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Preface

About This Manual
This manual describes Xilinx’s XC7000 and XC9000 Libraries.

Before using this manual, you should be familiar with the operations
that are common to all Xilinx’s software tools: how to bring up the
system, select a tool for use, specify operations, and manage design
data.

Manual Contents
This libraries guide covers the following topics.

● Chapter 1, XC7000 and XC9000 Libraries, discusses the contents
of the other chapters, general naming conventions, and
performance issues.

● Chapter 2, Selection Guide, describes then lists design elements
by function that are described in detail in the “Design Elements”
chapter.

● Chapter 3, Design Elements, provides a graphic symbol,
functional description, primitive versus macro table, truth table
(when applicable), topology (when applicable), and schematics
for macros of the design elements.
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Conventions

The following conventions are used in this manual’s syntactical
statements:

Courier font System messages or program files appear
regular in regular Courier font.

Courier font Literal commands that you must enter in
bold syntax statements are in bold Courier font.

italic font Variables that you replace in syntax
statements are in italic font.

[ ] Square brackets denote optional items or
parameters. However, in bus specifications,
such as bus [7:0], they are required.

{ } Braces enclose a list of items from which
you must choose one or more.

· A vertical ellipsis indicates material that has
· been omitted.
·

. . . A horizontal ellipsis indicates that the
preceding can be repeated one or more
times.

| A vertical bar separates items in a list of
choices.

↵ This symbol denotes a carriage return.
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Chapter 1

Xilinx XC7000 and XC9000 Libraries
Xilinx maintains software libraries with hundreds of functional
design elements (primitives and macros) for different device
architectures. This release contains libraries design elements for
XC7000 and XC9000 CPLD architectures. Refer to the Xilinx Libraries
Guide for descriptions of library elements for other Xilinx device
families.

Elements that exist in multiple architectures look and function the
same, but their implementations might differ to make them more effi-
cient for a particular architecture. A separate library still exists for
each architecture and common symbols are duplicated in each one,
which is necessary for simulation (especially board level) where
timing depends on a particular architecture.

Note: OrCAD symbols differ in appearance. They do not support
busing; each input and output pin appears on the symbol. Inputs and
outputs only appear on the left and right sides of symbols, respec-
tively (none appear on the top or bottom).

Overview
This guide describes the primitive and macro logic elements avail-
able in the XC7000 and XC9000 architectures. Common logic func-
tions can be implemented with these elements and more complex
functions can be built by combining macros and primitives. Several
hundred design elements (primitives and macros) are available
across multiple device architectures, providing a common base for
programmable logic designs.

This libraries guide provides a functional selection guide, describes
the design elements, and addresses attributes, constraints, and carry
logic.
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This book is organized into three parts.

● Xilinx XC7000 and XC9000 Libraries Overview

● Selection guide

● Design elements

Xilinx XC7000 and XC9000 Libraries Overview
This chapter describes the XC7000 and XC9000 Libraries, briefly
discusses the contents of the other chapters, the general naming
conventions, and performance issues.

Selection Guide
The “Selection Guide” briefly describes, then tabularly lists the macro
logic elements that are described in detail in the “Design Elements”
chapter. The tables included in this section are organized into func-
tional categories specifying all the available elements from the
XC7000 and XC9000 families.

Design Elements
Design elements are organized in alphanumeric order, with all
numeric suffixes in ascending order. For example, ADD4 precedes
ADD16 and FDR precedes FDRS.

The following information is provided for each library element.

● Graphic symbol

● Functional description

● Primitive versus macro table

● Truth table (when applicable)

● Schematic for macros

Note: Schematics are included for each architecture if the implemen-
tation differs. Also, design elements with bused or multiple I/O pins
typically include just one schematic — generally the 8-bit version. (In
cases where no 8-bit version exists, an appropriate smaller or larger
element serves as the schematic example.)
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Naming Conventions
Examples of the general naming conventions for the library are
shown in the following figures.

Figure 1-1   Naming Conventions

Figure 1-2   Combinatorial Naming Conventions

Refer to the Selection Guide for examples of functional component
naming conventions.

X4565

Clear (Asynchronous)
4-BitCounter, Binary

Precendence of Control Pins

Load

Clock Enable

Bi-Directional

C B 4 C L E D

CONTROL PINSSIZEFUNCTION

Example 1

Example 2

16-BitFlip-Flop, D-type

Precendence of Control Pins

Reset (Synchronous)

Clock Enable

F D 1 6 R E

CONTROL PINSSIZEFUNCTION

Precedence of Control Pins

Precedence of Control Pins

X4316

AND3B2

Logic Function

Number of Inputs

Inverting (Bubble) Inputs

Number of Inverting Inputs
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Flip-Flop, Counter, and Register Performance
All counter, register, and storage functions are derived from the flip-
flops available in the PLD architecture.

The D flip-flop is the basic storage element for all four architectures.
Differences occur from the availability of asynchronous Clear (CLR)
and Preset (PRE) inputs, and the source of the synchronous control
signals, such as, Clock Enable (CE), Clock (C), Load enable (L),
synchronous Reset (R), and synchronous Set (S).

The XC7000 and XC9000 flip-flops have both Clear and Preset inputs.

The asynchronous and synchronous control functions, when used,
have a priority that is consistent across all devices and architectures.
These inputs can be either active-High or active-Low as defined by
the macro. The priority, from highest to lowest is as follows.

● Asynchronous Clear (CLR)

● Asynchronous Preset (PRE)

● Synchronous Set (S)

● Synchronous Reset (R)

● Load Enable (L)

● Shift Left/Right (LEFT)

● Clock Enable (CE)

Note: The asynchronous CLR and PRE inputs, by definition, have
priority over all the synchronous control and clock inputs.

Q

D

C

FDCP

PRE

CLR X4397
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Chapter 2

Selection Guide
The Selection Guide briefly describes, then tabularly lists the macro
logic elements that are described in detail in the “Design Elements”
chapter. The tables included in this section are organized into func-
tional categories specifying all the available macros from  the  XC7000
and XC9000 families. The tables categorize the elements into sub-
categories based on similar functions. The sequence of each sub-cate-
gory is based on an ascending order of complexity. The categories are
as follows.

● Arithmetic functions

● Buffers

● Comparators

● Counters

● Decoders

● Encoders

● Flip-Flops

● General

● Input/output flip-flops and latches

● Input/output functions

● Latches

● Logic primitives

● Multiplexers

● Shifters

The elements from each architecture that provide the same function
are listed adjacent to each other in the table, even though they might
not have the same name. For particular elements, use the name speci-
fied for the architecture of interest.
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There are a number of standard TTL 7400-type functions in the
XC7000 and XC9000 architectures. All 7400-type functions are in
alphanumeric order starting with “X,” and the numeric sequence
uses ascending numbers following the “74” prefix. For example,
X74_42 precedes X74_138.

Functional Categories
The following sections briefly describe, then tabularly list the Unified
Libraries design element functions by category. Elements are listed in
alphanumeric order according to architecture in each applicable
architecture column. N/A means the element does not exist in that
particular architecture.
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Arithmetic Functions
There are three types of arithmetic functions: accumulators (ACC),
adders (ADD), and adder/subtracters (ADSU). With an ADSU, either
unsigned binary or twos-complement operations cause an overflow.
If the result crosses the overflow boundary, an overflow is generated.
Similarly, when the result crosses the carry-out boundary, a carry-out
is generated. The following figure shows the ADSU carry-out and
overflow boundaries.

Figure 2-1   ADSU Carry-Out and Overflow Boundaries

XC7000 XC9000 Description Page

ACC1 ACC1 1-Bit Accumulator with Carry-In, Carry-Out, and
Synchronous Reset

3-1

ACC1X1 NA 1-Bit Accumulator with Carry-Out for XC7000 3-4
ACC1X2 NA 1-Bit Accumulator with Carry-In and Carry-Out for

XC7000
3-7

ACC4 ACC4 4-Bit Accumulator with Carry-In, Carry-Out, and
Synchronous Reset

3-10

ACC4X1 NA 4-Bit Accumulator with Carry-Out for XC7000 3-13
ACC4X2 NA 4-Bit Accumulator with Carry-In and Carry-Out for

XC7000
3-15

ACC8 ACC8 8-Bit Accumulator with Carry-In, Carry-Out, and
Synchronous Reset

3-17

ACC8X1 NA 8-Bit Accumulator with Carry-Out for XC7000 3-21
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ACC8X2 NA 8-Bit Accumulator with Carry-In and Carry-Out for
XC7000

3-24

ACC16 ACC16 16-Bit Accumulator with Carry-In, Carry-Out, and
Synchronous Reset

3-27

ACC16X1 NA 16-Bit Accumulator with Carry-Out for XC7000 3-29
ACC16X2 NA 16-Bit Accumulator with Carry-In and Carry-Out

for XC7000
3-31

ADD1 ADD1 1-Bit Full Adder with Carry-In and Carry-Out 3-33
ADD1X1 NA 1-Bit Adder with Carry-Out for XC7000 3-35
ADD1X2 NA 1-Bit Adder with Carry-In and Carry-Out for

XC7000
3-37

ADD4 ADD4 4-Bit Cascadable Full Adder with Carry-In and
Carry-Out

3-38

ADD4X1 NA 4-Bit Adder with Carry-Out for XC7000 3-41
ADD4X2 NA 4-Bit Adder with Carry-In and Carry-Out for

XC7000
3-42

ADD8 ADD8 8-Bit Cascadable Full Adder with Carry-In and
Carry-Out

3-43

ADD8X1 NA 8-Bit Adder with Carry-Out for XC7000 3-46
ADD8X2 NA 8-Bit Adder with Carry-In and Carry-Out for

XC7000
3-48

ADD16 ADD16 16-Bit Cascadable Full Adder with Carry-In and
Carry-Out

3-50

ADD16X1 NA 16-Bit Adder with Carry-Out for XC7000 3-52
ADD16X2 NA 16-Bit Adder with Carry-In and Carry-Out for

XC7000
3-54

ADSU1 ADSU1 1-Bit Adder/Substracter with Carry-In and Carry-
Out

3-55

ADSU1X1 NA 1-Bit Adder/Subtracter with Carry-Out for XC7000 3-58
ADSU1X2 NA 1-Bit Adder/Subtracter with Carry-In and Carry-

Out for XC7000
3-60

ADSU4 ADSU4 4-Bit Cascadable Adder/Subtracter with Carry-In
and Carry-Out

3-62

ADSU4X1 NA 4-Bit Adder/Subtracter with Carry-Out for XC7000 3-65
ADSU4X2 NA 4-Bit Adder/Subtracter with Carry-In and Carry-

Out for XC7000
3-66

ADSU8 ADSU8 8-Bit Adder/Subtracter with Carry-In, Carry-Out,
and Overflow

3-67

XC7000 XC9000 Description Page
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Buffers
The buffers in this section are used to generate on-chip 3-state
signals, or to isolate  nets in a design. The “Input/Output Functions”
section later in this chapter covers off-chip interface buffers.

*Primitive Symbol

ADSU8X1 NA 8-Bit Adder/Subtracter with Carry-Out for XC7000 3-71
ADSU8X2 NA 8-Bit Adder/Subtracter with Carry-In and Carry-

Out for XC7000
3-73

ADSU16 ADSU16 16-Bit Adder/Subtracter with Overflow 3-75
ADSU16X1 NA 16-Bit Adder/Subtracter with Carry-Out for

XC7000
3-78

ADSU16X2 NA 16-Bit Adder/Subtracter with Carry-In and Carry-
Out for XC7000

3-80

X74_280 X74_280 9-Bit Odd/Even Parity Generator/Checker 3-376
X74_283 X74_283 4-Bit Full Adder with Carry-In and Carry-Out 3-378

XC7000 XC9000 Description Page

BUF*
BUF4,
BUF8,
BUF16

BUF*
BUF4,
BUF8,
BUF16

General Purpose Buffers 3-86

BUFT*,
BUFT4,
BUFT8,
BUFT16

BUFT*,
BUFT4,
BUFT8,
BUFT16

Internal 3-State Buffers with Active-Low Enable 3-94

XC7000 XC9000 Description Page
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Comparators
There are two types of comparators, identity (COMP) and magnitude
(COMPM).

XC7000 XC9000 Description Page

COMP2 COMP2 2-Bit Identity Comparator 3-170
COMP4 COMP4 4-Bit Identity Comparator 3-171
COMP8 COMP8 8-Bit Identity Comparator 3-172
COMP16 COMP16 16-Bit Identity Comparator 3-173
COMPM2 COMPM2 2-Bit Magnitude Comparator 3-174
COMPM4 COMPM4 4-Bit Magnitude Comparator 3-175
COMPM8 COMPM8 8-Bit Magnitude Comparator 3-176
NA COMPM16 16-Bit Magnitude Comparator for XC9000 3-179
X74_L85 X74_L85 4-Bit Expandable Magnitude Comparator 3-324
X74_518 X74_518 8-Bit Identity Comparator with Active-Low

Enable
3-388

X74_521 X74_521 8-Bit Identity Comparator with Active-Low
Enable and Output

3-389
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Counters
There are four types of counters with various synchronous and asyn-
chronous inputs. The name of the counter defines the modulo or bit
size, the counter type, and which control functions are included. The
counter naming convention is shown in the following figure.

Figure 2-2   Counter Naming Convention

A carry-lookahead design accommodates large counters without
extra gating. On TTL 7400-type counters with trickle clock enable
(ENT), parallel clock enable (ENP), and ripple carry-out (RCO), both
the ENT and ENP inputs must be High to count. ENT is propagated
forward to enable RCO, which produces a High output with the
approximate duration of the QA output.

XC7000 XC9000 Description Page

CB2CE CB2CE 2-Bit Cascadable Binary Counter with Clock
Enable and Asynchronous Clear

3-96

CB2CLE CB2CLE 2-Bit Loadable Cascadable Binary Counter with
Clock Enable and Asynchronous Clear

3-98

CB2CLED CB2CLED 2-Bit Loadable Cascadable Bidirectional Binary
Counter with Clock Enable and Asynchronous
Clear

3-100

CB2RE CB2RE 2-Bit Cascadable Binary Counter with Clock
Enable and Synchronous Reset

3-102

CB2RLE CB2RLE 2-Bit Loadable Cascadable Binary Counter with
Clock Enable and Synchronous Reset

3-104

X4577

Binary (B)
BCD (D)
Binary, Carry Logic (C)
Johnson (J)
Ripple (R)

Counter

Asynchronous Clear (C)
Synchronous Reset (R)

Modulo (Bit Size)

Loadable

C B 1 6 C L E D

Clock Enable

Directional

Binary (B)

BCD (D)
Johnson (J)
Ripple (R)
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CB2X1 CB2X1 2-Bit Loadable Cascadable Bidirectional Binary
Counter with Asynchronous Clear

3-106

CB2X2 CB2X2 2-Bit Loadable Cascadable Bidirectional Binary
Counter with Synchronous Reset

3-108

CB4CE CB4CE 4-Bit Cascadable Binary Counter with Clock
Enable and Asynchronous Clear

3-110

CB4CLE CB4CLE 4-Bit Loadable Cascadable Binary Counter with
Clock Enable and Asynchronous Clear

3-111

CB4CLED CB4CLED 4-Bit Loadable Cascadable Bidirectional Binary
Counter with Clock Enable and Asynchronous
Clear

3-113

CB4RE CB4RE 4-Bit Cascadable Binary Counter with Clock
Enable and Synchronous Reset

3-116

CB4RLE CB4RLE 4-Bit Loadable Cascadable Binary Counter with
Clock Enable and Synchronous Reset

3-117

CB4X1 CB4X1 4-Bit Loadable Cascadable Bidirectional Binary
Counter with Asynchronous Clear

3-119

CB4X2 CB4X2 4-Bit Loadable Cascadable Bidirectional Binary
Counter with Synchronous Reset

3-122

CB8CE CB8CE 8-Bit Cascadable Binary Counter with Clock
Enable and Asynchronous Clear

3-125

CB8CLE CB8CLE 8-Bit Loadable Cascadable Binary Counter with
Clock Enable and Asynchronous Clear

3-127

CB8CLED CB8CLED 8-Bit Loadable Cascadable Bidirectional Binary
Counter with Clock Enable and Asynchronous
Clear

3-130

CB8RE CB8RE 8-Bit Cascadable Binary Counter with Clock
Enable and Synchronous Reset

3-132

CB8RLE CB8RLE 8-Bit Loadable Cascadable Binary Counter with
Clock Enable and Synchronous Reset

3-134

CB8X1 CB8X1 8-Bit Loadable Cascadable Bidirectional Binary
Counter with Asynchronous Clear

3-137

CB8X2 CB8X2 8-Bit Loadable Cascadable Bidirectional Binary
Counter with Synchronous Reset

3-139

CB16CE CB16CE 16-Bit Cascadable Binary Counter with Clock
Enable and Asynchronous Clear

3-141

CB16CLE CB16CLE 16-Bit Loadable Cascadable Binary Counter with
Clock Enable and Asynchronous Clear

3-142

XC7000 XC9000 Description Page
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CB16CLED CB16CLED 16-Bit Loadable Cascadable Bidirectional Binary
Counter with Clock Enable and Asynchronous
Clear

3-144

CB16RE CB16RE 16-Bit Cascadable Binary Counter with Clock
Enable and Synchronous Reset

3-146

CB16RLE CB16RLE 16-Bit Loadable Cascadable Binary Counter with
Clock Enable and Synchronous Reset

3-147

CB16X1 CB16X1 16-Bit Loadable Cascadable Bidirectional Binary
Counter with Asynchronous Clear

3-149

CB16X2 CB16X2 16-Bit Loadable Cascadable Bidirectional Binary
Counter with Synchronous Reset

3-151

CD4CE CD4CE 4-Bit Cascadable BCD Counter with Clock
Enable and Asynchronous Clear

3-153

CD4CLE CD4CLE 4-Bit Loadable Cascadable BCD Counter with
Clock Enable and Asynchronous Clear

3-155

CD4RE CD4RE 4-Bit Cascadable BCD Counter with Clock
Enable and Synchronous Reset

3-157

CD4RLE CD4RLE 4-Bit Loadable Cascadable BCD Counter with
Clock Enable and Synchronous Reset

3-159

CJ4CE CJ4CE 4-Bit Johnson Counter with Clock Enable and
Asynchronous Clear

3-162

CJ4RE CJ4RE 4-Bit Johnson Counter with Clock Enable and
Synchronous Reset

3-163

CJ5CE CJ5CE 5-Bit Johnson Counter with Clock Enable and
Asynchronous Clear

3-164

CJ5RE CJ5RE 5-Bit Johnson Counter with Clock Enable and
Synchronous Reset

3-165

CJ8CE CJ8CE 8-Bit Johnson Counter with Clock Enable and
Asynchronous Clear

3-166

CJ8RE CJ8RE 8-Bit Johnson Counter with Clock Enable and
Synchronous Reset

3-168

CR8CE CR8CE 8-Bit Negative-Edge Binary Ripple Counter with
Clock Enable and Asynchronous Clear

3-180

CR16CE CR16CE 16-Bit Negative-Edge Binary Ripple Counter
with Clock Enable and Asynchronous Clear

3-182

X74_160 X74_160 4-Bit Loadable Cascadable BCD Counter with
Parallel and Trickle Enables and Asynchronous
Clear

3-348

XC7000 XC9000 Description Page
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X74_161 X74_161 4-Bit Loadable Cascadable Binary Counter with
Parallel and Trickle Enables and Asynchronous
Clear

3-351

X74_162 X74_162 4-Bit Loadable Cascadable BCD Counter with
Parallel and Trickle Enables and Synchronous
Reset

3-354

X74_163 X74_163 4-Bit Loadable Cascadable Binary Counter with
Parallel and Trickle Enables and Synchronous
Reset

3-357

X74_168 X74_168 4-Bit Loadable Cascadable Bidirectional BCD
Counter with Parallel and Trickle Enables

3-364

X74_390 X74_390 4-Bit BCD/Bi-Quinary Ripple Counter with
Negative-Edge Clocks and Asynchronous Clear

3-385

XC7000 XC9000 Description Page
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Decoders
Decoder names, shown in the following figure, indicate the number
of inputs and outputs and if an enable is available. Decoders with an
enable can be used as multiplexers. This group includes some stan-
dard TTL 7400-type decoders whose names have an “X74” prefix.

Figure 2-3   Decoder Naming Convention

Encoders
There are two priority encoders (ENCPR) that function like the TTL
7400-type elements they are named after. There is a 10- to 4-line BCD
encoder and an 8- to 3-line binary encoder.

XC7000 XC9000 Description Page

D2_4E D2_4E 2- to 4-Line Decoder/Demultiplexer with Enable 3-183
D3_8E D3_8E 3- to 8-Line Decoder/Demultiplexer with Enable 3-184
D4_16E D4_16E 4- to 16-Line Decoder/Demultiplexer with

Enable
3-186

X74_42 X74_42 4- to 10-Line BCD-to-Decimal Decoder with
Active-Low Outputs

3-322

X74_138 X74_138 3- to 8-Line Decoder/Demultiplexer with Active-
Low Outputs and Three Enables

3-326

X74_139 X74_139 2- to 4-Line Decoder/Demultiplexer with Active-
Low Outputs and Active-Low Enable

3-328

X74_154 X74_154 4- to 16-Line Decoder/Demultiplexer with Two
Enables and Active-Low Outputs

3-342

XC7000 XC9000 Description Page

X74_147 X74_147 10- to 4-Line Priority Encoder with Active-Low
Inputs and Outputs

3-330

X74_148 X74_148 8- to 3-Line Cascadable Priority Encoder with
Active-Low Inputs and Outputs

3-332

X4619

D 2 _ 4 E
Decoder

Number of Inputs

Number of Outputs

Output Enable
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Flip-Flops
There are three types of flip-flops (D, J-K, toggle) with various
synchronous and asynchronous inputs. Some are available with
inverted clock inputs and/or the ability to set in response to global
set/reset rather than reset. The naming convention shown in the
following figure provides a description for each flip-flop. D-type flip-
flops are available in multiples of up to 16 in one macro.

Figure 2-4   Flip-Flop Naming Convention

XC7000 XC9000 Description Page

FD
FD4,
FD8,
FD16

FD
FD4,
FD8,
FD16

Single and Multiple D Flip-Flops 3-188

FD4CE FD4CE 4-Bit Data Register with Clock Enable and Asyn-
chronous Clear

3-190

FD4RE FD4RE 4-Bit Data Register with Clock Enable and Syn-
chronous Reset

3-191

FD8CE FD8CE 8-Bit Data Register with Clock Enable and Asyn-
chronous Clear

3-192

FD8RE FD8RE 8-Bit Data Register with Clock Enable and Syn-
chronous Reset

3-194

FD16CE FD16CE 16-Bit Data Register with Clock Enable and
Asynchronous Clear

3-196

FD16RE FD16RE 16-Bit Data Register with Clock Enable and Syn-
chronous Reset

3-197

FDC FDC D Flip-Flop with Asynchronous Clear 3-198

X4579

D-Type (D)

Flip-Flop

JK-Type (JK)
Toggle-Type (T)

Asynchronous Preset (P)
Asynchronous Clear (C)
Synchronous Set (S)
Synchronous Reset (R)

Inverted Clock

Clock Enable

F D P E _ 1
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FDCE FDCE D Flip-Flop with Clock Enable and Asynchro-
nous Clear

3-199

FDCP* FDCP* D Flip-Flop with Asynchronous Preset and Clear 3-200
FDCPE FDCPE D Flip-Flop with Clock Enable and Asynchro-

nous Preset and Clear
3-201

FDP FDP D Flip-Flop with Asynchronous Preset 3-203
FDPE FDPE D Flip-Flop with Clock Enable and Asynchro-

nous Preset
3-204

FDR FDR D Flip-Flop with Synchronous Reset 3-205
FDRE FDRE D Flip-Flop with Clock Enable and Synchronous

Reset
3-206

FDRS FDRS D Flip-Flop with Synchronous Reset and Syn-
chronous Set

3-208

FDRSE FDRSE D Flip-Flop with Synchronous Reset and Set and
Clock Enable

3-209

FDS FDS D Flip-Flop with Synchronous Set 3-211
FDSE FDSE D Flip-Flop with Clock Enable and Synchronous

Set
3-212

FDSR FDSR D Flip-Flop with Synchronous Set and Reset 3-213
FDSRE FDSRE D Flip-Flop with Synchronous Set and Reset and

Clock Enable
3-214

FJKC FJKC J-K Flip-Flop with Asynchronous Clear 3-216
FJKCE FJKCE J-K Flip-Flop with Clock Enable and Asynchro-

nous Clear
3-217

FJKCP FJKCP J-K Flip-Flop with Asynchronous Clear and Pre-
set

3-219

FJKCPE FJKCPE J-K Flip-Flop with Asynchronous Clear and Pre-
set and Clock Enable

3-221

FJKP FJKP J-K Flip-Flop with Asynchronous Preset 3-223
FJKPE FJKPE J-K Flip-Flop with Clock Enable and Asynchro-

nous Preset
3-224

FJKRSE FJKRSE J-K Flip-Flop with Clock Enable and Synchro-
nous Reset and Set

3-226

FJKSRE FJKSRE J-K Flip-Flop with Clock Enable and Synchro-
nous Set and Reset

3-228

FTC FTC Toggle Flip-Flop with Toggle Enable and Asyn-
chronous Clear

3-230

XC7000 XC9000 Description Page
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* Primitive Symbol

FTCE FTCE Toggle Flip-Flop with Toggle and Clock Enable
and Asynchronous Clear

3-231

FTCLE FTCLE Toggle/Loadable Flip-Flop with Toggle and
Clock Enable and Asynchronous Clear

3-232

FTCP FTCP Toggle Flip-Flop with Toggle Enable and Asyn-
chronous Clear and Preset

3-234

FTCPE FTCPE Toggle Flip-Flop with Toggle and Clock Enable
and Asynchronous Clear and Preset

3-236

FTCPLE FTCPLE Loadable Toggle Flip-Flop with Toggle and Clock
Enable and Asynchronous Clear and Preset

3-238

FTP FTP Toggle Flip-Flop with Toggle Enable and Asyn-
chronous Preset

3-240

FTPE FTPE Toggle Flip-Flop with Toggle and Clock Enable
and Asynchronous Preset

3-241

FTPLE FTPLE Toggle/Loadable Flip-Flop with Toggle and
Clock Enable and Asynchronous Preset

3-243

FTRSE FTRSE Toggle Flip-Flop with Toggle and Clock Enable
and Synchronous Reset and Set

3-245

FTRSLE FTRSLE Toggle/Loadable Flip-Flop with Toggle and
Clock Enable and Synchronous Reset and Set

3-247

FTSRE FTSRE Toggle Flip-Flop with Toggle and Clock Enable
and Synchronous Set and Reset

3-249

FTSRLE FTSRLE Toggle/Loadable Flip-Flop with Toggle and
Clock Enable and Synchronous Set and Reset

3-251

X74_174 X74_174 6-Bit Data Register with Active-Low Asynchro-
nous Clear

3-367

X74_273 X74_273 8-Bit Data Register with Active-Low Asynchro-
nous Clear

3-374

X74_377 X74_377 8-Bit Data Register with Active-Low Clock
Enable

3-383

XC7000 XC9000 Description Page
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General
General elements include FPGA configuration functions, oscillators,
boundary-scan logic, and other functions not classified in other
sections.

* Primitive Symbol

XC7000 XC9000 Description Page

GND* GND* Ground-Connection Signal Tag 3-253
TIMEGRP* TIMEGRP* Timing Requirement Group Definition Table 3-315
TIMESPEC* TIMESPEC* Schematic-Level Timing Requirement Table 3-314
VCC VCC VCC-Connection Signal Tag 3-317
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Input/Output Flip-Flops and Latches
Input/output flip-flops and latches are configured in IOBs. They
include flip-flops whose outputs are enabled by 3-state buffers, flip-
flops that can be set upon global set/reset rather than reset, and flip-
flops with inverted clock inputs. The naming convention specifies
each flip-flop function and is illustrated in the following figure.

Figure 2-5   Input/Output Flip-Flop Naming Convention

XC7000 XC9000 Description Page

IFD,
IFD4,
IFD8,
IFD16

IFD,
IFD4,
IFD8,
IFD16

Single- and Multiple-Input
D Flip-Flops

3-255

IFDX1*,
IFD4X1,
IFD8X1,
IFD16X1

NA
NA
NA
NA

Input D Flip-Flops with Clock Enable for XC7000 3-258

ILD*,
ILD4,
ILD8,
ILD16

NA
NA
NA
NA

Input Transparent Data Latches for XC7000 3-260

OFD,
OFD4,
OFD8,
OFD16

OFD,
OFD4,
OFD8,
OFD16

Single- and Multiple-Output
D Flip-Flops

3-281

OFDE,
OFDE4,
OFDE8,
OFDE16

OFDE,
OFDE4,
OFDE8,
OFDE16

D Flip-Flops with Active-High
3-State Output Buffers

3-283

X4580

Output (O), Input (I)

Flip-Flop

D-Type

Active High Enable (E)
Active Low Enable (T)

Inverse of Normal Initial State

Inverted Clock

O F D E I _ 1

Flip-Flop (F) Latch (L)
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* Primitive Symbol

Input/Output Functions
Input/Output Block (IOB) resources are configured into various
I/O primitives and macros for convenience, such as, output buffers
(OBUFs) and output buffers with an enable (OBUFEs). Pads used to
connect the circuit to PLD device pins are also included.

OFDT,
OFDT4,
OFDT8,
OFDT16

OFDT,
OFDT4,
OFDT8,
OFDT16

Single and Multiple D Flip-Flops with Active-
Low 3-State Output Buffers

3-285

XC7000 XC9000 Description Page

BUFCE* NA Global Clock-Enable Input Buffer for XC7000 3-87
BUFE,
BUFE4,
BUFE8,
BUFE16

BUFE,
BUFE4,
BUFE8,
BUFE16

Internal 3-State Buffers with Active-High
Enable

3-88

BUFFOE* NA Global Fast-Output-Enable (FOE) Input Buffer
for XC7000

3-90

BUFG* BUFG* Global Clock Buffer 3-91
NA BUFGSR* Global Set/Reset (GSR) Input Buffer for XC9000 3-92
NA BUFGTS* Global 3-State Control (GTS) Input Buffer for

XC9000
3-93

IBUF*,
IBUF4,
IBUF8,
IBUF16

IBUF*,
IBUF4,
IBUF8,
IBUF16

Single- and Multiple-Input Buffers 3-254

IOPAD*,
IOPAD4,
IOPAD8,
IOPAD16

IOPAD*,
IOPAD4,
IOPAD8,
IOPAD16

Single- and Multiple-Input/Output Pads 3-263

IPAD*,
IPAD4,
IPAD8,
IPAD16

IPAD*,
IPAD4,
IPAD8,
IPAD16

Single- and Multiple-Input Pads 3-264

XC7000 XC9000 Description Page
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* Primitive Symbol

Latches
Latches (LD) are available in XC7000 and XC9000 architectures.

OBUF*,
OBUF4,
OBUF8,
OBUF16

OBUF*,
OBUF4,
OBUF8,
OBUF16

Single- and Multiple-Output Buffers 3-277

OBUFE,
OBUFE4,
OBUFE8,
OBUFE16

OBUFE,
OBUFE4,
OBUFE8,
OBUFE16

3-State Output Buffers with Active-High Fast
Output Enable

3-278

OBUFT*,
OBUFT4,
OBUFT8,
OBUFT16

OBUFT*,
OBUFT4,
OBUFT8,
OBUFT16

Single and Multiple 3-State Output Buffers with
Active-Low Enable

3-279

OPAD*,
OPAD4,
OPAD8,
OPAD16

OPAD*,
OPAD4,
OPAD8,
OPAD16

Single- and Multiple-Output Pads 3-287

UPAD* UPAD* Unbonded I/O pad 3-316

XC7000 XC9000 Description Page

LD
LD4,
LD8,
LD16

LD
LD4,
LD8,
LD16

Single and Multiple Transparent Data Latches 3-265

XC7000 XC9000 Description Page
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Logic Primitives
Combinatorial logic gates that implement the basic Boolean functions
are available in XC7000 XC9000 architectures with up to five inputs in
all combinations of inverted and non-inverted inputs, and with six to
nine inputs non-inverted.

XC7000 XC9000 Description Page

AND2*,
AND2B1*,
AND2B2*,
AND3*,
AND3B1*,
AND3B2*,
AND3B3*,
AND4*,
AND4B1*,
AND4B2*,
AND4B3*,
AND4B4*,
AND5*,
AND5B1*,
AND5B2*,
AND5B3*,
AND5B4*,
AND5B5*,
AND6*,
AND7*,
AND8*,
AND9*

AND2*,
AND2B1*,
AND2B2*,
AND3*,
AND3B1*,
AND3B2*,
AND3B3*,
AND4*,
AND4B1*,
AND4B2*,
AND4B3*,
AND4B4*,
AND5*,
AND5B1*,
AND5B2*,
AND5B3*,
AND5B4*,
AND5B5*,
AND6*,
AND7*,
AND8*,
AND9*

2- to 9-Input AND Gates with Inverted and
Non-Inverted Inputs

3-82

INV*,
INV4,
INV8,
INV16

INV*,
INV4,
INV8,
INV16

Single and Multiple Inverters 3-262
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NAND2*,
NAND2B1*,
NAND2B2*,
NAND3*,
NAND3B1*,
NAND3B2*,
NAND3B3*,
NAND4*,
NAND4B1*,
NAND4B2*,
NAND4B3*,
NAND4B4*,
NAND5*,
NAND5B1*,
NAND5B2*,
NAND5B3*,
NAND5B4*,
NAND5B5*,
NAND6*,
NAND7*,
NAND8*,
NAND9*

NAND2*,
NAND2B1*,
NAND2B2*,
NAND3*,
NAND3B1*,
NAND3B2*,
NAND3B3*,
NAND4*,
NAND4B1*,
NAND4B2*,
NAND4B3*,
NAND4B4*,
NAND5*,
NAND5B1*,
NAND5B2*,
NAND5B3*,
NAND5B4*,
NAND5B5*,
NAND6*,
NAND7*,
NAND8*,
NAND9*

2- to 9-Input NAND Gates with Inverted
and Non-Inverted Inputs

3-275
XC7000 XC9000 Description Page
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NOR2*,
NOR2B1*,
NOR2B2*,
NOR3*,
NOR3B1*,
NOR3B2*,
NOR3B3*,
NOR4*,
NOR4B1*,
NOR4B2*,
NOR4B3*,
NOR4B4*,
NOR5*,
NOR5B1*,
NOR5B2*,
NOR5B3*,
NOR5B4*,
NOR5B5*,
NOR6*,
NOR7*,
NOR8*,
NOR9*

NOR2*,
NOR2B1*,
NOR2B2*,
NOR3*,
NOR3B1*,
NOR3B2*,
NOR3B3*,
NOR4*,
NOR4B1*,
NOR4B2*,
NOR4B3*,
NOR4B4*,
NOR5*,
NOR5B1*,
NOR5B2*,
NOR5B3*,
NOR5B4*,
NOR5B5*,
NOR6*,
NOR7*,
NOR8*,
NOR9*

2- to 9-Input NOR Gates with Inverted and
Non-Inverted Inputs

3-276
XC7000 XC9000 Description Page
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OR2*,
OR2B1*,
OR2B2*,
OR3*,
OR3B1*,
OR3B2*,
OR3B3*,
OR4*,
OR4B1*,
OR4B2*,
OR4B3*,
OR4B4*,
OR5*,
OR5B1*,
OR5B2*,
OR5B3*,
OR5B4*,
OR5B5*,
OR6*,
OR7*,
OR8*,
OR9*

OR2*,
OR2B1*,
OR2B2*,
OR3*,
OR3B1*,
OR3B2*,
OR3B3*,
OR4*,
OR4B1*,
OR4B2*,
OR4B3*,
OR4B4*,
OR5*,
OR5B1*,
OR5B2*,
OR5B3*,
OR5B4*,
OR5B5*,
OR6*,
OR7*,
OR8*,
OR9*

2- to 9-Input OR Gates with Inverted and
Non-Inverted Inputs

3-288

SOP3,
SOP3B1A,
SOP3B1B,
SOP3B2A,
SOP3B2B,
SOP3B3,
SOP4,
SOP4B1,
SOP4B2A,
SOP4B2B,
SOP4B3,
SOP4B4

SOP3,
SOP3B1A,
SOP3B1B,
SOP3B2A,
SOP3B2B,
SOP3B3,
SOP4,
SOP4B1,
SOP4B2A,
SOP4B2B,
SOP4B3,
SOP4B4

Sum of Products 3-289

XC7000 XC9000 Description Page
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* Primitive Symbol

XNOR2*,
XNOR3*,
XNOR4*,
XNOR5,
XNOR6,
XNOR7,
XNOR8,
XNOR9

XNOR2*,
XNOR3*,
XNOR4*,
XNOR5,
XNOR6,
XNOR7,
XNOR8,
XNOR9

2- to 9-Input XNOR Gates with Non-
Inverted Inputs

3-318

XOR2*,
XOR3*,
XOR4*,
XOR5,
XOR6,
XOR7,
XOR8,
XOR9

XOR2*,
XOR3*,
XOR4*,
XOR5,
XOR6,
XOR7,
XOR8,
XOR9

2- to 9-Input XOR Gates with Non-Inverted
Inputs

3-320

XC7000 XC9000 Description Page
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Multiplexers
The multiplexer naming convention shown in the following figure,
indicates the number of inputs and outputs and if an enable is avail-
able. There are a number of TTL 7400-type multiplexers that have
active-Low or inverted outputs.

Figure 2-6   Multiplexer Naming Convention

XC7000 XC9000 Description Page

M2_1 M2_1 2-to-1 Multiplexer 3-267
M2_1B1 M2_1B1 2-to-1 Multiplexer with D0 Inverted 3-268
M2_1B2 M2_1B2 2-to-1 Multiplexer with D0 and D1 Inverted 3-269
M2_1E M2_1E 2-to-1 Multiplexer with Enable 3-270
M4_1E M4_1E 4-to-1 Multiplexer with Enable 3-271
M8_1E M8_1E 8-to-1 Multiplexer with Enable 3-272
M16_1E M16_1E 16-to-1 Multiplexer with Enable 3-274
X74_150 X74_150 16-to-1 Multiplexer Active-Low Enab. & Output 3-334
X74_151 X74_151 8-to-1 Multiplexer with Active-Low Enable and

Complementary Outputs
3-336

X74_152 X74_152 8-to-1 Multiplexer with Active-Low Output 3-338
X74_153 X74_153 Dual 4-to-1 Multiplexer with Active-Low Enables

and Common Select Input
3-340

X74_157 X74_157 Quadruple 2-to-1 Multiplexer with Common
Select and Active-Low Enable

3-344

X74_158 X74_158 Quadruple 2-to-1 Multiplexer with Common
Select, Active-Low Enable, and Active-Low Out-
puts

3-346

X74_298 X74_298 Quadruple 2-Input Multiplexer with Storage and
Negative-Edge Clock

3-379

X74_352 X74_352 Dual 4-to-1 Multiplexer with Active-Low Enables
and Outputs

3-381

X4620

M 8 _ 1 E
Multiplexer

Number of Inputs

Number of Outputs

Output Enable
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Shifters
Shift registers and barrel shifters are available in a variety of sizes and
capabilities. The naming convention shown in the following figure
illustrates available features for shift registers.

Figure 2-7   Shift Register Naming Convention

XC7000 XC9000 Description Page

BRLSHFT4 BRLSHFT4 4-Bit Barrel Shifter 3-83
BRLSHFT8 BRLSHFT8 8-Bit Barrel Shifter 3-84
SR4CE SR4CE 4-Bit Serial-In Parallel-Out Shift Register with

Clock Enable and Asynchronous Clear
3-290

SR4CLE SR4CLE 4-Bit Loadable Serial/Parallel-In Parallel-Out
Shift Register with Clock Enable and Asynchro-
nous Clear

3-291

SR4CLED SR4CLED 4-Bit Shift Register with Clock Enable and
Asynchronous Clear

3-292

SR4RE SR4RE 4-Bit Serial-In Parallel-Out Shift Register with
Clock Enable and Synchronous Reset

3-293

SR4RLE SR4RLE 4-Bit Loadable Serial/Parallel-In Parallel-Out
Shift Register with Clock Enable and Synchro-
nous Reset

3-294

SR4RLED SR4RLED 4-Bit Shift Register with Clock Enable and Syn-
chronous Reset

3-295

SR8CE SR8CE 8-Bit Serial-In Parallel-Out Shift Register with
Clock Enable and Asynchronous Clear

3-296

SR8CLE SR8CLE 8-Bit Loadable Serial/Parallel-In Parallel-Out
Shift Register with Clock Enable and Asynchro-
nous Clear

3-298

X4578

Bit Size

Shift Register

Asynchronous Clear (C)
Synchronous Reset (R)

Clock Enable

Loadable

S R 8 R L E D

Directional
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SR8CLED SR8CLED 8-Bit Shift Register with Clock Enable and
Asynchronous Clear

3-300

SR8RE SR8RE 8-Bit Serial-In Parallel-Out Shift Register with
Clock Enable and Synchronous Reset

3-302

SR8RLE SR8RLE 8-Bit Loadable Serial/Parallel-In Parallel-Out
Shift Register with Clock Enable and Synchro-
nous Reset

3-304

SR8RLED SR8RLED 8-Bit Shift Register with Clock Enable and Syn-
chronous Reset

3-306

SR16CE SR16CE 16-Bit Serial-In Parallel-Out Shift Register with
Clock Enable and Asynchronous Clear

3-308

SR16CLE SR16CLE 16-Bit Loadable Serial/Parallel-In Parallel-Out
Shift Register with Clock Enable and Asynchro-
nous Clear

3-309

SR16CLED SR16CLED 16-Bit Shift Register with Clock Enable and
Asynchronous Clear

3-310

SR16RE SR16RE 16-Bit Serial-In Parallel-Out Shift Register with
Clock Enable and Synchronous Reset

3-311

SR16RLE SR16RLE 16-Bit Loadable Serial/Parallel-In Parallel-Out
Shift Register with Clock Enable and Synchro-
nous Reset

3-312

SR16RLED SR16RLED 16-Bit Shift Register with Clock Enable and
Synchronous Reset

3-313

X74_164 X74_164 8-Bit Serial-In Parallel-Out Shift Register with
Active-Low Asynchronous Clear

3-360

X74_165S X74_165S 8-Bit Loadable Serial/Parallel-In Parallel-Out
Shift Register with Clock Enable

3-362

X74_194 X74_194 4-Bit Loadable Directional Serial/Parallel-In
Parallel-Out Shift Register

3-369

X74_195 X74_195 4-Bit Loadable Serial/Parallel-In Parallel-Out
Shift Register

3-372

XC7000 XC9000 Description Page
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Chapter 3

Design Elements
This chapter contains design elements (primitives and macros)
for the XC7000 and XC9000 architectures, organized in alpha-
numeric order.

ACC1

1-Bit Loadable Cascadable Accumulator with
Carry-In, Carry-Out, and Synchronous Reset

* not supported for XC7336 designs

ACC1 can add or subtract a 1-bit unsigned-binary word to or from
the contents of a 1-bit data register and store the results in the
register. The register can be loaded with a 1-bit word. The synchro-
nous reset (R) has priority over all other inputs and, when High,
causes the output to go to logic level zero. Otherwise, clock (C) transi-
tions are ignored when clock enable (CE) is Low. The default initial
state of the flip-flop is zero.

Load
When the load input (L) is High, CE is ignored and the data on the
input D0 is loaded into the 1-bit register.

XC7000 XC9000

Macro* Macro

X3862

ACC1

C

D0

B0

CI Q0

CO

L

CE

ADD

R
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Add
When control inputs ADD and CE are both High, the accumulator
adds a 1-bit word (B0) and carry-in (CI) to the contents of the 1-bit
register. The result is stored in the register and appears on output Q0
during the Low-to-High clock transition. The carry-out (CO) is not
registered synchronously with the data output. CO  allows cascading
of ACC1s by connecting CO of one stage to CI of the next stage. In
add mode, CO acts as a carry-out, and CO and CI are active-High.

Subtract
When ADD is Low and CE is High, the 1-bit word B0 and CI are
subtracted from the contents of the register. The result is stored in the
register and appears on output Q0 during the Low-to-High clock
transition. The carry-out (CO) is not registered synchronously with
the data output. CO allows cascading of ACC1s by connecting CO of
one stage to CI of the next stage. In subtract mode, CO acts as a
borrow, and CO and CI are active-Low.

For the XC7000 CPLD architecture, the CO output is not valid during
load (L=High), during reset (R=High), or while CE is inactive (Low).
Also, the CI and CO pins are not implemented using the XC7000
arithmetic carry path and should not be used to cascade accumula-
tors. Refer to “ACC1X1” and “ACC1X2” for descriptions of cascad-
able XC7000 accumulators.
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Figure 3-1   ACC1 Implementation (XC7000 and XC9000)
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ACC1X1

1-Bit Loadable Cascadable Accumulator with
Carry-Out for XC7000

*not supported for XC7336 designs

ACC1X1 is implemented using the XC7000 arithmetic carry-logic
chain for high-speed ripple-carry addition. ACC1X1 is a low-order
adder component that can be used as a stand-alone or cascaded with
high-order accumulators through its CO output. ACC1X1 adds or
subtracts a 1-bit binary word (B0) to or from the contents of a 1-bit
data register and stores the results in the register. The register can be
loaded with a 1-bit word. When the load input (L) is High, CE is
ignored and the data on input D0 is loaded into the 1-bit register. The
synchronous reset (R) has priority over all other inputs and, when
High, causes all outputs to go to logic level zero. When reset (R) and
load (L) are inactive, clock (C) transitions are ignored when clock
enable (CE) is Low.

Add
When control inputs ADD and CE are both High, the accumulator
adds a 1-bit word (B0) to the contents of the 1-bit register. The result is
stored in the register and appears on output Q0 during the Low-to-
High clock transition. In add mode, CO acts as a carry-out and is
active-High.

Subtract
When ADD is Low and CE is High, the 1-bit word B0 is subtracted
from the contents of the register. The result is stored in the register
and appears on output Q0 during the Low-to-High clock transition.
In subtract mode, CO acts as a borrow and is active-Low.

The CO output is passed into the XC7000 carry chain, and therefore
can only be connected to the CI input of another XC7000-specific
arithmetic component. To generate a carry-out signal for general-
purpose logic, connect an ADD1X2 to the CO output of the accumu-

XC7000 XC9000

Macro* NA

X4240

ACC1X1

C

D0

B0

Q0

CO

L

CE

ADD

R
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lator and tie its A and B inputs to GND; the S output becomes the
carry-out. If a carry-in is required from general-purpose logic, use an
ACC1X2 for the least-significant accumulator and connect an
ADD1X1 to its CI input. Then connect your carry-in signal to both the
A and B inputs of the ADD1X1 (the S output is not used) to generate
a carry into the carry chain for the first bit of the accumulator.

The default initial state of the flip-flop is zero.

d, q, b = state of referenced input one set-up time prior to active clock transition

Inputs Outputs

R L CE B0 D0 C ADD Q0 CO

1 X X X X ↑ X 0 0
0 1 X X D0 ↑ X d 0
0 0 0 X X X X No Chg 0
0 0 1 B0 X ↑ 1 q+b CO
0 0 1 B0 X ↑ 0 q-b CO
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Figure 3-2   ACC1X1 Implementation (XC7000)
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ACC1X2

1-Bit Loadable Cascadable Accumulator with
Carry-In and Carry-Out for XC7000

* not supported for XC7336 designs

ACC1X2 is implemented using the XC7000 arithmetic carry-logic
chain for high-speed ripple-carry addition. ACC1X2 is a high-order
adder component cascaded to lower-order accumulators through its
CI input. ACC1X2 adds or subtracts a 1-bit binary word (B0) to or
from the contents of a 1-bit data register and stores the results in the
register. The register can be loaded with a 1-bit word. When the load
input (L) is High, CE is ignored and the data on input D0 is loaded
into the 1-bit register. The synchronous reset (R) has priority over all
other inputs and, when High, causes all outputs to go to logic level
zero. When reset (R) and load (L) are inactive, clock (C) transitions
are ignored when clock enable (CE) is Low.

Add
When control inputs ADD and CE are both High, the accumulator
adds a 1-bit word (B0) and carry-in (CI) to the contents of the 1-bit
register. The result is stored in the register and appears on output Q0
during the Low-to-High clock transition. In add mode, CO acts as a
carry-out, and CO and CI are active-High.

Subtract
When ADD is Low and CE is High, the 1-bit word B0 and CI are
subtracted from the contents of the register. The result is stored in the
register and appears on output Q0 during the Low-to-High clock
transition. In subtract mode, CO acts as a borrow, and CO and CI are
active-Low.

The CI input is taken from the XC7000 carry chain, and therefore,
must only be connected to the CO output of another XC7000-specific
arithmetic component. The CO output is passed into the XC7000
carry chain, and can only be connected to the CI input of another

XC7000 XC9000

Macro* NA

X4241

ACC1X2

C

D0

B0

CI Q0

CO

L

CE

ADD

R
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XC7000-specific arithmetic component. To generate a carry-out signal
for general-purpose logic, connect an ADD1X2 to the CO output of
the accumulator and tie its A and B inputs to GND; the S output
becomes the carry-out.

The default initial state of the flip-flop is zero.

d, q, b, ci = state of referenced input one set-up time prior to active clock transition

Inputs Outputs

R L CE B0 D0 CI C ADD Q0 CO

1 X X X X X ↑ X 0 0
0 1 X X D0 X ↑ X d 0
0 0 0 X X X X X No Chg 0
0 0 1 B0 X CI ↑ 1 q+b+ci CO
0 0 1 B0 X CI ↑ 0 q-b-ci CO
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Figure 3-3   ACC1X2 Implementation (XC7000)

OR3

OPT=MERGE

AND2B2

OPT=MERGE
AND3B1

OPT=MERGE

AND5B2

OPT=MERGE

AND5B4

D0

CO

Q0

CI

C

R

ADD

L

CE

AND2

+5

VCC

GND

B0

ALU=XOR
TYPE=DFF
ADD=ON

Q0

Q

FBMC

FBK

D2

PRE

CLR

D1

CI

C CO

OR2

OPT=MERGE

GND



Libraries Guide

3-10 XACT Development System

ACC4

4-Bit Loadable Cascadable Accumulator with
Carry-In, Carry-Out, and Synchronous Reset

* not supported for XC7336 designs

ACC4 can add or subtract a 4-bit unsigned-binary or twos-comple-
ment word to or from the contents of a 4-bit data register and store
the results in the register. The register can be loaded with a 4-bit
word.  The synchronous reset (R) has priority over all other inputs,
and when High, causes all outputs to go to logic level zero. Other-
wisae, clock (C) transitions are ignored when clock enable (CE) is
Low. The default initial state of all flip-flops is zero.

Load
When the load input (L) is High, CE is ignored and the data on inputs
D3 – D0 is loaded into the 4-bit register.

Unsigned Binary Versus Twos-Complement
ACC4 can operate on either 4-bit unsigned binary numbers or 4-bit
twos-complement numbers. If the inputs are interpreted as unsigned
binary, the result can be interpreted as unsigned binary. If the inputs
are interpreted as twos complement, the output can be interpreted as
twos complement. The only functional difference between an
unsigned binary operation and a twos-complement operation is how
they determine when “overflow” occurs. Unsigned binary uses CO,
while twos-complement uses OFL to determine when “overflow”
occurs.

For the XC7000 CPLD architecture, the CO output is not valid during
load (L=High), during reset (R=High), or while CE is inactive (Low).
Also, the CI and CO pins are not implemented using the XC7000
arithmetic carry path and should not be used to cascade
accumulators. Refer to “ACC1X1” and “ACC1X2” for descriptions of
cascadable XC7000 accumulators. The OFL output is not provided on
the ACC4 symbol in XC7000.

XC7000 XC9000

Macro* Macro

X3863
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Unsigned Binary Operation
For unsigned binary operation, the ACC4 can represent numbers
between 0 and 15, inclusive. In add mode, CO is active (High) when
the sum exceeds the bounds of the adder/subtracter. In subtract
mode, CO is an active-Low borrow-out and goes Low when the
difference exceeds the bounds. The carry-out (CO) is not registered
synchronously with the data outputs. CO always reflects the accumu-
lation of inputs B3 – B0 and the contents of the register, which allows
cascading of ACC4s by connecting CO of one stage to CI of the next
stage. An unsigned binary “overflow” that is always active-High can
be generated by gating the ADD signal and CO as follows.

unsigned overflow = CO XOR ADD

OFL should be ignored in unsigned binary operation.

Twos-Complement Operation
For twos-complement operation, ACC4 can represent numbers
between -8 and +7, inclusive. If an addition or subtraction operation
result exceeds this range, the OFL output goes High. The overflow
(OFL) is not registered synchronously with the data outputs. OFL
always reflects the accumulation of inputs B3 – B0 and the contents of
the register, which allows cascading of ACC4s by connecting OFL of
one stage to CI of the next stage.

CO should be ignored in twos-complement operation.
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Figure 3-4   ACC4 Implementation (XC9000)
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ACC4X1

4-Bit Loadable Cascadable Accumulator with
Carry-Out for XC7000

* not supported for XC7336 designs

ACC4X1 is implemented using the XC7000 arithmetic carry-logic
chain for high-speed ripple-carry addition. ACC4X1 is a low-order
adder component, which can be used as a stand-alone or cascaded
with high-order accumulators through its CO output. ACC4X1 adds
or subtracts a 4-bit binary word (B3 – B0) to or from the contents of a
4-bit data register and stores the results in the register. The register
can be loaded with a 4-bit word. When the load input (L) is High, CE
is ignored and the data on inputs D3 – D0 is loaded into the 4-bit
register. The synchronous reset (R) has priority over all other inputs
and, when High, causes all outputs to go to logic level zero. When
reset (R) and load (L) are inactive, clock (C) transitions are ignored
when clock enable (CE) is Low.

Add
When control inputs ADD and CE are both High, the accumulator
adds a 4-bit word (B3 – B0) to the contents of the 4-bit register. The
result is stored in the register and appears on outputs Q3 – Q0 during
the Low-to-High clock transition. In add mode, CO acts as a carry-
out and is active-High.

Subtract
When ADD is Low and CE is High, the 4-bit word B3 – B0 is
subtracted from the contents of the register. The result is stored in the
register and appears on outputs Q3 – Q0 during the Low-to-High
clock transition. In subtract mode, CO acts as a borrow and is active-
Low.

The CO output is passed into the XC7000 carry chain, and therefore
can only be connected to the CI input of another XC7000-specific
arithmetic component. To generate a carry-out signal for general-

XC7000 XC9000

Macro* NA

X4244
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purpose logic, connect an ADD1X2 to the CO output of the accumu-
lator and tie its A and B inputs to GND; the S output becomes the
carry-out. If a carry-in is required from general-purpose logic, use an
ACC4X2 for the least-significant accumulator and connect an
ADD1X1 to its CI input. Then connect your carry-in signal to both the
A and B inputs of the ADD1X1 (the S output is not used) to generate a
carry into the carry chain for the first bit of the accumulator.

The default initial state of all flip-flops is zero.

Refer to “ACC1X1” for truth table derivation.
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ACC4X2

4-Bit Loadable Cascadable Accumulator with
Carry-In and Carry-Out for XC7000

* not supported for XC7336 designs

ACC4X2 is implemented using the XC7000 arithmetic carry-logic
chain for high-speed ripple-carry addition. ACC4X2 is a high-order
adder component cascaded to lower-order accumulators through its
CI input. ACC4X2 adds or subtracts a 4-bit binary word (B3 – B0) to
or from the contents of a 4-bit data register and stores the results in
the register. The register can be loaded with a 4-bit word. When the
load input (L) is High, CE is ignored and the data on inputs D3 – D0
is loaded into the 4-bit register. The synchronous reset (R) has priority
over all other inputs and, when High, causes all outputs to go to logic
level zero. When reset (R) and load (L) are inactive, clock (C) transi-
tions are ignored when clock enable (CE) is Low.

Add
When control inputs ADD and CE are both High, the accumulator
adds a 4-bit word (B3 – B0) and carry-in (CI) to the contents of the
4-bit register. The result is stored in the register and appears on
outputs Q3 – Q0 during the Low-to-High clock transition. In add
mode, CO acts as a carry-out, and CO and CI are active-High.

Subtract
When ADD is Low and CE is High, the 4-bit word B3 – B0 and CI are
subtracted from the contents of the register. The result is stored in the
register and appears on outputs Q3 – Q0 during the Low-to-High
clock transition. In subtract mode, CO acts as a borrow, and CO and
CI are active-Low.

The CI input is taken from the XC7000 carry chain, and therefore
must only be connected to the CO output of another XC7000-specific
arithmetic component. The CO output is passed into the XC7000
carry chain and can only be connected to the CI input of another

XC7000 XC9000

Macro* NA

X4245
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XC7000-specific arithmetic component. To generate a carry-out signal
for general-purpose logic, connect an ADD1X2 to the CO output of
the accumulator and tie its A and B inputs to GND; the S output
becomes the carry-out.

The default initial state of all flip-flops is zero.

Refer to “ACC1X2” for truth table derivation.
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ACC8

8-Bit Loadable Cascadable Accumulator with
Carry-In, Carry-Out, and Synchronous Reset

* not supported for XC7336 designs

ACC8 can add or subtract an 8-bit unsigned-binary or twos- comple-
ment word to or from the contents of an 8-bit data register and store
the results in the register. The register can be loaded with an 8-bit
word. The synchronous reset (R) has priority over all other inputs,
and when High, causes all outputs to go to logic level zero. Clock (C)
transitions are ignored when clock enable (CE) is Low. The default
initial state of all flip-flops is zero.

Load
When the load input (L) is High, CE is ignored and the data on inputs
D7 – D0 is loaded into the 8-bit register.

Unsigned Binary Versus Twos-Complement
ACC8 can operate on either 8-bit unsigned binary numbers or 8-bit
twos-complement numbers. If the inputs are interpreted as unsigned
binary, the result can be interpreted as unsigned binary. If the inputs
are interpreted as twos complement, the output can be interpreted as
twos complement. The only functional difference between an
unsigned binary operation and a twos-complement operation is how
they determine when “overflow” occurs. Unsigned binary uses CO,
while twos-complement uses OFL to determine when “overflow”
occurs.

For the XC7000 CPLD architecture, the CO output is not valid during
load (L=High), during reset (R=High), or while CE is inactive (Low).
Also, the CI and CO pins are not implemented using the XC7000
arithmetic carry path and should not be used to cascade
accumulators. Refer to “ACC8X1” and “ACC8X2” for descriptions of
cascadable XC7000 accumulators. The OFL output is not provided on
the ACC8 symbol in XC7000.

XC7000 XC9000

Macro* Macro
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Unsigned Binary Operation
For unsigned binary operation, ACC8 can represent numbers
between 0 and 255, inclusive. In add mode, CO is active (High) when
the sum exceeds the bounds of the adder/subtracter. In subtract
mode, CO is an active-Low borrow-out and goes Low when the
difference exceeds the bounds. The carry-out (CO) is not registered
synchronously with the data outputs. CO always reflects the accumu-
lation of inputs B7 – B0 and the contents of the register, which allows
cascading of ACC8s by connecting CO of one stage to CI of the next
stage. An unsigned binary “overflow” that is always active-High can
be generated by gating the ADD signal and CO as follows.

unsigned overflow = CO XOR ADD

OFL should be ignored in unsigned binary operation.

Twos-Complement Operation
For twos-complement operation, ACC8 can represent numbers
between -128 and +127, inclusive. If an addition or subtraction opera-
tion result exceeds this range, the OFL output goes High. The over-
flow (OFL) is not registered synchronously with the data outputs.
OFL always reflects the accumulation of inputs B7 – B0 and the
contents of the register, which allows cascading of ACC8s by
connecting OFL of one stage to CI of the next stage. CO should be
ignored in twos-complement operation.



Design Elements

Libraries Guide 3-19

Figure 3-5   ACC8 Implementation (XC7000)
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Figure 3-6   ACC8 Implementation (XC9000)

Note: The ACC4X2 schematic (not shown for XC9000) is the same as
ACC4 without the OFL output logic.
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ACC8X1

8-Bit Loadable Cascadable Accumulator with
Carry-Out for XC7000

* not supported for XC7336 designs

ACC8X1 is implemented using the XC7000 arithmetic carry-logic
chain for high-speed ripple-carry addition. ACC8X1 is a low-order
adder component, which can be used as a stand-alone or cascaded
with high-order accumulators through its CO output. ACC8X1 adds
or subtracts an 8-bit binary word (B7 – B0) to or from the contents of
an 8-bit data register and stores the results in the register. The register
can be loaded with an 8-bit word. When the load input (L) is High,
CE is ignored and the data on inputs D7 – D0 is loaded into the 8-bit
register. The synchronous reset (R) has priority over all other inputs
and, when High, causes all outputs to go to logic level zero. When
reset (R) and load (L) are inactive, clock (C) transitions are ignored
when clock enable (CE) is Low.

Add
When control inputs ADD and CE are both High, the accumulator
adds an 8-bit word (B7 – B0) to the contents of the 8-bit register. The
result is stored in the register and appears on outputs Q7 – Q0 during
the Low-to-High clock transition. In add mode, CO acts as a carry-
out and is active-High.

Subtract
When ADD is Low and CE is High, the 8-bit word B7 – B0 is
subtracted from the contents of the register. The result is stored in the
register and appears on outputs Q7 – Q0 during the Low-to-High
clock transition. In subtract mode, CO acts as a borrow and is active-
Low.

The CO output is passed into the XC7000 carry chain, and therefore
can only be connected to the CI input of another XC7000-specific
arithmetic component. To generate a carry-out signal for general-

XC7000 XC9000

Macro* NA

X4246
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L
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R
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purpose logic, connect an ADD1X2 to the CO output of the accumu-
lator and tie its A and B inputs to GND; the S output becomes the
carry-out. If a carry-in is required from general-purpose logic, use an
ACC8X2 for the least-significant accumulator and connect an
ADD1X1 to its CI input. Then connect your carry-in signal to both the
A and B inputs of the ADD1X1 (the S output is not used) to generate a
carry into the carry chain for the first bit of the accumulator.

The default initial state of all flip-flops is zero.

Refer to “ACC1X1” for truth table derivation.
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Figure 3-7   ACC8X1 Implementation (XC7000)
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ACC8X2

8-Bit Loadable Cascadable Accumulator with
Carry-In and Carry-Out for XC7000

* not supported for XC7336 designs

ACC8X2 is implemented using the XC7000 arithmetic carry-logic
chain for high-speed ripple-carry addition. ACC8X2 is a high-order
adder component cascaded to lower-order accumulators though its
CI input. ACC8X2 adds or subtracts an 8-bit binary word (B7 – B0) to
or from the contents of an 8-bit data register and stores the results in
the register. The register can be loaded with an 8-bit word. When the
load input (L) is High, CE is ignored and the data on inputs D7 – D0
is loaded into the 8-bit register. The synchronous reset (R) has priority
over all other inputs and, when High, causes all outputs to go to logic
level zero. When reset (R) and load (L) are inactive, clock (C) transi-
tions are ignored when clock enable (CE) is Low.

Add
When control inputs ADD and CE are both High, the accumulator
adds an 8-bit word (B7 – B0) and carry-in (CI) to the contents of the
8-bit register. The result is stored in the register and appears on
outputs Q7 – Q0 during the Low-to-High clock transition. In add
mode, CO acts as a carry-out, and CO and CI are active-High.

Subtract
When ADD is Low and CE is High, the 8-bit word B7 – B0 and CI are
subtracted from the contents of the register. The result is stored in the
register and appears on outputs Q7 – Q0 during the Low-to-High
clock transition. In subtract mode, CO acts as a borrow, and CO and
CI are active-Low.

The CI input is taken from the XC7000 carry chain, and therefore
must only be connected to the CO output of another XC7000-specific
arithmetic component. The CO output is passed into the XC7000
carry chain, and therefore can only be connected to the CI input of

XC7000 XC9000

Macro* NA
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another XC7000-specific arithmetic component. To generate a carry-
out signal for general-purpose logic, connect an ADD1X2 to the CO
output of the accumulator and tie its A and B inputs to GND; the S
output becomes the carry-out.

The default initial state of all flip-flops is zero.

Refer to “ACC1X2” for truth table derivation.
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Figure 3-8   ACC8X2 Implementation (XC7000)
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ACC16

16-Bit Loadable Cascadable Accumulator with
Carry-In, Carry-Out, and Synchronous Reset

* not supported for XC7336 designs

ACC16 can add or subtract a 16-bit unsigned-binary or twos-comple-
ment word to or from the contents of a 16-bit data register and store
the results in the register. The register can be loaded with a 16-bit
word. The synchronous reset (R) has priority over all other inputs,
and when High, causes all outputs to go to logic level zero. Clock (C)
transitions are ignored when clock enable (CE) is Low. The default
initial state of all flip-flops is zero.

Load
When the load input (L) is High, CE is ignored and the data on inputs
D15 – D0 is loaded into the 16-bit register.

Unsigned Binary Versus Twos-Complement
ACC16 can operate on either 16-bit unsigned binary numbers or
16-bit twos-complement numbers. If the inputs are interpreted as
unsigned binary, the result can be interpreted as unsigned binary. If
the inputs are interpreted as twos complement, the output can be
interpreted as twos complement. The only functional difference
between an unsigned binary operation and a twos-complement oper-
ation is how they determine when “overflow” occurs. Unsigned
binary uses CO, while twos-complement uses OFL to determine
when “overflow” occurs.

For the XC7000 CPLD architecture, the CO output is not valid during
load (L=High), during reset (R=High), or while CE is inactive (Low).
Also, the CI and CO pins are not implemented using the XC7000
arithmetic carry path and should not be used to cascade accumula-
tors. Refer to “ACC8X1” and “ACC8X2” for descriptions of cascad-
able XC7000 accumulators. The OFL output is not provided on the
ACC16 symbol in XC7000.

XC7000 XC9000

Macro* Macro
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Unsigned Binary Operation
For unsigned binary operation, ACC16 can represent numbers
between 0 and 65535, inclusive. In add mode, CO is active (High)
when the sum exceeds the bounds of the adder/subtracter. In
subtract mode, CO is an active-Low borrow-out and goes Low when
the difference exceeds the bounds. The carry-out (CO) is not regis-
tered synchronously with the data outputs. CO always reflects the
accumulation of inputs B15 – B0 and the contents of the register,
which allows cascading of ACC16s by connecting CO of one stage to
CI of the next stage. An unsigned binary “overflow” that is always
active-High can be generated by gating the ADD signal and CO as
follows.

unsigned overflow = CO XOR ADD

OFL should be ignored in unsigned binary operation.

Twos-Complement Operation
For twos-complement operation, ACC16 can represent numbers
between -32768 and +32767, inclusive. If an addition or subtraction
operation result exceeds this range, the OFL output goes High. The
overflow (OFL) is not registered synchronously with the data
outputs. OFL always reflects the accumulation of inputs B15 – B0 and
the contents of the register, which allows cascading of ACC16s by
connecting OFL of one stage to CI of the next stage.

CO should be ignored in twos-complement operation.
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ACC16X1

16-Bit Loadable Cascadable Accumulator with
Carry-Out for XC7000

* not supported for XC7336 designs

ACC16X1 is implemented using the XC7000 arithmetic carry-logic
chain for high-speed ripple-carry addition. ACC16X1 is a low-order
adder component, which can be used as a stand-alone or cascaded
with high-order accumulators though its CO output. ACC16X1 adds
or subtracts a 16-bit binary word (B15 – B0) to or from the contents of
a 16-bit data register and stores the results in the register. The register
can be loaded with a 16-bit word. When the load input (L) is High,
CE is ignored and the data on inputs D15 – D0 is loaded into the
16-bit register. The synchronous reset (R) has priority over all other
inputs and, when High, causes all outputs to go to logic level zero.
When reset (R) and load (L) are inactive, clock (C) transitions are
ignored when clock enable (CE) is Low.

Add
When control inputs ADD and CE are both High, the accumulator
adds a 16-bit word (B15 – B0) to the contents of the 16-bit register. The
result is stored in the register and appears on outputs Q15 – Q0
during the Low-to-High clock transition. In add mode, CO acts as a
carry-out and is active-High.

Subtract
When ADD is Low and CE is High, the 16-bit word B15 – B0 is
subtracted from the contents of the register. The result is stored in the
register and appears on outputs Q15 – Q0 during the Low-to-High
clock transition. In subtract mode, CO acts as a borrow and is active-
Low.

The CO output is passed into the XC7000 carry chain, and therefore
can only be connected to the CI input of another XC7000-specific
arithmetic component. To generate a carry-out signal for general-

XC7000 XC9000
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purpose logic, connect an ADD1X2 to the CO output of the accumu-
lator and tie its A and B inputs to GND; the S output becomes the
carry-out. If a carry-in is required from general-purpose logic, use an
ACC16X2 for the least-significant accumulator and connect an
ADD1X1 to its CI input. Then connect your carry-in signal to both the
A and B inputs of the ADD1X1 (the S output is not used) to generate a
carry into the carry chain for the first bit of the accumulator.

The default initial state of all flip-flops is zero.

Refer to “ACC1X1” for truth table derivation.

Figure 3-9   ACC16X1 Implementation (XC7000)
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ACC16X2

16-Bit Loadable Cascadable Accumulator with
Carry-In and Carry-Out for XC7000

* not supported for XC7336 designs

ACC16X2 is implemented using the XC7000 arithmetic carry-logic
chain for high-speed ripple-carry addition. ACC16X2 is a high-order
adder component cascaded to lower-order accumulators through its
CI input. ACC16X2 adds or subtracts a 16-bit binary word (B15 – B0)
to or from the contents of a 16-bit data register and stores the results
in the register. The register can be loaded with a 16-bit word. When
the load input (L) is High, CE is ignored and the data on inputs
D15 – D0 is loaded into the 16-bit register. The synchronous reset (R)
has priority over all other inputs and, when High, causes all outputs
to go to logic level zero. When reset (R) and load (L) are inactive,
clock (C) transitions are ignored when clock enable (CE) is Low.

Add
When control inputs ADD and CE are both High, the accumulator
adds a 16-bit word (B15 – B0) and carry-in (CI) to the contents of the
16-bit register. The result is stored in the register and appears on
outputs Q15 – Q0 during the Low-to-High clock transition. In add
mode, CO acts as a carry-out, and CO and CI are active-High.

Subtract
When ADD is Low and CE is High, the 16-bit word B15 – B0 and CI
are subtracted from the contents of the register. The result is stored in
the register and appears on outputs Q15 – Q0 during the Low-to-
High clock transition. In subtract mode, CO acts as a borrow, and CO
and CI are active-Low.

The CI input is taken from the XC7000 carry chain, and therefore
must only be connected to the CO output of another XC7000-specific
arithmetic component. The CO output is passed into the XC7000
carry chain, and therefore can only be connected to the CI input of

XC7000 XC9000
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another XC7000-specific arithmetic component. To generate a carry-
out signal for general-purpose logic, connect an ADD1X2 to the CO
output of the accumulator and tie its A and B inputs to GND; the S
output becomes the carry-out.

The default initial state of all flip-flops is zero.

Refer to “ACC1X2” for truth table derivation.

Figure 3-10   ACC16X2 Implementation (XC7000)
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ADD1

1-Bit Full Adder with Carry-In and Carry-Out

* not supported for XC7336 designs

ADD1, a cascadable 1-bit full adder with carry-in and carry-out, adds
two 1-bit words (A and B) and a carry-in (CI), producing a binary
sum (S0) output and a carry-out (CO). For XC7000 cascadable adders,
refer to “ADD1X1” and “ADD1X2.”

XC7000 XC9000

Macro* Macro

Inputs Outputs

A0 B0 CI S0 CO

0 0 0 0 0
1 0 0 1 0
0 1 0 1 0
1 1 0 0 1
0 0 1 1 0
1 0 1 0 1
0 1 1 0 1
1 1 1 1 1
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B0
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Figure 3-11   ADD1 Implementation (XC7000 and XC9000)
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ADD1X1

1-Bit Cascadable Full Adder with Carry-Out
for XC7000

* not supported for XC7336 designs

ADD1X1 is implemented using the XC7000 arithmetic carry-logic
chain for high-speed ripple-carry addition. ADD1X1 is a low-order
adder component, which can be used as a stand-alone or cascaded
with high-order adders through its CO output. ADD1X2 adds two
words (A0 and B0) and produces a sum output (ADD1X2) and carry-
out (CO).

The CO output is passed into the XC7000 carry chain, and therefore
can only be connected to the CI input of another XC7000-specific
arithmetic component. To generate a carry-out for general-purpose
logic, use an adder (or cascaded adders) with one extra bit and tie the
most-significant A and B inputs to GND; the most-significant S
output becomes the carry-out. If a carry-in is required from general-
purpose logic, extend the length of the adder by one additional bit
and connect the carry-in signal to both the least-significant A and B
inputs (the least-significant S output is not used) to generate a carry
into the carry chain for the second bit of the adder.

Refer to “ADD1” for truth table derivation.
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Figure 3-12   ADD1X1 Implementation (XC7000)
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ADD1X2

1-Bit Cascadable Full Adder with Carry-In and
Carry-Out for XC7000

* not supported for XC7336 designs

ADD1X2 is implemented using the XC7000 arithmetic carry-logic
chain for high-speed ripple-carry addition. ADD1X2 is a high-order
adder component cascaded to lower-order adders through its CI
input. ADD1X2 adds two words (A0 and B0) and a carry-in (CI),
producing a sum output (S0) and carry-out (CO).

The CI input is taken from the XC7000 carry chain, and therefore
must only be connected to the CO output of another XC7000-specific
arithmetic component. The CO output is passed into the XC7000
carry chain, and therefore can only be connected to the CI input of
another XC7000-specific arithmetic component. To generate a carry-
out for general-purpose logic, use an adder (or cascaded adders) with
one extra bit and tie the most-significant A and B inputs to GND; the
most-significant S output becomes the carry-out.

Refer to “ADD1” for truth table derivation.

Figure 3-13   ADD1X2 Implementation (XC7000)
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ADD4

4-Bit Cascadable Full Adder with Carry-In, Carry-Out,
and Overflow

* not supported for XC7336 designs

ADD4 adds two words (A3 – A0 and B3 – B0) and a carry-in (CI),
producing a sum output (S3 – S0) and carry-out (CO) or overflow
(OFL). For XC7000 cascadable adders, refer to “ADD4X1” and
“ADD4X2.” The ADD4 CI and CO pins do not use the XC7000 carry
chain.

Unsigned Binary Versus Twos Complement
ADD4 can operate on either 4-bit unsigned binary numbers or 4-bit
twos-complement numbers. If the inputs are interpreted as unsigned
binary, the result can be interpreted as unsigned binary. If the inputs
are interpreted as twos complement, the output can be interpreted as
twos complement. The only functional difference between an
unsigned binary operation and a twos-complement operation is how
they determine when “overflow” occurs. Unsigned binary uses CO,
while twos-complement uses OFL to determine when “overflow”
occurs.

Unsigned Binary Operation
For unsigned binary operation, ADD4 can represent numbers
between 0 and 15, inclusive. CO is active (High) when the sum
exceeds the bounds of the adder.

OFL is ignored in unsigned binary operation.

XC7000 XC9000

Macro* Macro
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Twos-Complement Operation
For twos-complement operation, ADD4 can represent numbers
between -8 and +7, inclusive. OFL is active (High) when the sum
exceeds the bounds of the adder.

CO is ignored in twos-complement operation.
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Figure 3-14   ADD4 Implementation (XC9000)
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ADD4X1

4-Bit Cascadable Full Adder with Carry-Out
for XC7000

* not supported for XC7336 designs

ADD4X1 is implemented using the XC7000 arithmetic carry-logic
chain for high-speed ripple-carry addition. ADD4X1 is a low-order
adder component, which can be used as a stand-alone or cascaded
with high-order adders through its CO output. ADD4X2 adds two
words (A3 – A0 and B3 – B0), producing a sum output (S3 – S0) and
carry-out (CO).

The CO output is passed into the XC7000 carry chain, and therefore
can only be connected to the CI input of another XC7000-specific
arithmetic component. To generate a carry-out for general-purpose
logic, use an adder (or cascaded adders) with one extra bit and tie the
most-significant A and B inputs to GND; the most-significant S
output becomes the carry-out. If a carry-in is required from general-
purpose logic, extend the length of the adder by one additional bit
and connect the carry-in signal to both the least-significant A and B
inputs (the least-significant S output is not used) to generate a carry
into the carry chain for the second bit of the adder.

Refer to “ADD1” for truth table derivation.

XC7000 XC9000

Macro* NAA2
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ADD4X2

4-Bit Cascadable Full Adder with Carry-In and
Carry-Out for XC7000

* not supported for XC7336 designs

ADD4X2 is implemented using the XC7000 arithmetic carry-logic
chain for high-speed ripple-carry addition. ADD4X2 is a high-order
adder component cascaded to lower-order adders through its CI
input. ADD4X2 adds two words (A3 – A0 and B3 – B0) and a carry-in
(CI), producing a sum output (S3 – S0) and carry-out (CO).

The CI input is taken from the XC7000 carry chain, and therefore
must only be connected to the CO output of another XC7000-specific
arithmetic component. The CO output is passed into the XC7000
carry chain, and therefore can only be connected to the CI input of
another XC7000-specific arithmetic component. To generate a carry-
out for general-purpose logic, use an adder (or cascaded adders) with
one extra bit and tie the most-significant A and B inputs to GND; the
most-significant S output becomes the carry-out.

Refer to “ADD1” for truth table derivation.

XC7000 XC9000

Macro* NA
A2
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B0
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ADD8

8-Bit Cascadable Full Adder with Carry-In, Carry-Out,
and Overflow

* not supported for XC7336 designs

ADD8 adds two words (A7 – A0 and B7 – B0) and a carry-in (CI),
producing a sum output (S7 – S0) and carry-out (CO) or overflow
(OFL). For XC7000 cascadable adders, refer to “ADD8X1” and
“ADD8X2.” The ADD8 CI and CO pins do not use the XC7000 carry
chain.

Unsigned Binary Versus Twos-Complement
ADD8 can operate on either 8-bit unsigned binary numbers or 8-bit
twos-complement numbers. If the inputs are interpreted as unsigned
binary, the result can be interpreted as unsigned binary. If the inputs
are interpreted as twos complement, the output can be interpreted as
twos complement. The only functional difference between an
unsigned binary operation and a twos-complement operation is how
they determine when “overflow” occurs. Unsigned binary uses CO,
while twos-complement uses OFL to determine when “overflow”
occurs.

Unsigned Binary Operation
For unsigned binary operation, ADD8 can represent numbers
between 0 and 255, inclusive. CO is active (High) when the sum
exceeds the bounds of the adder.

OFL is ignored in unsigned binary operation.

Twos-Complement Operation
For twos-complement operation, ADD8 can represent numbers
between -128 and +127, inclusive. OFL is active (High) when the sum
exceeds the bounds of the adder.

CO is ignored in twos-complement operation.

XC7000 XC9000

Macro* Macro
A[7:0]

S[7:0]

CO

CI
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B[7:0]
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Figure 3-15   ADD8 Implementation (XC7000)
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Figure 3-16   ADD8 Implementation (XC9000)

Note: The ADD4X2 schematic (not shown for XC9000) is the same as
ADD4 without the OFL output logic.
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ADD8X1

8-Bit Loadable Cascadable Full Adder with Carry-Out
for XC7000

* not supported for XC7336 designs

ADD8X1 is implemented using the XC7000 arithmetic carry-logic
chain for high-speed ripple-carry addition. ADD8X1 is a low-order
adder component that can be used stand-alone or cascaded with
high-order adders through its CO output. ADD8X2 adds two words
(A7 – A0 and B7 – B0), producing a sum output (S7 – S0) and carry-
out (CO). The CO output passes into the XC7000 carry chain, and
therefore can only be connected to the CI input of another XC7000-
specific arithmetic component. To generate a carry-out for general-
purpose logic, use an adder (or cascaded adders) with one extra bit
and tie the most-significant A and B inputs to GND; the most-signifi-
cant S output becomes the carry-out. If a carry-in is required from
general-purpose logic, extend the length of the adder by one addi-
tional bit and connect the carry-in signal to both the least-significant
A and B inputs (the least-significant S output is not used). This proce-
dure generates a carry into the carry chain for the second bit of the
adder.

Refer to “ADD1” for truth table derivation.

XC7000 XC9000

Macro* NA
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S[7:0]

CO

X4236

B[7:0]



Design Elements

Libraries Guide 3-47

Figure 3-17   ADD8X1 Implementation (XC7000)
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ADD8X2

8-Bit Cascadable Full Adder with Carry-In and
Carry-Out for XC7000

* not supported for XC7336 designs

ADD8X2 is implemented using the XC7000 arithmetic carry-logic
chain for high-speed ripple-carry addition. ADD8X2 is a high-order
adder component cascaded to lower-order adders through its CI
input. ADD8X2 adds two words (A7 – A0 and B7 – B0) and a carry-in
(CI), producing a sum output (S7 – S0) and carry-out (CO).

The CI input is taken from the XC7000 carry chain, and therefore
must only be connected to the CO output of another XC7000-specific
arithmetic component. The CO output is passed into the XC7000
carry chain, and therefore can only be connected to the CI input of
another XC7000-specific arithmetic component. To generate a carry-
out for general-purpose logic, use an adder (or cascaded adders) with
one extra bit and tie the most-significant A and B inputs to GND; the
most-significant S output becomes the carry-out.

Refer to “ADD1” for truth table derivation.

XC7000 XC9000

Macro* NA
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Figure 3-18   ADD8X2 Implementation (XC7000)
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ADD16

16-Bit Cascadable Full Adder with Carry-In,
Carry-Out, and Overflow

* not supported for XC7336 designs

ADD16 adds two words (A15 – A0 and B15 – B0) and a carry-in (CI),
producing a sum output (S15 – S0) and carry-out (CO) or overflow
(OFL). For XC7000 cascadable adders, refer to “ADD16X1” and
“ADD16X2.” The ADD16 CI and CO pins do not use the XC7000
carry chain.

Unsigned Binary Versus Twos-Complement
ADD16 can operate on either 16-bit unsigned binary numbers or
16-bit twos-complement numbers. If the inputs are interpreted as
unsigned binary, the result can be interpreted as unsigned binary. If
the inputs are interpreted as twos complement, the output can be
interpreted as twos complement. The only functional difference
between an unsigned binary operation and a twos-complement oper-
ation is how they determine when “overflow” occurs. Unsigned
binary uses CO, while twos-complement uses OFL to determine
when “overflow” occurs.

Unsigned Binary Operation
For unsigned binary operation, ADD16 can represent numbers
between 0 and 65535, inclusive. CO is active (High) when the sum
exceeds the bounds of the adder.

OFL is ignored in unsigned binary operation.

Twos-Complement Operation
For twos-complement operation, ADD16 can represent numbers
between -32768 and +32767, inclusive. OFL is active (High) when the
sum exceeds the bounds of the adder.

CO is ignored in twos-complement operation.

XC7000 XC9000

Macro* Macro
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Figure 3-19   ADD16 Implementation (XC7000 and XC9000)
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ADD16X1

16-Bit Cascadable Full Adder with Carry-Out
for XC7000

* not supported for XC7336 designs

ADD16X1 is implemented using the XC7000 arithmetic carry-logic
chain for high-speed ripple-carry addition. ADD16X1 is a low-order
adder component, which can be used as a stand-alone or cascaded
with high-order adders through its CO output. ADD16X2 adds two
words (A15 – A0 and B15 – B0), producing a sum output (S15 – S0)
and carry-out (CO).

The CO output is passed into the XC7000 carry chain, and therefore
can only be connected to the CI input of another XC7000-specific
arithmetic component. To generate a carry-out for general-purpose
logic, use an adder (or cascaded adders) with one extra bit and tie the
most-significant A and B inputs to GND; the most-significant S
output becomes the carry-out. If a carry-in is required from general-
purpose logic, extend the length of the adder by one additional bit
and connect the carry-in signal to both the least-significant A and B
inputs (the least-significant S output is not used) to generate a carry
into the carry chain for the second bit of the adder.

Refer to “ADD1” for truth table derivation.
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Macro* NA
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Figure 3-20   ADD16X1 Implementation (XC7000)
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ADD16X2

16-Bit Cascadable Full Adder with Carry-In and
Carry-Out for XC7000

* not supported for XC7336 designs

ADD16X2 is implemented using the XC7000 arithmetic carry-logic
chain for high-speed ripple-carry addition. ADD16X2 is a high-order
adder component cascaded to lower-order adders through its CI
input. ADD16X2 adds two words (A15 – A0 and B15 – B0) and a
carry-in (CI), producing a sum output (S15 – S0) and carry-out (CO).

The CI input is taken from the XC7000 carry chain, and therefore
must only be connected to the CO output of another XC7000-specific
arithmetic component. The CO output is passed into the XC7000
carry chain, and therefore can only be connected to the CI input of
another XC7000-specific arithmetic component. To generate a carry-
out for general-purpose logic, use an adder (or cascaded adders) with
one extra bit and tie the most-significant A and B inputs to GND; the
most-significant S output becomes the carry-out. Refer to “ADD1” for
truth table derivation.

Figure 3-21   ADD16X2 Implementation (XC7000)

XC7000 XC9000

Macro* NA
A[15:0]

S[15:0]

CO

CI

X4318

B[15:0]

CI

S15_8

ADD8X2

CO

A[7:0]

B[7:0]
S[7:0]

CI

CO

A[7:0]

A[15:8]

A[15:0]

B[15:8]

B[7:0]

B[15:0]

S[7:0]

S[15:8]

S[15:0]

S7_0

ADD8X2

CO

A[7:0]

B[7:0]
S[7:0]

CI



Design Elements

Libraries Guide 3-55

ADSU1

1-Bit Cascadable Adder/Subtracter with Carry-In and
Carry-Out

* not supported for XC7336 designs

When the ADD input is High, two 1-bit words (A0 and B0) are added
with a carry-in (CI), producing a 1-bit output (S0) and a carry-out
(CO). When the ADD input is Low, B0 is subtracted from A0,
producing a result (S0) and borrow (CO). In add mode, CO repre-
sents a carry-out, and CO and CI are active-High. In subtract mode,
CO represents a borrow, and CO and CI are active-Low. Refer to
“ADSU1X1” and “ADSU1X2” for cascadable XC7000 symbols.

Add Function, ADD=1

XC7000 XC9000

Macro* Macro

Inputs Outputs

A0 B0 CI S0 CO

0 0 0 0 0
0 1 0 1 0
1 0 0 1 0
1 1 0 0 1
0 0 1 1 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 1

A0

S0

ADD CO

CI

X4035

B0
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Subtract Function, ADD=0

Inputs Outputs

A0 B0 CI S0 CO

0 0 0 1 0
0 1 0 0 0
1 0 0 0 1
1 1 0 1 0
0 0 1 0 1
0 1 1 1 0
1 0 1 1 1
1 1 1 0 1
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Figure 3-22   ADSU1 Implementation (XC7000 and XC9000)
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ADSU1X1

1-Bit Cascadable Adder/Subtracter with Carry-Out
for XC7000

* not supported for XC7336 designs

ADSU1X1 is implemented using the XC7000 arithmetic carry-logic
chain for high-speed ripple-carry addition. ADSU1X1 is a low-order
adder component, which can be used as a stand-alone or cascaded
with high-order adders through its CO output. When the ADD input
is High, two 1-bit words (A0 and B0) are added, producing and a
1-bit output (S0) and carry-out (CO). When the ADD input is Low, B0
is subtracted from A0, producing a result (S0) and borrow (CO). In
add mode, CO represents a carry-out and is active-High. In subtract
mode, CO represents a borrow and is active-Low.

The CO output is passed into the XC7000 carry chain, and therefore
can only be connected to the CI input of another XC7000-specific
arithmetic component. To generate a carry-out for general-purpose
logic, connect an ADD1X2 to the CO output of the adder/subtracter
and tie its A and B inputs to GND; the S output becomes the carry-
out. If a carry-in is required from general-purpose logic, use an
ADSU1X2 for the least-significant adder/subtracter and connect an
ADD1X1 to its CI input. Connect your carry-in signal to both the A
and B inputs of the ADD1X1 (the S output is not used) to generate a
carry into the carry chain for the first bit of the adder/subtracter.

Refer to “ADSU1” for truth table derivation.

XC7000 XC9000

Macro* NA
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Figure 3-23   ADSU1X1 Implementation (XC7000)
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ADSU1X2

1-Bit Cascadable Adder/Subtracter with Carry-In and
Carry-Out for XC7000

* not supported for XC7336 designs

ADSU1X2 is implemented using the XC7000 arithmetic carry-logic
chain for high-speed ripple-carry addition. ADSU1X2 is a high-order
adder component cascaded to lower-order adders through its CI
input. When the ADD input is High, two 1-bit words (A0 and B0) are
added with a carry-in (CI), producing a 1-bit output (S0) and carry-
out (CO). When the ADD input is Low, B0 is subtracted from A0,
producing a result (S0) and borrow (CO). In add mode, CO represents
a carry-out, and CO and CI are active-High. In subtract mode, CO
represents a borrow, and CO and CI are active-Low.

The CI input is taken from the XC7000 carry chain, and therefore
must only be connected to the CO output of another XC7000-specific
arithmetic component. The CO output is passed into the XC7000
carry chain, and therefore can only be connected to the CI input of
another XC7000-specific arithmetic component. To generate a carry-
out signal for general-purpose logic, connect an ADD1X2 to the CO
output of the adder/subtracter and tie its A and B inputs to GND; the
S output becomes the carry-out.

Refer to “ADSU1” for truth table derivation.

XC7000 XC9000

Macro* NA
A0

S0

ADD CO

CI

X4227

B0



Design Elements

Libraries Guide 3-61

Figure 3-24   ADSU1X2 Implementation (XC7000)
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ADSU4

4-Bit Cascadable Adder/Subtracter with Carry-In,
Carry-Out, and Overflow

* not supported for XC7336 designs

When the ADD input is High, two 4-bit words (A3 – A0 and
B3 – B0) are added with a carry-in (CI), producing a 4-bit sum
(S3 – S0) and carry-out (CO) or overflow (OFL). When the ADD input
is Low, B3 – B0 is subtracted from A3 – A0, producing a 4-bit differ-
ence (S3 – S0) and CO or OFL. In add mode, CO and CI are active-
High. In subtract mode, CO and CI are active-Low. For cascadable
XC7000 symbols, refer to “ADSU4X1” and “ADSU4X2.” ADSU4 CI
and CO pins do not use the XC7000 carry chain.

Unsigned Binary Versus Twos-Complement
ADSU4 can operate on either 4-bit unsigned binary numbers or 4-bit
twos-complement numbers. If the inputs are interpreted as unsigned
binary, the result can be interpreted as unsigned binary. If the inputs
are interpreted as twos complement, the output can be interpreted as
twos complement. The only functional difference between an
unsigned binary operation and a twos-complement operation is how
they determine when “overflow” occurs. Unsigned binary uses CO,
while twos-complement uses OFL to determine when “overflow”
occurs.

With adder/subtracters, either unsigned binary or twos-complement
operations cause an overflow. If the result crosses the overflow
boundary, an overflow is generated. Similarly, when the result crosses
the carry-out boundary, a carry-out is generated. The following figure
shows the ADSU carry-out and overflow boundaries.
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Figure 3-25   ADSU Carry-Out and Overflow Boundaries

Unsigned Binary Operation
For unsigned binary operation, ADSU4 can represent numbers
between 0 and 15, inclusive. In add mode, CO is active (High) when
the sum exceeds the bounds of the adder/subtracter. In subtract
mode, CO is an active-Low borrow-out and goes Low when the
difference exceeds the bounds.

An unsigned binary “overflow” that is always active-High can be
generated by gating the ADD signal and CO as follows.

unsigned overflow = CO XOR ADD

OFL is ignored in unsigned binary operation.

Twos-Complement Operation
For twos-complement operation, ADSU4 can represent numbers
between -8 and +7, inclusive. If an addition or subtraction operation
result exceeds this range, the OFL output goes High.

CO is ignored in twos-complement operation.
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Figure 3-26   ADSU4 Implementation (XC9000)
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ADSU4X1

4-Bit Cascadable Adder/Subtracter with Carry-Out
for XC7000

* not supported for XC7336 designs

ADSU4X1 is implemented using the XC7000 arithmetic carry-logic
chain for high-speed ripple-carry addition. ADSU4X1 is a low-order
adder component, which can be used as a stand-alone or cascaded
with high-order adders through its CO output. When the ADD input
is High, two 4-bit words (A3 – A0 and B3 – B0) are added, producing
a 4-bit output (S3 – S0) and carry-out (CO). When the ADD input is
Low, B3 – B0 is subtracted from A3 – A0, producing a result (S3 – S0)
and borrow (CO). In add mode, CO represents a carry-out and is
active-High. In subtract mode, CO represents a borrow and is active-
Low.

The CO output is passed into the XC7000 carry chain, and therefore
can only be connected to the CI input of another XC7000-specific
arithmetic component. To generate a carry-out for general-purpose
logic, connect an ADD1X2 to the CO output of the adder/subtracter
and tie its A and B inputs to GND; the S output becomes the carry-
out. If a carry-in is required from general-purpose logic, use an
ADSU4X2 for the least-significant adder/subtracter and connect an
ADD1X1 to its CI input. Connect your carry-in signal to both the A
and B inputs of the ADD1X1 (the S output is not used) to generate a
carry into the carry chain for the first bit of the adder/subtracter.

Refer to “ADSU1” for truth table derivation.
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ADSU4X2

4-Bit Cascadable Adder/Subtracter with Carry-In and
Carry-Out for XC7000

* not supported for XC7336 designs

ADSU4X2 is implemented using the XC7000 arithmetic carry-logic
chain for high-speed ripple-carry addition. ADSU4X2 is a high-order
adder component cascaded to lower-order adders through its CI
input. When the ADD input is High, two 4-bit words (A3 – A0 and
B3 – B0) are added with a carry-in (CI), producing a 4-bit output
(S3 – S0) and carry-out (CO). When the ADD input is Low, B3 – B0 is
subtracted from A3 – A0, producing a result (S3 – S0) and borrow
(CO). In add mode, CO represents a carry-out, and CO and CI are
active-High. In subtract mode, CO represents a borrow, and CO and
CI are active-Low.

The CI input is taken from the XC7000 carry chain, and therefore
must only be connected to the CO output of another XC7000-specific
arithmetic component. The CO output is passed into the XC7000
carry chain, and therefore can only be connected to the CI input of
another XC7000-specific arithmetic component. To generate a carry-
out signal for general-purpose logic, connect an ADD1X2 to the CO
output of the adder/subtracter and tie its A and B inputs to GND; the
S output becomes the carry-out.

Refer to “ADSU1” for truth table derivation.
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ADSU8

8-Bit Cascadable Adder/Subtracter with Carry-In,
Carry-Out, and Overflow

* not supported for XC7336 designs

When the ADD input is High, two 8-bit words (A7 – A0 and
B7 – B0) are added with a carry-in (CI), producing an 8-bit sum
(S7 – S0) and carry-out (CO) or overflow (OFL). When the ADD input
is Low, B7 – B0 is subtracted from A7 – A0, producing an 8-bit differ-
ence (S7 – S0) and CO or OFL. In add mode, CO and CI are active-
High. In subtract mode, CO and CI are active-Low. OFL is active-
High in add and subtract modes. For cascadable XC7000 symbols,
refer to “ADSU8X1” and “ADSU8X2.” ADSU8 CI and CO pins do not
use the XC7000 carry chain.

Unsigned Binary Versus Twos-Complement
ADSU8 can operate on either 8-bit unsigned binary numbers or 8-bit
twos-complement numbers. If the inputs are interpreted as unsigned
binary, the result can be interpreted as unsigned binary. If the inputs
are interpreted as twos complement, the output can be interpreted as
twos complement. The only functional difference between an
unsigned binary operation and a twos-complement operation is how
they determine when “overflow” occurs. Unsigned binary uses CO,
while twos-complement uses OFL to determine when “overflow”
occurs.

With adder/subtracters, either unsigned binary or twos-complement
operations cause an overflow. If the result crosses the overflow
boundary, an overflow is generated. Similarly, when the result
crosses the carry-out boundary, a carry-out is generated. The
following figure shows the ADSU carry-out and overflow bound-
aries.
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Figure 3-27   ADSU Carry-Out and Overflow Boundaries

Unsigned Binary Operation
For unsigned binary operation, ADSU8 can represent numbers
between 0 and 255, inclusive. In add mode, CO is active (High) when
the sum exceeds the bounds of the adder/subtracter. In subtract
mode, CO is an active-Low borrow-out and goes Low when the
difference exceeds the bounds.

An unsigned binary “overflow” that is always active-High can be
generated by gating the ADD signal and CO as follows.

unsigned overflow = CO XOR ADD

OFL is ignored in unsigned binary operation.

Twos-Complement Operation
For twos-complement operation, ADSU8 can represent numbers
between -128 and +127, inclusive. If an addition or subtraction opera-
tion result exceeds this range, the OFL output goes High.

CO is ignored in twos complement operation.
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Figure 3-28   ADSU8 Implementation (XC7000)
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Figure 3-29   ADSU8 Implementation (XC9000)

Note: The ADSU4X2 schematic (not shown for XC9000) is the same
as ADSU4 without the OFL output logic.
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ADSU8X1

8-Bit Cascadable Adder/Subtracter with Carry-Out
for XC7000

* not supported for XC7336 designs

ADSU8X1 is implemented using the XC7000 arithmetic carry-logic
chain for high-speed ripple-carry addition. ADSU8X1 is a low-order
adder component, which can be used as a stand-alone or cascaded
with high-order adders through its CO output. When the ADD input
is High, two 8-bit words (A7 – A0 and B7 – B0) are added, producing
an 8-bit output (S7 – S0) and carry-out (CO). When the ADD input is
Low, B7 – B0 is subtracted from A7 – A0, producing a result (S7 – S0)
and borrow (CO). In add mode, CO represents a carry-out and is
active-High. In subtract mode, CO represents a borrow and is active-
Low.

The CO output is passed into the XC7000 carry chain, and therefore
can only be connected to the CI input of another XC7000-specific
arithmetic component. To generate a carry-out for general-purpose
logic, connect an ADD1X2 to the CO output of the adder/subtracter
and tie its A and B inputs to GND; the S output becomes the carry-
out. If a carry-in is required from general-purpose logic, use an
ADSU8X2 for the least-significant adder/subtracter and connect an
ADD1X1 to its CI input. Connect your carry-in signal to both the A
and B inputs of the ADD1X1 (the S output is not used) to generate a
carry into the carry chain for the first bit of the adder/subtracter.

Refer to “ADSU1” for truth table derivation.
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Figure 3-30   ADSU8X1 Implementation (XC7000)
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ADSU8X2

8-Bit Cascadable Adder/Subtracter with Carry-In and
Carry-Out for XC7000

* not supported for XC7336 designs

ADSU8X2 is implemented using the XC7000 arithmetic carry-logic
chain for high-speed ripple-carry addition. ADSU8X2 is a high-order
adder component cascaded to lower-order adders through its CI
input. When the ADD input is High, two 8-bit words (A7 – A0 and
B7 – B0) are added with a carry-in (CI), producing an 8-bit output
(S7 – S0) and carry-out (CO). When the ADD input is Low, B7 – B0 is
subtracted from A7 – A0, producing a result (S7 – S0) and borrow
(CO). In add mode, CO represents a carry-out, and CO and CI are
active-High. In subtract mode, CO represents a borrow, and CO and
CI are active-Low.

The CI input is taken from the XC7000 carry chain, and therefore
must only be connected to the CO output of another XC7000-specific
arithmetic component. The CO output is passed into the XC7000
carry chain, and therefore can only be connected to the CI input of
another XC7000-specific arithmetic component. To generate a carry-
out signal for general-purpose logic, connect an ADD1X2 to the CO
output of the adder/subtracter and tie its A and B inputs to GND; the
S output becomes the carry-out.

Refer to “ADSU1” for truth table derivation.
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Figure 3-31   ADSU8X2 Implementation (XC7000)
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ADSU16

16-Bit Cascadable Adder/Subtracter with Carry-In,
Carry-Out, and Overflow

* not supported for XC7336 designs

When the ADD input is High, two 16-bit words (A15 – A0 and B15 –
B0) are added with a carry-in (CI), producing a 16-bit sum
(S15 – S0) and carry-out (CO) or overflow (OFL). When the ADD
input is Low, B15 – B0 is subtracted from A15 – A0, producing a 16-
bit difference (S15 – S0) and CO or OFL. In add mode, CO and CI are
active-High. In subtract mode, CO and CI are active-Low. OFL is
active-High in add and subtract modes. For cascadable XC7000
symbols, refer to “ADSU16X1” and “ADSU16X2.” ADSU16 CI and
CO pins do not use the XC7000 carry chain.

Unsigned Binary Versus Twos-Complement
ADSU16 can operate on either 16-bit unsigned binary numbers or
16-bit twos-complement numbers. If the inputs are interpreted as
unsigned binary, the result can be interpreted as unsigned binary. If
the inputs are interpreted as twos complement, the output can be
interpreted as twos complement. The only functional difference
between an unsigned binary operation and a twos-complement oper-
ation is how they determine when “overflow” occurs. Unsigned
binary uses CO, while twos-complement uses OFL to determine
when “overflow” occurs.

With adder/subtracters, either unsigned binary or twos-complement
operations cause an overflow. If the result crosses the overflow
boundary, an overflow is generated. Similarly, when the result
crosses the carry-out boundary, a carry-out is generated. The
following figure shows the ADSU carry-out and overflow bound-
aries.
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Figure 3-32   ADSU Carry-Out and Overflow Boundaries

Unsigned Binary Operation
For unsigned binary operation, ADSU16 can represent numbers
between 0 and 65535, inclusive. In add mode, CO is active (High)
when the sum exceeds the bounds of the adder/subtracter. In
subtract mode, CO is an active-Low borrow-out and goes Low when
the difference exceeds the bounds.

An unsigned binary “overflow” that is always active-High can be
generated by gating the ADD signal and CO as follows.

unsigned overflow = CO XOR ADD

OFL is ignored in unsigned binary operation.

Twos-Complement Operation
For twos-complement operation, ADSU16 can represent numbers
between -32768 and +32767, inclusive. If an addition or subtraction
operation result exceeds this range, the OFL output goes High.

CO is ignored in twos-complement operation.
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Figure 3-33   ADSU16 Implementation (XC7000)
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ADSU16X1

16-Bit Cascadable Adder/Subtracter with Carry-Out
for XC7000

* not supported for XC7336 designs

ADSU16X1 is implemented using the XC7000 arithmetic carry-logic
chain for high-speed ripple-carry addition. ADSU16X1 is a low-order
adder component, which can be used as a stand-alone or cascaded
with high-order adders through its CO output. When the ADD input
is High, two 16-bit words (A15 – A0 and B15 – B0) are added,
producing a 16-bit output (S15 – S0) and carry-out (CO). When the
ADD input is Low, B15 – B0 is subtracted from A15 – A0, producing a
result (S15 – S0) and borrow (CO). In add mode, CO represents a
carry-out and is active-High. In subtract mode, CO represents a
borrow and is active-Low.

The CO output is passed into the XC7000 carry chain, and therefore
can only be connected to the CI input of another XC7000-specific
arithmetic component. To generate a carry-out for general-purpose
logic, connect an ADD1X2 to the CO output of the adder/subtracter
and tie its A and B inputs to GND; the S output becomes the carry-
out. If a carry-in is required from general-purpose logic, use an
ADSU16X2 for the least-significant adder/subtracter and connect an
ADD1X1 to its CI input. Connect your carry-in signal to both the A
and B inputs of the ADD1X1 (the S output is not used) to generate a
carry into the carry chain for the first bit of the adder/subtracter.

Refer to “ADSU1” for truth table derivation.
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Figure 3-34   ADSU16X1 Implementation (XC7000)
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ADSU16X2

16-Bit Cascadable Adder/Subtracter with Carry-In
and Carry-Out for XC7000

* not supported for XC7336 designs

ADSU16X2 is implemented using the XC7000 arithmetic carry-logic
chain for high-speed ripple-carry addition. ADSU16X2 is a high-
order adder component cascaded to lower-order adders through its
CI input. When the ADD input is High, two 16-bit words (A15 – A0
and B15 – B0) are added with a carry-in (CI), producing a 16-bit
output (S15 – S0) and carry-out (CO). When the ADD input is Low,
B15 – B0 is subtracted from A15 – A0, producing a result (S15 – S0)
and borrow (CO). In add mode, CO represents a carry-out, and CO
and CI are active-High. In subtract mode, CO represents a borrow,
and CO and CI are active-Low.

The CI input is taken from the XC7000 carry chain, and therefore
must only be connected to the CO output of another XC7000-specific
arithmetic component. The CO output is passed into the XC7000
carry chain, and therefore can only be connected to the CI input of
another XC7000-specific arithmetic component. To generate a carry-
out signal for general-purpose logic, connect an ADD1X2 to the CO
output of the adder/subtracter and tie its A and B inputs to GND; the
S output becomes the carry-out.

Refer to “ADSU1” for truth table derivation.

XC7000 XC9000

Macro* NA
A[15:0]

S[15:0]

ADD CO

CI

X4320

B[15:0]
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Figure 3-35   ADSU16X2 Implementation (XC7000)
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AND

2- to 9-Input AND Gates with Inverted and
Non-Inverted Inputs

AND functions of up to five inputs are available in any combination
of inverting and non-inverting inputs. AND functions of six to nine
inputs are available with only non-inverting inputs. To make some or
all inputs inverting, use external inverters. Available AND gates are
shown in the following figure.

Figure 3-36   AND Gate Representations

Name XC7000 XC9000

AND2 – AND4B4 Primitive Primitive
AND5 – AND5B5 Primitive Primitive
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BRLSHFT4

4-Bit Barrel Shifter

BRLSHFT4, a 4-bit barrel shifter, can rotate four inputs (I3 – I0) up to
four places. The control inputs (S1 and S0) determine the number of
positions, from one to four that the data is rotated. The four outputs
(O3 – O0) reflect the shifted data inputs.

XC7000 XC9000

Macro Macro

Inputs Outputs

S1 S0 I0 I1 I2 I3 O0 O1 O2 O3

0 0 a b c d a b c d
0 1 a b c d b c d a
1 0 a b c d c d a b
1 1 a b c d d a b c

X3856

BRLSHFT4

S1

I2

I1

I0 O0

O3

O1

O2

I3

S0
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BRLSHFT8

8-Bit Barrel Shifter

BRLSHFT8, an 8-bit barrel shifter, can rotate the eight inputs, I7 – I0,
up to eight places. The control inputs (S2 – S0) determine the number
of positions, from one to eight that the data is rotated. The eight
outputs (O7 – O0) reflect the shifted data inputs.

XC7000 XC9000

Macro Macro

Inputs Output

S2 S1 S0 I0 I1 I2 I3 I4 I5 I6 I7 O0 O1 O2 O3 O4 O5 O6 O7

0 0 0 a b c d e f g h a b c d e f g h
0 0 1 a b c d e f g h b c d e f g h a
0 1 0 a b c d e f g h c d e f g h a b
0 1 1 a b c d e f g h d e f g h a b c
1 0 0 a b c d e f g h e f g h a b c d
1 0 1 a b c d e f g h f g h a b c d e
1 1 0 a b c d e f g h g h a b c d e f
1 1 1 a b c d e f g h h a b c d e f g

X3857

BRLSHFT8
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Figure 3-37   BRLSHFT8 Implementation (XC7000 and XC9000)
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BUF, BUF4, BUF8, and BUF16

General-Purpose Buffers

BUF is a general purpose, non-inverting buffer.

BUF is usually removed, unless you inhibit optimization by applying
the OPT=OFF attribute to the BUF symbol.

Figure 3-38   BUF8 Implementation (XC7000 and XC9000)

Name XC7000 XC9000

BUF Primitive Primitive
BUF4, BUF8, BUF16 Macro Macro
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BUFCE

Global Clock-Enable Buffer for XC7000

* not supported for XC7336 designs

BUFCE, an XC7000-specific global buffer, distributes global clock-
enable signals throughout the input-pad registers of an XC7000
device. Global clock-enable pins are available on most XC7300 series
devices; consult device data sheets for applicability.

BUFCE always acts as an input buffer. To use it in a schematic,
connect the input of the BUFCE symbol to an IPAD or an IOPAD that
represents the clock-enable signal source. Clock-enable signals gener-
ated on-chip must be passed through an OBUF-type buffer before
they are connected to a BUFCE. The output of a BUFCE can only be
connected to the CE input of an XC7000-specific input-pad register
symbol, IFDX1. Each BUFCE can drive any number of IFDX1 regis-
ters in a design. The CE input of IFDX1 is active-Low and cannot be
inverted.

XC7000 XC9000

Primitive* NAX4209
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BUFE, BUFE4, BUFE8, and BUFE16

Internal 3-State Buffers

BUFE, BUFE4, BUFE8, and BUFE16 are single or multiple 3-state
buffers with inputs I, I3 – I0, I7 – I0, and so forth; outputs O, O3 – O0,
O7 – O0, and so forth; and active-High output enable (E). When E is
High, data on the inputs of the buffers is transferred to the corre-
sponding outputs. When E is Low, the output is high impedance
(Z state or off).

The outputs of separate BUFE symbols can be tied together to form a
bus or a multiplexer. Make sure that only one E is High at one time.

Figure 3-39   BUFE Implementation (XC7000 and XC9000)
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Figure 3-40   BUFE8  Implementation (XC7000 and XC9000)
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BUFFOE

Global Fast Output Enable Buffer for XC7000

BUFFOE, an XC7000-specific global buffer, distributes global output-
enable signals throughout the output pad drivers of an XC7000
device. Global Fast Output Enable (FOE) pins are available on
XC7000 architecture devices; consult device data sheets for avail-
ability.

BUFFOE always acts as an input buffer. To use it in a schematic,
connect the input of the BUFFOE symbol to an IPAD or an IOPAD
representing the FOE signal source. FOE signals generated on-chip
must be passed through an OBUF-type buffer before they are
connected to the BUFFOE. The output of a BUFFOE can only connect
to the E input of a 3-state output buffer symbol, like OBUFE. Each
BUFFOE can control any number of output buffers in a design. The
BUFFOE can only be used to produce an active-High output enable; it
cannot be inverted.

XC7000 XC9000

Primitive NAX4210
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BUFG

Global Clock Buffer

BUFG, an architecture-independent global buffer, distributes high
fan-out clock signals throughout a PLD device. The Xilinx implemen-
tation software converts each BUFG to an appropriate type of global
buffer for the target PLD device.

For XC7000 and XC9000 designs, consult the device date sheet for the
number of available global pins.

To use a BUFG in a schematic, connect the input of the BUFG symbol
to the clock source. Depending on the target PLD family, the clock
source can be an external PAD symbol, an IBUF symbol, or internal
logic. For a negative-edge clock input, insert an INV (inverter)
symbol between the BUFG output and the clock input. The inversion
is implemented at the Configurable Logic Block (CLB) or Input
Output Block (IOB) clock pin.

For XC7000 designs, BUFG always acts as an input buffer. Connect
the input of BUFG to an IPAD or an IOPAD that represents the
FastCLK signal source. FastCLK signals generated on-chip must be
passed through an OBUF-type buffer before connecting to BUFG.
Each BUFG can drive any number of register clocks (or ILD latch-
enable inputs) in a design. However, BUFG signals cannot be used
for any other logic functions in the same design. All clock inputs
driven by BUFG are active-High and cannot be inverted.

For XC9000 designs, the output of a BUFG may also be used as an
ordinary input signal to other logic elsewhere in the design.

XC7000 XC9000

Primitive Primitive
X3831
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BUFGSR

Global Set/Reset Input Buffer for XC9000

BUFGSR, an XC9000-specific global buffer, distributes global set/
reset signals throughout selected flip-flops of an XC9000 device.
Global Set/Reset (GSR) control pins are available on XC9000 devices;
consult device data sheets for availability.

BUFGSR always acts as an input buffer. To use it in a schematic,
connect the input of the BUFGSR symbol to an IPAD or an IOPAD
representing the GSR signal source. GSR signals generated on-chip
must be passed through an OBUF-type buffer before they are
connected to BUFGSR.

For global set/reset control, the output of BUFGSR normally connects
to the CLR or PRE input of a flip-flop symbol, like FDCP, or any regis-
tered symbol with asynchronous clear or preset. The global set/reset
control signal may pass through an inverter to perform an active-low
set/reset. The output of BUFGSR may also be used as an ordinary
input signal to other logic elsewhere in the design. Each BUFGSR can
control any number of flip-flops in a design.

XC7000 XC9000

NA Primitive
X3831
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BUFGTS

Global Three-State Input Buffer for XC9000

BUFGTS, an XC9000-specific global buffer, distributes global output-
enable signals throughout the output pad drivers of an XC9000
device. Global Three-State (GTS) control pins are available on
XC9000 devices; consult device data sheets for availability.

BUFGTS always acts as an input buffer. To use it in a schematic,
connect the input of the BUFGTS symbol to an IPAD or an IOPAD
representing the GTS signal source. GTS signals generated on-chip
must be passed through an OBUF-type buffer before they are
connected to BUFGTS.

For global 3-state control, the output of BUFGTS normally connects
to the E input of a 3-state output buffer symbol, OBUFE. The global 3-
state control signal may pass through an inverter or control an
OBUFT symbol to perform an active-low output-enable. The same 3-
state control signal may even be used both inverted and non-inverted
to enable alternate groups of device outputs. The output of BUFGTS
may also be used as an ordinary input signal to other logic elsewhere
in the design. Each BUFGTS can control any number of output
buffers in a design.

XC7000 XC9000

NA Primitive
X3831
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BUFT, BUFT4, BUFT8, and BUFT16

Internal 3-State Buffers

BUFT, BUFT4, BUFT8, and BUFT16 are single or multiple 3-state
buffers with inputs I, I3 – I0, I7 – I0, and so forth; outputs O, O3 – O0,
O7 – O0, and so forth; and active-Low output enable (T). When T is
Low, data on the inputs of the buffers is transferred to the corre-
sponding outputs. When T is High, the output is high impedance
(Z state or off).

The outputs of separate BUFT symbols can be tied together to form a
bus or a multiplexer. Make sure that only one T is Low at one time.
Pull-up resistors can be used to establish a High logic level if all BUFT
elements are off. Pull-up resistors are always assumed for CPLD
designs.

Name XC7000 XC9000

BUFT Primitive Primitive
BUFT4, BUFT8, BUFT16 Macro Macro

Inputs Outputs

T I O

1 X Z
0 1 1
0 0 0

BUFT

X3789

T

X3796

BUFT4

T

BUFT8

X3808

T

BUFT16

X3820

T
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Figure 3-41   BUFT8 Implementation (XC7000 and XC9000)
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CB2CE

2-Bit Cascadable Binary Counter with Clock Enable
and Asynchronous Clear

CB2CE is a 2-stage, 2-bit, synchronous, clearable, cascadable binary
counter. The asynchronous clear (CLR) is the highest priority input.
When CLR is High, all other inputs are ignored and data (Q1 – Q0)
and terminal count (TC) outputs go to logic level zero, independent
of clock transitions. The outputs (Q1 – Q0) increment when the clock
enable input (CE) is High during the Low-to-High clock (C) transi-
tion. The counter ignores clock transitions when CE is Low. The TC
output is High when both Q outputs are High.

Larger counters are created by connecting the count enable out (CEO)
output of the first stage to the CE input of the next stage and
connecting the C and CLR inputs in parallel. CEO is active (High)
when TC and CE are High. The maximum length of the counter is
determined by the accumulated CE-to-TC propagation delays versus
the clock period. The clock period must be greater than n(tCE-TC),
where “n” is the number of stages and “tCE-TC” is the CE-to-TC
propagation delay of each stage.

The default initial state of all flip-flops is zero. When cascading
counters, use the CEO output if the counter uses the CE input; use the
TC output if it does not.

TC = (Q1•Q0); CEO = (TC•CE)

XC7000 XC9000

Macro Macro

Inputs Outputs

CLR CE C Q1 – Q0 TC CEO

1 X X 0 0 0
0 0 X No Chg  No Chg 0
0 1 ↑ Inc TC CEO

Q1

X4353CLR

C

CB2CE

CE CEO

TC

Q0
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Figure 3-42   CB2CE Implementation (XC7000 and XC9000)
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CB2CLE

2-Bit Loadable Cascadable Binary Counter with
Clock Enable and Asynchronous Clear

CB2CLE is a 2-stage, 2-bit, synchronous, loadable, clearable, cascad-
able binary counter. The asynchronous clear (CLR) is the highest
priority input. When CLR is High, all other inputs are ignored and
data (Q1 – Q0) and terminal count (TC) outputs go to logic level zero
on the Low-to-High clock (C) transition. The data on the D1 – D0
inputs is loaded into the counter when the load enable input (L) is
High during the Low-to-High clock transition, independent of the
state of clock enable (CE). The outputs (Q1 – Q0) increment when CE
is High during the Low-to-High clock transition. The counter ignores
clock transitions when CE is Low. The TC output is High when both
Q outputs are High.

Larger counters are created by connecting the count enable out (CEO)
output of the first stage to the CE input of the next stage and
connecting the C, L, and CLR inputs in parallel. CEO is active (High)
when TC and CE are High. The maximum length of the counter is
determined by the accumulated CE-to-TC propagation delays versus
the clock period. The clock period must be greater than n(tCE-TC),
where “n” is the number of stages and “tCE-TC” is the CE-to-TC
propagation delay of each stage.

The default initial state of all flip-flops is zero. When cascading
counters, use the CEO output if the counter uses the CE input; use the
TC output if it does not.

XC7000 XC9000

Macro Macro
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TC = (Q1•Q0)

CEO = (TC•CE)

dn = state of referenced input one set-up time prior to active clock transition

Figure 3-43   CB2CLE Implementation (XC7000 and XC9000)
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CB2CLED

2-Bit Loadable Cascadable Bidirectional Binary
Counter with Clock Enable and Asynchronous Clear

CB2CLED is a 2-stage, 2-bit, synchronous, loadable, clearable, cascad-
able, bidirectional binary counter. The asynchronous clear (CLR) is
the highest priority input. When CLR is High, all other inputs are
ignored and data (Q1 – Q0) and terminal count (TC) outputs go to
logic level zero, independent of clock transitions. The data on the
D1 – D0 inputs is loaded into the counter when the load enable input
(L) is High during the Low-to-High clock (C) transition, independent
of the state of clock enable (CE). The outputs (Q1 – Q0) decrement
when CE is High and UP is Low during the Low-to-High clock transi-
tion. The outputs (Q1 – Q0) increment when CE and UP are High. The
counter ignores clock transitions when CE is Low.

For counting up, the TC output is High when all Q outputs and UP
are High. For counting down, the TC output is High when all Q
outputs and UP are Low. To cascade counters, the clock enable out
(CEO) output of each counter is connected to the CE pin of the next
stage. The clock, UP, L, and CLR inputs are connected in parallel.
CEO is active (High) when TC and CE are High. The maximum
length of the counter is determined by the accumulated CE-to-TC
propagation delays versus the clock period. The clock period must be
greater than n(tCE-TC), where “n” is the number of stages and
“tCE-TC” is the CE-to-TC propagation delay of each stage. For
XC7000 and XC9000  designs, refer to “CB2X1” for high-performance
cascadable, bidirectional counters.

The default initial state of all flip-flops is zero. When cascading
counters, use the CEO output if the counter uses the CE input; use the
TC output if it does not.

XC7000 XC9000

Macro Macro
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TC = (Q1•Q0•UP) + (Q1•Q0•UP)

CEO = (TC•CE)

dn = state of referenced input one set-up time prior to active clock transition

Inputs Outputs

CLR L CE C UP D1 – D0 Q1 – Q0 TC CEO

1 X X X X X 0 0 0
0 1 X ↑ X D d1 – d0 TC CEO
0 0 0 X X X No Chg No Chg 0
0 0 1 ↑ 1 X Inc TC CEO
0 0 1 ↑ 0 X Dec TC CEO
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CB2RE

2-Bit Cascadable Binary Counter with Clock Enable
and Synchronous Reset

CB2RE is a 2-stage, 2-bit, synchronous, resettable, cascadable binary
counter. The synchronous reset (R) is the highest priority input. When
R is High, all other inputs are ignored and data (Q1 – Q0) and
terminal count (TC) outputs go to logic level zero, independent of
clock transitions. The outputs (Q1 – Q0) increment when the clock
enable input (CE) is High during the Low-to-High clock (C) transi-
tion. The counter ignores clock transitions when CE is Low. The TC
output is High when both Q outputs are High.

Larger counters are created by connecting the count enable out (CEO)
output of the first stage to the CE input of the next stage and
connecting the C and R inputs in parallel. CEO is active (High) when
TC and CE are High. The maximum length of the counter is deter-
mined by the accumulated CE-to-TC propagation delays versus the
clock period. The clock period must be greater than n(tCE-TC), where
“n” is the number of stages and “tCE-TC” is the CE-to-TC propaga-
tion delay of each stage.

The default initial state of all flip-flops is zero. When cascading
counters, use the CEO output if the counter uses the CE input; use the
TC output if it does not.

TC = (Q1•Q0); CEO = (TC•CE)

XC7000 XC9000

Macro Macro

Inputs Outputs
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0 0 X No Chg No Chg 0
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Figure 3-44   CB2RE Implementation (XC7000 and XC9000)
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CB2RLE

2-Bit Loadable Cascadable Binary Counter with
Clock Enable and Synchronous Reset

CB2RLE is a 2-stage, 2-bit, synchronous, loadable, resettable, cascad-
able binary counter. The synchronous reset (R) is the highest priority
input. The synchronous R, when High, overrides all other inputs and
resets the Q1 – Q0, terminal count (TC), and clock enable out (CEO)
outputs to Low on the Low-to-High clock (C) transition.

The data on the D1 – D0 inputs is loaded into the counter when the
load enable input (L) is High during the Low-to-High clock (C) tran-
sition, independent of the state of CE. The outputs (Q1 – Q0) incre-
ment when CE is High during the Low-to-High clock transition. The
counter ignores clock transitions when CE is Low. The TC output is
High when all Q outputs are High. The CEO output is High when all
Q outputs and CE are High to allow direct cascading of counters.
Larger counters are created by connecting the CEO output of the first
stage to the CE input of the next stage and by connecting the C, L, and
R inputs in parallel. The maximum length of the counter is deter-
mined by the accumulated CE-to-CEO propagation delays versus the
clock period.

The default initial state of all flip-flops is zero. When cascading
counters, use the CEO output if the counter uses the CE input; use the
TC output if it does not.
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TC = Q1•Q0

CEO = TC•CE

dn = state of referenced input one set-up time prior to active clock transition

Figure 3-45   CB2RLE Implementation (XC7000 and XC9000)

Inputs Outputs

R L CE C D1 – D0 Q1 – Q0 TC CEO

1 X X ↑ X 0 0 0
0 1 X ↑ D d1 – d0 TC CEO
0 0 0 X X No Chg No Chg 0
0 0 1 ↑ X Inc TC CEO
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CB2X1

2-Bit Loadable Cascadable Bidirectional Binary
Counter with Clock Enable and Asynchronous Clear

CB2X1 is a 2-stage, 2-bit, synchronous, loadable, clearable, bidirec-
tional binary counter. CB2X1 has separate count-enable inputs and
synchronous terminal-count outputs for up and down directions to
support high-speed cascading in the XC7000 and XC9000 CPLD
architectures.

The asynchronous clear (CLR) is the highest priority input. When
CLR is High, all other inputs are ignored, data outputs (Q1 – Q0) go
to logic level zero, and terminal count outputs TCU and TCD go to
zero and one, respectively, independent of clock transitions. The data
on the D1 – D0 inputs loads into the counter on the Low-to-High
clock (C) transition when the load enable input (L) is High, indepen-
dent of the CE inputs.

The outputs (Q1 – Q0) increment when CEU is High, provided CLR
and L are Low, during the Low-to-High clock transition. The outputs
(Q1 – Q0) decrement when CED is High, provided CLR and L are
Low. The counter ignores clock transitions when CEU and CED are
Low. Both CEU and CED should not be High during the same clock
transition; the CEOU and CEOD outputs might not function properly
for cascading when CEU and CED are both High.

For counting up, the CEOU output is High when all Q outputs and
CEU are High. For counting down, the CEOD output is High when
all Q outputs are Low and CED is High. To cascade counters, the
CEOU and CEOD outputs of each counter are connected directly to
the CEU and CED inputs, respectively, of the next stage. The clock, L
and CLR inputs are connected in parallel.

In Xilinx CPLD devices, the maximum clocking frequency of these
counter components is unaffected by the number of cascaded stages
for all counting and loading functions. The TCU terminal count
output is High when all Q outputs are High, regardless of CEU. The
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TCD output is High when all Q outputs are Low, regardless of CED.

When cascading counters, the final terminal count signals can be
produced by AND-ing all the TCU outputs (for the up direction) and
all the TCD outputs (for the down direction). The default initial state
of all flip-flops is zero.

TCU = Q1•Q0

TCD = Q1•Q0

CEOU = TCU•CEU

CEOD = TCD•CED

dn = state of referenced input one set-up time prior to active clock transition

Inputs Outputs

CLR L CEU CED C D1 – D0 Q1 – Q0 TCU TCD CEOU CEOD

1 X X X X X 0 0 1 0 CEOD
0 1 X X ↑ D d1 – d0 TCU TCD CEOU CEOD
0 0 0 0 X X No Chg No Chg No Chg 0 0
0 0 1 0 ↑ X Inc TCU TCD CEOU 0
0 0 0 1 ↑ X Dec TCU TCD 0 CEOD
0 0 1 1 ↑ X Inc TCU TCD Invalid Invalid
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CB2X2

2-Bit Loadable Cascadable Bidirectional Binary
Counter with Clock Enable and Synchronous Reset

CB2X2 is a 2-stage, 2-bit, synchronous, loadable, resettable, bidirec-
tional binary counter. CB2X2 has separate count-enable inputs and
synchronous terminal-count outputs for up and down directions to
support high-speed cascading in the XC7000 and XC9000 CPLD
architectures.

The synchronous reset (R) is the highest priority input. When R is
High, all other inputs are ignored, data outputs (Q1 – Q0) go to logic
level zero, and terminal count outputs TCU and TCD go to zero and
one, respectively, on the Low-to-High clock (C) transition. The data
on the D1 – D0 inputs loads into the counter on the Low-to-High
clock (C) transition when the load enable input (L) is High, indepen-
dent of the CE inputs.

The outputs (Q1 – Q0) increment when CEU is High, provided R and
L are Low during the Low-to-High clock transition. The outputs
(Q1 – Q0) decrement when CED is High, provided R and L are Low.
The counter ignores clock transitions when CEU and CED are Low.
Both CEU and CED should not be High during the same clock transi-
tion; the CEOU and CEOD outputs might not function properly for
cascading when CEU and CED are both High.

For counting up, the CEOU output is High when all Q outputs and
CEU are High. For counting down, the CEOD output is High when
all Q outputs are Low and CED is High. To cascade counters, the
CEOU and CEOD outputs of each counter are connected directly to
the CEU and CED inputs, respectively, of the next stage. The C, L, and
R inputs are connected in parallel.

In Xilinx CPLD devices, the maximum clocking frequency of these
counter components is unaffected by the number of cascaded stages
for all counting and loading functions. The TCU terminal count
output is High when all Q outputs are High, regardless of CEU. The
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TCD output is High when all Q outputs are Low, regardless of CED.

When cascading counters, the final terminal count signals can be
produced by AND-ing all the TCU outputs (for the up direction) and
all the TCD outputs (for the down direction). The default initial state
of all flip-flops is zero.

TCU = Q1•Q0

TCD = Q1•Q0

CEOU = TCU•CEU

CEOD = TCD•CED

dn = state of referenced input one set-up time prior to active clock transition

Inputs Outputs

R L CEU CED C D1 – D0 Q1 – Q0 TCU TCD CEOU CEOD

1 X X X ↑ X 0 0 1 0 CEOD
0 1 X X ↑ D d1 – d0 TCU TCD CEOU CEOD
0 0 0 0 X X No Chg No Chg No Chg 0 0
0 0 1 0 ↑ X Inc TCU TCD CEOU 0
0 0 0 1 ↑ X Dec TCU TCD 0 CEOD
0 0 1 1 ↑ X Inc TCU TCD Invalid Invalid
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CB4CE

4-Bit Cascadable Binary Counter with Clock Enable
and Asynchronous Clear

CB4CE is a 4-stage, 4-bit, synchronous, clearable, cascadable binary
counter. The asynchronous clear (CLR) is the highest priority input.
When CLR is High, all other inputs are ignored and data (Q3 – Q0)
and terminal count (TC) outputs go to logic level zero, independent
of clock transitions. The outputs (Q3 – Q0) increment when the clock
enable input (CE) is High during the Low-to-High clock (C) transi-
tion. The counter ignores clock transitions when CE is Low. The TC
output is High when all Q outputs are High.

Larger counters are created by connecting the count enable out (CEO)
output of the first stage to the CE input of the next stage and
connecting the C and CLR inputs in parallel. CEO is active (High)
when TC and CE are High. The maximum length of the counter is
determined by the accumulated CE-to-TC propagation delays versus
the clock period. The clock period must be greater than n(tCE-TC),
where “n” is the number of stages and “tCE-TC” is the CE-to-TC
propagation delay of each stage.

The default initial state of all flip-flops is zero. When cascading
counters, use the CEO output if the counter uses the CE input; use the
TC output if it does not.

TC = (Q3•Q2•Q1•Q0); CEO = (TC•CE)
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Macro Macro

Inputs Outputs
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CB4CLE

4-Bit Loadable Cascadable Binary Counter with
Clock Enable and Asynchronous Clear

CB4CLE is a 4-stage, 4-bit, synchronous, loadable, clearable, cascad-
able binary counter. The asynchronous clear (CLR) is the highest
priority input. When CLR is High, all other inputs are ignored and
data (Q3 – Q0) and terminal count (TC) outputs go to logic level zero,
independent of clock transitions. The data on the D3 – D0 inputs is
loaded into the counter when the load enable input (L) is High
during the Low-to-High clock (C) transition, independent of the state
of clock enable (CE). The outputs (Q3 – Q0) increment when CE is
High during the Low-to-High clock transition. The counter ignores
clock transitions when CE is Low. The TC output is High when all Q
outputs are High.

Larger counters are created by connecting the count enable out (CEO)
output of the first stage to the CE input of the next stage and
connecting the C, L, and CLR inputs in parallel. CEO is active (High)
when TC and CE are High. The maximum length of the counter is
determined by the accumulated CE-to-TC propagation delays versus
the clock period. The clock period must be greater than n(tCE-TC),
where “n” is the number of stages and “tCE-TC” is the CE-to-TC
propagation delay of each stage.

The default initial state of all flip-flops is zero. When cascading
counters, use the CEO output if the counter uses the CE input; use the
TC output if it does not.

XC7000 XC9000

Macro Macro

X4358

CB4CLE

L

CE

C

D3

D2

D1

D0

Q3

Q2

Q1

Q0

CLR

CEO

TC



Libraries Guide

3-112 XACT Development System

TC = (Q3•Q2•Q1•Q0)

CEO = (TC•CE)

dn = state of referenced input one set-up time prior to active clock transition

Inputs Outputs

CLR L CE C D3 – D0 Q3 – Q0 TC CEO

1 X X X X 0 0 0
0 1 X ↑ D d3 – d0 TC CEO
0 0 0 X X No Chg No Chg 0
0 0 1 ↑ X Inc TC CEO
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CB4CLED

4-Bit Loadable Cascadable Bidirectional Binary
Counter with Clock Enable and Asynchronous Clear

CB4CLED is a 4-stage, 4-bit, synchronous, loadable, clearable, cascad-
able, bidirectional binary counter. The asynchronous clear (CLR) is
the highest priority input. When CLR is High, all other inputs are
ignored and data (Q3 – Q0) and terminal count (TC) outputs go to
logic level zero, independent of clock transitions. The data on the
D3 – D0 inputs is loaded into the counter when the load enable input
(L) is High during the Low-to-High clock (C) transition, independent
of the state of clock enable (CE). The outputs (Q3 – Q0) decrement
when CE is High and UP is Low during the Low-to-High clock tran-
sition. The outputs (Q3 – Q0) increment when CE and UP are High.
The counter ignores clock transitions when CE is Low.

For counting up, the TC output is High when all Q outputs and UP
are High. For counting down, the TC output is High when all Q
outputs and UP are Low. To cascade counters, the count enable out
(CEO) output of each counter is connected to the CE pin of the next
stage. The clock, UP, L, and CLR inputs are connected in parallel.
CEO is active (High) when TC and CE are High. The maximum
length of the counter is determined by the accumulated CE-to-TC
propagation delays versus the clock period. The clock period must be
greater than n(tCE-TC), where “n” is the number of stages and
“tCE-TC” is the CE-to-TC propagation delay of each stage. For
XC7000 and XC9000 designs, refer to “CB4X1” for high-performance
cascadable, bidirectional counters.

The default initial state of all flip-flops is zero. When cascading
counters, use the CEO output if the counter uses the CE input; use the
TC output if it does not.
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TC = (Q3•Q2•Q1•Q0•UP) + (Q3•Q2•Q1•Q0•UP)

CEO = (TC•CE)

dn = state of referenced clock one set-up time prior to active clock transition

Inputs Outputs

CLR L CE C UP D3 – D0 Q3 – Q0 TC CEO

1 X X X X X 0 0 0
0 1 X ↑ X D d3 – d0 TC CEO
0 0 0 X X X No Chg No Chg 0
0 0 1 ↑ 1 X Inc TC CEO
0 0 1 ↑ 0 X Dec TC CEO
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Figure 3-46   CB4CLED Implementation (XC7000 and XC9000)
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CB4RE

4-Bit Cascadable Binary Counter with Clock Enable
and Synchronous Reset

CB4CE is a 4-stage, 4-bit, synchronous, resettable, cascadable binary
counter. The synchronous reset (R) is the highest priority input. When
R is High, all other inputs are ignored and data (Q3 – Q0) and
terminal count (TC) outputs go to logic level zero on the Low-to-High
clock (C) transition. The outputs (Q3 – Q0) increment when the clock
enable input (CE) is High during the Low-to-High clock transition.
The counter ignores clock transitions when CE is Low. The TC output
is High when all Q outputs are High.

Larger counters are created by connecting the count enable out (CEO)
output of the first stage to the CE input of the next stage and
connecting the C and R inputs in parallel. CEO is active (High) when
TC and CE are High. The maximum length of the counter is deter-
mined by the accumulated CE-to-TC propagation delays versus the
clock period. The clock period must be greater than n(tCE-TC), where
“n” is the number of stages and “tCE-TC” is the CE-to-TC propaga-
tion delay of each stage.

The default initial state of all flip-flops is zero. When cascading
counters, use the CEO output if the counter uses the CE input; use the
TC output if it does not.

TC = (Q3•Q2•Q2•Q0); CEO = (TC•CE)
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CB4RLE

4-Bit Loadable Cascadable Binary Counter with
Clock Enable and Synchronous Reset

CB4RLE is a 4-stage, 4-bit, synchronous, loadable, resettable, cascad-
able binary counter. The synchronous reset (R) is the highest priority
input. The synchronous R, when High, overrides all other inputs and
resets the Q3 – Q0, TC, and CEO outputs to Low on the Low-to-High
clock (C) transition. The data on the D3 – D0 inputs is loaded into the
counter when the load enable input (L) is High during the Low-to-
High clock (C) transition, independent of the state of CE. The outputs
(Q3 – Q0) increment when CE is High during the Low-to-High clock
transition. The counter ignores clock transitions when CE is Low. The
TC output is High when all Q outputs are High. The CEO output is
High when all Q outputs and CE are High to allow direct cascading
of counters.

Larger counters are created by connecting the CEO output of the first
stage to the CE input of the next stage and by connecting the C, L,
and R inputs in parallel. The maximum length of the counter is deter-
mined by the accumulated CE-to-CEO propagation delays versus the
clock period.

The default initial state of all flip-flops is zero. When cascading
counters, use the CEO output if the counter uses the CE input; use the
TC output if it does not.
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TC = Q3•Q2•Q1•Q0

CEO = TC•CE

dn = state of referenced input one set-up time prior to active clock transition

Inputs Outputs

R L CE C D3 – D0 Q3 – Q0 TC CEO

1 X X ↑ X 0 0 0
0 1 X ↑ D d3 – d0 TC CEO
0 0 0 X X No Chg No Chg 0
0 0 1 ↑ X Inc TC TC
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CB4X1

4-Bit Loadable Cascadable Bidirectional Binary
Counter with Clock Enable and Asynchronous Clear

CB4X1 is a 4-stage, 4-bit, synchronous, loadable, clearable, bidirec-
tional binary counter. CB4X1 has separate count-enable inputs and
synchronous terminal-count outputs for up and down directions, to
support high-speed cascading in the XC7000 and XC9000 CPLD
architectures.

The asynchronous clear (CLR) is the highest priority input. When
CLR is High, all other inputs are ignored, data outputs (Q3 – Q0) go
to logic level zero, and terminal count outputs TCU and TCD go to
zero and one, respectively, independent of clock transitions. The data
on the D3 – D0 inputs loads into the counter on the Low-to-High
clock (C) transition when the load enable input (L) is High, indepen-
dent of the CE inputs.

The outputs (Q3 – Q0) increment when CEU is High, provided CLR
and L are Low, during the Low-to-High clock transition. The outputs
(Q3 – Q0) decrement when CED is High, provided CLR and L are
Low. The counter ignores clock transitions when CEU and CED are
Low. Both CEU and CED should not be High during the same clock
transition; the CEOU and CEOD outputs might not function properly
for cascading when CEU and CED are both High.

For counting up, the CEOU output is High when all Q outputs and
CEU are High. For counting down, the CEOD output is High when
all Q outputs are Low and CED is High. To cascade counters, the
CEOU and CEOD outputs of each counter are connected directly to
the CEU and CED inputs, respectively, of the next stage. The clock, L,
and CLR inputs are connected in parallel.

In Xilinx CPLD devices, the maximum clocking frequency of these
counter components is unaffected by the number of cascaded stages
for all counting and loading functions. The TCU terminal count
output is High when all Q outputs are High, regardless of CEU. The
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TCD output is High when all Q outputs are Low, regardless of CED.

When cascading counters, the final terminal count signals can be
produced by AND-ing all the TCU outputs (for the up direction) and
all the TCD outputs (for the down direction). The default initial state
of all flip-flops is zero.

TCU = Q3•Q2•Q1•Q0

TCD = Q3•Q2•Q1•Q0

CEOU = TCU•CEU

CEOD = TCD•CED

dn = state of referenced input one set-up time prior to active clock transition

Inputs Outputs

CLR L CEU CED C D3 – D0 Q3 – Q0 TCU TCD CEOU CEOD

1 X X X X X 0 0 1 0 CEOD
0 1 X X ↑ D d3 – d0 TCU TCD CEOU CEOD
0 0 0 0 X X No Chg No Chg No Chg 0 0
0 0 1 0 ↑ X Inc TCU TCD CEOU 0
0 0 0 1 ↑ X Dec TCU TCD 0 CEOD
0 0 1 1 ↑ X Inc TCU TCD Invalid Invalid
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Figure 3-47   CB4X1 Implementation (XC7000 and XC9000)
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CB4X2

4-Bit Loadable Cascadable Bidirectional Binary
Counter with Clock Enable and Synchronous Reset

CB4X2 is a 4-stage, 4-bit, synchronous, loadable, resettable, bidirec-
tional binary counter. CB4X2 has separate count-enable inputs and
synchronous terminal-count outputs for up and down directions to
support high-speed cascading in the XC7000 and XC9000 CPLD
architectures.

The synchronous reset (R) is the highest priority input. When R is
High, all other inputs are ignored, data outputs (Q3 – Q0) go to logic
level zero, and terminal count outputs TCU and TCD go to zero and
one, respectively, on the Low-to-High clock (C) transition. The data
on the D3 – D0 inputs loads into the counter on the Low-to-High
clock (C) transition when the load enable input (L) is High, indepen-
dent of the CE inputs.

The outputs (Q3 – Q0) increment when CEU is High, provided R and
L are Low, during the Low-to-High clock transition. The outputs
(Q3 – Q0) decrement when CED is High, provided R and L are Low.
The counter ignores clock transitions when CEU and CED are Low.
Both CEU and CED should not be High during the same clock transi-
tion; the CEOU and CEOD outputs might not function properly for
cascading when CEU and CED are both High.

For counting up, the CEOU output is High when all Q outputs and
CEU are High. For counting down, the CEOD output is High when
all Q outputs are Low and CED is High. To cascade counters, the
CEOU and CEOD outputs of each counter are connected directly to
the CEU and CED inputs, respectively, of the next stage. The C, L, and
R inputs are connected in parallel.

In Xilinx CPLD devices, the maximum clocking frequency of these
counter components is unaffected by the number of cascaded stages
for all counting and loading functions. The TCU terminal count
output is High when all Q outputs are High, regardless of CEU. The
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TCD output is High when all Q outputs are Low, regardless of CED.

When cascading counters, the final terminal count signals can be
produced by AND-ing all the TCU outputs (for the up direction) and
all the TCD outputs (for the down direction). The default initial state
of all flip-flops is zero.

TCU = Q3•Q2•Q1•Q0

TCD = Q3•Q2•Q1•Q0

CEOU = TCU•CEU

CEOD = TCD•CED

dn = state of referenced input one set-up time prior to active clock transition

Inputs Outputs

R L CEU CED C D3 – D0 Q3 – Q0 TCU TCD CEOU CEOD

1 X X X ↑ X 0 0 1 0 CED
0 1 X X ↑ D d3 – d0 TCU TCD CEOU CEOD
0 0 0 0 X X No Chg No Chg No Chg 0 0
0 0 1 0 ↑ X Inc TCU TCD TCU 0
0 0 0 1 ↑ X Dec TCU TCD 0 TCD
0 0 1 1 ↑ X Inc TCU TCD Invalid Invalid
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Figure 3-48   CB4X2 Implementation (XC7000 and XC9000)

AND3B1

CEOD

OR2

GND

Q0

FD

QD

C

Q1

FD

QD

C

Q2

FD

QD

C

Q3

FD

QD

C

TCDINV

FD

QD

C
INV

INV

INV

INV

INV

INV

INV

INV

INV

INV

AND5B4

AND6

AND7

XOR2

AND3B1

AND3B2

INV

INV

INV

INV

INV

INV

INV

INV

INV

INV

AND4B3

AND3B2

AND3B2

AND3B1

AND5B4

AND4B2

AND3B2

AND3B1

XOR2

XOR2

AND5B2

AND3B2

AND3B1

INV

AND6

INV

XOR2

AND7

AND6

INV

AND7INV

INV

NOR5

AND4

INV

INV

AND2

CEOU

TCU

D0

D1

D2

D3

C

Q1

Q2
Q3

OR2

L

CED

OR2

CEU

R

TCD

Q0

OR3

OR3

OR3

OR3



Design Elements

Libraries Guide 3-125

CB8CE

8-Bit Cascadable Binary Counter with Clock Enable
and Asynchronous Clear

CB8CE is an 8-stage, 8-bit, synchronous, clearable, cascadable binary
counter. The asynchronous clear (CLR) is the highest priority input.
When CLR is High, all other inputs are ignored and data (Q7 – Q0)
and terminal count (TC) outputs go to logic level zero, independent
of clock transitions. The outputs (Q7 – Q0) increment when the clock
enable input (CE) is High during the Low-to-High clock (C) transi-
tion. The counter ignores clock transitions when CE is Low. The TC
output is High when all Q outputs are High.

Larger counters are created by connecting the count enable out (CEO)
output of the first stage to the CE input of the next stage and
connecting the C and CLR inputs in parallel. CEO is active (High)
when TC and CE are High. The maximum length of the counter is
determined by the accumulated CE-to-TC propagation delays versus
the clock period. The clock period must be greater than n(tCE-TC),
where “n” is the number of stages and “tCE-TC” is the CE-to-TC
propagation delay of each stage.

The default initial state of all flip-flops is zero. When cascading
counters, use the CEO output if the counter uses the CE input; use the
TC output if it does not.

TC = (Q7•Q6•Q5•Q4•...•Q0); CEO = (TC•CE)

XC7000 XC9000

Macro Macro

Inputs Outputs

CLR CE C Q7 – Q0 TC CEO

1 X X 0 0 0
0 0 X No Chg No Chg 0
0 1 ↑ Inc TC CEO
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TC
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Figure 3-49   CB8CE Implementation (XC7000 and XC9000)
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CB8CLE

8-Bit Loadable Cascadable Binary Counter with
Clock Enable and Asynchronous Clear

CB8CLE is an 8-stage, 8-bit, synchronous, loadable, clearable, cascad-
able binary counter. The asynchronous clear (CLR) is the highest
priority input. When CLR is High, all other inputs are ignored and
data (Q7 – Q0) and terminal count (TC) outputs go to logic level zero,
independent of clock transitions. The data on the D7 – D0 inputs is
loaded into the counter when the load enable input (L) is High
during the Low-to-High clock (C) transition, independent of the state
of clock enable (CE). The outputs (Q7 – Q0) increment when CE is
High during the Low-to-High clock transition. The counter ignores
clock transitions when CE is Low. The TC output is High when all Q
outputs are High.

Larger counters are created by connecting the count enable out (CEO)
output of the first stage to the CE input of the next stage and by
connecting the C, L, and CLR inputs in parallel. CEO is active (High)
when TC and CE are High. The maximum length of the counter is
determined by the accumulated CE-to-TC propagation delays versus
the clock period. The clock period must be greater than n(tCE-TC),
where “n” is the number of stages and “tCE-TC” is the CE-to-TC
propagation delay of each stage.

The default initial state of all flip-flops is zero. When cascading
counters, use the CEO output if the counter uses the CE input; use the
TC output if it does not.

XC7000 XC9000

Macro Macro
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TC = (Q7•Q6•Q5•Q4•...•Q0)

CEO = (TC•CE)

dn = state of referenced input one set-up time prior to active clock transition

Inputs Outputs

CLR L CE C D7 – D0 Q7 – Q0 TC CEO

1 X X X X 0 0 0
0 1 X ↑ D d7 – d0 TC CEO
0 0 0 X X No Chg No Chg 0
0 0 1 ↑ X Inc TC CEO
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Figure 3-50   CB8CLE Implementation (XC7000 and XC9000)
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CB8CLED

8-Bit Loadable Cascadable Bidirectional Binary
Counter with Clock Enable and Asynchronous Clear

CB8CLED is an 8-stage, 8-bit, synchronous, loadable, clearable,
cascadable, bidirectional binary counter. The asynchronous clear
(CLR) is the highest priority input. When CLR is High, all other
inputs are ignored and data (Q7 – Q0) and terminal count (TC)
outputs go to logic level zero, independent of clock transitions. The
data on the D7 – D0 inputs is loaded into the counter when the load
enable input (L) is High during the Low-to-High clock (C) transition,
independent of the state of CE. The outputs (Q7 – Q0) decrement
when CE is High and UP is Low during the Low-to-High clock transi-
tion. The outputs (Q7 – Q0) increment when CE and UP are High. The
counter ignores clock transitions when CE is Low.

For counting up, the TC output is High when all Q outputs and UP
are High. For counting down, the TC output is High when all Q
outputs and UP are Low. To cascade counters, the count enable out
(CEO) output of each counter is connected to the CE pin of the next
stage. The clock, UP, L, and CLR inputs are connected in parallel.
CEO is active (High) when TC and CE are High. The maximum
length of the counter is determined by the accumulated CE-to-TC
propagation delays versus the clock period. The clock period must be
greater than n(tCE-TC), where “n” is the number of stages and
“tCE-TC” is the CE-to-TC propagation delay of each stage. For
XC7000 and XC9000 designs, refer to “CB8X1” for high-performance
cascadable, bidirectional counters.

The default initial state of all flip-flops is zero. When cascading
counters, use the CEO output if the counter uses the CE input; use the
TC output if it does not.

XC7000 XC9000

Macro Macro
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TC = (Q7•Q6•Q5•...•Q0•UP) + (Q7•Q6•Q5•...•Q0•UP)

CEO = (TC•CE)

dn = state of referenced clock one set-up time prior to active clock transition

Inputs Outputs

CLR L CE C UP D7 – D0 Q7 – Q0 TC CEO

1 X X X X X 0 0 0
0 1 X ↑ X D d7 – d0 TC CEO
0 0 0 X X X No Chg No Chg 0
0 0 1 ↑ 1 X Inc TC CEO
0 0 1 ↑ 0 X Dec TC CEO
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CB8RE

8-Bit Cascadable Binary Counter with Clock Enable
and Synchronous Reset

CB8CE is an 8-stage, 8-bit, synchronous, resettable, cascadable binary
counter. The synchronous reset (R) is the highest priority input. When
R is High, all other inputs are ignored and data (Q7 – Q0) and
terminal count (TC) outputs go to logic level zero on the Low-to-High
clock (C) transition. The outputs (Q7 – Q0) increment when the clock
enable input (CE) is High during the Low-to-High clock transition.
The counter ignores clock transitions when CE is Low. The TC output
is High when all Q outputs are High.

Larger counters are created by connecting the count enable out (CEO)
output of the first stage to the CE input of the next stage and
connecting the C and R inputs in parallel. CEO is active (High) when
TC and CE are High. The maximum length of the counter is deter-
mined by the accumulated CE-to-TC propagation delays versus the
clock period. The clock period must be greater than n(tCE-TC), where
“n” is the number of stages and “tCE-TC” is the CE-to-TC propaga-
tion delay of each stage.

The default initial state of all flip-flops is zero. When cascading
counters, use the CEO output if the counter uses the CE input; use the
TC output if it does not.

TC = (Q7•Q6•Q5•...•Q0); CEO = (TC•CE)

XC7000 XC9000

Macro Macro

Inputs Outputs

R CE C Q7 – Q0 TC CEO
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0 0 X No Chg No Chg 0
0 1 ↑ Inc TC CEO
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Figure 3-51   CB8RE Implementation (XC7000 and XC9000)
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CB8RLE

8-Bit Loadable Cascadable Binary Counter with
Clock Enable and Synchronous Reset

CB8RLE is an 8-stage, 8-bit, synchronous, loadable, resettable, cascad-
able binary counter. The synchronous reset (R) is the highest priority
input. The synchronous R, when High, overrides all other inputs and
resets the Q7 – Q0, TC, and CEO outputs to Low on the Low-to-High
clock (C) transition. The data on the D7 – D0 inputs is loaded into the
counter when the load enable input (L) is High during the Low-to-
High clock (C) transition, independent of the state of CE.

The outputs (Q7 – Q0) increment when CE is High during the Low-
to-High clock transition. The counter ignores clock transitions when
CE is Low. The TC output is High when all Q outputs are High. The
CEO output is High when all Q outputs and CE are High, to allow
direct cascading of counters.

Larger counters are created by connecting the CEO output of the first
stage to the CE input of the next stage and connecting the C, L, and R
inputs in parallel. The maximum length of the counter is determined
by the accumulated CE-to-CEO propagation delays versus the clock
period.

The default initial state of all flip-flops is zero. When cascading
counters, use the CEO output if the counter uses the CE input; use the
TC output if it does not.
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TC = Q7•Q6•...•Q0

CEO = TC•CE

dn = state of referenced input one set-up time prior to active clock transition

Inputs Outputs

R L CE C D7 – D0 Q7 – Q0 TC CEO

1 X X ↑ X 0 0 0
0 1 X ↑ D d7 – d0 TC CEO
0 0 0 X X No Chg No Chg 0
0 0 1 ↑ X Inc TC CEO
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Figure 3-52   CB8RLE Implementation (XC7000 and XC9000)

TC

AND4

CEO

CB6

CB2RLE

L

R
C

CE

D0

D1

Q0

Q1

CEO

TC

CB4

CB2RLE

L

R
C

CE

D0

D1

Q0

Q1

CEO

TC

CB2

CB2RLE

L

R
C

CE

D0

D1

Q0

Q1

CEO

TC

CB0

CB2RLE

L

R
C

CE

D0

D1

Q0

Q1

CEO

TC

Q7

Q6

Q5

Q4

Q3

Q2

Q1

Q0

D7

D6

D5

D4

D3

D2

R

C

CE

L

D1

D0

Q[7:0]

D[7:0]



Design Elements

Libraries Guide 3-137

CB8X1

8-Bit Loadable Cascadable Bidirectional Binary
Counter with Clock Enable and Asynchronous Clear

CB8X1 is an 8-stage, 8-bit, synchronous, loadable, clearable, bidirec-
tional binary counter. CB8X1 has separate count-enable inputs and
synchronous terminal-count outputs for up and down directions to
support high-speed cascading in the XC7000 and XC9000 CPLD
architectures.

The asynchronous clear (CLR) is the highest priority input. When
CLR is High, all other inputs are ignored, data outputs (Q7 – Q0) go
to logic level zero, and terminal count outputs TCU and TCD go to
zero and one, respectively, independent of clock transitions. The data
on the D7 – D0 inputs loads into the counter on the Low-to-High
clock (C) transition when the load enable input (L) is High, indepen-
dent of the CE inputs.

The outputs (Q7 – Q0) increment when CEU is High, provided CLR
and L are Low, during the Low-to-High clock transition. The outputs
(Q7 – Q0) decrement when CED is High, provided CLR and L are
Low. The counter ignores clock transitions when CEU and CED are
Low. Both CEU and CED should not be High during the same clock
transition; the CEOU and CEOD outputs might not function properly
for cascading when CEU and CED are both High.

For counting up, the CEOU output is High when all Q outputs and
CEU are High. For counting down, the CEOD output is High when
all Q outputs are Low and CED is High. To cascade counters, the
CEOU and CEOD outputs of each counter are connected directly to
the CEU and CED inputs, respectively, of the next stage. The C, L,
and CLR inputs are connected in parallel.

In Xilinx CPLD devices, the maximum clocking frequency of these
counter components is unaffected by the number of cascaded stages
for all counting and loading functions. The TCU terminal count
output is High when all Q outputs are High, regardless of CEU. The

XC7000 XC9000

Macro Macro
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TCD output is High when all Q outputs are Low, regardless of CED.
When cascading counters, the final terminal count signals can be
produced by AND-ing all the TCU outputs (for the up direction) and
all the TCD outputs (for the down direction). The default initial state
of all flip-flops is zero.

TCU = Q7•Q6•Q5•...Q0

TCD = Q7•Q6•Q5•...Q0

CEOU = TCU•CEU

CEOD = TCD•CED

dn = state of referenced input one set-up time prior to active clock transition

Inputs Outputs

CLR L CEU CED C D7 – D0 Q7 – Q0 TCU TCD CEOU CEOD

1 X X X X X 0 0 1 0 CEOD
0 1 X X ↑ D d7 – d0 TCU TCD CEOU CEOD
0 0 0 0 X X No Chg No Chg No Chg 0 0
0 0 1 0 ↑ X Inc TCU TCD CEOU 0
0 0 0 1 ↑ X Dec TCU TCD 0 CEOD
0 0 1 1 ↑ X Inc TCU TCD Invalid Invalid
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CB8X2

8-Bit Loadable Cascadable Bidirectional Binary
Counter with Clock Enable and Synchronous Reset

CB8X2 is an 8-stage, 8-bit, synchronous, loadable, resettable, bidirec-
tional binary counter. CB8X2 has separate count-enable inputs and
synchronous terminal-count outputs for up and down directions to
support high-speed cascading in the XC7000 and XC9000 CPLD
architectures.

The synchronous reset (R) is the highest priority input. When R is
High, all other inputs are ignored, data outputs (Q7 – Q0) go to logic
level zero, and terminal count outputs TCU and TCD go to zero and
one, respectively, on the Low-to-High clock (C) transition. The data
on the D7 – D0 inputs loads into the counter on the Low-to-High
clock (C) transition when the load enable input (L) is High, indepen-
dent of the CE inputs.

The outputs (Q7 – Q0) increment when CEU is High, provided R and
L are Low, during the Low-to-High clock transition. The outputs
(Q7 – Q0) decrement when CED is High, provided R and L are Low.
The counter ignores clock transitions when CEU and CED are Low.
Both CEU and CED should not be High during the same clock transi-
tion; the CEOU and CEOD outputs might not function properly for
cascading when CEU and CED are both High.

For counting up, the CEOU output is High when all Q outputs and
CEU are High. For counting down, the CEOD output is High when
all Q outputs are Low and CED is High. To cascade counters, the
CEOU and CEOD outputs of each counter are connected directly to
the CEU and CED inputs, respectively, of the next stage. The C, L,
and R inputs are connected in parallel.

In Xilinx CPLD devices, the maximum clocking frequency of these
counter components is unaffected by the number of cascaded stages
for all counting and loading functions. The TCU terminal count
output is High when all Q outputs are High, regardless of CEU. The
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TCD output is High when all Q outputs are Low, regardless of CED.

When cascading counters, the final terminal count signals can be
produced by AND-ing all the TCU outputs (for the up direction) and
all the TCD outputs (for the down direction). The default initial state
of all flip-flops is zero.

TCU = Q7•Q6•Q5•...Q0

TCD = Q7•Q6•Q5•...Q0

CEOU = TCU•CEU

CEOD = TCD•CED

dn = state of referenced input one set-up time prior to active clock transition

Inputs Outputs

R L CEU CED C D7 – D0 Q7 – Q0 TCU TCD CEOU CEOD

1 X X X ↑ X 0 0 1 0 CEOD
0 1 X X ↑ D d7 – d0 TCU TCD CEOU CEOD
0 0 0 0 X X No Chg No Chg No Chg 0 0
0 0 1 0 ↑ X Inc TCU TCD CEOU 0
0 0 0 1 ↑ X Dec TCU TCD 0 CEOD
0 0 1 1 ↑ X Inc TCU TCD Invalid Invalid
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CB16CE

16-Bit Cascadable Binary Counter with Clock Enable
and Asynchronous Clear

CB16CE is a 16-stage, 16-bit, synchronous, clearable, cascadable
binary counter. The asynchronous clear (CLR) is the highest priority
input. When CLR is High, all other inputs are ignored and data
(Q15 – Q0) and terminal count (TC) outputs go to logic level zero,
independent of clock transitions. The outputs (Q15 – Q0) increment
when the clock enable input (CE) is High during the Low-to-High
clock (C) transition. The counter ignores clock transitions when CE is
Low. The TC output is High when all Q outputs are High.

Larger counters are created by connecting the count enable out (CEO)
output of the first stage to the CE input of the next stage and
connecting the C and CLR inputs in parallel. CEO is active (High)
when TC is High and CE is High. The maximum length of the
counter is determined by the accumulated CE-to-TC propagation
delays versus the clock period. The clock period must be greater than
n(tCE-TC), where “n” is the number of stages and “tCE-TC” is the
CE-to-TC propagation delay of each stage.

The default initial state of all flip-flops is zero. When cascading
counters, use the CEO output if the counter uses the CE input; use the
TC output if it does not.

TC = (Q15•Q14•Q13•Q12...•Q0); CEO = (TC•CE)

XC7000 XC9000

Macro Macro

Inputs Outputs

CLR CE C Q15 – Q0 TC CEO

1 X X 0 0 0
0 0 X No Chg No Chg 0
0 1 ↑ Inc TC CEO
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CB16CLE

16-Bit Loadable Cascadable Binary Counter with
Clock Enable and Asynchronous Clear

CB16CLE is a 16-stage, 16-bit, synchronous, loadable, clearable,
cascadable binary counter. The asynchronous clear (CLR) is the
highest priority input. When CLR is High, all other inputs are
ignored and data (Q15 – Q0) and terminal count (TC) outputs go to
logic level zero, independent of clock transitions. The data on the
D15 – D0 inputs is loaded into the counter when the load enable
input (L) is High during the Low-to-High clock (C) transition, inde-
pendent of the state of clock enable (CE). The outputs (Q15 – Q0)
increment when CE is High during the Low-to-High clock transition.
The counter ignores clock transitions when CE is Low. The TC output
is High when all Q outputs are High.

Larger counters are created by connecting the count enable out (CEO)
output of the first stage to the CE input of the next stage and
connecting the C, L, and CLR inputs in parallel. CEO is active (High)
when TC and CE are High. The maximum length of the counter is
determined by the accumulated CE-to-TC propagation delays versus
the clock period. The clock period must be greater than n(tCE-TC),
where “n” is the number of stages and “tCE-TC” is the CE-to-TC
propagation delay of each stage.

The default initial state of all flip-flops is zero. When cascading
counters, use the CEO output if the counter uses the CE input; use the
TC output if it does not.
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TC = (Q15•Q14•Q13•Q12...•Q0)

CEO = (TC•CE)

dn = state of referenced input one set-up time prior to active clock transition

Inputs Outputs

CLR L CE C D15 – D0 Q15 – Q0 TC CEO

1 X X X X 0 0 0
0 1 X ↑ D d15 – d0 TC CEO
0 0 0 X X No Chg No Chg 0
0 0 1 ↑ X Inc TC CEO



Libraries Guide

3-144 XACT Development System

CB16CLED

16-Bit Loadable Cascadable Bidirectional Binary
Counter with Clock Enable and Asynchronous Clear

CB16CLED is a 16-stage, 16-bit, synchronous, loadable, clearable,
cascadable, bidirectional binary counter. The asynchronous clear
(CLR) is the highest priority input. When CLR is High, all other
inputs are ignored and data (Q15 – Q0) and terminal count (TC)
outputs go to logic level zero, independent of clock transitions. The
data on the D15 – D0 inputs is loaded into the counter when the load
enable input (L) is High during the Low-to-High clock (C) transition,
independent of the state of clock enable (CE). The outputs (Q15 – Q0)
decrement when CE is High and UP is Low during the Low-to-High
clock transition. The outputs (Q15 – Q0) increment when CE and UP
are High. The counter ignores clock transitions when CE is Low.

For counting up, the TC output is High when all Q outputs and UP
are High. For counting down, the TC output is High when all Q
outputs and UP are Low. To cascade counters, the count enable out
(CEO) output of each counter is connected to the CE pin of the next
stage. The clock, UP, L, and CLR inputs are connected in parallel.
CEO is active (High) when TC and CE are High. The maximum
length of the counter is determined by the accumulated CE-to-TC
propagation delays versus the clock period. The clock period must be
greater than n(tCE-TC), where “n” is the number of stages and
“tCE-TC” is the CE-to-TC propagation delay of each stage. For
XC7000 and XC9000 designs, refer to “CB16X1” for high-performance
cascadable, bidirectional counters.

The default initial state of all flip-flops is zero. When cascading
counters, use the CEO output if the counter uses the CE input; use the
TC output if it does not.
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TC = (Q15•Q14•Q13...•Q0•UP) + (Q15•Q14•Q13...•Q0•UP)

CEO = (TC•CE)

dn = state of referenced clock one set-up time prior to active clock transition

Inputs Outputs

CLR L CE C UP D15 – D0 Q15 – Q0 TC CEO

1 X X X X X 0 0 0
0 1 X ↑ X D d15 – d0 TC CEO
0 0 0 X X X No Chg No Chg 0
0 0 1 ↑ 1 X Inc TC CEO
0 0 1 ↑ 0 X Dec TC CEO
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CB16RE

16-Bit Cascadable Binary Counter with Clock Enable
and Synchronous Reset

CB16RE is a 16-stage, 16-bit, synchronous, resettable, cascadable
binary counter. The synchronous reset (R) is the highest priority
input. When R is High, all other inputs are ignored and data
(Q15 – Q0) and terminal count (TC) outputs go to logic level zero on
the Low-to-High clock (C) transition. The outputs (Q15 – Q0) incre-
ment when the clock enable input (CE) is High during the Low-to-
High clock transition. The counter ignores clock transitions when CE
is Low. The TC output is High when all Q outputs are High.

Larger counters are created by connecting the count enable out (CEO)
output of the first stage to the CE input of the next stage and
connecting the C and R inputs in parallel. CEO is active (High) when
TC and CE are High. The maximum length of the counter is deter-
mined by the accumulated CE-to-TC propagation delays versus the
clock period. The clock period must be greater than n(tCE-TC), where
“n” is the number of stages and “tCE-TC” is the CE-to-TC propaga-
tion delay of each stage.

The default initial state of all flip-flops is zero. When cascading
counters, use the CEO output if the counter uses the CE input; use the
TC output if it does not.

TC = (Q15•Q14•Q13...•Q0); CEO = (TC•CE)

XC7000 XC9000

Macro Macro

Inputs Outputs

R CE C Q15 – Q0 TC CEO

1 X ↑ 0 0 0
0 0 X No Chg No Chg 0
0 1 ↑ Inc TC CEO
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CB16RLE

16-Bit Loadable Cascadable Binary Counter with
Clock Enable and Synchronous Reset

CB16RLE is a 16-stage, 16-bit, synchronous, loadable, resettable,
cascadable binary counter. The synchronous reset (R) is the highest
priority input.

The synchronous R, when High, overrides all other inputs and resets
the Q15 – Q0, TC, and CEO outputs to Low on the Low-to-High clock
(C) transition. The data on the D15 – D0 inputs is loaded into the
counter when the load enable input (L) is High during the Low-to-
High clock (C) transition, independent of the state of CE. The outputs
(Q15 – Q0) increment when CE is High during the Low-to-High clock
transition. The counter ignores clock transitions when CE is Low.

The TC output is High when all Q outputs are High. The CEO output
is High when all Q outputs and CE are High, to allow direct
cascading of counters. Larger counters are created by connecting the
CEO output of the first stage to the CE input of the next stage and
connecting the C, L, and R inputs in parallel. The maximum length of
the counter is determined by the accumulated CE-to-CEO propaga-
tion delays versus the clock period.

The default initial state of all flip-flops is zero. When cascading
counters, use the CEO output if the counter uses the CE input; use the
TC output if it does not.

XC7000 XC9000

Macro Macro
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TC = Q15•Q14•...•Q0

CEO = TC•CE

dn = state of referenced input one set-up time prior to clock transition

Inputs Outputs

R L CE C D15 – D0 Q15 – Q0 TC CEO

1 X X ↑ X 0 0 0
0 1 X ↑ D d15 – d0 TC CEO
0 0 0 X X No Chg No Chg 0
0 0 1 ↑ X Inc TC CEO
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CB16X1

16-Bit Loadable Cascadable Bidirectional Binary
Counter with Clock Enable and Asynchronous Clear

CB16X1 is a 16-stage, 16-bit, synchronous, loadable, clearable, bidi-
rectional binary counter. CB16X1 has separate count-enable inputs
and synchronous terminal-count outputs for up and down directions
to support high-speed cascading in the XC7000 and XC9000 CPLD
architectures.

The asynchronous clear (CLR) is the highest priority input. When
CLR is High, all other inputs are ignored, data outputs (Q15 – Q0) go
to logic level zero, and terminal count outputs TCU and TCD go to
zero and one, respectively, independent of clock transitions. The data
on the D15 – D0 inputs loads into the counter on the Low-to-High
clock (C) transition, when the load enable input (L) is High, indepen-
dent of the CE inputs.

The outputs (Q15 – Q0) increment when CEU is High, provided CLR
and L are Low, during the Low-to-High clock transition. The outputs
(Q15 – Q0) decrement when CED is High, provided CLR and L are
Low. The counter ignores clock transitions when CEU and CED are
Low. Both CEU and CED should not be High during the same clock
transition; the CEOU and CEOD outputs might not function properly
for cascading when CEU and CED are both High.

For counting up, the CEOU output is High when all Q outputs and
CEU are High. For counting down, the CEOD output is High when
all Q outputs are Low and CED is High. To cascade counters, the
CEOU and CEOD outputs of each counter are connected directly to
the CEU and CED inputs, respectively, of the next stage. The clock, L,
and CLR inputs are connected in parallel.

In Xilinx CPLD devices, the maximum clocking frequency of these
counter components is unaffected by the number of cascaded stages
for all counting and loading functions. The TCU terminal count
output is High when all Q outputs are High, regardless of CEU. The

XC7000 XC9000

Macro Macro
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TCD output is High when all Q outputs are Low, regardless of CED.

When cascading counters, the final terminal count signals can be
produced by AND-ing all the TCU outputs (for the up direction) and
all the TCD outputs (for the down direction). The default initial state
of all flip-flops is zero.

TCU = Q15•Q14•Q13•...•Q0

TCD = Q15•Q14•Q13•...•Q0

CEOU = TCU•CEU

CEOD = TCD•CED

dn = state of referenced input one set-up time prior to active clock transition

Inputs Outputs

CLR L CEU CED C D15 – D0 Q15 – Q0 TCU TCD CEOU CEOD

1 X X X X X 0 0 1 0 CEOD
0 1 X X ↑ D d15 – d0 TCU TCD CEOU CEOD
0 0 0 0 X X No Chg No Chg No Chg 0 0
0 0 1 0 ↑ X Inc TCU TCD CEOU 0
0 0 0 1 ↑ X Dec TCU TCD 0 CEOD
0 0 1 1 ↑ X Inc TCU TCD Invalid Invalid
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CB16X2

16-Bit Loadable Cascadable Bidirectional Binary
Counter with Clock Enable and Synchronous Reset

CB16X2 is a 16-stage, 16-bit, synchronous, loadable, resettable, bidi-
rectional binary counter. CB16X2 has separate count-enable inputs
and synchronous terminal-count outputs for up and down directions,
to support high-speed cascading in the CPLD architecture.

The synchronous reset (R) is the highest priority input. When R is
High, all other inputs are ignored, data outputs (Q15 – Q0) go to logic
level zero, and terminal count outputs TCU and TCD go to zero and
one, respectively, on the Low-to-High clock (C) transition. The data
on the D15 – D0 inputs loads into the counter on the Low-to-High
clock (C) transition when the load enable input (L) is High, indepen-
dent of the CE inputs. The outputs (Q15 – Q0) increment when CEU
is High, provided R and L are Low, during the Low-to-High clock
transition. The outputs (Q15 – Q0) decrement when CED is High,
provided R and L are Low.

The counter ignores clock transitions when CEU and CED are Low.
Both CEU and CED should not be High during the same clock transi-
tion; the CEOU and CEOD outputs might not function properly for
cascading when CEU and CED are both High. For counting up, the
CEOU output is High when all Q outputs and CEU are High. For
counting down, the CEOD output is High when all Q outputs are
Low and CED is High. To cascade counters, the CEOU and CEOD
outputs of each counter are connected directly to the CEU and CED
inputs, respectively, of the next stage. The C, L, and R inputs are
connected in parallel.

In Xilinx CPLD devices, the maximum clocking frequency of these
counter components is unaffected by the number of cascaded stages
for all counting and loading functions. The TCU terminal count
output is High when all Q outputs are High, regardless of CEU. The
TCD output is High when all Q outputs are Low, regardless of CED.

XC7000 XC9000

Macro Macro
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When cascading counters, the final terminal count signals can be
produced by AND wiring all the TCU outputs (for the up direction)
and all the TCD outputs (for the down direction). The TCU, CEOU,
and CEOD outputs are produced by optimizable AND gates within
the component, resulting in zero propagation from the CEU and CED
inputs and from the Q outputs, provided all connections from each
such output remain on-chip. Otherwise, a macrocell buffer delay is
introduced. The default initial state of all flip-flops is zero. The clock
(C) input can be driven by either the FastCLK global net (represented
by a BUFG symbol), an ordinary input, or other on-chip logic.

TCU = Q15•Q14•Q13•...•Q0

TCD = Q15•Q14•Q13•...•Q0

CEOU = TCU•CEU

CEOD = TCD•CED

dn = state of referenced input one set-up time prior to active clock transition.

Inputs Outputs

R L CEU CED C D15 – D0 Q15 – Q0 TCU TCD CEOU CEOD

1 X X X ↑ X 0 0 1 0 CEOD
0 1 X X ↑ D d15 – d0 TCU TCD CEOU CEOD
0 0 0 0 X X No Chg No Chg No Chg 0 0
0 0 1 0 ↑ X Inc TCU TCD CEOU 0
0 0 0 1 ↑ X Dec TCU TCD 0 CEOD
0 0 1 1 ↑ X Inc TCU TCD Invalid Invalid
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CD4CE

4-Bit Cascadable BCD Counter with Clock Enable
and Asynchronous Clear

CD4CE is a 4-stage, 4-bit, synchronous, clearable, cascadable binary-
coded-decimal (BCD) counter. The asynchronous clear input (CLR) is
the highest priority input. When CLR is High, all other inputs are
ignored and data (Q3 – Q0) and terminal count (TC) outputs go to
logic level zero, independent of clock transitions. The outputs
(Q3 – Q0) increment when clock enable (CE) is High during the Low-
to-High clock (C) transition. The counter ignores clock transitions
when CE is Low. The TC output is High when Q3 and Q0 are High
and Q2 and Q1 are Low.

Larger counters are created by connecting the count enable out (CEO)
output of the first stage to the CE input of the next stage and
connecting the CLR and clock inputs in parallel. CEO is active (High)
when TC and CE are High. The maximum length of the counter is
determined by the accumulated CE-to-TC propagation delays versus
the clock period. The clock period must be greater than n(tCE-TC),
where “n” is the number of stages and “tCE-TC” is the CE-to-TC
propagation delay of each stage.

The default initial state of all flip-flops is zero. When cascading
counters, use the CEO output if the counter uses the CE input; use the
TC output if it does not.
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TC = (Q3•Q2•Q1•Q0)

CEO = (TC•CE)

Figure 3-53   CD4CE Implementation (XC7000 and XC9000)

Inputs Outputs
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CD4CLE

4-Bit Loadable Cascadable BCD Counter with Clock
Enable and Asynchronous Clear

CD4CLE is a 4-stage, 4-bit, synchronous, loadable, clearable, binary-
coded-decimal (BCD) counter. The asynchronous clear input (CLR) is
the highest priority input. When CLR is High, all other inputs are
ignored and the data (Q3 – Q0) and terminal count (TC) outputs go to
logic level zero, independent of clock transitions. The data on the
D3 – D0 inputs is loaded into the counter when the load enable input
(L) is High during the Low-to-High clock (C) transition. The outputs
(Q3 – Q0) increment when clock enable input (CE) is High during the
Low- to-High clock transition. The counter ignores clock transitions
when CE is Low. The TC output is High when Q3 and Q0 are High
and Q2 and Q1 are Low.

Larger counters are created by connecting the count enable out (CEO)
output of the first stage to the CE input of the next stage and
connecting the CLR, L, and C inputs in parallel. CEO is active (High)
when TC and CE are High. The maximum length of the counter is
determined by the accumulated CE-to-TC propagation delays versus
the clock period. The clock period must be greater than n(tCE-TC),
where “n” is the number of stages and “tCE-TC” is the CE-to-TC
propagation delay of each stage.

The default initial state of all flip-flops is zero. When cascading
counters, use the CEO output if the counter uses the CE input; use the
TC output if it does not.
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TC = (Q3•Q2•Q1•Q0)

CEO = (TC•CE)

dn = state of referenced input one set-up time prior to active clock transition

Figure 3-54   CD4CLE Implementation (XC7000 and XC9000)
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0 0 0 X X --------No Change--------- TC 0
0 0 1 X X 1 0 0 1 1 1
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CD4RE

4-Bit Cascadable BCD Counter with Clock Enable
and Synchronous Reset

CD4RE is a 4-stage, 4-bit, synchronous, resettable, cascadable binary-
coded-decimal (BCD) counter. The synchronous reset input (R) is the
highest priority input. When R is High, all other inputs are ignored
and (Q3 – Q0) and terminal count (TC) outputs go to logic level zero
on the Low-to-High clock (C) transition. The outputs (Q3 – Q0) incre-
ment when the clock enable input (CE) is High during the Low-to-
High clock transition. The counter ignores clock transitions when CE
is Low. The TC output is High when Q3 and Q0 are High and Q2 and
Q1 are Low.

Larger counters are created by connecting the count enable out (CEO)
output of the first stage to the CE input of the next stage and
connecting the R and clock inputs in parallel. CEO is active (High)
when TC and CE are High. The maximum length of the counter is
determined by the accumulated CE-to-TC propagation delays versus
the clock period. The clock period must be greater than n(tCE-TC)
where “n” is the number of stages and “tCE-TC” is the CE-to-TC
propagation delay of each stage.

The default initial state of all flip-flops is zero. When cascading
counters, use the CEO output if the counter uses the CE input; use the
TC output if it does not.
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TC = (Q3•Q2•Q1•Q0)

CEO = (TC•CE)

Figure 3-55   CD4RE Implementation (XC7000 and XC9000)

Inputs Outputs
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CD4RLE

4-Bit Loadable Cascadable BCD Counter with Clock
Enable and Synchronous Reset

CD4RLE is a 4-stage, 4-bit, synchronous, loadable, resettable, binary-
coded-decimal (BCD) counter. The synchronous reset input (R) is the
highest priority input. When R is High, all other inputs are ignored
and the data (Q3 – Q0) and terminal count (TC) outputs go to logic
level zero on the Low-to-High clock transitions. The data on the D3 –
D0 inputs is loaded into the counter when the load enable input (L) is
High during the Low-to-High clock (C) transition. The outputs
(Q3 – Q0) increment when the clock enable input (CE) is High during
the Low-to-High clock transition. The counter ignores clock transi-
tions when CE is Low. The TC output is High when Q3 and Q0 are
High and Q2 and Q1 are Low.

Larger counters are created by connecting the count enable out (CEO)
output of the first stage to the CE input of the next stage and
connecting the R, L, and C inputs in parallel. CEO is active (High)
when TC and CE are High. The maximum length of the counter is
determined by the accumulated CE-to-TC propagation delays versus
the clock period. The clock period must be greater than n(tCE-TC),
where “n” is the number of stages and “tCE-TC” is the CE-to-TC
propagation delay of each stage.

The default initial state of all flip-flops is zero. When cascading
counters, use the CEO output if the counter uses the CE input; use the
TC output if it does not.
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TC = (Q3•Q2•Q1•Q0)

CEO = (TC•CE)

dn = state of referenced input one set-up time prior to active clock transition

Inputs Outputs

R L CE D3 – D0 C Q3 Q2 Q1 Q0 TC CEO

1 X X X ↑ 0 0 0 0 0 0
0 1 X D3 – D0 ↑ d3 d2 d1 d0 TC CEO
0 0 1 X ↑ ----------Increment--------- TC CEO
0 0 0 X X --------No Change--------- TC 0
0 0 1 X X 1 0 0 1 1 1



Design Elements

Libraries Guide 3-161

Figure 3-56   CD4RLE Implementation (XC7000 and XC9000)
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CJ4CE

4-Bit Johnson Counter with Clock Enable and
Asynchronous Clear

CJ4CE is a clearable Johnson/shift counter. The asynchronous clear
(CLR) input, when High, overrides all other inputs and causes the
data outputs (Q3 – Q0) to go to logic level zero, independent of clock
(C) transitions. The counter increments (shifts Q0 to Q1, Q1 to Q2,and
so forth) when the clock enable input (CE) is High during the Low-to-
High clock transition. Clock transitions are ignored when CE is Low.
The Q3 output is inverted and fed back to input Q0 to provide contin-
uous counting operation.

The default initial state of all flip-flops is zero.

qn = state of referenced output one set-up time prior to active clock transition

XC7000 XC9000

Macro Macro
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CJ4RE

4-Bit Johnson Counter with Clock Enable and
Synchronous Reset

CJ4RE is a resettable Johnson/shift counter. The synchronous reset
(R) input, when High, overrides all other inputs causes the data
outputs (Q3 – Q0) to go to logic level zero during the Low-to-High
clock (C) transition. The counter increments (shifts Q0 to Q1, Q1 to
Q2, and so forth) when the clock enable input (CE) is High during the
Low-to-High clock transition. Clock transitions are ignored when CE
is Low. The Q3 output is inverted and fed back to input Q0 to provide
continuous counting operation.

The default initial state of all flip-flops is zero.

qn = state of referenced output one set-up time prior to active clock transition

XC7000 XC9000

Macro Macro
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CJ5CE

5-Bit Johnson Counter with Clock Enable and
Asynchronous Clear

CJ5CE is a clearable Johnson/shift counter. The asynchronous clear
(CLR) input, when High, overrides all other inputs and causes the
data outputs (Q4 – Q0) to go to logic level zero, independent of clock
(C) transitions. The counter increments (shifts Q0 to Q1, Q1 to Q2,
and so forth) when the clock enable input (CE) is High during the
Low-to-High clock transition. Clock transitions are ignored when CE
is Low. The Q4 output is inverted and fed back to input Q0 to provide
continuous counting operation.

The default initial state of all flip-flops is zero.

qn = state of referenced output one set-up time prior to active clock transition

XC7000 XC9000
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CJ5RE

5-Bit Johnson Counter with Clock Enable and
Synchronous Reset

CJ5RE is a resettable Johnson/shift counter. The synchronous reset
(R) input, when High, overrides all other inputs and causes the data
outputs (Q4 – Q0) to go to logic zero during the Low-to-High clock
transition. The counter increments (shifts Q0 to Q1, Q1 to Q2, and so
forth) when the clock enable input (CE) is High during the Low-to-
High clock transition. Clock transitions are ignored when CE is Low.
The Q4 output is inverted and fed back to input Q0 to provide contin-
uous counting operation.

The default initial state of all flip-flops is zero.

qn = state of referenced output one set-up time prior to active clock transition
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CJ8CE

8-Bit Johnson Counter with Clock Enable and
Asynchronous Clear

CJ8CE is a clearable Johnson/shift counter. The asynchronous clear
(CLR) input, when High, overrides all other inputs and causes the
data outputs (Q7 – Q0) to go to logic level zero, independent of clock
(C) transitions. The counter increments (shifts Q0 to Q1, Q1 to Q2,
and so forth) when the clock enable input (CE) is High during the
Low-to-High clock transition. Clock transitions are ignored when CE
is Low. The Q7 output is inverted and fed back to input Q0 to provide
continuous counting operation.

The default initial state of all flip-flops is zero.

qn = state of referenced output one set-up time prior to active clock transition

XC7000 XC9000

Macro Macro

Inputs Outputs

CLR CE C Q0 Q1 – Q7

1 X X 0 0
0 0 X --No Change--
0 1 ↑ q7 q0 – q6

X4118

CJ8CE

C

CLR

CE

        Q[7:0]



Design Elements

Libraries Guide 3-167

Figure 3-57   CJ8CE Implementation (XC7000 and XC9000)
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CJ8RE

8-Bit Johnson Counter with Clock Enable and
Synchronous Reset

CJ8RE is a resettable Johnson/shift counter. The synchronous reset
(R) input, when High, overrides all other inputs and causes the data
outputs (Q7 – Q0) to go to logic level zero during the Low-to-High
clock transition. The counter increments (shifts Q0 to Q1, Q1 to Q2,
and so forth) when the clock enable input (CE) is High during the
Low-to-High clock transition. Clock transitions are ignored when CE
is Low. The Q7 output is inverted and fed back to input Q0 to provide
continuous counting operation.

The default initial state of all flip-flops is zero.

qn = state of referenced output one set-up time prior to active clock transition

XC7000 XC9000

Macro Macro

Inputs Outputs

R CE C Q0 Q1 – Q7

1 X ↑ 0 0
0 0 X --No Change--
0 1 ↑ q7 q0 – q6

X4119

CJ8RE

C

R

CE

        Q[7:0]
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Figure 3-58   CJ8RE Implementation (XC7000 and XC9000)
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COMP2

2-Bit Identity Comparator

The equal output (EQ) of the COMP2 2-bit, identity comparator is
High when the two words A1 – A0 and B1 – B0 are equal. Equality is
determined by a bit comparison of the two words. When any two of
the corresponding bits from each word are not the same, the EQ
output is Low.

XC7000 XC9000

Macro MacroEQ

X4122

COMP2
A0

A1

B0

B1
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COMP4

4-Bit Identity Comparator

The equal output (EQ) of the COMP4 4-bit, identity comparator is
High when the two words A3 – A0 and B3 – B0 are equal. Equality is
determined by a bit comparison of the two words. When any two of
the corresponding bits from each word are not the same, the EQ
output is Low.

XC7000 XC9000

Macro Macro

X4126

COMP4

B1

B2

B3

B0

A3

A2

A1

A0

EQ
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COMP8

8-Bit Identity Comparator

The equal output (EQ) of the COMP8 8-bit, identity comparator is
High when the two words A7 – A0 and B7 – B0 are equal. Equality is
determined by a bit comparison of the two words. When any two of
the corresponding bits from each word are not the same, the EQ
output is Low.

Figure 3-59   COMP8 Implementation (XC7000 and XC9000)
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COMP16

16-Bit Identity Comparator

The equal output (EQ) of the COMP16 16-bit, identity comparator is
High when the two words A15 – A0 and B15 – B0 are equal. Equality
is determined by a bit comparison of the two words. When any two
of the corresponding bits from each word are not the same, the EQ
output is Low.

XC7000 XC9000

Macro Macro

A[15:0] COMP16

B[15:0]

EQ

X4133
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COMPM2

2-Bit Magnitude Comparator

COMPM2 is a 2-bit, magnitude comparator that compares two posi-
tive binary-weighted words A1 – A0 and B1 – B0, where A1 and B1
are the most significant bits. The greater-than output (GT) is High
when A>B, and the less-than output (LT) is High when A<B. When
the two words are equal, both GT and LT are Low. Equality can be
measured with this macro by comparing both outputs with a NOR
gate.

XC7000 XC9000

Macro Macro

Inputs Outputs

A1 B1 A0 B0 GT LT

0 0 0 0 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 1 1 0 0
1 1 0 0 0 0
1 1 1 0 1 0
1 1 0 1 0 1
1 1 1 1 0 0
1 0 X X 1 0
0 1 X X 0 1

X4123

COMPM2
A0

A1

B0

B1

GT

LT
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COMPM4

4-Bit Magnitude Comparator

* not supported for XC7336 designs

COMPM4 is a 4-bit, magnitude comparator that compares two posi-
tive binary-weighted words A3 – A0 and B3 – B0, where A3 and B3
are the most significant bits. The greater-than output (GT) is High
when A>B, and the less-than output (LT) is High when A<B. When
the two words are equal, both GT and LT are Low. Equality can be
measured with this macro by comparing both outputs with a NOR
gate.

XC7000 XC9000

Macro* Macro

Inputs Outputs

A3, B3 A2, B2 A1, B1 A0, B0 GT LT

A3>B3 X X X 1 0
A3<B3 X X X 0 1
A3=B3 A2>B2 X X 1 0
A3=B3 A2<B2 X X 0 1
A3=B3 A2=B2 A1>B1 X 1 0
A3=B3 A2=B2 A1<B1 X 0 1
A3=B3 A2=A2 A1=B1 A0>B0 1 0
A3=B3 A2=B2 A1=B1 A0<B0 0 1
A3=B3 A2=B2 A1=B1 A0=B0 0 0

X4127

COMPM4

B1

B2

B3

B0

A3

A2

A1

A0

LT

GT



Libraries Guide

3-176 XACT Development System

COMPM8

8-Bit Magnitude Comparator

* not supported for XC7336 designs

COMPM8 is an 8-bit, magnitude comparator that compares two posi-
tive binary-weighted words A7 – A0 and B7 – B0, where A7 and B7
are the most significant bits. The greater-than output (GT) is High
when A>B, and the less-than output (LT) is High when A<B. When
the two words are equal, both GT and LT are Low. Equality can be
measured with this macro by comparing both outputs with a NOR
gate. Refer to the “COMPM4” section earlier in this chapter for a
representative truth table.

XC7000 XC9000

Macro* Macro

A[7:0] COMPM8

B[7:0]
LT

GT

X4132
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Figure 3-60   COMPM8 Implementation (XC7000)
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Figure 3-61   COMPM8 Implementation (XC9000)
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COMPM16

16-Bit Magnitude Comparator

COMPM16 is a 16-bit, magnitude comparator that compares two
positive binary-weighted words A15 – A0 and B15 – B0, where A15
and B15 are the most significant bits. The greater-than output (GT) is
High when A>B, and the less-than output (LT) is High when A<B.
When the two words are equal, both GT and LT are Low. Equality can
be measured with this macro by comparing both outputs with a NOR
gate. Refer to the “COMPM4” section earlier in this chapter for a
representative truth table.

XC7000 XC9000

NA Macro

A[15:0] COMPM16

B[15:0]
LT

GT

X4134
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CR8CE

8-Bit Negative-Edge Binary Ripple Counter with
Clock Enable and Asynchronous Clear

CR8CE is an 8-bit, cascadable, clearable, binary, ripple counter. The
asynchronous clear (CLR), when High, overrides all other inputs and
causes the outputs (Q7 – Q0) to go to logic level zero. The counter
increments when the clock enable input (CE) is High during the
High-to-Low clock (C) transition. The counter ignores clock transi-
tions when CE is Low.

Larger counters can be created by connecting the Q7 output of the
first stage to the clock input of the next stage. CLR and CE inputs are
connected in parallel. The clock period is not affected by the overall
length of a ripple counter. The overall clock-to-output propagation is
n(TC - Q), where n is the number of stages and TC - Q is the C-to-Q7
propagation delay of each stage.

The default initial state of all flip-flops is zero. For XC7000, the clock
(C) cannot be driven by a FastCLK (BUFG).

XC7000 XC9000

Macro Macro

Inputs Outputs

CLR CE C Q7 – Q0

1 X X 0
0 0 X No Chg
0 1 ↓ Inc

X4116

CR8CE

C

CLR

    CE

        Q[7:0]
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Figure 3-62   CR8CE Implementation (XC7000 and XC9000)
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CR16CE

16-Bit Negative-Edge Binary Ripple Counter with
Clock Enable and Asynchronous Clear

CR16CE is a 16-bit, cascadable, clearable, binary, ripple counter. The
asynchronous clear (CLR), when High, overrides all other inputs and
causes the outputs (Q15 – Q0) to go to logic level zero. The counter
increments when the clock enable input (CE) is High during the
High-to-Low clock (C) transition. The counter ignores clock transi-
tions when CE is Low.

Larger counters can be created by connecting the Q15 output of the
first stage to the clock input of the next stage. CLR and CE inputs are
connected in parallel. The clock period is not affected by the overall
length of a ripple counter. The overall clock-to-output propagation is
n(TC - Q), where n is the number of stages and TC - Q is the C-to-Q15
propagation delay of each stage.

The default initial state of all flip-flops is zero. For XC7000, the clock
(C) cannot be driven by a FastCLK (BUFG).

XC7000 XC9000

Macro Macro

Inputs Outputs

CLR CE C Q15 – Q0

1 X X 0
0 0 X No Chg
0 1 ↓ Inc

X4120

CR16CE

C

CLR

CE

Q[15:0]
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D2_4E

2- to 4-Line Decoder/Demultiplexer with Enable

When the enable (EN) input of the D2_4E decoder/demultiplexer is
High, one of four active-High outputs (D3 – D0) is selected with a
2-bit binary address (A1 – A0) input. The non-selected outputs are
Low. Also, when the EN input is Low, all outputs are Low. In demul-
tiplexer applications, the EN input is the data input.

Figure 3-63   D2_4E Implementation (XC7000 and XC9000)

XC7000 XC9000

Macro Macro

Inputs Outputs

A1 A0 E D3 D2 D1 D0

X X 0 0 0 0 0
0 0 1 0 0 0 1
0 1 1 0 0 1 0
1 0 1 0 1 0 0
1 1 1 1 0 0 0

X3853

D2_4E

E

A1

D0

D3

D1

D2

A0

A0

A1

E

AND3B2
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D3_8E

3- to 8-Line Decoder/Demultiplexer with Enable

When the enable (EN) input of the D3_8E decoder/demultiplexer is
High, one of eight active-High outputs (D7 – D0) is selected with a
3-bit binary address (A2 – A0) input. The non-selected outputs are
Low. Also, when the EN input is Low, all outputs are Low. In demul-
tiplexer applications, the EN input is the data input.

XC7000 XC9000

Macro Macro

Inputs Outputs

A2 A1 A0 E D7 D6 D5 D4 D3 D2 D1 D0

X X X 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1
0 0 1 1 0 0 0 0 0 0 1 0
0 1 0 1 0 0 0 0 0 1 0 0
0 1 1 1 0 0 0 0 1 0 0 0
1 0 0 1 0 0 0 1 0 0 0 0
1 0 1 1 0 0 1 0 0 0 0 0
1 1 0 1 0 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0

X3854

D3_8E
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Figure 3-64   D3_8E Implementation (XC7000 and XC9000)
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D4_16E

4- to 16-Line Decoder/Demultiplexer with Enable

When the enable (EN) input of the D4_16E decoder/demultiplexer is
High, one of 16 active-High outputs (D15 – D0) is selected with a 4-bit
binary address (A3 – A0) input. The non-selected outputs are Low.
Also, when the EN input is Low, all outputs are Low. In demulti-
plexer applications, the EN input is the data input. Refer to “D3_8E”
for truth table derivation.

XC7000 XC9000

Macro Macro

X3855
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Figure 3-65   D4_16E Implementation (XC7000 and XC9000)
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FD, FD4, FD8, and FD16

Single and Multiple D Flip-Flops

FD is a single D-type flip-flop with data input (D) and data output
(Q). FD4, FD8, and FD16 are 4-bit, 8-bit, and 16-bit registers, each
with a common clock (C). The data on the D inputs is loaded into the
flip-flop during the Low-to-High clock (C) transition.

The default initial state of all flip-flops is zero.

Figure 3-66   FD Implementation (XC7000 and XC9000)
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Figure 3-67   FD8 Implementation (XC7000 and XC9000)
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FD4CE

4-Bit Data Register with Clock Enable and
Asynchronous Clear

When clock enable (CE) is High, and asynchronous clear (CLR) is
Low, the data on the four data inputs (D3 – D0) of FD4CE is trans-
ferred to the corresponding data outputs (Q3 – Q0) during the Low-
to-High clock (C) transition. When CLR is High, it overrides all other
inputs and resets the data outputs (Q3 – Q0) Low. When CE is Low,
clock transitions are ignored.

The default initial state of all flip-flops is zero.

dn = state of corresponding input one set-up time prior to active clock transition

XC7000 XC9000

Macro Macro

Inputs Outputs

CLR CE D3 – D0 C Q3 – Q0

1 X X X 0
0 0 X X No Chg
0 1 Dn ↑ dn

X3733
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FD4RE

4-Bit Data Register with Clock Enable and
Synchronous Reset

When the clock enable (CE) input is High, and the synchronous reset
(R) input is Low, the data on the four data inputs (D3 – D0) of FD4RE
is transferred to the corresponding data outputs (Q3 – Q0) during the
Low-to-High clock (C) transition. When R is High, it overrides all
other inputs and resets the data outputs (Q3 – Q0) Low on the Low-
to-High clock transition. When CE is Low, clock transitions are
ignored.

The default initial state of all flip-flops is zero.

dn = state of corresponding input one set-up time prior to active clock transition

XC7000 XC9000

Macro Macro

Inputs Outputs

R CE D3 – D0 C Q3 – Q0

1 X X ↑ 0
0 0 X X No Chg
0 1 Dn ↑ dn

X3734
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FD8CE

8-Bit Data Register with Clock Enable and
Asynchronous Clear

When clock enable (CE) is High, and asynchronous clear (CLR) is
Low, the data on the eight data inputs (D7 – D0) of FD8CE is trans-
ferred to the corresponding data outputs (Q7 – Q0) during the Low-
to-High clock (C) transition. When CLR is High, it overrides all other
inputs and resets the data outputs (Q7 – Q0) Low. When CE is Low,
clock transitions are ignored.

The default initial state of all flip-flops is zero.

dn = state of corresponding input one set-up time prior to active clock transition

XC7000 XC9000

Macro Macro

Inputs Outputs

CLR CE D7 – D0 C Q7 – Q0

1 X X X 0
0 0 X X No Chg
0 1 Dn ↑ dn

X3850

FD8CE

C

CLR

    CE

     D[7:0]         Q[7:0]
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Figure 3-68   FD8CE Implementation (XC7000 and XC9000)
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FD8RE

8-Bit Data Register with Clock Enable and
Synchronous Reset

When the clock enable (CE) input is High, and the synchronous reset
(R) input is Low, the data on the eight data inputs (D7 – D0) of FD8RE
is transferred to the corresponding data outputs (Q7 – Q0) during the
Low-to-High clock (C) transition. When R is High, it overrides all
other inputs and resets the data outputs (Q7 – Q0) Low on the Low-
to-High clock transition. When CE is Low, clock transitions are
ignored.

The default initial state of all flip-flops is zero.

dn = state of corresponding input one set-up time prior to active clock transition

XC7000 XC9000

Macro Macro
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0 0 X X No Chg
0 1 Dn ↑ dn
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     D[7:0]         Q[7:0]
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Figure 3-69   FD8RE Implementation (XC7000 and XC9000)
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FD16CE

16-Bit Data Register with Clock Enable and
Asynchronous Clear

When clock enable (CE) is High, and asynchronous clear (CLR) is
Low, the data on the 16 data inputs (D15 – D0) of FD16CE is trans-
ferred to the corresponding data outputs (Q15 – Q0) during the Low-
to-High clock (C) transition. When CLR is High, it overrides all other
inputs and resets the data outputs (Q15 – Q0) Low. When CE is Low,
clock transitions are ignored.

The default initial state of all flip-flops is zero.

dn = state of corresponding input one set-up time prior to active clock transition

XC7000 XC9000

Macro Macro

Inputs Outputs

CLR CE D15 – D0 C Q15 – Q0

1 X X X 0
0 0 X X No Chg
0 1 Dn ↑ dn
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FD16RE

16-Bit Data Register with Clock Enable and
Synchronous Reset

When the clock enable (CE) input is High, and the synchronous reset
(R) input is Low, the data on the 16 data inputs (D15 – D0) of FD16RE
is transferred to the corresponding data outputs (Q15 – Q0) during
the Low-to-High clock (C) transition. When R is High, it overrides all
other inputs and resets the data outputs (Q15 – Q0) Low on the Low-
to-High clock transition. When CE is Low, clock transitions are
ignored.

The default initial state of all flip-flops is zero.

dn = state of corresponding input one set-up time prior to active clock transition

XC7000 XC9000

Macro Macro

Inputs Outputs

R CE D15 – D0 C Q15 – Q0

1 X X ↑ 0
0 0 X X No Chg
0 1 Dn ↑ dn
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FDC

D Flip-Flop with Asynchronous Clear

FDC is a single D-type flip-flop with data (D) and asynchronous clear
(CLR) inputs and data output (Q). The asynchronous CLR, when
High, overrides all other inputs and sets the Q output Low. The data
on the D input is loaded into the flip-flop when CLR is Low on the
Low-to-High clock transition.

The default initial state of the flip-flop is zero.

Figure 3-70   FDC Implementation (XC7000 and XC9000)
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FDCE

D Flip-Flop with Clock Enable and Asynchronous
Clear

When clock enable (CE) is High, and asynchronous clear (CLR) is
Low, the data on the data input (D) of FDCE is transferred to the
corresponding data output (Q) during the Low-to-High clock (C)
transition. When CLR is High, it overrides all other inputs and resets
the data output (Q) Low. When CE is Low, clock transitions are
ignored.

The default initial state of the flip-flop is zero.

Figure 3-71   FDCE Implementation (XC7000 and XC9000)
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FDCP

D Flip-Flop with Asynchronous Preset and Clear

FDCP is a single D-type flip-flop with data (D), asynchronous preset
(PRE) and clear (CLR) inputs, and data output (Q). The asynchronous
PRE, when High, sets the Q output High; CLR, when High, resets the
output Low. When both PRE and CLR are active, the flip-flop output
is unpredictable. Data on the D input is loaded into the flip-flop when
PRE and CLR are Low on the Low-to-High clock (C) transition.

The default initial state of the flip-flop is zero.

Note: For the XC7336, the PRE and CLR inputs cannot both be used.

XC7000 XC9000

Primitive Primitive

Inputs Outputs

CLR PRE D C Q

1 0 X X 0
0 1 X X 1
0 0 0 ↑ 0
0 0 1 ↑ 1
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FDCPE

D Flip-Flop with Clock Enable and Asynchronous
Preset and Clear

FDCPE is a single D-type flip-flop with data (D), clock enable (CE),
asynchronous preset (PRE), and asynchronous clear (CLR) inputs
and data output (Q). The asynchronous PRE, when High, sets the Q
output High; CLR, when High, resets the output Low. When both
PRE and CLR are active, the flip-flop output is unpredictable. Data on
the D input is loaded into the flip-flop when PRE and CLR are Low
and CE is High. When CE is Low, the clock transitions are ignored.

The default initial state of the flip-flop is zero.

Note: For the XC7336, the PRE and CLR inputs cannot both be used.

XC7000 XC9000

Macro Macro

Inputs Outputs

CLR PRE CE D C Q

1 0 X X X 0
0 1 X X X 1
0 0 0 X X No Chg
0 0 1 0 ↑ 0
0 0 1 1 ↑ 1
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Figure 3-72   FDCPE Implementation (XC7000 and XC9000)
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FDP

D Flip-Flop with Asynchronous Preset

FDP is a single D-type flip-flop with data (D) and asynchronous
preset (PRE) inputs, and data output (Q). The asynchronous PRE,
when High, overrides all other inputs and presets the Q output High.
The data on the D input is loaded into the flip-flop when PRE is Low
on the Low-to-High clock (C) transition.

The default initial state of the flip-flop is zero.

Figure 3-73   FDP Implementation (XC7000 and XC9000)
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FDPE

D Flip-Flop with Clock Enable and Asynchronous
Preset

FDPE is a single D-type flip-flop with data (D), clock enable (CE), and
asynchronous preset (PRE) inputs and data output (Q). The asynchro-
nous PRE, when High, overrides all other inputs and sets the Q
output High. Data on the D input is loaded into the flip-flop when
PRE is Low and CE is High on the Low-to-High clock (C) transition.
When CE is Low, the clock transitions are ignored. The default initial
state of the flip-flop is zero.

Figure 3-74   FDPE Implementation (XC7000 and XC9000)
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FDR

D Flip-Flop with Synchronous Reset

FDR is a single D-type flip-flop with data (D) and synchronous reset
(R) inputs and data output (Q). The synchronous reset (R) input,
when High, overrides all other inputs and resets the Q output Low
on the Low-to-High clock (C) transition. The data on the D input is
loaded into the flip-flop when R is Low during the Low-to-High
clock transition.

The default initial state of the flip-flop is zero.

Figure 3-75   FDR Implementation (XC7000 and XC9000)
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FDRE

D Flip-Flop with Clock Enable and Synchronous
Reset

FDRE is a single D-type flip-flop with data (D), clock enable (CE), and
synchronous reset (R) inputs and data output (Q). The synchronous
reset (R) input, when High, overrides all other inputs and resets the Q
output Low on the Low-to-High clock (C) transition. The data on the
D input is loaded into the flip-flop when R is Low and CE is High
during the Low-to-High clock transition.

The default initial state of the flip-flop is zero.
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Figure 3-76   FDRE Implementation (XC7000 and XC9000)

R

Q
D

Q

FD

QD

C

AND3B2

CE

+5

VCC

AND2

AND3B1
C

OR2



Libraries Guide

3-208 XACT Development System

FDRS

D Flip-Flop with Synchronous Reset and
Synchronous Set

FDRS is a single D-type flip-flop with data (D), synchronous set (S),
and synchronous reset (R) inputs and data output (Q). The synchro-
nous reset (R) input, when High, overrides all other inputs and resets
the Q output Low during the Low-to-High clock (C) transition. (Reset
has precedence over Set.) When S is High and R is Low, the flip-flop is
set, output High, during the Low-to-High clock transition. When R
and S are Low, data on the (D) input is loaded into the flip-flop
during the Low-to-High clock transition.

The default initial state of the flip-flop is zero.

Figure 3-77   FDRS Implementation (XC7000 and XC9000)
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FDRSE

D Flip-Flop with Synchronous Reset and Set and
Clock Enable

FDRSE is a single D-type flip-flop with synchronous reset (R),
synchronous set (S), and clock enable (CE) inputs and data output
(Q). The reset (R) input, when High, overrides all other inputs and
resets the Q output Low during the Low-to-High clock transition.
(Reset has precedence over Set.) When the set (S) input is High and R
is Low, the flip-flop is set, output High, during the Low-to-High clock
(C) transition. Data on the D input is loaded into the flip-flop when R
and S are Low and CE is High during the Low-to-High clock transi-
tion.

The default initial state of the flip-flop is zero.

XC7000 XC9000

Macro Macro

Inputs Outputs
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Figure 3-78   FDRSE Implementation (XC7000 and XC9000)
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FDS

D Flip-Flop with Synchronous Set

FDS is a single D-type flip-flop with data (D) and synchronous set (S)
inputs and data output (Q). The synchronous set input, when High,
sets the Q output High on the Low-to-high clock (C) transition. The
data on the D input is loaded into the flip-flop when S is Low during
the Low-to-High clock (C) transition.

The default initial state of the flip-flop is zero.

Figure 3-79   FDS Implementation (XC7000 and XC9000)
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FDSE

D Flip-Flop with Clock Enable and Synchronous Set

FDSE is a single D-type flip-flop with data (D), clock enable (CE), and
synchronous set (S) inputs and data output (Q). The synchronous set
(S) input, when High, overrides the clock enable (CE) input and sets
the Q output High during the Low-to-High clock (C) transition. The
data on the D input is loaded into the flip-flop when S is Low and CE
is High during the Low-to-High clock (C) transition.

The default initial state of the flip-flop is zero.

Figure 3-80   FDSE Implementation (XC7000 and XC9000)
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FDSR

D Flip-Flop with Synchronous Set and Reset

FDSR is a single D-type flip-flop with data (D), synchronous reset (R)
and synchronous set (S) inputs and data output (Q). When the set (S)
input is High, it overrides all other inputs and sets the Q output High
during the Low-to-High clock transition. (Set has precedence over
Reset.) When reset (R) is High and S is Low, the flip-flop is reset,
output Low, on the Low-to-High clock transition. Data on the D input
is loaded into the flip-flop when S and R are Low on the Low-to-High
clock transition.

The default initial state of the flip-flop is zero.

Figure 3-81   FDSR Implementation (XC7000 and XC9000)
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FDSRE

D Flip-Flop with Synchronous Set and Reset and
Clock Enable

FDSRE is a single D-type flip-flop with synchronous set (S), synchro-
nous reset (R), and clock enable (CE) inputs and data output (Q).
When synchronous set (S) is High, it overrides all other inputs and
sets the Q output High during the Low-to-High clock transition. (Set
has precedence over Reset.) When synchronous reset (R) is High and
S is Low, output Q is reset Low during the Low-to-High clock transi-
tion. Data is loaded into the flip-flop when S and R are Low and CE is
High during the Low-to-high clock transition. When CE is Low, clock
transitions are ignored.

The default initial state of the flip-flop is zero.
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Figure 3-82   FDSRE Implementation (XC7000 and XC9000)
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FJKC

J-K Flip-Flop with Asynchronous Clear

FJKC is a single J-K-type flip-flop with J, K, and asynchronous clear
(CLR) inputs and data output (Q). The asynchronous clear (CLR)
input, when High, overrides all other inputs and resets the Q output
Low. When CLR is Low, the output responds to the state of the J and
K inputs, as shown in the following truth table, during the Low-to-
High clock (C) transition.

The default initial state of the flip-flop is zero.

Figure 3-83   FJKC Implementation (XC7000 and XC9000)
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FJKCE

J-K Flip-Flop with Clock Enable and Asynchronous
Clear

FJKCE is a single J-K-type flip-flop with J, K, clock enable (CE), and
asynchronous clear (CLR) inputs and data output (Q). The asynchro-
nous clear (CLR), when High, overrides all other inputs and resets
the Q output Low. When CLR is Low and CE is High, Q responds to
the state of the J and K inputs, as shown in the following truth table,
during the Low-to-High clock transition. When CE is Low, the clock
transitions are ignored.

The default initial state of the flip-flop is zero.
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Macro Macro
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Figure 3-84   FJKCE Implementation (XC7000 and XC9000)
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FJKCP

J-K Flip-Flop with Asynchronous Clear and Preset

* not supported for XC7336 designs

FJKCP is a single J-K-type flip-flop with J, K, asynchronous clear
(CLR), and asynchronous preset (PRE) inputs and data output (Q).
The asynchronous clear input (CLR), when High, overrides all other
inputs and resets the Q output Low. The asynchronous preset (PRE)
input, when High, overrides all other inputs and sets the Q output
High. When both CLR and PRE are active, the flip-flop output is
unpredictable. When CLR and PRE are Low, Q responds to the state
of the J and K inputs during the Low-to-High clock transition, as
shown in the following truth table.

The default initial state of the flip-flop is zero.

Note: For XC7336, the PRE and CLR inputs cannot both be used.

XC7000 XC9000

Macro* Macro

Inputs Outputs
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1 0 X X X 0
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Figure 3-85   FJKCP Implementation (XC7000 and XC9000)
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FJKCPE

J-K Flip-Flop with Asynchronous Clear and Preset
and Clock Enable

* not supported for XC7336 designs

FJKCPE is a single J-K-type flip-flop with J, K, asynchronous clear
(CLR), asynchronous preset (PRE), and clock enable (CE) inputs and
data output (Q). The asynchronous clear input (CLR), when High,
overrides all other inputs and resets the Q output Low. The asynchro-
nous preset (PRE) input, when High, overrides all other inputs and
sets the Q output High. When both CLR and PRE are active, the flip-
flop output is unpredictable. When CLR and PRE are Low and CE is
High, Q responds to the state of the J and K inputs, as shown in the
following truth table, during the Low-to-High clock transition. Clock
transitions are ignored when CE is Low.

The default initial state of the flip-flop is zero.

Note: For XC7336, the PRE and CLR inputs cannot both be used.
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Macro* Macro
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0 0 1 1 1 ↑ Toggle

Q

J

C

FJKCPE

 K

PRE

  CE

CLR X4391



Libraries Guide

3-222 XACT Development System

Figure 3-86   FJKCPE Implementation (XC7000 and XC9000)
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FJKP

J-K Flip-Flop with Asynchronous Preset

FJKP is a single J-K-type flip-flop with J, K, and asynchronous preset
(PRE) inputs and data output (Q). The asynchronous preset (PRE)
input, when High, overrides all other inputs and sets the Q output
High on the Low-to-High clock (C) transition. When PRE is Low, the
Q output responds to the state of the J and K inputs, as shown in the
following truth table, during the Low-to-High clock transition. The
default initial state of the flip-flop is zero.

Figure 3-87   FJKP Implementation (XC7000 and XC9000)
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FJKPE

J-K Flip-Flop with Clock Enable and Asynchronous
Preset

FJKPE is a single J-K-type flip-flop with J, K, clock enable (CE), and
asynchronous preset (PRE) inputs and data output (Q). The asynchro-
nous preset (PRE), when high, overrides all other inputs and sets the
Q output High. When PRE is Low and CE is High, the Q output
responds to the state of the J and K inputs, according to the following
truth table, during the Low-to-High clock (C) transition. When CE is
Low, clock transitions are ignored. The default initial state of the flip-
flop is zero.
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Figure 3-88   FJKPE Implementation (XC7000 and XC9000)
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FJKRSE

J-K Flip-Flop with Clock Enable and Synchronous
Reset and Set

FJKRSE is a single J-K-type flip-flop with J, K, synchronous reset (R),
synchronous set (S), and clock enable (CE) inputs and data output
(Q). When synchronous reset (R) is High, all other inputs are ignored
and output Q is reset Low. (Reset has precedence over Set.) When
synchronous set (S) is High and R is Low, output Q is set High. When
R and S are Low and CE is High, output Q responds to the state of the
J and K inputs, according to the following truth table, during the
Low-to-High clock (C) transition. When CE is Low, clock transitions
are ignored.

The default initial state of the flip-flop is zero.

XC7000 XC9000

Macro Macro

Inputs Outputs

R S CE J K C Q

1 X X X X ↑ 0
0 1 X X X ↑ 1
0 0 0 X X X No Chg
0 0 1 0 0 X No Chg
0 0 1 0 1 ↑ 0
0 0 1 1 0 ↑ 1
0 0 1 1 1 ↑ Toggle

Q

J

C

FJKRSE

 K

S

      CE

R
X3760
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Figure 3-89   FJKRSE Implementation (XC7000 and XC9000)
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FJKSRE

J-K Flip-Flop with Clock Enable and Synchronous
Set and Reset

FJKSRE is a single J-K-type flip-flop with J, K, synchronous set (S),
synchronous reset (R), and clock enable (CE) inputs and data output
(Q). When synchronous set (S) is High, all other inputs are ignored
and output Q is set High. (Set has precedence over Reset.) When
synchronous reset (R) is High and S is Low, output Q is reset Low.
When S and R are Low and CE is High, output Q responds to the state
of the J and K inputs, as shown in the following truth table, during
the Low-to-High clock (C) transition. When CE is Low, clock transi-
tions are ignored.

The default initial state of the flip-flop is zero.

XC7000 XC9000

Macro Macro

Inputs Outputs

S R CE J K C Q

1 X X X X ↑ 1
0 1 X X X ↑ 0
0 0 0 X X X No Chg
0 0 1 0 0 X No Chg
0 0 1 0 1 ↑ 0
0 0 1 1 0 ↑ 1
0 0 1 1 1 ↑ Toggle

Q

J

C

FJKSRE

 K

S

      CE

R
X3759
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Figure 3-90   FJKSRE Implementation (XC7000 and XC9000)
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FTC

Toggle Flip-Flop with Toggle Enable and
Asynchronous Clear

FTC is a synchronous, resettable toggle flip-flop. The asynchronous
clear (CLR) input, when High, overrides all other inputs and resets
the data output (Q) Low. The Q output toggles, or changes state,
when the toggle enable (T) input is High and CLR is Low during the
Low-to-High clock transition.

The default initial state of the flip-flop is zero.

Figure 3-91   FTC Implementation (XC7000 and XC9000)

XC7000 XC9000

Macro Macro

Inputs Outputs

CLR T C Q

1 X X 0
0 0 X No Chg
0 1 ↑ Toggle

Q
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C
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FTCE

Toggle Flip-Flop with Toggle and Clock Enable and
Asynchronous Clear

When the asynchronous clear (CLR) input is High, all other inputs
are ignored and the data output (Q) is reset Low. When CLR is Low
and toggle enable (T) and clock enable (CE) are High, Q output
toggles, or changes state, during the Low-to-High clock (C) transi-
tion. When CE is Low, clock transitions are ignored.

The default initial state of the flip-flop is zero.

Figure 3-92   FTCE Implementation (XC7000 and XC9000)
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Macro Macro

Inputs Outputs

CLR CE T C Q

1 X X X 0
0 0 X X No Chg
0 1 0 X No Chg
0 1 1 ↑ Toggle
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FTCLE

Toggle/Loadable Flip-Flop with Toggle and Clock
Enable and Asynchronous Clear

When the asynchronous clear input (CLR) is High, all other inputs
are ignored and output Q is reset Low. When load enable input (L) is
High and CLR is Low, clock enable (CE) is overridden and the data
on data input (D) is loaded into the flip-flop during the Low-to-High
clock (C) transition. When toggle enable (T) and CE are High and L
and CLR are Low, output Q toggles, or changes state, during the
Low- to-High clock transition. When CE is Low, clock transitions are
ignored.

The default initial state of the flip-flop is zero.

XC7000 XC9000

Macro Macro

Inputs Outputs

CLR L CE T D C Q

1 X X X X X 0
0 1 X X 1 ↑ 1
0 1 X X 0 ↑ 0
0 0 0 X X X No Chg
0 0 1 0 X X No Chg
0 0 1 1 X ↑ Toggle

X3769

FTCLE

C

CE

T

L

D

CLR

Q



Design Elements

Libraries Guide 3-233

Figure 3-93   FTCLE Implementation (XC7000 and XC9000)
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FTCP

Toggle Flip-Flop with Toggle Enable and
Asynchronous Clear and Preset

When the asynchronous clear (CLR) input is High, all other inputs
are ignored and the output (Q) is reset Low. When the asynchronous
preset (PRE) input is High, all other inputs are ignored and Q is set
High. When the toggle enable input (T) is High and CLR and PRE are
Low, output Q toggles, or changes state, during the Low-to-High
clock (C) transition. When both PRE and CLR are active, the flip-flop
output is unpredictable.

The default initial state of the flip-flop is zero.

Note: For XC7336, the PRE and CLR inputs cannot both be used.

XC7000 XC9000

Macro* Macro

Inputs Outputs

CLR PRE T C Q

1 0 X X 0
0 1 X X 1
0 0 0 X No Chg
0 0 1 ↑ Toggle

Q

T

C

FTCP

PRE

CLR X4392
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Figure 3-94   FTCP Implementation (XC7000 and XC9000)
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FTCPE

Toggle Flip-Flop with Toggle and Clock Enable and
Asynchronous Clear and Preset

* not supported for XC7336 designs

When the asynchronous clear (CLR) input is High, all other inputs
are ignored and the output (Q) is reset Low. When the asynchronous
preset (PRE) input is High, all other inputs are ignored and Q is set
High. When the toggle enable input (T) and the clock enable input
(CE) are High and CLR and PRE are Low, output Q toggles, or
changes state, during the Low-to-High clock (C) transition. Clock
transitions are ignored when CE is Low. When both CLR and PRE are
active, the flip-flop output is unpredictable.

The default initial state of the flip-flop is zero.

Note: For XC7336, the PRE and CLR inputs cannot both be used.

XC7000 XC9000

Macro* Macro

Inputs Outputs

CLR PRE CE T C Q

1 0 X X X 0
0 1 X X X 1
0 0 0 X X No Chg
0 0 1 0 X No Chg
0 0 1 1 ↑ Toggle

Q

T

C

FTCPE

 CE

PRE

CLR X4393
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Figure 3-95   FTCPE Implementation (XC7000 and XC9000)
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FTCPLE

Loadable Toggle Flip-Flop with Toggle and Clock
Enable and Asynchronous Clear and Preset

* not supported for XC7336 designs

When the asynchronous clear (CLR) input is High, all other inputs
are ignored and the output (Q) is reset Low. When the asynchronous
preset (PRE) input is High, all other inputs are ignored and Q is set
High. The load input (L) loads the data on input D into the flip-flop
on the Low-to-High clock transition, regardless of the state of the
clock enable (CE). When the toggle enable input (T) and the clock
enable input (CE) are High and CLR, PRE, and L are Low, output Q
toggles, or changes state, during the Low-to-High clock (C) transi-
tion. Clock transitions are ignored when CE is Low. When both CLR
and PRE are active, the flip-flop output is unpredictable.

The default initial state of the flip-flop is zero.

Note: For XC7336, the PRE and CLR inputs cannot both be used.

XC7000 XC9000

Macro* Macro

Inputs Outputs

CLR PRE L CE T C D Q

1 0 X X X X X 0
0 1 X X X X X 1
0 0 1 X X ↑ 0 0
0 0 1 X X ↑ 1 1
0 0 0 0 X X X No Chg
0 0 0 1 0 X X No Chg
0 0 0 1 1 ↑ X Toggle

Q

D

C

FTCPLE

 CE

PRE

CLR X4394

T

 L
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Figure 3-96   FTCPLE Implementation (XC7000 and XC9000)
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FTP

Toggle Flip-Flop with Toggle Enable and
Asynchronous Preset

When the asynchronous preset (PRE) input is High, all other inputs
are ignored and output Q is set High. When toggle enable input (T) is
High and PRE is Low, output Q toggles, or changes state, during the
Low-to-High clock (C) transition. The default initial state of the flip-
flop is zero.

Figure 3-97   FTP Implementation (XC7000 and XC9000)

XC7000 XC9000
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PRE T C Q

1 X X 1
0 0 X No Chg
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FTPE

Toggle Flip-Flop with Toggle and Clock Enable and
Asynchronous Preset

When the asynchronous preset (PRE) input is High, all other inputs
are ignored and output Q is set High during the Low-to-High clock
(C) transition. When the toggle enable input (T) is High, clock enable
(CE) is High, and PRE is Low, output Q toggles, or changes state,
during the Low-to-High clock transition. When CE is Low, clock tran-
sitions are ignored. The default initial state of the flip-flop is zero.

XC7000 XC9000

Macro Macro

Inputs Outputs

PRE CE T C Q

1 X X X 1
0 0 X X No Chg
0 1 0 X No Chg
0 1 1 ↑ Toggle

X3765

FTPE

C

CE

QT

PRE
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Figure 3-98   FTPE Implementation (XC7000 and XC9000)
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FTPLE

Toggle/Loadable Flip-Flop with Toggle and Clock
Enable and Asynchronous Preset

When the asynchronous preset input (PRE) is High, all other inputs
are ignored and output Q is set High during the Low-to-High clock
(C) transition. When the load enable input (L) is High and PRE is
Low, the clock enable (CE) is overridden and the data on input (D) is
loaded into the flip-flop during the Low-to-High clock transition.
When L and PRE are Low and toggle enable input (T) and CE are
High, output Q toggles, or changes state, during the Low-to-High
clock transition. When CE is Low, clock transitions are ignored. The
default initial state of the flip-flop is zero.

XC7000 XC9000

Macro Macro

Inputs Outputs

PRE L CE T D C Q

1 X X X X X 1
0 1 X X 1 ↑ 1
0 1 X X 0 ↑ 0
0 0 0 X X X No Chg
0 0 1 0 X X No Chg
0 0 1 1 X ↑ Toggle

X3770

C

CE

T

L

D

Q

PRE

FTPLE
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Figure 3-99   FTPLE Implementation (XC7000 and XC9000)
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FTRSE

Toggle Flip-Flop with Toggle and Clock Enable and
Synchronous Reset and Set

When the synchronous reset input (R) is High, it overrides all other
inputs and the data output (Q) is reset Low. When the synchronous
set input (S) is High and R is Low, clock enable input (CE) is over-
ridden and output Q is set High. (Reset has precedence over Set.)
When toggle enable input (T) and CE are High and R and S are Low,
output Q toggles, or changes state, during the Low-to-High clock
transition.

The default initial state of the flip-flop is zero.

XC7000 XC9000

Macro Macro

Inputs Outputs

R S CE T C Q

1 X X X ↑ 0
0 1 X X ↑ 1
0 0 0 X X No Chg
0 0 1 0 X No Chg
0 0 1 1 ↑ Toggle

X3768

FTRSE

C

CE

QT

R

S



Libraries Guide

3-246 XACT Development System

Figure 3-100   FTRSE Implementation (XC7000 and XC9000)
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FTRSLE

Toggle/Loadable Flip-Flop with Toggle and Clock
Enable and Synchronous Reset and Set

The synchronous reset input (R), when High, overrides all other
inputs and resets the data output (Q) Low. (Reset has precedence
over Set.) When R is Low and synchronous set input (S) is High, the
clock enable input (CE) is overridden and output Q is set High. When
R and S are Low and load enable input (L) is High, CE is overridden
and data on data input (D) is loaded into the flip-flop during the
Low-to-High clock transition. When R, S, and L are Low and CE is
High, output Q toggles, or changes state, during the Low-to-High
clock transition. When CE is Low, clock transitions are ignored.

The default initial state of the flip-flop is zero.

XC7000 XC9000

Macro Macro

Inputs Outputs

R S L CE T D C Q

1 0 X X X X ↑ 0
0 1 X X X X ↑ 1
0 0 1 X X 1 ↑ 1
0 0 1 X X 0 ↑ 0
0 0 0 0 X X X No Chg
0 0 0 1 0 X X No Chg
0 0 0 1 1 X ↑ Toggle

X3773

FTRSLE

C

CE

T

L

D

R

Q

S
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Figure 3-101   FTRSLE Implementation (XC7000 and XC9000)
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FTSRE

Toggle Flip-Flop with Toggle and Clock Enable and
Synchronous Set and Reset

The synchronous set input, when High, overrides all other inputs
and sets data output (Q) High. (Set has precedence over Reset.) When
synchronous reset input (R) is High and S is Low, clock enable input
(CE) is overridden and output Q is reset Low. When toggle enable
input (T) and CE are High and S and R are Low, output Q toggles, or
changes state, during the Low-to-High clock transition.

The default initial state of the flip-flop is zero.

XC7000 XC9000

Macro Macro

Inputs Outputs

S R CE T C Q

1 X X X ↑ 1
0 1 X X ↑ 0
0 0 0 X X No Chg
0 0 1 0 X No Chg
0 0 1 1 ↑ Toggle

X3767

FTSRE

C

CE

QT

R

S
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Figure 3-102   FTSRE Implementation (XC7000 and XC9000)
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FTSRLE

Toggle/Loadable Flip-Flop with Toggle and Clock
Enable and Synchronous Set and Reset

The synchronous set input (S), when High, overrides all other inputs
and sets data output (Q) High. (Set has precedence over Reset.) When
synchronous reset (R) is High and S is Low, clock enable input (CE) is
overridden and output Q is reset Low. When load enable input (L) is
High and S and R are Low, CE is overridden and data on data input
(D) is loaded into the flip-flop during the Low-to-High clock transi-
tion. When the toggle enable input (T) and CE are High and S, R, and
L are Low, output Q toggles, or changes state, during the Low-to-
High clock transition. When CE is Low, clock transitions are ignored.

The default initial state of the flip-flop is zero.

XC7000 XC9000

Macro Macro

Inputs Outputs

S R L CE T D C Q

1 0 X X X X ↑ 1
0 1 X X X X ↑ 0
0 0 1 X X 1 ↑ 1
0 0 1 X X 0 ↑ 0
0 0 0 0 X X X No Chg
0 0 0 1 0 X X No Chg
0 0 0 1 1 X ↑ Toggle

X3772
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Figure 3-103   FTSRLE Implementation (XC7000 and XC9000)
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GND

Ground-Connection Signal Tag

The GND signal tag, or parameter, forces a net or input function to a
Low logic level. A net tied to GND cannot have any other source.

When the software encounters a net or input function tied to GND, it
removes any logic that is disabled by the GND signal. The GND
signal is only implemented when the disabled logic cannot be
removed.

XC7000 XC9000

Primitive PrimitiveX3858
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IBUF, IBUF4, IBUF8, and IBUF16

Single- and Multiple-Input Buffers

IBUF, IBUF4, IBUF8, and IBUF16 are single and multiple input
buffers. An IBUF isolates the internal circuit from the signals coming
into a chip. IBUFs are contained in input/output blocks (IOB). IBUF
inputs (I) are connected to an IPAD or an IOPAD. IBUF outputs (O)
are connected to the internal circuit.

Figure 3-104   IBUF8 Implementation (XC7000 and XC9000)

Name XC7000 XC9000

IBUF Primitive Primitive
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IFD, IFD4, IFD8, and IFD16

Single- and Multiple-Input D Flip-Flops

* not supported for XC7336 designs

The IFD D-type flip-flop is contained in an input/output block (IOB).
The input (D) of the flip-flop is connected to an IPAD or an IOPAD
(without using an IBUF). The D input provides data input for the flip-
flop, which synchronizes data entering the chip. The data on input D
is loaded into the flip-flop during the Low-to-High clock (C) transi-
tion and appears at the output (Q). The clock input is controlled by
the internal circuit. For XC7000 CPLDs, the clock (C) can only be
driven by a FastCLK represented by the BUFG symbol.

The initial state of all flip-flops is zero, except for XC7000 CPLDs,
where the initial state is always one.

Figure 3-105   IFD Implementation (XC7000)
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Figure 3-106   IFD Implementation (XC9000)
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Figure 3-107   IFD8 Implementation (XC7000 and XC9000)
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IFDX1, IFD4X1, IFD8X1, and IFD16X1

Input D Flip-Flops for XC7000

* not supported for XC7336 designs

The IFDX1 symbols are D-type flip-flops with synchronous clock
enable implemented in the input blocks of an XC7000 device. They
are commonly used to synchronize and store data entering a chip.
The data input (D) of the flip-flop is connected directly to an IPAD or
an IOPAD (without using an IBUF). When the clock enable (CE) input
is Low, the data on input D is loaded into the flip-flop during the
Low-to-High clock (C) transition and appears at the output (Q). The
flip-flop ignores clock transitions when CE is High.

The clock input (C) must be driven by a global FastCLK net of the
XC7000 device, represented by the BUFG symbol. The clock enable
input (CE) must be driven by a global clock enable net of the XC7000
device, represented by the BUFCE symbol.

The initial state of all flip-flops is zero, except for XC7000 CPLDs,
where the initial state is always one.

Name XC7000 XC9000

IFDX1 Primitive*  NA
IFD4X1,
IFD8X1,
IFD16X1

Macro*  NA

Inputs Outputs

D CE C Q

X 1 X No Chg
0 0 ↑ 0
1 0 ↑ 1

X4213

IFDX1

C
CE

D Q

X4216

IFD4X1
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D3

D2

D1

D0 Q0

Q1

Q2

Q3
CE

X4219

IFD8X1

C
CE

D[7:0] Q[7:0]

X4222

IFD16X1

C
CE

D[15:0] Q[15:0]
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Figure 3-108   IFD8X1 Implementation (XC7000)
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ILD, ILD4, ILD8, and ILD16

Input Transparent Data Latches

* not supported for XC7336 designs

ILD, ILD4, ILD8, and ILD16 are single or multiple transparent data
latches, which can be used to hold transient data entering a chip. The
latch input (D) is connected to an IPAD or an IOPAD (without using
an IBUF). When the gate input (G) is High, data on the inputs (D)
appears on the outputs (Q). Data on the D inputs during the High-to-
Low G transition is stored in the latch. For XC7000 CPLDs, the gate
input (G) must be driven by a FastCLK, represented by the BUFG
symbol.

The default state of all latches is zero, except for XC7000 CPLDs,
where the initial state is always one.
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Figure 3-109   ILD8 Implementation (XC7000)
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INV, INV4, INV8, and INV16

Single and Multiple Inverters

These single and multiple inverters identify signal inversions in a
schematic.

Figure 3-110   INV8 Implementation (XC7000 and XC9000)
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IOPAD, IOPAD4, IOPAD8, and IOPAD16

Input/Output Pads

IOPAD, IOPAD4, IOPAD8, and IOPAD16 are single and multiple
input/output pads. The IOPAD is a connection point from a device
pin, used as a bidirectional signal, to a PLD device. The IOPAD is
connected internally to an input/output block (IOB), which is config-
ured by the XACT software as a bidirectional block. Bidirectional
blocks can consist of any combinations of a 3-state output buffer
(such as OBUFT or OFDE) and any available input buffer (such as
IBUF or IFD).

Figure 3-111   IOPAD8 Implementation (XC7000 and XC9000)
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IPAD, IPAD4, IPAD8, and IPAD16

Single- and Multiple-Input Pads

IPAD, IPAD4, IPAD8, and IPAD16 are single and multiple input pads
(IPADs). The IPAD is a connection point from a device pin used for an
input signal to the PLD device. It is connected internally to an
input/output block (IOB), which is configured by the XACT software
as an IBUF, IFD or ILD.

Figure 3-112   IPAD8 Implementation (XC7000 and XC9000)
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LD, LD4, LD8, and LD16

Single and Multiple Transparent Data Latches

* not supported for XC7336 designs

The data output (Q) of the latch reflects the data (D) input while the
gate enable (G) input is High. The data on the D input during the
High-to-Low gate transition is stored in the latch. The data on the Q
output remains unchanged as long as G remains Low. LD4, LD8, and
LD16 have 4, 8, and 16 transparent latches, respectively, with a
common Gate enable (G).

The default initial state of all latches is zero. For XC7000 and XC9000
designs, the G input may not be driven by a global clock signal
(BUFG).

d = state of input one set-up time prior to High-to-Low gate transition

Element XC7000 XC9000
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Figure 3-113   LD Implementation (XC7000 and XC9000)

Figure 3-114   LD8 Implementation (XC7000 and XC9000)
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M2_1

2-to-1 Multiplexer

The M2_1 multiplexer chooses one data bit from two sources (D1 or
D0) under the control of the select input (S0). The output (O) reflects
the state of the selected data input. When Low, S0 selects D0 and
when High, S0 selects D1.

Figure 3-115   M2_1 Implementation (XC7000 and XC9000)
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M2_1B1

2-to-1 Multiplexer with D0 Inverted

The M2_1B1 multiplexer chooses one data bit from two sources (D1
or D0) under the control of select input (S0). When S0 is Low, the
output (O) reflects the state of D0. When S0 is High, O reflects the
state of D1.

Figure 3-116   M2_1B1 Implementation (XC7000 and XC9000)
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M2_1B2

2-to-1 Multiplexer with D0 and D1 Inverted

The M2_1B2 multiplexer chooses one data bit from two sources (D1
or D0) under the control of select input (S0). When S0 is Low, the
output (O) reflects the state of D0. When S0 is High, O reflects the
state of D1.

Figure 3-117   M2_1B2 Implementation (XC7000 and XC9000)
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M2_1E

2-to-1 Multiplexer with Enable

When the enable input (E) is High, the M2_1E chooses one data bit
from two sources (D1 or D0) under the control of select input (S0).
When E is High, the output (O) reflects the state of the selected input.
When Low, S0 selects D0 and when High, S0 selects D1. When E is
Low, the output is Low.

Figure 3-118   M2_1E Implementation (XC7000 and XC9000)
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M4_1E

4-to-1 Multiplexer with Enable

When the enable input (E) is High, the M4_1E multiplexer chooses
one data bit from four sources (D3, D2, D1, or D0) under the control
of the select inputs (S1 – S0). The output (O) reflects the state of the
selected input as shown in the truth table. When E is Low, the output
is Low.

Figure 3-119   M4_1E Implementation (XC7000 and XC9000)
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M8_1E

8-to-1 Multiplexer with Enable

When the enable input (E) is High, the M8_1E multiplexer chooses
one data bit from eight sources (D7 – D0) under the control of the
select inputs (S2 – S0). The output (O) reflects the state of the selected
input as shown in the truth table. When E is Low, the output is Low.

Dn represents signal on the Dn input; all other data inputs are don’t-cares (X).
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Figure 3-120   M8_1E Implementation (XC7000 and XC9000)
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M16_1E

16-to-1 Multiplexer with Enable

When the enable input (E) is High, the M16_1E multiplexer chooses
one data bit from 16 sources (D15 – D0) under the control of the select
inputs (S3 – S0). The output (O) reflects the state of the selected input
as shown in the truth table. When E is Low, the output is Low.

Dn represents signal on the Dn input; all other data inputs are don’t-cares (X).
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NAND

2- to 9-Input NAND Gates with Inverted and
Non-Inverted Inputs

NAND functions of up to five inputs are available in any combina-
tion of inverting and non-inverting inputs. NAND functions of six to
nine inputs are available with only non-inverting inputs. To invert
some or all inputs, use external inverters.

Figure 3-121   NAND Gate Representations

Name XC7000 XC9000

NAND2 – NAND4B4 Primitive Primitive
NAND5 – NAND5B5 Primitive Primitive
NAND6 – NAND9 Primitive Primitive

NAND9

NAND4

NAND4B3

NAND4B2

NAND4B1

NAND3B1

NAND3B2

NAND3B3

NAND2

NAND2B1

NAND2B2

NAND5

NAND5B1

NAND5B4

NAND5B3

NAND5B2

NAND4B4

NAND3

NAND6

NAND7

NAND8

NAND5B5



Libraries Guide

3-276 XACT Development System

NOR

2- to 9-Input NOR Gates with Inverted and
Non-Inverted Inputs

NOR functions of up to five inputs are available in any combination
of inverting and non-inverting inputs. NOR functions of six to nine
inputs are available with only non-inverting inputs. To invert some or
all inputs, use external inverters.

Figure 3-122   NOR Gate Representations
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OBUF, OBUF4, OBUF8, and OBUF16

Single- and Multiple-Output Buffers

OBUF, OBUF4, OBUF8, and OBUF16 are single and multiple output
buffers. An OBUF isolates the internal circuit and provides drive
current for signals leaving a chip. OBUFs exist in input/output
blocks (IOB). The output (O) of an OBUF is connected to an OPAD or
an IOPAD. For XC7000 and XC9000 CPLDs, if a high impedance (Z)
signal from an on-chip 3-state buffer (like BUFE) is applied to the
input of an OBUF, it is propagated to the CPLD device output pin.

Figure 3-123   OBUF8 XC7000 Implementation
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OBUFE, OBUFE4, OBUFE8, and OBUFE16

3-State Output Buffers with Active-High Output
Enable

OBUFE, OBUFE4, OBUFE8, and OBUFE16 are single or multiple
3-state buffers with inputs I, I3 – I0, I7 – I0, and so forth, outputs O,
O3 – O0, O7 – O0, and so forth, and active-High output enable (E).
When E is High, data on the inputs of the buffers is transferred to the
corresponding outputs. When E is Low, the output is High imped-
ance (off or Z state). An OBUFE isolates the internal circuit and
provides drive current for signals leaving a chip. An OBUFE output is
connected to an OPAD or an IOPAD. An OBUFE input is connected
to the internal circuit.

Figure 3-124   OBUFE Implementation (XC7000 and XC9000)
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OBUFT, OBUFT4, OBUFT8, and OBUFT16

Single and Multiple 3-State Output Buffers with
Active-Low Output Enable

OBUFT, OBUFT4, OBUFT8, and OBUFT16 are single and multiple
3-state output buffers with inputs I, I3 – I0, I7 – I0, I15 – I0, outputs O,
O3 – O0, O7 – O0, O15 – O0, and active-Low output enables (T).
When T is Low, data on the inputs of the buffers is transferred to the
corresponding outputs. When T is High, the output is high imped-
ance (off or Z state). OBUFTs isolate the internal circuit and provide
extra drive current for signals leaving a chip. An OBUFT output is
connected to an OPAD or an IOPAD.
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Figure 3-125   OBUFT8 Implementation (XC7000 and XC9000)
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OFD, OFD4, OFD8, and OFD16

Single- and Multiple-Output D Flip-Flops

OFD, OFD4, OFD8, and OFD16 are single and multiple output D flip-
flops.  The outputs (for example, Q3 – Q0) are connected to OPADs or
IOPADs. The data on the D inputs is loaded into the flip-flops during
the Low-to-High clock (C) transition and appears on the Q outputs.

The default initial state of all flip-flops is zero.

dn = state of referenced input one set-up time prior to active clock transition

Figure 3-126   OFD Implementation (XC7000 and XC9000)
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Figure 3-127 OFD8 Implementation (XC7000 and XC9000)
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OFDE, OFDE4, OFDE8, and OFDE16

D Flip-Flops with Active-High Enable Output Buffers

OFDE, OFDE4, OFDE8, and OFDE16 are single or multiple D flip-
flops whose outputs are enabled by 3-state buffers. The flip-flop data
outputs (Q) are connected to the inputs of output buffers (OBUFE).
The OBUFE outputs (O) are connected to OPADs or IOPADs.  The
data on the data inputs (D) is loaded into the flip-flops during the
Low-to-High clock (C) transition. When the active-High enable
inputs (E) are High, the data on the flip-flop outputs (Q) appears on
the O outputs. When E is Low, outputs are high impedance (Z state or
off).

The default initial state of all flip-flops is zero.
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Figure 3-128 OFDE Implementation (XC7000 and XC9000)

Figure 3-129   OFDE8 Implementation (XC7000 and XC9000)
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OFDT, OFDT4, OFDT8, and OFDT16

Single and Multiple D Flip-Flops with Active-High
3-State Active-Low Output Enable Buffers

OFDT, OFDT4, OFDT8, and OFDT16 are single or multiple D flip-
flops whose outputs are enabled by a 3-state buffers. The data
outputs (Q) of the flip-flops are connected to the inputs of output
buffers (OBUFT). The outputs of the OBUFTs (O) are connected to
OPADs or IOPADs. The data on the data inputs (D) is loaded into the
flip-flops during the Low-to-High clock (C) transition. When the
active-Low enable inputs (T) are Low, the data on the flip-flop
outputs (Q) appears on the O outputs. When T is High, outputs are
high impedance (off).

The default initial state of all flip-flops is zero.

d = state of referenced input one set-up time prior to active clock transition

Figure 3-130   OFDT Implementation (XC7000 and XC9000)
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Figure 3-131   OFDT8 Implementation (XC7000 and XC9000)
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OPAD, OPAD4, OPAD8, and OPAD16

Single- and Multiple-Output Pads

OPAD, OPAD4, OPAD8, and OPAD16 are single and multiple output
pads. An OPAD connects a device pin to an output signal of a PLD. It
is internally connected to an input/output block (IOB), which is
configured by the XACT software as an OBUF, an OBUFT, an OBUFE,
an OFD, or an OFDT.

Figure 3-132   OPAD8 Implementation (XC7000 and XC9000)

Name XC7000 XC9000

OPAD Primitive Primitive
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OR

2- to 9-Input OR Gates with Inverted and
Non-Inverted Inputs

OR functions of up to five inputs are available in any combination of
inverting and non-inverting inputs. OR functions of six to nine inputs
are available with only non-inverting inputs. To invert some or all
inputs, use external inverters.

Figure 3-133   OR Gate Representations
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SOP

Sum Of Products

Sum Of Products macros and primitives provide common logic func-
tions by OR gating the outputs of two AND functions or the output
of one AND function with one direct input. Variations of inverting
and non-inverting inputs are available.

Figure 3-134   SOP Gate Representations
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SR4CE

4-Bit Serial-In Parallel-Out Shift Register with Clock
Enable and Asynchronous Clear

SR4CE is a 4-bit shift register with a shift-left serial input (SLI),
parallel outputs (Q3 – Q0), and clock enable (CE) and asynchronous
clear (CLR) inputs. The CLR input, when High, overrides all other
inputs and resets the data outputs (Q3 – Q0) Low. When CE is High
and CLR is Low, the data on the SLI input is loaded into the first bit of
the shift register during the Low-to-High clock (C) transition and
appears on the Q0 output. During subsequent Low-to-High clock
transitions, when CE is High and CLR is Low, data is shifted to the
next highest bit position as new data is loaded into Q0 (SLI➝Q0,
Q0➝Q1, Q1➝Q2, and so forth). The register ignores clock transitions
when CE is Low.

Registers can be cascaded by connecting the Q3 output of one stage to
the SLI input of the next stage and connecting clock, CE, and CLR in
parallel.

The default initial state of all flip-flops is zero.

qn-1 = state of referenced output one set-up time prior to active clock transition

XC7000 XC9000

Macro Macro

Inputs Outputs

CLR CE SLI C Q0 Q3 – Q1

1 X X X 0 0
0 0 X X ---No Change---
0 1 1 ↑ 1 qn-1
0 1 0 ↑ 0 qn-1

X4145

SR4CE

C

CE

SLI

Q3

Q2

Q1

Q0

CLR
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SR4CLE

4-Bit Loadable Serial/Parallel-In Parallel-Out Shift
Register with Clock Enable and Asynchronous Clear

SR4CLE is a 4-bit shift register with a shift-left serial input (SLI),
parallel inputs (D3 – D0), parallel outputs (Q3 – Q0), and three
control inputs – clock enable (CE), load enable (L), and asynchronous
clear (CLR).The register ignores clock transitions when L and CE are
Low. The asynchronous CLR, when High, overrides all other inputs
and resets the data outputs (Q3 – Q0) Low. When L is High and CLR
is Low, data on the D3 – D0 inputs is loaded into the corresponding
Q3 – Q0 bits of the register. When CE is High and L and CLR are Low,
data on the SLI input is loaded into the first bit of the shift register
during the Low-to-High clock (C) transition and appears on the Q0
output. During subsequent clock transitions, when CE is High and L
and CLR are Low, the data is shifted to the next highest bit position as
new data is loaded into Q0 (SLI➝Q0, Q0➝Q1, Q1➝Q2, and so forth).

Registers can be cascaded by connecting the Q3 output of one stage
to the SLI input of the next stage and connecting clock, CE, L, and
CLR inputs in parallel.

The default initial state of all flip-flops is zero.

dn or qn-1 = state of referenced input or output one set-up time prior to active
clock transition

XC7000 XC9000

Macro Macro

Inputs Outputs

CLR L CE SLI D3 – D0 C Q0 Q3 – Q1

1 X X X X X 0 0
0 1 X X D3 – D0 ↑ d0 dn
0 0 1 SLI X ↑ SLI qn-1
0 0 0 X X X --No Change--

X4147

C

CE

L

SR4CLE

D3

D2

D1

D0

SLI

Q3

Q2

Q1

Q0

CLR
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SR4CLED

4-Bit Shift Register with Clock Enable and
Asynchronous Clear

SR4CLED is a 4-bit shift register with shift-left (SLI) and shift-right
(SRI) serial inputs, four parallel inputs (D3 – D0), and four control
inputs – clock enable (CE), load enable (L), shift left/right (LEFT),
and asynchronous clear (CLR). The register ignores clock transitions
when CE and L are Low. The asynchronous clear, when High, over-
rides all other inputs and resets the data outputs (Q3 – Q0) Low.
When L is High and CLR is Low, the data on the D3 – D0 inputs is
loaded into the corresponding Q3 – Q0 bits of the register. When CE
is High and L and CLR are Low, data is shifted right or left,
depending on the state of the LEFT input. If LEFT is High, data on the
SLI is loaded into Q0 during the Low-to-High clock transition and
shifted left (to Q1, Q2, and so forth) during subsequent clock transi-
tions. If LEFT is Low, data on the SRI is loaded into Q3 during the
Low-to-High clock transition and shifted right (to Q2, Q1, and so
forth) during subsequent clock transitions. The truth table indicates
the state of the Q3 – Q0 outputs under all input conditions.

The default initial state of all flip-flops is zero.

dn, qn-1 or qn+1 = state of referenced input one set-up time prior to active clock
transition

XC7000 XC9000

Macro Macro

Inputs Outputs

CLR L CE LEFT SLI SRI D3 – D0 C Q0 Q3 Q2 – Q1

1 X X X X X X X 0 0 0
0 1 X X X X D3 – D0 ↑ d0 d3 dn
0 0 0 X X X X X ----No Change-----
0 0 1 1 SLI X X ↑ SLI q2 qn-1
0 0 1 0 X SRI X ↑ q1 SRI qn+1

X4149
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CE

L

SR4CLED

D3

D2
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D0
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Q3

Q2

Q1

Q0

CLR

SRI

LEFT
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SR4RE

4-Bit Serial-In Parallel-Out Shift Register with Clock
Enable and Synchronous Reset

SR4RE is a 4-bit shift register with shift-left serial input (SLI), parallel
outputs (Q3 – Q0), clock enable (CE), and synchronous reset (R)
inputs. The R input, when High, overrides all other inputs and resets
the data outputs (Q3 – Q0) Low. When CE is High and R is Low, the
data on the SLI is loaded into the first bit of the shift register during
the Low-to-High clock (C) transition and appears on the Q0 output.
During subsequent Low-to-High clock transitions, when CE is High
and R is Low, data is shifted to the next highest bit position as new
data is loaded into Q0 (SLI➝Q0, Q0➝Q1, Q1➝Q2, and so forth). The
register ignores clock transitions when CE is Low.

Registers can be cascaded by connecting the Q3 output of one stage
to the SLI input of the next stage and connecting clock, CE, and R in
parallel.

The default initial state of all flip-flops is zero.

qn-1 = state of referenced output one set-up time prior to active clock transition

XC7000 XC9000

Macro Macro

Inputs Outputs

R CE SLI C Q0 Q3 – Q1

1 X X ↑ 0 0
0 0 X X ---No Change---
0 1 1 ↑ 1 qn-1
0 1 0 ↑ 0 qn-1

X4144

SR4RE

C

CE

SLI

Q3

Q2

Q1

Q0

R
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SR4RLE

4-Bit Loadable Serial/Parallel-In Parallel-Out Shift
Register with Clock Enable and Synchronous Reset

SR4RLE is a 4-bit shift register with shift-left serial input (SLI),
four parallel inputs (D3 – D0), four parallel outputs (Q3 – Q0), and
three control inputs – clock enable (CE), load enable (L), and synchro-
nous reset (R). The register ignores clock transitions when L and CE
are Low. The synchronous R, when High, overrides all other inputs
and resets the data outputs (Q3 – Q0) Low. When L is High and R is
Low, data on the D3 – D0 inputs is loaded into the corresponding
Q3 – Q0 bits of the register. When CE is High and L and R are Low,
data on the SLI input is loaded into the first bit of the shift register
during the Low-to-High clock (C) transition and appears on the Q0
output. During subsequent clock transitions, when CE is High and L
and R are Low, the data is shifted to the next highest bit position as
new data is loaded into Q0 (SLI➝Q0, Q0➝Q1, Q1➝Q2, and so forth).

Registers can be cascaded by connecting the Q3 output of one stage to
the SLI input of the next stage and connecting clock, CE, L, and R
inputs in parallel.

The default initial state of all flip-flops is zero.

dn or qn-1 = state of referenced input one set-up time prior to active clock
transition

XC7000 XC9000

Macro Macro

Inputs Outputs

R L CE SLI D3 – D0 C Q0 Q3 – Q1

1 X X X X ↑ 0 0
0 1 X X D3 – D0 ↑ d0 dn
0 0 1 SLI X ↑ SLI qn-1
0 0 0 X X X --No Change--

X4146

C

CE

L

SR4RLE
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D2
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SLI

Q3

Q2

Q1

Q0

R
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SR4RLED

4-Bit Shift Register with Clock Enable and
Synchronous Reset

SR4RLED is a 4-bit shift register with shift-left (SLI) and shift-right
(SRI) serial inputs, four parallel inputs (D3 – D0), and four control
inputs – clock enable (CE), load enable (L), shift left/right (LEFT),
and synchronous reset (R). The register ignores clock transitions
when CE and L are Low. The synchronous R, when High, overrides
all other inputs and resets the data outputs (Q3 – Q0) Low. When L is
High and R is Low, the data on the D3 – D0 inputs is loaded into the
corresponding Q3 – Q0 bits of the register. When CE is High and L
and R are Low, data is shifted right or left, depending on the state of
the LEFT input. If LEFT is High, data on SLI is loaded into Q0 during
the Low-to-High clock transition and shifted left (to Q1, Q2, and so
forth) during subsequent clock transitions. If LEFT is Low, data on
the SRI is loaded into Q3 during the Low-to-High clock transition
and shifted right (to Q2, Q1, and so forth) during subsequent clock
transitions. The truth table indicates the state of the Q3 – Q0 outputs
under all input conditions.

The default initial state of all flip-flops is zero.

dn, qn-1 or qn+1 = state of referenced input one set-up time prior to active clock
transition

XC7000 XC9000

Macro Macro

Inputs Outputs

R L CE LEFT SLI SRI D3 – D0 C Q0 Q3 Q2 – Q1

1 X X X X X X ↑ 0 0 0
0 1 X X X X D3 – D0 ↑ d0 d3 dn
0 0 0 X X X X X ----No Change-----
0 0 1 1 SLI X X ↑ SLI q2 qn-1
0 0 1 0 X SRI X ↑ q1 SRI qn+1

X4148
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CE

L

SR4RLED
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D2

D1

D0

SLI

Q3

Q2

Q1

Q0

R

SRI

LEFT
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SR8CE

8-Bit Serial-In Parallel-Out Shift Register with Clock
Enable and Asynchronous Clear

SR8CE is an 8-bit shift-left serial input (SLI), parallel output (Q7 – Q0)
shift register with clock enable (CE) and asynchronous clear (CLR)
inputs. The CLR input, when High, overrides all other inputs and
resets the data outputs (Q7 – Q0) Low. When CE is High and CLR is
Low, the data on the SLI is loaded into the first bit of the shift register
during the Low-to-High clock (C) transition and appears on the Q0
output. During subsequent Low-to-High clock transitions, when CE
is High and CLR is Low, data is shifted to the next highest bit position
as new data is loaded into Q0 (SLI➝Q0, Q0➝Q1, Q1➝Q2, and so
forth). The register ignores clock transitions when CE is Low.

Registers can be cascaded by connecting the Q7 output of one stage to
the SLI input of the next stage and connecting clock, CE, and CLR in
parallel.

The default initial state of all flip-flops is zero.

qn-1 = state of referenced output one set-up time prior to active clock transition

XC7000 XC9000

Macro Macro

Inputs Outputs

CLR CE SLI C Q0 Q7 – Q1

1 X X X 0 0
0 0 X X --No Change---
0 1 1 ↑ 1 qn-1
0 1 0 ↑ 0 qn-1

X4151

SR8CE

C

CE

SLI
Q[7:0]

CLR
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Figure 3-135   SR8CE Implementation (XC7000 and XC9000)
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SR8CLE

8-Bit Loadable Serial/Parallel-In Parallel-Out Shift
Register with Clock Enable and Asynchronous Clear

SR8CLE is an 8-bit shift register with a shift-left serial input (SLI),
parallel inputs (D7 – D0), parallel outputs (Q7 – Q0), and three
control inputs – clock enable (CE), load enable (L) and asynchronous
clear (CLR). The register ignores clock transitions when L and CE are
Low. The asynchronous CLR, when High, overrides all other inputs
and resets the data outputs (Q7 – Q0) Low. When L is High and CLR
is Low, data on the D7 – D0 inputs is loaded into the corresponding
Q7 – Q0 bits of the register. When CE is High and L and CLR are Low,
data on the SLI input is loaded into the first bit of the shift register
during the Low-to-High clock (C) transition and appears on the Q0
output. During subsequent clock transitions, when CE is High and L
and CLR are Low, the data is shifted to the next highest bit position as
new data is loaded into Q0 (SLI➝Q0, Q0➝Q1, Q1➝Q2, and so forth).

Registers can be cascaded by connecting the Q7 output of one stage to
the SLI input of the next stage and connecting clock, CE, L, and CLR
inputs in parallel.

The default initial state of all flip-flops is zero.

dn or qn-1 = state of referenced input one set-up time prior to active clock
transition

XC7000 XC9000

Macro Macro

Inputs Outputs

CLR L CE SLI D7 – D0 C Q0 Q7 – Q1

1 X X X X X 0 0
0 1 X X D7 – D0 ↑ d0 dn
0 0 1 SLI X ↑ SLI qn-1
0 0 0 X X X --No Change--

X4153

C

CE

L

SR8CLE
D[7:0]

SLI

Q[7:0]

CLR
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Figure 3-136   SR8CLE Implementation (XC7000 and XC9000)
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SR8CLED

8-Bit Shift Register with Clock Enable and
Asynchronous Clear

SR8CLED is an 8-bit shift register with shift-left (SLI) and shift-right
(SRI) serial inputs, parallel inputs (D7 – D0), and four control inputs –
clock enable (CE), load enable (L), shift left/right (LEFT), and asyn-
chronous clear (CLR). The register ignores clock transitions when CE
and L are Low. The asynchronous CLR, when High, overrides all
other inputs and resets the data outputs (Q7 – Q0) Low. When L is
High and CLR is Low, data on the D7 – D0 inputs is loaded into the
corresponding Q7 – Q0 bits of the register. When CE is High and L
and CLR are Low, data is shifted right or left depending on the state
of the LEFT input. If LEFT is High, data on the SLI is loaded into Q0
during the Low-to-High clock transition and shifted left (to Q1, Q2,
and so forth) during subsequent clock transitions. If LEFT is Low,
data on the SRI is loaded into Q7 during the Low-to-High clock tran-
sition and shifted right (to Q6, Q5, and so forth) during subsequent
clock transitions. The truth table indicates the state of the Q7 – Q0
outputs under all input conditions.

The default initial state of all flip-flops is zero.

dn, qn-1 or qn+1 = state of referenced input one set-up time prior to active clock
transition

XC7000 XC9000

Macro Macro

Inputs Outputs

CLR L CE LEFT SLI SRI D7 – D0 C Q0 Q7 Q6 – Q1

1 X X X X X X X 0 0 0
0 1 X X X X D7 – D0 ↑ d0 d7 dn
0 0 0 X X X X X -----No Change-----
0 0 1 1 SLI X X ↑ SLI q6 qn-1
0 0 1 0 X SRI X ↑ q1 SRI qn+1

X4155

C

CE

L

SR8CLED
D[7:0]

SLI

Q[7:0]

CLR

SRI

LEFT
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Figure 3-137   SR8CLED Implementation (XC7000 and XC9000)
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SR8RE

8-Bit Serial-In Parallel-Out Shift Register with Clock
Enable and Synchronous Reset

SR8RE is an 8-bit shift-left serial input (SLI), parallel output (Q7 – Q0)
shift register with clock enable (CE) and synchronous reset (R) inputs.
The R input, when High, overrides all other inputs and resets the data
outputs (Q7 – Q0) Low. When CE is High and R is Low, the data on
the SLI is loaded into the first bit of the shift register during the Low-
to-High clock (C) transition and appears on the Q0 output. During
subsequent Low-to-High clock transitions, when CE is High and R is
Low, data is shifted to the next highest bit position as new data is
loaded into Q0 (SLI➝Q0, Q0➝Q1, Q1➝Q2, and so forth). The register
ignores clock transitions when CE is Low.

Registers can be cascaded by connecting the Q7 output of one stage to
the SLI input of the next stage and by connecting clock, CE, and R in
parallel.

The default initial state of all flip-flops is zero.

qn-1 = state of referenced output one set-up time prior to active clock transition

XC7000 XC9000

Macro Macro

Inputs Outputs

R CE SLI C Q0 Q7 – Q1

1 X X ↑ 0 0
0 0 X X --No Change---
0 1 1 ↑ 1 qn-1
0 1 0 ↑ 0 qn-1

X4150

SR8RE

C

CE

SLI
Q[7:0]

R
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Figure 3-138   SR8RE Implementation (XC7000 and XC9000)
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SR8RLE

8-Bit Loadable Serial/Parallel-In Parallel-Out Shift
Register with Clock Enable and Synchronous Reset

SR8RLE is an 8-bit shift register with shift-left serial input (SLI),
parallel inputs (D7 – D0), parallel outputs (Q7 – Q0), and three
control inputs – clock enable (CE), load enable (L), and synchronous
reset (R). The register ignores clock transitions when L and CE are
Low. The synchronous R, when High, overrides all other inputs and
resets the data outputs (Q7 – Q0) Low. When L is High and R is Low,
data on the D7 – D0 inputs is loaded into the corresponding Q7 – Q0
bits of the register. When CE is High and L and R are Low, data on the
SLI is loaded into the first bit of the shift register during the Low-to-
High clock (C) transition and appears on the Q0 output. During
subsequent clock transitions, when CE is High and L and R are Low,
the data is shifted to the next highest bit position as new data is
loaded into Q0 (SLI➝Q0, Q0➝Q1, Q1➝Q2, and so forth). Registers
can be cascaded by connecting the Q7 output of one stage to the SLI
input of the next stage and connecting clock, CE, L, and R inputs in
parallel.

The default initial state of all flip-flops is zero.

dn or qn-1 = state of referenced input one set-up time prior to active clock
transition

XC7000 XC9000

Macro Macro

Inputs Outputs

R L CE SLI D7 – D0 C Q0 Q7 – Q1

1 X X X X ↑ 0 0
0 1 X X D7 – D0 ↑ d0 dn
0 0 1 SLI X ↑ SLI qn-1
0 0 0 X X X --No Change--

X4152

C

CE

L

SR8RLE
D[7:0]

SLI

Q[7:0]

R
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Figure 3-139   SR8RLE Implementation (XC7000 and XC9000)
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SR8RLED

8-Bit Shift Register with Clock Enable and
Synchronous Reset

SR8RLED is an 8-bit shift register with shift-left (SLI) and shift-right
(SRI) serial inputs, parallel inputs (D7 – D0), and four control inputs –
clock enable (CE), load enable (L), shift left/right (LEFT), and
synchronous reset (R). The register ignores clock transitions when CE
and L are Low. The synchronous R, when High, overrides all other
inputs and resets the data outputs (Q7 – Q0) Low. When L is High
and R is Low, the data on the D7 – D0 inputs is loaded into the corre-
sponding Q7 – Q0 bits of the register. When CE is High and L and R
are Low, data is shifted right or left depending on the state of the
LEFT input. If LEFT is High, data on SLI is loaded into Q0 during the
Low-to-High clock transition and shifted left (to Q1, Q2, and so forth)
during subsequent clock transitions. If LEFT is Low, data on SRI is
loaded into Q7 bit during the Low-to-High clock transition and
shifted right (to Q6, Q5, and so forth) during subsequent clock transi-
tions. The truth table indicates the state of the Q7 – Q0 outputs under
all input conditions.

The default initial state of all flip-flops is zero.

dn, qn-1 or qn+1 = state of referenced input one set-up time prior to active clock
transition

XC7000 XC9000

Macro Macro

Inputs Outputs

R L CE LEFT SLI SRI D7– D0 C Q0 Q7 Q6 – Q1

1 X X X X X X ↑ 0 0 0
0 1 X X X X D7 – D0 ↑ d0 d7 dn
0 0 0 X X X X X ----No Change-----
0 0 1 1 SLI X X ↑ SLI q6 qn-1
0 0 1 0 X SRI X ↑ q1 SRI qn+1

X4154

C

CE

L

SR8RLED
D[7:0]

SLI

Q[7:0]

R

SRI

LEFT
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Figure 3-140   SR8RLED Implementation (XC7000 and XC9000)
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SR16CE

16-Bit Serial-In Parallel-Out Shift Register with Clock
Enable and Asynchronous Clear

SR16CE is a 16-bit a shift-left serial input (SLI), parallel outputs
(Q15 – Q0) shift register with clock enable (CE) and asynchronous
clear (CLR) inputs. The CLR input, when High, overrides all other
inputs and resets the data outputs (Q15 – Q0) Low. When CE is High
and CLR is Low, the data on the SLI input is loaded into the first bit of
the shift register during the Low-to-High clock (C) transition and
appears on the Q0 output. During subsequent Low-to-High clock
transitions, when CE is High and CLR is Low, data is shifted to the
next highest bit position as new data is loaded into Q0 (SLI➝Q0,
Q0➝Q1, Q1➝Q2, and so forth). The register ignores clock transitions
when CE is Low. Registers can be cascaded by connecting the Q15
output of one stage to the Shift Left Input (SLI) of the next stage and
connecting clock, CE, and CLR in parallel.

The default initial state of all flip-flops is zero.

qn-1 = state of referenced output one set-up time prior to active clock transition

XC7000 XC9000

Macro Macro

Inputs Outputs

CLR CE SLI C Q0 Q15 – Q1

1 X X X 0 0
0 0 X X ---No Change---
0 1 1 ↑ 1 qn-1
0 1 0 ↑ 0 qn-1

X4157

SR16CE

C

CE

SLI
Q[15:0]

CLR
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SR16CLE

16-Bit Loadable Serial/Parallel-In Parallel-Out Shift
Register with Clock Enable and Asynchronous Clear

SR16CLE is a 16-bit shift register with shift-left serial input (SLI),
parallel inputs (D15 – D0), parallel outputs (Q15 – Q0), and three
control inputs – clock enable (CE), load enable (L), and asynchronous
clear (CLR). The register ignores clock transitions when L and CE are
Low. The asynchronous CLR, when High, overrides all other inputs
and resets the data outputs (Q15 – Q0) Low. When L is High and CLR
is Low, data on the D15 – D0 inputs is loaded into the corresponding
Q15 – Q0 bits of the register. When CE is High and L and CLR are
Low, data on the SLI is loaded into the first bit of the shift register
during the Low-to-High clock (C) transition and appears on the Q0
output. During subsequent clock transitions, when CE is High and L
and CLR are Low, the data is shifted to the next highest bit position as
new data is loaded into Q0 (SLI➝Q0, Q0➝Q1, Q1➝Q2, and so forth).
Registers can be cascaded by connecting the Q15 output of one stage
to the Shift Left Input (SLI) of the next stage and connecting clock,
CE, L, and CLR inputs in parallel.

The default initial state of all flip-flops is zero.

dn or qn-1 = state of referenced input one set-up time prior to active clock
transition

XC7000 XC9000

Macro Macro

Inputs Outputs

CLR L CE SLI D15 – D0 C Q0 Q15 – Q1

1 X X X X X 0 0
0 1 X X D15 – D0 ↑ d0 dn
0 0 1 SLI X ↑ SLI qn-1
0 0 0 X X X --No Change--

X4159

C

CE

L

SR16CLE
D[15:0]

SLI

Q[15:0]

CLR
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SR16CLED

16-Bit Shift Register with Clock Enable and
Asynchronous Clear

SR16CLED is a 16-bit shift register with shift-left (SLI) and shift-right
(SRI) serial inputs, parallel inputs (D15 – D0), and four control
inputs – clock enable (CE), load enable (L), shift left/right (LEFT),
and asynchronous clear (CLR). The register ignores clock transitions
when CE and L are Low. The asynchronous CLR, when High, over-
rides all other inputs and resets the data outputs (Q15 – Q0) Low.
When L is High and CLR is Low the data on the D15 – D0 inputs is
loaded into the corresponding Q15 – Q0 bits of the register. When CE
is High and L and CLR are Low, data is shifted right or left depending
on the state of the LEFT input. If LEFT is High, data on SLI is loaded
into Q0 during the Low-to-High clock transition and shifted left (to
Q1, Q2, and so forth) during subsequent clock transitions. If LEFT is
Low, data on SRI is loaded into Q15 during the Low-to-High clock
transition and shifted right (to Q14, Q13, and so forth) during subse-
quent clock transitions. The truth table indicates the state of the Q15 –
Q0 outputs under all input conditions.

The default initial state of all flip-flops is zero.

dn, qn-1 or qn+1 = state of referenced input one set-up time prior to active clock
transition

XC7000 XC9000

Macro Macro

Inputs Outputs

CLR L CE LEFT SLI SRI D15 – D0 C Q0 Q15 Q14 – Q1

1 X X X X X X X 0 0 0
0 1 X X X X D15 – D0 ↑ d0 d15 dn
0 0 0 X X X X X ----No Change-----
0 0 1 1 SLI X X ↑ SLI q14 qn-1
0 0 1 0 X SRI X ↑ q1 SRI qn+1

X4161

C
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L

SR16CLED
D[15:0]

SLI
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CLR

SRI

LEFT
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SR16RE

16-Bit Serial-In Parallel-Out Shift Register with Clock
Enable and Synchronous Reset

SR16RE is a 16-bit shift-left serial input (SLI), parallel output
(Q15 – Q0) shift register with clock enable (CE) and synchronous
reset (R) inputs. The R input, when High, overrides all other inputs
and resets the data outputs (Q15 – Q0) Low. When CE is High and R
is Low, the data on the SLI is loaded into the first bit of the shift
register during the Low-to-High clock (C) transition and appears on
the Q0 output. During subsequent Low-to-High clock transitions,
when CE is High and R is Low, data is shifted to the next highest bit
position as new data is loaded into Q0 (SLI➝Q0, Q0➝Q1, Q1➝Q2,
and so forth). The register ignores clock transitions when CE is Low.
Registers can be cascaded by connecting the Q15 output of one stage
to the SLI input of the next stage and connecting clock, C, and R in
parallel.

The default initial state of all flip-flops is zero.

qn-1 = state of referenced output one set-up time prior to active clock transition

XC7000 XC9000

Macro Macro

Inputs Outputs

R CE SLI C Q0 Q15 – Q1

1 X X ↑ 0 0
0 0 X X ---No Change---
0 1 1 ↑ 1 qn-1
0 1 0 ↑ 0 qn-1

X4156

SR16RE

C

CE

SLI
Q[15:0]

R
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SR16RLE

16-Bit Loadable Serial/Parallel-In Parallel-Out Shift
Register with Clock Enable and Synchronous Reset

SR16RLE is a 16-bit shift register with shift-left serial input (SLI),
parallel inputs (D15 – D0), parallel outputs (Q15 – Q0), and control
inputs – clock enable (CE), load enable (L), and synchronous reset (R).
The register ignores clock transitions when L and CE are Low. The
synchronous R, when High, overrides all other inputs and resets the
data outputs (Q15 – Q0) Low. When L is High and R is Low, data on
the data D15 – D0 inputs is loaded into the corresponding Q15 – Q0
bits of the register. When CE is High and L and R are Low, data on the
SLI is loaded into the first bit of the shift register during the Low-to-
High clock (C) transition and appears on the Q0 output. During
subsequent clock transitions, when CE is High and L and R are Low,
the data is shifted to the next highest bit position as new data is
loaded into Q0 (SLI➝Q0, Q0➝Q1, Q1➝Q2, and so forth). Registers
can be cascaded by connecting the Q15 output of one stage to the
Shift Left Input (SLI) of the next stage and connecting clock, CE, L,
and R inputs in parallel.

The default initial state of all flip-flops is zero.

dn or qn-1 = state of referenced input one set-up time prior to active clock
transition

XC7000 XC9000

Macro Macro

Inputs Outputs

R L CE SLI D15 – D0 C Q0 Q15 – Q1

1 X X X X ↑ 0 0
0 1 X X D15 – D0 ↑ d0 dn
0 0 1 SLI X ↑ SLI qn-1
0 0 0 X X X --No Change--

X4158
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SR16RLED

16-Bit Shift Register with Clock Enable and
Synchronous Reset

SR16RLED is a 16-bit shift register with shift-left (SLI) and shift-right
(SRI) serial inputs, parallel inputs (D15 – D0), and four control
inputs – clock enable (CE), load enable (L), shift left/right (LEFT),
and synchronous reset (R). The register ignores clock transitions
when CE and L are Low. The synchronous R, when High, overrides
all other inputs and resets the data Q15 – Q0 outputs Low. When L is
High and R is Low, the data on the D15 – D0 inputs is loaded into the
corresponding Q15 – Q0 bits of the register. When CE is High and L
and R are Low, data is shifted right or left depending on the state of
the LEFT input. If LEFT is High, data on SLI is loaded into Q0 during
the Low-to-High clock transition and shifted left (to Q1, Q2, and so
forth) during subsequent clock transitions. If LEFT is Low, data on
SRI is loaded into Q15 during the Low-to-High clock transition and
shifted right (to Q14, Q13, and so forth) during subsequent clock
transitions. The truth table indicates the state of the Q15 – Q0 outputs
under all input conditions.

The default initial state of all flip-flops is zero.

dn, qn-1 or qn+1 = state of referenced input one set-up time prior to active clock
transition

XC7000 XC9000

Macro Macro

Inputs Outputs

R L CE LEFT SLI SRI D15 – D0 C Q0 Q15 Q14 – Q1

1 X X X X X X ↑ 0 0 0
0 1 X X X X D15 – D0 ↑ d0 d15 dn
0 0 0 X X X X X ----No Change-----
0 0 1 1 SLI X X ↑ SLI q14 qn-1
0 0 1 0 X SRI X ↑ q1 SRI qn+1

X4160
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TIMESPEC

Schematic-Level Timing Requirement Table

The TIMESPEC primitive is a table that specifies up to eight timing
attributes (TS). TS attributes can be any length, but only 30 characters
are displayed in the TIMESPEC window. The TIMESPEC table is
displayed in the follow figure.

XC7000 XC9000

Primitive Primitive

X3866

TIMESPEC
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TIMEGRP

Schematic-Level Table of Basic Timing Specification
Groups

The TIMEGRP primitive table defines timing groups used in “from-
to” TIMESPEC statements in terms of other groups. The TIMEGRP
table is shown in the following figure.

These groups can include predefined groups, such as “ffs,” groups
created by using TNM attributes, such as TNM-reg on schematics,
and other groups defined by a statement in the TIMEGRP symbol.

The following example statement defines groups in a TIMEGRP
symbol.

=all_but_regs=ffs:except:regs

The table can contain up to 8 statements of any character length, but
only 30 characters are displayed in the symbol.

XC7000 XC9000

Primitive Primitive

X4699

TIMEGRP
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UPAD

Unbonded I/O Pad

A UPAD allows the use of any unbonded IOBs in a device. It is used
the same way as a IOPAD, except that the signal output is not visible
on any external device pins.

XC7000 XC9000

Primitive PrimitiveX3843

UPAD
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VCC

VCC-Connection Signal Tag

The VCC signal tag or parameter forces a net or input function to a
logic High level. A net tied to VCC cannot have any other source.

When the encounters a net or input function tied to VCC, it removes
any logic that is disabled by the VCC signal. The VCC signal is only
implemented when the disabled logic cannot be removed.

XC7000 XC9000

Primitive Primitive
X3859

Vcc
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XNOR

2- to 9-Input XNOR Gates with Non-Inverted Inputs

XNOR functions of up to nine inputs are available. All inputs are
non-inverting.

Figure 3-141   XNOR5 Implementation (XC7000 and XC9000)

Figure 3-142   XNOR6 Implementation (XC7000 and XC9000)
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Figure 3-143   XNOR7 Implementation (XC7000 and XC9000)

Figure 3-144   XNOR8 Implementation (XC7000 and XC9000)

Figure 3-145   XNOR9 Implementation (XC7000 and XC9000)
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XOR

2- to 9-Input XOR Gates with Non-Inverted Inputs

XOR functions of up to nine inputs are available. All inputs are non-
inverting.

Figure 3-146   XOR5 Implementation (XC7000 and XC9000)

Figure 3-147   XOR6 Implementation (XC7000 and XC9000)
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Figure 3-148   XOR7 Implementation (XC7000 and XC9000)

Figure 3-149   XOR8 Implementation (XC7000 and XC9000)

Figure 3-150   XOR9 Implementation (XC7000 and XC9000)
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X74_42

4- to 10-Line BCD-to-Decimal Decoder with
Active-Low Outputs

X74_42 decodes the 4-bit BCD number on the data inputs (A – D).
Only one of the ten outputs (Y9 – Y0) is active (Low) at a time, which
reflects the decimal equivalent of the BCD number on inputs A – D.
All outputs are inactive (High) during any one of six illegal states, as
shown in the truth table.

* Selected output is Low (0) and all others are High.

XC7000 XC9000

Macro Macro

Inputs Outputs

D C B A
Selected (Low)

Output*

0 0 0 0 Y0
0 0 0 1 Y1
0 0 1 0 Y2
0 0 1 1 Y3
0 1 0 0 Y4
0 1 0 1 Y5
0 1 1 0 Y6
0 1 1 1 Y7
1 0 0 0 Y8
1 0 0 1 Y9
1 0 1 0 All Outputs High
1 0 1 1 All Outputs High
1 1 0 0 All Outputs High
1 1 0 1 All Outputs High
1 1 1 0 All Outputs High
1 1 1 1 All Outputs High

X4162

X74_42

D

C

B

A

Y9

Y8

Y7

Y6

Y5

Y4

Y3

Y2

Y1

Y0



Design Elements

Libraries Guide 3-323

Figure 3-151   X74_42 Implementation (XC7000 and XC9000)
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X74_L85

4-Bit Expandable Magnitude Comparator

X74_L85 is a 4-bit magnitude comparator that compares two 4-bit
binary-weighted words A3 – A0 and B3 – B0, where A3 and B3 are the
most significant bits. The greater-than output, AGBO, is High when
A>B. The less-than output, ALBO, is High when A<B, and the equal
output, AEBO, is High when A=B. The expansion inputs, AGBI,
ALBI, and AEBI, are the least significant bits. Words of greater length
can be compared by cascading the comparators. The AGBO, ALBO,
and AEBO outputs of the stage handling less-significant bits are
connected to the corresponding AGBI, ALBI, and AEBI inputs of the
next stage handling more- significant bits. For proper operation, the
stage handling the least significant bits must have AGBI and ALBI
tied Low and AEBI tied High.

XC7000 XC9000

Macro Macro

Inputs Outputs

A3, B3 A2, B2 A1, B1 A0, B0 AGBI ALBI AEBI AGBO ALBO AEBO

A3>B3 X X X X X X 1 0 0
A3<B3 X X X X X X 0 1 0
A3=B3 A2>B2 X X X X X 1 0 0
A3=B3 A2<B2 X X X X X 0 1 0
A3=B3 A2=B2 A1>B1 X X X X 1 0 0
A3=B3 A2=B2 A1<B1 X X X X 0 1 0
A3=B3 A2=B2 A1=B1 A0>B0 X X X 1 0 0
A3=B3 A2=B2 A1=B1 A0<B0 X X X 0 1 0
A3=B3 A2=B2 A1=B1 A0=B0 1 0 0 1 0 0
A3=B3 A2=B2 A1=B1 A0=B0 0 1 0 0 1 0
A3=B3 A2=B2 A1=B1 A0=B0 0 0 1 0 0 1
A3=B3 A2=B2 A1=B1 A0=B0 0 1 1 0 1 1
A3=B3 A2=B2 A1=B1 A0=B0 1 0 1 1 0 1
A3=B3 A2=B2 A1=B1 A0=B0 1 1 1 1 1 1
A3=B3 A2=B2 A1=B1 A0=B0 1 1 0 1 1 0
A3=B3 A2=B2 A1=B1 A0=B0 0 0 0 0 0 0
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Figure 3-152   X74_L85 Implementation (XC7000 and XC9000)
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X74_138

3- to 8-Line Decoder/Demultiplexer with Active-Low
Outputs and Three Enables

X74_138 is an expandable decoder/demultiplexer with one
active-High enable input (G1), two active-Low enable inputs
(G2A and G2B), and eight active-Low outputs (Y7 – Y0). When G1 is
High and G2A and G2B are Low, one of the eight active-Low outputs
is selected with a 3-bit binary address on address inputs A, B, and C.
The non-selected outputs are High. When G1 is Low or when G2A or
G2B is High, all outputs are High.

X74_138 can be used as an 8-output active-Low demultiplexer by
tying the data input to one of the enable inputs.

XC7000 XC9000

Macro Macro

Inputs Outputs

C B A G1 G2A G2B Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

0 0 0 1 0 0 1 1 1 1 1 1 1 0
0 0 1 1 0 0 1 1 1 1 1 1 0 1
0 1 0 1 0 0 1 1 1 1 1 0 1 1
0 1 1 1 0 0 1 1 1 1 0 1 1 1
1 0 0 1 0 0 1 1 1 0 1 1 1 1
1 0 1 1 0 0 1 1 0 1 1 1 1 1
1 1 0 1 0 0 1 0 1 1 1 1 1 1
1 1 1 1 0 0 0 1 1 1 1 1 1 1
X X X 0 X X 1 1 1 1 1 1 1 1
X X X X 1 X 1 1 1 1 1 1 1 1
X X X X X 1 1 1 1 1 1 1 1 1
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Figure 3-153   X74_138 Implementation (XC7000 and XC9000)
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X74_139

2- to 4-Line Decoder/Demultiplexer with Active-Low
Outputs and Active-Low Enable

X74_139 implements one half of a standard 74139 dual 2- to 4-line
decoder/demultiplexer. When the active-Low enable input (G) is
Low, one of the four active-Low outputs (Y3 – Y0) is selected with the
2-bit binary address on the A and B address input lines. B is the High-
order address bit. The non-selected outputs are High. Also, when G is
High all outputs are High.

X74_139 can be used as a 4-output active-Low demultiplexer by tying
the data input to G.

XC7000 XC9000

Macro Macro

Inputs Outputs

G B A Y3 Y2 Y1 Y0

0 0 0 1 1 1 0
0 0 1 1 1 0 1
0 1 0 1 0 1 1
0 1 1 0 1 1 1
1 X X 1 1 1 1
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Figure 3-154   X74_139 Implementation (XC7000 and XC9000)
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X74_147

10- to 4-Line Priority Encoder with Active-Low Inputs
and Outputs

X74_147 is a 10-line-to-BCD-priority encoder that accepts data from
nine active-Low inputs (I9 – I1) and produces a binary-coded decimal
(BCD) representation on the four active-Low outputs A, B, C, and D.
The data inputs are weighted, so when more than one input is active,
only the one with the highest priority is encoded, with I9 having the
highest priority. Only nine inputs are provided, because the implied
“zero” condition requires no data input. “Zero” is encoded when all
data inputs are High.

XC7000 XC9000

Macro Macro

Inputs Outputs

I9 I8 I7 I6 I5 I4 I3 I2 I1 D C B A

1 1 1 1 1 1 1 1 0 1 1 1 0
1 1 1 1 1 1 1 0 X 1 1 0 1
1 1 1 1 1 1 0 X X 1 1 0 0
1 1 1 1 1 0 X X X 1 0 1 1
1 1 1 1 0 X X X X 1 0 1 0
1 1 1 0 X X X X X 1 0 0 1
1 1 0 X X X X X X 1 0 0 0
1 0 X X X X X X X 0 1 1 1
0 X X X X X X X X 0 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1
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Figure 3-155   X74_147 Implementation (XC7000 and XC9000)
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X74_148

8- to 3-Line Cascadable Priority Encoder with
Active-Low Inputs and Outputs

X74_148 8-input priority encoder accepts data from eight active-Low
inputs (I7 – I0) and produces a binary representation on the three
active-Low outputs (A2 – A0). The data inputs are weighted, so when
more than one of the inputs is active, only the input with the highest
priority is encoded, I7 having the highest priority. The active-Low
group signal (GS) is Low whenever one of the data inputs is Low and
the active-Low enable input (EI) is Low.

The active-Low enable input (EI) and active-Low enable output (EO)
are used to cascade devices and retain priority control. The EO of the
highest priority stage is connected to the EI of the next-highest
priority stage. When EI is High, the data outputs and EO are High.
When EI is Low, the encoder output represents the highest-priority
Low data input, and the EO is High. When EI is Low and all the data
inputs are High, the EO output is Low to enable the next-lower
priority stage.

XC7000 XC9000

Macro Macro

Inputs Outputs

EI I7 I6 I5 I4 I3 I2 I1 I0 A2 A1 A0 GS EO

1 X X X X X X X X 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 0 1 1 1 0 1
0 1 1 1 1 1 1 0 X 1 1 0 0 1
0 1 1 1 1 1 0 X X 1 0 1 0 1
0 1 1 1 1 0 X X X 1 0 0 0 1
0 1 1 1 0 X X X X 0 1 1 0 1
0 1 1 0 X X X X X 0 1 0 0 1
0 1 0 X X X X X X 0 0 1 0 1
0 0 X X X X X X X 0 0 0 0 1
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Figure 3-156   X74_148 Implementation (XC7000 and XC9000)
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X74_150

16-to-1 Multiplexer with Active-Low Enable and
Output

When the active-Low enable input (G) is Low, the X74_150 multi-
plexer chooses one data bit from 16 sources (E15 – E0) under the
control of select inputs A, B, C, and D. The active-Low output (W)
reflects the inverse of the selected input, as shown in the truth table.
When the enable input (G) is High, the output (W) is High.

XC7000 XC9000

Macro Macro

Inputs Outputs

G D C B A
Selected Input Appears

(Inverted) on W

1 X X X X 1
0 0 0 0 0 E0
0 0 0 0 1 E1
0 0 0 1 0 E2
0 0 0 1 1 E3
0 0 1 0 0 E4
0 0 1 0 1 E5
0 0 1 1 0 E6
0 0 1 1 1 E7
0 1 0 0 0 E8
0 1 0 0 1 E9
0 1 0 1 0 E10
0 1 0 1 1 E11
0 1 1 0 0 E12
0 1 1 0 1 E13
0 1 1 1 0 E14
0 1 1 1 1 E15
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Figure 3-157   X74_150 Implementation (XC7000 and XC9000)
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X74_151

8-to-1 Multiplexer with Active-Low Enable and
Complementary Outputs

When the active-Low enable (G) is Low, the X74_151 multiplexer
chooses one data bit from eight sources (D7 – D0) under control of the
select inputs A, B, and C. The output (Y) reflects the state of the
selected input, and the active-Low output (W) reflects the inverse of
the selected input as shown in the truth table. When G is High, the Y
output is Low, and the W output is High.

XC7000 XC9000

Macro Macro

Inputs Outputs

G C B A Y W

1 X X X 1 0
0 0 0 0 D0 D0
0 0 0 1 D1 D1
0 0 1 0 D2 D2
0 0 1 1 D3 D3
0 1 0 0 D4 D4
0 1 0 1 D5 D5
0 1 1 0 D6 D6
0 1 1 1 D7 D7
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Figure 3-158   X74_151 Implementation (XC7000 and XC9000)
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X74_152

8-to-1 Multiplexer with Active-Low Output

 X74_152 multiplexer chooses one data bit from eight sources
(D7 – D0) under control of the select inputs A, B, and C. The active-
Low output (W) reflects the inverse of the selected data input, as
shown in the truth table.

XC7000 XC9000

Macro Macro

Inputs Outputs

C B A W

0 0 0 D0
0 0 1 D1
0 1 0 D2
0 1 1 D3
1 0 0 D4
1 0 1 D5
1 1 0 D6
1 1 1 D7
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Figure 3-159   X74_152 Implementation (XC7000 and XC9000)
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X74_153

Dual 4-to-1 Multiplexer with Active-Low Enables and
Common Select Input

When the active-Low enable inputs G1 and G2 are Low, the data
output Y1, reflects the data input chosen by select inputs A and B
from data inputs I1C3 – I1C0. The data output Y2 reflects the data
input chosen by select inputs A and B from data inputs I2C3 – I2C0.
When G1 or G2 is High, the corresponding output, Y1 or Y2 respec-
tively, is Low.

XC7000 XC9000

Macro Macro

Inputs Outputs

G B A Y

1 X X 0
0 0 0 IC0
0 0 1 IC1
0 1 0 IC2
0 1 1 IC3
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Figure 3-160   X74_153 Implementation (XC7000 and XC9000)
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X74_154

4- to 16-Line Decoder/Demultiplexer with Two
Enables and Active-Low Outputs

When the active-Low enable inputs G1 and G2 of the X74_154
decoder/demultiplexer are Low, one of 16 active-Low outputs,
Y15 – Y0, is selected under the control of four binary address inputs
A, B, C, and D. The non-selected inputs are High. Also, when either
input G1 or G2 is High, all outputs are High.

The X74_154 can be used as a 16-to-1 demultiplexer by tying the data
input to one of the G inputs and tying the other G input Low.

XC7000 XC9000

Macro Macro

Inputs Outputs

G1 G2 D C B A Y15 Y14 Y13 Y12 Y11 Y10 Y9 ... Y0

1 X X X X X 1 1 1 1 1 1 1 ... 1
X 1 X X X X 1 1 1 1 1 1 1 ... 1
0 0 1 1 1 1 0 1 1 1 1 1 1 ... 1
0 0 1 1 1 0 1 0 1 1 1 1 1 ... 1
0 0 1 1 0 1 1 1 0 1 1 1 1 ... 1
- - - - - - - - - - - - - ... -
- - - - - - - - - - - - - ... -
- - - - - - - - - - - - - ... -
0 0 0 0 0 0 1 1 1 1 1 1 1 ... 0
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Figure 3-161   X74_154 Implementation (XC7000 and XC9000)
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X74_157

Quadruple 2-to-1 Multiplexer with Common Select
and Active-Low Enable

When the active-Low enable input (G) is Low, a 4-bit word is selected
from one of two sources (A3 – A0 or B3 – B0) under the control of the
select input (S) and is reflected on the four outputs (Y4 – Y1). When S
is Low, the outputs reflect A3 – A0; when S is High, the outputs reflect
B3 – B0. When G is High, the outputs are Low.

XC7000 XC9000

Macro Macro

Inputs Outputs

G S B A Y

1 X X X 0
0 1 1 X 1
0 1 0 X 0
0 0 X 1 1
0 0 X 0 0
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Figure 3-162   X74_157 Implementation (XC7000 and XC9000)
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X74_158

Quadruple 2-to-1 Multiplexer with Common Select,
Active-Low Enable, and Active-Low Outputs

When the active-Low enable (G) is Low, a 4-bit word is selected from
one of two sources (A3 – A0 or B3 – B0) under the control of the
common select input (S). The inverse of the selected word is reflected
on the active-Low outputs (Y4 – Y1). When S is Low, A3 – A0 appear
on the outputs; when S is High, B3 – B0 appear on the outputs. When
G is High, the outputs are High.

XC7000 XC9000

Macro Macro

Inputs Outputs

G S B A Y

1 X X X 1
0 1 1 X 0
0 1 0 X 1
0 0 X 1 0
0 0 X 0 1
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Figure 3-163   X74_158 Implementation (XC7000 and XC9000)
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X74_160

4-Bit BCD Counter with Parallel and Trickle Enables,
Active-Low Load Enable, and Asynchronous Clear

 X74_160 is a 4-stage, 4-bit, synchronous, loadable, resettable, cascad-
able, binary-coded decimal (BCD) counter. The active-Low asynchro-
nous clear (CLR), when Low, overrides all other inputs and resets the
data (QD, QC, QB, QA) and ripple carry-out (RCO) outputs Low
during the Low-to-High clock (C) transition. When the active-Low
load enable input (LOAD) is Low, parallel clock enable (ENP), and
trickle clock enable (ENT) are overridden and data on inputs A, B, C,
and D are loaded into the counter during the Low-to-High clock tran-
sition. The data outputs (QD, QC, QB, QA) increment when ENP,
ENT LOAD, and CLR are High during the Low-to-High clock transi-
tion. The counter ignores clock transitions when ENP or ENT are Low
and LOAD is High. RCO is High when QD, QA, and ENT are High
and QC and QB are Low. The default initial state of all flip-flops is
zero.

RCO = (QD•QC•QB•QA•ENT)

d – a = state of referenced input one set-up time prior to active clock transition

The carry-lookahead design allows cascading of large counters
without extra gating. Both ENT and ENP must be High to count. ENT
is fed forward to enable RCO, which produces a High output pulse
with the approximate duration of the QA output. The following
figure illustrates a carry-lookahead design.

XC7000 XC9000

Macro Macro

Inputs Outputs

CLR LOAD ENP ENT D – A CK QD – QA RCO

0 X X X X X 0 0
1 0 X X D – A ↑ d – a RCO
1 1 0 X X X No Chg RCO
1 1 X 0 X X No Chg 0
1 1 1 1 X ↑ Inc RCO
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Figure 3-164   Carry-Lookahead Design

The RCO output of the first stage of the ripple carry is connected to
the ENP input of the second stage and all subsequent stages. The
RCO output of the second stage and all subsequent stages is
connected to the ENT input of the next stage. The ENT of the second
stage is always enabled/tied to VCC. CE is always connected to the
ENT input of the first stage. This cascading method allows the first
stage of the ripple carry to be built as a prescaler. In other words, the
first stage is built to count very fast.

The counter recovers from any of six possible illegal states and
returns to a normal count sequence within two clock cycles.
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Figure 3-165   X74_160 Implementation (XC7000 and XC9000)
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X74_161

4-Bit Counter with Parallel and Trickle Enables
Active-Low Load Enable and Asynchronous Clear

X74_161 is a 4-stage, 4-bit, synchronous, loadable, resettable, cascad-
able binary counter. The active-Low asynchronous clear (CLR), when
Low, overrides all other inputs and resets the data outputs (QD, QC,
QB, QA) and the ripple carry-out output (RCO) Low. When the
active-Low load enable (LOAD) is Low and CLR is High, parallel
clock enable (ENP) and trickle clock enable (ENT) are overridden and
the data on inputs A, B, C, and D is loaded into the counter during
the Low-to-High clock (C) transition. The data outputs (QD, QC, QB,
QA) increment when LOAD, ENP, ENT, and CLR are High during
the Low-to-High clock transition. The counter ignores clock transi-
tions when LOAD is High and ENP or ENT are Low. RCO is High
when QD – QA and ENT are High. The default initial state of all flip-
flops is zero.

RCO = (QD•QC•QB•QA•ENT)

d – a = state of referenced input one set-up time prior to active clock transition

The carry-lookahead design accommodates large counters without
extra gating. Both the ENT and ENP inputs must be High to count.
ENT is fed forward to enable RCO, which produces a High output
with the approximate duration of the QA output. The following
figure illustrates a carry-lookahead design.

XC7000 XC9000

Macro Macro

Inputs Outputs

CLR LOAD ENP ENT D – A CK QD – QA RCO

0 X X X X X 0 0
1 0 X X D – A ↑ d – a RCO
1 1 0 X X X No Chg RCO
1 1 X 0 X X No Chg 0
1 1 1 1 X ↑ Inc RCO
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Figure 3-166   Carry-Lookahead Design

The RCO output of the first stage of the ripple carry is connected to
the ENP input of the second stage and all subsequent stages. The
RCO output of the second stage and all subsequent stages is
connected to the ENT input of the next stage. The ENT of the second
stage is always enabled/tied to VCC. CE is always connected to the
ENT input of the first stage. This cascading method allows the first
stage of the ripple carry to be built as a prescaler. In other words, the
first stage is built to count very fast.
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Figure 3-167   X74_161 Implementation (XC7000 and XC9000)
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X74_162

4-Bit Counter with Parallel and Trickle Enables and
Active-Low Load Enable and Synchronous Reset

X74_162 is a 4-stage, 4-bit, synchronous, loadable, resettable, cascad-
able binary-coded decimal (BCD) counter. The active-Low synchro-
nous reset (R), when Low, overrides all other inputs and resets the
data (QD, QC, QB, QA) and ripple carry-out (RCO) outputs Low
during the Low-to-High clock (C) transition. When the active-Low
load enable input (LOAD) is Low, parallel clock enable (ENP) and
trickle clock enable (ENT) are overridden and data on inputs A, B, C,
and D is loaded into the counter during the Low-to-High clock transi-
tion. The data outputs (QD, QC, QB, QA) increment when ENP, ENT,
LOAD, and R are High during the Low-to-High clock transition. The
counter ignores clock transitions when ENP or ENT are Low and
LOAD is High. RCO is High when QD, QA, and ENT are High and
QC and QB are Low. The default initial state of all flip-flops is zero.

RCO = (QD•QC•QB•QA•ENT)

d – a = state of referenced input one set-up time prior to active clock transition

The carry-lookahead design accommodates cascading large counters
without extra gating. Both ENT and ENP must be High to count. The
ENT is fed forward to enable RCO, which produces a High output
pulse with the approximate duration of the QA output. The following
figure illustrates a carry-lookahead design.

XC7000 XC9000

Macro Macro

Inputs Outputs

R LOAD ENP ENT D – A CK QD – QA RCO

0 X X X X ↑ 0 0
1 0 X X D – A ↑ d – a RCO
1 1 0 X X X No Chg RCO
1 1 X 0 X X No Chg 0
1 1 1 1 X ↑ Inc RCO
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Figure 3-168   Carry-Lookahead Design

The RCO output of the first stage of the ripple carry is connected to
the ENP input of the second stage and all subsequent stages. The
RCO output of the second stage and all subsequent stages is
connected to the ENT input of the next stage. The ENT of the second
stage is always enabled/tied to VCC. CE is always connected to the
ENT input of the first stage. This cascading method allows the first
stage of the ripple carry to be built as a prescaler. In other words, the
first stage is built to count very fast.

The counter recovers from any of six possible illegal states and
returns to a normal count sequence within two clock cycles.
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Figure 3-169   X74_162 Implementation (XC7000 and XC9000)
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X74_163

4-Bit Counter with Parallel and Trickle Enables,
Active-Low Load Enable, and Synchronous Reset

X74_163 is a 4-stage, 4-bit, synchronous, loadable, resettable, cascad-
able binary counter. The active-Low synchronous reset (R), when
Low, overrides all other inputs and resets the data outputs (QD, QC,
QB, QA) and the ripple carry-out output (RCO) Low. When the
active-Low load enable (LOAD) is Low and R is High, parallel clock
enable (ENP) and trickle clock enable (ENT) are overridden and the
data on inputs (A, B, C, D) is loaded into the counter during the Low-
to-High clock (C) transition. The outputs (QD, QC, QB, QA) incre-
ment when LOAD, ENP, ENT, and R are High during the Low-to-
High clock transition. The counter ignores clock transitions when
LOAD is High and ENP or ENT are Low; RCO is High when
QD – QA and ENT are High. The default initial state of all flip-flops is
zero.

RCO = (QD•QC•QB•QA•ENT)

d – a = state of referenced input one set-up time prior to active clock transition

The carry-lookahead design accommodates large counters without
extra gating. Both the ENT and ENP inputs must be High to count.
ENT is propagated forward to enable RCO, which produces a High
output with the approximate duration of the QA output. The
following figure illustrates a carry-lookahead design.

XC7000 XC9000

Macro Macro

Inputs Outputs

R LOAD ENP ENT D – A CK QD – QA RCO

0 X X X X ↑ 0 0
1 0 X X D – A ↑ d – a RCO
1 1 0 X X X No Chg RCO
1 1 X 0 X X No Chg 0
1 1 1 1 X ↑ Inc RCO
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Figure 3-170   Carry-Lookahead Design

The RCO output of the first stage of the ripple carry is connected to
the ENP input of the second stage and all subsequent stages. The
RCO output of the second stage and all subsequent stages is
connected to the ENT input of the next stage. The ENT of the second
stage is always enabled/tied to VCC. CE is always connected to the
ENT input of the first stage. This cascading method allows the first
stage of the ripple carry to be built as a prescaler. In other words, the
first stage is built to count very fast.
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Figure 3-171   X74_163 Implementation (XC7000 and XC9000)
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X74_164

8-Bit Serial-In Parallel-Out Shift Register with
Active-Low Asynchronous Clear

X74_164 is an 8-bit, serial input (A and B), parallel output (QH – QA)
shift register with an active-Low asynchronous clear (CLR) input. The
asynchronous CLR, when Low, overrides the clock input and sets the
data outputs (QH – QA) Low. When CLR is High, the AND function
of the two data inputs (A and B) is loaded into the first bit of the shift
register during the Low-to-High clock (C) transition and appears on
the QA output. During subsequent Low-to-High clock transitions,
with CLR High, the data is shifted to the next-highest bit position as
new data is loaded into QA (A and B➝QA, QA➝QB, QB➝QC, and so
forth). The default initial state of all flip-flops is zero.

Registers can be cascaded by connecting the QH output of one stage
to the A input of the next stage, by tying B High, and by connecting
the clock and CLR inputs in parallel.

qA – qG = state of referenced output one set-up time prior to active clock
transition

XC7000 XC9000

Macro Macro

Inputs Outputs

CLR A B CK QA QB – QH

0 X X X 0 0
1 1 1 ↑ 1 qA – qG
1 0 X ↑ 0 qA – qG
1 X 0 ↑ 0 qA – qG
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Figure 3-172   X74_164 Implementation (XC7000 and XC9000)
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X74_165S

8-Bit Loadable Serial/Parallel-In Parallel-Out Shift
Register with Clock Enable

X74_165S is an 8-bit shift register with serial-input (SI), parallel-
inputs (H – A), parallel-outputs (QH – QA), and two control
inputs – clock enable (CE) and active-Low shift/load enable (S_L).
When S_L is Low, data on the H – A inputs is loaded into the corre-
sponding QH – QA bits of the register on the Low-to-High clock (C)
transition. When CE and S_L are High, data on the SI input is loaded
into the first bit of the register during the Low-to-High clock transi-
tion. During subsequent Low-to-High clock transitions, with CE and
S_L High, the data is shifted to the next-highest bit position (shift
right) as new data is loaded into QA (SI➝QA, QA➝QB, QB➝QC, and
so forth). The register ignores clock transitions when CE is Low and
S_L is High. The default initial state of all flip-flops is zero.

Registers can be cascaded by connecting the QH output of one stage
to the SI input of the next stage and connecting clock, CE, and S_L
inputs in parallel.

si, qn represent state of referenced input or output one set-up time prior to active
clock transition.

XC7000 XC9000

Macro Macro

Inputs Outputs

S_L CE SI A – H CK QA QB – QH

0 X X A – H ↑ qa qb – qh
1 0 X X X --No Change---
1 1 SI X ↑ si qA – qG
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Figure 3-173   X74_165S Implementation (XC7000 and XC9000)
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X74_168

4-Bit BCD Bidirectional Counter with Parallel and
Trickle Clock Enables and Active-Low Load Enable

X74_168 is a 4-stage, 4-bit, synchronous, loadable, cascadable, bidirec-
tional binary-coded-decimal (BCD) counter. The data on the D – A
inputs is loaded into the counter when the active-Low load enable
(LOAD) is Low during the Low-to-High clock (C) transition. The
LOAD input, when Low, has priority over parallel clock enable
(ENP), trickle clock enable (ENT), and the bidirectional (U_D)
control. The outputs (QD – QA) increment when U_D and LOAD are
High and ENP and ENT are Low during the Low-to-High clock tran-
sition. The outputs decrement when LOAD is High and ENP, ENT,
and U_D are Low during the Low-to-High clock transition. The
counter ignores clock transitions when LOAD and either ENP or ENT
are High. The default initial state of all flip-flops is zero.

RCO = (Q3•Q2•Q1•Q0•U_D•ENT) + (Q3•Q2•Q1•Q0•U_D•ENT)

qa – qd = state of referenced input one set-up time prior to active clock transition

The active-Low ripple carry-out output (RCO) is Low when QD, QA,
and U_D are High and QC, QB, and ENT are Low. RCO is also Low
when all outputs, ENT and U_D are Low. The following figure illus-
trates a carry-lookahead design.

XC7000 XC9000

Macro Macro

Inputs Outputs

LOAD ENP ENT U_D A – D CK QA – QD RCO

0 X X X A – D ↑ qa – qd RCO
1 0 0 1 X ↑ Inc RCO
1 0 0 0 X ↑ Dec RCO
1 1 0 X X X No Chg RCO
1 X 1 X X X No Chg 1
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Figure 3-174   Carry-Lookahead Design

The RCO output of the first stage of the ripple carry is connected to
the ENP input of the second stage and all subsequent stages. The
RCO output of second stage and all subsequent stages is connected to
the ENT input of the next stage. The ENT of the second stage is
always enabled/tied to VCC. CE is always connected to the ENT
input of the first stage. This cascading method allows the first stage of
the ripple carry to be built as a prescaler. In other words, the first
stage is built to count very fast.
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Figure 3-175   X74_168 Implementation (XC7000 and XC9000)
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X74_174

6-Bit Data Register with Active-Low Asynchronous
Clear

The active-Low asynchronous clear input (CLR), when Low, over-
rides the clock and resets the six data outputs (Q6 – Q1) Low. When
CLR is High, the data on the six data inputs (D6 – D1) is transferred
to the corresponding data outputs on the Low-to-High clock (C) tran-
sition. The default initial state of all flip-flops is zero.

dn = state of referenced input one set-up time prior to active clock transition

XC7000 XC9000

Macro Macro

Inputs Outputs

CLR D6 – D1 CK Q6 – Q1

0 X X 0
1 D6 – D1 ↑ d6 – d1
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Figure 3-176   X74_174 Implementation (XC7000 and XC9000)
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X74_194

4-Bit Loadable Bidirectional Serial/Parallel-In
Parallel-Out Shift Register

X74_194 is a 4-bit shift register with shift-right serial input (SRI),
shift-left serial input (SLI), parallel inputs (D – A), parallel outputs
(QD – QA), two control inputs (S1, S0), and active-Low asynchronous
clear (CLR). The shift register performs the following functions.

● Clear When CLR is Low, all other inputs are ignored and
outputs QD – QA go to logic state zero during the
Low-to-High clock transition.

● Load When S1 and S0 are High, the data on inputs D – A
is loaded into the corresponding output bits
QD – QA during the Low-to-High clock transition.

● Shift Right When S1 is Low and S0 is High, the data is shifted
to the next-highest bit position (right) as new data
is loaded into QA (SRI➝QA, QA➝QB, QB➝QC,
and so forth).

● Shift Left When S1 is High and S0 is Low, the data is shifted
to the next-lowest bit position (left) as new data is
loaded into QD (SLI➝QD, QD➝QC, QC➝QB, and
so forth).

Registers can be cascaded by connecting the QD output of one stage
to the SRI input of the next stage, the QA output of one stage to the
SRI input of the next stage, and connecting clock, S1, S0, and CLR
inputs in parallel.

The default initial state of all flip-flops is zero.

XC7000 XC9000

Macro Macro
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Lowercase letters represent state of referenced input or output one set-up time
prior to active clock transition.

Inputs Outputs

CLR S1 S0 SRI SLI A – D CK QA QB QC QD

0 X X X X X X 0 0 0 0
1 0 0 X X X X -----No Change--------
1 1 1 X X A – D ↑ a b c d
1 0 1 SRI X X ↑ sri qa qb qc
1 1 0 X SLI X ↑ qb qc qd sli
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Figure 3-177   X74_194 Implementation (XC7000 and XC9000)
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X74_195

4-Bit Loadable Serial/Parallel-In Parallel-Out Shift
Register

X74_195 is a 4-bit shift register with shift-right serial inputs (J and K),
parallel inputs (D – A), parallel outputs (QD – QA) and QDB,
shift/load control input (S_L), and active-Low asynchronous clear
(CLR). Asynchronous CLR, when Low, overrides all other inputs and
resets data outputs QD – QA Low and QDB High. When S_L is Low
and CLR is High, data on the D – A inputs is loaded into the corre-
sponding QD – QA bits of the register during the Low-to-High clock
(C) transition. When S_L and CLR are High, the first bit of the register
(QA) responds to the J and K inputs during the Low-to-High clock
transition, as shown in the truth table. During subsequent Low-to-
High clock transitions, with S_L and CLR High, the data is shifted to
the next-highest bit position (shift right) as new data is loaded into
QA (J, K➝QA, QA➝QB, QB➝QC, and so forth). The default initial
state of all flip-flops is zero.

Registers can be cascaded by connecting the QD and QDB outputs of
one stage to the J and K inputs, respectively, of the next stage and
connecting clock, S_L and CLR inputs in parallel.

Lowercase letters represent state of referenced input or output one set-up time
prior to active clock transition.

XC7000 XC9000

Macro Macro

Inputs Outputs

CLR S_L J K A – D CK QA QB QC QD QDB

0 X X X X X 0 0 0 0 1
1 0 X X A – D ↑ a b c d d
1 1 0 0 X ↑ 0 qa qb qc qc
1 1 1 1 X ↑ 1 qa qb qc qc
1 1 0 1 X ↑ qa qa qb qc qc
1 1 1 0 X ↑ qa qa qb qc qc
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Figure 3-178   X74_195 Implementation (XC7000 and XC9000)
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X74_273

8-Bit Data Register with Active-Low Asynchronous
Clear

The active-Low asynchronous clear (CLR), when Low, overrides all
other inputs and resets the data outputs (Q8 – Q1) Low. When CLR is
High, the data on the data inputs (D8 – D1) is transferred to the corre-
sponding data outputs (Q8 – Q1) during the Low-to-High clock tran-
sition. The default initial state of all flip-flops is zero.

dn = state of referenced input one set-up time prior to active clock transition

XC7000 XC9000

Macro Macro

Inputs Outputs

CLR D8 – D1 CK Q8 – Q1

0 X X 0
1 D8 – D1 ↑ d8 – d1
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Figure 3-179   X74_273 Implementation (XC7000 and XC9000)

CK

D8

D1

D2

D4

D3

D5

D6

D7

CLRB

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

INV

CLR Q8

FDC

C
CLR

D Q

Q7

FDC

C
CLR

D Q

Q6

FDC

C
CLR

D Q

Q5

FDC

C
CLR

D Q

Q4

FDC

C
CLR

D Q

Q3

FDC

C
CLR

D Q

Q2

FDC

C
CLR

D Q

Q1

FDC

C
CLR

D Q



Libraries Guide

3-376 XACT Development System

X74_280

9-Bit Odd/Even Parity Generator/Checker

X74_280 parity generator/checker compares up to nine data inputs
(I – A) and provides both even (EVEN) and odd parity (ODD)
outputs. The EVEN output is High when an even number of inputs is
High. The ODD output is High when an odd number of inputs is
High.

Expansion to larger word sizes is accomplished by tying the ODD
outputs of up to nine parallel components to the data inputs of one
more X74_280; all other inputs are tied to ground.

XC7000 XC9000

Macro Macro

Inputs Outputs

Number of Ones
on A – I

EVEN ODD

0, 2, 4, 6, or 8 1 0
1, 3, 5, 7, or 9 0 1

X4184
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Figure 3-180   X74_280 Implementation (XC7000 and XC9000)
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X74_283

4-Bit Full Adder with Carry-In and Carry-Out

* not supported for XC7336 designs

X74_283, a 4-bit full adder with carry-in and carry-out, adds two 4-bit
words (A4 – A1 and B4 – B1) and a carry-in (C0) and produces a
binary sum output (S4 – S1) and a carry-out (C4).

16(C4)+8(S4)+4(S3)+2(S2)+S1=8(A4+B4)+4(A3+B3)+2(A2+B2)+
(A1+B1)+CO, where “+” = addition.

Figure 3-181   X74_283 Implementation (XC7000 and XC9000)
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X74_298

Quadruple 2-Input Multiplexer with Storage and
Negative-Edge Clock

* not supported for XC7336 designs

X74_298 selects 4-bits of data from two sources (D1 – A1 or D2 – A2)
under the control of a common word select input (WS). When WS is
Low, D1 – A1 is chosen, and when WS is High, D2 – A2 is chosen. The
selected data is transferred into the output register (QD – QA) during
the High-to-Low transition of the negative-edge triggered clock (CK).
For XC7000, the CK input cannot be driven by a FastCLK signal
(from BUFG). The default initial state of all flip-flops is zero.

an – dn = state of referenced input one set-up time prior to active clock transition

XC7000 XC9000

Macro* Macro

Inputs Outputs

WS A1 – D1 A2 – D2 CK QA – QD

0 A1 – D1 X ↓ a1 – d1
1 X A2 – D2 ↓ a2 – d2
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Figure 3-182   X74_298 Implementation (XC7000 and XC9000)
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X74_352

Dual 4-to-1 Multiplexer with Active-Low Enables and
Outputs

X74_352 comprises two 4-to-1 multiplexers with separate enables
(G1 and G2) but with common select inputs (A and B). When an
active-Low enable (G1 or G2) is Low, the multiplexer chooses one
data bit from the four sources associated with the particular enable
(I1C3 – I1C0 for G1 and I2C3 – I2C0 for G2) under the control of the
common select inputs (A and B). The active-Low outputs (Y1 and Y2)
reflect the inverse of the selected data as shown in truth table. Y1 is
associated with G1 and Y2 is associated with G2. When an active-
Low enable is High, the associated output is High.

XC7000 XC9000

Macro Macro

Inputs Outputs

G B A IC0 IC1 IC2 IC3 Y

1 X X X X X X 1
0 0 0 IC0 X X X IC0
0 0 1 X IC1 X X IC1
0 1 0 X X IC2 X IC2
0 1 1 X X X IC3 IC3

X4187

X74_352
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Figure 3-183   X74_352 Implementation (XC7000 and XC9000)
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X74_377

8-Bit Data Register with Active-Low Clock Enable

When the active-Low clock enable (G) is Low, the data on the eight
data inputs (D8 – D1) is transferred to the corresponding data
outputs (Q8 – Q1) during the Low-to-High clock (CK) transition. The
register ignores clock transitions when G is High. The default initial
state of all flip-flops is zero.

dn = state of referenced input one set-up time prior to active clock transition

XC7000 XC9000

Macro Macro

Inputs Outputs

G D8 – D1 CK Q8 – Q1

1 X X No Change
0 D8 – D1 ↑ d8 – d1
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Figure 3-184   X74_377 Implementation (XC7000 and XC9000)
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X74_390

4-Bit BCD/Bi-Quinary Ripple Counter with
Negative-Edge Clocks and Asynchronous Clear

* not supported for XC7336 designs

X74_390 is a cascadable, resettable binary-coded decimal (BCD) or
bi-quinary counter that can be used to implement cycle lengths equal
to whole and/or cumulative multiples of 2 and/or 5. In BCD mode,
the output QA is connected to negative-edge clock input (CKB), and
data outputs (QD – QA) increment during the High-to-Low clock
transition as shown in the truth table, provided asynchronous clear
(CLR) is Low. In bi-quinary mode, output QD is connected to the
negative-edge clock input (CKA). As shown in the truth table, in bi-
quinary mode, QA supplies a divide-by-five output and QB supplies
a divide-by-two output, provided asynchronous CLR is Low. When
asynchronous CLR is High, the other inputs are overridden, and data
outputs (QD – QA) are reset Low. The default initial state of all flip-
flops is zero.

Larger ripple counters are created by connecting the QD output (BCD
mode) or QA output (biquinary mode) of the first stage to the appro-
priate clock input of the next stage and connecting the CLR inputs in
parallel. For XC7000, CKA and CKB cannot be driven by a FastCLK
signal from (BUFG).

XC7000 XC9000

Macro* Macro

X4189

X74_390
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QACKA
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Count
BCD Bi-Quinary

QD QC QB QA QD QC QB QA

0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 1 0
2 0 0 1 0 0 1 0 0
3 0 0 1 1 0 1 1 0
4 0 1 0 0 1 0 0 0
5 0 1 0 1 0 0 0 1
6 0 1 1 0 0 0 1 1
7 0 1 1 1 0 1 0 1
8 1 0 0 0 0 1 1 1
9 1 0 0 1 1 0 0 1
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Figure 3-185   X74_390 Implementation (XC7000 and XC9000)
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X74_518

8-Bit Identity Comparator with Active-Low Enable

X74_518 is an 8-bit identity comparator with 16 data inputs for two
8-bit words (P7 – P0 and Q7 – Q0), data output (PEQ), and active-Low
enable (G). When G is High, the PEQ output is Low. When G is Low
and the two input words are equal, PEQ is High. Equality is deter-
mined by a bit comparison of the two words. When any of the two
equivalent bits from the two words are not equal, PEQ is Low.

Figure 3-186   X74_518 Implementation (XC7000 and XC9000)
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X74_521

8-Bit Identity Comparator with Active-Low Enable
and Output

X74_521 is an 8-bit identity comparator with 16 data inputs for two
8-bit words (P7 – P0 and Q7 – Q0), active-Low data output (PEQ),
and active-Low enable (G). When G is High, the PEQ output is High.
When G is Low and the two input words are equal, PEQ is Low.
X74_521 does a bit comparison of the two words to determine
equality. When any of the two equivalent bits from the two words are
not equal, PEQ is High.

Figure 3-187   X74_521 Implementation (XC7000 and XC9000)
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