synthesis
comparing to simulation, 2-2

synthesis tools, 1-5
design hierarchy, 5-2

T
tactical software

installing, 1-6
TCK pin, 3-40
TDI pin, 3-40
TDO pin, 3-40
technical support, 1-14
template control file, 3-59

example, 3-60
TIMEGRP command, 3-55, 3-56, 3-64, 6-14
TIMEGRP primitive, 3-55
TIMESPEC command, 3-55, 3-56, 3-64,
6-14
TIMESPEC primitive, 3-55
timing

also see XACT-Performance
constraints, 1-6, 3-53, 3-56, 3-64, 6-13

using constraints file, 3-55
using PPR command line options,

3-54
using synthesis tool, 3-53

requirements, 1-6, 3-55
timing simulation, 1-3

HDL design flow, 1-2
TMS pin, 3-40
TNM

adding to signals, 3-66
AddTNM, 3-57
attribute, 3-55
MakeTNM, 3-57

TNM file, 3-56, 3-62, 3-64, 6-14
creating your own, 3-65
example, 3-63, 3-66

Top design, 5-4
CLB utilization, 5-15
comparing methodologies, 5-24
debugging, 5-23
flat, 5-7

ratsnest, 5-7
floorplanned modules, 5-20, 5-21
floorplanning, 5-19, 6-22
modified hierarchy, 5-11, 5-14, 6-11
original hierarchy, 5-5, 5-8, 5-10
placement, 5-23

efficient, 6-26
inefficient, 6-21

PPR, 5-22
resource statistics, 5-6, 6-10
HDL Synthesis for FPGAs Design Guide vii



HDL Synthesis for FPGAs Design Guide
RPM floorplan, 5-9
script file, 5-19
speed requirements, 5-10

tristate buffer
comparing to gates, 3-53
design example, 4-15
implementing multiplexer, 3-50, 3-52

TS attribute, 3-56
TTL thresholds, 3-44
type checking, 1-4

U
unbonded IOBs, 3-48

design example, 3-49
ungroup_all command, 2-25, 5-7
use_gsr design, 3-8
use_gsr_pre design, 3-11

V
variables, 2-6, 2-10
Verilog, 1-7

instantiating XNF files, 1-15
module-endmodule statement, 1-15

VHDL
after xx ns statement, 2-2
also see HDL
arithmetic functions, 2-3
capitalization style, 2-4
case statement, 2-2
coding styles, 2-3
comments in code, 2-8
comparing signals and variables, 2-10
constants, 2-6
declaring ports, 2-9
definition, 1-5
identing code, 2-7
if-else statement, 2-2
initialization statement, 2-3
labeling in code, 2-5
managing designs, 2-7
named association, 2-6
naming identifiers, 2-5

naming packages, 2-5
naming types, 2-5
positional association, 2-6
simulation, 2-2
std_logic, 2-8
synthesis, 2-2
using empty lines, 2-7
using spaces, 2-8
variables, 2-6
wait for xx ns statement, 2-2
Xilinx naming conventions, 2-4

VHSIC Hardware Description Language
see VHDL

W
wait for xx ns statement, 2-2
wait until statement, 2-18
write constraints command, 6-17

X
XACT Design Editor, 5-23, 6-27
XACT-Performance, 3-53, 3-64, 6-13

also see timing
decreasing number of constraints, 3-54,
3-55
specifying timing constraints, 3-53

XACTstep
Foundry, 4-1, 6-15
software requirements, 1-7

X-BLOX, 4-9, 6-14
DesignWare, 2-21

definition, 5-8
instantiating modules, 3-25
log file, 3-26

X-BLOXGen, 3-26, 6-14
design example, 3-28
flow diagram, 3-27
options, 3-28
output files, 3-28
syntax, 3-27

XC3000, 5-3
XC3100, 5-3
viii Xilinx Development System



Index
XC4000, 5-3
CLB, 2-28
global clock buffer, 3-2
IOB, 3-43
slew rate, 3-43, 3-45

XC4010, 5-1
XC4013, 5-1
XC4025, 5-1
XC4025 die files, 1-7
XDE, 5-23, 6-27
XDelay, 3-64

report file, 3-65
Xilinx internet site, 1-7, 1-10
Xilinx netlist format see XNF
Xilinx Synopsys Interface see XSI
Xilinx technical bulletin board, 1-7, 1-9,
1-11

XMake
creating a MAP file, 4-2

XNF
definition, 1-1

XNF files
instantiating in Verilog designs, 1-15

xnfout_constraints_per_endpoint com-
mand, 3-54, 3-59, 6-13
XNFPrep, 6-14

timing constraints, 3-64
xor_sig design, 2-11
xor_var design, 2-12
XSI

release notes, 1-6, 1-8
software requirements, 1-7

XTBB, 1-7, 1-9, 1-11
HDL Synthesis for FPGAs Design Guide ix



HDL Synthesis for FPGAs Design Guide
x Xilinx Development System



Trademark Information
HDL Synthesis for FPGAs Design Guide

, XACT, XC2064, XC3090, XC4005, and XC-DS501 are registered trademarks of
Xilinx. All XC-prefix product designations, XACT-Floorplanner, XACT-Performance,
XAPP, XAM, X-BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, XPP, XSI, BITA,
Configurable Logic Cell, CLC, Dual Block, FastCLK, HardWire, LCA, Logic Cell,
LogicProfessor, MicroVia, PLUSASM, SMARTswitch, UIM, VectorMaze, VersaBlock,
VersaRing, and ZERO+ are trademarks of Xilinx. The Programmable Logic Company and
The Programmable Gate Array Company are service marks of Xilinx.

IBM is a registered trademark and PC/AT, PC/XT, PS/2 and Micro Channel are
trademarks of International Business Machines Corporation. DASH, Data I/O and
FutureNet are registered trademarks and ABEL, ABEL-HDL and ABEL-PLA are
trademarks of Data I/O Corporation. SimuCad and Silos are registered trademarks and P-
Silos and P/C-Silos are trademarks of SimuCad Corporation. Microsoft is a registered
trademark and MS-DOS is a trademark of Microsoft Corporation. Centronics is a
registered trademark of Centronics Data Computer Corporation. PAL and PALASM are
registered trademarks of Advanced Micro Devices, Inc. UNIX is a trademark of AT&T
Technologies, Inc. CUPL, PROLINK, and MAKEPRG are trademarks of Logical Devices,
Inc. Apollo and AEGIS are registered trademarks of Hewlett-Packard Corporation.
Mentor and IDEA are registered trademarks and NETED, Design Architect, QuickSim,
QuickSim II, and EXPAND are trademarks of Mentor Graphics, Inc. Sun is a registered
trademark of Sun Microsystems, Inc. SCHEMA II+ and SCHEMA III are trademarks of
Omation Corporation. OrCAD is a registered trademark of OrCAD Systems Corporation.
Viewlogic, Viewsim, and Viewdraw are registered trademarks of Viewlogic Systems, Inc.
CASE Technology is a trademark of CASE Technology, a division of the Teradyne
Electronic Design Automation Group. DECstation is a trademark of Digital Equipment
Corporation. Synopsys is a registered trademark of Synopsys, Inc. Verilog is a registered
trademark of Cadence Design Systems, Inc.

Xilinx does not assume any liability arising out of the application or use of any product
described or shown herein; nor does it convey any license under its patents, copyrights, or
maskwork rights or any rights of others. Xilinx reserves the right to make changes, at any
time, in order to improve reliability, function or design and to supply the best product
possible. Xilinx will not assume responsibility for the use of any circuitry described herein
other than circuitry entirely embodied in its products. Xilinx devices and products are
protected under one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216;
4,713,557; 4,746,822; 4,750,155; 4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,853,626;

R



Trademark Information
4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135; 5,023,606; 5,028,821;
5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704;
5,329,174; 5,329,181; 5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248;
5,349,249; 5,349,250; 5,349,691; 5,357,153; 5,360,747; 5,361,229; 5,362,999; 5,365,125;
5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189; 5,410,194; 5,414,377; RE
34,363, RE 34,444, and RE 34,808. Other U.S. and foreign patents pending. Xilinx, Inc. does
not represent that devices shown or products described herein are free from patent
infringement or from any other third party right. Xilinx assumes no obligation to correct
any errors contained herein or to advise any user of this text of any correction if such be
made. Xilinx will not assume any liability for the accuracy or correctness of any
engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems.
Use of a Xilinx product in such applications without the written consent of the
appropriate Xilinx officer is prohibited.
Xilinx Development System


	COVER PAGE
	TRADEMARK INFORMATION
	BOOK CONVENTIONS
	TABLE OF CONTENTS
	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

	GO TO OTHER BOOKS
	Chapter 1   Getting Started
	Understanding HDL Design Flow for FPGAs
	Entering Your Design
	Verifying Your Design
	Floorplanning Your Design
	Placing and Routing Your Design

	Advantages of Using HDLs to Design FPGAs
	Designing FPGAs with HDLs
	Using VHDL
	Comparing ASICs and FPGAs
	Using Synthesis Tools
	Using FPGA System Features
	Designing Hierarchy
	Specifying Speed Requirements

	Installing Design Examples and Tactical Software
	Software Requirements
	SPARC and HP-PA Requirements
	Disk Space Requirements
	Xilinx Internet Site
	Xilinx Technical Bulletin Board

	Retrieving Tactical Software and Design Examples
	From Xilinx Internet FTP Site
	From Xilinx Technical Bulletin Board

	Extracting the Files
	Directory Tree Structure

	Synopsys Startup File and Library Setup
	Technical Support
	Important Issues
	Instantiating XNF Files in Verilog Designs
	Block Names are Not Written by Default in Synopsys FPGA Compiler V3.3b
	Creating MAP Files


	Chapter 2   HDL Coding Hints
	Comparing Synthesis and Simulation Results
	Omit the Wait for XX ns Statement
	Omit the ...After XX ns Statement
	Use Case and If-Else Statements
	Order and Group Arithmetic Functions
	Omit Initial Values

	Selecting VHDL Coding Styles
	Selecting a Capitalization Style
	Using Xilinx Naming Conventions
	Naming Identifiers, Types, and Packages
	Using Labels
	Using Variables for Constants
	Using Named and Positional Association
	Managing Your Design
	Creating Readable Code
	Indenting Your Code
	Using Empty Lines
	Using Spaces
	Breaking Long Lines of Code
	Adding Comments

	Using Std_logic Data Type
	Declaring Ports
	Minimizing the Use of Ports Declared as Buffers

	Comparing Signals and Variables

	Using Schematic Design Hints with HDL Designs
	Barrel Shifter Design
	Implementing Latches and Registers
	Resource Sharing
	Gate Reduction
	Preset Pin or Clear Pin
	Using Clock Enable Pin

	Using If Statements
	Using Case Statements
	Using Nested_If Statements
	Comparing If Statement and Case Statement


	Chapter 3   HDL Coding for FPGAs
	Using Global Low-skew Clock Buffers
	Inserting Clock Buffers
	Instantiating Internal Global Clock Buffers

	Using Dedicated Global Set/Reset Resource
	Startup State
	Preset vs. Clear
	Increasing Performance with the GSR Net
	Design Example without Dedicated GSR Resource
	Design Example with Dedicated GSR Resource
	Design Example with Dedicated GSR Resource and Additional Preset Signal


	Encoding State Machines
	Using Binary Encoding
	Using Enumerated Type Encoding
	Using One-Hot Encoding
	Summary of Encoding Styles
	Comparing Synthesis Results for Encoding Styles
	Initializing the State Machine

	Using Dedicated I/O Decoders
	Instantiating X-BLOX Modules
	Using X-BLOXGen
	Syntax
	Options
	Output Files
	X-BLOXGen Example


	Using RPMs
	Instantiating an RPM

	Implementing Memory
	Implementing XC4000 RAMs
	Implementing XC4000 ROMs
	Using MemGen

	Implementing Boundary Scan (JTAG 1149.1)
	Instantiating the Boundary Scan Symbol

	Implementing Logic with IOBs
	XC4000/A/D IOBs
	Inputs
	Outputs
	XC4000/D Slew Rate
	XC4000A Slew Rate

	XC4000H IOBs
	Inputs
	Outputs
	XC4000H Slew Rate

	Instantiating Bidirectional I/O
	Moving Registers into the IOB
	Using Unbonded IOBs (XC4000/A/D Only)

	Implementing Multiplexers with Tristate Buffers
	Setting Timing Constraints
	Using the Synthesis Tool
	Using PPR Command Line Options
	Using A Constraints File
	Using TIMESPEC and TIMEGRP Commands
	Using TIMESPEC and TIMEGRP Constraints File Statements
	Using MakeTNM and AddTNM
	Adding TNMs
	Creating A TNM Control File Without Using MakeTNM
	Adding TNMs to Signals



	Chapter 4   Floorplanning Your Design
	Using the Floorplanner
	Creating a MAP File
	Using XMake
	Using PPR
	Using Prep for Floorplanner Command

	Overview of Floorplanner Windows
	Task Window
	Design Window
	Floorplan Window

	Deciding What Elements to Floorplan
	Running the Floorplanner and Opening a File
	Using the Command Line
	Using the Floorplanner Task Window

	Setting Boundaries in the Floorplan Window

	Floorplanning RPMs, RAMs, and ROMs
	RPM and RAM/ROM Example

	Floorplanning Tristate Buffers
	BUFT Example
	Floorplanning BUFT Example


	Comparing Hierarchical and Flat Designs
	Method 1: Compiling Flat without X-BLOX
	Method 2: Compiling Flat with X-BLOX
	Method 3: Compiling with Hierarchy and without X-BLOX
	Method 4: Compiling with Hierarchy and X-BLOX

	Floorplanning to Reduce Routing Congestion
	Positioning and Aligning Buses
	Aligning Structures Along Buses

	Floorplanning RAMs to Reduce Routing Congestion


	Chapter 5   Building Design Hierarchy
	Using the Synthesis Tool
	Modifying Design Hierarchy for PPR
	Top Design Example
	Compiling Top Design as One Flat Module
	Compiling Top Design Using Original Hierarchy
	Floorplanning RPMs
	Meeting Speed Requirements

	Compiling Top Design After Modifying the Hierarchy
	Evaluating A New Hierarchy
	Defining and Compiling the New Hierarchy
	Setting Boundaries and Floorplanning the Modules
	Floorplanning Structured Cells
	Placing and Routing the Top Design

	Adding Probe Points to Debug a Design
	Comparing Top Design Methodologies
	Flat Design
	Original Design Hierarchy
	Modified Hierarchy



	Chapter 6   Understanding High-Density Design Flow
	Step 1: Estimating Your Design Size
	Determining Device Utilization

	Step 2: Evaluating Your Design for Coding Style and System Features
	Step 3: Modifying Your Design Hierarchy
	Estimating Area Utilization
	Creating a New Hierarchy

	Step 4: Synthesizing and Optimizing Your Design
	Step 5: Translating Your Design and Adding Group TimeSpecs
	Translating Your Design
	Adding Timing Specifications
	Using the Synthesis Tool
	Using PPR Command Line Options
	Using A Constraints File


	Step 6: Building Your Design Hierarchy
	Step 7: Floorplanning Your Design
	Creating a MAP File
	Using XMake
	Using PPR
	Using Prep for Floorplanner Option

	Floorplanning Design Components
	Writing a Constraints File

	Step 8: Placing and Routing Your Design
	Using PPR Options
	Determining If PPR Can Route Your Design

	Step 9: Evaluating the Results
	Evaluating Module Placement with the Floorplanner
	Modifying Design Placement

	Using Guided Design
	Using Iterative Guided Design
	Using Incremental Guided Design
	Using XDE
	Effectively Using Guided Design
	Understanding Guided Design for XC4000 Designs
	Adding a New Module to Your Design
	Making a Design Change to a Module



	Appendix A   Accelerate FPGA Macros with One-Hot Approach
	Appendix B   Top Design Scripts
	VHDL Script Files
	Verilog Script Files

	Appendix C   Tactical Software and Design Examples
	Tactical Software
	Design Examples


